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Abstract

In this thesis we address different topics related to homogenization of first and
second order fully nonlinear PDEs, essentially of Hamilton–Jacobi type, and
more generally to singular perturbation in optimal control problems and differ-
ential games, in the light of the viscosity solution theory.

We take into account a singularly perturbed control systems (i.e. a system
where the state variables evolve with two different time scales), both in the de-
terministic and in the stochastic setting, and the related first and second order
Hamilton–Jacobi equations. A first part of the work is devoted to order reduc-
tion procedures: the goal of such procedures is to obtain, as the perturbation
parameter tends to zero, a system where only the slow variables appear. The
construction of the limit dynamics relies on the asymptotic behavior of the fast
variables of the original system. We use limiting relaxed controls, i.e. suitably
defined Radon probability measures to average the fast part of the controlled
dynamics. We give - both in the deterministic and in the stochastic framework
- representation formulae for the effective Hamiltonian in terms of limiting re-
laxed controls. This allow a control interpretation of the limiting dynamics.
As an application of these reduction procedures, we study the propagation of
fronts moving with normal velocity depending on the position and undergoing
fast oscillations.

In the second part of the work we study asymptotic controllability prop-
erties of a deterministic singularly perturbed systems and of the limit system.
We prove first that, under suitable assumptions, the weak lower semilimit of
Lyapunov functions of a singularly perturbed system is a lower semicontinuous
Lyapunov function for the limiting system. Furthermore, we also prove that the
asymptotic controllability to the origin of the (smaller) limit system is enough
to infer asymptotic controllability of the slow part of the (larger) perturbed
system. More precisely, perturbing a Lyapunov pair for the limit dynamics, we
construct a Lyapunov pair for the original system.

The third and last part of the thesis concerns homogenization of non-coercive
Hamilton-Jacobi equations with oscillating Hamiltonian and initial data. We
take into account a rather general class of Hamiltonians convex in some gradient
variables and concave with respect to the others. In particular it is shown that
for some of these equations homogenization does not take place, in contrast with
the usual coercive case. Sufficient conditions for homogenization are provided
involving the structure of the running cost and the initial data.





Riassunto

In questa tesi vengono trattati argomenti inerenti l’omogeneizzazione di
equazioni differenziali alle derivate parziali completamente non lineari del primo
e del second’ordine, essenzialmente di tipo Hamilton-Jacobi. Più in generale si
studiano problemi di controllo ottimo e giochi differenziali singolarmente per-
turbati, nell’ambito della teoria delle soluzioni di viscosità.

Si considerano, sia nel caso deterministico che stocastico, sistemi controllati
singolarmente perturbati (i.e. sistemi in cui le variabili di stato evolvono lungo
due differenti scale temporali), e le equazioni di Hamilton-Jacobi del primo e del
second’ordine ad essi associate. Una prima parte del lavoro consiste nella de-
terminazione di procedure di riduzione dell’ordine. Viene costruito un sistema
limite per le sole variabili lente, tenendo conto del comportamento asintotico
delle variabili veloci del sistema originario. Si fa uso di limiting relaxed con-
trols, cioè misure di Radon di probabilità opportunamente definite allo scopo
per mediare la parte veloce della dinamica. Vengono fornite delle formule di rap-
presentazione dell’Hamiltoniana effettiva in termini di controlli rilassati; questo
permette di interpretare il sistema limite come un sistema di controllo. Queste
procedure vengono poi applicate allo studio del moto di fronti in presenza di
forti oscillazioni.

Nella seconda parte del lavoro si affronta lo studio della controllabilità di
sistemi singolarmente perturbati. Dapprima si prova che il semilimite debole
inferiore di funzioni di Lyapunov è una funzione di Lyapunov per la dinamica
limite. Poi, si prova che la controllabilità asintotica all’origine del sistema lim-
ite (più piccolo) è sufficiente a dedurre la controllabilità asintotica all’origine
della dinamica lenta del sistema perturbato (più grande). Più precisamente,
perturbando opportunamente una coppia di Lyapunov per la dinamica limite,
si costruisce una coppia di Lyapunov per il sistema originario.

La terza e ultima parte della tesi concerne l’omogeneizzazione di equazioni
di Hamilton-Jacobi non coercive con Hamiltoniana e dati iniziali oscillanti. Si
prendono in esame alcune classi di Hamiltoniane convesse in alcune variabili del
gradiente e concave rispetto alle altre. Viene provato che per alcune di queste
equazioni l’omogeneizzazione non ha luogo, contrariamente a quanto accade
nell’usuale caso di Hamiltoniane coercive. Vengono fornite condizioni sufficienti
per l’omogeneizzazione che coinvolgono la struttura del costo corrente e del dato
iniziale.
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Notations

RN the Euclidean N -dimensional space
TN the N -dimensional flat torus, i.e. the quotient RN/ZN

ZN the set of z ≡ (z1, . . . , zN ), zi ∈ Z
Mn×k the set of n× k matrices
Sn the set of n× n symmetric matrices
x · y the scalar product in RN

|x| the Euclidean norm of x ∈ RN

B(x0, r) the open ball {x ∈ RN : |x− x0| < r}
B̄(x0, r) the closed ball {x ∈ RN : |x− x0| ≤ r}
∂S the boundary of the set S
S̄ the closure of the set S
coS the closure of the convex hull of the set S
B(X) the Borel σ-algebra of the space X
LN the N -dimensional Lebesgue measure
dH(S, T ) the Hausdorff distance between the sets S and T
π(µ1, µ2) the Prohorov distance between the measures µ1 and µ2

arg min ϕ the set of minimum point of the function ϕ
||ϕ||∞ the supremum norm of a function ϕ : X → R, supx∈X |ϕ(x)|
1X the characteristic (or indicator) function of the set X
ω a modulus, i.e. a function ω : [0, +∞) → [0, +∞) continuous,

nondecreasing, and such that ω(0) = 0
K the class of comparison functions β : [0,+∞) → [0, +∞)

continuous and strictly increasing,
with limt→0+ β(t) = 0 and limt→+∞ β(t) = +∞

KL the class of comparison functions η : [0, +∞)2 → [0, +∞)
continuous, strictly increasing in the first variable,
strictly decreasing in the second variable and satisfying
η(0, t) = 0 for any t ≥ 0 and limt→+∞ η(r, t) = 0 for any r ≥ 0

Dϕ(x) the gradient if the function ϕ at x
∂xj ϕ(x) the partial derivative with respect to the xj variable

of the function ϕ at x = (x1, . . . , xN )
J+ϕ(x), J−ϕ(x) the super- and subdifferential of ϕ at x
ϕ∗(x), ϕ∗(x) the upper and lower weak semilimit of the function ϕ
A the set of control functions, i.e. the set of Lebesgue

measurable functions a : [0, +∞) → A,
where A is a given compact metric space

Ar the set of Radon probability measures on A
Ar the set of relaxed controls
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tx(a) the first time the solution of a control problem
enters a given closed set T

C(X) the space of continuous function ϕ : X → R
Ck(Ω) for k ≥ 1 and Ω ⊂ RN open, the subspace of C(Ω)

of functions with continuous partial derivatives
in Ω, up to order k

BUC(X) the space of bounded and uniformly continuous
functions ϕ : X → R

Lip(ϕ) the Lipschitz constant of the Lipschitz-continuous
function ϕ : X → R

LipS(ϕ) the Lipschitz constant on the compact subset S ⊂ X
of the locally-Lipschitz continuous function ϕ : X → R

USC(X), LSC(X) the spaces of upper and lower
semicontinuous functions ϕ : X → R

∆, Γ nonanticipating strategies for the first
and second player of a differential game
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Introduction

The theory of viscosity solutions of fully nonlinear partial differential equations
has given a large number of contributions in deterministic and stochastic opti-
mal control theory and differential games. Connections between optimal control
problems and viscosity solutions of Hamilton–Jacobi–Bellman equations are ac-
curately detailed in the books of Bardi and Capuzzo Dolcetta [22], Barles [25],
Fleming and Soner [50].

The study of deterministic and stochastic singularly perturbed control sys-
tems is motivated by many problems coming from chemistry, physics and en-
gineering. We consider a system where some state variables evolve at a much
faster time scale than the others: this is modelled by a small positive parameter
ε appearing in front of the time derivative of such fast variables. The prototype
of a singularly perturbed control system is

dxt = f(xt, yt, at)ds + σ(xt, yt, at)dWt, x ∈ RN

dyt = 1
εg(xt, yt, at)ds + 1√

ε
τ(xt, yt, at)dWt, y ∈ RM

(ε > 0)

where a· is a control function taking values in a certain compact set A. Our
singular perturbation problem is passing to the limit as ε vanishes. The result is
the reduction of the original (N +M)–dimensional system to an N–dimensional
system keeping some informations on the fast part of the dynamics, but involving
only the slow variables.

The first approach in order reduction procedures for ODEs goes back to the
works of Levinson and Tichonov and their students in the fifties; such approach
was extended to deterministic control system by several Authors. See Kokotović
et al. [60], Bensoussan [29], Dontchev and Zolezzi [43], Veliov [77] and the
references therein.

The Levinson-Tichonov theory took place originally in the deterministic un-
controlled framework; the singularly perturbed initial value problem

ẋt = f(xt, yt), x0 = x
εẏt = g(xt, yt), y0 = y

is considered. A reduced problem is obtained by setting ε = 0

ẋt = f(xt, yt), 0 = g(xt, yt), x0 = x

Such differential–algebraic system supplies the correct expression of the limiting
system provided that for any fixed x the problem

żt = g(x, zt)
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is boundary layer stable, namely if it has a bounded solution zt defined for any
t > 0, zt has a limit at infinity and this limit is a solution of the algebraic
equation g(x, y) = 0 .

Even if many important problems can be putted in this reduced form, setting
the perturbation parameter to zero fails to give the correct approximation when
the fast variables oscillate for large times instead to converging to a steady
state. Then, averaging methods have been developed by Artstein, Gaitsgory,
Leizarowitz and others, in the spirit of Krylov-Bogolyubov theory of invariant
measures of ODEs.

Our approach involves the fully nonlinear partial differential equations re-
lated to the optimal control problem. We consider a given cost functional
J(t, x, y, a) defined on each time interval [0, t], and the value function

uε(t, x, y) := inf{J(t, x, y, a) : a admissible control function}
which satisfies, in viscosity sense, a certain Hamilton–Jacobi–Bellman equation.
The approach to the singular perturbation problem we follow goes back to Lions
[63], Jensen and Lions [59], Artstein and Gaitsgory [16] and is deeply inspired
by some recent works of Bardi and Alvarez [2], [3], [4] and [5]. It consists in
studying the limit as ε → 0+ of the value functions and characterize such limit
as the unique viscosity solution of some limiting partial differential equation.
One expects that the limit u(t, x) of such value functions does not depend on
the fast variables y and satisfies a limit PDE involving an effective operator,
the effective Hamiltonian H̄. In connection with the ergodic control theory, the
effective Hamiltonian is found as the value of an M–dimensional ergodic control
problem for the fast subsystem, obtained by freezing the slow variable x and
setting ε = 1. [2] and [3] studied the asymptotic behavior of solutions of general
degenerate parabolic equations

∂tu
ε + H

(
x, y,Dxuε,

Dyuε

ε
,Dxxuε,

Dyyuε

ε
,
Dxyuε

√
ε

)
= 0

with H satisfying some natural structural assumption, and with initial condition

uε(0, x, y) = h(x, y).

Two properties for the pair (H,h), called ergodicity and stabilization to a con-
stant, have been pointed out to be crucial in proving the convergence of uε’s.
Such properties pertain with the possibility of defining the effective operator H̄
and an effective initial datum h̄, and are related to the limit behavior of solu-
tions of degenerate parabolic PDE’s connected with the fast subsystem. The
main result in [3] affirms that, if the pair (H, h) enjoys these two properties,
then the upper and lower weak semilimit of uε are respectively viscosity sub
and supersolution of the effective problem

∂tu + H̄(x,Dxu,Dxxu) = 0, u(0, x) = h̄(x).

This is our starting point; now we describe the contributions of this thesis.
Let us focus our attention on the deterministic case, i.e. when σ ≡ 0 and τ ≡ 0:

ẋt = f(xt, yt, at), x0 = x
εẏt = g(xt, yt, at), y0 = y

(0.1)
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As mentioned before, the limit behavior of a singularly perturbed system can
be described using invariant measures; more precisely, the limit as ε → 0 of
the slow flow can be portrayed by solutions of a differential inclusion generated
by invariant measures of the fast motion. See Artstein [12], [13], Artstein and
Gaitsgory [15], [16] and Gaitsgory and Leizarowitz [55]. In particular in [55]
the Authors take into account a set of limit occupational measures of the fast
subsystem

ẏt = g(x, yt, at), y0 = y, x fixed (0.2)

and show the existence of the limit set

lim
s→∞

⋃
a

{µ(s, a), occupational measure of (0.2) on [0, s]}. (0.3)

The set (0.3) is used to describe the limiting dynamics. In our terminology, an
occupational measure indicates the proportion of time spent by the solution of
the subsystem (0.2) on a given set. A similar approach was proposed in [2] by
Bardi and Alvarez: instead of the set (0.3), it is taken into account, for any x,
the set of limiting relaxed controls, i.e. weak-star limits of occupational mea-
sures. Observe that considering the fast sub-system (0.2) permits to decouple
the dynamics, and to analyze first, for any frozen x, the faster system, and then
to define the effective dynamics.

The purpose of the first Chapter is twofold. First we prove that, under suit-
able controllability assumptions, the set of limit occupational measure and the
set of limiting relaxed controls coincide. This permits to infer the compactness
and the convexity of the limiting relaxed control set and, then, to regard it as
an appropriate candidate set of controls for a limit control problem. The use of
relaxed controls (whose theory goes back to Warga [78]) is a way to convexify
the problem enlarging the set of admissible control functions, and permits, in
this context, to provide a control interpretation of the limiting dynamics of the
singularly perturbed problem; this is in fact the second issue addressed in the
first Chapter. Such limit control problem is governed by a differential inclusion

ẋt ∈ F r(xt), x0 = x (0.4)

The multivalued function F r is obtained relaxing the original slow dynamics
with limiting relaxed controls related the fast subsystem (0.2):

F r(x) :=
{∫

f(x, y, a)µ(dy, da)
∣∣∣ µ limiting relaxed control measure

}

A crucial point is to show that the effective Hamiltonian can be expressed in
the Bellman form maxµ Lr(x, p, µ), for a certain generator Lr, and then that
the value function corresponding to the limit control problem (0.4) solves the
effective PDE. Such a representation for the effective Hamiltonian was already
pointed out in [2] in the deterministic setting. We prove here analogous represen-
tations for stochastic control problems and, with some additional assumption,
for differential games. This suggests that a control interpretation of the asymp-
totic behavior of singularly perturbed control systems and differential games
can be provided also in the stochastic setting.

In the concluding section of the first Chapter, the order reduction method
based upon limiting relaxed controls are applied to the study of the propagation
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of fronts moving with normal velocity depending on the position and undergoing
fast oscillations. The limit control problem underlying the effective evolution
is exhibited, and the effective moving front is described as the zero level set of
the value function of such control problem. This allows an interpretation of the
effective behavior of the front in terms of generalized characteristics. The case
where the normal velocity changes its sign is also treated.

In the second part of the work we focus our attention on controllability ques-
tions. More precisely, we study, by means of Lyapunov functions, the asymptotic
controllability properties of a deterministic singularly perturbed systems and the
one of the limit system. We show that the property of being a Lyapunov func-
tion is stable with respect to the weak semilimit: under suitable assumptions,
the lower semilimit of Lyapunov functions for the singularly perturbed system
is a lower semicontinuous Lyapunov function for the limit system. In particular,
the monotonicity property of a Lyapunov function, i.e. its decrease along tra-
jectories of the dynamics driving the system to a certain target, is characterized
by a suitable Hamilton–Jacobi first order differential inequality

H

(
x, y, Dxuε,

Dyuε

ε

)
≥ 0 (0.5)

interpreted in viscosity sense. We apply a result in [3] regarding the convergence
of weak semilimits of viscosity sub- and supersolutions of ergodic Hamilton-
Jacobi equation to viscosity sub- and supersolutions of the effective equation.

Furthermore, we also prove that assuming asymptotic controllability to the
origin of the limit system in a certain basin of attraction, is enough to infer
local asymptotic controllability of the slow part of the original system. A global
version of the result is also established.

The method is inspired by the asymptotic expansions in multiple scale prob-
lems (see Bensoussan et al. [30]) and use the perturbed test function method
(see Evans [44]). We suppose to posses a Lyapunov function for the limiting
system, i.e. a supersolution u of the effective Hamiltonian, and try to obtain a
supersolution of (0.5) as a first order perturbation in ε of u:

uε(x, y) := u(x) + εχ(y). (0.6)

where the function χ(y) is the solution of the so called cell problem

H(x̄, y,Du(x̄), Dyχ) = H̄(x̄,Du(x̄)), x̄ fixed

Such arguments have been rigorously developed in [2] and [3] to establish
the local uniform convergence of solutions of first and second order Hamilton–
Jacobi equations to the solution of the effective equation. A subtle issue arises
here. The function χ depends in fact not only on y but also on x. Therefore,
in proving that uε solves (0.5), a contribution of χ should appear in place of
Dxuε. Unfortunately, the dependence on x of χ is not clear, and remains still
an open question. We eliminate such a dependence by introducing the auxiliary
Hamiltonian

Kr,R(y, q) := inf{H(x, y, p, q) : r ≤ |x| ≤ R, p ∈ J−V (x)}
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Our strategy consists in showing, for any R > r > 0, the existence of a contin-
uous function χ(y), independent of x, satisfying

Kr,R(y, Dχ) > γ > 0.

The main result in the second Chapter asserts that the function uε obtained
perturbing the function u as in (0.6) is a supersolution of (0.5), and therefore
a Lyapunov function for the singularly perturbed system. We conclude that
the asymptotic controllability of the limiting (smaller) system is enough to in-
fer asymptotic controllability of the slow dynamics of the singularly perturbed
system, to each neighborhood of the origin. Our contribution is compared with
an analogous result proved by Artstein in [12] for uncontrolled systems.

The third and last part of the thesis concerns homogenization of non-coercive
Hamilton-Jacobi equations with oscillating initial data. We consider a two-
players zero-sum singularly perturbed deterministic differential game with a
running cost l(x, y, a, b) and a terminal cost h(x, y). Consequently, a rather
general class of min-max Isaacs Hamiltonians is taken into account. Several
sufficient condition for ergodicity of such operators have been given in Alvarez
and Bardi [4], [5] in Bardi [21], in terms of asymptotic controllability of the
fast part of the game with respect to certain targets. These conditions apply
in many different situations, namely if the fast part of the game is bounded
time controllable, or if the running cost is independent by the controls and has
a saddle point. Other conditions apply to games in splitted form, i.e. when a
player controls a group of state variables and the other controls the remaining
variables.

Our goal is to apply the general convergence results to provide homogeniza-
tion theorems for non coercive Hamiltonians, more precisely Hamiltonians that
are convex with respect to some gradient variables, and concave with respect to
the others. We show with a certain number of examples that in this case ho-
mogenization may fail, in contrast with the usual case of coercive Hamiltonian.
A general negative result, proved in the beginning of the chapter, is particularly
interesting. It applies to the following homogenization problem:

∂tu
ε + H1(x, x

ε , DxAuε)−H2(x, x
ε , DxBuε) = l(x

ε )

uε(0, x) = 0
x ≡ (xA, xB)

with H1 and H2 coercive. The negative result asserts that we can always find
an analytic cost l such that the equation does not homogenize.

These negative cases make apparent the most relevant difference with the
coercive case: not only conditions on the structure of the Hamiltonian, but also
on the running cost and the initial data have to be required. We single out two
rather general classes of convex-concave homogenizing Hamiltonian. In both
cases we suppose l to be independent from the controls, in order to use the
known ergodicity results.

Homogenization holds true in two completely different and opposite situa-
tion. In a first class of results, we suppose the problem to be splitted between
the two competitors, in the dynamics and in the costs. Under this assumption
the ergodic problem is also splitted, and we get rather easily sufficient conditions
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for stabilization and then for homogenization. Our results in particular applies
to the so called convex-concave eikonal equation:

∂tu
ε + g(x, xA

ε )|DxA
uε| − γg(x, xB

ε )|DxB
uε| = l1(x, xA

ε ) + l2(x, xB

ε )

uε(0, x) = h(x, x
ε )

x ≡ (xA, xB)

where g is a nonnegative function and γ > 0 a parameter representing who
of the two competitors has the possibility to drive the system faster than the
other. The effective Hamiltonian, and the effective initial datum are explicitly
computed for this equation in the 2D case.

The second class of problems where we show that homogenization holds,
concerns the case in which the dependence of the dynamics and the cost on the
fast states is expressed only in terms of the difference of the fast variables:

∂tu
ε + H1(x, xA−xB

ε , DxAuε)−H2(x, xA−xB

ε , DxBuε) = 0

u(0, x, y) = h(x, xA−xB

ε )

x ≡ (xA, xB), xA, xB ∈ RN/2

We show that the ergodicity and stabilizing properties can be derived looking
at a new Hamiltonian, for which the usual sufficient conditions applies.
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x



Chapter 1

Singular perturbation of
optimal control problems

This first Chapter is devoted to the study of the limit behavior of singularly
perturbed optimal control problems. Instead of the classical Levinson–Tikonov
order reduction method, we use relaxed controls to define the limiting dynamics.
Such approach is actually close to the one adopted by Artstein [12], [14] and
by Gaitsgory and Leizarowitz [55] for deterministic controlled dynamics, and
by Borkar and Gaitsgory [32] in the stochastic setting, an approach based upon
the use of invariant measures, and of the set of limits of occupational measures.

A limiting relaxed control is a Radon probability measure which is a limit,
in the weak-star topology, of occupational measures for the fast part of the
controlled dynamics; see Definition 1.8 below. The starting point of this Chapter
is the proof of the fact that, under suitable controllability assumptions, the set
of limit occupational measures (in the sense of Gaitsgory) coincides with the set
of limiting relaxed controls. The first advantage in considering limiting relaxed
controls is the possibility to recognize the limiting dynamics as an appropriate
control problem, in fact the set of limiting relaxed controls turns out to be
convex and compact in the weak-star topology.

The study of such limit control problem involves only PDE and viscosity
solutions methods, instead of techniques related to invariant measures. We first
observe that using relaxed controls, the effective Hamiltonian can be represented
as a Bellman Hamiltonian; analogous representation formulae are proved also
in the stochastic framework. Then, using the dynamic programming principle,
we show that, under reasonable controllability assumptions, the value function
related to the limit control problem solves the effective Hamiltonian, and there-
fore it is its unique solution. This permits to regard the limit control problem as
the correct control problem describing the asymptotic behavior, as ε vanishes,
of the singularly perturbed control problem.

The Chapter is organized as follows. After introducing the subject and some
preliminary results about the study of singularly perturbation problems via PDE
methods in a rather general setting, in Section 1.2.1 we recall some basic con-
cepts regarding weak-star convergence of measures and relaxed control. Then we
introduce the concept of limiting relaxed control both in the deterministic and in
the stochastic setting and compare the set of limiting relaxed controls with the
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set of limit occupational measures. Section 1.3 is devoted to the study of the
limit control problem of deterministic singularly perturbed control problems.
Such limit is explicitly computed in an example. In Section 1.4 representation
formulae of the effective Hamiltonian in terms of relaxed controls are provided
in many different situations, for deterministic and stochastic control problem,
and for a stochastic differential game. Finally, in Section 1.5 we study, as an
application of the previous theory, the evolution of fronts with normal velocity
depending on the position and undergoing fast oscillation. Results contained in
the first sections permits to write the effective front as a zero level set of the
value function of a certain control problem and consequently to describe it by
means of generalized characteristics. Also the case where the normal velocity
changes its sign is taken in account.

1.1 Terminology, preliminaries and assumptions

Consider, for t > 0, the following singularly perturbed stochastic optimal control
problem

dxt = f(xt, yt, at)dt + σ(xt)dWt x0 = x
dyt = 1

εg(xt, yt, at)dt + 1√
ε
τ(xt, yt)dWt y0 = y

(1.1)

with running cost l(x, y, a) and terminal cost h(x, y). We will refer to the small
positive parameter ε as to a perturbation parameter representing, physically,
the action of many fast influencences. As a consequence of the presence of the
perturbation parameter, the state variables are divided in two groups: a first
group of slow variables x, belonging to RN , evolving on a O(1) time scale, and
a second group of fast variables y, lying on RM and evolving on a faster time
scale.

In this first Chapter we will consider both the stochastic control system (1.1)
and its deterministic version (obtained from (1.1) by putting σ ≡ 0 and τ ≡ 0).
For sake of completeness, we choose to expose the following preliminaries in
the general stochastic framework. We denote by Wt a D–dimensional Brownian
motion and by a· an admissible control, i.e. a process valued in a compact set
A that we will define next.

We denote by Ωt := {ω ∈ C([0, t];RD) : ω0 = 0} a sample space, by Fs

the σ–algebra generated by the paths of the Brownian motion up to time t and
by Pt the Wiener measure. An admissible control on [0, t] is a Fs–progressively
measurable process a· taking values in a compact metric space A. The space of
admissible controls on [0, t] is denoted by A(t).

Now let us list the assumptions on the data we will suppose to hold through-
out the work without any further mention; we will refer to such assumptions as
to the standing assumptions:

- the functions f, g, σ, τ and l are bounded and uniformly continuous in
RN ×RM ×A, with values, respectively in RN , RM , MN×D, MM×D and
R;

- the function h is bounded uniformly continuous from RN × RM to R;

- the functions f(·, ·, a) and g(·, ·, a) are Lipschitz–continuous in x, y, uni-
formly with respect to a; the functions σ and τ are Lipschitz–continuous;
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- all the data are periodic with respect to y: ϕ(x, y) = ϕ(x, y + k) for any
k ∈ ZM and ϕ = f(·, ·, a), g(·, ·, a), l(·, ·, a), τ, h.

The value function and the related Cauchy problem. The value func-
tion of our optimal control problem is defined as the infimum of a certain cost
functional among all the admissible trajectories of the dynamics (1.1), namely

uε(t, x, y) = inf
a∈A(t)

E(x,y)

[∫ t

0

l(xs, ys, as)ds + h(xt, yt)
]

where E stands for the mathematical expectation. The PDE approach to the
issue, based on the Hamilton–Jacobi–Bellman equations, was started in Lions
[63] and Jensen and Lions [59], and consists in associating to the value function
of the control problem a fully nonlinear PDE.

Consider the following diffusion matrices:

A(x) :=
1
2
σ(x)σT (x), B(x, y) :=

1
2
τ(x, y)τT (x, y), C(x, y) =

1
2
τ(x, y)σT (x)

where ·T denotes the transpose. Let us indicate by ’·’ both the scalar product
of vectors and the scalar product of matrices defined, for M1,M2 ∈Mn×k, as

M1 ·M2 := trM1M
T
2 = trMT

2 M1

For X ∈ SN , Y ∈ SM , Z ∈MN×M , x, p ∈ RN , y, q ∈ RM and a ∈ A define:

L(x, y, p, q,X, Y, Z, a) := −A(x) ·X −B(x, y) · Y − 2C(x, y) · Z
−p · f(x, y, a)− q · g(x, y, a)− l(x, y, a)

The Lagrangian L is the infinitesimal generator of the diffusion process (1.1),
and we use it to define the following second–order Hamiltonian:

H(x, y, p, q,X, Y, Z) := max
a∈A

L(x, y, p, q,X, Y, Z, a) (1.2)

The Cauchy problem for the value function uε(t, x, y) is then

∂tu
ε + H

(
x, y, Dxuε,

Dyuε

ε
, Dxxuε,

Dyyuε

ε
,
Dxyuε

√
ε

)
= 0

in (0, +∞)× RN × RM

uε(0, x, y) = h(x, y) for any x ∈ RN , y ∈ RM

(1.3)

The current assumptions on the data ensure that H is continuous and de-
generate elliptic, that is

H(x, y, p, q, X, Y, Z) ≤ H(x, y, p, q, X ′, Y ′, Z ′)

whenever
(

X Z
ZT Y

)
≥

(
X ′ Z ′

Z ′T Y ′

)

so, the Hamilton–Jacobi–Bellman equation in (1.3) is degenerate parabolic. Fur-
thermore, H satisfies the structure condition (see the User’s guide [39]), a reg-
ularity property implying the Comparison Principle between bounded viscosity
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sub and supersolutions of (1.3). It follows that (1.3) possesses at most one
bounded continuous viscosity solution. The following result, due to Lions [64]
asserts that (1.3) is the correct PDE associated to the value function uε. It goes
back to Evans and Souganidis [49] in the deterministic framework, and has been
extended to min max Bellman–Isaac’s Hamiltonians by Fleming and Souganidis
[51]. See Fleming and Soner [50] for a general treatment.

Proposition 1.1. Under the standing assumption the value function uε is the
unique bounded continuous viscosity solution of (1.3)

Ergodicity, stabilization and the effective Cauchy problem. One ex-
pects that the value functions uε(t, x, y) converge, as ε tends to zero, to a func-
tion u(t, x) where the dependence on the fast states disappeared, and that it
solves in viscosity sense a certain limiting equation

∂tu + H̄(x,Dxu,D2
xxu) = 0

The operator H̄ is called effective Hamiltonian. The proof of the existence of
such an operator, and possibly its explicit expression, constitute a wide line of
research, going back to the firsts pioneering works on homogenization of PDE,
in particular to the famous unpublished preprint by Lions, Papanicolaou, and
Varadhan [66].

Recently, two crucial properties about the convergence of the uε have been
singled out in [3]. The first is an ergodicity property of the operator, and pertains
with the definition of the effective Hamiltonian; the second property regards the
possibility to define an effective initial datum for the effective Cauchy problem.

The ergodicity of H can be expressed in different equivalent manners; its def-
inition is based on the asymptotic behavior of solutions of certain cell problems.
Fix (x̄, p̄, X̄) and consider, for δ > 0 the following δ–cell problem

δwδ + H(x̄, y, p̄, Dwδ, X̄, D2wδ, 0) = 0 in RM , wδ periodic (1.4)

Under the standing assumptions such a problem has a unique viscosity solution
wδ(y; x̄, p̄, X̄).

The Hamiltonian (or the operator) H is said to be (uniformly, or uniquely)
ergodic at (x̄, p̄, X̄) if

δwδ(y; x̄, p̄, X̄) → const, as δ → 0+, uniformly in y (1.5)

We say that it is ergodic at x̄ if it is ergodic at (x̄, p̄, X̄) for any (p̄, X̄), and that
it is ergodic if it is ergodic at any x̄.

Equivalently, one can consider the evolutive t–cell problem

∂tw + H(x̄, y, p̄,Dyw, X̄, D2
yyw, 0) = 0 in (0,+∞)× RM ,

w(0, y) = 0, w periodic (1.6)

Denoted by w(t, y; x̄, p̄, X̄) its solution, the Hamiltonian is said to be ergodic at
(x̄, p̄, X̄) if and only if

w(t, y; x̄, p̄, X̄)
t

→ const, as t → +∞, uniformly in y (1.7)
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Finally, the property of H of being ergodic can be characterized with the true
cell problem:

λ + H(x̄, y, p̄,Dχ, X̄, D2χ, 0) = 0 in RM , χ periodic

for some constant λ. It has been shown that there exists at most one constant
λ such that the true cell problem has a continuous solution χ, defined up to
an additive constant, called corrector; in this case H is said to be ergodic at
(x̄, p̄, X̄).

The definition of ergodicity given with the true cell problem is the most dif-
fused in the literature; anyway it can be proved (see the Abelian–Tauberian The-
orem 4 in [3]) that these three definitions are equivalent, and the constants ap-
pearing in the limits (1.5) and (1.7) coincides with λ and one defines H̄(x̄, p̄, X̄)
equal to this constant. Furthermore, thanks to existing representation formulae
for the solutions wδ(y) and w(t, y) of the cell problems (1.4) and (1.6), also
representation formulae for H̄(x̄, p̄, X̄) are available, as we will mention in the
sequel.

With respect to the regularity of the effective Hamiltonian, Proposition 3
in [3] affirms that it is continuous in RN × RN × SN and degenerate elliptic.
More regularity for H̄ can be proved in the deterministic framework (σ, τ ≡ 0 in
(1.1))provided the dynamics satisfies an additional controllability assumption:

Proposition 1.2. [2, Proposition 4]. Assume that the problem

ẋt = f(xt, yt, at) x0 = x
εẏt = g(xt, yt, at) y0 = y

is controllable in y, i.e. that there exists r > 0 such that

B(0, r) ⊂ co{g(x, y, a) : a ∈ A}

Then H̄(·, p) is Lipschitz–continuous, and its Lipschitz constant depends only
on the data f , g and l, on their Lipschitz constants, and on the radius r.

Let now pass to the second of the two properties ensuring the local uniform
convergence of the uε’s: the stabilization (to a constant) of the pair (H, h). The
definition of this property takes in account an auxiliary operator. We say that
H has a recession function in a neighborhood of x̄ if a function H ′(x, y, q, Y ),
positively 1–homogeneous in (q, Y ) there exists such that

for any p̄ ∈ RN , X̄ ∈ SN there is a constant C such that
|H(x, y, p, q, X, Y, 0)−H ′(x, y, q, Y )| ≤ C for all (y, q, Y ) ∈ RM × RM × SM

for every (x, p, X) in a neighborhood of (x̄, p̄, X̄)

Such H ′ is named recession or homogeneous part of H; since it satisfies

H ′(x, y, q, Y ) = lim
λ→+∞

1
λ

H(x, y, 0, λq, 0, λY, 0), uniformly

it is continuous and degenerate elliptic. In our context, the recessive Hamilto-
nian of the Bellman operator (1.2) is given by

H ′(x, y, q, Y ) = max
a∈A

{−B · Y − q · g(x, y, a)}

5



Fix x̄, and consider the Cauchy problem for the recessive Hamiltonian:

∂tw + H ′(x̄, y, Dyw, D2
yyw) = 0, in (0, +∞)× RM

w(0, y) = h(x̄, y), w periodic

Since h(x̄, ·) is continuous and ZM–periodic, such a problem has a unique
bounded viscosity solution w(t, y; x̄). The pair (H, h) is said to be stabilizing
(to a constant) at x̄ if

w(t, y; x̄) → const, as t → +∞, uniformly in y

In this case we set
h̄(x̄) := lim

t→+∞
w(t, y; x̄)

In the recent paper [4] by Alvarez and Bardi, singular perturbation problems
are studied with PDE methods, in the generality of stochastic differential games,
and a large number of sufficient conditions for ergodicity and stabilization have
been singled out.

These condition are essentially of three types. The first is a non-degeneracy
(or uniform ellipticity) of the Hamiltonian H as an operator on the fast variables
y:

for any (x̄, p̄, X̄) there exist ν, ν′ > 0 such that:
νtrW ≤ H(x̄, y, p̄, q, X̄, Y, 0)−H(x̄, y, p̄, q, X̄, Y + W, 0) ≤ ν′trW

for any W ∈ SM , W ≥ 0, and all y, q, Y.

The second is a coercivity assumption on the q = Dyu variables:

for any (x̄, p̄, X̄) there exist ν > 0, C such that:
H(x̄, y, p̄, q, X̄, Y, 0)−H(x̄, y, p̄, 0, X̄, 0, 0) ≥ ν|q| − C

for all y, q, Y.

These conditions are rather classical (see also [22], [45], [66]). The coercivity
assumption can be expressed in terms of controllability of the fast flow.

A third sufficient condition for ergodicity is a non-resonance condition re-
lated to the classical theorem of Jacobi on dynamical systems on the torus. A
thorough discussion presentation of ergodicity of Hamilton-Jacobi-Isaac’s equa-
tions can be also find in [10].

Convergence. In [3] it has been proved that, whenever the Hamiltonian is
ergodic and stabilizing in the fast variables, uε converge to the solution of the
effective Hamiltonian. More precisely, since the effective Hamiltonian is not
continuous in general, the comparison principle may fail to hold. Then the con-
vergence result is proved first for upper and lower semilimits of uε. In fact,
under the standing assumptions, the family uε is equibounded, and semilim-
its can be therefore defined; the lower semilimit u∗(t, x) of uε is the following
bounded lower semicontinuous function:

u∗(t, x) = lim inf
z→x

ε→0+

inf
y

uε(t, z, y)

the upper semilimit u∗(t, x) of uε is analogously defined.
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Proposition 1.3. [3, Theorem 1]. Assume that the Hamiltonian defined in
(1.2) is ergodic and stabilizing. Then the upper and the lower semilimits of uε

are respectively viscosity subsolution and supersolution of the effective Cauchy
problem

∂tu + H̄(x,Dxu,D2
xxu) = 0 in (0, +∞)× RN

u(0, x) = h̄(x) for any x
(1.8)

We furthermore know that the local uniform convergence of uε on compacta
of (0, T ) × RN × RM , T > 0, can be proved if we assume, besides the current
assumptions, the Comparison Principle for the limit problem (1.8), i.e.

if u is a bounded u.s.c. subsolution of (1.8)
and v is a bounded l.s.c. supersolution

then u ≤ v on [0, T )× RN

Proposition 1.4. [3, Corollary 2]. Assume H is ergodic, (H, h) is stabiliz-
ing and H̄ satisfies the comparison principle. Then uε converges uniformly on
compact subsets of (0, T )× RN × RM to the unique solution of (1.8).

1.2 Limiting Relaxed Controls

1.2.1 Preliminaries: Relaxed Control functions, Prohorov
distance and weak–star convergence of measures.

In the next sections we deal with relaxed controls, i.e. suitably defined Radon
probability measures; we shall use such controls to average the fast dynamics
and to define the limit problem of a singularly perturbed control problem. In
this paragraph we recall some basic concepts about relaxed control function
and weak–star convergence of measures, and introduce a metric on the space of
probability measures defined on the Borel σ–algebra of a certain given compact
metric space.

Let Y be a given compact metric space. The class of relaxed or chattering
controls on Y is defined as

Yr := { measurable functions [0, +∞) → Y r}
where

Y r := { Radon probability measures on Y }.
The theory of relaxed controls has been introduced by J.Warga in 70’s and an
important reference is his book on optimal control [78].

Thanks to a representation theorem due to Riesz (see [78, Theorem I.5.8]),
there exists an algebraic isomorphism I of the space M(Y ) of all Radon mea-
sures on Y onto the space C(Y )∗ (the dual space of the space of continuous
functions on Y ); the isomorphism is given by

I[µ](ϕ) :=
∫

ϕ(y)µ(dy) (µ ∈M(Y ), ϕ ∈ C(Y ))

Then we can also endow Y r with a suitable topology, the weak–star topology
induced by C(Y )∗. We say that a sequence of Radon probability measures µn

converges weak–star to µ if, for any continuous function ϕ, one has
∫

ϕ(y)µn(dy) →
∫

ϕ(y)µ(dy)
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Furthermore Y r with the weak–star topology is metrizable (i.e. there exists the
weak–star norm | · |w, see [78, Theorem I.3.11]) and the corresponding topology
coincides with the weak–star topology of C(Y )∗. The crucial properties are the
following:

- The normed vector space (M(Y ), | · |w) is separable and its subset Y r is
compact (see [78, Theorem IV.1.4]);

- The set Yr is convex, compact and sequentially compact (see [78, Theorem
IV.2.1]).

Consider relaxed controls is a way of convexifying the problem; the advan-
tage in considering convex (or convexified) control problems is clear. First of all
observe that if the Hamiltonian related to two different control problems coin-
cide, then the value function related to the two problems must coincide. Now,
it is easy to prove that the Hamiltonian obtained convexifying all the given
functions f , g and l, coincides with the original H (this is a consequence of a
classical Carathéodory theorem), therefore the value functions of the original
and of the convexified problem are the same. In Section 1.3 we will observe that
an analogous property holds if we consider the Hamiltonian obtained relaxing
all the given functions by means of relaxed controls. Recall also that convex
control problems are interesting because they enjoy some special properties, as
the fact that (if A is compact) the set of their trajectories is closed on bounded
time intervals, with respect to the uniform convergence. Also relaxed controls
are interesting because, for example, a relaxed control problem has usually an
optimal control, whereas the original problem does not, in general.

By the previous discussion, Y r can be treated as a compact metric space,
and we endow it with the Prohorov distance π(·, ·) which is consistent with the
weak–star topology. See [31]. There are many ways to define π; in the present
work the Prohorov distance of two probability measures on Y , µ1 and µ2, is
defined as follows:

π(µ1, µ2) := inf{ε > 0 : µ1(Q) ≤ µ2(Q+ εB)+ ε for any measurable Q} (1.9)

If M is a set of probability measures, and µ is a probability measure as well,
we define in the usual way π(µ,M) as the infimum of {π(µ, ν)| ν ∈ M}. The
Hausdorff distance will be also used be to estimate distances of sets of probability
measures; in this case the Hausdorff distance is defined in the usual way, using
the Prohorov distance π instead of the Euclidean one. To avoid ambiguities we
denote by dH the usual Hausdorff distance, the one obtained with the Euclidean
distance d, defined for any pair of compact subsets S1 and S2 in RNas

dH(S1, S2) := max
{

sup
s∈S1

d(s, S2), sup
s∈S2

d(s, S1)
}

and by πH the Hausdorff distance obtained with π(·, ·) in place of d(·, ·).
Remark 1.5. Note that the definition (1.9) is symmetric, i.e. π(µ1, µ2) =
π(µ2, µ1) for any µ1, µ2. Suppose that π(µ1, µ2) = ε and that, by contradiction,
π(µ2, µ1) > ε. Then a measurable A does exist such that µ2(A) > µ1(A+εB)+ε.
Equivalently we have for the complement

µ1(A + εB)c > µ2(Ac) + ε ≥ µ2((A + εB)c + εB) + ε
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since Ac ⊇ (A + εB)c + εB. Now, if we consider the measurable set B :=
(A + εB)c we obtain a contradiction: µ1(B) > µ2(B + εB) + ε.

The following lemma gives a useful characterization of the weak star conver-
gence of measures.

Lemma 1.6. Let {µn}n and µ be probability measures on a given compact
metric space Y . The following statements are equivalent:

i. µn → µ weak star, as n → +∞;

ii. π(µn, µ) → 0, as n → +∞;

iii. If {fj : Y → R, j ∈ N} is a dense sequence in the unit ball of C(Y ), then

lim
n

∞∑

j=1

2−j

∣∣∣∣
∫

fjdµn −
∫

fjdµ

∣∣∣∣ = 0

In the sequel of the section we will mention some results from [55] and [32]
where the Prohorov distance is defined by means of the series appearing in the
third statement of the Lemma; the Lemma has also the scope to show that the
definition of π is consistent with the weak–star topology. Moreover, the defini-
tion of Prohorov distance given by (iii.) makes apparent the triangle inequality
for π(·, ·).

Proof of Lemma 1.6. The equivalence between the first two statements is stan-
dard, and can be found for example in [31]. Let us prove that i. is equivalent
to iii. From the definition of weak star convergence, if i. holds

lim
n

∣∣∣∣
∫

fjdµn −
∫

fjdµ

∣∣∣∣ = 0 for all j

So, for any ε if n is large enough, one has
∣∣∣∣
∫

fjdµn −
∫

fjdµ

∣∣∣∣ < ε/2

and therefore ∞∑

j=1

2−j

∣∣∣∣
∫

fjdµn −
∫

fjdµ

∣∣∣∣ < ε

Conversely, if iii. holds, for any ε > 0, for a large enough n one has

0 ≤
∞∑

j=1

2−j

∣∣∣∣
∫

fjdµn −
∫

fjdµ

∣∣∣∣ < ε

then in particular for any j
∣∣∣∣
∫

fjdµn −
∫

fjdµ

∣∣∣∣ < ε

and since {fj}j is dense in C(Y ) this implies the weak star convergence of µn

to µ.
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1.2.2 Limiting relaxed controls set and limit occupational
measures set.

The order reduction method is one of the first attempt to construct the limit of
the singularly perturbed system. It was used in the deterministic setting (i.e.
σ, τ ≡ 0 in (1.1)) to detect, under suitable assumption, the limit dynamics of a
singularly perturbed control system. Following the classical Levinson–Tichonov
approach, one consider the natural candidate for the limit, i.e. the system
we obtain setting ε = 0 in the singularly perturbed system. The result is an
ordinary differential equation combined with an algebraic equation. One expects
the limiting dynamics to be given by the differential inclusion

ẋs = f(xs, ys, as), (ys, as) ∈ Z(xs)

where
Z(x) := {(y, a) ∈ RM ×A such that g(x, y, a) = 0}

Under certain conditions, this approach gives the appropriate limit in several
situations; anyway, many systems fail to verify such assumptions. The most
important restriction that have to be satisfied is the convergence of the fast
dynamics to a stationary point. In the literature many examples are available
where this procedures fails to give the correct limit system; see [15],[16]. [20]
also analyzes a case where the order reduction does not apply.

Let us observe that any couple (y, a) belonging to Z(x) can be interpreted as
a Dirac mass concentrated at (y, a), i.e. as a probability measure on the product
space RM×A. In this section we introduce the concept of relaxed control. These
controls are Radon probability measures on RM × A, and are used to average
the fast dynamic, in order to reduce the dimension of the singularly perturbed
system, and to provide an N–dimensional control problem representing the limit
behavior of the singularly perturbed control system.

We associate with (1.1) the following M–dim system,

dyt = g(x, yt, at))dt + τ(x, yt)dWt

y0 = y
(1.10)

where the slow state x is frozen and considered as a parameter, and take into
account a family of occupational measures µs, i.e. suitably defined Radon prob-
ability measures on B(RM × A) (the Borel σ–algebra of RM × A); the precise
definition will be given in formula (1.13) below. We call limiting relaxed control
a weak star limit µ of a sequence of such occupational measures.

The goal of the following sections is the following: investigate the properties
of the set of the limiting relaxed controls, use such controls to obtain a lower–
order system, and prove that this system is in fact the limiting system of the
singularly perturbed one.

There are two natural ways to define the relaxed controls. The first consists
in considering the set of all occupational measures of solutions of (1.10) up to
time s, and then take the limit as s → ∞ of this set, with respect to πH . The
second consists in considering directly the set of the weak star limits of occupa-
tional measures of solutions of (1.10), for some diverging sequence tn, and some
control function a. In this section we will prove that, under certain controlla-
bility assumptions, both in the deterministic and in the stochastic framework,
the two approaches provide the same limit set of measures. As a consequence
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of this, we will get for the set of limiting relaxed measures some topological
properties that allow us to regard it as a set of controls.

We conclude this Section with the following abstract Lemma we will exploit
later. We record before the definition of limsup of a multivalued function Φ:

lim sup
s→+∞

Φ(s) := {ϕ : lim inf
s→+∞

π(ϕ,Φ(s)) = 0}

Lemma 1.7. Let M be a set of probability measures defined on the σ–algebra
of a certain given compact metric space. Let A be a compact metric space, and
{µ(s, a)} be a nonempty subset of M parametrized by a ∈ A and s ∈ [0, +∞).
Put

Z := {µ ∈M|∃tn → +∞ and a ∈ A such that µ(tn, a) → µ weak star}

and, for any s > 0,
Φ(s) :=

⋃

a∈A

{µ(s, a)}.

Then
lim sup
s→+∞

Φ(s) = Z

Proof. Let us prove first that

Z ⊆ lim sup
s→+∞

Φ(s).

If µ ∈ Z then a sequence tn → +∞ and a ∈ A exist, such that

µ = lim
n

µ(tn, a) weak star.

Since µ(tn, a) ∈ Φ(tn), we have

0 ≤ lim inf
s→+∞

π(µ,Φ(s)) = lim inf
s→+∞

inf
ψ∈Φ(s)

π(µ, ψ) ≤ lim
n

π(µ, µ(tn, a)) = 0,

hence
µ ∈ lim sup

s→+∞
Φ(s).

To prove the converse inclusion take µ ∈ lim sups→+∞ Φ(s); then, for a certain
sequence sn → +∞ one has

0 = lim inf
s→+∞

π(µ, Φ(s)) = lim
n→+∞

π(µ, Φ(sn)) = lim
n→+∞

inf
ψ∈Φ(sn)

π(µ, ψ)

Since Φ(s) are nonempty and A is compact, for any n there exists an ∈ A such
that ψn := µ(sn, an) ∈ Φ(sn) satisfies

inf
ψ∈Φ(sn)

π(µ, ψ) = π(µ, ψn)

then,
lim

n→+∞
π(µ, ψn) = 0

this means that ψn converges weak-star to µ. By the compactness of A, there
exists a subsequence ank

converging to some ā ∈ A. We finally check that
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ψ̄nk
:= µ(snk

, ā) ∈ Φ(snk
) also converges to µ weak-star, i.e. µ belongs to Z.

In fact, by the triangle inequality one has

π(µ, ψ̄nk
) ≤ π(µ, ψnk

) + π(ψnk
, ψ̄nk

)

and both the summands in the left hand side tend to zero as n → +∞.

1.2.3 Limiting relaxed controls for deterministic systems

In this subsection we consider a deterministic singular perturbation problem

ẋt = f(xt, yt, at) x0 = x
εẏt = g(xt, yt, at) y0 = y

(1.11)

(i.e. σ ≡ 0 and τ ≡ 0 in (1.1)), and investigate the set of limiting relaxed
controls some topological properties of it; the analysis is done showing the con-
nection between limiting relaxed control sets and the limit occupational measures
sets studied by Gaitsgory and Leizarowitz in [55].

The fast subsystem associated to (1.11) is the M–dimensional system

ẏt = g(x, yt, at), y0 = y (1.12)

where x is frozen and considered as a parameter. An occupational measures µs

for (1.12) is a Radon probability measures on B(RM ×A) (the Borel σ–algebra
of RM ×A) defined by:

µs :=
1
s

∫ s

0

δ(yt,at)dt (1.13)

where δ(yt,at) is the Dirac mass concentrated on (yt, at). The motivation of the
name is apparent, in fact the evaluation of such a measure on a Borel set Q,
gives the proportion of time spent by the trajectory in the Borel set; in other
words, the following representation holds:

µs(Q) =
1
s
L1{t ∈ [0, s] : (yt, at) ∈ Q} (1.14)

where L1 stands for the 1–dim Lebesgue measure. It is apparent that µs de-
pends also on the choice of the control a, on the initial point y and on x. The
occupational measures are used in the following definition of limiting relaxed
controls.

Definition 1.8. [2]. A measure µ on B(RM ×A) is a limiting relaxed control
if there exist a control function a ∈ A, an initial position y, and a diverging
sequence tn such that the occupational measure µtn of the corresponding solution
of (1.12) converges weak star to µ. We will denote by Zl(x) the set of all limiting
relaxed measures related to (1.12).

In [55] the Authors show that the set of probability measures

Φ(y, s; x) :=
⋃

a∈A
{µs},
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i.e. the collection of all occupational measures given by (1.12), has a limit for
s → +∞ with respect to the Hausdorff distance πH , say Φ(x), and that this
limit is convex and compact in the weak star topology. Furthermore, under
suitable controllability assumptions, Φ(x) is independent of the initial point y.

In the sequel yt(y, a), or yt, will stand for the solution of (1.12) at time t,
starting at y and using the control function a. We omit to write the dependence
of such solution on x, if no ambiguities can arise.

In the next result we will exploit the property of (1.12) of being bounded
time controllable. We record below the definition of such type of controllability.

Definition 1.9. The system (1.12) is bounded time controllable if there exists a
T > 0 such that, for any y1, y2 there exists a control a ∈ A such that yt(y1, a) =
y2 for some t ≤ T .

Now we can state the main result of this section:

Theorem 1.10. Under the standing assumptions, if the system (1.12) is bounded
time controllable, then

Zl(x) = Φ(x) for any x.

We need to introduce some technical tools and some preliminary lemmata.
Let us ϕ = ϕ(y, a) be any continuous function from RM × A to RK (K ≥ 1),
periodic with respect to y. Define the following subsets of RK :

Yϕ(s, y; x) :=
⋃

a∈A

{
1
s

∫ s

0

ϕ(yt, at)dt

}

These sets are collection of means of a continuous function evaluated along
trajectories yt of (1.12) obtained for a certain choice of the control a. The sets
Yϕ(s, y;x) have been used in [55] to give a characterization of the set of limit
occupational measures Φ(x). More precisely their main result is based upon the
possibility to find a convex compact subset Yϕ of RN such that

lim
s→+∞

dH(Yϕ(s, y;x), Yϕ(x)) = 0 (1.15)

The assertion is the following

Proposition 1.11. [55, Theorem 3.1] Let x be fixed. Assume that for any
continuous function ϕ there exists a convex compact set Yϕ(x) such that (1.15)
holds. Then there exists Φ(x), a set of probability measures on RM × A, such
that

lim
s→+∞

πH(Φ(s, y; x),Φ(x)) = 0

for all y. In addition Φ(x) is convex and compact with respect to the weak star
topology.

On the other hand, the validity of (1.15) follows by the next result, that is
in Grammel [57].

Lemma 1.12. [57, Proposition 3.2] Let x be fixed. Suppose that

dH(Yϕ(s, y1; x), Yϕ(s, y2; x)) ≤ ν(s), for any y1, y2 and any s > 0 (1.16)

for a suitable function ν, with ν(s) → 0 as s → +∞. Then a convex compact
set Yϕ(x) ⊂ RK does exist, such that (1.15) holds for any initial state y.
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So, the point is to prove (1.16). In [55] it has been proved that this estimation
holds true under the following stability condition

For any couple of controls and any couple of initial states y1, y2

the corresponding trajectories y1
t and y2

t of (1.12) satisfy
|y1

t − y2
t | ≤ ν(t)|y1 − y2|, where ν(t) → 0 as t → +∞.

(1.17)

In the next result, we will prove that the condition (1.16) is verified also under
the bounded time controllability condition, a condition we will exploit several
times in the work, in order to get more regularity for the effective Hamiltonian.
The fact that bounded time controllability is sufficient for (1.16) was already
mentioned in [55]; we provide a complete proof for the sake of completeness.

Lemma 1.13. If (1.12) is bounded time controllable, then there exists a con-
stant C > 0 such that for any s > 0 the estimate

dH(Yϕ(s, y1; x); Yϕ(s, y2;x)) ≤ Cs−1

holds for every y1,y2 in RM .

Proof. Let be Yi := Yϕ(s, yi; x), y1 and y2 fixed. The assertion follows if we
prove that for any v2 ∈ Y2, d(v2, Y1) ≤ Cs−1. If v2 ∈ Y2 there exists a control
a2 such that

v2 =
1
s

∫ s

0

ϕ(y2
t , a2

t )dt

with
y2

t = yt(y2, a2)

Since (1.12) is bounded time controllable, there is a T > 0 such that for our y1

and y2 a control a0 does exist such that yt0(y
1, a0) = y2 for some t0 ≤ T .

Let us define

a1
t :=





a0
t if t ≤ t0

a2
t−t0 if t > t0

and
y1

t := yt(y1, a1)

and finally the following element of Y1:

v1 :=
1
s

∫ s

0

ϕ(y1
t , a1

t )dt

Then

d(v2, Y1) ≤ d(v2, v1) =
1
s

∣∣∣∣
∫ s

0

ϕ(y1
t , a1

t )dt−
∫ s

0

ϕ(y2
t , a2

t )dt

∣∣∣∣

=
1
s

∣∣∣∣
∫ t0

0

ϕ(y1
t , a1

t )dt +
∫ s

t0

ϕ(y1
t , a1

t )dt−
∫ s

0

ϕ(y2
t , a2

t )dt

∣∣∣∣

≤ 1
s

(∫ t0

0

|ϕ(y1
t , a1

t )|dt−
∫ s

s−t0

|ϕ(y2
t , a2

t )|dt

)

≤ 2t0M

s
≤ 2TM

s

14



where M := max |ϕ| is finite, thanks to the compactness of A and the fact that
ϕ is continuous and periodic with respect to y. The desired estimation is then
established.

We can therefore infer the existence of the limit occupational measure set
Φ(x), as in [55]. Finally, we can prove Theorem 1.10 showing the connection
between this set and the set of limiting relaxed control Zl(x).

Proof of Theorem 1.10. Observe first that for any fixed x and any initial point
y, and any a, the system (1.12) admits a solution yt. Therefore (yt, at)

∣∣
[0,s]

can
be used in the definition (1.13) in order to obtain an element of Φ(s, y;x). So
for any s > 0, Φ(s, y;x) is nonempty. Thanks to Proposition 1.11 a limit Φ(x)
for Φ(s, y; x) exists and is independent of the initial state y, and by Lemma 1.7
we get the conclusion.

1.2.4 Limiting relaxed controls for stochastic systems

We perform now for a stochastic control system, the analysis done before in
the deterministic framework. A recent reference in this context is a paper by
Vivek Borkar and Vladimir Gaitsgory [32]. It offers a stochastic version of the
results contained in [55], and the approach is an adaptation of that one adopted
therein. In particular, their main result consists in the stochastic counterpart
of Proposition 1.11, i.e. the existence of a limit set for the set of occupational
measures is shown. On the other hand, we construct again the set Zl of the lim-
iting relaxed controls, being this controls suitably defined for stochastic control
systems. As in the previous section, the goal is to establish connections between
the limit occupational measures set and the set of limiting relaxed controls.

We consider the following singularly perturbed control system

dxt = f(xt, yt, at)dt + σ(xt)dWt, x0 = x
dyt = 1

εg(xt, yt, at)dt + 1√
ε
τ(xt, yt)dWt, y0 = y

(1.18)

and the fast subsystem associated to it, that is

dyt = g(x, yt, at)dt + τ(x, yt)dWt, y0 = y, x fixed. (1.19)

Being the solution of this stochastic differential equation a stochastic process,
it is natural to define the occupational measure via the following mathematical
expectation

µs := Ey

[
1
s

∫ s

0

δ(yt,at)dt

]
(1.20)

As before we say that a measure µ on B(RM × A) is a limiting relaxed control
if it is a weak star limit of such a µtn , for some tn → +∞, and some control a.

Remark 1.14. The definition (1.20) gives (1.13) in the deterministic case, i.e.
whenever Ω is reduced to a singleton. Note also that in the deterministic frame-
work, the equivalence between the Definition 1.13 of occupational measure, and
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the formula (1.14) is evident. Also in the stochastic setting, an analogous rep-
resentation holds. In fact, put

µ̃s(Q) :=
1
s
L1({t ∈ [0, s] : (yt, at) ∈ Q}) =

1
s

∫ s

0

δ(yt,at)(Q)dt

and note that, since yt is a random variable, µ̃s is a probability–measure–valued
random variable defined on the Borel subsets of RM×A. Then, the occupational
measure defined in (1.20) admits the representation

µs = Ey [µ̃s]

Remark 1.15. The previous Remark permits also to recognize that µs defined
in (1.20) is actually a measure on B(RM × A). In fact, trivially µs(∅) = 0, and
for any countable family {Qi}i ⊂ B(RM ×A) pairwise disjoint, we have

µs

(⋃

i

Qi

)
= E

[
1
s

∑

i

L1({t ∈ [0, s] : (yt, at) ∈ Qi})
]

=
∑

i

E
[
1
s
L1({t ∈ [0, s] : (yt, at) ∈ Qi})

]
=

∑

i

µs(Qi)

In analogy with the previous section we define

Φ(s, y;x) :=
⋃

a∈A
{µs}

and, for any continuous function ϕ = ϕ(x, a) from RM × A to RK , (K ≥ 1),
periodic in y, the following subsets of RK :

Yϕ(s, y;x) :=
⋃

a∈A
Ey

[
1
s

∫ s

0

ϕ(yt, at)dt

]
(1.21)

where yt is the solution of (1.19) using the control a.
In [32] the Authors show that under a certain condition, called weak ap-

proximation condition is shown to be sufficient for the existence of the limit
occupational measure set, provided that the system (1.19) satisfies a suitable
stability condition. The precise statement is the following

Proposition 1.16. [32, Theorem 3.3] Let {fj(y, a)} be a sequence of Lipschitz–
continuous functions which is dense in the unit ball of C(RM ×A) and assume
that for any j, and for any ϕ(y, a) := (f1(y, a), . . . , fj(y, a)) the following con-
dition is satisfied

There exists C > 0 such that, for any y1, y2, and any s > 0
dH(Yϕ(s, y1; x); Yϕ(s, y2;x)) ≤ Cν(s) (1.22)
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for some function ν converging to zero as s goes to +∞. Assume furthermore
that the following stability condition holds:

There exists α > 0 and C > 0 such that
any solution of (1.19) obtained by an admissible control satisfies

supt,a· E[|yt|α] ≤ C(E[|y0|α] + 1)
(1.23)

Then, there exists a limit occupational measure set, namely a convex compact
set Φ(x) contained in (RM ×A)r such that, for any initial condition y having a
certain probability distribution, one has

πH(Φ(s, y; x), Φ(x)) ≤ ν(s)

for some function ν converging to zero as s goes to +∞. The function ν depends
on the probability distribution of the initial condition.

A stochastic version of Theorem 1.10 is obtained under the assumptions
ensuring the existence of the limit occupational measure set. In fact, if such
limit set exists, by Lemma 1.7, it must coincide with the limiting relaxed control
set Zl(x). In this case we also know that Zl(x) is a convex and compact subset
of (RM ×A)r, with respect to the weak–star topology.

Theorem 1.17. Under the standing assumption, if hypotheses (1.22) and (1.23)
of Proposition 1.16 are satisfied, then

Zl(x) = Φ(x) for any x

Remark 1.18. In the deterministic case, Theorem 1.10 holds under the bounded
time controllability assumption on the fast subsystem. Such assumption allows
to prove Lemma 1.13, and consequently, the estimation (1.15) giving, by Propo-
sition 1.11, the existence of the limit set Φ(x).

In the stochastic framework, some subtle issues arise in proving that a suit-
able notion of bounded time controllability implies the estimation of Lemma
1.13 for the sets (1.21), that is the condition (1.22). Such difficulties arise with
the possibility to piece together admissible controls to define a new admissible
control for the stochastic differential equation governing the fast subsystem. We
postpone to future investigation the study of such issue.

1.3 The limit optimal control problem of
deterministic singularly perturbed systems

In this section we consider again a singularly perturbed deterministic control
system

ẋt = f(xt, yt, at)
εẏt = g(xt, yt, at)

(1.24)

with running cost l(x, y, a) and terminal cost h(x, y), and the related Hamilto-
nian:

H(x, y, p, q) := max
a∈A

{−p · f(x, y, a)− q · g(x, y, a)− l(x, y, a)} (1.25)
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We want to show that the limiting system as ε → 0 can be represented as
a suitable optimal control problem. To this goal we introduce a certain relaxed
optimal control problem; the term relaxed emphasizes the fact that this control
problem is obtained relaxing the data using the limiting relaxed controls µ, as
below:

ψr(x, µ) :=
∫

RM×A

ψ(x, y, a)dµ(y, a). (1.26)

Here the symbol ψ is used in place of functions f, g and l.
Let us discuss some effects of the relaxation. One of the most relevant is a

convexification of the dynamics. In fact one can prove (see [22, (2.32) in Chapter
III] and [22, Ex.2.10 in Chapter III])

for any x, coψ(x, y,A) = {ψr(x, µ) : µ Radon measure on RM ×A}
Furthermore, by the definition (1.26), we see that the relaxed function is affine
in the control variable µ; this permits to get the property below, that we will
exploit several times in the following

ψr

(
x,

1
t

∫ t

0

δ(ys,as)ds

)
=

1
t

∫ t

0

ψr(x, δ(ys,as))ds =
1
t

∫ t

0

ψ(x, ys, as)ds

It is also important to recall that if ψ(x, y, a) is continuous (resp. bounded,
Lipschitz–continuous in (x, y) uniformly with respect to a, uniformly contin-
uous), then ψr(x, µ) is continuous (resp. bounded, Lipschitz–continuous in x
uniformly with respect to µ, uniformly continuous). See [22, Lemma III.2.20].

We proceed as following. First, we recall that the effective Hamiltonian re-
lated to (1.25) admits a representation as a control Hamiltonian; more precisely,
it coincides with the Hamiltonian related to the relaxed control problem. We
prove that the value function of the relaxed problem solves the effective Cauchy
problem and then, provided that the solution of such problem is unique, it co-
incides with the limit of the value functions of the singular perturbed system,
as ε → 0. The importance of such assertion is twofold. The first interesting
information is that the local uniform limit of value functions is as well a value
function of an optimal control problem. Moreover, we can regard at the relaxed
control system as to the system capturing the effective limit behavior of the sin-
gularly perturbed system, as ε → 0. At the and we present an example where
the computations are explicitly made.

1.3.1 The limit control problem

Before considering the relaxed control problem, let us recall that, thanks to
Theorem 1.10, the set of limiting relaxed controls Zl(x) is convex and com-
pact (with respect to weak star topology) for any x, and that the effective
Hamiltonian H̄(x, p) of the Hamiltonian (1.25) can be represented as a control
Hamiltonian:

Proposition 1.19. [2, Theorem 7] The effective Hamiltonian admits the fol-
lowing representation:

H̄(x, p) = max
µ∈Zl(x)

Lr(x, p, µ) =: Hr(x, p) (1.27)

where Lr(x, p, µ) := −p · fr(x, µ)− lr(x, µ).
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Analogous representations for the effective Hamiltonian will be established
in Section 1.4, for stochastic singularly perturbed systems.

Recall the definition of fr, gr and lr given in (1.26). Consider also the
following problem:

ẋt ∈ F r(xt), x0 = x (1.28)

where
F r(x) := fr(x,Zl(x))

We will refer to (1.28) as the limiting control system. It is a control system with
with a state-constraint on the controls. Observe that, thanks to Theorem 1.10
and Proposition 1.11 Zl(·) is convex and compact valued. Moreover the space of
Radon measures, equipped with the Prohorov metric, is compact metric space.

In the sequel we assume that the function f satisfies the following growth
condition.

Assumption 1.20. There exists C > 0 such that

|f(x, y, u)| ≤ C(1 + |x|+ |(y, u)|) (1.29)

The value function associated to the relaxed control problem (1.28), with
terminal cost h̄(x) := infy h(x, y), and running cost lr(x, µ) is the function

ur(t, x) := inf
{∫ t

0

lr(xs, µs)ds + h̄(xt)
}

(1.30)

where the infimum is taken among all solutions of (1.28). The core of this
section is the following result

Theorem 1.21. Under the standing assumptions, if H is ergodic, and the
growth condition (1.29) is satisfied by the slow flow, then the value function
ur(t, x) is a viscosity solution of the effective Cauchy problem

∂tu + H̄(x, Dxu) = 0 in (0, +∞)× RN

u(0, x) = h̄(x) on RN

Corollary 1.22. If H̄ satisfies the comparison principle, the value functions uε

converge locally uniformly, to the value function ur.

Remark 1.23. In Proposition (1.19) we have recalled that H̄ can be represented
as the Hamiltonian associated to the limiting control system. Now, in order to
produce a value function for the relaxed control problem, we deal with the
minimization of the functional

Jr(t, x, µ) :=
∫ t

0

lr(xs, µs)ds + h̄(xt)

Recall (see [22, p.147]) that such a Bolza problem can be converted into a Mayer
problem, if lr is Lipschitz continuous with respect to the state variables (and this
is the case, if we make this assumption on the original running cost l(x, y, a)).
This conversion can be done by adding an (N +1)–th scalar variable, subjected
to the dynamics

(xN+1
s )′ = lr(xs, µs), xN+1

0 = 0

A new terminal cost ψ(xN+1
t +h̄(xt)) should be considered, being ψ any bounded

strictly increasing function.
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Taking into account Proposition 1.19 and the previous Remark hereafter we
assume, without loss of generality, that

H̄(x, p) = max
µ∈Zl(x)

−p · fr(x, µ) (1.31)

The assertion of Theorem 1.21 is equivalent to the fact that the value function
ur solves, in viscosity sense, the problem

∂tu + Hr(x,Dxu) = 0
u(0, x) = h̄(x)

Such a property of the value function directly follows by the dynamic program-
ming principle (see, for example, [22], [50, Theorem II.7.1], and for system with
state-dependent constraint on the controls [33], [52]), once we prove that ur is
continuous on its domain, and that the growth condition

|F r(x)| := sup{|y| : y ∈ F r(x)} ≤ C(1 + |x|), for any x (1.32)

is satisfied. This condition easily follows from the similar assumption we made
on |f | in Assumption 1.20. Another crucial property of F r(x) is given in the
following Proposition.

Proposition 1.24. Under the standing assumptions, if H is ergodic, the mul-
tivalued function x 7→ F r(x) is upper semicontinuous.

Proof. As mentioned in the introduction of this section, the relaxed dynamics
results to be convex with respect to the controls. Since Zl(x) is convex and
compact valued, with respect to the Prohorov metric, F r(x) is compact and
convex for any x. Then the support function of the set −F r(x) := {−q : q ∈
F r(x)}, i.e.

σ−F r(x)(p) := max
q∈−F r(x)

q · p = H̄(x, p) (1.33)

can be used to characterize the convex closed sets −F r(x):

−F r(x) = {q ∈ RN | p · q ≤ σ−F r(x)(p) for any p ∈ RN} (1.34)

This is a classical result in convex analysis (see [18, p.30] or [70, p.112]) based on
the fact that any closed convex subset of RN is the intersection of the closed half–
spaces which contain it. The support function of a closed convex set describes
precisely these closed half–spaces.

Proposition 3 in [3] affirms that if H is ergodic, then H̄(x, p) is automatically
continuous in RN × RN . Then we get the conclusion, in fact: for any x0, any
xn → x0 take a sequence qn ∈ F r(xn) converging to some q0. By (1.33),(1.34),
for any p ∈ RN one has,

p · (−q0) = lim
n

p · (−qn) ≤ lim
n

H̄(xn, p) = H̄(x0, p)

Then q0 ∈ F r(x0).

Thanks to the previous Proposition and to the growth condition (1.32) we
infer the existence of a.c. solutions for the differential inclusion (1.28) (See, for
example [42, Theorem 5.2]). Moreover, the following qualitative property of the
set of solutions of (1.28) holds:
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Proposition 1.25. [42, Theorem 7.1] For any T > 0 the multivalued map

ξ 7→ ST (ξ) := {x : x is a solution of (1.28) in (0, T ), with x0 = ξ}
is upper semicontinuous with respect to the sup-norm.

Proposition 1.26. The value function ur(t, x) is continuous on its domain.

Proof. Let us denote by ST (x) the set of solutions of (1.28) in (0, T ). Show
first the continuity with respect to t. Fix t, pick any δ > 0 and, for any
t′ ∈ Iδ := [t− δ/2, t + δ/2], estimate

ur(t′, x)− ur(t, x) =

inf

{∫ t′

0

lr(xs, µs)ds + h̄(xt′)

}
− inf

{∫ t

0

lr(xs, µs)ds + h̄(xt)
}

where both infima are taken over the set of solutions of the relaxed control
problem (1.28).

For any fixed γ > 0 let (x̄, µ̄) be such that

inf
{∫ t

0

lr(xs, µs)dτ + h̄(xt)
}

=
∫ t

0

lr(x̄s, µ̄s)ds + h̄(x̄t)− γ

Since fr is bounded (because f is), |x̄t′ − x̄t| ≤ Kδ for a suitable constant K.
Then

|ur(t′, x)− ur(t, x)| ≤
∫ t′

t

|lr(x̄s, µ̄s)|ds + |h̄(x̄t′)− h̄(x̄t)|
≤ δ max

s∈Iδ

lr(x̄s, µ̄s) + ω(Kδ) + γ

where ω(·) is the modulus of uniform continuity of h̄; this sum tends to 0 as
δ goes to 0, in force of the assumption on the functions l and f . We get the
conclusion since γ is arbitrarily small.

Let us now verify the continuity with respect to x. Fix t, an initial point x0.
By the upper semicontinuity of St(·) (Proposition 1.25),

for any ε > 0 there is δε > 0 such that
if x ∈ B(x0, δε) then St(x0) + εB ⊇ St(x)

i.e.

for any ε > 0 there exists δε > 0 such that, if x ∈ B(x0, δε) then
for any x̄· ∈ St(x) there is x̃· ∈ St(x0) such that

|x̄s − x̃s| < ε for any s ∈ [0, t].

Now take any x ∈ B(x0, δε) and, in order to estimate ur(t, x0)− ur(t, x), fix
γ > 0 and let x̄· be the trajectory of St(x) such that

inf
x∈St(x)

{∫ t

0

lr(xs, µs)ds + h̄(xt)
}

=
∫ t

0

lr(x̄s, µ̄s)ds + h̄(x̄t)− γ

then,
ur(t, x0)− ur(t, x) =
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inf
x∈St(x0)

{∫ t

0

lr(xs, µs)ds + h̄(xt)
}
−

∫ t

0

lr(x̄s, µ̄s)ds + h̄(x̄t)− γ

and

|ur(t, x0)− ur(t, x)| ≤
∫ t

0

|lr(x̃s, µ̃s)− lr(x̄s, µ̄s)|ds + |h̄(x̃t)− h̄(x̄t)|+ γ

≤
∫ t

0

ωlr (|x̃s − x̄s|)ds + ωh̄(|x̃t − x̄t|) + γ

< tωlr (ε) + ωh̄(ε) + γ

This completes the proof because of the arbitrariness of ε and γ.

1.3.2 An Example

The following example is devoted to better understand how the occupational
measure are employed to detect the limit control problem. It take place in the
state–constrains framework, i.e. we assume that

a connected and compact set Y does exist, such that
y(t) ∈ Y for any t ≥ 0.

In fact, the y–periodicity made in the previous sections on all given functions,
can be replaced with the state–constraint for the fast states.

Consider the unforced problem

ẋt = f(xt, yt)
εẏt = g(xt, yt)

(1.35)

with f and g given by

f : R3 → R f(x, y1, y2) = x(y1 + y2)

g : R3 → R2 g(x, y1, y2) =
( −xy2 + y1(1− y2

1 − y2
2)

xy1 + y2(1− y2
1 − y2

2)

)

The fast subsystem for the fast flow is y(t) = (y1(t), y2(t)) is

ẏ(t) = g(x, y(t)) (1.36)

where x is supposed to be fixed, i.e.

ẏ1 = −xy2 + y1(1− y2
1 − y2

2)
ẏ2 = xy1 + y2(1− y2

1 − y2
2)

The motion takes place in the region R := {y2
1 +y2

2 ≤ 1} of R2, then R is also an
invariant set for the dynamics. Passing in polar coordinates (r, θ), this system
assumes the following expression:

ṙ = r(1− r2)
θ̇ = x
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It is apparent that for any x ∈ R, the point r = 0 is stable; furthermore, if x 6= 0
the cycle {r = 1} is a limit cycle for the dynamics. This means that for any
initial value (r0, θ0), the trajectory (r(t), θ(t)) approaches the cycle {r = 1} as
t goes to +∞. If x = 0, the motion take place on the radius {θ = θ0}, and all
trajectories tends to (1, θ0) along this radius.

Now we detect the set Zl(x) of the limiting relaxed measures. Let us recall
that a measure µ belongs to Zl(x) when it is a weak–star limit of occupational
measures

µτ :=
1
τ

∫ τ

0

δy(t)dt

as τ → +∞, where δy(t) is the Dirac’s mass concentrated in y(t), the solution
of (1.36).

Let ϕ be any continuous function on R, i.e. 2π–periodic with respect to θ.
µτ converges weak-star to µ if and only if

∫

R

ϕ(p)µτ (dp) =
1
τ

∫ τ

0

dt

∫

R

ϕ(p)δy(t)(dp)

=
1
τ

∫ τ

0

ϕ(y(t))dt −→
∫

R

ϕ(p)µ(dp) (1.37)

Let us suppose, initially, x 6= 0, and study the limit for τ → +∞ of the integrals
1
τ

∫ τ

0
ϕ(r(t), θ(t))dt. Take τ = 2πn, n ∈ N; one has

1
τ

∫ τ

0

ϕ(r(t), θ(t))dt =
1

2πn

n−1∑

k=0

∫ 2(k+1)π

2kπ

ϕ(r(t), θ(t))dt

=
1

2πn

n−1∑

k=0

∫ 2π

0

ϕ(r(t + 2kπ), θ(t + 2kπ))dt

As detailed before r(t + 2kπ) → 1, as k → +∞, and if x 6= 0, θ(t) = θ0 + xt;
then

lim
τ→+∞

1
τ

∫ τ

0

ϕ(r(t), θ(t))dt =
1
2π

∫ 2π

0

ϕ(1, θ0 + xt)dt

=
1

2πx

∫ θ0+2πx

θ0

ϕ(1, θ)dθ

=
1

2πx

∫ 2πx

0

ϕ(1, θ)dθ (1.38)

The last equality is due to the periodicity of ϕ with respect to θ. Note that,
since ϕ is continuous and so bounded on R, the limit we are studying exists and
does not depend on the particular way in which τ approaches +∞. Moreover, in
(1.38) we see that this limit is also independent on the initial data (r0, θ0). So, if
x 6= 0, Zl(x) consists of exactly two measures: δ0, the Dirac’s mass concentrated
at the origin, and

µx := lim
τ→+∞

µτ weak star.

From (1.38) we can also get an explicit expression for µx; in fact (1.38) represents
a functional equality defined for any continuous function ϕ; then it can be
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extended to any measurable bounded function.1 So, let Q be any measurable
Borel subset or R, and 1Q(r, θ) its characteristic function. From (1.38) we get

µxQ =
∫

R

1Q(r, θ)dµx =
1

2πx

∫ 2πx

0

1Q(r, θ)dθ

=
1

2πx
L1({θ ∈ [0, 2πx] : (1, θ) ∈ Q})

In particular we see that µx({r = 1}) = 1.
If x = 0, the limiting measures in Zl(0) are δ0 and δ(1,θ0), the Dirac’s masses

concentrated at the end points of the radius {θ = θ0}. In fact, in order to
determine the limit measure µ0, we came back to (1.37); for any continuous
function ϕ one has

∫

R

ϕ(r, θ)dµ0 = lim
τ→+∞

1
τ

∫ τ

0

ϕ(r(t), θ(t))dt

= lim
n

1
2πn

n−1∑

k=0

∫ 2(k+1)π

2kπ

ϕ(r(t), θ(t))dt

= lim
n

1
2πn

n−1∑

k=0

∫ 2π

0

ϕ(r(t + 2kπ), θ(t + 2kπ))dt

=
1
2π

∫ 2π

0

ϕ(1, θ0)dt = ϕ(1, θ0) (1.39)

The previous equality is defined for continuous functions; once again, it can
be extended in a single–valued way to measurable bounded functions. So, if Q
is a Borel set of R, (1.39) tells us:

µ0Q = 1Q(1, θ0) =
{

1 if (1, θ0) ∈ Q
0 if (1, θ0) /∈ Q

that means
µ0 = δ(1,θ0).

Let us summarize:

Zl(x) =
{ {δ0, µx}, if x 6= 0
{δ0, δ(1,θ0)}, if x = 0

Recalling that fr(x, µ) :=
∫

R
f(x, y)dµ(y), from the definition of f we immedi-

ately get, for x = 0
fr(0, δ0) = fr

(
0, δ(1,θ0)

)
= 0.

For x 6= 0 we have
fr(x, δ0) = f(x, 0) = 0

1In fact, if A is a positive linear functional defined for continuous functions, and if 1Q is
the characteristic function of an open set Q, we can put A1Q := limn Afn, whenever fn is
a nondecreasing sequence of continuous functions such that 1Q = limn fn It can be showed
that this definition A1Q is independent of the sequence fn.
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and

fr(x, µx) =
∫

R

f(x, y)dµx(y) = lim
τ→+∞

1
τ

∫ τ

0

f(x, y(t))dt

=
1

2πx

∫ 2πx

0

f(x, cos θ, sin θ)dθ

=
1

2πx

∫ 2πx

0

x(cos θ + sin θ)dθ

=
1
2π

(sin(2πx)− cos(2πx) + 1)

Conclusion. The limiting dynamics for ε → 0+ in (1.35) is governed by the
differential inclusion

ẋ ∈ fr(x,Zl(x)) =
{ {0}, if x = 0
{0, fr(x, µx)}, if x 6= 0 , x0 = x

The effective dynamics take place on the real line and is periodic in [0, 1]; if
x0 = 0 or x0 = 3

4 the dynamics admits only the steady solution; for any other
initial value, the point x̄ = 3

4 is a limit point for the multivalued dynamics.

1.4 Relaxed representation formulae of the
effective Hamiltonian for stochastic systems

In section 1.2.4 we considered the set of limiting relaxed controls for a stochas-
tic control system, and proved that under suitable controllability conditions it
coincides with the set of limiting occupational measures.

In this section, following the ideas of [2, Theorem 7] (that has been quoted in
Proposition 1.19), we show that, even in the stochastic framework, it is possible
to represent the effective Hamiltonian of a singularly perturbed system, in terms
of a relaxed Hamiltonian, i.e. the Hamiltonian obtained via the relaxed data. At
the end of the section, we will provide a similar result for a stochastic differential
game, where the competitors play together only the slow dynamics, while the
fast dynamics is governed only by the second player.

The relaxation procedure is similar to that proposed in the deterministic con-
text in Section 1.3 and we refer to this section for any remark on the properties
of the relaxed functions.

1.4.1 Relaxed representation of the effective Hamiltonian
for stochastic optimal control problems.

Consider the following stochastic singularly perturbed problem

dxs = f(xs, ys, as)ds + σ(xs)dWs, x0 = x
dys = 1

εg(xs, ys, as)ds + 1√
ε
τ(xs, ys)dWs, y0 = y (1.40)

Case 1. Deterministic fast dynamics.
Consider first the intermediate case in which τ ≡ 0 and σ 6≡ 0 in (1.40), i.e. the
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slow variables are governed by a stochastic differential equation, and the fast
one are deterministic. The system under investigation is then

dxs = f(xs, ys, as)ds + σ(xs)dWs

ẏs = 1
εg(xs, ys, as)

(1.41)

The associated 2nd order Hamiltonian is

H(x, y, p, q, X) = max
a
{−trA(x) ·X − p · f(x, y, a)− q · g(x, y, a)− l(x, y, a)}

where we denote by A the matrix σσT /2. The corresponding effective Hamil-
tonian is represented via the formula

H̄(x, p,X) = lim
t→+∞

sup
a

1
t

∫ t

0

L(ys, as; x, p, X)ds (1.42)

where
L(y, a;x, p, X) := −trA(x) ·X − p · f(x, y, a)− l(x, y, a)

and ys is the solution of the (deterministic) fast subsystem

ẏs = g(x, ys, as), y0 = y (1.43)

where x plays the role of a fixed parameter.
In this case the set of limiting relaxed controls is the set

Zl(x) :=
{

µ = lim
1
tn

∫ tn

0

δ(ys,as)ds weak star, for some tn → +∞, a ∈ A
}

where ys is the solution of (1.43) corresponding to as. It is convex and compact
with respect to the weak star topology, by Theorem 1.10 and Proposition 1.11.

In accordance with formula (1.26) we perform the relaxation of the data and
define

Lr(x, µ, p, X) := −trA ·X − p · fr(x, µ)− lr(x, µ). (1.44)

Proposition 1.27. The effective Hamiltonian admits the following representa-
tion

H̄(x, p, X) = max
µ∈Zl(x)

Lr(x, µ, p, X). (1.45)

Proof. We argue as in [2, Section 1.4 and Theorem 7]. Let us denote by
Hr(x, p, X) the right hand side of (1.45), and put

G(x, a, p, X) := lim sup
t→+∞

1
t

∫ t

0

L(ys, as; x, p,X)ds

then, by (1.42),
H̄(x, p, X) = sup

a∈A
G(x, a, p, X) (1.46)

Note that if µ is generated by tn → +∞ and (y·, a·), then

G(x, a, p, X) = Lr(x, µ, p, X). (1.47)

So, let µ̄ ∈ Zl(x), generated by (ȳ·, ā·), be such that

Hr(x, p,X) = Lr(x, µ̄, p, X)
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then
Hr(x, p, X) = G(x, ā, p,X) ≤ sup

a∈A
G(x, a, p,X) = H̄(x, p,X).

Conversely, fix ā· and an initial point y for the fast subsystem (1.43), and let
tn → +∞ be a sequence such that

G(x, ā, p, X) := lim
n

1
tn

∫ tn

0

L(ys, ās; x, p, X)ds

Finally, let µ̄ be the measure generated, up to subsequences, by (ȳ·, ā·) and tn.
One has

G(x, ā, p,X) = Lr(x, µ̄, p, X) ≤ sup
µ∈Zl(x)

Lr(x, µ, p, X) = Hr(x, p,X)

The assertion follows by (1.46) and the arbitrariness of ā·.

Case 2. Noise affecting all variables.
We deal now with the fully stochastic system (1.40). The 2nd–order Hamiltonian
related to this problem is

H(x, y, p, q,X, Y, Z) = max
a
{−tr(A(x) ·X)− tr(B(x, y) · Y )− 2tr(C(x, y) · Z)

−p · f(x, y, a)− q · g(x, y, a)− l(x, y, a)}
where

A(x) :=
1
2
σ(x)σT (x), B(x, y) :=

1
2
τ(x, y)τT (x, y), C(x, y) =

1
2
τ(x, y)σT (x)

(1.48)
and the effective Hamiltonian has the representation

H̄(x, p,X) = lim
t→+∞

sup
a
Ey

[
1
t

∫ t

0

L(ys, as;x, p,X)ds

]

where L(y, a; x, p,X) := −trA(x) · X − p · f(x, y, a) − l(x, y, a), and ys is the
solution, at x fixed, of the fast subsystem

dys = g(x, ys, as)ds + τ(x, ys)dWs, y0 = y (1.49)

As pointed out in Section 1.2.4, the main difference with the previous case is
that, being the fast subsystem stochastic, the occupational measures have to be
defined via the mean

µtn := Ey

[
1
tn

∫ tn

0

δ(ys,as)ds

]

A limiting relaxed control is a weak star limit of such a µtn , for some tn → +∞,
and some control a. The set of the limiting relaxed controls related to the fast
subsystem (1.49) is denoted, as in the deterministic case, by Zl(x). Recall the
definition of Lr given in (1.44). Our goal is to prove the following

Proposition 1.28. The effective Hamiltonian admits the following representa-
tion

H̄(x, p, X) = sup
µ∈Zl(x)

Lr(x, µ, p, X). (1.50)
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Remark 1.29. As pointed out in the preliminary Section, we know from the
general theory of relaxed controls that the space of Radon probability measures
(RM × A)r is convex and compact with respect to the weak–star convergence.
Furthermore, in the deterministic setting under bounded time controllability,
also the set of limiting relaxed controls Zl(x) is compact. This allows us to take
the maximum in the formulae (1.27) and (1.45).

In the stochastic setting sufficient conditions for Zl(x) to be compact are
(1.22) and (1.23), so the compactness of Zl(x) is not guaranteed under the
current assumptions. This is the reason why we take the supremum in (1.50)
instead of the maximum. Anyway the compactness of (RM × A)r is sufficient
to prove such relaxed expression for the effective Hamiltonian.

We need some preliminary lemmata. The first lemma is an abstract result
about the exchange of the order of integration.

Lemma 1.30. Let Y be a compact metric space and (Ω,F ,P) a probability
space. Let µ a probability–measure–valued random variable, that is, a jointly
measurable function µ : Ω × B(Y ) → R+ such that, for any ω ∈ Ω, µ(ω, ·) is a
probability measure on B(Y ). Finally define on B(Y ) the following measure

E[µ](Q) := E[µ(·, Q)] :=
∫

Ω

µ(ω,Q)P(dω), Q ∈ B(Y ).

Let ψ : Y → R a continuous function and let ψr be the function defined as

ψr(ν) :=
∫

Y

ψ(y)ν(dy), ν probability measure on B(Y )

Then
E[ψr(µ)] = ψr(E[µ]).

Proof. Suppose initially that ψ is non negative, and let

ψn(y) :=
n∑

k=1

βkχQk
(y), βk ≥ 0, Qk ∈ B(Y ) for any k

a piecewise constant function such that ψn ↗ ψ uniformly on Y . Then for any
ω ∈ Ω

∣∣∣∣
∫

Y

ψnµ(ω, dy)
∣∣∣∣ ≤

∫

Y

ψnµ(ω, dy) ≤
∫

Y

ψ(ω, dy) ≤ sup
Y

ψ < +∞

then, applying twice the dominated convergence theorem, one has

E
[∫

Y

ψ(y)µ(·, dy)
]

= E
[
lim
n

∫

Y

ψn(y)µ(·, dy)
]

= lim
n
E

[∫

Y

ψn(y)µ(·, dy)
]

(1.51)
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Let us denote temporarily by Λ the measure E[µ]. We have for any n

E
[∫

Y

ψn(y)µ(·, dy)
]

= E

[∫

Y

n∑

k=1

βkχQk
(y)µ(·, dy)

]
= E

[
n∑

k=1

βkµ(·, Qk)

]

=
n∑

k=1

βkE[µ(·, Qk)] =
n∑

k=1

βk

∫

Ω

µ(ω,Qk)P(dω)

=
n∑

k=1

βkΛ(Qk) =
∫

Y

n∑

k=1

βkχQk
(y)Λ(dy)

=
∫

Y

ψn(y)Λ(dy)

By the dominated convergence theorem, and taking into account (1.51), we get

E[ψr(µ)] = E
[∫

Y

ψ(y)µ(·, dy)
]

= lim
n

∫

Y

ψn(y)Λ(dy) =
∫

Y

ψ(y)Λ(dy) = ψr(E[µ]).

For a general ψ = ψ+ − ψ− we get the conclusion by the linearity of the math-
ematical expectation. In fact, since

ψr(µ) = (ψ+)r(µ)− (ψ−)r(µ)

then

E[ψr(µ)] = E[(ψ+)r(µ)− (ψ−)r(µ)] = E[(ψ+)r(µ)]− E[(ψ−)r(µ)]

= (ψ+)r(E[µ])− (ψ−)r(E[µ]) = ψr(E[µ])

Consider now the function

G(x, a, p, X) := lim sup
t→+∞

Ey

[
1
t

∫ t

0

L(ys, as; x, p, X)ds

]

In analogy with (1.47), we have the following

Lemma 1.31. For any (x, p, X), if µ ∈ Zl(x) is generated by (y·, a·) and tn →
+∞, then

G(x, a, p, X) = Lr(x, µ, p,X)

where Lr has been defined in (1.44).

Proof. Let µ ∈ Zl(x) be generated by (y·, a·) and tn → +∞. Applying Lemma
1.30 we get

E[fr(x, δ(ys,as))] = fr(x,E[δ(ys,as)])
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then

E
[
1
t

∫ t

0

f(x, ys, as)ds

]
= E

[
1
t

∫ t

0

fr(x, δ(ys,as))ds

]

=
1
t

∫ t

0

E[fr(x, δ(ys,as))]ds

=
1
t

∫ t

0

fr(x,E[δ(ys,as)])

= fr

(
x,

1
t

∫ t

0

E[δ(ys,as)]
)

Analogously, for l we have

E
[
1
t

∫ t

0

l(x, ys, as)ds

]
= lr

(
x,

1
t

∫ t

0

E[δ(ys,as)]
)

therefore

Lr

(
x,Ey

[
1
tn

∫ tn

0

δ(ys,as)ds

]
, p, X

)
= Ey

[
1
tn

∫ tn

0

L(ys, as; x, p, X)ds

]

The statement follows observing that the former member tends to Lr(x, µ, p, X)
as n → +∞, and the latter to G(x, a, p,X).

Proof of Proposition 1.28. Thanks to Lemma 1.31, the proof goes as in Propo-
sition 1.27. Consider (x, p, X) fixed, and let µ̄ ∈ Zl(x) be generated by (ȳ·, ā·).
Then, by Lemma 1.31,

Lr(x, µ̄, p,X) = G(x, ā, p, X) ≤ sup
a∈A

G(x, a, p, X) = H̄(x, p, X).

Passing to the supremum among all µ ∈ Zl(x) we get

Hr(x, p) ≤ H̄(x, p)

Conversely, fix ā ∈ A and an initial point y for the fast subsystem (1.49) and
let ȳ be the corresponding solution, and tn → +∞ a sequence such that

G(x, ā, p, X) := lim
n
Ey

[
1
tn

∫ tn

0

L(ȳs, ās;x, p, X)ds

]

Since (RM × A)r is compact with respect to the weak-star convergence, there
exists a diverging sequence tn such that E[ 1

tn

∫ tn

0
δ(ȳs,ās)ds] converges to some

Radon probability measure µ̄; furthermore µ̄ belongs to Zl(x) by definition.
Then

G(x, ā, p,X) = Lr(x, µ̄, p, X) ≤ max
µ∈Zl(x)

Lr(x, µ, p, X) = Hr(x, p,X)

and we get the conclusion by the arbitrariness of ā.
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1.4.2 Relaxed representation of the effective Hamiltonian
for stochastic differential games.

Finally we provide a version of the previous results for the following stochastic
differential game:

dxs = f(xs, ys, as, bs)ds + σ(xs)dWs, x0 = x
dys = 1

εg(xs, ys, bs)ds + 1√
ε
τ(xs, ys)dWs, y0 = y

(1.52)

The Bellman-Isaacs Hamiltonian related to this problem is

H(x, y, p, q, X, Y, Z) =

min
b∈B

max
a∈A

{−tr(A(x) ·X)− tr(B(x, y) · Y )− 2tr(C(x, y) · Z)

−p · f(x, y, a, b)− q · g(x, y, b)− l(x, y, a, b)}
where the diffusion matrices A,B and C are defined as in (1.48).

The effective Hamiltonian has the following representation:

H̄(x, p, X) = lim
t→+∞

inf
α∈Γ(t)

sup
b∈B(t)

Ey

[
1
t

∫ t

0

L(ys, α[b]s, bs; x, p, X)ds

]

where L(y, a, b; x, p,X) := −tr(A(x, y) · X) − p · f(x, y, a, b) − l(x, y, a, b), and
where Γ(t) is the set of nonanticipating strategy α : A(t) → B(t) for the first
player in [0, t] and ∆(t) is the set of nonanticipating strategy β : B(t) → A(t)
for the second player in [0, t]. A(t) and B(t) are the sets of admissible controls
for the first and the second player in [0, t]. See [51].

For any fixed x the set of limiting relaxed controls can be defined in this
context, like in section 1.2.4, as the following set

Zl(x) :=
{

µ = lim
n
E

1
tn

∫ tn

0

δ(ys,bs)ds weak star, for some tn → +∞, b· ∈ B
}

where ys is the solution of the fast subsystem

dys = g(x, ys, bs)ds + τ(x, ys)dWs (1.53)

As before, we are interested in comparing this function with the relaxed Hamil-
tonian, defined in this case via the formula

Hr(x, p, X) := max
µ∈Zl(x)

min
a∈A

Lr(a, µ; x, p, X)

where Lr(a, µ; x, p, X) := −trA(x) · X − p · fr(x, a, µ) − lr(x, a, µ). In [4, Th.
9.11] has been proved that, under suitable assumptions,

H̄(x, p, X) = H0(x, p,X) := min
(y,b):

g(x,y,b)=0

max
a∈A

L(y, a, b; x, p, X)

This is actually inspired by the order reduction method, explained in section
1.2.2. Following the same spirit of this Theorem, and under very similar as-
sumptions we shall prove that
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Proposition 1.32. For any (x, p,X), H̄(x, p,X) ≥ Hr(x, p, X). Furthermore,
if the following assumptions are satisfied:

1. for any ᾱ ∈ Γ, there are sequences tn → +∞ and bn ∈ B such that

sup
b
Ey

[
1
tn

∫ tn

0

L(ys, ᾱ[b]s, bs)ds

]
+o(tn) = Ey

[
1
tn

∫ tn

0

L(ybn

s , ᾱ[bn]s, bn
s )ds

]

and there exists (y∗, b∗) such that

lim
n
Ey

[
1
tn

∫ tn

0

(|ybn
s − y∗|+ |ᾱ[bn]s − ᾱ[b∗]|+ |bn

s − b∗|) ds

]
= 0

2. (Isaacs type condition) Hr(x, p,X) = mina∈A maxµ∈Zl(x) Lr(a, µ; x, p,X).

3.
⋃

α∈Γ

{α(B)} = A

then, H̄(x, p, X) ≤ Hr(x, p, X)

Proof. Consider (x, p,X) fixed, and write L(y, a, b) and Lr(a, µ) instead of
L(y, a, b; x, p, X) and Lr(a, µ;x, p, X). Fix µ ∈ Zl(x), generated by tn → +∞
and (ȳ·, b̄·). For any strategy α arguing as in Lemma 1.31 one has

sup
b∈B

Ey

[
1
tn

∫ tn

0

L(ys, α[b]s, bs)ds

]

= Ey

[
1
tn

∫ tn

0

L(ȳs, α[b̄]s, b̄s)ds

]
= Ey

[
1
tn

∫ tn

0

Lr(α[b̄]s, δ(ȳs,b̄s))ds

]

= Ey

[
Lr

(
1
tn

∫ tn

0

α[b̄]sds,
1
tn

∫ tn

0

δ(ȳs,b̄s)ds

)
ds

]

= Lr

(
1
tn

∫ tn

0

α[b̄]sds,Ey

[
1
tn

∫ tn

0

δ(ȳs,b̄s)ds

])

Since A is compact, there exists a subsequence of tn that we do not relabel, such
that limn

1
tn

∫ tn

0
α[b̄]sds belongs to A. So, for n large enought

inf
α∈Γ

Lr

(
1
tn

∫ tn

0

α[b̄]sds,Ey

[
1
tn

∫ tn

0

δ(ȳs,b̄s)ds

])
≥

min
a∈A

Lr

(
a,Ey

[
1
tn

∫ tn

0

δ(ȳs,b̄s)ds

])

then one has

min
a∈A

Lr

(
a,Ey

[
1
tn

∫ tn

0

δ(ȳs,b̄s)ds

])
≤ inf

α∈Γ
sup
b∈B

Ey

[
1
tn

∫ tn

0

L(ys, α[b]s, bs)ds

]

taking the limit for n → +∞ one has

min
a∈A

Lr(a, µ̄) ≤ H(x, p, X)

and the conclusion follows by the arbitrariness of µ.

32



To prove the opposite inequality, fix ᾱ ∈ Γ, and let bn, tn and (y∗, b∗) such
that the additional assumption 1 of the statement is fulfilled. Then

inf
α∈Γ

sup
b∈B

Ey

[
1
tn

∫ tn

0

L(ys, α[b]s, bs)ds

]
+ o(1)

≤ sup
b∈B

Ey

[
1
tn

∫ tn

0

L(ys, ᾱ[b]s, bs)ds

]
+ o(1)

= Ey

[
1
tn

∫ tn

0

L(ybn

s , ᾱ[bn]s, bn
s )ds

]

The last term tends to L(y∗, ᾱ[b∗], b∗) as n → +∞; in fact by Jensen’s inequality,
we get

Ey

[
1
tn

∫ tn

0

|L(ybn

s , ᾱ[bn]s, bn
s )− L(y∗, ᾱ[b∗], b∗)|ds

]

≤ ωL

(
Ey

[
1
tn

∫ tn

0

(|ybn
s − y∗|+ |ᾱ[bn]s − ᾱ[b∗]|+ |bn

s − b∗|) ds

])

being ωL a concave modulus of continuity of the function L(·, ·, ·;x, p, X) with
respect to the arguments (y, a, b).

Observing that δ(y∗,b∗) belongs to Zl(x), being generate by the constant
solution ys ≡ y∗ of (1.53), corresponding to bs ≡ b∗, and passing to the limit in
the previous calculations, we have that for any ᾱ ∈ Γ, there exists b∗ such that

H̄(x, p,X) ≤ L(y∗, ᾱ[b∗], b∗) = Lr(ᾱ[b∗], δ(y∗,b∗)) ≤ max
µ∈Zl(x)

Lr(ᾱ[b∗], µ)

i.e. , for any a ∈ Ã
H̄(x, p,X) ≤ max

µ∈Zl(x)
Lr(a, µ)

so, by the assumptions 2. and 3.,

H̄(x, p,X) ≤ min
a∈ eA max

µ∈Zl(x)
Lr(a, µ)

= min
a∈A

max
µ∈Zl(x)

Lr(a, µ) = Hr(x, p, X)

1.5 Homogenization of motion of interfaces

As an application of the previous theory, we study the evolution of a front
propagating in RN with normal velocity ϕ depending on position and undergoing
fast periodic oscillations.

1.5.1 Level–set method.

The level–set formulation is an efficient tool in studying evolution of interfaces,
or propagating fronts with normal velocity depending on the position. Such
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problems is motivated, for example, by the study of phase transformations.
Here we are supposing that the medium where the evolution occurs is rapidly
oscillating: therefore the detailed evolution of the front is complicated. Homog-
enization results apply to this topic, offering the possibility to define an effective
front averaging the detailed evolution.

In the sequel we shall represent the normal velocity of the propagating front
using a function ϕ = ϕ(x, y) : RN × RN → R, periodic with respect to the y
variables.

Assumption 1.33. We assume ϕ to satisfy the following requirements:

(h1) ϕ is continuous and bounded;

(h2) ϕ is locally Lipschitz;

(h3) ϕ > 0.

In order to describe the periodicity of the medium where the front is mov-
ing we shall consider ϕ(x, x

ε ), being ε a parameter representing the size of the
periodic structure. We are interested in the limit behavior of the front as ε → 0.

As we will recall below, if ϕ depends also on time, and changes its sign, some
pathologies – like the presence of fronts with non–empty interior – may occur.
Consequently, it is impossible to get an effective front. In our setting, we will
find an effective propagating front even when ϕ is neither strictly positive nor
strictly negative. In particular we shall require, for any fixed x the sign of ϕ(x, y)
to be constant. Anyway we initially require the sign of ϕ to be constant (say
positive), in order to explain our approach in the simplest possible framework.

The propagating front is represented as a level–set. More precisely, we sup-
pose that the initial front is given by

Γ0 = {x ∈ RN : u0(x, y) = 0}
where u0 is a continuous bounded function, and that the position of the front
at time t is given by

Γε
t = {x ∈ RN : uε(t, x) = 0}

where uε(t, x) is the solution of the Hamilton–Jacobi equation

uε
t + H

(
x, x

ε , Duε
)

= 0 in (0,∞)× RN

uε(x, 0) = u0

(
x, x

ε

) (1.54)

being H the function defined by

H(x, y, p) = ϕ(x, y)|p| = max
|a|≤1

ϕ(x, y)p · a

The control functions a are valued in the closed unit ball B(0, 1) hereafter
denoted by B.

We want to capture the behavior of the front when ε tends to zero, i.e. to
find a front Γt, we will call effective front or homogenized front, such that

”Γε
t → Γt as ε → 0”

using the local uniform convergence of solution of (1.54) to the solution of an
effective equation. The main contribution of this section is the fact that the
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effective front can be described from a control point of view, as a level–set of a
certain value function. This is possible because the limit of value functions uε is
the value function related to the limiting optimal control problem, as explained
in the previous sections.

1.5.2 Limit control problem for the homogenized front.

The problem (1.54) is solved by the value function of the control system asso-
ciated to it, i.e.

ẋt = ϕ
(
xt,

xt

ε

)
at

x0 = x
|at| ≤ 1 (1.55)

Such function is given by

uε(t, x) = inf
{

u0

(
xt,

xt

ε

)
: x· solves (1.55) in [0, t]

}
(1.56)

We replace the system (1.55) with the equivalent two–scale system

ẋt = ϕ(xt, yt)at

εẏt = ϕ(xt, yt)at
(1.57)

with the initial conditions
x0 = x, y0 =

x

ε
As explained in the previous section, we use the limiting relaxed controls to

obtain the limiting control problem. So, consider for any fixed x the occupa-
tional measures µs (s > 0) of the fast subsystem

ẏt = ϕ(x, yt)at, y0 = y (1.58)

and the set of the limiting relaxed controls Zl(x) (see Definition 1.8) i.e.

Zl(x) = {µ : µ = lim
n

µtn weak star, for some tn →∞, some a ∈ B}.

We record that the map x 7→ Zl(x) is valued into the subsets of the Radon
probability measures on B(RN × B). These measures are used to relax the
dynamics as described in Section 1.3, according with (1.26):

ϕr(x, µ) :=
∫

RN×B

ϕ(x, y)aµ(dy, da) (1.59)

In the following theorem we describe the effective front in terms of the value
function of the relaxed control problem.

Theorem 1.34. Under Assumptions 1.33 the homogenized front is given by

Γt = {x ∈ RN : ū(t, x) = 0}
where

ū(t, x) = inf{ū0(xt)} (1.60)

ū0(x) = inf
y

u0(x, y)

and the infimum in (1.60) is taken over the solution of the differential inclusion

ẋt ∈ ϕr(xt, Zl(xt))
x0 = x

(1.61)
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An interesting aspect of the result is an interpretation of the asymptotic
behavior of the front in terms of generalized characteristics: the effective front
at time t is described by trajectories of the effective control problem (1.61) at
time t.

Since H(x, y, p) is Lipschitz continuous, y–periodic and p–coercive, for any
(x, p) there exists H̄(x, p) ∈ R such that the cell problem

H(x, y, Dv + p) = H̄(x, p) (1.62)

has a periodic viscosity solution v; see [45]. Furthermore, thanks to the very
expression of the dynamics in (1.57), we easily see that

for any (x, y) one has
co{ϕ(x, y)a | a ∈ B} = B̄(0, ϕ(x, y)) (1.63)

Such a strong controllability condition permits to establish that the effective
Hamiltonian H̄ is Lipschitz–continuous with respect to x (see [2, Proposition 4]).
In the next Proposition we give a characterization of the effective Hamiltonian
using relaxed controls. Given p ∈ RN , Let us denote by p̂ the unit vector p/|p|.
Proposition 1.35. For any (x, p) the effective Hamiltonian enjoys the following
formula

H̄(x, p) = ϕ̄(x, p̂)|p|
with

ϕ̄(x, p̂) := − max
µ∈Zl(x)

p̂ ·
∫

RN×B

ϕ(x, y)aµ(dy, da). (1.64)

Furthermore, for any x, p,

ϕ̄(x, p̂) ≥ min
y

ϕ(x, y)

then H̄ is coercive.

Proof. By applying Proposition 1.19 we see that H̄ is 1-homogeneous in the p
variables:

H̄(x, p) = max
µ∈Zl(x)

−p · ϕr(x, µ) =: ϕ̄(x, p̂)|p| (1.65)

and the maximum is attained at some µx ∈ Zl(x), being Zl(x) compact.
The coercivity of H̄ follows by standard calculations involving the compari-

son principle. Here we propose an alternative proof of this fact, using only the
representation formula (1.65) for H̄.

Fix x, p and choose ā = −p̂ ∈ B̄(0, 1). Then consider the solution yt of the
constant controlled equation

ẏs = ϕ(x, ys)ā, y0 = y.

Such trajectory generates for some diverging sequence tn a limiting relaxed
control measure we denote by µ̄:

µ̄ := lim
n

1
tn

∫ tn

0

δ(ys,ā)ds, weak star.
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Then

lim
n

1
tn

∫ tn

0

ϕ(x, ys)āds = lim
n

ϕr

(
x,

1
tn

∫ tn

0

δ(ys,ā)ds

)
= ϕr(x, µ̄).

We finally get

ϕ̄(x, p̂) ≥ −p̂ · ϕr(x, µ̄) = − lim
n

p̂ · 1
tn

∫ tn

0

ϕ(x, ys)āds

= lim
n

1
tn

∫ tn

0

ϕ(x, ys)ds ≥ min
y

ϕ(x, y) > 0

Proof of Theorem 1.34. Record that u0 is uniformly continuous and bounded
and observe that the function ϕ(x, y)a is Lipschitz since ϕ is so. Then the
standing assumptions listed in Section 1.1 are satisfied. Thanks to the partic-
ular form of the control system (1.57), bounded time controllability, and then
ergodicity, is guaranteed by (1.63). Furthermore, since u0 is bounded and uni-
formly continuous, since H is uniformly continuous in p, and H(y, p, 0) = 0 for
any (x, y), then (see [3, Proposition 1]) the functions uε defined in (1.56) are
equibounded. So, by [3, Theorem 1] the upper and lower semilimits of uε are
respectively subsolution and supersolution of

∂tu + H̄(x,Du) = 0
u(0, x) = ū0(x) (1.66)

Moreover a comparison principle can be established for this problem, because
the following condition holds:

for any R > 0 there exists a modulus ωR(·) such that
for any k > 0, and any |x|, |x′| < R

H(x′, y, k(x− x′)) ≤ H(x, y, k(x− x′)) + ωR(|x′ − x|+ k|x′ − x|2)
In fact

H(x′, y, k(x− x′))−H(x, y, k(x− x′)) =
max
a∈A

ϕ(x′, y)a · k(x− x′)−max
a∈A

ϕ(x, y)a · k(x− x′)

≤ ϕ(x′, y)a′ · k(x− x′)− ϕ(x, y)a′ · k(x− x′)
= a′ · k(x− x′) [ϕ(x′, y)− ϕ(x, y)] ≤ kLipR(ϕ)|x− x′|2

for some a′ ∈ B. Then uε converges locally uniformly on (0, T )× RN × RN as
ε → 0+ to the unique solution of (1.66).

The statement follows by Theorem 1.21 provided that the growth condition
(1.29) is fulfilled. Since |a| ≤ 1,

|f(x, y, a)| ≤ |ϕ(x, y)| ≤ |ϕ(0, 0)|+ Lip(ϕ)(|x|+ |y|) ≤ C(1 + |x|+ |y|)

if C is chosen to be max{|ϕ(0, 0)|, Lip(ϕ)}.
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1.5.3 Sign variations in the normal velocity.

When sign variations are allowed in the normal velocity, the problem may be-
come considerably more complicated. In this situation many pathological phe-
nomena may occur, depending on the fact that, in some regions, the front may
invert the direction in which it is propagating. For example regions with non–
empty interior may appear in the front. In [24, Theorem 4.1], the Authors
prove that if the initial front Γ0 has not interior, and if the normal velocity does
not depend on time, then the front Γε

t has empty interior for all t, i.e. such
fat level sets do not appear. Furthermore, in [28] the Authors showed that, in
the case in which ϕ = ϕ(y) depends only on the fast states, in order to get a
non–stationary homogenized front it is essential to assume ϕ strictly positive or
strictly negative.

Recently, a weak convergence result has been pointed out by Cardaliaguet,
Lions and Souganidis in [35] concerning the homogenization of non coercive
geometric equations, with some interesting applications to the homogenization
of motion of interfaces. They consider the equation

∂tu
ε + v

(
x
ε

) |Duε| = 0 in (0, +∞)× RN

uε(0, x) = u0(x) on RN

where
v : RN → R is Lipschitz continuous,

periodic in the unit cube [0, 1]N and changes its sign

After dividing the unit cube in regions Z0 where v is null, and {Zi}i∈I the
connected components where v 6≡ 0, they prove first that in each Zi there exists
a Lipschitz continuous geometric F̄i such that, for any p ∈ RN , the cell problem

v(y)|Dχ(y) + p| = F̄i(p), in Zi

has a continuous periodic solution χ. Then, they show that, fixed a uniformly
continuous initial value u0,

uε ⇀ ū := θ0u0 +
∑

i∈I

θiūi, weak star in L∞loc((0,+∞)× RN )

where
θi :=

∣∣Zi ∩ [0, 1]N
∣∣

and ūi is the solution of

∂tūi + F̄i(Dūi) = 0 in (0, +∞)× RN

ūi(0, x) = u0(x) on RN

In this section we allow ϕ to change its sign only on the macroscopic scale and
prove the convergence of the moving front to an homogenized interface, and give
an interpretation of such effective front in terms of trajectories of an optimal
control problem. So, we begin weakening the hypothesis (h3) in Assumption
1.33 in the following

(h3’) For any x the function y 7→ ϕ(x, y) has constant sign.

38



In this case ϕ splits RN into connected subsets where the sign of ϕ is constant

Ω+ = {x ∈ RN : ϕ(x, y) > 0 for any y}

and
Ω− = {x ∈ RN : ϕ(x, y) < 0 for any y}

Define

H(x, y, p) = ϕ(x, y)|p| =





max
|a|≤1

ϕ(x, y)p · a in Ω+

− min
|a|≤1

ϕ(x, y)p · a in Ω−

H (respectively −H) is coercive with respect to p in Ω+ (respectively in Ω−);
furthermore for any x such that ϕ(x, y) = 0, uε(t, x) = u0(x) for any t. We are
interested in the homogenization of the equation

ut +H
(
x,

x

ε
, Duε

)
= 0 (1.67)

An important step consists in observing that, loosely speaking, each trajectory
of the control system associated to (1.67) starting in Ω+ (or in Ω−), stays always
in Ω+ (or in Ω−); this will be proved in Lemma 1.37. This allows us to treat the
phenomenon separately in each connected component of Ω+ or Ω−. Observe
also that the bounded time controllability condition (1.63) is valid in each of
such components, because co{ϕ(x, y)a | a ∈ B} = B(0, |ϕ(x, y)|). Then as in
the previous section, it is possible to give a control interpretation of the limiting
dynamics underlying the motion of the front:

ẋ ∈ ϕr(x, Zl(x)), x0 = x (1.68)

ϕr being defined as in (1.59). We pass to the limit in each connected component
of Ω+ and Ω−, where the effective Hamiltonian H̄ is defined and whose form
has been given in Proposition 1.35. The following statement summarizes the
previous considerations.

Theorem 1.36. Let Assumption 1.33 with (h3) replaced by (h3’) be satisfied.
Then the effective front is represented as the zero level set of the function

lim
ε→0+

uε(t, x) = ū(t, x) =
{

inf ū0(xt) if x ∈ Ω+

sup ū0(xt) if x ∈ Ω−

where the infimum and the supremum are taken over the solutions of (1.68) and

ū0(x) = inf
y

u0(x, y).

Theorem 1.36 directly follows by Theorem 1.34 provided that the following
two lemmata are satisfied. First of all let us show that any trajectory of the
control system associated to (1.67) starting in Ω+, or in Ω− must remain in Ω+,
or, respectively in Ω−.

Lemma 1.37. If (h3’) holds, then each trajectory of the controlled system as-
sociated to (1.67) starting in Ω+ (or Ω−) cannot reach the boundary of Ω+ (or
Ω−) in finite time.
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Example 1.38. Let ϕ be the identic function in R: ϕ(x) = x, and consider the
system {

ẋt = −x
x0 = 1

It is apparent that if the solution xt = e−t starts in Ω+ = {x > 0}, or in
Ω− = {x < 0}, then x(t) 6= 0 for any finite t. So xt remains in Ω+ or in Ω−.

Proof of Lemma 1.37. Suppose, without loss of generality, that ϕ splits RN in
exactly three connected components:

RN = Ω+ ∪ Ω0 ∪ Ω−

where ϕ is, respectively, positive, null, and negative. Furthermore, ϕ is Lipschitz–
continuous, so a constant L = Lip(ϕ) does exist such that

|ϕ(x1, y1)− ϕ(x0, y0)| ≤ L(|x1 − x0|+ |y1 − y0|) (1.69)

for any (x0, y0), (x1, y1).
If x0 ∈ Ω0, one has ϕ(x0, y) = 0 for any y, thanks to (h3’). This allows us

to obtain by (1.69) an upper bound for the modulus of the normal velocity:

|ϕ(x, y)| = |ϕ(x, y)− ϕ(x0, y)| ≤ L|x− x0| ∀y, ∀x0 ∈ Ω0 (1.70)

Let us denote by x(t) the trajectory we want to observe. So, suppose that x(·)
starts for example in Ω+, and consider the following sequence of open subsets
of Ω+:

Ω+
n :=

{
x ∈ Ω+ :

1
n

< d(x, Ω0) <
1

n− 1

}
, n ≥ 2

Suppose that there exists N0 ∈ N such that,

for any n ≥ N0, x(t) ∈ Ω+
n

for t belonging to a certain nonempty interval. (1.71)

We can prove that the velocity allowed in each Ω+
n decreases as n tends to

infinity. For any x ∈ Ω+, let x̂ := projΩ0x be the point of Ω0 such that |x̂−x| =
d(x, Ω0). By (1.70) follows

|ϕ(x, y)| ≤ L|x̂− x|, ∀y.

Since if x ∈ Ω+
n then |x̂− x| < 1

n−1 , we get

|ϕ(x, y)| ≤ L

n− 1
∀x ∈ Ω+

n . (1.72)

Finally, let Tn be the time spent by x(·) to pass from Ω+
n in Ω+

n+1, i.e.

Tn := sup{t > 0 : x(t) ∈ Ω+
n } − sup{t > 0 : x(t) ∈ Ω+

n−1};
observe that this times are well defined, by (1.71). By (1.72) we get the following
estimation:

Tn ≥
1

n−1 − 1
n

L
n−1

=
1

Ln
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We conclude that the time T needed to reach Ω0 starting from Ω+ is

T >

+∞∑

n=N0

Tn ≥ 1
L

+∞∑

n=N0

1
n

= +∞

and the assertion in proved.

We finally check that the effective Hamiltonian is locally Lipschitz in the
whole RN .

Lemma 1.39. For any R > 0 there exists CR > 0 such that for any |x1|, |x2| <
R

|H̄(x1, p)− H̄(x2, p)| ≤ CR|p||x1 − x2|
for any p.

Proof. If B(0, R) ⊂ Ω+ or B(0, R) ⊂ Ω− the assertion follows by the Lipschitz
continuity of H̄ in Ω+ and Ω+. We focus our attention on the case B(0, R) ∩
Ω+ 6= B(0, R); so there are x+ ∈ Ω+ and x− ∈ Ω− with |x+|, |x−| < R. In force
of Proposition 1.35 one has,

|H̄(x+, p)− H̄(x−, p)| =
∣∣ϕ̄(x+, p̂)− ϕ̄(x−, p̂)

∣∣ |p|

and
ϕ̄(x±, p̂) = −

∫

RN×B

ϕ(x±, y)p̂ · adµ±(y, a)

for some µ± ∈ Zl(x±). Therefore

∣∣ϕ̄(x+, p̂)− ϕ̄(x−, p̂)
∣∣ ≤

∫

RN×B

∣∣ϕ(x+, y)
∣∣ dµ+ +

∫

RN×B

∣∣ϕ(x−, y)
∣∣ dµ−

=
∫

RN×B

ϕ(x+, y)dµ+ +
∫

RN×B

−ϕ(x−, y)dµ−

≤
∫

RN×B

(
ϕ(x+, y)− ϕ(x−, y)

)
dµ+

+
∫

RN×B

(
ϕ(x+, y)− ϕ(x−, y)

)
dµ−

=
∫

RN×B

∣∣ϕ(x+, y)− ϕ(x−, y)
∣∣ dµ+

+
∫

RN×B

∣∣ϕ(x+, y)− ϕ(x−, y)
∣∣ dµ−

≤ 2LipR(ϕ)|x+ − x−|

where LipR(ϕ) is the Lipschitz constant of ϕ on B(0, R). The assertion follows.
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Chapter 2

Asymptotic Controllability
of singularly perturbed
control systems

This Chapter is devoted to controllability questions. We concentrate on the
following singularly perturbed system

ẋt = f(xt, yt, at), x0 = x
εẏt = g(xt, yt, at), y0 = y

(2.1)

Let us recall here for reader convenience the standing assumption:

– x ∈ RN and y belongs to the flat torus TM ' RM/ZM ;

– A is a compact metric space, and the control functions are measurable
functions a : R+ → A;

– the functions f and g are Lipschitz–continuous from RN ×TM ×A to RN

and TM respectively;

– the problem is controllable in the fast variables y, in the following sense:

∃r > 0 such that B(0, r) ⊂ co{g(x, y, a) : a ∈ A} (2.2)

Note that in this section we require y to lie on the flat torus, instead of the
periodicity assumption on the given functions.

Besides (2.1) we take into account the limiting system

ẋt ∈ F r(xt), x0 = x (2.3)

where
F r(x) := fr(x,Zl(x))

Zl(x) is the set of limiting relaxed controls, i.e. the set of weak–star limits of
occupational measures of the fast subsystem of (2.1); see Sections 1.2.2 and
1.2.3. Recall that fr is obtained by relaxing f as explained in Section 1.3.
We previously investigated relations between these two system, and concluded
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that (2.3) captures the limit behavior of (2.1), as ε tends to zero; see Section
1.3. Now we want to establish if stability properties can be deducted for the
limit system, assuming that the singularly perturbed one is stable and, more
significantly, vice versa.

Stability of such systems is studied by means of Lyapunov pairs, i.e. a Lya-
punov function and another rate function estimating the infinitesimal decrease
of the Lyapunov function along the integral trajectories of the dynamics driv-
ing to a certain target, that we suppose for simplicity to be the origin. We
characterize such a monotonicity property with a suitable differential inequality
interpreted in viscosity sense.

Let us write for later use the Hamiltonian related to the control problem
(2.1) with running cost W (x), that is

H(x, y, p, q) := max
a∈A

{−p · f(x, y, a)− q · g(x, y, a)} −W (x) (2.4)

and recall that the effective Hamiltonian related to H admits the following
relaxed representation (see Proposition 1.19)

H̄(x, p) = max
µ∈Zl(x)

{−p · fr(x, µ)} −W (x), for any x, p (2.5)

i.e. it coincides with the Hamiltonian associated to the limit control problem
(2.3).

We proceed as follows. In the next Section 2.1 we show that the property
of being a Lyapunov function is stable with respect to weak semilimits. More
precisely we prove that the lower semilimit of Lyapunov functions for (2.1) is
a lower semicontinuous Lyapunov function for (2.3). To establish such a result
we need to ensure, under suitable assumptions, some properties for the lower
semilimit of viscosity supersolutions, and to show its decrease along trajectories
of the limiting dynamics. To this scope we exploit the convergence result [3,
Theorem 1].

In Section 2.2 we invert such implication: we shall prove that the asymptotic
stability to the origin of the limiting system implies the asymptotic stability of
the slow dynamics of the singularly perturbed system near the origin, in a sense
that will be clear in Definition 2.21. Similar results have been already pointed
out in the light of the Levinson–Tikonov order reduction theory; see the book
by Kokotović et al. [60] for uncontrolled systems, and, for singularly perturbed
systems, Christofides and Teel [40], and Teel, Moreau and Nešić [76].

A result in this direction was also established by Artstein in [12] for un-
controlled systems. In that work, the limit system is detected as the so-called
chattering limit, that is, the differential inclusion

ẋ ∈ F (x)

with

F (x) :=
{∫

f(x, y)dµ(y) : µ ∈ I(x)
}

and I(x) is the set of the invariant probability measures of the differential equa-
tion ẏ = g(x, y) where x is frozen. The main result in [12] asserts that if the
equilibrium is asymptotically stable for the limit differential inclusion, then the
singularly perturbed system is asymptotically stable near the origin. Even if
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the way to obtain the limiting system proposed in [12] is actually close to the
one adopted here, the arguments used are completely different: techniques con-
nected to the theory of invariant measures and occupational measures are used
in [12], while we will exploit techniques from viscosity solution theory. More
precisely, we prove that it is possible to construct a Lyapunov function for the
singularly perturbed system as an ε–perturbation of a given Lyapunov function
for the limiting system. Such a result has also an intrinsic theoretical interest, in
fact the construction of such a Lyapunov function, pertains to the possibility of
constructing local supersolutions of Hamilton–Jacobi equations, starting from a
supersolution of the effective equation.

2.1 LSC Control Lyapunov Functions for
the Limit Control Problem

The goal of this Section is to prove that the lower semilimit of control Lyapunov
functions for (2.1) is as well a Lyapunov function for the limit system. To
this scope we assume the system (2.7) to be asymptotically controllable, or
equivalently, that a continuous Lyapunov pair for it does exist, for any ε. Before
to define Lyapunov pairs, let us recall first the following definition.

Definition 2.1. A Control Lyapunov function for the control system (2.1) with
respect to the target (0, 0) is a continuous function V ε : RN × RM → R+ satis-
fying the following properties:

1. Positive Definiteness. V ε(x, y) ≥ 0 for any (x, y), and V ε(x, y) = 0 if and
only if (x, y) = (0, y∗) for a certain y∗ ∈ TM ;

2. Properness. The sublevel sets {(x, y) : V ε(x, y) ≤ λ} are bounded for any
positive λ, or, equivalently,

V ε(x, y) → +∞ as |x| → +∞, for any y, any ε (2.6)

3. Infinitesimal decrease.

for any x 6= 0 and any (p, q) ∈ J−V ε(x, y)
min
a∈A

{p · f(x, y, a) + q · ε−1g(x, y, a)} ≤ 0 (2.7)

Definition 2.2. A Control Lyapunov pair for the control system (2.1) with
respect to the target (0, 0) consists in a couple of functions (V ε,W ε), where

1. V ε is a Control Lyapunov function;

2. Rate function. W ε : RN ×RM → R+ is a continuous and positive definite
function such that

for any x 6= 0 and any (p, q) ∈ J−V ε(x, y)
min
a∈A

{p · f(x, y, a) + q · ε−1g(x, y, a)} ≤ −W ε(x, y) (2.8)

Definition 2.3. A LSC Control Lyapunov Function for the control system (2.3)
with respect to the target x = 0 is a lower semicontinuous function V : RN → R+

satisfying the following properties:
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1. V is continuous at 0 and positive definite, that is V (0) = 0 and V (x) > 0
otherwise;

2. V is proper, that is V (x) tends to +∞ as |x| → +∞ or, equivalently, the
sublevel sets {x : V (x) ≤ λ} are bounded for any positive λ;

3. for any x 6= 0, and any p ∈ J−V (x)

min
µ∈Zl(x)

p · fr(x, µ) ≤ 0

Definition 2.4. A LSC Control Lyapunov pair for the control system (2.3)
with respect to the target x = 0 consists in a couple of functions (V, W ), where

1. V is a LSC Control Lyapunov function;

2. Rate function. W : RN → R+ is a continuous and positive definite such
that for any x 6= 0, and any p ∈ J−V (x)

min
µ∈Zl(x)

p · fr(x, µ) ≤ −W (x)

We assume, for any ε > 0 the existence of a control Lyapunov pair for the
singular perturbation system (2.1), satisfying the following assumptions:

Assumption 2.5. i. The functions V ε are locally equibounded, equicontin-
uous in x = 0 uniformly with respect to y;

ii. A continuous and positive definite function W (x) does exist such that, for
any x,

inf
ε

W ε(x, y) ≥ W (x) for any y.

iii. A continuous positive definite and proper function V (x) does exist such
that, for any x,

inf
ε

inf
y

V ε(x, y) ≥ V (x)

Remark 2.6. The previous hypotheses express a sort of equi-stability of the
perturbed system. In the next section we will construct a control Lyapunov
pair for the system (2.1) as a perturbation of a control Lyapunov pair for the
limiting dynamics, assuming it to be controllable to the origin. It is useful to
observe now that such control Lyapunov pair will turns out to satisfy the con-
ditions in Assumption 2.5. In Corollary 2.17 we will summarize the relationship
between equi-stable singularly perturbed system and its dynamics limit.

Let us recall the definition and some property of lower semilimits.

Definition 2.7. Let be Ω ⊂ RN and ε > 0. For the functions ϕε : Ω → R, the
lower semilimit in Ω as ε → 0+ is the function ϕ∗ : Ω → RN defined as

ϕ∗(x) := sup
δ>0

inf{ϕε(z) : z ∈ Ω, |x− z| < δ and 0 < ε < δ}

or, more concisely
ϕ∗(x) = lim inf

z→x
ε→0+

ϕε(z)
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From the definition directly follows (see [22, Lemma 1.5 in Chapter V]) that
the lower semilimit is lower semicontinuous. The following Proposition is a
straightforward PDE interpretation of the decreasing property (2.8).

Proposition 2.8. Under Assumption 2.5, the control Lyapunov functions V ε

are viscosity supersolutions of

H(x, y,DxV ε(x, y), ε−1DyV ε(x, y)) ≥ 0 in RN × TM

where H is defined in (2.4).

The following statements provide some properties of the lower semi-limit;
these properties permit to recognize that V∗ is a LSC control Lyapunov func-
tion for the limiting system with respect to the origin. The first of these prop-
erties follows from the general convergence result for viscosity supersolutions of
Hamilton–Jacobi equations [3, Theorem 1], and by the relaxed representation
we recalled before in (2.5).

Proposition 2.9. The lower semilimit V∗(x) of V ε(x, y), i.e. the function

V∗(x) = lim inf
z→x

ε→0+

inf
y

V ε(z, y)

satisfies
H̄(x,DxV∗) ≥ 0 in RN

in viscosity sense, i.e. it satisfies the following inequality:

min
µ∈Zl(x)

p · fr(x, µ) ≤ −W (x) for any p ∈ J−V∗(x)

Other properties of V∗ are detailed in the following Proposition.

Proposition 2.10. Under Assumption 2.5 the lower semilimit V∗ is lower semi-
continuous, positive definite, proper and is continuous in 0.

Proof. The lower semicontinuity of the lower semilimit is a straightforward
consequence of the definition; a detailed proof can be found for instance in [22,
Lemma 1.5 in Chapter V]. The continuity in x = 0 easily follows by virtue of
the equi-continuity assumption on V ε. Therefore only the positive definiteness
and the properness remain to be proved. The short notation Ṽ ε(x) shall be
used in the follows to denote infy V ε(x, y).

Let’s establish first the positive definiteness. Observe preliminarily that,
since V ε(x, y) ≥ 0, then Ṽ ε(x) ≥ 0 for any x. So

V∗(x) = sup
δ>0

inf{Ṽ ε(x′) : |x′ − x| < δ, 0 < ε < δ} ≥ 0

Moreover V∗(x) = 0 iff x = 0. In fact, for any β > 0 there exists δ̄ > 0 such that

0 ≤ V∗(0) = sup
δ>0

inf{Ṽ ε(x′) : |x′| < δ, 0 < ε < δ}

≤ inf{Ṽ ε(x′) : |x′| < δ̄, 0 < ε < δ̄} − β = −β

then V∗(0) = 0 by the arbitrariness of β.
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Suppose now that there exists x′ 6= 0 such that V∗(x′) = 0, and set δ̄ := 1
2 |x′|.

We obtain a contradiction, in fact, by Assumption 2.5:

0 = V∗(x′) = sup
δ>0

inf{Ṽ ε(z) : |z − x′| < δ, 0 < ε < δ}

≥ inf{Ṽ ε(z) : |z − x′| < δ̄, 0 < ε < δ̄} > 0.

In order to prove the properness of V∗(x) suppose by contradiction that

lim inf
|x|→+∞

V∗(x) < M < +∞ (2.9)

and let xn be a diverging sequence such that

lim inf
|x|→+∞

V∗(x) = lim
n

V∗(xn) (2.10)

For any n one has

V∗(xn) = lim inf
z→xn

ε→0+

Ṽ ε(z) = lim
k

Ṽ εk(zk,n)

for a certain sequence zk,n converging to xn as k goes to +∞. Take the diagonal
subsequence ξk := zk,k; from (2.9) and (2.10) we get

lim
k

Ṽ εk(ξk) = lim inf
|x|→+∞

V∗(x) < M < ∞

then for k large enough, Ṽ εk(ξk) < 2M , and this violates (2.6). In fact, one has

Ṽ εk(ξk) = inf
y

V εk(ξk, y) = V εk(ξk, yk)

for some yk, and V εk(ξk, yk) tends to +∞ as k → +∞, since |ξk| → +∞.

In conclusion, we can summarize the results of the preceding Propositions
in the following

Theorem 2.11. Let (V ε,W ε) be a control Lyapunov pair for the singularly
perturbed system (2.1) satisfying Assumption 2.5. Then the lower semilimit
V∗ is a LSC control Lyapunov function for the limit problem (2.3), with rate
function W (appearing in Assumption 2.5).

2.2 Controllability of the ε–problem

In this section we prove that around the equilibrium, it is enough to look at the
(smaller) limit system, to infer the controllability of the slow flow of the original
perturbed system.

Heuristics and formal expansions. The ideas presented here arise with
asymptotic expansions in multiple scale problems (see [30]) and deal with the
perturbed test function method (see [44]).
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In order to explain our ideas in an informal manner, suppose to posses a
smooth (say C1) solution ū of the effective Hamiltonian. Then

H̄(x, Dū(x)) = 0 in RN

For any fixed point x̄, let χ(y) be the first corrector, i.e. the solution of the cell
problem:

H(x̄, y, Du(x̄), Dyχ) = H̄(x̄,Du(x̄))

and set
ϕε(x, y) := ū(x) + εχ(y).

This function is a first order perturbation in ε of the effective solution, and
should solve the original Hamilton equation:

H(x, y, Dxϕε, ε−1Dyϕε) = H(x, y,Du, Dyχ) = H̄(x̄,Du(x̄)) = 0

at x = x̄.
Such arguments have been rigorously developed in [2] and [3] to establish the

local uniform convergence of solutions of first and second order Hamilton–Jacobi
equations to the solution of the effective equation. Now we want to reverse the
construction, and some difficulties arise, more or less evidently. An intrinsic
obstruction is the fact that the function χ depends not only on y but also on x.
Therefore in the previous computation, in place of Dxϕε should appear also a
contribution of χ, that we are not able to manage, being the dependence on x
of χ not clear.

Rigorous calculations. First of all we show in the next Lemma that the
an homogeneous Hamiltonian remains ergodic if add to it a continuous cost
independent by the fast flow.

Set
H0(x, y, p, q) := max

a∈A
{−p · f(x, y, a)− q · g(x, y, a)}

(it is the homogeneous part of H(x, y, p, q) defined in (2.4)). As usual in our
terminology, we say that H0 is ergodic at x = x̄, p = p̄, if

δwδ + H0(x̄, y, p̄,Dwδ) = 0 in RM implies
δwδ(y) → const =: −H̄0(x̄, p̄), as δ → 0+, uniformly in y.

(2.11)

Notation. With the symbol HW (x, y, p, q) we will denote the Hamiltonian
obtained by H0 via the following formula:

HW (x, y, p, q) := H0(x, y, p, q)−W (x)

Lemma 2.12. Let W : RN → R+ be a continuous function. If H0 is ergodic
then HW (x, y, p, q) is ergodic at any (x, p) and H̄W (x, p) = H̄0(x, p)−W (x).

Proof. Since H0 is ergodic (2.11) holds. Let w′δ be a solution of

0 = δw′δ + HW (x, y, p, Dw′δ) = δ

(
w′δ −

W (x)
δ

)
+ H0(x, y, p, Dw′δ)

By uniqueness,

w′δ −
W (x)

δ
= wδ
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where wδ is the function appearing in (2.11). So

δw′δ −W (x) = δwδ → −H̄0(x, p), as δ → 0+.

Definition 2.13. We say that the perturbed control system (2.1) has an ergodic
fast subsystem if H0(x, y, p, q) is ergodic, i.e. if (2.11) holds.

Such a property holds for example if the fast variables are bounded time
controllable, in the sense of (2.2). Ergodicity holds true also under coercivity
assumption for the Hamiltonian, or under non–resonance assumptions. (See [3],
[10])

Recall that, by Proposition 1.19, that is Theorem 7 in [2], the effective
Hamiltonian H̄0 admits the following representation:

H̄0(x, p) = max
µ∈Zl(x)

{−p · fr(x, µ)} (2.12)

We suppose that the limit system, governed by the differential inclusion (2.3),
is asymptotically controllable to the state x = 0, in a certain open bounded set
O ⊂ RN containing the origin. We know that this implies the existence of a
control Lyapunov pair (V, W ) (see, for example, [37]). Moreover, by Rifford
[69], we can assume without loss of generality V locally Lipschitz.

Assumption 2.14. There exists a Control Lyapunov pair (V, W ) for the limit
system (2.3) with V Lipschitz–continuous in Ō.

Definition 2.15. Let ρ > 0 be fixed. A couple (V ε,W ε) of functions V ε(x, y) :
Ō × TM → R+, W ε(x, y) : Ō × TM → R+ is called a (local) Control Lyapunov
pair for the system (2.1) in the region

Ω := (O \B(0, ρ))× TM with respect to the target {0} × TM if:

1. V ε is a Control Lyapunov function;

2. it enjoys the differential inequality

H0(x, y,DxV ε(x, y), ε−1DyV ε(x, y)) ≥ W ε(x, y) in Ω (2.13)

in viscosity sense.

The main result of the Section is the following

Theorem 2.16. Assume that (2.1) has an ergodic fast subsystem, and that
Assumption 2.14 holds. Then, for any ρ > 0 and any α ∈ (0, 1) there exists a
continuous function χ : TM → R such that (V (x) + εχ(y), αW (x)) is a control
Lyapunov pair for the singularly perturbed system (2.1), in Ω := (O\B(0, ρ))×
TM , with respect to the target {0} × TM .

Note that, as announced in Remark 2.6, the control Lyapunov pair (V ε,W ε)
:= (V (x) + εχ(y), αW (x)) satisfies the hypotheses of Assumption 2.5. Joining
together the statements of Theorem 2.11 and Theorem 2.16 we derive the fol-
lowing
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Corollary 2.17. (i) If there exists a control Lyapunov pair (V,W ) for the
limit system (2.3), with V locally Lipschitz, then there exists a control
Lyapunov pair (V ε,W ε) for the system (2.1) satisfying Assumption 2.5.

(ii) If there exists a control Lyapunov pair (V ε, W ε) for the system (2.1) sat-
isfying Assumption 2.5, then there exists a control Lyapunov pair (V, W )
for the limit system (2.3).

Let us consider, for any ρ > 0 and any α ∈ (0, 1) the following auxiliary
Hamiltonian:

Kρ(y, q) := inf{H0(x, y, p, q)− αW (x) :
x ∈ O \B(0, ρ), p ∈ J−V (x)} (2.14)

Remark 2.18. Observe that the infimum in (2.14) is over a nonempty set,
because {x : J−V (x) 6= ∅} is dense in RN (more precisely, under the current
assumptions DV exists almost everywhere) and O is open. Furthermore

H0(x, y, p, q)− αW (x) ≥ −α max
Ō

W − |q| max
Ō×TM×A

|g| − |p| max
Ō×TM×A

|f |
≥ C > −∞ for any fixed q

because |p| ≤ LipŌ(V ). Then −∞ < Kρ(y, q) < +∞ for any (y, q).

As announced in the Introduction, the proof of the Theorem 2.16 is based
essentially on the construction of a strict supersolution for the auxiliary Hamil-
tonian Kρ. By the very definition of Kρ such a function will not depend on
x.

Proposition 2.19. For any ρ > 0 there exist γ > 0 and a continuous function
χ : TM → R such that

Kρ(y, Dχ(y)) > γ in TM

in viscosity sense.

The proof of Proposition 2.19 uses the following Lemma; we will prove it at
the end of the section.

Lemma 2.20. For any ρ > 0, and any δ > 0 there exists a unique viscosity
solution wδ of the problem

δwδ + Kρ(y, Dwδ) = 0 in TM . (2.15)

Proof of Proposition 2.19. The idea is that the desired function is wδ (the
solution of (2.15)), for δ small enough. Fix α ∈ (0, 1) and

0 < β <
(1− α)

4
min

Ō\B(0,ρ)
W (2.16)

and find x̄ ∈ Ō with |x̄| ≥ ρ and p̄ ∈ J−V (x̄) such that

H0(x̄, y, p̄, q)− αW (x̄) ≤ Kρ(y, q) + β, for any y, q.
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Then, in TM , one has

0 = δwδ + Kρ(y, Dwδ) ≥ δwδ + H0(x̄, y, p̄,Dwδ)− αW (x̄)− β.

Let now vδ be a solution of

δvδ + HαW (x̄, y, p̄,Dvδ)− β = 0.

By comparison principle, being wδ a subsolution of the latter equation, we have
wδ ≤ vδ in TM . Moreover, by definition,

lim
δ→0+

δvδ − β = −H̄αW (x̄, p̄).

Then, if δ is small enough, say less than a certain δ̄ > 0, we have

δwδ ≤ δvδ ≤ 2β − H̄αW (x̄, p̄). (2.17)

Since (V,W ) is a control Lyapunov pair for (2.3) we have

H̄0(x, p)−W (x) ≥ 0, for any x ∈ Ō, any p ∈ J−V (x).

So, by Lemma 2.12, for x̄, p̄ ∈ J−V (x̄)

H̄αW (x̄, p̄) = H̄0(x̄, p̄)− αW (x̄)
≥ (1− α)W (x̄) ≥ (1− α) min

Ō\B(0,ρ)
W =: 2γ

In conclusion, we have by (2.16) β < γ
2 , and by (2.17), for δ < δ̄, δwδ ≤

2β − 2γ < −γ, that is
Kρ(y,Dwδ) = −δwδ > γ

as desired.

Proof of Theorem 2.16. Let χ(·) and γ be the continuous function and the
positive parameter provided by Proposition 2.19. In view of the regularity of
V and χ, V ε(x, y) := V (x) + εχ(y) is continuous with respect to y on TM , and
locally Lipschitz with respect to x. The properness also follows from the one of
V .

The function χ is defined up to an additive constant. Then we can substitute
it with the function χ̃ := χ−χ(y∗), with y∗ ∈ arg min χ. In this way, the function
V ε(x, y) := V (x) + εχ̃(y) is positive for any (x, y), and is zero at (0, y∗); this
guarantees the positive definiteness of V ε for any ε.

Finally, we have to prove that V ε satisfies

H0(x, y, p, ε−1q) ≥ αW (x)
for any (x, y) ∈ (O \B(0, ρ))× TM , and any (p, q) ∈ J−V ε(x, y) (2.18)

More precisely, recalling that J−V ε(x, y) ⊆ J−V (x) × εJ−χ(y), we prove that
the latter inequality holds for any p ∈ J−V (x) and any q ∈ εJ−χ(y). In fact,
for any (x, y) ∈ (O \B(0, ρ))× TM and any p ∈ J−V (x) we have

H0(x, y, p, ε−1q)− αW (x) ≥ Kρ(y, ε−1q) > γ > 0, for any q ∈ εJ−χ(y)

52



since χ satisfies, in viscosity sense, the differential inequality Kρ(y, Dχ) > γ.

We complete this section whit the proof of Lemma 2.20; it follows by stan-
dard arguments as comparison principles and stability for viscosity solutions.

Proof of Lemma 2.20. (Uniqueness). For any ρ, Kρ inherits from H the regu-
larity required for the comparison (see User’s guide [39, Theorem 3.3]). More
precisely, the inequality

Kρ(y1, k(y2 − y1))−Kρ(y2, k(y2 − y1)) ≤ ω(|y2 − y1|+ k|y2 − y1|2) (2.19)

is valid for any y1, y2 ∈ TM , and any k > 0, using the same modulus ω ensuring a
similar inequality for H. In fact, for any β > 0 there exist x̄ ∈ (O\B(0, ρ))×TM

and p̄ ∈ J−V (x̄) such that

Kρ(y2, k(y2 − y1)) + β ≥ H0(x̄, y2, p̄, k(y2 − y1))− αW (x̄)

Then

Kρ(y1, k(y2 − y1))−Kρ(y2, k(y2 − y1))
≤ Kρ(y1, k(y2 − y1))−H0(x̄, y2, p̄, k(y2 − y1)) + αW (x̄) + β

≤ H0(x̄, y1, p̄, k(y2 − y1))−H0(x̄, y2, p̄, k(y2 − y1)) + β

≤ ω(|y2 − y1|+ k|y2 − y1|2) + β

the last inequality holds thanks to the expression of H0, and to hypothesis made
on the data f and g. (2.19) follows by the arbitrariness of β.

2. (Existence). The existence can be showed using the Perron’s method.
Since the fast variables lie on the flat torus, |Kρ(y, 0)|∞ ≤ C. Then the constant
functions −C/δ and C/δ are respectively sub– and super–solution of (2.15).
Let’s consider the function wδ defined on TM via the formula

wδ(·) := {−C/δ ≤ w(·) ≤ C/δ : w∗ is a subsolution of (2.15)}
where w∗ stands for the upper semicontinuous envelop of w, that is defined by

w∗(y) := lim sup
η→0+

{w(z) : |y − z| ≤ η}

the lower semicontinuous envelop w∗ is defined analogously. The Perron’s
method showed in the User’s Guide [39, Theorem 4.1] ensures that wδ(·) is
a solution.

On the other hand w∗δ and wδ∗ are are still sub– and super–solution of the
equation in (2.15), as proved in [39, Lemma 4.2]. Therefore, by comparison

w∗δ ≤ wδ∗;

the opposite inequality is apparent:

w∗δ ≥ wδ ≥ wδ∗;

then wδ is continuous and solves the equation, and so is the unique viscosity
solution.
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Dynamical counterpart. Let us denote by (xε
t (x, y, a), yε

t (x, y, a)) the solu-
tion of the singularly perturbed problem (2.1) with initial state (x0, y0). We
will write also simply (xt, yt), when no ambiguity can arise.

Since the functions V ε constructed in Theorem 2.16 do not satisfy (2.13) in
a whole neighborhood of {0}×TM , controllability properties for the ε–problem
cannot be directly derived by Lyapunov theorems. Anyway a sort of asymp-
totic controllability near the origin for the slow flow can be established, as a
consequence of Theorem 2.16. In the sequel we will consider as a target for the
singular perturbation system, the following closed neighborhood of {0} × TM :

Tρ := B̄(0, ρ)× TM , ρ > 0 fixed

We will take into account also the value function T ρ(x, y) of the problem with
exit time, that is

T ρ(x, y) := inf
a∈A

∫ tρ
x,y(a)

0

(αW (xs) + γ)ds

where α and γ are like in Theorem 2.16 and Proposition 2.19. With tρx,y(a)
we denote the first time the trajectory (xt, yt) starting at (x, y) and using the
control function a hits the target Tρ:

tρx,y(a) := min{t : (xt(x, y, a), yt(x, y, a) ∈ Tρ}

The notion of controllability we consider is described in the following definition.

Definition 2.21. We say that the state x = 0 is nearly asymptotically control-
lable for the singularly perturbed system (2.1), with basin of attraction Ω ⊆ RN

if, for any R > 0 there exist ε0 > 0, r > 0 and T0 > 0 such that the following
holds:

1. (Lyapunov Stability) For any x ∈ Ω, with |x| < r there exists a control
ā ∈ A such that |xε

t (x, y, ā)| < R for any t > 0, any ε < ε0 and any
y ∈ TM ;

2. (Attractiveness) For any x ∈ Ω there exists ā ∈ A such that |xε
t (x, y, ā)| <

R for any t > T0, any ε < ε0 and any y ∈ TM .

The main result of the present Section is the following

Theorem 2.22. Suppose that the state x = 0 is asymptotically controllable for
the limit control problem (2.3). Then there exists a basin of attraction Ω ⊆
RN containing the origin, such that the same state is nearly asymptotically
controllable for the singularly perturbed system (2.1) in Ω.

Remark 2.23. The basin of attraction Ω mentioned in the statement of The-
orem 2.22 can be explicitly described by means of the basin of attraction O of
the state x = 0 for the limit control problem. In fact, we will point out that
there exists u0 > 0, depending only on O, such that for every c ∈ (0, u0), if ε is
small enough,

Ω ⊇ {x : V (x) < c} × TM .

See the following Lemma 2.26, below.
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Before proving Theorem 2.22, let us make some remarks on Definition 2.21.
This definition is actually very similar to the definition of near asymptotic sta-
bility given in [12] and showed to be valid for uncontrolled singularly perturbed
systems whose limit dynamics is asymptotically stable to the origin. More pre-
cisely, in [12] the Author considers the uncontrolled system

ẋt = f(xt, yt), x0 = x ∈ RN

εẏt = g(xt, yt), y0 = y ∈ RM (2.20)

and gives the following notion of stability.

Definition 2.24. The state x = 0 is near asymptotically stable with respect
to the system (2.20) if the following holds. There exists a bound B > 0 such
that, for every b > 0 and ρ > 0 there exist ε0, β > 0 and T0 with the following
properties:

1. if ε < ε0, |x| ≤ β and |y| ≤ b then |xε
t (x, y)| ≤ ρ for any t ≥ 0;

2. if ε ≤ ε0, |x| ≤ B and |y| ≤ b then |xε
t (x, y)| ≤ ρ for any t ≥ T0.

The main result in [12] affirms that if the state x = 0 is asymptotically stable
for the limit differential inclusion, then the same state is near asymptotically
stable for original problem.

The two properties of the Definition 2.24 can be easily rewritten in terms
of Definition 2.21. Moreover, since in our case the fast variables lies on the flat
torus TM , no bounds on the initial state of the fast flow are required.

As mentioned before, we know that asymptotic controllability of the state
x = 0 for (2.3) is equivalent to Assumption 2.14. We then assume to have
a Control Lyapunov function V for the limiting dynamics, which is Lipschitz-
continuous in a certain open set O ⊂ RN . Theorem 2.16 shows how to construct,
starting from V , for any positive ρ, a control Lyapunov function V ε for the
perturbed dynamics, satisfying the monotonicity property in (O\B(0, ρ))×TM .
Theorem 2.22 provides the dynamical interpretation of this result, and clarifies
the sort of stability we are able to deduce from the existence of such V ε.

The proof of Theorem 2.22 uses a couple of preliminary results. Let us first
of all fix some notations. For any positive c, we indicate with SV (c) and SV ε(c)
the following sublevel sets:

SV (c) := {x ∈ O : V (x) < c}, SV ε(c) := {(x, y) ∈ O × TM : V ε(x, y) < c}
The first preliminary result concerns the comparison of supersolutions of

Hamilton–Jacobi equations with the value function of the problem with exit
time. (See [22], [74]).

Proposition 2.25. [74, Theorem 2.5]. Let ρ > 0 be fixed. Let Ω ⊆ RN × TM

be an open set and g be a nonnegative function, continuous on Tρ. Assume that
there exists a constant u0 ∈ R ∪ {+∞} and a function U ∈ C(Ω) such that

HαW (x, y,DxU, ε−1DyU) ≥ 0 in Ω \ Tρ

U ≥ g on Ω ∩ Tρ

and the following boundary condition is satisfied:

lim
(x,y)→(x0,y0)

U(x, y) = u0 for any (x0, y0) ∈ ∂Ω,

U(x, y) < u0 for any (x, y) ∈ Ω.
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Then
U(x, y) ≥ T ρ(x, y) for any (x, y) ∈ Ω.

Lemma 2.26. There exists u0 > 0 such that, for any ρ > 0 such that B̄(0, ρ) ⊂
O, the following holds.

i. There exists ε0 > 0 such that for any ε < ε0

Ωε := {(x, y) ∈ O × TM : V ε(x, y) < u0} ⊇ Tρ

ii. For any (x, y) ∈ Ωε there exists ā ∈ A such that

tρx,y(ā) < C < +∞

iii. For any c < u0 there exists εc > 0 such that if ε < εc then

Tρ ⊆ SV ε(c) ⊆ Ωε;

furthermore, the level sets SV ε(c) are viable, i.e.

for any (x, y) ∈ SV ε(c) exists ā ∈ A such that
(xε

t (x, y, ā), yε
t (x, y, ā)) ∈ SV ε(c) for any t ≥ 0.

Proof. Fix ρ > 0 and consider the control Lyapunov function V ε(x, y) :=
V (x) + εχ(y) provided by Theorem 2.16; such a function satisfies the following
differential inequality:

max
a∈A

{−f(x, y, a) ·DxV ε − ε−1g(x, y, a) ·DyV ε − αW (x)− γ} ≥ 0

in (O \B(0, ρ))× TM

The open set O and the parameters α and γ are defined in Assumption 2.14,
Theorem 2.16 and Proposition 2.19, respectively. To ease notations, we drop
the subscript ρ in T ρ, tρx,y and Tρ.

Since V is proper, we assume without loss of generality, that

max
|x|=ρ

V (x) < min
x∈∂O

V (x) =: u0/2

If ε < ε0 := u0/(2max χ) then

max
|x|=ρ, y∈TM

V ε(x, y) = max
|x|=ρ

V (x) + εmax χ < u0/2 + ε maxχ < u0

which proves i. The same computation shows that, as announced in Remark
2.23, for any c < u0 and ε < (u0 − c)/ maxχ, SV (c)× TM is contained in Ωε.

By applying Proposition 2.25 in Ωε we obtain:

T (x, y) := inf
a∈A

∫ tx,y(a)

0

(αW (xs) + γ)ds ≤ V ε(x, y). (2.21)

By (2.21) we derive that the target T is reached in finite time by a trajectory
of the perturbed dynamics starting in Ωε. Indeed, fix any (x, y) ∈ Ωε; then for
any positive δ there exists a control ā ∈ A such that

δ + T (x, y) ≥
∫ tx,y(ā)

0

(αW (xs) + γ)ds.
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In particular we have

γtx,y(ā) <

∫ tx,y(ā)

0

(αW (xs) + γ)ds ≤ T (x, y) + δ ≤ V ε(x, y) + δ.

Furthermore, using the definition of Ωε we can estimate tx,y(ā):

tx,y(ā) ≤ V ε(x, y) + δ

γ
<

u0 + δ

γ
.

This gives ii.
Now, observe that the inclusion SV ε(c) ⊆ Ωε is obvious. Furthermore, if

ε < εc := c−u0/2
max χ , for any x with |x| = ρ we have

V ε(x, y) ≤ u0/2 + εmax χ < c

To prove the viability of the sublevel sets SV ε(c) we use the following super-
optimality principle (see Proposition 4.1 and Remark 4.2 in Soravia [75]): the
supersolution V ε(x, y) satisfies, for any (x, y) in Ωε,

V ε(x, y) = inf
a∈A

sup
t∈[0,tx,y(a))

{
V ε(xt, yt) +

∫ t

0

(αW (xs) + γ)ds

}

Fix c < u0, (x, y) ∈ SV ε(c) and |x| > ρ, then choose β such that

0 < β < c− V ε(x, y).

Then there exists ā ∈ A such that the corresponding trajectory of (2.1) satisfy

V ε(xt, yt) < c−
∫ t

0

(αW (xs) + γ)ds < c

for any t ∈ [0, tx,y(ā)). Then, in the same time interval, (xt, yt) belongs to
SV ε(c).

Now assume that a certain t′ > tx,y(ā) does exist, such that (xt′ , yt′) ∈
SV ε(c), |xt′ | > ρ and (xt, yt) ∈ SV ε(c) for any t ∈ [tx,y(ā), t′]. Now, consider
the solution of the control problem (2.1) starting at (x′, y′) := (xt′ , yt′). The
previous computation shows that another control a′ ∈ A does exist, such that
(x′t, y′t) := (xt(x′, y′, a′), yt(x′, y′, a′)) satisfies

V ε(x′t, y
′
t) < c, for any t ∈ [0, tx′,y′(a′)).

Then the solution (x̃t, ỹt) obtained piecing together the trajectory (xt, yt) linking
(x, y) to (x′, y′) and (x′t, y′t) using the control function defined by

ãt :=





āt for t < t′

a′t−t′ for t ≥ t′

satisfies V ε(x̃t, ỹt) < c for any t ∈ [0, t′ + tx′,y′(a′)). By iterating the argument,
we obtain a trajectory of the perturbed dynamics which remains in SV ε(c) for
any t ≥ 0.
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Proof of Theorem 2.22. Fix R > 0 and find c, δ > 0 such that

c + δ < u0, SV (c) ⊆ SV (c + δ) ⊆ B̄(0, R)

with u0 as in Lemma (2.26). Find also r > 0 such that

SV (c) ⊇ B̄(0, r)

Now fix ρ < r/2, and consider the Lyapunov function V ε constructed in Theo-
rem 2.16. If

ε < min
{

c + δ − u0/2
max χ

,
δ

2max χ

}
=: ε0

the following inclusions follow by Lemma 2.26:

Tρ ⊆ SV ε(c + δ) ⊆ Ωε, SV (c)× TM ⊆ SV ε(c + δ) (2.22)

Let |x| ≤ r; then x ∈ SV (c) and, by (2.22), (x, y) ∈ SV ε(c + δ) for any y ∈ TM .
The set SV ε(c+ δ) is viable by Lemma 2.26 (iii.), then a control function ā ∈ A
does exist, such that (xε

t , y
ε
t ) ∈ SV ε(c + δ) for any t ≥ 0. Since V (xε

t ) <
V ε(xε

t , y
ε
t ), we have xε

t ∈ SV (c + δ), and then |xε
t | < R for any t ≥ 0. This

proves the Lyapunov stability (part (i.) in Definition 2.21).
We pass now to prove the attractiveness (part (ii.) in Definition 2.21. Take

(x, y) ∈ Ωε with |x| > ρ. By Lemma 2.26 (ii.) there is a control ā such that the
solution of the perturbed dynamics starting at (x, y) and driven by ā hits Tρ

the first time at tρx,y(ā) < +∞. A fortiori, such a trajectory enters in finite time
the set SV (c)× TM , which is contained in the viable set SV ε(c + δ). Let T0 be
the first time such that xε

t ∈ SV (c). By Lemma 2.26 (iii.), we can obtain a new
trajectory (which we continue to denote xε

t , y
ε
t ), starting at (x, y) and satisfying

(xε
t , y

ε
t ) ∈ SV ε(c + δ) for any t ≥ T0. As before, this implies |xε

t | ≤ R for any
t ≥ T0.

Global asymptotic controllability of the ε-problem. Theorem 2.22 has
a local nature: the basin of attraction of the state x = 0 for the perturbed
system is described starting from the basin of attraction of the same state for
the limit system.

In this final part we adapt the construction described before in order to
obtain a global version (i.e. valid in the whole RN ) of the nearly asymptotic
controllability. More precisely, we do not construct a global control Lyapunov
function for the perturbed system, but, starting from a locally Lipschitz global
control Lyapunov function for the limit dynamics, we construct, for any R > 0,
a control Lyapunov function V ε

R exhibiting the near asymptotic stability in the
ball B(0, R).

Definition 2.27. We say that the state x = 0 is nearly globally asymptot-
ically controllable for the perturbed system (2.1) if it is nearly asymptotically
controllable with basin of attraction Ω = RN .

We assume that the limit control problem (2.3) is globally asymptotically
controllable, then there exists a control Lyapunov pair (V, W ) defined in the
whole RN with V locally Lipschitz in RN .
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Consider, for any 0 < ρ < R and any α ∈ (0, 1) the following auxiliary
Hamiltonian:

Kρ,R(y, q) := inf{H0(x, y, p, q)− αW (x) :
ρ ≤ |x| ≤ R, p ∈ J−V (x)};

(compare with (2.14)). Arguing as in Proposition 2.19 we can construct, for any
ρ,R a function χρ,R : TM → R such that

Kρ,R(y, Dχρ,R) > γ, in TM

in viscosity sense, for a certain constant γ > 0 depending on ρ and R. It follows
that the function

V ε
ρ,R(x, y) := V (x) + εχρ,R(y)

satisfies in viscosity sense

H0(x, y, DxV ε
ρ,R(x, y), ε−1DyV ε

ρ,R(x, y)) ≥ αW (x)
in (B(0, R) \B(0, ρ))× TM .

The next Lemma adapts to this new context the statement of Lemma 2.26.

Lemma 2.28. For any R > 0 there exists uR > 0 such that, for any ρ > 0 the
following conditions hold.

i. There exists ε0 > 0 such that for any ε < ε0

Ωε
R := {(x, y) ∈ RN × TM : V ε(x, y) < uR} ⊇ Tρ

ii. For any (x, y) ∈ Ωε
R there exists ā ∈ A such that

tρx,y(ā) < C < +∞

iii. For any c < uR there exists εc > 0 such that if ε < εc then

Tρ ⊆ SV ε(c) ⊆ Ωε
R;

furthermore, the level sets SV ε(c) are viable, i.e.

for any (x, y) ∈ SV ε(c) exists ā ∈ A such that
(xε

t (x, y, ā), yε
t (x, y, ā)) ∈ SV ε(c) for any t ≥ 0.

Proof. The proof is the same as in the Lemma 2.26, provided u0 is substituted
by uR, which is defined as

uR/2 := min
x∈∂B(0,R)

V (x).

Note that, since V is proper, it is not restrictive to suppose

uR > 2 max
x∈∂B(0,ρ)

V (x).

The key tool we will apply to prove the global controllability is stated in the
following lemma.
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Lemma 2.29. For any R′ > 0 and any ε > 0 there exists R > 0 such that

B(0, R′) ⊆ Ωε
R.

Proof. Since V is a control Lyapunov function, it can be estimated by means of
two comparison functions β1, β2 ∈ K:

β1(|x|) ≤ V (x) ≤ β2(|x|), (2.23)

then
β1(R) ≤ min

x∈∂B(0,R)
V (x) ≤ β2(R)

Fix now x̄, with |x̄| = R′. To prove the desired inclusion it is enough to choose

R > β−1
1 (β2(R′) + ε maxχρ,R) .

Indeed, since V (x̄) ≤ β2(R′) by (2.23), one has for any y

V ε
ρ,R(x̄, y) ≤ β2(R′) + εmax χρ,R(y) < min

x∈∂B(0,R)
V (x).

Then, for any fixed ρ > 0 and for any x ∈ RN \ B(0, ρ) we can construct
V ε

ρ,R, where R is provided by Lemma 2.29 for R′ := |x|. Such a function satisfies
the properties of Lemma 2.28 in the set Ωε

R ⊃ B(0, R′). Then the dynamical
properties of Lyapunov stability and attractiveness of the Definition 2.21 can
be proved in (any) ball centered at the origin using Lemma 2.28, as done in the
proof of Theorem 2.22. We finally get the following

Theorem 2.30. Suppose the state x = 0 is globally asymptotically control-
lable for the limit control problem (2.3). Then the same state is nearly globally
asymptotically controllable for the perturbed system (2.1).
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Chapter 3

Homogenization of
non–coercive HJ equations

The main contributions of this section concern homogenization of min-max type
Hamilton-Jacobi-Isaacs equations. We start recalling the setup, some terminol-
ogy and some preliminary results. Consider the following deterministic two-
person zero-sum singularly perturbed differential game

ẋs = f(xs, ys, as, bs), x0 = x
εẏs = g(xs, ys, as, bs), y0 = y

(3.1)

with a running cost l(x, y, a, b) and a terminal cost h(x, y). The current assump-
tions are listed below:

- x ∈ RN , and y ∈ RM ;

- the controls of the two players are measurable functions a and b from
(0, +∞) to compact metric spaces A and B. The spaces of such measurable
functions are denoted by A and B respectively;

- the functions f, g and l are bounded uniformly continuous in RN ×RM ×
A×B, with values, respectively in RN , RM and R;

- the function h is bounded uniformly continuous from RN × RM to R;

- the functions f and g are Lipschitz–continuous in x, y, uniformly with
respect to the controls a, b;

- all the data are periodic with respect to y.

A strategy for the first player (respectively for the second player) is a map
α : A → B (resp. β : B → A). A strategy α for the first player is said to be
nonanticipating if for any t > 0 and any b, b′ ∈ B, bs = b′s for any 0 ≤ s ≤ t
implies α[b]s = α[b′]s for any 0 ≤ s ≤ t. We define

Γ := {α : A → B nonanticipating strategy for the first player}

∆ := {β : B → A nonanticipating strategy for the second player}
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The symbols A(t), B(t), Γ(t) and ∆(t) are used to indicate subsets of A, B, Γ
and ∆ respectively, of controls and strategies defined on [0, t].

The cost functional (on the time interval [0, t]) is given by

J(t, x, y, a, b) :=
∫ t

0

l(xs, ys, as, bs)ds + h(xt, yt)

and we assume that the first player wants to minimize the cost, meanwhile the
second wants to maximize it. Therefore we take into account the lower value
function

uε(t, x, y) = inf
α∈Γ(t)

sup
b∈B(t)

J(t, x, y, α[b], b).

and the Cauchy problem for the Bellman–Isaacs equation associated to the game

uε
t + H(x, y,Dxuε, ε−1Dyuε) = 0 in (0, +∞)× RN × RN

uε(0, x, y) = h(x, y) on RN × RM (3.2)

where H is given by the following min–max formula:

H(x, y, p, q) = min
b∈B

max
a∈A

{−p · f(x, y, a, b)− q · g(x, y, a, b)− l(x, y, a, b)} (3.3)

Under the standing assumptions H is continuous and degenerate elliptic, there-
fore the equation in (3.2) is degenerate parabolic; it also satisfies conditions im-
plying the Comparison Principle for bounded viscosity sub- and super-solutions.
It follows that (3.2) possesses at most one bounded uniformly continuous vis-
cosity solution. Moreover the following result, due to Fleming and Souganidis
[51] holds.

Theorem 3.1. Under the current assumptions the lower value function uε is
the unique bounded uniformly continuous viscosity solution of (3.2).

The property of being ergodic of an Hamiltonian, has to do with the possi-
bility to define an effective differential operator, the effective Hamiltonian, and
the possibility to stabilize to a constant the oscillating initial datum h allows
to define an effective initial datum. Our final goal is again to apply the con-
vergence results of [3]; to this scope, in this section, we investigate ergodicity
and stabilization properties of the Hamilton–Jacobi–Isaacs operator defined in
(3.3). We recall first some definitions.

Consider, for later use, the M–dimensional controlled system obtained from
(3.1), fixing x̄ and setting ε equals to 1

ẏs = g(x̄, ys, as, bs), y0 = y (3.4)

There are other ways to define the ergodicity of H (see the Remark below). Here
we adopt the following definition, based on the following evolutive cell problem.
For any (x̄, p̄) consider

wt + H(x̄, y, p̄,Dw) = 0, w(0, y) = 0 (3.5)

Under the standing assumptions, such problem has a unique viscosity solution
w(t, y).

62



Definition 3.2. We say that H is ergodic at (x̄, p̄) if

lim
t→+∞

w(t, y)
t

= const uniformly in y

and in this case we set −H̄(x̄, p̄) equals to this constant.

Remark 3.3. This definition of ergodicity is connected with the classical ergodic
theory, and motivates the name of such property. The following equivalent
definitions are based on other stationary cell problems:

i. We say that H is ergodic at (x̄, p̄) if the unique periodic viscosity solution
of the δ–problem (δ > 0)

δwδ + H(x̄, y, p̄, Dwδ) = 0 in RM

satisfies
lim

δ→0+
δwδ(y; x̄, p̄) = const uniformly in y

ii. Consider the true cell problem

λ + H(x̄, y, p̄,Dχ) = 0 in RM (3.6)

It is well known that there exists at most one λ ∈ R such that (3.6) admits a
continuous periodic viscosity solution χ; in this case we put H̄(x̄, p̄) = −λ. The
function χ is called corrector and is non-unique, being defined up to an additive
constant. H is ergodic at (x̄, p̄) if and only if

λ1 := sup{λ| ∃ an u.s.c. subsolution of (3.6)}

= λ2 := inf{λ| ∃ a l.s.c. supersolution of (3.6)}
and in this case we put H̄(x̄, p̄) = −λ1 = −λ2.

Consider now for any x̄ the Cauchy problem

vt + H ′(x̄, y, Dv) = 0 in (0, +∞)× RM

v(0, y) = h(x̄, y)
v periodic

(3.7)

where
H ′(x, y, q) := min

b∈B
max
a∈A

{−q · g(x, y, a, b)}

is called recession function, or homogeneous part of H. The problem (3.7) has
a unique bounded viscosity solution v(t, y).

Definition 3.4. We say that the pair (H,h) is stabilizing at x̄ if

lim
t→+∞

v(t, y) = const uniformly in y

and in this case we set h̄(x̄) equals to this constant.
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Ergodicity and Stabilization can be characterized (see Propositions 3.3 and
4.2 in [4]) using strong maximum principle for the problems (3.5) and (3.7), and
equicontinuity of the value functions. Moreover the effective Hamiltonian and
the effective initial datum can be represented by means of viscosity solutions of
the problems (3.5) and (3.7). More precisely, since the solution of (3.5) is the
lower value function of the differential game, with finite horizon cost functional,
we have

H̄(x̄, p̄) = − lim
t→+∞

inf
α∈Γ(t)

sup
b∈B(t)

{
1
t

∫ t

0

p̄ · f(x̄, ys, α[b]s, bs) + l(x̄, ys, α[b]s, bs)
}

(3.8)
where y· denotes a solution of (3.4). Similarly, the unique solution of (3.7) is
the lower value function of a finite horizon differential game (see [51]):

v(t, y; x̄) = inf
α∈Γ(t)

sup
b∈B(t)

h(x̄, yt)

Then the following representation formula for the effective initial datum holds:

h̄(x̄) = lim
t→+∞

inf
α∈Γ(t)

sup
b∈B(t)

h(x̄, ys) (3.9)

Exploiting these representation formulae, we will give some sufficient condition
for the validity of the ergodicity and stabilization properties.

Failure of homogenization for non-coercive Hamiltonians. For a con-
trol Hamiltonian like

max
a∈A

{−f(x, y, a) · p− g(x, y, a) · q − l(x, y, a)}

the property of being ergodic and stabilizing, is related only to the dynamic
part of it. The known sufficient conditions for ergodicity regard coercivity with
respect to the gradient variables p, q (that are multiplied by the dynamic flows),
controllability in bounded time of the fast variables, non-resonance, etc. If one
of these assumptions is satisfied, homogenization follows without assuming any
other conditions, neither on the running cost l nor on the final cost h.

In what follows, we will consider a rather general class of non-coercive Hamil-
tonians. More precisely, we will take into account Hamiltonians that are convex
with respect to some gradient variables, and concave with respect to the other,
a very special case of non-coercive Hamiltonians. Nevertheless, this class of
Hamiltonians permits to easily observe the most interesting difference with the
coercive case: as we will show in the two examples below, in the non-coercive
case homogenization may fail to hold if no assumptions are made on the initial
datum h and on the running cost l.

Example 3.5. The problem

∂tu
ε + |uε

x| − γ|uε
y| = cos

(
x−yγ−1

ε

)
x, y ∈ R (γ > 0)

uε(0, x, y) = 0
(3.10)

does not homogenize if x 6= y
γ . In fact, an explicit solution of (3.10) is given by

uε(t, x, y) = t cos
(

x− yγ−1

ε

)
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and uε has no limit for ε → 0.

Example 3.6. The problem

∂tu
ε + |uε

x| − γ|uε
y| = 0 x, y ∈ R (γ > 0)

uε(0, x, y) = cos
(

x−yγ−1

ε

) (3.11)

does not homogenize if x 6= y
γ . In fact, an explicit solution of (3.10) is given by

the steady solution

uε(t, x, y) = cos
(

x− yγ−1

ε

)

and uε does not converge to any function as ε vanishes.

We conclude this introduction exhibiting a rather large class of Hamiltonians
for which homogenization does not hold.

Proposition 3.7. Consider the following problem

∂tu
ε + H1(x, y, x

ε , y
ε , Dxuε)−H2(x, y, x

ε , y
ε , Dyuε) = l(x

ε , y
ε )

uε(0, x, y) = 0 (3.12)

and assume that constants α1, α2, β > 0 and C1, C2 > 0 exist, such that
∣∣H1(x, y, ξ, η, px)− α1|px|β

∣∣ ≤ C1

∣∣H2(x, y, ξ, η, px)− α2|py|β
∣∣ ≤ C2

(3.13)

Then, if either β = 1 or α1 = α2 there exists l : TN → R analytic such that
(3.12) does not homogenize. More precisely, for any δ > 0

lim sup
ε→0+

uε ≥ δt, lim inf
ε→0+

uε ≤ −δt

for any t > 0 and any x, y.

The statement of this negative result will become sharper, once completed,
at the end of the chapter, by Proposition 3.28. In fact, we will prove that for a
special class of Hamiltonians of this type, if α1 6= α2 homogenization holds.

Before proving Proposition 3.7 we prove the following Lemma.

Lemma 3.8. If either β = 1 or α1 = α2, for any c, c′ ∈ R then there is no
homogenization for the problem

∂tv
ε + α1|Dxvε|β − α2|Dyuε|β = c + c′ cos

(
1
ε

(
x
α1
− y

α2

))

vε(0, x, y) = 0
(3.14)

Proof. For the problem (3.14) we can write an explicit solution. We distinguish
two cases.
Case I. Put

vε(t, x, y) := tc + tc′ cos

(
1
ε

(
x

α
1/β
1

− y

α
1/β
2

))
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and observe that vε readily solves the problem (3.14) if β = 1.
Case II. Define

vε(t, x, y) := tc + tc′ cos
(

1
ε

(
x

α1
− y

α2

))

then

∂tv
ε + α1|Dxvε|β − α2|Dyvε|β = c + c′ cos

(
1
ε

(
x

α1
− y

α2

))

+
tc′

εβαβ−1
1

∣∣∣∣sin
(

1
ε

(
x

α1
− y

α2

))∣∣∣∣
β

− tc′

εβαβ−1
2

∣∣∣∣sin
(

1
ε

(
x

α1
− y

α2

))∣∣∣∣
β

and the last two summands cancel out if α1 = α2.
In conclusion, in both cases I. and II. one has

lim inf
ε→0+

vε(t, x, y) = t(c + c′)

and
lim sup
ε→0+

vε(t, x, y) = t(c− c′)

and consequently in general homogenization does not take place.

Proof of Proposition 3.7. We argue by comparison with supersolutions and
subsolutions of the auxiliary problem (3.14). For a fixed δ > 0 define the
running cost to be

l
(x

ε
,
y

ε

)
:= −(C1 + C2 + δ) cos

(
1
ε

(
x

α1
− y

α2

))

We have

0 = ∂tu
ε + H1

(
x, y,

x

ε
,
y

ε
, Dxuε

)
−H2

(
x, y,

x

ε
,
y

ε
,Dyuε

)
− l

(x

ε
,
y

ε

)

≤ ∂tu
ε + α1|Dxuε|β − α2|Dyuε|β + C1 + C2 − l

(x

ε
,
y

ε

)

Put c := −(C1 + C2) and c′ := C1 + C2 + δ, and let vε be the solution of (3.14)
corresponding to this choice of c, c′; the previous computation shows that uε

turns out to be a supersolution of the same problem. Therefore, if either β = 1
or α1 = α2, by comparison we get

lim sup
ε→0+

uε ≥ lim sup
ε→0+

vε = t(c + c′) = δt

Analogously, we have

0 = ∂tu
ε + H1

(
x, y,

x

ε
,
y

ε
, Dxuε

)
−H2

(
x, y,

x

ε
,
y

ε
,Dyuε

)
− l

(x

ε
,
y

ε

)

≥ ∂tu
ε + α1|Dxuε|β − α2|Dyuε|β − C1 − C2 − l

(x

ε
,
y

ε

)

and, by comparison with the solution ṽε of the problem (3.14) with c, c′ replaced
by c̃ := C1 + C2 and c̃′ := −(C1 + C2 + δ) respectively we obtain

lim inf
ε→0+

uε ≤ lim inf
ε→0+

ṽε = t(c̃− c̃′) = −δt
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as desired.

The previous result and examples convinces us about the importance to
pose conditions on the costs l and h - besides to structural conditions on the
Hamiltonian - to get sufficient conditions for ergodicity and stabilization, and
then for homogenization.

3.1 Ergodicity and Stabilization to a constant in
convex–concave HJ Equations

The coercivity of H with respect to the gradient variables is, besides to other
controllability and non resonance conditions, a very classical assumption in ho-
mogenization results. Recently, several sufficient condition for ergodicity are
known thanks to recent works of Alvarez and Bardi; see [4], [5], [21]. These
conditions are given in terms of asymptotic controllability of the fast subsystem
(3.4) with respect to certain targets. The scope of this section is to provide suf-
ficient conditions for stabilization, if possible of the same type of those ensuring
the ergodicity. This will permit to apply the general convergence results and to
provide homogenization theorems.

We begin with some definitions.

Definition 3.9. We say that the fast subsystem (3.4) is asymptotically con-
trollable by the first player to a closed target T ⊂ RM if there exists a function
η, with η(t) → 0 as t → +∞, such that, for any initial state y ∈ RM there is a
strategy α̃ ∈ Γ such that

d(yt, T ) ≤ η(t) for any b ∈ B, any t > 0

where ys is the solution of

ẏs = g(x̄, ys, α̃[b]s, bs), y0 = y

Notation. Whenever we need to emphasize the presence of two groups of fast
variables, we write the fast subsystem (3.4) in splitted form, i.e. we write (3.4)
as

ẏA
t = gA(x, yt, a, b), yA

0 = yA

ẏB
t = gB(x, yt, a, b), yB

0 = yB yt = (yA
t , yB

t ) (3.15)

with MA and MB such that MA + MB = M .

Definition 3.10. Suppose that the fast subsystem is in splitted form. We say
that the yA variables are asymptotically controllable by the first player if there
exists a function η, with η(t) → 0 as t → +∞, such that, for any initial state
y ∈ RM , and any ȳA ∈ RMA , there exists a strategy α̃ ∈ Γ such that

d(yA
t , ȳA) ≤ η(t) for any b ∈ B, any t > 0

where yA
t is the A–part of the solution of

ẏs = g(x̄, ys, α̃[b]s, bs), y0 = y

with g in the form (3.15). A similar definition can be given for the asymptotic
controllability of the yB variables by the second player.
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Let us summarize in the following proposition some sufficient condition for
ergodicity. As mentioned before, such conditions are quoted from recent papers
[4],[5] and [21], and apply in different situation, both if the fast subsystem (3.4)
is in splitted form, and if it is not so.

Proposition 3.11. i. [4, Theorem 9.1] If the fast subsystem (3.4) is bounded
time controllable at x = x̄ then the Hamiltonian H is ergodic at x̄.

ii. [21, Proposition 1] Assume that the running cost is uniformly continuous
and independent of the controls. If the fast subsystem (3.4) is uniformly
asymptotically controllable in the mean by the first (resp., second) player,
with respect to the target T = arg min l(x̄, ·) (resp., T = arg max l(x̄, ·))1,
then H is ergodic at x̄.

iii. [5, Proposition 2.2] Assume the running cost to be independent of the con-
trols and the system (3.4) is in splitted form. If the yA variables are asymp-
totically controllable by the first player, the yB variables are asymptotically
controllable by the second player, and a saddle point for the running cost
does exists, then H is ergodic at x̄.

iv. [21, Proposition 2] Assume the running cost to be independent of the con-
trols and the system (3.4) is in splitted form. If (3.4) is asymptotically
controllable in the mean with respect to a certain target T ∗, and the yB

variables are asymptotically controllable in the mean with respect to an-
other target T B, then H is ergodic at x̄ (existence of saddle points in the
running cost is not required).

The following propositions give sufficient conditions for stabilization. They
are given in the same spirit of condition quoted in the previous Proposition.
The proofs also follow the same strategies used in proving the ergodicity.

We say that the fast subsystem (3.4) is stoppable by the first player, for
x = x̄, if

for any ỹ, and any b ∈ B
exists ab ∈ A such that g(x̄, ỹ, ab, b) = 0.

Proposition 3.12. [4, Proposition 9.5-i]. Suppose that the fast subsystem (3.4)
is bounded time controllable and stoppable by the first player. Then, for any
h ∈ BUC(RN×RM ), the pair (H, h) is stabilizing at x̄, and h̄(x̄) = miny h(x̄, y).

Proposition 3.13. Suppose the fast subsystem (3.4) is asymptotically con-
trollable by the first player (resp. the second player), with respect to the tar-
get T = arg min h(x̄, ·) (resp. T = arg max h(x̄, ·)). Then, for any h ∈
BUC(RN × RM ), the pair (H, h) is stabilizing at x̄, and h̄(x̄) = miny h(x̄, y)
(resp. h̄(x̄) = maxy h(x̄, y)).

1We say that the system (3.4) is uniformly asymptotically controllable in the mean by the
first player, with respect to a closed target T ⊂ RM if there exists a function η ∈ KL and for
any initial state y there is a strategy eα ∈ Γ such that

1

t

Z t

0
dist(ys, T )ds ≤ η(||y||, t), for any b ∈ B
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Proof. Fix an initial state for the fast subsystem (3.4), and consider the strategy
α̃ and the solution ys as in Definition 3.9. Let zs be the projection of this solution
on the target T , i.e.

|zs − ys| = d(ys, T ).

The following inequalities hold:

h(x̄, ys) ≤ ω(|ys − zs|) + h(x̄, zs)
= ω(d(ys, T )) + min

y
h(x̄, ·) (3.16)

where ω(·) is a continuity modulus of the function h(x̄, ·). Then

h(x̄, yt) ≤ ω(η(t)) + min h(x̄, ·) for any b ∈ B

By the representation formula (3.9), we have that the solution v(t, y; x̄) of
the homogeneous Cauchy problem for H ′ satisfies:

min h(x̄, ·) ≤ v(t, y; x̄) ≤ sup
b∈B

h(x̄, yt) ≤ ω(η(t)) + min h(x̄, ·)

We conclude that
lim

t→+∞
v(t, y; x̄) = min

y
h(x̄, y)

Proposition 3.14. Suppose the fast subsystem (3.4) is in splitted form (yA, yB),
and that the yA variables are uniformly asymptotically controllable by the first
player, and the yB by the second player. Suppose also that the function h(x̄, ·)
has a saddle point. Then the pair (H, h) is stabilizing at x̄, and h̄(x̄) is the value
of h(x̄, ·) at the saddle point.

Proof. Let us denote by ω(·) a modulus of continuity of the function h(x̄, ·), and
observe that being continuous and periodic it is bounded. Fix an initial state,
and a point ȳA on RMA , as in Definition 3.10; so there exists a strategy α̃ such
that, for the corresponding path ỹs, one has as in the preceding proof,

h(x̄, ỹA
s , ỹB

s ) ≤ ω(|ỹA
s − ȳA|) + h(x̄, ȳA, ỹB

s )

and therefore, for any b ∈ B,

h(x̄, ỹA
t , ỹB

t ) ≤ ω(η(t)) + max
yB

h(x̄, ȳA, yB)

Then

inf
α∈Γ

sup
b∈B

h(x̄, yt) ≤ sup
b∈B

h(x̄, ỹA
t , ỹB

t ) ≤ ω(η(t)) + max
yB

h(x̄, ȳA, yB)

Taking the lim sup for t → +∞, and the minimum over all ȳA we get

lim sup
t→+∞

inf
α∈Γ

sup
b∈B

h(x̄, yA
t , yB

t ) ≤ min
yA

max
yB

h(x̄, yA, yB)
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Similarly we obtain the converse inequality:

lim inf
t→+∞

sup
β∈∆

inf
a∈A

h(x̄, yA
t , yB

t ) ≥ max
yB

min
yA

h(x̄, yA, yB)

Since h(x̄, ·) has a saddle point, say (yA
] , yB

] ), i.e.

h(x̄, yA
] , yB

] ) = max
yB

min
yA

h(x̄, yA, yB) = min
yA

max
yB

h(x̄, yA, yB)

one has

lim sup
t→+∞

inf
α∈Γ

sup
b∈B

h(x̄, yA
t , yB

t ) ≤ h(x̄, yA
] , yB

] ) ≤ lim inf
t→+∞

sup
β∈∆

inf
a∈A

h(x̄, yA
t , yB

t )

therefore, by the representation formula (3.9) for the solution of the recessive
Cauchy problem, one has

lim
t→+∞

v(t, y; x̄) = h(x̄, yA
] , yB

] )

Proposition 3.15. Suppose the fast subsystem (3.4) is in splitted form (yA, yB).
Assume also that, at x = x̄:

i. The fast subsystem (3.4) is asymptotically controllable by the first player
with respect to the target

T ∗(x̄) :=
{

(zA, zB) : h(x̄, zA, zB) ≤ max
yB

min
yA

h(x̄, yA, yB)
}

ii. The yB variables are asymptotically controllable by the second player with
respect to the target

T B(x̄) := arg max min
yA

h(x̄, yA, ·)

Then, the pair (H, h) is stabilizing at x = x̄, and

h̄(x̄) = max
yB

min
yA

h(x̄, yA, yB)

Proof. By the assumptions, there are functions η, ν such that, for any initial
state y0, there is a strategy α̃ ∈ Γ such that

d(ỹt, T ∗(x̄)) ≤ η(t) ∀t > 0, ∀b ∈ B

where ỹ· is a solution of

ẏs = g(x̄, ys, α̃[b]s, bs), y0 = y0 (3.17)

and there is β̃ ∈ ∆ such that

d(ỹB
t , T B(x̄)) ≤ ν(t) ∀t > 0, ∀a ∈ A
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where ỹB
· is the B–part of the solution ỹ· of

ẏs = g(x̄, ys, as, β̃[a]s), y0 = y0 (3.18)

Fix y0, and let ỹs be the solution of (3.17). Denote by zs = (zA
s , zB

s ) the
projection of ỹs on T ∗(x̄), i.e.

h(x̄, zA
s , zB

s ) ≤ max
yB

min
yA

h(x̄, yA, yB) for any s > 0

We have
h(x̄, ỹs) ≤ ω(|ỹs − zs|) + max

yB
min
yA

h(x̄, yA, yB) (3.19)

where we have denoted with ω(·) a modulus of continuity of the function h(x̄, ·).
It follows that

h(x̄, ỹt) ≤ ω(η(t)) + max
yB

min
yA

h(x̄, yA, yB), ∀t > 0, ∀b ∈ B (3.20)

Now denote again by ỹs = (ỹA
s , ỹB

s ) the solution of (3.18), and consider its
projection on the target T B(x̄)

zB
s := projT B(x̄)(ỹ

B
s )

By the definition of T B(x̄) we have:

h(x̄, ỹA
s , ỹB

s ) ≥ −ω(d(ỹB
s , T B)) + max

yB
min
yA

h(x̄, yA, yB) (3.21)

and therefore

h(x̄, ỹA
t , ỹB

t ) ≥ −ω(ν(t)) + max
yB

min
yA

h(x̄, yA, yB), ∀t > 0, ∀a ∈ A (3.22)

So, (3.20) yields

inf
α∈Γ

sup
b∈B

h(x̄, yt) ≤ sup
b∈B

h(x̄, ỹt) ≤ ω(η(t)) + max
yB

min
yA

h(x̄, yA, yB)

and therefore

lim sup
t→+∞

inf
α∈Γ

sup
b∈B

h(x̄, yt) ≤ max
yB

min
yA

h(x̄, yA, yB) (3.23)

on the other hand, (3.22) yields

sup
β∈∆

inf
a∈A

h(x̄, yt) ≥ inf
a∈A

h(x̄, ỹt) ≥ −ω(ν(t)) + max
yB

min
yA

h(x̄, yA, yB)

and therefore

lim inf
t→+∞

sup
β∈∆

inf
a∈A

h(x̄, yt) ≥ max
yB

min
yA

h(x̄, yA, yB) (3.24)

By (3.23) and (3.24) we finally get

lim
t→+∞

inf
α∈Γ

sup
b∈B

h(x̄, yt) = max
yB

min
yA

h(x̄, yA, yB)

and then, by the representation formula (3.9), the assertion is proved.
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Example with non-stabilizing initial datum. We conclude this section
providing an example in which the stabilizing property does not hold. The
example is constructed considering a game where each player controls one of
the two groups in which the state variables are divided. If the two controllers
use the same dynamics, no players have the possibility to drive the system faster
than the other.

Suppose that the fast sub-system of the singularly perturbed differential
game is given by

ξ̇t = g1(x̄, ȳ, ξt, ηt, at)
η̇t = g2(x̄, ȳ, ξt, ηt, bt)

(3.25)

where (x, y) are the slow variables and (ξ, η) the corresponding fast variables
and gA, gB are Lipschitz–continuous function. Suppose also that the running
cost is l ≡ 0 and consider an initial datum of class C1, enjoying the following
form:

h = h(x̄, ȳ, ξ − η)

The Isaac’s Hamiltonian related to the game is

H(x, y, ξ, η, px, py) = min
b∈B

max
a∈A

{−px · g1(x, y, ξ, η, a)− py · g2(x, y, ξ, η, b)}

= max
a∈A

{−px · g(x, y, ξ, η, a)}+ min
b∈B

{−py · g(x, y, ξ, η, b)}

Let us assume A = B, MA = MB = M/2, g1 = g2 = g and put

H0(x, y, ξ, η, p) := max
a∈A

{−p · g(x, y, ξ, η, a)} .

Then
H(x, y, ξ, η, px, py) = H0(x, y, ξ, η, px)−H0(x, y, ξ, η,−py)

The Hamiltonian G related to the homogenization problem is

G(x, y, ξ, η, px, py, qξ, qη) := H(x, y, ξ, η, px + qξ, py + qη)

Let us compute its recession function G′:

G′(x, y, ξ, η, qξ, qη) = lim
λ→0+

1
λ

G(x, y, ξ, η, 0, 0, λqξ, λqη) = H(x, y, ξ, η, qξ, qη)

We are interested in the asymptotic behavior of the solution u(t, ξ, η; x̄, ȳ) of the
problem

∂tu + G′(x̄, ȳ, ξ, η, Dξu,Dηu) = 0 in (0, T )× RM/2 × RM/2

u(0, ξ, η) = h(x̄, ȳ, ξ − η)

for fixed (x̄, ȳ).
Since h ∈ C1, the steady solution u ≡ h solves the problem. The fact that

h is not a constant shows that the solution cannot converge to any constant as
t → +∞.
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3.2 Homogenization of Convex-Concave
HJ Equations

In the present section we will provide homogenization results for a class of non–
coercive Hamilton–Jacobi equations. We will concentrate our attention on the
cases in which the dynamics is in splitted form. This means that a player controls
a group of variables, and the other player controls the remaining variables.
Under this assumption the ergodic problem also is decoupled. Anyway, we do
not require such a decoupling in the oscillating initial datum h.

Notation. We divide the state variables in two groups, say z = (x, y); with the
Greek letters ζ = (ξ, η) we will denote the vector of the fast variables.

The problem under investigation is then the following:

∂tv
ε + H(z, z

ε , Dzv
ε) = l(z, z

ε )
vε(0, z) = h(z, z

ε ) (3.26)

We assume for H the following form:

H(z, ζ, p) = max
|a|≤1

min
|b|≤γ

{−p · f(z, ζ, a, b)− l(z, ζ)} (3.27)

where γ is a positive parameter, and

f(z, ζ, a, b) = (f1(x, y, ξ, a), f2(x, y, η, b)) (3.28)
l(z, ζ) = l1(x, y, ξ) + l2(x, y, η) (3.29)

Then, defining the following Hamiltonians H1 and H2

H1(x, y, ξ, p) = max
a∈A

−p · f1(x, y, ξ, a)

H2(x, y, η, q) = max
b∈B

−q · f2(x, y, η, b)

we can write the problem (3.26) as the following:

∂tu
ε + H1(x, y, x

ε , Dxuε)−H2(x, y, y
ε , Dyuε) = l1(x, y, x

ε ) + l2(x, y, y
ε )

uε(0, x, y) = h(x, y, x
ε , y

ε )
(3.30)

The known ergodicity results in the convex–concave setting require the sys-
tem to be in splitted form, and l to be independent of the controls; see [5], [21].
This is the reason why we made such assumptions.

Under the current assumptions, the game associated to (3.26) is

ż = f(z, ζ, a, b)
εζ̇ = f(z, ζ, a, b)

with f as in (3.28). Then, the fast subsystem, for (x̄, ȳ) frozen, is

ξ̇t = f1(x̄, ȳ, ξt, at), ξ0 = ξ
η̇t = f2(x̄, ȳ, ηt, bt), η0 = η

(3.31)

We require the system (3.31) to satisfy the following

73



Assumption 3.16. Suppose that for any (x̄, ȳ) the ξ variables are Bounded
Time Controllable by the first player, and that the η variables are Bounded
Time Controllable by the second player; i.e.

for any (x̄, ȳ) exist T, T ′ > 0 such that
for any ξ, ξ̃ exists a ∈ A, and for any η, η̃ exists b ∈ B such that

the solution ξt in (3.31) satisfies, ξt̄ = ξ̃ for some t̄ ≤ T
and the solution ηt in (3.31) satisfies ηt̄ = η̃ for some t̄ ≤ T ′

Under these standing assumptions, the ergodic problem is decoupled, and
there exist an effective Hamiltonian H̄1 associated to H1 with the running cost
l1, and an effective Hamiltonian H̄2 associated to H2 with running cost l2.
Hence it is possible to associate to the problem (3.30) the effective Hamiltonian
H̄ := H̄1 − H̄2.

We need more controllability in order to establish the comparison principle
for H̄. A sufficient condition (see [2, Proposition 4]) for H̄ to be Lipschitz–
continuous is the following

Assumption 3.17. ∃r1, r2 > 0 such that B(0, r1) ⊂ co{f1(x, y, ξ, a) : a ∈ A}
and B(0, r2) ⊂ co{f2(x, y, η, b) : b ∈ B}.

In conclusion, we consider the following setting.

Assumption 3.18. At least one of the following conditions holds:

i. For each (x̄, ȳ), the function h(x̄, ȳ, ξ, η) has a saddle point in (ξ, η);

ii. The function h enjoys the form h(x, y, ξ, η) = h1(x, y, ξ − η) + h3(x, y, η),
Assumption 3.16 holds and the system (3.31) is asymptotically controllable
by the first player;

iii. The function h enjoys the form h(x, y, ξ, η) = h1(x, y, ξ − η) + h2(x, y, ξ),
Assumption 3.16 holds and the system (3.31) is asymptotically controllable
by the second player.

Assumption 3.18 is a list of sufficient conditions for the stabilizing property.
The fact that Assumption 3.18(i.) is sufficient for the stabilization of the ini-
tial datum has been proved in Proposition 3.14. The next result, based upon
Proposition 3.15, shows that also Assumption 3.18(ii.) and (iii.) are sufficient
conditions for the stabilizing property.

Proposition 3.19. Under Assumption 3.18(ii.), the pair (H,h) is stabilizing,
and for any (x, y),

h̄(x, y) = max
η

min
ξ
{h1(x, y, ξ − η) + h3(x, y, η)} (3.32)

Similarly, under Assumption 3.18(iii.), the pair (H, h) is stabilizing, and for
any (x, y),

h̄(x, y) = max
η

min
ξ
{h1(x, y, ξ − η) + h2(x, y, ξ)} (3.33)

Proof. We prove the assertion only under Assumption 3.18(ii.), being the proof
under Assumption 3.18(iii.) very similar.
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The system is in particular asymptotically controllable by the first player
with respect to the target

T1(x̄, ȳ) := {(ξ, η) : ξ − η ∈ arg min h1}
If h3 ≡ 0, then the assertion follows by Proposition 3.13. If h3 6≡ 0, observe that
since

max
η

min
ξ

h = max
η

min
ξ
{h1(x̄, ȳ, ξ − η) + h3(x̄, ȳ, η)}

= min
ξ,η

h1(x̄, ȳ, ξ − η) + max
η

h3(x̄, ȳ, η)

then, if (ξ̄, η̄) ∈ T1(x̄, ȳ),

h(x̄, ȳ, ξ̄, η̄) = min
ξ,η

h1(x̄, ȳ, ξ − η) + h3(x̄, ȳ, η̄)

≤ min
ξ,η

h1(x̄, ȳ, ξ − η) + max
η

h3(x̄, ȳ, η)

This shows that T1(x̄, ȳ) is contained in the set

T ∗(x̄, ȳ) := {(ξ, η) : h(x̄, ȳ, ξ̄, η̄) ≤ max
η

min
ξ

h(x̄, ȳ, ξ, η)}

and therefore, the system is asymptotically controllable on this set, being con-
trollable on a subset of it, by the first player. Moreover, the η variables are
controllable in bounded time by the second player, then they are asymptoti-
cally controllable by the second player on the target

T2(x̄, ȳ) := arg maxmin
ξ

h(x̄, ȳ, ξ, ·)

Then the conclusion and (3.32) follow by Proposition 3.15.

By the local uniform convergence of uε(t, z, ζ) to the solution u(t, z) of the
effective problem, developed in the singular perturbation context, we derive the
following homogenization result

Theorem 3.20. Suppose Assumption 3.16 and Assumption 3.18 hold. Then H
is ergodic, the pair (H,h) is stabilizing, and there exist H̄ and h̄ such that the
upper and lower semilimits of uε are respectively a subsolution and a supersolu-
tion of the effective problem

∂tu + H̄(x, y, Dxu,Dyu) = 0 in (0,+∞)× RN × RN

u(0, x, y) = h̄(x, y) on {0} × RN × RN (3.34)

where:

- if Assumption 3.18(i.) holds, then h̄(x, y) is given by the value of h(x, y, ·, ·)
at the saddle point;

- if Assumption 3.18 (ii.) (resp. Assumption 3.18 (iii.)) holds, then h̄(x, y)
is given by formula (3.32) (resp. (3.32)).

Furthermore, if Assumption 3.17 holds, H̄ is Lipschitz–continuous in x and
then uε converge, locally uniformly on the compact subset of (0, T )×RN , T > 0,
as ε → 0+, to the unique solution of (3.34).
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Proof. Ergodicity properties come from Assumption 3.16 and stabilization prop-
erties are guaranteed by Assumption 3.18 thanks to Proposition 3.14 and Propo-
sition 3.19. The conclusion then follows by the convergence results contained in
[3]. The regularity properties of H̄ follow by [2, Proposition 4].

3.2.1 The convex–concave Eikonal equation

In the light of the example of non stabilizing initial datum given before, we
concentrate our attention on the following problem. Suppose that the fast sub-
system to be

ξ̇t = g(x, y, ξt)at

η̇t = g(x, y, ηt)bt
ξt, ηt ∈ RN

where x, y are fixed, g is a function such that g ≥ g0 > 0, and for a fixed
parameter γ > 0, the control functions at and bt satisfy

|at| ≤ 1, |bt| ≤ γ

The role of γ is clear: being the dynamics for the two group of variables essen-
tially the same, the parameter γ allows a player to drive the system faster or
slower than the other.

We continue the description of the model. Accordingly with the previous
section, the running cost is supposed to be in the form

l(x, y, ξ, η) = l1(x, y, ξ) + l2(x, y, η) (3.35)

The min−max Hamiltonian related to this game is given by

H(x, y, ξ, η, px, py) = H0(x, y, ξ, px)− γH0(x, y, η,−py)− l(x, y, ξ, η)

where
H0(x, y, ξ, p) := max

|a|≤1
{−g(x, y, ξ)a · p} = g(x, y, ξ)|p|

Then we deal with the homogenization of

∂tu
ε + g

(
x, y, x

ε

) |Dxuε| − γg
(
x, y, y

ε

) |Dyuε| = l
(
x, y, x

ε , y
ε

)
uε(0, x, y) = h

(
x, y, x

ε , y
ε

) (3.36)

where the motivation of the name convex–concave eikonal equation is apparent.
Being g strictly positive, and the control sets the closed balls B(0, 1) and

B(0, γ), the ξ variables are bounded time controllable by the first player and
the η variables are bounded time controllable by the second player. In order to
apply Theorem 3.20, we made the following requirements on the system:

Assumption 3.21. For any (x, y)

i. The running cost l is in the form (3.35).

ii. Either the function h(x, y, ·, ·) has a saddle point,
or, h = h1(x, y, ξ − η) + h3(x, y, η) and γ < 1
or, h = h1(x, y, ξ − η) + h2(x, y, ξ) and γ > 1
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Assumption 3.21 (ii.) translates in the current setting the Assumption 3.18.
In fact, if for example γ < 1, since the dynamics of the ξ and the η variables is the
same, but the first player can drive ξ at an higher speed, for any fixed η′ ∈ RM/2

the first player can drive the system from any initial position to ξ = η+η′ in finite
time, for all controls of the second player. Furthermore, thanks to the periodicity
assumption on the fast variables, this can be done in a uniformly bounded time.
Then, in particular, the fast subsystem is asymptotically controllable by the
first player. We directly derive from Theorem 3.20 the following result for the
convex–concave eikonal equation.

Theorem 3.22. Under Assumption 3.21, there exist H̄ and h̄ such that the
solutions uε of (3.36) converge as ε → 0+, to the solution of

∂tu + H̄(x, y, Dxu,Dyu) = 0
u(0, x, y) = h̄(x, y)

3.2.2 The 2D case

This section is devoted to specialize in R2 the preceding result for the convex-
concave eikonal equation. In fact, explicit representation formulae for the effec-
tive Hamiltonian are known since [66] in the one-dimensional case.

Let us simplify the setting of the preceding section requiring the dimension
N to be equal 1, and g ≡ 1. So the dynamics for the fast states is the following:

ξ̇t = at with |at| ≤ 1
η̇t = bt with |bt| ≤ γ

(3.37)

where γ, as before, is a fixed positive parameter.
Then we deal with the following PDE:

∂tu
ε + |∂xuε| − γ|∂yuε| = l1(x

ε ) + l2(y
ε ) in (0, +∞)× R× R

uε(0, x, y) = h(x, y, x
ε , y

ε ) on {0} × R× R (3.38)

The cell problem, for fixed (x, y), (px, py) is the following

∂tv + |px + ∂ξv| − γ|py + ∂ηv| = l1(ξ) + l2(η) in (0, +∞)× R× R
v(0, ξ, η) = 0 on {0} × R× R (3.39)

In order to solve the cell problem, we can split (3.39) in two problems, and seek
for two functions v1 = v1(t, ξ) and v2 = v2(t, η) such that

∂tv
1 + |px + ∂ξv

1| = l1(ξ) v1(0, ξ) = 0 (3.40)

and
∂tv

2 − γ|py + ∂ηv2| = l2(η) v2(0, η) = 0 (3.41)

For these two ergodic problems there exist explicit formulae for the effective
Hamiltonian, that we briefly recall below.

General facts. Let us recall some general facts about homogenization in di-
mension 1; cf. [66]. We consider the equation

|χ′(x) + p| − l(x) = λ (3.42)
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and, for any fixed p we look for the unique value λ such that (3.42) admits a
periodic solution. Of course this solution will be non unique, being defined up
to an additive constant.

Let us suppose, for simplicity, that min[0,1] l(x) = l(x0) = 0, and denote by
〈l〉 the average of l on a period,

∫ 1

0
l(x)dx. We claim that

λ = (|p| − 〈l〉)+ (3.43)

where (·)+ stands for the positive part. To prove the claim, we show that, under
the position (3.43) it is possible to exhibit a viscosity solution of (3.42).

If |p| ≤ 〈l〉, then a solution of (3.42) is given by the function

χ(x) =





∫ x

x0
(l(s)− p)ds if x0 ≤ x ≤ x̄

∫ x0+1

x
(l(s) + p)ds if x̄ ≤ x ≤ x0 + 1

extended by periodicity to the whole R. In the definition of χ the point x̄ is
such that ∫ x̄

x0

(l(s)− p)ds =
∫ x0+1

x̄

(l(s) + p)ds

Such a x̄ exists, in fact if we put

ϕ1(x) :=
∫ x

x0

(l(s)− p)ds, ϕ2(x) :=
∫ x0+1

x

(l(s) + p)ds

and observe that

ϕ1(x0) = 0, ϕ1(x0 + 1) = 〈l〉 − p ≥ 0

ϕ2(x0) = 〈l〉+ p ≥ 0, ϕ2(x0 + 1) = 0

the existence of x̄ follows by the intermediate value Theorem. Then the function
χ is well defined, and is a viscosity solution of (3.42). In fact it is continuous in
[x0, x0 + 1] \ {x̄}, since l is, and in x̄ by the very definition of x̄. Moreover

χ′(x) =





l(x)− p if x0 ≤ x ≤ x̄

−l(x)− p if x̄ ≤ x ≤ x0 + 1

then, in x̄
lim

x→x̄−
χ′(x) = l(x̄)− p ≥ −l(x̄)− p = lim

x→x̄+
χ′(x)

and, if x 6= x̄, (3.42) holds.
If |p| ≥ 〈l〉, then a solution of (3.42) with λ given by (3.43), is

χ(x) =
∫ x

x̂

(l(s) + λ− p)ds, for any x ∈ [x0, x0 + 1]

extended on R by periodicity. In this case, x̂ is such that l(x̂) = 〈l〉. Such a
point exists by the mean value theorem.
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Back to (3.39). Let us adapt this computations first for (3.40). In what
follows we allow also the general case, in which min l 6= 0. One has:

H̄1(px) = (|px| − 〈l1〉)+ + min
[0,1]

l1(x) (3.44)

This is a straightforward derivation of the preceding calculations.
In an analogous way we find, for the problem (3.41),

H̄2(py) = − (γ|py| − 〈l2〉)+ −max
[0,1]

l2(x) (3.45)

In this case, in fact, if γ|py| ≤ 〈l2〉 a solution for the cell problem

−γ|χ′(x) + py| − l2(x) = λ (3.46)

at fixed py, with λ given by the position (3.45), is given by the periodic extension
on R of the function

χ(x) =





∫ x

x0

(
l(s)
γ − py

)
ds if x0 ≤ x ≤ x̄

∫ x0+1

x

(
l(s)
γ + py

)
ds if x̄ ≤ x ≤ x0 + 1

where x0 ∈ [0, 1] is such that l(x0) = max[0,1] l2, and x̄ is defined as before, by
the relation ∫ x̄

x0

(l2(s)− py)ds =
∫ x0+1

x̄

(l2(s) + py)ds

If γ|py| ≥ 〈l2〉, a solution of the cell problem (3.46) whit λ provided by the
position (3.45), is given by

χ(x) =
∫ x

x0

(
l2(s)

γ
+ λ− p

)
ds, for any x ∈ [x0, x0 + 1]

where x0 is such that l2(x0) = 〈l2〉.
Finally, by (3.44) and (3.45), we can write the following explicit expression

for the effective Hamiltonian

H̄(px, py) = min
[0,1]

l1(x)−max
[0,1]

l2(x) + (|px| − 〈l1〉)+ − (γ|py| − 〈l2〉)+ (3.47)

In conclusion, with some additional assumption, we can establish the stabilizing
property, and formulae for the effective initial datum. So, the effective problem
for the 2D convex–concave eikonal equation can be explicitly written. The
additional assumptions we require, are those used in Theorem 3.22

Theorem 3.23. Suppose that, for any (x, y) ∈ R2 there exists (ξx,y, ηx,y) ∈ R2

saddle point of the function (ξ, η) 7→ h(x, y, ξ, η). Then the solutions uε of
(3.38) converge as ε → 0+ to the solution of the effective problem

∂tu + H̄(Dxu,Dyu) = 0 in (0,+∞)× R× R
u(0, x, y) = h(x, y, ξx,y, ηx,y) on {0} × R× R

where H̄(px, py) is given by (3.47).
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Theorem 3.24. Suppose that either

h(x, y, ξ, η) = h1(x, y, ξ − η) + h3(x, y, η), and γ < 1

or

h(x, y, ξ, η) = h(x, y, ξ, η) = h1(x, y, ξ − η) + h2(x, y, ξ), and γ > 1

Then the solutions uε of (3.38) converge as ε → 0+ to the solution of the
effective problem

∂tu + H̄(Dxu,Dyu) = 0 in (0, +∞)× R× R
u(0, x, y) = maxη minξ h(x, y, ξ, η) on {0} × R× R

where H̄(px, py) is given by (3.47).

3.3 Homogenization with strongly dependent
fast variables

In the previous section, we studied the case in which the two competitors control
a group of variables, and the ergodic problem is splitted in two sub-problems.
The purpose of this section is to study a complete different case. Such strong
interaction is apparent in the expression of the Isaacs’ equation.

Let us denote by x, y ∈ RN/2 two groups of variables. We consider the
following homogenization problem

∂tu
ε + H

(
x, y, x

ε , y
ε , Dxuε, Dyuε

)
= 0 in (0, +∞)× RN × RN

u(0, x, y) = h
(
x, y, x

ε , y
ε

)
on {0} × RN × RN (3.48)

assuming H and h have the following form:

H(x, y, ξ, η, px, py) = H1(x, y, ξ − η, px)−H2(x, y, ξ − η, py) (3.49)
h = h(x, y, ξ − η) (3.50)

The Greek letters ξ and η are used to indicate the fast variables associated to
x and y, respectively.

We want to prove ergodicity and stabilization properties for H,h, accordingly
with the definitions given in Section 1.1. To establish ergodicity for H, we fix
x, y and px, py and deal with the following cell problem:

∂tv + H1(x̄, ȳ, ξ − η, Dξv + p̄x)−H2(x̄, ȳ, ξ − η, Dηv + p̄y) = 0
in (0,∞)× RN × RN (3.51)

with initial condition v(0, x̄, ȳ, ξ, η) = 0. Recall that ergodicity holds if

lim
t→∞

v(t, x̄, ȳ, ξ, η)
t

= const, uniformly in ξ, η (3.52)

and that stabilization holds if the unique bounded viscosity solution w(t, x̄, ȳ, ξ, η)
of the cell problem for the homogeneous part of H associated to (3.51) with ini-
tial condition w(0, x̄, ȳ, ξ, η) = h(x̄, ȳ, ξ − η) satisfies

lim
t→∞

w(t, x̄, ȳ, ξ, η) = const, uniformly in ξ, η.
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Let us concentrate on the problem (3.51). Motivated by the way in which
H and h depend on the fast variables, we set ξ − η =: ζ, and guess the solution
v has the following form:

v(t, ξ, η) = u(t, ξ − η).

Hereafter, to ease notations, we omit to write the frozen variables x̄, ȳ. The
function u(t, ζ) solves the following problem:

∂tu + H1(ζ, Dζu + px)−H2(z,−Dζu + py) = 0 in (0, +∞)× RN

u(0, ζ) = h(ζ) on {0} × RN

If the operator
H(ζ, P ) := H1(ζ, P )−H2(ζ,−P )

is ergodic, than u(t, ζ) converges, as t goes to infinity, to a constant, which is
uniform in ζ; consequently (3.52) holds. Let us summarize this simple remark
in the following statement.

Lemma 3.25. Assume H and h satisfy (3.49) and (3.50). If H is ergodic, then
H is ergodic. Similarly, the pair (H, h) is stabilizing if (H, h) is so.

Example 3.26. Let γ be a positive fixed parameter. Consider

H(ξ, η, px, py) = |px| − γ|py| − l(ξ − η)

(the fixed variables x̄ and ȳ are dropped in the notations). Then we can write
H in the form (3.49) with

H1(ξ, η, px) = |px| − l(ξ − η)
1− γ

, H2(ξ, η, py) = γ|py| − γl(ξ − η)
1− γ

In this case the cell problem (3.51) is

∂tv + |Dξv + px| − γ|Dηv + py| = l(ξ − η)

Applying the change of variables ζ = ξ − η, it is apparent that, if γ 6= 1 the
operator

H(z, P ) := H1(ζ, P )−H2(ζ,−P ) = (1− γ)|P | − l(ζ)

is coercive, i.e.
lim

|P |→+∞
H(z, P ) = +∞

and then it is ergodic.

The previous simple example can be easily generalized to a class of convex–
concave eiconal equations which is disjoint by the one considered in Theorem
3.22.

Proposition 3.27. Let γ be a positive fixed parameter, and g a function such
that g ≥ g0 > 0. If γ 6= 1 then there exist H̄ and h̄ such that the solutions uε of

∂tu
ε + g

(
x, y, x−y

ε

) |Dxuε| − γg
(
x, y, x−y

ε

) |Dyuε| = l
(
x, y, x−y

ε

)
uε(0, x, y) = h

(
x, y, x−y

ε

)
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converge as ε → 0+, to the solution of

∂tu + H̄(x, y, Dxu,Dyu) = 0
u(0, x, y) = h̄(x, y)

Proposition 3.7 shows that, even if the two Hamiltonians H1 and H2 are
coercive, but they do not enjoy the form (3.49), then homogenization may not
hold. More precisely, we can always exhibit a cost l for which homogeniza-
tion fails. The next Proposition completes the description and generalize the
statement of Proposition 3.27.

Proposition 3.28. Assume H and h satisfy (3.49) and (3.50) respectively, and
that suitable positive constants α1, α2, β, C1, C2 do exist such that

∣∣H1(x, y, ξ − η, px)− α1|px|β
∣∣ ≤ C1

∣∣H2(x, y, ξ − η, px)− α2|py|β
∣∣ ≤ C2

(3.53)

If α1 6= α2 then homogenization holds, i.e. there exist H̄ and h̄ such that the
solutions uε of (3.48) converge as ε → 0+, to the solution of

∂tu + H̄(x, y, Dxu,Dyu) = 0
u(0, x, y) = h̄(x, y)

Proof. Let us omit in the notation the variables x, y. In the light of the comments
made in the beginning of the section, it is enough to prove that is ergodic the
operator H(z, P ) := H1(z, P )−H2(z,−P ), where we posed z = ξ − η.

Now, if (3.53) holds, we easily check that

H1(z, P )−H2(z,−P ) ≥ (α1 − α2)|P |β + C

being C a certain constant. Then, if α1 > α2 (respectively, <) then H (resp,
−H) is coercive in the P variables, and then ergodic. The conclusion follows by
Lemma 3.25.

Thanks to Proposition 3.7 and Proposition 3.28 the analysis of non-coercive
Hamiltonians of the form (3.49) satisfying condition (3.53) becomes very sharp.
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[34] X. Cabré, L. Caffarelli. Fully nonlinear elliptic equations. Amer. Math. Soc.,
Providence, 1995.

[35] P. Cardaliaguet, P.L. Lions, P. Souganidis. A discussion about the homog-
enization of moving interfaces. Manuscript. Version: May 18, 2007.

[36] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, P. Wolenski. Nonsmooth analysis
and control theory, Springer-Verlag, New York, 1998.

[37] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern. Asymptotic stability and smooth
Lyapunov functions. J. Differential Equations Vol. 149 no.1, pp. 69–114,
(1998).

[38] F.H. Clarke, Yu.S. Ledyaev, L. Rifford, R.J. Stern. Feedback stabilization
and Lyapunov functions. SIAM J. Control Optim. Vol. 39 no.1, pp. 25–48,
(2000).

[39] M.G.Crandall, H.Ishii, P.L.Lions. User’s Guide to Viscosity Solutions of
Second Order Partial Differential Equations. Bull. of the American Math-
ematical Society Vol.27, No.1, pp.1–67 (1992)

[40] P.D.Christofides, A.R.Teel. Singular Perturbation and Input-to-State Sta-
bility IEEE Transactions on Automatic Control Vol.41, No.11 (1996)

[41] P. D. Christofides. Robust output feedback control of nonlinear singularly
perturbed systems. Automatica J. IFAC Vol. 36 no. 1, pp. 45–52 (2000).

[42] K.Deimling. Multivalued Differential Equations. de Gruyter Series in Non-
linear Analysis and Applications 1. Walter de Gruyter, 1992

[43] A.L.Dontchev, T. Zolezzi. Well-posed optimization problems, Lecture Notes
in Mathematics, n.1543, Springer-Verlag, Berlin, 1993

[44] L.C. Evans. The perturbed test function method for viscosity solutions of
nonlinear P.D.E. Proceedings of the Royal Society of Edinburgh Sect. A
Vol.111, pp.359–375 (1989)

[45] ———. Periodic homogeneisation of certain fully nonlinear partial differ-
ential equations. Proceedings of the Royal Society of Edinburgh Sect. A
Vol.120, pp.245–265 (1992)

85



[46] ———. Partial Differential Equations, American Math. Soc., Providence,
RI, 1998.

[47] ———. A survey of partial differential equations methods in weak KAM
theory. Comm. Pure Appl. Math. Vol.57, pp.445–480 (2004)

[48] L.C. Evans, I. Ishii. Differential games and nonlinear first order PDE on
bounded domains. Manuscripta Math. Vol.49, pp.109–139 (1984)

[49] L.C. Evans, P.E. Souganidis. Differential games and representation formu-
las for solutions of Hamilton-Jacobi-Isaacs equations. Indiana Univ. Math.
J. Vol.33, pp.773–797 (1984)

[50] W.H. Fleming, H.M. Soner. Controlled Markov Processes and Viscosity
Solutions, 2nd edition. Springer-Verlag, Berlin, 2006.

[51] W.H. Fleming, P.E. Souganidis. On the existence of value functions of
two-players, zero-sum stochastic differential games. Indiana Univ. Math.
J. Vol.38, pp.293–314 (1989).

[52] H. Frankowska. Lower Semicontinuous Solutions of Hamilton–Jacobi Equa-
tions. SIAM J. Control Optim. Vol.31, No.1, pp.257–272 (1993)

[53] V. Gaitsgory. Limit Hamilton-Jacobi-Isaacs equations for singularly per-
turbed zero-sum differential games. Journal of Mathematical Analysis and
Applications Vol.202, pp.862–899 (1996)

[54] ———. On a representation of the limit occupational measures set of a
control system with applications to singularly perturbed control systems.
SIAM J. Control Optim. Vol.43, pp.325–340 (2004)

[55] V.Gaitsgory, A.Leizarowitz. Limit Occupational Measures Set for a Control
System and Averaging of Singularly Perturbed Control System. Journal of
Mathematical Analysis and Applications Vol.233, pp.461–475 (1999)

[56] D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second
order, 2nd edition. Springer-Verlag, New-York, 1983.

[57] G. Grammel. Averaging of Singularly Perturbed Systems. Nonlinear Anal-
ysis Vol.28, No.11, pp.1851–1865 (1997)

[58] I. Ishii, P.-L. Lions. Viscosity solutions of fully nonlinear second-order ellip-
tic partial differential equations. J. Differential Equations Vol. 83, pp.26–78
(1990)

[59] R. Jensen, P.-L. Lions. Some asymptotic problems in fully nonlinear elliptic
equations and stochastic control. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. 11, pp. 129–176 (1984)
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