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PrefazioneQuesta tesi si inseris
e nel 
ontesto della ri
er
a sulla fusione termonu
leare
ontrollata 
ome possibile fonte alternativa di energia. La fusione è il pro-
esso 
he alimenta il sole e tutte le altre stelle attive, il progetto è quello diriprodurre questo pro
esso in ma

hine da laboratorio: il progetto, a�as
i-nante ma di non fa
ile realizzazione, si s
ontra soprattutto 
on la di�
oltà di
on�nare alte temperature e densità di plasma, stato ionizzato della materia(il 
osiddetto quarto stato della materia).La ri
er
a 
ivile in questo 
ampo è quasi interamente dedi
ata allo studio del
on�namento dei plasmi da fusione 
on 
ampi magneti
i. Le 
on�gurazionidi 
ampo magneti
o più studiate sono quelle dette Tokamak, Stellarator eReversed�Field�Pin
h (RFP), 
he 
on�nano i plasmi in ma

hine toroidali.Tokamak e Stellarator sono le 
on�gurazioni 
he stori
amente hanno dato imigliori risultati in termini di 
on�namento di parti
elle ed energia: vannori
ordati rispettivamente i due progetti per la futura generazione delle ma
-
hine da fusione, ITER (progetto di 
ollaborazione internazionale oggi in
ostruzione a Cadara
he, Fran
ia) e Wendelstein�7X (progetto in 
ostruzionea Greifswald, Germania).Per quanto riguarda il RFP, il più grande esperimento oggi attivo è l'esperi-mento RFX (oggi RFX�mod), in funzione a Padova dal 1990, dove si è svoltoquesto lavoro di tesi. Nei RFP il plasma è ris
aldato per e�etto ohmi
o daun'alta 
orrente 
he �uis
e nel plasma, ma la presenza di molte instabil-ità, 
onsiderate intrinse
he alla 
on�gurazione, ha stori
amente 
ondotto abassi tempi di 
on�namento e quindi a po
a �du
ia nel RFP 
ome possi-bile 
on�gurazione per un reattore. La ri
er
a su questo tipo di ma

hine èoggi rivalutata da nuovi risultati, 
he dimostrano 
ome all'aumentare della
orrente il plasma spontaneamente si porti in uno stato meno 
aoti
o 
onproprietà di 
on�namento migliorate. Questi stati sono 
hiamati SHAx (Sin-gle Heli
al Axis) per
hé 
aratterizzati da super�
i magneti
he eli
oidali.Obiettivo di questa tesi è lo studio e la 
aratterizzazione della topologiamagneti
a degli equilibri SHAx (in RFX�mod ottenuti per 
orrenti di plasmasuperiori a 1.5 MA), sia nella regione 
entrale del plasma (plasma 
ore) 
henella zona di bordo dove dominano gli e�etti dell'interazione plasma�parete(plasma edge). 1



PrefazioneIl primo passo per 
aratterizzare i nuovi equilibri eli
oidali è stato la ri
er
adi buone 
oordinate eli
oidali. Si è fatto uso per questo di 
oordinate 
urvi-linee (per des
rivere la geometria toroidale del sistema) e della me

ani
ahamiltoniana appli
ata ai 
ampi magneti
i in un toro (il 
he permette diusare le 
oordinate azione�angolo del sistema).Il risultato di questo studio è un 
odi
e (SHEq, Single Heli
al Equilibria)
he usa le metri
he eli
oidali per la ri
ostruzione delle quantità di plasma(
omponenti del 
ampo o dei �ussi magneti
i e della densità di 
orrente)durante gli stati SHAx, ed è quindi per esempio utile per interpretare i datisperimentali delle varie diagnosti
he.Parte di questa tesi si è svolta in 
ollaborazione 
on il gruppo di Teoria diTJ�II (Ciemat, Madrid) per l'evoluzione temporale degli equilibri eli
oidalidi SHEq in a

ordo 
on la legge di Ohm (
he non è iniziale vin
olo).La parte più sperimentale di questa tesi riguarda lo studio della zona di bordodove un'interazione regolare del plasma 
on la parete ri�ette la deformazioneeli
oidale della 
olonna di plasma. Una parte del tempo nella 
ampagnasperimentale 2011 di RFX�mod è stata dedi
ata allo studio di parti
olari
ondizioni al 
ontorno per favorire e 
ontrollare la regolarità dell'interazioneplasma�parete.I risultati prin
ipali di questa tesi sono stati pubbli
ati in:- B. Momo et. al Plasma Phys. Control. Fus (2011) [1℄;- E. Martines, R. Lorenzini, B. Momo et al. Plasma Phys. Control. Fus(2011) [2℄;- E. Martines, R. Lorenzini, B. Momo et al., Nu
l. Fusion (2010) [3℄.Il lavoro ì 
osì organizzato:Introduzione
• Capitolo 1: Cos'è un Reversed Field Pin
h?Questo 
apitolo introdu
e brevemente la �si
a del 
on�namento mag-neti
o del plasma in ma

hine toroidali da fusione e si 
on
entra sullades
rizione del RFP e delle sue 
aratteristi
he prn
ipali. Parti
olareattenzione è dedi
ata agli stati eli
oidali SHAx.Riferimenti teori
i
• Capitolo 2: Me

ani
a hamiltoniana appli
ata ai 
ampi magneti
iQuesto 
apitolo fornis
e le basi per usare la me

ani
a hamiltonianaappli
ata ai 
ampi magneti
i in ma

hine toroidali da fusione. Chiari-�
a il signi�
ato della forma 
anoni
a del 
ampo magneti
o attraversol'uso del potenziale vettore e del teorema di Stokes. Riunis
e le formu-2



lazioni e 
onsiderazioni dei prin
ipali testi e arti
oli sull'argomento.
• Capitolo 3: Ri
ostruzione delle autofunzioni della perturbazione mag-neti
aQuesto 
apitolo è dedi
ato a spe
i�
are 
ome utilizzare i risultati teori
idel 
apitolo 2 per dati reali. Viene ripreso l'arti
olo di P. Zan
a andD. Terranova, Re
onstru
tion of magneti
 perturbation in a toroidalreversed �eld pin
h, Plasma Phys. Control. Fusion 46 (2004) in 
ui sispiega 
ome ri
ostruire le autofunzioni delle perturbazioni (de
ompostese
ondo Fourier) al 
ampo magneti
o di equilibrio assial�simmetri
o.Parti
olare attenzione è dedi
ata all'a

oppiamento toroidale tra i modi
he nas
e da metri
he 
urvilinee.Il lavoro di tesi
• Capitolo 4: Coordinate eli
oidali in sistemi toroidaliVengono qui de�niti al
uni sistemi di 
oordinate eli
oidali 
he de-s
rivono un'eli
a in un toro. Gli stati SHAx sono aprossimati a pureeli
he (toroidalmente 
hiuse) des
ritte dalla sovrapposizione di un uni
omodo della perturbazione al 
ampo magneti
o di equilibrio assial�simmetri
o. Punto di partenza è quindi la ri
ostruzione delle armoni
hedella perturbazione spiegata nel 
apitolo 3. Vengono dis
ussi limiti evantaggi dei vari sistemi di 
oordinate trovati. Viene introdotto il
odi
e SHEq.
• Capitolo 5: Componenti 
ovarianti e 
ontrovarianti del 
ampo mag-neti
oL'uso di 
oordinate 
urvilinee impone attenzione sia rispetto alla dif-ferenza tra 
omponenti 
ovarianti e 
ontrovarianti dei vettori 
he all'a
-
oppiamento toroidale tra i modi 
he ne 
onsegue. Viene mostratol'e�etto dell'a

oppiamento toroidale tra i modi sia nelle 
omponenti
ovarianti 
he in quelle 
ontrovarianti del 
ampo magneti
o.
• Capitolo 6: Appli
azioniSi dis
utono al
une appli
azioni del 
odi
e SHEq, in parti
olare: la ri-
ostruzione delle super�
i magneti
he; le medie sulle super�
i di �usso
he restitius
ono i pro�li radiali (mediati) delle quantità di plasma; ilsafety fa
tor pro�le (fattore di si
urezza) per de�nire gli equilibri eli-
oidali. 3



Prefazione
• Capitolo 7: Evoluzione dell'equilibrio: il vin
olo ohmi
oDate le alte 
orrenti di plasma, qualsiasi equilibrio deve soddisfare lalegge di Ohm (o il 
osiddetto vin
olo ohmi
o in 
ondizioni stazionarie).In questo 
apitolo prima la dinamo laminare (legata alla deformazioneeli
oidale della 
olonna di plasma) è dis
ussa 
ome e�etto elettro-stati
o. Poi si dimostra 
he gli equilibri di SHEq sono non stazionari,e si presenta il lavoro svolto a TJ�II (Ciemat, Madrid) per evolvere gliequilibri eli
oidali in a

ordo alla legge di Ohm.
• Capitolo 8: Plasma di bordo in stati SHAxSi dis
ute l'interazione regolare del plasma 
on la parete durante glistati SHAx. Vengono presentate al
une re
enti s
ari
he della 
am-pagna sperimentale 2011 di RFX�mod per il 
ontrollo della zona dibordo plasma attraverso l'imposizione di 
ondizioni al 
ontorno eli-
oidali.Dettagli di 
al
olo
• Capitolo 9: Dettagli di 
al
olo...Si ra

olgono qui i dettagli dei 
onti svolti in questa tesi. In parti
o-lare quelli relativi alle derivate delle armoni
he 
omplesse delle pertur-bazioni di �usso magneti
o e quelli relativi alle metri
he delle geometrieeli
oidail�toroidali.Appendi
i
• Appendi
i A1�A3:Si trovano qui brevi riassunti di temati
he utili per seguire meglio iltesto della tesi. In parti
olare sono ra

olte le equazioni MHD e le
oordinate toroidali usate 
ome punto di partenza per la 
ostruzionedelle 
oordinate eli
oidali�toroidali introdotte nel 
apitolo 4.

4



Abstra
tThe work 
arried out during these three years is part of the resear
h a
tivityon 
ontrolled thermonu
lear fusion as a (future) energy sour
e that wouldmeet the requirements of a 
lean, renewable and abundant resour
e. Fusionrea
tions are well known to physi
ists sin
e 1930 and the ambitious idea isto reprodu
e in laboratory the pro
ess that powers the Sun and all the stars.Its reprodu
tion on Earth in a fusion rea
tor is limited by the inability of
on�ning high density and temperature plasmas, ne
essary to over
ome theCoulomb repulsion between nu
lei and bring the rea
tants within the rangeof their strong intera
tion.Civil resear
h is mainly devoted to the study of magneti
 plasma 
on�ne-ments. Presently Tokamak, Stellarator and Reversed Field Pin
h (RFP) 
on-�gurations are the most explored magneti
 
on�gurations, the �rst two beingthe most promising for a fusion rea
tor (the ITER Tokamak in Cadara
he,Fran
e, and the Wendelstein�7X Stellarator in Greifswald, Germany, are nowunder 
onstru
tion as the next step in fusion resear
h).The study of the reversed �eld pin
h 
on�guration is getting new momen-tum from re
ent results, and this thesis has been 
arried out in the largestRFP devi
e in the world, whi
h is in operation in Padova, Italy, sin
e 1990:the RFX�mod devi
e (previously 
alled RFX). RFPs are Ohmi
ally heateddevi
es, with high 
urrents �owing in the plasma. In the past, their perfor-man
e has been limited by the intrinsi
 presen
e of many instabilities thatdegrade the 
on�nement. At present, new high�plasma�
urrent (higher than1.5 MA in RFX�mod) states have been dis
overed, whi
h show that as theplasma be
omes hotter it spontaneously undergoes a transition to a statewith improved 
on�nement properties due to the emergen
e of an orderedspontaneous magneti
 stru
ture in the otherwise 
haoti
 
ore. These states(named SHAx, Single Heli
al Axis) are 
hara
terized by magneti
 surfa
eswinding around a heli
al axis and are therefore 
onsidered as the heli
al RFPstates.The aim of this thesis is to investigate and model the magneti
 topologyrelated to heli
al SHAx state equilibria, taking into a

ount both the 
oreregion and the edge.As a �rst step, new heli
al 
oordinates to well des
ribe the heli
al shape of5



Abstra
tSHAx states on a torus has been de�ned. This has been 
arried out makinguse of the 
urvilinear metri
s theory (to well 
onsider the toroidi
ity of theheli
al system) and Hamiltonian me
hani
s tools applied to magneti
 �eld(to make use of a
tion�angle as a smart 
hoi
e of 
oordinates).The pra
ti
al out
ome of this thesis is the 
ode named SHEq (Single Heli-
al Equilibria), whi
h uses the 
omplete de�nition of the heli
al metri
s to
ompute all the (heli
al) equilibrium plasma quantities and 
an be thereforeuseful to interpret the data from di�erent diagnosti
s.Furthermore, this should allow to verify if the equilibrium satis�es the Ohmi

onstraint, a posteriori sin
e the Ohm's law is not an initial 
onstraint forSHEq's equilibrium re
onstru
tion. This highlights that SHEq's equilibriaare not steady state, and a part of this thesis has been 
arried out in 
ollabo-ration with the Theory Group of TJ-II (Ciemat, Madrid), where I worked forabout three months, in order to evolve in time heli
al equilibria a

ordinglyto Ohm's law too.Finally, a more experimental part of the thesis 
on
erns the edge region.From the point of view of plasma�wall intera
tion SHAx states appears witha regular heli
al pattern and a part of this thesis is also devoted to thestudy of some dis
harges (done during the 2011 RFX�mod experimental
ampaign) where parti
ular boundary 
onditions were applied in order to fa-vor and sustain both the heli
al deformation in the 
ore and a more regularheli
al pattern in the plasma�wall intera
tion.The main results of this work have been published in:- B. Momo et. al Plasma Phys. Control. Fus (2011) [1℄;- E. Martines, R. Lorenzini, B. Momo et al. Plasma Phys. Control. Fus(2011) [2℄;- E. Martines, R. Lorenzini, B. Momo et al., Nu
l. Fusion (2010) [3℄.The thesis is organized as follows:Introdu
tion
• Chapter 1: What is a Reversed Field Pin
h?Brie�y introdu
es the 
on
epts of magneti
 
on�nement in fusion de-vi
es with parti
ular attention to the Reversed Field Pin
h (RFP) axi�symmetri
 
on�guration. Spe
ial emphasis is given to the di�eren
ebetween low and high plasma 
urrent dis
harges and to SHAx features,where one or more modes break the axi�symmetry. The ne
essity ofthe dynamo pro
ess is dis
ussed, together with its ele
trostati
 expla-nation that overtakes Taylor's theory for the RFP.6



Theoreti
al basis
• Chapter 2: Hamiltonian me
hani
s for magneti
 �eld linesThis 
hapter gives an overview of the Hamiltonian me
hani
s appliedto magneti
 �elds in a toroidal devi
e. The derivation of the 
anoni
alrepresentation of the magneti
 �eld B is proposed, and its physi
almeaning is 
lari�ed using the ve
tor potential A (B = ∇ × A) andStoke's theorem. We follow and 
olle
t the 
onsiderations of famouspapers on the Hamiltonian me
hani
s of magneti
 �elds.
• Chapter 3: Mode eigenfun
tion re
onstru
tionThis 
hapter is devoted to spe
ify how to apply the theoreti
al resultsof 
hapter 2 to real data, and whi
h measurements are ne
essary for there
onstru
tion of the (Fourier de
omposed) harmoni
s of the perturba-tion (to the axi�symmetri
 magneti
 �eld). Spe
ial attention is givento the toroidal 
oupling that arises between modes due to 
urvilinearmetri
s. The 
hapter follows the paper by P. Zan
a and D. Terra-nova, Re
onstru
tion of magneti
 perturbation in a toroidal reversed�eld pin
h, Plasma Phys. Control. Fusion 46 (2004).Thesis original work
• Chapter 4: Heli
al 
oordinates in toroidal systemsIt is the �rst 
hapter regarding the original work of this thesis. Goodheli
al 
oordinate systems are de�ned in order to des
ribe SHAx states,that are modeled as pure Single Heli
ity (SH) states (whi
h are the su-perposition of a single mode of the perturbation to the axi�symmetri

on�guration). The advantages and disadvantages are dis
ussed for allthe 
oordinate systems. The starting point is the re
onstru
tion of theheli
al magneti
 surfa
es, using the magneti
 �ux eigenfun
tion insidethe plasma volume introdu
ed in 
hapter 3. The SHEq�
ode 
an al-ways 
hoose between all 
oordinate systems when 
omputing heli
alequilibria.
• Chapter 5: Covariant and 
ontravariant magneti
 �eld 
omponentsThe use of 
urvilinear metri
s (as the heli
al 
oordinate systems in atorus) imposes to 
onsider the di�eren
e between 
ovariant and 
on-travariant 
omponents of any ve
tor, and the toroidal 
oupling betweenmodes introdu
ed in 
hapter 3. In this 
hapter is shown how the e�e
tof the toroidal 
oupling on the harmoni
s of the magneti
 �uxes 
anbe seen in both the 
ovariant and 
ontravariant magneti
 �eld 
ompo-nents. 7



Abstra
t
• Chapter 6: Appli
ationsThis 
hapter dis
usses some appli
ations of the SHEq 
ode. For ex-ample magneti
 �ux re
onstru
tions, the 
al
ulation of �ux surfa
eaverages of any plasma quantity, and the heli
al safety fa
tor pro�le.
• Chapter 7: Equilibrium evolution: the Ohmi
 
onstraintDue to high 
urrents �owing in the plasma, any equilibrium must sat-isfy Ohm's law (or the Ohmi
 
onstraint that arises for steady state
ondition). In this 
hapter, �rst the laminar dynamo (whi
h originsfrom a heli
al deformation of the plasma 
olumn) is dis
ussed as anele
trostati
 e�e
t. Then it is shown that SHEq's equilibria are notsteady state (do not satisfy the Ohmi
 
onstraint) and the work donein 
ollaboration with the Theory Group of TJ-II (Ciemat, Madrid) inorder to evolve in time the heli
al equilibria a

ording to Ohm's law ispresented.
• Chapter 8: Plasma boundary in SHAx statesThis is the most experimental 
hapter, whi
h presents the work donefor the analysis of the plasma�wall intera
tion during SHAx states: a
ru
ial point for RFX�mod operation not yet well understood. Spe
ialattention is devoted to a set of re
ent dis
harge (2011 experimentalRFX�mod 
ampain), where the ambitious obje
tive was the 
ontrol ofthe plasma�wall intera
tion using di�erent (heli
al) boundary 
ondi-tion.Detailed 
al
ulations
• Chapter 9: Detailed 
al
ulationsHere are 
olle
ted the detailed 
al
ulation done for this thesis, in par-ti
ular those regarding the radial derivative of the 
omplex harmoni
sof the �uxes and the heli
al�toroidal 
oordinates.Appendixes
• Appendixes A1�A3:In the appendixes one 
an �nd some brief summary of arguments re-lated to this thesis but not originally developed during the work. Inparti
ular one 
an �nd a brief summary of MHD equations and detailsregarding the toroidal 
oordinate system (and the 
urvilinear metri
s)introdu
ed in 
hapter 3. 8



Chapter 1What is a Reversed FieldPin
h?1.1 About magneti
 
on�nement of fusion plasmas
Figure 1.1: A pi
ture showing the prin
iple of toroidal 
on�nement.It seems easy, but it is not...The �rst pi
ture in this se
tion shows the prin
iple of magneti
 
on�ne-ment in toroidal devi
es: a 
harged parti
le gyrates (dotted line) around amagneti
 �eld line (
ontinuous line) and it is 
on�ned within the va
uumvessel.Histori
ally, the plasma magneti
 
on�nement developed starting fromthe �rst experiments about the pin
h e�e
t, in whi
h a 
urrent 
hannel 
on-tra
ts through the self�magneti
 �eld of the 
urrent, investigated by Bennetin 1934 [4℄. One 
an think to an applied toroidal magneti
 �eld and to atoroidal 
urrent indu
ed in the plasma by a transformer. The pin
h e�e
tdue to the toroidal 
urrent adds to the toroidal magneti
 �eld a poloidal
omponent: the magneti
 �eld lines are helix that wrap around the torus.The averaged poloidal angle ∆θ traversed by a �eld line after one toroidaltransit (∆ϕ = 2π) is 
alled the rotational transformation angle ι, [5℄1. A1The number of turns of a magneti
 �eld line in the poloidal dire
tion every toroidal9



Introdu
tionnon�null rotational transform arises from the heli
al winding of the magneti
�eld lines, and it is ne
essary to balan
e the shift due to the 
urvature andthe spatial gradient of the toroidal magneti
 �eld.Tokamak and RFP (Reversed Field Pin
h) devi
es are the main toroidalpin
h devi
es for fusion studies. The main 
on
ept of the Tokamak wasproposed in 1952 by two Soviet physi
ists, Tamm and Sa
harov, and thenrealized for the �rst time by another Russian physi
ist, L.A. Artsimovi
h,[6℄. Whereas, the RFP 
on�guration was �rst observed in the ZETA ex-periment (a pin
h devi
e) at Harwell in the mid 1960s, as a spontaneousself�generation of the toroidal magneti
 �eld.A non�null rotational transform 
an also be 
reated without a pin
h e�e
t,by heli
ally shaped magneti
 �eld 
oils outside the plasma, as in is the 
aseof the Stellarator devi
es.In this thesis we will fo
us on the RFP 
on�guration.1.2 The Reversed Field Pin
h

Figure 1.2: RFP axi�symmetri
 magneti
 �eld 
on�guration.In �g. 1.2 the poloidal and toroidal 
omponent of the (toroidal) Re-versed Field Pin
h 
on�guration are drawn. The RFP 
on�guration 
an bedes
ribed by an axi�symmetri
 magneti
 �eld, with the pe
uliarity of 
om-parable toroidal and poloidal 
omponent amplitude, and the reversal of thetoroidal one at the edge (when
e the name to the 
on�guration). In the past,turn are usually indi
ated by the symbol -ι. Rigorously -ι = ι/(2π), but in this thesis wewill use the symbol ι instead of -ι. 10



1.2 The Reversed Field Pin
hRFP's performan
e has been limited by the intrinsi
 presen
e of many insta-bilities, su
h as tearing modes, that degrade the 
on�nement, but were also
onsidered to be ne
essary for the sustaining of the magneti
 �eld reversalthrough the dynamo e�e
t [7℄. A
tually, the reversal 
an be sustained alsoin a non�
haoti
 magneti
 
on�guration [8, 9, 10℄, as the so�
alled SingleHeli
al AXis (SHAx) states, re
ently dis
overed in RFX�mod experiment(and the main subje
t of this thesis).1.2.1 Start up of the 
on�guration

Figure 1.3: Reprodu
ed from H. Ji, S.C. Prager, [7℄. Qualitative illustra-tion of time evolution of the normalized magneti
 �eld and 
urrent densitypro�les in a pin
h plasma when the ele
tri
 �eld is in
reased in sequen
e: (a)initial state, where only a toroidal �eld exist; (b) a small ele
tri
 �eld to drivemainly toroidal 
urrent in Tokamaks; (
) a modest ele
tri
 �eld to signi�-
antly drive both toroidal and poloidal 
urrent 
omponents; (d) and, �nally,an RFP 
on�guration is realized when the toroidal magneti
 �eld reverses itsdire
tion.The toroidally symmetri
 va
uum vessel is surrounded by a set of toroidal�eld 
oils whi
h produ
e the initially toroidal magneti
 �eld. A 
entralsolenoid provides then the loop voltage ne
essary to trigger the dis
harge,and to drive the toroidal plasma 
urrent inside the vessel that produ
es thepoloidal magneti
 �eld 
omponent. In �g.1.3 one 
an see the time evolutionof the magneti
 �eld and 
urrent density 
omponents, as the applied ele
tri
�eld in
reases.Most of the magneti
 �eld is produ
ed by 
urrents �owing in the plasma. Thepoloidal �eld is produ
ed by the indu
ed toroidal 
urrent, while the toroidalmagneti
 �eld, mu
h stronger in the 
ore than at the edge (where it assumes11



Introdu
tionjust a small value with a reversed sign), must be generated by poloidal 
ur-rents inside the plasma. These poloidal 
urrents 
an not be driven by thetoroidal loop voltage alone: a dynamo is a
ting in the plasma, with 
ontin-uous generation of a toroidal �ux to provide and sustain the 
on�guration.Therefore, the toroidal winding provides only a small toroidal �eld. It 
ana
t as a �ux 
onserver, in this 
ase the 
oils rea
t to the existen
e of thepoloidal 
urrents in order to keep the total �ux 
onstant: in the outer regionthe toroidal �eld is thereby redu
ed and even reversed. But, in RFP experi-ments, aided reversal is generally preferred to self�reversal, and the toroidalwinding provides a small (
hosen) negative toroidal �eld.The resulting equilibrium 
on�guration is the one in �g.1.2.1.2.2 Shifted magneti
 �ux surfa
es

Figure 1.4: The 
ylindri
al (R,Z, ϕ) and ma
hine (r, θ, ϕ) 
oordinate sys-tems, applied to a torus.The magneti
 equilibrium in �g.1.2 is related to magneti
 �ux surfa
eswhere the magneti
 �eld lines lie by de�nition. We refer to magneti
 �ux sur-fa
es with 
ir
ular poloidal 
ross se
tion2, even if other shape 
ould in prin-
iple be investigated. In 
ylindri
al approximation one 
an think to nested
ir
ular magneti
 �ux surfa
es, whereas a shift (and therefore non 
on
entri
2The edge radial magneti
 �eld due to perturbations breaks the perfe
t 
ir
ularity ofthe magneti
 �ux surfa
es, and must be 
ontrolled either by a thi
k shell or by a feedba
ka
tive 
ontrol. This in RFX�mod is done by a number of saddle 
oils.12



1.2 The Reversed Field Pin
hmagneti
 �ux surfa
es) 
hara
terizes the real toroidal system [11℄3.On the 
ir
ular �ux surfa
es are de�ned the toroidal 
oordinate systemsused in RFX�mod, all 
olle
ted in appendix B.2 4. All of these 
oordinatesystems are de�ned by a radial variable to label the magneti
 �ux surfa
e,and by two angles: a poloidal angle θ and a toroidal angle ϕ (that one 
ansee in �g. 1.4 for the easier of these 
oordinate systems, the ma
hine one).

Figure 1.5: Reprodu
ed from [12℄. Magneti
 �uxes and 
urrents de�nedusing the 
ross�se
tional area for the toroidal �ux ψt and the 
urrent I andusing the 
entral hole of the torus for the poloidal �ux ψp and the 
urrent G.The poloidal angle is θ and the toroidal angle is ϕ. (R,Z, ϕ) are ordinary
ylindri
al 
oordinates.Magneti
 �ux surfa
es 
an be labeled with every quantity whi
h is 
on-stant on them: by de�nition it must be any fun
tion f for whi
h its gradientis perpendi
ular to the magneti
 �eld B:
B · ∇f = 0 . (1.1)From the equilibrium for
e balan
e equation, that needs to balan
e the pres-3Shifted magneti
 �ux surfa
es are not a pe
uliar feature of RFP 
on�gurations, butit is 
ommon to all the toroidal devi
es.4The only 
oordinate system that takes into a

ount the toroidi
ity is the (r, ϑ, ϕ)
oordinate system, de�ned also in 
hapter 3. The 
omplexity of taking into a

ount thetoroidal geometry, through the shift term, is related to 
urvilinear metri
s (see appendixB). 13



Introdu
tionsure gradient with the Lorentz for
e, one obtains the relation
J×B = ∇p . (1.2)Both the 
urrent density J and the pressure gradient ∇p are orthogonal tothe magneti
 �eld B: the kineti
 pressure is 
onstant on the magneti
 �uxsurfa
es, where also the plasma 
urrent �ows.Some other example of label for magneti
 �ux surfa
es are the magneti
�uxes, or the safety fa
tor q de�ned as the ratio between their di�erentials:

ψt(r) =

∫
B · dΣtor (1.3)

ψp(r) =

∫
B · dΣpol (1.4)

q(r) =
dψt
dψp

(1.5)
ψt is the toroidal �ux through Σtor, the surfa
es de�ned by the 
onstan
y ofthe radius r at the toroidal angle ϕ = const; and ψp is the poloidal �ux, i.e.the �ux through Σpol, the r = const surfa
e at the poloidal angle θ = const.A qualitative pi
ture of the two �uxes is in �g.1.5 and �g.2.4.It is worth noting that the magnitude B of the magneti
 �eld is not 
on-stant on the magneti
 �ux surfa
es r = const. Due to the toroidi
ity of thegeometry, the magnitude of the magneti
 �eld depends both on the radius
r and on the poloidal angle. One 
an think to the High or Low Field Sidetypi
al in Tokamaks.1.2.3 Internal resonan
es: MH vs QSH and SHAx statesThe safety fa
tor pro�leA distin
tive feature of the RFP 
on�guration is the safety fa
tor pro�le,de�ned in eq.(1.5) and plotted in �g. 1.6. The safety fa
tor pro�le relatedto the axi�symmetri
 equilibrium is monotoni
ally de
reasing and it reversesits sign at the edge, due to the reversal of the toroidal magneti
 �eld.The safety fa
tor pro�le 
an be de�ned also as the inverse of the rota-tional transform ι, whose geometri
al meaning is the number of turns of amagneti
 �eld line in the poloidal dire
tion, after a 
omplete turn in thetoroidal one5.The small edge value of q, related to the weak reversal of the toroidal mag-neti
 �eld, means that (in 
ontrast to Tokamaks) magneti
 �eld lines at the5We remind that we use the symbol ι instead of -ι.14



1.2 The Reversed Field Pin
h

Figure 1.6: The axi�symmetri
 safety fa
tor pro�le in the 
ylindri
al ap-proximation.edge are almost poloidal. For q = 0 the magneti
 �eld is only poloidal, i.e.on the reversal surfa
e where the toroidal magneti
 �eld vanishes.As one 
an see in �g. 1.6, a lot of magneti
 �ux surfa
es where q assumesa rational value with low mode numbers are present in the plasma, whi
hmeans:
q(r) =

m

n
. (1.6)These values of q are said rational or resonant, as the 
orresponding �uxsurfa
es, where magneti
 �led lines 
lose on themself after m poloidal and ntoroidal turns. The term resonant arises from the fa
t that, around these sur-fa
es, tearing modes with the same m poloidal mode number and n toroidalmode number are destabilized.Tearing modes are resistive, non�linear modes with saturated amplitudes,and are responsible for the origin of the magneti
 islands. Magneti
 islandsare a 
hange in the magneti
 topology that arises where the resonant 
ondi-tion

k ·B = 0 (1.7)between the wave ve
tor k of the perturbation6 and the magneti
 �eld issatis�ed. Equation (1.7) is veri�ed exa
tly on the resonant �ux surfa
es7,and in �g. 1.7 is given a pi
ture of the magneti
 island of a m = 1 modein the poloidal plane and of a n = 2 − 3 mode in the toroidal one. On thereversal surfa
es, where q = 0 by de�nition, all the modes of the m = 0spe
trum are resonant, and one speaks of the m = 0 island 
hain.6In the 
ylindri
al approximation, kθ = m/r and kϕ = n/R, where r and R are theminus and major radius respe
tively.7See [13, 11℄ for a treatment of magneti
 island theory.15



Introdu
tion

Figure 1.7: Left: A m = 1 magneti
 island on the poloidal plane. Right:An example of magneti
 island around the reversal surfa
es on the toroidalplane. This �gure is intended as a qualitative pi
ture of magneti
 islands onthe poloidal and toroidal plane. The re
onstru
tion of the magneti
 
on�g-uration related to experimental data is better explained later (see 
hapters6�8).MHD spe
traAt low plasma 
urrent (below 800 kA in RFX�mod), a wide spe
trum oftearing modes is present in the so�
alled Multiple Heli
ity (MH) regime.Typi
ally, the largest tearing modes are mostly in the m = 1 and m = 0MHD spe
tra, and many modes with di�erent toroidal mode number n and
omparable amplitudes are simultaneously destabilized in the plasma. The
onsequen
e of the superposition of magneti
 islands asso
iated to resonanttearing modes is a sto
hasti
 plasma 
ore [14℄, that entails �at density andtemperature pro�les. This is in agreement with images of the plasma 
orefrom soft X�ray (SXR) tomography (�g.1.8 bottom left) whi
h display apoloidally symmetri
 emissivity.At higher plasma 
urrents, transient states where just one (m,n) mode dom-inates the spe
tra are observed in all the large RFP devi
es. These states are
alled Quasi Single Heli
ity (QSH) states due to the presen
e of se
ondarymodes with small but �nite amplitude. QSH regimes are asso
iated to aredu
ed level of 
haos and improved 
on�nement properties. This is dueto the presen
e of partially 
onserved magneti
 �ux surfa
es in the plasma
ore, that turn out to be the magneti
 island related to the dominant mode.From the measurements, this 
an be seen in the bean�like hot stru
ture evi-dent from the SXR tomography (�g.1.8 bottom right) and shows up also inthe ele
tron temperature pro�les measurements that exhibit a strong Inter-nal Transport Barrier (ITB) in 
orresponden
e of the magneti
 island edges[15, 16℄.In
reasing the plasma 
urrent, an in
rease in the amplitude of the dominantmode, together with a de
rease in the amplitude of the se
ondary modes, 
anbe observed (�g.1.9 left). For high plasma 
urrents (usually above 1.5 MAin RFX�mod), and in 
orresponden
e to a threshold value of the dominant16
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h

Figure 1.8: Left. MH features: MHD spe
trum where many modes have
omparable amplitudes; Poin
aré plot with the typi
al 
haoti
 
ore; SXRtomography on the poloidal plane, whi
h displays a poloidally symmetri
emissivity. MH are the typi
al state for low plasma 
urrent dis
harges, andonly transient states in high plasma dis
harges. Right. QSH features: MHDspe
trum where just one mode dominates the spe
tra; Poin
aré plot wherethe 
oherent stru
ture in the plasma 
ore, related to the dominant mode, isevident; SXR tomography on the poloidal plane, whi
h displays the bean�likehot stru
ture. QSH are the typi
al state for high plasma 
urrent dis
harges,and only transient states in low plasma dis
harges. This �gure is intendedto be a qualitative pi
ture to summarize MH and QSH features.
17



Introdu
tionamplitude (experimentally of about the 4% of the total magneti
 �eld at theedge), the plasma self�organizes into a heli
al state, named Single Heli
alAxis (SHAx), [17, 18, 19℄.In �g.1.9 (right) the time evolution of the dominant and the se
ondarymodes in both a low and high plasma 
urrent dis
harges is also plotted. One
an see that the MH phases at high plasma 
urrent are just transient phases,whereas are the typi
al state for low 
urrent dis
harges. On the 
ontrary, athigh plasma 
urrent, heli
al states are rea
hed but in a non�stationary way,their persisten
e in
reasing with plasma 
urrent.

Figure 1.9: Left: The amplitude of the dominant mode (bla
k) and of these
ondary modes (red) are plotted against the value of the plasma 
urrent.Right: The time evolution of the dominant mode (red) and of the se
ondarymodes (blue) in a low (up) and high (down) plasma dis
harges.DAx and SHAx statesSHAx states are improved 
on�nement RFP states, 
hara
terized by nestedmagneti
 �ux surfa
es winding around a single heli
al axis, but en
losed inan almost axi�symmetri
 boundary. This state is the result of two su

es-sive bifur
ations, o

urring when the 
urrent progressively in
reases. The�rst one is of MHD type, and brings the plasma from the MH to the QSHregime. At lower 
urrents (and below the threshold value of the dominantamplitude), the QSH regime in
ludes a magneti
 island and two axes aretherefore present in the magneti
 system: the unperturbed axi�symmetri
axis and the one related to the island O�point. As one 
an see in �g. 1.10,in su
h states (named Double AXis, DAx) a heli
al thermal stru
ture isobserved together with an ele
tron transport barrier (ITB) where the max-imum of the ele
tron temperature in strongly 
orrelated with the positionof the magneti
 island. The se
ond bifur
ation 
hanges the topology of themagneti
 �eld: when the dominant mode ex
eeds the threshold amplitude,the X�point of its magneti
 island is expelled and the original axi�symmetri
18



1.2 The Reversed Field Pin
h

Figure 1.10: Left. DAx state topology on the poloidal plane where theisland related to the dominant m = 1 
an be seen. And the relative tem-perature pro�le from Thomson s
attering data, where the internal transportbarrier (ITB) 
an be seen. Right. SHAx state topology on the poloidal planewhere the bean�shaped �ux surfa
es 
an be seen. And the relative temper-ature pro�le from Thomson s
attering data where the internal transportbarrier (ITB) and the internal �at pro�le 
an be seen.axis is repla
ed by a heli
al magneti
 axis, whi
h 
oin
ides with the previousisland O�point and that be
omes the only magneti
 axis (whi
h motivatesthe term SHAx) of the system.During SHAx states, the region inside the ITB spans a larger volume thanin DAx states, and it is related to a �at temperature pro�le (�g. 1.10). Themaximum ele
tron temperature gradients at the ITB are similar betweenDAx and SHAx states. The safety fa
tor pro�le 
hanges its shape duringthe transition to a SHAx state, going through a maximum lo
ated in thevi
inity of the former separatrix and therefore in 
orresponden
e of the steeptemperature gradient (see 
hapter 6). The region of shear reversal8 seems tobe more resilient to 
haos, and a QSH state without separatrix (SHAx state)
an be therefore 
onsidered an improved 
on�nement state with respe
t tothe DAx state9.8The shear pro�le is de�ned as the radial derivative of the safety fa
tor pro�le. A shearreversal therefore indi
ates a maximum or a minimum in the safety fa
tor pro�le.9This 
an be understood also using the Hamiltonian me
hani
s theory.19



Introdu
tionThe transition from a 
haoti
 MH regime to a stationary SH (Single He-li
ity) regime where 
haos is suppressed was theoreti
ally predi
ted to o

urwhen the vis
o�resistive dissipation grows, therefore in 
orresponden
e of thehigh dissipation limit of the system. Numeri
al simulations show a 
ontinu-ous transition from MH to SH when the plasma dissipation in
reases, withan intermediate phase where the system displays a temporal intermitten
ybetween MH and QSH10.The �rst theoreti
al proof of the existen
e of SH states was their dis
overyin 1990 in 3D numeri
al simulations. The numeri
al s
enario is qualitativesimilar to the experimental one: an in
rease of the dissipation parameters(as the Hartmann number11) in the former seems to have the same role of anin
rease of the plasma 
urrent in the latter (and vi
eversa). Experimentally,a pure SH regime is not rea
hed, but it 
an be observed the transition be-tween QSH and MH regimes (and vi
eversa). However, the relation betweenthe high dissipation regime and high plasma dis
harges is still not under-stood, and the reason why high 
urrent is bene�
ial for real dis
harges isstill awaiting a theoreti
al explanation.Plasma properties, su
h as ele
tron temperature and SXR emissivity,have been found 
onstant on heli
al magneti
 �ux surfa
es, indi
ating thatSHAx states 
an be des
ribed by MHD equilibrium with almost invariant�ux surfa
es. In 
ontrast, stationary low 
urrent MH states do not exist dueto the temporal �u
tuation of all the modes of the perturbation.In this thesis we look for the magneti
 re
onstru
tion of the heli
al SHAxstate equilibria, and to their evolution in time in 
hapter 7.3D vis
o�resistive MHD simulations in toroidal geometry (and not in thesimpli�ed 
ylindri
al one) show that the toroidal 
oupling between modes12prevents the system to rea
h a pure Single Heli
ity state. The toroidal 
haosstays limited during the Quasi Single Heli
ity SHAx states, and in the fol-lowing we model them as pure SH states, even in a toroidal geometry.SHAx states are related to the dominant mode of the m = 1 spe
trum, andthey are studied in 
hapters 4�7. The 
ontribution of the 
orrespondentdominant mode in the m = 0 spe
trum, important at the edge and in theplasma�wall intera
tion, is analyzed in 
hapter 8. The plasma deformationdue to m = 1 and m = 0 modes 
an be seen in �g.1.11.As yet the SHAx regimes are usually obtained at low densities (n/nG < 0.2,10In [20℄ the transition between MH and SH phases is des
ribed as a se
ond order phasetransition, where the 
ontrol parameter is the Hartmann number.11The Hartmann number H is de�ned as the dimensionless number (η0ν0)
−1/2, where

η0 is the 
entral resistivity and ν0 the 
entral plasma vis
osity, therefore the in
rease ofthe dissipation parameters 
orresponds to a de
rease of H and vi
eversa. It is found tobe the right 
ontrol parameter for the dynami
s in numeri
al simulations [20℄.12See 
hapter 3: the toroidal 
oupling a
ts between modes with same toroidal modenumber n and di�erent poloidal mode number m.20



1.2 The Reversed Field Pin
hwhere nG is the Greenwald density limit, [11℄), and the understanding ofthe plasma-wall intera
tion is of 
ru
ial importan
e spe
ially in RFX�mod,where no divertors prote
t the wall.The magneti
 topology of a SHAx state (3D shape in �g. 1.12) is likethat of a non resonant saturated kink. This heli
al deformation makes theheli
al RFP plasmas similar to Stellarator's one. But in a Stellarator theheli
al magneti
 �eld is almost 
ompletely de�ned by external 
oils, while inRFPs SHAx states is mainly produ
ed by internal 
urrents.In 
hapter 6.3 we however 
ompare the heli
al rotational transform duringa SHAx state and the one typi
al of TJ-II Stellarator, in Ciemat (Madrid).
Figure 1.11: The plasma deformation due to m = 1 (left) and m = 0(right) modes.

Figure 1.12: Left: 3D shape of a SHAx state. Right: Reprodu
ed from[21℄. The interse
tion of the helix with the poloidal plane, and the typi
albean�like stru
ture that 
hara
terize a SHAx state on the poloidal plane.
21



Introdu
tion1.2.4 The reversal of the toroidal magneti
 �eld and the dy-namoA dynamo pro
ess is ne
essary to sustain the Reversed Field Pin
h 
on�g-uration, for time longer that the resistive ones13. Without any me
hanismthat 
ontinuously produ
es toroidal magneti
 �ux, after a short time thetoroidal magneti
 �eld pro�le would be 
onstant and equal to its edge value(see the di�usive equation (A.12) and �g.1.13).The dynamo is therefore a pro
ess a
ting against the resistive di�usion, and

Figure 1.13: Top: The resistive di�usion of the toroidal magneti
 �eldwithout the dynamo a
tion. Bottom: The toroidal �ux as fun
tion of timeduring a typi
al RFX�mod dis
harge. The dashed line represents the theo-reti
al di�usive exponential de
ay without �eld regeneration.it has been proved to be ne
essary for the stability of the 
on�guration [22℄.Other examples show the ne
essity of a dynamo, in parti
ular to providethe reversal of the toroidal magneti
 �eld. Let us use the Ampère's law, in13The time for the resistive di�usion of the magneti
 �eld is de�ned in appendix A.1(
omment to eq.(A.12)), as the 
hara
teristi
 time τR = µ0a
2/η with a the radius of theva
uum 
hamber. 22



1.2 The Reversed Field Pin
hstationary 
ondition and in 
ylindri
al approximation for simpli
ity14:
Jθ = − 1

µ0

∂Bϕ
∂r

(1.8)On the reversal surfa
e, if the poloidal 
urrent density vanishes (as it shouldbe with magneti
 �eld lines only poloidal), the toroidal magneti
 �eld isminimum, due to the vanishing of its radial derivative. But the minimum ofthe toroidal magneti
 �eld 
ontradi
ts its reversal assumption (as one 
an see
omparing the two Bϕ pro�les in �g. 1.14): this highlights the ne
essity ofa poloidal 
urrent density 
omponent, that 
an not be driven by the appliedtoroidal loop voltage15.

Figure 1.14: Left: The axi�symmetri
 RFP magneti
 �eld 
omponents.Right: The toroidal magneti
 �eld pro�le without a dynamo pro
ess.The same 
an be proved looking at the parallel Ohm's law: on the reversal�ux surfa
e, where B = Bθ,
E‖ = η‖ J‖ ⇐⇒ Eθ = η‖ Jθ . (1.9)The two sides of equation (1.9) are plotted in �g. 1.15. Again it is evidentthe ne
essity of a poloidal 
urrent at the reversal surfa
e, that 
annot bedriven neither by the applied toroidal loop voltage neither by a (v×B) termin the poloidal dire
tion being B = Bθ.Usually the dynamo pro
ess is understood as a (v × B) term in thepoloidal dire
tion due to the non linear 
oupling between the velo
ity andthe magneti
 perturbation �elds. Only one mode of the perturbation 
ouldbe enough to sustain the dynamo: in this 
ase the ne
essity of a dynamo isunderstood as the ne
essity of an heli
al deformation of the plasma 
olumn,14Therefore ex
hanging the role of the axial Bz magneti
 �eld and of the Bϕ toroidalone.15The pin
h of the magneti
 �eld lines due to the applied ele
tri
 �eld is what produ
esjust poloidal magneti
 �eld lines at the reversal.23
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Figure 1.15: Mismat
h between the applied ele
tri
 �eld E‖ and the re-sistive 
ounterpart. It is noted that E‖ > ηj‖ at the 
enter (ne
essity ofanti�dynamo) while E‖ < ηj‖ at the edge (ne
essity of a dynamo pro
ess).and the RFP is seen as a heli
ally distorted paramagneti
 pin
h. One speaksof the laminar RFP dynamo, see se
tion 7.1.In any 
ase, the �eld reversal is a 
onsequen
e of the loss of the axi�symmetryof the system. This is known as the Cowling's theorem [23℄, for whi
h nodynamo 
an sustain an axi�symmetri
 RFP.1.2.5 Standard and laminar dynamo explanations. FromTaylor to the wire modelTaylor relaxation theoryTaylor relaxation theory was the �rst explanation of the reversed 
on�gura-tion in �g. 1.2. It 
ame in 1974 [24℄, when 
omputers were not able to runa MHD simulation, and 
onsiders a plasma with null pressure and velo
ityin a 
ylindri
al �ux 
onserver. The plasma is 
onsidered as an isolated sys-tem, therefore it should rea
h the minimum energy state 
onsistent with the
onstraints given by the global magneti
 invariants.The energy to be minimized is the total magneti
 energy W , negle
ting theinternal energy due to the vanishing pressure:
W =

∫

V

B2

2µ0
dV (1.10)and Taylor proposes to 
onsider as a 
onstraint to the system the 
onstan
yof the magneti
 heli
ity16 K de�ned as

K =

∫

V
A ·B dV (1.11)16Magneti
 heli
ity K de�ned in equation (1.11) to be distinguished from the geometri
heli
ity of a magneti
 perturbation. When speaking of the heli
ity of a mode in this thesiswe are referring to the geometri
al one, if not di�erently spe
i�ed.24



1.2 The Reversed Field Pin
hwhere A is the ve
tor potential (B = ∇ × A) and V the plasma volumeen
losed by a given magneti
 �ux surfa
e (Taylor 
onsiders the 
onstan
y ofthe total magneti
 heli
ity inside the last 
losed magneti
 �ux surfa
e).The magneti
 heli
ity K is 
onstant for non resistive plasmas, but it 
an be
onsidered approximately 
onstant if the variation of K is mu
h slower thanthe energy variation. This is experimentally veri�ed and Taylor's pi
ture is
onsistent even for low resistivity plasmas17.Woltjer's theorem states that a system 
onstrained to 
onstant magneti
heli
ity minimizes its energy rea
hing a (linear) for
e free 
on�guration: J =
σB with a 
onstant σ pro�le. In 
ylindri
al geometry the solutions are theBessel fun
tions (J0 and J1), for whi
h ∇×B = σB and:





Br(r) = 0
Bθ(r) = B0J1(σr)
Bz(r) = B0J0(σr)These solutions are 
alled Bessel Fun
tion Model (BFM) and are plotted in�g. 1.16. One 
an see that these are not far from the experimental magneti
�elds, and that the solution for Bz a

ounts for the reversal.For a 
omplete des
ription of the BFM solution it is useful to introdu
e two

Figure 1.16: BFM solutions and experimental magneti
 �eld pro�les. Re-produ
ed from H.A.B. Bodin, [26℄.parameters, the reversal parameter F and the pin
h parameter Θ, de�nedas
Θ =

Bθ(a)

〈Bϕ〉
F =

Bϕ(a)

〈Bϕ〉
(1.12)17Taylor's pi
ture 
an be 
onsidered 
onsistent with resistive plasma also if one 
anassume that the relaxation pro
ess is due to small s
ale �u
tuation. In this 
ase theenergy de
ays faster than the magneti
 heli
ity. But the dynamo pro
ess that must a
t toa

ount for the reversal is due to large s
ale �u
tuations, as tearing or kink modes [25℄.25
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Figure 1.17: S
hemati
 F − Θ diagram, as predi
ted by the BFM model(
ontinuous line) and experimental values found in di�erent devi
es.where 〈Bϕ〉 is the average of the toroidal magneti
 �eld over the poloidal 
rossse
tion and a the minor radius of the va
uum 
hamber. In general, sin
e thetoroidal �eld reverses for r < a, in the RFP F is always negative and thevalue Θ is always high. On the 
ontrary, the Tokamak 
ould be 
hara
terizedwith low Θ values and F positive everywhere. A 
ommon way to display theBFM model predi
tion is the F − Θ diagram (�g.1.17), in whi
h the RFPstates (the 
on�gurations with a reversed toroidal �eld) are supposed to existfor Θ > 1.2. The experimental points overplotted in the same �gure showa qualitatively reasonable agreement just in the 
entral region. In the sameplot, one 
ould follow the start up of the dis
harge (from (a) to (d) in �g.1.3).The BFM solutions 
orrespond to the axi�symmetri
 reversed equilib-rium states predi
ted by Taylor's theory18. This is in 
ontrast with thealready 
ited Cowling's theorem [23℄, for whi
h a reversed axi�symmetri
equilibrium 
an not exist. This is only one of the experimental and theoret-i
al results that disagree with Taylor's relaxation theory.Taylor gives an explanation for the �nal relaxed state, but does not spe
ifythe nature of the relaxation. A dynamo pro
ess must a
t against the mag-neti
 �eld di�usion, and this breaks the axi�symmetry of the equilibriumsystem in agreement with Cowling's theorem. Moreover, the experimental
σ pro�le is not 
onstant over the whole plasma radius, in parti
ularly it18Taylor's theory 
an predi
t also a heli
al minimum energy state, 
orresponding to amode resonating outside the reversal radius. But the geometri
al heli
ity of this mode isopposite to the one of the experimental heli
al SHAx states, that 
orrespond to a moderesonating inside the reversal surfa
e. This is one of the 
riti
ism to Taylor's theory.26



1.2 The Reversed Field Pin
hstrongly varies outside the reversal radius19. RFP's plasmas are essentiallyohmi
, but a high plasma resistivity is out of Taylor's assumption20. More-over, the plasma is not an isolated system21. In [25℄ one 
an �nd a morea

urate elu
idation of the Taylor's theory 
riti
isms, and a new paradigmfor the RFP that a

ounts for these. Its explanation in the next se
tion 
anbe found in D.F.Es
ande, What is a RFP?, to be published.The wire modelIn the new model, the RFP is des
ribed as a self�organized magneti
 systemthat results from the nonlinear saturation of a resistive kink mode22.The intuitive toy model that explains the self�reversal of the axial magneti
�eld in a 
ylindri
al system is 
alled wire model, [29, 30℄.A �nite, but small, axial magneti
 �eld is present inside the 
ylinder.This means a poloidal 
urrent is �owing in external 
oils on the 
ylinder(Fig. 1.18 (a)). The wire is in unstable equilibrium, and a small perturba-tion triggers a kink. The unstable kink is the one with a pit
h whose sign issu
h that the poloidal part of the 
urrent �owing in the wire has the sameorientation as the one in the 
ylinder, whi
h brings a mutual attra
tive for
e(Fig. 1.18 (b)). Su
h a pit
h brings also a solenoidal e�e
t whi
h in
reasesthe magneti
 �eld and �ux inside the kinked wire. The �ux 
onserver im-poses a

ordingly a de
rease of the magneti
 �eld and �ux outside. As longas the 
urrent in the 
ylinder keeps its sign, the instability 
annot quen
h.The 
ontinuing growth of the magneti
 �eld and �ux inside the kinked wirefor
es the outer magneti
 �eld and the 
urrent in the 
ylinder to reverse.This model exhibits a self�organized magneti
 system where it is essentialthe loss of axi�symmetry to provide the reversal. Di�erently from Taylor'stheory, this model explains the reversal without 
onsidering a 
losed system,a

ounting for the plasma resistivity, and predi
ting a heli
al magneti
 equi-librium 
on�guration in agreement with experiments23 and the Cowling's19The σ pro�le is 
onstant in the 
haoti
 radial domain: as shown by Rusbridge [27℄, σmust be 
onstant along magneti
 �eld lines in for
e free and stationary 
ondition (be
ause
J = σB and ∇ · J = 0, then B · ∇σ = 0). This explains why σ is 
onstant in the 
haoti

ore of MH states, even without the ne
essity of Taylor's theory.20See footnote 17.21Considering instead the plasma as an open ohmi
 system with �xed 
urrents one
an use an ele
trote
hni
s result, whi
h states that su
h a system maximizes its mag-neti
 energy (instead of relaxing toward a minimum energy state). See [25℄ and referen
e[45℄ therein: P. Lorrain and D.R. Corson, Ele
tromagneti
 Fields and Waves, New York:Freeman (1987).22This model is a variant of the Kadomtsev one, that proposes a model for the saturationof a resistive kink for Tokamaks, in order to �nd the reversal of the axial magneti
 �eld
omponent. See Kadomtsev [28℄, and [25, 29℄.23But in RFP experiments usually aided reversal is preferred to the self�reversal of this27
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Figure 1.18: The wire model. (a): 
urrent-
arrying wire in a �ux 
onserver.The wire 
arries a 
urrent Iz, parallel to a magneti
 �eld Bz whose �ux is
onserved by the 
ondu
ting shell; (b): growth of the instability of Iθ; (
): astable equilibrium with reversed �eld is rea
hed. Reprodu
ed from [30℄.
theorem. Di�erently from Taylor's theory, the origin of the dynamo velo
ity�eld is explained: as a 
onsequen
e of the heli
al deformation of magneti
�ux surfa
es, a heli
al ele
trostati
 potential generates the dynamo velo
ityas an ele
trostati
 drift. This is 
alled laminar dynamo, and better explainedin se
tion 7.1. 28



1.3 RFX�mod experiment
r

Bφ
Bφ

Bθ Bθ

RFP Tokamak

rFigure 1.19: Left, Middle: The axi�symmetri
 RFP and Tokamak mag-neti
 �eld 
omponents. Right: The RFP and Tokamak safety fa
tor pro�le.
1.2.6 Main di�eren
es with Tokamak 
on�gurationsIn a RFP most of the magneti
 �eld is produ
ed by the 
urrents �owing inthe plasma. For the same axial applied toroidal �eld, the plasma 
urrent isone order of magnitude larger in a RFP than in a Tokamak.As a 
onsequen
e, for the same plasma resistivity (and the same axial toroidal�eld), the ohmi
 heating (proportional to the squared plasma 
urrent) is twoorders of magnitude larger in RFPs than in Tokamaks. Therefore, no ad-ditional heating is required for high plasma temperatures in RFP devi
es,and no super
ondu
ting magnets are required for strong magneti
 �eld (themaximum magneti
 �eld being bounded by the ability of driving high plasma
urrents and not by the maximum value imposed by the super
ondu
tingte
hnology).Another result of the high plasma 
urrent in a RFP is that the equilib-rium magneti
 �eld has poloidal and toroidal 
omponents of 
omparableamplitudes. As one 
an see in �g. 1.19, the similar amplitude of the two
omponents of the equilibrium magneti
 �eld pushes the value of the safetyfa
tor pro�le always below 1 in the RFP 
on�guration. The q = 1 is knownas the Kruskal�Shafranov limit24: below this limit the toroidal 
on�gurationshould be stable (as Tokamak 
ase), above heli
al MHD instabilities with
m = 1 are triggered in the plasma (m is the poloidal mode number of theperturbation, and m = 1 are the kink instabilities of the type in �g.1.11left). The self�organized magneti
 system that results from the nonlinearsaturation of a resistive kink mode 
orresponds to a full MHD relaxationthat involves the toroidal �eld reversal and it turns out to be resilient todisruption. 29
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Figure 1.20: Left: The RFX�mod experiment. Right: S
heme of thepoloidal se
tion of RFX�mod experiment.Major radius = 2 mMinor radius = 0.459 mPlasma 
urrent ≤ 2 MADis
harge duration ≤ 0.5 sPlasma density range ≈ 1÷ 10× 1019 m−3Plasma volume ≈ 10 m3Working gas H, HeTable 1.1: Main parameters of RFX-mod devi
e.1.3 RFX�mod experimentThe Reversed Field EXperiment modi�ed (RFX-mod) [31℄, the upgradedversion of the previous RFX [32℄, is a toroidal devi
e for the study of themagneti
ally 
on�ned plasma in the RFP 
on�guration. Lo
ated at the Isti-tuto Gas Ionizzati (IGI) [33℄ of the National Resear
h Coun
il (CNR) [34℄ ofPadova, it is operational sin
e 2004 under the management of the ConsorzioRFX, a resear
h organization promoted by CNR, ENEA (the Italian Nationalagen
y for new te
hnologies, Energy and sustainable e
onomi
 development)[35℄, University of Padova [36℄, A

iaierie Venete S.p.A. (a private partner)[37℄ and INFN (the Italian National Institute of Nu
lear Physi
s) [38℄, withinthe framework of the Euratom - ENEA Asso
iation.The main parameters of the RFX-mod devi
e (the largest RFP in oper-ation) are shown in the tab.1.1. As in all RFPs, plasma heating is purelyohmi
. Despite a toroidal magneti
 �eld ten times smaller (the whole mag-neti
 system is shown in �g.1.20), this devi
e allows exploring 
urrent regimesmodel.24See [11℄ for a treatment of the Kruskal�Shafranov limit.30



1.3 RFX�mod experiment(up to 2 MA) 
omparable to those of the large tokamaks.First wall

Figure 1.21: First wall, graphite tiles.The RFX�mod �rst wall is 
omposed by 2016 graphite tiles, 
overing
ompletely the inner part of the va
uum vessel. In the new ma
hine thetiles have been redesigned to a
hieve a more uniform power deposition onthe plasma fa
ing surfa
e, to minimize the emissivity due to plasma wall-intera
tion and �nally to give housing to a large number of in-vessel probes.These design requirements led to a substantial redu
tion of the tile thi
knesswith respe
t to the original design [39℄.The a
tive feedba
k 
ontrol system

Figure 1.22: Saddle 
oils31
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tionWith respe
t to the original RFX design, the present ma
hine under-went some 
ru
ial modi�
ations that allowed signi�
ant performan
e im-provements.The original RFX thi
k stabilizing shell (whi
h had a magneti
 �eld penetra-tion time 
onstant τshell = 500 ms) was repla
ed with a thinner one, whosetime 
onstant for penetration of verti
al magneti
 �eld (≈ 50 ms) is ≈ 10times shorter than pulse duration. Moreover, RFX-mod has been equippedwith one of the most advan
ed system for feedba
k 
ontrol of MHD stabilitywith a
tive 
oils among fusion devi
es. The system is based on 192 a
tivesaddle 
oils, whi
h 
over the whole plasma boundary (�g. 1.22). The 
oilsare arranged in 48 toroidal lo
ations; in ea
h toroidal lo
ation there are 4poloidal 
oils, a

ording to the low m/high n stru
ture of MHD modes inthe RFP (where m and n are the poloidal and toroidal mode numbers, re-spe
tively). Ea
h 
oil is independently driven by individual power suppliesand 
an produ
e a radial magneti
 �eld up to 50 mT DC and 3.5 mT at 100
Hz [31, 40, 41, 42℄. Di�erent algorithms for real-time tearing modes 
ontrolhave been developed to exploit the full 
apability of the feedba
k system,the most important being the Virtual Shell (VS) s
heme [41℄ and the CleanMode Control (CMC) [43℄. The latter, in parti
ular, has drasti
ally 
hangedthe performan
e of the devi
e, redu
ing the amplitude of the dynamo modesat the plasma boundary, mitigating their phase and wall lo
king and �nallyremoving the aliasing of the sidebands that limits the VS 
ontrol s
heme [44℄.The plasma 
urrent in
rease (the 2 MA have been a
hieved in 2010) isonly the most evident one among a turn of outstanding a
hievements that
onsiderably enhan
ed the interest about the RFX-mod developments andenri
hed the RFP physi
s, [45℄.

Figure 1.23: Plasma 
urrent waveforms obtained in RFX-mod sin
e itsrestart in De
ember 2004As said, the plasma 
urrent in
rease (higher than 1.5 MA) has been a
-
ompanied by the observation of the heli
al SHAx states.32



Chapter 2Hamiltonian me
hani
s formagneti
 �eld linesThis 
hapter gives an overview of the Hamiltonian me
hani
s applied tomagneti
 �elds in a toroidal devi
e.Any divergen
e free �eld (as the magneti
 �eld, for whi
h ∇ · B = 0) in atorus 
an be written in its 
anoni
al form. For the magneti
 �eld:
B = ∇ψt ×∇θ −∇ψp ×∇ϕ (2.1)where in general ψt ≡ ψt(r, θ, ϕ) and ψp ≡ ψp(r, θ, ϕ) are the poloidal andtoroidal �uxes1 and (r, θ, ϕ) general toroidal 
oordinates. Using this relationone 
an see that magneti
 �eld lines follow Hamiltonian traje
tories for one�degree�of�freedom Hamiltonians:





dθ
dϕ = Bθ

Bϕ =
∂ψp
∂ψt

dψt
dϕ = Bρ

Bϕ = − ∂ψp
∂θ

(2.2)
an be identi�ed with the 
anoni
al equation of motion




dq
dt = ∂H

∂p

dp
dt = − ∂H

∂q

(2.3)if 
anoni
al time t ↔ ϕ (2.4)Hamiltonian H ↔ ψp (2.5)position 
oord. q ↔ θ (2.6)momentum p ↔ ψt (2.7)1The �uxes are intended normalized to (2π). See se
tion 2.7 for further details or thegeometri
al interpretation of these �uxes. 33



Hamiltonian me
hani
sThis is usually the starting point to relate Hamiltonian me
hani
s and mag-neti
 �eld theory, with the general form:
A = ∇g + ψt∇θ − ψp∇ϕ (2.8)for the ve
tor potential A (B = ∇×A), [12℄.In this 
hapter we propose the derivation of the 
anoni
al representationof the magneti
 �eld, eq.(2.1), whi
h 
lari�es the interpretation. We followand 
olle
t the 
onsiderations of famous papers on the Hamiltonian me
han-i
s of the magneti
 �elds, as [46, 47, 48, 5, 49, 50℄.In se
tion 2.1 we introdu
e a variational prin
iple for magneti
 �eld lines inan heuristi
 but physi
ally intuitive way; in se
tion 2.2 the same variationalprin
iple for the ve
tor potential A, from whi
h the magneti
 �eld line equa-tions (in physi
al spa
e) follow, is presented in a mathemati
ally rigorousway; in se
tion 2.3 we prove the equivalen
e between this variational pri
ipleand the one of Hamiltonian me
hani
s from whi
h the 
anoni
al equationsof motion (in phase spa
e) derive. From this equivalen
e one 
an dedu
e theasso
iation between 
anoni
al and magneti
 variables, for whi
h it is naturalto use the 
ovariant 
omponents of the ve
tor potential Ai; in se
tion 2.4we show the equivalen
e between 
anoni
al transformation (related to the
hoi
e of the 
anoni
al variables) and gauge transformation (related to the
hoi
e of the ve
tor potential A); in se
tion 2.5 we introdu
e a usefull state-ment of Noether's theorem to be applied in any Hamiltonian 
ontext, and inparti
ular to the symmetries of magneti
 �elds in fusion devi
es; in se
tion2.6 A
tion�Angle 
oordinates are de�ned, that are nothing but straight��eld�line 
oordinates on magneti
 �ux surfa
es; in se
tion 2.7 the physi
alinterpretation of the 
ovariant 
omponent Ai 
lari�es the theoreti
al stepsof the pre
eding se
tions: using Stokes theorem we prove the equivalen
ebetween Ai and the magneti
 �uxes, and one 
an �nally understand identi-�
ations (2.4)�(2.7); in se
tion 2.8 the main results of the 
hapter are shownfollowing the more 
ommon (but less rigorous) way followed for exampleby A. Boozer [12℄ and W.D. D'Haeseleer [51℄; in se
tion 2.9 a resumptiveexample is presented, for a system where a heli
al symmetry is supposed;in se
tion 2.10 a �nal simple example is proposed, to the study of an axi�symmetri
 magneti
 �eld.The example in se
tion 2.9 is parti
ularly important for the study of SHAxstates, and will be used in 
hapter 4 to model them.34



2.1 Variational prin
iple for magneti
 �eld lines. Intuitivephysi
al approa
h2.1 Variational prin
iple for magneti
 �eld lines.Intuitive physi
al approa
hThe Euler�Lagrange proof for the stationary a
tion prin
iple for magneti
�eld lines 
an be done in a rigorous way (as we do in se
tion 2.2), andsimilar to what is done in Hamiltonian me
hani
s. Magneti
 �elds exhibitsnaturally also the geometri
al elements of the di�erential geometry approa
hwhi
h uses symple
ti
 manifolds (see the book of V.I. Arnold [46℄) and we
hoose this intuitive approa
h to introdu
e the Hamiltonian theory for mag-neti
 �eld lines.We need to introdu
e in advan
e the de�nition of the A
tion for magneti
systems, equation (2.10):
S(x) =

∫ x1

x0

Ai(x) dxi (2.9)for the general xi = (x1, x2, x3) 
oordinates and using the Einstein 
onven-tion to sum over repeated indi
es.
A is the ve
tor potential, and the variation of the A
tion in equation (2.12)implies the 
ir
ulation of the ve
tor potential along a 
losed 
ir
uit C. UsingStokes theorem, the variation of the A
tion δS is nothing but the �ux of themagneti
 �eld through any surfa
e having this 
ir
uit as a boundary.In �g.2.1 one �nds two examples for the 
ir
uit C, both 
onstru
ted asthe sum of two segments L (light blue in the pi
ture) and L′ (green in thepi
ture): in �g.2.1 a) the segment L is 
hosen along a magneti
 �eld line,whereas in �g.2.1 b) L is not everywhere tangent to B. In both 
ases L isweakly distorted into L′ to 
ompute δS along the 
ir
uit C.Let us study more in details the example a), where L lies along a magneti
�eld line. We de�ne a �ux tube Tǫ about L with a small radius ǫ and wesuppose the small distortion L′ 
on�ned into Tǫ. The �ux of the magneti
�eld B a
ross the 
ir
uit C 
annot therefore be larger than the �ux a
ross Tǫ,that is of order ǫ2. Be
ause the variation of the 
urve L is just of order ǫ, thevariation of the A
tion δS is se
ond order in the variation of L. Thereforethe A
tion S is stationary along a magneti
 �eld line.Let us study more in details the example b) where L does not lie on a mag-neti
 �eld line. We 
hoose a point P that belongs both to a magneti
 �eldline (that we 
all M) and to the segment L; and a point Q that belongs tothe line perpendi
ular both to M and L and going through P ; we 
hoosethe point Q to be 
lose to the point P , in order to have PQ of order ǫ. Wethen 
hoose a segment [r3, r4] of order 1 of L that in
ludes the point P , andslightly distort L into a line L′ 
oin
ident with L out of [r3, r4]: L′ is thesum of the two segments joining r3 and r4 to Q. In this way we have de�nedthe 
ir
uit C if �g.2.1 b) and we need to 
al
ulate the magneti
 �ux through35
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Figure 2.1: A physi
al intuitive approa
h to the variational prin
iple formagneti
 �eld lines.it. Be
ause L is not tangent to the magneti
 �eld line (M), this �ux is oforder ǫ. Sin
e the �ux is of same the order as the variation of L, the A
tion
S is not stationary along a 
urve L that is not tangent to a magneti
 �eld line.Therefore the A
tion S of a magneti
 system is stationary on a 
urve Lif and only if L is a segment of a magneti
 �eld line, whi
h proves prin
iple(2.9).In the next se
tion we prove this in an algebrai
 way.
2.2 Variational prin
iple for magneti
 �eld linesAs was shown by Cary and Littlejohn [48℄ and already impli
itly present in I.Morozov and L. S. Solovèv, Rev. Plasma Phys. 2, 229 (1966) [5℄, it is possibleto obtain the magneti
 �eld line equations from a variational prin
iple, in thesame way as we 
an �nd the 
anoni
al equations of motion in phase spa
efrom a variational prin
iple that makes the a
tion integral extremum in theHamiltonian 
ontext. We de�ne the a
tion along a segment of magneti
 �eld36



2.2 Variational prin
iple for magneti
 �eld linesline, between x0 and x1, as
S(x) =

∫ x1

x0

A(x) · dx (2.10)
=

∫ λ1

λ0

(
A(x(λ)) · dx

dλ

)
dλ (2.11)where A is the ve
tor potential that des
ribes the magneti
 �eld B, and x(λ)is a parametrization of the magneti
 �eld line with the 
urve parameter λ.The stationary a
tion prin
iple for �eld line �ow 
an then be written as

δS = δ

∫ x1

x0

A(x) · dx = 0 (2.12)
= δ

∫ λ1

λ0

(
A(x(λ)) · dx

dλ

)
dλ = 0 (2.13)with the usual requirement that the arbitrary variation δx(λ) vanishes atthe end points x0 = x(λ0) and x1 = x(λ1). Following Elsasser [50℄ we nowprove in a formal way that equation (2.13) is true if and only if

(
∇×A

)
× dx(λ)

dλ
= 0 (2.14)whi
h means that ẋ ≡ dx/dλ is parallel to B = ∇ × A, as required formagneti
 �eld lines. In the following, the �elds A(x) and B(x) are alwaystaken at x = x(λ) even when this is not expli
itly stated.

0 = δ

∫ λ1

λ0

dλ
[
A(x) · ẋ

] (2.15)
=

∫ λ1

λ0

dλ δ
[
A · ẋ

] (2.16)
=

∫ λ1

λ0

dλ
[
δA · ẋ + A · δẋ

] (2.17)
=

∫ λ1

λ0

dλ
[(
∇ · δx

)(
A · ẋ

)
+
(
A · δẋ

)] (2.18)
=

∫ λ1

λ0

dλ
[(
∇ · δx

)(
A · ẋ

)]
−
∫ λ1

λ0

dλ
[(
∇ · ẋ

)
A · δx

] (2.19)
=

∫ λ1

λ0

dλ
[
∇(A · ẋ)− (∇ · ẋ)A

]
· δx (2.20)Therefore

0 =
[
∇(A · ẋ)− (∇ · ẋ)A

] (2.21)
= ẋ×

[
∇×A

]

x≡x(λ)
(2.22)37



Hamiltonian me
hani
sequivalent to (2.14) as requested. This ends the proof, but let us makemore pre
ise some of its steps. Between (2.17) and (2.18) we use the generalrelation
δA(x) =

∂A

∂x
δx = (∇ · δx) A . (2.23)Between (2.18) and (2.19) we simply integrate by parts, remembering that

δẋ ≡ δ(∂x
∂λ

) =
∂

∂λ
(δx) (2.24)and between (2.19) and (2.20) we highlight δx in the equation. Between(2.21) and (2.22) we use the 
lassi
al formula for the gradient of a s
alarprodu
t between two general ve
tors, and the fa
t that x(λ) is independentof spa
e:

∇(A · ẋ) = A× (∇× ẋ) + ẋ× (∇×A) + (A · ∇)ẋ + (ẋ · ∇)A (2.25)2.3 Hamiltonian des
ription of magneti
 �eld linesIn this se
tion we show the equivalen
e between the variational prin
iplefor magneti
 �eld lines in physi
al spa
e (introdu
ed in se
tion 2.2) and theone for Hamiltonian dynami
s in phase spa
e, in order to highlight the linkbetween the two �elds of knowledge and to derive in a straightforward waythe Hamiltonian des
ription of �eld lines.Following E. Piña & T. Ortiz, J. Phys. A 21, 1292 (1988) [49℄, we prove thisequivalen
e for an arbitrary 
oordinate system xµ = (x1, x2, x3).In su
h a system, the variational prin
iple (2.13) be
omes
0 = δ

∫ λ1

λ0

dλ Aµ(x)
dxµ

dλ
≡ δ

∫
Aµdx

µ . (2.26)where we used the 
lassi
al 
ovariant expression of the dot produ
t. Wenow re
all that the 
anoni
al equations of a N degree of freedom me
hani
alsystem 
an be derived from the variational prin
iple
0 = δ

∫ t1

t0

dt
[
p · dq

dt
−H(p,q, t)

] (2.27)
= δ

∫ t1

t0

[
p dq−H(p,q, t) dt

] (2.28)where (p,q) are the 
anoni
al variables (N -ve
tors) andH(p,q, t) the Hamil-tonian of the system2.2The p · dq
dt

−H(p,q, t) term is therefore the Lagrangian of the system.38



2.3 Hamiltonian des
ription of magneti
 �eld linesIn se
tion 2.2 we saw that magneti
 �eld lines 
an be derived from a station-ary a
tion prin
iple: magneti
 �eld lines in physi
al spa
e are analogous tothe �ow of a dynami
al system with one degree of freedom (N = 1)3.We 
an therefore 
ompare the so�
alled Poin
aré�Cartan invariant form,typi
al of dynami
al systems and written in 
anoni
al 
oordinates,
pdq −H dt =

[
p
dq

dt
−H(p, q, t)

]
dt (2.29)with the equivalent form valid for magneti
 systems in physi
al spa
es, writ-ten in the general 
oordinates xµ = (x1, x2, x3)

Aµdx
µ = A1 dx

1 +A2 dx
2 +A3 dx

3 for µ = 1, 2, 3 . (2.30)In general it is Ai ≡ Ai(x
1, x2, x3). Identifying the two forms, apparentlythere are three elements in the sum (2.30) for magneti
 �eld lines, and justtwo in eq.(2.29) for the N = 1 dynami
s. The 
ovariant 
omponents of theve
tor potential, Ai, are de�ned up to gauge transformations4: one of the
omponent in the sum 
an be killed using the 
hoi
e of an axial gauge, Ai = 0for one of the indexes. The identi�
ation be
ome trivial, and it is the way toobtain the identi�
ation with 
anoni
al variables (p, q,H, t) in the physi
alspa
e.As an example, we 
hoose the axial gauge A2 = 0 (following [49℄):

A1 dx
1 +A3 dx

3 = p dq −H dt (2.31)that means that we 
an identify
p = A1(x

1, x2, t) (2.32)
q = x1 (2.33)
H = −A3(q, p, t) (2.34)
t = x3 (2.35)where we invert (possibly only lo
ally) the relation p = A1(x

1, x2, t) in orderto write x2 = x2(x1, p, t) and therefore the Hamiltonian as a fun
tion of the
anoni
al variables, H = H(p, q, t).A mere 
hange of the numbers of the 
oordinates enables to deal withthe gauge A1 = 0 or A3 = 0. Di�erent 
hoi
es of the gauge 
orrespond todi�erent sets of 
anoni
al variables.Let us write expli
itly the set of variables for the 
hoi
e A1 = 0:
A2 dx

2 +A3 dx
3 = p dq −H dt (2.36)3We will prove this in a rigorous way also in se
tion 2.5.14Any gauge transformation 
an be written as Ai 7→ Ai + ∂F/∂ui.39



Hamiltonian me
hani
sthat, as before, means
p = A2(x

1, x2, t) (2.37)
q = x2 (2.38)
H = −A3(q, p, t) (2.39)
t = x3 (2.40)where we again invert the relation for the 
anoni
al momentum p in orderto write the Hamiltonian H as a fun
tion of the 
anoni
al 
oordinates.By ex
hanging the order of p dq and −H dt in eq.(2.31) we note thatthe role of the 
anoni
al momentum (e.g. p = A2(x

1, x2, t) in the gauge
A1 = 0) 
an always be ex
hanged with minus the Hamiltonian variable(H = −A3(p, q, t)), whi
h shows the huge freedom in the de�nition of aHamiltonian for magneti
 �eld lines. However an arbitrary 
hoi
e of timedoes not guarantee magneti
 �eld lines to be fully parametrized by a timerunning from −∞ to +∞. Se
tion 2.5.2 shows that the 
hoi
e of time 
anguided by the existen
e of a symmetry.2.4 Gauge or 
anoni
al transformation?In se
tion 2.3 we see that di�erent 
hoi
es of gauge 
orrespond to di�erentsets of 
anoni
al variables, and we need to 
hoose an axial gauge in order tomake the identi�
ation between the magneti
 and the Hamiltonian system.In this se
tion we prove that gauge transformations are nothing but 
anoni-
al transformations, using the language of Hamiltonian me
hani
s.From Hamiltonian �ow theory we know that the equations of motion (andtherefore the magneti
 �eld line equations) are independent under 
anoni
altransformations. It is easy to prove5 that the Hamiltonian �ows are indepen-dent from both 
anoni
al and gauge transformations. This is true be
ause5Lagrangian, A
tion, and equation of motion are independent from both gauge and
anoni
al transformation. Let us de�ne gauge transformations. Under a gauge transfor-mation, the ve
tor potential transforms as

A 7→ A + ∇S (2.41)
Aµ 7→ Aµ +

∂S

∂xµ
(2.42)where the fun
tion S(x) is a s
alar, and ∇S its gradient. The 
orrespondent Poin
arè�Cartan (P�C) form and the Lagrangian transform respe
tively as:

Aµ dx
µ 7→ Aµ dx

µ + dS (2.43)
Aµ

dxµ

dλ
7→ Aµ

dxµ

dλ
+
dS

dλ
(2.44)so a gauge transformation add to the P�C form the total di�erential of the s
alar S, and tothe Lagrangian the total derivative (d/dλ) of the same fun
tion S. The A
tion transforms40



2.4 Gauge or 
anoni
al transformation?both 
an be identi�ed, as we now show.Any 
anoni
al transformation6 (p, q) 7→ (P,Q) 
an be des
ribed as:
p dq −H dt = P dQ−K dt+ dF (2.47)where F (q,Q, t) is a generating fun
tion. By de�nition,

dF (q,Q, t) = p dq − P dQ+ (K −H)dt (2.48)
p =

∂F

∂q
, P =

∂F

∂Q
, K = H +

∂F

∂t
. (2.49)Under a gauge transformation7, the 
orresponding Poin
aré�Cartan (P�C) form p dq −H dt = Aµdx

µ transforms as:
Aµ dx

µ 7→ Aµ dx
µ + dS (2.55)so any gauge transformation adds to the P�C form the total di�erential ofsome s
alar S(x).as

Z
Ldλ =

Z
Aµ

dxµ

dλ
dλ 7→

Z
Ldλ+ S . (2.45)The variational prin
iple give magneti
 �eld line equations due to the minimization of theA
tion:

0 = δ

Z
Ldλ 7→ δ

Z
Ldλ+ δS = 0 (2.46)where δS = 0 due to the vanishing variation of the position at the boundaries. It istherefore evident that the magneti
 �eld line �ow does not 
hange under gauge transfor-mations. And this is obviously true also for the Hamiltonian form γµdz

µ = p dq−H dt of ame
hani
al system, proving that Hamiltonian �ows are independent, not just of 
anoni
altransformations, but also of gauge transformations. The notation γµdz
µ = p dq − H dt,similar to Aµdxµ, is de�ned for me
hani
al systems in se
tion 2.5.16For a de�nition of 
anoni
al transformations and their generating fun
tions see [46℄.7By de�nition,

Aµ dx
µ 7→ Aµ dx

µ + dS (2.50)Using the gauge A1 = 0 and the identi�
ations (2.36)�(2.40), under a gauge transforma-tion:
p 7→ p′ = p+

∂S

∂q
(2.51)

H 7→ H ′ = H − ∂S

∂t
(2.52)remembering that x2 = q, x3 = t and

A2 = p , A′
2 = p′ (2.53)

−A3 = H , −A′
3 = H ′ (2.54)The generating fun
tion S of the gauge transformation must be S(x) = S(x1, q, t). In-verting the relation p = A2(x1, q, t) one 
an think to S ≡ S(p, q, t).41



Hamiltonian me
hani
sLet us apply the same gauge transformation de�ned by the fun
tion
S(x, y, t) of the two variables (x, y) parametrized by t, before and after the
anoni
al transformation (2.47). This means performing the gauge transfor-mation in the (p, q) 
oordinate with S(p, q, t) and the gauge transformationin the (P,Q) 
oordinate with S(P,Q, t):

p dq −H dt+ dS = P dQ−K dt+ dF + dS (2.56)where F ≡ F (q,Q, t).Now assume that the 
anoni
al transformation and the subsequent gaugetransformation are 
onne
ted by 
ondition [50℄
F (q,Q, t) + S[P (q,Q, t), Q, t] = 0 (2.57)where P (q,Q, t) is de�ned by equation 2.49. Then we �nd
p dq −H dt+ dS = P dQ−K dt . (2.58)This means that S[P (q,Q, t), Q, t] is the generating fun
tion of the re
ipro
al
anoni
al transformation

(P,Q) 7→ (p, q) (2.59)
K 7→ H (2.60)By equation (2.57) we 
an therefore read any gauge transformation as a
anoni
al one, and vi
e versa.There are many gauges for the ve
tor potential A, but magneti
 �led linesare intrinsi
 obje
ts in the physi
al spa
e, that do not depend on the 
oordi-nate system. In the same way, there are many 
hoi
es of 
anoni
al variables

(p,q) and 
orrespondingly of Hamiltonian H(p,q, t), but the Hamiltonian�ow is an intrinsi
 obje
t in phase spa
e. This is due to the way the Poin
aré-Cartan integral invariant a

ommodates gauge or 
anoni
al transformations.2.5 Symmetries and Noether theorem2.5.1 Equivalen
e between the variational prin
iples for mag-neti
 �eld lines and for Hamiltonian me
hani
sIn order to be able to write also the variational prin
iple for the dynami
s inphase spa
e in general 
oordinates, we need to go through some 
hanges inthe notation. This will allow to use a formally identi
al statement of Noethertheorem for magneti
 �eld lines systems in physi
al spa
e and for dynami
alsystems in phase spa
e. We follow Cary and Littlejohn [48℄.42



2.5 Symmetries and Noether theoremLet zi and γi be 
olle
tions of 2N 
oordinates, de�ned in a 2N−dimensionalspa
e as:
zi ≡ (q1, ..., qN , p1, ..., pN ) ≡ (qj , pj) , i = 1, ..., 2N (j = 1, ..., N)(2.61)
γi ≡ (p1, ..., pN , 0, ..., 0︸ ︷︷ ︸

j+N

) ≡ (pj , 0) , i = 1, ..., 2N (j = 1, ..., N) .(2.62)In a similar way we de�ne the (2N + 1) 
omponents zµ and γµ of ve
tors inthe (2N + 1) dimensional `extended phase spa
e':
zµ ≡ (t, q1, ..., qN , p1, ..., pN ) ≡ (t, qj , pj) , µ = 0, ..., 2N (j = 1, ..., N)(2.63)
γµ ≡ (−H, p1, ..., pN , 0, ..., 0︸ ︷︷ ︸

j+N

) ≡ (−h, pj , 0) , µ = 0, ..., 2N (j = 1, ..., N) .(2.64)Note that zi and zµ are the de�nitions of the 
anoni
al 
oordinates in the
2N dimensional phase spa
e and in the 2N + 1 dimensional extended phasespa
e respe
tively. The Hamiltonian H(p,q, t) is nothing but −γ0.We are now able to re�write the stationary a
tion prin
iple (2.28) in general
oordinates, remembering that H ≡ H(p,q, t):

0 = δ

∫ t1

t0

dt
[
p · dq

dt
−H(p,q, t)

] (2.65)
= δ

∫ t1

t0

dt
[
γi
dzi

dt
−H

] (2.66)
= δ

∫ t1

t0

dt γµ
dzµ

dt
(2.67)Equation (2.66) is the variational prin
iple written in the (zi, γi) 
anoni
alvariables and true in the 2N−dimensional phase spa
e; equation (2.67) isthe variational prin
iple written in the (zµ, γµ) 
anoni
al variables and truein the (2N + 1)−dimensional extended phase spa
e.Moreover, the γµdzµ term is a s
alar8, and it must be γµdzµ = ΓµdZ
µ forany 
hange of 
oordinates9 zµ 7→ Zµ. It allows to write

0 = δ

∫ t1

t0

dt
(
γµ

dzµ

dt

)
= δ

∫ t1

t0

dt
(
Γµ

dZµ

dt

)
≡ δ

∫
Γµ dZ

µ (2.68)This is the variational prin
iple valid in the extended phase spa
e for anykind of 
oordinates Zµ, and we 
an therefore see that the variational prin
i-ple (2.67) derived for 
anoni
al variables has the same form in any 
oordinate8We remind the Einstein 
onvention to sum over repeated indi
es.9Under the 
hange of 
oordinates zµ 7→ Zµ, γµ transforms with the general rules forthe 
omponent of 
ovariant ve
tors: γµ 7→ γν ∂z
ν/∂Zµ43



Hamiltonian me
hani
ssystem.This is what we were looking for, as we 
an see 
omparing the variationalprin
iples for magneti
 �eld lines and Hamiltonian �ow: equation (2.68) and(2.26) are now formally identi
al.This shows that magneti
 �eld lines in physi
al spa
e are analogous to the�ow of a dynami
al system in the extended phase spa
e (2N+1)−dimensional.This means that the problem of �nding magneti
 �led lines in 3−dimensionalphysi
al spa
es is equivalent to solve the dynami
al problem for a systemwith N = 1 degree of freedom. From now on we 
an use the Hamiltonianformalism also for magneti
 problems without 
onfusion.2.5.2 A 
ommon statement for Noether theoremThere are many statements of the Noether theorem, that essentially asso-
iates any symmetry of a system with a 
onstant of the motion10. We usehere, and we don't prove it, the Noether theorem for the Poin
arè�Cartanform γ ≡ γµ dx
µ or Aµ dxµ, following [48℄ and using the result of se
tion2.5.1. If the 
omponents γµ (Aµ) of the Poin
aré�Cartan form are indepen-dent of one of the 
oordinates, say zα (xα), then the quantity γα (Aα) is aninvariant of the �ow ∂zµ/∂t (∂xµ/∂λ).11 The 
oordinate zα (xα) is said ig-norable 
oordinate, and we 
an always �nd an appropriate frame of referen
e(gauge) that reveals the symmetry of the system.Let us write this in an expli
it way, in the general 
oordinates xµ =

(x1, x2, x3), 
hoosing the third 
oordinate x3 as an ignorable 
oordinate.This means the 
omponents of the form Aµ dx
µ are independent of x3: Ai ≡

Ai(x
1, x2) for every i = 1, 2, 3:
Aµ dx

µ = A1(x
1, x2) dx1 +A2(x

1, x2) dx2 +A3(x
1, x2) dx3 . (2.70)Noether theorem states that the quantity A3(x

1, x2) is a 
onstant of the mo-tion, 
onserved by the �ow.Choosing for the ignorable 
oordinate the 
oordinate z0 = t (α = 0), fromthe previous statement, the 
onservation of the Hamiltonian H = − γ0 for10Considering the phase spa
e Lagrangian L(q, q̇, t) (instead of the Hamiltonian
H(p,q, t)) one 
an prove Noether theorem using Euler�Lagrange equations:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (2.69)When an ignorable 
oordinate exists for the Lagrangian (let us say the 
oordinate qi,

∂L/∂qi = 0), then the symmetry 
orresponds to a translation in q (∂L/∂q̇i = const)and (Noether theorem) there exists a 
onstant of the motion ((d/dt)(∂L/∂q̇i) = 0). Byde�nition pi ≡ ∂L/∂q̇i, and Noether thorem is true also in phase spa
e using H(p,q, t)and forgetting about the Lagrangian L.11One 
an �nd this statement of Noether theorem in [48℄.44



2.5 Symmetries and Noether theoremtime independent systems follows. One 
an always think of the Hamilto-nian �ow itself as a time independent 
anoni
al transformation: going ba
kto the previous example, we 
an then think of x3 as the 
anoni
al time tand of A3(x
1, x2) as the 
onserved Hamiltonian (for the Hamiltonian systemasso
iated to A):

H = −A3(x
1, x2) ≡ ψ(x1, x2) = const . (2.71)In the 
ontext of Hamiltonian me
hani
s, H(p, q) ≡ E = const de�nesthe 
onstant energy surfa
es in phase spa
e, and a periodi
 motion whenthe E−
ontours are 
losed 
urves. The surfa
es de�ned by H = −A3 =

ψ(x1, x2) = const are the �ux surfa
es of the integrable magneti
 systemasso
iated to A, where the �eld line �ow lies.Let us note that in the 
ontext of fusion ma
hines this implies a 
on�ned�eld line �ow when the ψ−
ontours are 
losed in some region of interest. Atypi
al example are the nested toroidal �ux surfa
es in the Tokamak due tothe toroidal symmetry of the ma
hine (in our notation, x3 ≡ ϕ is used asthe 
anoni
al time in this 
ase).We saw from the examples in se
tion 2.3 that some freedom 
an arise inthe 
hoi
e of the 
anoni
al momentum and of the Hamiltonian when we lookfor the 
anoni
al variables in a magneti
 system: the 
anoni
al momentumand the Hamiltonian 
an always ex
hange their role if the 
hosen 
oordinatesdo not reveal any symmetry. We saw in this se
tion that the Hamiltonian ofa system with one degree of freedom is univo
ally determined if a symmetryis evident, whi
h eliminates the freedom also in the 
hoi
e of the 
anoni
almomentum. The ignorable 
oordinate is therefore interpreted as the 
anon-i
al time12.We go ba
k to the examples of se
tion 2.3 be
ause we 
an now re�write themwithout any freedom in the identi�
ation of the 
anoni
al variables. We keepon using the general 
oordinates xµ = (x1, x2, x3), keeping in mind that one
an for example use (x1, x2, x3) as the 
ylindri
al (R, z, ϕ) or toroidal (r, θ, ϕ)
oordinates. We 
hoose x3 as 
anoni
al time t (the ignorable 
oordinate) andstart from (2.70) and (2.71), with Ai = Ai(x
1, x2):

Aµ dx
µ = A1(x

1, x2) dx1 +A2(x
1, x2) dx2 +A3(x

1, x2) dx3 (2.72)
= p dq − H dt (2.73)

t = x3 (2.74)
H = −A3(x

1, x2) (2.75)12We will see that not all the symmetries de�ne good 
anoni
al time, be
ause thesymmetry do not guarantee any magneti
 �eld line to be fully parametrized by a timerunning from −∞ to +∞. An example of that is the toroidal angle in RFP devi
es,thatreverses at the edge. We will �nd some solution for this in 
hapter 4.45



Hamiltonian me
hani
sIn order to identify also the 
anoni
al variable (p, q) we need now to 
hoosethe axial gauge. Choosing the gauge A1 = 0, (2.72) simply redu
es to:
Aµ dx

µ = A2(x
1, x2) dx2 +A3(x

1, x2) dx3 (2.76)
= p dq − H dt (2.77)and therefore

q = x2 (2.78)
p = A2(x

1, x2) (2.79)The Hamiltonian must be fun
tion of the 
anoni
al variables, and not ofthe general 
oordinates xµ. This is done inverting (at least lo
ally) relation(2.79).As we 
an see, we 
an divide the example in two parts: �rst we must �nd theignorable 
oordinate to 
hoose the 
anoni
al time and the Hamiltonian of thesystem, and then we must impose an axial gauge to identify the 
anoni
alvariable (p, q).To 
on
lude, let us note also that inverting relation (2.71) one 
an write the�rst 
oordinate x1 = x1(H,x2), whi
h means that one 
an always 
hoose theHamiltonian as the �rst 
oordinate by inverting this relation. In the 
ase ofmagneti
 �ux surfa
es the Hamiltonian 
an be used to label them. Then Hwill be 
alled radial 
oordinate. In general, any fun
tion of the Hamiltonianonly 
an be used to label magneti
 �ux surfa
es, and we will use the generalsymbol ρ to indi
ate any of these radial fun
tions13.2.6 A
tion�Angle variablesHamiltonian systems with one degree of freedom and a time independentHamiltonian (H ≡ H(p, q)) are always integrable and H(p, q) = E = constde�nes the 
onstant energy surfa
es in phase spa
e. In magneti
 systems we
an say this in an equivalent way: the �eld line �ow lies on magneti
 �uxsurfa
es.When this is true, one 
an always �nd a 
anoni
al transformation (p, q) 7→
(P,Q) su
h that the new Hamiltonian is a fun
tion only of the new momenta,
H = H(P ): the position variable Q is a ignorable 
oordinate in this frameof referen
e, and the momentum P is a 
onstant of the motion be
ause ofNoether theorem.In the 
ase of bounded energy surfa
es in phase spa
e (or 
losed magneti
�ux surfa
es14) the motion is periodi
 in time and the new (P,Q) ≡ (I, ζ)
anoni
al variables are 
alled A
tion�Angle 
oordinates. By de�nition13We use the same symbol ρ for every surfa
e, even if in a rigorous way one shoulddistinguish between di�erent topologi
al orbits in the 
ase of magneti
 island.14We will always use the word 
losed in its physi
al meaning, as magneti
 �ux surfa
es
losing on themselves, and not in its topologi
al de�nition.46



2.6 A
tion�Angle variables
Figure 2.2: The A
tion�Angle 
anoni
al transformation for one degree offreedom periodi
 system in phase spa
e. Reprodu
ed from Hervieux lessonson internet. In this �gure Angle θ 
orresponds to Angle ζ in the text.

Figure 2.3: The A
tion�Angle 
anoni
al transformation of the area of abounded energy surfa
es for one degree of freedom periodi
 system in phasespa
e. Reprodu
ed from Hervieux lessons on internet. In this �gure Angle
θ 
orresponds to Angle ζ in the text.A
tion�Angle 
oordinates are therefore de�ned by I(E) = const and by anangle ζ that varies by 2π along any orbit of 
onstant energy E. Areas arepreserved by 
anoni
al transformations, and we 
an use this to �nd a simplede�nition for the A
tion I. Say A(E) the area inside the orbit with 
onstantenergy E 15,

A(E) =

∮
p(q, E) dq =

∮
I(E) dζ ≡

∫ 2π

0
I(E) dζ = 2π I(E) (2.81)from whi
h16

I(E) =
A(E)

2π
=

1

2π

∮
p(q, E) dq (2.82)15Be
ause of Stokes theorem written for di�erential forms,

A(E) =

ZZ
dp dq =

I
p dq . (2.80)16Again, p ≡ p(q,H) inverting the relation H = H(p, q) , H = const.47



Hamiltonian me
hani
sIn order to de�ne the Angle we go ba
k to the idea of (time independent)
anoni
al transformation
p dq − H dt 7→ I dζ − H(I) dt (2.83)and we use the generating fun
tion of type F2 ≡ F2(q, I):

F2(q, I) =

∫
p(q, I) dq (2.84)The transformation rules are

p(q, I) =
∂F2

∂q
=

∫ q

q0

∂p

∂q
(q, I) dq (2.85)

ζ(q, I) =
∂F2

∂I
=

∫ q

q0

∂p

∂I
(q, I) dq . (2.86)Equation of motion are now very simple:

dI

dt
= − ∂H

∂ζ
= 0 (2.87)

dζ

dt
=
∂H

∂I
= ω(I) = const . (2.88)The A
tion is 
onstant along any orbit of 
onstant energy E. The Angle ζevolves linearly in time with a frequen
y ω(I) and varies by 2π along anyorbit of 
onstant energy E: over one period

∆F2 =

∮
dq
∂F2

∂q
=

∮
p dq = 2π I (2.89)

=⇒ ∆ζ =
∆F2

∆I
= 2π (2.90)2.6.1 A
tion�Angle 
oordinates for magneti
 systemsWe 
an use all the results of Hamiltonian me
hani
s for magneti
 �eld linesystems: we simply re�write the previous results in an expli
it way for thesesystems, where the analogues of bounded 
onstant energy surfa
es in phasespa
e are the 
losed magneti
 �ux surfa
es.We use the symmetry of the system to �nd out the 
anoni
al time and theHamiltonian, and the 
hoi
e of an axial gauge to identify also the 
anoni
alvariables (p, q): using again the general 
oordinates xµ = (x1, x2, x3) and theframe of referen
e where a symmetry with respe
t to the ignorable 
oordinate

x3 is manifest, together with the 
hoi
e A1 = 0, we have already found48



2.6 A
tion�Angle variablesequations (2.71), (2.74), (2.78), (2.79):17
t = x3 (2.91)
q = x2 (2.92)
p = A2(x

1, x2) (2.93)
H = −A3(x

1, x2) = ψ(x1, x2) = const (2.94)From here we 
an easily apply eq.(2.82), (2.84), (2.86) to de�ne the A
tion�Angle 
oordinate on ψ = const surfa
es18:
I(ψ) =

1

2π

∮
p(ψ, q) dq ≡ 1

2π

∮
A2(ψ, x

2) dx2 (2.95)
F2(x

2, I) =

∫ q

q0

p(I, q) dq ≡
∫ x2

x2
0

A2(I, x
2) dx2 (2.96)

ζ(x2, I) =
∂F2

∂I
≡
∫ x2

x2
0

∂A2

∂I
(I, x2) dx2 (2.97)Equations (2.87)�(2.88) of the motion in the (I, ζ)−plane are the equationfor the magneti
 �eld lines:

dI

dx3
= 0 (2.98)

dζ

dx3
= ω(I) =

dH

dI
=
dψ

dI
(2.99)To 
ompute A
tion�Angle 
oordinates we go through a 
anoni
al 
hangeof 
oordinates, as written in eq.(2.83). Let us see how the general xµ =

(x1, x2, x3) 
oordinates and the identi�
ation with the 
anoni
al variables
hange a

ordingly to this. From the identi�
ations (2.91)�(2.94) it is 
learthat, with the 
hange (p, q) 7→ (P,Q) in eq.(2.83), we are 
hanging just these
ond 
oordinate (x2 = q), that must be now identi�ed with the Angle ζ(x2 7→ ζ). As a 
onsequen
e, the 
ovariant 
omponent A2 = p of the ve
torpotential 
hanges, being identi�ed with the new momentum, the A
tion I(A2 7→ I). The time x3 and the �rst 
oordinate x1 (due to the gauge A1 = 0)are un
hanged, and so is true also for the Hamiltonian:
(x1, x2, x3) 7→ (x1, ζ, x3)The only thing more that we 
an do is to perform the inversion of the fun
tion

H = ψ(x1, x2) to be able to write x1 = x1(ψ, x2) and therefore to 
hoose theHamiltonian as the radial 
oordinate that labels the magneti
 �ux surfa
es,17In these equations we need to invert p = A2(x
1, x2) to obtain x1 = x1(p, x2) andtherefore H = H(p, q).18We need to invert also H(x1, x2) = ψ(x1, x2) to obtain A2 = A2(ψ, x

2), and thefun
tion I = I(ψ) to obtain A2(I, x
2). 49



Hamiltonian me
hani
sinstead of x1. Working with A
tion�Angle 
oordinates we 
an therefore usethe A
tion�Angle 
oordinate system:19
(x1, x2, x3) 7→ (I, ζ, x3)The identi�
ation with 
anoni
al variables (P,Q) = (I, ζ) therefore gives:

t = x3 (2.100)
Q = ζ (2.101)
P = Aζ = I(ψ) (2.102)
H = −A3(I) = ψ(I) = const (2.103)Going ba
k to equation (2.99) we 
an see that magneti
 �eld lines writ-ten in A
tion�Angle 
oordinates are straight lines in the (ζ, I)−plane. Inmagneti
 �led line 
ontext, the (
onstant) frequen
y is 
alled the rotationaltransform and it is indi
ated with ι. Usually the A
tion�Angle 
oordinatesare named magneti
 or �ux or straight��eld�line 
oordinates. In the pres-en
e of an MHD equilibrium another 
anoni
al transformation 
an bring toBoozer or Hamada magneti
 
oordinates, [51℄.2.7 Intuitive physi
al approa
hIt is possible to derive the whole Hamiltonian me
hani
s from the Stokestheorem, and from its generalization using di�erential p�forms when dealingwith N > 1 systems [46℄. For N = 1 degree of freedom the Stokes theoremstates the equivalen
e between a 
ir
ulation and a �ux:
∮

l
A · dl =

∫

Σ
(∇×A) · dΣ (2.104)where Σ is any surfa
es having the oriented 
ir
uit l as a boundary. If Ais the ve
tor potential, the 
ir
ulation of A along l immediately implies the�ux of the magneti
 �eld B = ∇ ×A through Σ. Using this, one 
an �ndthe relations between 
ovariant 
omponents20 of the ve
tor potential andmagneti
 �uxes in fusion devi
es.Thinking of toroidal fusion devi
es we prove the relation between the Ai
omponents and the magneti
 �uxes. We use general toroidal 
oordinates,where θ is the poloidal angle and ϕ the toroidal one. We are going to usea di�eren
e between r and ρ in our notation: the radial 
oordinate r is not19Where t = x3, and the fun
tion ψ = ψ(I) that 
an be inverted to write ρ = I(ψ)20We write the 
ovariant 
omponents of A in several 
oordinate systems, where H = ψis the Hamiltonian, and ρ = f(ψ) any radial fun
tion that labels magneti
 �ux surfa
es(e.g. ρ = I(ψ) or ρ = ψ(I) for A
tion�Angle 
oordinates). By de�nition:

A = Ai∇xi50



2.7 Intuitive physi
al approa
hne
essarily 
onstant on magneti
 �ux surfa
es, as is ρ using our de�nition(see the end of se
tion 2.5).To de�ne a �ux one needs to de�ne the surfa
e through whi
h the �ux is 
om-puted. Usually the poloidal and toroidal magneti
 �uxes are thought as the�uxes of the magneti
 �eld B through a magneti
 �ux surfa
e (ρ = const)at the angles θ = const and ϕ = const respe
tively. Let us now use a moregeneral de�nition even of the poloidal and toroidal �uxes, using the symbols
ψP and ψT (and also the names poloidal and toroidal) for the �uxes a
rosssome surfa
e Σ (to be spe
i�ed) at the angles θ = const and ϕ = constrespe
tively. This allows to asso
iate the magneti
 �uxes to the 
ovariant
omponents of the ve
tor potential A (see se
tion 2.7.1).The physi
al interpretation of the �uxes depends therefore on the surfa
e
Σ. Let us tell in advan
ed that one goes ba
k to the 
lassi
al de�nitionof ψP and ψT as �uxes a
ross magneti
 �ux surfa
es at θ = const and
ϕ = const respe
tively when Σ = Σ(ρ), therefore using A
tion�Angle 
oor-dinates. But let us show the de�nitions of these �uxes for di�erent 
hoi
esof the surfa
e Σ: when no symmetry is evident in the system and there-fore no �ux surfa
es 
an be found21, the fun
tions ψP (r, θ, ϕ) and ψT (r, θ, ϕ)measure the poloidal and toroidal �uxes a
ross the Σ = ψP (r, θ, ϕ) = constand Σ = ψT (r, θ, ϕ) = const surfa
es respe
tively. And even in the pres-en
e of �ux surfa
es (H = −Aϕ(r, θ) = ψ(r, θ) = const), working withnon�A
tion�Angle 
oordinates, the fun
tions ψP (r, θ) and ψT (r, θ) are notne
essarily 
onstant over �ux surfa
es, and they measure the poloidal andtoroidal �uxes a
ross the Σ = ψP (r, θ) = const and Σ = ψT (r, θ) = constsurfa
es respe
tively22. The �uxes have therefore a 
lear physi
al interpre-tation only whenever there are well de�ned �ux surfa
es and A
tion�Angle
oordinates are used (H(ρ) = −Aϕ(ρ) = ψ(ρ) = const): ψP = ψP (ρ) and
ψT = ψT (ρ) are �ux fun
tions that measure the poloidal and toroidal �uxesen
losed by the �ux surfa
e Σ(I) = ψ(I) = const.therefore:

Ai∇xi =

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

A1 ∇x1 +A2 ∇x2 +A3 ∇x3 with xµ = (x1, x2, x3)any general 
oordinates
Aρ∇ρ+Aζ ∇ζ +A3 ∇x3 = with xµ = (ρ, ζ, x3)
= Aρ∇ρ+ I∇ζ +A3 ∇x3A
tion�Angle 
oordinates
Ar∇r +Aθ∇θ +Aϕ∇ϕ with xµ = (r, θ, ϕ)general toroidal 
oordinates
Aρ∇ρ+Aθ∇θ +Aϕ∇ϕ with xµ = (ρ, θ, ϕ)general toroidal 
oordinates
...21Equivalent to 
onstant energy surfa
es.22Choosing a symmetry with respe
t to the toroidal angle ϕ = x351



Hamiltonian me
hani
sWe always 
onsider the poloidal and toroidal �ux between the magneti
axis and the surfa
e Σ. It is worth noting the di�eren
e betwee the poloidal�ux in �g.2.4 b) and �g.2.4 
): we always refer to the 
ase b) when notdi�erently spe
i�ed.For �xed magneti
 �ux surfa
es, the spatial 
hanges of the poloidal �ux sat-isfy the relation: ∇ψrP = −∇ψdP (we use the symbols ψrP or simply ψP for thepoloidal �ux a
ross Srpol and ψdP for the poloidal �ux a
ross Sdpol in �g.2.4),[51℄.We now prove all this and more.
Figure 2.4: Reprodu
ed from [51℄, pag.77. Cross se
tions through whi
h themagneti
 �uxes 
hara
terizing a magneti
 �ux surfa
e are de�ned. (a): The�eld lines interse
ting Stor determine the toroidal �ux within a �ux surfa
e.(b): Srpol is a ribbon bounded by the magneti
 axis and the �ux surfa
e. It'
ontains' the poloidal (ribbon) �ux whi
h resides inside the �ux surfa
e. (
):
Sdpol is a disk tou
hing the magneti
 surfa
e. It pi
ks up the poloidal (disk)�ux outside the �ux surfa
e. The angle ζ in this �gure is unfortunately whatwe 
all the toroidal angle ϕ in the text (not to be 
onfused with the Angle
ζ 
onjugated to the A
tion in the text).
2.7.1 The more general 
aseWe �rst prove the more general 
ase, for the general 
oordinates xµ =
(x1, x2, x3) in the gauge A1 = 0, whi
h is that:The 
omponent A2 is a measure (up to 2π) of the �ux a
ross the surfa
ede�ned by A2 = const at x3 = const.The 
omponent A3 is a measure (up to 2π) of the �ux a
ross the surfa
ede�ned by A3 = const at x2 = const.In a toroidal system, one 
an think of x2 and x3 as angle 
oordinates.52



2.7 Intuitive physi
al approa
hLet us prove it. Writing ψ(i) the magneti
 �ux a
ross a surfa
e Σ at theangle xi = const (therefore with i = 2, 3), we 
an write
ψ(i) =

∫

Σ(i)
B · dΣ(i) =

∫

Σ(i)
(∇×A) · dΣ(i) =

∮

∂Σ(i)
A · dl(2.105)

=

∮

∂Σ(i)
Aj dx

j =

∮

∂Σ(i)
Aj(x

1, x2, x3) dxj (2.106)
= Aj(x

1, x2, x3)

∮

∂Σ(i)
dxj (2.107)

= 2π Aj(x
1, x2, x3) (2.108)where, by de�nition, dΣ(i) =

√
g∇xi dxj dxk is the in�nitesimal element ofa surfa
e Σ at the angle xi = const and dl(i) = dxi ei. A line integral isperformed along a 
urve, whi
h means that one of the three 
oordinates isvaried while two are held 
onstant (Appendixes of [12, 52℄).We use the de�nition of the magneti
 �uxes, the de�nition of the magneti
�eld through the ve
tor potential and Stokes theorem in the �rst line (2.105).Be
ause the xi 
oordinate is 
onstant (hypothesis) and of the 
hosen axialgauge A1 = 0, A · dl = Aj dx

j in (2.106), without summation over j.Thinking of xj as an angle de�ned with respe
t to the magneti
 axis of thesystem23, its 
ir
ulation in eq.(2.107) is equal to 2π.But eq.(2.107) is true only if we are 
onsidering Aj(x1, x2, x3) = const, and
ψ(i) turns out to be the �ux a
ross the surfa
e Σ = Aj(x) at xi = const.This ends the prof of the general 
ase.2.7.2 Two examples in toroidal geometryLet us see some spe
i�
 examples in toroidal geometry.Using A
tion�Angle 
oordinates xµ = (ρ, ζ, ϕ).
ψ(I) = const �ux surfa
es and ϕ ignorable 
oordinate.

ψT =

∫

Σ(ϕ)
B · dΣ(ϕ) =

∫

Σ(ϕ)
(∇×A) · dΣ =

∮

∂Σ(ϕ)
A · dl(2.109)

=

∫ 2π

0
Aζ(I) dζ =

∫ 2π

0
I(ψ)dζ (2.110)

= 2π Aζ = 2π I(ψ) (2.111)
≡ ψT (I) ≡ ψT (ρ) (2.112)Here we used the de�nition of the toroidal �ux, the de�nition of the magneti
�eld and Stokes theorem in the �rst line. The symbol Σ(ϕ) de�nes the sur-23When xi = x2 then xj = x3, and vi
e versa.53



Hamiltonian me
hani
sfa
es at ϕ = const.24 Be
ause of the 
onstan
y of the toroidal angle ϕ and ofthe 
hoi
e A1 = Aρ = 0 for the axial gauge, we obtain the �rst relation of these
ond line, where we use also the identi�
ation of Aζ with the momentumof the system in A�A 
oordinates, that is the A
tion I, eq.(2.102).In the same way,
ψdP =

∫

Σ(ζ)
B · dΣ(ζ) =

∫

Σ(ζ)
(∇×A) · dΣ =

∮

∂Σ(ζ)
A · dl (2.113)

=

∫ 2π

0
Aϕ(I) dϕ = −

∫ 2π

0
ψ(I) dϕ (2.114)

= 2πAϕ = − 2π ψ(I) (2.115)
≡ ψdP (I) ≡ ψdP (ρ) (2.116)Now the symbol Σ(ζ) de�nes the surfa
es at ζ = const25 and we use therelation (2.103). This is 
alled poloidal �ux, imagine the Angle ζ in generalas a straight poloidal�like angle.Important is to note that the 
ir
ulation in dϕ, at the ζ = const angle,de�nes the surfa
e named Sdpol in �g.2.4), therefore this is the poloidal �uxoutside the �ux surfa
e (�g.2.4 
).Summarizing , in A�A 
oordinates xµ = (ρ, ζ, ϕ) :
ψT (I) = 2π I(ψ) = 2π Aζ(I) ≡ 2πA2(I) (2.117)
ψdP (I) = − 2π ψ(I) = 2πAϕ(I) ≡ 2πA3(I) (2.118)one 
an 
on
lude that the A
tion I itself is a measure of the toroidal �uxthrough magneti
 surfa
es, that 
orresponds also to the 
ovariant 
ompo-nent Aζ asso
iated to the Angle ζ (up to 2π). Also the poloidal �ux is a �uxthrough magneti
 �ux surfa
es, for whi
h a measure is given by the Hamilto-nian ψ, 
orresponding to −Aϕ(I). Both the poloidal and the toroidal �uxesare �ux fun
tions (are 
onstant on �ux surfa
es), and it is always possibleto 
hoose one of them as a label for magneti
 �ux surfa
es: ρ = ψP (ψT ) orvi
e versa.Using non-A
tion�Angle 
oordinates xµ = (r, θ, ϕ).24Using general 
oordinates theory for the 
oordinates xµ = (ψ, ζ, ϕ), the de�nition ofelementary surfa
es elements is dΣ(ϕ) =

√
g∇ϕdψ dζ.25dΣ(ζ) =

√
g∇ζ dψ dϕ with xµ = (ψ, ζ, ϕ).54



2.7 Intuitive physi
al approa
h
ψ(r, θ) = const �ux surfa
es and ϕ ignorable 
oordinate.

ψT =

∫

Σ(ϕ)
B · dΣ(ϕ) =

∫

Σ(ϕ)
(∇×A) · dΣ =

∮

∂Σ(ϕ)
A · dl(2.119)

=

∫ 2π

0
Aθ(r, θ) dθ (2.120)

= 2π Aθ(r, θ) (2.121)
≡ ψT (r, θ) (2.122)Eq. (2.121) 
an be true if and only if in eq.(2.120) we 
onsider the �uxthrough the surfa
e Aθ(r, θ) = const. Again the symbol Σ(ϕ) de�nes thesurfa
es at ϕ = const and we use the axial gauge A1 = Ar = 0.

ψdP =

∫

Σ(θ)
B · dΣ(θ) =

∫

Σ(θ)
(∇×A) · dΣ =

∮

∂Σ(θ)
A · dl (2.123)

=

∫ 2π

0
Aϕ(r, θ) dϕ = −

∫ 2π

0
ψ(r, θ) dϕ (2.124)

= 2πAϕ(r, θ) = − 2π ψ(r, θ) (2.125)
≡ ψdP (r, θ) (2.126)The symbol Σ(θ) de�nes the surfa
es at θ = const26. Remembering (2.71),we 
an write the equivalen
e in eq. (2.124). Again, (2.125) 
an be true ifand only if in eq.(2.124) we 
onsider the �ux through the surfa
e Aϕ(r, θ) =

const = −ψ(r, θ): the Hamiltonian of the system is a measure of the poloidal�ux a
ross the magneti
 surfa
es even if we are not using A
tion�Angle 
o-ordinates.Again, it is important to note that the 
ir
ulation in dϕ, at the θ = constangle, de�nes the surfa
e named Sdpol in �g.2.4), therefore this is the poloidal�ux outside the �ux surfa
e (�g.2.4 
).Summarizing, in the general (r, θ, ϕ) toroidal 
oordinates where the �rst
oordinate r it is not ne
essarily a label of �ux surfa
es:
ψT (r, θ) = 2π Aθ(r, θ) ≡ 2πA2(r, θ) (2.127)
ψdP (r, θ) = − 2π ψ(r, θ) = 2πAϕ(r, θ) ≡ 2πA3(r, θ) (2.128)The Hamiltonian ψ(r, θ) is a measure of the poloidal �ux a
ross the ψ(r, θ) =

const surfa
es that 
orrespond to the magneti
 �ux surfa
es. The fun
tion
Aθ(r, θ) is a measure of the toroidal �ux a
ross the Aθ(r, θ) = const surfa
es,that in general do not 
orrespond to the magneti
 surfa
es.26dΣ(θ) =

√
g∇θ dr dϕ with xµ = (r, θ, ϕ).55



Hamiltonian me
hani
sIn both 
ases27, using general toroidal 
oordinates (r, θ, ϕ) and the axialgauge (A1 = Ar = 0), we found that the toroidal �ux (i. e. the �ux at
onstant angle ϕ) is linked with the Aθ 
ovariant 
omponent of the ve
torpotential. And in the same way the poloidal �ux (i. e. the �ux at 
onstantangle θ, but related to the �ux outside the �ux surfa
e, see �g.2.4 
) is linkedto Aϕ:
Ai∇xi = A(r, θ, ϕ) = ψT (r, θ)∇θ/2π + ψdP (r, θ)∇ϕ/2π (2.129)

= A(ρ, ζ, ϕ) = ψT (ρ)∇ζ/2π + ψdP (ρ)∇ϕ/2π (2.130)We 
on
lude with some dimensional analysis, 
onsidering the magneti
�elds B measured in Tesla [T ]: the magneti
 �uxes have the dimension of
[T m2] by de�nition, and the magneti
 potential A must have the dimen-sional of [T m] be
ause the 
ir
ulation of A must be the �ux of B (Stokestheorem).Let us see that the 
ovariant 
omponents of the ve
tor potential have thedimension of the magneti
 �uxes. To do this we must 
onsider the proper-ties of 
urvilinear 
oordinates (see appendix B), where one always 
onsiderthe basis ve
tors not normalized and not dimensionless. In the 
ase of 
o-variant 
omponents the basis are the gradients of the 
oordinates, that havethe dimension of [m−1] for adimensional angular 
oordinates (as θ and ϕ intoroidal 
oordinates). Using the de�nition A = Ai∇xi, the 
omponents Airelated to angular 
oordinates must have the dimension of [T m2] in orderto obtain the 
orre
t dimension for A: the 
orre
t dimension of the �uxes!
2.8 The magneti
 �eld, B = ∇×A2.8.1 The 
anoni
al representation of BIn the general 
oordinates xµ = (x1, x2, x3),

A = A1∇x1 +A2∇x2 +A3∇x3 (2.131)
B = ∇A1 ×∇x1 +∇A2 ×∇x2 +∇A3 ×∇x3 (2.132)with Ai = Ai(x

1, x2, x3).In the general toroidal 
oordinates (x1, x2, x3) = (r, θ, ϕ), 
hoosing the gauge27(eq.(2.117)-(2.118) and (2.127)-(2.128))56
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 �eld, B = ∇×A

(A1 = Ar = 0), one 
an write the following equivalent equations:
A = A2∇x2 +A3∇x3 (2.133)

= Aθ∇θ +Aϕ∇ϕ (2.134)
= ψT ∇θ/2π + ψdP ∇ϕ/2π (2.135)

B = ∇A2 ×∇x2 +∇A3 ×∇x3 (2.136)
= ∇Aθ ×∇θ +∇Aϕ ×∇ϕ (2.137)
= ∇ψT ×∇θ/2π −∇ψP ×∇ϕ/2π (2.138)where Ai = Ai(r, θ, ϕ) with no symmetry in the system, Ai = Ai(r, θ) withsymmetry in ϕ, or Ai = Ai(ρ) using A
tion�Angle 
oordinates (θ 7→ ζ) andthe fun
tion ρ to label the �ux surfa
es. This is obviously true also for the�uxes ψP and ψT , remembering the identi�
ation between the �uxes and Ai.The form (2.138) of the magneti
 �eld is 
alled the 
anoni
al representa-tion of B, obtained for the poloidal �ux ψP between the magneti
 axis andthe surfa
e Σ (for whi
h ∇ψrp = −∇ψdp , using ψrp for the poloidal �ux a
ross

Srpol and ψdp for the poloidal �ux a
ross Sdpol, see �g.2.4). Note therefore theminus sign in front of the Hamiltonian ψ = ψP . We 
all ψrP = ψP .Using the de�nition B = ∇ × A we 
an write also the 
ontravariant28
omponents of the magneti
 �eld, using the de�nition of 
ross produ
t inthe general 
oordinates xµ = (x1, x2, x3), with the permutation (i, j, k) ofthe index (1, 2, 3):
√
g Bi =

∂Aj
∂xk

− ∂Ak
∂xj

(2.139)Following this formula:
√
g B1 =

∂A2

∂x3
− ∂A3

∂x2
, (i, j, k) = (1, 2, 3) (2.140)

√
g B2 =

∂A3

∂x1
− ∂A1

∂x3
, (i, j, k) = (2, 3, 1) (2.141)

√
g B3 =

∂A1

∂x2
− ∂A2

∂x1
, (i, j, k) = (3, 1, 2) (2.142)For the gauge A1 = 0:

B1 =
1√
g

(∂A2

∂x3
− ∂A3

∂x2

) (2.143)
B2 =

1√
g

∂A3

∂x1
(2.144)

B3 = − 1√
g

∂A2

∂x1
(2.145)28Up index. 57
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hani
sand for general toroidal 
oordinates (r, θ, ϕ), (A1 = Ar = 0):
Br =

1

2π

1√
g

(∂ψT
∂ϕ

− ∂ψP
∂θ

) (2.146)
Bθ =

1

2π

1√
g

∂ψP
∂r

(2.147)
Bϕ = − 1

2π

1√
g

∂ψT
∂r

(2.148)2.8.2 The 
ovariant representation of BThe form (2.138) of the magneti
 �eld is also 
alled 
ovariant representationof the magneti
 �eld, when the �uxes are labels of the �ux surfa
es andtherefore A
tion�Angle are used.Let us now �nd some important results of this 
hapter using just the mag-neti
 �eld B and forgetting about the ve
tor potential A. This is a more
ommon way to treat the magneti
 �eld line problem, [12℄.We say in se
tion 2.5 that the surfa
es de�ned by the 
onstan
y of theHamiltonian (eq.(2.71) for the time x3) are the �ux surfa
es of the mag-neti
 system asso
iated to A. Using the magneti
 �eld instead of the ve
torpotential, we now prove that ne
essary 
ondition for the existen
e of �uxsurfa
es is the existen
e of a fun
tion ρ for whi
h
B · ∇ρ = 0 . (2.149)We 
an 
all any fun
tion that 
an label the �ux surfa
es with the symbol ρ,and we use it as the radial 
oordinate29.Ne
essary and su�
ient 
ondition (in any system of one degree of freedom)is still the existen
e of one ignorable 
oordinate (the 
anoni
al time). Let ustherefore go ba
k to eq.(2.71), but using toroidal 
oordinates:

H = −Aϕ(r, θ) = ψ(r, θ) = const (2.150)and to eq.(2.128)
ψP (r, θ) = − 2πψ(r, θ) (2.151)in order to prove eq.(2.149): ϕ plays the role of the time, ψT = ψT (r, θ) andwe use ρ = H = ψP (r, θ) = 2π Aϕ(r, θ). From the relation (2.138) for the
anoni
al representation of the magneti
 �eld,

B · ∇ρ = (∇ψT ×∇θ −∇ψP ×∇ϕ) · ∇ρ = (2.152)
= (∇ψT ×∇θ −∇ρ×∇ϕ) · ∇ρ = (2.153)
= ∇ψT ×∇θ · ∇ρ = (2.154)
= 0 (2.155)29It is worth noting that in 
haoti
 spa
es, where magneti
 �ux surfa
es are destroyed,relation 2.149 is still valid 58



2.8 The magneti
 �eld, B = ∇×Awhere, for the last step, we used the dependen
e on (r, θ) of the �uxes, so
∇ψT =

∂ψT
∂r
∇r +

∂ψT
∂θ
∇θ (2.156)

∇ρ =
∂ρ

∂r
∇r +

∂ρ

∂θ
∇θ (2.157)and, of 
ourse, the vanishing triple produ
t between two parallel ve
tors.At the end of se
tion 2.6 we say that in the 
ase of �ux surfa
es it is pos-sible to look for A
tion�Angle variables (ρ, ζ, ϕ) on these surfa
es (
onstantenergy surfa
es), and that these 
oin
ide with straight��eld�line 
oordinates.In A
tion�Angle 
oordinate the 
anoni
al representation of the magneti
 �eldis

B = ∇ψT (ρ)×∇ζ/2π −∇ψP (ρ)×∇ϕ/2π (2.158)where the �uxes ψP (ρ) and ψT (ρ) are the �ux fun
tions that measure thepoloidal and toroidal �uxes en
losed by the �ux surfa
e Σ(ρ), respe
tively,and ψ the Hamiltonian. Straight��eld�line 
oordinates 
an be found alsowithout the Hamiltonian me
hani
s theory (e.g. the A
tion�Angle idea),but using a geometri
al approa
h: eq. (2.158) is still valid, and is 
alledthe 
ovariant representation of the magneti
 �eld. Let us brie�y followW.D.D'haeseleer [51℄ to obtain this form.The 
anoni
al form (2.138) of B written for the generi
 angular 
oordinates
(θ, ϕ) on the �ux surfa
es ρ = const,

B = ∇ψT ×∇θ/2π −∇ψP ×∇ϕ/2π (2.159)where the �uxes are fun
tion of all the 
oordinates (ρ, θ, ϕ), 
an also bewritten as
B = ∇ψT (ρ)×∇θ/2π −∇ψP (ρ)×∇ϕ/2π +∇ρ×∇ν(ρ, θ, ϕ) ,(2.160)where the �uxes are now fun
tion of the radial 
oordinate only, but now anew fun
tion30 ν(ρ, θ, ϕ) appears. To go ba
k to a 
anoni
al form equivalentto the A
tion�Angle one (2.158) we need to perform a 
hange of variables inorder to eliminate ν: the 
hange of variables is simple, on
e the fun
tion νis known. It is su�
ient to 
hange one of the two angles (θ or ϕ, leaving theother un
hanged) following these rules:

θ 7→ θf = θ +
ν̃

ψ̇T
= θ + λT (ρ, θ, ϕ) ϕf = ϕ (2.161)or

ϕ 7→ ϕf = ϕ− ν̃

ψ̇P
= ϕ+ λP (ρ, θ, ϕ) θf = θ (2.162)30Clebs
h fun
tion, [51℄ 59



Hamiltonian me
hani
swhere ν̃(ρ, θ, ϕ) is the periodi
 part of the fun
tion ν and ψ̇ the radial deriva-tive of the �uxes. The un
hanged angle 
an be 
onsidered the one that playsthe role of time.The new straight��eld�line 
oordinates (ρ, θf , ϕf ) are equivalent to the A
tion�Angle 
oordinates (ρ, ζ, ϕ). A
tion�Angle 
oordinates (where the Hamilto-nian is a fun
tion of the momentum only) or straight��eld�line 
oordinates(found by (2.161)�(2.162)) are not unique. One 
an always 
hoose the moreuseful ones going to one another with a 
anoni
al transformation or followingthese rules:
θf 7→ θF = θf + ψ̇P G(ρ, θf , ϕf ) (2.163)
ϕf 7→ ϕF = ϕf + ψ̇T G(ρ, θf , ϕf ) (2.164)where G is an arbitrary periodi
 fun
tion of the straight angles θf and ϕf .31Equations (2.146)-(2.148) for the 
ontravariant 
omponents of B 
an befound in this approa
h, where just the magneti
 �eld is 
onsidered togetherwith the magneti
 �uxes, using the de�nition of the 
ontravariant 
ompo-nents of a ve
tor32:

Bi = B · ∇xi (2.166)What is missing in this approa
h, with respe
t to (2.139), is the equivalen
ebetween the �uxes and the 
ovariant 
omponents of the ve
tor potential, andtherefore the intuitive physi
al interpretation of the Hamiltonian�magneti
systems.2.8.3 Magneti
 �eld line equationsEquation (2.14)
dx

dλ
= B(x) (2.167)is the de�nition for magneti
 �eld lines, where λ is a parameter that variesalong the magneti
 lines. To see that the equations for magneti
 �eld lines31The fun
tionG 
an be derived from a magneti
 di�erential equation when the Ja
obianof the two straight �eld line systems are known:

2πB · ∇G =
1√
gF

− 1√
gf

(2.165)32From the 
anoni
al form of the magneti
 �eld alone, B = ∇ψT × ∇θ − ∇ψP × ∇ϕit easy to obtain equations (2.146)�(2.148). All the angular derivatives of the �uxes aresuppressed by the dot produ
t in the de�nition of 
ontravariant 
omponents of a �eld,
Bi = B · ∇xi, and only the terms (∂ψ/∂r)∇r are of some interest in the expansion of thegradient of the �uxes. In the toroidal (r, θ, ϕ) 
oordinates, the whole gradient of a �ux ψis ∇ψ = (∂ψ/∂r)∇r+ (∂ψ/∂θ)∇θ+ (∂ψ/∂ϕ)∇ϕ. To 
on
lude one needs to use also thede�nition of the Ja
obian of the same 
oordinate system, (1/

√
g) = ∇r ×∇θ · ∇ϕ.60



2.8 The magneti
 �eld, B = ∇×Aare equivalent to the 
anoni
al equation of motion, we need �rst to 
hoose oneof the �uxes as the radial variable. In parti
ular we need to 
hoose the �uxasso
iated to the 
anoni
al momentum, in order to write the Hamiltonianas a fun
tion of (p, q, t): in the gauge A1 = 0 for t = x3 we know33 that the
anoni
al momentum is the toroidal �ux, so ρ = ψT .In terms of the (ψT , θ, ϕ) 
oordinates, the equation of a �eld line reads34:
dψT
Bρ

=
dθ

Bθ
=
dϕ

Bϕ
(2.172)Therefore dθ/dϕ = Bθ/Bϕ and it is easy to prove that this is exa
tly oneof the 
anoni
al equations of motion:

dθ

dϕ
=
Bθ

Bϕ
⇐⇒ dq

dt
=
∂H

∂p
(2.173)The equivalen
e is immediate remembering35 eq.(2.146)�(2.148) that link theup 
omponents of the magneti
 �eld to the derivative of the �uxes in thegauge Ar = 0, and the 
anoni
al identi�
ation valid in the same gauge on
ethe toroidal angle x3 = ϕ has been 
hosen as the 
anoni
al time.Analogously, for the se
ond 
anoni
al equation one needs to prove that:

dψT
dϕ

=
Bρ

Bϕ
⇐⇒ dp

dt
= −∂H

∂q
(2.174)where Bρ = B · ∇ψT and Bϕ = B · ∇ϕ. To prove this relation we follow analternative way, as an example: to �nd Bϕ = B · ∇ϕ we dot multiply the
anoni
al equation (2.138) for B with ∇ϕ; and to �nd Bρ we dot multiplythe same equation with ∇ψT . The result is:

B · ∇ψT
B · ∇ϕ =

−(∇ψP ×∇ϕ) · ∇ψT
(∇ψT ×∇θ) · ∇ϕ

(2.175)In the 
hosen (ψT , θ, ϕ) 
oordinates, the poloidal �ux is ψP = ψP (ψT , θ, ϕ).Of its gradient, only the derivative of ψP with respe
t to the poloidal angle
θ survives in the triple produ
t of last equation, and this ends the proof withthe identi�
ation t = ϕ, q = θ, p = ψT , H = ψP :

dψT
dϕ

=
B · ∇ψT
B · ∇ϕ = −∂ψP

∂θ
(2.176)33In the gauge A1 = 0 for t = x3:

t = ϕ (2.168)
q = θ (2.169)
p = Aθ = ψT (2.170)
H = −Aϕ = −ψP . (2.171)34Simply making the dot produ
t of eq.(2.167) with the gradients of the 
oordinates.35The same equations 
an be easily derived from the 
anoni
al form of the magneti
�eld alone, B = ∇ψT ×∇θ−∇ψP ×∇ϕ, using the de�nition of 
ontravariant 
omponentsof a �eld, Bi = B · ∇xi. 61



Hamiltonian me
hani
s2.9 A resumptive example: the heli
al symmetryIn this example we 
onsider a plasma 
olumn with heli
al shape in a toroidalfusion devi
e.Starting from a toroidal system with 
oordinates (r, θ, ϕ), where θ is thepoloidal angle and ϕ the toroidal one, the heli
al angle u is de�ned by
u = θ − nϕ (2.177)where n is the toroidal periodi
ity of the helix. Having a system with heli
alsymmetry means that any �ux quantity in the plasma depends only on the
oordinate (r, u). We therefore have at least two 
han
es to 
hoose a frameof referen
e where the heli
al symmetry in the torus is manifest: (r, u, θ) and

(r, u, ϕ). In the �rst one the ignorable 
oordinate that plays the role of timeis the angle θ, whereas in the se
ond one the 
anoni
al time is related to thetoroidal angle ϕ36.Be
ause of the reversal of the toroidal magneti
 �eld at the edge of RFPdevi
es, the 
anoni
al time ϕ in non monotoni
, and therefore the more
ommon 
hoi
e for RFPs is to 
hoose the poloidal angle θ as the time. Aswe will see in the 
ase of the heli
al RFP states, the SHAx states, even thepoloidal angle is not a good 
hoi
e, and we prefer to use the toroidal one inthe work of this thesis37.Let us 
hoose the (r, u, ϕ) 
oordinate system to summarize the results ofthis 
hapter in the example of heli
al symmetry (
anoni
al time related to theignorable 
oordinate ϕ). We �rst �nd the identi�
ation between magneti
and 
anoni
al variables, using Noether theorem and the 
hoi
e of the axialgauge Ar = 0 to identify the the Poin
aré�Cartan form of the two systems:
Aµ dx

µ = γµ dz
µ = p dq − H dt (2.178)where Ai are the 
ovariant 
omponent of the ve
tor potential, xµ = (r, u, ϕ)and γµ, z

µ are de�ned in eq.(2.64). We �nd A
tion�Angle variables as ineq.(2.95)�eq.(2.97). Then, we �nd the relations between Au(r, u) and thetoroidal �ux ψT (r, u), between Aϕ(r, u) and the heli
al �ux χ(r, u)38; and36In a torus a rigorous heli
al symmetry of magneti
 �ux surfa
es does not exist. Thisis due to the toroidal 
oupling between modes with same toroidal mode number n and
∆m ± 1 in the poloidal mode number m: due to the toroidal geometry it is not possibleto have a single (m,n) mode in the plasma, and therefore a it is not possible to �nd �uxquantities that depend only on its heli
ity. More details are given in 
hapter 3�5. Butin the work of this thesis I negle
t the 
ontribution of the (m,n) = (0, n), (2, n) to thedominant one (m,n) = (1, n): SHAx states are modelled as pure single heli
ity states,where the heli
al symmetry is taken as hypothesis, even in a toroidal geometry.37Other toroidal�like angles without reversal have also been found, that 
an be usedwhen the edge region must be taken into a

ount in a more a

urate way. See se
tion4.2.438de�ned at 
onstant heli
al angle u 62



2.9 A resumptive example: the heli
al symmetrythe same for A
tion�Angle 
oordinates: the relations between the A
tion
Aζ(ρ) and the toroidal �ux ψT (ρ), and between the Hamiltonian Aϕ(ρ) andthe heli
al �ux χ(ρ). Let us begin.Given the ignorable 
oordinate x3 = ϕ, one knows that (eq.(2.70))

Aµ dx
µ = Ar(r, u) dr +Au(r, u) du+Aϕ(r, u) dϕ (2.179)is the Poin
aré�Cartan form with Ai(r, u). From Noether theorem (eq.(2.71)):
H = −Aϕ(r, u) = ρ(r, u) = const (2.180)states the 
onservation of the Hamiltonian for time�independent systems,and (eq.(2.74)�(2.75))

t = ϕ (2.181)
H = −Aϕ(r, u) . (2.182)Just when one 
hooses the axial gauge it is possible to make the identi�
ationalso with the (p, q) 
anoni
al variables. Choosing Ar = 0, (eq.(2.78)�(2.79)):

q = u (2.183)
p = Au(r, u) (2.184)The Hamiltonian must be a fun
tion of the 
anoni
al variables, and not ofthe general 
oordinates (r, u). On
e the identi�
ation u = q has been found,one needs to invert at least lo
ally the relation found for p to obtain r(p, u)(and therefore H(p, q)). Constant energy surfa
es in dynami
al systems 
or-respond to the magneti
 surfa
es, labelled by the Hamiltonian: inverting therelation (2.182) to write r(H,u), one 
an use the Hamiltonian as the �rst
oordinate to label the magneti
 �ux surfa
es, eq.(2.180).On 
onserved �ux surfa
es39 (ρ = const) one 
an look for A
tion�Angle 
o-ordinates with a 
anoni
al 
hange of 
oordinates (p, q) 7→ (P,Q) = (I, ζ)in phase spa
e, whi
h 
orrespond to a 
hange of 
oordinate in the phys-i
al spa
e of magneti
 �elds: (ρ, u, ϕ) 7→ (ρ, ζ, ϕ)40. Following eq.(2.95)�eq.(2.97), where equation (2.182) is inverted in order to obtain Au(ρ, u) andthen the fun
tion I(ρ) is inverted to obtain ρ(I) and therefore Au(I, u), oneobtains:

I(ρ) =
1

2π

∮
p dq ≡ 1

2π

∮
Au(ρ, u) du (2.185)

F2(u, I) =

∫ q

q0

p dq ≡
∫ u

u0

Au(I, u) du (2.186)
ζ(u, I) =

∂F2

∂I
≡
∫ u

u0

∂Au
∂I

(I, u) du (2.187)39Equivalent to bounded 
onstant energy surfa
es in phase spa
e.40Instead of r we use the label of the magneti
 �ux surfa
es ρ. As said one 
an alwaysmake this 
hoi
e ones the 
onserved Hamiltonian of the system is known.63
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hani
sfor the A
tion I, the generating fun
tion F2 and the Angle ζ. The mainproperty of A
tion�Angle 
oordinates is that the Hamiltonian is a fun
tionof the A
tion I only, H = H(I), whi
h means that the A
tion is a 
on-stant on �ux surfa
es. The angle ζ is found using the generating fun
tion
F2(q,Q) = F2(q, I) and evolves linearly in time with a 
onstant frequen
ythat 
orrespond to the heli
al rotational transform.We go ba
k to the physi
al interpretation of the �uxes asso
iated to the
ovariant 
omponents of the ve
tor potential for any 
oordinate system asfound in se
tion 2.7.41. Here we 
an say that:In the general (r, u, ϕ) 
oordinate system, with ϕ ignorable 
oordinate, forthe gauge Ar = 0:The 
omponent Au(r, u) is a measure (up to 2π) of the toroidal �ux a
rossthe surfa
e de�ned by Au(r, u) = const at the toroidal angle ϕ = const.The 
omponent Aϕ(r, u) is a measure (up to 2π) of the heli
al �ux a
rossthe surfa
e de�ned by Aϕ(r, u) = const at heli
al angle u = const:

ψT (r, u) = 2πAu(r, u) (2.188)
χ(r, u) = −2πAϕ(r, u) = −2πH (2.189)writing the symbol χ for the heli
al �ux. H = −Aϕ(r, u) = const are the�ux surfa
es, but in general this is not true for Au(r, u) = const. Both the�uxes are label of the magneti
 �ux surfa
es just in A
tion�Angle 
oordinates

(ρ, ζ, ϕ). In these 
oordinates, with ϕ ignorable 
oordinate, ρ label of the�ux surfa
es, for the gauge Aρ = 0:The 
omponent Aζ(ρ) = I(ρ) is a measure (up to 2π) of the toroidal �uxa
ross the surfa
e de�ned by Aζ(ρ) = I(ρ) = const at the toroidal angle
ϕ = const.The 
omponent Aϕ(ρ) is a measure (up to 2π) of the heli
al �ux a
ross thesurfa
e de�ned by Aϕ(ρ) = const at (straight) heli
al angle ζ = const:

ψT (ρ) = 2πI(ρ) = 2πAζ (2.190)
χ(ρ) = −2πAϕ(ρ) = −2πH(ρ) (2.191)The Angle ζ is still a heli
al angle, and the Hamiltonian H(ρ) = H(I) is theheli
al �ux χ trough the �ux surfa
es, as well as H(r, u).41From se
tion 2.7.1. In the general 
oordinates xµ = (x1, x2, x3) and for the gauge

A1 = 0:The 
omponent A2 is a measure (up to 2π) of the �ux a
ross the surfa
e de�ned by A2 =
const at x3 = const.The 
omponent A3 is a measure (up to − 2π) of the �ux a
ross the surfa
e de�ned by
A3 = const at x2 = const. 64



2.9 A resumptive example: the heli
al symmetryTherefore we 
an write
A(r, u, ϕ) = Au∇u+Aϕ∇ϕ = ψt(r, u)∇u− χ(r, u)∇ϕ (2.192)
A(ρ, ζ, ϕ) = Aζ ∇ζ +Aϕ∇ϕ = ψT (ρ)∇ζ − χ(ρ)∇ϕ (2.193)We write ψT (ρ) and ψt(r, u) to emphasize the di�eren
e between the twotoroidal �uxes: just the �rst one is a �ux through magneti
 �ux surfa
es. Onthe other hand, the heli
al �ux is un
hanged due to the (time�independent)
anoni
al transformation that brings from (r, u, ϕ) to A
tion�Angle vari-ables.The 
orresponding 
ontravariant representations of the magneti
 �eld is:

B(r, u, ϕ) = ∇Au ×∇u+∇Aϕ ×∇ϕ (2.194)
= ∇ψt(r, u)×∇u−∇χ(r, u)×∇ϕ (2.195)

B(ρ, ζ, ϕ) = ∇Aζ ×∇ζ +∇Aϕ ×∇ϕ (2.196)
= ∇ψT (ρ)×∇ζ −∇χ(ρ)×∇ϕ (2.197)The 
ontravariant 
omponents of the magneti
 �eld 
an be written followingequations (2.143)�(2.144), or using the de�nition of 
ontravariant indexes:

Bi = B · ∇xitogether with one of the (2.194)�(2.197). As useful example we write ex-pli
itly just the 
ase 
orresponding to eq.(2.197), A
tion�Angle 
oordinates
(ρ, ζ, ϕ) and the gauge Aρ = 0:

Bρ = 0 (2.198)
Bζ =

1√
g

∂χ

∂ρ
(2.199)

Bϕ =
1√
g

∂ψT
∂ρ

(2.200)
Bρ = B·∇ρ = 0 it is equivalent to (2.149), that de�nes ρ as label of magneti
�ux surfa
es, and 
an be prove here in the same way, but with ρ(r, u).To 
on
lude we just want to emphasize that frequently we use the samesymbols to indi
ate di�erent quantities. As one must pay attention to themeaning of the �uxes in the di�erent frame of referen
e (in the text we 
allthem always in the same way, but for example ψT (r, u, ϕ) 6= ψT (ρ)), thesame is true for example for the Ja
obian of the 
oordinate system, that we65



Hamiltonian me
hani
salways 
all √g, but it is obviously di�erent in di�erent systems:42
1√
g

= ∇x1 · ∇x2 ×∇x3 for (x1, x2, x3) (2.205)2.10 A short example: the axisymmetri
 �eld B0In this short example we 
onsider only the axisymmetri
 equilibrium mag-neti
 �eld B0.The (r, θ, ϕ) 
oordinate system introdu
ed in se
tion 3.1.1 are straight �eldline 
oordinates built on the 
ir
ular �ux surfa
es of B0. In this 
oordinatesystem the �uxes depend on the radial 
oordinate only (as must be in everyA
tion�Angle 
oordinate system). Both the poloidal and toroidal angle 
anbe therefore used as the 
anoni
al time:
B0(r, θ, ϕ) = ∇ψT (r)×∇θ −∇ψP (r)×∇ϕ (2.206)and the asso
iated 
anoni
al variables 
an be

t = ϕ (2.207)
H = −Aϕ = ψP (r) (2.208)
q = θ (2.209)
p = Aθ = ψT (r) (2.210)or
t = θ (2.211)
H = −Aθ = ψT (r) (2.212)
q = ϕ (2.213)
p = Aϕ = ψP (r) (2.214)The 
anoni
al time θ is always in
reasing in the whole plasma volume and itis linked with a poloidal �ux that is monotoni
. It is a better 
hoi
e for the
anoni
al time in axisymmetri
 RFP equilibrium 
ompared to the toroidalangle that 
hanges its sign at the reversal. Due to the reversal of the toroidal
omponent of the magneti
 �eld, the toroidal �ux ψT (r) in a non monotoni
42Some examples:

1√
g

= ∇r · ∇θ ×∇ϕ for (r, θ, ϕ) (2.201)
= ∇r · ∇u×∇ϕ for (r, u, ϕ) (2.202)
= ∇ρ · ∇ζ ×∇ϕ for (ρ, ζ, ϕ) (2.203)
= ∇r · ∇u×∇θ for (r, u, θ) (2.204)66



2.10 A short example: the axisymmetri
 �eld B0fun
tion. The problem of a non monotoni
 Hamiltonian related to the time
θ is not really a problem, be
ause one 
an use any other �ux fun
tion asradial 
oordinate, for example the poloidal �ux ψP (r).
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Chapter 3
Mode eigenfun
tionre
onstru
tion
The goal of this 
hapter is to underline what one needs in order to apply thetheoreti
al results of 
hapter 2 to real data, and whi
h measurements arene
essary. In parti
ular, following the paper of P. Zan
a and D. Terranova[53℄, we de�ne the toroidal 
oordinates (r, ϑ, ϕ) that are used to 
omputethe toroidal and poloidal �uxes from magneti
 measurements: going ba
k to
hapter 2 it is easy to see that the toroidal 
oordinates and the 
ovariant
omponents of the ve
tor potential A (that are nothing but the �uxes) arethe only quantities that one needs to know. This is true even in heli
al sym-metry (se
tion 2.9) where the heli
al angle u = θ−nϕ and the heli
al �ux χ(2.189) 
an be written as a 
omposition of the poloidal and toroidal anglesand �uxes.The starting point in the work of my thesis is the re
onstru
tion of poloidaland toroidal �ux pro�les, and their ψm,nP and ψm,nT harmoni
s. I do not needto solve eq.(3.36)�(3.37), be
ause this is done by some 
ommon routines inRFX, written by the authors of [53℄ on the basis of their paper. I 
an there-fore read the �uxes and their harmoni
s from the outputs of these routines.I refer often to the (r, ϑ, ϕ) 
oordinate system, built on the Σ(r) �ux surfa
esof B0, be
ause these are the 
oordinates on whi
h the �uxes are 
omputed(as explained in se
tion 3.1.1, appendix B.2.3 and referen
e [53℄).Let us summarize the 
ontent of this 
hapter more in detail.Due to the presen
e of tearing instabilities, whi
h break the axi�symmetry ofthe magneti
 �eld, we 
an think every quantity A inside the plasma (e.g. themagneti
 �eld B and the magneti
 �uxes) as 
omposed by an axi�symmetri
69



Mode eigenfun
tion re
onstru
tionpart A0 and a perturbation, usually Fourier de
omposed as1:
A(r, θ, ϕ) = A0(r) +

∑

m,n

am,n(r) ei(mθ−nϕ) (3.1)
= A0(r) +

∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (3.2)using the generi
 toroidal 
oordinates (r, θ, ϕ) where r is the radius of the
ir
ular�
ross�se
tion �ux surfa
es of the axi�symmetri
 part of the mag-neti
 �eld, B0. A 
omplete re
onstru
tion of tearing mode eigenfun
tionsinside the whole plasma volume has been done in [53℄, where the magneti
perturbation is 
onsidered to be mu
h smaller 
omparing to B0 in orderto use a perturbative approa
h. The method solves a New
omb�like equa-tion, that arises from the for
e�free for
e�balan
e equation at the �rst orderin the perturbation, in a non�orthogonal and 
urvilinear 
oordinate systemthat well des
ribes the toroidal geometry of the problem. The solution ofNew
omb's equation provides the harmoni
s ψm,nP and ψm,nT of the perturba-tion to the poloidal and toroidal �ux respe
tively and we therefore need therelation that links the magneti
 �uxes to the 
omponents of the magneti
�eld to provide a 
omplete re
onstru
tion of B in the plasma volume.First the 
urvilinear straight��eld�line 
oordinates (r, ϑ, ϕ) built on the
ir
ular �ux surfa
es of B0 are introdu
ed. This is done in se
tion 3.1.1,starting from the 
anoni
al representation of B0 (2.206) and following themethod in se
tion 2.8.2.In par 3.1.2 the whole axisymmetri
 equilibrium is de�ned, whi
h means thatwe write the equations for the di�erential shift ∆(r) of the �ux surfa
es Σ(r)in toroidal symmetry, and for the �uxes ψP,0 and ψT,0 through Σ(r).The perturbation to B0, that deforms its 
ir
ular �ux surfa
es Σ(r), is intro-du
ed in se
tion 3.2. Using the same 
oordinate system (r, ϑ, ϕ) built for B0(now the �eld lines are not straight any more), one 
an write the �rst�orderfor
e�free for
e�balan
e equation, together to Ampère's law. This gives asystem of New
omb�like equations for ea
h harmoni
 of the perturbationto the �uxes, ψm,nP and ψm,nT . These are 
oupled equations, in whi
h ea
hmode (m,n) is 
oupled with the (m± 1, n) mode: we 
all this toroidal 
ou-pling. The equations that must be solved for ψm,nP and ψm,nT are ordinarydi�erential equations (3.36)�(3.37), with boundary 
ondition from magneti
measurements. We will �nd that the measure of the radial and toroidal mag-neti
 �eld at the edge are enough to solve the system.The toroidal 
oupling a
ts between modes with same n toroidal modenumber and ∆m = ±1 on the poloidal mode number, due to the 
urvilinear1See appendix C.1 for a dis
ussion on 
omplex Fourier harmoni
s.Here and in the following the 
onvention of [53℄ on the sign of the resonant modes is used.70



3.1 Zero�th order equilibriummetri
s.The (r, ϑ, ϕ) are 
urvilinear 
oordinates, in order to take into a

ount thetoroidi
ity of the system. This arises from the shift term ∆(r), not negle
tedin the de�nition of the geometri
al 
oordinates (eq.(3.4)), that de�nes the
enter of the non�
on
entri
 
ir
ular �ux surfa
es of B0. Due to this termthe metri
 tensor is not diagonal2, and the non�null non�diagonal terms(grϑ 6= 0) are what 
ouples the modes with same n mode and ∆m = ±1.The toroidal 
oupling 
an not be therefore seen in the diagonal 
ylindri
al
oordinates3, where the shift ∆(r) is negle
ted. Di�erently to these 
oordi-nates, working with 
urvilinear 
oordinates in general one must pay attentionto 
ovariant (down) and 
ontravariant (up) ve
tor 
omponents (see appendixB).We said that the solution of New
omb's equation provides the harmoni
s
ψm,nP and ψm,nT of the perturbation to the poloidal and toroidal �ux respe
-tively, and we therefore need the relation that links the magneti
 �uxes tothe 
omponents of the magneti
 �eld. We use the 
anoni
al representationof B in the general toroidal 
oordinate system (r, ϑ, ϕ)

B = ∇ψT ×∇ϑ−∇ψP ×∇ϕ (3.3)and the formulas valid for both magneti
 (when 
onsidering the axi�symmetri
�eld B0) or non�magneti
 
oordinates (in the 
ase of a perturbed magneti
�eld). ψP (r, ϑ, ϕ) and ψT (r, ϑ, ϕ) are the poloidal and toroidal �uxes re-spe
tively. In 
hapter 5 one 
an �nd the formulas for the 
ovariant and
ontravariant 
omponents of the magneti
 �eld, that involve the elements ofthe metri
 tensor. In parti
ular one 
an �nd the formulas for the 
omponentsof B in the 
ase of SHAx states, that are modelled as pure Single Heli
ity(SH) states.In the following se
tions one 
an �nd some details on how the New
omb�like equations in toroidal geometry for the harmoni
s of the �uxes are ob-tained. But one must read [53℄ for the solution details.3.1 Zero�th order equilibrium3.1.1 The toroidal (r, ϑ, ϕ) 
oordinate systemLet us 
onsider a zeroth-order axisymmetri
 toroidal plasma with 
ir
ular
ross-se
tion, formed in a va
uum 
hamber with major radius R0 and minorradius a. The �ux surfa
es are non-
on
entri
 
ir
les, ea
h having radius r,2See then de�nition of the metri
s in appendix B.2.3See then de�nition of the 
ylindri
al metri
s in appendix B.2.1.71



Mode eigenfun
tion re
onstru
tion

Figure 3.1: Reprodu
ed from [53℄. Left: Geometri
al 
o-ordinates. Right:Relation between the �ux ϑ and geometri
al θ poloidal angles at r = a. Thedeviation from the bise
tor (dashed line) is an in
reasing fun
tion of theradius.being horizontally shifted by a quantity ∆(r). The shift of the outermost�ux surfa
e is imposed as boundary 
ondition (in the experiments this isobtained from external magneti
 measurements). A point lying on one ofthese �ux surfa
es is identi�ed by the radius r of the surfa
e, by the poloidalangle θ measured with respe
t to the inboard mid plane, and by the toroidalangle ϕ. These 
oordinates, whi
h we 
all geometri
 
oordinates, ui, arerelated to the standard 
ylindri
al system (R,ϕ,Z) used to des
ribe toroidalfusion devi
es by
R = R0 − r cos θ + ∆(r) (3.4)
Z = r sin θ. (3.5)where R0 is the torus major radius. The (r, θ, ϕ) 
oordinate system is 
urvi-linear and non-orthogonal, in order to properly take into a

ount the toroidalgeometry. A 
omplete knowledge of the metri
 tensor is essential (see ap-pendix B for a brief reminder on 
urvilinear 
oordinates). The metri
 tensorand the Ja
obian of the geometri
 
oordinates are given in appendix B.2.2.The 
ontravariant representation of the zeroth-order magneti
 �eld asso-
iated with the geometri
 
oordinate system is

B0 = ∇ψT,0(r)×∇θ −∇ψP,0(r)×∇ϕ+∇r ×∇ν(r, θ) (3.6)where ψT,0 and ψP,0 are, respe
tively, the toroidal and poloidal �ux dividedby 2π. The equilibrium is fully de�ned on
e ψT,0(r), ψP,0(r), ∆(r) and ν(r, θ)are known.Following the standard pro
edure for introdu
ing �ux 
oordinates 2.8.2, one
an de�ne a new poloidal angle as
ϑ = θ + λ(r, θ) (3.7)72



3.1 Zero�th order equilibriumwith λ(r, θ) = ν(r, θ)/ψ′
T,0(r). Here and in the following a prime designatesderivative with respe
t to r of quantities whi
h are fun
tions of r only. In the

wi = (r, ϑ, ϕ) system, whi
h we 
all �ux 
oordinates, the magneti
 �eld linesare straight and the magneti
 �eld 
ontravariant representation is simply
B0 = ∇ψT,0(r)×∇ϑ−∇ψP,0(r)×∇ϕ. (3.8)This provides simple formulas for the 
ontravariant 
omponents Bi, givenby

Br
0 = 0 Bϑ

0 =
1√
gw
ψ′
P,0 Bϕ

0 =
1√
gw
ψ′
T,0 (3.9)where √gw is the Ja
obian of the �ux 
oordinate system:

√
gw = (∇r · ∇ϑ×∇ϕ)−1 . (3.10)The metri
 tensor and the Ja
obian of the �ux 
oordinates are also given inappendix B.2.3.The determination of the parameter λ(r, θ) in (3.7) is possible for a largeaspe
t ratio torus following a perturbative approa
h, as done �rst in [53℄.Ampére's law allows to dedu
e the 
urrent density 
ontravariant 
omponents

J i. From the for
e balan
e 
ondition and Br
0 = 0 one gets Jr0 = 0. Usingthis information, and performing an expansion in the small aspe
t ratioparameter ǫ = a/R0, it is possible to 
ompute the quantity relating θ and ϑas

λ(r, θ) = λ1(r) sin θ + λ2(r) sin 2θ + o(ǫ3). (3.11)where
λ1(r) =

r

R0
−∆′(r) λ2(r) =

r

4R0
λ1(r). (3.12)The inverse of transformation (3.7) is then easily derived as

θ = ϑ− λ1 sinϑ−
(
λ2 −

λ2
1

2

)
sin 2ϑ+ o(ǫ3). (3.13)Using equation (3.11) the relation between 
ylindri
al (R,ϕ,Z) and �ux
oordinates wi 
an also be found (up to a o(ǫ3b) approximation term):

R = R0 − r cosϑ+ ∆(r)− rλ1(r) sin2 ϑ+

(
3

2
rλ2

1 − 2rλ2

)
sin2 ϑ cosϑ(3.14)

Z = r sinϑ− r

2
λ1(r) sin 2ϑ+

(
3

2
rλ2

1 − 2rλ2

)
sinϑ cos2 ϑ− r

2
λ2

1(r) sinϑso R ≡ R(r, ϑ) and Z ≡ Z(r, ϑ). 73



Mode eigenfun
tion re
onstru
tionThe Ja
obian of the �ux 
oordinate system for a large aspe
t ratio torusis (B.2.3):
√
gw =

R2

K(r)
(3.15)with

K(r) =
R0

r

(
1 +

∆

R0
+

r

2R0
∆′ − r2

2R2
0

+ o(ǫ3)

)
. (3.16)3.1.2 Equilibrium quantities: ∆(r), ψP,0 and ψT,0It is possible to show that, for a for
e-free equilibrium, in �ux 
oordinatesthe 
urrent density is proportional to the magneti
 �eld through a 
oe�
ientwhi
h is a fun
tion of r only, that is

µ0J0 = σ(r)B0. (3.17)It is 
onvenient to de�ne, for a generi
 �eld A, its hatted version as
Â =

√
gwA, whi
h hides the Ja
obian 
ontribution. The zeroth-order hattedmagneti
 �eld and 
urrent density 
omponents, fun
tion of r only, are then:

B̂ϑ
0 = ψ′

P,0 B̂ϕ
0 = ψ′

T,0 µ0Ĵ
ϑ
0 = σψ′

P,0 µ0Ĵ
ϕ
0 = σψ′

T,0. (3.18)Given the σ(r) pro�le, whi
h is an input to the algorithm, the zeroth-order for
e balan
e yields the following equations:
d

dr
[K(r)B̂ϕ

0 ] = −σ(r)B̂ϑ
0 (3.19)

∂

∂r

[
gwϑϑ√
gw
B̂ϑ

0

]
− ∂

∂ϑ

(
gwrϑ√
gw

)
B̂ϑ

0 = σ(r)B̂ϕ
0 . (3.20)The se
ond equation 
ontains metri
 
oe�
ients whi
h are fun
tion of r and

ϑ. By using the expansion in harmoni
s des
ribed in appendix B.2.3, it 
anbe split into two equations, one for B̂ϑ
0 and one for ∆. Furthermore, be
auseof the nonlinearity given by the fa
t that the metri
 
oe�
ients depend on

∆, it is 
onvenient to introdu
e a perturbative expansion:
B̂ϑ

0 = B̂ϑ
1 + B̂ϑ

2 + . . . , B̂ϑ
2 = o(ǫ2)B̂ϑ

1 (3.21)
B̂ϕ

0 = B̂ϕ
1 + B̂ϕ

2 + . . . , B̂ϕ
2 = o(ǫ2)B̂ϕ

1 . (3.22)The resulting equations for the lowest order 
ontribution are
d

dr

(
R0

r
B̂ϕ

1

)
= −σ(r)B̂ϑ

1 (3.23)
d

dr

(
r

R0
B̂ϑ

1

)
= σ(r)B̂ϕ

1 (3.24)74



3.2 First�order 
ontribution to the equilibriumwhi
h 
an be solved for B̂ϑ
1 (r) and B̂ϕ

1 (r). The solution starts from themagneti
 axis, where regularity imposes B̂ϑ
1 ∼ σ0R0r/2 and B̂ϕ

1 ∼ r, andpro
eeds to the edge. The solutions are then res
aled so as to mat
h aboundary 
ondition, for example the edge poloidal �eld.These solutions are then plugged into the equation for the shift
∆′′ +

∆′

r

(
1 + 2r

dB̂ϑ
1 /dr

B̂ϑ
1

)
+

1

R0
= 0. (3.25)whi
h is solved using the boundary 
onditions ∆′(0) = 0 and an assignedvalue for ∆(b), b being the radius at whi
h the magneti
 measurementsyielding the 
ondition are lo
ated.Having determined the shift ∆(r), the next order 
orre
tion to the �elds 
anbe 
omputed by

d

dr

(
R0

r
B̂ϕ

2

)
+

d

dr

[
R0

r

(
∆

R0
+

r

2R0
∆′ − r2

2R2
0

)
B̂ϕ

1

]
= −σ(r)B̂ϑ

2 (3.26)
d

dr

(
r

R0
B̂ϑ

2

)
+

d

dr

[
r

R0

(
r2

2R2
0

+
∆′2

2
+

r

2R0
∆′ − ∆

R0

)
B̂ϑ

1

]
= σ(r)B̂ϕ

2Again, these equations are solved starting from the axis, where regularityrequires B̂ϑ
2 ∼ 3r/(2σ0R0) and B̂ϕ

2 ∼ [3/(σ2
0R

2
0) − ∆0/R0]r, ∆0 being theshift of the magneti
 axis. In pra
ti
e this 
orre
tion turns out to be verysmall.It is worth noting that this method of 
omputing the zeroth-order axisym-metri
 equilibrium, if 
ompared to the standard Grad-Shafranov equation,has the advantage of requiring simply the solution of �ve ordinary di�er-ential equations. This is obtained at the pri
e of being restri
ted to dealwith 
ir
ular �ux surfa
es, whi
h is however reasonable for present day RFPdevi
es. While σ(r) 
an in prin
iple be any fun
tion, for the appli
ationdes
ribed in the following the 
ustomary parametrization 
alled α-Θ0 modelhas been used, that is

σ =
2Θ0

a

[
1−

(r
a

)α]
. (3.27)The two free parameters Θ0 and α are adjusted so as to obtain given valuesof the two dimensionless parameters Θ and F , whi
h are the well knownpin
h and reversal parameters used to des
ribe RFP plasmas (see 
hapter1.).3.2 First�order 
ontribution to the equilibriumThe next step is to add a non-axisymmetri
 perturbation to (3.8). In thegauge Ar = 0, where Ar is the 
ovariant radial 
omponent of the ve
tor75



Mode eigenfun
tion re
onstru
tionpotential A, the total magneti
 �eld 
an be written as
B = ∇ψT ×∇ϑ−∇ψP ×∇ϕ (3.28)where now ψT and ψP depend on all three 
oordinates. The wi = (r, ϑ, ϕ)
oordinates are not any more �ux 
oordinates for the perturbed magneti
�eld, whi
h means that magneti
 �eld lines of B are not straight in this
oordinate system, and the potentials ψT and ψP are not any more �uxfun
tions (see se
tion 2.7). These potentials, related to the ve
tor potential
ovariant 
omponents, 
an be Fourier expanded as

ψP (r, ϑ, ϕ) = −Aϕ(r, ϑ, ϕ) = ψP,0(r) +
∑

n6=0,m

ψm,nP (r)ei(mϑ−nϕ)(3.29)
ψT (r, ϑ, ϕ) = Aϑ(r, ϑ, ϕ) = ψT,0(r) +

∑

n6=0,m

ψm,nT (r)ei(mϑ−nϕ)(3.30)The perturbed quantities 
ontain n 6= 0 terms only, and the harmoni
s am-plitudes are 
omplex (see appendix C.1 for a dis
ussion on 
omplex 
onju-gation).Given the representation (3.28) of the magneti
 �eld, the total hatted
ontravariant magneti
 �eld 
omponents are
B̂ϑ =

∂ψP
∂r

B̂ϕ =
∂ψT
∂r

b̂r = −∂ψT
∂ϕ
− ∂ψP

∂ϑ
. (3.31)Computing the total 
urrent density 
omponents from Ampére's law andplugging them into the �rst-order for
e balan
e equation

j×B0 + J0 × b =
1√
gw
ǫijk(ĵiB̂j

0 + Ĵ i0b̂
j)∇wk = 0 (3.32)one obtains the proportionality between perturbed radial 
urrent and per-turbed radial magneti
 �eld

µ0ĵ
r = σ(r)b̂r (3.33)and (

∂

∂ϑ
+ q

∂

∂ϕ

)
(µ0ĵ

ϑ − σb̂ϑ) + b̂r
dσ

dr
= 0 (3.34)

(
∂

∂ϑ
+ q

∂

∂ϕ

)
(µ0ĵ

ϕ − σb̂ϕ) + b̂rq
dσ

dr
= 0. (3.35)By Fourier-transforming equations (3.33) and (3.35) (only two equationsare needed, sin
e for ea
h mode there are two unknown fun
tions ψm,nT and76



3.2 First�order 
ontribution to the equilibrium
ψm,nP ) and using Ampére's law the following equations are found:

mK(r)
dψm,nT

dr
+ n

(
gwϑϑ√
gw

)0,0 dψm,nP

dr
− σ(nψm,nT −mψm,nP )

−in
(
gwrϑ√
gw

)1,0

[nψm+1,n
T − nψm−1,n

T − (m+ 1)ψm+1,n
P + (m− 1)ψm−1,n

P ]

+n

(
gwϑϑ√
gw

)1,0
[
dψm+1,n

P

dr
+
dψm−1,n

P

dr

]
= 0 (3.36)

d

dr

(
K(r)

dψm,nT

dr

)
+ σ

dψm,nP

dr
− n

(
gwrr√
gw

)0,0

[nψm,nT −mψm,nP ]− nψm,nT −mψm,nP

m− nq
dσ

dr

−n
(
gwrr√
gw

)1,0

[nψm+1,n
T + nψm−1,n

T − (m+ 1)ψm+1,n
P − (m− 1)ψm−1,n

P ]

−in
(
gwrϑ√
gw

)1,0
[
dψm+1,n

P

dr
− dψm−1,n

P

dr

]
= 0 (3.37)In appendix B.2.3 one 
an �nd the metri
 tensor element 
ombinationsthat appear in these equations.The method used for the solution of these equations is des
ribed in de-tail in ref. [53℄. The solution requires the knowledge of the 
orrespondingharmoni
 amplitude for the radial 
omponent of the magneti
 �eld at somesurfa
e outside the plasma, whi
h represents the boundary 
ondition. Fur-thermore, if the mode has a resonant surfa
e inside the plasma, a dis
ontinu-ity in the eigenfun
tion derivative should be allowed. The magnitude of thisdis
ontinuity is obtained by imposing a further boundary 
ondition, that isthe amplitude of the toroidal magneti
 �eld 
omponent at the same surfa
ewhere the radial one is determined (that is the surfa
e where the sensors arelo
ated).
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Chapter 4Heli
al 
oordinates in toroidalsystemsThe goal in this 
hapter is to �nd good 
oordinate systems to des
ribe SHAxstates, modelled as pure SH states1, beginning from the re
onstru
tion ofthe magneti
 �ux surfa
es, using the magneti
 �ux eigenfun
tions inside theplasma volume introdu
ed in the previous 
hapter.

Figure 4.1: Es
her, 1953Let us introdu
e the problem.In the perturbative approa
h to the magneti
 �eld B, introdu
ed in the pre-vious 
hapter, it is easy to �nd magneti
 �ux surfa
es for the axi�symmetri
part B0, and the fun
tion that 
an label them is the radius r of their 
ir
ular
ross-se
tion2. Adding a generi
 perturbation, the 
ir
ular �ux surfa
es that
hara
terize B0 are deformed, and it is not 
lear a priori if other �ux surfa
esexist and whi
h 
an be the fun
tion ρ to label them3: this is the general 
ase1Single Heli
ity states, where only the dominant mode of the SHAx states is 
onsidered.2This is the equilibrium des
ribed in the introdu
tion, for whi
h B · ∇r = 0.3By de�nition �ux surfa
es exist if (ne
essary 
ondition) there exist a fun
tion ρ for79



Heli
al 
oordinates in toroidal systemsof Multiple Heli
ity (MH) states, where no eviden
e of symmetries in thesystem is present. Considering instead SH states the perturbation has heli-
al symmetry, whi
h means that the �uxes ψP and ψT (and all the surfa
efun
tions in the plasma) are fun
tions only of the radius r and of the heli
alangle de�ned as u = mϑ− nϕ 4:
ψ(r, u) = ψ0(r) + ψm,n(r) eiu + c.c. (4.1)This arises from (3.2) negle
ting the sum over se
ondary modes (and 
on-sidering the dominant mode with �xed (m,n), whi
h is the (1, 7) mode inRFX�mod). In this 
ase it has been shown (eq.(2.198) se
tion 2.9) that�ux surfa
es exist (ρ(r, u) = const), and one 
an also look for A
tion�Angle
oordinates on them, that 
orrespond to straight��eld�line 
oordinates. Agood �ux fun
tion is the heli
al �ux (the Hamiltonian of the system), thatwill be 
alled with the symbol χ from now on. The formal de�nition of χwill be given in se
tion 4.1, and looking at its 
ontour plot in �g.4.3 one
an dedu
e that 
oordinate systems built on the 
ir
ular�
ross-se
tion �uxsurfa
es of B0 are not appropriate to des
ribe heli
al �ux surfa
es. This istrue espe
ially in the inner bean�shaped surfa
es whi
h does not 
ontain themagneti
 axis of the axisymmetri
 equilibrium, due to the fa
t that one 
anidentify two points that have the same value of the poloidal angle ϑ.All the 
oordinate systems de�ned until now in RFX are based on the
ir
ular�
ross-se
tion �ux surfa
es of the axisymmetri
 equilibrium. Mod-elling SHAx states as pure SH states, the goal is to �nd 
oordinates based onthe heli
al geometry, where the heli
al �ux is used as the radial 
oordinate.The fundamental request for heli
al 
oordinates is then a non�orthogonaland 
urvilinear metri
 tensor, with angles de�ned with respe
t to the heli
alaxis (∇ρ = 0), in order to well des
ribe both the toroidal geometry of theproblem and the new heli
al axis of the system. In se
tion 4.2.1 an angle

β with these features is de�ned using a geometri
al approa
h, in se
tions4.2.2-4.2.4 heli
al 
oordinates are found using the Hamiltonian form of themagneti
 �eld and its properties de�ned in parti
ular in se
tion 2.9. Thisallows to �nd not just heli
al 
oordinates, but also to take advantage of theproperties of heli
al magneti
 
oordinates looking for A
tion�Angle 
oordi-nates.The pra
ti
al out
ome of this thesis is the 
ode named SHEq (SingleHeli
al Equilibria). It uses the heli
al 
oordinate systems, whi
h in thiswhi
h B · ∇ρ = 0 and are therefore de�ned by ρ = const. As said in 
hapter 2 this isthe 
ase only if a symmetry is manifest in the system, and ρ 
an be identi�ed with theHamiltonian H (due to Noether theorem) or any fun
tion f(H). In se
tion 2.8.2 we havealready noti
ed that in 
haoti
 spa
es, where magneti
 �eld line are destroyed, the relation
ρ = const is still valid. We refer here to 
onserved magneti
 �ux surfa
es.4ψ in the formula stays therefore for ψP , ψT or any �ux fun
tion. See appendix C.1for a dis
ussion on the 
omplex 
onjugated.80




hapter5 are de�ned in a mathemati
al way, in order to 
ompute all the heli-
al equilibrium plasma quantities. More than one heli
al�toroidal 
oordinatesystem are de�ned in this 
hapter, and all the metri
 tensor elements andthe Ja
obian of every 
oordinate system are usable in SHEq (metri
 tensorelements and Ja
obians 
an be found in the detailed 
al
ulations of 
hapter9).Ea
h plot in the following is 
omputed by the SHEq�
ode. The abs
issa ρhused in the plots is the square root of the normalized heli
al �ux:
ρh =

√
χ− χmin

χmax − χmin
, (4.2)

χmin being the value of the heli
al �ux on the heli
al axis and χmax its valueat the edge. Being a fun
tion of χ only, ρh is a label for heli
al �ux surfa
esthat ranges between 0 on the heli
al axis and 1.Bean�shaped surfa
es whi
h do not 
ontain the magneti
 axis of the axisym-metri
 equilibrium are 
alled internal �ux surfa
es, the external �ux surfa
esare instead the surfa
es whi
h 
ontain both the axisymmetri
 and the heli
alaxis.The main results of this 
hapter have been published in B. Momo et. alPlasma Phys. Control. Fus (2011) [1℄ and in E. Martines, R. Lorenzini, B.Momo et al. Plasma Phys. Control. Fus (2011) [2℄.Some work has been performed by the RFX�mod team, to demonstrate thatthe heli
al �ux here de�ned is a good �ux fun
tion also from the experimentalpoint of view. In parti
ular, this work is presented in [54℄ (Nature, 2009).Here we just 
ite one of the tests of the heli
al equilibrium re
onstru
tion,performed by 
onsidering an ele
tron temperature (Te) pro�le measured bya Thomson s
attering system6. Due to the asymmetry of the heli
al �uxwith respe
t to the va
uum 
hamber, kineti
 plasma quantities during SHAxstates exhibit non symmetri
 pro�les if plotted against the radius of theva

um 
hamber r. This 
an be seen in �g.4.2(a) for Te, where the two
olors mark points that are on the two sides of the (heli
al) magneti
 axis.The same fun
tion plotted as a fun
tion of the normalized heli
al �ux ρh isshown in �g.4.2(b): it is immediately 
lear how the two half pro�les 
ollapseone onto the other. This is a proof that the heli
al �ux evaluated withtheoreti
al methods is indeed a �ux fun
tion, in the hypothesis that the Tepro�le is due to very fast parallel thermal transport and almost �at densitypro�les. Fig.4.2(c) is the re
onstru
tion of the ele
tron temperature map onthe poloidal plane.5Further details of the heli
al metri
s 
an be found also in the detailed 
al
ulations of
hapter 9.6Te pro�les measured along a horizontal diameter of the 
hamber by a 84�point Thom-son s
attering system, [55℄. 81
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Figure 4.2: Reprodu
ed from [2℄. (a): Ele
tron temperature pro�le fromThomson s
attering data measured along a horizontal diameter, plotted asa fun
tion of the radius r of the va
uum 
hamber. The two 
olors markthe points that are on the two sides of the magneti
 axis. The two 
ontin-uous 
urve are the normalized heli
al �ux ρ on the diameter. (b): Ele
trontemperature pro�le, plotted as a fun
tion of the normalized heli
al �ux ρ.
(c): Temperature map on the poloidal plane. Data refer to shot 24599 at
t = 99ms.Let us remind the basi
 approximations used in this work: of 
onsideringSHAx states as pure SH states negle
ting the 
ontribution of the residualse
ondary modes; of the perturbative approa
h to re
onstru
t the harmoni
sof the perturbation, also for the dominant mode7, solving a New
omb�likeequation in for
e free 
ondition; and of assuming a α−Θ0 model [56, 57℄ to�t experimental data for the zeroth�order parallel 
urrent density.4.1 The radial 
oordinate χSHAx states are modelled as pure SH states, 
omposed of the superposi-tion of the zero�th order axisymmetri
 equilibrium and the dominant modeeigenfun
tion, that in RFX�mod is the (m,n) = (1, 7). Any �ux fun
tionhas therefore heli
al symmetry during SHAx states, and one 
an go ba
k tothe heli
al example in se
tion 2.9 to use Hamiltonian me
hani
s tools. Welook in this se
tion for the Hamiltonian of the system that is always a goodradial 
oordinate and that 
an be used as label for �ux surfa
es.In se
tion 2.9 it has been found that

B · ∇χ = 0 (4.3)for the Hamiltonian χ(r, u) (or any fun
tion of χ only) and u = mϑ−nϕ: uis the heli
al angle and χ is 
alled heli
al �ux. Its de�nition in terms of the7We are 
on�dent on this approximation be
ause the dominant mode is not more thansome per
ent of the equilibrium part... even if this 
hanges the topology so mu
h!82



4.1 The radial 
oordinate χpoloidal and toroidal �uxes is
χ = mψP − nψT . (4.4)The poloidal and toroidal �uxes in SH 
an be written as (4.1)

ψP (r, u) = ψP,0(r) + ψm,nP (r) eiu + c.c. (4.5)
ψT (r, u) = ψT,0(r) + ψm,nT (r) eiu + c.c. (4.6)and therefore

χ = mψP − nψT (4.7)
= [mψP,0 − nψT,0](r) + [mψm,nP − nψm,nT ](r) eiu + c.c. (4.8)
= χ0(r) + χm,n(r) eiu + c.c. (4.9)
= χ0(r) + 2|χm,n|(r) cos(u+ φχ) (4.10)with the same heli
al symmetry of any other �ux fun
tion. Both the axisym-metri
 equilibrium part and its perturbation due to the single (m,n) = (1, 7)mode of the �uxes are 
omputed as des
ribed in the pre
eding 
hapter. Theamplitude |χm,n|(r) and phase φχ(r) are de�ned in se
tion 9.1 in terms ofamplitude and phase of the poloidal and toroidal �uxes.The heli
al �ux is 
onstant on the resulting �ux surfa
es of SHAx states,and a 
ontour plot of χ is shown in �g.4.3. It 
an be seen that only the inner

Figure 4.3: Contour plot of the heli
al �ux χ.surfa
es are signi�
antly distorted due to the inner resonant (m = 1/n = 7)mode, and assume a bean�like shape. The outer ones retains a quasi�
ir
ularshape, with a shift due to perturbations.In this se
tion the heli
al �ux χ(r, u) has been de�ned using the pertur-bative approa
h and 
hoosing the SH due to the (m,n) = (1, 7) mode. As83



Heli
al 
oordinates in toroidal systemssaid in se
tion 2.9, the Hamiltonian does not 
hange 
hanging the angle 
o-ordinates if it is un
hanged the periodi
ity (m,n) = (1, 7) of the system. Infa
t χ(r, u) = χ(I) if I is the A
tion of the system. This allows to 
omputethe radial 
oordinate χ (that labels the heli
al �ux surfa
es) using the 
om-position of two �uxes whi
h are not �ux fun
tions for heli
al symmetries8.4.2 The angle 
oordinatesThe radial variable is a label of the magneti
 �ux surfa
es, and one 
an usethe heli
al �ux χ. Let us go ba
k to the fundamental requests for the angularpart of heli
al 
oordinates: a non�orthogonal and 
urvilinear metri
 tensor,with angles de�ned with respe
t to the heli
al axis (∇χ = 0).There are two ways to de�ne the angular part of heli
al 
oordinate systems:the geometri
al way des
ribed in se
tion 4.2.1, or following the Hamiltoniantheory of magneti
 �eld lines, as des
ribed in se
tion 4.2.2-4.2.4. The Hamil-tonian way uses the heli
al symmetry of the system, whi
h means that anyplasma quantity depends on the r, u 
oordinates only, with u = mϑ − nϕ.Due to the fa
t that plasma quantities do not depend expli
itly on the angles
ϑ or ϕ, one 
an 
hoose two frames of referen
e where the heli
al symmetryis manifest, 
hoosing either the poloidal or toroidal angle as ignorable 
oor-dinate (that 
orresponds to the 
anoni
al time of the magneti
�Hamiltoniansystem). In this 
hapter both options are des
ribed, for the (χ, u, ϕ) and
(χ, u, ϑ) frame of referen
e9. However both 
hoi
es are not good in RFPma
hines. The toroidal angle is not a good time be
ause of its 
hange insign in 
orresponden
e of the reversal of the toroidal 
omponent of the mag-neti
 �eld at the edge. Usually indeed the RFP 
ommunity works with thepoloidal angle as the 
anoni
al time, but in se
tion 4.4 we prove that it is nota good 
hoi
e during SHAx states. That's why in se
tion 4.2.4 we introdu
ealso the toroidal�like angle v that do not reverse, to be used as the 
anoni-
al time. This a good 
hoi
e espe
ially to study the edge, but the physi
almeaning of the �uxes related with this strange angle it is not so 
lear anymore.The SHEq 
ode 
an always 
hoose between all these heli
al 
oordinates, withrespe
t to the problem that must be solved.All the metri
 tensor elements and the Ja
obian of the 
oordinate systemshave been 
al
ulated and 
an be found in the detailed 
al
ulation in se
tion9.2.We refer to se
tion 2.9 in all the result and 
al
ulations of the next se
-tions.8In other words, equation (4.4) 
an be used both with ψP,T (r, u) and ψP,T (ρ).9Inverting the relation χ = χ(r, u) the heli
al �ux is used instead of r as �rst 
oordinate.This is what we always do in 
hapter 2 for the Hamiltonian of the system, 
hosen as radial
oordinate of the system. 84



4.2 The angle 
oordinates
4.2.1 The geometri
al angle βWe des
ribe here the �rst new 
oordinate system that has been de�ned towell des
ribe the heli
al equilibrium in SHAx states, using the heli
al �ux χas the `radial' 
oordinate. Keeping ϕ as toroidal angle, a new poloidal�likeangle β, whi
h rotates around the heli
al axis (∇χ = 0), must be de�ned.The 
oordinate system (χ, β, ϕ) is not a straight��eld�line system, but it iseasy de�ned in a geometri
al way.

Figure 4.4: The geometri
al approa
h to de�ne the poloidal�like angle βon heli
al �ux surfa
es (χ = const) and with respe
t to the heli
al axis(∇χ = 0).The de�nition of β, with respe
t to the 
ylindri
al 
oordinates (R,ϕ,Z),is
β = tan−1 Z − Za(ϕ)

R−Ra(ϕ)
(4.11)where Ra(ϕ) and Za(ϕ) represent the 
ylindri
al 
oordinates of the heli
almagneti
 axis. Due to the dependen
e on the toroidal angle of the heli-
al magneti
 axis 
oordinates, also β depends on ϕ: β = β(R,ϕ,Z). Thede�nition (4.11) 
an be easily derived from �g.4.4:

{
ρ cosβ = (R−Ra)
ρ sinβ = (Z − Za) (4.12)

m

tanβ =
Z − Za(ϕ)

R−Ra(ϕ)
. (4.13)85



Heli
al 
oordinates in toroidal systemsWe refer to se
tion 9.2 for the derivation of the metri
 tensor and of theJa
obian of the new (χ, β, ϕ) 
oordinate system. Here we just mention thatthe metri
s 
an be derived in a relatively easy way in terms of the metri
s ofthe zero�th order �ux 
oordinates (r, ϑ, ϕ) de�ned in 
hapter 3 and appendixB.2.3, using their relation with the 
ylindri
al 
oordinates, equations (3.14).4.2.2 The Hamiltonian time ϕ: (χ, u, ϕ) and (χ, uh, ϕ)Using the heli
al �ux as radial 
oordinate, we start from the 
oordinate sys-tem (χ, u, ϕ) that emphasizes the heli
al symmetry with respe
t to u on the�ux surfa
es χ = const. The presen
e of an ignorable 
oordinate allows tolook for A
tion�Angle 
oordinates on the �ux surfa
e labelled by χ, follow-ing the resumptive example in se
tion 2.9 and rea
hing the straight��eld�linesystem (χ, uh, ϕ) where uh is the (new) Angle. The heli
al angle u = mϑ−nϕis not de�ned with respe
t to the heli
al axis (the poloidal angle ϑ is notas well, being de�ned with respe
t to the axisymmetri
 axis of the system),whereas the Angle uh (
onjugated to the A
tion) is: by de�nition it in
reasesby 2π over one turn around any heli
al �ux surfa
es, even the internal onesthat do not en
lose the axisymmetri
 axis, as seen in (2.90). That's why weam looking for A�A 
oordinates in this se
tion, beginning from (χ, u, ϕ)10.A
tion�Angle 
oordinates are de�ned in se
tion 2.6, and one needs theidenti�
ation between 
anoni
al variables and magneti
 quantities to applyformulas (2.95)�(2.97) for the A
tion, the generating fun
tion11 and the An-gle respe
tively. Due to the symmetry of the problem, the identi�
ations arethe ones of eq.(2.181)�(2.184) for the A1 = 0 axial gauge
t = ϕ (4.14)
H = −Aϕ(r, u) = χ(r, u) = const (4.15)
q = u (4.16)
p = Au(r, u) = ψT (r, u) (4.17)and we need to apply eq.(2.185)�(2.187), as already found in se
tion 2.9.10Taking a ba
k step, to de�ne the toroidal heli
al systems one starts from the toroidal
oordinate system (r, ϑ, ϕ) and de�nes the heli
al angle u = mϑ− nϕ to 
hange frame ofreferen
e to (r, u, ϕ). In this 
oordinate system, remembering (4.1), the heli
al symmetryis manifest due to the ignorable 
oordinate ϕ that plays the role of the 
anoni
al time,and χ = χ(r, u) as all the �ux plasma quantities. Inverting this relation, one 
an use any�ux fun
tion as radial 
oordinate instead of r.In A�A 
oordinates, χ = χ(I) if I is the A
tion: be
ause χ(r, u) in (χ, u, ϕ) 
oordinates,one knows that this is not already an A
tion�Angle 
oordinate system.11The generating fun
tion of the 
anoni
al transformation to A
tion�Angle 
oordinates.For the 
anoni
al transformation (p, q) 7→ (P,Q), F2 = F2(q, P ).86



4.2 The angle 
oordinatesWe 
an �nd the identi�
ation with 
anoni
al variables also beginningfrom the 
anoni
al representation of the magneti
 �eld B valid for anydivergen
e�free �eld in a toroidal devi
e, introdu
ed in eq.(2.138) for generi

(r, ϑ, ϕ) toroidal 
oordinates. From this, equation (2.195)

B(r, u, ϕ) = ∇ψT (r, u)×∇u−∇χ(r, u)×∇ϕ (4.18)
an be derived simply substituting the poloidal angle ϑ and the poloidal �ux
ψP (r, u) with the heli
al angle u = ϑ − nϕ and the heli
al �ux χ(r, u) =
ψP − nψT respe
tively. Using the identi�
ation of the magneti
 �uxes to
anoni
al variables (through the 
ovariant 
omponents of the ve
tor poten-tial) as a mnemoni
 rule, one immediately knows that: ϕ plays the role ofthe time, ψT (r, u) of the momentum 
onjugated to the heli
al angle u, and
χ(r, u) the role of the Hamiltonian of the system.In any 
ase we go ba
k to eq.(2.185)�(2.187), but using here a di�erentnotation: ρ = χ(r, u) for the radial variable, I(ρ) 7→ ψh(χ) for the A
tionand ζ(I, u) 7→ uh(χ, u) for the Angle.Be
ause ψT (r, u) and χ(r, u), these fun
tions may be lo
ally inverted to yieldthe Hamiltonian as a fun
tion of the toroidal �ux χ = χ(ψT , u) or, vi
e versa,
ψT = ψT (χ, u). The a
tion is nothing but the 
urvilinear integral of the �ux
ψT (χ, u):

ψh(χ) =
1

2π

∮

Σ(χ)
ψT (χ, u′) du′ (4.19)where Σ(χ) is the magneti
 surfa
e labelled by the heli
al �ux χ. Invertingthe relation ψh(χ) in the fun
tion χ(ψh), the �ux ψT (χ, u) 
an be writtenas a fun
tion of (ψh, u), useful to provide the angle uh 
onjugate to theA
tion through the de�nition of the generating fun
tion F2(ψh, u). For the
anoni
al transformation from (p, q) ≡ (ψT , u) to (I, ζ) ≡ (ψh, uh):

F2(ψh, u) =

∫ u

u0

ψT (ψh, u
′) du′ + f(ψh) (4.20)

uh(u, I) =
∂F2

∂ψh
=

∫ u

u0

∂ψT
∂ψh

(ψh, u
′) du′ (4.21)where f(ψh) is an arbitrary fun
tion of the A
tion that 
an be set to zero,�xing the origin of the Angle uh on the origin of the heli
al angle u.Keeping �xed the 
anoni
al time and therefore the toroidal angle, and 
hoos-ing the heli
al �ux χ(ψh) as the radial 
oordinate, we end with the heli-
al straight��eld�line 
oordinates (χ, uh, ϕ). In this 
oordinate system the
anoni
al form of B 
an be written as:

B = ∇ψh(χ)×∇uh −∇χ×∇ϕ (4.22)87
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Figure 4.5: The toroidal �ux ψh(χ).with B ≡ B(χ, uh, ϕ).Let us see the main features of the new variables. As it must be, theA
tion ψh(χ) turns out to be the toroidal �ux in A
tion�Angle 
oordinates.The proof 
an be done in the same way as done in se
tion 2.7. What we wantto emphasize is that the toroidal �ux asso
iated to the toroidal 
omponentof the magneti
 �eld and to the toroidal angle ϕ in non monotoni
, due tothe reversal of the 
on�guration at the edge. This 
an be seen in �g.4.5 for
ψh.The Angle uh in
reases by 2π over one turn around any magneti
 �ux surfa
e
Σ(χ):

∆uh =

∮

Σ(χ)

∂ψT (ψh, u
′)

∂ψh
du′ = (4.23)

=
∂

∂ψh

∮

Σ(χ)
ψT (ψh, u

′) du′ = (4.24)
=

∂(2πψh)

∂ψh
= 2π (4.25)and this 
on�rms that it is a good angle de�ned with respe
t to the heli
alaxis.In (4.20) the fun
tion f(ψh) has been set to zero, �xing the origin of theAngle uh on the origin of the heli
al angle u. This means that, like u, also

uh does not have its zero always on the horizontal plane, but it turns aroundwith the toroidal angle ϕ. The example at ϑ = 0, where u = −nϕ, for somevalue of the toroidal angle 
an be found in �g.4.11. We will �nd this of someinterest later. 88



4.2 The angle 
oordinatesTill here we went trough the mathemati
al expressions to be used. Froman operative point of view12 we just need to begin with eq.(4.5)�(4.6) to
ompute the heli
al �ux (as in eq.(9.2)) and the toroidal �ux ψT (r, u). In-tegrals and derivatives of the �uxes are 
omputed numeri
ally, but furtheranalyti
 
al
ulation used to simplify numeri
al 
omputation 
an be found inse
tion 9.1.To 
on
lude, let us note that in the 
ylindri
al limit, where the heli
aldeformation vanishes, ψh = ψT and uh = u.4.2.3 The Hamiltonian time ϑ: (χ, u, ϑ) and (χ, uϑh, ϑ)The toroidal �ux ψh(χ) de�ned in the previous se
tion is a �ux fun
tion (itis 
onstant on �ux surfa
es), but it is not a good radial variable be
ause itis not monotoni
 (as said, due to the reversal of the toroidal magneti
 �eldin RFP ma
hines). That's why usually the RFP 
ommunity 
hooses thepoloidal angle ϑ as the 
anoni
al time. We analyze this 
hoi
e for the heli-
al symmetry of SHAx states, ending up with an A
tion�Angle 
oordinatesystem that de�nes a poloidal �ux ψP2 (
onjugated to the Angle uϑh). But,being related to the poloidal angle ϑ, that is not de�ned with respe
t to theheli
al axis, we will see that it is not a good poloidal �ux during SHAx states.And that is why even this 
hoi
e of the 
anoni
al time ϑ is not always goodin RFPs13.In heli
al 
oordinates the 
hoi
e of ϑ as 
anoni
al time brings to the (χ, u, ϑ)
oordinate system. From the Hamiltonian point of view this is a problemsimilar to the one where the ignorable 
oordinate was the toroidal angle ϕ:the 
anoni
al time is now the poloidal angle ϑ but one 
an prove that itis an always in
reasing time along a �eld line, even in the internal bean�shaped �ux surfa
es14. From the physi
al point of view the poloidal �ux12SHEq's implementation13As it is for the axisymmetri
 equilibrium.14For instan
e, for orbits 
lose to the heli
al axis, one 
ould think that ϑ is not evolvingmonotoni
ally, whi
h would disqualify it to be used as a time. In the internal bean�shaped�ux surfa
es one 
an demonstrate that the time ϑ �ows always in the same dire
tion whileevolves the time ϕ:
dϑ

dϕ
> 0always inside the bean�shaped �ux surfa
es. Going ba
k to the de�nition of the rotationaltransform as the frequen
y in A
tion�Angle 
ontext, one 
an write:

dϑ

dϕ
= n+

du

dϕ
(4.26)

= n+
du

duh

duh
dϕ

= n+ ιh
du

duh
(4.27)using the de�nition ϑ = u + nϕ and remembering that we are moving on 
onstant �uxsurfa
es (χ = const). ιh is introdu
ed in se
tion 2.6.1, and is exa
tly the frequen
y on89



Heli
al 
oordinates in toroidal systemsdoes not reverse, and we do not 
rash with the problem of non monotoni
�uxes (�g.4.6). In this se
tion we look for A
tion�Angle 
oordinates begin-ning from the (χ, u, ϑ) 
oordinate system, ending with the straight��eld�line
oordinates (χ, uϑh, ϑ), in exa
tly the same way as done for (χ, uh, ϕ).The 
anoni
al identi�
ation of the magneti
 variables is already found,in the gauge A1 = 0, for general (x1, x2, x3) 
oordinates with x3 as ignorable
oordinate, in eq.(2.91)�(2.94). It is worth noting that in the example ofthis se
tion (and di�erently from the previous examples) the third ignorable
oordinate is x3 = ϑ. Therefore:
t = ϑ (4.28)
q = u (4.29)
p = Au(r, u) = ψP (r, u) (4.30)
H = −Aϑ(r, u) = χ(r, u) = const (4.31)We apply formulas (2.95)�(2.97) for the A
tion, the generating fun
tion andthe Angle respe
tively, as done for the 
anoni
al time ϕ, but with the new
anoni
al identi�
ations. Be
ause ψP (r, u) and χ(r, u), these fun
tions maybe lo
ally inverted to yield the Hamiltonian as a fun
tion of the poloidal �ux

χ = χ(ψP , u) or, vi
e versa, ψP = ψP (χ, u). The A
tion ψP2 is nothing butthe 
urvilinear integral of the �ux ψP (χ, u): inverting the relation ψP2(χ)in the fun
tion χ(ψP2), the �ux ψP (χ, u) 
an be written as a fun
tion of
(ψP2, u), useful to provide the angle uϑh 
onjugate to the A
tion throughthe de�nition of the generating fun
tion F2(ψP2, u)

15. The result is:
ψP2(χ) =

1

2π

∮

Σ(χ)
ψP (χ, u′) du′ (4.32)

F2(ψP2, u) =

∫ u

u0

ψP (ψP2, u
′) du′ + f(ψP2) (4.33)

uϑh(u, I) =
∂F2

∂ψP2
=

∫ u

u0

∂ψP
∂ψP2

(ψP2, u
′) du′ (4.34)where Σ(χ) is the magneti
 surfa
e labelled by the heli
al �ux χ and f(ψP2)is set to zero, �xing the origin of the Angle uϑh on the origin of the heli
alangle u. As uh in �g.4.11, uϑh turns its zero value turning around in thetoroidal angle ϕ.the χ = const orbits in the A�A system (χ, uh, ϕ): going ba
k to the de�nition (2.88)one need to remember that ϕ ≡ t is the time and ζ ≡ uh the Angle. On the heli
al axis

du/duh = 0 and drifting away du/duh → 1. The rotational transform ιh de
reases driftingaway from the heli
al axis, but not so qui
kly to 
hange the sign of n, equal to dϑ/dϕ onthe heli
al axis. Therefore dϑ
dϕ

> 0 and this ends the proof.15For the 
anoni
al transformation (p, q) 7→ (P,Q), F2 = F2(q, P ).90



4.2 The angle 
oordinatesThe 
anoni
al representation of the magneti
 �eld asso
iated to (χ, u, ϑ)is
B(r, u, ϑ) = (∇ψP (r, u)×∇u−∇χ(r, u)×∇ϑ)/n (4.35)with n toroidal mode number and m = 1. This form 
an be derived from thegeneral one in eq.(2.138) simply substituting the toroidal angle ϕ and thetoroidal �ux ψT (r, u) with the heli
al angle u = ϑ− nϕ and the heli
al �ux

χ(r, u) = ψP −nψT respe
tively. In A
tion�Angle 
oordinates (χ, uϑh, ϑ) the
orrespondent representation 
an be written as
B(χ, uϑh, ϑ) = (∇ψP2(χ)×∇uϑh −∇χ×∇ϑ)/n (4.36)Let us see the main features of the new variables.As it must be, the Angle uϑh in
reases by 2π over one turn around any mag-neti
 surfa
es Σ(χ), and this introdu
es a good angle de�ned with respe
tto the heli
al axis, as dis
ussed for the Angle uh in the previous se
tion.The A
tion ψP2(χ) turns out to be a poloidal �ux in A
tion�Angle 
oor-dinates. It is the poloidal �ux related to the old poloidal angle, ϑ, that isde�ned with respe
t to the axisymmetri
 axis of the system and not withrespe
t to the heli
al axis (the time ϑ does not 
hange in the 
anoni
al trans-formation to A
tion�Angle 
oordinates). In a more formal way, one 
an un-derstand this proving that the �ux ψP2(χ) is indeed the �ux at ϑ = const16:

ψP2(χ) =
1

2π

∮

Σ(χ)
ψP (r, u′) du′ (4.37)

=
1

2π

∫∫

Σ(χ)
dr du′

∂ψP (r, u′)
∂r

(4.38)
=

1

2π

∫∫

Σ(χ)
dr du′

√
g Bϑ (4.39)

=
1

2π

∫∫

Σ(χ)
dr du′

√
gB · ∇ϑ (4.40)

=
1

2π

∫∫

Σ(χ)
B · dΣ(ϑ) (4.41)The last equation is the de�nition of the poloidal �ux, and in the previoussteps one simply needs to remember the de�nition Σ(ϑ) =

√
g∇ϑdrdu of the
onstant�ϑ surfa
es in the (r, u, ϑ) 
oordinate system, and eq.(2.145)

Bϑ = − 1√
g

∂Au
∂r

(4.42)where x1 = r, x3 = ϑ and A2 = Au = ψP (r, u) from eq.(4.30).In �g.4.8(a) we draw the physi
al �ux ψP2(χ) asso
iated to ϑ, and one 
an16As it must be, being the A
tion of the (χ, uϑh, ϑ) 
oordinate system.91



Heli
al 
oordinates in toroidal systems
ompare it to the poloidal �ux de�ned with respe
t to the magneti
 axis in�g.4.8(b) and in �g.2.2.Further dis
ussion on this 
an be found in se
tion 4.4. And the di�eren
ewith another poloidal �ux there introdu
ed is the reason be
ause we use thesymbol 2 to mark the poloidal �ux in this se
tion.

Figure 4.6: The poloidal �ux ψP2(χ).Again, as in se
tion 4.2.2, from an operative point of view17 we just needto begin with eq.(4.5)�(4.6) to 
ompute the heli
al �ux (as in eq.(9.2)) andthe poloidal �ux ψP (r, u) in order to be able to 
ompute all the mathemati-
al expressions above.4.2.4 The Hamiltonian time v: (χ, u, v) and (χ, uη, v)In se
tions 4.2.2 we show that in RFP ma
hines the 
hoi
e of the toroidalangle ϕ as the 
anoni
al time is not always good be
ause of the reversal ofthe toroidal magneti
 �eld at the edge, that 
an be seen also as the 
hangein sign of the toroidal angle, and therefore of the time. And in se
tion 4.2.3we tell in advan
e18 that during SHAx states also the 
hoi
e of the poloidalangle ϑ as 
anoni
al time is not good enough: the poloidal angle ϑ is de�nedwith respe
t to the 
ylindri
al magneti
 axis, hen
e it does not satisfy ourfundamental request of angles de�ned with respe
t to the heli
al axis. Thenon monotoni
 toroidal �ux ψh(χ) and the poloidal �ux ψP2(χ) are in �gg.4.5-4.6.In this se
tion, we look for a di�erent 
hoi
e for the 
anoni
al time: using a17SHEq's implementation18Exhaustive analysis in se
tion 4.4 92



4.2 The angle 
oordinateslinear 
ombination of the poloidal and toroidal angles, we de�ne a toroidal�like angle v that 
an be thought as de�ned on the heli
al axis and that donot reverse. The 
orresponding �ux η is de�ned with the analogously lin-ear 
ombination of the poloidal and toroidal �uxes, ψP (r, u) and ψT (r, u).There are in�nite possible 
hoi
es for v angles, every one with the limitationof being linked with a �ux η that is not of easy physi
al interpretation.As in the previous se
tions, we look for A
tion�Angle 
oordinates for thesystem (χ, u, v), rea
hing the straight��eld�line system (χ, uη, v) where theAngle uη and the 
onjugated A
tion ηh are de�ned with respe
t to the heli
alaxis. In A�A 
oordinates the ηh(χ) �uxes are monotoni
 and de�ned withrespe
t to the heli
al axis. This 
an help for example for the study the RFPedge.We have already de�ned the heli
al angle u = mϑ − nϕ as a linear
ombination of the poloidal and toroidal angles, and the heli
al �ux χ =
mψP − nψT as the same linear 
ombination of the poloidal and toroidal�uxes. In the same way we 
an de�ne an angle v and a magneti
 �ux η witha general linear 
ombination of the poloidal and toroidal angles and �uxes:

v = aϑ+ b nϕ (4.43)
η = aψP + b nψT (4.44)with a and b general parameters and n the toroidal mode number, m = 1the poloidal mode number19. In heli
al symmetry the �uxes are written ineq.(4.5)�(4.6) and

η(r, u) = aψP (r, u) + b nψT (r, u) (4.45)
= [aψP,0 + b nψT,0](r) + [aψm,nP + b nψm,nT ](r) eiu + c.c.(4.46)
= η0(r) + ηm,n(r) eiu + c.c. (4.47)Substituting in eq.(2.138) the fun
tions ψP , ψT , ϑ, ϕ with the fun
tions

χ, η, u, v, another equivalent form of B is obtained:
B =

1

n(a+ b)
(∇η ×∇u−∇χ×∇v) . (4.48)With the 
ondition

1

n(a+ b)
= 1 (4.49)one 
an re
ognize the usual 
anoni
al form of the magneti
 �eld, written for

(χ, u, v) 
oordinates, and 
an therefore look for A
tion�Angle 
oordinateson the χ = const �ux surfa
es in a similar way as done in all the previous19One 
an remember that we are dealing with a SH states in them = 1 spe
trum duringSHAx states in RFX�mod. 93



Heli
al 
oordinates in toroidal systemsse
tions, on
e the 
anoni
al variables are identi�ed. An in�nite number of
ombinations 
an solve the 
onstraint (4.49), even remembering that we aredealing with n �xed and equal to 7 in RFX�mod SHAx states. For instan
ein se
tion 4.2.2 we used the 
hoi
e a = 0, b = 1/n, and equation (4.35) inse
tion 4.2.3 is linked to the 
hoi
e of a = 1/n, b = 0. In this se
tion weam going to analyze the 
hoi
e a = 1/2n, b = 1/2n, that 
orrespond to thede�nitions
v =

1

2n
ϑ+

1

2
ϕ (4.50)

η(r, u) =
1

2n
ψP (r, u) +

1

2
ψT (r, u) (4.51)In (χ, u, v) 
oordinates, where v = x3 is the ignorable 
oordinate, by de�ni-tion, from (4.48)�(4.49) and using the relations between �uxes and 
ovariant
omponents of the ve
tor potential:

B = ∇η(r, u)×∇u−∇χ(r, u)×∇v (4.52)
= ∇Au(r, u)×∇u+∇Av(r, u)×∇v (4.53)
= ∇A2(x

1, x2)×∇u+∇A3(x
1, x2)×∇v (4.54)Using this equivalen
e it is easy to use the 
anoni
al identi�
ation of themagneti
 variables found in eq.(2.91)�(2.94) for general (x1, x2, x3) 
oordi-nates with x3 as ignorable 
oordinate and the gauge A1 = 0:

t = v (4.55)
q = u (4.56)
p = Au(r, u) = η(r, u) (4.57)
H = −Av(r, u) = χ(r, u) (4.58)It is now possible to 
ompute A
tion�Angle variables, applying formulas(2.95)�(2.97) for the A
tion ηh, the generating fun
tion F2 and the Angle uηrespe
tively, taking for granted the ne
essary fun
tion inversions. One justneed to pay attention to the right 
anoni
al identi�
ations:

ηh(χ) =
1

2π

∫
η(χ, u)du = (4.59)

=
1

2π

∫
ψT (χ, u)du+

1

2π

∫
ψP (χ, u)du (4.60)

F2(ηh, u) =

∫ u

0
η(ηh, u)du (4.61)

uη =
∂S

∂ηh
=

∫ u

0

∂η(ηh, u)

∂ηh
du (4.62)In the de�nition (4.60) of the A
tion ηh(χ), the �rst integral is exa
tly thetoroidal �ux ψh a
ross Σ(χ) found in (4.19) and the se
ond integral the94



4.3 Change of radial 
oordinates
ψP2(χ) �ux in eq.(4.32) (that is the poloidal �ux de�ned with respe
t to the
ylindri
al axis).The A
tion is a fun
tion of the Hamiltonian only, as it must be, and weend up with a new heli
al A
tion�Angle 
oordinate system: (χ, uη, v). The
ontravariant representation of the magneti
 �eld in these 
oordinates is

B(χ, uη, v) = ∇ηh(χ)×∇uη −∇χ×∇v (4.63)

Figure 4.7: The �ux ηhχ).As said, the toroidal �ux ψh(χ) is not a monotoni
 fun
tion. We 
hoosea di�erent toroidal�like angle, the angle v, that does not 
hange its sign atthe reversal surfa
e: in �g.4.7 we 
an indeed see that the ηh(χ) �ux, linkedto the angle v, is monotoni
. But, how 
an we easily des
ribe the v = constsurfa
e, linked to the ηh(χ) �ux (that is by de�nition the �ux trough the�ux surfa
es χ = const at v = const)? The di�
ulty in the visualization ofthis �ux is its only problem!4.3 Change of radial 
oordinatesOne wants to 
hoose the radial variable, 
alled here ρ, to label the magneti
�ux surfa
es. This is linked with the resear
h of a frame of referen
e thatmakes evident the symmetry of the system. From the Hamiltonian point ofview one 
an always 
hoose the Hamiltonian as the radial variable, that isalways 
onstant on �ux surfa
es due to Noether theorem (see se
tion 2.5).From the magneti
 point of view this means looking for some fun
tion ρ forwhi
h
B · ∇ρ = 0 .95



Heli
al 
oordinates in toroidal systemsNot just one fun
tion 
an label the magneti
 �ux surfa
es: the equationabove is satis�ed by every fun
tion of ρ only, f(ρ). For instan
e, in SH notjust the Hamiltonian χ = ψP − nψT is a good �ux fun
tion, but also the
ψP (χ), ψT (χ), ... (the �uxes found in heli
al A
tion�Angle 
oordinates).In eq.(4.2) another �ux fun
tion has been introdu
ed: the adimensional andnormalized square root of the heli
al �ux ρh, that ranges between zero onthe heli
al axis, and one. It is possible to introdu
e in�nite other 
hoi
es forthe radial variable. Here another 
ommon 
hoi
e:

ρA = N ρh (4.64)
= N

√
χ− χmin

χmax − χmin
(4.65)where N 
an be any dimensional 
onstant. Choosing for N the minor radiusof the va
uum 
hamber, ρA ranges between zero on the heli
al axis, and

0.459m at the edge for RFX�mod ma
hine.In this short se
tion we just want to des
ribe some of the possibilities forthe radial variable, starting from the Hamiltonian of the system. The metri
tensor elements and the Ja
obian of the 
oordinate systems 
hange in a verysimple way a

ording to the 
hange in the radial variable. All the metri
s inthe Appendixes are 
al
ulated using ρ = χ, but in se
tions 9.2.2�9.2.3 one
an �nd the derivatives that link the di�erent 
hoi
es and some dimensionalanalysis.4.4 Dis
ussion on the Hamiltonian time ϑIn se
tion 4.2.3 we end up with the de�nition (4.32) of a poloidal �ux ψP2(χ)de�ned with respe
t to the axisymmetri
 axis, where the poloidal angle ϑ isde�ned.One 
an extend the de�nition (4.4) of the heli
al �ux χ(r, u) to de�ne thesame20 heli
al �ux χ(ρ) in any A
tion�Angle 
oordinate system:
χ = mψP (ρ)− nψh(ρ) (4.66)where ψh(χ) is the toroidal �ux through magneti
 �ux surfa
es, just nowde�ned in (4.19). From the de�nition of the heli
al �ux in A�A 
oordinates,it is possible to derive another de�nition of the poloidal �ux trough magneti
�ux surfa
es: ψP (χ). And that's why we label the �rst one in equation (4.32)with a 2.20The heli
al �ux χ(r, u) is already a �ux fun
tion, 
onstant on �ux surfa
es.96



4.4 Dis
ussion on the Hamiltonian time ϑLet us 
ompare the two de�nitions of the poloidal �uxes:
ψP2(χ) =

1

2π

∮

Σ(χ)
ψP (χ, u′) du′ (4.67)

ψP (χ) = χ+ nψh(χ) (4.68)
Figure 4.8: Poloidal �uxes. a) The ψP2(χ) poloidal �ux through internal�ux surfa
es (at ϑ = 0), that do not 
ontain the 
ylindri
al axis. b) The
ψP (χ) poloidal �ux through internal �ux surfa
es (at θ∗ = 0), that 
ontainthe heli
al axis. 
) Both the ψP2(χ) and ψP (χ) poloidal �uxes, through theexternal �ux surfa
es (at θ = 0 = θ∗) that 
ontain both the 
ylindri
al andthe heli
al angles. The θ∗ poloidal angle is de�ned in the text.The two poloidal �uxes do not 
oin
ide in the whole plasma volume.This is due to the main di�eren
e in their de�nition: ψP2(χ) is de�ned withrespe
t to the 
ylindri
al axis, whereas ψP (χ) is de�ned with respe
t to theheli
al axis of the system, and they 
an 
oin
ide only on those surfa
es that
ontain both axes. In �g.4.8 the physi
al di�eren
e between equations (4.67)and (4.68) are shown. The �ux ψP2(χ) through the internal �ux surfa
esis drawn as the �ux of the Bϑ 
omponent of the magneti
 �eld throughthe surfa
e identi�ed by the segment between the two interse
tions with themagneti
 �ux surfa
e Σ(χ) of a line from the axis of the va
uum 
hamber toa magneti
 line on Σ(χ). The same �ux through the external �ux surfa
esis the �ux through the surfa
e identi�ed by the segment from the axis of theva
uum 
hamber to the magneti
 surfa
e χ = const. To understand this,one 
an go ba
k to the demonstration in eq.(4.37), or remember that ψP2(χ)is the A
tion of the (χ, uϑh, ϑ) 
oordinate system21. On the other side, the�ux ψh is de�ned in the (χ, uh, ϕ) 
oordinate system, where all the anglesare de�ned with respe
t to the heli
al axis.More in details, the di�eren
e between the two �uxes is plotted againstthe normalized heli
al �ux in �g.4.9: the two poloidal �uxes di�er throughthe inner �ux surfa
es that do not 
ontain the 
ylindri
al axis of the system,and 
oin
ide through the outer �ux surfa
es that 
ontain both the heli
al21A3 = (heli
al) �ux a
ross Σ(ρ) at uϑh = x2 = const. A2 = (poloidal) �ux a
ross
Σ(ρ) at ϑ = x3 = const. 97



Heli
al 
oordinates in toroidal systemsand 
ylindri
al axis. One 
an obtain the quantitative di�eren
e simply inte-grating eq.(4.4)
χ(r, u) = ψP (r, u)− nψT (r, u) (4.69)over the angle u:

1

2π

∮

Σ(χ)
χdu =

1

2π

∮

Σ(χ)
ψP (r, u) du− n 1

2π

∮

Σ(χ)
ψT (r, u) du (4.70)

= ψP2(χ)− nψh(χ) (4.71)Be
ause the 
ir
ulation of any �ux fun
tion χ or f(χ) over the heli
al angle
u is zero on the �ux surfa
es that do not 
ontain the 
ylindri
al axis where
u is de�ned, one �nds thatOn internal �ux surfa
es:

ψP2(χ) = nψh(χ) (4.72)
=⇒ ψP2(χ)− ψP (χ) = −χ (4.73)On the other hand the same 
ir
ulation is equal to 2πχ on all the other �uxsurfa
es, therefore: On external �ux surfa
es:
ψP2(χ) = nψh(χ) + χ (4.74)
=⇒ ψP2(χ)− ψP (χ) = 0 (4.75)

Figure 4.9: ψP2(χ)− ψP (χ)The plot of the two fun
tions ψP2(χ) and ψP (χ), that 
oin
ide only onthe external �ux surfa
es that 
ontain both axes of the system, 
an be seenin �g.4.10 (right). Wherease the plot of the two �uxes, ψP2(χ) and nψh(χ),
an be seen in �g.4.10 (left). 98



4.4 Dis
ussion on the Hamiltonian time ϑ

Figure 4.10: Left: bla
k: ψP2(χ) and gray: nψh(χ) + χ = ψP (χ). Right:bla
k: ψP2(χ) and gray: nψh(χ).4.4.1 The angle θ∗As the poloidal �ux ψP2(χ) is the �ux through the magneti
 �ux surfa
es atthe poloidal angle ϑ = const, the poloidal �ux ψP (χ) is asso
iated to anotherpoloidal angle, de�ned with respe
t to the heli
al axis (di�erently from ϑ).We brie�y introdu
e this new angle, 
alling it θ∗, that 
an be derived usingthe two angles ϕ and uh22, that are both de�ned on the heli
al axis. To showthis we start from the 
anoni
al form of the magneti
 �eld in the (χ, uh, ϕ)A�A 
oordinates, to obtain the equivalent form in the new (χ, θ∗, ϕ) A�Asystem (all the angles are 
onsidered as divided by 2π):
B(χ, uh, ϕ) = ∇ψh ×∇uh −∇χ×∇ϕ (4.76)

= ∇ψh ×∇uh −∇ψP ×∇ϕ+ n∇ψh ×∇ϕ (4.77)
= ∇ψh ×∇[uh + nϕ]−∇ψP ×∇ϕ (4.78)

B(χ, θ∗, ϕ) = ∇ψh ×∇θ∗ −∇ψP ×∇ϕ (4.79)simply using the de�nition (4.66) for the heli
al �ux, and
θ∗ = uh + nϕ . (4.80)In �g.4.11 one 
an see the di�eren
e between the poloidal and heli
alangles de�ned in this 
hapter: ϑ, θ∗, u, uh. The general poloidal angle ϑ isthe angle de�ned on the 
ylindri
al axis that has the zero always on thehorizontal plane. This is not true for the heli
al angle u, that is obviouslynot always zero when ϑ = 0, but it turns also with ϕ. The same 
an be saidfor the poloidal and heli
al angles de�ned on the heli
al axis, θ∗ and uh, thatgo ba
k to ϑ and u in the 
ylindri
al limit (when the heli
al perturbationvanishes).22De�ned in se
tion 4.2.2 for the system (χ, uh, ϕ) in whi
h also the �ux ψh is de�ned.99
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Figure 4.11: Zero of the poloidal and heli
al angles de�ned in the text.In a 
ase of null phase of the heli
al perturbation, φχ = 0. For φχ 6= 0 theheli
al angles do not point on the 
onvex part of the bean, but they havea �xed phase with the bean anyway be
ause they rotate together with thebean.
We proved that ψP2(χ) is a poloidal �ux already in se
tion 4.2.3, butfrom now on we will use only the poloidal �ux ψP (χ) de�ned in this se
-tion, related to the poloidal angle θ∗. This 
hoi
e is in agreement with therequest of angles de�ned with respe
t to the heli
al axis, and is more usefulin de�ning heli
al quantities (as e.g. the heli
al safety fa
tor pro�le, as one
an see in se
tion 6.3). The whole metri
s and the Ja
obian of the (χ, θ∗, ϕ)system 
an be found in the detailed 
al
ulations in se
tion 9.2.Let us note that in the (χ, θ∗, ϕ) 
oordinate system, the �uxes depend onthe radial 
oordinate only (as it must be in every A
tion�Angle 
oordinatesystem). Both the poloidal and toroidal angle 
an be therefore used asthe 
anoni
al time, with a result similar to that obtained for the (r, ϑ, ϕ)100



4.4 Dis
ussion on the Hamiltonian time ϑ
oordinate system for the axisymmetri
 equilibrium B0 in se
tion 2.10:
B(χ, θ∗, ϕ) = ∇ψh(χ)×∇θ∗ −∇ψP (χ)×∇ϕ (4.81)and the asso
iated 
anoni
al variables 
an be

t = ϕ (4.82)
H = −Aϕ = ψP (χ) (4.83)
q = θ∗ (4.84)
p = Aθ∗ = ψh(χ) (4.85)or
t = θ∗ (4.86)
H = −Aθ∗ = ψh(χ) (4.87)
q = ϕ (4.88)
p = Aϕ = ψP (χ) (4.89)The 
anoni
al time θ∗ is always in
reasing in 0the whole plasma volume andis linked with a poloidal �ux that is well de�ned on the heli
al axis andmonotoni
. As the poloidal angle ϑ is a better 
hoi
e for the 
anoni
al timein axisymmetri
 RFP equilibrium (instead of the toroidal angle that 
hangesits sign at the reversal), in the same way θ∗ is a good 
hoi
e for the 
anoni
altime in RFP SHAx heli
al states.The problem of a non monotoni
 Hamiltonian ψh related to the time θ∗ isnot really a problem, be
ause one 
an use any other �ux fun
tion as radial
oordinate, for example the poloidal �ux ψP (χ).This 
on�rms the 
hoi
e of the poloidal �ux ψP (χ) instead of ψP2(χ) fromnow on.
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Chapter 5Covariant and 
ontravariantmagneti
 �eld 
omponentsIn the previous 
hapter we �nd a set of heli
al 
oordinate systems, whi
h areall 
hara
terized by 
urvilinear metri
s due to the toroidi
ity of the heli
alsystems. The toroidi
ity of the system has two main 
onsequen
es: �rst, 
o-variant and 
ontravariant indexes of any ve
tor �eld must be distinguished,and the 
urvilinear metri
s theory (summarized in appendix B) must beused; se
ond, a toroidal 
oupling between the harmoni
s of the �uxes and ofthe Ja
obian arises, therefore e.g. a SH in the �uxes does not 
orrespond toSH in the magneti
 �eld 
omponents.In this 
hapter we emphasize both this aspe
ts. In se
tion 5.1 we derive theformula for the 
ontravariant magneti
 �eld 
omponents starting from themagneti
 �ux eigenfun
tions, both for MH and SH states. In se
tion 5.2 and5.3 we use the 
urvilinear metri
s theory to derive the 
ovariant magneti
�eld 
omponents from the 
ontravariant ones and to derive the 
omponentsof a �eld in any 
oordinate system if the relation between the 
oordinatesis known. In se
tion 5.4 we derive the measurable 
ovariant 
omponent ofthe magneti
 �eld to be 
ompared with measures; in se
tion 5.5 we end withsome pra
ti
al example useful for the appli
ations with SHEq in the next
hapter.5.1 SH in the �uxes does not 
orrespond to SH inthe magneti
 �eld 
omponentsSH in the �uxes does not 
orrespond to SH in the magneti
 �eld 
omponents,whi
h are not 
onstant on the magneti
 �ux surfa
es. In order to study theheli
al symmetry of SHAx states we impose a SH in the system under study,negle
ting the 
ontribution of se
ondary modes in the m = 1 spe
tra of the�uxes. Noether theorem asso
iates a 
onserved quantity to a symmetry in103



Covariant and 
ontravariant magneti
 �eld 
omponentsthe 
ovariant 
omponents of the ve
tor potential, that are nothing but themagneti
 �uxes. The 
onserved quantity labels magneti
 �ux surfa
es, andthis justi�es the 
hoi
e of a SH in the �uxes (instead of a quantity not 
on-stant on �ux surfa
es, as the magneti
 �eld).Due to harmoni
s of the Ja
obian, not 
onstant on �ux surfa
es in a 
urvi-linear metri
, any non��ux quantity does not preserve the heli
al symmetry.In this se
tion we show how the toroidal 
oupling between harmoni
s withsame n toroidal number and ∆m = 1 in the poloidal mode number generatesother harmoni
s on the magneti
 �eld 
omponents, starting from SH in the�uxes.Using eq.(2.146)�(2.148) we end with the up magneti
 �eld 
omponents in atoroidal symmetry, both in the general 
ase and in the 
ase of heli
al and ax-isymmetri
 symmetries. Down 
omponents and 
omponents in other frameof referen
e are listed in the next se
tions.Let us start with the de�nition of any 
omponent of the the magneti
�eld.
B(r, ϑ, ϕ) = B0 +

∑

m,n

bm,n(r, ϑ, ϕ) (5.1)
= B0 +

∑

m,n

bm,n(r) e
i(mϑ−nϕ) (5.2)

= B0 +
∑

m
n>0

bm,n(r) e
i(mϑ−nϕ) + c.c. (5.3)

= B0 +
∑

m
n>0

2 |bm,n| cos(φbmn +mϑ− nϕ) (5.4)The whole perturbation to the magneti
 �eld must be a real value, whereasthe harmoni
s bm,n(r, ϑ, ϕ) of the Fourier de
omposed perturbation in eq.(5.1)are 
omplex numbers1. Using (C.12) and the polar form for the 
omplex har-moni
s of the perturbation
bm,n(r) = |bm,n|(r) ei φbmn (r) (5.5)one gets to (5.4), where both the amplitude |bm,n|(r) and the phase φbmn(r)are real numbers. This is true for ea
h 
omponent of the magneti
 �eld,and we 
an use formulas (2.143)�(2.145) to relate the 
ontravariant 
om-ponents Bi to the derivative of the �uxes (or the 
ovariant 
omponents ofthe ve
tor potential) in the gauge A1 = 0. In the same gauge, using thetoroidal 
oordinate system (r, ϑ, ϕ), formulas (2.143)�(2.145) are equivalent1See appendix C.1 for a dis
ussion on this.104



5.1 SH in the �uxes does not 
orrespond to SH in the magneti
�eld 
omponentsto (2.146)�(2.148). We begin de�ning the angular 
omponents Bϑ and Bϕ:
Bi(r, ϑ, ϕ) =

1√
g

[
ψ′

0(r) +
∑

m,n

ψ′
m,n(r) e

i(mϑ−nϕ)
] (5.6)

=
1√
g

[
ψ′

0(r) +
∑

m
n>0

ψ′
m,n(r) e

i(mϑ−nϕ)
]

+ c.c. (5.7)where Bi = Bϑ or Bi = Bϕ depending on ψ = ψP , ψT . For the radial
omponent of the magneti
 �eld the dis
ussion is the same, but due to itsdi�erent dependen
e on the �uxes (eq.(2.143)) expli
it formulas are at theend of the se
tion.The (r, ϑ, ϕ) 
an be any general toroidal 
oordinate system. We 
hoosehere the (r, ϑ, ϕ) 
oordinate system de�ned in 
hapter 3, be
ause it is the
oordinate system in whi
h the �uxes and their harmoni
s are 
omputedsolving the New
omb�like equations (3.36)�(3.37). The metri
s elementsand the Ja
obian must be 
onsistent with the 
hoi
e of the 
oordinates, andare therefore the ones in appendix B.2.3.This is always the 
hoi
e of SHEq's 
omputations, and one 
an �nd in se
-tion 5.3 the links between these 
omponents of magneti
 �eld in the (r, ϑ, ϕ)
oordinates and the 
omponents in other 
oordinate systems (as e.g. theheli
al 
oordinates found in 
hapter 4).For the magneti
 
oordinates (r, ϑ, ϕ) of the axisymmetri
 equilibrium�eld B0 de�ned in 
hapter 3, the Ja
obian is not 
onstant on the magneti
�ux surfa
es, and 
an be written as a sum of harmoni
s:
1√
g
(r, ϑ) =

( 1√
g

)0,0
+
( 1√

g

)±1,0 (5.8)
=

1√
g0

(r) +
1√
g1

(r)
[
ei ϑ + e−i ϑ

] (5.9)The �rst term is 
onstant on the r = const �ux surfa
es, whereas the se
ondterm is an harmoni
 proportional to cosϑ. We negle
t higher order terms.The amplitudes (1/
√
g0) and (1/

√
g1) 
an be found in appendix B.2.3. Asalready said in 
hapter 3, the metri
s 
ouples modes with the same2 toroidalmode number n but di�erent poloidal mode number m. This is due to thetoroidi
ity of the system, related to a non diagonal metri
 tensor3. Ne-gle
ting higher order terms in the harmoni
 expansion (5.8), the 
oupling isbetween the (m,n) and (m± 1, n) harmoni
s.2The Ja
obian does not depend on the toroidal angle ϕ.3See appendix B.2.3 for the metri
s of the (r, ϑ, ϕ) 
oordinates105



Covariant and 
ontravariant magneti
 �eld 
omponentsGoing ba
k to (5.7), due to the presen
e of the Ja
obian, ea
h harmoni

bm,n(r, ϑ, ϕ) of the perturbation to the magneti
 �eld (with �xed (m,n)) isthe sum of the three (m,n) and (m± 1, n) harmoni
s of the �uxes:

bim,n(r, ϑ, ϕ) = bim,n(r) e
i(mϑ−nϕ) + c.c. (5.10)

=
1√
g

m+1∑

m−1
n

ψ′
m,n(r) e

i(mϑ−nϕ) + c.c. (5.11)for ea
h value of n. Again, bi is the perturbation to the poloidal or toroidalmagneti
 �eld 
omponent, depending on ψ = ψP , ψT .Let us write expli
itly the (m,n) = (−1, n), (0, n), (1, n), (2, n) following(5.11) and keeping in mind the expansion (5.9):
bi1,n(r) e

i(ϑ−nϕ) + c.c. =
1√
g0
ψ′

1,n(r) e
i(ϑ−nϕ) + (5.12)

+
1√
g1
ei(ϑ) ψ′

0,n(r) e
i(−nϕ) + (5.13)

+
1√
g1
e−i(ϑ) ψ′

2,n(r) e
i(2ϑ−nϕ) (5.14)

+ c.c.Multiplying the exponential in the sum (that 
ome from the harmoni
s ofthe Ja
obian and of the �uxes), one 
an see that every term has the rightperiodi
ity (ei(ϑ−nϕ) for (m,n) = (1, n)). In the same way:
bi0,n(r) e

i(−nϕ) + c.c =
1√
g0
ψ′

0,n(r) e
i(−nϕ) + (5.15)

+
1√
g1
e−i(ϑ) ψ′

1,n(r) e
i(ϑ−nϕ) + (5.16)

+
1√
g1
ei(ϑ) ψ′

−1,n(r) e
i(−ϑ−nϕ) (5.17)

+ c.c.

bi2,n(r) e
i(2ϑ−nϕ) + c.c. =

1√
g0
ψ′

2,n(r) e
i(2ϑ−nϕ) + (5.18)

+
1√
g1
ei(ϑ) ψ′

1,n(r) e
i(ϑ−nϕ) + (5.19)

+
1√
g1
e−i(ϑ) ψ′

3,n(r) e
i(3ϑ−nϕ) + (5.20)

+ c.c.106



5.1 SH in the �uxes does not 
orrespond to SH in the magneti
�eld 
omponents
bi−1,n(r) e

i(−ϑ−nϕ) + c.c. =
1√
g0
ψ′
−1,n(r) e

i(−ϑ−nϕ) + (5.21)
+

1√
g1
e−i(ϑ) ψ′

0,n(r) e
i(−nϕ) + (5.22)

+
1√
g1
ei(ϑ) ψ′

−2,n(r) e
i(−2ϑ−nϕ) (5.23)

+ c.c.The term in eq.(5.20) is negle
ted in RFX�mod, due to the fa
t that is re-lated to the m = 3 spe
trum that 
an not be dete
ted be
ause only fourmagneti
 
oils are present on the poloidal angle.Note that to ea
h term in (5.12)�(5.23) one need to add the 
omplex 
onju-gated to go ba
k to real value of the perturbation, eq.(5.10).Let us analyze the magneti
 �eld 
omponent on the �ux surfa
es relatedto some symmetry of the system.As said, the magneti
 �eld is not a �ux fun
tion, i.e. it is not 
onstant on�ux surfa
es. Even the axi�symmetri
 part B0 = (0, Bϑ
0 , B

ϕ
0 ) of the magneti
�eld4, related to 
ir
ular �ux surfa
es, is not 
onstant on them:

Bi
0(r, ϑ) =

1√
g
ψ′

0(r) (5.24)
=

( 1√
g0

+
2√
g1

cosϑ
)
ψ′

0(r) (5.25)where it is evident the dependen
e on the 
osine5, typi
al for magneti
 �eldon �ux surfa
es in a torus (and usually 
alled High or Low Field Side inTokamaks).Let us analyze the heli
al symmetry, that we impose on the �uxes (andtherefore to the magneti
 �ux surfa
es) sin
e the beginning of 
hapter 4 todes
ribe SHAx states:
ψ(r, u) = ψ0(r) + ψm,n(r) e

i(mϑ−nϕ) + c.c. (5.26)with �xed (m,n) (and therefore u = mϑ− nϕ).In equations (5.12)�(5.23) we write the harmoni
s (with �xed (m,n)) of theperturbation to the magneti
 �eld, that are the sum of the three (m,n) and
(m ± 1, n) harmoni
s of the �uxes. On the other hand we now look to theharmoni
s of the magneti
 �eld that arises from a single harmoni
 (�xed4Br = B · ∇r = 0 by de�nition.5Note that the poloidal angle ϑ has been de�ned with the origin on the internal equa-torial plane (that 
orresponds to ϑm = π for the more usual ma
hine poloidal angle).This means that cosϑ is maximum on the internal equator and minimum on the externalequator. 107
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ontravariant magneti
 �eld 
omponents
(m,n)) in the �uxes: 
hoosing (m,n) = (1, n) for the �ux6, from eq.(5.12)�(5.23), one 
an see that the �ux ψ1,n 
ontributes to the three harmoni
s
(bi−1,n, b

i
0,n, b

i
1,n) of the magneti
 �eld7:

Bi
SH(r, ϑ, ϕ) =

1√
g

[
ψ′

0(r) +
m+1∑

m−1
n

ψ′
m,n(r) e

i(mϑ−nϕ)
]

+ c.c. (5.27)for a �xed (m,n) and ψm,n. With the subs
ript SH we just want to remindthat (5.27) is the way to write the poloidal or toroidal 
omponent of themagneti
 �eld that arises from a single harmoni
 in the �ux. From (5.27)for (m,n) = (1, n) and ψm,n = ψ1,n, or 
hoosing expli
itly ψ1,n in eq.(5.12)�(5.23), for the magneti
 �eld 
omponents related to a SH in the �uxes, onereads:
Bi
SH(r, ϑ, ϕ) = Bi

0(r, ϑ) + (5.28)
+

1√
g0
ψ′

1,n e
i(ϑ−nϕ) + (5.29)

+
1√
g1
e−i(ϑ) ψ′

1,n e
i(ϑ−nϕ) + (5.30)

+
1√
g1
ei(ϑ) ψ′

1,n e
i(ϑ−nϕ) + (5.31)

+ c.c.

=
( 1√

g0
+

2√
g1

cosϑ
)
ψ′

0(r) + (5.32)
+

1√
g0

(r)ψ′
1,n(r) e

i(ϑ−nϕ) + (5.33)
+

1√
g1

(r)ψ′
1,n(r) e

i(−nϕ) + (5.34)
+

1√
g1

(r)ψ′
1,n(r) e

i(−2ϑ−nϕ) + (5.35)
+ c.c.SHEq uses another form for Bi

SH(r, ϑ, ϕ), related to the form in equation(5.4). Calling, in the harmoni
s of the magneti
 �eld in eq.(5.12)�(5.23), the6n = 7 in RFX�mod.7In general we 
onsider just (m ± 1, n), negle
ting the 
oupling between modes withhigher ∆m. 108



5.1 SH in the �uxes does not 
orrespond to SH in the magneti
�eld 
omponents(
omplex) terms that depend only on ψ1,n

bi,SH1,n (r, ϑ, ϕ) =
1√
g0

(r)ψ′
1,n(r) e

i(ϑ−nϕ) (5.36)
bi,SH0,n (r, ϑ, ϕ) =

1√
g1

(r)ψ′
1,n(r) e

i(−nϕ) (5.37)
bi,SH2,n (r, ϑ, ϕ) =

1√
g1

(r)ψ′
1,n(r) e

i(−2ϑ−nϕ) (5.38)one 
an write, instead of (5.27) but in a 
omplete equivalent way,
Bi
SH(r, ϑ, ϕ) = Bi

0(r, ϑ) +
m+1∑

m−1
n

bi,SHm,n (r) ei(mϑ−nϕ) + c.c. (5.39)
= Bi

0(r, ϑ) +
m+1∑

m−1
n

2 |bi,SHm,n |(r) cos(φbSHmn +mϑ− nϕ)(5.40)where
bi,SHm,n (r) = |bi,SHm,n |(r) e

i φ
bSHmn

(r)
. (5.41)SHEq uses formula (5.40).One 
an stress again that, related to the SH of the �uxes (and to theheli
al symmetry of magneti
 �ux surfa
es), other harmoni
s arise for non��ux quantities (su
h as the magneti
 �eld 
omponents Bi). This is due tothe toroidal geometry that 
ouples di�erent metri
s elements and to the har-moni
s of the Ja
obian.Let us write expli
itly also the radial 
omponent of the magneti
 �eld,always in the (r, ϑ, ϕ) 
oordinate system.Following what done for the poloidal and toroidal 
omponents Bi, using theSH in the �uxes ψ1,n

T and ψ1,n
P , from (2.146):

Br
SH(r, ϑ, ϕ) =

m+1∑

m−1
n

br,SHm,n (r) ei(mϑ−nϕ) + c.c. (5.42)with
br,SH1,n (r) =

1√
g0

(r)
[
i nψ1,n

T (r)− imψ1,n
P (r)

] (5.43)
br,SH0,n (r) =

1√
g1

(r)
[
i nψ1,n

T (r)− imψ1,n
P (r)

] (5.44)
br,SH−1,n (r) =

1√
g1

(r)
[
i nψ1,n

T (r)− imψ1,n
P (r)

] (5.45)109



Covariant and 
ontravariant magneti
 �eld 
omponentsThe derivatives of the �uxes (5.26) with respe
t to the angular variables havebeen used:
∂ψ

∂ϕ
= −i nψm,n(r) ei (mϑ−nϕ) + c.c. (5.46)

∂ψ

∂ϑ
= imψm,n(r) e

i (mϑ−nϕ) + c.c. (5.47)for (m,n) = (1, n) and ψ ≡ ψP , ψT .The radial derivatives of the �uxes, ne
essary to 
ompute Bϑ or Bϕ, areexplained in se
tion 9.1.5.2 Down 
omponents of the magneti
 �eld in the
(r, ϑ, ϕ) 
oordinate systemIn se
tion 5.1 we write the 
ontravariant (up) 
omponents of the magneti
�eld in the (r, ϑ, ϕ) 
oordinate system of appendix B.2.3, using for themthe harmoni
s of the �uxes that have been 
omputed in the whole plasmavolume (
hapter 3) for this 
oordinate system. In order to write the 
ovariantmagneti
 �eld 
omponents Bi in the same 
oordinate system, one only needsto use the general rules for 
urvilinear metri
s:

Bi = gij B
j (5.48)where Bi are the 
ontravariant 
omponents and gij the metri
 tensor ele-ments, for i = r, ϑ, ϕ. The elements gij are in appendix B.2.3 for the (r, ϑ, ϕ)
oordinate system, while Bi(r, ϑ, ϕ) is written both for the general MH 
aseand for the heli
al symmetry 
ase, in se
tion 5.1 (formulas for Bϑ or Bϕ:(5.7),(5.12)�(5.23) for the MH general 
ase; (5.25) for B0; (5.27)�(5.35) or(5.36)�(5.41) for the SH 
ase. Formulas for Br: (5.42)�(5.45) only for theSH 
ase).Using the Einstein 
onvention to sum on repeated index, eq.(5.48) means:

Br = grr B
r + grϑB

ϑ (5.49)
Bϑ = gϑr B

r + gϑϑB
ϑ (5.50)

Bϕ = gϕϕB
ϕ (5.51)(5.52)be
ause in this metri
 the terms grϕ and gϑϕ are null.By de�nition the 
ovariant 
omponents of any ve
tor

Bi = B · ei (5.53)110



5.3 Up and Down 
omponents of the magneti
 �eld in various
oordinate systemsare the 
omponent of the ve
tor along the 
oordinate line (whereas the 
on-travariant 
omponents are the 
omponents along the gradient dire
tion).Covariant 
omponents are therefore linked to the measurable �elds, but onemust pay attention to dimension and length of the basis in a 
urvilinearmetri
s (se
tion 5.4).
5.3 Up and Down 
omponents of the magneti
 �eldin various 
oordinate systemsOn
e the link between 
oordinates is known, it is possible to write the 
ovari-ant or 
ontravariant 
omponents of any ve
tor in every 
oordinate system.In se
tion 5.1 we write the 
ontravariant (up) 
omponents of the magneti
�eld in the (r, ϑ, ϕ) 
oordinate system (appendix B.2.3), taking advantageof the �ux harmoni
s already 
omputed in the whole plasma volume in this
oordinate system (
hapter 3). And in se
tion 5.2 we write the 
ovariant(down) 
omponents of the magneti
 �eld in the same 
oordinate system.In order to write the up and down magneti
 �eld 
omponents in other 
o-ordinate systems, one only needs to follow the rules of the general tensor
al
ulus:

Ai
′

= Aj
∂ui

′

∂uj
, Aj = Ai

′ ∂uj

∂ui′
(5.54)

Ai′ = Aj
∂uj

∂ui′
, Aj = Ai′

∂ui
′

∂uj
(5.55)being uj = (u1, u2, u3) and ui′ = (u1′ , u2′ , u3′) two di�erent 
oordinate sys-tems (with the only limitation that their Ja
obians are non zero).

5.4 Measurable 
omponents of the magneti
 �eldIn 
urvilinear metri
s the basis ve
tors are in general not adimensional anddo not have unitary length. To 
ompare re
onstru
ted magneti
 �eld 
om-ponents with measurements, we need to go ba
k to �eld 
omponents thathave the right dimension of the measured �eld and the whole length (withoutsharing it with the basis ve
tor). It is enough to divide the basis ve
tors bytheir norm, but we need to pay attention to the fa
t that this 
an be donejust at the end of all the 
al
ulations, be
ause tensor 
al
ulus is based on thehypothesis of non�adimensional and non�unitary length basis ve
tors. For111



Covariant and 
ontravariant magneti
 �eld 
omponentsexample, writing a ∧ symbol on top of measurable 
omponents8:
B = Bi∇xi = B̂i∇̂xi = B̂i ∇xi

||∇xi|| (5.60)
= Biei = B̂iêi = B̂i

ei

||ei||
(5.61)with 
omponents

Bi = B · ∇xi (5.62)
B̂i 6= B · ∇̂xi = B · ∇x

i

||∇xi|| (5.63)
Bi = B · ei (5.64)
B̂i 6= B · êi = B · ei

||ei||
(5.65)An equal sign in eq.(5.63) and (5.65) 
an be used only for diagonal metri
s.For 
urvilinear metri
s (where the diagonal metri
 elements gii and gii arenot one the inverse of the other) one 
an only use

B̂i ≡
(
B · ∇xi

)√
gii = Bi√gii (5.66)

B̂i ≡
(
B · ei

)√
gii = Bi

√
gii (5.67)8with the de�nition for the normalized basis ve
tors:

b∇xi =
∇xi

||∇xi|| =
∇xip
gii

⇒ ∇xi = ||∇xi|| b∇xi (5.56)
bei =

ei

||ei||
bei =

ei√
gii

⇒ ei = ||ei|| bei (5.57)and
||∇xi|| =

√
∇xi · ∇xi =

p
gii (5.58)

||ei|| =
√

ei · ei =
√
gii (5.59)112



5.4 Measurable 
omponents of the magneti
 �eldthat arise from (5.60)�(5.61).9 10 11 12Hatted 
omponents have the dimension of the whole �eld, whereas the non�hatted 
omponents have dimension that depend on the dimension of thebasis ve
tors, and therefore on the 
hosen 
oordinates. In se
tion 9.2.3 somedimensional analysis 
an be found.Usually measurements are taken just outside the toroidal va
uum vessel,for whi
h usually are used the ma
hine-toroidal-
oordinates (rm, θm, ϕ) thatare linked to 
ylindri
al (R,Z, ϕ) and Cartesian (x, y, z) 
oordinates by therelations:
x = R cosϕ = (R0 + rm cos θm) cosϕ (5.77)
y = R sinϕ = (R0 + rm cos θm) sinϕ (5.78)
z = Z = rm sin θm (5.79)With respe
t to the toroidal 
oordinates in appendix B.2.3 and 
hapter 3 one
an see that the poloidal angle θm has the origin on the external equator andthat the shift term is not present in eq.(5.77). The vanishing of the di�er-9And the inverse

Bi =
bBip
gii

Bi =
bBi√
gii

(5.68)10Using 
ontravariant 
omponents to write the 
ovariant ones,
bBi = (gij B

j)
p
gii (5.69)

bBr = (grr B
r + grθ B

θ + grϕB
ϕ)

√
grr (5.70)

bBθ = (gθr B
r + gθθ B

θ + gθϕB
ϕ)

p
gθθ (5.71)

bBϕ = (gϕr B
r + gϕθ B

θ + gϕϕB
ϕ)

√
gϕϕ (5.72)for a general toroidal 
oordinate system. In the one of 
hapter 3 the terms grϕ and gϑϕare null.11In diagonal metri
s, for whi
h gdiagij = 0 for i 6= j and gdiagii = 1/(giidiag), again using
ontravariant 
omponents to write the 
ovariant ones

bBidiag = Bi
√
gii = Bi

1p
gii

= giiBi
1p
gii

=
p
giiBi (5.73)

bBdiagi = Bi
p
gii = Bi

1√
gii

= giiB
i 1√

gii
=

√
giiB

i (5.74)12Just in diagonal metri
s gdiagii = 1/(giidiag). Therefore
bBidiag = Bi

√
gii = Bi

1p
gii

= B · ∇xi 1p
gii

= B · b∇xi (5.75)
bBdiagi = Bi

p
gii = Bi

1√
gii

= B · ei
1√
gii

= B · bei (5.76)using (5.56)�(5.57). 113



Covariant and 
ontravariant magneti
 �eld 
omponentsential shift leads to a diagonal metri
13 for the ma
hine-toroidal-
oordinates
(rm, θm, ϕ).To �nd the magneti
 
omponents Brm , Bθm , Bϕ in this new 
oordinate sys-tem, beginning from the known ones in the (r, ϑ, ϕ) 
oordinates, one needsto use eq.(5.54) for the 
ontravariant 
omponents and eq.(5.55) for the 
o-variant ones. To �nd the (hatted) measurable 
omponents we 
an apply thenormalization in (5.66)�(5.67).To apply equation (5.54) one needs �rst to 
ompute all the derivatives be-tween the 
oordinates of the two systems. That is why it 
an be easy juston paper, and not in the real world, both from the analyti
al and numer-i
al point of view. In order to make thing easier, we try to minimize thederivatives to be 
omputed: in this 
ase we 
an just �nd the magneti
 �eld
omponents in the 
ylindri
al (R,Z, ϕ) 
oordinates14, and proje
t these onthe ma
hine 
oordinates. In parti
ular, using (5.76) for the diagonal ma
hine
oordinates,

B̂rm = B · êrm (5.80)
B̂θm = B · êθm (5.81)We 
an 
hoose any 
oordinate system to write the magneti
 �eld ve
tor B:we use the 
ontravariant 
omponents in 
ylindri
al 
oordinates that 
an bewritten in terms of the known 
ontravariant 
omponents of the magneti
�eld in the toroidal system (r, ϑ, ϕ)15 in a relatively easy way:

B = BR eR +BZ eZ +Bϕ eϕ (5.82)with
BR =

∂R

∂r
Br +

∂R

∂ϑ
Bϑ (5.83)

BZ =
∂Z

∂r
Br +

∂Z

∂ϑ
Bϑ (5.84)

Bϕ = Bϕ (5.85)From (5.80)�(5.81) we need to do the s
alar produ
ts between the 
ovariant13The metri
s elements for the ma
hine-toroidal-
oordinates (rm, θm, ϕ) 
an be derivedfrom the tensor metri
s elements of the geometri
al 
oordinates ui = (r, θg, ϕ) in appendixB.2 simply vanishing the shift ∆(r).14Derivatives between the toroidal system (r, ϑ, ϕ) and the 
ylindri
al one have alreadybeen 
al
ulated, equations (9.56)�(9.61).15se
tion 5.1 114



5.5 Some examplesbasis of the two 
oordinate systems16:
B̂rm = BR eR · êrm +BZ eZ · êrm +Bϕ eϕ · êrm (5.92)

= BR cos θm +BZ sin θm (5.93)
B̂θm = BR eR · êθm +BZ eZ · êθm +Bϕ eϕ · êθm (5.94)

= −BR sin θm +BZ cos θm (5.95)These are the 
omponents to be 
ompared with measures.Note that, be
ause √gRR = 1 =
√
gZZ , from eq.(5.75) BR = B̂R and

BZ = B̂Z .5.5 Some examplesSome example for the magneti
 �eld BWriting
B = Br er +Bϑ eϑ︸ ︷︷ ︸

Bpol

+Bϕ eϕ︸ ︷︷ ︸
Btor

, (5.96)in the toroidal 
oordinates (r, ϑ, ϕ) of 
hapter 3, the module of poloidal andtoroidal magneti
 �eld are:
Btor = Bϕ =

√
gϕϕB

ϕ (5.97)
Bpol =

√
g2
rr(B

r)2 + 2grϑBrBϑ + g2
ϑϑ(B

ϑ)2. (5.98)
Btor 
an also be identi�ed with the measured 
ovariant 
omponents Bϕ onthe normalized basis ve
tors eϕ.16

eR =
1√
gRR

∂x

∂R
=

“
cosϕ , sinϕ , 0

” (5.86)
eZ =

1√
gZZ

∂x

∂Z
=

“
0 , 0 , 1

” (5.87)
eϕ =

1√
gϕϕ

∂x

∂ϕ
=

“
−R sinϕ , R cosϕ , 0

” (5.88)
berm =

1√
grmrm

∂x

∂rm
=

“
cos θm cosϕ , cos θm sinϕ , sin θm

” (5.89)
beθm =

1√
gθmθm

∂x

∂θm
=

“
− sin θm cosϕ , − sin θm sinϕ , cos θm

” (5.90)
beϕ =

1√
gϕϕ

∂x

∂ϕ
=

“
− sinϕ , cosϕ , 0

” (5.91)115



Covariant and 
ontravariant magneti
 �eld 
omponentsWe 
an write also the modulus of the total magneti
 �eld
B = Bpol + Btor (5.99)
B =

√
B2
pol +B2

tor (5.100)Some example for the 
urrent density JFor a for
e free equilibrium in A
tion�Angle 
oordinates (se
tion 3.1.2) theaxi�symmetri
 
urrent density is proportional to the magneti
 �eld througha 
oe�
ient (σ(r)) whi
h is a fun
tion of r only17, that is
µ0J0 = σ(r)B0. (5.103)We use the straight �eld line 
oordinates (r, ϑ, ϕ) built for the axisymmetri
equilibrium. From here,
Jr0 = 0 (5.104)
Jϑ0 =

σ(r)

µ0
Bϑ (5.105)

Jϕ0 =
σ(r)

µ0
Bϕ (5.106)The �rst order 
orre
tion to the axisymmetri
 equilibrium, 
omputing thetotal 
urrent density 
omponents from Ampère's law and plugging it intothe �rst-order for
e balan
e equation18, where ui = (r, ϑ, ϕ), is

j×B0 + J0 × b =
1√
g
ǫijk(ĵiB̂j

0 + Ĵ i0b̂
j)∇uk = 0 (5.107)from whi
h one obtains

jrmn =
σ(r)

µ0
brmn (5.108)

jϑmn =
σ(r)

µ0
bϑmn +

i

m− n q
σ′(r)
µ0

brmn (5.109)
jϕmn =

σ(r)

µ0
bϕmn +

i

m− n q
σ′(r)
µ0

q(r) brmn (5.110)17The proportionality 
oe�
ient is given by
σ(r) = − 1

Ψ′
P,0

d

dr
[K(r)ψ′

T,0] (5.101)with
K(r) =

R0

r

„
1 +

∆

R0
+

r

2R0
∆′ − r2

2R2
0

+ o(ǫ3)

«
. (5.102). 18Axisymmetri
 equilibrium quantities are written with 
apital letters to distinguishthem from the perturbative quantities. 116



5.5 Some examplesThe proportionality between perturbed radial 
urrent and perturbed radialmagneti
 �eld is similar to (5.103). Both Bi
0 and the perturbative 
ompo-nents bimn are 
omputed in se
tion 5.1.As in eq.(5.39) for the magneti
 �eld, due to the geometri
 toroidal 
oupling

J i ≡ J iSH(r, ϑ, ϕ) = J i0(r, ϑ, ϕ) +
m+1∑

m−1
n

ji,SHm,n (r) ei(mϑ−nϕ) + c.c.(5.111)for i = r, ϑ, ϕ.Writing
J = J i ei (5.112)

= Jr er + Jϑ eϑ︸ ︷︷ ︸
Jpol

+Bϕ eϕ︸ ︷︷ ︸
Jtor

(5.113)in the toroidal 
oordinates (r, ϑ, ϕ) of se
tion 3.1.1, the modulus of 
urrentdensity 
an be written as
J =

√
g2
rr(B

r)2 + 2grϑBrBϑ + g2
ϑϑ(B

ϑ)2 + g2
ϕϕ(Bϕ)2 (5.114)be
ause the elements gϑϕ = 0.In 
hapter 6 we will 
ompute the average of these quantities on �ux sur-fa
es.
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Covariant and 
ontravariant magneti
 �eld 
omponents
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Chapter 6Appli
ationsThe goal of this 
hapter is to show some possible appli
ation of the moreformal and theoreti
al part of the thesis till here presented.SHEq is the 
ode that 
omputes all the results, solving the formulas andmathemati
al expressions of the previous 
hapters for any of the de�ned
oordinate systems. The starting point in SHEq are the �uxes and theirharmoni
s, re
onstru
ted in the (r, ϑ, ϕ) 
oordinate system by some 
odeswritten to solve the New
omb�like equation in [53℄1.In this 
hapter one 
an �nd magneti
 �ux re
onstru
tions (se
tion 6.1), thede�nition of the �ux surfa
e averages of any plasma quantity, like the poloidalor toroidal magneti
 �eld or 
urrent density (se
tion 6.2), and the heli
alsafety fa
tor pro�le (se
tion 6.3).For the �ux surfa
e re
onstru
tion it is enough to know and 
ompute a �uxfun
tion, e.g. the heli
al �ux in SHAx states, from equations 
olle
ted inse
tion 9.1.1. For the �ux surfa
e averages one needs to know a 
ompleteheli
al 
oordinate system, and to 
ompute any plasma fun
tion on these
oordinates. The formula for �ux surfa
e averages of plasma quantities intoroidal systems redu
es to the integrals on the two angular 
oordinates, thatmust be well de�ned on the heli
al axis of the system. It does not matterto have them de�ned as straight��eld�line (or A
tion�Angle) 
oordinates,and one 
an 
hoose between any of the de�ned heli
al 
oordinates 2, eventhe geometri
al one (χ, β, ϕ) in se
tion 4.2.1. For the heli
al safety fa
torwe use the simple formula as the ratio between the di�erential of the twoangles, that is equivalent to the more general de�nition of the ratio betweenthe di�erential of the two �uxes only for A
tion�Angle 
oordinates. This
an be proved using the Hamiltonian me
hani
s, and in parti
ular we 
hoosethe (χ, uh, ϕ) or (χ, θ∗, ϕ) 
oordinate systems, where the physi
al meaningof the �uxes is 
lear (see se
tions 4.2.2 and 4.4.1).1Equations (3.36)�(3.37) in 
hapter 32Heli
al 
oordinates are de�ned in 
hapter 4 and their metri
s are 
olle
ted in thedetailed 
al
ulations in se
tion 9.2 119



Appli
ationsOther examples of appli
ations 
an be listed, and some of them areplanned to be matter of future work. In parti
ular, starting from the heli-
al equilibria 
ompletely de�ned in 
hapters 4 and 9 (
oordinates, Ja
obian,metri
 tensor elements, q�pro�le, �uxes, �elds, ...), one 
an think to perturbit with a heli
al perturbation, in a way similar to that of 
hapter 3 and [53℄,where the axisymmetri
 equilibrium B0 was perturbed. In this way one 
anre
onstru
t the spe
tra and the pro�les of the harmoni
s of the heli
al per-turbation. This 
an be useful for example to 
onsider the dominant modein the m = 0 spe
tra (the m = 0, n = 7), negle
ted in SHAx states for now,but toroidally 
oupled with the m = 1 dominant mode, and essential to edgestudies in RFP ma
hines.Some other example of work in progress for the equilibrium evolution is pre-sented in 
hapter 7, where the problem of the Ohmi
 
onstraint is taken intoa

ount.6.1 Flux surfa
e re
onstru
tion: DAx and SHAxMagneti
 �ux surfa
es in SH states are de�ned by the 
onstan
y of the heli-
al �ux: χ = const with χ from (9.2). In �g.4.3 we have already shown the
χ 
ontour plot, whi
h gives the magneti
 �ux surfa
es on the poloidal plane.With the SH, in this work, we model SHAx states. In the Introdu
tion(
hapter 1) we distinguish between SHAx and DAx states, both �avors ofthe more general QSH 
ondition. In �g.6.2 one 
an see both the DAx andSHAx (of the m = 1 spe
trum) magneti
 topology on the poloidal plane.The magneti
 island 
an be 
learly seen during DAx states, with its typi
al
X�point and O�point. In
reasing the plasma 
urrent the amplitude of theresonant mode grows, and therefore the amplitude of the 
orresponding is-land. Beyond a threshold value of the amplitude of the dominant mode, the
X�point 
ollapses onto the original axisymmetri
 axis O′, ending with theSHAx states topology.With a not so bigger error (see �g.6.1), we model also DAx states as SHstates, in order to analyze them with the same model built for SHAx statesin this thesis. For example, �g.6.2 is built using the SHEq 
ode, i.e. usingthe SH hypothesis. The SHEq 
ode 
an distinguish between SHAx ad DAxstates as follows.Looking at eq.(9.4)

χ = χ0(r) + 2|χm,n|(r) cos(u+ φχ(r)) (6.1)We 
an �x the heli
al angle u for whi
h
cos(u+ φχ) = ±1 (6.2)
i.e. (u+ φχ) = 0, π (6.3)120



6.1 Flux surfa
e re
onstru
tion: DAx and SHAx
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Figure 6.1: Left: Spe
trum of the m = 1 mode during a SHAx state (shot23977 at t = 173.9 ms). Right: Spe
trum of the m = 1 mode during a DAxstate (shot 23977 at t = 197 ms).

Figure 6.2: SHAx and DAx re
onstru
tions in the poloidal plane.In this way we obtain the χ̄�
urve
χ̄ = χ0(r)± 2|χm,n|(r) (6.4)on the diameter passing through the points X −O′ −O.In �g.6.3 one 
an see the fun
tion (6.4) along the diameter. As one 
ansee during DAx states the heli
al �ux has three extremal points for whi
h

dχ/dr = 0: two minima in the X-point and O�point of the island, and onemaximum in the original magneti
 axis of the system, the O′�point. DuringSHAx states only the original O�point of the island is a spe
ial point, where
dχ/dr = 0 de�nes a minimum. This 
orrespond to the new heli
al axis ofthe system. 121



Appli
ations

Figure 6.3: SHAx and DAx along the diameterIt is possible to think at two parts of the 
urve:
χ+ = χ0(r) + 2|χm,n|(r) ⇔ cos(u+ φχ) = 1 (6.5)
χ− = χ0(r)− 2|χm,n|(r) ⇔ cos(u+ φχ) = −1 (6.6)where χ− 
orrespond to the 
onvex part of the bean, whereas χ+ 
orrespondto the other side, where one 
an �nd the X�point and the O′�point. Noti
ethat it is enough to study the derivative of the fun
tion χ+ to distinguishbetween SHAx and DAx states: if dχ+/dr > 0 in ea
h point, the system isin a SHAx state; if dχ+/dr = 0 in some point, the system is in a DAx state.As one 
an see in �g.6.4, in the same way one 
an also distinguish betweendi�erent kinds of surfa
es. For example, where

dχ+

dr
=
dχ0

dr
+ 2

d|χm,n|
dr

> 0 (6.7)we are 
hoosing the �ux surfa
es between the X�point and the O′�point ofa DAx state (light yellow in �g.6.4).To 
on
lude let us say that the shape of the heli
al �ux on the diameterdepends on the heli
al �ux eigenfun
tion, and in parti
ular on the shape of122



6.1 Flux surfa
e re
onstru
tion: DAx and SHAx

Figure 6.4: SHAx and DAx along the diameter, surfa
esthe perturbation eigenfun
tion χm,n(r). In �g.6.5a) one 
an see a good eigen-fun
tion pro�le, for whi
h an in
rease of the amplitude brings from DAx toSHAx. During the porting of the SHEq 
ode to the MST devi
e in Madison,Wis
onsin, we dis
overed that the shape in �g.6.5b) is not good : in
reasingthe amplitude of the dominant mode it is not possible to rea
h SHAx states.Fig.6.5b) was the result of an initial mistake in the eigenfun
tion re
onstru
-tions in MST, but brings to the awareness that the eigenfun
tion must havea spe
ial pro�le, similar to �g.6.5a).

Figure 6.5: SHAx and DAx along the diameter, surfa
es
123



Appli
ations6.2 Flux surfa
e averagingThe �ux surfa
e average of a fun
tion f(x) is de�ned as the volume averageover an in�nitesimally small shell with volume ∆V , where ∆V lies betweentwo neighboring �ux surfa
es with volumes V and V +∆V . It is denoted by
〈f〉, and it is equal to [51℄:

〈f(x)〉 ≡ lim
∆V→0

∫∫∫
f(x)d3x∫∫∫
d3xFollowing [51℄, it is possible to prove that the �ux surfa
e average of a generi
quantity f(χ, θ, ϕ) in a toroidal system is given by

〈f〉 =

∫∫
dθdϕ

√
gf∫∫

dθdϕ
√
g

(6.8)where the integrals are over the poloidal�like and toroidal�like angles. TheJa
obian must be 
onsistent with the 
hosen 
oordinate system. We 
an
hoose any 
oordinate system de�ned on the heli
al �ux surfa
es: to obtain(6.8) the only requirement is to work with a radial 
oordinate that is labelof the magneti
 �ux surfa
es.As an example of the appli
ation of this formula, we show in the nextse
tions the �ux surfa
e averages of some quantities de�ned in se
tion 5.5,su
h as the toroidal and poloidal magneti
 �eld or the 
orrespondent 
urrentdensity 
omponents. Of these quantities we 
ompute the average on �uxsurfa
es, in order to 
ompute radial pro�les.The �ux surfa
e average of the power balan
e equation in se
tion 6.2.2 bringsto an estimation of the thermal 
ondu
tivity.6.2.1 Magneti
 �eld and 
urrent density 
omponentsThe graphs of �g.6.6 are 
omputed using formulas of se
tion 5.5 for themagneti
 �eld and 
urrent density 
omponents. They show that the �uxsurfa
e average of the toroidal �eld 
omponent is monotoni
ally de
reasing,as for the standard 
ylindri
al models of the RFP �elds, with a maximum(of 1.1 T in this 1.5 MA dis
harge) whi
h is now lo
ated on the heli
al axis(∇ρh = 0), a slow de
rease in the 
entral part of the plasma, a knee around
ρh = 0.25, and a reversal in the outer part of the plasma. The poloidal
omponent is also rather �at on the inner surfa
es, where it has an almostuniform value around 0.5 T. The same features are displayed by the 
urrentdensity 
omponents, not surprisingly sin
e both the axisymmetri
 and theheli
al equilibria are for
e-free. The maximum toroidal 
urrent density, onthe heli
al axis, is around 6 MA/m2, while in the inner part of the plasmathe poloidal 
omponent takes values a little larger than 2.5 MA/m2. It 
anbe also remarked that for ρh > 0.8 the toroidal 
urrent density is negligible.124
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Figure 6.6: Left: Flux surfa
e averages of the toroidal and poloidal mag-neti
 �eld 
omponents. Right: Flux surfa
e averages of the toroidal andpoloidal 
urrent density 
omponents. The data refer to shot 24598, at
t = 174 ms.6.2.2 Thermal 
ondu
tivityThe thermal 
ondu
tivity κ3 
an be 
omputed averaging the simpli�ed powerbalan
e equation, in its form valid for stationary �uids at rest4:

〈∇ · q〉 = 〈η J2〉 (6.12)under the hypothesis
q = −κn∇Te (6.13)3I 
all the thermal 
ondu
tivity with the symbol κ, to distinguish it from the heli
al�ux χ.4The more general power balan
e equation is written [58℄

D
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+
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2
∇ · u

| {z }
b

+∇ · q| {z }
c

+
“
P · ∇

”
· u

| {z }
d

= J · E + J ·
“
u × B

”
− ρu · E

| {z }
e

(6.9)
p is the s
alar pression, P the tensor of pressure for
es, u the main plasma velo
ity, q theheat �ux ve
tor, J the 
urrent density ve
tor, E the ele
tri
 �eld, B the magneti
 �eld,and ρ the 
harge density (null for neutral plasmas).One 
an �nd in [58℄ the physi
al meaning of all the terms in the equation: the �rst term ain the left�hand side of the equation represents the time rate of 
hange of the total thermalenergy density of the plasma (3p/2) in a frame of referen
e moving with the global meanvelo
ity u. The se
ond, b, term 
ontributes to this rate of 
hange through the thermalenergy transferred to the volume element due to parti
le motion. The term c representsthe heat �ux and d the work done on the volume elements by all the pressure for
es. Term
e on the left�hand side is the work done on the volume element by the ele
tri
 �eld in theframe of referen
e moving with the mean plasma velo
ity, E′ = E + u × B.It is easy to see that for stationary (d/dt = 0) �uids at rest (u = 0),

∇ · q = J · E (6.10)
= ηJ2 (6.11)if E = ηJ + u × B, but u = 0, from Ohm's law. Eq.(6.12) is the �ux surfa
e average of(6.11). 125



Appli
ationsfor the heat �ux q. η is the plasma resistivity and J the 
urrent density.
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Figure 6.7: Left: The ele
tron temperature pro�le Thomson s
atteringdata. Center: Flux surfa
e average of dissipated ohmi
 power. Right: Ther-mal 
ondu
tivity pro�le 
omputed from the surfa
e-averaged power balan
e.The data refer to shot 22182, at t = 49 ms.In �g.6.7 (
enter) we plot the average ohmi
 power 〈η J2〉. In doing thisthe Spitzer-Härm resistivity formula has been used5, with the ele
tron tem-perature pro�le measured by the Thomson s
attering system, and plottedin �g.6.7 (left). Furthermore, we have assumed a �at e�e
tive 
harge pro�lewith a value adjusted so as to mat
h the total input power, P = V I, assum-ing stationary 
onditions. For this 
ase, the 
orre
tion fa
tor turned out tobe equal to 1.75, whi
h appears a rather reasonable value6. It should be em-phasized that the average ohmi
 power pro�le 
ru
ially depends on the pro�le5Spitzer-Härm resistivity is proportional to the e�e
tive 
harge Z of the plasma andto T−3/2
e for the ele
tron temperature, [11℄.6The total input power

P = V (0) IP (6.14)where V (0) and IP are the loop voltage on the axis and the plasma 
urrent, must be equal126



6.2 Flux surfa
e averaging
hosen for σ(r), as one 
an understand from the formulas for J in se
tion 5.5.The thermal 
ondu
tivity pro�le is 
omputed from the formula
κ = −

∫
〈ηJ2〉V ′ dρ

nV dTe
dρ 〈∇ρ · ∇ρ〉

(6.19)where V ′ = dV/dρ is the spe
i�
 volume, 〈∇ρ · ∇ρ〉 ≡ 〈g11〉 the �rst metri
tensor element for the 
hosen heli
al 
oordinate system, dTe/dρ the gradientof the ele
tron temperature pro�le in �g.6.7 (left) and n the ele
tron densitythat we 
onsider with a uniform pro�le. The thermal 
ondu
tivity pro�le isshown in �g.6.7 (right). It 
an be seen that the thermal 
ondu
tivity displaysa minimum, at a value around 8 m2/s, 
orresponding to the strong gradientin the temperature pro�le. This is an order of magnitude lower than valuesobtained in MH 
onditions [59℄. This is a typi
al situation during SHAxstates, where the strong temperature gradint is asso
iated to the InternalTransport Barrier (ITB), [60℄.At the end of se
tion 6.3 we 
ompare the κ�pro�le with the safety fa
torpro�le at the same time instant. The magneti
 equilibrium re
onstru
tionshows that ITBs are related to a peak in the non�monotoni
 q�pro�le.To 
on
lude let us write the steps leading from (6.12) to (6.19): we needto use the formula for �ux surfa
e averages of a divergen
e
〈∇ · q〉 =

dρ

dV

d

dρ

[dV
dρ
〈q · ∇ρ〉

] (6.20)where V ′ = dV/dρ is the spe
i�
 volume and ρ the 
hosen radial 
oordinatethat labels the magneti
 �ux surfa
es. Using (6.13) and ∇Te = (dTe/dρ)∇ρto
P =

Z
η J2 dV (6.15)We 
an write the resistivity η as

η = f(Z) ηZ=1 (6.16)where Z is the e�e
tive 
harge of the plasma. Computing ηZ=1 from Spitzer, and assuminga �at 
harge pro�le, we 
an adjust its value, through f(Z), so as to mat
h the total inputpower:
P = f(Z)

Z
ηZ=1 J

2 dV = V (0) IP (6.17)therefore
f(Z) =

V (0) IPR
ηZ=1 J2 dV

(6.18)127
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onsidering Te ≡ Te(ρ):
〈∇ · q〉 = 1

V ′
d

dρ

[
− V ′ nκ

dTe
dρ
〈∇ρ · ∇ρ〉

]
= 〈η J2〉 (6.21)Integrating the two sides of the equation in dρ 7

∫
d
[
− V ′ nκ

dTe
dρ
〈∇ρ · ∇ρ〉

]
=

∫
〈η J2〉V ′ dρ (6.22)

−V ′ nκ
dTe
dρ
〈∇ρ · ∇ρ〉 =

∫
〈η J2〉V ′ dρ (6.23)

κ = −
∫
〈ηJ2〉V ′ dρ

nV dTe
dρ 〈∇ρ · ∇ρ〉

(6.24)that is exa
tly (6.19).6.2.3 ASTRAThe 
omputation of �ux surfa
e averages of di�erent quantities is also anessential step for building transport equations depending on one 
oordinateonly (the �ux surfa
e label).An example for this is the transport ASTRA 
ode [61℄, built for Tokamak
ommunity and then modi�ed both for Stellarators and RFPs.We do not go into ASTRA details, be
ause transport studies with this 
odein RFX are just now started and will be matter of future work. We mentionit here be
ause the SHEq 
ode is at the moment the only 
ode in RFX that
an 
ompute the heli
al equilibria of SHAx states and 
ompute averages onits magneti
 �ux surfa
es.The main di�eren
e between ASTRA for Tokamaks and for non�axisymmetri
ma
hines is the equilibrium re
onstru
tion. For Tokamak dis
harges ASTRA
omputes the equilibrium solving the Grad�Shafranov equation. For non�axisymmetri
 equilibria the Grad�Shafranov equation is not valid anymore,and ASTRA asks for the equilibrium parameters as an input.One 
an �nd the whole set of equilibrium parameters that ASTRA needsto evolve all its transport equation in the manual. Here we 
ite just someexample:
V ′ =

dV

dρA
, g11 = 〈∇ρA · ∇ρA〉 , ... (6.25)where we 
hoose ρ = ρA from (4.64) in order to work with a radial variablein meters8.7All the fun
tion are null on the heli
al axis.8One 
an see se
tion 9.2.2 for some example on how the metri
s elements 
hanges
hanging the radial variable 128



6.3 Heli
al safety fa
tor pro�leIn se
tion 7.3 one 
an �nd the �rst example of transport studies duringheli
al states performed in RFX in 
ollaboration with the Theory Groupof TJ-II, Ciemat, Madrid: the evolution of the heli
al rotational transform,that is the inverse of the heli
al safety fa
tor de�ned in se
tion 6.3.6.3 Heli
al safety fa
tor pro�leIt is possible to use di�erent equivalent de�nitions of the q�pro�le, or of itsinverse, the rotational transform ι 9. In parti
ular one 
an use the basi
de�nition of the rotational transform as the number of turns of a magneti
line around the magneti
 axis that, in axi�symmetri
 
on�gurations, we 
anusually think as the 
enter of the va
uum vessel. In SHAx states the mag-neti
 axis is instead the heli
al axis, but the number of turns around thelatter has a simple relation with the number of turns around the 
enter ofthe va
uum vessel: we must simply add the n = 7 turns of the heli
al axisaround the 
enter of the va
uum vessel to the turns of the magneti
 linearound the heli
al axis10. We will prove this using two A
tion�Angle 
oor-dinate systems introdu
ed in 
hapter 4: (χ, uh, ϕ) and (χ, θ∗, ϕ). To 
on�rmmy results we will 
ompare them with the results obtained in [60℄, wherethe number of turns around the 
enter of the va
uum vessel are 
ounted outusing the ORBIT �eld line tra
ing 
ode [63℄.In 
hapter 4 we �nd good A
tion�Angle 
oordinate systems valid in SHAxstates, and we 
an therefore use the de�nition of the rotational transformvalid in straight �eld line 
oordinates to 
ompute the heli
al safety fa
tor.Using the (χ, uh, ϕ) 
oordinates de�ned in se
tion 4.2.2,
ιh =

duh
dϕ

=
dχ

dψh
(6.26)where the se
ond equivalen
e derives from the de�nition of the equations ofmotion for A
tion�Angle 
oordinates in Hamiltonian 
ontext11: remember-ing the identi�
ation of the heli
al 
oordinates (χ, uh, ϕ) with the 
anoni-
al variables that we saw in se
tion 4.2.2, this de�nition of the rotationaltransform has the expe
ted form of the 
anoni
al equation of motion (q̇i =

∂H/∂pi) on
e ϕ has been 
hosen to be the 
anoni
al time. As expe
ted, theA
tion ψh(χ) is a 
onstant of the motion.If we write the number ι of turns around the 
enter of the va
uum vessel9As said in the introdu
tion, we use the symbol ι (whi
h rigorously is the averagepoloidal angle des
ribed by a �eld line per toroidal turn) instead of -ι = ι/2π.10Referen
es for that 
an be found for example in old Stellarator papers, as [62℄11When using A
tion�Angle 
oordinates the safety fa
tor 
an be de�ne either withthe ratio between �uxes or between 
oordinates. This arises immediately from 
anoni
alequation. 129



Appli
ationsin the equivalent way as the ratio between the di�erential of the poloidaland the toroidal �ux en
losed by the heli
al �ux surfa
es Σ(χ), ι 
an be alsowritten as
ι =

dθ∗

dϕ
=
dψP
dψh

, (6.27)remembering the result of se
tion 4.2.2, where ψh turned out to be thetoroidal �ux. Again, the equivalen
e with the ratio between the 
oordi-nates is due to Hamiltonian me
hani
s and it is true just for A
tion�Angle
oordinates.As we have already said, we 
an also write12
ι = ιh + n . (6.30)The ιh rotational transform is 
omputed by the SHEq 
ode using the 
anoni-
al de�nition (6.26) and the A
tion�Angle 
oordinates (χ, uh, ϕ). The more
ommon de�nition of the rotational transform ι as the ratio (6.27) is easily
omputed using (6.30), and the resulting safety fa
tor pro�le q = 1/ι 
an beseen in the top frame of �g.6.8 up.In �g.6.9 one 
an see the good agreement in the q�pro�les 
omputed bythe SHEq 
ode from formula (6.30) (red) and by the ORBIT 
ode (blue),i.e. as the number of turns around the 
enter of the va
uum vessel.Fig.6.8 top and �g.6.9 show a typi
al q�pro�le for SHAx states, reversed,symmetri
 with respe
t to the heli
al axis and almost �at in the inner bean�shaped �ux surfa
es region. If we 
ompare the ele
tron temperature pro�lefrom Thomson s
attering data (�g.6.8 bottom) with the safety fa
tor pro�le,we 
an identify a maximum of the q in 
orresponden
e of the steep tem-perature gradient. The steep gradient is related to very low value of thethermal 
ondu
tivity (remembering the results in se
tion 6.2.2) and we 
antherefore say that the q�pro�le has a maximum in 
orresponden
e of theInternal Transport Barrier (ITB) that delimits the hot bean�shaped 
ore ofSHAx states [60℄. The maximum in the q�pro�le is found to be related tothe original rational surfa
e of the dominant mode (m,n) = (1, 7) (whi
hdisappeared in the transition from DAx to SHAx state) and ITBs are always12We 
an prove this relation in this way:

ιh =
dχ

dψh
=
dψP − ndψh

dψh
=
dψP
dψh

− n ≡ ι− n (6.28)using eq.(4.66), χ = mψP − nψT for m = 1.Or we 
an write the same using the ratio between the angular 
oordinates:
ιh =

duh
dϕ

=
dθ∗ − ndϕ

dϕ
=
dθ∗

dϕ
− n ≡ ι− n (6.29)obtaining the same result be
ause both the (χ, uh, ϕ) and (χ, θ∗, ϕ) are straight �eld line
oordinate systems. We used here eq.(4.80) for the poloidal angle θ∗.130



6.3 Heli
al safety fa
tor pro�le

Figure 6.8: Up: heli
al q�pro�le 
omputed by SHEq from the inverse ofequation (6.30). Down: Ele
tron temperature pro�le from Thomson s
atter-ing data. Re
onstru
tion for shot 23977, time 173 ms at the toroidal position(ϕ = 82.5◦) of the Thomson S
attering measurements. The abs
issa ρh isthe square root of the normalized heli
al �ux (4.2).found in this position during SHAx states.Let us go ba
k to the physi
al interpretation of the angles uh and θ∗(se
tion 4.4) and therefore of the rotational transform ι and ιh de�ned ineq.(6.26)�(6.27): uh is turning around with a �xed phase with respe
t to thebean (let us say always on the 
onvex part of the bean, for φχ = 0), whereas
θ∗ is �xed on the horizontal plane (and 
an be asso
iated to the laboratoryframe of referen
e). Be
ause of this one 
an think at ι as the number of turnsof a magneti
 �eld line 
ounted by the laboratory frame, that will also see
n = 7 turns of the bean for ea
h toroidal turn. On the other side, ιh 
an bethought as the number of turns of a magneti
 �eld line 
ounted by the lo
alframe of referen
e of the bean, that will of 
ourse not see the n = 7 turnsaround the heli
al axis.The rotational transform is a physi
al quantity whose pro�le does not de-pend on the 
hosen 
oordinates. Relation (6.30) shows that the pro�les arejust displa
ed by a 
onstant when we 
hange the 
oordinate system, and itis nothing but the relation between the de�nition of ι in two di�erent framesof referen
e.To 
on
lude we want to stress that ιh is one of the Stellarator 
hoi
e forthe rotational transform: ιh = 0 
orresponds to a magneti
 �eld line thatafter one toroidal turn goes ba
k exa
tly in the same poloidal and toroidalposition. Therefore what Stellarator 
omunity 
all poloidal angle is what weam 
alling heli
al angle in this thesis.An interesting 
ollaboration is going to start with TJ-II Theory Group, be-131
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Figure 6.9: q�pro�les on the horizontal diameter of the va
uum vessel.Bla
k : q�pro�le 
omputed by the ORBIT 
ode; green: q�pro�le 
omputedby the SHEq 
ode from the inverse of equation (6.30). Shot 23977, time 173ms, toroidal angle=255.8◦. A verti
al line marks the radius of the 
enter ofthe va
uum vessel and a horizontal one the q = 0 line where the toroidalmagneti
 �eld reverses.
ause of the similarities between their rotational transform pro�le and our,inside the bean�shaped magneti
 �ux surfa
es. In parti
ular, the almost�at rotational transform pro�le and absolute values between zero and two.The di�eren
e that 
an be studied are the sign of the derivative of both therotational transform and of the averaged magneti
 well.
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Chapter 7Equilibrium evolution: theOhmi
 
onstraint7.1 The Ohmi
 problem in RFPsAs seen in the introdu
tion (se
.1.2.4), a dynamo is a
ting in RFP plasmas,in order to provide the reversal and maintain the 
on�guration for timeslonger than the resistive ones.No dynamo 
an sustain (and therefore no reversal 
an be sustained by) anaxi�symmetri
 magneti
 �eld. This is known in astrophysi
s as the Cowling'stheorem and by extension one 
an speak of a Cowling's theorem for the RFP:at least one mode of a perturbation to the axi�symmetri
 
on�guration mustbe present to sustain the reversal, through a dynamo (v × B) term in theparallel Ohm's law:
〈E‖〉+ 〈v ×B〉‖︸ ︷︷ ︸dynamo = 〈ηj‖〉 (7.1)with an ele
trostati
1 �eld E

E = −∇φ+ E0 (7.2)where φ is the ele
trostati
 potential related to a 
harge distribution and E0the indu
tion ele
tri
 �eld related to the axial loop potential. 〈...〉 means theaverage on magneti
 �ux surfa
es.The dynamo pro
ess is usually asso
iated to the e�e
t of perturbations in thequadrati
 (v×B) term, but without an explanation of the origin of the ve-lo
ity �eld. In the laminar SH 
ase (where just one mode of the perturbationis present) the plasma �ow v 
an be thought as a mere ele
trostati
 drift,due to the heli
al distortion of the plasma2. This pi
ture of the dynamo has1Imagining a steady state ohmi
 equilibrium.2One may think for the SH 
ase at the perturbed magneti
 �ux surfa
es of SHAx states.133



Equilibrium evolutionbeen extended also to the MH 
ase (where many MHD modes are presentin the perturbation) [64℄. In �g.7.1 is shown that both the ele
trostati
 andthe standard pi
ture of the dynamo are equivalent, but the former has themerit of giving a �rst explanation of the origin of the velo
ity �eld.The problem of an ohmi
 reversal has been studied sin
e the beginning of theRFP history, and the emergen
e of the SH pi
ture is the �rst step beyondTaylor's theory (se
. 1.2.5), the ba
kbone of RFPs till the late 90's. We willdes
ribe the present status of the theory of heli
al RFP equilibrium just ina qualitative way (for more details see for example [65℄).J. Finn, R. Nebel and C. Bathke [10℄ prove the impossibility of an ohmi
reversal of the toroidal �eld in a pure poloidal or toroidal symmetry3. Thisis done in an analyti
al way, using the parallel averaged Ohm's law and thefor
e free for
e balan
e equation4. In the same paper, an equation (but �rstwritten by V. D. Pustovitov [66, 67℄)5 for the axial magneti
 �eld pro�le Bzis also given in the 
ase of heli
al symmetry, in a periodi
 
ylinder6.Without going into the analyti
al steps, we just write the V.D. Pustovitov'sand J. Finn's equation7, the so�
alled Pin
h�Stellarator equation, where theStellarator term S(ρ) is the term that may provide the reversal of 〈Bz〉:
d

dρ
〈Bz〉 =

E0

〈ηB2〉〈Bz〉+ S(ρ) (7.3)
ρ is a label of the heli
al magneti
 �ux surfa
es and E0 the ele
tri
 �eld
omponent related to the toroidal loop voltage Vt. Equation (7.3) is a �rstorder di�erential equation for 〈Bz〉, whi
h is obtained by 
ombining the heli-
al Grad�Shafranov equation8 and the averaged parallel Ohm's law (in for
efree 
onditions).The Stellarator term S(ρ) is a term dominated by geometry, and vanishesfor a pin
h with axial symmetry. In a Stellarator (sin
e E0 = 0) it is the onlyterm providing the variation of 〈Bz〉. When S = 0 due to axi�symmetry,
〈Bz〉 
annot reverse, whi
h is a way to re
over Cowling's theorem. Equation(7.3) 
an be formally integrated, and only9 a positive S(ρ) may a priori pro-vide the reversal of 〈Bz〉.The Pin
h�Stellarator equation (7.3) is the �rst indi
ation of the modernview of the heli
al (SH) RFP, where the 
on�guration is linked with a he-li
al deformation of the plasma 
olumn, and the reversal is a 
onsequen
e3Before them other investigated the problem of Ohmi
 reversal for magneti
 �eldssymmetri
 by an axis, see 
hapter 5 in [56℄ and referen
es therein.4See 
omments to equation (A.39) in appendix A.25See also P. N. Vabish
hevi
h et al (1983), [68, 69℄.6Bz 
orresponds to the toroidal magneti
 �eld pro�le in a torus.7Equation (10) in Pustovitov's paper, [66, 67℄; equation (35) in Finn's paper, [10℄8The Grad�Shafranov equation is derived using the for
e balan
e equation and Am-père's law, for the 
ase of null pressure and velo
ities. For the heli
al Grad�Shafranovequation on a 
ylinder see for example [70℄.9At least in a �nite edge radial domain in ρ.134



7.1 The Ohmi
 problem in RFPsof a loss of axi�symmetry of the 
ylindri
al pin
h. This pi
ture enables thedes
ription of the RFP through the simple wire model, whi
h exhibits a self�organized magneti
 system with �eld reversal where the loss of 
ylindri
alsymmetry is essential and due to a kink instability10 (se
tion 1.2.5).The analyti
al des
ription of the RFP is not 
omplete, e.g. there is nota ne
essary and su�
ient 
riterion for S(ρ) to have the right sign to providethe reversal of the axial magneti
 �eld.Nevertheless a ne
essary 
riterion has been found. Analyti
ally, the SHohmi
 states are frequently ([70, 71℄) des
ribed as a small heli
al pertur-bation of an axi�symmetri
 ohmi
 pin
h (with small edge 
ondu
tivity andsmall edge axial magneti
 �eld), 
alled ultimate pin
h. Taking the ultimatepin
h as the zeroth order equilibrium, and applying a se
ond order pertur-bative theory to the Pin
h�Stellarator equation (with the amplitude of theheli
al perturbation as a small parameter), D. Bon�glio et al. in [71℄ derivea ne
essary 
riterion for the reversal of 〈Bz〉.If the analyti
al des
ription is not 
omplete, from the numeri
al point ofview the existen
e of an ohmi
 reversal for a 
ylindri
al pin
h with heli
allydeformed magneti
 �ux surfa
es has been proved by [8, 9℄, using a vis
o�resistive 
ompressible non�linear MHD model in the 
onstant�pressure and
onstant�density approximation.Numeri
al simulations show that the ne
essary 
riterion works also for largevalues of the perturbations to the pin
h, so the 
riterion is more general thansuggested by the perturbative approa
h used for its derivation [71℄. Numer-i
al simulations reveals also that, in the presen
e of a heli
al perturbation,the reversal is easier when a �nite edge radial magneti
 �eld (that usually isvanishing with a perfe
t 
ondu
ting shell) is applied. Experimental resultsagree with numeri
al simulation, and the ne
essary 
riterion is found to besatis�ed in RFX�mod experiment during SHAx states, with a non zero edgeradial magneti
 �eld imposed by the a
tive 
ontrol [71℄.The present understanding of the RFPs gives also some explanation ofthe dynamo pro
ess. Let us brie�y see some of these 
onsiderations, [72℄.In the standard invo
ation the dynamo ele
tri
 �eld results from the e�e
tof the perturbations in the quadrati
 (v ×B) term. On the other hand, inthe laminar SH 
ase the plasma �ow 
an be thought as a mere ele
trostati
drift, due to the heli
al deformation of the magneti
 �ux surfa
es: in the SHpi
ture, when a RFP 
on�guration appears, the gradual loss of the axial�symmetry of the magneti
 �eld produ
es a 
urrent density modulation j‖along the magneti
 �eld lines. A 
urrent density modulation requires amodulated ohmi
 ele
tri
 �eld (along these lines), whi
h drives a 
harge10(m,n) = (1, n), kink instability due to q < 1.135



Equilibrium evolutionseparation to balan
e it: the distribution of the 
harge separation (ρc) is
ontinuous and heli
ally symmetri
. It is related to an ele
trostati
 potential
φ, and 
an be 
omputed through Lapla
e's equation11. The 
orrespondingele
trostati
 �eld E = −∇φ is the required ele
tri
 �eld ne
essary to providethe heli
al modulation of the parallel 
urrent density j‖.It is possible to prove [73℄ that the standard and the ele
trostati
 pi
ture ofthe dynamo are equivalent.The 
ontribution of the ele
trostati
 �eld to the dynamo 
an be quanti�edusing the spatial mean (over the poloidal angle and the axial 
oordinate zand indi
ated with the symbol 〈...〉s)12 of the parallel Ohm's law: with theele
tri
 �eld from eq.(7.2), the Ohm's law (E = ηJ− v×B) 
an be writtenas:

E0 −∇φ = ηJ− v ×B (7.4)Proje
ting now the two sides of the Ohm's law on the total (heli
al) magneti
�eld, the term v ×B vanishes and :
E0 〈Bz〉s − 〈∇φ ·B〉s = 〈ηJ ·B〉s (7.5)be
ause E0 ‖ ez.Looking at the radial pro�les of this equation in �g. 7.1 a) and 
omparing thespatial mean of this equation with the averaged Ohm's law in eq.(7.1), one
an see that the di�eren
e between the indu
tion ele
tromotive for
e term,proportional to E0, and the mean parallel 
urrent density is balan
ed by theele
trostati
 term 〈∇φ ·B〉s. Therefore this is the term that provides whatare often named the anti�dynamo term in the 
ore and the dire
t�dynamoat the edge.The standard view, where the dynamo term has the form v×B, is re
overedproje
ting the two sides of the Ohm's law (eq.(7.4)) on the axi�symmetri

omponent B0 of the magneti
 �eld:

E0 〈ez ·B0〉s − 〈(v ×B) ·B0〉s = 〈ηJ ·B0〉s (7.6)The term due to the ele
trostati
 potential vanishes sin
e ∇φ has no axi�symmetri
 
omponents, and the dynamo/anti�dynamo term is provided bythe usual 〈(v ×B) ·B0〉s term. This 
an be seen in �g. 7.1 b).Therefore both the ele
trostati
 and the standard pi
ture of the dynamo areequivalent. However the latter is unable to explain the origin of the velo
ity�eld, while the former does: the heli
al modulated ele
trostati
 potentialbrings a 
omponent of the ele
tri
 �eld (E = −∇φ) perpendi
ular to themagneti
 �eld B. This 
omponent drives a v = E × B motion, whose nonaxi�symmetri
 part is exa
tly the dynamo velo
ity �eld.11From the divergen
e of the ele
trostati
 ele
tri
 �eld E = −∇φ, the lapla
ian of φyields the 
harge density due to the ambipolarity 
onstraint (∇2φ = ρc).12It 
oin
ides with the �ux surfa
e averages on the 
ir
ular �ux surfa
es of the axi�symmetri
 magneti
 �eld B0. 136



7.2 The Ohmi
 
onstraint in SHEq

Figure 7.1: Reprodu
ed from S. Cappello et al., [21℄. Radial pro�les ofmean parallel Ohm's law 
omponents, in the Single Heli
ity steady state. a)Ohm's parallel to the total magneti
 �eld. b) Ohm's law parallel to the meanmagneti
 �eld.7.2 The Ohmi
 
onstraint in SHEqAs seen in the previous se
tion 7.1, one would require Ohm's law to be validfor the heli
al equilibria.The main work of this thesis looks for the des
ription of the heli
al SHAxstate RFP equilibria, now 
omputed by SHEq 
ode. The equilibrium sys-tem of equations that is solved for SHEq does not a

ount for Ohm's law(
hapter 3): a natural question whi
h arises when a SHEq equilibrium hasbeen 
omputed is therefore whether the large 
urrent �owing in the plasmais 
onsistent with Ohm's law.Let us go ba
k to the Ohmi
 
onstraint in equation (A.36), written for astationary equilibrium:
Vt
2π
〈Bϕ〉 = η〈j ·B〉 . (7.7)In equation (7.7) Vt the toroidal loop voltage, and we 
an 
he
k a posterioriif it is veri�ed by SHEq's equilibria.The two sides of the Ohmi
 
onstraint (7.7) 
an be 
omputed by SHEq.The magneti
 �eld B, its toroidal 
ontravariant 
omponent Bϕ and the 
ur-rent density J are 
omputed as explained in se
tion 5.5. As for the powerbalan
e des
ribed in se
tion 6.2.2, a �at Zeff pro�le has been assumed, andthe toroidal loop voltage Vt is an experimental 
onstant value (see appendixA).The two sides of the Ohmi
 
onstraint are plotted in Fig. 7.2 for a typi
al1.5 MA SHAx state. A remarkable dis
repan
y 
an be seen, with the �rstterm being larger than the se
ond one in the inner portion of the plasma,and smaller in the outer one. Su
h dis
repan
y 
ould be partially resolvedassuming a pro�le of e�e
tive 
harge with a peak in the 
enter of the plasma,instead of the �at pro�le whi
h has been assumed here. Even if this is the137
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Figure 7.2: Left hand side (open 
ir
les) and right hand side (solid 
ir
les)of equation (7.7), plotted as a fun
tion of the e�e
tive radius ρ. The datarefer to shot 22182, at t = 49 ms.
ase, the α − Θ0 model assumed for the zeroth-order parallel 
urrent den-sity appears anyway to be not appropriate, sin
e in the outer part of theplasma the pro�le of 〈Bϕ〉 
hanges sign, whereas the other one does not.This requires either to assume a pro�le of σ13 
hanging sign in this region,or a residual dynamo 
ontribution of the se
ondary modes. Moreover, theOhmi
 
onstraint, that SHEq's equilibria do not satisfy, has been 
al
ulatedfor stationary equilibria: we 
an 
onsider them non steady state equilibria.These 
onsiderations point to the need of performing equilibrium 
al
u-lations whi
h take into a

ount the Ohmi
 
onstraint.In se
tion A.5 we introdu
e an equation for the time evolution of a nonsteady state equilibrium, that a

ounts for the Ohm's law in its formulation(the Ohm's law with non stati
 ele
tri
 �eld). The evolution of non steadystate SHEq's equilibria is an ongoing work in 
ollaboration with the TheoryGroup of TJ-II, Ciemat (Madrid) (se
tion 7.3.2).Moreover, in the Theory program for 2012 for RFX�mod we would alsolike to write a 
ode for 
omputing the dominant mode eigenfun
tion with ageneri
 
urrent density pro�le, based on the algorithm now used to 
omputethe eigenfun
tion of poloidal and toroidal �uxes using New
ombâ��s equa-tion (see 
hapter 3). The 
ode will be integrated with the SHEq 
ode for
omputing heli
al equilibria in QSH states, thus in
reasing its �exibility andallowing it to explore the e�e
t of the 
urrent pro�le on the heli
al equilibriaand in parti
ular of an ohmi
 axi�symmetri
 
urrent density J0 satisfyingOhm's law.13The proportionality between the magneti
 �eld and the plasma 
urrent density, infor
e free 
onditions: j = σB. 138



7.3 The equilibrium evolution7.3 The equilibrium evolutionIn the appendix regarding the MHD equations, a se
tion (se
. A.5) is devotedto the derivation [74℄ of an equation for the time evolution of the rotationaltransform (for its inverse, the safety fa
tor pro�le, see se
tion 9.3.1), 
om-patible with Ohm's law and suitable for in
lusion in numeri
al simulations.A 
ollaboration with the Theory Group of the TJ-II Stellarator devi
e(Ciemat, Madrid) started with the obje
tive of evolving eq.(A.62) for the ro-tational transform (or equation (9.141) for the safety fa
tor pro�le), in orderto rea
h a steady state ohmi
 equilibrium, both for TJ-II and for the heli
alSHAx states in RFX�mod. This is of 
ourse of interest for RFX�mod be-
ause (se
tion 7.2) it has been shown that the heli
al equilibria 
omputed bySHEq 
ode do not satisfy the Ohmi
 
onstraint (eq. (7.7)), and are thereforenot steady state equilibria. The interest for TJ-II is in order to analyze thedis
harges with non null plasma 
urrent: with some ohmi
 
urrent �owingin the plasma, even their equilibria evolve in time a

ordingly to eq.(A.62),[75℄ 14.Both the evolution of the rotational transform for TJ-II and of the heli
alsafety fa
tor pro�le in RFX�mod are done using the ASTRA transport 
ode:some ASTRA subroutines have been written in order to evolve the equation(that is not an equation already inside ASTRA) in an iterative way.The work done for TJ-II dis
harges is presented in se
tion 7.3.1, the one forRFX�mod in se
tion 7.3.2.For a 
omplete spe
i�
ation of the evolution problem, we need to spe
ifythe boundary 
ondition for the rotational transform ι (or the safety fa
torpro�le q), and to 
hoose a radial variable ρ to label the magneti
 �ux sur-fa
es15.For 
onsisten
y, however, to obtain a good des
ription of the plasma evolu-tion, the geometry (and therefore the radial variable ρ and the Sij elements)must be frequently re
al
ulated, to a

ount for the 
hanges due to evolvingof the equilibrium and therefore of the magneti
 �eld 
on�guration. Thiswill be done by the VMEC equilibrium 
ode.In RFX�mod, due to the presen
e of the reversal surfa
e at the edge, thesafety fa
tor pro�le is evolved instead of the rotational transform, and the14The 
on�guration is not the va
uum steady state equilibrium de�ned by
ι = −S12

S11
(7.8)15Of 
ourse all the equilibrium quantities, as for example the sus
eptan
e matrix el-ements, must be 
al
ulated with the same 
hoi
e of the radial variable ρ (see se
tion9.2.2). 139



Equilibrium evolutionmonotoni
 poloidal �ux is 
hosen as radial variable instead of the non mono-toni
 toroidal one (remember �g.4.5). The toroidal �ux is a good 
hoi
e forthe radial variable in TJ-II.7.3.1 The time evolution of ι for TJ-II (Ciemat, Madrid)The evolution equationThe equation for the Ohmi
 time evolution of the rotational transformis:
∂ι

∂t
=

∂ι

∂ψt

∂ψt
∂t

+
∂

∂ψt

[
〈E ·B ∂V

∂ψt

] (7.9)
=

∂ι

∂ψt

∂ψt
∂t

+
∂

∂ψt

[ η‖
µ0
ψ′
t (S21ι+ S22)

2 ∂

∂ρ

(S11ι+ S12

S21ι+ S22

)]
+

− ∂

∂ψt

[
η‖〈Js ·B〉

∂V

∂ψt

] (7.10)
V is the volume en
losed inside the ρ = const �ux surfa
es, ψt and ψp thetoroidal and poloidal �ux respe
tively, η‖ the parallel resistivity. Js is the
ontribution of the Bootstrap 
urrent, that we write here for 
ompleteness,but that we negle
t from now on.Equation (7.10) has been derived in appendix A.5 (see equation (A.62)) usingthe averaged Ohm's law and Faraday's law, together with the sus
eptan
ematrix elements Sij whi
h relates the 
urrents and the radial derivative ofthe �uxes (Ampère's law). The sus
eptan
e matrix has been better de�nedin appendix A.3.Equation (7.10) takes di�erent forms depending on the 
hoi
e of the radialvariable ρ (used to label magneti
 �ux surfa
es and therefore to 
ompute allthe equilibrium quantities). For TJ-II it has been 
hosen:

ρ =

√
ψt

ψt,max
ρN =

√
ψt

Bπa2
ρN (7.11)whi
h means

ψt =
Bπa2

ρ2
N

ρ2 (7.12)
ψ′
t =

Bπa2

ρ2
N

2ρ (7.13)
∂

∂ψt
=

ρ2
N

πBa2

1

2ρ

∂

∂ρ
(7.14)140



7.3 The equilibrium evolutionIn these equations B is the magnitude of the axial toroidal �eld and ρN is a
onstant with the dimensions of a lenght, for whi
h one 
an 
hoose ρN = a,where a is the minor radius of the va
uum 
hamber. This is a useful 
hoi
efor the radial variable in ASTRA, that usually has the dimension of a lenght([m℄), [61℄. With this 
hoi
e of ρ, eq.(7.10) be
omes:
∂ι

∂t
=

∂ι

∂ρ

∂ρ

∂t
+

1

ρ

∂

∂ρ

[ η‖
µ0
ρ (S21ι+ S22)

2 ∂

∂ρ

(S11ι+ S12

S21ι+ S22

)]
+

− 1

ρ

∂

∂ρ

[
η‖〈Js ·B〉

ρ4
N

4πB2a4

∂V

∂ρ

] (7.15)The �rst term of this equation is proportional to the time derivative of thetoroidal �ux (and therefore of the radial variable). We do not 
onsider thisterm, 
on�dent that it has only a weak in�uen
e on the evolution [74℄ andthat it is anyway 
onsidered when re
al
ulating the geometry (and thereforemagneti
 �elds and �uxes) after some step of the equilibrium evolution. Thelast term of equation (7.15) is related to the Boostrap 
urrent, and we negle
tit. With ASTRA just an approximate expression is therefore evolved:
∂ι

∂t
≈ 1

ρ

∂

∂ρ

[ η‖
µ0
ρ (S21ι+ S22)

2 ∂

∂ρ

(S11ι+ S12

S21ι+ S22

)] (7.16)To evolve this equation we need to �x also the boundary 
ondition for therotational transform: ι(ρ = a). Using for ι the equation (A.50) in theappendix16
ι =

µ0I

S11ψ′
t

− S12

S11
(7.18)and remembering the 
hoi
e for ρ, the boundary 
ondition 
an be:

ι(ρ = a) =
1

S11

(µ0

2

IP ρ
2
N

Bπa3
− S12

) (7.19)or, for the 
hoi
e ρN = a

ι(ρ = a ∧ ρN = a) =
1

S11

(µ0

2

IP
Bπa

− S12

) (7.20)where, for the toroidal 
urrent I, I(ρ = a) = IP with IP the plasma 
urrent(experimental value).The iterative model in ASTRA16Equivalent to eq.(8) in [74℄.Due to some numeri
al error, future work will try di�erent boundary 
ondition for therotational transform. For example, eq.(7.18) 
an also be written as ([74℄)
ι =

S22I − S12F

S11F − S21I
(7.17)where I and F are the toroidal and poloidal 
urrent of eq. (A.43). Using I(ρ = a) = IPand the 
omputed values of F (ρ = a) and of Sij(ρ = a) (out of VMEC), one 
an use thisformula for the boundary 
ondition. 141



Equilibrium evolution

Figure 7.3: The iterative model s
heme for the solution of the equilibriumtime evolution with ASTRA and its subroutines: EQUILVMEC runs VMECand 
omputes the equilibrium quantities in Boozer 
oordinates; IOTAEVOLwrites the RHS and the boundary 
ondition for the equation that ASTRAmust evolve. The 
onsistent problem implies updating the metri
s to be readby IOTAEVOL after several steps in the evolution with a �xed metri
s.
As said in se
tion 6.2.3, the ASTRA transport 
ode was initially writtenfor the analysis of Tokamaks' dis
harges, and only afterwards modi�ed towork also with non axi�symmetri
 geometries, like Stellarators' ones (or theheli
al geometry of a SHAx state in RFPs). When ASTRA runs for nonaxi-symmetri
 
on�gurations, it 
an not 
ompute the equilibrium by itself,but it needs a list of equilibrium quantities as an input [61℄.ASTRA runs reading an input �le with experimental data and equilib-rium quantities, and a model �le where all the instru
tion for the transportanalysis are listed.The right hand side (RHS) of equation (7.16) is des
ribed to the ASTRA142



7.3 The equilibrium evolutionevolution solver as a sour
e term, with zero di�usivity17 [61℄. This is writtenin the model �le, that also 
alls two di�erent subroutines (EQUILVMECand IOTAEVOL) in the iterative s
heme of �g. 7.3. The �rst one runs theVMEC equilibrium 
ode and writes a text �le with all the useful equilibriumpro�les. The se
ond one writes the RHS of equation (7.16) for ASTRA evo-lution.EQUILVMEC: It is the subroutine written to 
ouple the transport
ode ASTRA with the equilibrium 
ode VMEC.EQUILVMEC �rst writes the input �le for VMEC, reading ASTRA's out-put: the toroidal �ux and the rotational transform pro�les, together with theplasma 
urrent and the total value of the toroidal �ux at the edge. Then, itexe
utes the VMEC 
ode and the 
ode to 
onvert the equilibrium quantitiesto Boozer's straight 
oordinates. A modi�ed version of this 
ode writes in atext �le (named metri
s-average) a set of radial pro�les18: useful to evolveequation (7.16) are the Sij sus
eptan
e matrix elements, the rotational trans-form and the poloidal and toroidal 
urrents (F and I respe
tively).The output of EQUILVMEC are read by the se
ond subroutine, IOTAEVOL.IOTAEVOL: It is the subroutine that writes the RHS of the evolutionequation (7.16) and the boundary 
ondition, reading the text �le (metri
s-average out of EQUILVMEC) where all the useful radial pro�les are writtenin Boozer 
oordinates.Its output is therefore the RHS equation that ASTRA must evolve and theboundary 
ondition for the evolution.Reading IOTAEVOL's outputs, ASTRA 
an evolve the rotational trans-form a

ordingly to equation (7.16) and to the boundary 
ondition (7.19).Going ba
k to the iterative s
heme of �g.7.3, the evolution must be fre-quently19 stopped, VMEC must be run again to 
ompute the new equilib-rium pro�les from the evolved rotational transform, and a new RHS (togetherwith its boundary 
ondition) must be updated.The 
odes are prepared for this kind of self 
onsistent evolution of the rota-tional transform that implies updating the metri
s to be read by IOTAEVOLafter several steps in the evolution (with a �xed metri
s). It is worth noting17The di�usion equation employed in the ASTRA 
ode is:
∂A

∂t
= 〈∇ · (D∇A)〉 + S(ρ) (7.21)for any quantity A(ρ). The �rst term is the di�usive one (that 
ould also a

ount for
onve
tive transport with an e�e
tive di�usion 
oe�
ient Deff ) and S(ρ) the sour
e term.We 
ould not separate equation (7.16) in this form, 
hoosing therefore to write the RHSall in the sour
e term S, with zero di�usivity.18All the radial pro�les are 
omputed using the 
hosen radial variable ρ, eq.(7.11)19Future work must �nd a quantitative value for this frequently.143



Equilibrium evolutionthat during the evolution with a �xed metri
s the evolution of the RHS isonly due to the evolution of the rotational transform (be
ause their expli
itlydependen
e in the form of equation (7.16)) while the Sij elements are �xed.

Figure 7.4: Equilibrium pro�les related to the rotational transform pro�leobtained for plasma 
urrent IP = 500 A (top�left in bla
k) and useful toevolve equation (7.16): the RHS; the sus
eptan
e matrix elements S11, S12and S22. All the pro�les are written in Boozer 
oordinates for the 
hosenradial variable in the text �le metri
s_average and represent the equilibriumduring the "initial step" of the evolution. In top�left �gure, the red rotationaltransform pro�le is related to the va
uum one for 
omparison. In top.�right�gure, the RHS values are residual, this is why it looks steep.The model and the subroutines have been written during my stay inMadrid.Just some 
he
ks have been done at this time for the mentioned evolutionsteps. In �g 7.4 one 
an see the plot of some important quantities, as theRHS and the sus
eptan
e matrix elements for the initial rotational transformpro�le (obtained for plasma 
urrent IP = 500 A).Some preliminary resultStellarators' dis
harges 
an be 
urrent�free, whi
h means that I = 0, and144



7.3 The equilibrium evolution

Figure 7.5: Top: some intermediate moment of the ASTRA time evolutionof the rotational transform and the RHS from some equilibrium with Ip 6= 0to the steady state equilibrium with Ip = 0. The initial equilibrium stateis the one obtained for IP = 500 A and showed in �g.7.4. In bla
k theinitial equilibrium pro�les, in red the �nal steady state ones, 
olors for nineintermediate pro�les. Bottom: the evolved rotational transform pro�le(bla
k line) and the va
uum one (red points) that perfe
tly overlap.
145



Equilibrium evolutiontherefore (see equation (A.50))
ι = −S12

S11
(7.22)It is 
alled the va
uum rotational transform, and the related equilibriummust be steady state.From the analyti
al point of view it is easy to prove that using eq.(7.22),

(S11ι+ S12

S21ι+ S22

)
7→
(S11(−S12

S11
) + S12

S21(−S12
S11

) + S22

)
= 0 (7.23)and therefore all the RHS in the evolution equation (7.16) vanishes, provingthat the Stellarator va
uum equilibrium is already steady state.From the operative point of view this 
an be a �rst 
he
k of the ASTRAevolution.In ASTRA it is possible to 
hange some dis
harge parameter (like the plasma
urrent) during the run. Setting IP = 0 (and therefore I = 0) to look forthe stationary va
uum equilibrium, the system immediately relaxes to theva
uum rotational transform. In �g.7.5 (top) one 
an see the ASTRA evo-lution when IP = 0 is set, both for the rotational transform pro�le and forthe RHS of equation (7.16). It is worth noting that during this evolution themetri
s elements have not been updated, therefore the evolution of the RHSin �g.7.5 is only due to the evolution of the rotational transform and not tothe Sij elements that represent the metri
s during the "initial step". Thisis therefore just an example with a long time step before updating the ge-ometry, the 
omplete MHD problem being ful�lled just by updating the Sijmore often. In �g.7.5 (bottom) one 
an see the evolved rotational transformpro�le (bla
k line) and the va
uum one (red points)20: as one 
an see, theyperfe
tly overlap.We are therefore 
on�dent that ASTRA is working 
orre
tly with thewritten subroutines for the time evolution of ι. More validation and subse-quent analysis will be matter of future work.7.3.2 The time evolution of q for RFX�modIn se
tion 7.3.1 is presented the work done with the Theory Group of Ciemat(Madrid) for the evolution of the rotational transform in TJ-II (non nullplasma 
urrent) Stellarator dis
harges.20The va
uum rotational transform pro�le 
omes from tj2 
odes (based on Biot-Savartlaw) that uses the 
urrents in the external 
oils as input.146



7.3 The equilibrium evolutionThe work done for RFX�mod is very similar to the one for TJ-II, but somedi�eren
es arise due to the reversal region only present in RFX�mod: thesafety fa
tor pro�le (q = 1/ι) is evolved instead of the rotational transform(that diverges at the reversal surfa
es, whereas q simply vanishes) and afun
tion of the monotoni
 poloidal �ux must be 
hosen for the radial vari-able (instead of a fun
tion of the toroidal �ux that is non monotoni
 in areversed 
on�guration).This implies some modi�
ations of the ASTRAmodel and subroutines (EQUI-LVMEC and IOTAEVOL) in order to evolve the equation for the safety fa
torand to use the right radial variable and boundary 
onditions.The equilibrium evolution is an important point for RFX�mod dis
harges,due to the fa
t that the heli
al equilibria 
omputed by SHEq (for SHAxstates) are not ohmi
 equilibria (see se
tion 7.2).The evolution equationFollowing the same steps ne
essary to derive ∂ι/∂t using Ampère's, Fara-day's and the parallel Ohm's laws (see appendix A.5 and Strand's and Houl-berg's paper [74℄), in se
tion 9.3.1 we derived the equation for the timeevolution of the safety fa
tor pro�le (∂q/∂t).The equation for (dq/dt) is21:
∂q

∂t
=

∂q

∂ψp

(∂ψp
∂t

+ Vt(0)
)
− ∂

∂ψp

[ η‖
µ0
ψ′
p (S21 + S22 q)

2 ∂

∂ρ

(S11 + S12 q

S21 + S22 q

)]
+

− ∂

∂ψp

[
η‖〈Js ·B〉

∂V

∂ψp

] (7.24)where ψp is the poloidal �ux through the heli
al �ux surfa
es ρ = const, Sijthe sus
eptan
e matrix elements, V the volume en
losed inside ρ = const,
Vt(0) the toroidal loop voltage on the axis.As done for the evolution of the rotational transform, we negle
t both theterm involving the Boostrap 
urrent Js and the �rst term of the equationthat involves the 
hange in the geometry and the loop voltage on the axis.However, the term proportional to Vt(0) (not present in the evolution of
ι) should probably be taken into a

ount and the term involving the thenon�indu
tive 
urrent Js 
ould be used to a

ount for some residual dynamo
urrents (but we will a

ount for them role just in future work). We thereforeevolve with ASTRA just an approximate expression (similar to eq.(7.16)):

∂q

∂t
≈ − ∂

∂ψp

[ η‖
µ0
ψ′
p (S21 + S22 q)

2 ∂

∂ρ

(S11 + S12 q

S21 + S22 q

)] (7.25)21See equation (9.141). 147



Equilibrium evolutionEquation (7.25) takes di�erent forms depending on the 
hoi
e of theradial variable ρ. For RFX�mod the 
hoi
e is22
ρ =

√
ψp

ψp,max
ρN (7.26)whi
h means

ψp =
ψp,max
ρ2
N

ρ2 (7.27)
ψ′
p =

ψp,max
ρ2
N

2ρ (7.28)
∂

∂ψp
=

ρ2
N

ψp,max

1

2ρ

∂

∂ρ
(7.29)

ρN is a 
onstant with the dimensions of a length, and one 
an 
hoose ρN = a,where a = 0.459m is the minor radius of RFX�mod va
uum 
hamber. Thisis a useful 
hoi
e of the radial variable for ASTRA, that usually has thedimension of a lenght ([m℄). With this 
hoi
e of ρ, eq.(7.25) be
omes:
∂q

∂t
≈ −1

ρ

∂

∂ρ

[ η‖
µ0
ρ (S21 + S22 q)

2 ∂

∂ρ

(S11 + S12 q

S21 + S22 q

)] (7.30)To evolve this equation we need to �x also the boundary 
ondition: q(ρ = a).Using for q the inverse of equation (A.50) in the appendix:
q =

S11F − S21I

S22I − S12F
(7.31)where I and F are the toroidal and poloidal 
urrent, eq.(A.42)�(A.43). Theboundary 
ondition for the safety fa
tor 
an be found using the edge valuesof all the quantities: I(ρ = a) = IP and the 
omputed values of F (ρ = a)and of Sij(ρ = a) (output of VMEC).It is worth noting that the aim of this work is to evolve the heli
al equi-libria 
omputed by SHEq: the magneti
 �ux surfa
es labelled by ρ are the

Σ(χ) magneti
 �ux surfa
es de�ned in se
tion 6.1, where χ is the heli
al �ux;the poloidal �ux is the poloidal �ux ψp(χ) de�ned in se
tion 4.4 as the �uxthrough the heli
al �ux surfa
es Σ(χ) at the poloidal�like angle θ∗ = const,de�ned on the heli
al axis of the system (se
tion 4.4.1). This angle is relatedto the heli
al q�pro�le in equation (6.27):
q =

dϕ

dθ∗
=
dψh
dψp

(χ) (7.32)22Consider ψp,max = π RaBP = R
2
µ0IP . The se
ond equivalen
e is derived using thisrelation for the total magneti
 poloidal �eld: BP (a) = µ0 I/(2πa), with a minor radiusand R major radius. 148



7.4 The paramagneti
 pin
hwhere ψh(χ) is the non monotoni
 toroidal �ux de�ned in equation (4.19)and plotted in �g.4.5, and ψp(χ) the (monotoni
) poloidal �ux de�ned inequation (4.19).The VMEC 
ode 
onverges very near to this value of q, 
omputed by SHEq,and this is the heli
al safety fa
tor that is evolved by ASTRA.The angle θ∗ is topologi
ally equivalent ([76℄) to the Boozer poloidal angleused by the VMEC equilibrium 
ode to 
ompute the equilibrium pro�les.Some preliminary resultsThe same subroutines used for TJ-II, modi�ed for the evolution of thesafety fa
tor and its boundary 
ondition, are used.The VMEC equilibrium 
ode was initially written for Stellarator ma
hines,and then modi�ed to work for reversed 
on�gurations too: this must be takeninto a

ount in EQUILVMEC to write the 
orre
t input �le for VMEC23.In �g. 7.6 are plotted some important equilibrium quantities: the initially
q�pro�le (output of VMEC), the sus
eptan
e matrix elements, and the RHSof equation (7.30).It is not easy to devise a simple 
he
k for ASTRA evolution, as donefor TJ-II with the va
uum steady state equilibrium. Does a sort of va
uumequilibrium exist for RFPs? Of 
ourse it is not the I = 0 
ase, be
ause zeroplasma 
urrent does not indu
e any heli
al SHAx state.The work for RFX�mod is ongoing, as the 
ollaboration with Ciemat.7.4 The paramagneti
 pin
hThe paramagneti
 pin
h is a 
ylindri
al magneti
 
on�guration, with an ax-ial ele
tri
 �eld, E ≡ Ez. Magneti
 �eld lines are helix that lie on 
ir
ularmagneti
 �ux surfa
es: B ≡ (0, Bθ, Bz) and J ≡ (0, Jθ, Jz).We use the paramagneti
 pin
h as a simple example to show (se
tion 7.1) thatthe axial magneti
 �eld 
an not reverse in an axi�symmetri
 
on�guration,if the ohmi
 
onstraint is taken into a

ount. An example of axi�symmetryis the 
ylindri
al magneti
 �eld 
omponents of the paramagneti
 pin
h, thatdepend only on the radius r of the 
ir
ular (and nested) �ux surfa
es.Let me write the equation system for the paramagneti
 pin
h equilib-rium24.23In RFX�mod it is used the version 8.47 III with �xed boundary [?℄.24Let me derive the equilibrium system from the usual MHD equations, written for a
ylindri
al geometry (any variable depends only on the radius r of the 
ir
ular magneti
149



Equilibrium evolution

Figure 7.6: Equilibrium pro�les related to the safety fa
tor pro�le (top�left)and useful to evolve equation (7.30): the RHS and the sus
eptan
e matrixelements S11,S12 and S22. All the pro�les are written in Boozer 
oordinatesfor the 
hosen radial variable in the text �le metri
s_average.�ux surfa
es):
∇× B = µ0j 7→

8
<
:

1
r
d
dr

(r Bθ) = µ0 jz

dBz
dr

= −µ0 jθ

(7.33)
E‖ = η‖j‖ 7→

8
>><
>>:

jz =
E‖

η‖

Bz
B

= E0

η‖

B2

z

B2

jθ =
E‖

η‖

Bθ
B

= E0

η‖

Bz Bθ
B2

(7.34)
J × B = 0 7→

(
j ≡ j‖ = (0, jθ, jz)

j⊥ = 0
(7.35)From the (parallel) Ohm's law one 
an 
ompute j‖ = (0, jθ, jz).Be
ause E = (0, 0, Ez) by hypothesis, E‖ = E0 (Bz/B), where Bz/B is the proje
tionoperator on Bz (as Bθ/B is the proje
tion operator on Bθ).Using the de�nition

U =
E0 µ0 a

η‖B0
(7.36)150



7.4 The paramagneti
 pin
hUsing, just for simpli
ity of notation, the de�nition
U =

E0 µ0 a

η‖B0
(7.38)where E0 and B0 are the axial ele
tri
 and magneti
 �eld, a the radius ofthe last 
losed �ux surfa
e and η‖ the plasma resistivity parallel to magneti
�eld lines, the equations for the normalized 
omponents of the magneti
 �eldare: 




1
r
d
dr (r Bθ) = U B2

z
B2

dBz
dr = −U Bz Bθ

B2

(7.39)From the parallel Ohm's law, on
e the system (7.39) has been solved for themagneti
 �eld 
omponents Bθ and Bz, one 
an 
ompute the 
omponents ofthe parallel 
urrent density25:




jθ = E0
η

Bz Bθ
B2

jz = E0
η

B2
z

B2

(7.40)In �g. 7.7 one 
an see the solution of the systems (7.39) for the magneti
�eld 
omponents (dashed lines), whose integration is done with the bound-ary 
ondition on the axis: Bz(0) = B0 and Bθ(0) = 0. The 
olored lines arethe solution for some (in
reasing from blue to green) value of the parameter
U , dire
tly proportional to the axial ele
tri
 �eld E0 and therefore relatedto the plasma 
urrent. As one 
an see, no reversal is found for Bz.Let us 
on
lude the 
hapter with some analyti
al 
onsiderations. Inse
tion 9.3.2 the equilibrium system (A.52) of MHD equations is rearrangedin a di�erent form, and a system of two equations for the radial derivativeof the poloidal F and toroidal I 
urrents is obtained, (9.151)�(9.152). Thesolution is an ohmi
 steady state equilibrium, that has been solved for theparamagneti
 pin
h with the boundary 
ondition on the magneti
 axis I(0) =
... and F (0) = .... The solutions for I and F are shown in �g. 7.7 (
ontinuouslines); using the system (7.46) one 
an 
ompute the (measurable) magneti
just for simpli
ity of notation, and the normalized variables Bz 7→ (Bz/B), Bθ 7→ (Bθ/B),
r 7→ r/a, the ohmi
 equilibrium system to be solved for a paramagneti
 pin
h is

8
<
:

1
r
d
dr

(r Bθ) = U
B2

z

B2

dBz
dr

= −U Bz Bθ
B2

(7.37). We will prove later that it is exa
tly the system (A.52) for a for
e free ohmi
 equilibriain a 
ylindri
al geometry25The 
urrent density has only the parallel 
omponent, the perpendi
ular 
omponentbeing zero be
ause of the for
e free hypothesis151



Equilibrium evolution�eld 
omponents from I and F : the solutions perfe
tly overlap to the dashedlines in �g. 7.7 that 
ame from the solution of the paramagneti
 pin
h system(7.39).

Figure 7.7: The poloidal and toroidal magneti
 �eld 
omponents (up) andthe 
orrespondent 
urrents (down). The 
olored lines are the solution forsome (in
reasing from blue to green) value of the parameter U from equation(7.38), dire
tly proportional to the axial ele
tri
 �eld E0 and therefore to theplasma 
urrent. Comments: 1. The magneti
 �eld 
omponents are foundfrom the solution of two equivalent equilibrium systems, eq.(7.39)�(7.46),for whi
h are used dashed or 
ontinuous lines that perfe
tly overlap. Fromeq.(7.46), one obtains the relations: Bθ ∼ IR/r and Bz ∼ F , where R is themajor radius of the torus and r the minor one. 2. Be
ause the paramagneti
pin
h is an axi�symmetri
 system, the toroidal �eld 
an not reverse.7.4.1 The paramagneti
 pin
h in the S&H formalismThe equivalen
e of the two equation systems ((7.39) and (9.151)�(9.152) or(7.46)) 
an also be proved in an analyti
al way in the simple 
ylindri
algeometry of the paramagneti
 pin
h.Summarizing, we want to 
ompare eq.(9.151) for F ′ (where the diagonalterm of the sus
eptan
e matrix are null due to 
ylindri
al geometry) with152



7.4 The paramagneti
 pin
hthe equation for B′
z:

F ′ = − Û (L11I)(L22F )

(L11I2 + L22F 2)
←→ dBz

dr
= −U Bz Bθ

B2
(7.41)and the same for eq.(9.152) for I ′ and the equation for B′

θ

I ′ = − Û (L11I)(L22F )

(L11I2 + L22F 2)

I

F
+ Û L22 ←→

1

r

d

dr
(r Bθ) = U

B2
z

B2
(7.42)In eq.(7.41)�(7.42) the radial derivative of the 
urrents I and F are writ-ten for the easy 
ase of a 
ylinder. Let us 
onsider a 
ylinder of lenght Land periodi
ity 2πR in the axial z 
oordinate to write expli
itly the sus
ep-tan
e matrix elements (and its inverse, the Lij elements). Then we write thepoloidal 
urrent F and the toroidal 
urrent I in terms of the magneti
 �eld
omponents, in order to be able to 
ompare the relations in eq.(7.41)�(7.42).Going ba
k to the 
ylindri
al metri
 in appendix B.2.1 and to the de�ni-tions (A.46)�(A.48) of the sus
eptan
e matrix elements (for diagonal metri
s)one �nds:

µ0

(
I
F

)
=

(
Lr

2πR 0

0 L
2πr

)

︸ ︷︷ ︸
[Sij ]

(
ψ′
p

ψ′
t

) (7.43)
(
ψ′
p

ψ′
t

)
= µ0

(
2πR2

rL 0
0 2πr

L

)

︸ ︷︷ ︸
[Lij ]=[Sij ]−1

(
I
F

) (7.44)and this solves the �rst step, of writing expli
itly the Lij elements. (No
onfusion will arise between the same symbol L for the 
ylinder lenght andthe inverse of the sus
eptan
e matrix, for whi
h just the elements Lij willbe used).Let me now show how to link the 
urrents I and F to the magneti
 �eld
omponents.Using the general 
anoni
al form for the magneti
 �eld B (or, in an equivalentway, equations (2.147)�(2.148)):




Bθ = 1
2π

√
g ψ

′
p = 1

2πrR ψ
′
p

Bz = 1
2π

√
g ψ

′
t = 1

2πrR ψ
′
t

(7.45)remembering the Ja
obian √g = rR of the 
ylindri
al 
oordinates fromappendix B.2.1. These are by de�nition the 
ontravariant 
omponents Bi onthe (non adimensional and non normalized) ei basis ve
tors (see 
hapter 5).153



Equilibrium evolutionWe need to work with the (
ovariant) measurable 
omponents (B̂i), that areeasy to derive from formulas (5.66)�(5.67) in a diagonal geometry. Using forthe derivative of the �uxes the sus
eptan
e matrix de�nition, one obtains:




B̂θ = µ0R
Lr I = µ0

2πR L11 I

B̂z = µ0F
L = µ0 L22

2πr F

(7.46)Inverting these relations one 
an write the equation for the 
urrent 
ompo-nents in terms of the measurable magneti
 �eld 
omponents:




I = 2πR
µ0

1
L11

B̂θ

F = µ0F
L = 2πr

µ0

1
L22

B̂z

(7.47)And also the useful term
B2 = (B̂θ)

2 + (B̂z)
2 =

µ2
0

2πrL
(L11I

2 + L22F
2) (7.48)Using the equations (7.47) for I and F , some other relations must be �ndin order to make the 
omparison in eq.(7.41)�(7.42):

I2 =
4π2R2

µ2
0

1

L2
11

B̂2
θ (7.49)

F 2 =
4π2r2

µ2
0

1

L2
22

B̂2
z (7.50)

I ′ =
2πR

µ0

1

L11

dB̂θ
dr

+
L

µ0R
B̂θ (7.51)

F ′ =
2π

µ0

1

L22
B̂z −

L

µ0r
B̂z +

2πr

µ0

1

L22

dB̂z
dr

(7.52)Therefore, using these equations and the expli
it geometri
al values of Lij ,the equation for F ′ in (7.41) 
an be written as:
2π

µ0

1

L22
B̂z −

L

µ0r
B̂z +

2πr

µ0

1

L22

dB̂z
dr

=

= − Û

[(
2πR2

rL

)(
2πR
µ0

1
L11

B̂θ

)] [(
2πr
L

)(
2πr
µ0

1
L22

B̂z

)]

(
2πR2

rL

)(
4π2R2

µ2
0

1
L2

11
B̂2
θ

)
+
(

2πr
L

)(
4π2r2

µ2
0

1
L2

22
B̂2
z

) (7.53)and (only with algebri
 steps) it redu
es to
dBz
dr

= −U Bz Bθ
B2

(7.54)154



7.4 The paramagneti
 pin
hif and only if
Û =

L2

µ02πR
U (7.55)This relation is dimensionally 
orre
t. Eq.(7.55) is the same result that arises
omparing the two equations in (7.42).This 
an be 
onsidered an analyti
al proof that solving the di�erentialsystem for the 
urrents I and F is equivalent of solving the usual stati
 MHDequation system.From the numeri
al point of view, the solutions from the integration of I ′and F ′ perfe
tly overlap in the plots of �g.7.7.
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Chapter 8Plasma boundary in SHAxstatesAs seen in the introdu
tion, the m = 1 mode spe
trum during SHAx states,obtained in RFX-mod at the 1.5 MA plasma 
urrent level, displays a domi-nant mode (the n = 7 one) and a strong redu
tion of the se
ondary modes[77℄. In �g. 8.1, where the average spe
tra of both m = 0 and m = 1 modesin SHAx states are shown, one 
an see that also the m = 0 mode spe
trumis strongly peaked on the n = 7 mode in SHAx states. This is a dire
t 
onse-quen
e of the toroidal 
oupling between the two modes [54℄, that 
an be seenalso in �g.8.2: in
reasing the plasma 
urrent the m = 0 spe
trum displaysthe same behavior of the m = 1 one, i.e. the dominant n = 7 mode in
reasesits relative amplitude while the se
ondary mode amplitude is redu
ed (one
an 
ompare �g.8.2 and �g.1.9).Thus, it is possible to 
on
lude that the RFP evolves, as plasma 
urrent isin
reased, towards a SHAx state 
hara
terized by the presen
e of a dominant
m = 1 mode and a dominant m = 0 mode, both having the same n number.During SHAx states the 
on�nement properties of the 
on�guration areenhan
ed, due to the development of an internal transport barrier [54℄. More-over a better distribution of the plasma�wall intera
tion 
an be observed withrespe
t to the MH 
ase, [78℄ operating at shallow reversal1.The m = 0 modes play a 
ru
ial role in determining the plasma�wall intera
-tion, being resonant on the reversal surfa
e, near the �rst wall. Neverthelessthey have been negle
ted in the equilibrium re
onstru
tion of the heli
alSHAx states 
omputed by the SHEq 
ode and dis
ussed in the previous
hapter (
hapters 4 to 7). An idea for future work is to 
onsider the domi-nant m = 0 mode as a perturbation to SHEq's equilibria (in the same wayas the axi�symmetri
 equilibrium B0 has been perturbed by the dominant1Shallow reversal means a small (absolute) value of the reversal parameter F introdu
edin equation (1.12) as a measure of the distan
e between the �rst wall and the reversalsurfa
e. 157



Plasma boundary in SHAx states

Figure 8.1: Average spe
tra of m=0 and m=1 modes in 1.5 MA SHAxstates. The mode amplitudes are evaluated on Bφ measurements performedoutside the plasma.
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Figure 8.2: Amplitude of the m = 0/n = 7 mode (full 
ir
les) and of theother m = 0 modes up to n = 15 (empty 
ir
les) in QSH 
onditions plottedas a fun
tion of plasma 
urrent. The mode amplitudes are normalized tothe average poloidal �eld at the wall. One should 
ompare this �gure with�g.1.9 left.
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8.1 Topology of edge region in SHAx states
m = 1/n = 7 mode to 
ompute the heli
al SHEq's equilibria). In this 
hap-ter we study the m = 0 modes role in a more experimental way.In this se
tions 8.1�8.2 we perform a detailed examination of the intrinsi
edge magneti
 topology in SHAx states obtained in the RFX-mod devi
e,relating it also to edge measurements. The results allow an ambitious 
on-
lusion, whi
h is that intrinsi
 properties of the magneti
 
on�guration 
ouldbe exploited to develop a divertor 
on
ept, similar to the island divertor ofstellarators [79℄ (whereas up to now in RFX�mod the graphite �rst wall isused as a limiter).While further theoreti
al studies need to be done, and a pra
ti
al implemen-tation has to be demonstrated, the proposed approa
h is anyway 
onditionedto a good 
ontrol of the radial magneti
 �eld at the edge, whi
h in RFX-modis obtained through a sophisti
ated system of 192 feedba
k-
ontrolled saddle
oils [43, 80℄. In se
tion 8.3 the result of 
ontrolling the edge features byapplying non�zero boundary 
onditions to the dominant m = 1 and m = 0modes is presented.The work in se
tions 8.1�8.2 is also published in E. Martines, R. Loren-zini, B. Momo et al., [3℄.The results of se
tion 8.3 are related to dis
harges done during the 2011RFX�mod experimental 
ampaign, and have been already presented duringAPS 2011 
onferen
e (G. De Masi, B. Momo: oral se
tion [?℄).8.1 Topology of edge region in SHAx statesThe m = 0 modes are all resonant in the RFP around the reversal surfa
e.The distan
e of this surfa
e from the �rst wall 
an be externally imposed by
hanging the 
urrent �owing in the toroidal �eld 
oil system. The distan
efrom the wall is indire
tly quanti�ed by the reversal parameter F , de�nedin the introdu
tion (
hapter 1). A 
ru
ial observation made in RFX�mod isthat shallow F , whi
h 
orresponds to a small distan
e of the reversal surfa
efrom the wall, turns out to be a better 
ondition at high plasma 
urrentthan deeper F , as far as plasma�wall intera
tion is 
on
erned. Why plasma-wall intera
tion in RFX-mod high 
urrent operation appears to be lower atshallow reversal is a question to whi
h we give an answer in this se
tion,introdu
ing the RFP divertor idea.In order to understand the magneti
 topology of the edge region in SHAxstates, and in parti
ular the position and shape of the LCFS2, we have used a2The Last Closed Flux Surfa
e (LCFS), that is the outermost magneti
 surfa
e notinterse
ting any solid obje
t. 159



Plasma boundary in SHAx states�eld-line tra
ing 
ode named FLiT [81℄ to tra
e the magneti
 topology in theplasma edge. FLiT uses the output of an algorithm for the re
onstru
tionof the tearing mode eigenfun
tions over the whole plasma volume based onNew
omb's equation, supplemented with edge magneti
 measurements [53℄(see 
hapter 3)3.Fig. 8.3 displays two Poin
aré plots of the magneti
 �eld lines in the r-ϕplane on the outer equator (where the main magneti
 �eld is almost poloidal).The �rst one is obtained during a 1.5 MA SHAx state at shallow reversal(F = −0.017), while the se
ond depi
ts a similar 
ondition obtained at deepreversal (F = −0.181). Thi
k lines are superposed on the plots, depi
tingthe position of the LCFS, 
omputed from FLiT outputs by looking at where,for ea
h toroidal and poloidal position, the most internal open �eld line isfound.The new and striking result is that in the SHAx 
ondition obtained at shallowreversal the LCFS is well separated from the wall by the m = 0 islands(and that their X-points a
t so as to form a divertor�like 
on�guration, see�g.8.10). It is important to remark that the LCFS does not tou
h the wallanywhere, not only in the plane displayed in the �gure.On the 
ontrary, at deep reversal the LCFS is lo
ated beyond the m = 0island 
hain and a limiter�like 
ondition is obtained.In the two plots the reversal surfa
e of the toroidal �eld is lo
ated at theposition where the O-points of the m = 0 islands are found, whi
h means at
r = 0.45 m for the shallow F 
ase and at r = 0.41 m for the deep F one.

Figure 8.3: Poin
aré plot of the magneti
 �eld lines on the outer equatorfor a SHAx state at 1.5 MA and shallow reversal (right) and for a similar 
on-dition at deep reversal (left). The thi
k line marks the position of the LCFS.while the horizontal line at r = 0.459 m indi
ates the �rst wall position.The relationship between the o

urren
e of a divertor�like 
on�guration3FLiT uses the same eigenfun
tions of the perturbation to the axi�symmetri
 magneti
�eld that are used by SHEq 
ode. 160



8.2 Plasma wall intera
tion

Figure 8.4: Minimum distan
e of the LCFS from the �rst wall plotted asa fun
tion of the reversal parameter F . The shaded region marks the Frange where transition from a limiter�like geometry to a divertor�like oneo

urs. The blue point is related to the limiter�like 
on�guration representedin the left Poin
aré in �g. 8.3; the red point is related to the divertor�like
on�guration represented in the right Poin
aré in �g. 8.3.and the reversal parameter value has been investigated more systemati
allyby 
omputing the minimum distan
e δmin of the LCFS from the wall for aset of SHAx states obtained at di�erent F values.Fig. 8.4 displays a plot of δmin as a fun
tion of F . It is 
learly seen that as
F goes from zero towards more negative values, that is from shallow reversalto deep reversal, the LCFS distan
e from the wall is in
reased, up to valuesof F between -0.10 and -0.13, where the m = 0 islands do not interse
t thewall any more and the limiter-like situation (δmin = 0) is obtained. Thisresult has been 
on�rmed by the single band re�e
tometer [82℄ monitoringthe distan
e from the wall of a plasma layer with �xed density [83℄.This 
an be 
onsidered an explanation for the empiri
al eviden
e of a re-du
ed plasma-wall intera
tion in shallow F dis
harges, whi
h 
onstitute thepreferred mode of operation for RFX�mod at high 
urrent.8.2 Plasma wall intera
tionIn order to better understand the stru
ture of the S
rape�O� Layer (SOL)formed beyond the LCFS in the shallow F 
ase (shown in the left frame ofFig. 8.3), a 
olour s
ale plot of the 
onne
tion lengths of �eld lines passingthrough a grid of points in the r�ϕ plane has been 
onstru
ted. This hasbeen done integrating the �eld line equations from the starting point, bothforwards and ba
kwards, until the �rst wall is rea
hed. The 
onne
tionlength is then de�ned as the sum of the two lengths 
overed in the twodire
tions. 161



Plasma boundary in SHAx states

Figure 8.5: Map of the 
onne
tion lengths on the r-ϕ plane lo
ated at θ = 0(external equatorial plane).The result of the pro
edure is shown in Fig. 8.5, for the plane at θ = 0◦ (theexternal equatorial plane). The maximum value of the 
onne
tion length,for whi
h the red 
olour has been used, also marks the 
losed �eld lines. The
on�ned plasma, en
losed by the LCFS modulated by the n = 7 pattern,
an be 
learly identi�ed. Furthermore, other red regions, 
orresponding to
m = 0 islands that do not tou
h the �rst wall, 
an be observed. Beyond theLCFS a SOL is 
reated.In parti
ular, in the last 
m near the �rst wall relatively short 
onne
tionlengths are found, with only o

asional regions of longer 
onne
tion lengthsrea
hing the wall.The 
onne
tion length of the �eld lines tou
hing di�erent points of the�rst wall is 
losely related to the lo
al distan
e between the LCFS and thewall. This is shown in Fig. 8.6, where the 
onne
tion length of points of the�rst wall lo
ated on the outer equator is shown as a fun
tion of the toroidalangle, for the same 
ondition of the left frame of Fig. 8.3.It is possible to observe that the 
onne
tion length displays a n = 7 periodi
stru
ture, with rounded maxima whi
h are anyway lower than the length ofone poloidal turn (∼ 3 m). Superimposed to this, limited regions of mu
hlarger 
onne
tion lengths are found, indi
ating �eld lines whi
h manage toperform many poloidal turns before tou
hing again the wall. The origin ofthese long �eld lines are positioned on the maxima of the n = 7 pattern (andtherefore on the X�points of the m = 0 island 
hain).In the same �gure is also plotted the distan
e between the LCFS and the�rst wall, again plotted as a fun
tion of the toroidal angle for points along162
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Figure 8.6: Conne
tion lengths of �eld lines originating from di�erentpoints of the �rst wall (r = 0.459 m) on the outboard equatorial plane(θ = 0◦) and distan
e between the LCFS and the wall on the same plane,both plotted as a fun
tion of the toroidal angle.the outer equator. The n = 7 periodi
ity 
an also be 
learly seen.The 
omparison of the two 
urves allows to 
on
lude that in the posi-tions where long 
onne
tion lengths exist, the LCFS�wall distan
e is shorter;while in regions of short 
onne
tion length the LCFS�wall distan
e is larger.The 
onsequen
e that 
an be drawn from this fa
t, when thinking to theplasma�wall intera
tion, is that in the �rst situation a stronger intera
tionis expe
ted: both be
ause of parallel �ows, sin
e a longer �ux tube 
olle
tsa larger amount of energy; and be
ause of perpendi
ular �uxes, whi
h orig-inate from the LCFS whi
h is less distant.The hypothesis that regions of the �rst wall with larger 
onne
tion lengthhave a stronger plasma�wall intera
tion has been validated using experimen-tal data, from ISIS and a fast CMOS 
amera.ISISISIS (the Integrated System of Internal Sensors) is 
omposed by two sub-systems of ele
trostati
 and magneti
 probes lo
ated inside the RFX-modva
uum vessel (5 mm behind the graphite tiles), [84, 85℄. In this work weused only the ele
trostati
 arrays (72 probes distributed on the externalequatorial plane and 7 on the poloidal plane at a spe
i�
 toroidal angle) ableto 
olle
t �oating potential Vf data [11℄. This system, thus, enables us to
reate a toroidal and poloidal map of the �oating potential (linked to the163



Plasma boundary in SHAx statesdynami
s of the ele
tron traveling at the edge) during the RFX-mod highplasma 
urrent operations. The result for a typi
al SHAx state is shown in�g.8.7 (top) and is plotted in terms of �u
tuation δVf with respe
t to a meanvalue.The idea is to 
ompare the �oating potential behavior at the edge with theaforementioned 
onne
tion lenght evaluated using FLiT 
ode.As previously measured by insertable probes in low plasma 
urrent dis
harges[86, 87℄, in RFX-mod the �oating potential is found to be 
lose to zero orslightly positive near the �rst wall, whereas it turns markedly negative inthe more internal plasma layers.Looking at the toroidal and poloidal map shown in �g.8.7 (bottom) one 
anreasonably interpret the regions with a δVf < 0 (displaying a n = 7 period-i
ity) as 
aused by the more internal plasma layers approa
hing the probe(lo
ated at r/a = 1) and thus as a tra
k of a lo
alized plasma wall intera
-tion.This allows a dire
t 
omparison of the ISIS data with the 
onne
tion lenghtmaps in the toroidal and the equatorial plane (also shown in �g.8.7) andwould 
on�rm the hypothesis already dis
ussed that the regions featuringlong 
onne
tion lenght are those ones 
hara
terized by a larger plasma wallintera
tion.Fast CMOS 
ameraA further 
on�rmation 
omes from the fast CMOS 
amera that looks at Hαline emission, originating from neutral hydrogen atoms 
oming out from thewall4.Fig. 8.8a shows the emission pattern dete
ted by the 
amera in a 1.5 MAdis
harge, during a SHAx phase. The a
tual image has been remapped to aregular grid in the the toroidal and poloidal angles. The �gure displays analmost verti
al emission pattern, with a dis
retization whi
h 
orresponds tothe tiles whi
h 
ompose the �rst wall5.In Fig. 8.8b the 
onne
tion lengths for the same region of the �rst wall, inthe same dis
harge and at the same time instant are plotted. It is 
learlyseen that the 
onne
tion length pattern is similar to the emission pattern ofthe 
amera. The two patterns are displa
ed one with respe
t to the otherby a few degrees in the toroidal dire
tion. This dis
repan
y appears in all
ases, and is attributed to a systemati
 error.4Sin
e in RFX�mod the density pro�le displays a strong gradient in the �rst few 
m ofthe plasma, it is possible to asso
iate the emission to the heat load of the nearby portion ofthe �rst wall, under the assumption that a stronger plasma-wall intera
tion heats lo
allythe wall and 
auses a stronger hydrogen release. The 
amera used in RFX-mod wasoperated with a frame rate of 10,000 frames per se
ond, and a shutter time of 1/10,000 s.5This dis
retization is due to the tile shape, whi
h 
auses an in
reased intera
tion inthe 
entral part of the tile. A darker region in the middle of the bright pattern (around
θ = 0◦) is due to the presen
e of a port, as it is the dark oval region more on the left(around φ = 142◦), [88℄. 164
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tion

Figure 8.7: The 
onne
tion lengths (L) are 
ompared with the shift of theLCFS (that one 
an think as the distan
e of the LCFS and the �rst wall,already plotted in �g.8.6) in red, and with the ISIS measurements of the�oating potential in bla
k. Top: the 
omparison is between magneti
 �eldlines length originating from di�erent points of the �rst wall (r = 0.459 m)almost on the outboard equatorial plane (θ = 340.7◦) and measurements onthe same plane, both plotted as a fun
tion of the toroidal angle. Bottom: the
omparison is between magneti
 �eld lines length originating from di�erentpoints of the �rst wall (r = 0.459 m) on the poloidal plane (at ϕ = 246.5◦)and measurements on the same plane, both plotted as a fun
tion of thetoroidal angle.
165
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Figure 8.8: Pattern of Hα emission re
orded by a fast 
amera and mappedonto a portion of the poloidal-toroidal plane (a). Map of the 
onne
tionlengths of the �eld lines originating from the �rst wall for the same dis
hargeand time instant (b).Having established that the magnitude of the plasma�wall intera
tion indi�erent regions of the �rst wall 
an, to a �rst approximation, be quanti�edby looking at the 
onne
tion length of �eld lines leaving them, it is possibleto build a map of this intera
tion by following �eld lines starting from agrid 
overing the �rst wall. Moreover, from the 
onne
tion length one 
antherefore obtain 
omplementary information with respe
t to the ones fromthe diagnosti
s: experimental data usually refer only to a �xed position,whereas the 
onne
tion length 
an be 
omputed for the whole plasma vol-ume. On the other side, diagnosti
s 
an give information in time, whereasthe 
onne
tion length are 
omputed for a �xed time (requiring long time forthe �eld line integration, 
onne
tion length is not suitable for time evolutionanalysis).The left frame of Fig. 8.9 shows the intera
tion map on the 
hambersurfa
e re
onstru
ted using the 
onne
tion length, represented as a 
olours
ale. It 
an be seen that regions of higher 
onne
tion lenght 
on
entrate inthe 90◦-180◦ band, that is in the region 
omprised between the torus top andthe inner equator. This is a non�trivial 
onsequen
e of the phase relationship166



8.2 Plasma wall intera
tion

Figure 8.9: Map of the 
onne
tion lengths of magneti
 �eld lines tou
hingthe �rst wall for a typi
al 1.5 MA SHAx state (left) and same map obtainedusing only the amplitudes of the dominant m = 1/n = 7 and m = 0/n =
7 modes, indi
ating the ideal situation for a pure single heli
ity 
ondition(right).between the m = 0 and m = 1 modes depi
ted in �g.8.20 (see se
tion 8.3.3).The lo
alization is not perfe
t, due to the polluting e�e
ts of the se
ondarymodes.In order to understand what is the tenden
y for higher 
urrent plasmas,where the se
ondary modes will be lower a

ording to present s
aling, wehave performed the same 
al
ulation in
luding only the m = 1/n = 7 and
m = 0/n = 7 modes in the FLiT input, that is simulating a pure singleheli
ity 
ondition. The result is shown in the right frame of Fig. 8.9. It 
anbe seen that the long 
onne
tion length region is now limited to two rows ofin
lined regions having an n = 7 periodi
ity, the �rst lo
ated at θ ≃ 90◦ andthe se
ond at θ ≃ 180◦.The results des
ribed in this se
tion give a new vision of the plasmaboundary in the high performan
e SHAx states. Due to the toroidal 
ouplingbetween the dominant m = 1/n = 7 mode, responsible for the a
hievementof a heli
al equilibrium, and its m = 0 
ounterpart, a set of m = 0 magneti
islands with a dominant n = 7 periodi
ity is formed on the reversal surfa
e.Provided that the absolute value of the reversal parameter is small enough,that is the ma
hine is operated with a shallow reversal, these islands inter
eptthe �rst wall. Due to the regularity of the SHAx 
ondition6, the out
ome isthat the LCFS is not any more tou
hing the �rst wall. On the 
ontrary, theX-points formed between the m = 0 islands a
t as the X-point of a Tokamakdivertor (a zoom of the divertor�like plasma�wall intera
tion already plotted6During SHAx states no strong lo
alized distortion of the plasma 
olumn due to modelo
king [89℄ is found. And the regular n = 7 pattern, due to both the m = 1 shift and
m = 0 islands, is evident in the right panel of �g.8.3.167



Plasma boundary in SHAx statesin �g.8.3 
an be seen in �g.8.10).This 
ondition is reminis
ent of the island divertor 
on
ept whi
h is being

Figure 8.10: Zoom of the right Poin
aré in �g.8.3, to underline the divertoridea and the role of the m = 0 islands and their X�points.explored as a means of 
ontrolling plasma-wall intera
tion in stellarators.One is therefore led to infer that the spe
ial features of the plasma boundaryin high 
urrent SHAx RFP plasmas 
ould be exploited for building a divertor,similar in 
on
ept to the island divertor used in some stellarators. This
ould be a
hieved by lo
ating divertor plates with appropriate pumping inthe regions of strong intera
tion, whi
h have been found to be
ome more andmore regular as the amplitude of the se
ondary modes is redu
ed, whi
h isthe trend experimentally observed as plasma 
urrent is in
reased.Su
h an approa
h to plasma-wall intera
tion would require that the dominant
m = 0 mode is stationary in time, and that one 
ould 
ontrol its islandamplitude and phase. In se
tion 8.3 the experiments done in order to usethe feedba
k 
ontrolled saddle 
oils to 
ontrol (or at least to intera
t with)the dominant m = 1 and m = 0 modes are presented. In �g.8.11 a sket
h ofthe RFP (island) divertor is reprodu
ed.

Figure 8.11: Left: A pi
ture of the a divertor in Tokamak devi
es and ofthe Lo
al Island Divertor in Stellarator devi
es. Right: The pi
ture of theidea for a sort of island divertor in a RFP devi
e.168



8.3 External magneti
 perturbations8.3 External magneti
 perturbationsHigh plasma 
urrent dis
harges and therefore the formation of the heli
alRFP SHAx states have been favored by of the improved 
ontrol of the ra-dial magneti
 �eld at the edge, whi
h in RFX�mod is obtained through asophisti
ated system of 192 feedba
k�
ontrolled saddle 
oils.The feedba
k system is usually used to simulate a perfe
t 
ondu
tive shell,therefore 
an
eling the radial magneti
 �eld of the perturbations at the wall.In the experimental 
ampaign of 2010�2011 external magneti
 perturbationshave instead been used in order to 
ontrol the magneti
 boundary, by non�zero boundary 
onditions (BCs) on the radial magneti
 �eld of the dominant
m = 1/n = 7 and m = 0/n = 7 modes, [?, 90℄.The magneti
 boundary is 
hara
terized by the m = 0/n = 7 island 
hainand the plasma�wall intera
tion is strongly a�e
ted by its phase relation withthe dominant m = 1 mode (responsible for the heli
al SHAx state deforma-tion of the whole plasma 
olumn). The self�organized plasma properties,su
h as the toroidal 
oupling between the two modes, are the main me
ha-nisms a
ting in the plasma. This must be taken into a

ount when trying toexternally intera
t with the plasma.It is possible to a
t on the m = 0 island 
hain, if its properties arestrongly 
orrelated with the plasma self organization?The idea of a divertor 
on�guration for RFP boundary during heli
al stateswould require the 
ontrol of the m = 0 island amplitudes and of their phase.Moreover, also the phase di�eren
e between the dominant m = 0 and m = 1modes is relevant from the point of view of the plasma�wall intera
tion (see�g. 8.9 and se
tion 8.2).Experiments have therefore been performed in order to study whi
h is theresult of non�zero boundary 
onditions on both the m = 0 island amplitudesand phases. Be
ause of the strong toroidal 
oupling a
ting in the plasma,we a
t both on the m = 0/n = 7 and on the m = 1/n = 7 modes.As an example we present here two dis
harges: dis
harge 30177, where thenon�zero boundary 
ondition were only imposed on the m = 1/n = 7 mode;and the dis
harge 30200 where non�zero boundary 
ondition were imposedalso on the m = 0/n = 7 mode. Let us see the main features of boththe dis
harges before analyzing more in detail the e�e
t of the external per-turbations on the mode amplitudes (se
tion 8.3.1) and phases (se
tion 8.3.3).Dis
harge 30177.Non�zero boundary 
ondition on the m = 1/n = 7 modeVerti
al lines in �g.8.13 highlight the time instant when external non�zeroboundary 
onditions (BCs) are applied at the boundary:169
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Figure 8.12: Time evolution of plasma quantities for the dis
harge 30177:non�zero boundary 
ondition on the m = 1/n = 7 mode. Verti
al lines high-light the time instants when non�zero boundary 
ondition are applied. Fromtop to bottom, the plotted plasma quantities are: the plasma 
urrent; theamplitude of the radial magneti
 �eld of the dominant (bla
k) and se
ondarymodes (red) of the m = 1 and of m = 0 mode spe
tra; the time evolutionof the F parameter. The radial magneti
 �eld is the measured one outsidethe va

um vessel for the m = 1 modes, and the re
onstru
ted one on theresonant surfa
e for the m = 0 modes.
• At time t = 50 ms non�zero BCs have been applied on them = 1/n = 7mode, with a referen
e amplitude A1/7 =5 mT and a rotating frequen
yof 15 Hz.In �g.8.12 one 
an see the time evolution of the plasma 
urrent, of theamplitude of the radial magneti
 �eld of the dominant (bla
k) and se
ondarymodes (red) both for the m = 1 and m = 0 spe
tra, and the time evolutionof the F parameter, always shallow, for the dis
harge 30177.This experiment demonstrates how the global dynami
s of the dominant

m = 1/n = 7 mode 
an be modi�ed by the external appli
ation (throughthe saddle 
oils) of a non�zero radial magneti
 �eld b1,7r as boundary 
ondi-tion. For example higher and longer QSH phases 
an be found. Good QSHphases 
an be found also for the m = 0 spe
trum.170



8.3 External magneti
 perturbationsDis
harge 30200.Non�zero boundary 
ondition on the m = 1/n = 7 and m = 0/n = 7modes

Figure 8.13: Time evolution of plasma quantities for the dis
harge 30200:non�zero boundary 
ondition on the m = 1/n = 7 and m = 0/n = 7modes. Verti
al lines highlight the time instants when non�zero boundary
ondition are applied. From top to bottom, the plotted plasma quantitiesare: the plasma 
urrent; the amplitude of the radial magneti
 �eld of thedominant (bla
k) and se
ondary modes (red) of the m = 1 and of m = 0mode spe
tra; the time evolution of the F parameter. The radial magneti
�eld is the measured one outside the va

um vessel for the m = 1 modes,and the re
onstru
ted one on the resonant surfa
e for the m = 0 modes.Verti
al lines in �g.8.13 highlight the time instants when external nonnull referen
es are applied at the boundary:
• In the time interval 120 < t < 250 ms non�zero BCs have been appliedon the m = 1/n = 7 mode, with a referen
e amplitude A1/7 =5 mTand a rotating frequen
y of 15 Hz.
• In the time interval 130 < t < 195 ms non�zero BCs have been appliedon the m = 0/n = 7 mode, with a referen
e amplitude A0/7 =4 mT, aphase di�eren
e ∆φ = 0◦ with respe
t to the m = 1/n = 7 mode, anda rotating frequen
y of 15 Hz.
• In the time interval 195 < t < 250 ms non�zero BCs have been appliedon the m = 0/n = 7 mode, with a referen
e amplitude A0/7 =4 mT, a171



Plasma boundary in SHAx statesphase di�eren
e ∆φ = − 90◦ with respe
t to the m = 1/n = 7 mode,and a rotating frequen
y of 15 Hz.The amplitude imposed at the boundary to the m = 1/n = 7 mode is
hosen as to be roughly equal to the natural value that the radial magneti
�eld of this mode usually has at the edge. On the other side di�erent bound-ary |b0,7r | = A0/7 amplitudes of the m = 0/n = 7 mode have been tried.Be
ause of the toroidal 
oupling between the two dominant modes (m =
1/n = 7 and m = 0/n = 7), the ratio between their amplitudes at the edgeis of the order of the aspe
t ratio (ǫ ≡ R/a ∼ A1/7/A0/7 ∼ 4 where ǫ stays for'ratio', R is the major radius and a the minus radius of the va
uum 
hamber,[53℄). The amplitude of the m = 0/n = 7 mode in the dis
harge 30200 hasbeen 
hosen so that A1/7/A0/7 ∼ 1.5 ǫ.In �g.8.13 one 
an see the time evolution of the plasma 
urrent, of theamplitude of the radial magneti
 �eld of the dominant (bla
k) and se
ondarymodes (red) both for the m = 1 and m = 0 spe
tra, and the time evolutionof the F parameter, always shallow, for the dis
harge 30200.Also the m = 0/n = 7 mode dynami
s 
an be modi�ed by external appli
a-tion of a non�zero radial magneti
 �eld b0,7r as boundary 
ondition.In the next se
tions, the work made during the 2010�2011 experimentalRFX�mod 
ampaign in order to a
t both on the amplitude of the m = 0magneti
 islands (and therefore on the amplitude of the radial magneti
 �eld
b0,7r on the reversal surfa
e7) and on their phase di�eren
e with the dominant
m = 1 mode is presented.In parti
ular, we want to study if and how the edge topology is modi�ed(se
tion 8.3.1 and 8.3.3) and how the edge plasma properties 
hange by a
-tively modifying the edge topology (se
tion 8.3.2).8.3.1 AmplitudesDis
harge 30177.Non�zero boundary 
ondition on the m = 1/n = 7 modeTo be able to in
rease the amplitude of the m = 0 islands (and therefore ofthe S
rape O� Layer), we need to a
t on the amplitude of the radial magneti
�eld of the m = 0 modes on the resonant surfa
e (that is the reversal one).Due to the toroidal 
oupling with the m = 1 mode with the same toroidalmode number n (see 
hapter 5), one 
an in
rease the m = 0/n = 7 islandsalso a
ting on the m = 1/n = 7 mode.7The island width is found to be proportional to the amplitude of the radial magneti
�eld on the resonant magneti
 �ux surfa
e of the 
orresponding mode, [?, 13, 11℄.172
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Figure 8.14: Shot 30177. Top: The same time evolution plots in �g.8.12where 
olored lines mark the time instants of the harmoni
s re
onstru
-tion below. Middle/Bottom: The eigenfun
tion b1,7r and b0,7r of the radialmagneti
 �eld related to the m = 1/n = 7 (middle) and m = 0/n = 7(bottom).The bla
k 
urves are related to a time instant where zero bound-ary 
ondition were applied to all the modes, whereas the 
oloured ones arerelated to time instants where non�zero boundary 
ondition were applied tothe m = 1/n = 7 mode. The �rst wall is at a = 0.459 m.
173



Plasma boundary in SHAx statesThis is what is done in this dis
harge. The radial magneti
 �eld eigenfun
-tions are plotted in �g.8.14, using the harmoni
s re
onstru
tion dis
ussed in[53℄ (and 
hapter 3). We 
an see that:
• An external non�zero boundary 
ondition imposed at the edge on the
m = 1/n = 7 mode 
hanges the amplitude of the whole b1,7r eigenfun
-tion pro�le.In �g.8.14 (middle) the eigenfun
tion of the radial magneti
 �eld re-lated to the m = 1/n = 7 mode are plotted for di�erent time instants.The bla
k 
urve is the vanishing boundary 
ondition 
ase, as a refer-en
e time instant.
• The external non�zero boundary 
ondition imposed at the edge on the
m = 1/n = 7 mode in
reases the amplitude of the b1,7r eigenfun
tionon the reversal surfa
e, and this is re�e
ted on the amplitude of the
b0,7r eigenfun
tion due to the toroidal 
oupling.In �g.8.14 (bottom) the eigenfun
tion of the radial magneti
 �eld re-lated to the m = 0/n = 7 mode is plotted for the same time instantsof �g.8.14 (middle). The amplitude of the b0,7r eigenfun
tion on thereversal surfa
e is in
reased with respe
t to the vanishing boundaryreferen
e 
ase in bla
k.We use the Poin
aré plot re
onstru
tion to look at the magneti
 topologyrelated to the eigenfun
tions plotted in �g8.14.In �g.8.15 we 
hoose to 
ompare the magneti
 topology at t = 49 ms (zeroboundary 
ondition referen
e, bla
k 
urve in �g.8.14) and at t = 86.7 ms(the blue 
urve in �g.8.14). The m = 0 island elongation due to non�zeroboundary 
ondition to the dominant m = 1 mode 
an be 
learly seen in thePoin
aré plot, that are shown on the same radial s
ale.Dis
harge 30200.Non�zero boundary 
ondition on the m = 1/n = 7 and m = 0/n = 7modesFig.8.16 is the analogue of �g.8.14, for the shot 30200 where non�zero bound-ary 
ondition is imposed also to the m = 0/n = 7 mode. The eigenfun
tionpro�les of the m = 1/n = 7 (middle) and m = 0/n = 7 (bottom) are plottedfor di�erent time instants (with di�erent 
olours). The bla
k 
urve is thevanishing boundary 
ondition 
ase for 
omparison.From the magneti
 topology side, the appli
ation of these non-zero bound-ary 
ondition on both them = 1/n = 7 andm = 0/n = 7 modes are expe
tedto have two main e�e
ts on the m = 0 pattern: 1) a dire
t 
ontribution tothe m = 0/n = 7 mode amplitude by the externally applied referen
e on the174
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 perturbations

Figure 8.15: Magneti
 topology re
onstru
tions made using only the n = 7harmoni
 for the 30177 dis
harge on the external equatorial plane (θ =
0). Left: magneti
 topology related to a time instant where zero boundary
ondition were applied to all the modes (bla
k 
urve in �g.8.14). Right:magneti
 topology related to a time instant (t = 86.7 ms, blue 
urve in�g.8.14) where non�zero boundary 
ondition were applied to the m = 1/n =
7 mode.related harmoni
; 2) a further 
ontribution 
oming from the toroidal 
ou-pling with the b1,7r eigenfun
tion.We 
an see this in �g.8.16 :
• The amplitude of the b0,7r eigenfun
tion is in
reased on the reversalsurfa
e, as it is the b1,7r eigenfun
tion in the same position. Comparing�g.8.14 and �g.8.16, the main 
ontribution to this is probably due tothe non�zero boundary 
ondition on the m = 1/n = 7 mode.
• What is pe
uliar of the appli
ation of the non�zero boundary referen
eto the m = 0/n = 7 mode is the shape of the b0,7r eigenfun
tion. It iseasy to see 
omparing the 
oloured lines in �g.8.16 with the bla
k one.The superpositions of these two e�e
ts produ
es a larger radial extension ofthe m = 0 island 
hain with respe
t to dis
harge 30177 (
ompare �g.8.15and �g.8.17).The e�e
t on the magneti
 topology 
an be seen in the Poin
aré plots in�g.8.17: on the right the zero boundary 
ondition 
ase (bla
k 
urve in�g.8.16, vanishing referen
es are applied to all the modes) is plotted; onthe left a non�zero boundary 
ondition 
ase (at t = 165 ms, the blue 
urvein �g.8.16, with non�zero boundary 
ondition to both the m = 1/n = 7and m = 0/n = 7 modes) is plotted. One 
an see both the in
reased island175
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Figure 8.16: Shot 30200. Top: The same time evolution plots in �g.8.13where 
olored lines mark the time instants of the harmoni
s re
onstru
-tion below. Middle/Bottom: The eigenfun
tion b1,7r and b0,7r of the radialmagneti
 �eld related to the m = 1/n = 7 (middle) and m = 0/n = 7(bottom).The bla
k 
urves are related to a time instant where zero bound-ary 
ondition were applied to all the modes, whereas the 
oloured ones arerelated to time instants where non�zero boundary 
ondition were appliedto both the m = 1/n = 7 and m = 0/n = 7 modes. The �rst wall is at
a = 0.459 m. 176



8.3 External magneti
 perturbationsamplitudes and their 
hange in shape. The Poin
aré plot on the top arerelated to the pure SH 
ase, whereas the ones below reprodu
e the e�e
ts ofthe se
ondary modes.

Figure 8.17: Magneti
 topology re
onstru
tions for the 30200 dis
harge onthe external equatorial plane (θ = 0). Left: magneti
 topology related to atime instant where zero boundary 
ondition were applied to all the modes(bla
k 
urve in �g.8.16). Right: magneti
 topology related to a time instant(t = 92 ms, blue 
urve in �g.8.16) where non�zero boundary 
ondition wereapplied to both the m = 1/n = 7 and m = 0/n = 7 modes. From top tobottom: eigenfun
tion amplitudes of the dominant modes. The dashed lineon the right is related to the 92ms time instant for 
omparison. A verti
alline marks the resonant surfa
e of them = 0 modes; Poin
aré re
onstru
tionsmade using only the n = 7 harmoni
; Poin
aré re
onstru
tion of the edgetopology made using all the harmoni
s177



Plasma boundary in SHAx statesThe 
onsequen
e of this di�erent magneti
 topology of the SOL is underinvestigation. In the next se
tion we report some of the 
onsequen
es on theedge measurements.8.3.2 E�e
t of BCs appli
ation on the plasma properties

Figure 8.18: Time evolution of some experimental measurements duringthe dis
harge 30200. From top to bottom: The ratio n/nG, where n is thedensity measured by the interferometer [91, 92℄ and nG the Greenwald den-sity, [11℄; the loop voltage, as a measure of the power needed to sunstain thedis
harge; two Hα line emission as a measure of the plasma-wall intera
tion;the edge temperature measured by a �xed triple probe, [93℄.The a
tive modi�
ation of the edge magneti
 topology turned out to be
orrelated with a turn of reprodu
ible phenomena linked in a dire
t or indi-re
t way to an in
reased plasma wall intera
tion. Nonetheless the possibilityto externally impose the radial extension of the m = 0 magneti
 islands at178



8.3 External magneti
 perturbationsthe edge enable us to study the 
ause and e�e
t relation of the 
omplex edgedynami
s.For the sake of simpli
ity we 
onsider again the dis
harge 30200 whose mainfeatures have been already presented in the previous se
tion.In �g.8.18 the appli
ation of the BCs 
an be easily asso
iated to a ratherabrupt variation of the averaged density and of the loop voltage neededto sunstain the dis
harge (�rst and se
ond plot on the right). As alreadymentioned, an in
reased plasma-wall intera
tion 
an explain both these ex-perimental observations sin
e in RFX-mod the graphite �rst wall is a naturalhydrogen repository and represents an e�e
tive fueling system [94, 95℄. Onthe other side, it's worth noting that this te
hnique allows to sunstain QSHstates at higher ne/nG values (up to 0.5 in this 
ase) with respe
t to thespontaneous QSH states (that usually disappear beyond ne/nG ≥ 0.3).The last two plots in �g.8.18 show the time evolution of two Hα line emis-sion and the edge temperature (measured by a �xed triple probe, [93℄). They
on�rm in a even more evident way the aforementioned me
hanism: the BCsappli
ation 
auses a larger intera
tion with the graphite wall, the hydrogenstored is released and ionized, 
reating a dense and 
old edge.A

ording to this pi
ture, the re
onstru
tion of the whole density pro�leobtained by the multi
hord interferometer in �g.8.19 displays a markedlyhollow shape asso
iated to the appli
ation of the BCs. Two interesting ob-servations have to be pointed out:1) whilst the edge density in
reases up to 3-4 times upon the BCs appli
a-tion (but a more pre
ise estimation would need a better diagnosti
 
overagein that region), the 
entral density appears almost unperturbed. A possibleexplanation 
ould be that a more de�ned m = 0 pattern features betterparti
le 
on�nement properties (and thus the hydrogen in�ux from the wallwould a

umulate only at the edge). On the other side, also 
omparing thetwo Poin
aré plots shown in �g.8.17, one 
an easily 
at
h how the BCs ap-pli
ation enlarges the extension of the more 
haoti
 region in between theislands, probably featuring short 
onne
tion lenght that 
ould rapidly drivethe parti
les to the wall preventing an e�e
tive 
ore fueling;2) the last two plots in �g.8.19 show in more detailed way the relation be-tween the edge topology modi�
ation and the edge density pro�les. In par-ti
ular, 
omparing two time instants (before and after the BCs appli
ation)of the same dis
harge it is possible to highlight how a smoother density pro-�le 
orrespond to a smoother shape of the m = 0, n = 7 eigenfun
tion andalso how in the 
ase of BCs appli
ation the maxima of the two 
urves (den-sity pro�le and m = 0, n = 7 eigenfun
tion) are lo
ated very 
lose radiallyregion.These observations 
ould help 
larifying the role of the edge magneti
topology and, in parti
ular, of the m = 0 islands in de�ning the plasmaproperties and the 
omplex (inter
onne
ted) me
hanisms regulating a 
ru
ial179
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Figure 8.19: Dis
harge 30200. Left: The density pro�le and its time evo-lution obtained by the multi
hord interferometer, [91, 92℄. Right: The edgedensity pro�les and the eigenfun
tion of the magneti
 perturbation at twotime instants: 92 ms (zero boundary 
ondition applied to all the modes)and 165 ms (with non�zero boundary 
ondition to the m = 0/n = 7 and
m = 1/n = 7 modes.)part of the RFP physi
s, the edge transport and the plasma-wall intera
tion.An extrapolation of these results towards the development of an RFP diver-tor 
on
ept will be subsequent.
8.3.3 Phase relationsAs already said, the idea of a divertor 
on�guration for RFP boundary dur-ing heli
al states would require the 
ontrol of the m = 0 island amplitudesand of their phase; moreover, also the phase di�eren
e between the dominant
m = 0 and m = 1 modes is relevant from the point of view of the plasma�wall intera
tion (see �g. 8.9).In this se
tion we analyze the e�e
t on the phases of the m = 0 and m = 1modes and on their phase di�eren
e, when non�zero BCs are applied to thedominant modes.A question arises. Whi
h is the 
orre
t phase of the modes to be 
onsid-ered?We 
an 
onsider both the (m,n) harmoni
s of the radial magneti
 �eld (see180



8.3 External magneti
 perturbationsequation (2.146))8:
Br =

1√
g

(∂ψT
∂ϕ

− ∂ψP
∂ϑ

) (8.1)
⇓

brmn =
( 1√

g

)

mn
i (nψmnT −mψmnP ) (8.2)or the harmoni
s of the related magneti
 �ux whi
h 
an be written as (seeequation (9.21)):

b̂rmn = i (nψmnT −mψmnP ) (8.3)
⇓

b̂r1,7 = i (7ψ1,7
T − ψ

1,7
P ) (8.4)

b̂r0,7 = i 7ψ0,7
T (8.5)for the dominant modes in RFX�mode.Due to the toroidal 
oupling between the harmoni
s of the �uxes b̂rmn and ofthe metri
s (1/√g)

mn
, for the radial magneti
 �eld one 
an write9:
br1,7 =

1√
g0
b̂r1,7 +

1√
g1
b̂r0,7 (8.6)

br0,7 =
1√
g0
b̂r0,7 +

1√
g1
b̂r1,7 (8.7)The se
ond term in both the equations (8.6)�(8.7) is the term due to thetoroidal 
oupling. Remembering �g.8.2 10 one 
an understand that at leastduring QSH states the 
ontribution of b̂r0,7 to br1,7 is not so big, whereas the
ontribution of b̂r1,7 to br0,7 is the dominant one. A statisti
al study of thephase di�eren
e between the radial magneti
 �elds br1,7 and br0,7 is plotted in�g.8.20, where the importan
e of the toroidal 
oupling emerges in the 
on-stan
y of the phase di�eren
e.The 
ontribution to the phase of the �uxes b̂r1,7 and b̂r0,7 in eq.(8.4)�(8.5)arises both from a toroidal 
oupling intrinsi
 in the toroidal New
omb�likeequation solved for the �uxes (in 
hapter 3) and a non�linear 
oupling be-tween the dominant and the se
ondary modes (similar to the lo
king thatarises also in 
ylindri
al geometries, [89℄).Whi
h are the phases that better des
ribe the e�e
t on the magneti
topology is not yet well understood. The phase di�eren
e between the dom-inant m = 1 and m = 0 modes related to the radial magneti
 �eld brmn is8We 
onsider the 2π part of the 
omputed �uxes.9The toroidal 
oupling has been explained in 
hapter 3 and 5. We negle
t in these for-mulas the 
ontribution that arises from the (m,n) = (2, n) and (m,n) = (−1, n) harmon-i
s. The harmoni
s of the Ja
obian are written in appendix B.2.3 for the wi 
oordinates.10For a more formal prof see [53℄. 181



Plasma boundary in SHAx statesalways 
onstant (even if it depends on the poloidal angle, as we will nowexplain), whereas the phase di�eren
e related to the �uxes b̂rmn seems to bemore easily a�e
ted by non�zero BCs. In the next se
tions, showing the ef-fe
t of non�zero BCs, we will relate it to the Poin
aré plots that we 
onsiderto well reprodu
e the magneti
 topology.The physi
al meaning of the phasesWe write the Fourier de
omposition of any quantity A, whi
h 
an be theradial magneti
 �eld Br or the related radial magneti
 �ux b̂:
A =

∑

mn

amn e
i(mϑ−nϕ+φmn) =

∑

mn

Amn cos(mϑ− nϕ+ φmn) (8.8)This is a bi�dimensional Fourier de
omposition (both on the poloidal angle
ϑ and on the toroidal angle ϕ).Let us explain the physi
al meaning of the real number φmn. First we writethe harmoni
s of the two dominant mode in an expli
it way:

a1,7 cos(ϑ− 7ϕ+ φ1,7) (8.9)
a0,7 cos(−7ϕ+ φ1,0) (8.10)As one 
an see the harmoni
s a0,7 of the perturbation is uniform on thepoloidal plane (does not depend on the poloidal angle).The maximum of the perturbation must vanish the 
osine fun
tion. There-fore:- Fixing the toroidal angle (ϕ = ϕfix) one looks at the perturbationon the poloidal plane. The number φmn in this 
ase represents thepoloidal angle ϑ of the �rst maximum of the perturbation, whi
h is:

ϑ = 7ϕfix − φ1,7 (8.11)
ϑ = 7ϕfix − φ0,7 (8.12)for the two dominant modes.- Fixing the poloidal angle (ϑ = ϑfix) one looks at the perturbation inthe toroidal dire
tion. The number φmn in this 
ase represents thetoroidal angle ϕ of the �rst maximum of the perturbation, whi
h is:
ϕ = (ϑfix + φ1,7)/7 (8.13)
ϕ = (ϑfix + φ0,7)/7 (8.14)for the two dominant modes. 182



8.3 External magneti
 perturbationsTo study the relation between the two dominant modes we 
an look to whatwe 
alled their phase di�eren
e ∆φ, whi
h is not simply φ1,7 − φ0,7: we usethe symbol ∆φ in this se
tion for the angle between the maxima of the twomodes and therefore it depends on the angles:- Fixing the toroidal angle (ϕ = ϕfix) one looks at both the pertur-bations on the poloidal plane. The angle ∆φ between their maximais:
∆φ = ϑ+ φ1,7 − φ0,7 (8.15)- Fixing the poloidal angle (ϑ = ϑfix) one looks at both the perturba-tions in the toroidal dire
tion. The angle ∆φ between their maximais:

∆φ = ϑfix + φ1,7 − φ0,7 (8.16)From an operative point of view we stress that we use the wi = (r, ϑ, ϕ)
oordinates used for the harmoni
s re
onstru
tion11. We remind that thepoloidal angle of this 
oordinate system is de�ned to have its zero value onthe internal equatorial plane, whi
h means that it di�ers of an angle π withrespe
t to the ma
hine poloidal angle that we 
all θ (see �g.1.4) and whi
hhas its zero value on the external equatorial plane.The magneti
 topology related to ∆φ at di�erent �xed poloidal angles(ϑ = ϑfix) is shown in the following of this se
tion, both for the zero andnon�zero BCs 
ondition 
ases.Zero�boundary 
ondition.Dis
harge 30200 at t = 92 ms.Due to toroidal 
oupling, the m = 1/n = 7 and m = 0/n = 7 modes have avery 
lear phase relationship. This is displayed in Fig. 8.20, where the phasedi�eren
e ∆φ between the m = 0/n = 7 mode and the m = 1/n = 7 modein RFX-mod is shown as a fun
tion of the phase of the m = 1/n = 7 modefor a large set of dis
harges, in time intervals where a strong quasi-singleheli
ity state is observed. It 
an be seen that the two modes have an almost
onstant phase di�eren
e equal to 0. The phases 
on
ern the radial magneti
�eld 
omponent on the internal equatorial plane (θfix = π), and have been
omputed at the respe
tive resonant surfa
es.11see se
tion 3.1.1 and appendix B.2.3 for the de�nition of the wi = (r, ϑ, ϕ) 
oordinatesystem. 183
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Figure 8.20: Phase di�eren
e ∆φ on the internal equatorial plane (θfix =
π), between the m = 1/n = 7 mode and the m = 0/n = 7 mode plotted as afun
tion of the phase of the m = 1/n = 7 mode for SHAx states obtained in1.5 MA dis
harges. The phases 
on
ern the radial magneti
 �eld 
omponent,
brmn in eq.(8.6)�(8.7).A phase di�eren
e ∆φ = 0 means that the island O�points of the m =
1/n = 7 mode 
orrespond to the O�points of the m = 0/n = 7 islands. A
∆φ = 0 phase di�eren
e is statisti
ally found to be related to the internalequatorial plane. But due to the fa
t that the m = 0 modes are uniform onthe poloidal plane whereas the m = 1 modes are not, the phase di�eren
e
∆φ 
hanges its value on the poloidal plane at di�erent poloidal angles. E.g.on the external equatorial plane (θfix = 0) the phase di�eren
e is ∆φ = π,whi
h means that the m = 0/n = 7 island O�points are in 
orresponden
eof the m = 1/n = 7 island X�points. This magneti
 topology 
orrespondsto the plasma�wall intera
tion dis
ussed in se
tion 8.2.Therefore, on the poloidal plane the phase di�eren
e ∆φ 
hanges with thepoloidal angle, and this is re�e
ted on the magneti
 topology and on theplasma�wall intera
tion (as seen in �g.8.9). The magneti
 topology relatedto the dominant m = 0 and m = 1 modes at four di�erent poloidal angles isshown in �g.8.21, where four Poin
aré plot are 
omputed at the same timeinstant and at:
• θfix = 0 and therefore ∆φ = π

• θfix = π
2 and therefore ∆φ = π

2

• θfix = π and therefore ∆φ = 0

• θfix = 3π
2 and therefore ∆φ = π

2One 
an see that the magneti
 topology is tightly 
orrelated to the positionof the m = 0 island with respe
t to the global heli
al deformation due to the
m = 1 dominant mode (with the m = 0 island on the top or on the bottom184



8.3 External magneti
 perturbationsof the m = 1 edge deformation).

Figure 8.21: Dis
harge 30200 at t = 92 ms, therefore when zero boundary
ondition are imposed by the feedba
k 
ontrol on all the modes. The mag-neti
 topology at di�erent poloidal angles and therefore related to di�erentphase di�eren
e ∆φ between the m = 0/n = 7 mode and the m = 1/n = 7mode in RFX-mod. A phase di�eren
e ∆φ = 0 is related to the internalequatorial plane, θfix = π.Non�zero boundary 
ondition.Two examples.The phase di�eren
e ∆φ between them = 0/n = 7 mode and them = 1/n =
7 mode is therefore an important ingredient to be understood to study theplasma�wall intera
tion in RFX�mod.In order to better understand the role of ∆φ we try to 
hange the nat-ural phase di�eren
e, that is equal to 0 on the internal equatorial plane(�g.8.20)12. We do this again using the feedba
k 
ontrolled saddle 
oils to12The natural ∆φ brings a higher plasma�wall intera
tion between 90◦ < θ < 180◦, see�g.8.20. Changing the phase relation ∆φ between the m = 0/n = 7 and the m = 1/n = 7modes, we 
ould expe
t to 
hange the plasma�wall intera
tion on the poloidal plane, andeven to bring the higher intera
tion in front of the measurements, usually lo
ated aroundthe external equatorial plane (θ = 0). 185



Plasma boundary in SHAx states

Figure 8.22: Time evolution of plasma quantities for the dis
harge 30200.Top, middle: the plasma 
urrent and the amplitude of the radial magneti
�eld of the dominant m = 1 mode that are already in �g.8.13. Bottom:the phases of the b̂rmn �ux for the m = 1/n = 7 (bla
k) and m = 0/n = 7(red) modes in eq.(8.4)�(8.5) 
omputed at the resonant surfa
e. The phasedi�eren
e between the two is evident in the two time windows: ∆φ = 0 for
t < 195 ms, while ∆φ = π/2 between 195ms < t < 250ms.impose a non�zero boundary 
ondition to the radial magneti
 �eld of the
m = 0/n = 7 and the m = 1/n = 7 modes, with a 
hosen phase di�eren
ebetween them.We present two examples:
• The se
ond time window (195ms < t < 250ms) of the dis
harge 30200(�g.8.13, right), where a phase di�eren
e ∆φ = π/2 was imposed be-tween the m = 0/n = 7 and the m = 1/n = 7 modes.In �g.8.22 one 
an see that in this time window the plasma 
urrentwas already de
reasing, so the dis
harge dynami
s probably makes theanalysis more di�
ult. In any 
ase, the applied phase di�eren
e be-tween the modes appears 
learly in �g.8.22 (bottom) for the �uxes
b̂rmn.
• The dis
harge 30184. Another, more di�
ult, example.This example, de�ned in �g.8.23, is more di�
ult be
ause the phasedi�eren
e ∆φ is 
ontinuously 
hanging. The two modes are in fa
trotating in opposite dire
tions with respe
t to the toroidal angle, as186



8.3 External magneti
 perturbations

Figure 8.23: Time evolution of plasma quantities for the dis
harge 30184:non�zero boundary 
ondition on the m = 1/n = 7 and m = 0/n = 7modes. Up: the time evolution of the amplitude of the radial magneti
 �eldat the edge (for the m = 1/n = 7 (bla
k) and m = 0/n = 7 (red) modes).Down: the time evolution of phases of the �uxes b̂rmn (for the m = 1/n = 7(bla
k) and m = 0/n = 7 (red) modes) 
omputed at the resonant surfa
e.The dynami
s of the phase di�eren
e ∆φ is related to the fa
t that the twomodes are rotating in opposite dire
tion in the plasma.imposed by the feedba
k�
ontrolled system.Even if the dynami
s of the applied ∆φ is 
lear in �g.8.23 (bottom) forthe �uxes b̂rmn, this 
an not be 
learly seen on the magneti
 topologywhi
h is reprodu
ed in the Poin
aré plots in �g.8.24. They are per-formed at di�erent time instants (marked by 
olored lines in �g.8.23bottom) when di�erent ∆φ should 
hara
terized the topology on theexternal equator plane (θ = 0).It is worth noting that a modulation is present the time evolution ofthe amplitude of the radial magneti
 �eld at the edge of both the the
m = 1/n = 7 and m = 0/n = 7 modes (bla
k and red in �g.8.23middle, respe
tively). This modulation is present in the whole radialdomain looking at the eigenfun
tion re
onstru
tions, therefore it seemsthat not just the m = 1 mode a�e
ts the m = 0 due to the toroidal
oupling, but even the vi
eversa.187
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Figure 8.24Phase modi�
ations appear more di�
ult than a
ting on the m = 0island amplitudes. Data analysis is still in progress: 
an we exploit thismethod to externally 
ontrol the edge plasma dynami
s?

188



Chapter 9Detailed 
al
ulations on...One 
an 
onsider this 
hapter part of the thesis. One 
an �nd here detailsof 
al
ulation useful to better understand the main text of the thesis in theprevious se
tions. Moreover detailed 
al
ulations have been useful for theimplementation of formulas in SHEq�
ode and 
ould be useful for futurework that may want to use the details of this thesis.9.1 On the �uxes and their derivativesWe write some 
ommon way of writing the �uxes and their 
omplex harmon-i
s. Espe
ially we try to link one to the other in the following subse
tions.9.1.1 On how to 
ompute the heli
al �ux χIn the text (se
tion 4.1), we write for the heli
al �ux χ the same equationshere 
olle
ted in eq.(9.2)�(9.4):
χ = mψP − nψT (9.1)

= [mψP,0 − nψT,0](r) + [mψm,nP − nψm,nT ](r) eiu + c.c. (9.2)
= χ0(r) + χm,n(r) eiu + c.c. (9.3)
= χ0(r) + 2|χm,n|(r) cos(u+ φχ) (9.4)About the 
omplex 
onjugation of the �uxes one 
an see appendix C.1.Here we want to show how to 
ompute the amplitude |χm,n|(r) and thephase φχ of the perturbed heli
al �ux χm,n (that derive from the sum oftwo 
omplex numbers, χm,n = mψm,nP − nψm,nT ) in terms of amplitudes andphases of the harmoni
s of the poloidal and toroidal �uxes.Using the results of appendix C.2 for the sum between two 
omplex numbers,189



Detailed 
al
ulationswe write 1 :
|χm,n| = C (9.14)

φχ = γ (9.15)and (using eq.(C.32)�(C.33) and eq.(9.12)�(9.13)): from eq.(C.32)�(C.33):




|χm,n| =
[
n2|ψT |2 +m2|ψT |2 − 2mn|ψT ||ψP | cos(φψT − φψP )

]1/2

φχ = arctan
[
m|ψP | sinφψP−n|ψT | sinφψT
m|ψP | cosφψP−n|ψT | cosφψT

]

|ψT | ≡ |ψm,nT | ≡ |ψm,nT |(r) |ψP | ≡ |ψm,nP | ≡ |ψm,nP |(r)

(9.16)
where poloidal and toroidal �uxes are used with the same notation:

ψT (r, θ, ϕ) = ψT,0 (r) + ψm,nT (r) ei (mθ−nϕ)

= ψT,0 (r) + |ψm,nT | ei φψT ei (mθ−nϕ)

ψP (r, θ, ϕ) = ψP,0 (r) + ψm,nP (r) ei (mθ−nϕ)

= ψP,0 (r) + |ψm,nP | ei φψP ei (mθ−nϕ) (9.17)The heli
al �ux in SHEq�
odeSHEq uses another form for the heli
al �ux:
χ = χ0 + ǫ sin(u+ ψǫ) (9.18)1With respe
t to appendix C.2 we 
all:

z = a+ ib = ρ ei θ 7→ ψm,nT = |ψm,nT | eiφψT ≡ ψT (9.5)
t = c+ id = σei ϕ 7→ ψm,nP = |ψm,nT | eiφψP ≡ ψP (9.6)

z − t = A+ iB = C eiγ 7→

χm,n = mψm,nP − nψm,nT ≡ mψP − nψT
χm,n = |χm,n| eiφχ (9.7)Therefore there are also true the following identi�
ations:

a = ρ cos θ = |ψm,nT | cosφψT (9.8)
b = ρ sin θ = |ψm,nT | cosφψT (9.9)
c = σ cosϕ = |ψm,nP | cosφψP (9.10)
d = σ sinϕ = |ψm,nP | sinφψP (9.11)From equations (C.30)�(C.31) one 
an �nally write the 
oe�
ients for χm,n (A and B)in terms of the amplitudes and phases of the poloidal and toroidal �uxes (a, b, c, d):

A = C cos γ = a− c = |ψm,nT | cosφψT − |ψm,nP | cosφψP (9.12)
B = C sin γ = b− d = |ψm,nT | cosφψT − |ψm,nP | sinφψP (9.13)The 
oe�
ient C = |χm,n| and γ = φχ 
an be 
omputed using eq.(C.32)�(C.33).190



9.1 On the �uxes and their derivativessimply be
ause it uses the eigenfun
tion of the perturbed �uxes from theoutput of another 
ode that 
al
ulate them from New
omb�like equations(as explained in 
hapter 3). In this 
ode the heli
al �ux perturbation ǫ is ina

ordan
e with (9.18). Let us prove that
2i|χmn| = ǫ (9.19)

φχ = ψǫ (9.20)where |χmn| and φχ are 
omputed from (9.16). Using the de�nition
b̂rmn = i (nψmnT −mψmnP ) ⇒ (mψmnP − nψmnT ) = i b̂rmn (9.21)that arises from eq.(5.43), one 
an write
χ = [mψP,0 − nψT,0](r) + [mψm,nP − nψm,nT ](r) eiu + c.c. (9.22)

= χ0 + i b̂rmn e
iu + c.c. (9.23)

= χ0 + i b̂rmn e
iu − îbrmn e−iu (9.24)

= χ0 + i b̂rmn (eiu − e−iu) (9.25)
= χ0 − 2 b̂rmn sinu (9.26)
= χ0 − 2 |̂brmn| sin(u+ φbbrmn

) (9.27)
≡ χ0 + ǫ sin(u+ ψǫ) (9.28)
≡ χ0 + |χm,n| e(iu+φχ) + c.c. (9.29)Comparing (9.23)�(9.28)�(9.29) one 
an understand the relations (9.18)�(9.19)�(9.20).9.1.2 On the radial derivatives of 
omplex harmoni
s, for thepoloidal and toroidal �uxesIn this thesis the Fourier de
omposition of a perturbation has been frequentlyused (see 
hapter 3�5):

A(r, θ, ϕ) = A0(r) +
∑

m,n

am,n(r) ei(mθ−nϕ) + c.c. (9.30)where A 
an be every quantity inside the plasma volume: magneti
 �uxes,ve
tor potential 
omponents, magneti
 �eld 
omponents, ...The harmoni
s of the perturbation are 
omplex numbers: am,n(r) ǫC. There-fore:
am,n(r) = |am,n|(r) ei φ(r) (9.31)where |...|(r) indi
ates the amplitude, while φ(r) the phase of am,n. We re-mind that the amplitude and phase of a 
omplex number are real numbers.191



Detailed 
al
ulationsPerturbative analysis is done in the thesis to axisymmetri
 equilibriumquantities, that depend only on the radius r of the 
ir
ular magneti
 �uxsurfa
es related to the axi�symmetri
 magneti
 �eld B0. And that is whywe use in this se
tion the variable r as radial variable. But of 
ourse thisstill true for any perturbative analysis, for example of the SH equilibrium�eld that uses the heli
al �ux χ(ρ) as radial variable.Let us 
onsider the radial derivative of the harmoni
s ψm,n of the (poloidalor toroidal) magneti
 �uxes2. This is linked to the 
omputation of magneti
�eld 
omponents (eq.(2.144)�(2.145)).Be
ause the derivative of a 
omplex number is still a 
omplex number, we
an write:
ψ′
m,n(r) = a+ ib (9.32)

= |ψ′
m,n|(r) ei φ

′
ψ(r) (9.33)with

|ψ′
m,n|(r) =

√
a2 + b2 (9.34)

φ′ψ(r) = tan−1 a

b
(9.35)The �rst expression in (9.32) highlights the real and the imaginary part ofthe 
omplex harmoni
s ψ′

m,n(r), whereas the se
ond one writes it in the polarform.Using the symbol ′ = d/dr, we 
an also write:
ψm,n(r) = |ψm,n|(r) ei φψ(r) (9.36)

⇓

ψ′
m,n(r) =

d

dr

[
|ψm,n|(r) ei φψ(r)

] (9.37)
=

[
|ψm,n|′ + i |ψm,n|φ′ψ

]
ei φψ (9.38)Let us stress that the derivative of the amplitude of the fun
tion ψm,n isdi�erent from the amplitude of the derivative of the same fun
tion:

|ψm,n|′ 6= |ψ′
m,n| (9.39)The �ux derivatives in SHEq�
odeSHEq 
ode uses equation (9.38) for the radial derivative of the �uxes, whi
hmust be written in the 
omplete form of equation (9.30). Considering only2Using ψ as the symbol for every �ux, depending on the magneti
 
omponent that oneis 
onsidering. The indexes m,n are written as down indexes just for 
ommodity.192



9.1 On the �uxes and their derivativesthe perturbative part, and just one mode of the perturbation (u = θ − nϕ),we obtain:
∂

∂r

[
|ψm,n|(r) ei φψ(r)+u + c.c

]
=

[
|ψm,n|′ + i |ψm,n|φ′ψ

]
ei φψ+u + c.c. (9.40)

= 2|ψm,n|′ cos(φψ + u)− 2|ψm,n|φ′ψ sin(φψ + u)adding the 
omplex 
onjugated to eq.(9.38) and 
onsidering also the angulardependen
e of the �uxes.The amplitude |ψm,n| and phase φψ of the �uxes are 
omputed solvingNew
omb�like equations as explained in 
hapter 3. Their radial derivativesare 
al
ulated in a numeri
al way.9.1.3 On the (angular and radial) derivatives of the heli
al�ux χUsing the form of eq.(9.4) for the heli
al �ux χ, and then eq.(9.16), one 
an
ompute the heli
al �ux radial and angular derivatives (whi
h involve theradial derivatives of the �uxes, se
tion 9.1.2):
(

∂χ
∂r

)
= mψ′

P,0 − nψ′
T,0 + (9.41)

+ 2
∂|χ|
∂r

cos(mθ − nϕ+ φχ)− 2|χ| ∂φχ
∂r

sin(mθ − nϕ+ φχ)
(

∂χ
∂θ

)
= −2 m |χ| sin(mθ − nϕ+ φχ) (9.42)

|χ| ≡ |χm,n| ≡ |χm,n|(r)with, making use of eq.(9.16),
(

∂|χ|
∂r

)
=

1

2

[
2m|ψT ||ψT |′ + 2n2|ψP ||ψP |′ − 2mn|ψT |′|ψP | cos(φψT − φψP ) +

− 2mn|ψT ||ψP |′ cos(φψT − φψP ) +

+2mn|ψT ||ψP |(φ′ψT − φ
′
ψP

) sin(φψT − φψP )
]−1/2 (9.43)

(
∂φχ
∂r

)
=
[
1 +

(m|ψP | sinφψP − n|ψT | sinφψT
m|ψP | cosφψP − n|ψT | cosφψT

)2]−1
× (9.44)

×
[N ′D −D′N

D2

] 193



Detailed 
al
ulations




N = m|ψP | sinφψP − n|ψT | sinφψT
D = m|ψP | cosφψP − n|ψT | cosφψT
N ′ = m|ψP |′ sinφψP +m|ψP |φ′ψP cosφψP − n|ψT |′ sinψψT − n|ψT |φ′ψT cosφψT
D′ = m|ψP |′ cosφψP −m|ψP |φ′ψP sinφψP − n|ψT |′ cosψψT + n|ψT |φ′ψT sinφψTThe heli
al �ux radial derivatives in SHEq�
odeSHEq 
ode uses a formula similar to eq.(9.40) also for the heli
al �ux:

∂χ

∂r
=

dχ0

dr
+
∂χm,n(r, u)

∂r
(9.45)

= χ′
0(r)− ǫ′(r) sin(u+ φǫ)− ǫ φ′ǫ cos(u+ φǫ) (9.46)using de�nitions (9.19)�(9.20) for ǫ(r) and φǫ, one founds that equation(9.45) is equivalent to eq.(9.41).9.2 On heli
al�toroidal 
oordinatesHeli
al�toroidal 
oordinate systems have been de�ned in 
hapter 4 as a �rststep to model SHAx states (as pure SH states).The whole metri
 tensors are used by the SHEq 
ode to 
ompute the heli
alplasma quantities, examples of whi
h one 
an �nd in 
hapter 6.We 
olle
t here the metri
s of all the heli
al 
oordinates de�ned in 
hapter 4,in the same order for simpli
ity (ex
ept for the (χ, u, θ) and (χ, uθh , θ) 
oordi-nate systems of se
tion 4.2.3, for whi
h no metri
s have been 
al
ulated). Itis worth noting that all the heli
al�toroidal metri
s are all 
urvilinear metri
s.9.2.1 The whole metri
 tensor of heli
al 
oordinate systemsde�ned in 
hapter 41. The (χ, β, ϕ) 
oordinate systemThis is the 
oordinate system de�ned in se
tion 4.2.1, whi
h is not astraight��eld�line 
oordinate system.The angle β is de�ned with respe
t to the heli
al axis, and 
an be de-�ned with respe
t to the 
ylindri
al 
oordinates3 in a geometri
 way,equation (4.11).Due to equations (3.14), the metri
 tensor and the Ja
obian of this 
o-ordinate system 
an be derived in a relatively easy way in terms of the3The tensor metri
 of the 
ylindri
al 
oordinate system 
an be found in appendix B.2.1.194



9.2 On heli
al�toroidal 
oordinatesmetri
s of the zero�th order �ux 
oordinates wi = (r, ϑ, ϕ) de�ned inse
tion 3.1.1 and appendix B.2.3. The 
ontravariant metri
 tensor ele-ments and the Ja
obian 
an be 
omputed using the relations betweenthe gradients of the two 
oordinate systems:




∇χ = ∂χ
∂r∇r + ∂χ

∂ϑ∇ϑ+ ∂χ
∂ϕ∇ϕ

∇β = ∂β
∂r∇r + ∂β

∂ϑ∇ϑ+ ∂β
∂ϕ∇ϕ

∇ϕ = ∇ϕThe Ja
obian √gβ of the (χ, β, ϕ) 
oordinate system is:
√
gβ = (∇χ · ∇β ×∇ϕ)−1 =

(
∂χ
∂r

∂β
∂ϑ −

∂χ
∂ϑ

∂β
∂r

)−1 · √gw (9.47)where √gw is the Ja
obian of the wi 
oordinate system. The following
ondition must be satis�ed:
∂χ

∂r

∂β

∂ϑ
>
∂χ

∂ϑ

∂β

∂r
(9.48)We write expli
itly just an example, for the �rst 
ontravariant met-ri
s element: g11 ≡ gχχ:

gχχ = ∇χ · ∇χ (9.49)
=

(
∂χ

∂r
∇r +

∂χ

∂ϑ
∇ϑ+

∂χ

∂ϕ
∇ϕ
)
·
(
∂χ

∂r
∇r +

∂χ

∂ϑ
∇ϑ+

∂χ

∂ϕ
∇ϕ
)

=

=

(
∂χ

∂r

)2

grrw +

(
∂χ

∂ϑ

)2

gϑϑw +

(
∂χ

∂ϕ

)2

gϕϕw +

(
∂χ

∂r

)(
∂χ

∂ϑ

)
grϑwThe gij elements of the (inverse) 
ovariant matrix 
an be 
al
ulatedfrom the formulas for the inversion of a 3x3 diagonal matrix (see ap-pendix B.3).One needs to know the following derivatives to 
ompute the metri
selements and the Ja
obian:

(
∂β

∂r

)
,

(
∂β

∂ϑ

)
,

(
∂χ

∂r

)
,

(
∂χ

∂ϑ

) (9.50)The derivatives of the heli
al �ux have already been dis
ussed in se
tion9.1.3. We derive here the derivatives of the angle β, for whi
h we mustremember the de�nition of the angle β, equations (3.14) and equations195



Detailed 
al
ulations(3.12):
β = arctan

(
Z−ZA
R−RA

) (9.51)
R = R0 − r cosϑ+ ∆(r)− rλ1 sin2 ϑ+ (

3

2
rλ2

1 − 2rλ2) sin2 ϑ cosϑ

Z = r sinϑ− r

2
λ1 sin(2ϑ) + (

3

2
rλ2

1 − 2rλ2) sinϑ cos2 ϑ− r

2
λ2

1 sinϑ

λ1(rf ) =
rf
R0
−∆′ (9.52)

λ2(rf ) =
rf

4R0

( rf
R0
−∆′ ) =

rf
4R0

λ1 (9.53)Be
ause d/dx(arctanx) = (1 + x2)−1, one obtains the derivatives:
(

∂β
∂r

)
=

[
1 +

(
Z−ZA
R−RA

)2
]−1 (

1
R−RA

∂Z
∂r −

Z−ZA
(R−RA)2

∂R
∂r

)
=(9.54)

=
1

(R−RA)2 + (Z − ZA)2

[
(R−RA)

∂Z

∂r
− (Z − ZA)

∂R

∂r

]

(
∂β
∂ϑ

)
=

[
1 +

(
Z−ZA
R−RA

)2
]−1 (

1
R−RA

∂Z
∂ϑ −

Z−ZA
(R−RA)2

∂R
∂ϑ

)
=(9.55)

=
1

(R−RA)2 + (Z − ZA)2

[
(R−RA)

∂Z

∂ϑ
− (Z − ZA)

∂R

∂ϑ

]with
(

∂Z
∂r

)
= sinϑ− 1

2
λ1 sin(2ϑ)− r

2
sin(2ϑ)

∂λ1

∂r
+ (9.56)

+
(

3
2λ

2
1 + 3rλ1

∂λ1
∂r − 2λ2 − 2r ∂λ2

∂r

)
sinϑ cos2 ϑ+

− 1

2
λ2

1 sinϑ− rλ1
∂λ1

∂r
sinϑ

(
∂Z
∂ϑ

)
= r cosϑ− rλ1 cos(2ϑ)− r

2
λ2

1 cosϑ+ (9.57)
+
(

3
2rλ

2
1 − 2rλ2

) (
cos2 ϑ− 2 sin2 ϑ

)
cosϑ

(
∂R
∂r

)
= − cosϑ+ ∆′ − λ1 sin2 ϑ− r sin2 ϑ

∂λ1

∂r
+ (9.58)

+
(

3
2λ

2
1 + 3rλ1

∂λ1
∂r − 2r ∂λ2

∂r − 2λ2

)
sin2 ϑ cosϑ

(
∂R
∂ϑ

)
= r sinϑ− 2rλ1 sinϑ cosϑ+ (9.59)
+
(

3
2rλ

2
1 − 2rλ2

) (
2 cos2 ϑ− sin2 ϑ

)
sinϑ196



9.2 On heli
al�toroidal 
oordinatesand
(

∂λ1
∂r

)
=

1

R0
−∆′′ (9.60)

(
∂λ2
∂r

)
=

r

2R2
0

− ∆′

4R0
− r∆′′

4R0

∆′′(r) = − 1

R0
− ∆′

r

(
1 + 2r

B̂0
ϑ
dB̂0

ϑ

dr

) (9.61)
2. The (χ, u, ϕ) 
oordinate systemThis is the heli
al 
oordinate system de�ned in se
tion 4.2.2, for theHamiltonian time ϕ, that emphasizes the heli
al symmetry with re-spe
t to u on the �ux surfa
es χ = const.The (χ, u, ϕ) is not a straight��eld�line 
oordinate system and the he-li
al angle u = mϑ−nϕ is not de�ned with respe
t to the heli
al axis,being de�ned with respe
t to the axi�symmetri
 (shifted) axis of thesystem (as the poloidal angle ϑ).The metri
 tensor and the Ja
obian of this 
oordinate system 
an bederived in a relatively easy way in terms of the metri
s of the zero�th order �ux 
oordinates wi = (r, ϑ, ϕ) de�ned in se
tion 3.1.1 andappendix B.2.3.The Ja
obian √gc of the (χ, u, ϕ) 
oordinate system is:

√
gc =

(∂χ
∂r

)−1(∂u
∂ϑ

)−1√
gw =

1

m

(∂χ
∂r

)−1√
gw (9.62)where √gw is the Ja
obian of the wi 
oordinate system.Also the 
ontravariant metri
 tensor elements gijc 
an be 
om-puted using the relations between the gradients of the two 
oordinatesystems (and the easy derivation of the heli
al angle u with respe
t to197



Detailed 
al
ulationsthe wi 
oordinates). One obtains:
gχχc = ∇χ · ∇χ (9.63)

=

(
∂χ

∂r

)2

grrw +

(
∂χ

∂ϑ

)2

gϑϑw +

(
∂χ

∂ϕ

)2

gϕϕw +

(
∂χ

∂r

)(
∂χ

∂ϑ

)
grϑw

gχuc = ∇χ · ∇u

= m

(
∂χ

∂r

)
grϑw +m

(
∂χ

∂ϑ

)
gϑϑw − n

(
∂χ

∂ϕ

)
gϕϕw (9.64)

gχϕc = ∇χ · ∇ϕ =

(
∂χ

∂ϕ

)
gϕϕw (9.65)

guuc = ∇u · ∇u = m2 gϑϑw + n2 gϕϕw (9.66)
guϕc = ∇u · ∇ϕ = −n gϕϕw (9.67)
gϕϕc = ∇ϕ · ∇ϕ = gϕϕw (9.68)remembering the symmetry of the metri
s elements: gij = gji and
gij = gji.The 
ovariant metri
 tensor elements gcij 
an be 
al
ulated fromthe formulas for the inversion of a 3x3 diagonal matrix (see appendixB.3).3. The (χ, uh, ϕ) 
oordinate systemThis is the a
tion�angle 
oordinate system de�ned in se
tion 4.2.2, forthe Hamiltonian time ϕ, that emphasizes the heli
al symmetry withrespe
t to u on the �ux surfa
es χ = const.The (χ, u, ϕ) is the straight��eld�line 
oordinate system related to theheli
al angle uh de�ned in equation (4.21).The metri
 tensor of this 
oordinate system 
an be derived in a rel-atively easy way in terms of the metri
s of the (χ, u, ϕ) 
oordinatesystem. One needs to know the following derivatives to 
ompute themetri
s elements and the Ja
obian:

∂uh
∂χ

=
∂χ

∂ψh

∫ u

0

∂2ψT (χ, u′)
∂χ2

du′ (9.69)
∂uh
∂u

=
∂ψT (χ, u)

∂χ

dχ

dψh
=

1

ιh

∂ψT (χ, u)

∂χ
(9.70)remembering the de�nition of the heli
al rotational transform ιh, eq.(6.26).198



9.2 On heli
al�toroidal 
oordinatesThe Ja
obian √gh of the (χ, uh, ϕ) 
oordinate system is:
√
gh =

(∂uh
∂u

)−1√
gc (9.71)

=
1

m

(∂uh
∂u

)−1(∂χ
∂r

)−1√
gw (9.72)using also equation (9.62).The 
ontravariant metri
 tensor elements gijh 
an be 
omputedusing the relations between the gradients of the two 
oordinate systems(the (χ, uh, ϕ) and the (χ, u, ϕ) 
oordinate systems). One obtains:

gχχh = ∇χ · ∇χ = gχχc (9.73)
gχuhh = ∇χ · ∇uh =

(
∂uh
∂χ

)
gχχc +

(
∂uh
∂u

)
gχuc (9.74)

gχϕh = ∇χ · ∇ϕ = gχϕc (9.75)
guhuhh = ∇uh · ∇uh (9.76)

=

(
∂uh
∂χ

)2

gχχc + 2

(
∂uh
∂χ

)(
∂uh
∂u

)
gχuc +

(
∂uh
∂u

)2

guuc

guhϕh = ∇uh · ∇ϕ =

(
∂uh
∂χ

)
gχϕc +

(
∂uh
∂u

)
guϕc (9.77)

gϕϕh = ∇ϕ · ∇ϕ = gϕϕc (9.78)remembering the symmetry of the metri
s elements: gij = gji and
gij = gji and that uh ≡ uh(χ, u).Again, the 
ovariant metri
 tensor elements ghij 
an be 
al
ulatedfrom the formulas for the inversion of a 3x3 diagonal matrix (see ap-pendix B.3).4. The (χ, u, v) 
oordinate systemThis is the heli
al 
oordinate system de�ned in se
tion 4.2.4, for theHamiltonian time v = aθ+ bnϕ, that 
an be thought as a toroidal�likeangle de�ned on the heli
al axis and that do not reverse. On the otherhand, the heli
al angle u = mϑ − nϕ is not de�ned with respe
t tothe heli
al axis and the (χ, u, v) is not a straight��eld�line 
oordinatesystem.As for the (χ, u, ϕ) 
oordinates, the metri
 tensor of this 
oordinatesystem 
an be derived in a relatively easy way in terms of the metri
sof the zero�th order �ux 
oordinates wi = (r, ϑ, ϕ) de�ned in se
tion199



Detailed 
al
ulations3.1.1 and appendix B.2.3.The Ja
obian √gv of the (χ, u, v) 
oordinate system is:
√
gv =

(∂χ
∂r

)−1(∂u
∂ϑ

∂v

∂ϕ
− ∂u

∂ϕ

∂v

∂ϑ

)−1√
gw (9.79)

=
(∂χ
∂r

)−1√
gw (9.80)where √gw is the Ja
obian of the wi 
oordinate system. The simplederivations of the angles u and v with respe
t to ϑ and ϕ have beenused.Also the 
ontravariant metri
 tensor elements gijv 
an be 
om-puted using the relations between the gradients of the two 
oordinatesystems. One obtains:

gχχv = ∇χ · ∇χ (9.81)
=

(
∂χ

∂r

)2

grrw +

(
∂χ

∂ϑ

)2

gϑϑw +

(
∂χ

∂ϕ

)2

gϕϕw +

(
∂χ

∂r

)(
∂χ

∂ϑ

)
grϑw

gχuv = ∇χ · ∇u

= m

(
∂χ

∂r

)
grϑw +m

(
∂χ

∂ϑ

)
gϑϑw − n

(
∂χ

∂ϕ

)
gϕϕw (9.82)

gχvv = ∇χ · ∇v

=
1

2n

(
∂χ

∂r

)
grϑw +

1

2n

(
∂χ

∂ϑ

)
gϑϑw +

1

2

(
∂χ

∂ϕ

)
gϕϕw (9.83)

guuv = ∇u · ∇u = m2 gϑϑw + n2 gϕϕw (9.84)
guvv = ∇u · ∇v =

m

2n
gϑϑw −

n

2
gϕϕw (9.85)

gvvv = ∇v · ∇v =
1

4n2
gϑϑw +

1

4
gϕϕw (9.86)remembering the symmetry of the metri
s elements: gij = gji and

gij = gji.The 
ovariant metri
 tensor elements gvij 
an be 
al
ulated fromthe formulas for the inversion of a 3x3 diagonal matrix (see appendixB.3).5. The (χ, uη, v) 
oordinate systemThis is the A
tion�Angle 
oordinate system de�ned in se
tion 4.2.4,for the Hamiltonian time v. The (χ, u, ϕ) is therefore the straight��eld�line 
oordinate system related to the heli
al Angle uη de�nd in200



9.2 On heli
al�toroidal 
oordinatesequation (4.62) as the angle de�ned with respe
t to the heli
al axis..The metri
 tensor of this 
oordinate system 
an be derived in a rel-atively easy way in terms of the metri
s of the (χ, u, v) 
oordinatesystem. One needs to know the following derivatives to 
ompute themetri
s elements:
uη(ηh, u) =

∫ u

0

∂η(ηh, u
′)

∂ηh
du′ =

dχ

dηh

∫ u

0

∂η(χ, u′)
∂χ

(9.87)
m

∂uη
∂χ

= ιη
∂

∂χ

(∫ u

0

∂η(χ, u′)
∂χ

du′
)

+
dιη
dχ

∫ u

0

∂η(χ, u′)
∂χ

du′ (9.88)
= ιη

∫ u

0

(
∂χ

∂r

)−1
[
∂2η

∂r2

(
∂χ

∂r

)−1

− ∂η

∂r

(
∂χ

∂r

)−2(∂2χ

∂r2

)]
du+

+
dιη
dχ

uη
ιη

∂uη
∂u

=
∂η(ηh, u

′)
∂ηh

= ιη(χ)
∂η(χ, u′)
∂χ

= ιη(χ)
∂η

∂r

(
∂χ

∂r

)−1 (9.89)remembering the general de�nition of the heli
al rotational transform
ιη(χ) = dχ/dηh, for the A
tion ηh(χ), and with4:

∂η

∂r
=

1

2n

∂ψP
∂r

+
1

2

∂ψt
∂r

(9.90)
∂2η

∂r2
=

1

2n

∂2ψP
∂r2

+
1

2

∂2ψt
∂r2

(9.91)The Ja
obian √gη of the (χ, uη, v) 
oordinate system is:
√
gη =

(∂uη
∂u

)√
gv (9.92)

=
(∂uη
∂u

)(∂χ
∂r

)−1√
gw (9.93)using both the Ja
obian of the (χ, u, v) and the wi = (r, ϑ, ϕ) 
oordi-nate systems.The 
ontravariant metri
 tensor elements gijη 
an be 
omputedusing the relations between the gradients of the two 
oordinate systems4See se
tion 9.1.2 to 
ompute the radial derivative of the poloidal and toroidal �uxes.201



Detailed 
al
ulations(the (χ, u, v) and the (χ, uη, v) 
oordinate systems). One obtains:
gχχη = ∇χ · ∇χ = gχχv (9.94)
g
χuη
η = ∇χ · ∇uη =

(
∂uη
∂χ

)
gχχv +

(
∂uη
∂u

)
gχuv (9.95)

gχvη = ∇χ · ∇v = gχvv (9.96)
g
uηuη
η = ∇uη · ∇uη =

=

(
∂uη
∂χ

)2

gχχv + 2

(
∂uη
∂χ

)(
∂uη
∂u

)
gχuv +

(
∂uη
∂u

)2

guuv(9.97)
g
uηv
η = ∇uη · ∇v =

(
∂uη
∂χ

)
gχvv +

(
∂uη
∂u

)
guvv (9.98)

gvvη = ∇v · ∇v = gvvv (9.99)remembering the symmetry of the metri
s elements: gij = gji and
gij = gji and that uη ≡ uη(ηh, u) = uη(χ, u).Again, the 
ovariant metri
 tensor elements gηij 
an be 
al
ulatedfrom the formulas for the inversion of a 3x3 diagonal matrix (see ap-pendix B.3).6. The (χ, θ∗, ϕ) 
oordinate systemThis is the A
tion�Angle 
oordinate system de�ned in se
tion 4.4.1, forthe Hamiltonian time ϕ. It is a straight��eld�line 
oordinate systemrelated to the usual toroidal angle ϕ and to the poloidal angle θ∗ de�nedwith respe
t to the heli
al axis in equation (4.80):

θ∗ = uh + nϕ . (9.100)The metri
 tensor of this 
oordinate system 
an be derived in a rel-atively easy way in terms of the metri
s of the (χ, uh, ϕ) 
oordinatesystem. The Ja
obian √g∗ of the (χ, θ∗, ϕ) 
oordinate system is:
√
g∗ = (∇χ · ∇uh ×∇ϕ)−1 =

√
gh (9.101)where √gh is the Ja
obian of the straight��eld�line 
oordinate system

(χ, uh, ϕ).The 
ontravariant metri
 tensor elements gij∗ 
an be 
omputedusing the relations between the gradients of the two 
oordinate systems202



9.2 On heli
al�toroidal 
oordinates(the (χ, θ∗, ϕ) and the (χ, uh, ϕ) 
oordinate systems). One obtains:
gχχ∗ = ∇χ · ∇χ = gχχh (9.102)
gχθ

∗

∗ = ∇χ · ∇θ∗ = gχuhh + ngχϕh (9.103)
gχϕ∗ = ∇χ · ∇ϕ = gχϕh (9.104)
gθ

∗θ∗

∗ = ∇θ∗ · ∇θ∗ = guhuhh + 2nguhϕh + n2gϕϕh (9.105)
gθ

∗ϕ
∗ = ∇θ∗ · ∇ϕ = guhϕh + ngϕϕh (9.106)
gϕϕ∗ = ∇ϕ · ∇ϕ = gϕϕh (9.107)remembering the symmetry of the metri
s elements: gij = gji and

gij = gji and 
omputing the easy derivatives of θ∗ with respe
t to the
(uh, ϕ) 
oordinates.The 
ovariant metri
 tensor elements g∗ij 
an be 
al
ulated fromthe formulas for the inversion of a 3x3 diagonal matrix (see appendixB.3).9.2.2 Radial variable 
hoi
esWe note here how the Ja
obian and the metri
s elements vary for 
hangeof the radial variable. In se
tion 9.2 we used the heli
al �ux χ as radialvariable, with the same 
hoi
e of 
hapter 4. We now 
onsider the 
hange:

χ 7→ ρ(χ) (9.108)for any 
oordinate system χ, θ, ϕ, keeping un
hanged the angle variables.The Ja
obian √gχ a

ording to eq.(9.108) 
hanges as follows:
√
gρ =

(
∂χ

∂ρ

)
√
gχ (9.109)where √gρ is the Ja
obian of the ρ, θ, ϕ 
oordinate system.The 
ontravariant metri
 tensor elements gij 
hanges as:

gρρ =

(
∂ρ

∂χ

)2

gχχ (9.110)
gρθ =

(
∂ρ

∂χ

)
gχθ (9.111)

gρϕ =

(
∂ρ

∂χ

)
gχϕ (9.112)(9.113)203



Detailed 
al
ulationswhereas the metri
 elements related to the angular 
oordinates only are un-
hanged.The 
ovariant metri
 tensor elements gij 
an be 
al
ulated from theformulas for the inversion of a 3x3 diagonal matrix in terms of the 
ontravari-ant elements. Using the relations above one 
an �nd how they 
hange under
hanges of the radial variable. It still true that the 
ovariant metri
 elementsrelated to the angular 
oordinates only are un
hanged.To 
on
lude we note also how 
hange some quantities important in 
hap-ter 7: the derivative of the volume V ′ and the diagonal sus
eptan
e matrixelements Sij .
V ′
χ 7→ V ′

ρ =

(
∂χ

∂ρ

)
V ′
χ (9.114)

[S11]χ 7→ [S11]ρ =

(
∂ρ

∂χ

)
[S11]χ (9.115)

[S22]χ 7→ [S22]ρ =

(
∂ρ

∂χ

)
[S22]χ (9.116)

9.2.3 Dimensional analysisWe use the symbol [...] to indi
ate the dimension, using SI metri
 units.What 
hanges 
hanging the radial variable is the dimension of the 
ovari-ant and 
ontravariant 
omponents of the magneti
 �eld and ve
tor potential.Starting from the de�nition of these 
omponents in every general 
oordinates
xi = (x1, x2, x3):

B = Biei = Bi∇xi (9.117)where ei and ∇xi are the 
ovariant and 
ontravariant basis ve
tor, respe
-tively. And they are one the inverse of the other (appendix B.1), ∇xi beingthe gradient of the 
oordinate s
alar fun
tion. The same relations are validfor any ve
tor, in parti
ular for the ve
tor potential A.One starts from here for some dimensional analysis. We 
hoose toroidal sys-tems (ρ, θ, ϕ): θ and ϕ are two (adimensional) angles and their gradient havedimension [m−1], while its inverse the dimension of [m]. The 
orrespondent204



9.2 On heli
al�toroidal 
oordinatesdimensions for the radial 
oordinate depend on the 
hoi
e of ρ:
(θ ≡ [adim]) ⇒ ∇θ ≡ [m−1] , eθ ≡ [m] (9.118)
(ϕ ≡ [adim]) ⇒ ∇ϕ ≡ [m−1] , eϕ ≡ [m] (9.119)

(ρ = χ ≡ [Tm2]) ⇒ ∇ρ ≡ [Tm] , eρ ≡ [T−1m−1] (9.120)
(ρ = ρh ≡ [adim]) ⇒ ∇ρ ≡ [m−1] , eρ ≡ [m] (9.121)

(ρ = ρA ≡ [m]) ⇒ ∇ρ ≡ [adim] , eρ ≡ [adim] (9.122)Using the de�nitions (B.3) and (B.1) for the 
ontravariant and 
ovariantmetri
s elements respe
tively, one 
an make from here a dimensional analy-sis of the tensor matrix elements.Be
ause the magneti
 �eld must be Tesla [T ] and the ve
tor potential
[Tm] (Stokes theorem), one obtains using (9.117):

(ρ = χ ≡ [Tm2]) ⇒ Aρ ≡ [adim] , Aϕ ≡ [Tm2] (9.123)
⇒ Bρ ≡ [m−1] , Bϕ ≡ [Tm] (9.124)

(ρ = ρh ≡ [adim]) ⇒ Aρ ≡ [Tm2] , Aϕ ≡ [Tm2] (9.125)
⇒ Bρ ≡ [Tm] , Bϕ ≡ [Tm] (9.126)

(ρ = ρA ≡ [m]) ⇒ Aρ ≡ [Tm] , Aϕ ≡ [Tm2] (9.127)
⇒ Bρ ≡ [T ] , Bϕ ≡ [Tm] (9.128)With down indexes:

(ρ = χ ≡ [Tm2]) ⇒ Aρ ≡ [T 2m2] , Aϕ ≡ [T ] (9.129)
⇒ Bρ ≡ [T 2m] , Bϕ ≡ [Tm−1] (9.130)

(ρ = ρh ≡ [adim]) ⇒ Aρ ≡ [T ] , Aϕ ≡ [T ] (9.131)
⇒ Bρ ≡ [Tm−1] , Bϕ ≡ [Tm−1] (9.132)

(ρ = ρA ≡ [m]) ⇒ Aρ ≡ [Tm] , Aϕ ≡ [T ] (9.133)
⇒ Bρ ≡ [T ] , Bϕ ≡ [Tm−1] (9.134)The 
omponents on the other angle, θ have the same dimensional properties.Not all the the 
omponents of the magneti
 �eld and of the ve
tor po-tential have the dimension of the whole ve
tor. This is obviously due to thefa
t that the basis ve
tors are not adimensional. This is at the basis of thetheory for 
urvilinear metri
s and tensorial 
al
ulations: paying attention tothese rules, one 
an make adimensional and with unitary lenght the basisve
tors ei and ∇xi dividing them for their norm. This is the way to obtainthe right dimension and lenght for ea
h 
omponent of the ve
tors. It is worthnoting that this is ne
essary to 
ompare them to experimental measurements.205



Detailed 
al
ulations9.3 On some equilibrium equations
9.3.1 The equation for dq/dt
Following the steps for the derivation of the time evolution of the rotationaltransform (se
tion A.5), we derive a similar equation for the time evolutionof the safety fa
tor q.The starting point is the same, the Faraday's law in eq.(A.54), that we nowdivide by ψ′

p to highlight a q = ψ′
t/ψ

′
p term in the equation:

〈E ·B〉 V
′

ψ′
p

= q
[∂ψp
∂t

+ Vt(0)
]
−
(∂ψt
∂t

) (9.135)
In order to delete the 
ontribution from the loop voltage Vt(0), let us takea radial derivative of equation (9.135). But, di�erently from the appendixA.5, we 
hoose a radial derivative with respe
t to ψp:
∂

∂ψp

[
〈E ·B〉 V

′

ψ′
p

]
=

∂

∂ψp

(
q
∂ψp
∂t

+ Vt(0)
)
− ∂

∂ψp

(∂ψt
∂t

)

=
∂q

∂ψp

∂ψp
∂t

+ q
∂

∂ψp

(∂ψp
∂t

)
+

∂q

∂ψp
Vt(0)− ∂

∂ψp

(∂ψt
∂t

)

=
∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]
− ∂q

∂t
(9.136)206



9.3 On some equilibrium equationsex
hanging spatial and temporal derivatives in the se
ond order derivatives.Highlighting the dq/dt term, one obtains:
∂q

∂t
=

∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]
− ∂

∂ψp

[
〈E ·B〉 V

′

ψ′
p

] (9.137)
=

∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]
− ∂

∂ψp

[
η‖ 〈
(
J− Js

)
·B〉 V

′

ψ′
p

] (9.138)
=

∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]

+ (9.139)
− ∂

∂ψp

[η‖ µ0

ψ′
p

(F I ′ − I F ′)− η‖ 〈Js ·B〉
V ′

ψ′
p

]

=
∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]

+ (9.140)
− ∂

∂ψp

[η‖ µ0

ψ′
p

F 2
( I
F

)′ ]
+

∂

∂ψp

[
η‖ 〈Js ·B〉

V ′

ψ′
p

]

=
∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]

+
∂

∂ψp

[
η‖ 〈Js ·B〉

V ′

ψ′
p

]
+ (9.141)

− ∂

∂ψp

[ η‖
µ0

ψ′
p (S21 + S22 q)

2 ∂

∂ρ

(S11 + S12 q

S21 + S22 q

)]These are the equations for the safety fa
tor evolution. In se
tion 7.3.2 one
an �nd an example where equation (9.141) has been used.More in detail, between eq.(9.137) and eq.(9.138) it has been used the Ohm'slaw in the form of eq.(A.53).Between eq.(9.138) and eq.(9.139) (and between eq.(9.139) and eq.(9.140)) ithas been used the parallel for
e balan
e equation, in the form of eq.(A.59).Between eq.(9.140) and eq.(9.141) have been used the equations (A.60)�(A.61), where the poloidal 
urrent F and the toroidal one I are written interms of the (radial derivative of the) poloidal and toroidal �uxes using thesus
eptan
e matrix elements. These equations are re�written to highlightthe 
ontribution of the safety fa
tor instead of ι:
F 2 =

(ψ′
t)

2

µ2
0

(S21 ι+ S22)
2 = (S21 + S22 q)

2 (9.142)
( I
F

)′
=

∂

∂ρ

((S11 ι+ S12)

(S21 ι+ S22)

)
=
(S11 + S12 q

S21 + S22 q

) (9.143)207



Detailed 
al
ulations9.3.2 The equations for I ′ and F ′It is possible to write the ohmi
 equilibrium system (A.52) in a di�erent way,i.e. as a system of two di�erential equation that 
an be integrated to obtainthe 
urrents I and F .One 
an invert the sus
eptan
e matrix (A.44) de�ned in appendix A.3 tolink the 
urrents and the derivative of �uxes5:
(
ψ′
p

ψ′
t

)
= µ0

(
L11 L12

L21 L22

)(
I
F

) (9.144)where [Lij ] = [Sij ]
−1, and therefore

[Lij ] =
1

S11 S21 − S12 S22

(
S22 −S12

−S21 S11

) (9.145)Using the matrix L (instead of S) the ohmi
 equilibrium system (A.52)of se
tion A.4 
an be written in this form:




ψ′
p = µ0(L11 I + L12 F )

ψ′
t = µ0(L21 I + L22 F )

Vt(0)ψ′
t + [Vp(0)ψ′

p] = η‖µ0 (F I ′ − I F ′)

−p V ′ = F ′ ψ′
t + I ′ ψ′

p

(9.146)
Let us negle
t for a �rst 
al
ulation the term proportional to the poloidalloop voltage on the axis, Vp(0)6. At the end of the se
tion we will write the
omplete equation for I ′ and F ′ that 
ontain also the terms proportional tothe poloidal voltage.Using the �rst two equations to substitute ψ′

p and ψ′
t in the other two equa-tions, one obtains:





(F I ′ − I F ′) = Uϕ(L21 I + L22 F )

−p V ′ = µ0 F
′ (L21 I + L22 F ) + µ0 I

′ (L11 I + L12 F )
(9.147)with the de�nition

Uϕ =
Vt(0)

η‖
(9.148)5ψp and ψt are used for the �uxes related, in a general 
oordinate system, to thepoloidal�like and to the toroidal�like angle, respe
tively.6If the poloidal�like angle lies on the poloidal plane, VP (0) = 0 by de�nition. In thisse
tion we introdu
ed the possibility of a term VP (0) 6= 0 thinking to a poloidal�like angletopologi
ally equivalent for example to a heli
al angle. In this 
ase the 
ir
ulation aroundthe axis does not 
ollapse into a point, and 
ould be VP (0) 6= 0.208



9.3 On some equilibrium equationsFrom the �rst one it is easy to obtain an equation for I ′ to be substitutedinto the se
ond one:




I ′ = (Uϕ L21)
I
F + (Uϕ L22)

I
F F

′

−p V ′ = µ0 F
′ (L21 I + L22 F ) + µ0 (L11 I + L12 F )

[
(Uϕ L21)

I
F + (Uϕ L22)

I
F F

′](9.149)From the last equation one 
an �nd an expression for F ′. Using it also inthe equation found for I ′, one �nds the two equations that was looking for.The steps are simple algebra, we write only the �nal result.Let me introdu
e the quantity d for easier notation:
d = µ0 (L11 I

2 + L12 I F + L21 I F + L22 F
2) (9.150)The �nal equations are:

F ′ = − p
′V ′

d
F − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d
(9.151)

I ′ = − p
′V ′

d
I − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d

I

F
+

+
Uϕ (L21 I + L22 F )

F
(9.152)To 
on
lude, a non null poloidal loop voltage Vp(0) adds some terms tothe previous equations:

F ′ = − p
′V ′

d
F − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d
+

− Uθ (L11 I + L12 F )2

d
(9.153)

I ′ = − p
′V ′

d
I − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d

I

F
+

+
Uϕ (L21 I + L22 F )

F
+

− Uθ (L11 I + L12 F )2

d

I

F
+
Uθ (L11 I + L12 F )

F
(9.154)with the same de�nition for Uθ

Uθ =
Vp(0)

η‖
(9.155)An example of solution of this system is given in 7.4 for the 
ylindri
alparamagneti
 pin
h.
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Con
lusions
SummaryThis thesis reports the work done to 
hara
terize the heli
al Reversed FieldPin
h (RFP) states, named SHAx (Single Heli
al Axis), through the inves-tigation of the magneti
 topology in the 
ore region and at the plasma edge.The work has been 
arried out in the RFX�mod experiment (Padova, Italy)and it mainly 
on
erns the study of the 3D RFP physi
s whi
h 
an be ofinterest also for the Stellarator and Tokamak 
omunities.SHAx states are high plasma 
urrent states whi
h feature the emergen
eof an ordered spontaneous magneti
 stru
ture in the otherwise 
haoti
 
ore,and are therefore asso
iated to improved 
on�nement properties. The he-li
al shape is related to the dominan
e of the innermost resonant mode inthe MHD spe
tra (whi
h is the (m,n) = (1, 7) in RFX�mod devi
e), butSHAx states are just Quasi Single Heli
ity (QSH) states due to the pres-en
e of se
ondary modes. It is worth reminding that the toroidi
ity of thesystem imposes a toroidal 
oupling between modes with the same toroidalmode number n and di�erent poloidal mode number m, therefore a domi-nant mode arises also in the m = 0 mode spe
trum (the (m,n) = (0, 7) inRFX�mod devi
e).In the 
hara
terization of the plasma 
ore, SHAx states are modeled aspure Single Heli
ity (SH) states (therefore negle
ting the residual se
ondarymodes). The 
ontribution of the se
ondary modes and espe
ially of the dom-inant m = 0 mode is 
onsidered in the 
hara
terization of the edge regionand of the plasma�wall intera
tion.A pra
ti
al out
ome of this thesis is the 
ode named SHEq (Single He-li
al Equilibria) whi
h is now routinely used for the 
omputation of heli
alequilibria in RFX�mod. In these Con
lusions the main results of this thesisand the possibility of future work using the SHEq 
ode are summarized.211



Con
lusionsChara
terization of the 
ore regionFor the 
ore region, the resear
h a
tivity has been fo
used on the study ofthe heli
al SHAx 
on�guration modeled as pure SH states.Heli
al 
oordinates. The �rst step was the resear
h of new heli
al
oordinates that 
an well des
ribe a Single Heli
ity state (SH) on a torus. Inparti
ular, the approa
h of using of the dominant tearing mode eigenfun
-tion 
omputed using New
omb's equation for determining the position andshape of the heli
al �ux surfa
es has been evaluated.As radial 
oordinate we use the heli
al �ux (appropriate fun
tion of thepoloidal and toroidal �uxes whi
h labels the axi�symmetri
 magneti
 �uxsurfa
es), and we need then to �nd two angles (a poloidal-like and a toroidal-like angle) de�ned with respe
t to the heli
al axis of the system. Be
ause ofthe toroidal dependen
e of the heli
al axis position in the poloidal plane, wede�ne substantially a 3-dimensional 
oordinate system. Moreover, no 
ylin-dri
al approximation has been taken into a

ount, looking for a 
urvilinearmetri
 in order to well 
onsider the toroidi
ity of the heli
al system (the dif-feren
e between 
ovariant and 
ontravariant 
oordinates is then important).Angles have been de�ned both using a geometri
al approa
h and the Hamil-tonian approa
h to magneti
 �eld lines. Using the more robust Hamiltonianapproa
h it is possible to de�ne also heli
al straight-�eld-line 
oordinates.More than one heli
al 
oordinate system has been 
ompletely de�ned: we
al
ulated the Ja
obian of the transformation between our heli
al 
oordi-nates and the Cartesian 
oordinates, and all the elements of the 
ovariantand 
ontravariant metri
 tensor. The 
omplete de�nition of this 
oordinatesystem allows us to relate our 
oordinates to all the previous 
oordinates.We just noti
e that we found a 
oordinate system valid in the whole plasmavolume, whi
h means both around the reversal surfa
e and in the inner beanshaped �ux surfa
es (the more heli
ally-distorted ones).The SHEq�
ode and some example. The 
omplete de�nition ofthe heli
al metri
s is used by the SHEq-
ode, whi
h is able to 
ompute allthe (heli
al) equilibrium plasma quantities.First, the goodness of the �ux surfa
e re
onstru
tion, labeled by the 
on-stan
y of the heli
al �ux, has been assessed by mapping the data of di�erentdiagnosti
s on the 
omputed �ux surfa
es. Then, 3-dimensional �uxes, mag-neti
 �eld and 
urrent density 
omponents 
an be 
omputed, as well as theirradial pro�le through �ux surfa
e averaging of these quantities.As an example, we used the �ux surfa
e averages to 
al
ulate the thermal
ondu
tivity a
ross the magneti
 �ux surfa
es, averaging the energy equa-tion in steady state for �uid at rest. Doing this we evaluated importantquantities, su
h as the surfa
e-averaged input power, whi
h 
an be then fedinto a transport 
ode (e.g. the ASTRA transport 
ode).212



SHEq 
an also 
ompute the heli
al safety fa
tor (q) pro�le: during SHAxstates the q-pro�le is not monotoni
, with a maximum in 
orresponden
e ofthe Internal Transport Barrier that 
hara
terizes SHAx states.SHEq has been 
oupled with two other 
odes: the VMEC equilibrium 
odeand the ASTRA transport 
ode.The heli
al q-pro�le is used as input for the VMEC-
ode, where the heli
alsafety fa
tor is given as a fun
tion of the poloidal �ux a
ross the heli
al �uxsurfa
es. What we found is a very good agreement with its 
onvergen
e: onone hand this is a ben
hmark for SHEq's 
omputations, on the other handSHEq's heli
al safety fa
tor pro�le is a good input for VMEC analysis.SHEq and ASTRA have been 
oupled in order to perform transport analysis.ASTRA is a 
ode most used in Tokamaks, but it 
an also be adapted to a3-dimensional geometry, like the heli
al one in Stellarators or during SHAxstates in RFPs. We used the 
oe�
ients of the metri
 tensor to adapt theASTRA 
ode to our heli
al geometry and some preliminary 
al
ulations oftransport analysis were performed.We are working with ASTRA also to study the evolution in time of SHEq'ssafety fa
tor pro�les, a

ording to Ohm's law. This is an ongoing work in
ollaboration with the TJ-II (Ciemat, Madrid) team, whi
h should allow toverify if the steady state equilibrium satis�es the Ohmi
 
onstraint given byOhm's law, whi
h is not an initial 
ontraint for SHEq's 
omputations.Chara
terization of the edge regionFor the plasma edge region, the resear
h a
tivity has been fo
used on theinvestigation of the plasma-wall intera
tion (PWI) during SHAx states, andin parti
ular on the m = 0 magneti
 islands role.On the toroidal dire
tion, a n = 7 pattern 
an be 
learly seen in theplasma�wall intera
tion due to a magneti
 boundary 
hara
terized by the
m = 0/n = 7 island 
hain. On the poloidal plane the plasma�wall in-tera
tion is strongly a�e
ted by the phase relation between the dominant
m = 0/n = 7 and m = 1/n = 7 modes, due to their toroidal 
oupling.The imaginative idea of an island divertor to prote
t the RFX�mod �rst wallis proposed, justifying it with the regular pattern of the PWI. But the 
ontrolof the edge region would require the 
ontrol of the m = 0 island amplitudesand phases, in addition to the phase di�eren
e between the m = 0/n = 7and m = 1/n = 7 modes. Some dis
harge of the 2011 RFX�mod experi-mental 
ampaign were therefore dedi
ated to the 
ontrol of these featuresby externally applied non�zero boundary 
onditions to both the m = 0 and
m = 1 dominant modes.To analyze the edge region during SHAx states we used �eld line tra
ing 
al-
ulations and the re
onstru
tion of the mode eigenfun
tion 
omputed usingNew
omb's equation, in addition to edge measurements.213



Con
lusions
Future work and 
ollaborationsThe data analysis of the 2011 RFX�mod experimental 
ampaign dis
hargewith non�zero boundary 
ondition on the dominant modes is far to be 
om-plete. In parti
ular better analysis on the phases of the modes are going on,in addition to the 
omparison between a larger set of edge measurements.The a
tivity on the use of the ASTRA 
ode for solving time-dependenttransport equations in heli
al equilibria a

ording to Ohm's law will 
on-tinue. This a
tivity, whi
h is being 
arried out in 
ollaboration the TheoryGroup of the TJ-II Stellarator devi
e (Ciemat, Madrid), are relevant bothfor RFPs in SHAx states and for Stellarators where some 
urrent is driven.A ben
hmark of SHEq-
ode is going on with data from other experimentsas well, in parti
ular with the MST (Madison, Wis
onsin) team, where theSHEq-
ode has re
ently been ported. MST is a RFP devi
e, where SHAxstates have been re
ently rea
hed. We are using SHEq-
ode to perform their3-dimensional magneti
 re
onstru
tions, and the mapping of 3-dimensionaldensity and SXR (soft X�ray tomography) pro�les is already a good result.The approa
h of using New
omb's equation for the re
onstru
tion ofmode eigenfun
tions (used by SHEq 
ode) uses an axi�symmetri
 
urrentdensity pro�le that 
omes from a two�parameters �t of experimental data(the α−Θ0 model), but without any 
onstraint from the Ohm's law.A new 
ode for 
omputing the dominant mode eigenfun
tion with a generi

urrent density pro�le 
ould be developed, base on the algorithm now used to
ompute the eigenfun
tion of poloidal and toroidal �uxes using New
omb'sequation. The 
ode would be then integrated with the SHEq 
ode for 
om-puting heli
al equilibria in QSH states, thus in
reasing its �exibility andallowing it to explore the e�e
t of the 
urrent pro�le on the heli
al equilibria.SHEq's equilibria 
ould also be thought as the heli
al SH equilibria tobe perturbed. One should therefore 
ompute the eigenfun
tions of the per-turbation to the heli
al equilibria, in a way similar to the one used now to
ompute the eigenfun
tions of the perturbation to the axi�symmetri
 �uxes(using New
omb's equation). Them = 0/n = 7 mode 
ould then be added tothe heli
al equilibrium, in the same way as the dominant m = 1/n = 7 modehas been added to the axi�symmetri
 equilibrium to model SHAx states.Moreover, the MHD spe
tra related to the heli
al safety fa
tor pro�le 
ouldbe explored, together with its resonan
es. This 
ould be interesting to betterunderstand the magneti
 topology of a SHAx state, and the possibility of214



their external 
ontrol.
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Appendix AMHD equationsA.1 MHD equationsMHD equations are the 
ombination of the Maxwell equations for the (time)evolution of the ele
tri
 and magneti
 �elds, E and B; the total ele
tri

harge ρc 
onservation law; the mass, momentum and energy 
onservationlaws; and the Ohm's law that relates the ele
tri
 �eld to the 
urrent density
J: Gauss → ∇ ·E =

ρc
ǫ0

(A.1)magneti
 solenoidity → ∇ ·B = 0 (A.2)Faraday → ∇×E = −∂B
∂t

(A.3)Ampère → ∇×B = µ0

(
J + ǫ0

∂E

∂t

) (A.4)Ohm → E + v ×B = η J (A.5)mass 
onservation → ∂ρm
∂t

= −∇ · (ρm v) (A.6)Navier�Stokes → ρm
∂v

∂t
+ ρm

(
v · ∇

)
v = (A.7)

= −∇ ·P + J×B + ρEenergy 
onservation → d

dt

(3p

2

)
+

3p

2
∇ · v +∇ · q +

(
P · ∇

)
· v = J′ ·E′where J′ is the 
urrent density measured in a frame of referen
e with velo
ity

v. In the same way, E′ is the ele
tri
 �eld measured in the frame of referen
ewith velo
ity v1. With respe
t to the ele
tri
 �eld E and the 
urrent density1The velo
ity v is the plasma �ow, and one should also pay attention to the di�eren
ebetween the time derivative (∂/∂t) in a �xed point and the derivatives on the moving �uxsurfa
es (d/dt):
d

dt
=

∂

∂t
+

`
v · ∇

´ (A.8)217



MHD equations
J measured in a �xed point:

J′ = J− ρc v (A.9)
E′ = E + v ×B (A.10)In equations (A.1)�(A.8), ρm is the mass density, p the total kineti
 pressureof the plasma, q the heat �ux ve
tor, and P the pressure tensor. Negle
tingthe vis
ous terms, only the diagonal terms in P are non null, and (∇ · P)redu
es to ∇p in an isotropi
 plasma. This is the assumption used in thisthesis (if not said di�erently).Usually, the energy 
onservation law is repla
ed by some assumption on thesystem, e.g. the assumption of a given plasma pressure p.Navier�Stokes equation is the momentum 
onservation law, also said thefor
e balan
e equation.Some other useful equations arise 
ombining the equations below. With-out make any proof, we write some of them: from Gauss and Ampère's laws:
∇ · J = − ∂ρ

∂t
(A.11)From Faraday's, Ampère's and Ohm's laws:

∂B

∂t
= ∇×

(
v ×B

)
+

η

µ0
∇2B (A.12)from Ampère's and Navier�Stokes laws:

ρm
dv

dt
= ∇p+

1

µ0

(
∇×B

)
×B

︸ ︷︷ ︸
=−∇B2

2
+
(
B·∇
)
B

(A.13)From eq.(A.12) one 
an see that, for v = 0 (equilibrium 
ondition) and nonnull resistivity, the magneti
 �eld is not frozen to the plasma, but it follows adi�usive equation where the resistivity η is the di�usion 
oe�
ient. This de-�nes the typi
al di�usive time s
ale: τR = µ0 L
2/η is said the 
hara
teristi
resistive time (L being the 
hara
teristi
 length). From eq.(A.13) one 
ansee that the equilibrium 
ondition (v = 0) is realized by the balan
e betweenthe gradient of the magneti
 and kineti
 pressure ((p+ B2)/(2µ0)) and thea
tion of the parallel 
ompression of the magneti
 �eld ((B · ∇)B/µ0).Before some simpli�
ations, it is worth noting that the equation that�xes the solenoidity of the magneti
 �eld is redundant. One should alwayspay attention to the number of variables and the number of equations in thesystem. 218



A.1 MHD equationsSome simpli�
ationsFirst of all one usually negle
ts the 
ontribution of the (∂E/∂t) 
urrent
omparing to the 
ondu
tive 
urrent J in the Ampère's law.Neutral plasmas are 
onsidered, therefore ρc = 0.As already said, also the vis
osity of the plasma is frequently negle
ted, and(
∇·P

) redu
es to ∇p (Navier�Stokes equation and energy 
onservation law).The energy 
onservation is repla
ed by a given plasma pressure p.All these simpli�
ations bring to the system:
∇ ·E = 0 (A.14)
∇ ·B = 0 (A.15)
∇×E = −∂B

∂t
(A.16)

∇×B = µ0 J (A.17)
E + v ×B = η J (A.18)
∂ρm
∂t

= −∇ · (ρm v) (A.19)
ρm

∂v

∂t
+
(
v · ∇

)
v = −∇p+ J×B (A.20)Another simpli�
ation is to 
onsider just the equilibrium system of equa-tion. Equilibrium equationsAlso 
alled Magnetostati
, let us now write the equations for a steadystate equilibrium, where v = 0, together with the time derivative ∂/∂t = 0(and therefore also d/dt = 0):

∇ ·E = 0 (A.21)
∇ ·B = 0 (A.22)
∇×E = 0 (A.23)
∇×B = µ0 J (A.24)
E = η J (A.25)
J×B = ∇p (A.26)Equation (A.23) implies an ele
trostati
 E, that must be the divergen
e ofsome potential. This and some more 
onsiderations about the Ohm's laware in se
tion A.2.This is the system usually used to study the plasma equilibria. One 
an�nd another equivalent formulation in se
tion A.4, where only the averagedOhm's law is 
onsidered. 219



MHD equations For
e free 
onditionsThe 
ondition
J×B = 0 (A.27)is the so�
alled for
e free 
ondition of the for
e balan
e (or Navier�Stokes)equation, and it is related to the vanishing of the pressure gradient (
ompareeq.(A.26) and eq.(A.27).From eq.(A.27), the 
urrent density is parallel to the magneti
 �eld. Toemphasize this, one 
an write
J = σB (A.28)where σ is the proportionality pro�le.The for
e free 
ondition is the 
ondition always 
hosen in this thesis andin parti
ular for SHEq 
al
ulations (see 
hapter 3).In the introdu
tion a model, 
alled α − Θ0 model, to obtain the σ pro�le�tting experimental data is explained.A.2 The stationary ele
tri
 �eld and the Ohmi

onstraintA 
urrent, to be sustained, must be 
onsistent with Ohm's law and theFaraday's law.Under stationary 
ondition (the time variation of the magneti
 �eld mustvanish), the Faraday's law is
∇×E = 0 (A.29)and the stati
 ele
tri
 �eld must therefore be the gradient of some potential2:

E = −∇φ+ Vt
∇ϕ
2π

(A.30)
= −∇φ+ E0 (A.31)

E0 is the uniform toroidal indu
tion ele
tri
 �eld, and E = −∇φ is a �u
tu-ating ele
tri
 �eld produ
ed by a 
harge separation3.2The loop voltages must have no spatial dependen
e and the gradient of the poloidalangle must be therefore zero in all the plasma volume, due to the fa
t that must be nullon its axis. That is why there is not a term Vp∇θ/2π.3Even if the plasma is globally neutral, regions with net positive or negative imbalan
e
an exist. 220



A.2 The stationary ele
tri
 �eld and the Ohmi
 
onstraintThe ele
trostati
 potential φ, the ele
trostati
 �eld E0 = −∇φ and the
harge distribution ρs are related by Lapla
e's equation:
∇ ·E = −∇2φ =

ρs
ǫ0

(A.32)and the 
harge distribution provides a 
urrent density J = ρs v.From Ohm's law, and a stationary ele
tri
 �eld, one 
an obtain the Ohmi

onstraint that any stationary equilibrium should satisfy.Proje
ting the Ohm's law on the magneti
 �eld dire
tion, one obtains theso�
alled parallel Ohm's law4:
E ·B = η J ·B (A.33)be
ause of the vanishing of the triple produ
t (v ×B

)
·B. The stationaryele
tri
 �eld must be of the form in equation (A.30), therefore the parallelOhm's law in stationary 
onditions 
an be written as:

−B · ∇φ+
Vt
2π

B · ∇ϕ = η J ·B (A.34)It is usually interesting to study the parallel Ohm's law averaged on magneti
�ux surfa
es, be
ause the term related to the (usually unknown) ele
trostati
potential φ vanishes: 〈−B · ∇φ〉 = 0 due to the divergen
e theorem. Theaveraged Ohm's law for an ele
trostati
 potential is the Ohmi
 
onstraint,that must be valid on ea
h magneti
 �ux surfa
e5:
Vt
2π
〈B · ∇ϕ〉 = 〈η J ·B〉 (A.36)An information 
an be added using the for
e balan
e equation. If for
e free
onditions are assumed, J = σB, therefore the Ohmi
 
onstraint 
an alsoassume the form6:

Vt
2π
〈B · ∇ϕ〉 = σ 〈η B2〉 (A.39)4So, even when v 6= 0, the parallel Ohm's law takes the form in equation (A.25):

E‖ = η‖ J‖.5In a 
ylinder, with indu
tive ele
tri
 �eld E0 parallel to the axial dire
tion z, and
∇ϕ 7→ ez, the Ohmi
 
onstraint takes the form:

E0〈Bz〉 = 〈η J · B〉 (A.35)6This is the form used by Finn (see se
tion 7.1) to prove the impossibility of an ohmi
reversal of the toroidal magneti
 �eld in any axi�symmetri
 
on�gurations and, on theother side, the possibility of the reversal in a heli
al symmetri
 
on�guration. Using for
efree 
onditions and Ampère's law, the proportionality σ between the magneti
 �eld andthe 
urrent density 
an be written as:
σ =

d〈Btor〉
dρ

(A.37)using for ρ a label of the magneti
 �ux surfa
es. Btor is the axial Bz magneti
 �eld in a221



MHD equationsA.3 Sus
eptan
e matrixFollowing P.I. Strand and W.A. Houlberg (S&H) [74℄, one 
an introdu
e theso�
alled sus
eptan
e matrix, whi
h relates the radial derivative of the �uxesto the 
urrents. We use the symbol ρ to label the magneti
 �ux surfa
es,and (θ, ϕ) for the general poloidal�like and toroidal�like angles.The poloidal and the toroidal �uxes (ψp and ψt respe
tively) 
an bewritten in terms of the 
ontravariant 
omponents of the magneti
 �eld (Bi):7
ψp(ρ) =

∫ 2π

0
dϕ

∫ ρ

0

√
g Bθ dρ (A.40)

ψt(ρ) =

∫ 2π

0
dθ

∫ ρ

0

√
g Bϕ dρ (A.41)

√
g is the Ja
obian of the 
oordinate system.The poloidal and toroidal 
urrents (F and I respe
tively) 
an be written interms of the 
ovariant 
omponents of the magneti
 �eld (Bi), using Amere'slaw:8

F (ρ) =

∫ 2π

0
dϕ

∫ ρ

0

√
g Jθ dρ =

1

µ0

∫ 2π

0
dϕBϕ (A.42)

I(ρ) =

∫ 2π

0
dθ

∫ ρ

0

√
g Jϕ dρ =

1

µ0

∫ 2π

0
dθ Bθ (A.43)The 
urrents are linearly related to the radial derivative of the �uxes throughthe so�
alled sus
eptan
e matrix S, with elements Sij9

µ0

(
I
F

)
=

(
S11 S12

S21 S22

)(
ψ′
p

ψ′
t

) (A.44)By using the general properties of 
urvilinear 
oordinates, the de�nitions(A.40)�(A.43), and the 
anoni
al form of the magneti
 �eld
B =

1

2π
(∇ψt ×∇θ −∇ψp ×∇ϕ) (A.45)one 
an obtain equations (37)�(40) of S&H's paper, where the Sij sus
ep-tan
e matrix elements are entirely written in terms of the metri
s.
ylinder, o the toroidal one in a torus. Using eq.(A.39), the Ohmi
 
onstraint takes theform:
d〈Btor〉
dρ

=
Vt
2π

〈Btor〉
〈η B2〉 (A.38)In the 
ase of heli
al symmetry, it is the Pin
h�Stellarator equation of se
tion 7.1.7Eq. (1)�(2) of S&H's paper, [74℄.8Eq. (5)�(6) of S&H's paper, [74℄.9Eq. (7) of S&H's paper, [74℄. 222



A.3 Sus
eptan
e matrixFor straight �eld line 
oordinates, for whi
h the S matrix is symmetri
, the
Sij redu
es to:

S11 =
V ′

4π2
〈gθθ
g
〉 (A.46)

S12 =
V ′

4π2
〈gθϕ
g
〉 = S21 (A.47)

S22 =
V ′

4π2
〈gϕϕ
g
〉 (A.48)

V ′(ρ) is the radial derivative of the volume10, gij the metri
s elements.Let us noti
e that in axi�symmetri
 geometries, S is a diagonal matrix(gij = 0 for i 6= 0).The radial dependen
e of the Sij elements is related to the 
hoi
e of the �uxsurfa
e label ρ. One 
an see some example in se
tion 9.2.2To 
on
lude, another important relation in S&H's paper11 is the equationfor the rotational transform, that 
an be derived inverting the sus
eptan
ematrix S:
ι =

ψ′
p

ψ′
t

=
S22I − S12F

S11F − S21I
=

µ0I

S11ψ′
t

− S12

S11
(A.50)In this equation for ι the last term is a 
urrent free term, 
alled Stellaratorterm12. This term has been written �rst by V.D. Pustovitov [66℄ for a 
ylin-dri
al non axi�symmetri
 magneti
 
on�guration: it is the geometri
al termdis
ussed in se
tion 7.1 that allows the reversal of the heli
al deformed RFP
on�guration.We use equation (A.50) for the rotational transform ι to evolve it in time(se
tion 7.3).10

V ′ =

ZZ 2π

0

√
g dθ dϕ (A.49)11Eq. (8) of S&H's paper, [74℄.12It is also said va
uum term, due to the fa
t that Stellarators usually runs withoutplasma 
urrent. 223



MHD equationsA.4 S&H's equationsThe adequate system to des
ribe a magnetostati
 plasma equilibrium 
om-patible with Ohm's law, is13:




J×B = ∇p

∇×B = µ0J

∇ ·B = 0

〈E ·B〉 = η‖〈J ·B〉

∇ ×E = 0

(A.51)
The averaged (on magneti
 �ux surfa
es) Ohm's law has been 
onsidered,and not yet the for
e free 
ondition (∇p 6= 0).Following P.I. Strand and W.A. Houlberg (S&H) [74℄ and M.D. Kruskal andR.M. Kulsrud (K&K) [76℄, it is possible to write this system in another form:





µ0 I = S11ψ
′
p + S12ψ

′
t

µ0 F = S21ψ
′
p + S22ψ

′
t

Vt(0)ψ′
t + Vp(0)ψ′

p = η‖µ0 (F I ′ − I F ′)

−p V ′ = F ′ ψ′
t + I ′ ψ′

p

(A.52)
In these equations: F is the poloidal 
urrent (A.42), I the toroidal 
urrent(A.43); ψp is the poloidal �ux (A.40), ψt the toroidal �ux (A.41). Vt(0) isthe toroidal loop voltages on the magneti
 axis of the system; Vp(0) is thepoloidal loop voltage on the magneti
 axis, whi
h is always zero for poloidal�like angles that lie on the poloidal plane (but 
ould be non vanishing in the
ase of a poloidal�like angle topologi
ally equivalent to a heli
al angle). p isthe total plasma kineti
 pressure.The �rst two equations14 are the Ampère's law, written with the sus
eptan
ematrix formalism (appendix A.3) that relates the 
urrents and the derivativeof the �uxes in general 
oordinate system 15.The third equation16 is the parallel Ohm's law, averaged on magneti
 �ux13In order: the for
e balan
e equation, Ampère's law, the divergen
e free of the magneti
�eld. The parallel Ohm's law averaged on �ux surfa
es, and Faraday's law.14Eq. (7) of S&H's paper, [74℄.15The names poloidal and toroidal are used for quantities related to the poloidal�likeand to the toroidal�like angle, respe
tively.16Eq. (11)+(19) of S&H's paper, [74℄ or equation (D12) of M.D. K&K's paper, [76℄.224



A.5 The equation for dι/dtsurfa
es, and the ele
tri
 �eld has been eliminated in favor of the time deriva-tive of the �uxes, using Faraday's law. It is worth noting that in this equationthere is a term more than in S&H and K&K, in order to allow the use of apoloidal�like angle related to a non vanishing loop voltage Vp(0) on the axis.The last equation 17 is the radial for
e balan
e equation.Solving this system one 
an 
ompute a steady state ohmi
 equilibrium.In se
tion 9.3.2 this system is rearranged in two di�erential equations forthe 
urrents I and F . An example of solution is given in se
tion 7.4 for the
ylindri
al paramagneti
 pin
h.Using this system one 
an derive an equation for the equilibrium timeevolution in appendix A.5. Two example of solution are given in se
tions7.3.1 and 7.3.2, for the evolution of the rotational transform in the TJ-IIStellarator and the evolution of the safety fa
tor pro�le in the RFX�modRFP.A.5 The equation for dι/dtWe derive here the equation for the time evolution of the rotational trans-form, already present in S&H's paper [74℄18 (but not all the steps are presentthere).The derivation of Eq. (22) of S&H's paper starts from the averagedparallel Ohm's law and from Faraday's law1920. The two equations are:
〈E ·B〉 = η‖ 〈

(
J− Js

)
·B〉 (A.53)

〈E ·B〉V ′ =
[∂ψp
∂t

+ Vt(0)
]
ψ′
t −
(∂ψt
∂t

)
ψ′
p (A.54)In the averaged Ohm's law it has been taken into a

ount also a non�indu
tive sour
e, like the Boostrap 
urrent Js. This is done for 
ompleteness,and to follow exa
tly S&H's 
al
ulations, but this 
ontribution is not usedin the framework of this thesis.In order to highlight the rotational transform ι = ψ′

p/ψ
′
t (in whi
h we areinterested), let us �rst divide Faraday's equation (A.54) by ψ′

t:
〈E ·B〉 V

′

ψ′
t

=
[∂ψp
∂t

+ Vt(0)
]
−
(∂ψt
∂t

)
ι (A.55)17Eq. (12) of S&H's paper, [74℄ or equation (D19) of K&k's paper, [76℄. First derivedby KeK.18Eq. (22) of S&H's paper, [74℄.19Eq. (19) of S&H's paper, [74℄.20in Faraday's equation Vp(0) = 0. We do not a

ount for the Vp(0) 6= 0 
ase in thederivation of the rotational transform evolution (as done by Strand and Houlberg).225



MHD equationsGetting now a radial derivative (∂/∂ψt) of eq.(A.55) in order to 
an
el the
ontribution from the indu
ed loop voltage Vt(0), we write21
∂

∂ψt

[
〈E ·B〉 V

′

ψ′
t

]
=

∂

∂ψt

(∂ψp
∂t

)
− ∂

∂ψt

(
ι
∂ψt
∂t

) (A.56)
=

∂

∂t

(∂ψp
∂ψt

)
−
( ∂ι

∂ψt

)(∂ψt
∂t

)
− ι ∂

∂t

(∂ψt
∂ψt

)(A.57)(it is always possible to ex
hange spatial and temporal derivatives in a se
ondorder derivative).Highlighting the dι/dt term, one obtains:
∂ι

∂t
=
( ∂ι

∂ψt

)(∂ψt
∂t

)
+

∂

∂ψt

[
〈E ·B〉 V

′

ψ′
t

] (A.58)The �nal form of this equation uses the Ohm's law, eq.(A.53) for the term
〈E ·B〉, and equation Eq. (11) of S&H's paper, [74℄ (see also se
tion A.4):

〈J ·B〉V ′ = µ0 (F I ′ − I F ′) = µ0 F
2
( I
F

)′ (A.59)
I and F are the toroidal and poloidal 
urrents respe
tively, and one 
antherefore use the sus
eptan
e matrix (appendix A.3) to write also:

F 2 =
(ψ′

t)
2

µ2
0

(S21 ι+ S22)
2 (A.60)

( I
F

)′
=

∂

∂ρ

((S11 ι+ S12)

(S21 ι+ S22)

) (A.61)to obtain the right form of equation (22) in S&H's paper:
∂ι

∂t
=

∂ι

∂ψt

∂ψt
∂t

+
∂

∂ψt

[ η‖
µ0
ψ′
t (S21ι+ S22)

2 ∂

∂ρ

(S11ι+ S12

S21ι+ S22

)]
+

− ∂

∂ψt

[
η‖〈Js ·B〉

∂V

∂ψt

] (A.62)This equation is used in se
tion 7.3.1 to evolve the TJ-II (Ciemat, Madrid)Stellarator rotational transform pro�le.
21Vt(0) is a 
onstant, therefore ∂Vt(0)

∂ψt
= 0.226



Appendix BToroidal 
oordinates

Figure B.1: S
heme of the 
oordinates de�ned on the 
ir
ular�
ross�se
tionof the axi�symmetri
 magneti
 �eld in RFX�mod. The 
oordinates and theirmetri
s are de�ned in this appendix.
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Toroidal 
oordinatesB.1 On 
urvilinear 
oordinatesThe 
ovariant metri
 tensor for a 
urvilinear 
oordinate system ui = (u1, u2, u3)is de�ned by
gij = ei · ej , (B.1)where
ei =

∂x

∂ui
, (B.2)while the 
ontravariant one is de�ned by

gij = ∇ui · ∇uj (B.3)where
∇ui =

∂ui

∂x
. (B.4)The two tensors are related by gij · gjk = δik, so gij is the inverse matrixof gjk. The Ja
obian of the 
oordinate system is

√
g =

√
det[gij ] = (∇u1 · ∇u2 ×∇u3)−1 (B.5)Given a ve
tor A, its 
ontravariant 
omponents are de�ned as

Ai = A · ∇ui or Ai = gijAj (B.6)the se
ond one expresses the 
ontravariant 
omponent in terms of the 
o-variant ones. In the same way,
Ai = A · ei or Ai = gijA

j (B.7)It is worth noting that in 
urvilinear metri
s the basis ve
tors ei and
∇ui are not adimensional (the dimension depending on the dimension of the
oordinate ui) and do not have unitary length.To go ba
k to �eld 
omponents that have the right dimension of a measured�eld and the whole length (without sharing it with the basis ve
tor) it isenough to divide the basis ve
tors by their norm. But one needs to payattention to the fa
t that this 
an be done just at the end of all the 
al
ula-tions, be
ause tensor 
al
ulus is based on the hypothesis of non�adimensionaland non�unitary length basis ve
tors! Some example 
an be �nd in 
hapter 5.B.2 Coordinate systems on a torusThe metri
s elements and the Ja
obian of the 
ylindri
al, geometri
al andof the toroidal 
oordinate systems de�ned in 
hapter 4 are here 
olle
ted.228



B.2 Coordinate systems on a torusB.2.1 Cylindri
al 
oordinatesThe 
ylindri
al 
oordinate system is a diagonal metri
s, that therefore donot a

ounts for the toroidi
ity of the problem. One 
an think to a periodi

ylinder to model a torus in a simple way.Cylindri
al 
oordinates (R,ϕ,Z) are de�ned with respe
t to Cartesian
oordinates x = (x, y, z) as follows (see �g.1.4):




x = R cosϕ
y = R sinϕ
z = Z

(B.8)Therefore, from eq.(B.2):
eR = ∂x

∂R =




cosϕ
sinϕ

0


 , eϕ = ∂x

∂ϕ =



−R sinϕ
R cosϕ

0


 , eZ = ∂x

∂Z =




0
0
1


and, from eq.(B.1) and its inverse:

gij
cyl =




1 0 0
0 R2 0
0 0 1


 gij

cyl =




1 0 0
0 1

R2 0
0 0 1


The Ja
obian, from eq.(B.5), is: Jcyl =

√
g
cyl

= R.B.2.2 Geometri
al 
oordinatesThe geometri
al 
oordinate system is a non�diagonal metri
s, that thereforedoes a

ount for the toroidi
ity of the problem.The geometri
al 
oordinates have been de�ned in se
tion 3.1.1 with the sym-bol ui = (r, θ, ϕ). We refer to the �gure of se
tion 3.1.1 for a geometri
alinterpretation of their de�nition, usually related to the 
ylindri
al system
(R,ϕ,Z):

~x = (x, y, z) = (R cosϕ, R sinϕ, Z)

{
R = R0 − r cos θ + ∆(r)
Z = r sin θThe angle θ is 
alled poloidal and the angle ϕ is 
alled toroidal. A non�zerohorizontal ∆(r) shift of the non-
on
entri
 
ir
ular magneti
 �ux surfa
es(related to B0 de�ned in 
hapter 3) is a 
onsequen
e of the toroidi
ity of thesystem. 229



Toroidal 
oordinatesUsing (B.1) and (B.2) the guij elements, that link them to the Cartesian
oordinates, 
an be expli
itly 
al
ulated:
guij =




1− 2∆′ cos θ + ∆′2 r∆′ sin θ 0
r∆′ sin θ r2 0

0 0 R2


 (B.9)* The giju elements of the inverse matrix are usually 
al
ulated from theformulas for the inversion of a blo
k diagonal matrix (gurϕ = guϕr = 0 and

guθϕ = guϕθ = 0):
gij
u =

1

gu




guθθ g
u
ϕϕ −gurθ guϕϕ 0

−gurθ guϕϕ gurr g
u
ϕϕ 0

0 0 gurr g
u
θθ − (gurθ)

2


 (B.10)The Ja
obian √gu =

√
det[guij ] = (∇r · ∇θ ×∇ϕ)−1 of the geometri
 
oor-dinates is given by √

gu = rR(1−∆′ cos θ) (B.11)B.2.3 Toroidal straight 
oordinatesIn se
tion 3.1.1 we have de�ned the 
oordinate system wi = (r, ϑ, ϕ), whi
h isthemagneti
 
oordinate system of the zeroth-order axisymmetri
 equilibrium
B0: it is the 
oordinate system that one obtains deforming the poloidal angle
θ of the geometri
al 
oordinates ui in order to a
hieve straight magneti
 �eldlines:





r = r
ϑ = θ + λ(r, θ)
ϕ = ϕFor λ(r, θ) we have obtained an expli
it expression from Ampère's law,eq.(3.11).Tensor metri
s elementsWe write the metri
s elements for the system wi = (r, ϑ, ϕ) relating them tothe metri
s elements of the geometri
al 
oordinate system ui = (r, θ, ϕ).The 
ontravariant metri
 tensor elements 
an be 
omputed using the rela-tions between the gradients of the two 
oordinate systems:

∇r = ∇r (B.12)
∇ϑ =

(
1 +

∂λ

∂θ

)
∇θ +

∂λ

∂r
∇r (B.13)

∇ϕ = ∇ϕ (B.14)230



B.2 Coordinate systems on a torusFrom eq.(B.3) is therefore found:
grϑw = gϑrw =

∂λ

∂r
grru +

(
∂λ

∂θ
+ 1

)
grθu (B.15)

gϑϑw =

(
∂λ

∂r

)2

grru + 2

(
∂λ

∂θ
+ 1

)
∂λ

∂r
grθu +

(
∂λ

∂θ
+ 1

)2

gθθu (B.16)while all the other elements are equal to those of the geometri
 
oordinates:
grrw = grru (B.17)
gϕϕw = gϕϕu (B.18)
grϕw = gϕrw = 0 (B.19)
gϑϕw = gϕϑw = 0 (B.20)The gwij elements of the inverse matrix 
an again be 
al
ulated from theformulas for the inversion of a blo
k diagonal matrix (see eq.(B.35)), or 
anbe 
omputed by writing the relation between the wi and the (R,ϕ,Z) 
ylin-dri
al system.In this se
ond 
ase, using equations (3.14), the 
ovariant metri
 tensor ele-ments are found to be

gwrr = 1 +

(
2∆′2 +

r2

2R2
0

+
r2

2
∆′′2 − r2

R0
∆′′ − 2r

R0
∆′ + r∆′∆′′

)
− 2∆′ cosϑ+ o(ǫ2)(B.21)

gwϑϑ = r2
(

1 +
r2

2R2
0

+
1

2
∆′2 − r

R0
∆′
)
− 2r2

(
r

R0
−∆′

)
cosϑ+ o(ǫ2b2) (B.22)

gwrϑ = r

(
r∆′′ + ∆′ − r

R0

)
sinϑ+ o(ǫ2b) (B.23)

gwϕϕ = R2. (B.24)with gwrϕ = gwϕr = gwϑϕ = gwϕϑ = 0.In 
omputing these elements the approximation used in ref.[53℄ has beenadopted of retaining the se
ular terms (i.e. those not dependent on ϑ) up to
o(ǫ2) and the harmoni
s up to o(ǫ).One 
an therefore write:
gw
ij = g




gϑϑgϕϕ −grϑgϕϕ 0
−grϑgϕϕ grrgϕϕ 0

0 0 grrgϑϑ − (grϑ)2︸ ︷︷ ︸
gϕϕ=R2


 =




(B.21) (B.23) 0
(B.23) (B.22) 0

0 0 R2


Ja
obianThe Ja
obian is

1√
gw

=
K(r)

R2
(B.25)231



Toroidal 
oordinateswith K(r) already written in (3.16). In order to 
ompute the harmoni
sof the �rst order perturbation, one wishes to expand also the metri
 tensorelements:
1√
gw

=
1√
gw0

+
1√
gw1

eiϑ + c.c. (B.26)with
1√
gw0

=
1

rR0

(
1 +

2r2

R2
0

− ∆

R0
− r

2R0
∆′ + o(ǫ3)

) (B.27)
1√
gw1

=
1√
gw0

(
r

R0
+ o(ǫ3)

)
, (B.28)being the m = 0/n = 0 and m = ±1/n = 0 harmoni
s of the Ja
obianrespe
tively.We 
an also relate the Ja
obian √gw to √gu. Using (B.13) one obtains

1√
gw

=
1√
gu

(
1 +

∂λ

∂θ

)
. (B.29)Some metri
 tensor element 
ombinationFinally, the metri
 tensor element 
ombinations appearing in equations.(3.36) and (3.37) are

(
gwϑϑ√
gw

)0,0

=
r

R0

(
1 +

r2

2R2
0

+
∆′2

2
+

r

2R0
∆′ − ∆

R0
+ o(ǫ3)

)(B.30)
(
gwrϑ√
gw

)0,0

=
o(ǫ4b)√
gw0

(B.31)
(
gwrr√
gw

)±1,0

=
1√
gw0

(
r

R0
−∆′ + o(ǫ3)

) (B.32)
(
gwϑϑ√
gw

)±1,0

=
1√
gw0

(
r2∆′ + o(ǫ3b2)

) (B.33)
(
gwrϑ√
gw

)±1,0

= ± r

2i
√
gw0

(
r∆′′ + ∆′ − r

R0
+ o(ǫ3)

)
. (B.34)B.3 The inverse of 3x3 matrixLet us 
onsider the 3x3 matrix the tensor matrix of some 
oordinate system.The 
ovariant and 
ontravariant metri
s are one the inverse of the other:

gij =




gχχ gχβ gχϕ
gβχ gββ gβϕ
gϕχ gϕβ gϕϕ


 gij =




gχχ gχβ gχϕ

gβχ gββ gβϕ

gϕχ gϕβ gϕϕ


232



B.3 The inverse of 3x3 matrixIf the 
ovariant gij matrix is a blo
k diagonal matrix, its inverse is thematrix 
al
ulated as follows:
gij =

1

g




gθθ gϕϕ −grθ gϕϕ 0
−grθ gϕϕ grr gϕϕ 0

0 0 grr gθθ − (grθ)
2


 (B.35)where √g is the Ja
obian.If the 
ovariant gij matrix is 
omplete 3x3 matrix (not a blo
k diagonalmatrix), its inverse is the matrix 
al
ulated as follows:

g
ij
f =

1

g




gββgϕϕ − (gβϕ)2 gϕβgχϕ − gχβgϕϕ gχβgβϕ − gββgχϕ

gχϕgβϕ − gβχgϕϕ gχχgϕϕ − (gϕχ)2 gβχgχϕ − gχχgβϕ

gβχgβϕ − gββgϕχ gϕχgχϕ − gχχgϕβ gχχgββ − (gβχ)2


It is worth stressing that all the tensor metri
s are related to symmetri
matrix, due to the symmetry of the metri
s elements: gij = gji and gij = gji.
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Appendix CComplex harmoni
sC.1 On 
omplex 
onjugationAny perturbation a(r, θ, ϕ) 
an be Fourier de
omposed as:
a(r, θ, ϕ) =

∑

m,n
ǫZ

am,n(r) ei(mθ−nϕ) =
∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (C.1)Let us prove the relations in eq.(C.1). We need to remember that:
• the perturbation is a real number, a(r, θ, ϕ) ǫR

• the harmoni
s of the perturbation are 
omplex numbers, am,n(r) ǫC

• the amplitude and the phase of a 
omplex number written in polarform (am,n(r) = |am,n| ei ψ) are real numbers, |am,n| ǫR and ψ ǫR.Starting from the �rst expression in eq.(C.1) we obtain the se
ond oneas follows:
a(r, θ, ϕ) =

∑

m,n
ǫZ

am,n(r) ei(mθ−nϕ) (C.2)
=

∑

m,n>0

am,n(r) ei(mθ−nϕ) + a−m,−n(r) ei(−mθ+nϕ) (C.3)
=

∑

m,n>0

am,n(r) ei(mθ−nϕ) + a−m,−n(r) e−i(mθ−nϕ) (C.4)
=

∑

m,n>0

am,n(r) ei(mθ−nϕ) + a∗ m,n(r) e−i(mθ−nϕ) (C.5)
=

∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (C.6)as we wanted. In the sum over integer m,n in eq.(C.2) one have both thepositive and the negative value of the mode numbers. Writing the symbol ∗235



Complex harmoni
sfor the 
omplex 
onjugation, we are able to go to eq.(C.5) using the important
onjugation property:
a−m,−n = a∗ m,n (C.7)The relation (C.7) is also the 
ondition for whi
h one 
an go ba
k to thereality of any measurable �eld (like a(r, θ, ϕ) ǫR) from the 
omplexity ofthe Fourier transformed harmoni
s am,n(r) ǫC. Let us now derive the thirdexpression for a(r, θ, ϕ) ǫR in eq.(C.1), starting from the se
ond one andusing the polar form of 
omplex numbers:

a(r, θ, ϕ) =
∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (C.8)
=

∑

m
n>0

|am,n| ei φ ei(mθ−nϕ) + c.c. (C.9)
=

∑

m
n>0

|am,n| ei φ ei(mθ−nϕ) + |am,n| e−i φ e−i(mθ−nϕ) (C.10)
=

∑

m
n>0

|am,n|
[
ei φ ei(mθ−nϕ) + e−i φ e−i(mθ−nϕ)

] (C.11)
=

∑

m
n>0

2 |am,n| cos(φ+mθ − nϕ) ǫR (C.12)It is always true that adding the 
omplex 
onjugated to a 
omplex num-ber one delete the imaginary part:
A = a+ i b (C.13)
A∗ = a− i b (C.14)

A+A∗ = 2a (C.15)or
A = ρ eiφ (C.16)
A∗ = ρ e−iφ (C.17)

A+A∗ = 2ρ cos(ψ) (C.18)Therefore (A+A∗) ǫR in any 
ase.Going ba
k to the magneti
 �uxes perturbation, it is now 
lear thateven 
hoosing Single Heli
ity in the �uxes (that means deleting the sum over
(m,n) in expression (C.1) be
ause they are �xed1) one must add the 
omplex
onjugated to obtain the real perturbation to the �uxes:

ψ(r, u) = ψ0(r) + ψm,n(r) eiu + c.c. (C.19)as written in eq.(4.1) making use of the heli
al angle u = mθ − nϕ.1We remind that (m,n = 1, 7) in RFX�mod during SHAx states.236



C.2 On the sum between 
omplex numbersC.2 On the sum between 
omplex numbers
z ǫC, therefore one 
an 
hoose between one of these expressions to write z:

z = a+ ib = ρ ei θ = ρ(cos θ + i sin θ) (C.20)where
ρ =

√
a2 + b2 (C.21)

θ = tan−1
( b
a

) (C.22)be
ause
a = ρ cos θ (C.23)
b = ρ sin θ (C.24)Let us see how to sum two 
omplex numbers, z ǫC and t ǫC:

z = a+ ib = ρ ei θ 7→
{
a = ρ cos θ
b = ρ sin θ

(C.25)
t = c+ id = σei ϕ 7→

{
c = σ cosϕ
d = σ sinϕ

(C.26)We write the di�eren
e between two 
omplex numbers, be
ause it is usefulfor se
tion 9.1.1. For the sum it is enough to 
hange every minus sign witha plus sign.The di�eren
e between two 
omplex numbers is a 
omplex number, therefore:
z − t = A+ iB = C eiγ 7→

{
A = C cos γ
B = C sin γ

(C.27)We 
an write:
z − t = (a+ ib)− (c+ id) = (a− c) + i(b− d) = A+ iB =

√
A2 +B2 eiγ

= ρei θ − σei ϕ =
√
a2 + b2 eiθ −

√
c2 + d2 eiϕ (C.28)

= C eiγ (C.29)therefore
A = a− c (C.30)
B = b− d (C.31)and

C =
√
A2 +B2 (C.32)

γ = cos−1
( A√

A2 +B2

)
= tan−1

(B
A

) (C.33)237
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