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Riassunto

Questa Tesi è dedicata all’analisi di problemi di perturbazione singolare e omogeneizzazione nello
spazio Euclideo periodicamente perforato. Studiamo il comportamento delle soluzioni di problemi al
contorno per le equazioni di Laplace, di Poisson e di Helmholtz al tendere a 0 di parametri legati al
diametro dei buchi o alla dimensione delle celle di periodicità.

La Tesi è organizzata come segue.
Nel Capitolo 1, presentiamo due costruzioni note di un analogo periodico della soluzione fondamen-

tale dell’equazione di Laplace, e introduciamo potenziali di strato e di volume periodici per l’equazione
di Laplace e alcuni risultati basilari di teoria del potenziale periodica. Il Capitolo 2 è dedicato a
problemi di perturbazione singolare e omogeneizzazione per le equazioni di Laplace e Poisson con
condizioni al bordo di Dirichlet e Neumann. Nel Capitolo 3 consideriamo il caso di problemi al contorno
di Robin (lineari e nonlineari) per l’equazione di Laplace, mentre nel Capitolo 4 analizziamo problemi
di trasmissione (lineari e nonlineari). Nel Capitolo 5 applichiamo i risultati del Capitolo 4 al fine di
provare l’analiticità della conduttività effettiva di un composto periodico. Il Capitolo 6 è dedicato
alla costruzione di un analogo periodico della soluzione fondamentale dell’equazione di Helmholtz e
dei corrispondenti potenziali di strato. Nel Capitolo 7 raccogliamo alcuni risultati di teoria spettrale
per l’operatore di Laplace in domini periodicamente perforati. Nel Capitolo 8 studiamo problemi di
perturbazione singolare e di omogeneizzazione per l’equazione di Helmholtz con condizioni al contorno
di Neumann. Nel Capitolo 9 consideriamo problemi di perturbazione singolare e di omogeneizzazione
con condizioni al contorno di Dirichlet per l’equazione di Helmholtz, mentre nel Capitolo 10 studiamo
problemi al contorno di Robin (lineari e nonlineari). Il Capitolo 11 è dedicato allo studio di potenziali
di strato periodici per operatori differenziali generali del secondo ordine a coefficienti costanti. Alla
fine della Tesi abbiamo incluso delle Appendici con alcuni risultati utilizzati.
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Abstract

This Dissertation is devoted to the singular perturbation and homogenization analysis of boundary
value problems in the periodically perforated Euclidean space. We investigate the behaviour of the
solutions of boundary value problems for the Laplace, the Poisson, and the Helmholtz equations, as
parameters related to diameter of the holes or the size of the periodicity cells tend to 0.

The Dissertation is organized as follows.
In Chapter 1, we present two known constructions of a periodic analogue of the fundamental

solution of the Laplace equation and we introduce the periodic layer and volume potentials for the
Laplace equation and some basic results of periodic potential theory. Chapter 2 is devoted to singular
perturbation and homogenization problems for the Laplace and the Poisson equations with Dirichlet
and Neumann boundary conditions. In Chapter 3 we consider the case of (linear and nonlinear) Robin
boundary value problems for the Laplace equation, while in Chapter 4 we analyze (linear and nonlinear)
transmission problems. In Chapter 5 we apply the results of Chapter 4 in order to prove the real
analyticity of the effective conductivity of a periodic dilute composite. Chapter 6 is dedicated to the
construction of a periodic analogue of the fundamental solution of the Helmholtz equation and of the
corresponding periodic layer potentials. In Chapter 7 we collect some results of spectral theory for the
Laplace operator in periodically perforated domains. In Chapter 8 we investigate singular perturbation
and homogenization problems for the Helmholtz equation with Neumann boundary conditions. In
Chapter 9 we consider singular perturbation and homogenization problems with Dirichlet boundary
conditions for the Helmholtz equation, while in Chapter 10 we study (linear and nonlinear) Robin
boundary value problems. Chapter 11 is devoted to the study of periodic layer potentials for general
second order differential operators with constant coefficients. At the end of the Dissertation we have
enclosed some Appendices with some results that we have exploited.
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Preface

This Dissertation is devoted to the singular perturbation and homogenization analysis of boundary
value problems in the periodically perforated Euclidean space Rn. We consider boundary value
problems for the Laplace, the Poisson, and the Helmholtz equations.

Periodical structures and related problems often appear in nature and play an important role in
many problems of mechanics and physics. In particular, they have a large variety of applications,
especially in connection with composite materials (cf. e.g., Ammari and Kang [3, Chs. 2, 8], Ammari,
Kang, and Lee [4, Ch. 3], Milton [97, Ch. 1], Mityushev, Pesetskaya, and Rogosin [101].) More
precisely, such problems are relevant in the computation of effective properties, which in turn can be
justified by the Homogenization Theory (cf. e.g., Allaire [2, Ch. 1], Bensoussan, Lions, Papanicolaou
[10, Ch. 1], Jikov, Kozlov, Olĕınik [62, Ch. 1].) Furthermore, for composite materials it is interesting
to study average or limiting properties corresponding to “small” values of the diameter of the holes or
of the size of the periodicity cells.

As is well known, there is a vast literature devoted to the study of singular perturbation and
homogenization problems for equations and systems of partial differential equations, especially in the
case of linear equations. In this Dissertation we shall consider the case of periodically perforated
domains with both linear and nonlinear boundary conditions.

We now briefly describe one of these problems.
Let n ∈ N \ {0, 1}. Let a11, . . . , ann ∈ ]0,+∞[. We set ai ≡ aiiei for all i ∈ {1, . . . , n} and we

introduce the fundamental periodicity cell A ≡
∏n
i=1]0, aii[. Here {e1, . . . , en} is the canonical basis

of Rn. Then we fix a point w in the fundamental cell A and we take a sufficiently regular bounded
connected open subset Ω of Rn, such that 0 ∈ Ω and such that Rn \ cl Ω is connected. For each
ε ∈ ]0, ε′[, with ε′ > 0 sufficiently small, we set Ωε ≡ w + εΩ, Sa[Ωε] ≡ ∪z∈Zn(Ωε +

∑n
i=1 ziai), and

Ta[Ωε] ≡ Rn \ cl Sa[Ωε]. Then we denote by νΩε the outward unit normal to Ωε. For ε ∈ ]0, ε′[ we
consider the following boundary value problem for the Laplace equation in the periodically perforated
domain Ta[Ωε]: 

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ Ta[Ωε], ∀i ∈ { 1, . . . , n },
Bε(x, u(x), ∂u(x)

∂νΩε
) = 0 ∀x ∈ ∂Ωε,

(0.1)

for a suitable function Bε of ∂Ωε × R× R to R, which represents the boundary condition of problem
(0.1). In particular, we consider both linear and nonlinear boundary conditions. Assume that for
each ε ∈ ]0, ε′[ boundary value problem (0.1) has a certain solution u[ε] of Ta[Ωε] to R. Our aim is to
investigate the asymptotic behaviour of the solution u[ε] (or of functionals of the solution, such as, for
example, the energy integral

∫
A\cl Ωε

|∇u[ε](x)|2dx) as ε tends to 0. Then, it is natural to pose, for
example, the following questions:

(i) Let t ∈ clA \ {w} be fixed. What can be said on the map ε 7→ u[ε](t) for ε small and positive
around the degenerate value ε = 0?

(ii) Let t ∈ Rn \ Ω be fixed. What can be said on the map ε 7→ u[ε](w + εt) for ε small and positive
around the degenerate value ε = 0?

We note that question (i) is related to what we call the “macroscopic behaviour” of the solution, since
it is related to the value of the solution at a point which is “far” from the perforations. On the other
hand, question (ii) concerns the “microscopic behaviour”, since the point w + εt gets closer to the
“singularity” of the domain as the parameter ε tends to 0.

ix



x Preface

Questions of this type have long been investigated, e.g., for problems on a bounded perforated
domain with the methods of Asymptotic Analysis and of Homogenization Theory.

Thus for example, one could resort to Asymptotic Analysis and may succeed to write out an
asymptotic expansion of u[ε](t) in terms of the parameter ε. In this sense, we mention, e.g., the work
of Ammari and Kang [3, Ch. 5], Ammari, Kang, and Lee [4, Ch. 3], Kozlov, Maz’ya, and Movchan
[65], Maz’ya and Movchan [89], Maz’ya, Nazarov, and Plamenewskij [91, 92], Maz’ya, Movchan, and
Nieves [90], Ozawa [111], Vogelius and Volkov [138], Ward and Keller [141]. For non-linear problems
on domains with small holes far less seems to be known; we mention the results which concern the
existence of a limiting value of the solutions or of their energy integral as the holes degenerate to points,
as those of Ball [9], Sivaloganathan, Spector, and Tilakraj [129]. We also mention the computation of
the expansions in the case of quasilinear equations of Titcombe and Ward [134], Ward, Henshaw, and
Keller [139], and Ward and Keller [140].

Concerning Homogenization Theory, we mention, e.g., Bakhvalov and Panasenko [8], Cioranescu
and Murat [27, 28], Dal Maso and Murat [32], Jikov, Kozlov, and Olĕınik [62], Marčenko and Khruslov
[88], Sánchez-Palencia [122]. Here the interest is focused on the limiting behaviour as the singular
perturbation parameters degenerate.

Furthermore, boundary value problems in domains with periodic inclusions have been analyzed, at
least for the two dimensional case, with the method of functional and integral equations. Here we
mention Castro and Pesetskaya [19], Castro, Pesetskaya, and Rogosin [20], Drygas and Mityushev
[48], Mityushev and Adler [100], Rogosin, Dubatovskaya, and Pesetskaya [119].

In connection with doubly periodic problems for composite materials, we mention the monograph
of Grigolyuk and Fil’shtinskij [56].

Here instead we wish to characterize the behaviour of u[ε] at ε = 0 by a different approach. Thus
for example, if we consider a certain functional, say F (ε), relative to the solution (such as, for example,
one of those considered in the questions above), we would try to represent it for ε > 0 in terms of real
analytic functions of the variable ε defined on a whole neighbourhood of 0, and by possibly singular at
ε = 0 but explictly known functions of ε, such as log ε, ε−1, etc. . . .

We observe that our approach does have certain advantages. Indeed, if we knew, for example,
that u[ε](t) equals for positive values of ε a real analytic function of the variable ε defined on a whole
neighbourhood of 0, then there would exist ε′′ ∈ ]0, ε′[ and a sequence {cj}∞j=0 of real numbers such
that

u[ε](t) =
∞∑
j=0

cjε
j ∀ε ∈ ]0, ε′′[ ,

where the series in the right hand side converges absolutely on ]−ε′′, ε′′[.
Such a project has been carried out by Lanza de Cristoforis in several papers for problems in

a bounded domain with a small hole (cf. e.g., Lanza [68, 69, 71, 72, 73, 74, 75, 77, 76, 78, 79].) In
the frame of linearized elastostatics, we also mention, e.g., Dalla Riva [33], Dalla Riva and Lanza
[38, 39, 41, 42, 43] and, for the Stokes system, Dalla Riva [35, 36, 37]. Here we note that one of
the tools of our analysis is potential theory, and, in particular, the study of the dependence of layer
potentials and other related integral operators upon perturbations of the domain (cf. Preciso [115],
Lanza and Preciso [83, 84], Lanza and Rossi [85, 86], Dalla Riva [34], Dalla Riva and Lanza [40].)

We note that in this Dissertation we have analyzed problem (0.1), when Bε represents the Dirichlet,
the Neumann, and the (linear and nonlinear) Robin boundary conditions. We have also considered
linear and nonlinear transmission problems for the Laplace equation in the pair of domains consisting
of Sa[Ωε] and Ta[Ωε]. We observe that nonlinear transmission problems arise in the study of heat
conduction in composite materials with different (non-constant) thermal conductivities (see Mityushev
and Rogosin [102, Chapter 5, p. 201].)

We briefly outline the general strategy. We first note that boundary value problem (0.1), which we
consider only for positive ε, is singular for ε = 0. Then by exploiting potential theory, we transform
(0.1) into an equivalent integral equation defined on the ε-dependent domain ∂Ωε. Since the domain
∂Ωε is clearly degenerate for ε = 0, we want to get rid of the dependence of the domain on ε. By
exploiting an appropriate change of variable, we convert the integral equation defined on ∂Ωε into an
equivalent integral equation which is defined on the fixed domain ∂Ω. Such an equation makes sense
also for ε = 0. Then we analyze the solutions of the integral equations around the degenerate case
ε = 0 by means of the Implicit Function Theorem for real analytic maps. One of the difficulties here is
to choose the appropriate functional variables so as to desingularize the problem. By exploiting these
results, we can prove our main Theorems on the representation of the solution and of the integral and
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the energy integral of the solution. Furthermore, we note that in case of nonlinear problems, one of
the difficulties concerns the existence and choice of a convenient family of solutions.

Moreover, we have applied the results concerning problem (0.1) to the investigation of homogeniza-
tion problems in an infinite periodically perforated domain as the parameter related to the “size” of
the holes and the one related to the dimension of the periodicity cell tend to 0. If ε is a small positive
number and δ ∈]0,+∞[, we set

Ω(ε, δ) = δΩε,

and

Ta(ε, δ) = δTa[Ωε] = Rn \ ∪z∈Zn(δw + δε cl Ω +
n∑
i=1

δziai).

Here, we note that the parameter ε is related, in a sense, to the “size” of the hole with respect to
the periodicity cell, whereas the parameter δ is related to the “size” of the periodicity cell and, as a
consequence, also to the distance among the perforations. We note that when ε tends to 0 the holes
shrink to points and when δ tends to 0 the periodicity cell degenerates.

Then, for example, we have considered for each pair (ε, δ) ∈ ]0, ε′[ × ]0,+∞[, with ε′ > 0 small
enough, the problem

∆u(x) = 0 ∀x ∈ Ta(ε, δ)
u(x+ δai) = u(x) ∀x ∈ Ta(ε, δ) ∀i ∈ { 1, . . . , n }
B(ε,δ)(x, u(x), ∂u(x)

∂νΩ(ε,δ)
) = 0 ∀x ∈ ∂Ω(ε, δ)

(0.2)

for a suitable function B(ε,δ) of ∂Ω(ε, δ) × R × R to R which, as above, represents the boundary
condition of problem (0.2). Here νΩ(ε,δ) denotes the outward unit normal to Ω(ε, δ). Under convenient
assumptions, we can assume that, for ε and δ positive and small, problem (0.2) has a solution, which
we denote by u(ε,δ). Then we investigate the asymptotic behaviour of the solution u(ε,δ) and of
functionals of the solution as the pair (ε, δ) approaches (0, 0), and we try to represent them in terms of
real analytic functions and known functions. We observe that our aim is to describe the convergence
of u(ε,δ) as (ε, δ) goes to (0, 0), in terms of real analytic functions (possibly evaluated on “particular”
values of (ε, δ).) Clearly, if V is a non-empty open subset of Rn, then

V 6⊆ cl Ta(ε, δ)

for ε and δ positive and small. Therefore, we cannot hope to describe the behaviour of the restrcition of
u(ε,δ) to the closure of a non-empty open subset in terms of real analytic functions. As a consequence,
we need to find a different way to describe the convergence of u(ε,δ), since the restriction to non-empty
open subsets of Rn is no longer convenient.

We observe that the study of the asymptotic behaviour of the solutions of boundary value problems
in periodically perforated bounded domains, as the parameter related to the periodicity of the array
of inclusions tends to 0, has been largely investigated in the frame of Homogenization Theory. We
mention, for example, the contributions by Ansini and Braides [7], Cioranescu and Murat [27, 28],
Marčenko and Khruslov [88]. We also note that in the recent paper by Maz’ya and Movchan [89] the
assumption on the periodicity of the array of inclusions is not required.

Problems of the type of (0.1) and (0.2) have been considered not only for the Laplace equation,
but also for the Poisson equation and the Helmholtz equation.

One of the aims of this Dissertation is establishing the periodic counterpart of some of the results
obtained by Lanza de Cristoforis and his collaborators Dalla Riva, Preciso, and Rossi. The attention
here is mainly paid on the mathematical theory of singularly perturbed periodic boundary value
problems for the Laplace and the Helmholtz equation, rather than on applications. Therefore we chose
to give a detailed description of the main boundary value problems for the Laplace and the Helmholtz
equation and we decided to dedicate a chapter to each of them.

This Dissertation is organized as follows.
In Chapter 1, we present two known constructions of a periodic analogue of the fundamental

solution of the Laplace equation and we introduce the periodic layer and volume potentials for the
Laplace equation and some basic results of periodic potential theory. Chapter 2 is devoted to singular
perturbation and homogenization problems for the Laplace and the Poisson equations with Dirichlet
and Neumann boundary conditions. In Chapter 3 we consider the case of (linear and nonlinear) Robin
boundary value problems for the Laplace equation, while in Chapter 4 we analyze (linear and nonlinear)
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transmission problems. In Chapter 5 we apply the results of Chapter 4 in order to prove the real
analyticity of the effective conductivity of a periodic dilute composite. Chapter 6 is dedicated to the
construction of a periodic analogue of the fundamental solution of the Helmholtz equation and of the
corresponding periodic layer potentials. In Chapter 7 we collect some results of spectral theory for the
Laplace operator in periodically perforated domains. In Chapter 8 we investigate singular perturbation
and homogenization problems for the Helmholtz equation with Neumann boundary conditions. In
Chapter 9 we consider singular perturbation and homogenization problems with Dirichlet boundary
conditions for the Helmholtz equation, while in Chapter 10 we study (linear and nonlinear) Robin
boundary value problems. Chapter 11 is devoted to the study of periodic layer potentials for general
second order differential operators with constant coefficients. At the end of the Dissertation we have
enclosed some Appendices with some results that we have exploited.

Note: Some of the results contained in this Dissertation have appeared or will appear on papers
by the author (e.g., [103, 104, 105]), and by Lanza de Cristoforis and the author (e.g., [81, 82].)
Concerning related topics, see also Lanza de Cristoforis and the author [80], and Dalla Riva and the
author [44].

Acknowledgement: The author wishes to express his gratitude to Prof. M. Lanza de Cristo-
foris for his precious and constant help during the Ph.D. program and the preparation of this
Dissertation. The author is also indebted to Dr. M. Dalla Riva for many valuable discussions.



Notation

We denote the norm on a (real) normed space X by ‖·‖X . Let X and Y be normed spaces. We endow
the product space X × Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y ∀ (x, y) ∈ X × Y,
while we use the Euclidean norm for Rn. We denote by L(X ,Y) the Banach space of linear and
continuous maps of X to Y, equipped with the usual norm of the uniform convergence on the unit
sphere of X . We denote by I the identity operator. For standard definitions of Calculus in normed
spaces, we refer to Prodi and Ambrosetti [116]. If X is a vector space, T a linear functional on X and
x ∈ X , the value of T at x is denoted by 〈T, x〉. If X is a topological space and Y is a subset of X ,
we denote by clX Y, or more simply by clY, the closure of Y in X . The symbol N denotes the set of
natural numbers including 0. Throughout the Dissertation,

n ∈ N \ {0, 1}.

We denote by {e1, . . . , en} the canonical basis of Rn. The inverse function of an invertible function
f is denoted f (−1), as opposed to the reciprocal of a complex-valued function g, or the inverse of a
matrix A, which are denoted g−1 and A−1, respectively. If A is a matrix, then we denote by AT the
transpose matrix of A and by Aij the (i, j) entry of A. A dot ‘·’ denotes the inner product in Rn, or
the matrix product between matrices with real entries. If x ∈ R, then we set

bxc ≡ max { l ∈ Z : l ≤ x }

and
dxe ≡ min { l ∈ Z : l ≥ x } .

If x ∈ R, we also set

sgn(x) ≡


1 if x > 0,
0 if x = 0,
−1 if x < 0.

Let D ⊆ Rn. Then cl D denotes the closure of D and ∂D denotes the boundary of D. For all
R > 0, x ∈ Rn, xj denotes the j-th coordinate of x, |x| denotes the Euclidean modulus of x
in Rn or in C, Bn(x,R) denotes the open ball { y ∈ Rn : |x− y| < R } and Bn denotes the open
unit ball { y ∈ Rn : |y| < 1 }. Let Ω be an open subset of Rn. The space of m times continuously
differentiable real-valued (resp. complex-valued) functions on Ω is denoted by Cm(Ω,R) (resp.
Cm(Ω,C)), or more simply by Cm(Ω). Let r ∈ N \ {0}, f ∈ (Cm(Ω))r or f ∈ (Cm(Ω,C))r. The s-th
component of f is denoted fs and the gradient matrix of f is denoted Df . Let η ≡ (η1, . . . , ηn) ∈ Nn,
|η| ≡ η1 + · · · + ηn. Then Dηf denotes ∂|η|f

∂x
η1
1 ...∂xηnn

. If r = 1, the symmetric Hessian matrix of the
second order partial derivatives of f is denoted D2f . The subspace of Cm(Ω) (resp. Cm(Ω,C))
of those functions f such that f and its derivatives Dηf of order |η| ≤ m can be extended with
continuity to cl Ω is denoted Cm(cl Ω,R) (resp. Cm(cl Ω,C)), or more simply Cm(cl Ω). The subspace
of Cm(cl Ω) (resp. Cm(cl Ω,C)) of those functions which have m-th order derivatives that are
Hölder continuous with exponent α ∈ ]0, 1] is denoted Cm,α(cl Ω,R) (resp. Cm,α(cl Ω,C)), or more
simply Cm,α(cl Ω) (cf. e.g., Gilbarg and Trudinger [55]). Let D ⊆ Rn. Then Cm,α(cl Ω,D) denotes
the set { f ∈ (Cm,α(cl Ω))n : f(cl Ω) ⊆ D }. Now let Ω be a bounded open subset of Rn. Then
Cm(cl Ω) endowed with the norm ‖f‖Cm(cl Ω) ≡

∑
|η|≤m supcl Ω|Dηf | is a Banach space. The same

holds for Cm(cl Ω,C). If f ∈ C0,α(cl Ω) or f ∈ C0,α(cl Ω,C), then its Hölder quotient |f : Ω|α is
defined as sup

{
|f(x)−f(y)|
|x−y|α : x, y ∈ cl Ω, x 6= y

}
. The space Cm,α(cl Ω), equipped with its usual norm

xiii
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‖f‖Cm,α(cl Ω) = ‖f‖Cm(cl Ω) +
∑
|η|=m|Dηf : Ω|α, is well-known to be a Banach space. The same holds

for Cm,α(cl Ω,C). We say that a bounded open subset of Rn is of class Cm or of class Cm,α, if its
closure is a manifold with boundary imbedded in Rn of class Cm or Cm,α, respectively (cf. e.g.,
Gilbarg and Trudinger [55, § 6.2]). For standard properties of the functions of class Cm,α both on
a domain of Rn or on a manifold imbedded in Rn we refer to Gilbarg and Trudinger [55] (see also
Lanza [67, §2, Lem. 3.1, 4.26, Thm. 4.28], Lanza and Rossi [85, §2]). We retain the standard notation
of Lp spaces and Sobolev spaces Wm,p and of corresponding norms (and in particular we set, as usual,
Hm ≡Wm,2). Let Ω be a measurable nonempty subset of Rn and 1 ≤ p ≤ ∞. In particular, we write
Lp(Ω,R) (or more simply Lp(Ω)), if we are considering real-valued functions; we write Lp(Ω,C), if we
are considering complex-valued functions. Analogously, we denote by Lploc(Ω,R) (resp. Lploc(Ω,C)),
or more simply Lploc(Ω), the set of functions f of Ω to R (resp. C) such that f ∈ Lp(K,R) (resp.
f ∈ Lp(K,C)) for each compact K ⊆ Ω. We note that throughout the Dissertation ‘analytic’ means
‘real analytic’. For the definition and properties of analytic operators, we refer to Prodi and Ambrosetti
[116, p. 89].

We denote by Sn the function of Rn \ {0} to R defined by

Sn(x) ≡

{
1
sn

log|x|, ∀x ∈ Rn \ {0}, if n = 2,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2,

where sn denotes the (n− 1) dimensional measure of ∂Bn. Sn is well known to be the fundamental
solution of the Laplace operator.

If I is an open bounded connected subset of Rn of class C1,α for some α ∈ ]0, 1[, then we denote
by νI the outward unit normal to ∂I.

For a multi-index α ∈ Nn and x ∈ Rn, we define

|α| ≡
n∑
i=1

αi, α! ≡
n∏
i=1

αi!, xα ≡
n∏
i=1

xi
αi , Dα ≡

n∏
i=1

(∂i)αi .

We denote by dσ the standard surface measure on a manifold of codimension 1 of Rn. We will
sometimes attach to dσ a subscript to indicate the integration variable. If D is a measurable subset of
Rn, and k ∈ N, the k-dimensional measure of the set D is denoted by |D|k.

For notation and results connected with the Theory of Distributions, we refer to Appendix A. For
notation and results from classical potential theory for the Laplace and the Helmholtz equation, we
refer to Appendices B and E, respectively.

At the beginning of each Chapter, we refer to the points in the Dissertation where the notation
that we adopt has been introduced. In particular, we note that in Chapters 1 and 6 we introduce the
notation related to periodic layer potential for the Laplace and Helmholtz equation, respectively. The
notation related to periodic domains is introduced in Sections 1.1 and 1.3.



CHAPTER 1

Periodic simple and double layer potentials for the
Laplace equation

This Chapter is mainly devoted to the definition of periodic analogues of the simple and double layer
potentials. Namely, we construct these objects by substituting, in the definition of the classical layer
potentials, the fundamental solution of the Laplace operator with a periodic analogue. In the second
part of this Chapter, we define a periodic Newtonian potential and we prove some regularity results
for the solutions of some integral equations, involved in the resolution of boundary value problems by
means of periodic potentials. Some of the results are based on the classical analogous results (cf. e.g.,
Lanza and Rossi [85].) For a generalization of some results contained in this Chapter, we refer to [81].

For notation, definitions, and properties concerning classical layer potentials for the Laplace
equation, we refer to Appendix B.

1.1 Notation

First of all, we need to introduce some notation.
We fix

a11, . . . , ann ∈ ]0,+∞[. (1.1)

We set

ai ≡ aiiei ∀i ∈ {1, . . . , n}, (1.2)
a ≡ (a1 . . . an) ∈Mn×n(R). (1.3)

In other words, a is the diagonal matrix

a ≡


a11 0 . . . 0
0 a22 . . . 0
. . . . . . . . . . . .
0 0 . . . ann

 .

Let A, Ã and O be the subsets of Rn defined as follows:

A ≡
n∏
i=1

]0, aii[, (1.4)

Ã ≡
n∏
i=1

]−aii
2
,
aii
2

[, (1.5)

O ≡
n∏
i=1

]−2aii
3
,

2aii
3

[. (1.6)

1
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We denote by νA the outward unit normal to ∂A, where it is defined. We also set

a(x) ≡ a · x ∀x ∈ Rn, (1.7)

a−1(x) ≡ a−1 · x ∀x ∈ Rn. (1.8)

In other words, a(·), a−1(·) are the linear functions from Rn to itself associated to the matrices a, a−1,
respectively. Clearly,

det a = |A|n,

where |A|n is the n-dimensional measure of the set A.
Finally, we set

Zan ≡ { a(z) : z ∈ Zn } . (1.9)

Let z ∈ Zn \ {0}. We note that

min
{
|x− a(z)| : x ∈ Ã

}
≥ |a(z)|

2
, (1.10)

and

min { |x− a(z)| : x ∈ O } ≥ |a(z)|
3

. (1.11)

Let D be a subset of Rn such that

x+ a(z) ∈ D ∀x ∈ D, ∀z ∈ Zn,

and f be a function of D to R. We say that f is periodic, if

f(x+ ai) = f(x) ∀x ∈ D, ∀i ∈ {1, . . . , n}.

1.2 Construction of a periodic analogue of the fundamental
solution of the Laplace operator

In this Section, we present two ways to construct a periodic analogue of the fundamental solution of
the Laplace operator. Even though we shall use only the one constructed in Theorem 1.4, we decided
to include also an alternative construction in order to show that it is possible to construct this object
by means of different techniques.

1.2.1 Construction via Fourier Analysis

In this Subsection we construct a periodic analogue of the fundamental solution of the Laplace operator,
by following Ammari and Kang [3, p. 53] (see also Ammari, Kang and Touibi [6].) We briefly outline
the strategy. By using the Poisson summation Formula, we deduce the Fourier series of a distributional
periodic analogue of the fundamental solution. Then we prove that this distribution is, actually, a
function. This and similar constructions can be found, e.g., in Hasimoto [58], Choquard [25], and
Poulton, Botten, McPhedran and Movchan [114].

For the notation, definitions and results used in this Subsection, we refer to Appendix A. We start
by introducing some other notation.

Let y ∈ Rn. If f ∈ S(Rn), we denote by τyf the element of S(Rn) defined by

τyf(x) ≡ f(x− y) ∀x ∈ Rn.

If u ∈ S ′(Rn), then we denote by τyu the element of S ′(Rn) defined by

〈τyu, f〉 ≡ 〈u, τ−yf〉 ∀f ∈ S(Rn).

Let y ∈ Rn. We denote by δy the Dirac δ distribution concentrated at point y, i.e. the element of
S ′(Rn) defined by

〈δy, f〉 ≡ f(y) ∀f ∈ S(Rn).
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Let y ∈ Rn. We denote by Ey the element of S ′(Rn) defined by

〈Ey, f〉 ≡
∫

Rn
eiy·xf(x) dx ∀f ∈ S(Rn).

In other words, here we denote by Ey the (tempered) distribution associated with the function which
takes x ∈ Rn to eiy·x, in order to emphasize the fact that we think of it as a distribution.

In particular, we note that

〈E−2πξ, f〉 = f̂(ξ) ∀f ∈ S(Rn),

for all ξ ∈ Rn.
Let z ∈ Zn, l ∈ Z, j ∈ {1, . . . , n}. Clearly,〈

τlajE2πa−1(z), f
〉

= e−2πia−1(z)·laj
〈
E2πa−1(z), f

〉
= e−2πilzj

〈
E2πa−1(z), f

〉
=
〈
E2πa−1(z), f

〉
,

(1.12)

for all f ∈ S(Rn). In other words, E2πa−1(z) is a periodic distribution with respect to vectors a1, . . . , an.
We have the following variant of a known result (cf. Folland [53, Ex. 22, p. 299], Schmeisser and

Triebel [125, p. 143-145].)

Proposition 1.1. Let g be a function of Zn to C, such that

|g(z)| ≤ C(1 + |z|)N ∀z ∈ Zn,

for some C,N > 0. Then the series
∑
z∈Zn g(z)E2πa−1(z) converges in S ′(Rn) to a tempered distribu-

tion G, such that
τlaiG = G ∀i ∈ {1, . . . , n}, ∀l ∈ Z. (1.13)

Proof. Let G be the linear functional on S(Rn) defined by

〈G, f〉 ≡
∑
z∈Zn

g(z)
〈
E2πa−1(z), f

〉
∀f ∈ S(Rn). (1.14)

First of all, we note that if f ∈ S(Rn), then the generalized series in the right-hand side of (1.14)
converges absolutely in C. Indeed,〈

E2πa−1(z), f
〉

=
∫

Rn
f(x)e2πia−1(z)·x dx = f̂(−a−1(z)).

On the other hand, since f ∈ S(Rn), then, by Proposition A.8, we have f̂ ∈ S(Rn). In particular,
there exists a constant C ′ > 0 such that

|f̂(k)| ≤ C ′ 1
(1 + |k|)n+1+N

∀k ∈ Rn.

Hence,

|g(z)f̂(−a−1(z))| ≤ C(1 + |z|)NC ′ 1
(1 + |a−1(z)|)n+N+1

≤ C ′′

(1 + |z|)n+1
∀z ∈ Zn,

for some C ′′ > 0. Then, by comparison with the convergent integral
∫

Rn 1/(1 + |z|)n+1 dx, we deduce
the convergence of the series in the right-hand side of (1.14). Accordingly, G is a well defined
linear map of S(Rn) to C, i.e. an element of the algebraic dual of S(Rn). Then, since S(Rn) is a
Fréchet space, the Banach-Steinhaus Theorem (cf. e.g., Trèves [135, pp. 347, 348]) ensures that G
is actually a tempered distribution in Rn. Clearly, G is the limit in S ′(Rn) of the generalized series∑
z∈Zn g(z)E2πa−1(z). By (1.12) and by the convergence of the series to G, we easily obtain

τlaiG = G ∀l ∈ Z, ∀i ∈ {1, . . . , n}.

Consequently, the proof is now concluded.
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We now prove a slight variant of the Poisson summation Formula (cf. Theorem A.10.)

Proposition 1.2. Let f ∈ S(Rn). Then∑
z∈Zn

f(a(z)) =
∑
z∈Zn

1
|A|n

f̂(a−1(z)),

where both series converge absolutely. Moreover,∑
z∈Zn

δa(z) =
∑
z∈Zn

1
|A|n

E2πa−1(z) in S ′(Rn).

Proof. Let f ∈ S(Rn). Then it is clear that the function fa of Rn to C, defined by

fa(x) ≡ f(a(x)) ∀x ∈ Rn,

satisfies the hypotheses of Theorem A.10. Therefore, by Theorem A.10, we have∑
z∈Zn

fa(z) =
∑
z∈Zn

f̂a(z).

On the other hand, fa(z) = f(a(z)) and

f̂a(z) =
∫

Rn
f(a(x))e−2πiz·x dx

=
1
|A|n

∫
Rn
f(t)e−2πiz·a−1(t) dt

=
1
|A|n

∫
Rn
f(t)e−2πia−1(z)·t dt

=
1
|A|n

f̂(a−1(z)).

Accordingly, ∑
z∈Zn

f(a(z)) =
∑
z∈Zn

1
|A|n

f̂(a−1(z)), (1.15)

and the series are absolutely convergent. Since the series in (1.15) are absolutely convergent, we have∑
z∈Zn

f(a(z)) =
∑
z∈Zn

1
|A|n

f̂(−a−1(z)), ∀f ∈ S(Rn). (1.16)

By the definition of f̂ , we have

f̂(−a−1(z)) =
∫

Rn
f(x)e2πia−1(z)·x dx =

〈
E2πa−1(z), f

〉
∀z ∈ Zn,

and so the equality in (1.16) can be rewritten as∑
z∈Zn

〈
δa(z), f

〉
=
∑
z∈Zn

1
|A|n

〈
E2πa−1(z), f

〉
∀f ∈ S(Rn). (1.17)

Finally, we observe that the series in (1.17) are absolutely convergent. Furthermore, the equality in
(1.17) can be rewritten as ∑

z∈Zn
δa(z) =

∑
z∈Zn

1
|A|n

E2πa−1(z) in S ′(Rn),

and thus the proof is complete.

As a first step, in the following Theorem we prove the existence of a distributional periodic analogue
of the fundamental solution of the Laplace operator.
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Theorem 1.3. Let Gan be the element of S ′(Rn) defined by

Gan ≡ −
∑

z∈Zn\{0}

1
|A|n4π2|a−1(z)|2

E2πa−1(z). (1.18)

Then the following statements hold.

(i)
τlaiG

a
n = Gan ∀l ∈ Z, ∀i ∈ {1, . . . , n}. (1.19)

(ii) 〈
Gan, f

〉
= 〈Gan, f〉 ∀f ∈ S(Rn), (1.20)

where · means complex conjugation.

(iii)

∆Gan =
∑
z∈Zn

δa(z) −
1
|A|n

in S ′(Rn), (1.21)

in the sense of distributions.

Proof. By virtue of Proposition 1.1, the series in the right-hand side of the equality in (1.18) defines
an element of S ′(Rn) such that (i) holds.

The statement in (ii) is a straightforward consequence of

1
|A|n4π2|a−1(z)|

=
1

|A|n4π2|a−1(−z)|
∀z ∈ Zn \ {0},

and of 〈
E2πa−1(z), f

〉
=
〈
E2πa−1(z), f

〉
=
〈
E2πa−1(−z), f

〉
∀f ∈ S(Rn).

Now we need to prove (1.21). By continuity of the Laplace operator of S ′(Rn) to S ′(Rn), we have

∆Gan =
∑

z∈Zn\{0}

1
|A|n

E2πa−1(z) =
∑
z∈Zn

1
|A|n

E2πa−1(z) −
1
|A|n

in S ′(Rn).

On the other hand, by Proposition 1.2 we obtain∑
z∈Zn

1
|A|n

E2πa−1(z) −
1
|A|n

=
∑
z∈Zn

δa(z) −
1
|A|n

in S ′(Rn),

and so the validity of the statement in (iii) follows.

The previous Theorem ensures the existence of a distributional periodic analogue of the fundamental
solution of the Laplace operator. In the following Theorem we prove that the distribution Gan is a
function, i.e., can be represented as the distribution associated to a locally integrable function (or, in
other words, a regular distribution.) See also Weil [142], Berlyand and Mityushev [13].

Theorem 1.4. Let Gan be as in Theorem 1.3. Then the following statements hold.

(i) There exists a unique function San ∈ L1
loc(Rn,R) such that∫

Rn
San(x)φ(x) dx = 〈Gan, φ〉 ∀φ ∈ D(Rn,R). (1.22)

Therefore, in particular

∆San =
∑
z∈Zn

δa(z) −
1
|A|n

, (1.23)

in the sense of distributions. Moreover, up to modifications on a set of measure zero, San is a
real analytic function of Rn \ Zan to R, such that

∆San(x) = − 1
|A|n

∀x ∈ Rn \ Zan (1.24)

and
San(x+ ai) = San(x) ∀x ∈ Rn \ Zan, ∀i ∈ {1, . . . , n}. (1.25)
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(ii) There exists a unique real analytic function Ran of (Rn \ Zan) ∪ {0} to R, such that

San(x) = Sn(x) +Ran(x) ∀x ∈ Rn \ Zan.

Moreover,

∆Ran(x) = − 1
|A|n

∀x ∈ (Rn \ Zan) ∪ {0}.

Proof. We note that, by virtue of Theorem 1.3 (ii), Gan ∈ D′(Rn,R). Now let F ∈ D′(Rn,R) be
defined by

〈F, φ〉 = 〈Gan, φ〉 −
∫

Rn
Sn(x)φ(x) dx ∀φ ∈ D(Rn,R). (1.26)

We have
∆F =

∑
z∈Zn\{0}

δa(z) −
1
|A|n

in D′(Rn,R).

Then, by standard elliptic existence and regularity theory (cf. e.g., Friedman [54, Theorem 1.2,
p. 205]), there exists a real analytic function R̃an of O to R, such that∫

O
R̃an(x)φ(x) dx = 〈F, φ〉 ∀φ ∈ D(O,R).

Moreover,

∆R̃an(x) = − 1
|A|n

∀x ∈ O.

Clearly, by (1.26), we have∫
O

(
Sn(x) + R̃an(x)

)
φ(x) dx = 〈Gan, φ〉 ∀φ ∈ D(O,R). (1.27)

We note that by equality (1.27), we can represent the restriction of Gan to the space D(O,R) as the
distribution associated to a locally integrable function defined on O, namely Sn + R̃an. Our aim is to
represent Gan as the distribution associated to a locally integrable function defined on Rn \ Zan. Since
Gan is periodic, such a function will be given by extending by periodicity the function Sn + R̃an to the
whole of Rn \ Zan.

Set

Õ ≡
n∏
i=1

]−3aii
5
,

3aii
5

[.

Next define San ∈ L1
loc(Rn,R) by imposing

San
(
x+ a(z)

)
= Sn(x) + R̃an(x) ∀x ∈ Õ \ {0}, ∀z ∈ Zn. (1.28)

In other words, (1.28) means that we define San by extending by periodicity the restriction to Õ of
Sn + R̃an. By (1.27) and the periodicity of Gan, we have that San is well defined. Indeed, one can easily
verify that if x ∈ Õ \ {0}, z ∈ Zn, and x+ a(z) ∈ Õ, then(

Sn + R̃an
)
(x) =

(
Sn + R̃an

)
(x+ a(z)).

Since San is well defined, then (1.28) implies the periodicity of San. Furthermore, by (1.27), by the
periodicity of Gan, and by the definition of San, we have∫

Õ+a(z)

San(x)φ(x) dx = 〈Gan, φ〉 ∀φ ∈ D(Õ + a(z),R),

for all z ∈ Zn. As a consequence,∫
Rn
San(x)φ(x) dx = 〈Gan, φ〉 ∀φ ∈ D(Rn,R).

Moreover, since Sn and Ran are real analytic in Õ \ {0}, San is a real analytic function of Rn \ Zan
to R, such that (1.24) and (1.25) hold.
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Finally, if we set
Ran(x) ≡ San(x)− Sn(x) ∀x ∈ Rn \ Zan,

by (1.23) and by ellipticity of the Laplace operator, we have that Ran can be extended by continuity
to a real analytic function (that we still call Ran) of (Rn \ Zan) ∪ {0} to R, such that (ii) holds.

Remark 1.5. We have that
San(x) = San(−x) ∀x ∈ Rn \ Zan.

Indeed, let φ be the function of Rn \ Zan to R, defined by

φ(x) ≡ San(x)− San(−x) ∀x ∈ Rn \ Zan.

By standard elliptic regularity theory, φ can be extended to a periodic harmonic function φ̃ of Rn to
R. By Green’s Formula and by the periodicity of φ̃, it is easy to see that∫

A

|∇φ̃(x)|2 dx =
∫
∂A

φ̃(x)
∂

∂νA
φ̃(x) dσx = 0.

Hence φ̃(x) = c for all x ∈ Rn, for some c ∈ R. On the other hand, by the periodicity of San, we have

San
(
−

n∑
i=1

ai
2
)

= San
( n∑
i=1

ai −
n∑
i=1

ai
2
)

= San
( n∑
i=1

ai
2
)
,

and so φ̃(
∑n
i=1

ai
2 ) = 0. Hence φ̃(x) = 0 for all x ∈ Rn, and thus

San(x) = San(−x) ∀x ∈ Rn \ Zan.

We also note that the symmetry of San could also be deduced by the corresponding (distributional)
property of Gan.

1.2.2 An alternative construction

In this Subsection we present an alternative construction of a periodic analogue of the fundamental
solution of the Laplace operator. More precisely, we extend to the cases n = 2 and n > 3 the method
of Shcherbina [127]. We briefly outline the strategy. It is natural to start by considering a series
made of translations of the fundamental solution of the Laplace operator. However, this series does
not converge, but we can manipulate it in such a way to obtain a convergent one. Doing so, we lose
periodicity, but we can recover it by adding a suitable function. Similar constructions can be found,
e.g., in Berdichevskii [11], Petrina [113] and Shcherbina [128].

In the sequel, we need the following well known result (see, e.g., Schwartz [126, p. 21].)

Lemma 1.6. Let β ∈ ]n,+∞[. Set
y0 ≡ 0,

and

yl ≡
∑

z∈Zn\{0}
|zi|≤l ∀i∈{1,...,n}

1

|z|β
∀l ∈ N \ {0}.

Then the sequence {yl}l∈N is convergent.

Proof. It suffices to observe that there exists a constant C > 0, such that

yl ≤ C
l∑

k=1

kn−1

kβ
= C

l∑
k=1

1
kβ−n+1

,

for all l ∈ N \ {0}.
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For each z ∈ Zn, we define the function fn,z of Rn \ Zan to R, by setting

fn,z(x) ≡ Sn
(
x− a(z)

)
∀x ∈ Rn \ Zan.

Let (i, j, k) ∈ {1, . . . , n}3, z ∈ Zn, and x ∈ Rn \ Zan. We have

∂kfn,z(x) =
xk − zkakk
sn|x− a(z)|n

, (1.29)

∂j∂kfn,z(x) = −n (xj − zjajj)(xk − zkakk)
sn|x− a(z)|n+2 +

δjk
sn|x− a(z)|n

, (1.30)

∂i∂j∂kfn,z(x) =− nδjk
xi − ziaii

sn|x− a(z)|n+2

+ n(n+ 2)
(xi − ziaii)(xj − zjajj)(xk − zkakk)

sn|x− a(z)|n+4

− nδij(xk − zkakk) + δik(xj − zjajj)
sn|x− a(z)|n+2 .

(1.31)

Let z ∈ Zn \ {0}, x ∈ cl Ã. By Taylor’s Formula, we have

∑
|α|=3

(∫ 1

0

3(1− t)2D
αfn,z(tx)
α!

dt
)
xα = fn,z(x)−

2∑
|α|=0

Dαfn,z(0)
α!

xα. (1.32)

Let l ∈ N. Let φn,l be the function of Rn \ Zan to R defined by

φn,l(x) ≡ fn,0(x) +
∑

z∈Zn\{0}
|zi|≤l ∀i∈{1,...,n}

fn,z(x)−
2∑

|α|=0

Dαfn,z(0)
α!

xα

 , (1.33)

for all x ∈ Rn \ Zan. Clearly, φn,l is harmonic in Rn \ Zan.
By (1.10), (1.31), and (1.32), it is easy to see that there exists a constant C > 0, such that

|
∑
|α|=3

(∫ 1

0

3(1− t)2D
αfn,z(tx)
α!

dt
)
xα| ≤ C 1

|z|n+1 ,

for all x ∈ cl Ã and for all z ∈ Zn \ {0}. Then, by Lemma 1.6, the series in the right-hand side of
(1.33) converges uniformly in cl Ã as l→ +∞. In a similar way, we can prove that, for all x ∈ Rn \Zan,
the limit

lim
l→+∞

φn,l(x)

exists in R. Accordingly, we can introduce the function φn,l of Rn \ Zan to R, by setting

φn(x) ≡ lim
l→+∞

φn,l(x) ∀x ∈ Rn \ Zan. (1.34)

Let l ∈ N. Let ψn,l be the function of Rn \ Zan to R defined by

ψn,l(x) ≡ fn,0(x) +
∑

z∈Zn\{0}
|zi|≤l ∀i∈{1,...,n}

(
fn,z(x)− fn,z(0)

)
, (1.35)

for all x ∈ Rn \ Zan.
By formulas (1.29) and (1.33), we have

φn,l(x) = fn,0(x) +
∑

z∈Zn\{0}
|zi|≤l ∀i∈{1,...,n}

fn,z(x)− fn,z(0)−
∑
|α|=2

Dαfn,z(0)
α!

xα

 , (1.36)
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for all x ∈ Rn \ Zan and for all l ∈ N.
For all l ∈ Zn, we denote by Bn,l the linear operator of Rn to Rn, defined by

Bn,l(x) ≡ 1
2

∑
z∈Zn\{0}

|zi|≤l ∀i∈{1,...,n}

(
D2fn,z(0)

)
· x ∀x ∈ Rn. (1.37)

It is easy to see that
n∑
i=1

Bn,l(ei) · ei = 0.

Moreover,

φn,l(x) = ψn,l(x)− Bn,l(x) · x, (1.38)

for all x ∈ Rn \ Zan.
Let l ∈ N, x ∈ Rn \ Zan. We have

ψn,l(x) = Sn(x) +
∑

z∈Zn\{0}
|zi|≤l ∀i∈{1,...,n}

(
Sn
(
x− a(z)

)
− Sn

(
a(z)

))
=

∑
z∈Zn

|zi|≤l ∀i∈{1,...,n}

Sn
(
x+ a(z)

)
−

∑
z∈Zn\{0}

|zi|≤l ∀i∈{1,...,n}

Sn
(
a(z)

)

=
∑

(z2,...,zn)∈Zn−1

|zi|≤l ∀i∈{2,...,n}

l∑
r1=−l

Sn

(
x+ r1a1 +

n∑
i=2

ziai

)
−

∑
z∈Zn\{0}

|zi|≤l ∀i∈{1,...,n}

Sn
(
a(z)

)
,

and

ψn,l(x+ a1) = Sn(x+ a1) +
∑

z∈Zn\{0}
|zi|≤l ∀i∈{1,...,n}

(
Sn
(
x+ a1 − a(z)

)
− Sn

(
a(z)

))
=

∑
z∈Zn

|zi|≤l ∀i∈{1,...,n}

Sn
(
x+ a1 + a(z)

)
−

∑
z∈Zn\{0}

|zi|≤l ∀i∈{1,...,n}

Sn
(
a(z)

)

=
∑

(z2,...,zn)∈Zn−1

|zi|≤l ∀i∈{2,...,n}

l+1∑
r1=−l+1

Sn

(
x+ r1a1 +

n∑
i=2

ziai

)
−

∑
z∈Zn\{0}

|zi|≤l ∀i∈{1,...,n}

Sn
(
a(z)

)
.

Then, if n = 2, we have

ψ2,l(x+ a1)− ψ2,l(x)

=
1
s2

∑
z2∈Z
|z2|≤l

(
log|x+ la1 + a1 + z2a2| − log|x− la1 − z2a2|

)

=
1
s2

∑
z2∈Z
|z2|≤l

(
log|a1 +

1
l
z2a2 +

x

l
+
a1

l
| − log|a1 +

1
l
z2a2 −

x

l
|
)

=
1
s2

∑
z2∈Z
|z2|≤l

1
l

(2x+ a1) · (a1 + 1
l z2a2)

|a1 + 1
l z2a2|2

+ O(1/l),

(1.39)
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for l big enough. Analogously, if n ≥ 3, we have

ψn,l(x+ a1)− ψn,l(x)

=
1

sn(2− n)

∑
(z2,...,zn)∈Zn−1

|zi|≤l ∀i∈{2,...,n}

(
1

|x+ la1 + a1 +
∑n
i=2 ziai|

n−2 −
1

|x− la1 −
∑n
i=2 ziai|

n−2

)

=
1
sn

∑
(z2,...,zn)∈Zn−1

|zi|≤l ∀i∈{2,...,n}

1
ln−1

(2x+ a1) · (a1 + 1
l

∑n
i=2 ziai)

|a1 + 1
l

∑n
i=2 ziai|

n + O(1/l),

(1.40)

for l big enough.
Indeed, we observe that, if x̄ ∈ Rn \ Zan is fixed and we denote by [0, x̄] the segment in Rn joining

the points 0 and x̄, then there exist l̄ ∈ N and a constant C > 0 such that

sup

{
1

ln−2|a1 + 1
l

∑n
i=2 ziai + ζ

l |
n

1
l2

: (z2, . . . , zn) ∈ Zn−1, |zi| ≤ l ∀i ∈ {2, . . . , n}, ζ ∈ [0, x̄]

}
≤ C

ln
,

for all l > l̄.
In both cases, letting l→ +∞ in (1.39) and in (1.40), we obtain

lim
l→+∞

[ψn,l(x+ a1)− ψn,l(x)]

=
1
sn

∫ 1

−1

. . .

∫ 1

−1︸ ︷︷ ︸
(n−1) times

(2x+ a1) · (a1 +
∑n
i=2 yiai)

|a1 +
∑n
i=2 yiai|

n dy2 . . . dyn.

In view of the previous equality, we introduce the linear operator An of Rn to Rn, by setting

An(ei) ≡ −
1
aii

1
sn

∫ 1

−1

. . .

∫ 1

−1︸ ︷︷ ︸
(n−1) times

ai +
∑
j∈{1,...,n}\{i} yjaj

|ai +
∑
j∈{1,...,n}\{i} yjaj |

n dy1 . . . dyi . . . dyn, (1.41)

for all i ∈ {1, . . . , n}, where the symbol dyi means that dyi is not present. If x ∈ Rn \ Zan, then it is
easy to see that

lim
l→+∞

[
ψn,l(x+ ai)− ψn,l(x)

]
= −

[
2(An(ai) · x) + (An(ai)) · ai

]
, (1.42)

for all i ∈ {1, . . . , n}. Let (i, j) ∈ {1, . . . , n}2, with i 6= j. If n = 2, we have

A2(ai) · aj = − 1
sn

∫ 1

−1

yjajj
2

|ai + yjaj |2
dyj

= − 1
sn

(
log|ai + aj | − log|ai − aj |

)
= A2(aj) · ai.

If n ≥ 3, we have

An(ai)·aj =
1

sn(2− n)

∫ 1

−1

. . .

∫ 1

−1︸ ︷︷ ︸
(n−2) times

( 1
|ai − aj +

∑
k∈{1,...,n}\{i,j} ykak|n−2

− 1
|ai + aj +

∑
k∈{1,...,n}\{i,j} ykak|n−2

)
dy1 . . . dyi . . . dyj . . . dyn

= An(aj) · ai.

(1.43)

Therefore, the linear operator An is symmetric. Hence, if x ∈ Rn \ Zan, we have

lim
l→+∞

[
ψn,l(x+ ai)− ψn,l(x)

]
= An(x) · x−An(x+ ai) · (x+ ai). (1.44)
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Let x ∈ Rn \ Zan. By (1.38) and (1.44), it follows that

φn(x+ ai)− φn(x) + 2An(ai) · x+An(ai) · ai = − lim
l→+∞

[
2Bn,l(ai) · x+ Bn,l(ai) · ai

]
.

Consequently, it is easy to see that there exists a linear operator Bn of Rn to Rn, such that

lim
l→+∞

Bn,l = Bn. (1.45)

We are now ready to give the following.

Definition 1.7. Let φn, An, and Bn as in (1.34),(1.41), and (1.45). Then we define the function S̃an
of Rn \ Zan to R, by setting

S̃an(x) ≡ φn(x) + (An + Bn)(x) · x ∀x ∈ Rn \ Zan.

Remark 1.8. Clearly,

S̃an(x+ ai) = S̃an(x) ∀x ∈ Rn \ Zan, ∀i ∈ {1, . . . , n}.

Remark 1.9. If i ∈ {1, . . . , n}, then

An(ai) · ai = − 1
sn

∫ 1

−1

. . .

∫ 1

−1︸ ︷︷ ︸
(n−1) times

aii
2

|ai +
∑
j∈{1,...,n}\{i} yjaj |

n dy1 . . . dyi . . . dyn < 0.

Therefore,
n∑
i=1

An(ei) · ei < 0.

By known results on the uniform convergence of a sequence of harmonic functions (cf. e.g., Folland
[52, Cor. 2.12, p. 71] and Gilbarg and Trudinger [55, Thm. 2.8, p. 21]), we have that there exists a
constant C < 0, such that

∆S̃an(x) = C ∀x ∈ Rn \ Zan.
In particular, it can be proved that

∆S̃an(x) = − 1
|A|n

∀x ∈ Rn \ Zan.

Furthermore, it can be proved also that the function San of Theorem 1.4 and S̃an differ by an additive
constant.

1.3 Regularity of periodic functions

In this Section we introduce some notation and we collect some elementary results on the regularity
of periodic functions.

We shall consider the following assumption for some α ∈ ]0, 1[ and m ∈ N \ {0}.

Let I be a bounded open connected subset of Rn of class Cm,α such that cl I ⊆ A
and Rn \ cl I is connected.

(1.46)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then we set

Pa[I] ≡ A \ cl I, (1.47)
Sa[I] ≡ ∪z∈Zn(I + a(z)), (1.48)
Ta[I] ≡ Rn \ cl S[I]. (1.49)

We denote by νPa[I] the outward unit normal to Pa[I] on ∂Pa[I], where it is defined. Clearly,

νPa[I] = νA a.e. on ∂A,

and
νPa[I] = −νI on ∂I.

The following elementary Lemmas allow us to deduce the (global) regularity of periodic functions by
the regularity of the restrictions to fundamental sets.
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Lemma 1.10. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u be a function of cl Ta[I] to R
such that

u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n}.

Let V be an open bounded subset of Rn, such that clA ⊆ V and

clV ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

Set
W ≡ V \ cl I.

Then the following statements hold.

(i) Let k ∈ N. Then u ∈ Ck(cl Ta[I]) if and only if u| clW ∈ Ck(clW ).

(ii) Let k ∈ N, β ∈ ]0, 1]. Then u ∈ Ck,β(cl Ta[I]) if and only if u| clW ∈ Ck,β(clW ).

Proof. Clearly, statement (i) is a straightforward consequence of the periodicity of the function u.
Consider (ii). For the sake of simplicity, we assume k = 0. Obviously, if u ∈ C0,β(cl Ta[I]), then
u| clW ∈ C0,β(clW ). Conversely, assume that u| clW ∈ C0,β(clW ). Then

|u(x)− u(y)| ≤ |u : clW |β |x− y|
β ∀x, y ∈ clW.

Set
d̄ ≡ inf{|x− y| : (x, y) ∈ clA× (Rn \ V )}.

Clearly, d̄ > 0. Set

C ≡ max
{2‖u‖C0(clW )

d̄β
, |u : clW |β

}
.

Then it is easy to see that

|u(x)− u(y)| ≤ C|x− y|β ∀x, y ∈ cl Ta[I],

and accordingly u ∈ C0,β(cl Ta[I]).

Lemma 1.11. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u be a function of cl Sa[I] to R
such that

u(x+ ai) = u(x) ∀x ∈ cl Sa[I], ∀i ∈ {1, . . . , n}.

Then the following statements hold.

(i) Let k ∈ N. Then u ∈ Ck(cl Sa[I]) if and only if u| cl I ∈ Ck(cl I).

(ii) Let k ∈ N, β ∈ ]0, 1]. Then u ∈ Ck,β(cl Sa[I]) if and only if u| cl I ∈ Ck,β(cl I).

Proof. Clearly, statement (i) is a straightforward consequence of the periodicity of the function u.
Consider (ii). For the sake of simplicity, we assume k = 0. Obviously, if u ∈ C0,β(cl Sa[I]), then
u| cl I ∈ C0,β(cl I). Conversely, assume that u| cl I ∈ C0,β(cl I). Then

|u(x)− u(y)| ≤ |u : cl I|β |x− y|
β ∀x, y ∈ cl I.

Set
d̄ ≡ inf{|x− y| : (x, y) ∈ cl I× (Rn \A)}.

Clearly, d̄ > 0. Set

C ≡ max
{2‖u‖C0(cl I)

d̄β
, |u : cl I|β

}
.

Then it is easy to see that

|u(x)− u(y)| ≤ C|x− y|β ∀x, y ∈ cl Sa[I],

and accordingly u ∈ C0,β(cl Sa[I]).
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1.4 Periodic double layer potential

In this Section we define the periodic double layer potential. The construction is quite natural: we
substitute in the definition of the (classical) double layer potential the fundamental solution of the
Laplace operator Sn with the function San introduced in Theorem 1.4. For notation and properties of
the (classical) double layer potential for the Laplace equation, we refer to Appendix B.

Definition 1.12. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let µ ∈ L2(∂I). We set

wa[∂I, µ](t) ≡
∫
∂I

∂

∂νI(s)
(
San(t− s)

)
µ(s) dσs ∀t ∈ Rn.

The function wa[∂I, µ] is called the periodic double layer potential with moment µ.

Theorem 1.13. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then the following statements
hold.

(i) Let µ ∈ C0(∂I). Then the function wa[∂I, µ] is harmonic in Sa[I] ∪ Ta[I]. Moreover,

wa[∂I, µ](t+ ai) = wa[∂I, µ](t) ∀t ∈ Sa[I] ∪ Ta[I], ∀i ∈ {1, . . . , n}.

The restriction wa[∂I, µ]|Sa[I] can be extended uniquely to a continuous periodic function w+
a [∂I, µ]

of cl Sa[I] to R. The restriction wa[∂I, µ]|Ta[I] can be extended uniquely to a continuous periodic
function w−a [∂I, µ] of cl Ta[I] to R. Moreover, we have the following jump relations

w+
a [∂I, µ](t) = +

1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I,

w−a [∂I, µ](t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I,

w+
a [∂I, µ](t)− w−a [∂I, µ](t) = µ(t) ∀t ∈ ∂I.

(ii) Let µ ∈ Cm,α(∂I). Then we have that w+
a [∂I, µ] belongs to Cm,α(cl Sa[I]) and w−a [∂I, µ] belongs

to Cm,α(cl Ta[I]). Moreover,

Dw+
a [∂I, µ] · νI −Dw−a [∂I, µ] · νI = 0 on ∂I.

(iii) The map of Cm,α(∂I) to Cm,α(cl I) which takes µ to w+
a [∂I, µ]| cl I is linear and continuous. Let

V be an open bounded connected subset of Rn, such that clA ⊆ V and

clV ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

Set
W ≡ V \ cl I.

The map of Cm,α(∂I) to Cm,α(clW ) which takes µ to w−a [∂I, µ]| clW is linear and continuous.

(iv) We have ∫
∂I

∂

∂νI(s)
(
San(t− s)

)
dσs =

1
2
−
|I|n
|A|n

∀t ∈ ∂I,∫
∂I

∂

∂νI(s)
(
San(t− s)

)
dσs = 1−

|I|n
|A|n

∀t ∈ Sa[I],∫
∂I

∂

∂νI(s)
(
San(t− s)

)
dσs = −

|I|n
|A|n

∀t ∈ Ta[I].

Proof. We start with (i). Let µ ∈ C0(∂I). Clearly, the periodicity of wa[∂I, µ] follows by the
periodicity of San (see (1.25).) By classical theorems of differentiation under the integral sign, we have
that wa[∂I, µ] is harmonic in Sa[I] ∪ Ta[I]. We have

wa[∂I, µ](t) = w[∂I, µ](t) +
∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs ∀t ∈ Rn.
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Since Ran is real analytic in (Rn \Zan)∪{0}, then the second term in the right-hand side of the previous
equality is a function of class C∞ in a bounded open subset Ṽ of Rn, of class C∞, such that clA ⊆ Ṽ
and

cl Ṽ ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0}. (1.50)

The existence of such an open set can be proved by a standard argument. Indeed, we take ϕ ∈
C∞c (Rn \ ∪z∈Zn\{0}(cl I + a(z))) such that 0 ≤ ϕ ≤ 1 and such that ϕ = 1 in a neighborhood
of clA. By Sard’s Theorem there exists a regular value c ∈]0, 1[ for ϕ. Then we set Ṽ ≡ {x ∈
Rn \ ∪z∈Zn\{0}(cl I + a(z)) : ϕ(x) > c}. Obviously, Ṽ is an open subset of Rn of class C∞ and
clA ⊆ Ṽ ⊆ clṼ ⊆ Rn \ ∪z∈Zn\{0}(cl I + a(z)). Then we set

W̃ ≡ Ṽ \ cl I.

By Theorem B.1 (i),

wa[∂I, µ](t) = w+[∂I, µ](t) +
∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs ∀t ∈ I,

and
wa[∂I, µ](t) = w−[∂I, µ](t) +

∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs ∀t ∈ W̃ .

Furthermore, the terms in the right-hand side of the two previous equalities are continuous functions in
cl I and cl W̃ , respectively. Hence, by Lemmas 1.10 and 1.11, we can easily conclude that wa[∂I, µ]|Sa[I]
can be extended uniquely to a continuous periodic function w+

a [∂I, µ] of cl Sa[I] to R and that
wa[∂I, µ]|Ta[I] can be extended uniquely to a continuous periodic function w−a [∂I, µ] of cl Ta[I] to R.
Clearly,

w+
a [∂I, µ](t) = w+[∂I, µ](t) +

∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
Sn(t− s)

)
µ(s) dσs +

∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I,

and

w−a [∂I, µ](t) = w−[∂I, µ](t) +
∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
Sn(t− s)

)
µ(s) dσs +

∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I.

Thus, the jump relations hold and the statement in (i) is proved. If µ ∈ Cm,α(∂I), then, by Theorem
B.1 (ii), w+[∂I, µ] ∈ Cm,α(cl I) and w−[∂I, µ] ∈ Cm,α(cl W̃ ), and so, by Lemmas 1.10, 1.11, the
statement in (ii) holds. We now turn to the proof of (iii). Let Ṽ be a bounded open subset of Rn of
class C∞ such that clV ⊆ Ṽ and such that (1.50) holds. Set

H[µ](t) ≡
∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs ∀t ∈ cl Ṽ ,

for all µ ∈ Cm,α(∂I). By Proposition C.1 and by the continuity of the imbedding of Cm+1(cl Ṽ )
in Cm,α(cl Ṽ ) and of the restriction operator from Cm,α(cl Ṽ ) to Cm,α(clV ), it is easy to see that
H[·]| clV is a linear and continuous map of Cm,α(∂I) to Cm,α(clV ). We have

w+
a [∂I, µ](t) = w+[∂I, µ](t) +H[µ]| cl I(t) ∀t ∈ cl I,

and
w−a [∂I, µ](t) = w−[∂I, µ](t) +H[µ]| clW (t) ∀t ∈ clW.
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Since the linear map of Cm,α(∂I) to Cm,α(cl I) which takes µ to H[µ]| cl I is continuous, then, by virtue
of Theorem B.1 (iii), we conclude that the linear map of Cm,α(∂I) to Cm,α(cl I) which takes µ to
w+
a [∂I, µ]| cl I is continuous. Analogously, since the linear map of Cm,α(∂I) to Cm,α(clW ) which takes

µ to H[µ]| clW is continuous, then, by virtue of Theorem B.1 (iii), we conclude that the linear map of
Cm,α(∂I) to Cm,α(clW ) which takes µ to w−a [∂I, µ]| clW is continuous. We finally consider (iv). It
suffices to consider the third equality in (iv) (the other two can be proved by exploiting the third one
and the jump relations.) As a consequence of the periodicity, it suffices to consider t ∈ (clA \ cl I). By
Green’s Formula, we have∫

∂I

∂

∂νI(s)
(
San(t− s)

)
dσs =

∫
I
∆s(San(t− s)) ds = −

|I|n
|A|n

.

The Theorem is now completely proved.

1.5 Periodic simple layer potential

In this Section we define the periodic simple layer potential. As done for the periodic double layer
potential, we substitute in the definition of the (classical) simple layer potential the fundamental
solution of the Laplace operator Sn with the function San introduced in Theorem 1.4. For notation and
properties of the (classical) simple layer potential for the Laplace equation, we refer to Appendix B.

Definition 1.14. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let µ ∈ L2(∂I). We set

va[∂I, µ](t) ≡
∫
∂I
San(t− s)µ(s) dσs ∀t ∈ Rn.

The function va[∂I, µ] is called the periodic simple (or single) layer potential with moment µ.

Theorem 1.15. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then the following statements
hold.

(i) Let µ ∈ C0(∂I). Then the function va[∂I, µ] is continuous on Rn. Moreover,

va[∂I, µ](t+ ai) = va[∂I, µ](t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n},

and
∆va[∂I, µ](t) = − 1

|A|n

∫
∂I
µ(s) dσs ∀t ∈ Sa[I] ∪ Ta[I].

(ii) Let v+
a [∂I, µ] and v−a [∂I, µ] denote the restrictions of va[∂I, µ] to cl Sa[I] and to cl Ta[I], respec-

tively. If µ ∈ Cm−1,α(∂I), then v+
a [∂I, µ] ∈ Cm,α(cl S[I]) and v−a [∂I, µ] ∈ Cm,α(cl T[I]).

(iii) The map of Cm−1,α(∂I) to Cm,α(cl I) which takes µ to v+
a [∂I, µ]| cl I is linear and continuous.

Let V be an open bounded connected subset of Rn, such that clA ⊆ V and

clV ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

Set
W ≡ V \ cl I.

The map of Cm−1,α(∂I) to Cm,α(clW ) which takes µ to v−a [∂I, µ]| clW is linear and continuous.

(iv) If µ ∈ Cm−1,α(∂I), then we have the following jump relations

∂

∂νI
v+
a [∂I, µ](t) = −1

2
µ(t) +

∫
∂I

∂

∂νI(t)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I,

∂

∂νI
v−a [∂I, µ](t) = +

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I,

∂

∂νI
v−a [∂I, µ](t)− ∂

∂νI
v+
a [∂I, µ](t) = µ(t) ∀t ∈ ∂I.
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Proof. We start with (i). Let µ ∈ C0(∂I). Clearly, the periodicity of va[∂I, µ] follows by the periodicity
of San (see (1.25).) Let Ṽ be an open bounded subset of Rn, of class C∞, such that clA ⊆ Ṽ and

cl Ṽ ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0} (1.51)

(cf. the proof of Theorem 1.13.) Set
W̃ ≡ Ṽ \ cl I.

Obviously,

va[∂I, µ](t) = v[∂I, µ](t) +
∫
∂I
Ran(t− s)µ(s) dσs ∀t ∈ cl Ṽ .

By Theorem B.2 (i), the function v[∂I, µ] is continuous on cl Ṽ . Moreover, the second term in the
right-hand side of the previous equality defines a real analytic function on cl Ṽ . Thus, the restriction
of the function va[∂I, µ] to the set cl Ṽ is continuous, and so, by virtue of the periodicity of va[∂I, µ],
we can conclude that va[∂I, µ] is continuous on Rn. By classical theorems of differentiation under the
integral sign, since ∆San = −1/|A|n in Rn \ Zan, by arguing in W̃ and in I and then by exploiting the
periodicity of va[∂I, µ], we have that

∆va[∂I, µ](t) = − 1
|A|n

∫
∂I
µ(s) dσs ∀t ∈ Sa[I] ∪ Ta[I].

We now consider (ii). Let µ ∈ Cm−1,α(∂I). Clearly,

v+
a [∂I, µ](t) = v+[∂I, µ](t) +

∫
∂I
Ran(t− s)µ(s) dσs ∀t ∈ I,

and
v−a [∂I, µ](t) = v−[∂I, µ](t) +

∫
∂I
Ran(t− s)µ(s) dσs ∀t ∈ cl W̃ .

Then by Lemma 1.11 and Theorem B.2 (ii), we can conclude that v+
a [∂I, µ] ∈ Cm,α(cl S[I]). Analo-

gously, by Lemma 1.10 and Theorem B.2 (iii), we can conclude that v−a [∂I, µ] ∈ Cm,α(cl T[I]). We
now turn to the proof of (iii). Let Ṽ be a bounded open subset of Rn of class C∞ such that clV ⊆ Ṽ
and such that (1.51) holds. Set

H[µ](t) ≡
∫
∂I
Ran(t− s)µ(s) dσs ∀t ∈ cl Ṽ ,

for all µ ∈ Cm−1,α(∂I). By Proposition C.1 and by the continuity of the imbedding of Cm+1(cl Ṽ )
in Cm,α(cl Ṽ ) and of the restriction operator from Cm,α(cl Ṽ ) to Cm,α(clV ), it is easy to see that
H[·]| clV is a linear and continuous map of Cm−1,α(∂I) to Cm,α(clV ). We have

v+
a [∂I, µ](t) = v+[∂I, µ](t) +H[µ]| cl I(t) ∀t ∈ cl I,

and
v−a [∂I, µ](t) = v−[∂I, µ](t) +H[µ]| clW (t) ∀t ∈ clW.

Since the linear map of Cm−1,α(∂I) to Cm,α(cl I) which takes µ to H[µ]| cl I is continuous, then, by
virtue of Theorem B.2 (ii), we conclude that the map of Cm−1,α(∂I) to Cm,α(cl I) which takes µ to
v+
a [∂I, µ]| cl I is linear and continuous. Analogously, since the linear map of Cm−1,α(∂I) to Cm,α(clW )

which takes µ to H[µ]| clW is continuous, then, by virtue of Theorem B.2 (iii), we conclude that the
map of Cm−1,α(∂I) to Cm,α(clW ) which takes µ to v−a [∂I, µ]| clW is linear and continuous. We finally
consider (iv). Let µ ∈ Cm−1,α(∂I). By Theorem B.2 (v), we have

∂

∂νI
v+
a [∂I, µ](t) =

∂

∂νI
v+[∂I, µ](t) +

∫
∂I

∂

∂νI(t)
(
Ran(t− s)

)
µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(
Sn(t− s)

)
µ(s) dσs +

∫
∂I

∂

∂νI(t)
(
Ran(t− s)

)
µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I,
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and

∂

∂νI
v−a [∂I, µ](t) =

∂

∂νI
v−[∂I, µ](t) +

∫
∂I

∂

∂νI(t)
(
Ran(t− s)

)
µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(
Sn(t− s)

)
µ(s) dσs +

∫
∂I

∂

∂νI(t)
(
Ran(t− s)

)
µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(
San(t− s)

)
µ(s) dσs ∀t ∈ ∂I.

Accordingly,
∂

∂νI
v−a [∂I, µ](t)− ∂

∂νI
v+
a [∂I, µ](t) = µ(t) ∀t ∈ ∂I.

Hence, the proof is now complete.

1.6 Periodic Newtonian potential

In this Section we introduce a periodic analogue of the Newtonian potential, defined, as we did for the
layer potentials, by substituting the fundamental solution Sn with its periodic analogue San.

We give the following.

Definition 1.16. Let f ∈ C0(Rn) be such that

f(t+ ai) = f(t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n}.

We set
pa[f ](t) ≡

∫
A

San(t− s)f(s) ds ∀t ∈ Rn.

The function pa[f ] is called the periodic Newtonian potential of f .

Remark 1.17. Let f be as in Definition 1.16. Let t ∈ Rn be fixed. We note that the function
San(t− ·)f(·) is in L1

loc(Rn), and so pa[f ](t) is well defined.
In the following Theorem, we prove some elementary properties of the periodic Newtonian potential.

Namely, we prove its periodicity and we compute its Laplacian.

Theorem 1.18. Let m ∈ N, α ∈ ]0, 1[. Let f ∈ Cm,α(Rn) be such that

f(t+ ai) = f(t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n}.

Then the following statements hold.

(i)
pa[f ](t+ ai) = pa[f ](t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n}.

(ii)
pa[f ] ∈ Cm+2,α(Rn).

(iii)

∆pa[f ](t) = f(t)− 1
|A|n

∫
A

f(s) ds ∀t ∈ Rn.

Proof. Clearly, the statement in (i) is a straightforward consequence of the periodicity of San. We need
to prove (ii) and (iii). Obviously,

f ∈ Cm,α(clV ),

for all bounded open subsets V of Rn. Let x̄ ∈ Rn. By Proposition D.1 (ii) (with δ = 1), we have

pa[f ](t) =
∫
Ã+x̄

San(t− s)f(s) ds ∀t ∈ Rn.

Now set
U ≡ x̄+ Bn (0,min{a11, . . . , ann}/3) .
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As a first step, we want to prove that pa[f ]|U ∈ C2(U) and that ∆pa[f ](t) = f(t)− 1
|A|n

∫
A
f(s) ds for

all t ∈ U . We have

pa[f ](t) =
∫
Ã+x̄

Sn(t− s)f(s) ds+
∫
Ã+x̄

Ran(t− s)f(s) ds ∀t ∈ U.

Set
u1(t) ≡

∫
Ã+x̄

Sn(t− s)f(s) ds ∀t ∈ U,

and
u2(t) ≡

∫
Ã+x̄

Ran(t− s)f(s) ds ∀t ∈ U.

By Gilbarg and Trudinger [55, Lemma 4.2, p. 55], we have that u1 ∈ C2(U) and

∆u1(t) = f(t) ∀t ∈ U.

On the other hand, by classical theorems of differentiation under the integral sign, we have that
u2 ∈ C∞(U) and

∆u2(t) = − 1
|A|n

∫
Ã+x̄

f(s) ds = − 1
|A|n

∫
A

f(s) ds ∀t ∈ U.

Hence, pa[f ]|U ∈ C2(U) and

∆pa[f ](t) = f(t)− 1
|A|n

∫
A

f(s) ds ∀t ∈ U.

Accordingly, pa[f ] ∈ C2(Rn) and

∆pa[f ](t) = f(t)− 1
|A|n

∫
A

f(s) ds ∀t ∈ Rn,

and so the statement in (iii) is proved. We need to prove (ii). By (iii) we have

∆pa[f ](·) = f(·)− 1
|A|n

∫
A

f(s) ds ∈ Cm,α(Rn).

Then, by Folland [52, Thm. 2.28, p. 78], we have

pa[f ](·) ∈ Cm+2,α(Rn).

The proof is now complete.

Remark 1.19. Let m, α and f be as in Theorem 1.18. We observe that the presence of the term

− 1
|A|n

∫
A

f(s) ds

in the Laplacian of pa[f ] is, somehow, natural. Indeed, by Green’s Formula and by the periodicity of
pa[f ], it is immediate to see that∫

A

∆pa[f ](t) dt =
∫
∂A

∂

∂νA
pa[f ](t) dσt = 0.

On the other hand, ∫
A

∆pa[f ](t) dt =
∫
A

(
f(t)− 1

|A|n

∫
A

f(s) ds
)
dt = 0.

In other words, the term

− 1
|A|n

∫
A

f(s) ds

ensures that ∫
A

∆pa[f ](t) dt = 0.

Remark 1.20. Let f be a real analytic function from Rn to R such that

f(t+ ai) = f(t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n}.

Then, by Theorem 1.18 and by standard elliptic regularity theory, the periodic Newtonian potential
pa[f ] is a real analytic function from Rn to R.
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1.7 Regularity of the solutions of some integral equations

In this Section, we are interested in proving regularity results for the solutions of some integral
equations. Indeed, as in classical potential theory, in order to solve boundary value problems for the
Laplace operator by means of periodic simple and double layer potentials, we need to solve particular
integral equations. Thus, we prove the following.

Theorem 1.21. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let b ∈ Cm−1,α(∂I). Then the
following statements hold.

(i) Let k ∈ {0, 1, . . . ,m} and Γ ∈ Ck,α(∂I) and µ ∈ L2(∂I) and

Γ(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
San(t− s)

)
µ(s) dσs +

∫
∂I
San(t− s)b(s)µ(s) dσs a.e. on ∂I, (1.52)

then µ ∈ Ck,α(∂I).

(ii) Let k ∈ {0, 1, . . . ,m} and Γ ∈ Ck,α(∂I) and µ ∈ L2(∂I) and

Γ(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
San(t− s)

)
µ(s) dσs +

∫
∂I
San(t− s)b(s)µ(s) dσs a.e. on ∂I, (1.53)

then µ ∈ Ck,α(∂I).

(iii) Let k ∈ {1, . . . ,m} and Γ ∈ Ck−1,α(∂I) and µ ∈ L2(∂I) and

Γ(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(
San(t− s)

)
µ(s) dσs + b(t)

∫
∂I
San(t− s)µ(s) dσs a.e. on ∂I, (1.54)

then µ ∈ Ck−1,α(∂I).

(iv) Let k ∈ {1, . . . ,m} and Γ ∈ Ck−1,α(∂I) and µ ∈ L2(∂I) and

Γ(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(
San(t− s)

)
µ(s) dσs + b(t)

∫
∂I
San(t− s)µ(s) dσs a.e. on ∂I, (1.55)

then µ ∈ Ck−1,α(∂I).

Proof. We deduce all the statements by the correspondig results of Theorem B.3. Let k, Γ, and µ be
as in the hypotheses of (i). Set

Γ̄(t) ≡ Γ(t)−
∫
∂I

∂

∂νI(s)
(
Ran(t− s)

)
µ(s) dσs −

∫
∂I
Ran(t− s)b(s)µ(s) dσs ∀t ∈ ∂I.

Then, by Theorem C.2, Γ̄ ∈ Ck,α(∂I). By (1.52), we have

Γ̄(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(
Sn(t− s)

)
µ(s) dσs +

∫
∂I
Sn(t− s)b(s)µ(s) dσs a.e. on ∂I.

Then, by Theorem B.3 (i), we have µ ∈ Ck,α(∂I).
The proofs of statements (ii), (iii), (iv) are very similar, and are accordingly omitted.

1.8 Some technical results for periodic simple and double layer
potentials

In this Section we collect some results on periodic simple and double layer potentials that we shall use
in the sequel.

Indeed, in order to analyze boundary value problems in the next Chapters, we shall deal with
integral equations on ‘rescaled’ domains, and, as a consequence, we need to study integral operators
which arise in these integral equations. Moreover, we have also to undestand how the periodic layer
potentials change when we ‘rescale’ the domains.
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1.8.1 Notation

We introduce some notation.
Let m ∈ N \ {0}, α ∈ ]0, 1[. We shall consider the following assumption.

Let Ω be a bounded open connected subset of Rn of class Cm,α such that 0 ∈ Ω
and Rn \ cl Ω is connected.

(1.56)

We denote by νΩ the outward unit normal to Ω on ∂Ω. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω
be as in (1.56). Then there exists ε1 > 0 such that

cl(w + εΩ) ⊆ A ∀ε ∈ ]−ε1, ε1[. (1.57)

Let x̄ ∈ clA \ {w}. Then there exists ε̄1 ∈ ]0, ε1[ such that

x̄ ∈ (clA) \ cl(w + εΩ) ∀ε ∈ ]−ε̄1, ε̄1[. (1.58)

We set

Ωε ≡ w + εΩ ∀ε ∈ ]−ε1, ε1[ \ {0}, (1.59)
Ω0 ≡ {w}. (1.60)

Clearly, if ε ∈ ]−ε1, ε1[ \ {0}, then the subset I ≡ Ωε satisfies (1.46). If ε ∈ ]−ε1, ε1[ \ {0}, we denote
by Pa[Ωε], Sa[Ωε], and Ta[Ωε] the sets Pa[I], Sa[I], and Ta[I], introduced in (1.47), (1.48), and (1.49),
with I ≡ Ωε. We set also

Ta[Ω0] ≡ Rn \ (w + Zan), (1.61)
Sa[Ω0] ≡ (w + Zan). (1.62)

Moreover, if ε ∈ ]−ε1, ε1[ \ {0}, we denote by νΩε the outward unit normal to Ωε on ∂Ωε.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let

r ∈ {0, . . . ,m}. We set

Ur,αε ≡
{
µ ∈ Cr,α(∂Ωε) :

∫
∂Ωε

µdσ = 0
}

∀ε ∈ ]−ε1, ε1[ \ {0}, (1.63)

Ur,α0 ≡
{
θ ∈ Cr,α(∂Ω):

∫
∂Ω

θ dσ = 0
}
. (1.64)

We observe that if ε > 0 and x ∈ Rn \ {0} then we have

Sn(εx) =

{
1
s2

log ε+ S2(x), if n = 2,
1

εn−2Sn(x), if n > 2.
(1.65)

Let V be a bounded open subset of Rn. We set

C0
h(clV ) ≡

{
u ∈ C0(clV ) ∩ C2(V ) : ∆u(t) = 0 ∀t ∈ V

}
. (1.66)

The space C0
h(clV ) is equipped with the norm of the uniform convergence.

We now find convenient to introduce some notation that we shall use in the next chapters.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. For each

(ε, δ) ∈ (]−ε1, ε1[ \ {0})× ]0,+∞[, we set

Ω(ε, δ) ≡ δw + δεΩ, (1.67)
Ta(ε, δ) ≡ Rn \ ∪z∈Zn cl(Ω(ε, δ) + δa(z)), (1.68)
Sa(ε, δ) ≡ ∪z∈Zn(Ω(ε, δ) + δa(z)), (1.69)
Pa(ε, δ) ≡ δA \ cl Ω(ε, δ). (1.70)
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Clearly, if ε ∈ ]0, ε1[, then

Ωε = Ω(ε, 1),
Ta[Ωε] = Ta(ε, 1),
Sa[Ωε] = Sa(ε, 1),
Pa[Ωε] = Pa(ε, 1).

Moreover, if (ε, δ) ∈ (]−ε1, ε1[ \ {0})× ]0,+∞[, then we denote by νΩ(ε,δ)(·) the outward unit normal
to Ω(ε, δ) on ∂Ω(ε, δ).

1.8.2 Some technical results for the periodic double layer potential
In the following Proposition, we study some integral operators that are related to the the periodic
double layer potential and that appear in integral equations on ‘rescaled’ domains when we represent
the solution of a certain boundary value problem in terms of a periodic double layer potential.

Proposition 1.22. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Then the following statements hold.

(i) There exists ε2 ∈ ]0, ε1] such that the map N1 of ]−ε2, ε2[×Cm,α(∂Ω) to Cm,α(∂Ω), which takes
(ε, θ) to the function N1[ε, θ] of ∂Ω to R defined by

N1[ε, θ](t) ≡
∫
∂Ω

νΩ(s) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs ∀t ∈ ∂Ω,

is real analytic.

(ii) There exists ε′2 ∈ ]0, ε1] such that the map N2 of ]−ε′2, ε′2[ × Cm,α(∂Ω) to Cm−1,α(∂Ω), which
takes (ε, θ) to the function N2[ε, θ] of ∂Ω to R defined by

N2[ε, θ](t) ≡
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs + εn
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs

∀t ∈ ∂Ω,

is real analytic.

(iii) Let x̄ ∈ clA \ {w}. Let ε̄1 be as in (1.58). There exists ε′′2 ∈ ]0, ε̄1] such that the map N3 of
]−ε′′2 , ε′′2 [× Cm,α(∂Ω) to R, which takes (ε, θ) to

N3[ε, θ] ≡
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)θ(s) dσs,

is real analytic.

Proof. We first prove statement (i). Let j ∈ {1, . . . , n}. By Theorem C.4, there exists ε2 ∈ ]0, ε1] small
enough, such that the map of ]−ε2, ε2[×Cm,α(∂Ω) to Cm,α(∂Ω), which takes (ε, θ) to

∫
∂Ω
∂xjR

a
n(ε(·−

s))(νΩ)j(s)θ(s) dσs is real analytic. Then by standard calculus in Banach space and well known results
of classical potential theory, we immediately deduce that there exists ε2 ∈ ]0, ε1] such that N1 is a real
analytic map of ]−ε2, ε2[× Cm,α(∂Ω) to Cm,α(∂Ω).

By arguing as in the proof of statement (i) and by well known properties of functions in Schauder
spaces and well known results of classical potential theory, one can easily prove statement (ii) (cf.
also the proof of Lanza [78, Theorem 5.5, p. 287].)

Consider now statement (iii). Let V be a bounded open neighbourhood of x̄ such that clV ∩ (w +
Zan) = ∅. By taking ε′′2 ∈ ]0, ε̄1] small enough, we can assume that

clV − (w + ε∂Ω) ⊆ Rn \ Zan ∀ε ∈ ]−ε′′2 , ε′′2 [.

Next we define the map Ñ of ]−ε′′2 , ε′′2 [× Cm,α(∂Ω) to C0(clV ), by setting

Ñ [ε, θ](x) ≡
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)θ(s) dσs, ∀x ∈ clV,
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for all (ε, θ) ∈ ]−ε′′2 , ε′′2 [× Cm,α(∂Ω). Now we observe that if we denote by id∂Ω the identity map in
∂Ω, then the map of ]−ε′′2 , ε′′2 [ to C0(∂Ω,Rn), which takes ε to w + ε id∂Ω is real analytic. Hence, by
Proposition C.1, Ñ is a real analytic map of ]−ε′′2 , ε′′2 [ to C0(clV ). Then, in order to conclude, it
suffices to note that the map of C0(clV ) to R which takes h to h(x̄) is linear and continuous, and
thus real analytic.

By the previous Proposition, we can deduce the validity of the following.

Proposition 1.23. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε2 ∈ ]0, ε1]. Let Θ[·] be a real analytic map of ]−ε2, ε2[ to Cm,α(∂Ω). Then the
following statements hold.

(i) If ε ∈ ]0, ε2[, then we have

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt) =− 1

2
Θ[ε](t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)Θ[ε](s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω.

Moreover, there exists ε3 ∈ ]0, ε2] such that the map N1 of ]−ε3, ε3[ to Cm,α(∂Ω) which takes ε
to the function of ∂Ω to R defined by

N1[ε](t) ≡− 1
2

Θ[ε](t)−
∫
∂Ω

νΩ(s) ·DSn(t− s)Θ[ε](s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

is real analytic.

(ii) If ε ∈ ]0, ε2[, then we have

w+
a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt) =

1
2

Θ[ε](t)−
∫
∂Ω

νΩ(s) ·DSn(t− s)Θ[ε](s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω.

Moreover, there exists ε′3 ∈ ]0, ε2] such that the map N2 of ]−ε′3, ε′3[ to Cm,α(∂Ω) which takes ε
to the function of ∂Ω to R defined by

N2[ε](t) ≡1
2

Θ[ε](t)−
∫
∂Ω

νΩ(s) ·DSn(t− s)Θ[ε](s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

is real analytic.

Proof. The first part of statements (i), (ii) follows by the Theorem of change of variables in integrals
and Theorem 1.13. The second part of statements (i), (ii) is an immediate consequence of Proposition
1.22 (i).

Then we have the following.

Proposition 1.24. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε2 ∈ ]0, ε1]. Let Θ[·] be a real analytic map of ]−ε2, ε2[ to Cm,α(∂Ω). Then the
following statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exists ε3 ∈ ]0, ε2]
such that

clV ⊆ Ta[Ωε] ∀ε ∈ ]−ε3, ε3[. (1.71)

If ε ∈ ]0, ε3[, then we have

w−a
[
∂Ωε,Θ[ε](

1
ε

(·−w))
]
(x) = −εn−1

∫
∂Ω

νΩ(s)·DSan(x−w−εs)Θ[ε](s) dσs ∀x ∈ clV. (1.72)
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Moreover, there exists ε4 ∈ ]0, ε3] such that the map N1 of ]−ε4, ε4[ to C0
h(clV ), which takes ε to

the function of clV to R defined by

N1[ε](x) ≡
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV, (1.73)

is real analytic.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exists ε̄3 ∈ ]0, ε2] such that

w + ε cl V̄ ⊆ cl Pa[Ωε] ∀ε ∈ ]−ε̄3, ε̄3[ \ {0}. (1.74)

If ε ∈ ]0, ε̄3[, then we have

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt) =w−[∂Ω,Θ[ε]](t)

− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl V̄ .

(1.75)

Moreover, there exists ε̄4 ∈ ]0, ε̄3] such that the map N2 of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ), which takes ε
to the function of cl V̄ to R defined by

N2[ε](t) ≡ w−[∂Ω,Θ[ε]](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl V̄ , (1.76)

is real analytic.

(iii) If ε ∈ ]0, ε2[, then we have

w+
a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt) = w+[∂Ω,Θ[ε]](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs

∀t ∈ cl Ω.
(1.77)

Moreover, there exists ε′3 ∈ ]0, ε2] such that the map N3 of ]−ε′3, ε′3[ to Cm,α(cl Ω), which takes ε
to the function of cl Ω to R defined by

N3[ε](t) ≡ w+[∂Ω,Θ[ε]](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl Ω, (1.78)

is real analytic.

Proof. We first prove statement (i). Clearly, by taking ε3 ∈ ]0, ε2] small enough, we can assume that
(1.71) holds. Equality (1.72) follows by the Theorem of change of variables in integrals. By arguing
as in the proof of Proposition 1.22 (iii) and by standard calculus in Banach spaces, we immediately
deduce that there exists ε4 ∈ ]0, ε3[ such that N1 is a real analytic map of ]−ε4, ε4[ to C0

h(clV ).
Consider statement (ii). Clearly, by taking ε̄3 ∈ ]0, ε2] small enough, we can assume that (1.74)

holds. Equality (1.75) follows by the Theorem of change of variables in integrals. By Theorem B.1
(iii), we easily deduce that the map of ]−ε̄3, ε̄3[ to Cm,α(cl V̄ ) which takes ε to w−[∂Ω,Θ[ε]]| cl V̄ is
real analytic. Now let V # be a bounded connected open subset of Rn of class C1, such that

cl V̄ ⊆ V # ⊆ cl V̄ ⊆ Rn \ cl Ω.

Possibly shrinking ε̄3, we can assume that

w + ε clV # ⊆ cl Pa[Ωε] ∀ε ∈ ]−ε̄3, ε̄3[ \ {0}.

By Proposition C.3 and the continuity of the imbedding of Cm+1(clV #) to Cm,α(clV #), it is easy
to prove that there exists ε̄4 ∈ ]0, ε̄3] such that the map of ]−ε̄4, ε̄4[ to Cm,α(clV #), which takes ε to
the function εn−1

∫
∂Ω
νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs of the variable t is real analytic. Thus, by the
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continuity of the restriction operator from Cm,α(clV #) to Cm,α(cl V̄ ), we can easily conclude that
N2 is a real analytic map of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ).

We finally turn to the proof of statement (iii). Equality (1.77) follows by the Theorem of change of
variables in integrals. By Theorem B.1 (iii), we easily deduce that the map of ]−ε2, ε2[ to Cm,α(cl Ω)
which takes ε to w+[∂Ω,Θ[ε]]| cl Ω is real analytic. By Proposition C.3, it is easy to prove that
there exists ε′3 ∈ ]0, ε2] such that the map of ]−ε′3, ε′3[ to Cm,α(cl Ω), which takes ε to the function
εn−1

∫
∂Ω
νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs of the variable t is real analytic. Thus we can easily conclude

that N3 is a real analytic map of ]−ε′3, ε′3[ to Cm,α(cl Ω).

1.8.3 Some technical results for the periodic simple layer potential

We first prove the following elementary Lemma, concerning the periodic simple layer potential.

Lemma 1.25. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε ∈ ]0, ε1[ and θ ∈ Um−1,α

0 . Then we have

va
[
∂Ωε, θ(

1
ε

(· − w))
]
(w + εt) = ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Rna (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω.

Proof. Let ε ∈ ]0, ε1[ and θ ∈ Um−1,α
0 . By the Theorem of change of variables in integrals, we have

va
[
∂Ωε, θ(

1
ε

(·−w))
]
(w+εt) = εn−1

∫
∂Ω

Sn(ε(t−s))θ(s) dσs+εn−1

∫
∂Ω

Rna (ε(t−s))θ(s) dσs ∀t ∈ ∂Ω.

If n = 2, then, by equality (1.65), we have

ε

∫
∂Ω

S2(ε(t− s))θ(s) dσs =
1

2π
ε log ε

∫
∂Ω

θ(s) dσs + ε

∫
∂Ω

S2(t− s)θ(s) dσs ∀t ∈ ∂Ω.

Accordingly, since
∫
∂Ω
θ(s) dσs = 0, then

ε

∫
∂Ω

S2(ε(t− s))θ(s) dσs = ε

∫
∂Ω

S2(t− s)θ(s) dσs ∀t ∈ ∂Ω.

If n ≥ 3, then, by equality (1.65), we have

εn−1

∫
∂Ω

Sn(ε(t− s))θ(s) dσs = ε

∫
∂Ω

Sn(t− s)θ(s) dσs ∀t ∈ ∂Ω.

As a consequence, in both cases, we obtain

va
[
∂Ωε, θ(

1
ε

(· − w))
]
(w + εt) = ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Rna (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω,

and thus the proof is complete.

In the following Proposition, we study some integral operators that are related to the periodic
simple layer potential and that appear in integral equations on ‘rescaled’ domains when we represent
the solution of a certain boundary value problem in terms of a periodic simple layer potential.

Proposition 1.26. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Then the following statements hold.

(i) There exists ε2 ∈ ]0, ε1] such that the map N1 of ]−ε2, ε2[ × Cm−1,α(∂Ω) to Cm,α(∂Ω), which
takes (ε, θ) to the function N1[ε, θ] of ∂Ω to R defined by

N1[ε, θ](t) ≡
∫
∂Ω

Sn(t− s)θ(s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs ∀t ∈ ∂Ω,

is real analytic.



1.8 Some technical results for periodic simple and double layer potentials 25

(ii) There exists ε′2 ∈ ]0, ε1] such that the map N2 of ]−ε′2, ε′2[× Cm−1,α(∂Ω) to Cm−1,α(∂Ω), which
takes (ε, θ) to the function N2[ε, θ] of ∂Ω to R defined by

N2[ε, θ](t) ≡
∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

∀t ∈ ∂Ω,

is real analytic.

(iii) Let x̄ ∈ clA \ {w}. Let ε̄1 be as in (1.58). There exists ε′′2 ∈ ]0, ε̄1] such that the map N3 of
]−ε′′2 , ε′′2 [× Cm−1,α(∂Ω) to R, which takes (ε, θ) to

N3[ε, θ] ≡
∫
∂Ω

San(x̄− w − εs)θ(s) dσs,

is real analytic.

Proof. We first prove statement (i). By Theorem C.4, there exists ε2 ∈ ]0, ε1] small enough, such that
the map of ]−ε2, ε2[× Cm−1,α(∂Ω) to Cm,α(∂Ω), which takes (ε, θ) to

∫
∂Ω
Ran(ε(· − s))θ(s) dσs is real

analytic. Then by standard calculus in Banach space and well known results of classical potential
theory, we immediately deduce that there exists ε2 ∈ ]0, ε1] such that N1 is a real analytic map of
]−ε2, ε2[× Cm−1,α(∂Ω) to Cm,α(∂Ω).

Consider statement (ii). Let j ∈ {1, . . . , n}. By continuity and bilinearity of the pointwise product
in Schauder spaces and by Theorem C.4, there exists ε2 ∈ ]0, ε1] such that the map of ]−ε2, ε2[ ×
Cm−1,α(∂Ω) to Cm−1,α(∂Ω), which takes (ε, θ) to the function (νΩ(·))j

∫
∂Ω
∂xjR

a
n(ε(· − s))θ(s) dσs is

real analytic. Then by standard calculus in Banach space and well known results of classical potential
theory, we immediately deduce that there exists ε′2 ∈ ]0, ε1] such that N2 is a real analytic map of
]−ε′2, ε′2[× Cm−1,α(∂Ω) to Cm−1,α(∂Ω).

Consider now statement (iii). Let V be a bounded open neighbourhood of x̄ such that clV ∩(w+Zan).
Taking ε′′2 ∈ ]0, ε̄1] small enough, we can assume that

clV − (w + ε∂Ω) ⊆ Rn \ Zan ∀ε ∈ ]−ε′′2 , ε′′2 [.

Next we define the map Ñ of ]−ε′′2 , ε′′2 [× Cm−1,α(∂Ω) to C0(clV ), by setting

Ñ [ε, θ](x) ≡
∫
∂Ω

San(x− w − εs)θ(s) dσs ∀x ∈ clV,

for all (ε, θ) ∈ ]−ε′′2 , ε′′2 [× Cm,α(∂Ω). Now we observe that if we denote by id∂Ω the identity map in
∂Ω, then the map of ]−ε′′2 , ε′′2 [ to C0(∂Ω,Rn), which takes ε to w + ε id∂Ω is real analytic. Hence, by
Proposition C.1, Ñ is a real analytic map of ]−ε′′2 , ε′′2 [ to C0(clV ). Then, in order to conclude, it
suffices to note that the map of C0(clV ) to R which takes h to h(x̄) is linear and continuous, and
thus real analytic.

Then we have the following elementary Lemma.

Lemma 1.27. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε2 ∈ ]0, ε1]. Let Θ[·] be a real analytic map of ]−ε2, ε2[ to Cm−1,α(∂Ω) such that Θ[ε] ∈ Um−1,α

0

for all ε ∈ ]0, ε2[. Then Θ[ε] ∈ Um−1,α
0 for all ε ∈ ]−ε2, ε2[.

Proof. Let N be the function of ]−ε2, ε2[ to R defined by

N [ε] ≡
∫
∂Ω

Θ[ε](s) dσs ∀ε ∈ ]−ε2, ε2[.

Clearly, N is a real analytic function of ]−ε2, ε2[ to R. Since Θ[ε] ∈ Um−1,α
0 for all ε ∈ ]0, ε2[, then

N [ε] = 0 for all ε ∈ ]0, ε2[. Accordingly, by the identity principle for real analytic functions, we have
N [ε] = 0 for all ε ∈ ]−ε2, ε2[, and, as a consequence, Θ[ε] ∈ Um−1,α

0 for all ε ∈ ]−ε2, ε2[.

By the previous results, we deduce the validity of the following.
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Proposition 1.28. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε2 ∈ ]0, ε1]. Let Θ[·] be a real analytic map of ]−ε2, ε2[ to Cm−1,α(∂Ω) such that
Θ[ε] ∈ Um−1,α

0 for all ε ∈ [0, ε2[. Then the following statements hold.

(i) If ε ∈ ]0, ε2[, then we have

va
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt) =ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs

+ εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω.

Moreover, there exists ε3 ∈ ]0, ε2] such that the map N1 of ]−ε3, ε3[ to Cm,α(∂Ω) which takes ε
to the function of ∂Ω to R defined by

N1[ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

is real analytic.

(ii) If ε ∈ ]0, ε2[, then we have( ∂

∂νΩε

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
])

(w + εt) =
1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs

+εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω.

Moreover, there exists ε3 ∈ ]0, ε2] such that the map N2 of ]−ε3, ε3[ to Cm−1,α(∂Ω) which takes
ε to the function of ∂Ω to R defined by

N2[ε](t) ≡1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

is real analytic.

(iii) If ε ∈ ]0, ε2[, then we have( ∂

∂νΩε

v+
a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
])

(w + εt) =− 1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs

+εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω.

Moreover, there exists ε′3 ∈ ]0, ε2] such that the map N3 of ]−ε′3, ε′3[ to Cm−1,α(∂Ω) which takes
ε to the function of ∂Ω to R defined by

N3[ε](t) ≡− 1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

is real analytic.

Proof. The first part of statement (i) is an immediate consequence of Lemma 1.25, while the second
part follows by Proposition 1.26 (i). The first part of statements (ii), (iii) follows by the Theorem
of change of variables in integrals and Theorem 1.15. The second part of statements (ii), (iii) is an
immediate consequence of Proposition 1.26 (ii).

Finally, we have the following.

Proposition 1.29. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε2 ∈ ]0, ε1]. Let Θ[·] be a real analytic map of ]−ε2, ε2[ to Cm−1,α(∂Ω) such that
Θ[ε] ∈ Um−1,α

0 for all ε ∈ [0, ε2[. Then the following statements hold.
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(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exists ε3 ∈ ]0, ε2]
such that

clV ⊆ Ta[Ωε] ∀ε ∈ ]−ε3, ε3[. (1.79)

If ε ∈ ]0, ε3[, then we have

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) = εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV. (1.80)

Moreover, there exists ε4 ∈ ]0, ε3] such that the map N1 of ]−ε4, ε4[ to C0
h(clV ), which takes ε to

the function of clV to R defined by

N1[ε](x) ≡
∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV, (1.81)

is real analytic. Furthermore, there exist ε′4 ∈ ]0, ε4] and a real analytic map Ñ1 of ]−ε′4, ε′4[ to
C0
h(clV ) such that

N1[ε](x) = εÑ1[ε](x) ∀x ∈ clV, (1.82)

for all ε ∈ ]−ε′4, ε′4[.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exists ε̄3 ∈ ]0, ε2] such that

w + ε cl V̄ ⊆ cl Pa[Ωε] ∀ε ∈ ]−ε̄3, ε̄3[ \ {0}. (1.83)

If ε ∈ ]0, ε̄3[, then we have

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt) = εv−[∂Ω,Θ[ε]](t) + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

∀t ∈ cl V̄ .
(1.84)

Moreover, there exists ε̄4 ∈ ]0, ε̄3] such that the map N2 of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ), which takes ε
to the function of cl V̄ to R defined by

N2[ε](t) ≡ v−[∂Ω,Θ[ε]](t) + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl V̄ , (1.85)

is real analytic.

(iii) If ε ∈ ]0, ε2[, then we have

v+
a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt) = εv+[∂Ω,Θ[ε]](t) + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

∀t ∈ cl Ω.
(1.86)

Moreover, there exists ε′3 ∈ ]0, ε2] such that the map N3 of ]−ε′3, ε′3[ to Cm,α(cl Ω), which takes ε
to the function of cl Ω to R defined by

N3[ε](t) ≡ v+[∂Ω,Θ[ε]](t) + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl Ω, (1.87)

is real analytic.

Proof. We first prove statement (i). Clearly, by taking ε3 ∈ ]0, ε2] small enough, we can assume that
(1.79) holds. Equality (1.80) follows by the Theorem of change of variables in integrals. Then we note
that, by Lemma 1.27, we have Θ[ε] ∈ Um−1,α

0 for all ε ∈ ]−ε2, ε2[. As a consequence, one can easily
show that N1[ε] ∈ C0

h(clV ) for all ε ∈ ]−ε2, ε2[. By arguing as in the proof of Proposition 1.26 (iii)
and by standard calculus in Banach spaces, we immediately deduce that there exists ε4 ∈ ]0, ε3] such
that N1 is a real analytic map of ]−ε4, ε4[ to C0

h(clV ). Since Θ[0] ∈ Um−1,α
0 , then we have

N1[0](x) = San(x− w)
∫
∂Ω

Θ[0](s) dσs = 0 ∀x ∈ clV
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Hence, there exist ε′4 ∈ ]0, ε4] and a real analytic map Ñ1 of ]−ε′4, ε′4[ to C0
h(clV ) such that

N1[ε] = εÑ1[ε] in C0
h(clV ),

for all ε ∈ ]−ε′4, ε′4[.
Consider statement (ii). Clearly, by taking ε̄3 ∈ ]0, ε2] small enough, we can assume that (1.83)

holds. Equality (1.84) follows by the Theorem of change of variables in integrals and by a modification
of the proof of Lemma 1.25. By Theorem B.2 (iii), we easily deduce that the map of ]−ε̄3, ε̄3[ to
Cm,α(cl V̄ ) which takes ε to v−[∂Ω,Θ[ε]]| cl V̄ is real analytic. Now let V # be a bounded connected
open subset of Rn of class C1, such that

cl V̄ ⊆ V # ⊆ cl V̄ ⊆ Rn \ cl Ω.

Possibly shrinking ε̄3, we can assume that

w + ε clV # ⊆ cl Pa[Ωε] ∀ε ∈ ]−ε̄3, ε̄3[ \ {0}.

By Proposition C.3 and the continuity of the imbedding of Cm+1(clV #) to Cm,α(clV #), it is easy to
prove that there exists ε̄4 ∈ ]0, ε̄3] such that the map of ]−ε̄4, ε̄4[ to Cm,α(clV #), which takes ε to the
function εn−2

∫
∂Ω
Ran(ε(t − s))Θ[ε](s) dσs of the variable t is real analytic. Thus, by the continuity

of the restriction operator from Cm,α(clV #) to Cm,α(cl V̄ ), we can easily conclude that N2 is a real
analytic map of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ).

We finally turn to the proof of statement (iii). Equality (1.86) follows by the Theorem of change
of variables in integrals and by a modification of the proof of Lemma 1.25. By Theorem B.2 (ii), we
easily deduce that the map of ]−ε2, ε2[ to Cm,α(cl Ω) which takes ε to v+[∂Ω,Θ[ε]]| cl Ω is real analytic.
By Proposition C.3, it is easy to prove that there exists ε′3 ∈ ]0, ε2] such that the map of ]−ε′3, ε′3[
to Cm,α(cl Ω), which takes ε to the function εn−2

∫
∂Ω
Ran(ε(t− s))Θ[ε](s) dσs of the variable t is real

analytic. Thus we can easily conclude that N3 is a real analytic map of ]−ε′3, ε′3[ to Cm,α(cl Ω).



CHAPTER 2

Singular perturbation and homogenization problems
for the Laplace and Poisson equations with Dirichlet
and Neumann boundary conditions

In this Chapter we introduce the periodic Dirichlet and Neumann problems for the Laplace and
Poisson equations and we study singular perturbation and homogenization problems for the Laplace
and Poisson equations with Dirichlet and Neumann boundary conditions in a periodically perforated
domain. First of all, by means of periodic simple and double layer potentials, we show the solvability of
these problems (see also Shcherbina [128].) Secondly, we consider singular perturbation problems in a
periodically perforated domain with small holes, and we apply the obtained results to homogenization
problems. Our strategy follows the functional analytic approach of Lanza [75], where the asymptotic
behaviour of the solutions of the Dirichlet problem for the Laplace operator in a domain with a
small hole has been studied. On the other hand, as far as the Poisson equation is concerned, we
mention in particular Lanza [70]. We also note that Dirichlet (and others) boundary value problems
in singularly perturbed domains in the frame of linearized elasticity have been analysed by Dalla Riva
in his Ph.D. Dissertation [33]. One of the tools used in our analysis is the study of the dependence of
layer potentials upon perturbations (cf. Lanza and Rossi [85] and also Dalla Riva and Lanza [40].)
A generalization of the result concerning the singularly perturbed Dirichlet problem for the Laplace
equation can be found in [104] (see also [103].) Moreover, for the Dirichlet problem for the Poisson
equation, we refer to [105].

We retain the notation of Chapter 1 (see in particular Sections 1.1, 1.3, Theorem 1.4, and Definitions
1.12, 1.14, 1.16.) For notation, definitions, and properties concerning classical layer potentials for the
Laplace equation, we refer to Appendix B.

2.1 Periodic Dirichlet and Neumann boundary value problems
for the Poisson and Laplace equation

In this Section we study periodic Dirichlet and Neumann boundary value problems for the Poisson
and Laplace equation.

2.1.1 Formulation of the problems
In this Subsection we introduce the periodic Dirichlet and Neumann problems for the Poisson and
Laplace equations.

Definition 2.1. Let m ∈ N \ {0} Let α ∈ ]0, 1[. Let I be as in (1.46). Let f ∈ C0(Rn) be such that

f(x+ ai) = f(x) ∀x ∈ Rn, ∀i ∈ {1, . . . , n},

and ∫
A

f(y) dy = 0.

29
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Let Γ ∈ Cm,α(∂I). We say that a function u ∈ C0(cl Ta[I]) ∩ C2(Ta[I]) solves the periodic Dirichlet
problem for the Poisson equation if∆u(x) = f(x) ∀x ∈ Ta[I],

u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
u(x) = Γ(x) ∀x ∈ ∂I.

(2.1)

Remark 2.2. Boundary value problem (2.1) with f ≡ 0 is called the periodic Dirichlet problem for the
Laplace equation.

Definition 2.3. Let m ∈ N \ {0} Let α ∈ ]0, 1[. Let I be as in (1.46). Let f ∈ C0(Rn) be such that

f(x+ ai) = f(x) ∀x ∈ Rn, ∀i ∈ {1, . . . , n},

and ∫
A

f(y) dy = 0.

Let Γ ∈ Cm−1,α(∂I). We say that a function u ∈ C1(cl Ta[I])∩C2(Ta[I]) solves the periodic Neumann
problem for the Poisson equation if

∆u(x) = f(x) ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
∂
∂νI
u(x) = Γ(x) ∀x ∈ ∂I.

(2.2)

Remark 2.4. Boundary value problem (2.2) with f ≡ 0 is called the periodic Neumann problem for
the Laplace equation.

2.1.2 Uniqueness results for the solutions of the periodic Dirichlet and
Neumann problems

In this Subsection we prove uniqueness results for the solutions of the periodic Dirichlet and Neumann
problems for the Laplace equation. Clearly, by these results, we can deduce the analogues for the
Poisson equation.

In the following known Theorem, we deduce by the Strong Maximum and Minimum Principles a
periodic version for harmonic functions defined on cl Ta[I].

Theorem 2.5 (Strong Maximum and Minimum Principles for periodic harmonic functions).
Let I be a bounded connected open subset of Rn such that cl I ⊆ A and Rn \ cl I is connected. Let Ta[I]
be as in (1.49). Let u ∈ C0(cl Ta[I]) ∩ C2(Ta[I]) be such that

u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},

and
∆u(x) = 0 ∀x ∈ Ta[I].

Then the following statements hold.

(i) If there exists a point x0 ∈ Ta[I] such that u(x0) = maxcl Ta[I] u, then u is constant within Ta[I].

(ii) If there exists a point x0 ∈ Ta[I] such that u(x0) = mincl Ta[I] u, then u is constant within Ta[I].

As a consequence,

(j)
max

cl Ta[I]
u = max

∂I
u,

(jj)
min

cl Ta[I]
u = min

∂I
u.

Proof. Clearly, statements (j) and (jj) are straightforward consequences of (i) and (ii). Furthermore,
statement (ii) follows by statement (i) by replacing u with −u. Therefore, it suffices to prove (i). Let
u and x0 be as in the hypotheses. By periodicity of u, supx∈Ta[I] u(x) < +∞. Then by the Maximum
Principle, u must be constant in Ta[I] (cf. e.g., Folland [52, Theorem 2.13, p. 72].)
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Clearly, by the previous Theorem, we can deduce a uniqueness result for the solutions of a periodic
Dirichlet problem for the Laplace equation.

Corollary 2.6. Let I be a bounded connected open subset of Rn such that cl I ⊆ A and Rn \ cl I is
connected. Let Ta[I] be as in (1.49). Let u ∈ C0(cl Ta[I]) ∩ C2(Ta[I]) be such that∆u(x) = 0 ∀x ∈ Ta[I],

u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
u(x) = 0 ∀x ∈ ∂I.

Then u = 0 in cl Ta[I].

Proof. It is a straightforward consequence of Theorem 2.5.

In the following Proposition, we prove a uniqueness result, up to constant functions, for the periodic
Neumann problem for the Laplace equation.

Proposition 2.7. Let m ∈ N\{0} Let α ∈ ]0, 1[. Let I be as in (1.46). Let u ∈ C1(cl Ta[I])∩C2(Ta[I])
be such that 

∆u(x) = 0 ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
∂
∂νI
u(x) = 0 ∀x ∈ ∂I.

Then u is constant in cl Ta[I].

Proof. By Green’s Formula and by the harmonicity of u, we have∫
Pa[I]
|∇u(x)|2 dx = −

∫
Pa[I]

u(x)∆u(x) dx+
∫
∂Pa[I]

u(x)
∂

∂νPa[I]
u(x) dσx

=
∫
∂A

u(x)
∂

∂νA
u(x) dσx −

∫
∂I
u(x)

∂

∂νI
u(x) dσx.

As a consequence, by the periodicity of u and since

∂

∂νI
u = 0 on ∂I,

we have ∫
∂A

u(x)
∂

∂νA
u(x) dσx −

∫
∂I
u(x)

∂

∂νI
u(x) dσx = 0.

Accordingly,
|∇u|2 = 0 in cl Pa[I],

and so u is constant in cl Pa[I] and, consequently, in cl Ta[I].

As for classical Neumann problems for the Poisson and Laplace equations, in the following
Proposition, we show a necessary condition on the Neumann datum for the solvability of the periodic
Neumann problem for the Poisson equation.

Proposition 2.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let f and Γ be as in
Definition 2.3. If the periodic Neumann problem for the Poisson equation (2.2) has a solution in
C1(cl Ta[I]) ∩ C2(Ta[I]), then ∫

∂I
Γ(x) dσx =

∫
I
f(x) dx.

Proof. By Green’s Formula and by the periodicity of u, we have∫
Pa[I]

∆u(x) dx =
∫
∂Pa[I]

∂

∂νPa[I]
u(x) dσx

=
∫
∂A

∂

∂νA
u(x) dσx −

∫
∂I

∂

∂νI
u(x) dσx

= −
∫
∂I

∂

∂νI
u(x) dσx

= −
∫
∂I

Γ(x) dσx.



32
Singular perturbation and homogenization problems for the Laplace and Poisson equations with

Dirichlet and Neumann boundary conditions

On the other hand, ∫
Pa[I]

∆u(x) dx =
∫

Pa[I]
f(x) dx

= −
∫

I
f(x) dx.

Thus, ∫
∂I

Γ(x) dσx =
∫

I
f(x) dx,

and the proof is complete.

Clearly, we have the corresponding result for the periodic Neumann problem for the Laplace
equation.

Corollary 2.9. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let Γ ∈ Cm−1,α(∂I). If
the periodic Neumann problem for the Laplace equation with Neumann datum Γ has a solution in
C1(cl Ta[I]) ∩ C2(Ta[I]), then ∫

∂I
Γ(x) dσx = 0.

Proof. It is an immediate consequence of the previous Theorem with f ≡ 0.

2.1.3 Existence results for the solutions of the periodic Dirichlet and Neu-
mann problems

In this Subsection we show the existence of solutions of the periodic Dirichlet and Neumann problems
for the Laplace and Poisson equations. We shall solve these problems by means of periodic simple
layer, double layer and Newtonian potentials. Clearly, in order to solve boundary value problems by
means of periodic layer potentials, we need to study the integral operators describing the behaviour
on the boundary of the periodic layer potentials.

We have the following Lemma that we shall need in the sequel.

Lemma 2.10. Let m ∈ N\{0}, α ∈ ]0, 1[. Let I be as in (1.46). Let µ ∈ C0,α(∂I). Then the following
equalities hold.

(i) ∫
∂I

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy dσx =

(
1
2
−
|I|n
|A|n

)∫
∂I
µ(y) dσy.

(ii) ∫
∂I

(
−1

2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy

)
dσx = −

|I|n
|A|n

∫
∂I
µ(y) dσy.

(iii) ∫
∂I

(
1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy

)
dσx =

(
1−

|I|n
|A|n

)∫
∂I
µ(y) dσy.

Proof. Consider (i). By Theorem 1.13 (iv), by Fubini’s Theorem, and by virtue of the parity of San,
we have ∫

∂I

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy dσx =

∫
∂I

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
dσxµ(y) dσy

=
∫
∂I

(
1
2
−
|I|n
|A|n

)
µ(y) dσy

=
(

1
2
−
|I|n
|A|n

)∫
∂I
µ(y) dσy.

The equalities in (ii) and (iii) are immediate consequences of (i).
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In the following Proposition, we show the compactness of the linear operators that appear in the
description of the behaviour on the boundary of the periodic simple and double layer potentials.

Proposition 2.11. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then the following statements
hold.

(i) The map of L2(∂I) to L2(∂I) which takes µ to the function of the variable x ∈ ∂I defined by∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I,

is compact. Moreover, its adjoint is the map of L2(∂I) to L2(∂I), which takes µ to the function
of the variable x ∈ ∂I defined by∫

∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

(ii) The map of L2(∂I) to L2(∂I) which takes µ to the function of the variable x ∈ ∂I defined by∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I,

is compact. Moreover, its adjoint is the map of L2(∂I) to L2(∂I), which takes µ to the function
of the variable x ∈ ∂I defined by∫

∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

Proof. Clearly, it suffices to consider one of the two statements. Consider (i). Clearly,∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy

=
∫
∂I

∂

∂νI(y)
(
Sn(x− y)

)
µ(y) dσy +

∫
∂I

∂

∂νI(y)
(
Ran(x− y)

)
µ(y) dσy ∀x ∈ ∂I,

for all µ ∈ L2(∂I). Since the kernel ∂
∂νI(y)

(
Sn(x − y)

)
has a weak singularity and the function

(x, y) 7→ ∂
∂νI(y)

(
Ran(x − y)

)
is continuous in ∂I × ∂I, then the linear operator considered in (i) is

compact (cf. e.g., Folland [52, Prop. 3.11, p. 121].) A simple computation based on the simmetry of
San shows that its adjoint is the one defined in the second part of (i). Finally, the statement in (ii) is
an immediate consequence of (i).

In the following Propositions, we show the injectivity of some linear operators related to layer
potentials.

Proposition 2.12. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then the following statements
hold.

(i) Let µ ∈ L2(∂I) and

−1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy = 0 a.e. on ∂I. (2.3)

Then µ ≡ 0.

(ii) Let µ ∈ L2(∂I) and

1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy = 0 a.e. on ∂I. (2.4)

Then µ ≡ 0.
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Proof. We first prove (i). Let µ be as in (i). By Theorem 1.21 (iv), we have that µ ∈ Cm−1,α(∂I).
By Lemma 2.10 (ii), we have that

∫
∂I µdσ = 0. Consequently,

∆va[∂I, µ] = 0 in Sa[I] ∪ Ta[I].

Then v+
a [∂I, µ]| cl I solves the following interior Neumann problem for the Laplace equation in I{

∆u = 0 in I,
∂
∂νI
u = 0 on ∂I.

Hence, there exists a constant C ∈ R such that

v+
a [∂I, µ](x) = C ∀x ∈ Sa[I].

As a consequence, v−a [∂I, µ] solves the following periodic Dirichlet problem for the Laplace equation∆u(x) = 0 ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
u(x) = C ∀x ∈ ∂I.

Thus, by Theorem 2.5, v−a [∂I, µ] = C in cl Ta[I], and so

va[∂I, µ](x) = C ∀x ∈ Rn.

Then, by the third formula in Theorem 1.15 (iv), we have µ ≡ 0.
We now consider (ii). Let µ be as in (ii). By Theorem 1.21 (iii), we have that µ ∈ Cm−1,α(∂I).

By Lemma 2.10 (iii), we have that
∫
∂I µdσ = 0. Consequently,

∆va[∂I, µ] = 0 in Sa[I] ∪ Ta[I].

Then v−a [∂I, µ] solves the following periodic Neumann problem for the Laplace equation
∆u(x) = 0 ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
∂
∂νI
u(x) = 0 ∀x ∈ ∂I.

Hence, by virtue of Proposition 2.7, there exists a constant C ∈ R such that

v−a [∂I, µ](x) = C ∀x ∈ Ta[I].

Consequently, v+
a [∂I, µ]| cl I solves the following interior Dirichlet problem for the Laplace equation in I{

∆u = 0 in I,
u = C on ∂I.

Thus, v+
a [∂I, µ] = C in cl Sa[I], and so

va[∂I, µ](x) = C ∀x ∈ Rn.

Then, by the third formula in Theorem 1.15 (iv), we have µ ≡ 0.

By the previous Proposition, we deduce the following.

Proposition 2.13. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then the following statements
hold.

(i) Let µ ∈ L2(∂I) and

−1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy = 0 a.e. on ∂I. (2.5)

Then µ ≡ 0.
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(ii) Let µ ∈ L2(∂I) and

1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy = 0 a.e. on ∂I. (2.6)

Then µ ≡ 0.

Proof. It is an immediate consequence of the Fredholm Theory and of Propositions 2.11 and 2.12.

In the following Proposition, we show existence and uniqueness results for the solutions of the
integral equations that appear in Theorems 1.13 and 1.15.

Proposition 2.14. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then the following statements
hold.

(i) Let Γ ∈ Cm,α(∂I). Then there exists a unique µ ∈ Cm,α(∂I), such that

1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy = Γ(x) a.e. on ∂I. (2.7)

(ii) Let Γ ∈ Cm,α(∂I). Then there exists a unique µ ∈ Cm,α(∂I), such that

−1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy = Γ(x) a.e. on ∂I. (2.8)

(iii) Let Γ ∈ Cm−1,α(∂I). Then there exists a unique µ ∈ Cm−1,α(∂I), such that

1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy = Γ(x) a.e. on ∂I. (2.9)

(iv) Let Γ ∈ Cm−1,α(∂I). Then there exists a unique µ ∈ Cm−1,α(∂I), such that

−1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy = Γ(x) a.e. on ∂I. (2.10)

Proof. Consider (i). By the Fredholm Theory and Proposition 2.13, there exists a unique µ ∈ L2(∂I)
such that (2.7) holds. By Theorem 1.21 (i), we have that µ ∈ Cm,α(∂I), and so statement (i) is proved.
In the same way, we can easily prove (ii), (iii), and (iii).

In the following Theorem, we prove that the periodic Dirichlet problem for the Laplace equation
has a unique solution.

Theorem 2.15. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let Γ ∈ Cm,α(∂I). Then there
exists a unique solution u ∈ Cm,α(cl Ta[I]) of the following periodic Dirichlet problem for the Laplace
equation ∆u(x) = 0 ∀x ∈ Ta[I],

u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
u(x) = Γ(x) ∀x ∈ ∂I.

(2.11)

In particular, we have
u(x) = w−a [∂I, µ](x) ∀x ∈ cl Ta[I], (2.12)

where µ is the unique solution in Cm,α(∂I) of the following integral equation

Γ(x) = −1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I. (2.13)

Proof. The uniqueness has already been proved in Corollary 2.6. We need to prove the existence of
a solution of (2.11). In particular, we want to prove that the function given by the right-hand side
of (2.12) solves (2.11). Clearly, by Proposition 2.14, there exists a unique µ ∈ Cm,α(∂I) that solves
(2.13). Then, by Theorem 1.13, it is easy to see that w−a [∂I, µ] is a periodic harmonic function in
Cm,α(cl Ta[I]), that solves (2.11).
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By the previous Theorem, we deduce the existence of a unique solution of the periodic Dirichlet
problem for the Poisson equation.

Theorem 2.16. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let m̄ ≡ max{0,m − 2}. Let
f ∈ Cm̄,α(Rn) be such that

f(x+ ai) = f(x) ∀x ∈ Rn, ∀i ∈ {1, . . . , n},

and ∫
A

f(y) dy = 0.

Let Γ ∈ Cm,α(∂I). Then there exists a unique solution u ∈ Cm,α(cl Ta[I]) of the following periodic
Dirichlet problem for the Poisson equation∆u(x) = f(x) ∀x ∈ Ta[I],

u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
u(x) = Γ(x) ∀x ∈ ∂I.

(2.14)

In particular, we have

u(x) = w−a [∂I, µ](x) + pa[f ](x) ∀x ∈ cl Ta[I], (2.15)

where µ is the unique solution in Cm,α(∂I) of the following integral equation

Γ(x)− pa[f ](x) = −1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I. (2.16)

Proof. The uniqueness is a straightforward consequence of Corollary 2.6. We need to prove the
existence of a solution of (2.14). In particular, we want to prove that the function given by the
right-hand side of (2.15) solves (2.14). By Theorem 1.18, pa[f ] ∈ Cm,α(Rn) and ∆pa[f ] = f in
Rn. Clearly, by Proposition 2.14, there exists a unique µ ∈ Cm,α(∂I) that solves (2.16). Then, by
Theorem 1.13, it is easy to see that w−a [∂I, µ] is a periodic harmonic function in Cm,α(cl Ta[I]), and
that w−a [∂I, µ] + pa[f ] solves (2.14).

As done above, in the following Theorem we prove that the periodic Neumann problem for the
Laplace equation has a solution.

Theorem 2.17. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let Γ ∈ Cm−1,α(∂I) be such
that

∫
∂I Γ dσ = 0. Then there exists a solution u ∈ Cm,α(cl Ta[I]) of the following periodic Neumann

problem for the Laplace equation
∆u(x) = 0 ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
∂
∂νI
u(x) = Γ(x) ∀x ∈ ∂I.

(2.17)

In particular, we have
u(x) = v−a [∂I, µ](x) ∀x ∈ cl Ta[I], (2.18)

where µ is the unique solution in Cm−1,α(∂I) of the following integral equation

Γ(x) =
1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I. (2.19)

The set of all the solutions of problem (2.17) is given by{
v−a [∂I, µ] + c : c ∈ R

}
, (2.20)

where, as above, µ is the unique solution of equation (2.19)

Proof. By virtue of Proposition 2.7, it suffices to prove that the function given by the right-hand side
of (2.18) solves boundary value problem (2.17). Clearly, by Proposition 2.14, there exists a unique
function µ ∈ Cm−1,α(∂I) that solves (2.19). Moreover, by Lemma 2.10 (iii), since

∫
∂I Γ dσ = 0, we

have that
∫
∂I µdσ = 0. Then, by Theorem 1.15, it is easy to see that v−a [∂I, µ] is a periodic harmonic

function in Cm,α(cl Ta[I]), that solves (2.17).
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Obviously, by the previous Theorem, we deduce the existence of a solution of the Neumann problem
for the Poisson equation.

Theorem 2.18. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let m̄ ≡ max{0,m − 2}. Let
f ∈ Cm̄,α(Rn) be such that

f(x+ ai) = f(x) ∀x ∈ Rn, ∀i ∈ {1, . . . , n},

and ∫
A

f(y) dy = 0.

Let Γ ∈ Cm−1,α(∂I) be such that
∫
∂I Γ dσ =

∫
I f(x) dx. Then there exists a solution u ∈ Cm,α(cl Ta[I])

of the following periodic Neumann problem for the Poisson equation
∆u(x) = f(x) ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
∂
∂νI
u(x) = Γ(x) ∀x ∈ ∂I.

(2.21)

In particular, we have
u(x) = v−a [∂I, µ](x) + pa[f ] ∀x ∈ cl Ta[I], (2.22)

where µ is the unique solution in Cm−1,α(∂I) of the following integral equation

Γ(x)− ∂

∂νI
pa[f ](x) =

1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I. (2.23)

The set of all the solutions of problem (2.21) is given by{
v−a [∂I, µ] + pa[f ] + c : c ∈ R

}
, (2.24)

where, as above, µ is the unique solution of equation (2.23)

Proof. By virtue of Proposition 2.7, it suffices to prove that the function given by the right-hand side of
(2.22) solves boundary value problem (2.21). By Theorem 1.18, pa[f ] ∈ Cm,α(Rn) and ∆pa[f ] = f in
Rn. Clearly, by Proposition 2.14, there exists a function µ ∈ Cm−1,α(∂I) that solves (2.23). Moreover,
since

∫
∂I Γ dσ =

∫
I f(x)dx, by Green’s Formula, we have that∫

∂I
Γ dσ =

∫
∂I

∂

∂νI
pa[f ] dσ.

Accordingly, by Lemma 2.10 (iii),
∫
∂I µdσ = 0. Then, by Theorem 1.15, it is easy to see that v−a [∂I, µ]

is a periodic harmonic function in Cm,α(cl Ta[I]), and that v−a [∂I, µ] + pa[f ] solves (2.21).

2.1.4 Representation theorems for periodic harmonic functions

In this Subsection we want to prove representation theorems for periodic harmonic functions defined
in cl Ta[I] and in cl Sa[I].

In the following four Propositions, we represents periodic harmonic functions by means of periodic
double layer potentials and costants.

Proposition 2.19. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u ∈ Cm,α(cl Ta[I]) be such
that

∆u(x) = 0 ∀x ∈ Ta[I],

and
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n}.

Then there exists a unique µ ∈ Cm,α(∂I), such that

u(x) = w−a [∂I, µ](x) ∀x ∈ cl Ta[I].
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Proof. Let µ ∈ Cm,α(∂I). By Theorem 1.13 and Theorem 2.5,

u(x) = w−a [∂I, µ](x) ∀x ∈ cl Ta[I].

if and only if

u(x) = −1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

On the other hand, by Proposition 2.14, the previous integral equation has a unique solution
µ ∈ Cm,α(∂I), and so the conclusion easily follows.

Proposition 2.20. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u ∈ Cm,α(cl Sa[I]) be such
that

∆u(x) = 0 ∀x ∈ Sa[I],

and
u(x+ ai) = u(x) ∀x ∈ cl Sa[I], ∀i ∈ {1, . . . , n}.

Then there exists a unique µ ∈ Cm,α(∂I), such that

u(x) = w+
a [∂I, µ](x) ∀x ∈ cl Sa[I].

Proof. Let µ ∈ Cm,α(∂I). By Theorem 1.13 and the Maximum Principle,

u(x) = w+
a [∂I, µ](x) ∀x ∈ cl Sa[I]

if and only if

u(x) =
1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

On the other hand, by Proposition 2.14, the previous integral equation has a unique solution
µ ∈ Cm,α(∂I), and so the conclusion easily follows.

Proposition 2.21. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u ∈ Cm,α(cl Ta[I]) be such
that

∆u(x) = 0 ∀x ∈ Ta[I],

and
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n}.

Then there exists a unique pair (µ, c) ∈ Cm,α(∂I)× R, such that
∫
∂I µdσ = 0 and that

u(x) = w−a [∂I, µ](x) + c ∀x ∈ cl Ta[I].

Proof. Let L be the linear and continuous map of Cm,α(∂I) to Cm,α(∂I), which takes µ to the function
of the variable x ∈ ∂I defined by

L[µ](x) ≡ −1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

By Proposition 2.14, L is bijective. Moreover, by the Open Mapping Theorem, L is a linear
homeomorphism of Cm,α(∂I) onto itself. By Theorem 1.13 (iv), L takes a constant function to another
constant function. In particular,

L[λχ∂I] = −λ
|I|n
|A|n

χ∂I ∀λ ∈ R.

Then, if we set

Um,α∂I ≡
{
µ ∈ Cm,α(∂I) :

∫
∂I
µdσ = 0

}
,

we have
Cm,α(∂I) = Um,α∂I ⊕ 〈χ∂I〉 ,

and so
Cm,α(∂I) = L[Um,α∂I ]⊕ 〈χ∂I〉 .
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In other words, for each g ∈ Cm,α(∂I) there exists a unique pair (µ, c) ∈ Um,α∂I × R such that

g(x) = −1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy + c ∀x ∈ ∂I.

Hence, if u ∈ Cm,α(cl Ta[I]), then there exists a unique pair (µ, c) ∈ Cm,α(∂I) × R, such that∫
∂I µdσ = 0 and that

u(x) = w−a [∂I, µ](x) + c ∀x ∈ ∂I.

Consequently, by Theorem 2.5, we have

u(x) = w−a [∂I, µ](x) + c ∀x ∈ cl Ta[I],

and the conclusion easily follows.

Proposition 2.22. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u ∈ Cm,α(cl Sa[I]) be such
that

∆u(x) = 0 ∀x ∈ Sa[I],

and
u(x+ ai) = u(x) ∀x ∈ cl Sa[I], ∀i ∈ {1, . . . , n}.

Then there exists a unique pair (µ, c) ∈ Cm,α(∂I)× R, such that
∫
∂I µdσ = 0 and that

u(x) = w+
a [∂I, µ](x) + c ∀x ∈ cl Sa[I].

Proof. Let L be the linear and continuous map of Cm,α(∂I) to Cm,α(∂I), which takes µ to function of
the variable x ∈ ∂I defined by

L[µ](x) ≡ 1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

By Proposition 2.14, L is bijective. Moreover, by the Open Mapping Theorem, L is a linear
homeomorphism of Cm,α(∂I) onto itself. By Theorem 1.13 (iv), L takes a constant function to another
constant function. In particular,

L[λχ∂I] = λ

(
1−

|I|n
|A|n

)
χ∂I ∀λ ∈ R.

Then, if we set

Um,α∂I ≡
{
µ ∈ Cm,α(∂I) :

∫
∂I
µdσ = 0

}
,

we have
Cm,α(∂I) = Um,α∂I ⊕ 〈χ∂I〉 ,

and so
Cm,α(∂I) = L[Um,α∂I ]⊕ 〈χ∂I〉 .

In other words, for each g ∈ Cm,α(∂I) there exists a unique pair (µ, c) ∈ Um,α∂I × R such that

g(x) =
1
2
µ(x) +

∫
∂I

∂

∂νI(y)
(
San(x− y)

)
µ(y) dσy + c ∀x ∈ ∂I.

Hence, if u ∈ Cm,α(cl Sa[I]), then there exists a unique pair (µ, c) ∈ Cm,α(∂I) × R, such that∫
∂I µdσ = 0 and that

u(x) = w+
a [∂I, µ](x) + c ∀x ∈ ∂I.

Consequently, by the Strong Maximum Principle and the periodicity of u and w+
a [∂I, µ] + c, we have

u(x) = w+
a [∂I, µ](x) + c ∀x ∈ cl Sa[I],

and the conclusion easily follows.
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In the following Propositions, we show that periodic harmonic functions can be represented also
by means of periodic simple layer potentials and constants.

Proposition 2.23. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u ∈ Cm,α(cl Ta[I]) be such
that

∆u(x) = 0 ∀x ∈ Ta[I],

and
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n}.

Then there exists a unique pair (µ, c) ∈ Cm−1,α(∂I)× R, such that

u(x) = v−a [∂I, µ](x) + c ∀x ∈ cl Ta[I].

Moreover,
∫
∂I µdσ = 0.

Proof. Let (µ, c) ∈ Cm−1,α(∂I)× R. Let x̄ ∈ Pa[I]. By Theorem 1.15 and Proposition 2.7,

u(x) = v−a [∂I, µ](x) + c ∀x ∈ cl Ta[I],

if and only if ∫
∂I
µdσ = 0,

and
u(x̄) = v−a [∂I, µ](x̄) + c,

and
∂

∂νI
u(x) =

1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

On the other hand, by Proposition 2.14, the previous integral equation has a unique solution
µ ∈ Cm−1,α(∂I). Moreover, by the periodicity of u and by Green’s Formula, we have∫

∂I

∂

∂νI
u dσ = 0,

and so, by Lemma 2.10, we have ∫
∂I
µdσ = 0.

Then c must be delivered by
c ≡ u(x̄)− v−a [∂I, µ](x̄),

and so the conclusion easily follows.

Proposition 2.24. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let u ∈ Cm,α(cl Sa[I]) be such
that

∆u(x) = 0 ∀x ∈ Sa[I],

and
u(x+ ai) = u(x) ∀x ∈ cl Sa[I], ∀i ∈ {1, . . . , n}.

Then there exists a unique pair (µ, c) ∈ Cm−1,α(∂I)× R, such that

u(x) = v+
a [∂I, µ](x) + c ∀x ∈ cl Sa[I].

Moreover,
∫
∂I µdσ = 0.

Proof. Let (µ, c) ∈ Cm−1,α(∂I)× R. Let x̄ ∈ I. By Theorem 1.15,

u(x) = v+
a [∂I, µ](x) + c ∀x ∈ cl Sa[I],

if and only if ∫
∂I
µdσ = 0,
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and
u(x̄) = v+

a [∂I, µ](x̄) + c,

and
∂

∂νI
u(x) = −1

2
µ(x) +

∫
∂I

∂

∂νI(x)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂I.

On the other hand, by Proposition 2.14, the previous integral equation has a unique solution
µ ∈ Cm−1,α(∂I). Moreover, by Green’s Formula, we have∫

∂I

∂

∂νI
u dσ = 0,

and so, by Lemma 2.10, we have ∫
∂I
µdσ = 0.

Then c must be delivered by
c ≡ u(x̄)− v+

a [∂I, µ](x̄),

and so the conclusion easily follows.

2.2 Asymptotic behaviour of the solutions of the Dirichlet prob-
lem for the Poisson equation in a periodically perforated
domain

In this Section we study the asymptotic behaviour of the solutions of the Dirichlet problem for the
Poisson equation in a periodically perforated domain with small holes.

2.2.1 Notation
We retain the notation introduced in Subsection 1.8.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the following assumptions.

g ∈ Cm,α(∂Ω). (2.25)

Let f be real analytic function from Rn to R such that f(x+ ai) = f(x)

for all x ∈ Rn and for all i ∈ {1, . . . , n}, and such that
∫
A

f(y) dy = 0. (2.26)

2.2.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25), (2.26),
respectively. For each ε ∈ ]0, ε1[, we consider the following periodic Dirichlet problem for the Poisson
equation. ∆u(x) = f(x) ∀x ∈ Ta[Ωε],

u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε.

(2.27)

By virtue of Theorems 2.15 and 2.16, we can give the following definitions.

Definition 2.25. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε]) of
boundary value problem (2.27).

Definition 2.26. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively. For each ε ∈ ]0, ε1[, we denote by ū[ε] the unique solution in Cm,α(cl Ta[Ωε]) of
the following periodic Dirichlet problem for the Laplace equation.∆u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
u(x) = g

(
1
ε (x− w)

)
− pa[f ](x) ∀x ∈ ∂Ωε.

(2.28)



42
Singular perturbation and homogenization problems for the Laplace and Poisson equations with

Dirichlet and Neumann boundary conditions

Remark 2.27. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively. For each ε ∈ ]0, ε1[, we have

u[ε](x) ≡ ū[ε](x) + pa[f ](x) ∀x ∈ cl Ta[Ωε].

We now prove the following known Lemma that we shall need in the sequel.

Lemma 2.28. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). Let Um,α0 be as in (1.64). Then
the map L from Um,α0 × R to Cm,α(∂Ω), which takes (θ, ξ) to

L[θ, ξ](t) ≡ −1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(t− s))θ(s) dσs + ξ ∀t ∈ ∂Ω,

is a linear homeomorphism of Um,α0 × R onto Cm,α(∂Ω).

Proof. Clearly, L is linear and continuous. By the Open Mapping Theorem, it suffices to prove that
L is a bijection. We recall that, by the hypotheses on Ω, we have in particular that Ω is connected.
By well known results of classical potential theory (cf. Folland [52, Chapter 3]), we have

Cm,α(∂Ω) =
{
−1

2
θ(·) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(· − s))θ(s) dσs : θ ∈ Cm,α(∂Ω)

}
⊕ 〈χ∂Ω〉 .

On the other hand, for each ψ in the set{
−1

2
θ(·) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(· − s))θ(s) dσs : θ ∈ Cm,α(∂Ω)

}
,

there exists a unique θ in Cm,α(∂Ω) such that{
ψ(t) = − 1

2θ(t) +
∫
∂Ω

∂
∂νΩ(s) (Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω,∫

∂Ω
θ dσ = 0.

In other words, for each φ ∈ Cm,α(∂Ω), there exists a unique pair (θ, ξ) in Um,α0 × R, such that

φ(t) = −1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(t− s))θ(s) dσs + ξ ∀t ∈ ∂Ω.

Hence, L is bijective.

As we have seen, by means of the periodic Newtonian potential, we can convert the Dirichlet
problem for the Poisson equation, into a Dirichlet problem for the Laplace equation. Since we want to
represent the functions ū[ε] by means of a periodic double layer potential and a constant (cf. Theorem
2.15 and Proposition 2.21), we need to study some integral equations. Indeed, by virtue of Theorem
2.15 and Proposition 2.21, we can transform (2.28) into an integral equation, whose unknowns are the
moment of the double layer potential and the additive constant. Moreover, we want to transform these
equations defined on the ε-dependent domain ∂Ωε into equations defined on the fixed domain ∂Ω. We
introduce these integral equations in the following Proposition. The relation between the solution of
the integral equations and the solution of boundary value problem (2.28) will be clarified later.

Proposition 2.29. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,αε , Um,α0 be as in (1.63), (1.64), respectively. Let Λ be the map of
]−ε1, ε1[× Um,α0 × R in Cm,α(∂Ω) defined by

Λ[ε, θ, ξ](t) ≡− 1
2
θ(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ(s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

+ ξ − g(t) + pa[f ](w + εt) ∀t ∈ ∂Ω,
(2.29)

for all (ε, θ, ξ) ∈ ]−ε1, ε1[× Um,α0 × R. Then the following statements hold.
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(i) If ε ∈ ]0, ε1[, then the pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[ε, θ, ξ] = 0, (2.30)

if and only if the pair (µ, ξ) ∈ Um,αε × R, with µ ∈ Um,αε defined by

µ(x) ≡ θ
(1
ε

(x− w)
)

∀x ∈ ∂Ωε, (2.31)

satisfies the equation

Γ(x)− pa[f ](x) = −1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(y)
(
San(x− y)

)
µ(y) dσy + ξ ∀x ∈ ∂Ωε, (2.32)

with Γ ∈ Cm,α(∂Ωε) defined by

Γ(x) ≡ g
(1
ε

(x− w)
)

∀x ∈ ∂Ωε. (2.33)

In particular, equation (2.30) has exactly one solution (θ, ξ) ∈ Um,α0 × R, for each ε ∈ ]0, ε1[.

(ii) The pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[0, θ, ξ] = 0, (2.34)

if and only if

g(t)− pa[f ](w) = −1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(t− s))θ(s) dσs + ξ ∀t ∈ ∂Ω. (2.35)

In particular, equation (2.34) has exactly one solution (θ, ξ) ∈ Um,α0 × R, which we denote by
(θ̃, ξ̃).

Proof. Consider (i). Let θ ∈ Cm,α(∂Ω). Let ε ∈ ]0, ε1[. First of all, we note that∫
∂Ωε

θ
(1
ε

(x− w)
)
dσx = εn−1

∫
∂Ω

θ(t) dσt,

and so θ ∈ Um,α0 if and only if θ( 1
ε (· −w)) ∈ Um,αε . The equivalence of equation (2.30) in the unknown

(θ, ξ) ∈ Um,α0 × R and equation (2.32) in the unknown (µ, ξ) ∈ Um,αε × R follows by a straightforward
computation based on the rule of change of variables in integrals and on well known properties
of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Sections 3,4].) The existence
and uniqueness of a solution of equation (2.32) follows by the proof of Proposition 2.21. Then the
existence and uniqueness of a solution of equation (2.30) follows by the equivalence of (2.30) and
(2.32). Consider (ii). The equivalence of (2.34) and (2.35) is obvious. The existence of a unique
solution of equation (2.34) is an immediate consequence of Lemma 2.28.

By Proposition 2.29, it makes sense to introduce the following.

Definition 2.30. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,α0 be as in (1.64). For each ε ∈ ]0, ε1[, we denote by (θ̂[ε], ξ̂[ε]) the
unique pair in Um,α0 × R that solves (2.30). Analogously, we denote by (θ̂[0], ξ̂[0]) the unique pair in
Um,α0 × R that solves (2.34).

In the following Remark, we show the relation between the solutions of boundary value problem
(2.28) and the solutions of equation (2.30).
Remark 2.31. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively.

Let ε ∈ ]0, ε1[. We have

ū[ε](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)θ̂[ε](s) dσs + ξ̂[ε] ∀x ∈ Ta[Ωε].

Accordingly,

u[ε](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)θ̂[ε](s) dσs + ξ̂[ε] + pa[f ](x) ∀x ∈ Ta[Ωε].
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While the relation between equation (2.30) and boundary value problem (2.28) is now clear, we
want to see if (2.34) is related to some (limiting) boundary value problem. We give the following.

Definition 2.32. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We denote by τ the unique
solution in Cm−1,α(∂Ω) of the following system{

− 1
2τ(t) +

∫
∂Ω

∂
∂νΩ(t) (Sn(t− s))τ(s) dσs = 0 ∀t ∈ ∂Ω,∫

∂Ω
τ dσ = 1.

(2.36)

Remark 2.33. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). The existence and uniqueness of a
solution τ of (2.36) is a well known result of classical potential theory (cf. Folland [52, Chapter 3].)
Moreover,{

θ ∈ Cm−1,α(∂Ω): − 1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs = 0 ∀t ∈ ∂Ω

}
= 〈τ〉 .

Remark 2.34. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively. Let ξ̃ be as in Proposition 2.29. By well known results of classical potential theory
(cf. Folland [52, Chapter 3]), we have that ξ̃ is the unique ξ ∈ R, such that∫

∂Ω

(
g(x)− pa[f ](w)− ξ

)
τ(x) dσx = 0.

Hence,

ξ̃ =
∫
∂Ω

g(x)τ(x) dσx − pa[f ](w).

Definition 2.35. Let m ∈ N\{0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (2.25), respectively. We denote
by ũ the unique solution in Cm,α(Rn \ Ω) of the following boundary value problem∆u(x) = 0 ∀x ∈ Rn \ cl Ω,

u(x) = g(x)−
∫
∂Ω
g(y)τ(y) dσy ∀x ∈ ∂Ω,

limx→∞ u(x) = 0.
(2.37)

Problem (2.37) will be called the limiting boundary value problem.

Remark 2.36. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). Let g# ∈ Cm,α(∂Ω). We note that
in general the following exterior Dirichlet problem∆u(x) = 0 ∀x ∈ Rn \ cl Ω,

u(x) = g#(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0,

does not have a solution in Cm,α(Rn \Ω). However, as can be easily seen by classical potential theory,
the particular choice of the Dirichlet datum in (2.37), ensures the existence of a (unique) solution of
problem (2.37).
Remark 2.37. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively. We have

ũ(x) =
∫
∂Ω

∂

∂νΩ(y)
(
Sn(x− y)

)
θ̂[0](y) dσy ∀x ∈ Rn \ cl Ω.

We now prove the following.

Proposition 2.38. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,α0 be as in (1.64). Let Λ and (θ̃, ξ̃) be as in Proposition 2.29. Then
there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[× Um,α0 × R to Cm,α(∂Ω).
Moreover, if we set b0 ≡ (0, θ̃, ξ̃), then the differential ∂(θ,ξ)Λ[b0] of Λ with respect to the variables
(θ, ξ) at b0 is delivered by the following formula

∂(θ,ξ)Λ[b0](θ̄, ξ̄)(t) = −1
2
θ̄(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ̄(s) dσs + ξ̄ ∀t ∈ ∂Ω, (2.38)

for all (θ̄, ξ̄) ∈ Um,α0 × R, and is a linear homeomorphism of Um,α0 × R onto Cm,α(∂Ω).
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Proof. By Remark 1.20, pa[f ] is a real analytic function. Let idcl Ω denote the identity map in cl Ω.
Since the map of ]−ε1, ε1[ to Cm,α(cl Ω, A), which takes ε to the function w + ε idcl Ω is obviously real
analytic, then, by a known result on composition operators (cf. Böhme and Tomi [15, p. 10], Henry
[60, p. 29], Valent [137, Thm. 5.2, p. 44]), we have that the map of ]−ε1, ε1[ to Cm,α(cl Ω) which
takes ε to pa[f ] ◦ (w + ε idcl Ω) is a real analytic operator. Since the map of Cm,α(cl Ω) to Cm,α(∂Ω)
which takes a function h to its restriction h|∂Ω is linear and continuous, we conclude that the map
of ]−ε1, ε1[ to Cm,α(∂Ω) which takes ε to the function pa[f ](w + εt) of the variable t ∈ ∂Ω is real
analytic. Thus, by Proposition 1.22 (i) and standard calculus in Banach spaces, we deduce that there
exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[ × Um,α0 × R to Cm,α(∂Ω). By
standard calculus in Banach space, we immediately deduce that (2.38) holds. Finally, by Lemma 2.28,
∂(θ,ξ)Λ[b0] is a linear homeomorphism.

We are now ready to prove real analytic continuation properties for θ̂[·], ξ̂[·].

Proposition 2.39. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,α0 be as in (1.64). Let ε2 be as in Proposition 2.38. Then there
exist ε3 ∈ ]0, ε2] and a real analytic operator (Θ,Ξ) of ]−ε3, ε3[ to Um,α0 × R, such that

(Θ[ε],Ξ[ε]) = (θ̂[ε], ξ̂[ε]), (2.39)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 2.38 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

2.2.3 A functional analytic representation Theorem for the solution of the
singularly perturbed Dirichlet problem

By Proposition 2.39 and Remark 2.31, we can deduce the main result of this Section.

Theorem 2.40. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε3 be as in Proposition 2.39. Let V be a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], a real analytic operator U1 of ]−ε4, ε4[ to the space
C0
h(clV ), and a real analytic operator U2 of ]−ε4, ε4[ to R such that the following conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(ii)
u[ε](x) = εn−1U1[ε](x) + U2[ε] + pa[f ](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. Let Θ[·], Ξ[·] be as in Proposition 2.39. Choosing ε4 small enough, we can clearly assume that
(i) holds. Consider now (ii). Let ε ∈ ]0, ε4[. By Remark 2.31 and Proposition 2.39, we have

u[ε](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs + Ξ[ε] + pa[f ](x) ∀x ∈ clV.

Thus, it is natural to set

U1[ε](x) ≡ −
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

U2[ε] ≡ Ξ[ε],

for all ε ∈ ]−ε4, ε4[. By Proposition 2.39, U2 is real analytic. By Proposition 1.24 (i), U1[·] is a real
analytic map of ]−ε4, ε4[ to C0

h(clV ). Finally, by the definition of U1 and U2, the statement in (ii)
holds.

Remark 2.41. We note that the right-hand side of the equality in (ii) of Theorem 2.40 can be continued
real analytically in the whole ]−ε4, ε4[. Moreover, if V is a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] = pa[f ] +
∫
∂Ω

gτ dσ − pa[f ](w) uniformly in clV .
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2.2.4 A real analytic continuation Theorem for the energy integral
We prove the following.

Lemma 2.42. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let V be a bounded open subset of Rn such that clA ⊆ V . Let h be a real analytic function from V to
R. Then there exists a real analytic operator G̃1 of ]−ε1, ε1[ to R, such that∫

Ωε

h(y) dy = εnG̃1[ε],

for all ε ∈ ]0, ε1[. Moreover,
G̃1[0] = |Ω|nh(w).

Proof. Let ε ∈ ]0, ε1[. We have ∫
Ωε

h(y) dy = εn
∫

Ω

h(w + εs) ds.

Let G̃ be the map of ]−ε1, ε1[ to Cm,α(cl Ω) which takes ε to G̃[ε], where

G̃[ε](s) ≡ h(w + εs) ∀s ∈ cl Ω.

Let idcl Ω denote the identity map in cl Ω. Since the map of ]−ε1, ε1[ to Cm,α(cl Ω, V ), which takes ε
to the function w+ ε idcl Ω is obviously real analytic then, by a known result on composition operators
(cf. Böhme and Tomi [15, p. 10], Henry [60, p. 29], Valent [137, Thm. 5.2, p. 44]), we have that G̃ is a
real analytic operator. Set

G̃1[ε] ≡
∫

Ω

G̃[ε](s) ds,

for all ε ∈ ]−ε1, ε1[. Since the map of Cm,α(cl Ω) to R, which takes u to
∫

Ω
u(s) ds is linear and

continuous (and thus real analytic), we easily conclude that G̃1 is a real analytic operator of ]−ε1, ε1[
to R. Finally, since

G̃[0](s) = h(w) ∀s ∈ cl Ω,

we have
G̃1[0] = |Ω|nh(w).

As done in Theorem 2.40 for u[·], we can now prove a real analytic continuation Theorem for the
energy integral. Namely, we prove the following.

Theorem 2.43. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε3 be as in Proposition 2.39. Then there exist ε5 ∈ ]0, ε3] and two real analytic
operators G1, G2 of ]−ε5, ε5[ to R, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx =
∫
A

|∇pa[f ](x)|2 dx− εnG1[ε] + εn−2G2[ε], (2.40)

for all ε ∈ ]0, ε5[. Moreover,
G1[0] = |Ω|n|∇pa[f ](w)|2, (2.41)

and
G2[0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx. (2.42)

Proof. Let Θ[·], Ξ[·] be as in Proposition 2.39. Let ε ∈ ]0, ε3[. Clearly,∫
Pa[Ωε]

|∇u[ε](x)|2 dx =
∫

Pa[Ωε]

|∇pa[f ](x)|2 dx+
∫

Pa[Ωε]

|∇ū[ε](x)|2 dx

+ 2
∫

Pa[Ωε]

∇ū[ε](x) · ∇pa[f ](x) dx.
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Obviously, ∫
Pa[Ωε]

|∇pa[f ](x)|2 dx =
∫
A

|∇pa[f ](x)|2 dx−
∫

Ωε

|∇pa[f ](x)|2 dx.

By Remark 1.20, it follows that |∇pa[f ](·)|2 is real analytic in some bounded open neighbourhood V ′
of clA. Accordingly, by virtue of Lemma 2.42, there exists a real analytic operator G1 of ]−ε3, ε3[ to
R such that ∫

Ωε

|∇pa[f ](x)|2 dx = εnG1[ε],

for all ε ∈ ]0, ε3[, and
G1[0] = |Ω|n|∇pa[f ](w)|2.

Consequently, (2.41) holds. Now we need to consider∫
Pa[Ωε]

|∇ū[ε](x)|2 dx+ 2
∫

Pa[Ωε]

∇ū[ε](x) · ∇pa[f ](x) dx.

Let ε ∈ ]0, ε3[. We denote by id the identity map in Rn. By virtue of the periodicity of ū[ε] and pa[f ]
and by the Divergence Theorem, we have∫

Pa[Ωε]

|∇ū[ε](x)|2 dx+2
∫

Pa[Ωε]

∇ū[ε](x) · ∇pa[f ](x) dx

= −εn−2

∫
∂Ω

ε
( ∂

∂νΩε

ū[ε]
)
◦ (w + ε id)(t)(g(t) + pa[f ](w + εt)) dσt

= −εn−2

∫
∂Ω

D[ū[ε] ◦ (w + ε id)](t) · νΩ(t)(g(t) + pa[f ](w + εt)) dσt,

for all ε ∈ ]0, ε3[.
Now let Ω̃ be a tubolar open neighbourhood of class Cm,α of ∂Ω as in Lanza and Rossi [86, Lemma

2.4]. Set
Ω̃− ≡ Ω̃ ∩ (Rn \ cl Ω).

Choosing ε5 ∈ ]0, ε3] small enough, we can assume that

(w + ε cl Ω̃) ⊆ A,

for all ε ∈ ]−ε5, ε5[. We have

ū[ε] ◦ (w + ε id)(t)

= −εn−1

∫
∂Ω

νΩ(s) ·DSn(ε(t− s))Θ[ε](s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs + Ξ[ε]

=
∫
∂Ω

∂

∂νΩ(s)
(Sn(t− s))Θ[ε](s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ Ω̃−,

for all ε ∈ ]0, ε5[. Hence, (cf. Proposition C.3 and Lanza and Rossi [86, Proposition 4.10]) there exists
a real analytic operator G̃2 of ]−ε5, ε5[ to Cm,α(cl Ω̃−), such that

ū[ε] ◦ (w + ε id) = G̃2[ε] in Ω̃−,

for all ε ∈ ]0, ε5[. Furthermore, we observe that

G̃2[0](t) = w−[∂Ω,Θ[0]](t) + Ξ[0] ∀t ∈ cl Ω̃−,

and so, by Remark 2.37 and Proposition 2.39,

G̃2[0](t) = ũ(t) + ξ̃ ∀t ∈ cl Ω̃−.

Thus, it is natural to set

G2[ε] ≡ −
∫
∂Ω

D[G̃2[ε]](t) · νΩ(t)(g(t) + pa[f ](w + εt)) dσt,



48
Singular perturbation and homogenization problems for the Laplace and Poisson equations with

Dirichlet and Neumann boundary conditions

for all ε ∈ ]−ε5, ε5[. By the proof of Proposition 2.38, the map of ]−ε5, ε5[ to Cm,α(∂Ω) which takes ε
to (g(·) + pa[f ](w+ ε·)) is real analytic. By well known properties of the restriction map and pointwise
product in Schauder spaces, we can easily conclude that G2 is a real analytic operator of ]−ε5, ε5[ to
R and that (2.40) holds. Finally,

G2[0] = −
∫
∂Ω

D[G̃2[0]](t) · νΩ(t)(g(t) + pa[f ](w)) dσt

= −
∫
∂Ω

Dũ(t) · νΩ(t)ũ(t) dσt −
∫
∂Ω

[
Dw−[∂Ω,Θ[0]](t) · νΩ(t)

(∫
∂Ω

gτ dσ + pa[f ](w)
)]
dσt.

By Theorem B.1 (ii) and Green’s Formula, we have∫
∂Ω

∂

∂νΩ
w−[∂Ω,Θ[0]](t) dσt =

∫
∂Ω

∂

∂νΩ
w+[∂Ω,Θ[0]](t) dσt = 0.

On the other hand, by Folland [52, p. 118], we have∫
∂Ω

Dũ(t) · νΩ(t)ũ(t) dσt = −
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

and so

G2[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx.

Accordingly, (2.42) holds. Thus, the Theorem is completely proved.

Remark 2.44. We note that the right-hand side of the equality in (2.40) of Theorem 2.43 can be
continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

∫
Pa[Ωε]

|∇u[ε](x)|2 dx =
∫
A

|∇pa[f ](x)|2 dx+ δ2,n

∫
Rn\cl Ω

|∇ũ(x)|2 dx,

where δ2,n = 1 if n = 2, δ2,n = 0 if n ≥ 3.

2.2.5 A real analytic continuation Theorem for the integral of the solution

We have the following.

Lemma 2.45. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε3, Θ[·], Ξ[·] be as in Proposition 2.39. Then there exist ε6 ∈ ]0, ε3] and a real analytic
operator J̃1 of ]−ε6, ε6[ to R, such that∫

Pa[Ωε]

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx = εnJ̃1[ε], (2.43)

for all ε ∈ ]0, ε6[.

Proof. Let ε ∈ ]0, ε3[. By well known results of classical potential theory, it is easy to see that

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) = −

n∑
j=1

∂

∂xj
v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(x) ∀x ∈ cl Pa[Ωε].

Let j ∈ {1, . . . , n}. By the Divergence Theorem and the periodicity of the periodic simple layer



2.2 Asymptotic behaviour of the solutions of the Dirichlet problem for the Poisson equation in a
periodically perforated domain 49

potential, we have∫
Pa[Ωε]

∂

∂xj
v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(x) dx

=
∫
∂Pa[Ωε]

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(x)(νPa[Ωε](x))j dσx

=
∫
∂A

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(x)(νA(x))j dσx

−
∫
∂Ωε

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(x)(νΩε(x))j dσx

=−
∫
∂Ωε

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(x)(νΩε(x))j dσx

=− εn−1

∫
∂Ω

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(w + εt)(νΩ(t))j dσt.

Then we note that

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(w + εt) =εn−1

∫
∂Ω

Sn(ε(t− s))Θ[ε](s)(νΩ(s))j dσs

+εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s)(νΩ(s))j dσs ∀t ∈ ∂Ω.

By equality (1.65), if n = 2, we have∫
∂Ω

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(w + εt)(νΩ(t))j dσt

=
1

2π
ε log ε

∫
∂Ω

(∫
∂Ω

Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

+ ε

∫
∂Ω

(∫
∂Ω

S2(t− s)Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

+ ε

∫
∂Ω

(∫
∂Ω

Ra2(ε(t− s))Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt.

On the other hand, by the Divergence Theorem, it is immediate to see that∫
∂Ω

(∫
∂Ω

Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt =
(∫

∂Ω

Θ[ε](s)(νΩ(s))j dσs
)(∫

∂Ω

(νΩ(t))j dσt
)

= 0.

By equality (1.65), if n ≥ 3, we have∫
∂Ω

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))(νΩε(·))j
]
(w + εt)(νΩ(t))j dσt

=ε
∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

+ εn−1

∫
∂Ω

(∫
∂Ω

Ran(ε(t− s))Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt.

Hence, if n ≥ 2 and ε ∈ ]0, ε3[, we have∫
Pa[Ωε]

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx

=
n∑
j=1

εn
[∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

+ εn−2

∫
∂Ω

(∫
∂Ω

Ran(ε(t− s))Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
]
.
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Thus it is natural to set

J̃1[ε] ≡
n∑
j=1

[∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt

+ εn−2

∫
∂Ω

(∫
∂Ω

Ran(ε(t− s))Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt
]
,

for all ε ∈ ]−ε3, ε3[. Clearly,∫
Pa[Ωε]

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx = εnJ̃1[ε] ∀ε ∈ ]0, ε3[.

In order to conclude, it suffices to prove that J̃1 is real analytic. Indeed, we observe that, if j ∈ N,
then well known properties of functions in Schauder spaces and standard calculus in Banach spaces
imply that the map of ]−ε3, ε3[ to R, which takes ε to∫

∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt,

is real analytic. Similarly, Theorem C.4, well known properties of functions in Schauder spaces and
standard calculus in Banach spaces, imply that there exists ε6 ∈ ]0, ε3], such that the map of ]−ε6, ε6[
to R, which takes ε to ∫

∂Ω

(∫
∂Ω

Ran(ε(t− s))Θ[ε](s)(νΩ(s))j dσs
)

(νΩ(t))j dσt,

is real analytic, for all j ∈ {1, . . . , n}. Hence J̃1 is a real analytic map of ]−ε6, ε6[ to R, and the proof
is complete.

As done in Theorem 2.43 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 2.46. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε6 be as in Lemma 2.45. Then there exists a real analytic operator J of ]−ε6, ε6[ to
R, such that ∫

Pa[Ωε]

u[ε](x) dx = J [ε], (2.44)

for all ε ∈ ]0, ε6[. Moreover,

J [0] =
(∫

∂Ω

gτ dσ − pa[f ](w)
)
|A|n +

∫
A

pa[f ](x) dx. (2.45)

Proof. Let ε ∈ ]0, ε3[. We have

u[ε](x) = w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) + Ξ[ε] + pa[f ](x) ∀x ∈ cl Ta[Ωε].

As a consequence,∫
Pa[Ωε]

u[ε](x) dx =
∫

Pa[Ωε]

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx+

∫
Pa[Ωε]

Ξ[ε] dx+
∫

Pa[Ωε]

pa[f ](x) dx.

By Lemma 2.45, there exists a real analytic operator J̃1 of ]−ε6, ε6[ to R such that∫
Pa[Ωε]

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx = εnJ̃1[ε],

for all ε ∈ ]0, ε6[. On the other hand,∫
Pa[Ωε]

Ξ[ε] dx = Ξ[ε]
(
|A|n − ε

n|Ω|n
)
,
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for all ε ∈ ]0, ε3[. Moreover,∫
Pa[Ωε]

pa[f ](x) dx =
∫
A

pa[f ](x) dx−
∫

Ωε

pa[f ](x) dx,

for all ε ∈ ]0, ε3[. By Lemma 2.42, there exists a real analytic operator J̃2 of ]−ε3, ε3[ to R such that∫
Ωε

pa[f ](x) dx = εnJ̃2[ε],

for all ε ∈ ]0, ε3[. Thus, if we set

J [ε] ≡ εnJ̃1[ε] + Ξ[ε]
(
|A|n − ε

n|Ω|n
)

+
∫
A

pa[f ](x) dx− εnJ̃2[ε],

for all ε ∈ ]−ε6, ε6[, we have that J is a real analytic map of ]−ε6, ε6[ to R such that∫
Pa[Ωε]

u[ε](x) dx = J [ε],

for all ε ∈ ]0, ε6[. Finally,

J [0] = Ξ[0]|A|n +
∫
A

pa[f ](x) dx

=
(∫

∂Ω

gτ dσ − pa[f ](w)
)
|A|n +

∫
A

pa[f ](x) dx,

and the proof is complete.

2.2.6 A remark on a Dirichlet problem
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. For each ε ∈ ]0, ε1[, we consider the following periodic Dirichlet problem for the Laplace
equation. ∆u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
u(x) = ε−lg

(
1
ε (x− w)

)
∀x ∈ ∂Ωε.

(2.46)

By virtue of Theorem 2.15, we can give the following definition.

Definition 2.47. Letm ∈ N\{0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.25), respectively. For each ε ∈ ]0, ε1[, we denote by ul[ε] the unique solution in Cm,α(cl Ta[Ωε]) of
boundary value problem (2.46).

Then we have the following.

Theorem 2.48. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, g be as in (1.56),
(1.57), (2.25), respectively. Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then
there exist ε2 ∈ ]0, ε1], a real analytic operator U1 of ]−ε2, ε2[ to the space C0

h(clV ), and a real analytic
operator U2 of ]−ε2, ε2[ to R such that the following conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε2, ε2[.

(ii)
ul[ε](x) = εn−1−lU1[ε](x) + ε−lU2[ε] ∀x ∈ clV,

for all ε ∈ ]0, ε2[. Moreover,

U2[0] =
∫
∂Ω

gτ dσ,

where τ is as in Definition 2.32.

Proof. It is a straightforward consequence of Theorem 2.40.



52
Singular perturbation and homogenization problems for the Laplace and Poisson equations with

Dirichlet and Neumann boundary conditions

We now show that the energy integral can be continued real analytically when n ≥ 2l+ 2. Namely,
we prove the following.

Theorem 2.49. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, g be as in (1.56),
(1.57), (2.25), respectively. Then there exist ε3 ∈ ]0, ε1] and a real analytic operator G of ]−ε3, ε3[ to
R, such that ∫

Pa[Ωε]

|∇ul[ε](x)|2 dx = εn−2−2lG[ε], (2.47)

for all ε ∈ ]0, ε3[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (2.48)

where ũ is as in Definition 2.35.

Proof. It is a straightforward consequence of Theorem 2.43.

We have also the following.

Theorem 2.50. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Then there exist ε4 ∈ ]0, ε1] and a real analytic operator J of ]−ε4, ε4[ to R, such that∫

Pa[Ωε]

ul[ε](x) dx = ε−lJ [ε], (2.49)

for all ε ∈ ]0, ε4[. Moreover,

J [0] =
(∫

∂Ω

gτ dσ
)
|A|n, (2.50)

where τ is as in Definition 2.32.

Proof. It is a straightforward consequence of Theorem 2.46.

2.3 An homogenization problem for the Laplace equation with
Dirichlet boundary conditions in a periodically perforated
domain

In this section we consider an homogenization problem for the Laplace equation with Dirichlet
boundary conditions in a periodically perforated domain.

2.3.1 Notation
In this Section we retain the notation introduced in Subsections 1.8.1, 2.2.1. However, we need to
introduce also some other notation.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let
(ε, δ) ∈ (]−ε1, ε1[ \ {0})× ]0,+∞[. If v is a function of cl Ta(ε, δ) to R, then we denote by E(ε,δ)[v] the
function of Rn to R, defined by

E(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ)
0 ∀x ∈ Rn \ cl Ta(ε, δ).

2.3.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25), respectively. For
each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we consider the following periodic Dirichlet problem for the Laplace
equation. ∆u(x) = 0 ∀x ∈ Ta(ε, δ),

u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},
u(x) = g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(2.51)

By virtue of Theorem 2.15, we can give the following definition.
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Definition 2.51. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.25), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by u(ε,δ) the unique solution in
Cm,α(cl Ta(ε, δ)) of boundary value problem (2.51).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 2.52. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε]) of the
following periodic Dirichlet problem for the Laplace equation.∆u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε.

(2.52)

Remark 2.53. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

As a first step, we study the behaviour of u[ε] as ε tends to 0. Obviously, we have the following.

Theorem 2.54. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
(2.26), respectively. Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there
exist ε2 ∈ ]0, ε1], a real analytic operator U1 of ]−ε2, ε2[ to the space C0

h(clV ), and a real analytic
operator U2 of ]−ε2, ε2[ to R such that the following conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε2, ε2[.

(ii)
u[ε](x) = εn−1U1[ε](x) + U2[ε] ∀x ∈ clV,

for all ε ∈ ]0, ε2[. Moreover,

U2[0] =
∫
∂Ω

gτ dσ,

where τ is as in Definition 2.32.

Proof. It is Theorem 2.40 in the case f ≡ 0.

Theorem 2.55. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. Then there exist ε3 ∈ ]0, ε1] and a real analytic operator G of ]−ε3, ε3[ to R, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx = εn−2G[ε], (2.53)

for all ε ∈ ]0, ε3[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (2.54)

where ũ is as in Definition 2.35.

Proof. It is Theorem 2.43 in the case f ≡ 0.

Theorem 2.56. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. Then there exist ε4 ∈ ]0, ε1] and a real analytic operator J of ]−ε4, ε4[ to R, such that∫

Pa[Ωε]

u[ε](x) dx = J [ε], (2.55)

for all ε ∈ ]0, ε4[. Moreover,

J [0] =
(∫

∂Ω

gτ dσ
)
|A|n, (2.56)

where τ is as in Definition 2.32.
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Proof. It is Theorem 2.46 in the case f ≡ 0.

Then we have the following.

Proposition 2.57. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.25), respectively. Let 1 ≤ p <∞. Then

lim
ε→0+

E(ε,1)[u[ε]] =
∫
∂Ω

gτ dσ in Lp(A),

where τ is as in Definition 2.32.

Proof. By Theorem 2.5, we have

|E(ε,1)[u[ε]](x)| ≤ sup { |g(t)| : t ∈ ∂Ω } < +∞ ∀x ∈ A, ∀ε ∈ ]0, ε1[.

By Theorem 2.54, we have

lim
ε→0+

E(ε,1)[u[ε]](x) =
∫
∂Ω

gτ dσ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

E(ε,1)[u[ε]] =
∫
∂Ω

gτ dσ in Lp(A).

2.3.3 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 2.57 and the results of Appendix D the weak
convergence of u(ε,δ) as (ε, δ) tends to 0.

Theorem 2.58. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. Let τ be as in Definition 2.32. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn.
Then

E(ε,δ)[u(ε,δ)] ⇀
∫
∂Ω

gτ dσ in Lp(V ),

as (ε, δ) tends to 0 in ]0, ε1[× ]0,+∞[.

Proof. It is an immediate consequence of Proposition 2.57 and Theorem D.5.

However, we can prove something more. Namely, we prove the following.

Theorem 2.59. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. Let τ be as in Definition 2.32. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn.
Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] =
∫
∂Ω

gτ dσ in Lp(V ).

Proof. By virtue of Proposition 2.57, we have

lim
ε→0+

‖E(ε,1)[u[ε]]−
∫
∂Ω

gτ dσ‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant c > 0 such
that

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω

gτ dσ‖Lp(V ) ≤ c‖E(ε,1)[u[ε]]−
∫
∂Ω

gτ dσ‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[.

Thus,

lim
(ε,δ)→(0+,0+)

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω

gτ dσ‖Lp(V ) = 0,

and the conclusion easily follows.
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Now, our aim is to describe the convergence of u(ε,δ) as (ε, δ) goes to (0, 0), in terms of real analytic
functions (possibly evaluated on ‘particular’ values of (ε, δ).) Clearly, if V is a non-empty open subset
of Rn, then

V ∩ Sa(ε, δ) 6= ∅

if ε ∈ ]0, ε1[ and δ is positive and sufficiently small. Therefore, we cannot hope to describe the
behaviour of the restrcition of u(ε,δ) to the closure of an open subset in terms of real analytic functions
as we have done for the solution of problems in Ta[Ωε]. As a consequence, we need to find a different
way to describe the convergence of u(ε,δ), since the restriction to non-empty open subsets of Rn is no
longer convenient. So let 1 ≤ p < +∞. Clearly, if (ε, δ) ∈ ]0, ε1[× ]0,+∞[, then we can associate to
u(ε,δ) the element of the dual of Lp(Rn) which takes a function φ to∫

Rn
E(ε,δ)[u(ε,δ)](x)φ(x) dx.

Thus, instead of studying the restriction of u(ε,δ) to some bounded open subset of Rn, we investigate
the behaviour of this element of the dual of Lp(Rn) associated the function u(ε,δ). In particular, we
want to investigate such a functional evaluated on the functions of a convenient subset, say S, of
Lp(Rn). Then, of course, it will be important to see ‘how much large’ this subset S is.

Then we have the following Theorem, where we consider the functional associated to an extension
of u(ε,δ), and we evaluate such a functional on suitable characteristic functions.

Theorem 2.60. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. Let ε4, J be as in Theorem 2.56. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε], (2.57)

for all ε ∈ ]0, ε4[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε4[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε],

and the conclusion follows.

In the previous Theorem, we have seen that we can describe the behaviour of the functional
associated to u(ε,δ) evaluated on a convenient characteristic function in terms of real analytic functions.

Therefore, in the following Theorem, we study the vector space of the characteristic functions that
appear in Theorem 2.60.
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Theorem 2.61. Let Sa be the vector space defined by

Sa ≡


k∑
j=1

λjχrjA+ȳj : k ∈ N \ {0}, (λj , rj , ȳj) ∈ R× ]0,+∞[× Rn ∀j ∈ {1, . . . , k}

 .

Let 1 ≤ p < +∞. Let φ ∈ C∞c (Rn). Then there exists a sequence {φl}∞l=1 ⊆ Sa such that

lim
l→+∞

φl = φ in Lp(Rn).

Proof. Let φ ∈ C∞c (Rn). We first assume that suppφ ⊆ ]0,+∞[n. Then let r̄ > 0 be such that
r̄A ⊇ suppφ. Then we define the sequence {φl}∞l=1 ⊆ Sa by setting

φl(x) ≡
∑

z∈{0,...,l−1}n
φ
( r̄
l
a(z)

)
χ r̄
lA+ r̄

l a(z)(x) ∀x ∈ Rn,

for all l ∈ N \ {0}. Then it is easy to prove that

lim
l→+∞

φl(x) = φ(x)

for almost every x ∈ Rn. Moreover,

|φl(x)| ≤ ‖φ‖∞χr̄A(x) ∀x ∈ Rn.

Thus, by the Dominated Convergence Theorem, we can easily conclude that

lim
l→+∞

φl = φ in Lp(Rn).

Next we observe that if we don’t assume that suppφ ⊆ ]0,+∞[n, then there exists x̄ ∈ Rn, such that
suppφ(· − x̄) ⊆ ]0,+∞[n. Then, if we set φ̃(·) ≡ φ(· − x̄), by the above argument, there exists a
sequence {φ̃l}∞l=1 ⊆ Sa, such that

lim
l→+∞

φ̃l = φ̃ in Lp(Rn).

Finally, if we set φl(·) ≡ φ̃l(·+ x̄), we can easily deduce that

φl ∈ Sa ∀l ≥ 1,

and that
lim

l→+∞
φl = φ in Lp(Rn).

In the following Corollary, we prove a density property of the vector space introduced in Theorem
2.61.

Corollary 2.62. Let 1 ≤ p < +∞. Let Sa be as in Theorem 2.61. Then the vector space Sa is dense
in Lp(Rn).

Proof. First of all, we recall the density of C∞c (Rn) in Lp(Rn). Then, in order to conclude, it suffices
to apply Theorem 2.61.

2.3.4 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 2.63. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.



2.3 An homogenization problem for the Laplace equation with Dirichlet boundary conditions in a
periodically perforated domain 57

Remark 2.64. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.25),
respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 2.65. Let n ∈ N \ {0, 1, 2}. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ
2

n−2 .

Let ε3 be as in Theorem 2.55. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε3[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

Here we may note that the ‘radius’ of the holes is δε[δ] = δ
n
n−2 which is the same which appears in

Homogenization Theory (cf. e.g., Ansini and Braides [7] and references therein.)
In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 2.66. Let n ∈ N \ {0, 1, 2}. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as
in (1.56), (1.57), (2.25), respectively. Let ε3 be as in Theorem 2.55. Let δ1 > 0 be as in Definition
2.65. Then

lim
δ→0+

En[δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 2.35.

Proof. Let δ ∈ ]0, δ1[. By Remark 2.64 and Theorem 2.55, we have∫
Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])n−2G[ε[δ]]

= δnG[δ
2

n−2 ],

where G is as in Theorem 2.55. On the other hand,

b(1/δ)cn
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx ≤ En[δ] ≤ d(1/δ)en
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx,

and so
b(1/δ)cnδnG[δ

2
n−2 ] ≤ En[δ] ≤ d(1/δ)enδnG[δ

2
n−2 ].

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = G[0].

Finally, by equality (2.54), we easily conclude.

In the following Proposition we represent the function En[·] by means of a real analytic function.

Proposition 2.67. Let n ∈ N \ {0, 1, 2}. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be
as in (1.56), (1.57), (2.25), respectively. Let ε3 and G be as in Theorem 2.55. Let δ1 > 0 be as in
Definition 2.65. Then

En[(1/l)] = G[(1/l)
2

n−2 ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 2.66.
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2.4 An homogenization problem for the Poisson equation with
Dirichlet boundary conditions in a periodically perforated
domain

In this section we consider an homogenization problem for the Poisson equation with Dirichlet boundary
conditions in a periodically perforated domain.

2.4.1 Preliminaries
In this Section we retain the notation introduced in Subsection 2.2.1 and in Subsection 2.3.1 (cf. also
Subsection 1.8.1).

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26), respectively. For
each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we consider the following periodic Dirichlet problem for the Poisson
equation. ∆u(x) = f(xδ ) ∀x ∈ Ta(ε, δ),

u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},
u(x) = g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(2.58)

By virtue of Theorems 2.15 and 2.16, we can give the following definition.

Definition 2.68. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25),
(2.26), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by u(ε,δ) the unique solution in
Cm,α(cl Ta(ε, δ)) of boundary value problem (2.58).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 2.69. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. For each pair (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by uδε the function of cl Ta[Ωε] to R
defined by

uδε(x) ≡ u(ε,δ)(δx) ∀x ∈ cl Ta[Ωε].

Definition 2.70. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25),
(2.26), respectively. For each pair (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by ūδε the unique solution in
Cm,α(cl Ta[Ωε]) of the following periodic Dirichlet problem for the Laplace equation.∆u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
u(x) = g

(
1
ε (x− w)

)
− δ2pa[f ](x) ∀x ∈ ∂Ωε.

(2.59)

Remark 2.71. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = ūδε(
x

δ
) + δ2pa[f ](

x

δ
) ∀x ∈ cl Ta(ε, δ).

As a first step, we study the behaviour of ūδε for (ε, δ) close to (0, 0).
As we know, we can convert problem (2.59) into an integral equation. We introduce this equation

in the following.

Proposition 2.72. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,αε , Um,α0 be as in (1.63), (1.64), respectively. Let Λ be the map of
]−ε1, ε1[× R× Um,α0 × R in Cm,α(∂Ω) defined by

Λ[ε, δ, θ, ξ](t) ≡− 1
2
θ(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ(s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

+ ξ − g(t) + δ2pa[f ](w + εt) ∀t ∈ ∂Ω,
(2.60)

for all (ε, δ, θ, ξ) ∈ ]−ε1, ε1[× R× Um,α0 × R. Then the following statements hold.
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(i) If (ε, δ) ∈ ]0, ε1[× ]0,+∞[, then the pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[ε, δ, θ, ξ] = 0, (2.61)

if and only if the pair (µ, ξ) ∈ Um,αε × R, with µ ∈ Um,αε defined by

µ(x) ≡ θ
(1
ε

(x− w)
)

∀x ∈ ∂Ωε, (2.62)

satisfies the equation

Γ(x) = −1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(y)
(
San(x− y)

)
µ(y) dσy + ξ ∀x ∈ ∂Ωε, (2.63)

with Γ ∈ Cm,α(∂Ωε) defined by

Γ(x) ≡ g
(1
ε

(x− w)
)
− δ2pa[f ](x) ∀x ∈ ∂Ωε. (2.64)

In particular, equation (2.61) has exactly one solution (θ, ξ) ∈ Um,α0 × R, for each (ε, δ) ∈
]0, ε1[× ]0,+∞[.

(ii) The pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[0, 0, θ, ξ] = 0, (2.65)

if and only if

g(t) = −1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(t− s))θ(s) dσs + ξ ∀t ∈ ∂Ω. (2.66)

In particular, equation (2.65) has exactly one solution (θ, ξ) ∈ Um,α0 × R, which we denote by
(θ̃, ξ̃).

Proof. Consider (i). Let θ ∈ Cm,α(∂Ω). Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. First of all, we note that∫
∂Ωε

θ
(1
ε

(x− w)
)
dσx = εn−1

∫
∂Ω

θ(t) dσt,

and so θ ∈ Um,α0 if and only if θ( 1
ε (· −w)) ∈ Um,αε . The equivalence of equation (2.61) in the unknown

(θ, ξ) ∈ Um,α0 × R and equation (2.63) in the unknown (µ, ξ) ∈ Um,αε × R follows by a straightforward
computation based on the rule of change of variables in integrals and on well known properties
of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Sections 3,4].) The existence
and uniqueness of a solution of equation (2.63) follows by the proof of Proposition 2.21. Then the
existence and uniqueness of a solution of equation (2.61) follows by the equivalence of (2.61) and
(2.63). Consider (ii). The equivalence of (2.65) and (2.66) is obvious. The existence of a unique
solution of equation (2.65) is an immediate consequence of Lemma 2.28.

By Proposition 2.72, it makes sense to introduce the following.

Definition 2.73. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,α0 be as in (1.64). For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by
(θ̂[ε, δ], ξ̂[ε, δ]) the unique pair in Um,α0 ×R that solves (2.61). Analogously, we denote by (θ̂[0, 0], ξ̂[0, 0])
the unique pair in Um,α0 × R that solves (2.65).

In the following Remark, we show the relation between the solutions of boundary value problem
(2.59) and the solutions of equation (2.61).

Remark 2.74. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively.

Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have

ūδε(x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)θ̂[ε, δ](s) dσs + ξ̂[ε, δ] ∀x ∈ Ta[Ωε].
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While the relation between equation (2.61) and boundary value problem (2.59) is now clear, we
want to see if equation (2.65) is related to some (limiting) boundary value problem. We give the
following.

Remark 2.75. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively. Let ξ̃ be as in Proposition 2.72. Let τ be as in Definition 2.32. By well known
results of classical potential theory (cf. Folland [52, Chapter 3]), we have that ξ̃ is the unique ξ ∈ R,
such that ∫

∂Ω

(g(x)− ξ)τ(x) dσx = 0.

Hence,

ξ̃ =
∫
∂Ω

g(x)τ(x) dσx.

Definition 2.76. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (2.25), respectively. Let τ be
as in Definition 2.32. We denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following boundary
value problem ∆u(x) = 0 ∀x ∈ Rn \ cl Ω,

u(x) = g(x)−
∫
∂Ω
g(x)τ(x) dσx ∀x ∈ ∂Ω,

limx→∞ u(x) = 0.
(2.67)

Problem (2.67) will be called the limiting boundary value problem.

Remark 2.77. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57), (2.25),
(2.26), respectively. We have

ũ(x) =
∫
∂Ω

∂

∂νΩ(y)
(
Sn(x− y)

)
θ̂[0, 0](y) dσy ∀x ∈ Rn \ cl Ω.

We now prove the following.

Proposition 2.78. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,α0 be as in (1.64). Let Λ and (θ̃, ξ̃) be as in Proposition 2.72. Then
there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[×R×Um,α0 ×R to Cm,α(∂Ω).
Moreover, if we set b0 ≡ (0, 0, θ̃, ξ̃), then the differential ∂(θ,ξ)Λ[b0] of Λ with respect to the variables
(θ, ξ) at b0 is delivered by the following formula

∂(θ,ξ)Λ[b0](θ̄, ξ̄)(t) = −1
2
θ̄(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ̄(s) dσs + ξ̄ ∀t ∈ ∂Ω, (2.68)

for all (θ̄, ξ̄) ∈ Um,α0 × R, and is a linear homeomorphism of Um,α0 × R onto Cm,α(∂Ω).

Proof. By arguing as in the proof of Proposition 2.38, one can show that there exists ε2 ∈ ]0, ε1] such
that Λ is a real analytic operator of ]−ε2, ε2[×R×Um,α0 ×R to Cm,α(∂Ω). Then by standard calculus
in Banach space, we immediately deduce that (2.68) holds. Finally, by Lemma 2.28, ∂(θ,ξ)Λ[b0] is a
linear homeomorphism.

We are now ready to prove real analytic continuation properties for θ̂[·, ·], ξ̂[·, ·].

Proposition 2.79. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g, f be as in (1.56), (1.57),
(2.25), (2.26), respectively. Let Um,α0 be as in (1.64). Let ε2 be as in Proposition 2.78. Then there
exist ε3 ∈ ]0, ε2], δ1 ∈ ]0,+∞[ and a real analytic operator (Θ,Ξ) of ]−ε3, ε3[× ]−δ1, δ1[ to Um,α0 × R,
such that

(Θ[ε, δ],Ξ[ε, δ]) = (θ̂[ε, δ], ξ̂[ε, δ]), (2.69)

for all (ε, δ) ∈ (]0, ε3[× ]0, δ1[) ∪ {(0, 0)}.

Proof. It is an immediate consequence of Proposition 2.78 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

By Proposition 2.79, we can deduce the following results.
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Theorem 2.80. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε3, δ1 be as in Proposition 2.79. Let V be a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], a real analytic operator U1 of ]−ε4, ε4[× ]−δ1, δ1[ to
the space C0

h(clV ), and a real analytic operator U2 of ]−ε4, ε4[× ]−δ1, δ1[ to R such that the following
conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(ii)
ūδε(x) = εn−1U1[ε, δ](x) + U2[ε, δ] ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[. Moreover,

U2[0, 0] =
∫
∂Ω

gτ dσ,

where τ is as in Definition 2.32.

(iii)
uδε(x) = εn−1U1[ε, δ](x) + U2[ε, δ] + δ2pa[f ](x) ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[.

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have

ūδε(x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀x ∈ Ta[Ωε].

Then in order to prove the statements in (i) and (ii) it suffices to follow the proof of Theorem 2.40.
Indeed, by choosing ε4 small enough, we can clearly assume that (i) holds. Consider now (ii). As in
the proof of Theorem 2.40, it is natural to set

U1[ε, δ](x) ≡ −
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs ∀x ∈ clV,

U2[ε, δ] ≡ Ξ[ε, δ],

for all (ε, δ) ∈ ]−ε4, ε4[ × ]−δ1, δ1[. By Proposition 2.79, U2 is real analytic. By arguing as in the
proof of Proposition 1.24 (i), U1[·, ·] is a real analytic map of ]−ε4, ε4[× ]−δ1, δ1[ to C0

h(clV ). Finally,
by the definition of U1 and U2, the statement in (ii) holds. The statement in (iii) is an immediate
consequence of Remark 2.71.

As far as the energy integral is concerned, we have the following.

Theorem 2.81. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε3, δ1 be as in Proposition 2.79. Then there exist ε5 ∈ ]0, ε3], a real analytic operator
G1 of ]−ε5, ε5[ to R and a real analytic operator G2 of ]−ε5, ε5[× ]−δ1, δ1[ to R, such that∫

Pa[Ωε]

|∇uδε(x)|2 dx = δ4

∫
A

|∇pa[f ](x)|2 dx− δ4εnG1[ε] + εn−2G2[ε, δ], (2.70)

for all ε ∈ ]0, ε5[× ]0, δ1[. Moreover,

G1[0] = |Ω|n|∇pa[f ](w)|2, (2.71)

and
G2[0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx. (2.72)

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly,∫
Pa[Ωε]

|∇uδε(x)|2 dx =δ4

∫
Pa[Ωε]

|∇pa[f ](x)|2 dx+
∫

Pa[Ωε]

|∇ūδε(x)|2 dx

+ 2δ2

∫
Pa[Ωε]

∇ūδε(x) · ∇pa[f ](x) dx.
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Obviously, ∫
Pa[Ωε]

|∇pa[f ](x)|2 dx =
∫
A

|∇pa[f ](x)|2 dx−
∫

Ωε

|∇pa[f ](x)|2 dx.

Then, by arguing as in the proof of Theorem 2.43, we can prove that there exists a real analytic
operator G1 of ]−ε3, ε3[ to R such that∫

Ωε

|∇pa[f ](x)|2 dx = εnG1[ε],

for all ε ∈ ]0, ε3[, and
G1[0] = |Ω|n|∇pa[f ](w)|2.

Consequently, (2.71) holds. Now we need to consider∫
Pa[Ωε]

|∇ūδε(x)|2 dx+ 2δ2

∫
Pa[Ωε]

∇ūδε(x) · ∇pa[f ](x) dx.

By arguing as in the proof of Theorem 2.43, we can prove that there exist ε5 ∈ ]0, ε3] and a real
analytic operator G2 of ]−ε5, ε5[ to R such that∫

Pa[Ωε]

|∇ūδε(x)|2 dx+ 2δ2

∫
Pa[Ωε]

∇ūδε(x) · ∇pa[f ](x) dx = εn−2G2[ε, δ]

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[, and

G2[0, 0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx.

Hence, (2.70), (2.71), and (2.72) follow and the Theorem is completely proved.

Theorem 2.82. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε3, δ1 be as in Proposition 2.79. Then there exist ε6 ∈ ]0, ε3] and a real analytic
operator J of ]−ε6, ε6[× ]−δ1, δ1[ to R, such that∫

Pa[Ωε]

uδε(x) dx = J [ε, δ], (2.73)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. Moreover,

J [0, 0] =
(∫

∂Ω

gτ dσ
)
|A|n, (2.74)

where τ is as in Definition 2.32.

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have

uδε(x) = w−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) + Ξ[ε, δ] + δ2pa[f ](x) ∀x ∈ cl Ta[Ωε].

As a consequence,∫
Pa[Ωε]

uδε(x) dx =
∫

Pa[Ωε]

w−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx+

∫
Pa[Ωε]

Ξ[ε, δ] dx+ δ2

∫
Pa[Ωε]

pa[f ](x) dx.

By arguing as in Lemma 2.45, one can easily show that there exist ε6 ∈ ]0, ε3] and a real analytic
operator J̃1 of ]−ε6, ε6[× ]−δ1, δ1[ to R such that∫

Pa[Ωε]

w−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx = εnJ̃1[ε, δ],

for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. On the other hand,∫
Pa[Ωε]

Ξ[ε, δ] dx = Ξ[ε, δ]
(
|A|n − ε

n|Ω|n
)
,
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for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Moreover,∫
Pa[Ωε]

pa[f ](x) dx =
∫
A

pa[f ](x) dx−
∫

Ωε

pa[f ](x) dx,

for all ε ∈ ]0, ε3[. By Lemma 2.42, there exists a real analytic operator J̃2 of ]−ε3, ε3[ to R such that∫
Ωε

pa[f ](x) dx = εnJ̃2[ε],

for all ε ∈ ]0, ε3[. Thus, if we set

J [ε, δ] ≡ εnJ̃1[ε, δ] + Ξ[ε, δ]
(
|A|n − ε

n|Ω|n
)

+ δ2

∫
A

pa[f ](x) dx− δ2εnJ̃2[ε],

for all (ε, δ) ∈ ]−ε6, ε6[× ]−δ1, δ1[, we have that J is a real analytic map of ]−ε6, ε6[× ]−δ1, δ1[ to R
such that ∫

Pa[Ωε]

uδε(x) dx = J [ε, δ],

for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. Finally,

J [0, 0] = Ξ[0, 0]|A|n

=
(∫

∂Ω

gτ dσ
)
|A|n,

and the proof is complete.

Then we have the following.

Proposition 2.83. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let 1 ≤ p <∞. Then

lim
(ε,δ)→(0+,0+)

E(ε,1)[ūδε ] =
∫
∂Ω

gτ dσ in Lp(A),

where τ is as in Definition 2.32.

Proof. By Theorem 2.5, we have

|E(ε,1)[ūδε ](x)| ≤ sup { |g(t)| : t ∈ ∂Ω }+ sup { |pa[f ](x)| : x ∈ clA } < +∞ ∀x ∈ A,

for all (ε, δ) ∈ ]0, ε1[× ]0, 1[. By Theorem 2.80, we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[ūδε ](x) =
∫
∂Ω

gτ dσ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[ūδε ] =
∫
∂Ω

gτ dσ in Lp(A).

Corollary 2.84. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let 1 ≤ p <∞. Then

lim
(ε,δ)→(0+,0+)

E(ε,1)[uδε ] =
∫
∂Ω

gτ dσ in Lp(A),

where τ is as in Definition 2.32.

Proof. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have

uδε(x) = ūδε(x) + δ2pa[f ](x).

Obviously
lim
δ→0+

δ2pa[f ] = 0 in L∞(A).

Therefore, by applying Proposition 2.83, we easily conclude.
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2.4.2 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Corollary 2.84 the convergence of u(ε,δ) as (ε, δ) tends to (0, 0).
Namely, we prove the following.

Theorem 2.85. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let τ be as in Definition 2.32. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn.
Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] =
∫
∂Ω

gτ dσ in Lp(V ).

Proof. By virtue of Corollary 2.84, we have

lim
(ε,δ)→(0+,0+)

‖E(ε,1)[uδε ]−
∫
∂Ω

gτ dσ‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant c > 0 such
that

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω

gτ dσ‖Lp(V ) ≤ c‖E(ε,1)[uδε ]−
∫
∂Ω

gτ dσ‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[.

Thus,

lim
(ε,δ)→(0+,0+)

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω

gτ dσ‖Lp(V ) = 0,

and the conclusion easily follows.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 2.86. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let ε3, δ1 be as in Proposition 2.79. Let ε6, J be as in Theorem 2.82. Let r > 0 and
ȳ ∈ Rn. Then ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ

[
ε,
r

l

]
, (2.75)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ1).

Proof. Let ε ∈ ]0, ε6[, and let l ∈ N \ {0} be such that l > (r/δ1). Then, by the periodicity of u(ε,r/l),
we have ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

ur/lε

( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

ur/lε (t) dt

=
rn

ln
J
[
ε,
r

l

]
.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ
[
ε,
r

l

]
,

and the conclusion follows.
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2.4.3 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 2.87. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.

Remark 2.88. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in (1.56), (2.25), (2.26),
respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇uδε(t)|
2
dt.

Definition 2.89. Let n ∈ N \ {0, 1, 2}. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ
2

n−2 .

Let ε5, δ1 be as in Theorem 2.81. Let δ2 ∈ ]0, δ1[ be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ2[. Then we
set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ2[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 2.90. Let n ∈ N \ {0, 1, 2}. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as in
(1.56), (2.25), (2.26), respectively. Let ε5 be as in Theorem 2.81. Let δ2 be as in Definition 2.89. Then

lim
δ→0+

En[δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 2.76.

Proof. Let δ ∈ ]0, δ2[. By Remark 2.88 and Theorem 2.81, we have∫
Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx = δn−2
(
δ4

∫
A

|∇pa[f ](x)|2 dx− δ4(ε[δ])nG1[ε[δ]] + (ε[δ])n−2G2[ε[δ], δ]
)

= δn
(
δ2

∫
A

|∇pa[f ](x)|2 dx− δ2δ
2n
n−2G1[δ

2
n−2 ] +G2[δ

2
n−2 , δ]

)
,

where G1, G2 are as in Theorem 2.81. For each (h1, h2) ∈ ]−ε5, ε5[× ]−δ1, δ1[, we set

G[h1, h2] ≡ h2
2

∫
A

|∇pa[f ](x)|2 dx− h2
2h
n
1G1[h1] +G2[h1, h2].

Let δ ∈ ]0, δ2[. We have

b(1/δ)cn
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx ≤ En[δ] ≤ d(1/δ)en
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx,

and so
b(1/δ)cnδnG[δ

2
n−2 , δ] ≤ En[δ] ≤ d(1/δ)enδnG[δ

2
n−2 , δ].

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = G2[0, 0].

Finally, by equality (2.70), we can easily conclude.
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In the following Proposition we represent the function En[·] by means of a real analytic function.

Proposition 2.91. Let n ∈ N \ {0, 1, 2}. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, g, f be as
in (1.56), (2.25), (2.26), respectively. Let ε5 be as in Theorem 2.81. Let δ2 > 0 be as in Definition
2.89. Then there exists a real analytic operator G of ]−ε5, ε5[× ]−δ1, δ1[ to R such that

En[(1/l)] = G[(1/l)
2

n−2 , (1/l)],

for all l ∈ N such that l > (1/δ2).

Proof. It follows by the proof of Proposition 2.90.

2.5 Some remarks about two particular Dirichlet problems for
the Laplace equation in a periodically perforated domain

In this Section we study two particular Dirichlet problems for the Laplace equation, that we shall use
in the sequel.

2.5.1 A particular Dirichlet problem for the Laplace equation in a period-
ically perforated domain

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. We shall
consider also the following assumption.

Let ε̃1 ∈ ]0, ε1[ and let L[·] be a real analytic map of ]−ε̃1, ε̃1[ to Cm,α(∂Ω). (2.76)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let ε̃1, L be
as in (2.76). For each ε ∈ ]0, ε̃1[, we consider the following periodic Dirichlet problem for the Laplace
equation. ∆u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
u(x) = L[ε]

(
1
ε (x− w)

)
∀x ∈ ∂Ωε.

(2.77)

By virtue of Theorem 2.15, we can give the following definition.

Definition 2.92. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̃1, L be as in (2.76). For each ε ∈ ]0, ε̃1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε])
of boundary value problem (2.77).

Then we have the following.

Proposition 2.93. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε̃1, L be as in (2.76). Let Um,αε , Um,α0 be as in (1.63), (1.64), respectively. Let Λ be
the map of ]−ε̃1, ε̃1[× Um,α0 × R in Cm,α(∂Ω) defined by

Λ[ε, θ, ξ](t) ≡− 1
2
θ(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ(s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

+ ξ − L[ε](t) ∀t ∈ ∂Ω,
(2.78)

for all (ε, θ, ξ) ∈ ]−ε̃1, ε̃1[× Um,α0 × R. Then the following statements hold.

(i) If ε ∈ ]0, ε̃1[, then the pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[ε, θ, ξ] = 0, (2.79)

if and only if the pair (µ, ξ) ∈ Um,αε × R, with µ ∈ Um,αε defined by

µ(x) ≡ θ
(1
ε

(x− w)
)

∀x ∈ ∂Ωε, (2.80)
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satisfies the equation

Γ(x) = −1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(y)
(
San(x− y)

)
µ(y) dσy + ξ ∀x ∈ ∂Ωε, (2.81)

with Γ ∈ Cm,α(∂Ωε) defined by

Γ(x) ≡ L[ε]
(1
ε

(x− w)
)

∀x ∈ ∂Ωε. (2.82)

In particular, equation (2.79) has exactly one solution (θ, ξ) ∈ Um,α0 × R, for each ε ∈ ]0, ε̃1[.

(ii) The pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[0, θ, ξ] = 0, (2.83)

if and only if

L[0](t) = −1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(t− s))θ(s) dσs + ξ ∀t ∈ ∂Ω. (2.84)

In particular, equation (2.83) has exactly one solution (θ, ξ) ∈ Um,α0 × R, which we denote by
(θ̃, ξ̃).

Proof. By arguing exactly so as to prove Proposition 2.29 (i), one can show the validity of the
statement in (i). Consider (ii). As in the proof of Proposition 2.29 (ii), the equivalence of (2.83) and
(2.84) is obvious. The existence of a unique solution of equation (2.83) is an immediate consequence
of Lemma 2.28.

By Proposition 2.93, it makes sense to introduce the following.

Definition 2.94. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let Um,α0 be as in (1.64). Let ε̃1, L be as in (2.76). For each ε ∈ ]0, ε̃1[, we denote by (θ̂[ε], ξ̂[ε]) the
unique pair in Um,α0 × R that solves (2.79). Analogously, we denote by (θ̂[0], ξ̂[0]) the unique pair in
Um,α0 × R that solves (2.83).

In the following Remark, we show the relation between the solutions of boundary value problem
(2.77) and the solutions of equation (2.79).
Remark 2.95. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̃1, L be as in (2.76).

Let ε ∈ ]0, ε̃1[. We have

u[ε](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)θ̂[ε](s) dσs + ξ̂[ε] ∀x ∈ Ta[Ωε].

While the relation between equation (2.79) and boundary value problem (2.77) is now clear, we
want to see if (2.83) is related to some (limiting) boundary value problem. We have the following.
Remark 2.96. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̃1, L be as in (2.76). Let ξ̃ be as in Proposition 2.93. Let τ be as in Definition 2.32. By well
known results of classical potential theory (cf. Folland [52, Chapter 3]), we have that ξ̃ is the unique
ξ ∈ R, such that ∫

∂Ω

(L[0](x)− ξ)τ(x) dσx = 0.

Hence,

ξ̃ =
∫
∂Ω

L[0](x)τ(x) dσx.

Definition 2.97. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). Let ε̃1, L be as in (2.76). Let
τ be as in Definition 2.32. We denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following
boundary value problem∆u(x) = 0 ∀x ∈ Rn \ cl Ω,

u(x) = L[0](x)−
∫
∂Ω
L[0](x)τ(x) dσx ∀x ∈ ∂Ω,

limx→∞ u(x) = 0.
(2.85)

Problem (2.85) will be called the limiting boundary value problem.
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Remark 2.98. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̃1, L be as in (2.76). We have

ũ(x) =
∫
∂Ω

∂

∂νΩ(y)
(
Sn(x− y)

)
θ̂[0](y) dσy ∀x ∈ Rn \ cl Ω.

We now prove the following.

Proposition 2.99. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let Um,α0 be as in (1.64). Let ε̃1, L be as in (2.76). Let Λ and (θ̃, ξ̃) be as in Proposition
2.93. Then there exists ε2 ∈ ]0, ε̃1] such that Λ is a real analytic operator of ]−ε2, ε2[× Um,α0 × R to
Cm,α(∂Ω). Moreover, if we set b0 ≡ (0, θ̃, ξ̃), then the differential ∂(θ,ξ)Λ[b0] of Λ with respect to the
variables (θ, ξ) at b0 is delivered by the following formula

∂(θ,ξ)Λ[b0](θ̄, ξ̄)(t) = −1
2
θ̄(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ̄(s) dσs + ξ̄ ∀t ∈ ∂Ω, (2.86)

for all (θ̄, ξ̄) ∈ Um,α0 × R, and is a linear homeomorphism of Um,α0 × R onto Cm,α(∂Ω).

Proof. By the same argument as in the proof of Proposition 2.38, one can show that there exists
ε2 ∈ ]0, ε̃1] such that Λ is a real analytic operator of ]−ε2, ε2[ × Um,α0 × R to Cm,α(∂Ω). Then by
standard calculus in Banach space, we immediately deduce that (2.86) holds. Finally, by Lemma 2.28,
∂(θ,ξ)Λ[b0] is a linear homeomorphism.

We are now ready to prove real analytic continuation properties for θ̂[·], ξ̂[·].

Proposition 2.100. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let Um,α0 be as in (1.64). Let ε̃1, L be as in (2.76). Let ε2 be as in Proposition 2.99.
Then there exist ε3 ∈ ]0, ε2] and a real analytic operator (Θ,Ξ) of ]−ε3, ε3[ to Um,α0 × R, such that

(Θ[ε],Ξ[ε]) = (θ̂[ε], ξ̂[ε]), (2.87)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 2.99 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

By Proposition 2.100 and Remark 2.95, we can deduce the main result of this Section.

Theorem 2.101. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε̃1, L be
as in (2.76). Let ε3 be as in Proposition 2.100. Let V be a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], a real analytic operator U1 of ]−ε4, ε4[ to the space
C0
h(clV ), and a real analytic operator U2 of ]−ε4, ε4[ to R such that the following conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(ii)
u[ε](x) = εn−1U1[ε](x) + U2[ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. Let ε ∈ ]0, ε3[. We have

u[ε](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs + Ξ[ε] ∀x ∈ Ta[Ωε].

Then in order to prove the Theorem, it suffices to argue as in the proof of Theorem 2.40. Indeed, by
choosing ε4 small enough, we can clearly assume that (i) holds. Consider now (ii). As in the proof of
Theorem 2.40, it is natural to set

U1[ε](x) ≡ −
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

U2[ε] ≡ Ξ[ε],

for all ε ∈ ]−ε4, ε4[. By Proposition 2.100, U2 is real analytic. By Proposition 1.24 (i), U1[·] is a real
analytic map of ]−ε4, ε4[ to C0

h(clV ). Finally, by the definition of U1 and U2, the statement in (ii)
holds.
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As done in Theorem 2.101 for u[·], we can now prove a real analytic continuation Theorem for the
energy integral. Namely, we prove the following.

Theorem 2.102. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε̃1, L be as in
(2.76). Let ε3 be as in Proposition 2.100. Then there exist ε5 ∈ ]0, ε3] and a real analytic operator G
of ]−ε5, ε5[ to R, such that ∫

Pa[Ωε]

|∇u[ε](x)|2 dx = εn−2G[ε], (2.88)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx. (2.89)

Proof. Let ε ∈ ]0, ε3[. We have

u[ε](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs + Ξ[ε] ∀x ∈ Ta[Ωε].

Then in order to prove the Theorem, it suffices to argue as in the part of the proof of Theorem 2.43
concerning

∫
Pa[Ωε]

|∇ū[ε](x)|2 dx, with f ≡ 0 and by replacing g(·) by L[ε](·).

As done in Theorem 2.102 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 2.103. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε̃1, L be as in
(2.76). Let ε3 be as in Proposition 2.100. Then there exist ε6 ∈ ]0, ε3[ and a real analytic operator J
of ]−ε6, ε6[ to R, such that ∫

Pa[Ωε]

u[ε](x) dx = J [ε], (2.90)

for all ε ∈ ]0, ε6[. Moreover,

J [0] =
(∫

∂Ω

L[0]τ dσ
)
|A|n, (2.91)

where τ is as in Definition 2.32.

Proof. It suffices to follow exactly the same argument of the proof of Theorem 2.46 concerning the
integral of w−a

[
∂Ωε,Θ[ε]( 1

ε (· − w))
]
(x) + Ξ[ε].

2.5.2 Another particular Dirichlet problem for the Laplace equation in a
periodically perforated domain

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. We shall
consider also the following assumption.

Let ε̃1 ∈ ]0, ε1[, δ1 ∈ ]0,+∞[ and let L[·, ·] be a real analytic
map of ]−ε̃1, ε̃1[× ]−δ1, δ1[ to Cm,α(∂Ω).

(2.92)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let ε̃1, δ1, L
be as in (2.92). For each (ε, δ) ∈ ]0, ε̃1[× ]0, δ1[, we consider the following periodic Dirichlet problem
for the Laplace equation.∆u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
u(x) = L[ε, δ]

(
1
ε (x− w)

)
∀x ∈ ∂Ωε.

(2.93)

By virtue of Theorem 2.15, we can give the following definition.

Definition 2.104. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε̃1, δ1, L be as in (2.92). For each (ε, δ) ∈ ]0, ε̃1[ × ]0, δ1[, we denote by u[ε, δ] the
unique solution in Cm,α(cl Ta[Ωε]) of boundary value problem (2.93).
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Then we have the following.

Proposition 2.105. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε̃1, δ1, L be as in (2.92). Let Um,αε , Um,α0 be as in (1.63), (1.64), respectively. Let Λ
be the map of ]−ε̃1, ε̃1[× ]−δ1, δ1[× Um,α0 × R in Cm,α(∂Ω) defined by

Λ[ε, δ, θ, ξ](t) ≡− 1
2
θ(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ(s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

+ ξ − L[ε, δ](t) ∀t ∈ ∂Ω,
(2.94)

for all (ε, θ, ξ) ∈ ]−ε̃1, ε̃1[× ]−δ1, δ1[× Um,α0 × R. Then the following statements hold.

(i) If (ε, δ) ∈ ]0, ε̃1[× ]0, δ1[, then the pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[ε, δ, θ, ξ] = 0, (2.95)

if and only if the pair (µ, ξ) ∈ Um,αε × R, with µ ∈ Um,αε defined by

µ(x) ≡ θ
(1
ε

(x− w)
)

∀x ∈ ∂Ωε, (2.96)

satisfies the equation

Γ(x) = −1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(y)
(
San(x− y)

)
µ(y) dσy + ξ ∀x ∈ ∂Ωε, (2.97)

with Γ ∈ Cm,α(∂Ωε) defined by

Γ(x) ≡ L[ε, δ]
(1
ε

(x− w)
)

∀x ∈ ∂Ωε. (2.98)

In particular, equation (2.95) has exactly one solution (θ, ξ) ∈ Um,α0 × R, for each (ε, δ) ∈
]0, ε̃1[× ]0, δ1[.

(ii) The pair (θ, ξ) ∈ Um,α0 × R satisfies equation

Λ[0, 0, θ, ξ] = 0, (2.99)

if and only if

L[0, 0](t) = −1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(s)
(Sn(t− s))θ(s) dσs + ξ ∀t ∈ ∂Ω. (2.100)

In particular, equation (2.99) has exactly one solution (θ, ξ) ∈ Um,α0 × R, which we denote by
(θ̃, ξ̃).

Proof. By arguing exactly so as to prove Proposition 2.29 (i), one can show the validity of the
statement in (i). Consider (ii). As in the proof of Proposition 2.29 (ii), the equivalence of (2.99) and
(2.100) is obvious. The existence of a unique solution of equation (2.99) is an immediate consequence
of Lemma 2.28.

By Proposition 2.105, it makes sense to introduce the following.

Definition 2.106. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let Um,α0 be as in (1.64). Let ε̃1, δ1, L be as in (2.92). For each (ε, δ) ∈ ]0, ε̃1[× ]0, δ1[,
we denote by (θ̂[ε, δ], ξ̂[ε, δ]) the unique pair in Um,α0 × R that solves (2.95). Analogously, we denote
by (θ̂[0, 0], ξ̂[0, 0]) the unique pair in Um,α0 × R that solves (2.99).

In the following Remark, we show the relation between the solutions of boundary value problem
(2.93) and the solutions of equation (2.95).
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Remark 2.107. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̃1, δ1, L be as in (2.92).

Let (ε, δ) ∈ ]0, ε̃1[× ]0, δ1[. We have

u[ε, δ](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)θ̂[ε, δ](s) dσs + ξ̂[ε, δ] ∀x ∈ Ta[Ωε].

While the relation between equation (2.95) and boundary value problem (2.93) is now clear, we
want to see if (2.99) is related to some (limiting) boundary value problem. We have the following.
Remark 2.108. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̃1, δ1, L be as in (2.92). Let ξ̃ be as in Proposition 2.105. Let τ be as in Definition 2.32. By well
known results of classical potential theory (cf. Folland [52, Chapter 3]), we have that ξ̃ is the unique
ξ ∈ R, such that ∫

∂Ω

(L[0, 0](x)− ξ)τ(x) dσx = 0.

Hence,

ξ̃ =
∫
∂Ω

L[0, 0](x)τ(x) dσx.

Definition 2.109. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). Let ε̃1, δ1, L be as in (2.92).
Let τ be as in Definition 2.32. We denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following
boundary value problem∆u(x) = 0 ∀x ∈ Rn \ cl Ω,

u(x) = L[0, 0](x)−
∫
∂Ω
L[0, 0](x)τ(x) dσx ∀x ∈ ∂Ω,

limx→∞ u(x) = 0.
(2.101)

Problem (2.101) will be called the limiting boundary value problem.

Remark 2.110. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̃1, δ1, L be as in (2.92). We have

ũ(x) =
∫
∂Ω

∂

∂νΩ(y)
(
Sn(x− y)

)
θ̂[0, 0](y) dσy ∀x ∈ Rn \ cl Ω.

We now prove the following.

Proposition 2.111. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let Um,α0 be as in (1.64). Let ε̃1, δ1, L be as in (2.92). Let Λ and (θ̃, ξ̃) be as in
Proposition 2.105. Then there exists ε2 ∈ ]0, ε̃1] such that Λ is a real analytic operator of ]−ε2, ε2[×
]−δ1, δ1[×Um,α0 ×R to Cm,α(∂Ω). Moreover, if we set b0 ≡ (0, 0, θ̃, ξ̃), then the differential ∂(θ,ξ)Λ[b0]
of Λ with respect to the variables (θ, ξ) at b0 is delivered by the following formula

∂(θ,ξ)Λ[b0](θ̄, ξ̄)(t) = −1
2
θ̄(t)−

∫
∂Ω

νΩ(s) ·DSn(t− s)θ̄(s) dσs + ξ̄ ∀t ∈ ∂Ω, (2.102)

for all (θ̄, ξ̄) ∈ Um,α0 × R, and is a linear homeomorphism of Um,α0 × R onto Cm,α(∂Ω).

Proof. By the same argument as in the proof of Proposition 2.38, one can show that there exists
ε2 ∈ ]0, ε̃1] such that Λ is a real analytic operator of ]−ε2, ε2[ × ]−δ1, δ1[ × Um,α0 × R to Cm,α(∂Ω).
Then by standard calculus in Banach space, we immediately deduce that (2.102) holds. Finally, by
Lemma 2.28, ∂(θ,ξ)Λ[b0] is a linear homeomorphism.

We are now ready to prove that θ̂[·, ·], ξ̂[·, ·] can be continued real analytically.

Proposition 2.112. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let Um,α0 be as in (1.64). Let ε̃1, δ1, L be as in (2.92). Let ε2 be as in Proposition 2.111.
Then there exist ε3 ∈ ]0, ε2], δ2 ∈ ]0, δ1] and a real analytic operator (Θ,Ξ) of ]−ε3, ε3[× ]−δ2, δ2[ to
Um,α0 × R, such that

(Θ[ε, δ],Ξ[ε, δ]) = (θ̂[ε, δ], ξ̂[ε, δ]), (2.103)

for all (ε, δ) ∈
(
]0, ε3[× ]0, δ2[

)
∪ {(0, 0)}.
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Proof. It is an immediate consequence of Proposition 2.111 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

By Proposition 2.112 and Remark 2.107, we can deduce the main result of this Section.

Theorem 2.113. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε̃1, δ1, L be
as in (2.92). Let ε3, δ2 be as in Proposition 2.112. Let V be a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], a real analytic operator U1 of ]−ε4, ε4[× ]−δ2, δ2[ to
the space C0

h(clV ), and a real analytic operator U2 of ]−ε4, ε4[× ]−δ2, δ2[ to R such that the following
conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(ii)
u[ε, δ](x) = εn−1U1[ε, δ](x) + U2[ε, δ] ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ2[.

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ2[. We have

u[ε, δ](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀x ∈ Ta[Ωε].

Then in order to prove the Theorem, it suffices to argue as in the proof of Theorem 2.40. Indeed, by
choosing ε4 small enough, we can clearly assume that (i) holds. Consider now (ii). As in the proof of
Theorem 2.40, it is natural to set

U1[ε, δ](x) ≡ −
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs ∀x ∈ clV,

U2[ε, δ] ≡ Ξ[ε, δ],

for all (ε, δ) ∈ ]−ε4, ε4[ × ]−δ2, δ2[. By Proposition 2.112, U2 is real analytic. By arguing as in the
proof of Proposition 1.24 (i), U1[·, ·] is a real analytic map of ]−ε4, ε4[× ]−δ2, δ2[ to C0

h(clV ). Finally,
by the definition of U1 and U2, the statement in (ii) holds.

As done in Theorem 2.113 for u[·, ·], we can now prove a real analytic continuation Theorem for
the energy integral. Namely, we prove the following.

Theorem 2.114. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε̃1, δ1, L be
as in (2.92). Let ε3, δ2 be as in Proposition 2.112. Then there exist ε5 ∈ ]0, ε3] and a real analytic
operator G of ]−ε5, ε5[× ]−δ2, δ2[ to R, such that∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx = εn−2G[ε, δ], (2.104)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ2[. Moreover,

G[0, 0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx. (2.105)

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ2[. We have

u[ε, δ](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀x ∈ Ta[Ωε].

Then in order to prove the Theorem, it suffices to argue as in the part of the proof of Theorem 2.43
concerning

∫
Pa[Ωε]

|∇ū[ε](x)|2 dx, with f ≡ 0 and by replacing g(·) by L[ε, δ](·).

As done in Theorem 2.114 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.
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Theorem 2.115. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε̃1, δ1, L be
as in (2.92). Let ε3, δ2 be as in Proposition 2.112. Then there exist ε6 ∈ ]0, ε3[ and a real analytic
operator J of ]−ε6, ε6[× ]−δ2, δ2[ to R, such that∫

Pa[Ωε]

u[ε, δ](x) dx = J [ε, δ], (2.106)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ2[. Moreover,

J [0, 0] =
(∫

∂Ω

L[0, 0]τ dσ
)
|A|n, (2.107)

where τ is as in Definition 2.32.

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ2[. We have

u[ε, δ](x) = −εn−1

∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀x ∈ Ta[Ωε].

Then in order to prove the Theorem, it suffices to follow exactly the same argument of the proof of
Theorem 2.46 concerning the integral of w−a

[
∂Ωε,Θ[ε]( 1

ε (· − w))
]
(x) + Ξ[ε].

2.6 Asymptotic behaviour of the solutions of the Neumann
problem for the Laplace equation in a periodically perfo-
rated domain

In this Section we study the asymptotic behaviour of the solutions of the Neumann problem for the
Laplace equation in a periodically perforated domain with small holes.

2.6.1 Notation
We retain the notation introduced in Subsection 1.8.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the following assumptions.

g ∈ Cm−1,α(∂Ω),
∫
∂Ω

g dσ = 0, (2.108)

c̄ ∈ R. (2.109)

2.6.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, g, c̄ be as in (1.56), (1.58),
(2.108), (2.109), respectively. For each ε ∈ ]0, ε̄1[, we consider the following periodic Neumann problem
for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε,

u(x̄) = c̄.

(2.110)

By virtue of Theorem 2.17, we can give the following definition.

Definition 2.116. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, g, c̄ be
as in (1.56), (1.58), (2.108), (2.109), respectively. For each ε ∈ ]0, ε̄1[, we denote by u[ε] the unique
solution in Cm,α(cl Ta[Ωε]) of boundary value problem (2.110).

Our aim is to investigate the behaviour of u[ε] as ε tends to 0.
Since we want to represent the function u[ε] by means of a periodic simple layer potential and a

constant (cf. Theorem 2.17), we need to study some integral equations. Indeed, by virtue of Theorem
2.17, we can transform (2.110) into an integral equation, whose unknown is the moment of the simple
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layer potential. Moreover, we want to transform these equations defined on the ε-dependent domain
∂Ωε into equations defined on the fixed domain ∂Ω. We introduce these integral equations in the
following Proposition. The relation between the solution of the integral equations and the solution of
boundary value problem (2.110) will be clarified later.

Proposition 2.117. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let Um−1,α

ε , Um−1,α
0 be as in (1.63), (1.64), respectively. Let Λ be the map of

]−ε1, ε1[× Cm−1,α(∂Ω) in Cm−1,α(∂Ω) defined by

Λ[ε, θ](t) ≡1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs − g(t) ∀t ∈ ∂Ω,
(2.111)

for all (ε, θ) ∈ ]−ε1, ε1[× Cm−1,α(∂Ω). Then the following statements hold.

(i) If ε ∈ ]0, ε1[, then the function θ ∈ Cm−1,α(∂Ω) satisfies equation

Λ[ε, θ] = 0, (2.112)

if and only if the function µ ∈ Cm−1,α(∂Ωε), defined by

µ(x) ≡ θ
(1
ε

(x− w)
)

∀x ∈ ∂Ωε, (2.113)

satisfies the equation

Γ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(
San(x− y)

)
µ(y) dσy ∀x ∈ ∂Ωε, (2.114)

with Γ ∈ Cm−1,α(∂Ωε) defined by

Γ(x) ≡ g
(1
ε

(x− w)
)

∀x ∈ ∂Ωε. (2.115)

In particular, equation (2.112) has exactly one solution θ ∈ Cm−1,α(∂Ω), for each ε ∈ ]0, ε1[.
Moreover, if θ solves (2.112), then θ ∈ Um−1,α

0 , and so also θ( 1
ε (· − w)) ∈ Um−1,α

ε .

(ii) The function θ ∈ Cm−1,α(∂Ω) satisfies equation

Λ[0, θ] = 0, (2.116)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (2.117)

In particular, equation (2.116) has exactly one solution θ ∈ Cm−1,α(∂Ω), which we denote by θ̃.
Moreover, if θ solves (2.116), then θ ∈ Um−1,α

0 .

Proof. Consider (i). Let θ ∈ Cm−1,α(∂Ω). Let ε ∈ ]0, ε1[. First of all, we note that∫
∂Ωε

θ
(1
ε

(x− w)
)
dσx = εn−1

∫
∂Ω

θ(t) dσt,

and so θ ∈ Um−1,α
0 if and only if θ( 1

ε (· − w)) ∈ Um−1,α
ε . The equivalence of equation (2.112) in

the unknown θ ∈ Cm−1,α(∂Ω) and equation (2.114) in the unknown µ ∈ Cm−1,α(∂Ωε) follows by a
straightforward computation based on the rule of change of variables in integrals and of well known
properties of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Sections 3,4].) The
existence and uniqueness of a solution of equation (2.114) follows by Proposition 2.14 (iii). Then the
existence and uniqueness of a solution of equation (2.112) follows by the equivalence of (2.112) and
(2.114). Now, if θ ∈ Cm−1,α(∂Ω) solves equation (2.112), then the function µ, defined as in (2.113),
solves equation (2.114). Since

∫
∂Ω
g dσ = 0, then

∫
∂Ωε

Γ dσ = 0. By Lemma 2.10, then µ ∈ Um−1,α
ε ,

and, consequently, θ ∈ Um−1,α
0 . Consider (ii). The equivalence of (2.116) and (2.117) is obvious. The

existence of a unique solution θ ∈ Cm−1,α(∂Ω) of equation (2.116) follows by well known results of
classical potential theory (cf. Folland [52, Chapter 3].) Moreover, since

∫
∂Ω
g dσ = 0, by Folland [52,

Lemma 3.30, p. 133], we have θ ∈ Um−1,α
0 .
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By Proposition 2.117, it makes sense to introduce the following.

Definition 2.118. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each ε ∈ ]0, ε1[, we denote by θ̂[ε] the unique function in Cm−1,α(∂Ω) that
solves (2.112). Analogously, we denote by θ̂[0] the unique function in Cm−1,α(∂Ω) that solves (2.116).

In the following Remark, we show the relation between the solutions of boundary value problem
(2.110) and the solutions of equation (2.112).
Remark 2.119. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, g, c̄ be as in
(1.56), (1.58), (2.108), (2.109), respectively. Let ε ∈ ]0, ε̄1[. We have

u[ε](x) = εn−1

∫
∂Ω

San(x−w− εs)θ̂[ε](s) dσs + c̄− εn−1

∫
∂Ω

San(x̄−w− εs)θ̂[ε](s) dσs ∀x ∈ cl Ta[Ωε].

While the relation between equation (2.112) and boundary value problem (2.110) is now clear, we
want to see if (2.116) is related to some (limiting) boundary value problem. We give the following.

Definition 2.120. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (2.108), respectively. We
denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following boundary value problem

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = g(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(2.118)

Problem (2.118) will be called the limiting boundary value problem.

Remark 2.121. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. We have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̂[0](y) dσy ∀x ∈ Rn \ Ω.

We now prove the following.

Proposition 2.122. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let Λ and θ̃ be as in Proposition 2.117. Then there exists ε2 ∈ ]0, ε1] such that Λ
is a real analytic operator of ]−ε2, ε2[× Cm−1,α(∂Ω) to Cm−1,α(∂Ω). Moreover, if we set b0 ≡ (0, θ̃),
then the differential ∂θΛ[b0] of Λ with respect to the variable θ at b0 is delivered by the following
formula

∂θΛ[b0](θ̄)(t) =
1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs ∀t ∈ ∂Ω, (2.119)

for all θ̄ ∈ Cm−1,α(∂Ω), and is a linear homeomorphism of Cm−1,α(∂Ω) onto Cm−1,α(∂Ω).

Proof. By Proposition 1.26 (ii) and standard calculus in Banach spaces, we immediately deduce that
there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[×Cm−1,α(∂Ω) to Cm−1,α(∂Ω).
By standard calculus in Banach space, we immediately deduce that (2.119) holds. Finally, since
Rn \ cl Ω is connected, by classical potential theory (cf. Folland [52, Chapter 3, Section E]), we have
that ∂θΛ[b0] is a linear and continuous bijection of Cm−1,α(∂Ω) onto itself, and so, by the Open
Mapping Theorem, is a linear homeomorphism.

We are now ready to show that θ̂[·] can be continued real analytically around 0.

Proposition 2.123. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let ε2 be as in Proposition 2.122. Then there exist ε3 ∈ ]0, ε2] and a real analytic
operator Θ of ]−ε3, ε3[ to Cm−1,α(∂Ω), such that

Θ[ε] = θ̂[ε], (2.120)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 2.122 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)
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2.6.3 A functional analytic representation Theorem for the solution of the
singularly perturbed Neumann problem

By Proposition 2.123 and Remark 2.119, we can deduce the main result of this Section. Namely, we
show that {u[ε](·)}ε∈]0,ε1[ can be continued real analytically for negative values of ε.

Theorem 2.124. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε3 be as in Proposition 2.123. Let V be
a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0,min{ε̄1, ε3}], a real
analytic operator U1 of ]−ε4, ε4[ to the space C0

h(clV ), and a real analytic operator U2 of ]−ε4, ε4[ to
R such that the following conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(ii)
u[ε](x) = εnU1[ε](x) + U2[ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,
U2[0] = c̄.

Proof. Let Θ[·] be as in Proposition 2.123. Choosing ε4 small enough, we can clearly assume that (i)
holds. Consider now (ii). Let ε ∈ ]0, ε4[. By Remark 2.119 and Proposition 2.123, we have

u[ε](x) = εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs + c̄− εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

Ũ1[ε](x) ≡
∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[, and

U2[ε] ≡ c̄− εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs,

for all ε ∈ ]−ε4, ε4[. By Proposition 1.29 (i), possibly taking a smaller ε4, there exists a real analytic
map U1 of ]−ε4, ε4[ to C0

h(clV ) such that

Ũ1[ε] = εU1[ε] in C0
h(clV ),

for all ε ∈ ]−ε4, ε4[. By Proposition 1.26 (iii), possibly choosing a smaller ε4, we have that U2 is a real
analytic map of ]−ε4, ε4[ to R. Finally, by the definition of U1 and U2, the statement in (ii) holds.

Remark 2.125. We note that the right-hand side of the equality in (ii) of Theorem 2.124 can be
continued real analytically in the whole ]−ε4, ε4[. Moreover, if V is a bounded open subset of Rn such
that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] = c̄ uniformly in clV .

2.6.4 A real analytic continuation Theorem for the energy integral
As done in Theorem 2.124 for u[·], we can now prove a real analytic continuation Theorem for the
energy integral. Namely, we prove the following.

Theorem 2.126. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε3 be as in Proposition 2.123. Then
there exist ε5 ∈ ]0,min{ε̄1, ε3}] and a real analytic operator G of ]−ε5, ε5[ to R, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx = εnG[ε], (2.121)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx. (2.122)
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Proof. Let Θ[·] be as in Proposition 2.123. Let ε ∈ ]0,min{ε̄1, ε3}[. Clearly,∫
Pa[Ωε]

|∇u[ε](x)|2 dx =
∫

Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx.

Let id denote the identity map in Rn. By Green’s Formula and by the periodicity of the periodic
single layer potential v−a [∂Ωε,Θ[ε]( 1

ε (· − w))], we have∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx = −εn−1

∫
∂Ω

g(t)v−a [∂Ωε,Θ[ε](
1
ε

(· − w))] ◦ (w + ε id)(t) dσt.

By Proposition 1.28 (i), since Θ[ε] ∈ Um−1,α
0 , we have

v−a [∂Ωε,Θ[ε](
1
ε

(· − w))] ◦ (w + ε id)(t)

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]0, ε3[. Thus, it is natural to set

G[ε] = −
∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
g(t) dσt,

for all ε ∈ ]−ε3, ε3[. By definition of G[·], we have∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx = εnG[ε]

for all ε ∈ ]0, ε3[ and so (2.121) follows. Moreover,

G[0] = −
∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[0](s) dσs + δn,2

∫
∂Ω

Ran(0)Θ[0](s) dσs
)
g(t) dσt,

where δn,2 = 1 if n = 2, and δn,2 = 0 if n ≥ 3. Since Θ[0] ∈ Um−1,α
0 , we have

G[0] = −
∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[0](s) dσs
)
g(t) dσt,

and so, by Remark 2.121,

G[0] = −
∫
∂Ω

ũ(t)g(t) dσt.

By Folland [52, p. 118], we have

−
∫
∂Ω

ũ(t)g(t) dσt =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

and accordingly

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

and (2.122) holds. Now we need to prove the real analyticity of G[·]. By continuity of the pointwise
product in Schauder spaces, standard calculus in Banach spaces and Proposition 1.28 (i), we immedi-
ately deduce that there exists ε5 ∈ ]0, ε3] such that the map G of ]−ε5, ε5[ to R is real analytic. Thus,
the Theorem is completely proved.

Remark 2.127. We note that the right-hand side of the equality in (2.121) of Theorem 2.126 can be
continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

∫
Pa[Ωε]

|∇u[ε](x)|2 dx = 0.
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2.6.5 A real analytic continuation Theorem for the integral of the solution
As done in Theorem 2.126 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 2.128. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε3 be as in Proposition 2.123. Then
there exist ε6 ∈ ]0,min{ε̄1, ε3}] and a real analytic operator J of ]−ε6, ε6[ to R, such that∫

Pa[Ωε]

u[ε](x) dx = J [ε], (2.123)

for all ε ∈ ]0, ε6[. Moreover,
J [0] = c̄|A|n. (2.124)

Proof. Let Θ[·] be as in Proposition 2.123. Let ε ∈ ]0,min{ε̄1, ε3}[. Since

u[ε](x) = v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) + c̄− v−a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x̄) ∀x ∈ cl Ta[Ωε],

then ∫
Pa[Ωε]

u[ε](x) dx =
∫

Pa[Ωε]

{
v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x)− v−a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x̄)
}
dx

+ c̄
(
|A|n − ε

n|Ω|n
)
.

On the other hand, by arguing as in the proof of Theorem 2.126, we note that

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(w + εt)

=ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

and that
v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x̄) = εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs.

Then, if we set

L[ε](t) ≡ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−min{ε3, ε̄1},min{ε3, ε̄1}[, we have that there exists ε̃1 ∈ ]0,min{ε3, ε̄1}] such that L[·]
is a real analytic map of ]−ε̃1, ε̃1[ to Cm,α(∂Ω). In particular, L[0](t) = 0 for all t ∈ ∂Ω. Then, by
Theorem 2.103, we easily deduce that there exists ε6 ∈ ]0, ε̃1] and a real analytic map J1 of ]−ε6, ε6[
to R, such that∫

Pa[Ωε]

{
v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x)− v−a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x̄)
}
dx = J1[ε],

for all ε ∈ ]0, ε6[. Moreover, J1[0] = 0. Then, if we set

J [ε] ≡ J1[ε] + c̄
(
|A|n − ε

n|Ω|n
)
,

for all ε ∈ ]−ε6, ε6[, we can immediately conclude.

2.7 An homogenization problem for the Laplace equation with
Neumann boundary conditions in a periodically perforated
domain

In this section we consider an homogenization problem for the Laplace equation with Neumann
boundary conditions in a periodically perforated domain.
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2.7.1 Notation
In this Section we retain the notation introduced in Subsections 1.8.1, 2.6.1. However, we need to
introduce also some other notation.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let
(ε, δ) ∈ (]−ε1, ε1[ \ {0})× ]0,+∞[. If v is a function of cl Ta(ε, δ) to R, then we denote by E(ε,δ)[v] the
function of Rn to R, defined by

E(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ),
0 ∀x ∈ Rn \ cl Ta(ε, δ).

If v is a function of cl Ta(ε, δ) to R and c ∈ R, then we denote by E#
(ε,δ)[v, c] the function of Rn to R,

defined by

E#
(ε,δ)[v, c](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ),
c ∀x ∈ Rn \ cl Ta(ε, δ).

2.7.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be as in (1.56), (1.57),
(1.58), (2.108), (2.109), respectively. For each (ε, δ) ∈ ]0, ε̄1[ × ]0,+∞[, we consider the following
periodic Neumann problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) = 1
δ g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),
u(δx̄) = c̄.

(2.125)

By virtue of Theorem 2.17, we can give the following definition.

Definition 2.129. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[ × ]0,+∞[, we
denote by u(ε,δ) the unique solution in Cm,α(cl Ta(ε, δ)) of boundary value problem (2.125).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 2.130. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄
be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each ε ∈ ]0, ε̄1[, we denote by u[ε]
the unique solution in Cm,α(cl Ta[Ωε]) of the following periodic Neumann problem for the Laplace
equation. 

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε,

u(x̄) = c̄.

(2.126)

Remark 2.131. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be as in
(1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, we note that the solution of problem (2.125) can be expressed by means
of the solution of the auxiliary rescaled problem (2.126), which does not depend on δ. This is due to
the presence of the factor 1/δ in front of g( 1

εδ (x− δw)) in the third equation of problem (2.125).
As a first step, we study the behaviour of (suitable extensions of) u[ε] as ε tends to 0.

Proposition 2.132. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄
be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let 1 ≤ p <∞. Then

lim
ε→0+

E(ε,1)[u[ε]] = c̄ in Lp(A).
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Proof. Let ε3, Θ be as in Proposition 2.123. Let id∂Ω denote the identity map in ∂Ω. If ε ∈
]0,min{ε̄1, ε3}[, we have

u[ε] ◦ (w + ε id∂Ω)(t) =ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+ c̄− εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω.

We set

N [ε](t) ≡ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+ c̄− εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−min{ε̄1, ε3},min{ε̄1, ε3}[. By taking ε̃ ∈ ]0,min{ε̄1, ε3}[ small enough, we can assume (cf.
Proposition 1.26 (i), (iii)) that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

C ≡ sup
ε∈]−ε̃,ε̃[

‖N [ε]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|E(ε,1)[u[ε]](x)| ≤ C ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

By Theorem 2.124, we have

lim
ε→0+

E(ε,1)[u[ε]](x) = c̄ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

E(ε,1)[u[ε]] = c̄ in Lp(A).

Proposition 2.133. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄
be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε3 be as in Proposition 2.123. Then
there exist ε̃ ∈ ]0,min{ε̄1, ε3}[ and a real analytic map N of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖E#
(ε,1)[u[ε], c̄]− c̄‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E#
(ε,1)[u[ε], c̄] = c̄ in L∞(Rn).

Proof. Let ε3, Θ be as in Proposition 2.123. Let id∂Ω denote the identity map in ∂Ω. If ε ∈
]0,min{ε̄1, ε3}[, we have

u[ε] ◦ (w + ε id∂Ω)(t)− c̄ =ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω.

We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− εn−2

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−min{ε̄1, ε3},min{ε̄1, ε3}[. By taking ε̃ ∈ ]0,min{ε̄1, ε3}[ small enough, we can assume (cf.
Proposition 1.26 (i), (iii)) that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω).

By Theorem 2.5, we have

‖E#
(ε,1)[u[ε], c̄]− c̄‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,

and the conclusion easily follows.
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2.7.3 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 2.132 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 2.134. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let 1 ≤ p <∞. Let V be a bounded open
subset of Rn. Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = c̄ in Lp(V ).

Proof. By virtue of Proposition 2.132, we have

lim
ε→0+

‖E(ε,1)[u[ε]]− c̄‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖E(ε,δ)[u(ε,δ)]− c̄‖Lp(V ) ≤ C‖E(ε,1)[u[ε]]− c̄‖Lp(A) ∀(ε, δ) ∈ ]0, ε̄1[× ]0, 1[.

Thus,
lim

(ε,δ)→(0+,0+)
‖E(ε,δ)[u(ε,δ)]− c̄‖Lp(V ) = 0,

and we can easily conclude.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 2.135. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε6, J be as in Theorem 2.128. Let r > 0
and ȳ ∈ Rn. Then ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε], (2.127)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε],

and the conclusion follows.

In the following Theorem we consider the L∞–distance of a certain extension of u(ε,δ) and its limit.
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Theorem 2.136. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε̃, N be as in Proposition 2.133. Then

‖E#
(ε,δ)[u(ε,δ), c̄]− c̄‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,δ)[u(ε,δ), c̄] = c̄ in L∞(Rn).

Proof. It suffices to observe that

‖E#
(ε,δ)[u(ε,δ), c̄]− c̄‖L∞(Rn) = ‖E#

(ε,1)[u[ε], c̄]− c̄‖L∞(Rn)

= ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

2.7.4 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 2.137. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.

Remark 2.138. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be as in
(1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 2.139. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 2.126. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

Here we may note that the ‘radius’ of the holes is δε[δ] = δ
n+2
n which is different from the one of

Definition 2.65 for the Dirichlet problem.
In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 2.140. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g,
c̄ be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε5 be as in Theorem 2.126. Let
δ1 > 0 be as in Definition 2.139. Then

lim
δ→0+

En[δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 2.120.
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Proof. Let δ ∈ ]0, δ1[. By Remark 2.138 and Theorem 2.126, we have∫
Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])nG[ε[δ]]

= δnG[δ
2
n ],

where G is as in Theorem 2.126. On the other hand,

b(1/δ)cn
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx ≤ En[δ] ≤ d(1/δ)en
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx,

and so
b(1/δ)cnδnG[δ

2
n ] ≤ En[δ] ≤ d(1/δ)enδnG[δ

2
n ].

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = G[0].

Finally, by equality (2.122), we easily conclude.

In the following Proposition we represent the function En[·] by means of a real analytic function.

Proposition 2.141. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄
be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε5 and G be as in Theorem 2.126.
Let δ1 > 0 be as in Definition 2.139. Then

En[(1/l)] = G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 2.140.

2.8 A variant of an homogenization problem for the Laplace
equation with Neumann boundary conditions in a periodi-
cally perforated domain

In this section we consider a (slightly) different homogenization problem for the Laplace equation
with Neumann boundary conditions in a periodically perforated domain.

2.8.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 2.6.1, 2.7.1.

Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA\{w}. Let Ω, ε1, ε̄1, g, c̄ be as in (1.56), (1.57),
(1.58), (2.108), (2.109), respectively. For each (ε, δ) ∈ ]0, ε̄1[ × ]0,+∞[, we consider the following
periodic Neumann problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) = g( 1
εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),

u(δx̄) = c̄.

(2.128)

In contrast to problem (2.125), we note that in the third equation of problem (2.128) there is not
the factor 1/δ in front of g( 1

εδ (x− δw)).
By virtue of Theorem 2.17, we can give the following definition.

Definition 2.142. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[ × ]0,+∞[, we
denote by u(ε,δ) the unique solution in Cm,α(cl Ta(ε, δ)) of boundary value problem (2.128).
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Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 2.143. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[, we denote
by u[ε, δ] the unique solution in Cm,α(cl Ta[Ωε]) of the following periodic Neumann problem for the
Laplace equation. 

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε,

u(x̄) = c̄
δ .

(2.129)

Remark 2.144. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be as in
(1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[, we have

u(ε,δ)(x) = δu[ε, δ](
x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, in contrast to the solution of problem (2.125), we note that the solution of
problem (2.128) can be expressed by means of the solution of the auxiliary rescaled problem (2.129),
which does depend on δ.
Remark 2.145. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, g, c̄
be as in (1.56), (1.58), (2.108), (2.109), respectively. Let ε3, Θ[·] be as in Proposition 2.123. Let
(ε, δ) ∈ ]0,min{ε̄1, ε3}[× ]0,+∞[. We have

u[ε, δ](x) = εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

+
c̄

δ
− εn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀x ∈ cl Ta[Ωε].

As a first step, we study the behaviour of u[ε, δ] as (ε, δ) tends to (0, 0).

Proposition 2.146. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄
be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let 1 ≤ p <∞. Then

lim
(ε,δ)→(0+,0+)

E(ε,1)[δu[ε, δ]] = c̄ in Lp(A).

Proof. Let ε3, Θ be as in Proposition 2.123. Let id∂Ω denote the identity map in ∂Ω. If ε ∈
]0,min{ε̄1, ε3}[, we have

δu[ε, δ] ◦ (w + ε id∂Ω)(t) =δε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+ c̄− δεn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω.

We set

N [ε, δ](t) ≡δε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+ c̄− δεn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−min{ε̄1, ε3},min{ε̄1, ε3}[× ]−∞,+∞[. By taking ε̃ ∈ ]0,min{ε̄1, ε3}[ and δ̃ ∈ ]0,+∞[
small enough, we can assume (cf. Proposition 1.26 (i), (iii)) that N is a real analytic map of
]−ε̃, ε̃[× ]−δ̃, δ̃[ to Cm,α(∂Ω) and that

C ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖N [ε, δ]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|E(ε,1)[δu[ε, δ]](x)| ≤ C ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.
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Clearly (cf. Theorem 2.124), we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[δu[ε, δ]](x) = c̄ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[δu[ε, δ]] = c̄ in Lp(A).

We have also the following.

Theorem 2.147. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε3 be as in Proposition 2.123. Then
there exist ε6 ∈ ]0,min{ε̄1, ε3}] and a real analytic operator J of ]−ε6, ε6[× R to R, such that∫

Pa[Ωε]

δu[ε, δ](x) dx = J [ε, δ], (2.130)

for all (ε, δ) ∈ ]0, ε6[× ]0,+∞[. Moreover,

J [0, 0] = c̄|A|n. (2.131)

Proof. Let Θ[·] be as in Proposition 2.123. Let (ε, δ) ∈ ]0,min{ε̄1, ε3}[× ]0,+∞[. Since

δu[ε, δ](x) = δv−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) + c̄− δv−a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x̄) ∀x ∈ cl Ta[Ωε],

then∫
Pa[Ωε]

δu[ε, δ](x) dx =δ
∫

Pa[Ωε]

{
v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x)− v−a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x̄)
}
dx

+ c̄
(
|A|n − ε

n|Ω|n
)
.

On the other hand, by arguing as in the proof of Theorem 2.128, we easily deduce that there exists
ε6 ∈ ]0,min{ε̄1, ε3}] and a real analytic map J1 of ]−ε6, ε6[ to R, such that∫

Pa[Ωε]

{
v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x)− v−a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x̄)
}
dx = J1[ε],

for all ε ∈ ]0, ε6[. Moreover, J1[0] = 0. Then, if we set

J [ε, δ] ≡ δJ1[ε] + c̄
(
|A|n − ε

n|Ω|n
)
,

for all (ε, δ) ∈ ]−ε6, ε6[× R, we can immediately conclude.

Proposition 2.148. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄
be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε3 be as in Proposition 2.123. Then
there exist ε̃ ∈ ]0,min{ε̄1, ε3}[ and a real analytic map N of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖E#
(ε,1)[δu[ε, δ], c̄]− c̄‖L∞(Rn) = δε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,1)[δu[ε, δ], c̄] = c̄ in L∞(Rn).

Proof. Let ε3, Θ be as in Proposition 2.123. Let id∂Ω denote the identity map in ∂Ω. If (ε, δ) ∈
]0,min{ε̄1, ε3}[× ]0,+∞[, we have

δu[ε, δ] ◦ (w + ε id∂Ω)(t)− c̄ =δε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− δεn−1

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω.
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We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− εn−2

∫
∂Ω

San(x̄− w − εs)Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−min{ε̄1, ε3},min{ε̄1, ε3}[. By taking ε̃ ∈ ]0,min{ε̄1, ε3}[ small enough, we can assume (cf.
Proposition 1.26 (i), (iii)) that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω).

By Theorem 2.5, we have

‖E#
(ε,1)[δu[ε, δ], c̄]− c̄‖L∞(Rn) = δε‖N [ε]‖C0(∂Ω) ∀(ε, δ) ∈ ]0, ε̃[× ]0,+∞[,

and the conclusion easily follows.

2.8.2 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 2.146 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 2.149. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let 1 ≤ p <∞. Let V be a bounded open
subset of Rn. Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = c̄ in Lp(V ).

Proof. By virtue of Proposition 2.146, we have

lim
ε→0+

‖E(ε,1)[δu[ε, δ]]− c̄‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖E(ε,δ)[u(ε,δ)]− c̄‖Lp(V ) ≤ C‖E(ε,1)[δu[ε, δ]]− c̄‖Lp(A) ∀(ε, δ) ∈ ]0, ε̄1[× ]0, 1[.

Thus,
lim

(ε,δ)→(0+,0+)
‖E(ε,δ)[u(ε,δ)]− c̄‖Lp(V ) = 0,

and we can easily conclude.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 2.150. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε6, J be as in Theorem 2.147. Let r > 0
and ȳ ∈ Rn. Then ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ

[
ε,
r

l

]
, (2.132)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, and let l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.
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Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

(r/l)u
[
ε, (r/l)

]( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

(r/l)u
[
ε, (r/l)

]
(t) dt

=
rn

ln
J
[
ε,
r

l

]
.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ
[
ε,
r

l

]
,

and the conclusion follows.

In the following Theorem we consider the L∞–distance of a certain extension of u(ε,δ) and its limit.

Theorem 2.151. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε̃, N be as in Proposition 2.148. Then

‖E#
(ε,δ)[u(ε,δ), c̄]− c̄‖L∞(Rn) = δε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,δ)[u(ε,δ), c̄] = c̄ in L∞(Rn).

Proof. It suffices to observe that

‖E#
(ε,δ)[u(ε,δ), c̄]− c̄‖L∞(Rn) = ‖E#

(ε,1)[δu[ε, δ], c̄]− c̄‖L∞(Rn)

= δε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

2.8.3 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 2.152. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be
as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.

Remark 2.153. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be as in
(1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn
∫

Pa[Ωε]

|∇u[ε, δ](t)|2 dt.

Remark 2.154. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄ be as in
(1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε5 and G be as in Theorem 2.126. Then we
have ∫

Pa[Ωε]

|∇u[ε, δ](t)|2 dt = εnG[ε],

for all (ε, δ) ∈ ]0, ε5[× ]0,+∞[.
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In the following Proposition we represent the function En(·, ·) by means of a real analytic function.

Proposition 2.155. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε1, ε̄1, g, c̄
be as in (1.56), (1.57), (1.58), (2.108), (2.109), respectively. Let ε5 and G be as in Theorem 2.126.
Then

En
(
ε,

1
l

)
= εnG[ε],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0}.

Proof. Let (ε, δ) ∈ ]0, ε5[× ]0,+∞[. By Remark 2.153 and Theorem 2.126, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δnεnG[ε] (2.133)

where G is as in Theorem 2.126. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0}, then we have

En
(
ε,

1
l

)
= ln

1
ln
εnG[ε]

= εnG[ε],

and the conclusion easily follows.

2.9 Asymptotic behaviour of the solutions of an alternative
Neumann problem for the Laplace equation in a periodi-
cally perforated domain

In this Section we study the asymptotic behaviour of the solutions of an alternative Neumann problem
for the Laplace equation in a periodically perforated domain with small holes.

2.9.1 Notation and preliminaries

We retain the notation introduced in Subsections 1.8.1, 2.6.1. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A.
Let Ω, ε1, g be as in (1.56), (1.57), (2.108), respectively. For each ε ∈ ]0, ε1[, we consider the following
periodic Neumann problem for the Laplace equation.


∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε,∫

∂Ωε
u(x) dσx = 0.

(2.134)

By virtue of Theorem 2.17, we can give the following definition.

Definition 2.156. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε]) of
boundary value problem (2.134).

Remark 2.157. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. For each ε ∈ ]0, ε1[, let θ̂[ε] be as in Definition 2.118. Let ε ∈ ]0, ε1[. We have

u[ε](x) =εn−1

∫
∂Ω

San(x− w − εs)θ̂[ε](s) dσs

− εn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))θ̂[ε](s) dσs
)
dσt ∀x ∈ cl Ta[Ωε].
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2.9.2 A functional analytic representation Theorem for the solution of the
alternative singularly perturbed Neumann problem

The following statement shows that {u[ε](·)}ε∈]0,ε1[ can be continued real analytically for negative
values of ε.

Theorem 2.158. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let ε3 be as in Proposition 2.123. Let V be a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], a real analytic operator U1 of ]−ε4, ε4[ to the space
C0
h(clV ), and a real analytic operator U2 of ]−ε4, ε4[ to R such that the following conditions hold.

(i) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(ii)
u[ε](x) = εnU1[ε](x) + εU2[ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. Choosing ε4 small enough, we can clearly assume that (i) holds. Consider now (ii). Let
ε ∈ ]0, ε4[. Let Θ be as in Proposition 2.123. By Remark 2.157 and Proposition 2.123, we have

u[ε](x) =εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

− εn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs
)
dσt ∀x ∈ cl Ta[Ωε].

By Proposition 1.28 (i), we have

εn−1

∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]0, ε4[. Thus, it is natural to set

Ũ1[ε](x) ≡
∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[, and

U2[ε] ≡ − 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt,

for all ε ∈ ]−ε4, ε4[. By the proof of Theorem 2.124, we have that, possibly taking a smaller ε4, there
exists a real analytic operator U1 of ]−ε4, ε4[ to C0

h(clV ), such that

Ũ1[ε] = εU1[ε] in C0
h(clV ),

for all ε ∈ ]−ε4, ε4[. Possibly choosing a smaller ε4, by Proposition 1.28 (i) and standard calculus in
Banach spaces, we easily deduce that U2 is a real analytic operator of ]−ε4, ε4[ to R. Finally, by the
definition of U1 and U2, we immediately deduce that the equality in (ii) holds.

Remark 2.159. We note that the right-hand side of the equality in (ii) of Theorem 2.158 can be
continued real analytically in the whole ]−ε4, ε4[. Moreover, if V is a bounded open subset of Rn such
that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] = 0 uniformly in clV .
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2.9.3 A real analytic continuation Theorem for the energy integral
As done in Theorem 2.158 for u[·], we can now prove a real analytic continuation Theorem for the
energy integral. Namely, we prove the following.

Theorem 2.160. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let ε3 be as in Proposition 2.123. Then there exist ε5 ∈ ]0, ε3] and a real analytic operator
G of ]−ε5, ε5[ to R, such that ∫

Pa[Ωε]

|∇u[ε](x)|2 dx = εnG[ε], (2.135)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (2.136)

where ũ is as in Definition 2.120.

Proof. Let Θ be as in Proposition (2.123). Let ε ∈ ]0, ε3[. Clearly,∫
Pa[Ωε]

|∇u[ε](x)|2 dx =
∫

Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx.

As a consequence, in order to prove the Theorem, it suffices to follow the proof of Theorem 2.126.

Remark 2.161. We note that the right-hand side of the equality in (2.135) of Theorem 2.160 can be
continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

∫
Pa[Ωε]

|∇u[ε](x)|2 dx = 0.

2.9.4 A real analytic continuation Theorem for the integral of the solution
As done in Theorem 2.160 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 2.162. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let ε3 be as in Proposition 2.123. Then there exist ε6 ∈ ]0, ε3] and a real analytic operator
J of ]−ε6, ε6[ to R, such that ∫

Pa[Ωε]

u[ε](x) dx = J [ε], (2.137)

for all ε ∈ ]0, ε6[. Moreover,
J [0] = 0. (2.138)

Proof. If ε ∈ ]0, ε3], we have

u[ε](x) =εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

− εn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs
)
dσt ∀x ∈ cl Ta[Ωε].

Then, if we set

L[ε](t) ≡ ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− ε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[, we have that there exists ε̃ ∈ ]0, ε3] such that L[·] is a real analytic map of ]−ε̃, ε̃[
to Cm,α(∂Ω) and that

u[ε](w + εt) = L[ε](t) ∀t ∈ ∂Ω, ∀ε ∈ ]0, ε̃[.



2.10 Alternative homogenization problem for the Laplace equation with Neumann boundary
conditions in a periodically perforated domain 91

In particular, L[0](t) = 0 for all t ∈ ∂Ω. Then, by Theorem 2.103, we easily deduce that there exists
ε6 ∈ ]0, ε̃] and a real analytic map J of ]−ε6, ε6[ to R, such that∫

Pa[Ωε]

u[ε](x) dx = J [ε],

for all ε ∈ ]0, ε6[, and that J [0] = 0.

2.10 Alternative homogenization problem for the Laplace equa-
tion with Neumann boundary conditions in a periodically
perforated domain

In this section we consider an homogenization problem for the Laplace equation with Neumann
boundary conditions in a periodically perforated domain.

2.10.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 2.6.1 and 2.7.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108), respectively.
For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic Neumann problem for the Laplace
equation. 

∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) = 1
δ g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),∫
∂Ω(ε,δ)

u(x) dσx = 0.

(2.139)

By virtue of Theorem 2.17, we can give the following definition.

Definition 2.163. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by u(ε,δ) the unique solution in
Cm,α(cl Ta(ε, δ)) of boundary value problem (2.139).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 2.164. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε]) of
the following periodic Neumann problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε,∫

∂Ωε
u(x) dσx = 0.

(2.140)

Remark 2.165. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, we note that the solution of problem (2.139) can be expressed by means
of the solution of the auxiliary rescaled problem (2.140), which does not depend on δ. This is due to
the presence of the factor 1/δ in front of g( 1

εδ (x− δw)) in the third equation of problem (2.139).
As a first step, we study the behaviour of u[ε] as ε tends to 0.

Proposition 2.166. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let ε3 be as in Proposition 2.123. Then there exist ε̃ ∈ ]0, ε3[ and a real analytic
map N of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖E(ε,1)[u[ε]]‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),
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for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E(ε,1)[u[ε]] = 0 in L∞(Rn).

Proof. Let ε3, Θ be as in Proposition 2.123. Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[, we
have

u[ε] ◦ (w + ε id∂Ω)(t) = ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− ε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ ∂Ω.

We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i)) that
N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω).

By Theorem 2.5, we have

‖E(ε,1)[u[ε]](x)‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω), ∀ε ∈ ]0, ε̃[,

and the conclusion easily follows.

2.10.2 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 2.166 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 2.167. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let ε̃, N be as in Proposition 2.166. Then

‖E(ε,δ)[u(ε,δ)]‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn).

Proof. It suffices to observe that

‖E(ε,δ)[u(ε,δ)]‖L∞(Rn) = ‖E(ε,1)[u[ε]]‖L∞(Rn)

= ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 2.168. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let ε6, J be as in Theorem 2.162. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε], (2.141)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.
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Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε],

and the conclusion follows.

2.10.3 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 2.169. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.

Remark 2.170. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 2.171. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 2.160. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.
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Proposition 2.172. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let ε5 be as in Theorem 2.160. Let δ1 > 0 be as in Definition 2.171. Then

lim
δ→0+

En[δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 2.120.

Proof. Let δ ∈ ]0, δ1[. By Remark 2.170 and Theorem 2.160, we have∫
Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])nG[ε[δ]]

= δnG[δ
2
n ],

where G is as in Theorem 2.160. On the other hand,

b(1/δ)cn
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx ≤ En[δ] ≤ d(1/δ)en
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx,

and so
b(1/δ)cnδnG[δ

2
n ] ≤ En[δ] ≤ d(1/δ)enδnG[δ

2
n ].

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = G[0].

Finally, by equality (2.136), we easily conclude.

In the following Proposition we represent the function En[·] by means of a real analytic function.

Proposition 2.173. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let ε5 and G be as in Theorem 2.160. Let δ1 > 0 be as in Definition 2.171. Then

En[(1/l)] = G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 2.172.

2.11 A variant of the alternative homogenization problem for
the Laplace equation with Neumann boundary conditions
in a periodically perforated domain

In this section we consider a different homogenization problem for the Laplace equation with Neumann
boundary conditions in a periodically perforated domain.

2.11.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 2.6.1 and 2.7.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108), respectively.
For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic Neumann problem for the Laplace
equation. 

∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) = g( 1
εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),∫

∂Ω(ε,δ)
u(x) dσx = 0.

(2.142)

In contrast to problem (2.139), we note that in the third equation of problem (2.142) there is not
the factor 1/δ in front of g( 1

εδ (x− δw)).
By virtue of Theorem 2.17, we can give the following definition.
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Definition 2.174. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by u(ε,δ) the unique solution in
Cm,α(cl Ta(ε, δ)) of boundary value problem (2.142).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 2.175. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε]) of
the following periodic Neumann problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g

(
1
ε (x− w)

)
∀x ∈ ∂Ωε,∫

∂Ωε
u(x) dσx = 0.

(2.143)

Remark 2.176. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = δu[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

We have the following.

Proposition 2.177. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let ε3 be as in Proposition 2.123. Then there exist ε̃ ∈ ]0, ε3[ and a real analytic
map N of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖E(ε,1)[δu[ε]]‖L∞(Rn) = δε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,1)[δu[ε]] = 0 in L∞(Rn).

Proof. It is an immediate consequence of Proposition 2.166.

2.11.2 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 2.177 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 2.178. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let ε̃, N be as in Proposition 2.177. Then

‖E(ε,δ)[u(ε,δ)]‖L∞(Rn) = δε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn).

Proof. It suffices to observe that

‖E(ε,δ)[u(ε,δ)]‖L∞(Rn) = ‖E(ε,1)[δu[ε]]‖L∞(Rn)

= δε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Then we have the following.
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Theorem 2.179. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let ε6, J be as in Theorem 2.162. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l
J [ε], (2.144)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

(r/l)u[ε]
( l
r
x
)
dx

=
rn

ln
r

l

∫
Pa[Ωε]

u[ε](t) dt

=
rn+1

l

1
ln
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
rn+1

l
J [ε],

and the conclusion follows.

2.11.3 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 2.180. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.

Remark 2.181. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57), (2.108),
respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn
∫

Pa[Ωε]

|∇u[ε](t)|2 dt.

In the following Proposition we represent the function En(·, ·) by means of a real analytic function.

Proposition 2.182. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, g be as in (1.56), (1.57),
(2.108), respectively. Let ε5 and G be as in Theorem 2.160. Then

En
(
ε,

1
l

)
= εnG[ε],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0}.
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Proof. Let (ε, δ) ∈ ]0, ε5[× ]0,+∞[. By Remark 2.181 and Theorem 2.160, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δnεnG[ε] (2.145)

where G is as in Theorem 2.160. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0}, then we have

En
(
ε,

1
l

)
= ln

1
ln
εnG[ε]

= εnG[ε],

and the conclusion easily follows.
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CHAPTER 3

Singular perturbation and homogenization problems
for the Laplace equation with Robin boundary
condition

In this Chapter we introduce the periodic Robin problem for the Laplace equation and we study
singular perturbation and homogenization problems for the Laplace operator with Robin boundary
condition in a periodically perforated domain. In particular, we consider both the linear and the
nonlinear case. First of all, by means of periodic simple layer potentials, we show the solvability of
the linear Robin problem. Secondly, both for the linear and the nonlinear case, we consider singular
perturbation problems in a periodically perforated domain with small holes, and we apply the obtained
results to homogenization problems. As well as for the Dirichlet and Neumann problems, we follow
the approach of Lanza [72], where the asymptotic behaviour of the solutions of a nonlinear Robin
problem for the Laplace operator in a domain with a small hole is considered. We also mention that
nonlinear traction problems have been analysed by Dalla Riva and Lanza [38, 39, 42, 43] with this
approach. One of the tools used in our analysis is the study of the dependence of layer potentials
upon perturbations (cf. Lanza and Rossi [85] and also Dalla Riva and Lanza [40].) For a more general
result concerning the nonlinear Robin problem, we refer to [82].

We retain the notation of Chapter 1 (see in particular Sections 1.1, 1.3, Theorem 1.4, and Definitions
1.12, 1.14, 1.16.) For notation, definitions, and properties concerning classical layer potentials for the
Laplace equation, we refer to Appendix B.

3.1 A periodic linear Robin boundary value problem for the
Laplace equation

In this Section we introduce a periodic linear Robin problem for the Laplace equation and we show
the existence and uniqueness of a solution by means of the periodic simple layer potential.

3.1.1 Formulation of the problem
In this Subsection we introduce a periodic linear Robin problem for the Laplace equation.

First of all, we need to introduce some notation. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in
(1.46). We shall consider the following assumptions.

φ ∈ Cm−1,α(∂I), φ ≤ 0,
∫
∂I
φdσ < 0; (3.1)

Γ ∈ Cm−1,α(∂I). (3.2)

Let m ∈ N \ {0} Let α ∈ ]0, 1[. Let I be as in (1.46). We also set

Um−1,α
∂I ≡

{
µ ∈ Cm−1,α(∂I) :

∫
∂I
µdσ = 0

}
. (3.3)

99
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We are now ready to give the following.

Definition 3.1. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, Γ be as in (3.1), (3.2),
respectively. We say that a function u ∈ C1(cl Ta[I]) ∩ C2(Ta[I]) solves the periodic (linear) Robin
problem for the Laplace equation if

∆u(x) = 0 ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
∂
∂νI
u(x) + φ(x)u(x) = Γ(x) ∀x ∈ ∂I.

(3.4)

3.1.2 Existence and uniqueness results for the solutions of the periodic
Robin problem

In this Subsection we prove uniqueness results for the solutions of the periodic Robin problems for the
Laplace equation.

Proposition 3.2. Let m ∈ N\{0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, Γ be as in (3.1), (3.2),
respectively. Then boundary value problem (3.4) has at most one solution in C1(cl Ta[I]) ∩ C2(Ta[I]).

Proof. Let u1, u2 in C1(cl Ta[I]) ∩ C2(Ta[I]) be two solutions of (3.4). We set

u(x) ≡ u1(x)− u2(x) ∀x ∈ cl Ta[I].

Clearly, the function u solves the following boundary value problem:
∆u(x) = 0 ∀x ∈ Ta[I],
u(x+ ai) = u(x) ∀x ∈ cl Ta[I], ∀i ∈ {1, . . . , n},
∂
∂νI
u(x) + φ(x)u(x) = 0 ∀x ∈ ∂I.

By the Divergence Theorem and the periodicity of u, we have

0 ≤
∫

Pa[I]
|∇u(x)|2 dx = −

∫
∂I
u(x)

∂

∂νI
u(x) dσx =

∫
∂I
φ(x)(u(x))2 dσx ≤ 0.

Therefore, u is constant in cl Pa[I]. Now assume that there exists a constant c ∈ R \ {0}, such that
u(x) = c for all x ∈ cl Pa[I]. Then

0 ≤
∫
∂I
φ(x)c2 dσx = c2

∫
∂I
φdσ < 0.

Hence, c must be equal to 0, i.e., u = 0 in cl Pa[I], and, accordingly,

u1(x) = u2(x) ∀x ∈ cl Ta[I].

As we know, in order to solve problem (3.4) by means of periodic simple layer potentials, we need
to study some integral equations. Thus, in the following Proposition, we study an operator related to
the equations that we shall consider in the sequel.

Proposition 3.3. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ be as in (3.1). Let
Um−1,α
∂I be as in (3.3). Let LI,φ be the map of Um−1,α

∂I × R to Cm−1,α(∂I), which takes (µ, ξ) to

LI,φ[µ, ξ](t) ≡1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(San(t− s))µ(s) dσs

+ φ(t)
∫
∂I
San(t− s)µ(s) dσs + φ(t)ξ ∀t ∈ ∂I,

for all (µ, ξ) ∈ Um−1,α
∂I × R. Then LI,φ is an isomorphism of Um−1,α

∂I × R onto Cm−1,α(∂I).
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Proof. Clearly, if (µ, ξ) ∈ Um−1,α
∂I × R, then LI,φ[µ, ξ] ∈ Cm−1,α(∂I). We need to prove that LI,µ is

bijective. First of all, we prove its injectivity. Let (µ, ξ) ∈ Um−1,α
∂I × R be such that LI,µ[µ, ξ] = 0.

By the properties of the periodic simple layer potential, we have that the function u of cl Ta[I] to R
defined by

u(x) ≡ v−a [∂I, µ](x) + ξ ∀x ∈ cl Ta[I],
solves problem (3.4) with Γ ≡ 0. Hence, by virtue of Proposition 3.2,

u(x) = 0 ∀x ∈ cl Ta[I].

On the other hand, the function ū of cl I to R, defined by

ū(x) ≡ v+
a [∂I, µ](x) + ξ ∀x ∈ cl I,

solves the problem {
∆ū = 0 in I,
ū = 0 on ∂I,

and so
ū(x) = 0 ∀x ∈ cl I.

By Theorem 1.15 (iv), we have

µ(t) =
∂

∂νI
v−a [∂I, µ](t)− ∂

∂νI
v+
a [∂I, µ](t) = 0 ∀t ∈ ∂I.

As a consequence, v−a [∂I, µ] = 0 on ∂I, and so also ξ = 0.
Now we need to prove the surjectivity. Let L be the map of Cm−1,α(∂I) to Cm−1,α(∂I), defined by

L[µ](t) ≡ 1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(San(t− s))µ(s) dσs + φ(t)

∫
∂I
San(t− s)µ(s) dσs ∀t ∈ ∂I,

for all µ ∈ Cm−1,α(∂I). Let L̃ be the map of L2(∂I) to L2(∂I), defined by

L̃[µ](t) ≡ 1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(San(t− s))µ(s) dσs + φ(t)

∫
∂I
San(t− s)µ(s) dσs ∀t ∈ ∂I,

for all µ ∈ L2(∂I). Since the singularities of the involved integral operators are weak, L̃ is linear and
continuous in L2(∂I). Also, if we denote by I the identity operator, then the operator − 1

2I + L̃ is
compact in L2(∂I).

Assume L̃ is injective. If L̃ is injective, then, by the Fredholm Theory, we have that it is an
isomorphism of L2(∂I) onto L2(∂I). Accordingly, also L is an isomorphism of Cm−1,α(∂I) onto
Cm−1,α(∂I) (see Theorem 1.21.) Consequently, the codimension in Cm−1,α(∂I) of the subspace

V ≡
{
LI,φ[µ, 0] : µ ∈ Um−1,α

∂I

}
is 1. Since LI,φ is injective, we have that

φ 6∈ V,
and so

Cm−1,α(∂I) = V ⊕ 〈φ〉 .
Therefore, LI,φ is surjective.

Now assume that L̃ is not injective in L2(∂I). By arguing as above, we have{
µ ∈ L2(∂I) :

∫
∂I
µdσ = 0

}
∩ ker L̃ = {0}.

As a consequence, dim ker L̃ = 1. By Fredholm Theory and Theorem 1.21, there exists h ∈ Cm,α(∂I),
such that

L2(∂I) =
{
L̃[µ] : µ ∈ L2(∂I),

∫
∂I
µdσ = 0

}
⊕⊥ 〈h〉 .

Thus, also by virtue of Theorem 1.21, we have

Cm−1,α(∂I) =
{
L[µ] : µ ∈ Um−1,α

∂I

}
⊕ 〈h〉 ,

and so the subspace V, defined as above, has codimension 1 in Cm−1,α(∂I), and consequently LI,µ is
surjective. The Proposition is now completely proved.
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We are now ready to prove the main result of this section.

Theorem 3.4. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, Γ be as in (3.1), (3.2),
respectively. Let Um−1,α

∂I be as in (3.3). Then boundary value problem (3.4) has a unique solution
u ∈ Cm,α(cl Ta[I]) ∩ C2(Ta[I]). Moreover,

u(x) = v−a [∂I, µ](x) + ξ ∀x ∈ cl Ta[I], (3.5)

where (µ, ξ) is the unique pair in Um−1,α
∂I × R that solves

LI,φ[µ, ξ](t) = Γ(t) ∀t ∈ ∂I, (3.6)

with LI,φ as in Proposition 3.3.

Proof. The uniqueness has already been proved in Proposition 3.2. We need to prove the existence.
Let (µ, ξ) ∈ Um−1,α

∂I × R be a solution of (3.6). We have

∂

∂νI
v−a [∂I, µ](t) + φ(t)(v−a [∂I, µ](t) + ξ) = Γ(t) ∀t ∈ ∂I.

The existence of such a pair (µ, ξ) is ensured by Proposition 3.3. Since µ ∈ Cm−1,α(∂I), then
v−a [∂I, µ] ∈ Cm,α(cl Ta[I]) ∩C2(Ta[I]). Since

∫
∂I µdσ = 0, then v−a [∂I, µ] is harmonic in Ta[I]. Finally,

if u is as in (3.5), then u is a periodic harmonic function, such that

∂

∂νI
u(t) + φ(t)u(t) = Γ(t) ∀t ∈ ∂I,

and we can immediately conclude.

3.2 Asymptotic behaviour of the solutions of the linear Robin
problem for the Laplace equation in a periodically perfo-
rated domain

In this Section we study the asymptotic behaviour of the solutions of the Robin problem for the
Laplace equation in a periodically perforated domain with small holes.

3.2.1 Notation

We retain the notation introduced in Subsection 1.8.1.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the following assumptions.

f ∈ Cm−1,α(∂Ω), f ≤ 0,
∫
∂Ω

f dσ < 0; (3.7)

g ∈ Cm−1,α(∂Ω). (3.8)

3.2.2 Preliminaries

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7), (3.8), respectively.
For each ε ∈ ]0, ε1[, we consider the following periodic linear Robin problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) + f( 1

ε (x− w))u(x) = g( 1
ε (x− w)) ∀x ∈ ∂Ωε.

(3.9)

By virtue of Theorem 3.4, we can give the following definition.

Definition 3.5. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε]) of
boundary value problem (3.9).
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Since we want to represent the functions u[ε] by means of a periodic simple layer potential and a
constant (cf. Theorem 3.4), we need to study some integral equations. Indeed, by virtue of Theorem
3.4, we can transform (3.9) into an integral equation, whose unknowns are the moment of the simple
layer potential and the additive constant. Moreover, we want to transform these equations defined
on the ε-dependent domain ∂Ωε into equations defined on the fixed domain ∂Ω. We introduce these
integral equations in the following Proposition. The relation between the solution of the integral
equations and the solution of boundary value problem (3.9) will be clarified later.

Proposition 3.6. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

ε , Um−1,α
0 be as in (1.63), (1.64), respectively. Let Λ be the map

of ]−ε1, ε1[× Um−1,α
0 × R in Cm−1,α(∂Ω) defined by

Λ[ε,θ, ξ](t) ≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ f(t)
(
ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)
− g(t) ∀t ∈ ∂Ω,

(3.10)

for all (ε, θ, ξ) ∈ ]−ε1, ε1[× Um−1,α
0 × R. Then the following statements hold.

(i) If ε ∈ ]0, ε1[, then the pair (θ, ξ) ∈ Um−1,α
0 × R satisfies equation

Λ[ε, θ, ξ] = 0, (3.11)

if and only if the pair (µ, ξ) ∈ Um−1,α
ε × R, with µ ∈ Um−1,α

ε defined by

µ(x) ≡ θ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (3.12)

satisfies the equation

Γ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(San(x− y))µ(y) dσy

+ φ(x)
(∫

∂Ωε

San(x− y)µ(y) dσy + ξ
)

∀x ∈ ∂Ωε,
(3.13)

with Γ, φ ∈ Cm−1,α(∂Ωε) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε. (3.14)

and
φ(x) ≡ f(

1
ε

(x− w)) ∀x ∈ ∂Ωε. (3.15)

In particular, equation (3.11) has exactly one solution (θ, ξ) ∈ Um−1,α
0 × R, for each ε ∈ ]0, ε1[.

(ii) The pair (θ, ξ) ∈ Um−1,α
0 × R satisfies equation

Λ[0, θ, ξ] = 0, (3.16)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs + f(t)ξ ∀t ∈ ∂Ω. (3.17)

In particular, equation (3.16) has exactly one solution (θ, ξ) ∈ Um−1,α
0 × R, which we denote by

(θ̃, ξ̃).

Proof. Consider (i). Let θ ∈ Cm−1,α(∂Ω). Let ε ∈ ]0, ε1[. First of all, we note that∫
∂Ωε

θ(
1
ε

(x− w)) dσx = εn−1

∫
∂Ω

θ(t) dσt,
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and so θ ∈ Um−1,α
0 if and only if θ( 1

ε (· − w)) ∈ Um−1,α
ε . The equivalence of equation (3.11) in the

unknown (θ, ξ) ∈ Um−1,α
0 × R and equation (3.13) in the unknown (µ, ξ) ∈ Um−1,α

ε × R follows by
a straightforward computation based on the rule of change of variables in integrals, on well known
properties of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Sections 3,4]) and
Lemma 1.25. The existence and uniqueness of a solution of equation (3.13) follows by Proposition 3.3.
Then the existence and uniqueness of a solution of equation (3.11) follows by the equivalence of (3.11)
and (3.13). Consider (ii). The equivalence of (3.16) and (3.17) is obvious. The existence of a unique
solution of equation (3.17) is an immediate consequence of well known results of classical potential
theory. Indeed, there exists a unique ξ ∈ R, such that∫

∂Ω

g(t) dσt − ξ
∫
∂Ω

f(t) dσt = 0.

Then there exists a unique θ ∈ Um−1,α
0 such that

1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs = g(t)−

∫
∂Ω
g(s) dσs∫

∂Ω
f(s) dσs

f(t) ∀t ∈ ∂Ω

(cf. Folland [52, Chapter 3, Section E, and Lemma 3.30] for the existence of θ in C0(∂Ω) and Lanza
[72, Appendix A] for the Cm−1,α regularity.)

By Proposition 3.6, it makes sense to introduce the following.

Definition 3.7. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

0 be as in (1.64). For each ε ∈ ]0, ε1[, we denote by (θ̂[ε], ξ̂[ε]) the
unique pair in Um−1,α

0 ×R that solves (3.11). Analogously, we denote by (θ̂[0], ξ̂[0]) the unique pair in
Um−1,α

0 × R that solves (3.16).

In the following Remark, we show the relation between the solutions of boundary value problem
(3.9) and the solutions of equation (3.11).

Remark 3.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively.

Let ε ∈ ]0, ε1[. We have

u[ε](x) = εn−1

∫
∂Ω

San(x− w − εs)θ̂[ε](s) dσs + ξ̂[ε] ∀x ∈ cl Ta[Ωε].

While the relation between equation (3.11) and boundary value problem (3.9) is now clear, we
want to see if (3.16) is related to some (limiting) boundary value problem. We give the following.

Definition 3.9. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, f , g be as in (1.56), (3.7), (3.8), respectively. We
denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following boundary value problem

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = g(x)−
R
∂Ω g dσR
∂Ω f dσ

f(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(3.18)

Problem (3.18) will be called the limiting boundary value problem.

Remark 3.10. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. We have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̂[0](y) dσy ∀x ∈ Rn \ Ω.

We now prove the following.

Proposition 3.11. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

0 be as in (1.64). Let Λ and (θ̃, ξ̃) be as in Proposition 3.6. Then
there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[×Um−1,α

0 ×R to Cm−1,α(∂Ω).
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Moreover, if we set b0 ≡ (0, θ̃, ξ̃), then the differential ∂(θ,ξ)Λ[b0] of Λ with respect to the variables
(θ, ξ) at b0 is delivered by the following formula

∂(θ,ξ)Λ[b0](θ̄, ξ̄)(t) =
1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs + f(t)ξ̄ ∀t ∈ ∂Ω, (3.19)

for all (θ̄, ξ̄) ∈ Um−1,α
0 × R, and is a linear homeomorphism of Um−1,α

0 × R onto Cm−1,α(∂Ω).

Proof. By Proposition 1.26 (i), (ii) and by the continuity of the pointwise product in Schauder
space, we easily deduce that there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of
]−ε2, ε2[×Um−1,α

0 ×R to Cm−1,α(∂Ω). By standard calculus in Banach space, we immediately deduce
that (3.19) holds. Now we need to prove that ∂(θ,ξ)Λ[b0] is a linear homeomorphism. By the Open
Mapping Theorem, it suffices to prove that it is a bijection. Let ψ ∈ Cm−1,α(∂Ω). We want to prove
that there exists a unique pair (θ̄, ξ̄) ∈ Um−1,α

0 × R, such that

1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs + f(t)ξ̄ = ψ(t) ∀t ∈ ∂Ω. (3.20)

We first prove uniqueness. Let (θ̄, ξ̄) ∈ Um−1,α
0 × R solve (3.20). By integrating both sides of (3.20)

and by the well known identity∫
∂Ω

∂

∂νΩ(t)
(
Sn(s− t)

)
dσt =

1
2

∀s ∈ ∂Ω,

we have that ∫
∂Ω

θ̄(t) dσt + ξ̄

∫
∂Ω

f(t) dσt =
∫
∂Ω

ψ(t) dσt,

and accordingly, since
∫
∂Ω
θ̄ dσ = 0,

ξ̄ =

∫
∂Ω
ψ(t) dσt∫

∂Ω
f(t) dσt

. (3.21)

Then, by known results of classical potential theory (cf. Folland [52, Chapter 3]), θ̄ is the unique
element of Um−1,α

0 such that

1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs = ψ(t)− f(t)

∫
∂Ω
ψ(t) dσt∫

∂Ω
f(t) dσt

∀t ∈ ∂Ω. (3.22)

Hence uniqueness follows. Conversely, in order to prove existence, it suffices to note that the pair
(θ̄, ξ̄) ∈ Um−1,α

0 ×R, with ξ̄ delivered by (3.21) and where θ̄ is the unique solution in Um−1,α
0 of (3.22),

solves equation (3.20).

We are now ready to prove that θ̂[·], ξ̂[·] can be continued real analytically in a whole neighbourhood
of 0.

Proposition 3.12. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

0 be as in (1.64). Let ε2 be as in Proposition 3.11. Then there
exist ε3 ∈ ]0, ε2] and a real analytic operator (Θ,Ξ) of ]−ε3, ε3[ to Um−1,α

0 × R, such that

(Θ[ε],Ξ[ε]) = (θ̂[ε], ξ̂[ε]), (3.23)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 3.11 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)
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3.2.3 A functional analytic representation Theorem for the solution of the
singularly perturbed linear Robin problem

By Proposition 3.12 and Remark 3.8, we can deduce the main result of this Subsection. More precisely,
we show that {u[ε](·)}ε∈]0,ε1[ can be continued real analytically for negative values of ε.

We have the following.

Theorem 3.13. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε3 be as in Proposition 3.12. Then the following statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator U1 of ]−ε4, ε4[ to the space C0

h(clV ), and a real analytic operator U2 of
]−ε4, ε4[ to R such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.
(jj)

u[ε](x) = εnU1[ε](x) + U2[ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,

U2[0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic operator
Ū1 of ]−ε̄4, ε̄4[ to the space Cm,α(cl V̄ ), and a real analytic operator Ū2 of ]−ε̄4, ε̄4[ to R such
that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

u[ε](w + εt) = εŪ1[ε](t) + Ū2[ε] ∀t ∈ cl V̄ ,

for all ε ∈ ]0, ε̄4[. Moreover,

Ū2[0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

Proof. Let Θ[·], Ξ[·] be as in Proposition 3.12. Consider (i). Choosing ε4 small enough, we can clearly
assume that (j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 3.8 and Proposition 3.12, we
have

u[ε](x) = εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs + Ξ[ε] ∀x ∈ clV.

Thus, it is natural to set

Ũ1[ε](x) ≡
∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[, and
U2[ε] ≡ Ξ[ε],

for all ε ∈ ]−ε4, ε4[. By following the proof of Theorem 2.124 and by Proposition 3.12, we have that
U2 is a real analytic map of ]−ε4, ε4[ to R and that, by possibly taking a smaller ε4, there exists a real
analytic map U1 of ]−ε4, ε4[ to C0

h(clV ) such that

Ũ1[ε] = εU1[ε] in C0
h(clV ),

for all ε ∈ ]−ε4, ε4[ and that the equality in (jj) holds. Moreover, by Propositions 3.6 and 3.12, we
have that

U2[0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

Consider now (ii). Choosing ε̄4 small enough, we can clearly assume that (j′) holds. Consider now
(jj′). Let ε ∈ ]0, ε̄4[. By Remark 3.8 and Proposition 3.12, we have

u[ε](w + εt) = εn−1

∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ cl V̄ .
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Since
∫
∂Ω

Θ[ε](s) dσs = 0 for all ε ∈ [0, ε3[, by Proposition 1.29 (ii), it is natural to set

Ū1[ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl V̄ ,

for all ε ∈ ]−ε̄4, ε̄4[, and
Ū2[ε] ≡ Ξ[ε],

for all ε ∈ ]−ε̄4, ε̄4[. Obviously, the equality in (jj′) holds. By Proposition 3.12, we have that Ū2 is a
real analytic map of ]−ε̄4, ε̄4[ to R. Moreover, by Propositions 3.6 and 3.12, we have that

Ū2[0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

Consider now Ū1. By Proposition 1.29 (ii), by possibly taking a smaller ε̄4, we have that Ū1 is a real
analytic operator of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ). Thus the proof is complete.

Remark 3.14. Let the assumptions of Theorem 3.13 (i) hold. Let Θ[·] be as in Proposition 3.12. If
ε ∈ ]−ε4, ε4[ and x ∈ clV , then, by the Taylor Formula, we have

San(x− w − εs) = San(x− w)− ε
∫ 1

0

DSan(x− w − βεs)s dβ ∀s ∈ ∂Ω.

As a consequence, since
∫
∂Ω

Θ[ε] dσ = 0 for all ε ∈ ]−ε4, ε4[, we have∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

=San(x− w)
∫
∂Ω

Θ[ε](s) dσs − ε
∫
∂Ω

(∫ 1

0

DSan(x− w − βεs)s dβ
)

Θ[ε](s) dσs

=− ε
∫
∂Ω

(∫ 1

0

DSan(x− w − βεs)s dβ
)

Θ[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[. Thus, if U1 is as in Theorem 3.13 (i), one can easily check that

U1[0](x) = −
n∑
j=1

∂xjS
a
n(x− w)

∫
∂Ω

sjΘ[0](s) dσs

= −
n∑
j=1

∂xjS
a
n(x− w)

∫
∂Ω

sj θ̂[0](s) dσs ∀x ∈ clV.

By well known jump formulas for the normal derivative of the classical simple layer potential v[∂Ω, θ̂[0]]
(cf. Appendix B and (B.2)), we have∫

∂Ω

sj θ̂[0](s) dσs =
∫
∂Ω

sj
∂

∂νΩ
v−[∂Ω, θ̂[0]](s) dσs −

∫
∂Ω

sj
∂

∂νΩ
v+[∂Ω, θ̂[0]](s) dσs.

By the Divergence Theorem,∫
∂Ω

sj
∂

∂νΩ
v+[∂Ω, θ̂[0]](s) dσs =

∫
∂Ω

(νΩ(s))jv+[∂Ω, θ̂[0]](s) dσs.

As a consequence, ∫
∂Ω

sj θ̂[0](s) dσs =
∫
∂Ω

sj
∂

∂νΩ
ũ(s) dσs −

∫
∂Ω

(νΩ(s))j ũ(s) dσs.

and accordingly

U1[0](x) = −DSan(x− w)
∫
∂Ω

sj
∂

∂νΩ
ũ(s) dσs +DSan(x− w)

∫
∂Ω

(νΩ(s))j ũ(s) dσs ∀x ∈ clV.

Remark 3.15. We note that the right-hand side of the equalities in (jj) and (jj′) of Theorem 3.13 can
be continued real analytically in the whole ]−ε4, ε4[. Moreover, if V is a bounded open subset of Rn
such that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

uniformly in clV .
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3.2.4 A real analytic continuation Theorem for the energy integral
As done in Theorem 3.13 for u[·], we can now prove a real analytic continuation Theorem for the
energy integral. Namely, we prove the following.

Theorem 3.16. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε3 be as in Proposition 3.12. Then there exist ε5 ∈ ]0, ε3] and a real analytic
operator G of ]−ε5, ε5[ to R, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx = εnG[ε], (3.24)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx. (3.25)

Proof. Let ε ∈ ]0, ε3[. Clearly,∫
Pa[Ωε]

|∇u[ε](x)|2 dx =
∫

Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx.

We have∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx

= −εn−1

∫
∂Ω

v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](w + εt)
( ∂

∂νΩε

v−a [∂Ωε,Θ[ε](
1
ε

(· − w))]
)

(w + εt) dσt.

Also

v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](w + εt)

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

and( ∂

∂νΩε

v−a [∂Ωε,Θ[ε](
1
ε

(· − w))]
)

(w + εt)

=
1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs

∀t ∈ ∂Ω.

Choosing ε5 ∈ ]0, ε3] small enough, the map of ]−ε5, ε5[ to C0(∂Ω) which takes ε to the function of
the variable t ∈ ∂Ω defined by∫

∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

and the map of ]−ε5, ε5[ to C0(∂Ω) which takes ε to the function of the variable t ∈ ∂Ω defined by

1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

are real analytic (cf. Proposition 1.28 (i), (ii).) Thus the map G of ]−ε5, ε5[ to R which takes ε to

G[ε] ≡ −
∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)

×
(1

2
Θ[ε](t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs
)
dσt
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is real analytic. Clearly, ∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx = εnG[ε],

for all ε ∈ ]0, ε5[ Moreover, since

ũ(x) =
∫
∂Ω

Sn(x− y)Θ[0](y) dσy ∀x ∈ cl Ω,

we have

G[0] ≡
∫

Rn\cl Ω

|∇ũ(x)|2 dx

(see also Folland [52, p. 118].)

Remark 3.17. We note that the right-hand side of the equality in (3.24) of Theorem 3.16 can be
continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

∫
Pa[Ωε]

|∇u[ε](x)|2 dx = 0

3.2.5 A real analytic continuation Theorem for the integral of the solution

As done in Theorem 3.16 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 3.18. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε3 be as in Proposition 3.12. Then there exist ε6 ∈ ]0, ε3] and a real analytic
operator J of ]−ε6, ε6[ to R, such that ∫

Pa[Ωε]

u[ε](x) dx = J [ε], (3.26)

for all ε ∈ ]0, ε6[. Moreover,

J [0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

|A|n. (3.27)

Proof. It suffices to modify the proof of Theorem 2.128. Let Θ[·], Ξ[·] be as in Proposition 3.12. Let
ε ∈ ]0, ε3[. Since

u[ε](x) = v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) + Ξ[ε] ∀x ∈ cl Ta[Ωε],

then ∫
Pa[Ωε]

u[ε](x) dx =
∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx+ Ξ[ε]

(
|A|n − ε

n|Ω|n
)
.

On the other hand, by arguing as in the proof of Theorem 2.128, we can show that there exists
ε6 ∈ ]0, ε3] and a real analytic map J1 of ]−ε6, ε6[ to R, such that∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx = J1[ε],

for all ε ∈ ]0, ε6[. Moreover, J1[0] = 0. Then, if we set

J [ε] ≡ J1[ε] + Ξ[ε](|A|n − ε
n|Ω|n

)
,

for all ε ∈ ]−ε6, ε6[, we can immediately conclude.
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3.3 An homogenization problem for the Laplace equation with
linear Robin boundary condition in a periodically perfo-
rated domain

In this section we consider an homogenization problem for the Laplace equation with linear Robin
boundary condition in a periodically perforated domain.

3.3.1 Notation

In this Section we retain the notation introduced in Subsections 1.8.1, 3.2.1. However, we need to
introduce also some other notation.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let
(ε, δ) ∈ (]−ε1, ε1[ \ {0})× ]0,+∞[. If v is a function of cl Ta(ε, δ) to R, then we denote by E(ε,δ)[v] the
function of Rn to R, defined by

E(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ)
0 ∀x ∈ Rn \ cl Ta(ε, δ).

If v is a function of cl Ta(ε, δ) to R and c ∈ R, then we denote by E#
(ε,δ)[v, c] the function of Rn to

R, defined by

E#
(ε,δ)[v, c](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ),
c ∀x ∈ Rn \ cl Ta(ε, δ).

3.3.2 Preliminaries

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7), (3.8), respectively.
For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we consider the following periodic linear Robin problem for the
Laplace equation.


∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},
δ ∂
∂νΩ(ε,δ)

u(x) + f( 1
εδ (x− δw))u(x) = g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(3.28)

By virtue of Theorem 3.4, we can give the following definition.

Definition 3.19. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by u(ε,δ) the unique solution in
Cm,α(cl Ta(ε, δ)) of boundary value problem (3.28).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 3.20. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in Cm,α(cl Ta[Ωε]) of the
following periodic linear Robin problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) + f( 1

ε (x− w))u(x) = g( 1
ε (x− w)) ∀x ∈ ∂Ωε.

(3.29)

Remark 3.21. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).
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By the previous remark, we note that the solution of problem (3.28) can be expressed by means of
the solution of the auxiliary rescaled problem (3.29), which does not depend on δ. This is due to the
presence of the factor δ in front of ∂

∂νΩ(ε,δ)
u(x) in the third equation of problem (3.28).

As a first step, we study the behaviour of u[ε] as ε tends to 0 and we have the following.

Proposition 3.22. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let 1 ≤ p <∞. Then

lim
ε→0+

E(ε,1)[u[ε]] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

in Lp(A).

Proof. It suffices to modify the proof of Proposition 2.132. Let ε3, Θ, Ξ be as in Proposition 3.12. Let
id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[, we have

u[ε] ◦ (w + ε id∂Ω)(t)

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ ∂Ω.

We set

N [ε](t) ≡ ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i)) that
N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

C ≡ sup
ε∈]−ε̃,ε̃[

‖N [ε]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|E(ε,1)[u[ε]](x)| ≤ C ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

By Theorem 3.13, we have

lim
ε→0+

E(ε,1)[u[ε]](x) =

∫
∂Ω
g dσ∫

∂Ω
f dσ

∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

E(ε,1)[u[ε]] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

in Lp(A).

Proposition 3.23. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let ε3 be as in Proposition 3.12. Then there exist ε̃ ∈ ]0, ε3[ and a real
analytic map N of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖E#
(ε,1)

[
u[ε],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E#
(ε,1)

[
u[ε],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
=

∫
∂Ω
g dσ∫

∂Ω
f dσ

in L∞(Rn).

Proof. Let ε3, Θ, Ξ be as in Proposition 3.12. Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[,
we have

u[ε] ◦ (w + ε id∂Ω)(t)

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ ∂Ω.
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Since Ξ[·] is a real analytic function and

Ξ[0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

,

then there exist ε̃ ∈ ]0, ε3[ and a real analytic function RΞ of ]−ε̃, ε̃[ to R such that

Ξ[ε]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

= εRΞ[ε] ∀ε ∈ ]−ε̃, ε̃[.

We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs +RΞ[ε], ∀t ∈ ∂Ω,

for all ε ∈ ]−ε̃, ε̃[. We have that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω).
By Theorem 2.5, we have

‖E(ε,1)

[
u[ε],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,

and the conclusion easily follows.

3.3.3 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 3.22 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 3.24. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

in Lp(V ).

Proof. We modify the proof of Theorem 2.134. By virtue of Proposition 3.22, we have

lim
ε→0+

‖E(ε,1)[u[ε]]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(V ) ≤ C‖E(ε,1)[u[ε]]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(A) ∀(ε, δ) ∈ ]0, ε3[× ]0, 1[.

Thus,

lim
(ε,δ)→(0+,0+)

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(V ) = 0,

and we can easily conclude.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 3.25. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε6, J be as in Theorem 3.18. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε], (3.30)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.
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Proof. It is a simple modification of the proof of Theorem 2.60. Indeed, let ε ∈ ]0, ε6[, l ∈ N \ {0}.
Then, by the periodicity of u(ε,r/l), we have∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε],

and the conclusion follows.

In the following Theorem we consider the L∞–distance of a certain extension of u(ε,δ) and its limit.

Theorem 3.26. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε̃, N be as in Proposition 3.23. Then

‖E#
(ε,δ)

[
u(ε,δ),

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,δ)

[
u(ε,δ),

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
=

∫
∂Ω
g dσ∫

∂Ω
f dσ

in L∞(Rn).

Proof. It suffices to observe that

‖E#
(ε,δ)

[
u(ε,δ),

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ‖E#
(ε,1)

[
u[ε],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn)

= ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

3.3.4 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 3.27. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.
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Remark 3.28. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 3.29. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 3.16. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 3.30. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let ε5 be as in Theorem 3.16. Let δ1 > 0 be as in Definition 3.29. Then

lim
δ→0+

En[δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 3.9.

Proof. We follow step by step the proof of Propostion 2.140. Let G be as in Theorem 3.16. Let
δ ∈ ]0, δ1[. By Remark 3.28 and Theorem 3.16, we have∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])nG[ε[δ]]

= δnG[δ
2
n ].

On the other hand,

b(1/δ)cn
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx ≤ En[δ] ≤ d(1/δ)en
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx,

and so
b(1/δ)cnδnG[δ

2
n ] ≤ En[δ] ≤ d(1/δ)enδnG[δ

2
n ].

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = G[0].

Finally, by equality (3.25), we easily conclude.

In the following Proposition we represent the function En[·] by means of a real analytic function.

Proposition 3.31. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let ε5 and G be as in Theorem 3.16. Let δ1 > 0 be as in Definition 3.29.
Then

En[(1/l)] = G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 3.30.
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3.4 A variant of the homogenization problem for the Laplace
equation with linear Robin boundary condition in a peri-
odically perforated domain

In this section we consider a slightly different homogenization problem for the Laplace equation with
linear Robin boundary condition in a periodically perforated domain.

3.4.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 3.2.1, 3.3.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7), (3.8),
respectively. For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic linear Robin problem
for the Laplace equation.


∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) + f( 1
εδ (x− δw))u(x) = g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(3.31)

In contrast to problem (3.28), we note that in the third equation of problem (3.31) there is not
the factor δ in front of ∂

∂νΩ(ε,δ)
u(x).

By virtue of Theorem 3.4, we can give the following definition.

Definition 3.32. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by u(ε,δ) the unique solution in
Cm,α(cl Ta(ε, δ)) of boundary value problem (3.31).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 3.33. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by u[ε, δ] the unique solution in
Cm,α(cl Ta[Ωε]) of the following auxiliary periodic linear Robin problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) + δf( 1

ε (x− w))u(x) = δg( 1
ε (x− w)) ∀x ∈ ∂Ωε.

(3.32)

Remark 3.34. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε, δ](
x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, in contrast to the solution of problem (3.28), we note that the solution of
problem (3.31) can be expressed by means of the solution of the auxiliary rescaled problem (3.32),
which does depend on δ.

As a first step, we study the behaviour of u[ε, δ] as (ε, δ) tends to (0, 0). As we know, we can
convert boundary value problem (3.32) into an integral equation. We introduce this equation in the
following.

Proposition 3.35. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

ε , Um−1,α
0 be as in (1.63), (1.64), respectively. Let Λ be the map

of ]−ε1, ε1[× R× Um−1,α
0 × R in Cm−1,α(∂Ω) defined by

Λ[ε, δ,θ, ξ](t) ≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ f(t)
(
δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)
− g(t) ∀t ∈ ∂Ω,

(3.33)

for all (ε, δ, θ, ξ) ∈ ]−ε1, ε1[× R× Um−1,α
0 × R. Then the following statements hold.
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(i) If (ε, δ) ∈ ]0, ε1[× ]0,+∞[, then the pair (θ, ξ) ∈ Um−1,α
0 × R satisfies equation

Λ[ε, δ, θ, ξ] = 0, (3.34)

if and only if the pair (µ, ξ) ∈ Um−1,α
ε × R, with µ ∈ Um−1,α

ε defined by

µ(x) ≡ δθ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (3.35)

satisfies the equation

δΓ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(San(x− y))µ(y) dσy

+ δφ(x)
(∫

∂Ωε

San(x− y)µ(y) dσy + ξ
)

∀x ∈ ∂Ωε,
(3.36)

with Γ, φ ∈ Cm−1,α(∂Ωε) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (3.37)

and
φ(x) ≡ f(

1
ε

(x− w)) ∀x ∈ ∂Ωε. (3.38)

In particular, equation (3.34) has exactly one solution (θ, ξ) ∈ Um−1,α
0 × R, for each (ε, δ) ∈

]0, ε1[× ]0,+∞[.

(ii) The pair (θ, ξ) ∈ Um−1,α
0 × R satisfies equation

Λ[0, 0, θ, ξ] = 0, (3.39)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs + f(t)ξ ∀t ∈ ∂Ω. (3.40)

In particular, equation (3.39) has exactly one solution (θ, ξ) ∈ Um−1,α
0 × R, which we denote by

(θ̃, ξ̃).

Proof. Consider (i). Let θ ∈ Cm−1,α(∂Ω). Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. First of all, we note that∫
∂Ωε

θ(
1
ε

(x− w)) dσx = εn−1

∫
∂Ω

θ(t) dσt,

and so θ ∈ Um−1,α
0 if and only if θ( 1

ε (· − w)) ∈ Um−1,α
ε . The equivalence of equation (3.34) in the

unknown (θ, ξ) ∈ Um−1,α
0 × R and equation (3.36) in the unknown (µ, ξ) ∈ Um−1,α

ε × R follows by
a straightforward computation based on the rule of change of variables in integrals, on well known
properties of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Sections 3,4]) and
Lemma 1.25. The existence and uniqueness of a solution of equation (3.36) follows by Proposition 3.3.
Then the existence and uniqueness of a solution of equation (3.34) follows by the equivalence of (3.34)
and (3.36). Consider (ii). The equivalence of (3.39) and (3.40) is obvious. The existence of a unique
solution of equation (3.40) is an immediate consequence of well known results of classical potential
theory and can be proved by exploiting exactly the same argument as in the proof of Proposition 3.6
(ii).

By Proposition 3.35, it makes sense to introduce the following.

Definition 3.36. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

0 be as in (1.64). For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote
by (θ̂[ε, δ], ξ̂[ε, δ]) the unique pair in Um−1,α

0 × R that solves (3.34). Analogously, we denote by
(θ̂[0, 0], ξ̂[0, 0]) the unique pair in Um−1,α

0 × R that solves (3.39).
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In the following Remark, we show the relation between the solutions of boundary value problem
(3.32) and the solutions of equation (3.34).
Remark 3.37. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively.

Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have

u[ε, δ](x) = δεn−1

∫
∂Ω

San(x− w − εs)θ̂[ε, δ](s) dσs + ξ̂[ε, δ] ∀x ∈ cl Ta[Ωε].

While the relation between equation (3.34) and boundary value problem (3.32) is now clear, we
want to see if (3.39) is related to some (limiting) boundary value problem. We give the following.

Definition 3.38. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, f , g be as in (1.56), (3.7), (3.8), respectively.
We denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following boundary value problem

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = g(x)−
R
∂Ω g dσR
∂Ω f dσ

f(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(3.41)

Problem (3.41) will be called the limiting boundary value problem.

Remark 3.39. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. We have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̂[0, 0](y) dσy ∀x ∈ Rn \ Ω.

Moreover,

ξ̂[0, 0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

We now prove the following.

Proposition 3.40. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

0 be as in (1.64). Let Λ and (θ̃, ξ̃) be as in Proposition 3.35.
Then there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[× R× Um−1,α

0 × R to
Cm−1,α(∂Ω). Moreover, if we set b0 ≡ (0, 0, θ̃, ξ̃), then the differential ∂(θ,ξ)Λ[b0] of Λ with respect to
the variables (θ, ξ) at b0 is delivered by the following formula

∂(θ,ξ)Λ[b0](θ̄, ξ̄)(t) =
1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs + f(t)ξ̄ ∀t ∈ ∂Ω, (3.42)

for all (θ̄, ξ̄) ∈ Um−1,α
0 × R, and is a linear homeomorphism of Um−1,α

0 × R onto Cm−1,α(∂Ω).

Proof. By arguing as in the proof of Proposition 3.11, one can show that there exists ε2 ∈ ]0, ε1] such
that Λ is a real analytic operator of ]−ε2, ε2[×R×Um−1,α

0 ×R to Cm−1,α(∂Ω). By standard calculus
in Banach space, we immediately deduce that (3.42) holds. By the proof of Proposition 3.11, we have
that ∂(θ,ξ)Λ[b0] is a linear homeomorphism.

We are now ready to prove that θ̂[·, ·], ξ̂[·, ·] can be continued real analytically on a whole neigh-
bourhood of (0, 0).

Proposition 3.41. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let Um−1,α

0 be as in (1.64). Let ε2 be as in Proposition 3.40. Then there exist
ε3 ∈ ]0, ε2], δ1 ∈ ]0,+∞[, and a real analytic operator (Θ,Ξ) of ]−ε3, ε3[ × ]−δ1, δ1[ to Um−1,α

0 × R,
such that

(Θ[ε, δ],Ξ[ε, δ]) = (θ̂[ε, δ], ξ̂[ε, δ]), (3.43)

for all (ε, δ) ∈ (]0, ε3[× ]0, δ1[) ∪ {(0, 0)}.

Proof. It is an immediate consequence of Proposition 3.40 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)
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By Proposition 3.41 and Remark 3.37, we can deduce the following results.

Theorem 3.42. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε3, δ1 be as in Proposition 3.41. Then the following statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator U1 of ]−ε4, ε4[ × ]−δ1, δ1[ to the space C0

h(clV ), and a real analytic
operator U2 of ]−ε4, ε4[× ]−δ1, δ1[ to R such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.
(jj)

u[ε, δ](x) = δεn−1U1[ε, δ](x) + U2[ε, δ] ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[. Moreover,

U2[0, 0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic
operator Ū1 of ]−ε̄4, ε̄4[× ]−δ1, δ1[ to the space Cm,α(cl V̄ ), and a real analytic operator Ū2 of
]−ε̄4, ε̄4[× ]−δ1, δ1[ to R such that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

u[ε, δ](w + εt) = δεŪ1[ε, δ](t) + Ū2[ε, δ] ∀t ∈ cl V̄ ,

for all (ε, δ) ∈ ]0, ε̄4[× ]0, δ1[. Moreover,

Ū2[0, 0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

Proof. Let (ε, δ) ∈ ]0, ε1[× ]0, δ1[. We have

u[ε, δ](x) = δεn−1

∫
∂Ω

San(x− w − εs)Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀x ∈ cl Ta[Ωε].

Then by arguing as in the proof of Theorem 3.13, one can show the validity of the Theorem. Indeed,
by choosing ε4 small enough, we can clearly assume that (j) holds. Consider now (jj). By arguing as
in the proof of Theorem 3.13, it is natural to set

U1[ε, δ](x) ≡
∫
∂Ω

San(x− w − εs)Θ[ε, δ](s) dσs ∀x ∈ clV,

for all (ε, δ) ∈ ]−ε4, ε4[× ]−δ1, δ1[, and

U2[ε, δ] ≡ Ξ[ε, δ],

for all (ε, δ) ∈ ]−ε4, ε4[× ]−δ1, δ1[. By following the proof of Theorem 2.124 and by Proposition 3.41,
we have that U1, U2 are real analytic maps of ]−ε4, ε4[× ]−δ1, δ1[ to R, C0

h(clV ), respectively, such
that the equality in (jj) holds. Moreover, by Propositions 3.35 and 3.12, we have that

U2[0, 0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

.

Consider now (ii). Choosing ε̄4 small enough, we can clearly assume that (j′) holds. Consider now
(jj′). Let (ε, δ) ∈ ]0, ε̄4[× ]0, δ1[. We have

u[ε, δ](w + εt) = δεn−1

∫
∂Ω

San(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀t ∈ cl V̄ .

Since
∫
∂Ω

Θ[ε, δ](s) dσs = 0 for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[ ∪ {(0, 0)}, by arguing as in Proposition 1.29
(ii), it is natural to set

Ū1[ε, δ](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs ∀t ∈ cl V̄ ,
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for all (ε, δ) ∈ ]−ε̄4, ε̄4[× ]−δ1, δ1[, and

Ū2[ε, δ] ≡ Ξ[ε, δ],

for all (ε, δ) ∈ ]−ε̄4, ε̄4[× ]−δ1, δ1[. Obviously, the equality in (jj′) holds. Then by arguing as in the
proof of Theorem 3.13 (ii), we easily conclude.

Theorem 3.43. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε3, δ1 be as in Proposition 3.41. Then there exist ε5 ∈ ]0, ε3] and a real analytic
operator G of ]−ε5, ε5[× ]−δ1, δ1[ to R, such that∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx = δ2εnG[ε, δ], (3.44)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

G[0, 0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx. (3.45)

Proof. Let (ε, δ) ∈ ]0, ε1[× ]0, δ1[. Clearly,∫
Pa[Ωε]

|∇u[ε, δ](x)|2 dx = δ2

∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε, δ](
1
ε

(· − w))](x)|2 dx.

Then in order to prove the Theorem, it suffices to exploit the same argument as the proof of Theorem
3.16.

As done in Theorem 3.43 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 3.44. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε3, δ1 be as in Proposition 3.41. Then there exist ε6 ∈ ]0, ε3], δ2 ∈ ]0, δ1], and a
real analytic operator J of ]−ε6, ε6[× ]−δ2, δ2[ to R, such that∫

Pa[Ωε]

u[ε, δ](x) dx = J [ε, δ], (3.46)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ2[. Moreover,

J [0, 0] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

|A|n. (3.47)

Proof. Let Θ[·, ·], Ξ[·, ·] be as in Proposition 3.41. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Since

u[ε, δ](x) = δv−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) + Ξ[ε, δ] ∀x ∈ cl Ta[Ωε],

then ∫
Pa[Ωε]

u[ε, δ](x) dx =δ
∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx

+ Ξ[ε, δ]
(
|A|n − ε

n|Ω|n
)
.

On the other hand, by arguing as in the proof of Theorem 3.16, we note that

v−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(w + εt)

=ε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs ∀t ∈ ∂Ω.

Then, if we set

L[ε, δ](t) ≡ ε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs ∀t ∈ ∂Ω,
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for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[, we have that L[·, ·] is a real analytic map of ]−ε3, ε3[× ]−δ1, δ1[ to
Cm,α(∂Ω). Then, by Theorem 2.115, we easily deduce that there exist ε6 ∈ ]0, ε3], δ2 ∈ ]0, δ1], and a
real analytic map J1 of ]−ε6, ε6[× ]−δ2, δ2[ to R, such that∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx = J1[ε, δ],

for all (ε, δ) ∈ ]0, ε6[× ]0, δ2[. Then, if we set

J [ε, δ] ≡ δJ1[ε, δ] + Ξ[ε, δ]
(
|A|n − ε

n|Ω|n
)
,

for all (ε, δ) ∈ ]−ε6, ε6[× ]−δ2, δ2[, we can immediately conclude.

We have the following.

Proposition 3.45. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let 1 ≤ p <∞. Then

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

in Lp(A).

Proof. It suffices to modify the proof of Proposition 3.22. Let ε3, δ1, Θ, Ξ be as in Proposition 3.41.
Let id∂Ω denote the identity map in ∂Ω. If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t)

= δε

∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀t ∈ ∂Ω.

We set

N [ε, δ](t) ≡ δε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ and δ̃ ∈ ]0, δ1[ small enough, we can assume
(cf. Proposition 1.26 (i)) that N is a real analytic map of ]−ε̃, ε̃[× ]−δ̃, δ̃[ to Cm,α(∂Ω) and that

C ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖N [ε, δ]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|E(ε,1)[u[ε, δ]](x)| ≤ C ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.

By Theorem 3.42, we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]](x) =

∫
∂Ω
g dσ∫

∂Ω
f dσ

∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

in Lp(A).

Proposition 3.46. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let ε3, δ1 be as in Proposition 3.41. Then there exist ε̃ ∈ ]0, ε3[ and a real
analytic map N of ]−ε̃, ε̃[× ]δ1, δ1[ to Cm,α(∂Ω) such that

‖E#
(ε,1)

[
u[ε, δ],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ‖N [ε, δ]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover,
N [0, 0] = 0,

and, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,1)

[
u[ε, δ],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
=

∫
∂Ω
g dσ∫

∂Ω
f dσ

in L∞(Rn).
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Proof. Let ε3, δ1, Θ, Ξ be as in Proposition 3.41. Let id∂Ω denote the identity map in ∂Ω. If
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) =δε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀t ∈ ∂Ω.

We set

N [ε, δ](t) ≡δε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

, ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition
1.26 (i)) that N is a real analytic map of ]−ε̃, ε̃[× ]−δ1, δ1[ to Cm,α(∂Ω). By Theorem 2.5, we have

‖E(ε,1)

[
u[ε, δ],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ‖N [ε, δ]‖C0(∂Ω) ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ1[,

and the conclusion easily follows.

3.4.2 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 3.45 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 3.47. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] =

∫
∂Ω
g dσ∫

∂Ω
f dσ

in Lp(V ).

Proof. We modify the proof of Theorem 2.134. By virtue of Proposition 3.45, we have

lim
(ε,δ)→(0+,0+)

‖E(ε,1)[u[ε, δ]]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(V ) ≤ C‖E(ε,1)[u[ε, δ]]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(A)

∀(ε, δ) ∈ ]0, ε3[× ]0,min{1, δ1}[.

Thus,

lim
(ε,δ)→(0+,0+)

‖E(ε,δ)[u(ε,δ)]−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖Lp(V ) = 0,

and we can easily conclude.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 3.48. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let ε3, δ1 be as in Proposition 3.41. Let ε6, δ2, J be as in Theorem 3.44. Let r > 0
and ȳ ∈ Rn. Then ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ

[
ε,
r

l

]
, (3.48)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ2).
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Proof. Let ε ∈ ]0, ε6[, and let l ∈ N \ {0} be such that l > (r/δ2). Then, by the periodicity of u(ε,r/l),
we have ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u
[
ε, (r/l)

]( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u
[
ε, (r/l)

]
(t) dt

=
rn

ln
J
[
ε,
r

l

]
.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ
[
ε,
r

l

]
,

and the conclusion follows.

In the following Theorem we consider the L∞–distance of a certain extension of u(ε,δ) and its limit.

Theorem 3.49. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let δ1 be as in Proposition 3.41. Let ε̃, N be as in Proposition 3.46. Then

‖E#
(ε,δ)

[
u(ε,δ),

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ‖N [ε, δ]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover,
N [0, 0] = 0,

and, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,δ)

[
u(ε,δ),

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
=

∫
∂Ω
g dσ∫

∂Ω
f dσ

in L∞(Rn).

Proof. It suffices to observe that

‖E#
(ε,δ)

[
u(ε,δ),

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn) = ‖E#
(ε,1)

[
u[ε, δ],

∫
∂Ω
g dσ∫

∂Ω
f dσ

]
−
∫
∂Ω
g dσ∫

∂Ω
f dσ

‖L∞(Rn)

= ‖N [ε, δ]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.

3.4.3 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 3.50. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.
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Remark 3.51. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57), (3.7),
(3.8), respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε, δ](t)|2 dt.

In the following Proposition we represent the function En(·, ·) by means of a real analytic function.

Proposition 3.52. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, f , g be as in (1.56), (1.57),
(3.7), (3.8), respectively. Let δ1 be as in Proposition 3.41. Let ε5 and G be as in Theorem 3.43. Then

En
(
ε,

1
l

)
= εnG[ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0} such that l > (1/δ1).

Proof. By Remark 3.51 and Theorem 3.43, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δnεnG[ε, δ]. (3.49)

On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0} is such that l > (1/δ1), then we have

En
(
ε,

1
l

)
= ln

1
ln
εnG[ε, (1/l)]

= εnG[ε, (1/l)],

and the conclusion easily follows.

3.5 Asymptotic behaviour of the solutions of a nonlinear Robin
problem for the Laplace equation in a periodically perfo-
rated domain

In this Section we study the asymptotic behaviour of the solutions of a nonlinear Robin problem for
the Laplace equation in a periodically perforated domain with small holes.

3.5.1 Notation and preliminaries
We retain the notation introduced in Subsections 1.8.1, 3.2.1. However, we need to introduce also
some other notation. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). If F ∈ C0(∂Ω× R), then we
denote by TF the (nonlinear nonautonomous) composition operator of C0(∂Ω) to itself which maps
v ∈ C0(∂Ω) to the function TF [v] of ∂Ω to R, defined by

TF [v](t) ≡ F (t, v(t)) ∀t ∈ ∂Ω.

If F ∈ C0(∂Ω× R) is such that TF is a real analytic map of Cm−1,α(∂Ω) to itself, then by Lanza [72,
Prop. 6.3, p. 972] the partial derivative Fu(·, ·) of F (·, ·) with respect to the variable in R exists, and
we have

dTF [v0](v) = TFu [v0]v ∀v ∈ Cm−1,α(∂Ω),

for all v0 ∈ Cm−1,α(∂Ω). Moreover, TFu is a real analytic operator of Cm−1,α(∂Ω) to itself. Accordingly,

Fu(·, ξ) ∈ Cm−1,α(∂Ω) ∀ξ ∈ R.

Then we shall consider also the following assumption.

F ∈ C0(∂Ω× R), TF is a real analytic map of Cm−1,α(∂Ω) to itself, and

there exists ξ̃ ∈ R such that
∫
∂Ω

F (t, ξ̃) dσt = 0 and
∫
∂Ω

Fu(t, ξ̃) dσt 6= 0. (3.50)
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If F is as in (3.50), then we shall consider also the following assumption.

ξ̃ ∈ R is such that
∫
∂Ω

F (t, ξ̃) dσt = 0 and
∫
∂Ω

Fu(t, ξ̃) dσt 6= 0. (3.51)

Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57), (3.50), respectively. For
each ε ∈ ]0, ε1[, we consider the following periodic nonlinear Robin problem for the Laplace equation.

∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) + F

(
1
ε (x− w), u(x)

)
= 0 ∀x ∈ ∂Ωε.

(3.52)

We now convert our boundary value problem (3.52) into an integral equation.

Proposition 3.53. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57),
(3.50), respectively. Let ε ∈ ]0, ε1[. Let Um−1,α

ε be as in (1.63). Then the map of the set of pairs
(µ, ξ) ∈ Um−1,α

ε × R that solve the equation

1
2
µ(x) +

∫
∂Ωε

νΩε(x) ·DSan(x− y)µ(y) dσy

+ F
(1
ε

(x− w),
∫
∂Ωε

San(x− y)µ(y) dσy + ξ
)

= 0 ∀x ∈ ∂Ωε, (3.53)

to the set of u ∈ Cm,α(cl Ta[Ωε]) which solve problem (3.52), which takes (µ, ξ) to the function

v−a [∂Ωε, µ] + ξ (3.54)

is a bijection.

Proof. Assume that the pair (µ, ξ) ∈ Um−1,α
ε × R solves equation (3.53). Then, by Theorem 1.15,

we immediately deduce that the function u ≡ v−a [∂Ωε, µ] + ξ is a periodic harmonic function in
Cm,α(cl Ta[Ωε]), that, by equation (3.53), satisfies the third condition of (3.52). Thus, u is a solution
of (3.52). Conversely, let u ∈ Cm,α(cl Ta[Ωε]) be a solution of problem (3.52). By Proposition 2.23,
there exists a unique pair (µ, ξ) ∈ Um−1,α

ε × R, such that

u = v−a [∂Ωε, µ] + ξ in cl Ta[Ωε].

Then, by Theorem 1.15, since u satisfies in particular the third condition in (3.52), we immediately
deduce that the pair (µ, ξ) solves equation (3.53).

As we have seen, we can transform (3.52) into an integral equation defined on the ε-dependent
domain ∂Ωε. In order to get rid of such a dependence, we shall introduce the following Theorem.

Theorem 3.54. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57), (3.50),
respectively. Let ε ∈ ]0, ε1[. Let Um−1,α

0 be as in (1.64). Then the map u[ε, ·, ·] of the set of pairs
(θ, ξ) ∈ Um−1,α

0 × R that solve the equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ F
(
t, ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

= 0 ∀t ∈ ∂Ω, (3.55)

to the set of u ∈ Cm,α(cl Ta[Ωε]) which solve problem (3.52), which takes (θ, ξ) to the function

u[ε, θ, ξ] ≡ v−a [∂Ωε, θ(
1
ε

(· − w))] + ξ (3.56)

is a bijection.

Proof. It is an immediate consequence of Proposition 3.53, of the Theorem of change of variables in
integrals and of Lemma 1.25.

In the following Proposition we study equation (3.55) for ε = 0 and for ξ = ξ̃ (with ξ̃ as in (3.51).)



3.5 Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace equation in a
periodically perforated domain 125

Proposition 3.55. Let m ∈ N\{0}, α ∈ ]0, 1[. Let Ω, F , ξ̃ be as in (1.56), (3.50), (3.51), respectively.
Let Um−1,α

0 be as in (1.64). Then the integral equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + F (t, ξ̃) = 0 ∀t ∈ ∂Ω, (3.57)

which we call the limiting equation, has a unique solution θ ∈ Um−1,α
0 , which we denote by θ̃.

Proof. By classical potential theory (cf. Folland [52, Chapter 3]), since Rn \ cl Ω is connected and by
the well known identity ∫

∂Ω

∂

∂νΩ(t)
(
Sn(s− t)

)
dσt =

1
2

∀s ∈ ∂Ω,

it is immediate to see that equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs = −F (t, ξ̃) ∀t ∈ ∂Ω,

has a unique solution θ ∈ Um−1,α
0 .

Now we want to see if equation (3.57) is related to some (limiting) boundary value problem. We
give the following.

Definition 3.56. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F , ξ̃ be as in (1.56), (3.50), (3.51), respectively.
We denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following boundary value problem

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = −F (x, ξ̃) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(3.58)

Problem (3.58) will be called the limiting boundary value problem.

Remark 3.57. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F , ξ̃ be as in (1.56), (3.50), (3.51), respectively. Let
θ̃ be as in Proposition 3.55. We have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̃(y) dσy ∀x ∈ Rn \ Ω.

We are now ready to analyse equation (3.55) around the degenerate case ε = 0.

Theorem 3.58. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let Um−1,α

0 be as in (1.64). Let Λ be the map of ]−ε1, ε1[× Um−1,α
0 × R

to Cm−1,α(∂Ω), defined by

Λ[ε, θ, ξ](t) ≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ F
(
t, ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

∀t ∈ ∂Ω, (3.59)

for all (ε, θ, ξ) ∈ ]−ε1, ε1[× Um−1,α
0 × R. Then the following statements hold.

(i) Equation Λ[0, θ, ξ̃] = 0 is equivalent to the limiting equation (3.57) and has one and only one
solution θ̃ in Um−1,α

0 (cf. Proposition 3.55.)

(ii) If ε ∈ ]0, ε1[, then equation Λ[ε, θ, ξ] = 0 is equivalent to equation (3.55) for (θ, ξ).

(iii) There exists ε2 ∈ ]0, ε1], such that the map Λ of ]−ε2, ε2[× Um−1,α
0 × R to Cm−1,α(∂Ω) is real

analytic. Moreover, the differential ∂(θ,ξ)Λ[0, θ̃, ξ̃] of Λ at (0, θ̃, ξ̃) is a linear homeomorphism of
Um−1,α

0 × R onto Cm−1,α(∂Ω).

(iv) There exist ε3 ∈ ]0, ε2], an open neighbourhood Ũ of (θ̃, ξ̃) in Um−1,α
0 ×R and a real analytic map

(Θ[·],Ξ[·]) of ]−ε3, ε3[ to Um−1,α
0 × R, such that the set of zeros of the map Λ in ]−ε3, ε3[× Ũ

coincides with the graph of (Θ[·],Ξ[·]). In particular, (Θ[0],Ξ[0]) = (θ̃, ξ̃).
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Proof. Statements (i) and (ii) are obvious. We now prove statement (iii). By Proposition 1.26 (i),
(ii), by hypothesis (3.50), and standard calculus in Banach spaces, we have that there exists ε2 ∈ ]0, ε1]
such that Λ is a real analytic map of ]−ε2, ε2[× Um−1,α

0 × R to Cm−1,α(∂Ω). By standard calculus in
Banach spaces, the differential ∂(θ,ξ)Λ[0, θ̃, ξ̃] of Λ at (0, θ̃, ξ̃) is delivered by the following formula:

∂(θ,ξ)Λ[0, θ̃, ξ̃](θ̄, ξ̄)(t) =
1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs + Fu(t, ξ̃)ξ̄ ∀t ∈ ∂Ω,

for all (θ̄, ξ̄) ∈ Um−1,α
0 × R. We now show that the above differential is a linear homeomorphism. By

the Open Mapping Theorem, it suffices to show that it is a bijection of Um−1,α
0 ×R onto Cm−1,α(∂Ω).

Let ψ̄ ∈ Cm−1,α(∂Ω). We must show that there exists a unique pair (θ̄, ξ̄) in Um−1,α
0 × R, such that

∂(θ,ξ)Λ[0, θ̃, ξ̃](θ̄, ξ̄) = ψ̄.

We first prove uniqueness. Let (θ̄, ξ̄) ∈ Um−1,α
0 × R solve

1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs + Fu(t, ξ̃)ξ̄ = ψ̄(t) ∀t ∈ ∂Ω. (3.60)

Then, by the well known identity∫
∂Ω

∂

∂νΩ(t)
(
Sn(s− t)

)
dσt =

1
2

∀s ∈ ∂Ω,

and by integrating both sides of (3.60), it is immediate to see that

ξ̄ =

∫
∂Ω
ψ̄(t) dσt∫

∂Ω
Fu(t, ξ̃) dσt

, (3.61)

and that accordingly, by classical potential theory (cf. Folland [52, Chapter 3]), θ̄ is the unique
solution in Um−1,α

0 of the following equation:

1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs = ψ̄(t)− Fu(t, ξ̃)

∫
∂Ω
ψ̄(t) dσt∫

∂Ω
Fu(t, ξ̃) dσt

∀t ∈ ∂Ω. (3.62)

Hence uniqueness follows. Then in order to prove existence it suffices to observe that the pair
(θ̄, ξ̄) ∈ Um−1,α

0 × R, with ξ̄ delivered by (3.61) and where θ̄ is the unique solution in Um−1,α
0 of

(3.62), solves equation (3.60). Thus the proof of (iii) is now concluded. Finally, statement (iv) is
an immediate consequence of statement (iii) and of the Implicit Function Theorem for real analytic
maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem
15.3].)

We are now in the position to introduce the following.

Definition 3.59. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let u[·, ·, ·] be as in Theorem 3.54. If ε ∈ ]0, ε3[, we set

u[ε](x) ≡ u[ε,Θ[ε],Ξ[ε]](x) ∀x ∈ cl Ta[Ωε],

where ε3, Θ, Ξ are as in Theorem 3.58 (iv).

Remark 3.60. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let ε ∈ ]0, ε3[. Then u[ε] is a solution in
Cm,α(cl Ta[Ωε]) of problem (3.52).

3.5.2 A functional analytic representation Theorem for the family {u[ε]}ε∈]0,ε3[

The following statement shows that {u[ε](·)}ε∈]0,ε3[ can be continued real analytically for negative
values of ε. We have the following.

Theorem 3.61. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58. Then the following statements hold.
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(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator U1 of ]−ε4, ε4[ to the space C0

h(clV ), and a real analytic operator U2 of
]−ε4, ε4[ to R such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.
(jj)

u[ε](x) = εnU1[ε](x) + U2[ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,
U2[0] = ξ̃.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic operator
Ū1 of ]−ε̄4, ε̄4[ to the space Cm,α(cl V̄ ), and a real analytic operator Ū2 of ]−ε̄4, ε̄4[ to R such
that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

u[ε](w + εt) = εŪ1[ε](t) + Ū2[ε] ∀t ∈ cl V̄ ,

for all ε ∈ ]0, ε̄4[. Moreover,
Ū2[0] = ξ̃.

Proof. Let ε ∈ ]0, ε3[. We observe that

u[ε](x) = εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs + Ξ[ε] ∀x ∈ cl Ta[Ωε].

Thus, in order to prove both statements, it suffices to follow step by step the proof of Theorem
3.13.

Remark 3.62. We note that the right-hand side of the equalities in (jj) and (jj′) of Theorem 3.61
can be continued real analytically in a whole neighbourhood of 0. Moreover, if V is a bounded open
subset of Rn such that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] = ξ̃ uniformly in clV .

3.5.3 A real analytic continuation Theorem for the energy integral
As done in Theorem 3.61 for u[·], we can now prove a real analytic continuation Theorem for the
energy integral. Namely, we prove the following.

Theorem 3.63. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58. Then there exist ε5 ∈ ]0, ε3] and a real
analytic operator G of ]−ε5, ε5[ to R, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx = εnG[ε], (3.63)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx. (3.64)

Proof. Let ε ∈ ]0, ε3[. Clearly,∫
Pa[Ωε]

|∇u[ε](x)|2 dx =
∫

Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx.

As a consequence, in order to prove the Theorem, it suffices to follow the proof of Theorem 3.16.

Remark 3.64. We note that the right-hand side of the equality in (3.63) of Theorem 3.63 can be
continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

∫
Pa[Ωε]

|∇u[ε](x)|2 dx = 0
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3.5.4 A real analytic continuation Theorem for the integral of the family
{u[ε]}ε∈]0,ε3[

As done in Theorem 3.63 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the family {u[ε]}ε∈]0,ε3[. Namely, we prove the following.

Theorem 3.65. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58. Then there exist ε6 ∈ ]0, ε3] and a real
analytic operator J of ]−ε6, ε6[ to R, such that∫

Pa[Ωε]

u[ε](x) dx = J [ε], (3.65)

for all ε ∈ ]0, ε6[. Moreover,
J [0] = ξ̃|A|n. (3.66)

Proof. It suffices to modify the proof of Theorem 3.18. Let Θ[·], Ξ[·] be as in Theorem 3.58 (iv). Let
ε ∈ ]0, ε3[. Since

u[ε](x) = v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) + Ξ[ε] ∀x ∈ cl Ta[Ωε],

then ∫
Pa[Ωε]

u[ε](x) dx =
∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx+ Ξ[ε]

(
|A|n − ε

n|Ω|n
)
.

On the other hand, by arguing as in the proof of Theorem 2.128, we can show that there exist
ε6 ∈ ]0, ε3] and a real analytic map J1 of ]−ε6, ε6[ to R, such that∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx = J1[ε],

for all ε ∈ ]0, ε6[. Moreover, J1[0] = 0. Then, if we set

J [ε] ≡ J1[ε] + Ξ[ε](|A|n − ε
n|Ω|n

)
,

for all ε ∈ ]−ε6, ε6[, we can immediately conclude.

3.5.5 A property of local uniqueness of the family {u[ε]}ε∈]0,ε3[

In this Subsection, we shall show that the family {u[ε]}ε∈]0,ε3[ is essentially unique. Namely, we prove
the following.

Theorem 3.66. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let {ε̂j}j∈N be a sequence in ]0, ε1[ converging to 0. If {uj}j∈N is a sequence of
functions such that

uj ∈ Cm,α(cl Ta[Ωε̂j ]), (3.67)
uj solves (3.52) with ε ≡ ε̂j , (3.68)

lim
j→∞

uj(w + ε̂j ·) = ξ̃ in Cm−1,α(∂Ω), (3.69)

then there exists j0 ∈ N such that

uj = u[ε̂j ] ∀j0 ≤ j ∈ N.

Proof. By Theorem 3.54, for each j ∈ N, there exists a unique pair (θj , ξj) in Um−1,α
0 × R such that

uj = u[ε̂j , θj , ξj ]. (3.70)

We shall now try to show that

lim
j→∞

(θj , ξj) = (θ̃, ξ̃) in Um−1,α
0 × R. (3.71)
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Indeed, if we denote by Ũ the neighbourhood of Theorem 3.58 (iv), the limiting relation of (3.71)
implies that there exists j0 ∈ N such that

(ε̂j , θj , ξj) ∈ ]0, ε3[× Ũ ,

for j ≥ j0 and thus Theorem 3.58 (iv) would imply that

(θj , ξj) = (Θ[ε̂j ],Ξ[ε̂j ]),

for j0 ≤ j ∈ N, and that accordingly the Theorem holds (cf. Definition 3.59.) Thus we now turn to
the proof of (3.71). We note that equation Λ[ε, θ, ξ] = 0 can be rewritten in the following form

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ Fu(t, ξ̃)
(
ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

= −F
(
t, ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

+ Fu(t, ξ̃)
(
ε

∫
∂Ω

Sn(t− s)θ(s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

∀t ∈ ∂Ω

(3.72)

for all (ε, θ, ξ) in the domain of Λ. We define the map N of ]−ε3, ε3[ × Um−1,α
0 × R to Cm−1,α(∂Ω)

by setting N [ε, θ, ξ] equal to the left-hand side of the equality in (3.72), for all (ε, θ, ξ) ∈ ]−ε3, ε3[×
Um−1,α

0 × R. By arguing as in the proof of Theorem 3.58, we can prove that N is real analytic. Since
N [ε, ·, ·] is linear for all ε ∈ ]−ε3, ε3[, we have

N [ε, θ, ξ] = ∂(θ,ξ)N [ε, θ̃, ξ̃](θ, ξ),

for all (ε, θ, ξ) ∈ ]−ε3, ε3[×Um−1,α
0 ×R, and the map of ]−ε3, ε3[ to L(Um−1,α

0 ×R, Cm−1,α(∂Ω)) which
takes ε to N [ε, ·, ·] is real analytic. Since

N [0, ·, ·] = ∂(θ,ξ)Λ[0, θ̃, ξ̃](·, ·),

Theorem 3.58 (iii) implies that N [0, ·, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of Um−1,α

0 ×R to Cm−1,α(∂Ω) is open in the space L(Um−1,α
0 ×R, Cm−1,α(∂Ω)) and

since the map which takes a linear invertible operator to its inverse is real analytic (cf. e.g., Hille and
Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists ε̃ ∈ ]0, ε3[ such that the map ε 7→ N [ε, ·, ·](−1) is
real analytic from ]−ε̃, ε̃[ to L(Cm−1,α(∂Ω),Um−1,α

0 × R). Next we denote by S[ε, θ, ξ] the right-hand
side of (3.72). Then equation Λ[ε, θ, ξ] = 0 (or equivalently equation (3.72)) can be rewritten in the
following form:

(θ, ξ) = N [ε, ·, ·](−1)[S[ε, θ, ξ]], (3.73)

for all (ε, θ, ξ) ∈ ]−ε̃, ε̃[× Um−1,α
0 × R. Moreover, if j ∈ N, we observe that by (3.70) we have

uj(w + ε̂jt) = u[ε̂j , θj , ξj ](w + ε̂jt)

= ε̂j

∫
∂Ω

Sn(t− s)θj(s) dσs + ε̂n−1
j

∫
∂Ω

Ran(ε̂j(t− s))θj(s) dσs + ξj ∀t ∈ ∂Ω.
(3.74)

Next we note that condition (3.69), equality (3.74), the proof of Theorem 3.58, the real analyticity of
F and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , θj , ξj ] = S[0, θ̃, ξ̃] in Cm−1,α(∂Ω). (3.75)

Then by (3.73) and by the real analyticity of ε 7→ N [ε, ·, ·](−1), and by the bilinearity and continuity of
the operator of L(Cm−1,α(∂Ω),Um−1,α

0 ×R)×Cm−1,α(∂Ω) to Um−1,α
0 ×R, which takes a pair (T1, T2)

to T1[T2], by (3.75) we conclude that

lim
j→∞

(θj , ξj) = lim
j→∞

N [ε̂j , ·, ·](−1)[S[ε̂j , θj , ξj ]]

= N [0, ·, ·](−1)[S[0, θ̃, ξ̃]] = (θ̃, ξ̃) in Um−1,α
0 × R,

and, consequently, that (3.71) holds. Thus the proof is complete.
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3.6 An homogenization problem for the Laplace equation with
nonlinear Robin boundary conditions in a periodically per-
forated domain

In this section we consider an homogenization problem for the Laplace equation with nonlinear Robin
boundary conditions in a periodically perforated domain.

3.6.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 3.5.1 and 3.3.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57), (3.50), respectively.
For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic nonlinear Robin problem for the
Laplace equation.

∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},
δ ∂
∂νΩ(ε,δ)

u(x) + F
(

1
εδ (x− δw), u(x)

)
= 0 ∀x ∈ ∂Ω(ε, δ).

(3.76)

We give the following definition.

Definition 3.67. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let u[·] be as in Definition 3.59. For
each pair (ε, δ) ∈ ]0, ε3[× ]0,+∞[, we set

u(ε,δ)(x) ≡ u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ)

Remark 3.68. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). For each (ε, δ) ∈ ]0, ε3[× ]0,+∞[, u(ε,δ) is a
solution in Cm,α(cl Ta(ε, δ)) of problem (3.76).

By the previous remark, we note that a solution of problem (3.76) can be expressed by means of a
solution of an auxiliary rescaled problem, which does not depend on δ. This is due to the presence of
the factor δ in front of ∂

∂νΩ(ε,δ)
u(x) in the third equation of problem (3.76).

By virtue of Theorem (3.66), we have the following.
Remark 3.69. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let δ̄ ∈ ]0,+∞[. Let {ε̂j}j∈N be a sequence in
]0, ε1[ converging to 0. If {uj}j∈N is a sequence of functions such that

uj ∈ Cm,α(cl Ta(ε̂j , δ̄)),
uj solves (3.76) with (ε, δ) ≡ (ε̂j , δ̄),

lim
j→∞

uj(δ̄w + δ̄ε̂j ·) = ξ̃ in Cm−1,α(∂Ω),

then there exists j0 ∈ N such that

uj = u(ε̂j ,δ̄) ∀j0 ≤ j ∈ N.

We have the following.

Proposition 3.70. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let u[·] be as in Definition 3.59. Let
1 ≤ p <∞. Then

lim
ε→0+

E(ε,1)[u[ε]] = ξ̃ in Lp(A).

Proof. It is an easy modification of the proof of Proposition 3.22. Indeed, let ε3, Θ, Ξ be as in Theorem
3.58 (iv). Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[, we have

u[ε] ◦ (w + ε id∂Ω)(t)

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ ∂Ω.



3.6 An homogenization problem for the Laplace equation with nonlinear Robin boundary conditions
in a periodically perforated domain 131

We set

N [ε](t) ≡ ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i)) that
N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

C ≡ sup
ε∈]−ε̃,ε̃[

‖N [ε]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|E(ε,1)[u[ε]](x)| ≤ C ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

By Theorem 3.61, we have

lim
ε→0+

E(ε,1)[u[ε]](x) = ξ̃ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

E(ε,1)[u[ε]] = ξ̃ in Lp(A).

Proposition 3.71. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let u[·] be as in Definition 3.59. Then
there exist ε̃ ∈ ]0, ε3[ and a real analytic map N of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖E#
(ε,1)

[
u[ε], ξ̃

]
− ξ̃‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E#
(ε,1)

[
u[ε], ξ̃

]
= ξ̃ in L∞(Rn).

Proof. It is an easy modification of the proof of Proposition 3.23. Indeed, Let ε3, Θ, Ξ be as in
Theorem 3.58 (iv). Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[, we have

u[ε] ◦ (w + ε id∂Ω)(t)

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs + Ξ[ε] ∀t ∈ ∂Ω.

Since Ξ[·] is a real analytic function and
Ξ[0] = ξ̃,

then there exist ε̃ ∈ ]0, ε3[ and a real analytic function RΞ of ]−ε̃, ε̃[ to R such that

Ξ[ε]− ξ̃ = εRΞ[ε] ∀ε ∈ ]−ε̃, ε̃[.

We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs +RΞ[ε], ∀t ∈ ∂Ω,

for all ε ∈ ]−ε̃, ε̃[. We have that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω).
By Theorem 2.5, we have

‖E(ε,1)

[
u[ε], ξ̃

]
− ξ̃‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,

and the conclusion easily follows.
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3.6.2 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 3.70 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 3.72. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let 1 ≤ p <∞. Let V be a bounded
open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = ξ̃ in Lp(V ).

Proof. We modify the proof of Theorem 3.24. By virtue of Proposition 3.70, we have

lim
ε→0+

‖E(ε,1)[u[ε]]− ξ̃‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖E(ε,δ)[u(ε,δ)]− ξ̃‖Lp(V ) ≤ C‖E(ε,1)[u[ε]]− ξ̃‖Lp(A) ∀(ε, δ) ∈ ]0, ε3[× ]0, 1[.

Thus,
lim

(ε,δ)→(0+,0+)
‖E(ε,δ)[u(ε,δ)]− ξ̃‖Lp(V ) = 0,

and we can easily conclude.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 3.73. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε6, J be as in Theorem 3.65. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε], (3.77)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ [ε],

and the conclusion follows.
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In the following Theorem we consider the L∞–distance of a certain extension of u(ε,δ) and its limit.

Theorem 3.74. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let ε̃, N be as in Proposition 3.71.
Then

‖E#
(ε,δ)

[
u(ε,δ), ξ̃

]
− ξ̃‖L∞(Rn) = ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,δ)

[
u(ε,δ), ξ̃

]
= ξ̃ in L∞(Rn).

Proof. It follows by a simple modification of the proof of Theorem 3.26. Indeed, it suffices to observe
that

‖E#
(ε,δ)

[
u(ε,δ), ξ̃

]
− ξ̃‖L∞(Rn) = ‖E#

(ε,1)

[
u[ε], ξ̃

]
− ξ̃‖L∞(Rn)

= ε‖N [ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

3.6.3 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 3.75. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). For each pair (ε, δ) ∈ ]0, ε3[× ]0,+∞[,
we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.

Remark 3.76. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let ε3 be as in Theorem 3.58 (iv). Let (ε, δ) ∈ ]0, ε3[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 3.77. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 3.63. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 3.78. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε5 be as in Theorem 3.63. Let δ1 > 0 be as in Definition 3.77. Then

lim
δ→0+

En[δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 3.56.
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Proof. We follow step by step the proof of Propostion 2.140. Let G be as in Theorem 3.63. Let
δ ∈ ]0, δ1[. By Remark 3.76 and Theorem 3.63, we have∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])nG[ε[δ]]

= δnG[δ
2
n ].

On the other hand,

b(1/δ)cn
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx ≤ En[δ] ≤ d(1/δ)en
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx,

and so
b(1/δ)cnδnG[δ

2
n ] ≤ En[δ] ≤ d(1/δ)enδnG[δ

2
n ].

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = G[0].

Finally, by equality (3.64), we easily conclude.

In the following Proposition we represent the function En[·] by means of a real analytic function.

Proposition 3.79. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε5 and ξ̃ be as in Theorem 3.63. Let δ1 > 0 be as in Definition 3.77.
Then

En[(1/l)] = G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 3.78.

3.7 A variant of an homogenization problem for the Laplace
equation with nonlinear Robin boundary conditions in a
periodically perforated domain

In this section we consider a (slightly) different homogenization problem for the Laplace equation
with nonlinear Robin boundary conditions in a periodically perforated domain.

3.7.1 Notation and preliminaries

In this Section we retain the notation introduced in Subsections 1.8.1, 3.5.1 and 3.3.1.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57), (3.50), respectively.

For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic nonlinear Robin problem for the
Laplace equation.

∆u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δai) = u(x) ∀x ∈ cl Ta(ε, δ), ∀i ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) + F
(

1
εδ (x− δw), u(x)

)
= 0 ∀x ∈ ∂Ω(ε, δ).

(3.78)

In contrast to problem (3.76), we note that in the third equation of problem (3.78) there is not the
factor δ in front of ∂

∂νΩ(ε,δ)
u(x). As a consequence, we cannot convert problem (3.78) into a rescaled

auxiliary problem which does not depend on δ.
Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57), (3.50), respectively. For

each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we introduce the following auxiliary periodic nonlinear Robin problem
for the Laplace equation.
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∆u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ ai) = u(x) ∀x ∈ cl Ta[Ωε], ∀i ∈ {1, . . . , n},
∂

∂νΩε
u(x) + δF

(
1
ε (x− w), u(x)

)
= 0 ∀x ∈ ∂Ωε.

(3.79)

We now convert boundary value problem (3.79) into an integral equation.

Proposition 3.80. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57),
(3.50), respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. Let Um−1,α

ε be as in (1.63). Then the map of the set
of pairs (µ, ξ) ∈ Um−1,α

ε × R that solve the equation

1
2
µ(x) +

∫
∂Ωε

νΩε(x) ·DSan(x− y)µ(y) dσy

+ δF
(1
ε

(x− w),
∫
∂Ωε

San(x− y)µ(y) dσy + ξ
)

= 0 ∀x ∈ ∂Ωε, (3.80)

to the set of u ∈ Cm,α(cl Ta[Ωε]) which solve problem (3.79), which takes (µ, ξ) to the function

v−a [∂Ωε, µ] + ξ (3.81)

is a bijection.

Proof. It follows by Proposition 3.53, by replacing F by δF .

As we have seen, we can transform (3.79) into an integral equation defined on the ε-dependent
domain ∂Ωε. In order to get rid of such a dependence, we shall introduce the following Theorem.

Theorem 3.81. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F be as in (1.56), (1.57), (3.50),
respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. Let Um−1,α

0 be as in (1.64). Then the map u[ε, δ, ·, ·] of the
set of pairs (θ, ξ) ∈ Um−1,α

0 × R that solve the equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ F
(
t, δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

= 0 ∀t ∈ ∂Ω, (3.82)

to the set of u ∈ Cm,α(cl Ta[Ωε]) which solve problem (3.79), which takes (θ, ξ) to the function

u[ε, δ, θ, ξ] ≡ v−a [∂Ωε, δθ(
1
ε

(· − w))] + ξ (3.83)

is a bijection.

Proof. It is an immediate consequence of Proposition 3.80, of the Theorem of change of variables in
integrals and of Lemma 1.25.

In the following Proposition we study equation (3.82) for (ε, δ) = (0, 0) and when we set ξ = ξ̃
(where ξ̃ is as in (3.51).)

Proposition 3.82. Let m ∈ N\{0}, α ∈ ]0, 1[. Let Ω, F , ξ̃ be as in (1.56), (3.50), (3.51), respectively.
Let Um−1,α

0 be as in (1.64). Then the integral equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + F (t, ξ̃) = 0 ∀t ∈ ∂Ω, (3.84)

which we call the limiting equation, has a unique solution θ ∈ Um−1,α
0 , which we denote by θ̃.

Proof. It is Proposition 3.55.

Now we want to see if equation (3.84) is related to some (limiting) boundary value problem. We
give the following.
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Definition 3.83. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F , ξ̃ be as in (1.56), (3.50), (3.51), respectively.
We denote by ũ the unique solution in Cm,α(Rn \ Ω) of the following boundary value problem

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = −F (x, ξ̃) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(3.85)

Problem (3.85) will be called the limiting boundary value problem.

Remark 3.84. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F , ξ̃ be as in (1.56), (3.50), (3.51), respectively. Let
θ̃ be as in Proposition 3.82. We have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̃(y) dσy ∀x ∈ Rn \ Ω.

We are now ready to analyse equation (3.82) around the degenerate case (ε, δ) = (0, 0).

Theorem 3.85. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let Um−1,α

0 be as in (1.64). Let Λ be the map of ]−ε1, ε1[×R×Um−1,α
0 ×R

to Cm−1,α(∂Ω), defined by

Λ[ε, δ, θ, ξ](t) ≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ F
(
t, δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

∀t ∈ ∂Ω, (3.86)

for all (ε, δ, θ, ξ) ∈ ]−ε1, ε1[× R× Um−1,α
0 × R. Then the following statements hold.

(i) Equation Λ[0, 0, θ, ξ̃] = 0 is equivalent to the limiting equation (3.84) and has one and only one
solution θ̃ in Um−1,α

0 (cf. Proposition 3.82.)

(ii) If (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, then equation Λ[ε, δ, θ, ξ] = 0 is equivalent to equation (3.82) for
(θ, ξ).

(iii) There exists ε2 ∈ ]0, ε1], such that the map Λ of ]−ε2, ε2[×R×Um−1,α
0 ×R to Cm−1,α(∂Ω) is real

analytic. Moreover, the differential ∂(θ,ξ)Λ[0, 0, θ̃, ξ̃] of Λ at (0, 0, θ̃, ξ̃) is a linear homeomorphism
of Um−1,α

0 × R onto Cm−1,α(∂Ω).

(iv) There exist ε3 ∈ ]0, ε2], δ1 ∈ ]0,+∞[, an open neighbourhood Ũ of (θ̃, ξ̃) in Um−1,α
0 × R and

a real analytic map (Θ[·, ·],Ξ[·, ·]) of ]−ε3, ε3[ × ]−δ1, δ1[ to Um−1,α
0 × R, such that the set of

zeros of the map Λ in ]−ε3, ε3[ × Ũ coincides with the graph of (Θ[·, ·],Ξ[·, ·]). In particular,
(Θ[0, 0],Ξ[0, 0]) = (θ̃, ξ̃).

Proof. Statements (i) and (ii) are obvious. We now prove statement (iii). By the same argument as
the proof of Theorem 3.58, one can show such that there exists ε2 ∈ ]0, ε1], such that the map Λ of
]−ε2, ε2[× R× Um−1,α

0 × R to Cm−1,α(∂Ω) is real analytic. By standard calculus in Banach spaces,
the differential ∂(θ,ξ)Λ[0, 0, θ̃, ξ̃] of Λ at (0, 0, θ̃, ξ̃) is delivered by the following formula:

∂(θ,ξ)Λ[0, 0, θ̃, ξ̃](θ̄, ξ̄)(t) =
1
2
θ̄(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs + Fu(t, ξ̃)ξ̄ ∀t ∈ ∂Ω,

for all (θ̄, ξ̄) ∈ Um−1,α
0 × R. By the proof of Theorem 3.58 (iii), we deduce that the differential

∂(θ,ξ)Λ[0, 0, θ̃, ξ̃] of Λ at (0, 0, θ̃, ξ̃) is a linear homeomorphism of Um−1,α
0 × R onto Cm−1,α(∂Ω).

Finally, statement (iv) is an immediate consequence of statement (iii) and of the Implicit Function
Theorem for real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6],
Deimling [46, Theorem 15.3].)

We are now in the position to introduce the following.

Definition 3.86. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let u[·, ·, ·, ·] be as in Theorem 3.81. If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

u[ε, δ](x) ≡ u[ε, δ,Θ[ε, δ],Ξ[ε, δ]](x) ∀x ∈ cl Ta[Ωε],

where ε3, δ1, Θ, Ξ are as in Theorem 3.85 (iv).
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Remark 3.87. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Then u[ε, δ] is a
solution in Cm,α(cl Ta[Ωε]) of problem (3.79).

The following statement shows that {u[ε, δ](·)}(ε,δ)∈]0,ε3[×]0,δ1[ can be continued real analytically
for negative values of ε and δ.

Theorem 3.88. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85. Then the following statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator U1 of ]−ε4, ε4[ × ]−δ1, δ1[ to the space C0

h(clV ), and a real analytic
operator U2 of ]−ε4, ε4[× ]−δ1, δ1[ to R such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε, δ](x) = δεn−1U1[ε, δ](x) + U2[ε, δ] ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[. Moreover,

U2[0, 0] = ξ̃.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic
operator Ū1 of ]−ε̄4, ε̄4[× ]−δ1, δ1[ to the space Cm,α(cl V̄ ), and a real analytic operator Ū2 of
]−ε̄4, ε̄4[× ]−δ1, δ1[ to R such that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

u[ε, δ](w + εt) = δεŪ1[ε, δ](t) + Ū2[ε, δ] ∀t ∈ cl V̄ ,

for all (ε, δ) ∈ ]0, ε̄4[× ]0, δ1[. Moreover,

Ū2[0, 0] = ξ̃.

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We observe that

u[ε, δ](x) = δεn−1

∫
∂Ω

San(x− w − εs)Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀x ∈ cl Ta[Ωε].

Thus, in order to prove both statements, it suffices to follow the proof of Theorem 3.42.

As done in Theorem 3.88 for u[·, ·], we can now prove a real analytic continuation Theorem for the
energy integral. Namely, we prove the following.

Theorem 3.89. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85. Then there exist ε5 ∈ ]0, ε3] and a real
analytic operator ξ̃ of ]−ε5, ε5[× ]−δ1, δ1[ to R, such that∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx = δ2εnG[ε, δ], (3.87)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

G[0, 0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx. (3.88)

Proof. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly,∫
Pa[Ωε]

|∇u[ε, δ](x)|2 dx = δ2

∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε, δ](
1
ε

(· − w))](x)|2 dx.

As a consequence, in order to prove the Theorem, it suffices to follow the proof of Theorem 3.16.
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As done in Theorem 3.89 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 3.90. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85. Then there exist ε6 ∈ ]0, ε3], δ2 ∈ ]0, δ1],
and a real analytic operator J of ]−ε6, ε6[× ]−δ2, δ2[ to R, such that∫

Pa[Ωε]

u[ε, δ](x) dx = J [ε, δ], (3.89)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ2[. Moreover,

J [0, 0] = ξ̃|A|n. (3.90)

Proof. Let Θ[·, ·], Ξ[·, ·] be as in Theorem 3.85 (iv). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Since

u[ε, δ](x) = δv−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) + Ξ[ε, δ] ∀x ∈ cl Ta[Ωε],

then ∫
Pa[Ωε]

u[ε, δ](x) dx =δ
∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx

+ Ξ[ε, δ]
(
|A|n − ε

n|Ω|n
)
.

On the other hand, by arguing as in the proof of Theorem 3.16, we note that

v−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(w + εt)

=ε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs ∀t ∈ ∂Ω.

Then, if we set

L[ε, δ](t) ≡ ε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[, we have that L[·, ·] is a real analytic map of ]−ε3, ε3[× ]−δ1, δ1[ to
Cm,α(∂Ω). Then, by Theorem 2.115, we easily deduce that there exist ε6 ∈ ]0, ε3], δ2 ∈ ]0, δ1], and a
real analytic map J1 of ]−ε6, ε6[× ]−δ2, δ2[ to R, such that∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx = J1[ε, δ],

for all (ε, δ) ∈ ]0, ε6[× ]0, δ2[. Then, if we set

J [ε, δ] ≡ δJ1[ε, δ] + Ξ[ε, δ]
(
|A|n − ε

n|Ω|n
)
,

for all (ε, δ) ∈ ]−ε6, ε6[× ]−δ2, δ2[, we can immediately conclude.

We are now ready to show that the family {u[ε, δ]}(ε,δ)∈]0,ε3[×]0,δ1[ is essentially unique. Namely,
we prove the following.

Theorem 3.91. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let {(ε̂j , δ̂j)}j∈N be a sequence in ]0, ε1[× ]0,+∞[ converging to (0, 0). If
{uj}j∈N is a sequence of functions such that

uj ∈ Cm,α(cl Ta[Ωε̂j ]), (3.91)

uj solves (3.79) with (ε, δ) ≡ (ε̂j , δ̂j), (3.92)

lim
j→∞

uj(w + ε̂j ·) = ξ̃ in Cm−1,α(∂Ω), (3.93)

then there exists j0 ∈ N such that

uj = u[ε̂j , δ̂j ] ∀j0 ≤ j ∈ N.
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Proof. By Theorem 3.81, for each j ∈ N, there exists a unique pair (θj , ξj) in Um−1,α
0 × R such that

uj = u[ε̂j , δ̂j , θj , ξj ]. (3.94)

We shall now try to show that

lim
j→∞

(θj , ξj) = (θ̃, ξ̃) in Um−1,α
0 × R. (3.95)

Indeed, if we denote by Ũ the neighbourhood of Theorem 3.85 (iv), the limiting relation of (3.95)
implies that there exists j0 ∈ N such that

(ε̂j , δ̂j , θj , ξj) ∈ ]0, ε3[× ]0, δ1[× Ũ ,

for j ≥ j0 and thus Theorem 3.85 (iv) would imply that

(θj , ξj) = (Θ[ε̂j , δ̂j ],Ξ[ε̂j , δ̂j ]),

for j0 ≤ j ∈ N, and that accordingly the Theorem holds (cf. Definition 3.86.) Thus we now turn to
the proof of (3.95). We note that equation Λ[ε, δ, θ, ξ] = 0 can be rewritten in the following form

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+ Fu(t, ξ̃)
(
δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

= −F
(
t, δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

+ Fu(t, ξ̃)
(
δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))θ(s) dσs + ξ
)

∀t ∈ ∂Ω

(3.96)

for all (ε, δ, θ, ξ) in the domain of Λ. We define the map N of ]−ε3, ε3[ × ]−δ1, δ1[ × Um−1,α
0 × R

to Cm−1,α(∂Ω) by setting N [ε, δ, θ, ξ] equal to the left-hand side of the equality in (3.96), for all
(ε, δ, θ, ξ) ∈ ]−ε3, ε3[× ]−δ1, δ1[× Um−1,α

0 × R. By arguing as in the proof of Theorem 3.85, we can
prove that N is real analytic. Since N [ε, δ, ·, ·] is linear for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[, we have

N [ε, δ, θ, ξ] = ∂(θ,ξ)N [ε, δ, θ̃, ξ̃](θ, ξ),

for all (ε, δ, θ, ξ) ∈ ]−ε3, ε3[× ]−δ1, δ1[×Um−1,α
0 ×R, and the map of ]−ε3, ε3[× ]−δ1, δ1[ to L(Um−1,α

0 ×
R, Cm−1,α(∂Ω)) which takes (ε, δ) to N [ε, δ, ·, ·] is real analytic. Since

N [0, 0, ·, ·] = ∂(θ,ξ)Λ[0, 0, θ̃, ξ̃](·, ·),

Theorem 3.85 (iii) implies that N [0, 0, ·, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of Um−1,α

0 × R to Cm−1,α(∂Ω) is open in the space L(Um−1,α
0 × R, Cm−1,α(∂Ω))

and since the map which takes a linear invertible operator to its inverse is real analytic (cf. e.g., Hille
and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists (ε̃, δ̃) ∈ ]0, ε3[ × ]0, δ1[ such that the map
(ε, δ) 7→ N [ε, δ, ·, ·](−1) is real analytic from ]−ε̃, ε̃[× ]−δ̃, δ̃[ to L(Cm−1,α(∂Ω),Um−1,α

0 × R). Next we
denote by S[ε, δ, θ, ξ] the right-hand side of (3.96). Then equation Λ[ε, δ, θ, ξ] = 0 (or equivalently
equation (3.96)) can be rewritten in the following form:

(θ, ξ) = N [ε, δ, ·, ·](−1)[S[ε, δ, θ, ξ]], (3.97)

for all (ε, δ, θ, ξ) ∈ ]−ε̃, ε̃[ × ]−δ̃, δ̃[ × Um−1,α
0 × R. Moreover, if j ∈ N, we observe that by (3.94) we

have

uj(w + ε̂jt) = u[ε̂j , δ̂j , θj , ξj ](w + ε̂jt)

= δ̂j ε̂j

∫
∂Ω

Sn(t− s)θj(s) dσs + δ̂j ε̂
n−1
j

∫
∂Ω

Ran(ε̂j(t− s))θj(s) dσs + ξj ∀t ∈ ∂Ω.

(3.98)
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Next we note that condition (3.93), equality (3.98), the proof of Theorem 3.85, the real analyticity of
F and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , δ̂j , θj , ξj ] = S[0, 0, θ̃, ξ̃] in Cm−1,α(∂Ω). (3.99)

Then by (3.97) and by the real analyticity of (ε, δ) 7→ N [ε, δ, ·, ·](−1), and by the bilinearity and
continuity of the operator of L(Cm−1,α(∂Ω),Um−1,α

0 ×R)×Cm−1,α(∂Ω) to Um−1,α
0 ×R, which takes

a pair (T1, T2) to T1[T2], by (3.99) we conclude that

lim
j→∞

(θj , ξj) = lim
j→∞

N [ε̂j , δ̂j , ·, ·](−1)[S[ε̂j , δ̂j , θj , ξj ]]

= N [0, 0, ·, ·](−1)[S[0, 0, θ̃, ξ̃]] = (θ̃, ξ̃) in Um−1,α
0 × R,

and, consequently, that (3.95) holds. Thus the proof is complete.

We give the following definition.

Definition 3.92. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). Let u[·, ·] be as in Definition 3.86.
For each pair (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

u(ε,δ)(x) ≡ u[ε, δ](
x

δ
) ∀x ∈ cl Ta(ε, δ)

Remark 3.93. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). For each (ε, δ) ∈ ]0, ε3[× ]0, δ1[, u(ε,δ) is a
solution in Cm,α(cl Ta(ε, δ)) of problem (3.78).

We have the following.

Proposition 3.94. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). Let u[·, ·] be as in Definition 3.86.
Let 1 ≤ p <∞. Then

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] = ξ̃ in Lp(A).

Proof. t suffices to modify the proof of Proposition 3.22. Let ε3, δ1, Θ, Ξ be as in Theorem 3.85 (iv).
Let id∂Ω denote the identity map in ∂Ω. If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t)

= δε

∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀t ∈ ∂Ω.

We set

N [ε, δ](t) ≡ δε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ and δ̃ ∈ ]0, δ1[ small enough, we can assume
(cf. Proposition 1.26 (i)) that N is a real analytic map of ]−ε̃, ε̃[× ]−δ̃, δ̃[ to Cm,α(∂Ω) and that

C ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖N [ε, δ]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|E(ε,1)[u[ε, δ]](x)| ≤ C ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.

By Theorem 3.88, we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]](x) = ξ̃ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] = ξ̃ in Lp(A).
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Proposition 3.95. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). Let u[·, ·] be as in Definition 3.86.
Then there exist ε̃ ∈ ]0, ε3[ and a real analytic map N of ]−ε̃, ε̃[× ]−δ1, δ1[ to Cm,α(∂Ω) such that

‖E#
(ε,1)

[
u[ε, δ], ξ̃

]
− ξ̃‖L∞(Rn) = ‖N [ε, δ]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover,
N [0, 0] = 0

and, as a consequence,
lim

(ε,δ)→(0+,0+)
E#

(ε,1)

[
u[ε, δ], ξ̃

]
= ξ̃ in L∞(Rn).

Proof. Let ε3, δ1, Θ, Ξ be as in Theorem 3.85 (iv). Let id∂Ω denote the identity map in ∂Ω. If
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) =δε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ] ∀t ∈ ∂Ω.

We set

N [ε, δ](t) ≡δε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs + Ξ[ε, δ]− ξ̃, ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition
1.26 (i)) that N is a real analytic map of ]−ε̃, ε̃[× ]−δ1, δ1[ to Cm,α(∂Ω). By Theorem 2.5, we have

‖E(ε,1)

[
u[ε, δ], ξ̃

]
− ξ̃‖L∞(Rn) = ‖N [ε, δ]‖C0(∂Ω) ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ1[,

and the conclusion easily follows.

3.7.2 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 3.94 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 3.96. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). Let 1 ≤ p <∞. Let V be a bounded
open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = ξ̃ in Lp(V ).

Proof. We modify the proof of Theorem 2.134. By virtue of Proposition 3.45, we have

lim
(ε,δ)→(0+,0+)

‖E(ε,1)[u[ε, δ]]− ξ̃‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖E(ε,δ)[u(ε,δ)]− ξ̃‖Lp(V ) ≤ C‖E(ε,1)[u[ε, δ]]− ξ̃‖Lp(A)

∀(ε, δ) ∈ ]0, ε3[× ]0,min{1, δ1}[.

Thus,
lim

(ε,δ)→(0+,0+)
‖E(ε,δ)[u(ε,δ)]− ξ̃‖Lp(V ) = 0,

and we can easily conclude.
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Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 3.97. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85. Let ε6, δ2, J be as in Theorem 3.90. Let
r > 0 and ȳ ∈ Rn. Then ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ

[
ε,
r

l

]
, (3.100)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ2).

Proof. Let ε ∈ ]0, ε6[, and let l ∈ N \ {0} be such that l > (r/δ2). Then, by the periodicity of u(ε,r/l),
we have ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u
[
ε, (r/l)

]( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u
[
ε, (r/l)

]
(t) dt

=
rn

ln
J
[
ε,
r

l

]
.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rnJ
[
ε,
r

l

]
,

and the conclusion follows.

In the following Theorem we consider the L∞–distance of a certain extension of u(ε,δ) and its limit.

Theorem 3.98. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). Let ε̃, N be as in Proposition 3.95.
Then

‖E#
(ε,δ)

[
u(ε,δ), ξ̃

]
− ξ̃‖L∞(Rn) = ‖N [ε, δ]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover,
N [0, 0] = 0,

and, as a consequence,

lim
(ε,δ)→(0+,0+)

E#
(ε,δ)

[
u(ε,δ), ξ̃

]
= ξ̃ in L∞(Rn).

Proof. It suffices to observe that

‖E#
(ε,δ)

[
u(ε,δ), ξ̃

]
− ξ̃‖L∞(Rn) = ‖E#

(ε,1)

[
u[ε, δ], ξ̃

]
− ξ̃‖L∞(Rn)

= ‖N [ε, δ]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.
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3.7.3 Asymptotic behaviour of the energy integral of u(ε,δ)

This Subsection is devoted to the study of the behaviour of the energy integral of u(ε,δ). We give the
following.

Definition 3.99. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). For each pair (ε, δ) ∈ ]0, ε3[× ]0, δ1[,
we set

En(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx.

Remark 3.100. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57), (3.50),
(3.51), respectively. Let ε3, δ1 be as in Theorem 3.85 (iv). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε, δ](t)|2 dt.

In the following Proposition we represent the function En(·, ·) by means of a real analytic function.

Proposition 3.101. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , ξ̃ be as in (1.56), (1.57),
(3.50), (3.51), respectively. Let ε5, δ1, and ξ̃ be as in Theorem 3.89. Then

En
(
ε,

1
l

)
= εnG[ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0} such that l > (1/δ1).

Proof. By Remark 3.100 and Theorem 3.89, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δnεnG[ε, δ] (3.101)

On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0} is such that l > (1/δ1), then we have

En
(
ε,

1
l

)
= ln

1
ln
εnG[ε, (1/l)]

= εnG[ε, (1/l)],

and the conclusion easily follows.
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CHAPTER 4

Singular perturbation and homogenization problems
for the Laplace equation with transmission boundary
condition

In this Chapter we consider periodic transmission problems for the Laplace equation and we study
singular perturbation and homogenization problems for the Laplace operator with transmission
boundary conditions in a periodically perforated domain. As well as for the Robin problem, we
consider both the linear and the nonlinear case. In the first part, by means of periodic simple layer
potentials, we show the solvability of a linear transmission problem. Then we consider singular
perturbation problems for the Laplace operator, with linear and nonlinear transmission boundary
conditions, in a periodically perforated domain with small holes, and we apply the obtained results
to homogenization problems. As far as these problems are concerned, the strategy that we follow,
in particular for the nonlinear case, is the one of Lanza [78], where the asymptotic behaviour of the
solutions of a nonlinear transmission problem for the Laplace operator is investigated. Concerning
nonlinear problems, we also mention Dalla Riva and Lanza [38, 39, 42, 43]. One of the tools used in
our analysis is the study of the dependence of layer potentials upon perturbations (cf. Lanza and
Rossi [85] and also Dalla Riva and Lanza [40].)

We retain the notation of Chapter 1 (see in particular Sections 1.1, 1.3, Theorem 1.4, and Definitions
1.12, 1.14, 1.16.) For notation, definitions, and properties concerning classical layer potentials for the
Laplace equation, we refer to Appendix B.

4.1 A linear transmission periodic boundary value problem for
the Laplace equation

In this Section we introduce a periodic linear transmission problem for the Laplace equation and we
show the existence of a solution by means of the periodic simple layer potential.

4.1.1 Formulation of the problem

In this Subsection we introduce a periodic linear transmission problem for the Laplace equation.
First of all, we need to introduce some notation. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in

(1.46). We shall consider the following assumptions.

φ ∈ ]0,+∞[, (4.1)
γ ∈ ]0,+∞[, (4.2)

Γ ∈ Cm−1,α(∂I),
∫
∂I

Γ dσ = 0. (4.3)

We are now ready to give the following.

145
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Definition 4.1. Let m ∈ N\{0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, γ, Γ be as in (4.1), (4.2),
(4.3), respectively. We say that a pair of functions (ui, uo) ∈ (C1(cl Sa[I])∩C2(Sa[I]))× (C1(cl Ta[I])∩
C2(Ta[I])) solves the periodic (linear) transmission problem for the Laplace equation if

∆ui(x) = 0 ∀x ∈ Sa[I],
∆uo(x) = 0 ∀x ∈ Ta[I],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[I], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂I,
∂
∂νI
uo(x) = γ ∂

∂νI
ui(x) + Γ(x) ∀x ∈ ∂I.

(4.4)

4.1.2 Existence and uniqueness results for the solutions of the periodic
transmission problem

In this Subsection we prove uniqueness and existence results for the solutions of the periodic transmis-
sion problems for the Laplace equation.

Proposition 4.2. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, γ be as in (4.1),
(4.2), respectively. Let Γ ∈ Cm−1,α(∂I). If problem (4.4) has a solution in (C1(cl Sa[I]) ∩C2(Sa[I]))×
(C1(cl Ta[I]) ∩ C2(Ta[I])), then ∫

∂I
Γ dσ = 0.

Proof. Let (ui, uo) ∈ (C1(cl Sa[I]) ∩ C2(Sa[I]))× (C1(cl Ta[I]) ∩ C2(Ta[I])) be a solution of (4.4). By
Green’s Formula, ∫

∂I

∂

∂νI
ui dσ =

∫
I
∆ui(x) dx = 0.

By the periodicity of uo and Green’s Formula,∫
∂I

∂

∂νI
uo dσ =

∫
∂A

∂

∂νA
uo dσ −

∫
Pa[I]

∆uo(x) dx = 0.

Hence, ∫
∂I

Γ dσ =
∫
∂I

∂

∂νI
uo dσ − γ

∫
∂I

∂

∂νI
ui dσ = 0,

and thus the proof is complete.

Proposition 4.3. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, γ, Γ be as in (4.1),
(4.2), (4.3), respectively. Let (ui1, u

o
1), (ui2, u

o
2) be two pairs of functions in (C1(cl Sa[I]) ∩ C2(Sa[I]))×

(C1(cl Ta[I]) ∩ C2(Ta[I])) that solve problem (4.4). Then there exists a constant c ∈ R such that

ui1(x) = ui2(x) + c ∀x ∈ cl Sa[I],
uo1(x) = uo2(x) + φc ∀x ∈ cl Ta[I],

Proof. Let (ui1, u
o
1), (ui2, u

o
2) be two pairs of functions in (C1(cl Sa[I]) ∩ C2(Sa[I])) × (C1(cl Ta[I]) ∩

C2(Ta[I])) that solve problem (4.4). We set

vi(x) ≡ ui1(x)− ui2(x) ∀x ∈ cl Sa[I],
vo(x) ≡ uo1(x)− uo2(x) ∀x ∈ cl Ta[I].

Then 

∆vi(x) = 0 ∀x ∈ Sa[I],
∆vo(x) = 0 ∀x ∈ Ta[I],
vi(x+ aj) = vi(x) ∀x ∈ cl Sa[I], ∀j ∈ {1, . . . , n},
vo(x+ aj) = vo(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
vo(x) = φvi(x) ∀x ∈ ∂I,
∂
∂νI
vo(x) = γ ∂

∂νI
vi(x) ∀x ∈ ∂I.
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By Green’s Formula, we have

0 ≤
∫

I
|∇vi(x)|2 dx =

∫
∂I
vi(x)

∂

∂νI
vi(x) dσx

=
1
φγ

∫
∂I
vo(x)

∂

∂νI
vo(x) dσx = − 1

φγ

∫
Pa[I]
|∇vo(x)|2 dx ≤ 0.

Thus ∫
I
|∇vi(x)|2 dx = 0 =

∫
Pa[I]
|∇vo(x)|2 dx,

and so

vi(x) = ci ∀x ∈ cl Sa[I],
vo(x) = co ∀x ∈ cl Ta[I],

for some ci, co in R. Finally, since vo = φvi on ∂I, we must have

co = φci,

and we can easily conclude.

As usual, in order to solve problem (4.4) by means of periodic simple layer potentials, we need
to study some integral equations. Consequently, we now introduce and study a linear operator that
appears in these equations.

Definition 4.4. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). We denote by va∗[∂I, ·] the
linear operator of Cm−1,α(∂I) to Cm−1,α(∂I) defined by

va∗[∂I, µ](x) =
∫
∂I

∂

∂νI(x)
(San(x− y))µ(y) dσy ∀x ∈ ∂I,

for all µ ∈ Cm−1,α(∂I).

Then we have the following.

Proposition 4.5. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, γ be as in (4.1),
(4.2), respectively. Then the following statements hold.

(i) The map va∗[∂I, ·] of Cm−1,α(∂I) to Cm−1,α(∂I) is compact.

(ii) Let µ ∈ C0,α(∂I). Then∫
∂I

(1
2
µ(x)− γ − φ

γ + φ
va∗[∂I, µ](x)

)
dσx =

1
φ+ γ

(
φ
|Pa[I]|n
|A|n

+ γ
|I|n
|A|n

)∫
∂I
µdσ.

(iii) The map
1
2
I − γ − φ

γ + φ
va∗[∂I, ·]

of Cm−1,α(∂I) to Cm−1,α(∂I) is a linear homeomorphism of Cm−1,α(∂I) onto itself.

Proof. We first prove statement (i). Let v∗[∂I, ·] denote the map of Cm−1,α(∂I) to Cm−1,α(∂I), which
takes µ to

v∗[∂I, µ](x) ≡
∫
∂I

∂

∂νI(x)
(Sn(x− y))µ(y) dσy ∀x ∈ ∂I.

As is well known, the operator v∗[∂I, ·] is compact in Cm−1,α(∂I). Indeed, for n = 3, case m = 1 has
been proved by Schauder [123, 124] and case m > 1 by Kirsch [64]. Then as observed in Kirsch [64,
p. 789], the case n ≥ 2 can also be treated. Then we note that

va∗[∂I, µ](x) = v∗[∂I, µ](x) +
∫
∂I

∂

∂νI(x)
(Ran(x− y))µ(y) dσy ∀x ∈ ∂I,
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for all µ ∈ Cm−1,α(∂I). Clearly the second term in the right-hand side of the previous equality defines
a compact operator of Cm−1,α(∂I) to itself. Indeed, let V1, V2 be two bounded connected open subsets
of Rn of class C∞, such that

cl I ⊆ V1 ⊆ clV1 ⊆ V2 ⊆ clV2 ⊆ A.

The existence of V1 and V2 can be proved by exploiting a standard argument based on Sard’s Theorem.
Let the space

C0
h(clV2) ≡

{
u ∈ C0(clV2) ∩ C2(V2) : ∆u(t) = 0 ∀t ∈ V2

}
be endowed with the norm of the uniform convergence. Let j ∈ {1, . . . , n} The map of Cm−1,α(∂I) to
C0
h(clV2) which takes µ to

∫
∂I ∂xjR

a
n(·−y))µ(y) dσy is linear and continuous. Then, by classical interior

estimates for harmonic functions, we have that the map µ 7→
∫
∂I ∂xjR

a
n(· − y))µ(y) dσy of Cm−1,α(∂I)

to Cm,α(clV1) is linear and continuous. By the compactness of the imbedding of Cm,α(clV1) into
Cm−1,α(clV1) and the continuity of the restriction map of Cm−1,α(clV1) to Cm−1,α(∂I) and of the
pointwise product in Schauder spaces, we easily conclude. Hence, the map va∗[∂I, ·] of Cm−1,α(∂I) to
Cm−1,α(∂I) is compact. We now prove statement (ii). Let µ ∈ C0,α(∂I). By Fubini’s Theorem and
Theorem 1.13 (iv), we have

(φ+ γ)
∫
∂I

(1
2
µ(x)− γ − φ

γ + φ
va∗[∂I, µ](x)

)
dσx =

((φ
2

+
γ

2
)
− (γ − φ)

(1
2
−
|I|n
|A|n

)) ∫
∂I
µdσ

=
(
φ
(
1−

|I|n
|A|n

)
+ γ
|I|n
|A|n

)∫
∂I
µdσ =

(
φ
|Pa[I]|n
|A|n

+ γ
|I|n
|A|n

)∫
∂I
µdσ.

Therefore, statements (ii) holds. Finally, consider (iii). Case φ = γ is obvious. Thus we can assume
that φ 6= γ. By Fredholm Theory and the Open Mapping Theorem, it suffices to prove that the map
1
2I − (γ−φγ+φ )va∗[∂I, ·] is injective. So let µ ∈ C0,α(∂I) be such that

(γ + φ)
1
2
µ− (γ − φ)va∗[∂I, µ] = 0 on ∂I,

or equivalently

φ
∂

∂νI
v−a [∂I, µ]− γ ∂

∂νI
v+
a [∂I, µ] = 0 on ∂I.

Now, by virtue of (ii), we have in particular
∫
∂I µdσ = 0. Then by Theorem 1.15, it is immediate to

see that the pair of functions (ui, uo) ≡ (v+
a [∂I, µ], φv−a [∂I, µ]) solves problem (4.4) with Γ ≡ 0. Thus,

(cf. Proposition 4.3), we have
va[∂I, µ](x) = c ∀x ∈ Rn,

for some c ∈ R. Then, by Theorem 1.15 (iv), we have µ = 0. Hence 1
2I−(γ−φγ+φ )va∗[∂I, ·] is injective.

We are now ready to prove the existence of a solution of problem (4.4).

Theorem 4.6. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, γ, Γ be as in (4.1),
(4.2), (4.3), respectively. Then boundary value problem (4.4) has a solution (ui, uo) ∈ (Cm,α(cl Sa[I])∩
C2(Sa[I]))× (Cm,α(cl Ta[I]) ∩ C2(Ta[I])). More precisely,

ui(x) ≡ v+
a [∂I, µ](x) ∀x ∈ cl Sa[I], (4.5)

uo(x) ≡ φv−a [∂I, µ](x) ∀x ∈ cl Ta[I], (4.6)

where µ is the unique function in Cm−1,α(∂I) that solves the following equation

1
2
µ(x)− γ − φ

γ + φ

∫
∂I

∂

∂νI(x)
(San(x− y))µ(y) dσy =

1
γ + φ

Γ(x) ∀x ∈ ∂I. (4.7)

Moreover, the subset of (Cm,α(cl Sa[I]) ∩ C2(Sa[I]))× (Cm,α(cl Ta[I]) ∩ C2(Ta[I])) of all the solutions
of (4.4), is delivered by {

(v+
a [∂I, µ] + c, φv−a [∂I, µ] + φc) : c ∈ R

}
, (4.8)

with µ as above.
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Proof. By Proposition 4.5 (iii), there exists a unique µ in Cm−1,α(∂I) such that (4.7) holds. Then, by
Proposition 4.5 (ii), since

∫
∂I Γ dσ = 0, we have

∫
∂I µdσ = 0. Then by Theorem 1.15, it is immediate

to see that the pair of functions (ui, uo) ≡ (v+
a [∂I, µ], φv−a [∂I, µ]) solves problem (4.4). Finally, by

Proposition 4.3, it is easy to see that the subset of (Cm,α(cl Sa[I]) ∩ C2(Sa[I])) × (Cm,α(cl Ta[I]) ∩
C2(Ta[I])) of all the solutions of (4.4), is delivered by (4.8).

Remark 4.7. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let φ, γ, Γ be as in (4.1),
(4.2), (4.3), respectively. Let (ui, uo) ∈ (Cm,α(cl Sa[I])∩C2(Sa[I]))× (Cm,α(cl Ta[I])∩C2(Ta[I])) be a
solution of problem (4.4). We have∫

I
|∇ui(x)|2 dx =

∫
∂I
ui(x)

∂

∂νI
ui(x) dσx

=
∫
∂I

1
γ

( ∂

∂νI
uo(x)− Γ(x)

) 1
φ
uo(x) dσx

=
1
φγ

∫
∂I
uo(x)

∂

∂νI
uo(x) dσx −

1
γφ

∫
∂I

Γ(x)uo(x) dσx,

and ∫
Pa[I]
|∇uo(x)|2 dx = −

∫
∂I
uo(x)

∂

∂νI
uo(x) dσx

= −
∫
∂I

(
γ
∂

∂νI
ui(x) + Γ(x)

)
φui(x) dσx

= −φγ
∫
∂I
ui(x)

∂

∂νI
ui(x) dσx − φ

∫
∂I

Γ(x)ui(x) dσx.

Thus,∫
I
|∇ui(x)|2 dx+

∫
Pa[I]
|∇uo(x)|2 dx = (1− γφ)

∫
∂I
ui(x)

∂

∂νI
ui(x) dσx − φ

∫
∂I

Γ(x)ui(x) dσx

=
(
−1 +

1
γφ

) ∫
∂I
uo(x)

∂

∂νI
uo(x) dσx −

1
γφ

∫
∂I

Γ(x)uo(x) dσx.

4.2 Asymptotic behaviour of the solutions of a linear trans-
mission problem for the Laplace equation in a periodically
perforated domain

In this Section we study the asymptotic behaviour of the solutions of a linear transmission problem
for the Laplace equation in a periodically perforated domain with small holes.

4.2.1 Notation
We retain the notation introduced in Subsection 1.8.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the following assumptions.

φ ∈ ]0,+∞[, (4.9)
γ ∈ ]0,+∞[, (4.10)

g ∈ Cm−1,α(∂Ω),
∫
∂Ω

g dσ = 0, (4.11)

c̄ ∈ R. (4.12)

4.2.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57), (4.9), (4.10),
(4.11), (4.12), respectively. For each ε ∈ ]0, ε1[, we consider the following periodic linear transmission
problem for the Laplace equation.
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∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,
ui(w) = c̄

(4.13)

By virtue of Theorem 4.6, we can give the following definition.

Definition 4.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. For each ε ∈ ]0, ε1[, we denote by (ui[ε], uo[ε]) the unique
solution in Cm,α(cl Sa[Ωε])× Cm,α(cl Ta[Ωε]) of boundary value problem (4.13).

We give the following definition.

Definition 4.9. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We denote by v∗[∂Ω, ·] the linear
operator of Cm−1,α(∂Ω) to Cm−1,α(∂Ω) defined by

v∗[∂I, θ](t) ≡
∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω,

for all θ ∈ Cm−1,α(∂Ω).

Then we have the following result.

Proposition 4.10. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, φ, γ be as in (1.56), (4.9), (4.10), (4.11),
respectively. Then the following statements hold.

(i) The map v∗[∂Ω, ·] of Cm−1,α(∂Ω) to Cm−1,α(∂Ω) is compact.

(ii) Let θ ∈ C0,α(∂Ω). Then∫
∂Ω

(1
2
θ(t)− γ − φ

γ + φ
v∗[∂Ω, θ](t)

)
dσt =

1
2

(
1−

(γ − φ
γ + φ

)) ∫
∂Ω

θ dσ.

(iii) The map
1
2
I − γ − φ

γ + φ
v∗[∂Ω, ·]

of Cm−1,α(∂Ω) to Cm−1,α(∂Ω) is a linear homeomorphism of Cm−1,α(∂Ω) onto itself.

Proof. The compactness of v∗[∂Ω, ·] has already been observed (cf. the proof of Proposition 4.5 (i).)
The statement in (ii) is a straightforward consequence of Fubini’s Theorem and Theorem B.1 (iv).
Now we prove the statement in (iii). By Fredholm Theory and the Open Mapping Theorem, it suffices
to prove that the map 1

2I − (γ−φγ+φ )v∗[∂Ω, ·] is injective in C0,α(∂Ω). So, let θ ∈ C0,α(∂Ω) be such that

1
2

(φ+ γ)θ − (γ − φ)v∗[∂Ω, θ] = 0 on ∂Ω,

or equivalently

φ
∂

∂νΩ
v−[∂Ω, θ]− γ ∂

∂νΩ
v+[∂Ω, θ] = 0 on ∂Ω.

By (ii), we have, in particular,
∫
∂Ω
θ dσ = 0. Thus v−[∂Ω, θ] is harmonic at infinity and

lim
t→∞

v−[∂Ω, θ](t) = 0.

By the Divergence Theorem and Folland [52, p. 118], we have

0 ≤
∫

Ω

|∇v+[∂Ω, θ](t)|2 dt =
∫
∂Ω

v[∂Ω, θ](t)
∂

∂νΩ
v+[∂Ω, θ](t) dσt

=
φ

γ

∫
∂Ω

v[∂Ω, θ](t)
∂

∂νΩ
v−[∂Ω, θ](t) dσt = −φ

γ

∫
Rn\cl Ω

|∇v−[∂Ω, θ](t)|2 dt ≤ 0.
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Hence, v[∂Ω, θ](t) = 0 for all t ∈ Rn, and so, by Theorem B.2 (v),

θ(t) =
∂

∂νΩ
v−[∂Ω, θ](t)− ∂

∂νΩ
v+[∂Ω, θ](t) = 0 ∀t ∈ ∂Ω.

Since we want to represent the pair of functions (ui[ε], uo[ε]) by means of periodic simple layer
potentials and constants (cf. Theorem 4.6), we need to study some integral equations. Indeed, by
virtue of Theorem 4.6, we can transform (4.13) into an integral equation, whose unknown is the
moment of the simple layer potential. Moreover, we want to transform these equations defined on the
ε-dependent domain ∂Ωε into equations defined on the fixed domain ∂Ω. We introduce these integral
equations in the following Proposition. The relation between the solution of the integral equation and
the solution of boundary value problem (4.13) will be clarified later.

Proposition 4.11. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let Um−1,α

ε , Um−1,α
0 be as in (1.63), (1.64), respectively. Let Λ be

the map of ]−ε1, ε1[× Cm−1,α(∂Ω) in Cm−1,α(∂Ω) defined by

Λ[ε, θ](t) ≡ 1
2
θ(t)− (

γ − φ
γ + φ

)
∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs

− (
γ − φ
γ + φ

)εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs −
1

φ+ γ
g(t) ∀t ∈ ∂Ω,

(4.14)

for all (ε, θ) ∈ ]−ε1, ε1[× Cm−1,α(∂Ω). Then the following statements hold.

(i) If ε ∈ ]0, ε1[, then the function θ ∈ Cm−1,α(∂Ω) satisfies equation

Λ[ε, θ] = 0, (4.15)

if and only if the function µ ∈ Cm−1,α(∂Ωε), defined by

µ(x) ≡ θ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (4.16)

satisfies the equation

1
γ + φ

Γ(x) =
1
2
µ(x)− γ − φ

γ + φ

∫
∂Ωε

∂

∂νΩε(x)
(San(x− y))µ(y) dσy ∀x ∈ ∂Ωε, (4.17)

with Γ ∈ Cm−1,α(∂Ωε) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε. (4.18)

In particular, equation (4.15) has exactly one solution θ ∈ Cm−1,α(∂Ω), for each ε ∈ ]0, ε1[.
Moreover, if θ solves (4.15), then θ ∈ Um−1,α

0 , and so also θ( 1
ε (· − w)) ∈ Um−1,α

ε .

(ii) The function θ ∈ Cm−1,α(∂Ω) satisfies equation

Λ[0, θ] = 0, (4.19)

if and only if

1
φ+ γ

g(t) =
1
2
θ(t)− γ − φ

γ + φ

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (4.20)

In particular, if ε = 0, equation (4.19) has exactly one solution θ ∈ Cm−1,α(∂Ω), which we
denote by θ̃. Moreover, if θ solves (4.20), then θ ∈ Um−1,α

0 .

Proof. Consider (i). Let θ ∈ Cm−1,α(∂Ω). Let ε ∈ ]0, ε1[. First of all, we note that∫
∂Ωε

θ(
1
ε

(x− w)) dσx = εn−1

∫
∂Ω

θ(t) dσt,



152
Singular perturbation and homogenization problems for the Laplace equation with transmission

boundary condition

and so θ ∈ Um−1,α
0 if and only if θ( 1

ε (· − w)) ∈ Um−1,α
ε . The equivalence of equation (4.15) in

the unknown θ ∈ Cm−1,α(∂Ω) and equation (4.17) in the unknown µ ∈ Cm−1,α(∂Ωε) follows by a
straightforward computation based on the rule of change of variables in integrals and on well known
properties of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Sections 3,4].) The
existence and uniqueness of a solution of equation (4.17) follows by Proposition 4.5 (iii). Then the
existence and uniqueness of a solution of equation (4.15) follows by the equivalence of (4.15) and
(4.17). Moreover, if µ ≡ θ( 1

ε (· − w)) solves (4.17), then, since
∫
∂Ω
g dσ = 0, we have µ ∈ Um−1,α

ε (see
Proposition 4.5 (ii)) and accordingly θ ∈ Um−1,α

0 . Consider (ii). The equivalence of (4.19) and (4.20)
is obvious. The existence of a unique solution of equation (4.19) is an immediate consequence of
Proposition 4.10 (iii). Moreover, if θ ∈ Cm−1,α(∂Ω) solves equation (4.20), then, by Proposition 4.10
(ii), we have θ ∈ Um−1,α

0 .

By Proposition 3.6, it makes sense to introduce the following.

Definition 4.12. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56),
(1.57), (4.9), (4.10), (4.11), respectively. For each ε ∈ ]0, ε1[, we denote by θ̂[ε] the unique function in
Cm−1,α(∂Ω) that solves (4.15). Analogously, we denote by θ̂[0] the unique function in Cm−1,α(∂Ω)
that solves (4.19).

In the following Remark, we show the relation between the solutions of boundary value problem
(4.13) and the solutions of equation (4.15).
Remark 4.13. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively.

Let ε ∈ ]0, ε1[. We have

ui[ε](x) = εn−1

∫
∂Ω

San(x− w − εs)θ̂[ε](s) dσs +
(
c̄− εn−1

∫
∂Ω

San(−εs)θ̂[ε](s) dσs
)

∀x ∈ cl Sa[Ωε],

and

uo[ε](x) = φεn−1

∫
∂Ω

San(x−w− εs)θ̂[ε](s) dσs + φ
(
c̄− εn−1

∫
∂Ω

San(−εs)θ̂[ε](s) dσs
)
∀x ∈ cl Ta[Ωε].

While the relation between equation (4.15) and boundary value problem (4.13) is now clear, we
want to see if (4.19) is related to some (limiting) boundary value problem. We give the following.

Definition 4.14. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, φ, γ, g be as in (1.56), (4.9), (4.10), (4.11),
respectively. We denote by (ũi, ũo) the unique solution in Cm,α(cl Ω)×Cm,α(Rn \ Ω) of the following
boundary value problem 

∆ui(x) = 0 ∀x ∈ Ω,
∆uo(x) = 0 ∀x ∈ Rn \ cl Ω,
uo(x) = φui(x) ∀x ∈ ∂Ω,
∂
∂νΩ

uo(x) = γ ∂
∂νΩ

ui(x) + g(x) ∀x ∈ ∂Ω,
limx→∞ uo(x) = 0.

(4.21)

Problem (4.21) will be called the limiting boundary value problem.

Remark 4.15. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. We have

ũi(x) =
∫
∂Ω

Sn(x− y)θ̂[0](y) dσy ∀x ∈ cl Ω,

and
ũo(x) = φ

∫
∂Ω

Sn(x− y)θ̂[0](y) dσy ∀x ∈ Rn \ Ω.

Furthermore, ∫
Rn\cl Ω

|∇ũo(x)|2 dx = −
∫
∂Ω

ũo(x)
∂

∂νΩ
ũo(x) dσx

= −γφ
∫
∂Ω

ũi(x)
∂

∂νΩ
ũi(x) dσx − φ

∫
∂Ω

g(x)ũi(x) dσx
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and ∫
Ω

|∇ũi(x)|2 dx =
∫
∂Ω

ũi(x)
∂

∂νΩ
ũi(x) dσx

=
1
γφ

∫
∂Ω

ũo(x)
∂

∂νΩ
ũo(x) dσx −

1
γφ

∫
∂Ω

g(x)ũo(x) dσx.

Hence,∫
Rn\cl Ω

|∇ũo(x)|2 dx+
∫

Ω

|∇ũi(x)|2 dx = (1− γφ)
∫
∂Ω

ũi(x)
∂

∂νΩ
ũi(x) dσx − φ

∫
∂Ω

g(x)ũi(x) dσx

= −(1− 1
γφ

)
∫
∂Ω

ũo(x)
∂

∂νΩ
ũo(x) dσx −

1
γφ

∫
∂Ω

g(x)ũo(x) dσx.

We now prove the following.

Proposition 4.16. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let Λ and θ̃ be as in Proposition 4.11. Then there exists ε2 ∈ ]0, ε1]
such that Λ is a real analytic operator of ]−ε2, ε2[× Cm−1,α(∂Ω) to Cm−1,α(∂Ω). Moreover, if we set
b0 ≡ (0, θ̃), then the differential ∂θΛ[b0] of Λ with respect to the variable θ at b0 is delivered by the
following formula

∂θΛ[b0](θ̄)(t) =
1
2
θ̄(t)− (

γ − φ
γ + φ

)
∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs ∀t ∈ ∂Ω, (4.22)

for all θ̄ ∈ Cm−1,α(∂Ω), and is a linear homeomorphism of Cm−1,α(∂Ω) onto Cm−1,α(∂Ω).

Proof. By Proposition 1.26 (ii), there exists ε2 ∈ ]0, ε1], such that Λ is a real analytic operator of
]−ε2, ε2[×Cm−1,α(∂Ω) to Cm−1,α(∂Ω). By standard calculus in Banach space, we immediately deduce
that (4.22) holds. By Proposition 4.10 (iii), we have that ∂θΛ[b0] is a linear homeomorphism.

We are now ready to prove that θ̂[·] can be continued real analytically on a whole neighbourhood
of 0.

Proposition 4.17. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε2 be as in Proposition 4.16. Then there exist ε3 ∈ ]0, ε2] and a
real analytic operator Θ of ]−ε3, ε3[ to Cm−1,α(∂Ω), such that

Θ[ε] = θ̂[ε], (4.23)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 4.16 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

4.2.3 A functional analytic representation Theorem for the solution of the
singularly perturbed linear transmission problem

By Proposition 4.17 and Remark 4.13, we can deduce the main result of this Subsection. More
precisely, we show that {(ui[ε](·), uo[ε](·))}ε∈]0,ε1[ can be continued real analytically for negative values
of ε.

We have the following.

Theorem 4.18. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. Let ε3 be as in Proposition 4.17. Then the following
statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator Uo1 of ]−ε4, ε4[ to the space C0

h(clV ), and a real analytic operator Uo2 of
]−ε4, ε4[ to R such that the following conditions hold.
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(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.
(jj)

uo[ε](x) = εnUo1 [ε](x) + Uo2 [ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,
Uo2 [0] = φc̄.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic operator
Ūo1 of ]−ε̄4, ε̄4[ to the space Cm,α(cl V̄ ), and a real analytic operator Ūo2 of ]−ε̄4, ε̄4[ to R such
that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

uo[ε](w + εt) = εŪo1 [ε](t) + Ūo2 [ε] ∀t ∈ cl V̄ ,

for all ε ∈ ]0, ε̄4[. Moreover,
Ūo2 [0] = φc̄.

(iii) There exist ε′4 ∈ ]0, ε3], a real analytic operator U i1 of ]−ε′4, ε′4[ to the space Cm,α(cl Ω), and a
real analytic operator U i2 of ]−ε′4, ε′4[ to R such that

ui[ε](w + εt) = εU i1[ε](t) + U i2[ε] ∀t ∈ cl Ω,

for all ε ∈ ]0, ε′4[. Moreover,
U i2[0] = c̄.

Proof. Let Θ[·] be as in Proposition 4.17. Consider (i). Choosing ε4 small enough, we can clearly
assume that (j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 4.13 and Proposition 4.17, we
have

uo[ε](x) =φεn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

+ φ
(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)
∀x ∈ cl Ta[Ωε].

Thus, it is natural to set

Ũo1 [ε](x) ≡ φ
∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[, and

Uo2 [ε] ≡ φ
(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)
,

for all ε ∈ ]−ε4, ε4[. By following the proof of Theorem 2.124 and by possibly taking a smaller ε4, we
can show that there exists a real analytic map Uo1 of ]−ε4, ε4[ to C0

h(clV ) such that

Ũo1 [ε] = εUo1 [ε] in C0
h(clV ),

for all ε ∈ ]−ε4, ε4[. Consider now Uo2 . If ε ∈]0, ε4], a simple computation shows that

Uo2 [ε] = φ
(
c̄− ε

∫
∂Ω

Sn(−s)Θ[ε](s) dσs − εn−1

∫
∂Ω

Ran(−εs)Θ[ε](s) dσs
)
.

Then by Proposition 1.29 (iii) and by the continuity of the linear map of Cm,α(cl Ω) to R, which
takes a function h to h(0), we immediately deduce that, by possibly taking a smaller ε4, Uo2 is a real
analytic map of ]−ε4, ε4[ to R. Consider now (ii). Choosing ε̄4 small enough, we can clearly assume
that (j′) holds. Consider now (jj′). Let ε ∈ ]0, ε̄4[. By Remark 4.13, we have

uo[ε](w + εt) =εn−1φ

∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs

+ φ
(
c̄− ε

∫
∂Ω

Sn(−s)Θ[ε](s) dσs − εn−1

∫
∂Ω

Ran(−εs)Θ[ε](s) dσs
)

∀t ∈ cl V̄ .
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Thus (cf. Proposition 1.29 (ii)), it is natural to set

Ūo1 [ε](t) ≡ φ
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl V̄ ,

for all ε ∈ ]−ε̄4, ε̄4[, and

Ūo2 [ε] ≡ φ
(
c̄− ε

∫
∂Ω

Sn(−s)Θ[ε](s) dσs − εn−1

∫
∂Ω

Ran(−εs)Θ[ε](s) dσs
)
,

for all ε ∈ ]−ε̄4, ε̄4[. By the proof of (i), we have that Ūo2 is a real analytic map of ]−ε̄4, ε̄4[ to R.
Moreover, by Proposition 1.29 (ii) we have that Ūo1 is a real analytic map of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ).
Finally, consider (iii). Let ε ∈ ]0, ε3[. By Remark 4.13, we have

ui[ε](w + εt) =εn−1

∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs

+
(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ cl Ω.
(4.24)

Thus, by arguing as above, it is natural to set

U i1[ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl Ω,

for all ε ∈ ]−ε3, ε3[, and

U i2[ε] ≡
(
c̄− ε

∫
∂Ω

Sn(−s)Θ[ε](s) dσs − εn−1

∫
∂Ω

Ran(−εs)Θ[ε](s) dσs
)
,

for all ε ∈ ]−ε3, ε3[. Then, by arguing as above (cf. Proposition 1.29 (iii)), there exists ε′4 ∈ ]0, ε3],
such that U i1 and U i2 are real analytic maps of ]−ε′4, ε′4[ to Cm,α(cl Ω) and R, respectively, such that
the equality in (iii) holds.

Remark 4.19. We note that the right-hand side of the equalities in (jj), (jj′) and (iii) of Theorem
4.18 can be continued real analytically in a whole neighbourhood of 0. Moreover, if V is a bounded
open subset of Rn such that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

uo[ε] = φc̄ uniformly in clV .

4.2.4 A real analytic continuation Theorem for the energy integral

As done in Theorem 4.18 for (ui[·], uo[·]), we can now prove a real analytic continuation Theorem for
the energy integral. Namely, we prove the following.

Theorem 4.20. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let ε3 be as in Proposition 4.17. Then there exist ε5 ∈ ]0, ε3]
and two real analytic operators Gi, Go of ]−ε5, ε5[ to R, such that∫

Ωε

|∇ui[ε](x)|2 dx = εnGi[ε], (4.25)∫
Pa[Ωε]

|∇uo[ε](x)|2 dx = εnGo[ε], (4.26)

for all ε ∈ ]0, ε5[. Moreover,

Gi[0] =
∫

Ω

|∇ũi(x)|2 dx, (4.27)

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx. (4.28)
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Proof. Let Θ[·] be as in Proposition 4.17. Let ε ∈ ]0, ε3[. Clearly,∫
Ωε

|∇ui[ε](x)|2 dx =
∫

Ωε

|∇v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))](x)|2 dx,

and ∫
Pa[Ωε]

|∇uo[ε](x)|2 dx = φ2

∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx.

By slightly modifying the proof of Theorem 3.16, we can prove that there exist ε5 ∈ ]0, ε3] and a real
analytic operator Go of ]−ε5, ε5[ to R such that∫

Pa[Ωε]

|∇uo[ε](x)|2 dx = εnGo[ε],

for all ε ∈ ]0, ε5[, and

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx.

Let ε ∈ ]0, ε3[. We have∫
Ωε

|∇v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))](x)|2 dx

= εn−1

∫
∂Ω

v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))](w + εt)
( ∂

∂νΩε

v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))]
)

(w + εt) dσt.

Also

v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))](w + εt)

= ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

and( ∂

∂νΩε

v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))]
)

(w + εt)

= −1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs.

By possibly taking a smaller ε5, the map of ]−ε5, ε5[ to C0(∂Ω) which takes ε to the function of the
variable t ∈ ∂Ω defined by∫

∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

and the map of ]−ε5, ε5[ to C0(∂Ω) which takes ε to the function of the variable t ∈ ∂Ω defined by

−1
2

Θ[ε](t) +
∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs ∀t ∈ ∂Ω,

are real analytic (cf. Proposition 1.28.) Thus the map Gi of ]−ε5, ε5[ to R which takes ε to

Gi[ε] ≡
∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)

×
(
−1

2
Θ[ε](t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))Θ[ε](s) dσs
)
dσt

is real analytic. Clearly, ∫
Ωε

|∇v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))](x)|2 dx = εnGi[ε],
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for all ε ∈ ]0, ε5[. Moreover, since

ũi(x) =
∫
∂Ω

Sn(x− y)Θ[0](y) dσy ∀x ∈ cl Ω,

we have
Gi[0] ≡

∫
Ω

|∇ũi(x)|2 dx.

Remark 4.21. We note that the right-hand side of the equalities in (4.25) and (4.26) of Theorem 4.20
can be continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

(
∫

Ωε

|∇ui[ε](x)|2 dx+
∫

Pa[Ωε]

|∇uo[ε](x)|2 dx) = 0.

4.2.5 A real analytic continuation Theorem for the integral of the solution
As done in Theorem 4.20 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 4.22. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let ε3 be as in Proposition 4.17. Then there exist ε6 ∈ ]0, ε3]
and two real analytic operators J i, Jo of ]−ε6, ε6[ to R, such that∫

Ωε

ui[ε](x) dx = J i[ε], (4.29)∫
Pa[Ωε]

uo[ε](x) dx = Jo[ε], (4.30)

for all ε ∈ ]0, ε6[. Moreover,

J i[0] = 0, (4.31)
Jo[0] = φc̄|A|n. (4.32)

Proof. Let Θ[·] be as in Proposition 4.17. Let ε ∈ ]0, ε3[. By Remark 4.13 and Proposition 4.17, we
have

uo[ε](x) = φv−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) + φ

(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)
∀x ∈ cl Ta[Ωε].

Moreover, by arguing as in Theorem 4.18, we have that

εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs = ε

∫
∂Ω

Sn(−s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(−εs)Θ[ε](s) dσs.

Then, if we set

L[ε](t) ≡φε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + φεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− φε
∫
∂Ω

Sn(−s)Θ[ε](s) dσs − φεn−1

∫
∂Ω

Ran(−εs)Θ[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[, by arguing as in the proof of Theorem 2.128, we can easily show that there exist
ε′6 ∈ ]0, ε3] and a real analytic map J1 of ]−ε′6, ε′6[ to R, such that∫

Pa[Ωε]

uo[ε](x) dx = J1[ε] + φc̄
(
|A|n − ε

n|Ω|n
)
,

for all ε ∈ ]0, ε′6[, and such that J1[0] = 0. As a consequence, it suffices to set

Jo[ε] ≡ J1[ε] + φc̄
(
|A|n − ε

n|Ω|n
)
,
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for all ε ∈ ]−ε′6, ε′6[.
Let ε ∈ ]0, ε3[. Clearly, ∫

Ωε

ui[ε](x) dx = εn
∫

Ω

ui[ε](w + εt) dt.

On the other hand, if ε′4, U i1, U i2 are as in Theorem 4.18, and we set

J i[ε] ≡ εn
∫

Ω

(
εU i1[ε](t) + U i2[ε]

)
dt

for all ε ∈ ]−ε′4, ε′4[, then we have that J i is a real analytic map of ]−ε′4, ε′4[ to R, such that J i[0] = 0
and that ∫

Ωε

ui[ε](x) dx = J i[ε]

for all ε ∈ ]0, ε′4[.
Then, by taking ε6 ≡ min{ε′6, ε′4}, we can easily conclude.

4.3 An homogenization problem for the Laplace equation with
a linear transmission boundary condition in a periodically
perforated domain

In this section we consider an homogenization problem for the Laplace equation with a linear
transmission boundary condition in a periodically perforated domain.

4.3.1 Notation

In this Section we retain the notation introduced in Subsections 1.8.1, 4.2.1. However, we need to
introduce also some other notation.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let
(ε, δ) ∈ (]−ε1, ε1[ \ {0})× ]0,+∞[. If v is a function of cl Sa(ε, δ) to R, then we denote by Ei(ε,δ)[v] the
function of Rn to R, defined by

Ei(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Sa(ε, δ),
0 ∀x ∈ Rn \ cl Sa(ε, δ).

Analogously, if v is a function of cl Ta(ε, δ) to R, then we denote by Eo(ε,δ)[v] the function of Rn to R,
defined by

Eo(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ).
0 ∀x ∈ Rn \ cl Ta(ε, δ).

4.3.2 Preliminaries

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57), (4.9), (4.10),
(4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic
linear transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + 1
δ g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),
ui(δw) = c̄.

(4.33)

By virtue of Theorem 4.6, we can give the following definition.
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Definition 4.23. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by
(ui(ε,δ), u

o
(ε,δ)) the unique solution in Cm,α(cl Sa(ε, δ))× Cm,α(cl Ta(ε, δ)) of boundary value problem

(4.33).

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). In order to

do so we introduce the following.

Definition 4.24. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. For each ε ∈ ]0, ε1[, we denote by (ui[ε], uo[ε]) the unique
solution in Cm,α(cl Sa[Ωε])×Cm,α(cl Ta[Ωε]) of the following periodic linear transmission problem for
the Laplace equation.

∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,
ui(w) = c̄.

(4.34)

Remark 4.25. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

ui(ε,δ)(x) = ui[ε](
x

δ
) ∀x ∈ cl Sa(ε, δ),

and
uo(ε,δ)(x) = uo[ε](

x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, we note that the solutions of problem (4.33) can be expressed by means
of the solutions of the auxiliary rescaled problem (4.34), which does not depend on δ. This is due to
the presence of the factor 1/δ in front of g( 1

εδ (x− δw)) in the sixth equation of problem (4.33).
As a first step, we study the behaviour of (ui[ε], uo[ε]) as ε tends to 0.

Proposition 4.26. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. Let 1 ≤ p <∞. Then

lim
ε→0+

Ei(ε,1)[u
i[ε]] = 0 in Lp(A),

and
lim
ε→0+

Eo(ε,1)[u
o[ε]] = φc̄ in Lp(A).

Proof. It suffices to modify the proof of Proposition 2.132. Let ε3, Θ be as in Proposition 4.17. If
ε ∈ ]0, ε3[, we have

ui[ε](w + εt) =ε
(∫

∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)

+
(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω.
(4.35)

We set

N i[ε](t) ≡ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+
(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i) and
the proof of Theorem 4.18) that N i is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

Ci ≡ sup
ε∈]−ε̃,ε̃[

‖N i[ε]‖C0(∂Ω) < +∞.
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By the Maximum Principle for harmonic functions, we have

|Ei(ε,1)[u
i[ε]](x)| ≤ Ci ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

Obviously,
lim
ε→0+

Ei(ε,1)[u
i[ε]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

Ei(ε,1)[u
i[ε]] = 0 in Lp(A).

If ε ∈ ]0, ε3[, we have

uo[ε](w + εt) =εφ
(∫

∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)

+ φ
(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω.
(4.36)

We set

No[ε](t) ≡εφ
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1φ

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+ φ
(
c̄− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i) and
the proof of Theorem 4.18) that No is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

Co ≡ sup
ε∈]−ε̃,ε̃[

‖No[ε]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|Eo(ε,1)[u
o[ε]](x)| ≤ Co ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

By Theorem 4.18, we have

lim
ε→0+

Eo(ε,1)[u
o[ε]](x) = φc̄ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

Eo(ε,1)[u
o[ε]] = φc̄ in Lp(A).

4.3.3 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.26 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.27. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = φc̄ in Lp(V ).
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Proof. We modify the proof of Theorem 2.134. By virtue of Proposition 4.26, we have

lim
ε→0+

‖Ei(ε,1)[u
i[ε]]‖Lp(A) = 0,

and
lim
ε→0+

‖Eo(ε,1)[u
o[ε]]− φc̄‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖Ei(ε,δ)[u
i
(ε,δ)]‖Lp(V ) ≤ C‖E

i
(ε,1)[u

i[ε]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,

and
‖Eo(ε,δ)[u

o
(ε,δ)]− φc̄‖Lp(V ) ≤ C‖E

o
(ε,1)[u

o[ε]]− φc̄‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,

Thus,
lim

(ε,δ)→(0+,0+)
Ei(ε,δ)[u

i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = φc̄ in Lp(V ).

Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 4.28. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let ε3 be as in Proposition 4.17. Let ε6, J i, Jo be as in
Theorem 4.22. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε], (4.37)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx = rnJo[ε], (4.38)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. We follow the proof of Theorem 2.60. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of
ui(ε,r/l), we have ∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.

Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

ui[ε]
( l
r
x
)
dx

=
rn

ln

∫
Ωε

ui[ε](t) dt

=
rn

ln
J i[ε].

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε],

and the validity of (4.37) follows. The proof of (4.38) is very similar and is accordingly omitted.
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4.3.4 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.

Definition 4.29. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.30. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn−2

∫
Ωε

|∇ui[ε](t)|2 dt

and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇uo[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 4.31. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 4.20. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 4.32. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. Let ε5 be as in Theorem 4.20. Let δ1 > 0 be as in
Definition 4.31. Then

lim
δ→0+

En[δ] =
∫

Ω

|∇ũi(x)|2 dx+
∫

Rn\cl Ω

|∇ũo(x)|2 dx,

where ũi, ũo are as in Definition 4.14.

Proof. We follow step by step the proof of Propostion 2.140. Let Gi, Go be as in Theorem 4.20. Let
δ ∈ ]0, δ1[. By Remark 4.30 and Theorem 4.20, we have∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])n(Gi[ε[δ]] +Go[ε[δ]])

= δn(Gi[δ
2
n ] +Go[δ

2
n ]).

On the other hand,

b(1/δ)cn
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
≤ En[δ]

≤ d(1/δ)en
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
,
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and so
b(1/δ)cnδn(Gi[δ

2
n ] +Go[δ

2
n ]) ≤ En[δ] ≤ d(1/δ)enδn(Gi[δ

2
n ] +Go[δ

2
n ]).

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = (Gi[0] +Go[0]).

Finally, by equalities (4.27) and (4.28), we easily conclude.

In the following Proposition we represent the function En[·] by means of real analytic functions.

Proposition 4.33. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. Let ε5, Gi, Go be as in Theorem 4.20. Let δ1 > 0 be
as in Definition 4.31. Then

En[(1/l)] = Gi[(1/l)
2
n ] +Go[(1/l)

2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 4.32.

4.4 A variant of an homogenization problem for the Laplace
equation with a linear transmission boundary condition in
a periodically perforated domain

In this section we consider a slightly different homogenization problem for the Laplace equation with
a linear transmission boundary condition in a periodically perforated domain.

4.4.1 Notation and preliminaries

In this Section we retain the notation introduced in Subsections 1.8.1, 4.2.1, 4.3.1.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57), (4.9), (4.10),

(4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic
linear transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + g( 1
εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),

ui(δw) = c̄.

(4.39)

In contrast to problem (4.33), we note that in the sixth equation of problem (4.39) there is not
the factor 1/δ in front of g( 1

εδ (x− δw)).
By virtue of Theorem 4.6, we can give the following definition.

Definition 4.34. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by
(ui(ε,δ), u

o
(ε,δ)) the unique solution in Cm,α(cl Sa(ε, δ))× Cm,α(cl Ta(ε, δ)) of boundary value problem

(4.39).

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). In order to

do so we introduce the following.
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Definition 4.35. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by
(ui[ε, δ], uo[ε, δ]) the unique solution in Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) of the following auxiliary
periodic linear transmission problem for the Laplace equation.

∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,
ui(w) = c̄

δ .

(4.40)

Remark 4.36. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

ui(ε,δ)(x) = δui[ε, δ](
x

δ
) ∀x ∈ cl Sa(ε, δ),

and
uo(ε,δ)(x) = δuo[ε, δ](

x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, in contrast to the solution of problem (4.33), we note that the solution of
problem (4.39) can be expressed by means of the solution of the auxiliary rescaled problem (4.40),
which does depend on δ.
Remark 4.37. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let ε3, Θ[·] be as in Proposition 4.17.

Let (ε, δ) ∈ ]0, ε3[× ]0,+∞[. We have

ui[ε, δ](x) = εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

+
( c̄
δ
− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀x ∈ cl Sa[Ωε],

and

uo[ε, δ](x) = φεn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

+ φ
( c̄
δ
− εn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀x ∈ cl Ta[Ωε].

As a first step, we study the behaviour of (ui[ε, δ], uo[ε, δ]) as (ε, δ) tends to (0, 0).

Proposition 4.38. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. Let 1 ≤ p <∞. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,1)[δu
i[ε, δ]] = 0 in Lp(A),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,1)[δu

o[ε, δ]] = φc̄ in Lp(A).

Proof. Let ε3, Θ be as in Proposition 4.17. If (ε, δ) ∈ ]0, ε3[× ]0,+∞[, we have

δui[ε, δ](w + εt) =δε
(∫

∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)

+
(
c̄− δεn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω.
(4.41)

We set

N i[ε, δ](t) ≡δε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+
(
c̄− δεn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω,
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for all (ε, δ) ∈ ]−ε3, ε3[ × R. By taking ε̃ ∈ ]0, ε3[, δ̃ ∈ ]0,+∞[ small enough, we can assume (cf.
Proposition 1.28 (i) and the proof of Theorem 4.18) that N i is a real analytic map of ]−ε̃, ε̃[× ]−δ̃, δ̃[
to Cm,α(∂Ω) and that

Ci ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖N i[ε, δ]‖C0(∂Ω) < +∞.

By the Maximum Principle for harmonic functions, we have

|Ei(ε,1)[δu
i[ε, δ]](x)| ≤ Ci ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.

Obviously,
lim

(ε,δ)→(0+,0+)
Ei(ε,1)[δu

i[ε, δ]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

Ei(ε,1)[δu
i[ε, δ]] = 0 in Lp(A).

If (ε, δ) ∈ ]0, ε3[× ]0,+∞[, we have

δuo[ε, δ](w + εt) =δεφ
(∫

∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)

+ φ
(
c̄− δεn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω.
(4.42)

We set

No[ε, δ](t) ≡δεφ
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + δεn−1φ

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

+ φ
(
c̄− δεn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
)

∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[ × R. By taking ε̃ ∈ ]0, ε3[, δ̃ ∈ ]0,+∞[ small enough, we can assume (cf.
Proposition 1.28 (i) and the proof of Theorem 4.18) that No is a real analytic map of ]−ε̃, ε̃[× ]−δ̃, δ̃[
to Cm,α(∂Ω) and that

Co ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖No[ε, δ]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|Eo(ε,1)[δu
o[ε, δ]](x)| ≤ Co ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.

Clearly (cf. Theorem 4.18), we have

lim
(ε,δ)→(0+,0+)

Eo(ε,1)[δu
o[ε, δ]](x) = φc̄ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

Eo(ε,1)[δu
o[ε, δ]] = φc̄ in Lp(A).

Then we have also the following.

Theorem 4.39. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let ε3 be as in Proposition 4.17. Then there exist ε6 ∈ ]0, ε3]
and two real analytic operators J i, Jo of ]−ε6, ε6[× R to R, such that∫

Ωε

δui[ε, δ](x) dx = J i[ε, δ], (4.43)∫
Pa[Ωε]

δuo[ε, δ](x) dx = Jo[ε, δ], (4.44)

for all (ε, δ) ∈ ]0, ε6[× ]0,+∞[. Moreover,

J i[0, 0] = 0, (4.45)
Jo[0, 0] = φc̄|A|n. (4.46)
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Proof. Let (ε, δ) ∈ ]0, ε3[× ]0,+∞[. We have

δuo[ε, δ](x) =δφv−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x)

+ φc̄− δφεn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs ∀x ∈ cl Ta[Ωε].

As a consequence∫
Pa[Ωε]

δuo[ε, δ](x) dx =δφ
∫

Pa[Ωε]

v−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx

+ φc̄
(
|A|n − ε

n|Ω|n
)
− δφεn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs
(
|A|n − ε

n|Ω|n
)
.

Then, by arguing as in the proof of Theorem 4.22, one can easily show that there exist ε′6 ∈ ]0, ε3] and
a real analytic operator Jo of ]−ε′6, ε′6[× R to R, such that∫

Pa[Ωε]

δuo[ε, δ](x) dx = Jo[ε, δ],

for all (ε, δ) ∈ ]0, ε′6[× ]0,+∞[, and that Jo[0, 0] = φc̄|A|n.
Let (ε, δ) ∈ ]0, ε3[× ]0,+∞[. We have

δui[ε, δ](x) =δv+
a

[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x)

+ c̄− δεn−1

∫
∂Ω

San(−εs)Θ[ε](s) dσs ∀x ∈ cl Sa[Ωε].

Then, by arguing as in the proof of Theorem 4.22, one can easily show that there exist ε′′6 ∈ ]0, ε3] and
a real analytic operator J i of ]−ε′′6 , ε′′6 [× R to R, such that∫

Ωε

δui[ε, δ](x) dx = J i[ε, δ],

for all (ε, δ) ∈ ]0, ε′′6 [× ]0,+∞[, and that J i[0, 0] = 0.
Then, by taking ε6 ≡ min{ε′6, ε′′6}, we can easily conclude.

4.4.2 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.38 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.40. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = φc̄ in Lp(V ).

Proof. By virtue of Proposition 4.38, we have

lim
(ε,δ)→(0+,0+)

‖Ei(ε,1)[δu
i[ε, δ]]‖Lp(A) = 0,

and
lim

(ε,δ)→(0+,0+)
‖Eo(ε,1)[δu

o[ε, δ]]− φc̄‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖Ei(ε,δ)[u
i
(ε,δ)]‖Lp(V ) ≤ C‖E

i
(ε,1)[δu

i[ε, δ]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,
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and
‖Eo(ε,δ)[u

o
(ε,δ)]− φc̄‖Lp(V ) ≤ C‖E

o
(ε,1)[δu

o[ε, δ]]− φc̄‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,

Thus,
lim

(ε,δ)→(0+,0+)
Ei(ε,δ)[u

i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = φc̄ in Lp(V ).

Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 4.41. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let ε3 be as in Proposition 4.17. Let ε6, J i, Jo be as in
Theorem 4.39. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i

[
ε,
r

l

]
, (4.47)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx = rnJo

[
ε,
r

l

]
, (4.48)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. We follow the the proof of Theorem 2.150. Let ε ∈ ]0, ε6[, and let l ∈ N \ {0}. Then, by the
periodicity of ui(ε,r/l), we have∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.

Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

(r/l)ui
[
ε, (r/l)

]( l
r
x
)
dx

=
rn

ln

∫
Ωε

(r/l)ui
[
ε, (r/l)

]
(t) dt

=
rn

ln
J i
[
ε,
r

l

]
.

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i

[
ε,
r

l

]
,

and the validity of (4.47) follows. The proof of (4.48) is very similar and is accordingly omitted.

4.4.3 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.
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Definition 4.42. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.43. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56), (1.57),
(4.9), (4.10), (4.11), (4.12), respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn
∫

Ωε

|∇ui[ε, δ](t)|2 dt

and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn
∫

Pa[Ωε]

|∇uo[ε, δ](t)|2 dt.

In the following Proposition we represent the function En(·, ·) by means of real analytic functions.

Proposition 4.44. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g, c̄ be as in (1.56),
(1.57), (4.9), (4.10), (4.11), (4.12), respectively. Let ε5, Gi, Go be as in Theorem 4.20. Then

En
(
ε,

1
l

)
= εnGi[ε] + εnGo[ε],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0}.

Proof. Let (ε, δ) ∈ ]0, ε5[× ]0,+∞[. By Remark 4.43 and Theorem 4.20, we have∫
Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫

Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δnεnGi[ε] + δnεnGo[ε] (4.49)

where Gi, Go are as in Theorem 4.20. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0}, then we have

En
(
ε,

1
l

)
= ln

1
ln

{
εnGi[ε] + εnGo[ε]

}
,

= εnGi[ε] + εnGo[ε],

and the conclusion easily follows.

4.5 Asymptotic behaviour of the solutions of an alternative
linear transmission problem for the Laplace equation in a
periodically perforated domain

In this Section we study the asymptotic behaviour of the solutions of an alternative linear transmission
problem for the Laplace equation in a periodically perforated domain with small holes.

4.5.1 Notation and preliminaries

We retain the notation introduced in Subsections 1.8.1, 4.2.1. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A.
Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9), (4.10), (4.11), respectively. For each ε ∈ ]0, ε1[, we
consider the following periodic linear transmission problem for the Laplace equation.
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∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,∫
∂Ωε

ui(x) dσx = 0.

(4.50)

By virtue of Theorem 4.6, we can give the following definition.

Definition 4.45. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. For each ε ∈ ]0, ε1[, we denote by (ui[ε], uo[ε]) the unique solution in
Cm,α(cl Sa[Ωε])× Cm,α(cl Ta[Ωε]) of boundary value problem (4.50).

Remark 4.46. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9),
(4.10), (4.11), respectively. For each ε ∈ ]0, ε1[, let θ̂[ε] be as in Definition 4.12. Let ε ∈ ]0, ε1[. We
have

ui[ε](x) =εn−1

∫
∂Ω

San(x− w − εs)θ̂[ε](s) dσs

− εn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))θ̂[ε](s) dσs
)
dσt ∀x ∈ cl Sa[Ωε],

and

uo[ε](x) =φεn−1

∫
∂Ω

San(x− w − εs)θ̂[ε](s) dσs

− φ
(
εn−1 1∫

∂Ω
dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))θ̂[ε](s) dσs
)
dσt

)
∀x ∈ cl Ta[Ωε].

4.5.2 A functional analytic representation Theorem for the solution of the
alternative singularly perturbed linear transmission problem

In this Subsection, we show that {(ui[ε](·), uo[ε](·))}ε∈]0,ε3[ can be continued real analytically for
negative values of ε.

We have the following.

Theorem 4.47. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε3 be as in Proposition 4.17. Then the following statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator Uo1 of ]−ε4, ε4[ to the space C0

h(clV ), and a real analytic operator Uo2 of
]−ε4, ε4[ to R such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
uo[ε](x) = εnUo1 [ε](x) + εUo2 [ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic operator
Ūo1 of ]−ε̄4, ε̄4[ to the space Cm,α(cl V̄ ), and a real analytic operator Ūo2 of ]−ε̄4, ε̄4[ to R such
that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

uo[ε](w + εt) = εŪo1 [ε](t) + εŪo2 [ε] ∀t ∈ cl V̄ ,

for all ε ∈ ]0, ε̄4[.
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(iii) There exist ε′4 ∈ ]0, ε3], a real analytic operator U i1 of ]−ε′4, ε′4[ to the space Cm,α(cl Ω), and a
real analytic operator U i2 of ]−ε′4, ε′4[ to R such that

ui[ε](w + εt) = εU i1[ε](t) + εU i2[ε] ∀t ∈ cl Ω,

for all ε ∈ ]0, ε′4[.

Proof. It is a simple modification of the proof of Theorem 4.18 and Theorem 2.158. Indeed, let Θ[·]
be as in Proposition 4.17. Consider (i). Choosing ε4 small enough, we can clearly assume that (j)
holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 4.13 and Proposition 4.17, we have

uo[ε](x) =φεn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

− φ(εn−1 1∫
∂Ω

dσ

∫
∂Ω

(
∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs) dσt) ∀x ∈ cl Ta[Ωε].

Thus (cf. the proof of Theorem 2.158), it is natural to set

Ũo1 [ε](x) ≡ φ
∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[, and

Uo2 [ε] ≡ φ(− 1∫
∂Ω

dσ

∫
∂Ω

(
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs) dσt),

for all ε ∈ ]−ε4, ε4[. Following the proof of Theorem 2.124, by possibly taking a smaller ε4, we have
that there exists a real analytic map Uo1 of ]−ε4, ε4[ to C0

h(clV ) such that

Ũo1 [ε] = εUo1 [ε] in C0
h(clV ),

for all ε ∈ ]−ε4, ε4[. Furthermore, by arguing as in the proof of Theorem 2.158 we have that U2 is
a real analytic operator of ]−ε4, ε4[ to R. Finally, by the definition of Uo1 and Uo2 , we immediately
deduce that the equality in (jj) holds. Consider now (ii). Choosing ε̄4 small enough, we can clearly
assume that (j′) holds. Consider now (jj′). Let ε ∈ ]0, ε̄4[. By Remark 4.46, we have

uo[ε](w + εt) = εn−1φ

∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs

− φ(εn−1 1∫
∂Ω

dσ

∫
∂Ω

(
∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs) dσt) ∀t ∈ cl V̄ .

Thus (cf. the proof of Theorem 3.13 (ii)), it is natural to set

Ūo1 [ε](t) ≡ φ
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl V̄ ,

for all ε ∈ ]−ε̄4, ε̄4[, and

Ūo2 [ε] ≡ φ(− 1∫
∂Ω

dσ

∫
∂Ω

(
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs) dσt),

for all ε ∈ ]−ε̄4, ε̄4[. By the proof of (i), we have that Ūo2 is a real analytic map of ]−ε̄4, ε̄4[ to R.
Moreover, by arguing as in the proof of Theorem 3.13 (ii) we have that Ūo1 is a real analytic map of
]−ε̄4, ε̄4[ to Cm,α(cl V̄ ). Finally, consider (iii). Let ε ∈ ]0, ε3[. By Remark 4.46, we have

ui[ε](w + εt) =εn−1

∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs

− εn−1 1∫
∂Ω

dσ

∫
∂Ω

(
∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs) dσt ∀t ∈ cl Ω.
(4.51)
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Thus,by arguing as above, it is natural to set

U i1[ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl Ω,

for all ε ∈ ]−ε3, ε3[, and

U i2[ε] ≡ − 1∫
∂Ω

dσ

∫
∂Ω

(
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs) dσt,

for all ε ∈ ]−ε3, ε3[. Then, by arguing as above (cf. Proposition 1.29 (iii)), there exists ε′4 ∈ ]0, ε3],
such that U i1 and U i2 are real analytic maps of ]−ε′4, ε′4[ to Cm,α(cl Ω) and R, respectively.

Remark 4.48. We note that the right-hand side of the equalities in (jj), (jj′) and (iii) of Theorem
4.18 can be continued real analytically in a whole neighbourhood of 0. Moreover, if V is a bounded
open subset of Rn such that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

uo[ε] = 0 uniformly in clV .

4.5.3 A real analytic continuation Theorem for the energy integral

As done in Theorem 4.47 for (ui[·], uo[·]), we can now prove a real analytic continuation Theorem for
the energy integral. Namely, we prove the following.

Theorem 4.49. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε3 be as in Proposition 4.17. Then there exist ε5 ∈ ]0, ε3] and
two real analytic operators Gi, Go of ]−ε5, ε5[ to R, such that∫

Ωε

|∇ui[ε](x)|2 dx = εnGi[ε], (4.52)∫
Pa[Ωε]

|∇uo[ε](x)|2 dx = εnGo[ε], (4.53)

for all ε ∈ ]0, ε5[. Moreover,

Gi[0] =
∫

Ω

|∇ũi(x)|2 dx, (4.54)

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx, (4.55)

where ũi, ũo are as in Definition 4.14.

Proof. Let Θ[·] be as in Proposition 4.17. Let ε ∈ ]0, ε3[. Clearly,∫
Ωε

|∇ui[ε](x)|2 dx =
∫

Ωε

|∇v+
a [∂Ωε,Θ[ε](

1
ε

(· − w))](x)|2 dx,

and ∫
Pa[Ωε]

|∇uo[ε](x)|2 dx = φ2

∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx.

As a consequence, in order to prove the Theorem, it suffices to follow the proof of Theorem 4.20.

Remark 4.50. We note that the right-hand side of the equalities in (4.52) and (4.53) of Theorem 4.49
can be continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

(
∫

Ωε

|∇ui[ε](x)|2 dx+
∫

Pa[Ωε]

|∇uo[ε](x)|2 dx) = 0.
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4.5.4 A real analytic continuation Theorem for the integral of the solution
As done in Theorem 4.51 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the solution. Namely, we prove the following.

Theorem 4.51. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε3 be as in Proposition 4.17. Then there exist ε6 ∈ ]0, ε3] and
two real analytic operators J i, Jo of ]−ε6, ε6[ to R, such that∫

Ωε

ui[ε](x) dx = J i[ε], (4.56)∫
Pa[Ωε]

uo[ε](x) dx = Jo[ε], (4.57)

for all ε ∈ ]0, ε6[. Moreover,

J i[0] = 0, (4.58)
Jo[0] = 0. (4.59)

Proof. Let Θ[·] be as in Proposition 4.17. Let ε ∈ ]0, ε3[. We have

uo[ε](x) = φv−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x)

−εφ(
1∫

∂Ω
dσ

∫
∂Ω

(
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs) dσt) ∀x ∈ cl Ta[Ωε].

Then, if we set

L[ε](t) ≡φε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + φεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

−εφ(
1∫

∂Ω
dσ

∫
∂Ω

(
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs) dσt) ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[, by arguing as in the proof of Theorem 2.128, we can easily show that there exist
ε′6 ∈ ]0, ε3] and a real analytic map Jo of ]−ε′6, ε′6[ to R, such that∫

Pa[Ωε]

uo[ε](x) dx = Jo[ε],

for all ε ∈ ]0, ε′6[, and such that Jo[0] = 0.
Let ε ∈ ]0, ε3[. Clearly, ∫

Ωε

ui[ε](x) dx = εn
∫

Ω

ui[ε](w + εt) dt.

On the other hand, if ε′4, U i1, U i2 are as in Theorem 4.47, and we set

J i[ε] ≡ εn
∫

Ω

(
εU i1[ε](t) + εU i2[ε]

)
dt

for all ε ∈ ]−ε′4, ε′4[, then we have that J i is a real analytic map of ]−ε′4, ε′4[ to R, such that J i[0] = 0
and that ∫

Ωε

ui[ε](x) dx = J i[ε]

for all ε ∈ ]0, ε′4[.
Then, by taking ε6 ≡ min{ε′6, ε′4}, we can conclude.

4.6 Alternative homogenization problem for the Laplace equa-
tion with a linear transmission condition in a periodically
perforated domain

In this section we consider another homogenization problem for the Laplace equation with a linear
transmission boundary condition in a periodically perforated domain.
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4.6.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 4.2.1 and 4.3.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9), (4.10),
(4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic linear
transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + 1
δ g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),∫
∂Ω(ε,δ)

ui(x) dσx = 0.

(4.60)

By virtue of Theorem 4.6, we can give the following definition.

Definition 4.52. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by (ui(ε,δ), u

o
(ε,δ))

the unique solution in Cm,α(cl Sa(ε, δ))× Cm,α(cl Ta(ε, δ)) of boundary value problem (4.60).

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). In order to

do so we introduce the following.

Definition 4.53. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. For each ε ∈ ]0, ε1[, we denote by (ui[ε], uo[ε]) the unique solution in
Cm,α(cl Sa[Ωε])×Cm,α(cl Ta[Ωε]) of the following periodic linear transmission problem for the Laplace
equation. 

∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,∫
∂Ωε

ui(x) dσx = 0.

(4.61)

Remark 4.54. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9),
(4.10), (4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

ui(ε,δ)(x) = ui[ε](
x

δ
) ∀x ∈ cl Sa(ε, δ),

and
uo(ε,δ)(x) = uo[ε](

x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, we note that the solutions of problem (4.60) can be expressed by means
of the solutions of the auxiliary rescaled problem (4.61), which does not depend on δ. This is due to
the presence of the factor 1/δ in front of g( 1

εδ (x− δw)) in the sixth equation of problem (4.60).
As a first step, we study the behaviour of (ui[ε], uo[ε]) as ε tends to 0.

Proposition 4.55. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε3 be as in Proposition 4.17. Then there exist ε̃ ∈ ]0, ε3[ and a
real analytic map N i of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖Ei(ε,1)[u
i[ε]]‖L∞(Rn) = ε‖N i[ε]‖C0(∂Ω),

‖Eo(ε,1)[u
o[ε]]‖L∞(Rn) = εφ‖N i[ε]‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

Ei(ε,1)[u
i[ε]] = 0 in L∞(Rn),

lim
ε→0+

Eo(ε,1)[u
o[ε]] = 0 in L∞(Rn).
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Proof. Let ε3, Θ be as in Proposition 4.17. If ε ∈ ]0, ε3[, we have

ui[ε](w + εt) = ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− ε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ ∂Ω.

(4.62)

We set

N i[ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i)) that
N i is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω).

By the Maximum Principle for harmonic functions, we have

‖Ei(ε,1)[u
i[ε]]‖L∞(Rn) = ε‖N i[ε]‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,

and the conclusion, as far as ui is concerned, easily follows.
If ε ∈ ]0, ε3[, we note that

uo[ε](w + εt) =φui[ε](w + εt) ∀t ∈ ∂Ω. (4.63)

By Theorem 2.5, we have

‖Eo(ε,1)[u
o[ε]]‖L∞(Rn) = εφ‖N i[ε]‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,

and the conclusion, also for uo, follows.

4.6.2 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.26 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.56. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε̃, N i be as in Proposition 4.55. Then

‖Ei(ε,δ)[u
i
(ε,δ)]‖L∞(Rn) = ε‖N i[ε]‖C0(∂Ω),

‖Eo(ε,δ)[u
o
(ε,δ)]‖L∞(Rn) = εφ‖N i[ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in L∞(Rn),

lim
(ε,δ)→(0+,0+)

Eo(ε,δ)[u
o
(ε,δ)] = 0 in L∞(Rn).

Proof. It suffices to observe that

‖Ei(ε,δ)[u
i
(ε,δ)]‖L∞(Rn) = ‖Ei(ε,1)[u

i[ε]]‖L∞(Rn)

= ε‖N i[ε]‖C0(∂Ω),

and that

‖Eo(ε,δ)[u
o
(ε,δ)]‖L∞(Rn) = ‖Eo(ε,1)[u

o[ε]]‖L∞(Rn)

= εφ‖N i[ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.
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Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 4.57. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε3 be as in Proposition 4.17. Let ε6, J i, Jo be as in Theorem
4.51. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε], (4.64)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx = rnJo[ε], (4.65)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. We follow the proof of Theorem 2.60. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of
ui(ε,r/l), we have ∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.

Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

ui[ε]
( l
r
x
)
dx

=
rn

ln

∫
Ωε

ui[ε](t) dt

=
rn

ln
J i[ε].

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε],

and the validity of (4.64) follows. The proof of (4.65) is very similar and is accordingly omitted.

4.6.3 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.

Definition 4.58. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.59. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9),
(4.10), (4.11), respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn−2

∫
Ωε

|∇ui[ε](t)|2 dt
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and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇uo[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 4.60. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 4.49. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 4.61. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε5 be as in Theorem 4.49. Let δ1 > 0 be as in Definition 4.60.
Then

lim
δ→0+

En[δ] =
∫

Ω

|∇ũi(x)|2 dx+
∫

Rn\cl Ω

|∇ũo(x)|2 dx,

where ũi, ũo are as in Definition 4.14.

Proof. We follow step by step the proof of Propostion 2.140. Let Gi, Go be as in Theorem 4.49. Let
δ ∈ ]0, δ1[. By Remark 4.30 and Theorem 4.49, we have∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])n(Gi[ε[δ]] +Go[ε[δ]])

= δn(Gi[δ
2
n ] +Go[δ

2
n ]).

On the other hand,

b(1/δ)cn
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
≤ En[δ]

≤ d(1/δ)en
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
,

and so
b(1/δ)cnδn(Gi[δ

2
n ] +Go[δ

2
n ]) ≤ En[δ] ≤ d(1/δ)enδn(Gi[δ

2
n ] +Go[δ

2
n ]).

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = (Gi[0] +Go[0]).

Finally, by equalities (4.54) and (4.55), we easily conclude.

In the following Proposition we represent the function En[·] by means of real analytic functions.

Proposition 4.62. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε5, Gi, Go be as in Theorem 4.49. Let δ1 > 0 be as in Definition
4.60. Then

En[(1/l)] = Gi[(1/l)
2
n ] +Go[(1/l)

2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 4.61.
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4.7 A variant of an alternative homogenization problem for the
Laplace equation with a linear transmission condition in a
periodically perforated domain

In this section we consider an homogenization problem for the Laplace equation with a linear
transmission boundary condition in a periodically perforated domain.

4.7.1 Notation and preliminaries

In this Section we retain the notation introduced in Subsections 1.8.1, 4.2.1 and 4.3.1.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9), (4.10),

(4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic linear
transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + g( 1
εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),∫

∂Ω(ε,δ)
ui(x) dσx = 0.

(4.66)

In contrast to problem (4.60), we note that in the sixth equation of problem (4.66) there is not
the factor 1/δ in front of g( 1

εδ (x− δw)).
By virtue of Theorem 4.6, we can give the following definition.

Definition 4.63. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by (ui(ε,δ), u

o
(ε,δ))

the unique solution in Cm,α(cl Sa(ε, δ))× Cm,α(cl Ta(ε, δ)) of boundary value problem (4.66).

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). In order to

do so we introduce the following.

Definition 4.64. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. For each ε ∈ ]0, ε1[, we denote by (ui[ε], uo[ε]) the unique solution in
Cm,α(cl Sa[Ωε])×Cm,α(cl Ta[Ωε]) of the following periodic linear transmission problem for the Laplace
equation. 

∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = φui(x) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,∫
∂Ωε

ui(x) dσx = 0.

(4.67)

Remark 4.65. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9),
(4.10), (4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

ui(ε,δ)(x) = δui[ε](
x

δ
) ∀x ∈ cl Sa(ε, δ),

and
uo(ε,δ)(x) = δuo[ε](

x

δ
) ∀x ∈ cl Ta(ε, δ).

As a first step, we study the behaviour of (ui[ε], uo[ε]) as ε tends to 0.
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Proposition 4.66. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε3 be as in Proposition 4.17. Then there exist ε̃ ∈ ]0, ε3[ and a
real analytic map N i of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖Ei(ε,1)[δu
i[ε]]‖L∞(Rn) = δε‖N i[ε]‖C0(∂Ω),

‖Eo(ε,1)[δu
o[ε]]‖L∞(Rn) = δεφ‖N i[ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

Ei(ε,1)[δu
i[ε]] = 0 in L∞(Rn),

lim
(ε,δ)→(0+,0+)

Eo(ε,1)[δu
o[ε]] = 0 in L∞(Rn).

Proof. It is an immediate consequence of Proposition 4.55.

4.7.2 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.66 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.67. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε̃, N i be as in Proposition 4.66. Then

‖Ei(ε,δ)[u
i
(ε,δ)]‖L∞(Rn) = δε‖N i[ε]‖C0(∂Ω),

‖Eo(ε,δ)[u
o
(ε,δ)]‖L∞(Rn) = δεφ‖N i[ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in L∞(Rn),

lim
(ε,δ)→(0+,0+)

Eo(ε,δ)[u
o
(ε,δ)] = 0 in L∞(Rn).

Proof. It suffices to observe that

‖Ei(ε,δ)[u
i
(ε,δ)]‖L∞(Rn) = δ‖Ei(ε,1)[u

i[ε]]‖L∞(Rn)

= δε‖N i[ε]‖C0(∂Ω),

and that

‖Eo(ε,δ)[u
o
(ε,δ)]‖L∞(Rn) = δ‖Eo(ε,1)[u

o[ε]]‖L∞(Rn)

= δεφ‖N i[ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 4.68. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε3 be as in Proposition 4.17. Let ε6, J i, Jo be as in Theorem
4.51. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l
J i[ε], (4.68)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l
Jo[ε], (4.69)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.
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Proof. We follow the proof of Theorem 2.179. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of
ui(ε,r/l), we have ∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.

Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

(r/l)ui[ε]
( l
r
x
)
dx

=
rn

ln
r

l

∫
Ωε

ui[ε](t) dt

=
rn+1

l

1
ln
J i[ε].

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l
J i[ε],

and the the validity of (4.68) follows. The proof of (4.69) is very similar and is accordingly omitted.

4.7.3 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.

Definition 4.69. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.70. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57), (4.9),
(4.10), (4.11), respectively. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn
∫

Ωε

|∇ui[ε](t)|2 dt

and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn
∫

Pa[Ωε]

|∇uo[ε](t)|2 dt.

In the following Proposition we represent the function En(·, ·) by means of real analytic functions.

Proposition 4.71. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, φ, γ, g be as in (1.56), (1.57),
(4.9), (4.10), (4.11), respectively. Let ε5, Gi, Go be as in Theorem 4.49. Then

En
(
ε,

1
l

)
= εnGi[ε] + εnGo[ε],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0}.
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Proof. Let (ε, δ) ∈ ]0, ε5[× ]0,+∞[. By Remark 4.70 and Theorem 4.49, we have∫
Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫

Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δnεnGi[ε] + δnεnGo[ε] (4.70)

where Gi, Go are as in Theorem 4.49. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0}, then we have

En
(
ε,

1
l

)
= ln

1
ln

{
εnGi[ε] + εnGo[ε]

}
,

= εnGi[ε] + εnGo[ε],

and the conclusion easily follows.

4.8 Asymptotic behaviour of the solutions of a nonlinear trans-
mission problem for the Laplace equation in a periodically
perforated domain

In this Section we study the asymptotic behaviour of the solutions of a nonlinear transmission problem
for the Laplace equation in a periodically perforated domain with small holes.

4.8.1 Notation and preliminaries
We retain the notation introduced in Subsections 1.8.1, 4.2.1. However, we need to introduce also some
other notation. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let x̄ ∈ clA \ {w}. Then there exists ε̄1 ∈ ]0, ε1[ such that

x̄ ∈ clA \ cl(w + εΩ) ∀ε ∈ ]−ε̄1, ε̄1[. (4.71)

We shall consider also the following assumptions.

F is an increasing real analytic diffeomorphism of R onto itself, (4.72)

g ∈ Cm−1,α(∂Ω),
∫
∂Ω

g dσ = 0, (4.73)

γ ∈ ]0,+∞[, (4.74)
c̄ ∈ R. (4.75)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as in (1.56),
(1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. For each ε ∈ ]0, ε̄1[, we consider the following
periodic nonlinear transmission problem for the Laplace equation.

∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,
uo(x̄) = c̄.

(4.76)

We transform (4.76) into a system of integral equations by means of the following.

Proposition 4.72. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε ∈ ]0, ε̄1[. Then the map of the
set of pairs (ω, µ) ∈ (Cm,α(∂Ωε))2 that solve the following integral equations

F (w+
a [∂Ωε, ω](x) + F (−1)(c̄)) = w−a [∂Ωε, µ](x) + c̄− w−a [∂Ωε, µ](x̄) ∀x ∈ ∂Ωε (4.77)

g(
1
ε

(x− w)) + γ

∫
∂Ωε

∂

∂νΩε(x)
∂

∂νΩε(y)
(San(x− y))ω(y) dσy

=
∫
∂Ωε

∂

∂νΩε(x)
∂

∂νΩε(y)
(San(x− y))µ(y) dσy ∀x ∈ ∂Ωε, (4.78)



4.8 Asymptotic behaviour of the solutions of a nonlinear transmission problem for the Laplace
equation in a periodically perforated domain 181

∫
∂Ωε

µdσ = 0, (4.79)

to the set of pairs (ui, uo) of Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) which solve problem (4.76), which
takes (ω, µ) to the pair of functions(

w+
a [∂Ωε, ω] + F (−1)(c̄), w−a [∂Ωε, µ] + c̄− w−a [∂Ωε, µ](x̄)

)
(4.80)

is a bijection.

Proof. We first assume that the pair (ω, µ) satisfies (4.77)-(4.79). Then, by Theorem 1.13, it is easy
to verify that the pair of functions(

w+
a [∂Ωε, ω] + F (−1)(c̄), w−a [∂Ωε, µ] + c̄− w−a [∂Ωε, µ](x̄)

)
is in Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) and solves problem (4.76). Conversely, assume now that
(ui, uo) ∈ Cm,α(cl Sa[Ωε])×Cm,α(cl Ta[Ωε]) is a solution of problem (4.76). Then, by Proposition 2.20,
there exists a unique ω ∈ Cm,α(∂Ωε) such that

ui − F (−1)(c̄) = w+
a [∂Ωε, ω] in cl Sa[Ωε].

Analogously, by Proposition 2.21, there exists a unique pair (µ, τ) in Cm,α(∂Ωε) × R, such that∫
∂Ωε

µdσ = 0 and
uo = w−a [∂Ωε, µ] + τ in cl Ta[Ωε].

In particular, by uo(x̄) = c̄, we must have

τ = c̄− w−a [∂Ωε, µ](x̄).

Finally, since (ui, uo) solves (4.76), we immediately obtain the validity of (4.77)-(4.79).

As we have seen, we can convert problem (4.76) into a system of integral equations in the unknown
(ω, µ). In the following Theorem we introduce a proper change of the functional variables (ω, µ).

Theorem 4.73. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ,
c̄ be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε ∈ ]0, ε̄1[. Then the map
(ui[ε, ·, ·], uo[ε, ·, ·]) of the set of pairs (ψ, θ) ∈ (Cm,α(∂Ω))2 that solve the following integral equations

F ′(F (−1)(c̄))
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

+ ε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(c̄) + βε

(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
))
dβ

− w−[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)θ(s) dσs = 0 ∀t ∈ ∂Ω,

(4.81)

g(t)− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs − εnγ
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)ψ(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs + εn
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs = 0 ∀t ∈ ∂Ω,

(4.82)∫
∂Ω

θ dσ = 0, (4.83)

to the set of pairs (ui, uo) of Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) which solve problem (4.76), which
takes (ψ, θ) to the pair of functions

(ui[ε, ψ, θ] ≡ w+
a [∂Ωε, ω] + F (−1)(c̄), uo[ε, ψ, θ] ≡ w−a [∂Ωε, µ] + c̄− w−a [∂Ωε, µ](x̄)), (4.84)
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where

µ(x) ≡ εθ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (4.85)

ω(x) ≡ εψ(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (4.86)

is a bijection.

Proof. Assume that the pair (ui, uo) in Cm,α(cl Sa[Ωε])×Cm,α(cl Ta[Ωε]) solves problem (4.76). Then,
by Proposition 4.72, there exists a unique pair (ω, µ) in (Cm,α(∂Ωε))2, which solves (4.77)-(4.79)
and such that (ui, uo) equals the pair of functions defined in the right-hand side of (4.84). The pair
(ψ, θ) defined by (4.85),(4.86) belongs to (Cm,α(∂Ω))2. By (4.77), (4.78), (4.79) the pair (ψ, θ) solves
equations (4.82),(4.83) together with the following equation:

F
(
ε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

+ F (−1)(c̄)
)

= ε
(
w−[∂Ω, θ](t)−εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t−s))θ(s) dσs
)

+ c̄+εn
∫
∂Ω

νΩ(s) ·DSan(x̄−w−εs)θ(s) dσs

∀t ∈ ∂Ω. (4.87)

We now show that equation (4.87) implies the validity of (4.81). By Taylor Formula, we have

F (x+ F (−1)(c̄)) = c̄+ F ′(F (−1)(c̄))x+ x2

∫ 1

0

(1− β)F ′′(F (−1)(c̄) + βx)dβ ∀x ∈ R.

Then, by dividing both sides of (4.87) by ε, we can rewrite (4.87) as (4.81). Conversely, by reading
backward the above argument, one can easily show that if (ψ, θ) solves (4.81)-(4.83), then the pair
(ω, µ), with ω, µ delivered by (4.85),(4.86), satisfies system (4.77)-(4.79). Accordingly, the pair of
functions of (4.84) satisfies problem (4.76) by Proposition 4.72.

Hence we are reduced to analyse system (4.81)-(4.83). As a first step in the analysis of system
(4.81)-(4.83), we note that for ε = 0 one obtains a system which we address to as the limiting system
and which has the following form

F ′(F (−1)(c̄))w+[∂Ω, ψ](t)− w−[∂Ω, θ](t) = 0 ∀t ∈ ∂Ω, (4.88)

g(t)− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs +
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs = 0 ∀t ∈ ∂Ω,

(4.89)∫
∂Ω

θ dσ = 0. (4.90)

In order to analyse the limiting system, we need the following technical statement from Lanza [78,
Theorem 5.2].

Theorem 4.74. Let m ∈ N \ {0} α ∈ ]0, 1[. Let I be a bounded open connected subset of Rn of class
Cm,α, such that Rn \ cl I is connected and 0 ∈ I. Then the following statements hold.

(i) The operator 1
2I − lw[∂I, ·] is a linear homeomorphism of Cm,α(∂I) onto itself for all l ∈ [−1, 1[.

(ii) Let φ, γ ∈ Rn \ {0}, φγ > 0. Let η ∈ Cm−1,α(∂I),
∫
∂I η dσ = 1. If (f,Γ, a) ∈ Cm,α(∂I) ×

Cm−1,α(∂I)× R, then the system

φw+[∂I, ψ] + w−[∂I, θ] = f on ∂I,

− γ
∫
∂I
νI(t)D2Sn(t− s)νI(s)ψ(s) dσs

−
∫
∂I
νI(t)D2Sn(t− s)νI(s)θ(s) dσs +

∫
∂I

Γ dση(t) = Γ(t) ∀t ∈ ∂I,∫
∂I
θ dσ = a,
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has one and only one solution (ψ, θ) ∈ (Cm,α(∂I))2.

Proof. See Lanza [78, Theorem 5.2].

Then we have the following theorem, which shows the unique solvability of the limiting system,
and its link with a boundary value problem which we shall address to as the limiting boundary value
problem.

Theorem 4.75. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F , g, γ, c̄ be as in (1.56), (4.72), (4.73), (4.74),
(4.75), respectively. Then the following statements hold.

(i) The limiting system (4.88)-(4.90) has one and only one solution in (Cm,α(∂Ω))2, which we
denote by (ψ̃, θ̃).

(ii) The limiting boundary value problem
∆ui(x) = 0 ∀x ∈ Ω,
∆uo(x) = 0 ∀x ∈ Rn \ cl Ω,
uo(x) = F ′(F (−1)(c̄))ui(x) ∀x ∈ ∂Ω,
∂
∂νΩ

uo(x) = γ ∂
∂νΩ

ui(x) + g(x) ∀x ∈ ∂Ω,
limx→∞ uo(x) = 0,

(4.91)

has one and only one solution (ũi, ũo) in Cm,α(cl Ω)×Cm,α(Rn \Ω), and the following formulas
hold:

ũi ≡ w+[∂Ω, ψ̃] in cl Ω, (4.92)

ũo ≡ w−[∂Ω, θ̃] in Rn \ Ω. (4.93)

Proof. The statement in (i) is an immediate consequence of Theorem 4.74 (we recall that
∫
∂Ω
g dσ = 0).

We now consider (ii). By Theorem B.1, it is immediate to see that the functions ũi, ũo delivered
by the right-hand side of (4.92), (4.93), belong to Cm,α(cl Ω), Cm,α(Rn \Ω), respectively and solve
problem (4.91). For the uniqueness of the solution of problem (4.91) we refer to the proof of Lanza
[78, Theorem 5.3].

We are now ready to analyse equations (4.81)-(4.83) around the degenerate case ε = 0.

Theorem 4.76. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let Um−1,α

0 be as in (1.64). Let
Λ ≡ (Λj)j=1,2,3 be the map of ]−ε̄1, ε̄1[× (Cm,α(∂Ω))2 to Cm,α(∂Ω)× Um−1,α

0 × R, defined by

Λ1[ε, ψ, θ](t) ≡ F ′(F (−1)(c̄))
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

+ ε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(c̄) + βε

(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
))
dβ

− w−[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)θ(s) dσs ∀t ∈ ∂Ω,

(4.94)

Λ2[ε, ψ, θ](t)

≡ g(t)− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs − εnγ
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)ψ(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs + εn
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs ∀t ∈ ∂Ω,

(4.95)

Λ3[ε, ψ, θ] ≡
∫
∂Ω

θ dσ, (4.96)

for all (ε, ψ, θ) ∈ ]−ε̄1, ε̄1[× (Cm,α(∂Ω))2. Then the following statements hold.
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(i) Equation Λ[0, ψ, θ] = 0 is equivalent to the limiting system (4.88)-(4.90) and has one and only
one solution (ψ̃, θ̃) (cf. Theorem 4.75.)

(ii) If ε ∈ ]0, ε̄1[, then equation Λ[ε, ψ, θ] = 0 is equivalent to system (4.81)-(4.83) for (ψ, θ).

(iii) There exists ε2 ∈ ]0, ε̄1] such that Λ is a real analytic map of ]−ε2, ε2[ × (Cm,α(∂Ω))2 to
Cm,α(∂Ω)×Um−1,α

0 ×R. The differential ∂(ψ,θ)Λ[0, ψ̃, θ̃] of Λ at (0, ψ̃, θ̃) is a linear homeomor-
phism of (Cm,α(∂Ω))2 to Cm,α(∂Ω)× Um−1,α

0 × R.

(iv) There exist ε3 ∈ ]0, ε2] and an open neighbourhood Ũ of (ψ̃, θ̃) in (Cm,α(∂Ω))2 and a real analytic
map (Ψ[·],Θ[·]) of ]−ε3, ε3[ to Ũ , such that the set of zeros of the map Λ in ]−ε3, ε3[×Ũ coincides
with the graph of (Ψ[·],Θ[·]). In particular, (Ψ[0],Θ[0]) = (ψ̃, θ̃).

Proof. First of all we want to prove that∫
∂Ω

Λ2[ε, ψ, θ] dσ = 0, (4.97)

for all (ε, ψ, θ) ∈ ]−ε̄1, ε̄1[× (Cm,α(∂Ω))2. If ε = 0, by
∫
∂Ω
g dσ = 0 and∫

∂Ω

∂

∂νΩ
w+[∂Ω, ψ] dσ = 0,

∫
∂Ω

∂

∂νΩ
w−[∂Ω, θ] dσ = 0,

we immediately obtain (4.97). If ε 6= 0, we need to observe also that the functions

t 7→
∫
∂Ω

DRan(ε(t− s)) · νΩ(s)ψ(s) dσs

and
t 7→

∫
∂Ω

DRan(ε(t− s)) · νΩ(s)θ(s) dσs

of cl Ω to R are harmonic in Ω. Then, by the Divergence Theorem, we have∫
∂Ω

∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)ψ(s) dσs dσt = 0

and ∫
∂Ω

∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs dσt = 0.

Thus, by the above argument for the case ε = 0, we easily obtain (4.97). The statements in (i) and
(ii) are obvious. By the continuity of the pointwise product in Schauder spaces, and by the continuity
of the linear maps w±[∂Ω, ·] in Cm,α(∂Ω), by the real analyticty of Ran and its partial derivatives in a
neighbourhood of 0 and by known results on composition operators, we have that the maps Λ2, Λ3

and the first, third, fourth summands in the right-hand side of the definition of Λ1 are real analytic
maps in ]−ε2, ε2[× (Cm,α(∂Ω))2, for ε2 ∈ ]0, ε̄1] small enough (cf. Proposition 1.22 (i), (ii).) Since San
is real analytic in Rn \ Zan, by possibly taking a smaller ε2, the map

(ε, θ) 7→ −εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)θ(s) dσs

of ]−ε2, ε2[× Cm,α(∂Ω) to R is real analytic (Proposition 1.22 (iii).) By Theorems B.1 and C.4, the
map of ]−ε2, ε2[× Cm,α(∂Ω) to Cm,α(∂Ω) which takes (ε, ψ) to the function of the variable t ∈ ∂Ω
defined by

w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs ∀t ∈ ∂Ω,

is real analytic. Hence, the map of ]−ε2, ε2[× Cm,α(∂Ω) to Cm,α([0, 1]× ∂Ω) which takes (ε, ψ) to
the function

F (−1)(c̄) + βε(w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs)
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of the variables (β, t) is real analytic. Since F ′′ is real analytic, known results on composition operators
show that the map of Cm,α([0, 1]×∂Ω) to itself which takes a function h(·, ·) to the composite function
F ′′ ◦ h(·, ·) is real analytic (cf. Böhme and Tomi [15, p. 10], Henry [60, p. 29], Valent [137, Thm.
5.2, p. 44].) Finally, the map which takes a function h of Cm,α([0, 1]× ∂Ω) to

∫ 1

0
(1− β)h(β, ·)dβ in

Cm,α(∂Ω) is linear and continuous, and thus real analytic. Hence, by the continuity of the pointwise
product in Schauder spaces, we can easily conclude that the second summand in the definition of Λ1

depends real analytically upon (ε, ψ). By standard calculus in Banach space, the differential of Λ at
(0, ψ̃, θ̃) with respect to variables (ψ, θ) is delivered by the following formulas:

∂(ψ,θ)Λ1[0, ψ̃, θ̃](ψ̄, θ̄)(t) = F ′(F (−1)(c̄))w+[∂Ω, ψ̄](t)− w−[∂Ω, θ̄](t) ∀t ∈ ∂Ω,

∂(ψ,θ)Λ2[0, ψ̃, θ̃](ψ̄, θ̄)(t) =− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ̄(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ̄(s) dσs ∀t ∈ ∂Ω,

∂(ψ,θ)Λ3[0, ψ̃, θ̃](ψ̄, θ̄) =
∫
∂Ω

θ̄(s) dσs,

for all (ψ̄, θ̄) ∈ (Cm,α(∂Ω))2. We now show that the above differential is a linear homeomorphism. By
the Open Mapping Theorem, it suffices to show that it is a bijection of (Cm,α(∂Ω))2 to Cm,α(∂Ω)×
Um−1,α

0 × R. Let (f̄ , ḡ, ā) ∈ Cm,α(∂Ω)× Um−1,α
0 × R. We must show that there exists a unique pair

(ψ̄, θ̄) ∈ (Cm,α(∂Ω))2 such that

∂(ψ,θ)Λ[0, ψ̃, θ̃](ψ̄, θ̄) = (f̄ , ḡ, ā). (4.98)

By Theorem 4.74, there exists a unique pair (ψ̄, θ̄) ∈ (Cm,α(∂Ω))2 such that (4.98) holds. Thus the
proof of statement (iii) is complete. Statement (iv) is an immediate consequence of statement (iii)
and of the Implicit Function Theorem for real analytic maps in Banach spaces (cf. e.g., Prodi and
Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem 15.3].)

We are now in the position to introduce the following.

Definition 4.77. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ui[·, ·, ·] and uo[·, ·, ·] be as in
Theorem 4.73. If ε ∈ ]0, ε3[, we set

ui[ε](t) ≡ ui[ε,Ψ[ε],Θ[ε]](t) ∀t ∈ cl Sa[Ωε],
uo[ε](t) ≡ uo[ε,Ψ[ε],Θ[ε]](t) ∀t ∈ cl Ta[Ωε],

where ε3, Ψ, Θ are as in Theorem 4.76 (iv).

4.8.2 A functional analytic representation Theorem for the family of func-
tions {(ui[ε], uo[ε])}ε∈]0,ε3[

In this Subsection, we show that {(ui[ε](·), uo[ε](·))}ε∈]0,ε3[ can be continued real analytically for
negative values of ε.

We have the following.

Theorem 4.78. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.76 (iv).
Then the following statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3] and
a real analytic operator Uo1 of ]−ε4, ε4[ to the space C0

h(clV ) such that the following conditions
hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.
(jj)

uo[ε](x) = εnUo1 [ε](x) + c̄ ∀x ∈ clV,

for all ε ∈ ]0, ε4[.
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(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3] and a real analytic
operator Ūo1 of ]−ε̄4, ε̄4[ to the space Cm,α(cl V̄ ) such that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

uo[ε](w + εt) = εŪo1 [ε](t) + c̄ ∀t ∈ cl V̄ ,

for all ε ∈ ]0, ε̄4[. Moreover, Ūo1 [0] equals the restriction of ũo to cl V̄ .

(iii) There exist ε′4 ∈ ]0, ε3] and a real analytic operator U i1 of ]−ε′4, ε′4[ to the space Cm,α(cl Ω) such
that

ui[ε](w + εt) = εU i1[ε](t) + F (−1)(c̄) ∀t ∈ cl Ω,

for all ε ∈ ]0, ε′4[. Moreover, U i1[0] equals ũi on cl Ω.

Proof. Let Θ[·], Ψ[·] be as in Theorem 4.76. We first prove statement (i). Clearly, by taking ε4 ∈ ]0, ε3]
small enough, we can assume that (j) holds. Consider (jj). Let ε ∈ ]0, ε4[. We have

uo[ε](x) =εn
(
−
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs

+
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs
)

+ c̄, ∀x ∈ clV.

Thus, it is natural to set

Uo1 [ε](x) ≡−
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε](s) dσs

+
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[. Following the proof of Theorem 2.40, one can easily show that, by possibly taking
a smaller ε4, the map Uo1 of ]−ε4, ε4[ to C0

h(clV ) is real analytic and that the equality in (jj) holds
(cf. Proposition 1.22 (iii) and Proposition 1.24 (i).) We now prove (ii). Clearly, by taking ε̄4 ∈ ]0, ε3]
small enough, we can assume that (j′) holds. Consider (jj′). Let ε ∈ ]0, ε̄4[. We have

uo[ε](w + εt) =εw−[∂Ω,Θ[ε]](t)− εn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs

+ εn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs + c̄, ∀t ∈ cl V̄ .

Thus, it is natural to set

Ūo1 [ε](t) ≡w−[∂Ω,Θ[ε]](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs, ∀t ∈ cl V̄ .

for all ε ∈ ]−ε̄4, ε̄4[. By Proposition 1.22 (iii) and Proposition 1.24 (ii), we can easily conclude that
Ūo1 is a real analytic map of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ). Moreover, by the definition of Ūo1 , we have

Ūo1 [0](t) = w−[∂Ω, θ̃](t) = ũo(t) ∀t ∈ cl V̄ .

Finally, we prove (iii). Let ε ∈ ]0, ε3[. We have

ui[ε](w + εt) =εw+[∂Ω,Ψ[ε]](t)− εn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε](s) dσs + F (−1)(c̄), ∀t ∈ cl Ω.

Thus, it is natural to set

U i1[ε](t) ≡w+[∂Ω,Ψ[ε]](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε](s) dσs, ∀t ∈ cl Ω.
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for all ε ∈ ]−ε3, ε3[. By arguing as above, by exploiting Proposition 1.24 (iii), one can easily prove
that there exists ε′4 ∈ ]0, ε3], such that U i1 is a real analytic map of ]−ε′4, ε′4[ to Cm,α(cl Ω). Clearly,
the equality in (iii) holds. Moreover, by the definition of U i1, we have

U i1[0](t) = w+[∂Ω, ψ̃](t) = ũi(t) ∀t ∈ cl Ω.

Remark 4.79. We note that the right-hand side of the equalities in (jj), (jj′) and (iii) of Theorem
4.78 can be continued real analytically in a whole neighbourhood of 0. Moreover, if V is a bounded
open subset of Rn such that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

uo[ε] = c̄ uniformly in clV .

4.8.3 A real analytic continuation Theorem for the energy integral

As done in Theorem 4.78 for (ui[·], uo[·]), we can now prove a real analytic continuation Theorem for
the energy integral. Namely, we prove the following.

Theorem 4.80. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.76 (iv).
Then there exist ε5 ∈ ]0, ε3] and two real analytic operators Gi, Go of ]−ε5, ε5[ to R, such that∫

Ωε

|∇ui[ε](x)|2 dx = εnGi[ε], (4.99)∫
Pa[Ωε]

|∇uo[ε](x)|2 dx = εnGo[ε], (4.100)

for all ε ∈ ]0, ε5[. Moreover,

Gi[0] =
∫

Ω

|∇ũi(x)|2 dx, (4.101)

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx. (4.102)

Proof. Let Θ[·], Ψ[·] be as in Theorem 4.76. We denote by id the identity map in Rn. We set

vi[ε](x) ≡ ui[ε](x)− F (−1)(c̄) ∀x ∈ cl Sa[Ωε],

and

vo[ε](x) ≡ uo[ε](x)−
(
c̄+ εn

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs
)

∀x ∈ cl Ta[Ωε],

for all ε ∈ ]0, ε3[. Let ε ∈ ]0, ε3[. We have∫
Ωε

|∇ui[ε](x)|2 dx =
∫

Ωε

|∇vi[ε](x)|2 dx

= εn−1

∫
∂Ω

( ∂

∂νΩε

vi[ε]
)
◦ (w + ε id)(t)vi[ε] ◦ (w + ε id)(t) dσt,

for all ε ∈ ]0, ε3[. Let ε′4, U i1[·] be as in Theorem 4.78 (iii). Let ε ∈ ]0, ε′4[. We have

vi[ε] ◦ (w + ε id)(t) = εU i1[ε](t) ∀t ∈ cl Ω,

and accordingly
D[vi[ε] ◦ (w + ε id)](t) = εD[U i1[ε]](t) ∀t ∈ cl Ω.
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Also,

εn−1

∫
∂Ω

( ∂

∂νΩε

vi[ε]
)
◦ (w + ε id)(t)vi[ε] ◦ (w + ε id)(t) dσt

= εn−2

∫
∂Ω

D[vi[ε] ◦ (w + ε id)](t) · νΩ(t)vi[ε] ◦ (w + ε id)(t) dσt

= εn
∫
∂Ω

D[U i1[ε]](t) · νΩ(t)U i1[ε](t) dσt.

Thus, it is natural to set

Gi[ε] ≡
∫
∂Ω

D[U i1[ε]](t) · νΩ(t)U i1[ε](t) dσt,

for all ε ∈ ]−ε′4, ε′4[. Clearly, Gi is a real analytic map of ]−ε′4, ε′4[ to R such that (4.99) holds. Moreover,
by Theorem 4.78 (iii), we have

Gi[0] =
∫

Ω

|∇ũi(x)|2 dx.

Let ε ∈ ]0, ε3[. We have∫
Pa[Ωε]

|∇uo[ε](x)|2 dx =
∫

Pa[Ωε]

|∇vo[ε](x)|2 dx

= −εn−1

∫
∂Ω

( ∂

∂νΩε

vo[ε]
)
◦ (w + ε id)(t)vo[ε] ◦ (w + ε id)(t) dσt,

for all ε ∈ ]0, ε3[. Now let Ω̃ be a tubolar open neighbourhood of class Cm,α of ∂Ω as in Lanza and
Rossi [86, Lemma 2.4]. Set

Ω̃− ≡ Ω̃ ∩ (Rn \ cl Ω).

Choosing ε5 ∈ ]0, ε3] small enough, we can assume that

(w + ε cl Ω̃) ⊆ A,

for all ε ∈ ]−ε5, ε5[. We have

vo[ε] ◦ (w + ε id)(t)

= −εn
∫
∂Ω

νΩ(s) ·DSn(ε(t− s))Θ[ε](s) dσs − εn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs

= ε
(∫

∂Ω

∂

∂νΩ(s)
(Sn(t− s))Θ[ε](s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs
)
∀t ∈ Ω̃−,

for all ε ∈ ]0, ε5[. Hence, (cf. Proposition C.3 and Lanza and Rossi [86, Proposition 4.10]) there exists
a real analytic operator G̃ of ]−ε5, ε5[ to Cm,α(cl Ω̃−), such that

vo[ε] ◦ (w + ε id) = εG̃[ε] in Ω̃−,

for all ε ∈ ]0, ε5[. Furthermore, we observe that

G̃[0](t) = w−[∂Ω,Θ[0]](t) ∀t ∈ cl Ω̃−,

and so
G̃[0](t) = ũo(t) ∀t ∈ cl Ω̃−.

Thus, it is natural to set

Go[ε] ≡ −
∫
∂Ω

D[G̃[ε]](t) · νΩ(t)G̃[ε](t) dσt,

for all ε ∈ ]−ε5, ε5[. Accordingly, one can easily show that Go is a real analytic map of ]−ε5, ε5[ to R
such that (4.100) holds. Moreover, by the above argument and Folland [52, p. 118], we have

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx.

Thus the Theorem is completely proved.
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Remark 4.81. We note that the right-hand side of the equalities in (4.99) and (4.100) of Theorem
4.80 can be continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

(
∫

Ωε

|∇ui[ε](x)|2 dx+
∫

Pa[Ωε]

|∇uo[ε](x)|2 dx) = 0.

4.8.4 A real analytic continuation Theorem for the integral of the family
{(ui[ε], uo[ε])}ε∈]0,ε3[

As done in Theorem 4.80 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the family {(ui[ε], uo[ε])}ε∈]0,ε3[. Namely, we prove the following.

Theorem 4.82. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.76 (iv).
Then there exist ε6 ∈ ]0, ε3] and two real analytic operators J i, Jo of ]−ε6, ε6[ to R, such that∫

Ωε

ui[ε](x) dx = J i[ε], (4.103)∫
Pa[Ωε]

uo[ε](x) dx = Jo[ε], (4.104)

for all ε ∈ ]0, ε6[. Moreover,

J i[0] = 0, (4.105)
Jo[0] = c̄|A|n. (4.106)

Proof. Let Θ[·], Ψ[·] be as in Theorem 4.76. Let ε ∈ ]0, ε3[. Clearly,

uo[ε](x) = εw−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) + εn

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs + c̄

∀x ∈ cl Ta[Ωε].

Accordingly,∫
Pa[Ωε]

uo[ε](x) dx =ε
∫

Pa[Ωε]

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx

+εn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs
(
|A|n − ε

n|Ω|n
)

+ c̄
(
|A|n − ε

n|Ω|n
)
.

By arguing as in Lemma 2.45, we can easily prove that there exist ε′6 ∈ ]0, ε3] and a real analytic
operator J̃1 of ]−ε′6, ε′6[ to R, such that∫

Pa[Ωε]

w−a
[
∂Ωε,Θ[ε](

1
ε

(· − w))
]
(x) dx = εnJ̃1[ε],

for all ε ∈ ]0, ε′6[. Moreover, by arguing as in Theorem 4.78, we have that, by possibly taking a smaller
ε′6 > 0, the map J̃2 of ]−ε′6, ε′6[ to R, defined by

J̃2[ε] ≡ εn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs
(
|A|n − ε

n|Ω|n
)

+ c̄
(
|A|n − ε

n|Ω|n
)

for all ε ∈ ]−ε′6, ε′6[, is real analytic. Hence, if we set,

Jo[ε] ≡ εn+1J̃1[ε] + J̃2[ε]

for all ε ∈ ]−ε′6, ε′6[, we have that Jo is a real analytic map of ]−ε′6, ε′6[ to R, such that∫
Pa[Ωε]

uo[ε](x) dx = Jo[ε],

for all ε ∈ ]0, ε′6[, and that Jo[0] = c̄|A|n.
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Let ε ∈ ]0, ε3[. Clearly, ∫
Ωε

ui[ε](x) dx = εn
∫

Ω

ui[ε](w + εt) dt.

On the other hand, if ε′4, U i1 are as in Theorem 4.78, and we set

J i[ε] ≡ εn
∫

Ω

(
εU i1[ε](t) + F (−1)(c̄)

)
dt

for all ε ∈ ]−ε′4, ε′4[, then we have that J i is a real analytic map of ]−ε′4, ε′4[ to R, such that J i[0] = 0
and that ∫

Ωε

ui[ε](x) dx = J i[ε]

for all ε ∈ ]0, ε′4[.
Then, by taking ε6 ≡ min{ε′6, ε′4}, we can easily conclude.

4.8.5 A property of local uniqueness of the family {(ui[ε], uo[ε])}ε∈]0,ε3[

In this Subsection, we shall show that the family {(ui[ε], uo[ε])}ε∈]0,ε3[ is essentially unique. To do so,
we need to introduce a preliminary lemma.

Lemma 4.83. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as
in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε ∈ ]0, ε̄1[. Let (ui, uo) solve (4.76).
Let (ψ, θ) ∈ (Cm,α(∂Ω))2 be such that ui = ui[ε, ψ, θ] and uo = uo[ε, ψ, θ]. Then

w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs =
ui(w + εt)− F (−1)(c̄)

ε
∀t ∈ cl Ω.

Proof. It is an immediate consequence of Theorem 4.73.

Then we have the following.

Theorem 4.84. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let {ε̂j}j∈N be a sequence in ]0, ε̄1[
converging to 0. If {(uij , uoj)}j∈N is a sequence of pairs of functions such that

(uij , u
o
j) ∈ Cm,α(cl Sa[Ωε̂j ])× Cm,α(cl Ta[Ωε̂j ]), (4.107)

(uij , u
o
j) solves (4.76) with ε ≡ ε̂j , (4.108)

lim
j→∞

uij(w + ε̂j ·)− F (−1)(c̄)
ε̂j

= ũi(·) in Cm,α(∂Ω), (4.109)

then there exists j0 ∈ N such that

(uij , u
o
j) = (ui[ε̂j ], uo[ε̂j ]) ∀j0 ≤ j ∈ N.

Proof. By Theorem 4.73, for each j ∈ N, there exists a unique pair (ψj , θj) in (Cm,α(∂Ω))2 such that

uij = ui[ε̂j , ψj , θj ], uoj = uo[ε̂j , ψj , θj ]. (4.110)

We shall now try to show that

lim
j→∞

(ψj , θj) = (ψ̃, θ̃) in (Cm,α(∂Ω))2. (4.111)

Indeed, if we denote by Ũ the neighbourhood of Theorem 4.76 (iv), the limiting relation of (4.111)
implies that there exists j0 ∈ N such that

(ε̂j , ψj , θj) ∈ ]0, ε3[× Ũ ,

for j ≥ j0 and thus Theorem 4.76 (iv) would imply that

(ψj , θj) = (Ψ[ε̂j ],Θ[ε̂j ]),
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for j0 ≤ j ∈ N, and that accordingly the theorem holds (cf. Definition 4.77.) Thus we now turn to the
proof of (4.111). We note that equation Λ[ε, ψ, θ] = 0 can be rewritten in the following form

F ′(F (−1)(c̄))
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

−
(
w−[∂Ω, θ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄−w− εs)θ(s) dσs
)

= −ε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(c̄) + βε

(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
))
dβ

∀t ∈ ∂Ω, (4.112)

− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs − εnγ
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)ψ(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs + εn
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs = −g(t)

∀t ∈ ∂Ω, (4.113)

Λ3[ε, ψ, θ] = 0, (4.114)

for all (ε, ψ, θ) in the domain of Λ. By arguing so as to prove that the integral of the second component
of Λ on ∂Ω equals zero in the beginning of the proof of Theorem 4.76, we can conclude that both
hand sides of equation (4.113) have zero integral on ∂Ω. We define the map N ≡ (Nl)l=1,2,3 of
]−ε3, ε3[ × (Cm,α(∂Ω))2 to Cm,α(∂Ω) × Um−1,α

0 × R by setting N1[ε, ψ, θ] equal to the left-hand
side of the equality in (4.112), N2[ε, ψ, θ] equal to the left-hand side of the equality in (4.113) and
N3[ε, ψ, θ] = Λ3[ε, θ, ψ] for all (ε, ψ, θ) ∈ ]−ε3, ε3[ × (Cm,α(∂Ω))2. By arguing as in the proof of
Theorem 4.76, we can prove that N is real analytic. Since N [ε, ·, ·] is linear for all ε ∈ ]−ε3, ε3[, we
have

N [ε, ψ, θ] = ∂(ψ,θ)N [ε, ψ̃, θ̃](ψ, θ)

for all (ε, ψ, θ) ∈ ]−ε3, ε3[ × (Cm,α(∂Ω))2, and the map of ]−ε3, ε3[ to L((Cm,α(∂Ω))2, Cm,α(∂Ω) ×
Um−1,α

0 × R) which takes ε to N [ε, ·, ·] is real analytic. Since

N [0, ·, ·] = ∂(ψ,θ)Λ[0, ψ̃, θ̃](·, ·),

Theorem 4.76 (iii) implies that N [0, ·, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of (Cm,α(∂Ω))2 to Cm,α(∂Ω)×Um−1,α

0 ×R is open in L((Cm,α(∂Ω))2, Cm,α(∂Ω)×
Um−1,α

0 × R) and since the map which takes a linear invertible operator to its inverse is real analytic
(cf. e.g., Hille and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists ε̃ ∈ ]0, ε3[ such that the map
ε 7→ N [ε, ·, ·](−1) is real analytic from ]−ε̃, ε̃[ to L(Cm,α(∂Ω)× Um−1,α

0 × R, (Cm,α(∂Ω))2). Next we
denote by S[ε, ψ, θ] ≡ (Sl[ε, ψ, θ])l=1,2,3 the triple defined by the right-hand side of (4.112)-(4.114).
Then equation Λ[ε, ψ, θ] = 0 (or equivalently system (4.112)-(4.114)) can be rewritten in the following
form:

(ψ, θ) = N [ε, ·, ·](−1)[S[ε, ψ, θ]], (4.115)

for all (ε, ψ, θ) ∈ ]−ε̃, ε̃[× (Cm,α(∂Ω))2. Next we note that condition (4.109), the proof of Theorem
4.76, the real analyticity of F and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , ψj , θj ] = S[0, ψ̃, θ̃] in Cm,α(∂Ω)× Um−1,α
0 × R. (4.116)

Then by (4.115) and by the real analyticity of ε 7→ N [ε, ·, ·](−1), and by the bilinearity and continuity of
the operator of L(Cm,α(∂Ω)×Um−1,α

0 ×R, (Cm,α(∂Ω))2)× (Cm,α(∂Ω)×Um−1,α
0 ×R) to (Cm,α(∂Ω))2,

which takes a pair (T1, T2) to T1[T2], we conclude that (4.111) holds. Thus the proof is complete.
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4.9 An homogenization problem for the Laplace equation with
a nonlinear transmission boundary condition in a periodi-
cally perforated domain

In this section we consider an homogenization problem for the Laplace equation with a nonlinear
transmission boundary condition in a periodically perforated domain.

4.9.1 Notation and preliminaries

In this Section we retain the notation introduced in Subsections 1.8.1, 4.3.1 and 4.8.1.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as in (1.56),

(1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[ × ]0,+∞[, we
consider the following periodic nonlinear transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + 1
δ g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),
uo(δx̄) = c̄.

(4.117)

We give the following definition.

Definition 4.85. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be
as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.78
(iv). Let (ui[·], uo[·]) be as in Definition 4.77. For each pair (ε, δ) ∈ ]0, ε3[× ]0,+∞[, we set

ui(ε,δ)(x) ≡ ui[ε](x
δ

) ∀x ∈ cl Sa(ε, δ), uo(ε,δ)(x) ≡ uo[ε](x
δ

) ∀x ∈ cl Ta(ε, δ).

Remark 4.86. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as
in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.78 (iv).
For each (ε, δ) ∈ ]0, ε3[× ]0,+∞[ the pair (ui(ε,δ), u

o
(ε,δ)) is a solution of (4.117).

By the previous remark, we note that a solution of problem (4.117) can be expressed by means of
a solution of an auxiliary rescaled problem, which does not depend on δ. This is due to the presence
of the factor 1/δ in front of g( 1

εδ (x− δw)) in the sixth equation of problem (4.117).
By virtue of Theorem 4.84, we have the following.

Remark 4.87. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as
in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.78 (iv).
Let δ̄ ∈ ]0,+∞[. Let {ε̂j}j∈N be a sequence in ]0, ε̄1[ converging to 0. If {(uij , uoj)}j∈N is a sequence of
pairs of functions such that

(uij , u
o
j) ∈ Cm,α(cl Sa(ε̂j , δ̄))× Cm,α(cl Ta(ε̂j , δ̄)),

(uij , u
o
j) solves (4.117) with (ε, δ) ≡ (ε̂j , δ̄),

lim
j→∞

uij(δ̄w + δ̄ε̂j ·)− F (−1)(c̄)
ε̂j

= ũi(·) in Cm,α(∂Ω),

then there exists j0 ∈ N such that

(uij , u
o
j) = (ui(ε̂j ,δ̄), u

o
(ε̂j ,δ̄)

) ∀j0 ≤ j ∈ N.

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). As a first

step, we study the behaviour of extensions of ui[ε] and of uo[ε] as ε tends to 0.
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Proposition 4.88. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ,
c̄ be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem
4.78 (iv). Let 1 ≤ p <∞. Then

lim
ε→0+

Ei(ε,1)[u
i[ε]] = 0 in Lp(A),

and
lim
ε→0+

Eo(ε,1)[u
o[ε]] = c̄ in Lp(A).

Proof. It suffices to modify the proof of Propositions 2.132, 4.26. Let ε3, Ψ, Θ be as in Theorem 4.76.
Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[, we have

ui[ε] ◦ (w + ε id∂Ω)(t) = εw+[∂Ω,Ψ[ε]](t)− εn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε](s) dσs+F (−1)(c̄),

∀t ∈ ∂Ω.

We set

N i[ε](t) ≡εw+[∂Ω,Ψ[ε]](t)− εn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε](s) dσs + F (−1)(c̄), ∀t ∈ ∂Ω.

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.23 (ii)) that
N i is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

Ci ≡ sup
ε∈]−ε̃,ε̃[

‖N i[ε]‖C0(∂Ω) < +∞.

By the Maximum Principle for harmonic functions, we have

|Ei(ε,1)[u
i[ε]](x)| ≤ Ci ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

Obviously,
lim
ε→0+

Ei(ε,1)[u
i[ε]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

Ei(ε,1)[u
i[ε]] = 0 in Lp(A).

If ε ∈ ]0, ε3[, we have

uo[ε] ◦ (w + ε id∂Ω)(t) =εw−[∂Ω,Θ[ε]](t)− εn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs

+ εn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs + c̄, ∀t ∈ ∂Ω.

We set

No[ε](t) ≡εw−[∂Ω,Θ[ε]](t)− εn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε](s) dσs

+ εn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε](s) dσs + c̄, ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.23 (i) and
the proof of Theorem 4.78) that No is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

Co ≡ sup
ε∈]−ε̃,ε̃[

‖No[ε]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|Eo(ε,1)[u
o[ε]](x)| ≤ Co ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

By Theorem 4.78, we have

lim
ε→0+

Eo(ε,1)[u
o[ε]](x) = c̄ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

Eo(ε,1)[u
o[ε]] = c̄ in Lp(A).
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4.9.2 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.26 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.89. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be
as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.78
(iv). Let 1 ≤ p <∞. Let V be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = c̄ in Lp(V ).

Proof. We modify the proof of Theorem 2.134. By virtue of Proposition 4.88, we have

lim
ε→0+

‖Ei(ε,1)[u
i[ε]]‖Lp(A) = 0,

and
lim
ε→0+

‖Eo(ε,1)[u
o[ε]]− c̄‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖Ei(ε,δ)[u
i
(ε,δ)]‖Lp(V ) ≤ C‖E

i
(ε,1)[u

i[ε]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,

and
‖Eo(ε,δ)[u

o
(ε,δ)]− c̄‖Lp(V ) ≤ C‖E

o
(ε,1)[u

o[ε]]− c̄‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,

Thus,
lim

(ε,δ)→(0+,0+)
Ei(ε,δ)[u

i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = c̄ in Lp(V ).

Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 4.90. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be
as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.76 (iv). Let
ε6, J i, Jo be as in Theorem 4.82. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε], (4.118)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx = rnJo[ε], (4.119)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. We follow the proof of Theorem 2.60. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of
ui(ε,r/l), we have ∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.
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Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

ui[ε]
( l
r
x
)
dx

=
rn

ln

∫
Ωε

ui[ε](t) dt

=
rn

ln
J i[ε].

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε],

and the validity of (4.37) follows. The proof of (4.38) is very similar and is accordingly omitted.

4.9.3 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.

Definition 4.91. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be
as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.78
(iv). For each pair (ε, δ) ∈ ]0, ε3[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.92. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as
in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem 4.78 (iv).
Let (ε, δ) ∈ ]0, ε3[× ]0,+∞[. We have∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn−2

∫
Ωε

|∇ui[ε](t)|2 dt

and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇uo[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 4.93. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 4.80. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.
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Proposition 4.94. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ,
c̄ be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem
4.78 (iv). Let ε5 be as in Theorem 4.80. Let δ1 > 0 be as in Definition 4.93. Then

lim
δ→0+

En[δ] =
∫

Ω

|∇ũi(x)|2 dx+
∫

Rn\cl Ω

|∇ũo(x)|2 dx,

where ũi, ũo are as in Theorem 4.75.

Proof. Let Gi, Go be as in Theorem 4.80. Let δ ∈ ]0, δ1[. By Remark 4.92 and Theorem 4.80, we have∫
Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])n(Gi[ε[δ]] +Go[ε[δ]])

= δn(Gi[δ
2
n ] +Go[δ

2
n ]).

On the other hand,

b(1/δ)cn
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
≤ En[δ]

≤ d(1/δ)en
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
,

and so
b(1/δ)cnδn(Gi[δ

2
n ] +Go[δ

2
n ]) ≤ En[δ] ≤ d(1/δ)enδn(Gi[δ

2
n ] +Go[δ

2
n ]).

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = (Gi[0] +Go[0]).

Finally, by equalities (4.101) and (4.102), we easily conclude.

In the following Proposition we represent the function En[·] by means of real analytic functions.

Proposition 4.95. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ,
c̄ be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3 be as in Theorem
4.78 (iv). Let ε5, Gi, Go be as in Theorem 4.80. Let δ1 > 0 be as in Definition 4.93. Then

En[(1/l)] = Gi[(1/l)
2
n ] +Go[(1/l)

2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 4.94.

4.10 A variant of an homogenization problem for the Laplace
equation with a nonlinear transmission boundary condi-
tion in a periodically perforated domain

In this section we consider another homogenization problem for the Laplace equation with a nonlinear
transmission boundary condition in a periodically perforated domain.

4.10.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 4.3.1 and 4.8.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as in (1.56),
(1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. For each pair (ε, δ) ∈ ]0, ε̄1[ × ]0,+∞[, we
introduce the following periodic nonlinear transmission problem for the Laplace equation.
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∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + g( 1
εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),

uo(δx̄) = c̄.

(4.120)

In contrast to problem (4.117), we note that in the sixth equation of problem (4.120) there is not
the factor 1/δ in front of g( 1

εδ (x− δw))).
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as in (1.56),

(1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. For each (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[, we consider
the following auxiliary periodic nonlinear transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + δg( 1

ε (x− w)) ∀x ∈ ∂Ωε,
uo(x̄) = c̄.

(4.121)

We transform (4.121) into a system of integral equations by means of the following.

Proposition 4.96. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[. Then
the map of the set of pairs (ω, µ) ∈ (Cm,α(∂Ωε))2 that solve the following integral equations

F (w+
a [∂Ωε, ω](x) + F (−1)(c̄)) = w−a [∂Ωε, µ](x) + c̄− w−a [∂Ωε, µ](x̄) ∀x ∈ ∂Ωε (4.122)

δg(
1
ε

(x− w)) + γ

∫
∂Ωε

∂

∂νΩε(x)
∂

∂νΩε(y)
(San(x− y))ω(y) dσy

=
∫
∂Ωε

∂

∂νΩε(x)
∂

∂νΩε(y)
(San(x− y))µ(y) dσy ∀x ∈ ∂Ωε, (4.123)

∫
∂Ωε

µdσ = 0, (4.124)

to the set of pairs (ui, uo) of Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) which solve problem (4.121), which
takes (ω, µ) to the pair of functions

(w+
a [∂Ωε, ω] + F (−1)(c̄), w−a [∂Ωε, µ] + c̄− w−a [∂Ωε, µ](x̄)) (4.125)

is a bijection.

Proof. It suffices to modify the proof of Proposition 4.72, by replacing g by δg.

As we have seen, we can convert problem (4.121) into a system of integral equations in the unknown
(ω, µ). In the following Theorem we introduce a proper change of the functional variables (ω, µ).

Theorem 4.97. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be
as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[. Then the
map (ui[ε, δ, ·, ·], uo[ε, δ, ·, ·]) of the set of pairs (ψ, θ) ∈ (Cm,α(∂Ω))2 that solve the following integral
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equations

F ′(F (−1)(c̄))
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

+ δε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(c̄) + βδε

(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
))
dβ

− w−[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)θ(s) dσs = 0 ∀t ∈ ∂Ω,

(4.126)

g(t)− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs − εnγ
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)ψ(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs + εn
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs = 0 ∀t ∈ ∂Ω,

(4.127)∫
∂Ω

θ dσ = 0, (4.128)

to the set of pairs (ui, uo) of Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) which solve problem (4.121), which
takes (ψ, θ) to the pair of functions

(ui[ε, δ, ψ, θ] ≡ w+
a [∂Ωε, ω] + F (−1)(c̄), uo[ε, δ, ψ, θ] ≡ w−a [∂Ωε, µ] + c̄− w−a [∂Ωε, µ](x̄)), (4.129)

where

µ(x) ≡ δεθ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (4.130)

ω(x) ≡ δεψ(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (4.131)

is a bijection.

Proof. It suffices to modify the proof of Theorem 4.73. Let the pair (ui, uo) ∈ Cm,α(cl Sa[Ωε]) ×
Cm,α(cl Ta[Ωε]) solve problem (4.121). Then, by Proposition 4.96, there exists a unique pair (ω, µ) in
(Cm,α(∂Ωε))2, which solves (4.122)-(4.124) and such that (ui, uo) equals the pair of functions defined
in the right-hand side of (4.129). The pair (ψ, θ) defined by (4.130),(4.131) belongs to (Cm,α(∂Ω))2.
By (4.122), (4.123),(4.124) the pair (ψ, θ) solves equations (4.127),(4.128) together with the following
equation:

F
(
δε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

+ F (−1)(c̄)
)

= δε
(
w−[∂Ω, θ](t)−εn−1

∫
∂Ω

νΩ(s)·DRan(ε(t−s))θ(s) dσs
)
+c̄+δεn

∫
∂Ω

νΩ(s)·DSan(x̄−w−εs)θ(s) dσs

∀t ∈ ∂Ω. (4.132)

We now show that equation (4.132) implies the validity of (4.126). By Taylor Formula, we have

F (x+ F (−1)(c̄)) = c̄+ F ′(F (−1)(c̄))x+ x2

∫ 1

0

(1− β)F ′′(F (−1)(c̄) + βx)dβ ∀x ∈ R.

Then, by dividing both sides of (4.132) by δε, we can rewrite (4.132) as (4.126). Conversely, by
reading backward the above argument, one can easily show that if (ψ, θ) solves (4.126)-(4.128), then
the pair (ω, µ), with ω, µ delivered by (4.130),(4.131), satisfies system (4.122)-(4.124). Accordingly,
the pair of functions of (4.129) satisfies problem (4.121) by Proposition 4.96.
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Hence we are reduced to analyse system (4.126)-(4.128). As a first step in the analysis of system
(4.126)-(4.128), we note that for (ε, δ) = (0, 0) one obtains a system which we address to as the limiting
system and which has the following form

F ′(F (−1)(c̄))w+[∂Ω, ψ](t)− w−[∂Ω, θ](t) = 0 ∀t ∈ ∂Ω, (4.133)

g(t)− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs +
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs = 0 ∀t ∈ ∂Ω,

(4.134)∫
∂Ω

θ dσ = 0. (4.135)

Then we have the following theorem, which shows the unique solvability of the limiting system,
and its link with a boundary value problem which we shall address to as the limiting boundary value
problem.

Theorem 4.98. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F , g, γ, c̄ be as in (1.56), (4.72), (4.73), (4.74),
(4.75), respectively. Then the following statements hold.

(i) The limiting system (4.133)-(4.135) has one and only one solution in (Cm,α(∂Ω))2, which we
denote by (ψ̃, θ̃).

(ii) The limiting boundary value problem
∆ui(x) = 0 ∀x ∈ Ω,
∆uo(x) = 0 ∀x ∈ Rn \ cl Ω,
uo(x) = F ′(F (−1)(c̄))ui(x) ∀x ∈ ∂Ω,
∂
∂νΩ

uo(x) = γ ∂
∂νΩ

ui(x) + g(x) ∀x ∈ ∂Ω,
limx→∞ uo(x) = 0,

(4.136)

has one and only one solution (ũi, ũo) in Cm,α(cl Ω)×Cm,α(Rn \Ω), and the following formulas
hold:

ũi ≡ w+[∂Ω, ψ̃] in cl Ω, (4.137)

ũo ≡ w−[∂Ω, θ̃] in Rn \ Ω. (4.138)

Proof. It is Theorem 4.75.

We are now ready to analyse equations (4.126)-(4.128) around the degenerate case (ε, δ) = (0, 0).

Theorem 4.99. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let Um−1,α

0 be as in (1.64). Let
Λ ≡ (Λj)j=1,2,3 be the map of ]−ε̄1, ε̄1[× R× (Cm,α(∂Ω))2 to Cm,α(∂Ω)× Um−1,α

0 × R, defined by

Λ1[ε, δ, ψ, θ](t) ≡ F ′(F (−1)(c̄))
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

+ δε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(c̄) + βδε

(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
))
dβ

− w−[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs

− εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)θ(s) dσs ∀t ∈ ∂Ω,

(4.139)

Λ2[ε, δ, ψ, θ](t)

≡ g(t)− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs − εnγ
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)ψ(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs + εn
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs ∀t ∈ ∂Ω,

(4.140)



200
Singular perturbation and homogenization problems for the Laplace equation with transmission

boundary condition

Λ3[ε, δ, ψ, θ] ≡
∫
∂Ω

θ dσ, (4.141)

for all (ε, δ, ψ, θ) ∈ ]−ε̄1, ε̄1[× R× (Cm,α(∂Ω))2. Then the following statements hold.

(i) Equation Λ[0, 0, ψ, θ] = 0 is equivalent to the limiting system (4.133)-(4.135) and has one and
only one solution (ψ̃, θ̃) (cf. Theorem 4.75.)

(ii) If (ε, δ) ∈ ]0, ε̄1[× ]0,+∞[, then equation Λ[ε, δ, ψ, θ] = 0 is equivalent to system (4.126)-(4.128)
for (ψ, θ).

(iii) There exists ε2 ∈ ]0, ε̄1] such that Λ is a real analytic map of ]−ε2, ε2[ × R × (Cm,α(∂Ω))2

to Cm,α(∂Ω) × Um−1,α
0 × R. The differential ∂(ψ,θ)Λ[0, 0, ψ̃, θ̃] of Λ at (0, 0, ψ̃, θ̃) is a linear

homeomorphism of (Cm,α(∂Ω))2 to Cm,α(∂Ω)× Um−1,α
0 × R.

(iv) There exist ε3 ∈ ]0, ε2], δ1 ∈ ]0,+∞[ and an open neighbourhood Ũ of (ψ̃, θ̃) in (Cm,α(∂Ω))2

and a real analytic map (Ψ[·, ·],Θ[·, ·]) of ]−ε3, ε3[× ]−δ1, δ1[ to Ũ , such that the set of zeros of
the map Λ in ]−ε3, ε3[× ]−δ1, δ1[× Ũ coincides with the graph of (Ψ[·, ·],Θ[·, ·]). In particular,
(Ψ[0, 0],Θ[0, 0]) = (ψ̃, θ̃).

Proof. It suffices to modify the proof of Theorem 4.76. The statements in (i) and (ii) are obvious. By
arguing as in the proof of statement (iii) of Theorem 4.76, we can easily conclude that there exists
ε2 ∈ ]0, ε̄1] such that Λ is a real analytic map of ]−ε2, ε2[×R×(Cm,α(∂Ω))2 to Cm,α(∂Ω)×Um−1,α

0 ×R.
By standard calculus in Banach space, the differential of Λ at (0, 0, ψ̃, θ̃) with respect to variables
(ψ, θ) is delivered by the following formulas:

∂(ψ,θ)Λ1[0, 0, ψ̃, θ̃](ψ̄, θ̄)(t) = F ′(F (−1)(c̄))w+[∂Ω, ψ̄](t)− w−[∂Ω, θ̄](t) ∀t ∈ ∂Ω,

∂(ψ,θ)Λ2[0, 0, ψ̃, θ̃](ψ̄, θ̄)(t) =− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ̄(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ̄(s) dσs ∀t ∈ ∂Ω,

∂(ψ,θ)Λ3[0, 0, ψ̃, θ̃](ψ̄, θ̄) =
∫
∂Ω

θ̄(s) dσs,

for all (ψ̄, θ̄) ∈ (Cm,α(∂Ω))2. By the proof of statement (iii) of Theorem 4.76, the above differential is
a linear homeomorphism. Statement (iv) is an immediate consequence of statement (iii) and of the
Implicit Function Theorem for real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti
[116, Theorem 11.6], Deimling [46, Theorem 15.3].)

We are now in the position to introduce the following.

Definition 4.100. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ui[·, ·, ·, ·] and uo[·, ·, ·, ·] be as in
Theorem 4.97. If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

ui[ε, δ](t) ≡ ui[ε, δ,Ψ[ε, δ],Θ[ε, δ]](t) ∀t ∈ cl Sa[Ωε],
uo[ε, δ](t) ≡ uo[ε, δ,Ψ[ε, δ],Θ[ε, δ]](t) ∀t ∈ cl Ta[Ωε],

where ε3, δ1, Ψ, Θ are as in Theorem 4.99 (iv).

We now show that {(ui[ε, δ](·), uo[ε, δ](·))}(ε,δ)∈]0,ε3[×]0,δ1[ can be continued real analytically for
negative values of ε, δ.

Then we have the following.

Theorem 4.101. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem 4.99
(iv). Then the following statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3] and
a real analytic operator Uo1 of ]−ε4, ε4[× ]−δ1, δ1[ to the space C0

h(clV ) such that the following
conditions hold.



4.10 A variant of an homogenization problem for the Laplace equation with a nonlinear transmission
boundary condition in a periodically perforated domain 201

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
uo[ε, δ](x) = δεnUo1 [ε, δ](x) + c̄ ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3] and a real analytic
operator Ūo1 of ]−ε̄4, ε̄4[ × ]−δ1, δ1[ to the space Cm,α(cl V̄ ) such that the following conditions
hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

uo[ε, δ](w + εt) = δεŪo1 [ε, δ](t) + c̄ ∀t ∈ cl V̄ ,

for all (ε, δ) ∈ ]0, ε̄4[× ]0, δ1[. Moreover, Ūo1 [0, 0] equals the restriction of ũo to cl V̄ .

(iii) There exist ε′4 ∈ ]0, ε3] and a real analytic operator U i1 of ]−ε′4, ε′4[ × ]−δ1, δ1[ to the space
Cm,α(cl Ω) such that

ui[ε, δ](w + εt) = δεU i1[ε, δ](t) + F (−1)(c̄) ∀t ∈ cl Ω,

for all (ε, δ) ∈ ]0, ε′4[× ]0, δ1[. Moreover, U i1[0, 0] equals ũi on cl Ω.

Proof. We modify the proof of Theorem 4.78. Let Θ[·, ·], Ψ[·, ·] be as in Theorem 4.99. We first prove
statement (i). Clearly, by taking ε4 ∈ ]0, ε3] small enough, we can assume that (j) holds. Consider
(jj). Let (ε, δ) ∈ ]0, ε4[× ]0, δ1[. We have

uo[ε, δ](x) =δεn
(
−
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs

+
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs
)

+ c̄, ∀x ∈ clV.

Thus, it is natural to set

Uo1 [ε, δ](x) ≡−
∫
∂Ω

νΩ(s) ·DSan(x− w − εs)Θ[ε, δ](s) dσs

+
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs ∀x ∈ clV,

for all (ε, δ) ∈ ]−ε4, ε4[ × ]−δ1, δ1[. Following the proof of Theorem 2.40, one can easily show that,
by possibly taking a smaller ε4, the map Uo1 of ]−ε4, ε4[ × ]−δ1, δ1[ to C0

h(clV ) is real analytic and
that the equality in (jj) holds (cf. Proposition 1.22 (iii) and Proposition 1.24 (i).) We now prove
(ii). Clearly, by taking ε̄4 ∈ ]0, ε3] small enough, we can assume that (j′) holds. Consider (jj′). Let
(ε, δ) ∈ ]0, ε̄4[× ]0, δ1[. We have

uo[ε, δ](w + εt) =δεw−[∂Ω,Θ[ε, δ]](t)− δεn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε, δ](s) dσs

+ δεn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs + c̄, ∀t ∈ cl V̄ .

Thus, it is natural to set

Ūo1 [ε, δ](t) ≡w−[∂Ω,Θ[ε, δ]](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε, δ](s) dσs

+ εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs, ∀t ∈ cl V̄ .

for all (ε, δ) ∈ ]−ε̄4, ε̄4[× ]−δ1, δ1[. By Proposition 1.22 (iii) and Proposition 1.24 (ii), we can easily
conclude that Ūo1 is a real analytic map of ]−ε̄4, ε̄4[ × ]−δ1, δ1[ to Cm,α(cl V̄ ). Moreover, by the
definition of Ūo1 , we have

Ūo1 [0, 0](t) = w−[∂Ω, θ̃](t) = ũo(t) ∀t ∈ cl V̄ .
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Finally, we prove (iii). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have

ui[ε, δ](w + εt) =δεw+[∂Ω,Ψ[ε, δ]](t)

− δεn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε, δ](s) dσs + F (−1)(c̄), ∀t ∈ cl Ω.

Thus, it is natural to set

U i1[ε, δ](t) ≡w+[∂Ω,Ψ[ε, δ]](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε, δ](s) dσs, ∀t ∈ cl Ω.

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By arguing as above, by exploiting Proposition 1.24 (iii), one can
easily prove that there exists ε′4 ∈ ]0, ε3], such that U i1 is a real analytic map of ]−ε′4, ε′4[× ]−δ1, δ1[ to
Cm,α(cl Ω). Clearly, the equality in (iii) holds. Moreover, by the definition of U i1, we have

U i1[0, 0](t) = w+[∂Ω, ψ̃](t) = ũi(t) ∀t ∈ cl Ω.

As done in Theorem 4.101 for (ui[·, ·], uo[·, ·]), we can now prove a real analytic continuation
Theorem for the energy integral. Namely, we prove the following.

Theorem 4.102. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem 4.99
(iv). Then there exist ε5 ∈ ]0, ε3] and two real analytic operators Gi, Go of ]−ε5, ε5[× ]−δ1, δ1[ to R,
such that ∫

Ωε

|∇ui[ε, δ](x)|2 dx = δ2εnGi[ε, δ], (4.142)∫
Pa[Ωε]

|∇uo[ε, δ](x)|2 dx = δ2εnGo[ε, δ], (4.143)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

Gi[0, 0] =
∫

Ω

|∇ũi(x)|2 dx, (4.144)

Go[0, 0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx. (4.145)

Proof. It suffices to modify the proof of Theorem 4.80. Let Θ[·, ·], Ψ[·, ·] be as in Theorem 4.99. We
denote by id the identity map in Rn. We set

vi[ε, δ](x) ≡ ui[ε, δ](x)− F (−1)(c̄) ∀x ∈ cl Sa[Ωε],

and

vo[ε, δ](x) ≡ uo[ε, δ](x)−
(
c̄+ δεn

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs
)

∀x ∈ cl Ta[Ωε],

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have∫
Ωε

|∇ui[ε, δ](x)|2 dx =
∫

Ωε

|∇vi[ε, δ](x)|2 dx

= εn−1

∫
∂Ω

( ∂

∂νΩε

vi[ε, δ]
)
◦ (w + ε id)(t)vi[ε, δ] ◦ (w + ε id)(t) dσt,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Let ε′4, U i1[·, ·] be as in Theorem 4.101 (iii). Let (ε, δ) ∈ ]0, ε′4[× ]0, δ1[.
We have

vi[ε, δ] ◦ (w + ε id)(t) = δεU i1[ε, δ](t) ∀t ∈ cl Ω,

and accordingly
D[vi[ε, δ] ◦ (w + ε id)](t) = δεD[U i1[ε, δ]](t) ∀t ∈ cl Ω.
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Also,

εn−1

∫
∂Ω

( ∂

∂νΩε

vi[ε, δ]
)
◦ (w + ε id)(t)vi[ε, δ] ◦ (w + ε id)(t) dσt

= εn−2

∫
∂Ω

D[vi[ε, δ] ◦ (w + ε id)](t) · νΩ(t)vi[ε, δ] ◦ (w + ε id)(t) dσt

= δ2εn
∫
∂Ω

D[U i1[ε, δ]](t) · νΩ(t)U i1[ε, δ](t) dσt.

Thus, it is natural to set

Gi[ε, δ] ≡
∫
∂Ω

D[U i1[ε, δ]](t) · νΩ(t)U i1[ε, δ](t) dσt,

for all (ε, δ) ∈ ]−ε′4, ε′4[× ]−δ1, δ1[. Clearly, Gi is a real analytic map of ]−ε′4, ε′4[× ]−δ1, δ1[ to R such
that (4.142) holds. Moreover,

Gi[0, 0] =
∫

Ω

|∇ũi(x)|2 dx.

Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have∫
Pa[Ωε]

|∇uo[ε, δ](x)|2 dx =
∫

Pa[Ωε]

|∇vo[ε, δ](x)|2 dx

= −εn−1

∫
∂Ω

( ∂

∂νΩε

vo[ε, δ]
)
◦ (w + ε id)(t)vo[ε, δ] ◦ (w + ε id)(t) dσt,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Now let Ω̃ be a tubolar open neighbourhood of class Cm,α of ∂Ω as in
Lanza and Rossi [86, Lemma 2.4]. Set

Ω̃− ≡ Ω̃ ∩ (Rn \ cl Ω).

Choosing ε5 ∈ ]0, ε3] small enough, we can assume that

(w + ε cl Ω̃) ⊆ A,

for all ε ∈ ]−ε5, ε5[. We have

vo[ε, δ] ◦ (w + ε id)(t)

= −δεn
∫
∂Ω

νΩ(s) ·DSn(ε(t− s))Θ[ε, δ](s) dσs − δεn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε, δ](s) dσs

= δε
(∫

∂Ω

∂

∂νΩ(s)
(Sn(t− s))Θ[ε, δ](s) dσs − εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε, δ](s) dσs
)
∀t ∈ Ω̃−,

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Hence, (cf. Proposition C.3 and Lanza and Rossi [86, Proposition 4.10])
there exists a real analytic operator G̃ of ]−ε5, ε5[× ]−δ1, δ1[ to Cm,α(cl Ω̃−), such that

vo[ε, δ] ◦ (w + ε id) = δεG̃[ε, δ] in Ω̃−,

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Furthermore, we observe that

G̃[0, 0](t) = w−[∂Ω,Θ[0, 0]](t) ∀t ∈ cl Ω̃−,

and so
G̃[0, 0](t) = ũo(t) ∀t ∈ cl Ω̃−.

Thus, it is natural to set

Go[ε, δ] ≡ −
∫
∂Ω

D[G̃[ε, δ]](t) · νΩ(t)G̃[ε, δ](t) dσt,

for all (ε, δ) ∈ ]−ε5, ε5[× ]−δ1, δ1[. Accordingly, one can easily show that Go is a real analytic map of
]−ε5, ε5[× ]−δ1, δ1[ to R such that (4.143) holds. Moreover, by the above argument and Folland [52,
p. 118], we have

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx.

Thus the Theorem is completely proved.
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We now show that the family {(ui[ε, δ], uo[ε, δ])}(ε,δ)∈]0,ε3[×]0,δ1[ is essentially unique. To do so, we
need to introduce a preliminary lemma.

Lemma 4.103. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let (ε, δ) ∈ ]0, ε̄1[ × ]0,+∞[. Let
(ui, uo) solve (4.121). Let (ψ, θ) ∈ (Cm,α(∂Ω))2 be such that ui = ui[ε, δ, ψ, θ] and uo = uo[ε, δ, ψ, θ].
Then

w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs =
ui(w + εt)− F (−1)(c̄)

δε
∀t ∈ cl Ω.

Proof. It is an immediate consequence of Theorem 4.97.

Theorem 4.104. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let {(ε̂j , δ̂j)}j∈N be a sequence in
]0, ε̄1[× ]0,+∞[ converging to (0, 0). If {(uij , uoj)}j∈N is a sequence of pairs of functions such that

(uij , u
o
j) ∈ Cm,α(cl Sa[Ωε̂j ])× Cm,α(cl Ta[Ωε̂j ]), (4.146)

(uij , u
o
j) solves (4.121) with (ε, δ) ≡ (ε̂j , δ̂j), (4.147)

lim
j→∞

uij(w + ε̂j ·)− F (−1)(c̄)

δ̂j ε̂j
= ũi(·) in Cm,α(∂Ω), (4.148)

then there exists j0 ∈ N such that

(uij , u
o
j) = (ui[ε̂j , δ̂j ], uo[ε̂j , δ̂j ]) ∀j0 ≤ j ∈ N.

Proof. It is a simple modification of the proof of Theorem 4.84. Indeed, by Theorem 4.97, for each
j ∈ N, there exists a unique pair (ψj , θj) in (Cm,α(∂Ω))2 such that

uij = ui[ε̂j , δ̂j , ψj , θj ], uoj = uo[ε̂j , δ̂j , ψj , θj ]. (4.149)

We shall now try to show that

lim
j→∞

(ψj , θj) = (ψ̃, θ̃) in (Cm,α(∂Ω))2. (4.150)

Indeed, if we denote by Ũ the neighbourhood of Theorem 4.99 (iv), the limiting relation of (4.150)
implies that there exists j0 ∈ N such that

(ε̂j , δ̂j , ψj , θj) ∈ ]0, ε3[× ]0, δ1[× Ũ ,

for j ≥ j0 and thus Theorem 4.99 (iv) would imply that

(ψj , θj) = (Ψ[ε̂j , δ̂j ],Θ[ε̂j , δ̂j ]),

for j0 ≤ j ∈ N, and that accordingly the theorem holds (cf. Definition 4.100.) Thus we now turn to
the proof of (4.150). We note that equation Λ[ε, δ, ψ, θ] = 0 can be rewritten in the following form

F ′(F (−1)(c̄))
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)

−
(
w−[∂Ω, θ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

νΩ(s) ·DSan(x̄−w− εs)θ(s) dσs
)

= −δε
(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(c̄) + βδε

(
w+[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(s) ·DRan(ε(t− s))ψ(s) dσs
))
dβ

∀t ∈ ∂Ω, (4.151)
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− γ
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)ψ(s) dσs − εnγ
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)ψ(s) dσs

+
∫
∂Ω

νΩ(t)D2Sn(t− s)νΩ(s)θ(s) dσs + εn
∫
∂Ω

νΩ(t)D2Ran(ε(t− s))νΩ(s)θ(s) dσs = −g(t)

∀t ∈ ∂Ω, (4.152)

Λ3[ε, δ, ψ, θ] = 0, (4.153)

for all (ε, δ, ψ, θ) in the domain of Λ. By arguing so as to prove that the integral of the second
component of Λ on ∂Ω equals zero in the beginning of the proof of Theorem 4.76, we can conclude
that both hand sides of equation (4.152) have zero integral on ∂Ω. We define the map N ≡ (Nl)l=1,2,3

of ]−ε3, ε3[ × ]−δ1, δ1[ × (Cm,α(∂Ω))2 to Cm,α(∂Ω) × Um−1,α
0 × R by setting N1[ε, δ, ψ, θ] equal to

the left-hand side of the equality in (4.151), N2[ε, δ, ψ, θ] equal to the left-hand side of the equality
in (4.152) and N3[ε, δ, ψ, θ] = Λ3[ε, δ, θ, ψ] for all (ε, δ, ψ, θ) ∈ ]−ε3, ε3[× ]−δ1, δ1[× (Cm,α(∂Ω))2. By
arguing as in the proof of Theorem 4.99, we can prove that N is real analytic. Since N [ε, δ, ·, ·] is
linear for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[, we have

N [ε, δ, ψ, θ] = ∂(ψ,θ)N [ε, δ, ψ̃, θ̃](ψ, θ)

for all (ε, δ, ψ, θ) ∈ ]−ε3, ε3[× ]−δ1, δ1[× (Cm,α(∂Ω))2, and the map of ]−ε3, ε3[× ]−δ1, δ1[ to the space
L((Cm,α(∂Ω))2, Cm,α(∂Ω)× Um−1,α

0 × R) which takes (ε, δ) to N [ε, δ, ·, ·] is real analytic. Since

N [0, 0, ·, ·] = ∂(ψ,θ)Λ[0, 0, ψ̃, θ̃](·, ·),

Theorem 4.99 (iii) implies that N [0, 0, ·, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of (Cm,α(∂Ω))2 to Cm,α(∂Ω)×Um−1,α

0 ×R is open in L((Cm,α(∂Ω))2, Cm,α(∂Ω)×
Um−1,α

0 × R) and since the map which takes a linear invertible operator to its inverse is real analytic
(cf. e.g., Hille and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists (ε̃, δ̃) ∈ ]0, ε3[ × ]0, δ1[ such
that the map (ε, δ) 7→ N [ε, δ, ·, ·](−1) is real analytic from ]−ε̃, ε̃[× ]−δ̃, δ̃[ to L(Cm,α(∂Ω)× Um−1,α

0 ×
R, (Cm,α(∂Ω))2). Next we denote by S[ε, δ, ψ, θ] ≡ (Sl[ε, δ, ψ, θ])l=1,2,3 the triple defined by the right-
hand side of (4.151)-(4.153). Then equation Λ[ε, δ, ψ, θ] = 0 (or equivalently system (4.151)-(4.153))
can be rewritten in the following form:

(ψ, θ) = N [ε, δ, ·, ·](−1)[S[ε, δ, ψ, θ]], (4.154)

for all (ε, δ, ψ, θ) ∈ ]−ε̃, ε̃[× ]−δ̃, δ̃[× (Cm,α(∂Ω))2. Next we note that condition (4.148), the proof of
Theorem 4.99, the real analyticity of F and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , δ̂j , ψj , θj ] = S[0, 0, ψ̃, θ̃] in Cm,α(∂Ω)× Um−1,α
0 × R. (4.155)

Then by (4.154) and by the real analyticity of (ε, δ) 7→ N [ε, δ, ·, ·](−1), and by the bilinearity and
continuity of the operator of L(Cm,α(∂Ω)× Um−1,α

0 × R, (Cm,α(∂Ω))2)× (Cm,α(∂Ω)× Um−1,α
0 × R)

to (Cm,α(∂Ω))2, which takes a pair (T1, T2) to T1[T2], we conclude that (4.150) holds. Thus the proof
is complete.

We give the following definition.

Definition 4.105. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem
4.101 (iv). Let (ui[·, ·], uo[·, ·]) be as in Definition 4.100. For each pair (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

ui(ε,δ)(x) ≡ ui[ε, δ](x
δ

) ∀x ∈ cl Sa(ε, δ), uo(ε,δ)(x) ≡ uo[ε, δ](x
δ

) ∀x ∈ cl Ta(ε, δ).

Remark 4.106. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as
in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem 4.101
(iv). For each (ε, δ) ∈ ]0, ε3[× ]0, δ1[ the pair (ui(ε,δ), u

o
(ε,δ)) is a solution of (4.120).

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). As a first

step, we study the behaviour of (ui[ε, δ], uo[ε, δ]) as (ε, δ) tends to (0, 0).
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Proposition 4.107. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem
4.101 (iv). Let 1 ≤ p <∞. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,1)[u
i[ε, δ]] = 0 in Lp(A),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,1)[u

o[ε, δ]] = c̄ in Lp(A).

Proof. Let ε3, δ1, Ψ, Θ be as in Theorem 4.99. Let id∂Ω denote the identity map in ∂Ω. If
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

ui[ε, δ] ◦ (w + ε id∂Ω)(t) = δεw+[∂Ω,Ψ[ε, δ]](t)− δεn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε, δ](s) dσs+F (−1)(c̄),

∀t ∈ ∂Ω.

We set

N i[ε, δ](t) ≡δεw+[∂Ω,Ψ[ε, δ]](t)− δεn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Ψ[ε, δ](s) dσs + F (−1)(c̄), ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[, δ̃ ∈ ]0, δ1[ small enough, we can assume (cf.
Proposition 1.22 (i)) that N i is a real analytic map of ]−ε̃, ε̃[× ]−δ̃, δ̃[ to Cm,α(∂Ω) and that

Ci ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖N i[ε, δ]‖C0(∂Ω) < +∞.

By the Maximum Principle for harmonic functions, we have

|Ei(ε,1)[u
i[ε, δ]](x)| ≤ Ci ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.

Obviously,
lim

(ε,δ)→(0+,0+)
Ei(ε,1)[u

i[ε, δ]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

Ei(ε,1)[u
i[ε, δ]] = 0 in Lp(A).

If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

uo[ε, δ] ◦ (w + ε id∂Ω)(t) =δεw−[∂Ω,Θ[ε, δ]](t)− δεn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε, δ](s) dσs

+ δεn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs + c̄, ∀t ∈ ∂Ω.

We set

No[ε, δ](t) ≡δεw−[∂Ω,Θ[ε, δ]](t)− δεn
∫
∂Ω

νΩ(s) ·DRan(ε(t− s))Θ[ε, δ](s) dσs

+ δεn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs + c̄, ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[ × ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[, δ̃ ∈ ]0, δ1[ small enough, we can assume
(cf. Proposition 1.22 (i), (iii) and the proof of Theorem 4.78) that No is a real analytic map of
]−ε̃, ε̃[× ]−δ̃, δ̃[ to Cm,α(∂Ω) and that

Co ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖No[ε, δ]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|Eo(ε,1)[u
o[ε, δ]](x)| ≤ Co ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.
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Clearly (cf. Theorem 4.101), we have

lim
(ε,δ)→(0+,0+)

Eo(ε,1)[u
o[ε, δ]](x) = c̄ ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

Eo(ε,1)[u
o[ε, δ]] = c̄ in Lp(A).

We also have the following.

Theorem 4.108. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem 4.99
(iv). Then there exist ε6 ∈ ]0, ε3] and two real analytic operators J i, Jo of ]−ε6, ε6[× ]−δ1, δ1[ to R,
such that ∫

Ωε

ui[ε, δ](x) dx = J i[ε, δ], (4.156)∫
Pa[Ωε]

uo[ε, δ](x) dx = Jo[ε, δ], (4.157)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. Moreover,

J i[0, 0] = 0, (4.158)
Jo[0, 0] = c̄|A|n. (4.159)

Proof. Let Θ[·, ·], Ψ[·, ·] be as in Theorem 4.99. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly,

uo[ε, δ](x) = δεw−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) + δεn

∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs + c̄

∀x ∈ cl Ta[Ωε].

Accordingly,∫
Pa[Ωε]

uo[ε, δ](x) dx = δε

∫
Pa[Ωε]

w−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx

+ δεn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs
(
|A|n − ε

n|Ω|n
)

+ c̄
(
|A|n − ε

n|Ω|n
)
.

By arguing as in Lemma 2.45, we can easily prove that there exist ε′6 ∈ ]0, ε3] and a real analytic
operator J̃1 of ]−ε′6, ε′6[× ]−δ1, δ1[ to R, such that∫

Pa[Ωε]

w−a
[
∂Ωε,Θ[ε, δ](

1
ε

(· − w))
]
(x) dx = εnJ̃1[ε, δ],

for all (ε, δ) ∈ ]0, ε′6[ × ]0, δ1[. Moreover, by arguing as in Theorem 4.78, we have that, by possibly
taking a smaller ε′6 > 0, the map J̃2 of ]−ε′6, ε′6[× ]−δ1, δ1[ to R, defined by

J̃2[ε, δ] ≡ δεn
∫
∂Ω

νΩ(s) ·DSan(x̄− w − εs)Θ[ε, δ](s) dσs
(
|A|n − ε

n|Ω|n
)

+ c̄
(
|A|n − ε

n|Ω|n
)

for all (ε, δ) ∈ ]−ε′6, ε′6[× ]−δ1, δ1[, is real analytic. Hence, if we set,

Jo[ε, δ] ≡ δεn+1J̃1[ε, δ] + J̃2[ε, δ]

for all (ε, δ) ∈ ]−ε′6, ε′6[× ]−δ1, δ1[, we have that Jo is a real analytic map of ]−ε′6, ε′6[× ]−δ1, δ1[ to R,
such that ∫

Pa[Ωε]

uo[ε, δ](x) dx = Jo[ε, δ],
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for all (ε, δ) ∈ ]0, ε′6[× ]0, δ1[, and that Jo[0, 0] = c̄|A|n.
Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly,∫

Ωε

ui[ε, δ](x) dx = εn
∫

Ω

ui[ε, δ](w + εt) dt.

On the other hand, if ε′4, U i1 are as in Theorem 4.101, and we set

J i[ε, δ] ≡ εn
∫

Ω

(
δεU i1[ε, δ](t) + F (−1)(c̄)

)
dt

for all (ε, δ) ∈ ]−ε′4, ε′4[× ]−δ1, δ1[, then we have that J i is a real analytic map of ]−ε′4, ε′4[× ]−δ1, δ1[
to R, such that J i[0, 0] = 0 and that ∫

Ωε

ui[ε, δ](x) dx = J i[ε, δ]

for all (ε, δ) ∈ ]0, ε′4[× ]0, δ1[.
Then, by taking ε6 ≡ min{ε′6, ε′4}, we can easily conclude.

4.10.2 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.107 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.109. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem
4.101 (iv). Let 1 ≤ p <∞. Let V be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = c̄ in Lp(V ).

Proof. We modify the proof of Theorem 4.27. By virtue of Proposition 4.107, we have

lim
(ε,δ)→(0+,0+)

‖Ei(ε,1)[u
i[ε, δ]]‖Lp(A) = 0,

and
lim

(ε,δ)→(0+,0+)
‖Eo(ε,1)[u

o[ε, δ]]− c̄‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖Ei(ε,δ)[u
i
(ε,δ)]‖Lp(V ) ≤ C‖E

i
(ε,1)[u

i[ε, δ]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0,min{1, δ1}[.

and

‖Eo(ε,δ)[u
o
(ε,δ)]− c̄‖Lp(V ) ≤ C‖E

o
(ε,1)[u

o[ε, δ]]− c̄‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0,min{1, δ1}[,

Thus,
lim

(ε,δ)→(0+,0+)
Ei(ε,δ)[u

i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = c̄ in Lp(V ).

Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.
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Theorem 4.110. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem 4.99
(iv). Let ε6, J i, Jo be as in Theorem 4.108. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i

[
ε,
r

l

]
, (4.160)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx = rnJo

[
ε,
r

l

]
, (4.161)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ1).

Proof. We follow the the proof of Theorem 2.150. Let ε ∈ ]0, ε6[, and let l ∈ N \ {0}, l > (r/δ1). Then,
by the periodicity of ui(ε,r/l), we have∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.

Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

ui
[
ε, (r/l)

]( l
r
x
)
dx

=
rn

ln

∫
Ωε

ui
[
ε, (r/l)

]
(t) dt

=
rn

ln
J i
[
ε,
r

l

]
.

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i

[
ε,
r

l

]
,

and the validity of (4.160) follows. The proof of (4.161) is very similar and is accordingly omitted.

4.10.3 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.

Definition 4.111. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem
4.101 (iv). For each pair (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.112. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄ be as
in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem 4.101
(iv). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn−2

∫
Ωε

|∇ui[ε, δ](t)|2 dt
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and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇uo[ε, δ](t)|2 dt.

In the following Proposition we represent the function En(·, ·) by means of real analytic functions.

Proposition 4.113. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let x̄ ∈ clA \ {w}. Let Ω, ε̄1, F , g, γ, c̄
be as in (1.56), (1.57), (4.71), (4.72), (4.73), (4.74), (4.75), respectively. Let ε3, δ1 be as in Theorem
4.101 (iv). Let ε5, Gi, Go be as in Theorem 4.102. Then

En
(
ε,

1
l

)
= εnGi[ε, (1/l)] + εnGo[ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N such that l > (1/δ1).

Proof. Let (ε, δ) ∈ ]0, ε5[× ]0, δ1[. By Remark 4.112 and Theorem 4.102, we have∫
Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫

Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δnεnGi[ε, δ] + δnεnGo[ε, δ] (4.162)

where Gi, Go are as in Theorem 4.102. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0} is such that
l > (1/δ1), then we have

En
(
ε,

1
l

)
= ln

1
ln

{
εnGi[ε, (1/l)] + εnGo[ε, (1/l)]

}
,

= εnGi[ε, (1/l)] + εnGo[ε, (1/l)],

and the conclusion easily follows.

4.11 Asymptotic behaviour of the solutions of an alternative
nonlinear transmission problem for the Laplace equation
in a periodically perforated domain

In this Section we study the asymptotic behaviour of the solutions of an alternative nonlinear
transmission problem for the Laplace equation in a periodically perforated domain with small holes.

4.11.1 Notation and preliminaries
We retain the notation introduced in Subsections 1.8.1, 4.2.1. However, we need to introduce also
some other notation. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the
following assumptions.

F is an increasing real analytic diffeomorphism of R onto itself, (4.163)

g ∈ Cm−1,α(∂Ω),
∫
∂Ω

g dσ = 0, (4.164)

γ ∈ ]0,+∞[, (4.165)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57), (4.163), (4.164),
(4.165), respectively. For each ε ∈ ]0, ε1[, we consider the following periodic nonlinear transmission
problem for the Laplace equation.

∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + g( 1

ε (x− w)) ∀x ∈ ∂Ωε,∫
∂Ωε

uo(x) dσx = 0.

(4.166)

We recall the following.
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Definition 4.114. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We denote by v∗[∂Ω, ·] the
linear operator of Cm−1,α(∂Ω) to Cm−1,α(∂Ω) defined by

v∗[∂Ω, θ](t) ≡
∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω,

for all θ ∈ Cm−1,α(∂Ω).

We transform (4.166) into a system of integral equations by means of the following.

Theorem 4.115. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let Um−1,α

0 be as in (1.64). Let ε ∈ ]0, ε1[. Then the map
(ui[ε, ·, ·, ·], uo[ε, ·, ·, ·]) of the set of triples (ψ, θ, ξ) ∈ (Um−1,α

0 )2 × R that solve the following integral
equations

F ′(F (−1)(0))
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

+ ε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(0) + βε

(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
))
dβ

−
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

+
1∫

∂Ω
dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt = 0 ∀t ∈ ∂Ω,

(4.167)

1
2
θ(t) + v∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+
1
2
γψ(t)− γv∗[∂Ω, ψ](t)− γεn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))ψ(s) dσs − g(t) = 0 ∀t ∈ ∂Ω,
(4.168)

to the set of pairs (ui, uo) of Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) which solve problem (4.166), which
takes (ψ, θ, ξ) to the pair of functions

(
ui[ε, ψ, θ, ξ] ≡ v+

a [∂Ωε, ψ(
1
ε

(· − w))] + εξ + F (−1)(0),

uo[ε, ψ, θ, ξ] ≡ v−a [∂Ωε, θ(
1
ε

(· − w))]− 1∫
∂Ωε

dσ

∫
∂Ωε

v−a [∂Ωε, θ(
1
ε

(· − w))] dσ
)
, (4.169)

is a bijection.

Proof. Let ε ∈ ]0, ε1[. Assume that the pair (ui, uo) in Cm,α(cl Sa[Ωε])×Cm,α(cl Ta[Ωε]) solves problem
(4.166). Then by Propositions 2.23, 2.24, it is easy to see that there exists a unique triple (ψ, θ, ξ) in
(Um−1,α

0 )2 × R, such that

ui = v+
a [∂Ωε, ψ(

1
ε

(· − w))] + εξ + F (−1)(0) in cl Sa[Ωε],

and
uo = v−a [∂Ωε, θ(

1
ε

(· − w))]− 1∫
∂Ωε

dσ

∫
∂Ωε

v−a [∂Ωε, θ(
1
ε

(· − w))] dσ in cl Ta[Ωε].

Then a simple computation based on the Theorem of change of variables in integrals, on identity
(1.65), and on the definition of Um−1,α

0 , shows that the triple (ψ, θ, ξ) must solve equation (4.168),
together with the following

F
(
ε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

+ F (−1)(0)
)

=ε
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

− ε∫
∂Ω

dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt ∀t ∈ ∂Ω.

(4.170)
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We now show that equation (4.170) implies the validity of (4.167). By Taylor Formula, we have

F (x+ F (−1)(0)) = 0 + F ′(F (−1)(0))x+ x2

∫ 1

0

(1− β)F ′′(F (−1)(0) + βx)dβ ∀x ∈ R.

Then, by dividing both sides of (4.170) by ε, we can rewrite (4.170) as (4.167). Conversely, by
reading backward the above argument, one can easily show that if (ψ, θ, ξ) in (Um−1,α

0 )2 × R solves
(4.167)-(4.168), then the pair of functions of (4.169) satisfies problem (4.166).

Hence we are reduced to analyse system (4.167)-(4.168). As a first step in the analysis of system
(4.167)-(4.168), we note that for ε = 0, since ψ, θ ∈ Um−1,α

0 , one obtains a system which we address
to as the limiting system and which has the following form

F ′(F (−1)(0))
(
v+[∂Ω, ψ](t) + ξ

)
−
(
v−[∂Ω, θ](t)− 1∫

∂Ω
dσ

∫
∂Ω

v−[∂Ω, θ] dσ
)

= 0 ∀t ∈ ∂Ω, (4.171)

1
2
θ(t) + v∗[∂Ω, θ](t) +

1
2
γψ(t)− γv∗[∂Ω, ψ](t)− g(t) = 0 ∀t ∈ ∂Ω. (4.172)

In order to analyse the limiting system, we need the following technical statement.

Theorem 4.116. Let m ∈ N \ {0} α ∈ ]0, 1[. Let Ω be as in (1.56). Let Um−1,α
0 be as in (1.64).

Then the following statements hold.

(i) Let f̄ ∈ Cm,α(∂Ω). Then there exists a unique pair (η, τ) ∈ Um−1,α
0 × R, such that

f̄(t) = v[∂Ω, η](t) + τ ∀t ∈ ∂Ω. (4.173)

(ii) Let φ,γ ∈ ]0,+∞[. If (f̄ , ḡ) ∈ Cm,α(∂Ω)× Um−1,α
0 , then the system{

φ(v+[∂Ω, ψ](t) + ξ)− (v−[∂Ω, θ](t)− 1R
∂Ω dσ

∫
∂Ω
v−[∂Ω, θ] dσ) = f̄(t) ∀t ∈ ∂Ω,

1
2θ(t) + v∗[∂Ω, θ](t) + 1

2γψ(t)− γv∗[∂Ω, ψ](t) = ḡ(t) ∀t ∈ ∂Ω,
(4.174)

has one and only one solution (ψ, θ, ξ) ∈ (Um−1,α
0 )2 × R.

Proof. We first prove statement (i). Let f̄ ∈ Cm,α(∂Ω). Let ū ∈ Cm,α(cl Ω) be the unique solution of
the following Dirichlet problem for the Laplace operator{

∆ū = 0 in Ω,
ū = f̄ on ∂Ω.

By classical potential theory (cf. Folland [52, Chapter 3]), there exists a unique η ∈ Cm−1,α(∂Ω) such
that {

− 1
2η + v∗[∂Ω, η] = ∂

∂νΩ
ū on ∂Ω∫

∂Ω
η dσ = 0.

Accordingly, ū− v+[∂Ω, η] is constant in cl Ω. Then, if we set

τ ≡ ū(x̄)− v+[∂Ω, η](x̄),

for any x̄ ∈ cl Ω, we clearly obtain

τ + v[∂Ω, η](t) = f̄(t) ∀t ∈ ∂Ω.

For the uniqueness of such a pair, it suffices to observe that if (η, τ) ∈ Um−1,α
0 × R and

τ + v[∂Ω, η](t) = 0 ∀t ∈ ∂Ω,

then
−1

2
η(t) + v∗[∂Ω, η](t) = 0 ∀t ∈ ∂Ω,
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that together with
∫
∂Ω
η dσ = 0, by classical potential theory, implies η = 0 and consequently τ = 0.

We now prove statement (ii). To do so, we shall assume that system (4.174) has a solution and prove
that such a solution must necessarily be delivered by a certain formula. Thus uniqueness will follow.
Then we shall exploit such a formula to show existence. By (i), there exists a unique pair (η, τ) in
Um−1,α

0 × R, such that
f̄ = v[∂Ω, η] + τ on ∂Ω.

The first equation of (4.174) implies that

φψ(t)− θ(t) = η(t) ∀t ∈ ∂Ω. (4.175)

Moreover, by integrating both sides of the first equation of (4.174), we obtain

ξ =
1∫

∂Ω
dσ

(
1
φ

∫
∂Ω

f̄ dσ −
∫
∂Ω

v+[∂Ω, ψ] dσ). (4.176)

By (4.175), we can rewrite the second equation of (4.174) in the following form

1
2
ψ(t)− γ − φ

γ + φ
v∗[∂Ω, ψ](t) =

1
γ + φ

(ḡ(t) +
1
2
η(t) + v∗[∂Ω, η](t)) ∀t ∈ ∂Ω.

Clearly, ∫
∂Ω

(
ḡ(t) +

1
2
η(t) + v∗[∂Ω, η](t)

)
dσt = 0.

Hence, by Proposition 4.10 (ii), (iii), we have

ψ =
1

γ + φ

(1
2
I − γ − φ

γ + φ
v∗[∂Ω, ·]

)(−1)

(ḡ +
1
2
η + v∗[∂Ω, η]). (4.177)

Hence ψ in Um−1,α
0 is uniquely determined. Consequently, equalities (4.175),(4.176) uniquely determine

θ in Um−1,α
0 and ξ in R. Conversely, by reading backward the proof above, one can easily check that

the triple (ψ, θ, ξ) delivered by formulas (4.175)-(4.177), belongs to (Um−1,α
0 )2 × R and solves system

(4.174).

Then we have the following theorem, which shows the unique solvability of the limiting system,
and its link with a boundary value problem which we shall address to as the limiting boundary value
problem.

Theorem 4.117. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, F , g, γ be as in (1.56), (4.163),
(4.164), (4.165), respectively. Let Um−1,α

0 be as in (1.64). Then the following statements hold.

(i) The limiting system (4.171)-(4.172) has one and only one solution in (Um−1,α
0 )2 × R, which we

denote by (ψ̃, θ̃, ξ̃).

(ii) The limiting boundary value problem
∆ui(x) = 0 ∀x ∈ Ω,
∆uo(x) = 0 ∀x ∈ Rn \ cl Ω,
uo(x)− 1R

∂Ω dσ

∫
∂Ω
uo dσ = F ′(F (−1)(0))ui(x) ∀x ∈ ∂Ω,

∂
∂νΩ

uo(x) = γ ∂
∂νΩ

ui(x) + g(x) ∀x ∈ ∂Ω,
limx→∞ uo(x) = 0

(4.178)

has one and only one solution (ũi, ũo) in Cm,α(cl Ω)×Cm,α(Rn \Ω), and the following formulas
hold:

ũi ≡ v+[∂Ω, ψ̃] + ξ̃ in cl Ω, (4.179)

ũo ≡ v−[∂Ω, θ̃] in Rn \ Ω. (4.180)
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Proof. The statement in (i) is an immediate consequence of Theorem 4.116. We now consider (ii).
By Theorem B.2, it is immediate to see that the functions ũi, ũo delivered by the right-hand side of
(4.179), (4.180), belong to Cm,α(cl Ω), Cm,α(Rn \ Ω), respectively and solve problem (4.178). The
uniqueness of the solution of problem (4.178) follows by an easy computation based on the Divergence
Theorem and on Folland [52, p. 118]. Indeed, it suffices to observe that if (vi, vo) is a pair of functions
in (C2(Ω) ∩ C1(cl Ω))× (C2(Rn \ cl Ω) ∩ C1(Rn \ Ω)), such that

∆vi(x) = 0 ∀x ∈ Ω,
∆vo(x) = 0 ∀x ∈ Rn \ cl Ω,
vo(x)− 1R

∂Ω dσ

∫
∂Ω
vo dσ = F ′(F (−1)(0))vi(x) ∀x ∈ ∂Ω,

∂
∂νΩ

vo(x) = γ ∂
∂νΩ

vi(x) ∀x ∈ ∂Ω,
limx→∞ vo(x) = 0,

then

0 ≤
∫

Ω

|∇vi(x)|2 dx =
∫
∂Ω

∂vi

∂νΩ
vi dσ

=
1

F ′(F (−1)(0))γ

(∫
∂Ω

∂vo

∂νΩ
vo dσ − 1∫

∂Ω
dσ

∫
∂Ω

vo dσ

∫
∂Ω

∂vo

∂νΩ
dσ
)

=
1

F ′(F (−1)(0))γ

∫
∂Ω

∂vo

∂νΩ
vo dσ

= − 1
F ′(F (−1)(0))γ

∫
Rn\cl Ω

|∇vo(x)|2 dx ≤ 0,

and so
vo(x) = 0 ∀x ∈ Rn \ Ω,

and
vi(x) = 0 ∀x ∈ cl Ω.

We are now ready to analyse equations (4.167)-(4.168) around the degenerate case ε = 0.

Theorem 4.118. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let Um−1,α

0 be as in (1.64). Let Λ ≡ (Λj)j=1,2 be the map of
]−ε1, ε1[× (Um−1,α

0 )2 × R to Cm,α(∂Ω)× Um−1,α
0 , defined by

Λ1[ε,ψ, θ, ξ](t) ≡ F ′(F (−1)(0))
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

+ ε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(0) + βε

(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
))
dβ

−
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

+
1∫

∂Ω
dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt ∀t ∈ ∂Ω,

(4.181)

Λ2[ε,ψ, θ, ξ](t) ≡ 1
2
θ(t) + v∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+
1
2
γψ(t)− γv∗[∂Ω, ψ](t)− γεn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))ψ(s) dσs − g(t) ∀t ∈ ∂Ω,
(4.182)

for all (ε, ψ, θ, ξ) ∈ ]−ε1, ε1[× (Um−1,α
0 )2 × R. Then the following statements hold.

(i) Equation Λ[0, ψ, θ, ξ] = 0 is equivalent to the limiting system (4.171)-(4.172) and has one and
only one solution (ψ̃, θ̃, ξ̃) (cf. Theorem 4.117.)

(ii) If ε ∈ ]0, ε1[, then equation Λ[ε, ψ, θ, ξ] = 0 is equivalent to system (4.167)-(4.168) for (ψ, θ, ξ).
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(iii) There exists ε2 ∈ ]0, ε1] such that Λ is a real analytic map of ]−ε2, ε2[ × (Um−1,α
0 )2 × R to

Cm,α(∂Ω)× Um−1,α
0 . The differential ∂(ψ,θ,ξ)Λ[0, ψ̃, θ̃, ξ̃] of Λ at (0, ψ̃, θ̃, ξ̃) is a linear homeo-

morphism of (Um−1,α
0 )2 × R to Cm,α(∂Ω)× Um−1,α

0 .

(iv) There exist ε3 ∈ ]0, ε2] and an open neighbourhood Ũ of (ψ̃, θ̃, ξ̃) in (Um−1,α
0 )2 × R and a

real analytic map (Ψ[·],Θ[·],Ξ[·]) of ]−ε3, ε3[ to Ũ , such that the set of zeros of the map Λ
in ]−ε3, ε3[ × Ũ coincides with the graph of (Ψ[·],Θ[·],Ξ[·]). In particular, (Ψ[0],Θ[0],Ξ[0]) =
(ψ̃, θ̃, ξ̃).

Proof. First of all we want to prove that∫
∂Ω

Λ2[ε, ψ, θ, ξ] dσ = 0, (4.183)

for all (ε, ψ, θ, ξ) ∈ ]−ε1, ε1[× (Um−1,α
0 )2 × R. If ε = 0, by Fubini’s Theorem and since

∫
∂Ω
ψ dσ = 0

and
∫
∂Ω
θ dσ = 0, we have ∫

∂Ω

v∗[∂Ω, ψ] dσ = 0,∫
∂Ω

v∗[∂Ω, θ] dσ = 0,

and so, since
∫
∂Ω
g dσ = 0, we immediately obtain (4.183). If ε 6= 0, we need to observe also that the

functions
t 7→

∫
∂Ω

Ran(ε(t− s))θ(s) dσs

and
t 7→

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs

of cl Ω to R are harmonic in Ω. Then, by the Divergence Theorem, we have∫
∂Ω

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs dσt = 0

and ∫
∂Ω

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))ψ(s) dσs dσt = 0.

Thus, by the above argument for the case ε = 0, we easily obtain (4.183). The statements in (i)
and (ii) are obvious. By an easy modification of the proof of Theorem 4.76 (iii), one can easily
show that there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic map of ]−ε2, ε2[× (Um−1,α

0 )2 × R to
Cm,α(∂Ω)× Um−1,α

0 . By standard calculus in Banach space, the differential of Λ at (0, ψ̃, θ̃, ξ̃) with
respect to the variables (ψ, θ, ξ) is delivered by the following formulas

∂(ψ,θ,ξ)Λ1[0, ψ̃, θ̃, ξ̃](ψ̄, θ̄, ξ̄)(t) =F ′(F (−1)(0))(v+[∂Ω, ψ̄](t) + ξ̄)

− (v−[∂Ω, θ̄](t)− 1∫
∂Ω

dσ

∫
∂Ω

v−[∂Ω, θ̄] dσ) ∀t ∈ ∂Ω,

∂(ψ,θ,ξ)Λ2[0, ψ̃, θ̃, ξ̃](ψ̄, θ̄, ξ̄)(t) =
1
2
θ̄(t) + v∗[∂Ω, θ̄](t) +

1
2
γψ(t)− γv∗[∂Ω, ψ̄](t) ∀t ∈ ∂Ω,

for all (ψ̄, θ̄, ξ̄) ∈ (Um−1,α
0 )2 ×R. We now show that the above differential is a linear homeomorphism.

By the Open Mapping Theorem, it suffices to show that it is a bijection of (Um−1,α
0 )2 × R to

Cm,α(∂Ω) × Um−1,α
0 . Let (f̄ , ḡ) ∈ Cm,α(∂Ω) × Um−1,α

0 . We must show that there exists a unique
triple (ψ̄, θ̄, ξ̄) ∈ (Um−1,α

0 )2 × R such that

∂(ψ,θ,ξ)Λ[0, ψ̃, θ̃, ξ̃](ψ̄, θ̄, ξ̄) = (f̄ , ḡ). (4.184)

By Theorem 4.116, there exists a unique triple (ψ̄, θ̄, ξ̄) ∈ (Um−1,α
0 )2×R such that (4.184) holds. Thus

the proof of statement (iii) is complete. Statement (iv) is an immediate consequence of statement
(iii) and of the Implicit Function Theorem for real analytic maps in Banach spaces (cf. e.g., Prodi
and Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem 15.3].)
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boundary condition

We are now in the position to introduce the following.

Definition 4.119. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ui[·, ·, ·] and uo[·, ·, ·] be as in Theorem 4.115. If ε ∈ ]0, ε3[,
we set

ui[ε](t) ≡ ui[ε,Ψ[ε],Θ[ε],Ξ[ε]](t) ∀t ∈ cl Sa[Ωε],
uo[ε](t) ≡ uo[ε,Ψ[ε],Θ[ε],Ξ[ε]](t) ∀t ∈ cl Ta[Ωε],

where ε3, Ψ, Θ, Ξ are as in Theorem 4.118 (iv).

4.11.2 A functional analytic representation Theorem for of the family
{(ui[ε], uo[ε])}ε∈]0,ε3[

In this Subsection, we show that {(ui[ε](·), uo[ε](·))}ε∈]0,ε3[ can be continued real analytically for
negative values of ε.

We have the following.

Theorem 4.120. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.118 (iv). Then the following
statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator Uo1 of ]−ε4, ε4[ to the space C0

h(clV ), and a real analytic operator Uo2 of
]−ε4, ε4[ to R, such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
uo[ε](x) = εnUo1 [ε](x) + εUo2 [ε] ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic operator
Ūo1 of ]−ε̄4, ε̄4[ to the space Cm,α(cl V̄ ), and a real analytic operator Ūo2 of ]−ε̄4, ε̄4[ to R, such
that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

uo[ε](w + εt) = εŪo1 [ε](t) + εŪo2 [ε] ∀t ∈ cl V̄ ,

for all ε ∈ ]0, ε̄4[. Moreover, Ūo1 [0](·) equals the restriction of ũo(·) to cl V̄ .

(iii) There exist ε′4 ∈ ]0, ε3], a real analytic operator U i1 of ]−ε′4, ε′4[ to the space Cm,α(cl Ω), and a
real analytic operator U i2 of ]−ε′4, ε′4[ to R, such that

ui[ε](w + εt) = εU i1[ε](t) + εU i2[ε] + F (−1)(0) ∀t ∈ cl Ω,

for all ε ∈ ]0, ε′4[. Moreover, U i1[0](·) + U i2[0] equals ũi(·) on cl Ω.

Proof. Let Ψ[·], Θ[·], Ξ[·] be as in Theorem 4.118 (iv). Consider (i). Choosing ε4 small enough, we
can clearly assume that (j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. We have

uo[ε](x) = εn−1

∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs

− εn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs
)
dσt ∀x ∈ clV.

Thus (cf. the proof of Theorem 2.158), it is natural to set

Ũo1 [ε](x) ≡
∫
∂Ω

San(x− w − εs)Θ[ε](s) dσs ∀x ∈ clV,
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for all ε ∈ ]−ε4, ε4[, and

Uo2 [ε] ≡ − 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt,

for all ε ∈ ]−ε4, ε4[. Following the proof of Proposition 1.29 (i), by possibly taking a smaller ε4, we
have that there exists a real analytic map Uo1 of ]−ε4, ε4[ to C0

h(clV ) such that

Ũo1 [ε] = εUo1 [ε] in C0
h(clV ),

for all ε ∈ ]−ε4, ε4[. Furthermore, we have that Uo2 is a real analytic operator of ]−ε4, ε4[ to R. Finally,
by the definition of Uo1 and Uo2 , we immediately deduce that the equality in (jj) holds. Consider
now (ii). Choosing ε̄4 small enough, we can clearly assume that (j′) holds. Consider now (jj′). Let
ε ∈ ]0, ε̄4[. We have

uo[ε](w + εt) = εn−1

∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs

− εn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ cl V̄ .

Thus (cf. Proposition 1.29 (ii)), it is natural to set

Ūo1 [ε](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs ∀t ∈ cl V̄ ,

for all ε ∈ ]−ε̄4, ε̄4[, and

Ūo2 [ε] ≡ − 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt,

for all ε ∈ ]−ε̄4, ε̄4[. By the proof of (i), we have that Ūo2 is a real analytic map of ]−ε̄4, ε̄4[ to R.
Moreover, (cf. Proposition 1.29 (ii)) we have that Ūo1 is a real analytic map of ]−ε̄4, ε̄4[ to Cm,α(cl V̄ ).
Finally, consider (iii). Let ε ∈ ]0, ε3[. We have

ui[ε](w + εt) = εn−1

∫
∂Ω

San(ε(t− s))Ψ[ε](s) dσs + εΞ[ε] + F (−1)(0) ∀t ∈ cl Ω.

Thus, by arguing as above, it is natural to set

U i1[ε](t) ≡
∫
∂Ω

Sn(t− s)Ψ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Ψ[ε](s) dσs ∀t ∈ cl Ω,

for all ε ∈ ]−ε3, ε3[, and
U i2[ε] ≡ Ξ[ε]

for all ε ∈ ]−ε3, ε3[. Then, by arguing as above (cf. Proposition 1.29 (iii)), there exists ε′4 ∈ ]0, ε3],
such that U i1 and U i2 are real analytic maps of ]−ε′4, ε′4[ to Cm,α(cl Ω) and R, respectively, such that
the statement in (iii) holds.

Remark 4.121. We note that the right-hand side of the equalities in (jj), (jj′) and (iii) of Theorem
4.120 can be continued real analytically in a whole neighbourhood of 0. Moreover, if V is a bounded
open subset of Rn such that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

uo[ε] = 0 uniformly in clV .

4.11.3 A real analytic continuation Theorem for the energy integral

As done in Theorem 4.120 for (ui[·], uo[·]), we can now prove a real analytic continuation Theorem for
the energy integral. Namely, we prove the following.
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boundary condition

Theorem 4.122. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.118 (iv). Then there exist ε5 ∈ ]0, ε3]
and two real analytic operators Gi, Go of ]−ε5, ε5[ to R, such that∫

Ωε

|∇ui[ε](x)|2 dx = εnGi[ε], (4.185)∫
Pa[Ωε]

|∇uo[ε](x)|2 dx = εnGo[ε], (4.186)

for all ε ∈ ]0, ε5[. Moreover,

Gi[0] =
∫

Ω

|∇ũi(x)|2 dx, (4.187)

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx. (4.188)

Proof. Let Ψ[·], Θ[·], Ξ[·] be as in Theorem 4.118 (iv). Let ε ∈ ]0, ε3[. Clearly,∫
Ωε

|∇ui[ε](x)|2 dx =
∫

Ωε

|∇v+
a [∂Ωε,Ψ[ε](

1
ε

(· − w))](x)|2 dx,

and ∫
Pa[Ωε]

|∇uo[ε](x)|2 dx =
∫

Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε](
1
ε

(· − w))](x)|2 dx.

As a consequence, by slightly modifying the proof of Theorem 4.20, we can prove that there exist
ε5 ∈ ]0, ε3] and two real analytic operators Gi and Go of ]−ε5, ε5[ to R such that∫

Ωε

|∇ui[ε](x)|2 dx = εnGi[ε],∫
Pa[Ωε]

|∇uo[ε](x)|2 dx = εnGo[ε],

for all ε ∈ ]0, ε5[, and

Gi[0] =
∫

Ω

|∇ũi(x)|2 dx,

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx.

Remark 4.123. We note that the right-hand side of the equalities in (4.185) and (4.186) of Theorem
4.122 can be continued real analytically in the whole ]−ε5, ε5[. Moreover,

lim
ε→0+

(
∫

Ωε

|∇ui[ε](x)|2 dx+
∫

Pa[Ωε]

|∇uo[ε](x)|2 dx) = 0.

4.11.4 A real analytic continuation Theorem for the integral of the family
{(ui[ε], uo[ε])}ε∈]0,ε3[

As done in Theorem 4.122 for the energy integral, we can now prove a real analytic continuation
Theorem for the integral of the family {(ui[ε], uo[ε])}ε∈]0,ε3[. Namely, we prove the following.

Theorem 4.124. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.118 (iv). Then there exist ε6 ∈ ]0, ε3]
and two real analytic operators J i, Jo of ]−ε6, ε6[ to R, such that∫

Ωε

ui[ε](x) dx = J i[ε], (4.189)∫
Pa[Ωε]

uo[ε](x) dx = Jo[ε], (4.190)
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for all ε ∈ ]0, ε6[. Moreover,

J i[0] = 0, (4.191)
Jo[0] = 0. (4.192)

Proof. It is a simple modification of the proof of Theorem 4.22. Indeed, let Θ[·] be as in Theorem
4.118 (iv). Let ε ∈ ]0, ε3[. We have

uo[ε](w + εt) = ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− ε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ ∂Ω.

Then, if we set

L[ε](t) ≡ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− ε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[, by arguing as in the proof of Theorem 2.128, we can easily show that there exist
ε′6 ∈ ]0, ε3] and a real analytic map Jo of ]−ε′6, ε′6[ to R, such that∫

Pa[Ωε]

uo[ε](x) dx = Jo[ε],

for all ε ∈ ]0, ε′6[, and such that Jo[0] = 0.
Let ε ∈ ]0, ε3[. Clearly, ∫

Ωε

ui[ε](x) dx = εn
∫

Ω

ui[ε](w + εt) dt.

On the other hand, if ε′4, U i1, U i2 are as in Theorem 4.120, and we set

J i[ε] ≡ εn
∫

Ω

(
εU i1[ε](t) + εU i2[ε] + F (−1)(0)

)
dt

for all ε ∈ ]−ε′4, ε′4[, then we have that J i is a real analytic map of ]−ε′4, ε′4[ to R, such that J i[0] = 0
and that ∫

Ωε

ui[ε](x) dx = J i[ε]

for all ε ∈ ]0, ε′4[.
Then, by taking ε6 ≡ min{ε′6, ε′4}, we can easily conclude.

4.11.5 A property of local uniqueness of the family {(ui[ε], uo[ε])}ε∈]0,ε3[

In this Subsection, we shall show that the family {(ui[ε], uo[ε])}ε∈]0,ε3[ is essentially unique. To do so,
we need to introduce a preliminary lemma.

Lemma 4.125. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε ∈ ]0, ε1[. Let (ui, uo) solve (4.166). Let (ψ, θ, ξ) ∈
(Um−1,α

0 )2 × R be such that ui = ui[ε, ψ, θ, ξ] and uo = uo[ε, ψ, θ, ξ]. Then

v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ =
ui(w + εt)− F (−1)(0)

ε
∀t ∈ cl Ω,

Proof. It is an immediate consequence of Theorem 4.115.
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boundary condition

Theorem 4.126. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let {ε̂j}j∈N be a sequence in ]0, ε1[ converging to 0. If
{(uij , uoj)}j∈N is a sequence of pairs of functions such that

(uij , u
o
j) ∈ Cm,α(cl Sa[Ωε̂j ])× Cm,α(cl Ta[Ωε̂j ]), (4.193)

(uij , u
o
j) solves (4.166) with ε ≡ ε̂j , (4.194)

lim
j→∞

uij(w + ε̂j ·)− F (−1)(0)
ε̂j

= ũi(·) in Cm,α(∂Ω), (4.195)

then there exists j0 ∈ N such that

(uij , u
o
j) = (ui[ε̂j ], uo[ε̂j ]) ∀j0 ≤ j ∈ N.

Proof. By Theorem 4.115, for each j ∈ N, there exists a unique triple (ψj , θj , ξj) in (Um−1,α
0 )2 × R

such that
uij = ui[ε̂j , ψj , θj , ξj ], uoj = uo[ε̂j , ψj , θj , ξj ]. (4.196)

We shall now try to show that

lim
j→∞

(ψj , θj , ξj) = (ψ̃, θ̃, ξ̃) in (Um−1,α
0 )2 × R. (4.197)

Indeed, if we denote by Ũ the neighbourhood of Theorem 4.118 (iv), the limiting relation of (4.197)
implies that there exists j0 ∈ N such that

(ε̂j , ψj , θj , ξj) ∈ ]0, ε3[× Ũ ,

for j ≥ j0 and thus Theorem 4.118 (iv) would imply that

(ψj , θj , ξj) = (Ψ[ε̂j ],Θ[ε̂j ],Ξ[ε̂j ]),

for j0 ≤ j ∈ N, and that accordingly the theorem holds (cf. Definition 4.119.) Thus we now turn to
the proof of (4.197). We note that equation Λ[ε, ψ, θ, ξ] = 0 can be rewritten in the following form

F ′(F (−1)(0))
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

−
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

+
1∫

∂Ω
dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt

= −ε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(0) + βε

(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
))
dβ ∀t ∈ ∂Ω,

(4.198)

1
2
θ(t) + v∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+
1
2
γψ(t)− γv∗[∂Ω, ψ](t)− γεn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))ψ(s) dσs = g(t) ∀t ∈ ∂Ω,
(4.199)

for all (ε, ψ, θ, ξ) in the domain of Λ. By arguing so as to prove that the integral of the second
component of Λ on ∂Ω equals zero in the beginning of the proof of Theorem 4.118, we can conclude
that both hand sides of equation (4.199) have zero integral on ∂Ω. We define the map N ≡ (Nl)l=1,2

of ]−ε3, ε3[× (Um−1,α
0 )2×R to Cm,α(∂Ω)×Um−1,α

0 by setting N1[ε, ψ, θ, ξ] equal to the left-hand side
of the equality in (4.198), N2[ε, ψ, θ, ξ] equal to the left-hand side of the equality in (4.199) for all
(ε, ψ, θ, ξ) ∈ ]−ε3, ε3[× (Um−1,α

0 )2 × R. By arguing so as in the proof of Theorem 4.118, we can prove
that N is real analytic. Since N [ε, ·, ·, ·] is linear for all ε ∈ ]−ε3, ε3[, we have

N [ε, ψ, θ, ξ] = ∂(ψ,θ,ξ)N [ε, ψ̃, θ̃, ξ̃](ψ, θ, ξ)
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for all (ε, ψ, θ, ξ) ∈ ]−ε3, ε3[×(Um−1,α
0 )2×R, and the map of ]−ε3, ε3[ to L((Um−1,α

0 )2×R, Cm,α(∂Ω)×
Um−1,α

0 ) which takes ε to N [ε, ·, ·, ·] is real analytic. Since

N [0, ·, ·, ·] = ∂(ψ,θ,ξ)Λ[0, ψ̃, θ̃, ξ̃](·, ·, ·),

Theorem 4.118 (iii) implies that N [0, ·, ·, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of (Um−1,α

0 )2 × R to Cm,α(∂Ω)× Um−1,α
0 is open in L((Um−1,α

0 )2 × R, Cm,α(∂Ω)×
Um−1,α

0 ) and since the map which takes a linear invertible operator to its inverse is real analytic
(cf. e.g., Hille and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists ε̃ ∈ ]0, ε3[ such that the map
ε 7→ N [ε, ·, ·, ·](−1) is real analytic from ]−ε̃, ε̃[ to L(Cm,α(∂Ω) × Um−1,α

0 , (Um−1,α
0 )2 × R). Next we

denote by S[ε, ψ, θ, ξ] ≡ (Sl[ε, ψ, θ, ξ])l=1,2 the pair defined by the right-hand side of (4.198)-(4.199).
Then equation Λ[ε, ψ, θ, ξ] = 0 (or equivalently system (4.198)-(4.199)) can be rewritten in the following
form:

(ψ, θ, ξ) = N [ε, ·, ·, ·](−1)[S[ε, ψ, θ, ξ]], (4.200)

for all (ε, ψ, θ, ξ) ∈ ]−ε̃, ε̃[× (Um−1,α
0 )2×R. Next we note that condition (4.195), the proof of Theorem

4.118, the real analyticity of F and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , ψj , θj , ξj ] = S[0, ψ̃, θ̃, ξ̃] in Cm,α(∂Ω)× Um−1,α
0 . (4.201)

Then by (4.200) and by the real analyticity of ε 7→ N [ε, ·, ·, ·](−1), and by the bilinearity and continuity
of the operator of L(Cm,α(∂Ω)×Um−1,α

0 , (Um−1,α
0 )2 ×R)× (Cm,α(∂Ω)×Um−1,α

0 ) to (Um−1,α
0 )2 ×R,

which takes a pair (T1, T2) to T1[T2], we conclude that (4.197) holds. Thus the proof is complete.

4.12 Alternative homogenization problem for the Laplace equa-
tion with a nonlinear transmission boundary condition in
a periodically perforated domain

In this section we consider an homogenization problem for the Laplace equation with a nonlinear
transmission boundary condition in a periodically perforated domain.

4.12.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 4.3.1 and 4.11.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57), (4.163),
(4.164), (4.165), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic
nonlinear transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + 1
δ g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),∫
∂Ω(ε,δ)

uo(x) dσx = 0.

(4.202)

We give the following definition.

Definition 4.127. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let (ui[·], uo[·]) be as in
Definition 4.119. For each pair (ε, δ) ∈ ]0, ε3[× ]0,+∞[, we set

ui(ε,δ)(x) ≡ ui[ε](x
δ

) ∀x ∈ cl Sa(ε, δ), uo(ε,δ)(x) ≡ uo[ε](x
δ

) ∀x ∈ cl Ta(ε, δ).

Remark 4.128. Letm ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57), (4.163),
(4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). For each (ε, δ) ∈ ]0, ε3[× ]0,+∞[
the pair (ui(ε,δ), u

o
(ε,δ)) is a solution of (4.202).
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By the previous remark, we note that a solution of problem (4.202) can be expressed by means of
a solution of an auxiliary rescaled problem, which does not depend on δ. This is due to the presence
of the factor 1/δ in front of g( 1

εδ (x− δw)) in the sixth equation of problem (4.202).
By virtue of Theorem 4.126, we have the following.

Remark 4.129. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let δ̄ ∈ ]0,+∞[. Let
{ε̂j}j∈N be a sequence in ]0, ε1[ converging to 0. If {(uij , uoj)}j∈N is a sequence of pairs of functions
such that

(uij , u
o
j) ∈ Cm,α(cl Sa(ε̂j , δ̄))× Cm,α(cl Ta(ε̂j , δ̄)),

(uij , u
o
j) solves (4.202) with (ε, δ) ≡ (ε̂j , δ̄),

lim
j→∞

uij(δ̄w + δ̄ε̂j ·)− F (−1)(0)
ε̂j

= ũi(·) in Cm,α(∂Ω),

then there exists j0 ∈ N such that

(uij , u
o
j) = (ui(ε̂j ,δ̄), u

o
(ε̂j ,δ̄)

) ∀j0 ≤ j ∈ N.

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). As a first

step, we study the behaviour of (ui[ε], uo[ε]) as ε tends to 0.

Proposition 4.130. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let 1 ≤ p < ∞.
Then

lim
ε→0+

Ei(ε,1)[u
i[ε]] = 0 in Lp(A),

and
lim
ε→0+

Eo(ε,1)[u
o[ε]] = 0 in Lp(A).

Proof. It suffices to modify the proof of Propositions 2.132, 4.26. Let ε3, Ψ, Θ, Ξ be as in Theorem
4.118. Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[, we have

ui[ε] ◦ (w + ε id∂Ω)(t) =ε
∫
∂Ω

Sn(t− s)Ψ[ε](s) dσs

+ εn−1

∫
∂Ω

Ran(ε(t− s))Ψ[ε](s) dσs + εΞ[ε] + F (−1)(0), ∀t ∈ ∂Ω.

We set

N i[ε](t) ≡ε
∫
∂Ω

Sn(t− s)Ψ[ε](s) dσs

+ εn−1

∫
∂Ω

Ran(ε(t− s))Ψ[ε](s) dσs + εΞ[ε] + F (−1)(0), ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i)) that
N i is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

Ci ≡ sup
ε∈]−ε̃,ε̃[

‖N i[ε]‖C0(∂Ω) < +∞.

By the Maximum Principle for harmonic functions, we have

|Ei(ε,1)[u
i[ε]](x)| ≤ Ci ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

Obviously,
lim
ε→0+

Ei(ε,1)[u
i[ε]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

Ei(ε,1)[u
i[ε]] = 0 in Lp(A).
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If ε ∈ ]0, ε3[, we have

uo[ε] ◦ (w + ε id∂Ω)(t) = ε

∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− ε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs dσt + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt, ∀t ∈ ∂Ω.

We set

No[ε](t) ≡ ε
∫
∂Ω

Sn(t− s)Θ[ε](s) dσs + εn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs

− ε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε](s) dσs dσt + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε](s) dσs
)
dσt, ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Proposition 1.28 (i)) that
No is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω) and that

Co ≡ sup
ε∈]−ε̃,ε̃[

‖No[ε]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|Eo(ε,1)[u
o[ε]](x)| ≤ Co ∀x ∈ A, ∀ε ∈ ]0, ε̃[.

By Theorem 4.120, we have

lim
ε→0+

Eo(ε,1)[u
o[ε]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

Eo(ε,1)[u
o[ε]] = 0 in Lp(A).

4.12.2 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.130 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.131. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let 1 ≤ p <∞. Let V be a
bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = 0 in Lp(V ).

Proof. We modify the proof of Theorem 2.134. By virtue of Proposition 4.130, we have

lim
ε→0+

‖Ei(ε,1)[u
i[ε]]‖Lp(A) = 0,

and
lim
ε→0+

‖Eo(ε,1)[u
o[ε]]‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖Ei(ε,δ)[u
i
(ε,δ)]‖Lp(V ) ≤ C‖E

i
(ε,1)[u

i[ε]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,

and
‖Eo(ε,δ)[u

o
(ε,δ)]‖Lp(V ) ≤ C‖E

o
(ε,1)[u

o[ε]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[,
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Thus,
lim

(ε,δ)→(0+,0+)
Ei(ε,δ)[u

i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = 0 in Lp(V ).

Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 4.132. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let ε6, J i, Jo be as in
Theorem 4.124. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε], (4.203)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx = rnJo[ε], (4.204)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0}.

Proof. We follow the proof of Theorem 2.60. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of
ui(ε,r/l), we have ∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.

Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

ui[ε]
( l
r
x
)
dx

=
rn

ln

∫
Ωε

ui[ε](t) dt

=
rn

ln
J i[ε].

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i[ε],

and the validity of (4.203) follows. The proof of (4.204) is very similar and is accordingly omitted.

Remark 4.133. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). We note that it can be
easily proved that there exist ε̃ ∈ ]0, ε3[ and a real analytic map No of ]−ε̃, ε̃[ to Cm,α(∂Ω) such that

‖Eo(ε,δ)[u
o
(ε,δ)]‖L∞(Rn) = ε‖No[ε]‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.
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4.12.3 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.

Definition 4.134. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). For each pair
(ε, δ) ∈ ]0, ε3[× ]0,+∞[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.135. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let (ε, δ) ∈ ]0, ε3[× ]0,+∞[.
We have ∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn−2

∫
Ωε

|∇ui[ε](t)|2 dt

and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇uo[ε](t)|2 dt.

Then we give the following definition, where we consider En(ε, δ), with ε equal to a certain function
of δ.

Definition 4.136. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 4.122. Let δ1 > 0 be such that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

En[δ] ≡ En(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Proposition we compute the limit of En[δ] as δ tends to 0.

Proposition 4.137. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let ε5 be as in
Theorem 4.122. Let δ1 > 0 be as in Definition 4.136. Then

lim
δ→0+

En[δ] =
∫

Ω

|∇ũi(x)|2 dx+
∫

Rn\cl Ω

|∇ũo(x)|2 dx,

where ũi, ũo are as in Theorem 4.117.

Proof. Let Gi, Go be as in Theorem 4.122. Let δ ∈ ]0, δ1[. By Remark 4.135 and Theorem 4.122, we
have ∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx = δn−2(ε[δ])n(Gi[ε[δ]] +Go[ε[δ]])

= δn(Gi[δ
2
n ] +Go[δ

2
n ]).

On the other hand,

b(1/δ)cn
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
≤ En[δ]

≤ d(1/δ)en
(∫

Ω(ε[δ],δ)

|∇ui(ε[δ],δ)(x)|2 dx+
∫

Pa(ε[δ],δ)

|∇uo(ε[δ],δ)(x)|2 dx
)
,
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and so
b(1/δ)cnδn(Gi[δ

2
n ] +Go[δ

2
n ]) ≤ En[δ] ≤ d(1/δ)enδn(Gi[δ

2
n ] +Go[δ

2
n ]).

Thus, since
lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

we have
lim
δ→0+

En[δ] = (Gi[0] +Go[0]).

Finally, by equalities (4.187) and (4.188), we easily conclude.

In the following Proposition we represent the function En[·] by means of real analytic functions.

Proposition 4.138. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3 be as in Theorem 4.120 (iv). Let ε5, Gi, Go be
as in Theorem 4.122. Let δ1 > 0 be as in Definition 4.136. Then

En[(1/l)] = Gi[(1/l)
2
n ] +Go[(1/l)

2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. It follows by the proof of Proposition 4.137.

4.13 A variant of an alternative homogenization problem for
the Laplace equation with a nonlinear transmission bound-
ary condition in a periodically perforated domain

In this section we consider a slightly different homogenization problem for the Laplace equation with
linear transmission boundary conditions in a periodically perforated domain.

4.13.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 4.3.1 and 4.11.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57), (4.163),
(4.164), (4.165), respectively. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic
nonlinear transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa(ε, δ),
∆uo(x) = 0 ∀x ∈ Ta(ε, δ),
ui(x+ δaj) = ui(x) ∀x ∈ cl Sa(ε, δ), ∀j ∈ {1, . . . , n},
uo(x+ δaj) = uo(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ω(ε, δ),

∂
∂νΩ(ε,δ)

uo(x) = γ ∂
∂νΩ(ε,δ)

ui(x) + g( 1
εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ),∫

∂Ω(ε,δ)
uo(x) dσx = 0.

(4.205)

In contrast to problem (4.202), we note that in the sixth equation of problem (4.205) there is not
the factor 1/δ in front of g( 1

εδ (x− δw)).
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57), (4.163), (4.164),

(4.165), respectively. For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we introduce the following auxiliary periodic
nonlinear transmission problem for the Laplace equation.



∆ui(x) = 0 ∀x ∈ Sa[Ωε],
∆uo(x) = 0 ∀x ∈ Ta[Ωε],
ui(x+ aj) = ui(x) ∀x ∈ cl Sa[Ωε], ∀j ∈ {1, . . . , n},
uo(x+ aj) = uo(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
uo(x) = F (ui(x)) ∀x ∈ ∂Ωε,
∂

∂νΩε
uo(x) = γ ∂

∂νΩε
ui(x) + δg( 1

ε (x− w)) ∀x ∈ ∂Ωε,∫
∂Ωε

uo(x) dσx = 0.

(4.206)

We transform (4.206) into a system of integral equations by means of the following.
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Theorem 4.139. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let Um−1,α

0 be as in (1.64). Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[.
Then the map (ui[ε, δ, ·, ·, ·], uo[ε, δ, ·, ·, ·]) of the set of triples (ψ, θ, ξ) ∈ (Um−1,α

0 )2 × R that solve the
following integral equations

F ′(F (−1)(0))
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

+ δε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(0) + βδε

(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
))
dβ

−
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

+
1∫

∂Ω
dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt = 0 ∀t ∈ ∂Ω,

(4.207)

1
2
θ(t) + v∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+
1
2
γψ(t)− γv∗[∂Ω, ψ](t)− γεn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))ψ(s) dσs − g(t) = 0 ∀t ∈ ∂Ω,
(4.208)

to the set of pairs (ui, uo) of Cm,α(cl Sa[Ωε]) × Cm,α(cl Ta[Ωε]) which solve problem (4.206), which
takes (ψ, θ, ξ) to the pair of functions

(ui[ε, δ, ψ, θ, ξ] ≡ v+
a [∂Ωε, δψ(

1
ε

(· − w))] + δεξ + F (−1)(0),

uo[ε, δ, ψ, θ, ξ] ≡ v−a [∂Ωε, δθ(
1
ε

(· − w))]− 1∫
∂Ωε

dσ

∫
∂Ωε

v−a [∂Ωε, δθ(
1
ε

(· − w))] dσ), (4.209)

is a bijection.

Proof. It is a simple modification of the proof of Proposition 4.115. Indeed, let (ε, δ) ∈ ]0, ε1[× ]0,+∞[.
Assume that the pair (ui, uo) in Cm,α(cl Sa[Ωε])× Cm,α(cl Ta[Ωε]) solves problem (4.205). Then by
Propositions 2.23, 2.24, it is easy to see that there exists a unique triple (ψ, θ, ξ) in (Um−1,α

0 )2 × R,
such that

ui = v+
a [∂Ωε, δψ(

1
ε

(· − w))] + δεξ + F (−1)(0) in cl Sa[Ωε],

and

uo = v−a [∂Ωε, δθ(
1
ε

(· − w))]− 1∫
∂Ωε

dσ

∫
∂Ωε

v−a [∂Ωε, δθ(
1
ε

(· − w))] dσ in cl Ta[Ωε].

Then a simple computation based on the Theorem of change of variables in integrals, on identity
(1.65), and on the definition of Um−1,α

0 , shows that the triple (ψ, θ, ξ) must solve equation (4.208),
together with the following

F
(
δε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

+ F (−1)(0)
)

=δε
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

− δε∫
∂Ω

dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt ∀t ∈ ∂Ω.

(4.210)

We now show that equation (4.210) implies the validity of (4.207). By Taylor Formula, we have

F (x+ F (−1)(0)) = 0 + F ′(F (−1)(0))x+ x2

∫ 1

0

(1− β)F ′′(F (−1)(0) + βx)dβ ∀x ∈ R.

Then, by dividing both sides of (4.210) by δε, we can rewrite (4.210) as (4.207). Conversely, by
reading backward the above argument, one can easily show that if (ψ, θ, ξ) in (Um−1,α

0 )2 × R solves
(4.207)-(4.208), then the pair of functions of (4.209) satisfies problem (4.205).
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Hence we are reduced to analyse system (4.207)-(4.208). As a first step in the analysis of system
(4.207)-(4.208), we note that for (ε, δ) = (0, 0), since ψ, θ ∈ Um−1,α

0 , one obtains a system which we
address to as the limiting system and which has the following form

F ′(F (−1)(0))(v+[∂Ω, ψ](t) + ξ)− (v−[∂Ω, θ](t)− 1∫
∂Ω

dσ

∫
∂Ω

v−[∂Ω, θ] dσ) = 0 ∀t ∈ ∂Ω, (4.211)

1
2
θ(t) + v∗[∂Ω, θ](t) +

1
2
γψ(t)− γv∗[∂Ω, ψ](t)− g(t) = 0 ∀t ∈ ∂Ω. (4.212)

Then we have the following theorem, which shows the unique solvability of the limiting system,
and its link with a boundary value problem which we shall address to as the limiting boundary value
problem.

Theorem 4.140. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, F , g, γ be as in (1.56), (4.163),
(4.164), (4.165), respectively. Let Um−1,α

0 be as in (1.64). Then the following statements hold.

(i) The limiting system (4.211)-(4.212) has one and only one solution in (Um−1,α
0 )2 × R, which we

denote by (ψ̃, θ̃, ξ̃).

(ii) The limiting boundary value problem
∆ui(x) = 0 ∀x ∈ Ω,
∆uo(x) = 0 ∀x ∈ Rn \ cl Ω,
uo(x)− 1R

∂Ω dσ

∫
∂Ω
uo dσ = F ′(F (−1)(0))ui(x) ∀x ∈ ∂Ω,

∂
∂νΩ

uo(x) = γ ∂
∂νΩ

ui(x) + g(x) ∀x ∈ ∂Ω,
limx→∞ uo(x) = 0

(4.213)

has one and only one solution (ũi, ũo) in Cm,α(cl Ω)×Cm,α(Rn \Ω), and the following formulas
hold:

ũi ≡ v+[∂Ω, ψ̃] + ξ̃ in cl Ω, (4.214)

ũo ≡ v−[∂Ω, θ̃] in Rn \ Ω. (4.215)

Proof. It is Theorem 4.117.

We are now ready to analyse equations (4.207)-(4.208) around the degenerate case (ε, δ) = (0, 0).

Theorem 4.141. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let Um−1,α

0 be as in (1.64). Let Λ ≡ (Λj)j=1,2 be the map of
]−ε1, ε1[× R× (Um−1,α

0 )2 × R to Cm,α(∂Ω)× Um−1,α
0 , defined by

Λ1[ε,δ, ψ, θ, ξ](t) ≡ F ′(F (−1)(0))
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

+ δε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(0) + βδε

(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
))
dβ

−
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

+
1∫

∂Ω
dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt ∀t ∈ ∂Ω,

(4.216)

Λ2[ε,δ, ψ, θ, ξ](t) ≡ 1
2
θ(t) + v∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+
1
2
γψ(t)− γv∗[∂Ω, ψ](t)− γεn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))ψ(s) dσs − g(t) ∀t ∈ ∂Ω,
(4.217)

for all (ε, δ, ψ, θ, ξ) ∈ ]−ε1, ε1[× R× (Um−1,α
0 )2 × R. Then the following statements hold.
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(i) Equation Λ[0, 0, ψ, θ, ξ] = 0 is equivalent to the limiting system (4.211)-(4.212) and has one and
only one solution (ψ̃, θ̃, ξ̃) (cf. Theorem 4.140.)

(ii) If (ε, δ) ∈ ]0, ε1[× ]0,+∞[, then equation Λ[ε, δ, ψ, θ, ξ] = 0 is equivalent to system (4.207)-(4.208)
for (ψ, θ, ξ).

(iii) There exists ε2 ∈ ]0, ε1] such that Λ is a real analytic map of ]−ε2, ε2[ × R × (Um−1,α
0 )2 × R

to Cm,α(∂Ω) × Um−1,α
0 . The differential ∂(ψ,θ,ξ)Λ[0, 0, ψ̃, θ̃, ξ̃] of Λ at (0, 0, ψ̃, θ̃, ξ̃) is a linear

homeomorphism of (Um−1,α
0 )2 × R to Cm,α(∂Ω)× Um−1,α

0 .

(iv) There exist ε3 ∈ ]0, ε2], δ1 ∈ ]0,+∞[ and an open neighbourhood Ũ of (ψ̃, θ̃, ξ̃) in (Um−1,α
0 )2 ×R

and a real analytic map (Ψ[·, ·],Θ[·, ·],Ξ[·, ·]) of ]−ε3, ε3[ × ]−δ1, δ1[ to Ũ , such that the set of
zeros of the map Λ in ]−ε3, ε3[× ]−δ1, δ1[× Ũ coincides with the graph of (Ψ[·.·],Θ[·, ·],Ξ[·, ·]).
In particular, (Ψ[0, 0],Θ[0, 0],Ξ[0, 0]) = (ψ̃, θ̃, ξ̃).

Proof. It is a simple modification of the proof of Theorem 4.118. Indeed, the statements in (i) and
(ii) are obvious. By an easy modification of the proof of Theorem 4.118 (iii), one can easily show
that there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic map of ]−ε2, ε2[ × R × (Um−1,α

0 )2 × R to
Cm,α(∂Ω)× Um−1,α

0 . By standard calculus in Banach space, the differential of Λ at (0, 0, ψ̃, θ̃, ξ̃) with
respect to the variables (ψ, θ, ξ) is delivered by the following formulas

∂(ψ,θ,ξ)Λ1[0, 0, ψ̃, θ̃, ξ̃](ψ̄, θ̄, ξ̄)(t) =F ′(F (−1)(0))(v+[∂Ω, ψ̄](t) + ξ̄)

− (v−[∂Ω, θ̄](t)− 1∫
∂Ω

dσ

∫
∂Ω

v−[∂Ω, θ̄] dσ) ∀t ∈ ∂Ω,

∂(ψ,θ,ξ)Λ2[0, 0, ψ̃, θ̃, ξ̃](ψ̄, θ̄, ξ̄)(t) =
1
2
θ̄(t) + v∗[∂Ω, θ̄](t) +

1
2
γψ(t)− γv∗[∂Ω, ψ̄](t) ∀t ∈ ∂Ω,

for all (ψ̄, θ̄, ξ̄) ∈ (Um−1,α
0 )2 × R. By the proof of statement (iii) of Theorem 4.118, the above

differential is a linear homeomorphism. Statement (iv) is an immediate consequence of statement (iii)
and of the Implicit Function Theorem for real analytic maps in Banach spaces (cf. e.g., Prodi and
Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem 15.3].)

We are now in the position to introduce the following.

Definition 4.142. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ui[·, ·, ·, ·] and uo[·, ·, ·, ·] be as in Theorem 4.139. If
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

ui[ε, δ](t) ≡ ui[ε, δ,Ψ[ε, δ],Θ[ε, δ],Ξ[ε, δ]](t) ∀t ∈ cl Sa[Ωε],
uo[ε, δ](t) ≡ uo[ε, δ,Ψ[ε, δ],Θ[ε, δ],Ξ[ε, δ]](t) ∀t ∈ cl Ta[Ωε],

where ε3, δ1, Ψ, Θ, Ξ are as in Theorem 4.141 (iv).

We now show that {(ui[ε, δ](·), uo[ε, δ](·))}(ε,δ)∈]0,ε3[×]0,δ1[ can be continued real analytically for
negative values of ε, δ.

We have the following.

Theorem 4.143. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.141 (iv). Then the following
statements hold.

(i) Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
a real analytic operator Uo1 of ]−ε4, ε4[ × ]−δ1, δ1[ to the space C0

h(clV ), and a real analytic
operator Uo2 of ]−ε4, ε4[× ]−δ1, δ1[ to R, such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
uo[ε, δ](x) = δεn−1Uo1 [ε, δ](x) + δεUo2 [ε, δ] ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[.
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(ii) Let V̄ be a bounded open subset of Rn \ cl Ω. Then there exist ε̄4 ∈ ]0, ε3], a real analytic
operator Ūo1 of ]−ε̄4, ε̄4[× ]−δ1, δ1[ to the space Cm,α(cl V̄ ), and a real analytic operator Ūo2 of
]−ε̄4, ε̄4[× ]−δ1, δ1[ to R, such that the following conditions hold.

(j’) w + ε cl V̄ ⊆ cl Pa[Ωε] for all ε ∈ ]−ε̄4, ε̄4[ \ {0}.
(jj’)

uo[ε, δ](w + εt) = δεŪo1 [ε, δ](t) + δεŪo2 [ε, δ] ∀t ∈ cl V̄ ,

for all (ε, δ) ∈ ]0, ε̄4[× ]0, δ1[. Moreover, Ūo1 [0, 0](·) equals the restriction of ũo(·) to cl V̄ .

(iii) There exist ε′4 ∈ ]0, ε3], a real analytic operator U i1 of ]−ε′4, ε′4[× ]−δ1, δ1[ to the space Cm,α(cl Ω),
and a real analytic operator U i2 of ]−ε′4, ε′4[× ]−δ1, δ1[ to R, such that

ui[ε, δ](w + εt) = δεU i1[ε, δ](t) + δεU i2[ε, δ] + F (−1)(0) ∀t ∈ cl Ω,

for all (ε, δ) ∈ ]0, ε′4[× ]0, δ1[. Moreover, U i1[0, 0](·) + U i2[0, 0] equals ũi(·) on cl Ω.

Proof. We modify the proof of Theorem 4.120. Let Ψ[·, ·], Θ[·, ·], Ξ[·, ·] be as in Theorem 4.141 (iv).
Consider (i). Choosing ε4 small enough, we can clearly assume that (j) holds. Consider now (jj). Let
(ε, δ) ∈ ]0, ε4[× ]0, δ1[. We have

uo[ε, δ](x) = δεn−1

∫
∂Ω

San(x− w − εs)Θ[ε, δ](s) dσs

− δεn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))Θ[ε, δ](s) dσs
)
dσt ∀x ∈ clV.

Thus (cf. the proof of Theorem 2.158), it is natural to set

Uo1 [ε, δ](x) ≡
∫
∂Ω

San(x− w − εs)Θ[ε, δ](s) dσs ∀x ∈ clV,

for all (ε, δ) ∈ ]−ε4, ε4[× ]−δ1, δ1[, and

Uo2 [ε, δ] ≡ − 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs
)
dσt,

for all (ε, δ) ∈ ]−ε4, ε4[ × ]−δ1, δ1[. Then, by possibly taking a smaller ε4, Uo1 is a real analytic
map of ]−ε4, ε4[× ]−δ1, δ1[ to C0

h(clV ). Furthermore, we have that U2 is a real analytic operator of
]−ε4, ε4[ × ]−δ1, δ1[ to R. Finally, by the definition of U1 and U2, we immediately deduce that the
equality in (jj) holds. Consider now (ii). Choosing ε̄4 small enough, we can clearly assume that (j′)
holds. Consider now (jj′). Let (ε, δ) ∈ ]0, ε̄4[× ]0, δ1[. We have

uo[ε, δ](w + εt) = δεn−1

∫
∂Ω

San(ε(t− s))Θ[ε, δ](s) dσs

− δεn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))Θ[ε, δ](s) dσs
)
dσt ∀t ∈ cl V̄ .

Thus (cf. Proposition 1.29 (ii)), it is natural to set

Ūo1 [ε, δ](t) ≡
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs ∀t ∈ cl V̄ ,

for all (ε, δ) ∈ ]−ε̄4, ε̄4[× ]−δ1, δ1[, and

Ūo2 [ε, δ] ≡ − 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs
)
dσt,

for all (ε, δ) ∈ ]−ε̄4, ε̄4[ × ]−δ1, δ1[. By the proof of (i), we have that Ūo2 is a real analytic map of
]−ε̄4, ε̄4[× ]−δ1, δ1[ to R. Moreover, (cf. Proposition 1.29 (ii)) we have that Ūo1 is a real analytic map
of ]−ε̄4, ε̄4[× ]−δ1, δ1[ to Cm,α(cl V̄ ). Finally, consider (iii). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have

ui[ε, δ](w + εt) = δεn−1

∫
∂Ω

San(ε(t− s))Ψ[ε, δ](s) dσs + δεΞ[ε, δ] + F (−1)(0) ∀t ∈ cl Ω.
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Thus, by arguing as above, it is natural to set

U i1[ε, δ](t) ≡
∫
∂Ω

Sn(t− s)Ψ[ε, δ](s) dσs + εn−2

∫
∂Ω

Ran(ε(t− s))Ψ[ε, δ](s) dσs ∀t ∈ cl Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[, and

U i2[ε, δ] ≡ Ξ[ε, δ]

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. Then, by arguing as above (cf. Proposition 1.29 (iii)), there exists
ε′4 ∈ ]0, ε3], such that U i1 and U i2 are real analytic maps of ]−ε′4, ε′4[× ]−δ1, δ1[ to Cm,α(cl Ω) and R,
respectively, such that the statement in (iii) holds.

As done in Theorem 4.143 for (ui[·, ·], uo[·, ·]), we can now prove a real analytic continuation
Theorem for the energy integral. Namely, we prove the following.

Theorem 4.144. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.141 (iv). Then there exist
ε5 ∈ ]0, ε3] and two real analytic operators Gi, Go of ]−ε5, ε5[× ]−δ1, δ1[ to R, such that∫

Ωε

|∇ui[ε, δ](x)|2 dx = δ2εnGi[ε, δ], (4.218)∫
Pa[Ωε]

|∇uo[ε, δ](x)|2 dx = δ2εnGo[ε, δ], (4.219)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

Gi[0, 0] =
∫

Ω

|∇ũi(x)|2 dx, (4.220)

Go[0, 0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx. (4.221)

Proof. It suffices to modify the proof of Theorem 4.122. Let Ψ[·, ·], Θ[·, ·], Ξ[·, ·] be as in Theorem
4.141 (iv). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly,∫

Ωε

|∇ui[ε, δ](x)|2 dx = δ2

∫
Ωε

|∇v+
a [∂Ωε,Ψ[ε, δ](

1
ε

(· − w))](x)|2 dx,

and ∫
Pa[Ωε]

|∇uo[ε, δ](x)|2 dx = δ2

∫
Pa[Ωε]

|∇v−a [∂Ωε,Θ[ε, δ](
1
ε

(· − w))](x)|2 dx.

As a consequence, by slightly modifying the proof of Theorem 4.20, we can prove that there exist
ε5 ∈ ]0, ε3] and two real analytic operators Gi and Go of ]−ε5, ε5[× ]−δ1, δ1[ to R such that∫

Ωε

|∇ui[ε, δ](x)|2 dx = δ2εnGi[ε, δ],∫
Pa[Ωε]

|∇uo[ε, δ](x)|2 dx = δ2εnGo[ε, δ],

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[, and

Gi[0] =
∫

Ω

|∇ũi(x)|2 dx,

Go[0] =
∫

Rn\cl Ω

|∇ũo(x)|2 dx.

We also have the following.
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Theorem 4.145. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.141 (iv). Then there exist
ε6 ∈ ]0, ε3], δ2 ∈ ]0, δ1] and two real analytic operators J i, Jo of ]−ε6, ε6[× ]−δ2, δ2[ to R, such that∫

Ωε

ui[ε, δ](x) dx = J i[ε, δ], (4.222)∫
Pa[Ωε]

uo[ε, δ](x) dx = Jo[ε, δ], (4.223)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ2[. Moreover,

J i[0, 0] = 0, (4.224)
Jo[0, 0] = 0. (4.225)

Proof. Let ε3, δ1, Ψ, Θ, Ξ be as in Theorem 4.141. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly,

uo[ε, δ](x) =δεn−1

∫
∂Ω

San(x− w − εs)Θ[ε, δ](s) dσs

− δεn−1 1∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

San(ε(t− s))Θ[ε, δ](s) dσs
)
dσt ∀x ∈ cl Ta[Ωε].

Then, by arguing as in the proof of Theorem 3.44 and by Theorem 2.115, we can easily prove that
there exist ε′6 ∈ ]0, ε3[, δ2 ∈ ]0, δ1] and a real analytic map Jo of ]−ε′6, ε′6[× ]−δ2, δ2[ to R such that∫

Pa[Ωε]

uo[ε, δ](x) dx = Jo[ε, δ],

for all (ε, δ) ∈ ]0, ε′6[× ]0, δ2[, and that Jo[0, 0] = 0.
Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly,∫

Ωε

ui[ε, δ](x) dx = εn
∫

Ω

ui[ε, δ](w + εt) dt.

On the other hand, if ε′4, U i1, U i2 are as in Theorem 4.143, and we set

J i[ε, δ] ≡ εn
∫

Ω

(
δεU i1[ε, δ](t) + δεU i2[ε, δ] + F (−1)(0)

)
dt

for all (ε, δ) ∈ ]−ε′4, ε′4[× ]−δ1, δ1[, then we have that J i is a real analytic map of ]−ε′4, ε′4[× ]−δ1, δ1[
to R, such that J i[0, 0] = 0 and that ∫

Ωε

ui[ε, δ](x) dx = J i[ε, δ]

for all (ε, δ) ∈ ]0, ε′4[× ]0, δ1[.
Then, by taking ε6 ≡ min{ε′6, ε′4}, we can easily conclude.

We now show that the family {(ui[ε, δ], uo[ε, δ])}(ε,δ)∈]0,ε3[×]0,δ1[ is essentially unique. To do so, we
need to introduce a preliminary lemma.

Lemma 4.146. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let (ε, δ) ∈ ]0, ε1[ × ]0,+∞[. Let (ui, uo) solve (4.206). Let
(ψ, θ, ξ) ∈ (Um−1,α

0 )2 × R be such that ui = ui[ε, δ, ψ, θ, ξ] and uo = uo[ε, δ, ψ, θ, ξ]. Then

v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ =
ui(w + εt)− F (−1)(0)

δε
∀t ∈ cl Ω,

Proof. It is an immediate consequence of Theorem 4.139.
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Theorem 4.147. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let {(ε̂j , δ̂j)}j∈N be a sequence in ]0, ε1[× ]0,+∞[ converging to
(0, 0). If {(uij , uoj)}j∈N is a sequence of pairs of functions such that

(uij , u
o
j) ∈ Cm,α(cl Sa[Ωε̂j ])× Cm,α(cl Ta[Ωε̂j ]), (4.226)

(uij , u
o
j) solves (4.206) with (ε, δ) ≡ (ε̂j , δ̂j), (4.227)

lim
j→∞

uij(w + ε̂j ·)− F (−1)(0)

δ̂j ε̂j
= ũi(·) in Cm,α(∂Ω), (4.228)

then there exists j0 ∈ N such that

(uij , u
o
j) = (ui[ε̂j , δ̂j ], uo[ε̂j , δ̂j ]) ∀j0 ≤ j ∈ N.

Proof. We modify the proof of Theorem 4.126. By Theorem 4.139, for each j ∈ N, there exists a
unique triple (ψj , θj , ξj) in (Um−1,α

0 )2 × R such that

uij = ui[ε̂j , δ̂j , ψj , θj , ξj ], uoj = uo[ε̂j , δ̂j , ψj , θj , ξj ]. (4.229)

We shall now try to show that

lim
j→∞

(ψj , θj , ξj) = (ψ̃, θ̃, ξ̃) in (Um−1,α
0 )2 × R. (4.230)

Indeed, if we denote by Ũ the neighbourhood of Theorem 4.141 (iv), the limiting relation of (4.230)
implies that there exists j0 ∈ N such that

(ε̂j , δ̂j , ψj , θj , ξj) ∈ ]0, ε3[× ]0, δ1[× Ũ ,

for j ≥ j0 and thus Theorem 4.141 (iv) would imply that

(ψj , θj , ξj) = (Ψ[ε̂j , δ̂j ],Θ[ε̂j , δ̂j ],Ξ[ε̂j , δ̂j ]),

for j0 ≤ j ∈ N, and that accordingly the theorem holds (cf. Definition 4.142.) Thus we now turn to
the proof of (4.230). We note that equation Λ[ε, δ, ψ, θ, ξ] = 0 can be rewritten in the following form

F ′(F (−1)(0))
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)

−
(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)

+
1∫

∂Ω
dσ

∫
∂Ω

(
v−[∂Ω, θ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))θ(s) dσs
)
dσt

= −δε
(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
)2

×
∫ 1

0

(1− β)F ′′
(
F (−1)(0) + βδε

(
v+[∂Ω, ψ](t) + εn−2

∫
∂Ω

Ran(ε(t− s))ψ(s) dσs + ξ
))
dβ ∀t ∈ ∂Ω,

(4.231)

1
2
θ(t) + v∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs

+
1
2
γψ(t)− γv∗[∂Ω, ψ](t)− γεn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))ψ(s) dσs = g(t) ∀t ∈ ∂Ω,
(4.232)

for all (ε, δ, ψ, θ, ξ) in the domain of Λ. By arguing so as to prove that the integral of the second
component of Λ on ∂Ω equals zero in the beginning of the proof of Theorem 4.141, we can conclude
that both hand sides of equation (4.199) have zero integral on ∂Ω. We define the map N ≡ (Nl)l=1,2 of
]−ε3, ε3[× ]−δ1, δ1[× (Um−1,α

0 )2×R to Cm,α(∂Ω)×Um−1,α
0 by setting N1[ε, δ, ψ, θ, ξ] equal to the left-

hand side of the equality in (4.231), N2[ε, δ, ψ, θ, ξ] equal to the left-hand side of the equality in (4.232)
for all (ε, δ, ψ, θ, ξ) ∈ ]−ε3, ε3[× ]−δ1, δ1[× (Um−1,α

0 )2 × R. By arguing so as in the proof of Theorem



234
Singular perturbation and homogenization problems for the Laplace equation with transmission

boundary condition

4.141, we can prove that N is real analytic. Since N [ε, δ, ·, ·, ·] is linear for all (ε, δ) ∈ ]−ε3, ε3[×]−δ1, δ1[,
we have

N [ε, δ, ψ, θ, ξ] = ∂(ψ,θ,ξ)N [ε, ψ̃, θ̃, ξ̃](ψ, θ, ξ)

for all (ε, δ, ψ, θ, ξ) ∈ ]−ε3, ε3[ × ]−δ1, δ1[ × (Um−1,α
0 )2 × R, and the map of ]−ε3, ε3[ × ]−δ1, δ1[ to

L((Um−1,α
0 )2 × R, Cm,α(∂Ω)× Um−1,α

0 ) which takes (ε, δ) to N [ε, δ, ·, ·, ·] is real analytic. Since

N [0, 0, ·, ·, ·] = ∂(ψ,θ,ξ)Λ[0, 0, ψ̃, θ̃, ξ̃](·, ·, ·),

Theorem 4.141 (iii) implies that N [0, 0, ·, ·, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of (Um−1,α

0 )2 × R to Cm,α(∂Ω)× Um−1,α
0 is open in L((Um−1,α

0 )2 × R, Cm,α(∂Ω)×
Um−1,α

0 ) and since the map which takes a linear invertible operator to its inverse is real analytic (cf. e.g.,
Hille and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists (ε̃, δ̃) ∈ ]0, ε3[× ]0, δ1[ such that the map
(ε, δ) 7→ N [ε, δ, ·, ·, ·](−1) is real analytic from ]−ε̃, ε̃[× ]−δ̃, δ̃[ to L(Cm,α(∂Ω)×Um−1,α

0 , (Um−1,α
0 )2×R).

Next we denote by S[ε, δ, ψ, θ, ξ] ≡ (Sl[ε, δ, ψ, θ, ξ])l=1,2 the pair defined by the right-hand side of
(4.231)-(4.232). Then equation Λ[ε, δ, ψ, θ, ξ] = 0 (or equivalently system (4.231)-(4.232)) can be
rewritten in the following form:

(ψ, θ, ξ) = N [ε, δ, ·, ·, ·](−1)[S[ε, δ, ψ, θ, ξ]], (4.233)

for all (ε, δ, ψ, θ, ξ) ∈ ]−ε̃, ε̃[× ]−δ̃, δ̃[× (Um−1,α
0 )2 ×R. Next we note that condition (4.228), the proof

of Theorem 4.141, the real analyticity of F and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , δ̂j , ψj , θj , ξj ] = S[0, 0, ψ̃, θ̃, ξ̃] in Cm,α(∂Ω)× Um−1,α
0 . (4.234)

Then by (4.233) and by the real analyticity of (ε, δ) 7→ N [ε, δ, ·, ·, ·](−1), and by the bilinearity and
continuity of the operator of L(Cm,α(∂Ω) × Um−1,α

0 , (Um−1,α
0 )2 × R) × (Cm,α(∂Ω) × Um−1,α

0 ) to
(Um−1,α

0 )2 × R, which takes a pair (T1, T2) to T1[T2], we conclude that (4.230) holds. Thus the proof
is complete.

We give the following definition.

Definition 4.148. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.143 (iv). Let (ui[·, ·], uo[·, ·]) be
as in Definition 4.142. For each pair (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

ui(ε,δ)(x) ≡ ui[ε, δ](x
δ

) ∀x ∈ cl Sa(ε, δ), uo(ε,δ)(x) ≡ uo[ε, δ](x
δ

) ∀x ∈ cl Ta(ε, δ).

Remark 4.149. Letm ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57), (4.163),
(4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.143 (iv). For each (ε, δ) ∈ ]0, ε3[× ]0, δ1[
the pair (ui(ε,δ), u

o
(ε,δ)) is a solution of (4.205).

Our aim is to study the asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ) tends to (0, 0). In order to

do so we introduce the following. As a first step, we study the behaviour of (ui[ε, δ], uo[ε, δ]) as (ε, δ)
tends to (0, 0).

Proposition 4.150. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.143 (iv). Let 1 ≤ p <∞.
Then

lim
(ε,δ)→(0+,0+)

Ei(ε,1)[u
i[ε, δ]] = 0 in Lp(A),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,1)[u

o[ε, δ]] = 0 in Lp(A).

Proof. Let ε3, δ1, Ψ, Θ, Ξ be as in Theorem 4.141. Let id∂Ω denote the identity map in ∂Ω. If
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

ui[ε, δ] ◦ (w + ε id∂Ω)(t) = δε

∫
∂Ω

Sn(t− s)Ψ[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ran(ε(t− s))Ψ[ε, δ](s) dσs + δεΞ[ε, δ] + F (−1)(0), ∀t ∈ ∂Ω.
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We set

N i[ε, δ](t) ≡δε
∫
∂Ω

Sn(t− s)Ψ[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ran(ε(t− s))Ψ[ε, δ](s) dσs + δεΞ[ε, δ] + F (−1)(0), ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[, δ̃ ∈ ]0, δ1[ small enough, we can assume (cf.
Proposition 1.26 (i)) that N i is a real analytic map of ]−ε̃, ε̃[× ]−δ̃, δ̃[ to Cm,α(∂Ω) and that

Ci ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖N i[ε, δ]‖C0(∂Ω) < +∞.

By the Maximum Principle for harmonic functions, we have

|Ei(ε,1)[u
i[ε, δ]](x)| ≤ Ci ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.

Obviously,
lim

(ε,δ)→(0+,0+)
Ei(ε,1)[u

i[ε, δ]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

Ei(ε,1)[u
i[ε, δ]] = 0 in Lp(A).

If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

uo[ε, δ] ◦ (w + ε id∂Ω)(t) = δε

∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs

− δε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs dσt + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs
)
dσt, ∀t ∈ ∂Ω.

We set

No[ε, δ](t) ≡ δε
∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs

− δε∫
∂Ω

dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)Θ[ε, δ](s) dσs dσt + εn−2

∫
∂Ω

Ran(ε(t− s))Θ[ε, δ](s) dσs
)
dσt, ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[, δ̃ ∈ ]0, δ1[ small enough, we can assume that
No is a real analytic map of ]−ε̃, ε̃[× ]−δ̃, δ̃[ to Cm,α(∂Ω) and that

Co ≡ sup
(ε,δ)∈]−ε̃,ε̃[×]−δ̃,δ̃[

‖No[ε, δ]‖C0(∂Ω) < +∞.

By Theorem 2.5, we have

|Eo(ε,1)[u
o[ε, δ]](x)| ≤ Co ∀x ∈ A, ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ̃[.

By Theorem 4.143, we have

lim
(ε,δ)→(0+,0+)

Eo(ε,1)[u
o[ε, δ]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
(ε,δ)→(0+,0+)

Eo(ε,1)[u
o[ε, δ]] = 0 in Lp(A).
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4.13.2 Asymptotic behaviour of (ui(ε,δ), u
o
(ε,δ))

In the following Theorem we deduce by Proposition 4.150 the convergence of (ui(ε,δ), u
o
(ε,δ)) as (ε, δ)

tends to (0, 0). Namely, we prove the following.

Theorem 4.151. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.143 (iv). Let 1 ≤ p <∞. Let V
be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

Ei(ε,δ)[u
i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = 0 in Lp(V ).

Proof. It suffices to modify the proof of Theorem 4.27. By virtue of Proposition 4.150, we have

lim
ε→0+

‖Ei(ε,1)[u
i[ε, δ]]‖Lp(A) = 0,

and
lim
ε→0+

‖Eo(ε,1)[u
o[ε, δ]]‖Lp(A) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖Ei(ε,δ)[u
i
(ε,δ)]‖Lp(V ) ≤ C‖E

i
(ε,1)[u

i[ε, δ]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0,min{1, δ1}[,

and
‖Eo(ε,δ)[u

o
(ε,δ)]‖Lp(V ) ≤ C‖E

o
(ε,1)[u

o[ε, δ]]‖Lp(A) ∀(ε, δ) ∈ ]0, ε1[× ]0,min{1, δ1}[,

Thus,
lim

(ε,δ)→(0+,0+)
Ei(ε,δ)[u

i
(ε,δ)] = 0 in Lp(V ),

and
lim

(ε,δ)→(0+,0+)
Eo(ε,δ)[u

o
(ε,δ)] = 0 in Lp(V ).

Then we have the following Theorem, where we consider a functional associated to extensions of
ui(ε,δ) and of uo(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 4.152. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.141 (iv). Let ε6, δ2, J i, Jo be as
in Theorem 4.145. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
Ei(ε,r/l)[u

i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i

[
ε,
r

l

]
, (4.235)

and ∫
Rn

Eo(ε,r/l)[u
o
(ε,r/l)](x)χrA+ȳ(x) dx = rnJo

[
ε,
r

l

]
, (4.236)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ2).

Proof. Let ε ∈ ]0, ε6[, and let l ∈ N \ {0}, l > (r/δ2). Then, by the periodicity of ui(ε,r/l), we have∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx =

∫
rA+ȳ

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

=
∫
rA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx

= ln
∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx.
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Then we note that ∫
r
lA

Ei(ε,r/l)[u
i
(ε,r/l)](x) dx =

∫
r
l Ωε

ui(ε,r/l)(x) dx

=
∫
r
l Ωε

ui
[
ε, (r/l)

]( l
r
x
)
dx

=
rn

ln

∫
Ωε

ui
[
ε, (r/l)

]
(t) dt

=
rn

ln
J i
[
ε,
r

l

]
.

As a consequence, ∫
Rn

Ei(ε,r/l)[u
i
(ε,r/l)](x)χrA+ȳ(x) dx = rnJ i

[
ε,
r

l

]
,

and the validity of (4.235) follows. The proof of (4.236) is very similar and is accordingly omitted.

4.13.3 Asymptotic behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ))

This Subsection is devoted to the study of the behaviour of the energy integral of (ui(ε,δ), u
o
(ε,δ)). We

give the following.

Definition 4.153. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.143 (iv). For each pair
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

En(ε, δ) ≡
∫
A∩Sa(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫
A∩Ta(ε,δ)

|∇uo(ε,δ)(x)|2 dx.

Remark 4.154. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56), (1.57),
(4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.143 (iv). Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[.
We have ∫

Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx = δn
∫

Ω(ε,1)

|(∇ui(ε,δ))(δt)|
2
dt

= δn−2

∫
Ωε

|∇ui[ε, δ](t)|2 dt

and ∫
Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇uo(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇uo[ε, δ](t)|2 dt.

In the following Proposition we represent the function En(·, ·) by means of real analytic functions.

Proposition 4.155. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, F , g, γ be as in (1.56),
(1.57), (4.163), (4.164), (4.165), respectively. Let ε3, δ1 be as in Theorem 4.143 (iv). Let ε5, Gi, Go
be as in Theorem 4.144. Then

En
(
ε,

1
l

)
= εnGi[ε, (1/l)] + εnGo[ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N such that l > (1/δ1).

Proof. Let (ε, δ) ∈ ]0, ε5[× ]0, δ1[. By Remark 4.154 and Theorem 4.144, we have∫
Ω(ε,δ)

|∇ui(ε,δ)(x)|2 dx+
∫

Pa(ε,δ)

|∇uo(ε,δ)(x)|2 dx = δnεnGi[ε, δ] + δnεnGo[ε, δ] (4.237)
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where Gi, Go are as in Theorem 4.144. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0} is such that
l > (1/δ1), then we have

En
(
ε,

1
l

)
= ln

1
ln

{
εnGi[ε, (1/l)] + εnGo[ε, (1/l)]

}
,

= εnGi[ε, (1/l)] + εnGo[ε, (1/l)],

and the conclusion easily follows.



CHAPTER 5

Asymptotic behaviour of the effective electrical
conductivity of periodic dilute composites

In this Chapter we study the asymptotic behaviour of the effective electrical conductivity of periodic
dilute composites. For a description of this problem and references, we refer, e.g., to Ammari, Kang
and Touibi [6] and Ammari and Kang [3]. We briefly outline the problem. Let V be a bounded domain
of Rn, with a connected Lipschitz boundary ∂V . Let σ, σ0 be two positive constants, with σ 6= σ0.
We consider a periodic dilute composite filling V . More precisely, we assume that the material consists
of a matrix of conductivity σ0, containing a periodic array of small conductivity inhomogeneities. The
periodic array has period ρ > 0, and each period contains a small inclusion of conductivity σ and
form ρω(ρ)Ω, where Ω is a sufficiently regular bounded connected open subset of Rn, such that 0 ∈ Ω
and Rn \ cl Ω is connected, and ω a suitable real analytic function of a neighbourhood of 0 to R such
that limρ→0 ω(ρ) = 0. For each ρ > 0, small enough, we define the effective conductivity σ̃ω[ρ] (cf.
Definition 5.6, Theorem 5.16, Ammari, Kang and Touibi [6], Milton [97], Jikov, Kozlov and Oleinik
[62].) Our aim is to represent σ̃ω[ρ] by means of real analytic functions of the variable ρ defined in a
neighbourhood of 0. In order to do so, we follow the strategy of Ammari, Kang and Touibi [6] and we
apply to it our functional analytic approach. For a list of contributions in the computation of the
asymptotic expansion of the effective conductivity or other effective properties, we refer to Ammari,
Kang and Touibi [6].

We retain the notation of Chapter 1 (see in particular Sections 1.1, 1.3 Theorem 1.4 and Definitions
1.12, 1.14, 1.16.) For notation, definitions, and properties concerning classical layer potentials for the
Laplace equation, we refer to Appendix B.

5.1 Effective electrical conductivity of periodic composite ma-
terials

For the sake of simplicity, throughout this Chapter we shall assume

aii ≡ 1 ∀i ∈ {1, . . . , n}.

Accordingly,
ai ≡ ei ∀i ∈ {1, . . . , n},

and
A ≡ ]0, 1[n.

Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). We shall consider also the following
assumption.

σ0, σ ∈ ]0,+∞[, σ0 6= σ. (5.1)

Let j ∈ {1, . . . , n}. If x ∈ Rn, we denote by (x)j , or more simply by xj , the j-th coordinate of x.
Moreover, we denote by prj the function of Rn to R defined by

prj(x) ≡ xj ,

239
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for all x ∈ Rn.
By virtue of Theorem 4.6, it is easy to see that we can state the following.

Definition 5.1. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let σ0, σ be as in (5.1). Let
i ∈ {1, . . . , n}. We denote by ui the unique function of Rn to R such that ui|Sa[I]∪Ta[I] ∈ C2(Sa[I]∪Ta[I]),
ui| cl Sa[I] ∈ C1(cl Sa[I]), ui| cl Ta[I] ∈ C1(cl Ta[I]), and that

∆ui(x) = 0 ∀x ∈ Sa[I] ∪ Ta[I],
ui(x+ aj)− pri(x+ aj) = ui(x)− pri(x) ∀x ∈ Rn, ∀j ∈ {1, . . . , n},
u−i (x) = u+

i (x) ∀x ∈ ∂I,
σ0

∂
∂νI
u−i (x) = σ ∂

∂νI
u+
i (x) ∀x ∈ ∂I,∫

A
ui(x) dx = 0,

(5.2)

where
u−i ≡ ui| cl Ta[I], u+

i ≡ ui| cl Sa[I].

We have the following.

Proposition 5.2. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let σ0, σ be as in (5.1). Let
i ∈ {1, . . . , n}. Let ui, u−i , u

+
i be as in Definition 5.1. Then ui ∈ C0(Rn), u−i ∈ Cm,α(cl Ta[I]) and

u+
i ∈ Cm,α(cl Sa[I]). Moreover,

ui = pri +va[∂I, µi] + Ci in Rn, (5.3)

where µi is the unique function in Cm−1,α(∂I) such that

1
2
µi(x)− σ − σ0

σ + σ0

∫
∂I

∂

∂νI(x)
(San(x− y))µi(y) dσy =

σ − σ0

σ + σ0
(νI(x))i ∀x ∈ ∂I, (5.4)

and Ci ∈ R is delivered by the following formula

Ci = −
∫
A

(pri(x) + va[∂I, µi](x)) dx. (5.5)

Moreover, ∫
∂I
µi dσ = 0. (5.6)

Proof. Clearly, it suffices to prove that the function defined in the right-hand side of equality (5.3)
solves problem (5.2). We observe that by Proposition 4.5 (iii), there exists a unique µi in Cm−1,α(∂I)
such that (5.4) holds. Moreover, by Proposition 4.5 (ii),

∫
∂I µi dσ = 0. Then, by Theorem 1.15 (cf.

also Theorem 4.6), it is easy to prove that the function defined in the right-hand side of equality (5.3)
satisfies (5.2).

We are now in the position to introduce the following definition (cf. e.g., Ammari, Kang and
Touibi [6, p. 121].)

Definition 5.3. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let σ0, σ be as in (5.1). For
each (i, j) ∈ {1, . . . , n}2, we set

σ̃ij [I, σ, σ0] ≡
(
σ0

∫
Pa[I]
∇ui(x) · ∇uj(x) dx+ σ

∫
I
∇ui(x) · ∇uj(x) dx

)
.

We also set
σ̃[I, σ, σ0] ≡ (σ̃ij [I, σ, σ0])i,j=1,...,n.

The matrix σ̃[I, σ, σ0] ∈Mn×n(R) is called the effective conductivity matrix.

Then we have the following Lemma of Ammari, Kang and Touibi [6, Lemma 5.1],

Lemma 5.4. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let σ0, σ be as in (5.1). Let
(i, j) ∈ {1, . . . , n}2. Then

σ̃ij [I, σ, σ0] = σ0

(
δij +

∫
∂I
xjµi(x) dσx

)
, (5.7)

where µi is as in Proposition 5.2 and δij = 0 if i 6= j and δij = 1 if i = j.
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Proof. We follow Ammari, Kang and Touibi [6, Lemma 5.1]. By Proposition 5.2, the Divergence
Theorem and by periodicity, we have

σ̃ij [I, σ, σ0] = σ0

∫
∂A

uj(x)
∂

∂νA
ui(x) dσx

= σ0

∫
∂A

(
prj(x) + Cj + va[∂I, µj ](x)

) ∂

∂νA

(
pri(x) + Ci + va[∂I, µi](x)

)
dσx

= σ0

(
δij +

∫
∂A

xj
∂

∂νA
va[∂I, µi](x) dσx

)
.

Moreover,∫
∂A

xj
∂

∂νA
va[∂I, µi](x) dσx =

∫
∂I
xj

∂

∂νI
v−a [∂I, µi](x) dσx −

∫
∂I

(νI(x))jva[∂I, µi](x) dσx

=
∫
∂I
xj

∂

∂νI
v−a [∂I, µi](x) dσx −

∫
∂I
xj

∂

∂νI
v+
a [∂I, µi](x) dσx

=
∫
∂I
xjµi(x) dσx,

and accordingly (5.7) holds.

We find convenient to give the following definition (cf. Ammari and Kang [3, Definition 4.1, p. 77].)

Definition 5.5. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be a bounded open connected subset of Rn of
class Cm,α such that Rn \ cl I is connected. Let k ∈ ]0,+∞[. For each (i, j) ∈ {1, . . . , n}2, we set

mij [I, k] ≡
∫
∂I
tjθi(t) dσt,

where θi is the unique function in Cm−1,α(∂I) such that

1
2
θi(t)−

k − 1
k + 1

∫
∂I

∂

∂νI(t)
(Sn(t− s))θi(s) dσs =

k − 1
k + 1

(νI(t))i ∀t ∈ ∂I. (5.8)

We also define the matrix M ∈Mn×n(R), by setting

M [I, k] ≡ (mij [I, k])i,j=1,...,n.

5.2 Asymptotic behaviour of the effective electrical conductiv-
ity

5.2.1 Notation and preliminaries

We retain the notation of Section 5.1 and Subsection 1.8.1.
We give the following.

Definition 5.6. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Let (i, j) ∈ {1, . . . , n}2. For each ε ∈ ]0, ε1[, we set

σ̃ij [ε] ≡ σ̃ij [Ωε, σ, σ0].

We set also
σ̃[ε] ≡ σ̃[Ωε, σ, σ0].

Our aim is to investigate the behaviour of σ̃ij [ε] as ε tends to 0. By Lemma 5.4, we know that
σ̃ij [ε] can be expressed by means of the solution of an integral equation defined on the ε-dependent
domain ∂Ωε. In the following Proposition we convert this equation into an integral equation defined
on the fixed domain ∂Ω.
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Proposition 5.7. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Let i ∈ {1, . . . , n}. Let Λi be the map of ]−ε1, ε1[×Cm−1,α(∂Ω)
in Cm−1,α(∂Ω) defined by

Λi[ε, θ](t) ≡
1
2
θ(t)−

(σ − σ0

σ + σ0

) ∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs

−
(σ − σ0

σ + σ0

)
εn−1

∫
∂Ω

νΩ(t) ·DRan(ε(t− s))θ(s) dσs −
σ − σ0

σ + σ0
(νΩ(t))i ∀t ∈ ∂Ω,

(5.9)

for all (ε, θ) ∈ ]−ε1, ε1[× Cm−1,α(∂Ω). Then the following statements hold.

(i) If ε ∈ ]0, ε1[, then the function θ ∈ Cm−1,α(∂Ω) satisfies equation

Λi[ε, θ] = 0, (5.10)

if and only if the function µ ∈ Cm−1,α(∂Ωε), defined by

µ(x) ≡ θ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (5.11)

satisfies the equation

σ − σ0

σ + σ0
(νΩε(x))i =

1
2
µ(x)− σ − σ0

σ + σ0

∫
∂Ωε

∂

∂νΩε(x)
(San(x− y))µ(y) dσy ∀x ∈ ∂Ωε. (5.12)

In particular, equation (5.10) has exactly one solution θ ∈ Cm−1,α(∂Ω), for each ε ∈ ]0, ε1[.
Moreover, if θ solves (5.10), then θ ∈ Um−1,α

0 , and so also θ( 1
ε (· − w)) ∈ Um−1,α

ε .

(ii) The function θ ∈ Cm−1,α(∂Ω) satisfies equation

Λi[0, θ] = 0, (5.13)

if and only if

σ − σ0

σ + σ0
(νΩ(t))i =

1
2
θ(t)− σ − σ0

σ + σ0

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (5.14)

In particular, equation (5.13) has exactly one solution θ ∈ Cm−1,α(∂Ω), which we denote by θ̃i.
Moreover, if θ solves (5.14), then θ ∈ Um−1,α

0 .

Proof. It follows by Proposition 4.11, with

φ ≡ 1, γ ≡ σ

σ0
, g(·) ≡ σ − σ0

σ0
(νΩ(·))i.

By Proposition 5.7, it makes sense to give the following.

Definition 5.8. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Let i ∈ {1, . . . , n}. For each ε ∈ ]0, ε1[, we denote by θ̂i[ε]
the unique function in Cm−1,α(∂Ω) that solves (5.10). Analogously, we denote by θ̂i[0] the unique
function in Cm−1,α(∂Ω) that solves (5.13).

The relation between θ̂i[ε] and σ̃ij [ε] is explained in the following.

Remark 5.9. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let σ0, σ be as in (5.1). Let (i, j) ∈ {1, . . . , n}2. Let ε ∈ ]0, ε1[. Then we have

σ̃ij [ε] = σ0

(
δij + εn−1

∫
∂Ω

(w + εt)j θ̂i[ε](t) dσt
)

= σ0

(
δij + εn

∫
∂Ω

tj θ̂i[ε](t) dσt
)
.
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While the relation between the solution of equation (5.10) and σ̃ij [ε] is now clear, in the following
remark we show that the solution of equation (5.13) is related to the matrix M

[
Ω, σσ0

]
Remark 5.10. Let m ∈ N\{0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let σ0, σ be as in (5.1). Let (i, j) ∈ {1, . . . , n}2. Then we have

mij

[
Ω,

σ

σ0

]
=
∫
∂Ω

tj θ̂i[0](t) dσt,

where mij is as in Definition 5.5.

We now prove the following.

Proposition 5.11. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Let i ∈ {1, . . . , n}. Let Λi and θ̃i be as in Proposition 5.7.
Then there exists ε2 ∈ ]0, ε1] such that Λi is a real analytic operator of ]−ε2, ε2[ × Cm−1,α(∂Ω) to
Cm−1,α(∂Ω). Moreover, if we set b0 ≡ (0, θ̃i), then the differential ∂θΛi[b0] of Λi with respect to the
variable θ at b0 is delivered by the following formula

∂θΛi[b0](θ̄)(t) =
1
2
θ̄(t)−

(σ − σ0

σ + σ0

) ∫
∂Ω

νΩ(t) ·DSn(t− s)θ̄(s) dσs ∀t ∈ ∂Ω, (5.15)

for all θ̄ ∈ Cm−1,α(∂Ω), and is a linear homeomorphism of Cm−1,α(∂Ω) onto Cm−1,α(∂Ω).

Proof. It follows by Proposition 4.16, with

φ ≡ 1, γ ≡ σ

σ0
, g(·) ≡ σ − σ0

σ0
(νΩ(·))i.

We are now ready to prove that θ̂i[·] can be continued real analytically on a whole neighbourhood
of 0.

Proposition 5.12. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Let i ∈ {1, . . . , n}. Let ε2 be as in Proposition 5.11. Then there
exist ε3 ∈ ]0, ε2] and a real analytic operator Θi of ]−ε3, ε3[ to Cm−1,α(∂Ω), such that

Θi[ε] = θ̂i[ε], (5.16)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 5.11 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

5.2.2 A representation Theorem for the effective conductivity
By Proposition 5.12 and Remark 5.9, we can deduce the main result of this Subsection.

Theorem 5.13. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Let (i, j) ∈ {1, . . . , n}2. Let ε3 be as in Proposition 5.12. Then
there exists a real analytic operator Uij of ]−ε3, ε3[ to R, such that

σ̃ij [ε] = σ0

(
δij + εnUij [ε]

)
, (5.17)

for all ε ∈ ]0, ε3[. Moreover,
Uij [0] = mij

[
Ω,

σ

σ0

]
. (5.18)

Proof. Let Θi be as in Proposition 5.12. Let ε ∈ ]0, ε3[. By Remark 5.9, we have

σ̃ij [ε] = σ0

(
δij + εn

∫
∂Ω

tjΘi[ε](t) dσt
)
.
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As a consequence, it suffices to set

Uij [ε] ≡
∫
∂Ω

tjΘi[ε](t) dσt,

for all ε ∈ ]−ε3, ε3[. Obviously, Uij is a real analytic map of ]−ε3, ε3[ to R. Moreover, by Remark 5.10,
we have

mij

[
Ω,

σ

σ0

]
=
∫
∂Ω

tjΘi[0](t) dσt = Uij [0].

Hence the proof is complete.

Corollary 5.14. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Then there exist ε4 ∈ ]0, ε1[ and a real analytic operator U of
]−ε4, ε4[ to Mn×n(R), such that

σ̃[ε] = σ0

(
In + εnU [ε]

)
, (5.19)

for all ε ∈ ]0, ε4[, where In denotes the identity matrix in Mn×n(R). Moreover,

U [0] = M
[
Ω,

σ

σ0

]
. (5.20)

Proof. It is an immediate consequence of Theorem 5.13.

Remark 5.15. We note that the right-hand side of (5.17) and of (5.19) can be continued real analytically
in a whole neighbourhood of 0.

Obviously, we can deduce the following result (see also Ammari and Kang [3, Theorem 8.1, p. 200].)

Theorem 5.16. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let σ0, σ be as in (5.1). Let ρ1 ∈ ]0,+∞[. Let ω be a real analytic function of ]−ρ1, ρ1[
to ]−ε1, ε1[, such that

ω(ρ) ∈ ]0, ε1[ ∀ρ ∈ ]0, ρ1[,

and
lim
ρ→0

ω(ρ) = 0.

We set
σ̃ω[ρ] ≡ σ̃[ω(ρ)],

for all ρ ∈ ]0, ρ1[. Then there exist ρ2 ∈ ]0, ρ1[ and a real analytic operator Uω of ]−ρ2, ρ2[ to Mn×n(R),
such that

σ̃ω[ρ] = σ0

(
In + ω(ρ)nUω[ρ]

)
, (5.21)

for all ρ ∈ ]0, ρ2[, where In denotes the identity matrix in Mn×n(R). Moreover,

Uω[0] = M
[
Ω,

σ

σ0

]
. (5.22)

Proof. It is an immediate consequence of Theorem 5.13 and Corollary 5.14.

Remark 5.17. Assume, for the sake of simplicity, that n = 2. We observe that Theorem 5.2 of Ammari,
Kang and Touibi [6, p. 132] (cf. also Ammari and Kang [3, Theorem 8.1, p. 200]) asserts that

σ̃[ε] = σ0

(
I2 + ε2M

[
Ω,

σ

σ0

]
+
ε4

2
M
[
Ω,

σ

σ0

]2)+ O(ε6). (5.23)

Then, by combining equation (5.23) with Corollary 5.14, one can prove that there exist ε̃ > 0 and a
real analytic map Ũ of ]−ε̃, ε̃[ to M2×2(R) such that

σ̃[ε] = σ0

(
I2 + ε2M

[
Ω,

σ

σ0

]
+
ε4

2
M
[
Ω,

σ

σ0

]2)+ ε6Ũ [ε], (5.24)

for all ε ∈ ]0, ε̃[.



CHAPTER 6

Periodic simple and double layer potentials for the
Helmholtz equation

This Chapter is mainly devoted to the definition of periodic analogues of the simple and double layer
potentials for the Helmholtz equation. Namely, we construct these objects by replacing the classical
fundamental solution of the Helmholtz operator with a periodic analogue in the definition of the
classical layer potentials for the Helmholtz equation. Moreover, we prove some regularity results for
the solutions of some integral equations, involved in the resolution of boundary value problems by
means of periodic potentials. Some of the results are based on the classical analogous results (cf. e.g.,
Lanza and Rossi [86].) For a generalization of some results contained in this Chapter, we refer to [81].

We retain the notation introduced in Sections 1.1 and 1.3. For notation, definitions and properties
from classical potential theory for the Helmholtz equation we refer to Appendix E.

6.1 Construction of a periodic analogue of the fundamental
solution for the Helmholtz equation

In this Section, we construct a periodic analogue of the fundamental solution for the Helmholtz equation.
In order to do so, we follow the same strategy, based on Fourier Analysis, used for the periodic analogue
of the fundamental solution for the Laplace equation. For this and other constructions, we refer, for
example, to Ammari, Kang and Lee [4, p. 123], Ammari, Kang, Soussi and Zribi [5], Dienstfrey, Hang
and Huang [47], Linton [87], McPhedran, Nicorovici, Botten and Bao [94], Nicorovici, McPhedran and
Botten. [106], Poulton, Botten, McPhedran and Movchan [114]. We have the following Theorem.

Theorem 6.1. Let k ∈ C. We set

Za(k) ≡
{
z ∈ Zn : k2 = |2πa−1(z)|2

}
. (6.1)

Let Ga,kn be the element of S ′(Rn) defined by

Ga,kn ≡
∑

z∈Zn\Za(k)

1
|A|n(k2 − |2πa−1(z)|2)

E2πa−1(z). (6.2)

Then the following statements hold.

(i)
τlajG

a,k
n = Ga,kn ∀l ∈ Z, ∀j ∈ {1, . . . , n}. (6.3)

(ii)

(∆ + k2)Ga,kn =
∑
z∈Zn

δa(z) −
∑

z∈Za(k)

1
|A|n

E2πa−1(z) in S ′(Rn), (6.4)

in the sense of distributions.

245
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Proof. By Proposition 1.1, Ga,kn is an element of S ′(Rn) such that (i) holds. Now we need to prove
(6.4). By continuity of the Laplace operator from S ′(Rn) to S ′(Rn), we have

(∆ + k2)Ga,kn =
∑

z∈Zn\Za(k)

1
|A|n

E2πa−1(z)

=
∑
z∈Zn

1
|A|n

E2πa−1(z) −
∑

z∈Za(k)

1
|A|n

E2πa−1(z) in S ′(Rn).
(6.5)

On the other hand, by Proposition 1.2, we have∑
z∈Zn

1
|A|n

E2πa−1(z) =
∑
z∈Zn

δa(z) in S ′(Rn),

and so the validity of the statement in (ii) follows.

Remark 6.2. We observe that, if k2 6= 4π2|a−1(z)|2 for all z ∈ Zn, then Za(k) = ∅ and so

(∆ + k2)Ga,kn =
∑
z∈Zn

δa(z) in S ′(Rn).

Theorem 6.3. Let k ∈ C. Let Za(k) be as in (6.1). Let Ga,kn be as in Theorem 6.1. Let the function
Sn(·, k) of Rn \ {0} to C be the fundamental solution of ∆ + k2 defined in Proposition E.3. Then the
following statements hold.

(i) There exists a unique function Sa,kn in L1
loc(Rn,C) such that∫

Rn
Sa,kn (x)φ(x) dx =

〈
Ga,kn , φ

〉
∀φ ∈ D(Rn,C). (6.6)

In particular,

(∆ + k2)Sa,kn =
∑
z∈Zn

δa(z) −
∑

z∈Za(k)

1
|A|n

E2πa−1(z) (6.7)

in the sense of distributions. Moreover, Sa,kn equals almost everywhere a real analytic function
of Rn \ Zan to C and

(∆ + k2)Sa,kn (x) = −
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·x ∀x ∈ Rn \ Zan (6.8)

and
Sa,kn (x+ aj) = Sa,kn (x) ∀x ∈ Rn \ Zan, ∀j ∈ {1, . . . , n}. (6.9)

(ii) There exists a unique real analytic function Ra,kn of (Rn \ Zan) ∪ {0} to C, such that

Sa,kn (x) = Sn(x, k) +Ra,kn (x) ∀x ∈ Rn \ Zan.

Moreover,

(∆ + k2)Ra,kn (x) = −
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·x ∀x ∈ (Rn \ Zan) ∪ {0}.

Proof. Now let F ∈ D′(Rn,C) be defined by

〈F, φ〉 =
〈
Ga,kn , φ

〉
−
∫

Rn
Sn(x, k)φ(x) dx ∀φ ∈ D(Rn,C). (6.10)

We have
(∆ + k2)F =

∑
z∈Zn\{0}

δa(z) −
∑

z∈Za(k)

1
|A|n

E2πa−1(z) in D′(Rn,C).



6.1 Construction of a periodic analogue of the fundamental solution for the Helmholtz equation 247

By standard elliptic regularity theory (cf. e.g., Friedman [54, Theorem 1.2, p. 205]), there exists a
real analytic function R̃a,kn of O to C (cf. (1.6)), such that∫

O
R̃a,kn (x)φ(x) dx = 〈F, φ〉 ∀φ ∈ D(O,C).

Moreover,

(∆ + k2)R̃a,kn (x) = −
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·x ∀x ∈ O.

Clearly, by (6.10), we have∫
O

(Sn(x, k) + R̃a,kn (x))φ(x) dx =
〈
Ga,kn , φ

〉
∀φ ∈ D(O,C). (6.11)

Let

Õ ≡
n∏
j=1

]−3ajj
5
,

3ajj
5

[.

Next we define Sa,kn ∈ L1
loc(Rn,C) by setting

Sa,kn
(
x+ a(z)

)
= Sn(x, k) + R̃a,kn (x) ∀x ∈ Õ \ {0}, ∀z ∈ Zn.

By (6.11) and the periodicity of Ga,kn , the function Sa,kn is well defined. Indeed, one can easily verify
that if x ∈ Õ \ {0}, z ∈ Zn, and x+ a(z) ∈ Õ, then

Sn(x, k) + R̃a,kn (x) = Sn(x+ a(z), k) + R̃a,kn (x+ a(z)).

Furthermore, by (6.11), the periodicity of Ga,kn , and the definition of Sa,kn , we have∫
Õ+a(z)

Sa,kn (x)φ(x) dx =
〈
Ga,kn , φ

〉
∀φ ∈ D(Õ + a(z),C),

for all z ∈ Zn. As a consequence,∫
Rn
Sa,kn (x)φ(x) dx =

〈
Ga,kn , φ

〉
∀φ ∈ D(Rn,C).

Moreover, since Sn(·, k) and Ra,kn (·) are real analytic in Õ \ {0}, Sa,kn is a real analytic function of
Rn \ Zan to C, such that (6.8) and (6.9) hold.

Finally, if we set
Ra,kn (x) ≡ Sa,kn (x)− Sn(x, k) ∀x ∈ Rn \ Zan,

then, by (6.7) and by standard elliptic regularity theory, we have that Ra,kn can be extended by
continuity to a real analytic function (that we still call Ra,kn ) of (Rn \ Zan) ∪ {0} to C, such that (ii)
holds.

Remark 6.4. By arguing on the definition of Ga,kn and Sa,kn , one can easily show that

Sa,kn (x) = Sa,kn (−x) ∀x ∈ Rn \ Zan.

Remark 6.5. Let k ∈ C. Then

∑
z∈Zn

k2=|2πa−1(z)|2

ei2πa
−1(z)·x =

∑
z∈Nn

k2=|2πa−1(z)|2

n∏
j=1

(2− δ0,zj ) cos
2πzjxj
ajj

,

for all x ∈ Rn.
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6.2 Periodic double layer potential for the Helmholtz equation

In this Section we define the periodic double layer potential for the Helmholtz equation. The
construction is quite natural. We substitute in the definition of the (classical) double layer potential
the fundamental solution of the Helmholtz equation Sn(·, k) with the function Sa,kn introduced in
Theorem 6.3.

Definition 6.6. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let µ ∈ L2(∂I,C). We
set

wa[∂I, µ, k](t) ≡
∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ Rn.

The function wa[∂I, µ, k] is called the periodic double layer potential for the Helmholtz equation with
moment µ.

In the following Theorem we collect some properties of the periodic double layer potential for the
Helmholtz equation.

Theorem 6.7. Let k ∈ C. Let Za(k) be as in (6.1). Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46).
Then the following statements hold.

(i) Let µ ∈ Cm,α(∂I,C). Then

(∆ + k2)wa[∂I, µ, k](t)

=
1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
i2πνI(s) · a−1(z)e−i2πa

−1(z)·sµ(s) dσs

∀t ∈ Sa[I] ∪ Ta[I],

(6.12)

and
wa[∂I, µ, k](t+ aj) = wa[∂I, µ, k](t) ∀t ∈ Sa[I] ∪ Ta[I], ∀j ∈ {1, . . . , n}.

The restriction of wa[∂I, µ, k] to the set Sa[I] can be extended uniquely to a continuous periodic
function w+

a [∂I, µ, k] of cl Sa[I] to C, and w+
a [∂I, µ, k] ∈ Cm,α(cl Sa[I],C). The restriction of

wa[∂I, µ, k] to the set Ta[I] can be extended uniquely to a continuous periodic function w−a [∂I, µ, k]
of cl Ta[I] to C, and w−a [∂I, µ, k] ∈ Cm,α(cl Ta[I],C). Moreover, we have the following jump
relations

w+
a [∂I, µ, k](t) = +

1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

w−a [∂I, µ, k](t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

Dw+
a [∂I, µ, k] · νI −Dw−a [∂I, µ, k] · νI = 0 on ∂I.

(ii) The map of Cm,α(∂I,C) to Cm,α(∂I,C) which takes µ to w+
a [∂I, µ, k]|∂I is linear and continuous

(and thus real analytic.) The map of Cm,α(∂I,C) to Cm,α(∂I,C) which takes µ to w−a [∂I, µ, k]|∂I
is linear and continuous (and thus real analytic.)

Proof. We start with (i). Let µ ∈ Cm,α(∂I,C). Clearly, the periodicity of wa[∂I, µ, k] follows by the
periodicity of Sa,kn (see (6.9).) By classical theorems of differentiation under the integral sign and by
Theorem 6.3, we have that

(∆ + k2)wa[∂I, µ, k](t)

=
1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
i2πνI(s) · a−1(z)e−i2πa

−1(z)·sµ(s) dσs

∀t ∈ Sa[I] ∪ Ta[I].

We have

wa[∂I, µ, k](t) = w[∂I, µ, k](t) +
∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs ∀t ∈ Sa[I] ∪ Ta[I].
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Since Ra,kn is real analytic in (Rn \ Zan) ∪ {0}, then the second term in the right-hand side of the
previous equality is a function of class C∞ in an open bounded subset Ṽ of Rn, of class C∞, such
that clA ⊆ Ṽ and

cl Ṽ ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

(cf. the proof of Theorem 1.13.) We set

W̃ ≡ Ṽ \ cl I.

By Theorem E.4 (i),

wa[∂I, µ, k](t) = w+[∂I, µ, k](t) +
∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs ∀t ∈ I,

and

wa[∂I, µ, k](t) = w−[∂I, µ, k](t) +
∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs ∀t ∈ W̃ .

Furthermore, the terms in the right-hand side of the two previous equalities are continuous functions
in cl I and cl W̃ , respectively. Hence, by Lemma 1.11, we can easily conclude that wa[∂I, µ, k]|Sa[I] can
be extended uniquely to a continuous periodic function w+

a [∂I, µ, k] of cl Sa[I] to C, and w+
a [∂I, µ, k] ∈

Cm,α(cl Sa[I],C). Analogously, by Lemma 1.10, the restriction of wa[∂I, µ, k] to the set Ta[I] can be
extended uniquely to a continuous periodic function w−a [∂I, µ, k] of cl Ta[I] to C, and w−a [∂I, µ, k] ∈
Cm,α(cl Ta[I],C). Clearly,

w+
a [∂I, µ, k](t) = w+[∂I, µ, k](t) +

∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s, k))µ(s) dσs +

∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

and

w−a [∂I, µ, k](t) = w−[∂I, µ, k](t) +
∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s, k))µ(s) dσs +

∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I.

Thus, the jump relations hold and the statement in (i) is proved. We now turn to the proof of (ii). Set

H[µ](t) ≡
∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

for all µ ∈ Cm,α(∂I,C). By Theorem C.2, it is easy to see that H is a linear and continuous map of
Cm,α(∂I,C) to Cm,α(∂I,C). We have

w+
a [∂I, µ, k](t) = +

1
2
µ(t) + w[∂I, µ, k](t) +H[µ](t) ∀t ∈ ∂I,

and

w−a [∂I, µ, k](t) = −1
2
µ(t) + w[∂I, µ, k](t) +H[µ](t) ∀t ∈ ∂I.

Then, by virtue of Theorem E.6 (iii), we conclude that the map of Cm,α(∂I,C) to Cm,α(∂I,C) which
takes µ to w+

a [∂I, µ, k]|∂I is linear and continuous. Analogously, by virtue of Theorem E.6 (iii), we
conclude that the map of Cm,α(∂I,C) to Cm,α(∂I,C) which takes µ to w−a [∂I, µ]|∂I is linear and
continuous. The Theorem is now completely proved.



250 Periodic simple and double layer potentials for the Helmholtz equation

Corollary 6.8. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Assume that
k2 6= |2πa−1(z)|2 for all z ∈ Zn. Then

(∆ + k2)wa[∂I, µ, k](t) = 0 ∀t ∈ Sa[I] ∪ Ta[I],

for all µ ∈ Cm,α(∂I,C).

Proof. It is an immediate consequence of Theorem 6.7.

Then we have the following.

Proposition 6.9. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Assume that the set
Za(k) is nonempty (cf. (6.1).) Let µ ∈ Cm,α(∂I,C). Let V be a nonempty open subset of Rn such
that V ⊆ Ta[I] ∪ Sa[I]. Then

(∆ + k2)wa[∂I, µ, k](t) = 0 ∀t ∈ V, (6.13)

if and only if ∫
∂I
νI(s) · a−1(z)e−i2πa

−1(z)·sµ(s) dσs = 0 ∀z ∈ Za(k). (6.14)

Proof. Obviously, if (6.14) holds, then, by virtue of Theorem 6.7 (i), we have

(∆ + k2)wa[∂I, µ, k](t) = 0 ∀t ∈ Sa[I] ∪ Ta[I],

and, as a consequence, (6.13) holds. Conversely, assume that (6.13) holds. Then, by Theorem 6.7 (i),
we have

1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
i2πνI(s) · a−1(z)e−i2πa

−1(z)·sµ(s) dσs = 0 ∀t ∈ V.

Consequently, by the identity theorem for real analytic functions, we have

1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
i2πνI(s) · a−1(z)e−i2πa

−1(z)·sµ(s) dσs = 0 ∀t ∈ Rn.

Now let z0 ∈ Za(k). By multiplying both sides of the previous equality by e−i2πa
−1(z0)·t and then by

integrating on clA, we easily obtain∫
∂I
i2πνI(s) · a−1(z0)e−i2πa

−1(z0)·sµ(s) dσs = 0.

Accordingly, (6.14) holds and the Proposition is proved.

6.3 Periodic simple layer potential for the Helmholtz equation

In this Section we define the periodic simple layer potential for the Helmholtz equation. As already
done for the double layer potential, we substitute in the definition of the (classical) simple layer
potential the fundamental solution of the Helmholtz equation Sn(·, k) with the function Sa,kn introduced
in Theorem 6.3.

Definition 6.10. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let µ ∈ L2(∂I,C).
We set

va[∂I, µ, k](t) ≡
∫
∂I
Sa,kn (t− s)µ(s) dσs ∀t ∈ Rn.

The function va[∂I, µ, k] is called the periodic simple layer potential for the Helmholtz equation with
moment µ.

In the following Theorem we collect some properties of the periodic simple layer potential for the
Helmholtz equation.
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Theorem 6.11. Let k ∈ C. Let Za(k) be as in (6.1). Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in
(1.46). Then the following statements hold.

(i) Let µ ∈ Cm−1,α(∂I,C). Then the function va[∂I, µ, k] is continuous in Rn, and

(∆ + k2)va[∂I, µ, k](t) = − 1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
e−i2πa

−1(z)·sµ(s) dσs

∀t ∈ Sa[I] ∪ Ta[I],
(6.15)

and
va[∂I, µ, k](t+ aj) = va[∂I, µ, k](t) ∀t ∈ Sa[I] ∪ Ta[I], ∀j ∈ {1, . . . , n}.

Let v+
a [∂I, µ, k] and v−a [∂I, µ, k] denote the restriction of va[∂I, µ, k] to the set cl Sa[I] and to the set

cl Ta[I], respectively. Then v+
a [∂I, µ, k] ∈ Cm,α(cl Sa[I],C), and v−a [∂I, µ, k] ∈ Cm,α(cl Ta[I],C).

Moreover, we have the following jump relations

∂

∂νI
v+
a [∂I, µ, k](t) = −1

2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

∂

∂νI
v−a [∂I, µ, k](t) = +

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

∂

∂νI
v−a [∂I, µ, k](t)− ∂

∂νI
v+
a [∂I, µ, k](t) = µ(t) ∀t ∈ ∂I.

(ii) The map of Cm−1,α(∂I,C) to Cm,α(∂I,C) which takes µ to va[∂I, µ, k]|∂I is linear and continuous
(and thus real analytic.)

(iii) The map of Cm−1,α(∂I,C) to Cm−1,α(∂I,C) which takes µ to the function va∗[∂I, µ, k] of ∂I to
C, defined by

va∗[∂I, µ, k](t) ≡
∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

is linear and continuous (and thus real analytic.)

Proof. We start with (i). Let µ ∈ Cm−1,α(∂I,C). Clearly, the periodicity of va[∂I, µ, k] follows by
the periodicity of Sa,kn (see (6.9).) Let Ṽ be an open bounded subset of Rn of class C∞, such that
clA ⊆ Ṽ and

cl Ṽ ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

(cf. the proof of Theorem 1.13.) Set
W̃ ≡ Ṽ \ cl I.

Obviously,

va[∂I, µ, k](t) = v[∂I, µ, k](t) +
∫
∂I
Ra,kn (t− s)µ(s) dσs ∀t ∈ cl Ṽ .

By Theorem E.5, the function v[∂I, µ, k] is continuous on cl Ṽ . Moreover, the second term in the
right-hand side of the previous equality defines a real analytic function on cl Ṽ . Thus, the restriction of
the function va[∂I, µ, k] to the set cl Ṽ is continuous, and so, by virtue of the periodicity of va[∂I, µ, k],
we can conclude that va[∂I, µ, k] is continuous on Rn. By classical theorems of differentiation under
the integral sign, by Theorem 6.3, by arguing in W̃ and in I and then exploiting the periodicity of
va[∂I, µ, k], we have that

(∆ + k2)va[∂I, µ, k](t) = − 1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
e−i2πa

−1(z)·sµ(s) dσs

∀t ∈ Sa[I] ∪ Ta[I].

Clearly,

v+
a [∂I, µ, k](t) = v+[∂I, µ, k](t) +

∫
∂I
Ra,kn (t− s)µ(s) dσs ∀t ∈ I,
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and
v−a [∂I, µ, k](t) = v−[∂I, µ, k](t) +

∫
∂I
Ra,kn (t− s)µ(s) dσs ∀t ∈ cl W̃ .

Then by Lemma 1.11 and Theorem E.5, we can conclude that v+
a [∂I, µ, k] ∈ Cm,α(cl S[I],C). Analo-

gously, by Lemma 1.10 and Theorem E.5, we conclude that v−a [∂I, µ, k] ∈ Cm,α(cl T[I],C). Moreover,
by Theorem E.5, we have

∂

∂νI
v+
a [∂I, µ, k](t) =

∂

∂νI
v+[∂I, µ, k](t) +

∫
∂I

∂

∂νI(t)
(Ra,kn (t− s))µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs +

∫
∂I

∂

∂νI(t)
(Ra,kn (t− s))µ(s) dσs

= −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I,

and
∂

∂νI
v−a [∂I, µ, k](t) =

∂

∂νI
v−[∂I, µ, k](t) +

∫
∂I

∂

∂νI(t)
(Ra,kn (t− s))µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs +

∫
∂I

∂

∂νI(t)
(Ra,kn (t− s))µ(s) dσs

= +
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I.

Accordingly,
∂

∂νI
v−a [∂I, µ, k](t)− ∂

∂νI
v+
a [∂I, µ, k](t) = µ(t) ∀t ∈ ∂I.

We now turn to the proof of (ii). Set

H[µ](t) ≡
∫
∂I
Ra,kn (t− s)µ(s) dσs ∀t ∈ ∂I,

for all µ ∈ Cm−1,α(∂I,C). By Theorem C.2, it is easy to see that H is a linear and continuous map of
Cm−1,α(∂I,C) to Cm,α(∂I,C). We have

va[∂I, µ, k](t) = v[∂I, µ, k](t) +H[µ](t) ∀t ∈ ∂I.

Since the linear map of Cm−1,α(∂I,C) to Cm,α(∂I,C) which takes µ to H[µ] is continuous, then, by
virtue of Theorem E.6 (i), we conclude that the map of Cm−1,α(∂I,C) to Cm,α(∂I,C) which takes µ
to va[∂I, µ, k]|∂I is linear and continuous. Consider now (iii). Let µ ∈ Cm−1,α(∂I,C). We have

va∗[∂I, µ, k](t) =
∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs +

∫
∂I
νI(t) ·DRa,kn (t− s)µ(s) dσs ∀t ∈ ∂I.

By Theorem C.2, one can easily show that the map H ′ of Cm−1,α(∂I,C) to Cm−1,α(∂I,C) which
takes µ to the function H ′[µ] of ∂I to C, defined by

H ′[µ](t) ≡
∫
∂I
νI(t) ·DRa,kn (t− s)µ(s) dσs ∀t ∈ ∂I,

is real continuous. On the other hand, by virtue of Theorem E.6 (ii), the map v∗[∂I, ·, k] of
Cm−1,α(∂I,C) to Cm−1,α(∂I,C) which takes µ to the function v∗[∂I, µ, k] of ∂I to C, defined by

v∗[∂I, µ, k](t) ≡
∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs ∀t ∈ ∂I,

is continuous. Thus, the map va∗[∂I, ·, k] of Cm−1,α(∂I,C) to Cm−1,α(∂I,C) is continuous. Hence,
the proof is now complete.

Corollary 6.12. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Assume that
k2 6= |2πa−1(z)|2 for all z ∈ Zn. Then

(∆ + k2)va[∂I, µ, k](t) = 0 ∀t ∈ Sa[I] ∪ Ta[I],

for all µ ∈ Cm−1,α(∂I,C).
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Proof. It is an immediate consequence of Theorem 6.11.

Then we have the following.

Proposition 6.13. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Assume that the
set Za(k) is nonempty (cf. (6.1).) Let µ ∈ Cm−1,α(∂I,C). Let V be a nonempty open subset of Rn
such that V ⊆ Ta[I] ∪ Sa[I]. Then

(∆ + k2)va[∂I, µ, k](t) = 0 ∀t ∈ V, (6.16)

if and only if ∫
∂I
e−i2πa

−1(z)·sµ(s) dσs = 0 ∀z ∈ Za(k). (6.17)

Proof. Obviously, if (6.17) holds, then, by virtue of Theorem 6.11, we have

(∆ + k2)va[∂I, µ, k](t) = 0 ∀t ∈ Sa[I] ∪ Ta[I],

and, as a consequence, (6.16) holds. Conversely, assume that (6.16) holds. Then, by Theorem 6.11,
we have

− 1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
e−i2πa

−1(z)·sµ(s) dσs = 0 ∀t ∈ V.

Consequently, by the identity theorem for real analytic functions, we have

− 1
|A|n

∑
z∈Za(k)

ei2πa
−1(z)·t

∫
∂I
e−i2πa

−1(z)·sµ(s) dσs = 0 ∀t ∈ Rn.

Now let z0 ∈ Za(k). By multiplying both sides of the previous equality by e−i2πa
−1(z0)·t and then by

integrating on clA, we easily obtain∫
∂I
e−i2πa

−1(z0)·sµ(s) dσs = 0.

Accordingly, (6.17) holds and the Proposition is proved.

6.4 Periodic Helmholtz volume potential

In this Section we introduce an analogue of the periodic Newtonian potential for the Helmholtz
equation.

We give the following.

Definition 6.14. Let k ∈ C. Let f ∈ C0(Rn,C) be such that

f(t+ aj) = f(t) ∀t ∈ Rn, ∀j ∈ {1, . . . , n}.

We set
pa[f, k](t) ≡

∫
A

Sa,kn (t− s)f(s) ds ∀t ∈ Rn.

The function pa[f, k] is called the periodic Helmholtz volume potential of f .

Remark 6.15. Let k and f be as in Definition 6.14. Let t ∈ Rn be fixed. We note that the function
Sa,kn (t− ·)f(·) is in L1

loc(Rn,C), and so pa[f, k](t) is well defined.

In the following Theorem, we prove some elementary properties of the periodic Helmholtz volume
potential.

Theorem 6.16. Let k ∈ C. Let Za(k) be as in (6.1). Let m ∈ N, α ∈ ]0, 1[. Let f ∈ Cm,α(Rn,C) be
such that

f(t+ aj) = f(t) ∀t ∈ Rn, ∀j ∈ {1, . . . , n}.

Then the following statements hold.
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(i)
pa[f, k](t+ aj) = pa[f, k](t) ∀t ∈ Rn, ∀j ∈ {1, . . . , n}.

(ii)
pa[f, k] ∈ Cm+2,α(Rn,C).

(iii)

(∆ + k2)pa[f, k](t) = f(t)−
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds ∀t ∈ Rn.

Proof. We modify the proof of Theorem 1.18. Clearly, the statement in (i) is a straightforward
consequence of the periodicity of Sa,kn . We need to prove (ii) and (iii). We first prove (iii). Obviously,

f ∈ Cm,α(clV,C),

for all bounded open subsets V of Rn. Let x̄ ∈ Rn. By Proposition D.1 (ii) (with δ = 1), we have

pa[f, k](t) =
∫
Ã+x̄

Sa,kn (t− s)f(s) ds ∀t ∈ Rn.

Now set
U ≡ x̄+ Bn (0,min{a11, . . . , ann}/3) .

As a first step, we want to prove that pa[f, k]|U ∈ C2(U,C) and that

(∆ + k2)pa[f, k](t) = f(t)−
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds ∀t ∈ U.

We have
pa[f, k](t) =

∫
Ã+x̄

Sn(t− s, k)f(s) ds+
∫
Ã+x̄

Ra,kn (t− s)f(s) ds ∀t ∈ U.

Set
u1(t) ≡

∫
Ã+x̄

Sn(t− s, k)f(s) ds ∀t ∈ U,

and
u2(t) ≡

∫
Ã+x̄

Ra,kn (t− s)f(s) ds ∀t ∈ U.

Then we have that u1 ∈ C2(U,C) and

(∆ + k2)u1(t) = f(t) ∀t ∈ U.

On the other hand, by classical theorems of differentiation under the integral sign, we have that
u2 ∈ C∞(U,C) and

(∆ + k2)u2(t) = −
∑

z∈Za(k)

1
|A|n

∫
A+x̄

f(s)ei2πa
−1(z)·(t−s) ds

= −
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds ∀t ∈ U.

Hence, pa[f, k]|U ∈ C2(U,C) and

(∆ + k2)pa[f, k](t) = f(t)−
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds ∀t ∈ U.

Accordingly, pa[f, k] ∈ C2(Rn,C) and

(∆ + k2)pa[f, k](t) = f(t)−
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds ∀t ∈ Rn,

and so the statement in (iii) is proved. We need to prove (ii). We note that if f ∈ Cm,α(Rn,C), then
(∆ + k2)pa[f, k] ∈ Cm,α(Rn,C). Hence, by standard elliptic regularity theory (cf. Folland [52, p. 82],
Stein [130, § VI.5] and Taylor [133, § XI.2]), the statement in (ii) easily follows.
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Remark 6.17. Let k, m, α and f be as in Theorem 6.16. Let Za(k) be as in (6.1). As we did for the
Laplacian of the periodic Newtonian potential, we observe that the presence of the term

−
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds

in (∆ + k2)pa[f, k](t) is, somehow, natural. Indeed, let u, v ∈ C2(Rn,C) be such that

u(t+ aj) = u(t) ∀t ∈ Rn, ∀j ∈ {1, . . . , n},

and
v(t+ aj) = v(t) ∀t ∈ Rn, ∀j ∈ {1, . . . , n}.

By Green’s Formula, we have∫
A

n∑
j=1

∂u(t)
∂tj

∂v(t)
∂tj

dt = −
∫
A

∆u(t)v(t) dt+
∫
∂A

∂u(t)
∂νA

v(t) dσt,

and ∫
A

n∑
j=1

∂u(t)
∂tj

∂v(t)
∂tj

dt = −
∫
A

∆v(t)u(t) dt+
∫
∂A

∂v(t)
∂νA

u(t) dσt.

By the periodicity of u and v, we have ∫
∂A

∂u(t)
∂νA

v(t) dσt = 0,

and ∫
∂A

∂v(t)
∂νA

u(t) dσt = 0.

As a consequence,

−
∫
A

∆u(t)v(t) dt+
∫
A

u(t)∆v(t) dt = 0.

Now, if we also assume that
(∆ + k2)u(t) = 0 ∀t ∈ Rn,

then we immediately obtain ∫
A

(∆v(t) + k2v(t))u(t) dt = 0.

Now assume that the set Za(k) is nonempty. For each z ∈ Za(k), define the function uz of Rn to C
by setting

uz(t) ≡ ei2πa
−1(z)·t ∀t ∈ Rn.

Then clearly
∆uz(t) + k2uz(t) = 0 ∀t ∈ Rn,

for all z ∈ Za(k). As a consequence∫
A

[(∆ + k2)v(t)]ei2πa
−1(z)·t dt = 0 ∀z ∈ Za(k),

for all v ∈ C2(Rn,C) such that

v(t+ aj) = v(t) ∀t ∈ Rn, ∀j ∈ {1, . . . , n}.

In particular, if f is as in Theorem 6.16, then we must have∫
A

[(∆ + k2)pa[f, k](t)]ei2πa
−1(z)·t dt = 0 ∀z ∈ Za(k).
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On the other hand, if z0 ∈ Za(k), we have∫
A

[(∆ + k2)pa[f, k](t)]ei2πa
−1(z0)·t dt

=
∫
A

(
f(t)−

∑
z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds

)
ei2πa

−1(z0)·t dt

=
∫
A

f(t)ei2πa
−1(z0)·t dt−

∑
z∈Za(k)

1
|A|n

∫
A

ei2π(a−1(z+z0))·t dt

∫
A

f(s)e−i2πa
−1(z)·s ds

=
∫
A

f(t)ei2πa
−1(z0)·t dt−

∫
A

f(t)ei2πa
−1(z0)·t dt = 0,

since ∫
A

ei2π(a−1(z+z0))·t dt = |A|nδz,−z0 ∀z ∈ Za(k),

where δz,−z0 = 1 if z = −z0, and δz,−z0 = 0 if z 6= −z0. In other words, the term

−
∑

z∈Za(k)

1
|A|n

ei2πa
−1(z)·t

∫
A

f(s)e−i2πa
−1(z)·s ds

ensures that ∫
A

[(∆ + k2)pa[f, k](x)]ei2πa
−1(z)·x dx = 0 ∀z ∈ Za(k).

6.5 Regularity of the solutions of some integral equations

In this Section, we present a variant of Theorem E.7. More precisely, we are interested in proving
regularity results for the solutions of the integral equations of Theorem E.7, with Sn(·, k) substituted
with Sa,kn . Indeed, as in classical potential theory, in order to solve boundary value problems for
the Helmholtz equation by means of periodic simple and double layer potentials, we need to solve
particular integral equations. Thus, we prove the following.

Theorem 6.18. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let b ∈ Cm−1,α(∂I,C).
Then the following statements hold.

(i) Let j ∈ {0, 1, . . . ,m} and Γ ∈ Cj,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ(t) =
1
2
µ(t)+

∫
∂I

∂

∂νI(s)
(Sa,kn (t−s))µ(s) dσs+

∫
∂I
Sa,kn (t−s)b(s)µ(s) dσs a.e. on ∂I, (6.18)

then µ ∈ Cj,α(∂I,C).

(ii) Let j ∈ {0, 1, . . . ,m} and Γ ∈ Cj,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ(t) = −1
2
µ(t)+

∫
∂I

∂

∂νI(s)
(Sa,kn (t−s))µ(s) dσs+

∫
∂I
Sa,kn (t−s)b(s)µ(s) dσs a.e. on ∂I, (6.19)

then µ ∈ Cj,α(∂I,C).

(iii) Let j ∈ {1, . . . ,m} and Γ ∈ Cj−1,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ(t) =
1
2
µ(t)+

∫
∂I

∂

∂νI(t)
(Sa,kn (t−s))µ(s) dσs+ b(t)

∫
∂I
Sa,kn (t−s)µ(s) dσs a.e. on ∂I, (6.20)

then µ ∈ Cj−1,α(∂I,C).

(iv) Let j ∈ {1, . . . ,m} and Γ ∈ Cj−1,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ(t) = −1
2
µ(t)+

∫
∂I

∂

∂νI(t)
(Sa,kn (t−s))µ(s) dσs+b(t)

∫
∂I
Sa,kn (t−s)µ(s) dσs a.e. on ∂I, (6.21)

then µ ∈ Cj−1,α(∂I,C).
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Proof. We deduce all the statements by the correspondig results of Theorem E.7. Let j, Γ, and µ be
as in the hypotheses of (i). Set

Γ̄(t) ≡ Γ(t)−
∫
∂I

∂

∂νI(s)
(Ra,kn (t− s))µ(s) dσs −

∫
∂I
Ra,kn (t− s)b(s)µ(s) dσs ∀t ∈ ∂I.

Then, by Theorem C.2, Γ̄ ∈ Cj,α(∂I,C). By (6.18), we have

Γ̄(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s, k))µ(s) dσs +

∫
∂I
Sn(t− s, k)b(s)µ(s) dσs a.e. on ∂I.

Then, by Theorem E.7 (i), we have µ ∈ Cj,α(∂I).
The proofs of statements (ii), (iii), (iv) are very similar.

6.6 A remark on the periodic analogue of the fundamental so-
lution for the Helmholtz equation

In this Section we deduce by the previous results an immediate property of the periodic analogue of
the fundamental solution for the Helmholtz operator ∆ + k2, when k ∈ [0,+∞[.

As a first step, we have the following result on Sa,kn .

Proposition 6.19. Let k ∈ [0,+∞[. Let Za(k) be as in (6.1). Then the following statements hold.

(i) The function Sn(·, k) introduced in Proposition E.3 is real-valued.

(ii) The function Sa,kn introduced in Theorem 6.3 (i) is real-valued and we have

(∆ + k2)Sa,kn (x) = −
∑

z∈Za(k)

1
|A|n

n∏
j=1

(2− δ0,zj ) cos
2πzjxj
ajj

∀x ∈ Rn \ Zan. (6.22)

(iii) The function Ra,kn introduced in Theorem 6.3 (ii) is real-valued and we have

(∆ + k2)Ra,kn (x) = −
∑

z∈Za(k)

1
|A|n

n∏
j=1

(2− δ0,zj ) cos
2πzjxj
ajj

∀x ∈ (Rn \ Zan) ∪ {0}.

Proof. Statement (i) is an easy verification based on the definition of Sn(·, k) (cf. Lemma E.1,
Definition E.2 and Proposition E.3.) Consider now (ii). Since

1
|A|n(k2 − |2πa−1(z)|2)

〈E2πa−1(z), φ〉 =
1

|A|n(k2 − |2πa−1(−z)|2)
〈E2πa−1(−z), φ〉

∀φ ∈ D(Rn,C), ∀z ∈ Zn \ Za(k),

we can easily conclude that

〈Ga,kn , φ〉 = 〈Ga,kn , φ〉 ∀φ ∈ D(Rn,C).

Accordingly, ∫
Rn
Sa,kn (x)φ(x) dx =

∫
Rn
Sa,kn (x)φ(x) dx ∀φ ∈ D(Rn,C),

and, as a consequence, the function Sa,kn is real-valued. Then by Theorem 6.3 (i) and Remark 6.5 we
have that (6.22) holds. Statement (iii) is a consequence of statements (i), (ii) and of Theorem 6.3
and Remark 6.5.

Remark 6.20. Let k be a positive real number. Then, by Proposition 6.19, we note that the
corresponding periodic layer potentials for the Helmholtz equation are real-valued functions, provided
that the densities are real-valued. Clearly, an analogous result holds for the volume potential.
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6.7 Some technical results for the periodic layer potentials for
the Helmholtz equation

In this Section we collect some results that we shall use in the sequel. Indeed, in order to analyze
boundary value problems for the Helmholtz equation in the next Chapters, we shall deal with integral
equations on ‘rescaled’ domains, and, as a consequence we need to study integral operators which arise
in these integral equations. Moreover, we have also to undestand how the periodic layer potentials
change when we ‘rescale’ the domains.

6.7.1 Notation and preliminaries

We retain the notation introduced in Subsection 1.8.1. However, we need also to introduce some other
notation.

Let k ∈ C. Let Sn(·, k) be the function introduced in Proposition E.3. Then, if x ∈ Rn \ {0}, we
denote by DRnSn(x, k) the gradient of the function ξ 7→ Sn(ξ, k) computed at point x. Let Jn be the
function of C to C introduced in Definition E.2. Then we define the function Qkn of Rn to C by setting

Qkn(x) ≡ Jn(k|x|) ∀x ∈ Rn. (6.23)

Then Qkn is a real analytic function of Rn to C (see the proof of Lanza and Rossi [86, Proposition 3.3].)
Moreover, if n is odd, then Qkn(x) = 0 for all x ∈ Rn. If ε > 0 and x ∈ Rn \{0}, then a straightforward
computation shows that

Sn(εx, k) =
1

εn−2
Sn(x, εk) + (log ε)kn−2Qkn(εx), (6.24)

and

DRnSn(εx, k) =
1

εn−1
DRnSn(x, εk) + (log ε)kn−2DQkn(εx). (6.25)

6.7.2 Some technical results for the periodic simple layer potential for the
Helmholtz equation

In the following Proposition, we study some integral operators that are related to the periodic simple
layer potential and that appear in integral equations on ‘rescaled’ domains when we represent the
solution of a certain boundary value problem in terms of a periodic simple layer potential.

Proposition 6.21. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let k ∈ C be such that

k2 6= |2πa−1(z)|2 ∀z ∈ Zn.

Then the following statements hold.

(i) There exists ε2 ∈ ]0, ε1] such that the maps N1, N2, N3 of ]−ε2, ε2[×Cm−1,α(∂Ω,C) to the space
Cm,α(∂Ω,C), which take (ε, θ) to the functions N1[ε, θ], N2[ε, θ], N3[ε, θ], respectively, defined by

N1[ε, θ](t) ≡
∫
∂Ω

Sn(t− s, εk)θ(s) dσs ∀t ∈ ∂Ω, (6.26)

N2[ε, θ](t) ≡
∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω, (6.27)

N3[ε, θ](t) ≡
∫
∂Ω

Qkn(ε(t− s))θ(s) dσs ∀t ∈ ∂Ω, (6.28)

are real analytic.

(ii) There exists ε′2 ∈ ]0, ε1] such that the maps N4, N5, N6 of ]−ε′2, ε′2[×Cm−1,α(∂Ω,C) to the space
Cm−1,α(∂Ω,C), which take (ε, θ) to the functions N4[ε, θ], N5[ε, θ], N6[ε, θ], respectively, defined
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by

N4[ε, θ](t) ≡
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs ∀t ∈ ∂Ω, (6.29)

N5[ε, θ](t) ≡
∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω, (6.30)

N6[ε, θ](t) ≡
∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs ∀t ∈ ∂Ω, (6.31)

are real analytic.

Proof. We first prove statement (i). By Theorem E.6 (i), one can easily show that N1 is a real analytic
operator of ]−ε1, ε1[ × Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C). We now consider N2. By Theorem C.4, we
immediately deduce that there exists ε2 ∈ ]0, ε1] such that the map of ]−ε2, ε2[× Cm−1,α(∂Ω,C) to
Cm,α(∂Ω,C), which takes (ε, θ) to the function

∫
∂Ω
Ra,kn (ε(t− s))θ(s) dσs of the variable t ∈ ∂Ω, is

real analytic. Since Qkn is a real analytic function of Rn to C, then, by Theorem C.4, one can easily
show that N3 is a real analytic operator of ]−ε1, ε1[× Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C). We now turn
to the proof of statement (ii). By Theorem E.6 (ii), one can easily show that N4 is a real analytic
operator of ]−ε1, ε1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). We now consider N5. By Theorem C.4, we
immediately deduce that there exists ε′2 ∈ ]0, ε1] such that the map of ]−ε′2, ε′2[× Cm−1,α(∂Ω,C) to
Cm−1,α(∂Ω,C), which takes (ε, θ) to the function

∫
∂Ω
∂xjR

a,k
n (ε(t− s))θ(s) dσs of the variable t ∈ ∂Ω,

is real analytic, for all j ∈ {1, . . . , n}. By continuity of the pointwise product in Schauder space, we
easily deduce that the map of ]−ε′2, ε′2[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C), which takes (ε, θ) to the
function

∫
∂Ω
νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs of the variable t ∈ ∂Ω, is real analytic. Similarly, since

Qkn is a real analytic function of Rn to C, then, by Theorem C.4, one can easily show that N6 is a real
analytic operator of ]−ε1, ε1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Thus the proof is complete.

Since the solutions of the boundary value problems that we are going to consider will be represented
in terms of periodic simple layer potentials, in the following Proposition we study the real analyticity
of an integral operator that is related to the simple layer potential and that we are going to used in
the sequel.

Proposition 6.22. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let k ∈ C be such that

k2 6= |2πa−1(z)|2 ∀z ∈ Zn.

Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exists ε2 ∈ ]0, ε1] such
that

clV ⊆ Ta[Ωε] ∀ε ∈ ]−ε2, ε2[. (6.32)

Moreover, the map N of ]−ε2, ε2[× Cm−1,α(∂Ω,C) to C0(clV,C), which takes (ε, θ) to the function
N [ε, θ] of clV to C defined by

N [ε, θ](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)θ(s) dσs ∀x ∈ clV, (6.33)

is real analytic.

Proof. Choosing ε2 small enough, we can clearly assume that (6.32) holds. Then we have

clV − (w + ε∂Ω) ⊆ Rn \ Zan ∀ε ∈ ]−ε2, ε2[.

Moreover, if we denote by id∂Ω the identity map in ∂Ω, then the map of ]−ε2, ε2[ to C0(∂Ω,Rn),
which takes ε to w + ε id∂Ω is real analytic. Hence, by Proposition C.1, N is a real analytic map of
]−ε2, ε2[× Cm−1,α(∂Ω,C) to C0(clV,C). The proof is now complete.
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6.8 A remark on the periodic eigenvalues of −∆ in Rn

Let λ ∈ C. We say that λ is a periodic eigenvalue of −∆ in Rn (and we write λ ∈ Eiga(−∆)), if there
exists a function u ∈ C2(Rn), u not identically 0, such that{

−∆u(x) = λu(x) ∀x ∈ Rn,
u(x+ aj) = u(x) ∀x ∈ Rn, ∀j ∈ {1, . . . , n}.

If such a function u exists, then we say that u is a periodic eigenfunction of −∆ in Rn.
Clearly, the set Eiga(−∆) can be seen as the set of the eigenvalues of −∆ on the (flat) torus

Rn/Zan (cf. e.g., Milnor [96], Chavel [22, p. 29], Berger, Gauduchon, and Mazet [12, pp. 146-148].)
Let λ ∈ C. We set

E(λ) ≡
{
z ∈ Zn : λ = |2πa−1(z)|2

}
.

It is well known (cf. e.g., Milnor [96], Chavel [22, p. 29], Berger, Gauduchon, and Mazet [12,
pp. 146-148]) that the set Eiga(−∆) is delivered by

Eiga(−∆) ≡ { λ ∈ C : E(λ) 6= ∅ } .

For each z ∈ Zn, define the function uz of Rn to C by setting

uz(x) ≡ ei2πa
−1(z)·x ∀x ∈ Rn.

If λ ∈ Eiga(−∆), then the corresponding eigenspace is given by the vector space generated by the set
of functions {uz}z∈E(λ).

In other words, with the notation used in the previous Sections, we have that if k ∈ C, then
k2 ∈ Eiga(−∆) if and only if Za(k) is nonempty (cf. (6.1).) Clearly, we observe that the problem of
determining the dimension of the eigenspace corresponding to the eigenvalue λ can be reformulated as
the problem of determining the number of z ≡ (z1, . . . , zn) ∈ Zn, such that

λ = 4π2(
z2

1

a2
11

+ · · ·+ z2
n

a2
nn

).

Now let
0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λj ≤ . . .

be the sequence of the periodic eigenvalues of −∆ in Rn (or, equivalently, the sequence of the
eigenvalues of −∆ in Rn/Zan), where each eigenvalue is repeated as many times as its multiplicity.

For each λ > 0, we set
N(λ) ≡ max { j ∈ N : λj ≤ λ } .

Then

N(λ) = #

{
z ∈ Zn : a−1(z) ∈ cl Bn(0,

√
λ

2π
)

}
∀λ > 0,

where, if S is a set, the symbol #S denotes the number of elements of S.

6.9 Maximum principle for the periodic Helmholtz equation

In the following Theorem, we deduce by the classical Maximum Principle for the Helmholtz equation
a version for periodic functions defined on cl Ta[I].

Theorem 6.23. Let I be a bounded connected open subset of Rn such that cl I ⊆ A and Rn \ cl I
is connected. Let Ta[I] be as in (1.49). Let k ∈ C be such that Re(k) = 0 and Im(k) 6= 0. Let
u ∈ C0(cl Ta[I],R) ∩ C2(Ta[I],R) be such that

u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n}.

Then the following statements hold.
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(i) If
∆u(x) + k2u(x) ≥ 0 ∀x ∈ Ta[I],

and there exists a point x0 ∈ Ta[I] such that u(x0) ≥ 0 and u(x0) = maxcl Ta[I] u, then u is
constant within Ta[I].

(ii) If
∆u(x) + k2u(x) ≤ 0 ∀x ∈ Ta[I],

and there exists a point x0 ∈ Ta[I] such that u(x0) ≤ 0 and u(x0) = mincl Ta[I] u, then u is
constant within Ta[I].

Proof. Clearly statement (ii) follows by statement (i) by replacing u with −u. Therefore, it suffices to
prove (i). Let u and x0 be as in the hypotheses. Let V be a bounded connected open neighbourhood
of clA, such that

clV ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0},

and
x0 ∈ V.

Set W ≡ V \ cl I. Clearly, W is a bounded connected open subset of Rn. Moreover,

x0 ∈W,

and
0 ≤ u(x0) = max

clW
u.

Then, by the Strong Maximum Principle (cf. e.g., Evans [50, Theorem 4, p. 333]), we have that u is
constant within W and accordingly u is constant within Pa[I]. Consequently, by the periodicity of u,
we have that u is constant in Ta[I] and we are done.

Then we can easily deduce the following result.

Corollary 6.24. Let I be a bounded connected open subset of Rn such that cl I ⊆ A and Rn \ cl I
is connected. Let Ta[I] be as in (1.49). Let k ∈ C be such that Re(k) = 0 and Im(k) 6= 0. Let
u ∈ C0(cl Ta[I],R) ∩ C2(Ta[I],R) be such that

u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},

and
∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I].

Then
max

cl Ta[I]
|u| = max

∂I
|u|.

Proof. It is a straightforward consequence of Theorem 6.23.

In particular, as far as complex valued functions are concerned, we have the following.

Corollary 6.25. Let I be a bounded connected open subset of Rn such that cl I ⊆ A and Rn \ cl I
is connected. Let Ta[I] be as in (1.49). Let k ∈ C be such that Re(k) = 0 and Im(k) 6= 0. Let
u ∈ C0(cl Ta[I],C) ∩ C2(Ta[I],C) be such that

u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},

and
∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I].

Then
max

cl Ta[I]
|u| ≤ (max

∂I
|Re(u)|+ max

∂I
|Im(u)|).

As a consequence,
max

cl Ta[I]
|u| ≤ 2 max

∂I
|u|.
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Proof. By Corollary 6.24 applied to Re(u) and Im(u), we have

max
cl Ta[I]

|Re(u)| = max
∂I
|Re(u)| ≤ max

∂I
|u|,

max
cl Ta[I]

|Im(u)| = max
∂I
|Im(u)| ≤ max

∂I
|u|.

On the other hand,

max
cl Ta[I]

|u| ≤ ( max
cl Ta[I]

|Re(u)|+ max
cl Ta[I]

|Im(u)|)

= (max
∂I
|Re(u)|+ max

∂I
|Im(u)|),

and the conclusion follows.



CHAPTER 7

Some results of Spectral Theory for the Laplace
operator

In this Chapter we collect some well known results of Spectral Theory for the Laplace operator, that
we shall use in the sequel. In particular, we present some convergence results for the eigenvalues of
the Laplace operator in a periodically perforated domain. These results can be seen as the periodic
version of a result of Rauch and Taylor [117], and they can be proved by arguing as in Rauch and
Taylor [117].

We retain the notation introduced in Sections 1.1 and 1.3, Chapter 6 and Appendix E.

7.1 Some results for the eigenvalues of the Laplace operator in
small domains

7.1.1 Notation

We introduce some notation.
Let m ∈ N \ {0}, α ∈ ]0, 1[. We shall consider the following assumption.

Let Ω be a bounded open connected subset of Rn of class Cm,α such that 0 ∈ Ω
and Rn \ cl Ω is connected.

(7.1)

We denote by νΩ the outward unit normal to Ω on ∂Ω. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω
be as in (7.1). We set

Ωε ≡ w + εΩ ∀ε ∈ R \ {0}, (7.2)

If ε ∈ R \ {0}, we denote by νΩε the outward unit normal to Ωε on ∂Ωε.

7.1.2 Asymptotic behaviour of the Dirichlet eigenvalues

We first introduce the following.

Definition 7.1. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of
class Cm,α. Let λ ∈ C. We say that λ is a Dirichlet eigenvalue of −∆ in I (and we write λ ∈ EigD[I])
if there exists a function u ∈ C0(cl I,C) ∩ C2(I,C), u not identically zero, such that{

∆u(x) + λu(x) = 0 ∀x ∈ I,
u(x) = 0 ∀x ∈ ∂I.

If such a function u exists, then u is called a Dirichlet eigenfunction of −∆ in I. Moreover, by elliptic
regularity theory, we have u ∈ C1(cl I,C) ∩ C2(I,C).

263
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Remark 7.2. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be a bounded connected open subset of
Rn of class Cm,α. It is well known that EigD[I] ⊆ ]0,+∞[. In particular, as a consequence, if
k ∈ C and Im(k) 6= 0, then k2 6∈ EigD[I] (cf. also, e.g., Colton and Kress [29, Thm. 3.10, p. 76].)
Moreover EigD[I] = ∪∞j=1{λj [I]}, where {λj [I]}

+∞
j=1 is an increasing sequence of positve (real) numbers

accumulating only at infinity.
Then we have the following elementary lemma (cf. e.g., Colton and Kress [29, Lemma 3.26, p. 86],

Lanza [79, Proposition 9].)

Lemma 7.3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (7.1). Let w ∈ A. Then

EigD[Ωε] =
1
ε2

EigD[Ω] ∀ε ∈ ]0,+∞[.

Proof. Let ε ∈ ]0,+∞[. Let λ ∈ EigD[Ω]. Then there exists a function u ∈ C1(cl Ω,C) ∩ C2(Ω,C), u
not identically zero, such that {

∆u(x) + λu(x) = 0 ∀x ∈ Ω,
u(x) = 0 ∀x ∈ ∂Ω.

Set
uε(x) ≡ u(

1
ε

(x− w)) ∀x ∈ cl Ωε.

Then uε ∈ C1(cl Ωε,C) ∩ C2(Ωε,C), and clearly

∆uε(x) = − 1
ε2
λu(

1
ε

(x− w)) = − λ
ε2
uε(x) ∀x ∈ Ωε.

Accordingly, {
∆uε(x) + λ

ε2uε(x) = 0 ∀x ∈ Ωε,
uε(x) = 0 ∀x ∈ ∂Ωε,

and so
λ

ε2
∈ EigD[Ωε].

Thus EigD[Ωε] ⊇ 1
ε2 EigD[Ω]. Conversely, let λ ∈ EigD[Ωε]. Then there exists a function u ∈

C1(cl Ωε,C) ∩ C2(Ωε,C), u not identically zero, such that{
∆u(x) + λu(x) = 0 ∀x ∈ Ωε,
u(x) = 0 ∀x ∈ ∂Ωε.

Set
uε(x) ≡ u(w + εx) ∀x ∈ cl Ω.

Then uε ∈ C1(cl Ω,C) ∩ C2(Ω,C), and clearly

∆uε(x) = −ε2λu(w + εx) = −ε2λuε(x) ∀x ∈ Ω.

Accordingly, {
∆uε(x) + λε2uε(x) = 0 ∀x ∈ Ω,
uε(x) = 0 ∀x ∈ ∂Ω,

and so
λε2 ∈ EigD[Ω].

Thus ε2 EigD[Ωε] ⊆ EigD[Ω].
Hence,

EigD[Ωε] =
1
ε2

EigD[Ω],

and the proof is complete.

Corollary 7.4. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (7.1). Let k ∈ C. Then there
exists εD > 0 such that

k2 6∈ EigD[Ωε] ∀ε ∈ ]0, εD]. (7.3)

Proof. It is an immediate consequence of Lemma 7.3.
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7.1.3 Asymptotic behaviour of the Neumann eigenvalues
We give the following.

Definition 7.5. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of
class Cm,α. Let λ ∈ C. We say that λ is a Neumann eigenvalue of −∆ in I (and we write λ ∈ EigN [I])
if there exists a function u ∈ C1(cl I,C) ∩ C2(I,C), u not identically zero, such that{

∆u(x) + λu(x) = 0 ∀x ∈ I,
∂
∂νI
u(x) = 0 ∀x ∈ ∂I.

If such a function u exists, then u is called a Neumann eigenfunction of −∆ in I.

Remark 7.6. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of class
Cm,α. It is well known that 0 ∈ EigN [I] and that EigN [I] ⊆ [0,+∞[. In particular, as a consequence,
if k ∈ C and Im(k) 6= 0, then k2 6∈ EigN [I] (cf. also, e.g., Colton and Kress [29, Thm. 3.10, p. 76].)
Moreover EigN [I] = ∪∞j=1{λj [I]}, where {λj [I]}

+∞
j=1 is an increasing sequence of nonnegative (real)

numbers accumulating only at infinity.

Then we have the following elementary lemma (cf. e.g., Colton and Kress [29, Lemma 3.26, p. 86],
Lanza [79, Proposition 9].)

Lemma 7.7. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (7.1). Let w ∈ A. Then

EigN [Ωε] =
1
ε2

EigN [Ω] ∀ε ∈ ]0,+∞[.

Proof. It is a simple modification of the proof of Lemma 7.3.

Corollary 7.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (7.1). Let k ∈ C \ {0}. Then
there exists εN > 0 such that

k2 6∈ EigN [Ωε] ∀ε ∈ ]0, εN ]. (7.4)

Proof. It is an immediate consequence of Lemma 7.7.

7.2 Convergence results for the eigenvalues of the Laplace op-
erator in a periodically perforated domain

7.2.1 Notation
We retain the notation introduced in Subsection 1.8.1. We note that the results of this Section are the
periodic version of some results of Rauch and Taylor [117]. Moreover, we observe that these results are
proved, essentially, by replacing some function spaces with their periodic counterparts in the proofs of
Rauch and Taylor [117]. However, for the reader’s convenience, we shall include the proofs in this
Section.

7.2.2 A convergence result for the eigenvalues of the Laplace operator in a
periodically perforated domain under Dirichlet boundary conditions

First of all, we need to give the following definition.

Definition 7.9. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let λ ∈ C. We say that λ is a
periodic Dirichlet eigenvalue of −∆ in Ta[I] (and we write λ ∈ EigaD[Ta[I]]) if there exists a function
u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C), u not identically zero, such that∆u(x) + λu(x) = 0 ∀x ∈ Ta[I],

u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
u(x) = 0 ∀x ∈ ∂I.

If such a function u exists, then u is called a periodic Dirichlet eigenfunction of −∆ in Ta[I].

Then we have the following, certainly known, Proposition.



266 Some results of Spectral Theory for the Laplace operator

Proposition 7.10. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k ∈ C. Assume that
Im(k) 6= 0. Let u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C) solve the following boundary value problem∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],

u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
u(x) = 0 ∀x ∈ ∂I.

Then u(x) = 0 for all x ∈ cl Ta[I].

Proof. By the Divergence Theorem and the periodicity of u, we have∫
Pa[I]

u(x)∆u(x) dx =
∫
∂Pa[I]

u(x)
∂

∂νPa[I]
u(x) dσx −

∫
Pa[I]
|∇u(x)|2 dx

=
∫
∂A

u(x)
∂

∂νA
u(x) dσx −

∫
∂I
u(x)

∂

∂νI
u(x) dσx −

∫
Pa[I]
|∇u(x)|2 dx

= −
∫

Pa[I]
|∇u(x)|2 dx.

On the other hand ∫
Pa[I]

u(x)∆u(x) dx = −k2

∫
Pa[I]
|u(x)|2 dx,

and accordingly

(Re(k)2 − Im(k)2)
∫

Pa[I]
|u(x)|2 dx+ i2 Re(k) Im(k)

∫
Pa[I]
|u(x)|2 dx =

∫
Pa[I]
|∇u(x)|2 dx.

Thus, ∫
Pa[I]
|u(x)|2 dx = 0.

Therefore, u = 0 in cl Pa[I], and, as a consequence, in cl Ta[I].

Corollary 7.11. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k ∈ C. Assume that
Im(k) 6= 0. Then k2 6∈ EigaD[Ta[I]].

Proof. It is an immediate consequence of Proposition 7.10.

We need to introduce some other notation. We set

L2
a(Rn,C) ≡

{
u ∈ L2

loc(Rn,C) : u(·+ ai) = u(·) a.e. in Rn, ∀i ∈ {1, . . . , n}
}
,

and we define the norm ‖·‖L2
a(Rn,C) on L2

a(Rn,C) by setting

‖u‖L2
a(Rn,C) ≡

(∫
A

|u(x)|2 dx
) 1

2 ∀u ∈ L2
a(Rn,C).

It is well known that L2
a(Rn,C) is a Hilbert space, with the scalar product (·, ·)L2

a(Rn,C) defined by

(u, v)L2
a(Rn,C) ≡

∫
A

u(x)v(x) dx ∀u, v ∈ L2
a(Rn,C).

Let {ul}∞l=1 be a sequence in L2
a(Rn,C) and u ∈ L2

a(Rn,C). We say that ul weakly converges to u in
L2
a(Rn,C) (and we write ul ⇀ u in L2

a(Rn,C)), if

lim
l→∞

∫
A

ul(x)v(x) dx =
∫
A

u(x)v(x) dx ∀v ∈ L2
a(Rn,C).

We also set

H1
a(Rn,C) ≡

{
u ∈ H1

loc(Rn,C) : u(·+ ai) = u(·) a.e. in Rn, ∀i ∈ {1, . . . , n}
}
,
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and we define the norm ‖·‖H1
a(Rn,C) on H1

a(Rn,C) by setting

‖u‖H1
a(Rn,C) ≡

(∫
A

|u(x)|2 dx+
∫
A

|∇u(x)|2 dx
) 1

2 ∀u ∈ H1
a(Rn,C).

It is well known that H1
a(Rn,C) is a Hilbert space, with the scalar product (·, ·)H1

a(Rn,C) defined by

(u, v)H1
a(Rn,C) ≡

∫
A

u(x)v(x) dx+
∫
A

∇u(x) · ∇v(x) dx ∀u, v ∈ H1
a(Rn,C).

Let {ul}∞l=1 be a sequence in H1
a(Rn,C) and u ∈ H1

a(Rn,C). We say that ul weakly converges to u in
H1
a(Rn,C) (and we write ul ⇀ u in H1

a(Rn,C)), if

lim
l→∞

∫
A

ul(x)v(x) dx+
∫
A

∇ul(x) · ∇v(x) dx =
∫
A

u(x)v(x) dx+
∫
A

∇u(x) · ∇v(x) dx

∀v ∈ H1
a(Rn,C).

We also set

C∞a (Rn,C) ≡ { φ ∈ C∞(Rn,C) : φ(x+ aj) = φ(x) ∀x ∈ Rn, ∀j ∈ {1, . . . , n} } .

Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Similarly, we set

L2
a(Ta[I],C) ≡

{
u ∈ L2

loc(Ta[I],C) ∩ L2(Pa[I],C) : u(·+ ai) = u(·) a.e. in Ta[I], ∀i ∈ {1, . . . , n}
}
,

and we define the norm ‖·‖L2
a(Ta[I],C) on L2

a(Ta[I],C) by setting

‖u‖L2
a(Ta[I],C) ≡

(∫
Pa[I]
|u(x)|2 dx

) 1
2 ∀u ∈ L2

a(Ta[I],C).

It is well known that L2
a(Ta[I],C) is a Hilbert space, with the scalar product (·, ·)L2

a(Rn,C) defined by

(u, v)L2
a(Ta[I],C) ≡

∫
Pa[I]

u(x)v(x) dx ∀u, v ∈ L2
a(Ta[I],C).

We also set

H1
a(Ta[I],C) ≡

{
u ∈ H1

loc(Ta[I],C) ∩H1(Pa[I],C) : u(·+ ai) = u(·) a.e. in Ta[I], ∀i ∈ {1, . . . , n}
}
,

and we define the norm ‖·‖H1
a(Ta[I],C) on H1

a(Ta[I],C) by setting

‖u‖H1
a(Ta[I],C) ≡

(∫
Pa[I]
|u(x)|2 dx+

∫
Pa[I]
|∇u(x)|2 dx

) 1
2 ∀u ∈ H1

a(Ta[I],C).

It is well known that H1
a(Ta[I],C) is a Hilbert space, with the scalar product (·, ·)H1

a(Ta[I],C) defined by

(u, v)H1
a(Ta[I],C) ≡

∫
Pa[I]

u(x)v(x) dx+
∫

Pa[I]
∇u(x) · ∇v(x) dx ∀u, v ∈ H1

a(Ta[I],C).

Moreover, we set

C∞0,a(Ta[I],C)

≡ { φ ∈ C∞(Rn,C) : suppφ ⊆ Ta[I], φ(x+ aj) = φ(x) ∀x ∈ Rn,∀j ∈ {1, . . . , n} } ,

and then
H1

0,a(Ta[I],C) ≡ clH1
a(Ta[I],C) C

∞
0,a(Ta[I],C).

We also set

C∞a (cl Ta[I],C) ≡ { φ ∈ C∞(cl Ta[I],C) : φ(x+ aj) = φ(x) ∀x ∈ Rn,∀j ∈ {1, . . . , n} } .

Then we have the following results.
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Proposition 7.12. Let {ul}∞l=1 be a sequence in H1
a(Rn,C) such that

‖ul‖H1
a(Rn,C) ≤M ∀l ≥ 1,

for some constant M > 0. Then there exists a subsequence {ulh}∞h=1 that weakly converges in
H1
a(Rn,C).

Proof. It follows by the reflexivity of the Hilbert space H1
a(Rn,C).

Proposition 7.13. Let {ul}∞l=1 be a sequence in H1
a(Rn,C) such that

‖ul‖H1
a(Rn,C) ≤M ∀l ≥ 1,

for some constant M > 0. Then there exists a subsequence {ulh}∞h=1 that converges in L2
a(Rn,C). As

a consequence, the embedding of H1
a(Rn,C) in L2

a(Rn,C) is compact.

Proof. Let V be a bounded open connected subset of Rn of class C∞ such that

clA ⊆ V.

By the periodicity of the elements of H1
a(Rn,C), it is easy to see that there exists a constant M ′ > 0

such that
‖ul‖H1(V,C) ≤M

′ ∀l ≥ 1.

Then, by the Rellich-Kondrachov Compactness Theorem (cf. e.g., Evans [50, Theorem 1, p. 272]), we
easily conclude.

Corollary 7.14. Let {ul}∞l=1 be a sequence in H1
a(Rn,C) such that

‖ul‖H1
a(Rn,C) ≤M ∀l ≥ 1,

for some constant M > 0. Then there exist a subsequence {ulh}∞h=1 and a function v ∈ H1
a(Rn,C),

such that
lim
h→∞

ulh = v in L2
a(Rn,C).

Proof. It is an immediate consequence of Propositions 7.12, 7.13.

Proposition 7.15. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Then the embedding of
H1

0,a(Ta[I],C) in L2
a(Ta[I],C) is compact.

Proof. Let V1, V2 be two bounded open connected subsets of Rn of class C∞ such that

clA ⊆ V1 ⊆ clV1 ⊆ V2,

and
clV2 ∩ (cl I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

We set
W ≡ V2 \ cl I.

We also set

A# ≡
n∏
j=1

[0, ajj [.

Let φ ∈ C∞(Rn,C) be such that 0 ≤ φ ≤ 1, φ = 1 on clV1 and suppφ ⊆ V2. Let T1 be the map of
H1

0,a(Ta[I],C) to H1
0 (W,C) which takes a function u to (uφ)|W . Clearly, T1 is a linear and continuous

map of H1
0,a(Ta[I],C) to H1

0 (W,C). Since |W |n < ∞, by Tartar [132, Lemma 11.2, p. 56], we have
that the embedding T2 of H1

0 (W,C) in L2(W,C) is compact. Furthermore the map T3 of L2(W,C) to
L2
a(Ta[I],C) which takes a function u to the function defined by extending by periodicity u|A#\cl I to

the whole Ta[I] is linear and continuous. Then, in order to conclude, it suffices to observe that the
map T ≡ T3 ◦ T2 ◦ T1 of H1

0,a(Ta[I],C) to L2
a(Ta[I],C) is compact and that

T (u) = u ∀u ∈ H1
0,a(Ta[I],C).
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Then we have the following lemma (cf. Courtois [30, Proposition 2.1, p. 198], Dupuy, Orive and
Smaranda [49, Lemma 3.6, p. 234].)

Lemma 7.16. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Set

V ≡ { φ ∈ C∞a (Rn,C) : φ vanishes in an open neighbourhood of w } .

Then V is dense in H1
a(Rn,C).

Proof. First of all, as a consequence of the density of trigonometric polynomials in H1
a(Rn,C) (cf.

e.g., Schmeisser and Triebel [125, Theorem 1, p. 163, and p. 168-169]), we observe that C∞a (Rn,C) is
dense in H1

a(Rn,C).
We set

A# ≡
n∏
j=1

[0, ajj [.

If φ ∈ L2
loc(Rn,C), then we denote by [φ]a the element of L2

a(Rn,C) defined by extending by periodicity
φ|A# to the whole of Rn.

In order to prove the lemma, we follow the proof of Tartar [132, Lemmas 17.2, 17.3, p. 85, 86] for
the non-periodic case, and we treat separately case n ≥ 3 and case n = 2.

Assume n ≥ 3. Clearly, it suffices to show that if u ∈ C∞a (Rn,C), then there exists a sequence
{ul}∞l=1 in V such that ul → u in H1

a(Rn,C). Let R > 0 be such that cl Bn(w, 2R) ⊆ A, and let
θ ∈ C∞(Rn,R) be such that 0 ≤ θ ≤ 1, and

θ(x) = 1 ∀x ∈ Rn \ Bn(0, 2R),
θ(x) = 0 ∀x ∈ cl Bn(0, R).

Set
θl(x) ≡ θ(l(x− w)) ∀x ∈ Rn,

for all l ≥ 1. Let u ∈ C∞a (Rn,C). We set

ul ≡ [uθl]a = u[θl]a ∀l ≥ 1.

Clearly, ul ∈ V, for all l ≥ 1. Moreover, a simple computation shows that

lim
l→∞

ul = u in H1
a(Rn,C),

and the conclusion, if n ≥ 3, follows.
We now consider case n = 2. By the Hahn-Banach Theorem, it suffices to prove that if T ∈

(H1
a(R2,C))′ is such that

〈T, u〉 = 0 ∀u ∈ V,

then T ≡ 0. So let T ∈ (H1
a(R2,C))′ be such that 〈T, u〉 = 0 for all u ∈ V. Let R > 0 be such that

cl B2(w, 3R) ⊆ A.

Let ψ ∈ C∞c (R2,R) be such that 0 ≤ ψ ≤ 1, ψ = 1 on cl B2(w, 2R), and suppψ ⊆ cl B2(w, 3R). Define
T̃ ∈ (H1(R2,C))′ by setting

〈T̃ , φ〉 ≡ 〈T, [ψφ]a〉 ∀φ ∈ H1(R2,C).

Clearly,
〈T̃ , φ〉 = 0,

for all φ ∈ C∞c (R2,C) which are 0 in a small ball around w. Thus, by a density argument (cf. e.g.,
Tartar [132, Lemma 17.3, p. 86]), we have

〈T̃ , φ〉 = 0 ∀φ ∈ H1(R2,C).

Now set
W ≡

{
u ∈ C∞a (R2,C) : supp(uχclA) ⊆ cl B2(w, 2R)

}
.
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Accordingly,
〈T, u〉 = 〈T̃ , uχclA〉 = 0 ∀u ∈ W.

Let u ∈ C∞a (R2,C). Let ψ̃ ∈ C∞c (R2,R) be such that 0 ≤ ψ̃ ≤ 1, ψ̃ = 1 on cl B2(w,R), and
supp ψ̃ ⊆ cl B2(w, 2R). Then

u = u[ψ̃]a + u(1− [ψ̃]a), u[ψ̃]a ∈ W, u(1− [ψ̃]a) ∈ V.

Hence,
〈T, u〉 = 〈T, u[ψ̃]a〉+ 〈T, u(1− [ψ̃]a)〉 = 0 + 0 = 0.

As a consequence,
〈T, u〉 = 0 ∀u ∈ C∞a (R2,C).

Thus, by density,
〈T, u〉 = 0 ∀u ∈ H1

a(R2,C),

and the proof is complete.

We now introduce some other notation.
Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Then we denote by bD,I the quadratic form

on H1
0,a(Ta[I],C) defined by

bD,I(u, v) ≡ −
∫

Pa[I]
∇u(x) · ∇v(x) dx ∀u, v ∈ H1

0,a(Ta[I],C).

Then we define the self-adjoint operator ∆D,I as follows: u ∈ D(∆D,I) if and only if u ∈ H1
0,a(Ta[I],C)

and there is a function g ∈ L2
a(Ta[I],C) such that

bD,I(u, f) =
∫

Pa[I]
g(x)f(x) dx ∀f ∈ H1

0,a(Ta[I],C)

(cf. e.g., Rauch and Taylor [117, pp. 29, 37], Reed and Simon [118, Theorem VIII.15, p. 278] and
Davies [45, Lemma 4.4.1, p.81, Theorem 4.4.2, p. 82], Kato [63].) In this case we define

∆D,Iu ≡ g.

We shall always think of ∆D,I as an operator acting from its domain D(∆D,I) defined as above, a
subspace of L2

a(Rn), to L2
a(Rn).

Similarly, we denote by b the quadratic form on H1
a(Rn,C) defined by

b(u, v) ≡ −
∫
A

∇u(x) · ∇v(x) dx ∀u, v ∈ H1
a(Rn,C).

Then we define the self-adjoint operator ∆ as follows: u ∈ D(∆) if and only if u ∈ H1
a(Rn,C) and

there is a function g ∈ L2
a(Rn,C) such that

b(u, f) =
∫
A

g(x)f(x) dx ∀f ∈ H1
a(Rn,C)

(cf. e.g., Rauch and Taylor [117, pp. 29, 37], Reed and Simon [118, Theorem VIII.15, p. 278] and
Davies [45, Lemma 4.4.1, p.81, Theorem 4.4.2, p. 82], Kato [63].) In this case we define

∆u ≡ g.

We shall always think of ∆ as an operator acting from its domain D(∆) defined as above, a subspace
of L2

a(Rn), to L2
a(Rn).

Then we have the following well known results.

Lemma 7.17. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Let g ∈ L2
a(Ta[I],C). Then there

exists a unique function u ∈ H1
0,a(Ta[I],C) such that

(1−∆D,I)u = g.

Hence, (1−∆D,I) is invertible, and (1−∆D,I)(−1) is a linear and continuous map of L2
a(Ta[I],C) to

H1
0,a(Ta[I],C) (and thus a compact operator of L2

a(Ta[I],C) to itself.)
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Proof. The invertibility of (1−∆D,I) and the continuity of (1−∆D,I)(−1) as a map of L2
a(Ta[I],C)

to H1
0,a(Ta[I],C) is an immediate consequence of the Lax-Milgram Lemma. The compactness of

(1−∆D,I)(−1) as a map of L2
a(Ta[I],C) to L2

a(Ta[I],C) is a consequence of Proposition 7.15.

Proposition 7.18. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). Then the spectrum σ(∆D,I) of
∆D,I is a subset of ]−∞, 0[ and consists of a sequence of eigenvalues of finite multiplicity, accumulating
only at −∞. Moreover, L2

a(Ta[I],C) has a complete orthonormal set of eigenfunctions of ∆D,I.

Proof. Clearly, it suffices to study σ(−∆D,I). By Lemma 7.17 and Davies [45, Theorem 4.3.1, p. 78,
Corollary 4.2.3, p. 77], we have that the non-negative self-adjoint operator −∆D,I has empty essential
spectrum and that there exists a complete orthonormal set of eigenvectors {φl}∞l=1 of −∆D,I with
corresponding eigenvalues λl ≥ 0 which converge to +∞ as l→∞. Moreover, we observe that 0 is
not an eigenvalue. Indeed, it if it were an eigenvalue with eigenvector ψ 6= 0, then∫

Pa[I]
|∇ψ(x)|2 dx = 0,

and accordingly, since ψ ∈ H1
0,a(Ta[I],C), we would have ψ = 0, a contradiction. Thus σ(−∆D,I) ⊆

]0,+∞[. Hence the conclusion easily follows.

Remark 7.19. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). It can be proved that, if
−λ ∈ EigaD[Ta[I]], then λ ∈ σ(∆D,I). Indeed, if −λ ∈ EigaD[Ta[I]], then there exists a function
u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C), u not identically zero, such that∆u(x)− λu(x) = 0 ∀x ∈ Ta[I],

u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
u(x) = 0 ∀x ∈ ∂I.

Then a standard argument based on the Divergence Theorem implies that λ ∈ σ(∆D,I). In fact, if
φ ∈ C∞0,a(Ta[I],C), then, by the Divergence Theorem and the periodicity of u and φ, we have,∫

Pa[I]
∇u(x) · ∇φ(x) dx = −λ

∫
Pa[I]

u(x)φ(x) dx−
∫
∂I

∂u(x)
∂νI

φ(x) dσx

= −λ
∫

Pa[I]
u(x)φ(x) dx.

Accordingly,

−
∫

Pa[I]
∇u(x) · ∇φ(x) dx = λ

∫
Pa[I]

u(x)φ(x) dx ∀φ ∈ C∞0,a(Ta[I],C),

and thus by density

bD,I(u, φ) = λ

∫
Pa[I]

u(x)φ(x) dx ∀φ ∈ H1
0,a(Ta[I],C).

Hence, since u ∈ H1
0,a(Ta[I],C), λ ∈ σ(∆D,I).

Moreover, σ(∆D,I) can be rearranged into the following sequence of negative real numbers

0 > λ1(∆D,I) ≥ λ2(∆D,I) ≥ λ3(∆D,I) ≥ · · · ≥ λj(∆D,I) ≥ . . . ,

where each eigenvalue is repeated as many times as its multiplicity.

Lemma 7.20. Let g ∈ L2
a(Rn,C). Then there exists a unique function u ∈ H1

a(Rn,C) such that

(1−∆)u = g.

Hence, (1−∆) is invertible, and (1−∆)(−1) is a linear and continuous map of L2
a(Rn,C) to H1

a(Rn,C)
(and thus a compact operator of L2

a(Rn,C) to itself.)

Proof. The invertibility of (1−∆) and the continuity of (1−∆)(−1) as a map of L2
a(Rn,C) to H1

a(Rn,C)
is an immediate consequence of the Lax-Milgram Lemma. The compactness of (1−∆)(−1) as a map
of L2

a(Rn,C) to L2
a(Rn,C) is a consequence of Proposition 7.13.
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Proposition 7.21. The spectrum σ(∆) of ∆ is a subset of ]−∞, 0] and consists of a sequence of
eigenvalues of finite multiplicity, accumulating only at −∞. In particular 0 ∈ σ(∆). Moreover,
L2
a(Rn,C) has a complete orthonormal set of eigenfunctions of ∆.

Proof. First of all we observe that this is a well known result (cf. e.g., Milnor [96], Chavel [22, p. 29],
Berger, Gauduchon, and Mazet [12, p. 146-148].) However, for the sake of completeness, we prove it
here by following the proof of Proposition 7.18. Obviously, it suffices to study σ(−∆). By Lemma
7.20 and Davies [45, Theorem 4.3.1, p. 78, Corollary 4.2.3, p. 77], we have that the non-negative
self-adjoint operator −∆ has empty essential spectrum and that there exists a complete orthonormal
set of eigenvectors {φl}∞l=1 of −∆ with corresponding eigenvalues λl ≥ 0 which converge to +∞ as
l→∞. In particular, an easy computation shows that 0 ∈ σ(∆), with corresponding eigenspace given
by the set of constant functions. Hence the conclusion easily follows.

Remark 7.22. It can be proved that λ ∈ σ(∆) if and only if −λ ∈ Eiga(−∆) (cf. Section 6.8.) Indeed,
if −λ ∈ Eiga(−∆), then there exists a function u ∈ C2(Rn,C) such that{

∆u(x)− λu(x) = 0 ∀x ∈ Rn,
u(x+ aj) = u(x) ∀x ∈ Rn, ∀j ∈ {1, . . . , n}.

Then a standard argument based on the Divergence Theorem implies that λ ∈ σ(∆). In fact, if
φ ∈ C∞a (Rn,C), then, by the Divergence Theorem and the periodicity of u and φ, we have,∫

A

∇u(x) · ∇φ(x) dx = −λ
∫
A

u(x)φ(x) dx−
∫
∂A

∂u(x)
∂νA

φ(x) dσx

= −λ
∫
A

u(x)φ(x) dx.

Accordingly,

−
∫
A

∇u(x) · ∇φ(x) dx = λ

∫
A

u(x)φ(x) dx ∀φ ∈ C∞a (Rn,C),

and thus by density

b(u, φ) = λ

∫
A

u(x)φ(x) dx ∀φ ∈ H1
a(Rn,C).

Hence λ ∈ σ(∆). Similarly, if λ ∈ σ(∆), then −λ ∈ Eiga(−∆). Indeed, let λ ∈ σ(∆) and u ∈ H1
a(Rn,C)

be the corresponding eigenfunction. Then it is easy to prove that for all y ∈ Rn, there exists Ry > 0
such that

−
∫

Bn(y,Ry)

∇u(x) · ∇φ(x) dx− λ
∫

Bn(y,Ry)

u(x)φ(x) dx = 0 ∀φ ∈ C∞c (Bn(y,Ry),C).

Then, by standard elliptic regularity theory, we have that u ∈ C2(Rn,C) and that{
∆u(x) + (−λ)u(x) = 0 ∀x ∈ Rn,
u(x+ aj) = u(x) ∀x ∈ Rn, ∀j ∈ {1, . . . , n},

and thus −λ ∈ Eiga(−∆).
Moreover, σ(∆) can be rearranged into the following sequence of non-positive real numbers

0 = λ1(∆) ≥ λ2(∆) ≥ λ3(∆) ≥ · · · ≥ λj(∆) ≥ . . . ,

where each eigenvalue is repeated as many times as its multiplicity.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57). If ε ∈ ]0, ε1[,

then, in order to simplify the notation, we set

bD,ε ≡ bD,Ωε ,

and
∆D,ε ≡ ∆D,Ωε .

Let j ∈ N \ {0}. Then, for all ε ∈ ]0, ε1[, we can consider λj(∆D,ε). In particular, we are interested
in the limit of λj(∆D,ε) as ε tends to 0 in ]0, ε1[.
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The behaviour of the eigenvalues of the Laplace operator in an open set of Rn or in a Riemannian
manifold, where a small part is removed (the hole), with a Dirichlet condition on the boundary of the
hole, has long been investigated by many authors. It is perhaps difficult to provide a complete list of all
the contributions. Here we mention, for the case of an open set of Rn, Rauch and Taylor [117], Ozawa
[108], Ozawa [109], Maz’ya, Nazarov and Plamenewskii [93], Maz’ya, Nazarov and Plamenewskij [91,
Chapter 9], Flucher [51]. As far as Riemannian manifolds are concerned, we refer, e.g., to Chavel and
Feldman [23], Chavel and Feldman [24], Chavel [22, Chapter IX], Besson [14], Courtois [30]. Moreover,
the periodic case has been considered, for instance, by Dupuy, Orive and Smaranda [49, p. 232], San
Martin and Smaranda [121].

In order to study the convergence of λj(∆D,ε) as ε→ 0+, we follow Rauch and Taylor [117, Sections
1, 2] (cf. also Dupuy, Orive and Smaranda [49, p. 232].)

We now introduce some other notation.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let

ε ∈ ]0, ε1[. If u is in L2
a(Rn,C), then we denote by Pεu the restriction of u to Ta[Ωε]. Similarly, if u

is in L2
a(Ta[Ωε],C), then we denote by E0,εu the element of L2

a(Rn,C), defined by (E0,εu)|Ta[Ωε] = u
and (E0,εu)|Rn\Ta[Ωε] = 0.

Then we have the following variant of Rauch and Taylor [117, Lemma 1.1, p. 30] (cf. also Dupuy,
Orive and Smaranda [49, Theorem 3.1, p. 233].)

Proposition 7.23. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let {εl}∞l=1 be a sequence in ]0, ε1[, convergent to 0. Let u ∈ L2

a(Rn,C). Then there exists
a subsequence {εlj}∞j=1, such that

lim
j→∞
‖E0,εlj

(1−∆D,εlj
)(−1)Pεlj

u− (1−∆)(−1)u‖L2
a(Rn,C) = 0.

Proof. It suffices to modify the proof of Rauch and Taylor [117, Lemma 1.1, p. 30]. We set

vl ≡ E0,εl(1−∆D,εl)
(−1)Pεlu ∀l ≥ 1.

Let l ≥ 1. Then we have

‖vl‖2H1
a(Rn,C) =

∫
Pa[Ωεl ]

vl(x)vl(x) dx+
∫

Pa[Ωεl ]

∇vl(x) · ∇vl(x) dx

=
∫

Pa[Ωεl ]

Pεlu(x)vl(x) dx

≤ ‖u‖L2
a(Rn,C)‖vl‖H1

a(Rn,C),

and thus
‖vl‖H1

a(Rn,C) ≤ ‖u‖L2
a(Rn,C).

Hence, {vl}∞l=1 is a bounded sequence in H1
a(Rn,C).

First of all, we verify that, possibly considering a subsequence, vl converges to (1−∆)(−1)u weakly
in H1

a(Rn,C). Let v be a weak limit point of {vl}∞l=1. Possibly relabeling the sequence, we may assume
that

vl ⇀ v in H1
a(Rn,C).

We set
V ≡ { φ ∈ C∞a (Rn,C) : φ vanishes in an open neighbourhood of w } .

Let φ ∈ V. Then there exists l̄ ∈ N such that

φ ∈ H1
0,a(Ta[Ωεl ],C) ∀l ≥ l̄.

Accordingly, if l ≥ l̄, then∫
A

vl(x)φ(x) dx+
∫
A

∇vl(x) · ∇φ(x) dx =
∫

Pa[Ωεl ]

Pεlu(x)φ(x) dx

=
∫
A

u(x)φ(x) dx.
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On the other hand, since vl ⇀ v in H1
a(Rn,C), then

lim
l→∞

[∫
A

vl(x)φ(x) dx+
∫
A

∇vl(x) · ∇φ(x) dx
]

=
∫
A

v(x)φ(x) dx+
∫
A

∇v(x) · ∇φ(x) dx,

and thus ∫
A

v(x)φ(x) dx+
∫
A

∇v(x) · ∇φ(x) dx =
∫
A

u(x)φ(x) dx.

As a consequence,∫
A

v(x)φ(x) dx+
∫
A

∇v(x) · ∇φ(x) dx =
∫
A

u(x)φ(x) dx ∀φ ∈ V.

Hence, by density (cf. Lemma 7.16),∫
A

v(x)φ(x) dx+
∫
A

∇v(x) · ∇φ(x) dx =
∫
A

u(x)φ(x) dx ∀φ ∈ H1
a(Rn,C),

and, consequently, v = (1−∆)(−1)u (cf. also Rauch and Taylor [117, Proposition 2.2, p. 36].)
Finally, Proposition 7.13 implies that there exists a subsequence {vlj}∞j=1 such that vlj → v in

L2
a(Rn,C), and then the conclusion easily follows.

For some basic notions of Borel functional calculus for unbounded self-adjoint operators, we refer,
for instance, to Reed and Simon [118, Theorem VIII.5, p. 262] and Davies [45, Chapter 2]. Then we
have the following Theorem.

Theorem 7.24. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let {εl}∞l=1 be a sequence in ]0, ε1[, convergent to 0. Let F be a bounded Borel function on ]−∞, 1/2]
which is continuous on a neighbourhood of σ(∆). Let u ∈ L2

a(Rn,C). Then there exists a subsequence
{εlj}∞j=1, such that

lim
j→∞
‖E0,εlj

F (∆D,εlj
)Pεlj

u− F (∆)u‖L2
a(Rn,C) = 0.

Proof. We follow the proof of Rauch and Taylor [117, Theorem 1.2, p. 30] verbatim. It suffices to
prove the theorem for real-valued functions as F . Let Γ be the Banach space of continuous real-valued
functions on ]−∞, 1/2] which vanish at −∞ and let A be the set of F ∈ Γ for which the theorem is
true. First of all, we note that A is a subalgebra of Γ, since, if G, F ∈ A, then we have

E0,εlF (∆D,εl)G(∆D,εl)Pεlu− F (∆)G(∆)u

=
[
E0,εlF (∆D,εl)PεlG(∆)u− F (∆)G(∆)u

]
+ E0,εlF (∆D,εl)

[
G(∆D,εl)Pεlu−PεlG(∆)u

]
,

for all u ∈ L2
a(Rn,C). The first term converges to zero (up to subsequences) because F ∈ A and the

second term converges to zero (up to subsequences) because G ∈ A, and accordingly FG ∈ A. Then
we observe that A is clearly closed in Γ. Moreover, by Proposition 7.23, we have that the function
f(x) ≡ (1 − x)−1 is in Γ. Then, since f separates points of ]−∞, 1/2], by the Stone-Weierstrass
Theorem we can conclude that A = Γ.

If F is a bounded continuous function on ]−∞, 1/2] it suffices to show that, up to subsequences,

E0,εlF (∆D,εl)Pεlu→ F (∆)u in L2
a(Rn,C)

for all u in a dense subset of L2
a(Rn,C), in particular for all v of the form exp(∆)u. We observe that

E0,εlF (∆D,εl)Pεl exp(∆)u =

E0,εlF (∆D,εl) exp(∆D,εl)Pεlu+ E0,εlF (∆D,εl)
[
Pεl exp(∆)u− exp(∆D,εl)Pεlu

]
.

By the above result, up to subsequences, the first term converges to F (∆) exp(∆)u and the second to
zero since

E0,εl exp(∆D,εl)Pεlu→ exp(∆)u in L2
a(Rn,C).



7.2 Convergence results for the eigenvalues of the Laplace operator in a periodically perforated
domain 275

Finally suppose that F is a bounded Borel function on ]−∞, 1/2], continuous on a neighbourhood
U of σ(∆). Let ψ1, ψ2 be two positive continuous functions on ]−∞, 1/2], such that ψ1 + ψ2 = 1,
suppψ1 ⊆ U , and ψ1 = 1 on a neighbourhood of σ(∆). Then

E0,εlF (∆D,εl)Pεlu = E0,εl(ψ1F )(∆D,εl)Pεlu+ E0,εl(ψ2F )(∆D,εl)Pεlu.

Since ψ1F is bounded and continuous, then, up to subsequences,

E0,εl(ψ1F )(∆D,εl)Pεu→ (ψ1F )(∆)u = F (∆)u in L2
a(Rn,C).

On the other hand,

‖(ψ2F )(∆D,εl)Pεlu‖L2
a(Ta[Ωεl ],C) ≤ sup|F |‖ψ2(∆D,εl)Pεlu‖L2

a(Ta[Ωεl ],C),

and, up to subsequences,
lim
l→∞
‖ψ2(∆D,εl)Pεlu‖L2

a(Ta[Ωεl ],C) = 0,

since
E0,εlψ2(∆D,εl)Pεlu→ ψ2(∆)u = 0 in L2

a(Rn,C),

as l→∞. Hence we can easily conclude.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let J ⊆ R
be a bounded open interval whose endpoints do not belong to σ(∆). Then we denote by ΠJ the
spectral projection of ∆ on J . Then rank ΠJ ≡ dim(range ΠJ) is the number of eigenvalues of ∆
in J . Similarly, if ε ∈ ]0, ε1[, then we denote by ΠJ

D,ε the spectral projection of ∆D,ε on J . Then
rank ΠJ

D,ε ≡ dim(range ΠJ
D,ε) is the number of eigenvalues of ∆D,ε in J .

We have the following Proposition.

Proposition 7.25. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let J ⊆ R be a bounded open interval whose endpoints do not belong to σ(∆). Then there
exists ε2 ∈ ]0, ε1[ such that

rank ΠJ
D,ε = rank ΠJ ,

for all ε ∈ ]0, ε2[.

Proof. We proceed as in Rauch and Taylor [117, Theorem 1.5]. First of all, we observe that

rank ΠJ
D,ε = rank E0,εΠJ

D,ε, rank ΠJ
D,εPε = rank E0,εΠJ

D,εPε,

for all ε ∈ ]0, ε1[. Then the proof consists of three steps: for all ε ∈ ]0, ε2[, with ε2 ∈ ]0, ε1[ small
enough, we have

(i) rank(E0,εΠJ
D,εPε) ≥ rank ΠJ ,

(ii) rank(E0,εΠJ
D,ε) ≤ rank ΠJ ,

(iii) range ΠJ
D,ε = range ΠJ

D,εPε.

We first prove (i). If it were not true, than there would exist a sequence {εl}∞l=1 in ]0, ε1[ convergent
to 0, such that

rank(E0,εlΠ
J
D,εl

Pεl) < rank ΠJ , ∀l ≥ 1.

Let {u1, . . . , uk} be an orthonormal basis of the range of ΠJ . Then, by Theorem 7.24, up to
subsequences,

lim
l→∞
‖E0,εlΠ

J
D,εl

Pεluj −ΠJuj‖L2
a(Rn,C) = 0,

for all j ∈ {1, . . . , k}. It follows that there exists l̄ ∈ N, such that {E0,εlΠ
J
D,εl

Pεluj}kj=1 is a linear
independent set for all l ≥ l̄, a contradiction.

We now consider (ii). If it were not true, than there would exist a sequence {εl}∞l=1 in ]0, ε1[
convergent to 0, such that

dim range(E0,εlΠ
J
D,εl

) > dim range ΠJ , ∀l ≥ 1.
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For each l ≥ 1, choose vl ∈ range ΠJ
D,εl

such that ‖vl‖L2
a(Ta[Ωεl ],C) = 1 and E0,εlvl⊥ range ΠJ . Then

range ΠJ
D,εl
⊆ H1

0,a(Ta[Ωεl ],C), and

|
∫

Pa[Ωεl ]

(∆D,εlvl(x))vl(x) dx| ≤M‖vl‖2L2
a(Ta[Ωεl ],C), ∀l ≥ 1,

with M ≡ supx∈J |x|. Accordingly {E0,εlvl}∞l=1 is a bounded sequence in H1
a(Rn,C), and then, by

Corollary 7.14, there exists a subsequence {E0,εlj
vlj}∞j=1 such that

lim
j→∞

E0,εlj
vlj = v in L2

a(Rn,C),

for some v ∈ H1
a(Rn,C), with ‖v‖L2

a(Rn,C) = 1, and v⊥ range ΠJ . Now we show that v ∈ range ΠJ , a
contradiction. Indeed, Theorem 7.24 implies that, up to subsequences,

lim
j→∞

E0,εlj
ΠJ
D,εlj

Pεlj
v = ΠJv in L2

a(Rn,C).

Moreover,

‖E0,εlj
ΠJ
D,εlj

vlj −E0,εlj
ΠJ
D,εlj

Pεlj
v‖L2

a(Rn,C) ≤ ‖vlj −Pεlj
v‖L2

a(Ta[Ωεlj
],C)

≤ ‖E0,εlj
vlj − v‖L2

a(Rn,C),

and thus
lim
j→∞

E0,εlj
ΠJ
D,εlj

vlj = ΠJv in L2
a(Rn,C).

On the other hand, E0,εlj
ΠJ
D,εlj

vlj = E0,εlj
vlj , and

lim
j→∞

E0,εlj
vlj = v in L2

a(Rn,C).

Thus v = ΠJv, and so v ∈ range ΠJ .
We finally prove (iii). If it were false for some ε ∈ ]0, ε1[, then there would exist a non-zero

v ∈ range ΠJ
D,ε, with v⊥ range ΠJ

D,εPε. Thus for all u ∈ L2
a(Rn,C), we would have

0 =
∫

Pa[Ωε]

ΠJ
D,εPεu(x)v(x) dx =

∫
Pa[Ωε]

Pεu(x)ΠJ
D,εv(x) dx =

∫
Pa[Ωε]

Pεu(x)v(x) dx.

As a consequence, v = 0, a contradiction.
Hence the proof is complete.

Theorem 7.26. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57).
Let j ∈ N \ {0}. Then

λj(∆D,ε)→ λj(∆),

as ε tends to 0 in ]0, ε1[.

Proof. It is a straightforward consequence of Proposition 7.25

Corollary 7.27. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57).
Let k ∈ C be such that k2 6= |2πa−1(z)|2 for all z ∈ Zn. Then there exists εaD ∈ ]0, ε1[, such that

k2 6∈ EigaD[Ta[Ωε]] ∀ε ∈ ]0, εaD].

Proof. It is an immediate consequence of Theorem 7.26, of Remarks 7.19, 7.22, and of the results of
Section 6.8.
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7.2.3 A convergence result for the eigenvalues of the Laplace operator in
a periodically perforated domain under Neumann boundary condi-
tions

As in the previous Subsection, we give the following.

Definition 7.28. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let λ ∈ C. We say that
λ is a periodic Neumann eigenvalue of −∆ in Ta[I] (and we write λ ∈ EigaN [Ta[I]]) if there exists a
function u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C), u not identically zero, such that

∆u(x) + λu(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
u(x) = 0 ∀x ∈ ∂I.

If such a function u exists, then u is called a periodic Neumann eigenfunction of −∆ in Ta[I].

Then we have the following certainly known result.

Proposition 7.29. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k ∈ C. Assume that
Im(k) 6= 0. Let u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C) solve the following boundary value problem

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
u(x) = 0 ∀x ∈ ∂I.

Then u(x) = 0 for all x ∈ cl Ta[I].

Proof. By the Divergence Theorem and the periodicity of u, we have∫
Pa[I]

u(x)∆u(x) dx =
∫
∂Pa[I]

u(x)
∂

∂νPa[I]
u(x) dσx −

∫
Pa[I]
|∇u(x)|2 dx

=
∫
∂A

u(x)
∂

∂νA
u(x) dσx −

∫
∂I
u(x)

∂

∂νI
u(x) dσx −

∫
Pa[I]
|∇u(x)|2 dx

= −
∫

Pa[I]
|∇u(x)|2 dx.

On the other hand ∫
Pa[I]

u(x)∆u(x) dx = −k2

∫
Pa[I]
|u(x)|2 dx,

and accordingly

(Re(k)2 − Im(k)2)
∫

Pa[I]
|u(x)|2 dx+ i2 Re(k) Im(k)

∫
Pa[I]
|u(x)|2 dx =

∫
Pa[I]
|∇u(x)|2 dx.

Thus, ∫
Pa[I]
|u(x)|2 dx = 0.

Therefore, u = 0 in cl Pa[I], and, as a consequence, in cl Ta[I].

Corollary 7.30. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k ∈ C. Assume that
Im(k) 6= 0. Then k2 6∈ EigaN [Ta[I]].

Proof. It is an immediate consequence of Proposition 7.29.

We have the following results.

Proposition 7.31. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Then the embedding of
H1
a(Ta[I],C) in L2

a(Ta[I],C) is compact.
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Proof. Let V be a bounded open connected subset of Rn of class C∞ such that

clA ⊆ V,

and
clV ∩ (cl I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

We set
W ≡ V \ cl I.

We also set

A# ≡
n∏
j=1

[0, ajj [.

We observe that the restriction map T1 of H1
a(Ta[I],C) to H1(W,C), which takes a function u

to the restriction u|W is linear and continuous. By the regularity of the open set W we have that
the embedding T2 of H1(W,C) in L2(W,C) is compact (cf. e.g., Evans [50, Theorem 1, p. 272].)
Furthermore the map T3 of L2(W,C) to L2

a(Ta[I],C) which takes a function u to the function defined
by extending by periodicity u|A#\cl I to the whole Ta[I] is linear and continuous. Then, in order to
conclude, it suffices to observe that the map T ≡ T3 ◦T2 ◦T1 of H1

a(Ta[I],C) to L2
a(Ta[I],C) is compact

and that
T (u) = u ∀u ∈ H1

a(Ta[I],C).

Lemma 7.32. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Then the set C∞a (cl Ta[I],C) is
dense in H1

a(Ta[I],C).

Proof. Let u ∈ H1
a(Ta[I],C). Then, by arguing for instance as in Lemma 7.36, one can prove that

there exists ũ ∈ H1
a(Rn,C), such that ũ|Ta[I] = u. Then, by the density of C∞a (Rn,C) in H1

a(Rn,C),
there exists a sequence {ũl}∞l=1 ⊆ C∞a (Rn,C), such that

lim
l→∞

ũl = ũ in H1
a(Rn,C).

Hence, if we set ul ≡ ũl|Ta[I] for all l ≥ 1, then {ul}∞l=1 ⊆ C∞a (cl Ta[I],C) and

lim
l→∞

ul = u in H1
a(Ta[I],C).

We now introduce some other notation.
Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Then we denote by bN,I the quadratic form

on H1
a(Ta[I],C) defined by

bN,I(u, v) ≡ −
∫

Pa[I]
∇u(x) · ∇v(x) dx ∀u, v ∈ H1

a(Ta[I],C).

Then we define the self-adjoint operator ∆N,I as follows: u ∈ D(∆N,I) if and only if u ∈ H1
a(Ta[I],C)

and there is a function g ∈ L2
a(Ta[I],C) such that

bN,I(u, f) =
∫

Pa[I]
g(x)f(x) dx ∀f ∈ H1

a(Ta[I],C)

(cf. e.g., Rauch and Taylor [117, pp. 29, 37], Reed and Simon [118, Theorem VIII.15, p. 278] and
Davies [45, Lemma 4.4.1, p.81, Theorem 4.4.2, p. 82], Kato [63].) In this case we define

∆N,Iu ≡ g.

We shall always think of ∆N,I as an operator acting from its domain D(∆N,I) defined as above, a
subspace of L2

a(Rn), to L2
a(Rn).
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As we have already done in the previous Subsection, we denote by b the quadratic form on
H1
a(Rn,C) defined by

b(u, v) ≡ −
∫
A

∇u(x) · ∇v(x) dx ∀u, v ∈ H1
a(Rn,C).

Then we define the self-adjoint operator ∆ as follows: u ∈ D(∆) if and only if u ∈ H1
a(Rn,C) and

there is a function g ∈ L2
a(Rn,C) such that

b(u, f) =
∫
A

g(x)f(x) dx ∀f ∈ H1
a(Rn,C).

In this case we define
∆u ≡ g.

We shall always think of ∆ as an operator acting from its domain D(∆) defined as above, a subspace
of L2

a(Rn), to L2
a(Rn).

Then we have the following well known results (cf. also Briane [17, p. 5].)

Lemma 7.33. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε ∈ ]0, ε1[. Let g ∈ L2

a(Ta[I],C). Then there exists a unique function u ∈ H1
a(Ta[I],C) such that

(1−∆N,I)u = g.

Hence, (1−∆N,I) is invertible, and (1−∆N,I)(−1) is a linear and continuous map of L2
a(Ta[I],C) to

H1
a(Ta[I],C) (and thus a compact operator of L2

a(Ta[I],C) to itself.)

Proof. The invertibility of (1−∆N,I) and the continuity of (1−∆N,I)(−1) as a map of L2
a(Ta[I],C)

to H1
a(Ta[I],C) is an immediate consequence of the Lax-Milgram Lemma. The compactness of

(1−∆N,I)(−1) as a map of L2
a(Ta[I],C) to L2

a(Ta[I],C) is a consequence of Proposition 7.31.

Proposition 7.34. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε ∈ ]0, ε1[. Then the spectrum σ(∆N,I) of ∆N,I is a subset of ]−∞, 0] and consists of
a sequence of eigenvalues of finite multiplicity, accumulating only at −∞. In particular 0 ∈ σ(∆N,I).
Moreover, L2

a(Ta[I],C) has a complete orthonormal set of eigenfunctions of ∆N,I.

Proof. We slightly modify the proof of Proposition 7.18. Clearly, it suffices to study σ(−∆N,I). By
Lemma 7.33 and Davies [45, Theorem 4.3.1, p. 78, Corollary 4.2.3, p. 77], we have that the non-negative
self-adjoint operator −∆N,I has empty essential spectrum and that there exists a complete orthonormal
set of eigenvectors {φl}∞l=1 of −∆N,I with corresponding eigenvalues λl ≥ 0 which converge to +∞ as
l →∞. In particular, an easy computation shows that 0 ∈ σ(∆N,I), with corresponding eigenspace
given by the set of constant functions. Hence the conclusion easily follows.

Remark 7.35. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in (1.46). It can be proved that, if
−λ ∈ EigaN [Ta[I]], then λ ∈ σ(∆N,I). Indeed, if −λ ∈ EigaN [Ta[I]], then there exists a function
u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C), u not identically zero, such that

∆u(x)− λu(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
u(x) = 0 ∀x ∈ ∂I.

Then a standard argument based on the Divergence Theorem implies that λ ∈ σ(∆N,I). In fact, if
φ ∈ C∞a (cl Ta[I],C), then, by the Divergence Theorem and the periodicity of u and φ, we have,∫

Pa[I]
∇u(x) · ∇φ(x) dx = −

∫
Pa[I]

∆u(x)φ(x) dx−
∫
∂I

∂u(x)
∂νI

φ(x) dσx

= −λ
∫

Pa[I]
u(x)φ(x) dx.

Accordingly,

−
∫

Pa[I]
∇u(x) · ∇φ(x) dx = λ

∫
Pa[I]

u(x)φ(x) dx ∀φ ∈ C∞a (cl Ta[I],C),
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and thus by density (cf. Lemma 7.32)

bN,I(u, φ) = λ

∫
Pa[I]

u(x)φ(x) dx ∀φ ∈ H1
a(Ta[I],C).

Hence λ ∈ σ(∆N,I).
Moreover, σ(∆N,I) can be rearranged into the following sequence of non-positive real numbers

0 = λ1(∆N,I) ≥ λ2(∆N,I) ≥ λ3(∆N,I) ≥ · · · ≥ λj(∆N,I) ≥ . . . ,

where each eigenvalue is repeated as many times as its multiplicity.
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57). If ε ∈ ]0, ε1[,

then, in order to simplify the notation, we set

bN,ε ≡ bN,Ωε ,

and
∆N,ε ≡ ∆N,Ωε .

Let j ∈ N \ {0}. Then, for all ε ∈ ]0, ε1[, we can consider λj(∆N,ε). In particular, we are interested
in the limit of λj(∆N,ε) as ε tends to 0 in ]0, ε1[.

For the behaviour of the Neumann eigenvalues of the Laplace operator in an open set of Rn with
a small hole, we mention Rauch and Taylor [117], Ozawa [110], Ozawa [112], Maz’ya, Nazarov and
Plamenewskij [91, Chapter 9], Hempel [59], Lanza [79].

As for the Dirichlet eigenvalues, in order to study the convergence of λj(∆N,ε) as ε → 0+, we
follow Rauch and Taylor [117, Section 3] (cf. also Ortega, San Martin and Smaranda [107, p. 977,
978].) We have the following technical lemma (cf. Rauch and Taylor [117, p. 38, 40].)

Lemma 7.36. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57).
Then there exist ε̄1 ∈ ]0, ε1[ and a family of operators {E1,ε}ε∈]0,ε̄1[ such that, for each ε ∈ ]0, ε̄1[,
E1,ε is a continuous extension map of H1

a(Ta[Ωε],C) in H1
a(Rn,C) (i.e., (E1,εu)|Ta[Ωε] = u for all

u ∈ H1
a(Ta[Ωε],C)) and such that there exists a constant M > 0 such that

‖E1,εu‖H1
a(Rn,C) ≤M‖u‖H1

a(Ta[Ωε],C) ∀u ∈ H1
a(Ta[Ωε],C),

for all ε ∈ ]0, ε̄1[.

Proof. We follow Rauch and Taylor [117, Example 1, p. 40]. Let R > 0 be such that cl Ω ⊆ Bn(0, R).
Let ε̄1 ∈ ]0, ε1[ be such that cl Bn(w, ε̄1R) ⊆ A. Let ε ∈ ]0, ε̄1]. If u ∈ H1

a(Ta[Ωε],C) then we extend u
to E1,εu ∈ H1

a(Rn,C) by setting

E1,εu ≡ u in Ta[Ωε],
E1,εu ≡ vz in cl Ωε + a(z), ∀z ∈ Zn,

where, if z ∈ Zn, then vz is the unique harmonic function inside Ωε + a(z) which agrees with u on
∂Ωε + a(z). By Tartar [132, Lemma 14.4, p. 70], it is easy to see that if u ∈ H1

a(Ta[Ωε],C) then
E1,εu ∈ H1

a(Rn,C).
If ε ∈ ]0, ε̄1], we set

Oε ≡ Bn(w, εR) \ cl Ωε.

By arguing as in Rauch and Taylor [117, Examples 1, 2, p. 40, 41], we observe that there exist two
positive constants C, C ′, such that

‖E1,ε̄1u‖
2
L2(Ωε̄1 ,C) ≤ C‖u‖

2
L2(Oε̄1 ,C) + C‖∇u‖2L2(Oε̄1 ,Cn), (7.5)

‖∇E1,ε̄1u‖
2
L2(Ωε̄1 ,Cn) ≤ C

′‖∇u‖2L2(Oε̄1 ,Cn), (7.6)

for all u ∈ H1
a(Ta[Ωε̄1 ],C). Indeed, inequality (7.5) follows by the Trace Theorem (cf. e.g., Burenkov

[18, Theorem 8, p. 241]) and standard elliptic theory (cf. e.g., Gilbarg and Trudinger [55, Corollary
8.7, p. 183].) Analogously, there exists a positive constant C̃ such that

‖∇E1,ε̄1u‖
2
L2(Ωε̄1 ,Cn) ≤ C̃‖u‖

2
H1(Oε̄1 ,C),
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for all u ∈ H1
a(Ta[Ωε̄1 ],C). In order to prove inequality (7.6), we observe that if it were false, then

there would exists a sequence {ul}∞l=1 ⊆ H1
a(Ta[Ωε̄1 ],C), such that

‖∇ul‖L2(Oε̄1 ,Cn) ≤
1
l

∀l ≥ 1,

‖∇E1,ε̄1ul‖L2(Ωε̄1 ,Cn) ≥ 1 ∀l ≥ 1. (7.7)

By taking µl ≡ 1
|Oε̄1 |n

∫
Oε̄1

ul(x) dx, then, by Poincaré’s inequality (cf. e.g., Evans [50, Theorem 1,
p. 275]), we have that there exists a constant c (independent of l), such that

‖ul − µl‖H1(Oε̄1 ,C) ≤
c

l
∀l ≥ 1.

Then, since E1,ε̄1(ul − µl) = (E1,ε̄1ul)− µl, we have

‖∇E1,ε̄1ul‖L2(Ωε̄1 ,Cn) = ‖∇E1,ε̄1(ul − µl)‖L2(Ωε̄1 ,Cn)

≤ ‖E1,ε̄1(ul − µl)‖H1(Ωε̄1 ,C)

≤
√
C + C̃‖ul − µl‖H1(Oε̄1 ,C)

≤ c
√
C + C̃

l
∀l ≥ 1,

a contradiction.
Then, by inequalities (7.5) and (7.6), a simple scaling argument shows that

‖E1,εu‖2L2(Ωε,C) ≤ C‖u‖
2
L2(Oε,C) + C

( ε
ε̄1

)2

‖∇u‖2L2(Oε,Cn),

‖∇E1,εu‖2L2(Ωε,Cn) ≤ C
′‖∇u‖2L2(Oε,Cn),

for all u ∈ H1
a(Ta[Ωε],C) and for all ε ∈ ]0, ε̄1]. As a consequence

‖E1,εu‖2L2(A,C) ≤ (C + 1)‖u‖2L2(P[Ωε],C) + C‖∇u‖2L2(P[Ωε],Cn),

‖∇E1,εu‖2L2(A,Cn) ≤ (C ′ + 1)‖∇u‖2L2(P[Ωε],Cn),

for all u ∈ H1
a(Ta[Ωε],C) and for all ε ∈ ]0, ε̄1]. Hence the conclusion easily follows.

Then we have the following variant of Rauch and Taylor [117, Theorem 3.1, p. 38].

Proposition 7.37. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε̄1 be as in Lemma 7.36. Let {εl}∞l=1 be a sequence in ]0, ε̄1[, convergent to 0. Let
u ∈ L2

a(Rn,C). Then there exists a subsequence {εlj}∞j=1, such that

lim
j→∞
‖E0,εlj

(1−∆N,εlj
)(−1)Pεlj

u− (1−∆)(−1)u‖L2
a(Rn,C) = 0.

Proof. It suffices to modify the proof of Rauch and Taylor [117, Theorem 3.1, p. 38]. For each l ≥ 1
we set

vl ≡ E0,εl(1−∆N,εl)
(−1)Pεlu.

We also set
v#
l ≡ (1−∆N,εl)

(−1)Pεlu, ∀l ≥ 1.

Let l ≥ 1. We have

‖v#
l ‖

2
H1
a(Ta[Ωεl ],C) = ‖v#

l ‖
2
L2
a(Ta[Ωεl ],C) +

∫
Pa[Ωεl ]

|∇v#
l (x)|2 dx

=
∫

Pa[Ωεl ]

Pεlu(x)v#
l (x) dx.

Hence there exists a constant C > 0 such that

‖v#
l ‖H1

a(Ta[Ωεl ],C) ≤ C ∀l ≥ 1.
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Thus if we set ṽl ≡ E1,εl(1−∆N,εl)
(−1)Pεlu = E1,εlv

#
l for all l ≥ 1, then, by Lemma 7.36, we have

that {ṽl}∞l=1 is a bounded sequence in H1
a(Rn,C).

First of all, we verify that, possibly considering a subsequence, ṽl converges to (1−∆)(−1)u weakly
in H1

a(Rn,C). Let ṽ be a weak limit point of {ṽl}∞l=1. Possibly relabeling the sequence, we may assume
that

ṽl ⇀ ṽ in H1
a(Rn,C).

Let φ ∈ H1
a(Rn,C). Then∫
A

∇ṽ(x) · ∇φ(x) dx = lim
l→∞

∫
A

∇ṽl(x) · ∇φ(x) dx

= lim
l→∞

[∫
Pa[Ωεl ]

∇v#
l (x) · ∇φ(x) dx+

∫
Ωεl

∇ṽl(x) · ∇φ(x) dx
]
.

Now ∫
Pa[Ωεl ]

∇v#
l (x) · ∇φ(x) dx = −

∫
Pa[Ωεl ]

v#
l (x)φ(x) dx+

∫
Pa[Ωεl ]

Pεlu(x)φ(x) dx,

and

lim
l→∞

[
−
∫

Pa[Ωεl ]

v#
l (x)φ(x) dx+

∫
Pa[Ωεl ]

Pεlu(x)φ(x) dx
]

= −
∫
A

ṽ(x)φ(x) dx+
∫
A

u(x)φ(x) dx.

On the other hand
|
∫

Ωεl

∇ṽl(x) · ∇φ(x) dx| ≤ ‖ṽl‖H1
a(Rn,C)‖φ‖H1(Ωεl ,C).

Clearly,
lim
l→∞
‖ṽl‖H1

a(Rn,C)‖φ‖H1(Ωεl ,C) = 0.

Accordingly∫
A

∇ṽ(x) · ∇φ(x) dx = −
∫
A

ṽ(x)φ(x) dx+
∫
A

u(x)φ(x) dx ∀φ ∈ H1
a(Rn,C),

and thus
ṽ = (1−∆)(−1)u.

Then, Proposition 7.13 implies that there exists a subsequence {ṽlj}∞j=1 such that ṽlj → ṽ in L2
a(Rn,C).

Finally, in order to prove that vlj → ṽ, it suffices to observe that

‖vlj − ṽlj‖
2
L2
a(Rn,C) =

∫
Ωεlj

|ṽlj (x)|2 dx

≤ 2
∫

Ωεlj

|ṽ(x)|2 dx+ 2
∫

Ωεlj

|ṽ(x)− ṽlj (x)|2 dx→ 0,

as j →∞.

Then we have the following Theorem.

Theorem 7.38. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively.
Let ε̄1 be as in Lemma 7.36. Let {εl}∞l=1 be a sequence in ]0, ε̄1[, convergent to 0. Let F be a bounded
Borel function on ]−∞, 1/2] which is continuous on a neighbourhood of σ(∆). Let u ∈ L2

a(Rn,C).
Then there exists a subsequence {εlj}∞j=1, such that

lim
j→∞
‖E0,εlj

F (∆N,εlj
)Pεlj

u− F (∆)u‖L2
a(Rn,C) = 0.

Proof. It suffices to follow the proof of Theorem 7.24, with Proposition 7.23 replaced by Proposition
7.37 (cf. Rauch and Taylor [117, Theorem 3.1, p. 38].)
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Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57), respectively. Let J ⊆ R be
a bounded open interval whose endpoints do not belong to σ(∆). Then, as in the previous Subsection,
we denote by ΠJ the spectral projection of ∆ on J . Then rank ΠJ ≡ dim(range ΠJ ) is the number of
eigenvalues of ∆ in J . Similarly, if ε ∈ ]0, ε1[, then we denote by ΠJ

N,ε the spectral projection of ∆N,ε

on J . Then rank ΠJ
N,ε ≡ dim(range ΠJ

N,ε) is the number of eigenvalues of ∆N,ε in J .
We have the following Proposition.

Proposition 7.39. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1 be as in (1.56), (1.57),
respectively. Let ε̄1 be as in Lemma 7.36. Let J ⊆ R be a bounded open interval whose endpoints do
not belong to σ(∆). Then there exists ε2 ∈ ]0, ε̄1[ such that

rank ΠJ
N,ε = rank ΠJ ,

for all ε ∈ ]0, ε2[.

Proof. We proceed as in Rauch and Taylor [117, Theorem 1.5] and we modify the proof of Proposition
7.25. First of all, we observe that

rank ΠJ
N,ε = rank E0,εΠJ

N,ε, rank ΠJ
N,εPε = rank E0,εΠJ

N,εPε,

for all ε ∈ ]0, ε̄1[. Then the proof consists of three steps: for all ε ∈ ]0, ε2[, with ε2 ∈ ]0, ε̄1[ small
enough, we have

(i) rank(E0,εΠJ
N,εPε) ≥ rank ΠJ ,

(ii) rank(E0,εΠJ
N,ε) ≤ rank ΠJ ,

(iii) range ΠJ
N,ε = range ΠJ

N,εPε.

We first prove (i). If it were not true, than there would exist a sequence {εl}∞l=1 in ]0, ε̄1[ convergent
to 0, such that

rank(E0,εlΠ
J
N,εl

Pεl) < rank ΠJ , ∀l ≥ 1.

Let {u1, . . . , uk} be an orthonormal basis of the range of ΠJ . Then, by Theorem 7.38, up to
subsequences,

lim
l→∞
‖E0,εlΠ

J
N,εl

Pεluj −ΠJuj‖L2
a(Rn,C) = 0,

for all j ∈ {1, . . . , k}. It follows that there exists l̄ ∈ N, such that {E0,εlΠ
J
N,εl

Pεluj}kj=1 is a linear
independent set for all l ≥ l̄, a contradiction.

We now consider (ii). If it were not true, than there would exist a sequence {εl}∞l=1 in ]0, ε̄1[
convergent to 0, such that

dim range(E0,εlΠ
J
N,εl

) > dim range ΠJ , ∀l ≥ 1.

For each l ≥ 1, choose vl ∈ range ΠJ
N,εl

such that ‖vl‖L2
a(Ta[Ωεl ],C) = 1 and E0,εlvl⊥ range ΠJ . Then

range ΠJ
N,εl
⊆ H1

a(Ta[Ωεl ],C), and

|
∫

Pa[Ωεl ]

(∆N,εlvl(x))vl(x) dx| ≤M‖vl‖2L2
a(Ta[Ωεl ],C), ∀l ≥ 1,

with M ≡ supx∈J |x|. Accordingly {E1,εlvl}∞l=1 is a bounded sequence in H1
a(Rn,C), and then, by

Corollary 7.14, there exists a subsequence {E1,εlj
vlj}∞j=1 such that

lim
j→∞

E1,εlj
vlj = v in L2

a(Rn,C),

for some v ∈ H1
a(Rn,C). Moreover,

‖E0,εlj
vlj −E1,εlj

vlj‖
2
L2
a(Rn,C) =

∫
Ωεlj

|E1,εlj
vlj (x)|2 dx

≤ 2
∫

Ωεlj

|v(x)|2 dx+ 2
∫

Ωεlj

|v(x)−E1,εlj
vlj (x)|2 dx→ 0,
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as j →∞. Thus
lim
j→∞

E0,εlj
vlj = v in L2

a(Rn,C),

and ‖v‖L2
a(Rn,C) = 1, and v⊥ range ΠJ . Now we show that v ∈ range ΠJ , a contradiction. Indeed,

Theorem 7.38 implies that, up to subsequences,

lim
j→∞

E0,εlj
ΠJ
N,εlj

Pεlj
v = ΠJv in L2

a(Rn,C).

Moreover,

‖E0,εlj
ΠJ
N,εlj

vlj −E0,εlj
ΠJ
N,εlj

Pεlj
v‖L2

a(Rn,C) ≤ ‖vlj −Pεlj
v‖L2

a(Ta[Ωεlj
],C)

≤ ‖E0,εlj
vlj − v‖L2

a(Rn,C),

and thus
lim
j→∞

E0,εlj
ΠJ
N,εlj

vlj = ΠJv in L2
a(Rn,C).

On the other hand, E0,εlj
ΠJ
N,εlj

vlj = E0,εlj
vlj , and

lim
j→∞

E0,εlj
vlj = v in L2

a(Rn,C).

Thus v = ΠJv, and so v ∈ range ΠJ .
We finally prove (iii). If it were false for some ε ∈ ]0, ε̄1[, then there would exist a non-zero

v ∈ range ΠJ
N,ε, with v⊥ range ΠJ

N,εPε. Thus for all u ∈ L2
a(Rn,C), we would have

0 =
∫

Pa[Ωε]

ΠJ
N,εPεu(x)v(x) dx =

∫
Pa[Ωε]

Pεu(x)ΠJ
N,εv(x) dx =

∫
Pa[Ωε]

Pεu(x)v(x) dx.

As a consequence, v = 0, a contradiction.
Hence the proof is complete.

Then we have the following result.

Theorem 7.40. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57).
Let j ∈ N \ {0}. Then

λj(∆N,ε)→ λj(∆),

as ε tends to 0 in ]0, ε1[.

Proof. It is a straightforward consequence of Proposition 7.39.

Corollary 7.41. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57).
Let k ∈ C be such that k2 6= |2πa−1(z)|2 for all z ∈ Zn. Then there exists εaN ∈ ]0, ε1[, such that

k2 6∈ EigaN [Ta[Ωε]] ∀ε ∈ ]0, εaN ].

Proof. It is an immediate consequence of Theorem 7.40, of Remarks 7.35, 7.22, and of the results of
Section 6.8.

7.3 A remark on the results of the previous Sections

In this Section we present an immediate consequence of the results of the previous Sections.

Proposition 7.42. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in
(1.57). Let k ∈ C be such that k2 6= |2πa−1(z)|2 for all z ∈ Zn. Then there exists ε∗1 ∈ ]0, ε1] such that

k2 6∈
(

EigD[Ωε] ∪ EigN [Ωε] ∪ EigaD[Ta[Ωε]] ∪ EigaN [Ta[Ωε]]
)

∀ε ∈ ]0, ε∗1].

Proof. It is a straightforward consequence of Corollaries 7.4, 7.8, 7.27, 7.41.

Remark 7.43. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω be as in (1.56). Let ε1 be as in (1.57).
Let k ∈ C be such that Im(k) 6= 0. Then we have

k2 6∈
(

EigD[Ωε] ∪ EigN [Ωε] ∪ EigaD[Ta[Ωε]] ∪ EigaN [Ta[Ωε]]
)

∀ε ∈ ]0, ε1].

As a consequence, with the notation of Proposition 7.42, if Im(k) 6= 0, we can take ε∗1 ≡ ε1.



CHAPTER 8

Singular perturbation and homogenization problems
for the Helmholtz equation with Neumann boundary
conditions

In this Chapter we introduce the periodic Neumann problem for the Helmholtz equation and we
study singular perturbation and homogenization problems for the Helmholtz operator with Neumann
boundary conditions in a periodically perforated domain. First of all, by means of periodic simple
layer potentials, we show the solvability of the Neumann problem. Secondly, we consider singular
perturbation problems in a periodically perforated domain with small holes, and we apply the obtained
results to homogenization problems. Our strategy follows the functional analytic approach of Lanza
[75], where the asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator
in a domain with a small hole has been studied (see also [70].) We also mention Lanza [79], dealing
with a Neumann eigenvalue problem in a perforated domain. We note that linear boundary value
problems in singularly perturbed domains in the frame of linearized elasticity have been analysed by
Dalla Riva in his Ph.D. Dissertation [33]. One of the tools used in our analysis is the study of the
dependence of layer potentials upon perturbations (cf. Lanza and Rossi [86] and also Dalla Riva and
Lanza [40].)

We retain the notation introduced in Sections 1.1 and 1.3, Chapter 6 and Appendix E. For the
definitions of EigD[I], EigN [I], EigaD[I], EigaN [I], we refer to Chapter 7.

8.1 A periodic Neumann boundary value problem for the Helm-
holtz equation

In this Section we introduce the periodic Neumann problem for the Helmholtz equation and we show
the existence and uniqueness of a solution by means of the periodic simple layer potential.

8.1.1 Formulation of the problem

In this Subsection we introduce the periodic Neumann problem for the Helmholtz equation.
First of all, we need to introduce some notation. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in

(1.46). We shall consider the following assumptions.

k ∈ C, k2 6= |2πa−1(z)|2 ∀z ∈ Zn; (8.1)

Γ ∈ Cm−1,α(∂I,C). (8.2)

We are now ready to introduce the following.

Definition 8.1. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, Γ be as in (8.1), (8.2),
respectively. We say that a function u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C) solves the periodic Neumann
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boundary conditions

problem for the Helmholtz equation if
∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
u(x) = Γ(x) ∀x ∈ ∂I.

(8.3)

8.1.2 Existence and uniqueness results for the solutions of the periodic
Neumann problem

In this Subsection we prove existence and uniqueness results for the solutions of the periodic Neumann
problem for the Helmholtz equation.

As we know, in order to solve problem (8.3) by means of periodic simple layer potentials, we need
to study some integral equations. Thus, in the following Proposition, we study an operator related to
the equations that we shall consider in the sequel.

Proposition 8.2. Let m ∈ N\{0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k be as in (8.1). Assume
that k2 6∈ EigaN [Ta[I]] and k2 6∈ EigD[I]. Then the following statements hold.

(i) Let µ ∈ L2(∂I,C) and

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs = 0 a.e. on ∂I, (8.4)

then µ = 0.

(ii) Let µ ∈ L2(∂I,C) and

1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = 0 a.e. on ∂I, (8.5)

then µ = 0.

Proof. We first prove statement (i). By Theorem 6.18 (iii), we have µ ∈ Cm−1,α(∂I,C). Then by
Theorem 6.11 (i), we have that the function v− ≡ v−a [∂I, µ, k] is in Cm,α(cl Ta[I],C) and solves the
following boundary value problem

∆v−(x) + k2v−(x) = 0 ∀x ∈ Ta[I],
v−(x+ aj) = v−(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
v−(x) = 0 ∀x ∈ ∂I.

Accordingly, since k2 6∈ EigaN [Ta[I]], we have v− = 0 in cl Ta[I]. Then, by Theorem 6.11 (i), the
function v+ ≡ v+

a [∂I, µ, k]| cl I is in Cm,α(cl I,C) and solves the following boundary value problem{
∆v+(x) + k2v+(x) = 0 ∀x ∈ I,
v+(x) = 0 ∀x ∈ ∂I.

Hence, since k2 6∈ EigD[I], we have v+ = 0 in cl I, and so

∂

∂νI
v+ = 0 on ∂I.

Thus, by Theorem 6.11 (i), we have

µ =
∂

∂νI
v−a [∂I, µ, k]− ∂

∂νI
v+
a [∂I, µ, k] = 0 on ∂I,

and the proof of (i) is complete. We now turn to the proof of statement (ii). By Theorem 6.18 (i), we
have µ ∈ Cm,α(∂I,C). Then by Theorem 6.7 (i), we have that the function w+ ≡ w+

a [∂I, µ, k]| cl I is in
Cm,α(cl I,C) and solves the following boundary value problem{

∆w+(x) + k2w+(x) = 0 ∀x ∈ I,
w+(x) = 0 ∀x ∈ ∂I.
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Hence, since k2 6∈ EigD[I], we have w+ = 0 in cl I, and so

∂

∂νI
w+ = 0 on ∂I.

Furthermore, by Theorem 6.7 (i), we have

∂

∂νI
w−a [∂I, µ, k] =

∂

∂νI
w+
a [∂I, µ, k] = 0 on ∂I.

Then by Theorem 6.7 (i), we have that the function w− ≡ w−a [∂I, µ, k] is in Cm,α(cl Ta[I],C) and
solves the following boundary value problem

∆w−(x) + k2w−(x) = 0 ∀x ∈ Ta[I],
w−(x+ aj) = w−(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
w−(x) = 0 ∀x ∈ ∂I.

Accordingly, since k2 6∈ EigaN [Ta[I]], we have w− = 0 in cl Ta[I]. Thus, by Theorem 6.7 (i), we have

µ = w+
a [∂I, µ, k]− w−a [∂I, µ, k] = 0 on ∂I,

and the proof of (ii) is complete.

Remark 8.3. Let m, α, I, k be as in Proposition 8.2. We observe that statement (ii) of Proposition
8.2 can also be deduced by statement (i). Indeed, set

V ≡
{
µ ∈ L2(∂I,C) :

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs = 0 a.e. on ∂I

}
,

W ≡
{
µ ∈ L2(∂I,C) :

1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = 0 a.e. on ∂I

}
,

and
W ′ ≡

{
µ ∈ L2(∂I,C) :

1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = 0 a.e. on ∂I

}
.

By Proposition 8.2 (i), we have V = {0}. Consequently, by the Fredholm Theory, we have W = {0}.
On the other hand, one can easily show that the map of W to W ′ which takes φ to φ is a bijection.
As a consequence, W ′ = {0}, and accordingly statement (ii) holds.

Then we have the following Theorem.

Theorem 8.4. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k be as in (8.1). Assume
that k2 6∈ EigaN [Ta[I]] and k2 6∈ EigD[I]. Then the following statements hold.

(i) The map L of L2(∂I,C) to L2(∂I,C), which takes µ to the function L[µ] of ∂I to C, defined by

L[µ](t) ≡ 1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I, (8.6)

is a linear homeomorphism of L2(∂I,C) onto itself.

(ii) The map L̃ of Cm−1,α(∂I,C) to Cm−1,α(∂I,C), which takes µ to the function L̃[µ] of ∂I to C,
defined by

L̃[µ](t) ≡ 1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I, (8.7)

is a linear homeomorphism of Cm−1,α(∂I,C) onto itself.

(iii) The map L′ of L2(∂I,C) to L2(∂I,C), which takes µ to the function L′[µ] of ∂I to C, defined by

L′[µ](t) ≡ 1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I, (8.8)

is a linear homeomorphism of L2(∂I,C) onto itself.
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(iv) The map L̃′ of Cm,α(∂I,C) to Cm,α(∂I,C), which takes µ to the function L̃′[µ] of ∂I to C,
defined by

L̃′[µ](t) ≡ 1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I, (8.9)

is a linear homeomorphism of Cm,α(∂I,C) onto itself.

Proof. We first prove statement (i). By Proposition 8.2 (i), we have that L is injective. Since the
singularity in the involved integral operator is weak, we have that L is continuous and that L − 1

2I is
a compact operator on L2(∂I,C) (cf. e.g., Folland [52, Prop. 3.11, p. 121]). Hence, by the Fredholm
Theory, we have that L is surjective and, by the Open Mapping Theorem, we have that it is a linear
homeomorphism of L2(∂I,C) onto itself. We now consider statement (ii). By Theorem 6.11 (iii), we
have that L̃ is a linear continuous operator of Cm−1,α(∂I,C) to itself. Hence, by the Open Mapping
Theorem, in order to prove that it is a linear homeomorphism of Cm−1,α(∂I,C) onto itself, it suffices
to prove that it is a bijection. By Proposition 8.2 (i), L̃ is injective. Now let φ ∈ Cm−1,α(∂I,C). By
statement (i), there exists µ ∈ L2(∂I,C) such that

φ(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I,

and, by Proposition 6.18 (iii), we have µ ∈ Cm−1,α(∂I,C). As a consequence, L̃ is surjective, and
the proof of (ii) is complete. We now turn to the proof of statement (iii). By Proposition 8.2 (ii),
we have that L′ is injective. Since the singularity in the involved integral operator is weak, we have
that L′ is continuous and that L′ − 1

2I is a compact operator on L2(∂I,C) (cf. e.g., Folland [52,
Prop. 3.11, p. 121].) Hence, by the Fredholm Theory, we have that L′ is surjective and, by the
Open Mapping Theorem, we have that it is a linear homeomorphism of L2(∂I,C) onto itself. We
finally prove statement (iv). By Theorem 6.7 (ii), we have that L̃′ is a linear continuous operator
of Cm,α(∂I,C) to itself. Hence, by the Open Mapping Theorem, in order to prove that it is a linear
homeomorphism of Cm,α(∂I,C) onto itself, it suffices to prove that it is a bijection. By Proposition
8.2 (ii), L̃′ is injective. Now let φ ∈ Cm,α(∂I,C). By statement (iii), there exists µ ∈ L2(∂I,C) such
that

φ(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I,

and, by Proposition 6.18 (i), we have µ ∈ Cm,α(∂I,C). As a consequence, L̃ is surjective, and the
proof is complete.

We are now ready to prove the main result of this section.

Theorem 8.5. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, Γ be as in (8.1), (8.2),
respectively. Assume that k2 6∈ EigaN [Ta[I]] and k2 6∈ EigD[I]. Then boundary value problem (8.3) has
a unique solution u ∈ Cm,α(cl Ta[I],C) ∩ C2(Ta[I],C). Moreover,

u(x) = v−a [I, µ, k](x) ∀x ∈ cl Ta[I], (8.10)

where µ is the unique function in Cm−1,α(∂I,C) that solves the following equation

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs = Γ(t) ∀t ∈ ∂I. (8.11)

Proof. Clearly, it suffices to prove the existence. By Theorem 8.4 (ii), there exists a unique µ ∈
Cm−1,α(∂I,C) such that (8.11) holds. Then, by Theorem 6.11 (i), we have that v−a [∂I, µ, k] ∈
Cm,α(cl Ta[I],C), that

∂

∂νI
v−a [∂I, µ, k](t) =

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs = Γ(t) ∀t ∈ ∂I.

and that
∆v−a [∂I, µ, k](t) + k2v−a [∂I, µ, k](t) = 0 ∀t ∈ Ta[I].

Finally, by the periodicity of v−a [∂I, µ, k], we have that v−a [∂I, µ, k] solves boundary value problem
(8.3).
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We now prove the following representation Theorem.

Theorem 8.6. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k be as in (8.1). Assume
that k2 6∈ EigaN [Ta[I]] and k2 6∈ EigD[I]. Let u ∈ Cm,α(cl Ta[I],C) be such that{

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n}.

Then there exists a unique function µ ∈ Cm−1,α(∂I,C) such that

u(x) = v−a [I, µ, k](x) ∀x ∈ cl Ta[I]. (8.12)

Moreover µ is the unique function in Cm−1,α(∂I,C) that solves the following equation

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs =

∂

∂νI
u(t) ∀t ∈ ∂I. (8.13)

Proof. Let µ ∈ Cm−1,α(∂I,C). Clearly, since k2 6∈ EigaN [Ta[I]] and by Theorem 6.11, we have

u(x) = v−a [I, µ, k](x) ∀x ∈ cl Ta[I],

if and only if
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs =

∂

∂νI
u(t) ∀t ∈ ∂I.

By Theorem 8.4 (ii), there exists a unique µ ∈ Cm−1,α(∂I,C) such that (8.13) holds and hence the
conclusion easily follows.

8.2 Asymptotic behaviour of the solutions of the Neumann
problem for the Helmholtz equation in a periodically per-
forated domain

In this Section we study the asymptotic behaviour of the solutions of the Neumann problem for the
Helmholtz equation in a periodically perforated domain with small holes.

8.2.1 Notation
We retain the notation introduced in Subsections 1.8.1, 6.7.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the following assumptions.

k ∈ C, k2 6= |2πa−1(z)|2 ∀z ∈ Zn; (8.14)

g ∈ Cm−1,α(∂Ω,C). (8.15)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k be as in (1.56), (1.57), (8.14), respectively.
By Proposition 7.42, there exists ε∗1 ∈ ]0, ε1[ such that

k2 6∈
(

EigD[Ωε] ∪ EigN [Ωε] ∪ EigaD[Ta[Ωε]] ∪ EigaN [Ta[Ωε]]
)

∀ε ∈ ]0, ε∗1]. (8.16)

8.2.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14), (8.15),
respectively. Let ε∗1 be as in (8.16). For each ε ∈ ]0, ε∗1[, we consider the following periodic Neumann
problem for the Helmholtz equation.

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g( 1

ε (x− w)) ∀x ∈ ∂Ωε.
(8.17)

By virtue of Theorem 8.5, we can give the following definition.
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Definition 8.7. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16). For each ε ∈ ]0, ε∗1[, we denote by u[ε] the unique solution
in Cm,α(cl Ta[Ωε],C) of boundary value problem (8.17).

We have the following Lemmas.

Lemma 8.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16). Let ε ∈ ]0, ε∗1[. Then the function µ ∈ Cm−1,α(∂Ωε,C)
satisfies the following equation

g(
1
ε

(x− w)) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy ∀x ∈ ∂Ωε, (8.18)

if and only if the function θ ∈ Cm−1,α(∂Ω,C), defined by

θ(t) ≡ µ(w + εt) ∀t ∈ ∂Ω, (8.19)

satisfies the following equation

g(t) =
1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω.

(8.20)

Proof. It is a straightforward verification based on the rule of change of variables in integrals, on well
known properties of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Sections 3,4])
and on equality (6.25).

Lemma 8.9. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (8.15), respectively. Then there
exists a unique function θ ∈ Cm−1,α(∂Ω,C) that solves the following equation

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (8.21)

We denote the unique solution of equation (8.21) by θ̃. Moreover,∫
∂Ω

θ̃(s) dσs =
∫
∂Ω

g(s) dσs. (8.22)

Proof. The existence and uniqueness of a solution of equation (8.21) is a well known result of classic
potential theory (cf. Folland [52, Chapter 3] for the existence and uniqueness of a solution in L2(∂Ω,C)
and, e.g., Theorem B.3 for the regularity.) Equality (8.22) follows by Folland [52, Lemma 3.30,
p. 133].

Since we want to represent the function u[ε] by means of a periodic simple layer potential, we need
to study some integral equations. Indeed, by virtue of Theorem 8.5, we can transform (8.17) into an
integral equation, whose unknown is the moment of the simple layer potential. Moreover, we want
to transform this equation defined on the ε-dependent domain ∂Ωε into an equation defined on the
fixed domain ∂Ω. We introduce this integral equation in the following Propositions. The relation
between the solution of the integral equation and the solution of boundary value problem (8.17) will
be clarified later. Anyway, since the function Qkn that appears in equation (8.20) (involved in the
determination of the moment of the simple layer potential that solves (8.17)) is identically 0 if n is
odd, it is preferable to treat separately case n even and case n odd.

Proposition 8.10. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let θ̃ be as in Lemma 8.9. Let Λ be
the map of ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) defined by

Λ[ε, θ](t) ≡1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs − g(t) ∀t ∈ ∂Ω,
(8.23)

for all (ε, θ) ∈ ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C). Then the following statements hold.
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(i) If ε ∈ ]0, ε∗1[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[ε, θ] = 0, (8.24)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ θ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (8.25)

satisfies the equation

Γ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy ∀x ∈ ∂Ωε, (8.26)

with Γ ∈ Cm−1,α(∂Ωε,C) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε. (8.27)

In particular, equation (8.24) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each ε ∈ ]0, ε∗1[.

(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[0, θ] = 0, (8.28)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (8.29)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (8.28) is θ̃.

Proof. Consider (i). The equivalence of equation (8.24) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (8.26) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by Lemma 8.8 and the definition of Qkn
for n odd (cf. (6.23) and Definition E.2.) The existence and uniqueness of a solution of equation
(8.26) follows by Proposition 8.4 (ii). Then the existence and uniqueness of a solution of equation
(8.24) follows by the equivalence of (8.24) and (8.26). Consider (ii). The equivalence of (8.28) and
(8.29) is obvious. The second part of statement (ii) is an immediate consequence of Lemma 8.9.

Proposition 8.11. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let θ̃ be as in Lemma 8.9. Let
ε′1 > 0 be such that

ε log ε ∈ ]−ε′1, ε′1[ ∀ε ∈ ]0, ε∗1[. (8.30)

Let Λ# be the map of ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) defined by

Λ#[ε, ε′, θ](t) ≡1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs

+ εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs − g(t) ∀t ∈ ∂Ω,

(8.31)

for all (ε, ε′, θ) ∈ ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) If ε ∈ ]0, ε∗1[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[ε, ε log ε, θ] = 0, (8.32)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ θ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (8.33)
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satisfies the equation

Γ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy ∀x ∈ ∂Ωε, (8.34)

with Γ ∈ Cm−1,α(∂Ωε,C) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε. (8.35)

In particular, equation (8.32) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each ε ∈ ]0, ε∗1[.

(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[0, 0, θ] = 0, (8.36)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (8.37)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (8.36) is θ̃.

Proof. Consider (i). The equivalence of equation (8.32) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (8.34) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by Lemma 8.8 and the definition of Qkn
for n even (cf. (6.23) and Definition E.2.) The existence and uniqueness of a solution of equation
(8.34) follows by Proposition 8.4 (ii). Then the existence and uniqueness of a solution of equation
(8.32) follows by the equivalence of (8.32) and (8.34). Consider (ii). The equivalence of (8.36) and
(8.37) is obvious. The second part of statement (ii) is an immediate consequence of Lemma 8.9.

By Propositions 8.10, 8.11, it makes sense to introduce the following.

Definition 8.12. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). For each ε ∈ ]0, ε∗1[, we denote by θ̂n[ε] the unique
function in Cm−1,α(∂Ω,C) that solves equation (8.24), if n is odd, or equation (8.32), if n is even.
Analogously, we denote by θ̂n[0] the unique function in Cm−1,α(∂Ω,C) that solves equation (8.28), if
n is odd, or equation (8.36), if n is even.

In the following Remark, we show the relation between the solutions of boundary value problem
(8.17) and the solutions of equations (8.24), (8.32).

Remark 8.13. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16).
Let ε ∈ ]0, ε∗1[. We have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)θ̂n[ε](s) dσs ∀x ∈ cl Ta[Ωε].

While the relation between equations (8.24), (8.32) and boundary value problem (8.17) is now
clear, we want to see if (8.28), (8.36) are related to some (limiting) boundary value problem. We give
the following.

Definition 8.14. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (8.15), respectively.
We denote by ũ the unique solution in Cm,α(Rn \ Ω,C) of the following boundary value problem

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = g(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(8.38)

Problem (8.38) will be called the limiting boundary value problem.
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Remark 8.15. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16). If n ≥ 3, then we have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̂n[0](y) dσy ∀x ∈ Rn \ Ω.

If n = 2, in general the (classic) simple layer potential for the Laplace equation with moment θ̂2[0]
is not harmonic at infinity, and it does not satisfy the third condition of boundary value problem
(8.38). Moreover, if n = 2, boundary value problem (8.38) does not have in general a solution (unless∫
∂Ω
g dσ = 0.) However, the function ṽ of R2 \ Ω to C, defined by

ṽ(x) ≡
∫
∂Ω

S2(x− y)θ̂2[0](y) dσy ∀x ∈ R2 \ Ω,

is a solution of the following boundary value problem{
∆ṽ(x) = 0 ∀x ∈ R2 \ cl Ω,
∂
∂νΩ

ṽ(x) = g(x) ∀x ∈ ∂Ω. (8.39)

We now prove the following Propositions.

Proposition 8.16. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let θ̃ be as in Lemma 8.9. Let Λ
be as in Proposition 8.10. Then there exists ε2 ∈ ]0, ε∗1] such that Λ is a real analytic operator of
]−ε2, ε2[ × Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Moreover, if we set b0 ≡ (0, θ̃), then the differential
∂θΛ[b0] of Λ with respect to the variable θ at b0 is delivered by the following formula

∂θΛ[b0](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (8.40)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proof. By Proposition 6.21 (ii), we easily deduce that there exists ε2 ∈ ]0, ε∗1] such that Λ is a real
analytic operator of ]−ε2, ε2[ × Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). By standard calculus in Banach
space, we immediately deduce that (8.40) holds. Now we need to prove that ∂θΛ[b0] is a linear
homeomorphism. By the Open Mapping Theorem, it suffices to prove that it is a bijection. Let
ψ ∈ Cm−1,α(∂Ω,C). By known results of classical potential theory (cf. Folland [52, Chapter 3]), there
exists a unique function τ ∈ Cm−1,α(∂Ω,C), such that

1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs = ψ(t) ∀t ∈ ∂Ω.

Hence ∂θΛ[b0] is bijective, and, accordingly, a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proposition 8.17. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let θ̃ be as in Lemma 8.9. Let
ε′1 > 0 be as in (8.30). Let Λ# be as in Proposition 8.11. Then there exists ε2 ∈ ]0, ε∗1] such that Λ#

is a real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[×Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Moreover, if we
set b0 ≡ (0, 0, θ̃), then the differential ∂θΛ#[b0] of Λ# with respect to the variable θ at b0 is delivered
by the following formula

∂θΛ#[b0](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (8.41)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proof. By Proposition 6.21 (ii), we easily deduce that there exists ε2 ∈ ]0, ε∗1] such that Λ# is a real
analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). By standard calculus in
Banach space, we immediately deduce that (8.41) holds. Finally, by the proof of Proposition 8.16 and
formula (8.41), we have that ∂θΛ#[b0] is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

By the previous Propositions we can now prove the following results.
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Proposition 8.18. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε2 be as in Proposition 8.16.
Then there exist ε3 ∈ ]0, ε2] and a real analytic operator Θn of ]−ε3, ε3[ to Cm−1,α(∂Ω,C), such that

Θn[ε] = θ̂n[ε], (8.42)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 8.16 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

Proposition 8.19. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε′1 > 0 be as in (8.30). Let ε2 be
as in Proposition 8.17. Then there exist ε3 ∈ ]0, ε2], ε′2 ∈ ]0, ε′1], and a real analytic operator Θ#

n of
]−ε3, ε3[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C), such that

ε log ε ∈ ]−ε′2, ε′2[ ∀ε ∈ ]0, ε3[,

Θ#
n [ε, ε log ε] = θ̂n[ε] ∀ε ∈ ]0, ε3[, (8.43)

Θ#
n [0, 0] = θ̂n[0]. (8.44)

Proof. It is an immediate consequence of Proposition 8.17 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

8.2.3 A functional analytic representation Theorem for the solution of the
singularly perturbed Neumann problem

By Propositions 8.18, 8.19 and Remark 8.13, we can deduce the main result of this Subsection.

Theorem 8.20. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε3 be as in Proposition 8.18. Let V be
a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], and a real
analytic operator U of ]−ε4, ε4[ to the space C0(clV,C), such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−1U [ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,

U [0](x) = Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV.

Proof. Let Θn[·] be as in Proposition 8.18. Choosing ε4 small enough, we can clearly assume that (j)
holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 8.13 and Proposition 8.18, we have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U [ε](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[. By Proposition 6.22, U is a real analytic map of ]−ε4, ε4[ to C0(clV,C).
Furthermore, by Lemma 8.9, we have

U [0](x) = Sa,kn (x− w)
∫
∂Ω

Θn[0](s) dσs

= Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV,

since Θn[0] = θ̃. Hence the proof is now complete.
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Remark 8.21. We note that the right-hand side of the equality in (jj) of Theorem 8.20 can be continued
real analytically in the whole ]−ε4, ε4[. Moreover, if V is a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] = 0 uniformly in clV .

Theorem 8.22. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε3, ε′2 be as in Proposition 8.19.
Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3] and
a real analytic operator U# of ]−ε4, ε4[ × ]−ε′2, ε′2[ to the space C0(clV,C), such that the following
conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−1U#[ε, ε log ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,

U#[0, 0](x) = Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV.

Proof. Let Θ#
n [·, ·] be as in Proposition 8.19. Choosing ε4 small enough, we can clearly assume that

(j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 8.13 and Proposition 8.19, we have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε log ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U#[ε, ε′](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε′](s) dσs ∀x ∈ clV,

for all (ε, ε′) ∈ ]−ε4, ε4[×]−ε′2, ε′2[. By Proposition 6.22, U# is a real analytic map of ]−ε4, ε4[×]−ε′2, ε′2[
to C0(clV,C). Furthermore, by Lemma 8.9, we have

U#[0, 0](x) = Sa,kn (x− w)
∫
∂Ω

Θ#
n [0, 0](s) dσs

= Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV,

since Θ#
n [0, 0] = θ̃. Accordingly, the Theorem is now completely proved.

We have also the following Theorems.

Theorem 8.23. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let θ̃ be as in Lemma 8.9. Let ε3 be as in
Proposition 8.18. Then there exist ε5 ∈ ]0, ε3], and a real analytic operator G of ]−ε5, ε5[ to C, such
that ∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = εnG[ε], (8.45)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (8.46)

where ũ is as in Definition 8.14.

Proof. Let Θn[·] be as in Proposition 8.18. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.
Clearly, by the periodicity of u[ε], we have∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = −εn−1

∫
∂Ω

g(t)u[ε] ◦ (w + ε id∂Ω)(t) dσt.
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By equality (6.24) and since Qkn = 0 for n odd, we have

u[ε] ◦ (w+ε id∂Ω)(t) = εn−1

∫
∂Ω

Sa,kn (ε(t− s))Θn[ε](s) dσs

= ε

∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

By Theorem E.6 (i), one can easily show that the map which takes ε to the function of the variable
t ∈ ∂Ω defined by ∫

∂Ω

Sn(t− s, εk)Θn[ε](s) dσs ∀t ∈ ∂Ω,

is a real analytic operator of ]−ε3, ε3[ to Cm−1,α(∂Ω,C). By Theorem C.4, we immediately deduce
that there exists ε5 ∈ ]0, ε3] such that the map of ]−ε5, ε5[ to Cm−1,α(∂Ω,C), which takes ε to the
function

∫
∂Ω
Ra,kn (ε(t− s))Θn[ε](s) dσs of the variable t ∈ ∂Ω, is real analytic. Hence, if we set

G1[ε] ≡ −
∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs dσt,

and

G2[ε] ≡ −
∫
∂Ω

g(t)
∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs dσt,

for all ε ∈ ]−ε5, ε5[, then by standard properties of functions in Schauder spaces, we have that G1 and
G2 are real analytic maps of ]−ε5, ε5[ to C. Thus, if we set

G[ε] ≡ G1[ε] + εn−2G2[ε] ∀ε ∈ ]−ε5, ε5[,

then G is a real analytic map of ]−ε5, ε5[ to C such that equality (8.45) holds.
Finally, if ε = 0, by Folland [52, p. 118], we have

G[0] = −
∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt

=
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

and accordingly (8.46) holds.

Theorem 8.24. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let θ̃ be as in Lemma 8.9. Let ε3, ε′2
be as in Proposition 8.19. Then there exist ε5 ∈ ]0, ε3], and two real analytic operators G#

1 , G
#
2 of

]−ε5, ε5[× ]−ε′2, ε′2[ to C, such that∫
Pa[Ωε]

|∇u[ε](x)|2 dx−k2

∫
Pa[Ωε]

|u[ε](x)|2 dx =

εnG#
1 [ε, ε log ε] + ε2n−2(log ε)G#

2 [ε, ε log ε],
(8.47)

for all ε ∈ ]0, ε5[. Moreover,

G#
1 [0, 0] = −

∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)|
∫
∂Ω

g dσ|2, (8.48)

G#
2 [0, 0] = −kn−2Jn(0)|

∫
∂Ω

g dσ|2, (8.49)

where Jn(0) is as in Proposition E.3 (i). In particular, if n > 2, then

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx, (8.50)

where ũ is as in Definition 8.14.
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Proof. Let Θ#
n [·, ·] be as in Proposition 8.19. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.

Clearly, by the periodicity of u[ε], we have∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = −εn−1

∫
∂Ω

g(t)u[ε] ◦ (w + ε id∂Ω)(t) dσt.

By equality (6.24), we have

u[ε] ◦ (w + ε id∂Ω)(t) =εn−1

∫
∂Ω

Sa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs

=ε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

By Theorem E.6 (i), one can easily show that the map which takes (ε, ε′) to the function of the
variable t ∈ ∂Ω, defined by ∫

∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

is a real analytic operator of ]−ε3, ε3[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C). By Theorem C.4, we immediately
deduce that there exists ε5 ∈ ]0, ε3] such that the map of ]−ε5, ε5[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C), which
takes (ε, ε′) to the function

∫
∂Ω
Ra,kn (ε(t− s))Θ#

n [ε, ε′](s) dσs of the variable t ∈ ∂Ω, is real analytic.
By Theorem C.4, we have that the map of ]−ε5, ε5[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C), which takes (ε, ε′) to
the function

∫
∂Ω
Qkn(ε(t− s))Θ#

n [ε, ε′](s) dσs of the variable t ∈ ∂Ω, is real analytic. Hence, if we set

G#
1 [ε, ε′] ≡−

∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′](s) dσs dσt

− εn−2

∫
∂Ω

g(t)
∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs dσt,

and

G#
2 [ε, ε′] ≡ −

∫
∂Ω

g(t)(kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′](s) dσs) dσt,

for all (ε, ε′) ∈ ]−ε5, ε5[× ]−ε′2, ε′2[, by standard properties of functions in Schauder spaces, we have
that G#

1 and G#
2 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[ to C such that equality (8.47) holds.

Finally, if ε = ε′ = 0, we have

G#
1 [0, 0] = −

∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,n
∫
∂Ω

g(t)
∫
∂Ω

Ra,kn (0)θ̃(s) dσs dσt

= −
∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)
∫
∂Ω

g(t)
∫
∂Ω

θ̃(s) dσs dσt

= −
∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)
∫
∂Ω

g(t) dσt
∫
∂Ω

g(s) dσs,

and

G#
2 [0, 0] = −

∫
∂Ω

g(t)kn−2

∫
∂Ω

Qkn(0)θ̃(s) dσs dσt

= −kn−2
Qkn(0)

∫
∂Ω

g(t) dσt
∫
∂Ω

g(s) dσs,

and accordingly equalities (8.48) and (8.49) hold. Finally, if n ≥ 4, by Folland [52, p. 118], we have

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx.
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Remark 8.25. If n is odd, we note that the right-hand side of the equality in (8.45) of Theorem 8.23
can be continued real analytically in the whole ]−ε5, ε5[.

Moreover,

lim
ε→0+

[∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx
]

= 0,

for all n ∈ N \ {0, 1} (n even or odd.)

8.2.4 A real analytic continuation Theorem for the integral of the solution
We now prove a real analytic continuation Theorem for the integral of the solution. Namely, we prove
the following.

Theorem 8.26. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16).∫

Pa[Ωε]

u[ε](x) dx =
εn−1

k2

∫
∂Ω

g(t) dσt,

for all ε ∈ ]0, ε∗1[.

Proof. Let ε ∈ ]0, ε∗1[. By the Divergence Theorem and the periodicity of u[ε], we have∫
Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
1
k2

∫
∂Ωε

g
(1
ε

(x− w)
)
dσx

=
εn−1

k2

∫
∂Ω

g(t) dσt,

and the proof is complete.

8.3 An homogenization problem for the Helmholtz equation
with Neumann boundary conditions in a periodically per-
forated domain

In this section we consider an homogenization problem for the Helmhlotz equation with Neumann
boundary conditions in a periodically perforated domain. In most of the results we assume that
Im(k) 6= 0 and Re(k) = 0.

We note that we shall consider the equation

∆u(x) +
k2

δ2
u(x) = 0 ∀x ∈ Ta(ε, δ),

together with the usual periodicity condition and a Neumann boundary condition. We do so, because
if u is a solution of the equation above then the function uδ(·) ≡ u(δ·) is a solution of the following
equation

∆uδ(x) + k2uδ(x) = 0 ∀x ∈ Ta[Ωε],

which we can analyse by virtue of the results of Section 8.2.
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8.3.1 Notation

In this Section we retain the notation introduced in Subsections 1.8.1, 6.7.1, 8.2.1. However, we need
to introduce also some other notation.

Let (ε, δ) ∈ (]−ε1, ε1[ \ {0}) × ]0,+∞[. If v is a function of cl Ta(ε, δ) to C, then we denote by
E(ε,δ)[v] the function of Rn to C, defined by

E(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ),
0 ∀x ∈ Rn \ cl Ta(ε, δ).

8.3.2 Preliminaries

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14), (8.15),
respectively. Let ε∗1 be as in (8.16). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we consider the following
periodic Neumann problem for the Helmholtz equation.

∆u(x) + k2

δ2 u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δaj) = u(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) = 1
δ g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(8.51)

By virtue of Theorem 8.5, we can give the following definition.

Definition 8.27. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we denote by
u(ε,δ) the unique solution in Cm,α(cl Ta(ε, δ),C) of boundary value problem (8.51).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 8.28. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). For each ε ∈ ]0, ε∗1[, we denote by u[ε] the unique
solution in Cm,α(cl Ta[Ωε],C) of the following periodic Neumann problem for the Helmholtz equation.

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g( 1

ε (x− w)) ∀x ∈ ∂Ωε.
(8.52)

Remark 8.29. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16). For each pair (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, we note that the solution of problem (8.51) can be expressed by means of
the solution of the auxiliary rescaled problem (8.52), which does not depend on δ. This is due to the
presence of the factor 1/δ in front of g( 1

εδ (x− δw)) in the third equation of problem (8.51).
As a first step, we study the behaviour of u[ε] as ε tends to 0.

Proposition 8.30. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16).
Let ε3 be as in Proposition 8.18. Then there exist ε̃ ∈ ]0, ε3[ and a real analytic map N of ]−ε̃, ε̃[ to
Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E(ε,1)[u[ε]] = 0 in L∞(Rn,C).
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Proof. Let ε3, Θn be as in Proposition 8.18. Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[, we
have

u[ε] ◦ (w+ ε id∂Ω)(t) = ε

∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem C.4 and the proof
of Theorem 8.23) that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω,C).

By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,

and
‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω) ∀ε ∈ ]0, ε̃[.

Accordingly,
lim
ε→0+

Re
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and
lim
ε→0+

Im
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and so the conclusion follows.

Proposition 8.31. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16). Let
ε3, ε′2 be as in Proposition 8.19. Then there exist ε̃ ∈ ]0, ε3[ and two real analytic maps N#

1 , N#
2 of

]−ε̃, ε̃[× ]−ε′2, ε′2[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E(ε,1)[u[ε]] = 0 in L∞(Rn,C).

Proof. Let ε3, ε′2, Θ#
n be as in Proposition 8.19. If ε ∈ ]0, ε3[, we have

u[ε] ◦ (w + ε id∂Ω)(t) =ε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

We set

N#
1 [ε, ε′](t) ≡

∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and

N#
2 [ε, ε′](t) ≡kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,
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for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem
C.4 and the proof of Theorem 8.24) that N#

1 , N#
2 are real analytic maps of ]−ε̃, ε̃[ × ]−ε′2, ε′2[ to

Cm,α(∂Ω,C). Clearly,

u[ε] ◦ (w + ε id∂Ω)(t) = εN#
1 [ε, ε log ε](t) + εn−1(log ε)N#

2 [ε, ε log ε](t) ∀t ∈ ∂Ω, ∀ε ∈ ]0, ε̃[.

By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

and
‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[.
Accordingly,

lim
ε→0+

Re
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and
lim
ε→0+

Im
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and so the conclusion follows.

8.3.3 Asymptotic behaviour of u(ε,δ)

In the following Theorems we deduce by Propositions 8.30, 8.31 the convergence of u(ε,δ) as (ε, δ)
tends to (0, 0). Namely, we prove the following.

Theorem 8.32. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16). Let ε̃, N be
as in Proposition 8.30. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ε‖Re
(
N [ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ε‖Im
(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Theorem 8.33. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16). Let ε̃,
N#

1 , N#
2 be as in Proposition 8.31. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).
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Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ‖Re
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ‖Im
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 8.34. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn

εn−1

k2

∫
∂Ω

g(t) dσt, (8.53)

for all ε ∈ ]0, ε∗1[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε∗1[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
εn−1

k2

∫
∂Ω

g(t) dσt.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn
εn−1

k2

∫
∂Ω

g(t) dσt,

and the conclusion follows.

We give the following.

Definition 8.35. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). For each pair (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, we set

F(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
A∩Ta(ε,δ)

|u(ε,δ)(x)|2 dx.
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Remark 8.36. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16). Let (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt,

and ∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δn
∫

Pa[Ωε]

|u[ε](t)|2 dt.

Accordingly,∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn−2
(∫

Pa[Ωε]

|∇u[ε](t)|2 dt− k2

∫
Pa[Ωε]

|u[ε](t)|2 dt
)
.

Then we give the following definition, where we consider F(ε, δ), with ε equal to a certain function
of δ.

Definition 8.37. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 8.23, if n is odd, or as in Theorem 8.24, if n is even. Let δ1 > 0 be such that
ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

F [δ] ≡ F(ε[δ], δ),

for all δ ∈ ]0, δ1[.

Here we may note that the ‘radius’ of the holes is δε[δ] = δ
n+2
n which is different from the one

which appears in Homogenization Theory (cf. e.g., Ansini and Braides [7] and references therein.)
In the following Propositions we compute the limit of F [δ] as δ tends to 0.

Proposition 8.38. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16). Let
ε5 be as in Theorem 8.23. Let δ1 > 0 be as in Definition 8.37. Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 8.14.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 8.36 and Theorem 8.23, we have

G(δ) = δn−2(ε[δ])nG[ε[δ]]

= δn−2δ2G[δ
2
n ],

where G is as in Theorem 8.23. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).
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As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G[0].

Finally, by equality (8.46), we easily conclude.

Proposition 8.39. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k,
g be as in (1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in
(8.16). Let ε5 be as in Theorem 8.24. Let δ1 > 0 be as in Definition 8.37. Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 8.14.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 8.36 and Theorem 8.24, we have

G(δ) =δn−2(ε[δ])nG#
1 [ε[δ], ε[δ] log ε[δ]]

+ δn−2(ε[δ])2n−2(log ε[δ])G#
2 [ε[δ], ε[δ] log ε[δ]]

=δn−2δ2G#
1 [δ

2
n , δ

2
n log(δ

2
n )]

+ δn−2δ4− 4
n (log(δ

2
n ))G#

2 [δ
2
n , δ

2
n log(δ

2
n )],

where G#
1 and G#

2 are as in Theorem 8.24. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).

As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G#
1 [0, 0].

Finally, by equality (8.50), we easily conclude.

In the following Propositions we represent the function F [·] by means of real analytic functions.

Proposition 8.40. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε5, and G be as in Theorem 8.23.
Let δ1 > 0 be as in Definition 8.37. Then

F [(1/l)] = G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).

Proof. By arguing as in the proof of Proposition 8.38, one can easily see that

F [(1/l)] = ln(1/l)n−2(1/l)2G[(1/l)
2
n ]

= G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).
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Proposition 8.41. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε5, G

#
1 , and G

#
2 be as in

Theorem 8.24. Let δ1 > 0 be as in Definition 8.37. Then

F [(1/l)] = G#
1 [(1/l)

2
n , (1/l)

2
n log((1/l)

2
n )] + (1/l)2− 4

n log((1/l)
2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )],

for all l ∈ N such that l > (1/δ1).

Proof. By arguing as in the proof of Proposition 8.39, one can easily see that

F [(1/l)] = ln(1/l)n−2(1/l)2
{
G#

1 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)2− 4
n log((1/l)

2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]
}

= G#
1 [(1/l)

2
n , (1/l)

2
n log((1/l)

2
n )] + (1/l)2− 4

n log((1/l)
2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )],

for all l ∈ N such that l > (1/δ1).

8.4 A variant of an homogenization problem for the Helmholtz
equation with Neumann boundary conditions in a periodi-
cally perforated domain

In this section we consider a variant of the previous homogenization problem for the Helmhlotz
equation with Neumann boundary conditions in a periodically perforated domain. As above, most of
the results are obtained under the assumption that Im(k) 6= 0 and Re(k) = 0.

8.4.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 6.7.1, 8.2.1, 8.3.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14), (8.15),
respectively. Let ε∗1 be as in (8.16). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we consider the following
periodic Neumann problem for the Helmholtz equation.

∆u(x) + k2

δ2 u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δaj) = u(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) = g( 1
εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).

(8.54)

In contrast to problem (8.51), we note that in the third equation of problem (8.55) there is not
the factor 1/δ in front of g( 1

εδ (x− δw)).
By virtue of Theorem 8.5, we can give the following definition.

Definition 8.42. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we denote by
u(ε,δ) the unique solution in Cm,α(cl Ta(ε, δ),C) of boundary value problem (8.54).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 8.43. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). For each ε ∈ ]0, ε∗1[, we denote by u[ε] the unique
solution in Cm,α(cl Ta[Ωε],C) of the following periodic Neumann problem for the Helmholtz equation.

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) = g( 1

ε (x− w)) ∀x ∈ ∂Ωε.
(8.55)

Remark 8.44. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16). For each pair (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, we have

u(ε,δ)(x) = δu[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).
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We have the following.

Proposition 8.45. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16).
Let ε3 be as in Proposition 8.18. Then there exist ε̃ ∈ ]0, ε3[ and a real analytic map N of ]−ε̃, ε̃[ to
Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[δu[ε]]

)
‖L∞(Rn) = δε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[δu[ε]]

)
‖L∞(Rn) = δε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,1)[δu[ε]] = 0 in L∞(Rn,C).

Proof. It is an immediate consequence of Proposition 8.30.

Proposition 8.46. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16). Let
ε3, ε′2 be as in Proposition 8.19. Then there exist ε̃ ∈ ]0, ε3[ and two real analytic maps N#

1 , N#
2 of

]−ε̃, ε̃[× ]−ε′2, ε′2[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[δu[ε]]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[δu[ε]]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,1)[δu[ε]] = 0 in L∞(Rn,C).

Proof. It is an immediate consequence of Proposition 8.31.

8.4.2 Asymptotic behaviour of u(ε,δ)

In the following Theorems we deduce by Propositions 8.45, 8.46 the convergence of u(ε,δ) as (ε, δ)
tends to (0, 0). Namely, we prove the following.

Theorem 8.47. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16). Let ε̃, N be
as in Proposition 8.45. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= δε‖Re
(
N [ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= δε‖Im
(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.
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Theorem 8.48. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (8.16). Let ε̃,
N#

1 , N#
2 be as in Proposition 8.46. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= δ‖Re
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= δ‖Im
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 8.49. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l

εn−1

k2

∫
∂Ω

g(t) dσt, (8.56)

for all ε ∈ ]0, ε∗1[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε∗1[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

r

l
u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

r

l
u[ε](t) dt

=
1
ln
rn+1

l

εn−1

k2

∫
∂Ω

g(t) dσt.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
rn+1

l

εn−1

k2

∫
∂Ω

g(t) dσt,

and the conclusion follows.
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We give the following.

Definition 8.50. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(8.14), (8.15), respectively. Let ε∗1 be as in (8.16). For each pair (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, we set

F(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
A∩Ta(ε,δ)

|u(ε,δ)(x)|2 dx.

Remark 8.51. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (8.14),
(8.15), respectively. Let ε∗1 be as in (8.16). Let (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn
∫

Pa[Ωε]

|∇u[ε](t)|2 dt,

and ∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δn+2

∫
Pa[Ωε]

|u[ε](t)|2 dt.

Accordingly,∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn
(∫

Pa[Ωε]

|∇u[ε](t)|2 dt− k2

∫
Pa[Ωε]

|u[ε](t)|2 dt
)
.

In the following Propositions we represent the function F(·, ·) by means of real analytic functions.

Proposition 8.52. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε5, and G be as in Theorem 8.23.
Then

F
(
ε,

1
l

)
= εnG[ε],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0}.

Proof. Let (ε, δ) ∈ ]0, ε5[× ]0,+∞[. By Remark 8.51 and Theorem 8.23, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δnεnG[ε]

where G is as in Theorem 8.23. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0}, then we have

F
(
ε,

1
l

)
= ln

1
ln
εnG[ε],

= εnG[ε],

and the conclusion easily follows.

Proposition 8.53. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (8.14), (8.15), respectively. Let ε∗1 be as in (8.16). Let ε5, G

#
1 , and G

#
2 be as in

Theorem 8.24. Then

F
(
ε,

1
l

)
= εnG#

1 [ε, ε log ε] + ε2n−2(log ε)G#
2 [ε, ε log ε],

for all ε ∈ ]0, ε5[ and for all l ∈ N \ {0}.
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Proof. Let (ε, δ) ∈ ]0, ε5[× ]0,+∞[. By Remark 8.51 and Theorem 8.24, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn
{
εnG#

1 [ε, ε log ε] + ε2n−2(log ε)G#
2 [ε, ε log ε]

}
where G#

1 , G#
2 are as in Theorem 8.24. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N \ {0}, then we have

F
(
ε,

1
l

)
= ln

1
ln

{
εnG#

1 [ε, ε log ε] + ε2n−2(log ε)G#
2 [ε, ε log ε]

}
,

= εnG#
1 [ε, ε log ε] + ε2n−2(log ε)G#

2 [ε, ε log ε],

and the conclusion easily follows.
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CHAPTER 9

Singular perturbation and homogenization problems
for the Helmholtz equation with Dirichlet boundary
conditions

In this Chapter we introduce the periodic Dirichlet problem for the Helmholtz equation and we
study singular perturbation and homogenization problems for the Helmholtz operator with Dirichlet
boundary conditions in a periodically perforated domain. First of all, by means of periodic double
layer potentials, we show the solvability of the Dirichlet problem. Secondly, we consider singular
perturbation problems in a periodically perforated domain with small holes, and we apply the obtained
results to homogenization problems. Our strategy follows the functional analytic approach of Lanza
[75], where the asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator
in a domain with a small hole has been studied (see also [70].) We also mention Lanza [79], dealing
with a Neumann eigenvalue problem in a perforated domain. We note that linear boundary value
problems in singularly perturbed domains in the frame of linearized elasticity have been analysed by
Dalla Riva in his Ph.D. Dissertation [33]. One of the tools used in our analysis is the study of the
dependence of layer potentials upon perturbations (cf. Lanza and Rossi [86] and also Dalla Riva and
Lanza [40].)

We retain the notation introduced in Sections 1.1 and 1.3, Chapter 6 and Appendix E. For the
definitions of EigD[I], EigN [I], EigaD[I], EigaN [I], we refer to Chapter 7.

9.1 A periodic Dirichlet boundary value problem for the Helm-
holtz equation

In this Section we introduce the periodic Dirichlet problem for the Helmholtz equation and we show
the existence and uniqueness of a solution by means of the periodic double layer potential.

9.1.1 Formulation of the problem

In this Subsection we introduce the periodic Dirichlet problem for the Helmholtz equation.
First of all, we need to introduce some notation. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in

(1.46). We shall consider the following assumptions.

k ∈ C, k2 6= |2πa−1(z)|2 ∀z ∈ Zn; (9.1)
Γ ∈ Cm,α(∂I,C). (9.2)

We are now ready to give the following.

Definition 9.1. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, Γ be as in (9.1), (9.2),
respectively. We say that a function u ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C) solves the periodic Dirichlet

311
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problem for the Helmholtz equation if∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
u(x) = Γ(x) ∀x ∈ ∂I.

(9.3)

9.1.2 Existence and uniqueness results for the solutions of the periodic
Dirichlet problem

In this Subsection we prove existence and uniqueness results for the solutions of the periodic Dirichlet
problem for the Helmholtz equation.

As we know, in order to solve problem (9.3) by means of periodic double layer potentials, we need
to study some integral equations. Thus, in the following Proposition, we study an operator related to
the equations that we shall consider in the sequel.

Proposition 9.2. Let m ∈ N\{0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k be as in (9.1). Assume
that k2 6∈ EigaD[Ta[I]] and k2 6∈ EigN [I]. Then the following statements hold.

(i) Let µ ∈ L2(∂I,C) and

−1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs = 0 a.e. on ∂I, (9.4)

then µ = 0.

(ii) Let µ ∈ L2(∂I,C) and

−1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = 0 a.e. on ∂I, (9.5)

then µ = 0.

Proof. We first prove statement (i). By Theorem 6.18 (iv), we have µ ∈ Cm−1,α(∂I,C). Then by
Theorem 6.11 (i), we have that the function v+ ≡ v+

a [∂I, µ, k]| cl I is in Cm,α(cl I,C) and solves the
following boundary value problem{

∆v+(x) + k2v+(x) = 0 ∀x ∈ I,
∂
∂νI
v+(x) = 0 ∀x ∈ ∂I.

Hence, since k2 6∈ EigN [I], we have v+ = 0 in cl I, and so

v+ = 0 on ∂I.

Furthermore, by Theorem 6.11 (i), we have

v−a [∂I, µ, k] = v+
a [∂I, µ, k] = 0 on ∂I.

Then by Theorem 6.11 (i), we have that the function v− ≡ v−a [∂I, µ, k] is in Cm,α(cl Ta[I],C) and
solves the following boundary value problem∆v−(x) + k2v−(x) = 0 ∀x ∈ Ta[I],

v−(x+ aj) = v−(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
v−(x) = 0 ∀x ∈ ∂I.

Accordingly, since k2 6∈ EigaD[Ta[I]], we have v− = 0 in cl Ta[I] and consequently

∂

∂νI
v− = 0 on ∂I.

Thus, by Theorem 6.11 (i), we have

µ =
∂

∂νI
v−a [∂I, µ, k]− ∂

∂νI
v+
a [∂I, µ, k] = 0 on ∂I,
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and the proof of (i) is complete. We now turn to the proof of statement (ii). By Theorem 6.18 (ii),
we have µ ∈ Cm,α(∂I,C). Then by Theorem 6.7 (i), we have that the function w− ≡ w−a [∂I, µ, k] is in
Cm,α(cl Ta[I],C) and solves the following boundary value problem∆w−(x) + k2w−(x) = 0 ∀x ∈ Ta[I],

w−(x+ aj) = w−(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
w−(x) = 0 ∀x ∈ ∂I.

Accordingly, since k2 6∈ EigaD[Ta[I]], we have w− = 0 in cl Ta[I]. Furthermore, by Theorem 6.7 (i), we
have

∂

∂νI
w+
a [∂I, µ, k] =

∂

∂νI
w−a [∂I, µ, k] = 0 on ∂I.

Then, by Theorem 6.7 (i), the function w+ ≡ w+
a [∂I, µ, k]| cl I is in Cm,α(cl I,C) and solves the following

boundary value problem {
∆w+(x) + k2w+(x) = 0 ∀x ∈ I,
∂
∂νI
w+(x) = 0 ∀x ∈ ∂I.

Hence, since k2 6∈ EigN [I], we have w+ = 0 in cl I. Thus, by Theorem 6.7 (i), we have

µ = w+
a [∂I, µ, k]− w−a [∂I, µ, k] = 0 on ∂I,

and the proof of (ii) is complete.

Then we have the following Theorem.

Theorem 9.3. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k be as in (9.1). Assume
that k2 6∈ EigaD[Ta[I]] and k2 6∈ EigN [I]. Then the following statements hold.

(i) The map L of L2(∂I,C) to L2(∂I,C), which takes µ to the function L[µ] of ∂I to C, defined by

L[µ](t) ≡ −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I, (9.6)

is a linear homeomorphism of L2(∂I,C) onto itself.

(ii) The map L̃ of Cm−1,α(∂I,C) to Cm−1,α(∂I,C), which takes µ to the function L̃[µ] of ∂I to C,
defined by

L̃[µ](t) ≡ −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I, (9.7)

is a linear homeomorphism of Cm−1,α(∂I,C) onto itself.

(iii) The map L′ of L2(∂I,C) to L2(∂I,C), which takes µ to the function L′[µ] of ∂I to C, defined by

L′[µ](t) ≡ −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I, (9.8)

is a linear homeomorphism of L2(∂I,C) onto itself.

(iv) The map L̃′ of Cm,α(∂I,C) to Cm,α(∂I,C), which takes µ to the function L̃′[µ] of ∂I to C,
defined by

L̃′[µ](t) ≡ −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs ∀t ∈ ∂I, (9.9)

is a linear homeomorphism of Cm,α(∂I,C) onto itself.

Proof. We first prove statement (i). By Proposition 9.2 (i), we have that L is injective. Since the
singularity in the involved integral operator is weak, we have that L is continuous and that L+ 1

2I is
a compact operator on L2(∂I,C) (cf. e.g., Folland [52, Prop. 3.11, p. 121].) Hence, by the Fredholm
Theory, we have that L is surjective and, by the Open Mapping Theorem, we have that it is a linear
homeomorphism of L2(∂I,C) onto itself. We now consider statement (ii). By Theorem 6.11 (iii), we
have that L̃ is a linear continuous operator of Cm−1,α(∂I,C) to itself. Hence, by the Open Mapping
Theorem, in order to prove that it is a linear homeomorphism of Cm−1,α(∂I,C) onto itself, it suffices
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to prove that it is a bijection. By Proposition 9.2 (i), L̃ is injective. Now let φ ∈ Cm−1,α(∂I,C). By
statement (i), there exists µ ∈ L2(∂I,C) such that

φ(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I,

and, by Proposition 6.18 (iv), we have µ ∈ Cm−1,α(∂I,C). As a consequence, L̃ is surjective, and
the proof of (ii) is complete. We now turn to the proof of statement (iii). By Proposition 9.2 (ii),
we have that L′ is injective. Since the singularity in the involved integral operator is weak, we have
that L′ is continuous and that L′ + 1

2I is a compact operator on L2(∂I,C) (cf. e.g., Folland [52,
Prop. 3.11, p. 121].) Hence, by the Fredholm Theory, we have that L′ is surjective and, by the
Open Mapping Theorem, we have that it is a linear homeomorphism of L2(∂I,C) onto itself. We
finally prove statement (iv). By Theorem 6.7 (ii), we have that L̃′ is a linear continuous operator
of Cm,α(∂I,C) to itself. Hence, by the Open Mapping Theorem, in order to prove that it is a linear
homeomorphism of Cm,α(∂I,C) onto itself, it suffices to prove that it is a bijection. By Proposition
9.2 (ii), L̃′ is injective. Now let φ ∈ Cm,α(∂I,C). By statement (iii), there exists µ ∈ L2(∂I,C) such
that

φ(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs a.e. on ∂I,

and, by Proposition 6.18 (ii), we have µ ∈ Cm,α(∂I,C). As a consequence, L̃ is surjective, and the
proof is complete.

We are now ready to prove the main result of this section.

Theorem 9.4. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k be as in (9.1). Let
Γ ∈ Cm,α(∂I,C). Assume that k2 6∈ EigaD[Ta[I]] and k2 6∈ EigN [I]. Then boundary value problem (9.3)
has a unique solution u ∈ Cm,α(cl Ta[I],C) ∩ C2(Ta[I],C). Moreover,

u(x) = w−a [I, µ, k](x) ∀x ∈ cl Ta[I], (9.10)

where µ is the unique function in Cm,α(∂I,C) that solves the following equation

−1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = Γ(t) ∀t ∈ ∂I. (9.11)

Proof. Clearly, since k2 6∈ EigaD[Ta[I]], it suffices to prove the existence. By Theorem 9.3 (iv), there
exists a unique µ ∈ Cm,α(∂I,C) such that (9.11) holds. Then, by Theorem 6.7 (i), we have that
w−a [∂I, µ, k] ∈ Cm,α(cl Ta[I],C), that

w−a [∂I, µ, k](t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = Γ(t) ∀t ∈ ∂I.

and that
∆w−a [∂I, µ, k](t) + k2w−a [∂I, µ, k](t) = 0 ∀t ∈ Ta[I].

Finally, by the periodicity of w−a [∂I, µ, k], we have that w−a [∂I, µ, k] solves boundary value problem
(9.3).

We are now ready to prove the following representation Theorem.

Theorem 9.5. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k be as in (9.1). Assume
that k2 6∈ EigaD[Ta[I]] and k2 6∈ EigN [I]. Let u ∈ Cm,α(cl Ta[I],C) be such that{

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n}.

Then there exists a unique function µ ∈ Cm,α(∂I,C) such that

u(x) = w−a [I, µ, k](x) ∀x ∈ cl Ta[I]. (9.12)

Moreover µ is the unique function in Cm,α(∂I,C) that solves the following equation

−1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = u(t) ∀t ∈ ∂I. (9.13)



9.2 Asymptotic behaviour of the solutions of the Dirichlet problem for the Helmholtz equation in a
periodically perforated domain 315

Proof. Let µ ∈ Cm,α(∂I,C). Clearly, since k2 6∈ EigaD[Ta[I]] and by Theorem 6.11, we have

u(x) = w−a [I, µ, k](x) ∀x ∈ cl Ta[I],

if and only if

−1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sa,kn (t− s))µ(s) dσs = u(t) ∀t ∈ ∂I.

By Theorem 9.3 (iv), there exists a unique µ ∈ Cm,α(∂I,C) such that (9.13) holds and hence the
conclusion easily follows.

9.2 Asymptotic behaviour of the solutions of the Dirichlet prob-
lem for the Helmholtz equation in a periodically perforated
domain

In this Section we study the asymptotic behaviour of the solutions of the Dirichlet problem for the
Helmholtz equation in a periodically perforated domain with small holes.

9.2.1 Notation
We retain the notation introduced in Subsections 1.8.1, 6.7.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the following assumptions.

k ∈ C, k2 6= |2πa−1(z)|2 ∀z ∈ Zn; (9.14)
g ∈ Cm,α(∂Ω,C). (9.15)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k be as in (1.56), (1.57), (9.14), respectively.
By Proposition 7.42, there exists ε∗1 ∈ ]0, ε1[ such that

k2 6∈
(

EigD[Ωε] ∪ EigN [Ωε] ∪ EigaD[Ta[Ωε]] ∪ EigaN [Ta[Ωε]]
)

∀ε ∈ ]0, ε∗1]. (9.16)

9.2.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14), (9.15),
respectively. Let ε∗1 be as in (9.16). For each ε ∈ ]0, ε∗1[, we consider the following periodic Dirichlet
problem for the Helmholtz equation.∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
u(x) = g( 1

ε (x− w)) ∀x ∈ ∂Ωε.
(9.17)

By virtue of Theorem 9.4, we can give the following definition.

Definition 9.6. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14),
(9.15), respectively. Let ε∗1 be as in (9.16). For each ε ∈ ]0, ε∗1[, we denote by u[ε] the unique solution
in Cm,α(cl Ta[Ωε],C) of boundary value problem (9.17).

Then we have the following Lemmas.

Lemma 9.7. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14),
(9.15), respectively. Let ε∗1 be as in (9.16). Let ε ∈ ]0, ε∗1[. Let µ ∈ Cm−1,α(∂Ωε,C). Then

u[ε](x) = v−a [∂Ωε, µ, k](x) ∀x ∈ cl Ta[Ωε], (9.18)

if and only if the function µ solves the following integral equation

g(
1
ε

(x− w)) =
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε. (9.19)

In particular, there exists a unique function µ in Cm−1,α(∂Ωε,C) such that (9.19) holds.
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Proof. Assume that equality (9.18) holds. Then, by Theorem 6.11, equality (9.19) holds. Conversely,
assume that equality (9.19) holds. Then,

u[ε](x) = v−a [∂Ωε, µ, k](x) ∀x ∈ ∂Ωε.

Accordingly, since k2 6∈ EigaD[Ta[Ωε]], we have

u[ε](x) = v−a [∂Ωε, µ, k](x) ∀x ∈ cl Ta[Ωε].

Thus the equivalence of (9.18) and (9.19) is proved. In order to conclude, we need to prove the
existence and uniqueness of a solution of equation (9.19). We first prove uniqueness. Let µ1,
µ2 ∈ Cm−1,α(∂Ωε,C) solve equation (9.19). Then, if we set µ̃ ≡ µ1 − µ2, since k2 6∈ EigaD[Ta[Ωε]], we
have

v−a [∂Ωε, µ̃, k] = 0 in cl Ta[Ωε].

Consequently,
∂

∂νΩε

v−a [∂Ωε, µ̃, k] = 0 on ∂Ωε,

and, by Theorem 6.11,

1
2
µ̃(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ̃(y) dσy = 0 ∀x ∈ ∂Ωε.

Hence, by Theorem 8.4 (i), we have µ̃ = 0 on ∂Ωε and therefore

µ1 = µ2 on ∂Ωε.

We now turn to prove the existence. By virtue of Theorem 8.5, there exists a solution u[ε] in
Cm,α(cl Ta[Ωε],C) of boundary value problem (9.17). By Theorem 8.6, there exists a unique function
µ ∈ Cm−1,α(∂Ωε,C) such that (9.18) holds, and, accordingly, such that (9.19) holds. Thus the proof
is complete.

Lemma 9.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14),
(9.15), respectively. Let ε∗1 be as in (9.16). Let ε ∈ ]0, ε∗1[. Let θ ∈ Cm−1,α(∂Ω,C). Then

u[ε](x) = v−a [∂Ωε, ε−1θ(
1
ε

(· − w)), k](x) ∀x ∈ cl Ta[Ωε], (9.20)

if and only if the function θ solves the following integral equation

g(t) =
∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−2(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs

+ εn−2

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω.
(9.21)

In particular, there exists a unique function θ in Cm−1,α(∂Ω,C) such that (9.21) holds.

Proof. It is a straightforward consequence of Lemma 9.7, of the rule of change of variables in integrals,
of well known properties of functions in Schauder spaces and of equality (6.24).

Then we have the following well known result of classical potential theory.

Lemma 9.9. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be a bounded open subset of Rn of class Cm,α. Then
the following statements hold.

(i) Let n = 2. Then for each g ∈ Cm,α(∂I,C), there exists a unique pair (µ, ρ) in the space

{φ ∈ Cm−1,α(∂I,C) :
∫
∂I
φdσ = 0} × C,

such that ∫
∂I
S2(t− s)µ(s) dσs + ρ = g(t) ∀t ∈ ∂I.



9.2 Asymptotic behaviour of the solutions of the Dirichlet problem for the Helmholtz equation in a
periodically perforated domain 317

(ii) Let n ≥ 3. Then for each g ∈ Cm,α(∂I,C), there exists a unique function µ in Cm−1,α(∂I,C),
such that ∫

∂I
Sn(t− s)µ(s) dσs = g(t) ∀t ∈ ∂I.

Proof. We first prove statement (i). First of all, we note that if the pair (µ, ρ) is in the space
{φ ∈ Cm−1,α(∂I,C) :

∫
∂I φdσ = 0} × C is such that∫

∂I
S2(t− s)µ(s) dσs + ρ = 0 ∀t ∈ ∂I, (9.22)

then (µ, ρ) = (0, 0). Indeed, equality (9.22) implies that the function v+ ≡ v+[∂I, µ, 0] ∈ Cm,α(cl I,C)
solves the following boundary value problem{

∆v+ = 0 in I,
v+ = −ρ on ∂I.

As a consequence, v+ = −ρ on cl I, and accordingly

∂

∂νI
v+[∂I, µ, 0] = 0 on ∂I.

Analogously, the function v− ≡ v−[∂I, µ, 0] ∈ Cm,α(R2 \ I,C) solves the following boundary value
problem 

∆v− = 0 in R2 \ cl I,
supx∈R2\I|v−(x)| < +∞,
v− = −ρ on ∂I,

(cf. e.g., Folland [52, Lemma 3.31, p. 133].) Consequently, v− = −ρ in R2 \ I, and so

∂

∂νI
v−[∂I, µ, 0] = 0 on ∂I.

Thus,

µ =
∂

∂νI
v−[∂I, µ, 0]− ∂

∂νI
v+[∂I, µ, 0] = 0 on ∂I,

and hence also ρ = 0.
Now let g ∈ Cm,α(∂I,C). Then there exists a unique function u+ ∈ Cm,α(∂I,C), such that{

∆u+ = 0 in I,
u+ = g on ∂I.

Analogously, there exists a unique function u− ∈ Cm,α(R2 \ I,C), such that
∆u− = 0 in R2 \ cl I,
supx∈R2\I|u−(x)| < +∞,
u− = g on ∂I.

(cf. e.g., Folland [52, Theorem 3.40, p. 138].) Then we set

u−∞ ≡ lim
x→∞

u−(x).

Then, by exploiting the Divergence Theorem and the decay properties of u− and of its radial derivative
(cf. e.g., Folland [52, Propositions 2.74, 2.75, p. 114]), it is easy to see that

u+(t) = w+[∂I, u+
|∂I, 0](t)− v+[∂I,

∂

∂νI
u+, 0](t) ∀t ∈ cl I,

0 = −w+[∂I, u−|∂I, 0](t) + v+[∂I,
∂

∂νI
u−, 0](t) + u−∞ ∀t ∈ cl I.

Then,

g(t) = v+[∂I,
∂

∂νI
u− − ∂

∂νI
u+, 0](t) + u−∞ ∀t ∈ ∂I.



318
Singular perturbation and homogenization problems for the Helmholtz equation with Dirichlet

boundary conditions

Since u+ is harmonic in I, then ∫
∂I

∂

∂νI
u+ dσ = 0,

(cf. e.g., Folland [52, Proposition 3.5, p. 119].)
Analogously, since u− is harmonic in R2 \ cl I and harmonic at infinity, then∫

∂I

∂

∂νI
u− dσ = 0,

(cf. e.g., Folland [52, Proposition 3.6, p. 119].)
Then, if we set

µ ≡ ∂

∂νI
u− − ∂

∂νI
u+ on ∂I,

ρ ≡ u−∞,

we have that (µ, ρ) ∈ {φ ∈ Cm−1,α(∂I,C) :
∫
∂I φdσ = 0} × C, and that

g(t) =
∫
∂I
S2(t− s)µ(s) dσs + ρ ∀t ∈ ∂I.

Then the proof of statement (i) is complete.
We now turn to the proof of statement (ii). First of all, we note that if µ ∈ Cm−1,α(∂I,C) is such

that ∫
∂I
Sn(t− s)µ(s) dσs = 0 ∀t ∈ ∂I, (9.23)

then µ = 0. Indeed, equality (9.23) implies that the function v+ ≡ v+[∂I, µ, 0] ∈ Cm,α(cl I,C) solves
the following boundary value problem {

∆v+ = 0 in I,
v+ = 0 on ∂I.

As a consequence, v+ = 0 on cl I, and accordingly

∂

∂νI
v+[∂I, µ, 0] = 0 on ∂I.

Analogously, the function v− ≡ v−[∂I, µ, 0] ∈ Cm,α(Rn \ I,C) solves the following boundary value
problem 

∆v− = 0 in Rn \ cl I,
supx∈Rn\I|v−(x)||x|n−2

< +∞,
v− = 0 on ∂I.

Consequently, v− = 0 in Rn \ I, and so

∂

∂νI
v−[∂I, µ, 0] = 0 on ∂I.

Thus,

µ =
∂

∂νI
v−[∂I, µ, 0]− ∂

∂νI
v+[∂I, µ, 0] = 0 on ∂I.

Now let g ∈ Cm,α(∂I,C). Then there exists a unique function u+ ∈ Cm,α(∂I,C), such that{
∆u+ = 0 in I,
u+ = g on ∂I.

Analogously, there exists a unique function u− ∈ Cm,α(Rn \ I,C), such that
∆u− = 0 in Rn \ cl I,
supx∈Rn\I|u−(x)||x|n−2

< +∞,
u− = g on ∂I,
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(cf. e.g., Folland [52, Theorem 3.40, p. 138].) Then we note that

lim
x→∞

u−(x) = 0

(cf. Folland [52, Proposition 2.74, p. 114].) Then, by exploiting the Divergence Theorem and the decay
properties of u− and of its radial derivative (cf. e.g., Folland [52, Propositions 2.74, 2.75, p. 114]), it
is easy to see that

u+(t) = w+[∂I, u+
|∂I, 0](t)− v+[∂I,

∂

∂νI
u+, 0](t) ∀t ∈ cl I,

0 = −w+[∂I, u−|∂I, 0](t) + v+[∂I,
∂

∂νI
u−, 0](t) ∀t ∈ cl I.

Then,

g(t) = v+[∂I,
∂

∂νI
u− − ∂

∂νI
u+, 0](t) ∀t ∈ ∂I.

Then, if we set

µ ≡ ∂

∂νI
u− − ∂

∂νI
u+, on ∂I,

we have that µ ∈ Cm−1,α(∂I,C), and that

g(t) =
∫
∂I
Sn(t− s)µ(s) dσs ∀t ∈ ∂I.

Then the proof of statement (ii) is complete.

Lemma 9.10. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (9.15), respectively. Then the
following statements hold.

(i) Let n = 2. Then there exists a unique pair (φ, ξ) ∈ {µ ∈ Cm−1,α(∂Ω,C) :
∫
∂Ω
µdσ = 0} × C

that solves the following equation

g(t) =
∫
∂Ω

S2(t− s)φ(s) dσs + ξ
|∂Ω|1

2π
∀t ∈ ∂Ω, (9.24)

where, as usual, |∂Ω|1 denotes the 1-dimensional measure of the set ∂Ω. We denote the unique
solution of equation (9.24) by (φ̃, ξ̃).

(ii) Let n ≥ 3. Then there exists a unique function θ ∈ Cm−1,α(∂Ω,C) that solves the following
equation

g(t) =
∫
∂Ω

Sn(t− s)θ(s) dσs ∀t ∈ ∂Ω. (9.25)

We denote the unique solution of equation (9.25) by θ̃.

Proof. It is an immediate consequence of Lemma 9.9.

We treat separately case n = 2 and case n ≥ 3.

Case n ≥ 3

It is preferable to treat separately case n even and case n odd.
Then we have the following Propositions.

Proposition 9.11. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let θ̃ be as in Lemma 9.10 (ii). Let
Λ be the map of ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C) defined by

Λ[ε, θ](t) ≡
∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−2

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs − g(t) ∀t ∈ ∂Ω, (9.26)

for all (ε, θ) ∈ ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C). Then the following statements hold.
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(i) If ε ∈ ]0, ε∗1[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[ε, θ] = 0, (9.27)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ ε−1θ(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (9.28)

satisfies the equation

Γ(x) =
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε, (9.29)

with Γ ∈ Cm,α(∂Ωε,C) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε. (9.30)

In particular, equation (9.27) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each ε ∈ ]0, ε∗1[.

(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[0, θ] = 0, (9.31)

if and only if

g(t) =
∫
∂Ω

Sn(t− s)θ(s) dσs ∀t ∈ ∂Ω. (9.32)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (9.31) is θ̃.

Proof. Consider (i). The equivalence of equation (9.27) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (9.29) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by the rule of change of variables in
integrals (cf. also Lemmas 9.7, 9.8), well known properties of functions in Schauder spaces, and the
definition of Qkn for n odd (cf. (6.23) and Definition E.2.) Then the existence and uniqueness of a
solution of equation (9.27) follows by Lemma 9.8. Consider (ii). The equivalence of (9.31) and (9.32)
is obvious. The second part of statement (ii) is an immediate consequence of Lemma 9.10 (ii).

Proposition 9.12. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g
be as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let θ̃ be as in Lemma 9.10
(ii). Let ε′1 > 0 be such that

ε log ε ∈ ]−ε′1, ε′1[ ∀ε ∈ ]0, ε∗1[. (9.33)

Let Λ# be the map of ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C) defined by

Λ#[ε, ε′, θ](t) ≡
∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−3ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs

+ εn−2

∫
∂Ω

Ra,kn (ε(t− s))θ(s)− g(t) ∀t ∈ ∂Ω,
(9.34)

for all (ε, ε′, θ) ∈ ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) If ε ∈ ]0, ε∗1[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[ε, ε log ε, θ] = 0, (9.35)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ ε−1θ(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (9.36)

satisfies the equation

Γ(x) =
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε, (9.37)

with Γ ∈ Cm,α(∂Ωε,C) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε. (9.38)

In particular, equation (9.35) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each ε ∈ ]0, ε∗1[.
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(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[0, 0, θ] = 0, (9.39)

if and only if

g(t) =
∫
∂Ω

Sn(t− s)θ(s) dσs ∀t ∈ ∂Ω. (9.40)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (9.39) is θ̃.

Proof. Consider (i). The equivalence of equation (9.35) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (9.37) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by the rule of change of variables in
integrals (cf. also Lemmas 9.7, 9.8), well known properties of functions in Schauder spaces, and the
definition of Qkn for n even (cf. (6.23) and Definition E.2.) Then the existence and uniqueness of a
solution of equation (9.35) follows by Lemma 9.8. Consider (ii). The equivalence of (9.39) and (9.40)
is obvious. The second part of statement (ii) is an immediate consequence of Lemma 9.10 (ii).

By Propositions 9.11, 9.12, it makes sense to introduce the following.

Definition 9.13. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). For each ε ∈ ]0, ε∗1[, we denote by θ̂n[ε] the
unique function in Cm−1,α(∂Ω,C) that solves equation (9.27), if n is odd, or equation (9.35), if n is
even. Analogously, we denote by θ̂n[0] the unique function in Cm−1,α(∂Ω,C) that solves equation
(9.31), if n is odd, or equation (9.39), if n is even.

In the following Remark, we show the relation between the solutions of boundary value problem
(9.17) and the solutions of equations (9.27), (9.35).
Remark 9.14. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16).
Let ε ∈ ]0, ε∗1[. We have

u[ε](x) = εn−2

∫
∂Ω

Sa,kn (x− w − εs)θ̂n[ε](s) dσs ∀x ∈ cl Ta[Ωε].

While the relation between equations (9.27), (9.35) and boundary value problem (9.17) is now
clear, we want to see if (9.31), (9.39) are related to some (limiting) boundary value problem. We give
the following.

Definition 9.15. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (9.15), respectively.
We denote by ũ the unique solution in Cm,α(Rn \ Ω,C) of the following boundary value problem∆u(x) = 0 ∀x ∈ Rn \ cl Ω,

u(x) = g(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(9.41)

Problem (9.41) will be called the limiting boundary value problem.

Remark 9.16. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Then we have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̂n[0](y) dσy ∀x ∈ Rn \ Ω.

We now prove the following Propositions.

Proposition 9.17. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let θ̃ be as in Lemma 9.10 (ii).
Let Λ be as in Proposition 9.11. Then there exists ε2 ∈ ]0, ε∗1] such that Λ is a real analytic operator
of ]−ε2, ε2[ × Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C). Moreover, if we set b0 ≡ (0, θ̃), then the differential
∂θΛ[b0] of Λ with respect to the variable θ at b0 is delivered by the following formula

∂θΛ[b0](τ)(t) =
∫
∂Ω

Sn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (9.42)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto Cm,α(∂Ω,C).
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Proof. By Proposition 6.21 (i), one can easily prove that there exists ε2 ∈ ]0, ε∗1] such that Λ is a
real analytic operator of ]−ε2, ε2[× Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C). By standard calculus in Banach
space, we immediately deduce that (9.42) holds. Now we need to prove that ∂θΛ[b0] is a linear
homeomorphism. By the Open Mapping Theorem, it suffices to prove that it is a bijection. Let
ψ ∈ Cm,α(∂Ω,C). By Lemma 9.9, there exists a unique function τ ∈ Cm−1,α(∂Ω,C), such that∫

∂Ω

Sn(t− s)τ(s) dσs = ψ(t) ∀t ∈ ∂Ω.

Hence ∂θΛ[b0] is bijective, and, accordingly, a linear homeomorphism of Cm−1,α(∂Ω,C) onto the space
Cm,α(∂Ω,C).

Proposition 9.18. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g
be as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let θ̃ be as in Lemma 9.10
(ii). Let ε′1 > 0 be as in (9.33). Let Λ# be as in Proposition 9.12. Then there exists ε2 ∈ ]0, ε∗1] such
that Λ# is a real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[×Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C). Moreover,
if we set b0 ≡ (0, 0, θ̃), then the differential ∂θΛ#[b0] of Λ# with respect to the variable θ at b0 is
delivered by the following formula

∂θΛ#[b0](τ)(t) =
∫
∂Ω

Sn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (9.43)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto Cm,α(∂Ω,C).

Proof. By Proposition 6.21 (i), one can easily prove that there exists ε2 ∈ ]0, ε∗1] such that Λ# is a
real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C). By standard calculus
in Banach space, we immediately deduce that (9.43) holds. Finally, by the proof of Proposition
9.17 and formula (9.43), we have that ∂θΛ#[b0] is a linear homeomorphism of Cm−1,α(∂Ω,C) onto
Cm,α(∂Ω,C).

By the previous Propositions we can now prove the following results.

Proposition 9.19. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε2 be as in Proposition 9.17.
Then there exist ε3 ∈ ]0, ε2] and a real analytic operator Θn of ]−ε3, ε3[ to Cm−1,α(∂Ω,C), such that

Θn[ε] = θ̂n[ε], (9.44)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 9.17 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

Proposition 9.20. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g
be as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε′1 > 0 be as in (9.33).
Let ε2 be as in Proposition 9.18. Then there exist ε3 ∈ ]0, ε2], ε′2 ∈ ]0, ε′1], and a real analytic operator
Θ#
n of ]−ε3, ε3[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C), such that

ε log ε ∈ ]−ε′2, ε′2[ ∀ε ∈ ]0, ε3[,

Θ#
n [ε, ε log ε] = θ̂n[ε] ∀ε ∈ ]0, ε3[, (9.45)

Θ#
n [0, 0] = θ̂n[0]. (9.46)

Proof. It is an immediate consequence of Proposition 9.18 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)
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Case n = 2

We have the following Lemma.

Lemma 9.21. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε ∈ ]0,min{ε∗1, 1}[. Let
(φ, ξ) ∈ {µ ∈ Cm−1,α(∂Ω,C) :

∫
∂Ω
µdσ = 0} × C. Then

u[ε](x) = v−a [∂Ωε, ε−1φ(
1
ε

(· − w)), k](x) +
1

ε log ε
v−a [∂Ωε, ξ, k](x) ∀x ∈ cl Ta[Ωε], (9.47)

if and only if the pair (φ, ξ) solves the following integral equation

g(t) =
∫
∂Ω

S2(t− s, εk)φ(s) dσs + log ε
∫
∂Ω

Qk2(ε(t− s))φ(s) dσs +
∫
∂Ω

Ra,k2 (ε(t− s))φ(s) dσs

+
1

log ε
ξ

∫
∂Ω

S2(t− s, εk) dσs + ξ

∫
∂Ω

Qk2(ε(t− s)) dσs +
1

log ε
ξ

∫
∂Ω

Ra,k2 (ε(t− s)) dσs ∀t ∈ ∂Ω.

(9.48)

In particular, there exists a unique pair (φ, ξ) in {µ ∈ Cm−1,α(∂Ω,C) :
∫
∂Ω
µdσ = 0} × C such that

(9.48) holds.

Proof. It is a straightforward consequence of Lemma 9.8 and of the fact that

Cm−1,α(∂Ω,C) =
{
µ ∈ Cm−1,α(∂Ω,C) :

∫
∂Ω

µdσ = 0
}
⊕ C.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We find convenient to set

U ≡
{
µ ∈ Cm−1,α(∂Ω,C) :

∫
∂Ω

µdσ = 0
}
. (9.49)

Then we have the following Proposition.

Proposition 9.22. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let (φ̃, ξ̃) be as in Lemma 9.10 (i).
Let ε′1 > 0, ε′′1 > 0 be such that

ε log ε ∈ ]−ε′1, ε′1[ ∀ε ∈ ]0, ε∗1[, (9.50)

and
1

log ε
∈ ]−ε′′1 , ε′′1 [ ∀ε ∈ ]0,min{ε∗1, 1}[. (9.51)

Let Λ̃# be the map of ]−min{ε∗1, 1},min{ε∗1, 1}[× ]−ε′1, ε′1[× ]−ε′′1 , ε′′1 [×U ×C to Cm,α(∂Ω,C) defined
by

Λ̃#[ε, ε′, ε′′, φ, ξ](t) ≡
∫
∂Ω

S2(t− s, εk)φ(s) dσs + ε′
∫
∂Ω

(∫ 1

0

DQk2(βε(t− s)) · (t− s)dβ
)
φ(s) dσs

+
∫
∂Ω

Ra,k2 (ε(t− s))φ(s) dσs + ε′′ξ

∫
∂Ω

S2(t− s, εk) dσs

+ ξ

∫
∂Ω

Qk2(ε(t− s)) dσs + ε′′ξ

∫
∂Ω

Ra,k2 (ε(t− s)) dσs − g(t) ∀t ∈ ∂Ω,

(9.52)

for all (ε, ε′, ε′′, φ, ξ) ∈ ]−min{ε∗1, 1},min{ε∗1, 1}[ × ]−ε′1, ε′1[ × ]−ε′′1 , ε′′1 [ × U × C. Then the following
statements hold.
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(i) If ε ∈ ]0,min{ε∗1, 1}[, then the pair (φ, ξ) ∈ U × C satisfies equation

Λ̃#[ε, ε log ε, (log ε)−1, φ, ξ] = 0, (9.53)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ ε−1φ(
1
ε

(x− w)) +
1

ε log ε
ξ ∀x ∈ ∂Ωε, (9.54)

satisfies the equation

Γ(x) =
∫
∂Ωε

Sa,k2 (x− y)µ(y) dσy ∀x ∈ ∂Ωε, (9.55)

with Γ ∈ Cm,α(∂Ωε,C) defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε. (9.56)

In particular, equation (9.53) has exactly one solution (φ, ξ) ∈ U ×C, for each ε ∈ ]0,min{ε∗1, 1}[.

(ii) The pair (φ, ξ) ∈ U × C satisfies equation

Λ̃#[0, 0, 0, φ, ξ] = 0, (9.57)

if and only if

g(t) =
∫
∂Ω

S2(t− s)φ(s) dσs + ξ
|∂Ω|1

2π
∀t ∈ ∂Ω, (9.58)

where |∂Ω|1 denotes the 1-dimensional measure of ∂Ω. In particular, if ε = ε′ = ε′′ = 0, then
the unique pair (φ, ξ) ∈ U × C that solves equation (9.57) is (φ̃, ξ̃).

Proof. Consider (i). Let ε ∈ ]0,min{ε∗1, 1}[. By the Taylor formula and Proposition E.3 and the
definition of Qk2 , we have

Qk2(x) =
1

2π
+
∫ 1

0

DQk2(βx) · xdβ ∀x ∈ R2.

Thus,

Qk2(ε(t− s)) =
1

2π
+ ε

∫ 1

0

DQk2(βε(t− s)) · (t− s)dβ ∀(t, s) ∈ ∂Ω× ∂Ω.

Hence,

(log ε)
∫
∂Ω

Qk2(ε(t− s))φ(s) dσs

= (log ε)
1

2π

∫
∂Ω

φ(s) dσs + ε(log ε)
∫
∂Ω

(∫ 1

0

DQk2(βε(t− s)) · (t− s)dβ
)
φ(s) dσs

= ε(log ε)
∫
∂Ω

(∫ 1

0

DQk2(βε(t− s)) · (t− s)dβ
)
φ(s) dσs ∀t ∈ ∂Ω,

(9.59)

for all φ ∈ U . Then the equivalence of equation (9.53) in the unknown (φ, ξ) ∈ U × C and equation
(9.55) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by the rule of change of variables in integrals,
Lemmas 9.7 and 9.21, equality (9.59), the definition of U , and well known properties of functions
in Schauder spaces. Then the existence and uniqueness of a solution of equation (9.53) follows by
Lemma 9.21 and equality (9.59). Consider (ii). The equivalence of (9.57) and (9.58) is obvious. The
second part of statement (ii) is an immediate consequence of Lemma 9.10 (i).

By Proposition 9.22 it makes sense to introduce the following.

Definition 9.23. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). For each ε ∈ ]0,min{ε∗1, 1}[, we denote
by (φ̂2[ε], ξ̂2[ε]) the unique pair in U × C that solves equation (9.53). Analogously, we denote by
(φ̂2[0], ξ̂2[0]) the unique pair in U × C that solves equation (9.57).
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In the following Remark, we show the relation between the solutions of boundary value problem
(9.17) and the solutions of equations (9.53).

Remark 9.24. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16).
Let ε ∈ ]0,min{ε∗1, 1}[. We have

u[ε](x) =
∫
∂Ω

Sa,k2 (x− w − εs)φ̂2[ε](s) dσs +
1

log ε
ξ̂2[ε]

∫
∂Ω

Sa,k2 (x− w − εs) dσs ∀x ∈ cl Ta[Ωε].

While the relation between equation (9.53) and boundary value problem (9.17) is now clear, we
want to see if (9.57) is related to some (limiting) boundary value problem. We give the following.

Definition 9.25. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (9.15), respectively.
We denote by ũ the unique solution in Cm,α(R2 \ Ω,C) of the following boundary value problem

∆u(x) = 0 ∀x ∈ R2 \ cl Ω,
u(x) = g(x) ∀x ∈ ∂Ω,
supx∈R2\Ω|u(x)| < +∞.

(9.60)

Problem (9.60) will be called the limiting boundary value problem.

Remark 9.26. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Then we have

ũ(x) =
∫
∂Ω

S2(x− y)φ̂2[0](y) dσy + ξ̂2[0]
|∂Ω|1

2π
∀x ∈ R2 \ Ω.

Then we have the following.

Proposition 9.27. Let n = 2. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let (φ̃, ξ̃) be as in Lemma 9.10 (i). Let
ε′1 > 0, ε′′1 > 0 be as in (9.50), (9.51)„ respectively. Let Λ̃# be as in Proposition 9.22. Then there exists
ε2 ∈ ]0,min{ε∗1, 1}] such that Λ̃# is a real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× ]−ε′′1 , ε′′1 [× U × C
to Cm,α(∂Ω,C). Moreover, if we set b0 ≡ (0, 0, 0, φ̃, ξ̃), then the differential ∂(φ,ξ)Λ̃#[b0] of Λ̃# with
respect to the variables (φ, ξ) at b0 is delivered by the following formula

∂(φ,ξ)Λ̃#[b0](ψ, ζ)(t) =
∫
∂Ω

S2(t− s)ψ(s) dσs + ζ
|∂Ω|1

2π
∀t ∈ ∂Ω, (9.61)

for all (ψ, ζ) ∈ U × C, and is a linear homeomorphism of U × C onto Cm,α(∂Ω,C).

Proof. We set

Λ̃′#[ε, ε′, ε′′, φ, ξ](t) ≡
∫
∂Ω

S2(t− s, εk)φ(s) dσs +
∫
∂Ω

Ra,k2 (ε(t− s))φ(s) dσs

+ ε′′ξ

∫
∂Ω

S2(t− s, εk) dσs + ξ

∫
∂Ω

Qk2(ε(t− s)) dσs

+ ε′′ξ

∫
∂Ω

Ra,k2 (ε(t− s)) dσs − g(t) ∀t ∈ ∂Ω,

and

Λ̃′′#[ε, ε′, ε′′, φ, ξ](t) ≡ ε′
∫
∂Ω

(∫ 1

0

DQk2(βε(t− s)) · (t− s)dβ
)
φ(s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, ε′′, φ, ξ) ∈ ]−min{ε∗1, 1},min{ε∗1, 1}[× ]−ε′1, ε′1[× ]−ε′′1 , ε′′1 [× U × C. Clearly,

Λ̃#[ε, ε′, ε′′, φ, ξ] = Λ̃′#[ε, ε′, ε′′, φ, ξ] + Λ̃′′#[ε, ε′, ε′′, φ, ξ],

for all (ε, ε′, ε′′, φ, ξ) ∈ ]−min{ε∗1, 1},min{ε∗1, 1}[× ]−ε′1, ε′1[× ]−ε′′1 , ε′′1 [× U × C. By arguing as in the
proof of Proposition 9.17 and Proposition 9.18, we easily deduce that there exists ε2 ∈ ]0,min{ε∗1, 1}]
such that Λ̃′# is a real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× ]−ε′′1 , ε′′1 [×U ×C to Cm,α(∂Ω,C). We
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now consider Λ̃′′#. Since Qk2 is a real analytic function of R2 to C, then ∂xjQk2 is a real analytic function
of R2 to C, for all j ∈ {1, . . . , n}. Let j ∈ {1, . . . , n}. Then, by a known result on composition operators
(cf. Böhme and Tomi [15, p. 10], Henry [60, p. 29], Valent [137, Thm. 5.2, p. 44]), we have that the
map of ]−ε∗1, ε∗1[ to Cm,α([0, 1]× ∂Ω× ∂Ω,C), which takes ε to the function ∂xjQk2(βε(t− s))(t− s)j
of the variable (β, t, s) ∈ [0, 1] × ∂Ω × ∂Ω, is real analytic. Moreover, we observe that the map of
Cm,α([0, 1]×∂Ω×∂Ω,C) to Cm,α(∂Ω×∂Ω,C), which takes h to

∫ 1

0
h(β, ·, ·)dβ is linear and continuous,

and thus real analytic. Similarly, the bilinear map of Cm,α(∂Ω× ∂Ω,C)× L1(∂Ω,C) to Cm,α(∂Ω,C)
which takes (h, g) to

∫
∂Ω
h(s, ·)g(s) dσs is continuous, and thus real analytic. Then, well known

properties of functions in Schauder spaces and standard calculus in Banach spaces show that Λ̃′′# is a
real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× ]−ε′′1 , ε′′1 [× U × C to Cm,α(∂Ω,C). Thus, Λ̃# is a real
analytic operator of ]−ε2, ε2[ × ]−ε′1, ε′1[ × ]−ε′′1 , ε′′1 [ × U × C to Cm,α(∂Ω,C). By standard calculus
in Banach space and since Qk2(0) = 1

2π (cf. Proposition E.3), we immediately deduce that (9.61)
holds. Finally, we need to prove that ∂(φ,ξ)Λ̃# is a linear homeomorphism of U ×C onto Cm,α(∂Ω,C).
Clearly, by the Open Mapping Theorem, it suffices to prove that it is a bijection. By Lemma 9.9 (i),
we immediately deduce that ∂(φ,ξ)Λ̃# is a bijection of U × C onto Cm,α(∂Ω,C), and accordingly a
linear homeomorphism.

By the previous Proposition we can now prove the following result.

Proposition 9.28. Let n = 2. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε′1 > 0, ε′′1 > 0 be as in (9.50), (9.51)„
respectively. Let ε2 be as in Proposition 9.27. Then there exist ε3 ∈ ]0, ε2], ε′2 ∈ ]0, ε′1], ε′′2 ∈ ]0, ε′′1 ], and
a real analytic operator (Φ#

2 ,Ξ
#
2 ) of ]−ε3, ε3[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to U × C, such that

ε log ε ∈ ]−ε′2, ε′2[ ∀ε ∈ ]0, ε3[,

(log ε)−1 ∈ ]−ε′′2 , ε′′2 [ ∀ε ∈ ]0, ε3[,

(Φ#
2 [ε, ε log ε, (log ε)−1],Ξ#

2 [ε, ε log ε, (log ε)−1]) = (φ̂2[ε], ξ̂2[ε]) ∀ε ∈ ]0, ε3[, (9.62)

(Φ#
2 [0, 0, 0],Ξ#

2 [0, 0, 0]) = (φ̂2[0], ξ̂2[0]). (9.63)

Proof. It is an immediate consequence of Proposition 9.27 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

9.2.3 A functional analytic representation Theorem for the solution of the
singularly perturbed Dirichlet problem

By Propositions 9.19, 9.20, 9.28 and Remarks 9.14, 9.24, we can deduce the main result of this
Subsection.

Theorem 9.29. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3 be as in Proposition 9.19. Let V be
a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], and a real
analytic operator U of ]−ε4, ε4[ to the space C0(clV,C), such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−2U [ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. Let Θn[·] be as in Proposition 9.19. By choosing ε4 small enough, we can clearly assume that
(j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 9.14 and Proposition 9.19, we have

u[ε](x) = εn−2

∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U [ε](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[. By Proposition 6.22, U is a real analytic map of ]−ε4, ε4[ to C0(clV,C).
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Remark 9.30. We note that the right-hand side of the equality in (jj) of Theorem 9.29 can be continued
real analytically in the whole ]−ε4, ε4[. Moreover, if V is a bounded open subset of Rn such that
clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] = 0 uniformly in clV .

Theorem 9.31. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be
as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2 be as in Proposition
9.20. Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3]
and a real analytic operator U# of ]−ε4, ε4[× ]−ε′2, ε′2[ to the space C0(clV,C), such that the following
conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−2U#[ε, ε log ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. Let Θ#
n [·, ·] be as in Proposition 9.20. Choosing ε4 small enough, we can clearly assume that

(j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 9.14 and Proposition 9.20, we have

u[ε](x) = εn−2

∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε log ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U#[ε, ε′](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε′](s) dσs ∀x ∈ clV,

for all (ε, ε′) ∈ ]−ε4, ε4[×]−ε′2, ε′2[. By Proposition 6.22, U# is a real analytic map of ]−ε4, ε4[×]−ε′2, ε′2[
to C0(clV,C).

Theorem 9.32. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2, ε′′2 be as in Proposition 9.28. Let
V be a bounded open subset of R2 such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3] and two
real analytic operators Ũ#

1 , Ũ#
2 of ]−ε4, ε4[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to the space C0(clV,C), such that

the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)

u[ε](x) = Ũ#
1 [ε, ε log ε, (log ε)−1](x) +

1
log ε

Ũ#
2 [ε, ε log ε, (log ε)−1](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover, Ũ#
1 [0, 0, 0](x) = 0 for all x ∈ clV .

Proof. Let Φ#
2 [·, ·, ·], Ξ#

2 [·, ·, ·] be as in Proposition 9.28. Choosing ε4 small enough, we can clearly
assume that (j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 9.24 and Proposition 9.28, we
have

u[ε](x) =
∫
∂Ω

Sa,k2 (x− w − εs)Φ#
2 [ε, ε log ε, (log ε)−1](s) dσs

+
1

log ε

∫
∂Ω

Sa,k2 (x− w − εs)Ξ#
2 [ε, ε log ε, (log ε)−1] dσs ∀x ∈ clV.

Thus, it is natural to set

Ũ#
1 [ε, ε′, ε′′](x) ≡

∫
∂Ω

Sa,k2 (x− w − εs)Φ#
2 [ε, ε′, ε′′](s) dσs ∀x ∈ clV,

and
Ũ#

2 [ε, ε′, ε′′](x) ≡
∫
∂Ω

Sa,k2 (x− w − εs)Ξ#
2 [ε, ε′, ε′′] dσs ∀x ∈ clV,
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for all (ε, ε′, ε′′) ∈ ]−ε4, ε4[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [. By Proposition 6.22, Ũ#
1 and Ũ#

2 are real analytic
maps of ]−ε4, ε4[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to C0(clV,C). Finally, since Φ#

2 [0, 0, 0] ∈ U , and accordingly∫
∂Ω

Φ#
2 [0, 0, 0] dσ = 0,

we have

Ũ#
1 [0, 0, 0](x) =

∫
∂Ω

Sa,k2 (x− w)Φ#
2 [0, 0, 0](s) dσs

= Sa,k2 (x− w)
∫
∂Ω

Φ#
2 [0, 0, 0](s) dσs

= 0 ∀x ∈ clV.

Thus the proof is complete.

We have also the following Theorems.

Theorem 9.33. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3 be as in Proposition 9.19. Then there
exist ε5 ∈ ]0, ε3], and a real analytic operator G of ]−ε5, ε5[ to C, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = εn−2G[ε], (9.64)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (9.65)

where ũ is as in Definition 9.15.

Proof. Let Θn[·] be as in Proposition 9.19. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.
Clearly, by the periodicity of u[ε], we have∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = −εn−1

∫
∂Ω

g(t)
(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25) and since Qkn = 0 for n odd, we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2
ε−1Θn[ε](t) + ε−1

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ ε−1εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

We set

G̃[ε](t) ≡1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that there exists
ε5 ∈ ]0, ε3] such that G̃ is a real analytic map of ]−ε5, ε5[ to Cm−1,α(∂Ω,C). Hence, if we set

G[ε] ≡ −
∫
∂Ω

g(t)G̃[ε](t) dσt,

for all ε ∈ ]−ε5, ε5[, then, by standard properties of functions in Schauder spaces, we have that G is a
real analytic map of ]−ε5, ε5[ to C, such that equality (9.64) holds.

Finally, if ε = 0, by Folland [52, p. 118], we have

G[0] = −
∫
∂Ω

g(t)
∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

and accordingly (9.65) holds.
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Theorem 9.34. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be
as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2 be as in Proposition
9.20. Then there exist ε5 ∈ ]0, ε3], and two real analytic operators G#

1 , G#
2 of ]−ε5, ε5[× ]−ε′2, ε′2[ to

C, such that ∫
Pa[Ωε]

|∇u[ε](x)|2 dx−k2

∫
Pa[Ωε]

|u[ε](x)|2 dx =

εn−2G#
1 [ε, ε log ε] + ε2n−3(log ε)G#

2 [ε, ε log ε],
(9.66)

for all ε ∈ ]0, ε5[. Moreover,

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx, (9.67)

where ũ is as in Definition 9.15.

Proof. Let Θ#
n [·, ·] be as in Proposition 9.20. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.

Clearly, by the periodicity of u[ε], we have∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = −εn−1

∫
∂Ω

g(t)
(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε]
∂νΩε

)
◦ (w+ε id∂Ω)(t)

=
1
2
ε−1Θ#

n [ε, ε log ε](t) + ε−1

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ ε−1εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ ε−1εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

We set

G̃#
1 [ε, ε′](t) ≡1

2
Θ#
n [ε, ε′](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and
G̃#

2 [ε, ε′](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε3, ε3[ × ]−ε′2, ε′2[. By Theorem E.6 (ii) and Theorem C.4, one can easily show
that there exists ε5 ∈ ]0, ε3] such that G̃#

1 , G̃#
2 are real analytic maps of ]−ε5, ε5[ × ]−ε′2, ε′2[ to

Cm−1,α(∂Ω,C). Hence, if we set

G#
1 [ε, ε′] ≡ −

∫
∂Ω

g(t)G̃#
1 [ε, ε′](t) dσt,

and
G#

2 [ε, ε′] ≡ −
∫
∂Ω

g(t)G̃#
2 [ε, ε′](t) dσt,

for all (ε, ε′) ∈ ]−ε5, ε5[× ]−ε′2, ε′2[, then, by standard properties of functions in Schauder spaces, we
have that G#

1 , G#
2 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[ to C, such that equality (9.66) holds.

Finally, if ε = ε′ = 0, by Folland [52, p. 118], we have

G#
1 [0, 0] = −

∫
∂Ω

g(t)
∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

and accordingly (9.67) holds.
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Theorem 9.35. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2, ε′′2 be as in Proposition 9.28.
Then there exist ε5 ∈ ]0, ε3], and four real analytic operators G̃#

1 , G̃#
2 , G̃#

3 , G̃#
4 of ]−ε5, ε5[× ]−ε′2, ε′2[×

]−ε′′2 , ε′′2 [ to C, such that∫
Pa[Ωε]

|∇u[ε](x)|2 dx−k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

=G̃#
1 [ε, ε log ε, (log ε)−1] + ε(log ε)G̃#

2 [ε, ε log ε, (log ε)−1]

+
1

log ε
G̃#

3 [ε, ε log ε, (log ε)−1] + εG̃#
4 [ε, ε log ε, (log ε)−1],

(9.68)

for all ε ∈ ]0, ε5[. Moreover,

G̃#
1 [0, 0, 0] =

∫
R2\cl Ω

|∇ũ(x)|2 dx, (9.69)

where ũ is as in Definition 9.25.

Proof. Let Φ#
2 [·, ·, ·], Ξ#

2 [·, ·, ·] be as in Proposition 9.28. Let id∂Ω denote the identity map in ∂Ω. Let
ε ∈ ]0, ε3[. Clearly, by the periodicity of u[ε], we have∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = −ε
∫
∂Ω

g(t)
(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t)

=ε−1
{1

2
Φ#

2 [ε, ε log ε, (log ε)−1](t) +
∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Φ#
2 [ε, ε log ε, (log ε)−1](s) dσs

+ ε(log ε)
∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Φ#
2 [ε, ε log ε, (log ε)−1](s) dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Φ#
2 [ε, ε log ε, (log ε)−1](s) dσs

}
+ ε−1 1

log ε

{1
2

Ξ#
2 [ε, ε log ε, (log ε)−1] +

∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Ξ#
2 [ε, ε log ε, (log ε)−1] dσs

+ ε(log ε)
∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Ξ#
2 [ε, ε log ε, (log ε)−1] dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Ξ#
2 [ε, ε log ε, (log ε)−1] dσs

}
∀t ∈ ∂Ω.

We set

F#
1 [ε, ε′, ε′′](t) ≡1

2
Φ#

2 [ε, ε′, ε′′](t) +
∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Φ#
2 [ε, ε′, ε′′](s) dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Φ#
2 [ε, ε′, ε′′](s) dσs ∀t ∈ ∂Ω,

F#
2 [ε, ε′, ε′′](t) ≡

∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Φ#
2 [ε, ε′, ε′′](s) dσs ∀t ∈ ∂Ω,

F#
3 [ε, ε′, ε′′](t) ≡1

2
Ξ#

2 [ε, ε′, ε′′] +
∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Ξ#
2 [ε, ε′, ε′′] dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Ξ#
2 [ε, ε′, ε′′] dσs ∀t ∈ ∂Ω,

F#
4 [ε, ε′, ε′′](t) ≡

∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Ξ#
2 [ε, ε′, ε′′] dσs ∀t ∈ ∂Ω,
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for all (ε, ε′, ε′′) ∈ ]−ε3, ε3[ × ]−ε′2, ε′2[ × ]−ε′′2 , ε′′2 [. By Theorem E.6 (ii) and Theorem C.4, one can
easily show that there exists ε5 ∈ ]0, ε3] such that F#

1 , F#
2 , F#

3 , F#
4 are real analytic maps of

]−ε5, ε5[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to Cm−1,α(∂Ω,C). Hence, if we set

G̃#
1 [ε, ε′, ε′′] ≡ −

∫
∂Ω

g(t)F#
1 [ε, ε′, ε′′](t) dσt,

G̃#
2 [ε, ε′, ε′′] ≡ −

∫
∂Ω

g(t)F#
2 [ε, ε′, ε′′](t) dσt,

G̃#
3 [ε, ε′, ε′′] ≡ −

∫
∂Ω

g(t)F#
3 [ε, ε′, ε′′](t) dσt,

G̃#
4 [ε, ε′, ε′′] ≡ −

∫
∂Ω

g(t)F#
4 [ε, ε′, ε′′](t) dσt,

for all (ε, ε′, ε′′) ∈ ]−ε5, ε5[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [, then, by standard properties of functions in Schauder
spaces, we have that G̃#

1 , G̃#
2 , G̃#

3 , G̃#
4 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to C,

such that equality (9.68) holds.
Finally, if ε = ε′ = ε′′ = 0, then by Folland [52, p. 118] we have

G#
1 [0, 0, 0] = −

∫
∂Ω

g(t)
∂

∂νΩ
v−[∂Ω, φ̃, 0](t) dσt

= −
∫
∂Ω

ũ(t)
∂ũ(t)
∂νΩ

dσt

=
∫

R2\cl Ω

|∇ũ(x)|2 dx,

and accordingly (9.69) holds.

Remark 9.36. If n is odd, we note that the right-hand side of the equality in (9.64) of Theorem 9.33
can be continued real analytically in the whole ]−ε5, ε5[.

Moreover,

lim
ε→0+

[∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx
]

= 0,

for all n ∈ N \ {0, 1, 2} (n even or odd.)

9.2.4 A real analytic continuation Theorem for the integral of the solution

We now prove real analytic continuation Theorems for the integral of the solution. Namely, we prove
the following results.

Theorem 9.37. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3 be as in Proposition 9.19. Then there
exist ε6 ∈ ]0, ε3], and a real analytic operator J of ]−ε6, ε6[ to C, such that∫

Pa[Ωε]

u[ε](x) dx =
εn−2

k2
J [ε], (9.70)

for all ε ∈ ]0, ε6[. Moreover,

J [0] =
∫
∂Ω

∂

∂νΩ
ũ(x) dσx, (9.71)

where ũ is as in Definition 9.15.
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Proof. Let Θn[·] be as in Proposition 9.19. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.
Clearly, by the Divergence Theorem and the periodicity of u[ε], we have∫

Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25) and since Qkn = 0 for n odd, we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2
ε−1Θn[ε](t) + ε−1

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ ε−1εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

We set

J̃ [ε](t) ≡1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that there exists
ε6 ∈ ]0, ε3] such that J̃ is a real analytic map of ]−ε6, ε6[ to Cm−1,α(∂Ω,C). Hence, if we set

J [ε] ≡
∫
∂Ω

J̃ [ε](t) dσt,

for all ε ∈ ]−ε6, ε6[, then, by standard properties of functions in Schauder spaces, we have that J is a
real analytic map of ]−ε6, ε6[ to C, such that equality (9.70) holds.

Finally, if ε = 0, we have

J [0] =
∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫
∂Ω

∂

∂νΩ
ũ(x) dσx,

and accordingly (9.71) holds.

Theorem 9.38. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be
as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2 be as in Proposition
9.20. Then there exist ε6 ∈ ]0, ε3], and two real analytic operators J#

1 , J#
2 of ]−ε6, ε6[× ]−ε′2, ε′2[ to C,

such that ∫
Pa[Ωε]

u[ε](x) dx =
εn−2

k2
J#

1 [ε, ε log ε] +
ε2n−3(log ε)

k2
J#

2 [ε, ε log ε], (9.72)

for all ε ∈ ]0, ε6[. Moreover,

J#
1 [0, 0] =

∫
∂Ω

∂

∂νΩ
ũ(x) dσx, (9.73)

where ũ is as in Definition 9.15.
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Proof. Let Θ#
n [·, ·] be as in Proposition 9.20. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.

Clearly, by the Divergence Theorem and the periodicity of u[ε], we have∫
Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε]
∂νΩε

)
◦ (w+ε id∂Ω)(t)

=
1
2
ε−1Θ#

n [ε, ε log ε](t) + ε−1

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ ε−1εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ ε−1εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

We set

J̃#
1 [ε, ε′](t) ≡1

2
Θ#
n [ε, ε′](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and
J̃#

2 [ε, ε′](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that
there exists ε6 ∈ ]0, ε3] such that J̃#

1 , J̃#
2 are real analytic maps of ]−ε6, ε6[×]−ε′2, ε′2[ to Cm−1,α(∂Ω,C).

Hence, if we set

J#
1 [ε, ε′] ≡

∫
∂Ω

J̃#
1 [ε, ε′](t) dσt,

and
J#

2 [ε, ε′] ≡
∫
∂Ω

J̃#
2 [ε, ε′](t) dσt,

for all (ε, ε′) ∈ ]−ε6, ε6[× ]−ε′2, ε′2[, then, by standard properties of functions in Schauder spaces, we
have that J#

1 , J#
2 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[ to C, such that equality (9.72) holds.

Finally, if ε = ε′ = 0, we have

J#
1 [0, 0] =

∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫
∂Ω

∂

∂νΩ
ũ(x) dσx,

and accordingly (9.73) holds.
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Theorem 9.39. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2, ε′′2 be as in Proposition 9.28. Then
there exist ε6 ∈ ]0, ε3], and four real analytic operators J̃#

1 , J̃#
2 , J̃#

3 , J̃#
4 of ]−ε6, ε6[×]−ε′2, ε′2[×]−ε′′2 , ε′′2 [

to C, such that∫
Pa[Ωε]

u[ε](x) dx =
1
k2
J̃#

1 [ε, ε log ε, (log ε)−1] +
ε(log ε)
k2

J̃#
2 [ε, ε log ε, (log ε)−1]

+
1

k2 log ε
J̃#

3 [ε, ε log ε, (log ε)−1] +
ε

k2
J̃#

4 [ε, ε log ε, (log ε)−1],
(9.74)

for all ε ∈ ]0, ε6[. Moreover,
J̃#

1 [0, 0, 0] = 0. (9.75)

Proof. Let Φ#
2 [·, ·, ·], Ξ#

2 [·, ·, ·] be as in Proposition 9.28. Let id∂Ω denote the identity map in ∂Ω. Let
ε ∈ ]0, ε3[. Clearly, by the Divergence Theorem and the periodicity of u[ε], we have∫

Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
ε

k2

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t)

=ε−1
{1

2
Φ#

2 [ε, ε log ε, (log ε)−1](t) +
∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Φ#
2 [ε, ε log ε, (log ε)−1](s) dσs

+ ε(log ε)
∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Φ#
2 [ε, ε log ε, (log ε)−1](s) dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Φ#
2 [ε, ε log ε, (log ε)−1](s) dσs

}
+ ε−1 1

log ε

{1
2

Ξ#
2 [ε, ε log ε, (log ε)−1] +

∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Ξ#
2 [ε, ε log ε, (log ε)−1] dσs

+ ε(log ε)
∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Ξ#
2 [ε, ε log ε, (log ε)−1] dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Ξ#
2 [ε, ε log ε, (log ε)−1] dσs

}
∀t ∈ ∂Ω.

We set

F#
1 [ε, ε′, ε′′](t) ≡1

2
Φ#

2 [ε, ε′, ε′′](t) +
∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Φ#
2 [ε, ε′, ε′′](s) dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Φ#
2 [ε, ε′, ε′′](s) dσs ∀t ∈ ∂Ω,

F#
2 [ε, ε′, ε′′](t) ≡

∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Φ#
2 [ε, ε′, ε′′](s) dσs ∀t ∈ ∂Ω,
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F#
3 [ε, ε′, ε′′](t) ≡1

2
Ξ#

2 [ε, ε′, ε′′] +
∫
∂Ω

νΩ(t) ·DR2S2(t− s, εk)Ξ#
2 [ε, ε′, ε′′] dσs

+ ε

∫
∂Ω

νΩ(t) ·DRa,k2 (ε(t− s))Ξ#
2 [ε, ε′, ε′′] dσs ∀t ∈ ∂Ω,

F#
4 [ε, ε′, ε′′](t) ≡

∫
∂Ω

νΩ(t) ·DQk2(ε(t− s))Ξ#
2 [ε, ε′, ε′′] dσs ∀t ∈ ∂Ω,

for all (ε, ε′, ε′′) ∈ ]−ε3, ε3[ × ]−ε′2, ε′2[ × ]−ε′′2 , ε′′2 [. By Theorem E.6 (ii) and Theorem C.4, one can
easily show that there exists ε6 ∈ ]0, ε3] such that F#

1 , F#
2 , F#

3 , F#
4 are real analytic maps of

]−ε6, ε6[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to Cm−1,α(∂Ω,C). Hence, if we set

J̃#
1 [ε, ε′, ε′′] ≡

∫
∂Ω

F#
1 [ε, ε′, ε′′](t) dσt,

J̃#
2 [ε, ε′, ε′′] ≡

∫
∂Ω

F#
2 [ε, ε′, ε′′](t) dσt,

J̃#
3 [ε, ε′, ε′′] ≡

∫
∂Ω

F#
3 [ε, ε′, ε′′](t) dσt,

J̃#
4 [ε, ε′, ε′′] ≡

∫
∂Ω

F#
4 [ε, ε′, ε′′](t) dσt,

for all (ε, ε′, ε′′) ∈ ]−ε6, ε6[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [, then, by standard properties of functions in Schauder
spaces, we have that J̃#

1 , J̃#
2 , J̃#

3 , J̃#
4 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to C,

such that equality (9.74) holds.
Finally, if ε = ε′ = ε′′ = 0, by Folland [52, Lemma 3.30, p. 133], we have

J#
1 [0, 0, 0] =

∫
∂Ω

∂

∂νΩ
v−[∂Ω, φ̃, 0](t) dσt

=
∫
∂Ω

φ̃(t) dσt

= 0,

and accordingly (9.75) holds.

9.2.5 A remark on the Dirichlet problem

In this section we want to observe that, if we multiply the Dirichlet datum by the factor ε−l, with
l ∈ Z, then we may still have real analytic continuation properties for the solution and for functionals
related to the solution even if l > 0.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14),
(9.15), respectively. Let ε∗1 be as in (9.16). For each ε ∈ ]0, ε∗1[, we consider the following periodic
Dirichlet problem for the Laplace equation.∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
u(x) = ε−lg( 1

ε (x− w)) ∀x ∈ ∂Ωε.
(9.76)

By virtue of Theorem 9.4, we can give the following definition.

Definition 9.40. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). For each ε ∈ ]0, ε∗1[, we denote by ul[ε] the
unique solution in Cm,α(cl Ta[Ωε],C) of boundary value problem (9.76).

Then we have the following Theorems

Theorem 9.41. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, k, g be
as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3 be as in Proposition
9.19. Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
and a real analytic operator U of ]−ε4, ε4[ to the space C0(clV,C), such that the following conditions
hold.
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(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
ul[ε](x) = εn−2−lU [ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. It is a straightforward consequence of Theorem 9.29.

Theorem 9.42. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω,
ε1, k, g be as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2 be as in
Proposition 9.20. Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist
ε4 ∈ ]0, ε3] and a real analytic operator U# of ]−ε4, ε4[× ]−ε′2, ε′2[ to the space C0(clV,C), such that
the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
ul[ε](x) = εn−2−lU#[ε, ε log ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. It is a straightforward consequence of Theorem 9.31.

Theorem 9.43. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, k, g be as
in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2, ε′′2 be as in Proposition
9.28. Let V be a bounded open subset of R2 such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3]
and two real analytic operators Ũ#

1 , Ũ#
2 of ]−ε4, ε4[ × ]−ε′2, ε′2[ × ]−ε′′2 , ε′′2 [ to the space C0(clV,C),

such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)

ul[ε](x) = ε−lŨ#
1 [ε, ε log ε, (log ε)−1](x) +

1
log ε

ε−lŨ#
2 [ε, ε log ε, (log ε)−1](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[.

Proof. It is a straightforward consequence of Theorem 9.32.

Theorem 9.44. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, k, g be
as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3 be as in Proposition
9.19. Then there exist ε5 ∈ ]0, ε3], and a real analytic operator G of ]−ε5, ε5[ to C, such that∫

Pa[Ωε]

|∇ul[ε](x)|2 dx− k2

∫
Pa[Ωε]

|ul[ε](x)|2 dx = εn−2−2lG[ε], (9.77)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (9.78)

where ũ is as in Definition 9.15.

Proof. It is a straightforward consequence of Theorem 9.33.

Theorem 9.45. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A.
Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2
be as in Proposition 9.20. Then there exist ε5 ∈ ]0, ε3], and two real analytic operators G#

1 , G
#
2 of

]−ε5, ε5[× ]−ε′2, ε′2[ to C, such that∫
Pa[Ωε]

|∇ul[ε](x)|2 dx−k2

∫
Pa[Ωε]

|ul[ε](x)|2 dx =

εn−2−2lG#
1 [ε, ε log ε] + ε2n−3−2l(log ε)G#

2 [ε, ε log ε],
(9.79)



9.3 An homogenization problem for the Helmholtz equation with Dirichlet boundary conditions in a
periodically perforated domain 337

for all ε ∈ ]0, ε5[. Moreover,

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx, (9.80)

where ũ is as in Definition 9.15.

Proof. It is a straightforward consequence of Theorem 9.34.

Theorem 9.46. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let l ∈ Z. Let w ∈ A. Let Ω, ε1, k, g
be as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε3, ε′2, ε′′2 be as in
Proposition 9.28. Then there exist ε5 ∈ ]0, ε3], and four real analytic operators G̃#

1 , G̃#
2 , G̃#

3 , G̃#
4 of

]−ε5, ε5[× ]−ε′2, ε′2[× ]−ε′′2 , ε′′2 [ to C, such that∫
Pa[Ωε]

|∇ul[ε](x)|2 dx−k2

∫
Pa[Ωε]

|ul[ε](x)|2 dx

=ε−2lG̃#
1 [ε, ε log ε, (log ε)−1] + ε1−2l(log ε)G̃#

2 [ε, ε log ε, (log ε)−1]

+
1

log ε
ε−2lG̃#

3 [ε, ε log ε, (log ε)−1] + ε1−2lG̃#
4 [ε, ε log ε, (log ε)−1],

(9.81)

for all ε ∈ ]0, ε5[. Moreover,

G̃#
1 [0, 0, 0] =

∫
R2\cl Ω

|∇ũ(x)|2 dx, (9.82)

where ũ is as in Definition 9.25.

Proof. It is a straightforward consequence of Theorem 9.35.

9.3 An homogenization problem for the Helmholtz equation
with Dirichlet boundary conditions in a periodically perfo-
rated domain

In this section we consider an homogenization problem for the Helmhlotz equation with Dirichlet
boundary conditions in a periodically perforated domain. In most of the results we assume that
Im(k) 6= 0 and Re(k) = 0.

We note that we shall consider the equation

∆u(x) +
k2

δ2
u(x) = 0 ∀x ∈ Ta(ε, δ),

together with the usual periodicity condition and a Dirichlet boundary condition. We do so, because
if u is a solution of the equation above then the function uδ(·) ≡ u(δ·) is a solution of the following
equation

∆uδ(x) + k2uδ(x) = 0 ∀x ∈ Ta[Ωε],

which we can analyse by virtue of the results of Section 9.2.

9.3.1 Notation

In this Section we retain the notation introduced in Subsections 1.8.1, 6.7.1, 9.2.1. However, we need
to introduce also some other notation.

Let (ε, δ) ∈ (]−ε1, ε1[ \ {0}) × ]0,+∞[. If v is a function of cl Ta(ε, δ) to C, then we denote by
E(ε,δ)[v] the function of Rn to C, defined by

E(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ),
0 ∀x ∈ Rn \ cl Ta(ε, δ).



338
Singular perturbation and homogenization problems for the Helmholtz equation with Dirichlet

boundary conditions

9.3.2 Preliminaries

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14), (9.15),
respectively. Let ε∗1 be as in (9.16). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we consider the following
periodic Dirichlet problem for the Helmholtz equation.∆u(x) + k2

δ2 u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δaj) = u(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
u(x) = g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(9.83)

By virtue of Theorem 9.4, we can give the following definition.

Definition 9.47. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(9.14), (9.15), respectively. Let ε∗1 be as in (9.16). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we denote by
u(ε,δ) the unique solution in Cm,α(cl Ta(ε, δ),C) of boundary value problem (9.83).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 9.48. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(9.14), (9.15), respectively. Let ε∗1 be as in (9.16). For each ε ∈ ]0, ε∗1[, we denote by u[ε] the unique
solution in Cm,α(cl Ta[Ωε],C) of the following periodic Dirichlet problem for the Helmholtz equation.∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],

u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
u(x) = g( 1

ε (x− w)) ∀x ∈ ∂Ωε.
(9.84)

Remark 9.49. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14),
(9.15), respectively. Let ε∗1 be as in (9.16). For each pair (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

As a first step, we study the behaviour of u[ε] as ε tends to 0.

Proposition 9.50. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(9.14), (9.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (9.16). Let 1 ≤ p < ∞.
Then

lim
ε→0+

E(ε,1)[u[ε]] = 0 in Lp(A,C).

Proof. If ε ∈ ]0, ε1[, we have

u[ε] ◦ (w + ε id∂Ω)(t) = g(t) ∀t ∈ ∂Ω.

We set
c ≡ sup{|g(t)| : t ∈ ∂Ω}.

Then, by Corollary 6.25, we have

|E(ε,1)[u[ε]](x)| ≤ 2c < +∞ ∀x ∈ A, ∀ε ∈ ]0, ε1[.

By Theorems 9.29, 9.31, 9.32, we have

lim
ε→0+

E(ε,1)[u[ε]](x) = 0 ∀x ∈ A \ {w}.

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0+

E(ε,1)[u[ε]] = 0 in Lp(A,C).
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9.3.3 Asymptotic behaviour of u(ε,δ)

In the following Theorem we deduce by Proposition 9.50 the convergence of u(ε,δ) as (ε, δ) tends to
(0, 0). Namely, we prove the following.

Theorem 9.51. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(9.14), (9.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (9.16). Let 1 ≤ p <∞. Let
V be a bounded open subset of Rn. Then

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in Lp(V,C).

Proof. By virtue of Proposition 9.50, we have

lim
ε→0+

‖E(ε,1)[u[ε]]‖Lp(A,C) = 0.

By the same argument as Theorem D.5 (see in particular (D.5)), there exists a constant C > 0 such
that

‖E(ε,δ)[u(ε,δ)]‖Lp(V,C) ≤ C‖E(ε,1)[u[ε]]‖Lp(A,C) ∀(ε, δ) ∈ ]0, ε1[× ]0, 1[.

Thus,
lim

(ε,δ)→(0+,0+)
‖E(ε,δ)[u(ε,δ)]‖Lp(V,C) = 0,

and we can easily conclude.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 9.52. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε6, J be as in Theorem 9.37. Let r > 0
and ȳ ∈ Rn. Then ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn

εn−2

k2
J [ε], (9.85)

for all ε ∈ ]0, ε6[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
εn−2

k2
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn
εn−2

k2
J [ε],

and the conclusion follows.
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Theorem 9.53. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε6, J

#
1 , J#

2 be as in Theorem
9.38. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn

{εn−2

k2
J#

1 [ε, ε log ε] +
ε2n−3(log ε)

k2
J#

2 [ε, ε log ε]
}
, (9.86)

for all ε ∈ ]0, ε6[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln

{εn−2

k2
J#

1 [ε, ε log ε] +
ε2n−3(log ε)

k2
J#

2 [ε, ε log ε]
}
.

As a consequence,∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn
{εn−2

k2
J#

1 [ε, ε log ε] +
ε2n−3(log ε)

k2
J#

2 [ε, ε log ε]
}
,

and the conclusion follows.

Theorem 9.54. Let n = 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56),
(1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε6, J̃

#
1 , J̃#

2 , J̃#
3 , J̃#

4 be as in Theorem
9.39. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = r2

{ 1
k2
J̃#

1 [ε, ε log ε, (log ε)−1] +
ε(log ε)
k2

J̃#
2 [ε, ε log ε, (log ε)−1]

+
1

k2 log ε
J̃#

3 [ε, ε log ε, (log ε)−1] +
ε

k2
J̃#

4 [ε, ε log ε, (log ε)−1]
}
,

(9.87)

for all ε ∈ ]0, ε6[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= l2
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.
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Then we note that∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
r2

l2

∫
Pa[Ωε]

u[ε](t) dt

=
r2

l2

{ 1
k2
J̃#

1 [ε, ε log ε, (log ε)−1] +
ε(log ε)
k2

J̃#
2 [ε, ε log ε, (log ε)−1]

+
1

k2 log ε
J̃#

3 [ε, ε log ε, (log ε)−1] +
ε

k2
J̃#

4 [ε, ε log ε, (log ε)−1]
}
.

As a consequence,∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = r2
{ 1
k2
J̃#

1 [ε, ε log ε, (log ε)−1] +
ε(log ε)
k2

J̃#
2 [ε, ε log ε, (log ε)−1]

+
1

k2 log ε
J̃#

3 [ε, ε log ε, (log ε)−1] +
ε

k2
J̃#

4 [ε, ε log ε, (log ε)−1]
}
,

and the conclusion follows.

We give the following.

Definition 9.55. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57),
(9.14), (9.15), respectively. Let ε∗1 be as in (9.16). For each pair (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, we set

F(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
A∩Ta(ε,δ)

|u(ε,δ)(x)|2 dx.

Remark 9.56. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in (1.56), (1.57), (9.14),
(9.15), respectively. Let ε∗1 be as in (9.16). Let (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt,

and ∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δn
∫

Pa[Ωε]

|u[ε](t)|2 dt.

Accordingly,∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn−2
(∫

Pa[Ωε]

|∇u[ε](t)|2 dt− k2

∫
Pa[Ωε]

|u[ε](t)|2 dt
)
.

Then we give the following definition, where we consider F(ε, δ), with ε equal to a certain function
of δ.

Definition 9.57. Let n ≥ 3. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ
2

n−2 .

Let ε5 be as in Theorem 9.33, if n is odd, or as in Theorem 9.34, if n is even. Let δ1 > 0 be such that
ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

F [δ] ≡ F(ε[δ], δ),

for all δ ∈ ]0, δ1[.
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Here we may note that the ‘radius’ of the holes is δε[δ] = δ
n
n−2 which is the same which appears in

Homogenization Theory (cf. e.g., Ansini and Braides [7] and references therein.)
In the following Propositions we compute the limit of F [δ] as δ tends to 0.

Proposition 9.58. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (9.14), (9.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (9.16). Let
ε5 be as in Theorem 9.33. Let δ1 > 0 be as in Definition 9.57. Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 9.15.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 9.56 and Theorem 9.33, we have

G(δ) = δn−2(ε[δ])n−2G[ε[δ]]

= δn−2δ2G[δ
2

n−2 ],

where G is as in Theorem 9.33. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).

As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G[0].

Finally, by equality (9.65), we easily conclude.

Proposition 9.59. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k,
g be as in (1.56), (1.57), (9.14), (9.15), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in
(9.16). Let ε5 be as in Theorem 9.34. Let δ1 > 0 be as in Definition 9.57. Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 9.15.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 9.56 and Theorem 9.34, we have

G(δ) =δn−2(ε[δ])n−2G#
1 [ε[δ], ε[δ] log ε[δ]]

+ δn−2(ε[δ])2n−3(log ε[δ])G#
2 [ε[δ], ε[δ] log ε[δ]]

=δn−2δ2G#
1 [δ

2
n−2 , δ

2
n−2 log(δ

2
n−2 )]

+ δn−2δ
4n−6
n−2 (log(δ

2
n−2 ))G#

2 [δ
2

n−2 , δ
2

n−2 log(δ
2

n−2 )],

where G#
1 and G#

2 are as in Theorem 9.34. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).
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As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G#
1 [0, 0].

Finally, by equality (9.67), we easily conclude.

In the following Propositions we represent the function F [·] by means of real analytic functions.

Proposition 9.60. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g be as in
(1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε5, and G be as in Theorem 9.33.
Let δ1 > 0 be as in Definition 9.57. Then

F [(1/l)] = G[(1/l)
2

n−2 ],

for all l ∈ N such that l > (1/δ1).

Proof. By arguing as in the proof of Proposition 9.58, one can easily see that

F [(1/l)] = ln(1/l)n−2(1/l)2G[(1/l)
2

n−2 ]

= G[(1/l)
2

n−2 ],

for all l ∈ N such that l > (1/δ1).

Proposition 9.61. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, g
be as in (1.56), (1.57), (9.14), (9.15), respectively. Let ε∗1 be as in (9.16). Let ε5, G

#
1 , and G#

2 be as
in Theorem 9.34. Let δ1 > 0 be as in Definition 9.57. Then

F [(1/l)] =G#
1 [(1/l)

2
n−2 , (1/l)

2
n−2 log((1/l)

2
n−2 )]

+ (1/l)
2n−2
n−2 log((1/l)

2
n−2 )G#

2 [(1/l)
2

n−2 , (1/l)
2

n−2 log((1/l)
2

n−2 )],

for all l ∈ N such that l > (1/δ1).

Proof. By arguing as in the proof of Proposition 9.59, one can easily see that

F [(1/l)] =ln(1/l)n−2(1/l)2
{
G#

1 [(1/l)
2

n−2 , (1/l)
2

n−2 log((1/l)
2

n−2 )]

+ (1/l)
4n−6−2n+4

n−2 log((1/l)
2

n−2 )G#
2 [(1/l)

2
n−2 , (1/l)

2
n−2 log((1/l)

2
n−2 )]

}
=G#

1 [(1/l)
2

n−2 , (1/l)
2

n−2 log((1/l)
2

n−2 )]

+ (1/l)
2n−2
n−2 log((1/l)

2
n−2 )G#

2 [(1/l)
2

n−2 , (1/l)
2

n−2 log((1/l)
2

n−2 )],

for all l ∈ N such that l > (1/δ1).
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CHAPTER 10

Singular perturbation and homogenization problems
for the Helmholtz equation with Robin boundary
conditions

In this Chapter we introduce the periodic Robin problem for the Helmholtz equation and we study
singular perturbation and homogenization problems (linear and nonlinear) for the Helmholtz operator
with Robin boundary conditions in a periodically perforated domain. First of all, we consider singular
perturbation problems in a periodically perforated domain with small holes, and then we apply the
obtained results to homogenization problems. As well as for the Dirichlet and Neumann problems,
we follow the approach of Lanza [72], where the asymptotic behaviour of the solutions of a nonlinear
Robin problem for the Laplace operator in a domain with a small hole is considered. We also mention
Lanza [79], dealing with a Neumann eigenvalue problem in a perforated domain. We note that
nonlinear traction problems have been analysed by Dalla Riva and Lanza [38, 39, 42, 43] with this
approach. One of the tools used in our analysis is the study of the dependence of layer potentials
upon perturbations (cf. Lanza and Rossi [86] and also Dalla Riva and Lanza [40].)

We retain the notation introduced in Sections 1.1 and 1.3, Chapter 6 and Appendix E. For the
definitions of EigD[I], EigN [I], EigaD[I], EigaN [I], we refer to Chapter 7.

10.1 A periodic linear Robin boundary value problem for the
Helmholtz equation

In this Section we introduce the periodic linear Robin problem for the Helmholtz equation and we
show the existence and uniqueness of a solution by means of the periodic simple layer potential.

10.1.1 Formulation of the problem

In this Subsection we introduce the periodic linear Robin problem for the Helmholtz equation.
First of all, we need to introduce some notation. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in

(1.46). We shall consider the following assumptions.

k ∈ C, k2 6= |2πa−1(z)|2 ∀z ∈ Zn; (10.1)

φ ∈ Cm−1,α(∂I,C), (10.2)

Γ ∈ Cm−1,α(∂I,C). (10.3)

We are now ready to give the following.

Definition 10.1. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, φ, Γ be as in (10.1),
(10.2), (10.3), respectively. We say that a function u ∈ C1(cl Ta[I],C)∩C2(Ta[I],C) solves the periodic

345
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linear Robin problem for the Helmholtz equation if
∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
u(x) + φ(x)u(x) = Γ(x) ∀x ∈ ∂I.

(10.4)

10.1.2 Existence and uniqueness results for the solutions of the periodic
linear Robin problem

In this Subsection we prove existence and uniqueness results for the solutions of the periodic linear
Robin problem for the Helmholtz equation.

Proposition 10.2. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, φ, Γ be as in
(10.1), (10.2), (10.3), respectively. Assume that Im(k) 6= 0 and that Re(φ(x)) ≤ 0 for all x ∈ ∂I and
that Re(k) Im(k) Im(φ(x)) ≥ 0 for all x ∈ ∂I. Then boundary value problem (10.4) has at most one
solution in C1(cl Ta[I],C) ∩ C2(Ta[I],C).

Proof. Let u1, u2 ∈ C1(cl Ta[I],C) ∩ C2(Ta[I],C) be two solutions of (10.4). We set

u(x) ≡ u1(x)− u2(x) ∀x ∈ cl Ta[I].

Clearly, the function u solves the following boundary value problem:
∆u(x) + k2u(x) = 0 ∀x ∈ Ta[I],
u(x+ aj) = u(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
u(x) + φ(x)u(x) = 0 ∀x ∈ ∂I.

By the Divergence Theorem and the periodicity of u, we have∫
Pa[I]

u(x)∆u(x) dx =
∫
∂Pa[I]

u(x)
∂

∂νPa[I]
u(x) dσx −

∫
Pa[I]
|∇u(x)|2 dx

=
∫
∂A

u(x)
∂

∂νA
u(x) dσx −

∫
∂I
u(x)

∂

∂νI
u(x) dσx −

∫
Pa[I]
|∇u(x)|2 dx

=
∫
∂I
φ(x)|u(x)|2 dσx −

∫
Pa[I]
|∇u(x)|2 dx.

On the other hand ∫
Pa[I]

u(x)∆u(x) dx = −k2

∫
Pa[I]
|u(x)|2 dx,

and accordingly∫
Pa[I]
|∇u(x)|2 dx−(Re(k)2 − Im(k)2)

∫
Pa[I]
|u(x)|2 dx− i2 Re(k) Im(k)

∫
Pa[I]
|u(x)|2 dx

=
∫
∂I
φ(x)|u(x)|2 dσx =

∫
∂I

Re(φ(x))|u(x)|2 dσx + i

∫
∂I

Im(φ(x))|u(x)|2 dσx.

Assume now Re(k) = 0. Then, since Re(φ(x)) ≤ 0 for all x ∈ ∂I, we have

0 ≤
∫

Pa[I]
|∇u(x)|2 dx+ Im(k)2

∫
Pa[I]
|u(x)|2 dx =

∫
∂I

Re(φ(x))|u(x)|2 dσx ≤ 0.

If, on the contrary, we assume Re(k) 6= 0, then we must have

−i2 Re(k) Im(k)
∫

Pa[I]
|u(x)|2 dx = i

∫
∂I

Im(φ(x))|u(x)|2 dσx,

and consequently, since Re(k) Im(k) 6= 0 and Re(k) Im(k) Im(φ(x)) ≥ 0 for all x ∈ ∂I, we have

0 ≤
∫

Pa[I]
|u(x)|2 dx =

∫
∂I
− Im(φ(x))

2 Re(k) Im(k)
|u(x)|2 dσx ≤ 0.
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Thus, in both cases (Re(k) = 0 or Re(k) 6= 0), we have∫
Pa[I]
|u(x)|2 dx = 0.

Therefore, u = 0 in cl Pa[I], and, as a consequence, in cl Ta[I]. Hence,

u1(x) = u2(x) ∀x ∈ cl Ta[I].

As we know, in order to solve problem (10.4) by means of periodic simple layer potentials, we need
to study some integral equations. Thus, in the following Proposition, we study an operator related to
the equations that we shall consider in the sequel.

Proposition 10.3. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, φ be as in
(10.1), (10.2), respectively. Assume that Im(k) 6= 0 and that Re(φ(x)) ≤ 0 for all x ∈ ∂I and that
Re(k) Im(k) Im(φ(x)) ≥ 0 for all x ∈ ∂I. Let µ ∈ L2(∂I,C) and

1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂I
Sa,kn (x− y)µ(y) dσy = 0 a.e. on ∂I. (10.5)

Then µ = 0.

Proof. By Theorem 6.18 (iii), we have µ ∈ Cm−1,α(∂I,C). Then by Theorem 6.11 (i), we have that
the function v− ≡ v−a [∂I, µ, k] is in Cm,α(cl Ta[I],C) and solves the following boundary value problem

∆v−(x) + k2v−(x) = 0 ∀x ∈ Ta[I],
v−(x+ aj) = v−(x) ∀x ∈ cl Ta[I], ∀j ∈ {1, . . . , n},
∂
∂νI
v−(x) + φ(x)v−(x) = 0 ∀x ∈ ∂I.

Accordingly, by Proposition 10.2, we have v− = 0 in cl Ta[I]. Then, by Theorem 6.11 (i), the function
v+ ≡ v+

a [∂I, µ, k]| cl I is in Cm,α(cl I,C) and solves the following boundary value problem{
∆v+(x) + k2v+(x) = 0 ∀x ∈ I,
v+(x) = 0 ∀x ∈ ∂I.

Hence, since Im(k) 6= 0, we have v+ = 0 in cl I, and so

∂

∂νI
v+ = 0 on ∂I.

Thus, by Theorem 6.11 (i), we have

µ =
∂

∂νI
v−a [∂I, µ, k]− ∂

∂νI
v+
a [∂I, µ, k] = 0 on ∂I,

and the proof is complete.

Then we have the following Theorem.

Theorem 10.4. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, φ be as in
(10.1), (10.2), respectively. Assume that Im(k) 6= 0 and that Re(φ(x)) ≤ 0 for all x ∈ ∂I and that
Re(k) Im(k) Im(φ(x)) ≥ 0 for all x ∈ ∂I. Then the following statements hold.

(i) The map L of L2(∂I,C) to L2(∂I,C), which takes µ to the function L[µ] of ∂I to C, defined by

L[µ](x) ≡ 1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂I
Sa,kn (x− y)µ(y) dσy a.e. on ∂I,

(10.6)
is a linear homeomorphism of L2(∂I,C) onto itself.
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(ii) The map L̃ of Cm−1,α(∂I,C) to Cm−1,α(∂I,C), which takes µ to the function L̃[µ] of ∂I to C,
defined by

L̃[µ](x) ≡ 1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂I
Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂I,

(10.7)
is a linear homeomorphism of Cm−1,α(∂I,C) onto itself.

Proof. We first prove statement (i). By Proposition 10.3, we have that L is injective. Since the
singularities in the involved integral operators are weak, we have that L is continuous and that L− 1

2I
is a compact operator in L2(∂I,C) (cf. e.g., Folland [52, Prop. 3.11, p. 121].) Hence, by the Fredholm
Theory, we have that L is surjective and, by the Open Mapping Theorem, we have that it is a linear
homeomorphism of L2(∂I,C) onto itself. We now consider statement (ii). By Theorem 6.11 (ii),
(iii), we have that L̃ is a linear continuous operator of Cm−1,α(∂I,C) to itself. Hence, by the Open
Mapping Theorem, in order to prove that it is a linear homeomorphism of Cm−1,α(∂I,C) onto itself, it
suffices to prove that it is a bijection. By Proposition 10.3, L̃ is injective. Now let ψ ∈ Cm−1,α(∂I,C).
By statement (i), there exists µ ∈ L2(∂I,C) such that

ψ(x) =
1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂I
Sa,kn (x− y)µ(y) dσy a.e. on ∂I,

and, by Proposition 6.18 (iii), we have µ ∈ Cm−1,α(∂I,C). As a consequence, L̃ is surjective, and the
proof is complete.

We are now ready to prove the main result of this section.

Theorem 10.5. Let m ∈ N \ {0}. Let α ∈ ]0, 1[. Let I be as in (1.46). Let k, φ, Γ be as in (10.1),
(10.2), (10.3), respectively. Assume that Im(k) 6= 0 and that Re(φ(x)) ≤ 0 for all x ∈ ∂I and that
Re(k) Im(k) Im(φ(x)) ≥ 0 for all x ∈ ∂I. Then boundary value problem (10.4) has a unique solution
u ∈ Cm,α(cl Ta[I],C) ∩ C2(Ta[I],C). Moreover,

u(x) = v−a [I, µ, k](x) ∀x ∈ cl Ta[I], (10.8)

where µ is the unique function in Cm−1,α(∂I,C) that solves the following equation

1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂I
Sa,kn (x− y)µ(y) dσy = Γ(x) ∀x ∈ ∂I. (10.9)

Proof. Clearly, it suffices to prove the existence. By Theorem 10.4 (ii), there exists a unique
µ ∈ Cm−1,α(∂I,C) such that (10.9) holds. Then, by Theorem 6.11 (i), we have that v−a [∂I, µ, k] ∈
Cm,α(cl Ta[I],C), that

∂

∂νI
v−a [∂I, µ, k](x) + φ(x)v−a [∂I, µ, k](x)

=
1
2
µ(x) +

∫
∂I

∂

∂νI(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂I
Sa,kn (x− y)µ(y) dσy = Γ(x) ∀x ∈ ∂I.

and that
∆v−a [∂I, µ, k](x) + k2v−a [∂I, µ, k](x) = 0 ∀x ∈ Ta[I].

Finally, by the periodicity of v−a [∂I, µ, k], we have that v−a [∂I, µ, k] solves boundary value problem
(10.4).

10.2 Asymptotic behaviour of the solutions of a linear Robin
problem for the Helmholtz equation in a periodically per-
forated domain

In this Section we study the asymptotic behaviour of the solutions of the Robin problem for the
Helmholtz equation in a periodically perforated domain with small holes.
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10.2.1 Notation
We retain the notation introduced in Subsections 1.8.1, 6.7.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). We shall consider also the following assumptions.

k ∈ C, k2 6= |2πa−1(z)|2 ∀z ∈ Zn; (10.10)

f ∈ Cm−1,α(∂Ω,C), (10.11)

g ∈ Cm−1,α(∂Ω,C). (10.12)

10.2.2 Preliminaries
Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56), (1.57), (10.10), (10.11),
(10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for
all t ∈ ∂Ω. For each ε ∈ ]0, ε1[, we consider the following periodic Robin problem for the Helmholtz
equation.


∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) + f( 1

ε (x− w))u(x) = g( 1
ε (x− w)) ∀x ∈ ∂Ωε.

(10.13)

By virtue of Theorem 10.5, we can give the following definition.

Definition 10.6. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in
Cm,α(cl Ta[Ωε],C) of boundary value problem (10.13).

We have the following Lemmas.

Lemma 10.7. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56), (1.57),
(10.10), (10.11), (10.12), respectively. Let ε ∈ ]0, ε1[. Then the function µ ∈ Cm−1,α(∂Ωε,C) satisfies
the following equation

g(
1
ε

(x− w)) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy

+ f(
1
ε

(x− w))
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε,
(10.14)

if and only if the function θ ∈ Cm−1,α(∂Ω,C), defined by

θ(t) ≡ µ(w + εt) ∀t ∈ ∂Ω, (10.15)

satisfies the following equation

g(t) =
1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

+ f(t)

[
ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs

]
∀t ∈ ∂Ω.

(10.16)

Proof. It is a straightforward verification based on the rule of change of variables in integrals, on well
known properties of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Section 3,4]) and
on equalities (6.24), (6.25).
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Lemma 10.8. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (10.12), respectively. Then there
exists a unique function θ ∈ Cm−1,α(∂Ω,C) that solves the following equation

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (10.17)

We denote the unique solution of equation (10.17) by θ̃. Moreover,∫
∂Ω

θ̃(s) dσs =
∫
∂Ω

g(s) dσs. (10.18)

Proof. The existence and uniqueness of a solution of equation (10.17) is a well known result of classic
potential theory (cf. Folland [52, Chapter 3] for the existence and uniqueness of a solution in L2(∂Ω,C)
and, e.g., Theorem B.3 for the regularity.) Equality (10.18) follows by Folland [52, Lemma 3.30,
p. 133].

Since we want to represent the function u[ε] by means of a periodic simple layer potential, we need
to study some integral equations. Indeed, by virtue of Theorem 10.5, we can transform (10.13) into
an integral equation, whose unknown is the moment of the simple layer potential. Moreover, we want
to transform this equation defined on the ε-dependent domain ∂Ωε into an equation defined on the
fixed domain ∂Ω. We introduce this integral equation in the following Propositions. The relation
between the solution of the integral equation and the solution of boundary value problem (10.13) will
be clarified later. Anyway, since the function Qkn that appears in equation (10.16) (involved in the
determination of the moment of the simple layer potential that solves (10.13)) is identically 0 if n is
odd, it is preferable to treat separately case n even and case n odd.

Proposition 10.9. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let Λ be the map of
]−ε1, ε1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) defined by

Λ[ε, θ](t)

≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

+ f(t)

[
ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs

]
− g(t) ∀t ∈ ∂Ω,

(10.19)

for all (ε, θ) ∈ ]−ε1, ε1[× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) If ε ∈ ]0, ε1[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[ε, θ] = 0, (10.20)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ θ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.21)

satisfies the equation

Γ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε,

(10.22)
with Γ ∈ Cm−1,α(∂Ωε,C), and φ ∈ Cm−1,α(∂Ωε,C), defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.23)

and
φ(x) ≡ f(

1
ε

(x− w)) ∀x ∈ ∂Ωε. (10.24)

In particular, equation (10.20) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each ε ∈ ]0, ε1[.
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(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[0, θ] = 0, (10.25)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (10.26)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (10.25) is θ̃.

Proof. Consider (i). The equivalence of equation (10.20) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (10.22) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by Lemma 10.7 and the definition of
Qkn for n odd (cf. (6.23) and Definition E.2.) The existence and uniqueness of a solution of equation
(10.22) follows by Proposition 10.4 (ii). Then the existence and uniqueness of a solution of equation
(10.20) follows by the equivalence of (10.20) and (10.22). Consider (ii). The equivalence of (10.25)
and (10.26) is obvious. The second part of statement (ii) is an immediate consequence of Lemma
10.8.

Proposition 10.10. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let ε′1 > 0 be such
that

ε log ε ∈ ]−ε′1, ε′1[ ∀ε ∈ ]0, ε1[. (10.27)

Let Λ# be the map of ]−ε1, ε1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) defined by

Λ#[ε, ε′, θ](t)

≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs + f(t)
[
ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ εn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
]
− g(t) ∀t ∈ ∂Ω,

(10.28)

for all (ε, ε′, θ) ∈ ]−ε1, ε1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) If ε ∈ ]0, ε1[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[ε, ε log ε, θ] = 0, (10.29)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ θ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.30)

satisfies the equation

Γ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy + φ(x)

∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε,

(10.31)
with Γ ∈ Cm−1,α(∂Ωε,C), and φ ∈ Cm−1,α(∂Ωε,C), defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.32)

and
φ(x) ≡ f(

1
ε

(x− w)) ∀x ∈ ∂Ωε. (10.33)

In particular, equation (10.29) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each ε ∈ ]0, ε1[.
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(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[0, 0, θ] = 0, (10.34)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (10.35)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (10.34) is θ̃.

Proof. Consider (i). The equivalence of equation (10.29) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (10.31) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by Lemma 10.7 and the definition of
Qkn for n even (cf. (6.23) and Definition E.2.) The existence and uniqueness of a solution of equation
(10.31) follows by Proposition 10.4 (ii). Then the existence and uniqueness of a solution of equation
(10.29) follows by the equivalence of (10.29) and (10.31). Consider (ii). The equivalence of (10.34)
and (10.35) is obvious. The second part of statement (ii) is an immediate consequence of Lemma
10.8.

By Propositions 10.9, 10.10, it makes sense to introduce the following.

Definition 10.11. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each ε ∈ ]0, ε1[, we denote by θ̂n[ε] the unique function in
Cm−1,α(∂Ω,C) that solves equation (10.20), if n is odd, or equation (10.29), if n is even. Analogously,
we denote by θ̂n[0] the unique function in Cm−1,α(∂Ω,C) that solves equation (10.25), if n is odd, or
equation (10.34), if n is even.

In the following Remark, we show the relation between the solutions of boundary value problem
(10.13) and the solutions of equations (10.20), (10.29).
Remark 10.12. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω.

Let ε ∈ ]0, ε1[. We have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)θ̂n[ε](s) dσs ∀x ∈ cl Ta[Ωε].

While the relation between equations (10.20), (10.29) and boundary value problem (10.13) is now
clear, we want to see if (10.25), (10.34) are related to some (limiting) boundary value problem. We
give the following.

Definition 10.13. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (10.12),
respectively. We denote by ũ the unique solution in Cm,α(Rn \ Ω,C) of the following boundary value
problem 

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = g(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(10.36)

Problem (10.36) will be called the limiting boundary value problem.

Remark 10.14. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. If n ≥ 3, then we have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̂n[0](y) dσy ∀x ∈ Rn \ Ω.

If n = 2, in general the (classic) simple layer potential for the Laplace equation with moment θ̂2[0]
is not harmonic at infinity, and it does not satisfy the third condition of boundary value problem
(10.36). Moreover, if n = 2, boundary value problem (10.36) does not have in general a solution
(unless

∫
∂Ω
g dσ = 0.) However, the function ṽ of R2 \ Ω to C, defined by

ṽ(x) ≡
∫
∂Ω

S2(x− y)θ̂2[0](y) dσy ∀x ∈ R2 \ Ω,
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is a solution of the following boundary value problem{
∆ṽ(x) = 0 ∀x ∈ R2 \ cl Ω,
∂
∂νΩ

ṽ(x) = g(x) ∀x ∈ ∂Ω. (10.37)

We now prove the following Propositions.

Proposition 10.15. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let Λ be as in Proposition
10.9. Then there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[×Cm−1,α(∂Ω,C)
to Cm−1,α(∂Ω,C). Moreover, if we set b0 ≡ (0, θ̃), then the differential ∂θΛ[b0] of Λ with respect to
the variable θ at b0 is delivered by the following formula

∂θΛ[b0](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (10.38)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proof. By Proposition 6.21 and by continuity of the pointwise product in Schauder space, we easily
deduce that there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[×Cm−1,α(∂Ω,C)
to Cm−1,α(∂Ω,C). By standard calculus in Banach space, we immediately deduce that (10.38) holds.
Now we need to prove that ∂θΛ[b0] is a linear homeomorphism. By the Open Mapping Theorem, it
suffices to prove that it is a bijection. Let ψ ∈ Cm−1,α(∂Ω,C). By known results of classical potential
theory (cf. Folland [52, Chapter 3]), there exists a unique function τ ∈ Cm−1,α(∂Ω,C), such that

1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs = ψ(t) ∀t ∈ ∂Ω.

Hence ∂θΛ[b0] is bijective, and, accordingly, a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proposition 10.16. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g
be as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for
all t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let ε′1 > 0 be
as in (10.27). Let Λ# be as in Proposition 10.10. Then there exists ε2 ∈ ]0, ε1] such that Λ# is a
real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Moreover, if we set
b0 ≡ (0, 0, θ̃), then the differential ∂θΛ#[b0] of Λ# with respect to the variable θ at b0 is delivered by
the following formula

∂θΛ#[b0](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (10.39)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proof. By Proposition 6.21 and by continuity of the pointwise product in Schauder space, we easily
deduce that there exists ε2 ∈ ]0, ε1] such that Λ# is a real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[×
Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). By standard calculus in Banach space, we immediately deduce that
(10.39) holds. Finally, by the proof of Proposition 10.15 and formula (10.39), we have that ∂θΛ#[b0]
is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

By the previous Propositions we can now prove the following results.

Proposition 10.17. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε2 be as in Proposition 10.15. Then there
exist ε3 ∈ ]0, ε2] and a real analytic operator Θn of ]−ε3, ε3[ to Cm−1,α(∂Ω,C), such that

Θn[ε] = θ̂n[ε], (10.40)

for all ε ∈ [0, ε3[.

Proof. It is an immediate consequence of Proposition 10.15 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)
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Proposition 10.18. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g
be as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for
all t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε′1 > 0 be as in (10.27). Let ε2 be as
in Proposition 10.16. Then there exist ε3 ∈ ]0, ε2], ε′2 ∈ ]0, ε′1], and a real analytic operator Θ#

n of
]−ε3, ε3[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C), such that

ε log ε ∈ ]−ε′2, ε′2[ ∀ε ∈ ]0, ε3[,

Θ#
n [ε, ε log ε] = θ̂n[ε] ∀ε ∈ ]0, ε3[, (10.41)

Θ#
n [0, 0] = θ̂n[0]. (10.42)

Proof. It is an immediate consequence of Proposition 10.16 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

10.2.3 A functional analytic representation Theorem for the solution of
the singularly perturbed Robin problem

By Propositions 10.17, 10.18, and Remark 10.12, we can deduce the main result of this Subsection.

Theorem 10.19. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε3 be as in Proposition 10.17. Let V be a bounded
open subset of Rn such that clV ∩Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], and a real analytic operator
U of ]−ε4, ε4[ to the space C0(clV,C), such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−1U [ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,

U [0](x) = Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV.

Proof. Let Θn[·] be as in Proposition 10.17. Choosing ε4 small enough, we can clearly assume that (j)
holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 10.12 and Proposition 10.17, we have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U [ε](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[. By Proposition 6.22, U is a real analytic map of ]−ε4, ε4[ to C0(clV,C).
Furthermore, by Lemma 10.8, we have

U [0](x) = Sa,kn (x− w)
∫
∂Ω

Θn[0](s) dσs

= Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV,

since Θn[0] = θ̃. Hence the proof is now complete.

Remark 10.20. We note that the right-hand side of the equality in (jj) of Theorem 10.19 can be
continued real analytically in the whole ]−ε4, ε4[. Moreover, if V is a bounded open subset of Rn such
that clV ∩ Sa[Ω0] = ∅, then

lim
ε→0+

u[ε] = 0 uniformly in clV .
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Theorem 10.21. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε3, ε′2 be as in Proposition 10.18. Let V be a bounded
open subset of Rn such that clV ∩Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3] and a real analytic operator
U# of ]−ε4, ε4[× ]−ε′2, ε′2[ to the space C0(clV,C), such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−1U#[ε, ε log ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,

U#[0, 0](x) = Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV.

Proof. Let Θ#
n [·, ·] be as in Proposition 10.18. Choosing ε4 small enough, we can clearly assume that

(j) holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Remark 10.12 and Proposition 10.18, we have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε log ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U#[ε, ε′](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε′](s) dσs ∀x ∈ clV,

for all (ε, ε′) ∈ ]−ε4, ε4[×]−ε′2, ε′2[. By Proposition 6.22, U# is a real analytic map of ]−ε4, ε4[×]−ε′2, ε′2[
to C0(clV,C). Furthermore, by Lemma 10.8, we have

U#[0, 0](x) = Sa,kn (x− w)
∫
∂Ω

Θ#
n [0, 0](s) dσs

= Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV,

since Θ#
n [0, 0] = θ̃. Accordingly, the Theorem is now completely proved.

We have also the following Theorems.

Theorem 10.22. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let ε3 be as in Proposition
10.17. Then there exist ε5 ∈ ]0, ε3], and a real analytic operator G of ]−ε5, ε5[ to C, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = εnG[ε], (10.43)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (10.44)

where ũ is as in Definition 10.13.

Proof. Let Θn[·] be as in Proposition 10.17. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.
Clearly, by the periodicity of u[ε], we have∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

= −εn−1

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε] ◦ (w + ε id∂Ω)(t) dσt.
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By equality (6.24) and since Qkn = 0 for n odd, we have

u[ε] ◦ (w+ε id∂Ω)(t) = εn−1

∫
∂Ω

Sa,kn (ε(t− s))Θn[ε](s) dσs

= ε

∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

By Theorem E.6 (i), one can easily show that the map which takes ε to the function of the variable
t ∈ ∂Ω defined by ∫

∂Ω

Sn(t− s, εk)Θn[ε](s) dσs ∀t ∈ ∂Ω,

is a real analytic operator of ]−ε3, ε3[ to Cm−1,α(∂Ω,C). By Theorem C.4, we immediately deduce
that there exists ε5 ∈ ]0, ε3] such that the map of ]−ε5, ε5[ to Cm−1,α(∂Ω,C), which takes ε to the
function

∫
∂Ω
Ra,kn (ε(t− s))Θn[ε](s) dσs of the variable t ∈ ∂Ω, is real analytic. Analogously, we have

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]0, ε3[. Thus, if we set

G̃[ε](t) ≡1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω, ∀ε ∈ ]−ε5, ε5[

then, by arguing as in Proposition 10.15, one can easily show that G̃ is a real analytic map of ]−ε5, ε5[
to Cm−1,α(∂Ω,C).

Hence, if we set

G[ε] ≡−
∫
∂Ω

G̃[ε](t)
∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs dσt

− εn−2

∫
∂Ω

G̃[ε](t)
∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs dσt,

for all ε ∈ ]−ε5, ε5[, then by standard properties of functions in Schauder spaces, we have that G is a
real analytic map of ]−ε5, ε5[ to C such that equality (10.43) holds.

Finally, if ε = 0, by Folland [52, p. 118] and since G̃[0] = g, we have

G[0] = −
∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt

=
∫

Rn\cl Ω

|∇ũ(x)|2 dx.

Theorem 10.23. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let ε3, ε′2 be as
in Proposition 10.18. Then there exist ε5 ∈ ]0, ε3], and three real analytic operators G#

1 , G#
2 , G#

3 of
]−ε5, ε5[× ]−ε′2, ε′2[ to C, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

= εnG#
1 [ε, ε log ε] + ε2n−2(log ε)G#

2 [ε, ε log ε] + ε3n−3(log ε)2G#
3 [ε, ε log ε],

(10.45)
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for all ε ∈ ]0, ε5[. Moreover,

G#
1 [0, 0] = −

∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)|
∫
∂Ω

g dσ|2, (10.46)

G#
2 [0, 0] = −kn−2Jn(0)|

∫
∂Ω

g dσ|2, (10.47)

G#
3 [0, 0] = 0 (10.48)

where Jn(0) is as in Proposition E.3 (i). In particular, if n > 2, then

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx, (10.49)

where ũ is as in Definition 10.13.

Proof. Let Θ#
n [·, ·] be as in Proposition 10.18. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.

Clearly, by the periodicity of u[ε], we have∫
Pa[Ωε]

|∇u[ε](x)|2 dx−k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

= −εn−1

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε] ◦ (w + ε id∂Ω)(t) dσt.

By equality (6.24), we have

u[ε] ◦ (w + ε id∂Ω)(t) =εn−1

∫
∂Ω

Sa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs

=ε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

Thus it is natural to set

F1[ε, ε′](t) ≡
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

F2[ε, ε′](t) ≡ kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

F3[ε, ε′](t) ≡
∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[.
Then clearly

u[ε] ◦ (w + ε id∂Ω)(t) = εF1[ε, ε log ε](t) + εn−1(log ε)F2[ε, ε log ε](t) + εn−1F3[ε, ε log ε](t) ∀t ∈ ∂Ω,

for all ε ∈ ]0, ε3[. By Theorem E.6 (i) and Theorem C.4, we easily deduce that there exists ε5 ∈
]0, ε3] such that the maps F1, F2, and F3 of ]−ε5, ε5[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C) are real analytic.
Analogously, we have(∂u[ε]

∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θ#
n [ε, ε log ε](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω,
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for all ε ∈ ]0, ε3[. Thus, if we set

G̃1[ε, ε′](t) ≡ 1
2

Θ#
n [ε, ε′](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and
G̃2[ε, ε′](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε5, ε5[× ]−ε′2, ε′2[, then, by arguing as in Proposition 10.16, one can easily show that
G̃1 and G̃2 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C).

Clearly,(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = G̃1[ε, ε log ε](t) + εn−1(log ε)G̃2[ε, ε log ε](t) ∀t ∈ ∂Ω, ∀ε ∈ ]0, ε5[.

If ε ∈ ]0, ε5[, then we have∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

=εn
(
−
∫
∂Ω

G̃1[ε, ε log ε]F1[ε, ε log ε] dσ − εn−2

∫
∂Ω

G̃1[ε, ε log ε]F3[ε, ε log ε] dσ
)

+ ε2n−2 log ε
(
−ε
∫
∂Ω

G̃2[ε, ε log ε]F1[ε, ε log ε] dσ −
∫
∂Ω

G̃1[ε, ε log ε]F2[ε, ε log ε] dσ

− εn−1

∫
∂Ω

G̃2[ε, ε log ε]F3[ε, ε log ε] dσ
)

+ ε3n−3(log ε)2
(
−
∫
∂Ω

G̃2[ε, ε log ε]F2[ε, ε log ε] dσ
)
.

If we set

G#
1 [ε, ε′] ≡−

∫
∂Ω

G̃1[ε, ε′](t)F1[ε, ε′](t) dσt − εn−2

∫
∂Ω

G̃1[ε, ε′](t)F3[ε, ε′](t) dσt,

G#
2 [ε, ε′] ≡− ε

∫
∂Ω

G̃2[ε, ε′](t)F1[ε, ε′](t) dσt −
∫
∂Ω

G̃1[ε, ε′](t)F2[ε, ε′](t) dσt

− εn−1

∫
∂Ω

G̃2[ε, ε′](t)F3[ε, ε′](t) dσt,

G#
3 [ε, ε′] ≡−

∫
∂Ω

G̃2[ε, ε′](t)F2[ε, ε′](t) dσt,

for all (ε, ε′) ∈ ]−ε5, ε5[ × ]−ε′2, ε′2[, then standard properties of functions in Schauder spaces and a
simple computation show that G#

1 , G#
2 , and G#

3 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[ in C
such that equality (10.45) holds for all ε ∈ ]0, ε5[.

Next, we observe that

G#
1 [0, 0] = −

∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)|
∫
∂Ω

g dσ|2,

G#
2 [0, 0] = −kn−2

Qkn(0)
∫
∂Ω

g dσ

∫
∂Ω

g dσ,

G#
3 [0, 0] = −kn−2kn−2Qkn(0)

∫
∂Ω

g dσ

∫
∂Ω

g dσ

∫
∂Ω

νΩ(t) ·DQkn(0) dσt = 0,

and accordingly equalities (10.46), (10.47), and (10.48) hold. In particular, if n ≥ 4, by Folland [52,
p. 118], we have

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx.
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Remark 10.24. If n is odd, we note that the right-hand side of the equality in (10.43) of Theorem
10.22 can be continued real analytically in the whole ]−ε5, ε5[.

Moreover,

lim
ε→0+

[∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx
]

= 0,

for all n ∈ N \ {0, 1} (n even or odd.)

10.2.4 A real analytic continuation Theorem for the integral of the solu-
tion

We now prove real analytic continuation Theorems for the integral of the solution. Namely, we prove
the following results.

Theorem 10.25. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let ε3 be as in Proposition
10.17. Then there exist ε6 ∈ ]0, ε3], and a real analytic operator J of ]−ε6, ε6[ to C, such that∫

Pa[Ωε]

u[ε](x) dx =
εn−1

k2
J [ε], (10.50)

for all ε ∈ ]0, ε6[. Moreover,

J [0] =
∫
∂Ω

g(x) dσx. (10.51)

Proof. Let Θn[·] be as in Proposition 10.17. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.
Clearly, by the Divergence Theorem and the periodicity of u[ε], we have∫

Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25) and since Qkn = 0 for n odd, we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

We set

J̃ [ε](t) ≡1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that there exists
ε6 ∈ ]0, ε3] such that J̃ is a real analytic map of ]−ε6, ε6[ to Cm−1,α(∂Ω,C). Hence, if we set

J [ε] ≡
∫
∂Ω

J̃ [ε](t) dσt,
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for all ε ∈ ]−ε6, ε6[, then, by standard properties of functions in Schauder spaces, we have that J is a
real analytic map of ]−ε6, ε6[ to C, such that equality (10.50) holds.

Finally, if ε = 0, we have

J [0] =
∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫
∂Ω

g(x) dσx,

and accordingly (10.51) holds.

Theorem 10.26. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let ε3, ε′2 be
as in Proposition 10.18. Then there exist ε6 ∈ ]0, ε3], and two real analytic operators J#

1 , J#
2 of

]−ε6, ε6[× ]−ε′2, ε′2[ to C, such that∫
Pa[Ωε]

u[ε](x) dx =
εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε], (10.52)

for all ε ∈ ]0, ε6[. Moreover,

J#
1 [0, 0] =

∫
∂Ω

g(x) dσx. (10.53)

Proof. Let Θ#
n [·, ·] be as in Proposition 10.18. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.

Clearly, by the Divergence Theorem and the periodicity of u[ε], we have∫
Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θ#
n [ε, ε log ε](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

We set

J̃1[ε, ε′](t) ≡ 1
2

Θ#
n [ε, ε′](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and
J̃2[ε, ε′](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,
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for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that
there exists ε6 ∈ ]0, ε3] such that J̃#

1 , J̃#
2 are real analytic maps of ]−ε6, ε6[×]−ε′2, ε′2[ to Cm−1,α(∂Ω,C).

Hence, if we set

J#
1 [ε, ε′] ≡

∫
∂Ω

J̃#
1 [ε, ε′](t) dσt,

and

J#
2 [ε, ε′] ≡

∫
∂Ω

J̃#
2 [ε, ε′](t) dσt,

for all (ε, ε′) ∈ ]−ε6, ε6[× ]−ε′2, ε′2[, then, by standard properties of functions in Schauder spaces, we
have that J#

1 , J#
2 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[ to C, such that equality (10.52) holds.

Finally, if ε = ε′ = 0, we have

J#
1 [0, 0] =

∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫
∂Ω

g(x) dσx,

and accordingly (10.53) holds.

10.3 An homogenization problem for the Helmholtz equation
with linear Robin boundary conditions in a periodically
perforated domain

In this section we consider an homogenization problem for the Helmhlotz equation with linear Robin
boundary conditions in a periodically perforated domain. In most of the results we assume that
Im(k) 6= 0 and Re(k) = 0.

We note that we shall consider the equation

∆u(x) +
k2

δ2
u(x) = 0 ∀x ∈ Ta(ε, δ),

together with the usual periodicity condition and a Robin boundary condition. We do so, because
if u is a solution of the equation above then the function uδ(·) ≡ u(δ·) is a solution of the following
equation

∆uδ(x) + k2uδ(x) = 0 ∀x ∈ Ta[Ωε],

which we can analyse by virtue of the results of Section 10.2.

10.3.1 Notation

In this Section we retain the notation introduced in Subsections 1.8.1, 6.7.1, 10.2.1. However, we need
to introduce also some other notation.

Let (ε, δ) ∈ (]−ε1, ε1[ \ {0}) × ]0,+∞[. If v is a function of cl Ta(ε, δ) to C, then we denote by
E(ε,δ)[v] the function of Rn to C, defined by

E(ε,δ)[v](x) ≡

{
v(x) ∀x ∈ cl Ta(ε, δ),
0 ∀x ∈ Rn \ cl Ta(ε, δ).

10.3.2 Preliminaries

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56), (1.57), (10.10), (10.11),
(10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for
all t ∈ ∂Ω. For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic linear Robin problem
for the Helmholtz equation.
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∆u(x) + k2

δ2 u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δaj) = u(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
δ ∂
∂νΩ(ε,δ)

u(x) + f( 1
εδ (x− δw))u(x) = g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(10.54)

By virtue of Theorem 10.5, we can give the following definition.

Definition 10.27. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by u(ε,δ) the
unique solution in Cm,α(cl Ta(ε, δ),C) of boundary value problem (10.54).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 10.28. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each ε ∈ ]0, ε1[, we denote by u[ε] the unique solution in
Cm,α(cl Ta[Ωε],C) of the following periodic linear Robin problem for the Helmholtz equation.

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) + f( 1

ε (x− w))u(x) = g( 1
ε (x− w)) ∀x ∈ ∂Ωε.

(10.55)

Remark 10.29. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, we note that the solution of problem (10.54) can be expressed by means
of the solution of the auxiliary rescaled problem (10.55), which does not depend on δ. This is due to
the presence of the factor δ in front of ∂

∂νΩ(ε,δ)
u(x) in the third equation of problem (10.54).

As a first step, we study the behaviour of u[ε] as ε tends to 0.

Proposition 10.30. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let ε3 be as in Proposition 10.17. Then there exist ε̃ ∈ ]0, ε3[ and a real analytic map
N of ]−ε̃, ε̃[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E(ε,1)[u[ε]] = 0 in L∞(Rn,C).

Proof. Let ε3, Θn be as in Proposition 10.17. Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[,
we have

u[ε] ◦ (w+ ε id∂Ω)(t) = ε

∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem C.4 and the proof
of Theorem 10.22) that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω,C). By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,



10.3 An homogenization problem for the Helmholtz equation with linear Robin boundary conditions
in a periodically perforated domain 363

and
‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω) ∀ε ∈ ]0, ε̃[.

Accordingly,
lim
ε→0+

Re
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and
lim
ε→0+

Im
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and so the conclusion follows.

Proposition 10.31. Let n be even. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let ε3, ε′2 be as in Proposition 10.18. Then there exist ε̃ ∈ ]0, ε3[ and two real analytic
maps N#

1 , N#
2 of ]−ε̃, ε̃[× ]−ε′2, ε′2[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E(ε,1)[u[ε]] = 0 in L∞(Rn,C).

Proof. Let ε3, ε′2, Θ#
n be as in Proposition 10.18. If ε ∈ ]0, ε3[, we have

u[ε] ◦ (w + ε id∂Ω)(t) =ε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

We set

N#
1 [ε, ε′](t) ≡

∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and

N#
2 [ε, ε′](t) ≡kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem
C.4 and the proof of Theorem 10.23) that N#

1 , N#
2 are real analytic maps of ]−ε̃, ε̃[ × ]−ε′2, ε′2[ to

Cm,α(∂Ω,C). Clearly,

u[ε] ◦ (w + ε id∂Ω)(t) = εN#
1 [ε, ε log ε](t) + εn−1(log ε)N#

2 [ε, ε log ε](t) ∀t ∈ ∂Ω, ∀ε ∈ ]0, ε̃[.

By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

and
‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[.
Accordingly,

lim
ε→0+

Re
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and
lim
ε→0+

Im
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and so the conclusion follows.
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10.3.3 Asymptotic behaviour of u(ε,δ)

In the following Theorems we deduce by Propositions 10.30, 10.31 the convergence of u(ε,δ) as (ε, δ)
tends to (0, 0). Namely, we prove the following.

Theorem 10.32. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let ε̃, N be as in Proposition 10.30. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ε‖Re
(
N [ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ε‖Im
(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Theorem 10.33. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let ε̃, N#

1 , N#
2 be as in Proposition 10.31. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ‖Re
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ‖Im
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 10.34. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε6, J be as in Theorem 10.25. Let r > 0 and ȳ ∈ Rn.
Then ∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn

εn−1

k2
J [ε], (10.56)

for all ε ∈ ]0, ε6[, l ∈ N \ {0}.
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Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
εn−1

k2
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn
εn−1

k2
J [ε],

and the conclusion follows.

Theorem 10.35. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε6, J

#
1 , J#

2 be as in Theorem 10.26. Let r > 0 and
ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn

{εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε]
}
, (10.57)

for all ε ∈ ]0, ε6[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln

{εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε]
}
.

As a consequence,∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn
{εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε]
}
,

and the conclusion follows.
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We give the following.

Definition 10.36. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

F(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
A∩Ta(ε,δ)

|u(ε,δ)(x)|2 dx.

Remark 10.37. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt,

and ∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δn
∫

Pa[Ωε]

|u[ε](t)|2 dt.

Accordingly,∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn−2
(∫

Pa[Ωε]

|∇u[ε](t)|2 dt− k2

∫
Pa[Ωε]

|u[ε](t)|2 dt
)
.

Then we give the following definition, where we consider F(ε, δ), with ε equal to a certain function
of δ.

Definition 10.38. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 10.22, if n is odd, or as in Theorem 10.23, if n is even. Let δ1 > 0 be such
that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

F [δ] ≡ F(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Propositions we compute the limit of F [δ] as δ tends to 0.

Proposition 10.39. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let ε5 be as in Theorem 10.22. Let δ1 > 0 be as in Definition 10.38. Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 10.13.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 10.37 and Theorem 10.22, we have

G(δ) = δn−2(ε[δ])nG[ε[δ]]

= δn−2δ2G[δ
2
n ],
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where G is as in Theorem 10.22. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).

As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G[0].

Finally, by equality (10.44), we easily conclude.

Proposition 10.40. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1,
k, f , g be as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0.
Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω. Let ε5 be as in Theorem 10.23. Let δ1 > 0 be as in Definition 10.38.
Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 10.13.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 10.37 and Theorem 10.23, we have

G(δ) =δn−2(ε[δ])nG#
1 [ε[δ], ε[δ] log ε[δ]]

+ δn−2(ε[δ])2n−2(log ε[δ])G#
2 [ε[δ], ε[δ] log ε[δ]]

+ δn−2(ε[δ])3n−3(log ε[δ])2G#
3 [ε[δ], ε[δ] log ε[δ]]

=δn−2δ2G#
1 [δ

2
n , δ

2
n log(δ

2
n )]

+ δn−2δ4− 4
n (log(δ

2
n ))G#

2 [δ
2
n , δ

2
n log(δ

2
n )]

+ δn−2δ6− 6
n (log(δ

2
n ))2G#

3 [δ
2
n , δ

2
n log(δ

2
n )],

where G#
1 , G#

2 , and G#
3 are as in Theorem 10.23. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).

As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G#
1 [0, 0].

Finally, by equality (10.49), we easily conclude.

In the following Propositions we represent the function F [·] by means of real analytic functions.

Proposition 10.41. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε5, G be as in Theorem 10.22. Let δ1 > 0 be as in
Definition 10.38. Then

F [(1/l)] = G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).
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Proof. By arguing as in the proof of Proposition 10.39, one can easily see that

F [(1/l)] = ln(1/l)n−2(1/l)2G[(1/l)
2
n ]

= G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).

Proposition 10.42. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε5, G

#
1 , G

#
2 , and G

#
3 be as in Theorem

10.23. Let δ1 > 0 be as in Definition 10.38. Then

F [(1/l)] =G#
1 [(1/l)

2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)2− 4
n log((1/l)

2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)4− 6
n

[
log((1/l)

2
n )
]2
G#

3 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )],

for all l ∈ N such that l > (1/δ1).

Proof. By arguing as in the proof of Proposition 10.39, one can easily see that

F [(1/l)] = ln(1/l)n−2(1/l)2
{
G#

1 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)2− 4
n log((1/l)

2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)4− 6
n

[
log((1/l)

2
n )
]2
G#

3 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]
}

= G#
1 [(1/l)

2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)2− 4
n log((1/l)

2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)4− 6
n

[
log((1/l)

2
n )
]2
G#

3 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )],

for all l ∈ N such that l > (1/δ1).

10.4 A variant of an homogenization problem for the Helm-
holtz equation with linear Robin boundary conditions in
a periodically perforated domain

In this section we consider a different homogenization problem for the Helmhlotz equation with linear
Robin boundary conditions in a periodically perforated domain. As above, most of the results are
obtained under the assumption that Im(k) 6= 0 and Re(k) = 0.

10.4.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 6.7.1, 10.2.1, 10.3.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56), (1.57), (10.10), (10.11),
(10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for
all t ∈ ∂Ω. For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we consider the following periodic linear Robin problem
for the Helmholtz equation.


∆u(x) + k2

δ2 u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δaj) = u(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) + f( 1
εδ (x− δw))u(x) = g( 1

εδ (x− δw)) ∀x ∈ ∂Ω(ε, δ).
(10.58)

In contrast to problem (10.54), we note that in the third equation of problem (10.58) there is not
the factor δ in front of ∂

∂νΩ(ε,δ)
u(x).

By virtue of Theorem 10.5, we can give the following definition.
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Definition 10.43. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by u(ε,δ) the
unique solution in Cm,α(cl Ta(ε, δ),C) of boundary value problem (10.58).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). In order to do so
we introduce the following.

Definition 10.44. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each (ε, δ) ∈ ]0, ε1[ × ]0,+∞[, we denote by u[ε, δ] the
unique solution in Cm,α(cl Ta[Ωε],C) of the following auxiliary periodic linear Robin problem for the
Helmholtz equation.

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) + δf( 1

ε (x− w))u(x) = δg( 1
ε (x− w)) ∀x ∈ ∂Ωε.

(10.59)

Remark 10.45. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we have

u(ε,δ)(x) = u[ε, δ](
x

δ
) ∀x ∈ cl Ta(ε, δ).

By the previous remark, in contrast to the solution of problem (10.54), we note that the solution of
problem (10.58) can be expressed by means of the solution of the auxiliary rescaled problem (10.59),
which does depend on δ.

As a first step, we study the behaviour of u[ε, δ] as (ε, δ) tends to (0, 0).
We have the following Lemmas.

Lemma 10.46. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let (ε, δ) ∈ ]0, ε1[ × ]0,+∞[. Then the function µ ∈
Cm−1,α(∂Ωε,C) satisfies the following equation

δg(
1
ε

(x− w)) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy

+ δf(
1
ε

(x− w))
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε,
(10.60)

if and only if the function θ ∈ Cm−1,α(∂Ω,C), defined by

θ(t) ≡ 1
δ
µ(w + εt) ∀t ∈ ∂Ω, (10.61)

satisfies the following equation

g(t) =
1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

+ f(t)

[
δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + δεn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs

+ δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs

]
∀t ∈ ∂Ω.

(10.62)

Proof. It is a straightforward verification based on the rule of change of variables in integrals, on well
known properties of composition of functions in Schauder spaces (cf. e.g., Lanza [67, Section 3,4]) and
on equalities (6.24), (6.25).
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Lemma 10.47. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (10.12), respectively. Then
there exists a unique function θ ∈ Cm−1,α(∂Ω,C) that solves the following equation

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (10.63)

We denote the unique solution of equation (10.63) by θ̃. Moreover,∫
∂Ω

θ̃(s) dσs =
∫
∂Ω

g(s) dσs. (10.64)

Proof. It is Lemma 10.8.

Since we want to represent the function u[ε, δ] by means of a periodic simple layer potential, we need
to study some integral equations. We introduce this integral equation in the following Propositions.

Proposition 10.48. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.47. Let Λ be the map
of ]−ε1, ε1[× R× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) defined by

Λ[ε, δ, θ](t)

≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

+ f(t)

[
δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs

]
− g(t) ∀t ∈ ∂Ω,

(10.65)

for all (ε, δ, θ) ∈ ]−ε1, ε1[× R× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) If (ε, δ) ∈ ]0, ε1[× ]0,+∞[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[ε, δ, θ] = 0, (10.66)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ δθ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.67)

satisfies the equation

δΓ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy

+ δφ(x)
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε,
(10.68)

with Γ ∈ Cm−1,α(∂Ωε,C), and φ ∈ Cm−1,α(∂Ωε,C), defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.69)

and
φ(x) ≡ f(

1
ε

(x− w)) ∀x ∈ ∂Ωε. (10.70)

In particular, equation (10.66) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each (ε, δ) ∈
]0, ε1[× ]0,+∞[.

(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ[0, 0, θ] = 0, (10.71)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (10.72)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (10.71) is θ̃.
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Proof. Consider (i). The equivalence of equation (10.66) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (10.68) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by Lemma 10.46 and the definition of
Qkn for n odd (cf. (6.23) and Definition E.2.) The existence and uniqueness of a solution of equation
(10.68) follows by Proposition 10.4 (ii). Then the existence and uniqueness of a solution of equation
(10.66) follows by the equivalence of (10.66) and (10.68). Consider (ii). The equivalence of (10.71)
and (10.72) is obvious. The second part of statement (ii) is an immediate consequence of Lemma
10.47.

Proposition 10.49. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.47. Let ε′1 > 0 be such
that

ε log ε ∈ ]−ε′1, ε′1[ ∀ε ∈ ]0, ε1[. (10.73)

Let Λ# be the map of ]−ε1, ε1[× ]−ε′1, ε′1[× R× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) defined by

Λ#[ε, ε′, δ, θ](t)

≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs + f(t)
[
δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ δεn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
]
− g(t) ∀t ∈ ∂Ω,

(10.74)

for all (ε, ε′, δ, θ) ∈ ]−ε1, ε1[× ]−ε′1, ε′1[× R× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) If (ε, δ) ∈ ]0, ε1[× ]0,+∞[, then the function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[ε, ε log ε, δ, θ] = 0, (10.75)

if and only if the function µ ∈ Cm−1,α(∂Ωε,C), defined by

µ(x) ≡ δθ(1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.76)

satisfies the equation

δΓ(x) =
1
2
µ(x) +

∫
∂Ωε

∂

∂νΩε(x)
(Sa,kn (x− y))µ(y) dσy

+ δφ(x)
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy ∀x ∈ ∂Ωε,
(10.77)

with Γ ∈ Cm−1,α(∂Ωε,C), and φ ∈ Cm−1,α(∂Ωε,C), defined by

Γ(x) ≡ g(
1
ε

(x− w)) ∀x ∈ ∂Ωε, (10.78)

and
φ(x) ≡ f(

1
ε

(x− w)) ∀x ∈ ∂Ωε. (10.79)

In particular, equation (10.75) has exactly one solution θ ∈ Cm−1,α(∂Ω,C), for each (ε, δ) ∈
]0, ε1[× ]0,+∞[.

(ii) The function θ ∈ Cm−1,α(∂Ω,C) satisfies equation

Λ#[0, 0, 0, θ] = 0, (10.80)

if and only if

g(t) =
1
2
θ(t) +

∫
∂Ω

∂

∂νΩ(t)
(Sn(t− s))θ(s) dσs ∀t ∈ ∂Ω. (10.81)

In particular, the unique function θ ∈ Cm−1,α(∂Ω,C) that solves equation (10.80) is θ̃.
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Proof. Consider (i). The equivalence of equation (10.75) in the unknown θ ∈ Cm−1,α(∂Ω,C) and
equation (10.77) in the unknown µ ∈ Cm−1,α(∂Ωε,C) follows by Lemma 10.46 and the definition of
Qkn for n even (cf. (6.23) and Definition E.2.) The existence and uniqueness of a solution of equation
(10.77) follows by Proposition 10.4 (ii). Then the existence and uniqueness of a solution of equation
(10.75) follows by the equivalence of (10.75) and (10.77). Consider (ii). The equivalence of (10.80)
and (10.81) is obvious. The second part of statement (ii) is an immediate consequence of Lemma
10.47.

By Propositions 10.9, 10.49, it makes sense to introduce the following.

Definition 10.50. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we denote by θ̂n[ε, δ] the
unique function in Cm−1,α(∂Ω,C) that solves equation (10.66), if n is odd, or equation (10.75), if n is
even. Analogously, we denote by θ̂n[0, 0] the unique function in Cm−1,α(∂Ω,C) that solves equation
(10.71), if n is odd, or equation (10.80), if n is even.

In the following Remark, we show the relation between the solutions of boundary value problem
(10.59) and the solutions of equations (10.66), (10.75).

Remark 10.51. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω.

Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have

u[ε, δ](x) = δεn−1

∫
∂Ω

Sa,kn (x− w − εs)θ̂n[ε, δ](s) dσs ∀x ∈ cl Ta[Ωε].

While the relation between equations (10.66), (10.75) and boundary value problem (10.59) is now
clear, we want to see if (10.71), (10.80) are related to some (limiting) boundary value problem. We
give the following.

Definition 10.52. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, g be as in (1.56), (10.12),
respectively. We denote by ũ the unique solution in Cm,α(Rn \ Ω,C) of the following boundary value
problem 

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = g(x) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(10.82)

Problem (10.82) will be called the limiting boundary value problem.

Remark 10.53. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. If n ≥ 3, then we have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̂n[0, 0](y) dσy ∀x ∈ Rn \ Ω.

If n = 2, in general the (classic) simple layer potential for the Laplace equation with moment θ̂2[0, 0]
is not harmonic at infinity, and it does not satisfy the third condition of boundary value problem
(10.82). Moreover, if n = 2, boundary value problem (10.82) does not have in general a solution
(unless

∫
∂Ω
g dσ = 0.) However, the function ṽ of R2 \ Ω to C, defined by

ṽ(x) ≡
∫
∂Ω

S2(x− y)θ̂2[0, 0](y) dσy ∀x ∈ R2 \ Ω,

is a solution of the following boundary value problem{
∆ṽ(x) = 0 ∀x ∈ R2 \ cl Ω,
∂
∂νΩ

ṽ(x) = g(x) ∀x ∈ ∂Ω. (10.83)

We now prove the following Propositions.
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Proposition 10.54. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g
be as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.47. Let Λ
be as in Proposition 10.48. Then there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of
]−ε2, ε2[×R×Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Moreover, if we set b0 ≡ (0, 0, θ̃), then the differential
∂θΛ[b0] of Λ with respect to the variable θ at b0 is delivered by the following formula

∂θΛ[b0](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (10.84)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proof. By Proposition 6.21 and by continuity of the pointwise product in Schauder space, we easily
deduce that there exists ε2 ∈ ]0, ε1] such that Λ is a real analytic operator of ]−ε2, ε2[ × R ×
Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). By standard calculus in Banach space, we immediately deduce
that (10.84) holds. Now we need to prove that ∂θΛ[b0] is a linear homeomorphism. By the Open
Mapping Theorem, it suffices to prove that it is a bijection. Let ψ ∈ Cm−1,α(∂Ω,C). By known
results of classical potential theory (cf. Folland [52, Chapter 3]), there exists a unique function
τ ∈ Cm−1,α(∂Ω,C), such that

1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs = ψ(t) ∀t ∈ ∂Ω.

Hence ∂θΛ[b0] is bijective, and, accordingly, a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proposition 10.55. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.47. Let ε′1 > 0 be as
in (10.73). Let Λ# be as in Proposition 10.49. Then there exists ε2 ∈ ]0, ε1] such that Λ# is a real
analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× R× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Moreover, if we set
b0 ≡ (0, 0, 0, θ̃), then the differential ∂θΛ#[b0] of Λ# with respect to the variable θ at b0 is delivered by
the following formula

∂θΛ#[b0](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω, (10.85)

for all τ ∈ Cm−1,α(∂Ω,C), and is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

Proof. By Proposition 6.21 and by continuity of the pointwise product in Schauder space, we easily
deduce that there exists ε2 ∈ ]0, ε1] such that Λ# is a real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[×
R×Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). By standard calculus in Banach space, we immediately deduce
that (10.85) holds. Finally, by the proof of Proposition 10.54 and formula (10.85), we have that
∂θΛ#[b0] is a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.

By the previous Propositions we can now prove the following results.

Proposition 10.56. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε2 be as in Proposition 10.54. Then there exist
ε3 ∈ ]0, ε2], δ1 ∈ ]0,+∞[ and a real analytic operator Θn of ]−ε3, ε3[ × ]−δ1, δ1[ to Cm−1,α(∂Ω,C),
such that

Θn[ε, δ] = θ̂n[ε, δ], (10.86)

for all (ε, δ) ∈ (]0, ε3[× ]0, δ1[) ∪ {(0, 0)}.

Proof. It is an immediate consequence of Proposition 10.54 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

Proposition 10.57. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε′1 > 0 be as in (10.27). Let ε2 be as in
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Proposition 10.55. Then there exist ε3 ∈ ]0, ε2], ε′2 ∈ ]0, ε′1], δ1 ∈ ]0,+∞[ and a real analytic operator
Θ#
n of ]−ε3, ε3[× ]−ε′2, ε′2[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C), such that

ε log ε ∈ ]−ε′2, ε′2[ ∀ε ∈ ]0, ε3[,

Θ#
n [ε, ε log ε, δ] = θ̂n[ε, δ] ∀(ε, δ) ∈ ]0, ε3[× ]0, δ1[, (10.87)

Θ#
n [0, 0, 0] = θ̂n[0, 0]. (10.88)

Proof. It is an immediate consequence of Proposition 10.55 and of the Implicit Function Theorem for
real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling
[46, Theorem 15.3].)

By Propositions 10.56, 10.57, and Remark 10.51, we can deduce the following results.

Theorem 10.58. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε3, δ1 be as in Proposition 10.56. Let V be a bounded
open subset of Rn such that clV ∩Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3], and a real analytic operator
U of ]−ε4, ε4[× ]−δ1, δ1[ to the space C0(clV,C), such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε, δ](x) = δεn−1U [ε, δ](x) ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[. Moreover,

U [0, 0](x) = Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV.

Proof. Let Θn[·, ·] be as in Proposition 10.56. Choosing ε4 small enough, we can clearly assume that
(j) holds. Consider now (jj). Let (ε, δ) ∈ ]0, ε4[× ]0, δ1[. By Remark 10.51 and Proposition 10.56, we
have

u[ε, δ](x) = δεn−1

∫
∂Ω

Sa,kn (x− w − εs)Θn[ε, δ](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U [ε](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θn[ε, δ](s) dσs ∀x ∈ clV,

for all (ε, δ) ∈ ]−ε4, ε4[× ]−δ1, δ1[. By Proposition 6.22, U is a real analytic map of ]−ε4, ε4[× ]−δ1, δ1[
to C0(clV,C). Furthermore, by Lemma 10.47, we have

U [0, 0](x) = Sa,kn (x− w)
∫
∂Ω

Θn[0, 0](s) dσs

= Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV,

since Θn[0, 0] = θ̃. Hence the proof is now complete.

Theorem 10.59. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let ε3, ε′2, δ1 be as in Proposition 10.57. Let V
be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3] and a real
analytic operator U# of ]−ε4, ε4[× ]−ε′2, ε′2[× ]−δ1, δ1[ to the space C0(clV,C), such that the following
conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε, δ](x) = δεn−1U#[ε, ε log ε, δ](x) ∀x ∈ clV,

for all (ε, δ1) ∈ ]0, ε4[× ]0, δ1[. Moreover,

U#[0, 0, 0](x) = Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV.
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Proof. Let Θ#
n [·, ·, ·] be as in Proposition 10.57. Choosing ε4 small enough, we can clearly assume that

(j) holds. Consider now (jj). Let (ε, δ) ∈ ]0, ε4[× ]0, δ1[. By Remark 10.51 and Proposition 10.57, we
have

u[ε, δ](x) = δεn−1

∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε log ε, δ](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U#[ε, ε′, δ](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε′, δ](s) dσs ∀x ∈ clV,

for all (ε, ε′, δ) ∈ ]−ε4, ε4[ × ]−ε′2, ε′2[ × ]−δ1, δ1[. By Proposition 6.22, U# is a real analytic map of
]−ε4, ε4[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C0(clV,C). Furthermore, by Lemma 10.47, we have

U#[0, 0, 0](x) = Sa,kn (x− w)
∫
∂Ω

Θ#
n [0, 0, 0](s) dσs

= Sa,kn (x− w)
∫
∂Ω

g dσ ∀x ∈ clV,

since Θ#
n [0, 0, 0] = θ̃. Accordingly, the Theorem is now completely proved.

We have also the following Theorems.

Theorem 10.60. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.47. Let ε3, δ1 be as in
Proposition 10.56. Then there exist ε5 ∈ ]0, ε3], and a real analytic operator G of ]−ε5, ε5[× ]−δ1, δ1[
to C, such that ∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx = δ2εnG[ε, δ], (10.89)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

G[0, 0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (10.90)

where ũ is as in Definition 10.52.

Proof. Let Θn[·, ·] be as in Proposition 10.56. Let id∂Ω denote the identity map in ∂Ω. Let (ε, δ) ∈
]0, ε3[× ]0, δ1[. Clearly, by the periodicity of u[ε, δ], we have∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

=− εn−1

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε, δ] ◦ (w + ε id∂Ω)(t) dσt.

By equality (6.24) and since Qkn = 0 for n odd, we have

u[ε, δ] ◦ (w+ε id∂Ω)(t) = δεn−1

∫
∂Ω

Sa,kn (ε(t− s))Θn[ε, δ](s) dσs

= δε

∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω.

By Theorem E.6 (i), one can easily show that the map which takes (ε, δ) to the function of the variable
t ∈ ∂Ω defined by ∫

∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,

is a real analytic operator of ]−ε3, ε3[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C). By Theorem C.4, we immediately
deduce that there exists ε5 ∈ ]0, ε3] such that the map of ]−ε5, ε5[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C), which
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takes (ε, δ) to the function
∫
∂Ω
Ra,kn (ε(t − s))Θn[ε, δ](s) dσs of the variable t ∈ ∂Ω, is real analytic.

Analogously, we have(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = δ

1
2

Θn[ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Thus, if we set

G̃[ε, δ](t) ≡1
2

Θn[ε, δ](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω, ∀(ε, δ) ∈ ]−ε5, ε5[× ]−δ1, δ1[

then, by arguing as in Proposition 10.54, one can easily show that G̃ is a real analytic map of
]−ε5, ε5[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C).

Hence, if we set

G[ε, δ] ≡−
∫
∂Ω

G̃[ε, δ](t)
∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs dσt

− εn−2

∫
∂Ω

G̃[ε, δ](t)
∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs dσt,

for all (ε, δ) ∈ ]−ε5, ε5[× ]−δ1, δ1[, then by standard properties of functions in Schauder spaces, we
have that G is a real analytic map of ]−ε5, ε5[× ]−δ1, δ1[ to C such that equality (10.89) holds.

Finally, if (ε, δ) = (0, 0), by Folland [52, p. 118] and since G̃[0, 0] = g, we have

G[0, 0] = −
∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt

=
∫

Rn\cl Ω

|∇ũ(x)|2 dx.

Theorem 10.61. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.8. Let ε3, ε′2, δ1 be as
in Proposition 10.57. Then there exist ε5 ∈ ]0, ε3], and three real analytic operators G#

1 , G#
2 , G#

3 of
]−ε5, ε5[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C, such that∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

= δ2εnG#
1 [ε, ε log ε, δ] + δ2ε2n−2(log ε)G#

2 [ε, ε log ε, δ] + δ2ε3n−3(log ε)2G#
3 [ε, ε log ε, δ],

(10.91)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

G#
1 [0, 0, 0] = −

∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)|
∫
∂Ω

g dσ|2, (10.92)

G#
2 [0, 0, 0] = −kn−2Jn(0)|

∫
∂Ω

g dσ|2, (10.93)

G#
3 [0, 0, 0] = 0 (10.94)

where Jn(0) is as in Proposition E.3 (i). In particular, if n > 2, then

G#
1 [0, 0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx, (10.95)

where ũ is as in Definition 10.52.
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Proof. Let Θ#
n [·, ·, ·] be as in Proposition 10.57. Let id∂Ω denote the identity map in ∂Ω. Let

(ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly, by the periodicity of u[ε, δ], we have∫
Pa[Ωε]

|∇u[ε, δ](x)|2 dx−k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

= −εn−1

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε, δ] ◦ (w + ε id∂Ω)(t) dσt.

By equality (6.24), we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) =δεn−1

∫
∂Ω

Sa,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

=δε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω.

Thus it is natural to set

F1[ε, ε′, δ](t) ≡
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

F2[ε, ε′, δ](t) ≡ kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

F3[ε, ε′, δ](t) ≡
∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[× ]−δ1, δ1[.
Then clearly

u[ε, δ] ◦ (w + ε id∂Ω)(t) = δεF1[ε, ε log ε, δ](t) + δεn−1(log ε)F2[ε, ε log ε, δ](t) + δεn−1F3[ε, ε log ε, δ](t)
∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. By Theorem E.6 (i) and Theorem C.4, we easily deduce that there exists
ε5 ∈ ]0, ε3] such that the maps F1, F2, and F3 of ]−ε5, ε5[× ]−ε′2, ε′2[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C) are
real analytic. Analogously, we have(∂u[ε, δ]

∂νΩε

)
◦ (w + ε id∂Ω)(t)

= δ
1
2

Θ#
n [ε, ε log ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Thus, if we set

G̃1[ε, ε′, δ](t) ≡ 1
2

Θ#
n [ε, ε′, δ](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

and
G̃2[ε, ε′, δ](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε5, ε5[ × ]−ε′2, ε′2[ × ]−δ1, δ1[, then, by arguing as in Proposition 10.55, one can
easily show that G̃1 and G̃2 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C).
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Clearly,(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = δG̃1[ε, ε log ε, δ](t) + δεn−1(log ε)G̃2[ε, ε log ε, δ](t)

∀t ∈ ∂Ω, ∀(ε, δ) ∈ ]0, ε5[× ]0, δ1[.

If (ε, δ) ∈ ]0, ε5[× ]0, δ1[, then we have∫
Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

=δ2

{
εn
(
−
∫
∂Ω

G̃1[ε, ε log ε, δ]F1[ε, ε log ε, δ] dσ − εn−2

∫
∂Ω

G̃1[ε, ε log ε, δ]F3[ε, ε log ε, δ] dσ
)

+ ε2n−2 log ε
(
−ε
∫
∂Ω

G̃2[ε, ε log ε, δ]F1[ε, ε log ε, δ] dσ −
∫
∂Ω

G̃1[ε, ε log ε, δ]F2[ε, ε log ε, δ] dσ

− εn−1

∫
∂Ω

G̃2[ε, ε log ε, δ]F3[ε, ε log ε, δ] dσ
)

+ ε3n−3(log ε)2
(
−
∫
∂Ω

G̃2[ε, ε log ε, δ]F2[ε, ε log ε, δ] dσ
)}

.

If we set

G#
1 [ε, ε′, δ] ≡−

∫
∂Ω

G̃1[ε, ε′, δ](t)F1[ε, ε′, δ](t) dσt − εn−2

∫
∂Ω

G̃1[ε, ε′, δ](t)F3[ε, ε′, δ](t) dσt,

G#
2 [ε, ε′, δ] ≡− ε

∫
∂Ω

G̃2[ε, ε′, δ](t)F1[ε, ε′, δ](t) dσt −
∫
∂Ω

G̃1[ε, ε′, δ](t)F2[ε, ε′, δ](t) dσt

− εn−1

∫
∂Ω

G̃2[ε, ε′, δ](t)F3[ε, ε′, δ](t) dσt,

G#
3 [ε, ε′, δ] ≡−

∫
∂Ω

G̃2[ε, ε′, δ](t)F2[ε, ε′, δ](t) dσt,

for all (ε, ε′, δ) ∈ ]−ε5, ε5[ × ]−ε′2, ε′2[ × ]−δ1, δ1[, then standard properties of functions in Schauder
spaces and a simple computation show that G#

1 , G#
2 , and G#

3 are real analytic maps of ]−ε5, ε5[×
]−ε′2, ε′2[× ]−δ1, δ1[ in C such that equality (10.91) holds for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[.

Next, we observe that

G#
1 [0, 0, 0] = −

∫
∂Ω

g(t)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)|
∫
∂Ω

g dσ|2,

G#
2 [0, 0, 0] = −kn−2

Qkn(0)
∫
∂Ω

g dσ

∫
∂Ω

g dσ,

G#
3 [0, 0, 0] = −kn−2kn−2Qkn(0)

∫
∂Ω

g dσ

∫
∂Ω

g dσ

∫
∂Ω

νΩ(t) ·DQkn(0) dσt = 0,

and accordingly equalities (10.92), (10.93), and (10.94) hold. In particular, if n ≥ 4, by Folland [52,
p. 118], we have

G#
1 [0, 0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx.

Theorem 10.62. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.47. Let ε3, δ1 be as in
Proposition 10.56. Then there exist ε6 ∈ ]0, ε3], and a real analytic operator J of ]−ε6, ε6[× ]−δ1, δ1[
to C, such that ∫

Pa[Ωε]

u[ε, δ](x) dx =
δεn−1

k2
J [ε, δ], (10.96)
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for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. Moreover,

J [0, 0] =
∫
∂Ω

g(x) dσx. (10.97)

Proof. Let Θn[·, ·] be as in Proposition 10.56. Let id∂Ω denote the identity map in ∂Ω. Let (ε, δ) ∈
]0, ε3[× ]0, δ1[. Clearly, by the Divergence Theorem and the periodicity of u[ε, δ], we have∫

Pa[Ωε]

u[ε, δ](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε, δ](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε, δ](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε, δ](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε, δ](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25) and since Qkn = 0 for n odd, we have(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = δ

1
2

Θn[ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω.

We set

J̃ [ε, δ](t) ≡1
2

Θn[ε, δ](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that
there exists ε6 ∈ ]0, ε3] such that J̃ is a real analytic map of ]−ε6, ε6[ × ]−δ1, δ1[ to Cm−1,α(∂Ω,C).
Hence, if we set

J [ε, δ] ≡
∫
∂Ω

J̃ [ε, δ](t) dσt,

for all (ε, δ) ∈ ]−ε6, ε6[× ]−δ1, δ1[, then, by standard properties of functions in Schauder spaces, we
have that J is a real analytic map of ]−ε6, ε6[× ]−δ1, δ1[ to C, such that equality (10.96) holds.

Finally, if (ε, δ) = (0, 0), we have

J [0, 0] =
∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫
∂Ω

g(x) dσx,

and accordingly (10.97) holds.

Theorem 10.63. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let θ̃ be as in Lemma 10.47. Let ε3, ε′2, δ1
be as in Proposition 10.57. Then there exist ε6 ∈ ]0, ε3], and two real analytic operators J#

1 , J#
2 of

]−ε6, ε6[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C, such that∫
Pa[Ωε]

u[ε, δ](x) dx =
δεn−1

k2
J#

1 [ε, ε log ε, δ] +
δε2n−2(log ε)

k2
J#

2 [ε, ε log ε, δ], (10.98)
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for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. Moreover,

J#
1 [0, 0, 0] =

∫
∂Ω

g(x) dσx. (10.99)

Proof. Let Θ#
n [·, ·, ·] be as in Proposition 10.57. Let id∂Ω denote the identity map in ∂Ω. Let

(ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly, by the Divergence Theorem and the periodicity of u[ε, δ], we have∫
Pa[Ωε]

u[ε, δ](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε, δ](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε, δ](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε, δ](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε, δ](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t)

= δ
1
2

Θ#
n [ε, ε log ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω.

We set

J̃1[ε, ε′, δ](t) ≡ 1
2

Θ#
n [ε, ε′, δ](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

and

J̃2[ε, ε′, δ](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[× ]−δ1, δ1[. By Theorem E.6 (ii) and Theorem C.4, one can easily
show that there exists ε6 ∈ ]0, ε3] such that J̃#

1 , J̃#
2 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[×

]−δ1, δ1[ to Cm−1,α(∂Ω,C). Hence, if we set

J#
1 [ε, ε′, δ] ≡

∫
∂Ω

J̃#
1 [ε, ε′, δ](t) dσt,

and

J#
2 [ε, ε′, δ] ≡

∫
∂Ω

J̃#
2 [ε, ε′, δ](t) dσt,

for all (ε, ε′, δ) ∈ ]−ε6, ε6[× ]−ε′2, ε′2[× ]−δ1, δ1[, then, by standard properties of functions in Schauder
spaces, we have that J#

1 , J#
2 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C, such that

equality (10.98) holds.
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Finally, if ε = ε′ = δ = 0, we have

J#
1 [0, 0, 0] =

∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

=
∫
∂Ω

g(x) dσx,

and accordingly (10.99) holds.

We have the following.

Proposition 10.64. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let ε3, δ1 be as in Proposition 10.56. Then there exist ε̃ ∈ ]0, ε3[ and a real analytic
map N of ]−ε̃, ε̃[× ]−δ1, δ1[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Re

(
N [ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Im

(
N [ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] = 0 in L∞(Rn,C).

Proof. Let ε3, δ1, Θn be as in Proposition 10.56. Let id∂Ω denote the identity map in ∂Ω. If
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) = δε

∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs

∀t ∈ ∂Ω.

We set

N [ε, δ](t) ≡
∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs + εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem C.4
and the proof of Theorem 10.60) that N is a real analytic map of ]−ε̃, ε̃[× ]−δ1, δ1[ to Cm,α(∂Ω,C).
By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Re

(
N [ε, δ]

)
‖C0(∂Ω) ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ1[,

and
‖Im

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Im

(
N [ε, δ]

)
‖C0(∂Ω) ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ1[.

Accordingly,
lim

(ε,δ)→(0+,0+)
Re
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and
lim

(ε,δ)→(0+,0+)
Im
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and so the conclusion follows.

Proposition 10.65. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g
be as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let
Re(f(t)) ≤ 0 for all t ∈ ∂Ω. Let ε3, ε′2, δ1 be as in Proposition 10.57. Then there exist ε̃ ∈ ]0, ε3[ and
two real analytic maps N#

1 , N#
2 of ]−ε̃, ε̃[× ]−ε′2, ε′2[× ]−δ1, δ1[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] = 0 in L∞(Rn,C).
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Proof. Let ε3, ε′2, δ1, Θ#
n be as in Proposition 10.57. If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) =δε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω.

We set

N#
1 [ε, ε′, δ](t) ≡

∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs

+ εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

and

N#
2 [ε, ε′, δ](t) ≡kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε3, ε3[ × ]−ε′2, ε′2[ × ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume
(cf. Theorem C.4 and the proof of Theorem 10.61) that N#

1 , N#
2 are real analytic maps of ]−ε̃, ε̃[×

]−ε′2, ε′2[× ]−δ1, δ1[ to Cm,α(∂Ω,C). Clearly,

u[ε, δ] ◦ (w + ε id∂Ω)(t) = δεN#
1 [ε, ε log ε, δ](t) + δεn−1(log ε)N#

2 [ε, ε log ε, δ](t) ∀t ∈ ∂Ω,
∀(ε, δ) ∈]0, ε̃[× ]0, δ1[.

By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.
Accordingly,

lim
(ε,δ)→(0+,0+)

Re
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and
lim

(ε,δ)→(0+,0+)
Im
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and so the conclusion follows.

10.4.2 Asymptotic behaviour of u(ε,δ)

In the following Theorems we deduce by Propositions 10.64, 10.65 the convergence of u(ε,δ) as (ε, δ)
tends to (0, 0). Namely, we prove the following.

Theorem 10.66. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let δ1 be as in Proposition 10.56. Let ε̃, N be as in Proposition 10.64. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δε‖Re

(
N [ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δε‖Im

(
N [ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).
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Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δε‖Re
(
N [ε, δ]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δε‖Im
(
N [ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.

Theorem 10.67. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let Re(f(t)) ≤ 0
for all t ∈ ∂Ω. Let δ1 be as in Proposition 10.57. Let ε̃, N#

1 , N#
2 be as in Proposition 10.65. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δ‖Re
(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δ‖Im
(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 10.68. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let δ1 be as in Proposition 10.56. Let ε6, J be as in
Theorem 10.62. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l

εn−1

k2
J
[
ε,
r

l

]
, (10.100)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ1).

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0} such that l > (r/δ1). Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.
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Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε, (r/l)]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε, (r/l)](t) dt

=
rn

ln
r

l

εn−1

k2
J
[
ε,
r

l

]
.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
rn+1

l

εn−1

k2
J
[
ε,
r

l

]
,

and the conclusion follows.

Theorem 10.69. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let δ1 be as in Proposition 10.57. Let ε6, J

#
1 , J#

2 be as
in Theorem 10.63. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l

{εn−1

k2
J#

1

[
ε, ε log ε,

r

l

]
+
ε2n−2(log ε)

k2
J#

2

[
ε, ε log ε,

r

l

]}
,

(10.101)
for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ1).

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0} such that l > (r/δ1). Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε, (r/l)]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε, (r/l)](t) dt

=
rn

ln
r

l

{εn−1

k2
J#

1

[
ε, ε log ε,

r

l

]
+
ε2n−2(log ε)

k2
J#

2

[
ε, ε log ε,

r

l

]}
.

As a consequence,∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
rn+1

l

{εn−1

k2
J#

1

[
ε, ε log ε,

r

l

]
+
ε2n−2(log ε)

k2
J#

2

[
ε, ε log ε,

r

l

]}
,

and the conclusion follows.

We give the following.

Definition 10.70. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. For each pair (ε, δ) ∈ ]0, ε1[× ]0,+∞[, we set

F(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
A∩Ta(ε,δ)

|u(ε,δ)(x)|2 dx.
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Remark 10.71. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in (1.56),
(1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω and
Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let (ε, δ) ∈ ]0, ε1[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε, δ](t)|2 dt,

and ∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δn
∫

Pa[Ωε]

|u[ε, δ](t)|2 dt.

Accordingly,

∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn−2
(∫

Pa[Ωε]

|∇u[ε, δ](t)|2 dt− k2

∫
Pa[Ωε]

|u[ε, δ](t)|2 dt
)
.

In the following Propositions we represent the function F(·, ·) by means of real analytic functions.

Proposition 10.72. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be as in
(1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all t ∈ ∂Ω
and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let δ1 be as in Proposition 10.56. Let ε5, G be as in
Theorem 10.22. Then

F
(
ε,

1
l

)
= εnG[ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N such that l > (1/δ1).

Proof. Let (ε, δ) ∈ ]0, ε5[× ]0, δ1[. By Remark 10.71 and Theorem 10.60, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δnεnG[ε, δ]

where G is as in Theorem 8.23. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N is such that l > (1/δ1),
then we have

F
(
ε,

1
l

)
= ln

1
ln
εnG[ε, (1/l)],

= εnG[ε, (1/l)],

and the conclusion easily follows.

Proposition 10.73. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, f , g be
as in (1.56), (1.57), (10.10), (10.11), (10.12), respectively. Let Im(k) 6= 0. Let Re(f(t)) ≤ 0 for all
t ∈ ∂Ω and Re(k) Im(k) Im(f(t)) ≥ 0 for all t ∈ ∂Ω. Let δ1 be as in Proposition 10.57. Let ε5, G

#
1 ,

G#
2 , and G#

3 be as in Theorem 10.23. Then

F
(
ε,

1
l

)
=εnG#

1 [ε, ε log ε, (1/l)]

+ ε2n−2(log ε)G#
2 [ε, ε log ε, (1/l)]

+ ε3n−3(log ε)2G#
3 [ε, ε log ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N such that l > (1/δ1).
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Proof. Let (ε, δ) ∈ ]0, ε5[× ]0, δ1[. By Remark 10.71 and Theorem 10.61, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn
{
εnG#

1 [ε, ε log ε, δ] + ε2n−2(log ε)G#
2 [ε, ε log ε, δ] + ε3n−3(log ε)2G#

3 [ε, ε log ε, δ]
}
,

where G#
1 , G#

2 , and G#
3 are as in Theorem 8.24. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N is such

that l > (1/δ1), then we have

F
(
ε,

1
l

)
=ln

1
ln

{
εnG#

1 [ε, ε log ε, (1/l)]

+ ε2n−2(log ε)G#
2 [ε, ε log ε, (1/l)]

+ ε3n−3(log ε)2G#
3 [ε, ε log ε, (1/l)]

}
,

=εnG#
1 [ε, ε log ε, (1/l)]

+ ε2n−2(log ε)G#
2 [ε, ε log ε, (1/l)]

+ ε3n−3(log ε)2G#
3 [ε, ε log ε, (1/l)],

and the conclusion easily follows.

10.5 Asymptotic behaviour of the solutions of a nonlinear Robin
problem for the Helmholtz equation in a periodically per-
forated domain

In this Section we study the asymptotic behaviour of the solutions of a nonlinear Robin problem for
the Helmholtz equation in a periodically perforated domain with small holes.

10.5.1 Notation and preliminaries
We retain the notation introduced in Subsections 1.8.1, 6.7.1, 10.2.1. However, we need to introduce
also some other notation. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be as in (1.56). If F ∈ C0(∂Ω× C,C),
then we denote by TF the (nonlinear nonautonomous) composition operator of C0(∂Ω,C) to itself
which maps v ∈ C0(∂Ω,C) to the function TF [v] of ∂Ω to C, defined by

TF [v](t) ≡ F (t, v(t)) ∀t ∈ ∂Ω.

Then we shall consider also the following assumptions.

k ∈ C, k2 6= |2πa−1(z)|2 ∀z ∈ Zn; (10.102)

F ∈ C0(∂Ω× C,C) and TF is a real analytic map of Cm−1,α(∂Ω,C) to itself. (10.103)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k be as in (1.56), (1.57), (10.102), respectively.
By Proposition 7.42, there exists ε∗1 ∈ ]0, ε1[ such that

k2 6∈
(

EigD[Ωε] ∪ EigN [Ωε] ∪ EigaD[Ta[Ωε]] ∪ EigaN [Ta[Ωε]]
)

∀ε ∈ ]0, ε∗1]. (10.104)

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57), (10.102), (10.103),
respectively. Let ε∗1 be as in (10.104). For each ε ∈ ]0, ε∗1[, we consider the following periodic nonlinear
Robin problem for the Helmholtz equation.

∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) + F

(
1
ε (x− w), u(x)

)
= 0 ∀x ∈ ∂Ωε.

(10.105)

We now convert our boundary value problem (10.105) into an integral equation.
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Proposition 10.74. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε ∈ ]0, ε∗1[. Then the map of the set of
functions µ ∈ Cm−1,α(∂Ωε,C) that solve the equation

1
2
µ(x) +

∫
∂Ωε

νΩε(x) ·DSa,kn (x− y)µ(y) dσy

+ F
(1
ε

(x− w),
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy
)

= 0 ∀x ∈ ∂Ωε, (10.106)

to the set of u ∈ Cm,α(cl Ta[Ωε],C) which solve problem (10.105), which takes µ to the function

v−a [∂Ωε, µ, k] (10.107)

is a bijection.

Proof. Assume that the function µ ∈ Cm−1,α(∂Ωε,C) solves equation (10.106). Then, by Theorem 6.11,
we immediately deduce that the function u ≡ v−a [∂Ωε, µ, k] is a periodic function in Cm,α(cl Ta[Ωε],C),
that satisfies the first condition of (10.105), and, by equation (10.106), also the third condition of
(10.105). Thus, u is a solution of (10.105). Conversely, let u ∈ Cm,α(cl Ta[Ωε],C) be a solution of
problem (10.105). By Theorem 8.6, there exists a unique function µ ∈ Cm−1,α(∂Ωε,C), such that

u = v−a [∂Ωε, µ, k] in cl Ta[Ωε].

Then, by Theorem 6.11, since u satisfies in particular the third condition in (10.105), we immediately
deduce that the function µ solves equation (10.106).

As we have seen, we can transform (10.105) into an integral equation defined on the ε-dependent
domain ∂Ωε. In order to get rid of such a dependence, we shall introduce the following Theorem.

Theorem 10.75. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε ∈ ]0, ε∗1[. Then the map u[ε, ·] of the
set of functions θ ∈ Cm−1,α(∂Ω,C) that solve the equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs + F
(
t, ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)

= 0 ∀t ∈ ∂Ω,

(10.108)

to the set of u ∈ Cm,α(cl Ta[Ωε],C) which solve problem (10.105), which takes θ to the function

u[ε, θ] ≡ v−a [∂Ωε, θ(
1
ε

(· − w)), k] (10.109)

is a bijection.

Proof. It is an immediate consequence of Proposition 10.74, of the Theorem of change of variables in
integrals, and of equalities (6.24), (6.25).

In the following Proposition we study equation (10.108) for ε = 0.

Proposition 10.76. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F be as in (1.56), (10.103), respectively.
Then the integral equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + F (t, 0) = 0 ∀t ∈ ∂Ω, (10.110)

which we call the limiting equation, has a unique solution θ ∈ Cm−1,α(∂Ω,C), which we denote by θ̃.
Moreover, ∫

∂Ω

θ̃(s) dσs = −
∫
∂Ω

F (s, 0) dσs. (10.111)
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Proof. The existence and uniqueness of a solution of equation (10.110) is a well known result of classic
potential theory (cf. Folland [52, Chapter 3] for the existence and uniqueness of a solution in L2(∂Ω,C)
and, e.g., Theorem B.3 for the regularity.) Equality (10.111) follows by Folland [52, Lemma 3.30,
p. 133].

Now we want to see if equation (10.110) is related to some (limiting) boundary value problem. We
give the following.

Definition 10.77. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F be as in (1.56), (10.103),
respectively. We denote by ũ the unique solution in Cm,α(Rn \ Ω,C) of the following boundary value
problem 

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = −F (x, 0) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(10.112)

Problem (10.112) will be called the limiting boundary value problem.

Remark 10.78. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F be as in (1.56), (10.103), respectively.
Let θ̃ be as in Proposition 10.76. We have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̃(y) dσy ∀x ∈ Rn \ Ω.

If n = 2, in general the (classic) simple layer potential for the Laplace equation with moment θ̃ is not
harmonic at infinity, and it does not satisfy the third condition of boundary value problem (10.112).
Moreover, if n = 2, boundary value problem (10.112) does not have in general a solution (unless∫
∂Ω
F (s, 0) dσs = 0.) However, the function ṽ of R2 \ Ω to C, defined by

ṽ(x) ≡
∫
∂Ω

S2(x− y)θ̃(y) dσy ∀x ∈ R2 \ Ω,

is a solution of the following boundary value problem{
∆ṽ(x) = 0 ∀x ∈ R2 \ cl Ω,
∂
∂νΩ

ṽ(x) = −F (x, 0) ∀x ∈ ∂Ω. (10.113)

We are now ready to analyse equation (10.108) around the degenerate case ε = 0. However, since
the function Qkn that appears in equation (10.108) (involved in the determination of the moment of
the simple layer potential that solves (10.105)) is identically 0 if n is odd, it is preferable to treat
separately case n even and case n odd.

Theorem 10.79. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.76. Let Λ be the map of ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C), defined by

Λ[ε, θ](t) ≡1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

+ F
(
t, ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.114)

for all (ε, θ) ∈ ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) Equation Λ[0, θ] = 0 is equivalent to the limiting equation (10.110) and has one and only one
solution θ̃ in Cm−1,α(∂Ω,C) (cf. Proposition 10.76.)

(ii) If ε ∈ ]0, ε∗1[, then equation Λ[ε, θ] = 0 is equivalent to equation (10.108) for θ.

(iii) There exists ε2 ∈ ]0, ε∗1], such that the map Λ of ]−ε2, ε2[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is
real analytic. Moreover, the differential ∂θΛ[0, θ̃] of Λ at (0, θ̃) is a linear homeomorphism of
Cm−1,α(∂Ω,C) onto Cm−1,α(∂Ω,C).
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(iv) There exist ε3 ∈ ]0, ε2], an open neighbourhood Ũ of θ̃ in Cm−1,α(∂Ω,C) and a real analytic
map Θn[·] of ]−ε3, ε3[ to Cm−1,α(∂Ω,C), such that the set of zeros of the map Λ in ]−ε3, ε3[× Ũ
coincides with the graph of Θn[·]. In particular, Θn[0] = θ̃.

Proof. Statements (i) and (ii) are obvious. We now prove statement (iii). We set

Λ′[ε, θ](t) ≡1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω,

Λ′′[ε, θ](t) ≡ F
(
t, ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

for all (ε, θ) ∈ ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C). Clearly,

Λ[ε, θ] = Λ′[ε, θ] + Λ′′[ε, θ],

for all (ε, θ) ∈ ]−ε∗1, ε∗1[× Cm−1,α(∂Ω,C). By Proposition 6.21 (ii), we immediately deduce that there
exists ε2 ∈ ]0, ε∗1] such that Λ′ is a real analytic map of ]−ε2, ε2[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C).
Analogously, by Proposition 6.21 (i), we easily deduce that the map of ]−ε2, ε2[× Cm−1,α(∂Ω,C) to
Cm−1,α(∂Ω,C), which takes (ε, θ) to the function of ∂Ω to C defined by

ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω,

is real analytic. Thus, by hypothesis (10.103) and standard calculus in Banach spaces, Λ′′ is a real
analytic operator of ]−ε2, ε2[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Hence Λ is a real analytic map of
]−ε2, ε2[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). By standard calculus in Banach spaces, the differential
∂θΛ[0, θ̃] of Λ at (0, θ̃) is delivered by the following formula:

∂θΛ[0, θ̃](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω,

for all τ ∈ Cm−1,α(∂Ω,C). We now show that the above differential is a linear homeomorphism.
By the Open Mapping Theorem, it suffices to show that it is a bijection of Cm−1,α(∂Ω,C) onto
Cm−1,α(∂Ω,C). Let ψ ∈ Cm−1,α(∂Ω,C). We must show that there exists a unique function τ in
Cm−1,α(∂Ω,C), such that

∂θΛ[0, θ̃](τ) = ψ.

By known results of classical potential theory (cf. Folland [52, Chapter 3]), there exists a unique
function τ ∈ Cm−1,α(∂Ω,C), such that

1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs = ψ(t) ∀t ∈ ∂Ω.

Hence ∂θΛ[0, θ̃] is bijective, and, accordingly, a linear homeomorphism of Cm−1,α(∂Ω,C) onto itself.
Thus the proof of (iii) is now concluded. Finally, statement (iv) is an immediate consequence of
statement (iii) and of the Implicit Function Theorem for real analytic maps in Banach spaces (cf.
e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem 15.3].)

Theorem 10.80. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.76. Let ε′1 > 0 be such that

ε log ε ∈ ]−ε′1, ε′1[ ∀ε ∈ ]0, ε∗1[. (10.115)

Let Λ# be the map of ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C), defined by

Λ#[ε, ε′, θ](t)

≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs + F
(
t, ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ εn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.116)
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for all (ε, ε′, θ) ∈ ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) Equation Λ#[0, 0, θ] = 0 is equivalent to the limiting equation (10.110) and has one and only
one solution θ̃ in Cm−1,α(∂Ω,C) (cf. Proposition 10.76.)

(ii) If ε ∈ ]0, ε∗1[, then equation Λ#[ε, ε log ε, θ] = 0 is equivalent to equation (10.108) for θ.

(iii) There exists ε2 ∈ ]0, ε∗1], such that the map Λ# of ]−ε2, ε2[ × ]−ε′1, ε′1[ × Cm−1,α(∂Ω,C) to
Cm−1,α(∂Ω,C) is real analytic. Moreover, the differential ∂θΛ#[0, 0, θ̃] of Λ# at (0, 0, θ̃) is a
linear homeomorphism of Cm−1,α(∂Ω,C) onto Cm−1,α(∂Ω,C).

(iv) There exist ε3 ∈ ]0, ε2], ε′2 ∈ ]0, ε′1], an open neighbourhood Ũ of θ̃ in Cm−1,α(∂Ω,C) and a real
analytic map Θ#

n [·, ·] of ]−ε3, ε3[ × ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C), such that ε log ε ∈ ]−ε′2, ε′2[ for
all ε ∈ ]0, ε3[ and such that the set of zeros of the map Λ# in ]−ε3, ε3[× ]−ε′2, ε′2[× Ũ coincides
with the graph of Θ#

n [·, ·]. In particular, Θ#
n [0, 0] = θ̃.

Proof. Statements (i) and (ii) are obvious. We now prove statement (iii). We set

Λ′#[ε, ε′, θ](t) ≡1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs

+ εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω,

Λ′′#[ε, ε′, θ](t) ≡F
(
t, ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

for all (ε, ε′, θ) ∈ ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C). Clearly,

Λ#[ε, ε′, θ] = Λ′#[ε, ε′, θ] + Λ′′#[ε, ε′, θ],

for all (ε, ε′, θ) ∈ ]−ε∗1, ε∗1[ × ]−ε′1, ε′1[ × Cm−1,α(∂Ω,C). By Proposition 6.21 (ii), we immediately
deduce that there exists ε2 ∈ ]0, ε∗1] such that Λ′# is a real analytic map of ]−ε2, ε2[ × ]−ε′1, ε′1[ ×
Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Analogously, by Proposition 6.21 (i), we easily deduce that the
map of ]−ε2, ε2[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C), which takes (ε, ε′, θ) to the function
of ∂Ω to C defined by

ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs ∀t ∈ ∂Ω,

is real analytic. Thus, by hypothesis (10.103) and standard calculus in Banach spaces, Λ′′# is a
real analytic operator of ]−ε2, ε2[× ]−ε′1, ε′1[× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). Hence Λ# is a real
analytic map of ]−ε2, ε2[ × ]−ε′1, ε′1[ × Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C). By standard calculus in
Banach spaces, the differential ∂θΛ#[0, 0, θ̃] of Λ# at (0, 0, θ̃) is delivered by the following formula:

∂θΛ#[0, 0, θ̃](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω,

for all τ ∈ Cm−1,α(∂Ω,C). We now show that the above differential is a linear homeomorphism.
By the Open Mapping Theorem, it suffices to show that it is a bijection of Cm−1,α(∂Ω,C) onto
Cm−1,α(∂Ω,C). Let ψ ∈ Cm−1,α(∂Ω,C). We must show that there exists a unique function τ in
Cm−1,α(∂Ω,C), such that

∂θΛ#[0, 0, θ̃](τ) = ψ.

By known results of classical potential theory (cf. Folland [52, Chapter 3]), there exists a unique
function τ ∈ Cm−1,α(∂Ω,C), such that

1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs = ψ(t) ∀t ∈ ∂Ω.
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Hence ∂θΛ#[0, 0, θ̃] is bijective, and, accordingly, a linear homeomorphism of Cm−1,α(∂Ω,C) onto
itself. Thus the proof of (iii) is now concluded. Finally, statement (iv) is an immediate consequence
of statement (iii) and of the Implicit Function Theorem for real analytic maps in Banach spaces (cf.
e.g., Prodi and Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem 15.3].)

We are now in the position to introduce the following.

Definition 10.81. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let u[·, ·] be as in Theorem 10.75. If n is
odd and ε ∈ ]0, ε3[, we set

u[ε](x) ≡ u[ε,Θn[ε]](x) ∀x ∈ cl Ta[Ωε],

where ε3, Θn are as in Theorem 10.79 (iv). If n is even and ε ∈ ]0, ε3[, we set

u[ε](x) ≡ u[ε,Θ#
n [ε, ε log ε]](x) ∀x ∈ cl Ta[Ωε],

where ε3, Θ#
n are as in Theorem 10.80 (iv).

Remark 10.82. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57), (10.102),
(10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79 (iv) if n is odd and
as in Theorem 10.80 (iv) if n is even. Let ε ∈ ]0, ε3[. Then u[ε] is a solution in Cm,α(cl Ta[Ωε],C) of
problem (10.105).

10.5.2 A functional analytic representation Theorem for the family of func-
tions {u[ε]}ε∈]0,ε3[

By Theorems 10.79, 10.80 and Definition 10.81, we can deduce the main result of this Subsection.

Theorem 10.83. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79
(iv). Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist ε4 ∈ ]0, ε3],
and a real analytic operator U of ]−ε4, ε4[ to the space C0(clV,C), such that the following conditions
hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−1U [ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,

U [0](x) = −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV.

Proof. Let Θn[·] be as in Theorem 10.79. Choosing ε4 small enough, we can clearly assume that (j)
holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Definition 10.81, we have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U [ε](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θn[ε](s) dσs ∀x ∈ clV,

for all ε ∈ ]−ε4, ε4[. By Proposition 6.22, U is a real analytic map of ]−ε4, ε4[ to C0(clV,C).
Furthermore, by Proposition 10.76 and Theorem 10.79, we have

U [0](x) = Sa,kn (x− w)
∫
∂Ω

Θn[0](s) dσs

= −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV,

since Θn[0] = θ̃. Hence the proof is now complete.
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Theorem 10.84. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, ε′2 be as in Theorem
10.80 (iv). Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist
ε4 ∈ ]0, ε3] and a real analytic operator U# of ]−ε4, ε4[× ]−ε′2, ε′2[ to the space C0(clV,C), such that
the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε](x) = εn−1U#[ε, ε log ε](x) ∀x ∈ clV,

for all ε ∈ ]0, ε4[. Moreover,

U#[0, 0](x) = −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV.

Proof. Let Θ#
n [·, ·] be as in Theorem 10.80. Choosing ε4 small enough, we can clearly assume that (j)

holds. Consider now (jj). Let ε ∈ ]0, ε4[. By Definition 10.81, we have

u[ε](x) = εn−1

∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε log ε](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U#[ε, ε′](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε′](s) dσs ∀x ∈ clV,

for all (ε, ε′) ∈ ]−ε4, ε4[×]−ε′2, ε′2[. By Proposition 6.22, U# is a real analytic map of ]−ε4, ε4[×]−ε′2, ε′2[
to C0(clV,C). Furthermore, by Proposition 10.76 and Theorem 10.80, we have

U#[0, 0](x) = Sa,kn (x− w)
∫
∂Ω

Θ#
n [0, 0](s) dσs

= −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV,

since Θ#
n [0, 0] = θ̃. Hence the proof is now complete.

We have also the following Theorems.

Theorem 10.85. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79
(iv). Then there exist ε5 ∈ ]0, ε3], and a real analytic operator G of ]−ε5, ε5[ to C, such that∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx = εnG[ε], (10.117)

for all ε ∈ ]0, ε5[. Moreover,

G[0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (10.118)

where ũ is as in Definition 10.77.

Proof. Let Θn[·] be as in Theorem 10.79. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.
Clearly, by the periodicity of u[ε], we have∫

Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

= −εn−1

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε] ◦ (w + ε id∂Ω)(t) dσt.
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By equality (6.24) and since Qkn = 0 for n odd, we have

u[ε] ◦ (w+ε id∂Ω)(t) = εn−1

∫
∂Ω

Sa,kn (ε(t− s))Θn[ε](s) dσs

= ε

∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

By Theorem E.6 (i), one can easily show that the map which takes ε to the function of the variable
t ∈ ∂Ω defined by ∫

∂Ω

Sn(t− s, εk)Θn[ε](s) dσs ∀t ∈ ∂Ω,

is a real analytic operator of ]−ε3, ε3[ to Cm−1,α(∂Ω,C). By Theorem C.4, we immediately deduce
that there exists ε5 ∈ ]0, ε3] such that the map of ]−ε5, ε5[ to Cm−1,α(∂Ω,C), which takes ε to the
function

∫
∂Ω
Ra,kn (ε(t− s))Θn[ε](s) dσs of the variable t ∈ ∂Ω, is real analytic. Analogously, we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]0, ε3[. Thus, if we set

G̃[ε](t) ≡1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω, ∀ε ∈ ]−ε5, ε5[

then, by arguing as in Theorem 10.79, one can easily show that G̃ is a real analytic map of ]−ε5, ε5[
to Cm−1,α(∂Ω,C).

Hence, if we set

G[ε] ≡−
∫
∂Ω

G̃[ε](t)
∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs dσt

− εn−2

∫
∂Ω

G̃[ε](t)
∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs dσt,

for all ε ∈ ]−ε5, ε5[, then by standard properties of functions in Schauder spaces, we have that G is a
real analytic map of ]−ε5, ε5[ to C such that equality (10.117) holds.

Finally, if ε = 0, by Folland [52, p. 118] and since G̃[0](·) = −F (·, 0), we have

G[0] =
∫
∂Ω

F (t, 0)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt

=
∫

Rn\cl Ω

|∇ũ(x)|2 dx.

Theorem 10.86. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.76. Let ε3, ε′2 be as in Theorem 10.80 (iv). Then there exist ε5 ∈ ]0, ε3], and three real analytic
operators G#

1 , G#
2 , G#

3 of ]−ε5, ε5[× ]−ε′2, ε′2[ to C, such that∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

= εnG#
1 [ε, ε log ε] + ε2n−2(log ε)G#

2 [ε, ε log ε] + ε3n−3(log ε)2G#
3 [ε, ε log ε],

(10.119)

for all ε ∈ ]0, ε5[. Moreover,

G#
1 [0, 0] =

∫
∂Ω

F (t, 0)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt

− δ2,nRa,kn (0)|
∫
∂Ω

F (s, 0) dσs|2,
(10.120)
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G#
2 [0, 0] = −kn−2Jn(0)|

∫
∂Ω

F (s, 0) dσs|2, (10.121)

G#
3 [0, 0] = 0 (10.122)

where Jn(0) is as in Proposition E.3 (i). In particular, if n > 2, then

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx, (10.123)

where ũ is as in Definition 10.77.

Proof. Let Θ#
n [·, ·] be as in Theorem 10.80. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.

Clearly, by the periodicity of u[ε], we have∫
Pa[Ωε]

|∇u[ε](x)|2 dx−k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

= −εn−1

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε] ◦ (w + ε id∂Ω)(t) dσt.

By equality (6.24), we have

u[ε] ◦ (w + ε id∂Ω)(t) =εn−1

∫
∂Ω

Sa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs

=ε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

Thus it is natural to set

F1[ε, ε′](t) ≡
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

F2[ε, ε′](t) ≡ kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

F3[ε, ε′](t) ≡
∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[.
Then clearly

u[ε] ◦ (w + ε id∂Ω)(t) = εF1[ε, ε log ε](t) + εn−1(log ε)F2[ε, ε log ε](t) + εn−1F3[ε, ε log ε](t) ∀t ∈ ∂Ω,

for all ε ∈ ]0, ε3[. By Theorem E.6 (i) and Theorem C.4, we easily deduce that there exists ε5 ∈ ]0, ε3]
such that F1, F2 and F3 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C). Analogously,
we have(∂u[ε]

∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θ#
n [ε, ε log ε](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1 log εkn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]0, ε3[. Thus, if we set

G̃1[ε, ε′](t) ≡ 1
2

Θ#
n [ε, ε′](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,
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and
G̃2[ε, ε′](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε5, ε5[× ]−ε′2, ε′2[, then, by arguing as in Theorem 10.80, one can easily show that G̃1

and G̃2 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[ to Cm−1,α(∂Ω,C).
Clearly,(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = G̃1[ε, ε log ε](t) + εn−1 log εG̃2[ε, ε log ε](t) ∀t ∈ ∂Ω, ∀ε ∈ ]0, ε5[.

If ε ∈ ]0, ε5[, then we have∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx

=εn
(
−
∫
∂Ω

G̃1[ε, ε log ε]F1[ε, ε log ε] dσ − εn−2

∫
∂Ω

G̃1[ε, ε log ε]F3[ε, ε log ε] dσ
)

+ ε2n−2 log ε
(
−ε
∫
∂Ω

G̃2[ε, ε log ε]F1[ε, ε log ε] dσ −
∫
∂Ω

G̃1[ε, ε log ε]F2[ε, ε log ε] dσ

− εn−1

∫
∂Ω

G̃2[ε, ε log ε]F3[ε, ε log ε] dσ
)

+ ε3n−3(log ε)2
(
−
∫
∂Ω

G̃2[ε, ε log ε]F2[ε, ε log ε] dσ
)
.

If we set

G#
1 [ε, ε′] ≡−

∫
∂Ω

G̃1[ε, ε′](t)F1[ε, ε′](t) dσt − εn−2

∫
∂Ω

G̃1[ε, ε′](t)F3[ε, ε′](t) dσt,

G#
2 [ε, ε′] ≡− ε

∫
∂Ω

G̃2[ε, ε′](t)F1[ε, ε′](t) dσt −
∫
∂Ω

G̃1[ε, ε′](t)F2[ε, ε′](t) dσt

− εn−1

∫
∂Ω

G̃2[ε, ε′](t)F3[ε, ε′](t) dσt,

G#
3 [ε, ε′] ≡−

∫
∂Ω

G̃2[ε, ε′](t)F2[ε, ε′](t) dσt,

for all (ε, ε′) ∈ ]−ε5, ε5[ × ]−ε′2, ε′2[, then standard properties of functions in Schauder spaces and a
simple computation show that G#

1 , G#
2 , and G#

3 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[ to C
such that equality (10.119) holds for all ε ∈ ]0, ε5[.

Next, we observe that

G#
1 [0, 0] =

∫
∂Ω

F (t, 0)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)|
∫
∂Ω

F (t, 0) dσt|2,

G#
2 [0, 0] = −kn−2

Qkn(0)
∫
∂Ω

(
−F (t, 0)

)
dσt

∫
∂Ω

(
−F (t, 0)

)
dσt,

G#
3 [0, 0] = −|kn−2|2Qkn(0)|

∫
∂Ω

(
−F (t, 0)

)
dσt|2

∫
∂Ω

νΩ(t) ·DQkn(0) dσt = 0,

and accordingly equalities (10.120), (10.121), and (10.122) hold. Finally, if n ≥ 4, by Folland [52,
p. 118], we have

G#
1 [0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx.

Remark 10.87. If n is odd, we note that the right-hand side of the equality in (10.117) of Theorem
10.85 can be continued real analytically in the whole ]−ε5, ε5[.

Moreover,

lim
ε→0+

[∫
Pa[Ωε]

|∇u[ε](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε](x)|2 dx
]

= 0,

for all n ∈ N \ {0, 1} (n even or odd.)
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10.5.3 A real analytic continuation Theorem for the integral of the family
{u[ε]}ε∈]0,ε3[

We now prove real analytic continuation Theorems for the integral of the solution. Namely, we prove
the following results.

Theorem 10.88. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79
(iv). Then there exist ε6 ∈ ]0, ε3], and a real analytic operator J of ]−ε6, ε6[ to C, such that∫

Pa[Ωε]

u[ε](x) dx =
εn−1

k2
J [ε], (10.124)

for all ε ∈ ]0, ε6[. Moreover,

J [0] = −
∫
∂Ω

F (x, 0) dσx. (10.125)

Proof. Let Θn[·] be as in Theorem 10.79. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.
Clearly, by the Divergence Theorem and the periodicity of u[ε], we have∫

Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25) and since Qkn = 0 for n odd, we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

We set

J̃ [ε](t) ≡1
2

Θn[ε](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that there exists
ε6 ∈ ]0, ε3] such that J̃ is a real analytic map of ]−ε6, ε6[ to Cm−1,α(∂Ω,C). Hence, if we set

J [ε] ≡
∫
∂Ω

J̃ [ε](t) dσt,

for all ε ∈ ]−ε6, ε6[, then, by standard properties of functions in Schauder spaces, we have that J is a
real analytic map of ]−ε6, ε6[ to C, such that equality (10.124) holds.

Finally, if ε = 0, we have

J [0] =
∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

= −
∫
∂Ω

F (x, 0) dσx,

and accordingly (10.125) holds.
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Theorem 10.89. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.76. Let ε3, ε′2 be as in Theorem 10.80 (iv). Then there exist ε6 ∈ ]0, ε3], and two real analytic
operators J#

1 , J#
2 of ]−ε6, ε6[× ]−ε′2, ε′2[ to C, such that∫

Pa[Ωε]

u[ε](x) dx =
εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε], (10.126)

for all ε ∈ ]0, ε6[. Moreover,

J#
1 [0, 0] = −

∫
∂Ω

F (x, 0) dσx. (10.127)

Proof. Let Θ#
n [·, ·] be as in Theorem 10.80. Let id∂Ω denote the identity map in ∂Ω. Let ε ∈ ]0, ε3[.

Clearly, by the Divergence Theorem and the periodicity of u[ε], we have∫
Pa[Ωε]

u[ε](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε]
∂νΩε

)
◦ (w + ε id∂Ω)(t) =

1
2

Θ#
n [ε, ε log ε](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

We set

J̃1[ε, ε′](t) ≡ 1
2

Θ#
n [ε, ε′](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and
J̃2[ε, ε′](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that
there exists ε6 ∈ ]0, ε3] such that J̃#

1 , J̃#
2 are real analytic maps of ]−ε6, ε6[×]−ε′2, ε′2[ to Cm−1,α(∂Ω,C).

Hence, if we set

J#
1 [ε, ε′] ≡

∫
∂Ω

J̃#
1 [ε, ε′](t) dσt,

and
J#

2 [ε, ε′] ≡
∫
∂Ω

J̃#
2 [ε, ε′](t) dσt,

for all (ε, ε′) ∈ ]−ε6, ε6[× ]−ε′2, ε′2[, then, by standard properties of functions in Schauder spaces, we
have that J#

1 , J#
2 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[ to C, such that equality (10.126) holds.
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Finally, if ε = ε′ = 0, we have

J#
1 [0, 0] =

∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

= −
∫
∂Ω

F (x, 0) dσx,

and accordingly (10.127) holds.

10.5.4 A property of local uniqueness of the family {u[ε]}ε∈]0,ε3[

In this Subsection, we shall show that the family {u[ε]}ε∈]0,ε3[ is essentially unique. Namely, we prove
the following.

Theorem 10.90. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let {ε̂j}j∈N be a sequence in ]0, ε∗1[ converging
to 0. If {uj}j∈N is a sequence of functions such that

uj ∈ Cm,α(cl Ta[Ωε̂j ],C), (10.128)
uj solves (10.105) with ε ≡ ε̂j , (10.129)

lim
j→∞

uj(w + ε̂j ·) = 0 in Cm−1,α(∂Ω,C), (10.130)

then there exists j0 ∈ N such that

uj = u[ε̂j ] ∀j0 ≤ j ∈ N.

Proof. By Theorem 10.75, for each j ∈ N, there exists a unique function θj in Cm−1,α(∂Ω,C) such
that

uj = u[ε̂j , θj ]. (10.131)

We shall now try to show that

lim
j→∞

θj = θ̃ in Cm−1,α(∂Ω,C). (10.132)

Indeed, if we denote by Ũ the neighbourhood of Theorems 10.79 (iv), 10.80 (iv), the limiting relation
of (10.132) implies that there exists j0 ∈ N such that

(ε̂j , θj) ∈ ]0, ε3[× Ũ , if n is odd,

(ε̂j , ε̂j log ε̂j , θj) ∈ ]0, ε3[× ]−ε′2, ε′2[× Ũ , if n is even,

for j ≥ j0 and thus Theorems 10.79 (iv), 10.80 (iv) would imply that

θj = Θn[ε̂j ] if n is odd,

θj = Θ#
n [ε̂j , ε̂j log ε̂j ] if n is even,

for j0 ≤ j ∈ N, and that accordingly the Theorem holds (cf. Definition 10.81.) Thus we now turn to
the proof of (10.132). We split our proof into the cases n odd and n even.

We first assume that n is odd. Then we note that equation Λ[ε, θ] = 0 can be rewritten in the
following form

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

= −F
(
t, ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.133)

for all (ε, θ) in the domain of Λ. Then we define the map N of ]−ε3, ε3[ × Cm−1,α(∂Ω,C) to
Cm−1,α(∂Ω,C) by setting N [ε, θ] equal to the left-hand side of the equality in (10.133), for all
(ε, θ) ∈ ]−ε3, ε3[×Cm−1,α(∂Ω,C). By arguing as in the proof of Theorem 10.79, we can prove that N
is real analytic. Since N [ε, ·] is linear for all ε ∈ ]−ε3, ε3[, we have

N [ε, θ] = ∂θN [ε, θ̃](θ),
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for all (ε, θ) ∈ ]−ε3, ε3[×Cm−1,α(∂Ω,C), and the map of ]−ε3, ε3[ to L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))
which takes ε to N [ε, ·] is real analytic. Since

N [0, ·] = ∂θΛ[0, θ̃](·),

Theorem 10.79 (iii) implies that N [0, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is open in L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))
and since the map which takes a linear invertible operator to its inverse is real analytic (cf. e.g., Hille
and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists ε̃ ∈ ]0, ε3[ such that the map ε 7→ N [ε, ·](−1)

is real analytic from ]−ε̃, ε̃[ to L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C)). Next we denote by S[ε, θ] the
right-hand side of (10.133). Then equation Λ[ε, θ] = 0 (or equivalently equation (10.133)) can be
rewritten in the following form:

θ = N [ε, ·](−1)[S[ε, θ]], (10.134)

for all (ε, θ) ∈ ]−ε̃, ε̃[× Cm−1,α(∂Ω,C). Moreover, if j ∈ N, we observe that by (10.131) we have

uj(w + ε̂jt) = u[ε̂j , θj ](w + ε̂jt)

= ε̂j

∫
∂Ω

Sn(t− s, ε̂jk)θj(s) dσs + ε̂n−1
j

∫
∂Ω

Ra,kn (ε̂j(t− s))θj(s) dσs ∀t ∈ ∂Ω.

(10.135)

Next we note that condition (10.130), equality (10.135), the proof of Theorem 10.79, the real analyticity
of TF and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , θj ] = S[0, θ̃] in Cm−1,α(∂Ω,C). (10.136)

Then by (10.134) and by the real analyticity of ε 7→ N [ε, ·](−1), and by the bilinearity and continuity of
the operator of L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C), which takes
a pair (T1, T2) to T1[T2], by (10.136) we conclude that

lim
j→∞

θj = lim
j→∞

N [ε̂j , ·](−1)[S[ε̂j , θj ]]

= N [0, ·](−1)[S[0, θ̃]] = θ̃ in Cm−1,α(∂Ω,C),

and, consequently, that (10.132) holds. Thus the proof of case n odd is complete.
We now consider case n even. We proceed as in case n odd. We note that equation Λ#[ε, ε′, θ] = 0

can be rewritten in the following form

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs = −F
(
t, ε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ εn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.137)

for all (ε, ε′, θ) in the domain of Λ#. We define the map N# of ]−ε3, ε3[× ]−ε′2, ε′2[× Cm−1,α(∂Ω,C)
to Cm−1,α(∂Ω,C) by setting N#[ε, ε′, θ] equal to the left-hand side of the equality in (10.137), for all
(ε, ε′, θ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[× Cm−1,α(∂Ω,C). By arguing as in the proof of Theorem 10.80, we can
prove that N# is real analytic. Since N#[ε, ε′, ·] is linear for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[, we have

N#[ε, ε′, θ] = ∂θN
#[ε, ε′, θ̃](θ),

for all (ε, ε′, θ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[×Cm−1,α(∂Ω,C), and the map of ]−ε3, ε3[× ]−ε′2, ε′2[ to the space
L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C)) which takes (ε, ε′) to N#[ε, ε′, ·] is real analytic. Since

N#[0, 0, ·] = ∂θΛ#[0, 0, θ̃](·),

Theorem 10.80 (iii) implies that N#[0, 0, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is open in L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))
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and since the map which takes a linear invertible operator to its inverse is real analytic (cf. e.g., Hille
and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists (ε̃, ε̃′) ∈ ]0, ε3[ × ]0, ε′2[ such that the map
(ε, ε′) 7→ N#[ε, ε′, ·](−1) is real analytic from ]−ε̃, ε̃[ × ]−ε̃′, ε̃′[ to L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C)),
and such that

ε log ε ∈ ]−ε̃′, ε̃′[ ∀ε ∈ ]0, ε̃[.

Next we denote by S#[ε, ε′, θ] the right-hand side of (10.137). Then equation Λ#[ε, ε′, θ] = 0 (or
equivalently equation (10.137)) can be rewritten in the following form:

θ = N#[ε, ε′, ·](−1)[S#[ε, ε′, θ]], (10.138)

for all (ε, ε′, θ) ∈ ]−ε̃, ε̃[× ]−ε̃′, ε̃′[× Cm−1,α(∂Ω,C). Moreover, if j ∈ N, we observe that by (10.131)
we have

uj(w + ε̂jt) = u[ε̂j , θj ](w + ε̂jt)

=ε̂j
∫
∂Ω

Sn(t− s, ε̂jk)θj(s) dσs + ε̂n−2
j (ε̂j log ε̂j)kn−2

∫
∂Ω

Qkn(ε̂j(t− s))θj(s) dσs

+ ε̂n−1
j

∫
∂Ω

Ra,kn (ε̂j(t− s))θj(s) dσs ∀t ∈ ∂Ω.

(10.139)

Next we note that
lim
j→∞

(ε̂j , ε̂j log ε̂j) = (0, 0) (10.140)

in ]0, ε̃[× ]−ε̃′, ε̃′[. Then condition (10.130), equality (10.139), the proof of Theorem 10.80, the real
analyticity of TF and standard calculus in Banach space imply that

lim
j→∞

S#[ε̂j , ε̂j log ε̂j , θj ] = S#[0, 0, θ̃] in Cm−1,α(∂Ω,C). (10.141)

Then by (10.138) and by the real analyticity of (ε, ε′) 7→ N#[ε, ε′, ·](−1), and by the bilinearity and
continuity of the operator of L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C),
which takes a pair (T1, T2) to T1[T2] and by (10.140), by (10.141) we conclude that

lim
j→∞

θj = lim
j→∞

N#[ε̂j , ε̂j log ε̂j , ·](−1)[S#[ε̂j , ε̂j log ε̂j , θj ]]

= N#[0, 0, ·](−1)[S#[0, 0, θ̃]] = θ̃ in Cm−1,α(∂Ω,C),

and, consequently, that (10.132) holds. Thus the proof of case n even is complete.

10.6 An homogenization problem for the Helmholtz equation
with nonlinear Robin boundary conditions in a periodi-
cally perforated domain

In this section we consider an homogenization problem for the Helmhlotz equation with nonlinear
Robin boundary conditions in a periodically perforated domain. In most of the results we assume
that Im(k) 6= 0 and Re(k) = 0.

10.6.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 1.8.1, 6.7.1, 10.5.1 and 10.3.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57), (10.102), (10.103),
respectively. Let ε∗1 be as in (10.104). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we consider the following
periodic nonlinear Robin problem for the Helmholtz equation.


∆u(x) + k2

δ2 u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δaj) = u(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},
δ ∂
∂νΩ(ε,δ)

u(x) + F ( 1
εδ (x− δw), u(x)) = 0 ∀x ∈ ∂Ω(ε, δ).

(10.142)

We give the following definition.



10.6 An homogenization problem for the Helmholtz equation with nonlinear Robin boundary
conditions in a periodically perforated domain 401

Definition 10.91. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79 (iv) if n
is odd, and as in Theorem 10.80 (iv) if n is even. Let u[·] be as in Definition 10.81. For each pair
(ε, δ) ∈ ]0, ε3[× ]0,+∞[, we set

u(ε,δ)(x) ≡ u[ε](
x

δ
) ∀x ∈ cl Ta(ε, δ).

Remark 10.92. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79 (iv) if n is
odd, and as in Theorem 10.80 (iv) if n is even. For each (ε, δ) ∈ ]0, ε3[× ]0,+∞[, u(ε,δ) is a solution in
Cm,α(cl Ta(ε, δ),C) of problem (10.142).

By the previous remark, we note that a solution of problem (10.142) can be expressed by means of
a solution of an auxiliary rescaled problem, which does not depend on δ. This is due to the presence
of the factor δ in front of ∂

∂νΩ(ε,δ)
u(x) in the third equation of problem (10.142).

By virtue of Theorem (10.90), we have the following.
Remark 10.93. Let m ∈ N\{0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57), (10.102),
(10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79 (iv) if n is odd, and as
in Theorem 10.80 (iv) if n is even. Let δ̄ ∈ ]0,+∞[. Let {ε̂j}j∈N be a sequence in ]0, ε∗1[ converging to
0. If {uj}j∈N is a sequence of functions such that

uj ∈ Cm,α(cl Ta(ε̂j , δ̄),C),
uj solves (10.142) with (ε, δ) ≡ (ε̂j , δ̄),

lim
j→∞

uj(δ̄w + δ̄ε̂j ·) = 0 in Cm−1,α(∂Ω,C),

then there exists j0 ∈ N such that

uj = u(ε̂j ,δ̄) ∀j0 ≤ j ∈ N.

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). As a first step, we
study the behaviour of u[ε] as ε tends to 0.

We have the following.

Proposition 10.94. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let ε3 be as in Theorem 10.79 (iv). Let u[·] be as in Definition 10.81. Then there exist ε̃ ∈ ]0, ε3[ and
a real analytic map N of ]−ε̃, ε̃[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E(ε,1)[u[ε]] = 0 in L∞(Rn,C).

Proof. Let ε3, Θn be as in Theorem 10.79 (iv). Let id∂Ω denote the identity map in ∂Ω. If ε ∈ ]0, ε3[,
we have

u[ε] ◦ (w+ ε id∂Ω)(t) = ε

∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω.

We set

N [ε](t) ≡
∫
∂Ω

Sn(t− s, εk)Θn[ε](s) dσs + εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε](s) dσs ∀t ∈ ∂Ω,

for all ε ∈ ]−ε3, ε3[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem C.4 and the proof
of Theorem 10.85) that N is a real analytic map of ]−ε̃, ε̃[ to Cm,α(∂Ω,C). By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω) ∀ε ∈ ]0, ε̃[,
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and
‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω) ∀ε ∈ ]0, ε̃[.

Accordingly,
lim
ε→0+

Re
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and
lim
ε→0+

Im
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and so the conclusion follows.

Proposition 10.95. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let ε3, ε′2 be as in Theorem 10.80 (iv). Let u[·] be as in Definition 10.81. Then there exist ε̃ ∈ ]0, ε3[
and two real analytic maps N#

1 , N#
2 of ]−ε̃, ε̃[× ]−ε′2, ε′2[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[. Moreover, as a consequence,

lim
ε→0+

E(ε,1)[u[ε]] = 0 in L∞(Rn,C).

Proof. Let ε3, ε′2, Θ#
n be as in Theorem 10.80 (iv). If ε ∈ ]0, ε3[, we have

u[ε] ◦ (w + ε id∂Ω)(t) =ε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε](s) dσs

+ εn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε](s) dσs

+ εn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε](s) dσs ∀t ∈ ∂Ω.

We set

N#
1 [ε, ε′](t) ≡

∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′](s) dσs

+ εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

and

N#
2 [ε, ε′](t) ≡kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem
C.4 and the proof of Theorem 10.86) that N#

1 , N#
2 are real analytic maps of ]−ε̃, ε̃[ × ]−ε′2, ε′2[ to

Cm,α(∂Ω,C). Clearly,

u[ε] ◦ (w + ε id∂Ω)(t) = εN#
1 [ε, ε log ε](t) + εn−1(log ε)N#

2 [ε, ε log ε](t) ∀t ∈ ∂Ω, ∀ε ∈ ]0, ε̃[.

By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

and
‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all ε ∈ ]0, ε̃[.
Accordingly,

lim
ε→0+

Re
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and
lim
ε→0+

Im
(
E(ε,1)[u[ε]]

)
= 0 in L∞(Rn),

and so the conclusion follows.
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10.6.2 Asymptotic behaviour of u(ε,δ)

In the following Theorems we deduce by Propositions 10.94, 10.95 the convergence of u(ε,δ) as (ε, δ)
tends to (0, 0). Namely, we prove the following.

Theorem 10.96. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let ε̃, N be as in Proposition 10.94. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ε‖Re

(
N [ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ε‖Im

(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ε‖Re
(
N [ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ε‖Im
(
N [ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Theorem 10.97. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let ε̃, N#

1 , N#
2 be as in Proposition 10.95. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ‖Re
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε]]

)
‖L∞(Rn)

= ‖Im
(
εN#

1 [ε, ε log ε] + εn−1(log ε)N#
2 [ε, ε log ε]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0,+∞[.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 10.98. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε6, J be as in Theorem
10.88. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn

εn−1

k2
J [ε], (10.143)

for all ε ∈ ]0, ε6[, l ∈ N \ {0}.
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Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln
εn−1

k2
J [ε].

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn
εn−1

k2
J [ε],

and the conclusion follows.

Theorem 10.99. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as
in (1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε6, J

#
1 , J#

2 be as in
Theorem 10.89. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn

{εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε]
}
, (10.144)

for all ε ∈ ]0, ε6[, l ∈ N \ {0}.

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0}. Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε](t) dt

=
rn

ln

{εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε]
}
.

As a consequence,∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx = rn
{εn−1

k2
J#

1 [ε, ε log ε] +
ε2n−2(log ε)

k2
J#

2 [ε, ε log ε]
}
,

and the conclusion follows.
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We give the following.

Definition 10.100. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79 (iv) if n is
odd, and as in Theorem 10.80 (iv) if n is even. For each pair (ε, δ) ∈ ]0, ε3[× ]0,+∞[, we set

F(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
A∩Ta(ε,δ)

|u(ε,δ)(x)|2 dx.

Remark 10.101. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3 be as in Theorem 10.79 (iv) if n is
odd, and as in Theorem 10.80 (iv) if n is even. Let (ε, δ) ∈ ]0, ε3[× ]0,+∞[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε](t)|2 dt,

and ∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δn
∫

Pa[Ωε]

|u[ε](t)|2 dt.

Accordingly,∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn−2
(∫

Pa[Ωε]

|∇u[ε](t)|2 dt− k2

∫
Pa[Ωε]

|u[ε](t)|2 dt
)
.

Then we give the following definition, where we consider F(ε, δ), with ε equal to a certain function
of δ.

Definition 10.102. For each δ ∈ ]0,+∞[, we set

ε[δ] ≡ δ 2
n .

Let ε5 be as in Theorem 10.85, if n is odd, or as in Theorem 10.86, if n is even. Let δ1 > 0 be such
that ε[δ] ∈ ]0, ε5[, for all δ ∈ ]0, δ1[. Then we set

F [δ] ≡ F(ε[δ], δ),

for all δ ∈ ]0, δ1[.

In the following Propositions we compute the limit of F [δ] as δ tends to 0.

Proposition 10.103. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let ε5 be as in Theorem 10.22. Let δ1 > 0 be as in Definition 10.102. Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 10.77.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 10.101 and Theorem 10.85, we have

G(δ) = δn−2(ε[δ])nG[ε[δ]]

= δn−2δ2G[δ
2
n ],
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where G is as in Theorem 10.85. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).

As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G[0].

Finally, by equality (10.118), we easily conclude.

Proposition 10.104. Let n be even and n > 2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k,
F be as in (1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as
in (10.104). Let ε5 be as in Theorem 10.23. Let δ1 > 0 be as in Definition 10.102. Then

lim
δ→0+

F [δ] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx,

where ũ is as in Definition 10.77.

Proof. For each δ ∈ ]0, δ1[, we set

G(δ) ≡
∫

Pa(ε[δ],δ)

|∇u(ε[δ],δ)(x)|2 dx− k2

δ2

∫
Pa(ε[δ],δ)

|u(ε[δ],δ)(x)|2 dx.

Let δ ∈ ]0, δ1[. By Remark 10.101 and Theorem 10.86, we have

G(δ) =δn−2(ε[δ])nG#
1 [ε[δ], ε[δ] log ε[δ]]

+ δn−2(ε[δ])2n−2(log ε[δ])G#
2 [ε[δ], ε[δ] log ε[δ]]

+ δn−2(ε[δ])3n−3(log ε[δ])2G#
3 [ε[δ], ε[δ] log ε[δ]]

=δn−2δ2G#
1 [δ

2
n , δ

2
n log(δ

2
n )]

+ δn−2δ4− 4
n (log(δ

2
n ))G#

2 [δ
2
n , δ

2
n log(δ

2
n )]

+ δn−2δ6− 6
n (log(δ

2
n ))2G#

3 [δ
2
n , δ

2
n log(δ

2
n )],

where G#
1 , G#

2 , and G#
3 are as in Theorem 10.86. On the other hand,

b(1/δ)cnG(δ) ≤ F [δ] ≤ d(1/δ)enG(δ).

As a consequence, since

lim
δ→0+

b(1/δ)cnδn = 1, lim
δ→0+

d(1/δ)enδn = 1,

then
lim
δ→0+

F [δ] = G#
1 [0, 0].

Finally, by equality (10.123), we easily conclude.

In the following Propositions we represent the function F [·] by means of real analytic functions.

Proposition 10.105. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε5, G be as in Theorem
10.85. Let δ1 > 0 be as in Definition 10.102. Then

F [(1/l)] = G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).



10.7 A variant of an homogenization problem for the Helmholtz equation with nonlinear Robin
boundary conditions in a periodically perforated domain 407

Proof. By arguing as in the proof of Proposition 10.103, one can easily see that

F [(1/l)] = ln(1/l)n−2(1/l)2G[(1/l)
2
n ]

= G[(1/l)
2
n ],

for all l ∈ N such that l > (1/δ1).

Proposition 10.106. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as
in (1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε5, G

#
1 , G#

2 , and G#
3

be as in Theorem 10.86. Let δ1 > 0 be as in Definition 10.102. Then

F [(1/l)] =G#
1 [(1/l)

2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)2− 4
n log((1/l)

2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)4− 6
n

[
log((1/l)

2
n )
]2
G#

3 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )],

for all l ∈ N such that l > (1/δ1).

Proof. By arguing as in the proof of Proposition 10.103, one can easily see that

F [(1/l)] = ln(1/l)n−2(1/l)2
{
G#

1 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)2− 4
n log((1/l)

2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)4− 6
n

[
log((1/l)

2
n )
]2
G#

3 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]
}

= G#
1 [(1/l)

2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)2− 4
n log((1/l)

2
n )G#

2 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )]

+ (1/l)4− 6
n

[
log((1/l)

2
n )
]2
G#

3 [(1/l)
2
n , (1/l)

2
n log((1/l)

2
n )],

for all l ∈ N such that l > (1/δ1).

10.7 A variant of an homogenization problem for the Helm-
holtz equation with nonlinear Robin boundary conditions
in a periodically perforated domain

In this section we consider another homogenization problem for the Helmhlotz equation with nonlinear
Robin boundary conditions in a periodically perforated domain. As above, most of the results are
obtained under the assumption that Im(k) 6= 0 and Re(k) = 0.

10.7.1 Notation and preliminaries
In this Section we retain the notation introduced in Subsections 10.5.1 and 10.3.1.

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57), (10.102), (10.103),
respectively. Let ε∗1 be as in (10.104). For each (ε, δ) ∈ ]0, ε∗1[ × ]0,+∞[, we consider the following
periodic nonlinear Robin problem for the Helmholtz equation.


∆u(x) + k2

δ2 u(x) = 0 ∀x ∈ Ta(ε, δ),
u(x+ δaj) = u(x) ∀x ∈ cl Ta(ε, δ), ∀j ∈ {1, . . . , n},

∂
∂νΩ(ε,δ)

u(x) + F ( 1
εδ (x− δw), u(x)) = 0 ∀x ∈ ∂Ω(ε, δ).

(10.145)

In contrast to problem (10.142), we note that in the third equation of problem (10.145) there is
not the factor δ in front of ∂

∂νΩ(ε,δ)
u(x).

Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57), (10.102), (10.103),
respectively. Let ε∗1 be as in (10.104). For each (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, we introduce the following
auxiliary periodic nonlinear Robin problem for the Helmholtz equation.
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∆u(x) + k2u(x) = 0 ∀x ∈ Ta[Ωε],
u(x+ aj) = u(x) ∀x ∈ cl Ta[Ωε], ∀j ∈ {1, . . . , n},
∂

∂νΩε
u(x) + δF

(
1
ε (x− w), u(x)

)
= 0 ∀x ∈ ∂Ωε.

(10.146)

We now convert boundary value problem (10.146) into an integral equation.

Proposition 10.107. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[. Then the map
of the set of functions µ ∈ Cm−1,α(∂Ωε,C) that solve the equation

1
2
µ(x) +

∫
∂Ωε

νΩε(x) ·DSa,kn (x− y)µ(y) dσy

+ δF
(1
ε

(x− w),
∫
∂Ωε

Sa,kn (x− y)µ(y) dσy
)

= 0 ∀x ∈ ∂Ωε, (10.147)

to the set of u ∈ Cm,α(cl Ta[Ωε],C) which solve problem (10.146), which takes µ to the function

v−a [∂Ωε, µ, k] (10.148)

is a bijection.

Proof. Assume that the function µ ∈ Cm−1,α(∂Ωε,C) solves equation (10.147). Then, by Theorem 6.11,
we immediately deduce that the function u ≡ v−a [∂Ωε, µ, k] is a periodic function in Cm,α(cl Ta[Ωε],C),
that satisfies the first condition of (10.146), and, by equation (10.147), also the third condition of
(10.146). Thus, u is a solution of (10.146). Conversely, let u ∈ Cm,α(cl Ta[Ωε],C) be a solution of
problem (10.146). By Theorem 8.6, there exists a unique function µ ∈ Cm−1,α(∂Ωε,C), such that

u = v−a [∂Ωε, µ, k] in cl Ta[Ωε].

Then, by Theorem 6.11, since u satisfies in particular the third condition in (10.146), we immediately
deduce that the function µ solves equation (10.147).

As we have seen, we can transform (10.146) into an integral equation defined on the ε-dependent
domain ∂Ωε. In order to get rid of such a dependence, we shall introduce the following Theorem.

Theorem 10.108. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[. Then the map
u[ε, δ, ·] of the set of functions θ ∈ Cm−1,α(∂Ω,C) that solve the equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs + F
(
t, δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ δεn−1 log εkn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)

= 0 ∀t ∈ ∂Ω,

(10.149)

to the set of u ∈ Cm,α(cl Ta[Ωε],C) which solve problem (10.146), which takes θ to the function

u[ε, δ, θ] ≡ v−a [∂Ωε, δθ(
1
ε

(· − w)), k] (10.150)

is a bijection.

Proof. It is an immediate consequence of Proposition 10.107, of the Theorem of change of variables in
integrals, and of equalities (6.24), (6.25).

In the following Proposition we study equation (10.149) for (ε, δ) = (0, 0).
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Proposition 10.109. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F be as in (1.56), (10.103), respectively.
Then the integral equation

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)θ(s) dσs + F (t, 0) = 0 ∀t ∈ ∂Ω, (10.151)

which we call the limiting equation, has a unique solution θ ∈ Cm−1,α(∂Ω,C), which we denote by θ̃.
Moreover, ∫

∂Ω

θ̃(s) dσs = −
∫
∂Ω

F (s, 0) dσs. (10.152)

Proof. It is Proposition 10.76.

Now we want to see if equation (10.151) is related to some (limiting) boundary value problem. We
give the following.

Definition 10.110. Let n ≥ 3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω, F be as in (1.56), (10.103),
respectively. We denote by ũ the unique solution in Cm,α(Rn \ Ω,C) of the following boundary value
problem 

∆u(x) = 0 ∀x ∈ Rn \ cl Ω,
∂
∂νΩ

u(x) = −F (x, 0) ∀x ∈ ∂Ω,
limx→∞ u(x) = 0.

(10.153)

Problem (10.153) will be called the limiting boundary value problem.

Remark 10.111. Let n ≥ 3. Let m ∈ N\{0}, α ∈ ]0, 1[. Let Ω, F be as in (1.56), (10.103), respectively.
Let θ̃ be as in Proposition 10.109. We have

ũ(x) =
∫
∂Ω

Sn(x− y)θ̃(y) dσy ∀x ∈ Rn \ Ω.

If n = 2, in general the (classic) simple layer potential for the Laplace equation with moment θ̃ is not
harmonic at infinity, and it does not satisfy the third condition of boundary value problem (10.153).
Moreover, if n = 2, boundary value problem (10.153) does not have in general a solution (unless∫
∂Ω
F (s, 0) dσs = 0.) However, the function ṽ of R2 \ Ω to C, defined by

ṽ(x) ≡
∫
∂Ω

S2(x− y)θ̃(y) dσy ∀x ∈ R2 \ Ω,

is a solution of the following boundary value problem{
∆ṽ(x) = 0 ∀x ∈ R2 \ cl Ω,
∂
∂νΩ

ṽ(x) = −F (x, 0) ∀x ∈ ∂Ω. (10.154)

We are now ready to analyse equation (10.149) around the degenerate case (ε, δ) = (0, 0). However,
since the function Qkn that appears in equation (10.149) (involved in the determination of the moment
of the simple layer potential that solves (10.145)) is identically 0 if n is odd, it is preferable to treat
separately case n even and case n odd.

Theorem 10.112. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.109. Let Λ be the map of ]−ε∗1, ε∗1[× R× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C), defined by

Λ[ε,δ, θ](t)

≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

+ F
(
t, δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.155)

for all (ε, δ, θ) ∈ ]−ε∗1, ε∗1[× R× Cm−1,α(∂Ω,C). Then the following statements hold.
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(i) Equation Λ[0, 0, θ] = 0 is equivalent to the limiting equation (10.151) and has one and only one
solution θ̃ in Cm−1,α(∂Ω,C) (cf. Proposition 10.109.)

(ii) If (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, then equation Λ[ε, δ, θ] = 0 is equivalent to equation (10.149) for θ.

(iii) There exists ε2 ∈ ]0, ε∗1], such that the map Λ of ]−ε2, ε2[×R×Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C)
is real analytic. Moreover, the differential ∂θΛ[0, 0, θ̃] of Λ at (0, 0, θ̃) is a linear homeomorphism
of Cm−1,α(∂Ω,C) onto Cm−1,α(∂Ω,C).

(iv) There exist ε3 ∈ ]0, ε2], δ1 ∈ ]0,+∞[, an open neighbourhood Ũ of θ̃ in Cm−1,α(∂Ω,C) and a real
analytic map Θn[·, ·] of ]−ε3, ε3[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C), such that the set of zeros of the
map Λ in ]−ε3, ε3[× ]−δ1, δ1[× Ũ coincides with the graph of Θn[·, ·]. In particular, Θn[0, 0] = θ̃.

Proof. Statements (i) and (ii) are obvious. By arguing as in the proof of statement (iii) of Theorem
10.79, we immediately deduce that there exists ε2 ∈ ]0, ε∗1], such that the map Λ of ]−ε2, ε2[ ×
R× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is real analytic. By standard calculus in Banach spaces, the
differential ∂θΛ[0, 0, θ̃] of Λ at (0, 0, θ̃) is delivered by the following formula:

∂θΛ[0, 0, θ̃](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω,

for all τ ∈ Cm−1,α(∂Ω,C). By the proof of statement (iii) of Theorem 10.79, the above differential
is a linear homeomorphism. Finally, statement (iv) is an immediate consequence of statement (iii)
and of the Implicit Function Theorem for real analytic maps in Banach spaces (cf. e.g., Prodi and
Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem 15.3].)

Theorem 10.113. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.109. Let ε′1 > 0 be such that

ε log ε ∈ ]−ε′1, ε′1[ ∀ε ∈ ]0, ε∗1[. (10.156)

Let Λ# be the map of ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× R× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C), defined by

Λ#[ε, ε′, δ, θ](t)

≡ 1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs + F
(
t, δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ δεn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.157)

for all (ε, ε′, δ, θ) ∈ ]−ε∗1, ε∗1[× ]−ε′1, ε′1[× R× Cm−1,α(∂Ω,C). Then the following statements hold.

(i) Equation Λ#[0, 0, 0, θ] = 0 is equivalent to the limiting equation (10.151) and has one and only
one solution θ̃ in Cm−1,α(∂Ω,C) (cf. Proposition 10.109.)

(ii) If (ε, δ) ∈ ]0, ε∗1[× ]0,+∞[, then equation Λ#[ε, ε log ε, δ, θ] = 0 is equivalent to equation (10.149)
for θ.

(iii) There exists ε2 ∈ ]0, ε∗1], such that the map Λ# of ]−ε2, ε2[× ]−ε′1, ε′1[× R× Cm−1,α(∂Ω,C) to
Cm−1,α(∂Ω,C) is real analytic. Moreover, the differential ∂θΛ#[0, 0, 0, θ̃] of Λ# at (0, 0, 0, θ̃) is
a linear homeomorphism of Cm−1,α(∂Ω,C) onto Cm−1,α(∂Ω,C).

(iv) There exist ε3 ∈ ]0, ε2], ε′2 ∈ ]0, ε′1], δ1 ∈ ]0,+∞[, an open neighbourhood Ũ of θ̃ in Cm−1,α(∂Ω,C)
and a real analytic map Θ#

n [·, ·, ·] of ]−ε3, ε3[ × ]−ε′2, ε′2[ × ]−δ1, δ1[ to Cm−1,α(∂Ω,C), such
that ε log ε ∈ ]−ε′2, ε′2[ for all ε ∈ ]0, ε3[ and such that the set of zeros of the map Λ# in
]−ε3, ε3[×]−ε′2, ε′2[×]−δ1, δ1[×Ũ coincides with the graph of Θ#

n [·, ·, ·]. In particular, Θ#
n [0, 0, 0] =

θ̃.
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Proof. Statements (i) and (ii) are obvious. By arguing as in the proof of statement (iii) of Theorem
10.80, we deduce that there exists ε2 ∈ ]0, ε∗1], such that the map Λ# of ]−ε2, ε2[ × ]−ε′1, ε′1[ ×
R× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is real analytic. By standard calculus in Banach spaces, the
differential ∂θΛ#[0, 0, 0, θ̃] of Λ# at (0, 0, 0, θ̃) is delivered by the following formula:

∂θΛ#[0, 0, 0, θ̃](τ)(t) =
1
2
τ(t) +

∫
∂Ω

νΩ(t) ·DSn(t− s)τ(s) dσs ∀t ∈ ∂Ω,

for all τ ∈ Cm−1,α(∂Ω,C). By the proof of statement (iii) of Theorem 10.80, the above differential
is a linear homeomorphism. Finally, statement (iv) is an immediate consequence of statement (iii)
and of the Implicit Function Theorem for real analytic maps in Banach spaces (cf. e.g., Prodi and
Ambrosetti [116, Theorem 11.6], Deimling [46, Theorem 15.3].)

We are now in the position to introduce the following.

Definition 10.114. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let u[·, ·, ·] be as in Theorem 10.108. If n is
odd and (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

u[ε, δ](x) ≡ u[ε, δ,Θn[ε, δ]](x) ∀x ∈ cl Ta[Ωε],

where ε3, δ1, Θn are as in Theorem 10.112 (iv). If n is even and (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

u[ε, δ](x) ≡ u[ε, δ,Θ#
n [ε, ε log ε, δ]](x) ∀x ∈ cl Ta[Ωε],

where ε3, δ1, Θ#
n are as in Theorem 10.113 (iv).

Remark 10.115. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem 10.112 (iv) if n
is odd and as in Theorem 10.113 (iv) if n is even. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Then u[ε, δ] is a solution
in Cm,α(cl Ta[Ωε],C) of problem (10.146).

By Theorems 10.112, 10.113 and Definition 10.114, we can deduce the following results.

Theorem 10.116. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem
10.112 (iv). Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then there exist
ε4 ∈ ]0, ε3], and a real analytic operator U of ]−ε4, ε4[× ]−δ1, δ1[ to the space C0(clV,C), such that
the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε, δ](x) = δεn−1U [ε, δ](x) ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[. Moreover,

U [0, 0](x) = −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV.

Proof. Let Θn[·, ·] be as in Theorem 10.112 (iv). Choosing ε4 small enough, we can clearly assume
that (j) holds. Consider now (jj). Let (ε, δ) ∈ ]0, ε4[× ]0, δ1[. We have

u[ε, δ](x) = δεn−1

∫
∂Ω

Sa,kn (x− w − εs)Θn[ε, δ](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U [ε, δ](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θn[ε, δ](s) dσs ∀x ∈ clV,

for all (ε, δ) ∈ ]−ε4, ε4[× ]−δ1, δ1[. By Proposition 6.22, U is a real analytic map of ]−ε4, ε4[× ]−δ1, δ1[
to C0(clV,C). Furthermore, by Proposition 10.109, we have

U [0, 0](x) = Sa,kn (x− w)
∫
∂Ω

Θn[0, 0](s) dσs

= −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV,

since Θn[0, 0] = θ̃. Hence the proof is now complete.
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Theorem 10.117. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be
as in (1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, ε′2, δ1 be as
in Theorem 10.113 (iv). Let V be a bounded open subset of Rn such that clV ∩ Sa[Ω0] = ∅. Then
there exist ε4 ∈ ]0, ε3] and a real analytic operator U# of ]−ε4, ε4[× ]−ε′2, ε′2[× ]−δ1, δ1[ to the space
C0(clV,C), such that the following conditions hold.

(j) clV ⊆ Ta[Ωε] for all ε ∈ ]−ε4, ε4[.

(jj)
u[ε, δ](x) = δεn−1U#[ε, ε log ε, δ](x) ∀x ∈ clV,

for all (ε, δ) ∈ ]0, ε4[× ]0, δ1[. Moreover,

U#[0, 0, 0](x) = −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV.

Proof. Let Θ#
n [·, ·, ·] be as in Theorem 10.113 (iv). Choosing ε4 small enough, we can clearly assume

that (j) holds. Consider now (jj). Let (ε, δ) ∈ ]0, ε4[× ]0, δ1[. We have

u[ε, δ](x) = δεn−1

∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε log ε, δ](s) dσs ∀x ∈ clV.

Thus, it is natural to set

U#[ε, ε′, δ](x) ≡
∫
∂Ω

Sa,kn (x− w − εs)Θ#
n [ε, ε′, δ](s) dσs ∀x ∈ clV,

for all (ε, ε′, δ) ∈ ]−ε4, ε4[ × ]−ε′2, ε′2[ × ]−δ1, δ1[. By Proposition 6.22, U# is a real analytic map of
]−ε4, ε4[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C0(clV,C). Furthermore, by Proposition 10.109, we have

U#[0, 0, 0](x) = Sa,kn (x− w)
∫
∂Ω

Θ#
n [0, 0, 0](s) dσs

= −Sa,kn (x− w)
∫
∂Ω

F (s, 0) dσs ∀x ∈ clV,

since Θ#
n [0, 0, 0] = θ̃. Accordingly, the Theorem is now completely proved.

We have also the following Theorems.

Theorem 10.118. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem
10.112 (iv). Then there exist ε5 ∈ ]0, ε3], and a real analytic operator G of ]−ε5, ε5[× ]−δ1, δ1[ to C,
such that ∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx = δ2εnG[ε, δ], (10.158)

for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

G[0, 0] =
∫

Rn\cl Ω

|∇ũ(x)|2 dx, (10.159)

where ũ is as in Definition 10.110.

Proof. Let Θn[·, ·] be as in Theorem 10.112 (iv). Let id∂Ω denote the identity map in ∂Ω. Let
(ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly, by the periodicity of u[ε, δ], we have∫

Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

= −εn−1

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε, δ] ◦ (w + ε id∂Ω)(t) dσt.
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By equality (6.24) and since Qkn = 0 for n odd, we have

u[ε, δ] ◦ (w+ε id∂Ω)(t) = δεn−1

∫
∂Ω

Sa,kn (ε(t− s))Θn[ε, δ](s) dσs

= δε

∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω.

By Theorem E.6 (i), one can easily show that the map which takes (ε, δ) to the function of the variable
t ∈ ∂Ω defined by ∫

∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,

is a real analytic operator of ]−ε3, ε3[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C). By Theorem C.4, we immediately
deduce that there exists ε5 ∈ ]0, ε3] such that the map of ]−ε5, ε5[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C), which
takes (ε, δ) to the function

∫
∂Ω
Ra,kn (ε(t − s))Θn[ε, δ](s) dσs of the variable t ∈ ∂Ω, is real analytic.

Analogously, we have(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = δ

1
2

Θn[ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Thus, if we set

G̃[ε, δ](t) ≡1
2

Θn[ε, δ](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω, ∀(ε, δ) ∈ ]−ε5, ε5[× ]−δ1, δ1[

then, by arguing as in Theorem 10.112, one can easily show that G̃ is a real analytic map of
]−ε5, ε5[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C).

Hence, if we set

G[ε, δ] ≡−
∫
∂Ω

G̃[ε, δ](t)
∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs dσt

− εn−2

∫
∂Ω

G̃[ε, δ](t)
∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs dσt,

for all (ε, δ) ∈ ]−ε5, ε5[× ]−δ1, δ1[, then by standard properties of functions in Schauder spaces, we
have that G is a real analytic map of ]−ε5, ε5[× ]−δ1, δ1[ to C such that equality (10.158) holds.

Finally, if (ε, δ) = (0, 0), by Folland [52, p. 118] and since G̃[0, 0](·) = −F (·, 0), we have

G[0, 0] =
∫
∂Ω

F (t, 0)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt

=
∫

Rn\cl Ω

|∇ũ(x)|2 dx.

Theorem 10.119. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.109. Let ε3, ε′2, δ1 be as in Theorem 10.113 (iv). Then there exist ε5 ∈ ]0, ε3], and three real
analytic operators G#

1 , G#
2 , G#

3 of ]−ε5, ε5[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C, such that∫
Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

= δ2εnG#
1 [ε, ε log ε, δ] + δ2ε2n−2(log ε)G#

2 [ε, ε log ε, δ] + δ2ε3n−3(log ε)2G#
3 [ε, ε log ε, δ],

(10.160)
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for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[. Moreover,

G#
1 [0, 0, 0] =

∫
∂Ω

F (t, 0)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt

− δ2,nRa,kn (0)|
∫
∂Ω

F (s, 0) dσs|2,
(10.161)

G#
2 [0, 0, 0] = −kn−2Jn(0)|

∫
∂Ω

F (s, 0) dσs|2, (10.162)

G#
3 [0, 0, 0] = 0 (10.163)

where Jn(0) is as in Proposition E.3 (i). In particular, if n > 2, then

G#
1 [0, 0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx, (10.164)

where ũ is as in Definition 10.110.

Proof. Let Θ#
n [·, ·, ·] be as in Theorem 10.113 (iv). Let id∂Ω denote the identity map in ∂Ω. Let

(ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly, by the periodicity of u[ε, δ], we have∫
Pa[Ωε]

|∇u[ε, δ](x)|2 dx−k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

= −εn−1

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t)u[ε, δ] ◦ (w + ε id∂Ω)(t) dσt.

By equality (6.24), we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) =δεn−1

∫
∂Ω

Sa,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

=δε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω.

Thus it is natural to set

F1[ε, ε′, δ](t) ≡
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

F2[ε, ε′, δ](t) ≡ kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

F3[ε, ε′, δ](t) ≡
∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[× ]−δ1, δ1[.
Then clearly

u[ε, δ] ◦ (w + ε id∂Ω)(t) = δεF1[ε, ε log ε, δ](t) + δεn−1(log ε)F2[ε, ε log ε, δ](t) + δεn−1F3[ε, ε log ε, δ](t)
∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. By Theorem E.6 (i) and Theorem C.4, we easily deduce that there exists
ε5 ∈ ]0, ε3] such that the maps F1, F2, and F3 of ]−ε5, ε5[× ]−ε′2, ε′2[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C) are
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real analytic. Analogously, we have(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t)

= δ
1
2

Θ#
n [ε, ε log ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]0, ε3[× ]0, δ1[. Thus, if we set

G̃1[ε, ε′, δ](t) ≡ 1
2

Θ#
n [ε, ε′, δ](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

and
G̃2[ε, ε′, δ](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε5, ε5[× ]−ε′2, ε′2[× ]−δ1, δ1[, then, by arguing as in Theorem 10.113, one can easily
show that G̃1 and G̃2 are real analytic maps of ]−ε5, ε5[× ]−ε′2, ε′2[× ]−δ1, δ1[ to Cm−1,α(∂Ω,C).

Clearly,(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = δG̃1[ε, ε log ε, δ](t) + δεn−1(log ε)G̃2[ε, ε log ε, δ](t)

∀t ∈ ∂Ω, ∀(ε, δ) ∈ ]0, ε5[× ]0, δ1[.

If (ε, δ) ∈ ]0, ε5[× ]0, δ1[, then we have∫
Pa[Ωε]

|∇u[ε, δ](x)|2 dx− k2

∫
Pa[Ωε]

|u[ε, δ](x)|2 dx

=δ2

{
εn
(
−
∫
∂Ω

G̃1[ε, ε log ε, δ]F1[ε, ε log ε, δ] dσ − εn−2

∫
∂Ω

G̃1[ε, ε log ε, δ]F3[ε, ε log ε, δ] dσ
)

+ ε2n−2 log ε
(
−ε
∫
∂Ω

G̃2[ε, ε log ε, δ]F1[ε, ε log ε, δ] dσ −
∫
∂Ω

G̃1[ε, ε log ε, δ]F2[ε, ε log ε, δ] dσ

− εn−1

∫
∂Ω

G̃2[ε, ε log ε, δ]F3[ε, ε log ε, δ] dσ
)

+ ε3n−3(log ε)2
(
−
∫
∂Ω

G̃2[ε, ε log ε, δ]F2[ε, ε log ε, δ] dσ
)}

.

If we set

G#
1 [ε, ε′, δ] ≡−

∫
∂Ω

G̃1[ε, ε′, δ](t)F1[ε, ε′, δ](t) dσt − εn−2

∫
∂Ω

G̃1[ε, ε′, δ](t)F3[ε, ε′, δ](t) dσt,

G#
2 [ε, ε′, δ] ≡− ε

∫
∂Ω

G̃2[ε, ε′, δ](t)F1[ε, ε′, δ](t) dσt −
∫
∂Ω

G̃1[ε, ε′, δ](t)F2[ε, ε′, δ](t) dσt

− εn−1

∫
∂Ω

G̃2[ε, ε′, δ](t)F3[ε, ε′, δ](t) dσt,

G#
3 [ε, ε′, δ] ≡−

∫
∂Ω

G̃2[ε, ε′, δ](t)F2[ε, ε′, δ](t) dσt,

for all (ε, ε′, δ) ∈ ]−ε5, ε5[ × ]−ε′2, ε′2[ × ]−δ1, δ1[, then standard properties of functions in Schauder
spaces and a simple computation show that G#

1 , G#
2 , and G#

3 are real analytic maps of ]−ε5, ε5[×
]−ε′2, ε′2[× ]−δ1, δ1[ in C such that equality (10.160) holds for all (ε, δ) ∈ ]0, ε5[× ]0, δ1[.
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Next, we observe that

G#
1 [0, 0, 0] =

∫
∂Ω

F (t, 0)
∫
∂Ω

Sn(t− s)θ̃(s) dσs dσt − δ2,nRa,kn (0)|
∫
∂Ω

F (s, 0) dσs|2,

G#
2 [0, 0, 0] = −kn−2

Qkn(0)
∫
∂Ω

F (s, 0) dσs
∫
∂Ω

F (s, 0) dσs,

G#
3 [0, 0, 0] = −kn−2kn−2Qkn(0)

∫
∂Ω

F (s, 0) dσs
∫
∂Ω

F (s, 0) dσs
∫
∂Ω

νΩ(t) ·DQkn(0) dσt = 0,

and accordingly equalities (10.161), (10.162), and (10.163) hold. In particular, if n ≥ 4, by Folland
[52, p. 118], we have

G#
1 [0, 0, 0] =

∫
Rn\cl Ω

|∇ũ(x)|2 dx.

Theorem 10.120. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem
10.112 (iv). Then there exist ε6 ∈ ]0, ε3], and a real analytic operator J of ]−ε6, ε6[× ]−δ1, δ1[ to C,
such that ∫

Pa[Ωε]

u[ε, δ](x) dx =
δεn−1

k2
J [ε, δ], (10.165)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. Moreover,

J [0, 0] = −
∫
∂Ω

F (x, 0) dσx. (10.166)

Proof. Let Θn[·, ·] be as in Theorem 10.112 (iv). Let id∂Ω denote the identity map in ∂Ω. Let
(ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly, by the Divergence Theorem and the periodicity of u[ε, δ], we have∫

Pa[Ωε]

u[ε, δ](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε, δ](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε, δ](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε, δ](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε, δ](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25) and since Qkn = 0 for n odd, we have(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) = δ

1
2

Θn[ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω.

We set

J̃ [ε, δ](t) ≡1
2

Θn[ε, δ](t) +
∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θn[ε, δ](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,
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for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By Theorem E.6 (ii) and Theorem C.4, one can easily show that
there exists ε6 ∈ ]0, ε3] such that J̃ is a real analytic map of ]−ε6, ε6[ × ]−δ1, δ1[ to Cm−1,α(∂Ω,C).
Hence, if we set

J [ε, δ] ≡
∫
∂Ω

J̃ [ε, δ](t) dσt,

for all (ε, δ) ∈ ]−ε6, ε6[× ]−δ1, δ1[, then, by standard properties of functions in Schauder spaces, we
have that J is a real analytic map of ]−ε6, ε6[× ]−δ1, δ1[ to C, such that equality (10.165) holds.

Finally, if (ε, δ) = (0, 0), we have

J [0, 0] =
∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

= −
∫
∂Ω

F (x, 0) dσx,

and accordingly (10.166) holds.

Theorem 10.121. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let θ̃ be as in Proposition
10.109. Let ε3, ε′2, δ1 be as in Theorem 10.113 (iv). Then there exist ε6 ∈ ]0, ε3], and two real analytic
operators J#

1 , J#
2 of ]−ε6, ε6[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C, such that∫

Pa[Ωε]

u[ε, δ](x) dx =
δεn−1

k2
J#

1 [ε, ε log ε, δ] +
δε2n−2(log ε)

k2
J#

2 [ε, ε log ε, δ], (10.167)

for all (ε, δ) ∈ ]0, ε6[× ]0, δ1[. Moreover,

J#
1 [0, 0, 0] = −

∫
∂Ω

F (x, 0) dσx. (10.168)

Proof. Let Θ#
n [·, ·, ·] be as in Theorem 10.113 (iv). Let id∂Ω denote the identity map in ∂Ω. Let

(ε, δ) ∈ ]0, ε3[× ]0, δ1[. Clearly, by the Divergence Theorem and the periodicity of u[ε, δ], we have∫
Pa[Ωε]

u[ε, δ](x) dx = − 1
k2

∫
Pa[Ωε]

∆u[ε, δ](x) dx

= − 1
k2

∫
∂Pa[Ωε]

∂

∂νPa[Ωε]
u[ε, δ](x) dσx

= − 1
k2

[∫
∂A

∂

∂νA
u[ε, δ](x) dσx −

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx
]

=
1
k2

∫
∂Ωε

∂

∂νΩε

u[ε, δ](x) dσx.

As a consequence, ∫
Pa[Ωε]

u[ε, δ](x) dx =
εn−1

k2

∫
∂Ω

(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t) dσt.

By equality (6.25), we have(∂u[ε, δ]
∂νΩε

)
◦ (w + ε id∂Ω)(t)

= δ
1
2

Θ#
n [ε, ε log ε, δ](t) + δ

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω.
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We set

J̃1[ε, ε′, δ](t) ≡ 1
2

Θ#
n [ε, ε′, δ](t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

and
J̃2[ε, ε′, δ](t) ≡ kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[× ]−δ1, δ1[. By Theorem E.6 (ii) and Theorem C.4, one can easily
show that there exists ε6 ∈ ]0, ε3] such that J̃#

1 , J̃#
2 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[×

]−δ1, δ1[ to Cm−1,α(∂Ω,C). Hence, if we set

J#
1 [ε, ε′, δ] ≡

∫
∂Ω

J̃#
1 [ε, ε′, δ](t) dσt,

and
J#

2 [ε, ε′, δ] ≡
∫
∂Ω

J̃#
2 [ε, ε′, δ](t) dσt,

for all (ε, ε′, δ) ∈ ]−ε6, ε6[× ]−ε′2, ε′2[× ]−δ1, δ1[, then, by standard properties of functions in Schauder
spaces, we have that J#

1 , J#
2 are real analytic maps of ]−ε6, ε6[× ]−ε′2, ε′2[× ]−δ1, δ1[ to C, such that

equality (10.167) holds.
Finally, if ε = ε′ = δ = 0, we have

J#
1 [0, 0, 0] =

∫
∂Ω

∂

∂νΩ
v−[∂Ω, θ̃, 0](t) dσt

= −
∫
∂Ω

F (x, 0) dσx,

and accordingly (10.168) holds.

We now show that the family {u[ε, δ]}(ε,δ)∈]0,ε3[×]0,δ1[ is essentially unique. Namely, we prove the
following.

Theorem 10.122. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56),
(1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let {(ε̂j , δ̂j)}j∈N be a sequence in
]0, ε∗1[× ]0,+∞[ converging to (0, 0). If {uj}j∈N is a sequence of functions such that

uj ∈ Cm,α(cl Ta[Ωε̂j ],C), (10.169)

uj solves (10.146) with (ε, δ) ≡ (ε̂j , δ̂j), (10.170)

lim
j→∞

uj(w + ε̂j ·) = 0 in Cm−1,α(∂Ω,C), (10.171)

then there exists j0 ∈ N such that

uj = u[ε̂j , δ̂j ] ∀j0 ≤ j ∈ N.

Proof. By Theorem 10.108, for each j ∈ N, there exists a unique function θj in Cm−1,α(∂Ω,C) such
that

uj = u[ε̂j , δ̂j , θj ]. (10.172)

We shall now try to show that

lim
j→∞

θj = θ̃ in Cm−1,α(∂Ω,C). (10.173)

Indeed, if we denote by Ũ the neighbourhood of Theorems 10.112 (iv), 10.113 (iv), the limiting relation
of (10.173) implies that there exists j0 ∈ N such that

(ε̂j , δj , θj) ∈ ]0, ε3[× ]0, δ1[× Ũ , if n is odd,

(ε̂j , ε̂j log ε̂j , δ̂j , θj) ∈ ]0, ε3[× ]−ε′2, ε′2[× ]0, δ1[× Ũ , if n is even,
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for j ≥ j0 and thus Theorems 10.112 (iv), 10.113 (iv) would imply that

θj = Θn[ε̂j , δ̂j ] if n is odd,

θj = Θ#
n [ε̂j , ε̂j log ε̂j , δ̂j ] if n is even,

for j0 ≤ j ∈ N, and that accordingly the Theorem holds (cf. Definition 10.114.) Thus we now turn to
the proof of (10.173). We split our proof into the cases n odd and n even.

We first assume that n is odd. Then we note that equation Λ[ε, δ, θ] = 0 can be rewritten in the
following form

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs

= −F
(
t, δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.174)

for all (ε, δ, θ) in the domain of Λ. Then we define the map N of ]−ε3, ε3[× ]−δ1, δ1[×Cm−1,α(∂Ω,C)
to Cm−1,α(∂Ω,C) by setting N [ε, δ, θ] equal to the left-hand side of the equality in (10.174), for all
(ε, δ, θ) ∈ ]−ε3, ε3[× ]−δ1, δ1[×Cm−1,α(∂Ω,C). By arguing as in the proof of Theorem 10.112, we can
prove that N is real analytic. Since N [ε, δ, ·] is linear for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[, we have

N [ε, δ, θ] = ∂θN [ε, δ, θ̃](θ),

for all (ε, δ, θ) ∈ ]−ε3, ε3[× ]−δ1, δ1[×Cm−1,α(∂Ω,C), and the map of ]−ε3, ε3[× ]−δ1, δ1[ to the space
L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C)) which takes (ε, δ) to N [ε, δ, ·] is real analytic. Since

N [0, 0, ·] = ∂θΛ[0, 0, θ̃](·),

Theorem 10.112 (iii) implies that N [0, 0, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is open in L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))
and since the map which takes a linear invertible operator to its inverse is real analytic (cf. e.g.,
Hille and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exist ε̃ ∈ ]0, ε3[, δ̃ ∈ ]0, δ1[ such that the map
(ε, δ) 7→ N [ε, δ, ·](−1) is real analytic from ]−ε̃, ε̃[× ]−δ̃, δ̃[ to L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C)). Next
we denote by S[ε, δ, θ] the right-hand side of (10.174). Then equation Λ[ε, δ, θ] = 0 (or equivalently
equation (10.174)) can be rewritten in the following form:

θ = N [ε, δ, ·](−1)[S[ε, δ, θ]], (10.175)

for all (ε, δ, θ) ∈ ]−ε̃, ε̃[× ]−δ̃, δ̃[×Cm−1,α(∂Ω,C). Moreover, if j ∈ N, we observe that by (10.172) we
have

uj(w + ε̂jt) = u[ε̂j , δ̂j , θj ](w + ε̂jt)

= δ̂j ε̂j

∫
∂Ω

Sn(t− s, ε̂jk)θj(s) dσs + δ̂j ε̂
n−1
j

∫
∂Ω

Ra,kn (ε̂j(t− s))θj(s) dσs ∀t ∈ ∂Ω.

(10.176)

Next we note that condition (10.171), equality (10.176), the proof of Theorem 10.112, the real
analyticity of TF and standard calculus in Banach space imply that

lim
j→∞

S[ε̂j , δ̂j , θj ] = S[0, 0, θ̃] in Cm−1,α(∂Ω,C). (10.177)

Then by (10.175) and by the real analyticity of (ε, δ) 7→ N [ε, δ, ·](−1), and by the bilinearity and
continuity of the operator of L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C),
which takes a pair (T1, T2) to T1[T2], by (10.177) we conclude that

lim
j→∞

θj = lim
j→∞

N [ε̂j , δ̂j , ·](−1)[S[ε̂j , δ̂j , θj ]]

= N [0, 0, ·](−1)[S[0, 0, θ̃]] = θ̃ in Cm−1,α(∂Ω,C),

and, consequently, that (10.173) holds. Thus the proof of case n odd is complete.
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We now consider case n even. We proceed as in case n odd. We note that equation Λ#[ε, ε′, δ, θ] = 0
can be rewritten in the following form

1
2
θ(t) +

∫
∂Ω

νΩ(t) ·DRnSn(t− s, εk)θ(s) dσs + εn−2ε′kn−2

∫
∂Ω

νΩ(t) ·DQkn(ε(t− s))θ(s) dσs

+ εn−1

∫
∂Ω

νΩ(t) ·DRa,kn (ε(t− s))θ(s) dσs = −F
(
t, δε

∫
∂Ω

Sn(t− s, εk)θ(s) dσs

+ δεn−2ε′kn−2

∫
∂Ω

Qkn(ε(t− s))θ(s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))θ(s) dσs
)
∀t ∈ ∂Ω,

(10.178)

for all (ε, ε′, δ, θ) in the domain of Λ#. We define the map N# of ]−ε3, ε3[ × ]−ε′2, ε′2[ × ]−δ1, δ1[ ×
Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) by setting N#[ε, ε′, δ, θ] equal to the left-hand side of the equality
in (10.178), for all (ε, ε′, δ, θ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[× ]−δ1, δ1[× Cm−1,α(∂Ω,C). By arguing as in the
proof of Theorem 10.113, we can prove that N# is real analytic. Since N#[ε, ε′, δ, ·] is linear for all
(ε, ε′, δ) ∈ ]−ε3, ε3[× ]−ε′2, ε′2[× ]−δ1, δ1[, we have

N#[ε, ε′, δ, θ] = ∂θN
#[ε, ε′, δ, θ̃](θ),

for all (ε, ε′, δ, θ) ∈ ]−ε3, ε3[×]−ε′2, ε′2[×]−δ1, δ1[×Cm−1,α(∂Ω,C), and the map of ]−ε3, ε3[×]−ε′2, ε′2[×
]−δ1, δ1[ to the space L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C)) which takes (ε, ε′, δ) to N#[ε, ε′, δ, ·] is real
analytic. Since

N#[0, 0, 0, ·] = ∂θΛ#[0, 0, 0, θ̃](·),
Theorem 10.113 (iii) implies that N#[0, 0, 0, ·] is also a linear homeomorphism. Since the set of linear
homeomorphisms of Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is open in L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))
and since the map which takes a linear invertible operator to its inverse is real analytic (cf. e.g.,
Hille and Phillips [61, Theorems 4.3.2 and 4.3.4]), there exists (ε̃, ε̃′, δ̃) ∈ ]0, ε3[ × ]0, ε′2[ × ]0, δ1[
such that the map (ε, ε′, δ) 7→ N#[ε, ε′, δ, ·](−1) is real analytic from ]−ε̃, ε̃[ × ]−ε̃′, ε̃′[ × ]−̃δ, δ̃[ to
L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C)), and such that

ε log ε ∈ ]−ε̃′, ε̃′[ ∀ε ∈ ]0, ε̃[.

Next we denote by S#[ε, ε′, δ, θ] the right-hand side of (10.178). Then equation Λ#[ε, ε′, δ, θ] = 0 (or
equivalently equation (10.178)) can be rewritten in the following form:

θ = N#[ε, ε′, δ, ·](−1)[S#[ε, ε′, δ, θ]], (10.179)

for all (ε, ε′, δ, θ) ∈ ]−ε̃, ε̃[× ]−ε̃′, ε̃′[× ]−δ̃, δ̃[× Cm−1,α(∂Ω,C). Moreover, if j ∈ N, we observe that
by (10.172) we have

uj(w + ε̂jt) = u[ε̂j , δ̂j , θj ](w + ε̂jt)

=δ̂j ε̂j
∫
∂Ω

Sn(t− s, ε̂jk)θj(s) dσs + δ̂j ε̂
n−2
j (ε̂j log ε̂j)kn−2

∫
∂Ω

Qkn(ε̂j(t− s))θj(s) dσs

+ δ̂j ε̂
n−1
j

∫
∂Ω

Ra,kn (ε̂j(t− s))θj(s) dσs ∀t ∈ ∂Ω.

(10.180)

Next we note that
lim
j→∞

(ε̂j , ε̂j log ε̂j , δ̂j) = (0, 0, 0) (10.181)

in ]0, ε̃[× ]−ε̃′, ε̃′[× ]0, δ̃[. Then condition (10.171), equality (10.180), the proof of Theorem 10.113,
the real analyticity of TF and standard calculus in Banach space imply that

lim
j→∞

S#[ε̂j , ε̂j log ε̂j , δ̂j , θj ] = S#[0, 0, 0, θ̃] in Cm−1,α(∂Ω,C). (10.182)

Then by (10.179) and by the real analyticity of (ε, ε′, δ) 7→ N#[ε, ε′, δ, ·](−1), and by the bilinearity and
continuity of the operator of L(Cm−1,α(∂Ω,C), Cm−1,α(∂Ω,C))× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C),
which takes a pair (T1, T2) to T1[T2] and by (10.181), by (10.182) we conclude that

lim
j→∞

θj = lim
j→∞

N#[ε̂j , ε̂j log ε̂j , δ̂j , ·](−1)[S#[ε̂j , ε̂j log ε̂j , δ̂j , θj ]]

= N#[0, 0, 0, ·](−1)[S#[0, 0, 0, θ̃]] = θ̃ in Cm−1,α(∂Ω,C),

and, consequently, that (10.173) holds. Thus the proof of case n even is complete.
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We give the following definition.

Definition 10.123. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem 10.112 (iv) if n
is odd, and as in Theorem 10.113 (iv) if n is even. Let u[·, ·] be as in Definition 10.114. For each pair
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

u(ε,δ)(x) ≡ u[ε, δ](
x

δ
) ∀x ∈ cl Ta(ε, δ).

Remark 10.124. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem 10.112 (iv) if n
is odd, and as in Theorem 10.113 (iv) if n is even. For each (ε, δ) ∈ ]0, ε3[× ]0, δ1[, u(ε,δ) is a solution
in Cm,α(cl Ta(ε, δ),C) of problem (10.145).

Our aim is to study the asymptotic behaviour of u(ε,δ) as (ε, δ) tends to (0, 0). As a first step, we
study the behaviour of u[ε, δ] as (ε, δ) tends to (0, 0).

Proposition 10.125. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be
as in (1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in
(10.104). Let ε3, δ1 be as in Theorem 10.112 (iv). Let u[·, ·] be as in Definition 10.114. Then there
exist ε̃ ∈ ]0, ε3[ and a real analytic map N of ]−ε̃, ε̃[× ]−δ1, δ1[ to Cm,α(∂Ω,C) such that

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Re

(
N [ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Im

(
N [ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] = 0 in L∞(Rn,C).

Proof. Let ε3, δ1, Θn be as in Theorem 10.112 (iv). Let id∂Ω denote the identity map in ∂Ω. If
(ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) = δε

∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs + δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs

∀t ∈ ∂Ω.

We set

N [ε, δ](t) ≡
∫
∂Ω

Sn(t− s, εk)Θn[ε, δ](s) dσs + εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θn[ε, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, δ) ∈ ]−ε3, ε3[× ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume (cf. Theorem C.4
and the proof of Theorem 10.118) that N is a real analytic map of ]−ε̃, ε̃[× ]−δ1, δ1[ to Cm,α(∂Ω,C).
By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Re

(
N [ε, δ]

)
‖C0(∂Ω) ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ1[,

and
‖Im

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δε‖Im

(
N [ε, δ]

)
‖C0(∂Ω) ∀(ε, δ) ∈ ]0, ε̃[× ]0, δ1[.

Accordingly,
lim

(ε,δ)→(0+,0+)
Re
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and
lim

(ε,δ)→(0+,0+)
Im
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and so the conclusion follows.
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Proposition 10.126. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let ε3, ε′2, δ1 be as in Theorem 10.113 (iv). Let u[·, ·] be as in Definition 10.114. Then there exist
ε̃ ∈ ]0, ε3[ and two real analytic maps N#

1 , N#
2 of ]−ε̃, ε̃[× ]−ε′2, ε′2[× ]−δ1, δ1[ to Cm,α(∂Ω,C) such

that

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,1)[u[ε, δ]] = 0 in L∞(Rn,C).

Proof. Let ε3, ε′2, δ1, Θ#
n be as in Theorem 10.113 (iv). If (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we have

u[ε, δ] ◦ (w + ε id∂Ω)(t) =δε
∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1(log ε)kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs

+ δεn−1

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε log ε, δ](s) dσs ∀t ∈ ∂Ω.

We set

N#
1 [ε, ε′, δ](t) ≡

∫
∂Ω

Sn(t− s, εk)Θ#
n [ε, ε′, δ](s) dσs

+ εn−2

∫
∂Ω

Ra,kn (ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

and

N#
2 [ε, ε′, δ](t) ≡kn−2

∫
∂Ω

Qkn(ε(t− s))Θ#
n [ε, ε′, δ](s) dσs ∀t ∈ ∂Ω,

for all (ε, ε′, δ) ∈ ]−ε3, ε3[ × ]−ε′2, ε′2[ × ]−δ1, δ1[. By taking ε̃ ∈ ]0, ε3[ small enough, we can assume
(cf. Theorem C.4 and the proof of Theorem 10.119) that N#

1 , N#
2 are real analytic maps of ]−ε̃, ε̃[×

]−ε′2, ε′2[× ]−δ1, δ1[ to Cm,α(∂Ω,C). Clearly,

u[ε, δ] ◦ (w + ε id∂Ω)(t) = δεN#
1 [ε, ε log ε, δ](t) + δεn−1(log ε)N#

2 [ε, ε log ε, δ](t) ∀t ∈ ∂Ω,
∀(ε, δ) ∈]0, ε̃[× ]0, δ1[.

By Corollary 6.24, we have

‖Re
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.
Accordingly,

lim
(ε,δ)→(0+,0+)

Re
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and
lim

(ε,δ)→(0+,0+)
Im
(
E(ε,1)[u[ε, δ]]

)
= 0 in L∞(Rn),

and so the conclusion follows.
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10.7.2 Asymptotic behaviour of u(ε,δ)

In the following Theorems we deduce by Propositions 10.125, 10.126 the convergence of u(ε,δ) as (ε, δ)
tends to (0, 0). Namely, we prove the following.

Theorem 10.127. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let δ1 be as in Theorem 10.112 (iv). Let ε̃, N be as in Proposition 10.125. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δε‖Re

(
N [ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δε‖Im

(
N [ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δε‖Re
(
N [ε, δ]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δε‖Im
(
N [ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.

Theorem 10.128. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in
(1.56), (1.57), (10.102), (10.103), respectively. Let Im(k) 6= 0 and Re(k) = 0. Let ε∗1 be as in (10.104).
Let δ1 be as in Theorem 10.113 (iv). Let ε̃, N#

1 , N#
2 be as in Proposition 10.126. Then

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Re

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = δ‖Im

(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[. Moreover, as a consequence,

lim
(ε,δ)→(0+,0+)

E(ε,δ)[u(ε,δ)] = 0 in L∞(Rn,C).

Proof. It suffices to observe that

‖Re
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Re

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δ‖Re
(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

and

‖Im
(
E(ε,δ)[u(ε,δ)]

)
‖L∞(Rn) = ‖Im

(
E(ε,1)[u[ε, δ]]

)
‖L∞(Rn)

= δ‖Im
(
εN#

1 [ε, ε log ε, δ] + εn−1(log ε)N#
2 [ε, ε log ε, δ]

)
‖C0(∂Ω),

for all (ε, δ) ∈ ]0, ε̃[× ]0, δ1[.

Then we have the following Theorem, where we consider a functional associated to an extension of
u(ε,δ). Moreover, we evaluate such a functional on suitable characteristic functions.

Theorem 10.129. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as
in (1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let δ1 be as in Theorem
10.112 (iv). Let ε6, J be as in Theorem 10.120. Let r > 0 and ȳ ∈ Rn. Then∫

Rn
E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =

rn+1

l

εn−1

k2
J
[
ε,
r

l

]
, (10.183)

for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ1).



424
Singular perturbation and homogenization problems for the Helmholtz equation with Robin boundary

conditions

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0} such that l > (r/δ1). Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that ∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε, (r/l)]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε, (r/l)](t) dt

=
rn

ln
r

l

εn−1

k2
J
[
ε,
r

l

]
.

As a consequence, ∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
rn+1

l

εn−1

k2
J
[
ε,
r

l

]
,

and the conclusion follows.

Theorem 10.130. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as
in (1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let δ1 be as in Theorem
10.113 (iv). Let ε6, J

#
1 , J#

2 be as in Theorem 10.121. Let r > 0 and ȳ ∈ Rn. Then∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
rn+1

l

{εn−1

k2
J#

1

[
ε, ε log ε,

r

l

]
+
ε2n−2(log ε)

k2
J#

2

[
ε, ε log ε,

r

l

]}
,

(10.184)
for all ε ∈ ]0, ε6[, and for all l ∈ N \ {0} such that l > (r/δ1).

Proof. Let ε ∈ ]0, ε6[, l ∈ N \ {0} such that l > (r/δ1). Then, by the periodicity of u(ε,r/l), we have∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
∫
rA+ȳ

E(ε,r/l)[u(ε,r/l)](x) dx

=
∫
rA

E(ε,r/l)[u(ε,r/l)](x) dx

= ln
∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx.

Then we note that∫
r
lA

E(ε,r/l)[u(ε,r/l)](x) dx =
∫
r
l Pa[Ωε]

u(ε,r/l)(x) dx

=
∫
r
l Pa[Ωε]

u[ε, (r/l)]
( l
r
x
)
dx

=
rn

ln

∫
Pa[Ωε]

u[ε, (r/l)](t) dt

=
rn

ln
r

l

{εn−1

k2
J#

1

[
ε, ε log ε,

r

l

]
+
ε2n−2(log ε)

k2
J#

2

[
ε, ε log ε,

r

l

]}
.

As a consequence,∫
Rn

E(ε,r/l)[u(ε,r/l)](x)χrA+ȳ(x) dx =
rn+1

l

{εn−1

k2
J#

1

[
ε, ε log ε,

r

l

]
+
ε2n−2(log ε)

k2
J#

2

[
ε, ε log ε,

r

l

]}
,

and the conclusion follows.
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We give the following.

Definition 10.131. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem 10.112 (iv) if n
is odd, and as in Theorem 10.113 (iv) if n is even. For each pair (ε, δ) ∈ ]0, ε3[× ]0, δ1[, we set

F(ε, δ) ≡
∫
A∩Ta(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
A∩Ta(ε,δ)

|u(ε,δ)(x)|2 dx.

Remark 10.132. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as in (1.56), (1.57),
(10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let ε3, δ1 be as in Theorem 10.112 (iv) if n
is odd, and as in Theorem 10.113 (iv) if n is even. Let (ε, δ) ∈ ]0, ε3[× ]0, δ1[. We have∫

Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx = δn
∫

Pa(ε,1)

|(∇u(ε,δ))(δt)|
2
dt

= δn−2

∫
Pa[Ωε]

|∇u[ε, δ](t)|2 dt,

and ∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δn
∫

Pa[Ωε]

|u[ε, δ](t)|2 dt.

Accordingly,∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

= δn−2
(∫

Pa[Ωε]

|∇u[ε, δ](t)|2 dt− k2

∫
Pa[Ωε]

|u[ε, δ](t)|2 dt
)
.

In the following Propositions we represent the function F(·, ·) by means of real analytic functions.

Proposition 10.133. Let n be odd. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as
in (1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let δ1 be as in Theorem
10.112 (iv). Let ε5, G be as in Theorem 10.118. Then

F
(
ε,

1
l

)
= εnG[ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N such that l > (1/δ1).

Proof. Let (ε, δ) ∈ ]0, ε5[× ]0, δ1[. By Remark 10.132 and Theorem 10.118, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx = δnεnG[ε, δ]

where G is as in Theorem 10.118. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N is such that l > (1/δ1),
then we have

F
(
ε,

1
l

)
= ln

1
ln
εnG[ε, (1/l)],

= εnG[ε, (1/l)],

and the conclusion easily follows.

Proposition 10.134. Let n be even. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let w ∈ A. Let Ω, ε1, k, F be as
in (1.56), (1.57), (10.102), (10.103), respectively. Let ε∗1 be as in (10.104). Let δ1 be as in Theorem
10.113 (iv). Let ε5, G

#
1 , G#

2 , and G#
3 be as in Theorem 10.119. Then

F
(
ε,

1
l

)
=εnG#

1 [ε, ε log ε, (1/l)]

+ ε2n−2(log ε)G#
2 [ε, ε log ε, (1/l)]

+ ε3n−3(log ε)2G#
3 [ε, ε log ε, (1/l)],

for all ε ∈ ]0, ε5[ and for all l ∈ N such that l > (1/δ1).
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Proof. Let (ε, δ) ∈ ]0, ε5[× ]0, δ1[. By Remark 10.132 and Theorem 10.119, we have∫
Pa(ε,δ)

|∇u(ε,δ)(x)|2 dx− k2

δ2

∫
Pa(ε,δ)

|u(ε,δ)(x)|2 dx

=δn
{
εnG#

1 [ε, ε log ε, δ] + ε2n−2(log ε)G#
2 [ε, ε log ε, δ] + ε3n−3(log ε)2G#

3 [ε, ε log ε, δ]
}
,

where G#
1 , G#

2 , and G#
3 are as in Theorem 10.119. On the other hand, if ε ∈ ]0, ε5[ and l ∈ N is such

that l > (1/δ1), then we have

F
(
ε,

1
l

)
=ln

1
ln

{
εnG#

1 [ε, ε log ε, (1/l)]

+ ε2n−2(log ε)G#
2 [ε, ε log ε, (1/l)]

+ ε3n−3(log ε)2G#
3 [ε, ε log ε, (1/l)]

}
,

=εnG#
1 [ε, ε log ε, (1/l)]

+ ε2n−2(log ε)G#
2 [ε, ε log ε, (1/l)]

+ ε3n−3(log ε)2G#
3 [ε, ε log ε, (1/l)],

and the conclusion easily follows.



CHAPTER 11

Periodic analogue of the fundamental solution and
real analyticity of periodic layer potentials of some
linear differential operators with constant coefficients

In this Chapter we prove a necessary and sufficient condition on a linear differential operator with
constant coefficients for the existence of a periodic analogue of the fundamental solution. Then we
deduce by Dalla Riva and Lanza [40] a real analyticity theorem for the periodic layer potentials
associated with a strongly elliptic linear differential operator with constant coefficients (see also Lanza
and Preciso [83], Lanza and Rossi [85, 86].) The approach adopted is the one of Dalla Riva, Lanza,
Preciso, Rossi [115], [83], [84], [85], [86], [40]. For a generalization of some results contained in this
Chapter, we refer to [81].

We retain the notation introduced in Sections 1.1 and 1.3.

11.1 On the existence of a periodic analogue of the fundamen-
tal solution of a linear differential operator with constant
coefficients

In this Section we prove a Theorem on the existence of a periodic analogue of the fundamental solution
of a linear differential operator with constant coefficients.

We retain the notation of Section 1.1 and of Appendix A (see also the notation introduced in
Subsection 1.2.1.)

We recall the following notation (cf. Subsection 1.2.1.)
Let y ∈ Rn. If f ∈ S(Rn), we denote by τyf the element of S(Rn) defined by

τyf(x) ≡ f(x− y) ∀x ∈ Rn.

If u ∈ S ′(Rn) (resp. u ∈ D′(Rn,C)), then we denote by τyu the element of S ′(Rn) (resp. the element
of D′(Rn,C)) defined by

〈τyu, f〉 ≡ 〈u, τ−yf〉 ,

for all f ∈ S(Rn) (resp. for all f ∈ D(Rn,C)).
Analogosuly, if u ∈ S ′(Rn) (resp. u ∈ D′(Rn,C)) and T is an invertible linear map of Rn to Rn,

then we denote by u ◦ T the element of S ′(Rn) (resp. the element of D′(Rn,C)) defined by

〈u ◦ T, f〉 ≡ |detT |−1 〈
u, f ◦ T−1

〉
,

for all f ∈ S(Rn) (resp. for all f ∈ D(Rn,C)).
Then we have the following variant of a well known result (cf. Folland [53, pp. 297-299], Schmeisser

and Triebel [125, pp. 143-145].)

427



428
Periodic analogue of the fundamental solution and real analyticity of periodic layer potentials of some

linear differential operators with constant coefficients

Proposition 11.1. Let G ∈ D′(Rn,C) be such that

τlajG = G ∀l ∈ Z, ∀j ∈ {1, . . . , n}. (11.1)

Then G ∈ S ′(Rn) and
G =

∑
z∈Zn

g(z)E2πa−1(z) in S ′(Rn), (11.2)

where g is a function of Zn to C, such that

|g(z)| ≤ C(1 + |z|)N ∀z ∈ Zn,

for some C,N > 0. Moreover, if g̃ is another function of Zn to C, such that

|g̃(z)| ≤ C̃(1 + |z|)Ñ ∀z ∈ Zn,

for some C̃, Ñ > 0, and such that

G =
∑
z∈Zn

g̃(z)E2πa−1(z) in S ′(Rn),

then we have g̃(z) = g(z) for all z ∈ Zn.

Proof. Let G ∈ D′(Rn,C) be such that (11.1) holds. Set

Ga ≡ G ◦ a,

(cf. (1.7).) Then, clearly,

τlejGa = Ga ∀l ∈ Z, ∀j ∈ {1, . . . , n},

where, as usual, {e1, . . . , en} denotes the canonical basis of Rn. Then, by Folland [53, pp. 297-299],
Ga ∈ S ′(Rn) and there exists a (unique) function ga of Zn to C, such that

|ga(z)| ≤ C(1 + |z|)N ∀z ∈ Zn,

for some C,N > 0, and such that

Ga =
∑
z∈Zn

ga(z)E2πz in S ′(Rn).

Since Ga ◦ a−1 ∈ S ′(Rn) and Ga ◦ a−1 = G in D′(Rn,C), we have G ∈ S ′(Rn). Then a simple
computation shows that

E2πz ◦ a−1 = E2πa−1(z) ∀z ∈ Zn.
Then, by continuity of the operator of S ′(Rn) to S ′(Rn) which takes u to u ◦ a−1, we have

G = Ga ◦ a−1 =
∑
z∈Zn

ga(z)E2πa−1(z) in S ′(Rn).

Accordingly, the first part of the Proposition is proved. Now let g, g̃ be two functions of Zn to C such
that

|g(z)| ≤ C(1 + |z|)N , |g̃(z)| ≤ C̃(1 + |z|)Ñ ∀z ∈ Zn,
for some C,N, C̃, Ñ > 0, and such that

G =
∑
z∈Zn

g(z)E2πa−1(z), G =
∑
z∈Zn

g̃(z)E2πa−1(z) in S ′(Rn).

Then a simple computation shows that

E2πa−1(z) ◦ a = E2πz ∀z ∈ Zn.

Then, by continuity of the operator of S ′(Rn) to S ′(Rn) which takes u in S ′(Rn) to u ◦ a, we have

G ◦ a =
∑
z∈Zn

g(z)E2πz, G ◦ a =
∑
z∈Zn

g̃(z)E2πz in S ′(Rn).

As a consequence, by Folland [53, pp. 297-299], we have g(z) = g̃(z) for all z ∈ Zn. Hence the proof is
now complete.
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Then we have the following Theorem.

Theorem 11.2. Let L be the linear differential operator with constant coefficients defined by

L ≡
∑
β∈Nn
|β|≤k

cβD
β ,

for some k ∈ N \ {0}, {cβ}|β|≤k ⊆ C. We set

P (x) ≡
∑
β∈Nn
|β|≤k

cβx
β ∀x ∈ Rn.

Then there exists a distribution G ∈ D′(Rn,C), such that

(i)
τlajG = G ∀l ∈ Z, ∀j ∈ {1, . . . , n},

and

(ii)
L[G] =

∑
z∈Zn

δa(z)

in the sense of distributions,

if and only if

(j)
P (i2πa−1(z)) 6= 0 ∀z ∈ Zn,

and

(jj)
1

|P (i2πa−1(z))|
≤ C(1 + |z|)N ∀z ∈ Zn,

for some C, N > 0.

In particular, if (j) and (jj) hold, then G is unique, G ∈ S ′(Rn), and it is delivered by the following
formula

G ≡
∑
z∈Zn

1
|A|nP (i2πa−1(z))

E2πa−1(z) in S ′(Rn) (11.3)

(cf. Proposition 1.1.)

Proof. We first assume that there exists a distribution G ∈ D′(Rn,C) such that (i) and (ii) hold, and
we prove that (j) and (jj) must hold, and that G must be delivered by (11.3). Since the distribution
G is periodic, then, by Proposition 11.1, we have G ∈ S ′(Rn). Moreover, there exists a unique function
g of Zn to C, such that

|g(z)| ≤ C̃(1 + |z|)N ∀z ∈ Zn,

for some C̃, N > 0, and such that

G =
∑
z∈Zn

g(z)E2πa−1(z) in S ′(Rn).

Consequently,

L[G] =
∑
z∈Zn

g(z)

(∑
β∈Nn
|β|≤k

cβ
(
i2πa−1(z)

)β)
E2πa−1(z)

=
∑
z∈Zn

g(z)P
(
i2πa−1(z)

)
E2πa−1(z).
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By the Poisson summation Formula (see Theorem A.10 and Proposition 1.2) and Proposition 11.1, we
have

L[G] =
∑
z∈Zn

δa(z) in S ′(Rn),

if and only if

g(z)P
(
i2πa−1(z)

)
=

1
|A|n

∀z ∈ Zn.

Thus,
P
(
i2πa−1(z)

)
6= 0 ∀z ∈ Zn,

g(z) =
1

|A|nP
(
i2πa−1(z)

) ∀z ∈ Zn,

and
1

|P
(
i2πa−1(z)

)
|
≤ |A|nC̃(1 + |z|)N ∀z ∈ Zn.

Hence, (j) and (jj) hold, and G must be delivered by (11.3). As a consequence, if such a distribution
G exists, it is unique.

Conversely, if (j) and (jj) hold, then, by reading backward the above argument, one can easily
show that the distribution G defined in (11.3), satisfies (i) and (ii).

Now we want to show some conditions on the linear differential operator L that ensure, in particular,
that condition (jj) of Theorem 11.2 is satisfied.

Corollary 11.3. Let L be the linear differential operator with constant coefficients defined by

L ≡
∑
β∈Nn
|β|≤2k

cβD
β ,

for some k ∈ N \ {0}, {cβ}|β|≤k ⊆ C. We set

P (x) ≡
∑
β∈Nn
|β|≤2k

cβx
β ∀x ∈ Rn.

Assume that

(i)
P (i2πa−1(z)) 6= 0 ∀z ∈ Zn,

and

(ii)
Re
{ ∑
β∈Nn
|β|=2k

cβx
β
}
≥ C|x|2k ∀x ∈ Rn,

for some C > 0.

Then there exists a unique distribution G ∈ D′(Rn,C), delivered by equality (11.3), such that

(j)
τlajG = G ∀l ∈ Z, ∀j ∈ {1, . . . , n},

and

(jj)
L[G] =

∑
z∈Zn

δa(z)

in the sense of distributions.
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Proof. Clearly it suffices to prove that by (ii) we have that condition (jj) of Theorem 11.2 holds. In
order to do so, we observe that if (ii) holds, then one can easily show that

lim
x∈Rn
x→∞

|Re{P (i2πa−1(x))}| = +∞.

Accordingly, there exists a constant C ′ > 0 such that

1
|P (i2πa−1(z))|

≤ C ′ ∀z ∈ Zn,

and so (jj) of Theorem 11.2 holds.

Corollary 11.4. Let L be the linear differential operator with constant coefficients defined by

L ≡
∑
β∈Nn
|β|≤2k

cβD
β ,

for some k ∈ N \ {0}, {cβ}|β|≤k ⊆ R. We set

P (x) ≡
∑
β∈Nn
|β|≤2k

cβx
β ∀x ∈ Rn.

Assume that

(i)
P (i2πa−1(z)) 6= 0 ∀z ∈ Zn,

and

(ii) ∑
β∈Nn
|β|=2k

cβx
β ≥ C|x|2k ∀x ∈ Rn,

for some C > 0.

Then there exists a unique distribution G ∈ D′(Rn,C), delivered by equality (11.3), such that

(j)
τlajG = G ∀l ∈ Z, ∀j ∈ {1, . . . , n},

and

(jj)
L[G] =

∑
z∈Zn

δa(z)

in the sense of distributions.

Moreover,
〈G,φ〉 ∈ R ∀φ ∈ D(Rn,R). (11.4)

Proof. Obviously, by virtue of Corollary 11.3, it follows that there exists a unique distribution
G ∈ D′(Rn,C) such that (j) and (jj) hold. We need to prove that (11.4) holds. We note that

P (i2πa−1(z)) = P (i2πa−1(−z)) ∀z ∈ Zn.

Accordingly,

1
P (i2πa−1(z))

〈E2πa−1(z), φ〉 =
1

P (i2πa−1(−z))
〈E2πa−1(−z), φ〉 ∀φ ∈ D(Rn,R),

for all z ∈ Zn. As a consequence,

〈G,φ〉 = 〈G,φ〉 ∀φ ∈ D(Rn,R),

and the proof is complete.
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11.2 Real analyticity of periodic layer potentials of general sec-
ond order differential operators with constant coefficients

In this Section we deduce by the real analyticity of classic layer potentials of general second order
differential operators with constant coefficients, proved by Dalla Riva and Lanza [40], an analogous
result for the corresponding periodic layer potentials. We have the following.

Theorem 11.5. Let L be the linear differential operator with constant coefficients defined by

L ≡
∑
β∈Nn
|β|≤2

cβD
β ,

with cβ ∈ C, for all β ∈ Nn such that |β| ≤ 2. We set

P (x) ≡
∑
β∈Nn
|β|≤2

cβx
β ∀x ∈ Rn.

Assume that

(i)
P (i2πa−1(z)) 6= 0 ∀z ∈ Zn,

and

(ii)
Re
{∑
β∈Nn
|β|=2

cβx
β
}
≥ C|x|2 ∀x ∈ Rn,

for some C > 0.

Let G be the element of D′(Rn,C) defined by (11.3). Let the function SLn of Rn \ {0} to C be a
fundamental solution of L. Then the following statements hold.

(i) There exists a unique function Sa,Ln in L1
loc(Rn,C) such that∫

Rn
Sa,Ln (x)φ(x) dx = 〈G,φ〉 ∀φ ∈ D(Rn,C). (11.5)

Therefore, in particular
L[Sa,Ln ] =

∑
z∈Zn

δa(z) (11.6)

in the sense of distributions. Moreover, up to modifications on a set of measure zero, Sa,Ln is a
real analytic function of Rn \ Zan to C, such that

L[Sa,Ln ](x) = 0 ∀x ∈ Rn \ Zan (11.7)

and
Sa,Ln (x+ ai) = Sa,Ln (x) ∀x ∈ Rn \ Zan, ∀i ∈ {1, . . . , n}. (11.8)

(ii) There exists a unique real analytic function Ra,Ln of (Rn \ Zan) ∪ {0} to C, such that

Sa,Ln (x) = SLn (x) +Ra,Ln (x) ∀x ∈ Rn \ Zan.

Moreover,
L[Ra,Ln ](x) = 0 ∀x ∈ (Rn \ Zan) ∪ {0}.

Proof. It is a straighforward modification of the proof of Theorem 6.3, where the analogous result has
been proved for the Helmholtz operator ∆ + k2. See also the proof of Theorem 1.4 where the Laplace
operator is considered.
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From now on, we shall consider only linear differential operators L as in Theorem 11.5. If L is as
in Theorem 11.5, then we set

c(2)(L) ≡ (c(2)(L)lj)l,j=1,...,n c(1)(L) ≡ (c(1)(L)j)j=1,...,n

with c(2)(L)lj ≡
cel+ej
2−δl,j and c(1)(L)j ≡ cej .

We collect in the following statement some facts on the periodic layer potentials associated with
Sa,Ln .

Theorem 11.6. Let L and Sa,Ln be as in Theorem 11.5. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be as in
(1.46). Let V be an open bounded connected subset of Rn of class Cm,α, such that clA ⊆ V and

clV ∩ cl(I + a(z)) = ∅ ∀z ∈ Zn \ {0}.

Set
W ≡ V \ cl I.

Then the following statements hold.

(i) If µ ∈ Cm−1,α(∂I,C), then the function va[∂I, µ, L] of Rn to C defined by

va[∂I, µ, L](t) ≡
∫
∂I
Sa,Ln (t− s)µ(s) dσs ∀t ∈ Rn,

is continuous. Moreover,

L[va[∂I, µ, L]](t) = 0 ∀t ∈ Sa[I] ∪ Ta[I],

and
va[∂I, µ, L](t+ ai) = va[∂I, µ, L](t) ∀t ∈ Sa[I] ∪ Ta[I], ∀i ∈ {1, . . . , n}.

(ii) If µ ∈ Cm−1,α(∂I,C), then the function v+
a [∂I, µ, L] ≡ va[∂I, µ, L]| cl Sa[I] belongs to the space

Cm,α(cl Sa[I],C), and the operator which takes µ to v+
a [∂I, µ, L]| cl I is continuous from the space

Cm−1,α(∂I,C) to Cm,α(cl I,C).

(iii) If µ ∈ Cm−1,α(∂I,C), then the function v−a [∂I, µ, L] ≡ va[∂I, µ, L]| cl Ta[I] belongs to the space
Cm,α(cl Ta[I],C), and the operator which takes µ to v−a [∂I, µ, L]| clW is continuous from the
space Cm−1,α(∂I,C) to Cm,α(clW,C).

(iv) If µ ∈ Cm−1,α(∂I,C), l ∈ {1, . . . , n}, then the integral

va,l[∂I, µ, L](t) ≡
∫
∂I
∂tlS

a,L
n (t− s)µ(s) dσs ∀t ∈ Rn,

converges in the sense of Lebesgue for all t ∈ Sa[I] ∪ Ta[I] and in the sense of a principal value
for all t ∈ cl Sa[I] ∩ cl Ta[I].

(v) Let l ∈ {1, . . . , n}. If µ ∈ Cm−1,α(∂I,C), then va,l[∂I, µ, L]|Sa[I] admits a continuous extension
v+
a,l[∂I, µ, L] to cl Sa[I] and v+

a,l[∂I, µ, L] ∈ Cm−1,α(cl Sa[I],C), and va,l[∂I, µ, L]|Ta[I] admits a
continuous extension v−a,l[∂I, µ, L] to cl Ta[I] and v−a,l[∂I, µ, L] ∈ Cm−1,α(cl Ta[I],C), and

v±a,l[∂I, µ, L](t) =
∂

∂tl
v±a [∂I, µ, L](t)

= ∓ (νI(t))l
2νI(t)T c(2)(L)νI(t)

µ(t) + va,l[∂I, µ, L](t),

(Dv±a [∂I, µ, L](t))c(L)(2)νI(t)

= ∓1
2
µ(t) +

∫
∂I

(DSa,Ln (t− s))c(2)(L)νI(t)µ(s) dσs

for all t ∈ ∂I.
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(vi) Let l ∈ {1, . . . , n}. The operator of Cm−1,α(∂I,C) to Cm−1,α(cl I,C) which takes µ to the
function v+

a,l[∂I, µ, L]| cl I is continuous. The operator of Cm−1,α(∂I,C) to Cm−1,α(clW,C)
which takes µ to the function v−a,l[∂I, µ, L]| clW is continuous.

(vii) Let µ ∈ Cm,α(∂I,C). Let wa[∂I, µ, L] be the function of Rn to C defined by

wa[∂I, µ, L](t) ≡−
∫
∂I

(DSa,Ln (t− s))c(2)(L)νI(s)µ(s) dσs

−
∫
∂I
Sa,Ln (t− s)νTI (s)c(1)(L)µ(s) dσs ∀t ∈ Rn.

Then
L[wa[∂I, µ, L]](t) = 0 ∀t ∈ Sa[I] ∪ Ta[I],

and
wa[∂I, µ, L](t+ ai) = wa[∂I, µ, L](t) ∀t ∈ Sa[I] ∪ Ta[I], ∀i ∈ {1, . . . , n}.

The restriction wa[∂I, µ, L]|Sa[I] can be extended uniquely to an element w+
a [∂I, µ, L] of the space

Cm,α(cl Sa[I],C) and the restriction wa[∂I, µ, L]|Ta[I] can be extended uniquely to an element
w−a [∂I, µ, L] of the space Cm,α(cl Ta[I],C) and we have

w+
a [∂I, µ, L]− w−a [∂I, µ, L] = µ on ∂I,

(Dw+
a [∂I, µ, L])c(2)(L)νI − (Dw−a [∂I, µ, L])c(2)(L)νI = 0 on ∂I,

(viii) The operator of Cm,α(∂I,C) to Cm,α(cl I,C) which takes µ to w+
a [∂I, µ, L]| cl I is continuous.

The operator of Cm,α(∂I,C) to Cm,α(clW,C) which takes µ to w−a [∂I, µ, L]| clW is continuous.

Proof. It is a straightforward modification of the proof of Theorems 6.7 and 6.11, with Theorems E.4
and E.5 replaced by Dalla Riva and Lanza [40, Theorem 3.1], and Theorem 6.3 replaced by Theorem
11.5.

Now let K be a compact subset of Rn. Let C0,1(K,Rn) denote the space of Lipschitz continuous
functions of K to Rn. Then we set

lK [f ] ≡ inf
{
|f(x)− f(y)|
|x− y|

: x, y ∈ K, x 6= y

}
∀f ∈ C0,1(K,Rn).

We also set
AK ≡

{
φ ∈ C1(K,Rn) : lk[φ] > 0

}
.

The set AK is open in C1(K,Rn). Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded open subset of
class Cm,α of Rn such that both Ω and Rn \ cl Ω are connected. Let φ ∈ A∂Ω. By the Jordan–Leray
separation theorem, Rn \ φ(∂Ω) has exactly two open connected components, and we denote by I[φ]
the bounded connected component. Then we denote by νφ the outward normal to the set I[φ] (cf.
Lanza and Rossi [86].)

Then we have the following technical Lemma.

Lemma 11.7. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded connected open subset of class Cm,α
of Rn, such that Rn \ cl Ω is connected. Then the following statements hold.

(i) Let φ ∈ Cm,α(∂Ω,Rn) ∩ A∂Ω. Then there exists a positive function σ̃[φ] ∈ Cm−1,α(∂Ω) such
that ∫

φ(∂Ω)

ω(s) dσs =
∫
∂Ω

ω ◦ φ(y)σ̃[φ](y) dσy ∀ω ∈ L1(φ(∂Ω),C).

Moreover, the map σ̃[·] of Cm,α(∂Ω,Rn) ∩ A∂Ω to Cm−1,α(∂Ω) which takes φ to σ̃[φ] is real
analytic.

(ii) The map of Cm,α(∂Ω,Rn) ∩ A∂Ω to Cm−1,α(∂Ω,Rn) which takes φ to νφ ◦ φ is real analytic.

Proof. For (i), see the proof of Lanza and Rossi [85, Prop. 3.13] and replace Proposition 2.8 and
Lemma 3.3 of Lanza and Rossi [85] with Proposition 2.6 and Lemma 4.2 of Lanza and Rossi [86]. For
(ii), see Proposition 2.6 and Lemma 4.2 of Lanza and Rossi [86] (cf. also Lanza e Rossi [85, Prop.
3.13].)
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Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded connected open subset of class Cm,α of Rn, such
that Rn \ cl Ω is connected. Then we set

Em,αa (∂Ω) ≡ { φ ∈ Cm,α(∂Ω,Rn) ∩ A∂Ω : φ(∂Ω) ⊆ A } .

The set Em,αa (∂Ω) is open in Cm,α(∂Ω,Rn). If φ ∈ Em,αa (∂Ω), then the set I[φ] satisfies (1.46).
We give the following definitions (cf. Dalla Riva and Lanza [40].)

Definition 11.8. Let L and Sa,Ln be as in Theorem 11.5. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω
be a bounded connected open subset of class Cm,α of Rn, such that Rn \ cl Ω is connected. Let
φ ∈ Em,αa (∂Ω), f ∈ Cm−1,α(∂Ω,C). Then we set

Va[φ, f, L](x) ≡ va[∂I[φ], f ◦ φ(−1), L] ◦ φ(x) ∀x ∈ ∂Ω.

Definition 11.9. Let L and Sa,Ln be as in Theorem 11.5. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω
be a bounded connected open subset of class Cm,α of Rn, such that Rn \ cl Ω is connected. Let
φ ∈ Em,αa (∂Ω), f ∈ Cm,α(∂Ω,C). Then we set

Wa[φ, f, L](x) ≡ wa[∂I[φ], f ◦ φ(−1), L] ◦ φ(x) ∀x ∈ ∂Ω.

Definition 11.10. Let L and Sa,Ln be as in Theorem 11.5. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω
be a bounded connected open subset of class Cm,α of Rn, such that Rn \ cl Ω is connected. Let
φ ∈ Em,αa (∂Ω), f ∈ Cm−1,α(∂Ω,C). Then we set

Va∗[φ, f, L](x) ≡
∫
φ(∂Ω)

DSa,Ln (φ(x)− s)c(2)(L)νφ(φ(x))f ◦ φ(−1)(s) dσs ∀x ∈ ∂Ω.

We are now ready to prove the real analyticity of Wa[·, ·, L], Va[·, ·, L], and Va∗[·, ·, L].

Theorem 11.11. Let L be as in Theorem 11.5. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded
connected open subset of class Cm,α of Rn, such that Rn \ cl Ω is connected. Then the following
statements hold.

(i) The map Va[·, ·, L] of Em,αa (∂Ω)× Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C) is real analytic.

(ii) The map Wa[·, ·, L] of Em,αa (∂Ω)× Cm,α(∂Ω,C) to Cm,α(∂Ω,C) is real analytic.

(iii) The map Va∗[·, ·, L] of Em,αa (∂Ω)× Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C) is real analytic.

Proof. Let SLn be a fundamental solution of the differential operator L. We first prove (i). Let
(φ, f) ∈ Em,αa (∂Ω)× Cm−1,α(∂Ω,C). Obviously,

Va[φ, f, L](x) =
∫
φ(∂Ω)

SLn (φ(x)− s)f ◦ φ(−1)(s) dσs

+
∫
∂Ω

Ra,Ln (φ(x)− φ(y))f(y)σ̃[φ](y) dσy ∀x ∈ ∂Ω.
(11.9)

By Dalla Riva and Lanza [40, Theorem 5.6], the map V [·, ·, L] of Em,αa (∂Ω) × Cm−1,α(∂Ω,C) to
Cm,α(∂Ω,C), which takes (φ, f) to the function V [φ, f, L] of ∂Ω to C, defined by

V [φ, f, L](x) ≡
∫
φ(∂Ω)

SLn (φ(x)− s)f ◦ φ(−1)(s) dσs ∀x ∈ ∂Ω,

is real analytic. By continuity of pointwise product in Schauder spaces, by Theorem C.2 and Lemma
11.7, and by standard calculus in Banach space, we immediately deduce that the second term in the
right-hand side of (11.9) defines a real analytic map of Em,αa (∂Ω)×Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C) in
the variable (φ, f). Thus Va[·, ·, L] is a real analytic map of Em,αa (∂Ω)×Cm−1,α(∂Ω,C) to Cm,α(∂Ω,C).
Consider (ii). Let (φ, f) ∈ Em,αa (∂Ω)× Cm,α(∂Ω,C). Obviously,

Wa[φ, f, L](x) =−
∫
φ(∂Ω)

DSLn (φ(x)− s)c(2)(L)νφ(s)f ◦ φ(−1)(s) dσs

−
∫
φ(∂Ω)

SLn (φ(x)− s)νTφ (s)c(1)(L)f ◦ φ(−1)(s) dσs

−
∫
∂Ω

DRa,Ln (φ(x)− φ(y))c(2)(L)νφ(φ(y))f(y)σ̃[φ](y) dσy

−
∫
∂Ω

Ra,Ln (φ(x)− φ(y))νTφ (φ(y))c(1)(L)f(y)σ̃[φ](y) dσy ∀x ∈ ∂Ω.

(11.10)
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By Dalla Riva and Lanza [40, Theorem 5.6], the map W [·, ·, L] of Em,αa (∂Ω) × Cm,α(∂Ω,C) to
Cm,α(∂Ω,C), which takes (φ, f) to the function W [φ, f, L] of ∂Ω to C, defined by

W [φ, f, L](x) ≡−
∫
φ(∂Ω)

DSLn (φ(x)− s)c(2)(L)νφ(s)f ◦ φ(−1)(s) dσs

−
∫
φ(∂Ω)

SLn (φ(x)− s)νTφ (s)c(1)(L)f ◦ φ(−1)(s) dσs ∀x ∈ ∂Ω,

is real analytic. By continuity of pointwise product in Schauder spaces, by Theorem C.2 and Lemma
11.7, and by standard calculus in Banach space, we immediately deduce that the third and the
fourth term in the right-hand side of (11.10) define real analytic maps of Em,αa (∂Ω)× Cm,α(∂Ω,C) to
Cm,α(∂Ω,C) in the variable (φ, f). Hence Wa[·, ·, L] is a real analytic map of Em,αa (∂Ω)×Cm,α(∂Ω,C)
to Cm,α(∂Ω,C). We finally prove (iii). Let (φ, f) ∈ Em,αa (∂Ω)× Cm−1,α(∂Ω,C). Obviously,

Va∗[φ, f, L](x) =
∫
φ(∂Ω)

DSLn (φ(x)− s)c(2)(L)νφ(φ(x))f ◦ φ(−1)(s) dσs

+
∫
∂Ω

DRa,Ln (φ(x)− φ(y))c(2)(L)νφ(φ(x))f(y)σ̃[φ](y) dσy ∀x ∈ ∂Ω.
(11.11)

By Dalla Riva and Lanza [40, Theorem 5.6], the map V∗[·, ·, L] of Em,αa (∂Ω) × Cm−1,α(∂Ω,C) to
Cm−1,α(∂Ω,C), which takes (φ, f) to the function V∗[φ, f, L] of ∂Ω to C, defined by

V∗[φ, f, L](x) ≡
∫
φ(∂Ω)

DSLn (φ(x)− s)c(2)(L)νφ(φ(x))f ◦ φ(−1)(s) dσs ∀x ∈ ∂Ω,

is real analytic. By continuity of pointwise product in Schauder spaces, by Theorem C.2 and Lemma
11.7, and by standard calculus in Banach space, we immediately deduce that the second term in the
right-hand side of (11.11) defines a real analytic map of Em,αa (∂Ω)×Cm−1,α(∂Ω,C) to Cm−1,α(∂Ω,C)
in the variable (φ, f). Therefore Va∗[·, ·, L] is a real analytic map of Em,αa (∂Ω) × Cm−1,α(∂Ω,C) to
Cm−1,α(∂Ω,C).

Remark 11.12. We note that, by following the approach of Dalla Riva and Lanza [40] (see also Lanza
and Preciso [83], Lanza and Rossi [85, 86]), one can prove a more general result. Namely, one can
consider periodic layer potentials corresponding to a family of strongly elliptic differential operators of
second order depending on a parameter, and then one can prove a real analyticity theorem for the
dependence of the periodic layer potentials also upon variation of the parameter (cf. [81].)

11.3 Periodic volume potential

In this Section we introduce an analogue of the periodic Newtonian potential for a general second
order elliptic equation with constant coefficients.

We give the following.

Definition 11.13. Let L and Sa,Ln be as in Theorem 11.5. Let f ∈ C0(Rn,C) be such that

f(t+ ai) = f(t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n}.

We set
pa[f, L](t) ≡

∫
A

Sa,Ln (t− s)f(s) ds ∀t ∈ Rn.

The function pa[f, L] is called the periodic volume potential of f .

Theorem 11.14. Let L and Sa,Ln be as in Theorem 11.5. Let m ∈ N, α ∈ ]0, 1[. Let f ∈ Cm,α(Rn,C)
be such that

f(t+ ai) = f(t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n}.

Then the following statements hold.

(i)
pa[f, L](t+ ai) = pa[f, L](t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n}.
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(ii)
pa[f, L] ∈ Cm+2,α(Rn,C).

(iii)
L[pa[f, L]](t) = f(t) ∀t ∈ Rn.

Proof. It is a straightforward modification of the proof of Theorem 6.16.

Remark 11.15. Let L and Sa,Ln be as in Theorem 11.5. Let m ∈ N, α ∈ ]0, 1[. We note that by
Theorem 11.14 we have that for each function f ∈ Cm,α(Rn,C) such that

f(t+ ai) = f(t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n},

there exists a function p ∈ Cm+2,α(Rn,C), such that

p(t+ ai) = p(t) ∀t ∈ Rn, ∀i ∈ {1, . . . , n},

and
L[p](t) = f(t) ∀t ∈ Rn.

Finally, we mention a result by Kozlov, Maz’ya and Rossmann [66, Theorem 2.1.1, p. 32], that shows
a necessary and sufficient condition for a differential operator L with constant coefficients to be an
isomorphism between two suitable Sobolev spaces of periodic functions.
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APPENDIX A

Results of Fourier Analysis

In this Appendix we collect some definitions and known facts of Fourier Analysis. Throughout this
Appendix, K = R or K = C.

We recall the following definitions.

Definition A.1. Let Ω be an open subset of Rn. We denote by D(Ω,K) the vector space over K of
all C∞ functions of Ω to K, whose support is compact and contained in Ω.

We recall that a net {φλ}λ∈Λ ⊆ D(Ω,K) converges to φ ∈ D(Ω,K), if the φλ’s are all supported in
a common compact subset of Ω and Dαφλ converges to Dαφ uniformly for every multi-index α. For a
more precise description of D(Ω,K), we refer, e.g., to Rudin [120] or Treves [135].

Definition A.2. Let Ω be an open subset of Rn. We denote by D′(Ω,K) the vector space over K
of all linear and continuous functionals of D(Ω,K) to K, endowed with the weak ∗ topology. The
elements of D′(Ω,K) are called distributions.

Definition A.3. A function f of Rn to C is said to be rapidly decreasing if

sup
x∈Rn
|f(x)|(1 + |x|)m < +∞ ∀m ∈ N.

Definition A.4. We denote by S(Rn) the set of all C∞ functions f of Rn to C such that Dαf is
rapidly decreasing for all α ∈ Nn.

Then we have the following well known result.

Proposition A.5. The vector space S(Rn) is a Fréchet space for the increasing sequence of norms
{pm}m∈N, defined by

pm(f) ≡ sup
|α|≤m

sup
x∈Rn

(1 + |x|)m|Dαf(x)| ∀f ∈ S(Rn),

for all m ∈ N.

Remark A.6. It is well known that the family of seminorms {pα,β}α,β∈Nn ,where

pα,β(f) ≡ sup
x∈Rn
|xαDβf(x)| ∀f ∈ S(Rn),

for all α, β ∈ Nn, is an equivalent set of seminorms on S(Rn).

Definition A.7. Let f ∈ L1(Rn,C). Let f̂ be the function of Rn to C defined by

f̂(ξ) ≡
∫

Rn
f(x)e−2πiξ·x dx ∀ξ ∈ Rn.

The function f̂ is called the Fourier transform of f .

439
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Then we have the following.

Proposition A.8. The map F of S(Rn) to S(Rn), which takes f to F(f) ≡ f̂ is a homeomorphism
of S(Rn) onto itself.

Proof. See, e.g, Stein and Weiss [131, p. 21].

Definition A.9. A linear and continuous functional of S(Rn) to C is called a tempered distribution.
The vector space of all tempered distributions, endowed with the weak ∗ topology, is denoted by
S ′(Rn).

We have the following well known Theorem.

Theorem A.10 (Poisson summation Formula). Let f be a continuous function of Rn to C such that

|f(x)| ≤ C(1 + |x|)−n−ε ∀x ∈ Rn

and
|f̂(ξ)| ≤ C(1 + |ξ|)−n−ε ∀ξ ∈ Rn,

for some C, ε > 0. Then, for all x ∈ Rn,∑
z∈Zn

f(x+ z) =
∑
z∈Zn

f̂(z)e2πiz·x, (A.1)

where both series converge absolutely. In particular,∑
z∈Zn

f(z) =
∑
z∈Zn

f̂(z). (A.2)

Proof. For a proof, we refer, e.g., to Folland [53, 8.32, p.254] and Stein and Weiss [131, Cor. 2.6,
p. 252].

Remark A.11. Clearly, if f ∈ S(Rn), then the hypotheses of Theorem A.10 are satisfied.



APPENDIX B

Results of classical potential theory for the Laplace
operator

We collect here some notation and results of classical potential theory.
Let I be an open bounded connected subset of Rn of class C1,α for some α ∈ ]0, 1[. Let νI denote

the outward unit normal to ∂I. Set
I− ≡ Rn \ cl I.

We say that a harmonic function u of I− to R is harmonic at infinity (cf. e.g. Folland [52, Prop. 2.74,
p. 114]) if it satisfies the following condition

sup
|x|≥R

|x|n−2|u(x)| <∞, (B.1)

for some R > 0 such that cl I ⊆ Bn(0, R).
We set

v[∂I, µ](t) ≡
∫
∂I
Sn(t− s)µ(s) dσs ∀t ∈ Rn, (B.2)

w[∂I, µ](t) ≡
∫
∂I

∂

∂νI(s)
(Sn(t− s))µ(s) dσs ∀t ∈ Rn, (B.3)

for all µ ∈ L2(∂I). The function v[∂I, µ] is called the simple (or single) layer potential with moment µ,
while w[∂I, µ] is the double layer potential with moment µ.

We have the following well known results.

Theorem B.1. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of class
Cm,α. Let R > 0 be such that cl I ⊆ Bn(0, R). Then the following statements hold.

(i) Let µ ∈ C0(∂I). Then the function w[∂I, µ] is harmonic in Rn \∂I. The restriction w[∂I, µ]|I can
be extended uniquely to a continuous function w+[∂I, µ] of cl I to R. The restriction w[∂I, µ]|I−
can be extended uniquely to a continuous function w−[∂I, µ] of cl I− to R and we have the
following jump relations

w+[∂I, µ](t) = +
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s))µ(s) dσs ∀t ∈ ∂I,

w−[∂I, µ](t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s))µ(s) dσs ∀t ∈ ∂I.

Moreover, the function w−[∂I, µ] is harmonic at infinity.

(ii) Let µ ∈ Cm,α(∂I). Then we have that w+[∂I, µ] belongs to Cm,α(cl I) and w−[∂I, µ] belongs to
Cm,α(cl I−). Moreover,

Dw+[∂I, µ] · νI −Dw−[∂I, µ] · νI = 0 on ∂I.
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(iii) The map of Cm,α(∂I) to Cm,α(cl I) which takes µ to w+[∂I, µ] is linear and continuous. The
map of Cm,α(∂I) to Cm,α(cl Bn(0, R) \ I) which takes µ to w−[∂I, µ]| cl Bn(0,R)\I is linear and
continuous.

(iv) We have ∫
∂I

∂

∂νI(s)
(Sn(t− s)) dσs =

1
2

∀t ∈ ∂I.

Proof. The above properties of double layer potentials can be found in basically all books on potential
theory. For the regularity we refer in particular to Schauder [123], Miranda [98]. For more references
we refer to the proof of Lanza and Rossi [85, Thm. 3.1].

Theorem B.2. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of class
Cm,α. Let R > 0 be such that cl I ⊆ Bn(0, R). Then the following statements hold.

(i) Let µ ∈ C0(∂I). Then the function v[∂I, µ] is continuous on Rn and harmonic in Rn \ ∂I. Let
v+[∂I, µ] and v−[∂I, µ] denote the restrictions of v[∂I, µ] to cl I and to cl I−, respectively. If
n = 2 then the function v−[∂I, µ] is harmonic at infinity if and only if

∫
∂I µdσ = 0. If so, then

limt→∞ v−[∂I, µ](t) = 0. If n ≥ 3, then the function v−[∂I, µ] is harmonic at infinity.

(ii) If µ ∈ Cm−1,α(∂I), then v+[∂I, µ] ∈ Cm,α(cl I), and the map of Cm−1,α(∂I) to Cm,α(cl I) which
takes µ to v+[∂I, µ] is linear and continuous.

(iii) If µ ∈ Cm−1,α, then v−[∂I, µ]| cl Bn(0,R)\I ∈ Cm,α(cl Bn(0, R) \ I), and the map of Cm−1,α(∂I) to
Cm,α(cl Bn(0, R) \ I) which takes µ to v−[∂I, µ]| cl Bn(0,R)\I is linear and continuous.

(iv) Let µ ∈ Cm−1,α(∂I). If n = 2 and
∫
∂I µdσ = 0, then the function v−[∂I, µ] belongs to Cm,α(cl I−).

If n ≥ 3, then the function v−[∂I, µ] belongs to Cm,α(cl I−).

(v) If µ ∈ Cm−1,α(∂I), then we have the following jump relations

∂

∂νI
v+[∂I, µ](t) = −1

2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s))µ(s) dσs ∀t ∈ ∂I,

∂

∂νI
v−[∂I, µ](t) = +

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s))µ(s) dσs ∀t ∈ ∂I.

Proof. The proof of these properties can be found in almost all books on potential theory. For the
regularity we refer to Miranda [98]. For more references we refer to the proof of Lanza and Rossi [85,
Thm. 3.1].

Then we have the following variant of a classical result in potential theory.

Theorem B.3. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of class
Cm,α. Let b ∈ Cm−1,α(∂I). Then the following statements hold.

(i) Let k ∈ {0, 1, . . . ,m} and Γ̄ ∈ Ck,α(∂I) and µ ∈ L2(∂I) and

Γ̄(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s))µ(s) dσs +

∫
∂I
Sn(t− s)b(s)µ(s) dσs a.e. on ∂I, (B.4)

then µ ∈ Ck,α(∂I).

(ii) Let k ∈ {0, 1, . . . ,m} and Γ̄ ∈ Ck,α(∂I) and µ ∈ L2(∂I) and

Γ̄(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s))µ(s) dσs +

∫
∂I
Sn(t− s)b(s)µ(s) dσs a.e. on ∂I, (B.5)

then µ ∈ Ck,α(∂I).

(iii) Let k ∈ {1, . . . ,m} and Γ̄ ∈ Ck−1,α(∂I) and µ ∈ L2(∂I) and

Γ̄(t) =
1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s))µ(s) dσs + b(t)

∫
∂I
Sn(t− s)µ(s) dσs a.e. on ∂I, (B.6)

then µ ∈ Ck−1,α(∂I).
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(iv) Let k ∈ {1, . . . ,m} and Γ̄ ∈ Ck−1,α(∂I) and µ ∈ L2(∂I) and

Γ̄(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s))µ(s) dσs + b(t)

∫
∂I
Sn(t− s)µ(s) dσs a.e. on ∂I, (B.7)

then µ ∈ Ck−1,α(∂I).

Proof. It is based on results by Miranda [99], Agmon, Douglis and Nirenberg [1] and Günter [57]. For
a proof see, e.g., Lanza [72, Thm. 5.1].
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APPENDIX C

Technical results on integral and composition
operators

In this Appendix, we present some technical facts and some variants of known technical facts, which
have been exploited in the Dissertation. For more general results, we refer to [80].

We start by introducing the following elementary Proposition on integral operators.

Proposition C.1. Let K ≡ R or K ≡ C. Let α ∈ ]0, 1[. Let m ∈ N \ {0}. Let n, n1, r ∈ N \ {0},
1 ≤ r ≤ n1. Let U be an open subset of Rn. Let F be a real analytic map of U to K. Let Ω be a bounded
open connected subset of Rn. Let k ∈ N. Let M be a compact manifold of class C1 and dimension r
imbedded in Rn1 . Then the map H of the space

{
(φ, f) ∈ C0(M,Rn)× L1(M,K) : cl Ω− φ(M) ⊆ U

}
to Ck(cl Ω,K) which takes (φ, f) to the function H[φ, f ] of cl Ω to K defined by

H[φ, f ](t) ≡
∫

M
F (t− φ(y))f(y) dσy ∀t ∈ cl Ω,

is real analytic.

Proof. It suffices to modify the proof of Lanza [72, Prop. 6.1]. Clearly, it suffices to show that for
each γ ∈ Nn, |γ| ≤ k, the map which takes (φ, f) to Dγ

tH[φ, f ] is real analytic from the domain of H
to C0(cl Ω,K). By classical theorems of differentiation under the integral sign, we have

Dγ
tH[φ, f ](t) =

∫
M
DγF (t− φ(y))f(y) dσy ∀t ∈ cl Ω.

Now let idcl Ω denote the identity map in cl Ω. The map of the domain of H to C0(cl Ω ×M, U),
which takes (φ, f) to the function idcl Ω(t) − φ(y) of the variable (t, y) ∈ cl Ω ×M is obviously real
analytic. The map of C0(cl Ω×M, U) to C0(cl Ω×M,K) which takes a function Φ to its composite
function DγF ◦ Φ is real analytic (cf. Böhme and Tomi [15, p. 10], Henry [60, p. 29], Valent [137,
Thm. 5.2, p. 44], who considered the more elaborated case of the Schauder spaces Cm,α.) Then to
complete the proof we just need to observe that the map which takes a pair of functions (g, f) of
C0(cl Ω×M,K)× L1(M,K) to

∫
M g(·, y)f(y) dσy in C0(cl Ω,K) is real analytic.

Then we have the following.

Theorem C.2. Let K ≡ R or K ≡ C. Let α ∈ ]0, 1[. Let m ∈ N \ {0}. Let n, n1, r ∈ N \ {0},
1 ≤ r ≤ n1. Let U be an open subset of Rn. Let F be a real analytic map of U to K. Let Ω be
a bounded open connected subset of Rn of class Cm,α. Let M be a compact manifold of class Cm,α
and dimension r imbedded in Rn1 . Then the map H1 of {(ψ, φ, f) ∈ Cm,α(∂Ω,Rn)× Cm,α(M,Rn)×
L1(M,K) : ψ(x)−φ(y) ⊆ U ∀(x, y) ∈ ∂Ω×M} to Cm,α(∂Ω,K), which takes (ψ, φ, f) to the function
H1[ψ, φ, f ] defined by

H1[ψ, φ, f ](x) ≡
∫

M
F (ψ(x)− φ(y))f(y) dσy ∀x ∈ ∂Ω,

is real analytic.
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Proof. It suffices to modify the proof of Lanza [72, Thm. 6.2]. The proof follows by a known
result on composition operators (cf. Böhme and Tomi [15, p. 10], Henry [60, p. 29], Valent [137,
Thm. 5.2, p. 44]), and its proof is a straightforward modification of the corresponding elementary
argument of Lanza and Rossi [85, Lem. 3.9]. We just observe that the map which takes (ψ, φ, f) to
ψ(x) − φ(y) ∈ Cm,α(∂Ω ×M, U), and the map which takes a function of Cm,α(∂Ω ×M, U) to its
composite function with F in Cm,α(∂Ω×M,K) are real analytic, and that the map which takes a pair
of functions (g, f) of Cm,α(∂Ω ×M,K) × L1(M,K) to

∫
M g(·, y)f(y) dσy in Cm,α(∂Ω,K) is bilinear

and continuous.

By modifying the proofs of the previous results, we can prove the following.

Proposition C.3. Let K ≡ R or K ≡ C. Let α ∈ ]0, 1[. Let m ∈ N \ {0}. Let n, r ∈ N \ {0},
1 ≤ r ≤ n. Let U be an open subset of Rn such that 0 ∈ U . Let F be a real analytic map of U to K.
Let Ω be a bounded open connected subset of Rn. Let k ∈ N. Let M be a compact manifold of class C1

and dimension r imbedded in Rn. Then there exists ε′ > 0 such that the map H2 of ]−ε′, ε′[×L1(M,K)
to Ck(cl Ω,K) which takes (ε, f) to the function H2[ε, f ] of cl Ω to K defined by

H2[ε, f ](t) ≡
∫

M
F (ε(t− y))f(y) dσy ∀t ∈ cl Ω,

is real analytic.

Theorem C.4. Let K ≡ R or K ≡ C. Let α ∈ ]0, 1[. Let m ∈ N \ {0}. Let n, r ∈ N \ {0}, 1 ≤ r ≤ n.
Let U be an open subset of Rn such that 0 ∈ U . Let F be a real analytic map of U to K. Let Ω
be a bounded open connected subset of Rn of class Cm,α. Let k ∈ N. Let M be a compact manifold
of class Cm,α and dimension r imbedded in Rn. Then there exists ε′′ > 0 such that the map H3 of
]−ε′′, ε′′[× L1(M,K) to Cm,α(∂Ω,K), which takes (ε, f) to the function H3[ε, f ] defined by

H3[ε, f ](x) ≡
∫

M
F (ε(x− y))f(y) dσy ∀x ∈ ∂Ω,

is real analytic.



APPENDIX D

Technical results on periodic functions

In this Appendix we present some technical facts about periodic functions.
Let {a11, . . . , ann} ⊆ ]0,+∞[. We set

ai ≡ aiiei ∀i ∈ {1, . . . , n}.

Let A be the open subset of Rn defined by

A ≡
n∏
i=1

]0, aii[.

We recall that we denote by |A|n the n-dimensional measure of A. For each x ∈ Rn we set

a(x) ≡
n∑
i=1

xiai.

We have the following Proposition.

Proposition D.1. Let u ∈ L1
loc(Rn) such that

u(x+ ai) = u(x) a.e on Rn, ∀i ∈ {1, . . . , n}.

Then the following statements hold.

(i) Let x̄ ∈ Rn. Then ∫
x̄+A

u(y) dy =
∫
A

u(y) dy.

(ii) Let δ > 0. Then ∫
δ(x̄+A)

u
(y
δ

)
dy = δn

∫
A

u(y) dy.

Proof. For a proof we refer to Cioranescu and Donato [26, Lemma 2.3, p. 27].

We recall that if p ∈ [1,∞], we denote by p′ the conjugate exponent of p. In particular, if 1 < p <∞,
then p′ = p/(p− 1), if p = 1 then p′ =∞, and if p =∞ then p′ = 1. We are now ready to give the
following definitions.

Definition D.2. Let 1 ≤ p <∞. Let V be a bounded open subset of Rn. We say that a sequence
{uj}j∈N ⊆ Lp(V ) converges weakly to u ∈ Lp(V ) (and we write uj ⇀ u in Lp(V )), if for all v ∈ Lp′(V )
we have

lim
j→∞

∫
V

v(uj − u) dx = 0. (D.1)

In case p =∞ we give the following.
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Definition D.3. Let V be a bounded open subset of Rn. We say that a sequence {uj}j∈N ⊆ L∞(V )
converges weakly ∗ to u ∈ L∞(V ) (and we write uj ⇀∗ u in L∞(V )), if for all v ∈ L1(V ) we have

lim
j→∞

∫
V

v(uj − u) dx = 0. (D.2)

We now state the following generalization of Riemann–Lebesgue Lemma.

Theorem D.4. Let 1 ≤ p ≤ ∞. Let u ∈ Lploc(Rn) be such that

u(x+ ai) = u(x) a.e. on Rn, ∀i ∈ {1, . . . , n}.

For each δ > 0, define
uδ(x) ≡ u

(x
δ

)
a.e. on Rn.

Then as δ → 0

uδ ⇀
1
|A|n

∫
A

u(y) dy (⇀∗ if p =∞) (D.3)

in Lp(V ) for every bounded open subset V of Rn.

Proof. For a proof we refer to Braides and Defranceschi [16, Ex. 2.7, p. 20] and to Dacorogna [31,
Thm. 1.5, p.21].

We now prove a slight variant of Theorem D.4.

Theorem D.5. Let 1 ≤ p ≤ ∞. Let ε′ > 0 and {vε}ε∈]0,ε′[ ⊆ Lploc(Rn) be such that

vε(x+ ai) = vε(x) a.e. on Rn, ∀i ∈ {1, . . . , n}, ∀ε ∈ ]0, ε′[.

Let v ∈ Lploc(Rn) be such that

v(x+ ai) = v(x) a.e. on Rn, ∀i ∈ {1, . . . , n},

and
lim
ε→0
ε∈]0,ε′[

vε = v in Lp(A).

For each δ > 0, we set
vε,δ(x) ≡ vε

(x
δ

)
a.e. on Rn, ∀ε ∈ ]0, ε′[.

Then as (ε, δ)→ 0 (with (ε, δ) ∈ ]0, ε′[× ]0,+∞[), we have

vε,δ ⇀
1
|A|n

∫
A

v(y) dy (⇀∗ if p =∞) (D.4)

in Lp(V ) for every bounded open subset V of Rn.

Proof. We slightly modify the proof of Braides and Defranceschi [16, Ex. 2.7, p. 20]. We first treat
the case 1 ≤ p <∞. If δ < 1 and Iδ ≡

{
k ∈ Zn : (a(k) +A) ∩ 1

δV 6= ∅
}
, then there exists a constant

c > 0, independent of ε and δ, such that∫
V

|vε,δ(x)− v
(x
δ

)
|p dx ≤ δn

∫
1
δV

|vε(z)− v(z)|pdz ≤ δn
∑
k∈Iδ

∫
a(k)+A

|vε(z)− v(z)|pdz

= δn
∑
k∈Iδ

∫
A

|vε(z)− v(z)|pdz ≤ c
∫
A

|vε(z)− v(z)|pdz
(D.5)

for all (ε, δ) ∈ ]0, ε′[× ]0, 1[. Now let φ ∈ Lp(V ). If (ε, δ) ∈ ]0, ε′[× ]0, 1[, we have∫
V

vε,δ(x)φ(x) dx =
∫
V

v
(x
δ

)
φ(x) dx+

∫
V

(
vε,δ(x)− v

(x
δ

))
φ(x) dx. (D.6)
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By Theorem D.4, by (D.5) and (D.6), we have

vε,δ ⇀
1
|A|n

∫
A

v(y) dy in Lp(V ),

as (ε, δ)→ (0, 0).
Now let p =∞. We have

‖vε,δ(·)− v(·/δ)‖L∞(V ) ≤ ‖vε − v‖L∞(A),

for all (ε, δ) ∈ ]0, ε′[× ]0,+∞[. If φ ∈ L1(V ), we have∫
V

vε,δ(x)φ(x) dx =
∫
V

v
(x
δ

)
φ(x) dx+

∫
V

(
vε,δ(x)− v

(x
δ

))
φ(x) dx.

Hence, by Theorem D.4,

vε,δ ⇀
∗ 1
|A|n

∫
A

v(y) dy in L∞(V ),

as (ε, δ)→ (0, 0).
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APPENDIX E

Simple and double layer potentials for the Helmholtz
equation

We collect here some notation and results of potential theory for the Helmholtz equation from Lanza
and Rossi [86] (see also, e.g., Colton and Kress [29], Castro and Speck [21], Meister and Speck [95].)

First of all, we introduce the family {Sn(·, k)}k∈C of fundamental solutions of the family of operators
{∆ + k2}k∈C defined in Lanza and Rossi [86]. We denote by γ, Jν , Nν the Euler constant, the Bessel
function of order ν and the Neumann function of order ν ∈ R, respectively (as in Schwartz [126, Ch.
VIII, IX].) Then we have the following technical Lemma.

Lemma E.1. Let n ∈ N \ {0, 1}. Then the following statements hold.

(i) If n is even, then the map of ]0,+∞[ to R which takes t to

t
n−2

2

{
Nn−2

2
(t)− 2

π
(log(t/2) + γ)Jn−2

2
(t)
}

∀t ∈ ]0,+∞[,

admits a unique holomorphic extension Ñn−2
2

(·) of C to C, and Ñn−2
2

(0) = −π−12
n−2

2 (n−4
2 )! for

n > 2, and limt→0 Ñn−2
2

(t)t−2 = 1
2π for n = 2.

(ii) If ν ∈ R, then the map of ]0,+∞[ to R which takes t to t−νJν(t) admits a unique holomorphic
extension J̃ν of C to C.

(iii) If n is even, then we have J̃n−2
2

(0) = 2−
n−2

2 /(n−2
2 )!. If n is odd, then we have J̃−n−2

2
(0) =

(−1)
n−3

2 2
n−2

2

π (n−2
2 )−1Γ(n/2).

Proof. See Lanza and Rossi [86, Lemma 3.1].

We are now ready to introduce the fundamental solution of ∆ + k2 (cf. Lanza and Rossi [86,
Definition 3.2].)

Definition E.2. Let n ∈ N \ {0, 1}.

(i) If n is even, then we set

Jn(z) ≡ (2π)−n/2J̃n−2
2

(z), (E.1)

Nn(z) ≡ 2−(n/2)−1π−(n/2)+1Ñn−2
2

(z),

for all z ∈ C.

(ii) If n is odd, then we set

Jn(z) ≡ 0, (E.2)

Nn(z) ≡ (−1)
n−1

2 2−(n/2)−1π−(n/2)+1J̃−n−2
2

(z),

for all z ∈ C.
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(iii) We set

Υn(r, k) ≡ kn−2Jn(rk) log r +
Nn(rk)
rn−2

,

for all (r, k) ∈ ]0,+∞[× C.

Then we have the following

Proposition E.3. Let n ∈ N \ {0, 1}. Let sn denote the (n− 1) dimensional measure of ∂Bn(0, 1).
Then the following statements hold.

(i) J2(0) = 1
2π , Jn(0) = 21−nπ−n/2/(n−2

2 )! if n > 2 is even; N2(0) = 0, Nn(0) = (2− n)−1s−1
n for

n ≥ 3.

(ii) Jn and Nn are entire holomorphic functions. The function Υn is real analytic on ]0,+∞[× C.

(iii) Let k ∈ C. The function of Rn \ {0} to C defined by Sn(x, k) = Υn(|x|, k) for all x ∈ Rn \ {0}
is a fundamental solution of ∆ + k2. In particular, Sn(·, 0) is the usual fundamental solution of
the Laplace operator.

Proof. See Lanza and Rossi [86, Proposition 3.3].

We observe that Sn(·, k) does not coincide with the most commonly used fundamental solution of
∆ + k2 in scattering theory (cf. e.g., Colton and Kress [29].)

Let I be an open bounded connected subset of Rn of class C1,α for some α ∈ ]0, 1[. Let νI denote
the outward unit normal to I on ∂I. Set

I− ≡ Rn \ cl I.

We set

v[∂I, µ, k](t) ≡
∫
∂I
Sn(t− s, k)µ(s) dσs ∀t ∈ Rn, (E.3)

w[∂I, µ, k](t) ≡
∫
∂I

∂

∂νI(s)
(Sn(t− s, k))µ(s) dσs ∀t ∈ Rn \ ∂I, (E.4)

for all µ ∈ L2(∂I,C), k ∈ C. The function v[∂I, µ, k] is called the simple (or single) layer potential
with moment µ for the Helmholtz equation, while w[∂I, µ, k] is the double layer potential with moment
µ. We also set

v∗[∂I, µ, k](t) ≡
∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs ∀t ∈ ∂I, (E.5)

for all µ ∈ C0,α(∂I,C), k ∈ C.
We have the following well known results.

Theorem E.4. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of class
Cm,α. Let R > 0 be such that cl I ⊆ Bn(0, R). Then the following statements hold.

(i) Let µ ∈ Cm,α(∂I,C). Then the function w[∂I, µ, k] satisfies equation (∆ + k2)w[∂I, µ, k] = 0
in Rn \ ∂I. The restriction w[∂I, µ, k]|I can be extended uniquely to an element w+[∂I, µ, k] of
Cm,α(cl I,C). The restriction w[∂I, µ, k]|I− can be extended uniquely to a continuous function
w−[∂I, µ, k] of cl I− to C and w−[∂I, µ, k] ∈ Cm,α(cl Bn(0, R) \ I,C). Moreover, we have the
following jump relations

w+[∂I, µ, k](t) = +
1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s, k))µ(s) dσs ∀t ∈ ∂I,

w−[∂I, µ, k](t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s, k))µ(s) dσs ∀t ∈ ∂I,

Dw+[∂I, µ, k] · νI −Dw−[∂I, µ, k] · νI = 0 on ∂I.
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(ii) If µ ∈ C0,α(∂I,C), then we have

w[∂I, µ, k](t) = −
n∑
j=1

∂

∂tj

{∫
∂I
µ(s)(νI(s))jSn(t− s, k) dσs

}
,

for all t ≡ (t1, . . . , tn) ∈ Rn \ ∂I.

(iii) If µ ∈ Cm,α(∂I,C), U is an open neighbourhood of ∂I in Rn, µ̃ ∈ Cm,α(U,C), µ̃|∂I = µ, then
the following holds

∂

∂ti
w[∂I, µ, k](t) =

n∑
j=1

∂

∂tj

{∫
∂I

[
(νI(s))i

∂µ̃

∂sj
(s)− (νI(s))j

∂µ̃

∂si
(s)
]
Sn(t− s, k) dσs

}
+ k2

∫
∂I

(νI(s))iµ(s)Sn(t− s, k) dσs ∀t ≡ (t1, . . . , tn) ∈ Rn \ ∂I.

Proof. See Lanza and Rossi [86, Theorem 3.4].

Theorem E.5. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be a bounded connected open subset of Rn of class
Cm,α. Let R > 0 be such that cl I ⊆ Bn(0, R). Let µ ∈ Cm−1,α(∂I,C). Then the function v[∂I, µ, k]
is continuous in Rn and satisfies (∆ + k2)v[∂I, µ, k] = 0 in Rn \ ∂I. Let v+[∂I, µ, k] and v−[∂I, µ, k]
denote the restrictions of v[∂I, µ, k] to cl I and to cl I−, respectively. Then v+[∂I, µ, k] ∈ Cm,α(cl I,C),
and v−[∂I, µ, k]| cl Bn(0,R)\I ∈ Cm,α(cl Bn(0, R) \ I,C). Moreover, we have the following jump relations

∂

∂νI
v+[∂I, µ, k](t) = −1

2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs ∀t ∈ ∂I,

∂

∂νI
v−[∂I, µ, k](t) = +

1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs ∀t ∈ ∂I.

Proof. See Lanza and Rossi [86, Theorem 3.4].

Now let K be a compact subset of Rn. Let C0,1(K,Rn) denote the space of Lipschitz continuous
functions of K to Rn. Then we set

lK [f ] ≡ inf
{
|f(x)− f(y)|
|x− y|

: x, y ∈ K, x 6= y

}
∀f ∈ C0,1(K,Rn).

We also set
AK ≡

{
φ ∈ C1(K,Rn) : lk[φ] > 0

}
.

The set AK is open in C1(K,Rn). Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded open subset of
class Cm,α of Rn such that both Ω and Rn \ cl Ω are connected. Let φ ∈ A∂Ω. By the Jordan–Leray
separation theorem, Rn \ φ(∂Ω) has exactly two open connected components, and we denote by I[φ]
the bounded connected component. Then we denote by νφ the outward normal to the set I[φ] (cf.
Lanza and Rossi [86].)

We have the following.

Theorem E.6. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded open subset of class Cm,α of Rn such
that both Ω and Rn \ cl Ω are connected. Then the following statements hold.

(i) The map V [·, ·, ·] of (Cm,α(∂Ω,Rn)∩A∂Ω)×Cm−1,α(∂Ω,C)×C to the space Cm,α(∂Ω,C) which
takes (φ, f, k) in the domain of V [·, ·, ·] to the function of ∂Ω to C defined by

V [φ, f, k](t) ≡
∫
φ(∂Ω)

Sn(φ(t)− s, k)f ◦ φ(−1)(s) dσs ∀t ∈ ∂Ω,

is real analytic.

(ii) The map V∗[·, ·, ·] of (Cm,α(∂Ω,Rn) ∩ A∂Ω)× Cm−1,α(∂Ω,C)× C to the space Cm−1,α(∂Ω,C)
which takes (φ, f, k) in the domain of V∗[·, ·, ·] to the function of ∂Ω to C defined by

V∗[φ, f, k](t) ≡
{∫

φ(∂Ω)

∂

∂νφ(x)
(Sn(x− s, k))f ◦ φ(−1)(s) dσs

}
x=φ(t)

∀t ∈ ∂Ω,

is real analytic.
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(iii) The map W [·, ·, ·] of (Cm,α(∂Ω,Rn)∩A∂Ω)×Cm,α(∂Ω,C)×C to the space Cm,α(∂Ω,C) which
takes (φ, f, k) in the domain of W [·, ·, ·] to the function of ∂Ω to C defined by

W [φ, f, k](t) ≡
∫
φ(∂Ω)

∂

∂νφ(s)
(Sn(φ(t)− s, k))f ◦ φ(−1)(s) dσs ∀t ∈ ∂Ω,

is real analytic.

Proof. See Lanza and Rossi [86, Theorem 4.11].

Then we have the following variant of a classical result in Potential Theory (cf. e.g., Lanza [72,
Theorem 5.1], [79, Theorem B.1].)

Theorem E.7. Let k ∈ C. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let I be a bounded connected open subset of
Rn of class Cm,α. Let b ∈ Cm−1,α(∂I,C). Then the following statements hold.

(i) Let j ∈ {0, 1, . . . ,m} and Γ̄ ∈ Cj,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ̄(t) =
1
2
µ(t)+

∫
∂I

∂

∂νI(s)
(Sn(t−s, k))µ(s) dσs+

∫
∂I
Sn(t−s, k)b(s)µ(s) dσs a.e. on ∂I, (E.6)

then µ ∈ Cj,α(∂I,C).

(ii) Let j ∈ {0, 1, . . . ,m} and Γ̄ ∈ Cj,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ̄(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(s)
(Sn(t− s, k))µ(s) dσs +

∫
∂I
Sn(t− s, k)b(s)µ(s) dσs a.e. on ∂I,

(E.7)
then µ ∈ Cj,α(∂I,C).

(iii) Let j ∈ {1, . . . ,m} and Γ̄ ∈ Cj−1,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ̄(t) =
1
2
µ(t)+

∫
∂I

∂

∂νI(t)
(Sn(t−s, k))µ(s) dσs+b(t)

∫
∂I
Sn(t−s, k)µ(s) dσs a.e. on ∂I, (E.8)

then µ ∈ Cj−1,α(∂I,C).

(iv) Let j ∈ {1, . . . ,m} and Γ̄ ∈ Cj−1,α(∂I,C) and µ ∈ L2(∂I,C) and

Γ̄(t) = −1
2
µ(t) +

∫
∂I

∂

∂νI(t)
(Sn(t− s, k))µ(s) dσs + b(t)

∫
∂I
Sn(t− s, k)µ(s) dσs a.e. on ∂I,

(E.9)
then µ ∈ Cj−1,α(∂I,C).

Proof. It suffices to modify the proof of Lanza [72, Theorem 5.1]. We first prove statement (i).
We proceed by (finite) induction on j. Let j = 0. Since the kernels of the integral operators in
the right-hand side of (E.6) display a weak singularity, a standard argument on iterated kernels
implies that µ ∈ C0(∂I,C). By Miranda [99, § 14, III], we have v[∂I, bµ, k] ∈ C0,α(∂I,C), and
consequently Γ̄ − v[∂I, bµ, k] ∈ C0,α(∂I,C). Then a classical property of double layer potentials
shows that µ ∈ C0,α(∂I,C) (cf. Miranda [99, § 15, II].) We now assume that the statement holds
for j < m, and we show it for j + 1. By inductive assumption we know that µ ∈ Cj,α(∂I,C). Since
b ∈ Cm−1,α(∂I,C) ⊆ Cj,α(∂I,C), we have bµ ∈ Cj,α(∂I,C). Then by known properties of simple layer
potentials for the Helmholtz equation (cf. Theorem E.5 and also, e.g., Miranda [98, p. 330]), we
have Γ̄− v[∂I, bµ, k] ∈ Cj+1,α(∂I,C). Analogously, by known properties of double layer potentials for
the Helmholtz equation (cf. Theorem E.4), we have w+[∂I, µ, k] ∈ Cj,α(cl I,C). Now we note that
equation (E.6) implies{

∆w+[∂I, µ, k] = −k2w+[∂I, µ, k] ∈ Cj,α(cl I,C) in I,
w+[∂I, µ, k] = Γ̄− v+[∂I, bµ, k] ∈ Cj+1,α(∂I,C) on ∂I.

By classical results of elliptic regularity theory for the Dirichlet problem (cf. e.g., Gilbarg and
Trudinger [55, Thms. 6.19, 8.34]), we have w+[∂I, µ, k] ∈ Cj+1,α(cl I,C). Hence, we have that
(∂/∂νI)w+[∂I, µ, k] is in Cj,α(∂I,C). Now let R > 0 be such that cl I ⊆ Bn(0, R) and IR ≡ Bn(0, R)\cl I.
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By known properties of double layer potentials for the Helmholtz equation (cf. Theorem E.4) we have
w−[∂I, µ, k] ∈ Cj,α(cl IR,C). Then we have

∆w−[∂I, µ, k] = −k2w−[∂I, µ, k] ∈ Cj,α(cl IR,C) in IR,
∂
∂νI
w−[∂I, µ, k] = ∂

∂νI
w+[∂I, µ, k] ∈ Cj,α(∂I,C) on ∂I,

∂
∂νBn(0,R)

w−[∂I, µ, k]|∂Bn(0,R) ∈ C∞(∂Bn(0, R),C) on ∂Bn(0, R).

By classical results on elliptic regularity theory for the Neumann problem, we conclude that w−[∂I, µ, k]
is in Cj+1,α(cl IR,C). Hence, µ = w+[∂I, µ, k]− w−[∂I, µ, k] ∈ Cj+1,α(∂I,C).

We now prove statement (ii). We proceed by induction on j. Let j = 0. Since the kernels
of the integral operators in the right-hand side of (E.7) display a weak singularity, a standard
argument on iterated kernels implies that µ ∈ C0(∂I,C). As in the proof of statement (i), we
have Γ̄ − v[∂I, bµ, k] ∈ C0,α(∂I,C). Then a classical property of double layer potentials shows
that µ ∈ C0,α(∂I,C) (cf. Miranda [99, § 15, II].) We now assume that the statement holds for
j < m, and we show it for j + 1. By inductive assumption we know that µ ∈ Cj,α(∂I,C). Since
b ∈ Cm−1,α(∂I,C) ⊆ Cj,α(∂I,C), we have bµ ∈ Cj,α(∂I,C). Then by known properties of simple layer
potentials for the Helmholtz equation (cf. Theorem E.5 and also, e.g., Miranda [98, p. 330]), we
have Γ̄− v[∂I, bµ, k] ∈ Cj+1,α(∂I,C). Analogously, by known properties of double layer potentials for
the Helmholtz equation (cf. Theorem E.4) we have w−[∂I, µ, k] ∈ Cj,α(cl IR,C). Now we note that
equation (E.7) implies∆w−[∂I, µ, k] = −k2w−[∂I, µ, k] ∈ Cj,α(cl IR,C) in IR,

w−[∂I, µ, k]|∂I = Γ̄− v[∂I, bµ, k]|∂I ∈ Cj+1,α(∂I,C) on ∂I,
w−[∂I, µ, k]|∂Bn(0,R) ∈ C∞(∂Bn(0, R),C) on ∂Bn(0, R).

By classical results of elliptic regularity theory for the Dirichlet problem (cf. e.g., Gilbarg and
Trudinger [55, Thms. 6.19, 8.34]), we have w−[∂I, µ, k] ∈ Cj+1,α(cl IR,C). Hence, we have that
(∂/∂νI)w−[∂I, µ, k] is in Cj,α(∂I,C). By known properties of double layer potentials for the Helmholtz
equation (cf. Theorem E.4) we have w+[∂I, µ, k] ∈ Cj,α(cl I,C) Then we note that w+[∂I, µ, k] must
satisfy {

∆w+[∂I, µ, k] = −k2w+[∂I, µ, k] ∈ Cj,α(cl I,C) in I,
∂
∂νI
w+[∂I, µ, k] = ∂

∂νI
w−[∂I, µ, k] ∈ Cj,α(∂I,C) on ∂I.

By classical results on elliptic regularity theory for the Neumann problem, we conclude that w+[∂I, µ, k]
is in Cj+1,α(cl I,C). Hence, µ = w+[∂I, µ, k]− w−[∂I, µ, k] ∈ Cj+1,α(∂I,C).

We now turn to the proof of statement (iii). We proceed by induction on j. Let j = 1. Since
the integral operators which appear in the right-hand side of (E.8) display a weak singularity,
then a standard argument on iterated kernels implies that µ ∈ C0(∂I,C). By Miranda [99, §
14, III], we have v[∂I, µ, k] ∈ C0,α(cl Bn(0, R),C). Since Γ̄, b ∈ C0,α(∂I,C), we conclude that
Γ̄− bv[∂I, µ, k] ∈ C0,α(∂I,C). Thus equation (E.8) implies that v−[∂I, µ, k] satisfies

∆v−[∂I, µ, k] = −k2v−[∂I, µ, k] ∈ C0,α(cl IR,C) in IR,
∂
∂νI
v−[∂I, µ, k]|∂I = Γ̄− bv−[∂I, µ, k] ∈ C0,α(∂I,C) on ∂I
∂

∂νBn(0,R)
v−[∂I, µ, k]|∂Bn(0,R) ∈ C∞(∂Bn(0, R),C) on ∂Bn(0, R).

(E.10)

Thus by classical elliptic regularity theory for the Neumann problem (cf. e.g., Miranda [99, § 16, II],
Troianiello [136, Thm. 1.17 (ii), 3.16 (iii)], Agmon, Douglis and Nirenberg [1, Thm. 7.3]), we have
v−[∂I, µ, k] ∈ C1,α(cl IR,C). Then we note that{

∆v+[∂I, µ, k] = −k2v+[∂I, µ, k] ∈ C0,α(cl I,C) in I,
v+[∂I, µ, k] = v−[∂I, µ, k] ∈ C1,α(∂I,C) on ∂I. (E.11)

By classical results of elliptic regularity theory for the Dirichlet problem (cf. e.g., Gilbarg and
Trudinger [55, Thm. 8.34]), we have v+[∂I, µ, k] ∈ C1,α(cl I,C). Hence,

µ =
∂

∂νI
v−[∂I, µ, k]− ∂

∂νI
v+[∂I, µ, k] ∈ C0,α(∂I,C). (E.12)

We now assume that the statement is true for j < m, and we prove it for j+1. By inductive assumption,
we know that µ ∈ Cj−1,α(∂I,C). By known properties of simple layer potentials for the Helmholtz
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equation (cf. Theorem E.5 and also, e.g., Miranda [98, p. 330]), we have v−[∂I, µ, k] ∈ Cj,α(cl IR,C).
Since b ∈ Cm−1,α(∂I,C) ⊆ Cj,α(∂I,C), Γ̄ ∈ Cj,α(∂I,C), we conclude that Γ̄ − bv−[∂I, µ, k] ∈
Cj,α(∂I,C). Then equation (E.8) implies that v−[∂I, µ, k] satisfies problem (E.10). Then by classical
elliptic regularity theory for the Neumann problem (cf. e.g., Miranda [99, § 16, II], Troianiello [136,
Thm. 1.17 (ii), 3.16 (iii)], Agmon, Douglis and Nirenberg [1, Thm. 7.3]), we have v−[∂I, µ, k] ∈
Cj+1,α(cl IR,C). By known properties of simple layer potentials for the Helmholtz equation (cf.
Theorem E.5 and also, e.g., Miranda [98, p. 330]), we have v+[∂I, µ, k] ∈ Cj,α(cl I,C). Then we have{

∆v+[∂I, µ, k] = −k2v+[∂I, µ, k] ∈ Cj,α(cl I,C) in I,
v+[∂I, µ, k] = v−[∂I, µ, k] ∈ Cj+1,α(∂I,C) on ∂I.

By classical results of elliptic regularity theory for the Dirichlet problem (cf. e.g., Gilbarg and
Trudinger [55, Thms. 6.19, 8.34]), we have v+[∂I, µ, k] ∈ Cj+1,α(cl I,C). Hence, equality (E.12)
implies that µ ∈ Cj,α(∂I,C).

We finally prove statement (iv). We proceed by induction on j. Let j = 1. Since the integral
operators which appear in the right-hand side of (E.6) display a weak singularity, then a standard
argument on iterated kernels implies that µ ∈ C0(∂I,C). By Miranda [99, § 14, III], we have v[∂I, µ, k] ∈
C0,α(cl Bn(0, R),C). Since Γ̄, b ∈ C0,α(∂I,C), we conclude that Γ̄− bv[∂I, µ, k] ∈ C0,α(∂I,C). Thus
equation (E.9) implies that v+[∂I, µ, k] satisfies the Neumann boundary value problem{

∆v+[∂I, µ, k] = −k2v+[∂I, µ, k] ∈ C0,α(cl I,C) in I,
∂
∂νI
v+[∂I, µ, k] = Γ̄− bv+[∂I, µ, k] ∈ C0,α(∂I,C) on ∂I. (E.13)

Thus by classical elliptic regularity theory for the Neumann problem (cf. e.g., Miranda [99, § 16, II],
Troianiello [136, Thm. 1.17 (ii), 3.16 (iii)], Agmon, Douglis and Nirenberg [1, Thm. 7.3]), we have
v+[∂I, µ, k] ∈ C1,α(cl I,C). Then we have∆v−[∂I, µ, k] = −k2v−[∂I, µ, k] ∈ C0,α(cl IR,C) in IR,

v−[∂I, µ, k]|∂I = v+[∂I, µ, k]|∂I ∈ C1,α(∂I,C) on ∂I,
v−[∂I, µ, k]|∂Bn(0,R) ∈ C∞(∂Bn(0, R),C) on ∂Bn(0, R).

By classical results of elliptic regularity theory for the Dirichlet problem (cf. e.g., Gilbarg and
Trudinger [55, Thm. 8.34]), we have v−[∂I, µ, k] ∈ C1,α(cl IR,C). Hence,

µ =
∂

∂νI
v−[∂I, µ, k]− ∂

∂νI
v+[∂I, µ, k] ∈ C0,α(∂I,C). (E.14)

We now assume that the statement is true for j < m, and we prove it for j+1. By inductive assumption,
we know that µ ∈ Cj−1,α(∂I,C). By known properties of simple layer potentials for the Helmholtz
equation (cf., Theorem E.5 and also, e.g., Miranda [98, p. 330]), we have v+[∂I, µ, k] ∈ Cj,α(cl I,C).
Since b ∈ Cm−1,α(∂I,C) ⊆ Cj,α(∂I,C), Γ̄ ∈ Cj,α(∂I,C), we conclude that Γ̄ − bv+[∂I, µ, k] ∈
Cj,α(∂I,C). Then equation (E.9) implies that v+[∂I, µ, k] satisfies problem (E.13). Then by classical
elliptic regularity theory for the Neumann problem (cf. e.g., Miranda [99, § 16, II], Troianiello [136, Thm.
1.17 (ii), 3.16 (iii)], Agmon, Douglis and Nirenberg [1, Thm. 7.3]), we have v+[∂I, µ, k] ∈ Cj+1,α(cl I,C).
By known properties of simple layer potentials for the Helmholtz equation (cf., Theorem E.5 and also,
e.g., Miranda [98, p. 330]), we have v−[∂I, µ, k] ∈ Cj,α(cl IR,C). Then we have∆v−[∂I, µ, k] = −k2v−[∂I, µ, k] ∈ Cj,α(cl IR,C) in IR,

v−[∂I, µ, k]|∂I = v+[∂I, µ, k]|∂I ∈ Cj+1,α(∂I,C) on ∂I,
v−[∂I, µ, k]|∂Bn(0,R) ∈ C∞(∂Bn(0, R),C) on ∂Bn(0, R).

By classical results of elliptic regularity theory for the Dirichlet problem (cf. e.g., Gilbarg and
Trudinger [55, Thms. 6.19, 8.34]), we have v−[∂I, µ, k] ∈ Cj+1,α(cl IR,C). Hence, equality (E.14)
implies that µ ∈ Cj,α(∂I,C).

The proof is now complete.
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