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Abstract— Over the past decade, considerable attention has
been devoted to the problem of emergence of synchronization
patterns in a network of coupled oscillators, which can be
observed in a variety of disciplines, from the biological to the
engineering fields. In this context, the Kuramoto model is a
classical model for describing synchronization phenomena that
arise in large-scale systems that exploit local information and
interactions. In this work, an extension of such a model is
presented, that considers the spatial distances among the oscil-
lator nodes. In detail, coupling strength and spatial conditions
are derived, needed to reach phase cohesiveness and frequency
synchronization, both in the scenario when a single population
of agents is present and when two different populations interact.
These theoretical findings are confirmed by extensive numerical
Monte Carlo simulations and statistical analysis.

I. INTRODUCTION

Over the past decades, a considerable attention has been
devoted to the problem of the coordinated motion of multiple
autonomous agents. In a variety of disciplines, researchers
have been developing an understanding of how a group of
moving objects can reach a consensus and move information
without centralized coordination [18], [14], [17]. In this
paper, we consider the synchronization of coupled nonlinear
oscillators in networked systems, which finds its motivation
in the study of a wide range of applications spanning from
large scale systems in nature (e.g. brain dynamics [7], [15],
cardiac pacemakers [8]) to human-related artificial networks
(e.g. collective swarm motion [13], smart grids [6]).

In this context, a classical and very popular model to
address the synchronization of coupled oscillators is the
Kuramoto model that has been extensively studied from the
seminal paper [10] to more recent works [16], [1], [4] (just
to cite a few). In this simple model, a set of N ≥ 2 coupled
oscillators is considered, each characterized by a phase
θi (t) ∈ T1 (model state) and a natural frequency ωi ∈ R
(model parameter), obeying to the following dynamics:

θ̇i (t) = ωi−
K

N

N∑
j=1

sin (θi (t)− θj (t)) , i=1, . . . , N (1)

where K > 0 is the coupling strength among the oscillators.
Here, only the temporal behavior of the agent states is
considered and (1) does not include any information related
to the spatial configuration of the oscillators’ network.
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However, from an application point of view, it appears
useful to understand how the spatial displacement of the
oscillators affects their mutual coupling since, intuitively, the
influence between two nodes will diminish with increasing
their distance.

For example, the authors of [2] state that a crucial step
toward neurobiological plausibility of coupled oscillators is
the incorporation of time delay effects linked to a spatial
metric. The dynamics of such a model introduces connection
strengths that vary with distance and global connectivity
is achieved by combining time delay effects with a finite
width spatial kernel W (i, j). Similarly, the importance of
spatial displacement and time delay effects in biological
oscillators network appears also in [3], which deals with the
brain’s neural activity on a network of N nodes, to study the
structural connectivity in the brain in terms of connection
strengths and conduction delays. Interestingly, analogous
considerations regard also the study of the electric power grid
dynamics where, again, the Kuramoto model proves to be
an agile and useful model tool. In particular, [11] describes
a spatially embedded Kuramoto dynamics that involves a
constant delay proportional to the spatial distance between
the oscillators, phase shifts caused by transmission delays
and a coupling function that decreases with the distance.
More in general, the basic idea that the distances among the
agents affect the synchronization dynamics can be find also
in [9], where it is considered the behavior of a lattice of
oscillators that interact with a power-law coupling strength.

Given these premises and driven by interest both in biol-
ogy and in power networks, in this paper a method is studied
to embed the spatial component in the classic Kuramoto
model (1), which considers the oscillators as located on
a plane (as often occurs in real world applications), and
introduces a kernel function W (i, j) that (inversely) depends
on the Euclidean distance among the oscillators. Differently
from [2], such a kernel function smoothly decreases with
the distance, while remaining always positive. Furthermore,
sufficient conditions on the nominal K > 0 coupling strength
and on the largest distance αmax are obtained, which permit
to achieve frequency synchronization and phase cohesiveness
(defined in Sec. III). More specifically, this work takes into
account also the case in which the oscillators are influenced
by different kernels, depending on their displacement in
a specific area: in such a situation, the synchronization
frequency changes if compared to the case where a single
kernel characterizes the oscillator population.

The remainder of this paper is organized as follows. In
Sec. II the modified Kuramoto model is proposed and in



Sec. III the main results are presented: firstly, sufficient
explicit conditions for phase cohesiveness and frequency
synchronization are established (Props. 1-2), and, then, the
employment of two different kernels is studied (Prop. 3).
Sec. IV presents some numerical simulations to validate and
assess the theoretical findings and also statistical results are
reported. Finally, Sec. V draws some final observations and
gives insight into future developments.

II. SPATIALLY COUPLED OSCILLATORS NETWORK

In this work we consider a system of N coupled oscil-
lators, distributed on a surface and represented by a graph.
A graph G = (V, E) is composed of a set of nodes, V =
{1, . . . , N}, consisting of the indices of the N agents of
the network, and of a set of edges E ⊆ V×V , in which each
edge connects one node to another (see for example, [12]).
The edge (j, i) indicates that agent j can transmit information
to agent i. If there is a directed path from node j to i, then
node i is said to be reachable from node j. If each node is
reachable from all the others, then G is said to be strongly
connected. Moreover, the graph is said to be fully connected
if there exists an edge connecting each pairs of nodes. In
this paper, we consider fully connected graphs.

Given this framework, each oscillator node i is character-
ized by its (static) spatial coordinates (xi, yi) ∈ R2 and is
endowed with a state that is its phase angle θi (t) ∈ T1 (T1

is the one dimensional torus set, i.e. the set [0, 2π] where 0
corresponds to 2π), which obeys the dynamics

θ̇i (t) = ωi −
K

N

N∑
j=1

W (i, j) sin (θi (t)− θj (t)) , (2)

where ωi ∈ R is the oscillator natural frequency (namely:
the dynamics of each isolated node is θ̇i (t) = ωi), K ∈ R is
the maximum coupling strength among the oscillators, and
W (i, j) ∈ ]0, 1] is a kernel function that depends on the
Euclidean distance αij among the agents, as follows:

W (i, j) = exp

(
−
(
αij
p

)2
)
,

where p is a kernel shaping parameter.
In summary, the dynamics (2) represents a modified Ku-

ramoto model that considers also the spatial displacements
of the oscillator nodes, while the interaction topology among
such oscillators is modeled by G and weigthed by the state-
independent and time-invariant kernel function W .

III. SYNCHRONIZATION PROBLEM AND BOUNDS

When analyzing the behavior of the oscillators network
(2), different kinds of synchronization can be considered [5]:

• Frequency synchronization: all frequencies
{
θ̇i (t)

}
converge to a common constant frequency ωsync ∈ R as
t→∞, where ωsync = 1

N

∑N
i=1 ωi; if the vector of the

natural frequencies is in the orthogonal complement of
the ones vector, [ω1, . . . , ωN ]

> ∈ 1⊥N , then ωsync = 01.

1According to [5], this assumption is not limiting the study since all
frequencies expressed w.r.t. ωsync as ωi − ωsync in a rotating frame.

• Phase synchronization: all phases {θi (t)} becomes
identical as t→∞; this state can be reached only if all
natural frequencies {ωi} are identical.

In the case when phase synchronization cannot be achieved:
• Phase cohesiveness: for γ ∈ [0, π[, let ∆G (γ) ∈ TN

be the closed set of angle arrays (θ1, . . . , θN ) s.t.
|θi − θj | ≤ γ, ∀ (i, j) ∈ E . Note that if γ = 0
this is tantamount phase synchronization (∆G (γ) is the
interior of ∆G (γ)).

• Arc invariance: for γ ∈ [0, 2π[, let ArcN (γ) ∈ TN
be the closed set of angle arrays θ = (θ1, . . . , θN )
s.t. there exists an arc of length γ containing all
θ1, . . . , θN . It means that θ ∈ ArcN (γ) satisfies
maxi,j∈{1,...,N} |θi − θj | ≤ γ (ArcN (γ) is the interior
of ArcN (γ)).

This study focuses on frequency synchronization and phase
cohesiveness, with phase distances |θi − θj | limited by γ <
π/2, which is of interest and utility for most applications.

A useful metric to analyze the level of the system syn-
chronization is the order parameter, introduced in [10] as

ρejφ =
1

N

N∑
i=1

ejθi , (3)

which represents the centroid of all the phases of the oscil-
lators, when these are seen as points on the unit circle in S1.
The magnitude ρ ∈ [0, 1] is a synchronization measure: if
all oscillators are phase synchronized, then ρ = 1, whereas
if they are balanced (i.e. uniformly distributed over the unit
circle), then ρ = 0. In particular, it is useful to recall the
following Lemma [5, Lemma 3.1].

Lemma 1: Shortest Arc Length and Order Parameter
Consider an array of N ≥ 2 angles θ = (θ1, . . . , θN ) ∈ TN

and compute the magnitude ρ (θ) = 1
N

∣∣∣∑N
i=1 e

jθi

∣∣∣. Let γ (θ)

be the length of the shortest arc containing all angles, that
is, θ ∈ ArcN (γ (θ)). The following statements holds:

1) if γ (θ) ∈ [0, π], then ρ (θ) ∈ [cos (γ (θ) /2) , 1];
2) if θ ∈ ArcN (π), then γ (θ) ∈ [2 arccos (ρ (θ)) , π].

A. Single Kernel Convergence Bounds

Following the results summarized in [5], the interest is
now to establish some explicit conditions for the modified
Kuramoto model (2). In doing so, the following propositions
extend the results in [4], involving the coupling strength
parameter K and the maximum αmax of the Euclidean
distances {αij} between the oscillators, to achieve a syn-
chronized state for θ, namely a state where frequency syn-
chronization and phase cohesiveness coexist.

Proposition 1: Phase cohesiveness
Consider the Kuramoto model (2), with N ≥ 2 oscillators,
natural frequencies ω ∈ 1⊥N in [ωmin, ωmax] and coupling
strength K. If the coupling strength K is higher than a
critical value Kcr:

K > Kcr =
ωmax − ωmin

e−α̃2 with α̃ =
αmax
p

(4)

then ∃ γmax ∈ ]π/2, π] and ∃ γmin ∈ [0, π/2[ such that



1) ArcN (γ) is positively invariant for every γ ∈
[γmin, γmax] and each trajectory originating in
ArcN (γmax) approaches asympotically ArcN (γmin)
(phase cohesiveness);

2) sin (γmin) = sin (γmax) = Kcr/K.
Remark 1: Interestingly, in this framework, a dependence

between the coupling strength K and the maximum distance
αmax among agents can be stated. Indeed, relation (4) is
equivalent to the following condition:

αmax < αcr = p

√
− ln

(
ωmax − ωmin

K

)
. (5)

In practice, if a model (2) is given, with an imposed spatial
distribution {αij ≤ αmax}, to achieve phase cohesiveness
there must be exerted a coupling strength larger than Kcr.
Conversely, if the network interactions are bounded by some
coupling strength value K, the displacement among the
agent should also be bounded (by αcr) in order to achieve
synchronization.

It is worth noticing that αcr shows a linear dependence
on the kernel parameter p; moreover, the upper bound for
αmax is really restrictive for a low value of p and remains
low also increasing K.

Proposition 2: Frequency synchronization
With a coupling strength K > Kcr, model (2) achieves
exponential frequency synchronization for all possible dis-
tributions of the natural frequencies {ωi} on the compact
interval [ωmin, ωmax] and for all initial phase conditions
θi (0) ∈ ArcN (γmax). Moreover:

1) the asymptotic synchronization frequency ωsync is the
average frequency ωavg = 1

N

∑N
i=1 ωi;

2) given phase cohesiveness in ∆ (γ) for some fixed γ <
π/2, the exponential synchronization rate is no worse
then λfs = Ke−α̃

2

cos (γ);
The proofs of Props.1 and 2 develop along the same line as

that of [4, Theorem 4.1], by introducing a Lyapunov function
V : TN → [0, π] that measures the convergence trend, as

V (θ) = max {|θi − θj | s.t. i, j ∈ {1, . . . , N}} .

For completeness, they are reported in App. I.
Corollary 1: Consider model (2) in the conditions stated

by Prop. 1: the asymptotic value ρ∞ of the magnitude of the
order parameter (3) is bounded as

1 ≥ ρ∞ ≥ cos
(γmin

2

)
=

√√√√√1+

√
1−

(
ωmax−ωmin
Ke−α̃2

)2

2
. (6)

Proof: As a consequence of 1) of Prop. 1 and Lemma
1, the asymptotic magnitude of the order parameter obeys

1≥ρ∞ ≥ cos
(γmin

2

)
=

√
1+cos (γmin)

2
:= ρ∞,min. (7)

From 2) of Prop. 1, it follows

cos (γmin) =

√
1−

(
ωmax − ωmin

Ke−α̃2

)2

, (8)

and from (8) and (7), (6) is proved.

B. Two Kernel Configuration

It is now interesting to move to the case in which two
populations of agents with different kernels interact.

For this purpose, a configuration is considered as com-
posed by two different regions, populated by sets Am and
AM that are characterized respectively by two different
kernels Wm (i, j) and WM (i, j), related to parameters pm <
pM . For the time being, the cardinality of the two populations
is the same: N/2 oscillators belong to Am and the others
N/2 to AM . The system dynamics becomes:

θ̇i (t) = ωi−
K

N

{∑
Wm (i, j) sin (θi (t)−θj (t)) , i ∈ Am∑
WM (i, j) sin (θi (t)−θj (t)) , i ∈ AM

where

Wm (i, j) = e−(
αi,j
pm

)
2

< e
−
(
αi,j
pM

)2

= WM (i, j) ,

which yields:
Kcr =

ωmax − ωmin
e−(αmaxpm

)
2 .

Unlike the single kernel case, where ωsync = 1
N

∑N
i=1 ωi =

0, in the two kernels case the following lemma stands:
Lemma 2: Synchronization frequency with two kernels

Consider a system of an even numbers N ≥ 2 of oscillators,
characterized by their spatial coordinates (xi, yi) and their
phases θi (t). Let ω ∈ 1⊥N be the vector of the natural
frequencies. If K and αmax are such that there is frequency
synchronization among the oscillators, then, the synchroniza-
tion frequency ω̃sync results, for t� 0:

ω̃sync =
K

N2

∑
i∈Am
j∈AM

(WM (j, i)−Wm (i, j)) sin (θi − θj) .

Proof: By summing over all nodes it follows:
N∑
i=1

θ̇i=

N∑
i=1

ωi −
K

N

∑
i∈Am

N∑
j=1

Wm (i, j) sin (θi−θj) +

− K

N

∑
i∈AM

N∑
j=1

WM (i, j) sin (θi−θj) .

(9)

By noticing that if i, j ∈ A∗ then W∗ (i, j) = W∗ (j, i) (∗ be-
ing equal to m or M ) and sin (θi − θj) = − sin (θj − θi),
after some calculation (9) simplifies to
N∑
i=1

θ̇i =

N∑
i=1

ωi−
K

N

∑
i∈Am
j∈AM

(Wm (i, j)−WM (j, i)) sin (θi−θj).

Hence, normalizing by the network cardinality N , it follows:

ω̃sync =
1

N

N∑
i=1

θ̇i

= ωsync +
K

N2

∑
i∈Am
j∈AM

(WM (j, i)−Wm(i, j)) sin (θi−θj)︸ ︷︷ ︸
B(i,j)

(10)

which proves the thesis by recalling that ωsync = 0.



(a) (b)

Fig. 1. (a) ρ∞,min as a function of αmax with p = 4 (for different values of K); (b) Upper bound for αmax as a function of K (for different values
of p).

Namely, if the oscillator network can be described by
two populations characterized by different spatial kernels,
the synchronization frequency ω̃sync deviates from the null
average of the natural frequencies. This difference can be
bounded w.r.t. the two kernels parameters as follows:

Proposition 3: Frequency Bound with Two Kernels
In the hypothesis of Lemma 2, a bound ∆ωM for the
difference between the synchronization frequency ω̃sync and
ωsync = 0 is given by:

|∆ωsync| ≤
K

4

[
e
−
(
α∗
pM

)2

− e−( α
∗

pm
)
2
]

= ∆ωM , (11)

where

α∗ = pmpM

√
2

p2
M − p2

m

ln

(
pM
pm

)
.

Proof: From (10), ∆ωsync = ω̃sync − ωsync results as

∆ωsync =
K

N2

∑
i∈Am
j∈AM

B (i, j), (12)

and

∆W (i, j) = WM (j, i)−Wm(i, j) = e
−
(
αi,j
pM

)2

− e−(
αi,j
pm

)
2

,

considering that αi,j = αj,i, ∀i, j.
To find its maximum value, the derivative is obtained:

∂∆W

∂αi,j
=2αi,j

[
1

p2
m

e−(
αi,j
pm

)
2

− 1

p2
M

e
−
(
αi,j
pM

)2
]
,

which becomes zero at αi,j = 0 (trivial minimum solution)
and when

αi,j = α∗ = pmpM

√
2

p2
M − p2

m

ln

(
pM
pm

)
.

As a consequence:

∆W ∈
[
0, e

−
(
α∗
pM

)2

− e−( α
∗

pm
)
2
]
,

and it follows that the absolute value of the quantity B (i, j)

highlighted in (12) is bounded in
[
0, e

−
(
α∗
pM

)2

− e−( α
∗

pm
)
2
]

.

As a consequence

|∆ωsync| ≤
K

N2

∑
i∈A1
j∈A2

[
e
−
(
α∗
pM

)2

− e−( α
∗

pm
)
2
]

(13)

≤ K

4

[
e
−
(
α∗
pM

)2

− e−( α
∗

pm
)
2
]
.

So far the case of two balanced populations of agents has
been considered and indeed the bound (11) does not depend
on the cardinality of the sets. Conversely, if the two kernels
refer to uneven groups of oscillators, the results of Prop. 3
can be extended.

Be the sets Am and AM of different cardinalities, namely
|Am|=Nm and |AM |=NM =N−Nm. In such conditions,
relation (11) modifies to:

|∆ωsync| ≤ K
Nm (N−Nm)

N2

[
e
−
(
α∗
pM

)2

−e−( α
∗

pm
)
2
]

(14)

and the r.h.s. of (14) is a bound ∆ωM for ∆ωsync. Its
derivative w.r.t. Nm,

∂∆ωM
∂Nm

= K

(
N − 2Nm

N2

)[
e
−
(
α∗
pM

)2

− e−( α
∗

pm
)
2
]
,

equalizes to zero only at Nm = N/2 (point of maximum);
also, the minimum value for the r.h.s. of (14) is achieved at
the extreme points, i.e. when the two populations are strongly
unbalanced:{

Nm = 1

NM = N − 1
or

{
Nm = N − 1

NM = 1

In Fig. 2, an example of the trend of ∆ωM as a function
of Nm is given with K = 50, pm = 3 and N = 50, for
different values of pM .
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Fig. 2. Trend of ∆ωM as a function of Nm with K = 50, pm = 3 and
N = 50, for different values of pM .

IV. NUMERICAL RESULTS

In this section, some simulations are presented to assess
and validate the previously discussed theoretical findings.

Specifically, approximately n = 30000 Monte Carlo
realizations have been generated for a random network of
oscillators spatially placed on a spherical domain (in order
to avoid edge effects) and considering geodesic distances
among pairs of nodes. The number of agents N is sampled
from a uniform distribution U([10, 200]) and the radius of
the spherical domain is r ∼ U(]0, 10]); the network node
position (xi, yi, zi) is obtained as xi = r sin (ψi) cos (ζi)

yi = r sin (ψi) sin (ζi)
zi = r cos (ψi)

as a function of the two angles ψi, ζi ∼ U([0, 2π[). Also,
the maximum arc-distance among all nodes αmax can be
calculated. As for the natural frequency distribution, for
a given N ≥ 10, the frequency vector ω ∈ 1⊥N is
constructed in two steps. Firstly, N real numbers qi are
sampled from U([−1,+1]); then, by subtracting the average
1
N

∑N
i=1 qi, ωi = qi − 1

N

∑N
i=1 qi is defined to obtain

ω = (ω1, . . . , ωN )
T ∈ 1⊥N . Finally, a random parameter

p ∈ {1, 2, . . . , 10} and a random γmax ∈ ]π/2, π] are
chosen; γmin ∈ [0, π/2[ is selected such that sin (γmax) =
sin (γmin). Hence, a set of N oscillators θi (0) is generated,
with θ (0) ∈ ArcN (γmax). The bound gain is defined as
Kcr = ∆ω

e
−(αmaxp )

2 , and the coupling strength K to ensure

synchronization is obtained:

K =
Kcr

sin (γmax)
> Kcr.

In Fig. 3 two examples are shown. The top row refers
to (a) the single kernel case, where (b) phase cohesiveness
is reached and (c) the Lyapunov function V (θ(t)) behaves
according to Prop. 1; the bottom row, instead, is related to
(d) a two kernel configuration, where (e) phase cohesiveness
is attained for the two populations and (f) the frequency
convergence is bounded by (14).

More in general, the assessment of the correctness and the
accuracy of Prop. 1 for arbitrary networks is carried out by
solving (2) for each instance and testing the assumptions:

Hfr :

{
γmax ∈ ]π/2, π]

K = Kcr
sin(γmax) >Kcr

⇒ θ̇ −→
t→∞

ωsync1N

Hph :

{
γmax ∈ ]π/2, π]

K = Kcr
sin(γmax) >Kcr

⇒ θ(T )∈ArcN (γmin)

In this context, frequency synchronization is achived if the
differences among the mean values of the last 50 samples of
the frequencies θ̇i remain below a threshold εf = 10−2, i.e.∣∣∣θ̇i − θ̇j∣∣∣ < εf , ∀ i, j ∈ {1, . . . , N} ;

phase cohesiveness is reached at the simulation time T if

|θi (T )− θj (T )| ≤ γmin, ∀ i, j ∈ {1, . . . , N} .

The empirical probability P̂ for hypotheses H∗ (H∗ being
Hfr or Hph) is computed and, to obtain an accuracy level
of ε = 0.01 and a confidence level of η = 0.01,

P
(∣∣∣P (H∗ is true)− P̂ (H∗ is true)

∣∣∣ < ε
)
> 1− η,

the Chernoff-Hoeffding bound justifies the chosen number
of nominal models n

n ≥ 1

2ε2
ln

2

η
= 26492.

In particular, the Monte Carlo simulations in the theo-
retical cohesiveness and synchronization conditions stated
before show that

P̂fr = 88.26% P̂ph = 100%. (15)

Indeed, while the value of P̂ph is really satisfactory, i.e.
phase cohesiveness is always obtained, the low value of P̂fr
is probably due to the threshold-based method adopted for
assessing frequency synchronization and to the high values
of K (sometimes much higher than necessary) that may lead
to numerical issues, as it will be clearer later.

In this respect, it is interesting to study the bound
accuracy, i.e. to find the smallest value Kmin that per-
mits to achieve phase cohesiveness in ∆ (γmin). For each
sample network out of n Monte Carlo realizations, the
smallest value of K leading to cohesive phases satisfying
|max |θi − θj | − γmin| < εph, where εph = 0.5◦, is found
iteratively by numerically integrating the dynamics (2): at
the h-th iteration the following scheme is applied:
• if |max |θi − θj | − γmin| < εph then K(h) = Kmin;
• if max |θi − θj | < γmin− εph then K(h+1) = 0.9K(h);
• if max |θi − θj | > γmin+ εph then K(h+1) = 1.1K(h).

This iterative process stops when Kmin is found or when
the iterations exceed 1000.

By calling K(1) = Kcr/ sin (γmin), it is expected that
the ratio Kmin/K

(1) is always lower than or equal to unity.
Moreover, if that happens, it means that the value of Kcr is
sufficient to achieve phase cohesiveness.
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Fig. 3. Sample realizations of a single kernel (top row) and a two kernel (bottom row) oscillator network.
Single kernel network. Parameters: N = 153, r = 3.48, p = 8, γmax = 170.4◦ - γmin = 9.6◦, Kcr = 12.47 - K = 74.89. From left to right: spatial
configuration of the agents, comparison between initial and final phases in the unit-circle, trend of the Lyapunov function V (θ (t)).
Two kernel network. Parameters: N = 134 (NM = 65 - Nm = 69), r = 1.34, pM = 7 - pm = 4, γmax = 174.8◦ - γmin = 5.2◦, Kcr = 5.85 -
K = 64.89, ∆ωM = 6.3445 - ωsync = 0.0022. From left to right: spatial configuration of the agents, comparison between initial and final phases in
the unit-circle, trend of the oscillators’ frequencies.

In Fig. 4, the statistical distribution of this ratio is shown:
firstly, it can be observed that the probability of reaching
phase cohesiveness as the percent number of samples with
the ratio lower or equal to 1 is P̂ph = 100%.

Furthermore, by analyzing the statistical distribution, there
is a certain set of sample simulations (2.36%) that yields a
ratio exactly equal to 1. This fact means that the bound Kcr is
a good bound and cannot be decreased without decreasing the
probability of reaching cohesiveness. Conversely, although
the adopted implementation of the iterative scheme for Kmin

leads to a sort of quantization, this plot suggests a trade-off
on how much the value of K can be decreased to ensure a
minimum probability of cohesiveness. In particular, it can be
stated that by decreasing K tenfold, phase cohesiveness in
∆ (γmin) can be obtained with a probability of about 60%.
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Fig. 4. Distribution of Kmin/K
(1): K(1) = Kcr/ sin (γmin) with Kcr

obtained by (4); Kmin is the value calculated through the iterative scheme.

Finally, it is possible to calculate the empirical probabil-
ities of frequency synchronization obtained with K = K(1)

and with K = Kmin, which result in:

P̂fr,K(1) = 88.5% P̂fr,Kmin = 99.93%.

By comparison with (15), it can be noticed that the value
of P̂fr,K(1) is perfectly in line with that of P̂fr (taking into
account the different set of Monte Carlo realizations), while
P̂fr,Kmin is much higher: in all likelihood, this is due to
the fact that a lower value of K, which anyway permits
to achieve phase cohesiveness, allows to reduce possible
numerical issues and thus has to be preferred when using
a numerical solver.

V. CONCLUSIONS AND FUTURE WORKS

Motivated by applications in the biological field and by the
study of power network dynamics, in this work a modified
Kuramoto model is discussed, which takes into account
also the spatial configuration of the coupled oscillator nodes
through a distance-dependent kernel function.

In this framework, a critical bound is derived for the
strength coupling among oscillators in order to achieve fre-
quency synchronization and phase cohesiveness. This bound
is validated in terms of correctness and accuracy by means
of numerical simulations on a general spatial configuration,
where the interacting agents are distributed on a spherical
domain. Statistical figures are obtained that confirm the
validity of the approach. A trade-off between the value of
the coupling strength and the probability of convergence is
suggested to relax the strength bound.



In addition, the interesting case of a configuration where
two different populations of oscillators interact, characterized
by different kernel parameters, is considered. In such a
scenario, it is obtained an upper bound to ∆ωsync, which
represents the shift between the synchronization frequency
reached with two kernels, ω̃sync, and the zero one obtained
with the single kernel (ωsync = 0 if ω ∈ 1⊥N ).

Many issues remain interesting for future investigation,
among which the study of different types of kernel function,
that may depend also on the actual state of the system, or
the exploitation of particular spatial configurations (such as
lattices): both these aspects are related to how the spreading
of local information is accomplished through the system.
Indeed, some insight gained from specific applications would
be beneficial in order to provide more realistic case studies
and suggest how to exert control and improve its performance
to achieve global synchronization and cohesiveness.

APPENDIX I

A. Proof of Prop. 1

Proof: To prove the positive invariance of ArcN (γ),
i.e. the phase cohesiveness in ArcN (γ) for some γ ∈ [0, π],
the function V : TN → [0, π] is introduced as

V (θ) = max {|θi − θj | s.t. i, j ∈ {1, . . . , N}} . (16)

The arc containing all the initial phases θi (0) has a maxi-
mum and a minimum: be Imax (θ) and Imin (θ) the sets of
indices of angles {θ1, . . . , θN} equal to the maximum and
the minimum, respectively. It follows:

V (θ)= |θm′ − θl′ | , ∀m′∈Imax (θ) , ∀l′∈Imin (θ) . (17)

Assuming θi (0) ∈ ArcN (γ), it is now to show that this
condition remains ∀t > 0, which can happen if and only
if V (θ) ≤ γ ≤ π. It follows that ArcN (γ) is positively
invariant if and only if V (θ) does not increase at any time
t such that V (θ (t)) = γ.

The upper Dini derivative of V (θ) is given by [4]:

V ′+ (θ)= lim
h→0

sup
V (θ (t+ h))− V (θ (t))

h
= θ̇m (t)− θ̇l (t),

(18)
where m ∈ Imax (θ (t)) and l ∈ Imin (θ (t)) are such that
θ̇m (t) = max

{
θ̇m′ (t) |m′ ∈ Imax (θ (t))

}
and θ̇l (t) =

min
{
θ̇l′ (t) | l′ ∈ Imin (θ (t))

}
; along the system dynamics

(2), (18) can be written as follows:

V ′+ (θ) = ωm − ωl −
K

N

N∑
i=1

W (m, i) sin (θm − θi) +

− K

N

N∑
i=1

W (l, i) sin (θi − θl) , (19)

where all phases θ’s are time-dependent, and this explicit
dependence is henceforth omitted for simplicity of notation.

From V (θ) = γ, it follows that θm − θl = γ and{
θm − θi ∈ [0, γ] ⊆ [0, π]⇒ sin (θm − θi) ≥ 0
θi − θl ∈ [0, γ] ⊆ [0, π]⇒ sin (θi − θl) ≥ 0

(20)

Moreover the kernel property stands

W (i, j) ∈
[
e−α̃

2

, 1
]
⊆ ]0, 1] , ∀i, j (21)

where α̃ = αmax
p , which yields

V ′+ (θ)≤ωm−ωl−
K

N
e−α̃

2
N∑
i=1

(sin (θm−θi) + sin (θi−θl)) .

(22)
By means of prosthaphaeresis formulas applied to θm−θi

and θi − θl the summation in (22) results

N∑
i=1

2 sin

(
θm − θl

2

)
cos

(
θm − θi

2
− θi − θl

2

)
(23)

and through the relations (20) it is:

sin

(
θm − θl

2

)
= sin

(γ
2

)
(24)

cos

(
θm−θi

2
− θi−θl

2

)
≥cos

(
θm−θl

2

)
=cos

(γ
2

)
. (25)

Going back to the derivative (22), it follows:

V ′+ (θ) ≤ ωm − ωl −
K

N
e−α̃

2
N∑
i=1

2 sin
(γ

2

)
cos
(γ

2

)
(26)

≤ ωm − ωl −Ke−α̃
2

sin (γ). (27)

The length of the arc formed by the phases is non-increasing
in ArcN (γ) if for any pair {m, l} it holds that

Ke−α̃
2

sin (γ) ≥ ∆ω ⇒ V ′+ (θ) ≤ 0, (28)

where ∆ω = max (ω) − min (ω). For γ ∈ [0, π], the left
member of (28) is a concave function, whose maximum is
at γ∗ = π/2. Thus, there exists an open set of arc lengths
γ ∈ [0, π] satisfying (28) if and only if

Ke−α̃
2

> ∆ω, (29)

which corresponds to the equivalent relations (4) and (5).
It follows that ∀γ ∈ [γmin, γmax], V (θ) is non-increasing

and it is strictly decreasing for γ ∈ ]γmin, γmax[. As a con-
sequence of that, the set ArcN (γ) is positive invariant ∀γ ∈
[γmin, γmax] and each trajectory starting in ArcN (γmax) ap-
proaches asympotically ArcN (γmin) (phase cohesiveness).

Furthermore, if (4) holds and hence (28) is true, there
exists a unique γmin ∈ [0, π/2[ and a γmax ∈ ]π/2, π]
which obey (28) with the equality sign:

sin (γmin) = sin (γmax) =
1

K

∆ω

e−α̃2 =
Kcr

K
. (30)

B. Proof of Prop. 2

Proof: From the Kuramoto model (2) written as

fi (θ) = ωi +

N∑
j=1

aij sin (θi − θj) , (31)



with aij = K
NW (i, j), it follows that

∂fi
∂θi

=

N∑
j=1

aij cos (θi − θj) ,
∂fi
∂θj

= −aij cos (θi − θj) ,

(32)
which implies that the Jacobian J (θ) satisfies

J (θ) = −Bdiag
(
{ãij}{i,j}∈E

)
BT (33)

where B is the incidence matrix of the graph G with
ãij = aij cos (θi − θj) > 0 since |θi − θj | < γmin < π/2
for the phase cohesiveness. Moreover, J (θ) is negative
semidefinite and equal to the graph Laplacian LG . Hence,
by differentiating the phase dynamics (2), the frequency
dynamics is obtained as

dθ̇i
dt

= −
N∑
j=1

ãij (t)
(
θ̇i − θ̇j

)
i ∈ {1, . . . , N} (34)

or equivalently
dθ̇

dt
= −LG (t) θ̇. (35)

Since ker (LG) = span (1N ), it follows

1TN
d

dt
θ̇ = 0⇒

N∑
i=1

θ̇i (t) =

N∑
i=1

ωi = Nωavg. (36)

The dynamics (35) can be regarded as a linear consensus
protocol with time-varying strictly-positive weights and ac-
cording to [4, Theorem 4.1] all frequencies θ̇i (t) synchronize
exponentially:∥∥∥θ̇ (t)− ωsync1N

∥∥∥
2
≤
∥∥∥θ̇ (0)− ωsync1N

∥∥∥
2
e−λfst, (37)

with λfs = λ2 (LG) cos (γ) ≥ Ke−α̃
2

cos (γ), where
λ2 (LG) is the Fiedler value of LG (Gershgorin disc The-
orem). Therefore, if K > Kcr, exponential convergence of
the frequencies θ̇i (t) to ωsync is attained.
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