
UNIVERSITÀ DEGLI STUDI DI PADOVAFaoltà di Sienze MM.FF.NN.Dipartimento di Fisia Galileo GalileiTESI
Investigation of the magneti topology of helialRFP plasmas

Relatore: Dott. Emilio MartinesRelatore: Prof. Piero Martin
dottoranda: Barbara MomoAnno Aademio 2007-2008









Contents
Prefazione 1IntrodutionsAbstrat 51 What is a Reversed Field Pinh? 91.1 About magneti on�nement of fusion plasmas . . . . . . . . 91.2 The Reversed Field Pinh . . . . . . . . . . . . . . . . . . . . 101.2.1 Start up of the on�guration . . . . . . . . . . . . . . 111.2.2 Shifted magneti �ux surfaes . . . . . . . . . . . . . . 121.2.3 Internal resonanes: MH vs QSH and SHAx states . . 141.2.4 The reversal of the toroidal magneti �eld and the dy-namo . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.2.5 Standard and laminar dynamo explanations. FromTaylor to the wire model . . . . . . . . . . . . . . . . . 241.2.6 Main di�erenes with Tokamak on�gurations . . . . . 291.3 RFX�mod experiment . . . . . . . . . . . . . . . . . . . . . . 30Theoretial basis2 Hamiltonian mehanis for magneti �eld lines 332.1 Variational priniple for magneti �eld lines. Intuitive physi-al approah . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.2 Variational priniple for magneti �eld lines . . . . . . . . . . 362.3 Hamiltonian desription of magneti �eld lines . . . . . . . . . 382.4 Gauge or anonial transformation? . . . . . . . . . . . . . . . 402.5 Symmetries and Noether theorem . . . . . . . . . . . . . . . . 422.5.1 Equivalene between the variational priniples for mag-neti �eld lines and for Hamiltonian mehanis . . . . 422.5.2 A ommon statement for Noether theorem . . . . . . . 442.6 Ation�Angle variables . . . . . . . . . . . . . . . . . . . . . . 462.6.1 Ation�Angle oordinates for magneti systems . . . . 482.7 Intuitive physial approah . . . . . . . . . . . . . . . . . . . 50i



Contents2.7.1 The more general ase . . . . . . . . . . . . . . . . . . 522.7.2 Two examples in toroidal geometry . . . . . . . . . . . 532.8 The magneti �eld, B = ∇×A . . . . . . . . . . . . . . . . . 562.8.1 The anonial representation of B . . . . . . . . . . . 562.8.2 The ovariant representation of B . . . . . . . . . . . . 582.8.3 Magneti �eld line equations . . . . . . . . . . . . . . 602.9 A resumptive example: the helial symmetry . . . . . . . . . 622.10 A short example: the axisymmetri �eld B0 . . . . . . . . . . 663 Mode eigenfuntion reonstrution 693.1 Zero�th order equilibrium . . . . . . . . . . . . . . . . . . . . 713.1.1 The toroidal (r, ϑ, ϕ) oordinate system . . . . . . . . 713.1.2 Equilibrium quantities: ∆(r), ψP,0 and ψT,0 . . . . . . 743.2 First�order ontribution to the equilibrium . . . . . . . . . . . 75Thesis original work4 Helial oordinates in toroidal systems 794.1 The radial oordinate χ . . . . . . . . . . . . . . . . . . . . . 824.2 The angle oordinates . . . . . . . . . . . . . . . . . . . . . . 844.2.1 The geometrial angle β . . . . . . . . . . . . . . . . . 854.2.2 The Hamiltonian time ϕ: (χ, u, ϕ) and (χ, uh, ϕ) . . . 864.2.3 The Hamiltonian time ϑ: (χ, u, ϑ) and (χ, uϑh, ϑ) . . . 894.2.4 The Hamiltonian time v: (χ, u, v) and (χ, uη, v) . . . . 924.3 Change of radial oordinates . . . . . . . . . . . . . . . . . . . 954.4 Disussion on the Hamiltonian time ϑ . . . . . . . . . . . . . 964.4.1 The angle θ∗ . . . . . . . . . . . . . . . . . . . . . . . 995 Covariant and ontravariant magneti �eld omponents 1035.1 SH in the �uxes does not orrespond to SH in the magneti�eld omponents . . . . . . . . . . . . . . . . . . . . . . . . . 1035.2 Down omponents of the magneti �eld in the (r, ϑ, ϕ) oor-dinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105.3 Up and Down omponents of the magneti �eld in variousoordinate systems . . . . . . . . . . . . . . . . . . . . . . . . 1115.4 Measurable omponents of the magneti �eld . . . . . . . . . 1115.5 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 Appliations 1196.1 Flux surfae reonstrution: DAx and SHAx . . . . . . . . . . 1206.2 Flux surfae averaging . . . . . . . . . . . . . . . . . . . . . . 1246.2.1 Magneti �eld and urrent density omponents . . . . 1246.2.2 Thermal ondutivity . . . . . . . . . . . . . . . . . . 1256.2.3 ASTRA . . . . . . . . . . . . . . . . . . . . . . . . . . 128ii



Contents6.3 Helial safety fator pro�le . . . . . . . . . . . . . . . . . . . . 1297 Equilibrium evolution: the Ohmi onstraint 1337.1 The Ohmi problem in RFPs . . . . . . . . . . . . . . . . . . 1337.2 The Ohmi onstraint in SHEq . . . . . . . . . . . . . . . . . 1377.3 The equilibrium evolution . . . . . . . . . . . . . . . . . . . . 1397.3.1 The time evolution of ι for TJ-II (Ciemat, Madrid) . . 1407.3.2 The time evolution of q for RFX�mod . . . . . . . . . 1467.4 The paramagneti pinh . . . . . . . . . . . . . . . . . . . . . 1497.4.1 The paramagneti pinh in the S&H formalism . . . . 1528 Plasma boundary in SHAx states 1578.1 Topology of edge region in SHAx states . . . . . . . . . . . . 1598.2 Plasma wall interation . . . . . . . . . . . . . . . . . . . . . 1618.3 External magneti perturbations . . . . . . . . . . . . . . . . 1698.3.1 Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 1728.3.2 E�et of BCs appliation on the plasma properties . . 1788.3.3 Phase relations . . . . . . . . . . . . . . . . . . . . . . 180Detailed alulations9 Detailed alulations on... 1899.1 On the �uxes and their derivatives . . . . . . . . . . . . . . . 1899.1.1 On how to ompute the helial �ux χ . . . . . . . . . 1899.1.2 On the radial derivatives of omplex harmonis, for thepoloidal and toroidal �uxes . . . . . . . . . . . . . . . 1919.1.3 On the (angular and radial) derivatives of the helial�ux χ . . . . . . . . . . . . . . . . . . . . . . . . . . . 1939.2 On helial�toroidal oordinates . . . . . . . . . . . . . . . . . 1949.2.1 The whole metri tensor of helial oordinate systemsde�ned in hapter 4 . . . . . . . . . . . . . . . . . . . 1949.2.2 Radial variable hoies . . . . . . . . . . . . . . . . . . 2039.2.3 Dimensional analysis . . . . . . . . . . . . . . . . . . . 2049.3 On some equilibrium equations . . . . . . . . . . . . . . . . . 2069.3.1 The equation for dq/dt . . . . . . . . . . . . . . . . . . 2069.3.2 The equations for I ′ and F ′ . . . . . . . . . . . . . . . 208Conlusions 211Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211Future work and ollaborations . . . . . . . . . . . . . . . . . . . . 214Appendixes iii



ContentsA MHD equations 217A.1 MHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . 217A.2 The stationary eletri �eld and the Ohmi onstraint . . . . 220A.3 Suseptane matrix . . . . . . . . . . . . . . . . . . . . . . . . 222A.4 S&H's equations . . . . . . . . . . . . . . . . . . . . . . . . . 224A.5 The equation for dι/dt . . . . . . . . . . . . . . . . . . . . . . 225B Toroidal oordinates 227B.1 On urvilinear oordinates . . . . . . . . . . . . . . . . . . . . 228B.2 Coordinate systems on a torus . . . . . . . . . . . . . . . . . . 228B.2.1 Cylindrial oordinates . . . . . . . . . . . . . . . . . . 229B.2.2 Geometrial oordinates . . . . . . . . . . . . . . . . . 229B.2.3 Toroidal straight oordinates . . . . . . . . . . . . . . 230B.3 The inverse of 3x3 matrix . . . . . . . . . . . . . . . . . . . . 232C Complex harmonis 235C.1 On omplex onjugation . . . . . . . . . . . . . . . . . . . . . 235C.2 On the sum between omplex numbers . . . . . . . . . . . . . 237Bibliogra�a 238

iv



PrefazioneQuesta tesi si inserise nel ontesto della riera sulla fusione termonuleareontrollata ome possibile fonte alternativa di energia. La fusione è il pro-esso he alimenta il sole e tutte le altre stelle attive, il progetto è quello diriprodurre questo proesso in mahine da laboratorio: il progetto, a�asi-nante ma di non faile realizzazione, si sontra soprattutto on la di�oltà dion�nare alte temperature e densità di plasma, stato ionizzato della materia(il osiddetto quarto stato della materia).La riera ivile in questo ampo è quasi interamente dediata allo studio delon�namento dei plasmi da fusione on ampi magnetii. Le on�gurazionidi ampo magnetio più studiate sono quelle dette Tokamak, Stellarator eReversed�Field�Pinh (RFP), he on�nano i plasmi in mahine toroidali.Tokamak e Stellarator sono le on�gurazioni he storiamente hanno dato imigliori risultati in termini di on�namento di partielle ed energia: vannoriordati rispettivamente i due progetti per la futura generazione delle ma-hine da fusione, ITER (progetto di ollaborazione internazionale oggi inostruzione a Cadarahe, Frania) e Wendelstein�7X (progetto in ostruzionea Greifswald, Germania).Per quanto riguarda il RFP, il più grande esperimento oggi attivo è l'esperi-mento RFX (oggi RFX�mod), in funzione a Padova dal 1990, dove si è svoltoquesto lavoro di tesi. Nei RFP il plasma è risaldato per e�etto ohmio daun'alta orrente he �uise nel plasma, ma la presenza di molte instabil-ità, onsiderate intrinsehe alla on�gurazione, ha storiamente ondotto abassi tempi di on�namento e quindi a poa �duia nel RFP ome possi-bile on�gurazione per un reattore. La riera su questo tipo di mahine èoggi rivalutata da nuovi risultati, he dimostrano ome all'aumentare dellaorrente il plasma spontaneamente si porti in uno stato meno aotio onproprietà di on�namento migliorate. Questi stati sono hiamati SHAx (Sin-gle Helial Axis) perhé aratterizzati da super�i magnetihe elioidali.Obiettivo di questa tesi è lo studio e la aratterizzazione della topologiamagnetia degli equilibri SHAx (in RFX�mod ottenuti per orrenti di plasmasuperiori a 1.5 MA), sia nella regione entrale del plasma (plasma ore) henella zona di bordo dove dominano gli e�etti dell'interazione plasma�parete(plasma edge). 1



PrefazioneIl primo passo per aratterizzare i nuovi equilibri elioidali è stato la rieradi buone oordinate elioidali. Si è fatto uso per questo di oordinate urvi-linee (per desrivere la geometria toroidale del sistema) e della meaniahamiltoniana appliata ai ampi magnetii in un toro (il he permette diusare le oordinate azione�angolo del sistema).Il risultato di questo studio è un odie (SHEq, Single Helial Equilibria)he usa le metrihe elioidali per la riostruzione delle quantità di plasma(omponenti del ampo o dei �ussi magnetii e della densità di orrente)durante gli stati SHAx, ed è quindi per esempio utile per interpretare i datisperimentali delle varie diagnostihe.Parte di questa tesi si è svolta in ollaborazione on il gruppo di Teoria diTJ�II (Ciemat, Madrid) per l'evoluzione temporale degli equilibri elioidalidi SHEq in aordo on la legge di Ohm (he non è iniziale vinolo).La parte più sperimentale di questa tesi riguarda lo studio della zona di bordodove un'interazione regolare del plasma on la parete ri�ette la deformazioneelioidale della olonna di plasma. Una parte del tempo nella ampagnasperimentale 2011 di RFX�mod è stata dediata allo studio di partiolariondizioni al ontorno per favorire e ontrollare la regolarità dell'interazioneplasma�parete.I risultati prinipali di questa tesi sono stati pubbliati in:- B. Momo et. al Plasma Phys. Control. Fus (2011) [1℄;- E. Martines, R. Lorenzini, B. Momo et al. Plasma Phys. Control. Fus(2011) [2℄;- E. Martines, R. Lorenzini, B. Momo et al., Nul. Fusion (2010) [3℄.Il lavoro ì osì organizzato:Introduzione
• Capitolo 1: Cos'è un Reversed Field Pinh?Questo apitolo introdue brevemente la �sia del on�namento mag-netio del plasma in mahine toroidali da fusione e si onentra sulladesrizione del RFP e delle sue aratteristihe prnipali. Partiolareattenzione è dediata agli stati elioidali SHAx.Riferimenti teorii
• Capitolo 2: Meania hamiltoniana appliata ai ampi magnetiiQuesto apitolo fornise le basi per usare la meania hamiltonianaappliata ai ampi magnetii in mahine toroidali da fusione. Chiari-�a il signi�ato della forma anonia del ampo magnetio attraversol'uso del potenziale vettore e del teorema di Stokes. Riunise le formu-2



lazioni e onsiderazioni dei prinipali testi e artioli sull'argomento.
• Capitolo 3: Riostruzione delle autofunzioni della perturbazione mag-netiaQuesto apitolo è dediato a spei�are ome utilizzare i risultati teoriidel apitolo 2 per dati reali. Viene ripreso l'artiolo di P. Zana andD. Terranova, Reonstrution of magneti perturbation in a toroidalreversed �eld pinh, Plasma Phys. Control. Fusion 46 (2004) in ui sispiega ome riostruire le autofunzioni delle perturbazioni (deomposteseondo Fourier) al ampo magnetio di equilibrio assial�simmetrio.Partiolare attenzione è dediata all'aoppiamento toroidale tra i modihe nase da metrihe urvilinee.Il lavoro di tesi
• Capitolo 4: Coordinate elioidali in sistemi toroidaliVengono qui de�niti aluni sistemi di oordinate elioidali he de-srivono un'elia in un toro. Gli stati SHAx sono aprossimati a pureelihe (toroidalmente hiuse) desritte dalla sovrapposizione di un uniomodo della perturbazione al ampo magnetio di equilibrio assial�simmetrio. Punto di partenza è quindi la riostruzione delle armonihedella perturbazione spiegata nel apitolo 3. Vengono disussi limiti evantaggi dei vari sistemi di oordinate trovati. Viene introdotto ilodie SHEq.
• Capitolo 5: Componenti ovarianti e ontrovarianti del ampo mag-netioL'uso di oordinate urvilinee impone attenzione sia rispetto alla dif-ferenza tra omponenti ovarianti e ontrovarianti dei vettori he all'a-oppiamento toroidale tra i modi he ne onsegue. Viene mostratol'e�etto dell'aoppiamento toroidale tra i modi sia nelle omponentiovarianti he in quelle ontrovarianti del ampo magnetio.
• Capitolo 6: AppliazioniSi disutono alune appliazioni del odie SHEq, in partiolare: la ri-ostruzione delle super�i magnetihe; le medie sulle super�i di �ussohe restitiusono i pro�li radiali (mediati) delle quantità di plasma; ilsafety fator pro�le (fattore di siurezza) per de�nire gli equilibri eli-oidali. 3



Prefazione
• Capitolo 7: Evoluzione dell'equilibrio: il vinolo ohmioDate le alte orrenti di plasma, qualsiasi equilibrio deve soddisfare lalegge di Ohm (o il osiddetto vinolo ohmio in ondizioni stazionarie).In questo apitolo prima la dinamo laminare (legata alla deformazioneelioidale della olonna di plasma) è disussa ome e�etto elettro-statio. Poi si dimostra he gli equilibri di SHEq sono non stazionari,e si presenta il lavoro svolto a TJ�II (Ciemat, Madrid) per evolvere gliequilibri elioidali in aordo alla legge di Ohm.
• Capitolo 8: Plasma di bordo in stati SHAxSi disute l'interazione regolare del plasma on la parete durante glistati SHAx. Vengono presentate alune reenti sarihe della am-pagna sperimentale 2011 di RFX�mod per il ontrollo della zona dibordo plasma attraverso l'imposizione di ondizioni al ontorno eli-oidali.Dettagli di alolo
• Capitolo 9: Dettagli di alolo...Si raolgono qui i dettagli dei onti svolti in questa tesi. In partio-lare quelli relativi alle derivate delle armonihe omplesse delle pertur-bazioni di �usso magnetio e quelli relativi alle metrihe delle geometrieelioidail�toroidali.Appendii
• Appendii A1�A3:Si trovano qui brevi riassunti di tematihe utili per seguire meglio iltesto della tesi. In partiolare sono raolte le equazioni MHD e leoordinate toroidali usate ome punto di partenza per la ostruzionedelle oordinate elioidali�toroidali introdotte nel apitolo 4.

4



AbstratThe work arried out during these three years is part of the researh ativityon ontrolled thermonulear fusion as a (future) energy soure that wouldmeet the requirements of a lean, renewable and abundant resoure. Fusionreations are well known to physiists sine 1930 and the ambitious idea isto reprodue in laboratory the proess that powers the Sun and all the stars.Its reprodution on Earth in a fusion reator is limited by the inability ofon�ning high density and temperature plasmas, neessary to overome theCoulomb repulsion between nulei and bring the reatants within the rangeof their strong interation.Civil researh is mainly devoted to the study of magneti plasma on�ne-ments. Presently Tokamak, Stellarator and Reversed Field Pinh (RFP) on-�gurations are the most explored magneti on�gurations, the �rst two beingthe most promising for a fusion reator (the ITER Tokamak in Cadarahe,Frane, and the Wendelstein�7X Stellarator in Greifswald, Germany, are nowunder onstrution as the next step in fusion researh).The study of the reversed �eld pinh on�guration is getting new momen-tum from reent results, and this thesis has been arried out in the largestRFP devie in the world, whih is in operation in Padova, Italy, sine 1990:the RFX�mod devie (previously alled RFX). RFPs are Ohmially heateddevies, with high urrents �owing in the plasma. In the past, their perfor-mane has been limited by the intrinsi presene of many instabilities thatdegrade the on�nement. At present, new high�plasma�urrent (higher than1.5 MA in RFX�mod) states have been disovered, whih show that as theplasma beomes hotter it spontaneously undergoes a transition to a statewith improved on�nement properties due to the emergene of an orderedspontaneous magneti struture in the otherwise haoti ore. These states(named SHAx, Single Helial Axis) are haraterized by magneti surfaeswinding around a helial axis and are therefore onsidered as the helial RFPstates.The aim of this thesis is to investigate and model the magneti topologyrelated to helial SHAx state equilibria, taking into aount both the oreregion and the edge.As a �rst step, new helial oordinates to well desribe the helial shape of5



AbstratSHAx states on a torus has been de�ned. This has been arried out makinguse of the urvilinear metris theory (to well onsider the toroidiity of thehelial system) and Hamiltonian mehanis tools applied to magneti �eld(to make use of ation�angle as a smart hoie of oordinates).The pratial outome of this thesis is the ode named SHEq (Single Heli-al Equilibria), whih uses the omplete de�nition of the helial metris toompute all the (helial) equilibrium plasma quantities and an be thereforeuseful to interpret the data from di�erent diagnostis.Furthermore, this should allow to verify if the equilibrium satis�es the Ohmionstraint, a posteriori sine the Ohm's law is not an initial onstraint forSHEq's equilibrium reonstrution. This highlights that SHEq's equilibriaare not steady state, and a part of this thesis has been arried out in ollabo-ration with the Theory Group of TJ-II (Ciemat, Madrid), where I worked forabout three months, in order to evolve in time helial equilibria aordinglyto Ohm's law too.Finally, a more experimental part of the thesis onerns the edge region.From the point of view of plasma�wall interation SHAx states appears witha regular helial pattern and a part of this thesis is also devoted to thestudy of some disharges (done during the 2011 RFX�mod experimentalampaign) where partiular boundary onditions were applied in order to fa-vor and sustain both the helial deformation in the ore and a more regularhelial pattern in the plasma�wall interation.The main results of this work have been published in:- B. Momo et. al Plasma Phys. Control. Fus (2011) [1℄;- E. Martines, R. Lorenzini, B. Momo et al. Plasma Phys. Control. Fus(2011) [2℄;- E. Martines, R. Lorenzini, B. Momo et al., Nul. Fusion (2010) [3℄.The thesis is organized as follows:Introdution
• Chapter 1: What is a Reversed Field Pinh?Brie�y introdues the onepts of magneti on�nement in fusion de-vies with partiular attention to the Reversed Field Pinh (RFP) axi�symmetri on�guration. Speial emphasis is given to the di�erenebetween low and high plasma urrent disharges and to SHAx features,where one or more modes break the axi�symmetry. The neessity ofthe dynamo proess is disussed, together with its eletrostati expla-nation that overtakes Taylor's theory for the RFP.6



Theoretial basis
• Chapter 2: Hamiltonian mehanis for magneti �eld linesThis hapter gives an overview of the Hamiltonian mehanis appliedto magneti �elds in a toroidal devie. The derivation of the anonialrepresentation of the magneti �eld B is proposed, and its physialmeaning is lari�ed using the vetor potential A (B = ∇ × A) andStoke's theorem. We follow and ollet the onsiderations of famouspapers on the Hamiltonian mehanis of magneti �elds.
• Chapter 3: Mode eigenfuntion reonstrutionThis hapter is devoted to speify how to apply the theoretial resultsof hapter 2 to real data, and whih measurements are neessary for thereonstrution of the (Fourier deomposed) harmonis of the perturba-tion (to the axi�symmetri magneti �eld). Speial attention is givento the toroidal oupling that arises between modes due to urvilinearmetris. The hapter follows the paper by P. Zana and D. Terra-nova, Reonstrution of magneti perturbation in a toroidal reversed�eld pinh, Plasma Phys. Control. Fusion 46 (2004).Thesis original work
• Chapter 4: Helial oordinates in toroidal systemsIt is the �rst hapter regarding the original work of this thesis. Goodhelial oordinate systems are de�ned in order to desribe SHAx states,that are modeled as pure Single Heliity (SH) states (whih are the su-perposition of a single mode of the perturbation to the axi�symmetrion�guration). The advantages and disadvantages are disussed for allthe oordinate systems. The starting point is the reonstrution of thehelial magneti surfaes, using the magneti �ux eigenfuntion insidethe plasma volume introdued in hapter 3. The SHEq�ode an al-ways hoose between all oordinate systems when omputing helialequilibria.
• Chapter 5: Covariant and ontravariant magneti �eld omponentsThe use of urvilinear metris (as the helial oordinate systems in atorus) imposes to onsider the di�erene between ovariant and on-travariant omponents of any vetor, and the toroidal oupling betweenmodes introdued in hapter 3. In this hapter is shown how the e�etof the toroidal oupling on the harmonis of the magneti �uxes anbe seen in both the ovariant and ontravariant magneti �eld ompo-nents. 7



Abstrat
• Chapter 6: AppliationsThis hapter disusses some appliations of the SHEq ode. For ex-ample magneti �ux reonstrutions, the alulation of �ux surfaeaverages of any plasma quantity, and the helial safety fator pro�le.
• Chapter 7: Equilibrium evolution: the Ohmi onstraintDue to high urrents �owing in the plasma, any equilibrium must sat-isfy Ohm's law (or the Ohmi onstraint that arises for steady stateondition). In this hapter, �rst the laminar dynamo (whih originsfrom a helial deformation of the plasma olumn) is disussed as aneletrostati e�et. Then it is shown that SHEq's equilibria are notsteady state (do not satisfy the Ohmi onstraint) and the work donein ollaboration with the Theory Group of TJ-II (Ciemat, Madrid) inorder to evolve in time the helial equilibria aording to Ohm's law ispresented.
• Chapter 8: Plasma boundary in SHAx statesThis is the most experimental hapter, whih presents the work donefor the analysis of the plasma�wall interation during SHAx states: aruial point for RFX�mod operation not yet well understood. Speialattention is devoted to a set of reent disharge (2011 experimentalRFX�mod ampain), where the ambitious objetive was the ontrol ofthe plasma�wall interation using di�erent (helial) boundary ondi-tion.Detailed alulations
• Chapter 9: Detailed alulationsHere are olleted the detailed alulation done for this thesis, in par-tiular those regarding the radial derivative of the omplex harmonisof the �uxes and the helial�toroidal oordinates.Appendixes
• Appendixes A1�A3:In the appendixes one an �nd some brief summary of arguments re-lated to this thesis but not originally developed during the work. Inpartiular one an �nd a brief summary of MHD equations and detailsregarding the toroidal oordinate system (and the urvilinear metris)introdued in hapter 3. 8



Chapter 1What is a Reversed FieldPinh?1.1 About magneti on�nement of fusion plasmas
Figure 1.1: A piture showing the priniple of toroidal on�nement.It seems easy, but it is not...The �rst piture in this setion shows the priniple of magneti on�ne-ment in toroidal devies: a harged partile gyrates (dotted line) around amagneti �eld line (ontinuous line) and it is on�ned within the vauumvessel.Historially, the plasma magneti on�nement developed starting fromthe �rst experiments about the pinh e�et, in whih a urrent hannel on-trats through the self�magneti �eld of the urrent, investigated by Bennetin 1934 [4℄. One an think to an applied toroidal magneti �eld and to atoroidal urrent indued in the plasma by a transformer. The pinh e�etdue to the toroidal urrent adds to the toroidal magneti �eld a poloidalomponent: the magneti �eld lines are helix that wrap around the torus.The averaged poloidal angle ∆θ traversed by a �eld line after one toroidaltransit (∆ϕ = 2π) is alled the rotational transformation angle ι, [5℄1. A1The number of turns of a magneti �eld line in the poloidal diretion every toroidal9



Introdutionnon�null rotational transform arises from the helial winding of the magneti�eld lines, and it is neessary to balane the shift due to the urvature andthe spatial gradient of the toroidal magneti �eld.Tokamak and RFP (Reversed Field Pinh) devies are the main toroidalpinh devies for fusion studies. The main onept of the Tokamak wasproposed in 1952 by two Soviet physiists, Tamm and Saharov, and thenrealized for the �rst time by another Russian physiist, L.A. Artsimovih,[6℄. Whereas, the RFP on�guration was �rst observed in the ZETA ex-periment (a pinh devie) at Harwell in the mid 1960s, as a spontaneousself�generation of the toroidal magneti �eld.A non�null rotational transform an also be reated without a pinh e�et,by helially shaped magneti �eld oils outside the plasma, as in is the aseof the Stellarator devies.In this thesis we will fous on the RFP on�guration.1.2 The Reversed Field Pinh

Figure 1.2: RFP axi�symmetri magneti �eld on�guration.In �g. 1.2 the poloidal and toroidal omponent of the (toroidal) Re-versed Field Pinh on�guration are drawn. The RFP on�guration an bedesribed by an axi�symmetri magneti �eld, with the peuliarity of om-parable toroidal and poloidal omponent amplitude, and the reversal of thetoroidal one at the edge (whene the name to the on�guration). In the past,turn are usually indiated by the symbol -ι. Rigorously -ι = ι/(2π), but in this thesis wewill use the symbol ι instead of -ι. 10



1.2 The Reversed Field PinhRFP's performane has been limited by the intrinsi presene of many insta-bilities, suh as tearing modes, that degrade the on�nement, but were alsoonsidered to be neessary for the sustaining of the magneti �eld reversalthrough the dynamo e�et [7℄. Atually, the reversal an be sustained alsoin a non�haoti magneti on�guration [8, 9, 10℄, as the so�alled SingleHelial AXis (SHAx) states, reently disovered in RFX�mod experiment(and the main subjet of this thesis).1.2.1 Start up of the on�guration

Figure 1.3: Reprodued from H. Ji, S.C. Prager, [7℄. Qualitative illustra-tion of time evolution of the normalized magneti �eld and urrent densitypro�les in a pinh plasma when the eletri �eld is inreased in sequene: (a)initial state, where only a toroidal �eld exist; (b) a small eletri �eld to drivemainly toroidal urrent in Tokamaks; () a modest eletri �eld to signi�-antly drive both toroidal and poloidal urrent omponents; (d) and, �nally,an RFP on�guration is realized when the toroidal magneti �eld reverses itsdiretion.The toroidally symmetri vauum vessel is surrounded by a set of toroidal�eld oils whih produe the initially toroidal magneti �eld. A entralsolenoid provides then the loop voltage neessary to trigger the disharge,and to drive the toroidal plasma urrent inside the vessel that produes thepoloidal magneti �eld omponent. In �g.1.3 one an see the time evolutionof the magneti �eld and urrent density omponents, as the applied eletri�eld inreases.Most of the magneti �eld is produed by urrents �owing in the plasma. Thepoloidal �eld is produed by the indued toroidal urrent, while the toroidalmagneti �eld, muh stronger in the ore than at the edge (where it assumes11



Introdutionjust a small value with a reversed sign), must be generated by poloidal ur-rents inside the plasma. These poloidal urrents an not be driven by thetoroidal loop voltage alone: a dynamo is ating in the plasma, with ontin-uous generation of a toroidal �ux to provide and sustain the on�guration.Therefore, the toroidal winding provides only a small toroidal �eld. It anat as a �ux onserver, in this ase the oils reat to the existene of thepoloidal urrents in order to keep the total �ux onstant: in the outer regionthe toroidal �eld is thereby redued and even reversed. But, in RFP experi-ments, aided reversal is generally preferred to self�reversal, and the toroidalwinding provides a small (hosen) negative toroidal �eld.The resulting equilibrium on�guration is the one in �g.1.2.1.2.2 Shifted magneti �ux surfaes

Figure 1.4: The ylindrial (R,Z, ϕ) and mahine (r, θ, ϕ) oordinate sys-tems, applied to a torus.The magneti equilibrium in �g.1.2 is related to magneti �ux surfaeswhere the magneti �eld lines lie by de�nition. We refer to magneti �ux sur-faes with irular poloidal ross setion2, even if other shape ould in prin-iple be investigated. In ylindrial approximation one an think to nestedirular magneti �ux surfaes, whereas a shift (and therefore non onentri2The edge radial magneti �eld due to perturbations breaks the perfet irularity ofthe magneti �ux surfaes, and must be ontrolled either by a thik shell or by a feedbakative ontrol. This in RFX�mod is done by a number of saddle oils.12



1.2 The Reversed Field Pinhmagneti �ux surfaes) haraterizes the real toroidal system [11℄3.On the irular �ux surfaes are de�ned the toroidal oordinate systemsused in RFX�mod, all olleted in appendix B.2 4. All of these oordinatesystems are de�ned by a radial variable to label the magneti �ux surfae,and by two angles: a poloidal angle θ and a toroidal angle ϕ (that one ansee in �g. 1.4 for the easier of these oordinate systems, the mahine one).

Figure 1.5: Reprodued from [12℄. Magneti �uxes and urrents de�nedusing the ross�setional area for the toroidal �ux ψt and the urrent I andusing the entral hole of the torus for the poloidal �ux ψp and the urrent G.The poloidal angle is θ and the toroidal angle is ϕ. (R,Z, ϕ) are ordinaryylindrial oordinates.Magneti �ux surfaes an be labeled with every quantity whih is on-stant on them: by de�nition it must be any funtion f for whih its gradientis perpendiular to the magneti �eld B:
B · ∇f = 0 . (1.1)From the equilibrium fore balane equation, that needs to balane the pres-3Shifted magneti �ux surfaes are not a peuliar feature of RFP on�gurations, butit is ommon to all the toroidal devies.4The only oordinate system that takes into aount the toroidiity is the (r, ϑ, ϕ)oordinate system, de�ned also in hapter 3. The omplexity of taking into aount thetoroidal geometry, through the shift term, is related to urvilinear metris (see appendixB). 13



Introdutionsure gradient with the Lorentz fore, one obtains the relation
J×B = ∇p . (1.2)Both the urrent density J and the pressure gradient ∇p are orthogonal tothe magneti �eld B: the kineti pressure is onstant on the magneti �uxsurfaes, where also the plasma urrent �ows.Some other example of label for magneti �ux surfaes are the magneti�uxes, or the safety fator q de�ned as the ratio between their di�erentials:

ψt(r) =

∫
B · dΣtor (1.3)

ψp(r) =

∫
B · dΣpol (1.4)

q(r) =
dψt
dψp

(1.5)
ψt is the toroidal �ux through Σtor, the surfaes de�ned by the onstany ofthe radius r at the toroidal angle ϕ = const; and ψp is the poloidal �ux, i.e.the �ux through Σpol, the r = const surfae at the poloidal angle θ = const.A qualitative piture of the two �uxes is in �g.1.5 and �g.2.4.It is worth noting that the magnitude B of the magneti �eld is not on-stant on the magneti �ux surfaes r = const. Due to the toroidiity of thegeometry, the magnitude of the magneti �eld depends both on the radius
r and on the poloidal angle. One an think to the High or Low Field Sidetypial in Tokamaks.1.2.3 Internal resonanes: MH vs QSH and SHAx statesThe safety fator pro�leA distintive feature of the RFP on�guration is the safety fator pro�le,de�ned in eq.(1.5) and plotted in �g. 1.6. The safety fator pro�le relatedto the axi�symmetri equilibrium is monotonially dereasing and it reversesits sign at the edge, due to the reversal of the toroidal magneti �eld.The safety fator pro�le an be de�ned also as the inverse of the rota-tional transform ι, whose geometrial meaning is the number of turns of amagneti �eld line in the poloidal diretion, after a omplete turn in thetoroidal one5.The small edge value of q, related to the weak reversal of the toroidal mag-neti �eld, means that (in ontrast to Tokamaks) magneti �eld lines at the5We remind that we use the symbol ι instead of -ι.14



1.2 The Reversed Field Pinh

Figure 1.6: The axi�symmetri safety fator pro�le in the ylindrial ap-proximation.edge are almost poloidal. For q = 0 the magneti �eld is only poloidal, i.e.on the reversal surfae where the toroidal magneti �eld vanishes.As one an see in �g. 1.6, a lot of magneti �ux surfaes where q assumesa rational value with low mode numbers are present in the plasma, whihmeans:
q(r) =

m

n
. (1.6)These values of q are said rational or resonant, as the orresponding �uxsurfaes, where magneti �led lines lose on themself after m poloidal and ntoroidal turns. The term resonant arises from the fat that, around these sur-faes, tearing modes with the same m poloidal mode number and n toroidalmode number are destabilized.Tearing modes are resistive, non�linear modes with saturated amplitudes,and are responsible for the origin of the magneti islands. Magneti islandsare a hange in the magneti topology that arises where the resonant ondi-tion

k ·B = 0 (1.7)between the wave vetor k of the perturbation6 and the magneti �eld issatis�ed. Equation (1.7) is veri�ed exatly on the resonant �ux surfaes7,and in �g. 1.7 is given a piture of the magneti island of a m = 1 modein the poloidal plane and of a n = 2 − 3 mode in the toroidal one. On thereversal surfaes, where q = 0 by de�nition, all the modes of the m = 0spetrum are resonant, and one speaks of the m = 0 island hain.6In the ylindrial approximation, kθ = m/r and kϕ = n/R, where r and R are theminus and major radius respetively.7See [13, 11℄ for a treatment of magneti island theory.15



Introdution

Figure 1.7: Left: A m = 1 magneti island on the poloidal plane. Right:An example of magneti island around the reversal surfaes on the toroidalplane. This �gure is intended as a qualitative piture of magneti islands onthe poloidal and toroidal plane. The reonstrution of the magneti on�g-uration related to experimental data is better explained later (see hapters6�8).MHD spetraAt low plasma urrent (below 800 kA in RFX�mod), a wide spetrum oftearing modes is present in the so�alled Multiple Heliity (MH) regime.Typially, the largest tearing modes are mostly in the m = 1 and m = 0MHD spetra, and many modes with di�erent toroidal mode number n andomparable amplitudes are simultaneously destabilized in the plasma. Theonsequene of the superposition of magneti islands assoiated to resonanttearing modes is a stohasti plasma ore [14℄, that entails �at density andtemperature pro�les. This is in agreement with images of the plasma orefrom soft X�ray (SXR) tomography (�g.1.8 bottom left) whih display apoloidally symmetri emissivity.At higher plasma urrents, transient states where just one (m,n) mode dom-inates the spetra are observed in all the large RFP devies. These states arealled Quasi Single Heliity (QSH) states due to the presene of seondarymodes with small but �nite amplitude. QSH regimes are assoiated to aredued level of haos and improved on�nement properties. This is dueto the presene of partially onserved magneti �ux surfaes in the plasmaore, that turn out to be the magneti island related to the dominant mode.From the measurements, this an be seen in the bean�like hot struture evi-dent from the SXR tomography (�g.1.8 bottom right) and shows up also inthe eletron temperature pro�les measurements that exhibit a strong Inter-nal Transport Barrier (ITB) in orrespondene of the magneti island edges[15, 16℄.Inreasing the plasma urrent, an inrease in the amplitude of the dominantmode, together with a derease in the amplitude of the seondary modes, anbe observed (�g.1.9 left). For high plasma urrents (usually above 1.5 MAin RFX�mod), and in orrespondene to a threshold value of the dominant16



1.2 The Reversed Field Pinh

Figure 1.8: Left. MH features: MHD spetrum where many modes haveomparable amplitudes; Poinaré plot with the typial haoti ore; SXRtomography on the poloidal plane, whih displays a poloidally symmetriemissivity. MH are the typial state for low plasma urrent disharges, andonly transient states in high plasma disharges. Right. QSH features: MHDspetrum where just one mode dominates the spetra; Poinaré plot wherethe oherent struture in the plasma ore, related to the dominant mode, isevident; SXR tomography on the poloidal plane, whih displays the bean�likehot struture. QSH are the typial state for high plasma urrent disharges,and only transient states in low plasma disharges. This �gure is intendedto be a qualitative piture to summarize MH and QSH features.
17



Introdutionamplitude (experimentally of about the 4% of the total magneti �eld at theedge), the plasma self�organizes into a helial state, named Single HelialAxis (SHAx), [17, 18, 19℄.In �g.1.9 (right) the time evolution of the dominant and the seondarymodes in both a low and high plasma urrent disharges is also plotted. Onean see that the MH phases at high plasma urrent are just transient phases,whereas are the typial state for low urrent disharges. On the ontrary, athigh plasma urrent, helial states are reahed but in a non�stationary way,their persistene inreasing with plasma urrent.

Figure 1.9: Left: The amplitude of the dominant mode (blak) and of theseondary modes (red) are plotted against the value of the plasma urrent.Right: The time evolution of the dominant mode (red) and of the seondarymodes (blue) in a low (up) and high (down) plasma disharges.DAx and SHAx statesSHAx states are improved on�nement RFP states, haraterized by nestedmagneti �ux surfaes winding around a single helial axis, but enlosed inan almost axi�symmetri boundary. This state is the result of two sues-sive bifurations, ourring when the urrent progressively inreases. The�rst one is of MHD type, and brings the plasma from the MH to the QSHregime. At lower urrents (and below the threshold value of the dominantamplitude), the QSH regime inludes a magneti island and two axes aretherefore present in the magneti system: the unperturbed axi�symmetriaxis and the one related to the island O�point. As one an see in �g. 1.10,in suh states (named Double AXis, DAx) a helial thermal struture isobserved together with an eletron transport barrier (ITB) where the max-imum of the eletron temperature in strongly orrelated with the positionof the magneti island. The seond bifuration hanges the topology of themagneti �eld: when the dominant mode exeeds the threshold amplitude,the X�point of its magneti island is expelled and the original axi�symmetri18



1.2 The Reversed Field Pinh

Figure 1.10: Left. DAx state topology on the poloidal plane where theisland related to the dominant m = 1 an be seen. And the relative tem-perature pro�le from Thomson sattering data, where the internal transportbarrier (ITB) an be seen. Right. SHAx state topology on the poloidal planewhere the bean�shaped �ux surfaes an be seen. And the relative temper-ature pro�le from Thomson sattering data where the internal transportbarrier (ITB) and the internal �at pro�le an be seen.axis is replaed by a helial magneti axis, whih oinides with the previousisland O�point and that beomes the only magneti axis (whih motivatesthe term SHAx) of the system.During SHAx states, the region inside the ITB spans a larger volume thanin DAx states, and it is related to a �at temperature pro�le (�g. 1.10). Themaximum eletron temperature gradients at the ITB are similar betweenDAx and SHAx states. The safety fator pro�le hanges its shape duringthe transition to a SHAx state, going through a maximum loated in theviinity of the former separatrix and therefore in orrespondene of the steeptemperature gradient (see hapter 6). The region of shear reversal8 seems tobe more resilient to haos, and a QSH state without separatrix (SHAx state)an be therefore onsidered an improved on�nement state with respet tothe DAx state9.8The shear pro�le is de�ned as the radial derivative of the safety fator pro�le. A shearreversal therefore indiates a maximum or a minimum in the safety fator pro�le.9This an be understood also using the Hamiltonian mehanis theory.19



IntrodutionThe transition from a haoti MH regime to a stationary SH (Single He-liity) regime where haos is suppressed was theoretially predited to ourwhen the viso�resistive dissipation grows, therefore in orrespondene of thehigh dissipation limit of the system. Numerial simulations show a ontinu-ous transition from MH to SH when the plasma dissipation inreases, withan intermediate phase where the system displays a temporal intermittenybetween MH and QSH10.The �rst theoretial proof of the existene of SH states was their disoveryin 1990 in 3D numerial simulations. The numerial senario is qualitativesimilar to the experimental one: an inrease of the dissipation parameters(as the Hartmann number11) in the former seems to have the same role of aninrease of the plasma urrent in the latter (and vieversa). Experimentally,a pure SH regime is not reahed, but it an be observed the transition be-tween QSH and MH regimes (and vieversa). However, the relation betweenthe high dissipation regime and high plasma disharges is still not under-stood, and the reason why high urrent is bene�ial for real disharges isstill awaiting a theoretial explanation.Plasma properties, suh as eletron temperature and SXR emissivity,have been found onstant on helial magneti �ux surfaes, indiating thatSHAx states an be desribed by MHD equilibrium with almost invariant�ux surfaes. In ontrast, stationary low urrent MH states do not exist dueto the temporal �utuation of all the modes of the perturbation.In this thesis we look for the magneti reonstrution of the helial SHAxstate equilibria, and to their evolution in time in hapter 7.3D viso�resistive MHD simulations in toroidal geometry (and not in thesimpli�ed ylindrial one) show that the toroidal oupling between modes12prevents the system to reah a pure Single Heliity state. The toroidal haosstays limited during the Quasi Single Heliity SHAx states, and in the fol-lowing we model them as pure SH states, even in a toroidal geometry.SHAx states are related to the dominant mode of the m = 1 spetrum, andthey are studied in hapters 4�7. The ontribution of the orrespondentdominant mode in the m = 0 spetrum, important at the edge and in theplasma�wall interation, is analyzed in hapter 8. The plasma deformationdue to m = 1 and m = 0 modes an be seen in �g.1.11.As yet the SHAx regimes are usually obtained at low densities (n/nG < 0.2,10In [20℄ the transition between MH and SH phases is desribed as a seond order phasetransition, where the ontrol parameter is the Hartmann number.11The Hartmann number H is de�ned as the dimensionless number (η0ν0)
−1/2, where

η0 is the entral resistivity and ν0 the entral plasma visosity, therefore the inrease ofthe dissipation parameters orresponds to a derease of H and vieversa. It is found tobe the right ontrol parameter for the dynamis in numerial simulations [20℄.12See hapter 3: the toroidal oupling ats between modes with same toroidal modenumber n and di�erent poloidal mode number m.20



1.2 The Reversed Field Pinhwhere nG is the Greenwald density limit, [11℄), and the understanding ofthe plasma-wall interation is of ruial importane speially in RFX�mod,where no divertors protet the wall.The magneti topology of a SHAx state (3D shape in �g. 1.12) is likethat of a non resonant saturated kink. This helial deformation makes thehelial RFP plasmas similar to Stellarator's one. But in a Stellarator thehelial magneti �eld is almost ompletely de�ned by external oils, while inRFPs SHAx states is mainly produed by internal urrents.In hapter 6.3 we however ompare the helial rotational transform duringa SHAx state and the one typial of TJ-II Stellarator, in Ciemat (Madrid).
Figure 1.11: The plasma deformation due to m = 1 (left) and m = 0(right) modes.

Figure 1.12: Left: 3D shape of a SHAx state. Right: Reprodued from[21℄. The intersetion of the helix with the poloidal plane, and the typialbean�like struture that haraterize a SHAx state on the poloidal plane.
21



Introdution1.2.4 The reversal of the toroidal magneti �eld and the dy-namoA dynamo proess is neessary to sustain the Reversed Field Pinh on�g-uration, for time longer that the resistive ones13. Without any mehanismthat ontinuously produes toroidal magneti �ux, after a short time thetoroidal magneti �eld pro�le would be onstant and equal to its edge value(see the di�usive equation (A.12) and �g.1.13).The dynamo is therefore a proess ating against the resistive di�usion, and

Figure 1.13: Top: The resistive di�usion of the toroidal magneti �eldwithout the dynamo ation. Bottom: The toroidal �ux as funtion of timeduring a typial RFX�mod disharge. The dashed line represents the theo-retial di�usive exponential deay without �eld regeneration.it has been proved to be neessary for the stability of the on�guration [22℄.Other examples show the neessity of a dynamo, in partiular to providethe reversal of the toroidal magneti �eld. Let us use the Ampère's law, in13The time for the resistive di�usion of the magneti �eld is de�ned in appendix A.1(omment to eq.(A.12)), as the harateristi time τR = µ0a
2/η with a the radius of thevauum hamber. 22



1.2 The Reversed Field Pinhstationary ondition and in ylindrial approximation for simpliity14:
Jθ = − 1

µ0

∂Bϕ
∂r

(1.8)On the reversal surfae, if the poloidal urrent density vanishes (as it shouldbe with magneti �eld lines only poloidal), the toroidal magneti �eld isminimum, due to the vanishing of its radial derivative. But the minimum ofthe toroidal magneti �eld ontradits its reversal assumption (as one an seeomparing the two Bϕ pro�les in �g. 1.14): this highlights the neessity ofa poloidal urrent density omponent, that an not be driven by the appliedtoroidal loop voltage15.

Figure 1.14: Left: The axi�symmetri RFP magneti �eld omponents.Right: The toroidal magneti �eld pro�le without a dynamo proess.The same an be proved looking at the parallel Ohm's law: on the reversal�ux surfae, where B = Bθ,
E‖ = η‖ J‖ ⇐⇒ Eθ = η‖ Jθ . (1.9)The two sides of equation (1.9) are plotted in �g. 1.15. Again it is evidentthe neessity of a poloidal urrent at the reversal surfae, that annot bedriven neither by the applied toroidal loop voltage neither by a (v×B) termin the poloidal diretion being B = Bθ.Usually the dynamo proess is understood as a (v × B) term in thepoloidal diretion due to the non linear oupling between the veloity andthe magneti perturbation �elds. Only one mode of the perturbation ouldbe enough to sustain the dynamo: in this ase the neessity of a dynamo isunderstood as the neessity of an helial deformation of the plasma olumn,14Therefore exhanging the role of the axial Bz magneti �eld and of the Bϕ toroidalone.15The pinh of the magneti �eld lines due to the applied eletri �eld is what produesjust poloidal magneti �eld lines at the reversal.23



Introdution

Figure 1.15: Mismath between the applied eletri �eld E‖ and the re-sistive ounterpart. It is noted that E‖ > ηj‖ at the enter (neessity ofanti�dynamo) while E‖ < ηj‖ at the edge (neessity of a dynamo proess).and the RFP is seen as a helially distorted paramagneti pinh. One speaksof the laminar RFP dynamo, see setion 7.1.In any ase, the �eld reversal is a onsequene of the loss of the axi�symmetryof the system. This is known as the Cowling's theorem [23℄, for whih nodynamo an sustain an axi�symmetri RFP.1.2.5 Standard and laminar dynamo explanations. FromTaylor to the wire modelTaylor relaxation theoryTaylor relaxation theory was the �rst explanation of the reversed on�gura-tion in �g. 1.2. It ame in 1974 [24℄, when omputers were not able to runa MHD simulation, and onsiders a plasma with null pressure and veloityin a ylindrial �ux onserver. The plasma is onsidered as an isolated sys-tem, therefore it should reah the minimum energy state onsistent with theonstraints given by the global magneti invariants.The energy to be minimized is the total magneti energy W , negleting theinternal energy due to the vanishing pressure:
W =

∫

V

B2

2µ0
dV (1.10)and Taylor proposes to onsider as a onstraint to the system the onstanyof the magneti heliity16 K de�ned as

K =

∫

V
A ·B dV (1.11)16Magneti heliity K de�ned in equation (1.11) to be distinguished from the geometriheliity of a magneti perturbation. When speaking of the heliity of a mode in this thesiswe are referring to the geometrial one, if not di�erently spei�ed.24



1.2 The Reversed Field Pinhwhere A is the vetor potential (B = ∇ × A) and V the plasma volumeenlosed by a given magneti �ux surfae (Taylor onsiders the onstany ofthe total magneti heliity inside the last losed magneti �ux surfae).The magneti heliity K is onstant for non resistive plasmas, but it an beonsidered approximately onstant if the variation of K is muh slower thanthe energy variation. This is experimentally veri�ed and Taylor's piture isonsistent even for low resistivity plasmas17.Woltjer's theorem states that a system onstrained to onstant magnetiheliity minimizes its energy reahing a (linear) fore free on�guration: J =
σB with a onstant σ pro�le. In ylindrial geometry the solutions are theBessel funtions (J0 and J1), for whih ∇×B = σB and:





Br(r) = 0
Bθ(r) = B0J1(σr)
Bz(r) = B0J0(σr)These solutions are alled Bessel Funtion Model (BFM) and are plotted in�g. 1.16. One an see that these are not far from the experimental magneti�elds, and that the solution for Bz aounts for the reversal.For a omplete desription of the BFM solution it is useful to introdue two

Figure 1.16: BFM solutions and experimental magneti �eld pro�les. Re-produed from H.A.B. Bodin, [26℄.parameters, the reversal parameter F and the pinh parameter Θ, de�nedas
Θ =

Bθ(a)

〈Bϕ〉
F =

Bϕ(a)

〈Bϕ〉
(1.12)17Taylor's piture an be onsidered onsistent with resistive plasma also if one anassume that the relaxation proess is due to small sale �utuation. In this ase theenergy deays faster than the magneti heliity. But the dynamo proess that must at toaount for the reversal is due to large sale �utuations, as tearing or kink modes [25℄.25



Introdution

Figure 1.17: Shemati F − Θ diagram, as predited by the BFM model(ontinuous line) and experimental values found in di�erent devies.where 〈Bϕ〉 is the average of the toroidal magneti �eld over the poloidal rosssetion and a the minor radius of the vauum hamber. In general, sine thetoroidal �eld reverses for r < a, in the RFP F is always negative and thevalue Θ is always high. On the ontrary, the Tokamak ould be haraterizedwith low Θ values and F positive everywhere. A ommon way to display theBFM model predition is the F − Θ diagram (�g.1.17), in whih the RFPstates (the on�gurations with a reversed toroidal �eld) are supposed to existfor Θ > 1.2. The experimental points overplotted in the same �gure showa qualitatively reasonable agreement just in the entral region. In the sameplot, one ould follow the start up of the disharge (from (a) to (d) in �g.1.3).The BFM solutions orrespond to the axi�symmetri reversed equilib-rium states predited by Taylor's theory18. This is in ontrast with thealready ited Cowling's theorem [23℄, for whih a reversed axi�symmetriequilibrium an not exist. This is only one of the experimental and theoret-ial results that disagree with Taylor's relaxation theory.Taylor gives an explanation for the �nal relaxed state, but does not speifythe nature of the relaxation. A dynamo proess must at against the mag-neti �eld di�usion, and this breaks the axi�symmetry of the equilibriumsystem in agreement with Cowling's theorem. Moreover, the experimental
σ pro�le is not onstant over the whole plasma radius, in partiularly it18Taylor's theory an predit also a helial minimum energy state, orresponding to amode resonating outside the reversal radius. But the geometrial heliity of this mode isopposite to the one of the experimental helial SHAx states, that orrespond to a moderesonating inside the reversal surfae. This is one of the ritiism to Taylor's theory.26



1.2 The Reversed Field Pinhstrongly varies outside the reversal radius19. RFP's plasmas are essentiallyohmi, but a high plasma resistivity is out of Taylor's assumption20. More-over, the plasma is not an isolated system21. In [25℄ one an �nd a moreaurate eluidation of the Taylor's theory ritiisms, and a new paradigmfor the RFP that aounts for these. Its explanation in the next setion anbe found in D.F.Esande, What is a RFP?, to be published.The wire modelIn the new model, the RFP is desribed as a self�organized magneti systemthat results from the nonlinear saturation of a resistive kink mode22.The intuitive toy model that explains the self�reversal of the axial magneti�eld in a ylindrial system is alled wire model, [29, 30℄.A �nite, but small, axial magneti �eld is present inside the ylinder.This means a poloidal urrent is �owing in external oils on the ylinder(Fig. 1.18 (a)). The wire is in unstable equilibrium, and a small perturba-tion triggers a kink. The unstable kink is the one with a pith whose sign issuh that the poloidal part of the urrent �owing in the wire has the sameorientation as the one in the ylinder, whih brings a mutual attrative fore(Fig. 1.18 (b)). Suh a pith brings also a solenoidal e�et whih inreasesthe magneti �eld and �ux inside the kinked wire. The �ux onserver im-poses aordingly a derease of the magneti �eld and �ux outside. As longas the urrent in the ylinder keeps its sign, the instability annot quenh.The ontinuing growth of the magneti �eld and �ux inside the kinked wirefores the outer magneti �eld and the urrent in the ylinder to reverse.This model exhibits a self�organized magneti system where it is essentialthe loss of axi�symmetry to provide the reversal. Di�erently from Taylor'stheory, this model explains the reversal without onsidering a losed system,aounting for the plasma resistivity, and prediting a helial magneti equi-librium on�guration in agreement with experiments23 and the Cowling's19The σ pro�le is onstant in the haoti radial domain: as shown by Rusbridge [27℄, σmust be onstant along magneti �eld lines in fore free and stationary ondition (beause
J = σB and ∇ · J = 0, then B · ∇σ = 0). This explains why σ is onstant in the haotiore of MH states, even without the neessity of Taylor's theory.20See footnote 17.21Considering instead the plasma as an open ohmi system with �xed urrents onean use an eletrotehnis result, whih states that suh a system maximizes its mag-neti energy (instead of relaxing toward a minimum energy state). See [25℄ and referene[45℄ therein: P. Lorrain and D.R. Corson, Eletromagneti Fields and Waves, New York:Freeman (1987).22This model is a variant of the Kadomtsev one, that proposes a model for the saturationof a resistive kink for Tokamaks, in order to �nd the reversal of the axial magneti �eldomponent. See Kadomtsev [28℄, and [25, 29℄.23But in RFP experiments usually aided reversal is preferred to the self�reversal of this27



Introdution

Figure 1.18: The wire model. (a): urrent-arrying wire in a �ux onserver.The wire arries a urrent Iz, parallel to a magneti �eld Bz whose �ux isonserved by the onduting shell; (b): growth of the instability of Iθ; (): astable equilibrium with reversed �eld is reahed. Reprodued from [30℄.
theorem. Di�erently from Taylor's theory, the origin of the dynamo veloity�eld is explained: as a onsequene of the helial deformation of magneti�ux surfaes, a helial eletrostati potential generates the dynamo veloityas an eletrostati drift. This is alled laminar dynamo, and better explainedin setion 7.1. 28



1.3 RFX�mod experiment
r

Bφ
Bφ

Bθ Bθ

RFP Tokamak

rFigure 1.19: Left, Middle: The axi�symmetri RFP and Tokamak mag-neti �eld omponents. Right: The RFP and Tokamak safety fator pro�le.
1.2.6 Main di�erenes with Tokamak on�gurationsIn a RFP most of the magneti �eld is produed by the urrents �owing inthe plasma. For the same axial applied toroidal �eld, the plasma urrent isone order of magnitude larger in a RFP than in a Tokamak.As a onsequene, for the same plasma resistivity (and the same axial toroidal�eld), the ohmi heating (proportional to the squared plasma urrent) is twoorders of magnitude larger in RFPs than in Tokamaks. Therefore, no ad-ditional heating is required for high plasma temperatures in RFP devies,and no superonduting magnets are required for strong magneti �eld (themaximum magneti �eld being bounded by the ability of driving high plasmaurrents and not by the maximum value imposed by the superondutingtehnology).Another result of the high plasma urrent in a RFP is that the equilib-rium magneti �eld has poloidal and toroidal omponents of omparableamplitudes. As one an see in �g. 1.19, the similar amplitude of the twoomponents of the equilibrium magneti �eld pushes the value of the safetyfator pro�le always below 1 in the RFP on�guration. The q = 1 is knownas the Kruskal�Shafranov limit24: below this limit the toroidal on�gurationshould be stable (as Tokamak ase), above helial MHD instabilities with
m = 1 are triggered in the plasma (m is the poloidal mode number of theperturbation, and m = 1 are the kink instabilities of the type in �g.1.11left). The self�organized magneti system that results from the nonlinearsaturation of a resistive kink mode orresponds to a full MHD relaxationthat involves the toroidal �eld reversal and it turns out to be resilient todisruption. 29



Introdution

Figure 1.20: Left: The RFX�mod experiment. Right: Sheme of thepoloidal setion of RFX�mod experiment.Major radius = 2 mMinor radius = 0.459 mPlasma urrent ≤ 2 MADisharge duration ≤ 0.5 sPlasma density range ≈ 1÷ 10× 1019 m−3Plasma volume ≈ 10 m3Working gas H, HeTable 1.1: Main parameters of RFX-mod devie.1.3 RFX�mod experimentThe Reversed Field EXperiment modi�ed (RFX-mod) [31℄, the upgradedversion of the previous RFX [32℄, is a toroidal devie for the study of themagnetially on�ned plasma in the RFP on�guration. Loated at the Isti-tuto Gas Ionizzati (IGI) [33℄ of the National Researh Counil (CNR) [34℄ ofPadova, it is operational sine 2004 under the management of the ConsorzioRFX, a researh organization promoted by CNR, ENEA (the Italian Nationalageny for new tehnologies, Energy and sustainable eonomi development)[35℄, University of Padova [36℄, Aiaierie Venete S.p.A. (a private partner)[37℄ and INFN (the Italian National Institute of Nulear Physis) [38℄, withinthe framework of the Euratom - ENEA Assoiation.The main parameters of the RFX-mod devie (the largest RFP in oper-ation) are shown in the tab.1.1. As in all RFPs, plasma heating is purelyohmi. Despite a toroidal magneti �eld ten times smaller (the whole mag-neti system is shown in �g.1.20), this devie allows exploring urrent regimesmodel.24See [11℄ for a treatment of the Kruskal�Shafranov limit.30



1.3 RFX�mod experiment(up to 2 MA) omparable to those of the large tokamaks.First wall

Figure 1.21: First wall, graphite tiles.The RFX�mod �rst wall is omposed by 2016 graphite tiles, overingompletely the inner part of the vauum vessel. In the new mahine thetiles have been redesigned to ahieve a more uniform power deposition onthe plasma faing surfae, to minimize the emissivity due to plasma wall-interation and �nally to give housing to a large number of in-vessel probes.These design requirements led to a substantial redution of the tile thiknesswith respet to the original design [39℄.The ative feedbak ontrol system

Figure 1.22: Saddle oils31



IntrodutionWith respet to the original RFX design, the present mahine under-went some ruial modi�ations that allowed signi�ant performane im-provements.The original RFX thik stabilizing shell (whih had a magneti �eld penetra-tion time onstant τshell = 500 ms) was replaed with a thinner one, whosetime onstant for penetration of vertial magneti �eld (≈ 50 ms) is ≈ 10times shorter than pulse duration. Moreover, RFX-mod has been equippedwith one of the most advaned system for feedbak ontrol of MHD stabilitywith ative oils among fusion devies. The system is based on 192 ativesaddle oils, whih over the whole plasma boundary (�g. 1.22). The oilsare arranged in 48 toroidal loations; in eah toroidal loation there are 4poloidal oils, aording to the low m/high n struture of MHD modes inthe RFP (where m and n are the poloidal and toroidal mode numbers, re-spetively). Eah oil is independently driven by individual power suppliesand an produe a radial magneti �eld up to 50 mT DC and 3.5 mT at 100
Hz [31, 40, 41, 42℄. Di�erent algorithms for real-time tearing modes ontrolhave been developed to exploit the full apability of the feedbak system,the most important being the Virtual Shell (VS) sheme [41℄ and the CleanMode Control (CMC) [43℄. The latter, in partiular, has drastially hangedthe performane of the devie, reduing the amplitude of the dynamo modesat the plasma boundary, mitigating their phase and wall loking and �nallyremoving the aliasing of the sidebands that limits the VS ontrol sheme [44℄.The plasma urrent inrease (the 2 MA have been ahieved in 2010) isonly the most evident one among a turn of outstanding ahievements thatonsiderably enhaned the interest about the RFX-mod developments andenrihed the RFP physis, [45℄.

Figure 1.23: Plasma urrent waveforms obtained in RFX-mod sine itsrestart in Deember 2004As said, the plasma urrent inrease (higher than 1.5 MA) has been a-ompanied by the observation of the helial SHAx states.32



Chapter 2Hamiltonian mehanis formagneti �eld linesThis hapter gives an overview of the Hamiltonian mehanis applied tomagneti �elds in a toroidal devie.Any divergene free �eld (as the magneti �eld, for whih ∇ · B = 0) in atorus an be written in its anonial form. For the magneti �eld:
B = ∇ψt ×∇θ −∇ψp ×∇ϕ (2.1)where in general ψt ≡ ψt(r, θ, ϕ) and ψp ≡ ψp(r, θ, ϕ) are the poloidal andtoroidal �uxes1 and (r, θ, ϕ) general toroidal oordinates. Using this relationone an see that magneti �eld lines follow Hamiltonian trajetories for one�degree�of�freedom Hamiltonians:





dθ
dϕ = Bθ

Bϕ =
∂ψp
∂ψt

dψt
dϕ = Bρ

Bϕ = − ∂ψp
∂θ

(2.2)an be identi�ed with the anonial equation of motion




dq
dt = ∂H

∂p

dp
dt = − ∂H

∂q

(2.3)if anonial time t ↔ ϕ (2.4)Hamiltonian H ↔ ψp (2.5)position oord. q ↔ θ (2.6)momentum p ↔ ψt (2.7)1The �uxes are intended normalized to (2π). See setion 2.7 for further details or thegeometrial interpretation of these �uxes. 33



Hamiltonian mehanisThis is usually the starting point to relate Hamiltonian mehanis and mag-neti �eld theory, with the general form:
A = ∇g + ψt∇θ − ψp∇ϕ (2.8)for the vetor potential A (B = ∇×A), [12℄.In this hapter we propose the derivation of the anonial representationof the magneti �eld, eq.(2.1), whih lari�es the interpretation. We followand ollet the onsiderations of famous papers on the Hamiltonian mehan-is of the magneti �elds, as [46, 47, 48, 5, 49, 50℄.In setion 2.1 we introdue a variational priniple for magneti �eld lines inan heuristi but physially intuitive way; in setion 2.2 the same variationalpriniple for the vetor potential A, from whih the magneti �eld line equa-tions (in physial spae) follow, is presented in a mathematially rigorousway; in setion 2.3 we prove the equivalene between this variational priipleand the one of Hamiltonian mehanis from whih the anonial equationsof motion (in phase spae) derive. From this equivalene one an dedue theassoiation between anonial and magneti variables, for whih it is naturalto use the ovariant omponents of the vetor potential Ai; in setion 2.4we show the equivalene between anonial transformation (related to thehoie of the anonial variables) and gauge transformation (related to thehoie of the vetor potential A); in setion 2.5 we introdue a usefull state-ment of Noether's theorem to be applied in any Hamiltonian ontext, and inpartiular to the symmetries of magneti �elds in fusion devies; in setion2.6 Ation�Angle oordinates are de�ned, that are nothing but straight��eld�line oordinates on magneti �ux surfaes; in setion 2.7 the physialinterpretation of the ovariant omponent Ai lari�es the theoretial stepsof the preeding setions: using Stokes theorem we prove the equivalenebetween Ai and the magneti �uxes, and one an �nally understand identi-�ations (2.4)�(2.7); in setion 2.8 the main results of the hapter are shownfollowing the more ommon (but less rigorous) way followed for exampleby A. Boozer [12℄ and W.D. D'Haeseleer [51℄; in setion 2.9 a resumptiveexample is presented, for a system where a helial symmetry is supposed;in setion 2.10 a �nal simple example is proposed, to the study of an axi�symmetri magneti �eld.The example in setion 2.9 is partiularly important for the study of SHAxstates, and will be used in hapter 4 to model them.34



2.1 Variational priniple for magneti �eld lines. Intuitivephysial approah2.1 Variational priniple for magneti �eld lines.Intuitive physial approahThe Euler�Lagrange proof for the stationary ation priniple for magneti�eld lines an be done in a rigorous way (as we do in setion 2.2), andsimilar to what is done in Hamiltonian mehanis. Magneti �elds exhibitsnaturally also the geometrial elements of the di�erential geometry approahwhih uses sympleti manifolds (see the book of V.I. Arnold [46℄) and wehoose this intuitive approah to introdue the Hamiltonian theory for mag-neti �eld lines.We need to introdue in advane the de�nition of the Ation for magnetisystems, equation (2.10):
S(x) =

∫ x1

x0

Ai(x) dxi (2.9)for the general xi = (x1, x2, x3) oordinates and using the Einstein onven-tion to sum over repeated indies.
A is the vetor potential, and the variation of the Ation in equation (2.12)implies the irulation of the vetor potential along a losed iruit C. UsingStokes theorem, the variation of the Ation δS is nothing but the �ux of themagneti �eld through any surfae having this iruit as a boundary.In �g.2.1 one �nds two examples for the iruit C, both onstruted asthe sum of two segments L (light blue in the piture) and L′ (green in thepiture): in �g.2.1 a) the segment L is hosen along a magneti �eld line,whereas in �g.2.1 b) L is not everywhere tangent to B. In both ases L isweakly distorted into L′ to ompute δS along the iruit C.Let us study more in details the example a), where L lies along a magneti�eld line. We de�ne a �ux tube Tǫ about L with a small radius ǫ and wesuppose the small distortion L′ on�ned into Tǫ. The �ux of the magneti�eld B aross the iruit C annot therefore be larger than the �ux aross Tǫ,that is of order ǫ2. Beause the variation of the urve L is just of order ǫ, thevariation of the Ation δS is seond order in the variation of L. Thereforethe Ation S is stationary along a magneti �eld line.Let us study more in details the example b) where L does not lie on a mag-neti �eld line. We hoose a point P that belongs both to a magneti �eldline (that we all M) and to the segment L; and a point Q that belongs tothe line perpendiular both to M and L and going through P ; we hoosethe point Q to be lose to the point P , in order to have PQ of order ǫ. Wethen hoose a segment [r3, r4] of order 1 of L that inludes the point P , andslightly distort L into a line L′ oinident with L out of [r3, r4]: L′ is thesum of the two segments joining r3 and r4 to Q. In this way we have de�nedthe iruit C if �g.2.1 b) and we need to alulate the magneti �ux through35



Hamiltonian mehanis

Figure 2.1: A physial intuitive approah to the variational priniple formagneti �eld lines.it. Beause L is not tangent to the magneti �eld line (M), this �ux is oforder ǫ. Sine the �ux is of same the order as the variation of L, the Ation
S is not stationary along a urve L that is not tangent to a magneti �eld line.Therefore the Ation S of a magneti system is stationary on a urve Lif and only if L is a segment of a magneti �eld line, whih proves priniple(2.9).In the next setion we prove this in an algebrai way.
2.2 Variational priniple for magneti �eld linesAs was shown by Cary and Littlejohn [48℄ and already impliitly present in I.Morozov and L. S. Solovèv, Rev. Plasma Phys. 2, 229 (1966) [5℄, it is possibleto obtain the magneti �eld line equations from a variational priniple, in thesame way as we an �nd the anonial equations of motion in phase spaefrom a variational priniple that makes the ation integral extremum in theHamiltonian ontext. We de�ne the ation along a segment of magneti �eld36



2.2 Variational priniple for magneti �eld linesline, between x0 and x1, as
S(x) =

∫ x1

x0

A(x) · dx (2.10)
=

∫ λ1

λ0

(
A(x(λ)) · dx

dλ

)
dλ (2.11)where A is the vetor potential that desribes the magneti �eld B, and x(λ)is a parametrization of the magneti �eld line with the urve parameter λ.The stationary ation priniple for �eld line �ow an then be written as

δS = δ

∫ x1

x0

A(x) · dx = 0 (2.12)
= δ

∫ λ1

λ0

(
A(x(λ)) · dx

dλ

)
dλ = 0 (2.13)with the usual requirement that the arbitrary variation δx(λ) vanishes atthe end points x0 = x(λ0) and x1 = x(λ1). Following Elsasser [50℄ we nowprove in a formal way that equation (2.13) is true if and only if

(
∇×A

)
× dx(λ)

dλ
= 0 (2.14)whih means that ẋ ≡ dx/dλ is parallel to B = ∇ × A, as required formagneti �eld lines. In the following, the �elds A(x) and B(x) are alwaystaken at x = x(λ) even when this is not expliitly stated.

0 = δ

∫ λ1

λ0

dλ
[
A(x) · ẋ

] (2.15)
=

∫ λ1

λ0

dλ δ
[
A · ẋ

] (2.16)
=

∫ λ1

λ0

dλ
[
δA · ẋ + A · δẋ

] (2.17)
=

∫ λ1

λ0

dλ
[(
∇ · δx

)(
A · ẋ

)
+
(
A · δẋ

)] (2.18)
=

∫ λ1

λ0

dλ
[(
∇ · δx

)(
A · ẋ

)]
−
∫ λ1

λ0

dλ
[(
∇ · ẋ

)
A · δx

] (2.19)
=

∫ λ1

λ0

dλ
[
∇(A · ẋ)− (∇ · ẋ)A

]
· δx (2.20)Therefore

0 =
[
∇(A · ẋ)− (∇ · ẋ)A

] (2.21)
= ẋ×

[
∇×A

]

x≡x(λ)
(2.22)37



Hamiltonian mehanisequivalent to (2.14) as requested. This ends the proof, but let us makemore preise some of its steps. Between (2.17) and (2.18) we use the generalrelation
δA(x) =

∂A

∂x
δx = (∇ · δx) A . (2.23)Between (2.18) and (2.19) we simply integrate by parts, remembering that

δẋ ≡ δ(∂x
∂λ

) =
∂

∂λ
(δx) (2.24)and between (2.19) and (2.20) we highlight δx in the equation. Between(2.21) and (2.22) we use the lassial formula for the gradient of a salarprodut between two general vetors, and the fat that x(λ) is independentof spae:

∇(A · ẋ) = A× (∇× ẋ) + ẋ× (∇×A) + (A · ∇)ẋ + (ẋ · ∇)A (2.25)2.3 Hamiltonian desription of magneti �eld linesIn this setion we show the equivalene between the variational priniplefor magneti �eld lines in physial spae (introdued in setion 2.2) and theone for Hamiltonian dynamis in phase spae, in order to highlight the linkbetween the two �elds of knowledge and to derive in a straightforward waythe Hamiltonian desription of �eld lines.Following E. Piña & T. Ortiz, J. Phys. A 21, 1292 (1988) [49℄, we prove thisequivalene for an arbitrary oordinate system xµ = (x1, x2, x3).In suh a system, the variational priniple (2.13) beomes
0 = δ

∫ λ1

λ0

dλ Aµ(x)
dxµ

dλ
≡ δ

∫
Aµdx

µ . (2.26)where we used the lassial ovariant expression of the dot produt. Wenow reall that the anonial equations of a N degree of freedom mehanialsystem an be derived from the variational priniple
0 = δ

∫ t1

t0

dt
[
p · dq

dt
−H(p,q, t)

] (2.27)
= δ

∫ t1

t0

[
p dq−H(p,q, t) dt

] (2.28)where (p,q) are the anonial variables (N -vetors) andH(p,q, t) the Hamil-tonian of the system2.2The p · dq
dt

−H(p,q, t) term is therefore the Lagrangian of the system.38



2.3 Hamiltonian desription of magneti �eld linesIn setion 2.2 we saw that magneti �eld lines an be derived from a station-ary ation priniple: magneti �eld lines in physial spae are analogous tothe �ow of a dynamial system with one degree of freedom (N = 1)3.We an therefore ompare the so�alled Poinaré�Cartan invariant form,typial of dynamial systems and written in anonial oordinates,
pdq −H dt =

[
p
dq

dt
−H(p, q, t)

]
dt (2.29)with the equivalent form valid for magneti systems in physial spaes, writ-ten in the general oordinates xµ = (x1, x2, x3)

Aµdx
µ = A1 dx

1 +A2 dx
2 +A3 dx

3 for µ = 1, 2, 3 . (2.30)In general it is Ai ≡ Ai(x
1, x2, x3). Identifying the two forms, apparentlythere are three elements in the sum (2.30) for magneti �eld lines, and justtwo in eq.(2.29) for the N = 1 dynamis. The ovariant omponents of thevetor potential, Ai, are de�ned up to gauge transformations4: one of theomponent in the sum an be killed using the hoie of an axial gauge, Ai = 0for one of the indexes. The identi�ation beome trivial, and it is the way toobtain the identi�ation with anonial variables (p, q,H, t) in the physialspae.As an example, we hoose the axial gauge A2 = 0 (following [49℄):

A1 dx
1 +A3 dx

3 = p dq −H dt (2.31)that means that we an identify
p = A1(x

1, x2, t) (2.32)
q = x1 (2.33)
H = −A3(q, p, t) (2.34)
t = x3 (2.35)where we invert (possibly only loally) the relation p = A1(x

1, x2, t) in orderto write x2 = x2(x1, p, t) and therefore the Hamiltonian as a funtion of theanonial variables, H = H(p, q, t).A mere hange of the numbers of the oordinates enables to deal withthe gauge A1 = 0 or A3 = 0. Di�erent hoies of the gauge orrespond todi�erent sets of anonial variables.Let us write expliitly the set of variables for the hoie A1 = 0:
A2 dx

2 +A3 dx
3 = p dq −H dt (2.36)3We will prove this in a rigorous way also in setion 2.5.14Any gauge transformation an be written as Ai 7→ Ai + ∂F/∂ui.39



Hamiltonian mehanisthat, as before, means
p = A2(x

1, x2, t) (2.37)
q = x2 (2.38)
H = −A3(q, p, t) (2.39)
t = x3 (2.40)where we again invert the relation for the anonial momentum p in orderto write the Hamiltonian H as a funtion of the anonial oordinates.By exhanging the order of p dq and −H dt in eq.(2.31) we note thatthe role of the anonial momentum (e.g. p = A2(x

1, x2, t) in the gauge
A1 = 0) an always be exhanged with minus the Hamiltonian variable(H = −A3(p, q, t)), whih shows the huge freedom in the de�nition of aHamiltonian for magneti �eld lines. However an arbitrary hoie of timedoes not guarantee magneti �eld lines to be fully parametrized by a timerunning from −∞ to +∞. Setion 2.5.2 shows that the hoie of time anguided by the existene of a symmetry.2.4 Gauge or anonial transformation?In setion 2.3 we see that di�erent hoies of gauge orrespond to di�erentsets of anonial variables, and we need to hoose an axial gauge in order tomake the identi�ation between the magneti and the Hamiltonian system.In this setion we prove that gauge transformations are nothing but anoni-al transformations, using the language of Hamiltonian mehanis.From Hamiltonian �ow theory we know that the equations of motion (andtherefore the magneti �eld line equations) are independent under anonialtransformations. It is easy to prove5 that the Hamiltonian �ows are indepen-dent from both anonial and gauge transformations. This is true beause5Lagrangian, Ation, and equation of motion are independent from both gauge andanonial transformation. Let us de�ne gauge transformations. Under a gauge transfor-mation, the vetor potential transforms as

A 7→ A + ∇S (2.41)
Aµ 7→ Aµ +

∂S

∂xµ
(2.42)where the funtion S(x) is a salar, and ∇S its gradient. The orrespondent Poinarè�Cartan (P�C) form and the Lagrangian transform respetively as:

Aµ dx
µ 7→ Aµ dx

µ + dS (2.43)
Aµ

dxµ

dλ
7→ Aµ

dxµ

dλ
+
dS

dλ
(2.44)so a gauge transformation add to the P�C form the total di�erential of the salar S, and tothe Lagrangian the total derivative (d/dλ) of the same funtion S. The Ation transforms40



2.4 Gauge or anonial transformation?both an be identi�ed, as we now show.Any anonial transformation6 (p, q) 7→ (P,Q) an be desribed as:
p dq −H dt = P dQ−K dt+ dF (2.47)where F (q,Q, t) is a generating funtion. By de�nition,

dF (q,Q, t) = p dq − P dQ+ (K −H)dt (2.48)
p =

∂F

∂q
, P =

∂F

∂Q
, K = H +

∂F

∂t
. (2.49)Under a gauge transformation7, the orresponding Poinaré�Cartan (P�C) form p dq −H dt = Aµdx

µ transforms as:
Aµ dx

µ 7→ Aµ dx
µ + dS (2.55)so any gauge transformation adds to the P�C form the total di�erential ofsome salar S(x).as

Z
Ldλ =

Z
Aµ

dxµ

dλ
dλ 7→

Z
Ldλ+ S . (2.45)The variational priniple give magneti �eld line equations due to the minimization of theAtion:

0 = δ

Z
Ldλ 7→ δ

Z
Ldλ+ δS = 0 (2.46)where δS = 0 due to the vanishing variation of the position at the boundaries. It istherefore evident that the magneti �eld line �ow does not hange under gauge transfor-mations. And this is obviously true also for the Hamiltonian form γµdz

µ = p dq−H dt of amehanial system, proving that Hamiltonian �ows are independent, not just of anonialtransformations, but also of gauge transformations. The notation γµdz
µ = p dq − H dt,similar to Aµdxµ, is de�ned for mehanial systems in setion 2.5.16For a de�nition of anonial transformations and their generating funtions see [46℄.7By de�nition,

Aµ dx
µ 7→ Aµ dx

µ + dS (2.50)Using the gauge A1 = 0 and the identi�ations (2.36)�(2.40), under a gauge transforma-tion:
p 7→ p′ = p+

∂S

∂q
(2.51)

H 7→ H ′ = H − ∂S

∂t
(2.52)remembering that x2 = q, x3 = t and

A2 = p , A′
2 = p′ (2.53)

−A3 = H , −A′
3 = H ′ (2.54)The generating funtion S of the gauge transformation must be S(x) = S(x1, q, t). In-verting the relation p = A2(x1, q, t) one an think to S ≡ S(p, q, t).41



Hamiltonian mehanisLet us apply the same gauge transformation de�ned by the funtion
S(x, y, t) of the two variables (x, y) parametrized by t, before and after theanonial transformation (2.47). This means performing the gauge transfor-mation in the (p, q) oordinate with S(p, q, t) and the gauge transformationin the (P,Q) oordinate with S(P,Q, t):

p dq −H dt+ dS = P dQ−K dt+ dF + dS (2.56)where F ≡ F (q,Q, t).Now assume that the anonial transformation and the subsequent gaugetransformation are onneted by ondition [50℄
F (q,Q, t) + S[P (q,Q, t), Q, t] = 0 (2.57)where P (q,Q, t) is de�ned by equation 2.49. Then we �nd
p dq −H dt+ dS = P dQ−K dt . (2.58)This means that S[P (q,Q, t), Q, t] is the generating funtion of the reiproalanonial transformation

(P,Q) 7→ (p, q) (2.59)
K 7→ H (2.60)By equation (2.57) we an therefore read any gauge transformation as aanonial one, and vie versa.There are many gauges for the vetor potential A, but magneti �led linesare intrinsi objets in the physial spae, that do not depend on the oordi-nate system. In the same way, there are many hoies of anonial variables

(p,q) and orrespondingly of Hamiltonian H(p,q, t), but the Hamiltonian�ow is an intrinsi objet in phase spae. This is due to the way the Poinaré-Cartan integral invariant aommodates gauge or anonial transformations.2.5 Symmetries and Noether theorem2.5.1 Equivalene between the variational priniples for mag-neti �eld lines and for Hamiltonian mehanisIn order to be able to write also the variational priniple for the dynamis inphase spae in general oordinates, we need to go through some hanges inthe notation. This will allow to use a formally idential statement of Noethertheorem for magneti �eld lines systems in physial spae and for dynamialsystems in phase spae. We follow Cary and Littlejohn [48℄.42



2.5 Symmetries and Noether theoremLet zi and γi be olletions of 2N oordinates, de�ned in a 2N−dimensionalspae as:
zi ≡ (q1, ..., qN , p1, ..., pN ) ≡ (qj , pj) , i = 1, ..., 2N (j = 1, ..., N)(2.61)
γi ≡ (p1, ..., pN , 0, ..., 0︸ ︷︷ ︸

j+N

) ≡ (pj , 0) , i = 1, ..., 2N (j = 1, ..., N) .(2.62)In a similar way we de�ne the (2N + 1) omponents zµ and γµ of vetors inthe (2N + 1) dimensional `extended phase spae':
zµ ≡ (t, q1, ..., qN , p1, ..., pN ) ≡ (t, qj , pj) , µ = 0, ..., 2N (j = 1, ..., N)(2.63)
γµ ≡ (−H, p1, ..., pN , 0, ..., 0︸ ︷︷ ︸

j+N

) ≡ (−h, pj , 0) , µ = 0, ..., 2N (j = 1, ..., N) .(2.64)Note that zi and zµ are the de�nitions of the anonial oordinates in the
2N dimensional phase spae and in the 2N + 1 dimensional extended phasespae respetively. The Hamiltonian H(p,q, t) is nothing but −γ0.We are now able to re�write the stationary ation priniple (2.28) in generaloordinates, remembering that H ≡ H(p,q, t):

0 = δ

∫ t1

t0

dt
[
p · dq

dt
−H(p,q, t)

] (2.65)
= δ

∫ t1

t0

dt
[
γi
dzi

dt
−H

] (2.66)
= δ

∫ t1

t0

dt γµ
dzµ

dt
(2.67)Equation (2.66) is the variational priniple written in the (zi, γi) anonialvariables and true in the 2N−dimensional phase spae; equation (2.67) isthe variational priniple written in the (zµ, γµ) anonial variables and truein the (2N + 1)−dimensional extended phase spae.Moreover, the γµdzµ term is a salar8, and it must be γµdzµ = ΓµdZ
µ forany hange of oordinates9 zµ 7→ Zµ. It allows to write

0 = δ

∫ t1

t0

dt
(
γµ

dzµ

dt

)
= δ

∫ t1

t0

dt
(
Γµ

dZµ

dt

)
≡ δ

∫
Γµ dZ

µ (2.68)This is the variational priniple valid in the extended phase spae for anykind of oordinates Zµ, and we an therefore see that the variational prini-ple (2.67) derived for anonial variables has the same form in any oordinate8We remind the Einstein onvention to sum over repeated indies.9Under the hange of oordinates zµ 7→ Zµ, γµ transforms with the general rules forthe omponent of ovariant vetors: γµ 7→ γν ∂z
ν/∂Zµ43



Hamiltonian mehanissystem.This is what we were looking for, as we an see omparing the variationalpriniples for magneti �eld lines and Hamiltonian �ow: equation (2.68) and(2.26) are now formally idential.This shows that magneti �eld lines in physial spae are analogous to the�ow of a dynamial system in the extended phase spae (2N+1)−dimensional.This means that the problem of �nding magneti �led lines in 3−dimensionalphysial spaes is equivalent to solve the dynamial problem for a systemwith N = 1 degree of freedom. From now on we an use the Hamiltonianformalism also for magneti problems without onfusion.2.5.2 A ommon statement for Noether theoremThere are many statements of the Noether theorem, that essentially asso-iates any symmetry of a system with a onstant of the motion10. We usehere, and we don't prove it, the Noether theorem for the Poinarè�Cartanform γ ≡ γµ dx
µ or Aµ dxµ, following [48℄ and using the result of setion2.5.1. If the omponents γµ (Aµ) of the Poinaré�Cartan form are indepen-dent of one of the oordinates, say zα (xα), then the quantity γα (Aα) is aninvariant of the �ow ∂zµ/∂t (∂xµ/∂λ).11 The oordinate zα (xα) is said ig-norable oordinate, and we an always �nd an appropriate frame of referene(gauge) that reveals the symmetry of the system.Let us write this in an expliit way, in the general oordinates xµ =

(x1, x2, x3), hoosing the third oordinate x3 as an ignorable oordinate.This means the omponents of the form Aµ dx
µ are independent of x3: Ai ≡

Ai(x
1, x2) for every i = 1, 2, 3:
Aµ dx

µ = A1(x
1, x2) dx1 +A2(x

1, x2) dx2 +A3(x
1, x2) dx3 . (2.70)Noether theorem states that the quantity A3(x

1, x2) is a onstant of the mo-tion, onserved by the �ow.Choosing for the ignorable oordinate the oordinate z0 = t (α = 0), fromthe previous statement, the onservation of the Hamiltonian H = − γ0 for10Considering the phase spae Lagrangian L(q, q̇, t) (instead of the Hamiltonian
H(p,q, t)) one an prove Noether theorem using Euler�Lagrange equations:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (2.69)When an ignorable oordinate exists for the Lagrangian (let us say the oordinate qi,

∂L/∂qi = 0), then the symmetry orresponds to a translation in q (∂L/∂q̇i = const)and (Noether theorem) there exists a onstant of the motion ((d/dt)(∂L/∂q̇i) = 0). Byde�nition pi ≡ ∂L/∂q̇i, and Noether thorem is true also in phase spae using H(p,q, t)and forgetting about the Lagrangian L.11One an �nd this statement of Noether theorem in [48℄.44



2.5 Symmetries and Noether theoremtime independent systems follows. One an always think of the Hamilto-nian �ow itself as a time independent anonial transformation: going bakto the previous example, we an then think of x3 as the anonial time tand of A3(x
1, x2) as the onserved Hamiltonian (for the Hamiltonian systemassoiated to A):

H = −A3(x
1, x2) ≡ ψ(x1, x2) = const . (2.71)In the ontext of Hamiltonian mehanis, H(p, q) ≡ E = const de�nesthe onstant energy surfaes in phase spae, and a periodi motion whenthe E−ontours are losed urves. The surfaes de�ned by H = −A3 =

ψ(x1, x2) = const are the �ux surfaes of the integrable magneti systemassoiated to A, where the �eld line �ow lies.Let us note that in the ontext of fusion mahines this implies a on�ned�eld line �ow when the ψ−ontours are losed in some region of interest. Atypial example are the nested toroidal �ux surfaes in the Tokamak due tothe toroidal symmetry of the mahine (in our notation, x3 ≡ ϕ is used asthe anonial time in this ase).We saw from the examples in setion 2.3 that some freedom an arise inthe hoie of the anonial momentum and of the Hamiltonian when we lookfor the anonial variables in a magneti system: the anonial momentumand the Hamiltonian an always exhange their role if the hosen oordinatesdo not reveal any symmetry. We saw in this setion that the Hamiltonian ofa system with one degree of freedom is univoally determined if a symmetryis evident, whih eliminates the freedom also in the hoie of the anonialmomentum. The ignorable oordinate is therefore interpreted as the anon-ial time12.We go bak to the examples of setion 2.3 beause we an now re�write themwithout any freedom in the identi�ation of the anonial variables. We keepon using the general oordinates xµ = (x1, x2, x3), keeping in mind that onean for example use (x1, x2, x3) as the ylindrial (R, z, ϕ) or toroidal (r, θ, ϕ)oordinates. We hoose x3 as anonial time t (the ignorable oordinate) andstart from (2.70) and (2.71), with Ai = Ai(x
1, x2):

Aµ dx
µ = A1(x

1, x2) dx1 +A2(x
1, x2) dx2 +A3(x

1, x2) dx3 (2.72)
= p dq − H dt (2.73)

t = x3 (2.74)
H = −A3(x

1, x2) (2.75)12We will see that not all the symmetries de�ne good anonial time, beause thesymmetry do not guarantee any magneti �eld line to be fully parametrized by a timerunning from −∞ to +∞. An example of that is the toroidal angle in RFP devies,thatreverses at the edge. We will �nd some solution for this in hapter 4.45



Hamiltonian mehanisIn order to identify also the anonial variable (p, q) we need now to hoosethe axial gauge. Choosing the gauge A1 = 0, (2.72) simply redues to:
Aµ dx

µ = A2(x
1, x2) dx2 +A3(x

1, x2) dx3 (2.76)
= p dq − H dt (2.77)and therefore

q = x2 (2.78)
p = A2(x

1, x2) (2.79)The Hamiltonian must be funtion of the anonial variables, and not ofthe general oordinates xµ. This is done inverting (at least loally) relation(2.79).As we an see, we an divide the example in two parts: �rst we must �nd theignorable oordinate to hoose the anonial time and the Hamiltonian of thesystem, and then we must impose an axial gauge to identify the anonialvariable (p, q).To onlude, let us note also that inverting relation (2.71) one an write the�rst oordinate x1 = x1(H,x2), whih means that one an always hoose theHamiltonian as the �rst oordinate by inverting this relation. In the ase ofmagneti �ux surfaes the Hamiltonian an be used to label them. Then Hwill be alled radial oordinate. In general, any funtion of the Hamiltonianonly an be used to label magneti �ux surfaes, and we will use the generalsymbol ρ to indiate any of these radial funtions13.2.6 Ation�Angle variablesHamiltonian systems with one degree of freedom and a time independentHamiltonian (H ≡ H(p, q)) are always integrable and H(p, q) = E = constde�nes the onstant energy surfaes in phase spae. In magneti systems wean say this in an equivalent way: the �eld line �ow lies on magneti �uxsurfaes.When this is true, one an always �nd a anonial transformation (p, q) 7→
(P,Q) suh that the new Hamiltonian is a funtion only of the new momenta,
H = H(P ): the position variable Q is a ignorable oordinate in this frameof referene, and the momentum P is a onstant of the motion beause ofNoether theorem.In the ase of bounded energy surfaes in phase spae (or losed magneti�ux surfaes14) the motion is periodi in time and the new (P,Q) ≡ (I, ζ)anonial variables are alled Ation�Angle oordinates. By de�nition13We use the same symbol ρ for every surfae, even if in a rigorous way one shoulddistinguish between di�erent topologial orbits in the ase of magneti island.14We will always use the word losed in its physial meaning, as magneti �ux surfaeslosing on themselves, and not in its topologial de�nition.46



2.6 Ation�Angle variables
Figure 2.2: The Ation�Angle anonial transformation for one degree offreedom periodi system in phase spae. Reprodued from Hervieux lessonson internet. In this �gure Angle θ orresponds to Angle ζ in the text.

Figure 2.3: The Ation�Angle anonial transformation of the area of abounded energy surfaes for one degree of freedom periodi system in phasespae. Reprodued from Hervieux lessons on internet. In this �gure Angle
θ orresponds to Angle ζ in the text.Ation�Angle oordinates are therefore de�ned by I(E) = const and by anangle ζ that varies by 2π along any orbit of onstant energy E. Areas arepreserved by anonial transformations, and we an use this to �nd a simplede�nition for the Ation I. Say A(E) the area inside the orbit with onstantenergy E 15,

A(E) =

∮
p(q, E) dq =

∮
I(E) dζ ≡

∫ 2π

0
I(E) dζ = 2π I(E) (2.81)from whih16

I(E) =
A(E)

2π
=

1

2π

∮
p(q, E) dq (2.82)15Beause of Stokes theorem written for di�erential forms,

A(E) =

ZZ
dp dq =

I
p dq . (2.80)16Again, p ≡ p(q,H) inverting the relation H = H(p, q) , H = const.47



Hamiltonian mehanisIn order to de�ne the Angle we go bak to the idea of (time independent)anonial transformation
p dq − H dt 7→ I dζ − H(I) dt (2.83)and we use the generating funtion of type F2 ≡ F2(q, I):

F2(q, I) =

∫
p(q, I) dq (2.84)The transformation rules are

p(q, I) =
∂F2

∂q
=

∫ q

q0

∂p

∂q
(q, I) dq (2.85)

ζ(q, I) =
∂F2

∂I
=

∫ q

q0

∂p

∂I
(q, I) dq . (2.86)Equation of motion are now very simple:

dI

dt
= − ∂H

∂ζ
= 0 (2.87)

dζ

dt
=
∂H

∂I
= ω(I) = const . (2.88)The Ation is onstant along any orbit of onstant energy E. The Angle ζevolves linearly in time with a frequeny ω(I) and varies by 2π along anyorbit of onstant energy E: over one period

∆F2 =

∮
dq
∂F2

∂q
=

∮
p dq = 2π I (2.89)

=⇒ ∆ζ =
∆F2

∆I
= 2π (2.90)2.6.1 Ation�Angle oordinates for magneti systemsWe an use all the results of Hamiltonian mehanis for magneti �eld linesystems: we simply re�write the previous results in an expliit way for thesesystems, where the analogues of bounded onstant energy surfaes in phasespae are the losed magneti �ux surfaes.We use the symmetry of the system to �nd out the anonial time and theHamiltonian, and the hoie of an axial gauge to identify also the anonialvariables (p, q): using again the general oordinates xµ = (x1, x2, x3) and theframe of referene where a symmetry with respet to the ignorable oordinate

x3 is manifest, together with the hoie A1 = 0, we have already found48



2.6 Ation�Angle variablesequations (2.71), (2.74), (2.78), (2.79):17
t = x3 (2.91)
q = x2 (2.92)
p = A2(x

1, x2) (2.93)
H = −A3(x

1, x2) = ψ(x1, x2) = const (2.94)From here we an easily apply eq.(2.82), (2.84), (2.86) to de�ne the Ation�Angle oordinate on ψ = const surfaes18:
I(ψ) =

1

2π

∮
p(ψ, q) dq ≡ 1

2π

∮
A2(ψ, x

2) dx2 (2.95)
F2(x

2, I) =

∫ q

q0

p(I, q) dq ≡
∫ x2

x2
0

A2(I, x
2) dx2 (2.96)

ζ(x2, I) =
∂F2

∂I
≡
∫ x2

x2
0

∂A2

∂I
(I, x2) dx2 (2.97)Equations (2.87)�(2.88) of the motion in the (I, ζ)−plane are the equationfor the magneti �eld lines:

dI

dx3
= 0 (2.98)

dζ

dx3
= ω(I) =

dH

dI
=
dψ

dI
(2.99)To ompute Ation�Angle oordinates we go through a anonial hangeof oordinates, as written in eq.(2.83). Let us see how the general xµ =

(x1, x2, x3) oordinates and the identi�ation with the anonial variableshange aordingly to this. From the identi�ations (2.91)�(2.94) it is learthat, with the hange (p, q) 7→ (P,Q) in eq.(2.83), we are hanging just theseond oordinate (x2 = q), that must be now identi�ed with the Angle ζ(x2 7→ ζ). As a onsequene, the ovariant omponent A2 = p of the vetorpotential hanges, being identi�ed with the new momentum, the Ation I(A2 7→ I). The time x3 and the �rst oordinate x1 (due to the gauge A1 = 0)are unhanged, and so is true also for the Hamiltonian:
(x1, x2, x3) 7→ (x1, ζ, x3)The only thing more that we an do is to perform the inversion of the funtion

H = ψ(x1, x2) to be able to write x1 = x1(ψ, x2) and therefore to hoose theHamiltonian as the radial oordinate that labels the magneti �ux surfaes,17In these equations we need to invert p = A2(x
1, x2) to obtain x1 = x1(p, x2) andtherefore H = H(p, q).18We need to invert also H(x1, x2) = ψ(x1, x2) to obtain A2 = A2(ψ, x

2), and thefuntion I = I(ψ) to obtain A2(I, x
2). 49



Hamiltonian mehanisinstead of x1. Working with Ation�Angle oordinates we an therefore usethe Ation�Angle oordinate system:19
(x1, x2, x3) 7→ (I, ζ, x3)The identi�ation with anonial variables (P,Q) = (I, ζ) therefore gives:

t = x3 (2.100)
Q = ζ (2.101)
P = Aζ = I(ψ) (2.102)
H = −A3(I) = ψ(I) = const (2.103)Going bak to equation (2.99) we an see that magneti �eld lines writ-ten in Ation�Angle oordinates are straight lines in the (ζ, I)−plane. Inmagneti �led line ontext, the (onstant) frequeny is alled the rotationaltransform and it is indiated with ι. Usually the Ation�Angle oordinatesare named magneti or �ux or straight��eld�line oordinates. In the pres-ene of an MHD equilibrium another anonial transformation an bring toBoozer or Hamada magneti oordinates, [51℄.2.7 Intuitive physial approahIt is possible to derive the whole Hamiltonian mehanis from the Stokestheorem, and from its generalization using di�erential p�forms when dealingwith N > 1 systems [46℄. For N = 1 degree of freedom the Stokes theoremstates the equivalene between a irulation and a �ux:
∮

l
A · dl =

∫

Σ
(∇×A) · dΣ (2.104)where Σ is any surfaes having the oriented iruit l as a boundary. If Ais the vetor potential, the irulation of A along l immediately implies the�ux of the magneti �eld B = ∇ ×A through Σ. Using this, one an �ndthe relations between ovariant omponents20 of the vetor potential andmagneti �uxes in fusion devies.Thinking of toroidal fusion devies we prove the relation between the Aiomponents and the magneti �uxes. We use general toroidal oordinates,where θ is the poloidal angle and ϕ the toroidal one. We are going to usea di�erene between r and ρ in our notation: the radial oordinate r is not19Where t = x3, and the funtion ψ = ψ(I) that an be inverted to write ρ = I(ψ)20We write the ovariant omponents of A in several oordinate systems, where H = ψis the Hamiltonian, and ρ = f(ψ) any radial funtion that labels magneti �ux surfaes(e.g. ρ = I(ψ) or ρ = ψ(I) for Ation�Angle oordinates). By de�nition:

A = Ai∇xi50



2.7 Intuitive physial approahneessarily onstant on magneti �ux surfaes, as is ρ using our de�nition(see the end of setion 2.5).To de�ne a �ux one needs to de�ne the surfae through whih the �ux is om-puted. Usually the poloidal and toroidal magneti �uxes are thought as the�uxes of the magneti �eld B through a magneti �ux surfae (ρ = const)at the angles θ = const and ϕ = const respetively. Let us now use a moregeneral de�nition even of the poloidal and toroidal �uxes, using the symbols
ψP and ψT (and also the names poloidal and toroidal) for the �uxes arosssome surfae Σ (to be spei�ed) at the angles θ = const and ϕ = constrespetively. This allows to assoiate the magneti �uxes to the ovariantomponents of the vetor potential A (see setion 2.7.1).The physial interpretation of the �uxes depends therefore on the surfae
Σ. Let us tell in advaned that one goes bak to the lassial de�nitionof ψP and ψT as �uxes aross magneti �ux surfaes at θ = const and
ϕ = const respetively when Σ = Σ(ρ), therefore using Ation�Angle oor-dinates. But let us show the de�nitions of these �uxes for di�erent hoiesof the surfae Σ: when no symmetry is evident in the system and there-fore no �ux surfaes an be found21, the funtions ψP (r, θ, ϕ) and ψT (r, θ, ϕ)measure the poloidal and toroidal �uxes aross the Σ = ψP (r, θ, ϕ) = constand Σ = ψT (r, θ, ϕ) = const surfaes respetively. And even in the pres-ene of �ux surfaes (H = −Aϕ(r, θ) = ψ(r, θ) = const), working withnon�Ation�Angle oordinates, the funtions ψP (r, θ) and ψT (r, θ) are notneessarily onstant over �ux surfaes, and they measure the poloidal andtoroidal �uxes aross the Σ = ψP (r, θ) = const and Σ = ψT (r, θ) = constsurfaes respetively22. The �uxes have therefore a lear physial interpre-tation only whenever there are well de�ned �ux surfaes and Ation�Angleoordinates are used (H(ρ) = −Aϕ(ρ) = ψ(ρ) = const): ψP = ψP (ρ) and
ψT = ψT (ρ) are �ux funtions that measure the poloidal and toroidal �uxesenlosed by the �ux surfae Σ(I) = ψ(I) = const.therefore:

Ai∇xi =

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

A1 ∇x1 +A2 ∇x2 +A3 ∇x3 with xµ = (x1, x2, x3)any general oordinates
Aρ∇ρ+Aζ ∇ζ +A3 ∇x3 = with xµ = (ρ, ζ, x3)
= Aρ∇ρ+ I∇ζ +A3 ∇x3Ation�Angle oordinates
Ar∇r +Aθ∇θ +Aϕ∇ϕ with xµ = (r, θ, ϕ)general toroidal oordinates
Aρ∇ρ+Aθ∇θ +Aϕ∇ϕ with xµ = (ρ, θ, ϕ)general toroidal oordinates
...21Equivalent to onstant energy surfaes.22Choosing a symmetry with respet to the toroidal angle ϕ = x351



Hamiltonian mehanisWe always onsider the poloidal and toroidal �ux between the magnetiaxis and the surfae Σ. It is worth noting the di�erene betwee the poloidal�ux in �g.2.4 b) and �g.2.4 ): we always refer to the ase b) when notdi�erently spei�ed.For �xed magneti �ux surfaes, the spatial hanges of the poloidal �ux sat-isfy the relation: ∇ψrP = −∇ψdP (we use the symbols ψrP or simply ψP for thepoloidal �ux aross Srpol and ψdP for the poloidal �ux aross Sdpol in �g.2.4),[51℄.We now prove all this and more.
Figure 2.4: Reprodued from [51℄, pag.77. Cross setions through whih themagneti �uxes haraterizing a magneti �ux surfae are de�ned. (a): The�eld lines interseting Stor determine the toroidal �ux within a �ux surfae.(b): Srpol is a ribbon bounded by the magneti axis and the �ux surfae. It'ontains' the poloidal (ribbon) �ux whih resides inside the �ux surfae. ():
Sdpol is a disk touhing the magneti surfae. It piks up the poloidal (disk)�ux outside the �ux surfae. The angle ζ in this �gure is unfortunately whatwe all the toroidal angle ϕ in the text (not to be onfused with the Angle
ζ onjugated to the Ation in the text).
2.7.1 The more general aseWe �rst prove the more general ase, for the general oordinates xµ =
(x1, x2, x3) in the gauge A1 = 0, whih is that:The omponent A2 is a measure (up to 2π) of the �ux aross the surfaede�ned by A2 = const at x3 = const.The omponent A3 is a measure (up to 2π) of the �ux aross the surfaede�ned by A3 = const at x2 = const.In a toroidal system, one an think of x2 and x3 as angle oordinates.52



2.7 Intuitive physial approahLet us prove it. Writing ψ(i) the magneti �ux aross a surfae Σ at theangle xi = const (therefore with i = 2, 3), we an write
ψ(i) =

∫

Σ(i)
B · dΣ(i) =

∫

Σ(i)
(∇×A) · dΣ(i) =

∮

∂Σ(i)
A · dl(2.105)

=

∮

∂Σ(i)
Aj dx

j =

∮

∂Σ(i)
Aj(x

1, x2, x3) dxj (2.106)
= Aj(x

1, x2, x3)

∮

∂Σ(i)
dxj (2.107)

= 2π Aj(x
1, x2, x3) (2.108)where, by de�nition, dΣ(i) =

√
g∇xi dxj dxk is the in�nitesimal element ofa surfae Σ at the angle xi = const and dl(i) = dxi ei. A line integral isperformed along a urve, whih means that one of the three oordinates isvaried while two are held onstant (Appendixes of [12, 52℄).We use the de�nition of the magneti �uxes, the de�nition of the magneti�eld through the vetor potential and Stokes theorem in the �rst line (2.105).Beause the xi oordinate is onstant (hypothesis) and of the hosen axialgauge A1 = 0, A · dl = Aj dx

j in (2.106), without summation over j.Thinking of xj as an angle de�ned with respet to the magneti axis of thesystem23, its irulation in eq.(2.107) is equal to 2π.But eq.(2.107) is true only if we are onsidering Aj(x1, x2, x3) = const, and
ψ(i) turns out to be the �ux aross the surfae Σ = Aj(x) at xi = const.This ends the prof of the general ase.2.7.2 Two examples in toroidal geometryLet us see some spei� examples in toroidal geometry.Using Ation�Angle oordinates xµ = (ρ, ζ, ϕ).
ψ(I) = const �ux surfaes and ϕ ignorable oordinate.

ψT =

∫

Σ(ϕ)
B · dΣ(ϕ) =

∫

Σ(ϕ)
(∇×A) · dΣ =

∮

∂Σ(ϕ)
A · dl(2.109)

=

∫ 2π

0
Aζ(I) dζ =

∫ 2π

0
I(ψ)dζ (2.110)

= 2π Aζ = 2π I(ψ) (2.111)
≡ ψT (I) ≡ ψT (ρ) (2.112)Here we used the de�nition of the toroidal �ux, the de�nition of the magneti�eld and Stokes theorem in the �rst line. The symbol Σ(ϕ) de�nes the sur-23When xi = x2 then xj = x3, and vie versa.53



Hamiltonian mehanisfaes at ϕ = const.24 Beause of the onstany of the toroidal angle ϕ and ofthe hoie A1 = Aρ = 0 for the axial gauge, we obtain the �rst relation of theseond line, where we use also the identi�ation of Aζ with the momentumof the system in A�A oordinates, that is the Ation I, eq.(2.102).In the same way,
ψdP =

∫

Σ(ζ)
B · dΣ(ζ) =

∫

Σ(ζ)
(∇×A) · dΣ =

∮

∂Σ(ζ)
A · dl (2.113)

=

∫ 2π

0
Aϕ(I) dϕ = −

∫ 2π

0
ψ(I) dϕ (2.114)

= 2πAϕ = − 2π ψ(I) (2.115)
≡ ψdP (I) ≡ ψdP (ρ) (2.116)Now the symbol Σ(ζ) de�nes the surfaes at ζ = const25 and we use therelation (2.103). This is alled poloidal �ux, imagine the Angle ζ in generalas a straight poloidal�like angle.Important is to note that the irulation in dϕ, at the ζ = const angle,de�nes the surfae named Sdpol in �g.2.4), therefore this is the poloidal �uxoutside the �ux surfae (�g.2.4 ).Summarizing , in A�A oordinates xµ = (ρ, ζ, ϕ) :
ψT (I) = 2π I(ψ) = 2π Aζ(I) ≡ 2πA2(I) (2.117)
ψdP (I) = − 2π ψ(I) = 2πAϕ(I) ≡ 2πA3(I) (2.118)one an onlude that the Ation I itself is a measure of the toroidal �uxthrough magneti surfaes, that orresponds also to the ovariant ompo-nent Aζ assoiated to the Angle ζ (up to 2π). Also the poloidal �ux is a �uxthrough magneti �ux surfaes, for whih a measure is given by the Hamilto-nian ψ, orresponding to −Aϕ(I). Both the poloidal and the toroidal �uxesare �ux funtions (are onstant on �ux surfaes), and it is always possibleto hoose one of them as a label for magneti �ux surfaes: ρ = ψP (ψT ) orvie versa.Using non-Ation�Angle oordinates xµ = (r, θ, ϕ).24Using general oordinates theory for the oordinates xµ = (ψ, ζ, ϕ), the de�nition ofelementary surfaes elements is dΣ(ϕ) =

√
g∇ϕdψ dζ.25dΣ(ζ) =

√
g∇ζ dψ dϕ with xµ = (ψ, ζ, ϕ).54



2.7 Intuitive physial approah
ψ(r, θ) = const �ux surfaes and ϕ ignorable oordinate.

ψT =

∫

Σ(ϕ)
B · dΣ(ϕ) =

∫

Σ(ϕ)
(∇×A) · dΣ =

∮

∂Σ(ϕ)
A · dl(2.119)

=

∫ 2π

0
Aθ(r, θ) dθ (2.120)

= 2π Aθ(r, θ) (2.121)
≡ ψT (r, θ) (2.122)Eq. (2.121) an be true if and only if in eq.(2.120) we onsider the �uxthrough the surfae Aθ(r, θ) = const. Again the symbol Σ(ϕ) de�nes thesurfaes at ϕ = const and we use the axial gauge A1 = Ar = 0.

ψdP =

∫

Σ(θ)
B · dΣ(θ) =

∫

Σ(θ)
(∇×A) · dΣ =

∮

∂Σ(θ)
A · dl (2.123)

=

∫ 2π

0
Aϕ(r, θ) dϕ = −

∫ 2π

0
ψ(r, θ) dϕ (2.124)

= 2πAϕ(r, θ) = − 2π ψ(r, θ) (2.125)
≡ ψdP (r, θ) (2.126)The symbol Σ(θ) de�nes the surfaes at θ = const26. Remembering (2.71),we an write the equivalene in eq. (2.124). Again, (2.125) an be true ifand only if in eq.(2.124) we onsider the �ux through the surfae Aϕ(r, θ) =

const = −ψ(r, θ): the Hamiltonian of the system is a measure of the poloidal�ux aross the magneti surfaes even if we are not using Ation�Angle o-ordinates.Again, it is important to note that the irulation in dϕ, at the θ = constangle, de�nes the surfae named Sdpol in �g.2.4), therefore this is the poloidal�ux outside the �ux surfae (�g.2.4 ).Summarizing, in the general (r, θ, ϕ) toroidal oordinates where the �rstoordinate r it is not neessarily a label of �ux surfaes:
ψT (r, θ) = 2π Aθ(r, θ) ≡ 2πA2(r, θ) (2.127)
ψdP (r, θ) = − 2π ψ(r, θ) = 2πAϕ(r, θ) ≡ 2πA3(r, θ) (2.128)The Hamiltonian ψ(r, θ) is a measure of the poloidal �ux aross the ψ(r, θ) =

const surfaes that orrespond to the magneti �ux surfaes. The funtion
Aθ(r, θ) is a measure of the toroidal �ux aross the Aθ(r, θ) = const surfaes,that in general do not orrespond to the magneti surfaes.26dΣ(θ) =

√
g∇θ dr dϕ with xµ = (r, θ, ϕ).55



Hamiltonian mehanisIn both ases27, using general toroidal oordinates (r, θ, ϕ) and the axialgauge (A1 = Ar = 0), we found that the toroidal �ux (i. e. the �ux atonstant angle ϕ) is linked with the Aθ ovariant omponent of the vetorpotential. And in the same way the poloidal �ux (i. e. the �ux at onstantangle θ, but related to the �ux outside the �ux surfae, see �g.2.4 ) is linkedto Aϕ:
Ai∇xi = A(r, θ, ϕ) = ψT (r, θ)∇θ/2π + ψdP (r, θ)∇ϕ/2π (2.129)

= A(ρ, ζ, ϕ) = ψT (ρ)∇ζ/2π + ψdP (ρ)∇ϕ/2π (2.130)We onlude with some dimensional analysis, onsidering the magneti�elds B measured in Tesla [T ]: the magneti �uxes have the dimension of
[T m2] by de�nition, and the magneti potential A must have the dimen-sional of [T m] beause the irulation of A must be the �ux of B (Stokestheorem).Let us see that the ovariant omponents of the vetor potential have thedimension of the magneti �uxes. To do this we must onsider the proper-ties of urvilinear oordinates (see appendix B), where one always onsiderthe basis vetors not normalized and not dimensionless. In the ase of o-variant omponents the basis are the gradients of the oordinates, that havethe dimension of [m−1] for adimensional angular oordinates (as θ and ϕ intoroidal oordinates). Using the de�nition A = Ai∇xi, the omponents Airelated to angular oordinates must have the dimension of [T m2] in orderto obtain the orret dimension for A: the orret dimension of the �uxes!
2.8 The magneti �eld, B = ∇×A2.8.1 The anonial representation of BIn the general oordinates xµ = (x1, x2, x3),

A = A1∇x1 +A2∇x2 +A3∇x3 (2.131)
B = ∇A1 ×∇x1 +∇A2 ×∇x2 +∇A3 ×∇x3 (2.132)with Ai = Ai(x

1, x2, x3).In the general toroidal oordinates (x1, x2, x3) = (r, θ, ϕ), hoosing the gauge27(eq.(2.117)-(2.118) and (2.127)-(2.128))56



2.8 The magneti �eld, B = ∇×A

(A1 = Ar = 0), one an write the following equivalent equations:
A = A2∇x2 +A3∇x3 (2.133)

= Aθ∇θ +Aϕ∇ϕ (2.134)
= ψT ∇θ/2π + ψdP ∇ϕ/2π (2.135)

B = ∇A2 ×∇x2 +∇A3 ×∇x3 (2.136)
= ∇Aθ ×∇θ +∇Aϕ ×∇ϕ (2.137)
= ∇ψT ×∇θ/2π −∇ψP ×∇ϕ/2π (2.138)where Ai = Ai(r, θ, ϕ) with no symmetry in the system, Ai = Ai(r, θ) withsymmetry in ϕ, or Ai = Ai(ρ) using Ation�Angle oordinates (θ 7→ ζ) andthe funtion ρ to label the �ux surfaes. This is obviously true also for the�uxes ψP and ψT , remembering the identi�ation between the �uxes and Ai.The form (2.138) of the magneti �eld is alled the anonial representa-tion of B, obtained for the poloidal �ux ψP between the magneti axis andthe surfae Σ (for whih ∇ψrp = −∇ψdp , using ψrp for the poloidal �ux aross

Srpol and ψdp for the poloidal �ux aross Sdpol, see �g.2.4). Note therefore theminus sign in front of the Hamiltonian ψ = ψP . We all ψrP = ψP .Using the de�nition B = ∇ × A we an write also the ontravariant28omponents of the magneti �eld, using the de�nition of ross produt inthe general oordinates xµ = (x1, x2, x3), with the permutation (i, j, k) ofthe index (1, 2, 3):
√
g Bi =

∂Aj
∂xk

− ∂Ak
∂xj

(2.139)Following this formula:
√
g B1 =

∂A2

∂x3
− ∂A3

∂x2
, (i, j, k) = (1, 2, 3) (2.140)

√
g B2 =

∂A3

∂x1
− ∂A1

∂x3
, (i, j, k) = (2, 3, 1) (2.141)

√
g B3 =

∂A1

∂x2
− ∂A2

∂x1
, (i, j, k) = (3, 1, 2) (2.142)For the gauge A1 = 0:

B1 =
1√
g

(∂A2

∂x3
− ∂A3

∂x2

) (2.143)
B2 =

1√
g

∂A3

∂x1
(2.144)

B3 = − 1√
g

∂A2

∂x1
(2.145)28Up index. 57



Hamiltonian mehanisand for general toroidal oordinates (r, θ, ϕ), (A1 = Ar = 0):
Br =

1

2π

1√
g

(∂ψT
∂ϕ

− ∂ψP
∂θ

) (2.146)
Bθ =

1

2π

1√
g

∂ψP
∂r

(2.147)
Bϕ = − 1

2π

1√
g

∂ψT
∂r

(2.148)2.8.2 The ovariant representation of BThe form (2.138) of the magneti �eld is also alled ovariant representationof the magneti �eld, when the �uxes are labels of the �ux surfaes andtherefore Ation�Angle are used.Let us now �nd some important results of this hapter using just the mag-neti �eld B and forgetting about the vetor potential A. This is a moreommon way to treat the magneti �eld line problem, [12℄.We say in setion 2.5 that the surfaes de�ned by the onstany of theHamiltonian (eq.(2.71) for the time x3) are the �ux surfaes of the mag-neti system assoiated to A. Using the magneti �eld instead of the vetorpotential, we now prove that neessary ondition for the existene of �uxsurfaes is the existene of a funtion ρ for whih
B · ∇ρ = 0 . (2.149)We an all any funtion that an label the �ux surfaes with the symbol ρ,and we use it as the radial oordinate29.Neessary and su�ient ondition (in any system of one degree of freedom)is still the existene of one ignorable oordinate (the anonial time). Let ustherefore go bak to eq.(2.71), but using toroidal oordinates:

H = −Aϕ(r, θ) = ψ(r, θ) = const (2.150)and to eq.(2.128)
ψP (r, θ) = − 2πψ(r, θ) (2.151)in order to prove eq.(2.149): ϕ plays the role of the time, ψT = ψT (r, θ) andwe use ρ = H = ψP (r, θ) = 2π Aϕ(r, θ). From the relation (2.138) for theanonial representation of the magneti �eld,

B · ∇ρ = (∇ψT ×∇θ −∇ψP ×∇ϕ) · ∇ρ = (2.152)
= (∇ψT ×∇θ −∇ρ×∇ϕ) · ∇ρ = (2.153)
= ∇ψT ×∇θ · ∇ρ = (2.154)
= 0 (2.155)29It is worth noting that in haoti spaes, where magneti �ux surfaes are destroyed,relation 2.149 is still valid 58



2.8 The magneti �eld, B = ∇×Awhere, for the last step, we used the dependene on (r, θ) of the �uxes, so
∇ψT =

∂ψT
∂r
∇r +

∂ψT
∂θ
∇θ (2.156)

∇ρ =
∂ρ

∂r
∇r +

∂ρ

∂θ
∇θ (2.157)and, of ourse, the vanishing triple produt between two parallel vetors.At the end of setion 2.6 we say that in the ase of �ux surfaes it is pos-sible to look for Ation�Angle variables (ρ, ζ, ϕ) on these surfaes (onstantenergy surfaes), and that these oinide with straight��eld�line oordinates.In Ation�Angle oordinate the anonial representation of the magneti �eldis

B = ∇ψT (ρ)×∇ζ/2π −∇ψP (ρ)×∇ϕ/2π (2.158)where the �uxes ψP (ρ) and ψT (ρ) are the �ux funtions that measure thepoloidal and toroidal �uxes enlosed by the �ux surfae Σ(ρ), respetively,and ψ the Hamiltonian. Straight��eld�line oordinates an be found alsowithout the Hamiltonian mehanis theory (e.g. the Ation�Angle idea),but using a geometrial approah: eq. (2.158) is still valid, and is alledthe ovariant representation of the magneti �eld. Let us brie�y followW.D.D'haeseleer [51℄ to obtain this form.The anonial form (2.138) of B written for the generi angular oordinates
(θ, ϕ) on the �ux surfaes ρ = const,

B = ∇ψT ×∇θ/2π −∇ψP ×∇ϕ/2π (2.159)where the �uxes are funtion of all the oordinates (ρ, θ, ϕ), an also bewritten as
B = ∇ψT (ρ)×∇θ/2π −∇ψP (ρ)×∇ϕ/2π +∇ρ×∇ν(ρ, θ, ϕ) ,(2.160)where the �uxes are now funtion of the radial oordinate only, but now anew funtion30 ν(ρ, θ, ϕ) appears. To go bak to a anonial form equivalentto the Ation�Angle one (2.158) we need to perform a hange of variables inorder to eliminate ν: the hange of variables is simple, one the funtion νis known. It is su�ient to hange one of the two angles (θ or ϕ, leaving theother unhanged) following these rules:

θ 7→ θf = θ +
ν̃

ψ̇T
= θ + λT (ρ, θ, ϕ) ϕf = ϕ (2.161)or

ϕ 7→ ϕf = ϕ− ν̃

ψ̇P
= ϕ+ λP (ρ, θ, ϕ) θf = θ (2.162)30Clebsh funtion, [51℄ 59



Hamiltonian mehaniswhere ν̃(ρ, θ, ϕ) is the periodi part of the funtion ν and ψ̇ the radial deriva-tive of the �uxes. The unhanged angle an be onsidered the one that playsthe role of time.The new straight��eld�line oordinates (ρ, θf , ϕf ) are equivalent to the Ation�Angle oordinates (ρ, ζ, ϕ). Ation�Angle oordinates (where the Hamilto-nian is a funtion of the momentum only) or straight��eld�line oordinates(found by (2.161)�(2.162)) are not unique. One an always hoose the moreuseful ones going to one another with a anonial transformation or followingthese rules:
θf 7→ θF = θf + ψ̇P G(ρ, θf , ϕf ) (2.163)
ϕf 7→ ϕF = ϕf + ψ̇T G(ρ, θf , ϕf ) (2.164)where G is an arbitrary periodi funtion of the straight angles θf and ϕf .31Equations (2.146)-(2.148) for the ontravariant omponents of B an befound in this approah, where just the magneti �eld is onsidered togetherwith the magneti �uxes, using the de�nition of the ontravariant ompo-nents of a vetor32:

Bi = B · ∇xi (2.166)What is missing in this approah, with respet to (2.139), is the equivalenebetween the �uxes and the ovariant omponents of the vetor potential, andtherefore the intuitive physial interpretation of the Hamiltonian�magnetisystems.2.8.3 Magneti �eld line equationsEquation (2.14)
dx

dλ
= B(x) (2.167)is the de�nition for magneti �eld lines, where λ is a parameter that variesalong the magneti lines. To see that the equations for magneti �eld lines31The funtionG an be derived from a magneti di�erential equation when the Jaobianof the two straight �eld line systems are known:

2πB · ∇G =
1√
gF

− 1√
gf

(2.165)32From the anonial form of the magneti �eld alone, B = ∇ψT × ∇θ − ∇ψP × ∇ϕit easy to obtain equations (2.146)�(2.148). All the angular derivatives of the �uxes aresuppressed by the dot produt in the de�nition of ontravariant omponents of a �eld,
Bi = B · ∇xi, and only the terms (∂ψ/∂r)∇r are of some interest in the expansion of thegradient of the �uxes. In the toroidal (r, θ, ϕ) oordinates, the whole gradient of a �ux ψis ∇ψ = (∂ψ/∂r)∇r+ (∂ψ/∂θ)∇θ+ (∂ψ/∂ϕ)∇ϕ. To onlude one needs to use also thede�nition of the Jaobian of the same oordinate system, (1/

√
g) = ∇r ×∇θ · ∇ϕ.60



2.8 The magneti �eld, B = ∇×Aare equivalent to the anonial equation of motion, we need �rst to hoose oneof the �uxes as the radial variable. In partiular we need to hoose the �uxassoiated to the anonial momentum, in order to write the Hamiltonianas a funtion of (p, q, t): in the gauge A1 = 0 for t = x3 we know33 that theanonial momentum is the toroidal �ux, so ρ = ψT .In terms of the (ψT , θ, ϕ) oordinates, the equation of a �eld line reads34:
dψT
Bρ

=
dθ

Bθ
=
dϕ

Bϕ
(2.172)Therefore dθ/dϕ = Bθ/Bϕ and it is easy to prove that this is exatly oneof the anonial equations of motion:

dθ

dϕ
=
Bθ

Bϕ
⇐⇒ dq

dt
=
∂H

∂p
(2.173)The equivalene is immediate remembering35 eq.(2.146)�(2.148) that link theup omponents of the magneti �eld to the derivative of the �uxes in thegauge Ar = 0, and the anonial identi�ation valid in the same gauge onethe toroidal angle x3 = ϕ has been hosen as the anonial time.Analogously, for the seond anonial equation one needs to prove that:

dψT
dϕ

=
Bρ

Bϕ
⇐⇒ dp

dt
= −∂H

∂q
(2.174)where Bρ = B · ∇ψT and Bϕ = B · ∇ϕ. To prove this relation we follow analternative way, as an example: to �nd Bϕ = B · ∇ϕ we dot multiply theanonial equation (2.138) for B with ∇ϕ; and to �nd Bρ we dot multiplythe same equation with ∇ψT . The result is:

B · ∇ψT
B · ∇ϕ =

−(∇ψP ×∇ϕ) · ∇ψT
(∇ψT ×∇θ) · ∇ϕ

(2.175)In the hosen (ψT , θ, ϕ) oordinates, the poloidal �ux is ψP = ψP (ψT , θ, ϕ).Of its gradient, only the derivative of ψP with respet to the poloidal angle
θ survives in the triple produt of last equation, and this ends the proof withthe identi�ation t = ϕ, q = θ, p = ψT , H = ψP :

dψT
dϕ

=
B · ∇ψT
B · ∇ϕ = −∂ψP

∂θ
(2.176)33In the gauge A1 = 0 for t = x3:

t = ϕ (2.168)
q = θ (2.169)
p = Aθ = ψT (2.170)
H = −Aϕ = −ψP . (2.171)34Simply making the dot produt of eq.(2.167) with the gradients of the oordinates.35The same equations an be easily derived from the anonial form of the magneti�eld alone, B = ∇ψT ×∇θ−∇ψP ×∇ϕ, using the de�nition of ontravariant omponentsof a �eld, Bi = B · ∇xi. 61



Hamiltonian mehanis2.9 A resumptive example: the helial symmetryIn this example we onsider a plasma olumn with helial shape in a toroidalfusion devie.Starting from a toroidal system with oordinates (r, θ, ϕ), where θ is thepoloidal angle and ϕ the toroidal one, the helial angle u is de�ned by
u = θ − nϕ (2.177)where n is the toroidal periodiity of the helix. Having a system with helialsymmetry means that any �ux quantity in the plasma depends only on theoordinate (r, u). We therefore have at least two hanes to hoose a frameof referene where the helial symmetry in the torus is manifest: (r, u, θ) and

(r, u, ϕ). In the �rst one the ignorable oordinate that plays the role of timeis the angle θ, whereas in the seond one the anonial time is related to thetoroidal angle ϕ36.Beause of the reversal of the toroidal magneti �eld at the edge of RFPdevies, the anonial time ϕ in non monotoni, and therefore the moreommon hoie for RFPs is to hoose the poloidal angle θ as the time. Aswe will see in the ase of the helial RFP states, the SHAx states, even thepoloidal angle is not a good hoie, and we prefer to use the toroidal one inthe work of this thesis37.Let us hoose the (r, u, ϕ) oordinate system to summarize the results ofthis hapter in the example of helial symmetry (anonial time related to theignorable oordinate ϕ). We �rst �nd the identi�ation between magnetiand anonial variables, using Noether theorem and the hoie of the axialgauge Ar = 0 to identify the the Poinaré�Cartan form of the two systems:
Aµ dx

µ = γµ dz
µ = p dq − H dt (2.178)where Ai are the ovariant omponent of the vetor potential, xµ = (r, u, ϕ)and γµ, z

µ are de�ned in eq.(2.64). We �nd Ation�Angle variables as ineq.(2.95)�eq.(2.97). Then, we �nd the relations between Au(r, u) and thetoroidal �ux ψT (r, u), between Aϕ(r, u) and the helial �ux χ(r, u)38; and36In a torus a rigorous helial symmetry of magneti �ux surfaes does not exist. Thisis due to the toroidal oupling between modes with same toroidal mode number n and
∆m ± 1 in the poloidal mode number m: due to the toroidal geometry it is not possibleto have a single (m,n) mode in the plasma, and therefore a it is not possible to �nd �uxquantities that depend only on its heliity. More details are given in hapter 3�5. Butin the work of this thesis I neglet the ontribution of the (m,n) = (0, n), (2, n) to thedominant one (m,n) = (1, n): SHAx states are modelled as pure single heliity states,where the helial symmetry is taken as hypothesis, even in a toroidal geometry.37Other toroidal�like angles without reversal have also been found, that an be usedwhen the edge region must be taken into aount in a more aurate way. See setion4.2.438de�ned at onstant helial angle u 62



2.9 A resumptive example: the helial symmetrythe same for Ation�Angle oordinates: the relations between the Ation
Aζ(ρ) and the toroidal �ux ψT (ρ), and between the Hamiltonian Aϕ(ρ) andthe helial �ux χ(ρ). Let us begin.Given the ignorable oordinate x3 = ϕ, one knows that (eq.(2.70))

Aµ dx
µ = Ar(r, u) dr +Au(r, u) du+Aϕ(r, u) dϕ (2.179)is the Poinaré�Cartan form with Ai(r, u). From Noether theorem (eq.(2.71)):
H = −Aϕ(r, u) = ρ(r, u) = const (2.180)states the onservation of the Hamiltonian for time�independent systems,and (eq.(2.74)�(2.75))

t = ϕ (2.181)
H = −Aϕ(r, u) . (2.182)Just when one hooses the axial gauge it is possible to make the identi�ationalso with the (p, q) anonial variables. Choosing Ar = 0, (eq.(2.78)�(2.79)):

q = u (2.183)
p = Au(r, u) (2.184)The Hamiltonian must be a funtion of the anonial variables, and not ofthe general oordinates (r, u). One the identi�ation u = q has been found,one needs to invert at least loally the relation found for p to obtain r(p, u)(and therefore H(p, q)). Constant energy surfaes in dynamial systems or-respond to the magneti surfaes, labelled by the Hamiltonian: inverting therelation (2.182) to write r(H,u), one an use the Hamiltonian as the �rstoordinate to label the magneti �ux surfaes, eq.(2.180).On onserved �ux surfaes39 (ρ = const) one an look for Ation�Angle o-ordinates with a anonial hange of oordinates (p, q) 7→ (P,Q) = (I, ζ)in phase spae, whih orrespond to a hange of oordinate in the phys-ial spae of magneti �elds: (ρ, u, ϕ) 7→ (ρ, ζ, ϕ)40. Following eq.(2.95)�eq.(2.97), where equation (2.182) is inverted in order to obtain Au(ρ, u) andthen the funtion I(ρ) is inverted to obtain ρ(I) and therefore Au(I, u), oneobtains:

I(ρ) =
1

2π

∮
p dq ≡ 1

2π

∮
Au(ρ, u) du (2.185)

F2(u, I) =

∫ q

q0

p dq ≡
∫ u

u0

Au(I, u) du (2.186)
ζ(u, I) =

∂F2

∂I
≡
∫ u

u0

∂Au
∂I

(I, u) du (2.187)39Equivalent to bounded onstant energy surfaes in phase spae.40Instead of r we use the label of the magneti �ux surfaes ρ. As said one an alwaysmake this hoie ones the onserved Hamiltonian of the system is known.63



Hamiltonian mehanisfor the Ation I, the generating funtion F2 and the Angle ζ. The mainproperty of Ation�Angle oordinates is that the Hamiltonian is a funtionof the Ation I only, H = H(I), whih means that the Ation is a on-stant on �ux surfaes. The angle ζ is found using the generating funtion
F2(q,Q) = F2(q, I) and evolves linearly in time with a onstant frequenythat orrespond to the helial rotational transform.We go bak to the physial interpretation of the �uxes assoiated to theovariant omponents of the vetor potential for any oordinate system asfound in setion 2.7.41. Here we an say that:In the general (r, u, ϕ) oordinate system, with ϕ ignorable oordinate, forthe gauge Ar = 0:The omponent Au(r, u) is a measure (up to 2π) of the toroidal �ux arossthe surfae de�ned by Au(r, u) = const at the toroidal angle ϕ = const.The omponent Aϕ(r, u) is a measure (up to 2π) of the helial �ux arossthe surfae de�ned by Aϕ(r, u) = const at helial angle u = const:

ψT (r, u) = 2πAu(r, u) (2.188)
χ(r, u) = −2πAϕ(r, u) = −2πH (2.189)writing the symbol χ for the helial �ux. H = −Aϕ(r, u) = const are the�ux surfaes, but in general this is not true for Au(r, u) = const. Both the�uxes are label of the magneti �ux surfaes just in Ation�Angle oordinates

(ρ, ζ, ϕ). In these oordinates, with ϕ ignorable oordinate, ρ label of the�ux surfaes, for the gauge Aρ = 0:The omponent Aζ(ρ) = I(ρ) is a measure (up to 2π) of the toroidal �uxaross the surfae de�ned by Aζ(ρ) = I(ρ) = const at the toroidal angle
ϕ = const.The omponent Aϕ(ρ) is a measure (up to 2π) of the helial �ux aross thesurfae de�ned by Aϕ(ρ) = const at (straight) helial angle ζ = const:

ψT (ρ) = 2πI(ρ) = 2πAζ (2.190)
χ(ρ) = −2πAϕ(ρ) = −2πH(ρ) (2.191)The Angle ζ is still a helial angle, and the Hamiltonian H(ρ) = H(I) is thehelial �ux χ trough the �ux surfaes, as well as H(r, u).41From setion 2.7.1. In the general oordinates xµ = (x1, x2, x3) and for the gauge

A1 = 0:The omponent A2 is a measure (up to 2π) of the �ux aross the surfae de�ned by A2 =
const at x3 = const.The omponent A3 is a measure (up to − 2π) of the �ux aross the surfae de�ned by
A3 = const at x2 = const. 64



2.9 A resumptive example: the helial symmetryTherefore we an write
A(r, u, ϕ) = Au∇u+Aϕ∇ϕ = ψt(r, u)∇u− χ(r, u)∇ϕ (2.192)
A(ρ, ζ, ϕ) = Aζ ∇ζ +Aϕ∇ϕ = ψT (ρ)∇ζ − χ(ρ)∇ϕ (2.193)We write ψT (ρ) and ψt(r, u) to emphasize the di�erene between the twotoroidal �uxes: just the �rst one is a �ux through magneti �ux surfaes. Onthe other hand, the helial �ux is unhanged due to the (time�independent)anonial transformation that brings from (r, u, ϕ) to Ation�Angle vari-ables.The orresponding ontravariant representations of the magneti �eld is:

B(r, u, ϕ) = ∇Au ×∇u+∇Aϕ ×∇ϕ (2.194)
= ∇ψt(r, u)×∇u−∇χ(r, u)×∇ϕ (2.195)

B(ρ, ζ, ϕ) = ∇Aζ ×∇ζ +∇Aϕ ×∇ϕ (2.196)
= ∇ψT (ρ)×∇ζ −∇χ(ρ)×∇ϕ (2.197)The ontravariant omponents of the magneti �eld an be written followingequations (2.143)�(2.144), or using the de�nition of ontravariant indexes:

Bi = B · ∇xitogether with one of the (2.194)�(2.197). As useful example we write ex-pliitly just the ase orresponding to eq.(2.197), Ation�Angle oordinates
(ρ, ζ, ϕ) and the gauge Aρ = 0:

Bρ = 0 (2.198)
Bζ =

1√
g

∂χ

∂ρ
(2.199)

Bϕ =
1√
g

∂ψT
∂ρ

(2.200)
Bρ = B·∇ρ = 0 it is equivalent to (2.149), that de�nes ρ as label of magneti�ux surfaes, and an be prove here in the same way, but with ρ(r, u).To onlude we just want to emphasize that frequently we use the samesymbols to indiate di�erent quantities. As one must pay attention to themeaning of the �uxes in the di�erent frame of referene (in the text we allthem always in the same way, but for example ψT (r, u, ϕ) 6= ψT (ρ)), thesame is true for example for the Jaobian of the oordinate system, that we65



Hamiltonian mehanisalways all √g, but it is obviously di�erent in di�erent systems:42
1√
g

= ∇x1 · ∇x2 ×∇x3 for (x1, x2, x3) (2.205)2.10 A short example: the axisymmetri �eld B0In this short example we onsider only the axisymmetri equilibrium mag-neti �eld B0.The (r, θ, ϕ) oordinate system introdued in setion 3.1.1 are straight �eldline oordinates built on the irular �ux surfaes of B0. In this oordinatesystem the �uxes depend on the radial oordinate only (as must be in everyAtion�Angle oordinate system). Both the poloidal and toroidal angle anbe therefore used as the anonial time:
B0(r, θ, ϕ) = ∇ψT (r)×∇θ −∇ψP (r)×∇ϕ (2.206)and the assoiated anonial variables an be

t = ϕ (2.207)
H = −Aϕ = ψP (r) (2.208)
q = θ (2.209)
p = Aθ = ψT (r) (2.210)or
t = θ (2.211)
H = −Aθ = ψT (r) (2.212)
q = ϕ (2.213)
p = Aϕ = ψP (r) (2.214)The anonial time θ is always inreasing in the whole plasma volume and itis linked with a poloidal �ux that is monotoni. It is a better hoie for theanonial time in axisymmetri RFP equilibrium ompared to the toroidalangle that hanges its sign at the reversal. Due to the reversal of the toroidalomponent of the magneti �eld, the toroidal �ux ψT (r) in a non monotoni42Some examples:

1√
g

= ∇r · ∇θ ×∇ϕ for (r, θ, ϕ) (2.201)
= ∇r · ∇u×∇ϕ for (r, u, ϕ) (2.202)
= ∇ρ · ∇ζ ×∇ϕ for (ρ, ζ, ϕ) (2.203)
= ∇r · ∇u×∇θ for (r, u, θ) (2.204)66



2.10 A short example: the axisymmetri �eld B0funtion. The problem of a non monotoni Hamiltonian related to the time
θ is not really a problem, beause one an use any other �ux funtion asradial oordinate, for example the poloidal �ux ψP (r).
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Chapter 3
Mode eigenfuntionreonstrution
The goal of this hapter is to underline what one needs in order to apply thetheoretial results of hapter 2 to real data, and whih measurements areneessary. In partiular, following the paper of P. Zana and D. Terranova[53℄, we de�ne the toroidal oordinates (r, ϑ, ϕ) that are used to omputethe toroidal and poloidal �uxes from magneti measurements: going bak tohapter 2 it is easy to see that the toroidal oordinates and the ovariantomponents of the vetor potential A (that are nothing but the �uxes) arethe only quantities that one needs to know. This is true even in helial sym-metry (setion 2.9) where the helial angle u = θ−nϕ and the helial �ux χ(2.189) an be written as a omposition of the poloidal and toroidal anglesand �uxes.The starting point in the work of my thesis is the reonstrution of poloidaland toroidal �ux pro�les, and their ψm,nP and ψm,nT harmonis. I do not needto solve eq.(3.36)�(3.37), beause this is done by some ommon routines inRFX, written by the authors of [53℄ on the basis of their paper. I an there-fore read the �uxes and their harmonis from the outputs of these routines.I refer often to the (r, ϑ, ϕ) oordinate system, built on the Σ(r) �ux surfaesof B0, beause these are the oordinates on whih the �uxes are omputed(as explained in setion 3.1.1, appendix B.2.3 and referene [53℄).Let us summarize the ontent of this hapter more in detail.Due to the presene of tearing instabilities, whih break the axi�symmetry ofthe magneti �eld, we an think every quantity A inside the plasma (e.g. themagneti �eld B and the magneti �uxes) as omposed by an axi�symmetri69



Mode eigenfuntion reonstrutionpart A0 and a perturbation, usually Fourier deomposed as1:
A(r, θ, ϕ) = A0(r) +

∑

m,n

am,n(r) ei(mθ−nϕ) (3.1)
= A0(r) +

∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (3.2)using the generi toroidal oordinates (r, θ, ϕ) where r is the radius of theirular�ross�setion �ux surfaes of the axi�symmetri part of the mag-neti �eld, B0. A omplete reonstrution of tearing mode eigenfuntionsinside the whole plasma volume has been done in [53℄, where the magnetiperturbation is onsidered to be muh smaller omparing to B0 in orderto use a perturbative approah. The method solves a Newomb�like equa-tion, that arises from the fore�free fore�balane equation at the �rst orderin the perturbation, in a non�orthogonal and urvilinear oordinate systemthat well desribes the toroidal geometry of the problem. The solution ofNewomb's equation provides the harmonis ψm,nP and ψm,nT of the perturba-tion to the poloidal and toroidal �ux respetively and we therefore need therelation that links the magneti �uxes to the omponents of the magneti�eld to provide a omplete reonstrution of B in the plasma volume.First the urvilinear straight��eld�line oordinates (r, ϑ, ϕ) built on theirular �ux surfaes of B0 are introdued. This is done in setion 3.1.1,starting from the anonial representation of B0 (2.206) and following themethod in setion 2.8.2.In par 3.1.2 the whole axisymmetri equilibrium is de�ned, whih means thatwe write the equations for the di�erential shift ∆(r) of the �ux surfaes Σ(r)in toroidal symmetry, and for the �uxes ψP,0 and ψT,0 through Σ(r).The perturbation to B0, that deforms its irular �ux surfaes Σ(r), is intro-dued in setion 3.2. Using the same oordinate system (r, ϑ, ϕ) built for B0(now the �eld lines are not straight any more), one an write the �rst�orderfore�free fore�balane equation, together to Ampère's law. This gives asystem of Newomb�like equations for eah harmoni of the perturbationto the �uxes, ψm,nP and ψm,nT . These are oupled equations, in whih eahmode (m,n) is oupled with the (m± 1, n) mode: we all this toroidal ou-pling. The equations that must be solved for ψm,nP and ψm,nT are ordinarydi�erential equations (3.36)�(3.37), with boundary ondition from magnetimeasurements. We will �nd that the measure of the radial and toroidal mag-neti �eld at the edge are enough to solve the system.The toroidal oupling ats between modes with same n toroidal modenumber and ∆m = ±1 on the poloidal mode number, due to the urvilinear1See appendix C.1 for a disussion on omplex Fourier harmonis.Here and in the following the onvention of [53℄ on the sign of the resonant modes is used.70



3.1 Zero�th order equilibriummetris.The (r, ϑ, ϕ) are urvilinear oordinates, in order to take into aount thetoroidiity of the system. This arises from the shift term ∆(r), not negletedin the de�nition of the geometrial oordinates (eq.(3.4)), that de�nes theenter of the non�onentri irular �ux surfaes of B0. Due to this termthe metri tensor is not diagonal2, and the non�null non�diagonal terms(grϑ 6= 0) are what ouples the modes with same n mode and ∆m = ±1.The toroidal oupling an not be therefore seen in the diagonal ylindrialoordinates3, where the shift ∆(r) is negleted. Di�erently to these oordi-nates, working with urvilinear oordinates in general one must pay attentionto ovariant (down) and ontravariant (up) vetor omponents (see appendixB).We said that the solution of Newomb's equation provides the harmonis
ψm,nP and ψm,nT of the perturbation to the poloidal and toroidal �ux respe-tively, and we therefore need the relation that links the magneti �uxes tothe omponents of the magneti �eld. We use the anonial representationof B in the general toroidal oordinate system (r, ϑ, ϕ)

B = ∇ψT ×∇ϑ−∇ψP ×∇ϕ (3.3)and the formulas valid for both magneti (when onsidering the axi�symmetri�eld B0) or non�magneti oordinates (in the ase of a perturbed magneti�eld). ψP (r, ϑ, ϕ) and ψT (r, ϑ, ϕ) are the poloidal and toroidal �uxes re-spetively. In hapter 5 one an �nd the formulas for the ovariant andontravariant omponents of the magneti �eld, that involve the elements ofthe metri tensor. In partiular one an �nd the formulas for the omponentsof B in the ase of SHAx states, that are modelled as pure Single Heliity(SH) states.In the following setions one an �nd some details on how the Newomb�like equations in toroidal geometry for the harmonis of the �uxes are ob-tained. But one must read [53℄ for the solution details.3.1 Zero�th order equilibrium3.1.1 The toroidal (r, ϑ, ϕ) oordinate systemLet us onsider a zeroth-order axisymmetri toroidal plasma with irularross-setion, formed in a vauum hamber with major radius R0 and minorradius a. The �ux surfaes are non-onentri irles, eah having radius r,2See then de�nition of the metris in appendix B.2.3See then de�nition of the ylindrial metris in appendix B.2.1.71



Mode eigenfuntion reonstrution

Figure 3.1: Reprodued from [53℄. Left: Geometrial o-ordinates. Right:Relation between the �ux ϑ and geometrial θ poloidal angles at r = a. Thedeviation from the bisetor (dashed line) is an inreasing funtion of theradius.being horizontally shifted by a quantity ∆(r). The shift of the outermost�ux surfae is imposed as boundary ondition (in the experiments this isobtained from external magneti measurements). A point lying on one ofthese �ux surfaes is identi�ed by the radius r of the surfae, by the poloidalangle θ measured with respet to the inboard mid plane, and by the toroidalangle ϕ. These oordinates, whih we all geometri oordinates, ui, arerelated to the standard ylindrial system (R,ϕ,Z) used to desribe toroidalfusion devies by
R = R0 − r cos θ + ∆(r) (3.4)
Z = r sin θ. (3.5)where R0 is the torus major radius. The (r, θ, ϕ) oordinate system is urvi-linear and non-orthogonal, in order to properly take into aount the toroidalgeometry. A omplete knowledge of the metri tensor is essential (see ap-pendix B for a brief reminder on urvilinear oordinates). The metri tensorand the Jaobian of the geometri oordinates are given in appendix B.2.2.The ontravariant representation of the zeroth-order magneti �eld asso-iated with the geometri oordinate system is

B0 = ∇ψT,0(r)×∇θ −∇ψP,0(r)×∇ϕ+∇r ×∇ν(r, θ) (3.6)where ψT,0 and ψP,0 are, respetively, the toroidal and poloidal �ux dividedby 2π. The equilibrium is fully de�ned one ψT,0(r), ψP,0(r), ∆(r) and ν(r, θ)are known.Following the standard proedure for introduing �ux oordinates 2.8.2, onean de�ne a new poloidal angle as
ϑ = θ + λ(r, θ) (3.7)72



3.1 Zero�th order equilibriumwith λ(r, θ) = ν(r, θ)/ψ′
T,0(r). Here and in the following a prime designatesderivative with respet to r of quantities whih are funtions of r only. In the

wi = (r, ϑ, ϕ) system, whih we all �ux oordinates, the magneti �eld linesare straight and the magneti �eld ontravariant representation is simply
B0 = ∇ψT,0(r)×∇ϑ−∇ψP,0(r)×∇ϕ. (3.8)This provides simple formulas for the ontravariant omponents Bi, givenby

Br
0 = 0 Bϑ

0 =
1√
gw
ψ′
P,0 Bϕ

0 =
1√
gw
ψ′
T,0 (3.9)where √gw is the Jaobian of the �ux oordinate system:

√
gw = (∇r · ∇ϑ×∇ϕ)−1 . (3.10)The metri tensor and the Jaobian of the �ux oordinates are also given inappendix B.2.3.The determination of the parameter λ(r, θ) in (3.7) is possible for a largeaspet ratio torus following a perturbative approah, as done �rst in [53℄.Ampére's law allows to dedue the urrent density ontravariant omponents

J i. From the fore balane ondition and Br
0 = 0 one gets Jr0 = 0. Usingthis information, and performing an expansion in the small aspet ratioparameter ǫ = a/R0, it is possible to ompute the quantity relating θ and ϑas

λ(r, θ) = λ1(r) sin θ + λ2(r) sin 2θ + o(ǫ3). (3.11)where
λ1(r) =

r

R0
−∆′(r) λ2(r) =

r

4R0
λ1(r). (3.12)The inverse of transformation (3.7) is then easily derived as

θ = ϑ− λ1 sinϑ−
(
λ2 −

λ2
1

2

)
sin 2ϑ+ o(ǫ3). (3.13)Using equation (3.11) the relation between ylindrial (R,ϕ,Z) and �uxoordinates wi an also be found (up to a o(ǫ3b) approximation term):

R = R0 − r cosϑ+ ∆(r)− rλ1(r) sin2 ϑ+

(
3

2
rλ2

1 − 2rλ2

)
sin2 ϑ cosϑ(3.14)

Z = r sinϑ− r

2
λ1(r) sin 2ϑ+

(
3

2
rλ2

1 − 2rλ2

)
sinϑ cos2 ϑ− r

2
λ2

1(r) sinϑso R ≡ R(r, ϑ) and Z ≡ Z(r, ϑ). 73



Mode eigenfuntion reonstrutionThe Jaobian of the �ux oordinate system for a large aspet ratio torusis (B.2.3):
√
gw =

R2

K(r)
(3.15)with

K(r) =
R0

r

(
1 +

∆

R0
+

r

2R0
∆′ − r2

2R2
0

+ o(ǫ3)

)
. (3.16)3.1.2 Equilibrium quantities: ∆(r), ψP,0 and ψT,0It is possible to show that, for a fore-free equilibrium, in �ux oordinatesthe urrent density is proportional to the magneti �eld through a oe�ientwhih is a funtion of r only, that is

µ0J0 = σ(r)B0. (3.17)It is onvenient to de�ne, for a generi �eld A, its hatted version as
Â =

√
gwA, whih hides the Jaobian ontribution. The zeroth-order hattedmagneti �eld and urrent density omponents, funtion of r only, are then:

B̂ϑ
0 = ψ′

P,0 B̂ϕ
0 = ψ′

T,0 µ0Ĵ
ϑ
0 = σψ′

P,0 µ0Ĵ
ϕ
0 = σψ′

T,0. (3.18)Given the σ(r) pro�le, whih is an input to the algorithm, the zeroth-order fore balane yields the following equations:
d

dr
[K(r)B̂ϕ

0 ] = −σ(r)B̂ϑ
0 (3.19)

∂

∂r

[
gwϑϑ√
gw
B̂ϑ

0

]
− ∂

∂ϑ

(
gwrϑ√
gw

)
B̂ϑ

0 = σ(r)B̂ϕ
0 . (3.20)The seond equation ontains metri oe�ients whih are funtion of r and

ϑ. By using the expansion in harmonis desribed in appendix B.2.3, it anbe split into two equations, one for B̂ϑ
0 and one for ∆. Furthermore, beauseof the nonlinearity given by the fat that the metri oe�ients depend on

∆, it is onvenient to introdue a perturbative expansion:
B̂ϑ

0 = B̂ϑ
1 + B̂ϑ

2 + . . . , B̂ϑ
2 = o(ǫ2)B̂ϑ

1 (3.21)
B̂ϕ

0 = B̂ϕ
1 + B̂ϕ

2 + . . . , B̂ϕ
2 = o(ǫ2)B̂ϕ

1 . (3.22)The resulting equations for the lowest order ontribution are
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1 (3.24)74



3.2 First�order ontribution to the equilibriumwhih an be solved for B̂ϑ
1 (r) and B̂ϕ

1 (r). The solution starts from themagneti axis, where regularity imposes B̂ϑ
1 ∼ σ0R0r/2 and B̂ϕ

1 ∼ r, andproeeds to the edge. The solutions are then resaled so as to math aboundary ondition, for example the edge poloidal �eld.These solutions are then plugged into the equation for the shift
∆′′ +

∆′

r

(
1 + 2r

dB̂ϑ
1 /dr

B̂ϑ
1

)
+

1

R0
= 0. (3.25)whih is solved using the boundary onditions ∆′(0) = 0 and an assignedvalue for ∆(b), b being the radius at whih the magneti measurementsyielding the ondition are loated.Having determined the shift ∆(r), the next order orretion to the �elds anbe omputed by
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2Again, these equations are solved starting from the axis, where regularityrequires B̂ϑ
2 ∼ 3r/(2σ0R0) and B̂ϕ

2 ∼ [3/(σ2
0R

2
0) − ∆0/R0]r, ∆0 being theshift of the magneti axis. In pratie this orretion turns out to be verysmall.It is worth noting that this method of omputing the zeroth-order axisym-metri equilibrium, if ompared to the standard Grad-Shafranov equation,has the advantage of requiring simply the solution of �ve ordinary di�er-ential equations. This is obtained at the prie of being restrited to dealwith irular �ux surfaes, whih is however reasonable for present day RFPdevies. While σ(r) an in priniple be any funtion, for the appliationdesribed in the following the ustomary parametrization alled α-Θ0 modelhas been used, that is

σ =
2Θ0

a

[
1−

(r
a

)α]
. (3.27)The two free parameters Θ0 and α are adjusted so as to obtain given valuesof the two dimensionless parameters Θ and F , whih are the well knownpinh and reversal parameters used to desribe RFP plasmas (see hapter1.).3.2 First�order ontribution to the equilibriumThe next step is to add a non-axisymmetri perturbation to (3.8). In thegauge Ar = 0, where Ar is the ovariant radial omponent of the vetor75



Mode eigenfuntion reonstrutionpotential A, the total magneti �eld an be written as
B = ∇ψT ×∇ϑ−∇ψP ×∇ϕ (3.28)where now ψT and ψP depend on all three oordinates. The wi = (r, ϑ, ϕ)oordinates are not any more �ux oordinates for the perturbed magneti�eld, whih means that magneti �eld lines of B are not straight in thisoordinate system, and the potentials ψT and ψP are not any more �uxfuntions (see setion 2.7). These potentials, related to the vetor potentialovariant omponents, an be Fourier expanded as

ψP (r, ϑ, ϕ) = −Aϕ(r, ϑ, ϕ) = ψP,0(r) +
∑

n6=0,m

ψm,nP (r)ei(mϑ−nϕ)(3.29)
ψT (r, ϑ, ϕ) = Aϑ(r, ϑ, ϕ) = ψT,0(r) +

∑

n6=0,m

ψm,nT (r)ei(mϑ−nϕ)(3.30)The perturbed quantities ontain n 6= 0 terms only, and the harmonis am-plitudes are omplex (see appendix C.1 for a disussion on omplex onju-gation).Given the representation (3.28) of the magneti �eld, the total hattedontravariant magneti �eld omponents are
B̂ϑ =

∂ψP
∂r

B̂ϕ =
∂ψT
∂r

b̂r = −∂ψT
∂ϕ
− ∂ψP

∂ϑ
. (3.31)Computing the total urrent density omponents from Ampére's law andplugging them into the �rst-order fore balane equation

j×B0 + J0 × b =
1√
gw
ǫijk(ĵiB̂j

0 + Ĵ i0b̂
j)∇wk = 0 (3.32)one obtains the proportionality between perturbed radial urrent and per-turbed radial magneti �eld
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= 0. (3.35)By Fourier-transforming equations (3.33) and (3.35) (only two equationsare needed, sine for eah mode there are two unknown funtions ψm,nT and76



3.2 First�order ontribution to the equilibrium
ψm,nP ) and using Ampére's law the following equations are found:
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− dψm−1,n
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]
= 0 (3.37)In appendix B.2.3 one an �nd the metri tensor element ombinationsthat appear in these equations.The method used for the solution of these equations is desribed in de-tail in ref. [53℄. The solution requires the knowledge of the orrespondingharmoni amplitude for the radial omponent of the magneti �eld at somesurfae outside the plasma, whih represents the boundary ondition. Fur-thermore, if the mode has a resonant surfae inside the plasma, a disontinu-ity in the eigenfuntion derivative should be allowed. The magnitude of thisdisontinuity is obtained by imposing a further boundary ondition, that isthe amplitude of the toroidal magneti �eld omponent at the same surfaewhere the radial one is determined (that is the surfae where the sensors areloated).
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Mode eigenfuntion reonstrution
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Chapter 4Helial oordinates in toroidalsystemsThe goal in this hapter is to �nd good oordinate systems to desribe SHAxstates, modelled as pure SH states1, beginning from the reonstrution ofthe magneti �ux surfaes, using the magneti �ux eigenfuntions inside theplasma volume introdued in the previous hapter.

Figure 4.1: Esher, 1953Let us introdue the problem.In the perturbative approah to the magneti �eld B, introdued in the pre-vious hapter, it is easy to �nd magneti �ux surfaes for the axi�symmetripart B0, and the funtion that an label them is the radius r of their irularross-setion2. Adding a generi perturbation, the irular �ux surfaes thatharaterize B0 are deformed, and it is not lear a priori if other �ux surfaesexist and whih an be the funtion ρ to label them3: this is the general ase1Single Heliity states, where only the dominant mode of the SHAx states is onsidered.2This is the equilibrium desribed in the introdution, for whih B · ∇r = 0.3By de�nition �ux surfaes exist if (neessary ondition) there exist a funtion ρ for79



Helial oordinates in toroidal systemsof Multiple Heliity (MH) states, where no evidene of symmetries in thesystem is present. Considering instead SH states the perturbation has heli-al symmetry, whih means that the �uxes ψP and ψT (and all the surfaefuntions in the plasma) are funtions only of the radius r and of the helialangle de�ned as u = mϑ− nϕ 4:
ψ(r, u) = ψ0(r) + ψm,n(r) eiu + c.c. (4.1)This arises from (3.2) negleting the sum over seondary modes (and on-sidering the dominant mode with �xed (m,n), whih is the (1, 7) mode inRFX�mod). In this ase it has been shown (eq.(2.198) setion 2.9) that�ux surfaes exist (ρ(r, u) = const), and one an also look for Ation�Angleoordinates on them, that orrespond to straight��eld�line oordinates. Agood �ux funtion is the helial �ux (the Hamiltonian of the system), thatwill be alled with the symbol χ from now on. The formal de�nition of χwill be given in setion 4.1, and looking at its ontour plot in �g.4.3 onean dedue that oordinate systems built on the irular�ross-setion �uxsurfaes of B0 are not appropriate to desribe helial �ux surfaes. This istrue espeially in the inner bean�shaped surfaes whih does not ontain themagneti axis of the axisymmetri equilibrium, due to the fat that one anidentify two points that have the same value of the poloidal angle ϑ.All the oordinate systems de�ned until now in RFX are based on theirular�ross-setion �ux surfaes of the axisymmetri equilibrium. Mod-elling SHAx states as pure SH states, the goal is to �nd oordinates based onthe helial geometry, where the helial �ux is used as the radial oordinate.The fundamental request for helial oordinates is then a non�orthogonaland urvilinear metri tensor, with angles de�ned with respet to the helialaxis (∇ρ = 0), in order to well desribe both the toroidal geometry of theproblem and the new helial axis of the system. In setion 4.2.1 an angle

β with these features is de�ned using a geometrial approah, in setions4.2.2-4.2.4 helial oordinates are found using the Hamiltonian form of themagneti �eld and its properties de�ned in partiular in setion 2.9. Thisallows to �nd not just helial oordinates, but also to take advantage of theproperties of helial magneti oordinates looking for Ation�Angle oordi-nates.The pratial outome of this thesis is the ode named SHEq (SingleHelial Equilibria). It uses the helial oordinate systems, whih in thiswhih B · ∇ρ = 0 and are therefore de�ned by ρ = const. As said in hapter 2 this isthe ase only if a symmetry is manifest in the system, and ρ an be identi�ed with theHamiltonian H (due to Noether theorem) or any funtion f(H). In setion 2.8.2 we havealready notied that in haoti spaes, where magneti �eld line are destroyed, the relation
ρ = const is still valid. We refer here to onserved magneti �ux surfaes.4ψ in the formula stays therefore for ψP , ψT or any �ux funtion. See appendix C.1for a disussion on the omplex onjugated.80



hapter5 are de�ned in a mathematial way, in order to ompute all the heli-al equilibrium plasma quantities. More than one helial�toroidal oordinatesystem are de�ned in this hapter, and all the metri tensor elements andthe Jaobian of every oordinate system are usable in SHEq (metri tensorelements and Jaobians an be found in the detailed alulations of hapter9).Eah plot in the following is omputed by the SHEq�ode. The absissa ρhused in the plots is the square root of the normalized helial �ux:
ρh =

√
χ− χmin

χmax − χmin
, (4.2)

χmin being the value of the helial �ux on the helial axis and χmax its valueat the edge. Being a funtion of χ only, ρh is a label for helial �ux surfaesthat ranges between 0 on the helial axis and 1.Bean�shaped surfaes whih do not ontain the magneti axis of the axisym-metri equilibrium are alled internal �ux surfaes, the external �ux surfaesare instead the surfaes whih ontain both the axisymmetri and the helialaxis.The main results of this hapter have been published in B. Momo et. alPlasma Phys. Control. Fus (2011) [1℄ and in E. Martines, R. Lorenzini, B.Momo et al. Plasma Phys. Control. Fus (2011) [2℄.Some work has been performed by the RFX�mod team, to demonstrate thatthe helial �ux here de�ned is a good �ux funtion also from the experimentalpoint of view. In partiular, this work is presented in [54℄ (Nature, 2009).Here we just ite one of the tests of the helial equilibrium reonstrution,performed by onsidering an eletron temperature (Te) pro�le measured bya Thomson sattering system6. Due to the asymmetry of the helial �uxwith respet to the vauum hamber, kineti plasma quantities during SHAxstates exhibit non symmetri pro�les if plotted against the radius of thevaum hamber r. This an be seen in �g.4.2(a) for Te, where the twoolors mark points that are on the two sides of the (helial) magneti axis.The same funtion plotted as a funtion of the normalized helial �ux ρh isshown in �g.4.2(b): it is immediately lear how the two half pro�les ollapseone onto the other. This is a proof that the helial �ux evaluated withtheoretial methods is indeed a �ux funtion, in the hypothesis that the Tepro�le is due to very fast parallel thermal transport and almost �at densitypro�les. Fig.4.2(c) is the reonstrution of the eletron temperature map onthe poloidal plane.5Further details of the helial metris an be found also in the detailed alulations ofhapter 9.6Te pro�les measured along a horizontal diameter of the hamber by a 84�point Thom-son sattering system, [55℄. 81



Helial oordinates in toroidal systems

Figure 4.2: Reprodued from [2℄. (a): Eletron temperature pro�le fromThomson sattering data measured along a horizontal diameter, plotted asa funtion of the radius r of the vauum hamber. The two olors markthe points that are on the two sides of the magneti axis. The two ontin-uous urve are the normalized helial �ux ρ on the diameter. (b): Eletrontemperature pro�le, plotted as a funtion of the normalized helial �ux ρ.
(c): Temperature map on the poloidal plane. Data refer to shot 24599 at
t = 99ms.Let us remind the basi approximations used in this work: of onsideringSHAx states as pure SH states negleting the ontribution of the residualseondary modes; of the perturbative approah to reonstrut the harmonisof the perturbation, also for the dominant mode7, solving a Newomb�likeequation in fore free ondition; and of assuming a α−Θ0 model [56, 57℄ to�t experimental data for the zeroth�order parallel urrent density.4.1 The radial oordinate χSHAx states are modelled as pure SH states, omposed of the superposi-tion of the zero�th order axisymmetri equilibrium and the dominant modeeigenfuntion, that in RFX�mod is the (m,n) = (1, 7). Any �ux funtionhas therefore helial symmetry during SHAx states, and one an go bak tothe helial example in setion 2.9 to use Hamiltonian mehanis tools. Welook in this setion for the Hamiltonian of the system that is always a goodradial oordinate and that an be used as label for �ux surfaes.In setion 2.9 it has been found that

B · ∇χ = 0 (4.3)for the Hamiltonian χ(r, u) (or any funtion of χ only) and u = mϑ−nϕ: uis the helial angle and χ is alled helial �ux. Its de�nition in terms of the7We are on�dent on this approximation beause the dominant mode is not more thansome perent of the equilibrium part... even if this hanges the topology so muh!82



4.1 The radial oordinate χpoloidal and toroidal �uxes is
χ = mψP − nψT . (4.4)The poloidal and toroidal �uxes in SH an be written as (4.1)

ψP (r, u) = ψP,0(r) + ψm,nP (r) eiu + c.c. (4.5)
ψT (r, u) = ψT,0(r) + ψm,nT (r) eiu + c.c. (4.6)and therefore

χ = mψP − nψT (4.7)
= [mψP,0 − nψT,0](r) + [mψm,nP − nψm,nT ](r) eiu + c.c. (4.8)
= χ0(r) + χm,n(r) eiu + c.c. (4.9)
= χ0(r) + 2|χm,n|(r) cos(u+ φχ) (4.10)with the same helial symmetry of any other �ux funtion. Both the axisym-metri equilibrium part and its perturbation due to the single (m,n) = (1, 7)mode of the �uxes are omputed as desribed in the preeding hapter. Theamplitude |χm,n|(r) and phase φχ(r) are de�ned in setion 9.1 in terms ofamplitude and phase of the poloidal and toroidal �uxes.The helial �ux is onstant on the resulting �ux surfaes of SHAx states,and a ontour plot of χ is shown in �g.4.3. It an be seen that only the inner

Figure 4.3: Contour plot of the helial �ux χ.surfaes are signi�antly distorted due to the inner resonant (m = 1/n = 7)mode, and assume a bean�like shape. The outer ones retains a quasi�irularshape, with a shift due to perturbations.In this setion the helial �ux χ(r, u) has been de�ned using the pertur-bative approah and hoosing the SH due to the (m,n) = (1, 7) mode. As83



Helial oordinates in toroidal systemssaid in setion 2.9, the Hamiltonian does not hange hanging the angle o-ordinates if it is unhanged the periodiity (m,n) = (1, 7) of the system. Infat χ(r, u) = χ(I) if I is the Ation of the system. This allows to omputethe radial oordinate χ (that labels the helial �ux surfaes) using the om-position of two �uxes whih are not �ux funtions for helial symmetries8.4.2 The angle oordinatesThe radial variable is a label of the magneti �ux surfaes, and one an usethe helial �ux χ. Let us go bak to the fundamental requests for the angularpart of helial oordinates: a non�orthogonal and urvilinear metri tensor,with angles de�ned with respet to the helial axis (∇χ = 0).There are two ways to de�ne the angular part of helial oordinate systems:the geometrial way desribed in setion 4.2.1, or following the Hamiltoniantheory of magneti �eld lines, as desribed in setion 4.2.2-4.2.4. The Hamil-tonian way uses the helial symmetry of the system, whih means that anyplasma quantity depends on the r, u oordinates only, with u = mϑ − nϕ.Due to the fat that plasma quantities do not depend expliitly on the angles
ϑ or ϕ, one an hoose two frames of referene where the helial symmetryis manifest, hoosing either the poloidal or toroidal angle as ignorable oor-dinate (that orresponds to the anonial time of the magneti�Hamiltoniansystem). In this hapter both options are desribed, for the (χ, u, ϕ) and
(χ, u, ϑ) frame of referene9. However both hoies are not good in RFPmahines. The toroidal angle is not a good time beause of its hange insign in orrespondene of the reversal of the toroidal omponent of the mag-neti �eld at the edge. Usually indeed the RFP ommunity works with thepoloidal angle as the anonial time, but in setion 4.4 we prove that it is nota good hoie during SHAx states. That's why in setion 4.2.4 we introduealso the toroidal�like angle v that do not reverse, to be used as the anoni-al time. This a good hoie espeially to study the edge, but the physialmeaning of the �uxes related with this strange angle it is not so lear anymore.The SHEq ode an always hoose between all these helial oordinates, withrespet to the problem that must be solved.All the metri tensor elements and the Jaobian of the oordinate systemshave been alulated and an be found in the detailed alulation in setion9.2.We refer to setion 2.9 in all the result and alulations of the next se-tions.8In other words, equation (4.4) an be used both with ψP,T (r, u) and ψP,T (ρ).9Inverting the relation χ = χ(r, u) the helial �ux is used instead of r as �rst oordinate.This is what we always do in hapter 2 for the Hamiltonian of the system, hosen as radialoordinate of the system. 84



4.2 The angle oordinates
4.2.1 The geometrial angle βWe desribe here the �rst new oordinate system that has been de�ned towell desribe the helial equilibrium in SHAx states, using the helial �ux χas the `radial' oordinate. Keeping ϕ as toroidal angle, a new poloidal�likeangle β, whih rotates around the helial axis (∇χ = 0), must be de�ned.The oordinate system (χ, β, ϕ) is not a straight��eld�line system, but it iseasy de�ned in a geometrial way.

Figure 4.4: The geometrial approah to de�ne the poloidal�like angle βon helial �ux surfaes (χ = const) and with respet to the helial axis(∇χ = 0).The de�nition of β, with respet to the ylindrial oordinates (R,ϕ,Z),is
β = tan−1 Z − Za(ϕ)

R−Ra(ϕ)
(4.11)where Ra(ϕ) and Za(ϕ) represent the ylindrial oordinates of the helialmagneti axis. Due to the dependene on the toroidal angle of the heli-al magneti axis oordinates, also β depends on ϕ: β = β(R,ϕ,Z). Thede�nition (4.11) an be easily derived from �g.4.4:

{
ρ cosβ = (R−Ra)
ρ sinβ = (Z − Za) (4.12)

m

tanβ =
Z − Za(ϕ)

R−Ra(ϕ)
. (4.13)85



Helial oordinates in toroidal systemsWe refer to setion 9.2 for the derivation of the metri tensor and of theJaobian of the new (χ, β, ϕ) oordinate system. Here we just mention thatthe metris an be derived in a relatively easy way in terms of the metris ofthe zero�th order �ux oordinates (r, ϑ, ϕ) de�ned in hapter 3 and appendixB.2.3, using their relation with the ylindrial oordinates, equations (3.14).4.2.2 The Hamiltonian time ϕ: (χ, u, ϕ) and (χ, uh, ϕ)Using the helial �ux as radial oordinate, we start from the oordinate sys-tem (χ, u, ϕ) that emphasizes the helial symmetry with respet to u on the�ux surfaes χ = const. The presene of an ignorable oordinate allows tolook for Ation�Angle oordinates on the �ux surfae labelled by χ, follow-ing the resumptive example in setion 2.9 and reahing the straight��eld�linesystem (χ, uh, ϕ) where uh is the (new) Angle. The helial angle u = mϑ−nϕis not de�ned with respet to the helial axis (the poloidal angle ϑ is notas well, being de�ned with respet to the axisymmetri axis of the system),whereas the Angle uh (onjugated to the Ation) is: by de�nition it inreasesby 2π over one turn around any helial �ux surfaes, even the internal onesthat do not enlose the axisymmetri axis, as seen in (2.90). That's why weam looking for A�A oordinates in this setion, beginning from (χ, u, ϕ)10.Ation�Angle oordinates are de�ned in setion 2.6, and one needs theidenti�ation between anonial variables and magneti quantities to applyformulas (2.95)�(2.97) for the Ation, the generating funtion11 and the An-gle respetively. Due to the symmetry of the problem, the identi�ations arethe ones of eq.(2.181)�(2.184) for the A1 = 0 axial gauge
t = ϕ (4.14)
H = −Aϕ(r, u) = χ(r, u) = const (4.15)
q = u (4.16)
p = Au(r, u) = ψT (r, u) (4.17)and we need to apply eq.(2.185)�(2.187), as already found in setion 2.9.10Taking a bak step, to de�ne the toroidal helial systems one starts from the toroidaloordinate system (r, ϑ, ϕ) and de�nes the helial angle u = mϑ− nϕ to hange frame ofreferene to (r, u, ϕ). In this oordinate system, remembering (4.1), the helial symmetryis manifest due to the ignorable oordinate ϕ that plays the role of the anonial time,and χ = χ(r, u) as all the �ux plasma quantities. Inverting this relation, one an use any�ux funtion as radial oordinate instead of r.In A�A oordinates, χ = χ(I) if I is the Ation: beause χ(r, u) in (χ, u, ϕ) oordinates,one knows that this is not already an Ation�Angle oordinate system.11The generating funtion of the anonial transformation to Ation�Angle oordinates.For the anonial transformation (p, q) 7→ (P,Q), F2 = F2(q, P ).86



4.2 The angle oordinatesWe an �nd the identi�ation with anonial variables also beginningfrom the anonial representation of the magneti �eld B valid for anydivergene�free �eld in a toroidal devie, introdued in eq.(2.138) for generi
(r, ϑ, ϕ) toroidal oordinates. From this, equation (2.195)

B(r, u, ϕ) = ∇ψT (r, u)×∇u−∇χ(r, u)×∇ϕ (4.18)an be derived simply substituting the poloidal angle ϑ and the poloidal �ux
ψP (r, u) with the helial angle u = ϑ − nϕ and the helial �ux χ(r, u) =
ψP − nψT respetively. Using the identi�ation of the magneti �uxes toanonial variables (through the ovariant omponents of the vetor poten-tial) as a mnemoni rule, one immediately knows that: ϕ plays the role ofthe time, ψT (r, u) of the momentum onjugated to the helial angle u, and
χ(r, u) the role of the Hamiltonian of the system.In any ase we go bak to eq.(2.185)�(2.187), but using here a di�erentnotation: ρ = χ(r, u) for the radial variable, I(ρ) 7→ ψh(χ) for the Ationand ζ(I, u) 7→ uh(χ, u) for the Angle.Beause ψT (r, u) and χ(r, u), these funtions may be loally inverted to yieldthe Hamiltonian as a funtion of the toroidal �ux χ = χ(ψT , u) or, vie versa,
ψT = ψT (χ, u). The ation is nothing but the urvilinear integral of the �ux
ψT (χ, u):

ψh(χ) =
1

2π

∮

Σ(χ)
ψT (χ, u′) du′ (4.19)where Σ(χ) is the magneti surfae labelled by the helial �ux χ. Invertingthe relation ψh(χ) in the funtion χ(ψh), the �ux ψT (χ, u) an be writtenas a funtion of (ψh, u), useful to provide the angle uh onjugate to theAtion through the de�nition of the generating funtion F2(ψh, u). For theanonial transformation from (p, q) ≡ (ψT , u) to (I, ζ) ≡ (ψh, uh):

F2(ψh, u) =

∫ u

u0

ψT (ψh, u
′) du′ + f(ψh) (4.20)

uh(u, I) =
∂F2

∂ψh
=

∫ u

u0

∂ψT
∂ψh

(ψh, u
′) du′ (4.21)where f(ψh) is an arbitrary funtion of the Ation that an be set to zero,�xing the origin of the Angle uh on the origin of the helial angle u.Keeping �xed the anonial time and therefore the toroidal angle, and hoos-ing the helial �ux χ(ψh) as the radial oordinate, we end with the heli-al straight��eld�line oordinates (χ, uh, ϕ). In this oordinate system theanonial form of B an be written as:

B = ∇ψh(χ)×∇uh −∇χ×∇ϕ (4.22)87



Helial oordinates in toroidal systems

Figure 4.5: The toroidal �ux ψh(χ).with B ≡ B(χ, uh, ϕ).Let us see the main features of the new variables. As it must be, theAtion ψh(χ) turns out to be the toroidal �ux in Ation�Angle oordinates.The proof an be done in the same way as done in setion 2.7. What we wantto emphasize is that the toroidal �ux assoiated to the toroidal omponentof the magneti �eld and to the toroidal angle ϕ in non monotoni, due tothe reversal of the on�guration at the edge. This an be seen in �g.4.5 for
ψh.The Angle uh inreases by 2π over one turn around any magneti �ux surfae
Σ(χ):

∆uh =

∮

Σ(χ)

∂ψT (ψh, u
′)

∂ψh
du′ = (4.23)

=
∂

∂ψh

∮

Σ(χ)
ψT (ψh, u

′) du′ = (4.24)
=

∂(2πψh)

∂ψh
= 2π (4.25)and this on�rms that it is a good angle de�ned with respet to the helialaxis.In (4.20) the funtion f(ψh) has been set to zero, �xing the origin of theAngle uh on the origin of the helial angle u. This means that, like u, also

uh does not have its zero always on the horizontal plane, but it turns aroundwith the toroidal angle ϕ. The example at ϑ = 0, where u = −nϕ, for somevalue of the toroidal angle an be found in �g.4.11. We will �nd this of someinterest later. 88



4.2 The angle oordinatesTill here we went trough the mathematial expressions to be used. Froman operative point of view12 we just need to begin with eq.(4.5)�(4.6) toompute the helial �ux (as in eq.(9.2)) and the toroidal �ux ψT (r, u). In-tegrals and derivatives of the �uxes are omputed numerially, but furtheranalyti alulation used to simplify numerial omputation an be found insetion 9.1.To onlude, let us note that in the ylindrial limit, where the helialdeformation vanishes, ψh = ψT and uh = u.4.2.3 The Hamiltonian time ϑ: (χ, u, ϑ) and (χ, uϑh, ϑ)The toroidal �ux ψh(χ) de�ned in the previous setion is a �ux funtion (itis onstant on �ux surfaes), but it is not a good radial variable beause itis not monotoni (as said, due to the reversal of the toroidal magneti �eldin RFP mahines). That's why usually the RFP ommunity hooses thepoloidal angle ϑ as the anonial time. We analyze this hoie for the heli-al symmetry of SHAx states, ending up with an Ation�Angle oordinatesystem that de�nes a poloidal �ux ψP2 (onjugated to the Angle uϑh). But,being related to the poloidal angle ϑ, that is not de�ned with respet to thehelial axis, we will see that it is not a good poloidal �ux during SHAx states.And that is why even this hoie of the anonial time ϑ is not always goodin RFPs13.In helial oordinates the hoie of ϑ as anonial time brings to the (χ, u, ϑ)oordinate system. From the Hamiltonian point of view this is a problemsimilar to the one where the ignorable oordinate was the toroidal angle ϕ:the anonial time is now the poloidal angle ϑ but one an prove that itis an always inreasing time along a �eld line, even in the internal bean�shaped �ux surfaes14. From the physial point of view the poloidal �ux12SHEq's implementation13As it is for the axisymmetri equilibrium.14For instane, for orbits lose to the helial axis, one ould think that ϑ is not evolvingmonotonially, whih would disqualify it to be used as a time. In the internal bean�shaped�ux surfaes one an demonstrate that the time ϑ �ows always in the same diretion whileevolves the time ϕ:
dϑ

dϕ
> 0always inside the bean�shaped �ux surfaes. Going bak to the de�nition of the rotationaltransform as the frequeny in Ation�Angle ontext, one an write:

dϑ

dϕ
= n+

du

dϕ
(4.26)

= n+
du

duh

duh
dϕ

= n+ ιh
du

duh
(4.27)using the de�nition ϑ = u + nϕ and remembering that we are moving on onstant �uxsurfaes (χ = const). ιh is introdued in setion 2.6.1, and is exatly the frequeny on89



Helial oordinates in toroidal systemsdoes not reverse, and we do not rash with the problem of non monotoni�uxes (�g.4.6). In this setion we look for Ation�Angle oordinates begin-ning from the (χ, u, ϑ) oordinate system, ending with the straight��eld�lineoordinates (χ, uϑh, ϑ), in exatly the same way as done for (χ, uh, ϕ).The anonial identi�ation of the magneti variables is already found,in the gauge A1 = 0, for general (x1, x2, x3) oordinates with x3 as ignorableoordinate, in eq.(2.91)�(2.94). It is worth noting that in the example ofthis setion (and di�erently from the previous examples) the third ignorableoordinate is x3 = ϑ. Therefore:
t = ϑ (4.28)
q = u (4.29)
p = Au(r, u) = ψP (r, u) (4.30)
H = −Aϑ(r, u) = χ(r, u) = const (4.31)We apply formulas (2.95)�(2.97) for the Ation, the generating funtion andthe Angle respetively, as done for the anonial time ϕ, but with the newanonial identi�ations. Beause ψP (r, u) and χ(r, u), these funtions maybe loally inverted to yield the Hamiltonian as a funtion of the poloidal �ux

χ = χ(ψP , u) or, vie versa, ψP = ψP (χ, u). The Ation ψP2 is nothing butthe urvilinear integral of the �ux ψP (χ, u): inverting the relation ψP2(χ)in the funtion χ(ψP2), the �ux ψP (χ, u) an be written as a funtion of
(ψP2, u), useful to provide the angle uϑh onjugate to the Ation throughthe de�nition of the generating funtion F2(ψP2, u)

15. The result is:
ψP2(χ) =

1

2π

∮

Σ(χ)
ψP (χ, u′) du′ (4.32)

F2(ψP2, u) =

∫ u

u0

ψP (ψP2, u
′) du′ + f(ψP2) (4.33)

uϑh(u, I) =
∂F2

∂ψP2
=

∫ u

u0

∂ψP
∂ψP2

(ψP2, u
′) du′ (4.34)where Σ(χ) is the magneti surfae labelled by the helial �ux χ and f(ψP2)is set to zero, �xing the origin of the Angle uϑh on the origin of the helialangle u. As uh in �g.4.11, uϑh turns its zero value turning around in thetoroidal angle ϕ.the χ = const orbits in the A�A system (χ, uh, ϕ): going bak to the de�nition (2.88)one need to remember that ϕ ≡ t is the time and ζ ≡ uh the Angle. On the helial axis

du/duh = 0 and drifting away du/duh → 1. The rotational transform ιh dereases driftingaway from the helial axis, but not so quikly to hange the sign of n, equal to dϑ/dϕ onthe helial axis. Therefore dϑ
dϕ

> 0 and this ends the proof.15For the anonial transformation (p, q) 7→ (P,Q), F2 = F2(q, P ).90



4.2 The angle oordinatesThe anonial representation of the magneti �eld assoiated to (χ, u, ϑ)is
B(r, u, ϑ) = (∇ψP (r, u)×∇u−∇χ(r, u)×∇ϑ)/n (4.35)with n toroidal mode number and m = 1. This form an be derived from thegeneral one in eq.(2.138) simply substituting the toroidal angle ϕ and thetoroidal �ux ψT (r, u) with the helial angle u = ϑ− nϕ and the helial �ux

χ(r, u) = ψP −nψT respetively. In Ation�Angle oordinates (χ, uϑh, ϑ) theorrespondent representation an be written as
B(χ, uϑh, ϑ) = (∇ψP2(χ)×∇uϑh −∇χ×∇ϑ)/n (4.36)Let us see the main features of the new variables.As it must be, the Angle uϑh inreases by 2π over one turn around any mag-neti surfaes Σ(χ), and this introdues a good angle de�ned with respetto the helial axis, as disussed for the Angle uh in the previous setion.The Ation ψP2(χ) turns out to be a poloidal �ux in Ation�Angle oor-dinates. It is the poloidal �ux related to the old poloidal angle, ϑ, that isde�ned with respet to the axisymmetri axis of the system and not withrespet to the helial axis (the time ϑ does not hange in the anonial trans-formation to Ation�Angle oordinates). In a more formal way, one an un-derstand this proving that the �ux ψP2(χ) is indeed the �ux at ϑ = const16:

ψP2(χ) =
1

2π

∮

Σ(χ)
ψP (r, u′) du′ (4.37)

=
1

2π

∫∫

Σ(χ)
dr du′

∂ψP (r, u′)
∂r

(4.38)
=

1

2π

∫∫

Σ(χ)
dr du′

√
g Bϑ (4.39)

=
1

2π

∫∫

Σ(χ)
dr du′

√
gB · ∇ϑ (4.40)

=
1

2π

∫∫

Σ(χ)
B · dΣ(ϑ) (4.41)The last equation is the de�nition of the poloidal �ux, and in the previoussteps one simply needs to remember the de�nition Σ(ϑ) =

√
g∇ϑdrdu of theonstant�ϑ surfaes in the (r, u, ϑ) oordinate system, and eq.(2.145)

Bϑ = − 1√
g

∂Au
∂r

(4.42)where x1 = r, x3 = ϑ and A2 = Au = ψP (r, u) from eq.(4.30).In �g.4.8(a) we draw the physial �ux ψP2(χ) assoiated to ϑ, and one an16As it must be, being the Ation of the (χ, uϑh, ϑ) oordinate system.91



Helial oordinates in toroidal systemsompare it to the poloidal �ux de�ned with respet to the magneti axis in�g.4.8(b) and in �g.2.2.Further disussion on this an be found in setion 4.4. And the di�erenewith another poloidal �ux there introdued is the reason beause we use thesymbol 2 to mark the poloidal �ux in this setion.

Figure 4.6: The poloidal �ux ψP2(χ).Again, as in setion 4.2.2, from an operative point of view17 we just needto begin with eq.(4.5)�(4.6) to ompute the helial �ux (as in eq.(9.2)) andthe poloidal �ux ψP (r, u) in order to be able to ompute all the mathemati-al expressions above.4.2.4 The Hamiltonian time v: (χ, u, v) and (χ, uη, v)In setions 4.2.2 we show that in RFP mahines the hoie of the toroidalangle ϕ as the anonial time is not always good beause of the reversal ofthe toroidal magneti �eld at the edge, that an be seen also as the hangein sign of the toroidal angle, and therefore of the time. And in setion 4.2.3we tell in advane18 that during SHAx states also the hoie of the poloidalangle ϑ as anonial time is not good enough: the poloidal angle ϑ is de�nedwith respet to the ylindrial magneti axis, hene it does not satisfy ourfundamental request of angles de�ned with respet to the helial axis. Thenon monotoni toroidal �ux ψh(χ) and the poloidal �ux ψP2(χ) are in �gg.4.5-4.6.In this setion, we look for a di�erent hoie for the anonial time: using a17SHEq's implementation18Exhaustive analysis in setion 4.4 92



4.2 The angle oordinateslinear ombination of the poloidal and toroidal angles, we de�ne a toroidal�like angle v that an be thought as de�ned on the helial axis and that donot reverse. The orresponding �ux η is de�ned with the analogously lin-ear ombination of the poloidal and toroidal �uxes, ψP (r, u) and ψT (r, u).There are in�nite possible hoies for v angles, every one with the limitationof being linked with a �ux η that is not of easy physial interpretation.As in the previous setions, we look for Ation�Angle oordinates for thesystem (χ, u, v), reahing the straight��eld�line system (χ, uη, v) where theAngle uη and the onjugated Ation ηh are de�ned with respet to the helialaxis. In A�A oordinates the ηh(χ) �uxes are monotoni and de�ned withrespet to the helial axis. This an help for example for the study the RFPedge.We have already de�ned the helial angle u = mϑ − nϕ as a linearombination of the poloidal and toroidal angles, and the helial �ux χ =
mψP − nψT as the same linear ombination of the poloidal and toroidal�uxes. In the same way we an de�ne an angle v and a magneti �ux η witha general linear ombination of the poloidal and toroidal angles and �uxes:

v = aϑ+ b nϕ (4.43)
η = aψP + b nψT (4.44)with a and b general parameters and n the toroidal mode number, m = 1the poloidal mode number19. In helial symmetry the �uxes are written ineq.(4.5)�(4.6) and

η(r, u) = aψP (r, u) + b nψT (r, u) (4.45)
= [aψP,0 + b nψT,0](r) + [aψm,nP + b nψm,nT ](r) eiu + c.c.(4.46)
= η0(r) + ηm,n(r) eiu + c.c. (4.47)Substituting in eq.(2.138) the funtions ψP , ψT , ϑ, ϕ with the funtions

χ, η, u, v, another equivalent form of B is obtained:
B =

1

n(a+ b)
(∇η ×∇u−∇χ×∇v) . (4.48)With the ondition

1

n(a+ b)
= 1 (4.49)one an reognize the usual anonial form of the magneti �eld, written for

(χ, u, v) oordinates, and an therefore look for Ation�Angle oordinateson the χ = const �ux surfaes in a similar way as done in all the previous19One an remember that we are dealing with a SH states in them = 1 spetrum duringSHAx states in RFX�mod. 93



Helial oordinates in toroidal systemssetions, one the anonial variables are identi�ed. An in�nite number ofombinations an solve the onstraint (4.49), even remembering that we aredealing with n �xed and equal to 7 in RFX�mod SHAx states. For instanein setion 4.2.2 we used the hoie a = 0, b = 1/n, and equation (4.35) insetion 4.2.3 is linked to the hoie of a = 1/n, b = 0. In this setion weam going to analyze the hoie a = 1/2n, b = 1/2n, that orrespond to thede�nitions
v =

1

2n
ϑ+

1

2
ϕ (4.50)

η(r, u) =
1

2n
ψP (r, u) +

1

2
ψT (r, u) (4.51)In (χ, u, v) oordinates, where v = x3 is the ignorable oordinate, by de�ni-tion, from (4.48)�(4.49) and using the relations between �uxes and ovariantomponents of the vetor potential:

B = ∇η(r, u)×∇u−∇χ(r, u)×∇v (4.52)
= ∇Au(r, u)×∇u+∇Av(r, u)×∇v (4.53)
= ∇A2(x

1, x2)×∇u+∇A3(x
1, x2)×∇v (4.54)Using this equivalene it is easy to use the anonial identi�ation of themagneti variables found in eq.(2.91)�(2.94) for general (x1, x2, x3) oordi-nates with x3 as ignorable oordinate and the gauge A1 = 0:

t = v (4.55)
q = u (4.56)
p = Au(r, u) = η(r, u) (4.57)
H = −Av(r, u) = χ(r, u) (4.58)It is now possible to ompute Ation�Angle variables, applying formulas(2.95)�(2.97) for the Ation ηh, the generating funtion F2 and the Angle uηrespetively, taking for granted the neessary funtion inversions. One justneed to pay attention to the right anonial identi�ations:

ηh(χ) =
1

2π

∫
η(χ, u)du = (4.59)

=
1

2π

∫
ψT (χ, u)du+

1

2π

∫
ψP (χ, u)du (4.60)

F2(ηh, u) =

∫ u

0
η(ηh, u)du (4.61)

uη =
∂S

∂ηh
=

∫ u

0

∂η(ηh, u)

∂ηh
du (4.62)In the de�nition (4.60) of the Ation ηh(χ), the �rst integral is exatly thetoroidal �ux ψh aross Σ(χ) found in (4.19) and the seond integral the94



4.3 Change of radial oordinates
ψP2(χ) �ux in eq.(4.32) (that is the poloidal �ux de�ned with respet to theylindrial axis).The Ation is a funtion of the Hamiltonian only, as it must be, and weend up with a new helial Ation�Angle oordinate system: (χ, uη, v). Theontravariant representation of the magneti �eld in these oordinates is

B(χ, uη, v) = ∇ηh(χ)×∇uη −∇χ×∇v (4.63)

Figure 4.7: The �ux ηhχ).As said, the toroidal �ux ψh(χ) is not a monotoni funtion. We hoosea di�erent toroidal�like angle, the angle v, that does not hange its sign atthe reversal surfae: in �g.4.7 we an indeed see that the ηh(χ) �ux, linkedto the angle v, is monotoni. But, how an we easily desribe the v = constsurfae, linked to the ηh(χ) �ux (that is by de�nition the �ux trough the�ux surfaes χ = const at v = const)? The di�ulty in the visualization ofthis �ux is its only problem!4.3 Change of radial oordinatesOne wants to hoose the radial variable, alled here ρ, to label the magneti�ux surfaes. This is linked with the researh of a frame of referene thatmakes evident the symmetry of the system. From the Hamiltonian point ofview one an always hoose the Hamiltonian as the radial variable, that isalways onstant on �ux surfaes due to Noether theorem (see setion 2.5).From the magneti point of view this means looking for some funtion ρ forwhih
B · ∇ρ = 0 .95



Helial oordinates in toroidal systemsNot just one funtion an label the magneti �ux surfaes: the equationabove is satis�ed by every funtion of ρ only, f(ρ). For instane, in SH notjust the Hamiltonian χ = ψP − nψT is a good �ux funtion, but also the
ψP (χ), ψT (χ), ... (the �uxes found in helial Ation�Angle oordinates).In eq.(4.2) another �ux funtion has been introdued: the adimensional andnormalized square root of the helial �ux ρh, that ranges between zero onthe helial axis, and one. It is possible to introdue in�nite other hoies forthe radial variable. Here another ommon hoie:

ρA = N ρh (4.64)
= N

√
χ− χmin

χmax − χmin
(4.65)where N an be any dimensional onstant. Choosing for N the minor radiusof the vauum hamber, ρA ranges between zero on the helial axis, and

0.459m at the edge for RFX�mod mahine.In this short setion we just want to desribe some of the possibilities forthe radial variable, starting from the Hamiltonian of the system. The metritensor elements and the Jaobian of the oordinate systems hange in a verysimple way aording to the hange in the radial variable. All the metris inthe Appendixes are alulated using ρ = χ, but in setions 9.2.2�9.2.3 onean �nd the derivatives that link the di�erent hoies and some dimensionalanalysis.4.4 Disussion on the Hamiltonian time ϑIn setion 4.2.3 we end up with the de�nition (4.32) of a poloidal �ux ψP2(χ)de�ned with respet to the axisymmetri axis, where the poloidal angle ϑ isde�ned.One an extend the de�nition (4.4) of the helial �ux χ(r, u) to de�ne thesame20 helial �ux χ(ρ) in any Ation�Angle oordinate system:
χ = mψP (ρ)− nψh(ρ) (4.66)where ψh(χ) is the toroidal �ux through magneti �ux surfaes, just nowde�ned in (4.19). From the de�nition of the helial �ux in A�A oordinates,it is possible to derive another de�nition of the poloidal �ux trough magneti�ux surfaes: ψP (χ). And that's why we label the �rst one in equation (4.32)with a 2.20The helial �ux χ(r, u) is already a �ux funtion, onstant on �ux surfaes.96



4.4 Disussion on the Hamiltonian time ϑLet us ompare the two de�nitions of the poloidal �uxes:
ψP2(χ) =

1

2π

∮

Σ(χ)
ψP (χ, u′) du′ (4.67)

ψP (χ) = χ+ nψh(χ) (4.68)
Figure 4.8: Poloidal �uxes. a) The ψP2(χ) poloidal �ux through internal�ux surfaes (at ϑ = 0), that do not ontain the ylindrial axis. b) The
ψP (χ) poloidal �ux through internal �ux surfaes (at θ∗ = 0), that ontainthe helial axis. ) Both the ψP2(χ) and ψP (χ) poloidal �uxes, through theexternal �ux surfaes (at θ = 0 = θ∗) that ontain both the ylindrial andthe helial angles. The θ∗ poloidal angle is de�ned in the text.The two poloidal �uxes do not oinide in the whole plasma volume.This is due to the main di�erene in their de�nition: ψP2(χ) is de�ned withrespet to the ylindrial axis, whereas ψP (χ) is de�ned with respet to thehelial axis of the system, and they an oinide only on those surfaes thatontain both axes. In �g.4.8 the physial di�erene between equations (4.67)and (4.68) are shown. The �ux ψP2(χ) through the internal �ux surfaesis drawn as the �ux of the Bϑ omponent of the magneti �eld throughthe surfae identi�ed by the segment between the two intersetions with themagneti �ux surfae Σ(χ) of a line from the axis of the vauum hamber toa magneti line on Σ(χ). The same �ux through the external �ux surfaesis the �ux through the surfae identi�ed by the segment from the axis of thevauum hamber to the magneti surfae χ = const. To understand this,one an go bak to the demonstration in eq.(4.37), or remember that ψP2(χ)is the Ation of the (χ, uϑh, ϑ) oordinate system21. On the other side, the�ux ψh is de�ned in the (χ, uh, ϕ) oordinate system, where all the anglesare de�ned with respet to the helial axis.More in details, the di�erene between the two �uxes is plotted againstthe normalized helial �ux in �g.4.9: the two poloidal �uxes di�er throughthe inner �ux surfaes that do not ontain the ylindrial axis of the system,and oinide through the outer �ux surfaes that ontain both the helial21A3 = (helial) �ux aross Σ(ρ) at uϑh = x2 = const. A2 = (poloidal) �ux aross
Σ(ρ) at ϑ = x3 = const. 97



Helial oordinates in toroidal systemsand ylindrial axis. One an obtain the quantitative di�erene simply inte-grating eq.(4.4)
χ(r, u) = ψP (r, u)− nψT (r, u) (4.69)over the angle u:

1

2π

∮

Σ(χ)
χdu =

1

2π

∮

Σ(χ)
ψP (r, u) du− n 1

2π

∮

Σ(χ)
ψT (r, u) du (4.70)

= ψP2(χ)− nψh(χ) (4.71)Beause the irulation of any �ux funtion χ or f(χ) over the helial angle
u is zero on the �ux surfaes that do not ontain the ylindrial axis where
u is de�ned, one �nds thatOn internal �ux surfaes:

ψP2(χ) = nψh(χ) (4.72)
=⇒ ψP2(χ)− ψP (χ) = −χ (4.73)On the other hand the same irulation is equal to 2πχ on all the other �uxsurfaes, therefore: On external �ux surfaes:
ψP2(χ) = nψh(χ) + χ (4.74)
=⇒ ψP2(χ)− ψP (χ) = 0 (4.75)

Figure 4.9: ψP2(χ)− ψP (χ)The plot of the two funtions ψP2(χ) and ψP (χ), that oinide only onthe external �ux surfaes that ontain both axes of the system, an be seenin �g.4.10 (right). Wherease the plot of the two �uxes, ψP2(χ) and nψh(χ),an be seen in �g.4.10 (left). 98



4.4 Disussion on the Hamiltonian time ϑ

Figure 4.10: Left: blak: ψP2(χ) and gray: nψh(χ) + χ = ψP (χ). Right:blak: ψP2(χ) and gray: nψh(χ).4.4.1 The angle θ∗As the poloidal �ux ψP2(χ) is the �ux through the magneti �ux surfaes atthe poloidal angle ϑ = const, the poloidal �ux ψP (χ) is assoiated to anotherpoloidal angle, de�ned with respet to the helial axis (di�erently from ϑ).We brie�y introdue this new angle, alling it θ∗, that an be derived usingthe two angles ϕ and uh22, that are both de�ned on the helial axis. To showthis we start from the anonial form of the magneti �eld in the (χ, uh, ϕ)A�A oordinates, to obtain the equivalent form in the new (χ, θ∗, ϕ) A�Asystem (all the angles are onsidered as divided by 2π):
B(χ, uh, ϕ) = ∇ψh ×∇uh −∇χ×∇ϕ (4.76)

= ∇ψh ×∇uh −∇ψP ×∇ϕ+ n∇ψh ×∇ϕ (4.77)
= ∇ψh ×∇[uh + nϕ]−∇ψP ×∇ϕ (4.78)

B(χ, θ∗, ϕ) = ∇ψh ×∇θ∗ −∇ψP ×∇ϕ (4.79)simply using the de�nition (4.66) for the helial �ux, and
θ∗ = uh + nϕ . (4.80)In �g.4.11 one an see the di�erene between the poloidal and helialangles de�ned in this hapter: ϑ, θ∗, u, uh. The general poloidal angle ϑ isthe angle de�ned on the ylindrial axis that has the zero always on thehorizontal plane. This is not true for the helial angle u, that is obviouslynot always zero when ϑ = 0, but it turns also with ϕ. The same an be saidfor the poloidal and helial angles de�ned on the helial axis, θ∗ and uh, thatgo bak to ϑ and u in the ylindrial limit (when the helial perturbationvanishes).22De�ned in setion 4.2.2 for the system (χ, uh, ϕ) in whih also the �ux ψh is de�ned.99



Helial oordinates in toroidal systems

Figure 4.11: Zero of the poloidal and helial angles de�ned in the text.In a ase of null phase of the helial perturbation, φχ = 0. For φχ 6= 0 thehelial angles do not point on the onvex part of the bean, but they havea �xed phase with the bean anyway beause they rotate together with thebean.
We proved that ψP2(χ) is a poloidal �ux already in setion 4.2.3, butfrom now on we will use only the poloidal �ux ψP (χ) de�ned in this se-tion, related to the poloidal angle θ∗. This hoie is in agreement with therequest of angles de�ned with respet to the helial axis, and is more usefulin de�ning helial quantities (as e.g. the helial safety fator pro�le, as onean see in setion 6.3). The whole metris and the Jaobian of the (χ, θ∗, ϕ)system an be found in the detailed alulations in setion 9.2.Let us note that in the (χ, θ∗, ϕ) oordinate system, the �uxes depend onthe radial oordinate only (as it must be in every Ation�Angle oordinatesystem). Both the poloidal and toroidal angle an be therefore used asthe anonial time, with a result similar to that obtained for the (r, ϑ, ϕ)100



4.4 Disussion on the Hamiltonian time ϑoordinate system for the axisymmetri equilibrium B0 in setion 2.10:
B(χ, θ∗, ϕ) = ∇ψh(χ)×∇θ∗ −∇ψP (χ)×∇ϕ (4.81)and the assoiated anonial variables an be

t = ϕ (4.82)
H = −Aϕ = ψP (χ) (4.83)
q = θ∗ (4.84)
p = Aθ∗ = ψh(χ) (4.85)or
t = θ∗ (4.86)
H = −Aθ∗ = ψh(χ) (4.87)
q = ϕ (4.88)
p = Aϕ = ψP (χ) (4.89)The anonial time θ∗ is always inreasing in 0the whole plasma volume andis linked with a poloidal �ux that is well de�ned on the helial axis andmonotoni. As the poloidal angle ϑ is a better hoie for the anonial timein axisymmetri RFP equilibrium (instead of the toroidal angle that hangesits sign at the reversal), in the same way θ∗ is a good hoie for the anonialtime in RFP SHAx helial states.The problem of a non monotoni Hamiltonian ψh related to the time θ∗ isnot really a problem, beause one an use any other �ux funtion as radialoordinate, for example the poloidal �ux ψP (χ).This on�rms the hoie of the poloidal �ux ψP (χ) instead of ψP2(χ) fromnow on.
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Chapter 5Covariant and ontravariantmagneti �eld omponentsIn the previous hapter we �nd a set of helial oordinate systems, whih areall haraterized by urvilinear metris due to the toroidiity of the helialsystems. The toroidiity of the system has two main onsequenes: �rst, o-variant and ontravariant indexes of any vetor �eld must be distinguished,and the urvilinear metris theory (summarized in appendix B) must beused; seond, a toroidal oupling between the harmonis of the �uxes and ofthe Jaobian arises, therefore e.g. a SH in the �uxes does not orrespond toSH in the magneti �eld omponents.In this hapter we emphasize both this aspets. In setion 5.1 we derive theformula for the ontravariant magneti �eld omponents starting from themagneti �ux eigenfuntions, both for MH and SH states. In setion 5.2 and5.3 we use the urvilinear metris theory to derive the ovariant magneti�eld omponents from the ontravariant ones and to derive the omponentsof a �eld in any oordinate system if the relation between the oordinatesis known. In setion 5.4 we derive the measurable ovariant omponent ofthe magneti �eld to be ompared with measures; in setion 5.5 we end withsome pratial example useful for the appliations with SHEq in the nexthapter.5.1 SH in the �uxes does not orrespond to SH inthe magneti �eld omponentsSH in the �uxes does not orrespond to SH in the magneti �eld omponents,whih are not onstant on the magneti �ux surfaes. In order to study thehelial symmetry of SHAx states we impose a SH in the system under study,negleting the ontribution of seondary modes in the m = 1 spetra of the�uxes. Noether theorem assoiates a onserved quantity to a symmetry in103



Covariant and ontravariant magneti �eld omponentsthe ovariant omponents of the vetor potential, that are nothing but themagneti �uxes. The onserved quantity labels magneti �ux surfaes, andthis justi�es the hoie of a SH in the �uxes (instead of a quantity not on-stant on �ux surfaes, as the magneti �eld).Due to harmonis of the Jaobian, not onstant on �ux surfaes in a urvi-linear metri, any non��ux quantity does not preserve the helial symmetry.In this setion we show how the toroidal oupling between harmonis withsame n toroidal number and ∆m = 1 in the poloidal mode number generatesother harmonis on the magneti �eld omponents, starting from SH in the�uxes.Using eq.(2.146)�(2.148) we end with the up magneti �eld omponents in atoroidal symmetry, both in the general ase and in the ase of helial and ax-isymmetri symmetries. Down omponents and omponents in other frameof referene are listed in the next setions.Let us start with the de�nition of any omponent of the the magneti�eld.
B(r, ϑ, ϕ) = B0 +

∑

m,n

bm,n(r, ϑ, ϕ) (5.1)
= B0 +

∑

m,n

bm,n(r) e
i(mϑ−nϕ) (5.2)

= B0 +
∑

m
n>0

bm,n(r) e
i(mϑ−nϕ) + c.c. (5.3)

= B0 +
∑

m
n>0

2 |bm,n| cos(φbmn +mϑ− nϕ) (5.4)The whole perturbation to the magneti �eld must be a real value, whereasthe harmonis bm,n(r, ϑ, ϕ) of the Fourier deomposed perturbation in eq.(5.1)are omplex numbers1. Using (C.12) and the polar form for the omplex har-monis of the perturbation
bm,n(r) = |bm,n|(r) ei φbmn (r) (5.5)one gets to (5.4), where both the amplitude |bm,n|(r) and the phase φbmn(r)are real numbers. This is true for eah omponent of the magneti �eld,and we an use formulas (2.143)�(2.145) to relate the ontravariant om-ponents Bi to the derivative of the �uxes (or the ovariant omponents ofthe vetor potential) in the gauge A1 = 0. In the same gauge, using thetoroidal oordinate system (r, ϑ, ϕ), formulas (2.143)�(2.145) are equivalent1See appendix C.1 for a disussion on this.104



5.1 SH in the �uxes does not orrespond to SH in the magneti�eld omponentsto (2.146)�(2.148). We begin de�ning the angular omponents Bϑ and Bϕ:
Bi(r, ϑ, ϕ) =

1√
g

[
ψ′

0(r) +
∑

m,n

ψ′
m,n(r) e

i(mϑ−nϕ)
] (5.6)

=
1√
g

[
ψ′

0(r) +
∑

m
n>0

ψ′
m,n(r) e

i(mϑ−nϕ)
]

+ c.c. (5.7)where Bi = Bϑ or Bi = Bϕ depending on ψ = ψP , ψT . For the radialomponent of the magneti �eld the disussion is the same, but due to itsdi�erent dependene on the �uxes (eq.(2.143)) expliit formulas are at theend of the setion.The (r, ϑ, ϕ) an be any general toroidal oordinate system. We hoosehere the (r, ϑ, ϕ) oordinate system de�ned in hapter 3, beause it is theoordinate system in whih the �uxes and their harmonis are omputedsolving the Newomb�like equations (3.36)�(3.37). The metris elementsand the Jaobian must be onsistent with the hoie of the oordinates, andare therefore the ones in appendix B.2.3.This is always the hoie of SHEq's omputations, and one an �nd in se-tion 5.3 the links between these omponents of magneti �eld in the (r, ϑ, ϕ)oordinates and the omponents in other oordinate systems (as e.g. thehelial oordinates found in hapter 4).For the magneti oordinates (r, ϑ, ϕ) of the axisymmetri equilibrium�eld B0 de�ned in hapter 3, the Jaobian is not onstant on the magneti�ux surfaes, and an be written as a sum of harmonis:
1√
g
(r, ϑ) =

( 1√
g

)0,0
+
( 1√

g

)±1,0 (5.8)
=

1√
g0

(r) +
1√
g1

(r)
[
ei ϑ + e−i ϑ

] (5.9)The �rst term is onstant on the r = const �ux surfaes, whereas the seondterm is an harmoni proportional to cosϑ. We neglet higher order terms.The amplitudes (1/
√
g0) and (1/

√
g1) an be found in appendix B.2.3. Asalready said in hapter 3, the metris ouples modes with the same2 toroidalmode number n but di�erent poloidal mode number m. This is due to thetoroidiity of the system, related to a non diagonal metri tensor3. Ne-gleting higher order terms in the harmoni expansion (5.8), the oupling isbetween the (m,n) and (m± 1, n) harmonis.2The Jaobian does not depend on the toroidal angle ϕ.3See appendix B.2.3 for the metris of the (r, ϑ, ϕ) oordinates105



Covariant and ontravariant magneti �eld omponentsGoing bak to (5.7), due to the presene of the Jaobian, eah harmoni
bm,n(r, ϑ, ϕ) of the perturbation to the magneti �eld (with �xed (m,n)) isthe sum of the three (m,n) and (m± 1, n) harmonis of the �uxes:

bim,n(r, ϑ, ϕ) = bim,n(r) e
i(mϑ−nϕ) + c.c. (5.10)

=
1√
g

m+1∑

m−1
n

ψ′
m,n(r) e

i(mϑ−nϕ) + c.c. (5.11)for eah value of n. Again, bi is the perturbation to the poloidal or toroidalmagneti �eld omponent, depending on ψ = ψP , ψT .Let us write expliitly the (m,n) = (−1, n), (0, n), (1, n), (2, n) following(5.11) and keeping in mind the expansion (5.9):
bi1,n(r) e

i(ϑ−nϕ) + c.c. =
1√
g0
ψ′

1,n(r) e
i(ϑ−nϕ) + (5.12)

+
1√
g1
ei(ϑ) ψ′

0,n(r) e
i(−nϕ) + (5.13)

+
1√
g1
e−i(ϑ) ψ′

2,n(r) e
i(2ϑ−nϕ) (5.14)

+ c.c.Multiplying the exponential in the sum (that ome from the harmonis ofthe Jaobian and of the �uxes), one an see that every term has the rightperiodiity (ei(ϑ−nϕ) for (m,n) = (1, n)). In the same way:
bi0,n(r) e

i(−nϕ) + c.c =
1√
g0
ψ′

0,n(r) e
i(−nϕ) + (5.15)

+
1√
g1
e−i(ϑ) ψ′

1,n(r) e
i(ϑ−nϕ) + (5.16)

+
1√
g1
ei(ϑ) ψ′

−1,n(r) e
i(−ϑ−nϕ) (5.17)

+ c.c.

bi2,n(r) e
i(2ϑ−nϕ) + c.c. =

1√
g0
ψ′

2,n(r) e
i(2ϑ−nϕ) + (5.18)

+
1√
g1
ei(ϑ) ψ′

1,n(r) e
i(ϑ−nϕ) + (5.19)

+
1√
g1
e−i(ϑ) ψ′

3,n(r) e
i(3ϑ−nϕ) + (5.20)

+ c.c.106



5.1 SH in the �uxes does not orrespond to SH in the magneti�eld omponents
bi−1,n(r) e

i(−ϑ−nϕ) + c.c. =
1√
g0
ψ′
−1,n(r) e

i(−ϑ−nϕ) + (5.21)
+

1√
g1
e−i(ϑ) ψ′

0,n(r) e
i(−nϕ) + (5.22)

+
1√
g1
ei(ϑ) ψ′

−2,n(r) e
i(−2ϑ−nϕ) (5.23)

+ c.c.The term in eq.(5.20) is negleted in RFX�mod, due to the fat that is re-lated to the m = 3 spetrum that an not be deteted beause only fourmagneti oils are present on the poloidal angle.Note that to eah term in (5.12)�(5.23) one need to add the omplex onju-gated to go bak to real value of the perturbation, eq.(5.10).Let us analyze the magneti �eld omponent on the �ux surfaes relatedto some symmetry of the system.As said, the magneti �eld is not a �ux funtion, i.e. it is not onstant on�ux surfaes. Even the axi�symmetri part B0 = (0, Bϑ
0 , B

ϕ
0 ) of the magneti�eld4, related to irular �ux surfaes, is not onstant on them:

Bi
0(r, ϑ) =

1√
g
ψ′

0(r) (5.24)
=

( 1√
g0

+
2√
g1

cosϑ
)
ψ′

0(r) (5.25)where it is evident the dependene on the osine5, typial for magneti �eldon �ux surfaes in a torus (and usually alled High or Low Field Side inTokamaks).Let us analyze the helial symmetry, that we impose on the �uxes (andtherefore to the magneti �ux surfaes) sine the beginning of hapter 4 todesribe SHAx states:
ψ(r, u) = ψ0(r) + ψm,n(r) e

i(mϑ−nϕ) + c.c. (5.26)with �xed (m,n) (and therefore u = mϑ− nϕ).In equations (5.12)�(5.23) we write the harmonis (with �xed (m,n)) of theperturbation to the magneti �eld, that are the sum of the three (m,n) and
(m ± 1, n) harmonis of the �uxes. On the other hand we now look to theharmonis of the magneti �eld that arises from a single harmoni (�xed4Br = B · ∇r = 0 by de�nition.5Note that the poloidal angle ϑ has been de�ned with the origin on the internal equa-torial plane (that orresponds to ϑm = π for the more usual mahine poloidal angle).This means that cosϑ is maximum on the internal equator and minimum on the externalequator. 107



Covariant and ontravariant magneti �eld omponents
(m,n)) in the �uxes: hoosing (m,n) = (1, n) for the �ux6, from eq.(5.12)�(5.23), one an see that the �ux ψ1,n ontributes to the three harmonis
(bi−1,n, b

i
0,n, b

i
1,n) of the magneti �eld7:

Bi
SH(r, ϑ, ϕ) =

1√
g

[
ψ′

0(r) +
m+1∑

m−1
n

ψ′
m,n(r) e

i(mϑ−nϕ)
]

+ c.c. (5.27)for a �xed (m,n) and ψm,n. With the subsript SH we just want to remindthat (5.27) is the way to write the poloidal or toroidal omponent of themagneti �eld that arises from a single harmoni in the �ux. From (5.27)for (m,n) = (1, n) and ψm,n = ψ1,n, or hoosing expliitly ψ1,n in eq.(5.12)�(5.23), for the magneti �eld omponents related to a SH in the �uxes, onereads:
Bi
SH(r, ϑ, ϕ) = Bi

0(r, ϑ) + (5.28)
+

1√
g0
ψ′

1,n e
i(ϑ−nϕ) + (5.29)

+
1√
g1
e−i(ϑ) ψ′

1,n e
i(ϑ−nϕ) + (5.30)

+
1√
g1
ei(ϑ) ψ′

1,n e
i(ϑ−nϕ) + (5.31)

+ c.c.

=
( 1√

g0
+

2√
g1

cosϑ
)
ψ′

0(r) + (5.32)
+

1√
g0

(r)ψ′
1,n(r) e

i(ϑ−nϕ) + (5.33)
+

1√
g1

(r)ψ′
1,n(r) e

i(−nϕ) + (5.34)
+

1√
g1

(r)ψ′
1,n(r) e

i(−2ϑ−nϕ) + (5.35)
+ c.c.SHEq uses another form for Bi

SH(r, ϑ, ϕ), related to the form in equation(5.4). Calling, in the harmonis of the magneti �eld in eq.(5.12)�(5.23), the6n = 7 in RFX�mod.7In general we onsider just (m ± 1, n), negleting the oupling between modes withhigher ∆m. 108



5.1 SH in the �uxes does not orrespond to SH in the magneti�eld omponents(omplex) terms that depend only on ψ1,n

bi,SH1,n (r, ϑ, ϕ) =
1√
g0

(r)ψ′
1,n(r) e

i(ϑ−nϕ) (5.36)
bi,SH0,n (r, ϑ, ϕ) =

1√
g1

(r)ψ′
1,n(r) e

i(−nϕ) (5.37)
bi,SH2,n (r, ϑ, ϕ) =

1√
g1

(r)ψ′
1,n(r) e

i(−2ϑ−nϕ) (5.38)one an write, instead of (5.27) but in a omplete equivalent way,
Bi
SH(r, ϑ, ϕ) = Bi

0(r, ϑ) +
m+1∑

m−1
n

bi,SHm,n (r) ei(mϑ−nϕ) + c.c. (5.39)
= Bi

0(r, ϑ) +
m+1∑

m−1
n

2 |bi,SHm,n |(r) cos(φbSHmn +mϑ− nϕ)(5.40)where
bi,SHm,n (r) = |bi,SHm,n |(r) e

i φ
bSHmn

(r)
. (5.41)SHEq uses formula (5.40).One an stress again that, related to the SH of the �uxes (and to thehelial symmetry of magneti �ux surfaes), other harmonis arise for non��ux quantities (suh as the magneti �eld omponents Bi). This is due tothe toroidal geometry that ouples di�erent metris elements and to the har-monis of the Jaobian.Let us write expliitly also the radial omponent of the magneti �eld,always in the (r, ϑ, ϕ) oordinate system.Following what done for the poloidal and toroidal omponents Bi, using theSH in the �uxes ψ1,n

T and ψ1,n
P , from (2.146):

Br
SH(r, ϑ, ϕ) =

m+1∑

m−1
n

br,SHm,n (r) ei(mϑ−nϕ) + c.c. (5.42)with
br,SH1,n (r) =

1√
g0

(r)
[
i nψ1,n

T (r)− imψ1,n
P (r)

] (5.43)
br,SH0,n (r) =

1√
g1

(r)
[
i nψ1,n

T (r)− imψ1,n
P (r)

] (5.44)
br,SH−1,n (r) =

1√
g1

(r)
[
i nψ1,n

T (r)− imψ1,n
P (r)

] (5.45)109



Covariant and ontravariant magneti �eld omponentsThe derivatives of the �uxes (5.26) with respet to the angular variables havebeen used:
∂ψ

∂ϕ
= −i nψm,n(r) ei (mϑ−nϕ) + c.c. (5.46)

∂ψ

∂ϑ
= imψm,n(r) e

i (mϑ−nϕ) + c.c. (5.47)for (m,n) = (1, n) and ψ ≡ ψP , ψT .The radial derivatives of the �uxes, neessary to ompute Bϑ or Bϕ, areexplained in setion 9.1.5.2 Down omponents of the magneti �eld in the
(r, ϑ, ϕ) oordinate systemIn setion 5.1 we write the ontravariant (up) omponents of the magneti�eld in the (r, ϑ, ϕ) oordinate system of appendix B.2.3, using for themthe harmonis of the �uxes that have been omputed in the whole plasmavolume (hapter 3) for this oordinate system. In order to write the ovariantmagneti �eld omponents Bi in the same oordinate system, one only needsto use the general rules for urvilinear metris:

Bi = gij B
j (5.48)where Bi are the ontravariant omponents and gij the metri tensor ele-ments, for i = r, ϑ, ϕ. The elements gij are in appendix B.2.3 for the (r, ϑ, ϕ)oordinate system, while Bi(r, ϑ, ϕ) is written both for the general MH aseand for the helial symmetry ase, in setion 5.1 (formulas for Bϑ or Bϕ:(5.7),(5.12)�(5.23) for the MH general ase; (5.25) for B0; (5.27)�(5.35) or(5.36)�(5.41) for the SH ase. Formulas for Br: (5.42)�(5.45) only for theSH ase).Using the Einstein onvention to sum on repeated index, eq.(5.48) means:

Br = grr B
r + grϑB

ϑ (5.49)
Bϑ = gϑr B

r + gϑϑB
ϑ (5.50)

Bϕ = gϕϕB
ϕ (5.51)(5.52)beause in this metri the terms grϕ and gϑϕ are null.By de�nition the ovariant omponents of any vetor

Bi = B · ei (5.53)110



5.3 Up and Down omponents of the magneti �eld in variousoordinate systemsare the omponent of the vetor along the oordinate line (whereas the on-travariant omponents are the omponents along the gradient diretion).Covariant omponents are therefore linked to the measurable �elds, but onemust pay attention to dimension and length of the basis in a urvilinearmetris (setion 5.4).
5.3 Up and Down omponents of the magneti �eldin various oordinate systemsOne the link between oordinates is known, it is possible to write the ovari-ant or ontravariant omponents of any vetor in every oordinate system.In setion 5.1 we write the ontravariant (up) omponents of the magneti�eld in the (r, ϑ, ϕ) oordinate system (appendix B.2.3), taking advantageof the �ux harmonis already omputed in the whole plasma volume in thisoordinate system (hapter 3). And in setion 5.2 we write the ovariant(down) omponents of the magneti �eld in the same oordinate system.In order to write the up and down magneti �eld omponents in other o-ordinate systems, one only needs to follow the rules of the general tensoralulus:

Ai
′

= Aj
∂ui

′

∂uj
, Aj = Ai

′ ∂uj

∂ui′
(5.54)

Ai′ = Aj
∂uj

∂ui′
, Aj = Ai′

∂ui
′

∂uj
(5.55)being uj = (u1, u2, u3) and ui′ = (u1′ , u2′ , u3′) two di�erent oordinate sys-tems (with the only limitation that their Jaobians are non zero).

5.4 Measurable omponents of the magneti �eldIn urvilinear metris the basis vetors are in general not adimensional anddo not have unitary length. To ompare reonstruted magneti �eld om-ponents with measurements, we need to go bak to �eld omponents thathave the right dimension of the measured �eld and the whole length (withoutsharing it with the basis vetor). It is enough to divide the basis vetors bytheir norm, but we need to pay attention to the fat that this an be donejust at the end of all the alulations, beause tensor alulus is based on thehypothesis of non�adimensional and non�unitary length basis vetors. For111



Covariant and ontravariant magneti �eld omponentsexample, writing a ∧ symbol on top of measurable omponents8:
B = Bi∇xi = B̂i∇̂xi = B̂i ∇xi

||∇xi|| (5.60)
= Biei = B̂iêi = B̂i

ei

||ei||
(5.61)with omponents

Bi = B · ∇xi (5.62)
B̂i 6= B · ∇̂xi = B · ∇x

i

||∇xi|| (5.63)
Bi = B · ei (5.64)
B̂i 6= B · êi = B · ei

||ei||
(5.65)An equal sign in eq.(5.63) and (5.65) an be used only for diagonal metris.For urvilinear metris (where the diagonal metri elements gii and gii arenot one the inverse of the other) one an only use

B̂i ≡
(
B · ∇xi

)√
gii = Bi√gii (5.66)

B̂i ≡
(
B · ei

)√
gii = Bi

√
gii (5.67)8with the de�nition for the normalized basis vetors:

b∇xi =
∇xi

||∇xi|| =
∇xip
gii

⇒ ∇xi = ||∇xi|| b∇xi (5.56)
bei =

ei

||ei||
bei =

ei√
gii

⇒ ei = ||ei|| bei (5.57)and
||∇xi|| =

√
∇xi · ∇xi =

p
gii (5.58)

||ei|| =
√

ei · ei =
√
gii (5.59)112



5.4 Measurable omponents of the magneti �eldthat arise from (5.60)�(5.61).9 10 11 12Hatted omponents have the dimension of the whole �eld, whereas the non�hatted omponents have dimension that depend on the dimension of thebasis vetors, and therefore on the hosen oordinates. In setion 9.2.3 somedimensional analysis an be found.Usually measurements are taken just outside the toroidal vauum vessel,for whih usually are used the mahine-toroidal-oordinates (rm, θm, ϕ) thatare linked to ylindrial (R,Z, ϕ) and Cartesian (x, y, z) oordinates by therelations:
x = R cosϕ = (R0 + rm cos θm) cosϕ (5.77)
y = R sinϕ = (R0 + rm cos θm) sinϕ (5.78)
z = Z = rm sin θm (5.79)With respet to the toroidal oordinates in appendix B.2.3 and hapter 3 onean see that the poloidal angle θm has the origin on the external equator andthat the shift term is not present in eq.(5.77). The vanishing of the di�er-9And the inverse

Bi =
bBip
gii

Bi =
bBi√
gii

(5.68)10Using ontravariant omponents to write the ovariant ones,
bBi = (gij B

j)
p
gii (5.69)

bBr = (grr B
r + grθ B

θ + grϕB
ϕ)

√
grr (5.70)

bBθ = (gθr B
r + gθθ B

θ + gθϕB
ϕ)

p
gθθ (5.71)

bBϕ = (gϕr B
r + gϕθ B

θ + gϕϕB
ϕ)

√
gϕϕ (5.72)for a general toroidal oordinate system. In the one of hapter 3 the terms grϕ and gϑϕare null.11In diagonal metris, for whih gdiagij = 0 for i 6= j and gdiagii = 1/(giidiag), again usingontravariant omponents to write the ovariant ones

bBidiag = Bi
√
gii = Bi

1p
gii

= giiBi
1p
gii

=
p
giiBi (5.73)

bBdiagi = Bi
p
gii = Bi

1√
gii

= giiB
i 1√

gii
=

√
giiB

i (5.74)12Just in diagonal metris gdiagii = 1/(giidiag). Therefore
bBidiag = Bi

√
gii = Bi

1p
gii

= B · ∇xi 1p
gii

= B · b∇xi (5.75)
bBdiagi = Bi

p
gii = Bi

1√
gii

= B · ei
1√
gii

= B · bei (5.76)using (5.56)�(5.57). 113



Covariant and ontravariant magneti �eld omponentsential shift leads to a diagonal metri13 for the mahine-toroidal-oordinates
(rm, θm, ϕ).To �nd the magneti omponents Brm , Bθm , Bϕ in this new oordinate sys-tem, beginning from the known ones in the (r, ϑ, ϕ) oordinates, one needsto use eq.(5.54) for the ontravariant omponents and eq.(5.55) for the o-variant ones. To �nd the (hatted) measurable omponents we an apply thenormalization in (5.66)�(5.67).To apply equation (5.54) one needs �rst to ompute all the derivatives be-tween the oordinates of the two systems. That is why it an be easy juston paper, and not in the real world, both from the analytial and numer-ial point of view. In order to make thing easier, we try to minimize thederivatives to be omputed: in this ase we an just �nd the magneti �eldomponents in the ylindrial (R,Z, ϕ) oordinates14, and projet these onthe mahine oordinates. In partiular, using (5.76) for the diagonal mahineoordinates,

B̂rm = B · êrm (5.80)
B̂θm = B · êθm (5.81)We an hoose any oordinate system to write the magneti �eld vetor B:we use the ontravariant omponents in ylindrial oordinates that an bewritten in terms of the known ontravariant omponents of the magneti�eld in the toroidal system (r, ϑ, ϕ)15 in a relatively easy way:

B = BR eR +BZ eZ +Bϕ eϕ (5.82)with
BR =

∂R

∂r
Br +

∂R

∂ϑ
Bϑ (5.83)

BZ =
∂Z

∂r
Br +

∂Z

∂ϑ
Bϑ (5.84)

Bϕ = Bϕ (5.85)From (5.80)�(5.81) we need to do the salar produts between the ovariant13The metris elements for the mahine-toroidal-oordinates (rm, θm, ϕ) an be derivedfrom the tensor metris elements of the geometrial oordinates ui = (r, θg, ϕ) in appendixB.2 simply vanishing the shift ∆(r).14Derivatives between the toroidal system (r, ϑ, ϕ) and the ylindrial one have alreadybeen alulated, equations (9.56)�(9.61).15setion 5.1 114



5.5 Some examplesbasis of the two oordinate systems16:
B̂rm = BR eR · êrm +BZ eZ · êrm +Bϕ eϕ · êrm (5.92)

= BR cos θm +BZ sin θm (5.93)
B̂θm = BR eR · êθm +BZ eZ · êθm +Bϕ eϕ · êθm (5.94)

= −BR sin θm +BZ cos θm (5.95)These are the omponents to be ompared with measures.Note that, beause √gRR = 1 =
√
gZZ , from eq.(5.75) BR = B̂R and

BZ = B̂Z .5.5 Some examplesSome example for the magneti �eld BWriting
B = Br er +Bϑ eϑ︸ ︷︷ ︸

Bpol

+Bϕ eϕ︸ ︷︷ ︸
Btor

, (5.96)in the toroidal oordinates (r, ϑ, ϕ) of hapter 3, the module of poloidal andtoroidal magneti �eld are:
Btor = Bϕ =

√
gϕϕB

ϕ (5.97)
Bpol =

√
g2
rr(B

r)2 + 2grϑBrBϑ + g2
ϑϑ(B

ϑ)2. (5.98)
Btor an also be identi�ed with the measured ovariant omponents Bϕ onthe normalized basis vetors eϕ.16

eR =
1√
gRR

∂x

∂R
=

“
cosϕ , sinϕ , 0

” (5.86)
eZ =

1√
gZZ

∂x

∂Z
=

“
0 , 0 , 1

” (5.87)
eϕ =

1√
gϕϕ

∂x

∂ϕ
=

“
−R sinϕ , R cosϕ , 0

” (5.88)
berm =

1√
grmrm

∂x

∂rm
=

“
cos θm cosϕ , cos θm sinϕ , sin θm

” (5.89)
beθm =

1√
gθmθm

∂x

∂θm
=

“
− sin θm cosϕ , − sin θm sinϕ , cos θm

” (5.90)
beϕ =

1√
gϕϕ

∂x

∂ϕ
=

“
− sinϕ , cosϕ , 0

” (5.91)115



Covariant and ontravariant magneti �eld omponentsWe an write also the modulus of the total magneti �eld
B = Bpol + Btor (5.99)
B =

√
B2
pol +B2

tor (5.100)Some example for the urrent density JFor a fore free equilibrium in Ation�Angle oordinates (setion 3.1.2) theaxi�symmetri urrent density is proportional to the magneti �eld througha oe�ient (σ(r)) whih is a funtion of r only17, that is
µ0J0 = σ(r)B0. (5.103)We use the straight �eld line oordinates (r, ϑ, ϕ) built for the axisymmetriequilibrium. From here,
Jr0 = 0 (5.104)
Jϑ0 =

σ(r)

µ0
Bϑ (5.105)

Jϕ0 =
σ(r)

µ0
Bϕ (5.106)The �rst order orretion to the axisymmetri equilibrium, omputing thetotal urrent density omponents from Ampère's law and plugging it intothe �rst-order fore balane equation18, where ui = (r, ϑ, ϕ), is

j×B0 + J0 × b =
1√
g
ǫijk(ĵiB̂j

0 + Ĵ i0b̂
j)∇uk = 0 (5.107)from whih one obtains

jrmn =
σ(r)

µ0
brmn (5.108)

jϑmn =
σ(r)

µ0
bϑmn +

i

m− n q
σ′(r)
µ0

brmn (5.109)
jϕmn =

σ(r)

µ0
bϕmn +

i

m− n q
σ′(r)
µ0

q(r) brmn (5.110)17The proportionality oe�ient is given by
σ(r) = − 1

Ψ′
P,0

d

dr
[K(r)ψ′

T,0] (5.101)with
K(r) =

R0

r

„
1 +

∆

R0
+

r

2R0
∆′ − r2

2R2
0

+ o(ǫ3)

«
. (5.102). 18Axisymmetri equilibrium quantities are written with apital letters to distinguishthem from the perturbative quantities. 116



5.5 Some examplesThe proportionality between perturbed radial urrent and perturbed radialmagneti �eld is similar to (5.103). Both Bi
0 and the perturbative ompo-nents bimn are omputed in setion 5.1.As in eq.(5.39) for the magneti �eld, due to the geometri toroidal oupling

J i ≡ J iSH(r, ϑ, ϕ) = J i0(r, ϑ, ϕ) +
m+1∑

m−1
n

ji,SHm,n (r) ei(mϑ−nϕ) + c.c.(5.111)for i = r, ϑ, ϕ.Writing
J = J i ei (5.112)

= Jr er + Jϑ eϑ︸ ︷︷ ︸
Jpol

+Bϕ eϕ︸ ︷︷ ︸
Jtor

(5.113)in the toroidal oordinates (r, ϑ, ϕ) of setion 3.1.1, the modulus of urrentdensity an be written as
J =

√
g2
rr(B

r)2 + 2grϑBrBϑ + g2
ϑϑ(B

ϑ)2 + g2
ϕϕ(Bϕ)2 (5.114)beause the elements gϑϕ = 0.In hapter 6 we will ompute the average of these quantities on �ux sur-faes.
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Covariant and ontravariant magneti �eld omponents
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Chapter 6AppliationsThe goal of this hapter is to show some possible appliation of the moreformal and theoretial part of the thesis till here presented.SHEq is the ode that omputes all the results, solving the formulas andmathematial expressions of the previous hapters for any of the de�nedoordinate systems. The starting point in SHEq are the �uxes and theirharmonis, reonstruted in the (r, ϑ, ϕ) oordinate system by some odeswritten to solve the Newomb�like equation in [53℄1.In this hapter one an �nd magneti �ux reonstrutions (setion 6.1), thede�nition of the �ux surfae averages of any plasma quantity, like the poloidalor toroidal magneti �eld or urrent density (setion 6.2), and the helialsafety fator pro�le (setion 6.3).For the �ux surfae reonstrution it is enough to know and ompute a �uxfuntion, e.g. the helial �ux in SHAx states, from equations olleted insetion 9.1.1. For the �ux surfae averages one needs to know a ompletehelial oordinate system, and to ompute any plasma funtion on theseoordinates. The formula for �ux surfae averages of plasma quantities intoroidal systems redues to the integrals on the two angular oordinates, thatmust be well de�ned on the helial axis of the system. It does not matterto have them de�ned as straight��eld�line (or Ation�Angle) oordinates,and one an hoose between any of the de�ned helial oordinates 2, eventhe geometrial one (χ, β, ϕ) in setion 4.2.1. For the helial safety fatorwe use the simple formula as the ratio between the di�erential of the twoangles, that is equivalent to the more general de�nition of the ratio betweenthe di�erential of the two �uxes only for Ation�Angle oordinates. Thisan be proved using the Hamiltonian mehanis, and in partiular we hoosethe (χ, uh, ϕ) or (χ, θ∗, ϕ) oordinate systems, where the physial meaningof the �uxes is lear (see setions 4.2.2 and 4.4.1).1Equations (3.36)�(3.37) in hapter 32Helial oordinates are de�ned in hapter 4 and their metris are olleted in thedetailed alulations in setion 9.2 119



AppliationsOther examples of appliations an be listed, and some of them areplanned to be matter of future work. In partiular, starting from the heli-al equilibria ompletely de�ned in hapters 4 and 9 (oordinates, Jaobian,metri tensor elements, q�pro�le, �uxes, �elds, ...), one an think to perturbit with a helial perturbation, in a way similar to that of hapter 3 and [53℄,where the axisymmetri equilibrium B0 was perturbed. In this way one anreonstrut the spetra and the pro�les of the harmonis of the helial per-turbation. This an be useful for example to onsider the dominant modein the m = 0 spetra (the m = 0, n = 7), negleted in SHAx states for now,but toroidally oupled with the m = 1 dominant mode, and essential to edgestudies in RFP mahines.Some other example of work in progress for the equilibrium evolution is pre-sented in hapter 7, where the problem of the Ohmi onstraint is taken intoaount.6.1 Flux surfae reonstrution: DAx and SHAxMagneti �ux surfaes in SH states are de�ned by the onstany of the heli-al �ux: χ = const with χ from (9.2). In �g.4.3 we have already shown the
χ ontour plot, whih gives the magneti �ux surfaes on the poloidal plane.With the SH, in this work, we model SHAx states. In the Introdution(hapter 1) we distinguish between SHAx and DAx states, both �avors ofthe more general QSH ondition. In �g.6.2 one an see both the DAx andSHAx (of the m = 1 spetrum) magneti topology on the poloidal plane.The magneti island an be learly seen during DAx states, with its typial
X�point and O�point. Inreasing the plasma urrent the amplitude of theresonant mode grows, and therefore the amplitude of the orresponding is-land. Beyond a threshold value of the amplitude of the dominant mode, the
X�point ollapses onto the original axisymmetri axis O′, ending with theSHAx states topology.With a not so bigger error (see �g.6.1), we model also DAx states as SHstates, in order to analyze them with the same model built for SHAx statesin this thesis. For example, �g.6.2 is built using the SHEq ode, i.e. usingthe SH hypothesis. The SHEq ode an distinguish between SHAx ad DAxstates as follows.Looking at eq.(9.4)

χ = χ0(r) + 2|χm,n|(r) cos(u+ φχ(r)) (6.1)We an �x the helial angle u for whih
cos(u+ φχ) = ±1 (6.2)
i.e. (u+ φχ) = 0, π (6.3)120



6.1 Flux surfae reonstrution: DAx and SHAx
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Figure 6.1: Left: Spetrum of the m = 1 mode during a SHAx state (shot23977 at t = 173.9 ms). Right: Spetrum of the m = 1 mode during a DAxstate (shot 23977 at t = 197 ms).

Figure 6.2: SHAx and DAx reonstrutions in the poloidal plane.In this way we obtain the χ̄�urve
χ̄ = χ0(r)± 2|χm,n|(r) (6.4)on the diameter passing through the points X −O′ −O.In �g.6.3 one an see the funtion (6.4) along the diameter. As one ansee during DAx states the helial �ux has three extremal points for whih

dχ/dr = 0: two minima in the X-point and O�point of the island, and onemaximum in the original magneti axis of the system, the O′�point. DuringSHAx states only the original O�point of the island is a speial point, where
dχ/dr = 0 de�nes a minimum. This orrespond to the new helial axis ofthe system. 121



Appliations

Figure 6.3: SHAx and DAx along the diameterIt is possible to think at two parts of the urve:
χ+ = χ0(r) + 2|χm,n|(r) ⇔ cos(u+ φχ) = 1 (6.5)
χ− = χ0(r)− 2|χm,n|(r) ⇔ cos(u+ φχ) = −1 (6.6)where χ− orrespond to the onvex part of the bean, whereas χ+ orrespondto the other side, where one an �nd the X�point and the O′�point. Notiethat it is enough to study the derivative of the funtion χ+ to distinguishbetween SHAx and DAx states: if dχ+/dr > 0 in eah point, the system isin a SHAx state; if dχ+/dr = 0 in some point, the system is in a DAx state.As one an see in �g.6.4, in the same way one an also distinguish betweendi�erent kinds of surfaes. For example, where

dχ+

dr
=
dχ0

dr
+ 2

d|χm,n|
dr

> 0 (6.7)we are hoosing the �ux surfaes between the X�point and the O′�point ofa DAx state (light yellow in �g.6.4).To onlude let us say that the shape of the helial �ux on the diameterdepends on the helial �ux eigenfuntion, and in partiular on the shape of122



6.1 Flux surfae reonstrution: DAx and SHAx

Figure 6.4: SHAx and DAx along the diameter, surfaesthe perturbation eigenfuntion χm,n(r). In �g.6.5a) one an see a good eigen-funtion pro�le, for whih an inrease of the amplitude brings from DAx toSHAx. During the porting of the SHEq ode to the MST devie in Madison,Wisonsin, we disovered that the shape in �g.6.5b) is not good : inreasingthe amplitude of the dominant mode it is not possible to reah SHAx states.Fig.6.5b) was the result of an initial mistake in the eigenfuntion reonstru-tions in MST, but brings to the awareness that the eigenfuntion must havea speial pro�le, similar to �g.6.5a).

Figure 6.5: SHAx and DAx along the diameter, surfaes
123



Appliations6.2 Flux surfae averagingThe �ux surfae average of a funtion f(x) is de�ned as the volume averageover an in�nitesimally small shell with volume ∆V , where ∆V lies betweentwo neighboring �ux surfaes with volumes V and V +∆V . It is denoted by
〈f〉, and it is equal to [51℄:

〈f(x)〉 ≡ lim
∆V→0

∫∫∫
f(x)d3x∫∫∫
d3xFollowing [51℄, it is possible to prove that the �ux surfae average of a generiquantity f(χ, θ, ϕ) in a toroidal system is given by

〈f〉 =

∫∫
dθdϕ

√
gf∫∫

dθdϕ
√
g

(6.8)where the integrals are over the poloidal�like and toroidal�like angles. TheJaobian must be onsistent with the hosen oordinate system. We anhoose any oordinate system de�ned on the helial �ux surfaes: to obtain(6.8) the only requirement is to work with a radial oordinate that is labelof the magneti �ux surfaes.As an example of the appliation of this formula, we show in the nextsetions the �ux surfae averages of some quantities de�ned in setion 5.5,suh as the toroidal and poloidal magneti �eld or the orrespondent urrentdensity omponents. Of these quantities we ompute the average on �uxsurfaes, in order to ompute radial pro�les.The �ux surfae average of the power balane equation in setion 6.2.2 bringsto an estimation of the thermal ondutivity.6.2.1 Magneti �eld and urrent density omponentsThe graphs of �g.6.6 are omputed using formulas of setion 5.5 for themagneti �eld and urrent density omponents. They show that the �uxsurfae average of the toroidal �eld omponent is monotonially dereasing,as for the standard ylindrial models of the RFP �elds, with a maximum(of 1.1 T in this 1.5 MA disharge) whih is now loated on the helial axis(∇ρh = 0), a slow derease in the entral part of the plasma, a knee around
ρh = 0.25, and a reversal in the outer part of the plasma. The poloidalomponent is also rather �at on the inner surfaes, where it has an almostuniform value around 0.5 T. The same features are displayed by the urrentdensity omponents, not surprisingly sine both the axisymmetri and thehelial equilibria are fore-free. The maximum toroidal urrent density, onthe helial axis, is around 6 MA/m2, while in the inner part of the plasmathe poloidal omponent takes values a little larger than 2.5 MA/m2. It anbe also remarked that for ρh > 0.8 the toroidal urrent density is negligible.124



6.2 Flux surfae averaging
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Figure 6.6: Left: Flux surfae averages of the toroidal and poloidal mag-neti �eld omponents. Right: Flux surfae averages of the toroidal andpoloidal urrent density omponents. The data refer to shot 24598, at
t = 174 ms.6.2.2 Thermal ondutivityThe thermal ondutivity κ3 an be omputed averaging the simpli�ed powerbalane equation, in its form valid for stationary �uids at rest4:

〈∇ · q〉 = 〈η J2〉 (6.12)under the hypothesis
q = −κn∇Te (6.13)3I all the thermal ondutivity with the symbol κ, to distinguish it from the helial�ux χ.4The more general power balane equation is written [58℄
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+
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P · ∇

”
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d

= J · E + J ·
“
u × B

”
− ρu · E

| {z }
e

(6.9)
p is the salar pression, P the tensor of pressure fores, u the main plasma veloity, q theheat �ux vetor, J the urrent density vetor, E the eletri �eld, B the magneti �eld,and ρ the harge density (null for neutral plasmas).One an �nd in [58℄ the physial meaning of all the terms in the equation: the �rst term ain the left�hand side of the equation represents the time rate of hange of the total thermalenergy density of the plasma (3p/2) in a frame of referene moving with the global meanveloity u. The seond, b, term ontributes to this rate of hange through the thermalenergy transferred to the volume element due to partile motion. The term c representsthe heat �ux and d the work done on the volume elements by all the pressure fores. Term
e on the left�hand side is the work done on the volume element by the eletri �eld in theframe of referene moving with the mean plasma veloity, E′ = E + u × B.It is easy to see that for stationary (d/dt = 0) �uids at rest (u = 0),

∇ · q = J · E (6.10)
= ηJ2 (6.11)if E = ηJ + u × B, but u = 0, from Ohm's law. Eq.(6.12) is the �ux surfae average of(6.11). 125



Appliationsfor the heat �ux q. η is the plasma resistivity and J the urrent density.
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Figure 6.7: Left: The eletron temperature pro�le Thomson satteringdata. Center: Flux surfae average of dissipated ohmi power. Right: Ther-mal ondutivity pro�le omputed from the surfae-averaged power balane.The data refer to shot 22182, at t = 49 ms.In �g.6.7 (enter) we plot the average ohmi power 〈η J2〉. In doing thisthe Spitzer-Härm resistivity formula has been used5, with the eletron tem-perature pro�le measured by the Thomson sattering system, and plottedin �g.6.7 (left). Furthermore, we have assumed a �at e�etive harge pro�lewith a value adjusted so as to math the total input power, P = V I, assum-ing stationary onditions. For this ase, the orretion fator turned out tobe equal to 1.75, whih appears a rather reasonable value6. It should be em-phasized that the average ohmi power pro�le ruially depends on the pro�le5Spitzer-Härm resistivity is proportional to the e�etive harge Z of the plasma andto T−3/2
e for the eletron temperature, [11℄.6The total input power

P = V (0) IP (6.14)where V (0) and IP are the loop voltage on the axis and the plasma urrent, must be equal126



6.2 Flux surfae averaginghosen for σ(r), as one an understand from the formulas for J in setion 5.5.The thermal ondutivity pro�le is omputed from the formula
κ = −

∫
〈ηJ2〉V ′ dρ

nV dTe
dρ 〈∇ρ · ∇ρ〉

(6.19)where V ′ = dV/dρ is the spei� volume, 〈∇ρ · ∇ρ〉 ≡ 〈g11〉 the �rst metritensor element for the hosen helial oordinate system, dTe/dρ the gradientof the eletron temperature pro�le in �g.6.7 (left) and n the eletron densitythat we onsider with a uniform pro�le. The thermal ondutivity pro�le isshown in �g.6.7 (right). It an be seen that the thermal ondutivity displaysa minimum, at a value around 8 m2/s, orresponding to the strong gradientin the temperature pro�le. This is an order of magnitude lower than valuesobtained in MH onditions [59℄. This is a typial situation during SHAxstates, where the strong temperature gradint is assoiated to the InternalTransport Barrier (ITB), [60℄.At the end of setion 6.3 we ompare the κ�pro�le with the safety fatorpro�le at the same time instant. The magneti equilibrium reonstrutionshows that ITBs are related to a peak in the non�monotoni q�pro�le.To onlude let us write the steps leading from (6.12) to (6.19): we needto use the formula for �ux surfae averages of a divergene
〈∇ · q〉 =

dρ

dV

d

dρ

[dV
dρ
〈q · ∇ρ〉

] (6.20)where V ′ = dV/dρ is the spei� volume and ρ the hosen radial oordinatethat labels the magneti �ux surfaes. Using (6.13) and ∇Te = (dTe/dρ)∇ρto
P =

Z
η J2 dV (6.15)We an write the resistivity η as

η = f(Z) ηZ=1 (6.16)where Z is the e�etive harge of the plasma. Computing ηZ=1 from Spitzer, and assuminga �at harge pro�le, we an adjust its value, through f(Z), so as to math the total inputpower:
P = f(Z)

Z
ηZ=1 J

2 dV = V (0) IP (6.17)therefore
f(Z) =

V (0) IPR
ηZ=1 J2 dV

(6.18)127



Appliationsonsidering Te ≡ Te(ρ):
〈∇ · q〉 = 1

V ′
d

dρ

[
− V ′ nκ

dTe
dρ
〈∇ρ · ∇ρ〉

]
= 〈η J2〉 (6.21)Integrating the two sides of the equation in dρ 7

∫
d
[
− V ′ nκ

dTe
dρ
〈∇ρ · ∇ρ〉

]
=

∫
〈η J2〉V ′ dρ (6.22)

−V ′ nκ
dTe
dρ
〈∇ρ · ∇ρ〉 =

∫
〈η J2〉V ′ dρ (6.23)

κ = −
∫
〈ηJ2〉V ′ dρ

nV dTe
dρ 〈∇ρ · ∇ρ〉

(6.24)that is exatly (6.19).6.2.3 ASTRAThe omputation of �ux surfae averages of di�erent quantities is also anessential step for building transport equations depending on one oordinateonly (the �ux surfae label).An example for this is the transport ASTRA ode [61℄, built for Tokamakommunity and then modi�ed both for Stellarators and RFPs.We do not go into ASTRA details, beause transport studies with this odein RFX are just now started and will be matter of future work. We mentionit here beause the SHEq ode is at the moment the only ode in RFX thatan ompute the helial equilibria of SHAx states and ompute averages onits magneti �ux surfaes.The main di�erene between ASTRA for Tokamaks and for non�axisymmetrimahines is the equilibrium reonstrution. For Tokamak disharges ASTRAomputes the equilibrium solving the Grad�Shafranov equation. For non�axisymmetri equilibria the Grad�Shafranov equation is not valid anymore,and ASTRA asks for the equilibrium parameters as an input.One an �nd the whole set of equilibrium parameters that ASTRA needsto evolve all its transport equation in the manual. Here we ite just someexample:
V ′ =

dV

dρA
, g11 = 〈∇ρA · ∇ρA〉 , ... (6.25)where we hoose ρ = ρA from (4.64) in order to work with a radial variablein meters8.7All the funtion are null on the helial axis.8One an see setion 9.2.2 for some example on how the metris elements hangeshanging the radial variable 128



6.3 Helial safety fator pro�leIn setion 7.3 one an �nd the �rst example of transport studies duringhelial states performed in RFX in ollaboration with the Theory Groupof TJ-II, Ciemat, Madrid: the evolution of the helial rotational transform,that is the inverse of the helial safety fator de�ned in setion 6.3.6.3 Helial safety fator pro�leIt is possible to use di�erent equivalent de�nitions of the q�pro�le, or of itsinverse, the rotational transform ι 9. In partiular one an use the baside�nition of the rotational transform as the number of turns of a magnetiline around the magneti axis that, in axi�symmetri on�gurations, we anusually think as the enter of the vauum vessel. In SHAx states the mag-neti axis is instead the helial axis, but the number of turns around thelatter has a simple relation with the number of turns around the enter ofthe vauum vessel: we must simply add the n = 7 turns of the helial axisaround the enter of the vauum vessel to the turns of the magneti linearound the helial axis10. We will prove this using two Ation�Angle oor-dinate systems introdued in hapter 4: (χ, uh, ϕ) and (χ, θ∗, ϕ). To on�rmmy results we will ompare them with the results obtained in [60℄, wherethe number of turns around the enter of the vauum vessel are ounted outusing the ORBIT �eld line traing ode [63℄.In hapter 4 we �nd good Ation�Angle oordinate systems valid in SHAxstates, and we an therefore use the de�nition of the rotational transformvalid in straight �eld line oordinates to ompute the helial safety fator.Using the (χ, uh, ϕ) oordinates de�ned in setion 4.2.2,
ιh =

duh
dϕ

=
dχ

dψh
(6.26)where the seond equivalene derives from the de�nition of the equations ofmotion for Ation�Angle oordinates in Hamiltonian ontext11: remember-ing the identi�ation of the helial oordinates (χ, uh, ϕ) with the anoni-al variables that we saw in setion 4.2.2, this de�nition of the rotationaltransform has the expeted form of the anonial equation of motion (q̇i =

∂H/∂pi) one ϕ has been hosen to be the anonial time. As expeted, theAtion ψh(χ) is a onstant of the motion.If we write the number ι of turns around the enter of the vauum vessel9As said in the introdution, we use the symbol ι (whih rigorously is the averagepoloidal angle desribed by a �eld line per toroidal turn) instead of -ι = ι/2π.10Referenes for that an be found for example in old Stellarator papers, as [62℄11When using Ation�Angle oordinates the safety fator an be de�ne either withthe ratio between �uxes or between oordinates. This arises immediately from anonialequation. 129



Appliationsin the equivalent way as the ratio between the di�erential of the poloidaland the toroidal �ux enlosed by the helial �ux surfaes Σ(χ), ι an be alsowritten as
ι =

dθ∗

dϕ
=
dψP
dψh

, (6.27)remembering the result of setion 4.2.2, where ψh turned out to be thetoroidal �ux. Again, the equivalene with the ratio between the oordi-nates is due to Hamiltonian mehanis and it is true just for Ation�Angleoordinates.As we have already said, we an also write12
ι = ιh + n . (6.30)The ιh rotational transform is omputed by the SHEq ode using the anoni-al de�nition (6.26) and the Ation�Angle oordinates (χ, uh, ϕ). The moreommon de�nition of the rotational transform ι as the ratio (6.27) is easilyomputed using (6.30), and the resulting safety fator pro�le q = 1/ι an beseen in the top frame of �g.6.8 up.In �g.6.9 one an see the good agreement in the q�pro�les omputed bythe SHEq ode from formula (6.30) (red) and by the ORBIT ode (blue),i.e. as the number of turns around the enter of the vauum vessel.Fig.6.8 top and �g.6.9 show a typial q�pro�le for SHAx states, reversed,symmetri with respet to the helial axis and almost �at in the inner bean�shaped �ux surfaes region. If we ompare the eletron temperature pro�lefrom Thomson sattering data (�g.6.8 bottom) with the safety fator pro�le,we an identify a maximum of the q in orrespondene of the steep tem-perature gradient. The steep gradient is related to very low value of thethermal ondutivity (remembering the results in setion 6.2.2) and we antherefore say that the q�pro�le has a maximum in orrespondene of theInternal Transport Barrier (ITB) that delimits the hot bean�shaped ore ofSHAx states [60℄. The maximum in the q�pro�le is found to be related tothe original rational surfae of the dominant mode (m,n) = (1, 7) (whihdisappeared in the transition from DAx to SHAx state) and ITBs are always12We an prove this relation in this way:

ιh =
dχ

dψh
=
dψP − ndψh

dψh
=
dψP
dψh

− n ≡ ι− n (6.28)using eq.(4.66), χ = mψP − nψT for m = 1.Or we an write the same using the ratio between the angular oordinates:
ιh =

duh
dϕ

=
dθ∗ − ndϕ

dϕ
=
dθ∗

dϕ
− n ≡ ι− n (6.29)obtaining the same result beause both the (χ, uh, ϕ) and (χ, θ∗, ϕ) are straight �eld lineoordinate systems. We used here eq.(4.80) for the poloidal angle θ∗.130



6.3 Helial safety fator pro�le

Figure 6.8: Up: helial q�pro�le omputed by SHEq from the inverse ofequation (6.30). Down: Eletron temperature pro�le from Thomson satter-ing data. Reonstrution for shot 23977, time 173 ms at the toroidal position(ϕ = 82.5◦) of the Thomson Sattering measurements. The absissa ρh isthe square root of the normalized helial �ux (4.2).found in this position during SHAx states.Let us go bak to the physial interpretation of the angles uh and θ∗(setion 4.4) and therefore of the rotational transform ι and ιh de�ned ineq.(6.26)�(6.27): uh is turning around with a �xed phase with respet to thebean (let us say always on the onvex part of the bean, for φχ = 0), whereas
θ∗ is �xed on the horizontal plane (and an be assoiated to the laboratoryframe of referene). Beause of this one an think at ι as the number of turnsof a magneti �eld line ounted by the laboratory frame, that will also see
n = 7 turns of the bean for eah toroidal turn. On the other side, ιh an bethought as the number of turns of a magneti �eld line ounted by the loalframe of referene of the bean, that will of ourse not see the n = 7 turnsaround the helial axis.The rotational transform is a physial quantity whose pro�le does not de-pend on the hosen oordinates. Relation (6.30) shows that the pro�les arejust displaed by a onstant when we hange the oordinate system, and itis nothing but the relation between the de�nition of ι in two di�erent framesof referene.To onlude we want to stress that ιh is one of the Stellarator hoie forthe rotational transform: ιh = 0 orresponds to a magneti �eld line thatafter one toroidal turn goes bak exatly in the same poloidal and toroidalposition. Therefore what Stellarator omunity all poloidal angle is what weam alling helial angle in this thesis.An interesting ollaboration is going to start with TJ-II Theory Group, be-131



Appliations

Figure 6.9: q�pro�les on the horizontal diameter of the vauum vessel.Blak : q�pro�le omputed by the ORBIT ode; green: q�pro�le omputedby the SHEq ode from the inverse of equation (6.30). Shot 23977, time 173ms, toroidal angle=255.8◦. A vertial line marks the radius of the enter ofthe vauum vessel and a horizontal one the q = 0 line where the toroidalmagneti �eld reverses.ause of the similarities between their rotational transform pro�le and our,inside the bean�shaped magneti �ux surfaes. In partiular, the almost�at rotational transform pro�le and absolute values between zero and two.The di�erene that an be studied are the sign of the derivative of both therotational transform and of the averaged magneti well.
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Chapter 7Equilibrium evolution: theOhmi onstraint7.1 The Ohmi problem in RFPsAs seen in the introdution (se.1.2.4), a dynamo is ating in RFP plasmas,in order to provide the reversal and maintain the on�guration for timeslonger than the resistive ones.No dynamo an sustain (and therefore no reversal an be sustained by) anaxi�symmetri magneti �eld. This is known in astrophysis as the Cowling'stheorem and by extension one an speak of a Cowling's theorem for the RFP:at least one mode of a perturbation to the axi�symmetri on�guration mustbe present to sustain the reversal, through a dynamo (v × B) term in theparallel Ohm's law:
〈E‖〉+ 〈v ×B〉‖︸ ︷︷ ︸dynamo = 〈ηj‖〉 (7.1)with an eletrostati1 �eld E

E = −∇φ+ E0 (7.2)where φ is the eletrostati potential related to a harge distribution and E0the indution eletri �eld related to the axial loop potential. 〈...〉 means theaverage on magneti �ux surfaes.The dynamo proess is usually assoiated to the e�et of perturbations in thequadrati (v×B) term, but without an explanation of the origin of the ve-loity �eld. In the laminar SH ase (where just one mode of the perturbationis present) the plasma �ow v an be thought as a mere eletrostati drift,due to the helial distortion of the plasma2. This piture of the dynamo has1Imagining a steady state ohmi equilibrium.2One may think for the SH ase at the perturbed magneti �ux surfaes of SHAx states.133



Equilibrium evolutionbeen extended also to the MH ase (where many MHD modes are presentin the perturbation) [64℄. In �g.7.1 is shown that both the eletrostati andthe standard piture of the dynamo are equivalent, but the former has themerit of giving a �rst explanation of the origin of the veloity �eld.The problem of an ohmi reversal has been studied sine the beginning of theRFP history, and the emergene of the SH piture is the �rst step beyondTaylor's theory (se. 1.2.5), the bakbone of RFPs till the late 90's. We willdesribe the present status of the theory of helial RFP equilibrium just ina qualitative way (for more details see for example [65℄).J. Finn, R. Nebel and C. Bathke [10℄ prove the impossibility of an ohmireversal of the toroidal �eld in a pure poloidal or toroidal symmetry3. Thisis done in an analytial way, using the parallel averaged Ohm's law and thefore free fore balane equation4. In the same paper, an equation (but �rstwritten by V. D. Pustovitov [66, 67℄)5 for the axial magneti �eld pro�le Bzis also given in the ase of helial symmetry, in a periodi ylinder6.Without going into the analytial steps, we just write the V.D. Pustovitov'sand J. Finn's equation7, the so�alled Pinh�Stellarator equation, where theStellarator term S(ρ) is the term that may provide the reversal of 〈Bz〉:
d

dρ
〈Bz〉 =

E0

〈ηB2〉〈Bz〉+ S(ρ) (7.3)
ρ is a label of the helial magneti �ux surfaes and E0 the eletri �eldomponent related to the toroidal loop voltage Vt. Equation (7.3) is a �rstorder di�erential equation for 〈Bz〉, whih is obtained by ombining the heli-al Grad�Shafranov equation8 and the averaged parallel Ohm's law (in forefree onditions).The Stellarator term S(ρ) is a term dominated by geometry, and vanishesfor a pinh with axial symmetry. In a Stellarator (sine E0 = 0) it is the onlyterm providing the variation of 〈Bz〉. When S = 0 due to axi�symmetry,
〈Bz〉 annot reverse, whih is a way to reover Cowling's theorem. Equation(7.3) an be formally integrated, and only9 a positive S(ρ) may a priori pro-vide the reversal of 〈Bz〉.The Pinh�Stellarator equation (7.3) is the �rst indiation of the modernview of the helial (SH) RFP, where the on�guration is linked with a he-lial deformation of the plasma olumn, and the reversal is a onsequene3Before them other investigated the problem of Ohmi reversal for magneti �eldssymmetri by an axis, see hapter 5 in [56℄ and referenes therein.4See omments to equation (A.39) in appendix A.25See also P. N. Vabishhevih et al (1983), [68, 69℄.6Bz orresponds to the toroidal magneti �eld pro�le in a torus.7Equation (10) in Pustovitov's paper, [66, 67℄; equation (35) in Finn's paper, [10℄8The Grad�Shafranov equation is derived using the fore balane equation and Am-père's law, for the ase of null pressure and veloities. For the helial Grad�Shafranovequation on a ylinder see for example [70℄.9At least in a �nite edge radial domain in ρ.134



7.1 The Ohmi problem in RFPsof a loss of axi�symmetry of the ylindrial pinh. This piture enables thedesription of the RFP through the simple wire model, whih exhibits a self�organized magneti system with �eld reversal where the loss of ylindrialsymmetry is essential and due to a kink instability10 (setion 1.2.5).The analytial desription of the RFP is not omplete, e.g. there is nota neessary and su�ient riterion for S(ρ) to have the right sign to providethe reversal of the axial magneti �eld.Nevertheless a neessary riterion has been found. Analytially, the SHohmi states are frequently ([70, 71℄) desribed as a small helial pertur-bation of an axi�symmetri ohmi pinh (with small edge ondutivity andsmall edge axial magneti �eld), alled ultimate pinh. Taking the ultimatepinh as the zeroth order equilibrium, and applying a seond order pertur-bative theory to the Pinh�Stellarator equation (with the amplitude of thehelial perturbation as a small parameter), D. Bon�glio et al. in [71℄ derivea neessary riterion for the reversal of 〈Bz〉.If the analytial desription is not omplete, from the numerial point ofview the existene of an ohmi reversal for a ylindrial pinh with heliallydeformed magneti �ux surfaes has been proved by [8, 9℄, using a viso�resistive ompressible non�linear MHD model in the onstant�pressure andonstant�density approximation.Numerial simulations show that the neessary riterion works also for largevalues of the perturbations to the pinh, so the riterion is more general thansuggested by the perturbative approah used for its derivation [71℄. Numer-ial simulations reveals also that, in the presene of a helial perturbation,the reversal is easier when a �nite edge radial magneti �eld (that usually isvanishing with a perfet onduting shell) is applied. Experimental resultsagree with numerial simulation, and the neessary riterion is found to besatis�ed in RFX�mod experiment during SHAx states, with a non zero edgeradial magneti �eld imposed by the ative ontrol [71℄.The present understanding of the RFPs gives also some explanation ofthe dynamo proess. Let us brie�y see some of these onsiderations, [72℄.In the standard invoation the dynamo eletri �eld results from the e�etof the perturbations in the quadrati (v ×B) term. On the other hand, inthe laminar SH ase the plasma �ow an be thought as a mere eletrostatidrift, due to the helial deformation of the magneti �ux surfaes: in the SHpiture, when a RFP on�guration appears, the gradual loss of the axial�symmetry of the magneti �eld produes a urrent density modulation j‖along the magneti �eld lines. A urrent density modulation requires amodulated ohmi eletri �eld (along these lines), whih drives a harge10(m,n) = (1, n), kink instability due to q < 1.135



Equilibrium evolutionseparation to balane it: the distribution of the harge separation (ρc) isontinuous and helially symmetri. It is related to an eletrostati potential
φ, and an be omputed through Laplae's equation11. The orrespondingeletrostati �eld E = −∇φ is the required eletri �eld neessary to providethe helial modulation of the parallel urrent density j‖.It is possible to prove [73℄ that the standard and the eletrostati piture ofthe dynamo are equivalent.The ontribution of the eletrostati �eld to the dynamo an be quanti�edusing the spatial mean (over the poloidal angle and the axial oordinate zand indiated with the symbol 〈...〉s)12 of the parallel Ohm's law: with theeletri �eld from eq.(7.2), the Ohm's law (E = ηJ− v×B) an be writtenas:

E0 −∇φ = ηJ− v ×B (7.4)Projeting now the two sides of the Ohm's law on the total (helial) magneti�eld, the term v ×B vanishes and :
E0 〈Bz〉s − 〈∇φ ·B〉s = 〈ηJ ·B〉s (7.5)beause E0 ‖ ez.Looking at the radial pro�les of this equation in �g. 7.1 a) and omparing thespatial mean of this equation with the averaged Ohm's law in eq.(7.1), onean see that the di�erene between the indution eletromotive fore term,proportional to E0, and the mean parallel urrent density is balaned by theeletrostati term 〈∇φ ·B〉s. Therefore this is the term that provides whatare often named the anti�dynamo term in the ore and the diret�dynamoat the edge.The standard view, where the dynamo term has the form v×B, is reoveredprojeting the two sides of the Ohm's law (eq.(7.4)) on the axi�symmetriomponent B0 of the magneti �eld:

E0 〈ez ·B0〉s − 〈(v ×B) ·B0〉s = 〈ηJ ·B0〉s (7.6)The term due to the eletrostati potential vanishes sine ∇φ has no axi�symmetri omponents, and the dynamo/anti�dynamo term is provided bythe usual 〈(v ×B) ·B0〉s term. This an be seen in �g. 7.1 b).Therefore both the eletrostati and the standard piture of the dynamo areequivalent. However the latter is unable to explain the origin of the veloity�eld, while the former does: the helial modulated eletrostati potentialbrings a omponent of the eletri �eld (E = −∇φ) perpendiular to themagneti �eld B. This omponent drives a v = E × B motion, whose nonaxi�symmetri part is exatly the dynamo veloity �eld.11From the divergene of the eletrostati eletri �eld E = −∇φ, the laplaian of φyields the harge density due to the ambipolarity onstraint (∇2φ = ρc).12It oinides with the �ux surfae averages on the irular �ux surfaes of the axi�symmetri magneti �eld B0. 136



7.2 The Ohmi onstraint in SHEq

Figure 7.1: Reprodued from S. Cappello et al., [21℄. Radial pro�les ofmean parallel Ohm's law omponents, in the Single Heliity steady state. a)Ohm's parallel to the total magneti �eld. b) Ohm's law parallel to the meanmagneti �eld.7.2 The Ohmi onstraint in SHEqAs seen in the previous setion 7.1, one would require Ohm's law to be validfor the helial equilibria.The main work of this thesis looks for the desription of the helial SHAxstate RFP equilibria, now omputed by SHEq ode. The equilibrium sys-tem of equations that is solved for SHEq does not aount for Ohm's law(hapter 3): a natural question whih arises when a SHEq equilibrium hasbeen omputed is therefore whether the large urrent �owing in the plasmais onsistent with Ohm's law.Let us go bak to the Ohmi onstraint in equation (A.36), written for astationary equilibrium:
Vt
2π
〈Bϕ〉 = η〈j ·B〉 . (7.7)In equation (7.7) Vt the toroidal loop voltage, and we an hek a posterioriif it is veri�ed by SHEq's equilibria.The two sides of the Ohmi onstraint (7.7) an be omputed by SHEq.The magneti �eld B, its toroidal ontravariant omponent Bϕ and the ur-rent density J are omputed as explained in setion 5.5. As for the powerbalane desribed in setion 6.2.2, a �at Zeff pro�le has been assumed, andthe toroidal loop voltage Vt is an experimental onstant value (see appendixA).The two sides of the Ohmi onstraint are plotted in Fig. 7.2 for a typial1.5 MA SHAx state. A remarkable disrepany an be seen, with the �rstterm being larger than the seond one in the inner portion of the plasma,and smaller in the outer one. Suh disrepany ould be partially resolvedassuming a pro�le of e�etive harge with a peak in the enter of the plasma,instead of the �at pro�le whih has been assumed here. Even if this is the137



Equilibrium evolution

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0

2

4

6

8

10

η<
j.B

>
,V

t<
B

φ >
/2

π 
(T

V
/m

)

η<j.B>

Vt<Bφ>/2π

Figure 7.2: Left hand side (open irles) and right hand side (solid irles)of equation (7.7), plotted as a funtion of the e�etive radius ρ. The datarefer to shot 22182, at t = 49 ms.ase, the α − Θ0 model assumed for the zeroth-order parallel urrent den-sity appears anyway to be not appropriate, sine in the outer part of theplasma the pro�le of 〈Bϕ〉 hanges sign, whereas the other one does not.This requires either to assume a pro�le of σ13 hanging sign in this region,or a residual dynamo ontribution of the seondary modes. Moreover, theOhmi onstraint, that SHEq's equilibria do not satisfy, has been alulatedfor stationary equilibria: we an onsider them non steady state equilibria.These onsiderations point to the need of performing equilibrium alu-lations whih take into aount the Ohmi onstraint.In setion A.5 we introdue an equation for the time evolution of a nonsteady state equilibrium, that aounts for the Ohm's law in its formulation(the Ohm's law with non stati eletri �eld). The evolution of non steadystate SHEq's equilibria is an ongoing work in ollaboration with the TheoryGroup of TJ-II, Ciemat (Madrid) (setion 7.3.2).Moreover, in the Theory program for 2012 for RFX�mod we would alsolike to write a ode for omputing the dominant mode eigenfuntion with ageneri urrent density pro�le, based on the algorithm now used to omputethe eigenfuntion of poloidal and toroidal �uxes using Newombâ��s equa-tion (see hapter 3). The ode will be integrated with the SHEq ode foromputing helial equilibria in QSH states, thus inreasing its �exibility andallowing it to explore the e�et of the urrent pro�le on the helial equilibriaand in partiular of an ohmi axi�symmetri urrent density J0 satisfyingOhm's law.13The proportionality between the magneti �eld and the plasma urrent density, infore free onditions: j = σB. 138



7.3 The equilibrium evolution7.3 The equilibrium evolutionIn the appendix regarding the MHD equations, a setion (se. A.5) is devotedto the derivation [74℄ of an equation for the time evolution of the rotationaltransform (for its inverse, the safety fator pro�le, see setion 9.3.1), om-patible with Ohm's law and suitable for inlusion in numerial simulations.A ollaboration with the Theory Group of the TJ-II Stellarator devie(Ciemat, Madrid) started with the objetive of evolving eq.(A.62) for the ro-tational transform (or equation (9.141) for the safety fator pro�le), in orderto reah a steady state ohmi equilibrium, both for TJ-II and for the helialSHAx states in RFX�mod. This is of ourse of interest for RFX�mod be-ause (setion 7.2) it has been shown that the helial equilibria omputed bySHEq ode do not satisfy the Ohmi onstraint (eq. (7.7)), and are thereforenot steady state equilibria. The interest for TJ-II is in order to analyze thedisharges with non null plasma urrent: with some ohmi urrent �owingin the plasma, even their equilibria evolve in time aordingly to eq.(A.62),[75℄ 14.Both the evolution of the rotational transform for TJ-II and of the helialsafety fator pro�le in RFX�mod are done using the ASTRA transport ode:some ASTRA subroutines have been written in order to evolve the equation(that is not an equation already inside ASTRA) in an iterative way.The work done for TJ-II disharges is presented in setion 7.3.1, the one forRFX�mod in setion 7.3.2.For a omplete spei�ation of the evolution problem, we need to speifythe boundary ondition for the rotational transform ι (or the safety fatorpro�le q), and to hoose a radial variable ρ to label the magneti �ux sur-faes15.For onsisteny, however, to obtain a good desription of the plasma evolu-tion, the geometry (and therefore the radial variable ρ and the Sij elements)must be frequently realulated, to aount for the hanges due to evolvingof the equilibrium and therefore of the magneti �eld on�guration. Thiswill be done by the VMEC equilibrium ode.In RFX�mod, due to the presene of the reversal surfae at the edge, thesafety fator pro�le is evolved instead of the rotational transform, and the14The on�guration is not the vauum steady state equilibrium de�ned by
ι = −S12

S11
(7.8)15Of ourse all the equilibrium quantities, as for example the suseptane matrix el-ements, must be alulated with the same hoie of the radial variable ρ (see setion9.2.2). 139



Equilibrium evolutionmonotoni poloidal �ux is hosen as radial variable instead of the non mono-toni toroidal one (remember �g.4.5). The toroidal �ux is a good hoie forthe radial variable in TJ-II.7.3.1 The time evolution of ι for TJ-II (Ciemat, Madrid)The evolution equationThe equation for the Ohmi time evolution of the rotational transformis:
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V is the volume enlosed inside the ρ = const �ux surfaes, ψt and ψp thetoroidal and poloidal �ux respetively, η‖ the parallel resistivity. Js is theontribution of the Bootstrap urrent, that we write here for ompleteness,but that we neglet from now on.Equation (7.10) has been derived in appendix A.5 (see equation (A.62)) usingthe averaged Ohm's law and Faraday's law, together with the suseptanematrix elements Sij whih relates the urrents and the radial derivative ofthe �uxes (Ampère's law). The suseptane matrix has been better de�nedin appendix A.3.Equation (7.10) takes di�erent forms depending on the hoie of the radialvariable ρ (used to label magneti �ux surfaes and therefore to ompute allthe equilibrium quantities). For TJ-II it has been hosen:

ρ =

√
ψt

ψt,max
ρN =

√
ψt

Bπa2
ρN (7.11)whih means

ψt =
Bπa2

ρ2
N

ρ2 (7.12)
ψ′
t =

Bπa2

ρ2
N

2ρ (7.13)
∂

∂ψt
=

ρ2
N

πBa2

1

2ρ

∂

∂ρ
(7.14)140



7.3 The equilibrium evolutionIn these equations B is the magnitude of the axial toroidal �eld and ρN is aonstant with the dimensions of a lenght, for whih one an hoose ρN = a,where a is the minor radius of the vauum hamber. This is a useful hoiefor the radial variable in ASTRA, that usually has the dimension of a lenght([m℄), [61℄. With this hoie of ρ, eq.(7.10) beomes:
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] (7.15)The �rst term of this equation is proportional to the time derivative of thetoroidal �ux (and therefore of the radial variable). We do not onsider thisterm, on�dent that it has only a weak in�uene on the evolution [74℄ andthat it is anyway onsidered when realulating the geometry (and thereforemagneti �elds and �uxes) after some step of the equilibrium evolution. Thelast term of equation (7.15) is related to the Boostrap urrent, and we negletit. With ASTRA just an approximate expression is therefore evolved:
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)] (7.16)To evolve this equation we need to �x also the boundary ondition for therotational transform: ι(ρ = a). Using for ι the equation (A.50) in theappendix16
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(7.18)and remembering the hoie for ρ, the boundary ondition an be:
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) (7.20)where, for the toroidal urrent I, I(ρ = a) = IP with IP the plasma urrent(experimental value).The iterative model in ASTRA16Equivalent to eq.(8) in [74℄.Due to some numerial error, future work will try di�erent boundary ondition for therotational transform. For example, eq.(7.18) an also be written as ([74℄)
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S22I − S12F
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(7.17)where I and F are the toroidal and poloidal urrent of eq. (A.43). Using I(ρ = a) = IPand the omputed values of F (ρ = a) and of Sij(ρ = a) (out of VMEC), one an use thisformula for the boundary ondition. 141



Equilibrium evolution

Figure 7.3: The iterative model sheme for the solution of the equilibriumtime evolution with ASTRA and its subroutines: EQUILVMEC runs VMECand omputes the equilibrium quantities in Boozer oordinates; IOTAEVOLwrites the RHS and the boundary ondition for the equation that ASTRAmust evolve. The onsistent problem implies updating the metris to be readby IOTAEVOL after several steps in the evolution with a �xed metris.
As said in setion 6.2.3, the ASTRA transport ode was initially writtenfor the analysis of Tokamaks' disharges, and only afterwards modi�ed towork also with non axi�symmetri geometries, like Stellarators' ones (or thehelial geometry of a SHAx state in RFPs). When ASTRA runs for nonaxi-symmetri on�gurations, it an not ompute the equilibrium by itself,but it needs a list of equilibrium quantities as an input [61℄.ASTRA runs reading an input �le with experimental data and equilib-rium quantities, and a model �le where all the instrution for the transportanalysis are listed.The right hand side (RHS) of equation (7.16) is desribed to the ASTRA142



7.3 The equilibrium evolutionevolution solver as a soure term, with zero di�usivity17 [61℄. This is writtenin the model �le, that also alls two di�erent subroutines (EQUILVMECand IOTAEVOL) in the iterative sheme of �g. 7.3. The �rst one runs theVMEC equilibrium ode and writes a text �le with all the useful equilibriumpro�les. The seond one writes the RHS of equation (7.16) for ASTRA evo-lution.EQUILVMEC: It is the subroutine written to ouple the transportode ASTRA with the equilibrium ode VMEC.EQUILVMEC �rst writes the input �le for VMEC, reading ASTRA's out-put: the toroidal �ux and the rotational transform pro�les, together with theplasma urrent and the total value of the toroidal �ux at the edge. Then, itexeutes the VMEC ode and the ode to onvert the equilibrium quantitiesto Boozer's straight oordinates. A modi�ed version of this ode writes in atext �le (named metris-average) a set of radial pro�les18: useful to evolveequation (7.16) are the Sij suseptane matrix elements, the rotational trans-form and the poloidal and toroidal urrents (F and I respetively).The output of EQUILVMEC are read by the seond subroutine, IOTAEVOL.IOTAEVOL: It is the subroutine that writes the RHS of the evolutionequation (7.16) and the boundary ondition, reading the text �le (metris-average out of EQUILVMEC) where all the useful radial pro�les are writtenin Boozer oordinates.Its output is therefore the RHS equation that ASTRA must evolve and theboundary ondition for the evolution.Reading IOTAEVOL's outputs, ASTRA an evolve the rotational trans-form aordingly to equation (7.16) and to the boundary ondition (7.19).Going bak to the iterative sheme of �g.7.3, the evolution must be fre-quently19 stopped, VMEC must be run again to ompute the new equilib-rium pro�les from the evolved rotational transform, and a new RHS (togetherwith its boundary ondition) must be updated.The odes are prepared for this kind of self onsistent evolution of the rota-tional transform that implies updating the metris to be read by IOTAEVOLafter several steps in the evolution (with a �xed metris). It is worth noting17The di�usion equation employed in the ASTRA ode is:
∂A

∂t
= 〈∇ · (D∇A)〉 + S(ρ) (7.21)for any quantity A(ρ). The �rst term is the di�usive one (that ould also aount foronvetive transport with an e�etive di�usion oe�ient Deff ) and S(ρ) the soure term.We ould not separate equation (7.16) in this form, hoosing therefore to write the RHSall in the soure term S, with zero di�usivity.18All the radial pro�les are omputed using the hosen radial variable ρ, eq.(7.11)19Future work must �nd a quantitative value for this frequently.143



Equilibrium evolutionthat during the evolution with a �xed metris the evolution of the RHS isonly due to the evolution of the rotational transform (beause their expliitlydependene in the form of equation (7.16)) while the Sij elements are �xed.

Figure 7.4: Equilibrium pro�les related to the rotational transform pro�leobtained for plasma urrent IP = 500 A (top�left in blak) and useful toevolve equation (7.16): the RHS; the suseptane matrix elements S11, S12and S22. All the pro�les are written in Boozer oordinates for the hosenradial variable in the text �le metris_average and represent the equilibriumduring the "initial step" of the evolution. In top�left �gure, the red rotationaltransform pro�le is related to the vauum one for omparison. In top.�right�gure, the RHS values are residual, this is why it looks steep.The model and the subroutines have been written during my stay inMadrid.Just some heks have been done at this time for the mentioned evolutionsteps. In �g 7.4 one an see the plot of some important quantities, as theRHS and the suseptane matrix elements for the initial rotational transformpro�le (obtained for plasma urrent IP = 500 A).Some preliminary resultStellarators' disharges an be urrent�free, whih means that I = 0, and144



7.3 The equilibrium evolution

Figure 7.5: Top: some intermediate moment of the ASTRA time evolutionof the rotational transform and the RHS from some equilibrium with Ip 6= 0to the steady state equilibrium with Ip = 0. The initial equilibrium stateis the one obtained for IP = 500 A and showed in �g.7.4. In blak theinitial equilibrium pro�les, in red the �nal steady state ones, olors for nineintermediate pro�les. Bottom: the evolved rotational transform pro�le(blak line) and the vauum one (red points) that perfetly overlap.
145



Equilibrium evolutiontherefore (see equation (A.50))
ι = −S12

S11
(7.22)It is alled the vauum rotational transform, and the related equilibriummust be steady state.From the analytial point of view it is easy to prove that using eq.(7.22),
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S21ι+ S22

)
7→
(S11(−S12

S11
) + S12

S21(−S12
S11

) + S22

)
= 0 (7.23)and therefore all the RHS in the evolution equation (7.16) vanishes, provingthat the Stellarator vauum equilibrium is already steady state.From the operative point of view this an be a �rst hek of the ASTRAevolution.In ASTRA it is possible to hange some disharge parameter (like the plasmaurrent) during the run. Setting IP = 0 (and therefore I = 0) to look forthe stationary vauum equilibrium, the system immediately relaxes to thevauum rotational transform. In �g.7.5 (top) one an see the ASTRA evo-lution when IP = 0 is set, both for the rotational transform pro�le and forthe RHS of equation (7.16). It is worth noting that during this evolution themetris elements have not been updated, therefore the evolution of the RHSin �g.7.5 is only due to the evolution of the rotational transform and not tothe Sij elements that represent the metris during the "initial step". Thisis therefore just an example with a long time step before updating the ge-ometry, the omplete MHD problem being ful�lled just by updating the Sijmore often. In �g.7.5 (bottom) one an see the evolved rotational transformpro�le (blak line) and the vauum one (red points)20: as one an see, theyperfetly overlap.We are therefore on�dent that ASTRA is working orretly with thewritten subroutines for the time evolution of ι. More validation and subse-quent analysis will be matter of future work.7.3.2 The time evolution of q for RFX�modIn setion 7.3.1 is presented the work done with the Theory Group of Ciemat(Madrid) for the evolution of the rotational transform in TJ-II (non nullplasma urrent) Stellarator disharges.20The vauum rotational transform pro�le omes from tj2 odes (based on Biot-Savartlaw) that uses the urrents in the external oils as input.146



7.3 The equilibrium evolutionThe work done for RFX�mod is very similar to the one for TJ-II, but somedi�erenes arise due to the reversal region only present in RFX�mod: thesafety fator pro�le (q = 1/ι) is evolved instead of the rotational transform(that diverges at the reversal surfaes, whereas q simply vanishes) and afuntion of the monotoni poloidal �ux must be hosen for the radial vari-able (instead of a funtion of the toroidal �ux that is non monotoni in areversed on�guration).This implies some modi�ations of the ASTRAmodel and subroutines (EQUI-LVMEC and IOTAEVOL) in order to evolve the equation for the safety fatorand to use the right radial variable and boundary onditions.The equilibrium evolution is an important point for RFX�mod disharges,due to the fat that the helial equilibria omputed by SHEq (for SHAxstates) are not ohmi equilibria (see setion 7.2).The evolution equationFollowing the same steps neessary to derive ∂ι/∂t using Ampère's, Fara-day's and the parallel Ohm's laws (see appendix A.5 and Strand's and Houl-berg's paper [74℄), in setion 9.3.1 we derived the equation for the timeevolution of the safety fator pro�le (∂q/∂t).The equation for (dq/dt) is21:
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] (7.24)where ψp is the poloidal �ux through the helial �ux surfaes ρ = const, Sijthe suseptane matrix elements, V the volume enlosed inside ρ = const,
Vt(0) the toroidal loop voltage on the axis.As done for the evolution of the rotational transform, we neglet both theterm involving the Boostrap urrent Js and the �rst term of the equationthat involves the hange in the geometry and the loop voltage on the axis.However, the term proportional to Vt(0) (not present in the evolution of
ι) should probably be taken into aount and the term involving the thenon�indutive urrent Js ould be used to aount for some residual dynamourrents (but we will aount for them role just in future work). We thereforeevolve with ASTRA just an approximate expression (similar to eq.(7.16)):
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Equilibrium evolutionEquation (7.25) takes di�erent forms depending on the hoie of theradial variable ρ. For RFX�mod the hoie is22
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ρN is a onstant with the dimensions of a length, and one an hoose ρN = a,where a = 0.459m is the minor radius of RFX�mod vauum hamber. Thisis a useful hoie of the radial variable for ASTRA, that usually has thedimension of a lenght ([m℄). With this hoie of ρ, eq.(7.25) beomes:
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)] (7.30)To evolve this equation we need to �x also the boundary ondition: q(ρ = a).Using for q the inverse of equation (A.50) in the appendix:
q =

S11F − S21I

S22I − S12F
(7.31)where I and F are the toroidal and poloidal urrent, eq.(A.42)�(A.43). Theboundary ondition for the safety fator an be found using the edge valuesof all the quantities: I(ρ = a) = IP and the omputed values of F (ρ = a)and of Sij(ρ = a) (output of VMEC).It is worth noting that the aim of this work is to evolve the helial equi-libria omputed by SHEq: the magneti �ux surfaes labelled by ρ are the

Σ(χ) magneti �ux surfaes de�ned in setion 6.1, where χ is the helial �ux;the poloidal �ux is the poloidal �ux ψp(χ) de�ned in setion 4.4 as the �uxthrough the helial �ux surfaes Σ(χ) at the poloidal�like angle θ∗ = const,de�ned on the helial axis of the system (setion 4.4.1). This angle is relatedto the helial q�pro�le in equation (6.27):
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=
dψh
dψp

(χ) (7.32)22Consider ψp,max = π RaBP = R
2
µ0IP . The seond equivalene is derived using thisrelation for the total magneti poloidal �eld: BP (a) = µ0 I/(2πa), with a minor radiusand R major radius. 148



7.4 The paramagneti pinhwhere ψh(χ) is the non monotoni toroidal �ux de�ned in equation (4.19)and plotted in �g.4.5, and ψp(χ) the (monotoni) poloidal �ux de�ned inequation (4.19).The VMEC ode onverges very near to this value of q, omputed by SHEq,and this is the helial safety fator that is evolved by ASTRA.The angle θ∗ is topologially equivalent ([76℄) to the Boozer poloidal angleused by the VMEC equilibrium ode to ompute the equilibrium pro�les.Some preliminary resultsThe same subroutines used for TJ-II, modi�ed for the evolution of thesafety fator and its boundary ondition, are used.The VMEC equilibrium ode was initially written for Stellarator mahines,and then modi�ed to work for reversed on�gurations too: this must be takeninto aount in EQUILVMEC to write the orret input �le for VMEC23.In �g. 7.6 are plotted some important equilibrium quantities: the initially
q�pro�le (output of VMEC), the suseptane matrix elements, and the RHSof equation (7.30).It is not easy to devise a simple hek for ASTRA evolution, as donefor TJ-II with the vauum steady state equilibrium. Does a sort of vauumequilibrium exist for RFPs? Of ourse it is not the I = 0 ase, beause zeroplasma urrent does not indue any helial SHAx state.The work for RFX�mod is ongoing, as the ollaboration with Ciemat.7.4 The paramagneti pinhThe paramagneti pinh is a ylindrial magneti on�guration, with an ax-ial eletri �eld, E ≡ Ez. Magneti �eld lines are helix that lie on irularmagneti �ux surfaes: B ≡ (0, Bθ, Bz) and J ≡ (0, Jθ, Jz).We use the paramagneti pinh as a simple example to show (setion 7.1) thatthe axial magneti �eld an not reverse in an axi�symmetri on�guration,if the ohmi onstraint is taken into aount. An example of axi�symmetryis the ylindrial magneti �eld omponents of the paramagneti pinh, thatdepend only on the radius r of the irular (and nested) �ux surfaes.Let me write the equation system for the paramagneti pinh equilib-rium24.23In RFX�mod it is used the version 8.47 III with �xed boundary [?℄.24Let me derive the equilibrium system from the usual MHD equations, written for aylindrial geometry (any variable depends only on the radius r of the irular magneti149



Equilibrium evolution

Figure 7.6: Equilibrium pro�les related to the safety fator pro�le (top�left)and useful to evolve equation (7.30): the RHS and the suseptane matrixelements S11,S12 and S22. All the pro�les are written in Boozer oordinatesfor the hosen radial variable in the text �le metris_average.�ux surfaes):
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J × B = 0 7→
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(7.35)From the (parallel) Ohm's law one an ompute j‖ = (0, jθ, jz).Beause E = (0, 0, Ez) by hypothesis, E‖ = E0 (Bz/B), where Bz/B is the projetionoperator on Bz (as Bθ/B is the projetion operator on Bθ).Using the de�nition
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7.4 The paramagneti pinhUsing, just for simpliity of notation, the de�nition
U =

E0 µ0 a

η‖B0
(7.38)where E0 and B0 are the axial eletri and magneti �eld, a the radius ofthe last losed �ux surfae and η‖ the plasma resistivity parallel to magneti�eld lines, the equations for the normalized omponents of the magneti �eldare: 
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(7.39)From the parallel Ohm's law, one the system (7.39) has been solved for themagneti �eld omponents Bθ and Bz, one an ompute the omponents ofthe parallel urrent density25:
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(7.40)In �g. 7.7 one an see the solution of the systems (7.39) for the magneti�eld omponents (dashed lines), whose integration is done with the bound-ary ondition on the axis: Bz(0) = B0 and Bθ(0) = 0. The olored lines arethe solution for some (inreasing from blue to green) value of the parameter
U , diretly proportional to the axial eletri �eld E0 and therefore relatedto the plasma urrent. As one an see, no reversal is found for Bz.Let us onlude the hapter with some analytial onsiderations. Insetion 9.3.2 the equilibrium system (A.52) of MHD equations is rearrangedin a di�erent form, and a system of two equations for the radial derivativeof the poloidal F and toroidal I urrents is obtained, (9.151)�(9.152). Thesolution is an ohmi steady state equilibrium, that has been solved for theparamagneti pinh with the boundary ondition on the magneti axis I(0) =
... and F (0) = .... The solutions for I and F are shown in �g. 7.7 (ontinuouslines); using the system (7.46) one an ompute the (measurable) magnetijust for simpliity of notation, and the normalized variables Bz 7→ (Bz/B), Bθ 7→ (Bθ/B),
r 7→ r/a, the ohmi equilibrium system to be solved for a paramagneti pinh is
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(7.37). We will prove later that it is exatly the system (A.52) for a fore free ohmi equilibriain a ylindrial geometry25The urrent density has only the parallel omponent, the perpendiular omponentbeing zero beause of the fore free hypothesis151



Equilibrium evolution�eld omponents from I and F : the solutions perfetly overlap to the dashedlines in �g. 7.7 that ame from the solution of the paramagneti pinh system(7.39).

Figure 7.7: The poloidal and toroidal magneti �eld omponents (up) andthe orrespondent urrents (down). The olored lines are the solution forsome (inreasing from blue to green) value of the parameter U from equation(7.38), diretly proportional to the axial eletri �eld E0 and therefore to theplasma urrent. Comments: 1. The magneti �eld omponents are foundfrom the solution of two equivalent equilibrium systems, eq.(7.39)�(7.46),for whih are used dashed or ontinuous lines that perfetly overlap. Fromeq.(7.46), one obtains the relations: Bθ ∼ IR/r and Bz ∼ F , where R is themajor radius of the torus and r the minor one. 2. Beause the paramagnetipinh is an axi�symmetri system, the toroidal �eld an not reverse.7.4.1 The paramagneti pinh in the S&H formalismThe equivalene of the two equation systems ((7.39) and (9.151)�(9.152) or(7.46)) an also be proved in an analytial way in the simple ylindrialgeometry of the paramagneti pinh.Summarizing, we want to ompare eq.(9.151) for F ′ (where the diagonalterm of the suseptane matrix are null due to ylindrial geometry) with152



7.4 The paramagneti pinhthe equation for B′
z:

F ′ = − Û (L11I)(L22F )
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(7.41)and the same for eq.(9.152) for I ′ and the equation for B′
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(7.42)In eq.(7.41)�(7.42) the radial derivative of the urrents I and F are writ-ten for the easy ase of a ylinder. Let us onsider a ylinder of lenght Land periodiity 2πR in the axial z oordinate to write expliitly the susep-tane matrix elements (and its inverse, the Lij elements). Then we write thepoloidal urrent F and the toroidal urrent I in terms of the magneti �eldomponents, in order to be able to ompare the relations in eq.(7.41)�(7.42).Going bak to the ylindrial metri in appendix B.2.1 and to the de�ni-tions (A.46)�(A.48) of the suseptane matrix elements (for diagonal metris)one �nds:
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) (7.44)and this solves the �rst step, of writing expliitly the Lij elements. (Noonfusion will arise between the same symbol L for the ylinder lenght andthe inverse of the suseptane matrix, for whih just the elements Lij willbe used).Let me now show how to link the urrents I and F to the magneti �eldomponents.Using the general anonial form for the magneti �eld B (or, in an equivalentway, equations (2.147)�(2.148)):
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(7.45)remembering the Jaobian √g = rR of the ylindrial oordinates fromappendix B.2.1. These are by de�nition the ontravariant omponents Bi onthe (non adimensional and non normalized) ei basis vetors (see hapter 5).153



Equilibrium evolutionWe need to work with the (ovariant) measurable omponents (B̂i), that areeasy to derive from formulas (5.66)�(5.67) in a diagonal geometry. Using forthe derivative of the �uxes the suseptane matrix de�nition, one obtains:
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(7.46)Inverting these relations one an write the equation for the urrent ompo-nents in terms of the measurable magneti �eld omponents:
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(7.52)Therefore, using these equations and the expliit geometrial values of Lij ,the equation for F ′ in (7.41) an be written as:
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7.4 The paramagneti pinhif and only if
Û =

L2

µ02πR
U (7.55)This relation is dimensionally orret. Eq.(7.55) is the same result that arisesomparing the two equations in (7.42).This an be onsidered an analytial proof that solving the di�erentialsystem for the urrents I and F is equivalent of solving the usual stati MHDequation system.From the numerial point of view, the solutions from the integration of I ′and F ′ perfetly overlap in the plots of �g.7.7.
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Chapter 8Plasma boundary in SHAxstatesAs seen in the introdution, the m = 1 mode spetrum during SHAx states,obtained in RFX-mod at the 1.5 MA plasma urrent level, displays a domi-nant mode (the n = 7 one) and a strong redution of the seondary modes[77℄. In �g. 8.1, where the average spetra of both m = 0 and m = 1 modesin SHAx states are shown, one an see that also the m = 0 mode spetrumis strongly peaked on the n = 7 mode in SHAx states. This is a diret onse-quene of the toroidal oupling between the two modes [54℄, that an be seenalso in �g.8.2: inreasing the plasma urrent the m = 0 spetrum displaysthe same behavior of the m = 1 one, i.e. the dominant n = 7 mode inreasesits relative amplitude while the seondary mode amplitude is redued (onean ompare �g.8.2 and �g.1.9).Thus, it is possible to onlude that the RFP evolves, as plasma urrent isinreased, towards a SHAx state haraterized by the presene of a dominant
m = 1 mode and a dominant m = 0 mode, both having the same n number.During SHAx states the on�nement properties of the on�guration areenhaned, due to the development of an internal transport barrier [54℄. More-over a better distribution of the plasma�wall interation an be observed withrespet to the MH ase, [78℄ operating at shallow reversal1.The m = 0 modes play a ruial role in determining the plasma�wall intera-tion, being resonant on the reversal surfae, near the �rst wall. Neverthelessthey have been negleted in the equilibrium reonstrution of the helialSHAx states omputed by the SHEq ode and disussed in the previoushapter (hapters 4 to 7). An idea for future work is to onsider the domi-nant m = 0 mode as a perturbation to SHEq's equilibria (in the same wayas the axi�symmetri equilibrium B0 has been perturbed by the dominant1Shallow reversal means a small (absolute) value of the reversal parameter F introduedin equation (1.12) as a measure of the distane between the �rst wall and the reversalsurfae. 157



Plasma boundary in SHAx states

Figure 8.1: Average spetra of m=0 and m=1 modes in 1.5 MA SHAxstates. The mode amplitudes are evaluated on Bφ measurements performedoutside the plasma.
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Figure 8.2: Amplitude of the m = 0/n = 7 mode (full irles) and of theother m = 0 modes up to n = 15 (empty irles) in QSH onditions plottedas a funtion of plasma urrent. The mode amplitudes are normalized tothe average poloidal �eld at the wall. One should ompare this �gure with�g.1.9 left.
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8.1 Topology of edge region in SHAx states
m = 1/n = 7 mode to ompute the helial SHEq's equilibria). In this hap-ter we study the m = 0 modes role in a more experimental way.In this setions 8.1�8.2 we perform a detailed examination of the intrinsiedge magneti topology in SHAx states obtained in the RFX-mod devie,relating it also to edge measurements. The results allow an ambitious on-lusion, whih is that intrinsi properties of the magneti on�guration ouldbe exploited to develop a divertor onept, similar to the island divertor ofstellarators [79℄ (whereas up to now in RFX�mod the graphite �rst wall isused as a limiter).While further theoretial studies need to be done, and a pratial implemen-tation has to be demonstrated, the proposed approah is anyway onditionedto a good ontrol of the radial magneti �eld at the edge, whih in RFX-modis obtained through a sophistiated system of 192 feedbak-ontrolled saddleoils [43, 80℄. In setion 8.3 the result of ontrolling the edge features byapplying non�zero boundary onditions to the dominant m = 1 and m = 0modes is presented.The work in setions 8.1�8.2 is also published in E. Martines, R. Loren-zini, B. Momo et al., [3℄.The results of setion 8.3 are related to disharges done during the 2011RFX�mod experimental ampaign, and have been already presented duringAPS 2011 onferene (G. De Masi, B. Momo: oral setion [?℄).8.1 Topology of edge region in SHAx statesThe m = 0 modes are all resonant in the RFP around the reversal surfae.The distane of this surfae from the �rst wall an be externally imposed byhanging the urrent �owing in the toroidal �eld oil system. The distanefrom the wall is indiretly quanti�ed by the reversal parameter F , de�nedin the introdution (hapter 1). A ruial observation made in RFX�mod isthat shallow F , whih orresponds to a small distane of the reversal surfaefrom the wall, turns out to be a better ondition at high plasma urrentthan deeper F , as far as plasma�wall interation is onerned. Why plasma-wall interation in RFX-mod high urrent operation appears to be lower atshallow reversal is a question to whih we give an answer in this setion,introduing the RFP divertor idea.In order to understand the magneti topology of the edge region in SHAxstates, and in partiular the position and shape of the LCFS2, we have used a2The Last Closed Flux Surfae (LCFS), that is the outermost magneti surfae notinterseting any solid objet. 159



Plasma boundary in SHAx states�eld-line traing ode named FLiT [81℄ to trae the magneti topology in theplasma edge. FLiT uses the output of an algorithm for the reonstrutionof the tearing mode eigenfuntions over the whole plasma volume based onNewomb's equation, supplemented with edge magneti measurements [53℄(see hapter 3)3.Fig. 8.3 displays two Poinaré plots of the magneti �eld lines in the r-ϕplane on the outer equator (where the main magneti �eld is almost poloidal).The �rst one is obtained during a 1.5 MA SHAx state at shallow reversal(F = −0.017), while the seond depits a similar ondition obtained at deepreversal (F = −0.181). Thik lines are superposed on the plots, depitingthe position of the LCFS, omputed from FLiT outputs by looking at where,for eah toroidal and poloidal position, the most internal open �eld line isfound.The new and striking result is that in the SHAx ondition obtained at shallowreversal the LCFS is well separated from the wall by the m = 0 islands(and that their X-points at so as to form a divertor�like on�guration, see�g.8.10). It is important to remark that the LCFS does not touh the wallanywhere, not only in the plane displayed in the �gure.On the ontrary, at deep reversal the LCFS is loated beyond the m = 0island hain and a limiter�like ondition is obtained.In the two plots the reversal surfae of the toroidal �eld is loated at theposition where the O-points of the m = 0 islands are found, whih means at
r = 0.45 m for the shallow F ase and at r = 0.41 m for the deep F one.

Figure 8.3: Poinaré plot of the magneti �eld lines on the outer equatorfor a SHAx state at 1.5 MA and shallow reversal (right) and for a similar on-dition at deep reversal (left). The thik line marks the position of the LCFS.while the horizontal line at r = 0.459 m indiates the �rst wall position.The relationship between the ourrene of a divertor�like on�guration3FLiT uses the same eigenfuntions of the perturbation to the axi�symmetri magneti�eld that are used by SHEq ode. 160



8.2 Plasma wall interation

Figure 8.4: Minimum distane of the LCFS from the �rst wall plotted asa funtion of the reversal parameter F . The shaded region marks the Frange where transition from a limiter�like geometry to a divertor�like oneours. The blue point is related to the limiter�like on�guration representedin the left Poinaré in �g. 8.3; the red point is related to the divertor�likeon�guration represented in the right Poinaré in �g. 8.3.and the reversal parameter value has been investigated more systematiallyby omputing the minimum distane δmin of the LCFS from the wall for aset of SHAx states obtained at di�erent F values.Fig. 8.4 displays a plot of δmin as a funtion of F . It is learly seen that as
F goes from zero towards more negative values, that is from shallow reversalto deep reversal, the LCFS distane from the wall is inreased, up to valuesof F between -0.10 and -0.13, where the m = 0 islands do not interset thewall any more and the limiter-like situation (δmin = 0) is obtained. Thisresult has been on�rmed by the single band re�etometer [82℄ monitoringthe distane from the wall of a plasma layer with �xed density [83℄.This an be onsidered an explanation for the empirial evidene of a re-dued plasma-wall interation in shallow F disharges, whih onstitute thepreferred mode of operation for RFX�mod at high urrent.8.2 Plasma wall interationIn order to better understand the struture of the Srape�O� Layer (SOL)formed beyond the LCFS in the shallow F ase (shown in the left frame ofFig. 8.3), a olour sale plot of the onnetion lengths of �eld lines passingthrough a grid of points in the r�ϕ plane has been onstruted. This hasbeen done integrating the �eld line equations from the starting point, bothforwards and bakwards, until the �rst wall is reahed. The onnetionlength is then de�ned as the sum of the two lengths overed in the twodiretions. 161



Plasma boundary in SHAx states

Figure 8.5: Map of the onnetion lengths on the r-ϕ plane loated at θ = 0(external equatorial plane).The result of the proedure is shown in Fig. 8.5, for the plane at θ = 0◦ (theexternal equatorial plane). The maximum value of the onnetion length,for whih the red olour has been used, also marks the losed �eld lines. Theon�ned plasma, enlosed by the LCFS modulated by the n = 7 pattern,an be learly identi�ed. Furthermore, other red regions, orresponding to
m = 0 islands that do not touh the �rst wall, an be observed. Beyond theLCFS a SOL is reated.In partiular, in the last m near the �rst wall relatively short onnetionlengths are found, with only oasional regions of longer onnetion lengthsreahing the wall.The onnetion length of the �eld lines touhing di�erent points of the�rst wall is losely related to the loal distane between the LCFS and thewall. This is shown in Fig. 8.6, where the onnetion length of points of the�rst wall loated on the outer equator is shown as a funtion of the toroidalangle, for the same ondition of the left frame of Fig. 8.3.It is possible to observe that the onnetion length displays a n = 7 periodistruture, with rounded maxima whih are anyway lower than the length ofone poloidal turn (∼ 3 m). Superimposed to this, limited regions of muhlarger onnetion lengths are found, indiating �eld lines whih manage toperform many poloidal turns before touhing again the wall. The origin ofthese long �eld lines are positioned on the maxima of the n = 7 pattern (andtherefore on the X�points of the m = 0 island hain).In the same �gure is also plotted the distane between the LCFS and the�rst wall, again plotted as a funtion of the toroidal angle for points along162



8.2 Plasma wall interation

Figure 8.6: Connetion lengths of �eld lines originating from di�erentpoints of the �rst wall (r = 0.459 m) on the outboard equatorial plane(θ = 0◦) and distane between the LCFS and the wall on the same plane,both plotted as a funtion of the toroidal angle.the outer equator. The n = 7 periodiity an also be learly seen.The omparison of the two urves allows to onlude that in the posi-tions where long onnetion lengths exist, the LCFS�wall distane is shorter;while in regions of short onnetion length the LCFS�wall distane is larger.The onsequene that an be drawn from this fat, when thinking to theplasma�wall interation, is that in the �rst situation a stronger interationis expeted: both beause of parallel �ows, sine a longer �ux tube olletsa larger amount of energy; and beause of perpendiular �uxes, whih orig-inate from the LCFS whih is less distant.The hypothesis that regions of the �rst wall with larger onnetion lengthhave a stronger plasma�wall interation has been validated using experimen-tal data, from ISIS and a fast CMOS amera.ISISISIS (the Integrated System of Internal Sensors) is omposed by two sub-systems of eletrostati and magneti probes loated inside the RFX-modvauum vessel (5 mm behind the graphite tiles), [84, 85℄. In this work weused only the eletrostati arrays (72 probes distributed on the externalequatorial plane and 7 on the poloidal plane at a spei� toroidal angle) ableto ollet �oating potential Vf data [11℄. This system, thus, enables us toreate a toroidal and poloidal map of the �oating potential (linked to the163



Plasma boundary in SHAx statesdynamis of the eletron traveling at the edge) during the RFX-mod highplasma urrent operations. The result for a typial SHAx state is shown in�g.8.7 (top) and is plotted in terms of �utuation δVf with respet to a meanvalue.The idea is to ompare the �oating potential behavior at the edge with theaforementioned onnetion lenght evaluated using FLiT ode.As previously measured by insertable probes in low plasma urrent disharges[86, 87℄, in RFX-mod the �oating potential is found to be lose to zero orslightly positive near the �rst wall, whereas it turns markedly negative inthe more internal plasma layers.Looking at the toroidal and poloidal map shown in �g.8.7 (bottom) one anreasonably interpret the regions with a δVf < 0 (displaying a n = 7 period-iity) as aused by the more internal plasma layers approahing the probe(loated at r/a = 1) and thus as a trak of a loalized plasma wall intera-tion.This allows a diret omparison of the ISIS data with the onnetion lenghtmaps in the toroidal and the equatorial plane (also shown in �g.8.7) andwould on�rm the hypothesis already disussed that the regions featuringlong onnetion lenght are those ones haraterized by a larger plasma wallinteration.Fast CMOS ameraA further on�rmation omes from the fast CMOS amera that looks at Hαline emission, originating from neutral hydrogen atoms oming out from thewall4.Fig. 8.8a shows the emission pattern deteted by the amera in a 1.5 MAdisharge, during a SHAx phase. The atual image has been remapped to aregular grid in the the toroidal and poloidal angles. The �gure displays analmost vertial emission pattern, with a disretization whih orresponds tothe tiles whih ompose the �rst wall5.In Fig. 8.8b the onnetion lengths for the same region of the �rst wall, inthe same disharge and at the same time instant are plotted. It is learlyseen that the onnetion length pattern is similar to the emission pattern ofthe amera. The two patterns are displaed one with respet to the otherby a few degrees in the toroidal diretion. This disrepany appears in allases, and is attributed to a systemati error.4Sine in RFX�mod the density pro�le displays a strong gradient in the �rst few m ofthe plasma, it is possible to assoiate the emission to the heat load of the nearby portion ofthe �rst wall, under the assumption that a stronger plasma-wall interation heats loallythe wall and auses a stronger hydrogen release. The amera used in RFX-mod wasoperated with a frame rate of 10,000 frames per seond, and a shutter time of 1/10,000 s.5This disretization is due to the tile shape, whih auses an inreased interation inthe entral part of the tile. A darker region in the middle of the bright pattern (around
θ = 0◦) is due to the presene of a port, as it is the dark oval region more on the left(around φ = 142◦), [88℄. 164



8.2 Plasma wall interation

Figure 8.7: The onnetion lengths (L) are ompared with the shift of theLCFS (that one an think as the distane of the LCFS and the �rst wall,already plotted in �g.8.6) in red, and with the ISIS measurements of the�oating potential in blak. Top: the omparison is between magneti �eldlines length originating from di�erent points of the �rst wall (r = 0.459 m)almost on the outboard equatorial plane (θ = 340.7◦) and measurements onthe same plane, both plotted as a funtion of the toroidal angle. Bottom: theomparison is between magneti �eld lines length originating from di�erentpoints of the �rst wall (r = 0.459 m) on the poloidal plane (at ϕ = 246.5◦)and measurements on the same plane, both plotted as a funtion of thetoroidal angle.
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Plasma boundary in SHAx states
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8.2 Plasma wall interation

Figure 8.9: Map of the onnetion lengths of magneti �eld lines touhingthe �rst wall for a typial 1.5 MA SHAx state (left) and same map obtainedusing only the amplitudes of the dominant m = 1/n = 7 and m = 0/n =
7 modes, indiating the ideal situation for a pure single heliity ondition(right).between the m = 0 and m = 1 modes depited in �g.8.20 (see setion 8.3.3).The loalization is not perfet, due to the polluting e�ets of the seondarymodes.In order to understand what is the tendeny for higher urrent plasmas,where the seondary modes will be lower aording to present saling, wehave performed the same alulation inluding only the m = 1/n = 7 and
m = 0/n = 7 modes in the FLiT input, that is simulating a pure singleheliity ondition. The result is shown in the right frame of Fig. 8.9. It anbe seen that the long onnetion length region is now limited to two rows ofinlined regions having an n = 7 periodiity, the �rst loated at θ ≃ 90◦ andthe seond at θ ≃ 180◦.The results desribed in this setion give a new vision of the plasmaboundary in the high performane SHAx states. Due to the toroidal ouplingbetween the dominant m = 1/n = 7 mode, responsible for the ahievementof a helial equilibrium, and its m = 0 ounterpart, a set of m = 0 magnetiislands with a dominant n = 7 periodiity is formed on the reversal surfae.Provided that the absolute value of the reversal parameter is small enough,that is the mahine is operated with a shallow reversal, these islands intereptthe �rst wall. Due to the regularity of the SHAx ondition6, the outome isthat the LCFS is not any more touhing the �rst wall. On the ontrary, theX-points formed between the m = 0 islands at as the X-point of a Tokamakdivertor (a zoom of the divertor�like plasma�wall interation already plotted6During SHAx states no strong loalized distortion of the plasma olumn due to modeloking [89℄ is found. And the regular n = 7 pattern, due to both the m = 1 shift and
m = 0 islands, is evident in the right panel of �g.8.3.167



Plasma boundary in SHAx statesin �g.8.3 an be seen in �g.8.10).This ondition is reminisent of the island divertor onept whih is being

Figure 8.10: Zoom of the right Poinaré in �g.8.3, to underline the divertoridea and the role of the m = 0 islands and their X�points.explored as a means of ontrolling plasma-wall interation in stellarators.One is therefore led to infer that the speial features of the plasma boundaryin high urrent SHAx RFP plasmas ould be exploited for building a divertor,similar in onept to the island divertor used in some stellarators. Thisould be ahieved by loating divertor plates with appropriate pumping inthe regions of strong interation, whih have been found to beome more andmore regular as the amplitude of the seondary modes is redued, whih isthe trend experimentally observed as plasma urrent is inreased.Suh an approah to plasma-wall interation would require that the dominant
m = 0 mode is stationary in time, and that one ould ontrol its islandamplitude and phase. In setion 8.3 the experiments done in order to usethe feedbak ontrolled saddle oils to ontrol (or at least to interat with)the dominant m = 1 and m = 0 modes are presented. In �g.8.11 a sketh ofthe RFP (island) divertor is reprodued.

Figure 8.11: Left: A piture of the a divertor in Tokamak devies and ofthe Loal Island Divertor in Stellarator devies. Right: The piture of theidea for a sort of island divertor in a RFP devie.168



8.3 External magneti perturbations8.3 External magneti perturbationsHigh plasma urrent disharges and therefore the formation of the helialRFP SHAx states have been favored by of the improved ontrol of the ra-dial magneti �eld at the edge, whih in RFX�mod is obtained through asophistiated system of 192 feedbak�ontrolled saddle oils.The feedbak system is usually used to simulate a perfet ondutive shell,therefore aneling the radial magneti �eld of the perturbations at the wall.In the experimental ampaign of 2010�2011 external magneti perturbationshave instead been used in order to ontrol the magneti boundary, by non�zero boundary onditions (BCs) on the radial magneti �eld of the dominant
m = 1/n = 7 and m = 0/n = 7 modes, [?, 90℄.The magneti boundary is haraterized by the m = 0/n = 7 island hainand the plasma�wall interation is strongly a�eted by its phase relation withthe dominant m = 1 mode (responsible for the helial SHAx state deforma-tion of the whole plasma olumn). The self�organized plasma properties,suh as the toroidal oupling between the two modes, are the main meha-nisms ating in the plasma. This must be taken into aount when trying toexternally interat with the plasma.It is possible to at on the m = 0 island hain, if its properties arestrongly orrelated with the plasma self organization?The idea of a divertor on�guration for RFP boundary during helial stateswould require the ontrol of the m = 0 island amplitudes and of their phase.Moreover, also the phase di�erene between the dominant m = 0 and m = 1modes is relevant from the point of view of the plasma�wall interation (see�g. 8.9 and setion 8.2).Experiments have therefore been performed in order to study whih is theresult of non�zero boundary onditions on both the m = 0 island amplitudesand phases. Beause of the strong toroidal oupling ating in the plasma,we at both on the m = 0/n = 7 and on the m = 1/n = 7 modes.As an example we present here two disharges: disharge 30177, where thenon�zero boundary ondition were only imposed on the m = 1/n = 7 mode;and the disharge 30200 where non�zero boundary ondition were imposedalso on the m = 0/n = 7 mode. Let us see the main features of boththe disharges before analyzing more in detail the e�et of the external per-turbations on the mode amplitudes (setion 8.3.1) and phases (setion 8.3.3).Disharge 30177.Non�zero boundary ondition on the m = 1/n = 7 modeVertial lines in �g.8.13 highlight the time instant when external non�zeroboundary onditions (BCs) are applied at the boundary:169



Plasma boundary in SHAx states

Figure 8.12: Time evolution of plasma quantities for the disharge 30177:non�zero boundary ondition on the m = 1/n = 7 mode. Vertial lines high-light the time instants when non�zero boundary ondition are applied. Fromtop to bottom, the plotted plasma quantities are: the plasma urrent; theamplitude of the radial magneti �eld of the dominant (blak) and seondarymodes (red) of the m = 1 and of m = 0 mode spetra; the time evolutionof the F parameter. The radial magneti �eld is the measured one outsidethe vaum vessel for the m = 1 modes, and the reonstruted one on theresonant surfae for the m = 0 modes.
• At time t = 50 ms non�zero BCs have been applied on them = 1/n = 7mode, with a referene amplitude A1/7 =5 mT and a rotating frequenyof 15 Hz.In �g.8.12 one an see the time evolution of the plasma urrent, of theamplitude of the radial magneti �eld of the dominant (blak) and seondarymodes (red) both for the m = 1 and m = 0 spetra, and the time evolutionof the F parameter, always shallow, for the disharge 30177.This experiment demonstrates how the global dynamis of the dominant

m = 1/n = 7 mode an be modi�ed by the external appliation (throughthe saddle oils) of a non�zero radial magneti �eld b1,7r as boundary ondi-tion. For example higher and longer QSH phases an be found. Good QSHphases an be found also for the m = 0 spetrum.170



8.3 External magneti perturbationsDisharge 30200.Non�zero boundary ondition on the m = 1/n = 7 and m = 0/n = 7modes

Figure 8.13: Time evolution of plasma quantities for the disharge 30200:non�zero boundary ondition on the m = 1/n = 7 and m = 0/n = 7modes. Vertial lines highlight the time instants when non�zero boundaryondition are applied. From top to bottom, the plotted plasma quantitiesare: the plasma urrent; the amplitude of the radial magneti �eld of thedominant (blak) and seondary modes (red) of the m = 1 and of m = 0mode spetra; the time evolution of the F parameter. The radial magneti�eld is the measured one outside the vaum vessel for the m = 1 modes,and the reonstruted one on the resonant surfae for the m = 0 modes.Vertial lines in �g.8.13 highlight the time instants when external nonnull referenes are applied at the boundary:
• In the time interval 120 < t < 250 ms non�zero BCs have been appliedon the m = 1/n = 7 mode, with a referene amplitude A1/7 =5 mTand a rotating frequeny of 15 Hz.
• In the time interval 130 < t < 195 ms non�zero BCs have been appliedon the m = 0/n = 7 mode, with a referene amplitude A0/7 =4 mT, aphase di�erene ∆φ = 0◦ with respet to the m = 1/n = 7 mode, anda rotating frequeny of 15 Hz.
• In the time interval 195 < t < 250 ms non�zero BCs have been appliedon the m = 0/n = 7 mode, with a referene amplitude A0/7 =4 mT, a171



Plasma boundary in SHAx statesphase di�erene ∆φ = − 90◦ with respet to the m = 1/n = 7 mode,and a rotating frequeny of 15 Hz.The amplitude imposed at the boundary to the m = 1/n = 7 mode ishosen as to be roughly equal to the natural value that the radial magneti�eld of this mode usually has at the edge. On the other side di�erent bound-ary |b0,7r | = A0/7 amplitudes of the m = 0/n = 7 mode have been tried.Beause of the toroidal oupling between the two dominant modes (m =
1/n = 7 and m = 0/n = 7), the ratio between their amplitudes at the edgeis of the order of the aspet ratio (ǫ ≡ R/a ∼ A1/7/A0/7 ∼ 4 where ǫ stays for'ratio', R is the major radius and a the minus radius of the vauum hamber,[53℄). The amplitude of the m = 0/n = 7 mode in the disharge 30200 hasbeen hosen so that A1/7/A0/7 ∼ 1.5 ǫ.In �g.8.13 one an see the time evolution of the plasma urrent, of theamplitude of the radial magneti �eld of the dominant (blak) and seondarymodes (red) both for the m = 1 and m = 0 spetra, and the time evolutionof the F parameter, always shallow, for the disharge 30200.Also the m = 0/n = 7 mode dynamis an be modi�ed by external applia-tion of a non�zero radial magneti �eld b0,7r as boundary ondition.In the next setions, the work made during the 2010�2011 experimentalRFX�mod ampaign in order to at both on the amplitude of the m = 0magneti islands (and therefore on the amplitude of the radial magneti �eld
b0,7r on the reversal surfae7) and on their phase di�erene with the dominant
m = 1 mode is presented.In partiular, we want to study if and how the edge topology is modi�ed(setion 8.3.1 and 8.3.3) and how the edge plasma properties hange by a-tively modifying the edge topology (setion 8.3.2).8.3.1 AmplitudesDisharge 30177.Non�zero boundary ondition on the m = 1/n = 7 modeTo be able to inrease the amplitude of the m = 0 islands (and therefore ofthe Srape O� Layer), we need to at on the amplitude of the radial magneti�eld of the m = 0 modes on the resonant surfae (that is the reversal one).Due to the toroidal oupling with the m = 1 mode with the same toroidalmode number n (see hapter 5), one an inrease the m = 0/n = 7 islandsalso ating on the m = 1/n = 7 mode.7The island width is found to be proportional to the amplitude of the radial magneti�eld on the resonant magneti �ux surfae of the orresponding mode, [?, 13, 11℄.172



8.3 External magneti perturbations

Figure 8.14: Shot 30177. Top: The same time evolution plots in �g.8.12where olored lines mark the time instants of the harmonis reonstru-tion below. Middle/Bottom: The eigenfuntion b1,7r and b0,7r of the radialmagneti �eld related to the m = 1/n = 7 (middle) and m = 0/n = 7(bottom).The blak urves are related to a time instant where zero bound-ary ondition were applied to all the modes, whereas the oloured ones arerelated to time instants where non�zero boundary ondition were applied tothe m = 1/n = 7 mode. The �rst wall is at a = 0.459 m.
173



Plasma boundary in SHAx statesThis is what is done in this disharge. The radial magneti �eld eigenfun-tions are plotted in �g.8.14, using the harmonis reonstrution disussed in[53℄ (and hapter 3). We an see that:
• An external non�zero boundary ondition imposed at the edge on the
m = 1/n = 7 mode hanges the amplitude of the whole b1,7r eigenfun-tion pro�le.In �g.8.14 (middle) the eigenfuntion of the radial magneti �eld re-lated to the m = 1/n = 7 mode are plotted for di�erent time instants.The blak urve is the vanishing boundary ondition ase, as a refer-ene time instant.
• The external non�zero boundary ondition imposed at the edge on the
m = 1/n = 7 mode inreases the amplitude of the b1,7r eigenfuntionon the reversal surfae, and this is re�eted on the amplitude of the
b0,7r eigenfuntion due to the toroidal oupling.In �g.8.14 (bottom) the eigenfuntion of the radial magneti �eld re-lated to the m = 0/n = 7 mode is plotted for the same time instantsof �g.8.14 (middle). The amplitude of the b0,7r eigenfuntion on thereversal surfae is inreased with respet to the vanishing boundaryreferene ase in blak.We use the Poinaré plot reonstrution to look at the magneti topologyrelated to the eigenfuntions plotted in �g8.14.In �g.8.15 we hoose to ompare the magneti topology at t = 49 ms (zeroboundary ondition referene, blak urve in �g.8.14) and at t = 86.7 ms(the blue urve in �g.8.14). The m = 0 island elongation due to non�zeroboundary ondition to the dominant m = 1 mode an be learly seen in thePoinaré plot, that are shown on the same radial sale.Disharge 30200.Non�zero boundary ondition on the m = 1/n = 7 and m = 0/n = 7modesFig.8.16 is the analogue of �g.8.14, for the shot 30200 where non�zero bound-ary ondition is imposed also to the m = 0/n = 7 mode. The eigenfuntionpro�les of the m = 1/n = 7 (middle) and m = 0/n = 7 (bottom) are plottedfor di�erent time instants (with di�erent olours). The blak urve is thevanishing boundary ondition ase for omparison.From the magneti topology side, the appliation of these non-zero bound-ary ondition on both them = 1/n = 7 andm = 0/n = 7 modes are expetedto have two main e�ets on the m = 0 pattern: 1) a diret ontribution tothe m = 0/n = 7 mode amplitude by the externally applied referene on the174



8.3 External magneti perturbations

Figure 8.15: Magneti topology reonstrutions made using only the n = 7harmoni for the 30177 disharge on the external equatorial plane (θ =
0). Left: magneti topology related to a time instant where zero boundaryondition were applied to all the modes (blak urve in �g.8.14). Right:magneti topology related to a time instant (t = 86.7 ms, blue urve in�g.8.14) where non�zero boundary ondition were applied to the m = 1/n =
7 mode.related harmoni; 2) a further ontribution oming from the toroidal ou-pling with the b1,7r eigenfuntion.We an see this in �g.8.16 :
• The amplitude of the b0,7r eigenfuntion is inreased on the reversalsurfae, as it is the b1,7r eigenfuntion in the same position. Comparing�g.8.14 and �g.8.16, the main ontribution to this is probably due tothe non�zero boundary ondition on the m = 1/n = 7 mode.
• What is peuliar of the appliation of the non�zero boundary refereneto the m = 0/n = 7 mode is the shape of the b0,7r eigenfuntion. It iseasy to see omparing the oloured lines in �g.8.16 with the blak one.The superpositions of these two e�ets produes a larger radial extension ofthe m = 0 island hain with respet to disharge 30177 (ompare �g.8.15and �g.8.17).The e�et on the magneti topology an be seen in the Poinaré plots in�g.8.17: on the right the zero boundary ondition ase (blak urve in�g.8.16, vanishing referenes are applied to all the modes) is plotted; onthe left a non�zero boundary ondition ase (at t = 165 ms, the blue urvein �g.8.16, with non�zero boundary ondition to both the m = 1/n = 7and m = 0/n = 7 modes) is plotted. One an see both the inreased island175



Plasma boundary in SHAx states

Figure 8.16: Shot 30200. Top: The same time evolution plots in �g.8.13where olored lines mark the time instants of the harmonis reonstru-tion below. Middle/Bottom: The eigenfuntion b1,7r and b0,7r of the radialmagneti �eld related to the m = 1/n = 7 (middle) and m = 0/n = 7(bottom).The blak urves are related to a time instant where zero bound-ary ondition were applied to all the modes, whereas the oloured ones arerelated to time instants where non�zero boundary ondition were appliedto both the m = 1/n = 7 and m = 0/n = 7 modes. The �rst wall is at
a = 0.459 m. 176



8.3 External magneti perturbationsamplitudes and their hange in shape. The Poinaré plot on the top arerelated to the pure SH ase, whereas the ones below reprodue the e�ets ofthe seondary modes.

Figure 8.17: Magneti topology reonstrutions for the 30200 disharge onthe external equatorial plane (θ = 0). Left: magneti topology related to atime instant where zero boundary ondition were applied to all the modes(blak urve in �g.8.16). Right: magneti topology related to a time instant(t = 92 ms, blue urve in �g.8.16) where non�zero boundary ondition wereapplied to both the m = 1/n = 7 and m = 0/n = 7 modes. From top tobottom: eigenfuntion amplitudes of the dominant modes. The dashed lineon the right is related to the 92ms time instant for omparison. A vertialline marks the resonant surfae of them = 0 modes; Poinaré reonstrutionsmade using only the n = 7 harmoni; Poinaré reonstrution of the edgetopology made using all the harmonis177



Plasma boundary in SHAx statesThe onsequene of this di�erent magneti topology of the SOL is underinvestigation. In the next setion we report some of the onsequenes on theedge measurements.8.3.2 E�et of BCs appliation on the plasma properties

Figure 8.18: Time evolution of some experimental measurements duringthe disharge 30200. From top to bottom: The ratio n/nG, where n is thedensity measured by the interferometer [91, 92℄ and nG the Greenwald den-sity, [11℄; the loop voltage, as a measure of the power needed to sunstain thedisharge; two Hα line emission as a measure of the plasma-wall interation;the edge temperature measured by a �xed triple probe, [93℄.The ative modi�ation of the edge magneti topology turned out to beorrelated with a turn of reproduible phenomena linked in a diret or indi-ret way to an inreased plasma wall interation. Nonetheless the possibilityto externally impose the radial extension of the m = 0 magneti islands at178



8.3 External magneti perturbationsthe edge enable us to study the ause and e�et relation of the omplex edgedynamis.For the sake of simpliity we onsider again the disharge 30200 whose mainfeatures have been already presented in the previous setion.In �g.8.18 the appliation of the BCs an be easily assoiated to a ratherabrupt variation of the averaged density and of the loop voltage neededto sunstain the disharge (�rst and seond plot on the right). As alreadymentioned, an inreased plasma-wall interation an explain both these ex-perimental observations sine in RFX-mod the graphite �rst wall is a naturalhydrogen repository and represents an e�etive fueling system [94, 95℄. Onthe other side, it's worth noting that this tehnique allows to sunstain QSHstates at higher ne/nG values (up to 0.5 in this ase) with respet to thespontaneous QSH states (that usually disappear beyond ne/nG ≥ 0.3).The last two plots in �g.8.18 show the time evolution of two Hα line emis-sion and the edge temperature (measured by a �xed triple probe, [93℄). Theyon�rm in a even more evident way the aforementioned mehanism: the BCsappliation auses a larger interation with the graphite wall, the hydrogenstored is released and ionized, reating a dense and old edge.Aording to this piture, the reonstrution of the whole density pro�leobtained by the multihord interferometer in �g.8.19 displays a markedlyhollow shape assoiated to the appliation of the BCs. Two interesting ob-servations have to be pointed out:1) whilst the edge density inreases up to 3-4 times upon the BCs applia-tion (but a more preise estimation would need a better diagnosti overagein that region), the entral density appears almost unperturbed. A possibleexplanation ould be that a more de�ned m = 0 pattern features betterpartile on�nement properties (and thus the hydrogen in�ux from the wallwould aumulate only at the edge). On the other side, also omparing thetwo Poinaré plots shown in �g.8.17, one an easily ath how the BCs ap-pliation enlarges the extension of the more haoti region in between theislands, probably featuring short onnetion lenght that ould rapidly drivethe partiles to the wall preventing an e�etive ore fueling;2) the last two plots in �g.8.19 show in more detailed way the relation be-tween the edge topology modi�ation and the edge density pro�les. In par-tiular, omparing two time instants (before and after the BCs appliation)of the same disharge it is possible to highlight how a smoother density pro-�le orrespond to a smoother shape of the m = 0, n = 7 eigenfuntion andalso how in the ase of BCs appliation the maxima of the two urves (den-sity pro�le and m = 0, n = 7 eigenfuntion) are loated very lose radiallyregion.These observations ould help larifying the role of the edge magnetitopology and, in partiular, of the m = 0 islands in de�ning the plasmaproperties and the omplex (interonneted) mehanisms regulating a ruial179



Plasma boundary in SHAx states

Figure 8.19: Disharge 30200. Left: The density pro�le and its time evo-lution obtained by the multihord interferometer, [91, 92℄. Right: The edgedensity pro�les and the eigenfuntion of the magneti perturbation at twotime instants: 92 ms (zero boundary ondition applied to all the modes)and 165 ms (with non�zero boundary ondition to the m = 0/n = 7 and
m = 1/n = 7 modes.)part of the RFP physis, the edge transport and the plasma-wall interation.An extrapolation of these results towards the development of an RFP diver-tor onept will be subsequent.
8.3.3 Phase relationsAs already said, the idea of a divertor on�guration for RFP boundary dur-ing helial states would require the ontrol of the m = 0 island amplitudesand of their phase; moreover, also the phase di�erene between the dominant
m = 0 and m = 1 modes is relevant from the point of view of the plasma�wall interation (see �g. 8.9).In this setion we analyze the e�et on the phases of the m = 0 and m = 1modes and on their phase di�erene, when non�zero BCs are applied to thedominant modes.A question arises. Whih is the orret phase of the modes to be onsid-ered?We an onsider both the (m,n) harmonis of the radial magneti �eld (see180



8.3 External magneti perturbationsequation (2.146))8:
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T (8.5)for the dominant modes in RFX�mode.Due to the toroidal oupling between the harmonis of the �uxes b̂rmn and ofthe metris (1/√g)
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, for the radial magneti �eld one an write9:
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b̂r1,7 (8.7)The seond term in both the equations (8.6)�(8.7) is the term due to thetoroidal oupling. Remembering �g.8.2 10 one an understand that at leastduring QSH states the ontribution of b̂r0,7 to br1,7 is not so big, whereas theontribution of b̂r1,7 to br0,7 is the dominant one. A statistial study of thephase di�erene between the radial magneti �elds br1,7 and br0,7 is plotted in�g.8.20, where the importane of the toroidal oupling emerges in the on-stany of the phase di�erene.The ontribution to the phase of the �uxes b̂r1,7 and b̂r0,7 in eq.(8.4)�(8.5)arises both from a toroidal oupling intrinsi in the toroidal Newomb�likeequation solved for the �uxes (in hapter 3) and a non�linear oupling be-tween the dominant and the seondary modes (similar to the loking thatarises also in ylindrial geometries, [89℄).Whih are the phases that better desribe the e�et on the magnetitopology is not yet well understood. The phase di�erene between the dom-inant m = 1 and m = 0 modes related to the radial magneti �eld brmn is8We onsider the 2π part of the omputed �uxes.9The toroidal oupling has been explained in hapter 3 and 5. We neglet in these for-mulas the ontribution that arises from the (m,n) = (2, n) and (m,n) = (−1, n) harmon-is. The harmonis of the Jaobian are written in appendix B.2.3 for the wi oordinates.10For a more formal prof see [53℄. 181



Plasma boundary in SHAx statesalways onstant (even if it depends on the poloidal angle, as we will nowexplain), whereas the phase di�erene related to the �uxes b̂rmn seems to bemore easily a�eted by non�zero BCs. In the next setions, showing the ef-fet of non�zero BCs, we will relate it to the Poinaré plots that we onsiderto well reprodue the magneti topology.The physial meaning of the phasesWe write the Fourier deomposition of any quantity A, whih an be theradial magneti �eld Br or the related radial magneti �ux b̂:
A =
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amn e
i(mϑ−nϕ+φmn) =
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Amn cos(mϑ− nϕ+ φmn) (8.8)This is a bi�dimensional Fourier deomposition (both on the poloidal angle
ϑ and on the toroidal angle ϕ).Let us explain the physial meaning of the real number φmn. First we writethe harmonis of the two dominant mode in an expliit way:

a1,7 cos(ϑ− 7ϕ+ φ1,7) (8.9)
a0,7 cos(−7ϕ+ φ1,0) (8.10)As one an see the harmonis a0,7 of the perturbation is uniform on thepoloidal plane (does not depend on the poloidal angle).The maximum of the perturbation must vanish the osine funtion. There-fore:- Fixing the toroidal angle (ϕ = ϕfix) one looks at the perturbationon the poloidal plane. The number φmn in this ase represents thepoloidal angle ϑ of the �rst maximum of the perturbation, whih is:

ϑ = 7ϕfix − φ1,7 (8.11)
ϑ = 7ϕfix − φ0,7 (8.12)for the two dominant modes.- Fixing the poloidal angle (ϑ = ϑfix) one looks at the perturbation inthe toroidal diretion. The number φmn in this ase represents thetoroidal angle ϕ of the �rst maximum of the perturbation, whih is:
ϕ = (ϑfix + φ1,7)/7 (8.13)
ϕ = (ϑfix + φ0,7)/7 (8.14)for the two dominant modes. 182



8.3 External magneti perturbationsTo study the relation between the two dominant modes we an look to whatwe alled their phase di�erene ∆φ, whih is not simply φ1,7 − φ0,7: we usethe symbol ∆φ in this setion for the angle between the maxima of the twomodes and therefore it depends on the angles:- Fixing the toroidal angle (ϕ = ϕfix) one looks at both the pertur-bations on the poloidal plane. The angle ∆φ between their maximais:
∆φ = ϑ+ φ1,7 − φ0,7 (8.15)- Fixing the poloidal angle (ϑ = ϑfix) one looks at both the perturba-tions in the toroidal diretion. The angle ∆φ between their maximais:

∆φ = ϑfix + φ1,7 − φ0,7 (8.16)From an operative point of view we stress that we use the wi = (r, ϑ, ϕ)oordinates used for the harmonis reonstrution11. We remind that thepoloidal angle of this oordinate system is de�ned to have its zero value onthe internal equatorial plane, whih means that it di�ers of an angle π withrespet to the mahine poloidal angle that we all θ (see �g.1.4) and whihhas its zero value on the external equatorial plane.The magneti topology related to ∆φ at di�erent �xed poloidal angles(ϑ = ϑfix) is shown in the following of this setion, both for the zero andnon�zero BCs ondition ases.Zero�boundary ondition.Disharge 30200 at t = 92 ms.Due to toroidal oupling, the m = 1/n = 7 and m = 0/n = 7 modes have avery lear phase relationship. This is displayed in Fig. 8.20, where the phasedi�erene ∆φ between the m = 0/n = 7 mode and the m = 1/n = 7 modein RFX-mod is shown as a funtion of the phase of the m = 1/n = 7 modefor a large set of disharges, in time intervals where a strong quasi-singleheliity state is observed. It an be seen that the two modes have an almostonstant phase di�erene equal to 0. The phases onern the radial magneti�eld omponent on the internal equatorial plane (θfix = π), and have beenomputed at the respetive resonant surfaes.11see setion 3.1.1 and appendix B.2.3 for the de�nition of the wi = (r, ϑ, ϕ) oordinatesystem. 183
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Figure 8.20: Phase di�erene ∆φ on the internal equatorial plane (θfix =
π), between the m = 1/n = 7 mode and the m = 0/n = 7 mode plotted as afuntion of the phase of the m = 1/n = 7 mode for SHAx states obtained in1.5 MA disharges. The phases onern the radial magneti �eld omponent,
brmn in eq.(8.6)�(8.7).A phase di�erene ∆φ = 0 means that the island O�points of the m =
1/n = 7 mode orrespond to the O�points of the m = 0/n = 7 islands. A
∆φ = 0 phase di�erene is statistially found to be related to the internalequatorial plane. But due to the fat that the m = 0 modes are uniform onthe poloidal plane whereas the m = 1 modes are not, the phase di�erene
∆φ hanges its value on the poloidal plane at di�erent poloidal angles. E.g.on the external equatorial plane (θfix = 0) the phase di�erene is ∆φ = π,whih means that the m = 0/n = 7 island O�points are in orrespondeneof the m = 1/n = 7 island X�points. This magneti topology orrespondsto the plasma�wall interation disussed in setion 8.2.Therefore, on the poloidal plane the phase di�erene ∆φ hanges with thepoloidal angle, and this is re�eted on the magneti topology and on theplasma�wall interation (as seen in �g.8.9). The magneti topology relatedto the dominant m = 0 and m = 1 modes at four di�erent poloidal angles isshown in �g.8.21, where four Poinaré plot are omputed at the same timeinstant and at:
• θfix = 0 and therefore ∆φ = π

• θfix = π
2 and therefore ∆φ = π

2

• θfix = π and therefore ∆φ = 0

• θfix = 3π
2 and therefore ∆φ = π

2One an see that the magneti topology is tightly orrelated to the positionof the m = 0 island with respet to the global helial deformation due to the
m = 1 dominant mode (with the m = 0 island on the top or on the bottom184



8.3 External magneti perturbationsof the m = 1 edge deformation).

Figure 8.21: Disharge 30200 at t = 92 ms, therefore when zero boundaryondition are imposed by the feedbak ontrol on all the modes. The mag-neti topology at di�erent poloidal angles and therefore related to di�erentphase di�erene ∆φ between the m = 0/n = 7 mode and the m = 1/n = 7mode in RFX-mod. A phase di�erene ∆φ = 0 is related to the internalequatorial plane, θfix = π.Non�zero boundary ondition.Two examples.The phase di�erene ∆φ between them = 0/n = 7 mode and them = 1/n =
7 mode is therefore an important ingredient to be understood to study theplasma�wall interation in RFX�mod.In order to better understand the role of ∆φ we try to hange the nat-ural phase di�erene, that is equal to 0 on the internal equatorial plane(�g.8.20)12. We do this again using the feedbak ontrolled saddle oils to12The natural ∆φ brings a higher plasma�wall interation between 90◦ < θ < 180◦, see�g.8.20. Changing the phase relation ∆φ between the m = 0/n = 7 and the m = 1/n = 7modes, we ould expet to hange the plasma�wall interation on the poloidal plane, andeven to bring the higher interation in front of the measurements, usually loated aroundthe external equatorial plane (θ = 0). 185



Plasma boundary in SHAx states

Figure 8.22: Time evolution of plasma quantities for the disharge 30200.Top, middle: the plasma urrent and the amplitude of the radial magneti�eld of the dominant m = 1 mode that are already in �g.8.13. Bottom:the phases of the b̂rmn �ux for the m = 1/n = 7 (blak) and m = 0/n = 7(red) modes in eq.(8.4)�(8.5) omputed at the resonant surfae. The phasedi�erene between the two is evident in the two time windows: ∆φ = 0 for
t < 195 ms, while ∆φ = π/2 between 195ms < t < 250ms.impose a non�zero boundary ondition to the radial magneti �eld of the
m = 0/n = 7 and the m = 1/n = 7 modes, with a hosen phase di�erenebetween them.We present two examples:
• The seond time window (195ms < t < 250ms) of the disharge 30200(�g.8.13, right), where a phase di�erene ∆φ = π/2 was imposed be-tween the m = 0/n = 7 and the m = 1/n = 7 modes.In �g.8.22 one an see that in this time window the plasma urrentwas already dereasing, so the disharge dynamis probably makes theanalysis more di�ult. In any ase, the applied phase di�erene be-tween the modes appears learly in �g.8.22 (bottom) for the �uxes
b̂rmn.
• The disharge 30184. Another, more di�ult, example.This example, de�ned in �g.8.23, is more di�ult beause the phasedi�erene ∆φ is ontinuously hanging. The two modes are in fatrotating in opposite diretions with respet to the toroidal angle, as186



8.3 External magneti perturbations

Figure 8.23: Time evolution of plasma quantities for the disharge 30184:non�zero boundary ondition on the m = 1/n = 7 and m = 0/n = 7modes. Up: the time evolution of the amplitude of the radial magneti �eldat the edge (for the m = 1/n = 7 (blak) and m = 0/n = 7 (red) modes).Down: the time evolution of phases of the �uxes b̂rmn (for the m = 1/n = 7(blak) and m = 0/n = 7 (red) modes) omputed at the resonant surfae.The dynamis of the phase di�erene ∆φ is related to the fat that the twomodes are rotating in opposite diretion in the plasma.imposed by the feedbak�ontrolled system.Even if the dynamis of the applied ∆φ is lear in �g.8.23 (bottom) forthe �uxes b̂rmn, this an not be learly seen on the magneti topologywhih is reprodued in the Poinaré plots in �g.8.24. They are per-formed at di�erent time instants (marked by olored lines in �g.8.23bottom) when di�erent ∆φ should haraterized the topology on theexternal equator plane (θ = 0).It is worth noting that a modulation is present the time evolution ofthe amplitude of the radial magneti �eld at the edge of both the the
m = 1/n = 7 and m = 0/n = 7 modes (blak and red in �g.8.23middle, respetively). This modulation is present in the whole radialdomain looking at the eigenfuntion reonstrutions, therefore it seemsthat not just the m = 1 mode a�ets the m = 0 due to the toroidaloupling, but even the vieversa.187



Plasma boundary in SHAx states

Figure 8.24Phase modi�ations appear more di�ult than ating on the m = 0island amplitudes. Data analysis is still in progress: an we exploit thismethod to externally ontrol the edge plasma dynamis?
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Chapter 9Detailed alulations on...One an onsider this hapter part of the thesis. One an �nd here detailsof alulation useful to better understand the main text of the thesis in theprevious setions. Moreover detailed alulations have been useful for theimplementation of formulas in SHEq�ode and ould be useful for futurework that may want to use the details of this thesis.9.1 On the �uxes and their derivativesWe write some ommon way of writing the �uxes and their omplex harmon-is. Espeially we try to link one to the other in the following subsetions.9.1.1 On how to ompute the helial �ux χIn the text (setion 4.1), we write for the helial �ux χ the same equationshere olleted in eq.(9.2)�(9.4):
χ = mψP − nψT (9.1)

= [mψP,0 − nψT,0](r) + [mψm,nP − nψm,nT ](r) eiu + c.c. (9.2)
= χ0(r) + χm,n(r) eiu + c.c. (9.3)
= χ0(r) + 2|χm,n|(r) cos(u+ φχ) (9.4)About the omplex onjugation of the �uxes one an see appendix C.1.Here we want to show how to ompute the amplitude |χm,n|(r) and thephase φχ of the perturbed helial �ux χm,n (that derive from the sum oftwo omplex numbers, χm,n = mψm,nP − nψm,nT ) in terms of amplitudes andphases of the harmonis of the poloidal and toroidal �uxes.Using the results of appendix C.2 for the sum between two omplex numbers,189



Detailed alulationswe write 1 :
|χm,n| = C (9.14)

φχ = γ (9.15)and (using eq.(C.32)�(C.33) and eq.(9.12)�(9.13)): from eq.(C.32)�(C.33):




|χm,n| =
[
n2|ψT |2 +m2|ψT |2 − 2mn|ψT ||ψP | cos(φψT − φψP )

]1/2

φχ = arctan
[
m|ψP | sinφψP−n|ψT | sinφψT
m|ψP | cosφψP−n|ψT | cosφψT

]

|ψT | ≡ |ψm,nT | ≡ |ψm,nT |(r) |ψP | ≡ |ψm,nP | ≡ |ψm,nP |(r)

(9.16)
where poloidal and toroidal �uxes are used with the same notation:

ψT (r, θ, ϕ) = ψT,0 (r) + ψm,nT (r) ei (mθ−nϕ)

= ψT,0 (r) + |ψm,nT | ei φψT ei (mθ−nϕ)

ψP (r, θ, ϕ) = ψP,0 (r) + ψm,nP (r) ei (mθ−nϕ)

= ψP,0 (r) + |ψm,nP | ei φψP ei (mθ−nϕ) (9.17)The helial �ux in SHEq�odeSHEq uses another form for the helial �ux:
χ = χ0 + ǫ sin(u+ ψǫ) (9.18)1With respet to appendix C.2 we all:

z = a+ ib = ρ ei θ 7→ ψm,nT = |ψm,nT | eiφψT ≡ ψT (9.5)
t = c+ id = σei ϕ 7→ ψm,nP = |ψm,nT | eiφψP ≡ ψP (9.6)

z − t = A+ iB = C eiγ 7→

χm,n = mψm,nP − nψm,nT ≡ mψP − nψT
χm,n = |χm,n| eiφχ (9.7)Therefore there are also true the following identi�ations:

a = ρ cos θ = |ψm,nT | cosφψT (9.8)
b = ρ sin θ = |ψm,nT | cosφψT (9.9)
c = σ cosϕ = |ψm,nP | cosφψP (9.10)
d = σ sinϕ = |ψm,nP | sinφψP (9.11)From equations (C.30)�(C.31) one an �nally write the oe�ients for χm,n (A and B)in terms of the amplitudes and phases of the poloidal and toroidal �uxes (a, b, c, d):

A = C cos γ = a− c = |ψm,nT | cosφψT − |ψm,nP | cosφψP (9.12)
B = C sin γ = b− d = |ψm,nT | cosφψT − |ψm,nP | sinφψP (9.13)The oe�ient C = |χm,n| and γ = φχ an be omputed using eq.(C.32)�(C.33).190



9.1 On the �uxes and their derivativessimply beause it uses the eigenfuntion of the perturbed �uxes from theoutput of another ode that alulate them from Newomb�like equations(as explained in hapter 3). In this ode the helial �ux perturbation ǫ is inaordane with (9.18). Let us prove that
2i|χmn| = ǫ (9.19)

φχ = ψǫ (9.20)where |χmn| and φχ are omputed from (9.16). Using the de�nition
b̂rmn = i (nψmnT −mψmnP ) ⇒ (mψmnP − nψmnT ) = i b̂rmn (9.21)that arises from eq.(5.43), one an write
χ = [mψP,0 − nψT,0](r) + [mψm,nP − nψm,nT ](r) eiu + c.c. (9.22)

= χ0 + i b̂rmn e
iu + c.c. (9.23)

= χ0 + i b̂rmn e
iu − îbrmn e−iu (9.24)

= χ0 + i b̂rmn (eiu − e−iu) (9.25)
= χ0 − 2 b̂rmn sinu (9.26)
= χ0 − 2 |̂brmn| sin(u+ φbbrmn

) (9.27)
≡ χ0 + ǫ sin(u+ ψǫ) (9.28)
≡ χ0 + |χm,n| e(iu+φχ) + c.c. (9.29)Comparing (9.23)�(9.28)�(9.29) one an understand the relations (9.18)�(9.19)�(9.20).9.1.2 On the radial derivatives of omplex harmonis, for thepoloidal and toroidal �uxesIn this thesis the Fourier deomposition of a perturbation has been frequentlyused (see hapter 3�5):

A(r, θ, ϕ) = A0(r) +
∑

m,n

am,n(r) ei(mθ−nϕ) + c.c. (9.30)where A an be every quantity inside the plasma volume: magneti �uxes,vetor potential omponents, magneti �eld omponents, ...The harmonis of the perturbation are omplex numbers: am,n(r) ǫC. There-fore:
am,n(r) = |am,n|(r) ei φ(r) (9.31)where |...|(r) indiates the amplitude, while φ(r) the phase of am,n. We re-mind that the amplitude and phase of a omplex number are real numbers.191



Detailed alulationsPerturbative analysis is done in the thesis to axisymmetri equilibriumquantities, that depend only on the radius r of the irular magneti �uxsurfaes related to the axi�symmetri magneti �eld B0. And that is whywe use in this setion the variable r as radial variable. But of ourse thisstill true for any perturbative analysis, for example of the SH equilibrium�eld that uses the helial �ux χ(ρ) as radial variable.Let us onsider the radial derivative of the harmonis ψm,n of the (poloidalor toroidal) magneti �uxes2. This is linked to the omputation of magneti�eld omponents (eq.(2.144)�(2.145)).Beause the derivative of a omplex number is still a omplex number, wean write:
ψ′
m,n(r) = a+ ib (9.32)

= |ψ′
m,n|(r) ei φ

′
ψ(r) (9.33)with

|ψ′
m,n|(r) =

√
a2 + b2 (9.34)

φ′ψ(r) = tan−1 a

b
(9.35)The �rst expression in (9.32) highlights the real and the imaginary part ofthe omplex harmonis ψ′

m,n(r), whereas the seond one writes it in the polarform.Using the symbol ′ = d/dr, we an also write:
ψm,n(r) = |ψm,n|(r) ei φψ(r) (9.36)

⇓

ψ′
m,n(r) =

d

dr

[
|ψm,n|(r) ei φψ(r)

] (9.37)
=

[
|ψm,n|′ + i |ψm,n|φ′ψ

]
ei φψ (9.38)Let us stress that the derivative of the amplitude of the funtion ψm,n isdi�erent from the amplitude of the derivative of the same funtion:

|ψm,n|′ 6= |ψ′
m,n| (9.39)The �ux derivatives in SHEq�odeSHEq ode uses equation (9.38) for the radial derivative of the �uxes, whihmust be written in the omplete form of equation (9.30). Considering only2Using ψ as the symbol for every �ux, depending on the magneti omponent that oneis onsidering. The indexes m,n are written as down indexes just for ommodity.192



9.1 On the �uxes and their derivativesthe perturbative part, and just one mode of the perturbation (u = θ − nϕ),we obtain:
∂

∂r

[
|ψm,n|(r) ei φψ(r)+u + c.c

]
=

[
|ψm,n|′ + i |ψm,n|φ′ψ

]
ei φψ+u + c.c. (9.40)

= 2|ψm,n|′ cos(φψ + u)− 2|ψm,n|φ′ψ sin(φψ + u)adding the omplex onjugated to eq.(9.38) and onsidering also the angulardependene of the �uxes.The amplitude |ψm,n| and phase φψ of the �uxes are omputed solvingNewomb�like equations as explained in hapter 3. Their radial derivativesare alulated in a numerial way.9.1.3 On the (angular and radial) derivatives of the helial�ux χUsing the form of eq.(9.4) for the helial �ux χ, and then eq.(9.16), one anompute the helial �ux radial and angular derivatives (whih involve theradial derivatives of the �uxes, setion 9.1.2):
(

∂χ
∂r

)
= mψ′

P,0 − nψ′
T,0 + (9.41)

+ 2
∂|χ|
∂r

cos(mθ − nϕ+ φχ)− 2|χ| ∂φχ
∂r

sin(mθ − nϕ+ φχ)
(

∂χ
∂θ

)
= −2 m |χ| sin(mθ − nϕ+ φχ) (9.42)

|χ| ≡ |χm,n| ≡ |χm,n|(r)with, making use of eq.(9.16),
(

∂|χ|
∂r

)
=

1

2

[
2m|ψT ||ψT |′ + 2n2|ψP ||ψP |′ − 2mn|ψT |′|ψP | cos(φψT − φψP ) +

− 2mn|ψT ||ψP |′ cos(φψT − φψP ) +

+2mn|ψT ||ψP |(φ′ψT − φ
′
ψP

) sin(φψT − φψP )
]−1/2 (9.43)

(
∂φχ
∂r

)
=
[
1 +

(m|ψP | sinφψP − n|ψT | sinφψT
m|ψP | cosφψP − n|ψT | cosφψT

)2]−1
× (9.44)

×
[N ′D −D′N

D2

] 193



Detailed alulations




N = m|ψP | sinφψP − n|ψT | sinφψT
D = m|ψP | cosφψP − n|ψT | cosφψT
N ′ = m|ψP |′ sinφψP +m|ψP |φ′ψP cosφψP − n|ψT |′ sinψψT − n|ψT |φ′ψT cosφψT
D′ = m|ψP |′ cosφψP −m|ψP |φ′ψP sinφψP − n|ψT |′ cosψψT + n|ψT |φ′ψT sinφψTThe helial �ux radial derivatives in SHEq�odeSHEq ode uses a formula similar to eq.(9.40) also for the helial �ux:

∂χ

∂r
=

dχ0

dr
+
∂χm,n(r, u)

∂r
(9.45)

= χ′
0(r)− ǫ′(r) sin(u+ φǫ)− ǫ φ′ǫ cos(u+ φǫ) (9.46)using de�nitions (9.19)�(9.20) for ǫ(r) and φǫ, one founds that equation(9.45) is equivalent to eq.(9.41).9.2 On helial�toroidal oordinatesHelial�toroidal oordinate systems have been de�ned in hapter 4 as a �rststep to model SHAx states (as pure SH states).The whole metri tensors are used by the SHEq ode to ompute the helialplasma quantities, examples of whih one an �nd in hapter 6.We ollet here the metris of all the helial oordinates de�ned in hapter 4,in the same order for simpliity (exept for the (χ, u, θ) and (χ, uθh , θ) oordi-nate systems of setion 4.2.3, for whih no metris have been alulated). Itis worth noting that all the helial�toroidal metris are all urvilinear metris.9.2.1 The whole metri tensor of helial oordinate systemsde�ned in hapter 41. The (χ, β, ϕ) oordinate systemThis is the oordinate system de�ned in setion 4.2.1, whih is not astraight��eld�line oordinate system.The angle β is de�ned with respet to the helial axis, and an be de-�ned with respet to the ylindrial oordinates3 in a geometri way,equation (4.11).Due to equations (3.14), the metri tensor and the Jaobian of this o-ordinate system an be derived in a relatively easy way in terms of the3The tensor metri of the ylindrial oordinate system an be found in appendix B.2.1.194



9.2 On helial�toroidal oordinatesmetris of the zero�th order �ux oordinates wi = (r, ϑ, ϕ) de�ned insetion 3.1.1 and appendix B.2.3. The ontravariant metri tensor ele-ments and the Jaobian an be omputed using the relations betweenthe gradients of the two oordinate systems:




∇χ = ∂χ
∂r∇r + ∂χ

∂ϑ∇ϑ+ ∂χ
∂ϕ∇ϕ

∇β = ∂β
∂r∇r + ∂β

∂ϑ∇ϑ+ ∂β
∂ϕ∇ϕ

∇ϕ = ∇ϕThe Jaobian √gβ of the (χ, β, ϕ) oordinate system is:
√
gβ = (∇χ · ∇β ×∇ϕ)−1 =

(
∂χ
∂r

∂β
∂ϑ −

∂χ
∂ϑ

∂β
∂r

)−1 · √gw (9.47)where √gw is the Jaobian of the wi oordinate system. The followingondition must be satis�ed:
∂χ

∂r

∂β

∂ϑ
>
∂χ

∂ϑ

∂β

∂r
(9.48)We write expliitly just an example, for the �rst ontravariant met-ris element: g11 ≡ gχχ:

gχχ = ∇χ · ∇χ (9.49)
=

(
∂χ

∂r
∇r +

∂χ

∂ϑ
∇ϑ+

∂χ

∂ϕ
∇ϕ
)
·
(
∂χ

∂r
∇r +

∂χ

∂ϑ
∇ϑ+

∂χ

∂ϕ
∇ϕ
)

=

=

(
∂χ

∂r

)2

grrw +

(
∂χ

∂ϑ

)2

gϑϑw +

(
∂χ

∂ϕ

)2

gϕϕw +

(
∂χ

∂r

)(
∂χ

∂ϑ

)
grϑwThe gij elements of the (inverse) ovariant matrix an be alulatedfrom the formulas for the inversion of a 3x3 diagonal matrix (see ap-pendix B.3).One needs to know the following derivatives to ompute the metriselements and the Jaobian:

(
∂β

∂r

)
,

(
∂β

∂ϑ

)
,

(
∂χ

∂r

)
,

(
∂χ

∂ϑ

) (9.50)The derivatives of the helial �ux have already been disussed in setion9.1.3. We derive here the derivatives of the angle β, for whih we mustremember the de�nition of the angle β, equations (3.14) and equations195



Detailed alulations(3.12):
β = arctan

(
Z−ZA
R−RA

) (9.51)
R = R0 − r cosϑ+ ∆(r)− rλ1 sin2 ϑ+ (

3

2
rλ2

1 − 2rλ2) sin2 ϑ cosϑ

Z = r sinϑ− r

2
λ1 sin(2ϑ) + (

3

2
rλ2

1 − 2rλ2) sinϑ cos2 ϑ− r

2
λ2

1 sinϑ

λ1(rf ) =
rf
R0
−∆′ (9.52)

λ2(rf ) =
rf

4R0

( rf
R0
−∆′ ) =

rf
4R0

λ1 (9.53)Beause d/dx(arctanx) = (1 + x2)−1, one obtains the derivatives:
(

∂β
∂r

)
=

[
1 +

(
Z−ZA
R−RA

)2
]−1 (

1
R−RA

∂Z
∂r −

Z−ZA
(R−RA)2

∂R
∂r

)
=(9.54)

=
1

(R−RA)2 + (Z − ZA)2

[
(R−RA)

∂Z

∂r
− (Z − ZA)

∂R

∂r

]

(
∂β
∂ϑ

)
=

[
1 +

(
Z−ZA
R−RA

)2
]−1 (

1
R−RA

∂Z
∂ϑ −

Z−ZA
(R−RA)2

∂R
∂ϑ

)
=(9.55)

=
1

(R−RA)2 + (Z − ZA)2

[
(R−RA)

∂Z

∂ϑ
− (Z − ZA)

∂R

∂ϑ

]with
(

∂Z
∂r

)
= sinϑ− 1

2
λ1 sin(2ϑ)− r

2
sin(2ϑ)

∂λ1

∂r
+ (9.56)

+
(

3
2λ

2
1 + 3rλ1

∂λ1
∂r − 2λ2 − 2r ∂λ2

∂r

)
sinϑ cos2 ϑ+

− 1

2
λ2

1 sinϑ− rλ1
∂λ1

∂r
sinϑ

(
∂Z
∂ϑ

)
= r cosϑ− rλ1 cos(2ϑ)− r

2
λ2

1 cosϑ+ (9.57)
+
(

3
2rλ

2
1 − 2rλ2

) (
cos2 ϑ− 2 sin2 ϑ

)
cosϑ

(
∂R
∂r

)
= − cosϑ+ ∆′ − λ1 sin2 ϑ− r sin2 ϑ

∂λ1

∂r
+ (9.58)

+
(

3
2λ

2
1 + 3rλ1

∂λ1
∂r − 2r ∂λ2

∂r − 2λ2

)
sin2 ϑ cosϑ

(
∂R
∂ϑ

)
= r sinϑ− 2rλ1 sinϑ cosϑ+ (9.59)
+
(

3
2rλ

2
1 − 2rλ2

) (
2 cos2 ϑ− sin2 ϑ

)
sinϑ196



9.2 On helial�toroidal oordinatesand
(

∂λ1
∂r

)
=

1

R0
−∆′′ (9.60)

(
∂λ2
∂r

)
=

r

2R2
0

− ∆′

4R0
− r∆′′

4R0

∆′′(r) = − 1

R0
− ∆′

r

(
1 + 2r

B̂0
ϑ
dB̂0

ϑ

dr

) (9.61)
2. The (χ, u, ϕ) oordinate systemThis is the helial oordinate system de�ned in setion 4.2.2, for theHamiltonian time ϕ, that emphasizes the helial symmetry with re-spet to u on the �ux surfaes χ = const.The (χ, u, ϕ) is not a straight��eld�line oordinate system and the he-lial angle u = mϑ−nϕ is not de�ned with respet to the helial axis,being de�ned with respet to the axi�symmetri (shifted) axis of thesystem (as the poloidal angle ϑ).The metri tensor and the Jaobian of this oordinate system an bederived in a relatively easy way in terms of the metris of the zero�th order �ux oordinates wi = (r, ϑ, ϕ) de�ned in setion 3.1.1 andappendix B.2.3.The Jaobian √gc of the (χ, u, ϕ) oordinate system is:

√
gc =

(∂χ
∂r

)−1(∂u
∂ϑ

)−1√
gw =

1

m

(∂χ
∂r

)−1√
gw (9.62)where √gw is the Jaobian of the wi oordinate system.Also the ontravariant metri tensor elements gijc an be om-puted using the relations between the gradients of the two oordinatesystems (and the easy derivation of the helial angle u with respet to197



Detailed alulationsthe wi oordinates). One obtains:
gχχc = ∇χ · ∇χ (9.63)

=

(
∂χ

∂r

)2

grrw +

(
∂χ

∂ϑ

)2

gϑϑw +

(
∂χ

∂ϕ

)2

gϕϕw +

(
∂χ

∂r

)(
∂χ

∂ϑ

)
grϑw

gχuc = ∇χ · ∇u

= m

(
∂χ

∂r

)
grϑw +m

(
∂χ

∂ϑ

)
gϑϑw − n

(
∂χ

∂ϕ

)
gϕϕw (9.64)

gχϕc = ∇χ · ∇ϕ =

(
∂χ

∂ϕ

)
gϕϕw (9.65)

guuc = ∇u · ∇u = m2 gϑϑw + n2 gϕϕw (9.66)
guϕc = ∇u · ∇ϕ = −n gϕϕw (9.67)
gϕϕc = ∇ϕ · ∇ϕ = gϕϕw (9.68)remembering the symmetry of the metris elements: gij = gji and
gij = gji.The ovariant metri tensor elements gcij an be alulated fromthe formulas for the inversion of a 3x3 diagonal matrix (see appendixB.3).3. The (χ, uh, ϕ) oordinate systemThis is the ation�angle oordinate system de�ned in setion 4.2.2, forthe Hamiltonian time ϕ, that emphasizes the helial symmetry withrespet to u on the �ux surfaes χ = const.The (χ, u, ϕ) is the straight��eld�line oordinate system related to thehelial angle uh de�ned in equation (4.21).The metri tensor of this oordinate system an be derived in a rel-atively easy way in terms of the metris of the (χ, u, ϕ) oordinatesystem. One needs to know the following derivatives to ompute themetris elements and the Jaobian:

∂uh
∂χ

=
∂χ

∂ψh

∫ u

0

∂2ψT (χ, u′)
∂χ2

du′ (9.69)
∂uh
∂u

=
∂ψT (χ, u)

∂χ

dχ

dψh
=

1

ιh

∂ψT (χ, u)

∂χ
(9.70)remembering the de�nition of the helial rotational transform ιh, eq.(6.26).198



9.2 On helial�toroidal oordinatesThe Jaobian √gh of the (χ, uh, ϕ) oordinate system is:
√
gh =

(∂uh
∂u

)−1√
gc (9.71)

=
1

m

(∂uh
∂u

)−1(∂χ
∂r

)−1√
gw (9.72)using also equation (9.62).The ontravariant metri tensor elements gijh an be omputedusing the relations between the gradients of the two oordinate systems(the (χ, uh, ϕ) and the (χ, u, ϕ) oordinate systems). One obtains:

gχχh = ∇χ · ∇χ = gχχc (9.73)
gχuhh = ∇χ · ∇uh =

(
∂uh
∂χ

)
gχχc +

(
∂uh
∂u

)
gχuc (9.74)

gχϕh = ∇χ · ∇ϕ = gχϕc (9.75)
guhuhh = ∇uh · ∇uh (9.76)

=

(
∂uh
∂χ

)2

gχχc + 2

(
∂uh
∂χ

)(
∂uh
∂u

)
gχuc +

(
∂uh
∂u

)2

guuc

guhϕh = ∇uh · ∇ϕ =

(
∂uh
∂χ

)
gχϕc +

(
∂uh
∂u

)
guϕc (9.77)

gϕϕh = ∇ϕ · ∇ϕ = gϕϕc (9.78)remembering the symmetry of the metris elements: gij = gji and
gij = gji and that uh ≡ uh(χ, u).Again, the ovariant metri tensor elements ghij an be alulatedfrom the formulas for the inversion of a 3x3 diagonal matrix (see ap-pendix B.3).4. The (χ, u, v) oordinate systemThis is the helial oordinate system de�ned in setion 4.2.4, for theHamiltonian time v = aθ+ bnϕ, that an be thought as a toroidal�likeangle de�ned on the helial axis and that do not reverse. On the otherhand, the helial angle u = mϑ − nϕ is not de�ned with respet tothe helial axis and the (χ, u, v) is not a straight��eld�line oordinatesystem.As for the (χ, u, ϕ) oordinates, the metri tensor of this oordinatesystem an be derived in a relatively easy way in terms of the metrisof the zero�th order �ux oordinates wi = (r, ϑ, ϕ) de�ned in setion199



Detailed alulations3.1.1 and appendix B.2.3.The Jaobian √gv of the (χ, u, v) oordinate system is:
√
gv =

(∂χ
∂r

)−1(∂u
∂ϑ

∂v

∂ϕ
− ∂u

∂ϕ

∂v

∂ϑ

)−1√
gw (9.79)

=
(∂χ
∂r

)−1√
gw (9.80)where √gw is the Jaobian of the wi oordinate system. The simplederivations of the angles u and v with respet to ϑ and ϕ have beenused.Also the ontravariant metri tensor elements gijv an be om-puted using the relations between the gradients of the two oordinatesystems. One obtains:

gχχv = ∇χ · ∇χ (9.81)
=

(
∂χ

∂r

)2

grrw +

(
∂χ

∂ϑ

)2

gϑϑw +

(
∂χ

∂ϕ

)2

gϕϕw +

(
∂χ

∂r

)(
∂χ

∂ϑ

)
grϑw

gχuv = ∇χ · ∇u

= m

(
∂χ

∂r

)
grϑw +m

(
∂χ

∂ϑ

)
gϑϑw − n

(
∂χ

∂ϕ

)
gϕϕw (9.82)

gχvv = ∇χ · ∇v

=
1

2n

(
∂χ

∂r

)
grϑw +

1

2n

(
∂χ

∂ϑ

)
gϑϑw +

1

2

(
∂χ

∂ϕ

)
gϕϕw (9.83)

guuv = ∇u · ∇u = m2 gϑϑw + n2 gϕϕw (9.84)
guvv = ∇u · ∇v =

m

2n
gϑϑw −

n

2
gϕϕw (9.85)

gvvv = ∇v · ∇v =
1

4n2
gϑϑw +

1

4
gϕϕw (9.86)remembering the symmetry of the metris elements: gij = gji and

gij = gji.The ovariant metri tensor elements gvij an be alulated fromthe formulas for the inversion of a 3x3 diagonal matrix (see appendixB.3).5. The (χ, uη, v) oordinate systemThis is the Ation�Angle oordinate system de�ned in setion 4.2.4,for the Hamiltonian time v. The (χ, u, ϕ) is therefore the straight��eld�line oordinate system related to the helial Angle uη de�nd in200



9.2 On helial�toroidal oordinatesequation (4.62) as the angle de�ned with respet to the helial axis..The metri tensor of this oordinate system an be derived in a rel-atively easy way in terms of the metris of the (χ, u, v) oordinatesystem. One needs to know the following derivatives to ompute themetris elements:
uη(ηh, u) =

∫ u

0

∂η(ηh, u
′)

∂ηh
du′ =

dχ

dηh

∫ u

0

∂η(χ, u′)
∂χ

(9.87)
m

∂uη
∂χ

= ιη
∂

∂χ

(∫ u

0

∂η(χ, u′)
∂χ

du′
)

+
dιη
dχ

∫ u

0

∂η(χ, u′)
∂χ

du′ (9.88)
= ιη

∫ u

0

(
∂χ

∂r

)−1
[
∂2η

∂r2

(
∂χ

∂r

)−1

− ∂η

∂r

(
∂χ

∂r

)−2(∂2χ

∂r2

)]
du+

+
dιη
dχ

uη
ιη

∂uη
∂u

=
∂η(ηh, u

′)
∂ηh

= ιη(χ)
∂η(χ, u′)
∂χ

= ιη(χ)
∂η

∂r

(
∂χ

∂r

)−1 (9.89)remembering the general de�nition of the helial rotational transform
ιη(χ) = dχ/dηh, for the Ation ηh(χ), and with4:

∂η

∂r
=

1

2n

∂ψP
∂r

+
1

2

∂ψt
∂r

(9.90)
∂2η

∂r2
=

1

2n

∂2ψP
∂r2

+
1

2

∂2ψt
∂r2

(9.91)The Jaobian √gη of the (χ, uη, v) oordinate system is:
√
gη =

(∂uη
∂u

)√
gv (9.92)

=
(∂uη
∂u

)(∂χ
∂r

)−1√
gw (9.93)using both the Jaobian of the (χ, u, v) and the wi = (r, ϑ, ϕ) oordi-nate systems.The ontravariant metri tensor elements gijη an be omputedusing the relations between the gradients of the two oordinate systems4See setion 9.1.2 to ompute the radial derivative of the poloidal and toroidal �uxes.201



Detailed alulations(the (χ, u, v) and the (χ, uη, v) oordinate systems). One obtains:
gχχη = ∇χ · ∇χ = gχχv (9.94)
g
χuη
η = ∇χ · ∇uη =

(
∂uη
∂χ

)
gχχv +

(
∂uη
∂u

)
gχuv (9.95)

gχvη = ∇χ · ∇v = gχvv (9.96)
g
uηuη
η = ∇uη · ∇uη =

=

(
∂uη
∂χ

)2

gχχv + 2

(
∂uη
∂χ

)(
∂uη
∂u

)
gχuv +

(
∂uη
∂u

)2

guuv(9.97)
g
uηv
η = ∇uη · ∇v =

(
∂uη
∂χ

)
gχvv +

(
∂uη
∂u

)
guvv (9.98)

gvvη = ∇v · ∇v = gvvv (9.99)remembering the symmetry of the metris elements: gij = gji and
gij = gji and that uη ≡ uη(ηh, u) = uη(χ, u).Again, the ovariant metri tensor elements gηij an be alulatedfrom the formulas for the inversion of a 3x3 diagonal matrix (see ap-pendix B.3).6. The (χ, θ∗, ϕ) oordinate systemThis is the Ation�Angle oordinate system de�ned in setion 4.4.1, forthe Hamiltonian time ϕ. It is a straight��eld�line oordinate systemrelated to the usual toroidal angle ϕ and to the poloidal angle θ∗ de�nedwith respet to the helial axis in equation (4.80):

θ∗ = uh + nϕ . (9.100)The metri tensor of this oordinate system an be derived in a rel-atively easy way in terms of the metris of the (χ, uh, ϕ) oordinatesystem. The Jaobian √g∗ of the (χ, θ∗, ϕ) oordinate system is:
√
g∗ = (∇χ · ∇uh ×∇ϕ)−1 =

√
gh (9.101)where √gh is the Jaobian of the straight��eld�line oordinate system

(χ, uh, ϕ).The ontravariant metri tensor elements gij∗ an be omputedusing the relations between the gradients of the two oordinate systems202



9.2 On helial�toroidal oordinates(the (χ, θ∗, ϕ) and the (χ, uh, ϕ) oordinate systems). One obtains:
gχχ∗ = ∇χ · ∇χ = gχχh (9.102)
gχθ

∗

∗ = ∇χ · ∇θ∗ = gχuhh + ngχϕh (9.103)
gχϕ∗ = ∇χ · ∇ϕ = gχϕh (9.104)
gθ

∗θ∗

∗ = ∇θ∗ · ∇θ∗ = guhuhh + 2nguhϕh + n2gϕϕh (9.105)
gθ

∗ϕ
∗ = ∇θ∗ · ∇ϕ = guhϕh + ngϕϕh (9.106)
gϕϕ∗ = ∇ϕ · ∇ϕ = gϕϕh (9.107)remembering the symmetry of the metris elements: gij = gji and

gij = gji and omputing the easy derivatives of θ∗ with respet to the
(uh, ϕ) oordinates.The ovariant metri tensor elements g∗ij an be alulated fromthe formulas for the inversion of a 3x3 diagonal matrix (see appendixB.3).9.2.2 Radial variable hoiesWe note here how the Jaobian and the metris elements vary for hangeof the radial variable. In setion 9.2 we used the helial �ux χ as radialvariable, with the same hoie of hapter 4. We now onsider the hange:

χ 7→ ρ(χ) (9.108)for any oordinate system χ, θ, ϕ, keeping unhanged the angle variables.The Jaobian √gχ aording to eq.(9.108) hanges as follows:
√
gρ =

(
∂χ

∂ρ

)
√
gχ (9.109)where √gρ is the Jaobian of the ρ, θ, ϕ oordinate system.The ontravariant metri tensor elements gij hanges as:

gρρ =

(
∂ρ

∂χ

)2

gχχ (9.110)
gρθ =

(
∂ρ

∂χ

)
gχθ (9.111)

gρϕ =

(
∂ρ

∂χ

)
gχϕ (9.112)(9.113)203



Detailed alulationswhereas the metri elements related to the angular oordinates only are un-hanged.The ovariant metri tensor elements gij an be alulated from theformulas for the inversion of a 3x3 diagonal matrix in terms of the ontravari-ant elements. Using the relations above one an �nd how they hange underhanges of the radial variable. It still true that the ovariant metri elementsrelated to the angular oordinates only are unhanged.To onlude we note also how hange some quantities important in hap-ter 7: the derivative of the volume V ′ and the diagonal suseptane matrixelements Sij .
V ′
χ 7→ V ′

ρ =

(
∂χ

∂ρ

)
V ′
χ (9.114)

[S11]χ 7→ [S11]ρ =

(
∂ρ

∂χ

)
[S11]χ (9.115)

[S22]χ 7→ [S22]ρ =

(
∂ρ

∂χ

)
[S22]χ (9.116)

9.2.3 Dimensional analysisWe use the symbol [...] to indiate the dimension, using SI metri units.What hanges hanging the radial variable is the dimension of the ovari-ant and ontravariant omponents of the magneti �eld and vetor potential.Starting from the de�nition of these omponents in every general oordinates
xi = (x1, x2, x3):

B = Biei = Bi∇xi (9.117)where ei and ∇xi are the ovariant and ontravariant basis vetor, respe-tively. And they are one the inverse of the other (appendix B.1), ∇xi beingthe gradient of the oordinate salar funtion. The same relations are validfor any vetor, in partiular for the vetor potential A.One starts from here for some dimensional analysis. We hoose toroidal sys-tems (ρ, θ, ϕ): θ and ϕ are two (adimensional) angles and their gradient havedimension [m−1], while its inverse the dimension of [m]. The orrespondent204



9.2 On helial�toroidal oordinatesdimensions for the radial oordinate depend on the hoie of ρ:
(θ ≡ [adim]) ⇒ ∇θ ≡ [m−1] , eθ ≡ [m] (9.118)
(ϕ ≡ [adim]) ⇒ ∇ϕ ≡ [m−1] , eϕ ≡ [m] (9.119)

(ρ = χ ≡ [Tm2]) ⇒ ∇ρ ≡ [Tm] , eρ ≡ [T−1m−1] (9.120)
(ρ = ρh ≡ [adim]) ⇒ ∇ρ ≡ [m−1] , eρ ≡ [m] (9.121)

(ρ = ρA ≡ [m]) ⇒ ∇ρ ≡ [adim] , eρ ≡ [adim] (9.122)Using the de�nitions (B.3) and (B.1) for the ontravariant and ovariantmetris elements respetively, one an make from here a dimensional analy-sis of the tensor matrix elements.Beause the magneti �eld must be Tesla [T ] and the vetor potential
[Tm] (Stokes theorem), one obtains using (9.117):

(ρ = χ ≡ [Tm2]) ⇒ Aρ ≡ [adim] , Aϕ ≡ [Tm2] (9.123)
⇒ Bρ ≡ [m−1] , Bϕ ≡ [Tm] (9.124)

(ρ = ρh ≡ [adim]) ⇒ Aρ ≡ [Tm2] , Aϕ ≡ [Tm2] (9.125)
⇒ Bρ ≡ [Tm] , Bϕ ≡ [Tm] (9.126)

(ρ = ρA ≡ [m]) ⇒ Aρ ≡ [Tm] , Aϕ ≡ [Tm2] (9.127)
⇒ Bρ ≡ [T ] , Bϕ ≡ [Tm] (9.128)With down indexes:

(ρ = χ ≡ [Tm2]) ⇒ Aρ ≡ [T 2m2] , Aϕ ≡ [T ] (9.129)
⇒ Bρ ≡ [T 2m] , Bϕ ≡ [Tm−1] (9.130)

(ρ = ρh ≡ [adim]) ⇒ Aρ ≡ [T ] , Aϕ ≡ [T ] (9.131)
⇒ Bρ ≡ [Tm−1] , Bϕ ≡ [Tm−1] (9.132)

(ρ = ρA ≡ [m]) ⇒ Aρ ≡ [Tm] , Aϕ ≡ [T ] (9.133)
⇒ Bρ ≡ [T ] , Bϕ ≡ [Tm−1] (9.134)The omponents on the other angle, θ have the same dimensional properties.Not all the the omponents of the magneti �eld and of the vetor po-tential have the dimension of the whole vetor. This is obviously due to thefat that the basis vetors are not adimensional. This is at the basis of thetheory for urvilinear metris and tensorial alulations: paying attention tothese rules, one an make adimensional and with unitary lenght the basisvetors ei and ∇xi dividing them for their norm. This is the way to obtainthe right dimension and lenght for eah omponent of the vetors. It is worthnoting that this is neessary to ompare them to experimental measurements.205



Detailed alulations9.3 On some equilibrium equations
9.3.1 The equation for dq/dt
Following the steps for the derivation of the time evolution of the rotationaltransform (setion A.5), we derive a similar equation for the time evolutionof the safety fator q.The starting point is the same, the Faraday's law in eq.(A.54), that we nowdivide by ψ′

p to highlight a q = ψ′
t/ψ

′
p term in the equation:

〈E ·B〉 V
′

ψ′
p

= q
[∂ψp
∂t

+ Vt(0)
]
−
(∂ψt
∂t

) (9.135)
In order to delete the ontribution from the loop voltage Vt(0), let us takea radial derivative of equation (9.135). But, di�erently from the appendixA.5, we hoose a radial derivative with respet to ψp:
∂

∂ψp

[
〈E ·B〉 V

′

ψ′
p

]
=

∂

∂ψp

(
q
∂ψp
∂t

+ Vt(0)
)
− ∂

∂ψp

(∂ψt
∂t

)

=
∂q

∂ψp

∂ψp
∂t

+ q
∂

∂ψp

(∂ψp
∂t

)
+

∂q

∂ψp
Vt(0)− ∂

∂ψp

(∂ψt
∂t

)

=
∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]
− ∂q

∂t
(9.136)206



9.3 On some equilibrium equationsexhanging spatial and temporal derivatives in the seond order derivatives.Highlighting the dq/dt term, one obtains:
∂q

∂t
=

∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]
− ∂

∂ψp

[
〈E ·B〉 V

′

ψ′
p

] (9.137)
=

∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]
− ∂

∂ψp

[
η‖ 〈
(
J− Js

)
·B〉 V

′

ψ′
p

] (9.138)
=

∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]

+ (9.139)
− ∂

∂ψp

[η‖ µ0

ψ′
p

(F I ′ − I F ′)− η‖ 〈Js ·B〉
V ′

ψ′
p

]

=
∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]

+ (9.140)
− ∂

∂ψp

[η‖ µ0

ψ′
p

F 2
( I
F

)′ ]
+

∂

∂ψp

[
η‖ 〈Js ·B〉

V ′

ψ′
p

]

=
∂q

∂ψp

[∂ψp
∂t

+ Vt(0)
]

+
∂

∂ψp

[
η‖ 〈Js ·B〉

V ′

ψ′
p

]
+ (9.141)

− ∂

∂ψp

[ η‖
µ0

ψ′
p (S21 + S22 q)

2 ∂

∂ρ

(S11 + S12 q

S21 + S22 q

)]These are the equations for the safety fator evolution. In setion 7.3.2 onean �nd an example where equation (9.141) has been used.More in detail, between eq.(9.137) and eq.(9.138) it has been used the Ohm'slaw in the form of eq.(A.53).Between eq.(9.138) and eq.(9.139) (and between eq.(9.139) and eq.(9.140)) ithas been used the parallel fore balane equation, in the form of eq.(A.59).Between eq.(9.140) and eq.(9.141) have been used the equations (A.60)�(A.61), where the poloidal urrent F and the toroidal one I are written interms of the (radial derivative of the) poloidal and toroidal �uxes using thesuseptane matrix elements. These equations are re�written to highlightthe ontribution of the safety fator instead of ι:
F 2 =

(ψ′
t)

2

µ2
0

(S21 ι+ S22)
2 = (S21 + S22 q)

2 (9.142)
( I
F

)′
=

∂

∂ρ

((S11 ι+ S12)

(S21 ι+ S22)

)
=
(S11 + S12 q

S21 + S22 q

) (9.143)207



Detailed alulations9.3.2 The equations for I ′ and F ′It is possible to write the ohmi equilibrium system (A.52) in a di�erent way,i.e. as a system of two di�erential equation that an be integrated to obtainthe urrents I and F .One an invert the suseptane matrix (A.44) de�ned in appendix A.3 tolink the urrents and the derivative of �uxes5:
(
ψ′
p

ψ′
t

)
= µ0

(
L11 L12

L21 L22

)(
I
F

) (9.144)where [Lij ] = [Sij ]
−1, and therefore

[Lij ] =
1

S11 S21 − S12 S22

(
S22 −S12

−S21 S11

) (9.145)Using the matrix L (instead of S) the ohmi equilibrium system (A.52)of setion A.4 an be written in this form:




ψ′
p = µ0(L11 I + L12 F )

ψ′
t = µ0(L21 I + L22 F )

Vt(0)ψ′
t + [Vp(0)ψ′

p] = η‖µ0 (F I ′ − I F ′)

−p V ′ = F ′ ψ′
t + I ′ ψ′

p

(9.146)
Let us neglet for a �rst alulation the term proportional to the poloidalloop voltage on the axis, Vp(0)6. At the end of the setion we will write theomplete equation for I ′ and F ′ that ontain also the terms proportional tothe poloidal voltage.Using the �rst two equations to substitute ψ′

p and ψ′
t in the other two equa-tions, one obtains:





(F I ′ − I F ′) = Uϕ(L21 I + L22 F )

−p V ′ = µ0 F
′ (L21 I + L22 F ) + µ0 I

′ (L11 I + L12 F )
(9.147)with the de�nition

Uϕ =
Vt(0)

η‖
(9.148)5ψp and ψt are used for the �uxes related, in a general oordinate system, to thepoloidal�like and to the toroidal�like angle, respetively.6If the poloidal�like angle lies on the poloidal plane, VP (0) = 0 by de�nition. In thissetion we introdued the possibility of a term VP (0) 6= 0 thinking to a poloidal�like angletopologially equivalent for example to a helial angle. In this ase the irulation aroundthe axis does not ollapse into a point, and ould be VP (0) 6= 0.208



9.3 On some equilibrium equationsFrom the �rst one it is easy to obtain an equation for I ′ to be substitutedinto the seond one:




I ′ = (Uϕ L21)
I
F + (Uϕ L22)

I
F F

′

−p V ′ = µ0 F
′ (L21 I + L22 F ) + µ0 (L11 I + L12 F )

[
(Uϕ L21)

I
F + (Uϕ L22)

I
F F

′](9.149)From the last equation one an �nd an expression for F ′. Using it also inthe equation found for I ′, one �nds the two equations that was looking for.The steps are simple algebra, we write only the �nal result.Let me introdue the quantity d for easier notation:
d = µ0 (L11 I

2 + L12 I F + L21 I F + L22 F
2) (9.150)The �nal equations are:

F ′ = − p
′V ′

d
F − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d
(9.151)

I ′ = − p
′V ′

d
I − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d

I

F
+

+
Uϕ (L21 I + L22 F )

F
(9.152)To onlude, a non null poloidal loop voltage Vp(0) adds some terms tothe previous equations:

F ′ = − p
′V ′

d
F − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d
+

− Uθ (L11 I + L12 F )2

d
(9.153)

I ′ = − p
′V ′

d
I − Uϕ (L21 I + L22 F ) (L11 I + L12 F )

d

I

F
+

+
Uϕ (L21 I + L22 F )

F
+

− Uθ (L11 I + L12 F )2

d

I

F
+
Uθ (L11 I + L12 F )

F
(9.154)with the same de�nition for Uθ

Uθ =
Vp(0)

η‖
(9.155)An example of solution of this system is given in 7.4 for the ylindrialparamagneti pinh.
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Conlusions
SummaryThis thesis reports the work done to haraterize the helial Reversed FieldPinh (RFP) states, named SHAx (Single Helial Axis), through the inves-tigation of the magneti topology in the ore region and at the plasma edge.The work has been arried out in the RFX�mod experiment (Padova, Italy)and it mainly onerns the study of the 3D RFP physis whih an be ofinterest also for the Stellarator and Tokamak omunities.SHAx states are high plasma urrent states whih feature the emergeneof an ordered spontaneous magneti struture in the otherwise haoti ore,and are therefore assoiated to improved on�nement properties. The he-lial shape is related to the dominane of the innermost resonant mode inthe MHD spetra (whih is the (m,n) = (1, 7) in RFX�mod devie), butSHAx states are just Quasi Single Heliity (QSH) states due to the pres-ene of seondary modes. It is worth reminding that the toroidiity of thesystem imposes a toroidal oupling between modes with the same toroidalmode number n and di�erent poloidal mode number m, therefore a domi-nant mode arises also in the m = 0 mode spetrum (the (m,n) = (0, 7) inRFX�mod devie).In the haraterization of the plasma ore, SHAx states are modeled aspure Single Heliity (SH) states (therefore negleting the residual seondarymodes). The ontribution of the seondary modes and espeially of the dom-inant m = 0 mode is onsidered in the haraterization of the edge regionand of the plasma�wall interation.A pratial outome of this thesis is the ode named SHEq (Single He-lial Equilibria) whih is now routinely used for the omputation of helialequilibria in RFX�mod. In these Conlusions the main results of this thesisand the possibility of future work using the SHEq ode are summarized.211



ConlusionsCharaterization of the ore regionFor the ore region, the researh ativity has been foused on the study ofthe helial SHAx on�guration modeled as pure SH states.Helial oordinates. The �rst step was the researh of new helialoordinates that an well desribe a Single Heliity state (SH) on a torus. Inpartiular, the approah of using of the dominant tearing mode eigenfun-tion omputed using Newomb's equation for determining the position andshape of the helial �ux surfaes has been evaluated.As radial oordinate we use the helial �ux (appropriate funtion of thepoloidal and toroidal �uxes whih labels the axi�symmetri magneti �uxsurfaes), and we need then to �nd two angles (a poloidal-like and a toroidal-like angle) de�ned with respet to the helial axis of the system. Beause ofthe toroidal dependene of the helial axis position in the poloidal plane, wede�ne substantially a 3-dimensional oordinate system. Moreover, no ylin-drial approximation has been taken into aount, looking for a urvilinearmetri in order to well onsider the toroidiity of the helial system (the dif-ferene between ovariant and ontravariant oordinates is then important).Angles have been de�ned both using a geometrial approah and the Hamil-tonian approah to magneti �eld lines. Using the more robust Hamiltonianapproah it is possible to de�ne also helial straight-�eld-line oordinates.More than one helial oordinate system has been ompletely de�ned: wealulated the Jaobian of the transformation between our helial oordi-nates and the Cartesian oordinates, and all the elements of the ovariantand ontravariant metri tensor. The omplete de�nition of this oordinatesystem allows us to relate our oordinates to all the previous oordinates.We just notie that we found a oordinate system valid in the whole plasmavolume, whih means both around the reversal surfae and in the inner beanshaped �ux surfaes (the more helially-distorted ones).The SHEq�ode and some example. The omplete de�nition ofthe helial metris is used by the SHEq-ode, whih is able to ompute allthe (helial) equilibrium plasma quantities.First, the goodness of the �ux surfae reonstrution, labeled by the on-stany of the helial �ux, has been assessed by mapping the data of di�erentdiagnostis on the omputed �ux surfaes. Then, 3-dimensional �uxes, mag-neti �eld and urrent density omponents an be omputed, as well as theirradial pro�le through �ux surfae averaging of these quantities.As an example, we used the �ux surfae averages to alulate the thermalondutivity aross the magneti �ux surfaes, averaging the energy equa-tion in steady state for �uid at rest. Doing this we evaluated importantquantities, suh as the surfae-averaged input power, whih an be then fedinto a transport ode (e.g. the ASTRA transport ode).212



SHEq an also ompute the helial safety fator (q) pro�le: during SHAxstates the q-pro�le is not monotoni, with a maximum in orrespondene ofthe Internal Transport Barrier that haraterizes SHAx states.SHEq has been oupled with two other odes: the VMEC equilibrium odeand the ASTRA transport ode.The helial q-pro�le is used as input for the VMEC-ode, where the helialsafety fator is given as a funtion of the poloidal �ux aross the helial �uxsurfaes. What we found is a very good agreement with its onvergene: onone hand this is a benhmark for SHEq's omputations, on the other handSHEq's helial safety fator pro�le is a good input for VMEC analysis.SHEq and ASTRA have been oupled in order to perform transport analysis.ASTRA is a ode most used in Tokamaks, but it an also be adapted to a3-dimensional geometry, like the helial one in Stellarators or during SHAxstates in RFPs. We used the oe�ients of the metri tensor to adapt theASTRA ode to our helial geometry and some preliminary alulations oftransport analysis were performed.We are working with ASTRA also to study the evolution in time of SHEq'ssafety fator pro�les, aording to Ohm's law. This is an ongoing work inollaboration with the TJ-II (Ciemat, Madrid) team, whih should allow toverify if the steady state equilibrium satis�es the Ohmi onstraint given byOhm's law, whih is not an initial ontraint for SHEq's omputations.Charaterization of the edge regionFor the plasma edge region, the researh ativity has been foused on theinvestigation of the plasma-wall interation (PWI) during SHAx states, andin partiular on the m = 0 magneti islands role.On the toroidal diretion, a n = 7 pattern an be learly seen in theplasma�wall interation due to a magneti boundary haraterized by the
m = 0/n = 7 island hain. On the poloidal plane the plasma�wall in-teration is strongly a�eted by the phase relation between the dominant
m = 0/n = 7 and m = 1/n = 7 modes, due to their toroidal oupling.The imaginative idea of an island divertor to protet the RFX�mod �rst wallis proposed, justifying it with the regular pattern of the PWI. But the ontrolof the edge region would require the ontrol of the m = 0 island amplitudesand phases, in addition to the phase di�erene between the m = 0/n = 7and m = 1/n = 7 modes. Some disharge of the 2011 RFX�mod experi-mental ampaign were therefore dediated to the ontrol of these featuresby externally applied non�zero boundary onditions to both the m = 0 and
m = 1 dominant modes.To analyze the edge region during SHAx states we used �eld line traing al-ulations and the reonstrution of the mode eigenfuntion omputed usingNewomb's equation, in addition to edge measurements.213



Conlusions
Future work and ollaborationsThe data analysis of the 2011 RFX�mod experimental ampaign dishargewith non�zero boundary ondition on the dominant modes is far to be om-plete. In partiular better analysis on the phases of the modes are going on,in addition to the omparison between a larger set of edge measurements.The ativity on the use of the ASTRA ode for solving time-dependenttransport equations in helial equilibria aording to Ohm's law will on-tinue. This ativity, whih is being arried out in ollaboration the TheoryGroup of the TJ-II Stellarator devie (Ciemat, Madrid), are relevant bothfor RFPs in SHAx states and for Stellarators where some urrent is driven.A benhmark of SHEq-ode is going on with data from other experimentsas well, in partiular with the MST (Madison, Wisonsin) team, where theSHEq-ode has reently been ported. MST is a RFP devie, where SHAxstates have been reently reahed. We are using SHEq-ode to perform their3-dimensional magneti reonstrutions, and the mapping of 3-dimensionaldensity and SXR (soft X�ray tomography) pro�les is already a good result.The approah of using Newomb's equation for the reonstrution ofmode eigenfuntions (used by SHEq ode) uses an axi�symmetri urrentdensity pro�le that omes from a two�parameters �t of experimental data(the α−Θ0 model), but without any onstraint from the Ohm's law.A new ode for omputing the dominant mode eigenfuntion with a generiurrent density pro�le ould be developed, base on the algorithm now used toompute the eigenfuntion of poloidal and toroidal �uxes using Newomb'sequation. The ode would be then integrated with the SHEq ode for om-puting helial equilibria in QSH states, thus inreasing its �exibility andallowing it to explore the e�et of the urrent pro�le on the helial equilibria.SHEq's equilibria ould also be thought as the helial SH equilibria tobe perturbed. One should therefore ompute the eigenfuntions of the per-turbation to the helial equilibria, in a way similar to the one used now toompute the eigenfuntions of the perturbation to the axi�symmetri �uxes(using Newomb's equation). Them = 0/n = 7 mode ould then be added tothe helial equilibrium, in the same way as the dominant m = 1/n = 7 modehas been added to the axi�symmetri equilibrium to model SHAx states.Moreover, the MHD spetra related to the helial safety fator pro�le ouldbe explored, together with its resonanes. This ould be interesting to betterunderstand the magneti topology of a SHAx state, and the possibility of214



their external ontrol.
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Appendix AMHD equationsA.1 MHD equationsMHD equations are the ombination of the Maxwell equations for the (time)evolution of the eletri and magneti �elds, E and B; the total eletriharge ρc onservation law; the mass, momentum and energy onservationlaws; and the Ohm's law that relates the eletri �eld to the urrent density
J: Gauss → ∇ ·E =

ρc
ǫ0

(A.1)magneti solenoidity → ∇ ·B = 0 (A.2)Faraday → ∇×E = −∂B
∂t

(A.3)Ampère → ∇×B = µ0

(
J + ǫ0

∂E

∂t

) (A.4)Ohm → E + v ×B = η J (A.5)mass onservation → ∂ρm
∂t

= −∇ · (ρm v) (A.6)Navier�Stokes → ρm
∂v

∂t
+ ρm

(
v · ∇

)
v = (A.7)

= −∇ ·P + J×B + ρEenergy onservation → d

dt

(3p

2

)
+

3p

2
∇ · v +∇ · q +

(
P · ∇

)
· v = J′ ·E′where J′ is the urrent density measured in a frame of referene with veloity

v. In the same way, E′ is the eletri �eld measured in the frame of referenewith veloity v1. With respet to the eletri �eld E and the urrent density1The veloity v is the plasma �ow, and one should also pay attention to the di�erenebetween the time derivative (∂/∂t) in a �xed point and the derivatives on the moving �uxsurfaes (d/dt):
d

dt
=

∂

∂t
+

`
v · ∇

´ (A.8)217



MHD equations
J measured in a �xed point:

J′ = J− ρc v (A.9)
E′ = E + v ×B (A.10)In equations (A.1)�(A.8), ρm is the mass density, p the total kineti pressureof the plasma, q the heat �ux vetor, and P the pressure tensor. Negletingthe visous terms, only the diagonal terms in P are non null, and (∇ · P)redues to ∇p in an isotropi plasma. This is the assumption used in thisthesis (if not said di�erently).Usually, the energy onservation law is replaed by some assumption on thesystem, e.g. the assumption of a given plasma pressure p.Navier�Stokes equation is the momentum onservation law, also said thefore balane equation.Some other useful equations arise ombining the equations below. With-out make any proof, we write some of them: from Gauss and Ampère's laws:
∇ · J = − ∂ρ

∂t
(A.11)From Faraday's, Ampère's and Ohm's laws:

∂B

∂t
= ∇×

(
v ×B

)
+

η

µ0
∇2B (A.12)from Ampère's and Navier�Stokes laws:

ρm
dv

dt
= ∇p+

1

µ0

(
∇×B

)
×B

︸ ︷︷ ︸
=−∇B2

2
+
(
B·∇
)
B

(A.13)From eq.(A.12) one an see that, for v = 0 (equilibrium ondition) and nonnull resistivity, the magneti �eld is not frozen to the plasma, but it follows adi�usive equation where the resistivity η is the di�usion oe�ient. This de-�nes the typial di�usive time sale: τR = µ0 L
2/η is said the harateristiresistive time (L being the harateristi length). From eq.(A.13) one ansee that the equilibrium ondition (v = 0) is realized by the balane betweenthe gradient of the magneti and kineti pressure ((p+ B2)/(2µ0)) and theation of the parallel ompression of the magneti �eld ((B · ∇)B/µ0).Before some simpli�ations, it is worth noting that the equation that�xes the solenoidity of the magneti �eld is redundant. One should alwayspay attention to the number of variables and the number of equations in thesystem. 218



A.1 MHD equationsSome simpli�ationsFirst of all one usually neglets the ontribution of the (∂E/∂t) urrentomparing to the ondutive urrent J in the Ampère's law.Neutral plasmas are onsidered, therefore ρc = 0.As already said, also the visosity of the plasma is frequently negleted, and(
∇·P

) redues to ∇p (Navier�Stokes equation and energy onservation law).The energy onservation is replaed by a given plasma pressure p.All these simpli�ations bring to the system:
∇ ·E = 0 (A.14)
∇ ·B = 0 (A.15)
∇×E = −∂B

∂t
(A.16)

∇×B = µ0 J (A.17)
E + v ×B = η J (A.18)
∂ρm
∂t

= −∇ · (ρm v) (A.19)
ρm

∂v

∂t
+
(
v · ∇

)
v = −∇p+ J×B (A.20)Another simpli�ation is to onsider just the equilibrium system of equa-tion. Equilibrium equationsAlso alled Magnetostati, let us now write the equations for a steadystate equilibrium, where v = 0, together with the time derivative ∂/∂t = 0(and therefore also d/dt = 0):

∇ ·E = 0 (A.21)
∇ ·B = 0 (A.22)
∇×E = 0 (A.23)
∇×B = µ0 J (A.24)
E = η J (A.25)
J×B = ∇p (A.26)Equation (A.23) implies an eletrostati E, that must be the divergene ofsome potential. This and some more onsiderations about the Ohm's laware in setion A.2.This is the system usually used to study the plasma equilibria. One an�nd another equivalent formulation in setion A.4, where only the averagedOhm's law is onsidered. 219



MHD equations Fore free onditionsThe ondition
J×B = 0 (A.27)is the so�alled fore free ondition of the fore balane (or Navier�Stokes)equation, and it is related to the vanishing of the pressure gradient (ompareeq.(A.26) and eq.(A.27).From eq.(A.27), the urrent density is parallel to the magneti �eld. Toemphasize this, one an write
J = σB (A.28)where σ is the proportionality pro�le.The fore free ondition is the ondition always hosen in this thesis andin partiular for SHEq alulations (see hapter 3).In the introdution a model, alled α − Θ0 model, to obtain the σ pro�le�tting experimental data is explained.A.2 The stationary eletri �eld and the OhmionstraintA urrent, to be sustained, must be onsistent with Ohm's law and theFaraday's law.Under stationary ondition (the time variation of the magneti �eld mustvanish), the Faraday's law is
∇×E = 0 (A.29)and the stati eletri �eld must therefore be the gradient of some potential2:

E = −∇φ+ Vt
∇ϕ
2π

(A.30)
= −∇φ+ E0 (A.31)

E0 is the uniform toroidal indution eletri �eld, and E = −∇φ is a �utu-ating eletri �eld produed by a harge separation3.2The loop voltages must have no spatial dependene and the gradient of the poloidalangle must be therefore zero in all the plasma volume, due to the fat that must be nullon its axis. That is why there is not a term Vp∇θ/2π.3Even if the plasma is globally neutral, regions with net positive or negative imbalanean exist. 220



A.2 The stationary eletri �eld and the Ohmi onstraintThe eletrostati potential φ, the eletrostati �eld E0 = −∇φ and theharge distribution ρs are related by Laplae's equation:
∇ ·E = −∇2φ =

ρs
ǫ0

(A.32)and the harge distribution provides a urrent density J = ρs v.From Ohm's law, and a stationary eletri �eld, one an obtain the Ohmionstraint that any stationary equilibrium should satisfy.Projeting the Ohm's law on the magneti �eld diretion, one obtains theso�alled parallel Ohm's law4:
E ·B = η J ·B (A.33)beause of the vanishing of the triple produt (v ×B

)
·B. The stationaryeletri �eld must be of the form in equation (A.30), therefore the parallelOhm's law in stationary onditions an be written as:

−B · ∇φ+
Vt
2π

B · ∇ϕ = η J ·B (A.34)It is usually interesting to study the parallel Ohm's law averaged on magneti�ux surfaes, beause the term related to the (usually unknown) eletrostatipotential φ vanishes: 〈−B · ∇φ〉 = 0 due to the divergene theorem. Theaveraged Ohm's law for an eletrostati potential is the Ohmi onstraint,that must be valid on eah magneti �ux surfae5:
Vt
2π
〈B · ∇ϕ〉 = 〈η J ·B〉 (A.36)An information an be added using the fore balane equation. If fore freeonditions are assumed, J = σB, therefore the Ohmi onstraint an alsoassume the form6:

Vt
2π
〈B · ∇ϕ〉 = σ 〈η B2〉 (A.39)4So, even when v 6= 0, the parallel Ohm's law takes the form in equation (A.25):

E‖ = η‖ J‖.5In a ylinder, with indutive eletri �eld E0 parallel to the axial diretion z, and
∇ϕ 7→ ez, the Ohmi onstraint takes the form:

E0〈Bz〉 = 〈η J · B〉 (A.35)6This is the form used by Finn (see setion 7.1) to prove the impossibility of an ohmireversal of the toroidal magneti �eld in any axi�symmetri on�gurations and, on theother side, the possibility of the reversal in a helial symmetri on�guration. Using forefree onditions and Ampère's law, the proportionality σ between the magneti �eld andthe urrent density an be written as:
σ =

d〈Btor〉
dρ

(A.37)using for ρ a label of the magneti �ux surfaes. Btor is the axial Bz magneti �eld in a221



MHD equationsA.3 Suseptane matrixFollowing P.I. Strand and W.A. Houlberg (S&H) [74℄, one an introdue theso�alled suseptane matrix, whih relates the radial derivative of the �uxesto the urrents. We use the symbol ρ to label the magneti �ux surfaes,and (θ, ϕ) for the general poloidal�like and toroidal�like angles.The poloidal and the toroidal �uxes (ψp and ψt respetively) an bewritten in terms of the ontravariant omponents of the magneti �eld (Bi):7
ψp(ρ) =

∫ 2π

0
dϕ

∫ ρ

0

√
g Bθ dρ (A.40)

ψt(ρ) =

∫ 2π

0
dθ

∫ ρ

0

√
g Bϕ dρ (A.41)

√
g is the Jaobian of the oordinate system.The poloidal and toroidal urrents (F and I respetively) an be written interms of the ovariant omponents of the magneti �eld (Bi), using Amere'slaw:8

F (ρ) =

∫ 2π

0
dϕ

∫ ρ

0

√
g Jθ dρ =

1

µ0

∫ 2π

0
dϕBϕ (A.42)

I(ρ) =

∫ 2π

0
dθ

∫ ρ

0

√
g Jϕ dρ =

1

µ0

∫ 2π

0
dθ Bθ (A.43)The urrents are linearly related to the radial derivative of the �uxes throughthe so�alled suseptane matrix S, with elements Sij9

µ0

(
I
F

)
=

(
S11 S12

S21 S22

)(
ψ′
p

ψ′
t

) (A.44)By using the general properties of urvilinear oordinates, the de�nitions(A.40)�(A.43), and the anonial form of the magneti �eld
B =

1

2π
(∇ψt ×∇θ −∇ψp ×∇ϕ) (A.45)one an obtain equations (37)�(40) of S&H's paper, where the Sij susep-tane matrix elements are entirely written in terms of the metris.ylinder, o the toroidal one in a torus. Using eq.(A.39), the Ohmi onstraint takes theform:
d〈Btor〉
dρ

=
Vt
2π

〈Btor〉
〈η B2〉 (A.38)In the ase of helial symmetry, it is the Pinh�Stellarator equation of setion 7.1.7Eq. (1)�(2) of S&H's paper, [74℄.8Eq. (5)�(6) of S&H's paper, [74℄.9Eq. (7) of S&H's paper, [74℄. 222



A.3 Suseptane matrixFor straight �eld line oordinates, for whih the S matrix is symmetri, the
Sij redues to:

S11 =
V ′

4π2
〈gθθ
g
〉 (A.46)

S12 =
V ′

4π2
〈gθϕ
g
〉 = S21 (A.47)

S22 =
V ′

4π2
〈gϕϕ
g
〉 (A.48)

V ′(ρ) is the radial derivative of the volume10, gij the metris elements.Let us notie that in axi�symmetri geometries, S is a diagonal matrix(gij = 0 for i 6= 0).The radial dependene of the Sij elements is related to the hoie of the �uxsurfae label ρ. One an see some example in setion 9.2.2To onlude, another important relation in S&H's paper11 is the equationfor the rotational transform, that an be derived inverting the suseptanematrix S:
ι =

ψ′
p

ψ′
t

=
S22I − S12F

S11F − S21I
=

µ0I

S11ψ′
t

− S12

S11
(A.50)In this equation for ι the last term is a urrent free term, alled Stellaratorterm12. This term has been written �rst by V.D. Pustovitov [66℄ for a ylin-drial non axi�symmetri magneti on�guration: it is the geometrial termdisussed in setion 7.1 that allows the reversal of the helial deformed RFPon�guration.We use equation (A.50) for the rotational transform ι to evolve it in time(setion 7.3).10

V ′ =

ZZ 2π

0

√
g dθ dϕ (A.49)11Eq. (8) of S&H's paper, [74℄.12It is also said vauum term, due to the fat that Stellarators usually runs withoutplasma urrent. 223



MHD equationsA.4 S&H's equationsThe adequate system to desribe a magnetostati plasma equilibrium om-patible with Ohm's law, is13:




J×B = ∇p

∇×B = µ0J

∇ ·B = 0

〈E ·B〉 = η‖〈J ·B〉

∇ ×E = 0

(A.51)
The averaged (on magneti �ux surfaes) Ohm's law has been onsidered,and not yet the fore free ondition (∇p 6= 0).Following P.I. Strand and W.A. Houlberg (S&H) [74℄ and M.D. Kruskal andR.M. Kulsrud (K&K) [76℄, it is possible to write this system in another form:





µ0 I = S11ψ
′
p + S12ψ

′
t

µ0 F = S21ψ
′
p + S22ψ

′
t

Vt(0)ψ′
t + Vp(0)ψ′

p = η‖µ0 (F I ′ − I F ′)

−p V ′ = F ′ ψ′
t + I ′ ψ′

p

(A.52)
In these equations: F is the poloidal urrent (A.42), I the toroidal urrent(A.43); ψp is the poloidal �ux (A.40), ψt the toroidal �ux (A.41). Vt(0) isthe toroidal loop voltages on the magneti axis of the system; Vp(0) is thepoloidal loop voltage on the magneti axis, whih is always zero for poloidal�like angles that lie on the poloidal plane (but ould be non vanishing in thease of a poloidal�like angle topologially equivalent to a helial angle). p isthe total plasma kineti pressure.The �rst two equations14 are the Ampère's law, written with the suseptanematrix formalism (appendix A.3) that relates the urrents and the derivativeof the �uxes in general oordinate system 15.The third equation16 is the parallel Ohm's law, averaged on magneti �ux13In order: the fore balane equation, Ampère's law, the divergene free of the magneti�eld. The parallel Ohm's law averaged on �ux surfaes, and Faraday's law.14Eq. (7) of S&H's paper, [74℄.15The names poloidal and toroidal are used for quantities related to the poloidal�likeand to the toroidal�like angle, respetively.16Eq. (11)+(19) of S&H's paper, [74℄ or equation (D12) of M.D. K&K's paper, [76℄.224



A.5 The equation for dι/dtsurfaes, and the eletri �eld has been eliminated in favor of the time deriva-tive of the �uxes, using Faraday's law. It is worth noting that in this equationthere is a term more than in S&H and K&K, in order to allow the use of apoloidal�like angle related to a non vanishing loop voltage Vp(0) on the axis.The last equation 17 is the radial fore balane equation.Solving this system one an ompute a steady state ohmi equilibrium.In setion 9.3.2 this system is rearranged in two di�erential equations forthe urrents I and F . An example of solution is given in setion 7.4 for theylindrial paramagneti pinh.Using this system one an derive an equation for the equilibrium timeevolution in appendix A.5. Two example of solution are given in setions7.3.1 and 7.3.2, for the evolution of the rotational transform in the TJ-IIStellarator and the evolution of the safety fator pro�le in the RFX�modRFP.A.5 The equation for dι/dtWe derive here the equation for the time evolution of the rotational trans-form, already present in S&H's paper [74℄18 (but not all the steps are presentthere).The derivation of Eq. (22) of S&H's paper starts from the averagedparallel Ohm's law and from Faraday's law1920. The two equations are:
〈E ·B〉 = η‖ 〈

(
J− Js

)
·B〉 (A.53)

〈E ·B〉V ′ =
[∂ψp
∂t

+ Vt(0)
]
ψ′
t −
(∂ψt
∂t

)
ψ′
p (A.54)In the averaged Ohm's law it has been taken into aount also a non�indutive soure, like the Boostrap urrent Js. This is done for ompleteness,and to follow exatly S&H's alulations, but this ontribution is not usedin the framework of this thesis.In order to highlight the rotational transform ι = ψ′

p/ψ
′
t (in whih we areinterested), let us �rst divide Faraday's equation (A.54) by ψ′

t:
〈E ·B〉 V

′

ψ′
t

=
[∂ψp
∂t

+ Vt(0)
]
−
(∂ψt
∂t

)
ι (A.55)17Eq. (12) of S&H's paper, [74℄ or equation (D19) of K&k's paper, [76℄. First derivedby KeK.18Eq. (22) of S&H's paper, [74℄.19Eq. (19) of S&H's paper, [74℄.20in Faraday's equation Vp(0) = 0. We do not aount for the Vp(0) 6= 0 ase in thederivation of the rotational transform evolution (as done by Strand and Houlberg).225



MHD equationsGetting now a radial derivative (∂/∂ψt) of eq.(A.55) in order to anel theontribution from the indued loop voltage Vt(0), we write21
∂

∂ψt

[
〈E ·B〉 V

′

ψ′
t

]
=

∂

∂ψt

(∂ψp
∂t

)
− ∂

∂ψt

(
ι
∂ψt
∂t

) (A.56)
=

∂

∂t

(∂ψp
∂ψt

)
−
( ∂ι

∂ψt

)(∂ψt
∂t

)
− ι ∂

∂t

(∂ψt
∂ψt

)(A.57)(it is always possible to exhange spatial and temporal derivatives in a seondorder derivative).Highlighting the dι/dt term, one obtains:
∂ι

∂t
=
( ∂ι

∂ψt

)(∂ψt
∂t

)
+

∂

∂ψt

[
〈E ·B〉 V

′

ψ′
t

] (A.58)The �nal form of this equation uses the Ohm's law, eq.(A.53) for the term
〈E ·B〉, and equation Eq. (11) of S&H's paper, [74℄ (see also setion A.4):

〈J ·B〉V ′ = µ0 (F I ′ − I F ′) = µ0 F
2
( I
F

)′ (A.59)
I and F are the toroidal and poloidal urrents respetively, and one antherefore use the suseptane matrix (appendix A.3) to write also:

F 2 =
(ψ′

t)
2

µ2
0

(S21 ι+ S22)
2 (A.60)

( I
F

)′
=

∂

∂ρ

((S11 ι+ S12)

(S21 ι+ S22)

) (A.61)to obtain the right form of equation (22) in S&H's paper:
∂ι

∂t
=

∂ι

∂ψt

∂ψt
∂t

+
∂

∂ψt

[ η‖
µ0
ψ′
t (S21ι+ S22)

2 ∂

∂ρ

(S11ι+ S12

S21ι+ S22

)]
+

− ∂

∂ψt

[
η‖〈Js ·B〉

∂V

∂ψt

] (A.62)This equation is used in setion 7.3.1 to evolve the TJ-II (Ciemat, Madrid)Stellarator rotational transform pro�le.
21Vt(0) is a onstant, therefore ∂Vt(0)

∂ψt
= 0.226



Appendix BToroidal oordinates

Figure B.1: Sheme of the oordinates de�ned on the irular�ross�setionof the axi�symmetri magneti �eld in RFX�mod. The oordinates and theirmetris are de�ned in this appendix.
227



Toroidal oordinatesB.1 On urvilinear oordinatesThe ovariant metri tensor for a urvilinear oordinate system ui = (u1, u2, u3)is de�ned by
gij = ei · ej , (B.1)where
ei =

∂x

∂ui
, (B.2)while the ontravariant one is de�ned by

gij = ∇ui · ∇uj (B.3)where
∇ui =

∂ui

∂x
. (B.4)The two tensors are related by gij · gjk = δik, so gij is the inverse matrixof gjk. The Jaobian of the oordinate system is

√
g =

√
det[gij ] = (∇u1 · ∇u2 ×∇u3)−1 (B.5)Given a vetor A, its ontravariant omponents are de�ned as

Ai = A · ∇ui or Ai = gijAj (B.6)the seond one expresses the ontravariant omponent in terms of the o-variant ones. In the same way,
Ai = A · ei or Ai = gijA

j (B.7)It is worth noting that in urvilinear metris the basis vetors ei and
∇ui are not adimensional (the dimension depending on the dimension of theoordinate ui) and do not have unitary length.To go bak to �eld omponents that have the right dimension of a measured�eld and the whole length (without sharing it with the basis vetor) it isenough to divide the basis vetors by their norm. But one needs to payattention to the fat that this an be done just at the end of all the alula-tions, beause tensor alulus is based on the hypothesis of non�adimensionaland non�unitary length basis vetors! Some example an be �nd in hapter 5.B.2 Coordinate systems on a torusThe metris elements and the Jaobian of the ylindrial, geometrial andof the toroidal oordinate systems de�ned in hapter 4 are here olleted.228



B.2 Coordinate systems on a torusB.2.1 Cylindrial oordinatesThe ylindrial oordinate system is a diagonal metris, that therefore donot aounts for the toroidiity of the problem. One an think to a periodiylinder to model a torus in a simple way.Cylindrial oordinates (R,ϕ,Z) are de�ned with respet to Cartesianoordinates x = (x, y, z) as follows (see �g.1.4):




x = R cosϕ
y = R sinϕ
z = Z

(B.8)Therefore, from eq.(B.2):
eR = ∂x

∂R =




cosϕ
sinϕ

0


 , eϕ = ∂x

∂ϕ =



−R sinϕ
R cosϕ

0


 , eZ = ∂x

∂Z =




0
0
1


and, from eq.(B.1) and its inverse:

gij
cyl =




1 0 0
0 R2 0
0 0 1


 gij

cyl =




1 0 0
0 1

R2 0
0 0 1


The Jaobian, from eq.(B.5), is: Jcyl =

√
g
cyl

= R.B.2.2 Geometrial oordinatesThe geometrial oordinate system is a non�diagonal metris, that thereforedoes aount for the toroidiity of the problem.The geometrial oordinates have been de�ned in setion 3.1.1 with the sym-bol ui = (r, θ, ϕ). We refer to the �gure of setion 3.1.1 for a geometrialinterpretation of their de�nition, usually related to the ylindrial system
(R,ϕ,Z):

~x = (x, y, z) = (R cosϕ, R sinϕ, Z)

{
R = R0 − r cos θ + ∆(r)
Z = r sin θThe angle θ is alled poloidal and the angle ϕ is alled toroidal. A non�zerohorizontal ∆(r) shift of the non-onentri irular magneti �ux surfaes(related to B0 de�ned in hapter 3) is a onsequene of the toroidiity of thesystem. 229



Toroidal oordinatesUsing (B.1) and (B.2) the guij elements, that link them to the Cartesianoordinates, an be expliitly alulated:
guij =




1− 2∆′ cos θ + ∆′2 r∆′ sin θ 0
r∆′ sin θ r2 0

0 0 R2


 (B.9)* The giju elements of the inverse matrix are usually alulated from theformulas for the inversion of a blok diagonal matrix (gurϕ = guϕr = 0 and

guθϕ = guϕθ = 0):
gij
u =

1

gu




guθθ g
u
ϕϕ −gurθ guϕϕ 0

−gurθ guϕϕ gurr g
u
ϕϕ 0

0 0 gurr g
u
θθ − (gurθ)

2


 (B.10)The Jaobian √gu =

√
det[guij ] = (∇r · ∇θ ×∇ϕ)−1 of the geometri oor-dinates is given by √

gu = rR(1−∆′ cos θ) (B.11)B.2.3 Toroidal straight oordinatesIn setion 3.1.1 we have de�ned the oordinate system wi = (r, ϑ, ϕ), whih isthemagneti oordinate system of the zeroth-order axisymmetri equilibrium
B0: it is the oordinate system that one obtains deforming the poloidal angle
θ of the geometrial oordinates ui in order to ahieve straight magneti �eldlines:





r = r
ϑ = θ + λ(r, θ)
ϕ = ϕFor λ(r, θ) we have obtained an expliit expression from Ampère's law,eq.(3.11).Tensor metris elementsWe write the metris elements for the system wi = (r, ϑ, ϕ) relating them tothe metris elements of the geometrial oordinate system ui = (r, θ, ϕ).The ontravariant metri tensor elements an be omputed using the rela-tions between the gradients of the two oordinate systems:

∇r = ∇r (B.12)
∇ϑ =

(
1 +

∂λ

∂θ

)
∇θ +

∂λ

∂r
∇r (B.13)

∇ϕ = ∇ϕ (B.14)230



B.2 Coordinate systems on a torusFrom eq.(B.3) is therefore found:
grϑw = gϑrw =

∂λ

∂r
grru +

(
∂λ

∂θ
+ 1

)
grθu (B.15)

gϑϑw =

(
∂λ

∂r

)2

grru + 2

(
∂λ

∂θ
+ 1

)
∂λ

∂r
grθu +

(
∂λ

∂θ
+ 1

)2

gθθu (B.16)while all the other elements are equal to those of the geometri oordinates:
grrw = grru (B.17)
gϕϕw = gϕϕu (B.18)
grϕw = gϕrw = 0 (B.19)
gϑϕw = gϕϑw = 0 (B.20)The gwij elements of the inverse matrix an again be alulated from theformulas for the inversion of a blok diagonal matrix (see eq.(B.35)), or anbe omputed by writing the relation between the wi and the (R,ϕ,Z) ylin-drial system.In this seond ase, using equations (3.14), the ovariant metri tensor ele-ments are found to be

gwrr = 1 +

(
2∆′2 +

r2

2R2
0

+
r2

2
∆′′2 − r2

R0
∆′′ − 2r

R0
∆′ + r∆′∆′′

)
− 2∆′ cosϑ+ o(ǫ2)(B.21)

gwϑϑ = r2
(

1 +
r2

2R2
0

+
1

2
∆′2 − r

R0
∆′
)
− 2r2

(
r

R0
−∆′

)
cosϑ+ o(ǫ2b2) (B.22)

gwrϑ = r

(
r∆′′ + ∆′ − r

R0

)
sinϑ+ o(ǫ2b) (B.23)

gwϕϕ = R2. (B.24)with gwrϕ = gwϕr = gwϑϕ = gwϕϑ = 0.In omputing these elements the approximation used in ref.[53℄ has beenadopted of retaining the seular terms (i.e. those not dependent on ϑ) up to
o(ǫ2) and the harmonis up to o(ǫ).One an therefore write:
gw
ij = g




gϑϑgϕϕ −grϑgϕϕ 0
−grϑgϕϕ grrgϕϕ 0

0 0 grrgϑϑ − (grϑ)2︸ ︷︷ ︸
gϕϕ=R2


 =




(B.21) (B.23) 0
(B.23) (B.22) 0

0 0 R2


JaobianThe Jaobian is

1√
gw

=
K(r)

R2
(B.25)231



Toroidal oordinateswith K(r) already written in (3.16). In order to ompute the harmonisof the �rst order perturbation, one wishes to expand also the metri tensorelements:
1√
gw

=
1√
gw0

+
1√
gw1

eiϑ + c.c. (B.26)with
1√
gw0

=
1

rR0

(
1 +

2r2

R2
0

− ∆

R0
− r

2R0
∆′ + o(ǫ3)

) (B.27)
1√
gw1

=
1√
gw0

(
r

R0
+ o(ǫ3)

)
, (B.28)being the m = 0/n = 0 and m = ±1/n = 0 harmonis of the Jaobianrespetively.We an also relate the Jaobian √gw to √gu. Using (B.13) one obtains

1√
gw

=
1√
gu

(
1 +

∂λ

∂θ

)
. (B.29)Some metri tensor element ombinationFinally, the metri tensor element ombinations appearing in equations.(3.36) and (3.37) are

(
gwϑϑ√
gw

)0,0

=
r

R0

(
1 +

r2

2R2
0

+
∆′2

2
+

r

2R0
∆′ − ∆

R0
+ o(ǫ3)

)(B.30)
(
gwrϑ√
gw

)0,0

=
o(ǫ4b)√
gw0

(B.31)
(
gwrr√
gw

)±1,0

=
1√
gw0

(
r

R0
−∆′ + o(ǫ3)

) (B.32)
(
gwϑϑ√
gw

)±1,0

=
1√
gw0

(
r2∆′ + o(ǫ3b2)

) (B.33)
(
gwrϑ√
gw

)±1,0

= ± r

2i
√
gw0

(
r∆′′ + ∆′ − r

R0
+ o(ǫ3)

)
. (B.34)B.3 The inverse of 3x3 matrixLet us onsider the 3x3 matrix the tensor matrix of some oordinate system.The ovariant and ontravariant metris are one the inverse of the other:

gij =




gχχ gχβ gχϕ
gβχ gββ gβϕ
gϕχ gϕβ gϕϕ


 gij =




gχχ gχβ gχϕ

gβχ gββ gβϕ

gϕχ gϕβ gϕϕ
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B.3 The inverse of 3x3 matrixIf the ovariant gij matrix is a blok diagonal matrix, its inverse is thematrix alulated as follows:
gij =

1

g




gθθ gϕϕ −grθ gϕϕ 0
−grθ gϕϕ grr gϕϕ 0

0 0 grr gθθ − (grθ)
2


 (B.35)where √g is the Jaobian.If the ovariant gij matrix is omplete 3x3 matrix (not a blok diagonalmatrix), its inverse is the matrix alulated as follows:

g
ij
f =

1

g




gββgϕϕ − (gβϕ)2 gϕβgχϕ − gχβgϕϕ gχβgβϕ − gββgχϕ

gχϕgβϕ − gβχgϕϕ gχχgϕϕ − (gϕχ)2 gβχgχϕ − gχχgβϕ

gβχgβϕ − gββgϕχ gϕχgχϕ − gχχgϕβ gχχgββ − (gβχ)2


It is worth stressing that all the tensor metris are related to symmetrimatrix, due to the symmetry of the metris elements: gij = gji and gij = gji.
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Appendix CComplex harmonisC.1 On omplex onjugationAny perturbation a(r, θ, ϕ) an be Fourier deomposed as:
a(r, θ, ϕ) =

∑

m,n
ǫZ

am,n(r) ei(mθ−nϕ) =
∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (C.1)Let us prove the relations in eq.(C.1). We need to remember that:
• the perturbation is a real number, a(r, θ, ϕ) ǫR

• the harmonis of the perturbation are omplex numbers, am,n(r) ǫC

• the amplitude and the phase of a omplex number written in polarform (am,n(r) = |am,n| ei ψ) are real numbers, |am,n| ǫR and ψ ǫR.Starting from the �rst expression in eq.(C.1) we obtain the seond oneas follows:
a(r, θ, ϕ) =

∑

m,n
ǫZ

am,n(r) ei(mθ−nϕ) (C.2)
=

∑

m,n>0

am,n(r) ei(mθ−nϕ) + a−m,−n(r) ei(−mθ+nϕ) (C.3)
=

∑

m,n>0

am,n(r) ei(mθ−nϕ) + a−m,−n(r) e−i(mθ−nϕ) (C.4)
=

∑

m,n>0

am,n(r) ei(mθ−nϕ) + a∗ m,n(r) e−i(mθ−nϕ) (C.5)
=

∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (C.6)as we wanted. In the sum over integer m,n in eq.(C.2) one have both thepositive and the negative value of the mode numbers. Writing the symbol ∗235



Complex harmonisfor the omplex onjugation, we are able to go to eq.(C.5) using the importantonjugation property:
a−m,−n = a∗ m,n (C.7)The relation (C.7) is also the ondition for whih one an go bak to thereality of any measurable �eld (like a(r, θ, ϕ) ǫR) from the omplexity ofthe Fourier transformed harmonis am,n(r) ǫC. Let us now derive the thirdexpression for a(r, θ, ϕ) ǫR in eq.(C.1), starting from the seond one andusing the polar form of omplex numbers:

a(r, θ, ϕ) =
∑

m
n>0

am,n(r) ei(mθ−nϕ) + c.c. (C.8)
=

∑

m
n>0

|am,n| ei φ ei(mθ−nϕ) + c.c. (C.9)
=

∑

m
n>0

|am,n| ei φ ei(mθ−nϕ) + |am,n| e−i φ e−i(mθ−nϕ) (C.10)
=

∑

m
n>0

|am,n|
[
ei φ ei(mθ−nϕ) + e−i φ e−i(mθ−nϕ)

] (C.11)
=

∑

m
n>0

2 |am,n| cos(φ+mθ − nϕ) ǫR (C.12)It is always true that adding the omplex onjugated to a omplex num-ber one delete the imaginary part:
A = a+ i b (C.13)
A∗ = a− i b (C.14)

A+A∗ = 2a (C.15)or
A = ρ eiφ (C.16)
A∗ = ρ e−iφ (C.17)

A+A∗ = 2ρ cos(ψ) (C.18)Therefore (A+A∗) ǫR in any ase.Going bak to the magneti �uxes perturbation, it is now lear thateven hoosing Single Heliity in the �uxes (that means deleting the sum over
(m,n) in expression (C.1) beause they are �xed1) one must add the omplexonjugated to obtain the real perturbation to the �uxes:

ψ(r, u) = ψ0(r) + ψm,n(r) eiu + c.c. (C.19)as written in eq.(4.1) making use of the helial angle u = mθ − nϕ.1We remind that (m,n = 1, 7) in RFX�mod during SHAx states.236



C.2 On the sum between omplex numbersC.2 On the sum between omplex numbers
z ǫC, therefore one an hoose between one of these expressions to write z:

z = a+ ib = ρ ei θ = ρ(cos θ + i sin θ) (C.20)where
ρ =

√
a2 + b2 (C.21)

θ = tan−1
( b
a

) (C.22)beause
a = ρ cos θ (C.23)
b = ρ sin θ (C.24)Let us see how to sum two omplex numbers, z ǫC and t ǫC:

z = a+ ib = ρ ei θ 7→
{
a = ρ cos θ
b = ρ sin θ

(C.25)
t = c+ id = σei ϕ 7→

{
c = σ cosϕ
d = σ sinϕ

(C.26)We write the di�erene between two omplex numbers, beause it is usefulfor setion 9.1.1. For the sum it is enough to hange every minus sign witha plus sign.The di�erene between two omplex numbers is a omplex number, therefore:
z − t = A+ iB = C eiγ 7→

{
A = C cos γ
B = C sin γ

(C.27)We an write:
z − t = (a+ ib)− (c+ id) = (a− c) + i(b− d) = A+ iB =

√
A2 +B2 eiγ

= ρei θ − σei ϕ =
√
a2 + b2 eiθ −

√
c2 + d2 eiϕ (C.28)

= C eiγ (C.29)therefore
A = a− c (C.30)
B = b− d (C.31)and

C =
√
A2 +B2 (C.32)

γ = cos−1
( A√

A2 +B2

)
= tan−1

(B
A

) (C.33)237
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