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Abstract

In this thesis, cross-layer optimization techniques fareleiss networks are investigated.
An introduction to the concept of cross-layer design is es, reviewing the related
literature, from both an architectural and an analyticahpof view.

Three original contributions, which jointly address theiwpzation at different levels
of the protocol stack are then presented.

The first contribution refers to a theoretical approach tanctel allocation in multi-
channel ad hoc networks, where each node is provided withipteutadio interfaces. An
algorithm for the joint solution of congestion control, am&| allocation and transmission
scheduling is proposed.

The second contribution refers to a cross-layer optinorafiamework in the context
of standard IEEE 802.11 WLAN. A mathematical model for tiék performance is devel-
oped, and a sufficient description for the medium statusfiael® which allows to account
for propagation and interference conditions. The optitnraframework is used to de-
velop algorithms for rate adaptation and VoIP quality erdeament which are adaptive to a
broad range of working conditions.

Resource allocation in wireless cellular networks is alddrassed and the problem of
trading fairness for physical layer efficiency is investeghby means of a simple algorithm
spanning PHY, MAC and LL layers.

In the end, additional published contributions relatednt® ¢ross-layer paradigm are
introduced, regarding microeconomic aspects in resodlmession and efficiency consid-
erations about scatternet topologies in Bluetooth netsiork






Sommario

In questa tesi viene discusso il concettadiss-layer desigm reti wireless. Il significato
del termine cross-layer, in base alla vasta letteratusdezdie, e introdotto sia dal punto di
vista architetturale, che dal punto di vista dei tentagertci di formulare matematicamente
il concetto. | contributi originali di questa tesi riguarsatre esempi di progettazione
cross-layer in diversi ambiti applicativi.

Il primo contributo, di carattere teorico, é riferito a ratl hoc in cui sono disponibili
canali multipli e ciascun nodo della rete puo essere préwdsinterfacce radio multiple.
In questo ambito viene proposto uno studio di tipo analitice porta alla definizione di un
algoritmo per la risoluzione congiunta dei problemi di colto di congestione, allocazione
dei canali e scheduling delle trasmissioni.

Il secondo contributo riguarda la proposta di un meccanidnaitimizzazione cross-
layer nello specifico scenario di reti IEEE 802.11 standafigne presentato un modello
matematico per le prestazioni dei link, basato sulla deinedi una descrizione sufficien-
te dello stato del mezzo. L'architettura proposta e suceasente usata per realizzare una
algoritmo di rate adaptation e un algoritmo per I'ottimizane della qualita di connessioni
\OIP.

Il terzo contributo fa riferimento ad una rete multi-cefité basata su un accesso al
mezzo di tipo FDMA. In tale scenario, viene discussa I'iagone fra I'allocazione delle
risorse a livello fisico e la gestione della qualita del sgova livello di link layer.

Vengono inoltre introdotti studi ulteriori oggetto di pul@azioni internazionali, nei
guali vengono toccati aspetti microeconomici nell’allpiome di risorse e considerazioni
sull’efficienza di diverse topologie in scatternet Blugtoo
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Chapter 1

Introduction

Wireless and wireline communications have rapidly evolirethe last decade, follow-

ing the increasing data rate and quality of service requergsr The increasing demand
for multimedia contents such as video streaming, voice tReervices, gaming, and the
massive peer-to-peer transfer phenomena, rises the needrjohigh performance com-

munications networks.

The aforementioned applications do not only require higia date communications,
they also require the traffic to be delivered with additiocahstraints related to delay,
reliability and security. For instance, audio or video atning communications impose
strict requirements in terms of delay and minimum guarahbeendwidth. The delay issue
IS even more important in real time applications such as ggror remote controlling.
Peer-to-peer communications are instead delay toleratthby have very high and bursty
bandwidth demand.

Moreover, the current trend is the design of communicatiemvarks able to concur-
rently support many different applications in a seamlesg ko exploiting the conver-
gence among different technologies. As a consequenceffatiet kinds of traffic, gener-
ated by different applications, have to be carried over #mesnetwork, sharing common
resources. While this approach allows for an increaseduiléyj it also rises huge prob-
lems in the network design, as it requires networks to betasgapnd reconfigurable in
order to achieve optimum performance under different waykionditions.

In particular, the packet switched architecture seems tind@referred solution, and
fixed and mobile services providing voice and multimedia oamications are migrating
toward this paradigm. This architecture allows for greatiffidity, but also presents chal-
lenging and unresolved issues to be dealt with at all layetke protocol stack. Efficient
congestion control, adaptive routing algorithms and sscommunications with guaran-
teed QoS are only some of the issues currently being inastig

When considering in particular wireless and mobile netwpall the previous problems
are exacerbated by the peculiar features and limitatiopsg®d by the wireless channel.
Both cellular and ah hoc networks have to cope with some lesies such as scarcity of
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spectrum, mobility, and limited power supply. The scarotyvailable spectrum, limited
by the regulations or by the interference caused by preegistchnologies, requires the
design of bandwidth efficient systems. Mobility requiressmission systems able to cope
with the challenging propagation environment and prot®adile to deal with changing
topology. Limited power supply asks for efficiency at all éay of the protocol stack in
order to reduce the energy consumption, while guaranteaquate performance.

From this brief overview it is clear how the design of netwarkhitectures and the
optimization of their performance is a very challengingtashere many different require-
ments have to be satisfied.

The formerly proposed layered architecture based on thBdSOreference model and
the TCP/IP stack, though of fundamental importance in atigiior an easy design and for
understanding the basic network functionalities, has sbewn to impose great limitations
on the performance optimization.

One of the basic concepts related to the layered architecduhe separation among
different layers, i.e., a function realized inside a layas to be performed independently of
the specific implementation of all other layers. This asstiwngllows for the independent
design of each layer. It is easy to show that this assumptes dot properly model the
real network behavior since, in actual networks, functi@adized at different layers in the
protocol stack interact with each other in a complex wayhgbat the layering model itself
represents a fictitious simplification.

Moreover, due to lack in analytical modeling, most of thetpcols complying with that
architecture have been designed based on heuristic coaisiohes and without accounting
for the interaction with all the other protocols concurtgmtinning at different layers. It
happens thus that the joint behavior of all of them can leadnétwork to a suboptimal
working condition, which sometimes can not even be predicte

A well known and easy example is represented by the TCP mexhadesigned for
congestion control at the transport layer in wireline netgpwhere the packet loss rate
at the physical layer is typically negligible. Due to theKaaf analytical models at the
time TCP was designed, the mechanism has been based ontihergrsiderations and
its performance has been shown to be suboptimal. Moreovenvapplied to wireless
connections, TCP shows poor performance, since the higitkeploss ratio experienced
in wireless channels is misinterpreted by the TCP mecharisadling the connection to
a wrong working point. Only recently, TCP has been reversgreered by using suit-
able analytical network models for the interaction betwgansport and physical layer,
achieving a great performance improvement.

The investigation of the relationship among different lsyand the design of mecha-
nisms which break the classic layering, has lead to the garéeross-layer optimization
CLO in the following. In this context, the study is devotedaaderstanding how different
layers interact with each other and how this behavior can beeted in a more efficient
way than the current layered structure does.



Different approaches for designing cross-layersolutioage been taken, from both
architectural and performance optimization perspectiddsuristic solutions based on a
redesign of the protocol stack have been proposed, whicaneetthe former architecture
by allowing for a deeper interaction among different layeréie interaction among lay-
ers is achieved by using dedicated signaling channels, bgingedifferent layers or by
completely redesigning the system model.

The understanding of the complex interactions, and thusctieect design of new
architectures, turns out to be very difficult. Nonethelsssne analytical approaches have
been also investigated which start from mathematical niogleff the network and use this
model to define new architectures. Some of them only refdrgstudy of the interaction
among a limited number of layers, usually neighboring layeithe classic protocol stack.
A plethora of proposals has been presented in the literatitleessing specific issues in
this context.

Recently, more exhaustive analysis have been proposedhwiito use mathematical
argumentations for defining new concepts in the layeringgde®ne of this approaches
refers to thdayering as optimization decomposition this case, the task of optimizing
the network performance is mathematically decomposed imyrsabtasks which can be
used to define a new layered architecture, where each layechsirge of solving a specific
optimization subtask, jointly working with all the othewykxs.

The concept of cross-layeroptimization is very general @tbe applied to different
network models. In this thesis, the focus in on wireless addra cellular networks and
three main contributions are presented.

The first one is related to multi-channel multi-radio ad hetworks, i.e., wireless ad
hoc networks where each node is provided with multiple radierfaces that can be tuned
on different frequency channels. These kinds of networkerii all the issues related to
classic single channel ad hoc networks, plus some chaligmgoblems due to the presence
of multiple channels and multiple radio interfaces. Thasraission scheduling becomes
in fact more complex in particular when the number of inteefais less than the number of
channels. In this case the optimum binding of the interfacdgle transmission channels
has in general a very high computational complexity andiregwa centralized solver.

In this context a joint congestion control, channel allamatand scheduling algorithm
is derived by an analytical argument. The network is modated flow graph introducing
virtual links inside each node for the channel loading. Themoization approach follows
the previously introduced concept of layering as optinmiaratiecomposition, and allows
for the investigation of the network performance as a fumcof the number of channels,
interfaces and concurrent transmission flows. This workleen developed during the
visiting period at the University of lllinois at Urbana-Ghaaign and in collaboration with
Prof. Nitin Vaidya.

The second contribution refers to the design of a cross-lagemization framework
for standard IEEE 802.11 networks. The standard providesitetl set of tunable param-
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eters which can be set according to the designers’ need. #miaption framework based
on a mathematical modeling of the link performance is desigwhich allows to tune such
parameters according to different optimization goals. Ma¢hematical model is based on
the availability of a description for the status of the medwmhere the link is operating. A
sufficient description for the medium status is thus defimebaaway to estimate such status
in real networks is proposed. Such an estimation is perfdrnyeusing information avail-
able locally on each network card and explicitly describethe standard specifications. In
particular we use the optimization framework to implemerdta adaptation algorithm for
goodput optimization, GORA, and an algorithm for optimgthe perceived voice quality
in a VoIP connection. Both algorithms exploit the mathegatmodel embedded in the
framework and are able to adapt the network parameters ioaalyange of working con-
ditions, according to the specific optimization goal. Thegmsed mechanisms take into
account the propagation characteristics and the congestidghe medium and set the pa-
rameters accordingly. In particular the rate adaptatigorahm is able to adapt the PHY
rate with respect to both the channel impairment and the euoflicontending transmitter,
which is one of the most original contributions. This worlsleen developed in collabora-
tion with ST Microelectronics (Diego Melpignano, David §aes) and other members of
the SIGNET group at the University of Padua (Andrea Zan&kalerico Maguolo, Nicola
Baldo).

The third contribution refers to multicellular wirelesstwerks. The interaction be-
tween the resource allocation at the PHY-MAC layer and tlinedaling at the LL layer
is studied. The problem of defining a simple and distributgdrithm for the resource
allocation (rate, power, subchannels allocation) whidbved for an efficient use of the re-
sources at the PHY layer is considered, together with a sdingdnechanism at the LL
which is designed to provide fairness among different usdére mechanism is tested in an
FDMA/TDMA multicellular scenario with a realistic channelodel. A trade off between
physical layer efficiency and quality of service provisiogiarises and a tunable mecha-
nism is discussed. This work has been carried out within REV® project, granted by
the Italian Research Ministry.

Additionally, further published contributions are briefiyroduced in order to provide a
broader overview on the possible applications of the cltagsrapproach. Performance op-
timization in Bluetooth networks is discussed and a mioooemic model is used to study
the interaction between the resource allocation and thre@ngrimechanism in a wireless
hotspot.

1.1 Structure of the Thesis

The thesis is organized in five additional chapters whictbaedly described in this section.
Chapter 2 presents a more detailed introduction to the toptbis thesis while re-
viewing the literature. An overview of the cross-layer cepicand the related different

4



1.1. Structure of the Thesis

approaches, from both an architectural and a theoretidad pbview, will be presented. In
particular some proposed protocol stack architecturesdormunications among different
layers, the concepts difack-pressurdased scheduling and the paradigmayfering as
optimization decompositiowill be introduced. A detailed literature review will there b
devoted to the specific topics that will be presented in Glrva@, 4 and 5. In patrticular,
multi-channel multi-radio ad hoc networks will be intro@ual; together with some mod-
eling aspects, asymptotic results on capacity, theotetmaroaches to performance opti-
mization, and some specific issues on scheduling that willdsful in Chapter 3. Some
practically oriented and heuristic solutions will also sdd. Resource allocation prob-
lems in cellular networks will then be presented, with gantr attention to FDMA based
networks for which the problem of finding efficient resourdleaation algorithms at the
MAC/PHY layer will be discussed.

Chapter 3 proposes an application of the cross-layercescgpscribing an analytical
model for multi-channel, multi-radio ad hoc networks. Thegosed model is based on
the recently developed concept of layering as optimizatieoomposition. An original
algorithm for joint source rate adaptation, channel log@nd scheduling is proposed. In
this case, the layers in the new network architecture arefirest, based on mathematical
considerations: each layer represents a different taskaroptimization problem. The
algorithm is described and simulation results are presente

Chapter 4 deals with cross-layer optimization in IEEE 8@z étworks. The proposed
optimization framework is introduced and the constitudatks are described. In partic-
ular the definition of Medium Status is given, which is theibder the development of
the mathematical model describing the link performancee fflamework is then applied
for implementing two optimization algorithms. The first amders to a Goodput Optimal
Rate Adaptation (GORA). The algorithm is introduced anduation results are presented
which show the ability of GORA to adapt the PHY transmissite ito the propagation and
the congestion conditions. The second one is focused onptimiaation of a VoIP con-
nection quality. The model for evaluating the voice quaditd the resulting optimization
algorithms are presented and evaluated.

Chapter 5 deals with multicellular networks and presentseahanism for the inter-
action among the proposed physical layer resource alloeat LL scheduler. A simple
architecture is introduced which allows to investigatettiaee off between fairness in the
provided service at the LL layer and efficiency at the PHY faye

Chapter 6 presents additional published results relatenidss-layerinteractions. In
particular, the first proposed work investigates the irtitoa among the resource allo-
cation at the MAC layer and the users demand by using a micrmecic model which
accounts for the pricing mechanism applied by the providére second one is an ana-
lytical investigation on the efficiency of Bluetooth scattet topologies, where the traffic
pattern is also accounted for in the optimization.






Chapter 2

Related Work and Problem Statement

In this chapter, the basic knowledge needed for undersigriie results presented in the
next chapters will be provided, reviewing the work alreagpeared in the literature and
introducing the models for the studies presented later ahigthesis. This chapter is
organized in four parts.

In the first part, an introduction to the concept of crosstayg will be presented,
showing some approaches appeared in the literature, fremabpure architectural and a
theoretical point of view. Particular emphasis will be mesd to the analytical approach
based on the concept back-pressurand the paradigm dayering as optimization de-
compositionthat will be used in Chapter 3.

In the second part, the specific case of ad hoc networks isderes, with particular
attention to the case of multi-channel multi-radio ad homvwoeks, which clearly includes
the case of classic single channel networks. Commonly ussdels for topology and
interference representation are introduced, and somegsyinresults on capacity are re-
ported. Different optimization approaches are presentadiware based on the previously
introduced network model. The problem of scheduling in skiods of networks is intro-
duced and some results are shown. Some heuristic approaehfsally reported, which
are close to practical implementation.

In the third part, existing rate adaptation algorithms fBEE 802.11 networks are
briefly described in order to allow for a comparison with treegliar features of the rate
adaptation algorithm presented in Chapter 4. A model fotityuavaluation of VoIP con-
nections is also introduced.

In the fourth part, the case of resource allocation in catloktworks is considered. The
problem of allocating physical resources in an FDMA/TDMAItaellular environment is
introduced, together with the concepts of multiuser, fesguy and time diversity. The
benefit of cross-layer approaches is depicted, introdutieagopic of Chapter 5.



Chapter 2. Related Work and Problem Statement

2.1 CLO: general concepts

For many years, network design has been based on the wellrki®@/OSI reference
model or, more realistically, on the TCP/IP reference mo&lch models have been of
great importance in allowing for a clean and easy protocsigte facilitating the protocol
standardization and thus the interoperability among dffeactual networks. Figure 2.1
shows the two famous networking models.

TCP!IP 0sl Networking Function

Application

ProcesslAplication Presentation - Application
- User Interface

Session

-End-to-end data integrity

Host-To-Host Transport -Service quality

Internet N k Routing b networks

Datalink -Physical interconnection
Network Access

Physical between two points

Figure 2.1: ISO/OSI and TCP/IP protocol stacks

It is worth recalling the principles which inspired the posal of the layered architec-
ture.

e A new layer has to be created where a different abstractineesed;
e each layer should perform a well defined function;
¢ information flow across-layers should be minimized;

e the number of layers should be large enough such that diffduactions are in
different layers;

¢ the function of each layer should be easily mapped on a pwbtoc

These rules essentially state a hard separation amongritigdios inside different lay-
ers, as each layer has to appear as a black box to all the .others

This model allows for an easy protocol design, as each pobtesides inside a sin-
gle layer and has to realize only the functions for which tageér is in charge. Moreover
the interaction with higher and lower layers is limited te #ftnowledge of the general in-
put/output specifications provided by the interface usemtmect with neighboring layers,
thus each protocol can be implemented independently di@lbther ones.

Nonetheless, recently the need for pushing the networlopaence toward its limit
has revealed the intrinsic limitations imposed by theseriag assumptions.



2.1. CLO: general concepts

Some authors note that layering is itself an artifact bezafishe actual complex inter-
actions existing among all different networking functigk Thus, the model needs to be
reconsidered for a better understanding and optimizafidimeonetwork behavior.

In particular, a deeper interaction among neighboring amdmeighboring layers seems
to be the fist step for enhancing the network performance,ttheiterm cross-layer design.
More effective solutions could also require to completalyak the layered model or use a
different concept of layering.

The idea of cross-layer design in networking is old [6], thlotwhere is not yet a clear
definition and a unique approach. The main reason for this imcelated to the com-
plexity of the network structure, which has not yet beenyfulhderstood and modeled
from a mathematical point of view. Clearly, form a practigarspective, changing the
network architecture model would bring enormous problenth existing and deployed
architectures and protocols. That is why pure cross-lagpraaches are mostly confined
to the literature, while practical solutions still have tpe with the layered architecture
and compromise solutions have to be considered.

Nonetheless, different proposal for enhancing the welMkmdéSO/OSI and TCP/IP
stacks have appeared in the literature and a plethora oifispgork which breaks the lay-
ered architecture with the aim of improving the network parfance has been published.
A first approach is shown in Figure 2.2, taken from [3]. Hemfibcus is on specific inter-
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Real-/non-real time services

Packet loss ratio, jitter, L T {} Transport
ete
it TCP/UDPRIP

Joint error control using Network ‘ Desired value of QoS
BER: Handoff notification parameters

IP/IntServDiffSery
4 F
Environment % Link Joint delay control

measurements reports: Link quality: FEC/ARQ
SNR. RSS, efc 1 -~ N

Physical \/
Channel conditions

MH

Figure 2.2: Cross layer architecture [3]

actions among layers, and on the needed signaling messagesticular each layer needs
to exchange control information only with a subset of theasmmg layers and the corre-
spondent message function is also introduced. In particatde the interaction between
the application and the physical layer which can be usedttinseiser’'s need according to
the PHY bandwidth and viceversa.

A more general concept refers to the enhancement of therexlayered architecture,
by defining general methods for exchanging control messagesg different layers. As
an example, Figure 2.3 reports the proposal appeared iwf#re the classic protocol
stack is augmented by superimposing transversal contolkegl Each control plane is in
charge of a different function and can interact with all thgdrs in order to achieve its
optimization goal. Thus each plane acts both as a commiuoricand a control plane.
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A further general approach is in Figure 2.4. In this propoakllayers communicate
with a single control plane, which is devoted to controllaitythe layers functions in a
unified way, according to some optimization criteria. Irstbase the control plane, which
becomes the core of the network node, can actually be usecateca new abstraction
of the network functionalities, and thus the layered strreeioses most of the original
meaning.

Many specific solutions have been proposed dealing withritegaction among a lim-
ited number of layers. For the sake of providing some simpt®fgof-concept, in the
following a few simple and well known examples are reportedrder to clarify the con-
cept of cross-layer interaction and show the potential fitsne

A simple example of interaction between the functions oflthdayer and the PHY
layer is referred to the case of the LL layer being able to@kphultiuser diversity, which
is a property related to the physical layer behavior [7]. €der an access point using a
TDMA MAC with three users connected to it. Only downlink teamnissions are considered
and each channel between the access point and a user hasobghlp ON/OFF states
due to fading phenomena. In case the users are served by al@ameel unaware round
robin mechanism, the effective channel utilization giveeach user is 1/6. Using a round
robin mechanism which only serves users with a good charatd, ghe overall channel
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utilization grows to 7/8, and the per—user available chbim&/24, which almost twice
than in the channel unaware case. Thus the interaction batlRiY and LL layers can be
beneficial.

An example of the need to break the layered structure is als@sented by the inter-
action between transport layer and physical layer in a e&®bystem. TCP is a congestion
control mechanism which adapts the traffic injected intortevork, based on measure-
ments of the packet losses, which is assumed to be an irahcatithe link congestion.
In a wireless link, this assumption does not hold anymore,tdithe high probability of a
packet loss being caused by a channel impairment.

For a correct behavior of the TCP mechanism, the two causpaakkt losses should
be discerned. Two proposed solutions refer to the Snoop TdRhe TCP Freeze [8, 9].
In the former one the packet losses occurring within the les® link are hidden to the
TCP mechanism by adding a packet cache at the IP layer arhsetitting the packets
only within the wireless link, without notifying the TCP lay (thus breaking the end-to-
end nature of TCP). In the latter one the receiver can bloekctinnection by setting a
null receiving window as long as the channel is in a bad camd{thus enabling a channel
aware behavior).

As pointed out in [10], it may also happen that unintendedsilayer interactions can
have undesirable consequences on overall system perfoen@nce the entire network
stack is considered, cross-layer design may lead to cycléeilogical architecture, since
many interactions are not easily foreseen.

Moreover, the real power of modularity may be lost. Thatas the sake of optimizing
performance, cross-layer techniques make vain the pbgsifi designing protocols at a
particular layer without worrying about the rest of the &tac

A first example of bad CL design in [10] is based on a 802.11reehesing rate adap-
tation, showing that paths found by any popular DSDV impletagon may prove to be
highly inefficient due to rate adaptation. Also, even stgbihay be an issue, and a sec-
ond example, shows that when the rate is adapted to the smmaterference ratio the
interaction may bring networks to be unstable.

All the above described approaches and considerationsoss-tayering are based on
pre—existing layered structures and make use of intuitigaristic or trial-and—error con-
siderations which need to be designed and verified casexsy-c

Clearly, the availability of a complete mathematical mofielthe network behavior
would solve the problem by allowing for a reliable definitioithe cross-layering concept
and a systematic design of performance enhancing solutions

Recently, some mathematical models have been presenteih are based on simpli-
fied scenarios but nonetheless represent a promising waynékt subsection is devoted
to the presentation of such mathematical formalization.

11
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2.2 CLO: analytical aspects

In this section the focus is on cross-layer solutions basealtheoretical background.

A seminal work introducing a control theory approach to retnoptimization is pre-
sented in [11], where algorithms for congestion controhattransport layer has been in-
troduced and the problem of regulating the source traffecitgd into the network is solved
by using control theory. Sources compute the optimum floevbbased on a feedback price
accounting for the network load and by using an iterativewddigm, which is proved to
converge to the optimum solution under certain assumptions

Algorithms for joint congestion control and transmissiameduling have then been
proposed [12] which are able to jointly optimize source rét&k scheduling and routing
[13, 14, 15] including also the power control operation [18].

The mathematical tools widely used in these analytical @pgres are optimization
problem decomposition by Lagrange relaxation, sub gradi&gorithms and Lyapunov
stability [18, 19]. In the following, a detailed descriptiof a general mathematical formu-
lation for designing cross-layer algorithms is present&kis formulation can be used to
model the network at different layers and is suited for daisig cross-layer optimization
algorithms. It will be used in Chapter 3, for developing anjaiongestion control, channel
allocation and scheduling mechanism for multi-channeltimratlio ad hoc networks.

The concept of “layering as optimization decomposition$ baen investigated in the
last few years as a powerful way for analytically definingssréayer optimization problems
and at the same time designing feasible algorithms for gwdution [20].

In order to describe the analytical formulation of the cgrticgeome notation is intro-
duced. The set of nodes{s : n = 1,..., N}, with N the number of nodes. Traffic flows
are, in general, carried over multi-hop routes. Each erghtbunicast connection will be
referred to as @ommodityin the following. Let{s : s = 1,...,S} be the commodities
set, wheres can be considered as the index representing all the flowg goward a same
given destination. Note that a commodity is characterizethb destination node, so that
multiple sources with the same destination can be congsidesa single commodity. The
input rate for commodity at noden is \?.

Let \ be the vector of all input rates. Each input rate can assufnes®’ € A:. Each
noden will be provided with an input queu€; for each commodity All the incoming
traffic for commoditys is loaded on queug. Letr; , be the transmission rate associated
with the flow between nodes and b carrying traffic for the commodity and7 be the
corresponding vector for all,b,s. The physical layer capacity for the link between nodes
a andb is denoted as, ;. Let us denote byo the vector consisting af, ; for all nodes
a,b.The feasible rate region, i.e. the set of all feasibleectors, is denoted a4/, which
depends on the interference model. A general communicatoninterference model is
initially assumed, which can be used to model both ad hoc athdar networks, being the
formulation independent from the specific communicatiordeio

12
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The utility function for commoditys associated with each source nadés denoted
by G:(\:). To allow the use of convex optimization techniques, all atiéty functions
are assumed to be strictly concave, and the rate veatovgl actually be considered as
belonging to the convex hull of the sE¥, w € Co()V). Similar assumptions have been
made in past work as well [14, 20]. Different utility functis can be used to achieve
different network behaviors.

Define thestability of a network as the condition of having limited queue lengtbre
preciselylim, ... E[>_, , U;] < +oo, whereE[:| represents the expectation operator.

Let A be thecapacity regiorof a network, i.e., the set of all feasible input rate vectors
\ for which the network is stable.

In the following, a general formulation is presented in terof an optimization prob-
lem on a network flow where the goal is the utility maximizatioThe problem is then
decomposed by using a Lagrangian relaxation. This operaitilh allow to define the op-
timization layers and a distributed algorithm for the tfilmaximization as proposed in
[20]. The algorithm turns out to be based on the concept ofKljessure” scheduling
[14]. Similar solutions are presented in [13].

The proposed examples will show a cross layer algorithm kvailows for the interac-
tion between a congestion control mechanism at the trankpar, the scheduling at the
LL layer and the resource allocation at the MAC/PHY layers.

More complex algorithms including further optimizatior@sde derived using the same
approach as will be shown in Chapter 3. A comprehensive sabadyt different way of
decomposing the optimization problem is presented in [21].

In the following, as an example, two decompositions are shaWwich are usually re-
ferred to as “link centric” and “node centric”.

2.2.1 General problem formulation

Based on the previously introduced notation, the goal isteeshe following optimization
problem:

GE (N 2.1
gnaf; () (2.1)
s.t.:
Dorl A<D v ns (2.2)
( J
> o, Swip Vion (2.3)
w € Co(W) (2.4)
XS € A2 Vn, s (2.5)

In the previous model:
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e (2.1) is the objective function
e (2.2) is the flow conservation constraint at each node

e (2.3) is the constraint that the aggregate flow on a link madebs than the physical
rate

e (2.4) is the feasible rate region for the actual links.

e (2.5) is the feasible set for the input rates.

| Symbols:
G2 (N3) Utility function
A =[] Injected input rate

7 =[r;,] Flows associated to channel-link-commodity connections
w = [w,,] Physical rates associated to physical channel-link
w Feasible rate region for actual physical links
Feasible input rates

Table 2.1: Symbols

Based on the assumption about the utility functions and ecdimvexity of the domain,
(2.1)-(2.5) is a convex optimization problem [12, 21, 15].

2.2.2 Node centric solution

In the node centric approach (also referred to as “routepeddent”) the solution to the
optimization problem is obtained via its dual problem, xeig all the constraints (2.2).

Let U = [U;] be the vectors for all the Lagrange multipliers associatecbnstraints
(2.2). Relaxing the constraints (2.2) and (2.3), the Lageastual function for the problem
is:

L(U) = max G2 (AD) + U? re = ri =\ ,

where the optimization variables 7, w are still subject to constraints (2.3)-(2.5).

The previous expression can be rewritten as:

L(U) = Ga(A8) = NUs ¢ + 2.6
( ) m}é\iX{; n( n) n n,m} ( )
+ max {Z (U - U;)r;j} (2.7)

" Uigs
(2.8)
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Note how each maximization represents a different “layethie optimization task:
e (2.6) congestion control;
e (2.7) flow allocation, routing and physical rate allocation

The two layers use¥ as coupling variables.

The solution of the dual problem requires the computatiothefniny L(U). In case
the starting optimization problem is convex, then the solubf the dual problem yields
the solution of the original optimization problem [22] (tkas no duality gap).

Such minimization can be performed by using a subgradiesgdalgorithm, which
is used to iteratively search for tlié’. If we identify each iteration of the subgradient
algorithm as a different time slot then the updating equation for thé is

Un(t+1) = [Un(t) + a3, (U®)+

- Zfz,jw(t))) . (2.9)

The described algorithm allows for exploiting the full caja region available in the
network, under certain hypothesis on th&alue.

From the structure of the equation (2.9), in case 1, U:(t + 1) represents the queue
length at node: for traffic of commaoditys. This property has already been pointed out in
[15, 13, 23].

The most challenging issue in applying the algorithm to resivorks is the fact that
the scheduling related maximization requires the knowdeafghe feasible rate region.

2.2.3 Backpressure

Similar results to the ones shown for the node centric casendd4], where the problem
is approached from a control theory perspective.

The core of the algorithm presented in [14] is based on theesaaximization used in
the second line of equation (2.7). The quantity involvedat maximizatio Uy — U?) r;
is referred to as “backpressure”, since it accounts for ifierdnce of the queues length at
the input and output of each link. The maximization is su@t the scheduled links are the
one which carry the traffic in the direction of decreasingugselength.

In [14] the considered network physical layer assumes theark topology (and thus
the channel state) can have a finite number of states, theidisietted and within each
slot the network status (topology and channel) is constéiné evolution of the topology
in subsequents slots follows a Markov process. Under tisigraption, the proposed algo-
rithm is able to maximize the utility function to a value whits close to the optimal one,
while stabilizing the network. The algorithm is providedthvtunable parameters which
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can be used for trading optimality with stationary queuesile (i.e. trading utility for
delay)

2.2.4 Link centric solution

A different approach to the optimization decompositiorerdab the “link centric” case.
This formulation and similar ones, have been used for eaugysin congestion control
[11, 18].

Indicate withl the generic link between nodéandj. In the link centric approach, the
additional constrainh? = r; VI € L, is considered, whergé, represents a precomputed
path for commoditys. This assumption implies the input rate is simultaneougpliad to
all the links traversed by the flow.

Relaxing the constraint (2.3)

The previous expression can be rewritten as:

L(U) = max {Z PO EPYSY Ul} + ) Uy (2.10)
n,s l

linLg

thus showing how the maximization requires two separateatipas, one of them solving
the congestion control and the other one solving the scivegdptoblem.
Similarly to the node centric case, the updating equationhfe Lagrange multipliers

turns out to be .
Ul(t) + « (Z T — wj>]

s€l

U(t+1) =

and thudJ represents queues at the input of each link.

It can be noted how the congestion controller reacts to the cluthe queues along
the path. Each flow is associated with a predetermined pathtas assumed that the
rate computed by the congestion controller is applied demelously to all the links. The
scheduler is the throughput optimal one [14].

2.2.5 Non-ideality issues

Previously presented results consider the schedulingitiigois provided with a perfect
knowledge of the feasible rate region and is able to takerapti choices in the maximiza-
tion of the scheduling metric (Equation 2.7).
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In [23], the ’link centric approach’ is extended by considgrthe case where an imper-
fect scheduler is used.

A crucial point is discussed. Let suppose the schedulingréilgn is not able to solve
the exact scheduling problem of the backpressure maximizahen how does the conges-
tion control behave? A generic scheduling algorithm is aered, which is only guaran-
teed to solve the scheduling function in an approximate wagarch slot, within a scaling
factory < 1 from the optimum one. In the paper it is argued that the joate icontrol
and scheduling algorithm may not converge (because of Jampsiay converge to a non
optimal point (with respect to the reduced capacity regidijs implies a big limitation in
the application of a joint congestion control and suboptiseaeduling. In the link centric
case, it is proved that, using logarithmic utility functsif it converges, then the solution
will be “not too far” from the reduced optimal one, but stilitsoptimal.

This behavior changes if a stochastic model for the numbesefs is considered. In
this case, the rate control converges to the optimum soluéferred to a-scaled capacity
region, whatever suboptimal scheduling policy is used.

On the contrary, using a “node centric” approach it is pdesib use ay-imperfect
scheduler in order to obtaimareduced maximum utility function [14] even in the case of
static number of users.

The backpressure algorithm is in fact proved to converga exth an imperfect sched-
uler. If the maximization of the scheduling function is perhed with a loss of at most
~ then the scheduling policy is said to belong to the clasS,oand the stability is guar-
anteed inside & reduced capacity region. This opens the way for the use abappate
algorithms, as described in the following.

In [24] the behavior of the classic primal-dual control aifum is studied , for the case
of a time varying capacity of the links. The novelty is thatlednk has a capacity,(t)
instead ofw,, thus depending on time. A continuous time system is consitldf there is
no delay in the data transmission and on the price feedblaek,the system is stable even
with time varying channels. The stability is here defined dsagectory stability” since the
equilibrium point changes as the channel condition changes

If there is a delay in data transmission or price feedbaa the system is linearized
around an equilibrium point and it is provided a set of candg on the algorithm param-
eters that allow for local stability around the given eduilim point. Such conditions turn
out to be a function of the delay (a similar conclusion isasdiin [18] (Chapter 6) for the
case of time-invariant channels).

In all the previous proposals congestion control is pergdranly at the source node.

The paper in [25] explicitly addresses the problem of hogibp congestion control,
in a node exclusive interference model (the impossibilily éach node to transmit and
receive at the same time).

The proposed algorithm requires that each node along tlzep#dh performs a con-
gestion control based on the price received from the nexndowam node down the path

17



Chapter 2. Related Work and Problem Statement

toward the destination. Moreover each node passes thegaggdeprice to the upstream
node, until the source is reached. Thus, eventually theceaeceives an aggregated price
(similar to an end-to-end control, the difference is that phices of all nodes are aggre-
gated in a single message along the path) but each nodermerémngestion control (in a
hop-by-hop manner). The advantage of the hop-by-hop apprisahat the queues length
is balanced and the bottleneck queue length is reduceddkgpateading). Thus the algo-
rithm uses essentially an end-to-end approach, repeatathinode along the path.

2.2.6 Scheduling
Interference models

The previously described algorithm for joint congestiontcol and scheduling requires the
solution of the scheduling maximization problem (i.e. Bipa2.7), whose complexity
depends on the feasible rate region structure. Here areilbleddwo commonly used
interference models that will be used in the thesis.

Two interference models have been defined in [26]: i) Prdtooadel, ii) Physical
model. Such models are widely referred in the literature amedused in many models.
Both are binary interference models, i.e., they only steaetiansmission will be correctly
received or not and represent a rough estimation of the lguyaical behavior.

In the protocol model, each node is associated a transmisaibusr, such that only
nodes within that radius can receive the transmission. @strassion is correctly received
only if no other nodes transmit at the same time within a dista + Ar from the receiver.
A variation to this model states that a transmission is abliregeceived only if no other
nodes transmit within an interfering distance both of theeneer and the transmitter. The
protocol model gives a geometrical based interference ilefirwhich is appropriate for
graph based system modeling.

The physical model accounts for the SNIR at the receiverclwvig calculated as the
ratio between the useful received power and the sum of naééerference power. Once
fixed a target SNIR for the correct reception, the model tuisto be very similar to
the protocol one. Some of the works proposed in the followarg valid both under the
protocol and physical interference models. Anyway moshefit provide explicit results
only for the protocol model.

Solutions with Maximal Weighted Independent Sets

In case the protocol model is used for representing theferce scenario, each lirikk
interferes with¢ (1) neighboring links and the optimization required for theusioln of the
scheduling problem becomes a combinatorial problem.

In particular the problem of maximizing the back pressuretion becomes a Weighted
Maximum Independent Set problem. The problem is in genelPaHARD [27] and more-
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over no constant factor polynomial time approximation exi&ven the problem of finding
distributed constant factor approximation for particutgyologies is an open issue.

Clearly a greedy centralized algorithm which selects alh séep the link with the high-
est metric and discards all the interfering links can adh&veduced capacity region by a
factor of 1/ K where K is the maximum number of interfering nodes for each node, [23]
which is a trivial lower bound. In the case of multichannelwerks with reduced number
of interfaces the lower bound becomg$ & +2) [28]. Note that all the previous bounds are
lower bounds and are usually very conservative. In [29]@tasted out that such a greedy
approach is optimal in graphs with particular structurel tAé¢ interfering graphs which
satisfy a property called Local Pooling allow the greedyisoh to be optimal. Among the
interfering graph structures which satisfy the local poglare trees, cliques and cliques
interconnected by disjoint links.

Note that for the case of a node exclusive interference (ne.interference occurs
among links and the only constraint is that no node can recand transmit at the same
time), the problem becomes a Weighted Maximum Matching lwvimstead can be solved
in polynomial time by a centralized algorithm [27]. In thigse a distributed algorithm for
weighted matching is known to achieve a 0.5 approximatiaihefptimal value [30].

A novel approach for the same problem is also in [31], wheréexative distributed
algorithm is designed to approximate the maximum matchiitlgisvan arbitrary constant
factor. On each slot a new schedule is constructed in alaliséd way. The new schedule
is mixed with the one in the previous timeslot in order to abi@ new matching. The
mixing procedure is based on the comparison of weight ofwlterhatching. The mixing
procedure can be performed using a distributed and itergtgsiping mechanism which
can approximate the optimal solution with the desired ieni (at the cost of a longer
convergence time). The proposed algorithm can approximateximum matching (an
extension to a weighted independent set is also claimeddisufficiently investigated)

Another possible extension to the casdwilegree interference model is in [32]

Algorithms based on Maximal Independent Sets (non weighted

The problem with the maximization of the back pressure fioncin the protocol inter-
ference model case is that a weighted maximization is reduirLooking for different
algorithms, which do not require a maximization in order ¢thiave the capacity region
has lead to satisfying results only for single hop netwolksreover, such algorithms have
not been integrated with the congestion control and arelgndésigned for single hop net-
works. In the following, some details are provided for thastcular class of algorithms.

If the network is single hop, it can be stabilized by any randdaximal Independent
Set scheduling which scheduled only backlogged queueke lfi&finition of backlogged
queuel isU > wy, with w; the number of bits that can be served in a slot, then any random

maximal schedule sequence allows for a capacity regionhNibiEjen(i) i—] < 1, where
J
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A, is the input rate ang(y) is the set of interfering queues [33, 34].

In [28] an extension to a multi channel case is presented.nTuil& channel maximal
independent set is defined as: either a link is scheduledieobits interferer is scheduled
or no one of the interfering links has an available interfatésing this definition they
propose an algorithm for loading the channels in such a w&gép the networks stable
within a region that id /(K + 2) away from the optimal solution.

The extension to the multi hop case requires additionakim&tion at each node. A
“regulated” maximal independent set is shown to allow fabdity in a network where the
routing is provided in advance and each node has the knowlefithe input rate. In this
case each node is provided with an input queue and an outputedor each flow. The
traffic from the input queue to the output queue is limitedequst slightly higher than the
source rate. This brings back the multi-hop network to th#-behaved single hop one
[33].

A different approach requires each node to keep track of timber of hops of each
packet. Let/* be the queue length accounting only for the packets whickrésmpced: or
less hops. Then an iterative algorithm can be used. At eagh stmaximal independent
scheduling can be applied only on thiebacklogged queues, i.e., containing packets with
a number of hops less than or equal tor'he matched links are added, all the interfering
ones are removed and the iteration are repeated. Note thabthplexity depends on the
number of hops [35].

2.3 Ad hoc networks

Results for the specific case of ad hoc networks are repantdus section. Asymptotic
results for the network capacity are followed by optimiaatapproaches which do not
follow the cross-layer optimization framework describe&ection 2.2. Particular attention
is devoted to the case of multi-channel multi-radio networRrotocols mostly based on
heuristic considerations are also presented.

2.3.1 Asymptotic analysis

The seminal work of Gupta-Kumar [26] has derived the asythpi{an the number of
nodes) capacity of multi-hop ad hoc networks, where eacle moe@quipped with a sin-
gle network interface card (NIC in the following), and a deaghannel with capacityl’
is available.n nodes are randomly scattered on a sphere surface of unitResalts are
valid both under the protocol and physical interference etad

Each node is assumed to have a random destination node faarntsmissions. The
asymptotic average per node throughput is derived. It iainbt as the union of a lower
and an upper bounds computed using geometrical consiolesath lower bound is derived
assuming a shortest-path-like routing and defining a féasikerference free transmission
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scheduling. The upper bound is derived based on conngcéixguments and on spatial
channel reuse considerations. The two bounds lead to tloevinf per-node throughput
scaling law:

w
Aln) = © <A2\/nlogn) ’
where© indicates that the actual asymptotic value is scaled by ataoh

Following the same reasoning, and adding some particulasideration for the multi-
channel multi-rate case, Vaidya in [36] has shown how thexciap of a random ad hoc
network scales with the number of nodesiumber of channels and number of interfaces
per nodem. Each interface is a half duplex interface and can be tunexhyoof thec
channels.

Even in this case, an upper and a lower bound have been dervach of the two
bounds is actually the intersection of three bounds, eathevh accounting for different
performance limitation factors.

In the upper bound construction, three sources of capaniijakions are pointed out:
connectivity, interference, and bottleneck nodes. To etle three phenomena is associ-
ated an upper bound for the achievable capacity. The totsmpound is the intersection

of the three.
[ o(/is) < = O(logn)
oW, /= if % = Q(logn) and
)\(n) == =0 |(n <10i§in)2
O (Mmpman) if £ —q (n (g’

It is important to note that untif = O(logn), the throughput scaling law is the same
as the single channel and single radio case.

This implies that even if nodes are provided with a numberl@fdNess than the number
of available channels the network can achieve the full capabdVe observe that in the
proposed modeaD(logn) is a measure of the number of neighboring nodes.

This is due to the fact that in this region the capacity bougplethds on channel occu-
pancy. Channels are already fully utilized, thus the nunobarterfaces is not a bottleneck.

This implies for instance that in a network where each nodasjispped with a single
NIC, up toO(logn) channels can be fully utilized.

2.3.2 Optimization problems

All the proposed models deal with protocol or physical ifge¥nce models. Since such
interference models provide a binary connectivity andrfetence representation, the use
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of graphs is a natural way to deal with them. Here it is dedaifee construction of con-
nectivity and conflict (interference) graphs which is vahdoughout almost all algorithms
described in the following. Variations to the used model$é explicitly reported.

A connectivity graph is defined as a graph whose verticedharaddes in the network.
An edge is placed between two nodes if they are within comoatian range.

A conflict graph is consequently defined to account for imtefice issues. In this
graph, vertices’s represent the communication links, (tlee edges of the connectivity
graph) and edges are placed between vertices’s correspptadinterfering links, accord-
ing to the protocol model. It is worth recalling that the ifiéggence range can be greater
than the communication range.

The optimization problems here described are formalizdohear on non-linear (inte-
ger) programming problems. The commonly considered caimssrare given by a subset
of the following ones: i) connectivity; ii) interferencdi)inumber of available channels;
iv) number of available radios; v) traffic demand; vi) faissen the offered traffic.

Different proposed models account in different ways fordaheve constraints. Partic-
ular interference and connectivity measures are also defi@®me models embed con-
straints on the connectivity and interference directlyha graph structure. In such a case
additional vertices’s or edges are introduced. This willspecified in the algorithm de-
scriptions.

The main optimization goals refer to i) interference mirgation or ii) throughput max-
imization and they are pursued optimizing appropriatefynéel metrics.

Another classification refers to algorithms which accoont)a packet by packet chan-
nel allocation (thus solving also the related time scheduproblem) and ii) algorithms
which account for long time scale allocation steps. In thenfer case the goal is to prevent
two interfering nodes from being on the same channel at time dame (this could be the
case for synchronous TDMA systems). In the latter one twerfating nodes are assumed
to share a channel in the long term. This is the case of a CSMAMBC protocol where
the transmission scheduling in time is implicitly solvedthg MAC mechanism.

Channel allocation

The approaches listed in this subsection refer to optinoizgiroblems where constraints
related to the traffic demands (constraints v) and vi)) ateonsidered. Equivalently, such
constraints are assumed to be solved a priori.

The optimization deals with NICs and channels allocatidme ®bjectives can be inter-
ference reduction (different metrics for interferenceleaton are proposed) or throughput
maximization (different metrics for throughput evaluati@re proposed)

A common assumption is that nodes are in saturated congitiaa the allocation of a
channel to a NIC leads to its occupation by a tentative trasson.

In the paper in [37] the protocol interference model is ewledrby introducing weights
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on the conflict graph edges. The interference at a vertexeicdinflict graph is defined as
the sum of the weight of incident edges. Thus an optimizgpiaiblem is defined which

aims at minimizing the maximum interference value on eack, Isatisfying the connec-

tivity, radio and channel usage constraints. Only a camt&rdlheuristic based on graph
coloring (CLICA: Connected Low Interference Channel Assigent) solution is provided.

Clearly this approach is suitable for a CSMA MAC. Results gmevided in terms of the

interference metric above defined. Results in ns2 basedations of a 802.11 system are
also provided in terms of throughput.

A similar approach is in [38] where the classic protocol maslased and the objective
is to minimize the maximum number of interfering edges ieaidon a communication
edge (vertex of the conflict graph). The problem is shown taib@lar to a max k-cut
in a graph with the additional constraint of the card numblevo heuristics, one based
on TABU graph coloring and the other one based on a greedyoapprare presented.
Moreover the problem is formalized as an ILP and two relaxegiare presented in order
to find lower bounds on the minimum interference value. It3® ahown how non uniform
traffic requirements and non orthogonal channels can bedsmesl appropriately defining
the interference function. All the proposed solutions ammpared with the CLICA [37]
both with graph theoretical metrics and ns2 802.11 throughkinulations.

In [39] the problem is formalized as an ILP in two differentysa In the first one,
the optimization objective is the maximization of the numbéconcurrent active links
which satisfy the constraints on interference, number @indels and number of NICs.
Some additional constraints are added for the case of LRatia. In the second one,
the connectivity graph is modified substituting each comigation edge with a number of
communication edges equal to the number of channels. Baclslalso weighted with the
expected load, which is assumed to be known a priori. Thelpnois optimally solved for
a small scenario at the varying of the channel and interfaceber. It is noted how the use
of different ILP models can lead to different relaxationshadifferent optimality property.

Another approach based on a graph model is the one in [40]n Evthis paper the
network is modeled with an adjacency graph from which it isveel a conflict graph. The
novelty refers to the introduction of a further bipartits@arce contention graph where a
set of vertices represents the cliques in the contentiophgaad the other one represents
the links. An edge is inserted between each contentionmeayid the set of link belonging
to it. Each edge has a maximum capacity equal to the numbemdéble channels in the
network, thus accounting for the channels constraint. Towaect for the radio constraint
another set of vertices is introduced representing the wod#éhe network. An edge with
capacity equal to the number of radios is added between @dchnd the corresponding
couple of nodes. The problem of finding the maximum networ&ubhput is thus reduced
to a (modified) max-flow problem in the previously describedpip. The solution gives
an upper bound for the achievable throughput in the netwbikte that no end-to-end
traffic is imposed so the optimum solution refers to the optimtraffic pattern for the
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given topology. The whole problem turns out to be an ILP. k& ¢hse of a high number
of variables the problem can be relaxed to a LP one. Reswdtshawn in a chain and in
random topologies at the varying of the number of channelswaadle density.

A distributed channel assignment algorithm is presente@dlh. Two performance
metrics are defined, one referred to throughput maximinadiad the other to delay min-
imization. It is argued that the minimization of the numbéiirderfering edges at each
vertex of the conflict graph can approximately achieve bathlg A skeleton assisted
channel allocation is proposed. It relies on the constonadf a spanning subgraph (called
skeleton) of the connectivity graph. The construction isgrened by using a distributed
algorithm (LMST). The proposed SAFE protocol uses the coostd skeleton to assign
channels while preserving connectivity. If the number afioanterfaces is greater than
half the number of channels, then a simple random assignaigarithm is used which as-
sures a communication channel exists between any two nddbs.number of interfaces
is less than half the number of channels, then skeleton eatgesssigned for connecting
neighboring nodes. Nodes which do not share a skeleton eadgese a common channel
for their direct communication. Routing issues are solvearby using a max flow like
ILP, enforced with a tunable fairness constraint. The pseganechanism is tested using
graph based simulations and showing the ability in expigithe multiple channels and
radios. Better performance than the joint allocation anding solution proposed in [42]
(described later on) are presented. Simulations at paekel (ns2) show even better im-
provements, since the ability in balancing the channel paoay plays an important role
in a CSMA scenario where the available aggregated per chémoeighput decreases as
the number of concurrent NIC increases.

Some distributed approach are in [43, 44].

In [43] a network is considered where all nodes are in the satlision domain, each
node can tune more than one interface to a channel, and eachedtcan be used by con-
current transmission links. The basic hypothesis is tlaaistmissions on the same channel
gain a fair share of the available rate. Game theory is etquidio define the allocation
conditions under which the selfish choices of each node tuht be a Nash equilibrium
for the system. The goal of each node is to increase its lgt tats proved that the stated
conditions lead to a Pareto optimal solution, which is ajgiem optimal since it leads to
rate maximization. The conditions satisfaction need araénbordinator.

In [44] each node is supposed to be able to listen to all tharadla even if it can
use only a subset of channels for concurrent transmissiémailable channels are not
necessarily orthogonal: a function describing the interiee among channels is provided
following the approach in [45, 46]. Each node gathers therm&tion about channel occu-
pancy in each channel and then greedily selects the charmeh whow less interference.
The algorithm is proved to converge in a finite time providethe synchronization con-
ditions are satisfied. Moreover the channel assignmentezzh b network partitioning.
All such issues are fixed by a proposed protocol which is imeleted and tested on a real
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testbed. Some heuristic solutions refer to a 3 way handstoe&eforce synchronization,
the use of a common communication channel to avoid netwartitipaing and an inter-
ference measure based on two hop information only. The MR @outing algorithm is
then applied.

Routing

Routing is a critical operation in a multi channel networkca performance can be substan-
tially increased by correctly loading the links. Imposatklioad can dramatically affect
the channel allocation decisions. A key concept is expess§47] where the channel
diversity along paths is considered as a key heuristic tteselgood routing algorithms.
The proposed metric accounts for the fact that if differdr@rmels are used for the subse-
quent links in a path, then the spatial reuse can be incred$edproposed metric, called
WCETT, is embedded in a DSR-like routing protocol, calledMRSR. WCETT depends
on the links bandwidth, links average number of retransiomsand links channels.

The metric consists of two terms. A first term accounts fortibg diversity, and it
is computed as the maximum total transmission delay acateulilby a packet over a
particular channel. The minimization of this metric leadl$ite use of more channels. The
second term accounts for the total path delay (regardlegseaised channels). The total
metric is a linear combination of the two terms. Authors oedi that the first part aims a at
a global network optimization by avoiding bottleneck, vehihe second part aims at a path
optimization reducing the e2e delay. The delay on each hogdoh channel is computed
based on the estimated number of retransmission and theelharte.

The proposed routing mechanism has been implemented irtkeedeshowing good
performance.

An enhancement of the WCETT metric is proposed in [48], wlleeecost in terms of
wasted time for the switching among different channels ibetded in the metric. The
switching cost indicates if it is worth switching a NIC to apeular channel, based on the
estimated fraction of time the card will remain on that chenn

Joint allocation-routing

Problems in this section deal with the case where a trafficipa&tion is provided in terms
of e2e traffic demand and the channel allocation problemnglyosolved with the routing
one.

A first approach in joint channel allocation and routing ig4®]. Here an iterative
algorithm is presented where channel allocation is solyesl dreedy heuristic and routing
is solved by minimum path or randomized path algorithms. filfeeparts of the algorithm
are solved successively and repeatedly so that the alboaatperformed based on the rout-
ing outcomes and vice versa. Clearly, at the first step oftdration an estimation of the
link load has to be inferred. This is computed considerimghal e2e traffic requirements
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and a uniform multi-path routing and it is defined as the foacof paths that traverse the
considered link with respect the total number of paths. Taeiive process is repeated
until no improvement is experienced. Results are compaitdtire single channel case
and with a channel unaware allocation mechanism. In thergHamaware allocation,
neighbors of each node are partitioned into groups and tog@aaip it is associated an in-
terface for communication. Partitioning is performed iclsa way to balance the number
of neighbors on each interface. Some testbed results ar@maisided.

Clearly, even if interesting, such an approach is not odtima

The starting point for a mathematical solution can be foum0] where the problem
is described in the single-channel, single-radio caselaméxtended to the multi-channel
multi-radio one. A synchronized TDMA system is assumed. datsider the single-
channel single-radio case. A communication graph and aicbgfaph are used to model
connectivity and interference. An e2e traffic requiremerdgecified and a flow optimiza-
tion problem is defined with the aim of maximizing the thropghoffered to that e2e path.
The model can account for arbitrary traffic requests and don kingle and multiple paths
routing. Outcomes of this procedure are the amount of regddead on each potential
communication link. No interference issues are considaredis step. A feasible trans-
mission scheduling through time is then found. The traffquieements determined in the
previous point are used to define the fraction of time to begassd to each link. Interfer-
ence constraint is also added. Anyway such a scheduling B-al&td problem so that a
lower and an upper bound are derived.

The lower bound is derived as follows. It is defined an indejgen set as a set of
nodes which can be scheduled concurrently. It is shown hoenaex combination of
independent sets is also a valid schedule. An optimizatioblpm can be designed over the
polytopes defined by the indicating function of all the inéie@ent sets. Such optimization
problem aims at maximizing the usage of each node, subjdetagible scheduling and
flow requirements coming form the flow problem. This formigdatcan in principle lead
to the optimal solution anyway the polytopes constructemuires a non polynomial time.
The optimization is thus limited to a subspace of the polggmerived from an “easy”
collection of independent set. As more set are includedearptiiytopes, the solution gets
closer to the optimum one.

The upper bound is derived using a dual approach. Each dimtree conflict graph
indicates that only one of the nodes in the clique can usetaenel on a slot. The polytope
formed by the indicating function of all cliques an be cousted and an optimization
problem can be defined trying to maximize the throughput.s Huproach does not lead
to a tight bound since, in the case of non perfect graphs, sihe issues related to the
scheduling feasibility should be considered.

A very similar approach is adopted under the physical ieterice model, where edges
in the conflict graph are weighted in order to account for thietiouous interference level
and an interference threshold is then defined to come backittaay interference model.
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The model easily encompasses the case of multiple chamesaltiple radios by adding
multiple communication edges in the communication grapimp®& results for the two
channel and the two radio cases are shown and compared wisimigle channel one.

A similar approach is in [2, 51]. Here the network is modelschanultigraph where
vertices represent the nodes and multiple edges are irtedde model both connectivity
and interference.

The traffic pattern is specified by e2e requirements betwdatrary nodes. The goal
of the optimization is to find the maximum scaling factor whican be applied to the
traffic requests and for which a feasible resource allonatem be found. This implies a
weighted fairness in the offered throughput to the e2e r&gué\n optimization problem
is constructed defining an indicating variable+ t(e) for link e to use channel at time
t. All the constraint related to the number of channels, numbeadios per node, number
of channels per link and interference free allocation ctowliare added. The problem
is then relaxed letting the variableto be a continuous variable in the interyaJ1]. It
can now be interpreted as a percentage of channel utilizatithe following scheduling
operation. Clearly the resulting LP problem gives only aperpbound of the optimal
solution, since the found solution could be not schedulablte problem is completed by
defining a feasible channel assignment and transmissia@dathg. This is an NP-Hard
operation so two main heuristic based on set coloring andmanr packing are proposed.
Results at the varying of number of channels and number oEMI€ shown in different
network topologies.

A similar optimization problem is in [52] where a differerdlstion procedure is pro-
posed. Traffic is supposed to be generated by multiple sparue directed toward a single
gateway node. Even in this case a flow problem is defined asrtiiben of maximizing
the scaling factor for the traffic demands subject to a féasibheduling. A second LP
problem is thus defined, where the scaling factor is fixed ahitlwaim is to minimize
a metric related to the interference level. Previous omation does not account for the
number of card constraint. This is fixed by an heuristic athor which modifies the flow
assignment and determines a new scaling factor so that iblee&HCs and channel as-
signment is possible. A further step defines a new LP problémiwaim is to redistribute
the flows such that none of the previously fixed constrainvarkated and the interference
level is reduced. Then a new flow scaling assure that all ttezference constraints are
satisfied. Finally a scheduling algorithm is defined. The Mfagorithm is proved to at-
tain a constant factor approximation of the optimum sohlutidburing the solution process
a lower bound to the network throughput is also derived.

All the proposed models assume perfectly orthogonal cHanne

In [45, 46] it is pointed out how the use of partially overlapgpchannels can improve
the performance of a network by allowing an higher spatiakee Some experimental
results report the interference between concurrent tresssons as a function of the channel
overlap and devices distance. This results show that parwieerlapping channels can be
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considered orthogonal if the transmitter and the receiresafficiently far apart. A model
for the overlapping channels interference is presentedwéefines a metric based on the
overlapping area between the channels spectrum maskdpdbobay the standard. Such
a new measure is introduced in the channel allocation mésinaoriginally described in
[53] by enhancing the interference evaluation mechanisdj allowing the use of more
channels, shows a performance improvement. The notiorterf@rence between partially
overlapping channels is then formalized in such a way it aaerbbedded in many of the
proposed multi-channel multi-radio allocation algorithnin particular it is introduced in
the analysis provided in [52] where an upper bound for theughput is derived. A great
throughput improvement is shown with respect to the casenwhé orthogonal channels
are used.

2.3.3 Protocols

In the following, some practical oriented solutions arespreged, which are able to exploit
multiple channels in ad hoc networks. These mechanismsaselion heuristic consider-
ations and are designed accounting for practical issugbéarimplementation.

Single radio

The protocol proposed in [54] (SSCH) considers the case afdahoc network, where
multiple channels are available, but each node is providddansingle channel half duplex
NIC. In particular the paper considers the use of legacy IBEE11a adding a standard
compliant protocol which allows for the use of all the avialtachannels. The protocol is
completely distributed and only a small amount of contraffic is needed. It works in
multihop environments, and can exploit spatial reuse.

The time has to be considered as divided in subsequent firgthiéime slots. Authors
claim that synchronization is not a hard requirement. Thantgea is to provide a node
with a channel hopping sequence indicating to each NIC th&wg channel on each time
slot. The hopping sequence is computed using a modulo apetzdsed on a seed value
and a starting channel index. Synchronization among nadgstained by exchanging the
seed and the channel index among neighboring nodes. Eaehsyadhronizes with the
hopping sequence of the node to which it has traffic to seedeach node can change its
hopping sequence based on its traffic requirements. Th@peodMAC is shown to obtain
a higher throughput than legacy 802.11a. Anyway a higheydg@in jitter) is shown, which
impact on the TCP performance.

A different use of channels hopping is considered in [55].ti nodes have to be syn-
chronized with the hopping sequence. At each frequency &oipe interval is reserved
for a transmitter initiated handshakes between transmiéed receivers. The winners of
such handshake stop their frequency hopping and startrisrtriadata on the current fre-
guency, while all the other nodes continue to hop. An anaytinodel for the throughput
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is provided and the results are compared with the ones of &amaihnel ALOHA with
receiver oriented channel assignment.

The protocol RICH-DP in [56] works in the same way but the tsdrake is initiated by
the receiver, which uses polling among neighboring nodes.

The protocol proposed in [57] considers a classic CSMA MA@, control channel
is defined which is dedicated to RTS/CTS control traffic. Ttileeoavailable channels are
devoted to data traffic. In particular, once fixed a total weidth 17/, a portionWV, of it
is used for control traffic and the remaining is subdividedindata channels. To start a
communication a node sends a RTS on the control channel. Biitaios the list of free
channel as perceived by transmitter. The receiver, basedoal its own free channel list,
responds with a CTS containing the channel to be used (isisnasd communication uses
only one channel). The system is simulated as a functioii,agind M/ and it is shown that
this MAC outperform standard 802.11 both from the throudtgma delay point of view.

Another approach (MMAC) using a dedicated control chansehi[58]. Here each
node is provided with one 802.11 interface. A common charsnesed to exchange con-
trol information and to decide the channel to be used for datamunication. The con-
trol channel is realized reserving periodic time intenaisa commonly selected channel.
Synchronization is obtained through a beaconing systeniasito the one used in the
power save mode of standard 802.11. The agreement on chasagd is obtained using
an RTS/CTS handshake where simple channel usage metrichamgyed. After the selec-
tion, cards of transmitting and receiving nodes are setd@kiosen channel. The proposed
mechanism allows for eliminating the multichannel hiddede problem, since the infor-
mation on control channel are heard by all nodes around bartismitter and receiver. Itis
shown that the proposed solution reaches an improvement3@0s by using 3 channels
in the all-in range case and up to 200% in the multi-hop case.

The paper [59] considers the case of a relay network appdieddellular system. A
protocol for the relay network formation is presented whickates a tree-like topology
toward the gateway. Relay nodes are provided with a singgefate but can use multiple
channels. Based on the previously formed topology, chararel assigned along paths in
order to reduce interference and increase spatial reus@nplesdistributed algorithm is
presented where each node collects the channel usage ieitidarhood, by using control
messages, and selects the least used channels. The sateetibanism is compared to the
optimal solution provided by [52] showing the ability to o#a30-85% of its performance
in this scenario.

Multi-radio

The Multi radio Unification protocol [60] considers a lege®§2.11 network where each
node is provided with multiple cards, each working on a fixeamel. The protocol works
over the LL layer so it can be realized over the driver levedcliEnode holds a neighbor-
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ing table where it is stored the address of all neighborindesacards, together with the
channel quality indicator. Such an indicator is calculdteded on the RTT provided by
probe packets. Communication between nodes take placeify the best channel. In
order to balance the use of channels, some strategies fanglodthe traffic over multiple
interfaces are considered, but none of them have shown waprents over the MUP.

In [48] the number of per-node 802.11 cards is less than theeu of available chan-
nels. The proposal refers to a link layer protocol (HMCP) tlee use of multiple cards
and a routing protocol to exploit the particular scenarithe Buthors propose to provide
each node with a set of interfaces fixed on some particulamredia, and another set of
switchable interfaces which can be dynamically tuned ofeiht channels. Fixed inter-
faces channels are set using two hops information exchdmgesing “hello” packets. The
goal of such an assignment is to balance the use of chanrditsatkd to fixed interfaces
in a two hop range. Fixed interfaces are used for receptianh @ode that has traffic to
transmit has to switch to the fixed channels of it destinatiode. To each channel it is
associated a separate queue: switchable interfaces dohewito the longest queue. To
enforce the fairness a timeout is also used to force the Biwngoperation.

A centralized channel assignment algorithm and a relatetbpol for its implementa-
tion is proposed in [61]. To avoid topology modification a goon channel is assumed
to be used by all the nodes. The common channel is selecteccéntealized algorithm
which aims at minimizing the interference. The remainingruatels are allocated as fol-
lows. Each node is supposed to gain information on the patenterfering neighbors by
sniffing the traffic in the channel. This implies that only esdn the transmission range
are considered, since nodes which packet can not be cgrrectived are not consid-
ered. Interference information are exchanged in the twostope. Based on the collected
information a new conflict graph is constructed which digeatcounts for multi radios ca-
pability at each node. In the conflict graph there is a verterasponding to each radio. A
list coloring problem is solved by means of an heuristic gt (BFS-CA) which selects
channels giving more priority to the ones near to the gateBayulations under different
scenarios are shown and the proposed algorithm is compatied wistributed greedy ap-
proach where each node set its radios on the least intertig@thels. Throughput results
shows that in some particular scenarios the greedy appsiamhis better results than the
BFS-CA, but in most cases BFS-CA improve the network peréoroe. The algorithm is
tested also on a real testbed.

A distributed protocol for channel assignment is in [42].eTetwork is supposed to
have gateways that connect the mesh nodes to other netwArksstributed route con-
struction which creates a tree between nodes and gatewanesented. NICs in a node are
classified as UP NICs, for the connection towards the gateswray DOWN NICs for the
connection toward leaves. Channels are associated to @eMdsed on a occupancy mea-
sure which is calculated using periodic information ex@emabout channel load. Such
information is collected and used to sort the channels daugrto their total occupancy
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level. The least occupied channel is chosen first. An extersimulative results set is
provided, showing the effect of parameters changing. Itiqdar the proposed protocol
is proved to perform very close to the centralized one preshiopresented in [49]. Results
on an actual testbed are also presented.

2.4 Rate adaptation in IEEE 802.11 WLAN

A number of recent studies deal with the problem of 802.1é& eataptation (RA). The
majority of proposals aim at optimizing the PHY rate withpest to channel impairment
only, with a few exceptions.

Some RA algorithms makes use of the Received Signal Strdndtbator (RSSI) to
select the PHY mode. The RSSI, in fact, is a measure of thévegtsignal power, which
shall be proportional to the Signal to Noise Ratio (SNR) atriceiver. In practice, how-
ever, this approach is limited by a number of factors. Fotaimse, it is a common ex-
perience that the RSSI returned by a wireless board ciycisitnot always reliable. Fur-
thermore, some schemes select the PHY mode according toSBé& iReasured at the
transmitter, assuming it is the same that would be expegatthe receiver. However, the
assumption of symmetry is often disattended in reality.

In [62], the authors propose the MPDU-Based Link Adaptatameme (MBLAS),
which makes use of an analytical model to evaluate the 80fobtliput as a function of
the SNR, the PHY mode and the payload size. The proposed radde into account
the 802.11 backoff and retransmission procedure, but itrigdd to the scenario with a
single transmitter/receiver pair, for which MBLAS provgline theoretically optimal rate.
However, the scheme is suboptimal in multiple stations ages.

In [63] the authors propose an RSSI-based Link Adaptatiategty. The PHY mode is
selected based on the measured RSSI, which is comparedymiinically defined thresh-
olds. The use of dynamic thresholds aims at alleviating Hwhinaccuracy of RSSI mea-
surements and the channel asymmetry issues. The drawbalbls giroposal is that the
thresholds are adjusted considering the loss rate obstawadjiven PHY mode: this prac-
tice could easily lead, in case of frame losses due to cofissito an undesired decrease of
the thresholds.

In the Receiver Based Auto Rate (RBAR) [64], the receiver S&kects the most suit-
able PHY mode on the basis of the RSSI measured during thetree®f RTS frame. The
selected PHY mode is, then, communicated to the sender by tle CTS frame, so that
the sender will adopt the chosen rate for the subsequentrdatmission. While effective
in overcoming channel asymmetry issues, it is to be notdadhisalgorithm is not standard
compliant since it requires modification to the RTS, CTS aathdrame structure, as well
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as to the PLCP header, in order to include the necessaryotamormation. Moreover,
the proposed RSSI-based rate selection scheme at theaetades into account only the
success probability of a single frame transmission, thusptetely neglecting the impact
of the MAC layer on the performance.

Another well known RA algorithm is the Auto Rate Fallback (AH65] which is based
on the following consideration. In the absence of interieeefrom other users, a certain
number of subsequent failures are likely due to a loweringhef SNR, so that a more
robust rate has to be selected. Conversely, when a certaibenof subsequent successful
transmissions is observed, a higher rate is selected toowaghroughput. This type of
schemes is not subject to RSSI measurement inaccuracy obatmel asymmetry issues.
One of the drawbacks of ARF, however, is that it periodicéligs a higher transmission
rate' to check if it is sustainable; this behavior is inefficientstiatic scenarios where the
optimal rate remains the same for prolonged periods. ThetdaAuto Rate Fallback
(AARF) [66] aims at alleviating this problem by applying anbry exponential backoff
to the number of subsequent successful transmissionsdhéede a higher rate. In this
way, AARF is more stable than ARF and achieves better pedoo®a in static scenarios.
Nonetheless, both ARF and AARF assume that packet lossesveaigs due to channel
errors, so that their performance can rapidly degrade ih higffic scenarios, where a
significant amount of packet losses are caused by collisions

Some other RA schemes try to combine the best features of3i$#-Based and loss-
based approaches. For instance, the Hybrid Rate Contrdlj8¥] exploits the measured
RSSI and Frame Error Rate to distinguish between short-&@aniong-term variations of
the channel conditions. This mechanism exploits a througgbpsed rate controller which
probes adjacent rates to determine if a rate switch is nages®oreover, two sets of
thresholds (named stable and volatile low thresholds) seel depending on the detected
variations of the RSSI. Again, this scheme does not congitefact that packet losses
might be also due to collisions.

To summarize, a major drawback of all the RA schemes disdussdar is that they
are designed for scenarios in which a single node is tratisgnibn the wireless channel.
In real situations, however, it is often the case that migdtimdes contend for the medium.
Consequently, due to the way the 802.11 MAC works (i.e., C8with DCF), the
goodput actually experienced by active nodes is influenagdnly by channel-related
packet losses, but also by MAC collisions and variationfhiatime required to access the
medium. These factors cause the formerly discussed RAit#igm to achieve sub-optimal
and, in some cases, very low performance. In particulas-b@sed RA schemes such as
ARF or AARF do not work properly, since losses due to MAC sitins can easily lead to
the choice of a low-rate PHY mode even in cases in which a latghis sustainable. As for
RSSI-based schemes, it is to be noted that the choice of R&&holds is optimal only
for the single user scenarios, but can easily become namalphs the time required for

1As reported in [64], ARF tries a higher rate every 10 sucegssinsmissions in a row.
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a successful packet transmission increases due to coBisiod increased medium access
delay.

In more recent years, some solutions have been proposediesadhis problem. For
example, Closed Loop Adaptive Rate Allocation (CLARA) [68an ARF-like RA scheme
which aims at reacting differently to losses due to chanmelre and collisions, respec-
tively. A significant drawback of this scheme is that it isé@dsn the assumption that losses
after a successful RTS/CTS exchange are always due to dreanors; consequently, it re-
quires the use of the RTS/CTS handshake that has a signifieanin terms of overhead.
The Collision—Aware Rate Adaptation scheme proposed ihg&ploits the same mecha-
nism for loss differentiation but implements an adaptiveSRITS probing scheme which
reduces the overall RTS/CTS usage, thus somehow mitigdaenimefficiency of CLARA.
We note, however, that both CLARA and CARA do not consideritmgact on the perfor-
mance of the variations in the medium access time.

To conclude, no previous work, to the best of our knowledgs grovided a RA scheme
which is optimal with respect to both channel impairment andtention-related issues,
comprehensive of both frame collision probability and nuediaccess times. In particular,
no analytical models for goodput performance in multi-is&@narios have been presented.
In the next section we propose such a model, which enablegefirétion of our Goodput-
Optimal Rate Adaptation (GORA).

2.4.1 Application layer perspective: VolP model

Rate adaptation techniques considered in the previousosattight not be specifically

suited for optimizing the performance of some kinds of aggilons. In this section it is
introduced a model for the quality evaluation of VoIP commeations, which links the

perceptual quality to some basic traffic metrics such a aitgirput, delay and jitter. Such
a model will be used to define an optimization algorithm fanamcing the performance of
VOIP links.

Playout buffer and quality evaluation

The voice codec considered in this section produces CBRctfdws, anyway the trans-
mission link introduces a random delay such that the redgyaeket delay presents a jitter
which can decrease the voice quality.

To reduce this problem, a common solution refers to the duction of a buffering
mechanism at the receiver which is used to add a delay to tie mackets in order to
reduce the jitter. Thus, jitter is traded for an increaseztagye delay.

The playout buffer is generally arranged to operate as aifiiffstst-out (FIFO) buffer
in which voice packets are placed when they arrive at thedkscorhen, after an initial
delay, voice packets are fetched from the playout buffehatsame (constant) rate they
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were created by the coder. Packet sequence numbers candé&usesure the data is
played out in the correct order and to detect packet loss.

A variety of techniques have been proposed for the manageofigiiayout buffers.
Typically, these techniques involve estimating the maximuariation in the transmission
delay expected for each packet as it passes through the nketioe size of the playout
buffer is chosen such that variations in packet arrival tohehis order can be smoothed.
The end-to-end delay introduced using this approach is dpgmoximately equal to the
maximum jitter estimated for the packet data stream. Pdoksés may occur in two cases,
namely when the playout buffer is either full when a packetas, which is referred to
as an overrun, or empty when a packet is due to be played outhudreferred to as
an underrun. Overruns can be avoided by properly dimensgotie buffer size, while
underruns can be reduced by increasing the playout delal; fe@nce, the end—-to—end
delay).

In [70] a revised version of the E-model is presented as thinpeance metric for
VoIP communications [71, 72]. The quality evaluation fuaotproduces a ratingg of the
voice quality in a scale fromto 100 (70 corresponds to the PSTN quality), as a function of
the system state (characterized By, andm,). A translation to the Mean Opinion Score
(MOS) is provided by the following relation:

1 R <0,
MOS = ¢1+0.035R+7x 107 5R(R — 60)(100 — R) 0<R<100, (2.11)
4.5 R > 100.

The relation in (2.11) is represented in Figure 2.5, while. Ba4.1 gives a classification of
the voice quality with respect to the MOS aRefactor values.

R-factor \ Quality of voice rating MOS

90 < R <100 Best 4.34-45
80 < R <90 High 4.03-4.34
70 < R <80 Medium 3.60-4.03
60 < R <70 Low 3.10- 3.60
50 < R <60 Poor 2.58-3.10

Table 2.2: R-factors, quality ratings and the associated MO

The metric is composed by many terms accounting for codes, fygcket loss, end to
end delay. In [70] the following metric is proposed:

R=942—1,—IL.—1I,. (2.12)

In (2.12), I, depends on packet loss rate and a graphical interpolatiodifferent
codecs is provided in Fig. 2.6. An approximated expressqmovided below

I =34.3In(1 + 12.8 P,,,,)
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Figure 2.5: Relation between the E-model ratitgnd M OSS rating

where P, is the e2e packet loss probability accounting for packetdsgiue to the link
and to the buffer.
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Figure 2.6: Pkt loss dependency

The termI,. accounts for the impairments due to the voice compressidorpeed by
the codec. A graphical representation of such a factor isrgim Fig. 2.7. Unfortunately,
there exists no simple mathematical expression for suchna te

Finally, the term/, is the delay impairment factor, which depends on the mootkedr
delay d. An approximation ofy; is provided below (the exact formula is in ITU recom-
mendation):

Iy = 24d +110(d — 177.3 - 107 *)H(d > 177.3 - 107%) ; (2.13)
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Figure 2.7: Rate dependency

where H(+) is the Heavyside function (unitary step function). The tielain (2.13) is
represented in Figure 2.8.
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Figure 2.8: Delay impairment factor as a function of the orag-delay

The mouth—to—ear delay, d, is inclusive of the algorithnmd packetization delay as-
sociated with the codec and the IP packet processgrithe one way network delay:/,
and the playout buffer delay,, s, so that we have

d:ms/ +mc+5buff .

The termm, depends on the specific codec used and the nursilErvoice frames aggre-
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gated in the same IP datagram. In case of G.711, we have
me(G.711) = N X 7, ;

with 7, = 10ms. G.729a codecs, instead, use,a= 5ms look ahead in order to encode
the currentl0 ms PCM encoded block, so the coding delay becomes

me(G.711) = N X 7, + 7y -

This metric relates the perceptual quality to some stantaffit related metrics (delay,
jitter, throughput) and allows for applying an optimizatialgorithm which chooses the
transmission strategy in order to improve the quality of W& connection, as will be
described in Section 4.6.

2.5 Scheduling in FDMA cellular networks

Orthogonal Frequency Division Multiplexing (OFDM) is theost widespread and promis-
ing solution for multiple access and signaling in today’selss (broadband) networks.
Its deployments include WLAN physical layer implementaiccuch as IEEE 802.11a/g,
ETSIHIPERLANY/2, the IEEE 802.16 standard for broadbaneiess access in metropoli-
tan area networks and the Digital Audio/Video Broadcas{d§B/DVB) standards. The
OFDM technology is based on the principle of multi-carri@ntsmission, originally ap-
peared in the design of high speed digital subscriber lifr@gH) [73]. The OFDM trans-
mission method results to be a really effective platform wltirpath environments with
frequency selective fading. A significant advantage of ti® technology is the pos-
sibility of allocating power and rate optimally, by usingagdive modulation according
to instantaneous subcarrier quality, thus maintainingpiadle BER per subcarrier [74].
Moreover, in the multi-user scenario, itis possible togissubcarriers to the less interfered
user, owing to the channel diversity among users placedferent locations.

Different users can in fact experience different channetidmons at a given time instant
and frequency band and this property can be exploited byroppstically allocating the
resources to a subset of users which have the best conditildms property is usually
referred to asnultiuser diversity75].

Depending on the channel status, each user can experidfgremtichannel attenuation
on each subcarrier and at different time instants. This entyggs usually referred to as
frequency and time diversityThis degree of freedom can be exploited for increasing the
transmission performance by appropriately allocatingdseurces in frequency and time.

Generally speaking, the optimization problems arisinguahssystems would require
to jointly optimize

e users selection / flow scheduling
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e subcarrier allocation to the users
e bit loading on each subcarrier
e power loading.
Different optimization goals can be pursued
e flow level: fairness / minimum per-flow rate / maximum thropgh
¢ physical level: power minimization / maximum power constta

Clearly, all the optimization variables and also differeptimization goals are strictly in-
terrelated such that a joint optimization is required fdriaging optimum performance.

It is worth noting that variables indicating the allocatioha subcarrier to a user are
usually considered as boolean variables in order to mo@etdimstraint that a subcarrier
can be allocated to a single user at a given time. In this ¢hegpint optimization prob-
lem, accounting also for the bit loading and the power selecbecomes a mixed integer
problem, which complexity can represent an issue for praktmplementations.

Moreover, different scenarios can also be considered. bfdse work in the literature
deals with single cell systems, thus neglecting the inédrinterference. Multi-cell sys-
tems, where concurrent transmissions are allowed frorareifit neighboring base stations,
represent a much challenging (and realistic) environngnte the inter-cell interference
couples the optimization problem along all the cells andeinagal would require a network
wide solution. Consider as an example the case of the thpuighaximization in an iso-
lated cell. The allocation of subcarriers with a high bitlaa the most desirable solution
since this allows for an higher throughput and also an irsgéaumber of admitted users,
which can also be beneficial for increasing the fairness gnflows. The same objective
in a multicellurar environment turns out to be much more leimgfing as the use of high bit
loads requires high transmission power, which in turn cabggh interference to neighbor-
ing cells reducing the spatial reuse. In this case a tradeeat¥feen modulation efficiency
and channel reuse has to be considered.

Many proposals addressing this kind of optimization protdeand spanning a subset
of the previously listed optimization scenarios, variglbded goals, have appeared in the
literature.

2.5.1 Allocation

In this section it is specifically reviewed the work relatedtie subcarriers allocation, i.e.
the problem of assigning each physical resource to traffiesfi@llocation), by also decid-
ing the more appropriate modulation (bit loading) and theex power (power loading).
In [76] a joint allocation, bit and power loading algorithrashbeen presented. Here
the problem of channel allocation and bit loading in an isalacell is subject to a hard
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minimum rate requirement from each allocated flow. The dbjecs represented by the
minimization of the transmitted power. The allocation gesh, which is a combinatorial
integer problem, is relaxed by allowing a fictitious timeshg@ of the available subcarriers,
thus obtaining a lower bound for the transmitted power. Tdiaten is brought back to
the integer domain by means of an heuristic mechanism,ailageach subcarrier to the
user with the highest time sharing. The outcome of such acation is then used to run a
single user water-pouring algorithm for the actual bit iogd

The work in [77] describes a subcarrier allocation and padaptation in a single cell,
with the additional aim of providing fairness among all@htisers. Bitload is considered
fixed and equal for each of the available subcarriers. A madiifersion of the ideal GPS
scheduler is used to define the number of subchannels todoagdt to each user in order
to achieve a fair resource allocation. Thus, subcarriersldocated to users with the aim of
minimizing the transmitted power. If the power is below aegivthreshold, the allocation
is considered successful, otherwise the number of availsighcarriers is decreased by 1
and the procedure is repeated.

Channel allocation together with power adaptation tealesgfor throughput maxi-
mization are presented in [78], in the case of a generic plaliccess schemes with or-
thogonal channels. The problem is addressed in a multiaekgenario, thus accounting
for the inter-cell interference. Three centralized hdiassare developed. Heuristics are
based on the use of efficiency metric computed starting frieenuseful and interfering
channels gain. In the simpler one, for each subcarrier tee wigh the best channel is
allocated. The same subcarrier can be reused by a concahardtion from a neighbor-
ing base station, only if the added transmission leads tolaagthroughput increase. It is
shown how starting from this heuristic, it is more efficiemtadapt the modulation rather
than the power in order to improve the network throughpute Jdint solution is only
slightly better than each of them. No fairness issues areeaddd.

In [79] a OFDM downlink in a single cell system is consideretb each user it is
associated a utility function: the design of such functi¢msthe design of the marginal
utility functions) allows for differentiating the serviggovided to the users.

The problem of optimal joint DSA (dynamic subcarrier allbon) and APA (adap-
tive power allocation) is considered with the aim of maximdgthe utility of the system.
System utility is the sum of users’ utilities. If the utilitg proportional to the received
rate, the problem turns out to be the throughput maximinatidSA and APA are solved
separately, and then a joint solution is shown to obtairebéiroughput. Some interest-
ing consideration on the design of utility function are maghglaining the existence of a
global optimum and proposing utility functions which ainmoétaining maximum through-
put, weighted fairness or max—min fairness. In [80] pradtadgorithms for the solution of
the DSA and APA optimization problems are proposed.

In [81] two cases are considered: a rate based utility, adaayonly for channel status
and a delay based strategy accounting also for queue staissargued that only queue
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aware scheduling can achieve the maximum stability reid®R). MSR policies do not
account for QoS differentiation but this could be fixed byrampiately designing the utility
functions. It is shown how the use of an exponential utilitypdtion brings to the well
known proportional fairness scheduling algorithm. It iscastated that the class of utility
function with polynomial derivative are able to achieve thaximum stability region”.

2.5.2 Scheduling

Link Layer scheduling algorithms for packet switched netgdave the goal of achieving
a fair allocation of the bandwidth resources to the flows cetimg for the access to the
shared medium. The basic packet scheduling schemes haweatlyi been proposed for
wireline networks, where the channel is usually assumectertor-free and of constant
capacity [82].

Known packet scheduling schemes have been extended tes@nettworks, by taking
into account the additional feature of a strongly time-yragychannel [83] and addressing
the problem of power efficiency.

If fairness constraints were not taken into account, mereutfhput maximization
would have an extremely unfair outcome, where few usersétemjoying good channel
conditions) are repeatedly allocated most of the bandyvightiie the others starve.

On the other hand, efficiency at the physical layer has to lbgugd by exploiting the
multiuser diversity “riding the peak”of the channel gairig#ions [75] and thus allocating
resources to the user experiencing the best channels ioorsdit

In some scenarios it is unrealistic to pursue short-terrmégis, due to the specific
characteristics of the radio medium. In fact, if the schedaimed at achieving fairness
among flows in the short term, the performance of the systeaidime far from optimal,
as we would schedule users experiencing a bad channelwsititeut any benefits for their
own flow nor for the aggregate network throughput. It has lbegn recognized that a
better policy is to allow for some short-term unfairnessrides to improve efficiency.

Clearly, a trade off between power efficiency and fairnesear

According to that requirements, basic schedulers showdg keck of how much data
each flow transmitted in the past, and compensate lagging fidven their channel condi-
tions improve, or when they have been starving for too lomgnmiplement this mechanism,
the scheduler needs to take into account both channel dfid state information.

A formalization of that mechanism is in [84, 85], where a wdfframework for mul-
tiuser single channel scheduling is presented. A Gilb#ibttEhannel model is considered
as a reference model and a equal physical transmissiororaad the users is assumed.

Following the proposed approach, every scheduling algoris composed by the fol-
lowing functional blocks:

e error free service (e.g. WRR, STFQ, WFQ, WF2Q): it definestheice that would
be obtained by the traffic fluxes in the idealized case of nustrassion error. The
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basic reference mechanism is the General Processor Slsahirduling. Such algo-
rithms are derived from the wired networks.

¢ lead and lag model: specifies how the service provided to aflmeasured.

e compensation model: it acts in a dynamic way to compensateciteived service
by different users, in order to approximate a fairness medeh as the ideal GPS
scheduling.

e slot queues and pkt queues: lagging a leading metrics camagsexllon transmitted
packets or experienced delay. This is used to decouple deldyhroughput mea-
sures.

e channel monitoring and prediction: usually a simple on-odidel is assumed and
the status of the channel is known at the moment of schedd&ogion.

Different instantiation of such blocks lead to differenbeduling algorithms: CSDPS,
WPS, IWFQ, CBQ-CSDPS.

In particular in [85] some analytical bounds are presentedparing the performance
of different scheduling mechanisms accounting for shodtlang term fairness for back-
logged flows, delay-throughput achievable region, shom tieounds for users with clean
channel, long term delay and throughput bounds for usetsewbr bounded channels.

It turns out that the most valuable algorithms are CIF-Q & WFS [87].

As already pointed out, channel status information is neglfior optimizing the power
allocation and increasing the throughput. In case of a ststahchannel evolution, a pre-
diction of the channel status in the near future is essefati@chieving good performance.
In [88], starting from the framework in [85], it is proposedeheduling algorithm similar
to WES, which accounts for a multi-state Markov channel.rgad can be retransmitted if
in error, but it has a finite Time To Live: using the channeldicgon, based on the Markov
model, the user which has the highest probability of colyaeiceive a pkt is scheduled.
An adaptive FEC is also used. It is shown that this algoritlemiqgzms better than WFS in
terms of throughput and delay, preserving the fairnessesti@s.

Some other consideration need be made when trying to implesaeh algorithms.

Many packet scheduling algorithms proposed in the liteeately on the time provided
by a common reference clock in order to implement the ere® model and the compen-
sation blocks; packets are tagged as they enter the quettsliag to the clock time. The
selection of the next packet to transmit takes place by takie time tag and the packet
length (thus, the packet transmission time) into accouit [8

Virtual time-based algorithms, however, have a high comipanal complexity, which
makes their implementation difficult and expensive. Thugorthms based on credits,
such as CBFQ [90], have been proposed. They are simple anputationally efficient,
achieve fairness among flows and can be adapted to work inedesé environment (see,
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e.g., WFCQ [91]). In credit-based algorithms, the serviegesof each flow is summed
up by a single number, its credit value. A flow gains creditewtft is not scheduled, and
uses credits when it is scheduled. This scheme makes it éaséke a continuous channel
model into account; e.g., in WCFQ channel quality is dealhwly introducing a cost that
depends on the state of the channel: the scheduling primfrayflow will depend both on
the amount of credits it has accumulated and on its chanraditguA flow experiencing
a bad channel is at first prevented from transmitting; it lsesitiled again when either its
channel quality has improved or it has accumulated enougdiitsrso as to overcome its
bad channel quality index.

A more theoretical approach is in [92], where the optimadtsiyies for achieving (i)
maximum throughput subjected to temporal fairness conssrar (ii) general utility func-
tion maximization or (iii) minimum performance guarantees presented. The optimiza-
tion is intended in the asymptotic sense. In the case of ratiosary condition a stochastic
approximation algorithm for the solution of optimizatioroplem is presented. Here the
channel model is not specified since its evaluation is iredud the utility function.

Alternative formulations of the scheduling problem areaisssible.

An approach based on Learning Automata is presented in g8 ACK and NACK
are used to estimate the link status for each user. To the uiiserassociated a probabil-
ity to be chosen in a scheduling round. The probability i€gated based on a fairness
function and on channel feedback. The transmission ratdested based on a probability
distribution calculated using past history. The algoritbmnverges in stationary situations
and dynamic scenarios are also tested.

Previous works never account for traffic sources dynamiccadie stability (since an
access level perspective was considered and a heavy loddionmwas assumed). Borstin
[94] considers the case of scheduling at each time slot thewish the best channel with
respect to the its mean channel status. The obtained sesviben used to evaluate the
stability region of the system. The study is performed in aalgic way. It is shown how
the Proportional Fairness scheduling algorithm falls imithe analyzed framework.

Tassiulas proposes an analytical study of the schedulirsgieh scenario. In [95] it
is assumed a ON-OFF channel model for each user and arbitedfiz arrival pattern.
It is proved that a simple rule based on queue length camattai optimum weighted
throughput. No QoS issues are considered, since a symrobaimel status for all users
is assumed and the aim of the optimization is not the stglaifiall queues.

Shakkottay [96] provides an analytical characterizatibthe “exponential rule”, that
is a particular scheduling rule which is able to obtain opimthroughput exploiting infor-
mation on channel and queue length. The channel is assunbedno@deled by a Markov
process with multiple possible transmission rates. No @s8ds are considered, anyway
the stability of the system implies the stability of each ugle

The work in [97] considers a framed TDMA. Slot in a frame arsigised in order
to guarantee the QoS requirements in terms of delay andghpat to QoS users, while
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optimizing the network performance. The number of slotsgaesl to a user is computed
in order to guarantee the target delay and pkt loss, givenhthenel model. An admission
control is assumed for QoS users. Remaining slots are a&sbigrbest effort traffic using
WEFS.

Packet schedulers described in the literature have toadily been designed for TDMA
systems with a fixed physical transmission rate, where tla¢ @fcdhe scheduler is only to
select one flow at a time for transmission. Thus, such saistitid not tackle the problem
of simultaneously scheduling packets belonging to difieflows and allocating them a
pool of transmission resources with possible diffrent jtaisrates. In a way similar to
the one proposed in [85], the work in [98] propose a way to dateeusers over multiple
channel decoupling the problems of throughput optimizatiad fairness. A first block
performs the weighted allocation of the available chanteetke users solving a LPI prob-
lem, while a second block performs the weights update, usisipchastic approximation
method. Information on available channel rate is exploited

2.6 Motivation for the proposed contributions

The literature review proposed in this chapter shows hoviop@ance optimization in

wireless networks represents an open research field wharg isgues remain unsolved.
The need for improving the performance by simultaneousiyygon many parameters is
such that the concept of cross-layer design is especiatigdsior these kinds of networks.

Anyway, a comprehensive and solid analytical model is lagkiNonetheless, a ten-
tative model has been recently presented which is denotéldyering as optimization
decomposition” and allows for a systematic definition of thferent layers functions.
The basic idea has been described in this section.

In Chapter 3 this model will be used for optimizing the penfance of a multi-channel
multi-radio ad hoc network, by defining a joint algorithm fdrannel allocation, conges-
tion control and scheduling. These kinds of networks irtredrithe optimization issues of
classic ad hoc networks, with additional degrees of freedothe optimization process
due to the availability of multiple channels and multipléeifiaces. Asymptotic results for
the achievable capacity as a function of the number of cHaramal interfaces have been
proposed which shows the potential performance. Some tcalgpproaches which uses
classic optimization theory and complex heuristics to mhetee more realistic bounds have
been also described. Such algorithms do not clearly showrtiss-layer aspects and are
far from being implemented in practice. Moreover, pradtio@chanisms for exploiting
the presence of multiple channels and interfaces have lesamided which are essentially
based on heuristic argumentations. Thus, practical dlgus based on solid analytical
background are lacking. The proposal of a framework forappglcross-layer algorithms
based on analytical argumentations in the context of nchldnnel multi-radio ad hoc net-
works is one of the contributions of this thesis.
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The presence of multiple channels in cellular network is aastassic aspect. Nonethe-
less, efficient algorithms for allocating the availableogges to the mobile users are being
investigated. Some of these studies related to schedutidgabocation of the physical
resources have been presented in this section. In thisxtdhtxe are only few proposal
regarding scheduling algorithms in FDMA networks, whergasst of the contributions
are focused on efficient allocation at the physical layet doe mostly tested in single cell
scenarios. Merging the two aspects requires a cross-layestigation, which have been
approached from a theoretical point of view by some autharthis context, simple algo-
rithms which preserve the modularity of the layered strigtbut at the same time allow
for an interaction between the scheduling and resourceadltm mechanisms, represent an
interesting challenge. In Chapter 5 a framework for achigeguch a goal will be presented.

Moving toward more practical issues, the problem of optingzhe performance of a
standard IEEE 802.11 network is another field open for rebeawntributions. In particu-
lar, the problem of adapting the transmission rate to tHedonditions by complying with
the standard specifications has not been fully investiggé¢d Theoretical and practical
solutions have been proposed which aim at optimizing the thmoughput by means of
heuristic algorithms. Optimal solutions, which are nonstard compliant, have also been
proposed for the case of absence of interfering transnmissithus, an optimal solution for
the case where the medium is shared with concurrent trasgmsshas not been presented
yet. Moreover practical and efficient algorithms for the sasuenario are lacking. One
of the contributions of this thesis is the analytical defomtof the optimal rate adaptation
for an IEEE 802.11 link in the presence of concurrent intartptransmissions. Practical
issues will also be addressed by allowing the definition o&lgorithm which could po-
tentially be implemented in actual network cards. The pseplageneral framework allows
to consider different objectives for the rate adaptatioth tarjointly optimize the rate with
some other tunable parameters, such as the maximum refssn@mimit.
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Chapter 3

Optimization in Multi-Channel Ad Hoc
Networks

With the motivation of improving the performance of multghwireless networks, in the
last few years great attention has been devoted to netwdnkseneach node is provided
with multiple radio interfaces and can operate on multiglarmels. This new degree of
freedom has been proved to potentially allow for achievimg full capacity even with a
reduced number of interfaces per node [36].

In this chapter, we consider the problem of joint congestiamirol, channel allocation
and scheduling for multi-hop multi-channels wireless reeks in a general communica-
tion and interference scenario. The problem is formulated pint optimization, which
is then solved by a dynamic algorithm and is potentially dablachieve the optimum so-
lution under certain assumptions. A specific simplified scinis also evaluated, where
the scheduling is actually an inherently NP-Hard problemadl, #hus a heuristic is proposed
and compared with optimum results, when feasible. The addoading and scheduling
approach is somewhat similar to the one proposed in [28]Hiatdhapter focuses on a
throughput optimal approach [14], is inherently multi-hapd congestion control is also
integrated in the framework. We build on the past work on ekwtility optimization, by
using the notion o¥irtual links to facilitate analysis of multi-channel networks.

3.1 Introduction

New challenges in wireless network design refer to a moreieffi bandwidth utiliza-
tion and the use of new networking paradigms. The former go@lated to the growing
bandwidth demand and the scarcity of available spectrune |atter refers to the need
for flexible and easy deployment, self configuration and tategm to the working condi-
tion. Multi-hop wireless networks have been identified aalaable networking paradigm
able to fulfill the previous requirements. Examples of mbtip wireless networks include
ad hoc networks and mesh networks. Practical interest ini4mop wireless networks is
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confirmed by the recent development of standards which @i{plencompass the mesh
paradigm, where the backhaul network is organized in an adtdywology. The IEEE
802.16 standard [3] is one example. In the context of 802¢ttvarks a special work-
ing group is dedicated to the mesh extension, which is efeto as 802.11s [4]. Other
standardization efforts are focusing on the introductibmesh-like support in their net-
work architecture, such as 802.15.3/4, where the netwathitecture implicitly supports
a mesh-like structure, and 802.15.5, which is working tordefi mesh structure for per-
sonal area networks. It is clear that a deep understandichghenability to optimize the
performance of multi-hop wireless networks will offer sifigant benefits in these contexts.

In the last few years great attention has been devoted toonefwvhere each node is
provided with multiple radio interfaces and multiple chalsnare available [99]. In this
scenario, each radio interface can be tuned on a differemtred and cultiple concurrent
transmission are possible. This approach is particulautigresting if applied to 802.11
networks, since multiple channels are already availabded@wices provided with multiple
wireless networking cards are being designed and alreadyim»some testbeds.

A lot of effort has also been spent in the last few years to tstded the challenges
related to resource allocation in such networks, wherertieased number of variables to
be jointly optimized represents a big issue. The problenbleas approached from differ-
ent perspectives, ranging from heuristic and protocolnbei@ solutions [100, 48, 47, 42],
whose performance is far from being exactly defined, to therdenation of theoretical
bounds [52, 2, 28], whose practical implementation is natightforward. It is thus worth
investigating an approach aiming at the design of pracaégbrithms based on a solid
theoretical background, which can be analytically proveduarantee some performance
bounds [28].

The aim of this paper is to provide a simple and clear framkwor investigating
the performance of multi-channel multi-radio networks afsirgction of the number of
channels, interfaces and concurrent end—to—end trarismesd\Ve consider the problem of
joint congestion control, channel allocation and schedyfior multi-hop wireless networks
in a general communication and interference scenario. Tdt@dgm is formulated as a joint
optimization, which is then solved by a dynamic algorithm sgfecific simplified scenario
is evaluated, where the scheduling is actually an inheréfl-Hard problem, and thus a
heuristic is proposed. The channel loading and scheduppgoach is somewhat similar
to the one proposed in [28] but our paper focuses on a thraugimtimal approach [14], is
inherently multi-hop, and congestion control is also inétgd in the framework. We build
on past work on network utility optimization (discussed etgon 3.3), by using the notion
of virtual links to facilitate the analysis of multi-channel networks.

The paper is organized as follows. The complete system namakthe goal of the pro-
posed analysis are presented in Section 3.2. Related wogkiesved in Section 3.3. The
optimization problem is formulated in Section 3.4 and thepmsed solution is presented
in Section 3.5 together with stability issues, addressefdction 3.6. The scheduler is

46



3.2. System model

defined in Section 3.7 and simulation results for the whog@@hm are in Section 3.8.
Conclusions end the paper.

3.2 System model

Our system model is derived from similar models used in pask\{28], [14] with suitable
modifications to capture the availability of multiple chais) as described below.

1 1 :
)‘n + ch Tjnc :

S S :
)‘n + ch Tjnc :

Figure 3.1: Node model

Consider a multi-hop wireless network. Each nodénin: n = 1,..., N} is provided
with 7,, half duplex wireless interfaces. At any given time, eachkrifaice can tune to any
one ofC' channels{c¢ : ¢ = 1,...,C}. The channel used by an interface may change over
time. For the algorithm definition, a general interferenaeel is initially assumed (which
can also encompass non-orthogonal channels). In SectioraZimplified interference
model based on orthogonal channels, and communicatioméerdarence graphs, is used
in order to define a greedy heuristic.

Traffic flows are, in general, carried over multi-hop routEach set of flows with the
same destination will be referred to as a singdenmodityin the following. Let{s : s =
1,...,S} be the commodities set. The input rate for commodisit noden is \s. Let A
be the vector of all input rates. Each input rate can assutnes®’ € A?.

As a result of the proposed algorithm, each nedeill be provided with an input
queuel, ,,, for each commodity, andC' x S output queued/; .. ., one for each channel-
commodity pair. All the incoming traffic for commodityis loaded on queug;; ;,. Output
queues for commodity are loaded using packets stored in quéije,, according to the
policy described in the next sections. Inside each node faneach commodity, a con-
nection is defined between the input quélfg, and each of the output queugs ., on
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Chapter 3. Optimization in Multi-Channel Ad Hoc Networks

different channels, for the same commodity. Such connestiall be referred to asirtual
linksin the following. Lety; . be the rate at which data is transferred from the input queue
U, ., to the output queu€’; . ., i.e., the rate of the associated virtual link. Betlenote
the vector for alby, . andV its feasible set, which represents the rate region for tiaali
links. The set¥ will be defined in Section 3.6, based on a stability argumaedtia order
not to modify the capacity region of the actual network.

Letr;, . be the transmission rate associated with the flow betweeasiodndb on
channele, carrying traffic for commoditys, and letr be the corresponding vector for all
a,b andc. The physical layer capacity for the link between nodesdb on channet is
denoted asv, ;.. Let us denote byo the vector consisting af, . for all nodesa, b and
channek. The feasible rate region, i.e., the set of all feasibleectors, is denoted a9/,
which depends on the interference model, and, in genekasconstrained by the limited
number of wireless interfaces at each node.

The utility function for commoditys associated with each source nadés denoted
by G2()2). To allow the use of convex optimization techniques, all ukiéty functions
are assumed to be strictly concave, and the rate vettavgl actually be considered as
belonging to the convex hull of the si¥, w € Co(WV). Similar assumptions have been
made in past work as well [20, 14].

The goal of the proposed algorithm is to jointly define
e congestion control

e routing

e channel loading

e interface binding and scheduling

with provable properties in terms of stability (achievedenhthe following property is
satisfiedlim; .o, E[}, . (U .o + U in)] < +00) and network utility maximization.

The use of multiple queues, similarly to [28], has been chas@rder to exploit mul-
tichannel weighted matching algorithms in the schedulipgration. The algorithm pre-
sented in [1], which is based on non-weighted matchingsatsmbe adapted to fit in our
framework. As will be clear in the following, in cageé = I (e.g., OFDMA systems) the
scheduling problem turns out to be decoupled along chan8alsoptimal heuristics could
also take advantage of individual channel queue lengthmmétion.

In the following, a general formulation is presented in teiwhan optimization problem
on a network flow. A Lagrangian relaxation allows to definesarthuted utility maximiza-
tion, channel loading and scheduling based on the concefftackpressure” [14]. Our
approach makes use of “virtual links” for loading the queae®ach channel. A stability
issue in the definition of virtual link rates is discussedegland a Lyapunov argument is
used to justify the solution. A heuristic way to solve theesbling optimization is also
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discussed for the case of a simplified transmission andf@naarce model. A lower bound
for the performance of the joint algorithm is also identifiater in the paper.

3.3 Related work

The concept of “layering as optimization decomposition$ baen investigated in the last
few years as a powerful way to analytically define crossHaygimization problems and
at the same time design feasible algorithms for their smuf20]. In particular, joint al-
gorithms for congestion control and transmission schaduiave been proposed [12, 101]
which are able to jointly optimize source rate and link sahied) [14], [13], [15] includ-
ing also the power control operation [16, 17]. The matherahtools widely used in this
new approach are essentially optimization problem decaitipo by Lagrange relaxation,
sub gradient algorithms and Lyapunov stability [18, 19]eTork presented in this paper
is based on the decomposition of an optimization problemmddfover the multi-channel
network model.

The solution is related to the general scheduling algorpphesented in [14, 16]. Given
a set of input rates which lies inside the capacity regiomefdystem, this algorithm is able
to guarantee stability (i.e., bounded queue lengths). Bhe af the scheduler is based on
the maximization of a metric which depends on the rate alémtto each link, multiplied
by the difference between the queue length at the link recside minus the queue length
at the transmitter side (thus the name “backpressure”)14h fa congestion controller is
added on top of the scheduling algorithm which is proved toveoge to a solution close
to the optimum.

The use of an imperfect scheduler in the joint schedulingamdjestion control may
in general lead to poor performance [23]. In case an impesigteduler is used, the joint
algorithm presented in [14] is proved to be able to guarastahility within a capacity
region scaled by a factor which depends on the imperfecidstée This opens the way to
the implementation of reduced complexity schedulers. bea“protocol interference”
model is considered, the scheduling, for a single chanrexlag, becomes a weighted
maximum independent set problem. The problem is in genePahérd [27]. Clearly, a
greedy centralized algorithm which selects at each stepirtkevith the highest metric
and discards all the interfering links can achieve a capaegion reduced by a factor of
1/K whereK is the interference degree [23]. In [29], it is pointed owdtthuch a greedy
approach is optimal in graphs with particular structure.

Algorithms based on a maximal independent set schedulerymighted) are known
for single hop networks and are presented in [33, 34], batapproach can not be extended
to the multihop case. In this case a different scheduler bdsetused, which exploits
additional information on the traffic intensity or numberhaips [35].

A novel approach for the scheduling problem is also propas¢t], where a random-
ized algorithm is used. The problem of maximizing the baekpure function is converted
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to the problem of comparing the backpressure value obtams&absequent random sched-
ules. At each time slot, the backpressure achieved by a neona maximal matching is
compared with the one achieved by the previous scheduleb&steschedule is applied. A
distributed algorithm is also presented.

The closest work for multi-channel multi-radio wirelesgwerks is the one in [28].
The authors propose a channel loading mechanism which,ioechlvith a multi-channel
maximal scheduler, is able to keep the network stable insidebset of the capacity re-
gion. The network model is such that each node is providel aitinput queue for each
commodity and an output queue for each commodity-channelp&nown traffic rate is
applied at each input queue for each node and, based on & ax@tdunting for the queue
lengths of all interfering nodes, a channel loading polgcgefined. A multi-channel max-
imal scheduler is then applied to schedule the backloggéd.liThis approach is extended
to the multihop case only for the case where information erstsurce rate is available and
a congestion control is not considered.

An optimization approach is also used in [2], where an LP pétwWlow problem is
defined to model routing and channel loading. The solutionsesd to obtain an upper
bound for the performance. A greedy scheduler based on ticerne of the previous LP
solution is then applied for solving the actual resourcecaition. A similar analysis is also
found in [52].

In this paper, a network structure similar to the one in [28assumed, and the opti-
mization approach is based on the decomposition presem{@@]iand the argumentation
in [14]. We propose an algorithm that works in a multihop sg@) and whose simple
channel loading mechanism is based only on local informafidhe complexity is moved
to the scheduling operation, which in general can be veryptexn The proposed algorithm
makes use of one input queue at each node for each commodignanoutput queue for
each channel-commodity pair at each node. The queue leagthssed, at each time
step, to make dynamic decisions about congestion contrahreel loading and transmis-
sion scheduling. In particular, “virtual links” are introded in order to model the channel
loading operation. The algorithm is analytically formeldtand then tested by simulation
in a simplified communication and interference scenarioe thpact of the number of
channels, interfaces and commodities on the network pagoce is investigated.
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3.4 Formulation as an optimization problem

The goal of the proposed algorithm is to solve the followipgimization problem (see
Table 3.1 for a summary of the symbol definitions):

G (A, 3.1
xr,?,wﬁ; S O0) (3.1)

s.t.
ot A<D A ns (3.2)
72,c S Z sz,j7c \V/TL, ¢ s (33)

j

Z i ne < Wine Vi,n,c (3.4)
7 € Co(¥) (3.5)
w € Co(W) (3.6)
Ay € A Vn, s (3.7)

In the previous model:

e (3.1) is the objective function

e (3.2) is the flow conservation constraint at the input of eaatle
e (3.3) is the flow conservation constraint at the output oheamde

e (3.4) is the constraint that the aggregate flow on a link maserceed the physical
rate

e (3.5) is the constraint on the flow in the virtual links for ttfeannel loading: this will
be specified to model different requirements. Note the cohwdl operator.

e (3.6) is the feasible rate region for the actual links.
e (3.7) is the feasible set for the input rates.

Based on the assumption on the utility functions and on tmwexaty of the domain,
(3.1)-(3.7) is a convex optimization problem.

3.5 Network flow optimization

The solution of the optimization problem is obtained viadtszl problem, relaxing all the
constraints (3.2) and (3.3). The procedure is based onywadt in [19] and [14].
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| Symbols:
G:(A8) Utility function
A =[A3] Injected input rate
7 =[r;,.] Flowsassociated to channel-link-commodity connectipns
7= Flows that load output channel-commodity queues
w = [wape Physical rates associated to physical channel-link
14 Feasible “virtual rate region” for channel loading
w Feasible rate region for actual physical links
A2 Feasible input rates
Table 3.1: Symbols
Let Ui, = [U;; ;] andU,gys = [U;; . . b€ the vectors for all the Lagrange multipliers

associated to constraints (3.2) and (3.3) respectively.ULe- [U;,, U,yut] be the vector
for all the Lagrange multipliers.
Relaxing the constraints (3.2) and (3.3), the Lagrange fumaktion for the problem is:

L(U) = TiW{ZGS )\s
+ Z n,in <_ Z ,rjs',n,c - )\fL + Z 72,0) +
7,C c
+ Z n,c,out <_7fz,c + Z Ti,j,c) } )
J

s,c,n

where the optimization variables 7, w, 7 are still subject to constraints (3.4)-(3.7) (here,
and in the following, constraints are omitted to simplifytatmon).
The previous expression can be rewritten as:

L(U) = Gh(A) = AU, 3.8
( mAx{Z OO0 =X } (38)
+ n?l%X { Z (Uzsc out Ujszn> f] c} + (39)

’ ,7,8,C
+ m$X {szn:c (US in UTSL c out)fyfz,c} . (310)

Note how each maximization represents a different “layethie optimization task:

e (3.8) congestion control;
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e (3.9) flow allocation, routing and physical rate allocation
¢ (3.10) channel management (stability, channel loadiny, ..

Let A\(U), #(U), @(U), (U) be the vectors of optimum values for a given set of
Lagrange multipliers, that clearly depend ®h The optimizations in (3.8) and (3.10)
can be carried out based only on local information, and are sluitable for a distributed
implementation. The optimization ofandw in (3.9) instead requires the knowledge of the
feasible rate regionV and could in general be solved by using a centralized algarieven
though distributed solutions can be developed under pdaticnterference assumptions,
such as for example in [1]. In particular, in order to optie{3.9), for each link between
nodesi and;j on channet defines* = arg max, {(chout Usy,) b+ The flow allocation
is given by setting’; . = w; ;. andr;; , = 0 for s # s*. Once the flow to be potentially
loaded on a physical link has been chosen, the following mezgtion has to be performed:
W = arg maxy, iEm’c Uz ot — Usin] wi,jﬁ}. This is the backpressure algorithm [14].

In Section 3.7, an assumption about a specific feasible egiiem will be discussed,
and the design of a greedy algorithm to computeill be presented, together with a lower
bound performance index.

Suppose for the moment that the only constraint imposedtweittual link rates is:

Y v <Ts

were eachli’® is a constant, which is set according to the stability andciyp preservation
criterion discussed in Section 3.6.

Under this assumption, the maximization in (3.10) requihed for each node and
commoditys, ¢* = argmax, { (U5, — Uz ...) } is chosen. If(Us, — Uz . ..) > 0
then sety;, .. =I'; and ally;, . = 0 for ¢ # ¢*, else set ally;, . = 0 Ve (so that the summa-
tion is 0; otherwise the summation would be negative). Thesisentially the backpressure
based algorithm for the virtual links.

The Lagrange function is convex, thus the multipliers candsaputed using a sub gra-
dient algorithm. It is known that a sub gradient for a giventee of Lagrange multipliers
is the vector consisting of all multiplicative terms in thadrange function. Note that such
multiplicative terms are the results of maximizations }3(8.10). With this choice, the
Lagrange multipliers are computed using a sequential tgorwhich, at each step, up-
dates them based on the value of the local sub gradient. heethe iteration index, which
can be associated with a time-slot in the system evolutibnsThe updating rules for each

multiplier at timet + 1 are:

Ut +1) = [U; in(t) + ar (A5 (U(1)+

+Z Z%c (3.11)
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Us,c,out(t + 1) = [Us,c,out(t) + aQ(’?fL,c(U(t))_F
+

= 2T (3.12)

In order to get a solution which converges to a stable valy@nda, should be set to
be small constants, whereas in the case- «; = 1 the solution will exhibit an oscillatory
behavior around the convergence point.

However ifa; = as = 1 the Lagrange multipliers obey the same dynamic equation
as the queue lengths. This makes this case most interestimgaf practical perspective,
since the optimization can be performed by just measurieggtreue lengths and using
these values directly in the algorithm. For this reason, wkfacus on this case in the
following.

Note that at each timea new sub gradient has to be computed, thus the optimizations
(3.8)—(3.10) has to be repeated at each time slot. (&}, 7#(t), @w(t), 5(t) denote the
vectors solutions of the optimization variables where theetindex has been explicitly
shown, wherea¥J is neglected to simplify notation.

Based on the previous argumentation, the proposed algof@hjoint congestion con-
trol, channel allocation and scheduling is presented iroAfgm 1.

3.6 Channel Loading: Stability by Lyapunov drift

In the previous section the feasible rate set for the vittoks used for the channel loading
has not been specified. Here it is proved that a sufficientidondor stability requires the
aggregated rate of the virtual links, used for the chanrsalilng, to be bounded.

The stability of the system is derived using a Lyapunov arguotation. Consider the
input rate for all commodities as fixed (no congestion cdhtad assume it falls within
the capacity region of the network.

The considered Lyapunov function is = - (Us..)* + > . .(U; . ,,)? and the
proof is derived from the one in [14] Sec. 4.2.

Consider the queue updating rules (3.11), (3.12) with= a, = 1. The drift associated
to the Lyapunov functiord. is denoted wittA(U(¢)) = E[L(U(t + 1)) — L(U(¢))|U(¢)]
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Algorithm 1 Joint optimization
At each time step, perform the following operations.

1. Congestion control. For each commoditgnd noden:
X (t) = suppgengy { GHO%) = AU |
2. Channel allocation. For each commoditgnd noden:
¢* = argmax, { (Uri,zn( ) UrsL c out( )) }'
If (US zn( ) Urszc out( )) > Othen
sety,, .«(t) = I';, and ally;, .(t) = 0 for c # ¢*
else
setally, .(t) =0 Ve.
end if

3. Scheduling and routing. For each link between nadexl;j on channet:
s = argmaxs {(Uis,c,out( ) U]szn( )) }
+
W = arg maxy {z” c |:UZSC out( ) Ujszn( ):| wi,j,c}

it (Us% 0utlt) = Ugia(®)) > O then

1,c,0ut 7,in

/N

setis’ (t) = Wi () and allis ; (t) = 0 for s # s*
else

setall7}; (1) =0Vs
end if

4. Queues update:

the queues are automatically updated according to theiru{8sl1) and (3.12) witlw; =
Qo = 1.

and can be easily bounded as

A(U(®1)) < B+22 s B (1)] + (3.13)
—2F Z ZjC[UZSCOut( ) ]zn( )] ‘ U( ) + (314)
—2F Z’ync nzn USCout( )] | U(t) + (315)

+ (Z %> +Y ()%, (3.16)

n,C,S

whereB is a constant term depending on thierms.
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According to Corollary 3.9 in [14], if the input rat&’ (which is loaded only on the
input queue) is such that, + ¢ Vn, s (for a smalle) lies inside the capacity region, then
there exists a randomized schedulingy and4, such that

] ~S
Toe = DT
n,c 7,M,C
c

%,C
E ~S 28
rn,j,c - ’}/n,c
J

and thus choosing a schedulgr, 4 according to the maximization in (3.9) and (3.10),
then (3.14) and (3.15) can be bounded leading to

E =e+ N\ Vn,s,c

E =0Vn,s

A(U() < B =2e> U, +

+ (Z %) +Y) (5. (3.17)

n,c,s

Note that ify_ (3.7 .)° + >, .. (7.) is bounded, the drift becomes negative as
the queue lengths increase above a given threshold. Thusstance we can define the
feasible rate for the virtual link a& = {v; . : > .7, . < I'; Vs, n}, with T} suitable
positive constants. The proposed network model artificiatids the virtual links to the
original network structure, thus we have to make sure theltieg network is able to
provide the same capacity region as the original one. Toaguiee such a property, a value
for eachl's can be chosen as the smallest value greater than the maxioasible output
rate for a node (which is bounded).

3.7 Scheduling

The scheduler defined in general terms in the previous secuires a centralized opti-
mization.

Here a specific communication and interference model isidered; each node can
communicate with any other node within a distatit;e for a correct reception no concur-
rent transmissions are allowed within a distafgdérom the receiver and the transmitter. In
this case, the problem of scheduling non interfering linkd@maximizing (3.8) is equiv-
alent to finding the maximum weighted independent set in ghted graph. Additional
constraints imposed by the reduced number of interfaces twalve considered. Note that
the maximum weighted independent set problem (defined ®sihgle channel case) is
known to be NP-Hard [27].

It is known [28, 23] that a greedy sequential and centralagdrithm that at each step
selects the link with the highest metric and drops all therfieting links can reach at least
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a fractiong = 1/K of the maximum value in (3.9), whet€ is the maximum number of
links that cannot be scheduled because a given link hadgliezen scheduled. In fact, at
each step at mogt additional links with a weight equal to or smaller than thiestd one
could have been scheduled. Note that the constraint on tihéeuof interfaces can cause
a link activation to prevent the use of other links in difierehannels. Thu& depends on
the topology and on the number of channels and interfaceis. gfeedy scheduler allows
for the solution of the whole optimization problem to corgesto the optimum referred to
a capacity region scaled by a factof14].

The previous lower bound is very conservative and the aperédrmance of the greedy
procedure is expected to be much better than stated aboree @asons are listed below:
i) the number of contending nodes is actually only the nunabéracklogged nodes with
positive backpressure, thus, as long as the network is ratiligdoaded, this number is
much smaller thark; ii) the loss in optimalitys is itself a lower bound, as it assumes that
each time a link is scheduled, all the dropped links have ghtavhich is close to the one
of the scheduled link; iii) the maximal scheduling is closdglte maximum scheduling in
most practical topologies [29].

In the following, the proposed cross-layer algorithm hasritested using such a greedy
centralized scheduler for a given topology.

3.8 Simulation results

In this section the whole algorithm is tested using the gyemhtralized scheduler previ-
ously described. The presented framework allows for annsite evaluation of the per-
formance of a multi-channel multi-radio network as a funictof several parameters, i.e.,
number of channel€’, number of interfaces per node and number of commodities.

In particular, the number of interfaces is the most inténggbarameter, since it represents
the peculiar feature of this kind of networks, and has beeridbus of previous theoretical
results. In all the scenarios, the capacity of each intenfeg free scheduled link is fixed to
1/C for a fair comparison among scenarios with different nuraleéichannels. The utility
function is the same for all the nodes and is define@d'gas:) = log(x), which implements

a fairness based congestion control. Simulations have fredormed by using Matlab.

3.8.1 Comparison with optimum solution and algorithm from [1]

As previously stated, to find the optimum solution of the skthieg problem is a very
complex task. In this section, the heuristic proposed irtiGe®.7 is compared with the
optimum solution and with the schedule provided by an adiptéo the current framework
of the randomized algorithm proposed in [1].

The optimum solution is achieved by an exhaustive search@adlution tree realized
through a depth-first search algorithm.

57



Chapter 3. Optimization in Multi-Channel Ad Hoc Networks

Comparison: optimum, heuristic, randomized
T T
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Figure 3.2: Comparison between solutions with optimum aeutistic scheduler. Dashed:
optimum; dot/dashed: heuristic from Section 3.7; solidhd@mized algorithm from [1].
The three sets of curves are referred’te- 1, 2, 3.

Most of the complexity is due to the need for searching thémph weighed maxi-
mum matching at each time slot. Recently, in [1] a new apgrdacsolve the scheduling
problem has been proposed. At each time slot, the algorittmpates i) the backpres-
sure achieved by using the link allocation of previous tiro¢ and ii) the backpressure
achieved by using a new tentative random allocation. Thiatiee allocation is a random
choice of feasible communication links, which is only requito satisfy the interference
and number of channel constraints. The two backpressunevale compared. If the one
associated with the new tentative allocation is greatem tivaequal to the one achieved
by the old allocation, then the tentative allocation is &gpbhnd used for the current time
slot. Otherwise, the old allocation is used in the curranetslot. This algorithm allows
to use a maximal matching as the scheduling algorithm, aalsté the maximum weighted
matching required by the formulation related to the clagsickpressure maximization.
The algorithm requires a comparison among two values offraskure, which have to be
obtained by gathering information among nodes through agesexchange; a distributed
mechanism can be designed for performing this operatiomadtbeen proved that this
mechanism allows the cross-layer algorithm to reach aisolarbitrarily close to the opti-
mum one. The logarithmic utility function has been consedan this case. The parameter
determining the solution optimality is the in (3.17). The greated! the better the solu-
tion, at the cost of an increased convergence time.

The first considered scenario is a regular linear deploywighhodes, where each node
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communicates and interferes with the nearest neighbors.cobmmodities are considered
(node 1 sends traffic to node 6 and node 2 sends traffic to nod#lblDs following the
topological order). Even in this simple scenario only a vemyall number of channels
could be tested by using the optimum algorithm.

In Figure 3.2 the aggregated received throughput is showadoh of the algorithms.
In this simple scenario, the heuristic solution presente@ection 3.7 is able to reach
the optimum one. The randomized algorithm and the heuriste have been run with
M = 10; for this value of M the heuristic solution is slightly closer to the optimum.
Clearly, increasing/ the randomized algorithm is proved to reach the optimumt&siu

In the second scenario, a random deployment of nodes isdayesl, such that each
node has 3 neighbors (interferers) on the average. The Sase$l, 4}, C' € {1,2,4,6}
have been considered and results are averaged over 10d@oltn this case the optimum
solution is not achievable in reasonable time.
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Figure 3.3: Comparison between solutions in Section 3.7thadandomized algorithm
derived from [1] .M = 10. Dotted: Section 3.7 ; dashed: [1].

As can be seen in Figure 3.3, the solution obtained by usmgeiristic in Section 3.7
is better than the one obtained by using the algorithm inl{hjas been verified, confirming
the theory, that increasing the parametérthe utility achieved by using the algorithm in
[1] increases its value for high numbers of interfaces, aggining the heuristic one, at the

cost of a slower convergence.
Since the algorithm in [1] is proved to converge to the optimaolution by increasing

M, this confirms that the chosen heuristic is a good approximatf the optimum solu-
tion and has better convergence properties in the considesnario. Therefore, all other
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results will be provided only for the heuristic solution.

3.8.2 Grid topology

The algorithm has been simulated in a single network snapsiraposed byV = 16
nodes, placed in a regular mesh with a distance of 0.2 untivede® adjacent nodes.

In this scenarioR; = R. = 0.3. The system has been tested withe {1,2,4, 8},
Ie{1,..,C} S e{l1,24}.
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Figure 3.4: Total utility for different numbers of channédlgerfaces and commaodities.

As can be seen from Figure 3.4, in all cases the aggregatig uricreases as the
number of interfaces increases. Anyway, the additiondityutiained adding a new card
decreases as the number of cards increases. For instanaseioflC’ = 8, only 4 interfaces
are enough for achieving the maximum utility. This is in aclance with the asymptotic
analysis presented in [36]. The utility is negative becausagarithmic function is used
and, in the simulated scenario, a normalized bandwidthevahs been considered. More-
over the utility decreases as the number of concurrent flasigases. This is due to the
specific scenario where the rate experienced by a single fimredses as the number of
flows increases due to the sharing of the medium.

Even though throughput maximization is not the main goahefdimulated algorithm,
in Figure 3.5 the aggregated transmission rate of all conitiesds shown. Similarly to
the utility behavior, the aggregated rate increases asutmbar of interfaces increases and
the maximum value is reached using a number of interfacefiesntiaan the number of
channels. As the number of commodities increases, the gajgerate increases, showing
that the spatial reuse of the medium is exploited.
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In Figure 3.6 the average queue length in the stationarymegs shown as a function
of the number of interfaces and channels. As the numbereffates increases the average
length decreases. This has an impact on the end-to-end adiash becomes smaller if
a higher number of interfaces is used. The queue length aleesealso as the number of
channels increases. Note in particular that in all cdses4, C' € {4,8} the maximum
throughput is reached (see Figure 3.5). On the other handheethnumber of channels
allows for a reduced queue length and thus a reduced delay.
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Figure 3.7: System time evolution. The curves shown areagest over a moving window
of 100 samplesC' =8,5 =4,1 = 4.

The proposed algorithm has been proved to asymptoticallyerge to the solution
of the joint resource allocation problem, but the proposealysis gives no insight on
the time required for the algorithm to converge. Figure i@vss a typical trend for the
time evolution of aggregated queue lengths, aggregateditéted rate by the sources and
aggregated received rate at the sinks. As can be seen, thergence is reached after a
relatively high number of iterations.

A more exhaustive investigation of the convergence timerésgnted in Figure 3.8
where the time needed to reach a stationary condition isgaldor different number of
interfaces, channels, and commodities. As can be seengtivergence time decreases as
the number of interfaces increases, and increases as theenofithannels or commodities
increases.

Our interpretation for this behavior is that, as the numdequeues in the system
increases, more time is required for all the queues to beedeamd thus reach a stable
configuration. This transient phase could be interpreteal @site discovery mechanism.
Increasing the number of interfaces leads to a higher nuef@ncurrent transmissions,
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Figure 3.8: Number of slots required for convergence, nrealsas the number of iterations
needed to reach an aggregated queue length within 10% aé#dysstate value. Dashed:
S = 2; Dash-dotteds = 4.

which speeds up the convergence process.

In some cases the time required for convergence is very [Bimig.can limit the practi-
cal implementation of such an algorithm in an actual netwévkeason for the slow con-
vergence is related to the routing mechanism, which impoge®nstraints on the feasible
paths for the traffic. The traffic thus can travel in all direns until a stable configuration is
reached. It would be interesting to define a policy for sgtarreduced number of feasible
paths for each commodity. Convergence delay also depentisegrarticular congestion
controller. A detailed investigation is out of the scopeto$fpaper and represents an open
research issue as pointed out in [20].

3.8.3 Random topology

The algorithm has also been tested using random topolodieseanodes are uniformly
placed in a unit square area. The presented results arggadavaer 10 random topologies.
Only connected topologies are considered. As in the previase, each node can poten-
tially communicate with all neighbors within a distance a8 @nd, when transmitting, it
causes interference to neighbors within a distance of Ot& average number of nodes
within the communication range is defined/as

As we are interested in the system behavior as a functioneohtimber of interfaces,
rather than in its absolute value, Figure 3.9 (Figure 3.hO)\s the ratio between the expe-
rienced utility (rate) for a given set of parameters and tlagimum utility (rate) achieved
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imum number of interfaces. The negative ratio is plotted rideo to provide an easier
comparison with Figure 3.10. Results are averaged ovee ttifeerent numbers of com-
moditiesS € {1, 2,4} and 10 random topologies. Dottef): = 7, dashed:D = 3.
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with the highest number of interfaces. Results are averagedS € {1,2,4} and 10
random topologies for each value 8f Two different node densities are considered, i.e.,
D =3andD =T.

The behavior is similar to the one already described for tin tgpology. It can be
noted that a higher node density allows for a reduced nunfbetesfaces needed to reach
the same utility and rate values. Once again this is in aecme with the analysis in [36].
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Figure 3.11: Aggregated rate, normalized with respect ¢éodingle channel case, as a
function of the ratio between the number of channels and uineber of interfaces. Results
are referred t@' = 6, I € {1,2,3,4,5,6} and averaged ovef € {1,2,4} and 10 random
topologies.

In Figure 3.11 the aggregated rate, normalized with redpdtte single channel case,
is plotted as a function of the ratio between the number ohobBs and the number of
interfaces. The behavior is similar to the one describe@&. [

3.8.4 Comparison with the results in [2]

The scenario considered in [2] has been reproduced and aacmoip between the perfor-
mance of our algorithm and the one presented in [2] has beeée .nTde algorithm in [2]
formulates the resource allocation as a network flow proldachsolves a linear program
in order to define an upper bound on the achievable perforendrteen a greedy algorithm
is applied for the scheduling operations. All the sourcegtihe same traffic requirements
(no congestion control) and the objective is to find the maxmrinput rate for which a
solution exists. Note that our algorithm aims at the utifitgximization rather than at the
maximization of the input rate. Nonetheless, assumingarltignic utility, fairness among
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different flows is enforced, thus pushing our input rate adentoward the one defined in
[2].

Note that the optimization in [2] uses a centralized LP sofytwhile our algorithm
can be run in a fully distributed way, as long as a distribigekdeduling mechanism is
available.

A grid 5 x 6 topology is considered; each node has at most 4 neighbors. shtks
for the traffic are considered5(= 4) and results are averaged usifig 10, 15, 20, 25}
traffic sources. Each sink is placed on a different quadeard,sources are connected to
the closest sink. Results are shown in terms of the aggreg@enormalized with respect
to the single channel case. In this formulation each chameh fixed capacity, so that the
total bandwidth is increasing with the number of channels.

As [8] does not provide all the details of the considered adenin trying to reproduce
it in our framework we had to make some assumptions on thediposiof the source and
sink nodes. Although this makes a detailed quantitativepaomon difficult, it still allows
to verify that the two approaches exhibit consistent bedravi Figure 13 shows the rate
gain in the two cases as a function of the number of channelsraarfaces. It is clear
from these results that the two approaches, though basedferedt techniques, have a
qualitatively similar behavior. On the other hand, while gtheme in [8] is completely
centralized and is more useful as a benchmark than as agalastiution, the features of
our scheme can give some insight for practical implemeonati

Rate gain w.r.t. the (I=1,C=1) case

0.5
1

# of channels

Figure 3.12: Rate gain factor with respect to the single nbbcase. Dotted: our algorithm.
Line: copied from Figures 7 and 8 in [2]
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3.9 Conclusions

A joint congestion control, channel allocation and schedyualgorithm for multi-channel
multi-interface multi-hop wireless networks has been @nésd. The problem of maximiz-
ing a utility function of the source rate has been defined agpdimization problem and
then solved by a dynamic algorithm.

The algorithm decomposes the whole optimization in difiéfenctional sub-optimiza-
tions and uses the queues length as a way to allow a joinicoloft different optimization
tasks.

A gueue at the input of each node for each commodity and a catebie output of each
node for each channel-commodity pair have been used; a misanéor loading the output
queues on different channels has been defined introducenggation of virtual links.

The algorithm has been presented for a general commumcatid interference sce-
nario. In order to test the behavior of the full algorithm,iastance of the problem, based
on a simplified communication and interference model, has Isemulated using a greedy
centralized scheduler.

The network performance has been evaluated as a functidre efumber of channels,
interfaces and traffic flows. Three different schedulerseha®en considered. The results
are consistent with previous theoretical findings, and cartthe goodness of the approach.
On the other hand, the specific features of our algorithmdcgive some insight on prac-
tical implementations in a distributed setting.
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Chapter 4

Optimization in IEEE 802.11 WLAN

This chapter addresses the problem of optimizing the pedace of an IEEE 802.11 Wire-
less LAN. The IEEE Standard specifies the PHY, MAC and LL madmas, but some op-
timization aspects are left open for the developers whiehchallenged to find optimized
solutions according to their needs.

The setting of LL, MAC and PHY parameters, such as physieakimission rate, max-
imum retransmission number of MAC frames, frame lengtlts, les a dramatic impact on
the performance of wireless links. We are interested in@gguch parameters by means
of practical algorithms based on solid analytical modebhthe standard MAC and PHY
behavior.

Based on the current network status, and using mathematiodéls for the MAC,
PHY and LL mechanism we are able to predict the link perforoeain terms of packet
loss, throughput, delay under different settings. In palér, the estimation of the current
network status turns out to be a fundamental task in thisatjper. By linking this model
with different optimization objectives we are able to defsegeral optimization algorithms
spanning different functional layers.

In particular, rate adaptation algorithms which are adep the propagation and in-
terference conditions are designed.

Moreover, by suitably merging the model for the link perfamae with a model for
the quality of voice connections, we also optimized thegrenfince of VoIP over WLAN
communications.

4.1 Introduction

In wireless systems, such as WLANS, the propagation erwvieot and the interference
scenario change over time and space due to factors such dgynpiopagation dynamics
and traffic variations.

To cope with this challenging environment, many wirelessriiaces offer the possibil-
ity of dynamically tuning some system parameters in ordexdapt to the environmental
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variations. The IEEE 802.11 specifications, in particudafine a plurality of PHY modes
which can be used for the transmission of data frames. Eadhméble uses a particu-
lar modulation and channel coding scheme and, consequefiiys different performance
in terms of transmission duration, overhead, and robustagainst reception noise and
interference. Moreover some other parameters are tunsibbd, as the maximum num-
ber of retransmission at the MAC layer and the frame size. yMudher parameters which
are defined as non tunable in former standard versions harereeognized as of basic
importance for determining the network performance and thtroduced as tunable pa-
rameters in the 802.11e version. MAC specifications forient standard allow to tune
the backoff window length and the interframe timing, by als#ooducing different quality
of service classes.

Thus, some degrees of freedom are available to the desigiérh can tune the net-
work setting in order to achieve a broad range of optimizagjoals. By linking these
parameters settings to the corresponding network perfacenand defining suitable op-
timization objectives, the design of cross layer optim@atproblems is made possible.
Then, optimization algorithms have to be designed in orectually achieve the solution
with reasonable complexity.

In particular we are interested in algorithms which act angéttings of a single IEEE
802.11 link to adapt its behavior to the current interfeeeand propagation conditions.
Two entities are thus defined in our formalization, i.e. theelgss link to be optimized and
the status of the network. We define an analytical model fetitik performance based on
a mathematical model for the LL, MAC and PHY mechanism whiotoants for the status
of the working environment.

Based on the analytical modeling, the trip|8NR P..;, &) is identified as a sufficient
description for the working environment. This triplet wik referred to as Medium Status
in the following. In this triplet SNR is the experienced Sigjto Noise Ratio P, is the
collision probability and. is the average tick period, defined as the time between two suc
cessive decrements of the backoff counter. Please notel®Medium Status accounts
for propagation characteristics of the link, through SNReiference coming from concur-
rent transmitters, througR,,;, and medium congestion, throughwhich turns out to be
proportional to the duration of channel occupancy from corent nodes.

Thus, the proposed Medium Status definition allows, foransg, for the explicit dis-
tinction between packet losses due to channel impairmewtshese due to medium con-
gestion and interference. This fundamental distinctiolhlva accounted in the analytical
model for the link performance and allows for the definitidnoptimization algorithms
which are able to effectively adapt to complex working eomiments where channel con-
dition and medium congestion are jointly addressed.

Approximations for practical implementation will be dissed later on in this chapter.

In order to make it possible to implement our scheme on redktds, we provide a
method for estimating the Medium Status based on informatioich is commonly avail-
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able on commercial devices in the form of 802.11 Managemdotrhation Base (MIB)
counters, with the exception of an event counter which we propose to auttl which
could be easily implemented by device manufacturers. Thecimess of the estimation in
a broad range of operating condition is verified throughitetaimulations.

Based on the knowledge of the Medium Status, the analyticaleis able to predict
all the major statistics needed to characterize the pedoom of a link, such as packet
dropping probability, delay, throughput etc..

This framework is used to define multiple optimization peshk with different ob-
jectives. The first application presented in this chaptiarseto a Rate Adaptation (RA)
algorithm.

In recent years, there has been a significant amount of asearthis topic. In partic-
ular, the case of a single sender/receiver pair has beeydeepstigated; for this type of
scenario, in which packet losses are due to channel impatromty, an optimal RA strat-
egy has been proposed [62], as well as several practical gkitims [64, 63, 65, 66, 67].

However, in typical 802.11 scenarios, multiple users argerading for the medium.
Therefore, in addition to channel-related packet losdses, AC collisions and variable
medium access time have a significant impact on performamakjn practice make the
above mentioned schemes sub-optimal and, in some casgsneficient. Some recently
proposed practical RA schemes [69, 68] address the probtesulltsion-related packet
losses; however, to the best of our knowledge, no previouk feomulated an optimal RA
policy for multi-user 802.11 scenarios.

Thanks to the previously described optimization framewaré try to fill this gap by
proposing a novel RA algorithm, named Goodput Optimal Ratapiation (GORA) which
uses Medium Status estimation together with an analyticadehof the goodput perfor-
mance for 802.11. GORA selects the PHY mode that, accordirige outcome of the
analytical model, yields the best throughput for the givetmeated Medium Status.

We tested GORA by using both ideal perfect Medium Status kedge and the actual
outcome of the proposed Medium Status Estimator.

Simulations results by using ideal Medium Status estimiagimow that GORA mech-
anism always outperforms other RA algorithms (also pravidéth perfect information),
thus showing how it can be used as a new benchmark for pratesadaptation schemes,
especially in scenarios with interfering transmissions.

Furthermore, the practical version of GORA, which uses tttead outcome of the
proposed Medium Status estimator, achieves performamatastitiose to that with ideal
Medium Status estimation, thus confirming that the RA frawrdvhere proposed is very
effective in a number of different scenarios.

In the second application, the outcome of the link perforceamodel is used to com-
pute the expected quality of a voice connection by means ddithematical model which
empirically maps transmission performance to perceptoigevguality.

1The formal specification of the 802.11 MIB is Annex D of the 80Pspecification.
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The considered utility function is the one proposed in [#]Woice over IP, which is
inspired by the E-Model defined in ITU-T recommendationsd3.fl102] and G.113 [103].
Such a utility function returns a numerical rating of theosguality that can be mapped
to the Mean—Opinion—Score (MOS), which we consider as thectifze function of our
optimization problem. This mathematical model allows tgrdalay and packet loss ratio
experienced on the link to a 1-to-5 MOS index representiegptrceptual quality of the
voice connection.

The resulting optimization framework is used to jointly ¢utine physical transmission
rate and the maximum number of allowed retransmissions §imgle packet at the MAC
level, in order to maximize the MOS index.

Whether the E-model is an effective way of representingerqgigality is not discussed
in this chapter, as we are more interested in showing thenpat®enefit achievable by the
proposed cross layer optimization framework.

We use an enhanced version of the NS2 simulator to test tfierpemnce of the pro-
posed optimization algorithms. The simulator is built byngsa recently developed mod-
ular architecture [104] and embeds an enhanced propagatidinterference model, to-
gether with the multirate capability of IEEE 802.11b/g neths.

The rest of the chapter is organized as follows. In Sectidnv.introduce the reference
framework and the basic constituent blocks. In Section £3lefine the Medium Status
discussing how it can be estimated on real devices. The nfiodile link performance is
introduced in Section 4.4. In Section 4.5 an instance foogtenization block is presented,
realizing the GORA rate adapter. Simulation results andpaotaons with previous results
are also presented. In Section 4.6 a second instance foptimeization block is presented,
optimizing the quality of a VoIP connection, together witmalations results. Finally, in
section 4.7, the conclusions are drawn.

4.2 Optimization framework

The proposed framework can be described by four blocks:

e MSE: Medium Status Estimatiofhis block provides an estimation of the medium
status.

e WLM: Wireless Link Model.This block provides an estimation of the end—to—end
performance that is expected, given the estimated mediatassand the working
parameter setting.

e QEB: Quality Evaluation BlockThis block computes the objective functigh

e OPT: OptimizationThis block determines the optimal setting for the tunablapea
eters in order to optimize the value Qf
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Figure 4.1: Optimization Framework

Note that in case an analytical solution for the optimizagwoblem were available,
the proposed framework could be simplified by appropriadelyigning a single functional
block, whose inputs are the network status and the correlpgroutput is the optimal
parameter settings for a given utility.

Unfortunately, the complexity of the MAC mechanisms do rtwve for such a com-
plete analytical description and thus the proposed arcthoite has been designed in order
to allow the description of an exhaustive search for thenogitsolution.

Moreover the proposed architecture is designed to be modntaugh to host different
utility functions, medium estimators and optimization inacisms, which can be indepen-
dently interchanged. In this sense the proposed archieeodpresents a new architecture
for a functional layering.

Thus, according to the proposed framework, the optimirngpimcess consists in iter-
ating the computation of the wireless link performance dredrelated utility for different
choices of the tunable parameters, until the optimal gpitiiound. In case some analyti-
cal properties relating the medium status with the optiratilrsy are known (monotonicity,
physical constraint) the search process can be improvedifetter efficiency.

A basic assumption used throughout this chapter is thateétveank status does not de-
pend on the specific setting of the link being optimized. Thearly represents a simplified
assumption.

4.3 Medium Status estimation

This block provides a sufficient description of the curreetwork status which allows the
WLM block to correctly predict the link performance over aad range of values for the
tunable parameters.

Based on the analytical model for the link performance, veaidied some key metrics
which represent a sufficient medium status description torpurposes. The Medium
Status is thus defined as the trip|8NR, P..;, &) , where SNR is the Signal to Noise Ratio
at the receiverp,,; is the Collision Probability experienced by the mobile istai{STA)
and¢ is the averagéck period defined as the time between two successive decrements of
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the backoff countet. This Medium Status definition allows to take into accountPilY
and MAC layer aspects in a 802.11 STA.

The SNR accounts for propagation characteristics of thedmit only depends on the
transmitted power (which we consider to be fixed), the chibgai@ and the thermal noise
at the receiver. Note that, once the relation betw&ahr and packet loss is available, we
can also define the quantify,, as the packet loss depending on the experieggd.

Py accounts for the fraction of transmitted packets which Hasen erroneously re-
ceived because of interference. Clearly this quantity tswedl defined as the packet loss
in general depends on the SNIR (Signal to Noise and InteréerdRatio) which jointly
accounts for interference, channel propagation and tHemoise. We conclude that the
two events are not mutually exclusive, and that both couateilbo the packet loss event, as
represented in Figure 4.2.

Thus we resort to a simplifying definition which is suitablelyofor particular, but
nonetheless frequent scenarios. In particular we assuatentierfering nodes are close
enough to the receiver so as to corrupt any concurrent tigssm. This collision model
allows us to connect part of our investigation to the intenfiee model used in the well
known performance study in [105].

We definePss as the total fraction of lost packets. SinBgss accounts for the contri-
bution of bothP.y and P, Wwe also have

Ploss = Feoll + Perr - coIIPerr- (4-1)

Based on the MAC mechanism, which requires the backoff @uatfreeze whenever
a transmission is sensed on the medium &ineeasure turns out to be proportional to the
time the medium is occupied by an interfering transmissidrus, this quantity represents
the congestion on the medium.

Such a model for the medium status allows for a differemtrabetween packet losses
due to interference (by means Bfy) and packet losses due to channel impairments (by
means ofF,). This distinction is fundamental in order to allow for a i@t adaptation of
the network setting, discerning bad medium status due toggation conditions from that
due to a high number of concurrent transmission. Clearfigrdint settings are optimal in
the two cases.

As we are interested in algorithms which are close to praktoplementation, a key
point in our proposal is the possibility of achieving a goatiraation of the aforemen-
tioned status variables by using information availabledtual devices with a reasonable
complexity.

With this respect we propose a Medium Status Estimation aaetvhich is based on
the use of some measurements available at the MAC layer.eTtheasurements, and the

2In [105] this is calledslot period We prefer not to use the tersiotin order to avoid possible confusion
with the 802.11 PHY slot time — the difference is that the fiekiod can be much longer than the slot time
due to the backoff freeze procedure.
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Ttransmissions

Interf. err. Noise err.

Figure 4.2: Packet loss model

notation which will be used for them throughout this papeg; a

e t,: the number of successfully transmitted unicast MSDUs, the number of trans-
mitted data frames for which an ACK was received;

e t;: the number of transmitted data frames for which an ACK waseceived,
e 1, the number of successfully received data frames;

e 1. the number of received frames for which the checksum failed

e s;: the number of idle time slots, except the ones preceded tanamission.

All these measurements can be obtained directly or indyrégtsome of the counters
available within the 802.11 Management Information BlobdE).2 The only exception
is the idle time slots countet;, which is not listed among the counters in the MIB; we
note, however, that its implementation would be rathelgitéorward, and therefore our
proposal still maintains a high degree of implementabitityeal devices.

We suppose all above mentioned counters to refer to the ®w&aurred in a time
window of given duratiorD.

For convenience we define the following variables:

o t, =t, + t; the total number of frame transmission attempts performed;

e 5, = 1y + ry the number of busy time slots, which corresponds to the numbe
transmission attempts made by other transmitter whileitikeunder consideration
IS not transmitting;

e t. number of times a transmission attempt by the link underidenation fails due
to collision;

e t, the number of transmission attempts which are not affecyecbbision (though
they might be affected by channel errors);

3We refer to thedot 11Count er s described in the the IEEE 802.11 standard, Annex D [106]. W n
that, in order to derive the measurements we need from theddlters, some processing is required, since
some counters also include control and management franhés, the measurements we use are supposed to
count only for data frames.
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In the following we will describe how Medium Status Estinoatis performed.

Following the same approach proposed in [105], we assuni@ditia the transmission
and the collision probability are stationary, i.e., indegent of the particular slot consid-
ered. With this assumption, the collision probability fotransmission by the link under
consideration equals the probability that a randomly $etetime slot is occupied by a
transmission from another node. Please note that, due fdA& mechanism, which re-
quires the backoff counter to freeze while the medium iseghsisy, we are not interested
in the time slots elapsed during the freezing period. We alginterested on the time slots
where a transmission start is possible. In this sense, @nerrission or the reception of a
packet is only counted as a single time slot, since a coflisauld happen only on the first
slot.

We now compute the needed events based on the availableecoumasurements.

The numbet of failed transmission attempts can be expressed agthefraction of
all attempts

tf = tqPoss (4-2)

and thus, using (4.1) we also get
tf - taPCOH + ta(l - PcoII)Perr (43)

The numbet, of collided transmission attempts can be expressed aB_ thdraction
of all attempts
tc = taPCOII (44)

The number of non collided transmissions can be expressed as
Sp =t, — t. (4.5)

Based on the previous definition’,, can be evaluated with the following formula:

Sy + t.
Peoy = 4.6
coll sy + 5 +tc T Se ( )

where, according to its definition

Sp="Tf+Ts 4.7)

The numerator of (4.6) represents the number of busy slotstree denominator rep-
resents the total number of slots.
Substituting (4.5), (4.7) and (4.4) into (4.6) we get

Ty +rs+ taPCOII
re4+rs+ 8+,
which leads to the following estimator for the collision pability:

Pcoll = (4-8)
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T+ Ts
Please note that the resultifty,; does not depend on the counters related to the trans-
missions of the STA under consideration, but only on the eveaused by all the other
STAs. This is the main difference with the estimator presemmb [107], which allows our
estimator to be effective also in the presence of packeetodae to channel impairment.
Since Pyss Can be obtained as the ratio between the erroneous packetheanotal
transmitted packets:

Pcoll = (4-9)

ty
Poss= —1—.
loss tf +ts

With minor algebraical manipulation the packet loss ratie ¢o channel impairment
P can be derived as

tf - (tf + ts)Pcoll
(tf + ts)(l — Pcoll).

We suppose thab,, is univocally determined by a known function of the PHY mode
being used, the packet size and th¥ R (without considering the interference effect) seen
by the receiver. The considered function is representedyun€ 4.3. We supposgN R is
constant for the whole packet transmission duration. Thexetermine SNR by inverting
the SNR versug’, relation for the rate being used. Clearly this practice negthat the
same PHY mode was used for the whole observation pépiod

In order to simplify the analytical study, we assume that ACie always correctly
received, which is a reasonable assumption in a scenaricevellenodes are in the same
collision domain and the channel is symmetric.

The average tick periog can be estimated by dividing the total time the channel was
sensed busy by the considered station over the total nunftberc&off tick periods in the
observation window:

Perr = (4.10)

€:D—tfjjf—Ifsrg—lfaO" (411)
Si +1rs+ 7Ty
whereo is the PHY slot time, and’; and7; are the duration for respectively a failed and
successful frame transmission by the STA being considdieelcomplete derivation is not
reported for conciseness. We note tlhgis determined only by the payload size and the
PHY mode being used, where@s is a random variable which depends also, in the case
of a collision, on the duration of the transmissions perfedrby other users. In detail, we

have

PCO“TC + 1— Pcoll
Ploss Ploss

T, = T., (4.12)
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whereT. is the duration of a collided transmission afdis the duration of a frame loss
due to channel errors. These values can be approximated as

T. = max(Tp, T}) (4.13)
T, =T, — (Tack + DIFS + SIFS) + EIFS (4.14)

with Tz the duration of the colliding packet.

PER

L={128,256,512,
1024,1500}

L L L L L L
-5 0 5 10 15 20 25 30
SNR [dB]

Figure 4.3: Packet loss ratio versus SNR for a IEEE 802.1hgection.

4.3.1 Estimations validation

In this section, the proposed estimation techniqueigy and Py, is validated.

In Figure 4.4PF.,,; is compared with the analytical value derived in [105]. listbce-
nario no errors due to channel impairment are present sdthat P,.s;. Results shows
that our estimation is very close to the analytical modellidg] when in the same condi-
tions.

In Figure 4.5 we report the results for a scenario where tbertede is placed at an
increasing distance from the AP, and a fixed number of integenodes are placed close
to the AP. In this case errors due to channel impairment agsepit, thus the model in
[105] can not be directly applied?.,;; and Py, estimates according to formulae (4.9) and
(4.10), are compared with the actual values measured frerrdbe files. As can be seen,
estimated values closely match the actual ones.

In Figure 4.6F,,, and P, are shown as a function of the number of interfering nodes.
As can be seen, as the number of interfering nodes incréaseisicreases Py, is almost
constant as it should be, representing the packet losedelatthe SNR value, which is
constant in this scenario.
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Figure 4.4: Accuracy of thé,, estimator in an error-free scenario
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Figure 4.5: Accuracy of thé,y estimator as a function of the distance between the test
node and the AP, in the case of 6 concurrent transmissions
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Figure 4.6: Actual and estimatd@,;, and P, as a function of the number of interfering
nodes forSN R = 20dB.

We obtained similar accuracy in a wide range of values foSN& and the number of
interfering nodes, and we can therefore conclude that thegsed estimator is able to pro-
vide an accurate and distinct information on the propagatiovironment and congestion
level.

4.4 Link performance model

In this section the performance of the link transmissioreisvetd. We focus on a Constant
Bit Rate traffic source and assume a saturation conditien,the queue at the source is
never empty. Under these assumptions we derive the statigiescription of the packet
dropping and delay experienced by packets, which will bel lgethe optimization algo-
rithms presented in the next sections.

A packet is dropped when it is embedded in a MAC Packet data(WRDU) that is
not successfully delivered aftey, ., transmission attempts, wherg,,,. is the max retry
limit parameter. Denoting by,.ss the packet failure rate at the MAC layer, we have

T
Pdrop - Ploss e

For deriving the delay statistics, as a first step we needtodoce the following nota-
tions.

e ¢;: duration of thej—th tick period seen by the tagged mobile station during backoff.

4A tick period is defined as the time period between two conseedecrements of the backoff counters
of backlogged stations (see [108]).
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e I/y: minimum contention window size.

e 1W,: backoff window size at thé-th transmission attemptt¥,, = 2™y,
wherem is the maximum number of backoff stages defined by the stdndar

e 3. MAC layer service time, i.e., time taken by the MAC entittesget rid of the
head of the queue MPDU, either successfully delivering teket to the destination
or dropping it afterax failed transmission attemptg’ denote the service time for
successfully delivered packets only.

e w: queuing time, i.e., time spent by a packet in the MAC sendergq.

e s. system time, i.e., time elapsed from the packet generatiots delivery. It ac-
counts for both successfully delivered packets and thosppaéid aften,qx failed
transmission attempts’ accounts only for successfully delivered packets.

e m,, M,, M,: first, second and third order moment of the (generic) randar
ablez, given by the expectation af, z*> andz?, respectively. Alsog? denotes the
variance of the r.vz.

To analyze the delay statistics of the delivery of packees twe wireless link, we model
the 802.11 MAC layer as a queue—server system, with infiniéeiq space, customer arrival
rate A and stochastic service time According to this model, each customer corresponds
to a MPDU, while the service timg corresponds to the time taken by the MAC entity to
process a MPDU, that is the time elapsed since the MPDU ikdetérom the head of the
MAC queue until either the relative ACK frame is correctlgeesed or the frame itself is
discarded due to exceeded retransmission lifpit. Therefore, the service time, which is
the overall time spent by the packet in the MAC layer, is gibbgrthe sum of the queuing
delayw and the service delay:.

S=w+y.

The queuing delay, in turn, depends on the service timand the arrival rate.

The derivation of the statistics af is long and cumbersome. Here the problem is
formulated and only the first order statistic is derived. dilston the complete derivation
are reported in [109].

During the service of a MPDU, the MAC entities alternate legwtwo different phases,
namely backoff and transmission. The backoff procedurgeimeral, is performed before
any transmission attempt. The stage of the backoff proeeduset to zero any time a
MPDU is served (either successfully delivered or droppedi, ghen, incremented by one
at each retransmission attempt. At each backoff stage, th€ Bhtity picks a random
integer value in the set within the backoff window assodatethat stage, and countdowns
by one every tick period. Therefore, denoting Byh) the time spent in thé—th backoff
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stage, we have
Wi—1

B(h)= > x Z & ; (4.15)

r=0

wherey, () equalsl or 0 depending on whether or not the backoff value picked whehthe
th backoff stage was entered is equal tgiven that the backoff windowwd$), 1, ..., W, —
1}. As discussed in Section 4.3 we assume to have an estimatitimein, value.

By taking the expectation of (4.15) we get

m —Wf me Whzl (4.16)
B(h)_ — Wh— 2 57 "

where we have replaceH|[x,(r)] with 1/W,, given that the backoff value is uniformly
chosen in a window ofV, integer values.

We can now express the service tignas function of the time spent in transmission and
backoff. Lety;(i) be equall or 0 whether or not the packet is successfully delivered after
consecutive failures. Similarly, lgt; be1 if the transmission has failed fof,, SUCCeSsSive
attempts (so that the packet is dropped for reached maxlimityand 0 otherwise. Then,
we have

rmax—1

y=> ys(i)xs(i) + yaxa ; (4.17)

=0
where

rmax—1

=ZB(h>+z’TF+Ts; ya= Y B(h)+rmadr .
= h=0

Keeping into conS|deratlon that the expectation of thedattir functionsy,(:) andy, is
given by
E[xs(i)] = Foss(1 — Poss) i E [xa] = Poga";

loss >

then, the average service time can be expressed as

rmax— 1

my = Z Ploss — Ploss) (i: E[B(h)] +iTF + Ts) +

Tmax— 1
+Foss' < Z E[B(h)] + TmaxTF)

h=0
Tmax—1 g W o 1 .
- Z Ploss Ploss (Z h2 me +11p + Ts> +
h=0
Tmax—1
. Wy — 1
+Pose’ < Z h2 me + TmaxTF> . (4.18)
h=0
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Notice thatm, also includes the service time of dropped packets. The geesarvice
time for successfully delivered MPDU is, instead, given by

Tmax— 1 ; 7
N Béss(l - PIOSS) Wy, —1 .
My = me+ I+ 1T, | . 4.19
P LAy \x 7 T @19

This results will be used in Section 4.5.

For the optimization objective presented in Section 4.6 eedrfurther statistical mea-
sures. In particular we will need the first and second ordemeris of the system delay.
The derivation of this quantity is long and cumbersome agdires the computation of ad-
ditional moment of; as well. Here its derivation is sketched and the final resulported.
The complete derivation can be found in [109].

By modeling the arrival and departure process by means aditeststal multiplexer
we can derive the following approximations for the first ardand order moments of the
system times.

2 (4.20)
ms =m : :
Y21 -p)

_ _ M, 2 2
Mg =M,(1—-p)+ 3 +my (o, + M,) + Mym;, . (4.21)

We have thus derived all the necessary statistics that willded by the proposed opti-
mization algorithms presented in the next sections. Basdtedetailed model presented
in [109], further statistical performance can be compubed they are not reported in this
thesis.

4.5 Optimization block: Rate adaptation

4.5.1 Algorithm description

The proposed rate adaptation algorithm uses the outcomeediuvh Status estimation
(SNR P, &) to compute the expected goodput for all the possible PHY sodehe
average goodput of the system can be expressed as

G = (1~ (Posd™) . (4.22)
my
where L is the payload length. The goodputis computed féediht transmission rates and
PHY modes; the one which achieves the highest goodput istedland used to transmit
the data frame.
Note that changing the PHY modes impacts the goodput in twyeswehe transmission
time increases as the rate decreases and the loss propaédreases as the rate decreases.
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Depending on thé,; and P values, the two effect have a different impact on the good-
put. Thus, given a fixedqss different rates turns out to be optimal depending onfhe
and Py values.

The optimization is performed periodically every,, seconds. As the Medium Status
is estimated at run time by collecting MAC counters statsstine duration df,,, is related
to D. We note that both values should be chosen taking into at¢bardesired tradeoff
between an accurate estimation and a fast PHY mode adaptatio

45.2 Performance simulation

In this section we report the performance evaluation of tie@@sed rate adaptation mech-
anism.

Simulations have been performed by using an enhanced rnesbithe NS2 simulator
[104]. All the specific parameters for the network setting aompliant with the IEEE
802.11g standard. In particular a maximum retry limit of  baen used. The propagation
and interference model used in the simulations is based caua<ign approximation for
the interference as widely assumed in literature. The ablanodel is simply determined
by the two ray ground model accounting only for the path lassmonent. Fast channel
gain fluctuation are not considered.

The model for the PHY layer transmission performance is riasd in terms of the
packet loss probability as a function of the PHY mode, SN, jpacket length. This char-
acterization has been computed offline using a dedicated IB{f simulator accounting
for the standard specification of the OFDM modulation andrggpdnplementation.

The considered scenario refers to an infrastructured mktwbere a test STA is con-
nected to the access point (AP) and is provided with the pat@nestimation and rate
adaptation algorithms. Other STAs are connected to the saness point in order to sim-
ulate an interfered scenario. Such interfering STAs ar@rmtided with the rate adaptation
algorithms.

Only uplink connections are simulated. All the traffic sag@are CBR over UDP, with
a packet length of 1500 bytes, and a generation rate suchltiibe connections are in a
saturated conditions.

We test the proposed GORA algorithm both in the case an edRt&lue is used and
in the case the SNR value is provided by the proposed estimato

The algorithms are compared with ARF, MBLAS (which assunodsatve perfect SNR
knowledge) and a modified version of MBLAS which uses the RIS mechanism to
receive information on the SNR at the receiver.

In Figure 4.7 we report the results for a scenario with norfeters. In this case,
MBLAS has been shown to achieve optimum performance. Thpgz&d GORA algo-
rithm, both with exact and estimated SNR achieves the saiti@om throughput. These
algorithms outperform ARF and the MBLAS version which stgférom the RTS-CTS
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Figure 4.7: Throughput of rate adaptation algorithms, asatfon of the distance between
the test node and the access point, in case of no interference

In Figure 4.8 results for a scenario with 9 interferers ispreged. In this case, MBLAS
turns out to be suboptimal. This is due to the fact that MBLA®gInot account for the
variations in the medium access time and thus neglects tneased transmission delay
in case of congested medium. Instead, the proposed GORAamisoh is able to adapt
the PHY mode selection to the medium status and in the casgaat 8NR knowledge
Is considered, it always achieves the highest throughpiieWising the estimateslVv R
value, GORA still shows good performance. In particular wess that GORA is a stan-
dard compliant mechanism and can be implemented in actuabriecards. In this regard
we are interested in the comparison with ARF, which is highdployed in practice, and
with MBLAS with RTS-CTS, which is close to practical (evemift standard compliant)
implementation. Both algorithms are outperformed by th@ppsed mechanism in a wide
range of working conditions.

In Figure 4.9 results for a scenario with a fixed SNR and a ls&iaumber of interferers
is presented. In this particular setting, GORA both withaxand with estimated SNR
outperforms the other rate adaptation algorithms.
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Figure 4.8: Throughput of rate adaptation algorithms, asatfon of the distance between
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4.6 Optimization block: Voice quality enhancement

Following the footprint of [70] and using the quality evaliaa function defined in 2.4.1,
in this section it is defined an optimization block that canirfithe previously defined
framework and can be used to improve the quality of VolP comigations.

In this section, for illustrative purposes, we assume a Eniqut rather common, play-
out buffer model. More specifically, we assume that the fiegtiket of each talk spurt is
held in the playout buffer for a fixed amount of timg, s, before being released to the
decoder. After this initial delay, voice packets are reguléetched from the playout and
passed to the coder. We assume that the buffer size is laoygleno avoid overrunning.
Then, packet loss can occur in case of underruns only.

Now, let us consider a talkspurt 8f voice packets, wher&/ is large. Furthermore, let
s; be the system delay of theth packet, i.e., the time elapsed from the epoch the packet
was generated till it was received by to the playout buffessdming that the wired part
of the connection does not introduce significant delay thie®]oss due to playout buffer
underrun can be generally expressed by using a conserGtiseyshev bound:

2 2

Therefore,P,, s can be approximated by

2 2

Ppugy = min | =1 . (4.23)
Opus f

This is a quite rough approximation due to the complex mdelelase notice that the jitter

in the packet arrival is translated to an increased packstda in creased delay, due to the

presence of the playout buffer.

4.6.1 Optimization algorithm

The MOS metric described in Section2.4.1, defined by Eqoat2ll) and the related
Equation (2.12), is used as the optimization objective tprowe the quality of the voice
connection. As already discussed, such metric is a funcidhe codec type, the packet
delivery ratio, and the mouth-to-ear delay. Thus evenyusié MOS can be expressed
as a function of the packet loss rati®,.ss, the packet dropping ratio at the bufféy,
(which depends on the jitter, measured dyand the delay. Thus, by exploiting the
relation between the MOS and the link performance metrios gy using the mathematical
model which relates the link performance metrics to the MAQable parameters setting,
an optimization problem can be defined which acts on such Ma@rpeters in order to
optimize the MOS.

In this thesis we are not interested in evaluating the affexess of the MOS metric
in describing the quality of a voice connection. We can galheassume the actual voice
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guality to be a monotonic increasing function of the MOS s the can use the MOS as a
metric to compare different solution in a relative way.

In particular, in order to prove the importance of a crosetayptimization in this
context, two optimization algorithms are tested. The fig only performs rate adaptation,
thus finding the most suitable rate for maximizing the MOSe $acond one instead jointly
maximizes the transmission rate and the maximum retry ligit, by pursuing the same
optimization objective.

Since the parameters take value on finite and rather smatedéssets, the easiest way
to find the optimal setting is to perform an exhaustive seavet the value space of the tun-
able parameters. Stability constraints as well as monoiependencies of voice quality
to some parameters could be exploited to reduce the seaack spd, hence, the compu-
tational load. Notice that the optimization process cdroeat by the optimization block
can be performed off-line over a given subset of the adniessiiace values for the state
variables returned by NSE block, namély,, andSN R. Then, the corresponding optimal
parameter setting can be stored in a memory, in order to dkeideed of implementing
the optimization framework on the terminal. However, madganced and sophisticated
strategies might be envisioned, also depending on the tdlgdanction considered.

4.6.2 Optimization validation

The proposed optimization was tested by using an enhancesibref NS2. The simula-
tion scenario is the same described in Section 4.5.2. Incpéat a G.711 voice codec is
considered.

In order to test different propagation conditions the VaR has been tested by placing
the mobile station at an increasing distance from the ARderao test different congestion
conditions, the test has been repeated with an increasm@eruof interfering nodes.

In Figure 4.10 results for the algorithm performing onlyeradaptation are reported.
In this case the maximum retry limit is settg,., = 7. As can be seen the MOS index
reaches satisfactory values only for the scenarios wher@& interfering nodes are present.
On the contrary, in Figure 4.11 results for the algorithnf@@ning both rate adaptation
and maximum retry limit adaptation are reported. The MOShim tase is significantly
higher than in the previous results set. We thus concludethiear,,., parameter plays
a fundamental role in the optimization of voice connectiofiie retry limit acts as an
important parameter in determining both the reliabilitd &ime latency of the connection. In
particular, packet retransmissions in heavily congestedarios experience high channel
access delay which in turn causes high jitter and high patigtping rate at the playout
buffer, since the delay of a given packet affects also thestrassion of the successive
ones. In this scenario, an early discard of delayed pack@sriencing retransmissions,
by imposing a smaller retransmission limit, can be benéffolathe delay of successive
packets, while causing a smaller increase in the packetdtiss
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MOS: Rate adaptation, 7., = 7; ideal estimation
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Figure 4.10: Only rate adaptation is performed in this case.ideal estimation of the
medium status is assumed. The maximum retry limit is set,to = 7 as suggested by the
standard. The achieved MOS is shown as a function of the SR /Winterfering nodes.

MOS: Rate and 7,4, adaptation; ideal estimation
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Figure 4.11: Both rate adaptation and maximum retry limitisg are performed in this
case. An ideal estimation of the medium status is assumed.miaximum retry limit is
automatically set by the algorithm which can choose a valger,,,, < 10. The achieved
MOS is shown as a function of the SNR, withinterfering nodes.
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Figure 4.12 shows the same scenario where both rate adaypsatd retry limit adapta-
tion is performed, but in this case the medium status is esédhby using the MIB counters
and following the procedure described in Section 4.3.

MOS: Rate and 7,,,, adaptation; real estimation
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Figure 4.12: Both rate adaptation and maximum retry limitisg are performed in this
case. The medium status estimation is performed based amfoenation provided by the
MIB counters. The maximum retry limit is automatically sgtthe algorithm which can
choose a valué < r,,,. < 10. The achieved MOS is shown as a function of the SNR,
with V interfering nodes.

The optimization still reaches a significant improvemergrahe simple rate adapta-
tion. Some bad performance in the case of a single interéarebe explained by recalling
that the status estimation and the successive parameterizgiion assumes that the be-
havior of the mobile station which is performing the optiatiobn do not impact the medium
status and thus the behavior of the other stations. Thigé&lglnot true in the case where
a single interferer is present, and the proposed mechanisma dut to be sensible to this
approximation in some scenarios. The solution of this bk open for further research.

The algorithm has not been compared with preexisting schesimece to the best of our
knowledge no similar algorithms with the same objectivesesxand thus a fair comparison
is not possible.

4.7 Conclusions

In this chapter a cross layer framework for optimizing thef@enance of an IEEE 802.11
WLAN connection has been presented. A Medium Status EStméatas been designed
which allows to estimate propagation and interference itmmd where the link under
optimization is going to operate. Such quantities are edgahby using locally available
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information explicitly described in the standard spectfmas. A mathematical model for
the link performance is then presented which allows to campielay and packet loss
probability as a function of the medium status and parareeseiting. This model is used
to define two optimization problems.

A Goodput Optimal Rate Adaptation algorithm, GORA, is desid which is able to
adapt the transmission rate to the channel conditions atitetoongestion caused by in-
terfering nodes. In particular the ability of adapting tlgerto the congestion conditions
of the network, determined by the collision probabilitypise of the key points in the pro-
posed algorithm, which can be used as a reference benchmarkitde range of operating
conditions.

The framework is also used, by means of defining a differejetadive function, to opti-
mize the network settings in order to maximize the qualitg IP connection. The Mean
Option Score is chosen as the performance metric and hasteematically related to
some MAC parameters in order to define an optimization prablin particular both the
case of rate adaptation and the case of joint rate adapttidmetry limit adaptation are
tested. Results shows how adapting the retry limjt. is of fundamental importance for
improving the performance of a VoIP connection.
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Chapter 5

Resource management in FDMA
cellular networks

Cellular networks based on OFDMA access appear as very piognsystems to provide
end-users with broadband wireless access. However, theyake interesting challenges
in terms of radio resource management. For this reason, eus fon scheduling at the LL
Layer and resource allocation at MAC-PHY layers, and westigate how they could be
operated in a cross-layer fashion. A mechanism for a sirmpégaction between the layers
is proposed in order to address both QoS requirements atltHayer and efficiency at
the PHY layer. The tunable mechanism, which is tested adocwufor the interference
in a multicellular scenario, allows to show the trade offirtn fairness requirements at
the LL later and efficiency at the PHY layer. Due to the siniiyaof our system with the
one described by the IEEE 802.16 standard, the results beieteld are also useful in the
context of the standard system.
The work here presented has been developed within the FRRIBI® project.

5.1 Introduction

In this chapter we discuss the challenge represented byepackeduling and resource
management through the realization of a joint schedulinee allocator. The reference
scenario is represented by a multicellular system baseddATDD. In particular the
downlink phase is considered and thus the described meschamvill be applied at the base
station side. We do not investigate the optimization iskamjsing instead on the possible
choices for effective and simple implementation. The fimttdbution is the outline of
a modular scheme where a credit-based scheduler is ireelgnath an efficient resource
allocator based on a low-complexity power-efficient andacaty-driven heuristic criterion.
Although these algorithm components are not themselvestheveriginal contribution is
their integration in a modular framework, which represemsg of the outcomes of the
research project PRIMO [110]. As will be shown in the follogj the proposed scheme
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Figure 5.1: System scenario

is also able to provide tunability for what concerns the eraff between overall power
expenditure and time to achieve fairness among the useis.isThossible by regulating
the degree of freedom in the allocation, which is managealtin a proper information
exchange between the two modules of scheduling and resallocation.

Another contribution of this research is the analysis oérf@rence issues arising in
such a scenario. In fact, even though there are studies girgpsimilar approaches, where
packet scheduling and resource management are jointhesskelil to have efficient solu-
tions, for most of them the analysis and the performanceuatiah are conducted in a
simplified single-cell scenario. In these studies, the ichpéother interfering cells is ne-
glected, whereas in the system under examination full #aqu reuse is envisioned and
therefore the allocation of packets may be greatly affebiethe interference conditions
in the assigned resource. In this context, the outcome aflations obtained with realistic
models for the details of OFDM and the physical propagatmenario are presented and
discussed, explicitly considering multi-cell interfecen

For ease of presentation, in the following we first descriteedonsidered system, fo-
cusing on the functional blocks and neglecting the impldit@n details, which will be
provided in the simulation results section.

Then, the framework considered for the algorithm develapreeintroduced together
with the proposed scheduler, the resource allocator anchdahanism for the interaction
among them. Finally, the simulation environment is desativith the system implemen-
tation details and numerical results are shown, suppodingyeneral conclusions on the
relevance of channel state and interference awareness.
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5.2 System model

5.2.1 MAC layer

The resource access in each cell is organized as a hybrid @-DIMA, using TDD
duplex.

time

¥

t PRy

carriers

-

Downlink Uplink
Figure 5.2: MAC structure

OFDM symbols are grouped in frames of duratibp Within each frame, symbols
are devoted to control signaling, downlink or uplink tramssions. Figure 5.2 depicts the
MAC frame structure that will be used in the system model.

Depending on the system configuration, the switching poattvben downlink and
uplink transmissions within the MAC frame may dynamicalhaage from frame to frame,
according to different downlink/uplink traffic needs. Wertt address this issue, assuming
all the useful carriers are used for downlink transmissions

Bandwidth is divided intaV, subcarriers and a frame contaiVs subsequent useful
OFDM symbols. In order to reduce the resource addressingesmhannel coherence
in frequency and time is exploited by grouping adjacéntbcarrier, time—slotpairs to
form a logical subchannel, which is the minimum allocabl& ohresource, denoted as
Basic Transport Unit (BTU) in the following. The addresssmace is thus reduced id;
subchannels in frequency ang slots in time. Details on the MAC and OFDM parameters
will be provided in Section 5.4.1.

Each BTU can be assigned to a different user and can be indepty bit and power
loaded. A fixed and discrete set of allowed bitldad= {B,,.;,., - - -, Bia:} IS defined for
loading each BTU. In order to make use of this flexibility iretresource management,
channel and interference measurements need to be exphyitgcheduling and allocation
algorithms.

We assume that in each frame the BS has perfect knowledge chtdnnel status and
interference value for each subchannel of each user, asumneglais the previous frame.
This can be obtained, e.g., by piggybacking such informaticeach uplink packet. Due
to the dynamics of the propagation environment and of therfietence scenario, such

95



Chapter 5. Resource management in FDMA cellular networks

information represents only an estimate of the channelstatthe upcoming frame. Thus,
the proposed framework is suitable for slowly varying ctelan

5.2.2 LL Layer

Traffic produced by users is queued at the LL layer. Each uddsla separate queue which
is loaded by a CBR traffic source. We assume the users’ paatetsrther fragmented so
as to produce smaller Data Chunks (DC) that can be entirédgfih a single BTU. Thus
we define the DC as a data packet of the same size of the minimoimempty) bit load
allocable on a BTU. Based on this definition, and accordirteécavailable set of bit loads,
a single BTU can carry multiple DC. This assumption will l¢acgn easier formulation of
the scheduling and resource allocation algorithms.

At the beginning of each frame, the scheduling mechanisiectsethe candidates DCs
for the transmission, according to the scheduling policycwhvill be described later on.
The selected DCs are candidate for the allocation on physisaurces and thus the trans-
mission to the corresponding mobile station. DCs allocatetisent to the destination are
deleted from the LL queues, whereas DCs neglected from tbeasbr are kept in the LL
gueues and reconsidered for future scheduling.

5.2.3 Relations with real systems

Among the emerging technologies to provide broadband esseehccess (BWA), IEEE
802.16 represents one of the most promising and attraggsterss. Expected areas of
application of the IEEE 802.16 technology include highespmternet access, public ser-
vices, private networks and broadband backbone for regidrese wireless coverage is
limited and deployment of cables would be too expensive @ractical.

However, it is often believed that a very important scenaaiod probably the first
to appear exploiting IEEE 802.16, will be the provision of Bvibr moderate mobility
scenarios such as residential Internet connections oesffithis will mean to realize, by
means of IEEE 802.16, a multi-cellular setting, where fixedeas points play the role
of Base Stations (BS). The IEEE 802.16 air interface stahflet1] describes in detail
the physical (PHY) layer, based on Orthogonal Frequencysin Modulation (OFDM).
In particular, the OFDMA with Adaptive Modulation and CodifAMC) mode of IEEE
802.16 which appears to be very close to the model used ichiister.

This method uses adjacent subcarriers to realize subclsamesulting in a hybrid
FDMA/TDMA medium access scheme. When used with fast feddbhannels it can as-
sign a modulation and coding combination per subchannahler “water-pouring” types
of algorithms, and it can also be used effectively with angtd@ Antenna System (AAS).
Several issues about scheduling and resource allocagmmithims are intentionally left
open to developers, which stimulates researchers to seskges capable of providing
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good performance in this sense. The work presented in thistehcan thus be considered
suitable for being extended to actual IEEE 802.16 networks.

5.3 Proposed mechanisms

Traffic flows
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Figure 5.3: Proposed framework

In a cross-layer perspective, resource management coypdiiseied by a joint opti-
mization of all the free allocation variables, i.e., whicets to schedule, jointly with their
power levels, subcarriers and timeslots, under QoS/fesreenstraints for traffic schedul-
ing and SNR/BER/power constraints at the physical layerwéi@r, this would lead to
a complex algorithm design, merging physical layer optatian goals with traffic level
requirements and involving a large number of variables adrpeters. This approach
would also lose any flexibility if new traffic requirements different optimization goals
for the physical layer were to be considered, e.g., as a qoesee of the introduction of
new technologies.

Hence, our approach can be regarded to &soae cross-layeone, trying to strike
a balance between flexibility and modularity, as achievedstoit hierarchical layered
design, and optimized performance, as could be yieldeddmsseayer algorithms.

Radio resource allocation is aware of all physical layerst@ints and can be given a
desired physical transmission related optimization tadg@ims at carrying a given traffic
backlog of data units. Which DCs are the “hottest” or mostu&hle to carry and from
which flow queue they should be taken is irrelevant to a raelsmurce allocator. This is
the point where a traffic scheduler comes in. Our basic idéadefine the overall cross-
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layer resource management so that scheduling and allacatiorithms can be changed
without impacting each other, provided that the common datectures are kept.

The coupling between scheduler and allocator is realizeslithh a list of DCs, cre-
ated according to the scheduling criteria, along with glpl@aameters specifying handling
constraints for those DCs. The list is defined frame by fraamel, is processed by the al-
locator to define which input traffic to assign to that framefteAthe allocation and the
transmission, it is up to the allocator to update the statubeoDCs of the current list as
delivered, transmitted but failed, or not allocated atHBilis feedback is used by the sched-
uler to update its own internal state and to provide a newthst scheduler should also be
given information about the maximum expected achievabpecity for each user, so as
to make sensible scheduling decisions. Other common péeesnas detailed in the next
two sections, make this a cross-layer approach, yet thexgffisient decoupling between
DC scheduling and radio resource allocation algorithm&abthey can be internally mod-
ified independently of each other. As an example, if the legdriterion for scheduling
is changed from, say, non weighted fairness to delay deadfiatching, this will affect
the way the DC list is formed in each frame, but the allocatitgorithm can be kept the
same, as long as its objectives (i.e., minimize transnmgsaver or achieved BER) make
sense for the application scenario. The resource manageamuhitecture just described is
schematically represented in Figure 5.3.

The scheduler and the allocator are two separate modulesenmplementation de-
tails are transparent as long as the interface between #aaims the same. This differen-
tiates the scheme here presented from other recent prepesah as [112], where a joint
MAC/PHY optimization is performed.

5.3.1 Scheduling algorithm

The scheduling algorithm itself (Algorithm 2) is a modifiedrsion of CBFQ [90]. For
each flow (and thus for each user) we define a fixed weightd a credit countek’; that
increases when the flow is backlogged but not scheduled nartrid. At the beginning
of each frame a list of DCs is tentatively scheduled; thusnduthe scheduling phase we
consider temporary credit valués:. The credit valuess; will only be updated after the
allocator has selected the DCs which are actually going tedosmitted in the frame. The
cycle in lines 5-21 is executed once per frame, and its parp$o generate a list of at
mostC,,.. DCs to be sent to the allocator. The scheduler associatésraypvalue to each
flow, based on its weight and on the credits it has accumuldtkd highest priority flow
is selected for scheduling and its temporary credit is deerged while the credit of all
other flows is incremented. After the allocator has seleftted the list theC,., DCs to be
transmitted, the scheduler must update the credits by érgctor each chosen DC, lines
8-19 of the Algorithm 2 with/(* replaced byx;.

Our goal is to fairly allocate the transmission resourceh¢oflows according to their
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Algorithm 2 schedule(C,...)

1. fori=1to N do

2: K —K;
3 c(i) <0
4: end for
5. while -V | ¢(i) < Cyar dO
6: [« argmin;cp ;T:
7 e(f) —e(f)+1
8: for i = 1to N do
9: if i € Bandi # f then
10: K;k<—K;k—|—maX<1_
11: else ifi ¢ B then
12: K; 0
13: end if
14: end for
15: if f/ € Bthen
16: K} « max (o, K} - 1)
17: else
18: K; <0
19: end if

20:  SchedList.insert(py)
21: end while
22: return SchedList

1) o
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weight. An important property of our scheduling algorithenthat this fairness goal is
attained independently of the algorithm used by the altocdh the following we state a
fairness bound [113, 114] by making no assumption as to thieypaccording to which
Ceq OUt of Cyy,, DCs are selected for transmission. Ldte a frame index so that time is
guantized in frames.

Theorem 1 For two flowsi and j continuously backlogged over an interval, o) the
following relation holds:

Ri(tit) _ Ri(tit)| _ Cae = Creg + 1 <1 1) 6

i < R _|_ N
i ?; to —t i @,
whereR; (t1,t,) is the mean transmission rate (in packets/s) achieved by:flover the

time interval(¢,, ;). Thus the (weighted) discrepancy between the transmisaten of
any two flows can be made arbitrarily small by choosing a gefiity long time interval.

It is then possible to show that Jain’s fairness index [1&8nputed forNV flows continu-
ously backlogged over a time intervalaf frames, is bounded as follows:

1 Cmaa: 1
F(m) > 2,m22(7+—1) (5.2)
1+ 227_; (% _ 1) Creq

5.3.2 Allocation algorithm

The allocation process consists in
e selectingC,., DCs out ofC,,,
e allocating the DCs on BTUs selecting the bit load and thestraasion power

In the proposed framework, each cell performs its own resoatlocation without
explicit control information exchange with neighborindlse The only used information
refers to the channel and interference value measuremeisied to the BS by its MTs.

As described in Section 5.3.1, the scheduling algorithnerdeines the aggregated
throughput to be loaded on the cell and passes to the RRA @&itenlist of data requests
to be scheduled. Since the length,,, of this list (which determines the total available
requests) can be greater th@n, (which determines the amount of requests that need to
be allocated), RRA has a degree of freedom in selecting theetwf requests to be trans-
mitted. Clearly, RRA selects such request subset in ordexpit the multiuser diversity.

Here we briefly describe the used allocation heuristic tocalle the NEW flows, with
the aim of giving some insight on the problem and draw sonmerésting conclusions on
the joint scheduling/allocation algorithms.
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Let ¢ 5. denote the Shannon capacity associated to B &) when this BTU is used
for a transmission toward thieth MS with powerp, ;, 1 < s < M, andl < ¢t < M,).
The capacityy, s ; is

pkz,s,tGk,s,t ) (53)

Ck,st = Hprylog (1 +
' ? Pn + Zie[ Dist - Gi,kz,s,t

whereH gy is a scalar factor depending on the bandwidth and the tinegtidarof a BTU,
Gl s+ Is the channel gain of M& on the(s, t) BTU, p, is the noise power andlis the set
containing the BSinterfering over thés, ¢) BTU. Letb, ,; € B be the bitload on the BTU
(s,t) for requestt. Sincec s, is the theoretical limit on the number of information bits
that can be transmitted on the BT ¢), it is:

bk:,s,t S QC s.t5 (54)

wherea < 1 to take implementation limits into account. Lgt ; be the indicator function
for the allocation of BTU(s, t) to requestk, i.e.

1 ifthe (s,t) PBU is assigned to usér
st — . 55
At { 0 otherwise. (53)
Some constraints to the optimization problem need be added:
1 Ms My
Tk min S Tf Z Z bk,s,th,s,t S Tkmazx (56)
s=1 t=1

i.e., the bit rate allocated to each request has to be wikti@nrposed limits. Moreover,
it is necessary to introduce a global constraint on the suall oétes to be delivered, say
ri¢- Without it, any allocation algorithm aiming at power minzation will allocate the
minimum number of bits for each user.

K Ms M,

Ti DD beeiXhist = Tiot = CregBunin: (5.7)

I k=1 s=1 t=1

A further constraint on the allocation is that, inside eaglh each BTU can be allocated
to a single user only:

K
> Xest <1 V(s,t). (5.8)

k=1
Thus the allocation problem can be formulated as the probfgaintly finding the optimal
set of values o, ; ; (channel allocation)y, s, (bit loading) andpy, s ; (power loading) that
enforces the constraints in (5.6)-(5.8) and optimizes pgrobjective function (usually
transmitted power). The complexity of this problem is veayge and thus we propose a
practical algorithm which solves a reduced and linearizagion of it.
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Efficiency maximization

The described problem requires a joint request selectidt) &location, bit loading and
power loading [76]. Here a heuristic solution is proposeticlv approximates the opti-
mum solution with a reasonable complexity. The problem igexbby means of a greedy
approach where the request selection, power loading,aitocand bit loading are solved
in a disjoint way, by using four different heuristics.

In order to break the non-linear dependency among optimizaariables, the request
selection, allocation and bit loading problems have bedwedoafter fixing a fictitious
maximum power level, ., = p V k, s, t, and thus the Shannon capacity, ;, to a fictitious
starting value for each BTU. Under this equal power all@ratthe capacity; , ; is a direct
measurement of the channel quality. Then, a metigcassociated to each user stating its
goodness in terms of available capacity,

N = E Ck’,&t)

(s,t)eF

whereF is the set of unallocated BTUs.

At each step of the procedure, the request with highésselected for a BTU assign-
ment. In the selection procedure, the requests that haveached the minimum required
rate are served first. Once the request to be served has besanclan efficiency metric

is computed for each BTU as
Ck,st

€k,s,t ZiEIC Ci,s,t7

wherelC is the set of all the requests minus the requedthis index allows us to compare
the advantage of allocating the BT, ¢) to the request, rather than to any other request.
The BTU with the highest is associated to the request selected in the previous skep. T
effective bitload associated to the BTU is set to the higpessible value, less than the
associated capacity. Eventually, the effective powerevédueach BTU is computed based
on the actual loaded bits. The actual allocated power i®asgd by a constant factor in
order to help overcome erroneous channel and interferesticeation.

The procedure is repeated until all requests are satishe@ggregated requested rate is
reached, there are no more free BTUs or the total allocategipbas reached the thresh-
old. Due to the per-BTU power limit, the requested aggredjéiteoughput may not be
reached. In this case the procedure is restarted using arhighue ofp’*! = p’ + dp. This
algorithm can be efficiently implemented and shows @ M, M, (log(K) + log(MM;)))
computational complexity.

This simple and low—complexity heuristic acts in a greedy \Wwa decoupling the as-
signment of each allocation variable. Even though this isizoptimal algorithm, it is
shown to be able to exploit the multiuser and frequency ditygrand thus it is suitable for
our purposes.
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5.4 Simulations results

The simulator has been completely developed in C++, and bas lealized by means
of the definition of a set of interfaces and primitives to bediso allow the interaction
between the MAC and PHY layers, coherently with the agreedsctayer architecture.

5.4.1 Topology and propagation model

We consider the forward link of a multicellular system, wder complete reuse of the
available time-frequency resources among neighborifg sehssumed.

Our simulator creates a cellular network scenario, with di®&ibuted over a toroidal
surface (this surface does not have edges, so that boréetseffre not present). The BSs
are placed in aregular geometry with a minimum distance éetviwo BSs of 1000 meters.
The MSs are uniformly distributed and are associated eaititiae BS from which the best
channel is sensed at the simulation start.

The assumed propagation model is derived from COST-259 [1].

For all three scenarios the same attenuation law will beieppdiven bya(d) = apd”,
whereqyis a factor that takes into account the cell tyges the transmitter-receiver distance
in meters, andk is a parameter that in this study will be fixed equal to 4.0.rateo to take
into account the shadowing effects, log-normal shadowiity & standard deviation of 6
dB will be included. Hence, the propagation model used vélldha distance-dependent
path loss with a decay factor of 4.0 and log-normally distiélal random path loss with
a 6 dB standard deviation. The effect of multipath fading W& modeled by a sum of
weighted delta-functions:

N , T
hit,t) =" B (t—t ——)
= Q

wherei is the path number is the Dirac impulse/ and % are the time-variant gain
and delay of the path, respectively. The actual number dfgast varies depending on
the value of the RMS (root mean square) delay spread; are zero mean independent
complex Gaussian stationary processes with an exponeetialing profile described by
Fe%aT, where() is the oversampling factor; is the sampling period equal to 50 1S £ %,
whereB is the system bandwidttf) is a normalizing factor.

The processes; have classical Jakes spectrum with Doppler frequeindhat depends
on the speed of the us¢p = “f., wherev is expressed in km/h and it is assumgd5
GHz . The considered value foris of 1 m/s.

Since robust coding techniques are supposed to be emplaoyee #HY layer, we
evaluate the probability of packet error according to thesneed values of signal and
interference strength on all the BTUs used to carry a packet.
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In particular we compare the number of bits that could haemtbensmitted according
to the experienced Shannon capacity (which derives fronatieal values of SIR) with
the loaded bits. If the capacity turns out to be greater tharidaded bits, the packet is
assumed to be transmitted correctly.

5.4.2 MAC specifications

We set the BTU structure so as to mimic one of the possiblengstallowed in the IEEE
802.16 standard.

The frame duration has been fixedioms. According to the 802.16 standard this
is compatible with a frame subchannel structure which cie%f16 AMC subchannels
(BTUs in our notation) in the frequency domain and 24 in tineetidomain. In this case
each subchannel consists of 24 adjacent data subcarretts/amdjacent symbols.

The use of only one AMC format has been considered, correspgrno 144 bits per
BTU.

For simplicity, in order to test the algorithm’s behavidietBS has been assumed to
possess perfect channel and interference informatiotsfd$s. The information is sent at
the beginning of each frame, and refers to the measuremeritsmed during the previous
frame. To implement this exchange, several solutions assiple. In fact, the IEEE 802.16
standard provides several ways for the MS to send controtnmédtion to the BS, allowing
many levels of quantization and timing. The optimality o€ thllocation is a function of
the amount of channel and interference information. Sorekmpinary evaluations of our
scheme have shown that the overall signaling overheadiding this information as well
as the broadcast of the schedule at the beginning of eacle fianimited to only a few
percent.

5.4.3 Numerical results

A first consideration on the behavior of the joint sched&A refers to its ability to
exploit the diversity naturally present in the system. Idesrto test whether the proposed
framework is capable of taking advantage of the system nudti diversity, in Fig. 5.4
results for a scenario with a variable number of users arerteg. A constant global
amount of traffic requests, independent of the number ofsuders been passed to the
allocator. The behavior has been tested under two diffeadoes of the parametér,, ...

Fig. 5.4 shows that the average transmission power decreastihe number of users
increases. The proposed algorithm selects the flows to leelatdd by taking into account
their channel state, thus exploiting multi-user diversifys a consequence, the greater
the number of users, the greater the chance of being ablehemgle a subset of users
who are all experiencing good channel conditions, whichultesn lower transmission
power requirements. If we only pursued efficiency, with ngarel for fairness, the power
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Figure 5.4: Average cell power consumption vs number ofgjser two values ot”,,,,..

reduction with a large number of users would be even moreifgignt: only the best
users would be allowed to transmit, while the others woulgdém@nanently blocked. This
behavior is confirmed by the fact that the power consumptiibim @,,,.. = 1 is higher than
in the case whety,,,,, = 4. Itis remarkable that our algorithm manages to achievadas
among flows after a moderate number of frames, while sucegediexploiting diversity
with an intelligent time scheduling policy.

In the next set of results, we compare the power consumptidties fairness properties
in order to point out that a trade off exists and that the bemanf the proposed algorithm
can be tuned by acting on the paraméigy,,.

We quantify the achieved throughput fairness among trafieslin terms of Jain’s fair-

ness index [115], defined &= ((ZZ_N:l 9:1)2) / (N PO x?), wherez; is the through-
put achieved by flow, and NV is the number of competing flows. An index equal to 1
characterizes a perfectly fair outcome. We define the Timé&dirness metric (TTF) as
the number of frames needed to reach a target fairness inwthé) has been fixed to 0.95.

Fig. 5.5 shows the mean transmission power and the TTF aatawith different values
of C,... IN @ scenario with 6 users per cell on average, and a fixedrestjoapacity. The
traffic sources are assumed to be in saturation, i.e., eactin@ always has packets to
transmit. As expected the power decreaseS’as increases, while TTF increases. With
Cnee = 1 the allocator is forced to allocate all the requests salebtethe scheduler,
thus leading to strict fairness satisfaction but with a peweefficient allocation; ag’,,..
increases, the allocator has a higher degree of freedomesmchoose to allocate only the
best users, which results in a higher power efficiency, tad &l a higher TTF.
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Figure 5.6: Average transmission power and TTF vs cell load
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5.4. Simulations results

In Fig. 5.6 we plot the average power per transmitted bit &edTiTF versus the nor-
malized cell load”,.,, with C},,,. = 3. The nearly constant per—bit power consumption
observed with our allocator is an indication that an inggit allocation policy, which also
takes interference into account, is able to manage the @eleinterference by preferen-
tially allocating less interfered resources. Anyway, as tell load increases, the time
needed to reach fairness increases.
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Figure 5.7: Fairness achieved after each frame

Fig. 5.7 shows Jain’s fairness index, computed on a windoW dfames, versus the
window sizelV, thus describing the behavior of the algorithm through tiffieo lower
bounds are also shown. These lower bounds have been obtayrehlytical formulas
in [114], which are computed without taking into account #ilcator policy, and are
therefore valid foanyresource allocation algorithm. The two curves, two diffénalues
of C,..., again show the effect of such parameter on the fairnesemas. However, note
also that the performance of the proposed strategy is veog golong-term fairness is
considered.
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5.5 Conclusions

In this chapter, we have discussed resource managemeugtsaspa multicellular network
based on OFDMA, where challenging optimization issuesatise to the complete re-
source reuse among neighboring cells. In this context OFD#férs a flexible way to
manage physical resources, leaving room for the developofiefficient algorithms.

A framework for a dynamic resource management has beenrnpeesehich merges
traffic and physical level issues in a cross-layer perspectiPhysical layer information,
such as channel and interference measurements, togetherafiic information, are ex-
ploited by the proposed two—layer algorithm in order to ioyarthe performance.

In particular, simulations performed in a multicellulaesario have shown that the pro-
posed joint scheduling and resource allocation algorith@bie to trade fairness require-
ments imposed at the flow level for physical efficiency mestsach as power consumption.
The algorithm exploits the diversity naturally presenthe system, thus confirming that
FDMA resource management is an effective and promisingaampr for future generation
wireless systems.

The studied system is similar to the one described in the I&EEL6 standard and thus
can provide useful contributions for the study of that syste
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Chapter 6

Further cross-layer investigations

As pointed out in the introduction, the concept of crosstagptimization is quite general
and can be applied to a broad variety of systems and used toagbpmany optimization
issues.

During the Ph.D. course | had the chance to study very diftassues in wireless net-
works involving the concept of cross-layer optimizatiomisichapter provides only a brief
introduction to two additional topics, with a quick refecerto the major results we found.
Such work has been published in international journals amfecences, where the inter-
ested reader can find the details on each of them. A compstteflpublished/submitted
papers is also provided.

6.1 Economic perspective in resource allocation

Related publications: [116] [117]

A very interesting and developed application of the Wirglescal Area Networks
(WLANS) based on the IEEE 802.11 protocol is the creationaifdpots, where a set of
mobile terminals is connected to a central access point Hihd of system is nowadays
present in business areas like conference rooms or airpdrhatel lounges, where users
are interested in easily and rapidly establishing a networiection.

Current implementations of IEEE 802.11 systems use theribuséd Coordination
Function (DCF) based on the Carrier-Sense Multiple Acc€&3MA). It is well known
[105] that in this case the performance is heavily affectedhie network operating con-
ditions. Thus, the provider is interested in efficiently agimg the bandwidth resource.
Reasonably, this could mean aiming at achieving a sat@faaicome from the network
management operation and providing as many users as posgdthl a satisfactory ser-
vice, which are required in order to have a sustainable enanmodel. For this reason,
the investigations on how to properly allocate the radi@uese, as well as to set up an
appropriate pricing strategy, are key issues for the nétwperator.
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To explore these aspects, we refer to the application of@oanmodels to the Radio
Resource Management, an open field for research on whichaseantributions have
appeared in the recent literature. In particular, the cpnogutility functions and issues
taken from game-theory have been employed to representableu@uality of Service
(Q0S), for example obtained through variations of the teats data rate.

An example of application of micro-economic issues to the@aggment of a WLAN
hot-spot is given in [118]. However, note that the micro+emmic control performed there
refers to the definition of a virtual price that has the effgfctegulating the access and is
negotiated dynamically [119]. Instead, in our study we @d&r®d the real price established
by the operator for the service tariff, which is bound to bedia priori and known in
advance by the users.

In particular, our aim is to investigate the role of actuating in determining resource
usage. Besides causing revenue generation, pricing thensysage also allows a better
coordination and a more efficient utilization. In other wgrgrice tuning can be seen as
an implicit Admission Control (AC) mechanism which imprevle system performance.
On the other hand, too high a price prevents users from egtéhne service, so that the
system is under-utilized. Besides the total revenue, wesdlsly the service appreciation
by measuring the average number of satisfied users, whichoiher indicator of good
management that a provider of a real system needs to takeongideration in the long
run.

In order to perform these evaluations, we adopt the micamemic model for wireless
applications and services presented in [120], which dessrihe users’ choices as driven
by their appreciation of the service, and at the same tinogvalthe evaluation of economic
guantities such as the provider revenue and the averageanahsatisfied users.

Hence, our goal in this study is to apply such an economic inode hotspot using
CSMAJ/CA. As a closed formula for the performance of the jamtroeconomic and net-
work model is not available yet, we use NS2 simulations ireord test the proposed
concept.

In this scenario, we aim at exploring the trade-off betweatdihd usage-based pricing,
i.e., a purely linear function of the experienced data rateg hybrid one where price is
only partially related to the achieved data rate. The comparamong different pricing
strategies has to be based on some fairness criteria. Weaterpgcing strategies with
equal average price (defined as the mean price experieneefliastion of data rate).

The choice of a pricing strategy results in a different ootemf the network manage-
ment, where, roughly speaking, users’ satisfaction might&ded for provider’s revenue.

As an example, in Figure 6.1 three scenarios are consideeagh curve represents the
achieved< operator revenue, user satisfactioras a function of a parameter which tune
the pricing function from linear to flat. Each curve is ob&drnwith a different average
price.

As can be seen, usage-based policies (in this case, lineag)machieve higher revenue
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Revenue-satisfaction trade—off

1r OO0 O- O DG — .
. <> > V@D
ool linear flat =D X2 D
el d
0.8t x>
l P
® inear .~ 7/
5 0.7r _/[> ,
5 flat g /
B 06F > > X
2 >> > K
% 05f 7
G />(
5 0.4 e
I3] . .
IS linear ~
L 0.3f x° ’
flat 7
0.2 s - - —O— - Low price
o - —P— Medium price
01r e . =x— - High price
x R
O 1 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1 1.2
Earned revenue [s *Mb™] x 107

Figure 6.1: Example of results for the pricing policies enadion through the micro-
economic framework (the value ¢fis 0.3 for Low Price,0.5 for Intermediate Pricel.0
for High Price).

with respect to flat pricing but also yield lower users’ datition. This trade-off between
the immediate goal of the provider and the users’ welfare marcut by an appropriate
choice of the relative weight between the two contrastingdives, so that in the end the
choice of the pricing policy might be directly determinedlbgking at one suitable point
in Fig. 6.1.

It is also worth noting that purely flat or purely linear ségies do not offer generally
a good tradeoff, since the curves tend to wrap so that a hgnatkgy is often preferable.
This emphasizes even more the need for an appropriate ig@sh of all pricing policies
by allowing more factors than the simple average price ireotd tune the price not only
quantitatively but also qualitatively (i.e., changing 8tepe itself of the pricing function).

111



Chapter 6. Further cross-layer investigations

6.2 Efficienttopologies in Bluetooth Scatternet

Related publications: [121] [122]

Originally born as a wireless replacement for cables commgelectronic devices,
Bluetooth has been gaining a lot of consideration and attebly the scientific community
in the last few years. The development of this technologyois focused on the area of
the so-called Wireless Personal Area Networks (WPANS) revBduetooth is expected to
play a major role in the short and mid-term future. The conuiaésuccess of WPANS is
intimately linked to their ability to support advanced dajiservices, like audio and video
streaming, web browsing, etc. In such a scenario, the pedoce aspects of the radio
technologies involved appear of primary importance.

Bluetooth has been designed to work in a scattered ad homenvent, where multiple
independent overlapping networks, called piconets, maxisband be interconnected to
form a multi-hop network, callesicatternet Recently, much attention has been devoted, by
both academic and industrial world, to issues concerniattestiets formation and man-
agement. In particular, scatternet formation algorithanehbeen widely investigated, and
many solutions have been proposed to build up a scattearghgtfrom disconnected units

The focus is now moving to the characterization and desigeffadient scatternet
topologies [123, 124, 125], since it is clear that the wayop&ts are interconnected to
form scatternets may dramatically impact the network perémce. The optimality of a
scatternet configuration depends on the performance isdexesidered. Some typical per-
formance metrics are the number of piconets, the numbertefvgg devices, the number
of roles per node etc. When data connections are considémexlighput, average and
maximum traffic delay are taken as metrics of interest.

In particular we focus on theetwork capacity This metric represents the supremum
of the aggregated traffic that nodes can inject into the nétwithout overflowing. In gen-
eral, we say that a network configuratiorstableif the total traffic offered to the network
does not exceed the network capacity. In stable configursitibe average packet delay is
almost surely finite and, provided that the dimensions obtkféers are adequately chosen,
packets are never dropped because of overflows. Convensalpstable configurations
some traffic connections will either experiment always@asing average packet delays or
packet losses due to buffer overflows.

We investigate the relationship linking the scatternetfigomation, i.e., the way pi-
conets are interconnected to form the scatternet, and tfweriecapacity. We propose
a mathematical formalization of the notion of network catyaand show that it can be
achieved in the presence of one-hop traffic patterns onlys;TWwe discuss some topolog
ical conditions that are required to approach the netwoplaciy, in the presence of local
traffic only. This entail a formal justification of the inefigncy of tree topologies, and
lead to the characterization ofosed-loopas capacity-efficienti.e., able to approach the
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capacity bound for any number of devices).

We also drop the assumption of traffic locality, in order teestigate the performance
achieved by some specific scatternet topologies in the pees# a uniform traffic matrix,
providing a sort of worst-case analysis. It is shown thateeifficient solid configurations,
based on Platonic solids, are able to outperform standarpkonfigurations in the pres-
ence of a limited number of devices. This analysis leadsd@timclusion thatlosed-loop
configurations possess some desirable properties, fromtbetpoint of view of network
performance and ease of protocols implementation.

A general framework is also presented for the use of graptitipaing algorithms to
arrange the nodes of a scatternet into a purposeful confignra’he application focus on
closed-loop configurations, for which heuristics for theick of master and gateway units
is introduced and discussed. The generalization of thegsegbtechniques to account for
spatial constraints (due to the fact that not all the nodeglmean mutual communication
range) will also be discussed.

We address some optimization issues related to such coatfigis, showing how graph
partition algorithms may be used to exploit traffic locglénhancing the system perfor-
mance. This work represents an attempt to provide matheahatisight into the rela-
tionship linking scatternet topology and performance. @uproach can be applied, for
instance, to the design of networks of static sensors or dbnappliances, where the
end-to-end traffic matrix among the nodes may be knawniori.
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Chapter 7

Conclusions

In this thesis, the concept of cross-layer design in wigeletworks has been discussed.
The limits imposed by the layered networking reference rhbdee been pointed out and
illustrated with some examples. Thus, the idea of crossrldgsign has been introduced
as a useful paradigm for allowing the improvement of netwaKiciency. To break the
layered model is especially important in wireless netwpvlisere the peculiar features of
the transmission medium asks for complex optimizationtgmhs.

Three main contributions have been presented in this thekish represent three ex-
amples of application of the cross-layer design conceptamtireless scenario.

The first one is referred to ad hoc networks where multiplennkés are available and
each node is provided with multiple interfaces. An anagitformulation of the optimiza-
tion problem jointly addressing scheduling, channel atmn and congestion control has
been presented. An iterative algorithm has then been deselavhich has analytically
provable performance and gives useful insight for the daesfgractical solutions.

The second one addresses the problem of performance ogtilomzn standard IEEE
802.11 networks. An optimization framework is introducedhich uses an estimation of
the medium status and a mathematical model for the link padiace with the aim of op-
timizing a given utility function. The framework allows fahe definition of a Goodput
Optimal Rate Adaptation Algorithm (GORA) and an algorithon improving the perfor-
mance of a VoIP connection. Both algorithms are based oryt@cellargumentations and
are able to adapt the working parameters to both the propagainditions and the inter-
ference in the network.

The third contribution refers to the proposal of a simple hagtsm for a joint schedul-
ing and resource allocation in the context of cellular nekso The proposed framework
combines a fairness oriented scheduler with a heuristaures allocation mechanism by
means of an interface which allows for tuning the networkkiray point by trading fairness
for physical layer efficiency.

Finally, additional work in the context of performance opitzation in wireless net-
works has also been briefly introduced, addressing micraeo@ issues in resource allo-
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cation for WLANSs and capacity related considerations indBboth networks. The com-
plete list of publications is provided in Appendix A.
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Complete list of publications

Journals

[J5] L. Badia, S. Merlin, and M. Zorzi. A micro economic intggtion of provisioning
and pricing multimedia services over wireless LANEEE Transaction on Wireless
Communications2008.

[J4] L. Badia, A. Baiocchi, S. Merlin, S. Pupolin, A. TodiA. Zanella, and M. Zorzi.
On the impact of physical layer awareness on schedulingesalrce allocation in
broadband multi-cellular IEEE 802.16 system$EEE Wireless Communications
1:36-43, 2007.

[J3] L. Badia, S. Merlin, A. Zanella, and M. Zorzi. Pricing W_AN services through a
micro-economic frameworklEEE Wireless Communications3:6—13, 2006.

[J2] D. Miorandi, A. Zanella, S. Merlin, and A. Trainito. Offfieient configurations for
Bluetooth scatternetAd-hoc networks, Elsevig4:768—787, 2006.

[J1] A. Zanella, S. Merlin, and D. Miorandi. Mathematicaladysis of the packet delay
statistics in bluetooth piconets under round robin polliagime. Mediterranean
Journal on Computer and Network&47-75, 2006.

Conferences

[C9] A. Zanella, N. Baldo, S. Merlin, F. Maguolo, M. Zorzi, Melpignano, and D. Sior-
paes. APOS: Adaptive Parameters Optimization Scheme foe wver IEEE 802.11g.
In IEEE ICC, 2008.

[C8] N. Baldo, F. Maguolo, S. Merlin, A. Zanella, M. Zorzi, Melpignano, and D. Sior-
paes. GORA: Goodput Optimal Rate Adaptation for 802.11gusiedium status
estimation. INEEE ICC, 2008.
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[C7] S. Merlin, N. Vaidya, and M. Zorzi. Resource allocatiomulti-radio multi-channel
multi-hop wireless networks. IEEEE INFOCOM 2008.

[C6] S. Merlin, L. Begnini, A. Zanella, L. Badia, and M. ZorziQoS-aware distributed
resource allocation for hybrid FDMA/TDMA multicellular heorks. InWPMGC
2006.

[C5] A. Todini, S. Merlin, A Zanella, A. Baiocchi, A. Valledt, D. Messina, and Tinnirello
l. Allocation algorithms for PRIMO system. M/iRTeP, Rome006.

[C4] A. Todini, A. Baiocchi, S. Merlin, A. Valletta, D. Messa, I. Tinnirello, B. Scanavino,
and D. Veronesi. Cross-layer design of packet schedulidgesource allocation al-
gorithms for 4G cellular systems. WPMGC 2006.

[C3] S. Merlin A. Zanella. An efficient and adaptive resouatiecation scheme for next
generation cellular systems. WIPMGC 2005.

[C2] M. Borgo, A. Zanella, P. Bisaglia, and S. Merlin. Analy®sf the hidden terminal
effect in multi-rate IEEE 802.11b networks. ViPMGC 2004.

[C1] A. Zanella, G. Pierobon, and S. Merlin. On the limitingrfprmance of broadcast
algorithms over unidimensional ad-hoc networksWERMGC 2004.
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