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Abstract

In this thesis, cross-layer optimization techniques for wireless networks are investigated.
An introduction to the concept of cross-layer design is provided, reviewing the related
literature, from both an architectural and an analytical point of view.

Three original contributions, which jointly address the optimization at different levels
of the protocol stack are then presented.

The first contribution refers to a theoretical approach to channel allocation in multi-
channel ad hoc networks, where each node is provided with multiple radio interfaces. An
algorithm for the joint solution of congestion control, channel allocation and transmission
scheduling is proposed.

The second contribution refers to a cross-layer optimization framework in the context
of standard IEEE 802.11 WLAN. A mathematical model for the link performance is devel-
oped, and a sufficient description for the medium status is defined which allows to account
for propagation and interference conditions. The optimization framework is used to de-
velop algorithms for rate adaptation and VoIP quality enhancement which are adaptive to a
broad range of working conditions.

Resource allocation in wireless cellular networks is also addressed and the problem of
trading fairness for physical layer efficiency is investigated by means of a simple algorithm
spanning PHY, MAC and LL layers.

In the end, additional published contributions related to the cross-layer paradigm are
introduced, regarding microeconomic aspects in resource allocation and efficiency consid-
erations about scatternet topologies in Bluetooth networks.





Sommario

In questa tesi viene discusso il concetto dicross-layer designin reti wireless. Il significato
del termine cross-layer, in base alla vasta letteratura esistente, è introdotto sia dal punto di
vista architetturale, che dal punto di vista dei tentativi teorici di formulare matematicamente
il concetto. I contributi originali di questa tesi riguardano tre esempi di progettazione
cross-layer in diversi ambiti applicativi.

Il primo contributo, di carattere teorico, è riferito a retiad hoc in cui sono disponibili
canali multipli e ciascun nodo della rete può essere provvisto di interfacce radio multiple.
In questo ambito viene proposto uno studio di tipo analiticoche porta alla definizione di un
algoritmo per la risoluzione congiunta dei problemi di controllo di congestione, allocazione
dei canali e scheduling delle trasmissioni.

Il secondo contributo riguarda la proposta di un meccanismodi ottimizzazione cross-
layer nello specifico scenario di reti IEEE 802.11 standard.Viene presentato un modello
matematico per le prestazioni dei link, basato sulla definizione di una descrizione sufficien-
te dello stato del mezzo. L’architettura proposta è successivamente usata per realizzare una
algoritmo di rate adaptation e un algoritmo per l’ottimizzazione della qualità di connessioni
VoIP.

Il terzo contributo fa riferimento ad una rete multi-cellulare basata su un accesso al
mezzo di tipo FDMA. In tale scenario, viene discussa l’interazione fra l’allocazione delle
risorse a livello fisico e la gestione della qualità del servizio a livello di link layer.

Vengono inoltre introdotti studi ulteriori oggetto di pubblicazioni internazionali, nei
quali vengono toccati aspetti microeconomici nell’allocazione di risorse e considerazioni
sull’efficienza di diverse topologie in scatternet Bluetooth.
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Chapter 1

Introduction

Wireless and wireline communications have rapidly evolvedin the last decade, follow-
ing the increasing data rate and quality of service requirements. The increasing demand
for multimedia contents such as video streaming, voice overIP services, gaming, and the
massive peer-to-peer transfer phenomena, rises the need for very high performance com-
munications networks.

The aforementioned applications do not only require high data rate communications,
they also require the traffic to be delivered with additionalconstraints related to delay,
reliability and security. For instance, audio or video streaming communications impose
strict requirements in terms of delay and minimum guaranteed bandwidth. The delay issue
is even more important in real time applications such as gaming or remote controlling.
Peer-to-peer communications are instead delay tolerant, but they have very high and bursty
bandwidth demand.

Moreover, the current trend is the design of communication networks able to concur-
rently support many different applications in a seamless way, also exploiting the conver-
gence among different technologies. As a consequence, all different kinds of traffic, gener-
ated by different applications, have to be carried over the same network, sharing common
resources. While this approach allows for an increased flexibility, it also rises huge prob-
lems in the network design, as it requires networks to be adaptive and reconfigurable in
order to achieve optimum performance under different working conditions.

In particular, the packet switched architecture seems to bethe preferred solution, and
fixed and mobile services providing voice and multimedia communications are migrating
toward this paradigm. This architecture allows for great flexibility, but also presents chal-
lenging and unresolved issues to be dealt with at all layers in the protocol stack. Efficient
congestion control, adaptive routing algorithms and secure communications with guaran-
teed QoS are only some of the issues currently being investigated.

When considering in particular wireless and mobile networks, all the previous problems
are exacerbated by the peculiar features and limitations imposed by the wireless channel.
Both cellular and ah hoc networks have to cope with some basicissues such as scarcity of
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Chapter 1. Introduction

spectrum, mobility, and limited power supply. The scarcityof available spectrum, limited
by the regulations or by the interference caused by preexisting technologies, requires the
design of bandwidth efficient systems. Mobility requires transmission systems able to cope
with the challenging propagation environment and protocols able to deal with changing
topology. Limited power supply asks for efficiency at all layers of the protocol stack in
order to reduce the energy consumption, while guaranteeingadequate performance.

From this brief overview it is clear how the design of networkarchitectures and the
optimization of their performance is a very challenging task, where many different require-
ments have to be satisfied.

The formerly proposed layered architecture based on the ISO/OSI reference model and
the TCP/IP stack, though of fundamental importance in allowing for an easy design and for
understanding the basic network functionalities, has beenshown to impose great limitations
on the performance optimization.

One of the basic concepts related to the layered architecture is the separation among
different layers, i.e., a function realized inside a layer has to be performed independently of
the specific implementation of all other layers. This assumption allows for the independent
design of each layer. It is easy to show that this assumption does not properly model the
real network behavior since, in actual networks, functionsrealized at different layers in the
protocol stack interact with each other in a complex way, such that the layering model itself
represents a fictitious simplification.

Moreover, due to lack in analytical modeling, most of the protocols complying with that
architecture have been designed based on heuristic considerations and without accounting
for the interaction with all the other protocols concurrently running at different layers. It
happens thus that the joint behavior of all of them can lead the network to a suboptimal
working condition, which sometimes can not even be predicted.

A well known and easy example is represented by the TCP mechanism, designed for
congestion control at the transport layer in wireline networks, where the packet loss rate
at the physical layer is typically negligible. Due to the lack of analytical models at the
time TCP was designed, the mechanism has been based on heuristic considerations and
its performance has been shown to be suboptimal. Moreover, when applied to wireless
connections, TCP shows poor performance, since the higher packet loss ratio experienced
in wireless channels is misinterpreted by the TCP mechanism, leading the connection to
a wrong working point. Only recently, TCP has been reverse-engineered by using suit-
able analytical network models for the interaction betweentransport and physical layer,
achieving a great performance improvement.

The investigation of the relationship among different layers and the design of mecha-
nisms which break the classic layering, has lead to the concept of cross-layer optimization,
CLO in the following. In this context, the study is devoted tounderstanding how different
layers interact with each other and how this behavior can be modeled in a more efficient
way than the current layered structure does.
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Different approaches for designing cross-layersolutionshave been taken, from both
architectural and performance optimization perspectives. Heuristic solutions based on a
redesign of the protocol stack have been proposed, which enhance the former architecture
by allowing for a deeper interaction among different layers. The interaction among lay-
ers is achieved by using dedicated signaling channels, by merging different layers or by
completely redesigning the system model.

The understanding of the complex interactions, and thus thecorrect design of new
architectures, turns out to be very difficult. Nonetheless,some analytical approaches have
been also investigated which start from mathematical modeling of the network and use this
model to define new architectures. Some of them only refer to the study of the interaction
among a limited number of layers, usually neighboring layers in the classic protocol stack.
A plethora of proposals has been presented in the literatureaddressing specific issues in
this context.

Recently, more exhaustive analysis have been proposed, which try to use mathematical
argumentations for defining new concepts in the layering design.One of this approaches
refers to thelayering as optimization decomposition. In this case, the task of optimizing
the network performance is mathematically decomposed in many subtasks which can be
used to define a new layered architecture, where each layer isin charge of solving a specific
optimization subtask, jointly working with all the other layers.

The concept of cross-layeroptimization is very general andcan be applied to different
network models. In this thesis, the focus in on wireless ad hoc and cellular networks and
three main contributions are presented.

The first one is related to multi-channel multi-radio ad hoc networks, i.e., wireless ad
hoc networks where each node is provided with multiple radiointerfaces that can be tuned
on different frequency channels. These kinds of networks inherit all the issues related to
classic single channel ad hoc networks, plus some challenging problems due to the presence
of multiple channels and multiple radio interfaces. The transmission scheduling becomes
in fact more complex in particular when the number of interfaces is less than the number of
channels. In this case the optimum binding of the interfacesto the transmission channels
has in general a very high computational complexity and requires a centralized solver.

In this context a joint congestion control, channel allocation, and scheduling algorithm
is derived by an analytical argument. The network is modeledas a flow graph introducing
virtual links inside each node for the channel loading. The optimization approach follows
the previously introduced concept of layering as optimization decomposition, and allows
for the investigation of the network performance as a function of the number of channels,
interfaces and concurrent transmission flows. This work hasbeen developed during the
visiting period at the University of Illinois at Urbana-Champaign and in collaboration with
Prof. Nitin Vaidya.

The second contribution refers to the design of a cross-layer optimization framework
for standard IEEE 802.11 networks. The standard provides a limited set of tunable param-
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eters which can be set according to the designers’ need. An optimization framework based
on a mathematical modeling of the link performance is designed, which allows to tune such
parameters according to different optimization goals. Themathematical model is based on
the availability of a description for the status of the medium where the link is operating. A
sufficient description for the medium status is thus defined and a way to estimate such status
in real networks is proposed. Such an estimation is performed by using information avail-
able locally on each network card and explicitly described in the standard specifications. In
particular we use the optimization framework to implement arate adaptation algorithm for
goodput optimization, GORA, and an algorithm for optimizing the perceived voice quality
in a VoIP connection. Both algorithms exploit the mathematical model embedded in the
framework and are able to adapt the network parameters in a broad range of working con-
ditions, according to the specific optimization goal. The proposed mechanisms take into
account the propagation characteristics and the congestion on the medium and set the pa-
rameters accordingly. In particular the rate adaptation algorithm is able to adapt the PHY
rate with respect to both the channel impairment and the number of contending transmitter,
which is one of the most original contributions. This work has been developed in collabora-
tion with ST Microelectronics (Diego Melpignano, David Siorpaes) and other members of
the SIGNET group at the University of Padua (Andrea Zanella,Federico Maguolo, Nicola
Baldo).

The third contribution refers to multicellular wireless networks. The interaction be-
tween the resource allocation at the PHY-MAC layer and the scheduling at the LL layer
is studied. The problem of defining a simple and distributed algorithm for the resource
allocation (rate, power, subchannels allocation) which allows for an efficient use of the re-
sources at the PHY layer is considered, together with a scheduling mechanism at the LL
which is designed to provide fairness among different users. The mechanism is tested in an
FDMA/TDMA multicellular scenario with a realistic channelmodel. A trade off between
physical layer efficiency and quality of service provisioning arises and a tunable mecha-
nism is discussed. This work has been carried out within the PRIMO project, granted by
the Italian Research Ministry.

Additionally, further published contributions are brieflyintroduced in order to provide a
broader overview on the possible applications of the cross-layerapproach. Performance op-
timization in Bluetooth networks is discussed and a microeconomic model is used to study
the interaction between the resource allocation and the pricing mechanism in a wireless
hotspot.

1.1 Structure of the Thesis

The thesis is organized in five additional chapters which arebriefly described in this section.
Chapter 2 presents a more detailed introduction to the topicof this thesis while re-

viewing the literature. An overview of the cross-layer concept and the related different
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approaches, from both an architectural and a theoretical point of view, will be presented. In
particular some proposed protocol stack architectures forcommunications among different
layers, the concepts ofback-pressurebased scheduling and the paradigm oflayering as
optimization decompositionwill be introduced. A detailed literature review will then be
devoted to the specific topics that will be presented in Chapters 3, 4 and 5. In particular,
multi-channel multi-radio ad hoc networks will be introduced, together with some mod-
eling aspects, asymptotic results on capacity, theoretical approaches to performance opti-
mization, and some specific issues on scheduling that will beuseful in Chapter 3. Some
practically oriented and heuristic solutions will also be listed. Resource allocation prob-
lems in cellular networks will then be presented, with particular attention to FDMA based
networks for which the problem of finding efficient resource allocation algorithms at the
MAC/PHY layer will be discussed.

Chapter 3 proposes an application of the cross-layerconcepts, describing an analytical
model for multi-channel, multi-radio ad hoc networks. The proposed model is based on
the recently developed concept of layering as optimizationdecomposition. An original
algorithm for joint source rate adaptation, channel loading and scheduling is proposed. In
this case, the layers in the new network architecture are redefined, based on mathematical
considerations: each layer represents a different task in the optimization problem. The
algorithm is described and simulation results are presented.

Chapter 4 deals with cross-layer optimization in IEEE 802.11 networks. The proposed
optimization framework is introduced and the constituent blocks are described. In partic-
ular the definition of Medium Status is given, which is the basis for the development of
the mathematical model describing the link performance. The framework is then applied
for implementing two optimization algorithms. The first onerefers to a Goodput Optimal
Rate Adaptation (GORA). The algorithm is introduced and simulation results are presented
which show the ability of GORA to adapt the PHY transmission rate to the propagation and
the congestion conditions. The second one is focused on the optimization of a VoIP con-
nection quality. The model for evaluating the voice qualityand the resulting optimization
algorithms are presented and evaluated.

Chapter 5 deals with multicellular networks and presents a mechanism for the inter-
action among the proposed physical layer resource allocator and LL scheduler. A simple
architecture is introduced which allows to investigate thetrade off between fairness in the
provided service at the LL layer and efficiency at the PHY layer.

Chapter 6 presents additional published results related tocross-layerinteractions. In
particular, the first proposed work investigates the interaction among the resource allo-
cation at the MAC layer and the users demand by using a microeconomic model which
accounts for the pricing mechanism applied by the provider.The second one is an ana-
lytical investigation on the efficiency of Bluetooth scatternet topologies, where the traffic
pattern is also accounted for in the optimization.
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Chapter 2

Related Work and Problem Statement

In this chapter, the basic knowledge needed for understanding the results presented in the
next chapters will be provided, reviewing the work already appeared in the literature and
introducing the models for the studies presented later on inthis thesis. This chapter is
organized in four parts.

In the first part, an introduction to the concept of cross-layering will be presented,
showing some approaches appeared in the literature, from both a pure architectural and a
theoretical point of view. Particular emphasis will be reserved to the analytical approach
based on the concept ofback-pressureand the paradigm oflayering as optimization de-
composition, that will be used in Chapter 3.

In the second part, the specific case of ad hoc networks is considered, with particular
attention to the case of multi-channel multi-radio ad hoc networks, which clearly includes
the case of classic single channel networks. Commonly used models for topology and
interference representation are introduced, and some asymptotic results on capacity are re-
ported. Different optimization approaches are presented which are based on the previously
introduced network model. The problem of scheduling in suchkinds of networks is intro-
duced and some results are shown. Some heuristic approachesare finally reported, which
are close to practical implementation.

In the third part, existing rate adaptation algorithms for IEEE 802.11 networks are
briefly described in order to allow for a comparison with the peculiar features of the rate
adaptation algorithm presented in Chapter 4. A model for quality evaluation of VoIP con-
nections is also introduced.

In the fourth part, the case of resource allocation in cellular networks is considered. The
problem of allocating physical resources in an FDMA/TDMA multicellular environment is
introduced, together with the concepts of multiuser, frequency and time diversity. The
benefit of cross-layer approaches is depicted, introducingthe topic of Chapter 5.
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2.1 CLO: general concepts

For many years, network design has been based on the well known ISO/OSI reference
model or, more realistically, on the TCP/IP reference model. Such models have been of
great importance in allowing for a clean and easy protocol design, facilitating the protocol
standardization and thus the interoperability among different actual networks. Figure 2.1
shows the two famous networking models.

Figure 2.1: ISO/OSI and TCP/IP protocol stacks

It is worth recalling the principles which inspired the proposal of the layered architec-
ture.

• A new layer has to be created where a different abstraction isneeded;

• each layer should perform a well defined function;

• information flow across-layers should be minimized;

• the number of layers should be large enough such that different functions are in
different layers;

• the function of each layer should be easily mapped on a protocol.

These rules essentially state a hard separation among the functions inside different lay-
ers, as each layer has to appear as a black box to all the others.

This model allows for an easy protocol design, as each protocol resides inside a sin-
gle layer and has to realize only the functions for which thatlayer is in charge. Moreover
the interaction with higher and lower layers is limited to the knowledge of the general in-
put/output specifications provided by the interface used toconnect with neighboring layers,
thus each protocol can be implemented independently of all the other ones.

Nonetheless, recently the need for pushing the network performance toward its limit
has revealed the intrinsic limitations imposed by these layering assumptions.
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2.1. CLO: general concepts

Some authors note that layering is itself an artifact because of the actual complex inter-
actions existing among all different networking functions[5]. Thus, the model needs to be
reconsidered for a better understanding and optimization of the network behavior.

In particular, a deeper interaction among neighboring and non-neighboring layers seems
to be the fist step for enhancing the network performance, thus the term cross-layer design.
More effective solutions could also require to completely break the layered model or use a
different concept of layering.

The idea of cross-layer design in networking is old [6], though there is not yet a clear
definition and a unique approach. The main reason for this lack is related to the com-
plexity of the network structure, which has not yet been fully understood and modeled
from a mathematical point of view. Clearly, form a practicalperspective, changing the
network architecture model would bring enormous problems with existing and deployed
architectures and protocols. That is why pure cross-layer approaches are mostly confined
to the literature, while practical solutions still have to cope with the layered architecture
and compromise solutions have to be considered.

Nonetheless, different proposal for enhancing the well known ISO/OSI and TCP/IP
stacks have appeared in the literature and a plethora of specific work which breaks the lay-
ered architecture with the aim of improving the network performance has been published.
A first approach is shown in Figure 2.2, taken from [3]. Here the focus is on specific inter-

Figure 2.2: Cross layer architecture [3]

actions among layers, and on the needed signaling messages.In particular each layer needs
to exchange control information only with a subset of the remaining layers and the corre-
spondent message function is also introduced. In particular, note the interaction between
the application and the physical layer which can be used to set the user’s need according to
the PHY bandwidth and viceversa.

A more general concept refers to the enhancement of the existing layered architecture,
by defining general methods for exchanging control messagesamong different layers. As
an example, Figure 2.3 reports the proposal appeared in [4],where the classic protocol
stack is augmented by superimposing transversal control planes. Each control plane is in
charge of a different function and can interact with all the layers in order to achieve its
optimization goal. Thus each plane acts both as a communication and a control plane.
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Figure 2.3: Cross layer architecture [4]

Figure 2.4: Cross layer architecture

A further general approach is in Figure 2.4. In this proposal, all layers communicate
with a single control plane, which is devoted to controllingall the layers functions in a
unified way, according to some optimization criteria. In this case the control plane, which
becomes the core of the network node, can actually be used to create a new abstraction
of the network functionalities, and thus the layered structure loses most of the original
meaning.

Many specific solutions have been proposed dealing with the interaction among a lim-
ited number of layers. For the sake of providing some simple proof-of-concept, in the
following a few simple and well known examples are reported in order to clarify the con-
cept of cross-layer interaction and show the potential benefits.

A simple example of interaction between the functions of theLL layer and the PHY
layer is referred to the case of the LL layer being able to exploit multiuser diversity, which
is a property related to the physical layer behavior [7]. Consider an access point using a
TDMA MAC with three users connected to it. Only downlink transmissions are considered
and each channel between the access point and a user has equiprobable ON/OFF states
due to fading phenomena. In case the users are served by a purechannel unaware round
robin mechanism, the effective channel utilization given to each user is 1/6. Using a round
robin mechanism which only serves users with a good channel state, the overall channel
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utilization grows to 7/8, and the per–user available channel is 7/24, which almost twice
than in the channel unaware case. Thus the interaction between PHY and LL layers can be
beneficial.

An example of the need to break the layered structure is also represented by the inter-
action between transport layer and physical layer in a wireless system. TCP is a congestion
control mechanism which adapts the traffic injected into thenetwork, based on measure-
ments of the packet losses, which is assumed to be an indication of the link congestion.
In a wireless link, this assumption does not hold anymore, due to the high probability of a
packet loss being caused by a channel impairment.

For a correct behavior of the TCP mechanism, the two causes ofpacket losses should
be discerned. Two proposed solutions refer to the Snoop TCP and the TCP Freeze [8, 9].
In the former one the packet losses occurring within the wireless link are hidden to the
TCP mechanism by adding a packet cache at the IP layer and retransmitting the packets
only within the wireless link, without notifying the TCP layer (thus breaking the end-to-
end nature of TCP). In the latter one the receiver can block the connection by setting a
null receiving window as long as the channel is in a bad condition (thus enabling a channel
aware behavior).

As pointed out in [10], it may also happen that unintended cross-layer interactions can
have undesirable consequences on overall system performance. Once the entire network
stack is considered, cross-layer design may lead to cycles in the logical architecture, since
many interactions are not easily foreseen.

Moreover, the real power of modularity may be lost. That is, for the sake of optimizing
performance, cross-layer techniques make vain the possibility of designing protocols at a
particular layer without worrying about the rest of the stack.

A first example of bad CL design in [10] is based on a 802.11 scheme using rate adap-
tation, showing that paths found by any popular DSDV implementation may prove to be
highly inefficient due to rate adaptation. Also, even stability may be an issue, and a sec-
ond example, shows that when the rate is adapted to the signalto interference ratio the
interaction may bring networks to be unstable.

All the above described approaches and considerations on cross-layering are based on
pre–existing layered structures and make use of intuitive,heuristic or trial–and–error con-
siderations which need to be designed and verified case-by-case.

Clearly, the availability of a complete mathematical modelfor the network behavior
would solve the problem by allowing for a reliable definitionof the cross-layering concept
and a systematic design of performance enhancing solutions.

Recently, some mathematical models have been presented, which are based on simpli-
fied scenarios but nonetheless represent a promising way. The next subsection is devoted
to the presentation of such mathematical formalization.
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2.2 CLO: analytical aspects

In this section the focus is on cross-layer solutions based on a theoretical background.
A seminal work introducing a control theory approach to network optimization is pre-

sented in [11], where algorithms for congestion control at the transport layer has been in-
troduced and the problem of regulating the source traffic injected into the network is solved
by using control theory. Sources compute the optimum flow rate based on a feedback price
accounting for the network load and by using an iterative algorithm, which is proved to
converge to the optimum solution under certain assumptions.

Algorithms for joint congestion control and transmission scheduling have then been
proposed [12] which are able to jointly optimize source rate, link scheduling and routing
[13, 14, 15] including also the power control operation [16,17].

The mathematical tools widely used in these analytical approaches are optimization
problem decomposition by Lagrange relaxation, sub gradient algorithms and Lyapunov
stability [18, 19]. In the following, a detailed description of a general mathematical formu-
lation for designing cross-layer algorithms is presented.This formulation can be used to
model the network at different layers and is suited for designing cross-layer optimization
algorithms. It will be used in Chapter 3, for developing a joint congestion control, channel
allocation and scheduling mechanism for multi-channel multi-radio ad hoc networks.

The concept of “layering as optimization decomposition” has been investigated in the
last few years as a powerful way for analytically defining cross-layer optimization problems
and at the same time designing feasible algorithms for theirsolution [20].

In order to describe the analytical formulation of the concept, some notation is intro-
duced. The set of nodes is{n : n = 1, . . . , N}, with N the number of nodes. Traffic flows
are, in general, carried over multi-hop routes. Each end-to-end unicast connection will be
referred to as acommodityin the following. Let{s : s = 1, . . . , S} be the commodities
set, wheres can be considered as the index representing all the flows going toward a same
given destination. Note that a commodity is characterized by the destination node, so that
multiple sources with the same destination can be considered as a single commodity. The
input rate for commoditys at noden is λs

n.
Let λ be the vector of all input rates. Each input rate can assume valuesλs

n ∈ Λs
n. Each

noden will be provided with an input queueUs
n for each commoditys All the incoming

traffic for commoditys is loaded on queueUs
n. Let rs

a,b be the transmission rate associated
with the flow between nodesa and b carrying traffic for the commoditys and r be the
corresponding vector for alla,b,s. The physical layer capacity for the link between nodes
a andb is denoted aswa,b. Let us denote byw the vector consisting ofwa,b for all nodes
a, b.The feasible rate region, i.e. the set of all feasiblew vectors, is denoted asW, which
depends on the interference model. A general communicationand interference model is
initially assumed, which can be used to model both ad hoc and cellular networks, being the
formulation independent from the specific communication model.
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2.2. CLO: analytical aspects

The utility function for commoditys associated with each source noden is denoted
by Gs

n(λs
n). To allow the use of convex optimization techniques, all theutility functions

are assumed to be strictly concave, and the rate vectorsw will actually be considered as
belonging to the convex hull of the setW, w ∈ Co(W). Similar assumptions have been
made in past work as well [14, 20]. Different utility functions can be used to achieve
different network behaviors.

Define thestabilityof a network as the condition of having limited queue length,more
preciselylimt→∞ E[

∑

n,s Us
n] < +∞, whereE[·] represents the expectation operator.

Let Λ be thecapacity regionof a network, i.e., the set of all feasible input rate vectors
λ for which the network is stable.

In the following, a general formulation is presented in terms of an optimization prob-
lem on a network flow where the goal is the utility maximization. The problem is then
decomposed by using a Lagrangian relaxation. This operation will allow to define the op-
timization layers and a distributed algorithm for the utility maximization as proposed in
[20]. The algorithm turns out to be based on the concept of “back pressure” scheduling
[14]. Similar solutions are presented in [13].

The proposed examples will show a cross layer algorithm which allows for the interac-
tion between a congestion control mechanism at the transport layer, the scheduling at the
LL layer and the resource allocation at the MAC/PHY layers.

More complex algorithms including further optimizations can be derived using the same
approach as will be shown in Chapter 3. A comprehensive studyabout different way of
decomposing the optimization problem is presented in [21].

In the following, as an example, two decompositions are shown which are usually re-
ferred to as “link centric” and “node centric”.

2.2.1 General problem formulation

Based on the previously introduced notation, the goal is to solve the following optimization
problem:

max
λ,r,w

∑

n,s

Gs
n(λs

n) (2.1)

s.t.:
∑

i

rs
i,n + λs

n ≤
∑

j

rs
n,j ∀n, s (2.2)

∑

s

rs
i,n ≤ wi,n ∀i, n (2.3)

w ∈ Co(W) (2.4)

λs
n ∈ Λs

n ∀n, s (2.5)

In the previous model:
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• (2.1) is the objective function

• (2.2) is the flow conservation constraint at each node

• (2.3) is the constraint that the aggregate flow on a link must be less than the physical
rate

• (2.4) is the feasible rate region for the actual links.

• (2.5) is the feasible set for the input rates.

Symbols:

Gs
n(λs

n) Utility function
λ = [λs

n] Injected input rate
r = [rs

a,b] Flows associated to channel-link-commodity connections
w = [wa,b] Physical rates associated to physical channel-link
W Feasible rate region for actual physical links
Λs

n Feasible input rates

Table 2.1: Symbols

Based on the assumption about the utility functions and on the convexity of the domain,
(2.1)-(2.5) is a convex optimization problem [12, 21, 15].

2.2.2 Node centric solution

In the node centric approach (also referred to as “route independent”) the solution to the
optimization problem is obtained via its dual problem, relaxing all the constraints (2.2).

Let U = [Us
n] be the vectors for all the Lagrange multipliers associated to constraints

(2.2). Relaxing the constraints (2.2) and (2.3), the Lagrange dual function for the problem
is:

L(U) = max
λ,r,w

{

∑

n,s

Gs
n(λ

s
n) +

∑

n,s

Us
n

(

∑

j

rs
n,j,c −

∑

j,c

rs
j,n − λs

n

)}

,

where the optimization variablesλ, r, w are still subject to constraints (2.3)-(2.5).
The previous expression can be rewritten as:

L(U) = max
λ

{

∑

n,s

Gs
n(λs

n)− λs
nU

s
n,in

}

+ (2.6)

+ max
r,w

{

∑

i,j,s

(

Us
i − Us

j

)

rs
i,j

}

(2.7)

(2.8)
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Note how each maximization represents a different “layer” in the optimization task:

• (2.6) congestion control;

• (2.7) flow allocation, routing and physical rate allocation.

The two layers usesU as coupling variables.
The solution of the dual problem requires the computation oftheminU L(U). In case

the starting optimization problem is convex, then the solution of the dual problem yields
the solution of the original optimization problem [22] (there is no duality gap).

Such minimization can be performed by using a subgradient based algorithm, which
is used to iteratively search for theUs

n. If we identify each iteration of the subgradient
algorithm as a different time slott, then the updating equation for theU s

n is

Us
n(t + 1) =

[

Us
n(t) + α(γ̃s

n,c(U(t))+

−
∑

j

r̃s
n,j(U(t)))

]+

. (2.9)

The described algorithm allows for exploiting the full capacity region available in the
network, under certain hypothesis on theα value.

From the structure of the equation (2.9), in caseα = 1, U s
n(t + 1) represents the queue

length at noden for traffic of commoditys. This property has already been pointed out in
[15, 13, 23].

The most challenging issue in applying the algorithm to realnetworks is the fact that
the scheduling related maximization requires the knowledge of the feasible rate region.

2.2.3 Backpressure

Similar results to the ones shown for the node centric case are in [14], where the problem
is approached from a control theory perspective.

The core of the algorithm presented in [14] is based on the same maximization used in
the second line of equation (2.7). The quantity involved in that maximization

(

Us
i − Us

j

)

rs
i,j

is referred to as “backpressure”, since it accounts for the difference of the queues length at
the input and output of each link. The maximization is such that the scheduled links are the
one which carry the traffic in the direction of decreasing queues length.

In [14] the considered network physical layer assumes the network topology (and thus
the channel state) can have a finite number of states, the timeis slotted and within each
slot the network status (topology and channel) is constant.The evolution of the topology
in subsequents slots follows a Markov process. Under this assumption, the proposed algo-
rithm is able to maximize the utility function to a value which is close to the optimal one,
while stabilizing the network. The algorithm is provided with tunable parameters which
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can be used for trading optimality with stationary queues length (i.e. trading utility for
delay)

2.2.4 Link centric solution

A different approach to the optimization decomposition refer to the “link centric” case.
This formulation and similar ones, have been used for early study in congestion control
[11, 18].

Indicate withl the generic link between nodesi andj. In the link centric approach, the
additional constraintλs

n = rs
l ∀l ∈ Ls is considered, whereLs represents a precomputed

path for commoditys. This assumption implies the input rate is simultaneously applied to
all the links traversed by the flow.

Relaxing the constraint (2.3)

L(U) = max
λ,r,w

{

∑

n,s

Gs
n(λs

n)+

+
∑

l,s

Ul

(

∑

s:l∈Ls

λs − wl

)}

,

The previous expression can be rewritten as:

L(U) = max
λ

{

∑

n,s

Gs(λs)− λs
∑

l inLs

Ul

}

+
∑

l

Ulwl (2.10)

thus showing how the maximization requires two separate operations, one of them solving
the congestion control and the other one solving the scheduling problem.

Similarly to the node centric case, the updating equation for the Lagrange multipliers
turns out to be

Ul(t + 1) =

[

Ul(t) + α

(

∑

s∈i

rl − wj

)]+

and thusU represents queues at the input of each link.
It can be noted how the congestion controller reacts to the sum of the queues along

the path. Each flow is associated with a predetermined path and it is assumed that the
rate computed by the congestion controller is applied simultaneously to all the links. The
scheduler is the throughput optimal one [14].

2.2.5 Non–ideality issues

Previously presented results consider the scheduling algorithm is provided with a perfect
knowledge of the feasible rate region and is able to take optimum choices in the maximiza-
tion of the scheduling metric (Equation 2.7).
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In [23], the ’link centric approach’ is extended by considering the case where an imper-
fect scheduler is used.

A crucial point is discussed. Let suppose the scheduling algorithm is not able to solve
the exact scheduling problem of the backpressure maximization, then how does the conges-
tion control behave? A generic scheduling algorithm is considered, which is only guaran-
teed to solve the scheduling function in an approximate way on each slot, within a scaling
factor γ < 1 from the optimum one. In the paper it is argued that the joint rate control
and scheduling algorithm may not converge (because of loops) or may converge to a non
optimal point (with respect to the reduced capacity region). This implies a big limitation in
the application of a joint congestion control and suboptimal scheduling. In the link centric
case, it is proved that, using logarithmic utility functions, if it converges, then the solution
will be “not too far” from the reduced optimal one, but still suboptimal.

This behavior changes if a stochastic model for the number ofusers is considered. In
this case, the rate control converges to the optimum solution referred to aγ-scaled capacity
region, whatever suboptimal scheduling policy is used.

On the contrary, using a “node centric” approach it is possible to use aγ-imperfect
scheduler in order to obtain aγ-reduced maximum utility function [14] even in the case of
static number of users.

The backpressure algorithm is in fact proved to converge even with an imperfect sched-
uler. If the maximization of the scheduling function is performed with a loss of at most
γ then the scheduling policy is said to belong to the class ofSγ and the stability is guar-
anteed inside aγ reduced capacity region. This opens the way for the use of approximate
algorithms, as described in the following.

In [24] the behavior of the classic primal-dual control algorithm is studied , for the case
of a time varying capacity of the links. The novelty is that each link has a capacitywl(t)

instead ofwl, thus depending on time. A continuous time system is considered. If there is
no delay in the data transmission and on the price feedback, then the system is stable even
with time varying channels. The stability is here defined as a“trajectory stability” since the
equilibrium point changes as the channel condition changes.

If there is a delay in data transmission or price feedback, then the system is linearized
around an equilibrium point and it is provided a set of conditions on the algorithm param-
eters that allow for local stability around the given equilibrium point. Such conditions turn
out to be a function of the delay (a similar conclusion is derived in [18] (Chapter 6) for the
case of time-invariant channels).

In all the previous proposals congestion control is performed only at the source node.
The paper in [25] explicitly addresses the problem of hop-by-hop congestion control,

in a node exclusive interference model (the impossibility for each node to transmit and
receive at the same time).

The proposed algorithm requires that each node along the data path performs a con-
gestion control based on the price received from the next downstream node down the path
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toward the destination. Moreover each node passes the aggregated price to the upstream
node, until the source is reached. Thus, eventually the source receives an aggregated price
(similar to an end-to-end control, the difference is that the prices of all nodes are aggre-
gated in a single message along the path) but each node performs congestion control (in a
hop-by-hop manner). The advantage of the hop-by-hop approach is that the queues length
is balanced and the bottleneck queue length is reduced (spatial spreading). Thus the algo-
rithm uses essentially an end-to-end approach, repeated ateach node along the path.

2.2.6 Scheduling

Interference models

The previously described algorithm for joint congestion control and scheduling requires the
solution of the scheduling maximization problem (i.e. Equation 2.7), whose complexity
depends on the feasible rate region structure. Here are described two commonly used
interference models that will be used in the thesis.

Two interference models have been defined in [26]: i) Protocol model, ii) Physical
model. Such models are widely referred in the literature andare used in many models.
Both are binary interference models, i.e., they only state if a transmission will be correctly
received or not and represent a rough estimation of the actual physical behavior.

In the protocol model, each node is associated a transmission radiusr, such that only
nodes within that radius can receive the transmission. A transmission is correctly received
only if no other nodes transmit at the same time within a distancer +∆r from the receiver.
A variation to this model states that a transmission is correctly received only if no other
nodes transmit within an interfering distance both of the receiver and the transmitter. The
protocol model gives a geometrical based interference definition which is appropriate for
graph based system modeling.

The physical model accounts for the SNIR at the receiver, which is calculated as the
ratio between the useful received power and the sum of noise and interference power. Once
fixed a target SNIR for the correct reception, the model turnsout to be very similar to
the protocol one. Some of the works proposed in the following, are valid both under the
protocol and physical interference models. Anyway most of them provide explicit results
only for the protocol model.

Solutions with Maximal Weighted Independent Sets

In case the protocol model is used for representing the interference scenario, each linkl
interferes withξ(l) neighboring links and the optimization required for the solution of the
scheduling problem becomes a combinatorial problem.

In particular the problem of maximizing the back pressure function becomes a Weighted
Maximum Independent Set problem. The problem is in general NP-HARD [27] and more-
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over no constant factor polynomial time approximation exists. Even the problem of finding
distributed constant factor approximation for particulartopologies is an open issue.

Clearly a greedy centralized algorithm which selects at each step the link with the high-
est metric and discards all the interfering links can achieve a reduced capacity region by a
factor of1/K whereK is the maximum number of interfering nodes for each node [23],
which is a trivial lower bound. In the case of multichannel networks with reduced number
of interfaces the lower bound becomes1/(K+2) [28]. Note that all the previous bounds are
lower bounds and are usually very conservative. In [29] it ispointed out that such a greedy
approach is optimal in graphs with particular structure. All the interfering graphs which
satisfy a property called Local Pooling allow the greedy solution to be optimal. Among the
interfering graph structures which satisfy the local pooling are trees, cliques and cliques
interconnected by disjoint links.

Note that for the case of a node exclusive interference (i.e.no interference occurs
among links and the only constraint is that no node can receive and transmit at the same
time), the problem becomes a Weighted Maximum Matching which instead can be solved
in polynomial time by a centralized algorithm [27]. In this case a distributed algorithm for
weighted matching is known to achieve a 0.5 approximation ofthe optimal value [30].

A novel approach for the same problem is also in [31], where aniterative distributed
algorithm is designed to approximate the maximum matching within an arbitrary constant
factor. On each slot a new schedule is constructed in a distributed way. The new schedule
is mixed with the one in the previous timeslot in order to obtain a new matching. The
mixing procedure is based on the comparison of weight of the two matching. The mixing
procedure can be performed using a distributed and iterative gossiping mechanism which
can approximate the optimal solution with the desired precision (at the cost of a longer
convergence time). The proposed algorithm can approximatea maximum matching (an
extension to a weighted independent set is also claimed but not sufficiently investigated)

Another possible extension to the case ofK-degree interference model is in [32]

Algorithms based on Maximal Independent Sets (non weighted)

The problem with the maximization of the back pressure function in the protocol inter-
ference model case is that a weighted maximization is required. Looking for different
algorithms, which do not require a maximization in order to achieve the capacity region
has lead to satisfying results only for single hop networks.Moreover, such algorithms have
not been integrated with the congestion control and are mainly designed for single hop net-
works. In the following, some details are provided for this particular class of algorithms.

If the network is single hop, it can be stabilized by any random Maximal Independent
Set scheduling which scheduled only backlogged queues. If the definition of backlogged
queueU is U > wl, with wl the number of bits that can be served in a slot, then any random
maximal schedule sequence allows for a capacity region which is

∑

j∈η(i)
λj

wj
< 1, where
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λj is the input rate andη(j) is the set of interfering queues [33, 34].
In [28] an extension to a multi channel case is presented. Themulti channel maximal

independent set is defined as: either a link is scheduled, or one of its interferer is scheduled
or no one of the interfering links has an available interface. Using this definition they
propose an algorithm for loading the channels in such a way tokeep the networks stable
within a region that is1/(K + 2) away from the optimal solution.

The extension to the multi hop case requires additional information at each node. A
“regulated” maximal independent set is shown to allow for stability in a network where the
routing is provided in advance and each node has the knowledge of the input rate. In this
case each node is provided with an input queue and an output queue for each flow. The
traffic from the input queue to the output queue is limited to be just slightly higher than the
source rate. This brings back the multi-hop network to the well-behaved single hop one
[33].

A different approach requires each node to keep track of the number of hops of each
packet. Letqk be the queue length accounting only for the packets which experiencedk or
less hops. Then an iterative algorithm can be used. At each step i a maximal independent
scheduling can be applied only on theqi backlogged queues, i.e., containing packets with
a number of hops less than or equal toi. The matched links are added, all the interfering
ones are removed and the iteration are repeated. Note that the complexity depends on the
number of hops [35].

2.3 Ad hoc networks

Results for the specific case of ad hoc networks are reported in this section. Asymptotic
results for the network capacity are followed by optimization approaches which do not
follow the cross-layer optimization framework described in Section 2.2. Particular attention
is devoted to the case of multi-channel multi-radio networks. Protocols mostly based on
heuristic considerations are also presented.

2.3.1 Asymptotic analysis

The seminal work of Gupta-Kumar [26] has derived the asymptotic (in the number of
nodes) capacity of multi-hop ad hoc networks, where each node is equipped with a sin-
gle network interface card (NIC in the following), and a single channel with capacityW
is available.n nodes are randomly scattered on a sphere surface of unit area. Results are
valid both under the protocol and physical interference models.

Each node is assumed to have a random destination node for itstransmissions. The
asymptotic average per node throughput is derived. It is obtained as the union of a lower
and an upper bounds computed using geometrical considerations. A lower bound is derived
assuming a shortest-path-like routing and defining a feasible interference free transmission
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scheduling. The upper bound is derived based on connectivity arguments and on spatial
channel reuse considerations. The two bounds lead to the following per-node throughput
scaling law:

λ(n) = Θ

(

W

∆2
√

n log n

)

,

whereΘ indicates that the actual asymptotic value is scaled by a constant.
Following the same reasoning, and adding some particular consideration for the multi-

channel multi-rate case, Vaidya in [36] has shown how the capacity of a random ad hoc
network scales with the number of nodesn, number of channelsc, and number of interfaces
per nodem. Each interface is a half duplex interface and can be tuned toany of thec

channels.
Even in this case, an upper and a lower bound have been derived. Each of the two

bounds is actually the intersection of three bounds, each ofthem accounting for different
performance limitation factors.

In the upper bound construction, three sources of capacity limitations are pointed out:
connectivity, interference, and bottleneck nodes. To eachof the three phenomena is associ-
ated an upper bound for the achievable capacity. The total upper bound is the intersection
of the three.
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It is important to note that untilc
m

= O(log n), the throughput scaling law is the same
as the single channel and single radio case.

This implies that even if nodes are provided with a number of NICs less than the number
of available channels the network can achieve the full capacity. We observe that in the
proposed modelO(log n) is a measure of the number of neighboring nodes.

This is due to the fact that in this region the capacity bound depends on channel occu-
pancy. Channels are already fully utilized, thus the numberof interfaces is not a bottleneck.

This implies for instance that in a network where each node isequipped with a single
NIC, up toO(log n) channels can be fully utilized.

2.3.2 Optimization problems

All the proposed models deal with protocol or physical interference models. Since such
interference models provide a binary connectivity and interference representation, the use
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of graphs is a natural way to deal with them. Here it is detailed the construction of con-
nectivity and conflict (interference) graphs which is validthroughout almost all algorithms
described in the following. Variations to the used models will be explicitly reported.

A connectivity graph is defined as a graph whose vertices are the nodes in the network.
An edge is placed between two nodes if they are within communication range.

A conflict graph is consequently defined to account for interference issues. In this
graph, vertices’s represent the communication links (i.e., the edges of the connectivity
graph) and edges are placed between vertices’s corresponding to interfering links, accord-
ing to the protocol model. It is worth recalling that the interference range can be greater
than the communication range.

The optimization problems here described are formalized aslinear on non-linear (inte-
ger) programming problems. The commonly considered constraints are given by a subset
of the following ones: i) connectivity; ii) interference; iii) number of available channels;
iv) number of available radios; v) traffic demand; vi) fairness in the offered traffic.

Different proposed models account in different ways for theabove constraints. Partic-
ular interference and connectivity measures are also defined. Some models embed con-
straints on the connectivity and interference directly in the graph structure. In such a case
additional vertices’s or edges are introduced. This will bespecified in the algorithm de-
scriptions.

The main optimization goals refer to i) interference minimization or ii) throughput max-
imization and they are pursued optimizing appropriately defined metrics.

Another classification refers to algorithms which account for i) a packet by packet chan-
nel allocation (thus solving also the related time scheduling problem) and ii) algorithms
which account for long time scale allocation steps. In the former case the goal is to prevent
two interfering nodes from being on the same channel at the same time (this could be the
case for synchronous TDMA systems). In the latter one two interfering nodes are assumed
to share a channel in the long term. This is the case of a CSMA/CA MAC protocol where
the transmission scheduling in time is implicitly solved bythe MAC mechanism.

Channel allocation

The approaches listed in this subsection refer to optimization problems where constraints
related to the traffic demands (constraints v) and vi)) are not considered. Equivalently, such
constraints are assumed to be solved a priori.

The optimization deals with NICs and channels allocation. The objectives can be inter-
ference reduction (different metrics for interference evaluation are proposed) or throughput
maximization (different metrics for throughput evaluation are proposed)

A common assumption is that nodes are in saturated condition, thus the allocation of a
channel to a NIC leads to its occupation by a tentative transmission.

In the paper in [37] the protocol interference model is enhanced by introducing weights
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on the conflict graph edges. The interference at a vertex in the conflict graph is defined as
the sum of the weight of incident edges. Thus an optimizationproblem is defined which
aims at minimizing the maximum interference value on each link, satisfying the connec-
tivity, radio and channel usage constraints. Only a centralized heuristic based on graph
coloring (CLICA: Connected Low Interference Channel Assignment) solution is provided.
Clearly this approach is suitable for a CSMA MAC. Results areprovided in terms of the
interference metric above defined. Results in ns2 based simulations of a 802.11 system are
also provided in terms of throughput.

A similar approach is in [38] where the classic protocol model is used and the objective
is to minimize the maximum number of interfering edges incident on a communication
edge (vertex of the conflict graph). The problem is shown to besimilar to a max k-cut
in a graph with the additional constraint of the card number.Two heuristics, one based
on TABU graph coloring and the other one based on a greedy approach are presented.
Moreover the problem is formalized as an ILP and two relaxations are presented in order
to find lower bounds on the minimum interference value. It is also shown how non uniform
traffic requirements and non orthogonal channels can be considered appropriately defining
the interference function. All the proposed solutions are compared with the CLICA [37]
both with graph theoretical metrics and ns2 802.11 throughput simulations.

In [39] the problem is formalized as an ILP in two different ways. In the first one,
the optimization objective is the maximization of the number of concurrent active links
which satisfy the constraints on interference, number of channels and number of NICs.
Some additional constraints are added for the case of LP relaxation. In the second one,
the connectivity graph is modified substituting each communication edge with a number of
communication edges equal to the number of channels. Each link is also weighted with the
expected load, which is assumed to be known a priori. The problem is optimally solved for
a small scenario at the varying of the channel and interface number. It is noted how the use
of different ILP models can lead to different relaxations with different optimality property.

Another approach based on a graph model is the one in [40]. Even in this paper the
network is modeled with an adjacency graph from which it is derived a conflict graph. The
novelty refers to the introduction of a further bipartite resource contention graph where a
set of vertices represents the cliques in the contention graph and the other one represents
the links. An edge is inserted between each contention region and the set of link belonging
to it. Each edge has a maximum capacity equal to the number of available channels in the
network, thus accounting for the channels constraint. To account for the radio constraint
another set of vertices is introduced representing the nodes in the network. An edge with
capacity equal to the number of radios is added between each link and the corresponding
couple of nodes. The problem of finding the maximum network throughput is thus reduced
to a (modified) max-flow problem in the previously described graph. The solution gives
an upper bound for the achievable throughput in the network.Note that no end-to-end
traffic is imposed so the optimum solution refers to the optimum traffic pattern for the
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given topology. The whole problem turns out to be an ILP. In the case of a high number
of variables the problem can be relaxed to a LP one. Results are shown in a chain and in
random topologies at the varying of the number of channels and node density.

A distributed channel assignment algorithm is presented in[41]. Two performance
metrics are defined, one referred to throughput maximization and the other to delay min-
imization. It is argued that the minimization of the number of interfering edges at each
vertex of the conflict graph can approximately achieve both goals. A skeleton assisted
channel allocation is proposed. It relies on the construction of a spanning subgraph (called
skeleton) of the connectivity graph. The construction is performed by using a distributed
algorithm (LMST). The proposed SAFE protocol uses the constructed skeleton to assign
channels while preserving connectivity. If the number of radio interfaces is greater than
half the number of channels, then a simple random assignmentalgorithm is used which as-
sures a communication channel exists between any two nodes.If the number of interfaces
is less than half the number of channels, then skeleton edgesare assigned for connecting
neighboring nodes. Nodes which do not share a skeleton edge can use a common channel
for their direct communication. Routing issues are solved apart by using a max flow like
ILP, enforced with a tunable fairness constraint. The proposed mechanism is tested using
graph based simulations and showing the ability in exploiting the multiple channels and
radios. Better performance than the joint allocation and routing solution proposed in [42]
(described later on) are presented. Simulations at packet level (ns2) show even better im-
provements, since the ability in balancing the channel occupancy plays an important role
in a CSMA scenario where the available aggregated per channel throughput decreases as
the number of concurrent NIC increases.

Some distributed approach are in [43, 44].
In [43] a network is considered where all nodes are in the samecollision domain, each

node can tune more than one interface to a channel, and each channel can be used by con-
current transmission links. The basic hypothesis is that transmissions on the same channel
gain a fair share of the available rate. Game theory is exploited to define the allocation
conditions under which the selfish choices of each node turnsout to be a Nash equilibrium
for the system. The goal of each node is to increase its bit rate. It is proved that the stated
conditions lead to a Pareto optimal solution, which is also system optimal since it leads to
rate maximization. The conditions satisfaction need a central coordinator.

In [44] each node is supposed to be able to listen to all the channels even if it can
use only a subset of channels for concurrent transmissions.Available channels are not
necessarily orthogonal: a function describing the interference among channels is provided
following the approach in [45, 46]. Each node gathers the information about channel occu-
pancy in each channel and then greedily selects the channel which show less interference.
The algorithm is proved to converge in a finite time provided some synchronization con-
ditions are satisfied. Moreover the channel assignment can lead to network partitioning.
All such issues are fixed by a proposed protocol which is implemented and tested on a real
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testbed. Some heuristic solutions refer to a 3 way handshaketo enforce synchronization,
the use of a common communication channel to avoid network partitioning and an inter-
ference measure based on two hop information only. The MR-LQSR routing algorithm is
then applied.

Routing

Routing is a critical operation in a multi channel network since performance can be substan-
tially increased by correctly loading the links. Imposed link load can dramatically affect
the channel allocation decisions. A key concept is expressed in [47] where the channel
diversity along paths is considered as a key heuristic to achieve good routing algorithms.
The proposed metric accounts for the fact that if different channels are used for the subse-
quent links in a path, then the spatial reuse can be increased. The proposed metric, called
WCETT, is embedded in a DSR-like routing protocol, called MR-LQSR. WCETT depends
on the links bandwidth, links average number of retransmission and links channels.

The metric consists of two terms. A first term accounts for thehop diversity, and it
is computed as the maximum total transmission delay accumulated by a packet over a
particular channel. The minimization of this metric leads to the use of more channels. The
second term accounts for the total path delay (regardless ofthe used channels). The total
metric is a linear combination of the two terms. Authors noticed that the first part aims a at
a global network optimization by avoiding bottleneck, while the second part aims at a path
optimization reducing the e2e delay. The delay on each hop for each channel is computed
based on the estimated number of retransmission and the channel rate.

The proposed routing mechanism has been implemented in a testbed, showing good
performance.

An enhancement of the WCETT metric is proposed in [48], wherethe cost in terms of
wasted time for the switching among different channels is embedded in the metric. The
switching cost indicates if it is worth switching a NIC to a particular channel, based on the
estimated fraction of time the card will remain on that channel.

Joint allocation-routing

Problems in this section deal with the case where a traffic specification is provided in terms
of e2e traffic demand and the channel allocation problem is jointly solved with the routing
one.

A first approach in joint channel allocation and routing is in[49]. Here an iterative
algorithm is presented where channel allocation is solved by a greedy heuristic and routing
is solved by minimum path or randomized path algorithms. Thetwo parts of the algorithm
are solved successively and repeatedly so that the allocation is performed based on the rout-
ing outcomes and vice versa. Clearly, at the first step of the iteration an estimation of the
link load has to be inferred. This is computed considering all the e2e traffic requirements
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and a uniform multi-path routing and it is defined as the fraction of paths that traverse the
considered link with respect the total number of paths. The iterative process is repeated
until no improvement is experienced. Results are compared with the single channel case
and with a channel unaware allocation mechanism. In the channel unaware allocation,
neighbors of each node are partitioned into groups and to each group it is associated an in-
terface for communication. Partitioning is performed in such a way to balance the number
of neighbors on each interface. Some testbed results are also provided.

Clearly, even if interesting, such an approach is not optimal.
The starting point for a mathematical solution can be found in [50] where the problem

is described in the single-channel, single-radio case and then extended to the multi-channel
multi-radio one. A synchronized TDMA system is assumed. Letconsider the single-
channel single-radio case. A communication graph and a conflict graph are used to model
connectivity and interference. An e2e traffic requirement is specified and a flow optimiza-
tion problem is defined with the aim of maximizing the throughput offered to that e2e path.
The model can account for arbitrary traffic requests and for both single and multiple paths
routing. Outcomes of this procedure are the amount of requested load on each potential
communication link. No interference issues are consideredin this step. A feasible trans-
mission scheduling through time is then found. The traffic requirements determined in the
previous point are used to define the fraction of time to be assigned to each link. Interfer-
ence constraint is also added. Anyway such a scheduling is a NP-Hard problem so that a
lower and an upper bound are derived.

The lower bound is derived as follows. It is defined an independent set as a set of
nodes which can be scheduled concurrently. It is shown how a convex combination of
independent sets is also a valid schedule. An optimization problem can be designed over the
polytopes defined by the indicating function of all the independent sets. Such optimization
problem aims at maximizing the usage of each node, subject tofeasible scheduling and
flow requirements coming form the flow problem. This formulation can in principle lead
to the optimal solution anyway the polytopes construction requires a non polynomial time.
The optimization is thus limited to a subspace of the polytopes, derived from an “easy”
collection of independent set. As more set are included in the polytopes, the solution gets
closer to the optimum one.

The upper bound is derived using a dual approach. Each cliquein the conflict graph
indicates that only one of the nodes in the clique can use the channel on a slot. The polytope
formed by the indicating function of all cliques an be constructed and an optimization
problem can be defined trying to maximize the throughput. This approach does not lead
to a tight bound since, in the case of non perfect graphs, someother issues related to the
scheduling feasibility should be considered.

A very similar approach is adopted under the physical interference model, where edges
in the conflict graph are weighted in order to account for the continuous interference level
and an interference threshold is then defined to come back to abinary interference model.
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The model easily encompasses the case of multiple channels and multiple radios by adding
multiple communication edges in the communication graph. Simple results for the two
channel and the two radio cases are shown and compared with the single channel one.

A similar approach is in [2, 51]. Here the network is modeled as a multigraph where
vertices represent the nodes and multiple edges are introduced to model both connectivity
and interference.

The traffic pattern is specified by e2e requirements between arbitrary nodes. The goal
of the optimization is to find the maximum scaling factor which can be applied to the
traffic requests and for which a feasible resource allocation can be found. This implies a
weighted fairness in the offered throughput to the e2e requests. An optimization problem
is constructed defining an indicating variableyi + t(e) for link e to use channeli at time
t. All the constraint related to the number of channels, number of radios per node, number
of channels per link and interference free allocation condition are added. The problem
is then relaxed letting the variabley to be a continuous variable in the interval[0, 1]. It
can now be interpreted as a percentage of channel utilization in the following scheduling
operation. Clearly the resulting LP problem gives only an upper bound of the optimal
solution, since the found solution could be not schedulable. The problem is completed by
defining a feasible channel assignment and transmission scheduling. This is an NP-Hard
operation so two main heuristic based on set coloring and maximum packing are proposed.
Results at the varying of number of channels and number of NICs are shown in different
network topologies.

A similar optimization problem is in [52] where a different solution procedure is pro-
posed. Traffic is supposed to be generated by multiple sources and directed toward a single
gateway node. Even in this case a flow problem is defined as the problem of maximizing
the scaling factor for the traffic demands subject to a feasible scheduling. A second LP
problem is thus defined, where the scaling factor is fixed and which aim is to minimize
a metric related to the interference level. Previous optimization does not account for the
number of card constraint. This is fixed by an heuristic algorithm which modifies the flow
assignment and determines a new scaling factor so that a feasible NICs and channel as-
signment is possible. A further step defines a new LP problem which aim is to redistribute
the flows such that none of the previously fixed constraint areviolated and the interference
level is reduced. Then a new flow scaling assure that all the interference constraints are
satisfied. Finally a scheduling algorithm is defined. The whole algorithm is proved to at-
tain a constant factor approximation of the optimum solution. During the solution process
a lower bound to the network throughput is also derived.

All the proposed models assume perfectly orthogonal channels.
In [45, 46] it is pointed out how the use of partially overlapping channels can improve

the performance of a network by allowing an higher spatial reuse. Some experimental
results report the interference between concurrent transmissions as a function of the channel
overlap and devices distance. This results show that partially overlapping channels can be
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considered orthogonal if the transmitter and the receiver are sufficiently far apart. A model
for the overlapping channels interference is presented which defines a metric based on the
overlapping area between the channels spectrum masks provided by the standard. Such
a new measure is introduced in the channel allocation mechanism originally described in
[53] by enhancing the interference evaluation mechanism and, allowing the use of more
channels, shows a performance improvement. The notion of interference between partially
overlapping channels is then formalized in such a way it can be embedded in many of the
proposed multi-channel multi-radio allocation algorithms. In particular it is introduced in
the analysis provided in [52] where an upper bound for the throughput is derived. A great
throughput improvement is shown with respect to the case when only orthogonal channels
are used.

2.3.3 Protocols

In the following, some practical oriented solutions are presented, which are able to exploit
multiple channels in ad hoc networks. These mechanisms are based on heuristic consider-
ations and are designed accounting for practical issues fortheir implementation.

Single radio

The protocol proposed in [54] (SSCH) considers the case of anad hoc network, where
multiple channels are available, but each node is provided with a single channel half duplex
NIC. In particular the paper considers the use of legacy IEEE802.11a adding a standard
compliant protocol which allows for the use of all the available channels. The protocol is
completely distributed and only a small amount of control traffic is needed. It works in
multihop environments, and can exploit spatial reuse.

The time has to be considered as divided in subsequent fixed length time slots. Authors
claim that synchronization is not a hard requirement. The main idea is to provide a node
with a channel hopping sequence indicating to each NIC the working channel on each time
slot. The hopping sequence is computed using a modulo operation based on a seed value
and a starting channel index. Synchronization among nodes is obtained by exchanging the
seed and the channel index among neighboring nodes. Each node synchronizes with the
hopping sequence of the node to which it has traffic to send, i.e. each node can change its
hopping sequence based on its traffic requirements. The proposed MAC is shown to obtain
a higher throughput than legacy 802.11a. Anyway a higher delay (an jitter) is shown, which
impact on the TCP performance.

A different use of channels hopping is considered in [55]. All the nodes have to be syn-
chronized with the hopping sequence. At each frequency hop,a time interval is reserved
for a transmitter initiated handshakes between transmitters and receivers. The winners of
such handshake stop their frequency hopping and start to transmit data on the current fre-
quency, while all the other nodes continue to hop. An analytical model for the throughput
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is provided and the results are compared with the ones of a multichannel ALOHA with
receiver oriented channel assignment.

The protocol RICH-DP in [56] works in the same way but the handshake is initiated by
the receiver, which uses polling among neighboring nodes.

The protocol proposed in [57] considers a classic CSMA MAC, but a control channel
is defined which is dedicated to RTS/CTS control traffic. The other available channels are
devoted to data traffic. In particular, once fixed a total bandwidth W , a portionWc of it
is used for control traffic and the remaining is subdivided inM data channels. To start a
communication a node sends a RTS on the control channel. RTS contains the list of free
channel as perceived by transmitter. The receiver, based also on its own free channel list,
responds with a CTS containing the channel to be used (it is assumed communication uses
only one channel). The system is simulated as a function ofWc andM and it is shown that
this MAC outperform standard 802.11 both from the throughput and delay point of view.

Another approach (MMAC) using a dedicated control channel is in [58]. Here each
node is provided with one 802.11 interface. A common channelis used to exchange con-
trol information and to decide the channel to be used for datacommunication. The con-
trol channel is realized reserving periodic time intervalson a commonly selected channel.
Synchronization is obtained through a beaconing system similar to the one used in the
power save mode of standard 802.11. The agreement on channelusage is obtained using
an RTS/CTS handshake where simple channel usage metric is exchanged. After the selec-
tion, cards of transmitting and receiving nodes are set to the chosen channel. The proposed
mechanism allows for eliminating the multichannel hidden node problem, since the infor-
mation on control channel are heard by all nodes around both transmitter and receiver. It is
shown that the proposed solution reaches an improvement up to 300% by using 3 channels
in the all-in range case and up to 200% in the multi-hop case.

The paper [59] considers the case of a relay network applied to a cellular system. A
protocol for the relay network formation is presented whichcreates a tree-like topology
toward the gateway. Relay nodes are provided with a single interface but can use multiple
channels. Based on the previously formed topology, channels are assigned along paths in
order to reduce interference and increase spatial reuse. A simple distributed algorithm is
presented where each node collects the channel usage in the neighborhood, by using control
messages, and selects the least used channels. The selection mechanism is compared to the
optimal solution provided by [52] showing the ability to reach 80-85% of its performance
in this scenario.

Multi-radio

The Multi radio Unification protocol [60] considers a legacy802.11 network where each
node is provided with multiple cards, each working on a fixed channel. The protocol works
over the LL layer so it can be realized over the driver level. Each node holds a neighbor-

29



Chapter 2. Related Work and Problem Statement

ing table where it is stored the address of all neighboring nodes cards, together with the
channel quality indicator. Such an indicator is calculatedbased on the RTT provided by
probe packets. Communication between nodes take place by using the best channel. In
order to balance the use of channels, some strategies for sharing of the traffic over multiple
interfaces are considered, but none of them have shown improvements over the MUP.

In [48] the number of per-node 802.11 cards is less than the number of available chan-
nels. The proposal refers to a link layer protocol (HMCP) forthe use of multiple cards
and a routing protocol to exploit the particular scenario. The authors propose to provide
each node with a set of interfaces fixed on some particular channels, and another set of
switchable interfaces which can be dynamically tuned on different channels. Fixed inter-
faces channels are set using two hops information exchangedby using “hello” packets. The
goal of such an assignment is to balance the use of channels dedicated to fixed interfaces
in a two hop range. Fixed interfaces are used for reception: each node that has traffic to
transmit has to switch to the fixed channels of it destinationnode. To each channel it is
associated a separate queue: switchable interfaces are switched to the longest queue. To
enforce the fairness a timeout is also used to force the switching operation.

A centralized channel assignment algorithm and a related protocol for its implementa-
tion is proposed in [61]. To avoid topology modification a common channel is assumed
to be used by all the nodes. The common channel is selected by acentralized algorithm
which aims at minimizing the interference. The remaining channels are allocated as fol-
lows. Each node is supposed to gain information on the potential interfering neighbors by
sniffing the traffic in the channel. This implies that only nodes on the transmission range
are considered, since nodes which packet can not be correctly received are not consid-
ered. Interference information are exchanged in the two hopscope. Based on the collected
information a new conflict graph is constructed which directly accounts for multi radios ca-
pability at each node. In the conflict graph there is a vertex corresponding to each radio. A
list coloring problem is solved by means of an heuristic algorithm (BFS-CA) which selects
channels giving more priority to the ones near to the gateway. Simulations under different
scenarios are shown and the proposed algorithm is compared with a distributed greedy ap-
proach where each node set its radios on the least interferedchannels. Throughput results
shows that in some particular scenarios the greedy approachshows better results than the
BFS-CA, but in most cases BFS-CA improve the network performance. The algorithm is
tested also on a real testbed.

A distributed protocol for channel assignment is in [42]. The network is supposed to
have gateways that connect the mesh nodes to other networks.A distributed route con-
struction which creates a tree between nodes and gateways ispresented. NICs in a node are
classified as UP NICs, for the connection towards the gateway, and DOWN NICs for the
connection toward leaves. Channels are associated to the NICs based on a occupancy mea-
sure which is calculated using periodic information exchanges about channel load. Such
information is collected and used to sort the channels according to their total occupancy
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level. The least occupied channel is chosen first. An extensive simulative results set is
provided, showing the effect of parameters changing. In particular the proposed protocol
is proved to perform very close to the centralized one previously presented in [49]. Results
on an actual testbed are also presented.

2.4 Rate adaptation in IEEE 802.11 WLAN

A number of recent studies deal with the problem of 802.11 rate adaptation (RA). The
majority of proposals aim at optimizing the PHY rate with respect to channel impairment
only, with a few exceptions.

Some RA algorithms makes use of the Received Signal StrengthIndicator (RSSI) to
select the PHY mode. The RSSI, in fact, is a measure of the received signal power, which
shall be proportional to the Signal to Noise Ratio (SNR) at the receiver. In practice, how-
ever, this approach is limited by a number of factors. For instance, it is a common ex-
perience that the RSSI returned by a wireless board circuitry is not always reliable. Fur-
thermore, some schemes select the PHY mode according to the RSSI measured at the
transmitter, assuming it is the same that would be experienced at the receiver. However, the
assumption of symmetry is often disattended in reality.

In [62], the authors propose the MPDU-Based Link AdaptationScheme (MBLAS),
which makes use of an analytical model to evaluate the 802.11goodput as a function of
the SNR, the PHY mode and the payload size. The proposed modeltakes into account
the 802.11 backoff and retransmission procedure, but it is limited to the scenario with a
single transmitter/receiver pair, for which MBLAS provides the theoretically optimal rate.
However, the scheme is suboptimal in multiple stations scenarios.

In [63] the authors propose an RSSI–based Link Adaptation strategy. The PHY mode is
selected based on the measured RSSI, which is compared with dynamically defined thresh-
olds. The use of dynamic thresholds aims at alleviating boththe inaccuracy of RSSI mea-
surements and the channel asymmetry issues. The drawback ofthis proposal is that the
thresholds are adjusted considering the loss rate observedfor a given PHY mode: this prac-
tice could easily lead, in case of frame losses due to collisions, to an undesired decrease of
the thresholds.

In the Receiver Based Auto Rate (RBAR) [64], the receiver STAselects the most suit-
able PHY mode on the basis of the RSSI measured during the reception of RTS frame. The
selected PHY mode is, then, communicated to the sender by using the CTS frame, so that
the sender will adopt the chosen rate for the subsequent datatransmission. While effective
in overcoming channel asymmetry issues, it is to be noted that this algorithm is not standard
compliant since it requires modification to the RTS, CTS and data frame structure, as well
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as to the PLCP header, in order to include the necessary control information. Moreover,
the proposed RSSI-based rate selection scheme at the receiver takes into account only the
success probability of a single frame transmission, thus completely neglecting the impact
of the MAC layer on the performance.

Another well known RA algorithm is the Auto Rate Fallback (ARF) [65] which is based
on the following consideration. In the absence of interference from other users, a certain
number of subsequent failures are likely due to a lowering ofthe SNR, so that a more
robust rate has to be selected. Conversely, when a certain number of subsequent successful
transmissions is observed, a higher rate is selected to improve throughput. This type of
schemes is not subject to RSSI measurement inaccuracy nor tochannel asymmetry issues.
One of the drawbacks of ARF, however, is that it periodicallytries a higher transmission
rate1 to check if it is sustainable; this behavior is inefficient instatic scenarios where the
optimal rate remains the same for prolonged periods. The Adaptive Auto Rate Fallback
(AARF) [66] aims at alleviating this problem by applying a binary exponential backoff
to the number of subsequent successful transmissions needed to try a higher rate. In this
way, AARF is more stable than ARF and achieves better performance in static scenarios.
Nonetheless, both ARF and AARF assume that packet losses arealways due to channel
errors, so that their performance can rapidly degrade in high traffic scenarios, where a
significant amount of packet losses are caused by collisions.

Some other RA schemes try to combine the best features of the RSSI-based and loss-
based approaches. For instance, the Hybrid Rate Control (HRC) [67] exploits the measured
RSSI and Frame Error Rate to distinguish between short-termand long-term variations of
the channel conditions. This mechanism exploits a throughput-based rate controller which
probes adjacent rates to determine if a rate switch is necessary. Moreover, two sets of
thresholds (named stable and volatile low thresholds) are used depending on the detected
variations of the RSSI. Again, this scheme does not considerthe fact that packet losses
might be also due to collisions.

To summarize, a major drawback of all the RA schemes discussed so far is that they
are designed for scenarios in which a single node is transmitting on the wireless channel.
In real situations, however, it is often the case that multiple nodes contend for the medium.
Consequently, due to the way the 802.11 MAC works (i.e., CSMA/CA with DCF), the
goodput actually experienced by active nodes is influenced not only by channel-related
packet losses, but also by MAC collisions and variations in the time required to access the
medium. These factors cause the formerly discussed RA algorithms to achieve sub-optimal
and, in some cases, very low performance. In particular, loss-based RA schemes such as
ARF or AARF do not work properly, since losses due to MAC collisions can easily lead to
the choice of a low-rate PHY mode even in cases in which a high rate is sustainable. As for
RSSI-based schemes, it is to be noted that the choice of RSSI thresholds is optimal only
for the single user scenarios, but can easily become non-optimal as the time required for

1As reported in [64], ARF tries a higher rate every 10 successful transmissions in a row.
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a successful packet transmission increases due to collisions and increased medium access
delay.

In more recent years, some solutions have been proposed to address this problem. For
example, Closed Loop Adaptive Rate Allocation (CLARA) [68]is an ARF-like RA scheme
which aims at reacting differently to losses due to channel errors and collisions, respec-
tively. A significant drawback of this scheme is that it is based on the assumption that losses
after a successful RTS/CTS exchange are always due to channel errors; consequently, it re-
quires the use of the RTS/CTS handshake that has a significantcost in terms of overhead.
The Collision–Aware Rate Adaptation scheme proposed in [69] exploits the same mecha-
nism for loss differentiation but implements an adaptive RTS/CTS probing scheme which
reduces the overall RTS/CTS usage, thus somehow mitigatingthe inefficiency of CLARA.
We note, however, that both CLARA and CARA do not consider theimpact on the perfor-
mance of the variations in the medium access time.

To conclude, no previous work, to the best of our knowledge, has provided a RA scheme
which is optimal with respect to both channel impairment andcontention-related issues,
comprehensive of both frame collision probability and medium access times. In particular,
no analytical models for goodput performance in multi-userscenarios have been presented.
In the next section we propose such a model, which enables thedefinition of our Goodput-
Optimal Rate Adaptation (GORA).

2.4.1 Application layer perspective: VoIP model

Rate adaptation techniques considered in the previous section might not be specifically
suited for optimizing the performance of some kinds of applications. In this section it is
introduced a model for the quality evaluation of VoIP communications, which links the
perceptual quality to some basic traffic metrics such a as throughput, delay and jitter. Such
a model will be used to define an optimization algorithm for enhancing the performance of
VoIP links.

Playout buffer and quality evaluation

The voice codec considered in this section produces CBR traffic flows, anyway the trans-
mission link introduces a random delay such that the received packet delay presents a jitter
which can decrease the voice quality.

To reduce this problem, a common solution refers to the introduction of a buffering
mechanism at the receiver which is used to add a delay to the early packets in order to
reduce the jitter. Thus, jitter is traded for an increased average delay.

The playout buffer is generally arranged to operate as a first-in/first-out (FIFO) buffer
in which voice packets are placed when they arrive at the decoder. Then, after an initial
delay, voice packets are fetched from the playout buffer at the same (constant) rate they
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were created by the coder. Packet sequence numbers can be used to ensure the data is
played out in the correct order and to detect packet loss.

A variety of techniques have been proposed for the management of playout buffers.
Typically, these techniques involve estimating the maximum variation in the transmission
delay expected for each packet as it passes through the network. The size of the playout
buffer is chosen such that variations in packet arrival timeof this order can be smoothed.
The end-to-end delay introduced using this approach is thenapproximately equal to the
maximum jitter estimated for the packet data stream. Packetlosses may occur in two cases,
namely when the playout buffer is either full when a packet arrives, which is referred to
as an overrun, or empty when a packet is due to be played out, which is referred to as
an underrun. Overruns can be avoided by properly dimensioning the buffer size, while
underruns can be reduced by increasing the playout delay (and, hence, the end–to–end
delay).

In [70] a revised version of the E–model is presented as the performance metric for
VoIP communications [71, 72]. The quality evaluation function produces a ratingR of the
voice quality in a scale from1 to 100 (70 corresponds to the PSTN quality), as a function of
the system state (characterized byPloss andms). A translation to the Mean Opinion Score
(MOS) is provided by the following relation:

MOS =















1 R < 0,

1 + 0.035R + 7× 10−6R(R − 60)(100− R) 0 ≤ R ≤ 100,

4.5 R > 100.

(2.11)

The relation in (2.11) is represented in Figure 2.5, while Tab. 2.4.1 gives a classification of
the voice quality with respect to the MOS andR-factor values.

R-factor Quality of voice rating MOS

90 < R ≤ 100 Best 4.34 - 4.5
80 < R ≤ 90 High 4.03 - 4.34
70 < R ≤ 80 Medium 3.60 - 4.03
60 < R ≤ 70 Low 3.10 - 3.60
50 < R ≤ 60 Poor 2.58 - 3.10

Table 2.2: R-factors, quality ratings and the associated MOS

The metric is composed by many terms accounting for codec type, packet loss, end to
end delay. In [70] the following metric is proposed:

R = 94.2− Iel − Iec − Id . (2.12)

In (2.12), Iel depends on packet loss rate and a graphical interpolation for different
codecs is provided in Fig. 2.6. An approximated expression is provided below

Iel = 34.3 ln(1 + 12.8 Ploss)
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Figure 2.5: Relation between the E-model ratingR andMOS rating

wherePloss is the e2e packet loss probability accounting for packet losses due to the link
and to the buffer.

Figure 2.6: Pkt loss dependency

The termIec accounts for the impairments due to the voice compression performed by
the codec. A graphical representation of such a factor is given in Fig. 2.7. Unfortunately,
there exists no simple mathematical expression for such a term.

Finally, the termId is the delay impairment factor, which depends on the mouth–to–ear
delay d. An approximation ofIdi is provided below (the exact formula is in ITU recom-
mendation):

Idi = 24d + 110(d− 177.3 · 10−3)H(d > 177.3 · 10−3) ; (2.13)
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Figure 2.7: Rate dependency

whereH(·) is the Heavyside function (unitary step function). The relation in (2.13) is
represented in Figure 2.8.
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Figure 2.8: Delay impairment factor as a function of the one-way delay

The mouth–to–ear delay, d, is inclusive of the algorithmic and packetization delay as-
sociated with the codec and the IP packet processor,mc, the one way network delayms′ ,
and the playout buffer delayδbuff , so that we have

d = ms′ + mc + δbuff .

The termmc depends on the specific codec used and the numberN of voice frames aggre-
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gated in the same IP datagram. In case of G.711, we have

mc(G.711) = N × τv ;

with τv = 10 ms. G.729a codecs, instead, use aτw = 5 ms look ahead in order to encode
the current10 ms PCM encoded block, so the coding delay becomes

mc(G.711) = N × τv + τw .

This metric relates the perceptual quality to some standardtraffic related metrics (delay,
jitter, throughput) and allows for applying an optimization algorithm which chooses the
transmission strategy in order to improve the quality of theVoIP connection, as will be
described in Section 4.6.

2.5 Scheduling in FDMA cellular networks

Orthogonal Frequency Division Multiplexing (OFDM) is the most widespread and promis-
ing solution for multiple access and signaling in today’s wireless (broadband) networks.
Its deployments include WLAN physical layer implementations such as IEEE 802.11a/g,
ETSI HIPERLAN/2, the IEEE 802.16 standard for broadband wireless access in metropoli-
tan area networks and the Digital Audio/Video Broadcasting(DAB/DVB) standards. The
OFDM technology is based on the principle of multi-carrier transmission, originally ap-
peared in the design of high speed digital subscriber line (HDSL) [73]. The OFDM trans-
mission method results to be a really effective platform in multi-path environments with
frequency selective fading. A significant advantage of the OFDM technology is the pos-
sibility of allocating power and rate optimally, by using adaptive modulation according
to instantaneous subcarrier quality, thus maintaining acceptable BER per subcarrier [74].
Moreover, in the multi-user scenario, it is possible to assign subcarriers to the less interfered
user, owing to the channel diversity among users placed in different locations.

Different users can in fact experience different channel conditions at a given time instant
and frequency band and this property can be exploited by opportunistically allocating the
resources to a subset of users which have the best conditions. This property is usually
referred to asmultiuser diversity[75].

Depending on the channel status, each user can experience different channel attenuation
on each subcarrier and at different time instants. This property is usually referred to as
frequency and time diversity. This degree of freedom can be exploited for increasing the
transmission performance by appropriately allocating theresources in frequency and time.

Generally speaking, the optimization problems arising in such systems would require
to jointly optimize

• users selection / flow scheduling
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• subcarrier allocation to the users

• bit loading on each subcarrier

• power loading.

Different optimization goals can be pursued

• flow level: fairness / minimum per-flow rate / maximum throughput

• physical level: power minimization / maximum power constraint

Clearly, all the optimization variables and also differentoptimization goals are strictly in-
terrelated such that a joint optimization is required for achieving optimum performance.

It is worth noting that variables indicating the allocationof a subcarrier to a user are
usually considered as boolean variables in order to model the constraint that a subcarrier
can be allocated to a single user at a given time. In this case,the joint optimization prob-
lem, accounting also for the bit loading and the power selection, becomes a mixed integer
problem, which complexity can represent an issue for practical implementations.

Moreover, different scenarios can also be considered. Mostof the work in the literature
deals with single cell systems, thus neglecting the inter-cell interference. Multi-cell sys-
tems, where concurrent transmissions are allowed from different neighboring base stations,
represent a much challenging (and realistic) environment,since the inter-cell interference
couples the optimization problem along all the cells and in general would require a network
wide solution. Consider as an example the case of the throughput maximization in an iso-
lated cell. The allocation of subcarriers with a high bitload is the most desirable solution
since this allows for an higher throughput and also an increased number of admitted users,
which can also be beneficial for increasing the fairness among flows. The same objective
in a multicellurar environment turns out to be much more challenging as the use of high bit
loads requires high transmission power, which in turn causes high interference to neighbor-
ing cells reducing the spatial reuse. In this case a trade offbetween modulation efficiency
and channel reuse has to be considered.

Many proposals addressing this kind of optimization problems and spanning a subset
of the previously listed optimization scenarios, variables and goals, have appeared in the
literature.

2.5.1 Allocation

In this section it is specifically reviewed the work related to the subcarriers allocation, i.e.
the problem of assigning each physical resource to traffic flows (allocation), by also decid-
ing the more appropriate modulation (bit loading) and the correct power (power loading).

In [76] a joint allocation, bit and power loading algorithm has been presented. Here
the problem of channel allocation and bit loading in an isolated cell is subject to a hard
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minimum rate requirement from each allocated flow. The objective is represented by the
minimization of the transmitted power. The allocation problem, which is a combinatorial
integer problem, is relaxed by allowing a fictitious time sharing of the available subcarriers,
thus obtaining a lower bound for the transmitted power. The solution is brought back to
the integer domain by means of an heuristic mechanism, allocating each subcarrier to the
user with the highest time sharing. The outcome of such an allocation is then used to run a
single user water-pouring algorithm for the actual bit loading.

The work in [77] describes a subcarrier allocation and poweradaptation in a single cell,
with the additional aim of providing fairness among allocated users. Bitload is considered
fixed and equal for each of the available subcarriers. A modified version of the ideal GPS
scheduler is used to define the number of subchannels to be allocated to each user in order
to achieve a fair resource allocation. Thus, subcarriers are allocated to users with the aim of
minimizing the transmitted power. If the power is below a given threshold, the allocation
is considered successful, otherwise the number of available subcarriers is decreased by 1
and the procedure is repeated.

Channel allocation together with power adaptation techniques for throughput maxi-
mization are presented in [78], in the case of a generic multiple access schemes with or-
thogonal channels. The problem is addressed in a multicellular scenario, thus accounting
for the inter-cell interference. Three centralized heuristics are developed. Heuristics are
based on the use of efficiency metric computed starting from the useful and interfering
channels gain. In the simpler one, for each subcarrier the user with the best channel is
allocated. The same subcarrier can be reused by a concurrentallocation from a neighbor-
ing base station, only if the added transmission leads to a global throughput increase. It is
shown how starting from this heuristic, it is more efficient to adapt the modulation rather
than the power in order to improve the network throughput. The joint solution is only
slightly better than each of them. No fairness issues are addressed.

In [79] a OFDM downlink in a single cell system is considered.To each user it is
associated a utility function: the design of such functions(or the design of the marginal
utility functions) allows for differentiating the serviceprovided to the users.

The problem of optimal joint DSA (dynamic subcarrier allocation) and APA (adap-
tive power allocation) is considered with the aim of maximizing the utility of the system.
System utility is the sum of users’ utilities. If the utilityis proportional to the received
rate, the problem turns out to be the throughput maximization. DSA and APA are solved
separately, and then a joint solution is shown to obtain better throughput. Some interest-
ing consideration on the design of utility function are made, explaining the existence of a
global optimum and proposing utility functions which aim atobtaining maximum through-
put, weighted fairness or max–min fairness. In [80] practical algorithms for the solution of
the DSA and APA optimization problems are proposed.

In [81] two cases are considered: a rate based utility, accounting only for channel status
and a delay based strategy accounting also for queue status.It is argued that only queue
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aware scheduling can achieve the maximum stability region (MSR). MSR policies do not
account for QoS differentiation but this could be fixed by appropriately designing the utility
functions. It is shown how the use of an exponential utility function brings to the well
known proportional fairness scheduling algorithm. It is also stated that the class of utility
function with polynomial derivative are able to achieve the“maximum stability region”.

2.5.2 Scheduling

Link Layer scheduling algorithms for packet switched networks have the goal of achieving
a fair allocation of the bandwidth resources to the flows competing for the access to the
shared medium. The basic packet scheduling schemes have originally been proposed for
wireline networks, where the channel is usually assumed to be error-free and of constant
capacity [82].

Known packet scheduling schemes have been extended to wireless networks, by taking
into account the additional feature of a strongly time-varying channel [83] and addressing
the problem of power efficiency.

If fairness constraints were not taken into account, mere throughput maximization
would have an extremely unfair outcome, where few users (those enjoying good channel
conditions) are repeatedly allocated most of the bandwidth, while the others starve.

On the other hand, efficiency at the physical layer has to be pursued by exploiting the
multiuser diversity “riding the peak”of the channel gain variations [75] and thus allocating
resources to the user experiencing the best channels conditions.

In some scenarios it is unrealistic to pursue short-term fairness, due to the specific
characteristics of the radio medium. In fact, if the scheduler aimed at achieving fairness
among flows in the short term, the performance of the system would be far from optimal,
as we would schedule users experiencing a bad channel state,without any benefits for their
own flow nor for the aggregate network throughput. It has longbeen recognized that a
better policy is to allow for some short-term unfairness in order to improve efficiency.

Clearly, a trade off between power efficiency and fairness arises.
According to that requirements, basic schedulers should keep track of how much data

each flow transmitted in the past, and compensate lagging flows when their channel condi-
tions improve, or when they have been starving for too long. To implement this mechanism,
the scheduler needs to take into account both channel and traffic state information.

A formalization of that mechanism is in [84, 85], where a unified framework for mul-
tiuser single channel scheduling is presented. A Gilbert-Elliot channel model is considered
as a reference model and a equal physical transmission rate for all the users is assumed.

Following the proposed approach, every scheduling algorithm is composed by the fol-
lowing functional blocks:

• error free service (e.g. WRR, STFQ, WFQ, WF2Q): it defines theservice that would
be obtained by the traffic fluxes in the idealized case of no transmission error. The
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basic reference mechanism is the General Processor Sharingscheduling. Such algo-
rithms are derived from the wired networks.

• lead and lag model: specifies how the service provided to a fluxis measured.

• compensation model: it acts in a dynamic way to compensate the received service
by different users, in order to approximate a fairness modelsuch as the ideal GPS
scheduling.

• slot queues and pkt queues: lagging a leading metrics can be based on transmitted
packets or experienced delay. This is used to decouple delayand throughput mea-
sures.

• channel monitoring and prediction: usually a simple on–offmodel is assumed and
the status of the channel is known at the moment of schedulingdecision.

Different instantiation of such blocks lead to different scheduling algorithms: CSDPS,
WPS, IWFQ, CBQ-CSDPS.

In particular in [85] some analytical bounds are presented comparing the performance
of different scheduling mechanisms accounting for short and long term fairness for back-
logged flows, delay-throughput achievable region, short term bounds for users with clean
channel, long term delay and throughput bounds for users with error bounded channels.

It turns out that the most valuable algorithms are CIF-Q [86]and WFS [87].
As already pointed out, channel status information is required for optimizing the power

allocation and increasing the throughput. In case of a stochastic channel evolution, a pre-
diction of the channel status in the near future is essentialfor achieving good performance.
In [88], starting from the framework in [85], it is proposed ascheduling algorithm similar
to WFS, which accounts for a multi-state Markov channel. Each pkt can be retransmitted if
in error, but it has a finite Time To Live: using the channel prediction, based on the Markov
model, the user which has the highest probability of correctly receive a pkt is scheduled.
An adaptive FEC is also used. It is shown that this algorithm performs better than WFS in
terms of throughput and delay, preserving the fairness properties.

Some other consideration need be made when trying to implement such algorithms.
Many packet scheduling algorithms proposed in the literature rely on the time provided

by a common reference clock in order to implement the error free model and the compen-
sation blocks; packets are tagged as they enter the queues according to the clock time. The
selection of the next packet to transmit takes place by taking the time tag and the packet
length (thus, the packet transmission time) into account [89].

Virtual time-based algorithms, however, have a high computational complexity, which
makes their implementation difficult and expensive. Thus, algorithms based on credits,
such as CBFQ [90], have been proposed. They are simple and computationally efficient,
achieve fairness among flows and can be adapted to work in a wireless environment (see,
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e.g., WFCQ [91]). In credit-based algorithms, the service state of each flow is summed
up by a single number, its credit value. A flow gains credits when it is not scheduled, and
uses credits when it is scheduled. This scheme makes it easier to take a continuous channel
model into account; e.g., in WCFQ channel quality is dealt with by introducing a cost that
depends on the state of the channel: the scheduling priorityof a flow will depend both on
the amount of credits it has accumulated and on its channel quality. A flow experiencing
a bad channel is at first prevented from transmitting; it is scheduled again when either its
channel quality has improved or it has accumulated enough credits so as to overcome its
bad channel quality index.

A more theoretical approach is in [92], where the optimal strategies for achieving (i)
maximum throughput subjected to temporal fairness constraints or (ii) general utility func-
tion maximization or (iii) minimum performance guaranteesare presented. The optimiza-
tion is intended in the asymptotic sense. In the case of non stationary condition a stochastic
approximation algorithm for the solution of optimization problem is presented. Here the
channel model is not specified since its evaluation is included in the utility function.

Alternative formulations of the scheduling problem are also possible.
An approach based on Learning Automata is presented in [93].Here ACK and NACK

are used to estimate the link status for each user. To the users it is associated a probabil-
ity to be chosen in a scheduling round. The probability is calculated based on a fairness
function and on channel feedback. The transmission rate is selected based on a probability
distribution calculated using past history. The algorithmconverges in stationary situations
and dynamic scenarios are also tested.

Previous works never account for traffic sources dynamic andqueue stability (since an
access level perspective was considered and a heavy load condition was assumed). Borst in
[94] considers the case of scheduling at each time slot the user with the best channel with
respect to the its mean channel status. The obtained serviceis then used to evaluate the
stability region of the system. The study is performed in an analytic way. It is shown how
the Proportional Fairness scheduling algorithm falls within the analyzed framework.

Tassiulas proposes an analytical study of the scheduling insuch scenario. In [95] it
is assumed a ON-OFF channel model for each user and arbitrarytraffic arrival pattern.
It is proved that a simple rule based on queue length can attain the optimum weighted
throughput. No QoS issues are considered, since a symmetricchannel status for all users
is assumed and the aim of the optimization is not the stability of all queues.

Shakkottay [96] provides an analytical characterization of the “exponential rule”, that
is a particular scheduling rule which is able to obtain optimum throughput exploiting infor-
mation on channel and queue length. The channel is assumed tobe modeled by a Markov
process with multiple possible transmission rates. No QoS issues are considered, anyway
the stability of the system implies the stability of each queue.

The work in [97] considers a framed TDMA. Slot in a frame are assigned in order
to guarantee the QoS requirements in terms of delay and throughput to QoS users, while
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optimizing the network performance. The number of slots assigned to a user is computed
in order to guarantee the target delay and pkt loss, given thechannel model. An admission
control is assumed for QoS users. Remaining slots are assigned to best effort traffic using
WFS.

Packet schedulers described in the literature have traditionally been designed for TDMA
systems with a fixed physical transmission rate, where the goal of the scheduler is only to
select one flow at a time for transmission. Thus, such solutions did not tackle the problem
of simultaneously scheduling packets belonging to different flows and allocating them a
pool of transmission resources with possible diffrent physical rates. In a way similar to
the one proposed in [85], the work in [98] propose a way to schedule users over multiple
channel decoupling the problems of throughput optimization and fairness. A first block
performs the weighted allocation of the available channelsto the users solving a LPI prob-
lem, while a second block performs the weights update, usinga stochastic approximation
method. Information on available channel rate is exploited.

2.6 Motivation for the proposed contributions

The literature review proposed in this chapter shows how performance optimization in
wireless networks represents an open research field where many issues remain unsolved.
The need for improving the performance by simultaneously acting on many parameters is
such that the concept of cross-layer design is especially suited for these kinds of networks.

Anyway, a comprehensive and solid analytical model is lacking. Nonetheless, a ten-
tative model has been recently presented which is denoted as“layering as optimization
decomposition” and allows for a systematic definition of thedifferent layers functions.
The basic idea has been described in this section.

In Chapter 3 this model will be used for optimizing the performance of a multi-channel
multi-radio ad hoc network, by defining a joint algorithm forchannel allocation, conges-
tion control and scheduling. These kinds of networks inherit all the optimization issues of
classic ad hoc networks, with additional degrees of freedomin the optimization process
due to the availability of multiple channels and multiple interfaces. Asymptotic results for
the achievable capacity as a function of the number of channels and interfaces have been
proposed which shows the potential performance. Some analytical approaches which uses
classic optimization theory and complex heuristics to determine more realistic bounds have
been also described. Such algorithms do not clearly show thecross-layer aspects and are
far from being implemented in practice. Moreover, practical mechanisms for exploiting
the presence of multiple channels and interfaces have been described which are essentially
based on heuristic argumentations. Thus, practical algorithms based on solid analytical
background are lacking. The proposal of a framework for applying cross-layer algorithms
based on analytical argumentations in the context of multi-channel multi-radio ad hoc net-
works is one of the contributions of this thesis.
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The presence of multiple channels in cellular network is a more classic aspect. Nonethe-
less, efficient algorithms for allocating the available resources to the mobile users are being
investigated. Some of these studies related to scheduling and allocation of the physical
resources have been presented in this section. In this context there are only few proposal
regarding scheduling algorithms in FDMA networks, whereasmost of the contributions
are focused on efficient allocation at the physical layer, but are mostly tested in single cell
scenarios. Merging the two aspects requires a cross-layer investigation, which have been
approached from a theoretical point of view by some authors.In this context, simple algo-
rithms which preserve the modularity of the layered structure, but at the same time allow
for an interaction between the scheduling and resource allocation mechanisms, represent an
interesting challenge. In Chapter 5 a framework for achieving such a goal will be presented.

Moving toward more practical issues, the problem of optimizing the performance of a
standard IEEE 802.11 network is another field open for research contributions. In particu-
lar, the problem of adapting the transmission rate to the link conditions by complying with
the standard specifications has not been fully investigatedyet. Theoretical and practical
solutions have been proposed which aim at optimizing the link throughput by means of
heuristic algorithms. Optimal solutions, which are not standard compliant, have also been
proposed for the case of absence of interfering transmissions. Thus, an optimal solution for
the case where the medium is shared with concurrent transmissions has not been presented
yet. Moreover practical and efficient algorithms for the same scenario are lacking. One
of the contributions of this thesis is the analytical definition of the optimal rate adaptation
for an IEEE 802.11 link in the presence of concurrent interfering transmissions. Practical
issues will also be addressed by allowing the definition of analgorithm which could po-
tentially be implemented in actual network cards. The proposed general framework allows
to consider different objectives for the rate adaptation and to jointly optimize the rate with
some other tunable parameters, such as the maximum retransmission limit.
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Chapter 3

Optimization in Multi-Channel Ad Hoc
Networks

With the motivation of improving the performance of multi-hop wireless networks, in the
last few years great attention has been devoted to networks where each node is provided
with multiple radio interfaces and can operate on multiple channels. This new degree of
freedom has been proved to potentially allow for achieving the full capacity even with a
reduced number of interfaces per node [36].

In this chapter, we consider the problem of joint congestioncontrol, channel allocation
and scheduling for multi-hop multi-channels wireless networks in a general communica-
tion and interference scenario. The problem is formulated as a joint optimization, which
is then solved by a dynamic algorithm and is potentially ableto achieve the optimum so-
lution under certain assumptions. A specific simplified scenario is also evaluated, where
the scheduling is actually an inherently NP-Hard problem, and thus a heuristic is proposed
and compared with optimum results, when feasible. The channel loading and scheduling
approach is somewhat similar to the one proposed in [28] but this chapter focuses on a
throughput optimal approach [14], is inherently multi-hop, and congestion control is also
integrated in the framework. We build on the past work on network utility optimization, by
using the notion ofvirtual links to facilitate analysis of multi-channel networks.

3.1 Introduction

New challenges in wireless network design refer to a more efficient bandwidth utiliza-
tion and the use of new networking paradigms. The former goalis related to the growing
bandwidth demand and the scarcity of available spectrum. The latter refers to the need
for flexible and easy deployment, self configuration and adaptation to the working condi-
tion. Multi-hop wireless networks have been identified as a valuable networking paradigm
able to fulfill the previous requirements. Examples of multi-hop wireless networks include
ad hoc networks and mesh networks. Practical interest in multi-hop wireless networks is
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confirmed by the recent development of standards which explicitly encompass the mesh
paradigm, where the backhaul network is organized in an ad hoc topology. The IEEE
802.16 standard [3] is one example. In the context of 802.11 networks a special work-
ing group is dedicated to the mesh extension, which is referred to as 802.11s [4]. Other
standardization efforts are focusing on the introduction of mesh-like support in their net-
work architecture, such as 802.15.3/4, where the network architecture implicitly supports
a mesh-like structure, and 802.15.5, which is working to define a mesh structure for per-
sonal area networks. It is clear that a deep understanding and the ability to optimize the
performance of multi-hop wireless networks will offer significant benefits in these contexts.

In the last few years great attention has been devoted to networks where each node is
provided with multiple radio interfaces and multiple channels are available [99]. In this
scenario, each radio interface can be tuned on a different channel and cultiple concurrent
transmission are possible. This approach is particularly interesting if applied to 802.11
networks, since multiple channels are already available and devices provided with multiple
wireless networking cards are being designed and already exist in some testbeds.

A lot of effort has also been spent in the last few years to understand the challenges
related to resource allocation in such networks, where the increased number of variables to
be jointly optimized represents a big issue. The problem hasbeen approached from differ-
ent perspectives, ranging from heuristic and protocol oriented solutions [100, 48, 47, 42],
whose performance is far from being exactly defined, to the determination of theoretical
bounds [52, 2, 28], whose practical implementation is not straightforward. It is thus worth
investigating an approach aiming at the design of practicalalgorithms based on a solid
theoretical background, which can be analytically proved to guarantee some performance
bounds [28].

The aim of this paper is to provide a simple and clear framework for investigating
the performance of multi-channel multi-radio networks as afunction of the number of
channels, interfaces and concurrent end–to–end transmissions. We consider the problem of
joint congestion control, channel allocation and scheduling for multi-hop wireless networks
in a general communication and interference scenario. The problem is formulated as a joint
optimization, which is then solved by a dynamic algorithm. Aspecific simplified scenario
is evaluated, where the scheduling is actually an inherently NP-Hard problem, and thus a
heuristic is proposed. The channel loading and scheduling approach is somewhat similar
to the one proposed in [28] but our paper focuses on a throughput optimal approach [14], is
inherently multi-hop, and congestion control is also integrated in the framework. We build
on past work on network utility optimization (discussed in Section 3.3), by using the notion
of virtual links to facilitate the analysis of multi-channel networks.

The paper is organized as follows. The complete system modeland the goal of the pro-
posed analysis are presented in Section 3.2. Related work isreviewed in Section 3.3. The
optimization problem is formulated in Section 3.4 and the proposed solution is presented
in Section 3.5 together with stability issues, addressed inSection 3.6. The scheduler is
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defined in Section 3.7 and simulation results for the whole algorithm are in Section 3.8.
Conclusions end the paper.

3.2 System model

Our system model is derived from similar models used in past work [28], [14] with suitable
modifications to capture the availability of multiple channels, as described below.

Ch. 1

Ch. C

Ch. 1

Commodity 1

Node n

Commodity S

Ch. C

λ1
n +

∑

jc r1
jnc

{r1
njC}j

{r1
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{rS
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λS
n +

∑

jc rS
jnc

{rS
njC}j

γ1
nC

γ1
n1

γS
nC

γ1
n1

Figure 3.1: Node model

Consider a multi-hop wireless network. Each node in{n : n = 1, . . . , N} is provided
with In half duplex wireless interfaces. At any given time, each interface can tune to any
one ofC channels{c : c = 1, . . . , C}. The channel used by an interface may change over
time. For the algorithm definition, a general interference model is initially assumed (which
can also encompass non-orthogonal channels). In Section 3.7, a simplified interference
model based on orthogonal channels, and communication and interference graphs, is used
in order to define a greedy heuristic.

Traffic flows are, in general, carried over multi-hop routes.Each set of flows with the
same destination will be referred to as a singlecommodityin the following. Let{s : s =

1, . . . , S} be the commodities set. The input rate for commoditys at noden is λs
n. Let λ

be the vector of all input rates. Each input rate can assume valuesλs
n ∈ Λs

n.
As a result of the proposed algorithm, each noden will be provided with an input

queueUs
n,in for each commoditys, andC×S output queues,Us

n,c,out one for each channel-
commodity pair. All the incoming traffic for commoditys is loaded on queueU s

n,in. Output
queues for commoditys are loaded using packets stored in queueU s

n,in, according to the
policy described in the next sections. Inside each node, andfor each commodity, a con-
nection is defined between the input queueUs

n,in and each of the output queuesUs
n,c,out on
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different channels, for the same commodity. Such connections will be referred to asvirtual
links in the following. Letγs

n,c be the rate at which data is transferred from the input queue
Us

n,in to the output queueUs
n,c,out, i.e., the rate of the associated virtual link. Letγ denote

the vector for allγs
n,c andΨ its feasible set, which represents the rate region for the virtual

links. The setΨ will be defined in Section 3.6, based on a stability argument and in order
not to modify the capacity region of the actual network.

Let rs
a,b,c be the transmission rate associated with the flow between nodesa andb on

channelc, carrying traffic for commoditys, and letr be the corresponding vector for all
a,b andc. The physical layer capacity for the link between nodesa andb on channelc is
denoted aswa,b,c. Let us denote byw the vector consisting ofwa,b,c for all nodesa, b and
channelc. The feasible rate region, i.e., the set of all feasiblew vectors, is denoted asW,
which depends on the interference model, and, in general, isalso constrained by the limited
number of wireless interfaces at each node.

The utility function for commoditys associated with each source noden is denoted
by Gs

n(λs
n). To allow the use of convex optimization techniques, all theutility functions

are assumed to be strictly concave, and the rate vectorsw will actually be considered as
belonging to the convex hull of the setW, w ∈ Co(W). Similar assumptions have been
made in past work as well [20, 14].

The goal of the proposed algorithm is to jointly define

• congestion control

• routing

• channel loading

• interface binding and scheduling

with provable properties in terms of stability (achieved when the following property is
satisfied:limt→∞ E[

∑

n,c,s(U
s
n,c,out + Us

n,in)] < +∞) and network utility maximization.
The use of multiple queues, similarly to [28], has been chosen in order to exploit mul-

tichannel weighted matching algorithms in the scheduling operation. The algorithm pre-
sented in [1], which is based on non-weighted matchings, canalso be adapted to fit in our
framework. As will be clear in the following, in caseC = I (e.g., OFDMA systems) the
scheduling problem turns out to be decoupled along channels. Suboptimal heuristics could
also take advantage of individual channel queue length information.

In the following, a general formulation is presented in terms of an optimization problem
on a network flow. A Lagrangian relaxation allows to define a distributed utility maximiza-
tion, channel loading and scheduling based on the concept of“backpressure” [14]. Our
approach makes use of “virtual links” for loading the queueson each channel. A stability
issue in the definition of virtual link rates is discussed below, and a Lyapunov argument is
used to justify the solution. A heuristic way to solve the scheduling optimization is also
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discussed for the case of a simplified transmission and interference model. A lower bound
for the performance of the joint algorithm is also identifiedlater in the paper.

3.3 Related work

The concept of “layering as optimization decomposition” has been investigated in the last
few years as a powerful way to analytically define cross-layer optimization problems and
at the same time design feasible algorithms for their solution [20]. In particular, joint al-
gorithms for congestion control and transmission scheduling have been proposed [12, 101]
which are able to jointly optimize source rate and link scheduling [14], [13], [15] includ-
ing also the power control operation [16, 17]. The mathematical tools widely used in this
new approach are essentially optimization problem decomposition by Lagrange relaxation,
sub gradient algorithms and Lyapunov stability [18, 19]. The work presented in this paper
is based on the decomposition of an optimization problem defined over the multi-channel
network model.

The solution is related to the general scheduling algorithmpresented in [14, 16]. Given
a set of input rates which lies inside the capacity region of the system, this algorithm is able
to guarantee stability (i.e., bounded queue lengths). The core of the scheduler is based on
the maximization of a metric which depends on the rate allocated to each link, multiplied
by the difference between the queue length at the link receiver side minus the queue length
at the transmitter side (thus the name “backpressure”). In [14], a congestion controller is
added on top of the scheduling algorithm which is proved to converge to a solution close
to the optimum.

The use of an imperfect scheduler in the joint scheduling andcongestion control may
in general lead to poor performance [23]. In case an imperfect scheduler is used, the joint
algorithm presented in [14] is proved to be able to guaranteestability within a capacity
region scaled by a factor which depends on the imperfect scheduler. This opens the way to
the implementation of reduced complexity schedulers. In case a “protocol interference”
model is considered, the scheduling, for a single channel scenario, becomes a weighted
maximum independent set problem. The problem is in general NP-hard [27]. Clearly, a
greedy centralized algorithm which selects at each step thelink with the highest metric
and discards all the interfering links can achieve a capacity region reduced by a factor of
1/K whereK is the interference degree [23]. In [29], it is pointed out that such a greedy
approach is optimal in graphs with particular structure.

Algorithms based on a maximal independent set scheduler (non weighted) are known
for single hop networks and are presented in [33, 34], but this approach can not be extended
to the multihop case. In this case a different scheduler has to be used, which exploits
additional information on the traffic intensity or number ofhops [35].

A novel approach for the scheduling problem is also proposedin [1], where a random-
ized algorithm is used. The problem of maximizing the backpressure function is converted
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to the problem of comparing the backpressure value obtainedin subsequent random sched-
ules. At each time slot, the backpressure achieved by a new random maximal matching is
compared with the one achieved by the previous schedule. Thebest schedule is applied. A
distributed algorithm is also presented.

The closest work for multi-channel multi-radio wireless networks is the one in [28].
The authors propose a channel loading mechanism which, combined with a multi-channel
maximal scheduler, is able to keep the network stable insidea subset of the capacity re-
gion. The network model is such that each node is provided with an input queue for each
commodity and an output queue for each commodity-channel pair. A known traffic rate is
applied at each input queue for each node and, based on a metric accounting for the queue
lengths of all interfering nodes, a channel loading policy is defined. A multi-channel max-
imal scheduler is then applied to schedule the backlogged links. This approach is extended
to the multihop case only for the case where information on the source rate is available and
a congestion control is not considered.

An optimization approach is also used in [2], where an LP network flow problem is
defined to model routing and channel loading. The solution isused to obtain an upper
bound for the performance. A greedy scheduler based on the outcome of the previous LP
solution is then applied for solving the actual resource allocation. A similar analysis is also
found in [52].

In this paper, a network structure similar to the one in [28] is assumed, and the opti-
mization approach is based on the decomposition presented in [20] and the argumentation
in [14]. We propose an algorithm that works in a multihop scenario, and whose simple
channel loading mechanism is based only on local information. The complexity is moved
to the scheduling operation, which in general can be very complex. The proposed algorithm
makes use of one input queue at each node for each commodity and one output queue for
each channel–commodity pair at each node. The queue lengthsare used, at each time
step, to make dynamic decisions about congestion control, channel loading and transmis-
sion scheduling. In particular, “virtual links” are introduced in order to model the channel
loading operation. The algorithm is analytically formulated and then tested by simulation
in a simplified communication and interference scenario. The impact of the number of
channels, interfaces and commodities on the network performance is investigated.

50



3.4. Formulation as an optimization problem

3.4 Formulation as an optimization problem

The goal of the proposed algorithm is to solve the following optimization problem (see
Table 3.1 for a summary of the symbol definitions):

max
λ,r,w,γ

∑

n,s

Gs
n(λs

n) (3.1)

s.t.:
∑

i,c

rs
i,n,c + λs

n ≤
∑

c

γs
n,c ∀n, s (3.2)

γs
n,c ≤

∑

j

rs
n,j,c ∀n, c, s (3.3)

∑

s

rs
i,n,c ≤ wi,n,c ∀i, n, c (3.4)

γ ∈ Co(Ψ) (3.5)

w ∈ Co(W) (3.6)

λs
n ∈ Λs

n ∀n, s (3.7)

In the previous model:

• (3.1) is the objective function

• (3.2) is the flow conservation constraint at the input of eachnode

• (3.3) is the flow conservation constraint at the output of each node

• (3.4) is the constraint that the aggregate flow on a link must not exceed the physical
rate

• (3.5) is the constraint on the flow in the virtual links for thechannel loading: this will
be specified to model different requirements. Note the convex hull operator.

• (3.6) is the feasible rate region for the actual links.

• (3.7) is the feasible set for the input rates.

Based on the assumption on the utility functions and on the convexity of the domain,
(3.1)-(3.7) is a convex optimization problem.

3.5 Network flow optimization

The solution of the optimization problem is obtained via itsdual problem, relaxing all the
constraints (3.2) and (3.3). The procedure is based on priorwork in [19] and [14].
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Symbols:

Gs
n(λs

n) Utility function
λ = [λs

n] Injected input rate
r = [rs

a,b,c] Flows associated to channel-link-commodity connections
γ = [γs

n,c] Flows that load output channel-commodity queues
w = [wa,b,c] Physical rates associated to physical channel-link
Ψ Feasible “virtual rate region” for channel loading
W Feasible rate region for actual physical links
Λs

n Feasible input rates

Table 3.1: Symbols

Let Uin = [Us
n,in] andUout = [Us

n,c,out] be the vectors for all the Lagrange multipliers
associated to constraints (3.2) and (3.3) respectively. Let U = [Uin,Uout] be the vector
for all the Lagrange multipliers.

Relaxing the constraints (3.2) and (3.3), the Lagrange dualfunction for the problem is:

L(U) = max
λ,r,w,γ

{

∑

n,s

Gs
n(λs

n)+

+
∑

n,s

Us
n,in

(

−
∑

j,c

rs
j,n,c − λs

n +
∑

c

γs
n,c

)

+

+
∑

s,c,n

Us
n,c,out

(

−γs
n,c +

∑

j

rs
n,j,c

)}

,

where the optimization variablesλ, r, w, γ are still subject to constraints (3.4)-(3.7) (here,
and in the following, constraints are omitted to simplify notation).

The previous expression can be rewritten as:

L(U) = max
λ

{

∑

n,s

Gs
n(λs

n)− λs
nUs

n,in

}

+ (3.8)

+ max
r,w

{

∑

i,j,s,c

(

Us
i,c,out − Us

j,in

)

rs
i,j,c

}

+ (3.9)

+ max
γ

{

∑

s,n,c

(

Us
n,in − Us

n,c,out

)

γs
n,c

}

. (3.10)

Note how each maximization represents a different “layer” in the optimization task:

• (3.8) congestion control;

52



3.5. Network flow optimization

• (3.9) flow allocation, routing and physical rate allocation;

• (3.10) channel management (stability, channel loading, ... )

Let λ̃(U), r̃(U), w̃(U), γ̃(U) be the vectors of optimum values for a given set of
Lagrange multipliers, that clearly depend onU. The optimizations in (3.8) and (3.10)
can be carried out based only on local information, and are thus suitable for a distributed
implementation. The optimization of̃r andw̃ in (3.9) instead requires the knowledge of the
feasible rate regionW and could in general be solved by using a centralized algorithm, even
though distributed solutions can be developed under particular interference assumptions,
such as for example in [1]. In particular, in order to optimize (3.9), for each link between
nodesi andj on channelc defines∗ = arg maxs

{(

Us
j,c,out − Us

i,in

)}

. The flow allocation
is given by settingrs∗

i,j,c = wi,j,c andrs
i,j,c = 0 for s 6= s∗. Once the flow to be potentially

loaded on a physical link has been chosen, the following maximization has to be performed:

w̃ = arg maxw

{

∑

i,j,c

[

Us∗

i,c,out − Us∗

j,in

]+
wi,j,c

}

. This is the backpressure algorithm [14].
In Section 3.7, an assumption about a specific feasible rate region will be discussed,

and the design of a greedy algorithm to computew̃ will be presented, together with a lower
bound performance index.

Suppose for the moment that the only constraint imposed to the virtual link rates is:
∑

c

γs
nc < Γs

n

were eachΓs
n is a constant, which is set according to the stability and capacity preservation

criterion discussed in Section 3.6.
Under this assumption, the maximization in (3.10) requiresthat for each noden and

commoditys, c∗ = arg maxc

{(

Us
n,in − Us

n,c,out

)}

is chosen. If
(

Us
n,in − Us

n,c∗,out

)

> 0

then setγs
n,c∗ = Γs

n and allγs
n,c = 0 for c 6= c∗, else set allγs

n,c = 0 ∀c (so that the summa-
tion is 0; otherwise the summation would be negative). This is essentially the backpressure
based algorithm for the virtual linksγ.

The Lagrange function is convex, thus the multipliers can becomputed using a sub gra-
dient algorithm. It is known that a sub gradient for a given vector of Lagrange multipliers
is the vector consisting of all multiplicative terms in the Lagrange function. Note that such
multiplicative terms are the results of maximizations (3.8)–(3.10). With this choice, the
Lagrange multipliers are computed using a sequential algorithm which, at each step, up-
dates them based on the value of the local sub gradient. Lett be the iteration index, which
can be associated with a time-slot in the system evolution. Thus the updating rules for each
multiplier at timet + 1 are:

Us
n,in(t + 1) =

[

Us
n,in(t) + α1(λ̃

s
n(U(t))+

+
∑

j,c

r̃s
j,n,c(U(t))−

∑

c

γ̃s
n,c(U(t)))

]+

(3.11)
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Us
n,c,out(t + 1) =

[

Us
n,c,out(t) + α2(γ̃

s
n,c(U(t))+

−
∑

j

r̃s
n,j,c(U(t)))

]+

. (3.12)

In order to get a solution which converges to a stable value,α1 andα2 should be set to
be small constants, whereas in the caseα1 = α2 = 1 the solution will exhibit an oscillatory
behavior around the convergence point.

However if α1 = α2 = 1 the Lagrange multipliers obey the same dynamic equation
as the queue lengths. This makes this case most interesting from a practical perspective,
since the optimization can be performed by just measuring the queue lengths and using
these values directly in the algorithm. For this reason, we will focus on this case in the
following.

Note that at each timet a new sub gradient has to be computed, thus the optimizations
(3.8)–(3.10) has to be repeated at each time slot. Letλ̃(t), r̃(t), w̃(t), γ̃(t) denote the
vectors solutions of the optimization variables where the time index has been explicitly
shown, whereasU is neglected to simplify notation.

Based on the previous argumentation, the proposed algorithm for joint congestion con-
trol, channel allocation and scheduling is presented in Algorithm 1.

3.6 Channel Loading: Stability by Lyapunov drift

In the previous section the feasible rate set for the virtuallinks used for the channel loading
has not been specified. Here it is proved that a sufficient condition for stability requires the
aggregated rate of the virtual links, used for the channel loading, to be bounded.

The stability of the system is derived using a Lyapunov argumentation. Consider the
input rate for all commodities as fixed (no congestion control) and assume it falls within
the capacity region of the network.

The considered Lyapunov function isL =
∑

n,s(U
s
n,in)2 +

∑

n,s,c(U
s
n,c,out)

2 and the
proof is derived from the one in [14] Sec. 4.2.

Consider the queue updating rules (3.11), (3.12) withα1 = α2 = 1. The drift associated
to the Lyapunov functionL is denoted with∆(U(t)) = E [L(U(t + 1))− L(U(t))|U(t)]
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Algorithm 1 Joint optimization
At each time stept, perform the following operations.

1. Congestion control. For each commoditys and noden:

λ̃s
n(t) = sup{λs

n∈Λs
n}

{

Gs
n(λs

n)− λs
nU s

n,in(t)
}

2. Channel allocation. For each commoditys and noden:

c∗ = arg maxc

{(

U s
n,in(t)− U s

n,c,out(t)
)}

,

if
(

U s
n,in(t)− U s

n,c∗,out(t)
)

> 0 then

setγ̃s
n,c∗(t) = Γs

n and allγ̃s
n,c(t) = 0 for c 6= c∗

else
set allγ̃s

n,c(t) = 0 ∀c.
end if

3. Scheduling and routing. For each link between nodesi andj on channelc:

s∗ = arg maxs

{(

U s
i,c,out(t)− U s

j,in(t)
)}

.

w̃ = arg maxw

{

∑

i,j,c

[

U s∗

i,c,out(t)− U s∗

j,in(t)
]+

wi,j,c

}

if
(

U s∗

i,c,out(t)− U s∗

j,in(t)
)

> 0 then

setr̃s∗

i,j,c(t) = w̃i,j,c(t) and allr̃s
i,j,c(t) = 0 for s 6= s∗

else
set allr̃s

i,j,c(t) = 0 ∀s
end if

4. Queues update:

the queues are automatically updated according to the rulesin (3.11) and (3.12) withα1 =

α2 = 1.

and can be easily bounded as

∆(U(t)) ≤ B + 2
∑

ns

Us
n,in(t)E [λs

n(t)] + (3.13)

−2E

[

∑

i,j,c,s

rs
i,j,c[U

s
i,c,out(t)− Us

j,in(t)] | U(t)

]

+ (3.14)

−2E

[

∑

c,n,s

γs
n,c[U

s
n,in(t)− Us

n,c,out(t)] | U(t)

]

+ (3.15)

+
∑

n,s

(

∑

c

γs
n,c

)2

+
∑

n,c,s

(γs
n,c)

2 , (3.16)

whereB is a constant term depending on ther terms.
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According to Corollary 3.9 in [14], if the input rateλs
n (which is loaded only on the

input queue) is such thatλs
n + ǫ ∀n, s (for a smallǫ) lies inside the capacity region, then

there exists a randomized schedulingr̂, ŵ andγ̂, such that

E

[

∑

c

γ̂s
n,c −

∑

i,c

r̂s
i,n,c

]

= ǫ + λs
n ∀n, s, c

E

[

∑

j

r̂s
n,j,c − γ̂s

n,c

]

= 0 ∀n, s

and thus choosing a scheduler̃, w̃, γ̃ according to the maximization in (3.9) and (3.10),
then (3.14) and (3.15) can be bounded leading to

∆(U(t)) ≤ B′ − 2ǫ
∑

n,s

Us
n,in +

+
∑

n,s

(

∑

c

γs
n,c

)2

+
∑

n,c,s

(γs
n,c)

2. (3.17)

Note that if
∑

n,s(
∑

c γs
n,c)

2 +
∑

n,c,s(γ
s
n,c)

2 is bounded, the drift becomes negative as
the queue lengths increase above a given threshold. Thus forinstance we can define the
feasible rate for the virtual link asΨ = {γs

n,c :
∑

c γs
n,c < Γs

n ∀s, n}, with Γs
n suitable

positive constants. The proposed network model artificially adds the virtual links to the
original network structure, thus we have to make sure the resulting network is able to
provide the same capacity region as the original one. To guarantee such a property, a value
for eachΓs

n can be chosen as the smallest value greater than the maximum possible output
rate for a node (which is bounded).

3.7 Scheduling

The scheduler defined in general terms in the previous section requires a centralized opti-
mization.

Here a specific communication and interference model is considered; each node can
communicate with any other node within a distanceRc; for a correct reception no concur-
rent transmissions are allowed within a distanceRi from the receiver and the transmitter. In
this case, the problem of scheduling non interfering links while maximizing (3.8) is equiv-
alent to finding the maximum weighted independent set in a weighted graph. Additional
constraints imposed by the reduced number of interfaces have to be considered. Note that
the maximum weighted independent set problem (defined for the single channel case) is
known to be NP-Hard [27].

It is known [28, 23] that a greedy sequential and centralizedalgorithm that at each step
selects the link with the highest metric and drops all the interfering links can reach at least
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a fractionβ = 1/K of the maximum value in (3.9), whereK is the maximum number of
links that cannot be scheduled because a given link has already been scheduled. In fact, at
each step at mostK additional links with a weight equal to or smaller than the selected one
could have been scheduled. Note that the constraint on the number of interfaces can cause
a link activation to prevent the use of other links in different channels. ThusK depends on
the topology and on the number of channels and interfaces. This greedy scheduler allows
for the solution of the whole optimization problem to converge to the optimum referred to
a capacity region scaled by a factorβ [14].

The previous lower bound is very conservative and the actualperformance of the greedy
procedure is expected to be much better than stated above. Some reasons are listed below:
i) the number of contending nodes is actually only the numberof backlogged nodes with
positive backpressure, thus, as long as the network is not heavily loaded, this number is
much smaller thanK; ii) the loss in optimalityβ is itself a lower bound, as it assumes that
each time a link is scheduled, all the dropped links have a weight which is close to the one
of the scheduled link; iii) the maximal scheduling is close to the maximum scheduling in
most practical topologies [29].

In the following, the proposed cross-layer algorithm has been tested using such a greedy
centralized scheduler for a given topology.

3.8 Simulation results

In this section the whole algorithm is tested using the greedy centralized scheduler previ-
ously described. The presented framework allows for an extensive evaluation of the per-
formance of a multi-channel multi-radio network as a function of several parameters, i.e.,
number of channelsC, number of interfaces per nodeI, and number of commoditiesS.
In particular, the number of interfaces is the most interesting parameter, since it represents
the peculiar feature of this kind of networks, and has been the focus of previous theoretical
results. In all the scenarios, the capacity of each interference free scheduled link is fixed to
1/C for a fair comparison among scenarios with different numbers of channels. The utility
function is the same for all the nodes and is defined asGs

n(x) = log(x), which implements
a fairness based congestion control. Simulations have beenperformed by using Matlab.

3.8.1 Comparison with optimum solution and algorithm from [1]

As previously stated, to find the optimum solution of the scheduling problem is a very
complex task. In this section, the heuristic proposed in Section 3.7 is compared with the
optimum solution and with the schedule provided by an adaptation to the current framework
of the randomized algorithm proposed in [1].

The optimum solution is achieved by an exhaustive search on the solution tree realized
through a depth-first search algorithm.
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Figure 3.2: Comparison between solutions with optimum and heuristic scheduler. Dashed:
optimum; dot/dashed: heuristic from Section 3.7; solid: randomized algorithm from [1].
The three sets of curves are referred toC = 1, 2, 3.

Most of the complexity is due to the need for searching the optimum weighed maxi-
mum matching at each time slot. Recently, in [1] a new approach to solve the scheduling
problem has been proposed. At each time slot, the algorithm computes i) the backpres-
sure achieved by using the link allocation of previous time slot and ii) the backpressure
achieved by using a new tentative random allocation. The tentative allocation is a random
choice of feasible communication links, which is only required to satisfy the interference
and number of channel constraints. The two backpressure values are compared. If the one
associated with the new tentative allocation is greater than or equal to the one achieved
by the old allocation, then the tentative allocation is applied and used for the current time
slot. Otherwise, the old allocation is used in the current time slot. This algorithm allows
to use a maximal matching as the scheduling algorithm, instead of the maximum weighted
matching required by the formulation related to the classicbackpressure maximization.
The algorithm requires a comparison among two values of backpressure, which have to be
obtained by gathering information among nodes through message exchange; a distributed
mechanism can be designed for performing this operation. Ithas been proved that this
mechanism allows the cross-layer algorithm to reach a solution arbitrarily close to the opti-
mum one. The logarithmic utility function has been considered in this case. The parameter
determining the solution optimality is theM in (3.17). The greaterM the better the solu-
tion, at the cost of an increased convergence time.

The first considered scenario is a regular linear deploymentof 6 nodes, where each node
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communicates and interferes with the nearest neighbors. Two commodities are considered
(node 1 sends traffic to node 6 and node 2 sends traffic to node 5,with IDs following the
topological order). Even in this simple scenario only a verysmall number of channels
could be tested by using the optimum algorithm.

In Figure 3.2 the aggregated received throughput is shown for each of the algorithms.
In this simple scenario, the heuristic solution presented in Section 3.7 is able to reach
the optimum one. The randomized algorithm and the heuristicone have been run with
M = 10; for this value ofM the heuristic solution is slightly closer to the optimum.
Clearly, increasingM the randomized algorithm is proved to reach the optimum solution.

In the second scenario, a random deployment of nodes is considered, such that each
node has 3 neighbors (interferers) on the average. The casesS ∈ {1, 4}, C ∈ {1, 2, 4, 6}
have been considered and results are averaged over 10 topologies. In this case the optimum
solution is not achievable in reasonable time.
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Figure 3.3: Comparison between solutions in Section 3.7 andthe randomized algorithm
derived from [1] .M = 10. Dotted: Section 3.7 ; dashed: [1].

As can be seen in Figure 3.3, the solution obtained by using the heuristic in Section 3.7
is better than the one obtained by using the algorithm in [1].It has been verified, confirming
the theory, that increasing the parameterM the utility achieved by using the algorithm in
[1] increases its value for high numbers of interfaces, approaching the heuristic one, at the
cost of a slower convergence.

Since the algorithm in [1] is proved to converge to the optimum solution by increasing
M , this confirms that the chosen heuristic is a good approximation of the optimum solu-
tion and has better convergence properties in the considered scenario. Therefore, all other
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results will be provided only for the heuristic solution.

3.8.2 Grid topology

The algorithm has been simulated in a single network snapshot composed byN = 16

nodes, placed in a regular mesh with a distance of 0.2 units between adjacent nodes.
In this scenarioRi = Rc = 0.3. The system has been tested withC ∈ {1, 2, 4, 8},

I ∈ {1, ..., C}, S ∈ {1, 2, 4}.
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Figure 3.4: Total utility for different numbers of channels, interfaces and commodities.

As can be seen from Figure 3.4, in all cases the aggregated utility increases as the
number of interfaces increases. Anyway, the additional utility gained adding a new card
decreases as the number of cards increases. For instance, incase ofC = 8, only4 interfaces
are enough for achieving the maximum utility. This is in accordance with the asymptotic
analysis presented in [36]. The utility is negative becausea logarithmic function is used
and, in the simulated scenario, a normalized bandwidth value has been considered. More-
over the utility decreases as the number of concurrent flows increases. This is due to the
specific scenario where the rate experienced by a single flow decreases as the number of
flows increases due to the sharing of the medium.

Even though throughput maximization is not the main goal of the simulated algorithm,
in Figure 3.5 the aggregated transmission rate of all commodities is shown. Similarly to
the utility behavior, the aggregated rate increases as the number of interfaces increases and
the maximum value is reached using a number of interfaces smaller than the number of
channels. As the number of commodities increases, the aggregated rate increases, showing
that the spatial reuse of the medium is exploited.
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Figure 3.5: Aggregated transmission rate for different numbers of channels, interfaces and
commodities.
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In Figure 3.6 the average queue length in the stationary regime is shown as a function
of the number of interfaces and channels. As the number of interfaces increases the average
length decreases. This has an impact on the end-to-end delay, which becomes smaller if
a higher number of interfaces is used. The queue length decreases also as the number of
channels increases. Note in particular that in all casesI = 4, C ∈ {4, 8} the maximum
throughput is reached (see Figure 3.5). On the other hand a higher number of channels
allows for a reduced queue length and thus a reduced delay.
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Figure 3.7: System time evolution. The curves shown are averaged over a moving window
of 100 samples.C = 8, S = 4, I = 4.

The proposed algorithm has been proved to asymptotically converge to the solution
of the joint resource allocation problem, but the proposed analysis gives no insight on
the time required for the algorithm to converge. Figure 3.7 shows a typical trend for the
time evolution of aggregated queue lengths, aggregated transmitted rate by the sources and
aggregated received rate at the sinks. As can be seen, the convergence is reached after a
relatively high number of iterations.

A more exhaustive investigation of the convergence time is presented in Figure 3.8
where the time needed to reach a stationary condition is plotted for different number of
interfaces, channels, and commodities. As can be seen, the convergence time decreases as
the number of interfaces increases, and increases as the number of channels or commodities
increases.

Our interpretation for this behavior is that, as the number of queues in the system
increases, more time is required for all the queues to be served and thus reach a stable
configuration. This transient phase could be interpreted asa route discovery mechanism.
Increasing the number of interfaces leads to a higher numberof concurrent transmissions,
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Figure 3.8: Number of slots required for convergence, measured as the number of iterations
needed to reach an aggregated queue length within 10% of its steady-state value. Dashed:
S = 2; Dash-dotted:S = 4.

which speeds up the convergence process.
In some cases the time required for convergence is very long.This can limit the practi-

cal implementation of such an algorithm in an actual network. A reason for the slow con-
vergence is related to the routing mechanism, which imposesno constraints on the feasible
paths for the traffic. The traffic thus can travel in all directions until a stable configuration is
reached. It would be interesting to define a policy for setting a reduced number of feasible
paths for each commodity. Convergence delay also depends onthe particular congestion
controller. A detailed investigation is out of the scope of this paper and represents an open
research issue as pointed out in [20].

3.8.3 Random topology

The algorithm has also been tested using random topologies where nodes are uniformly
placed in a unit square area. The presented results are averaged over 10 random topologies.
Only connected topologies are considered. As in the previous case, each node can poten-
tially communicate with all neighbors within a distance of 0.3 and, when transmitting, it
causes interference to neighbors within a distance of 0.3. The average number of nodes
within the communication range is defined asD.

As we are interested in the system behavior as a function of the number of interfaces,
rather than in its absolute value, Figure 3.9 (Figure 3.10) shows the ratio between the expe-
rienced utility (rate) for a given set of parameters and the maximum utility (rate) achieved
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with the highest number of interfaces. Results are averagedover S ∈ {1, 2, 4} and 10
random topologies for each value ofS. Two different node densities are considered, i.e.,
D = 3 andD = 7.

The behavior is similar to the one already described for the grid topology. It can be
noted that a higher node density allows for a reduced number of interfaces needed to reach
the same utility and rate values. Once again this is in accordance with the analysis in [36].
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Figure 3.11: Aggregated rate, normalized with respect to the single channel case, as a
function of the ratio between the number of channels and the number of interfaces. Results
are referred toC = 6, I ∈ {1, 2, 3, 4, 5, 6} and averaged overS ∈ {1, 2, 4} and 10 random
topologies.

In Figure 3.11 the aggregated rate, normalized with respectto the single channel case,
is plotted as a function of the ratio between the number of channels and the number of
interfaces. The behavior is similar to the one described in [36].

3.8.4 Comparison with the results in [2]

The scenario considered in [2] has been reproduced and a comparison between the perfor-
mance of our algorithm and the one presented in [2] has been made. The algorithm in [2]
formulates the resource allocation as a network flow problemand solves a linear program
in order to define an upper bound on the achievable performance. Then a greedy algorithm
is applied for the scheduling operations. All the sources have the same traffic requirements
(no congestion control) and the objective is to find the maximum input rate for which a
solution exists. Note that our algorithm aims at the utilitymaximization rather than at the
maximization of the input rate. Nonetheless, assuming a logarithmic utility, fairness among
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different flows is enforced, thus pushing our input rate scenario toward the one defined in
[2].

Note that the optimization in [2] uses a centralized LP solution, while our algorithm
can be run in a fully distributed way, as long as a distributedscheduling mechanism is
available.

A grid 5 × 6 topology is considered; each node has at most 4 neighbors. Four sinks
for the traffic are considered (S = 4) and results are averaged using{5, 10, 15, 20, 25}
traffic sources. Each sink is placed on a different quadrant,and sources are connected to
the closest sink. Results are shown in terms of the aggregaterate, normalized with respect
to the single channel case. In this formulation each channelhas a fixed capacity, so that the
total bandwidth is increasing with the number of channels.

As [8] does not provide all the details of the considered scenario, in trying to reproduce
it in our framework we had to make some assumptions on the positions of the source and
sink nodes. Although this makes a detailed quantitative comparison difficult, it still allows
to verify that the two approaches exhibit consistent behaviors. Figure 13 shows the rate
gain in the two cases as a function of the number of channels and interfaces. It is clear
from these results that the two approaches, though based on different techniques, have a
qualitatively similar behavior. On the other hand, while the scheme in [8] is completely
centralized and is more useful as a benchmark than as a practical solution, the features of
our scheme can give some insight for practical implementation.
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Line: copied from Figures 7 and 8 in [2]

66



3.9. Conclusions

3.9 Conclusions

A joint congestion control, channel allocation and scheduling algorithm for multi-channel
multi-interface multi-hop wireless networks has been presented. The problem of maximiz-
ing a utility function of the source rate has been defined as anoptimization problem and
then solved by a dynamic algorithm.

The algorithm decomposes the whole optimization in different functional sub-optimiza-
tions and uses the queues length as a way to allow a joint solution of different optimization
tasks.

A queue at the input of each node for each commodity and a queueat the output of each
node for each channel-commodity pair have been used; a mechanism for loading the output
queues on different channels has been defined introducing the notion of virtual links.

The algorithm has been presented for a general communication and interference sce-
nario. In order to test the behavior of the full algorithm, aninstance of the problem, based
on a simplified communication and interference model, has been simulated using a greedy
centralized scheduler.

The network performance has been evaluated as a function of the number of channels,
interfaces and traffic flows. Three different schedulers have been considered. The results
are consistent with previous theoretical findings, and confirm the goodness of the approach.
On the other hand, the specific features of our algorithm could give some insight on prac-
tical implementations in a distributed setting.
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Chapter 4

Optimization in IEEE 802.11 WLAN

This chapter addresses the problem of optimizing the performance of an IEEE 802.11 Wire-
less LAN. The IEEE Standard specifies the PHY, MAC and LL mechanisms, but some op-
timization aspects are left open for the developers which are challenged to find optimized
solutions according to their needs.

The setting of LL, MAC and PHY parameters, such as physical transmission rate, max-
imum retransmission number of MAC frames, frame lengths, etc. has a dramatic impact on
the performance of wireless links. We are interested in adapting such parameters by means
of practical algorithms based on solid analytical modelingof the standard MAC and PHY
behavior.

Based on the current network status, and using mathematicalmodels for the MAC,
PHY and LL mechanism we are able to predict the link performance in terms of packet
loss, throughput, delay under different settings. In particular, the estimation of the current
network status turns out to be a fundamental task in this operation. By linking this model
with different optimization objectives we are able to defineseveral optimization algorithms
spanning different functional layers.

In particular, rate adaptation algorithms which are adaptive to the propagation and in-
terference conditions are designed.

Moreover, by suitably merging the model for the link performance with a model for
the quality of voice connections, we also optimized the performance of VoIP over WLAN
communications.

4.1 Introduction

In wireless systems, such as WLANs, the propagation environment and the interference
scenario change over time and space due to factors such as mobility, propagation dynamics
and traffic variations.

To cope with this challenging environment, many wireless interfaces offer the possibil-
ity of dynamically tuning some system parameters in order toadapt to the environmental
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variations. The IEEE 802.11 specifications, in particular,define a plurality of PHY modes
which can be used for the transmission of data frames. Each PHY mode uses a particu-
lar modulation and channel coding scheme and, consequently, offers different performance
in terms of transmission duration, overhead, and robustness against reception noise and
interference. Moreover some other parameters are tunable,such as the maximum num-
ber of retransmission at the MAC layer and the frame size. Many other parameters which
are defined as non tunable in former standard versions have been recognized as of basic
importance for determining the network performance and thus introduced as tunable pa-
rameters in the 802.11e version. MAC specifications for thisrecent standard allow to tune
the backoff window length and the interframe timing, by alsointroducing different quality
of service classes.

Thus, some degrees of freedom are available to the designerswhich can tune the net-
work setting in order to achieve a broad range of optimization goals. By linking these
parameters settings to the corresponding network performance and defining suitable op-
timization objectives, the design of cross layer optimization problems is made possible.
Then, optimization algorithms have to be designed in order to actually achieve the solution
with reasonable complexity.

In particular we are interested in algorithms which act on the settings of a single IEEE
802.11 link to adapt its behavior to the current interference and propagation conditions.
Two entities are thus defined in our formalization, i.e. the wireless link to be optimized and
the status of the network. We define an analytical model for the link performance based on
a mathematical model for the LL, MAC and PHY mechanism which accounts for the status
of the working environment.

Based on the analytical modeling, the triplet〈SNR, Pcoll, ξ〉 is identified as a sufficient
description for the working environment. This triplet willbe referred to as Medium Status
in the following. In this triplet SNR is the experienced Signal to Noise Ratio,Pcoll is the
collision probability andξ is the average tick period, defined as the time between two suc-
cessive decrements of the backoff counter. Please note how the Medium Status accounts
for propagation characteristics of the link, through SNR, interference coming from concur-
rent transmitters, throughPcoll, and medium congestion, throughξ, which turns out to be
proportional to the duration of channel occupancy from concurrent nodes.

Thus, the proposed Medium Status definition allows, for instance, for the explicit dis-
tinction between packet losses due to channel impairments and those due to medium con-
gestion and interference. This fundamental distinction will be accounted in the analytical
model for the link performance and allows for the definition of optimization algorithms
which are able to effectively adapt to complex working environments where channel con-
dition and medium congestion are jointly addressed.

Approximations for practical implementation will be discussed later on in this chapter.
In order to make it possible to implement our scheme on real devices, we provide a

method for estimating the Medium Status based on information which is commonly avail-
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able on commercial devices in the form of 802.11 Management Information Base (MIB)
counters,1 with the exception of an event counter which we propose to addand which
could be easily implemented by device manufacturers. The correctness of the estimation in
a broad range of operating condition is verified through detailed simulations.

Based on the knowledge of the Medium Status, the analytical model is able to predict
all the major statistics needed to characterize the performance of a link, such as packet
dropping probability, delay, throughput etc..

This framework is used to define multiple optimization problems with different ob-
jectives. The first application presented in this chapter refers to a Rate Adaptation (RA)
algorithm.

In recent years, there has been a significant amount of research on this topic. In partic-
ular, the case of a single sender/receiver pair has been deeply investigated; for this type of
scenario, in which packet losses are due to channel impairment only, an optimal RA strat-
egy has been proposed [62], as well as several practical RA algorithms [64, 63, 65, 66, 67].

However, in typical 802.11 scenarios, multiple users are contending for the medium.
Therefore, in addition to channel-related packet losses, also MAC collisions and variable
medium access time have a significant impact on performance,and in practice make the
above mentioned schemes sub-optimal and, in some cases, very inefficient. Some recently
proposed practical RA schemes [69, 68] address the problem of collision-related packet
losses; however, to the best of our knowledge, no previous work formulated an optimal RA
policy for multi-user 802.11 scenarios.

Thanks to the previously described optimization framework, we try to fill this gap by
proposing a novel RA algorithm, named Goodput Optimal Rate Adaptation (GORA) which
uses Medium Status estimation together with an analytical model of the goodput perfor-
mance for 802.11. GORA selects the PHY mode that, according to the outcome of the
analytical model, yields the best throughput for the given estimated Medium Status.

We tested GORA by using both ideal perfect Medium Status knowledge and the actual
outcome of the proposed Medium Status Estimator.

Simulations results by using ideal Medium Status estimation show that GORA mech-
anism always outperforms other RA algorithms (also provided with perfect information),
thus showing how it can be used as a new benchmark for practical rate adaptation schemes,
especially in scenarios with interfering transmissions.

Furthermore, the practical version of GORA, which uses the actual outcome of the
proposed Medium Status estimator, achieves performance that is close to that with ideal
Medium Status estimation, thus confirming that the RA framework here proposed is very
effective in a number of different scenarios.

In the second application, the outcome of the link performance model is used to com-
pute the expected quality of a voice connection by means of a mathematical model which
empirically maps transmission performance to perceptual voice quality.

1The formal specification of the 802.11 MIB is Annex D of the 802.11 specification.
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The considered utility function is the one proposed in [70] for Voice over IP, which is
inspired by the E-Model defined in ITU-T recommendations G.107 [102] and G.113 [103].
Such a utility function returns a numerical rating of the voice quality that can be mapped
to the Mean–Opinion–Score (MOS), which we consider as the objective function of our
optimization problem. This mathematical model allows to map delay and packet loss ratio
experienced on the link to a 1-to-5 MOS index representing the perceptual quality of the
voice connection.

The resulting optimization framework is used to jointly tune the physical transmission
rate and the maximum number of allowed retransmissions for asingle packet at the MAC
level, in order to maximize the MOS index.

Whether the E-model is an effective way of representing voice quality is not discussed
in this chapter, as we are more interested in showing the potential benefit achievable by the
proposed cross layer optimization framework.

We use an enhanced version of the NS2 simulator to test the performance of the pro-
posed optimization algorithms. The simulator is built by using a recently developed mod-
ular architecture [104] and embeds an enhanced propagationand interference model, to-
gether with the multirate capability of IEEE 802.11b/g networks.

The rest of the chapter is organized as follows. In Section 4.2 we introduce the reference
framework and the basic constituent blocks. In Section 4.3 we define the Medium Status
discussing how it can be estimated on real devices. The modelfor the link performance is
introduced in Section 4.4. In Section 4.5 an instance for theoptimization block is presented,
realizing the GORA rate adapter. Simulation results and comparisons with previous results
are also presented. In Section 4.6 a second instance for the optimization block is presented,
optimizing the quality of a VoIP connection, together with simulations results. Finally, in
section 4.7, the conclusions are drawn.

4.2 Optimization framework

The proposed framework can be described by four blocks:

• MSE: Medium Status Estimation.This block provides an estimation of the medium
status.

• WLM: Wireless Link Model.This block provides an estimation of the end–to–end
performance that is expected, given the estimated medium status and the working
parameter setting.

• QEB: Quality Evaluation Block.This block computes the objective functionQ

• OPT: Optimization.This block determines the optimal setting for the tunable param-
eters in order to optimize the value ofQ.
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Figure 4.1: Optimization Framework

Note that in case an analytical solution for the optimization problem were available,
the proposed framework could be simplified by appropriatelydesigning a single functional
block, whose inputs are the network status and the corresponding output is the optimal
parameter settings for a given utility.

Unfortunately, the complexity of the MAC mechanisms do not allow for such a com-
plete analytical description and thus the proposed architecture has been designed in order
to allow the description of an exhaustive search for the optimal solution.

Moreover the proposed architecture is designed to be modular enough to host different
utility functions, medium estimators and optimization mechanisms, which can be indepen-
dently interchanged. In this sense the proposed architecture represents a new architecture
for a functional layering.

Thus, according to the proposed framework, the optimization process consists in iter-
ating the computation of the wireless link performance and the related utility for different
choices of the tunable parameters, until the optimal setting is found. In case some analyti-
cal properties relating the medium status with the optimal setting are known (monotonicity,
physical constraint) the search process can be improved fora better efficiency.

A basic assumption used throughout this chapter is that the network status does not de-
pend on the specific setting of the link being optimized. Thisclearly represents a simplified
assumption.

4.3 Medium Status estimation

This block provides a sufficient description of the current network status which allows the
WLM block to correctly predict the link performance over a broad range of values for the
tunable parameters.

Based on the analytical model for the link performance, we identified some key metrics
which represent a sufficient medium status description for our purposes. The Medium
Status is thus defined as the triplet〈SNR, Pcoll, ξ〉 , where SNR is the Signal to Noise Ratio
at the receiver,Pcoll is the Collision Probability experienced by the mobile station (STA)
andξ is the averagetick period, defined as the time between two successive decrements of
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the backoff counter.2 This Medium Status definition allows to take into account allPHY
and MAC layer aspects in a 802.11 STA.

The SNR accounts for propagation characteristics of the link as it only depends on the
transmitted power (which we consider to be fixed), the channel gain and the thermal noise
at the receiver. Note that, once the relation betweenSNR and packet loss is available, we
can also define the quantityPerr as the packet loss depending on the experiencedSNR.

Pcoll accounts for the fraction of transmitted packets which havebeen erroneously re-
ceived because of interference. Clearly this quantity is not well defined as the packet loss
in general depends on the SNIR (Signal to Noise and Interference Ratio) which jointly
accounts for interference, channel propagation and thermal noise. We conclude that the
two events are not mutually exclusive, and that both contribute to the packet loss event, as
represented in Figure 4.2.

Thus we resort to a simplifying definition which is suitable only for particular, but
nonetheless frequent scenarios. In particular we assume that interfering nodes are close
enough to the receiver so as to corrupt any concurrent transmission. This collision model
allows us to connect part of our investigation to the interference model used in the well
known performance study in [105].

We definePloss as the total fraction of lost packets. SincePloss accounts for the contri-
bution of bothPcoll andPerr we also have

Ploss = Pcoll + Perr− PcollPerr. (4.1)

Based on the MAC mechanism, which requires the backoff counter to freeze whenever
a transmission is sensed on the medium, theξ measure turns out to be proportional to the
time the medium is occupied by an interfering transmission.Thus, this quantity represents
the congestion on the medium.

Such a model for the medium status allows for a differentiation between packet losses
due to interference (by means ofPcoll) and packet losses due to channel impairments (by
means ofPerr). This distinction is fundamental in order to allow for a correct adaptation of
the network setting, discerning bad medium status due to propagation conditions from that
due to a high number of concurrent transmission. Clearly, different settings are optimal in
the two cases.

As we are interested in algorithms which are close to practical implementation, a key
point in our proposal is the possibility of achieving a good estimation of the aforemen-
tioned status variables by using information available in actual devices with a reasonable
complexity.

With this respect we propose a Medium Status Estimation method which is based on
the use of some measurements available at the MAC layer. These measurements, and the

2In [105] this is calledslot period. We prefer not to use the termslot in order to avoid possible confusion
with the 802.11 PHY slot time – the difference is that the tickperiod can be much longer than the slot time
due to the backoff freeze procedure.
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Figure 4.2: Packet loss model

notation which will be used for them throughout this paper, are:

• ts: the number of successfully transmitted unicast MSDUs, i.e., the number of trans-
mitted data frames for which an ACK was received;

• tf : the number of transmitted data frames for which an ACK was not received;

• rs: the number of successfully received data frames;

• rf : the number of received frames for which the checksum failed;

• si: the number of idle time slots, except the ones preceded by a transmission.

All these measurements can be obtained directly or indirectly by some of the counters
available within the 802.11 Management Information Block (MIB).3 The only exception
is the idle time slots countersi, which is not listed among the counters in the MIB; we
note, however, that its implementation would be rather straightforward, and therefore our
proposal still maintains a high degree of implementabilityin real devices.

We suppose all above mentioned counters to refer to the events occurred in a time
window of given durationD.

For convenience we define the following variables:

• ta = ts + tf the total number of frame transmission attempts performed;

• sb = rf + rs the number of busy time slots, which corresponds to the number of
transmission attempts made by other transmitter while the link under consideration
is not transmitting;

• tc number of times a transmission attempt by the link under consideration fails due
to collision;

• tn the number of transmission attempts which are not affected by collision (though
they might be affected by channel errors);

3We refer to thedot11Counters described in the the IEEE 802.11 standard, Annex D [106]. We note
that, in order to derive the measurements we need from the MIBcounters, some processing is required, since
some counters also include control and management frames, while the measurements we use are supposed to
count only for data frames.
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In the following we will describe how Medium Status Estimation is performed.
Following the same approach proposed in [105], we assume that both the transmission

and the collision probability are stationary, i.e., independent of the particular slot consid-
ered. With this assumption, the collision probability for atransmission by the link under
consideration equals the probability that a randomly selected time slot is occupied by a
transmission from another node. Please note that, due to theMAC mechanism, which re-
quires the backoff counter to freeze while the medium is sensed busy, we are not interested
in the time slots elapsed during the freezing period. We are only interested on the time slots
where a transmission start is possible. In this sense, the transmission or the reception of a
packet is only counted as a single time slot, since a collision could happen only on the first
slot.

We now compute the needed events based on the available counters measurements.
The numbertf of failed transmission attempts can be expressed as thePloss fraction of

all attempts
tf = taPloss (4.2)

and thus, using (4.1) we also get

tf = taPcoll + ta(1− Pcoll)Perr (4.3)

The numbertc of collided transmission attempts can be expressed as thePcoll fraction
of all attempts

tc = taPcoll (4.4)

The number of non collided transmissions can be expressed as

sn = ta − tc (4.5)

Based on the previous definitions,Pcoll can be evaluated with the following formula:

Pcoll =
sb + tc

sb + si + tc + snc

(4.6)

where, according to its definition

sb = rf + rs (4.7)

The numerator of (4.6) represents the number of busy slots, and the denominator rep-
resents the total number of slots.

Substituting (4.5), (4.7) and (4.4) into (4.6) we get

Pcoll =
rf + rs + taPcoll

rf + rs + si + ta
(4.8)

which leads to the following estimator for the collision probability:

76



4.3. Medium Status estimation

Pcoll =
rf + rs

rf + rs + si

. (4.9)

Please note that the resultingPcoll does not depend on the counters related to the trans-
missions of the STA under consideration, but only on the events caused by all the other
STAs. This is the main difference with the estimator presented in [107], which allows our
estimator to be effective also in the presence of packet losses due to channel impairment.

SincePloss can be obtained as the ratio between the erroneous packets and the total
transmitted packets:

Ploss =
tf

tf + ts
.

With minor algebraical manipulation the packet loss ratio due to channel impairment
Perr can be derived as

Perr =
tf − (tf + ts)Pcoll

(tf + ts)(1− Pcoll)
. (4.10)

We suppose thatPerr is univocally determined by a known function of the PHY mode
being used, the packet size and theSNR (without considering the interference effect) seen
by the receiver. The considered function is represented in Figure 4.3. We supposeSNR is
constant for the whole packet transmission duration. Then we determine SNR by inverting
the SNR versusPerr relation for the rate being used. Clearly this practice requires that the
same PHY mode was used for the whole observation periodD.

In order to simplify the analytical study, we assume that ACKs are always correctly
received, which is a reasonable assumption in a scenario where all nodes are in the same
collision domain and the channel is symmetric.

The average tick periodξ can be estimated by dividing the total time the channel was
sensed busy by the considered station over the total number of backoff tick periods in the
observation window:

ξ =
D − tfTf − tsTs − taσ

si + rs + rf

, (4.11)

whereσ is the PHY slot time, andTf andTs are the duration for respectively a failed and
successful frame transmission by the STA being considered.The complete derivation is not
reported for conciseness. We note thatTs is determined only by the payload size and the
PHY mode being used, whereasTf is a random variable which depends also, in the case
of a collision, on the duration of the transmissions performed by other users. In detail, we
have

Tf =
Pcoll

Ploss
Tc +

1− Pcoll

Ploss
Te, (4.12)
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whereTc is the duration of a collided transmission andTe is the duration of a frame loss
due to channel errors. These values can be approximated as

Tc = max(TB, Ts) (4.13)

Te = Ts − (TACK + DIFS + SIFS) + EIFS (4.14)

with TB the duration of the colliding packet.
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Figure 4.3: Packet loss ratio versus SNR for a IEEE 802.11g connection.

4.3.1 Estimations validation

In this section, the proposed estimation technique forPcoll andPerr is validated.
In Figure 4.4Pcoll is compared with the analytical value derived in [105]. In this sce-

nario no errors due to channel impairment are present so thatPcoll = Ploss. Results shows
that our estimation is very close to the analytical model in [105] when in the same condi-
tions.

In Figure 4.5 we report the results for a scenario where the test node is placed at an
increasing distance from the AP, and a fixed number of interfering nodes are placed close
to the AP. In this case errors due to channel impairment are present, thus the model in
[105] can not be directly applied.Pcoll andPerr, estimates according to formulae (4.9) and
(4.10), are compared with the actual values measured from the trace files. As can be seen,
estimated values closely match the actual ones.

In Figure 4.6Perr andPcoll are shown as a function of the number of interfering nodes.
As can be seen, as the number of interfering nodes increasesPcoll increases.Perr is almost
constant as it should be, representing the packet loss related to the SNR value, which is
constant in this scenario.
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Figure 4.4: Accuracy of thePcoll estimator in an error-free scenario
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node and the AP, in the case of 6 concurrent transmissions
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Figure 4.6: Actual and estimatedPcoll andPerr as a function of the number of interfering
nodes forSNR = 20dB.

We obtained similar accuracy in a wide range of values for theSNR and the number of
interfering nodes, and we can therefore conclude that the proposed estimator is able to pro-
vide an accurate and distinct information on the propagation environment and congestion
level.

4.4 Link performance model

In this section the performance of the link transmission is derived. We focus on a Constant
Bit Rate traffic source and assume a saturation condition, i.e. the queue at the source is
never empty. Under these assumptions we derive the statistical description of the packet
dropping and delay experienced by packets, which will be used by the optimization algo-
rithms presented in the next sections.

A packet is dropped when it is embedded in a MAC Packet data Unit (MPDU) that is
not successfully delivered afterrmax transmission attempts, wherermax is the max retry
limit parameter. Denoting byPloss the packet failure rate at the MAC layer, we have

Pdrop = Ploss
rmax.

For deriving the delay statistics, as a first step we need to introduce the following nota-
tions.

• ξj: duration of thej–th tick period4 seen by the tagged mobile station during backoff.

4A tick period is defined as the time period between two consecutive decrements of the backoff counters
of backlogged stations (see [108]).
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• W0: minimum contention window size.

• Wh: backoff window size at theh-th transmission attempt:Wh = 2min(h,m)W0 ,
wherem is the maximum number of backoff stages defined by the standard.

• y: MAC layer service time, i.e., time taken by the MAC entitiesto get rid of the
head of the queue MPDU, either successfully delivering the packet to the destination
or dropping it afterrmax failed transmission attempts.y′ denote the service time for
successfully delivered packets only.

• w: queuing time, i.e., time spent by a packet in the MAC sender queue.

• s: system time, i.e., time elapsed from the packet generationto its delivery. It ac-
counts for both successfully delivered packets and those dropped afterrmax failed
transmission attempts.s′ accounts only for successfully delivered packets.

• mx, Mx,Mx: first, second and third order moment of the (generic) randomvari-
ablex, given by the expectation ofx, x2 andx3, respectively. Also,σ2

x denotes the
variance of the r.v.x.

To analyze the delay statistics of the delivery of packets over the wireless link, we model
the 802.11 MAC layer as a queue–server system, with infinite queue space, customer arrival
rateλ and stochastic service timey. According to this model, each customer corresponds
to a MPDU, while the service timey corresponds to the time taken by the MAC entity to
process a MPDU, that is the time elapsed since the MPDU is fetched from the head of the
MAC queue until either the relative ACK frame is correctly received or the frame itself is
discarded due to exceeded retransmission limitrmax. Therefore, the service time, which is
the overall time spent by the packet in the MAC layer, is givenby the sum of the queuing
delayw and the service delayy:

s = w + y .

The queuing delayw, in turn, depends on the service timey and the arrival rateλ.
The derivation of the statistics ofy is long and cumbersome. Here the problem is

formulated and only the first order statistic is derived. Details on the complete derivation
are reported in [109].

During the service of a MPDU, the MAC entities alternate between two different phases,
namely backoff and transmission. The backoff procedure, ingeneral, is performed before
any transmission attempt. The stage of the backoff procedure is set to zero any time a
MPDU is served (either successfully delivered or dropped) and, then, incremented by one
at each retransmission attempt. At each backoff stage, the MAC entity picks a random
integer value in the set within the backoff window associated to that stage, and countdowns
by one every tick period. Therefore, denoting byB(h) the time spent in theh–th backoff
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stage, we have

B(h) =

Wh−1
∑

r=0

χb(r)

r
∑

j=1

ξj ; (4.15)

whereχb(r) equals1 or0 depending on whether or not the backoff value picked when theh-
th backoff stage was entered is equal tor, given that the backoff window was{0, 1, . . . , Wh−
1}. As discussed in Section 4.3 we assume to have an estimation for themξ value.

By taking the expectation of (4.15) we get

mB(h) =

Wh−1
∑

r=0

r
mξ

Wh

=
Wh − 1

2
mξ ; (4.16)

where we have replacedE[χb(r)] with 1/Wh, given that the backoff value is uniformly
chosen in a window ofWh integer values.

We can now express the service timey as function of the time spent in transmission and
backoff. Letχs(i) be equal1 or 0 whether or not the packet is successfully delivered afteri

consecutive failures. Similarly, letχd be1 if the transmission has failed forrmax successive
attempts (so that the packet is dropped for reached max retrylimit) and0 otherwise. Then,
we have

y =

rmax−1
∑

i=0

ys(i)χs(i) + ydχd ; (4.17)

where

ys(i) =
i
∑

h=0

B(h) + iTF + Ts ; yd =
rmax−1
∑

h=0

B(h) + rmaxTF .

Keeping into consideration that the expectation of the indicator functionsχs(i) andχd is
given by

E [χs(i)] = P i
loss(1− Ploss) ; E [χd] = P rmax

loss ;

then, the average service time can be expressed as

my =
rmax−1
∑

i=0

P i
loss(1− Ploss)

(

i
∑

h=0

E[B(h)] + iTF + Ts

)

+

+P rmax
loss

(

rmax−1
∑

h=0

E[B(h)] + rmaxTF

)

=
rmax−1
∑

i=0

P i
loss(1− Ploss)

(

i
∑

h=0

Wh − 1

2
mξ + iTF + Ts

)

+

+P rmax
loss

(

rmax−1
∑

h=0

Wh − 1

2
mξ + rmaxTF

)

. (4.18)
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Notice thatmy also includes the service time of dropped packets. The average service
time for successfully delivered MPDU is, instead, given by

my′ =

rmax−1
∑

i=0

P i
loss(1− Ploss)

1− P rmax
loss

(

i
∑

h=0

Wh − 1

2
mξ + iTF + Ts

)

. (4.19)

This results will be used in Section 4.5.
For the optimization objective presented in Section 4.6 we need further statistical mea-

sures. In particular we will need the first and second order moments of the system delay.
The derivation of this quantity is long and cumbersome and requires the computation of ad-
ditional moment ofy as well. Here its derivation is sketched and the final result is reported.
The complete derivation can be found in [109].

By modeling the arrival and departure process by means of a statistical multiplexer
we can derive the following approximations for the first and second order moments of the
system times.

ms = my +
λσ2

y

2(1− ρ)
. (4.20)

Ms =My(1− ρ) +
λMy

3
+ mx(σ

2
y + My) + Mxm

2
y . (4.21)

We have thus derived all the necessary statistics that will be used by the proposed opti-
mization algorithms presented in the next sections. Based on the detailed model presented
in [109], further statistical performance can be computed,but they are not reported in this
thesis.

4.5 Optimization block: Rate adaptation

4.5.1 Algorithm description

The proposed rate adaptation algorithm uses the outcome of Medium Status estimation
〈SNR, Pcoll, ξ〉 to compute the expected goodput for all the possible PHY modes. The
average goodputG of the system can be expressed as

G =
L

my

(1− (Ploss)
rmax) . (4.22)

where L is the payload length. The goodput is computed for different transmission rates and
PHY modes; the one which achieves the highest goodput is selected and used to transmit
the data frame.

Note that changing the PHY modes impacts the goodput in two ways. The transmission
time increases as the rate decreases and the loss probability decreases as the rate decreases.
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Depending on thePerr andPcoll values, the two effect have a different impact on the good-
put. Thus, given a fixedPloss different rates turns out to be optimal depending on thePerr

andPcoll values.
The optimization is performed periodically everyTopt seconds. As the Medium Status

is estimated at run time by collecting MAC counters statistics, the duration ofTopt is related
to D. We note that both values should be chosen taking into account the desired tradeoff
between an accurate estimation and a fast PHY mode adaptation.

4.5.2 Performance simulation

In this section we report the performance evaluation of the proposed rate adaptation mech-
anism.

Simulations have been performed by using an enhanced version of the NS2 simulator
[104]. All the specific parameters for the network setting are compliant with the IEEE
802.11g standard. In particular a maximum retry limit of 7 has been used. The propagation
and interference model used in the simulations is based on a Gaussian approximation for
the interference as widely assumed in literature. The channel model is simply determined
by the two ray ground model accounting only for the path loss component. Fast channel
gain fluctuation are not considered.

The model for the PHY layer transmission performance is described in terms of the
packet loss probability as a function of the PHY mode, SNIR, and packet length. This char-
acterization has been computed offline using a dedicated PHYlayer simulator accounting
for the standard specification of the OFDM modulation and coding implementation.

The considered scenario refers to an infrastructured network where a test STA is con-
nected to the access point (AP) and is provided with the parameter estimation and rate
adaptation algorithms. Other STAs are connected to the sameaccess point in order to sim-
ulate an interfered scenario. Such interfering STAs are notprovided with the rate adaptation
algorithms.

Only uplink connections are simulated. All the traffic sources are CBR over UDP, with
a packet length of 1500 bytes, and a generation rate such thatall the connections are in a
saturated conditions.

We test the proposed GORA algorithm both in the case an exact SNR value is used and
in the case the SNR value is provided by the proposed estimator.

The algorithms are compared with ARF, MBLAS (which assumes to have perfect SNR
knowledge) and a modified version of MBLAS which uses the RTS-CTS mechanism to
receive information on the SNR at the receiver.

In Figure 4.7 we report the results for a scenario with no interferers. In this case,
MBLAS has been shown to achieve optimum performance. The proposed GORA algo-
rithm, both with exact and estimated SNR achieves the same optimum throughput. These
algorithms outperform ARF and the MBLAS version which suffers from the RTS-CTS
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Figure 4.7: Throughput of rate adaptation algorithms, as a function of the distance between
the test node and the access point, in case of no interference

In Figure 4.8 results for a scenario with 9 interferers is presented. In this case, MBLAS
turns out to be suboptimal. This is due to the fact that MBLAS does not account for the
variations in the medium access time and thus neglects the increased transmission delay
in case of congested medium. Instead, the proposed GORA mechanism is able to adapt
the PHY mode selection to the medium status and in the case an exact SNR knowledge
is considered, it always achieves the highest throughput. When using the estimatedSNR

value, GORA still shows good performance. In particular we stress that GORA is a stan-
dard compliant mechanism and can be implemented in actual network cards. In this regard
we are interested in the comparison with ARF, which is highlydeployed in practice, and
with MBLAS with RTS-CTS, which is close to practical (even ifnot standard compliant)
implementation. Both algorithms are outperformed by the proposed mechanism in a wide
range of working conditions.

In Figure 4.9 results for a scenario with a fixed SNR and a variable number of interferers
is presented. In this particular setting, GORA both with exact and with estimated SNR
outperforms the other rate adaptation algorithms.
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Figure 4.8: Throughput of rate adaptation algorithms, as a function of the distance between
the test node and the access point, in case of 9 interfering nodes
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Figure 4.9: Throughput of rate adaptation algorithms, as a function of the number of inter-
fering nodes, with a fixed distance of36.91m between the test node and the access point
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4.6 Optimization block: Voice quality enhancement

Following the footprint of [70] and using the quality evaluation function defined in 2.4.1,
in this section it is defined an optimization block that can fitin the previously defined
framework and can be used to improve the quality of VoIP communications.

In this section, for illustrative purposes, we assume a simple, but rather common, play-
out buffer model. More specifically, we assume that the first packet of each talk spurt is
held in the playout buffer for a fixed amount of time,δbuff , before being released to the
decoder. After this initial delay, voice packets are regularly fetched from the playout and
passed to the coder. We assume that the buffer size is large enough to avoid overrunning.
Then, packet loss can occur in case of underruns only.

Now, let us consider a talkspurt ofM voice packets, whereM is large. Furthermore, let
si be the system delay of thei–th packet, i.e., the time elapsed from the epoch the packet
was generated till it was received by to the playout buffer. Assuming that the wired part
of the connection does not introduce significant delay then,the loss due to playout buffer
underrun can be generally expressed by using a conservativeChebyshev bound:

δ2
buffPbuff ≤ 2σ2

s .

Therefore,Pbuff can be approximated by

Pbuff = min

(

2σ2
s

δ2
buff

, 1

)

. (4.23)

This is a quite rough approximation due to the complex model.Please notice that the jitter
in the packet arrival is translated to an increased packet loss an in creased delay, due to the
presence of the playout buffer.

4.6.1 Optimization algorithm

The MOS metric described in Section2.4.1, defined by Equation (2.11) and the related
Equation (2.12), is used as the optimization objective to improve the quality of the voice
connection. As already discussed, such metric is a functionof the codec type, the packet
delivery ratio, and the mouth-to-ear delay. Thus eventually the MOS can be expressed
as a function of the packet loss ratioPloss, the packet dropping ratio at the bufferPbuff

(which depends on the jitter, measured byσ) and the delays. Thus, by exploiting the
relation between the MOS and the link performance metrics, and by using the mathematical
model which relates the link performance metrics to the MAC tunable parameters setting,
an optimization problem can be defined which acts on such MAC parameters in order to
optimize the MOS.

In this thesis we are not interested in evaluating the effectiveness of the MOS metric
in describing the quality of a voice connection. We can generally assume the actual voice

87



Chapter 4. Optimization in IEEE 802.11 WLAN

quality to be a monotonic increasing function of the MOS so that we can use the MOS as a
metric to compare different solution in a relative way.

In particular, in order to prove the importance of a cross layer optimization in this
context, two optimization algorithms are tested. The fist one only performs rate adaptation,
thus finding the most suitable rate for maximizing the MOS. The second one instead jointly
maximizes the transmission rate and the maximum retry limitrmax, by pursuing the same
optimization objective.

Since the parameters take value on finite and rather small discrete sets, the easiest way
to find the optimal setting is to perform an exhaustive searchover the value space of the tun-
able parameters. Stability constraints as well as monotonic dependencies of voice quality
to some parameters could be exploited to reduce the search space and, hence, the compu-
tational load. Notice that the optimization process carried out by the optimization block
can be performed off–line over a given subset of the admissible space values for the state
variables returned by NSE block, namelyPcoll andSNR. Then, the corresponding optimal
parameter setting can be stored in a memory, in order to avoidthe need of implementing
the optimization framework on the terminal. However, more advanced and sophisticated
strategies might be envisioned, also depending on the objective function considered.

4.6.2 Optimization validation

The proposed optimization was tested by using an enhanced version of NS2. The simula-
tion scenario is the same described in Section 4.5.2. In particular a G.711 voice codec is
considered.

In order to test different propagation conditions the VoIP link has been tested by placing
the mobile station at an increasing distance from the AP. In order to test different congestion
conditions, the test has been repeated with an increasing number of interfering nodes.

In Figure 4.10 results for the algorithm performing only rate adaptation are reported.
In this case the maximum retry limit is set tormax = 7. As can be seen the MOS index
reaches satisfactory values only for the scenarios where 1 or 3 interfering nodes are present.
On the contrary, in Figure 4.11 results for the algorithm performing both rate adaptation
and maximum retry limit adaptation are reported. The MOS in this case is significantly
higher than in the previous results set. We thus conclude that the rmax parameter plays
a fundamental role in the optimization of voice connections. The retry limit acts as an
important parameter in determining both the reliability and the latency of the connection. In
particular, packet retransmissions in heavily congested scenarios experience high channel
access delay which in turn causes high jitter and high packetdropping rate at the playout
buffer, since the delay of a given packet affects also the transmission of the successive
ones. In this scenario, an early discard of delayed packets experiencing retransmissions,
by imposing a smaller retransmission limit, can be beneficial for the delay of successive
packets, while causing a smaller increase in the packet lossratio.
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Figure 4.10: Only rate adaptation is performed in this case.An ideal estimation of the
medium status is assumed. The maximum retry limit is set tormax = 7 as suggested by the
standard. The achieved MOS is shown as a function of the SNR, with N interfering nodes.
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Figure 4.11: Both rate adaptation and maximum retry limit setting are performed in this
case. An ideal estimation of the medium status is assumed. The maximum retry limit is
automatically set by the algorithm which can choose a value1 ≤ rmax ≤ 10. The achieved
MOS is shown as a function of the SNR, withN interfering nodes.
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Figure 4.12 shows the same scenario where both rate adaptation and retry limit adapta-
tion is performed, but in this case the medium status is estimated by using the MIB counters
and following the procedure described in Section 4.3.
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Figure 4.12: Both rate adaptation and maximum retry limit setting are performed in this
case. The medium status estimation is performed based on theinformation provided by the
MIB counters. The maximum retry limit is automatically set by the algorithm which can
choose a value1 ≤ rmax ≤ 10. The achieved MOS is shown as a function of the SNR,
with N interfering nodes.

The optimization still reaches a significant improvement over the simple rate adapta-
tion. Some bad performance in the case of a single interferercan be explained by recalling
that the status estimation and the successive parameter optimization assumes that the be-
havior of the mobile station which is performing the optimization do not impact the medium
status and thus the behavior of the other stations. This is clearly not true in the case where
a single interferer is present, and the proposed mechanism turns out to be sensible to this
approximation in some scenarios. The solution of this problem is open for further research.

The algorithm has not been compared with preexisting schemes, since to the best of our
knowledge no similar algorithms with the same objective exists and thus a fair comparison
is not possible.

4.7 Conclusions

In this chapter a cross layer framework for optimizing the performance of an IEEE 802.11
WLAN connection has been presented. A Medium Status Estimation has been designed
which allows to estimate propagation and interference conditions where the link under
optimization is going to operate. Such quantities are estimated by using locally available
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information explicitly described in the standard specifications. A mathematical model for
the link performance is then presented which allows to compute delay and packet loss
probability as a function of the medium status and parameters setting. This model is used
to define two optimization problems.

A Goodput Optimal Rate Adaptation algorithm, GORA, is designed which is able to
adapt the transmission rate to the channel conditions and tothe congestion caused by in-
terfering nodes. In particular the ability of adapting the rate to the congestion conditions
of the network, determined by the collision probability, isone of the key points in the pro-
posed algorithm, which can be used as a reference benchmark in a wide range of operating
conditions.

The framework is also used, by means of defining a different objective function, to opti-
mize the network settings in order to maximize the quality ofa VoIP connection. The Mean
Option Score is chosen as the performance metric and has beenmathematically related to
some MAC parameters in order to define an optimization problem. In particular both the
case of rate adaptation and the case of joint rate adaptationand retry limit adaptation are
tested. Results shows how adapting the retry limitrmax is of fundamental importance for
improving the performance of a VoIP connection.
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Chapter 5

Resource management in FDMA
cellular networks

Cellular networks based on OFDMA access appear as very promising systems to provide
end-users with broadband wireless access. However, they also pose interesting challenges
in terms of radio resource management. For this reason, we focus on scheduling at the LL
Layer and resource allocation at MAC-PHY layers, and we investigate how they could be
operated in a cross-layer fashion. A mechanism for a simple interaction between the layers
is proposed in order to address both QoS requirements at the LL layer and efficiency at
the PHY layer. The tunable mechanism, which is tested accounting for the interference
in a multicellular scenario, allows to show the trade off between fairness requirements at
the LL later and efficiency at the PHY layer. Due to the similarity of our system with the
one described by the IEEE 802.16 standard, the results here depicted are also useful in the
context of the standard system.

The work here presented has been developed within the FIRB/PRIMO project.

5.1 Introduction

In this chapter we discuss the challenge represented by packet scheduling and resource
management through the realization of a joint scheduler/resource allocator. The reference
scenario is represented by a multicellular system based on FDMA-TDD. In particular the
downlink phase is considered and thus the described mechanisms will be applied at the base
station side. We do not investigate the optimization issue,focusing instead on the possible
choices for effective and simple implementation. The first contribution is the outline of
a modular scheme where a credit-based scheduler is integrated with an efficient resource
allocator based on a low-complexity power-efficient and capacity-driven heuristic criterion.
Although these algorithm components are not themselves new, the original contribution is
their integration in a modular framework, which representsone of the outcomes of the
research project PRIMO [110]. As will be shown in the following, the proposed scheme
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Figure 5.1: System scenario

is also able to provide tunability for what concerns the trade-off between overall power
expenditure and time to achieve fairness among the users. This is possible by regulating
the degree of freedom in the allocation, which is managed through a proper information
exchange between the two modules of scheduling and resourceallocation.

Another contribution of this research is the analysis of interference issues arising in
such a scenario. In fact, even though there are studies proposing similar approaches, where
packet scheduling and resource management are jointly addressed to have efficient solu-
tions, for most of them the analysis and the performance evaluation are conducted in a
simplified single-cell scenario. In these studies, the impact of other interfering cells is ne-
glected, whereas in the system under examination full frequency reuse is envisioned and
therefore the allocation of packets may be greatly affectedby the interference conditions
in the assigned resource. In this context, the outcome of simulations obtained with realistic
models for the details of OFDM and the physical propagation scenario are presented and
discussed, explicitly considering multi-cell interference.

For ease of presentation, in the following we first describe the considered system, fo-
cusing on the functional blocks and neglecting the implementation details, which will be
provided in the simulation results section.

Then, the framework considered for the algorithm development is introduced together
with the proposed scheduler, the resource allocator and themechanism for the interaction
among them. Finally, the simulation environment is described with the system implemen-
tation details and numerical results are shown, supportingour general conclusions on the
relevance of channel state and interference awareness.
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5.2 System model

5.2.1 MAC layer

The resource access in each cell is organized as a hybrid OFDMA-TDMA, using TDD
duplex.

Figure 5.2: MAC structure

OFDM symbols are grouped in frames of durationTf . Within each frame, symbols
are devoted to control signaling, downlink or uplink transmissions. Figure 5.2 depicts the
MAC frame structure that will be used in the system model.

Depending on the system configuration, the switching point between downlink and
uplink transmissions within the MAC frame may dynamically change from frame to frame,
according to different downlink/uplink traffic needs. We donot address this issue, assuming
all the useful carriers are used for downlink transmissions.

Bandwidth is divided intoNs subcarriers and a frame containsNt subsequent useful
OFDM symbols. In order to reduce the resource addressing space, channel coherence
in frequency and time is exploited by grouping adjacent〈subcarrier, time–slot〉 pairs to
form a logical subchannel, which is the minimum allocable unit of resource, denoted as
Basic Transport Unit (BTU) in the following. The addressingspace is thus reduced toMs

subchannels in frequency andMt slots in time. Details on the MAC and OFDM parameters
will be provided in Section 5.4.1.

Each BTU can be assigned to a different user and can be independently bit and power
loaded. A fixed and discrete set of allowed bitloadB ∈ {Bmin, . . . , Bmax} is defined for
loading each BTU. In order to make use of this flexibility in the resource management,
channel and interference measurements need to be exploitedby scheduling and allocation
algorithms.

We assume that in each frame the BS has perfect knowledge of the channel status and
interference value for each subchannel of each user, as measured in the previous frame.
This can be obtained, e.g., by piggybacking such information in each uplink packet. Due
to the dynamics of the propagation environment and of the interference scenario, such
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information represents only an estimate of the channel status in the upcoming frame. Thus,
the proposed framework is suitable for slowly varying channels.

5.2.2 LL Layer

Traffic produced by users is queued at the LL layer. Each user holds a separate queue which
is loaded by a CBR traffic source. We assume the users’ packetsare further fragmented so
as to produce smaller Data Chunks (DC) that can be entirely fitted in a single BTU. Thus
we define the DC as a data packet of the same size of the minimum (non empty) bit load
allocable on a BTU. Based on this definition, and according tothe available set of bit loads,
a single BTU can carry multiple DC. This assumption will leadto an easier formulation of
the scheduling and resource allocation algorithms.

At the beginning of each frame, the scheduling mechanism, selects the candidates DCs
for the transmission, according to the scheduling policy which will be described later on.
The selected DCs are candidate for the allocation on physical resources and thus the trans-
mission to the corresponding mobile station. DCs allocatedand sent to the destination are
deleted from the LL queues, whereas DCs neglected from the allocator are kept in the LL
queues and reconsidered for future scheduling.

5.2.3 Relations with real systems

Among the emerging technologies to provide broadband wireless access (BWA), IEEE
802.16 represents one of the most promising and attractive systems. Expected areas of
application of the IEEE 802.16 technology include high-speed Internet access, public ser-
vices, private networks and broadband backbone for regionswhere wireless coverage is
limited and deployment of cables would be too expensive or impractical.

However, it is often believed that a very important scenario, and probably the first
to appear exploiting IEEE 802.16, will be the provision of BWA for moderate mobility
scenarios such as residential Internet connections or offices. This will mean to realize, by
means of IEEE 802.16, a multi-cellular setting, where fixed access points play the role
of Base Stations (BS). The IEEE 802.16 air interface standard [111] describes in detail
the physical (PHY) layer, based on Orthogonal Frequency Division Modulation (OFDM).
In particular, the OFDMA with Adaptive Modulation and Coding (AMC) mode of IEEE
802.16 which appears to be very close to the model used in thischapter.

This method uses adjacent subcarriers to realize subchannels, resulting in a hybrid
FDMA/TDMA medium access scheme. When used with fast feedback channels it can as-
sign a modulation and coding combination per subchannel, enabling “water-pouring” types
of algorithms, and it can also be used effectively with an Adaptive Antenna System (AAS).
Several issues about scheduling and resource allocation algorithms are intentionally left
open to developers, which stimulates researchers to seek strategies capable of providing
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good performance in this sense. The work presented in this chapter can thus be considered
suitable for being extended to actual IEEE 802.16 networks.

5.3 Proposed mechanisms
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Figure 5.3: Proposed framework

In a cross-layer perspective, resource management could bepursued by a joint opti-
mization of all the free allocation variables, i.e., which users to schedule, jointly with their
power levels, subcarriers and timeslots, under QoS/fairness constraints for traffic schedul-
ing and SNR/BER/power constraints at the physical layer. However, this would lead to
a complex algorithm design, merging physical layer optimization goals with traffic level
requirements and involving a large number of variables and parameters. This approach
would also lose any flexibility if new traffic requirements ordifferent optimization goals
for the physical layer were to be considered, e.g., as a consequence of the introduction of
new technologies.

Hence, our approach can be regarded to as aloose cross-layerone, trying to strike
a balance between flexibility and modularity, as achieved bystrict hierarchical layered
design, and optimized performance, as could be yielded by cross-layer algorithms.

Radio resource allocation is aware of all physical layer constraints and can be given a
desired physical transmission related optimization target. It aims at carrying a given traffic
backlog of data units. Which DCs are the “hottest” or most valuable to carry and from
which flow queue they should be taken is irrelevant to a radio resource allocator. This is
the point where a traffic scheduler comes in. Our basic idea isto define the overall cross-

97



Chapter 5. Resource management in FDMA cellular networks

layer resource management so that scheduling and allocation algorithms can be changed
without impacting each other, provided that the common datastructures are kept.

The coupling between scheduler and allocator is realized through a list of DCs, cre-
ated according to the scheduling criteria, along with global parameters specifying handling
constraints for those DCs. The list is defined frame by frame,and is processed by the al-
locator to define which input traffic to assign to that frame. After the allocation and the
transmission, it is up to the allocator to update the status of the DCs of the current list as
delivered, transmitted but failed, or not allocated at all.This feedback is used by the sched-
uler to update its own internal state and to provide a new list; the scheduler should also be
given information about the maximum expected achievable capacity for each user, so as
to make sensible scheduling decisions. Other common parameters, as detailed in the next
two sections, make this a cross-layer approach, yet there issufficient decoupling between
DC scheduling and radio resource allocation algorithms so that they can be internally mod-
ified independently of each other. As an example, if the leading criterion for scheduling
is changed from, say, non weighted fairness to delay deadline matching, this will affect
the way the DC list is formed in each frame, but the allocationalgorithm can be kept the
same, as long as its objectives (i.e., minimize transmission power or achieved BER) make
sense for the application scenario. The resource management architecture just described is
schematically represented in Figure 5.3.

The scheduler and the allocator are two separate modules, whose implementation de-
tails are transparent as long as the interface between them remains the same. This differen-
tiates the scheme here presented from other recent proposals, such as [112], where a joint
MAC/PHY optimization is performed.

5.3.1 Scheduling algorithm

The scheduling algorithm itself (Algorithm 2) is a modified version of CBFQ [90]. For
each flow (and thus for each user) we define a fixed weightφi and a credit counterKi that
increases when the flow is backlogged but not scheduled to transmit. At the beginning
of each frame a list of DCs is tentatively scheduled; thus during the scheduling phase we
consider temporary credit valuesK∗

i . The credit valuesKi will only be updated after the
allocator has selected the DCs which are actually going to betransmitted in the frame. The
cycle in lines 5-21 is executed once per frame, and its purpose is to generate a list of at
mostCmax DCs to be sent to the allocator. The scheduler associates a priority value to each
flow, based on its weight and on the credits it has accumulated. The highest priority flow
is selected for scheduling and its temporary credit is decremented while the credit of all
other flows is incremented. After the allocator has selectedfrom the list theCreq DCs to be
transmitted, the scheduler must update the credits by executing, for each chosen DC, lines
8-19 of the Algorithm 2 withK∗

i replaced byKi.
Our goal is to fairly allocate the transmission resources tothe flows according to their
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Algorithm 2 schedule(Cmax)
1: for i = 1 to N do
2: K∗

i ← Ki

3: c(i)← 0

4: end for
5: while

∑N
i=1 c(i) < Cmax do

6: f ← arg mini∈B
1−K∗

i

φi

7: c (f)← c (f) + 1

8: for i = 1 to N do
9: if i ∈ B andi 6= f then

10: K∗
i ← K∗

i + max
(

1−K∗

f

φf
, 0
)

· φi

11: else ifi /∈ B then
12: Ki ← 0

13: end if
14: end for
15: if f ∈ B then
16: K∗

f ← max
(

0,K∗
f − 1

)

17: else
18: K∗

f ← 0

19: end if
20: SchedList.insert(pf )

21: end while
22: return SchedList
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weight. An important property of our scheduling algorithm is that this fairness goal is
attained independently of the algorithm used by the allocator. In the following we state a
fairness bound [113, 114] by making no assumption as to the policy according to which
Creq out of Cmax DCs are selected for transmission. Lett be a frame index so that time is
quantized in frames.

Theorem 1 For two flowsi and j continuously backlogged over an interval[t1, t2) the
following relation holds:

∣

∣

∣

∣

Ri (t1, t2)

φi

− Rj (t1, t2)

φj

∣

∣

∣

∣

≤ Cmax − Creq + 1

t2 − t1

(

1

φi

+
1

φj

)

(5.1)

whereRi (t1, t2) is the mean transmission rate (in packets/s) achieved by flowi over the
time interval(t1, t2). Thus the (weighted) discrepancy between the transmissionrates of
any two flows can be made arbitrarily small by choosing a sufficiently long time interval.

It is then possible to show that Jain’s fairness index [115],computed forN flows continu-
ously backlogged over a time interval ofm frames, is bounded as follows:

F (m) ≥ 1

1 + 2N2

m2

(

Cmax+1
Creq

− 1
)2 , m ≥ 2

(

Cmax + 1

Creq

− 1

)

(5.2)

5.3.2 Allocation algorithm

The allocation process consists in

• selectingCreq DCs out ofCmax

• allocating the DCs on BTUs selecting the bit load and the transmission power

In the proposed framework, each cell performs its own resource allocation without
explicit control information exchange with neighboring cells. The only used information
refers to the channel and interference value measurements provided to the BS by its MTs.

As described in Section 5.3.1, the scheduling algorithm determines the aggregated
throughput to be loaded on the cell and passes to the RRA a tentative list of data requests
to be scheduled. Since the lengthCmax of this list (which determines the total available
requests) can be greater thanCreq (which determines the amount of requests that need to
be allocated), RRA has a degree of freedom in selecting the subset of requests to be trans-
mitted. Clearly, RRA selects such request subset in order toexploit the multiuser diversity.

Here we briefly describe the used allocation heuristic to allocate the NEW flows, with
the aim of giving some insight on the problem and draw some interesting conclusions on
the joint scheduling/allocation algorithms.
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Let ck,s,t denote the Shannon capacity associated to BTU(s, t) when this BTU is used
for a transmission toward thek-th MS with powerpk,s,t, 1 ≤ s ≤ Ms and1 ≤ t ≤ Mt).
The capacityck,s,t is

ck,s,t = HBTU log2

(

1 +
pk,s,tGk,s,t

pn +
∑

i∈I pi,s,t ·Gi,k,s,t

)

(5.3)

whereHBTU is a scalar factor depending on the bandwidth and the time duration of a BTU,
Gk,s,t is the channel gain of MSk on the(s, t) BTU, pn is the noise power andI is the set
containing the BSs interfering over the(s, t) BTU. Let bk,s,t ∈ B be the bitload on the BTU
(s, t) for requestk. Sinceck,s,t is the theoretical limit on the number of information bits
that can be transmitted on the BTU(s, t), it is:

bk,s,t ≤ αck,s,t, (5.4)

whereα < 1 to take implementation limits into account. Letχk,s,t be the indicator function
for the allocation of BTU(s, t) to requestk, i.e.

χk,s,t =

{

1 if the (s, t) PBU is assigned to userk
0 otherwise.

(5.5)

Some constraints to the optimization problem need be added:

rk,min ≤
1

Tf

Ms
∑

s=1

Mt
∑

t=1

bk,s,tχk,s,t ≤ rk,max , (5.6)

i.e., the bit rate allocated to each request has to be within the imposed limits. Moreover,
it is necessary to introduce a global constraint on the sum ofall rates to be delivered, say
rtot. Without it, any allocation algorithm aiming at power minimization will allocate the
minimum number of bits for each user.

1

Tf

K
∑

k=1

Ms
∑

s=1

Mt
∑

t=1

bk,s,tχk,s,t = rtot = CreqBmin. (5.7)

A further constraint on the allocation is that, inside each cell, each BTU can be allocated
to a single user only:

K
∑

k=1

χk,s,t ≤ 1 ∀(s, t) . (5.8)

Thus the allocation problem can be formulated as the problemof jointly finding the optimal
set of values ofχk,s,t (channel allocation),bk,s,t (bit loading) andpk,s,t (power loading) that
enforces the constraints in (5.6)-(5.8) and optimizes a proper objective function (usually
transmitted power). The complexity of this problem is very large and thus we propose a
practical algorithm which solves a reduced and linearized version of it.
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Efficiency maximization

The described problem requires a joint request selection, BTU allocation, bit loading and
power loading [76]. Here a heuristic solution is proposed, which approximates the opti-
mum solution with a reasonable complexity. The problem is solved by means of a greedy
approach where the request selection, power loading, allocation and bit loading are solved
in a disjoint way, by using four different heuristics.

In order to break the non-linear dependency among optimization variables, the request
selection, allocation and bit loading problems have been solved after fixing a fictitious
maximum power levelpk,s,t = p ∀ k, s, t, and thus the Shannon capacityck,s,t, to a fictitious
starting value for each BTU. Under this equal power allocation, the capacityck,s,t is a direct
measurement of the channel quality. Then, a metricη is associated to each user stating its
goodness in terms of available capacity,

ηk =
∑

(s,t)∈F

ck,s,t,

whereF is the set of unallocated BTUs.
At each step of the procedure, the request with highestη is selected for a BTU assign-

ment. In the selection procedure, the requests that have notreached the minimum required
rate are served first. Once the request to be served has been chosen, an efficiency metricǫ
is computed for each BTU as

ǫk,s,t =
ck,s,t

∑

i∈K ci,s,t

,

whereK is the set of all the requests minus the requestk. This index allows us to compare
the advantage of allocating the BTU(s, t) to the requestk, rather than to any other request.
The BTU with the highestǫ is associated to the request selected in the previous step. The
effective bitload associated to the BTU is set to the highestpossible value, less than the
associated capacity. Eventually, the effective power value for each BTU is computed based
on the actual loaded bits. The actual allocated power is increased by a constant factor in
order to help overcome erroneous channel and interference estimation.

The procedure is repeated until all requests are satisfied, the aggregated requested rate is
reached, there are no more free BTUs or the total allocated power has reached the thresh-
old. Due to the per-BTU power limit, the requested aggregated throughput may not be
reached. In this case the procedure is restarted using a higher value ofpi+1 = pi + δp. This
algorithm can be efficiently implemented and shows aO (KMsMt(log(K) + log(MsMt)))

computational complexity.
This simple and low–complexity heuristic acts in a greedy way by decoupling the as-

signment of each allocation variable. Even though this is a suboptimal algorithm, it is
shown to be able to exploit the multiuser and frequency diversity, and thus it is suitable for
our purposes.
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5.4 Simulations results

The simulator has been completely developed in C++, and has been realized by means
of the definition of a set of interfaces and primitives to be used to allow the interaction
between the MAC and PHY layers, coherently with the agreed cross-layer architecture.

5.4.1 Topology and propagation model

We consider the forward link of a multicellular system, where a complete reuse of the
available time-frequency resources among neighboring cells is assumed.

Our simulator creates a cellular network scenario, with 9 BSdistributed over a toroidal
surface (this surface does not have edges, so that border effects are not present). The BSs
are placed in a regular geometry with a minimum distance between two BSs of 1000 meters.
The MSs are uniformly distributed and are associated each with the BS from which the best
channel is sensed at the simulation start.

The assumed propagation model is derived from COST-259 [1].
For all three scenarios the same attenuation law will be applied, given byα(d) = α0d

n,
whereα0is a factor that takes into account the cell type,d is the transmitter-receiver distance
in meters, andn is a parameter that in this study will be fixed equal to 4.0. In order to take
into account the shadowing effects, log-normal shadowing with a standard deviation of 6
dB will be included. Hence, the propagation model used will have a distance-dependent
path loss with a decay factor of 4.0 and log-normally distributed random path loss with
a 6 dB standard deviation. The effect of multipath fading will be modeled by a sum of
weighted delta-functions:

h(t, t′) =

N
∑

i=1

βiδ

(

t− t′ − iT

Q

)

wherei is the path number,δ is the Dirac impulse,β and iT
Q

are the time-variant gain
and delay of the path, respectively. The actual number of paths N varies depending on
the value of the RMS (root mean square) delay spreadσ. βi are zero mean independent
complex Gaussian stationary processes with an exponentialdecaying profile described by
Fe

−iT
Qσ , whereQ is the oversampling factor,T is the sampling period equal to 50 ns (T = 1

B
,

whereB is the system bandwidth)F is a normalizing factor.
The processesβi have classical Jakes spectrum with Doppler frequencyfD that depends

on the speed of the userfD = ν
c
fc, whereν is expressed in km/h and it is assumedfc=5

GHz . The considered value forν is of 1 m/s.
Since robust coding techniques are supposed to be employed at the PHY layer, we

evaluate the probability of packet error according to the measured values of signal and
interference strength on all the BTUs used to carry a packet.
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In particular we compare the number of bits that could have been transmitted according
to the experienced Shannon capacity (which derives from theactual values of SIR) with
the loaded bits. If the capacity turns out to be greater than the loaded bits, the packet is
assumed to be transmitted correctly.

5.4.2 MAC specifications

We set the BTU structure so as to mimic one of the possible settings allowed in the IEEE
802.16 standard.

The frame duration has been fixed to5 ms. According to the 802.16 standard this
is compatible with a frame subchannel structure which consists of16 AMC subchannels
(BTUs in our notation) in the frequency domain and 24 in the time domain. In this case
each subchannel consists of 24 adjacent data subcarriers and two adjacent symbols.

The use of only one AMC format has been considered, corresponding to 144 bits per
BTU.

For simplicity, in order to test the algorithm’s behavior, the BS has been assumed to
possess perfect channel and interference information for its MSs. The information is sent at
the beginning of each frame, and refers to the measurements performed during the previous
frame. To implement this exchange, several solutions are possible. In fact, the IEEE 802.16
standard provides several ways for the MS to send control information to the BS, allowing
many levels of quantization and timing. The optimality of the allocation is a function of
the amount of channel and interference information. Some preliminary evaluations of our
scheme have shown that the overall signaling overhead, including this information as well
as the broadcast of the schedule at the beginning of each frame, is limited to only a few
percent.

5.4.3 Numerical results

A first consideration on the behavior of the joint scheduler/RRA refers to its ability to
exploit the diversity naturally present in the system. In order to test whether the proposed
framework is capable of taking advantage of the system multiuser diversity, in Fig. 5.4
results for a scenario with a variable number of users are reported. A constant global
amount of traffic requests, independent of the number of users, has been passed to the
allocator. The behavior has been tested under two differentvalues of the parameterCmax.

Fig. 5.4 shows that the average transmission power decreases as the number of users
increases. The proposed algorithm selects the flows to be scheduled by taking into account
their channel state, thus exploiting multi-user diversity. As a consequence, the greater
the number of users, the greater the chance of being able to schedule a subset of users
who are all experiencing good channel conditions, which results in lower transmission
power requirements. If we only pursued efficiency, with no regard for fairness, the power
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Figure 5.4: Average cell power consumption vs number of users, for two values ofCmax

reduction with a large number of users would be even more significant: only the best
users would be allowed to transmit, while the others would bepermanently blocked. This
behavior is confirmed by the fact that the power consumption with Cmax = 1 is higher than
in the case whenCmax = 4. It is remarkable that our algorithm manages to achieve fairness
among flows after a moderate number of frames, while succeeding in exploiting diversity
with an intelligent time scheduling policy.

In the next set of results, we compare the power consumption and the fairness properties
in order to point out that a trade off exists and that the behavior of the proposed algorithm
can be tuned by acting on the parameterCmax.

We quantify the achieved throughput fairness among traffic flows in terms of Jain’s fair-

ness index [115], defined asF =

(

(

∑N

i=1 xi

)2
)

/
(

N
∑N

i=1 x2
i

)

, wherexi is the through-

put achieved by flowi, andN is the number of competing flows. An index equal to 1
characterizes a perfectly fair outcome. We define the Time-To-Fairness metric (TTF) as
the number of frames needed to reach a target fairness index,which has been fixed to 0.95.

Fig. 5.5 shows the mean transmission power and the TTF obtained with different values
of Cmax in a scenario with 6 users per cell on average, and a fixed required capacity. The
traffic sources are assumed to be in saturation, i.e., each terminal always has packets to
transmit. As expected the power decreases asCmax increases, while TTF increases. With
Cmax = 1 the allocator is forced to allocate all the requests selected by the scheduler,
thus leading to strict fairness satisfaction but with a power–inefficient allocation; asCmax

increases, the allocator has a higher degree of freedom and can choose to allocate only the
best users, which results in a higher power efficiency, but also in a higher TTF.
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In Fig. 5.6 we plot the average power per transmitted bit and the TTF versus the nor-
malized cell loadCreq, with Cmax = 3. The nearly constant per–bit power consumption
observed with our allocator is an indication that an intelligent allocation policy, which also
takes interference into account, is able to manage the intercell interference by preferen-
tially allocating less interfered resources. Anyway, as the cell load increases, the time
needed to reach fairness increases.
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Figure 5.7: Fairness achieved after each frame

Fig. 5.7 shows Jain’s fairness index, computed on a window ofW frames, versus the
window sizeW , thus describing the behavior of the algorithm through time. Two lower
bounds are also shown. These lower bounds have been obtainedby analytical formulas
in [114], which are computed without taking into account theallocator policy, and are
therefore valid foranyresource allocation algorithm. The two curves, two different values
of Cmax, again show the effect of such parameter on the fairness outcomes. However, note
also that the performance of the proposed strategy is very good if long-term fairness is
considered.
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5.5 Conclusions

In this chapter, we have discussed resource management aspects in a multicellular network
based on OFDMA, where challenging optimization issues arise due to the complete re-
source reuse among neighboring cells. In this context OFDMAoffers a flexible way to
manage physical resources, leaving room for the development of efficient algorithms.

A framework for a dynamic resource management has been presented which merges
traffic and physical level issues in a cross-layer perspective. Physical layer information,
such as channel and interference measurements, together with traffic information, are ex-
ploited by the proposed two–layer algorithm in order to improve the performance.

In particular, simulations performed in a multicellular scenario have shown that the pro-
posed joint scheduling and resource allocation algorithm is able to trade fairness require-
ments imposed at the flow level for physical efficiency metrics such as power consumption.
The algorithm exploits the diversity naturally present in the system, thus confirming that
FDMA resource management is an effective and promising approach for future generation
wireless systems.

The studied system is similar to the one described in the IEEE802.16 standard and thus
can provide useful contributions for the study of that system.
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Further cross-layer investigations

As pointed out in the introduction, the concept of cross-layer optimization is quite general
and can be applied to a broad variety of systems and used to approach many optimization
issues.

During the Ph.D. course I had the chance to study very different issues in wireless net-
works involving the concept of cross-layer optimization. This chapter provides only a brief
introduction to two additional topics, with a quick reference to the major results we found.
Such work has been published in international journals and conferences, where the inter-
ested reader can find the details on each of them. A complete list of published/submitted
papers is also provided.

6.1 Economic perspective in resource allocation

Related publications: [116] [117]

A very interesting and developed application of the Wireless Local Area Networks
(WLANs) based on the IEEE 802.11 protocol is the creation of hot-spots, where a set of
mobile terminals is connected to a central access point. This kind of system is nowadays
present in business areas like conference rooms or airport and hotel lounges, where users
are interested in easily and rapidly establishing a networkconnection.

Current implementations of IEEE 802.11 systems use the Distributed Coordination
Function (DCF) based on the Carrier-Sense Multiple Access (CSMA). It is well known
[105] that in this case the performance is heavily affected by the network operating con-
ditions. Thus, the provider is interested in efficiently managing the bandwidth resource.
Reasonably, this could mean aiming at achieving a satisfactory income from the network
management operation and providing as many users as possible with a satisfactory ser-
vice, which are required in order to have a sustainable economic model. For this reason,
the investigations on how to properly allocate the radio resource, as well as to set up an
appropriate pricing strategy, are key issues for the network operator.

109



Chapter 6. Further cross-layer investigations

To explore these aspects, we refer to the application of economic models to the Radio
Resource Management, an open field for research on which several contributions have
appeared in the recent literature. In particular, the concept of utility functions and issues
taken from game-theory have been employed to represent a tunable Quality of Service
(QoS), for example obtained through variations of the terminal’s data rate.

An example of application of micro-economic issues to the management of a WLAN
hot-spot is given in [118]. However, note that the micro-economic control performed there
refers to the definition of a virtual price that has the effectof regulating the access and is
negotiated dynamically [119]. Instead, in our study we considered the real price established
by the operator for the service tariff, which is bound to be fixed a priori and known in
advance by the users.

In particular, our aim is to investigate the role of actual pricing in determining resource
usage. Besides causing revenue generation, pricing the system usage also allows a better
coordination and a more efficient utilization. In other words, price tuning can be seen as
an implicit Admission Control (AC) mechanism which improves the system performance.
On the other hand, too high a price prevents users from entering the service, so that the
system is under-utilized. Besides the total revenue, we also study the service appreciation
by measuring the average number of satisfied users, which is another indicator of good
management that a provider of a real system needs to take intoconsideration in the long
run.

In order to perform these evaluations, we adopt the micro-economic model for wireless
applications and services presented in [120], which describes the users’ choices as driven
by their appreciation of the service, and at the same time allows the evaluation of economic
quantities such as the provider revenue and the average number of satisfied users.

Hence, our goal in this study is to apply such an economic model to a hotspot using
CSMA/CA. As a closed formula for the performance of the jointmicroeconomic and net-
work model is not available yet, we use NS2 simulations in order to test the proposed
concept.

In this scenario, we aim at exploring the trade-off between flat and usage-based pricing,
i.e., a purely linear function of the experienced data rate,or a hybrid one where price is
only partially related to the achieved data rate. The comparison among different pricing
strategies has to be based on some fairness criteria. We compare pricing strategies with
equal average price (defined as the mean price experienced asa function of data rate).

The choice of a pricing strategy results in a different outcome of the network manage-
ment, where, roughly speaking, users’ satisfaction might be traded for provider’s revenue.

As an example, in Figure 6.1 three scenarios are considered.Each curve represents the
achieved< operator revenue, user satisfaction> as a function of a parameter which tune
the pricing function from linear to flat. Each curve is obtained with a different average
price.

As can be seen, usage-based policies (in this case, linear pricing) achieve higher revenue
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Figure 6.1: Example of results for the pricing policies evaluation through the micro-
economic framework (the value of̄p is 0.3 for Low Price,0.5 for Intermediate Price,1.0
for High Price).

with respect to flat pricing but also yield lower users’ satisfaction. This trade-off between
the immediate goal of the provider and the users’ welfare canbe cut by an appropriate
choice of the relative weight between the two contrasting objectives, so that in the end the
choice of the pricing policy might be directly determined bylooking at one suitable point
in Fig. 6.1.

It is also worth noting that purely flat or purely linear strategies do not offer generally
a good tradeoff, since the curves tend to wrap so that a hybridstrategy is often preferable.
This emphasizes even more the need for an appropriate investigation of all pricing policies
by allowing more factors than the simple average price in order to tune the price not only
quantitatively but also qualitatively (i.e., changing theshape itself of the pricing function).
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6.2 Efficient topologies in Bluetooth Scatternet

Related publications: [121] [122]

Originally born as a wireless replacement for cables connecting electronic devices,
Bluetooth has been gaining a lot of consideration and attention by the scientific community
in the last few years. The development of this technology is now focused on the area of
the so-called Wireless Personal Area Networks (WPANs), where Bluetooth is expected to
play a major role in the short and mid-term future. The commercial success of WPANs is
intimately linked to their ability to support advanced digital services, like audio and video
streaming, web browsing, etc. In such a scenario, the performance aspects of the radio
technologies involved appear of primary importance.

Bluetooth has been designed to work in a scattered ad hoc environment, where multiple
independent overlapping networks, called piconets, may coexist and be interconnected to
form a multi-hop network, calledscatternet. Recently, much attention has been devoted, by
both academic and industrial world, to issues concerning scatternets formation and man-
agement. In particular, scatternet formation algorithms have been widely investigated, and
many solutions have been proposed to build up a scatternet starting from disconnected units

The focus is now moving to the characterization and design ofefficient scatternet
topologies [123, 124, 125], since it is clear that the way piconets are interconnected to
form scatternets may dramatically impact the network performance. The optimality of a
scatternet configuration depends on the performance indexes considered. Some typical per-
formance metrics are the number of piconets, the number of gateway devices, the number
of roles per node etc. When data connections are considered,throughput, average and
maximum traffic delay are taken as metrics of interest.

In particular we focus on thenetwork capacity. This metric represents the supremum
of the aggregated traffic that nodes can inject into the network without overflowing. In gen-
eral, we say that a network configuration isstableif the total traffic offered to the network
does not exceed the network capacity. In stable configurations, the average packet delay is
almost surely finite and, provided that the dimensions of thebuffers are adequately chosen,
packets are never dropped because of overflows. Conversely,in unstable configurations
some traffic connections will either experiment always increasing average packet delays or
packet losses due to buffer overflows.

We investigate the relationship linking the scatternet configuration, i.e., the way pi-
conets are interconnected to form the scatternet, and the network capacity. We propose
a mathematical formalization of the notion of network capacity and show that it can be
achieved in the presence of one-hop traffic patterns only. Thus, we discuss some topolog-
ical conditions that are required to approach the network capacity, in the presence of local
traffic only. This entail a formal justification of the inefficiency of tree topologies, and
lead to the characterization ofclosed-loopascapacity-efficient(i.e., able to approach the
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capacity bound for any number of devices).
We also drop the assumption of traffic locality, in order to investigate the performance

achieved by some specific scatternet topologies in the presence of a uniform traffic matrix,
providing a sort of worst-case analysis. It is shown that some efficient solid configurations,
based on Platonic solids, are able to outperform standard planar configurations in the pres-
ence of a limited number of devices. This analysis leads to the conclusion thatclosed-loop
configurations possess some desirable properties, from both the point of view of network
performance and ease of protocols implementation.

A general framework is also presented for the use of graph partitioning algorithms to
arrange the nodes of a scatternet into a purposeful configuration. The application focus on
closed-loop configurations, for which heuristics for the choice of master and gateway units
is introduced and discussed. The generalization of the proposed techniques to account for
spatial constraints (due to the fact that not all the nodes may be in mutual communication
range) will also be discussed.

We address some optimization issues related to such configurations, showing how graph
partition algorithms may be used to exploit traffic locality, enhancing the system perfor-
mance. This work represents an attempt to provide mathematical insight into the rela-
tionship linking scatternet topology and performance. Ourapproach can be applied, for
instance, to the design of networks of static sensors or domestic appliances, where the
end-to-end traffic matrix among the nodes may be knowna priori.
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Chapter 7

Conclusions

In this thesis, the concept of cross-layer design in wireless networks has been discussed.
The limits imposed by the layered networking reference model have been pointed out and
illustrated with some examples. Thus, the idea of cross-layer design has been introduced
as a useful paradigm for allowing the improvement of networks efficiency. To break the
layered model is especially important in wireless networks, where the peculiar features of
the transmission medium asks for complex optimization solutions.

Three main contributions have been presented in this thesis, which represent three ex-
amples of application of the cross-layer design concept to the wireless scenario.

The first one is referred to ad hoc networks where multiple channels are available and
each node is provided with multiple interfaces. An analytical formulation of the optimiza-
tion problem jointly addressing scheduling, channel allocation and congestion control has
been presented. An iterative algorithm has then been developed which has analytically
provable performance and gives useful insight for the design of practical solutions.

The second one addresses the problem of performance optimization in standard IEEE
802.11 networks. An optimization framework is introduced,which uses an estimation of
the medium status and a mathematical model for the link performance with the aim of op-
timizing a given utility function. The framework allows forthe definition of a Goodput
Optimal Rate Adaptation Algorithm (GORA) and an algorithm for improving the perfor-
mance of a VoIP connection. Both algorithms are based on analytical argumentations and
are able to adapt the working parameters to both the propagation conditions and the inter-
ference in the network.

The third contribution refers to the proposal of a simple mechanism for a joint schedul-
ing and resource allocation in the context of cellular networks. The proposed framework
combines a fairness oriented scheduler with a heuristic resource allocation mechanism by
means of an interface which allows for tuning the network working point by trading fairness
for physical layer efficiency.

Finally, additional work in the context of performance optimization in wireless net-
works has also been briefly introduced, addressing microeconomic issues in resource allo-
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cation for WLANs and capacity related considerations in Bluetooth networks. The com-
plete list of publications is provided in Appendix A.
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Complete list of publications

Journals

[J5] L. Badia, S. Merlin, and M. Zorzi. A micro economic investigation of provisioning
and pricing multimedia services over wireless LAN.IEEE Transaction on Wireless
Communications, 2008.

[J4] L. Badia, A. Baiocchi, S. Merlin, S. Pupolin, A. Todini,A. Zanella, and M. Zorzi.
On the impact of physical layer awareness on scheduling and resource allocation in
broadband multi-cellular IEEE 802.16 systems.IEEE Wireless Communications,
1:36–43, 2007.

[J3] L. Badia, S. Merlin, A. Zanella, and M. Zorzi. Pricing VoWLAN services through a
micro-economic framework.IEEE Wireless Communications, 13:6–13, 2006.

[J2] D. Miorandi, A. Zanella, S. Merlin, and A. Trainito. On efficient configurations for
Bluetooth scatternet.Ad-hoc networks, Elsevier, 4:768–787, 2006.

[J1] A. Zanella, S. Merlin, and D. Miorandi. Mathematical analysis of the packet delay
statistics in bluetooth piconets under round robin pollingregime. Mediterranean
Journal on Computer and Networks, 2:47–75, 2006.

Conferences

[C9] A. Zanella, N. Baldo, S. Merlin, F. Maguolo, M. Zorzi, D.Melpignano, and D. Sior-
paes. APOS: Adaptive Parameters Optimization Scheme for voice over IEEE 802.11g.
In IEEE ICC, 2008.

[C8] N. Baldo, F. Maguolo, S. Merlin, A. Zanella, M. Zorzi, D.Melpignano, and D. Sior-
paes. GORA: Goodput Optimal Rate Adaptation for 802.11 using medium status
estimation. InIEEE ICC, 2008.
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[C7] S. Merlin, N. Vaidya, and M. Zorzi. Resource allocationin multi-radio multi-channel
multi-hop wireless networks. InIEEE INFOCOM, 2008.

[C6] S. Merlin, L. Begnini, A. Zanella, L. Badia, and M. Zorzi. QoS-aware distributed
resource allocation for hybrid FDMA/TDMA multicellular networks. In WPMC,
2006.

[C5] A. Todini, S. Merlin, A Zanella, A. Baiocchi, A. Valletta, D. Messina, and Tinnirello
I. Allocation algorithms for PRIMO system. InWiRTeP, Rome, 2006.

[C4] A. Todini, A. Baiocchi, S. Merlin, A. Valletta, D. Messina, I. Tinnirello, B. Scanavino,
and D. Veronesi. Cross-layer design of packet scheduling and resource allocation al-
gorithms for 4G cellular systems. InWPMC, 2006.

[C3] S. Merlin A. Zanella. An efficient and adaptive resourceallocation scheme for next
generation cellular systems. InWPMC, 2005.

[C2] M. Borgo, A. Zanella, P. Bisaglia, and S. Merlin. Analysis of the hidden terminal
effect in multi-rate IEEE 802.11b networks. InWPMC, 2004.

[C1] A. Zanella, G. Pierobon, and S. Merlin. On the limiting performance of broadcast
algorithms over unidimensional ad-hoc networks. InWPMC, 2004.
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