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Prefazione

Questa tesi si inserisce nel contesto della ricerca sulla fusione termonucleare
controllata come possibile fonte alternativa di energia. La fusione é il pro-
cesso che alimenta il sole e tutte le altre stelle attive, il progetto ¢ quello di
riprodurre questo processo in macchine da laboratorio: il progetto, affasci-
nante ma di non facile realizzazione, si scontra soprattutto con la difficolta di
confinare alte temperature e densita di plasma, stato ionizzato della materia
(il cosiddetto quarto stato della materia).

La ricerca civile in questo campo ¢é quasi interamente dedicata allo studio del
confinamento dei plasmi da fusione con campi magnetici. Le configurazioni
di campo magnetico piu studiate sono quelle dette Tokamak, Stellarator e
Reversed-Field-Pinch (RFP), che confinano i plasmi in macchine toroidali.
Tokamak e Stellarator sono le configurazioni che storicamente hanno dato i
migliori risultati in termini di confinamento di particelle ed energia: vanno
ricordati rispettivamente i due progetti per la futura generazione delle mac-
chine da fusione, ITER (progetto di collaborazione internazionale oggi in
costruzione a Cadarache, Francia) e Wendelstein—7X (progetto in costruzione
a Greifswald, Germania).

Per quanto riguarda il RFP, il piu grande esperimento oggi attivo € ’esperi-
mento RFX (oggi RFX-mod), in funzione a Padova dal 1990, dove si & svolto
questo lavoro di tesi. Nei RFP il plasma é riscaldato per effetto ohmico da
un’alta corrente che fluisce nel plasma, ma la presenza di molte instabil-
ita, considerate intrinseche alla configurazione, ha storicamente condotto a
bassi tempi di confinamento e quindi a poca fiducia nel RFP come possi-
bile configurazione per un reattore. La ricerca su questo tipo di macchine é
oggi rivalutata da nuovi risultati, che dimostrano come all’aumentare della
corrente il plasma spontaneamente si porti in uno stato meno caotico con
proprieta di confinamento migliorate. Questi stati sono chiamati SHAx (Sin-
gle Helical Axis) perché caratterizzati da superfici magnetiche elicoidali.

Obiettivo di questa tesi € lo studio e la caratterizzazione della topologia
magnetica degli equilibri SHAx (in RFX—mod ottenuti per correnti di plasma
superiori a 1.5 MA), sia nella regione centrale del plasma (plasma core) che
nella zona di bordo dove dominano gli effetti dell’interazione plasma—parete
(plasma edge).
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Il primo passo per caratterizzare i nuovi equilibri elicoidali é stato la ricerca
di buone coordinate elicoidali. Si & fatto uso per questo di coordinate curvi-
linee (per descrivere la geometria toroidale del sistema) e della meccanica
hamiltoniana applicata ai campi magnetici in un toro (il che permette di
usare le coordinate azione—angolo del sistema).

II risultato di questo studio & un codice (SHEq, Single Helical Equilibria)
che usa le metriche elicoidali per la ricostruzione delle quantita di plasma
(componenti del campo o dei flussi magnetici e della densita di corrente)
durante gli stati SHAx, ed & quindi per esempio utile per interpretare i dati
sperimentali delle varie diagnostiche.

Parte di questa tesi si ¢ svolta in collaborazione con il gruppo di Teoria di
TJ-II (Ciemat, Madrid) per I'evoluzione temporale degli equilibri elicoidali
di SHEq in accordo con la legge di Ohm (che non ¢ iniziale vincolo).

La parte piu sperimentale di questa tesi riguarda lo studio della zona di bordo
dove un’interazione regolare del plasma con la parete riflette la deformazione
elicoidale della colonna di plasma. Una parte del tempo nella campagna
sperimentale 2011 di RFX-mod ¢ stata dedicata allo studio di particolari
condizioni al contorno per favorire e controllare la regolarita dell’interazione
plasma—parete.

I risultati principali di questa tesi sono stati pubblicati in:
- B. Momo et. al Plasma Phys. Control. Fus (2011) [1];
- E. Martines, R. Lorenzini, B. Momo et al. Plasma Phys. Control. Fus
(2011) [2];
- E. Martines, R. Lorenzini, B. Momo et al., Nucl. Fusion (2010) [3].

Il lavoro 1 cosi organizzato:

Introduzione

e Capitolo 1: Cos’¢ un Reversed Field Pinch?
Questo capitolo introduce brevemente la fisica del confinamento mag-
netico del plasma in macchine toroidali da fusione e si concentra sulla
descrizione del RFP e delle sue caratteristiche prncipali. Particolare
attenzione é dedicata agli stati elicoidali SHAx.

Riferimenti teorici

o (Capitolo 2: Meccanica hamiltoniana applicata ai campi magnetici
Questo capitolo fornisce le basi per usare la meccanica hamiltoniana
applicata ai campi magnetici in macchine toroidali da fusione. Chiari-
fica il significato della forma canonica del campo magnetico attraverso
I'uso del potenziale vettore e del teorema di Stokes. Riunisce le formu-



lazioni e considerazioni dei principali testi e articoli sull’argomento.

e Capitolo 3: Ricostruzione delle autofunzioni della perturbazione mag-
netica
Questo capitolo ¢ dedicato a specificare come utilizzare i risultati teorici
del capitolo 2 per dati reali. Viene ripreso l'articolo di P. Zanca and
D. Terranova, Reconstruction of magnetic perturbation in a toroidal
reversed field pinch, Plasma Phys. Control. Fusion 46 (2004) in cui si
spiega come ricostruire le autofunzioni delle perturbazioni (decomposte
secondo Fourier) al campo magnetico di equilibrio assial-simmetrico.
Particolare attenzione é dedicata all’accoppiamento toroidale tra i modi
che nasce da metriche curvilinee.

Il lavoro di tesi

e Capitolo 4: Coordinate elicoidali in sistems toroidali

Vengono qui definiti alcuni sistemi di coordinate elicoidali che de-
scrivono un’elica in un toro. Gli stati SHAx sono aprossimati a pure
eliche (toroidalmente chiuse) descritte dalla sovrapposizione di un unico
modo della perturbazione al campo magnetico di equilibrio assial—
simmetrico. Punto di partenza & quindi la ricostruzione delle armoniche
della perturbazione spiegata nel capitolo 3. Vengono discussi limiti e
vantaggi dei vari sistemi di coordinate trovati. Viene introdotto il
codice SHEq.

e Capitolo 5: Componenti covarianti e controvarianti del campo mag-
netico
L’uso di coordinate curvilinee impone attenzione sia rispetto alla dif-
ferenza tra componenti covarianti e controvarianti dei vettori che all’ac-
coppiamento toroidale tra i modi che ne consegue. Viene mostrato
Ieffetto dell’accoppiamento toroidale tra i modi sia nelle componenti
covarianti che in quelle controvarianti del campo magnetico.

e (Capitolo 6: Applicazioni
Si discutono alcune applicazioni del codice SHE(q, in particolare: la ri-
costruzione delle superfici magnetiche; le medie sulle superfici di flusso
che restitiuscono i profili radiali (mediati) delle quantita di plasma; il
safety factor profile (fattore di sicurezza) per definire gli equilibri eli-
coidali.
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e Capitolo 7: Evoluzione dell’equilibrio: il vincolo ohmico

Date le alte correnti di plasma, qualsiasi equilibrio deve soddisfare la
legge di Ohm (o il cosiddetto vincolo ohmico in condizioni stazionarie).
In questo capitolo prima la dinamo laminare (legata alla deformazione
elicoidale della colonna di plasma) ¢ discussa come effetto elettro-
statico. Poi si dimostra che gli equilibri di SHEq sono non stazionari,
e si presenta il lavoro svolto a TJ-II (Ciemat, Madrid) per evolvere gli
equilibri elicoidali in accordo alla legge di Ohm.

e Capitolo 8: Plasma di bordo in stati SHAx
Si discute l'interazione regolare del plasma con la parete durante gli
stati SHAx. Vengono presentate alcune recenti scariche della cam-
pagna sperimentale 2011 di RFX-mod per il controllo della zona di
bordo plasma attraverso l'imposizione di condizioni al contorno eli-
coidali.

Dettagli di calcolo

o (Capitolo 9: Dettagli di calcolo...
Si raccolgono qui i dettagli dei conti svolti in questa tesi. In partico-
lare quelli relativi alle derivate delle armoniche complesse delle pertur-
bazioni di flusso magnetico e quelli relativi alle metriche delle geometrie
elicoidail-toroidali.

Appendici

o Appendici A1-AS:
Si trovano qui brevi riassunti di tematiche utili per seguire meglio il
testo della tesi. In particolare sono raccolte le equazioni MHD e le
coordinate toroidali usate come punto di partenza per la costruzione
delle coordinate elicoidali-toroidali introdotte nel capitolo 4.



Abstract

The work carried out during these three years is part of the research activity
on controlled thermonuclear fusion as a (future) energy source that would
meet the requirements of a clean, renewable and abundant resource. Fusion
reactions are well known to physicists since 1930 and the ambitious idea is
to reproduce in laboratory the process that powers the Sun and all the stars.
Its reproduction on Earth in a fusion reactor is limited by the inability of
confining high density and temperature plasmas, necessary to overcome the
Coulomb repulsion between nuclei and bring the reactants within the range
of their strong interaction.

Civil research is mainly devoted to the study of magnetic plasma confine-
ments. Presently Tokamak, Stellarator and Reversed Field Pinch (RFP) con-
figurations are the most explored magnetic configurations, the first two being
the most promising for a fusion reactor (the ITER Tokamak in Cadarache,
France, and the Wendelstein—7X Stellarator in Greifswald, Germany, are now
under construction as the next step in fusion research).

The study of the reversed field pinch configuration is getting new momen-
tum from recent results, and this thesis has been carried out in the largest
RFP device in the world, which is in operation in Padova, Italy, since 1990:
the RFX—mod device (previously called RFX). RFPs are Ohmically heated
devices, with high currents flowing in the plasma. In the past, their perfor-
mance has been limited by the intrinsic presence of many instabilities that
degrade the confinement. At present, new high—plasma—current (higher than
1.5 MA in RFX-mod) states have been discovered, which show that as the
plasma becomes hotter it spontaneously undergoes a transition to a state
with improved confinement properties due to the emergence of an ordered
spontaneous magnetic structure in the otherwise chaotic core. These states
(named SHAx, Single Helical Axis) are characterized by magnetic surfaces
winding around a helical axis and are therefore considered as the helical REP
states.

The aim of this thesis is to investigate and model the magnetic topology
related to helical SHAx state equilibria, taking into account both the core
region and the edge.

As a first step, new helical coordinates to well describe the helical shape of
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SHAx states on a torus has been defined. This has been carried out making
use of the curvilinear metrics theory (to well consider the toroidicity of the
helical system) and Hamiltonian mechanics tools applied to magnetic field
(to make use of action—angle as a smart choice of coordinates).

The practical outcome of this thesis is the code named SHEq (Single Heli-
cal Equilibria), which uses the complete definition of the helical metrics to
compute all the (helical) equilibrium plasma quantities and can be therefore
useful to interpret the data from different diagnostics.

Furthermore, this should allow to verify if the equilibrium satisfies the Ohmic
constraint, a posteriori since the Ohm’s law is not an initial constraint for
SHE(q’s equilibrium reconstruction. This highlights that SHEq’s equilibria
are not steady state, and a part of this thesis has been carried out in collabo-
ration with the Theory Group of TJ-II (Ciemat, Madrid), where I worked for
about three months, in order to evolve in time helical equilibria accordingly
to Ohm’s law too.

Finally, a more experimental part of the thesis concerns the edge region.
From the point of view of plasma—wall interaction SHAx states appears with
a regular helical pattern and a part of this thesis is also devoted to the
study of some discharges (done during the 2011 RFX-mod experimental
campaign) where particular boundary conditions were applied in order to fa-
vor and sustain both the helical deformation in the core and a more regular
helical pattern in the plasma—wall interaction.

The main results of this work have been published in:
- B. Momo et. al Plasma Phys. Control. Fus (2011) [1];
- E. Martines, R. Lorenzini, B. Momo et al. Plasma Phys. Control. Fus

(2011) [2];
- E. Martines, R. Lorenzini, B. Momo et al., Nucl. Fusion (2010) [3].

The thesis is organized as follows:

Introduction

o Chapter 1: What is a Reversed Field Pinch?

Briefly introduces the concepts of magnetic confinement in fusion de-
vices with particular attention to the Reversed Field Pinch (RFP) axi—
symmetric configuration. Special emphasis is given to the difference
between low and high plasma current discharges and to SHAx features,
where one or more modes break the axi—symmetry. The necessity of
the dynamo process is discussed, together with its electrostatic expla-
nation that overtakes Taylor’s theory for the RFP.



Theoretical basis

o Chapter 2: Hamiltonian mechanics for magnetic field lines
This chapter gives an overview of the Hamiltonian mechanics applied
to magnetic fields in a toroidal device. The derivation of the canonical
representation of the magnetic field B is proposed, and its physical
meaning is clarified using the vector potential A (B = V x A) and
Stoke’s theorem. We follow and collect the considerations of famous
papers on the Hamiltonian mechanics of magnetic fields.

o Chapter 3: Mode eigenfunction reconstruction

This chapter is devoted to specify how to apply the theoretical results
of chapter 2 to real data, and which measurements are necessary for the
reconstruction of the (Fourier decomposed) harmonics of the perturba-
tion (to the axi-symmetric magnetic field). Special attention is given
to the toroidal coupling that arises between modes due to curvilinear
metrics. The chapter follows the paper by P. Zanca and D. Terra-
nova, Reconstruction of magnetic perturbation in a toroidal reversed
field pinch, Plasma Phys. Control. Fusion 46 (2004).

Thesis original work

e Chapter 4: Helical coordinates in toroidal systems

It is the first chapter regarding the original work of this thesis. Good
helical coordinate systems are defined in order to describe SHAx states,
that are modeled as pure Single Helicity (SH) states (which are the su-
perposition of a single mode of the perturbation to the axi-symmetric
configuration). The advantages and disadvantages are discussed for all
the coordinate systems. The starting point is the reconstruction of the
helical magnetic surfaces, using the magnetic flux eigenfunction inside
the plasma volume introduced in chapter 3. The SHEq-code can al-
ways choose between all coordinate systems when computing helical
equilibria.

e Chapter 5: Covariant and contravariant magnetic field components
The use of curvilinear metrics (as the helical coordinate systems in a
torus) imposes to consider the difference between covariant and con-
travariant components of any vector, and the toroidal coupling between
modes introduced in chapter 3. In this chapter is shown how the effect
of the toroidal coupling on the harmonics of the magnetic fluxes can
be seen in both the covariant and contravariant magnetic field compo-
nents.
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e Chapter 6: Applications
This chapter discusses some applications of the SHEq code. For ex-
ample magnetic flux reconstructions, the calculation of flux surface
averages of any plasma quantity, and the helical safety factor profile.

o Chapter 7: Equilibrium evolution: the Ohmic constraint

Due to high currents flowing in the plasma, any equilibrium must sat-
isfy Ohm’s law (or the Ohmic constraint that arises for steady state
condition). In this chapter, first the laminar dynamo (which origins
from a helical deformation of the plasma column) is discussed as an
electrostatic effect. Then it is shown that SHEq’s equilibria are not
steady state (do not satisfy the Ohmic constraint) and the work done
in collaboration with the Theory Group of TJ-II (Ciemat, Madrid) in
order to evolve in time the helical equilibria according to Ohm’s law is
presented.

e Chapter 8: Plasma boundary in SHAz states

This is the most experimental chapter, which presents the work done
for the analysis of the plasma—wall interaction during SHAx states: a
crucial point for REX-mod operation not yet well understood. Special
attention is devoted to a set of recent discharge (2011 experimental
RFX-mod campain), where the ambitious objective was the control of
the plasma—wall interaction using different (helical) boundary condi-
tion.

Detailed calculations

e Chapter 9: Detailed calculations
Here are collected the detailed calculation done for this thesis, in par-
ticular those regarding the radial derivative of the complex harmonics
of the fluxes and the helical-toroidal coordinates.

Appendixes

o Appendizes AI1-AS3:
In the appendixes one can find some brief summary of arguments re-
lated to this thesis but not originally developed during the work. In
particular one can find a brief summary of MHD equations and details
regarding the toroidal coordinate system (and the curvilinear metrics)
introduced in chapter 3.



Chapter 1

What 1s a Reversed Field
Pinch?

1.1 About magnetic confinement of fusion plasmas

Figure 1.1: A picture showing the principle of toroidal confinement.
It seems easy, but it is not...

The first picture in this section shows the principle of magnetic confine-
ment in toroidal devices: a charged particle gyrates (dotted line) around a
magnetic field line (continuous line) and it is confined within the vacuum
vessel.

Historically, the plasma magnetic confinement developed starting from
the first experiments about the pinch effect, in which a current channel con-
tracts through the self-magnetic field of the current, investigated by Bennet
in 1934 [4]. One can think to an applied toroidal magnetic field and to a
toroidal current induced in the plasma by a transformer. The pinch effect
due to the toroidal current adds to the toroidal magnetic field a poloidal
component: the magnetic field lines are helix that wrap around the torus.
The averaged poloidal angle A# traversed by a field line after one toroidal
transit (A = 27) is called the rotational transformation angle ¢, [5]'. A

!The number of turns of a magnetic field line in the poloidal direction every toroidal
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non—null rotational transform arises from the helical winding of the magnetic
field lines, and it is necessary to balance the shift due to the curvature and
the spatial gradient of the toroidal magnetic field.

Tokamak and RFP (Reversed Field Pinch) devices are the main toroidal
pinch devices for fusion studies. The main concept of the Tokamak was
proposed in 1952 by two Soviet physicists, Tamm and Sacharov, and then
realized for the first time by another Russian physicist, L.A. Artsimovich,
[6]. Whereas, the RFP configuration was first observed in the ZETA ex-
periment (a pinch device) at Harwell in the mid 1960s, as a spontaneous
self-generation of the toroidal magnetic field.

A non—null rotational transform can also be created without a pinch effect,
by helically shaped magnetic field coils outside the plasma, as in is the case
of the Stellarator devices.

In this thesis we will focus on the RFP configuration.

1.2 The Reversed Field Pinch

Br Reversed

Figure 1.2: RFP axi-symmetric magnetic field configuration.

In fig. 1.2 the poloidal and toroidal component of the (toroidal) Re-
versed Field Pinch configuration are drawn. The RFP configuration can be
described by an axi-symmetric magnetic field, with the peculiarity of com-
parable toroidal and poloidal component amplitude, and the reversal of the
toroidal one at the edge (whence the name to the configuration). In the past,

turn are usually indicated by the symbol ¢. Rigorously ¢ = +/(27), but in this thesis we
will use the symbol ¢ instead of ¢.

10



1.2 The Reversed Field Pinch

RFP’s performance has been limited by the intrinsic presence of many insta-
bilities, such as tearing modes, that degrade the confinement, but were also
considered to be necessary for the sustaining of the magnetic field reversal
through the dynamo effect |7]. Actually, the reversal can be sustained also
in a non—chaotic magnetic configuration [8, 9, 10|, as the so—called Single
Helical AXis (SHAx) states, recently discovered in RFX-mod experiment
(and the main subject of this thesis).

1.2.1 Start up of the configuration

) (o) t=t, ) (b) t=t, ) (c) t=t; )

1. T " T T 1. T r T T 1. T T T T 1.

1.0 By 1_0——13_1_____ 1.0~ R 1.0
0.8F 0.8 8 ¢ 0.8
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Figure 1.3: Reproduced from H. Ji, S.C. Prager, [7]. Qualitative illustra-
tion of time evolution of the normalized magnetic field and current density
profiles in a pinch plasma when the electric field is increased in sequence: (a)
initial state, where only a toroidal field exist; (b) a small electric field to drive
mainly toroidal current in Tokamaks; (c) a modest electric field to signifi-
cantly drive both toroidal and poloidal current components; (d) and, finally,
an RFP configuration is realized when the toroidal magnetic field reverses its
direction.

The toroidally symmetric vacuum vessel is surrounded by a set of toroidal
field coils which produce the initially toroidal magnetic field. A central
solenoid provides then the loop voltage necessary to trigger the discharge,
and to drive the toroidal plasma current inside the vessel that produces the
poloidal magnetic field component. In fig.1.3 one can see the time evolution
of the magnetic field and current density components, as the applied electric
field increases.

Most of the magnetic field is produced by currents flowing in the plasma. The
poloidal field is produced by the induced toroidal current, while the toroidal
magnetic field, much stronger in the core than at the edge (where it assumes
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just a small value with a reversed sign), must be generated by poloidal cur-
rents inside the plasma. These poloidal currents can not be driven by the
toroidal loop voltage alone: a dynamo is acting in the plasma, with contin-
uous generation of a toroidal flux to provide and sustain the configuration.
Therefore, the toroidal winding provides only a small toroidal field. It can
act as a flux conserver, in this case the coils react to the existence of the
poloidal currents in order to keep the total flux constant: in the outer region
the toroidal field is thereby reduced and even reversed. But, in RFP experi-
ments, aided reversal is generally preferred to self-reversal, and the toroidal
winding provides a small (chosen) negative toroidal field.

The resulting equilibrium configuration is the one in fig.1.2.

1.2.2 Shifted magnetic flux surfaces

e
I~

T

S

Figure 1.4: The cylindrical (R, Z, ¢) and machine (7,0, ¢) coordinate sys-
tems, applied to a torus.

The magnetic equilibrium in fig.1.2 is related to magnetic flux surfaces
where the magnetic field lines lie by definition. We refer to magnetic flux sur-
faces with circular poloidal cross section?, even if other shape could in prin-
ciple be investigated. In cylindrical approximation one can think to nested
circular magnetic flux surfaces, whereas a shift (and therefore non concentric

2The edge radial magnetic field due to perturbations breaks the perfect circularity of
the magnetic flux surfaces, and must be controlled either by a thick shell or by a feedback
active control. This in RFX-mod is done by a number of saddle coils.

12



1.2 The Reversed Field Pinch

magnetic flux surfaces) characterizes the real toroidal system [11]3.

On the circular flux surfaces are defined the toroidal coordinate systems
used in RFX—mod, all collected in appendix B.2 . All of these coordinate
systems are defined by a radial variable to label the magnetic flux surface,
and by two angles: a poloidal angle # and a toroidal angle ¢ (that one can
see in fig. 1.4 for the easier of these coordinate systems, the machine one).

Poloidal flux

wp = _.r ;9 T aﬁ&'
and

Poloidal current

G=[ B da,

ZA

A constant
or
Ti& i i” Toraida!dﬂux
v,=[ 2 d,

R |

Figure 1.5: Reproduced from [12]. Magnetic fluzes and currents defined
using the cross—sectional area for the toroidal fluz 1y and the current I and
using the central hole of the torus for the poloidal flux 1), and the current G.
The poloidal angle is 0 and the toroidal angle is ¢. (R, Z,y) are ordinary
cylindrical coordinates.

Magnetic flux surfaces can be labeled with every quantity which is con-
stant on them: by definition it must be any function f for which its gradient
is perpendicular to the magnetic field B:

B-Vf=0. (1.1)

From the equilibrium force balance equation, that needs to balance the pres-

3Shifted magnetic flux surfaces are not a peculiar feature of RFP configurations, but
it is common to all the toroidal devices.

“The only coordinate system that takes into account the toroidicity is the (7,9, )
coordinate system, defined also in chapter 3. The complexity of taking into account the
toroidal geometry, through the shift term, is related to curvilinear metrics (see appendix
B).
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sure gradient with the Lorentz force, one obtains the relation
JxB=Vp. (1.2)

Both the current density J and the pressure gradient Vp are orthogonal to
the magnetic field B: the kinetic pressure is constant on the magnetic flux
surfaces, where also the plasma current flows.

Some other example of label for magnetic flux surfaces are the magnetic
fluxes, or the safety factor g defined as the ratio between their differentials:

¢t(T) = / B- dztor (13)
Pp(r) = / B dX,, (1.4)
ar) = j:f (1.5)

¥y is the toroidal flux through X,,,., the surfaces defined by the constancy of
the radius r at the toroidal angle ¢ = const; and 1, is the poloidal flux, i.e.
the flux through 3,,;, the r = const surface at the poloidal angle 6 = const.
A qualitative picture of the two fluxes is in fig.1.5 and fig.2.4.

It is worth noting that the magnitude B of the magnetic field is not con-
stant on the magnetic flux surfaces r = const. Due to the toroidicity of the
geometry, the magnitude of the magnetic field depends both on the radius
r and on the poloidal angle. One can think to the High or Low Field Side
typical in Tokamaks.

1.2.3 Internal resonances: MH vs QSH and SHAXx states
The safety factor profile

A distinctive feature of the RFP configuration is the safety factor profile,
defined in eq.(1.5) and plotted in fig. 1.6. The safety factor profile related
to the axi—symmetric equilibrium is monotonically decreasing and it reverses
its sign at the edge, due to the reversal of the toroidal magnetic field.

The safety factor profile can be defined also as the inverse of the rota-
tional transform ¢, whose geometrical meaning is the number of turns of a
magnetic field line in the poloidal direction, after a complete turn in the
toroidal one’.

The small edge value of ¢, related to the weak reversal of the toroidal mag-

netic field, means that (in contrast to Tokamaks) magnetic field lines at the

“We remind that we use the symbol ¢ instead of .
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1.2 The Reversed Field Pinch
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Figure 1.6: The axi-symmetric safety factor profile in the cylindrical ap-
proximation.

edge are almost poloidal. For ¢ = 0 the magnetic field is only poloidal, i.e.
on the reversal surface where the toroidal magnetic field vanishes.

As one can see in fig. 1.6, a lot of magnetic flux surfaces where ¢ assumes
a rational value with low mode numbers are present in the plasma, which
means:

q(r) = (1.6)

m
n
These values of ¢ are said rational or resonant, as the corresponding flux
surfaces, where magnetic filed lines close on themself after m poloidal and n
toroidal turns. The term resonant arises from the fact that, around these sur-
faces, tearing modes with the same m poloidal mode number and n toroidal
mode number are destabilized.

Tearing modes are resistive, non-linear modes with saturated amplitudes,
and are responsible for the origin of the magnetic islands. Magnetic islands
are a change in the magnetic topology that arises where the resonant condi-
tion

k-B=0 (1.7)

between the wave vector k of the perturbation® and the magnetic field is
satisfied. Equation (1.7) is verified exactly on the resonant flux surfaces’,
and in fig. 1.7 is given a picture of the magnetic island of a m = 1 mode
in the poloidal plane and of a n = 2 — 3 mode in the toroidal one. On the
reversal surfaces, where ¢ = 0 by definition, all the modes of the m = 0
spectrum are resonant, and one speaks of the m = 0 island chain.

In the cylindrical approximation, ko = m/r and k, = n/R, where r and R are the
minus and major radius respectively.
"See [13, 11] for a treatment of magnetic island theory.
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Figure 1.7: Left: A m = 1 magnetic island on the poloidal plane. Right:
An example of magnetic island around the reversal surfaces on the toroidal
plane. This figure is intended as a qualitative picture of magnetic islands on
the poloidal and toroidal plane. The reconstruction of the magnetic config-
uration related to experimental data is better explained later (see chapters
6-8).

MHD spectra

At low plasma current (below 800 kA in RFX-mod), a wide spectrum of
tearing modes is present in the so—called Multiple Helicity (MH) regime.
Typically, the largest tearing modes are mostly in the m = 1 and m = 0
MHD spectra, and many modes with different toroidal mode number n and
comparable amplitudes are simultaneously destabilized in the plasma. The
consequence of the superposition of magnetic islands associated to resonant
tearing modes is a stochastic plasma core [14], that entails flat density and
temperature profiles. This is in agreement with images of the plasma core
from soft X-ray (SXR) tomography (fig.1.8 bottom left) which display a
poloidally symmetric emissivity.

At higher plasma currents, transient states where just one (m,n) mode dom-
inates the spectra are observed in all the large RFP devices. These states are
called Quasi Single Helicity (QSH) states due to the presence of secondary
modes with small but finite amplitude. QSH regimes are associated to a
reduced level of chaos and improved confinement properties. This is due
to the presence of partially conserved magnetic flux surfaces in the plasma
core, that turn out to be the magnetic island related to the dominant mode.
From the measurements, this can be seen in the bean—like hot structure evi-
dent from the SXR tomography (fig.1.8 bottom right) and shows up also in
the electron temperature profiles measurements that exhibit a strong Inter-
nal Transport Barrier (ITB) in correspondence of the magnetic island edges
[15, 16].

Increasing the plasma current, an increase in the amplitude of the dominant
mode, together with a decrease in the amplitude of the secondary modes, can
be observed (fig.1.9 left). For high plasma currents (usually above 1.5 MA
in RFX-mod), and in correspondence to a threshold value of the dominant
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Figure 1.8: Left. MH features: MHD spectrum where many modes have
comparable amplitudes; Poincaré plot with the typical chaotic core; SXR
tomography on the poloidal plane, which displays a poloidally symmetric
emissivity. MH are the typical state for low plasma current discharges, and
only transient states in high plasma discharges. Right. QSH features: MHD
spectrum where just one mode dominates the spectra; Poincaré plot where
the coherent structure in the plasma core, related to the dominant mode, is
evident; SXR tomography on the poloidal plane, which displays the bean-like
hot structure. QSH are the typical state for high plasma current discharges,
and only transient states in low plasma discharges. This figure is intended
to be a qualitative picture to summarize MH and QSH features.
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amplitude (experimentally of about the 4% of the total magnetic field at the
edge), the plasma self-organizes into a helical state, named Single Helical
Axis (SHAx), [17, 18, 19].

In fig.1.9 (right) the time evolution of the dominant and the secondary
modes in both a low and high plasma current discharges is also plotted. One
can see that the MH phases at high plasma current are just transient phases,
whereas are the typical state for low current discharges. On the contrary, at
high plasma current, helical states are reached but in a non-stationary way,
their persistence increasing with plasma current.

Dominont Em-—'.,n:—?]
¥ 6F Secondary (m=1,n=-B:-23) 7
. —
. 54
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i - a2
o 1]
ﬁ 006 008 010 012 014 0.6 018 020
= 1 time (s)
minont (m=1.n=—7
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Figure 1.9: Left: The amplitude of the dominant mode (black) and of the
secondary modes (red) are plotted against the value of the plasma current.
Right: The time evolution of the dominant mode (red) and of the secondary
modes (blue) in a low (up) and high (down) plasma discharges.

DAx and SHAXx states

SHAx states are improved confinement RFP states, characterized by nested
magnetic flux surfaces winding around a single helical axis, but enclosed in
an almost axi-symmetric boundary. This state is the result of two succes-
sive bifurcations, occurring when the current progressively increases. The
first one is of MHD type, and brings the plasma from the MH to the QSH
regime. At lower currents (and below the threshold value of the dominant
amplitude), the QSH regime includes a magnetic island and two axes are
therefore present in the magnetic system: the unperturbed axi-symmetric
axis and the one related to the island O-point. As one can see in fig. 1.10,
in such states (named Double AXis, DAx) a helical thermal structure is
observed together with an electron transport barrier (ITB) where the max-
imum of the electron temperature in strongly correlated with the position
of the magnetic island. The second bifurcation changes the topology of the
magnetic field: when the dominant mode exceeds the threshold amplitude,
the X—point of its magnetic island is expelled and the original axi-symmetric
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Figure 1.10: Left. DAx state topology on the poloidal plane where the
island related to the dominant m = 1 can be seen. And the relative tem-
perature profile from Thomson scattering data, where the internal transport
barrier (ITB) can be seen. Right. SHAx state topology on the poloidal plane
where the bean—shaped flux surfaces can be seen. And the relative temper-
ature profile from Thomson scattering data where the internal transport
barrier (ITB) and the internal flat profile can be seen.

axis is replaced by a helical magnetic axis, which coincides with the previous
island O-point and that becomes the only magnetic axis (which motivates
the term SHAx) of the system.

During SHAx states, the region inside the ITB spans a larger volume than
in DAx states, and it is related to a flat temperature profile (fig. 1.10). The
maximum electron temperature gradients at the ITB are similar between
DAx and SHAx states. The safety factor profile changes its shape during
the transition to a SHAx state, going through a maximum located in the
vicinity of the former separatrix and therefore in correspondence of the steep
temperature gradient (see chapter 6). The region of shear reversal® seems to
be more resilient to chaos, and a QSH state without separatrix (SHAx state)
can be therefore considered an improved confinement state with respect to
the DAx state?.

8The shear profile is defined as the radial derivative of the safety factor profile. A shear
reversal therefore indicates a maximum or a minimum in the safety factor profile.
9This can be understood also using the Hamiltonian mechanics theory.
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The transition from a chaotic MH regime to a stationary SH (Single He-

licity) regime where chaos is suppressed was theoretically predicted to occur
when the visco-resistive dissipation grows, therefore in correspondence of the
high dissipation limit of the system. Numerical simulations show a continu-
ous transition from MH to SH when the plasma dissipation increases, with
an intermediate phase where the system displays a temporal intermittency
between MH and QSH'.
The first theoretical proof of the existence of SH states was their discovery
in 1990 in 3D numerical simulations. The numerical scenario is qualitative
similar to the experimental one: an increase of the dissipation parameters
(as the Hartmann number!!) in the former seems to have the same role of an
increase of the plasma current in the latter (and viceversa). Experimentally,
a pure SH regime is not reached, but it can be observed the transition be-
tween QSH and MH regimes (and viceversa). However, the relation between
the high dissipation regime and high plasma discharges is still not under-
stood, and the reason why high current is beneficial for real discharges is
still awaiting a theoretical explanation.

Plasma properties, such as electron temperature and SXR emissivity,
have been found constant on helical magnetic flux surfaces, indicating that
SHAx states can be described by MHD equilibrium with almost invariant
flux surfaces. In contrast, stationary low current MH states do not exist due
to the temporal fluctuation of all the modes of the perturbation.

In this thesis we look for the magnetic reconstruction of the helical SHAx
state equilibria, and to their evolution in time in chapter 7.

3D visco-resistive MHD simulations in toroidal geometry (and not in the
simplified cylindrical one) show that the toroidal coupling between modes!'?
prevents the system to reach a pure Single Helicity state. The toroidal chaos
stays limited during the Quasi Single Helicity SHAx states, and in the fol-
lowing we model them as pure SH states, even in a toroidal geometry.
SHAx states are related to the dominant mode of the m = 1 spectrum, and
they are studied in chapters 4-7. The contribution of the correspondent
dominant mode in the m = 0 spectrum, important at the edge and in the
plasma—wall interaction, is analyzed in chapter 8. The plasma deformation
due to m = 1 and m = 0 modes can be seen in fig.1.11.

As yet the SHAX regimes are usually obtained at low densities (n/ng < 0.2,

'°Tn [20] the transition between MH and SH phases is described as a second order phase
transition, where the control parameter is the Hartmann number.

" The Hartmann number H is defined as the dimensionless number (novo) /2, where
1o is the central resistivity and v the central plasma viscosity, therefore the increase of
the dissipation parameters corresponds to a decrease of H and viceversa. It is found to
be the right control parameter for the dynamics in numerical simulations [20].

128ee chapter 3: the toroidal coupling acts between modes with same toroidal mode
number n and different poloidal mode number m.
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1.2 The Reversed Field Pinch

where n¢g is the Greenwald density limit, [11]), and the understanding of
the plasma-wall interaction is of crucial importance specially in RFX-mod,
where no divertors protect the wall.

The magnetic topology of a SHAx state (3D shape in fig. 1.12) is like
that of a non resonant saturated kink. This helical deformation makes the
helical RFP plasmas similar to Stellarator’s one. But in a Stellarator the
helical magnetic field is almost completely defined by external coils, while in
RFPs SHAx states is mainly produced by internal currents.

In chapter 6.3 we however compare the helical rotational transform during
a SHAx state and the one typical of TJ-II Stellarator, in Ciemat (Madrid).

\Lf BT

Figure 1.11: The plasma deformation due to m = 1 (left) and m = 0
(right) modes.

Figure 1.12: Left: 3D shape of a SHAx state. Right: Reproduced from
[21]. The intersection of the helix with the poloidal plane, and the typical
bean-like structure that characterize a SHAx state on the poloidal plane.
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1.2.4 The reversal of the toroidal magnetic field and the dy-
namo

A dynamo process is necessary to sustain the Reversed Field Pinch config-
uration, for time longer that the resistive ones'3. Without any mechanism
that continuously produces toroidal magnetic flux, after a short time the
toroidal magnetic field profile would be constant and equal to its edge value
(see the diffusive equation (A.12) and fig.1.13).

The dynamo is therefore a process acting against the resistive diffusion, and

conservaiore
di flusso

}

&

015}

TOROIDAL FLUX (W)
=2 =
BB

.

0 @ s 8 w0 i
TIME {ms}
Figure 1.13: Top: The resistive diffusion of the toroidal magnetic field
without the dynamo action. Bottom.: The toroidal flux as function of time

during a typical RFX-mod discharge. The dashed line represents the theo-
retical diffusive exponential decay without field regeneration.

it has been proved to be necessary for the stability of the configuration [22].
Other examples show the necessity of a dynamo, in particular to provide
the reversal of the toroidal magnetic field. Let us use the Ampére’s law, in

13The time for the resistive diffusion of the magnetic field is defined in appendix A.1
(comment to eq.(A.12)), as the characteristic time 7r = poa®/n with a the radius of the
vacuum chamber.
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1.2 The Reversed Field Pinch

stationary condition and in cylindrical approximation for simplicity:

1 9B,
- - D 1.
Jo o or (1.8)

On the reversal surface, if the poloidal current density vanishes (as it should
be with magnetic field lines only poloidal), the toroidal magnetic field is
minimum, due to the vanishing of its radial derivative. But the minimum of
the toroidal magnetic field contradicts its reversal assumption (as one can see
comparing the two B, profiles in fig. 1.14): this highlights the necessity of
a poloidal current density component, that can not be driven by the applied
toroidal loop voltage'®.

Figure 1.14: Left: The axi-symmetric RFP magnetic field components.
Right: The toroidal magnetic field profile without a dynamo process.

The same can be proved looking at the parallel Ohm’s law: on the reversal
flux surface, where B = By,

E” =N J” <— FEy= Uil Jy. (19)

The two sides of equation (1.9) are plotted in fig. 1.15. Again it is evident
the necessity of a poloidal current at the reversal surface, that cannot be
driven neither by the applied toroidal loop voltage neither by a (v x B) term
in the poloidal direction being B = By.

Usually the dynamo process is understood as a (v x B) term in the
poloidal direction due to the non linear coupling between the velocity and
the magnetic perturbation fields. Only one mode of the perturbation could
be enough to sustain the dynamo: in this case the necessity of a dynamo is
understood as the necessity of an helical deformation of the plasma column,

“Therefore exchanging the role of the axial B, magnetic field and of the B, toroidal
one.

15The pinch of the magnetic field lines due to the applied electric field is what produces
just poloidal magnetic field lines at the reversal.
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Figure 1.15: Mismatch between the applied electric field £ and the re-
sistive counterpart. It is noted that Ey > njj at the center (necessity of
anti-dynamo) while £ < njj at the edge (necessity of a dynamo process).

and the RFP is seen as a helically distorted paramagnetic pinch. One speaks
of the laminar RFP dynamo, see section 7.1.
In any case, the field reversal is a consequence of the loss of the axi—symmetry
of the system. This is known as the Cowling’s theorem [23], for which no
dynamo can sustain an axi—symmetric RFP.

1.2.5 Standard and laminar dynamo explanations. From
Taylor to the wire model

Taylor relaxation theory

Taylor relaxation theory was the first explanation of the reversed configura-
tion in fig. 1.2. It came in 1974 |24|, when computers were not able to run
a MHD simulation, and considers a plasma with null pressure and velocity
in a cylindrical flux conserver. The plasma is considered as an isolated sys-
tem, therefore it should reach the minimum energy state consistent with the
constraints given by the global magnetic invariants.

The energy to be minimized is the total magnetic energy W, neglecting the
internal energy due to the vanishing pressure:

BZ
W:/ —dV 1.10
v 2po (1.10)

and Taylor proposes to consider as a constraint to the system the constancy
of the magnetic helicity'® K defined as

K:/ A -BdV (1.11)
14

5Magnetic helicity K defined in equation (1.11) to be distinguished from the geometric
helicity of a magnetic perturbation. When speaking of the helicity of a mode in this thesis
we are referring to the geometrical one, if not differently specified.
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1.2 The Reversed Field Pinch

where A is the vector potential (B = V x A) and V the plasma volume
enclosed by a given magnetic flux surface (Taylor considers the constancy of
the total magnetic helicity inside the last closed magnetic flux surface).
The magnetic helicity K is constant for non resistive plasmas, but it can be
considered approximately constant if the variation of K is much slower than
the energy variation. This is experimentally verified and Taylor’s picture is
consistent even for low resistivity plasmas'?.

Woltjer’s theorem states that a system constrained to constant magnetic
helicity minimizes its energy reaching a (linear) force free configuration: J =
o B with a constant o profile. In cylindrical geometry the solutions are the
Bessel functions (Jy and J;), for which V x B = ¢ B and:

B.(r)=0
Bg(?") = Bojl(O'T)
Bz(T) = B()J()(O’T)

These solutions are called Bessel Function Model (BFM) and are plotted in
fig. 1.16. One can see that these are not far from the experimental magnetic
fields, and that the solution for B, accounts for the reversal.

For a complete description of the BEM solution it is useful to introduce two

Figure 1.16: BFM solutions and experimental magnetic field profiles. Re-
produced from H.A.B. Bodin, [26].

parameters, the reversal parameter F' and the pinch parameter ©, defined
as

By(a) _ By(a)
By (B

" Taylor’s picture can be considered consistent with resistive plasma also if one can
assume that the relaxation process is due to small scale fluctuation. In this case the
energy decays faster than the magnetic helicity. But the dynamo process that must act to
account for the reversal is due to large scale fluctuations, as tearing or kink modes [25].

@:

(1.12)
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Figure 1.17: Schematic F' — © diagram, as predicted by the BFM model
(continuous line) and experimental values found in different devices.

where (B,) is the average of the toroidal magnetic field over the poloidal cross
section and a the minor radius of the vacuum chamber. In general, since the
toroidal field reverses for » < a, in the RFP F' is always negative and the
value © is always high. On the contrary, the Tokamak could be characterized
with low © values and F' positive everywhere. A common way to display the
BFM model prediction is the F' — © diagram (fig.1.17), in which the RFP
states (the configurations with a reversed toroidal field) are supposed to exist
for © > 1.2. The experimental points overplotted in the same figure show
a qualitatively reasonable agreement just in the central region. In the same
plot, one could follow the start up of the discharge (from (a) to (d) in fig.1.3).

The BFM solutions correspond to the axi—symmetric reversed equilib-
rium states predicted by Taylor’s theory'®. This is in contrast with the
already cited Cowling’s theorem [23], for which a reversed axi—symmetric
equilibrium can not exist. This is only one of the experimental and theoret-
ical results that disagree with Taylor’s relaxation theory.

Taylor gives an explanation for the final relaxed state, but does not specify
the nature of the relaxation. A dynamo process must act against the mag-
netic field diffusion, and this breaks the axi—symmetry of the equilibrium
system in agreement with Cowling’s theorem. Moreover, the experimental
o profile is not constant over the whole plasma radius, in particularly it

18Taylor’s theory can predict also a helical minimum energy state, corresponding to a
mode resonating outside the reversal radius. But the geometrical helicity of this mode is
opposite to the one of the experimental helical SHAx states, that correspond to a mode
resonating inside the reversal surface. This is one of the criticism to Taylor’s theory.
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strongly varies outside the reversal radius!”. RFP’s plasmas are essentially
ohmic, but a high plasma resistivity is out of Taylor’s assumption®’. More-
over, the plasma is not an isolated system?!. In [25] one can find a more
accurate elucidation of the Taylor’s theory criticisms, and a new paradigm
for the RFP that accounts for these. Its explanation in the next section can
be found in D.F.Escande, What is a RFP?, to be published.

The wire model

In the new model, the RFP is described as a self-organized magnetic system
that results from the nonlinear saturation of a resistive kink mode??.

The intuitive toy model that explains the self-reversal of the axial magnetic
field in a cylindrical system is called wire model, [29, 30].

A finite, but small, axial magnetic field is present inside the cylinder.
This means a poloidal current is flowing in external coils on the cylinder
(Fig. 1.18 (a)). The wire is in unstable equilibrium, and a small perturba-
tion triggers a kink. The unstable kink is the one with a pitch whose sign is
such that the poloidal part of the current flowing in the wire has the same
orientation as the one in the cylinder, which brings a mutual attractive force
(Fig. 1.18 (b)). Such a pitch brings also a solenoidal effect which increases
the magnetic field and flux inside the kinked wire. The flux conserver im-
poses accordingly a decrease of the magnetic field and flux outside. As long
as the current in the cylinder keeps its sign, the instability cannot quench.
The continuing growth of the magnetic field and flux inside the kinked wire
forces the outer magnetic field and the current in the cylinder to reverse.

This model exhibits a self-organized magnetic system where it is essential
the loss of axi—symmetry to provide the reversal. Differently from Taylor’s
theory, this model explains the reversal without considering a closed systern,
accounting for the plasma resistivity, and predicting a helical magnetic equi-
librium configuration in agreement with experiments®® and the Cowling’s

The o profile is constant in the chaotic radial domain: as shown by Rusbridge [27], o
must be constant along magnetic field lines in force free and stationary condition (because
J=0B and V-J =0, then B- Vo = 0). This explains why o is constant in the chaotic
core of MH states, even without the necessity of Taylor’s theory.

20See footnote 17.

*'Considering instead the plasma as an open ohmic system with fixed currents one
can use an electrotechnics result, which states that such a system maximizes its mag-
netic energy (instead of relaxing toward a minimum energy state). See [25] and reference
[45] therein: P. Lorrain and D.R. Corson, Electromagnetic Fields and Waves, New York:
Freeman (1987).

22This model is a variant of the Kadomtsev one, that proposes a model for the saturation
of a resistive kink for Tokamaks, in order to find the reversal of the axial magnetic field
component. See Kadomtsev [28], and [25, 29].

%But in RFP experiments usually aided reversal is preferred to the self-reversal of this
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{al

Figure 1.18: The wire model. (a): current-carrying wire in a flux conserver.
The wire carries a current I, parallel to a magnetic field B, whose flux is
conserved by the conducting shell; (b): growth of the instability of Iy; (c): a
stable equilibrium with reversed field is reached. Reproduced from [30].

theorem. Differently from Taylor’s theory, the origin of the dynamo velocity
field is explained: as a consequence of the helical deformation of magnetic
flux surfaces, a helical electrostatic potential generates the dynamo velocity
as an electrostatic drift. This is called laminar dynamo, and better explained
in section 7.1.
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Figure 1.19: Left, Middle: The axi-symmetric RFP and Tokamak mag-
netic field components. Right: The RFP and Tokamak safety factor profile.

1.2.6 Main differences with Tokamak configurations

In a RFP most of the magnetic field is produced by the currents flowing in
the plasma. For the same axial applied toroidal field, the plasma current is
one order of magnitude larger in a RFP than in a Tokamak.

As a consequence, for the same plasma resistivity (and the same axial toroidal
field), the ohmic heating (proportional to the squared plasma current) is two
orders of magnitude larger in RFPs than in Tokamaks. Therefore, no ad-
ditional heating is required for high plasma temperatures in RFP devices,
and no superconducting magnets are required for strong magnetic field (the
maximum magnetic field being bounded by the ability of driving high plasma
currents and not by the maximum value imposed by the superconducting
technology).

Another result of the high plasma current in a RFP is that the equilib-
rium magnetic field has poloidal and toroidal components of comparable
amplitudes. As one can see in fig. 1.19, the similar amplitude of the two
components of the equilibrium magnetic field pushes the value of the safety
factor profile always below 1 in the RFP configuration. The ¢ = 1 is known
as the Kruskal-Shafranov limit?*: below this limit the toroidal configuration
should be stable (as Tokamak case), above helical MHD instabilities with
m = 1 are triggered in the plasma (m is the poloidal mode number of the
perturbation, and m = 1 are the kink instabilities of the type in fig.1.11
left). The self-organized magnetic system that results from the nonlinear
saturation of a resistive kink mode corresponds to a full MHD relaxation
that involves the toroidal field reversal and it turns out to be resilient to
disruption.

29



Introduction

Figure 1.20: Left: The RFX-mod experiment. Right: Scheme of the
poloidal section of RFX-mod experiment.

Major radius =2m
Minor radius =0.459 m
Plasma current <2 MA

Discharge duration <0.5s
Plasma density range =~ 1 =10 x 10 m™3

Plasma volume ~ 10 m3
Working gas H, He

Table 1.1: Main parameters of RFX-mod device.

1.3 RFX-mod experiment

The Reversed Field EXperiment modified (RFX-mod) [31], the upgraded
version of the previous RFX [32], is a toroidal device for the study of the
magnetically confined plasma in the RFP configuration. Located at the Isti-
tuto Gas lonizzati (IGI) [33| of the National Research Council (CNR) [34] of
Padova, it is operational since 2004 under the management of the Consorzio
RFX, a research organization promoted by CNR, ENEA (the Italian National
agency for new technologies, Energy and sustainable economic development)
[35], University of Padova [36], Acciaierie Venete S.p.A. (a private partner)
[37] and INFN (the Italian National Institute of Nuclear Physics) [38], within
the framework of the Euratom - ENEA Association.

The main parameters of the RFX-mod device (the largest RFP in oper-
ation) are shown in the tab.1.1. As in all RFPs, plasma heating is purely
ohmic. Despite a toroidal magnetic field ten times smaller (the whole mag-
netic system is shown in fig.1.20), this device allows exploring current regimes

model.
#4See [11] for a treatment of the Kruskal-Shafranov limit.
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1.3 RFX-mod experiment

(up to 2 MA) comparable to those of the large tokamaks.

First wall

Figure 1.21: First wall, graphite tiles.

The RFX-mod first wall is composed by 2016 graphite tiles, covering
completely the inner part of the vacuum vessel. In the new machine the
tiles have been redesigned to achieve a more uniform power deposition on
the plasma facing surface, to minimize the emissivity due to plasma wall-
interaction and finally to give housing to a large number of in-vessel probes.
These design requirements led to a substantial reduction of the tile thickness
with respect to the original design [39].

The active feedback control system

Figure 1.22: Saddle coils
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With respect to the original RFX design, the present machine under-
went some crucial modifications that allowed significant performance im-
provements.

The original RFX thick stabilizing shell (which had a magnetic field penetra-
tion time constant Tspe = 500 ms) was replaced with a thinner one, whose
time constant for penetration of vertical magnetic field (~ 50 ms) is ~ 10
times shorter than pulse duration. Moreover, RFX-mod has been equipped
with one of the most advanced system for feedback control of MHD stability
with active coils among fusion devices. The system is based on 192 active
saddle coils, which cover the whole plasma boundary (fig. 1.22). The coils
are arranged in 48 toroidal locations; in each toroidal location there are 4
poloidal coils, according to the low m/high n structure of MHD modes in
the RFP (where m and n are the poloidal and toroidal mode numbers, re-
spectively). Each coil is independently driven by individual power supplies
and can produce a radial magnetic field up to 50 m7" DC and 3.5 mT at 100
Hz [31, 40, 41, 42|. Different algorithms for real-time tearing modes control
have been developed to exploit the full capability of the feedback system,
the most important being the Virtual Shell (VS) scheme [41] and the Clean
Mode Control (CMC) [43]. The latter, in particular, has drastically changed
the performance of the device, reducing the amplitude of the dynamo modes
at the plasma boundary, mitigating their phase and wall locking and finally
removing the aliasing of the sidebands that limits the VS control scheme [44].

The plasma current increase (the 2 MA have been achieved in 2010) is
only the most evident one among a turn of outstanding achievements that
considerably enhanced the interest about the RFX-mod developments and
enriched the RFP physics, [45].

20T '
F 2010- still unoptimized

15"

1.0 | upgraded MHD active control: 2008

I (MA)

with MHD active control: 2006

0.5 =
0.0 . \no MHD acltive control 200? ‘
0.0 0.1 0.2 0.3 0.4 0.5

time (s)

Figure 1.23: Plasma current waveforms obtained in RFX-mod since its
restart in December 2004

As said, the plasma current increase (higher than 1.5 MA) has been ac-
companied by the observation of the helical SHAx states.
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Chapter 2

Hamiltonian mechanics for
magnetic field lines

This chapter gives an overview of the Hamiltonian mechanics applied to
magnetic fields in a toroidal device.

Any divergence free field (as the magnetic field, for which V-B = 0) in a
torus can be written in its canonical form. For the magnetic field:

B =V x VO — Vi, x Vo (2.1)

where in general 1y = (7,0, ) and 9, = 1,(r,0,¢) are the poloidal and
toroidal fluxes! and (7,6, ¢) general toroidal coordinates. Using this relation
one can see that magnetic field lines follow Hamiltonian trajectories for one—
degree-of-freedom Hamiltonians:

do _ BY _ Oy

dp = B¥ Ot

(2.2)
vy _ Br _ O%p
dp — B? — 09
can be identified with the canonical equation of motion
dg _ oH
dt — Op
(2.3)
dp _ _ oH
d =~ Bq
if
canonical timet <« ¢ (2.4)
Hamiltonian H <« 1, (2.5)
position coord. ¢ < 6 (2.6)
momentum p <« 1y (2.7)

!The fluxes are intended normalized to (27). See section 2.7 for further details or the
geometrical interpretation of these fluxes.
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This is usually the starting point to relate Hamiltonian mechanics and mag-
netic field theory, with the general form:

A =Vg+V0— 1,V (2.8)

for the vector potential A (B =V x A), [12].

In this chapter we propose the derivation of the canonical representation
of the magnetic field, eq.(2.1), which clarifies the interpretation. We follow
and collect the considerations of famous papers on the Hamiltonian mechan-
ics of the magnetic fields, as [46, 47, 48, 5, 49, 50].

In section 2.1 we introduce a variational principle for magnetic field lines in
an heuristic but physically intuitive way; in section 2.2 the same variational
principle for the vector potential A, from which the magnetic field line equa-
tions (in physical space) follow, is presented in a mathematically rigorous
way; in section 2.3 we prove the equivalence between this variational priciple
and the one of Hamiltonian mechanics from which the canonical equations
of motion (in phase space) derive. From this equivalence one can deduce the
association between canonical and magnetic variables, for which it is natural
to use the covariant components of the vector potential A;; in section 2./
we show the equivalence between canonical transformation (related to the
choice of the canonical variables) and gauge transformation (related to the
choice of the vector potential A); in section 2.5 we introduce a usefull state-
ment of Noether’s theorem to be applied in any Hamiltonian context, and in
particular to the symmetries of magnetic fields in fusion devices; in section
2.6 Action-Angle coordinates are defined, that are nothing but straight-
field—line coordinates on magnetic flux surfaces; in section 2.7 the physical
interpretation of the covariant component A; clarifies the theoretical steps
of the preceding sections: using Stokes theorem we prove the equivalence
between A; and the magnetic fluxes, and one can finally understand identi-
fications (2.4)—(2.7); in section 2.8 the main results of the chapter are shown
following the more common (but less rigorous) way followed for example
by A. Boozer [12] and W.D. D'Haeseleer [51]; in section 2.9 a resumptive
example is presented, for a system where a helical symmetry is supposed;
in section 2.10 a final simple example is proposed, to the study of an axi—
symmetric magnetic field.

The example in section 2.9 is particularly important for the study of SHAx
states, and will be used in chapter 4 to model them.
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2.1 Variational principle for magnetic field lines. Intuitive
physical approach

2.1 Variational principle for magnetic field lines.
Intuitive physical approach

The Euler-Lagrange proof for the stationary action principle for magnetic
field lines can be done in a rigorous way (as we do in section 2.2), and
similar to what is done in Hamiltonian mechanics. Magnetic fields exhibits
naturally also the geometrical elements of the differential geometry approach
which uses symplectic manifolds (see the book of V.I. Arnold [46]) and we
choose this intuitive approach to introduce the Hamiltonian theory for mag-
netic field lines.

We need to introduce in advance the definition of the Action for magnetic
systems, equation (2.10):

S(x) = / Ay (x) do (2.9)

0

for the general 2! = (2!, 22, 23) coordinates and using the Einstein conven-

tion to sum over repeated indices.

A is the vector potential, and the variation of the Action in equation (2.12)
implies the circulation of the vector potential along a closed circuit C. Using
Stokes theorem, the variation of the Action 4.5 is nothing but the flux of the
magnetic field through any surface having this circuit as a boundary.

In fig.2.1 one finds two examples for the circuit C', both constructed as
the sum of two segments L (light blue in the picture) and L’ (green in the
picture): in fig.2.1 a) the segment L is chosen along a magnetic field line,
whereas in fig.2.1 b) L is not everywhere tangent to B. In both cases L is
weakly distorted into L’ to compute 65 along the circuit C.

Let us study more in details the example a), where L lies along a magnetic
field line. We define a flux tube T, about L with a small radius € and we
suppose the small distortion L’ confined into T.. The flux of the magnetic
field B across the circuit C' cannot therefore be larger than the flux across T¢,
that is of order €2. Because the variation of the curve L is just of order €, the
variation of the Action S is second order in the variation of L. Therefore
the Action S is stationary along a magnetic field line.

Let us study more in details the example b) where L does not lie on a mag-
netic field line. We choose a point P that belongs both to a magnetic field
line (that we call M) and to the segment L; and a point @) that belongs to
the line perpendicular both to M and L and going through P; we choose
the point @ to be close to the point P, in order to have P(Q of order e. We
then choose a segment [rs, r4] of order 1 of L that includes the point P, and
slightly distort L into a line L’ coincident with L out of [rg,ry]: L’ is the
sum of the two segments joining r3 and r4 to Q. In this way we have defined
the circuit C'if fig.2.1 b) and we need to calculate the magnetic flux through

35



Hamiltonian mechanics

(b) .

Figure 2.1: A physical intuitive approach to the variational principle for
magnetic field lines.

it. Because L is not tangent to the magnetic field line (M), this flux is of
order e. Since the flux is of same the order as the variation of L, the Action
S is not stationary along a curve L that is not tangent to a magnetic field line.

Therefore the Action S of a magnetic system is stationary on a curve L
if and only if L is a segment of a magnetic field line, which proves principle
(2.9).

In the next section we prove this in an algebraic way.

2.2 Variational principle for magnetic field lines

As was shown by Cary and Littlejohn [48] and already implicitly present in I.
Morozov and L. S. Solovév, Rev. Plasma Phys. 2,229 (1966) [5], it is possible
to obtain the magnetic field line equations from a variational principle, in the
same way as we can find the canonical equations of motion in phase space
from a variational principle that makes the action integral extremum in the
Hamiltonian context. We define the action along a segment of magnetic field
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2.2 Variational principle for magnetic field lines

line, between xg and x;, as

Sx) = [ AR)-dx (2.10)

X0

M dx
- A(x(V) - X )dn 2.11
(Ao -5 (2.11)
where A is the vector potential that describes the magnetic field B, and x(\)
is a parametrization of the magnetic field line with the curve parameter .
The stationary action principle for field line flow can then be written as

5S = 5/)(1 Ax) - dx =0 (2.12)
A dx
-3 (A(x()\)) : 5) d\ =0 (2.13)

with the usual requirement that the arbitrary variation dx(A) vanishes at
the end points xg = x(\g) and x; = x(A1). Following Elsasser [50| we now
prove in a formal way that equation (2.13) is true if and only if

dx(\)
dA

which means that X = dx/dA\ is parallel to B = V x A, as required for
magnetic field lines. In the following, the fields A(x) and B(x) are always
taken at x = x(\) even when this is not explicitly stated.

(v X A) X —0 (2.14)

o = 5[ an [A(x)-y’c} (2.15)
Ao
Y [A : x} (2.16)

N
d\ 6A->‘c+A-5>'<] (2.17)

:(V ' 5") (A ' X> + (A ' 5X)} (2.18)

I
QL
>

_ M :(V-éx) (A.fcﬂ —/:1 d\ [(v.fc)A.ax} (2.19)

_ M :V(A-k) - (V.X)A} 6% (2.20)
Therefore

0 = [V(Aq‘c) - (V-)’()A} (2.21)

— % x [v X A} o (2.22)
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equivalent to (2.14) as requested. This ends the proof, but let us make
more precise some of its steps. Between (2.17) and (2.18) we use the general
relation

_0A

0A(x) = Ix ox=(V-0x)A . (2.23)

Between (2.18) and (2.19) we simply integrate by parts, remembering that

ox 0

6% = 0(50) =

0x) (2.24)
and between (2.19) and (2.20) we highlight 0x in the equation. Between
(2.21) and (2.22) we use the classical formula for the gradient of a scalar
product between two general vectors, and the fact that x(\) is independent
of space:

VA %) =Ax(Vx%)+%xx(VxA) +(A - V)ik+ (- V)A (2.25)

2.3 Hamiltonian description of magnetic field lines

In this section we show the equivalence between the variational principle
for magnetic field lines in physical space (introduced in section 2.2) and the
one for Hamiltonian dynamics in phase space, in order to highlight the link
between the two fields of knowledge and to derive in a straightforward way
the Hamiltonian description of field lines.

Following E. Pina & T. Ortiz, J. Phys. A 21, 1292 (1988) [49], we prove this
equivalence for an arbitrary coordinate system x# = (z!, 22, 23).

In such a system, the variational principle (2.13) becomes

A dxH
0=9¢ AN Ay (x) —— = 5/Audx“ . (2.26)
o dA

where we used the classical covariant expression of the dot product. We
now recall that the canonical equations of a N degree of freedom mechanical
system can be derived from the variational principle

t1

dq
0 = 0 ) dt [p-a—H(p,q,t)] (2.27)
t1
=9 [pdq—H(p,q,t) dt} (2.28)
to

where (p, q) are the canonical variables (N-vectors) and H(p, q,t) the Hamil-
tonian of the system?.

2The p - ‘Z—‘;‘ — H(p, q,t) term is therefore the Lagrangian of the system.
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2.3 Hamiltonian description of magnetic field lines

In section 2.2 we saw that magnetic field lines can be derived from a station-
ary action principle: magnetic field lines in physical space are analogous to
the flow of a dynamical system with one degree of freedom (N = 1)3.

We can therefore compare the so—called Poincaré—Cartan invariant form,
typical of dynamical systems and written in canonical coordinates,

d
pdg — Hdt = pd—i — H(p,q,t)| dt (2.29)
with the equivalent form valid for magnetic systems in physical spaces, writ-

ten in the general coordinates z# = (2!, 22, 23)

Aydrt = Aydat + Agda® + Azde®  for p=1,2,3 . (2.30)

In general it is A; = A;(z!,2%,23). Identifying the two forms, apparently
there are three elements in the sum (2.30) for magnetic field lines, and just
two in eq.(2.29) for the N = 1 dynamics. The covariant components of the
vector potential, A;, are defined up to gauge transformations*: one of the
component in the sum can be killed using the choice of an axial gauge, A; =0
for one of the indexes. The identification become trivial, and it is the way to
obtain the identification with canonical variables (p, ¢, H,t) in the physical
space.

As an example, we choose the axial gauge Az = 0 (following [49]):
Ay da' + Azda® = pdq — H dt (2.31)

that means that we can identify

D Ay (zt, 2?,t) (2.32)
g = x (2.33)
H = —Aslapt) (2.34)
t = 23 (2.35)

where we invert (possibly only locally) the relation p = A; (2!, 22,t) in order
to write 22 = 22(z!, p,t) and therefore the Hamiltonian as a function of the
canonical variables, H = H(p, q,t).

A mere change of the numbers of the coordinates enables to deal with
the gauge A; = 0 or A3 = 0. Different choices of the gauge correspond to
different sets of canonical variables.

Let us write explicitly the set of variables for the choice A7 = 0:

Ay da® + Azdx® = pdg — H dt (2.36)

3We will prove this in a rigorous way also in section 2.5.1 _
*Any gauge transformation can be written as A; — A; + 0F/0u’.
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that, as before, means

p = Ag(zt, 2?1t (2.37)
q = z* (2.38)
H = —As(g,pt) (2.39)
t = a3 (2.40)

where we again invert the relation for the canonical momentum p in order
to write the Hamiltonian H as a function of the canonical coordinates.

By exchanging the order of pdgq and —H dt in eq.(2.31) we note that
the role of the canonical momentum (e.g. p = As(x!,2%t) in the gauge
A1 = 0) can always be exchanged with minus the Hamiltonian variable
(H = — As(p,q,t)), which shows the huge freedom in the definition of a
Hamiltonian for magnetic field lines. However an arbitrary choice of time
does not guarantee magnetic field lines to be fully parametrized by a time
running from —oo to 4+o00. Section 2.5.2 shows that the choice of time can
guided by the existence of a symmetry.

2.4 Gauge or canonical transformation?

In section 2.3 we see that different choices of gauge correspond to different
sets of canonical variables, and we need to choose an axial gauge in order to
make the identification between the magnetic and the Hamiltonian system.
In this section we prove that gauge transformations are nothing but canoni-
cal transformations, using the language of Hamiltonian mechanics.

From Hamiltonian flow theory we know that the equations of motion (and
therefore the magnetic field line equations) are independent under canonical
transformations. It is easy to prove® that the Hamiltonian flows are indepen-
dent from both canonical and gauge transformations. This is true because

SLagrangian, Action, and equation of motion are independent from both gauge and
canonical transformation. Let us define gauge transformations. Under a gauge transfor-
mation, the vector potential transforms as

A — A+VS (2.41)
oS
A# — AH + % (2'42)

where the function S(x) is a scalar, and VS its gradient. The correspondent Poincaré-
Cartan (P-C) form and the Lagrangian transform respectively as:

Apdat —  Apde" +dS (2.43)

gt det dS

*oda Foax o odx

so a gauge transformation add to the P—C form the total differential of the scalar S, and to
the Lagrangian the total derivative (d/d)) of the same function S. The Action transforms

(2.44)
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both can be identified, as we now show.

Any canonical transformation® (p, q) — (P, Q) can be described as:
pdq — Hdt = PdQ — K dt + dF (2.47)

where F'(q,Q,1) is a generating function. By definition,

dF(q,Q,t) = pdq — PdQ + (K — H)dt (2.48)
oF oF oF
==  P="" K=H+— . 2.4

Under a gauge transformation”, the corresponding Poincaré-Cartan (P—
C) form pdq — H dt = A,dx" transforms as:

Ay dat Ay dat + dS (2.55)

so any gauge transformation adds to the P-C form the total differential of
some scalar S(x).

as
dzt

The variational principle give magnetic field line equations due to the minimization of the
Action:

():6/Ld)\r—>§/Ld)\+dS:O (2.46)

where 0S5 = 0 due to the vanishing variation of the position at the boundaries. It is
therefore evident that the magnetic field line flow does not change under gauge transfor-
mations. And this is obviously true also for the Hamiltonian form ~,dz" = pdq— H dt of a
mechanical system, proving that Hamiltonian flows are independent, not just of canonical
transformations, but also of gauge transformations. The notation v,dz" = pdq — H dt,
similar to A,dx*, is defined for mechanical systems in section 2.5.1

®For a definition of canonical transformations and their generating functions see [46].

"By definition,

A, da — A, da* +dS (2.50)

Using the gauge A1 = 0 and the identifications (2.36)—(2.40), under a gauge transforma-
tion:

oS
p — p=p+ 30 (2.51)
H — H =H- %f (2.52)
remembering that z° = ¢, 2° =t and
Ay = p ,Ay=Yp (2.53)
A = H ,-Ay=H (2.54)

The generating function S of the gauge transformation must be S(x) = S(z1,q,t). In-
verting the relation p = As(z1,q,t) one can think to S = S(p, q,1).
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Let us apply the same gauge transformation defined by the function
S(z,y,t) of the two variables (z,y) parametrized by t, before and after the
canonical transformation (2.47). This means performing the gauge transfor-
mation in the (p, q) coordinate with S(p,q,t) and the gauge transformation
in the (P, Q) coordinate with S(P,Q,t):

pdg— Hdt+dS = PdQ — K dt + dF + dS (2.56)

where F' = F(q,Q,1).
Now assume that the canonical transformation and the subsequent gauge
transformation are connected by condition [50]

where P(q,@,t) is defined by equation 2.49. Then we find
pdg— Hdt +dS = PdQ — K dt . (2.58)

This means that S[P(q, Q,t), Q,t] is the generating function of the reciprocal
canonical transformation

(P.Q) — (p.q) (2.59)
K — H (2.60)

By equation (2.57) we can therefore read any gauge transformation as a
canonical one, and vice versa.

There are many gauges for the vector potential A, but magnetic filed lines
are intrinsic objects in the physical space, that do not depend on the coordi-
nate system. In the same way, there are many choices of canonical variables
(p,q) and correspondingly of Hamiltonian H(p,q,t), but the Hamiltonian
flow is an intrinsic object in phase space. This is due to the way the Poincaré-
Cartan integral invariant accommodates gauge or canonical transformations.

2.5 Symmetries and Noether theorem

2.5.1 Equivalence between the variational principles for mag-
netic field lines and for Hamiltonian mechanics

In order to be able to write also the variational principle for the dynamics in
phase space in general coordinates, we need to go through some changes in
the notation. This will allow to use a formally identical statement of Noether
theorem for magnetic field lines systems in physical space and for dynamical
systems in phase space. We follow Cary and Littlejohn [48].
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Let 2% and 4" be collections of 2N coordinates, defined in a 2N —dimensional
space as:

2 = (qLy . AN, DL o DN) = (gj,pj), i=1,..,2N (j =1,..., N(R.61)
v = (P1,.p0n,0,..,0) = (p;,0), i=1,...,2N (j=1,...,N) (2.62)
——
J+N

In a similar way we define the (2N + 1) components z* and ~* of vectors in
the (2N + 1) dimensional ‘extended phase space’:

2 = (t,q1,...,qn, D1, PN) = (8, ¢5,05), £ =0,...,2N (j =1,..., N[2.63)
Yvw = (—H,p1,...,pn,0,...,0) = (=h,p;,0), p=0,...,2N (j =1,...,(2)64)
——
J+N

Note that 2% and z* are the definitions of the canonical coordinates in the
2N dimensional phase space and in the 2N + 1 dimensional extended phase
space respectively. The Hamiltonian H(p, q,t) is nothing but —p.

We are now able to re-write the stationary action principle (2.28) in general
coordinates, remembering that H = H(p, q,t):

t1 d
0 = 5/ dt [p- d—? — H(p,q, t)} (2.65)
to
11 d 1
-5/ a [% d—’i - H] (2.66)
to
t dzF
= 9 dt vy, — 2.67
to M dt ( )

Equation (2.66) is the variational principle written in the (z%,+%) canonical
variables and true in the 2N —dimensional phase space; equation (2.67) is
the variational principle written in the (z#,~*) canonical variables and true
in the (2N + 1)—dimensional extended phase space.

Moreover, the ~,dz" term is a scalar®, and it must be Yudzt = T dzZH for
any change of coordinates? z# +— Z¥. It allows to write

t dzt 2 dzm
0=06 [ dt(=-)=d[ a(r )za/r dz" (268
" T dt " kgt M ( )
This is the variational principle valid in the extended phase space for any
kind of coordinates Z*, and we can therefore see that the variational princi-
ple (2.67) derived for canonical variables has the same form in any coordinate

8We remind the Einstein convention to sum over repeated indices.
9Under the change of coordinates z* — Z", v* transforms with the general rules for
the component of covariant vectors: v, +— =, 02" /0Z"
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System.

This is what we were looking for, as we can see comparing the variational
principles for magnetic field lines and Hamiltonian flow: equation (2.68) and
(2.26) are now formally identical.

This shows that magnetic field lines in physical space are analogous to the
flow of a dynamical system in the extended phase space (2N +1)—dimensional.
This means that the problem of finding magnetic filed lines in 3—dimensional
physical spaces is equivalent to solve the dynamical problem for a system
with N = 1 degree of freedom. From now on we can use the Hamiltonian
formalism also for magnetic problems without confusion.

2.5.2 A common statement for Noether theorem

There are many statements of the Noether theorem, that essentially asso-
ciates any symmetry of a system with a constant of the motion!'?. We use
here, and we don’t prove it, the Noether theorem for the Poincaré-Cartan
form v = v, dz* or A, dxz", following [48] and using the result of section
2.5.1. If the components ~y, (A,) of the Poincaré-Cartan form are indepen-
dent of one of the coordinates, say z* (%), then the quantity v (Aa) is an
invariant of the flow 9z#/0t (0z*/ON).!! The coordinate z* (x) is said ig-
norable coordinate, and we can always find an appropriate frame of reference
(gauge) that reveals the symmetry of the system.

Let us write this in an explicit way, in the general coordinates x* =
(!, 22, 23), choosing the third coordinate x® as an ignorable coordinate.
This means the components of the form A, dz* are independent of 3 A =

A;(zt, 2?) for every i = 1,2,3:
Ay dat = Ay (ot 2%) dat + As(2t, 2?) do? + Ag(at,2®)da® . (2.70)

Noether theorem states that the quantity Az(z!, 22) is a constant of the mo-
tion, conserved by the flow.

Choosing for the ignorable coordinate the coordinate 2z = ¢ (o = 0), from
the previous statement, the conservation of the Hamiltonian H = — ~ for

0Considering the phase space Lagrangian L(q,d,t) (instead of the Hamiltonian
H(p,q,t)) one can prove Noether theorem using Euler-Lagrange equations:

oL d oL _
8qi dt 8q1 B

(2.69)

When an ignorable coordinate exists for the Lagrangian (let us say the coordinate g;,
0L/0q; = 0), then the symmetry corresponds to a translation in ¢ (0L/J¢g; = const)
and (Noether theorem) there exists a constant of the motion ((d/dt)(0L/dq;) = 0). By
definition p; = 0L/9q;, and Noether thorem is true also in phase space using H(p, q,t)
and forgetting about the Lagrangian L.

""One can find this statement of Noether theorem in [48].
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time independent systems follows. Omne can always think of the Hamilto-
nian flow itself as a time independent canonical transformation: going back
to the previous example, we can then think of 23 as the canonical time ¢
and of A3(x!,2?) as the conserved Hamiltonian (for the Hamiltonian system
associated to A):

H = — A3(z}, 2%) = (2!, 2%) = const . (2.71)

In the context of Hamiltonian mechanics, H(p,q) = E = const defines
the constant energy surfaces in phase space, and a periodic motion when
the F—contours are closed curves. The surfaces defined by H = —Az =
YP(x', 2?) = const are the flux surfaces of the integrable magnetic system
associated to A, where the field line flow lies.

Let us note that in the context of fusion machines this implies a confined
field line flow when the 1)—contours are closed in some region of interest. A
typical example are the nested toroidal flux surfaces in the Tokamak due to
the toroidal symmetry of the machine (in our notation, 23 = ¢ is used as
the canonical time in this case).

We saw from the examples in section 2.3 that some freedom can arise in
the choice of the canonical momentum and of the Hamiltonian when we look
for the canonical variables in a magnetic system: the canonical momentum
and the Hamiltonian can always exchange their role if the chosen coordinates
do not reveal any symmetry. We saw in this section that the Hamiltonian of
a system with one degree of freedom is univocally determined if a symmetry
is evident, which eliminates the freedom also in the choice of the canonical
momentum. The ignorable coordinate is therefore interpreted as the canon-
ical time'2.

We go back to the examples of section 2.3 because we can now re-write them
without any freedom in the identification of the canonical variables. We keep

on using the general coordinates 2# = (x!, 22, 2), keeping in mind that one

can for example use (x!, 2%, 23) as the cylindrical (R, z, ) or toroidal (r, 0, )
coordinates. We choose 2% as canonical time ¢ (the ignorable coordinate) and

start from (2.70) and (2.71), with A; = A;(2!, 2?):

Aydat = Ai(at,2?)dat + Ax(at, 2?) do? + Az(at,2?) da® (2.72)

pdq — Hdt (2.73)
t = 2° (2.74)
H = — Az, 2?) (2.75)

12We will see that not all the symmetries define good canonmical time, because the
symmetry do not guarantee any magnetic field line to be fully parametrized by a time
running from —oo to +o0o. An example of that is the toroidal angle in RFP devices,that
reverses at the edge. We will find some solution for this in chapter 4.
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In order to identify also the canonical variable (p,q) we need now to choose
the axial gauge. Choosing the gauge Ay = 0, (2.72) simply reduces to:

Aydat = Ay(at,2?)da® + As(2t, 2?) da? (2.76)
= pdq — Hdt (2.77)
and therefore
q = 2* (2.78)
= Ay(z',2?) (2.79)

The Hamiltonian must be function of the canonical variables, and not of
the general coordinates z#. This is done inverting (at least locally) relation
(2.79).

As we can see, we can divide the example in two parts: first we must find the
ignorable coordinate to choose the canonical time and the Hamiltonian of the
system, and then we must impose an axial gauge to identify the canonical
variable (p, q).

To conclude, let us note also that inverting relation (2.71) one can write the
first coordinate 2! = 2'(H, 2?), which means that one can always choose the
Hamiltonian as the first coordinate by inverting this relation. In the case of
magnetic flux surfaces the Hamiltonian can be used to label them. Then H
will be called radial coordinate. In general, any function of the Hamiltonian
only can be used to label magnetic flux surfaces, and we will use the general

symbol p to indicate any of these radial functions'.

2.6 Action—Angle variables

Hamiltonian systems with one degree of freedom and a time independent
Hamiltonian (H = H(p,q)) are always integrable and H(p,q) = E = const
defines the constant energy surfaces in phase space. In magnetic systems we
can say this in an equivalent way: the field line flow lies on magnetic flux
surfaces.

When this is true, one can always find a canonical transformation (p,q) —
(P, Q) such that the new Hamiltonian is a function only of the new momenta,
H = H(P): the position variable @ is a ignorable coordinate in this frame
of reference, and the momentum P is a constant of the motion because of
Noether theorem.

In the case of bounded energy surfaces in phase space (or closed magnetic
flux surfaces'®) the motion is periodic in time and the new (P, Q) = (I,()
canonical variables are called Action-Angle coordinates. By definition

13We use the same symbol p for every surface, even if in a rigorous way one should
distinguish between different topological orbits in the case of magnetic island.

'We will always use the word closed in its physical meaning, as magnetic flux surfaces
closing on themselves, and not in its topological definition.
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p I 2

i
Bz 7 S

Figure 2.2: The Action—Angle canonical transformation for one degree of
freedom periodic system in phase space. Reproduced from Hervieux lessons
on internet. In this figure Angle 6 corresponds to Angle ¢ in the text.

=

\A(E)\
27 6

Figure 2.3: The Action—Angle canonical transformation of the area of a
bounded energy surfaces for one degree of freedom periodic system in phase
space. Reproduced from Hervieux lessons on internet. In this figure Angle
0 corresponds to Angle ( in the text.

Action—Angle coordinates are therefore defined by I(E) = const and by an
angle ¢ that varies by 27 along any orbit of constant energy F. Areas are
preserved by canonical transformations, and we can use this to find a simple
definition for the Action I. Say A(FE) the area inside the orbit with constant
energy B 17,

27
A(E) = ?{p(q,E) dq = ]{I(E) ¢ = /0 I(E)d¢ =2rI(E)  (2.81)

from which16

AE) 1

2T :ﬂ

1(B) = 74 p(g, E) dg (2.82)

15Because of Stokes theorem written for differential forms,

A(E) = //dpdq = %pdq . (2.80)

16 Again, p = p(q, H) inverting the relation H = H(p,q), H = const.
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In order to define the Angle we go back to the idea of (time independent)
canonical transformation

pdq — Hdt— Id¢ — H(I)dt (2.83)
and we use the generating function of type Fy = Fy(q,):
Fy(q,1) = /p(q, I)dq (2.84)

The transformation rules are

OF, /‘1 Op
)= —= = —(q,1)d 2.85
p(g, 1) o~ J,, aq(q ) dq (2.85)
0F, 1 0p
I)=—= —(q,1)d . 2.86
1) = -7 i 57 @ 1) da (2.86)
Equation of motion are now very simple:
dl 0H
d¢ O0H

The Action is constant along any orbit of constant energy F. The Angle (
evolves linearly in time with a frequency w(I) and varies by 27 along any
orbit of constant energy FE: over one period

AFy, = %dqaa? = j{pdq =21 (2.89)
AF,

2.6.1 Action—Angle coordinates for magnetic systems

We can use all the results of Hamiltonian mechanics for magnetic field line
systems: we simply re—write the previous results in an explicit way for these
systems, where the analogues of bounded constant energy surfaces in phase
space are the closed magnetic flux surfaces.

We use the symmetry of the system to find out the canonical time and the
Hamiltonian, and the choice of an axial gauge to identify also the canonical
variables (p, q): using again the general coordinates 2# = (2!, 22, 3) and the
frame of reference where a symmetry with respect to the ignorable coordinate

23 is manifest, together with the choice A; = 0, we have already found
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2.6 Action—Angle variables

equations (2.71), (2.74), (2.78), (2.79):17

t = a° (2.91)
qg = 2° (2.92)
p = Azt z?) (2.93)
H = — A3z, 2?) =zt 2?) = const (2.94)

From here we can easily apply eq.(2.82), (2.84), (2.86) to define the Action—

Angle coordinate on v = const surfaces'®:

I0) = 5 $o.0do= o § Aalv.a?) s (295)

2m
q z?
Fg(:v2,I):/ p(1,q) qu/ Ao(I, %) da? (2.96)
) z3
OF, _ [* 9A
2y 9f2 _ oAz 2y 7.2
C(x*,1) = o1 = | o (I,x%)dx (2.97)

Equations (2.87)-(2.88) of the motion in the (I,{)—plane are the equation
for the magnetic field lines:

dl
— =0 2.98
d¢ dH i

To compute Action—Angle coordinates we go through a canonical change
of coordinates, as written in eq.(2.83). Let us see how the general z# =
(x', 2%, 23) coordinates and the identification with the canonical variables
change accordingly to this. From the identifications (2.91)—(2.94) it is clear
that, with the change (p,q) — (P, Q) in eq.(2.83), we are changing just the
second coordinate (22 = ¢), that must be now identified with the Angle ¢
(2 — (). As a consequence, the covariant component As = p of the vector
potential changes, being identified with the new momentum, the Action [
(Ag +— I). The time 2 and the first coordinate x! (due to the gauge A; = 0)

are unchanged, and so is true also for the Hamiltonian:
(¢!, 2% 2%) = (2,¢,2°)

The only thing more that we can do is to perform the inversion of the function
H = (2!, 2?) to be able to write ' = 2!(¢, 22) and therefore to choose the
Hamiltonian as the radial coordinate that labels the magnetic flux surfaces,

"In these equations we need to invert p = Aq(x',2?) to obtain z' = z'(p,2?) and
therefore H = H(p, q).

¥ We need to invert also H(z',z?) = 9 (x',2%) to obtain Az = As(1,2?), and the
function T = I(¢) to obtain Aa(I,xz?).
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instead of o', Working with Action-Angle coordinates we can therefore use

the Action-Angle coordinate system:'°

The identification with canonical variables (P, Q) = (I, () therefore gives:

3

¢ = (2.100)
Q0 = ¢ (2.101)
P = A.=1) (2.102)
H = —A3(I) =)= const (2.103)

Going back to equation (2.99) we can see that magnetic field lines writ-
ten in Action—Angle coordinates are straight lines in the (¢, I)—plane. In
magnetic filed line context, the (constant) frequency is called the rotational
transform and it is indicated with ¢. Usually the Action-Angle coordinates
are named magnetic or flur or straight—field—line coordinates. In the pres-
ence of an MHD equilibrium another canonical transformation can bring to
Boozer or Hamada magnetic coordinates, [51].

2.7 Intuitive physical approach

It is possible to derive the whole Hamiltonian mechanics from the Stokes
theorem, and from its generalization using differential p—forms when dealing
with NV > 1 systems [46]. For N = 1 degree of freedom the Stokes theorem
states the equivalence between a circulation and a flux:

7{A-dl = /(v x A)-dS (2.104)
l b))

where ¥ is any surfaces having the oriented circuit [ as a boundary. If A
is the vector potential, the circulation of A along [ immediately implies the
flux of the magnetic field B = V x A through Y. Using this, one can find
the relations between covariant components?® of the vector potential and
magnetic fluxes in fusion devices.

Thinking of toroidal fusion devices we prove the relation between the A;
components and the magnetic fluxes. We use general toroidal coordinates,
where 0 is the poloidal angle and ¢ the toroidal one. We are going to use
a difference between r and p in our notation: the radial coordinate r is not

19Where ¢t = 2, and the function 1 = ¢(I) that can be inverted to write p = I(1))

20We write the covariant components of A in several coordinate systems, where H = 1)
is the Hamiltonian, and p = f(¢) any radial function that labels magnetic flux surfaces
(e.g. p=1(v) or p=1(I) for Action—-Angle coordinates). By definition:

A=A; V2
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2.7 Intuitive physical approach

necessarily constant on magnetic flux surfaces, as is p using our definition
(see the end of section 2.5).

To define a flux one needs to define the surface through which the flux is com-
puted. Usually the poloidal and toroidal magnetic fluxes are thought as the
fluxes of the magnetic field B through a magnetic flux surface (p = const)
at the angles 8 = const and ¢ = const respectively. Let us now use a more
general definition even of the poloidal and toroidal fluxes, using the symbols
Yp and ¥ (and also the names poloidal and toroidal) for the fluxes across
some surface X (to be specified) at the angles § = const and ¢ = const
respectively. This allows to associate the magnetic fluxes to the covariant
components of the vector potential A (see section 2.7.1).

The physical interpretation of the fluxes depends therefore on the surface
3. Let us tell in advanced that one goes back to the classical definition
of ¥p and ¥r as fluxes across magnetic flux surfaces at § = const and
¢ = const respectively when ¥ = ¥(p), therefore using Action-Angle coor-
dinates. But let us show the definitions of these fluxes for different choices
of the surface Y: when no symmetry is evident in the system and there-
fore no flux surfaces can be found?!, the functions ¥ p(r, 6, ¢) and ¥ (r, 0, )
measure the poloidal and toroidal fluxes across the 3 = ¥p(r,0,¢) = const
and ¥ = ¢p(r,0,¢) = const surfaces respectively. And even in the pres-
ence of flux surfaces (H = —A,(r,0) = 9(r,0) = const), working with
non-Action-Angle coordinates, the functions ¢p(r,8) and p(r,0) are not
necessarily constant over flux surfaces, and they measure the poloidal and
toroidal fluxes across the ¥ = ¢p(r,0) = const and ¥ = ¢p(r,0) = const
surfaces respectively??. The fluxes have therefore a clear physical interpre-
tation only whenever there are well defined flux surfaces and Action—Angle
coordinates are used (H(p) = —A,(p) = ¢¥(p) = const): ¥p = ¥p(p) and
Y = Yp(p) are flux functions that measure the poloidal and toroidal fluxes
enclosed by the flux surface (1) = ¢(I) = const.

therefore:
A1 Val + Ao Vz? + A3 Va®  with 2* = (xl,xQ,xg)
any general coordinates
Ay Vp+AcVC+ A3V = with ot = (p,¢, %)
= A, Vp+IV(+ A3 Va?
Action—Angle coordinates

A Vr+AgVO+ A,V with 2zt = (r,0,¢)
general toroidal coordinates

A, Vp+AgVO+ A,V with 2z = (p,0,0)
general toroidal coordinates

21 Equivalent to constant energy surfaces.

*2Choosing a symmetry with respect to the toroidal angle ¢ = z*
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We always consider the poloidal and toroidal flux between the magnetic

axis and the surface . It is worth noting the difference betwee the poloidal
flux in fig.2.4 b) and fig.2.4 ¢): we always refer to the case b) when not
differently specified.
For fixed magnetic flux surfaces, the spatial changes of the poloidal flux sat-
isfy the relation: Vi, = —Vz/;?;, (we use the symbols ¢}, or simply ¢ p for the
poloidal flux across S;ol and w}jg for the poloidal flux across Sgal in fig.2.4),
[51].

We now prove all this and more.

o ) o)

Figure 2.4: Reproduced from [51], pag.77. Cross sections through which the
magnetic fluzes characterizing a magnetzc flux surface are defined. (a): The
field lines intersecting Sior determine the toroidal flux within a fluz surface.
(b): S ol 1S @ ribbon bounded by the magnetic axis and the fluz surface. It
contams the poloidal (ribbon) flux which resides inside the flur surface. (c):
S;)lol is a disk touching the magnetic surface. It picks up the poloidal (disk)
flux outside the flux surface. The angle ( in this figure is unfortunately what
we call the toroidal angle ¢ in the text (not to be confused with the Angle
¢ conjugated to the Action in the text).

2.7.1 The more general case

We first prove the more general case, for the general coordinates z# =

(x1, 22, 23) in the gauge A; = 0, which is that:

The component Ay is a measure (up to 2mw) of the flur across the surface
defined by Ay = const at x> = const.

The component As is a measure (up to 2w) of the flur across the surface
defined by Az = const at x> = const.

In a toroidal system, one can think of 2 and 2% as angle coordinates.
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2.7 Intuitive physical approach

Let us prove it. Writing v (7) the magnetic flux across a surface ¥ at the
angle o = const (therefore with i = 2,3), we can write

Y(i) = / B.dX(i) = / (VxA)-dX(i) = A - dI2.105)
(1) (i) o%(4)
= A;da? :7{ Aj(at, 2? 2%) da? (2.106)
9%(i) % (i)
= Aj(z! 2 2®) 7{ da’ (2.107)
a%(i)
= 21 Aj(xt, 2%, 2%) (2.108)

where, by definition, dX(i) = \/g Va' da’ dz* is the infinitesimal element of
a surface ¥ at the angle 2° = const and dl(i) = dx’e;. A line integral is
performed along a curve, which means that one of the three coordinates is
varied while two are held constant (Appendixes of [12, 52]).

We use the definition of the magnetic fluxes, the definition of the magnetic
field through the vector potential and Stokes theorem in the first line (2.105).
Because the z' coordinate is constant (hypothesis) and of the chosen axial
gauge A1 =0, A -dl = Ajdz’ in (2.106), without summation over j.
Thinking of 27 as an angle defined with respect to the magnetic axis of the
system??, its circulation in eq.(2.107) is equal to 27.

But eq.(2.107) is true only if we are considering A;(zt, 22, 23) = const, and
(i) turns out to be the flux across the surface ¥ = A;(x) at 2 = const.
This ends the prof of the general case.

2.7.2 Two examples in toroidal geometry

Let us see some specific examples in toroidal geometry.

Using Action—Angle coordinates z* = (p, (, ).
(I) = const flux surfaces and ¢ ignorable coordinate.

Y = / B d¥(p) = / (VxA) - d¥ = 7{ A - d)(2.109)
() () 9% ()

2m 2m
_ / A1) d¢ :/ I(W)d¢ (2.110)
0 0
or Ac = 21 I(1)) (2.111)
= ¢r(I) = ¢r(p) (2.112)

Here we used the definition of the toroidal flux, the definition of the magnetic
field and Stokes theorem in the first line. The symbol X(¢) defines the sur-

ZWhen z' = 22 then 2/ = 23, and vice versa.
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faces at ¢ = const.2* Because of the constancy of the toroidal angle ¢ and of
the choice Ay = A, = 0 for the axial gauge, we obtain the first relation of the
second line, where we use also the identification of A with the momentum
of the system in A~A coordinates, that is the Action I, eq.(2.102).

In the same way,

d _ ) — A)- = A - dl(2.
vl /Z(OB d5(C) /Z(O(VX ). ds 722(0 d1(2.113)

27 27
= [Tando= - [Tewas (2.114)
0 0
oA, = —2m(I) (2.115)
= (1) = (o) (2116)

Now the symbol () defines the surfaces at ¢ = const?> and we use the
relation (2.103). This is called poloidal flux, imagine the Angle ¢ in general
as a straight poloidal-like angle.

Important is to note that the circulation in dy, at the {( = const angle,
defines the surface named Sgal in fig.2.4), therefore this is the poloidal flux
outside the flux surface (fig.2.4 c).

Summarizing , in A-A coordinates x* = (p,(, ¢) :

Yr(I) = 2m1(y) = 2w A¢(I) = 2mAq(I) (2.117)
Ph(I) = —2ry(I) = 2nA,(I) = 2w Az(I) (2.118)

one can conclude that the Action [ itself is a measure of the toroidal flux
through magnetic surfaces, that corresponds also to the covariant compo-
nent A. associated to the Angle ¢ (up to 27). Also the poloidal flux is a flux
through magnetic flux surfaces, for which a measure is given by the Hamilto-
nian 1), corresponding to — A, (I). Both the poloidal and the toroidal fluxes
are flux functions (are constant on flux surfaces), and it is always possible
to choose one of them as a label for magnetic flux surfaces: p = ¢p(¢r) or
vice versa.

Using non-Action—Angle coordinates = = (r,0, ).

24Using general coordinates theory for the coordinates z* = (¢, ¢, @), the definition of
elementary surfaces elements is dX(p) = /g Vi dip d¢.

#d¥(¢) = /g V(dp dp with = (¢, ¢, ).
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2.7 Intuitive physical approach

¥ (r,0) = const flux surfaces and ¢ ignorable coordinate.

v = / B.dZ(cp):/ (VxA).dzzf A - d)(2.119)
() () 0%(p)

= " Ap(r,0)do (2.120)
0

= 21w Apy(r,0) (2.121)

= Yp(r,0) (2.122)

Eq. (2.121) can be true if and only if in eq.(2.120) we consider the flux
through the surface Ay(r,0) = const. Again the symbol () defines the
surfaces at ¢ = const and we use the axial gauge A; = A, = 0.

vh = B-dX() = / (VxA)-d¥ = A - dl1(2.123)
%(6) 5(6) o5(6)
21 2w
= [Ta0do= - [Tu0ds (2.124)
0 0
= 2mAy(r,0) = —2m(r,0) (2.125)
= i(r,0) (2.126)

The symbol 3(6) defines the surfaces at § = const?®. Remembering (2.71),
we can write the equivalence in eq. (2.124). Again, (2.125) can be true if
and only if in eq.(2.124) we consider the flux through the surface A, (r,0) =
const = —1(r,0): the Hamiltonian of the system is a measure of the poloidal
flux across the magnetic surfaces even if we are not using Action—Angle co-
ordinates.

Again, it is important to note that the circulation in dyp, at the § = const
angle, defines the surface named Sgol in fig.2.4), therefore this is the poloidal
flux outside the flux surface (fig.2.4 c).

Summarizing, in the general (7,0, ¢) toroidal coordinates where the first
coordinate r it is not necessarily a label of flux surfaces:

Yr(r,0) = 2mAg(r,0) = 2wAs(r,0) (2.127)
h(r,0) = —2m(r,0) =2rA,(r,0) = 2w As(r,0)  (2.128)

The Hamiltonian (r, #) is a measure of the poloidal flux across the ¢ (r,0) =
const surfaces that correspond to the magnetic flux surfaces. The function
Ap(r, 0) is a measure of the toroidal flux across the Agy(r, 0) = const surfaces,
that in general do not correspond to the magnetic surfaces.

%dx(0) = /g VO dr dp with 2 = (r,0, ¢).
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In both cases?’, using general toroidal coordinates (7,6, ) and the axial

gauge (A; = A, = 0), we found that the toroidal flux (i. e. the flux at
constant angle ) is linked with the Ay covariant component of the vector
potential. And in the same way the poloidal flux (i. e. the flux at constant
angle 6, but related to the flux outside the flux surface, see fig.2.4 ¢) is linked
to Ay:

A;Vzt = A(r,0,0) = Yp(r,0) V)21 + pL(r,0) Vi/2m (2.129)
— A(p,C,p) = ¥rlp) V¢ 21 + 4b(p) Vp/2n  (2.130)

We conclude with some dimensional analysis, considering the magnetic

fields B measured in Tesla [T]: the magnetic fluxes have the dimension of
[T 'm?] by definition, and the magnetic potential A must have the dimen-
sional of [T'm] because the circulation of A must be the flux of B (Stokes
theorem).
Let us see that the covariant components of the vector potential have the
dimension of the magnetic fluxes. To do this we must consider the proper-
ties of curvilinear coordinates (see appendix B), where one always consider
the basis vectors not normalized and not dimensionless. In the case of co-
variant components the basis are the gradients of the coordinates, that have
the dimension of [m~!] for adimensional angular coordinates (as § and ¢ in
toroidal coordinates). Using the definition A = A; V', the components A;
related to angular coordinates must have the dimension of [T'm?] in order
to obtain the correct dimension for A: the correct dimension of the fluxes!

2.8 The magnetic field, B=V x A

2.8.1 The canonical representation of B

In the general coordinates z# = (x!, 22, 23),
A = A Va4 A, V2?4 A3V2? (2.131)
B = VA, x V! 4+ VA x Va? + VA3 x Va? (2.132)

with A; = A;(2!, 22, 23).
In the general toroidal coordinates (x!, 22, 23) = (r,0, ), choosing the gauge

27 (eq.(2.117)-(2.118) and (2.127)-(2.128))
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2.8 The magnetic field, B=V x A

(A; = A, =0), one can write the following equivalent equations:

A = AVl 4+ A3Vad (2.133)
= AgVO+ A,V (2.134)
= Yp V)21 + b Ve /2n (2.135)

B = VAy; xVaz? 4+ VA3 x Va? (2.136)
= VAyxVO+VA, xVp (2.137)
= va X v9/2ﬂ' — pr X VQD/QTF (2.138)

where A; = A;(r,0, ) with no symmetry in the system, A; = A;(r,0) with
symmetry in ¢, or A; = A;(p) using Action—Angle coordinates (6 — () and
the function p to label the flux surfaces. This is obviously true also for the
fluxes ¥ p and ¥, remembering the identification between the fluxes and A;.

The form (2.138) of the magnetic field is called the canonical representa-
tion of B, obtained for the poloidal flux ¢p between the magnetic axis and
the surface ¥ (for which Vi, = —Vd}g, using 1, for the poloidal flux across
S;Ol and 1/12 for the poloidal flux across Sgol, see fig.2.4). Note therefore the
minus sign in front of the Hamiltonian v = ¢ p. We call ¥, = 9p.

Using the definition B = V x A we can write also the contravariant?®
components of the magnetic field, using the definition of cross product in
the general coordinates z# = (z!, 22, 23), with the permutation (4,7, k) of

the index (1,2, 3):
_0A; 04

V9B = 5k (2.139)
Following this formula:
VgB' = % - % , (i,7,k) = (1,2,3) (2.140)
VaB? = % - % , (3,5, k) = (2,3,1) (2.141)
VaB® = % — % . (3,5,k) = (3,1,2) (2.142)

For the gauge A; = 0:

L1 04y A,

B = (50 ~ ) (2.143)

B? = \}ggﬁf (2.144)
1 0A

B = _\/§ng12 (2.145)

2 Up index.
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and for general toroidal coordinates (7,6, ¢), (41 = A, = 0):

ro_ L1 0Yr  OYp
B = 2T /g ( Oy 00 ) (2.146)
o _ 1 1 O0Yp
BY — on 75 o (2.147)
1 1 oYp
[ — -
B 3 s or (2.148)

2.8.2 The covariant representation of B

The form (2.138) of the magnetic field is also called covariant representation
of the magnetic field, when the fluxes are labels of the flux surfaces and
therefore Action—Angle are used.

Let us now find some important results of this chapter using just the mag-
netic field B and forgetting about the vector potential A. This is a more
common way to treat the magnetic field line problem, [12].

We say in section 2.5 that the surfaces defined by the constancy of the
Hamiltonian (eq.(2.71) for the time 2?®) are the flux surfaces of the mag-
netic system associated to A. Using the magnetic field instead of the vector
potential, we now prove that necessary condition for the existence of flux
surfaces is the existence of a function p for which

B-Vp=0 . (2.149)

We can call any function that can label the flux surfaces with the symbol p,
and we use it as the radial coordinate®”.

Necessary and sufficient condition (in any system of one degree of freedom)
is still the existence of one ignorable coordinate (the canonical time). Let us
therefore go back to eq.(2.71), but using toroidal coordinates:

H=—A,(r,0) =v(r,0) = const (2.150)
and to eq.(2.128)
Yp(r,0) = —2mwip(r,0) (2.151)

in order to prove eq.(2.149): ¢ plays the role of the time, 1)p = ¢p(r, ) and
we use p = H = ¢p(r,0) = 2m A (r,0). From the relation (2.138) for the
canonical representation of the magnetic field,

B-Vp = (VYrxVO—-ViypxVyp)-Vp= (2.152)
(Vipr x VO —Vp x Vo) - Vp = (2.153)

= VyYrxVO-Vp= (2.154)

= 0 (2.155)

291t is worth noting that in chaotic spaces, where magnetic flux surfaces are destroyed,
relation 2.149 is still valid
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2.8 The magnetic field, B=V x A

where, for the last step, we used the dependence on (r,6) of the fluxes, so

_ OYr Or
Vir = S EVr4 Ve (2.156)
~_ Op op
Vp = 8TV7“+80V9 (2.157)

and, of course, the vanishing triple product between two parallel vectors.

At the end of section 2.6 we say that in the case of flux surfaces it is pos-
sible to look for Action—Angle variables (p, (,¢) on these surfaces (constant
energy surfaces), and that these coincide with straight—field-line coordinates.
In Action—Angle coordinate the canonical representation of the magnetic field
is

B = Vir(p) x V¢/2r — Vibp(p) x Vo /2 (2.158)

where the fluxes ¥p(p) and 1r(p) are the flux functions that measure the
poloidal and toroidal fluxes enclosed by the flux surface ¥(p), respectively,
and ¢ the Hamiltonian. Straight-field-line coordinates can be found also
without the Hamiltonian mechanics theory (e.g. the Action-Angle idea),
but using a geometrical approach: eq. (2.158) is still valid, and is called
the covariant representation of the magnetic field. Let us briefly follow
W.D.D’haeseleer [51] to obtain this form.

The canonical form (2.138) of B written for the generic angular coordinates
(0, ¢) on the flux surfaces p = const,

B = V?ﬁT X VG/Q’JT — V¢p X V(p/Qﬂ' (2.159)

where the fluxes are function of all the coordinates (p, 6, ), can also be
written as

B = Vibr(p) x V0/2r — Vibp(p) x Vip/2m +Vp x Vi(p,0,50) ,(2.160)

where the fluxes are now function of the radial coordinate only, but now a
new function® v(p, 0, p) appears. To go back to a canonical form equivalent
to the Action—Angle one (2.158) we need to perform a change of variables in
order to eliminate v: the change of variables is simple, once the function v
is known. Tt is sufficient to change one of the two angles (6 or ¢, leaving the
other unchanged) following these rules:

00 = 0+— =0+Xr(p0.0) @r=¢ (2.161)
T
or
14
oo = ¢*J=¢+Ap(p,9,¢) 6y =0 (2.162)
P

30Clebsch function, [51]
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where v(p, 0, ) is the periodic part of the function v and ¢ the radial deriva-
tive of the fluxes. The unchanged angle can be considered the one that plays
the role of time.

The new straight-field-line coordinates (p, 0, pr) are equivalent to the Action-
Angle coordinates (p,(, ). Action—-Angle coordinates (where the Hamilto-
nian is a function of the momentum only) or straight—field-line coordinates
(found by (2.161)-(2.162)) are not unique. One can always choose the more
useful ones going to one another with a canonical transformation or following
these rules:

O —0p = 07 +vpGp,0f,05) (2.163)
pr—=or = @5 +1rG(p, 0, 0f) (2.164)

where G is an arbitrary periodic function of the straight angles ¢ and .3

Equations (2.146)-(2.148) for the contravariant components of B can be
found in this approach, where just the magnetic field is considered together
with the magnetic fluxes, using the definition of the contravariant compo-
nents of a vector3?:

B'=B. V' (2.166)

What is missing in this approach, with respect to (2.139), is the equivalence
between the fluxes and the covariant components of the vector potential, and
therefore the intuitive physical interpretation of the Hamiltonian—-magnetic
Systems.

2.8.3 Magnetic field line equations
Equation (2.14)

dx
o B(x) (2.167)

is the definition for magnetic field lines, where X is a parameter that varies
along the magnetic lines. To see that the equations for magnetic field lines

31The function G can be derived from a magnetic differential equation when the Jacobian
of the two straight field line systems are known:

2B VG = — L (2.165)

vor  V9r

32From the canonical form of the magnetic field alone, B = Vi1 x V8 — Vi)p x Vo
it easy to obtain equations (2.146)—(2.148). All the angular derivatives of the fluxes are
suppressed by the dot product in the definition of contravariant components of a field,
B =B Vz', and only the terms (9 /Jr) Vr are of some interest in the expansion of the
gradient of the fluxes. In the toroidal (r, 6, ¢) coordinates, the whole gradient of a flux ¢
is Vb = (9 /0r) Vr + (9 /90) VO + (0¢/0p) V. To conclude one needs to use also the
definition of the Jacobian of the same coordinate system, (1/,/g) = Vr x V6 - V.
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2.8 The magnetic field, B=V x A

are equivalent to the canonical equation of motion, we need first to choose one
of the fluxes as the radial variable. In particular we need to choose the flux
associated to the canonical momentum, in order to write the Hamiltonian
as a function of (p,q,t): in the gauge A; = 0 for ¢t = 2> we know?? that the
canonical momentum is the toroidal flux, so p = ¥r.

In terms of the (¥r,0, ¢) coordinates, the equation of a field line reads3:

dyr df  dyp
‘B> BY By
Therefore df /dp = B?/B¥ and it is easy to prove that this is exactly one
of the canonical equations of motion:
o BY dg O0H

- = . 2.1
dp B¢ A dt  Op (2.173)

(2.172)

The equivalence is immediate remembering®® eq.(2.146)—(2.148) that link the
up components of the magnetic field to the derivative of the fluxes in the
gauge A, = 0, and the canonical identification valid in the same gauge once
the toroidal angle 23 = ¢ has been chosen as the canonical time.
Analogously, for the second canonical equation one needs to prove that:

d P
vr _BY_ dp_ OH
dy B dt 0q
where B” = B - Vyr and BY = B - V. To prove this relation we follow an
alternative way, as an example: to find BY = B - Vy we dot multiply the
canonical equation (2.138) for B with Vy; and to find B” we dot multiply
the same equation with V). The result is:
B-Vyr _ —(Vip x Vo) Viér 0.175)
B-Vp (Vb x VO) - Vi '
In the chosen (97,0, ¢) coordinates, the poloidal flux is ¥p = ¥p (Y1, 0, ¥).
Of its gradient, only the derivative of ¢¥)p with respect to the poloidal angle
0 survives in the triple product of last equation, and this ends the proof with
the identification ¢t = p,q = 0,p = Y7, H = 9p:

dyr _ B-Vyp  O¢p

(2.174)

o " B.ve o0 (2.176)
33In the gauge A; = 0 for t = x>
¢ 0 (2.168)
¢ = 0 (2.169)
p = Ag=1r (2.170)
H = —A,=—p (2.171)

34 Simply making the dot product of eq.(2.167) with the gradients of the coordinates.

35The same equations can be easily derived from the canonical form of the magnetic
field alone, B = Vi1 x VO — Vipp x Vo, using the definition of contravariant components
of a field, B* = B - Vz'.
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2.9 A resumptive example: the helical symmetry

In this example we consider a plasma column with helical shape in a toroidal
fusion device.

Starting from a toroidal system with coordinates (7,60, ), where 6 is the
poloidal angle and ¢ the toroidal one, the helical angle u is defined by

u=60—-nyp (2.177)

where n is the toroidal periodicity of the helix. Having a system with helical
symmetry means that any flux quantity in the plasma depends only on the
coordinate (r,u). We therefore have at least two chances to choose a frame
of reference where the helical symmetry in the torus is manifest: (r,u,6) and
(r,u, ). In the first one the ignorable coordinate that plays the role of time
is the angle 6, whereas in the second one the canonical time is related to the
toroidal angle (36,

Because of the reversal of the toroidal magnetic field at the edge of RFP
devices, the canonical time ¢ in non monotonic, and therefore the more
common choice for RFPs is to choose the poloidal angle 6 as the time. As
we will see in the case of the helical RFP states, the SHAx states, even the
poloidal angle is not a good choice, and we prefer to use the toroidal one in
the work of this thesis®’.

Let us choose the (r, u, ¢) coordinate system to summarize the results of
this chapter in the example of helical symmetry (canonical time related to the
ignorable coordinate ). We first find the identification between magnetic
and canonical variables, using Noether theorem and the choice of the axial
gauge A, = 0 to identify the the Poincaré-Cartan form of the two systems:

Aydrt =y, dz" =pdq — Hdt (2.178)

where A; are the covariant component of the vector potential, * = (r, u, @)
and v, 2" are defined in eq.(2.64). We find Action-Angle variables as in
eq.(2.95)—eq.(2.97). Then, we find the relations between A, (r,u) and the

toroidal flux ¢z (r,u), between Ay (r,u) and the helical flux x(r,u)?®; and

36In a torus a rigorous helical symmetry of magnetic flux surfaces does not exist. This
is due to the toroidal coupling between modes with same toroidal mode number n and
Am £ 1 in the poloidal mode number m: due to the toroidal geometry it is not possible
to have a single (m,n) mode in the plasma, and therefore a it is not possible to find flux
quantities that depend only on its helicity. More details are given in chapter 3-5. But
in the work of this thesis I neglect the contribution of the (m,n) = (0,n),(2,n) to the
dominant one (m,n) = (1,n): SHAx states are modelled as pure single helicity states,
where the helical symmetry is taken as hypothesis, even in a toroidal geometry.

37Other toroidal-like angles without reversal have also been found, that can be used
when the edge region must be taken into account in a more accurate way. See section
4.24

%8 defined at constant helical angle u
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2.9 A resumptive example: the helical symmetry

the same for Action—Angle coordinates: the relations between the Action
A¢(p) and the toroidal flux 17 (p), and between the Hamiltonian A, (p) and
the helical flux x(p). Let us begin.

Given the ignorable coordinate 2% = ¢, one knows that (eq.(2.70))

Ay dat = Ap(ryu) dr + Ay(r,w) du + Ay (r,u) do (2.179)
is the Poincaré—Cartan form with A;(r, u). From Noether theorem (eq.(2.71)):
H = —A,(r,u)=p(r,u) = const (2.180)

states the conservation of the Hamiltonian for time-independent systems,
and (eq.(2.74)-(2.75))

t = ¢ (2.181)
H = —-A,(ru) . (2.182)

Just when one chooses the axial gauge it is possible to make the identification
also with the (p, ¢) canonical variables. Choosing A, = 0, (eq.(2.78)—(2.79)):

qg = u (2.183)
p = Au(ru) (2.184)

The Hamiltonian must be a function of the canonical variables, and not of
the general coordinates (r,u). Once the identification u = ¢ has been found,
one needs to invert at least locally the relation found for p to obtain 7(p, u)
(and therefore H(p,q)). Constant energy surfaces in dynamical systems cor-
respond to the magnetic surfaces, labelled by the Hamiltonian: inverting the
relation (2.182) to write 7(H,u), one can use the Hamiltonian as the first
coordinate to label the magnetic flux surfaces, eq.(2.180).

On conserved flux surfaces® (p = const) one can look for Action-Angle co-
ordinates with a canonical change of coordinates (p,q) — (P,Q) = (I,()
in phase space, which correspond to a change of coordinate in the phys-
ical space of magnetic fields: (p,u, ) — (p,(,¢)*°. Following eq.(2.95)-
eq.(2.97), where equation (2.182) is inverted in order to obtain A, (p,u) and
then the function I(p) is inverted to obtain p(I) and therefore A, (I,u), one
obtains:

10) = 5z oda= 5 § Aulpu)du (2.185)
21 2
q u
Fo(u,I) :/ pdg= | Au(l,u)du (2.186)
40 up
_0F, _ ["0A,

uo

39BEquivalent to bounded constant energy surfaces in phase space.
“OInstead of r we use the label of the magnetic flux surfaces p. As said one can always
make this choice ones the conserved Hamiltonian of the system is known.
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for the Action I, the generating function Fy and the Angle (. The main
property of Action—Angle coordinates is that the Hamiltonian is a function
of the Action I only, H = H(I), which means that the Action is a con-
stant on flux surfaces. The angle (¢ is found using the generating function
F5(q,Q) = Fy(q,I) and evolves linearly in time with a constant frequency
that correspond to the helical rotational transform.

We go back to the physical interpretation of the fluxes associated to the
covariant components of the vector potential for any coordinate system as
found in section 2.7.*'. Here we can say that:

In the general (r,u, ) coordinate system, with ¢ ignorable coordinate, for
the gauge A, = 0:

The component Ay (r,u) is a measure (up to 27) of the toroidal flur across
the surface defined by A, (r,u) = const at the toroidal angle p = const.

The component Ay(r,u) is a measure (up to 2mw) of the helical flux across
the surface defined by Ay (r,u) = const at helical angle u = const:

Yr(ryu) = 2mwAu(r,u) (2.188)
x(ru) = —2mAgy(r,u) = —2rH (2.189)

writing the symbol x for the helical flux. H = — Ay, (r,u) = const are the
flux surfaces, but in general this is not true for A, (r,u) = const. Both the
fluxes are label of the magnetic flux surfaces just in Action—Angle coordinates
(p,C, ). In these coordinates, with ¢ ignorable coordinate, p label of the
flux surfaces, for the gauge A, = 0:

The component A¢(p) = I(p) is a measure (up to 2m) of the toroidal fluz
across the surface defined by Ac(p) = I(p) = const at the toroidal angle
p = const.

The component Ay(p) is a measure (up to 27) of the helical flur across the
surface defined by Ay (p) = const at (straight) helical angle ¢ = const:

vr(p) = 2ml(p) =2mA¢ (2.190)
x(p) = —2mAy(p) = —2mH(p) (2.191)

The Angle ( is still a helical angle, and the Hamiltonian H(p) = H(I) is the
helical flux x trough the flux surfaces, as well as H(r, u).

! From section 2.7.1. In the general coordinates z* = (x',2% %) and for the gauge
Al = O
The component Az is a measure (up to 2mw) of the flur across the surface defined by As =
const at x> = const.
The component As is a measure (up to —27) of the flux across the surface defined by
As = const at * = const.
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Therefore we can write

A(r,u, o) = AuVu+ A,V = Yi(r,u) Vu — x(r,u) Ve (2.192)
Alp,Cp) = AcVC+ A, Ve = 4dr(p) VE—x(p) Ve (2.193)

We write ¢7(p) and 9 (r,u) to emphasize the difference between the two
toroidal fluxes: just the first one is a flux through magnetic flux surfaces. On
the other hand, the helical flux is unchanged due to the (time-independent)
canonical transformation that brings from (r,u,y) to Action-Angle vari-
ables.

The corresponding contravariant representations of the magnetic field is:

B(r,u,) = VA, xVu+ VA, xVp

= Viu(r,u) x Vu— Vx(r,u) x Ve
B(p,(,¢) = VA xV(+VA, xVop

= Vir(p) x V(= Vx(p) x Vo

The contravariant components of the magnetic field can be written following
equations (2.143)-(2.144), or using the definition of contravariant indexes:

B'=B. V'

together with one of the (2.194)-(2.197). As useful example we write ex-
plicitly just the case corresponding to eq.(2.197), Action—Angle coordinates
(p,C, ) and the gauge A, = 0:

B’ = 0 (2.198)
1

Bt = \@g}; (2.199)

pe = LOvr (2.200)

73 o

BP = B-Vp = 0 it is equivalent to (2.149), that defines p as label of magnetic
flux surfaces, and can be prove here in the same way, but with p(r, u).

To conclude we just want to emphasize that frequently we use the same
symbols to indicate different quantities. As one must pay attention to the
meaning of the fluxes in the different frame of reference (in the text we call
them always in the same way, but for example ¥ (r,u,p) # ¥r(p)), the
same is true for example for the Jacobian of the coordinate system, that we
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always call /g, but it is obviously different in different systems:*?

1
— = V2t Va2 xVa? for (z!, 2% 23 2.205
7 ( ) (2.205)

2.10 A short example: the axisymmetric field By

In this short example we consider only the axisymmetric equilibrium mag-
netic field Byg.

The (7,0, ¢) coordinate system introduced in section 3.1.1 are straight field
line coordinates built on the circular flux surfaces of Bg. In this coordinate
system the fluxes depend on the radial coordinate only (as must be in every
Action—Angle coordinate system). Both the poloidal and toroidal angle can
be therefore used as the canonical time:

Bo(r.0,¢) = Vir(r) x V8 — Vip(r) x Vy (2.206)

and the associated canonical variables can be

t = o (2.207)
H = —A,=1vp(r) (2.208)
g = 0 (2.209)
p = Ag=1r(r) (2.210)
t = 0 (2.211)
H = —Ay=dr(r) (2.212)
qg = ¢ (2.213)
p o= Ay =p(r) (2214)

The canonical time 6 is always increasing in the whole plasma volume and it
is linked with a poloidal flux that is monotonic. It is a better choice for the
canonical time in axisymmetric RFP equilibrium compared to the toroidal
angle that changes its sign at the reversal. Due to the reversal of the toroidal
component of the magnetic field, the toroidal flux 17 (r) in a non monotonic

*2Some examples:

% = Vr-V0x Ve for (r,0,¢) (2.201)
= Vr-Vux Vg for (r,u,p) (2.202)
= Vp-V(¢x Ve for (p,(,p) (2.203)
= Vr-VuxVé for (r,u,0) (2.204)
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function. The problem of a non monotonic Hamiltonian related to the time
0 is not really a problem, because one can use any other flux function as
radial coordinate, for example the poloidal flux ¥ p(r).
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Chapter 3

Mode eigenfunction
reconstruction

The goal of this chapter is to underline what one needs in order to apply the
theoretical results of chapter 2 to real data, and which measurements are
necessary. In particular, following the paper of P. Zanca and D. Terranova
[53], we define the toroidal coordinates (7,9, ) that are used to compute
the toroidal and poloidal fluxes from magnetic measurements: going back to
chapter 2 it is easy to see that the toroidal coordinates and the covariant
components of the vector potential A (that are nothing but the fluxes) are
the only quantities that one needs to know. This is true even in helical sym-
metry (section 2.9) where the helical angle u =  —ny and the helical flux x
(2.189) can be written as a composition of the poloidal and toroidal angles
and fluxes.

The starting point in the work of my thesis is the reconstruction of poloidal
and toroidal flux profiles, and their ¢5"" and 17" harmonics. I do not need
to solve eq.(3.36)—(3.37), because this is done by some common routines in
RFX, written by the authors of [53] on the basis of their paper. I can there-
fore read the fluxes and their harmonics from the outputs of these routines.
I refer often to the (7,9, ¢) coordinate system, built on the X(r) flux surfaces
of By, because these are the coordinates on which the fluxes are computed
(as explained in section 3.1.1, appendix B.2.3 and reference [53]).

Let us summarize the content of this chapter more in detail.
Due to the presence of tearing instabilities, which break the axi—-symmetry of
the magnetic field, we can think every quantity A inside the plasma (e.g. the
magnetic field B and the magnetic fluxes) as composed by an axi-symmetric
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part Ag and a perturbation, usually Fourier decomposed as':

A(r,0,0) = Ag(r)+>_a™"(r) e'mf=n%) (3.1)
= Ap(r)+ Z a™ " (r) emI=e) o e e, (3.2)
n'n>10

using the generic toroidal coordinates (r,6,¢) where r is the radius of the
circular—cross—section flux surfaces of the axi-symmetric part of the mag-
netic field, Bg. A complete reconstruction of tearing mode eigenfunctions
inside the whole plasma volume has been done in [53], where the magnetic
perturbation is considered to be much smaller comparing to Bg in order
to use a perturbative approach. The method solves a Newcomb-like equa-
tion, that arises from the force—free force-balance equation at the first order
in the perturbation, in a non—orthogonal and curvilinear coordinate system
that well describes the toroidal geometry of the problem. The solution of
Newcomb’s equation provides the harmonics ¥ and 47" of the perturba-
tion to the poloidal and toroidal flux respectively and we therefore need the
relation that links the magnetic fluxes to the components of the magnetic
field to provide a complete reconstruction of B in the plasma volume.

First the curvilinear straight—field-line coordinates (r,1, ¢) built on the
circular flux surfaces of Bg are introduced. This is done in section 3.1.1,
starting from the canonical representation of Bg (2.206) and following the
method in section 2.8.2.

In par 3.1.2 the whole axisymmetric equilibrium is defined, which means that
we write the equations for the differential shift A(r) of the flux surfaces 3(r)
in toroidal symmetry, and for the fluxes ¢)py and ¥ro through 3(r).

The perturbation to By, that deforms its circular flux surfaces X(r), is intro-
duced in section 3.2. Using the same coordinate system (r, 1, ¢) built for Bg
(now the field lines are not straight any more), one can write the first—order
force—free force—balance equation, together to Ampére’s law. This gives a
system of Newcomb-like equations for each harmonic of the perturbation
to the fluxes, ¢g’" and wéﬁ "™ These are coupled equations, in which each
mode (m,n) is coupled with the (m 4 1,n) mode: we call this toroidal cou-
pling. The equations that must be solved for w?’" and ﬂ);} "™ are ordinary
differential equations (3.36)—(3.37), with boundary condition from magnetic
measurements. We will find that the measure of the radial and toroidal mag-
netic field at the edge are enough to solve the system.

The toroidal coupling acts between modes with same n toroidal mode
number and Am = =£1 on the poloidal mode number, due to the curvilinear

!See appendix C.1 for a discussion on complex Fourier harmonics.
Here and in the following the convention of [53] on the sign of the resonant modes is used.
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metrics.

The (r,v,¢) are curvilinear coordinates, in order to take into account the
toroidicity of the system. This arises from the shift term A(r), not neglected
in the definition of the geometrical coordinates (eq.(3.4)), that defines the
center of the non—concentric circular flux surfaces of Bg. Due to this term
the metric tensor is not diagonal?, and the non-null non-diagonal terms
(gr9 # 0) are what couples the modes with same n mode and Am = +1.
The toroidal coupling can not be therefore seen in the diagonal cylindrical
coordinates®, where the shift A(r) is neglected. Differently to these coordi-
nates, working with curvilinear coordinates in general one must pay attention
to covariant (down) and contravariant (up) vector components (see appendix
B).

We said that the solution of Newcomb’s equation provides the harmonics
" and " of the perturbation to the poloidal and toroidal flux respec-
tively, and we therefore need the relation that links the magnetic fluxes to
the components of the magnetic field. We use the canonical representation

of B in the general toroidal coordinate system (r, 4, )
B = va x Vi — V1/JP X V(p (33)

and the formulas valid for both magnetic (when considering the axi-symmetric
field Bg) or non-magnetic coordinates (in the case of a perturbed magnetic

field). ¥p(r,9,¢) and ¥p(r,¥, ¢) are the poloidal and toroidal fluxes re-

spectively. In chapter 5 one can find the formulas for the covariant and

contravariant components of the magnetic field, that involve the elements of

the metric tensor. In particular one can find the formulas for the components

of B in the case of SHAx states, that are modelled as pure Single Helicity

(SH) states.

In the following sections one can find some details on how the Newcomb—
like equations in toroidal geometry for the harmonics of the fluxes are ob-
tained. But one must read [53] for the solution details.

3.1 Zero—th order equilibrium

3.1.1 The toroidal (r,%,p) coordinate system

Let us consider a zeroth-order axisymmetric toroidal plasma with circular
cross-section, formed in a vacuum chamber with major radius Ry and minor
radius a. The flux surfaces are non-concentric circles, each having radius 7,

2See then definition of the metrics in appendix B.2.
3See then definition of the cylindrical metrics in appendix B.2.1.
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Figure 3.1: Reproduced from [53]. Left: Geometrical co-ordinates. Right:
Relation between the flux ¥ and geometrical 6 poloidal angles at v = a. The
deviation from the bisector (dashed line) is an increasing function of the
radius.

being horizontally shifted by a quantity A(r). The shift of the outermost
flux surface is imposed as boundary condition (in the experiments this is
obtained from external magnetic measurements). A point lying on one of
these flux surfaces is identified by the radius r of the surface, by the poloidal
angle 0 measured with respect to the inboard mid plane, and by the toroidal
angle ¢. These coordinates, which we call geometric coordinates, u!, are
related to the standard cylindrical system (R, ¢, Z) used to describe toroidal
fusion devices by

R = Ry—rcosf+ A(r) (3.4)
Z = rsind. (3.5)

where Ry is the torus major radius. The (r, 6, ¢) coordinate system is curvi-
linear and non-orthogonal, in order to properly take into account the toroidal
geometry. A complete knowledge of the metric tensor is essential (see ap-
pendix B for a brief reminder on curvilinear coordinates). The metric tensor
and the Jacobian of the geometric coordinates are given in appendix B.2.2.

The contravariant representation of the zeroth-order magnetic field asso-
ciated with the geometric coordinate system is

By = Viro(r) x VO — Vpo(r) x Vo + Vr x Vu(r,0) (3.6)

where Y7o and 1 pg are, respectively, the toroidal and poloidal flux divided
by 27. The equilibrium is fully defined once 7 o(r), ¥ po(r), A(r) and v(r, )
are known.

Following the standard procedure for introducing flux coordinates 2.8.2, one
can define a new poloidal angle as

9 =0+ A(r, 0) (3.7)
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3.1 Zero—th order equilibrium

with A(r,0) = v(r,0) /47 o(r). Here and in the following a prime designates
derivative with respect to r of quantities which are functions of 7 only. In the

w' = (1,9, ) system, which we call flux coordinates, the magnetic field lines
are straight and the magnetic field contravariant representation is simply

By = Viiro(r) x Vi — Vppo(r) x V. (3.8)

This provides simple formulas for the contravariant components B¢, given
by

1 1
Br=0 By =—¢! BY = —} 3.9
where /g, is the Jacobian of the flux coordinate system:
VIw = (Vr- Vi x Vo) L. (3.10)

The metric tensor and the Jacobian of the flux coordinates are also given in
appendix B.2.3.

The determination of the parameter A\(r,6) in (3.7) is possible for a large
aspect ratio torus following a perturbative approach, as done first in [53].
Ampeére’s law allows to deduce the current density contravariant components
Ji. From the force balance condition and B} = 0 one gets J§ = 0. Using
this information, and performing an expansion in the small aspect ratio
parameter € = a/ Ry, it is possible to compute the quantity relating 6 and ¢
as

A(r,0) = Ay (r) sin 6 4 Ao (r) sin 20 4 o(€3). (3.11)
where
A(r) = RLO A ho(r) = 4LROA1(T). (3.12)

The inverse of transformation (3.7) is then easily derived as

2

=19 — A\ sindg — <)\2 - )\21) sin 20 + o(€?). (3.13)

Using equation (3.11) the relation between cylindrical (R, p,Z) and flux
coordinates w' can also be found (up to a o(e3b) approximation term):

R = Ry—rcost+ A(r) —rAi(r)sin® 9 + <Zr)\% - 27“)\2) sin? 19 cos 1)
(3.14)
Z = rsind— g)\l(r) sin 20 + @mf - 2m2> sin ) cos? ) — gAi(r) sin®

so R= R(r,?Y) and Z = Z(r,9).
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Mode eigenfunction reconstruction

The Jacobian of the flux coordinate system for a large aspect ratio torus
is (B.2.3):

R2
V9w = m (3.15)
with )
Ry A ro, T 3
Kr)=—(1+ 5+ —A"— —; . 3.16
=3 ( TR Tam™ T ame T (3.16)

3.1.2 Equilibrium quantities: A(r), ¥po and 91

It is possible to show that, for a force-free equilibrium, in flux coordinates
the current density is proportional to the magnetic field through a coefficient
which is a function of r only, that is

,UOJO = (T(’I")Bo. (3.17)

It is convenient to define, for a generic field A, its hatted version as
A = /g A, which hides the Jacobian contribution. The zeroth-order hatted
magnetic field and current density components, function of r only, are then:

BY =vhy  BY=4hy  podd =ovpy  pod{ =0t (3.18)

Given the o(r) profile, which is an input to the algorithm, the zeroth-
order force balance yields the following equations:

d
dr

0 | 9ow po| 99 \ Ao _ e
a3 |:\/% 0 50 \ i By =o(r)By. (3.20)

The second equation contains metric coefficients which are function of r and
9. By using the expansion in harmonics described in appendix B.2.3, it can
be split into two equations, one for Bg and one for A. Furthermore, because
of the nonlinearity given by the fact that the metric coefficients depend on
A, it is convenient to introduce a perturbative expansion:

[K(r)B§] = —o(r)BY (3.19)
0

BY = BY+BY+..., BY=oB’ (3.21)
B = BYf +Bf+..., B = o(?)BY. (3.22)

The resulting equations for the lowest order contribution are

d (Rope) _ _ 2l
o < " Bl> = —o(r)Bj] (3.23)
d T a9 B e
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3.2 First—order contribution to the equilibrium

which can be solved for BY(r) and BY(r). The solution starts from the
magnetic axis, where regularity imposes B? ~ ogRor/2 and Bf ~ r, and
proceeds to the edge. The solutions are then rescaled so as to match a
boundary condition, for example the edge poloidal field.

These solutions are then plugged into the equation for the shift

A dBY /d 1
A+ =142 }/ "1+ = =o. (3.25)
r Bf Ro

which is solved using the boundary conditions A’(0) = 0 and an assigned
value for A(b), b being the radius at which the magnetic measurements
yielding the condition are located.

Having determined the shift A(r), the next order correction to the fields can
be computed by

d [ Ry -~ d [Ry [ A r 2\ - A9

D fopey S0 (2 T A T B = () B

dr(r 2>+dr K <R0+2R0 or2 ) 71 o(r)B;
(3.26)

d [ r - d[r (7 A2 r AN .

— (=BY — = (= +—+-—A—— | BY| = BY

dr <R0 2) T | R <2Rg T T agR, RO) i| =olrB
Again, these equations are solved starting from the axis, where regularity
requires BY ~ 3r/(200Ro) and By ~ [3/(02R3) — Ao/Ro]r, Ag being the
shift of the magnetic axis. In practice this correction turns out to be very
small.

It is worth noting that this method of computing the zeroth-order axisym-
metric equilibrium, if compared to the standard Grad-Shafranov equation,
has the advantage of requiring simply the solution of five ordinary differ-
ential equations. This is obtained at the price of being restricted to deal
with circular flux surfaces, which is however reasonable for present day RFP
devices. While o(r) can in principle be any function, for the application
described in the following the customary parametrization called -0y model

has been used, that is
20 o
g =220 [1 - (5) } . (3.27)
a a
The two free parameters ©g and « are adjusted so as to obtain given values
of the two dimensionless parameters © and F', which are the well known

pinch and reversal parameters used to describe RFP plasmas (see chapter
1.).

3.2 First—order contribution to the equilibrium

The next step is to add a non-axisymmetric perturbation to (3.8). In the
gauge A, = 0, where A, is the covariant radial component of the vector
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Mode eigenfunction reconstruction

potential A, the total magnetic field can be written as
B =Vyr x Vi —-Viyp x Vo (3.28)

where now ¢ and p depend on all three coordinates. The w’ = (r,9, )
coordinates are not any more flux coordinates for the perturbed magnetic
field, which means that magnetic field lines of B are not straight in this
coordinate system, and the potentials ¥ and ¥p are not any more flux
functions (see section 2.7). These potentials, related to the vector potential
covariant components, can be Fourier expanded as

Up(r,9,0) = —Ag(r,0,0) = dpo(r)+ > P (r)e™9)3.29)

n#0,m

Gr(r,0,0) = Ag(r,0,0) = Yro(r)+ Y wp"(r)et™"9A3.30)
n#0,m

The perturbed quantities contain n # 0 terms only, and the harmonics am-
plitudes are complex (see appendix C.1 for a discussion on complex conju-
gation).

Given the representation (3.28) of the magnetic field, the total hatted
contravariant magnetic field components are
~9  Ovp ho  OYT 5 oYy Op

v r_ _ 74
B == Be= S V==~ (3.31)

Computing the total current density components from Ampére’s law and
plugging them into the first-order force balance equation

|
jxBo+Jgxb=—=c*G B+ Jip)\Vuw* =0 3.32
NG (J*By + Job) (3.32)

one obtains the proportionality between perturbed radial current and per-
turbed radial magnetic field

oy = o(r)b" (3.33)
and
0 9 W sy rdo
((919+q8<p) (0" —ab”) +b e =0 (3.34)
0 0 A A ~. do
2oy 0 SpP ra 29
(819 +q8¢) (0j® = ob%) + g7 = 0. (3.35)

By Fourier-transforming equations (3.33) and (3.35) (only two equations
are needed, since for each mode there are two unknown functions w? " and
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3.2 First—order contribution to the equilibrium

Yp") and using Ampére’s law the following equations are found:

" gy \ "0 dyp" o o
() () TRy )

w \ 1,0
cin (L) g g G 1 o

V9w

1,0 m+1,n m—1,n
w 3 d i d i
o (G )R T e T (3.36)
N dr dr

d d¢m,n d¢m,n gw 0,0 nwm,n _ mwm,n do
| K T P o rr m,n. m,ny T P "
( =4 ) T (\/gTu e m-ng  dr

1,0
gﬂ ) ’ m-+1,n m—1,n m~+1,n m—1,n
-n nYy O +npy T —(m+ 1Yy T = (m = 1)y
<M97u [nrp T ( J¥p ( Jop ]

) g;uﬁ 1,0 dw?—i—l,n dw?—l,n B
—in | —2= — =0 (3.37)
/9w dr dr

In appendix B.2.3 one can find the metric tensor element combinations
that appear in these equations.

The method used for the solution of these equations is described in de-
tail in ref. [53]. The solution requires the knowledge of the corresponding
harmonic amplitude for the radial component of the magnetic field at some
surface outside the plasma, which represents the boundary condition. Fur-
thermore, if the mode has a resonant surface inside the plasma, a discontinu-
ity in the eigenfunction derivative should be allowed. The magnitude of this
discontinuity is obtained by imposing a further boundary condition, that is
the amplitude of the toroidal magnetic field component at the same surface
where the radial one is determined (that is the surface where the sensors are
located).
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Mode eigenfunction reconstruction
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Chapter 4

Helical coordinates in toroidal
systems

The goal in this chapter is to find good coordinate systems to describe SHAx
states, modelled as pure SH states', beginning from the reconstruction of
the magnetic flux surfaces, using the magnetic flux eigenfunctions inside the
plasma volume introduced in the previous chapter.

Figure 4.1: Escher, 1953

Let us introduce the problem.
In the perturbative approach to the magnetic field B, introduced in the pre-
vious chapter, it is easy to find magnetic flux surfaces for the axi—-symmetric
part Bg, and the function that can label them is the radius r of their circular
cross-section?. Adding a generic perturbation, the circular flux surfaces that
characterize Bg are deformed, and it is not clear a priori if other flux surfaces
exist and which can be the function p to label them3: this is the general case

!Single Helicity states, where only the dominant mode of the SHAx states is considered.
2This is the equilibrium described in the introduction, for which B - Vr = 0.
8By definition flux surfaces exist if (necessary condition) there exist a function p for
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Helical coordinates in toroidal systems

of Multiple Helicity (MH) states, where no evidence of symmetries in the
system is present. Considering instead SH states the perturbation has heli-
cal symmetry, which means that the fluxes ¥p and ¥ (and all the surface
functions in the plasma) are functions only of the radius r and of the helical
angle defined as u = my — ny *:

Y(r,u) = ho(r) + ™" (r) e + c.c. (4.1)

This arises from (3.2) neglecting the sum over secondary modes (and con-
sidering the dominant mode with fixed (m,n), which is the (1,7) mode in
RFX-mod). In this case it has been shown (eq.(2.198) section 2.9) that
flux surfaces exist (p(r,u) = const), and one can also look for Action-Angle
coordinates on them, that correspond to straight—field-line coordinates. A
good flux function is the helical flux (the Hamiltonian of the system), that
will be called with the symbol x from now on. The formal definition of x
will be given in section 4.1, and looking at its contour plot in fig.4.3 one
can deduce that coordinate systems built on the circular—cross-section flux
surfaces of Bg are not appropriate to describe helical flux surfaces. This is
true especially in the inner bean—shaped surfaces which does not contain the
magnetic axis of the axisymmetric equilibrium, due to the fact that one can
identify two points that have the same value of the poloidal angle 9.

All the coordinate systems defined until now in RFX are based on the
circular—cross-section flux surfaces of the axisymmetric equilibrium. Mod-
elling SHAx states as pure SH states, the goal is to find coordinates based on
the helical geometry, where the helical flux is used as the radial coordinate.
The fundamental request for helical coordinates is then a non—orthogonal
and curvilinear metric tensor, with angles defined with respect to the helical
axis (Vp = 0), in order to well describe both the toroidal geometry of the
problem and the new helical axis of the system. In section 4.2.1 an angle
[ with these features is defined using a geometrical approach, in sections
4.2.2-4.2.4 helical coordinates are found using the Hamiltonian form of the
magnetic field and its properties defined in particular in section 2.9. This
allows to find not just helical coordinates, but also to take advantage of the
properties of helical magnetic coordinates looking for Action—Angle coordi-
nates.

The practical outcome of this thesis is the code named SHEq (Single
Helical Equilibria). It uses the helical coordinate systems, which in this

which B - Vp = 0 and are therefore defined by p = const. As said in chapter 2 this is
the case only if a symmetry is manifest in the system, and p can be identified with the
Hamiltonian H (due to Noether theorem) or any function f(H). In section 2.8.2 we have
already noticed that in chaotic spaces, where magnetic field line are destroyed, the relation
p = const is still valid. We refer here to conserved magnetic flux surfaces.

44 in the formula stays therefore for ¥p, 17 or any flux function. See appendix C.1
for a discussion on the complex conjugated.
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chapter® are defined in a mathematical way, in order to compute all the heli-
cal equilibrium plasma quantities. More than one helical-toroidal coordinate
system are defined in this chapter, and all the metric tensor elements and
the Jacobian of every coordinate system are usable in SHEq (metric tensor
elements and Jacobians can be found in the detailed calculations of chapter
9).

Each plot in the following is computed by the SHEq—code. The abscissa pp,
used in the plots is the square root of the normalized helical flux:

ph = _X T Xmin__ ’ (4.2)
Xmazx — Xmin

Xmin being the value of the helical flux on the helical axis and Ymqz its value

at the edge. Being a function of y only, py is a label for helical flux surfaces

that ranges between 0 on the helical axis and 1.

Bean—shaped surfaces which do not contain the magnetic axis of the axisym-

metric equilibrium are called internal flux surfaces, the external flux surfaces

are instead the surfaces which contain both the axisymmetric and the helical

axis.

The main results of this chapter have been published in B. Momo et. al

Plasma Phys. Control. Fus (2011) [1] and in E. Martines, R. Lorenzini, B.
Momo et al. Plasma Phys. Control. Fus (2011) [2].
Some work has been performed by the RFX-mod team, to demonstrate that
the helical flux here defined is a good flux function also from the experimental
point of view. In particular, this work is presented in [54] (Nature, 2009).
Here we just cite one of the tests of the helical equilibrium reconstruction,
performed by considering an electron temperature (7¢) profile measured by
a Thomson scattering system®. Due to the asymmetry of the helical flux
with respect to the vacuum chamber, kinetic plasma quantities during SHAx
states exhibit non symmetric profiles if plotted against the radius of the
vaccum chamber 7. This can be seen in fig.4.2(a) for T, where the two
colors mark points that are on the two sides of the (helical) magnetic axis.
The same function plotted as a function of the normalized helical flux py, is
shown in fig.4.2(b): it is immediately clear how the two half profiles collapse
one onto the other. This is a proof that the helical flux evaluated with
theoretical methods is indeed a flux function, in the hypothesis that the T,
profile is due to very fast parallel thermal transport and almost flat density
profiles. Fig.4.2(c) is the reconstruction of the electron temperature map on
the poloidal plane.

SFurther details of the helical metrics can be found also in the detailed calculations of
chapter 9.

ST, profiles measured along a horizontal diameter of the chamber by a 84-point Thom-
son scattering system, [55].
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Figure 4.2: Reproduced from [2|. (a): Electron temperature profile from
Thomson scattering data measured along a horizontal diameter, plotted as
a function of the radius r of the vacuum chamber. The two colors mark
the points that are on the two sides of the magnetic axis. The two contin-
uous curve are the normalized helical flux p on the diameter. (b): Electron
temperature profile, plotted as a function of the normalized helical flux p.
(c): Temperature map on the poloidal plane. Data refer to shot 24599 at
t = 99ms.

Let us remind the basic approximations used in this work: of considering
SHAx states as pure SH states neglecting the contribution of the residual
secondary modes; of the perturbative approach to reconstruct the harmonics
of the perturbation, also for the dominant mode”, solving a Newcomb-like
equation in force free condition; and of assuming a o — Oy model [56, 57| to
fit experimental data for the zeroth—order parallel current density.

4.1 The radial coordinate y

SHAx states are modelled as pure SH states, composed of the superposi-
tion of the zero—th order axisymmetric equilibrium and the dominant mode
eigenfunction, that in RFX-mod is the (m,n) = (1,7). Any flux function
has therefore helical symmetry during SHAx states, and one can go back to
the helical example in section 2.9 to use Hamiltonian mechanics tools. We
look in this section for the Hamiltonian of the system that is always a good
radial coordinate and that can be used as label for flux surfaces.

In section 2.9 it has been found that

for the Hamiltonian x(r,u) (or any function of x only) and u = m¥ —ne: u
is the helical angle and x is called helical flux. Its definition in terms of the

"We are confident on this approximation because the dominant mode is not more than
some percent of the equilibrium part... even if this changes the topology so much!

82



4.1 The radial coordinate y

poloidal and toroidal fluxes is

X =myp —npr . (4.4)

The poloidal and toroidal fluxes in SH can be written as (4.1)
Yp(r,u) = Ypo(r) + R (r) e + c.c. (4.5)
Yr(r,u) = po(r) + 7" (r) e + c.c. (4.6)

and therefore

X = myp—nir (4.7)
= [mYpo — nrl(r) + [myp "™ — np ™| (r) et tee  (4.8)
= xo(r) + X™"(r) € + c.c. (4.9)
= Xo(r) +2[x™"|(r) cos(u+ ¢y) (4.10)

with the same helical symmetry of any other flux function. Both the axisym-
metric equilibrium part and its perturbation due to the single (m,n) = (1,7)
mode of the fluxes are computed as described in the preceding chapter. The
amplitude |x""|(r) and phase ¢, (r) are defined in section 9.1 in terms of
amplitude and phase of the poloidal and toroidal fluxes.

The helical flux is constant on the resulting flux surfaces of SHAx states,
and a contour plot of x is shown in fig.4.3. It can be seen that only the inner

SHEq - 23977 t=173 ms

[m]

04 02 00 02 04
[m]

Figure 4.3: Contour plot of the helical flux y.

surfaces are significantly distorted due to the inner resonant (m =1/n =7)
mode, and assume a bean—like shape. The outer ones retains a quasi—circular
shape, with a shift due to perturbations.

In this section the helical flux (7, u) has been defined using the pertur-
bative approach and choosing the SH due to the (m,n) = (1,7) mode. As
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Helical coordinates in toroidal systems

said in section 2.9, the Hamiltonian does not change changing the angle co-
ordinates if it is unchanged the periodicity (m,n) = (1,7) of the system. In
fact x(r,u) = x(I) if I is the Action of the system. This allows to compute
the radial coordinate x (that labels the helical flux surfaces) using the com-

position of two fluxes which are not flux functions for helical symmetries®.

4.2 The angle coordinates

The radial variable is a label of the magnetic flux surfaces, and one can use
the helical flux x. Let us go back to the fundamental requests for the angular
part of helical coordinates: a non—orthogonal and curvilinear metric tensor,
with angles defined with respect to the helical axis (Vyx = 0).

There are two ways to define the angular part of helical coordinate systems:
the geometrical way described in section 4.2.1, or following the Hamiltonian
theory of magnetic field lines, as described in section 4.2.2-4.2.4. The Hamil-
tonian way uses the helical symmetry of the system, which means that any
plasma quantity depends on the r,u coordinates only, with u = mv — ne.
Due to the fact that plasma quantities do not depend explicitly on the angles
¥ or ¢, one can choose two frames of reference where the helical symmetry
is manifest, choosing either the poloidal or toroidal angle as ignorable coor-
dinate (that corresponds to the canonical time of the magnetic-Hamiltonian
system). In this chapter both options are described, for the (x,u, ) and
(x,u,?) frame of reference’. However both choices are not good in RFP
machines. The toroidal angle is not a good time because of its change in
sign in correspondence of the reversal of the toroidal component of the mag-
netic field at the edge. Usually indeed the RFP community works with the
poloidal angle as the canonical time, but in section 4.4 we prove that it is not
a good choice during SHAx states. That’s why in section 4.2.4 we introduce
also the toroidal-like angle v that do not reverse, to be used as the canoni-
cal time. This a good choice especially to study the edge, but the physical
meaning of the fluxes related with this strange angle it is not so clear any
more.

The SHE(q code can always choose between all these helical coordinates, with
respect to the problem that must be solved.

All the metric tensor elements and the Jacobian of the coordinate systems
have been calculated and can be found in the detailed calculation in section
9.2.

We refer to section 2.9 in all the result and calculations of the next sec-
tions.

8In other words, equation (4.4) can be used both with ¥ p7(r,u) and ¥pr(p).

“Inverting the relation x = x(r,u) the helical flux is used instead of r as first coordinate.
This is what we always do in chapter 2 for the Hamiltonian of the system, chosen as radial
coordinate of the system.
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4.2 The angle coordinates

4.2.1 The geometrical angle 3

We describe here the first new coordinate system that has been defined to
well describe the helical equilibrium in SHAx states, using the helical flux y
as the ‘radial’ coordinate. Keeping ¢ as toroidal angle, a new poloidal-like
angle (3, which rotates around the helical axis (Vx = 0), must be defined.
The coordinate system (x, 3, ) is not a straight—field-line system, but it is
easy defined in a geometrical way.

Fr
z

% st

Z,

=

—1  helical axis

R R, "R

Figure 4.4: The geometrical approach to define the poloidal-like angle g
on helical flux surfaces (y = const) and with respect to the helical axis
(Vx =0).

The definition of (3, with respect to the cylindrical coordinates (R, ¢, Z),
is

-1 Z - Za(SO)

G = tan R~ Ru(y)

(4.11)
where R,(¢) and Z,(¢) represent the cylindrical coordinates of the helical
magnetic axis. Due to the dependence on the toroidal angle of the heli-

cal magnetic axis coordinates, also # depends on ¢: 3 = (R, p,Z). The
definition (4.11) can be easily derived from fig.4.4:

peos = (R— R,)
{ psin = (Z — Z,) (4.12)
)
_ Z — Za(@)
tan 8 = R Ralp) (4.13)
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We refer to section 9.2 for the derivation of the metric tensor and of the
Jacobian of the new (x, 3, ¢) coordinate system. Here we just mention that
the metrics can be derived in a relatively easy way in terms of the metrics of
the zero—th order flux coordinates (r, ¥, ¢) defined in chapter 3 and appendix
B.2.3, using their relation with the cylindrical coordinates, equations (3.14).

4.2.2 The Hamiltonian time ¢: (x,u, ) and (x, up, ¢)

Using the helical flux as radial coordinate, we start from the coordinate sys-
tem (x,u, ¢) that emphasizes the helical symmetry with respect to v on the
flux surfaces x = const. The presence of an ignorable coordinate allows to
look for Action—Angle coordinates on the flux surface labelled by y, follow-
ing the resumptive example in section 2.9 and reaching the straight—field-line
system (x, up, ¢) where uy, is the (new) Angle. The helical angle u = mi—n¢
is not defined with respect to the helical axis (the poloidal angle 9 is not
as well, being defined with respect to the axisymmetric axis of the system),
whereas the Angle uj, (conjugated to the Action) is: by definition it increases
by 27 over one turn around any helical flux surfaces, even the internal ones
that do not enclose the axisymmetric axis, as seen in (2.90). That’s why we
am looking for A-A coordinates in this section, beginning from (x, u, ©)°.

Action-Angle coordinates are defined in section 2.6, and one needs the
identification between canonical variables and magnetic quantities to apply
formulas (2.95)—(2.97) for the Action, the generating function!! and the An-
gle respectively. Due to the symmetry of the problem, the identifications are
the ones of eq.(2.181)-(2.184) for the A; = 0 axial gauge

= ¢
— Ay(r,u) = x(r,u) = const

u

= Ay (T7 u) = wT(Ta u)

"U»Qmw
I

and we need to apply eq.(2.185)—(2.187), as already found in section 2.9.

10Taking a back step, to define the toroidal helical systems one starts from the toroidal
coordinate system (r,9, ) and defines the helical angle v = m®¥ — ny to change frame of
reference to (7,u, ). In this coordinate system, remembering (4.1), the helical symmetry
is manifest due to the ignorable coordinate ¢ that plays the role of the canonical time,
and x = x(r,u) as all the flux plasma quantities. Inverting this relation, one can use any
flux function as radial coordinate instead of 7.
In A-A coordinates, x = x(I) if I is the Action: because x(r,u) in (x,u, ¢) coordinates,
one knows that this is not already an Action—Angle coordinate system.

"' The generating function of the canonical transformation to Action-Angle coordinates.
For the canonical transformation (p,q) — (P, Q), F>» = F2(q, P).
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4.2 The angle coordinates

We can find the identification with canonical variables also beginning
from the canonical representation of the magnetic field B valid for any
divergence-free field in a toroidal device, introduced in eq.(2.138) for generic
(r,9, p) toroidal coordinates. From this, equation (2.195)

B(r,u,p) = Vipr(r,u) x Vu — Vx(r,u) x Ve (4.18)

can be derived simply substituting the poloidal angle 9 and the poloidal flux
Yp(r,u) with the helical angle u = ¥ — ny and the helical flux x(r,u) =
wp — nip respectively. Using the identification of the magnetic fluxes to
canonical variables (through the covariant components of the vector poten-
tial) as a mnemonic rule, one immediately knows that: ¢ plays the role of
the time, ¥7(r,u) of the momentum conjugated to the helical angle u, and
X(r,u) the role of the Hamiltonian of the system.

In any case we go back to eq.(2.185)—(2.187), but using here a different
notation: p = x(r,u) for the radial variable, I(p) — ¥ (x) for the Action
and ((I,u) — up(x,u) for the Angle.

Because 97 (r,u) and x(r,u), these functions may be locally inverted to yield
the Hamiltonian as a function of the toroidal flux x = x (¢, u) or, vice versa,
1 = Yr(x,u). The action is nothing but the curvilinear integral of the flux

Yr(x,u):

]‘ / /
600 = 2§ drlxu)du (4.19)

where () is the magnetic surface labelled by the helical flux x. Inverting
the relation v, () in the function x(v), the flux ¢ (x,u) can be written
as a function of (¢p,u), useful to provide the angle w; conjugate to the
Action through the definition of the generating function Fy(tp,u). For the
canonical transformation from (p,q) = (¢, u) to (I,{) = (Yn, up):

Fo(fn, ) = / r ) d + F () (4.20)
up(u, I) = gf;i _ [ gzi:}i(@/)h,u') du/ (4.21)

where f(1) is an arbitrary function of the Action that can be set to zero,
fixing the origin of the Angle uj on the origin of the helical angle wu.
Keeping fixed the canonical time and therefore the toroidal angle, and choos-
ing the helical flux x(v,) as the radial coordinate, we end with the heli-
cal straight-field-line coordinates (x,up, ). In this coordinate system the
canonical form of B can be written as:

B = Vii(x) x Vup, — Vx x Vo (4.22)
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Figure 4.5: The toroidal flux ¢p(x).

with B = B(x, up, ).

Let us see the main features of the new variables. As it must be, the
Action vy, (x) turns out to be the toroidal flux in Action—Angle coordinates.
The proof can be done in the same way as done in section 2.7. What we want
to emphasize is that the toroidal flux associated to the toroidal component
of the magnetic field and to the toroidal angle ¢ in non monotonic, due to
the reversal of the configuration at the edge. This can be seen in fig.4.5 for
Yn.

The Angle uy, increases by 27 over one turn around any magnetic flux surface
E(x):

_ W (') 1
Aup, = ?{z(x) D0 du’ = (4.23)
0 / r
= 9 %E(x) Yr(Yp,u') du’ = (4.24)
_0@2mYy)
= o= (4.25)

and this confirms that it is a good angle defined with respect to the helical
axis.

In (4.20) the function f(v) has been set to zero, fixing the origin of the
Angle uy, on the origin of the helical angle u. This means that, like u, also
uy, does not have its zero always on the horizontal plane, but it turns around
with the toroidal angle . The example at ¥ = 0, where u = —n¢, for some
value of the toroidal angle can be found in fig.4.11. We will find this of some
interest later.
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4.2 The angle coordinates

Till here we went trough the mathematical expressions to be used. From
an operative point of view!? we just need to begin with eq.(4.5)—(4.6) to
compute the helical flux (as in eq.(9.2)) and the toroidal flux ¢ (r,u). In-
tegrals and derivatives of the fluxes are computed numerically, but further
analytic calculation used to simplify numerical computation can be found in
section 9.1.

To conclude, let us note that in the cylindrical limit, where the helical
deformation vanishes, ¥, = ¥ and up = u.

4.2.3 The Hamiltonian time 9J: (y,u,?) and (x, ugn, )

The toroidal flux 1 (x) defined in the previous section is a flux function (it
is constant on flux surfaces), but it is not a good radial variable because it
is not monotonic (as said, due to the reversal of the toroidal magnetic field
in RFP machines). That’s why usually the RFP community chooses the
poloidal angle ¥ as the canonical time. We analyze this choice for the heli-
cal symmetry of SHAx states, ending up with an Action—Angle coordinate
system that defines a poloidal flux 1py (conjugated to the Angle uygy). But,
being related to the poloidal angle 19, that is not defined with respect to the
helical axis, we will see that it is not a good poloidal flux during SHAx states.
And that is why even this choice of the canonical time 1 is not always good
in RFPs!3.

In helical coordinates the choice of ¢ as canonical time brings to the (x,u, )
coordinate system. From the Hamiltonian point of view this is a problem
similar to the one where the ignorable coordinate was the toroidal angle ¢:
the canonical time is now the poloidal angle ¥ but one can prove that it
is an always increasing time along a field line, even in the internal bean—
shaped flux surfaces'. From the physical point of view the poloidal flux

'2SHEq’s implementation

13 As it is for the axisymmetric equilibrium.

M¥or instance, for orbits close to the helical axis, one could think that ¥ is not evolving
monotonically, which would disqualify it to be used as a time. In the internal bean—shaped
flux surfaces one can demonstrate that the time 1) flows always in the same direction while
evolves the time ¢:

dv

— >0

de
always inside the bean-shaped flux surfaces. Going back to the definition of the rotational
transform as the frequency in Action—Angle context, one can write:

dd du
av- au 4.2
i n+ iy (4.26)
du dup du
_ — Pkl 4.2
n dupn, do ntin dup, (4.27)

using the definition ¥ = u + ny and remembering that we are moving on constant flux
surfaces (x = const). v, is introduced in section 2.6.1, and is exactly the frequency on
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does not reverse, and we do not crash with the problem of non monotonic
fluxes (fig.4.6). In this section we look for Action—Angle coordinates begin-
ning from the (y, u, ) coordinate system, ending with the straight—field-line
coordinates (, ugp,?), in exactly the same way as done for (x,up, ).

The canonical identification of the magnetic variables is already found,
in the gauge A; = 0, for general (z!, 22, 2%) coordinates with x3 as ignorable
coordinate, in eq.(2.91)-(2.94). It is worth noting that in the example of
this section (and differently from the previous examples) the third ignorable
coordinate is 2% = 1J. Therefore:

t =0 (4.28)
qg = u (4.29)
p = Au(r,u) =¢p(r,u) (4.30)
H = —Ay(r,u) = x(r,u) = const (4.31)

We apply formulas (2.95)-(2.97) for the Action, the generating function and
the Angle respectively, as done for the canonical time ¢, but with the new
canonical identifications. Because ¢ p(r,u) and x(r,u), these functions may
be locally inverted to yield the Hamiltonian as a function of the poloidal flux
X = x(¢¥p,u) or, vice versa, ¥p = ¥p(x,u). The Action ¥py is nothing but
the curvilinear integral of the flux ¢)p(x,w): inverting the relation 1 pa(x)
in the function x(ip2), the flux ¥p(x,u) can be written as a function of
(¥pa,u), useful to provide the angle uyg, conjugate to the Action through
the definition of the generating function F»(¢pa, u)'®. The result is:

Wpa(x) = % 3 )wp(x,u/) ! (4.32)
X

Fy(tbpa, ) = / C (b, ) del + f(tpa) (4.33)

ugp(u, I) = OF, _ [" ovp (Ypa,u’) du’ (4.34)

Mpy  Juy 0o

where 3(x) is the magnetic surface labelled by the helical flux x and f(¢'p2)
is set to zero, fixing the origin of the Angle uyy on the origin of the helical
angle u. As wuy in fig.4.11, uygp turns its zero value turning around in the
toroidal angle ¢.

the x = const orbits in the A—A system (x,un,®): going back to the definition (2.88)
one need to remember that ¢ = ¢ is the time and ¢ = u;, the Angle. On the helical axis
du/duy, = 0 and drifting away du/duy, — 1. The rotational transform ¢j, decreases drifting
away from the helical axis, but not so quickly to change the sign of n, equal to dd/dy on
the helical axis. Therefore % > 0 and this ends the proof.

5For the canonical transformation (p, q) — (P, Q), F» = Fx(q, P).
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4.2 The angle coordinates

The canonical representation of the magnetic field associated to (x,u, )
is

B(r,u,v) = (Vip(r,u) x Vu — Vx(r,u) x VI)/n (4.35)

with n toroidal mode number and m = 1. This form can be derived from the
general one in eq.(2.138) simply substituting the toroidal angle ¢ and the
toroidal flux 17 (r,u) with the helical angle u = 9 — ny and the helical flux
x(r,u) = ¥p—nip respectively. In Action—Angle coordinates (x, ugp, ) the
correspondent representation can be written as

B(X; won, 9) = (Vibpa(x) x Vugp, — Vx x VI)/n (4.36)

Let us see the main features of the new variables.

As it must be, the Angle uyy, increases by 2w over one turn around any mag-
netic surfaces X(y), and this introduces a good angle defined with respect
to the helical axis, as discussed for the Angle wuj, in the previous section.

The Action ¥pa(x) turns out to be a poloidal flux in Action—-Angle coor-
dinates. It is the poloidal flux related to the old poloidal angle, ¢, that is
defined with respect to the axisymmetric axis of the system and not with
respect to the helical axis (the time 9 does not change in the canonical trans-
formation to Action—Angle coordinates). In a more formal way, one can un-
derstand this proving that the flux ¥ps() is indeed the flux at ¥ = const'6:

1

Ypa(x) = o 1/)p(7“ u') du’ (4.37)

_ //E(X dr du /‘W’P(T v) (4.38)

= — / / dr du' \/g B’ (4.39)
2m JJs)

= 1// drdu’ \/gB -V (4.40)
2m JJs

1
= = / o B - dX(0) (4.41)

The last equation is the definition of the poloidal flux, and in the previous
steps one simply needs to remember the definition X(9) = |/gVddrdu of the
constant— surfaces in the (r,u, ) coordinate system, and eq.(2.145)
1 04,
BY = (4.42)
\f or
where z! =7, 23 = and Ay = A, = ¢¥p(r,u) from eq.(4.30).
In fig.4.8(a) we draw the physical flux 1p2(x) associated to ¥, and one can

6 As it must be, being the Action of the (x,ugn, ) coordinate system.
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Helical coordinates in toroidal systems

compare it to the poloidal flux defined with respect to the magnetic axis in
fig.4.8(b) and in fig.2.2.

Further discussion on this can be found in section 4.4. And the difference
with another poloidal flux there introduced is the reason because we use the
symbol 2 to mark the poloidal flux in this section.

peip2

e
>

=
o
T T T [T T T [T T T [T T [T T T [T T T

Figure 4.6: The poloidal flux ¥ pa2(x).

Again, as in section 4.2.2, from an operative point of view!” we just need

to begin with eq.(4.5)-(4.6) to compute the helical flux (as in eq.(9.2)) and
the poloidal flux ©p(r,u) in order to be able to compute all the mathemati-
cal expressions above.

4.2.4 The Hamiltonian time v: (x,u,v) and (x, u,,v)

In sections 4.2.2 we show that in RFP machines the choice of the toroidal
angle ¢ as the canonical time is not always good because of the reversal of
the toroidal magnetic field at the edge, that can be seen also as the change
in sign of the toroidal angle, and therefore of the time. And in section 4.2.3
we tell in advance!® that during SHAx states also the choice of the poloidal
angle ¢ as canonical time is not good enough: the poloidal angle ¥ is defined
with respect to the cylindrical magnetic axis, hence it does not satisfy our
fundamental request of angles defined with respect to the helical axis. The
non monotonic toroidal flux 1, () and the poloidal flux ¥ps(x) are in figg.
4.5-4.6.

In this section, we look for a different choice for the canonical time: using a

"SHEq’s implementation
'®Exhaustive analysis in section 4.4
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4.2 The angle coordinates

linear combination of the poloidal and toroidal angles, we define a toroidal—
like angle v that can be thought as defined on the helical axis and that do
not reverse. The corresponding flux 7 is defined with the analogously lin-
ear combination of the poloidal and toroidal fluxes, ¥p(r,u) and ¥p(r, u).
There are infinite possible choices for v angles, every one with the limitation
of being linked with a flux n that is not of easy physical interpretation.

As in the previous sections, we look for Action—Angle coordinates for the
system (x,u,v), reaching the straight—field-line system (x,u,,v) where the
Angle u,, and the conjugated Action 7, are defined with respect to the helical
axis. In A—A coordinates the 7, (x) fluxes are monotonic and defined with
respect to the helical axis. This can help for example for the study the RFP
edge.

We have already defined the helical angle u = mvY — ny as a linear
combination of the poloidal and toroidal angles, and the helical flux x =
myp — nyr as the same linear combination of the poloidal and toroidal
fluxes. In the same way we can define an angle v and a magnetic flux 7 with
a general linear combination of the poloidal and toroidal angles and fluxes:

v = ad+bnyp (4.43)
n = a¥p+bnyr (4.44)
with a and b general parameters and n the toroidal mode number, m =1

the poloidal mode number!®. In helical symmetry the fluxes are written in
eq.(4.5)—(4.6) and

n(r,u) = avp(r,u)+bnp(r,u) (4.45)
= [avpo+bnirol(r) + [avp™ + bnyr"|(r) e™ + c.d4.46)
= no(r) +n™"(r) e 4 c.c. (4.47)

Substituting in eq.(2.138) the functions v p, 7,9, ¢ with the functions
X, N, u, v, another equivalent form of B is obtained:

1

With the condition

1

ety ! (4.49)

one can recognize the usual canonical form of the magnetic field, written for
(x,u,v) coordinates, and can therefore look for Action—Angle coordinates
on the xy = const flux surfaces in a similar way as done in all the previous

90ne can remember that we are dealing with a SH states in the m = 1 spectrum during
SHAXx states in RFX-mod.
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sections, once the canonical variables are identified. An infinite number of
combinations can solve the constraint (4.49), even remembering that we are
dealing with n fixed and equal to 7 in RFX-mod SHAx states. For instance
in section 4.2.2 we used the choice a = 0,b = 1/n, and equation (4.35) in
section 4.2.3 is linked to the choice of a = 1/n,b = 0. In this section we
am going to analyze the choice a = 1/2n,b = 1/2n, that correspond to the
definitions

1 1
1 1
n(r,u) = %Qpp(r, u) + 51/@(7", w) (4.51)

In (x,u,v) coordinates, where v = 23 is the ignorable coordinate, by defini-
tion, from (4.48)—(4.49) and using the relations between fluxes and covariant
components of the vector potential:

B = Vn(r,u) x Vu—Vx(r,u) x Vv (4.52)
= VAu(r,u) x Vu+ VA,(r,u) x Vv (4.53)
= VAy(z!,2?) x Vu+ VAs(z!, 2?) x Vo (4.54)

Using this equivalence it is easy to use the canonical identification of the
magnetic variables found in eq.(2.91)-(2.94) for general (z!,22,2?) coordi-
nates with 23 as ignorable coordinate and the gauge A; = 0:

t = v (4.55)
qg = u (4.56)
p = Au(r,u) =n(r,u) (4.57)
H = —A,(r,u)=x(r,u) (4.58)

It is now possible to compute Action—Angle variables, applying formulas
(2.95)-(2.97) for the Action 7y, the generating function F5 and the Angle u,
respectively, taking for granted the necessary function inversions. One just
need to pay attention to the right canonical identifications:

1

m(x) = 5 [ n0u)du = (4.59)
1 1

= 30 ¢T(X,U)du+2ﬂ/¢p(x,u)du (4.60)

Fo(np,u) = /On(nh,u)du (4.61)
_ 08 " On(nn,u)

Uy = 877;1_/0 an du (4.62)

In the definition (4.60) of the Action 7, (x), the first integral is exactly the
toroidal flux 1 across X(x) found in (4.19) and the second integral the
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4.3 Change of radial coordinates

Ypa(x) flux in eq.(4.32) (that is the poloidal flux defined with respect to the
cylindrical axis).

The Action is a function of the Hamiltonian only, as it must be, and we
end up with a new helical Action-Angle coordinate system: (x,u,,v). The
contravariant representation of the magnetic field in these coordinates is

B(x, uy,v) = Vir(x) x Vu, — Vx x Vv (4.63)
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Figure 4.7: The flux 7).

As said, the toroidal flux ¥y (x) is not a monotonic function. We choose
a different toroidal-like angle, the angle v, that does not change its sign at
the reversal surface: in fig.4.7 we can indeed see that the n,(x) flux, linked
to the angle v, is monotonic. But, how can we easily describe the v = const
surface, linked to the 7n,(x) flux (that is by definition the flux trough the
flux surfaces x = const at v = const)? The difficulty in the visualization of
this flux is its only problem!

4.3 Change of radial coordinates

One wants to choose the radial variable, called here p, to label the magnetic
flux surfaces. This is linked with the research of a frame of reference that
makes evident the symmetry of the system. From the Hamiltonian point of
view one can always choose the Hamiltonian as the radial variable, that is
always constant on flux surfaces due to Noether theorem (see section 2.5).
From the magnetic point of view this means looking for some function p for
which

B-Vp=0
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Not just one function can label the magnetic flux surfaces: the equation
above is satisfied by every function of p only, f(p). For instance, in SH not
just the Hamiltonian x = ¥p — nyr is a good flux function, but also the
Yp(x),Yr(X), ... (the fluxes found in helical Action—-Angle coordinates).

In eq.(4.2) another flux function has been introduced: the adimensional and
normalized square root of the helical flux pp, that ranges between zero on
the helical axis, and one. It is possible to introduce infinite other choices for
the radial variable. Here another common choice:

pa = Npy (4.64)
X — Xmin

Xmax — Xmin

= N (4.65)

where N can be any dimensional constant. Choosing for /N the minor radius
of the vacuum chamber, p4 ranges between zero on the helical axis, and
0.459m at the edge for RFX-mod machine.

In this short section we just want to describe some of the possibilities for
the radial variable, starting from the Hamiltonian of the system. The metric
tensor elements and the Jacobian of the coordinate systems change in a very
simple way according to the change in the radial variable. All the metrics in
the Appendixes are calculated using p = x, but in sections 9.2.2-9.2.3 one
can find the derivatives that link the different choices and some dimensional
analysis.

4.4 Discussion on the Hamiltonian time

In section 4.2.3 we end up with the definition (4.32) of a poloidal flux 1 p2(x)
defined with respect to the axisymmetric axis, where the poloidal angle ¥ is
defined.

One can extend the definition (4.4) of the helical flux x(r,u) to define the
same?? helical flux x(p) in any Action-Angle coordinate system:

x = mipp(p) — nibn(p) (4.66)

where 1, () is the toroidal flux through magnetic flux surfaces, just now
defined in (4.19). From the definition of the helical flux in A-A coordinates,
it is possible to derive another definition of the poloidal flux trough magnetic
flux surfaces: ¥p(x). And that’s why we label the first one in equation (4.32)
with a 2.

*OThe helical flux x(r,u) is already a flux function, constant on flux surfaces.
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4.4 Discussion on the Hamiltonian time ¢

Let us compare the two definitions of the poloidal fluxes:

e = o b wplxu)du (1.67)
Z(x)
vp(x) = x+ndn(x) (4.68)
a) N b) h <)

+/

Figure 4.8: Poloidal fluxes. a) The ¢ps() poloidal flux through internal
flux surfaces (at ¢ = 0), that do not contain the cylindrical axis. b) The
1p(x) poloidal flux through internal flux surfaces (at * = 0), that contain
the helical axis. ¢) Both the ©¥ps(x) and ¥ p(x) poloidal fluxes, through the
external flux surfaces (at # = 0 = #*) that contain both the cylindrical and
the helical angles. The 0* poloidal angle is defined in the text.

The two poloidal fluxes do not coincide in the whole plasma volume.
This is due to the main difference in their definition: 1 py(x) is defined with
respect to the cylindrical axis, whereas ¥ p(x) is defined with respect to the
helical axis of the system, and they can coincide only on those surfaces that
contain both axes. In fig.4.8 the physical difference between equations (4.67)
and (4.68) are shown. The flux ¥ pa(x) through the internal flux surfaces
is drawn as the flux of the BY component of the magnetic field through
the surface identified by the segment between the two intersections with the
magnetic flux surface ¥(x) of a line from the axis of the vacuum chamber to
a magnetic line on (). The same flux through the ezternal flux surfaces
is the flux through the surface identified by the segment from the axis of the
vacuum chamber to the magnetic surface x = const. To understand this,
one can go back to the demonstration in eq.(4.37), or remember that ¥ pa(x)
is the Action of the (x,ugn, ) coordinate system?!. On the other side, the
flux vy, is defined in the (x,up, ) coordinate system, where all the angles
are defined with respect to the helical axis.

More in details, the difference between the two fluxes is plotted against
the normalized helical flux in fig.4.9: the two poloidal fluxes differ through
the inner flux surfaces that do not contain the cylindrical axis of the system,
and coincide through the outer flux surfaces that contain both the helical

2

21 A3 = (helical) flux across X(p) at ugn, = x? = const. As = (poloidal) flux across

Y(p) at ¥ = x> = const.
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and cylindrical axis. One can obtain the quantitative difference simply inte-
grating eq.(4.4)

x(r,u) = p(r,u) —nr(r, ) (4.69)
over the angle u:
1 1 1
o o xdu = 2 o Yp(r,u) du — ng— fz(x) Yr(r,u) du(4.70)
= Yp2(x) = nn(x) (4.71)

Because the circulation of any flux function x or f(x) over the helical angle
u is zero on the flux surfaces that do not contain the cylindrical axis where
u is defined, one finds that

On internal flux surfaces:

Yp2(x) = nn(x) (4.72)
= ¥pa(x) — ¥r(X) = — X (4.73)

On the other hand the same circulation is equal to 27y on all the other flux
surfaces, therefore:

On ezternal flux surfaces:

Ypa(X) = nn(x) + x (4.74)
= Ypa(x) —¢¥p(x) =0 (4.75)
o . Yp2 —¢p .
i - Z00m
oo n2 p,z 13 o8 10

Figure 4.9: 1¥p2(x) — ¢¥p(x)

The plot of the two functions ¥pa(x) and ¥p(x), that coincide only on
the external flux surfaces that contain both axes of the system, can be seen
in fig.4.10 (right). Wherease the plot of the two fluxes, ¥ pa(x) and nyx(x),
can be seen in fig.4.10 (left).
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4.4 Discussion on the Hamiltonian time ¢

Yp2 VP2 - external flux surfaces
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Figure 4.10: Left: black: ¥p2(x) and gray: nup(x) + x = ¥p(x). Right:
black: ¥pa(x) and gray: nyp(x).

4.4.1 The angle 6*

As the poloidal flux ¥ ps(x) is the flux through the magnetic flux surfaces at
the poloidal angle ¥ = const, the poloidal flux ¥ p(y) is associated to another
poloidal angle, defined with respect to the helical axis (differently from ).
We briefly introduce this new angle, calling it 8*, that can be derived using
the two angles ¢ and u;?2, that are both defined on the helical axis. To show
this we start from the canonical form of the magnetic field in the (x, un, )
A-A coordinates, to obtain the equivalent form in the new (x,0*,¢) A-A
system (all the angles are considered as divided by 27):

B(x,un, ) = Vi x Vu, —Vx x Vo
= Vi X Vup — Viop x Vo +nVi, x Vo
= Vb X V]up +np] — Viop x Vo
B(x,0%,¢0) = Vi x V0" —Vipp x Vo

simply using the definition (4.66) for the helical flux, and

0" =up+np . (4.80)

In fig.4.11 one can see the difference between the poloidal and helical
angles defined in this chapter: ¢,0", u,u),. The general poloidal angle ¥ is
the angle defined on the cylindrical axis that has the zero always on the
horizontal plane. This is not true for the helical angle u, that is obviously
not always zero when ¥ = 0, but it turns also with . The same can be said
for the poloidal and helical angles defined on the helical axis, 0* and uy, that
go back to ¥ and w in the cylindrical limit (when the helical perturbation
vanishes).

Defined in section 4.2.2 for the system (x, un, ) in which also the flux 1, is defined.
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Helical coordinates in toroidal systems

Figure 4.11: Zero of the poloidal and helical angles defined in the text.
In a case of null phase of the helical perturbation, ¢, = 0. For ¢, # 0 the
helical angles do not point on the convex part of the bean, but they have
a fixed phase with the bean anyway because they rotate together with the
bean.

We proved that ¥ps(x) is a poloidal flux already in section 4.2.3, but
from now on we will use only the poloidal flux ¥ p(x) defined in this sec-
tion, related to the poloidal angle #*. This choice is in agreement with the
request of angles defined with respect to the helical axis, and is more useful
in defining helical quantities (as e.g. the helical safety factor profile, as one
can see in section 6.3). The whole metrics and the Jacobian of the (y, 6, ¢)
system can be found in the detailed calculations in section 9.2.

Let us note that in the (y, 6%, ¢) coordinate system, the fluxes depend on
the radial coordinate only (as it must be in every Action-Angle coordinate
system). Both the poloidal and toroidal angle can be therefore used as
the canonical time, with a result similar to that obtained for the (7,4, )
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4.4 Discussion on the Hamiltonian time ¢

coordinate system for the axisymmetric equilibrium Byg in section 2.10:

B(x,0%,¢) = Vin(x) x V0" = Vip(x) x Ve (4.81)

and the associated canonical variables can be

t = o (4.82)
H o= —A,=vp(y) (4.5
qg = 0° (4.84)
p = Agp=Yn(x) (4.85)
t = 60° (4.86)
H = —Ap =¢n(x) (4.87)
qg = ¢ (4.88)
p = Ap=1p(x) (4.89)

The canonical time * is always increasing in Othe whole plasma volume and
is linked with a poloidal flux that is well defined on the helical axis and
monotonic. As the poloidal angle 1 is a better choice for the canonical time
in axisymmetric RFP equilibrium (instead of the toroidal angle that changes
its sign at the reversal), in the same way 6* is a good choice for the canonical
time in RFP SHAXx helical states.

The problem of a non monotonic Hamiltonian vy, related to the time 0* is
not really a problem, because one can use any other flux function as radial
coordinate, for example the poloidal flux ¥ p ().

This confirms the choice of the poloidal flux ¥ p(x) instead of ¥ pa(y) from
now on.
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Chapter 5

Covariant and contravariant
magnetic field components

In the previous chapter we find a set of helical coordinate systems, which are
all characterized by curvilinear metrics due to the toroidicity of the helical
systems. The toroidicity of the system has two main consequences: first, co-
variant and contravariant indexes of any vector field must be distinguished,
and the curvilinear metrics theory (summarized in appendix B) must be
used; second, a toroidal coupling between the harmonics of the fluxes and of
the Jacobian arises, therefore e.g. a SH in the fluxes does not correspond to
SH in the magnetic field components.

In this chapter we emphasize both this aspects. In section 5.1 we derive the
formula for the contravariant magnetic field components starting from the
magnetic flux eigenfunctions, both for MH and SH states. In section 5.2 and
5.3 we use the curvilinear metrics theory to derive the covariant magnetic
field components from the contravariant ones and to derive the components
of a field in any coordinate system if the relation between the coordinates
is known. In section 5.4 we derive the measurable covariant component of
the magnetic field to be compared with measures; in section 5.5 we end with
some practical example useful for the applications with SHEq in the next
chapter.

5.1 SH in the fluxes does not correspond to SH in
the magnetic field components

SH in the fluxes does not correspond to SH in the magnetic field components,
which are not constant on the magnetic flux surfaces. In order to study the
helical symmetry of SHAx states we impose a SH in the system under study,
neglecting the contribution of secondary modes in the m = 1 spectra of the
fluxes. Noether theorem associates a conserved quantity to a symmetry in
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Covariant and contravariant magnetic field components

the covariant components of the vector potential, that are nothing but the
magnetic fluxes. The conserved quantity labels magnetic flux surfaces, and
this justifies the choice of a SH in the fluxes (instead of a quantity not con-
stant on flux surfaces, as the magnetic field).

Due to harmonics of the Jacobian, not constant on flux surfaces in a curvi-
linear metric, any non—flux quantity does not preserve the helical symmetry.
In this section we show how the toroidal coupling between harmonics with
same n toroidal number and Am = 1 in the poloidal mode number generates
other harmonics on the magnetic field components, starting from SH in the
fluxes.

Using eq.(2.146)—(2.148) we end with the up magnetic field components in a
toroidal symmetry, both in the general case and in the case of helical and ax-
isymmetric symmetries. Down components and components in other frame
of reference are listed in the next sections.

Let us start with the definition of any component of the the magnetic
field.

B(r,d,9) = Bo+ Y bmn(r,d,¢) (5.1)
= Bo+ Y bmn(r) ™) (5.2)
= By+ Z by (1) €0 9) 4 cc (5.3)
n@()
= By+ Z 2 b, n| cos(ow,,, +mi —np) (5.4)
nrg()

The whole perturbation to the magnetic field must be a real value, whereas
the harmonics by, (7, ¥, ) of the Fourier decomposed perturbation in eq.(5.1)
are complex numbers'. Using (C.12) and the polar form for the complex har-
monics of the perturbation

bnn(7) = b |(7) € Pomn (™) (5.5)

one gets to (5.4), where both the amplitude |by, »|(r) and the phase ¢, ()
are real numbers. This is true for each component of the magnetic field,
and we can use formulas (2.143)-(2.145) to relate the contravariant com-
ponents B’ to the derivative of the fluxes (or the covariant components of
the vector potential) in the gauge A; = 0. In the same gauge, using the
toroidal coordinate system (r, v, ¢), formulas (2.143)—(2.145) are equivalent

!See appendix C.1 for a discussion on this.
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5.1 SH in the fluxes does not correspond to SH in the magnetic
field components

to (2.146)—(2.148). We begin defining the angular components BY and B¥:

Birde) = — [6h(r)+ 30 vhualr) 700 (56)

sl- %

U6+ D Y1) ) e (5.T)
g b

nn;O
where B® = BY or B' = B¥ depending on ¢ = p, 1. For the radial
component of the magnetic field the discussion is the same, but due to its
different dependence on the fluxes (eq.(2.143)) explicit formulas are at the
end of the section.

The (r,9, ¢) can be any general toroidal coordinate system. We choose

here the (r,9, ) coordinate system defined in chapter 3, because it is the
coordinate system in which the fluxes and their harmonics are computed
solving the Newcomb-like equations (3.36)-(3.37). The metrics elements
and the Jacobian must be consistent with the choice of the coordinates, and
are therefore the ones in appendix B.2.3.
This is always the choice of SHEq’s computations, and one can find in sec-
tion 5.3 the links between these components of magnetic field in the (r, 9, ¢)
coordinates and the components in other coordinate systems (as e.g. the
helical coordinates found in chapter 4).

For the magnetic coordinates (r,v,¢) of the axisymmetric equilibrium
field Bg defined in chapter 3, the Jacobian is not constant on the magnetic
flux surfaces, and can be written as a sum of harmonics:

1 (r.9) ( 1 >0,0 1 \=£1,0 (5.8)

Ly = () () |
V9 V9 V9

1 (r) + 1

= —(r)+—

V90 Vo1

The first term is constant on the » = const flux surfaces, whereas the second

term is an harmonic proportional to cos?. We neglect higher order terms.

The amplitudes (1/,/g0) and (1/,/91) can be found in appendix B.2.3. As

already said in chapter 3, the metrics couples modes with the same? toroidal

mode number n but different poloidal mode number m. This is due to the

toroidicity of the system, related to a non diagonal metric tensor?. Ne-

glecting higher order terms in the harmonic expansion (5.8), the coupling is
between the (m,n) and (m £ 1,n) harmonics.

(r) |:6“9 + eiiﬂ (5.9)

2The Jacobian does not depend on the toroidal angle ¢.
3See appendix B.2.3 for the metrics of the (r, 1, p) coordinates
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Covariant and contravariant magnetic field components

Going back to (5.7), due to the presence of the Jacobian, each harmonic
bn (1,9, @) of the perturbation to the magnetic field (with fixed (m,n)) is
the sum of the three (m,n) and (m 4 1,n) harmonics of the fluxes:

bl (r9,0) = bi L (r) e e (5.10)
m+41
= — Zwmn emI=ne) 4 cc. (5.11)

for each value of n. Again, b’ is the perturbation to the poloidal or toroidal
magnetic field component, depending on ¥ = ¥ p, Y.

Let us write explicitly the (m,n) = (—1,n),(0,n),(1,n),(2,n) following
(5.11) and keeping in mind the expansion (5.9):

. . 1 .
i i(9—nep) _ / i(9—nep)
inr)e +cec = i (r) e + (5.12)
) \/.g>0 )
1
+ ﬁ ¢0n( )e i) 4 (5.13)
1 T
= () S (5
C.C.

Multiplying the exponential in the sum (that come from the harmonics of
the Jacobian and of the fluxes), one can see that every term has the right
periodicity (e!?="%) for (m,n) = (1,n)). In the same way:

) . 1
ba(r) € 4o = NG Yp(r) e + (5.15)
1 A .
+ \/gﬂ e i) @ZJLn(r) et0—ne) 4 (5.16)
1 .
+ ? ') wl—l,n(r) el=v=ne) (5.17)
c.c.
. A 1
b5 (1) ') Lo = \/ﬁ Py (1) € i(20—ne) 4 (5.18)
1. .
+ N D i (r) 070 (5.19)
1 . 4
N e 3.0(7) eB39=me) 1 (5.20)
c.c.



5.1 SH in the fluxes does not correspond to SH in the magnetic
field components

. A 1 .
by () V) e = —— g, (r) 7T 4 (5.21)
Voo
1 , .
+ Jar e i) Yo, (7) ¢+ (5.22)
jﬁe"(‘” Uy (1) €72019)(5.23)
c.c

The term in eq.(5.20) is neglected in RFX-mod, due to the fact that is re-
lated to the m = 3 spectrum that can not be detected because only four
magnetic coils are present on the poloidal angle.

Note that to each term in (5.12)-(5.23) one need to add the complex conju-
gated to go back to real value of the perturbation, eq.(5.10).

Let us analyze the magnetic field component on the flux surfaces related
to some symmetry of the system.
As said, the magnetic field is not a flux function, i.e. it is not constant on
flux surfaces. Even the axi-symmetric part Bo = (0, B, BY) of the magnetic
field*, related to circular flux surfaces, is not constant on them:

By(r,9) = \;g o (r) (5.24)
1
- (\/gT) + T Ccos 19) py(r) (5.25)

where it is evident the dependence on the cosine®, typical for magnetic field
on flux surfaces in a torus (and usually called High or Low Field Side in
Tokamaks).

Let us analyze the helical symmetry, that we impose on the fluxes (and
therefore to the magnetic flux surfaces) since the beginning of chapter 4 to
describe SHAx states:

Y(r,u) = o(r) + Yma(r) ) 4 e, (5.26)

with fixed (m,n) (and therefore u = mv — ny).

In equations (5.12)—(5.23) we write the harmonics (with fixed (m,n)) of the
perturbation to the magnetic field, that are the sum of the three (m,n) and
(m =+ 1,n) harmonics of the fluxes. On the other hand we now look to the
harmonics of the magnetic field that arises from a single harmonic (fixed

“B" = B - Vr = 0 by definition.

5Note that the poloidal angle ¥ has been defined with the origin on the internal equa-
torial plane (that corresponds to ¥,, = 7 for the more usual machine poloidal angle).
This means that cos? is maximum on the internal equator and minimum on the external
equator.
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Covariant and contravariant magnetic field components

(m,n)) in the fluxes: choosing (m,n) = (1,n) for the flux®, from eq.(5.12)-
(5.23), one can see that the flux 1, contributes to the three harmonics
(0" 1,5, b1 ,,) Of the magnetic field”:

—1,nY0,n>

m—+1
) 1 .
Biyy(r0.6) = —= [0h() + D thun(r) €779 4 e (5.27)
m—1

n

S

for a fixed (m,n) and ¥y, ,. With the subscript SH we just want to remind
that (5.27) is the way to write the poloidal or toroidal component of the
magnetic field that arises from a single harmonic in the flux. From (5.27)
for (m,n) = (1,n) and ¥, n = Y1 p, or choosing explicitly 11 ,, in eq.(5.12)—-
(5.23), for the magnetic field components related to a SH in the fluxes, one
reads:

Biy(r,9,¢) = Bj(r,9)+ (5.28)
1
+ =, 0T 4 (5.29)
V90
1
+ 76_1(19) i 61(19_71@—1— (5'30)
1
+ zel(ﬁ) /17nel(19_n90)_|_ (531)
1
+ c.c
1 2
= (—=+ —= cos?) yPy(r) + 5.32
(s + 7 con?) 4 (532
1 )
+ 7(7’) L) €0779) 4 (5.33)
0
1 )
+ 7(7“) {a(r) €9 4 (5.34)
1
1 / i(~29—ngp)
79(@ 1n(r)e )+ (5.35)
1
+ c.c

SHEq uses another form for B (r, 9, ), related to the form in equation
(5.4). Calling, in the harmonics of the magnetic field in eq.(5.12)-(5.23), the

®n =7 in RFX-mod.
"In general we consider just (m % 1,n), neglecting the coupling between modes with
higher Am.
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5.1 SH in the fluxes does not correspond to SH in the magnetic
field components

(complex) terms that depend only on 1
b (0 0) = —= (1) ¥ () €0 (5.36)

bt (1,9, 0) = ——=(r) ¢, (r) €19 (5.37)

b5 (r,0,0) = (r) () €20779) (5.38)

333~

one can write, instead of (5.27) but in a complete equivalent way,
Bl (r,0,0) = Bi(r,9)+ > bl (r) ™) 4 cc. (5.39)

m+1
= Bi(r,9) + Z 2 |bZ SH) (- 7) cos(gpsu + mi — nep(5.40)

m—1
n

where

DESH () = 051 | (r) € Pt (5.41)

SHEq uses formula (5.40).

Omne can stress again that, related to the SH of the fluxes (and to the
helical symmetry of magnetic flux surfaces), other harmonics arise for non—
flux quantities (such as the magnetic field components B?). This is due to
the toroidal geometry that couples different metrics elements and to the har-
monics of the Jacobian.

Let us write explicitly also the radial component of the magnetic field,
always in the (r, 1, ¢) coordinate system.
Following what done for the poloidal and toroidal components B?, using the
SH in the fluxes 1/1;""” and w};”, from (2.146):

m+1
By (1,9, ) Zb”SH eHmI=ne) e (5.42)
with
) = i -] 64
1 - -
b () = )] invr"() —imvp"()| (5.44)
LN = @) —ime ] 64
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Covariant and contravariant magnetic field components

The derivatives of the fluxes (5.26) with respect to the angular variables have
been used:

oy :  (mi—ng)

_ n 1 (m n C. 4
90 inYma(r)e +cc (5.46)
81/) . i (md—nep)
g9 = im Yman(r)e + c.c. (5.47)

for (m,n) = (1,n) and ¢ = Yp,Yr.

The radial derivatives of the fluxes, necessary to compute BY or B¥, are
explained in section 9.1.

5.2 Down components of the magnetic field in the
(r,7,¢) coordinate system

In section 5.1 we write the contravariant (up) components of the magnetic
field in the (7,9, ) coordinate system of appendix B.2.3, using for them
the harmonics of the fluxes that have been computed in the whole plasma
volume (chapter 3) for this coordinate system. In order to write the covariant
magnetic field components B; in the same coordinate system, one only needs
to use the general rules for curvilinear metrics:

B; = gi; B/ (5.48)

where B' are the contravariant components and gij the metric tensor ele-
ments, for i = r, 9, ¢. The elements g;; are in appendix B.2.3 for the (r, 7, ¢)
coordinate system, while B?(r,4, ¢) is written both for the general MH case
and for the helical symmetry case, in section 5.1 (formulas for BY or B¥:
(5.7),(5.12)—(5.23) for the MH general case; (5.25) for Bg; (5.27)-(5.35) or
(5.36)—(5.41) for the SH case. Formulas for B": (5.42)-(5.45) only for the
SH case).

Using the Einstein convention to sum on repeated index, eq.(5.48) means:

B, = g B" + Gro Bﬂ
By = go B" + ggo B’
B, 9o BY

because in this metric the terms g., and gy, are null.

By definition the covariant components of any vector
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5.3 Up and Down components of the magnetic field in various
coordinate systems

are the component of the vector along the coordinate line (whereas the con-
travariant components are the components along the gradient direction).
Covariant components are therefore linked to the measurable fields, but one
must pay attention to dimension and length of the basis in a curvilinear
metrics (section 5.4).

5.3 Up and Down components of the magnetic field
in various coordinate systems

Once the link between coordinates is known, it is possible to write the covari-
ant or contravariant components of any vector in every coordinate system.
In section 5.1 we write the contravariant (up) components of the magnetic
field in the (7,7, ¢) coordinate system (appendix B.2.3), taking advantage
of the flux harmonics already computed in the whole plasma volume in this
coordinate system (chapter 3). And in section 5.2 we write the covariant
(down) components of the magnetic field in the same coordinate system.

In order to write the up and down magnetic field components in other co-
ordinate systems, one only needs to follow the rules of the general tensor
calculus:

. .

i o’ o o’

AV = A A=A : 5.54
5 507 (5.54)

oul ou’
Ay = A — , A=Ay — 5.55

. . -/ ’ / / . .
being v/ = (u',u?,u?) and v* = (u!',u*,u*) two different coordinate sys-

tems (with the only limitation that their Jacobians are non zero).

5.4 Measurable components of the magnetic field

In curvilinear metrics the basis vectors are in general not adimensional and
do not have unitary length. To compare reconstructed magnetic field com-
ponents with measurements, we need to go back to field components that
have the right dimension of the measured field and the whole length (without
sharing it with the basis vector). It is enough to divide the basis vectors by
their norm, but we need to pay attention to the fact that this can be done
just at the end of all the calculations, because tensor calculus is based on the
hypothesis of non—adimensional and non—unitary length basis vectors. For
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Covariant and contravariant magnetic field components

example, writing a A symbol on top of measurable components®:

A V4
B = BZVxZ:BZV:EZ:B’HvxiH (5.60)
leill
with components
i = B-Va! (5.62)
~. ~ Vit
B" # V' =B- V| (5.63)
B, # B.6=B. (5.65)
|led||

An equal sign in eq.(5.63) and (5.65) can be used only for diagonal metrics.
For curvilinear metrics (where the diagonal metric elements g;; and g* are
not one the inverse of the other) one can only use

B = (B-Va') Vo= B Vou (5.66)
B = (B - ei) Vgl = Bi /gt (5.67)
S8with the definition for the normalized basis vectors:
~ V! V! ) PO
Vz' = = — = Vz' =||Va'|| Vz' (5.56)
(V|| /g

& = Sa=-2 o =|lelle (5.57)

' lleall ™ V/gia ' o '

and

V]| = VVai-Vai=/gii (5.58)
lleill = +Vei-ei=+/gii (5.59)
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5.4 Measurable components of the magnetic field

that arise from (5.60)—(5.61).9 10 11 12

Hatted components have the dimension of the whole field, whereas the non—
hatted components have dimension that depend on the dimension of the
basis vectors, and therefore on the chosen coordinates. In section 9.2.3 some
dimensional analysis can be found.

Usually measurements are taken just outside the toroidal vacuum vessel,
for which usually are used the machine-toroidal-coordinates (ry,, 0, @) that
are linked to cylindrical (R, Z, ¢) and Cartesian (x,y, z) coordinates by the
relations:

x = Rcosp = (Ro + 7y, cos O,) cos ¢ (5.77)
y = Rsing = (Ry + ryy, cos Oy,) sin @ (5.78)
2 =27 =rpsinb, (5.79)

With respect to the toroidal coordinates in appendix B.2.3 and chapter 3 one
can see that the poloidal angle 6, has the origin on the external equator and
that the shift term is not present in eq.(5.77). The vanishing of the differ-

9And the inverse

B'= ——= Bi=— (5.68)
V' Vi
10Using contravariant components to write the covariant ones,
B; (91 B') Vg (5.69)
By = (g B +gro B’ + g0 B) Vg™ (5.70)
Bo = (gor B" + goo B’ + go, BY) /9% (5.71)
By = (gor B" + gp0 B’ + gpp BY) /g% (5.72)

for a general toroidal coordinate system. In the one of chapter 3 the terms g,, and gg,
are null.

"1n diagonal metrics, for which gdmg =0 for i # j and ¢g¥* = 1/(94iaq), again using
contravariant components to write the covariant ones

~; ; o1 . 1 _
Biiag = B'\9i=B"—— =9¢9"Bi—— =\/g" B: (5.73)
g’L’L ’LZ
o _ 1
BY 9 —  B;\/gi = B; =gu B = /gu B’ (5.74)
\/ gl’L \/

12 Just in diagonal metrics g4*? = 1/(gliag)- Therefore

Biiay = B'\gi=B'—— =B.Vz' — =B . Va' (5.75)
g gll gll
~ — 1 1
B;lm.g _ BZ gzz — Bz =B- e; =B €z 5.76
VGii \/Gii (5:76)

using (5.56)—(5.57).
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Covariant and contravariant magnetic field components

ential shift leads to a diagonal metric'3 for the machine-toroidal-coordinates
(T Oms ).

To find the magnetic components B™, B% B¥ in this new coordinate sys-
tem, beginning from the known ones in the (r, 1, ¢) coordinates, one needs
to use eq.(5.54) for the contravariant components and eq.(5.55) for the co-
variant ones. To find the (hatted) measurable components we can apply the
normalization in (5.66)—(5.67).

To apply equation (5.54) one needs first to compute all the derivatives be-
tween the coordinates of the two systems. That is why it can be easy just
on paper, and not in the real world, both from the analytical and numer-
ical point of view. In order to make thing easier, we try to minimize the
derivatives to be computed: in this case we can just find the magnetic field
components in the cylindrical (R, Z,¢) coordinates'®, and project these on
the machine coordinates. In particular, using (5.76) for the diagonal machine
coordinates,

- B.&, (5.80)
0, = B-ey, (5.81)

S o)

3

We can choose any coordinate system to write the magnetic field vector B:
we use the contravariant components in cylindrical coordinates that can be
written in terms of the known contravariant components of the magnetic

field in the toroidal system (7,9, ¢)'® in a relatively easy way:
B =Bfep+ B?ey+ B*e, (5.82)
with
OR OR
Bt = —p+ B’ :
o + 59 (5.83)
Y4 oz
B = =B +--BY 84
or + oY (5:84)
B¥Y = B¥ (5.85)

From (5.80)—(5.81) we need to do the scalar products between the covariant

3 The metrics elements for the machine-toroidal-coordinates (Tm, Om, ¢) can be derived
from the tensor metrics elements of the geometrical coordinates u’ = (r, 04, ) in appendix
B.2 simply vanishing the shift A(r).

"Derivatives between the toroidal system (r,19, ) and the cylindrical one have already
been calculated, equations (9.56)—(9.61).

section 5.1
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5.5 Some examples

basis of the two coordinate systems'®:
B,, = B%egr-e,, +B?ez-8,, +B%e, ¢,
= BP® cos 0,, + BZ sin O,
By, = BReR '/égm + BZeZ -69m + B@e¢ ~69m

= —BE sin 0, + B? cos O,

These are the components to be compared with measures.

Note that, because /grr = 1 = /gzz, from eq.(5.75) B~

B? = BZ.

5.5 Some examples

Some example for the magnetic field B
Writing

B=DB"e +B"ey+B%e,,
—_— ——

BPOZ Bto'r

(5.96)

in the toroidal coordinates (r, v, ¢) of chapter 3, the module of poloidal and

toroidal magnetic field are:

Bior = By, = RV gapapBw

Byot = /52 (B')? + 29,987 B + g2, (B)2.

(5.97)

(5.98)

By, can also be identified with the measured covariant components B, on

the normalized basis vectors e,.

16

e = ! a— = (COS sin 0)
R Jnn R ®, @,

ez I x (0,0,1)

Jizz 0Z

1 0x
e = — = ( — Rsinyp, Rcosp, 0
v VI9ee e ( 4 ? )

%

:

—~ 1 ox
VTt Orm
—~ 1 ox
T VG00m 00m

~ 1 ox
— \/@8@_

= (cos O cos @, cos b, sinp, sin@m)

[¢]
<
\

(fsingo, cos O)
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(5.87)

(5.88)

(5.89)

= (— sin 0, cosp, —sin b, sinp, cos 0m> (5.90)

(5.91)



Covariant and contravariant magnetic field components

We can write also the modulus of the total magnetic field

B = B+ B (5.99)
B = /B2, +B}, (5.100)

Some example for the current density J

For a force free equilibrium in Action—Angle coordinates (section 3.1.2) the
axi-symmetric current density is proportional to the magnetic field through
a coefficient (o(r)) which is a function of r only!?, that is

poJo = o(r)By. (5.103)

We use the straight field line coordinates (7,9, ) built for the axisymmetric
equilibrium. From here,

J =0 (5.104)

J = o(r) go (5.105)
Ho

J = or) pe (5.106)
Ho

The first order correction to the axisymmetric equilibrium, computing the
total current density components from Ampére’s law and plugging it into
the first-order force balance equation'®, where u’ = (7,9, ¢), is

1 o ains N
jxBo+Jygxb= ﬁe”k(j’Bg + Ji)Vuk =0 (5.107)

from which one obtains

o(r)

i, = My (5.108)
Ho
. /
o= Wy )y (5.109)
Ho m-—nqg Mo
. /
jon = MWye Ty (5.110)
Ho m—=nqg Mo

1"The proportionality coefficient is given by

1 d

o(r) = _FP’O%[K(T)"WT,O] (5.101)
with 5
_ B AT 3
K(r) =~ (1+ R Tame® T ame Tl ))- (5.102)

18 Axisymmetric equilibrium quantities are written with capital letters to distinguish
them from the perturbative quantities.
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5.5 Some examples

The proportionality between perturbed radial current and perturbed radial
magnetic field is similar to (5.103). Both B{ and the perturbative compo-
nents b, are computed in section 5.1.

As in eq.(5.39) for the magnetic field, due to the geometric toroidal coupling

m+1
F = Trg) = Rr0.0)+ 3 S e 4 g5
m—1

n

for i =r, 9, ¢.
Writing
J = Je (5.112)
= J'er+J%ey+B¥e, (5.113)
S—— \V—/
Jpot Jior

in the toroidal coordinates (7,7, ¢) of section 3.1.1, the modulus of current
density can be written as

J = \/g%«(BT)2 + 29,9 B"BY + g54(BY)? + g%, (B¥)? (5.114)
because the elements gy, = 0.

In chapter 6 we will compute the average of these quantities on flux sur-
faces.
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Covariant and contravariant magnetic field components
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Chapter 6

Applications

The goal of this chapter is to show some possible application of the more
formal and theoretical part of the thesis till here presented.

SHEq is the code that computes all the results, solving the formulas and
mathematical expressions of the previous chapters for any of the defined
coordinate systems. The starting point in SHEq are the fluxes and their
harmonics, reconstructed in the (7,1, ) coordinate system by some codes
written to solve the Newcomb-like equation in [53]'.

In this chapter one can find magnetic flux reconstructions (section 6.1), the
definition of the flux surface averages of any plasma quantity, like the poloidal
or toroidal magnetic field or current density (section 6.2), and the helical
safety factor profile (section 6.3).

For the flux surface reconstruction it is enough to know and compute a flux
function, e.g. the helical flux in SHAx states, from equations collected in
section 9.1.1. For the flux surface averages one needs to know a complete
helical coordinate system, and to compute any plasma function on these
coordinates. The formula for flux surface averages of plasma quantities in
toroidal systems reduces to the integrals on the two angular coordinates, that
must be well defined on the helical axis of the system. It does not matter
to have them defined as straight—field-line (or Action-Angle) coordinates,
and one can choose between any of the defined helical coordinates 2, even
the geometrical one (x, 3, ) in section 4.2.1. For the helical safety factor
we use the simple formula as the ratio between the differential of the two
angles, that is equivalent to the more general definition of the ratio between
the differential of the two fluxes only for Action—Angle coordinates. This
can be proved using the Hamiltonian mechanics, and in particular we choose
the (x,un, ) or (x, 0%, ¢) coordinate systems, where the physical meaning
of the fluxes is clear (see sections 4.2.2 and 4.4.1).

'Equations (3.36)—(3.37) in chapter 3
2Helical coordinates are defined in chapter 4 and their metrics are collected in the
detailed calculations in section 9.2
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Other examples of applications can be listed, and some of them are
planned to be matter of future work. In particular, starting from the heli-
cal equilibria completely defined in chapters 4 and 9 (coordinates, Jacobian,
metric tensor elements, q-profile, fluxes, fields, ...), one can think to perturb
it with a helical perturbation, in a way similar to that of chapter 3 and [53],
where the axisymmetric equilibrium By was perturbed. In this way one can
reconstruct the spectra and the profiles of the harmonics of the helical per-
turbation. This can be useful for example to consider the dominant mode
in the m = 0 spectra (the m = 0,n = 7), neglected in SHAx states for now,
but toroidally coupled with the m = 1 dominant mode, and essential to edge
studies in RFP machines.

Some other example of work in progress for the equilibrium evolution is pre-
sented in chapter 7, where the problem of the Ohmic constraint is taken into
account.

6.1 Flux surface reconstruction: DAx and SHAx

Magnetic flux surfaces in SH states are defined by the constancy of the heli-
cal flux: x = const with x from (9.2). In fig.4.3 we have already shown the
x contour plot, which gives the magnetic flux surfaces on the poloidal plane.
With the SH, in this work, we model SHAx states. In the Introduction
(chapter 1) we distinguish between SHAx and DAx states, both flavors of
the more general QSH condition. In fig.6.2 one can see both the DAx and
SHAx (of the m = 1 spectrum) magnetic topology on the poloidal plane.
The magnetic island can be clearly seen during DAx states, with its typical
X-point and O-point. Increasing the plasma current the amplitude of the
resonant mode grows, and therefore the amplitude of the corresponding is-
land. Beyond a threshold value of the amplitude of the dominant mode, the
X-point collapses onto the original axisymmetric axis O’, ending with the
SHAx states topology.

With a not so bigger error (see fig.6.1), we model also DAx states as SH
states, in order to analyze them with the same model built for SHAx states
in this thesis. For example, fig.6.2 is built using the SHEq code, i.e. using
the SH hypothesis. The SHEq code can distinguish between SHAx ad DAx
states as follows.

Looking at eq.(9.4)

X = Xo(r) +2[x™"|(r) cos(u + ¢y (r)) (6.1)
We can fix the helical angle u for which

cos(u+ ¢y) = £1 (6.2)
i.e. (u+¢y) =0,7m
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6.1 Flux surface reconstruction: DAx and SHAx
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Figure 6.1: Left: Spectrum of the m = 1 mode during a SHAx state (shot
23977 at t = 173.9 ms). Right: Spectrum of the m = 1 mode during a DAx
state (shot 23977 at ¢ = 197 ms).
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Figure 6.2: SHAx and DAx reconstructions in the poloidal plane.

In this way we obtain the y—curve
X = xo(r) £ 2[x™"|(r) (6.4)

on the diameter passing through the points X — O’ — O.

In fig.6.3 one can see the function (6.4) along the diameter. As one can
see during DAx states the helical flux has three extremal points for which
dx/dr = 0: two minima in the X-point and O—point of the island, and one
maximum in the original magnetic axis of the system, the O’-point. During
SHAx states only the original O—point of the island is a special point, where
dx/dr = 0 defines a minimum. This correspond to the new helical axis of
the system.
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Figure 6.3: SHAx and DAx along the diameter

It is possible to think at two parts of the curve:

X+ = xo(r) +2IX™"[(r) & cos(u+¢y) =1 (6.5)
X- = xo(r) =2IX""[(r) & cos(u+dy) = —1

where x_ correspond to the convex part of the bean, whereas y 4 correspond
to the other side, where one can find the X-—point and the O’—point. Notice
that it is enough to study the derivative of the function y; to distinguish
between SHAx and DAx states: if dyy/dr > 0 in each point, the system is
in a SHAx state; if dx4 /dr = 0 in some point, the system is in a DAx state.
As one can see in fig.6.4, in the same way one can also distinguish between
different kinds of surfaces. For example, where

d d d|mm
X+ _ dxo | od™

dr dr dr

>0 (6.7)

we are choosing the flux surfaces between the X-—point and the O’—point of
a DAx state (light yellow in fig.6.4).

To conclude let us say that the shape of the helical flux on the diameter
depends on the helical flux eigenfunction, and in particular on the shape of
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6.1 Flux surface reconstruction: DAx and SHAx
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Figure 6.4: SHAx and DAx along the diameter, surfaces

the perturbation eigenfunction x"""(r). In fig.6.5a) one can see a good eigen-
function profile, for which an increase of the amplitude brings from DAx to
SHAx. During the porting of the SHEq code to the MST device in Madison,
Wisconsin, we discovered that the shape in fig.6.5b) is not good: increasing
the amplitude of the dominant mode it is not possible to reach SHAx states.
Fig.6.5b) was the result of an initial mistake in the eigenfunction reconstruc-
tions in MST, but brings to the awareness that the eigenfunction must have

a special profile, similar to fig.6.5a).

Fialds.sigan -
T T

Figure 6.5: SHAx and DAx along the diameter, surfaces
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6.2 Flux surface averaging

The flux surface average of a function f(x) is defined as the volume average
over an infinitesimally small shell with volume AV, where AV lies between
two neighboring flux surfaces with volumes V and V + AV. It is denoted by
(f), and it is equal to [51]:

_ g M F0dx
<f(X)> = AlXI/'ILlO fff ABx

Following [51], it is possible to prove that the flux surface average of a generic
quantity f(x,0,¢) in a toroidal system is given by

(f) = M (6.8)
[T d0dg /s |
where the integrals are over the poloidal-like and toroidal-like angles. The
Jacobian must be consistent with the chosen coordinate system. We can
choose any coordinate system defined on the helical flux surfaces: to obtain
(6.8) the only requirement is to work with a radial coordinate that is label
of the magnetic flux surfaces.

As an example of the application of this formula, we show in the next
sections the flux surface averages of some quantities defined in section 5.5,
such as the toroidal and poloidal magnetic field or the correspondent current
density components. Of these quantities we compute the average on flux
surfaces, in order to compute radial profiles.

The flux surface average of the power balance equation in section 6.2.2 brings
to an estimation of the thermal conductivity.

6.2.1 Magnetic field and current density components

The graphs of fig.6.6 are computed using formulas of section 5.5 for the
magnetic field and current density components. They show that the flux
surface average of the toroidal field component is monotonically decreasing,
as for the standard cylindrical models of the RFP fields, with a maximum
(of 1.1 T in this 1.5 MA discharge) which is now located on the helical axis
(Vpr = 0), a slow decrease in the central part of the plasma, a knee around
prn = 0.25, and a reversal in the outer part of the plasma. The poloidal
component is also rather flat on the inner surfaces, where it has an almost
uniform value around 0.5 T. The same features are displayed by the current
density components, not surprisingly since both the axisymmetric and the
helical equilibria are force-free. The maximum toroidal current density, on
the helical axis, is around 6 MA /m?, while in the inner part of the plasma
the poloidal component takes values a little larger than 2.5 MA/m?. It can
be also remarked that for p; > 0.8 the toroidal current density is negligible.
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6.2 Flux surface averaging
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Figure 6.6: Left: Flux surface averages of the toroidal and poloidal mag-
netic field components. Right: Flux surface averages of the toroidal and
poloidal current density components. The data refer to shot 24598, at
t =174 ms.

6.2.2 Thermal conductivity

The thermal conductivity £® can be computed averaging the simplified power
balance equation, in its form valid for stationary fluids at rest?:

(V-a)=(nJ% (6.12)
under the hypothesis

q=—rnVT, (6.13)

3T call the thermal conductivity with the symbol &, to distinguish it from the helical
flux .
“The more general power balance equation is written [58]

Dﬂt(%)+3§v.u+w+(PvV)~u:J~E+J-(uxB)fpu~E (6.9)
— Ty e d e

p is the scalar pression, P the tensor of pressure forces, u the main plasma velocity, q the
heat flux vector, J the current density vector, E the electric field, B the magnetic field,
and p the charge density (null for neutral plasmas).

One can find in [58] the physical meaning of all the terms in the equation: the first term a
in the left—hand side of the equation represents the time rate of change of the total thermal
energy density of the plasma (3p/2) in a frame of reference moving with the global mean
velocity u. The second, b, term contributes to this rate of change through the thermal
energy transferred to the volume element due to particle motion. The term c represents
the heat flux and d the work done on the volume elements by all the pressure forces. Term
e on the left—hand side is the work done on the volume element by the electric field in the
frame of reference moving with the mean plasma velocity, E' = E + u x B.

It is easy to see that for stationary (d/dt = 0) fluids at rest (u = 0),

V.q = J-E (6.10)
= nJ° (6.11)

if E=nJ+ux B, but u =0, from Ohm’s law. Eq.(6.12) is the flux surface average of
(6.11).
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for the heat flux q. n is the plasma resistivity and J the current density.
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Figure 6.7: Left: The electron temperature profile Thomson scattering
data. Center: Flux surface average of dissipated ohmic power. Right: Ther-
mal conductivity profile computed from the surface-averaged power balance.
The data refer to shot 22182, at ¢ = 49 ms.

In fig.6.7 (center) we plot the average ohmic power (n.J?). In doing this
the Spitzer-Hirm resistivity formula has been used®, with the electron tem-
perature profile measured by the Thomson scattering system, and plotted
in fig.6.7 (left). Furthermore, we have assumed a flat effective charge profile
with a value adjusted so as to match the total input power, P = VI, assum-
ing stationary conditions. For this case, the correction factor turned out to
be equal to 1.75, which appears a rather reasonable value®. It should be em-
phasized that the average ohmic power profile crucially depends on the profile

5Spitzer-Hiirm resistivity is proportional to the effective charge Z of the plasma and
to To /% for the electron temperature, [11].
5The total input power

P=V(0)Ip (6.14)

where V(0) and Ip are the loop voltage on the axis and the plasma current, must be equal
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6.2 Flux surface averaging

chosen for o(r), as one can understand from the formulas for J in section 5.5.

The thermal conductivity profile is computed from the formula

[ V' dp
nV ‘% (Vp-Vp)

K= (6.19)

where V/ = dV/dp is the specific volume, (Vp- Vp) = (g'!) the first metric
tensor element for the chosen helical coordinate system, dT./dp the gradient
of the electron temperature profile in fig.6.7 (left) and n the electron density
that we consider with a uniform profile. The thermal conductivity profile is
shown in fig.6.7 (right). It can be seen that the thermal conductivity displays
a minimum, at a value around 8 m?/s, corresponding to the strong gradient
in the temperature profile. This is an order of magnitude lower than values
obtained in MH conditions [59]. This is a typical situation during SHAx
states, where the strong temperature gradint is associated to the Internal
Transport Barrier (ITB), [60].

At the end of section 6.3 we compare the k—profile with the safety factor
profile at the same time instant. The magnetic equilibrium reconstruction
shows that I'TBs are related to a peak in the non—monotonic g—profile.

To conclude let us write the steps leading from (6.12) to (6.19): we need
to use the formula for flux surface averages of a divergence

_dp d [dV

(Voa) =g o[t V)| (6.20)

where V' = dV/dp is the specific volume and p the chosen radial coordinate
that labels the magnetic flux surfaces. Using (6.13) and VT, = (dT./dp) Vp

to
P:/nﬁdv (6.15)

We can write the resistivity 7 as

n=f(Z)nz= (6.16)

where Z is the effective charge of the plasma. Computing nz—1 from Spitzer, and assuming
a flat charge profile, we can adjust its value, through f(Z), so as to match the total input
power:

P=f(2) / nz=1J>dV =V(0)Ip (6.17)
therefore
12 = v n‘;(j)jidv (6.18)
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considering T, = T¢(p):

1 d . dT, )
oy Ldro dle o . _ 21
(Voa) =g o[ = Vins 5 (Vo Vi) = %) (6.21)
Integrating the two sides of the equation in dp *
dl,
/d[— V’md—pwp-vm} :/(nﬂ> V' dp (6.22)
T
—V'nk Cilpe (Vp-Vp) = / (nJ*)V'dp (6.23)
J(nJ*) V" dp

R =

- (6.24)
nV e (Vp-Vp)

that is exactly (6.19).

6.2.3 ASTRA

The computation of flux surface averages of different quantities is also an
essential step for building transport equations depending on one coordinate
only (the flux surface label).

An example for this is the transport ASTRA code [61], built for Tokamak
community and then modified both for Stellarators and RFPs.

We do not go into ASTRA details, because transport studies with this code
in RFX are just now started and will be matter of future work. We mention
it here because the SHE(q code is at the moment the only code in RFX that
can compute the helical equilibria of SHAx states and compute averages on
its magnetic flux surfaces.

The main difference between ASTRA for Tokamaks and for non—axisymmetric
machines is the equilibrium reconstruction. For Tokamak discharges ASTRA
computes the equilibrium solving the Grad—Shafranov equation. For non—
axisymietric equilibria the Grad-Shafranov equation is not valid anymore,
and ASTRA asks for the equilibrium parameters as an input.

One can find the whole set of equilibrium parameters that ASTRA needs
to evolve all its transport equation in the manual. Here we cite just some
example:

o

dpa’
where we choose p = pa from (4.64) in order to work with a radial variable
in meters®.

g"' = (Vpa-Vpa), .. (6.25)

"All the function are null on the helical axis.
80ne can see section 9.2.2 for some example on how the metrics elements changes
changing the radial variable
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6.3 Helical safety factor profile

In section 7.3 one can find the first example of transport studies during
helical states performed in RFX in collaboration with the Theory Group
of TJ-1I, Ciemat, Madrid: the evolution of the helical rotational transform,
that is the inverse of the helical safety factor defined in section 6.3.

6.3 Helical safety factor profile

It is possible to use different equivalent definitions of the g—profile, or of its
inverse, the rotational transform ¢ ?. In particular one can use the basic
definition of the rotational transform as the number of turns of a magnetic
line around the magnetic axis that, in axi-symmetric configurations, we can
usually think as the center of the vacuum vessel. In SHAx states the mag-
netic axis is instead the helical axis, but the number of turns around the
latter has a simple relation with the number of turns around the center of
the vacuum vessel: we must simply add the n = 7 turns of the helical axis
around the center of the vacuum vessel to the turns of the magnetic line
around the helical axis'®. We will prove this using two Action-Angle coor-
dinate systems introduced in chapter 4: (x,up, ¢) and (x, 0%, ¢). To confirm
my results we will compare them with the results obtained in [60], where
the number of turns around the center of the vacuum vessel are counted out
using the ORBIT field line tracing code [63].

In chapter 4 we find good Action—Angle coordinate systems valid in SHAx
states, and we can therefore use the definition of the rotational transform
valid in straight field line coordinates to compute the helical safety factor.
Using the (x, un, ¢) coordinates defined in section 4.2.2,

_ dup _ dx
de  diyy

where the second equivalence derives from the definition of the equations of
motion for Action-Angle coordinates in Hamiltonian context!!: remember-
ing the identification of the helical coordinates (x,up,¢) with the canoni-
cal variables that we saw in section 4.2.2, this definition of the rotational
transform has the expected form of the canonical equation of motion (¢; =
O0H/0p;) once ¢ has been chosen to be the canonical time. As expected, the
Action ¢y (x) is a constant of the motion.

If we write the number ¢ of turns around the center of the vacuum vessel

Lh (6.26)

9As said in the introduction, we use the symbol ¢ (which rigorously is the average
poloidal angle described by a field line per toroidal turn) instead of ¢ = ¢/2.

10References for that can be found for example in old Stellarator papers, as [62]

"When using Action-Angle coordinates the safety factor can be define either with
the ratio between fluxes or between coordinates. This arises immediately from canonical
equation.
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in the equivalent way as the ratio between the differential of the poloidal
and the toroidal flux enclosed by the helical flux surfaces X(x), ¢ can be also
written as

_dor dyp
"Tdp T duy
remembering the result of section 4.2.2, where 1, turned out to be the
toroidal flux. Again, the equivalence with the ratio between the coordi-
nates is due to Hamiltonian mechanics and it is true just for Action—Angle
coordinates.
As we have already said, we can also write!?

(6.27)

L=1tp+n. (6.30)

The ¢y, rotational transform is computed by the SHEq code using the canoni-
cal definition (6.26) and the Action-Angle coordinates (x,un, ). The more
common definition of the rotational transform ¢ as the ratio (6.27) is easily
computed using (6.30), and the resulting safety factor profile ¢ = 1/¢ can be
seen in the top frame of fig.6.8 up.

In fig.6.9 one can see the good agreement in the q—profiles computed by
the SHEq code from formula (6.30) (red) and by the ORBIT code (blue),
i.e. as the number of turns around the center of the vacuum vessel.

Fig.6.8 top and fig.6.9 show a typical g—profile for SHAx states, reversed,
symmetric with respect to the helical axis and almost flat in the inner bean—
shaped flux surfaces region. If we compare the electron temperature profile
from Thomson scattering data (fig.6.8 bottom) with the safety factor profile,
we can identify a maximum of the ¢ in correspondence of the steep tem-
perature gradient. The steep gradient is related to very low value of the
thermal conductivity (remembering the results in section 6.2.2) and we can
therefore say that the g—profile has a maximum in correspondence of the
Internal Transport Barrier (ITB) that delimits the hot bean—shaped core of
SHAx states [60]. The maximum in the ¢-profile is found to be related to
the original rational surface of the dominant mode (m,n) = (1,7) (which
disappeared in the transition from DAx to SHAx state) and I'TBs are always

12We can prove this relation in this way:

dX d’l/]p - ndwh d’l/lp

gy = —~ = 28 TR TP =, —n 6.28
" dyn din din (6.28)
using eq.(4.66), x = myp — nipp for m = 1.

Or we can write the same using the ratio between the angular coordinates:

dup, ~ dO* —ndep  dO”
th = =—"T =

—-n=t1—n (6.29)

% dy T dy

obtaining the same result because both the (x,un, ) and (x, 0", ) are straight field line
coordinate systems. We used here eq.(4.80) for the poloidal angle 6*.
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Figure 6.8: Up: helical ¢g—profile computed by SHEq from the inverse of
equation (6.30). Down: Electron temperature profile from Thomson scatter-
ing data. Reconstruction for shot 23977, time 173 ms at the toroidal position
(¢ = 82.5°) of the Thomson Scattering measurements. The abscissa pj, is
the square root of the normalized helical flux (4.2).

found in this position during SHAx states.

Let us go back to the physical interpretation of the angles u;, and 6*

(section 4.4) and therefore of the rotational transform ¢ and ¢}, defined in
eq.(6.26)—(6.27): wy, is turning around with a fixed phase with respect to the
bean (let us say always on the convex part of the bean, for ¢, = 0), whereas
0* is fixed on the horizontal plane (and can be associated to the laboratory
frame of reference). Because of this one can think at ¢ as the number of turns
of a magnetic field line counted by the laboratory frame, that will also see
n = 7 turns of the bean for each toroidal turn. On the other side, ¢; can be
thought as the number of turns of a magnetic field line counted by the local
frame of reference of the bean, that will of course not see the n = 7 turns
around the helical axis.
The rotational transform is a physical quantity whose profile does not de-
pend on the chosen coordinates. Relation (6.30) shows that the profiles are
just displaced by a constant when we change the coordinate system, and it
is nothing but the relation between the definition of ¢+ in two different frames
of reference.

To conclude we want to stress that ¢y, is one of the Stellarator choice for
the rotational transform: ¢, = 0 corresponds to a magnetic field line that
after one toroidal turn goes back exactly in the same poloidal and toroidal
position. Therefore what Stellarator comunity call poloidal angle is what we
am calling helical angle in this thesis.

An interesting collaboration is going to start with TJ-II Theory Group, be-
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Figure 6.9: g-profiles on the horizontal diameter of the vacuum vessel.
Black: qg-profile computed by the ORBIT code; green: g—profile computed
by the SHEq code from the inverse of equation (6.30). Shot 23977, time 173
ms, toroidal angle=255.8°. A vertical line marks the radius of the center of
the vacuum vessel and a horizontal one the ¢ = 0 line where the toroidal
magnetic field reverses.

cause of the similarities between their rotational transform profile and our,
inside the bean—shaped magnetic flux surfaces. In particular, the almost
flat rotational transform profile and absolute values between zero and two.
The difference that can be studied are the sign of the derivative of both the
rotational transform and of the averaged magnetic well.
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Chapter 7

Equilibrium evolution: the
Ohmic constraint

7.1 The Ohmic problem in RFPs

As seen in the introduction (sec.1.2.4), a dynamo is acting in RFP plasmas,
in order to provide the reversal and maintain the configuration for times
longer than the resistive ones.

No dynamo can sustain (and therefore no reversal can be sustained by) an
axi-symmetric magnetic field. This is known in astrophysics as the Cowling’s
theorem and by extension one can speak of a Cowling’s theorem for the RFP:
at least one mode of a perturbation to the axi-symmetric configuration must
be present to sustain the reversal, through a dynamo (v x B) term in the
parallel Ohm’s law:

(E)) + (v xB)) = (nj)) (7.1)
—_———

dynamo
with an electrostatic! field E
E=-V¢+Eg (72)

where ¢ is the electrostatic potential related to a charge distribution and Eg
the induction electric field related to the axial loop potential. (...) means the
average on magnetic flux surfaces.

The dynamo process is usually associated to the effect of perturbations in the
quadratic (v x B) term, but without an explanation of the origin of the ve-
locity field. In the laminar SH case (where just one mode of the perturbation
is present) the plasma flow v can be thought as a mere electrostatic drift,
due to the helical distortion of the plasma?. This picture of the dynamo has

!Imagining a steady state ohmic equilibrium.
20One may think for the SH case at the perturbed magnetic flux surfaces of SHAx states.
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been extended also to the MH case (where many MHD modes are present
in the perturbation) [64]. In fig.7.1 is shown that both the electrostatic and
the standard picture of the dynamo are equivalent, but the former has the
merit of giving a first explanation of the origin of the velocity field.

The problem of an ohmic reversal has been studied since the beginning of the
RFP history, and the emergence of the SH picture is the first step beyond
Taylor’s theory (sec. 1.2.5), the backbone of RFPs till the late 90’s. We will
describe the present status of the theory of helical RFP equilibrium just in
a qualitative way (for more details see for example [65]).

J. Finn, R. Nebel and C. Bathke [10] prove the impossibility of an ohmic
reversal of the toroidal field in a pure poloidal or toroidal symmetry®. This
is done in an analytical way, using the parallel averaged Ohm’s law and the
force free force balance equation?. In the same paper, an equation (but first
written by V. D. Pustovitov [66, 67])° for the axial magnetic field profile B,
is also given in the case of helical symmetry, in a periodic cylinder®.
Without going into the analytical steps, we just write the V.D. Pustovitov’s
and J. Finn’s equation”, the so—called Pinch-Stellarator equation, where the
Stellarator term S(p) is the term that may provide the reversal of (B,):

d Ey

%<Bz> = WUBZ) +S(p) (7.3)
p is a label of the helical magnetic flux surfaces and FEj the electric field
component related to the toroidal loop voltage V;. Equation (7.3) is a first
order differential equation for (B,), which is obtained by combining the heli-
cal Grad-Shafranov equation® and the averaged parallel Ohm’s law (in force
free conditions).
The Stellarator term S(p) is a term dominated by geometry, and vanishes
for a pinch with axial symmetry. In a Stellarator (since Ey = 0) it is the only
term providing the variation of (B.). When S = 0 due to axi-symmetry,
(B,) cannot reverse, which is a way to recover Cowling’s theorem. Equation
(7.3) can be formally integrated, and only? a positive S(p) may a priori pro-
vide the reversal of (B,).
The Pinch-Stellarator equation (7.3) is the first indication of the modern
view of the helical (SH) RFP, where the configuration is linked with a he-
lical deformation of the plasma column, and the reversal is a consequence

®Before them other investigated the problem of Ohmic reversal for magnetic fields
symmetric by an axis, see chapter 5 in [56] and references therein.

“See comments to equation (A.39) in appendix A.2

See also P. N. Vabishchevich et al (1983), [68, 69].

5B. corresponds to the toroidal magnetic field profile in a torus.

"Equation (10) in Pustovitov’s paper, [66, 67]; equation (35) in Finn’s paper, [10]

8The Grad-Shafranov equation is derived using the force balance equation and Am-
pére’s law, for the case of null pressure and velocities. For the helical Grad—Shafranov
equation on a cylinder see for example [70].

9At least in a finite edge radial domain in p.
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7.1 The Ohmic problem in RFPs

of a loss of axi—symmetry of the cylindrical pinch. This picture enables the
description of the RFP through the simple wire model, which exhibits a self-
organized magnetic system with field reversal where the loss of cylindrical
symmetry is essential and due to a kink instability!? (section 1.2.5).

The analytical description of the RFP is not complete, e.g. there is not
a necessary and sufficient criterion for S(p) to have the right sign to provide
the reversal of the axial magnetic field.
Nevertheless a necessary criterion has been found. Analytically, the SH
ohmic states are frequently (|70, 71|) described as a small helical pertur-
bation of an axi-symmetric ohmic pinch (with small edge conductivity and
small edge axial magnetic field), called ultimate pinch. Taking the ultimate
pinch as the zeroth order equilibrium, and applying a second order pertur-
bative theory to the Pinch—Stellarator equation (with the amplitude of the
helical perturbation as a small parameter), D. Bonfiglio et al. in [71] derive
a necessary criterion for the reversal of (B,).

If the analytical description is not complete, from the numerical point of

view the existence of an ohmic reversal for a cylindrical pinch with helically
deformed magnetic flux surfaces has been proved by [8, 9], using a visco—
resistive compressible non—linear MHD model in the constant—pressure and
constant—density approximation.
Numerical simulations show that the necessary criterion works also for large
values of the perturbations to the pinch, so the criterion is more general than
suggested by the perturbative approach used for its derivation [71]. Numer-
ical simulations reveals also that, in the presence of a helical perturbation,
the reversal is easier when a finite edge radial magnetic field (that usually is
vanishing with a perfect conducting shell) is applied. Experimental results
agree with numerical simulation, and the necessary criterion is found to be
satisfied in RFX-mod experiment during SHAx states, with a non zero edge
radial magnetic field imposed by the active control [71].

The present understanding of the RFPs gives also some explanation of
the dynamo process. Let us briefly see some of these considerations, |72].
In the standard invocation the dynamo electric field results from the effect
of the perturbations in the quadratic (v x B) term. On the other hand, in
the laminar SH case the plasma flow can be thought as a mere electrostatic
drift, due to the helical deformation of the magnetic flux surfaces: in the SH
picture, when a RFP configuration appears, the gradual loss of the axial-
symmetry of the magnetic field produces a current density modulation j
along the magnetic field lines. A current density modulation requires a
modulated ohmic electric field (along these lines), which drives a charge

0(m,n) = (1,n), kink instability due to ¢ < 1.
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separation to balance it: the distribution of the charge separation (p.) is
continuous and helically symmetric. It is related to an electrostatic potential
¢, and can be computed through Laplace’s equation'!. The corresponding
electrostatic field E = —V¢ is the required electric field necessary to provide
the helical modulation of the parallel current density j.

It is possible to prove [73] that the standard and the electrostatic picture of
the dynamo are equivalent.

The contribution of the electrostatic field to the dynamo can be quantified
using the spatial mean (over the poloidal angle and the axial coordinate z
and indicated with the symbol (...)5)'? of the parallel Ohm’s law: with the
electric field from eq.(7.2), the Ohm’s law (E = nJ — v x B) can be written
as:

Eoy—-V¢=nJ—-vxB (7.4)

Projecting now the two sides of the Ohm’s law on the total (helical) magnetic
field, the term v x B vanishes and :

Ey <Bz>s - <V¢ ’ B>s - <77J ) B)s (75)

because Ey || ;.

Looking at the radial profiles of this equation in fig. 7.1 a) and comparing the
spatial mean of this equation with the averaged Ohm’s law in eq.(7.1), one
can see that the difference between the induction electromotive force term,
proportional to Ey, and the mean parallel current density is balanced by the
electrostatic term (V¢ - B)s. Therefore this is the term that provides what
are often named the anti—dynamo term in the core and the direct—dynamo
at the edge.

The standard view, where the dynamo term has the form v x B, is recovered
projecting the two sides of the Ohm’s law (eq.(7.4)) on the axi-symmetric
component By of the magnetic field:

Eo (ez . B0>5 — ((V X B) : B0>5 = <T]J . B0>s (76)

The term due to the electrostatic potential vanishes since V¢ has no axi—
symmetric components, and the dynamo/anti-dynamo term is provided by
the usual ((v x B) - Bg)s term. This can be seen in fig. 7.1 b).

Therefore both the electrostatic and the standard picture of the dynamo are
equivalent. However the latter is unable to explain the origin of the velocity
field, while the former does: the helical modulated electrostatic potential
brings a component of the electric field (E = —V¢) perpendicular to the
magnetic field B. This component drives a v = E x B motion, whose non
axi—symmetric part is exactly the dynamo velocity field.

HErom the divergence of the electrostatic electric field E = —V¢, the laplacian of ¢
yields the charge density due to the ambipolarity constraint (VZ¢ = p.).

121t coincides with the flux surface averages on the circular flux surfaces of the axi-
symmetric magnetic field By.
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Figure 7.1: Reproduced from S. Cappello et al., [21]. Radial profiles of
mean parallel Ohm’s law components, in the Single Helicity steady state. a)
Ohm’s parallel to the total magnetic field. b) Ohm’s law parallel to the mean
magnetic field.

7.2 The Ohmic constraint in SHEq

As seen in the previous section 7.1, one would require Ohm’s law to be valid
for the helical equilibria.

The main work of this thesis looks for the description of the helical SHAx
state RFP equilibria, now computed by SHEq code. The equilibrium sys-
tem of equations that is solved for SHEq does not account for Ohm’s law
(chapter 3): a natural question which arises when a SHEq equilibrium has
been computed is therefore whether the large current flowing in the plasma
is consistent with Ohm’s law.

Let us go back to the Ohmic constraint in equation (A.36), written for a
stationary equilibrium:

Vi .

24<B¢> =n(-B). (7.7)
v

In equation (7.7) V; the toroidal loop voltage, and we can check a posteriori

if it is verified by SHEq’s equilibria.

The two sides of the Ohmic constraint (7.7) can be computed by SHEq.
The magnetic field B, its toroidal contravariant component B¥ and the cur-
rent density J are computed as explained in section 5.5. As for the power
balance described in section 6.2.2, a flat Z.f; profile has been assumed, and
the toroidal loop voltage V; is an experimental constant value (see appendix
A).

The two sides of the Ohmic constraint are plotted in Fig. 7.2 for a typical
1.5 MA SHAx state. A remarkable discrepancy can be seen, with the first
term being larger than the second one in the inner portion of the plasma,
and smaller in the outer one. Such discrepancy could be partially resolved
assuming a profile of effective charge with a peak in the center of the plasma,
instead of the flat profile which has been assumed here. Even if this is the
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Figure 7.2: Left hand side (open circles) and right hand side (solid circles)
of equation (7.7), plotted as a function of the effective radius p. The data
refer to shot 22182, at ¢t = 49 ms.

case, the & — ©g model assumed for the zeroth-order parallel current den-
sity appears anyway to be not appropriate, since in the outer part of the
plasma the profile of (B¥) changes sign, whereas the other one does not.
This requires either to assume a profile of ¢'? changing sign in this region,
or a residual dynamo contribution of the secondary modes. Moreover, the
Ohmic constraint, that SHEq’s equilibria do not satisfy, has been calculated
for stationary equilibria: we can consider them non steady state equilibria.

These considerations point to the need of performing equilibrium calcu-
lations which take into account the Ohmic constraint.
In section A.5 we introduce an equation for the time evolution of a non
steady state equilibrium, that accounts for the Ohm’s law in its formulation
(the Ohm’s law with non static electric field). The evolution of non steady
state SHE(q’s equilibria is an ongoing work in collaboration with the Theory
Group of TJ-II, Ciemat (Madrid) (section 7.3.2).
Moreover, in the Theory program for 2012 for RFX-mod we would also
like to write a code for computing the dominant mode eigenfunction with a
generic current density profile, based on the algorithm now used to compute
the eigenfunction of poloidal and toroidal fluxes using NewcombaAZs equa-
tion (see chapter 3). The code will be integrated with the SHEq code for
computing helical equilibria in QSH states, thus increasing its flexibility and
allowing it to explore the effect of the current profile on the helical equilibria
and in particular of an ohmic axi-symmetric current density Jo satisfying
Ohm’s law.

13The proportionality between the magnetic field and the plasma current density, in
force free conditions: j = oB.
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7.3 The equilibrium evolution

7.3 The equilibrium evolution

In the appendix regarding the MHD equations, a section (sec. A.5) is devoted
to the derivation [74] of an equation for the time evolution of the rotational
transform (for its inverse, the safety factor profile, see section 9.3.1), com-
patible with Ohm’s law and suitable for inclusion in numerical simulations.

A collaboration with the Theory Group of the TJ-II Stellarator device
(Ciemat, Madrid) started with the objective of evolving eq.(A.62) for the ro-
tational transform (or equation (9.141) for the safety factor profile), in order
to reach a steady state ohmic equilibrium, both for TJ-II and for the helical
SHAx states in RFX-mod. This is of course of interest for RFX-mod be-
cause (section 7.2) it has been shown that the helical equilibria computed by
SHEq code do not satisfy the Ohmic constraint (eq. (7.7)), and are therefore
not steady state equilibria. The interest for TJ-II is in order to analyze the
discharges with non null plasma current: with some ohmic current flowing
in the plasma, even their equilibria evolve in time accordingly to eq.(A.62),

[75] 4.

Both the evolution of the rotational transform for TJ-II and of the helical
safety factor profile in RFX—mod are done using the ASTRA transport code:
some ASTRA subroutines have been written in order to evolve the equation
(that is not an equation already inside ASTRA) in an iterative way.

The work done for TJ-II discharges is presented in section 7.3.1, the one for
RFX-mod in section 7.3.2.

For a complete specification of the evolution problem, we need to specify
the boundary condition for the rotational transform ¢ (or the safety factor
profile ¢), and to choose a radial variable p to label the magnetic flux sur-
faces!®.

For consistency, however, to obtain a good description of the plasma evolu-
tion, the geometry (and therefore the radial variable p and the S;; elements)
must be frequently recalculated, to account for the changes due to evolving
of the equilibrium and therefore of the magnetic field configuration. This
will be done by the VMEC equilibrium code.

In RFX-mod, due to the presence of the reversal surface at the edge, the
safety factor profile is evolved instead of the rotational transform, and the

!The configuration is not the vacuum steady state equilibrium defined by

S12
= —— 7.8
L 5 (7.8)

150f course all the equilibrium quantities, as for example the susceptance matrix el-
ements, must be calculated with the same choice of the radial variable p (see section
9.2.2).
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monotonic poloidal flux is chosen as radial variable instead of the non mono-
tonic toroidal one (remember fig.4.5). The toroidal flux is a good choice for
the radial variable in TJ-II.

7.3.1 The time evolution of ; for TJ-II (Ciemat, Madrid)

The evolution equation

The equation for the Ohmic time evolution of the rotational transform
is:

o O OYy 0 oV
5 = oot Tou B Ba (79)
_oow, o, ) 0 (Suit S
o Oy Ot +3¢t [Mowt (21t + 5z2) 3P(S2lb+522)}
) oV
_ %[nngs.m%} (7.10)

V' is the volume enclosed inside the p = const flux surfaces, 1; and 1, the
toroidal and poloidal flux respectively, 7 the parallel resistivity. Js is the
contribution of the Bootstrap current, that we write here for completeness,
but that we neglect from now on.

Equation (7.10) has been derived in appendix A.5 (see equation (A.62)) using
the averaged Ohm’s law and Faraday’s law, together with the susceptance
matrix elements S;; which relates the currents and the radial derivative of
the fluxes (Ampeére’s law). The susceptance matrix has been better defined
in appendix A.3.

Equation (7.10) takes different forms depending on the choice of the radial
variable p (used to label magnetic flux surfaces and therefore to compute all
the equilibrium quantities). For TJ-II it has been chosen:

{n Wy
_ —/ 7.11
p -~ PN Bra2 PN (7.11)

which means

Bra?
wt = P P2 (712)
PN
Bra?
W = 22, (7.13)
PN
0 p% 10
— = —— 7.14
Oy wBa?2p dp (7.14)
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7.3 The equilibrium evolution

In these equations B is the magnitude of the axial toroidal field and py is a
constant with the dimensions of a lenght, for which one can choose py = a,
where a is the minor radius of the vacuum chamber. This is a useful choice
for the radial variable in ASTRA, that usually has the dimension of a lenght
([m]), [61]. With this choice of p, eq.(7.10) becomes:

gL @% + 1g[ﬂp(SmL—i-522)22(7811L+512)}
t Op ot pdplug Op \ Sa1t + S22
A oV

27 M B
The first term of this equation is proportional to the time derivative of the
toroidal flux (and therefore of the radial variable). We do not consider this
term, confident that it has only a weak influence on the evolution [74] and
that it is anyway considered when recalculating the geometry (and therefore
magnetic fields and fluxes) after some step of the equilibrium evolution. The
last term of equation (7.15) is related to the Boostrap current, and we neglect
it. With ASTRA just an approximate expression is therefore evolved:

% ~ Lo ﬂp (Sa1t + S2)? 9 <7SHL i Sl2>]

t pdpluo Op \S21t + Sa2

To evolve this equation we need to fix also the boundary condition for the
rotational transform: ¢(p = a). Using for ¢ the equation (A.50) in the
appendix'6

(7.15)

(7.16)

pol — Si2
= - — 7.18
‘ Suv;  Su (7.18)

and remembering the choice for p, the boundary condition can be:

1 Ip p3
p=a)= 5 (“0 PPN _ 512) (7.19)

2 Bra3

or, for the choice py = a

p=aANpy=a)=— - 512> (7.20)

where, for the toroidal current I, I(p = a) = Ip with Ip the plasma current
(experimental value).

The iterative model in ASTRA

SEquivalent to eq.(8) in [74].
Due to some numerical error, future work will try different boundary condition for the
rotational transform. For example, eq.(7.18) can also be written as ([74])
L= Sool — S1oF
N SllF - SQII
where I and F' are the toroidal and poloidal current of eq. (A.43). Using I(p = a) = Ip

and the computed values of F'(p = a) and of S;;(p = a) (out of VMEC), one can use this
formula for the boundary condition.

(7.17)
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Figure 7.3: The iterative model scheme for the solution of the equilibrium
time evolution with ASTRA and its subroutines: EQUILVMEC runs VMEC
and computes the equilibrium quantities in Boozer coordinates; [IOTAEVOL
writes the RHS and the boundary condition for the equation that ASTRA
must evolve. The consistent problem implies updating the metrics to be read
by IOTAEVOL after several steps in the evolution with a fixed metrics.

As said in section 6.2.3, the ASTRA transport code was initially written
for the analysis of Tokamaks’ discharges, and only afterwards modified to
work also with non axi-symmetric geometries, like Stellarators’ ones (or the
helical geometry of a SHAx state in RFPs). When ASTRA runs for non
axi-symmetric configurations, it can not compute the equilibrium by itself,
but it needs a list of equilibrium quantities as an input [61].

ASTRA runs reading an input file with experimental data and equilib-
rium quantities, and a model file where all the instruction for the transport
analysis are listed.

The right hand side (RHS) of equation (7.16) is described to the ASTRA
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7.3 The equilibrium evolution

evolution solver as a source term, with zero diffusivity!” [61]. This is written
in the model file, that also calls two different subroutines (EQUILVMEC
and IOTAEVOL) in the iterative scheme of fig. 7.3. The first one runs the
VMEC equilibrium code and writes a text file with all the useful equilibrium
profiles. The second one writes the RHS of equation (7.16) for ASTRA evo-
lution.

EQUILVMECQC: 1t is the subroutine written to couple the transport
code ASTRA with the equilibrium code VMEC.
EQUILVMEC first writes the input file for VMEC, reading ASTRA’s out-
put: the toroidal flux and the rotational transform profiles, together with the
plasma current and the total value of the toroidal flux at the edge. Then, it
executes the VMEC code and the code to convert the equilibrium quantities
to Boozer’s straight coordinates. A modified version of this code writes in a
text file (named metrics-average) a set of radial profiles'®: useful to evolve
equation (7.16) are the S;; susceptance matrix elements, the rotational trans-
form and the poloidal and toroidal currents (F' and I respectively).
The output of EQUILVMEC are read by the second subroutine, IOTAEVOL.

IOTAEVOL: It is the subroutine that writes the RHS of the evolution
equation (7.16) and the boundary condition, reading the text file (metrics-
average out of EQUILVMEC) where all the useful radial profiles are written
in Boozer coordinates.

Its output is therefore the RHS equation that ASTRA must evolve and the
boundary condition for the evolution.

Reading IOTAEVOL’s outputs, ASTRA can evolve the rotational trans-
form accordingly to equation (7.16) and to the boundary condition (7.19).
Going back to the iterative scheme of fig.7.3, the evolution must be fre-
quently'? stopped, VMEC must be run again to compute the new equilib-
rium profiles from the evolved rotational transform, and a new RHS (together
with its boundary condition) must be updated.

The codes are prepared for this kind of self consistent evolution of the rota-
tional transform that implies updating the metrics to be read by IOTAEVOL
after several steps in the evolution (with a fixed metrics). It is worth noting

"The diffusion equation employed in the ASTRA code is:

% — (V- (DVA) + S(p) (7.21)

for any quantity A(p). The first term is the diffusive one (that could also account for
convective transport with an effective diffusion coefficient D.ys) and S(p) the source term.
We could not separate equation (7.16) in this form, choosing therefore to write the RHS
all in the source term S, with zero diffusivity.
'8 All the radial profiles are computed using the chosen radial variable p, eq.(7.11)
9Future work must find a quantitative value for this frequently.
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that during the evolution with a fixed metrics the evolution of the RHS is
only due to the evolution of the rotational transform (because their explicitly
dependence in the form of equation (7.16)) while the S;; elements are fixed.

iota RHS
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Figure 7.4: Equilibrium profiles related to the rotational transform profile
obtained for plasma current Ip = 500 A (top-left in black) and useful to
evolve equation (7.16): the RHS; the susceptance matrix elements S11, Si2
and Sos. All the profiles are written in Boozer coordinates for the chosen
radial variable in the text file metrics average and represent the equilibrium
during the "initial step" of the evolution. In top-left figure, the red rotational
transform profile is related to the vacuum one for comparison. In top.—right
figure, the RHS values are residual, this is why it looks steep.

The model and the subroutines have been written during my stay in
Madrid.
Just some checks have been done at this time for the mentioned evolution
steps. In fig 7.4 one can see the plot of some important quantities, as the
RHS and the susceptance matrix elements for the initial rotational transform
profile (obtained for plasma current /p = 500 A).

Some preliminary result

Stellarators’ discharges can be current—free, which means that I = 0, and
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ASTRA evolution
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Figure 7.5: Top: some intermediate moment of the ASTRA time evolution
of the rotational transform and the RHS from some equilibrium with I, # 0
to the steady state equilibrium with I, = 0. The initial equilibrium state
is the one obtained for Ip = 500 A and showed in fig.7.4. In black the
initial equilibrium profiles, in red the final steady state ones, colors for nine
intermediate profiles. Bottom: the evolved rotational transform profile
(black line) and the vacuum one (red points) that perfectly overlap.
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therefore (see equation (A.50))

S12
L= —— 7.22
5 (7.22)

It is called the wacuum rotational transform, and the related equilibrium
must be steady state.

From the analytical point of view it is easy to prove that using eq.(7.22),

S+ S Su(—22)+ 5
(7“” 2) = ( l gn) =) =0 (7.23)
Sa1t + Sao 521(—ﬁ) + So9
and therefore all the RHS in the evolution equation (7.16) vanishes, proving
that the Stellarator vacuum equilibrium is already steady state.

From the operative point of view this can be a first check of the ASTRA
evolution.
In ASTRA it is possible to change some discharge parameter (like the plasma
current) during the run. Setting Ip = 0 (and therefore I = 0) to look for
the stationary vacuum equilibrium, the system immediately relaxes to the
vacuum rotational transform. In fig.7.5 (top) one can see the ASTRA evo-
lution when Ip = 0 is set, both for the rotational transform profile and for
the RHS of equation (7.16). It is worth noting that during this evolution the
metrics elements have not been updated, therefore the evolution of the RHS
in fig.7.5 is only due to the evolution of the rotational transform and not to
the S;; elements that represent the metrics during the "initial step". This
is therefore just an example with a long time step before updating the ge-
ometry, the complete MHD problem being fulfilled just by updating the S;;
more often. In fig.7.5 (bottom) one can see the evolved rotational transform
profile (black line) and the vacuum one (red points)?’: as one can see, they
perfectly overlap.

We are therefore confident that ASTRA is working correctly with the
written subroutines for the time evolution of ¢. More validation and subse-
quent analysis will be matter of future work.

7.3.2 The time evolution of ¢ for RFX-—mod

In section 7.3.1 is presented the work done with the Theory Group of Ciemat
(Madrid) for the evolution of the rotational transform in TJ-IT (non null
plasma current) Stellarator discharges.

20The vacuum rotational transform profile comes from tj2 codes (based on Biot-Savart
law) that uses the currents in the external coils as input.
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7.3 The equilibrium evolution

The work done for RFX-mod is very similar to the one for TJ-II, but some
differences arise due to the reversal region only present in RFX-mod: the
safety factor profile (¢ = 1/¢) is evolved instead of the rotational transform
(that diverges at the reversal surfaces, whereas ¢ simply vanishes) and a
function of the monotonic poloidal flux must be chosen for the radial vari-
able (instead of a function of the toroidal flux that is non monotonic in a
reversed configuration).

This implies some modifications of the ASTRA model and subroutines (EQUI-
LVMEC and IOTAEVOL) in order to evolve the equation for the safety factor
and to use the right radial variable and boundary conditions.

The equilibrium evolution is an important point for RFX-mod discharges,
due to the fact that the helical equilibria computed by SHEq (for SHAx
states) are not ohmic equilibria (see section 7.2).

The evolution equation

Following the same steps necessary to derive J¢/0t using Ampeére’s, Fara-
day’s and the parallel Ohm’s laws (see appendix A.5 and Strand’s and Houl-
berg’s paper |74]), in section 9.3.1 we derived the equation for the time
evolution of the safety factor profile (9¢q/0t).

The equation for (dq/dt) is?!:

dg _ Jq (O d 0 (S11+ S12¢
% 8%( 24 1i(0)) - M[ U (S +Sma)” 5 (G|
oV
= [m|<J B)(%}} (7.24)

where ), is the poloidal flux through the helical flux surfaces p = const, S;;
the susceptance matrix elements, V the volume enclosed inside p = const,
V;(0) the toroidal loop voltage on the axis.

As done for the evolution of the rotational transform, we neglect both the
term involving the Boostrap current J; and the first term of the equation
that involves the change in the geometry and the loop voltage on the axis.
However, the term proportional to V;(0) (not present in the evolution of
t) should probably be taken into account and the term involving the the
non-inductive current Js could be used to account for some residual dynamo
currents (but we will account for them role just in future work). We therefore
evolve with ASTRA just an approximate expression (similar to eq.(7.16)):

dg 0

2 5L 2 0 (511—1-812(1)]

D SZ + szjz q ~ \ 5~
,(]Z) ( ! ) (90 521 + 522 q

(7.25)

*See equation (9.141).

147



Equilibrium evolution

Equation (7.25) takes different forms depending on the choice of the

radial variable p. For RFX-mod the choice is??
p= 1|2 o (7.26)
zﬁp,maaﬂ
which means
vy, = Lp’gww p* (7.27)
PN
/A '(;Z)p,max
Y, = 5— 2p (7.28)
PN
d ¥ 19
g - N 29 (7.29)

pN is a constant with the dimensions of a length, and one can choose py = a,
where a = 0.459m is the minor radius of RFX-mod vacuum chamber. This
is a useful choice of the radial variable for ASTRA, that usually has the
dimension of a lenght (|m]). With this choice of p, eq.(7.25) becomes:

9q  _1orm

ot~ pdplu 2 (Sll+512q>]

p (So1 + S92q)* — So1 + S d

5 (7.30)

To evolve this equation we need to fix also the boundary condition: ¢(p = a).
Using for ¢ the inverse of equation (A.50) in the appendix:

SuF - Syl
1= Sool — S12F

where I and F' are the toroidal and poloidal current, eq.(A.42)—(A.43). The
boundary condition for the safety factor can be found using the edge values

of all the quantities: I(p = a) = Ip and the computed values of F(p = a)
and of Sj;(p = a) (output of VMEC).

(7.31)

It is worth noting that the aim of this work is to evolve the helical equi-
libria, computed by SHEq: the magnetic flux surfaces labelled by p are the
¥ (x) magnetic flux surfaces defined in section 6.1, where x is the helical flux;
the poloidal flux is the poloidal flux 1, (x) defined in section 4.4 as the flux
through the helical flux surfaces ¥(x) at the poloidal-like angle 8* = const,
defined on the helical axis of the system (section 4.4.1). This angle is related
to the helical ¢-profile in equation (6.27):

_de _ din
1= a0 T dy,

(x) (7.32)

22 Consider ¥pmaz = T Ra Bp = % tolp. The second equivalence is derived using this
relation for the total magnetic poloidal field: Bp(a) = po I/(2mwa), with a minor radius

and R major radius.
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7.4 The paramagnetic pinch

where 95, () is the non monotonic toroidal flux defined in equation (4.19)
and plotted in fig.4.5, and ¢,(x) the (monotonic) poloidal flux defined in
equation (4.19).

The VMEC code converges very near to this value of ¢, computed by SHEq,
and this is the helical safety factor that is evolved by ASTRA.

The angle 6* is topologically equivalent (|76]) to the Boozer poloidal angle
used by the VMEC equilibrium code to compute the equilibrium profiles.

Some preliminary results

The same subroutines used for TJ-II, modified for the evolution of the
safety factor and its boundary condition, are used.
The VMEC equilibrium code was initially written for Stellarator machines,
and then modified to work for reversed configurations too: this must be taken
into account in EQUILVMEC to write the correct input file for VMEC?3.

In fig. 7.6 are plotted some important equilibrium quantities: the initially
g-profile (output of VMEC), the susceptance matrix elements, and the RHS
of equation (7.30).

It is not easy to devise a simple check for ASTRA evolution, as done
for TJ-IT with the vacuum steady state equilibrium. Does a sort of vacuum
equilibrium exist for REPs? Of course it is not the I = 0 case, because zero
plasma current does not induce any helical SHAx state.

The work for REX-mod is ongoing, as the collaboration with Ciemat.

7.4 The paramagnetic pinch

The paramagnetic pinch is a cylindrical magnetic configuration, with an ax-
ial electric field, E = E,. Magnetic field lines are helix that lie on circular
magnetic flux surfaces: B = (0, By, B,) and J = (0, Jy, J>).

We use the paramagnetic pinch as a simple example to show (section 7.1) that
the axial magnetic field can not reverse in an axi-symmetric configuration,
if the ohmic constraint is taken into account. An example of axi—symmetry
is the cylindrical magnetic field components of the paramagnetic pinch, that
depend only on the radius r of the circular (and nested) flux surfaces.

Let me write the equation system for the paramagnetic pinch equilib-

rium?4.

23Tn RFX-mod it is used the version 8.47 IIT with fixed boundary [?].
*Let me derive the equilibrium system from the usual MHD equations, written for a
cylindrical geometry (any variable depends only on the radius r of the circular magnetic
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safety factor profile RHS
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Figure 7.6: Equilibrium profiles related to the safety factor profile (top—left)
and useful to evolve equation (7.30): the RHS and the susceptance matrix
elements S11,512 and Sao. All the profiles are written in Boozer coordinates
for the chosen radial variable in the text file metrics average.

flux surfaces):

%d%(TBG) = po J=
V x B = poj — (7.33)
Bz = — 1o jo
i _ By B. _ By BZ
_ 2T BTy B
By =nj) . (7.34)
. B Eo B. B
Jo = n = ﬁ e
i=7Jy =1(0,40,32)
JxB=0— (7.35)
Jr=0

From the (parallel) Ohm’s law one can compute j; = (0, jo, j-)-

Because E = (0,0, E.) by hypothesis, £y = Eo (B./B), where B./B is the projection
operator on B, (as By/B is the projection operator on By).

Using the definition

U:Eouoa

7.36
1 Bo (7.36)
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7.4 The paramagnetic pinch

Using, just for simplicity of notation, the definition

_ Eopoa

U
nBo

(7.38)

where Fy and By are the axial electric and magnetic field, a the radius of

the last closed flux surface and 7 the plasma resistivity parallel to magnetic

field lines, the equations for the normalized components of the magnetic field
are: ,
14 By =UZ;

(7.39)

dB, _ 77 B:Bg
dr U

From the parallel Ohm’s law, once the system (7.39) has been solved for the
magnetic field components By and B, one can compute the components of
the parallel current density?’:

Jo = % 737959

(7.40)
. B2
Jz = % B

In fig. 7.7 one can see the solution of the systems (7.39) for the magnetic
field components (dashed lines), whose integration is done with the bound-
ary condition on the axis: B,(0) = By and By(0) = 0. The colored lines are
the solution for some (increasing from blue to green) value of the parameter
U, directly proportional to the axial electric field Fy and therefore related
to the plasma current. As one can see, no reversal is found for B,.

Let us conclude the chapter with some analytical considerations. In
section 9.3.2 the equilibrium system (A.52) of MHD equations is rearranged
in a different form, and a system of two equations for the radial derivative
of the poloidal F' and toroidal I currents is obtained, (9.151)-(9.152). The
solution is an ohmic steady state equilibrium, that has been solved for the
paramagnetic pinch with the boundary condition on the magnetic axis 1(0) =
...and F(0) = .... The solutions for I and F' are shown in fig. 7.7 (continuous
lines); using the system (7.46) one can compute the (measurable) magnetic

just for simplicity of notation, and the normalized variables B. — (B./B), By — (Bgs/B),
r — r/a, the ohmic equilibrium system to be solved for a paramagnetic pinch is

2
{ Lh(rBy) =U %

aB, __ B. By
dr U B2

(7.37)

We will prove later that it is exactly the system (A.52) for a force free ohmic equilibria
in a cylindrical geometry

% The current density has only the parallel component, the perpendicular component
being zero because of the force free hypothesis
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field components from I and F": the solutions perfectly overlap to the dashed
lines in fig. 7.7 that came from the solution of the paramagnetic pinch system
(7.39).

Poloidal magnetic fields toroidal magnetic fields
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Figure 7.7: The poloidal and toroidal magnetic field components (up) and
the correspondent currents (down). The colored lines are the solution for
some (increasing from blue to green) value of the parameter U from equation
(7.38), directly proportional to the axial electric field Ey and therefore to the
plasma current. Comments: 1. The magnetic field components are found
from the solution of two equivalent equilibrium systems, eq.(7.39)—(7.46),
for which are used dashed or continuous lines that perfectly overlap. From
eq.(7.46), one obtains the relations: By ~ IR/r and B, ~ F, where R is the
major radius of the torus and r the minor one. 2. Because the paramagnetic
pinch is an axi—symmetric system, the toroidal field can not reverse.

7.4.1 The paramagnetic pinch in the S&H formalism

The equivalence of the two equation systems ((7.39) and (9.151)—(9.152) or
(7.46)) can also be proved in an analytical way in the simple cylindrical
geometry of the paramagnetic pinch.

Summarizing, we want to compare eq.(9.151) for F’ (where the diagonal
term of the susceptance matrix are null due to cylindrical geometry) with
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7.4 The paramagnetic pinch

the equation for B.:

~

U (Lii0)(LaoF) dB, B, By
o _ U 741
(L11]2 +L22F2) dr B? ( )
and the same for eq.(9.152) for I’ and the equation for Bj
U(LnI)(LyF) I ~ 1d B?
I'=— Loy« -~ (rBy) =U 22 (7.42
Cul+ LpF?) F V52 rar "B =Ug (142

In eq.(7.41)—(7.42) the radial derivative of the currents I and F' are writ-
ten for the easy case of a cylinder. Let us consider a cylinder of lenght L
and periodicity 27 R in the axial z coordinate to write explicitly the suscep-
tance matrix elements (and its inverse, the L;; elements). Then we write the
poloidal current F' and the toroidal current [ in terms of the magnetic field
components, in order to be able to compare the relations in eq.(7.41)(7.42).

Going back to the cylindrical metric in appendix B.2.1 and to the defini-
tions (A.46)—(A.48) of the susceptance matrix elements (for diagonal metrics)

one finds: , 21/% 0 y
o (2 )= 0T L)) =
T
(1) (T 5)(5)  ow
[Lis]=[Si5] 7"

and this solves the first step, of writing explicitly the L;; elements. (No
confusion will arise between the same symbol L for the cylinder lenght and
the inverse of the susceptance matrix, for which just the elements L;; will
be used).

Let me now show how to link the currents I and F' to the magnetic field
components.
Using the general canonical form for the magnetic field B (or, in an equivalent
way, equations (2.147)—(2.148)):

6 _ 1 ;1 /
B _Qﬂﬂwp_QﬂTR¢p

(7.45)

— 1 ;1 /
B* = 27\/g wt ~ 2nrR wt

remembering the Jacobian /g = rR of the cylindrical coordinates from
appendix B.2.1. These are by definition the contravariant components B* on
the (non adimensional and non normalized) e; basis vectors (see chapter 5).
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We need to work with the (covariant) measurable components ( i), that are
easy to derive from formulas (5.66)—(5.67) in a diagonal geometry. Using for
the derivative of the fluxes the susceptance matrix definition, one obtains:

Byp=MRp— g 1,1

(7.46)

n _ poF _ poLoo
Bz_ L —  27r F

Inverting these relations one can write the equation for the current compo-
nents in terms of the measurable magnetic field components:

R 1 D
I=25% 1 By
(7.47)
_ woF _ 2 1 p
And also the useful term
B? = (By)® + (B.)? = o L (L1112 + Loy F?) (7.48)

Using the equations (7.47) for I and F, some other relations must be find
in order to make the comparison in eq.(7.41)—(7.42):

Ar?R* 1
2 = ”7]733 (7.49)
0 11
Ar?r? 1 ~
0 22
orR 1 dB L ~
o= L %P, g (7.51)

o L1 dr poR
g Wiy L 2rr 1 dB,
pro Loa for po Ly dr

(7.52)

Therefore, using these equations and the explicit geometrical values of L;;,
the equation for F’ in (7.41) can be written as:

() (o Bo)] () (i B2))

=-U 2rR2) (4 :;2 111 n2 2 402 2221 5 (7.53)
s us r T 2
(522) (== B3) + () (5 2 B2)

and (only with algebric steps) it reduces to

dB. B.B
dr B2

(7.54)
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7.4 The paramagnetic pinch

if and only if

L2

U=
,u,027TR

(7.55)

This relation is dimensionally correct. Eq.(7.55) is the same result that arises
comparing the two equations in (7.42).

This can be considered an analytical proof that solving the differential
system for the currents I and F' is equivalent of solving the usual static MHD
equation system.

From the numerical point of view, the solutions from the integration of I’
and F’ perfectly overlap in the plots of fig.7.7.
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Chapter 8

Plasma boundary in SHAXx
states

As seen in the introduction, the m = 1 mode spectrum during SHAx states,
obtained in RFX-mod at the 1.5 MA plasma current level, displays a domi-
nant mode (the n = 7 one) and a strong reduction of the secondary modes
|77|. In fig. 8.1, where the average spectra of both m = 0 and m = 1 modes
in SHAXx states are shown, one can see that also the m = 0 mode spectrum
is strongly peaked on the n = 7 mode in SHAx states. This is a direct conse-
quence of the toroidal coupling between the two modes [54], that can be seen
also in fig.8.2: increasing the plasma current the m = 0 spectrum displays
the same behavior of the m = 1 one, i.e. the dominant n = 7 mode increases
its relative amplitude while the secondary mode amplitude is reduced (one
can compare fig.8.2 and fig.1.9).

Thus, it is possible to conclude that the RFP evolves, as plasma current is
increased, towards a SHAx state characterized by the presence of a dominant
m = 1 mode and a dominant m = 0 mode, both having the same n number.

During SHAx states the confinement properties of the configuration are
enhanced, due to the development of an internal transport barrier [54]. More-
over a better distribution of the plasma—wall interaction can be observed with
respect to the MH case, [78] operating at shallow reversal®.

The m = 0 modes play a crucial role in determining the plasma—wall interac-
tion, being resonant on the reversal surface, near the first wall. Nevertheless
they have been neglected in the equilibrium reconstruction of the helical
SHAx states computed by the SHEq code and discussed in the previous
chapter (chapters 4 to 7). An idea for future work is to consider the domi-
nant m = 0 mode as a perturbation to SHEq’s equilibria (in the same way
as the axi-symmetric equilibrium Bg has been perturbed by the dominant

!Shallow reversal means a small (absolute) value of the reversal parameter F introduced
in equation (1.12) as a measure of the distance between the first wall and the reversal
surface.
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Plasma boundary in SHAx states

Figure 8.1: Average spectra of m=0 and m=1 modes in 1.5 MA SHAx
states. The mode amplitudes are evaluated on By measurements performed
outside the plasma.
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Figure 8.2: Amplitude of the m = 0/n = 7 mode (full circles) and of the
other m = 0 modes up to n = 15 (empty circles) in QSH conditions plotted
as a function of plasma current. The mode amplitudes are normalized to
the average poloidal field at the wall. One should compare this figure with
fig.1.9 left.
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8.1 Topology of edge region in SHAx states

m = 1/n = 7 mode to compute the helical SHEq’s equilibria). In this chap-
ter we study the m = 0 modes role in a more experimental way.

In this sections 8.1-8.2 we perform a detailed examination of the intrinsic

edge magnetic topology in SHAx states obtained in the RFX-mod device,
relating it also to edge measurements. The results allow an ambitious con-
clusion, which is that intrinsic properties of the magnetic configuration could
be exploited to develop a divertor concept, similar to the island divertor of
stellarators [79] (whereas up to now in RFX-mod the graphite first wall is
used as a limiter).
While further theoretical studies need to be done, and a practical implemen-
tation has to be demonstrated, the proposed approach is anyway conditioned
to a good control of the radial magnetic field at the edge, which in RFX-mod
is obtained through a sophisticated system of 192 feedback-controlled saddle
coils [43, 80]. In section 8.3 the result of controlling the edge features by
applying non-zero boundary conditions to the dominant m = 1 and m = 0
modes is presented.

The work in sections 8.1-8.2 is also published in E. Martines, R. Loren-
zini, B. Momo et al., [3].
The results of section 8.3 are related to discharges done during the 2011
RFX-mod ezxperimental campaign, and have been already presented during
APS 2011 conference (G. De Masi, B. Momo: oral section [?]).

8.1 Topology of edge region in SHAXx states

The m = 0 modes are all resonant in the RFP around the reversal surface.
The distance of this surface from the first wall can be externally imposed by
changing the current flowing in the toroidal field coil system. The distance
from the wall is indirectly quantified by the reversal parameter F', defined
in the introduction (chapter 1). A crucial observation made in RFX-mod is
that shallow F', which corresponds to a small distance of the reversal surface
from the wall, turns out to be a better condition at high plasma current
than deeper F', as far as plasma—wall interaction is concerned. Why plasma-
wall interaction in RFX-mod high current operation appears to be lower at
shallow reversal is a question to which we give an answer in this section,
introducing the RFP divertor idea.

In order to understand the magnetic topology of the edge region in SHAx
states, and in particular the position and shape of the LCFS?, we have used a

2The Last Closed Flux Surface (LCFS), that is the outermost magnetic surface not
intersecting any solid object.
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Plasma boundary in SHAx states

field-line tracing code named FLiT [81] to trace the magnetic topology in the
plasma edge. FLiT uses the output of an algorithm for the reconstruction
of the tearing mode eigenfunctions over the whole plasma volume based on
Newcomb’s equation, supplemented with edge magnetic measurements [53]
(see chapter 3)3.

Fig. 8.3 displays two Poincaré plots of the magnetic field lines in the r-¢
plane on the outer equator (where the main magnetic field is almost poloidal).
The first one is obtained during a 1.5 MA SHAx state at shallow reversal
(F = —0.017), while the second depicts a similar condition obtained at deep
reversal (F' = —0.181). Thick lines are superposed on the plots, depicting
the position of the LCFS, computed from FLiT outputs by looking at where,
for each toroidal and poloidal position, the most internal open field line is
found.

The new and striking result is that in the SHAx condition obtained at shallow
reversal the LCFES is well separated from the wall by the m = 0 islands
(and that their X-points act so as to form a divertor-like configuration, see
fig.8.10). It is important to remark that the LCFS does not touch the wall
anywhere, not only in the plane displayed in the figure.

On the contrary, at deep reversal the LCFS is located beyond the m = 0
island chain and a limiter—like condition is obtained.

In the two plots the reversal surface of the toroidal field is located at the
position where the O-points of the m = 0 islands are found, which means at
r = 0.45 m for the shallow F' case and at r = 0.41 m for the deep F one.

r(m)
r(m)

0 100 200 300 0 100 200 300
toroidal angle (degrees) toroidal angle (degrees)

Figure 8.3: Poincaré plot of the magnetic field lines on the outer equator
for a SHAx state at 1.5 MA and shallow reversal (right) and for a similar con-
dition at deep reversal (left). The thick line marks the position of the LCFS.
while the horizontal line at 7 = 0.459 m indicates the first wall position.

The relationship between the occurrence of a divertor-like configuration

3FLiT uses the same eigenfunctions of the perturbation to the axi-symmetric magnetic
field that are used by SHEq code.
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Figure 8.4: Minimum distance of the LCFS from the first wall plotted as
a function of the reversal parameter F'. The shaded region marks the F
range where transition from a limiter—like geometry to a divertor—like one
occurs. The blue point is related to the limiter—like configuration represented
in the left Poincaré in fig. 8.3; the red point is related to the divertor-like
configuration represented in the right Poincaré in fig. 8.3.

and the reversal parameter value has been investigated more systematically
by computing the minimum distance §,,;, of the LCFS from the wall for a
set of SHAx states obtained at different F values.

Fig. 8.4 displays a plot of d,,in as a function of F. It is clearly seen that as
F' goes from zero towards more negative values, that is from shallow reversal
to deep reversal, the LCFS distance from the wall is increased, up to values
of I' between -0.10 and -0.13, where the m = 0 islands do not intersect the
wall any more and the limiter-like situation (d,,;, = 0) is obtained. This
result has been confirmed by the single band reflectometer [82] monitoring
the distance from the wall of a plasma layer with fixed density [83].

This can be considered an explanation for the empirical evidence of a re-
duced plasma-wall interaction in shallow F' discharges, which constitute the
preferred mode of operation for RFX—mod at high current.

8.2 Plasma wall interaction

In order to better understand the structure of the Scrape—Off Layer (SOL)
formed beyond the LCFS in the shallow F' case (shown in the left frame of
Fig. 8.3), a colour scale plot of the connection lengths of field lines passing
through a grid of points in the r—¢ plane has been constructed. This has
been done integrating the field line equations from the starting point, both
forwards and backwards, until the first wall is reached. The connection
length is then defined as the sum of the two lengths covered in the two
directions.
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Figure 8.5: Map of the connection lengths on the r-¢ plane located at § = 0
(external equatorial plane).

The result of the procedure is shown in Fig. 8.5, for the plane at § = 0° (the
external equatorial plane). The maximum value of the connection length,
for which the red colour has been used, also marks the closed field lines. The
confined plasma, enclosed by the LCFS modulated by the n = 7 pattern,
can be clearly identified. Furthermore, other red regions, corresponding to
m = ( islands that do not touch the first wall, can be observed. Beyond the
LCFS a SOL is created.

In particular, in the last cm near the first wall relatively short connection
lengths are found, with only occasional regions of longer connection lengths
reaching the wall.

The connection length of the field lines touching different points of the
first wall is closely related to the local distance between the LCFS and the
wall. This is shown in Fig. 8.6, where the connection length of points of the
first wall located on the outer equator is shown as a function of the toroidal
angle, for the same condition of the left frame of Fig. 8.3.

It is possible to observe that the connection length displays a n = 7 periodic
structure, with rounded maxima which are anyway lower than the length of
one poloidal turn (~ 3 m). Superimposed to this, limited regions of much
larger connection lengths are found, indicating field lines which manage to
perform many poloidal turns before touching again the wall. The origin of
these long field lines are positioned on the maxima of the n = 7 pattern (and
therefore on the X—points of the m = 0 island chain).

In the same figure is also plotted the distance between the LCFS and the
first wall, again plotted as a function of the toroidal angle for points along
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Figure 8.6: Connection lengths of field lines originating from different
points of the first wall (r = 0.459 m) on the outboard equatorial plane
(0 = 0°) and distance between the LCFS and the wall on the same plane,
both plotted as a function of the toroidal angle.

the outer equator. The n = 7 periodicity can also be clearly seen.

The comparison of the two curves allows to conclude that in the posi-
tions where long connection lengths exist, the LCFS—wall distance is shorter;
while in regions of short connection length the LCFS—wall distance is larger.
The consequence that can be drawn from this fact, when thinking to the
plasma-wall interaction, is that in the first situation a stronger interaction
is expected: both because of parallel flows, since a longer flux tube collects
a larger amount of energy; and because of perpendicular fluxes, which orig-
inate from the LCFS which is less distant.

The hypothesis that regions of the first wall with larger connection length
have a stronger plasma—wall interaction has been validated using experimen-
tal data, from ISIS and a fast CMOS camera.

ISIS

ISIS (the Integrated System of Internal Sensors) is composed by two sub-
systems of electrostatic and magnetic probes located inside the RFX-mod
vacuum vessel (5 mm behind the graphite tiles), [84, 85]. In this work we
used only the electrostatic arrays (72 probes distributed on the external
equatorial plane and 7 on the poloidal plane at a specific toroidal angle) able
to collect floating potential Vy data [11]. This system, thus, enables us to
create a toroidal and poloidal map of the floating potential (linked to the
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dynamics of the electron traveling at the edge) during the RFX-mod high
plasma current operations. The result for a typical SHAx state is shown in
fig.8.7 (top) and is plotted in terms of fluctuation 6V with respect to a mean
value.

The idea is to compare the floating potential behavior at the edge with the
aforementioned connection lenght evaluated using FLiT code.

As previously measured by insertable probes in low plasma current discharges
[86, 87], in RFX-mod the floating potential is found to be close to zero or
slightly positive near the first wall, whereas it turns markedly negative in
the more internal plasma layers.

Looking at the toroidal and poloidal map shown in fig.8.7 (bottom) one can
reasonably interpret the regions with a 6V < 0 (displaying a n = 7 period-
icity) as caused by the more internal plasma layers approaching the probe
(located at r/a = 1) and thus as a track of a localized plasma wall interac-
tion.

This allows a direct comparison of the ISIS data with the connection lenght
maps in the toroidal and the equatorial plane (also shown in fig.8.7) and
would confirm the hypothesis already discussed that the regions featuring
long connection lenght are those ones characterized by a larger plasma wall
interaction.

Fast CMOS camera

A further confirmation comes from the fast CMOS camera that looks at H,,
line emission, originating from neutral hydrogen atoms coming out from the
wall?.

Fig. 8.8a shows the emission pattern detected by the camera in a 1.5 MA
discharge, during a SHAx phase. The actual image has been remapped to a
regular grid in the the toroidal and poloidal angles. The figure displays an
almost vertical emission pattern, with a discretization which corresponds to
the tiles which compose the first wall®.

In Fig. 8.8b the connection lengths for the same region of the first wall, in
the same discharge and at the same time instant are plotted. It is clearly
seen that the connection length pattern is similar to the emission pattern of
the camera. The two patterns are displaced one with respect to the other
by a few degrees in the toroidal direction. This discrepancy appears in all
cases, and is attributed to a systematic error.

*Since in REX-mod the density profile displays a strong gradient in the first few cm of
the plasma, it is possible to associate the emission to the heat load of the nearby portion of
the first wall, under the assumption that a stronger plasma-wall interaction heats locally
the wall and causes a stronger hydrogen release. The camera used in RFX-mod was
operated with a frame rate of 10,000 frames per second, and a shutter time of 1/10,000 s.

5This discretization is due to the tile shape, which causes an increased interaction in
the central part of the tile. A darker region in the middle of the bright pattern (around
0 = 0°) is due to the presence of a port, as it is the dark oval region more on the left
(around ¢ = 142°), [88].
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Figure 8.7: The connection lengths (L) are compared with the shift of the
LCFS (that one can think as the distance of the LCFS and the first wall,
already plotted in fig.8.6) in red, and with the ISIS measurements of the
floating potential in black. Top: the comparison is between magnetic field
lines length originating from different points of the first wall (r = 0.459 m)
almost on the outboard equatorial plane (6 = 340.7°) and measurements on
the same plane, both plotted as a function of the toroidal angle. Bottom: the
comparison is between magnetic field lines length originating from different
points of the first wall (r = 0.459 m) on the poloidal plane (at ¢ = 246.5°)
and measurements on the same plane, both plotted as a function of the
toroidal angle.
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Figure 8.8: Pattern of H, emission recorded by a fast camera and mapped
onto a portion of the poloidal-toroidal plane (a). Map of the connection
lengths of the field lines originating from the first wall for the same discharge
and time instant (b).

Having established that the magnitude of the plasma—wall interaction in
different regions of the first wall can, to a first approximation, be quantified
by looking at the connection length of field lines leaving them, it is possible
to build a map of this interaction by following field lines starting from a
grid covering the first wall. Moreover, from the connection length one can
therefore obtain complementary information with respect to the ones from
the diagnostics: experimental data usually refer only to a fixed position,
whereas the connection length can be computed for the whole plasma vol-
ume. On the other side, diagnostics can give information in time, whereas
the connection length are computed for a fixed time (requiring long time for
the field line integration, connection length is not suitable for time evolution
analysis).

The left frame of Fig. 8.9 shows the interaction map on the chamber
surface reconstructed using the connection length, represented as a colour
scale. It can be seen that regions of higher connection lenght concentrate in
the 90°-180° band, that is in the region comprised between the torus top and
the inner equator. This is a non—trivial consequence of the phase relationship
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Figure 8.9: Map of the connection lengths of magnetic field lines touching
the first wall for a typical 1.5 MA SHAx state (left) and same map obtained
using only the amplitudes of the dominant m = 1/n =7 and m = 0/n =
7 modes, indicating the ideal situation for a pure single helicity condition
(right).

between the m = 0 and m = 1 modes depicted in fig.8.20 (see section 8.3.3).
The localization is not perfect, due to the polluting effects of the secondary
modes.

In order to understand what is the tendency for higher current plasmas,
where the secondary modes will be lower according to present scaling, we
have performed the same calculation including only the m = 1/n = 7 and
m = 0/n = 7 modes in the FLiT input, that is simulating a pure single
helicity condition. The result is shown in the right frame of Fig. 8.9. It can
be seen that the long connection length region is now limited to two rows of
inclined regions having an n = 7 periodicity, the first located at 6§ ~ 90° and
the second at 6 ~ 180°.

The results described in this section give a new vision of the plasma
boundary in the high performance SHAx states. Due to the toroidal coupling
between the dominant m = 1/n = 7 mode, responsible for the achievement
of a helical equilibrium, and its m = 0 counterpart, a set of m = 0 magnetic
islands with a dominant n = 7 periodicity is formed on the reversal surface.
Provided that the absolute value of the reversal parameter is small enough,
that is the machine is operated with a shallow reversal, these islands intercept
the first wall. Due to the regularity of the SHAx condition®, the outcome is
that the LCFS is not any more touching the first wall. On the contrary, the
X-points formed between the m = 0 islands act as the X-point of a Tokamak
divertor (a zoom of the divertor-like plasma-wall interaction already plotted

®During SHAx states no strong localized distortion of the plasma column due to mode
locking [89] is found. And the regular n = 7 pattern, due to both the m = 1 shift and
m = 0 islands, is evident in the right panel of fig.8.3.
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in fig.8.3 can be seen in fig.8.10).
This condition is reminiscent of the island divertor concept which is being

Figure 8.10: Zoom of the right Poincaré in fig.8.3, to underline the divertor
idea and the role of the m = 0 islands and their X —points.

explored as a means of controlling plasma-wall interaction in stellarators.
One is therefore led to infer that the special features of the plasma boundary
in high current SHAx RFP plasmas could be exploited for building a divertor,
similar in concept to the island divertor used in some stellarators. This
could be achieved by locating divertor plates with appropriate pumping in
the regions of strong interaction, which have been found to become more and
more regular as the amplitude of the secondary modes is reduced, which is
the trend experimentally observed as plasma current is increased.

Such an approach to plasma-wall interaction would require that the dominant
m = 0 mode is stationary in time, and that one could control its island
amplitude and phase. In section 8.3 the experiments done in order to use
the feedback controlled saddle coils to control (or at least to interact with)
the dominant m = 1 and m = 0 modes are presented. In fig.8.11 a sketch of
the RFP (island) divertor is reproduced.

Divertor

Tokamak Stellarator Toroidal angle [°]

Figure 8.11: Left: A picture of the a divertor in Tokamak devices and of
the Local Island Divertor in Stellarator devices. Right: The picture of the
idea for a sort of island divertor in a RFP device.
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8.3 External magnetic perturbations

High plasma current discharges and therefore the formation of the helical
RFP SHAx states have been favored by of the improved control of the ra-
dial magnetic field at the edge, which in REX-mod is obtained through a
sophisticated system of 192 feedback—controlled saddle coils.

The feedback system is usually used to simulate a perfect conductive shell,
therefore canceling the radial magnetic field of the perturbations at the wall.
In the experimental campaign of 2010-2011 external magnetic perturbations
have instead been used in order to control the magnetic boundary, by non—
zero boundary conditions (BCs) on the radial magnetic field of the dominant
m=1/n="7and m =0/n =7 modes, |?, 90].

The magnetic boundary is characterized by the m = 0/n = 7 island chain
and the plasma—wall interaction is strongly affected by its phase relation with
the dominant m = 1 mode (responsible for the helical SHAx state deforma-
tion of the whole plasma column). The self-organized plasma properties,
such as the toroidal coupling between the two modes, are the main mecha-
nisms acting in the plasma. This must be taken into account when trying to
externally interact with the plasma.

It is possible to act on the m = 0 island chain, if its properties are
strongly correlated with the plasma self organization?
The idea of a divertor configuration for RFP boundary during helical states
would require the control of the m = 0 island amplitudes and of their phase.
Moreover, also the phase difference between the dominant m = 0 and m =1
modes is relevant from the point of view of the plasma-wall interaction (see
fig. 8.9 and section 8.2).
Experiments have therefore been performed in order to study which is the
result of non—zero boundary conditions on both the m = 0 island amplitudes
and phases. Because of the strong toroidal coupling acting in the plasma,
we act both on the m = 0/n =7 and on the m = 1/n = 7 modes.
As an example we present here two discharges: discharge 30177, where the
non—zero boundary condition were only imposed on the m = 1/n = 7 mode;
and the discharge 30200 where non-zero boundary condition were imposed
also on the m = 0/n = 7 mode. Let us see the main features of both
the discharges before analyzing more in detail the effect of the external per-
turbations on the mode amplitudes (section 8.3.1) and phases (section 8.3.3).

Discharge 30177.
Non—zero boundary condition on the m = 1/n =7 mode

Vertical lines in fig.8.13 highlight the time instant when external non-zero
boundary conditions (BCs) are applied at the boundary:
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Figure 8.12: Time evolution of plasma quantities for the discharge 30177:
non—zero boundary condition on the m = 1/n = 7 mode. Vertical lines high-
light the time instants when non—zero boundary condition are applied. From
top to bottom, the plotted plasma quantities are: the plasma current; the
amplitude of the radial magnetic field of the dominant (black) and secondary
modes (red) of the m = 1 and of m = 0 mode spectra; the time evolution
of the I’ parameter. The radial magnetic field is the measured one outside
the vaccum vessel for the m = 1 modes, and the reconstructed one on the
resonant surface for the m = 0 modes.

e At time ¢ = 50 ms non-zero BCs have been applied on them = 1/n =7
mode, with a reference amplitude A; 7 =5 mT and a rotating frequency
of 15 Hz.

In fig.8.12 one can see the time evolution of the plasma current, of the

amplitude of the radial magnetic field of the dominant (black) and secondary
modes (red) both for the m =1 and m = 0 spectra, and the time evolution
of the F' parameter, always shallow, for the discharge 30177.
This experiment demonstrates how the global dynamics of the dominant
m = 1/n = 7 mode can be modified by the external application (through
the saddle coils) of a non-zero radial magnetic field by" as boundary condi-
tion. For example higher and longer QSH phases can be found. Good QSH
phases can be found also for the m = 0 spectrum.
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Discharge 30200.
Non—zero boundary condition on the m=1/n=7and m=0/n=7
modes
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Figure 8.13: Time evolution of plasma quantities for the discharge 30200:
non-zero boundary condition on the m = 1/n = 7 and m = 0/n = 7
modes. Vertical lines highlight the time instants when non-zero boundary
condition are applied. From top to bottom, the plotted plasma quantities
are: the plasma current; the amplitude of the radial magnetic field of the
dominant (black) and secondary modes (red) of the m = 1 and of m = 0
mode spectra; the time evolution of the F' parameter. The radial magnetic
field is the measured one outside the vaccum vessel for the m = 1 modes,
and the reconstructed one on the resonant surface for the m = 0 modes.

Vertical lines in fig.8.13 highlight the time instants when external non
null references are applied at the boundary:

e In the time interval 120 < ¢t < 250 ms non-zero BCs have been applied
on the m = 1/n = 7 mode, with a reference amplitude A;/; =5 mT
and a rotating frequency of 15 Hz.

e In the time interval 130 < ¢t < 195 ms non-zero BCs have been applied
on the m = 0/n = 7 mode, with a reference amplitude Ay/7 =4 mT, a
phase difference A¢p = 0° with respect to the m = 1/n = 7 mode, and
a rotating frequency of 15 Hz.

e In the time interval 195 < ¢t < 250 ms non-zero BCs have been applied
on the m = 0/n = 7 mode, with a reference amplitude Ay =4 mT, a
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phase difference A¢ = —90° with respect to the m = 1/n = 7 mode,
and a rotating frequency of 15 Hz.

The amplitude imposed at the boundary to the m = 1/n = 7 mode is
chosen as to be roughly equal to the natural value that the radial magnetic
field of this mode usually has at the edge. On the other side different bound-
ary ]69’7 = A7 amplitudes of the m = 0/n = 7 mode have been tried.
Because of the toroidal coupling between the two dominant modes (m =
1/n =7 and m = 0/n = 7), the ratio between their amplitudes at the edge
is of the order of the aspect ratio (e = R/a ~ Ay 7/Ag 7 ~ 4 where € stays for
ratio’, R is the major radius and a the minus radius of the vacuum chamber,
[53]). The amplitude of the m = 0/n = 7 mode in the discharge 30200 has
been chosen so that A;,7/Ag7 ~ 1.5¢€.

In fig.8.13 one can see the time evolution of the plasma current, of the
amplitude of the radial magnetic field of the dominant (black) and secondary
modes (red) both for the m = 1 and m = 0 spectra, and the time evolution
of the F' parameter, always shallow, for the discharge 30200.

Also the m = 0/n = 7 mode dynamics can be modified by external applica-
tion of a non-zero radial magnetic field b as boundary condition.

In the next sections, the work made during the 2010-2011 experimental
RFX-mod campaign in order to act both on the amplitude of the m = 0
magnetic islands (and therefore on the amplitude of the radial magnetic field
be" on the reversal surface’) and on their phase difference with the dominant
m = 1 mode is presented.

In particular, we want to study if and how the edge topology is modified
(section 8.3.1 and 8.3.3) and how the edge plasma properties change by ac-
tively modifying the edge topology (section 8.3.2).

8.3.1 Amplitudes

Discharge 30177.
Non-zero boundary condition on the m = 1/n =7 mode

To be able to increase the amplitude of the m = 0 islands (and therefore of
the Scrape Off Layer), we need to act on the amplitude of the radial magnetic
field of the m = 0 modes on the resonant surface (that is the reversal one).
Due to the toroidal coupling with the m = 1 mode with the same toroidal
mode number n (see chapter 5), one can increase the m = 0/n = 7 islands
also acting on the m = 1/n = 7 mode.

"The island width is found to be proportional to the amplitude of the radial magnetic
field on the resonant magnetic flux surface of the corresponding mode, [?, 13, 11].

172



8.3 External magnetic perturbations

#30177

m=1,n=7 mode
secondary modes 3

‘

|

|

L

0

|

|

{

(

I

|
0 44 78 112 146 180 214 248 282 316 350
t[ms]

#30177

sacondary mades |

Sarows:

o b [mT] B [mT]

7
(=]
=
=

f==]
=)
L)
RN AR RN LA RRRRE AR

Fm

br om

o

<

2
T

0.01E

0.005E

0.004 F

0.003F

br m=0,n=7

0.002 F

0.001 F

0 000 &

L L 1 L L g
0.1 0.2 0.3 0.4 0.5
r [m]

Figure 8.14: Shot 30177. Top: The same time evolution plots in fig.8.12
where colored lines mark the time instants of the harmonics reconstruc-
tion below. Middle/Bottom: The eigenfunction b}n’? and b,q’7 of the radial
magnetic field related to the m = 1/n = 7 (middle) and m = 0/n = 7
(bottom).The black curves are related to a time instant where zero bound-
ary condition were applied to all the modes, whereas the coloured ones are
related to time instants where non—zero boundary condition were applied to
the m = 1/n = 7 mode. The first wall is at a = 0.459 m.
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This is what is done in this discharge. The radial magnetic field eigenfunc-
tions are plotted in fig.8.14, using the harmonics reconstruction discussed in
[53] (and chapter 3). We can see that:

e An external non—zero boundary condition imposed at the edge on the

m = 1/n = 7 mode changes the amplitude of the whole by’ eigenfunc-
tion profile.
In fig.8.14 (middle) the eigenfunction of the radial magnetic field re-
lated to the m = 1/n = 7 mode are plotted for different time instants.
The black curve is the vanishing boundary condition case, as a refer-
ence time instant.

e The external non-zero boundary condition imposed at the edge on the

m = 1/n = 7 mode increases the amplitude of the by’ eigenfunction
on the reversal surface, and this is reflected on the amplitude of the
b7 eigenfunction due to the toroidal coupling.
In fig.8.14 (bottom) the eigenfunction of the radial magnetic field re-
lated to the m = 0/n = 7 mode is plotted for the same time instants
of fig.8.14 (middle). The amplitude of the bY" eigenfunction on the
reversal surface is increased with respect to the vanishing boundary
reference case in black.

We use the Poincaré plot reconstruction to look at the magnetic topology
related to the eigenfunctions plotted in fig8.14.
In fig.8.15 we choose to compare the magnetic topology at t = 49 ms (zero
boundary condition reference, black curve in fig.8.14) and at t = 86.7 ms
(the blue curve in fig.8.14). The m = 0 island elongation due to non-zero
boundary condition to the dominant m = 1 mode can be clearly seen in the
Poincaré plot, that are shown on the same radial scale.

Discharge 30200.
Non-zero boundary condition on the m=1/n=7and m=0/n=7
modes

Fig.8.16 is the analogue of fig.8.14, for the shot 30200 where non—zero bound-
ary condition is imposed also to the m = 0/n = 7 mode. The eigenfunction
profiles of the m = 1/n = 7 (middle) and m = 0/n = 7 (bottom) are plotted
for different time instants (with different colours). The black curve is the
vanishing boundary condition case for comparison.

From the magnetic topology side, the application of these non-zero bound-
ary condition on both the m = 1/n = 7and m = 0/n = 7 modes are expected
to have two main effects on the m = 0 pattern: 1) a direct contribution to
the m = 0/n = 7 mode amplitude by the externally applied reference on the
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Figure 8.15: Magnetic topology reconstructions made using only the n = 7
harmonic for the 30177 discharge on the external equatorial plane (6 =
0). Left: magnetic topology related to a time instant where zero boundary
condition were applied to all the modes (black curve in fig.8.14). Right:
magnetic topology related to a time instant (¢ = 86.7 ms, blue curve in
fig.8.14) where non—zero boundary condition were applied to the m = 1/n =
7 mode.

related harmonic; 2) a further contribution coming from the toroidal cou-
. . 1,7 . .

pling with the b,"" eigenfunction.

We can see this in fig.8.16 :

e The amplitude of the b’ eigenfunction is increased on the reversal
L. 1,7 . . . .. .
surface, as it is the b,’' eigenfunction in the same position. Comparing
fig.8.14 and fig.8.16, the main contribution to this is probably due to
the non—zero boundary condition on the m = 1/n = 7 mode.

e What is peculiar of the application of the non—zero boundary reference
to the m = 0/n = 7 mode is the shape of the by eigenfunction. It is
easy to see comparing the coloured lines in fig.8.16 with the black one.

The superpositions of these two effects produces a larger radial extension of
the m = 0 island chain with respect to discharge 30177 (compare fig.8.15
and fig.8.17).

The effect on the magnetic topology can be seen in the Poincaré plots in
fig.8.17: on the right the zero boundary condition case (black curve in
fig.8.16, vanishing references are applied to all the modes) is plotted; on
the left a non-zero boundary condition case (at ¢ = 165 ms, the blue curve
in fig.8.16, with non—zero boundary condition to both the m = 1/n =7
and m = 0/n = 7 modes) is plotted. One can see both the increased island
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Figure 8.16: Shot 30200. Top: The same time evolution plots in fig.8.13
where colored lines mark the time instants of the harmonics reconstruc-
tion below. Middle/Bottom: The eigenfunction bf,lﬂ7 and 5277 of the radial
magnetic field related to the m = 1/n = 7 (middle) and m = 0/n = 7
(bottom).The black curves are related to a time instant where zero bound-
ary condition were applied to all the modes, whereas the coloured ones are
related to time instants where non—zero boundary condition were applied
to both the m = 1/n = 7 and m = 0/n = 7 modes. The first wall is at
a = 0.459 m.
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amplitudes and their change in shape. The Poincaré plot on the top are
related to the pure SH case, whereas the ones below reproduce the effects of
the secondary modes.
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Figure 8.17: Magnetic topology reconstructions for the 30200 discharge on
the external equatorial plane (6 = 0). Left: magnetic topology related to a
time instant where zero boundary condition were applied to all the modes
(black curve in fig.8.16). Right: magnetic topology related to a time instant
(t = 92 ms, blue curve in fig.8.16) where non-zero boundary condition were
applied to both the m = 1/n = 7 and m = 0/n = 7 modes. From top to
bottom: eigenfunction amplitudes of the dominant modes. The dashed line
on the right is related to the 92ms time instant for comparison. A vertical
line marks the resonant surface of the m = 0 modes; Poincaré reconstructions
made using only the n = 7 harmonic; Poincaré reconstruction of the edge
topology made using all the harmonics
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The consequence of this different magnetic topology of the SOL is under
investigation. In the next section we report some of the consequences on the
edge measurements.

8.3.2 Effect of BCs application on the plasma properties
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Figure 8.18: Time evolution of some experimental measurements during
the discharge 30200. From top to bottom: The ratio n/ng, where n is the
density measured by the interferometer [91, 92| and ng the Greenwald den-
sity, [11]; the loop voltage, as a measure of the power needed to sunstain the
discharge; two H, line emission as a measure of the plasma-wall interaction;
the edge temperature measured by a fixed triple probe, [93].

The active modification of the edge magnetic topology turned out to be
correlated with a turn of reproducible phenomena linked in a direct or indi-
rect way to an increased plasma wall interaction. Nonetheless the possibility
to externally impose the radial extension of the m = 0 magnetic islands at
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the edge enable us to study the cause and effect relation of the complex edge
dynamics.

For the sake of simplicity we consider again the discharge 30200 whose main
features have been already presented in the previous section.

In fig.8.18 the application of the BCs can be easily associated to a rather
abrupt variation of the averaged density and of the loop voltage needed
to sunstain the discharge (first and second plot on the right). As already
mentioned, an increased plasma-wall interaction can explain both these ex-
perimental observations since in RFX-mod the graphite first wall is a natural
hydrogen repository and represents an effective fueling system [94, 95]. On
the other side, it’s worth noting that this technique allows to sunstain QSH
states at higher n./ng values (up to 0.5 in this case) with respect to the
spontaneous QSH states (that usually disappear beyond n./ng > 0.3).

The last two plots in fig.8.18 show the time evolution of two H, line emis-
sion and the edge temperature (measured by a fixed triple probe, [93]). They
confirm in a even more evident way the aforementioned mechanism: the BCs
application causes a larger interaction with the graphite wall, the hydrogen
stored is released and ionized, creating a dense and cold edge.

According to this picture, the reconstruction of the whole density profile
obtained by the multichord interferometer in fig.8.19 displays a markedly
hollow shape associated to the application of the BCs. Two interesting ob-
servations have to be pointed out:

1) whilst the edge density increases up to 3-4 times upon the BCs applica-
tion (but a more precise estimation would need a better diagnostic coverage
in that region), the central density appears almost unperturbed. A possible
explanation could be that a more defined m = 0 pattern features better
particle confinement properties (and thus the hydrogen influx from the wall
would accumulate only at the edge). On the other side, also comparing the
two Poincaré plots shown in fig.8.17, one can easily catch how the BCs ap-
plication enlarges the extension of the more chaotic region in between the
islands, probably featuring short connection lenght that could rapidly drive
the particles to the wall preventing an effective core fueling;

2) the last two plots in fig.8.19 show in more detailed way the relation be-
tween the edge topology modification and the edge density profiles. In par-
ticular, comparing two time instants (before and after the BCs application)
of the same discharge it is possible to highlight how a smoother density pro-
file correspond to a smoother shape of the m = 0,n = 7 eigenfunction and
also how in the case of BCs application the maxima of the two curves (den-
sity profile and m = 0,n = 7 eigenfunction) are located very close radially
region.

These observations could help clarifying the role of the edge magnetic

topology and, in particular, of the m = 0 islands in defining the plasma
properties and the complex (interconnected) mechanisms regulating a crucial
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Figure 8.19: Discharge 30200. Left: The density profile and its time evo-
lution obtained by the multichord interferometer, [91, 92]. Right: The edge
density profiles and the eigenfunction of the magnetic perturbation at two
time instants: 92 ms (zero boundary condition applied to all the modes)
and 165 ms (with non—zero boundary condition to the m = 0/n = 7 and
m = 1/n =7 modes.)

part of the RFP physics, the edge transport and the plasma-wall interaction.
An extrapolation of these results towards the development of an RFP diver-
tor concept will be subsequent.

8.3.3 Phase relations

As already said, the idea of a divertor configuration for RFP boundary dur-
ing helical states would require the control of the m = 0 island amplitudes
and of their phase; moreover, also the phase difference between the dominant
m = 0 and m = 1 modes is relevant from the point of view of the plasma—
wall interaction (see fig. 8.9).

In this section we analyze the effect on the phases of the m =0 and m =1
modes and on their phase difference, when non-zero BCs are applied to the
dominant modes.

A question arises. Which is the correct phase of the modes to be consid-
ered?
We can consider both the (m,n) harmonics of the radial magnetic field (see
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8.3 External magnetic perturbations

equation (2.146))8:

'
b = (jg)mni(nw%m—mw}é‘”) (8.2)

or the harmonics of the related magnetic flux which can be written as (see
equation (9.21)):

U = i (™ — mapp™) (8.3)
A\

W, o= i(TyYp —ypT) (8.4)

O = Ty (8.5)

for the dominant modes in RFX-mode. R
Due to the toroidal coupling between the harmonics of the fluxes b} ,, and of
the metrics (1 / \/ﬁ) mn» for the radial magnetic field one can write?:

b, = } 17 } (.6)
Ry~ (8.7)

o= —— b —— b
0,7 \/%0,7 \/9711’7

The second term in both the equations (8.6)—(8.7) is the term due to the
toroidal coupling. Remembering ﬁg.8.2A10 one can understand that at least
during QSH states the contribution of bf ; to 0] ; is not so big, whereas the

contribution of b1 7 to b 7 is the dominant one. A statistical study of the
phase difference between the radial magnetic fields b] 7 and bf 7 is plotted in
fig.8.20, where the importance of the toroidal coupling emerges in the con-
stancy of the phase difference.

The contribution to the phase of the fluxes /b\71"7 and /5677 in eq.(8.4)—(8.5)
arises both from a toroidal coupling intrinsic in the toroidal Newcomb-like
equation solved for the fluxes (in chapter 3) and a non-linear coupling be-
tween the dominant and the secondary modes (similar to the locking that
arises also in cylindrical geometries, [89]).

Which are the phases that better describe the effect on the magnetic
topology is not yet well understood. The phase difference between the dom-
inant m = 1 and m = 0 modes related to the radial magnetic field b],,, is

8We consider the 27 part of the computed fluxes.

9The toroidal coupling has been explained in chapter 3 and 5. We neglect in these for-
mulas the contribution that arises from the (m,n) = (2,n) and (m,n) = (—1,n) harmon-
ics. The harmonics of the Jacobian are written in appendix B.2.3 for the w® coordinates.

9For a more formal prof see [53].
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always constant (even if it depends on the poloidal angle, as we will now
explain), whereas the phase difference related to the fluxes b],,, seems to be
more easily affected by non-zero BCs. In the next sections, showing the ef-
fect of non—zero BCs, we will relate it to the Poincaré plots that we consider
to well reproduce the magnetic topology.

The physical meaning of the phases

We write the Fourier decomposition of any quantity A, which can be the
radial magnetic field B" or the related radial magnetic flux b:

A= Z Uom ei(mﬁ—n@-l-(ﬁmn) = Z Amn c()s(7nﬁl —np + d)mn) (88)

mn mn

This is a bi-dimensional Fourier decomposition (both on the poloidal angle
¥ and on the toroidal angle ¢).

Let us explain the physical meaning of the real number ¢,,,. First we write
the harmonics of the two dominant mode in an explicit way:

aizcos(V —Tp+ ¢17) (8.9)

ao,7 cos(=7p + ¢1,0) (8.10)

As one can see the harmonics ag 7 of the perturbation is uniform on the
poloidal plane (does not depend on the poloidal angle).

The maximum of the perturbation must vanish the cosine function. There-
fore:

- Fixing the toroidal angle (¢ = ¢y;;) one looks at the perturbation
on the poloidal plane. The number ¢,,, in this case represents the
poloidal angle 9 of the first maximum of the perturbation, which is:

Y= 7(Pfix — ¢177 (8.11)
19 = 7(Pfix — ¢077 (8.12)

for the two dominant modes.

- Fixing the poloidal angle (¥ = ¥;;) one looks at the perturbation in
the toroidal direction. The number ¢,,, in this case represents the
toroidal angle ¢ of the first maximum of the perturbation, which is:

o= iz +17)/7 (8.13)
= iz + d0,7)/7 (8.14)

for the two dominant modes.
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8.3 External magnetic perturbations

To study the relation between the two dominant modes we can look to what
we called their phase difference A¢, which is not simply ¢17 — ¢o,7: we use
the symbol A¢ in this section for the angle between the maxima of the two
modes and therefore it depends on the angles:

- Fixing the toroidal angle (¢ = ¢y;;) one looks at both the pertur-
bations on the poloidal plane. The angle A¢ between their maxima
is:

Ap =1+ P17 — do7 (8.15)

- Fixing the poloidal angle (¢ = ¥;;) one looks at both the perturba-
tions in the toroidal direction. The angle A¢ between their maxima
is:

A = yig + P17 — P07 (8.16)

From an operative point of view we stress that we use the w’ = (7,9, ¢)
coordinates used for the harmonics reconstruction'!. We remind that the
poloidal angle of this coordinate system is defined to have its zero value on
the internal equatorial plane, which means that it differs of an angle m with
respect to the machine poloidal angle that we call € (see fig.1.4) and which
has its zero value on the external equatorial plane.

The magnetic topology related to A¢ at different fixed poloidal angles
(¥ = ¥yiz) is shown in the following of this section, both for the zero and
non—zero BCs condition cases.

Zero—boundary condition.
Discharge 30200 at ¢t = 92 ms.

Due to toroidal coupling, the m = 1/n =7 and m = 0/n = 7 modes have a
very clear phase relationship. This is displayed in Fig. 8.20, where the phase
difference A¢ between the m = 0/n = 7 mode and the m = 1/n = 7 mode
in RFX-mod is shown as a function of the phase of the m = 1/n = 7 mode
for a large set of discharges, in time intervals where a strong quasi-single
helicity state is observed. It can be seen that the two modes have an almost
constant phase difference equal to 0. The phases concern the radial magnetic
field component on the internal equatorial plane (6f;; = 7), and have been
computed at the respective resonant surfaces.

Hgee section 3.1.1 and appendix B.2.3 for the definition of the w’ = (7,9, ¢) coordinate
system.
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Figure 8.20: Phase difference A¢ on the internal equatorial plane (05, =
), between the m = 1/n = 7 mode and the m = 0/n = 7 mode plotted as a
function of the phase of the m = 1/n = 7 mode for SHAx states obtained in
1.5 MA discharges. The phases concern the radial magnetic field component,
br ., in eq.(8.6)—(8.7).

A phase difference A¢ = 0 means that the island O—points of the m =

1/n = 7 mode correspond to the O—points of the m = 0/n = 7 islands. A
A¢ = 0 phase difference is statistically found to be related to the internal
equatorial plane. But due to the fact that the m = 0 modes are uniform on
the poloidal plane whereas the m = 1 modes are not, the phase difference
A¢ changes its value on the poloidal plane at different poloidal angles. E.g.
on the external equatorial plane (6f;; = 0) the phase difference is A¢ = ,
which means that the m = 0/n = 7 island O-points are in correspondence
of the m = 1/n = 7 island X—points. This magnetic topology corresponds
to the plasma—wall interaction discussed in section 8.2.
Therefore, on the poloidal plane the phase difference A¢ changes with the
poloidal angle, and this is reflected on the magnetic topology and on the
plasma-wall interaction (as seen in fig.8.9). The magnetic topology related
to the dominant m = 0 and m = 1 modes at four different poloidal angles is
shown in fig.8.21, where four Poincaré plot are computed at the same time
instant and at:

e 0z = 0 and therefore A¢p =7
o 0z = 5 and therefore Ag = 5
® 0 = m and therefore A¢ =0
e Ofiz = % and therefore Agp =

One can see that the magnetic topology is tightly correlated to the position
of the m = 0 island with respect to the global helical deformation due to the
m = 1 dominant mode (with the m = 0 island on the top or on the bottom
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of the m = 1 edge deformation).
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Figure 8.21: Discharge 30200 at ¢ = 92 ms, therefore when zero boundary
condition are imposed by the feedback control on all the modes. The mag-
netic topology at different poloidal angles and therefore related to different
phase difference A¢ between the m = 0/n = 7 mode and the m = 1/n =17
mode in RFX-mod. A phase difference A¢ = 0 is related to the internal
equatorial plane, 0;, = 7.

Non-zero boundary condition.
Two examples.

The phase difference A¢ between the m = 0/n = 7 mode and them = 1/n =
7 mode is therefore an important ingredient to be understood to study the
plasma-wall interaction in RFX-mod.

In order to better understand the role of A¢ we try to change the nat-
ural phase difference, that is equal to 0 on the internal equatorial plane
(fig.8.20)'2. We do this again using the feedback controlled saddle coils to

12The natural A¢ brings a higher plasma-wall interaction between 90° < 6 < 180°, see
fig.8.20. Changing the phase relation A¢ between the m =0/n =7 and the m=1/n=7
modes, we could expect to change the plasma—wall interaction on the poloidal plane, and
even to bring the higher interaction in front of the measurements, usually located around
the external equatorial plane (6 = 0).
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Figure 8.22: Time evolution of plasma quantities for the discharge 30200.
Top, middle: the plasma current and the amplitude of the radial magnetic
field of the dominant m = 1 mode that are already in fig.8.13. Bottom:
the phases of the b, flux for the m = 1/n = 7 (black) and m = 0/n =7
(red) modes in eq.(8.4)—(8.5) computed at the resonant surface. The phase
difference between the two is evident in the two time windows: A¢ = 0 for
t < 195 ms, while A¢ = m/2 between 195ms < t < 250ms.

impose a non-zero boundary condition to the radial magnetic field of the
m = 0/n =7 and the m = 1/n = 7 modes, with a chosen phase difference
between them.

We present two examples:

e The second time window (195ms < t < 250ms) of the discharge 30200
(fig.8.13, right), where a phase difference A¢ = m/2 was imposed be-
tween the m = 0/n = 7 and the m = 1/n = 7 modes.

In fig.8.22 one can see that in this time window the plasma current
was already decreasing, so the discharge dynamics probably makes the
analysis more difficult. In any case, the applied phase difference be-
tween the modes appears clearly in fig.8.22 (bottom) for the fluxes

By
.
by

e The discharge 30184. Another, more difficult, example.
This example, defined in fig.8.23, is more difficult because the phase
difference A¢ is continuously changing. The two modes are in fact
rotating in opposite directions with respect to the toroidal angle, as
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Figure 8.23: Time evolution of plasma quantities for the discharge 30184:
non-zero boundary condition on the m = 1/n = 7 and m = 0/n = 7
modes. Up: the time evolution of the amplitude of the radial magnetic field
at the edge (for the m = 1/n = 7 (black) and m = 0/n = 7 (red) modes).
Down: the time evolution of phases of the fluxes /b\rmn (for them=1/n=17
(black) and m = 0/n = 7 (red) modes) computed at the resonant surface.
The dynamics of the phase difference A¢ is related to the fact that the two
modes are rotating in opposite direction in the plasma.

imposed by the feedback—controlled system.

Even if the dynamics of the applied A¢ is clear in fig.8.23 (bottom) for
the fluxes b, this can not be clearly seen on the magnetic topology
which is reproduced in the Poincaré plots in fig.8.24. They are per-
formed at different time instants (marked by colored lines in fig.8.23
bottom) when different A¢ should characterized the topology on the

external equator plane (6 = 0).

It is worth noting that a modulation is present the time evolution of
the amplitude of the radial magnetic field at the edge of both the the
m = 1/n = 7 and m = 0/n = 7 modes (black and red in fig.8.23
middle, respectively). This modulation is present in the whole radial
domain looking at the eigenfunction reconstructions, therefore it seems
that not just the m = 1 mode affects the m = 0 due to the toroidal
coupling, but even the viceversa.
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Phase modifications appear more difficult than acting on the m = 0
island amplitudes. Data analysis is still in progress: can we exploit this
method to externally control the edge plasma dynamics?

188



Chapter 9

Detailed calculations on...

One can consider this chapter part of the thesis. One can find here details
of calculation useful to better understand the main text of the thesis in the
previous sections. Moreover detailed calculations have been useful for the
implementation of formulas in SHEq—code and could be useful for future
work that may want to use the details of this thesis.

9.1 On the fluxes and their derivatives

We write some common way of writing the fluxes and their complex harmon-
ics. Especially we try to link one to the other in the following subsections.

9.1.1 On how to compute the helical flux y

In the text (section 4.1), we write for the helical flux x the same equations
here collected in eq.(9.2)—(9.4):

X = myp—nyYr
= [mppo — niro)(r) + [myp™ — ngp " (r) e + c.c.
= xo(r) + X™"(r) €™ + c.c.
= xo(r) +2[x™"|(r) cos(u+ ¢y)

~ o~ o~
© v v ©
=~ W N =
o ~— —

About the complex conjugation of the fluxes one can see appendix C.1.
Here we want to show how to compute the amplitude |x™"|(r) and the
phase ¢, of the perturbed helical flux x™" (that derive from the sum of
two complex numbers, X, = mYp" — ny™) in terms of amplitudes and
phases of the harmonics of the poloidal and toroidal fluxes.

Using the results of appendix C.2 for the sum between two complex numbers,
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Detailed calculations

we write ! :

Xl = C (9.14)
b = 7 (9.15)

and (using eq.(C.32)—(C.33) and eq.(9.12)-(9.13)): from eq.(C.32)—(C.33):

Xomon| = [R2[07]? + m2 |7 |2 — 2mn|ir|[vp| cos(dy, — dup)] >

¢y = arctan [mWHSin%PianlSin%T] (9.16)

m[pp|cos yp, —nlihr|cos dy.,

| = 7"

=pp(r) el = p" = W)

where poloidal and toroidal fluxes are used with the same notation:

Yr(r,0,0) =g (r) +r™ (r) ¢ (m0=ne)
=y (1) + |7 € Por ¢ (M=)

) ] 0—
¢P(T, 0, 90) — ¢P,O (T) + ¢g n (7“) el (mb—ngp)
= o (1) + g i Pop @i (m0=0
(9.17)
The helical flux in SHEg—code
SHE(q uses another form for the helical flux:
X = Xo + € sin(u + 1)) (9.18)
1With respect to appendix C.2 we call:
z=a+ib=pe’ = PPt = [Pp"| VT =Y (9.5)
t=c+id=oce'? s PP = [Pp"| PP = p (9.6)
z—t:A—l—iB:Ce”H{ Xmn = Myp " =y = mp —nyr (9.7)
Xm,n = |Xm,n‘ erx
Therefore there are also true the following identifications:
a = pcost = [P7"| cos Py (9.8)
b = psing = || cos ¢y, (9.9)
¢ = ocosp=|pp"|cospy, (9.10)
d = osing=[Yp"|singy, (9.11)
From equations (C.30)—(C.31) one can finally write the coeflicients for xm,» (A and B)

in terms of the amplitudes and phases of the poloidal and toroidal fluxes (a, b, ¢, d):

A = Ccosy=a—c= 7" cospy, — [V "] cosdyp (9.12)
B = C(Csiny=b—d= 5" |cos¢y, — |5 "|singy, (9.13)

The coefficient C' = |xm,n| and v = ¢ can be computed using eq.(C.32)—(C.33).
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9.1 On the fluxes and their derivatives

simply because it uses the eigenfunction of the perturbed fluxes from the
output of another code that calculate them from Newcomb-like equations
(as explained in chapter 3). In this code the helical flux perturbation € is in
accordance with (9.18). Let us prove that

Qi’an‘ = € (9'19)
Oy = e (9-20)

where |Xmn| and ¢, are computed from (9.16). Using the definition
b = 1 (U™ — mPE") = (myP" — ngft") = ib],, (9.21)

that arises from eq.(5.43), one can write

X = [mypo—nro)(r) + [myp" — nyi"(r) e + c.c.

= xo+iby,,e" +c.c.
—iu

Xo +iby,, e —ib). e

X0 + iy, (€™ = e7)

(9.22)
(9.23)
(9.24)
(9.25)

X0 — 23;;m sinu (9.26)
(9.27)
(9.28)
(9:29)
9

= X0—2|b:nn|sin(u+¢>3:m)
= X0 + € sin(u + 1)
= Xo + ™" e e

(9.19)—(9.20).

9.1.2 On the radial derivatives of complex harmonics, for the
poloidal and toroidal fluxes

In this thesis the Fourier decomposition of a perturbation has been frequently
used (see chapter 3-5):

A(r,0,0) = Ap(r) + Z a™"(r) M) el (9.30)

where A can be every quantity inside the plasma volume: magnetic fluxes,
vector potential components, magnetic field components, ...

The harmonics of the perturbation are complex numbers: a™"(r) e C. There-
fore:

a™ (1) = [a™"|(r) & ¢ (9.31)

where |...|(r) indicates the amplitude, while ¢(r) the phase of a™". We re-
mind that the amplitude and phase of a complex number are real numbers.
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Perturbative analysis is done in the thesis to axisymmetric equilibrium
quantities, that depend only on the radius r of the circular magnetic flux
surfaces related to the axi-symmetric magnetic field Bg. And that is why
we use in this section the variable r as radial variable. But of course this
still true for any perturbative analysis, for example of the SH equilibrium
field that uses the helical flux x(p) as radial variable.

Let us consider the radial derivative of the harmonics 1, ,, of the (poloidal
or toroidal) magnetic fluxes?. This is linked to the computation of magnetic
field components (eq.(2.144)-(2.145)).

Because the derivative of a complex number is still a complex number, we
can write:

Uron(r) = a+ib (9.32)
= [ nl(r) %) (9.33)
with

[Vl () = Va2 +b? (9.34)

Py (r) = tan~! (9.35)

SallES!

The first expression in (9.32) highlights the real and the imaginary part of
the complex harmonics 1y, ,,(r), whereas the second one writes it in the polar
form.

Using the symbol ' = d/dr, we can also write:

Ymn(r) = [mnl(r) e (9.36)
U

V(1) = [\wmnl() et #u )] (9.37)
= [|¢m,n| +i|¢m,n|¢¢}€i¢d’ (9.38)

Let us stress that the derivative of the amplitude of the function v, ,, is
different from the amplitude of the derivative of the same function:

[Ymnl” # [Vl (9.39)

The flux derivatives in SHEq—code

SHEq code uses equation (9.38) for the radial derivative of the fluxes, which
must be written in the complete form of equation (9.30). Considering only

2Using 1 as the symbol for every flux, depending on the magnetic component that one
is considering. The indexes m,n are written as down indexes just for commodity.
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the perturbative part, and just one mode of the perturbation (u = 60 — nyp),
we obtain:

[WJm nl(7) el Pu(r)tu 4 c.c} = [Wm,n’/ +1i Wmn\(bib} ot Lee. (9.40)
= 2Wm,n‘lcos(¢¢ +u) — 2’¢m,n‘¢ip sin(¢y + u)

adding the complex conjugated to eq.(9.38) and considering also the angular
dependence of the fluxes.

The amplitude |¢p,,| and phase ¢, of the fluxes are computed solving
Newcomb-like equations as explained in chapter 3. Their radial derivatives
are calculated in a numerical way.

9.1.3 On the (angular and radial) derivatives of the helical
flux y

Using the form of eq.(9.4) for the helical flux y, and then eq.(9.16), one can
compute the helical flux radial and angular derivatives (which involve the
radial derivatives of the fluxes, section 9.1.2):

( %)f ) =mipg — g+ (9.41)
+ 25"X‘ cos(mb — ny + ¢y) — 2| x| & sin(mb — ne + ¢y)
(%) =-2mlx|sin(mb —ne+ 6y) (9.42)
Xl = Xl = Xl (r)

with, making use of eq.(9.16),

(%) = [mbwrlvry + 20 rlivel — 2mnlir! [orl cos(ber = d0r) +
—2mn|yr||[Yp| cos(dy, — dpp) +
—1/2
2mnlierl[Epl(9), — B),) sin(bpr — by, (9.43)
Doy o mp|sin ¢y, — n|tr|sin ¢y, \ 271
( o ) a [1 " (mWP\COS%;P —n|¢Tcos¢¢T> } x (9.44)

N'D—-D'N
X e —
e

193



Detailed calculations

N =m|ip|sin ¢y, — n|Yr|sin gy,
D =m|ip|cos dyp — nlir|cos gy,
N'=m|pp| sin gy, +mlipp|dy,, cos yp — nlr| siny, — nlibr|e),, cos gy,
D" =ml|yp| cos ¢y, —mlp|¢),, singy, —nlir| coshy, +nlr|d), sindy,

The helical flux radial derivatives in SHEq—code

SHEq code uses a formula similar to eq.(9.40) also for the helical flux:

x o dxo 8Xm,n(T7 U)
= x4(r) — € (r)sin(u + ¢c) — e . cos(u + @) (9.46)

using definitions (9.19)-(9.20) for €(r) and ¢, one founds that equation
(9.45) is equivalent to eq.(9.41).

9.2 On helical-toroidal coordinates

Helical-toroidal coordinate systems have been defined in chapter 4 as a first
step to model SHAx states (as pure SH states).

The whole metric tensors are used by the SHEq code to compute the helical
plasma quantities, examples of which one can find in chapter 6.

We collect here the metrics of all the helical coordinates defined in chapter 4,
in the same order for simplicity (except for the (x, u, #) and (x, ug, , ) coordi-
nate systems of section 4.2.3, for which no metrics have been calculated). It
is worth noting that all the helical-toroidal metrics are all curvilinear metrics.

9.2.1 The whole metric tensor of helical coordinate systems
defined in chapter 4

1. The (x, ,¢) coordinate system

This is the coordinate system defined in section 4.2.1, which is not a
straight—field-line coordinate system.

The angle [ is defined with respect to the helical axis, and can be de-
fined with respect to the cylindrical coordinates® in a geometric way,
equation (4.11).

Due to equations (3.14), the metric tensor and the Jacobian of this co-
ordinate system can be derived in a relatively easy way in terms of the

3The tensor metric of the cylindrical coordinate system can be found in appendix B.2.1.
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9.2 On helical-toroidal coordinates

metrics of the zero-th order flux coordinates w® = (7,1, ) defined in
section 3.1.1 and appendix B.2.3. The contravariant metric tensor ele-
ments and the Jacobian can be computed using the relations between
the gradients of the two coordinate systems:

Vyx = V?“ —l— VY —l— Vgo
V@ = ar b7y + Vﬂ + Vgo
Ve =Vop

The Jacobian /g3 of the (x, 3, ¢) coordinate system is:

_ —1
VI3 = (VX VBx V)T = (FG - G5 ) Ve (047)

where /gy, is the Jacobian of the w’ coordinate system. The following
condition must be satisfied:

dx 0B  OxI0p

or o0~ 99 or (9.-48)

We write explicitly just an example, for the first contravariant met-
rics element: g'! = gXX:

gX = Vyx-Vyx (9.49)

195% 195'% 195 195% Ox ox
<mv+&ﬂwﬂww0(&v+ﬂww+av>

(XN e (XN s (OX\ ax XY o

The g;; elements of the (inverse) covariant matrix can be calculated
from the formulas for the inversion of a 3x3 diagonal matrix (see ap-
pendix B.3).

One needs to know the following derivatives to compute the metrics
elements and the Jacobian:

B)6)6) @ e

The derivatives of the helical flux have already been discussed in section
9.1.3. We derive here the derivatives of the angle 3, for which we must
remember the definition of the angle (3, equations (3.14) and equations
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(3.12):

(3 = arctan ( g:lz%;‘ ) (9.51)
3
R =Ry —rcost+ A(r) — rA;sin? 9 + (57“)\% — 2r)g) sin? ¥ cos ¥

Z =rsind — g)\l sin(2¢) + (%7‘)\% — 2r)g) sind cos® ¥ — g/\% sin ¢

.

Ai(ry) = J__TJ; — A (9.52)
r r r

Ag(rf)zréo (7 -4 :T}cho Al (9.53)

Because d/dx(arctanz) = (1 + 2?)~!, one obtains the derivatives:

911
0, Z—7Z 1 0Z Z—-7Z OR
(%) = [1+< = ) ] ( R-Ra: o0 ~ (R=R.)Z or ) =£9.54)
1 0z OR
= R-R)Z —(z-zy)Z8
(R—Ra)? + (Z — Za)? [( W) g Z -2,
z-2, \?] 7 \ 07 _ _Z-Zs OR
(35) = [1+< = ) ] ( R-Rx 09 — (RRa)® 00 ) +9.55)
1 0z OR
= R—Ry) — —(Z —Z4) —
(R—Ra)2+ (Z — Z4)2 [( A) g A) 819}
with
1
(%) = sinv- §>\1 sin(29) — gsin(%?) 8@? + (9.56)
+( %)\%—1—37’)\1 %—2)\2—21“% ) sind cos? V) +
1 O
— iA%sinﬁ—r)\l 877“1 sin
( g—g ) = rcost — r\j cos(29) — %)\% cos ¥ + (9.57)
+ ( %T)\%—QT)\Q ) (cos?9 —2sin*9 ) cos¥
OR / ) ) 8)\1
(32) = —cost + A" — Ay sin“ 9 — rsin ﬁﬁ—i— (9.58)
+( 2x2 +3r/\1% - 27’% —2)\y ) sin®¥ cos?
(2%) = rsing—2rA;sind cosd + (9.59)

+ ( %7“)\%—27”)\2 ) (2cos®¥ —sin® ) sind
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and

(2= I A" (9.60)
( Y )_ r A/ B rA”
or 2R? 4Ry, 4Ry
1A
A =g = < + 2 o > (9.61)

2. The (x,u, ) coordinate system

This is the helical coordinate system defined in section 4.2.2, for the
Hamiltonian time ¢, that emphasizes the helical symmetry with re-
spect to u on the flux surfaces y = const.

The (x,u, ) is not a straight—field-line coordinate system and the he-
lical angle ©u = m1 — ny is not defined with respect to the helical axis,
being defined with respect to the axi-symmetric (shifted) axis of the
system (as the poloidal angle ¥).

The metric tensor and the Jacobian of this coordinate system can be
derived in a relatively easy way in terms of the metrics of the zero—
th order flux coordinates w' = (r,9, ) defined in section 3.1.1 and
appendix B.2.3.

The Jacobian ,/g. of the (x,u, ) coordinate system is:

w- GG A5 om

“m
where /gy is the Jacobian of the w'’ coordinate system.

Also the contravariant metric tensor elements gf;j can be com-
puted using the relations between the gradients of the two coordinate
systems (and the easy derivation of the helical angle u with respect to
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the w’ coordinates). One obtains:

g = Vyx-Vy (9.63)
(XN e (XN ae (XN oo L (OX) (OX)
= <(‘9r> G T+ <619> G T 90 9y T ar ) \ag ) 9w

9.t = Vx-Vu

OX\ o X\ o X\ s
_ ox\ » ox (X 64
25%
LS — . - [ ZA P

g, Vx - Vo (8¢> 9 (9.65)

g = Vu-Vu=m?g’% +n?g%¥ (9.66)

9¥ = Yu-Veo=-ngl? (9.67)

g2¥ = Ve -Vo=gi? (9.68)

remembering the symmetry of the metrics elements: ¢ = ¢/* and
gij = 9Gji-

The covariant metric tensor elements g;; can be calculated from
the formulas for the inversion of a 3x3 diagonal matrix (see appendix
B.3).

3. The (x,up, ) coordinate system

This is the action—angle coordinate system defined in section 4.2.2, for
the Hamiltonian time ¢, that emphasizes the helical symmetry with
respect to u on the flux surfaces xy = const.
The (x,u, ) is the straight—field-line coordinate system related to the
helical angle uj, defined in equation (4.21).

The metric tensor of this coordinate system can be derived in a rel-
atively easy way in terms of the metrics of the (x,wu,p) coordinate
system. One needs to know the following derivatives to compute the
metrics elements and the Jacobian:

oup,  Ox [ PYr(x W)
ax = oo /. aXQ du (9.69)
ou 195% dyn ox .

remembering the definition of the helical rotational transform ¢, eq.(6.26).
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The Jacobian /g, of the (x,up, ) coordinate system is:

dup\ —1
Von = (37) Ve (9.71)
1 s0up\—1/70x\ 1
= —|(—=— =) V9w 9.72
m< ou ) (87“) 7 ( )
using also equation (9.62).
The contravariant metric tensor elements gzj can be computed

using the relations between the gradients of the two coordinate systems
(the (x,un, ) and the (x,u, ) coordinate systems). One obtains:

g = Vx-Vx=gX (9.73)
8uh Buh
Xuh . — [ 222 ) gxx — ) gxu .74
gy Vx - Vuy <8x>gc +<8u>gc (9.74)
o’ = Vx-Ve=g¥ (9.75)
g = Vuy - Vuy, (9.76)
auh 2 XX Buh 8uh 8uh 2
—_ - 21 —= " Xu - n uu
ouy, ouy,
upp ) — [ 2% xe GUR\ Jup ‘
977 = Ve Ve =g¥ (9.78)

remembering the symmetry of the metrics elements: ¢ = ¢/* and
gij = gji and that up = up(x, u).

Again, the covariant metric tensor elements gfj can be calculated
from the formulas for the inversion of a 3x3 diagonal matrix (see ap-
pendix B.3).

. The (x,u,v) coordinate system

This is the helical coordinate system defined in section 4.2.4, for the
Hamiltonian time v = afl + bny, that can be thought as a toroidal-like
angle defined on the helical axis and that do not reverse. On the other
hand, the helical angle u = mv — np is not defined with respect to
the helical axis and the (x,w,v) is not a straight—field-line coordinate
system.

As for the (x,u,¢) coordinates, the metric tensor of this coordinate
system can be derived in a relatively easy way in terms of the metrics
of the zero-th order flux coordinates w® = (r,1, ) defined in section
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3.1.1 and appendix B.2.3.
The Jacobian /g, of the (x,u,v) coordinate system is:

@ = (5) Giay ~aom) V= 0™

(g’;) = i (9.80)

where /g, is the Jacobian of the w'® coordinate system. The simple
derivations of the angles u and v with respect to ¥ and ¢ have been
used.

Also the contravariant metric tensor elements géj can be com-
puted using the relations between the gradients of the two coordinate
systems. One obtains:

gX = Vy-Vy (9.81)

N o (XN 99, (OXN oo . (OX) (OX) o
<&>9w+<w>gw+ ag) % \ar ) \aw )
g = Vx-Vu

OXY\ o XY\ w9 XY\ s
= r = — Al .82
m<ar>gw +m<8§>9w "5, ) % (9.82)
g’ = Vx-Vvu
L Ox e, L (OXY we L [(OX\ oo
- 2n (37‘) ™ (619 w5 ()% Ju (9.83)
g = Vu-Vu=m?g" +n?g2¥ (9.84)
gi' = Vu-Vo= gl - 2 (9.85)
1 1
g = Vou-Vu= mg;’;ﬂ + 495 (9.86)

remembering the symmetry of the metrics elements: ¢ = ¢/* and
9ij = Yji-

The covariant metric tensor elements g;; can be calculated from
the formulas for the inversion of a 3x3 diagonal matrix (see appendix
B.3).

. The (x,uy,v) coordinate system

This is the Action—Angle coordinate system defined in section 4.2.4,
for the Hamiltonian time v. The (x,u, ) is therefore the straight—
field-line coordinate system related to the helical Angle u, defind in
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9.2 On helical-toroidal coordinates

equation (4.62) as the angle defined with respect to the helical axis..

The metric tensor of this coordinate system can be derived in a rel-
atively easy way in terms of the metrics of the (x,u,v) coordinate
system. One needs to know the following derivatives to compute the
metrics elements:

“on(np,u') ., dx / “on(x,u')
wy(np,u) = TR 2 gt = X /A% RV 9.87
2 () /0 o s (9.87)

%1:7 N aa</ %du/>+$/quul (9.88)
-1 2
= [5G (5 T (G e
- ‘ZZZ’
% - W:LW(X)W:%M;}@Q* (9.89)

remembering the general definition of the helical rotational transform
tn(x) = dx/dnp, for the Action 1, (x), and with?*:

On 1 0¢p  10¢

or  2n Or t3 2 Or (9-90)
& 1 %pp | 10%)

a2 T o T2 ae (9-91)

The Jacobian /g, of the (x,uy, v) coordinate system is:

Ouy,

Vi = (52)ve (0.92)
- (53 Ve (9.93)

using both the Jacobian of the (y,u,v) and the w’ = (r,9,¢) coordi-
nate systems.

The contravariant metric tensor elements gff can be computed
using the relations between the gradients of the two coordinate systems

4See section 9.1.2 to compute the radial derivative of the poloidal and toroidal fluxes.
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(the (x,u,v) and the (x,un,v) coordinate systems). One obtains:

X = Vx-Vx=gX (9.94)
ou ou

Xtn . — [ 221 ) gxx 2 gXu

9n Vx - Vuy, <3X > gXX + < 9 > g (9.95)

g’ = Vx-Vu=gy (9.96)
g"" = V- Vu, =

Ouy, 2 o Ouy, Ouy, Ouy \ 2
< 3><) o +2( 5 ) B )"+ . 9£9.97)

2" = Vu, Vo= Ouy XU 4 Ouy ) juw (9.98)
9n - n - 8X 9y au Gy '

g = Vv-Vv=g" (9.99)

remembering the symmetry of the metrics elements: ¢ = ¢/* and
9ij = gji and that uy = uy (1, u) = uy(X, w)-

Again, the covariant metric tensor elements g?j can be calculated
from the formulas for the inversion of a 3x3 diagonal matrix (see ap-
pendix B.3).

. The (x, 0%, ¢) coordinate system

This is the Action—Angle coordinate system defined in section 4.4.1, for
the Hamiltonian time ¢. It is a straight—field-line coordinate system
related to the usual toroidal angle ¢ and to the poloidal angle §* defined
with respect to the helical axis in equation (4.80):

0" =up+np . (9.100)

The metric tensor of this coordinate system can be derived in a rel-
atively easy way in terms of the metrics of the (x,un, ) coordinate
system. The Jacobian /g, of the (x, 0%, ¢) coordinate system is:

V= = (Vx-Vu, x Vo) ' = Van (9.101)

where /gy, is the Jacobian of the straight-field-line coordinate system
<X7 Uh,s SD) .

The contravariant metric tensor elements gij can be computed
using the relations between the gradients of the two coordinate systems
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the (x, 0", v) and the (x,un, ) coordinate systems). One obtains:
¥ 2

X = Vx-Vy=g™ (9.102)
20 = Uy VO = gk g (9.103)
¥ = Vy Vep=g¥ (9.104)

gl = VOTVOT = gt 4 2mgih? 4 ngf¥ (9.105)
S L (9.107)

remembering the symmetry of the metrics elements: ¢ = ¢/* and
9ij = g;; and computing the easy derivatives of 6* with respect to the
(up, @) coordinates.

The covariant metric tensor elements g;; can be calculated from
the formulas for the inversion of a 3x3 diagonal matrix (see appendix
B.3).

9.2.2 Radial variable choices

We note here how the Jacobian and the metrics elements vary for change
of the radial variable. In section 9.2 we used the helical flux y as radial
variable, with the same choice of chapter 4. We now consider the change:

X = p(x) (9.108)

for any coordinate system Y, @, ¢, keeping unchanged the angle variables.

The Jacobian ,/g, according to eq.(9.108) changes as follows:

x

Vap = <8p> VIx (9.109)
where /g, is the Jacobian of the p,6, ¢ coordinate system.

The contravariant metric tensor elements ¢g”/ changes as:

ap 2
g = (0x> gx (9.110)
g’ = <g§>g’<9 (9.111)
9 = (g;) g7 (9.112)
(9.113)
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whereas the metric elements related to the angular coordinates only are un-
changed.

The covariant metric tensor elements g;; can be calculated from the
formulas for the inversion of a 3x3 diagonal matrix in terms of the contravari-
ant elements. Using the relations above one can find how they change under
changes of the radial variable. It still true that the covariant metric elements
related to the angular coordinates only are unchanged.

To conclude we note also how change some quantities important in chap-
ter 7: the derivative of the volume V' and the diagonal susceptance matrix
elements S;;.

VeV = (?;) v (9.114)
[S11]y = [S11), = wa&@ (9.115)
[Sa2]y = [S22], = (g;) [S22]y (9.116)

9.2.3 Dimensional analysis

We use the symbol [...] to indicate the dimension, using SI metric units.

What changes changing the radial variable is the dimension of the covari-
ant and contravariant components of the magnetic field and vector potential.
Starting from the definition of these components in every general coordinates

= (2b, 22, 23):

B = Ble; = B;Va! (9.117)

where e; and Va' are the covariant and contravariant basis vector, respec-
tively. And they are one the inverse of the other (appendix B.1), Vz' being
the gradient of the coordinate scalar function. The same relations are valid
for any vector, in particular for the vector potential A.

One starts from here for some dimensional analysis. We choose toroidal sys-
tems (p, 0, ¢): 0 and @ are two (adimensional) angles and their gradient have
dimension [m~!], while its inverse the dimension of [m]. The correspondent
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9.2 On helical-toroidal coordinates

dimensions for the radial coordinate depend on the choice of p:
(0
(0

[adim]) = VO=[m™Y, eg = [m] (9.118)
[adim]) = Ve=[m], e, =[m] (9.119)

(p=x=[Tm?) = Vp=[Tm],e,=[T"'m ! (9.120)

(p=pn =ladim]) = Vp=[m '], e, =[m] (9.121)
(p=pa=[m]) = Vp=ladim], e, = [adim] (9.122)

Using the definitions (B.3) and (B.1) for the contravariant and covariant

metrics elements respectively, one can make from here a dimensional analy-
sis of the tensor matrix elements.

Because the magnetic field must be Tesla [T] and the vector potential
[T'm] (Stokes theorem), one obtains using (9.117):

(p=x=[Tm?) = A,=adim], A, = [Tm?] (9.123)
= B,=[m ', B, =[Tm] (9.124)

(p=pn = [adim]) = A, =[Tm?, A, = [Tm?] (9.125)
= B,=[T'm], B, = [Tm] (9.126)

(p=pa=[m]) = A,=[Tm], A, = [Tm?] (9.127)
= B, =T, B, = [Tm)] (9.128)

With down indexes:

(p=x=[Tm?) = AP =[T?m?, AY =[T] (9.129)
= Bf=[T%m], B = [Tm™ ] (9.130)

(p=pn = ladim]) = AP =[T], A =[T] (9.131)
= B=[Tm!],B?=[Tm ] (9.132)

(p=pa=[m]) = A’ =[Tm|, A? =[T] (9.133)
= B =[T], B =[Tm™ ] (9.134)

The components on the other angle, § have the same dimensional properties.

Not all the the components of the magnetic field and of the vector po-
tential have the dimension of the whole vector. This is obviously due to the
fact that the basis vectors are not adimensional. This is at the basis of the
theory for curvilinear metrics and tensorial calculations: paying attention to
these rules, one can make adimensional and with unitary lenght the basis
vectors e; and V! dividing them for their norm. This is the way to obtain
the right dimension and lenght for each component of the vectors. It is worth
noting that this is necessary to compare them to experimental measurements.
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9.3 On some equilibrium equations

9.3.1 The equation for dq/dt

Following the steps for the derivation of the time evolution of the rotational
transform (section A.5), we derive a similar equation for the time evolution
of the safety factor ¢.

The starting point is the same, the Faraday’s law in eq.(A.54), that we now
divide by 1, to highlight a g = 41 /1;, term in the equation:

Vi _ [% %)

®-B) 7 =a[F; +vi0)] - (5

(9.135)

In order to delete the contribution from the loop voltage V;(0), let us take
a radial derivative of equation (9.135). But, differently from the appendix
A5, we choose a radial derivative with respect to 1):

: 0
s [E ] = o (65 uo) -5 ()
g By O (O . O o (v
- aqﬁqp ot qa¢p<atp) aquvt(m_%(a;)
_ ;@Zp[%@’ww(oﬂ—gﬁ (9.136)
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exchanging spatial and temporal derivatives in the second order derivatives.
Highlighting the dq/dt term, one obtains:

aq o aq '81/} 7 0 \"d
a 5 VO] —%[<E'B> ;j (9.137)
_ 8q _8¢ 1 0 \"&
= a5, Lar 71O ‘3[77|<(JJ5)~B>1,9] (9.138)
_ Oq [9¢
= a0, Lo TVO)+ (9.139)
d [n) Ho , ) v
_ 871/;:0 ¢;) (F1 —IF)—n”(JS.B);)]
_ Oq [9¢
~ ou, .c‘TfJFWO)} + (9.140)
i_M 2 (1 i . K/
R " (F) }+a¢p [ml (Js - B) 1,0]
_ Oq [9Y
= 3 EadOIE 90, [Wn (J5-B) w,} (9.141)
o [m 2 0 (Su+Sg
o [M0¢ (Sa1+ 520 8P<521+522q>}

These are the equations for the safety factor evolution. In section 7.3.2 one
can find an example where equation (9.141) has been used.

More in detail, between eq.(9.137) and eq.(9.138) it has been used the Ohm’s
law in the form of eq.(A.53).

Between eq.(9.138) and eq.(9.139) (and between eq.(9.139) and eq.(9.140)) it
has been used the parallel force balance equation, in the form of eq.(A.59).
Between eq.(9.140) and eq.(9.141) have been used the equations (A.60)-
(A.61), where the poloidal current F' and the toroidal one I are written in
terms of the (radial derivative of the) poloidal and toroidal fluxes using the
susceptance matrix elements. These equations are re-written to highlight
the contribution of the safety factor instead of ¢:

F? = (w ) (So1 ¢+ 522) (S91 + S22 q)Z (9.142)

(9.143)

2
Ho
(7 - sy - (s
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9.3.2 The equations for I’ and F’

It is possible to write the ohmic equilibrium system (A.52) in a different way,
i.e. as a system of two differential equation that can be integrated to obtain
the currents I and F.

One can invert the susceptance matrix (A.44) defined in appendix A.3 to
link the currents and the derivative of fluxes®:

vy _ Lyi Lio I
( oy ) T Ly L F (9.144)
where [L;;] = [Si;]~!, and therefore

1 S —S12 )
Li;| = 9.145
L] S11.521 — S12 522 ( =51 Sn ( )

Using the matrix L (instead of S) the ohmic equilibrium system (A.52)
of section A.4 can be written in this form:

Yy, = po(La1 I + L1 F)

Yy = po(Lo1 I + Log F)
(9.146)
Vi (0) ¥ + [Vu(0)yy] = o (F 1" — T F)

[ —pV' = Flyf +1'y)

Let us neglect for a first calculation the term proportional to the poloidal
loop voltage on the axis, V,(0)%. At the end of the section we will write the
complete equation for I’ and F’ that contain also the terms proportional to
the poloidal voltage.

Using the first two equations to substitute wl’, and v, in the other two equa-
tions, one obtains:

(FI,—IF/):U@(L21I+L22F)

(9.147)
—p V' =po F' (Lot I + Lo F) + pio I' (L11 I + Lio F')
with the definition
Vi (0
U, = 37( ) (9.148)
I

51/1,, and 1 are used for the fluxes related, in a general coordinate system, to the
poloidal-like and to the toroidal-like angle, respectively.

SIf the poloidal-like angle lies on the poloidal plane, V»(0) = 0 by definition. In this
section we introduced the possibility of a term Vp(0) # 0 thinking to a poloidal-like angle
topologically equivalent for example to a helical angle. In this case the circulation around
the axis does not collapse into a point, and could be Vp(0) # 0.
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From the first one it is easy to obtain an equation for I’ to be substituted
into the second one:

I"=(UpLot) £ + (Uy Lao) L F'

—p V' = po F' (Lot I + Loy F) + pig (L11 I + L12 F)[(Uyp Lo1) % + (Uy Lao) & F']
(9.149)
From the last equation one can find an expression for F’. Using it also in
the equation found for I’, one finds the two equations that was looking for.
The steps are simple algebra, we write only the final result.
Let me introduce the quantity d for easier notation:

d=po (L1 I* + Lig I F + Loy [ F + Loy F?) (9.150)

The final equations are:

ave Loyl + Los F)(Ly1 I+ Lo F
o _p;/ F_Ugo( 211 + Lao d)( 1nl+LixF) (9.151)
, p/V, UL,D (L211+L22 F) (L11I+L12 F) I
I' = — I— —+
d d F
Ucp (L21]+L22 F)
9.152
. (9.152)

To conclude, a non null poloidal loop voltage V},(0) adds some terms to
the previous equations:

A% Uy (Lar I + Lo F) (L111+L12F)+

F' = F —
d d
Ug (L1 I + Ly F)?
_ Uen ; 12 1) (9.153)
, p/V/ U(p (Lgl I+ Loo F) (LH I+ Lo F) I
I = — I — — +
d d F
U<p (L21 I+ L22 F)
_.I_
F
UQ(L]_]_I+L]_2F)2 I U@(Lllf-i-ngF)
— — 154
7 fa + fa (9.154)
with the same definition for Uy
V,(0
Up = ﬁ) (9.155)
I

An example of solution of this system is given in 7.4 for the cylindrical
paramagnetic pinch.

209



Detailed calculations

210



Conclusions

Summary

This thesis reports the work done to characterize the helical Reversed Field
Pinch (RFP) states, named SHAx (Single Helical Axis), through the inves-
tigation of the magnetic topology in the core region and at the plasma edge.
The work has been carried out in the RFX-mod experiment (Padova, Italy)
and it mainly concerns the study of the 3D RFP physics which can be of
interest also for the Stellarator and Tokamak comunities.

SHAx states are high plasma current states which feature the emergence

of an ordered spontaneous magnetic structure in the otherwise chaotic core,
and are therefore associated to improved confinement properties. The he-
lical shape is related to the dominance of the innermost resonant mode in
the MHD spectra (which is the (m,n) = (1,7) in RFX-mod device), but
SHAx states are just Quasi Single Helicity (QSH) states due to the pres-
ence of secondary modes. It is worth reminding that the toroidicity of the
system imposes a toroidal coupling between modes with the same toroidal
mode number n and different poloidal mode number m, therefore a domi-
nant mode arises also in the m = 0 mode spectrum (the (m,n) = (0,7) in
RFX-mod device).
In the characterization of the plasma core, SHAx states are modeled as
pure Single Helicity (SH) states (therefore neglecting the residual secondary
modes). The contribution of the secondary modes and especially of the dom-
inant m = 0 mode is considered in the characterization of the edge region
and of the plasma—wall interaction.

A practical outcome of this thesis is the code named SHEq (Single He-
lical Equilibria) which is now routinely used for the computation of helical
equilibria in RFX-mod. In these Conclusions the main results of this thesis
and the possibility of future work using the SHEq code are summarized.
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Conclusions

Characterization of the core region

For the core region, the research activity has been focused on the study of
the helical SHAx configuration modeled as pure SH states.

Helical coordinates. The first step was the research of new helical
coordinates that can well describe a Single Helicity state (SH) on a torus. In
particular, the approach of using of the dominant tearing mode eigenfunc-
tion computed using Newcomb’s equation for determining the position and
shape of the helical flux surfaces has been evaluated.

As radial coordinate we use the helical flux (appropriate function of the
poloidal and toroidal fluxes which labels the axi-symmetric magnetic flux
surfaces), and we need then to find two angles (a poloidal-like and a toroidal-
like angle) defined with respect to the helical axis of the system. Because of
the toroidal dependence of the helical axis position in the poloidal plane, we
define substantially a 3-dimensional coordinate system. Moreover, no cylin-
drical approximation has been taken into account, looking for a curvilinear
metric in order to well consider the toroidicity of the helical system (the dif-
ference between covariant and contravariant coordinates is then important).
Angles have been defined both using a geometrical approach and the Hamil-
tonian approach to magnetic field lines. Using the more robust Hamiltonian
approach it is possible to define also helical straight-field-line coordinates.
More than one helical coordinate system has been completely defined: we
calculated the Jacobian of the transformation between our helical coordi-
nates and the Cartesian coordinates, and all the elements of the covariant
and contravariant metric tensor. The complete definition of this coordinate
system allows us to relate our coordinates to all the previous coordinates.
We just notice that we found a coordinate system valid in the whole plasma
volume, which means both around the reversal surface and in the inner bean
shaped flux surfaces (the more helically-distorted ones).

The SHEqg—code and some example. The complete definition of
the helical metrics is used by the SHEq-code, which is able to compute all
the (helical) equilibrium plasma quantities.

First, the goodness of the flur surface reconstruction, labeled by the con-
stancy of the helical flux, has been assessed by mapping the data of different
diagnostics on the computed flux surfaces. Then, 3-dimensional fluxes, mag-
netic field and current density components can be computed, as well as their
radial profile through flux surface averaging of these quantities.

As an example, we used the flux surface averages to calculate the thermal
conductivity across the magnetic flux surfaces, averaging the energy equa-
tion in steady state for fluid at rest. Doing this we evaluated important
quantities, such as the surface-averaged input power, which can be then fed
into a transport code (e.g. the ASTRA transport code).
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SHEq can also compute the helical safety factor (q) profile: during SHAx
states the g-profile is not monotonic, with a maximum in correspondence of
the Internal Transport Barrier that characterizes SHAx states.

SHEq has been coupled with two other codes: the VMEC equilibrium code
and the ASTRA transport code.

The helical g-profile is used as input for the VMEC-code, where the helical
safety factor is given as a function of the poloidal flux across the helical flux
surfaces. What we found is a very good agreement with its convergence: on
one hand this is a benchmark for SHEq’s computations, on the other hand
SHEq'’s helical safety factor profile is a good input for VMEC analysis.
SHEq and ASTRA have been coupled in order to perform transport analysis.
ASTRA is a code most used in Tokamaks, but it can also be adapted to a
3-dimensional geometry, like the helical one in Stellarators or during SHAx
states in RFPs. We used the coefficients of the metric tensor to adapt the
ASTRA code to our helical geometry and some preliminary calculations of
transport analysis were performed.

We are working with ASTRA also to study the evolution in time of SHEq’s
safety factor profiles, according to Ohm’s law. This is an ongoing work in
collaboration with the TJ-IT (Ciemat, Madrid) team, which should allow to
verify if the steady state equilibrium satisfies the Ohmic constraint given by
Ohm’s law, which is not an initial contraint for SHEq’s computations.

Characterization of the edge region

For the plasma edge region, the research activity has been focused on the
investigation of the plasma-wall interaction (PWI) during SHAx states, and
in particular on the m = 0 magnetic islands role.

On the toroidal direction, a n = 7 pattern can be clearly seen in the
plasma-wall interaction due to a magnetic boundary characterized by the
m = 0/n = 7 island chain. On the poloidal plane the plasma—wall in-
teraction is strongly affected by the phase relation between the dominant
m = 0/n="7and m =1/n =7 modes, due to their toroidal coupling.

The imaginative idea of an usland divertor to protect the RFX-mod first wall
is proposed, justifying it with the regular pattern of the PWI. But the control
of the edge region would require the control of the m = 0 island amplitudes
and phases, in addition to the phase difference between the m = 0/n =7
and m = 1/n = 7 modes. Some discharge of the 2011 RFX-mod experi-
mental campaign were therefore dedicated to the control of these features
by externally applied non—zero boundary conditions to both the m = 0 and
m = 1 dominant modes.

To analyze the edge region during SHAx states we used field line tracing cal-
culations and the reconstruction of the mode eigenfunction computed using
Newcomb’s equation, in addition to edge measurements.
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Future work and collaborations

The data analysis of the 2011 RFX-mod experimental campaign discharge
with non—zero boundary condition on the dominant modes is far to be com-
plete. In particular better analysis on the phases of the modes are going on,
in addition to the comparison between a larger set of edge measurements.

The activity on the use of the ASTRA code for solving time-dependent
transport equations in helical equilibria according to Ohm’s law will con-
tinue. This activity, which is being carried out in collaboration the Theory
Group of the TJ-II Stellarator device (Ciemat, Madrid), are relevant both
for RFPs in SHAx states and for Stellarators where some current is driven.

A benchmark of SHEq-code is going on with data from other experiments
as well, in particular with the MST (Madison, Wisconsin) team, where the
SHEqg-code has recently been ported. MST is a RFP device, where SHAx
states have been recently reached. We are using SHEq-code to perform their
3-dimensional magnetic reconstructions, and the mapping of 3-dimensional
density and SXR (soft X-ray tomography) profiles is already a good result.

The approach of using Newcomb’s equation for the reconstruction of
mode eigenfunctions (used by SHEq code) uses an axi-symmetric current
density profile that comes from a two—parameters fit of experimental data
(the a — ©g model), but without any constraint from the Ohm’s law.

A new code for computing the dominant mode eigenfunction with a generic
current deunsity profile could be developed, base on the algorithm now used to
compute the eigenfunction of poloidal and toroidal fluxes using Newcomb’s
equation. The code would be then integrated with the SHEq code for com-
puting helical equilibria in QSH states, thus increasing its flexibility and
allowing it to explore the effect of the current profile on the helical equilibria.

SHE(q’s equilibria could also be thought as the helical SH equilibria to
be perturbed. One should therefore compute the eigenfunctions of the per-
turbation to the helical equilibria, in a way similar to the one used now to
compute the eigenfunctions of the perturbation to the axi-symmetric fluxes
(using Newcomb’s equation). The m = 0/n = 7 mode could then be added to
the helical equilibrium, in the same way as the dominant m = 1/n = 7 mode
has been added to the axi—symmetric equilibrium to model SHAx states.
Moreover, the MHD spectra related to the helical safety factor profile could
be explored, together with its resonances. This could be interesting to better
understand the magnetic topology of a SHAx state, and the possibility of
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their external control.
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Appendix A

MHD equations

A.1 MHD equations

MHD equations are the combination of the Maxwell equations for the (time)
evolution of the electric and magnetic fields, E and B; the total electric
charge p. conservation law; the mass, momentum and energy conservation
laws; and the Ohm’s law that relates the electric field to the current density

J:
Gauss
magnetic solenoidity

Faraday

Ampeére
Ohm

mass conservation

Navier—Stokes

energy conservation

—

vV.E=" (A1)
€0
V.B=0 (A.2)
0B
E=-2 A.
V x 5 (A.3)
OE
VxB—uo(J—i—eoE) (A4)
E+vxB=nJ (A5)
0pm
Zrm_ . A.
0
o+ P (V- V) v = (A7)
_V.-P+JIxB+pE
A 3py 3 -
dt(2)+2v v+V q+(P V) v=J"-E

where J' is the current density measured in a frame of reference with velocity
v. In the same way, E’ is the electric field measured in the frame of reference
with velocity v'. With respect to the electric field E and the current density

!The velocity v is the plasma flow, and one should also pay attention to the difference
between the time derivative (9/0t) in a fixed point and the derivatives on the moving flux

surfaces (d/dt):

d 0
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MHD equations

J measured in a fixed point:

J = J—pev (A.9)
E = E+vxB (A.10)

In equations (A.1)—(A.8), p, is the mass density, p the total kinetic pressure
of the plasma, q the heat flux vector, and P the pressure tensor. Neglecting
the viscous terms, only the diagonal terms in P are non null, and (V . P)
reduces to Vp in an isotropic plasma. This is the assumption used in this
thesis (if not said differently).

Usually, the energy conservation law is replaced by some assumption on the
system, e.g. the assumption of a given plasma pressure p.

Navier—Stokes equation is the momentum conservation law, also said the
force balance equation.

Some other useful equations arise combining the equations below. With-
out make any proof, we write some of them: from Gauss and Ampeére’s laws:

dp
J=——= Al
\ T (A.11)
From Faraday’s, Ampére’s and Ohm’s laws:
0B N o
— =V B)+ —V“B A12
™ x (v x B) + " (A.12)
from Ampére’s and Navier—Stokes laws:
dv 1
m— = — B) xB Al
pm vp+ﬂo (V xB) x (A.13)

=-Y22,(BV)B

From eq.(A.12) one can see that, for v = 0 (equilibrium condition) and non
null resistivity, the magnetic field is not frozen to the plasma, but it follows a
diffusive equation where the resistivity n is the diffusion coefficient. This de-
fines the typical diffusive time scale: 7p = ug L?/7 is said the characteristic
resistive time (L being the characteristic length). From eq.(A.13) one can
see that the equilibrium condition (v = 0) is realized by the balance between
the gradient of the magnetic and kinetic pressure ((p + B?)/(2u0)) and the
action of the parallel compression of the magnetic field ((B . V) B/ o).

Before some simplifications, it is worth noting that the equation that
fixes the solenoidity of the magnetic field is redundant. One should always
pay attention to the number of variables and the number of equations in the
System.
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A.1 MHD equations

Some simplifications

First of all one usually neglects the contribution of the (OE/ 8t) current
comparing to the conductive current J in the Ampére’s law.
Neutral plasmas are considered, therefore p. = 0.
As already said, also the viscosity of the plasma is frequently neglected, and
(V-P) reduces to Vp (Navier—Stokes equation and energy conservation law).
The energy conservation is replaced by a given plasma pressure p.

All these simplifications bring to the system:

V-E=0 (A.14)
V-B=0 (A.15)
0B
E=—— Al
V x e (A.16)
VxB=puyJ (A.17)
E+vxB=nJ (A.18)
Opm
—— =—V " (pm Al
P = Y (o) (419
ov
pma—i-(v-V)v:—Vp%—JxB (A.20)

Another simplification is to consider just the equilibrium system of equa-
tion.

Equilibrium equations

Also called Magnetostatic, let us now write the equations for a steady
state equilibrium, where v = 0, together with the time derivative 9/9t = 0
(and therefore also d/dt = 0):

V-E=0 (A.21)
V-B=0 (A.22)
VXxE=0 (A.23)
VxB=puJ (A.24)
E=nJ (A.25)
JxB=Vp (A.26)

Equation (A.23) implies an electrostatic E, that must be the divergence of
some potential. This and some more considerations about the Ohm’s law
are in section A.2.

This is the system usually used to study the plasma equilibria. One can

find another equivalent formulation in section A.4, where only the averaged
Ohm’s law is considered.
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Force free conditions

The condition
JxB=0 (A.27)

is the so—called force free condition of the force balance (or Navier—Stokes)
equation, and it is related to the vanishing of the pressure gradient (compare
eq.(A.26) and eq.(A.27).

From eq.(A.27), the current density is parallel to the magnetic field. To
emphasize this, one can write

J=0B (A.28)
where o is the proportionality profile.

The force free condition is the condition always chosen in this thesis and
in particular for SHEq calculations (see chapter 3).
In the introduction a model, called @ — ©¢ model, to obtain the o profile
fitting experimental data is explained.

A.2 The stationary electric field and the Ohmic
constraint

A current, to be sustained, must be consistent with Ohm’s law and the
Faraday’s law.

Under stationary condition (the time variation of the magnetic field must
vanish), the Faraday’s law is

VxE=0 (A.29)

and the static electric field must therefore be the gradient of some potential?:

Vo

E = —Vo+V, o (A.30)
= —Vo+E (A.31)
E( is the uniform toroidal induction electric field, and E = —V ¢ is a fluctu-

ating electric field produced by a charge separation®.

2The loop voltages must have no spatial dependence and the gradient of the poloidal
angle must be therefore zero in all the plasma volume, due to the fact that must be null
on its axis. That is why there is not a term V;, V6/27.

3Even if the plasma is globally neutral, regions with net positive or negative imbalance
can exist.
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A.2 The stationary electric field and the Ohmic constraint

The electrostatic potential ¢, the electrostatic field Ey = —V¢ and the
charge distribution ps are related by Laplace’s equation:
V-E=-V2="~ (A.32)
€0

and the charge distribution provides a current density J = psv.

From Ohm’s law, and a stationary electric field, one can obtain the Ohmic
constraint that any stationary equilibrium should satisfy.
Projecting the Ohm’s law on the magnetic field direction, one obtains the
so—called parallel Ohm’s law*:

E-B=7J-B (A.33)

because of the vanishing of the triple product (v X B) - B. The stationary
electric field must be of the form in equation (A.30), therefore the parallel
Ohm’s law in stationary conditions can be written as:

—B-V(Z)—l—;/—;B-ch:nJ-B (A.34)

It is usually interesting to study the parallel Ohm’s law averaged on magnetic
flux surfaces, because the term related to the (usually unknown) electrostatic
potential ¢ vanishes: (=B - V¢) = 0 due to the divergence theorem. The
averaged Ohm’s law for an electrostatic potential is the Ohmic constraint,
that must be valid on each magnetic flux surface:

Vi

5, (B V)= (nJ-B) (A-36)

An information can be added using the force balance equation. If force free
conditions are assumed, J = 0B, therefore the Ohmic constraint can also
assume the formS:

(B V) =0 (n B (A.30)

*So, even when v # 0, the parallel Ohm’s law takes the form in equation (A.25):
Ey=mdy.

°In a cylinder, with inductive electric field Eo parallel to the axial direction z, and
Vi — e., the Ohmic constraint takes the form:

Eo(B.) = (nJ - B) (A.35)

5This is the form used by Finn (see section 7.1) to prove the impossibility of an ohmic
reversal of the toroidal magnetic field in any axi-symmetric configurations and, on the
other side, the possibility of the reversal in a helical symmetric configuration. Using force
free conditions and Ampére’s law, the proportionality o between the magnetic field and
the current density can be written as:
d<Bto7‘>

o= 0 (A.37)

using for p a label of the magnetic flux surfaces. By, is the axial B, magnetic field in a
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A.3 Susceptance matrix

Following P.I. Strand and W.A. Houlberg (S&H) |74], one can introduce the
so—called susceptance matriz, which relates the radial derivative of the fluxes
to the currents. We use the symbol p to label the magnetic flux surfaces,
and (0, ) for the general poloidal-like and toroidal-like angles.

The poloidal and the toroidal fluxes (¢, and t; respectively) can be
written in terms of the contravariant components of the magnetic field (B?):”

27

Up(p) = /0 dso/op\/EB"dp (A.40)
2

i(p) = /0 de/op\/gB‘Pdp (A.41)

/9 is the Jacobian of the coordinate system.

The poloidal and toroidal currents (F' and I respectively) can be written in
terms of the covariant components of the magnetic field (B;), using Amere’s
law:

2m p 1 2

Fo) = [ o [Vard= o [Tden,  (aa2)
0 0 Ko Jo
2 p 1 2

I(p) = / dG/ \/§J“"dp:/ df By (A.43)
0 0 Ho Jo

The currents are linearly related to the radial derivative of the fluxes through
the so—called susceptance matrix S, with elements Sijg

I S11 Si2 ) < ¥y )
= A44
Ho ( F > < So1 S22 (A ( )
By using the general properties of curvilinear coordinates, the definitions
(A.40)-(A.43), and the canonical form of the magnetic field

B = %(wt x VO — Vi, x V) (A.45)

one can obtain equations (37)—(40) of S&H’s paper, where the S;; suscep-
tance matrix elements are entirely written in terms of the metrics.

cylinder, o the toroidal one in a torus. Using eq.(A.39), the Ohmic constraint takes the
form:

d(Btor> _ E <Btor>

dp 2m (n B?)

(A.38)
In the case of helical symmetry, it is the Pinch—Stellarator equation of section 7.1.

"Eq. (1)-(2) of S&H’s paper, [74].
8Eq. (5)-(6) of S&H’s paper, [74].
“Eq. (7) of S&H’s paper, [74].
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A.3 Susceptance matrix

For straight field line coordinates, for which the S matrix is symmetric, the
S;j reduces to:

V' g00

Su = m<?> (A.46)
V' g9

S12 = o) <7Lp> = S91 (A.47)
I

S = 4712< p ) (A.48)

V'(p) is the radial derivative of the volume'?, g;; the metrics elements.

Let us notice that in axi—symmetric geometries, S is a diagonal matrix
(gij =0 for ¢ 75 O)

The radial dependence of the S;; elements is related to the choice of the flux
surface label p. One can see some example in section 9.2.2

To conclude, another important relation in S&H’s paper'! is the equation
for the rotational transform, that can be derived inverting the susceptance
matrix S:

. VYp  Swl —S1F  pol  Si

O, SuF =Syl Suy,  Su

(A.50)

In this equation for ¢ the last term is a current free term, called Stellarator
term'2. This term has been written first by V.D. Pustovitov [66] for a cylin-
drical non axi-symmetric magnetic configuration: it is the geometrical term
discussed in section 7.1 that allows the reversal of the helical deformed RFP
configuration.

We use equation (A.50) for the rotational transform ¢ to evolve it in time
(section 7.3).

10

V' = //027r Vg do dp (A.49)

YEq. (8) of S&H’s paper, [74].
121t is also said vacuum term, due to the fact that Stellarators usually runs without
plasma current.
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A.4 S&H’s equations

The adequate system to describe a magnetostatic plasma equilibrium com-
patible with Ohm’s law, is'3:

JxB=Vp
VXB:;L()J
V-B=0 (A.51)

(E-B) =n(J-B)

L VXE=0

The averaged (on magnetic flux surfaces) Ohm’s law has been considered,
and not yet the force free condition (Vp # 0).

Following P.I. Strand and W.A. Houlberg (S&H) [74] and M.D. Kruskal and
R.M. Kulsrud (K&K) [76], it is possible to write this system in another form:

po I = S11ty, + S121;
po F = So1;, + S0ty

(A.52)
Vi(0) ¥y + Vp(0)4y, = mypo (F' 1" — T F”)

L —pV' = Flyf + 'y,

In these equations: F is the poloidal current (A.42), I the toroidal current
(A.43); 1y is the poloidal flux (A.40), ¢ the toroidal flux (A.41). V;(0) is
the toroidal loop voltages on the magnetic axis of the system; V,,(0) is the
poloidal loop voltage on the magnetic axis, which is always zero for poloidal—
like angles that lie on the poloidal plane (but could be non vanishing in the
case of a poloidal-like angle topologically equivalent to a helical angle). p is
the total plasma kinetic pressure.

The first two equations'® are the Ampére’s law, written with the susceptance
matrix formalism (appendix A.3) that relates the currents and the derivative
of the fluxes in general coordinate system '°.

The third equation'® is the parallel Ohm’s law, averaged on magnetic flux

131n order: the force balance equation, Ampére’s law, the divergence free of the magnetic
field. The parallel Ohm’s law averaged on flux surfaces, and Faraday’s law.

YMEq. (7) of S&H’s paper, |74].

15The names poloidal and toroidal are used for quantities related to the poloidal-like
and to the toroidal-like angle, respectively.

5Eq. (11)4(19) of S&H’s paper, [74] or equation (D12) of M.D. K&K’s paper, [76].

224



A.5 The equation for di/dt

surfaces, and the electric field has been eliminated in favor of the time deriva-
tive of the fluxes, using Faraday’s law. It is worth noting that in this equation
there is a term more than in S&H and K&K, in order to allow the use of a
poloidal-like angle related to a non vanishing loop voltage V,,(0) on the axis.
The last equation 7 is the radial force balance equation.

Solving this system one can compute a steady state ohmic equilibrium.
In section 9.3.2 this system is rearranged in two differential equations for
the currents I and F. An example of solution is given in section 7.4 for the
cylindrical paramagnetic pinch.

Using this system one can derive an equation for the equilibrium time
evolution in appendix A.5. Two example of solution are given in sections
7.3.1 and 7.3.2, for the evolution of the rotational transform in the TJ-II
Stellarator and the evolution of the safety factor profile in the RFX-mod
RFP.

A.5 The equation for di/dt

We derive here the equation for the time evolution of the rotational trans-
form, already present in S&H’s paper [74]'® (but not all the steps are present
there).

The derivation of Eq. (22) of S&H’s paper starts from the averaged
parallel Ohm’s law and from Faraday’s law!'??°. The two equations are:

(E-B) = n((J—-J)-B) (A.53)
(E-B)V' = [‘?ﬁumoﬂ v - (a;:) v (A.54)

In the averaged Ohm’s law it has been taken into account also a non—
inductive source, like the Boostrap current J,. This is done for completeness,
and to follow exactly S&H’s calculations, but this contribution is not used
in the framework of this thesis.

In order to highlight the rotational transform ¢ = /4 (in which we are
interested), let us first divide Faraday’s equation (A.54) by v;:

(E - B) ZQ/ = [a(;ip +Vi(0)] - (%) . (A.55)

"Eq. (12) of S&H’s paper, [74] or equation (D19) of K&Kk’s paper, [76]. First derived
by KeK.

¥ Eq. (22) of S&H’s paper, [74].

YEq. (19) of S&H’s paper, |74].

20in Faraday’s equation V,(0) = 0. We do not account for the V,(0) # 0 case in the
derivation of the rotational transform evolution (as done by Strand and Houlberg).
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Getting now a radial derivative (0/0vy) of eq.(A.55) in order to cancel the
contribution from the induced loop voltage V;(0), we write?!

el - &R ew

My Oy Oy
= — — A 57
(8¢t> (81/1) < ) <81/1t >( )
(it is always possible to exchange spatial and temporal derivatives in a second

order derivative).
Highlighting the di/dt term, one obtains:

o= () (5 )+, [0831 ] (459

The final form of this equation uses the Ohm’s law, eq.(A.53) for the term
(E - B), and equation Eq. (11) of S&H’s paper, |74] (see also section A.4):

0
Gz

(J-BYV' = po (FI' — [ F') = g F* (%)' (A.59)

I and F are the toroidal and poloidal currents respectively, and one can
therefore use the susceptance matrix (appendix A.3) to write also:

F? = (Qit) (So1t+ S22)? (A.60)
0
ING 0 (St + Si2)
(F) a %((521L+ S22)> (A61)

to obtain the right form of equation (22) in S&H’s paper:

O 0oy O 2 O Sut+ S
875 - 81/),5 6t * 8¢t|: djt (521L+522) Bp(SmL-l-SQQ)} +
1o} oV
- (3 B>8M (A.62)

This equation is used in section 7.3.1 to evolve the TJ-II (Ciemat, Madrid)
Stellarator rotational transform profile.

ovi(0) _ 0.

2117,(0) is a constant, therefore LI
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Appendix B

Toroidal coordinates

' . .
7 circular cross section

Shafranov shift

Origin of the cilindrical
coordinates. Center of the
torus.

(R, p,Z)

Origin ot the geometrical and
flux coordinates.

u'=(r,0,p)

w =(r,& @)

GEOM. COORD

Origin of the machine coordinates.

CYL. COORD Center of the vacuum vessel.

(r,..6,.0)

FLUX COORD.

Figure B.1: Scheme of the coordinates defined on the circular—cross—section
of the axi—symmetric magnetic field in RFX-mod. The coordinates and their
metrics are defined in this appendix.
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Toroidal coordinates

B.1 On curvilinear coordinates

The covariant metric tensor for a curvilinear coordinate system u* = (u", u®, u

is defined by

gij = €; - €, (B.1)
where
o= o (B.2)
while the contravariant one is defined by
g7 = Vu' - Vil (B.3)
where iy
- )
Vu' = o (B.4)

The two tensors are related by g - 9jk = 5};, so g" is the inverse matrix
of gji. The Jacobian of the coordinate system is

Vg = y/det[gi;] = (Vu' - Vu? x Vu?) ™! (B.5)
Given a vector A, its contravariant components are defined as
Al=A-Vu' o A'=gYA; (B.6)

the second one expresses the contravariant component in terms of the co-
variant ones. In the same way,

Ai =A. €e; or Az = gz'jAj (B?)

It is worth noting that in curvilinear metrics the basis vectors e; and
Vu'! are not adimensional (the dimension depending on the dimension of the
coordinate u*) and do not have unitary length.

To go back to field components that have the right dimension of a measured
field and the whole length (without sharing it with the basis vector) it is
enough to divide the basis vectors by their norm. But one needs to pay
attention to the fact that this can be done just at the end of all the calcula-
tions, because tensor calculus is based on the hypothesis of non—adimensional
and non—unitary length basis vectors! Some example can be find in chapter 5.

B.2 Coordinate systems on a torus

The metrics elements and the Jacobian of the cylindrical, geometrical and
of the toroidal coordinate systems defined in chapter 4 are here collected.
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B.2 Coordinate systems on a torus

B.2.1 Cylindrical coordinates

The cylindrical coordinate system is a diagonal metrics, that therefore do
not accounts for the toroidicity of the problem. One can think to a periodic
cylinder to model a torus in a simple way.

Cylindrical coordinates (R, ¢, Z) are defined with respect to Cartesian
coordinates x = (x,y, z) as follows (see fig.1.4):

x = Rcosyp
y = Rsingp (B.8)
z2=7
Therefore, from eq.(B.2):
COS —Rsing 0
eR:g—;‘%: sin ¢ , ega:g—:: Rcosy , ezzg—;: 0
0 0 1

and, from eq.(B.1) and its inverse:

1 0 0 1 0 O
gi¥'=|0 R* 0 gl =0 & 0
0 0 1 0 0 1

R

The Jacobian, from eq.(B.5), is: Jey = \/§cyl =

B.2.2 Geometrical coordinates

The geometrical coordinate system is a non—diagonal metrics, that therefore
does account for the toroidicity of the problem.

The geometrical coordinates have been defined in section 3.1.1 with the sym-
bol u® = (r,0,p). We refer to the figure of section 3.1.1 for a geometrical
interpretation of their definition, usually related to the cylindrical system
(R, ¢, 2):

= (x,y,2) = (Rcosp, Rsiny, Z)

R = Ry—rcosf+ A(r)
Z =rsinf

The angle @ is called poloidal and the angle ¢ is called toroidal. A non—zero
horizontal A(r) shift of the non-concentric circular magnetic flux surfaces
(related to By defined in chapter 3) is a consequence of the toroidicity of the
system.
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Toroidal coordinates

Using (B.1) and (B.2) the g;; elements, that link them to the Cartesian
coordinates, can be explicitly calculated:

1—2A"cosf +A? rA’sinf 0
9ij = rA’sin 72 0 (B.9)
0 0 R?

* The gqij elements of the inverse matrix are usually calculated from the
formulas for the inversion of a block diagonal matrix (g;f@ = gyr = 0 and

g&, = 9:29 =0):

) 960 9o —9r0 I 0
322;* —9r% 9o Grr Gimg 0 ) (B.10)
“ 0 0 9rr 940 — (979)

The Jacobian /g, = ,/det[g}:] = (Vr- V0 x V¢)~! of the geometric coor-

dinates is given by
VGu =TR(1 — Al cos ) (B.11)

B.2.3 Toroidal straight coordinates

In section 3.1.1 we have defined the coordinate system w® = (r,9, ¢), which is
the magnetic coordinate system of the zeroth-order axisymmetric equilibrium
By: it is the coordinate system that one obtains deforming the poloidal angle
6 of the geometrical coordinates u’ in order to achieve straight magnetic field
lines:

r=r
9 =0+ Ar,0)
o=

For A(r,0) we have obtained an explicit expression from Ampére’s law,
eq.(3.11).

Tensor metrics elements

We write the metrics elements for the system w® = (1,9, ¢) relating them to
the metrics elements of the geometrical coordinate system u’ = (7,6, ).
The contravariant metric tensor elements can be computed using the rela-
tions between the gradients of the two coordinate systems:

Vr = Vr (B.12)
1)) O\

Vi = (1 + 89) Vo + EVr (B.13)

Vo = Vo (B.14)
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B.2 Coordinate systems on a torus

From eq.(B.3) is therefore found:

oA oA
v Ir T r0
= = + = +1 B.1
Gw Jw or 9u <89 ) 9u ( 5)

N> )\ )\ O 2
99 i T i YA ro et 00

while all the other elements are equal to those of the geometric coordinates:

9w = Gu (B.17)
96" = 9i” (B.18)
90 = 94 =0 (B.19)
g% = g7l =0 (B.20)

The g;7 elements of the inverse matrix can again be calculated from the
formulas for the inversion of a block diagonal matrix (see eq.(B.35)), or can
be computed by writing the relation between the w® and the (R, ¢, Z) cylin-
drical system.

In this second case, using equations (3.14), the covariant metric tensor ele-
ments are found to be

w _ 1+ 2A/2+ T2 +L2A//2 T2
e = 2RZ ' 2 Ry~ R

w 9 7”2 1 9 r / 2 r / 22
gy, = r 1+27]%(%+§A —R—OA —2r R—O—A cos v + o(eb”)
gy = r (T‘A” + A — 'r> sin ¥ + o(e?b)

Ry

w _ 2
Gpp = R=.

with g%, = 9gr = 95, = 9y = 0-

In computing these elements the approximation used in ref.[53] has been
adopted of retaining the secular terms (i.e. those not dependent on ¥) up to
o(€?) and the harmonics up to o(e).

One can therefore write:

I 00 _ TV g0 0
99 99
797‘199(;750 grrggogo 0 (B21) (323) 0
g{lf’ =g 0 0 grrgw B (grg)z =1 (B.23) (B.22) 0
- 0 0 R?
Jop=R?
Jacobian
The Jacobian is . X
L _ K0 (B.25)

—A" — Q—TA’ + rA’A”) —2A cos ¥ 4B(21)

(B.22)

(B.23)

(B.24)



Toroidal coordinates

with K (r) already written in (3.16). In order to compute the harmonics
of the first order perturbation, one wishes to expand also the metric tensor

elements:
1 1 1

i
= + eV + c.c. B.26
vV 9w v Gw0 V9wl ( )
with
1 22 A
= 1 - — —A’ B.27
rRo ( TR R s )> (B.27)

K Q
5-3/-
(= ()

= < +o(e ) (B.28)

being the m = 0/n = 0 and m = +1/n = 0 harmonics of the Jacobian
respectively.
We can also relate the Jacobian /g, to \/g,. Using (B.13) one obtains

= (1+5)- (B.29)

Some metric tensor element combination

Finally, the metric tensor element combinations appearing in equations.
(3.36) and (3.37) are

<\g/:§%>oo . < 27;3 . A; N 2LR0A,_ ﬁo +ole )>(B.30)
w 0,0

<\Zgu%>ﬂ70 gu{j (B.31)

<\/gTu> - <Ro — A +o(e )> (B.32)

<j5%>110:i2i\;970< A//+A/_R70+O( )) (B.34)

B.3 The inverse of 3x3 matrix

Let us consider the 3x3 matrix the tensor matrix of some coordinate system.
The covariant and contravariant metrics are one the inverse of the other:

Ixx  9xB  Ixy . gX gP o gxe
gi=| 95 985 Yse gh=| g% ¢ go°
Jox  9oB  Gpw g¥PX gwﬁ g%
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B.3 The inverse of 3x3 matrix

If the covariant g;; matrix is a block diagonal matrix, its inverse is the
matrix calculated as follows:

1 900 9op  —9ro Gop 0
gl = p —9r0 9o  Grr Gop 0 (B-35)
0 0

9rr 900 — (gre)?
where /g is the Jacobian.

If the covariant g;; matrix is complete 3x3 matrix (not a block diagonal
matrix), its inverse is the matrix calculated as follows:

gﬂﬁgsw _ (gﬂw)2 gsoﬁgxso _ gxﬁgsw gxﬁg&p _ gﬁﬂgw

g}j — 1 gxsogﬁw _ gﬁxg<ps0 GXXgPP — (gsox)2 gﬁxgxcp _ gxxgﬁso
gﬁxgﬂw _ gﬂﬁgsox gPX gXe — gxxgwﬁ gxxgﬁﬁ _ (gﬁx)2

It is worth stressing that all the tensor metrics are related to symmetric
matrix, due to the symmetry of the metrics elements: g” = ¢’* and g;; = g;i.
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Appendix C

Complex harmonics

C.1  On complex conjugation
Any perturbation a(r,0,¢) can be Fourier decomposed as:
a(r,0,¢) = Zam” eimd—ne) — Zam" M0=n9) 4 ¢ e, (C.1)
" ns0
Let us prove the relations in eq.(C.1). We need to remember that:
e the perturbation is a real number, a(r,0, ) eR
e the harmonics of the perturbation are complex numbers, a™"(r)eC

e the amplitude and the phase of a complex number written in polar
form (a™"(r) = |a™"|e'¥) are real numbers, |a™"| R and v €R.

Starting from the first expression in eq.(C.1) we obtain the second one
as follows:

r09) = Sy e ©2)
EZ
_ Z am,n(r) ei(m@—mp) _|_a—m,—n(7q) ei(—me-‘rmﬂ) (03)
m,n>0
_ Z am,n(r) ei(mefntp) _i_afm,fn(r) efi(m97n<p) (C4)
m,n>0
=3 () ) g () ) ()
m,n>0
= Zam’”(r) e m0=ne) 4 ¢ c. (C.6)
n@()

as we wanted. In the sum over integer m,n in eq.(C.2) one have both the
positive and the negative value of the mode numbers. Writing the symbol *
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Complex harmonics

for the complex conjugation, we are able to go to eq.(C.5) using the important
conjugation property:

a T = gF T (C.7)

The relation (C.7) is also the condition for which one can go back to the
reality of any measurable field (like a(r,6, ) eR) from the complexity of
the Fourier transformed harmonics a”"(r) ¢ C. Let us now derive the third
expression for a(r, 6, ) eR in eq.(C.1), starting from the second one and
using the polar form of complex numbers:

a(r,0,p) = Zam’”(r) em0=ne) 4 ¢ c. (C.8)
nT>nO

= Z la™ "] ' ? et m0ne) e e, (C.9)
m
n>0

_ Z ’am,n’ eiqbei(me—mp) + ‘am,n‘ e—iqb e—i(me—mp) (C.IO)
m
n>0

_ Z ’am,n| [ei¢ ei(mQ—ngo) + €—i¢ e—i(m@—mp) (Cll)
m
n>0

= Z 21a™" cos(¢ +mb — np) €R (C.12)
nn>10

It is always true that adding the complex conjugated to a complex num-
ber one delete the imaginary part:

A = a+ib (C.13)
A* = a—ib (C.14)
A+A* = 2a (C.15)
or
A = pe? (C.16)
A* = pe (C.17)
A+ A" = 2pcos(y) (C.18)

Therefore (A 4+ A*) eR in any case.

Going back to the magnetic fluxes perturbation, it is now clear that
even choosing Single Helicity in the fluxes (that means deleting the sum over
(m, n) in expression (C.1) because they are fixed!) one must add the complex
conjugated to obtain the real perturbation to the fluxes:

Y(r,u) = ho(r) + ™" (r) e + c.c. (C.19)

as written in eq.(4.1) making use of the helical angle u = mf — ne.

"We remind that (m,n = 1,7) in REX-mod during SHAx states.

236



C.2 On the sum between complex numbers

C.2 On the sum between complex numbers

z €C, therefore one can choose between one of these expressions to write z:

z=a+ib=pe'’? = p(cosf + isinf) (C.20)
where
p = Va®+b? (C.21)
b
— -1(Z
0 = tan (a) (C.22)
because
pcosf (C.23)
b = psind (C.24)

Let us see how to sum two complex numbers, z eC and t eC:

- Y a = pcost

z=a+1ib=pe H{b—psin@ (C.25)

t=c+id=oge?s{ ¢ TR (C.26)
d=osinp

We write the difference between two complex numbers, because it is useful
for section 9.1.1. For the sum it is enough to change every minus sign with

a plus sign.
The difference between two complex numbers is a complex number, therefore:
. ; A =Ccosy
- — e
z—t=A+4+iB=Ce »—>{ B = Csinny (C.27)

We can write:
z—t = (a+ib)—(c+id)=(a—c)+ilb—d)=A+iB =+ A2+ B2e"

peie —ge'¥ = mew — \/mew (C.28)

C e (C.29)
therefore
A = a—c (C.30)
B = b—-d (C.31)
and
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