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Abstract

This dissertation is focused on the assessment of glucose variability (GV) in the treat-

ment of the pathology of diabetes mellitus. GV is a risk factor for the development of

diabetes complications, and its assessment combined with the evaluation of glycated

hemoglobin levels is believed to be useful to characterize the functioning of glucose

metabolism. Given the importance of GV in diabetes, a number of indicators to

measure it from the retrospective analysis of sparse self-monitoring of blood glucose

(SMBG) or continuous glucose monitoring (CGM) recordings have been proposed in

the literature, but several issues are still open. For instance, some GV indicators have

been developed specifically from SMBG data, and their use on CGM time-series has

not been validated yet. Moreover, the availability of a large number of metrics to

quantify GV gives rise to problems in terms of redundant conveyed information, and a

compact way to extensively characterize GV would be desirable. Finally, the exploita-

tion of CGM signals and GV to classify the metabolic condition of normal and diabetic

subjects is a relatively unexplored problem that could deserve an investigation. These

three topics are the object of this dissertation, which is specifically made up of six

chapters whose content is briefly outlined below.

Chapter 1 will describe the etiology of the different types of diabetes, discuss the de-

velopment of diabetes complications, and introduce the technologies used to monitor

blood glucose levels and the strategies exploited to manage the treatment of type 1

(T1DM) and type 2 (T2DM) diabetes mellitus.

Chapter 2 will focus specifically on GV and its quantification, and, after highlighting

the existing open issues, will precisely state the aims of the thesis.

Chapter 3 will consider the problem of adapting some GV indicators originally de-

veloped and validated from SMBG, to the use with CGM signals. In particular, we

will specifically look at low blood glucose index (LBGI) and high blood glucose index

(HBGI), popular metrics that allow to provide a rapid classification of the quality

of glucose control in diabetic subjects, and will provide alternate versions of these

indicators adapted to the characteristics of CGMs by modeling the relationship be-

tween LBGI/HBGI values obtained from SMBG and CGM recordings. A dataset of
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viii Abstract

28 T1DM subjects monitored with both SMBG and CGM devices will be used to tune

and assess the proposed methodology.

Chapter 4 will address the issue of redundant information conveyed by the available

GV indices by using the sparse principal component analysis (SPCA) technique as a

tool to provide a parsimonious but still comprehensive characterization of GV in both

T1DM and T2DM. Specifically, we will consider 25 GV indicators evaluated on CGM

profiles acquired from 33 T1DM and 13 T2DM subjects as initial pool of variables.

SPCA will be applied to this set of metrics and will be shown to be able to select a

small subset of up to 10 indices that can save more than 60% of the original variance

in both applications. The subset of metrics provided by SPCA can be used to parsi-

moniously describe GV in diabetes.

Chapter 5 will be devoted to the assessment of the possibility of using the outputs from

SPCA to build GV-based classifiers of the metabolic condition of normal and diabetic

subjects. In particular, by resorting to a dataset of 55 T1DM subjects, 34 normal

subjects at high risk of developing T2DM, 39 impaired glucose tolerance subjects, and

29 subjects with T2DM diagnosed, we will show that support vector machines are able

to successfully classify the quality of glycemic control and the metabolic condition of

disordered subjects, allowing to achieve an accuracy of classification always greater

than 70%. The investigation will be performed using both the whole initial pool of

25 indicators and the parsimonious set selected by SPCA as features to design the

classifiers; the fact that similar results were obtained in the two scenarios strengthens

the speculation that the compact description of GV provided by SPCA is effectively

comprehensive for characterizing the subjects’ metabolic condition.

Chapter 6 will close this dissertation, with a discussion on possible future developments

of the presented investigations.



Sommario

L’obiettivo di questa tesi è l’indagine del ruolo della variabilità glicemica (GV) nella

patologia del diabete mellito. La GV è un fattore di rischio per lo sviluppo di compli-

cazioni dal diabete, e la sua valutazione combinata con quella dei livelli di emoglobina

glicata è ritenuta essere un elemento utile nel caratterizzare il funzionamento del

metabolismo del glucosio. Data l’importanza della GV nel diabete, molteplici indi-

catori che permettono di ottenerne una quantificazione dall’analisi retrospettiva di

segnali di self-monitoring of blood glucose (SMBG) o continuous glucose monitoring

(CGM) sono stati proposti in letteratura, ma in merito esistono alcune problematiche

ancora aperte. Per esempio, alcuni indici sono stati sviluppati specificamente per essere

applicati su serie SMBG, ed il loro utilizzo su segnali CGM non è ancora stato validato.

Inoltre, il fatto che esistano numerosi indicatori per quantificare la GV dà origine a

problemi di ridondanza nell’informazione trasmessa, ed un approccio che permetta di

ottenere una descrizione compatta ma esaustiva della GV sarebbe desiderabile. Infine,

l’uso di segnali CGM e dell’informazione sulla GV per classificare lo stato metabolico

di soggetti normali e diabetici è un problema relativamente inesplorato che potrebbe

meritare di essere trattato. Questi tre argomenti sono l’oggetto di questa tesi, che

risulta articolata in sei capitoli il cui contenuto è brevemente delineato di seguito.

Il Capitolo 1 descriverà l’eziologia dei differenti tipi di diabete, discuterà lo sviluppo

delle complicazioni da diabete, ed introdurrà le tecnologie utilizzate per monitorare la

glicemia ed alcune strategie che si possono seguire per trattare il diabete mellito di

tipo 1 (T1DM) e 2 (T2DM).

Il Capitolo 2 verterà sulla GV e la sua quantificazione, e, dopo aver evidenziato i prob-

lemi aperti esistenti, dichiarerà precisamente gli scopi della tesi.

Il Capitolo 3 considererà il problema di adattare alcuni indicatori di GV originaria-

mente sviluppati e validati su profili SMBG, all’utilizzo su segnali CGM. In partico-

lare, ci concentreremo su low blood glucose index (LBGI) e high blood glucose index

(HBGI), indici popolari che permettono di ottenere una rapida classificazione della

qualità del controllo glicemico in soggetti diabetici, e forniremo versioni alternative
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di questi indicatori adattate alle caratteristiche dei segnali CGM, modellando la re-

lazione tra i valori che LBGI e HBGI assumono quando calcolati da SMBG e CGM. Un

dataset di 28 soggetti T1DM monitorati con dispositivi SMBG e CGM sarà utilizzato

per mettere a punto la metodologia.

Il Capitolo 4 affronterà il problema della ridondanza nell’informazione fornita dagli

indicatori di GV esistenti, utilizzando la sparse principal component analysis (SPCA)

come approccio per fornire una descrizione parsimoniosa ma allo stesso tempo esaustiva

della GV in popolazioni di soggetti con T1DM e T2DM. In particolare, considereremo

25 indicatori di GV valutati su profili CGM acquisiti da 33 soggetti con T1DM e 13

con T2DM come insieme iniziale di variabili. La SPCA sarà applicata a questo pool

di indici e permetterà di selezionare un piccolo sottoinsieme di 10 indicatori che con-

sente di preservare più del 60% della varianza originariamente spiegata dall’insieme di

partenza in entrambe le applicazioni. Il sottoinsieme di indicatori fornito dalla SPCA

può essere utilizzato per descrivere parsimoniosamente la GV nel diabete.

Il Capitolo 5 sarà dedicato alla valutazione della possibilità di utilizzare gli output

della SPCA per costruire classificatori dello stato metabolico di soggetti normali e dia-

betici basati sulla GV. In particolare, facendo ricorso ad un dataset di 55 soggetti con

T1DM, 34 normali a rischio T2DM, 39 con impaired glucose tolerance, e 29 con T2DM

diagnosticato, mostreremo che classificatori progettati su support vector machine sono

capaci di discriminare con successo la qualità del controllo glicemico e la condizione

metabolica di soggetti con disordini, permettendo di raggiungere un’accuratezza di

classificazione sempre maggiore del 70%. Lo studio sarà condotto utilizzando sia il

pool iniziale di 25 indicatori che il sottoinsieme parsimonioso fornito dalla SPCA come

features per costruire i classificatori; il fatto che risultati simili siano ottenuti nei due

casi rafforza la speculazione che la descrizione compatta della GV fornita dalla SPCA

sia effettivamente esaustiva nel caratterizzare la condizione metabolica dei soggetti.

Il Capitolo 6 chiuderà la tesi, con una discussione su possibili sviluppi futuri degli studi

qui presentati.
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Chapter 1

The pathology of diabetes

and its monitoring

1.1 The pathology of diabetes

Diabetes is a metabolic disease resulting from defects in insulin secretion, insulin ac-

tion, or both [1]. Insulin is a hormone automatically released by the islets of Langer-

hans of the pancreatic beta-cells, that regulates the level of glucose concentration in

the blood and keeps it within the so-called euglycemic range, a healthy condition where

glycemia is between 70 and 180 mg/dL [2]. After a meal, glucose molecules derived

from the digestion of carbohydrates enter the bloodstream and rapidly increase the

subject’s glycemia. If properly secreted by the pancreas, insulin available in the blood

stimulates glucose uptake by various body tissues (e.g., muscles and adipose tissue)

and inhibits its production by the liver, reducing the level of glucose in the blood and

restoring a safe condition of euglycemia. Being the glucose uptake by certain tissues an

insulin-dependent process, the appearance of insulin in the bloodstream after a meal

is necessary to allow glucose molecules entering the cells, producing energy, and stim-

ulating growth. If no insulin is available in the bloodstream, or tissues are no more

sensitive to its action, only insulin-independent glucose uptake (e.g., by the brain)

can occur. This entails metabolic damages related to the lack of glucose provided for

the feeding of insulin-dependent cells and leads to chronic abnormally high levels of

glucose concentration in the blood that end up in a long-term damaging condition

known as hyperglycemia [1]. The scenario just described is what characterizes the

pathology of diabetes, where, depending on the specific type of disease, the system

producing insulin is progressively destroyed or the effectiveness of insulin action on

1



2 Chapter 1 The pathology of diabetes and its monitoring

glucose transportation through the cell membrane is impaired. To compensate the

defects in their glucose-insulin regulation system, beyond healthy diet and regular

physical activity, diabetic people may have to inject exogenous insulin multiple times

a day, especially when they eat, with the risk of overestimating the amount of insulin

needed to restore a euglycemic state, thus inducing an unsafe decrease of glucose levels

in the bloodstream. This condition, that is the opposite of the previously introduced

hyperglycemia, is known as hypoglycemia, and its occurrence represents an extremely

serious problem in the pathology of diabetes. Hypoglycemia is a medical emergency

where the abnormal reduction of glycemic levels degenerates into an inadequate supply

of glucose to the brain (neuroglycopenia) that, if severe and not properly treated, may

rapidly progress into coma and eventually into death, also without subject awareness

especially at night. Because of the potentially life-threatening damages associated to

hypoglycemia, the chance of its occurrence represents one of the most limiting factors

in following an intensive therapy to strongly reduce hyperglycemia and achieve a tight

glycemic control in the treatment of diabetes [3].

Risk associated with the extreme glycemic conditions experienced by diabetic people

and the massive diffusion of this pathology render diabetes an actual emergency of the

2000s, and numbers related to it are effectively alarming. As updated to November

2014, key facts from the World Health Organization [4] report that 347 million people

throughout the world suffer from diabetes, with an estimation of 1.5 million deaths

directly caused by diabetes in 2012, more than 80% of deaths occurring in low- and

middle-income countries, and projection of diabetes being the 7th leading cause of

death in 2030. As far as the American community is concerned [5], the prevalence of

diabetes in 2012 was 29.1 million people, i.e., 9.3% of the entire population, of whom

8.1 million were undiagnosed. In the same year, the incidence of diabetes was 1.7

million new diagnoses/year, while in 2010 it was 1.9 million. These numbers made di-

abetes the 7th leading cause of death in the United States in 2010, with 69,071 death

certificates listing it as the underlying cause of death, and a total of 234,051 death

certificates listing diabetes as an underlying or contributing cause of death.

1.2 Types of diabetes

Three different types of diabetes can be identified [1]. The two major ones are known

as type 1 and type 2 diabetes, the third one, less common, is known as gestational

diabetes. Moreover, intermediate conditions between normality and diabetes have
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been also classified, and are known as impaired glucose tolerance and impaired fasting

glucose. They are all detailed below.

1.2.1 Type 1 diabetes mellitus (T1DM)

Type 1 diabetes mellitus (T1DM), also known as insulin-dependent diabetes, is an

autoimmune disorder that leads to the complete destruction of the insulin-producing

pancreatic beta cells [1]. People with T1DM become totally unable to produce in-

sulin and need to regularly take exogenous insulin to keep their glycemic levels con-

trolled. Approximately 5-10% of diabetic people are affected by T1DM [5]. Although

a large number of T1DM patients developed the condition during childhood (reason

why T1DM is also called juvenile or childhood diabetes), the pathology can appear

in people of any age [6, 7]. The cause of T1DM is not known, the pathology is not

preventable with current knowledge, the majority of people developing it are of normal

weight, and exercise and diet, though invaluable in the treatment of T1DM, cannot re-

verse this disorder [4, 7]. Several clinical trials have attempted to find ways to prevent

or slow down the progress of T1DM, but with no proven success so far [7].

1.2.2 Type 2 diabetes mellitus (T2DM)

People with type 2 diabetes mellitus (T2DM) are not able to produce enough insulin

or suffer from the so-called insulin resistance, condition where cells are not sensitive to

insulin action anymore and glucose cannot enter them as much as it would do in normal

subjects [1]. T2DM is the most common form of diabetes and about 90% of diabetic

people suffer from this type of disorder [4, 6, 7]. The majority of people with T2DM

have developed the condition because they are overweight and physically inactive,

reason why increased exercise and dietary changes can help in initially managing this

disease [7]. Since T2DM can be treated without the injection of exogenous insulin, it is

also called insulin-independent diabetes. Nevertheless, if the optimization of lifestyle

is not enough to control glycemic levels of T2DM subjects, administering medications

or insulin during the day could be necessary to treat T2DM as well [6, 7].

1.2.3 Gestational diabetes mellitus

Gestational diabetes mellitus (GDM) is a condition that occurs when a woman without

previously diagnosed diabetes exhibits high levels of glucose concentration in the blood

during pregnancy, usually around the 24th week [1, 7]. GDM complicates nearly 4%
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of all pregnancies in the United States, resulting in 135,000 cases annually [1]. The

prevalence may range from 1 to 14% of pregnancies, depending on the population

studied, and nearly 90% of all pregnancies complicated by diabetes are related to the

occurrence of GDM [1]. Specialists are not sure about the causes of GDM, but it

seems that hormones from the placenta that help the baby develop, also block the

action of the mother’s insulin in her body [7]. Thus, as for T2DM, women with

GDM suffer from insulin resistance, and may need up to three times as much insulin.

Mothers with untreated GDM are likely to develop T2DM after pregnancy and can

have babies abnormally large for gestational age (condition that may lead to delivery

complications) [7].

1.2.4 Pre-diabetes conditions

Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) are conditions

preceding the development of diabetes respectively associated with a state of hyper-

glycemia due to insulin resistance and a consistently elevated fasting glycemic level,

however not enough to prompt a diagnosis of diabetes [1]. Both these conditions in-

crease the risk of developing cardiovascular pathology and T2DM, with a greater risk

for IGT than for IFG [4]. Some patients with IFG can also be diagnosed with IGT,

but many have normal responses to a glucose tolerance test (medical procedure where

glucose is given to the patients and blood samples are taken afterwards to assess how

quickly glycemia goes back to normal values). Lifestyle modifications, regular physical

exercise, limited intake of sugar and highly processed carbohydrates, and loss of body

weight can delay the onset of diabetes [7].

1.3 Development of diabetes complications

The attempt of avoiding hyperglycemia and achieving a tight glycemic control is a

major goal in the treatment of diabetes, not only to ensure an adequate delivery of

glucose to insulin-dependent cells, but also to decrease the likelihood that body tissues

are harmed by prolonged high blood glucose (BG) levels. As detailed in the literature

[8–10], hyperglycemia represents a risk factor for the development of serious long-term

complications from diabetes, and its direct and indirect effects on the vascular tree have

been reported to be the major source of morbidity and mortality in both T1DM and

T2DM. The etiologic characteristics of diabetes complications are mostly related to

the role played by chronic hyperglycemia in initiating many metabolic and structural
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derangements, that include production of advanced glycation end products, abnor-

mal activation of signaling cascades, elevated production of reactive oxygen species

(oxygen-containing molecules that can interact with other biomolecules and result in

damaging oxidative stress), and abnormal stimulation of hemodynamic regulation sys-

tems [11]. These processes, combined with other factors, progress into specific diseases

that, depending on their nature, are usually classified as macrovascular or microvas-

cular diabetes complications.

The central pathological mechanism that entails macrovascular diseases is the process

of atherosclerosis, where plaques building up along the inner walls of the arteries nar-

row the lumen of vessels and reduce blood flow to target sites [8]. Atherosclerosis is

thought to result from chronic inflammation and injury of the arterial walls in the

cardiac, cerebral, and peripheral vascular system, and represents a potential cause of

deleterious conditions like coronary artery disease, myocardial infarction, cerebrovas-

cular disease, stroke, and peripheral arterial disease.

Beside damages to large vessels, prolonged hyperglycemia can cause a number of mi-

crovascular complications specific to diabetes that include retinopathy, nephropathy,

and neuropathy [9]. Among these harmful conditions, retinopathy, a potential cause

of visual impairment and blindness, is the most common injury. The majority of dia-

betic patients are affected by this disease, with approximately 50% of T1DM subjects

suffering from some degree of retinopathy after seven years, and 90% after 20 years.

Unlike retinopathy, nephropathy develops in only 35 to 45% of subjects with T1DM

and less than 20% of subjects with T2DM. This is the diabetes-specific complication

with the greatest mortality, and can lead to renal failure with potential progression

into end-stage renal disease. The third most common microvascular complication from

diabetes is neuropathy, that is associated to a number of clinical manifestations includ-

ing impairment of gastric or intestinal motility, impotence, and diabetic foot disorders.

The prevalence of neuropathy as defined by loss of ankle jerk reflexes is 7% at one year

of diabetes, increasing to 50% at 25 years for both T1DM and T2DM.

To treat diabetes and manage the occurrence of sustained hyperglycemia causing the

progression of complications, diabetic people have to frequently monitor their BG lev-

els. To this aim, two main strategies exist, which are discussed in the next section.

1.4 Strategies for glucose monitoring

In 1978, a study involving 64 diabetic patients demonstrated that the possibility of

measuring BG concentration at home using commercially available glucose meters
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could lead to a significant improvement of glycemic control [12]. Since that time,

the technology of glucose meters (Section 1.4.1) has evolved towards the nowadays

increasingly used glucose sensors (Section 1.4.2).

1.4.1 Self-monitoring of blood glucose (SMBG)

Self-monitoring of blood glucose (SMBG) devices are small, battery-operated glucose

meters that allow to measure the concentration of glucose from a drop of capillary blood

usually taken from a finger. When the subject wants to test for glucose, he needs to

prick his skin with a lancet, place a small sample of his blood on a reagent strip,

and determine the glucose concentration by inserting the strip into the meter (usually

a reflectance photometer) for an automatic reading [13]. After each measurement,

results are stored in the meter’s electronic memory. Examples of commercially available

SMBG devices are shown in the left panel of Figure 1.1; the right panel of the same

figure reports a representative SMBG profile collected from a T1DM subject for three

consecutive days together with hypo and hyperglycemic thresholds.

Figure 1.1 Examples of commercially available SMBG devices (left panel - taken
from [14]) and representative SMBG profile shown with hypo and hyperglycemic

thresholds at 70 and 180 mg/dL, respectively (right panel).

Through the use of SMBG devices, diabetic people have an immediate feedback about

their current glycemic level and can correct any deviation out of a desired target range

by changing the carbohydrate intake, exercising, or using more or less insulin. In this

context, it is clear that the sampling design (when and how frequently subjects measure

their glycemia) plays a major role in achieving a good glycemic control, avoiding

extreme hyperglycemia, and promptly treating hypoglycemic episodes. The frequency
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with which patients sample varies from person to person, but most experts agree

that insulin-treated diabetics should monitor their glycemic level at least four times a

day, most commonly fasting, before meals, and before bed, with a significant benefit

derived from collecting post-prandial BG readings to adjust insulin regimen [13]. In

general, a positive correlation between frequency of SMBG and glycemic control among

patients with insulin-treated T1DM or T2DM seems to hold [15, 16]. However, even if

BG levels are monitored through a full seven-point SMBG profile, the subject is still

unable to carefully track the evolution of his glycemic condition across the whole day

(see the right panel of Figure 1.1). This can lead to prolonged hyperglycemic states,

hypoglycemic attacks not promptly recognized and treated, especially in subjects with

hypoglycemia-unawareness, and information about glucose fluctuations totally missed

and not considered by the doctor in optimizing the ongoing therapy. To overcome

these limitations, a system to allow more-frequent (ideally continuous), less-invasive

BG measurements was necessary, and to satisfy these requirements the technology of

implantable glucose sensors has been developed since the early 2000s.

1.4.2 Continuous glucose monitoring (CGM)

Continuous glucose monitoring (CGM) systems are portable devices that allow an al-

most continuous monitoring of interstitial glycemia (sampling time of 1-5 minutes) for

up to seven consecutive days [17–21]. The substantially high sampling frequency of

these devices is possible thanks to the technology of implantable glucose sensors that,

together with a wireless transmitter and a receiver, are the core of CGM systems. The

left panel of Figure 1.2 shows an example CGM device; sensor and transmitter can

be seen in the upper part of the panel, from left to right, respectively; the receiver

is represented in the lower part. In practice, the sensor is inserted into the subcuta-

neous tissue (most commonly at the abdomen) and a reusable transmitter attached

to it relays the glucose data wirelessly to the receiver, where they are displayed. The

receiver, that allows to store several days of monitoring in its memory, may be a

dedicated handheld device or an insulin pump designed to integrate with CGM (the

so-called sensor-augmented insulin pump described in the next section). Either way,

looking at the monitor of the receiver, the user can track his glycemic levels in real time

and benefits from symbols indicating trends of stable, increasing, or decreasing glucose

status, together with a graphical representations of the evolution of his glycemia (see

the left panel of Figure 1.2). Beside the visual information, the devices also offer audi-

ble alarms to alert the patient when BG levels are below or above a preset safe range,
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to aid in identifying impending hypo or hyperglycemia. Together with an example of

CGM device, Figure 1.2 shows in its right panel a representative CGM profile collected

from the same subject as the SMBG samples of Figure 1.1. It is clear by comparing

the time-series that CGM sensors allow to capture glycemic excursions and hypo/hy-

perglycemic episodes that cannot be seen from sparse SMBG recordings.

Figure 1.2 Example of commercially available CGM device (left panel - taken from
[22]) and representative CGM profile shown with hypo and hyperglycemic thresholds

at 70 and 180 mg/dL, respectively (right panel).

The key element within CGM systems is of course represented by the glucose sensor. In

most of the currently available minimally-invasive CGM devices, the sensor exploited is

electrochemical and consists of a wire inserted subcutaneously into the back, buttocks,

or most commonly abdomen, that produces an electrical current correlating with the

interstitial glucose level. These sensors are amperometric systems that measure the

current flowing from an oxidation (electron producing) reaction at a working electrode

to a reduction (electron consuming) reaction at a counter electrode. The working elec-

trode is typically coated with the enzyme glucose oxidase that is necessary to oxidate

glucose and start the reaction sequence. The electrical current finally measured by the

sensor is proportional to the amount of glucose in the subcutis. Sensors are inserted by

the patient and can be immediately replaced after their useful lifetime. To be sure that

the sensor maintains its accuracy over time, the device needs to be often calibrated.

Sensor calibration is the transformation in real time of the electrical current signal

generated by the sensor at a certain time into an estimation of glucose concentration

[23]. The reference BG levels used to optimize the transformation are SMBG readings

conveniently collected and entered into the system’s monitor. All commercial CGM

sensors need to be calibrated through two SMBG readings when they are inserted at
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the beginning of their lifetime. Then, the minimum frequency of calibration required

is once every 12 hours, but calibrating three to four times a day can optimize sensor

accuracy. Having accurate glucose sensors within CGM systems is necessary also for

the role played by these devices in the development of the so-called artificial pancreas

(AP) [24]. The AP is a closed-loop control algorithm that automatically releases in-

sulin based on BG levels and other inputs. BG readings are provided by CGM devices,

and inaccurate measurements can lead to wrong insulin administration and occurrence

of unsafe conditions of hypoglycemia or hyperglycemia.

Beside their use within the AP, the possibility given by CGM devices to track BG

levels in real time has made an important difference in the treatment of diabetes.

When compared to traditional SMBG alone, the use of CGM systems has been shown

to significantly improve the quality of glycemic control, as quantified by the levels of

glycated hemoglobin (HbA1c), a measure related to the average glycemia over the 2-3

months preceding the test, and by the time spent in hypoglycemia [25, 26]. The use

of CGMs has been in particular recommended for T1DM adults seeking to improve

their HbA1c, control hypoglycemic episodes, and detect nocturnal hypoglycemia, early

morning hyperglycemia due to insulin resistance (the dawn phenomenon), and post-

prandial hyperglycemia [20, 27, 28]. Moreover, because of the high sampling frequency

and long-lasting duration of CGM recordings, glucose sensors represent a powerful

tool also for the retrospective investigation of the nowadays extremely debated glucose

variability, a risk factor for the development of long-term complications from diabetes

that will be carefully described in the next chapter and is the focus of this dissertation.

Components of glucose dynamics invisible in the SMBG profiles are, in fact, captured

in detail by CGM systems (compare the right panel of Figure 1.1 with the right panel

of 1.2), and the assessment of the time spent in hypo/hyperglycemia or of the am-

plitude of glucose fluctuations can be made on more reliable bases than with SMBG,

also avoiding the dependence on the specific sampling design followed by the subject

in collecting his BG measurements.

As said, glucose variability is matter of Chapter 2. The following of this chapter

will provide an overview on the treatment of diabetes, presenting the two major ways

exploited by insulin-treated diabetic subjects to inject exogenous insulin.

1.5 Treatment of diabetes

People with diabetes have to follow specific rules in the management of their lifestyle,

in order to reduce the risk of developing long-term vascular dysfunctions and be able
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to live well with either T1DM or T2DM. The strategy used to treat diabetes has to be

designed by the health care team on an individual basis, and needs to address medical,

physiological, and lifestyle patient-specific issues. Nonetheless, some general basics for

the treatment of the pathology can be outlined, and are defined based on the specific

type of diabetes [7].

In the case of T1DM, the complete lack of insulin production requires the patient to

undergo a strict regimen that typically includes a carefully calculated diet, planned

physical activity, home BG testing a number of times per day, and exogenous insulin

administration through multiple daily insulin injections (Section 1.5.1) or continuous

subcutaneous insulin infusion (Section 1.5.2). In all cases, T1DM patients have to

compensate for the lack of a basal insulin concentration that keeps BG stable through

periods of fasting, and for the missed increase in insulin release after meals. This

requires them to measure their BG before eating, inject a certain amount of insulin

based on the ingested carbohydrates, proteins, and fats, and sample the BG level again

after meal to administer further insulin if needed.

Unlike T1DM, a balanced treatment of T2DM is usually achieved through controlled

diet, exercise, home BG testing, and, in some cases, oral medication and/or insulin.

The prevalence of T2DM people exploiting therapies based on insulin injection is ap-

proximately 40% [7].

1.5.1 Multiple daily insulin injections

In the multiple daily insulin injections therapy, the subject injects a long acting insulin

once or twice a day as a basal dose and has further injections of rapid acting insulin

at each meal time [7]. Insulin is injected through regular syringes or pens, usually at

least four times a day. The speed of action of rapid acting insulin allows people to

administer correction doses between meals if the BG level rises too high.

1.5.2 Continuous subcutaneous insulin infusion

Diabetics treated with continuous subcutaneous insulin infusion use insulin pumps

attached to the their body that deliver constant amounts of rapid or short acting

insulin via a catheter placed under the skin [7]. Insulin pumps are portable devices

that consist of a main pump unit holding an insulin reservoir attached to a long, thin

piece of tubing with a needle or cannula at one end. These computerized devices allow

to release insulin in two ways: in a steady, measured, and continuous dose, to provide
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an appropriate basal insulin concentration, and as a surge dose (called bolus) around

mealtime, to compensate for carbohydrate intake. Because the insulin pump stays

connected to the body, it allows the wearer to modify the amount of insulin he needs

to take by pressing a few buttons at any time of the day, or to program a higher or

lower rate of insulin delivery to occur at a chosen time, e.g., during the night. Around

6% of adults and 19% of children with T1DM use an insulin pump [7]. Insulin pumps

have also recently progressed into the so-called sensor-augmented insulin pumps, where

the insulin pump acts as the receiver of the CGM data sent wirelessly from the sensor

by the transmitter. In both adults and children with inadequately controlled T1DM,

sensor-augmented pump therapy resulted in a significant improvement of HbA1c levels,

as compared with the traditional therapy based on multiple daily insulin injections [29].

1.6 Conclusions

The development of vascular complications from diabetes can be managed and limited

through the achievement of a tight glycemic control based on strict insulin therapy.

Intensive treatment with three or more insulin administrations a day by injection or

insulin pump was shown to lower BG concentration (as monitored by HbA1c levels)

and delay the onset of retinopathy, nephropathy, and neuropathy in insulin-treated

T1DM patients [30]. In the evaluation of the development of diseases from diabetes,

however, not only hyperglycemia but also glycemic fluctuations and swings have to be

considered [31]. Given that, the next chapter will focus on glucose variability, on its

role in the development of complications from diabetes, and on the algorithms available

to quantitatively measure it.





Chapter 2

The role of glucose variability

in diabetes

2.1 The concept of glucose variability

To properly address the issue of developing long-term complications from diabetes,

a sustained high BG level is not the only risk factor that has to be considered, and

the occurrence of abnormal glucose variability (GV) needs to be taken into account as

well. Before considering GV as a relevant element in the assessment of the metabolic

situation of diabetic subjects, the major role in the evaluation of glycemic control

was played by HbA1c, whose levels provide an integrated measure of glycemic expo-

sure during the 2-3 months preceding the examination [32]. In 1993, landmark results

from the Diabetes Control and Complications Trial (DCCT) demonstrated that lower

HbA1c levels achieved in T1DM subjects under intensive insulin treatment led to a

slower progression of diabetic complications with respect to conventionally treated pa-

tients [30]. These findings confirmed the association between hyperglycemia and the

development of vascular diseases from diabetes, establishing HbA1c as the principal in-

dicator of successful therapy and good control, with levels ≤7% deemed appropriate for

reducing the development of diabetic complications [30, 33]. Later investigations made

by the DCCT investigators themselves, however, showed that the risk of retinopathy

progression associated with a given HbA1c level was significantly different between

conventionally and intensively treated patients, suggesting that mean HbA1c could

not be the most complete expression of the degree of glycemia and diabetic complica-

tions might be highly dependent on other factors [31]. Specifically, a greater increase

in the risk of progression to retinopathy over time in participants under conventional

13
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Figure 2.1 CGM profiles acquired from normal (top panel), T1DM (middle panel),
and T2DM (bottom panel) subjects; black dotted lines at 70 and 180 mg/dL rep-
resent hypo and hyperglycemic thresholds, respectively. These examples are drawn
from the datasets exploited in the study described in Chapter 5, where details about

data collection can be found.
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treatment was found, and this phenomenon was thought to be related to the more

frequent high-amplitude fluctuations experienced by these patients, that might lead

to increased generation of reactive oxygen species and oxidative stress [34, 35]. These

early findings about a significant role of GV in the treatment of diabetes were pro-

gressively supported by a number of other investigations, which together developed a

growing evidence that GV should be regarded as an actual HbA1c-independent risk

factor for the development of long-term vascular complications from diabetes [36–42].

In view of this and of the need of reducing GV in order to achieve desired levels of

glycemic control [43–45], tens of methods to provide an objective evaluation of GV

from BG profiles have been designed. Before detailing some of them in the next sec-

tion, it could be worth providing a qualitative description of the meaning of abnormal

GV by resorting to representative CGM time-series collected from a normal, a T1DM,

and a T2DM subject and reported in Figure 2.1. Abnormal GV typically refers to the

occurrence of repeated high-amplitude glycemic fluctuations and frequent hypo/hyper-

glycemic events, that, as can be seen from Figure 2.1, might be experienced by people

suffering from either type of diabetes. On the other hand, a well-controlled normal

subject usually has his glycemia within the safe euglycemic range, without significant

excursions (see the top panel of Figure 2.1).

2.2 Indices to measure glucose variability

The assessment of GV has been a widely investigated research field, and several in-

dicators to retrospectively quantify GV from SMBG and CGM time-series have been

proposed in the literature. Extensive reviews where all metrics are detailed are avail-

able, e.g., in [44–50]; here, we limit the presentation to 25 indicators that we exploited

in our investigations, detailed in two different subsections to better organize their de-

scription within the text. Among them, some indices are more trivial, like sample mean

and standard deviation (SD) of BG readings, while some others have been specifically

designed for the quantification of GV. In all definitions, the glycemic time-series on

which the index is computed is indicated as {BG(i)}, i = 1, . . . , N , and when present,

Ndays is the duration of the recording in terms of days.

2.2.1 Indices based on the distribution of glycemic levels

This first subsection provides a list of 13 GV indices whose formulations are mostly

derived from the distribution of BG levels and the amplitude of glycemic excursions.
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These metrics are:

– Mean of BG readings (Mean)

Mean =
1

N

N∑
i=1

BG(i) (2.1)

simple and classic indicator mostly influenced by hyperglycemia which shows the

best correlation with HbA1c levels [43, 51, 52];

– SD of BG readings (SD)

SD =

√∑N
i=1 (BG(i)−Mean)2

N
(2.2)

simple statistical method exploited, e.g., in [43, 53, 54], which provides a measure

of variability but is influenced by non-Gaussian distributions and outliers [45];

– Percentage coefficient of variation of BG readings (%CV)

%CV = 100
SD

Mean
(2.3)

variability measure used in statistics which normalizes sample SD to sample mean

and is subject to the same limitations as SD [45];

– Mean over all days of within-day SD of BG readings (SDw)

SDw =
1

Ndays

Ndays∑
j=1

SD(j) (2.4)

with SD(j) being the SD of all measurements collected during the jth day; defined

in [44] and highly correlated with SD [45];

– SD over all days of within-day mean of BG readings (SDdm)

SDdm =

√∑Ndays

j=1 (Mean(j)−MeanAllDays)
2

Ndays

(2.5)

with Mean(j) being the mean of all measurements collected during the jth day

and MeanAllDays the average value of Mean(j) over j (that can be different with
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respect to Mean because the number of BG readings per day may vary from a

day to another); as SDw, defined in [44] and correlated with the overall SD [45];

– Median of BG readings (Median)

Median = 50th percentile (2.6)

with Xth percentile being the value below which the X% of observations in a

group of observations fall; simple statistical measure usually more suitable to the

analysis of glycemic time-series than the sample mean because of the skewness

of BG distribution, exploited, e.g., in [53–56];

– Interquartile range of BG readings (IQR)

IQR = 75th percentile− 25th percentile (2.7)

difference between 75th and 25th percentiles, used, e.g., in [53–56];

– Range of BG readings (Range)

Range = max(BG(i))−min(BG(i)) (2.8)

difference between higher and lower BG reading, exploited, e.g., in [45];

– Percentages of BG readings within (%BG in target), below (%BG below target),

and above (%BG above target) the target range 70-180 mg/dL

%BG in target =
# of BG(i) : 70 ≤ BG(i) ≤ 180

N
(2.9)

%BG below target =
# of BG(i) : BG(i) < 70

N
(2.10)

%BG above target =
# of BG(i) : BG(i) > 180

N
(2.11)

indicators used, e.g., in [57–59], simple and direct, but accounting only for the

number of extreme BG fluctuations and not for their amplitude;

– J-index (J-index)

J-index = 0.001 (Mean + SD)2 (2.12)

combination of Mean and SD defined in [60], exploited, e.g., in [45], and shown

to be highly correlated with %BG in target [47];
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– Mean amplitude of glycemic excursions (MAGE)

MAGE =
1

Nexcursions

Nexcursions∑
k=1

∆BG(k) (2.13)

where Nexcursions is the number of glucose excursions having amplitude greater

than one time the SD of the considered segment and ∆BG(k) is the amplitude

of the kth considered excursion; index defined in [61], typically computed for

each day of monitoring and then averaged over all days, and shown to be highly

correlated with the overall SD [45]; an algorithmic implementation of MAGE

for the smart calculation on CGM time-series was provided by Baghurst in [62];

examples of use of this metric can be found in [44, 45].

2.2.2 Indices based on risk and quality of glycemic control

Twelve indices derived from nonlinear transformations of the BG range are presented

in this section. These metrics are:

– MR with R = 100 mg/dL (M100)

M100 =
1

N

N∑
i=1

1000

∣∣∣∣log10

(
BG(i)

100

)∣∣∣∣3 (2.14)

indicator defined in [63, 64] and exploited, e.g., in [45];

– Low blood glucose index (LBGI), high blood glucose index (HBGI), average daily

risk range (ADRR), and blood glucose risk index (BGRI)

These metrics were designed to quantify the risk of hypoglycemia (LBGI), hyper-

glycemia (HBGI), and the overall quality of glycemic control (ADRR and BGRI)

from SMBG time-series. Their formulation was derived from a transformation

of the BG scale detailed by Kovatchev et al. in [65], aimed at symmetrizing the

range of all possible BG values. The reason behind the transformation is the

significantly different size of hypoglycemic (BG<70 mg/dL) and hyperglycemic

(BG>180 mg/dL) ranges, condition that leads to a target BG range (70-180

mg/dL [30]) not centered in the range of all possible BG levels (assuming 20-600

mg/dL), causes the clinical center of the BG range (around 112.5 mg/dL) not to

match the numerical one (around 300 mg/dL), and makes the distribution of BG

measurements skewed and asymmetric. Based on this transformation of the BG
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scale, a BG risk function that assigns a certain degree of risk to each BG reading

was designed and used to subsequently define LBGI and HBGI. Symmetrization

and risk functions are detailed below (Equation 2.15 and 2.16, respectively)

f(BG) = 1.509 ([log(BG)]1.084 − 5.381) (2.15)

r(BG) = 10 f(BG)2 . (2.16)

The effect of the symmetrization function on the original BG range can be im-

mediately drawn from its graphical representation reported in the left panel

of Figure 2.2. The transformation, that makes the BG readings normally dis-

tributed, stretches the hypoglycemic range, shrinks the hyperglycemic range, and

leads to a BG scale symmetric around zero. In the transformed range, thus, the

euglycemic value of 112.5 mg/dL becomes the clinical and numerical center of

the BG scale, and the target BG range results to be centered in the range of

all possible BG values. The BG risk function then defined, shown in the right

panel of Figure 2.2 as plotted against the original BG scale, ranges from 0 to 100,

assigning zero risk to BG readings at 112.5 mg/dL and maximum risk to severe

hypoglycemia (BG around 20 mg/dL) and extreme hyperglycemia (BG around

600 mg/dL).

Figure 2.2 Symmetrization and risk functions proposed by Kovatchev et
al. in [65]. Red lines indicate the clinical center at 112.5 mg/dL and its
transformed value; green lines indicate the target range 70-180 mg/dL and its

transformed value.
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Based on the BG risk function, two further functions were designed. They repre-

sent the risk of low BG (rl(BG)) and high BG (rh(BG)), are specified as follows

rl(BG) =

r(BG), if BG < 112.5 mg/dL

0, otherwise
(2.17)

rh(BG) =

r(BG), if BG > 112.5 mg/dL

0, otherwise
(2.18)

and allow the definition of the final LBGI and HBGI [66, 67]

LBGI =
1

N

N∑
i=1

rl(BG) (2.19)

HBGI =
1

N

N∑
i=1

rh(BG) . (2.20)

As far as the indices assessing the overall quality of glycemic control are con-

cerned, the ADRR was defined as the sum of the risk associated to the lower and

higher BG readings of the jth day averaged over all days [68]

ADRR =
1

Ndays

Ndays∑
j=1

[max(rlj(BG)) + max(rhj(BG))] , (2.21)

and the BGRI was designed as the sum of LBGI and HBGI [46]

BGRI = LBGI + HBGI . (2.22)

A description of the clinical relevance of LBGI and HBGI, and of their use in

the literature is discussed in the next chapter.

– Hypoglycemic index (Hypo Index), hyperglycemic index (Hyper Index), and in-

dex of glycemic control (IGC)

Hypo Index, Hyper Index, and IGC are metrics assessing the risk of hypo-

glycemia, hyperglycemia, and the overall quality of glycemic control, as the

previous ones, but are derived from different transformation functions. They
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were introduced by Rodbard in [45] and their formulations are detailed below

Hypo Index =

∑N
i=1 (LLTR− BG(i))b

N × d
(2.23)

Hyper Index =

∑N
i=1 (BG(i)− ULTR)a

N × c
(2.24)

with IGC being the combination of the previous two

IGC = Hypo Index + Hyper Index (2.25)

and LLTR, ULTR standing for lower and upper limit of target range with default

values at 80 and 140 mg/dL, and a, b, c, and d parameters generally set to 1.1,

2.0, 30, and 30.

– Glycemic risk assessment diabetes equation (GRADE), and percentage contribu-

tions due to euglycemia (%GRADEeu), hypoglycemia (%GRADEhypo), and hy-

perglycemia (%GRADEhyper)

These indicators have been proposed by Hill in [69, 70], and provide a measure

of the quality of glycemic control summarized in the GRADE score, and the

contribution to this score respectively due to euglycemia, hypoglycemia, and hy-

perglycemia. The GRADE score is defined as the average over all BG readings

of the following transformed value

GRADE = 425 (log[log(BG/18)] + 0.16)2 (2.26)

and the three contributions due to the different glycemic conditions are

%GRADEeu = 100

∑
BG in euglycemia GRADE∑

all BG GRADE
(2.27)

%GRADEhypo = 100

∑
BG in hypoglycemia GRADE∑

all BG GRADE
(2.28)

%GRADEhyper = 100

∑
BG in hyperglycemia GRADE∑

all BG GRADE
. (2.29)

Examples of their use and characterization can be found in [45].



22 Chapter 2 The role of glucose variability in diabetes

2.3 Open issues and aim of the thesis

The review of techniques for the quantification of GV proposed in the previous sections

provides the state of the art about the assessment of GV in diabetes, and simultane-

ously rises some issues still unsolved within this research field. To give an example,

certain GV indices have been defined and validated only on SMBG profiles, and thus

their use on CGM time-series is not immediate. This is the case, e.g., of LBGI and

HBGI, popular metrics that can be exploited to provide a rapid classification of the

overall quality of a subject’s glucose control if they are computed on SMBG time-

series, but have not a validated physiological meaning when applied to CGM profiles.

Moreover, if we think of all metrics available for GV quantification, we can observe

that the information conveyed by them is highly redundant and a compact way to

describe GV is still missing in the literature. Finally, the exploitation of CGM signals

and GV to classify the metabolic condition of normal and diabetic subjects is a rela-

tively unexplored problem that could deserve an investigation. These three topics are

the object of this dissertation. In particular, in the following chapters we will:

– provide alternate versions of the well-known LBGI and HBGI that are adapted to

the characteristics of CGM time-series, thus allowing to extend the computation

of these risk indices from SMBG to CGM profiles (Chapter 3);

– explore the use of the sparse principal component analysis (SPCA) technique to

provide a parsimonious but still comprehensive description of GV in both T1DM

and T2DM (Chapter 4);

– explore the possibility of using the outputs obtained from SPCA to develop GV-

based classifiers of the quality of glycemic control in T1DM subjects and of the

metabolic condition of normal subjects at risk of developing T2DM, IGT subjects,

and subjects with T2DM diagnosed (Chapter 5).



Chapter 3

Adapting SMBG-based indices to

CGM: the case of LBGI/HBGI 1

3.1 Aim of the investigation

LBGI and HBGI are popular metrics used to quantify the risk of hypo and hyper-

glycemia from sparse SMBG profiles. As discussed in the previous section, they were

designed based on a symmetrization of the BG range [65] to summarize the number

and extent of extreme BG fluctuations into single numbers, with LBGI accounting for

hypoglycemic episodes and HBGI for hyperglycemic ones. Therefore, a higher LBGI

may indicate a large number of mild hypoglycemic events, a small number of severe

hypoglycemic events, or a combination of both, and the same can be said for HBGI

with regard to hyperglycemia.

The clinical relevance of these risk indicators has long been established as LBGI was

shown to predict the occurrence of future severe hypoglycemia (SH) episodes [65, 66]

and HBGI demonstrated a positive correlation with HbA1c levels [65]. Moreover, sig-

nificant cutoff values that allow to promptly classify the quality of the overall glycemic

control of a patient based on his LBGI and HBGI values were also identified [66, 67].

Specifically, the risk of SH can be determined by exploiting LBGI, and is considered

low if LBGI < 2.5, moderate if LBGI is between 2.5 and 5, and high if LBGI > 5, and

the same can be said for HBGI concerning the risk of hyperglycemia, with cutpoints

1The work presented in this chapter was developed under the supervision of Professor Marc Breton
and represents part of the research activity performed during a period of six months spent at the
Center for Diabetes Technology, University of Virginia (Charlottesville, VA, USA).

23
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identified at HBGI = 4.5 and HBGI = 9.

Because LBGI and HBGI enable a rapid classification of the actual glycemic condi-

tion of a patient, their use in the quantification of GV was largely exploited in the

literature [32, 38, 46, 48, 68, 71–78]. However, using these indicators and their cutoff

values is possible only from SMBG profiles and has never been validated on CGM

data stream. Given the growing use of CGM systems, thus, the aim of this work is

to describe the relationship between SMBG-based and CGM-based LBGI/HBGI, and

provide guidelines to apply when the indices are computed from CGM time-series.

Specifically, based on a dataset of 28 T1DM subjects monitored with both SMBG and

CGM for up to four weeks, we identified transformation functions for LBGI and HBGI

that adapt these indicators to the characteristics of CGM profiles and enable references

to previous works and clinically relevant thresholds [79].

3.2 Dataset

3.2.1 Data collection

Data used in this work were collected at the University of Virginia (Charlottesville,

VA, USA) and are baseline data from a study aimed at investigating how BG changes

in response to insulin and what the body does to counteract low BG in people with

T1DM. Twenty-eight T1DM subjects were involved in the analysis. All subjects were

under insulin pump therapy, and monitored for up to four weeks with both SMBG

and CGM systems. After two weeks, they received a liquid mixed-meal in an inpatient

setting, and had their BG monitored in order to study insulin sensitivity; then, they

received additional insulin injections to cause a condition of low BG, to understand

how the body responds to hypoglycemia. All subjects were closely monitored during

the time insulin was given, by frequent checks of BG and constant medical and nursing

supervision. Beyond the inpatient day, subjects were in daily-life conditions. During

the study, participants were asked to use their own insulin pump and glucometer,

and the same glucometer had to be used for the entire study. CGM profiles were

collected using the DexCom R© G4 R© glucose sensor [22]. Demographic characteristics

of the subjects expressed as mean±SD were age 43±11 years, duration of diabetes

23±11 years, duration of pump therapy 11±7 years, and HbA1c 8±1%. The study

was approved by the local ethical committee and registered at ClinicalTrials.Gov with

the identifier number NCT01835964.
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3.2.2 Data preprocessing and characterization

To avoid any influence of the results on the protocol used for data collection, the

inpatient day was removed from SMBG and CGM profiles. Days where sensor issues

occurred and no CGM points were stored were removed also from the SMBG time-

series. Beyond this, all datapoints collected were kept in the study. The subject

storing the little number of SMBG samples had an SMBG profile of 2.61 points/day

on average with 73 measurements acquired over the entire four weeks. The longest

profile was made up of 315 datapoints, with 11.25 points/day on average. Mean value

over the whole population of the average length per day was 5.65 samples and of

the entire length was 158.26. CGM data were collected with a sampling time of five

minutes. Figure 3.1 shows an example of data collected from a representative subject;

Figure 3.2 shows histograms of the distribution of SMBG and CGM datapoints across

the time of the day, where it can be seen that CGM data are acquired almost constantly

throughout the day, while SMBGs are mostly acquired around meal times.

3.3 Design of the strategy to correct LBGI/HBGI

The relationship between CGM-based and SMBG-based LBGI/HBGI was described

using linear and nonlinear models. The acceptance/rejection of a model was made

through the assessment of the obtained fit, statistical significance of parameter esti-

mates, residuals, QQ-plot of residuals, and performances in terms of classification of

the subjects’ risk of hypo/hyperglycemia as compared to the SMBG-based one.

Defining the index computed on CGM as the independent variable or predictor (x) and

that computed on SMBG as the dependent one (y), the linear model was the canonical

straight line described as

y = mx+ q . (3.1)

When a liner description was not satisfactory to match CGM-based and SMBG-based

LBGI/HBGI, the following three-parameter nonlinear model was considered

y = ax+ b− 1

c+ x
. (3.2)

The number of model parameters in 3.2 was also reduced by imposing the reasonable

constraint of having a curve meeting the origin of the Cartesian coordinate system.
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Figure 3.1 Example of data used to tune the LBGI/HBGI transformation func-
tions. SMBG and CGM data are shown as red triangles and blue profile, respectively;
pink lines identify the four week of monitoring; black line is at noon of the inpatient

day.

Figure 3.2 Distribution of SMBG (top panel) and CGM (bottom panel) data-
points across the day. Values were obtained as average over all days for each subject,

and then average over all subjects.
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This led to the following two-parameter formulation

y = ax+ b− 1

b+ x
. (3.3)

Models were identified on the available data using the least squares estimator.

3.4 CGM-adapted risk indices

3.4.1 HBGI for CGM

The linear model detailed by Equation 3.1 was used to describe the relationship be-

tween SMBG-based and CGM-based HBGI. Fit, residuals, and QQ-plot of residuals

are shown in Figure 3.3, upper, lower-left, and lower-right panel, respectively; results

from model identification are summarized in the upper rows of Table 3.1. The table

shows the estimates of parameters, their precision expressed as standard error (SE),

t statistics for testing the null hypothesis that parameters are zero, and p-values as-

sociated with t statistics. A p-value lower than 0.05 was considered to be statistically

significant and allowed the rejection of the null hypothesis. As apparent from the top

panel of Figure 3.3, fit is extremely satisfactory; the mean squared error (MSE) for

this model was equal to 6.2 and a value of 75% was obtained for the coefficient of de-

termination (R2), revealing that the model can account for 75% of the variance of the

original SMBG-based HBGI values. Looking at residuals, they appear sufficiently un-

correlated and, except from some outliers probably related to biasing SMBG sampling

designs, QQ-plot suggests to consider them as drawn from a normal distribution. The

last column of Table 3.1, however, shows that the p-value associated with q is much

greater than 0.05, indicating that the parameter is not statistically significant within

the model. Because of this finding, a linear model with slope and intercept forced

to zero was then identified on the experimental data. Fit, residuals, and QQ-plot of

residuals are shown in Figure 3.4, upper, lower-left, and lower-right panel, respectively,

and results are summarized in the lower rows of Table 3.1. Fit and residuals are as

satisfactory as for the previous model, with MSE equal to 6, and the obtained estimate

for m is extremely close to one, suggesting the possibility of using no transformation

to compute HBGI from CGM time-series.

To assess the reliability of this result, the CGM-based classification of the patients’

risk of hyperglycemia was compared with the gold-standard SMBG-based one. Table

3.2 shows how subjects were assigned to the different risk classes in the two cases (left
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Figure 3.3 Model prediction (red line) and experimental data points (blue circles)
for HBGI correction as described with a full linear model (upper panel), together

with residuals (lower-left panel) and their QQ-plot (lower-right panel).

Figure 3.4 Model prediction (red line) and experimental data points (blue circles)
for HBGI correction as described with a linear model with slope and intercept forced
to zero (upper panel), together with residuals (lower-left panel) and their QQ-plot

(lower-right panel).
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columns), and what kind of errors were computed in the CGM-based classification

(right columns). These results are satisfactory not only because 82% of patients were

classified correctly, but also observing that misclassification was of only one class (no

subject at low risk was classified at high risk, and vice versa) and extremely balanced

in over and underestimation. This suggests that there is no systematic error that

needs to be corrected, and classification errors are random and most likely linked to

the potentially biasing designs used to collect SMBG readings and/or to possible mis-

calibration of the sensors.

Given these results, the one-parameter linear model was considered reliable to describe

the relationship between SMBG-based and CGM-based HBGI, and we could conclude

that HBGI as derived from CGM is interchangeable with SMBG-based HBGI.

HBGI

Linear model with slope and intercept

estimate SE t p-value

m 1.0436 0.1182 8.8319 2.6354 · 10−9

q -0.0619 1.0451 -0.0593 0.9532

Linear model with slope (intercept forced to zero)

estimate SE t p-value

m 1.0374 0.0523 19.8356 3.2566 · 10−17

q 0 – – –

Table 3.1 Results from the identification of a linear model with and without in-
tercept for the correction of HBGI.

low
risk

moderate
risk

high
risk

underest
errors

UNDEREST
errors

overest
errors

OVEREST
errors

SMBG based classification

8 9 11 – – – –

CGM based classification

7 11 10 3 0 2 0

Table 3.2 Classification of the risk of hyperglycemia as assessed by HBGI com-
puted on SMBG and CGM. On the left side of the table, subjects assigned to each
risk group are reported; on the right side of the table, under and overestimation
errors due to the assessment of HBGI on CGM are listed (underest/overest errors
stand for misclassification of one class; UNDEREST/OVEREST errors stand for

misclassification of two classes).
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3.4.2 LBGI for CGM

The first model identified on SMBG-based LBGI values was the linear one (Equation

3.1), that provided parameter estimates summarized in the upper rows of Table 3.3.

Along with parameter values, as for HBGI, Table 3.3 shows their precision expressed

in terms of SE, t statistics to test the null hypothesis that parameters are equal to

zero, and p-values to be considered in accepting or rejecting that hypothesis. For the

linear model, both parameters were statistically significant, MSE of 0.68 was obtained,

and R2 resulted equal to 76%. However, despite acceptable residuals (lower-left and

lower-right panel of Figure 3.5) it appears clear that a straight line cannot provide a

reliable description of the relationship between SMBG-based and CGM-based LBGI at

lowest LBGI values (upper panel of Figure 3.5). We, thus, moved to the identification

of the nonlinear model 3.3. Parameter estimates obtained in this case are reported in

the lower rows of Table 3.3; the prediction is plotted against experimental data in the

upper panel of Figure 3.6, and residuals and QQ-plot are shown in the lower-left and

lower-right panel of Figure 3.6, respectively. Again both parameters were statistically

significant and estimated with good precision. The MSE obtained for this model was

equal to 0.62, and residuals are satisfactory. Nonetheless, in choosing the best model

to be used to transform CGM-based LBGI, it is worth observing that the nonlinear

model shows better performance than the linear one only at very low LBGI values,

where there is no significant glycemic risk and a lower degree of precision in describing

the data could be still adequate.

To assess the actual need for a correction and to investigate if the nonlinear model could

make any significant difference, the comparison of the classification of subjects’ risk

of hypoglycemia was performed as done for HBGI. Table 3.4 shows the assignment

of subjects to the corresponding risk group based on LBGI computed from SMBG,

CGM, linearly corrected CGM, and nonlinearly corrected CGM. We can observe from

the table that the application of the linear transformation to correct the CGM-based

LBGI values dramatically changed the assessment of the risk of hypoglycemia, with

classification performances largely improved after the correction. Errors in identifying

the risk zone decreased from 7 to 5 (with 82% of subjects correctly classified), became

random and balanced in over and underestimation, and the two-class error performed

without correcting LBGI was avoided. The same results were obtained applying the

nonlinear transformation to CGM-based LBGI values.

From this analysis, we can conclude that the computation of LBGI from CGM time-

series is biased, with a clear underestimation of the actual risk of hypoglycemia, and
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Figure 3.5 Model prediction (red line) and experimental data points (blue circles)
for LBGI correction as described with a full linear model (upper panel), together

with residuals (lower-left panel) and their QQ-plot (lower-right panel).

Figure 3.6 Model prediction (red line) and experimental data points (blue circles)
for LBGI correction as described with a nonlinear model (upper panel), together with

residuals (lower-left panel) and their QQ-plot (lower-right panel).
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a correction is needed. Though the nonlinear transformation is more accurate at low

LBGI values, no advantage was visible in terms of classification. As already mentioned,

this is due to the fact that the nonlinear model works better in a very low risk zone,

where a high degree of precision is not needed. Given that, the linear model can be

considered satisfactory in describing the relationship between SMBG-based and CGM-

based LBGI, turning out to be the transformation function that better adapts LBGI

to the characteristics of CGM signals.

LBGI

Linear model with slope and intercept

estimate SE t p-value

m 1.0199 0.1125 9.0661 1.5674 · 10−9

q 0.6521 0.2519 2.5893 0.0156

Nonlinear model without saturation

estimate SE t p-value

a 0.8346 0.1284 6.5026 6.8204 · 10−7

b 0.6476 0.1412 4.5876 1.1107 · 10−5

Table 3.3 Results from the identification of a linear model with intercept and a
nonlinear model without saturation for the correction of LBGI.

low
risk

moderate
risk

high
risk

underest
errors

UNDEREST
errors

overest
errors

OVEREST
errors

SMBG based classification

8 9 11 – – – –

CGM based classification

23 4 1 6 1 0 0

LINEARLY corrected CGM based classification

16 9 3 2 0 3 0

NONLINEARLY corrected CGM based classification

16 9 3 2 0 3 0

Table 3.4 Classification of the risk of hypoglycemia as assessed by LBGI com-
puted on SMBG and CGM. On the left side of the table, subjects assigned to each
risk group are reported; on the right side of the table, under and overestimation
errors due to the assessment of LBGI on CGM are listed (underest/overest errors
stand for misclassification of one class; UNDEREST/OVEREST errors stand for
misclassification of two classes). On the bottom of the table, we can observe the

performance obtained when LBGI from CGM was conveniently corrected.
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3.5 Conclusions

The risk of hypo and hyperglycemia can be assessed in a straightforward way by

computing LBGI and HBGI on collections of SMBG readings. These indicators have

been shown to be predictive of future glycemic events (e.g., LBGI of the frequency of

future SH episodes) and clinically relevant cutoff values have been defined to classify

the current condition of a patient based on his SMBG-based LBGI/HBGI. Because of

their easy and fast implementation and immediate interpretation, LBGI and HBGI are

powerful tools to assess glycemic variability and risks, and their applicability to CGM

signals could be of significant impact both from a scientific and a clinical viewpoint.

The aim of this study was, thus, defining alternate versions of LBGI and HBGI that

fit better the characteristics of CGMs, providing transformations to apply when these

indices are computed from CGM time-series and enabling references to previously

published works and relevant cutoff values.

In doing that, a number of models were exploited to describe the relationship between

SMBG-based and CGM-based LBGI/HBGI, and the optimal parameters to correct the

indicators were identified. It is worth mentioning that, however, transformations and

correction coefficients of LBGI/HBGI do not account only for the different sampling

rate of SMBG and CGM systems, but also for some intrinsic characteristics of the

specific sensor used for the continuous monitoring of glucose levels. This means that

studies developed on data acquired with a CGM device different from the DexCom R©
G4 R© could provide additional information as to the optimal correction of LBGI and

HBGI. Thus, further work shall consider the correction coefficients from a wider range

of CGM systems and the potential need for a sensor-specific correction.

Beyond this, other analyses to systematically assess the influence of the sampling

frequency on LBGI/HBGI values are worth to be computed. Simulation studies could

be used to recreate CGM time-series and randomly downsample them up to recreating a

full seven-point SMBG profile, with the aim of identifying the maximum number of BG

samples that allows references to previous works without correction coefficients. Also,

the effect of a significant decrease of the number of SMBGs should be investigated, to

provide an inferior limit to be respected in order to obtain physiologically meaningful

values of LBGI and HBGI. As an additional variable to be considered in all cases, the

effect of the placement of SMBG samples across the day is likely to have a significant

influence on the values obtained for LBGI and HBGI, and defining an optimal scenario

for SMBG measurements could be really interesting and useful to get a uniformity, e.g.,

in clinical trials. These open issues will be matter of future works.





Chapter 4

Parsimonious description of

glucose variability by SPCA

4.1 Aim of the investigation

As outlined in Chapter 2, a number of indicators for GV quantification have been

proposed in the literature [43, 44, 46–50]. These metrics include indices derived from

the distribution of glucose readings and the amplitude of glycemic excursions, mea-

sures of the risk of hyper and hypoglycemia, and indicators of the overall quality of

glycemic control. The issue with the large pool of defined GV metrics, however, is that

a gold-standard technique to assess GV has not been identified yet, the information

carried by the indices is highly redundant, and some indicators may be of relatively

minor added value in the characterization of GV within a diabetic population.

To manage this situation, we propose the use of SPCA, a technique introduced by Zou

and co-workers in 2006 [80] that allows to extract a small combination of GV indices

which preserves a large part of the variance originally conveyed by a wider pool of

indicators. Based on this method, we can select a reduced subset of metrics that are

able to effectively characterize the whole GV of a diabetic population, and thus we

end up providing a parsimonious description of GV in diabetes.

In our investigation, SPCA was applied to the 25 GV indices introduced in the previ-

ous chapter, evaluated on two T1DM CGM datasets made up of 17 and 16 time-series,

respectively, and on the one obtained by merging them. The dependency of the ex-

tracted GV indices from the specific T1DM dataset was assessed, and the application

of the technique was then extended to a 13 CGM time-series T2DM dataset.

The applicability of LBGI and HBGI to CGM time-series was possible thanks to the

35
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transformation functions previously described [79].

In the following of this chapter, Section 4.2 describes the SPCA technique, Section

4.3 provides details about data collection, and Sections 4.4 and 4.5 present the results

obtained from the application of SPCA to T1DM [81] and T2DM [82], respectively,

discussing the choice of parameters needed for the implementation of the technique.

4.2 SPCA

SPCA is a two-step data processing technique of general applicability introduced by

Zou et al. in [80]. In our implementation, assuming that the n observations of the m

GV metrics are stored along the columns of the n×m matrix X, the two steps are:

A. apply the canonical principal component analysis (PCA) [83] to the matrix X to

retrieve the principal components (PCs), and select a reduced number p (p� m)

of them, saving the majority of the total original variance;

B. since PCs are linear combinations (regressions) of all GV indices and have not

a direct physiological meaning, apply the least absolute shrinkage and selection

operator (LASSO) constraint to each selected PC, to obtain sparse estimates of

regression coefficients and maintain in the PC regressor a reduced number of

metrics (those forming the parsimonious set of indices to describe GV).

Before entering SPCA, a normalization of the indices within each dataset was per-

formed. Specifically, the indices were mean centered and scaled (i.e., divided by their

sample SD), and this preprocessing allowed us to avoid any bias in the SPCA results

and compare the outputs obtained from the application of SPCA to different datasets

(the importance of this normalization is discussed in the Appendix to our paper [81]).

To have a quick overview of the implementation of SPCA in our problem, a block

diagram highlighting the main steps of the procedure is shown in Figure 4.1.

Calculation of GV indices and implementation of SPCA were performed with software

developed by us in MATLAB R© R2012a.

A. PCA and formulation of the regression problem

Let the covariance matrix of the data X be a general full matrix (i.e., the m variables

are correlated among them). Then, the aim of PCA is to find a linear transformation

Y = X S (4.1)
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that allows to reduce the correlation of the original data. Formally, we are seeking for

an orthogonal matrix S to transform the original data X into the new data Y, under

the constraint that the covariance matrix of Y is a diagonal matrix.

To solve the problem and find the transformation matrix S, PCA resorts to the singular

value decomposition of the data matrix, that allows to express X as

X = U Σ VT (4.2)

with U being an n×n orthogonal matrix collecting the vectors ui = Xvi/σi, Σ an n×m
rectangular diagonal matrix with nonnegative diagonal entries σi =

√
λi, known as

singular values, and V an m×m orthogonal matrix whose columns are the eigenvectors

of the matrix XT X, with associated eigenvalues λi. Given the orthogonality of V,

Equation 4.2 can be rewritten as

X V = U Σ (4.3)

and from this statement it is straightforward to see that the transformation matrix S

we are looking for is exactly the matrix V collecting the eigenvectors of XT X. As

requested by the algorithm, in fact, V is orthogonal, and the new data expressed as

U Σ have a diagonal covariance matrix (because U is orthogonal and Σ is diagonal).

Being S = V, the transformed data collected in the n×m matrix Y can be written as

Y = X V (4.4)

where the columns of Y are m new uncorrelated variables known as PCs of X.

The main advantages of data decomposition through PCA is that PCs capture the

maximum variability among the columns of X [80] and are sorted in decreasing order

in terms of explained variance of the original data (i.e., the first greatest variance is

explained by the first PC, the second greatest variance by the second PC, and so on);

furthermore, PCs are uncorrelated and thus can be considered separately one from

another. Typically, the application of PCA leads to the selection of p PCs, and data

dimensionality can be reduced from m to p� m, with minimum loss of information.

Looking specifically at PCs, they are obtained as linear combinations of all the m

initial variables, with nonzero coefficients (also called loadings, and referred to as α
(i)
j

in Figure 4.1) collected along the columns of the matrix V. Denoting now V = B, the

problem of searching for the unknown loading matrix B can be seen as a regression
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Figure 4.1 Schematic representation of the implementation of SPCA in our prob-
lem. The block diagram highlights the need of two user parameters, i.e., the number
of PCs selected after PCA and the number of predictors kept in the regressors by

the LASSO constraint. Also, inputs and outputs of each step are detailed.
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problem. In particular, the ith column of Y can be written as

yi = X β (4.5)

and each column vector β of the loading matrix B can be estimated from the data yi

using the LASSO constraint.

B. LASSO estimation of sparse loadings

As just seen, PCA allows to reduce data dimensionality through the selection of p

uncorrelated PCs. Each PC, however, results from a linear combination of all the orig-

inal variables with coefficients α
(i)
j that are typically nonzero. The aim of the LASSO

estimation is to reduce the number of explicitly used variables, through the calculation

of sparse loadings. Defining β̂
LASSO

the estimated vector of sparse coefficients, it is

obtained from the solution of the following optimization problem

β̂
LASSO

= argmin
β

∣∣∣∣∣
∣∣∣∣∣yi −

m∑
j=1

Xi βj

∣∣∣∣∣
∣∣∣∣∣
2

+ λ
m∑
j=1

|βj|

 (4.6)

where Xj is the jth column of the data matrix X collecting the n observations of the

same variable. As one can see from Equation 4.6, the cost function here defined is made

up of two different terms, i.e., the residual sum of squares and the sum of coefficient

absolute values; the role of each term within the optimization problem is determined

by the nonnegative parameter λ. Specifically, high values of λ lead to a large number

of coefficients shrunk to zero and a small number of variables kept in the PC regressor,

while λ values close to zero lead to a full estimated loading vector. In practice, λ is

set based on the requirements of the considered problem, and, once specified, if large

enough, allows to select a reduced number of variables from the larger initial pool;

the ensemble of the selected variables is usually able to preserve a great part of the

variance originally explained by the whole set of metrics.

4.3 Datasets

T1DM data considered for the analysis are two CGM datasets collected within the EU

FP7 project Diadvisor (2008-2012) [84] using the Dexcom R© SEVEN R© Plus CGM Sys-

tem (Dexcom, San Diego, CA, USA) [22]. In this work, dataset 1 is made up of CGM

time-series acquired from 17 T1DM males studied at the Department of Medicine,
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University of Padova (Padova, Italy), while dataset 2 comprises 16 T1DM CGM pro-

files collected at the Department of Endocrinology, Diabetes, Nutrition, University of

Montpellier (Montpellier, France). A third dataset of 33 CGM time-series obtained by

combining datasets 1 and 2 was also considered in the analysis.

The T2DM CGM dataset, on the other hand, is made up of CGM time-series col-

lected from 13 males under normal life conditions using the Medtronic R© Guardian

REAL-Time R© CGM System (Medtronic, Northridge, CA) [85]. Mean±SD demo-

graphic characteristics of the subjects are age 54.4±10.0 years, duration of diabetes

10.7±7.0 years, HbA1c 7.4±1.4 %, and BMI 29.4±3.6 kg/m2. Data have been collected

within the ongoing EU FP7 project MOSAIC [86].

4.4 Parsimonious set of indices in T1DM

The application of SPCA to T1DM involved the assessment of the technique on two

different CGM datasets, and on the one obtained by merging them. We provide results

obtained in the three scenarios, discuss the choice of the two SPCA parameters (i.e.,

the number of selected PCs and the number of GV indices kept in the regressor), and

compare the parsimonious sets of indicators finally extracted by SPCA.

The first T1DM dataset we considered in the study was made up of n = 17 CGM

profiles. The m = 25 GV indices were assessed on the time-series, normalized, and

the n × m data matrix X was built up. To determine the number of PCs selected

after the application of PCA to X, a threshold was set in terms of explained variance;

then, the number of selected PCs could be increased by one if the gained explained

variance was large enough. In particular, 85% of the variance of the original data was

set as minimum value to be preserved, and an additional PC was selected only if the

increase of explained variance was at least of 10%. The reason of such a choice, which

is somewhat arbitrary, is that 85% of the initial variance is a sufficiently large value to

be saved, and a relevant benefit has to derive from the further increase of the number

of PCs (since it implies an increased number of finally selected GV indices). As far

as dataset 1 is concerned, a plot of the percentage explained variance as a function of

the number of selected PCs is reported in the top-left panel of Figure 4.2. It is easy

to appreciate from it that, to explain at least 85% of the variance originally present

in the data, two PCs were necessary; this number of PCs was also sufficient, since

passing from two to three PCs, less than 6% of explained variance was gained. For

these reasons, p = 2 PCs were finally selected for dataset 1, saving 87% of the vari-

ance originally present in the data. The PCA step, thus, enabled to achieve a great
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reduction in data dimensionality (from m = 25 to p = 2) with a minimum loss of

information. As described in Section 4.2, however, each PC was obtained as a linear

combination of all GV indices. Then, to reduce the number of variables contributing

to the regression, the LASSO estimation of sparse loadings was computed for each PC,

setting to five the maximum number of nonzero coefficients; the GV indices selected

by SPCA were those corresponding to nonzero loadings. The number of nonzero coef-

ficients, and thus of selected GV metrics for each PC, was the second input required

to the user. Again, a certain degree of subjectivity is involved in the choice. In the

present study, we wanted to have the same number of selected GV indices per PC for

both datasets, and we decided to set it as the smallest number of variables that allowed

to explain at least 60% of the initial variance in both datasets. In Figure 4.2, top and

middle right panels, the percentage explained variance is plotted against the number

of selected GV indices per PC, for the previously determined number of selected PCs.

As the reader can appreciate from the inspection of top-right (dataset 1) and middle-

right (dataset 2) panels, the minimum number of GV metrics that allowed to preserve

at least 60% of the original variance in both cases was equal to five. Thus, five was

the chosen number of nonzero loadings per PC. Of note is that imposing a maximum

number of nonzero coefficients is the same as setting a certain value for the parameter

λ. Specifically, there exist a number of λ values that satisfy the requirement of having

not more than five loadings different from zero; between them, we chose the smallest

one, as it represents the first solution to the optimization problem. For dataset 1, with

five (out of 25) GV indices for each of the two (out of 25) PCs, SPCA finally allowed

to explain 77% of the variance originally explained by the whole pool of GV indices.

The selected metrics are, thus, sufficient for a comprehensive characterization of GV

in the analyzed population of 17 T1DM subjects. Results obtained from dataset 1 are

summarized in Table 4.1 (top panel), where the indices selected for each PC are listed.

Moving on to the second dataset, the data matrix X was made up of n = 16 rows

and again m = 25 columns, and the choice of SPCA parameters was developed as

described for dataset 1. Again, two PCs turned out to be sufficient to explain most

of the variance of the initial data, with 86% of the original variance saved, and the

LASSO constraint allowed to select five metrics for each of the two PCs. With five

indices for each PC, SPCA finally explained 61% of the variance originally conveyed

by the 25 considered GV indices. Results obtained from this dataset are summarized

in the middle panel of Table 4.1, and plots of the percentage explained variance as

a function of SPCA parameters are shown in the middle panels of Figure 4.2, below

those referred to dataset 1.
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Figure 4.2 Plots of the explained variance (%) vs the number of selected PCs
(left panels) and, for the chosen number of PCs (i.e., 2), vs the number of selected
GV metrics (right panels) in T1DM. Top panels refer to dataset 1, middle panels to
dataset 2, and bottom panels to dataset 1+2. Thresholds fixed by the user are also

shown as red horizontal lines at 85% for left panels and 60% for right ones.
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T1DM dataset 1 (77%)

First PC Second PC

J-index %CV

MAGE Range

ADRR LBGI

IGC ADRR

%GRADEeu Hypo Index

T1DM dataset 2 (61%)

First PC Second PC

SD %CV

BGRI Median

IGC %BG below target

%GRADEeu %BG above target

– LBGI

T1DM dataset 1+2 (62%)

First PC Second PC

J-index %CV

ADRR Median

BGRI %BG above target

IGC LBGI

%GRADEeu %GRADEhypo

Table 4.1 GV indices selected by SPCA for each PC for the T1DM datasets (1 -
top, 2 - middle, and 1+2 - bottom).

Results obtained so far allow us to make some observations and remarks.

Focusing on the first step of the algorithm, the application of PCA to GV indices

showed that two out of 25 PCs are sufficient to preserve more than 85% of the total

variance originally present in the data. This means that, if analyzed in terms of PCs,

GV is mainly a two-dimensional phenomenon. Moreover, the LASSO step confirmed

that a subset of up to five metrics extracted for each of the two PCs was enough

to save a still large percentage of the original variance (77% in dataset 1 and 61% in

dataset 2), suggesting that the two dimensions that well describe GV can be effectively

characterized by five predictors each, instead of 25.

Regarding specifically the obtained subsets of metrics in the two datasets, we can

observe that most of the selected GV indices result to be measures related to the
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dispersion of glucose distribution (e.g., SD, %CV, and J-index), the overall quality

of glycemic control (e.g., ADRR, BGRI, and IGC), and the hypoglycemic state (e.g.,

LBGI, Hypo Index, %BG below target, and %GRADEhypo), and it may happen that

two indicators well correlated are selected within the same PC. This is the case, e.g.,

of LBGI and Hypo Index in dataset 1, and BGRI and IGC in dataset 2. To prove that,

even if correlated, both indicators selected by SPCA in the two scenarios are effectively

necessary to explain the final percentage of the original variance, we removed LBGI

from the selected indices in dataset 1 while maintaining Hypo Index, and removed

BGRI in dataset 2, while keeping IGC. In the first case, the percentage explained vari-

ance decreased from 77% to 64%; in the second case, it decreased from 61% to 28%.

This confirms that even if two indices are well correlated and seem to measure almost

the same entity, both of them may be necessary to explain a large percentage of the

variance of the original data.

In addition to identifying the parsimonious set of GV indices for each dataset, it is

worthwhile investigating how many and which indices are selected in all cases, thus

seeming able to well characterize GV in T1DM, independently from the specific dataset.

In particular, referring the reader to Table 4.1 where all the obtained results are sum-

marized, we can observe that, for the first PC, two selected GV indices are shared by

both datasets 1 and 2. These metrics are IGC and %GRADEeu. On the other hand,

J-index, MAGE, and ADRR extracted for dataset 1 are replaced by SD and BGRI in

dataset 2. As far as the second PC is concerned, again two GV indices are in common

to datasets 1 and 2 (i.e., %CV and LBGI), while Range, ADRR, and Hypo Index,

selected for dataset 1, are substituted by Median and %BG below/above target in

dataset 2. Considering specifically the pool of GV metrics shared by the two datasets,

thus, it comprises GV metrics (i.e., IGC, %GRADEeu, %CV, and LBGI) that evaluate

the overall quality of glycemic control (IGC), the euglycemic state (%GRADEeu), the

dispersion of glucose distribution (%CV), and the hypoglycemic state (LBGI). From

our results, this pool of four GV indices appears independent from the specific T1DM

dataset and could be regarded as particularly representative of GV in T1DM. However,

it is important to stress that there is still no evidence of this result, since more datasets,

comprising a larger number of subjects, are needed to investigate the determination of

the most representative subset of GV indices in T1DM on more solid grounds.

As said before, SPCA was also applied to the dataset obtained by merging datasets

1 and 2. Dataset 1+2 was made up of 33 CGM time-series, and the application of

SPCA to it followed the same strategy used for the previous scenarios, selecting two

PCs and saving five GV indices for each of them. As expected, two PCs were able to



4.5 Parsimonious set of indices in T2DM 45

explain more than 85% of the initial variance (in particular, 86% was saved) and five

nonzero loadings for each PC allowed finally to preserve 62% of the variance originally

conveyed by all metrics. The parsimonious set of indices for dataset 1+2 is reported

in the bottom panel of Table 4.1, and plots of the explained variance vs SPCA param-

eters are shown in the bottom panels of Figure 4.2. Looking at the parsimonious set

of indicators, it is possible to see that the four indices shared by datasets 1 and 2 were

selected for dataset 1+2 as well, as expected from a T1DM dataset.

4.5 Parsimonious set of indices in T2DM

Results described in the previous section demonstrate that SPCA is a valuable tool to

provide a parsimonious but still comprehensive description of GV in T1DM, selecting

a small subset of up to 10 indicators and saving more than 60% of the original vari-

ance conveyed by 25 GV indices. Moreover, our analyses showed that a small group of

four metrics (i.e., IGC, %GRADEeu, %CV, and LBGI) is shared by all the considered

T1DM datasets, suggesting the existence of a subset of indicators particularly repre-

sentative of GV in T1DM regardless of the specific considered dataset. Given these

findings, we thought that extending the technique to T2DM could be an interesting

investigation, to further confirm the capability of SPCA to parsimoniously describe

GV and to assess whether any selected metric was shared by the two types of diabetes.

As done in T1DM, the m = 25 GV indices were evaluated on the n = 13 CGM profiles

of the T2DM dataset, and SPCA was applied to the data matrix X built up after

the normalization of the indices. The first step of SPCA led again to the selection of

two out of 25 PCs, since with two PCs it was possible to go beyond the fixed 85%

threshold (see the left panel of Figure 4.3) and save 88% of the original variance. The

LASSO step was then performed, and the trend of the percentage explained variance

as a function of the number of GV indices selected per PC is shown in the right panel

of Figure 4.3. From the plot, it can be seen that with a pool of indices of the same

dimension as that selected for the T1DM datasets, i.e., made up of 10 metrics, the

variance finally saved for the T2DM dataset was equal to 83% of the total original one.

To cross the 60% threshold of explained variance for this specific dataset, on the other

hand, an even smaller subset of indices was sufficient. In particular, selecting two GV

indices for each of the two PCs, 67% of the original variance was explained, suggesting

that T2DM may need a lower number of indicators than T1DM to explain the same

percentage of the original variance (to confirm the last speculation, however, other

T2DM datasets have to be analyzed). The parsimonious set of GV indices selected by
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SPCA for the T2DM dataset is reported in Table 4.2. The table shows the 10-index

pool (five indices for each PC), and the smaller group of four metrics, that is a subset

of the former, is made up of the indicators reported as underlined.

Figure 4.3 Plots of the explained variance (%) vs the number of selected PCs (left
panels) and, for the chosen number of PCs (i.e., 2), vs the number of selected GV
metrics (right panels) in T2DM. Thresholds fixed by the user are also shown as red

horizontal lines at 85% for left panels and 60% for right ones.

T2DM dataset (83%)

First PC Second PC

J-index %CV

ADRR Median

BGRI %BG below target

%GRADEeu LBGI

%GRADEhyper Hypo Index

Table 4.2 GV indices selected by SPCA for each PC for the T2DM dataset.

What is of course possible to state from these results is that SPCA confirms its ca-

pability to parsimoniously describe GV in diabetes. Then, we can see that the subset

of four indicators shared by all the T1DM datasets is largely shared by the T2DM

dataset too. Three out of four indicators (i.e., %GRADEeu, %CV, and LBGI), in fact,

belong to the T2DM parsimonious set of indices, and this finding could suggest that

these metrics are particularly informative of GV in diabetes, regardless of the specific
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type of disease. As said before, however, this result needs to be confirmed by a larger

number of datasets.

4.6 Conclusions

GV is believed to be a risk factor for the development of long-term complications from

diabetes, and tens of different indicators for its quantification from SMBG and CGM

profiles have been proposed in the literature. The issue with the quantification of GV,

however, is that a gold-standard approach for its evaluation has not been identified

yet, and, even if a combination of indices is probably necessary to well describe GV

[87, 88], some indicators can provide redundant information and can be of relatively

minor added value in the characterization of GV within a diabetic population.

To identify a reduced subset of indicators that can provide a parsimonious but still

comprehensive description of GV in diabetes, we proposed the use of a technique known

in the literature as SPCA. If applied to a pool of GV indices evaluated on a dataset

of glycemic profiles, SPCA allows to determine a subset of indicators able to explain

a large part of the variance originally revealed by the whole pool of metrics. In other

terms, SPCA allows the identification of a combination of a reduced number of indices

that is still effective for describing the variance of a larger pool of GV indicators within

the considered group of subjects.

The use of SPCA was assessed on both T1DM [81] and T2DM [82] CGM datasets, and

the obtained results confirmed its usability as a tool to parsimoniously describe GV.

Also, our findings showed that this technique can be exploited to determine a small

subset of indicators particularly representative of GV in the overall diabetes, given

that some indicators emerged to be selected in all scenarios, regardless of the specific

dataset or type of disease.

To use SPCA as a tool to identify the gold-standard combination of indicators to quan-

tify GV, however, a larger number of CGM datasets need to be considered, so that the

whole diabetic population could be represented and the final parsimonious set of GV

metrics can be identified. In addition, we need also to observe that the number of avail-

able CGM time-series determines the ratio between number of observations (n) and

number of variables (m) used to build the data matrix X. An insufficiently high ratio

can result in high dimension low sample size problems, with potential inconsistency of

PCA in estimating the covariance matrix of the GV indices and determining the PCs

[89–91]. Unfortunately, when the study was developed, only the data documented in

this chapter were available for testing the SPCA methodology. Further development of
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the work, thus, should start from the extension of the datasets. With larger datasets,

in high sample size contexts, then, we could also consider to extend the initial pool

of indicators given as input to SPCA by inserting other well established GV metrics,

as, e.g., the mean of daily differences [92] and the continuous overlapping net glycemic

action [93] indices, as well as new indicators, e.g., those related to the concept of dy-

namic risk [94] or those derived in the nonlinear time-series analysis context [95–97].

As far as the SPCA algorithm is concerned, future works will consider the use of other

regression techniques to estimate the vector of sparse coefficients after the PCA step;

the elastic net approach [80], e.g., could be exploited instead of the LASSO constraint.
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Classification of glycemic control

and metabolic condition

5.1 Aim of the investigation

In Chapter 4, we used SPCA to select a small number of indicators able to well charac-

terize GV in diabetes. In the present chapter, we investigate if the linear combinations

obtained after PCA (i.e., PCs) and after LASSO (i.e., sparse PCs) can be exploited

in two classification problems, to discriminate between subjects with different quality

of glycemic control (Application 1 - Section 5.5) and between subjects with different

metabolic conditions (Application 2 - Section 5.6). In the first investigation, in partic-

ular, we had 55 T1DM subjects divided into three groups depending on their glycemic

control as assessed by an expert clinician from visual inspection of CGM profiles; in the

second investigation, we exploited CGM time-series acquired from 34 normal subjects

at high risk of developing T2DM, 39 IGT, and 29 subjects with diagnosed T2DM.

Both applications were managed by using linear and nonlinear support vector machine

(SVM) classifiers, an approach widely employed in machine learning [98, 99] and sum-

marily described in Section 5.2, which was recently used in the diabetes technology

area for improving hypoglycemia detection from CGM [100–102] and detecting incor-

rect measurements of CGM systems [103, 104]. To build the classifiers, we considered

PCs, sparse PCs, and single GV metrics as possible feature configurations. We per-

formed the investigation using both PCs and sparse PCs to assess if sparse PCs, that

allow to describe GV in a parsimonious fashion through a small number of indicators,

could provide an accuracy of classification comparable to that obtained with full PCs.

Moreover, we evaluated the performance obtained by considering single GV metrics

49
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to test the hypothesis that a combination of indicators was effectively necessary to

perform well in the classification problems.

5.2 SVM classifiers

This section is devoted to an introductive presentation of SVMs, that provides a qual-

itative description of their design and use. A more detailed discussion can be found in

textbooks [98, 99], to which we refer the reader interested in this topic.

5.2.1 Formulation of the classification problem

Before entering the description of SVMs, we report some insights from statistical learn-

ing theory that help us in setting the problem of pattern recognition or classification.

In general, who resorts to learning algorithms is facing situations where two classes of

objects are given and a new object needs to be assigned to one of the two classes. This

means that we have a group of n data

(x1, y1), . . . , (xn, yn) ∈ H × {±1} (5.1)

with xi observations or patterns represented as vectors in the feature space H and yi

labels of the observations identifying the class to which each observation belongs, and

we want to generalize the unseen data points through a certain decision function

f : H → {±1} (5.2)

that predicts the class y ∈ {±1} of all the new unclassified patterns x ∈ H. The

mathematical formulation of the decision function depends on the specific method

adopted in the analysis, and the unknown parameters in it are optimized on a set of

pattern-label points called training set. After determining the optimal values of the

parameters in f , a different dataset, called test set, is used to asses the classifica-

tion performance, expressed, e.g., in terms of percentage of correctly classified points

(classification accuracy).

5.2.2 Optimal margin hyperplanes

In this section, we will show how to obtain the optimal decision function in the case of

linearly separable two-class training set. If we are given a feature space H (in which
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the dot product is defined), and a set of pattern vectors x1, . . . ,xn ∈ H belonging to

two classes labeled by +1 and −1, any hyperplane in H separating our data can be

written as

{x ∈ H | 〈w,x〉+ b = 0}, w ∈ H, b ∈ R (5.3)

where w is a vector orthogonal to the hyperplane, commonly referred to as the weight

vector in the machine learning literature. Our aim is finding the best hyperplane (w, b)

that separates the observations in the training set belonging to different classes, based

on a certain optimization criterion. To determine the optimal hyperplane, a decision

function fw,b : H → {±1} needs to be defined, and the pair (w, b) in it is determined

so that the labeled training examples are correctly classified and the margin of the

hyperplane is maximized. For a point (x, y) ∈ H × {±1}, the margin is defined as

ρ(w,b)(x, y) = y (〈w,x〉+ b)/||w|| (5.4)

and represents the distance from the point to the the separating hyperplane, with a

positive value if the point is correctly classified and a negative value otherwise. When

the entire training set is concerned, the margin of the hyperplane is the margin of

the closest observation correctly classified, and, as can be seen from Equation 5.4, it

depends on the length of the weight vector w. Loosely speaking, if we can separate

the data in our training set with a large margin (i.e., if the vector patterns are far

enough from the hyperplane), then we achieve a high generalization ability and have

reason to believe that we will do well on the test set. To confirm this idea, a number

of explanations exist [98]; an example is the insensitivity to pattern noise represented

in Figure 5.1, where it can be seen that if the optimal hyperplane has a margin ρ

and some noise bounded by r < ρ is added to each pattern, then the hyperplane will

correctly separate even the noisy patterns.

The hyperplane decision functions, thus, should be constructed such that they maxi-

mize the margin, and at the same time separate the training data with as few exceptions

as possible. Given these requirements, the optimization problem can be formalized.

We can assume that we are managing nonempty classes and that the point closest to

the hyperplane has a distance equal to 1/||w||, i.e., the margin of the hyperplane is

1/||w||. The condition of classifying correctly the training points implies that we have

to find a map of the form fw,b : H → {±1} satisfying

fw,b(xi) = yi (5.5)
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Figure 5.1 Two-dimensional toy example of a classification problem [98].

which amounts to saying that the output of the decision function evaluated on each

pattern xi equals the real class to which the pattern belongs. If such a function exists,

then each pattern xi is correctly classified and its distance from the hyperplane is a

positive value equal to or greater than 1/||w||. This means that we can write the

following constraints

yi(〈xi,w〉+ b) ≥ 1, i = 1, . . . , n (5.6)

and use them in the formulation of the optimization problem to summarize the require-

ment of having the training observations correctly classified. Beyond this, we need to

say that we want to choose the separating hyperplane that has the greatest margin.

The objective function of our optimization problem, thus, should maximize the quan-

tity 2/||w||, that equals twice the margin of the hyperplane because we are considering

its symmetric version around the hyperplane. Maximizing 2/||w|| is the same as min-

imizing ||w||/2, and this leads to obtaining the optimal separating hyperplane as the

solution of the following constrained quadratic optimization problem

minimize
w∈H,b∈R

τ(w) =
1

2
||w||2 (5.7)

subject to the constraints 5.6. This is called the primal optimization problem, and a

graphic representation of its implementation to determine the optimal margin hyper-

plane is shown in Figure 5.2. Points represented in red, that lie exactly on the margin

of the hyperplane, are known as support vectors and are those where the constraints
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Figure 5.2 Optimal margin hyperplane classification for linearly separable two-
class training set. Support vectors are shown as red points.

5.6 are precisely met. Getting the solution of the primal optimization problem is possi-

ble, but not always easy. In the context of SVMs, the so-called dual problem is usually

derived, which is a problem that can be shown to provide the same solutions as the

primal problem, but turns out to be more convenient to deal with (we address the

interested reader to the textbook [98]).

5.2.3 Soft margin hyperplanes

In some scenarios, we would rather have an algorithm which can tolerate a certain

fraction of classification errors in separating the training data, instead of necessarily

looking for an optimal margin hyperplane. The approach that allows to implement this

kind of separation is based on the concept of soft margin hyperplane, and specifically

introduces some wights to the training data, called slack variables and defined as

ξi ≥ 0, i = 1, . . . , n, (5.8)

to relax the constraints 5.6 and get the following conditions

yi(〈xi,w〉+ b) ≥ 1− ξi, i = 1, . . . , n. (5.9)
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Clearly, by making ξi large enough, the constraint on (xi, yi) can always be met,

and thus to avoid the trivial solution where all ξi take on large values, we need to

penalize them in the objective function. To this end, the term
∑

i ξi is included in 5.7,

and the soft margin hyperplane is obtained by solving for some C > 0 the following

optimization problem

minimize
w∈H,ξ∈Rn

τ(w, ξ) =
1

2
||w||2 + C

n∑
i=1

ξi (5.10)

subject to the constraints 5.8 and 5.9. Whenever the constraint 5.9 is met with ξi = 0,

the corresponding point will not be a margin error. All nonzero slacks ξ, on the other

hand, correspond to margin errors, and the fraction of them that is accepted increases

with the second term of 5.10 and is managed through the positive constant C. As in

the separable case, the optimization problem can be shown to have a dual formulation

[98] that can be easily exploited to get the solution.

5.2.4 Nonlinear support vector classifiers and kernel trick

In the previous sections, we have only dealt with linear separators, and the case of

more general nonlinear decision surfaces has not been treated yet. Here, we discuss

the use of nonlinear support vector classifiers. In doing that, we observe that a set

of training data that is not linearly separable, if projected onto a higher-dimensional

space via some nonlinear transformation, has a high probability of being transformed

into a linearly separable set [98]. We can, thus, construct a nonlinear map φ(xi) to

transform the input data xi ∈ H into vectors of a higher-dimensional feature space, and

then separate the new data φ(xi) using linear decision surfaces obtained by solving the

optimization problem 5.10. Even if we can resort to problems of the same form as those

presented in the previous sections, however, this new formulation of the optimization

function requires the map φ to be defined and computed on each xi, and suffers from

the drawback that the calculation of dot products in high-dimensional spaces is a very

expensive procedure from a computational viewpoint. To overcome these limitations,

the so-called kernel trick to decrease the complexity of the optimization problem is

proposed. A kernel can be thought of as a symmetric function k : H×H → R that is

expressed as

k(xi,xj) = 〈φ(xi),φ(xj)〉 , (5.11)
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and corresponds to the dot product in a high-dimensional feature space via the map

φ. The most commonly exploited kernel functions are

〈xi,xj〉 (linear kernel) (5.12)

〈xi,xj〉d (polynomial kernel) (5.13)

e−γ||xi−xj ||2 (radial basis function) (5.14)

but beyond their specific formulations, what makes them crucial in our treatment

is the possibility of using the relation 5.11 to rewrite the dot products among high-

dimensional vectors φ(xi) and simplify the optimization problem we are dealing with.

5.3 Datasets

In Application 1 (classification of the quality of glycemic control), we used three

datasets of CGM time-series collected from T1DM subjects. Two of the three are

those already used in the parsimonious description of GV, and thus we refer the reader

to Chapter 4 for details. The third dataset, made up of 22 profiles, was collected at

the Institute for Clinical and Experimental Medicine (Prague, Czech Republic) within

the same project and using the same protocol as the previous two. To perform the

classification problem, an expert clinician divided the subjects into three classes based

on the quality of their glycemic control as assessed from visual inspection of CGM pro-

files. Figure 5.3 shows a representative profile extracted from each class; comparing

the top (good control), middle (medium control), and bottom (bad control) panels, a

difference in the glycemic control of the three subjects can be already appreciated. To

help in identifying hypo and hyperglycemic events, thresholds at 70 and 180 mg/dL

are shown in the figure as dotted black lines; moreover, thresholds at 50 mg/dL rep-

resented as dotted red lines are reported to highlight the occurrence of SH. As can

be seen, the subject with good control experiences few hypo events, no SH episodes,

and some moderate hyper excursions. For subjects with medium and bad control, on

the other hand, some SH events can be detectable from the CGM profiles, and, in the

latter case, a sustained hyperglycemia can be seen as well.

In Application 2 (classification of the metabolic condition), 34 normal subjects at

high risk of developing T2DM, 39 IGT, and 29 T2DM subjects monitored using the

Medtronic R© iPro R© CGM System [85] were considered. As those used in the parsimo-

nious description of GV in T2DM, these data have been collected within the ongoing

EU FP7 project MOSAIC [86]. Examples of representative CGM recordings collected
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Figure 5.3 Representative CGM time-series extracted from each class of glycemic
control according to the expert clinician classification; dotted black lines in the panels
represent hypo and hyperglycemic thresholds at 70 and 180 mg/dL, respectively;

dotted red lines represent the SH threshold at 50 mg/dL.
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Figure 5.4 Representative CGM time-series extracted from normal, IGT, and
T2DM classes; dotted black lines in the panels represent hypo and hyperglycemic
thresholds at 70 and 180 mg/dL, respectively; dotted red lines represent the SH

threshold at 50 mg/dL.
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in a normal, IGT, and T2DM subject are shown in Figure 5.4, top, middle, and bot-

tom panel, respectively. As for Application 1, the visual inspection of CGM profiles

allows to capture significant differences in the GV of the three subjects, highlighting

a sustained hyperglycemia experienced in T2DM, which decreases in the case of IGT,

and is almost absent in the normal profile.

5.4 Design of the classification study

This section provides details about the features used to characterize the observations

in our problems, the determination of training and test sets, and the estimation of

some relevant coefficients in the design of linear and nonlinear classifiers.

5.4.1 Feature configurations

The starting point used to derive our observations was the application of SPCA to the

dataset under analysis. This allowed us to manage two different feature configurations,

where PCs and sparse PCs were subsequently tested as features to build the classifiers.

Specifically, given that for all scenarios reported in Chapter 4 we saw that two PCs

were enough to explain most of the variance of the original 25 GV metrics, the first

two PCs provided by the application of PCA to the data matrix X conveniently built

up were considered as first feature configuration. Then, to assess if the parsimonious

combinations of indicators obtained from the application of the LASSO constraint to

each selected PC could provide comparable classification performances, the two sparse

PCs were considered as features too, defining the second analyzed configuration. Be-

yond the outputs obtained from SPCA, we decided to consider also each GV index as a

single feature to perform the classification, to investigate if a combination of indicators

was effectively necessary to comprehensively characterize GV and classify quality of

glycemic control and metabolic condition, or if single indicators by themselves could

already perform well in doing that.

5.4.2 Training and test sets

Once defined the feature configuration, we had to divide the whole observation set into

training and test sets. To do that, we followed the strategy reported in Figure 5.5.

We considered 80% of the available observations randomly extracted from the entire

dataset to build the training set, and the remaining 20% to build the test set. To avoid
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any bias due to the relatively small number of testing observations, the procedure was

repeated 100 times, and the median classification performance was then computed.

Figure 5.5 Definition of training and test sets in our SVM-based classification
problems. Dotted lines that divide the training set into four subgroups indicate that
a k-fold cross-validation was performed to determine the best SVM configuration.

Given that the implementation of SVM classifiers always depends on the regularization

parameter C and on some other parameters that appear in certain kernel functions

(e.g., d in the polynomial kernel or γ in the radial basis functions), an assessment of the

more convenient values to use has to be made each time on the specific observation

set. To this aim, in our implementation, we performed a k-fold cross-validation on

the training set (see Figure 5.5) and used a grid search approach to determine the

best values of our parameters. Based on this, we divided the training set into k = 4

subgroups of observations made up of approximately the same number of items, trained

the classifier with a specific configuration of parameters on k− 1 groups, and tested it

on the remaining one. By repeating the procedure for all the k subgroups, we could

get a median classification performance for each specific combination of parameters.

The best configuration was finally determined by keeping the parameterization that

maximized the median classification accuracy in the cross-validation setting.

5.5 Application 1: quality of glycemic control

5.5.1 Statistical analysis

We start the discussion on the obtained results by reporting in Figure 5.6 a graphic rep-

resentation of the set of observations (subjects) as depicted in the two two-dimensional

feature spaces that we considered in our investigation. In the figure, we can see the

placement of our samples in the PC (top panel) and sparse PC (bottom panel) fea-

ture space, where subjects are represented as blue circles if their glycemic control is

good, as green triangles if their control is bad, and as red crosses if their control is in

between. In both feature spaces, each vector is specified by a pair (x, y) of compo-

nents that correspond to the first and second PC/sparse PC, respectively. From the

inspection of the samples distribution, we can already observe that good and medium
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Figure 5.6 Representation of the observation set in the PC feature space (top
panel) and sparse PC feature space (bottom panel).
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control classes overlap significantly, and a separating surface which can generalize well

will be probably difficult to find in this case. Good/medium vs bad control classes,

on the other hand, seem to be separable quite enough. Moreover, at first sight, the

distribution of the observations in the sparse PC feature space seems to be not so

different from the distribution in the PC space, but to confirm the speculation that

the two scenarios behave similarly, we need to quantitatively compare the classification

performance achieved in the two cases.

Before entering the classification problem, we wanted to assess our choice of the feature

settings and be sure that a statistically significant difference between the three classes

was obtained for the considered features. To this aim, we computed a nonparametric

Kruskal-Wallis test for PCs and sparse PCs between the three classes. This test was

performed instead of one-way ANOVAs because one-sample Kolmogorov-Smirnov tests

used to check the null hypothesis of normally distributed samples provided p-values

< 0.05. Results form the Kruskal-Wallis tests are shown in Figure 5.7 (top panels

referred to PCs and bottom panels referred to sparse PCs). In all cases, p-values ob-

tained from the analyses resulted � 0.005, meaning that there is at least one class for

each feature that behaves differently from the others. This suggested that our features

and feature spaces had been conveniently chosen.

5.5.2 Classification performance

Once established that first and second PC/sparse PC were significantly different be-

tween well, medium, and badly-controlled subjects, we could move to the actual clas-

sification problem. In practice, we dealt with three two-class classification problems

(i.e., good vs medium control, good vs bad, and medium vs bad), and for each of them

we exploited linear, polynomial, and radial kernel functions.

To determine the optimal values of the SVM parameters, we performed the grid search

described in Section 5.4. The best parameterization was chosen as the one that maxi-

mized the accuracy of classification in the cross-validation setting, and was then used

to train the classifier on the whole training set and determine the optimal decision

surface. This was made 100 times, with training and test sets randomly chosen, so

that any dependence of the results on the small number of testing points was avoided.

Classification performances obtained in the investigation are summarized in Table 5.1.

Accuracy of classification achieved from the application of the optimal SVM to both

training and test sets are listed, and values are reported as the median over the 100

repetitions performed with different training and test sets.
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Figure 5.7 Application 1: quality of glycemic control. Boxplots of first and second
PCs (top panels) and sparse PCs (bottom panels). On each box, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme datapoints the algorithm considers to be not outliers,

and the outliers are plotted individually.

Results obtained in this scenario seem satisfactory. In all cases, the performances we

achieved are greater than 67%, and, in the good vs bad problem, we always got a 100%

classification accuracy. Looking at the tables, we can observe that in almost all cases

(except from the medium vs bad case with the radial kernel) linear kernels performed

well enough, and thus we don’t need to move to nonlinear configurations, and, above

all, the use of sparse PCs instead of PCs led to highly comparable results. Specifically,

in the good vs bad problem, performances of PCs and sparse PCs were exactly the

same; in the good vs medium, PCs outperformed sparse PCs in two out of three cases;

and in the medium vs bad, sparse PCs outperformed PCs in one out of three cases.

Also, no GV index as considered alone was able to achieve a classification accuracy

greater than 40% (results not documented for sake of space).
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GOOD VS MEDIUM CONTROL

PCs SPARSE PCs

LIN POL RAD LIN POL RAD

TRAINING 76% 76% 79% 76% 76% 76%

TEST 78% 78% 67% 72% 72% 77%

GOOD VS BAD CONTROL

PCs SPARSE PCs

LIN POL RAD LIN POL RAD

TRAINING 96% 100% 96% 96% 96% 96%

TEST 100% 100% 100% 100% 100% 100%

MEDIUM VS BAD CONTROL

PCs SPARSE PCs

LIN POL RAD LIN POL RAD

TRAINING 85% 85% 89% 85% 85% 85%

TEST 75% 75% 75% 75% 75% 75%

Table 5.1 Application 1: quality of glycemic control. Classification accuracy ob-
tained in the PC and sparse PC feature space from the three two-class classification
problems and the three exploited kernel functions (linear - LIN, polynomial - POL,

and radial - RAD).

5.6 Application 2: metabolic condition

5.6.1 Statistical analysis

As done for the first investigation, we start the discussion by reporting a graphic rep-

resentation of the set of observations as depicted in the PC (Figure 5.8 - top panel)

and sparse PC (Figure 5.8 - bottom panel) feature space. In the figures, normal sub-

jects are represented as blue circles, IGT as red crosses, and T2DM as green triangles,

and each vector in the feature space is specified by a pair (x, y) of components that

correspond to the first and second PC/sparse PC, respectively. Figure 5.8 shows that,

even if our classes overlap significantly, there are several subjects that have clearly

different positions in the feature spaces, and thus decision hyperplanes might perform

well in separating our groups of observations. Also, we can notice again that, at first

sight, what we can derive from the distribution in the sparse PC feature space is not

so different from what we see in the PC space. But again this speculation needs to be



64 Chapter 5 Classification of glycemic control and metabolic condition

Figure 5.8 Representation of the observation set in the PC feature space (top
panel) and sparse PC feature space (bottom panel).
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confirmed by the final classification performances.

As for the Application 1, we computed a nonparametric Kruskal-Wallis test for PCs

and sparse PCs between the three classes (one-sample Kolmogorov-Smirnov tests used

to check the null hypothesis of normally distributed samples provided p-values < 0.05).

Results from the analysis are shown in Figure 5.9 (top panels referred to PCs and bot-

tom panels to sparse PCs). In all cases, p-values obtained from the analyses resulted

� 0.005, and this confirmed again that our features had been conveniently chosen.

Figure 5.9 Application 2: metabolic condition. Boxplots of first and second PCs
(top panels) and sparse PCs (bottom panels). On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme datapoints the algorithm considers to be not outliers, and the

outliers are plotted individually.

5.6.2 Classification performance

Since PCs and sparse PCs were significantly different between normal, IGT, and T2DM

subjects, we could move to the actual classification problem. In practice, we dealt
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with three two-class classification problems (i.e., normal vs IGT, normal vs T2DM,

and IGT vs T2DM), and for each of them we exploited linear, polynomial, and radial

kernel functions.

Again, we performed the grid search described in Section 5.4, selected the best combi-

nation of parameters, and determined the optimal decision surface 100 times to avoid

any bias in the obtained results.

Classification performances obtained in the investigation are summarized in Table 5.2.

Accuracy of classification obtained on both training and test sets are listed, and values

are reported as the median over the 100 repetitions performed with different training

and test sets. We can observe that in general we were able to achieve a satisfactory ac-

curacy of classification. The are no performances lower than 71%, and, in some cases,

values greater than 90% were obtained. We can also notice that, again, sparse PCs

behave similarly to PCs, allowing to achieve the same classification accuracy on the

test set in all cases, and that GV index considered alone could not perform comparably

to PCs/sparse PCs (results not shown).

NORMAL VS IGT

PCs SPARSE PCs

LIN POL RAD LIN POL RAD

TRAINING 76% 78% 81% 74% 76% 79%

TEST 73% 73% 73% 73% 73% 73%

NORMAL VS T2DM

PCs SPARSE PCs

LIN POL RAD LIN POL RAD

TRAINING 88% 88% 90% 88% 88% 90%

TEST 92% 85% 85% 85% 92% 85%

IGT VS T2DM

PCs SPARSE PCs

LIN POL RAD LIN POL RAD

TRAINING 76% 83% 83% 76% 83% 83%

TEST 71% 71% 71% 71% 71% 71%

Table 5.2 Application 2: metabolic condition. Classification accuracy obtained in
the PC and sparse PC feature space from the three two-class classification problems
and the three exploited kernel functions (linear - LIN, polynomial - POL, and radial

- RAD).
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5.7 Conclusions

In this chapter, we exploited the use of the outputs obtained from SPCA (i.e., PCs and

sparse PCs) as tools for the classification of the quality of glycemic control (Application

1) and of the metabolic condition (Application 2) of disordered subjects. Specifically,

we developed SVM-based linear and nonlinear classifiers, and attempted to solve the

two classification problems using the first two PCs and their sparse representations as

features to build the classifiers.

Results obtained from this investigation were satisfactory. With the relevant percent-

ages of classification accuracy achieved, we can speculate that PCs and sparse PCs

could be exploited, e.g., within glucose sensors, to characterize the glycemic condition

of disordered subjects, providing feedback about the ongoing therapy and alerts about

the possible transition to more dangerous metabolic diseases (e.g., from a condition at

risk of T2DM to T2DM). Moreover, given that equal performances were achieved with

PCs and sparse PCs, a confirmation of the real capability of SPCA of parsimoniously

describing GV in diabetes was provided.

It is also worth observing that PCs and sparse PCs outperformed any GV index as

considered alone in solving our classification problems, and this suggests that a combi-

nation of metrics is effectively necessary to well characterize GV. Nonetheless, it could

be pointed out that combinations of indicators with a number of predictors smaller

than five could work as well. This kind of investigation could be matter of future works,

but it is important to stress that the approach to get the combinations of metrics will

be exactly the same, exploiting the SPCA-based strategy presented here.

A limitation of the study is related to the relatively small number of subjects that

could be used in the test sets. This condition led us to repeat the analysis 100 times,

without being able to provide a final formulation of the SVM classifier. With larger

datasets, it could be possible to isolate a certain amount of subjects within a test set,

and identifying a definitive version of the SVM that could be formalized and exploited

in practice to solve classification problems like those proposed here. This issue will be

addressed in future works.

From an algorithmic viewpoint, developments of this investigation shall assess the im-

plementation of classification strategies different from SVMs and move from two-class

classification problems to multi-class ones, exploiting the common one-vs-one and one-

vs-rest SVM approaches or other techniques.

Finally, to strengthen the results obtained in Application 1 and make them more con-

sistent, a larger number of expert clinicians should be asked to perform the initial
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classification of the quality of glycemic control. This would render the study less

dependent on potential subjective evaluations.



Chapter 6

Conclusions

6.1 Summary of the results

GV is widely considered as a risk factor for the development of long-term complica-

tions from diabetes, and a number of indicators have been developed to quantitatively

measure it from either SMBG or CGM profiles.

The first problem considered in this dissertation was extending the use of some GV

indices designed and validated only from SMBG data, to CGM recordings. In particu-

lar, we performed this kind of analysis on the well-known LBGI and HBGI, indicators

that, as computed from SMBG time-series, have been shown to be predictive of sig-

nificant glycemic events and allow to classify the risk of hypo and hyperglycemia of

diabetic subjects. The proper use of LBGI and HBGI on CGM signals has been here

enabled by developing suitable transformation functions that adapt the indicators to

the characteristics of CGMs. The study was designed based on a dataset of 28 T1DM

subjects monitored for up to four weeks with both SMBG and CGM systems. The

alternate versions of LBGI and HBGI proposed allow references to previous works and

clinically relevant cutoff values, and extend the possibility of exploiting these indica-

tors to classify the overall quality of glucose control from CGM time-series.

The second problem we dealt with in this thesis concerned the fact that several indi-

cators to quantify GV are available and the information conveyed by them is usually

redundant. Therefore, we proposed the use of SPCA to provide a parsimonious de-

scription of GV in both T1DM and T2DM. Specifically, the approach was applied to

a pool of 25 literature GV indices evaluated on 33 T1DM and 13 T2DM CGM time-

series, and allowed to select a reduced subset of up to 10 indicators that could save

more than 60% of the original variance in both scenarios. Of note is that a small group

69
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of metrics was shared by the parsimonious sets of indicators in T1DM and T2DM, sug-

gesting that some GV indices could be particularly representative of GV in diabetes

regardless of the specific type of disease.

The third investigation developed in the study was aimed at managing the outputs

of SPCA (i.e., PCs and sparse PCs) to develop a GV-based SVM classifier of the

metabolic state of normal and diabetic subjects. Specifically, we attempted to clas-

sify the quality of glucose control of 55 T1DM subjects, and the actual metabolic

condition of 34 subjects at high risk of developing T2DM, 39 IGT subjects, and 29

subjects with T2DM diagnosed. Results obtained from the analysis showed high per-

centages of classification accuracy in both scenarios, with 100% accuracy obtained in

the classification of good vs bad glycemic control subjects with both PC and sparse

PC feature configurations, and 92% accuracy in the classification of normal vs T2DM

subjects with the linear kernel in the PC feature space and with the polynomial in the

sparse PC one. The similar classification performance obtained with PCs and sparse

PCs strengthened our speculation that SPCA can be used as a technique to obtain

parsimonious descriptions of GV in diabetes.

6.2 What’s next?

Further developments of the work presented in this dissertation will concern, first of

all, the enlargement of the considered datasets. With a larger number of observations,

the number of rows in the data matrix given as input to PCA and the ratio between

number of observations and number of variables would increase, leading to a more

robust estimation of the covariance matrix of the GV metrics and, thus, of the final

SPCA results. Given this observation, having additional CGM recordings is also a

condition necessary for extending the initial pool of indicators given as input to SPCA

and providing an established linear combination of GV indices to be considered as a

gold-standard metric in the characterization of GV. With a larger dataset, then, we

would be able to avoid the necessity of 100 repetitions of the classification strategy

proposed in Chapter 5 and we could provide a final description of the best SVM

formulation to classify quality of glycemic control and metabolic condition, allowing a

possible practical implementation and use of the strategy, e.g., within glucose sensors.

From a methodological viewpoint, multi-class problems could be managed instead of

two-class ones and, beside classifiers developed using SVM, also other less sophisticated

approaches, such as the k-nearest neighbors, could be investigated; simultaneously,

approaches different from the LASSO constraint (e.g., elastic net regression) could be
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assessed in performing the variable selection task after the PCA step within SPCA.

Results obtained from different techniques in both cases could be compared, suggesting

different interpretations of the problem or strengthening the results obtained so far.

Concerning the correction of LBGI and HBGI, further developments of the study will

be focused on the assessment of the transformation functions with other CGM systems,

to allow the application of the indicators in several scenarios involving the exploitation

of different CGM devices. Also, investigating how much the transformation functions

depend on the different sampling frequency of SMBG and CGM, and how much on

possible sensor inaccuracy could be matter of future studies.
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