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Introduction

In many fields of the physics of complex systems, like seismology [66, 67], fluid
turbulence [61, 65] and finance [53, 60], repeated measurements of a given observable
quantity provide us with time series of outcomes. The aim of a physicist who wants
to reproduce the behaviour of a given time series, is to find a mathematical model
able to display the same empirical statistical features characterizing the time series
itself. As soon as new statistical features are discovered and classified, thus becoming
“stylized facts”, new models are formulated in order to take them into account.

In 1900 L. Bachelier first proposed to model the behaviour of financial prices
by means of what is nowaday known as Brownian motion, thus opening the way
for the interpretation of the price fluctuations as generated by a stochastic process
[14]. Brownian motion accounts for the unpredictability of price returns, but fails
to explain other important stylized facts, like the positive and slowly decaying of
second-order correlations between the absolute values of two returns, and the returns
distribution with fat power law tails [41].

Since the financial risk is much more sensitive to the large absolute returns rather
than to the small ones and since the pricing of futures or options is essentially based
on the volatility forecasting [11, 15], during the last century many models replaced
the Brownian motion. In particular in 1982 R. Engle introduced the class of the
ARCH models in order to reproduce the observed volatility clustering, which is
a fingerprint of the second-order long range correlations of absolute returns [30].
A few years later T. Bollerslev generalized this model [29] and afterwards many
other variants [31, 36] have been used to account for the long memory of price
fluctuations [37, 40]. However, a stochastic model accounting for all the detected
empirical features is not yet known.

Some properties of a time series can be of much help in finding the most suitable
class of models in order to well reproduce its empirical behaviour. One such a prop-
erty is the invariance under scale transformations. Like every invariance property,
this symmetry is a clue on the nature of the physical system we are studying and
it can help us to understand what kind of process can better describe the empirical
data.

Scaling invariance means that the fluctuations of a given time series behave
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similarly at every scale, so that if a little part of this time series is taken into account
and the time axis and the price axis are properly rescaled, then the enlarged part
statistically looks like the whole time series. In particular this means the presence
of fluctuations at every scale and the scaling of the distributions for returns over
different time windows [54].

The generalized Hurst exponent analysis is the main statistical tool to detect
and characterize the scaling properties of a given time series [59, 64, 68]. In finance
the invariance under rescaling means the scaling of the return distributions with
time. This in turn implies the scaling of the q-order moment of these distributions
according to a scaling exponent D(q), which depends on the order q. The generalized
Hurst exponent H is the slope of D(q). If D(q) is linear, and thus H is constant,
the time series shows simple scaling, otherwise it manifests multiscaling.

Theoretically the scaling exponent D(q) for random walks with independent

increments and finite second order moment is a linear function with slope H =
1

2
,

but in 1951 H. Hurst pointed out that many hydrological time series display an
anomalous scaling exponent with a larger slope [70]. There are many possible causes
for such a behaviour: long-term correlations [2], non-stationarity [72, 73] and finite
sample effects [71] are all possible sources [69].

The scaling exponent D(q) has been found to be non-linear in the order q for
most of the time series in several other fields of complex systems physics, such as
geophysics [66] and turbulence [61, 62]. Also in finance the Hurst exponent has been
often used to detect multiscaling properties of the empirical time series [57, 60]. The
exponent H has been helpful in classifing Stock Markets maturity too [4].

In finance scale invariance has started to play an increasingly important role in
recent years. Especially after the discovery of multiscaling effects similar to those
met in turbulence [26], many authors did put scale invariance properties at the basis
of their modelizations of the dynamics of markets. The first attempt was made by
B. Mandelbrot [21, 23]. Soon afterwards some models, based on a multiplicative
cascade [19, 20] or a multi-agent structure [17, 18], also succeeded in reproducing
the empirical observed multiscaling. More recently in [24, 25] a model based on a
scale invariant non stationary process was able to reproduce the power law decay of
the volatility correlation between two returns.

In conclusion the multiscaling character of most of the real time series, in fi-
nance and in many other fields, is a widespread feature. Like every statistical tool,
the determination of the exponent H should be followed by an estimation of its
uncertainty, or at least by a search of the factors that could somehow falsify the
results.

A first problem concerns the accuracy of the Hurst exponent when it is evaluated
on a finite time series: every statistical tool deals with a set of data whose size is
necessarily finite and thus we cannot expect the outcome to be an infinitely precise
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determination. To evaluate the uncertainty associated to a given outcome, in some
cases it is possible to perform the calculation on several independent samples, all
having the same size, thus obtaining a set of different results. The interval covered by
these results provides us with an estimate of the uncertainty. This procedure implies
the possibility to get many such samples, for instance by repeating the experiment.
However this is not always possible.

In finance and in many other fields a single empirical time series is only available
and we cannot restart the history to get another sample. One way to get around
such difficulty would be to have a very long history and to extract many samples
from the whole time series. Then one can regard these samples as shorter histories
generated by the same physical mechanism. This is the main idea of the Bootstrap
method [49, 52], which we are going to apply in order to get confidence intervals
for the Hurst exponent determinations. We stress that recently, in seismology, some
doubts about the actual stability of H, when it is calculated on a finite size series,
have been raised [3]. However, to our knowledge, there has not been any previous
attempt to give an estimation of the Hurst exponent uncertainy in finance.

A second problem concerns the very existence of the Hurst exponent. We already
stressed that the calculation of the Hurst exponent H(q) is based on the q-order
moment of the return distribution, but this moment does not necessarily exist at all.
It is worth noting that here we are dealing with the theoretical moment, namely with
the moment we would expect for the density function of returns we asymptotically
extrapolate from our data. Of course the empirical moments, being based on a finite
sample of data, are always finite, but when the theoretical limit does not exist the
consistency of the Hurst exponent should be carefully checked.

The possible presence of fat tails in the density functions of the returns of the
financial time series [41] makes the theoretical q-order moment infinite if the order
q is too large. Indeed, when the tails asymptotically decay as a power law with
exponent γ, say, then the q-order moment exists for q < q0, with q0 = γ− 1. Hence,
there is a threshold order q0 beyond which the empirical moments cannot converge
to anything as the number of data available grows.

To test the consistency of the Hurst exponent we can determine it for a time series
generated by an exactly solvable model and check whether the outcoming scaling
exponent agrees or not with the expected one. We know that for a Brownian motion
the agreement is excellent [4], but the Gauss’ distribution has tails which decay faster
than exponentially, and thus all the theoretical moments exist, no matter how large is
the order q. Therefore, we decided to determine the Hurst exponent for a time series
based on a simulation of another exactly solvable model belonging to the class of
the Levy flights: a random walk with independent increments distributed according
to a Cauchy distribution. In such a case the density functions of the returns have
tails which decay as a power law with exponent γ = 2, so the theoretical q-order
moments exist for q < 1 only.
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We stress that while this process is strictly simple scaling with H = 1, the
Hurst exponent calculated on a simulated history is not constant. More precisely
the scaling exponent D(q) behaves proportional to q for q < 1, but fails to show
the correct slope beyond the threshold order q0 = 1. Indeed, for q > 1 one gets
D(q) = 1, namely a constant scaling exponent. This spurious multiscaling is already
known [5], but one of our main contributions is to describe a convincing probabilistic
mechanism able to account for it. In this thesis we show on rigorous basis that such
a mechanism works in general when one single time series is available and when the
density functions of the returns have power law tails.

This mechanism we are going to describe has potential deep consequences on
many multiscalings reported so far. Since in finance a single time series is available
and since the large returns are power law distributed, this mechanism most likely
affects the Hurst exponent analysis performed on the real data. Hence, the observed
multiscaling could be spurious in character, not only for Levy flights, but also for the
financial time series. Under this perspective, while the invariance under rescaling
would be a robust fact, the multiscaling could be merely a finite sample effect.

To enforce this suspicion we took into account correlations. Indeed, a main dif-
ference between a Levy flight generated series and the financial time series is that
the former has independent increments while the latter has long-range correlated
returns. We thus repeated the calculation on our financial time series after a reshuf-
fling of all the daily returns, namely after a removing of all correlations. The new
scaling exponent behaves as a function of q in a way qualitatively very similar to
that of a Levy flight model; which we know to be spurious in character. We propose
a qualitative argument according to which a mechanism of spurious multiscaling
could also apply to time series with dependent returns.

It’s worth noting that some remarks about the reliability [55, 56] and the sample
dependence [6] of the Hurst exponent H were already made. However, the financial
literature, to our knowledge, still lacks a systematic study of the effects due to the
finiteness of the sample, to Pareto tails and to the volatility clustering. This work
aims at filling such a gap.

This thesis is organized as follows. In the first chapter we recall some of the most
important stylized facts concerning the financial time series, illustrating them for
some indexes. They will be the empirical background for all the subsequent work.

In the second one we will develop the theory behind the concepts of scaling
invariance, simple scaling and multiscaling. We will define the Hurst exponent too;
and estimate it for some simple scaling processes whose returns are distributed
according to a law with exponentially decaying tails. Then we estimate the Hurst
exponent on our financial time series and evaluate its uncertainty by means of a
bootstrap method.

In the last chapter we present our main result: the Hurst exponent shows a
spurious multiscaling in the case of a Levy random walk; moreover we prove that
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such spurious multiscaling results for simple scaling processes if a single simulation is
considered and if large increments are power law distributed. Then we give evidences
for the multiscaling of the financial indexes to be spurious too by means of an
argument which takes into account the effect due to the volatility correlations. We
conclude by claiming that the Hurst exponent is reliable only for low orders, when
the theoretical moments exist.





Chapter 1

Some financial stylized facts

Reproducing as best as possible the statistical features of a given empirical time
series is the main task of every theretical model which aims at simulating the un-
derlying process. But the importance of a careful statistical analysis of the series
under investigation goes further: it is not only a tool for checking the goodness of
a model, it often provides some insights into the unknown process which help the
construction of the model itself. Generally symmetries, like invariance properties,
are very useful to this end. This is why in this first chapter we start by studying
the main statistical properties of the financial series we will deal with. In particular
we are going to focus our attention on the invariance under scale trasformations.

1.1 Stock Market indexes

Since the accuracy of every statistical analysis is very sensitive of the size of the
available data set, we consider some famous Stock Market indexes whose life is
among the longest in finance:

Dow Jones Industrial (DJI): surely one of the most famous index of the New
York Stock Exchange. It comprises the 30 biggest U.S. industrial companies
among the blue chips. The origin of the DJI index dates back to 1900.

Dow Jones Transportation (DJT): the most long-lived index of the New York
Stock Exchange: its origin dates back to 1897. At present it comprises 20
transportation-related companies.

Standard & Poor’s 500 (S&P): stock market index which contains the stocks
of the 500 U.S. companies with the largest capitalization. It was created in
1957, but it has been extrapolated back in time.

7
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Standard & Poor’s 90 (SPC): this S&P Composite index, on a daily basis only,
contains the stocks of 90 U.S. companies from all economic areas. It was
created in 1928.

For each index we collected the prices daily, at closure, from its origin until now,
neglecting the days without trading activity like week-ends and holidays; see table
(1.1).

We show in fig. (2.6), as an example, the graph of the price S(t) of the DJI
index versus time. Can we guess something about the process? There are some
outstanding features, common to the graphs of all indexes:

� the prices are always positive: S > 0;

� one can easily see a global average growth with many fluctuations;

� fluctuations become larger as the prices become higher.

The last point is quite reasonable as only rates between two prices really matter.
Hence we can guess an exponential growth with both a deterministic and a stochastic
component:

S(t) = exp[f(t) + x(t)] (1.1)

where f(t) is a trend, namely some function of the time, and x(t) is the real stochastic
process. This expression (eq. 1.1) allows the price S to be always positive regardless
of the stochastic component x.

Since the stochastic component is only responsible for the statistical behaviour
of our time series, we are interested in modelling the process x(t) alone. To get x(t)
we simply extract the logarithm of S(t) and assume a linear trend:

f(t) = At +B

where a linear best-fit of the logarithm of the whole time series provides easily with
the parameters on the right hand side of eq. (1.1). Fig. (1.2) shows the detrended
logarithm of the price S(t) for the DJI index, while table (1.1) lists the estimations
of the parameters A and B for every index.

At first sight the linearity of the trend f(t) seems a rather unjustified hypothe-
sis, but one should compare the result in fig. (1.2) with the stochastic fluctuations.
Clearly any non-linear correction to the function f(t) would be completely over-
whelmed by the stochastic noise; thus every higher order term would not yield any
sensible contribution. On the other hand we are going to see that any error on the
slope A affects our statistical analysis very little, while the actual value of B does
not matter at all.
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Index from until data set size N A× 10−4 B
Dow Jones Ind. 02/01/1900 14/11/2005 26589 1.90 3.52
Stand.&Poor’s 90 03/01/1928 29/12/2006 19837 2.59 1.82
Dow Jones Trans. 02/02/1897 31/08/2005 27260 1.26 3.47
Stand.&Poor’s 500 03/01/1950 18/12/2006 14333 2.82 3.06

Table 1.1: The Stock Market indexes taken into account. The time interval inside which data
have been collected and the number of trading days are shown. In the last column the parameters
of the linear best-fit of ln S(t) are also listed.

Since in finance we are interested in the rate of change between two prices sepa-
rated by a certain time gap, in what follows we will consider the returns rt(τ) over
a time window τ :

rt(τ) = x(t + τ)− x(t) (1.2)

All the statistical quantities, which we are going to study, deal with returns1; see
fig. (1.3) for that of DJI index. Here we come to the central issue: the behaviour of
our time series under a scale transformation. For a fixed window τ we calculate the
corresponding return at every instant t and regard this set of returns as a realization
of the process on a scale τ . For τ = 1 we simply get the daily returns of our time
series; for τ = 2 we are looking the process as we would collect returns every two
days; for τ = 3 every three days and so on. To study the behaviour of the process x(t)
under rescaling means to study the statistical properties of the stochastic variables
r(τ).

Before going on two very important remark about returns are in order:

Stationarity. To regard the empirical return rt(τ) at each instant t as a realization
of the same stochastic variable r(τ) we need to assume stationarity, at least
when the process is sampled on a daily basis. That is we make the hypothesis
that the outcoming returns rt(τ) have all the same density function pτ (u);
otherwise we could not obtain any statistical information from the set of these
returns. Indeed to do this we often need to calculate the average over the time
t of some statistical quantity depending on rt(τ), like momenta.

Sliding window. This is a more subtle point which concerns the actual calculation
of returns. Consider a time series x(t) of size N + 1. Obviously there are N
daily returns. If we would collect prices r(τ) every τ days, then our set of

returns would have a size

[

N

τ

]

: a great decrease in the available data. Since

we cannot get a series of size ∼ τN for each window τ because in finance a

1Hence it is clear that the parameter B in the detrending procedure does not matter. It is only
a translation along the vertical axis which cannot affect the right side of eq. (1.2)
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Figure 1.1: Graph of the daily price S(t) of the Dow Jones Industrial index from the origin until
2005.

single history is only available, we can avoid the problem simply by calculating
r(τ) every day, i.e. at each instant t as in eq. (1.2). This method is known as
sliding window sampling. It is the only way to get around such difficulty, but
as we will see in chapter (3) the set of returns thus obtained does not behave
as a statistical ensemble in some cases.

In the following sections we are going to study some of the most important
statistical features of the time processes rt(τ). Often this features are common to
a wide class of empirical time series and thus referred to as ’stylized facts’. This
study will provide us with the empirical basis for all the ensuing work.

1.2 Volatility clustering

Perhaps the very first question about returns one should answer is whether they are
independent or not. For processes with independent increments we have a number
of powerful probabilistic theorems and a well developed stochastic theory. On the
contrary, the treatment of processes with long-range memory is rather hard and
little is known on the subject. Looking at fig. (1.3) one can easily see many changes
in the width of the process; there are time intervals where rt has wild fluctuations
and others where the size of the returns is smaller. This is a strong evidence for
dependence between two returns at different instants; indeed, if returns were strictly
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Figure 1.2: Graph of the linearly detrended logarithm of the price: x(t) = ln S(t)−At−B

0 5000 10000 15000 20000 25000

-0.2

-0.1

0

0.1

0.2

Figure 1.3: Graph of the daily returns rt(1) = x(t + 1)− x(t)
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independent one could not observe these changes. The alternation of periods with
large and small returns is known as volatility clustering.

Mathematically we can detect the correlations in a given time series by means of
the empirical autocorrelation (AC) functions. Consider a time series with N returns,
then the linear normalized autocorrelation coefficient reads2:

Alin(s) =
〈rt+s rt〉 − 〈rt〉2
〈r2

t 〉 − 〈rt〉2

Here the average 〈·〉 is taken over all times t:

〈f(rt)〉 =
1

N

N
∑

t=1

f(rt) (1.3)

where f(·) is any real function. It is easy3 to show that:

� |Alin(s)| ≤ 1

� Alin(0) = 1

� if rt+s and rt are independent then Alin(s) = 0.

The AC function measures how much the sign of the present return allows us to
forecast that of another return after a time gap s: the closer is |Alin(s)| to 1, the
more reliable our expectation. If the AC function is close to 1 then the two signs are
likely both positive or both negative, otherwise if Alin(s) ' −1 then they are very
likely opposite. In fig. (1.4) we can see the linear AC function calculated on the
time series of the DJI index: it vanishes at once4. However, this does not mean that
the daily returns are independent; it only means that any forecasting about the sign
of a future return is impossible, even for the very next one. On the other hand, this
condition seems a very reasonable one, at least for well developed markets: riskless
gains are not allowed.

This stylized fact is usually reffered to as ’market efficiency’ and in order to repro-
duce it one usually uses a martingale to model the process x(t). For a martingale the
expectation of the conditional distribution of a return, given all the previuos ones,
is zero. In other words, at each step we cannot forecast the sign of the next return
and thus the linear AC function vanishes, but this does not imply independence.
Indeed, other characteristics, like variance, could depend on the past history.

2to simplify in this section we write rt instead of rt(1) for the daily return at time t
3if our data set is large enough, i.e. if N � 1, than taking the average over t or t + s does not

affect the result; for example 〈rt〉 = 〈rt+s〉
4it falls inside the stochastic noise for s > 0
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A direct proof that returns are strongly dependent comes from the non-linear
autocorrelation functions. Here we take into account the normalized volatility AC
function:

Avol(s) =
〈|rt+s rt|〉 − 〈|rt|〉2
〈r2

t 〉 − 〈|rt|〉2
This function has the same properties as the former, in particular it vanishes for
s > 0 if the returns are independent, but its meaning is rather different. While
the linear AC provides informations on the sign of returns, this AC function deals
with the absolute value of returns and allows us to forecast the size of a subsequent
return starting from the size of the present one.

In fig. (1.4) again we can see the volatility AC function in the case of the
DJI index. Now the graph shows a slow decay until it becomes negligible around
s0 ≈ 103. The time s0 is called ’decorrelation time’, or process memory and roughly
indicates the time beyond which two returns are expected to be independent. The
large value of s0 is due to a long-range correlation among returns. In fig. (1.5) we
can see, in a log-log plot, that Avol(s) behaves according to a power law for small
time gaps:

Avol(s) ∝
1

s`

where the exponent ` = 0.21 has been estimated using a power law best-fit. The
next one, fig. (1.6), shows an exponential decay after s ≈ 100, but such decay is
still quite slow due to a very large mean lifetime.

The slow pwer law decay of Avol is common to many financial time series and
indicates that the returns are actually strongly correlated. The volatility clustering
seen at the beginning of this section just arises from such a slow decay: for a
long period, large returns are likely to be followed by other large returns. This
is because Avol stays positive for a long time. The curve Avol has also very deep
practical consequences because modelling as well as possible the volatility clustering
is fundamental in every strategy of risk control. Therefore the interest in a model
that correctly reproduces the volatility AC curve goes beyond pure theory.

Summing up the central issue in this section we saw that the market prevent
us from forecasting the sign of the next return, but the past history gives us many
informations about the size of such return. This suggests a kind of model where
the return is made of two factors, a process wt with zero mean and independent
increments and a function σ which depends on the past returns:

rt = σ(rt−1, rt−2 . . . )wt

Usually the process wt is a Brownian random walk and σ(·) fixes its conditioned
variance, namely the width of the Gaussian distribution according to the past his-
tory. A process like this, which is easily proved to be a martingale, has been named
ARCH, or AutoRegressiv Conditional Heteroskedastic.
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The width σ(rt−1 . . . rt−n) is usually a linear combination of the squares of the
last n returns:

σ2 = a0 +
n
∑

i=1

air
2
t−i

where the weights ai must be estimated by means of some maximum likelihood
procedure. Since σ2 must be positive always, no matter what happened in the past,
then the weights are all positive too: ai ≥ 0 ∀i = 1 . . . n. Furthermore it can be
shown that the unconditioned variance σU = 〈r2

t 〉 is asymptotically constant:

σU =
a0

1−∑n
i=1 ai

This is just the global average width of the whole process. Since it must be positive
and finite, in order the process to be stationar, we find another constraint on our
weights:

n
∑

i=1

ai < 1

These constraints are the most important ones, but there are others. If n = 1, for

instance, it can be shown that the unconditioned kurtosis is KU =
6a2

1

1−3a2
1

; hence we

need to impose a1 ≤ 1√
3

in order to make KU finite.
The importance of the ARCH models come from their capability of reproducing

the volatility clustering observed in many financial time series. It can be shown,
according to these models, that the volatility AC function decays very fast; if n = 1,
for instance, it decays exponentially:

Avol(s) = exp(− s

s∗
)

where s∗ = | ln a1|−1 is the mean lifetime. However the model can fit quite well the
volatility AC function if the weights are properly chosen and above all if n is large
enough. Indeed the theoretical AC function Avol(s) decays rapidly for s > n only5,
while for s < n its decay is much slower. This is why n is a sort of memory range:
a returns is strongly correlated with all the latter n ones6.

At present, in finance, the ARCH models and their generalizations, like GARCH,
EGARCH and many others, are the most used theoretical tools in order to simulate
the behaviour of the real time series. Unfortunately the need of a large n means in
turn the need of many unknown weights. So many free parameters are a problem
from both a practical and a theoretical viewpoint; indeed evaluating them on data
is the main difficulty in every simulation.

5hence in order to fit the long-range dependence of real data one must take n very large: tipical
values ranges around n ≈ 100.

6but the linear AC function still vanish; an ARCH is a martingale: Alin(s) = 0.
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Figure 1.4: Graph of the autocorrelation function calculated on the data set of the DJI index.
Both the linear (black) and the volatility (red) AC functions are shown.

The set of non-linear AC functions includes many others: for every positive real
number q we define a generalization of Avol(s)

Aq(s) =
〈|rt+s|q |rt|q〉 − 〈|rt|q〉2
〈|rt|2q〉 − 〈|rt|q〉2

One gets Avol setting q = 1, the quadratic AC setting q = 2 and so on. All these
provides essentially the same informations about volatility clustering, however the
curve Avol is often less affected by the stochastic noise because it deals with the
lowest powers of the returns7.

However a different kind of AC functions may provides us with new informations
about some different properties of our time series. The so called ’leverage effect’
involves the sign of the present return and the size of a future one:

L(s) = 〈r2
t+s rt〉 − 〈rt〉〈r2

t 〉

In finance L(s) generally starts from a negative value at s & 0 and slowly decays
to zero, suggesting that a negative return is likely followed by a period of large
volatility. However this is a rather weak effect and often neglected, so we will not
consider this effect in the present work.

7we will see in the section (1.4) that this is a theoretical advantage too: for high q the average
〈|rt|q〉 may have no limit when N →∞.
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Figure 1.5: Log-log plot of the volatility AC function (black); the power law best-fit with decaying
exponent ` = 0.21 is shown in (red).
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Figure 1.6: Plot of the volatility AC function (black); the exponential decay exp(− s
s∗

) with mean
lifetime s∗ = 500 is shown in (red).
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1.3 Invariance under rescaling

In the last section we showed some very important results about the long-range
correlations among returns and sketched the most common theoretical model able
to display the volatility clustering. We will need these results again. Now we come
to the central issue: the scaling invariance property of the graph of our empirical
time series.

Looking at x(t) in fig. (1.2) the feature which draws our attention at once is the
high roughness of the graph in comparison with any usual deterministic function.
At first sight one could think to make the graph smoother simply by enlarging it,
i.e. by looking what happens between two consecutive oscillations. However one
realizes soon that new wild fluctuations appear at every scale8; moreover if both
axis are properly enlarged then the graph displays always the same pattern. This
means that, for a correct choice of the scale factors on the time and x axis, a small
part of our graph statistically looks like the whole. They have the same statistical
behaviour and there is no way to distinguish between them.

Enlarging the time axis of a factor τ simply means to collect the points of our
time series x(t) every τ days instead of collecting them daily. In other words it
means to consider the returns rt(τ). A process x(t) is invariant under rescaling if its
returns over a window τ are equally distributed up to a scale factor depending on
τ . Otherwise we could tell the scale of a graph since its statistical properties would
be different from a scale to another. In particular the process is self-affine if all the
stochastic variables τ−αr(τ) have the same distribution:

r(τ) ∼ ταr(1) (1.4)

where ∼ means ’equally distributed’. This in turn implies that the empirical prob-
ability density function (PDF) pτ (u) of the returns r(τ) satisfies:

pτ (u) =
1

τα
g(
u

τα
) (1.5)

The exponent α is called Hölder exponent and links the scale factor of the time
and the x axis together in order for the scaling invariance to hold. It is both a sort
of diffusive exponent and a measure of the intensity of the stochastic fluctuations,
or roughness.

� Suppose a very small Hölder exponent α ' 0, then eq. (1.4) tell us that the
returns over a time window τ are nearly distributed like the daily returns.
Hence we can have large fluctuations even during a small period, i.e. our

8obviously we cannot enlarge too much because our empirical time series is necessarily finite. In
the examples considered, a period of one day is the finest scale available and it would be meaningless
to go further.
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graph has very wild oscillations. On the other hand, since as τ grows the PDF
of r(τ) has approximately the same variance, thus the same width, then the
process spreads rather slowly.

� On the contrary, when α is larger then the PDF of the returns over a large
time window τ has a much higher variance than the PDF of the daily returns;
therefore its spreading is fast. Furthermore the intensity of the fluctuations
becomes sensible for large τ only and the graph appears more regular.

To check for the validity of eq. (1.5) we simply plot the PDFs pτ together after
rescaling both axis by a factor τα. However the actual value of the exponent α must
be guessed and checked only a posteriori9. If, for a given α, all graphs collapse in
a single density function, namely that of the daily returns, then we can state the
scaling invariance. In fig. (1.7) we show the PDFs of the returns rt(τ) of the DJI
index rescaled according to α = 0.52. The time window ranges from 1 to 32: τ = 2k

with k = 0 . . . 5.
The collapse is very good, but this procedure is not careful enough to determine

α precisely, as it is not a direct evaluation, but a likelihood test; moreover it does
not seem the collapse of the PDFs to be much sensitive to α. However, even if the
statistical uncertainty prevents us from finding a more precise value, we can expect
the scaling invariance to hold with

α ≈ 1

2
(1.6)

To make a comparison with a widely known example, the Hölder exponent of a
Brownian random walk is exactly α = 1

2
. We will meet again the Hölder exponent

in the next chapter.
It is worth to stress here that the scaling invariance cannot be exact, or better

that there is a limit to the scale factor τ beyond which the former collapse does
not hold any longer. Suppose that eq. (1.5) holds for τ ≈ s0, where s0 is the
decorrelation time we defined in the previous section, then the correlation among
the returns rt(τ) is negligible and they can be considered as independent increments.
Furthermore we will see in the next section that the scaling PDF g in the right hand
side of eq. (1.5) is not gaussian, but has finite variance.

Under these condition the Central Limit Theorem (CLT) states that the sum of
many such returns must follow the Gauss’ law. Since a return over a window nτ is
just a sum like that:

rt(nτ) =
n−1
∑

i=0

rt+iτ (τ)

9in the next chapter we will see how to get the Hölder exponent directly
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Figure 1.7: PDFs pτ (u) of the returns of the DJI index for several windows τ = 2k with k =
0 . . . 5. Each PDF has been rescaled by a factor τα with α = 0.52.

then according to the CLT the density function of these returns, for n large enough,
converges to a Gauss’ law. Therefore at very large time window eq. (1.5) fails10 and
we observe the so called ’scaling breakdown’, namely a crossover from the scaling
PDFs towards a gaussian. For small windows τ the scaling invariance is a very good
approximation; in particular inside the range considered scaling is almost perfect.

We conclude this section with a remark on the linear detrending procedure out-
lined in section (1.1). Suppose a small error εA � A was made in the evaluation of
the slope parameter A. In such case all returns rt(τ) are shifted by an amount εAτ ,
hence their PDF has mean εAτ and not zero. Since this PDF is then rescaled by a
factor τα ≈ √τ its graph in fig. (1.7) should be shifted by an amount εA

√
τ . Using

the data in table (1.1) we find that this quantity is much smaller than 1.6×10−3 for
τ ≤ 32. Therefore any error in the evaluation of the slope A would be completely
overwhelmed by the statistical uncertainty, see fig. (1.7), at least for small time
windows.

10actually the collapse fails well before s0. This is because we need a strong correlation to avoid
the convergence to a Gauss’ law
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1.4 Power law tails

In the last section we have just seen that all the PDFs pτ (u), if properly rescaled,
collapse onto a single one g(u), namely the scaling density function, due to the
scaling invariance, eq. (1.5). Now a very careful study of the function g is in order
as it is the starting point for much of the subsequent work. In the case of the DJI
index, see fig. (1.7), we note at once a big central ’bell’ like that of a gaussian law,
but clearly the tails do not behave exponentially: they decay much slower. This is
another very important stylized fact: the PDFs of returns have ’fat tails’.

The tails of g are made of large returns, namely of extreme events. Since in
many financial applications, like the risk management, extreme events matter, it is
fundamental for a model to produce large returns whose decay follows the same law
as those of g. This is indeed one of the reason for giving up to the brownian motion
as a theoretical model for the time series x(t): it does not display large returns at
all11. Now we are going to find a functional form which approximate as best as
possible the main features of g(u).

Fig. (1.8) and (1.9) show the scaling PDF g(u), obtained by rescaling the PDFs
pτ (u), for each time window τ . We can see that the tails of g(u) asymptotically
follow a power law12 of parameter γ for large arguments u:

g(u) ≈ Au−γ (1.7)

where A is a multiplicative factor. Here the decay exponent γ was estimated using
a maximum likelihood method equivalent to the Hill’s estimator [46, 47]:

1. consider the right tail13 and guess a starting point u∗, namely a point which
clearly belongs to the tail and not to the central bell;

2. takes all the returns r1 . . . rk larger than u∗ and the density function:

hγ(u) =







γ − 1

u∗

(

u

u∗

)−γ

if u ≥ u∗

0 otherwise

3. for a given γ the probability to get the observed returns is14:
∏k

i=1 hγ(ri);

11the tails of its scaling PDF are gaussian
12sometimes tails decaying as a power law are called ’Pareto tails’ because of Vilfredo Pareto

who first found that in many economical and social fields power laws are widespread relations
13the same procedure applies to the left tail is
14we suppose here that these observations are indipendent, which surely is not the case. However

one can prove that the Hill’s estimator is still consistent.
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Index Right tail γ Left tail γ
DJI 4.2± 0.4 3.5± 0.2
DJT 3.8± 0.2 3.5± 0.1
S&P 5.8± 1.1 4.5± 0.5
SPC 3.6± 0.2 3.4± 0.2

Table 1.2: Decay exponents for our stock market indexes obtained by using u∗ = 0.02 as a
starting point. The difference between the left and the right exponent is due to the asymmetry of
the scaling PDF g(u) and gives rise to a non-zero skewness, see table (1.3).

4. therefore one get the best value of γ simply by demanding this probability15

to be the highest:

γ = 1 +
k

∑k
i=1 ln

ri

u∗

The outcome of the procedure above does not depend on u∗ provided that the value
chosen belongs to the tail16. A good starting point u∗ of the tails can be evaluated
by fig. (1.7): for u∗ ≈ 0.02 one get γ = 4.2± 0.4. In table (1.2) we show the values
of γ for both the left and right tail of our indexes17.

The value of γ cannot be evaluated more precisely because the tails are not well
sampled, due to the fact that most of returns fall into the central bulk. In order to
better explore the tails, we would need a data set of larger size than the presently
available one. Furthermore we will see in chapter (3) that collecting returns using a
sliding window, see the remarks at the end of section (1.1), affects the behaviour of
the largest returns. This means that when τ 6= 1 the maximum likelihood extimation
above may be slightly biased by a few extreme events. However looking at fig. (1.8)
and (1.9) one can roughly guess a power law decay with exponent

γ ≈ 4 (1.8)

and this will be enough for our purposes.

The main question arising from eq. (1.8) is whether the moments of g exist or
not. Indeed the theoretical q-order moment Mq of the scaling PDF g(u) is

Mq =

∫ ∞

−∞
du |u|qg(u) (1.9)

15actually its logarithm
16one cannot take u∗ too large in order to make sure of this, otherwise the number k of returns

available for the procedure would become so small to make the resulting exponent unreliable
17the starting point u∗ is nearly the same for all indexes as their width is nearly the same too,

see table (1.3).
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and thus it exists provided the order q is not too high. If g(u) asymptotically behaves
according to a power law of exponent γ then the existence of the integral on the
right hand side of eq. (1.9) is guaranteed for q < q0 only; where q0 is the threshold

order beyond which the theoretical moments diverge:

q0 = γ − 1

Using the estimate of γ in eq. (1.8) the threshold order takes the value q0 ≈ 3. In
particular this means that the variance is theoretically finite; a very important fact
which displays the rôle of the correlations as cause of the scaling invariance, see the
end of the latter section.

In arguing that the moments of the scaling PDF do not exist for high orders
q ≥ q0 we implicitely supposed to know the whole form of g(u), i.e. its behaviour
on the whole real axis, but actually it is not so. Even if we expect the central bulk
of g(u) to be well sampled obviously we cannot pretend the same for very large
arguments u simply because large returns may not appear if our time series is too
short. The larger the return we want to observe, the longer must be the time series
in order the observation of this return to be likely. Therefore, stating that g(u) has
power law tails is correct only inside the range of arguments u explored until now.
It may be that for longer time series the asymptotical behaviour of g does not follow
a power law; for instance, outside the range of the present observations the PDF g
may have an exponential cut-off, or even a sharp one18. In both cases the theoretical
q-order moment Mq would be finite for every order q. However, even if this would
be the case, every statistical quantity we can calculate on the real data will behave
as if g would have power law tails. This is because at present our empirical data set
cannot see any cut-off: from an empirical viewpoint g(u) has fat tails on the whole
real axis and the theoretical q-order moments Mq exist for low orders q only.

On the contrary the empirical moments M
(e)
q are always finite as any real time

series is finite too:

M (e)
q =

1

N

N
∑

t=1

|rt|q (1.10)

whereN is the size of our data set19. Table (1.3) shows the main statistical properties
of the scaling PDF of our indexes. Since in calculating the q-order moments we
obviously use the above summation, and not the theoretical integral in eq. (1.9),
one may think to avoid the existence problem, but another one arises.

Generally in performing an average like that in eq. (1.10) we are searching for
a given statistical feature, namely the moment of g in this case. We know from the

18on the other hand in real Markets sometimes transactions are suspendend for excess of fall or
rise in prices.

19here we obtained the returns rt of g simply by rescaling the returns rt(τ) according to τα, for
each window τ ; see eq. (1.4).
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DJI DJT S&P SPC
mean −1.2× 10−7 3.2× 10−5 2.7× 10−5 −3.8× 10−5

stand. dev. 1.136× 10−2 1.252× 10−2 8.959× 10−3 1.163× 10−2

skewness -0.931 -0.1735 -1.322 -0.4865
kurtosis 27.47 15.52 35.14 20.65

Table 1.3: Some unconditioned empirical properties of the scaling density functions g which refer
to our Stock Market indexes. The positive value of the kurtosis is due to the power law tails and
stands for the non-gaussianity of g.
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Figure 1.8: The right tail of every PDF shown in fig. (1.7) are drawn in black. The red thick
line is the maximum likelihood power law of slope γ = 4.2 in the range 0.02 ≤ u ≤ 0.05.

Law of Large Numbers that

M (e)
q →Mq

as N → ∞, provided that the limit Mq exist. Therefore we are confident that
our empirical average represents a well defined statistical property of g, at least for
N large enough. If the summation in eq. (1.10) is not bounded, as the theoretical
moment Mq diverge, one may ask whether it makes sense or not. When the empirical
average does not converge, as the size N of our data set increases, one should pay
much attention in handling and interpreting M

(e)
q : this will be the main issue of

chapter (3).
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Figure 1.9: The left tail of every PDF shown in fig. (1.7) are drawn in black. The red thick line
is the maximum likelihood power law of slope γ = 3.5 in the range −0.02 ≤ u ≤ −0.06.

1.5 Fitting the scaling PDF

To conclude this chapter we show how to fit the density function g(u) of the DJI
index shown in fig. (1.7); or better how to obtain a stochastic variable distributed
according to g(u) starting from a uniformly distributed one. The key idea is to fit
the central bulk with a gaussian bell and the two tails with a power law. It is worth
to stress here that g(u) is not symmetric. Its asymmetry is due to the leverage
effect, see section (1.2), which makes the left tail fatter than the right one. This
implies in turn a negative skewness, see table (1.3). Then, according to table (1.2),
we take two different decay exponent γ+ = 4.2 for the right tail and γ− = 3.5 for
the left one. Furthermore, since the two tails need not to leave the central bulk at
the same point, we can choose two different starting points −u+, for the right tail,
and u− for the left one20.

Consider a power law PDF g+(u) to fit the right tail, another one g−(u) to fit

20note that u− ≥ 0: properly speaking it is the distance from zero of the left tail starting point.
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the left tail and a gaussian bell g0(u) for the central bulk:

g+(u) =

{

A+(u− c+)−γ+

0
if u ≥ u+

otherwise

g−(u) =

{

A−(−u− c−)−γ−

0
if u ≤ u−
otherwise

g0(u) =

{

1
A0

exp(−1
2
u2)

0

if − u− ≤ u ≤ u+

otherwise

where A0 =

∫ u+

−u−

du exp(−1

2
u2) and A± = (γ± − 1)

(

γ±
u±

)γ±−1

are normalization

constants. Then we put them together in a single PDF:

g∗(u) = a−g−(u) + a0g0(u) + a+g+(u) (1.11)

There are five parameters to fix. First we must impose the normalization of the new
PDF in (1.11):

a− + a0 + a+ = 1 ⇒ a0 = 1− a− − a+

then we can fix the other four parameters by imposing the continuity of g∗ and the
continuity of its derivative too:

c± = u± −
γ±
u±

a± =
ϕ±

1 + ϕ− + ϕ−

where

ϕ± =
γ±

A0(γ± − 1)u±
exp(−1

2
u2
±)

How can we get a stochastic variable with the same density function of g∗ in eq.
(1.11)? A transformation T0 from two independent uniformly distributed variables
to a single variable Y distributed according to a gauss’ law is well known21, see [10].
Two transformations from a uniformly distributed variable 0 < X ≤ 1 to a variable
Y distributed according to g±(u) are available too:

Y = T+(X) = c+ +
γ+

u+
X−µ+

and
Y = T−(X) = −c− −

γ−
u−
X−µ−

21such procedure gives a Gauss’ law on the whole real axis; to limit it between −u− and u+

simply repeat the procedure when you get a Y outside this range
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where µ± =
1

γ± − 1
.

Therefore we can use these three transformations to get the PDF g∗ from uni-
formly distributed variables: we choose one and generate the variable Y . If we
choose the transformation T0 we get Y in the central bulk, while if we choose T−
or T+ we get Y on the left or right tail respectively. At each stage we must choose
one among these trasformations. In order Y to be distributed according to g∗(u) we
must choose every transformation with the right frequency. Since the frequency for
Y to stay in the central bulk or in the tails correspond to the weights a0 and a±,
then at each stage we can extract again an uniformly distributed variable 0 < X ≤ 1
to decide the right transformation:

if X ≤ a− =⇒ transformation T−
if 1− X ≤ a+ =⇒ transformation T+

otherwise =⇒ transformation T0

In order to fit the scaling PDF g with g∗, in eq. (1.11), a further step is in order:
due to asymmetry the mean of g∗ does not vanish; moreover its standard deviation,
namely its width, may be different from that of g, see table (1.3). The mean mY

and the variance σ2
Y of g∗(u) are:

mY =
(u+

γ+
+ γ+

γ+−2
u+)ϕ+ − (u−

γ−
+ γ−

γ−−2
u−)ϕ−

1 + ϕ+ + ϕ−

σ2
Y =

1 + [ 2γ+

γ+−2
(1 + γ+

γ+−3
u−2

+ ) +
u2
+

γ+
]ϕ+ + [ 2γ−

γ−−2
(1 + γ−

γ−−3
u−2
− ) +

u2
−

γ−
]ϕ−

1 + ϕ+ + ϕ−
−m2

Y

It worth noting that these quantities make sense as we set γ± > 3. Therefore once
we got our set of realizations of the variable Y we perform a final transformation:

Z =
σ

σY

(Y −mY )

where σ is the standard deviation of g, see table (1.3). The density function of Z is
like that of g∗(u) in eq. (1.11), but it has a vanishing mean and the right variance.
In fig. (1.10) we put this density function on the scaling PDF g(u) of the DJI index.
Taking γ± according to the table (1.2), and setting the starting points u− = 1.5 and
u+ = 1.9, the overlap is almost perfect.
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Figure 1.10: Comparison between the scaling PDF g(u) as obtained by rescaling the PDFs pτ (u)
of the returns rt(τ) (black curves) and the density function of the variable Z defined in the text
(red curve).



28 CHAPTER 1. SOME FINANCIAL STYLIZED FACTS



Chapter 2

The generalized Hurst exponent
analysis

We saw in section (1.3) that the time series of our financial indexes are scale invariant
since all the density functions of the returns, if properly rescaled according to a
certain Hölder exponent, collapse in a single PDF; see eq. (1.5). In this chapter we
are going to deal with the generalized Hurst exponent analysis: the main statistical
tool to detect and characterize the scaling invariance of any empirical time series.

We first determine the Hurst exponent of two well known, exactly soluble models:
the brownian motion and the fractional Brownian motion; then we estimate its
uncertainty by means of a bootstrap method. The comparison between the empirical
results and the expected ones provides us with some interesting information about
the Hurst exponent reliability. We conclude by calculating the Hurst exponent for
the time series of the financial indexes seen in the previous chapter.

2.1 Some notions of probability theory

We start by reviewing more precisely some concepts already met in the previous
chapter, like that of stochastic variable, moment and process. Consider a probability

space (Ω,P), namely a space of events Ω equipped with a probability measure P.
A stochastic variable is any measurable1 function x : Ω 7→ R; and its probability

density function (PDF) px : R 7→ R is defined as:

∫

B

px(u) du = P(x ∈ B)

1a measurable function between two spaces maps a measurable set of the first space into a
measurable set of the second one. All functions we usually meet are measurable.

29



30 CHAPTER 2. THE GENERALIZED HURST EXPONENT ANALYSIS

where
(x ∈ B) : ω ∈ Ω|x(ω) ∈ B

is the measurable set containing all the events for which our stochastic variable takes
values inside any given measurable2 subset B ∈ R. Starting from the very definition
of the probability P, see [8], it is easy to check that the following properties hold
for any PDF3:

� px(u) ≥ 0

�
∫

R
px(u) du = 1

In particular the last property says that px is normalized. What is the physical
meaning of the density function px? Suppose to perform an experiment on some
physical system in order to measure a certain observable physical quantity x. Every
time we get the realization this observable an event ω ∈ Ω occurs and the outcome
of x is a certain number x(ω). The measure P(A) gives us the probability for the
occurred event to belong to a given subset A ∈ Ω of events, so px(u0) is just the
probability for the outcome x(ω) = u0 to occur in our experiment4.

We remark that the space Ω is often completely unknown and usually it does
not matter either: it is a mathematical device only. On the contrary, the stochastic
variables and their PDFs are really observable. Furthermore, since the PDF provides
us with all the informations about the stochastic variable, whatever the probability
space (Ω,P) may be, it is actually the only important quantity5. If this PDF is not
known a priori, one has to get it from the experiment. We can build the empirical
PDF p

(e)
x of a physical observable x simply by repeating the experiment many times

and calculating the frequency of each outcome x(ω). Suppose that N realizations
of x have been performed, thus obtaining a set of N outcomes ui i = 1 . . .N , then

p(e)
x =

1

N

N
∑

i=1

δ(u− ui)

where δ(u) is the usual Dirac pointwise distribution.

Even if the PDF px contains all the information about the stochastic variable
x, however we need a tool to extract the particular information we are interested

2according to the usual Lebesgue measure
3moreover a given function which satisfies both these conditions is the density function of some

stochastic variable
4or better, as the name density itself suggests, the integral

∫ u0+ε

u0−ε
px(u) du gives the probability

for x(ω) to lie between u0 − ε and u0 + ε
5moreover it can be shown that each PDF comes from a single stochastic variable, so the

association x 7→ px is an injection. This is why in many theoretical applications px is the very
definition of x
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in. In dealing with a stochastic quantity x, whose outcome x(ω) at each realization
cannot be forecasted exactly, surely the most interesting information is its mean 〈x〉,
or mathematical expectation. This is because it is in a sense the best forecasting
at any realization, or better because 〈x〉 has the least distance from every possible
outcome x(ω). Using the density function of the stochastic variable x it is possible
to calculate the mean of any observable function y = f(x). It is defined by an
average over all the outcomes of the variable x:

〈y〉 =
∫

R

f(u) px(u) du (2.1)

From a statistical point of view, knowing the best expected value of x is not
enough: we also need to know how much it is good. To this end one can calculate
the average square distance between the mean 〈x〉 and any possible outcome of the
stochastic variable x, namely the variance:

σ2(x) = 〈(x− 〈x〉)2〉
= 〈x2〉 − 〈x〉2

The larger the variance the further are the realizations of x from the mean 〈x〉.
Hence, from a geometrical viewpoint, the PDF px is centred in the mean 〈x〉 and
has a characteristic width equal to the standard deviation6 σ(x).

Empirically the mean of a given function f(x) can be achieved by using p
(e)
x (u)

in eq. (2.1), thus getting an expression like7 eq. (1.3) in section (1.2):

〈f(x)〉e =
1

N

N
∑

i=1

f(ui) (2.2)

where ui i = 1 . . . N are, as before, N realizations of the stochastic observable x
coming from a given experiment. In particular, according to the previous interpre-
tation the empirical mean 〈x〉e is regarded as the best value of the available data
set and the empirical standard deviation as its uncertainty.

6there are other interesting quantities whose value help us in describing other characteristics of
px, such as the skewness and the kurtosis; see table (1.3) in the previous chapter. The skewness

skew(x) =
〈(x − 〈x〉)3〉

σ3(x)

vanishes only if px is symmetric and the kurtosis

kurt(x) =
〈(x− 〈x〉)4〉

σ4(x)
− 3

is positive or negative according to whether px is sharper or flater than a Gauss’ law
7here we put the subscript e in order to tell the empirical mean from the theoretical one
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It is worth noting, at this stage, that the empirical mean in eq. (2.2) depends
on the actual outcomes of N realizations of the stochastic variable x while the
theoretical mean in eq. (2.1) is a deterministic quantity depending only on x itself.
Since the PDF of a physical observable is not known a priori and thus the theoretical
means 〈·〉 cannot be calculated, we can only get the empirical ones 〈·〉e and hope they
are good approximations to the formers, at least for N large enough. The following
theorem [12] warrants that this is actually the case, provided that the theoretical
limit exists.

Theorem 1 (Law of Large Numbers). Given N independent realizations of a

stochastic variable x and any function f(x), if the mean 〈f(x)〉 exists then

〈f(x)〉e → 〈f(x)〉

almost surely for N →∞.

It is worth stressing again that the mean 〈x〉 is a number, while the empirical
mean 〈x〉e is a stochastic variable depending on N realization of x. The almost
sure convergence in the previous theorem means that the set of events for which the
convergence fails has probability P = 0.

There are some special functions of a stochastic variable, other than the variance,
which play a key role in probability theory.

The characteristic function (CF) is the mean of eikx:

ϕx(k) =

∫

R

eikupx(u) du (2.3)

This may seem a rather abstract quantity, but it turns out to be very useful
especially when the sum of many independent stochastic variable is taken into
account; as in the Central Limit Theorem. Their importance mainly come
from the injective character of the relation px 7→ ϕx, i.e. two PDFs cannot
have the same CF8.

The q-order absolute moments are the mean of |x|q:

Mq(x) =

∫

R

|u|qpx(u) du (2.4)

8indeed one can get some information about the PDF directly from its CF. It is easy to prove
that

� if ϕx is symmetric then so is px and viceversa;

� 〈x〉 = −iϕ′
x(0) by derivation.
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where q ∈ R
+ is any positive real number. While the CF always exist, the the-

oretical q-order moment Mq(x) may exist or not depending on the behaviour
of the PDF px(u) for large arguments |u| � 1, see discussion in section (1.4).
In particular if px has tails which follow a power law of parameter γ then the
moment Mq(x) does not exist for q ≥ γ − 1, since the integral in eq. (2.4)
diverges.

From now on we will refer to Mq(x) simply as moments9. In the coming section
they will be the main tool to study the invariance properties of a given time series, so
their existence is a very important point for us. In particular it is worth noting that
the empirical moments 〈|x|q〉e exist whatever the order q may be. Indeed suppose
again that a set of realizations ui i = 1 . . .N is available, then the calculation of
the empirical q-order moment

M (e)
q (x) =

1

N

N
∑

i=1

|ui|q (2.5)

always gives a finite number, since the summation is necessarily finite. However
if the theoretical limit Mq(x) does not exist, the empirical moments (eq. 2.5) do
not approximate anything, since theorem (1) does not hold anymore; and thus they
become meaningless. During the whole chapter we will deal with stochastic variables
x whose PDF decays rapidly enough to warrant the existence of the theoretical
moments Mq(x) for all orders q. The problems arising from PDFs which make the
moments infinite will be the main issues of the next chapter.

2.2 Stochastic processes

The formalism above generalizes at once to many stochastic variables ~x : {x(1) . . . x(n)}:
the joint density function p~x is defined as

∫

B

p~x(~u) du1 . . . dun = P(~x ∈ B)

where
(~x ∈ B) : ω ∈ Ω|~x(ω) ∈ B

and B ∈ R
n is any measurable subset. The joint PDF of many variables must satisfy

conditions similar to the PDF of a single variable:

� p~x(~u) ≥ 0

9for the sake of precision the moments are the mean of xm with the order m compelled to take
only integer values
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�
∫

Rn p~x(~u) du1 . . . dun = 1

� pxk
(uk) =

∫

Rn−1 p~x(~u) du1 . . . duk−1duk+1 . . . dun

Where the last condition is known as marginal probability formula.
The expected value of some function y = f(~x) reads

〈y〉 =
∫

Rn

f(~u)p~x(~u) du1 . . . dun

In particular we are often concerned with the sum of many stochastic variables
y =

∑n
i=1 xi since in most of applications an observable effect is often the result of a

large number of microscopical contributions. It is easy to show from the definition
that

〈y〉 =
n
∑

i=1

〈xi〉

but in this general framework we cannot go further. In order to get more informa-
tions about the distribution of y we need to impose the independence of the variables
xi.

The variables xi are said to be independent if their joint PDF is the product of
all the PDFs pxi

:

p~x(~u) =
n
∏

i=1

pxi
(ui) (2.6)

This relation warrants that the knowledge of the realization of some variable does
not affect the realization of the others. Indeed, for the sake of simplicity, take n = 2
and suppose to know that the first variable belong to a certain interval: x1 ∈ A. In
this case, using eq. (2.6), the density of x2 writes

∫

u1∈A

px1 x2
(u1 u2) du1 = P(x1 ∈ A) px2

(u2)

However P(x1 ∈ A) = 1 whatever the interval A be, since we already know that
this result has occurred; so the density function of x2 is just px2

.
While very few theoretical result are known when the variables ~x are dependent,

many powerful theorem are available when they are independent, especially for what
concern their sum y. A first result is the summation rule for the variance:

σ2(y) =

n
∑

i=1

σ2(xi)

which does not hold in general for dependent variables. However the most important
consequence of independence, coming at once from the substitution of eq. (2.6) in
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the very definition of CF, eq. (2.3), is that the CF of y writes in a quite simple form:

ϕy(k) =
n
∏

i=1

ϕxi
(k) (2.7)

Remembering the injective character of the association between a PDF and its CF,
we can thus build, at least in theory, the PDF of y starting from those of the variables
xi. This possibility is one of the key points which allow the Central Limit Theorem
to work.

The generalization to many stochastic variables allows us to define a process:

Definition 1. a stochastic process is a continuos set of random variables x(t) at

each instant t.

A process behaves like a collection of uncountably many stochastic variables.
Given an event ω ∈ Ω we get a realization of our process as a sample path in R

2:

G(ω) : (t; x(t, ω)), t ∈ R

which is simply the collection of all the realizations x(t, ω) along the time t.
In many physical experiments we get a set of results of a certain observable x(t)

which depend on time; namely a time series. From an empirical viewpoint the time
t can take only discrete values, namely the instants at which we get the realization
of x(t). Hence a time series can be regarded as the discretization of a stochastic
process. The financial indexes we studied in the first chapter provide some examples
of a real time series while fig. (1.1) provides an example of sample path. From now
on, in dealing with a mathematical process or with an empirical time series, we will
denote both the discrete time and the continuos one with the same symbol t.

We could define the density function of x(t) for each instant t, but for our
purposes we will be concerned mainly with the increments of the process, rather than
with the process itself. This is because, as explained in section (1.3), in considering
the increments over different time windows we are actually looking at the process
on different time scales. Hence, the increments are the most suitable variables to
the study of the scaling invariance. The increments over a time window τ

rt(τ) = x(t + τ)− x(t)

are also stochastic variables, like x(t), but they depend on both the instant t and
the window τ , see eq. (1.2) in section (1.1). Therefore their density function pt,τ (u),
and thus the respective q-order moment

Mq(t, τ) =

∫

R

|u|qpt,τ (u) du
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also depends on t and τ .
The moments Mq(t, τ) of the increments r(t, τ) are just the quantities with which

we are going to deal in the next section. In order to empirically calculate Mq(t, τ)
we need a set of realizations of the increment rt(τ) for each instant t and each time
window τ . In other words, for a fixed pair (t, τ) we should repeat the experiment
many times, thus getting a set of time series, and draw out from each realization a
single increment, namely that at the instant t of window τ . However, often this is
not possible since a single history is only available, like in finance for instance. One
can get around such a difficulty by means of the stationarity assumption and of the
so called sliding window method, see the remarks at the end of section (1.1).

In a process withstationary increments the distribution of rt(τ) does not depend
on the instant t, but on the window τ only. Hence, for such a process, we can drop
the subscript t and call pτ the common distribution of all increments rt(τ) along
the time; the increments themselves will be denoted simply with r(τ). Moreover the
q-order moment of these increments r(τ) becomes:

Mq(τ) =

∫

R

|u|qpτ (u) du (2.8)

We stress again that the importance of the stationary assumption obviously is not
merely a matter of notations: often it is the only way to handle empirical data, as
it allows us to collect all the returns r(τ) along the same time series.

Let the size of our stationary time series be N , for instance; then, due to the
stationarity, we can collect N returns r(1) for a time window τ = 1. However for
larger windows τ ≥ 2 a problem arises: if we collect the returns r(τ) along the same

time series without overlapping we do not get N returns again, but ≈ N

τ
only. This

is because the number of disjoint returns reduces rapidly as the size of the window
τ increases. Since we need as many data as possible to perform accurate statistical
analysis, we will collect the returns along our time series by means of a so called
sliding window method.

The sliding window method consists in collecting a return r(τ) for each time
instant, no matter if they overlap. Using this method we can collect N − τ ≈ N
returns r(τ) for each time window τ , thus avoiding any loss of data. Hence the
empirical moments writes

M (e)
q (τ) =

1

N

N
∑

i=1

|ri(τ)|q (2.9)

In what follows we are going to consider processes with stationary increments only.
We are going also to assume stationarity in all the empirical time series we study,
like the financial ones we saw in the first chapter, and to collect the returns with a
sliding window method.
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2.3 Self-affine processes

Now we are ready to define self-affine processes. A stochastic process with stationary
increments x(t) is said self-affine if there exist α ≥ 0 such as, for any time window
τ :

r(τ) ∼ ταr(1) (2.10)

where ∼ means equally distributed to, and α is called the Hölder exponent. This
equation, which involves returns, implies at once a scaling structure for their PDFs:

pτ (u) =
1

τα
g(
u

τα
) (2.11)

where g(u) is the scaling PDF, actually the PDF of the returns over a unit time win-
dow τ = 1, see section (1.3). Eq. (2.11) has in turn a very interesting consequences
on the q-order moments Mq(τ) defined in eq. (2.8):

Mq(τ) = ταqMq (2.12)

where Mq = 〈|r(1)|q〉 is the q-order moment of the scaling PDF g.
As we have already said, the theoretical moments may not exist, or better the

integral in eq. (2.8) may diverge. In the case of a strictly self-affine process the
existence of the moments depends on the behaviour of the scaling function g only:
in order to make Mq finite the tails of g must decay faster than u−(q+1). Since
the moments will be the main tools to study self-affinity and more generally the
invariance under rescaling, in this chapter we will always consider scaling PDFs
whose tails decay fast enough to ensure the existence of the theoretical moment Mq

for every order q. This in turn means that g(u) decays asymptotically faster than
any power law. For instance, an exponential decay for large arguments |u| � 1, like
that of the Gauss’ law, guarantees the convergence of the integrals in eq. (2.8), no
matter how large is q. The problems arising from scaling PDFs whose tails decay
asymptotically as a power law, and thus too slow to ensure the existence of Mq for
q beyond a certain threshold, will be the main issue of the next chapter.

We already met the Hölder exponent α in section (1.3); moreover in that section
we have tried to interpret it in a qualitative way. Now we are going to see more
precisely what the meaning of α is10.

Theorem 2. A continuos self-affine process with Hölder exponent α has a graph G
with Hausdorff dimension

DH(G) = max(1; 2− α)

10recall that a stochastic variable or a process satisfies almost surely a given condition if such
condition holds for the whole space of events Ω, except for a subset of vanishing measure. In other
words the probability of a realization of our stochastic variable or process to do not fulfill the
condition vanishes
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almost surely.

The Hausdorff dimension is a generalization of the usual concept of dimension
to very irregular geometric objects, like a self-affine graph for instance. It is the
main tool in fractal geometry in order to distinguish and classify a huge amount
of fractal sets for which the tools of the classical geometry fail to apply. Among
them there are some functions displaying wild fluctuations at every scale, just like
a typical realization G of a self-affine stochastic process.

It can be shown that the Hausdorff dimension of a smooth function embedded
in the plane R

2 is equal to unity, as expected; moreover DH = 2 for any open
set of the plane. This is because the Hausdorff dimension of a regular set equal the
usual dimension. However a more irregular function can have a fractional dimension
1 ≤ DH < 2 due to its wild fluctuations and above all to their presence at every
scale. Hence the dimension DH is a measure of the roughness of the graph. The
theorem (2) state that the lower is the Hölder exponent α the more the sample graph
G of the process looks irregular, so we recover here the interpretation of α we gave
in section (1.3) on the basis of an heuristic argument.

The empirical evaluation of the Hölder exponent α, by means of eq. (2.12), leads
us to the definition of the Hurst exponent H. Suppose to have a time series of size N .
Obviously we cannot get the moments Mq(τ) since they are theoretical quantities,
but we can collect the returns on our time series and calculate the empirical moments
M

(e)
q (τ) as defined in eq. (2.9). The Hurst exponent tell us how these empirical

moments behave under a scaling transformation, i.e. when the window τ changes.

Definition 2. A time series is simple scaling with Hurst exponent H if there exist

a constant H such as:

M (e)
q (τ) ∝ τHq (2.13)

where the proportionality constant may depend on the order q.

Assuming the existence of all theoretical moments Mq(τ) we know that:

lim
N→∞

M (e)
q (τ) = Mq(τ)

according to the Law of Large Numbers. This means that for a very long history,
namely for a data set of large size N , the empirical moments are equal to the
theoretical ones for all practical purposes. Hence, if our time series is the realization
of a self-affine process, we can use eq. (2.12) to get

H = α (2.14)

It is worth noting that the Hurst and Hölder exponents come from two quite different
definitions, even if they turn out to be equal for self-affine processes. Indeed the
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former is defined using the empirical moments while the latter concerns the PDFs
of the increments. Their meaning should not be confused.

Since the calculation of the empirical moments performed on a single time series
is a rather easy task, it provides us with a straightforward method to get the Hurst
exponent; and in turn the Hölder exponent α in the case of a self-affine process.
This procedures is called the Hurst exponent analysis:

1. for every order q and time window τ calculate lnM
(e)
q (τ) using eq. (2.9);

2. plot lnM
(e)
q (τ) against ln τ for each order q and evaluate the slope D(q) of the

resulting line by means of a linear best-fit:

M (e)
q (τ) ∝ τD(q) (2.15)

3. evaluate again the slope of the line D(q).

Due to simple scaling, the path of a self-affine process has a linear scaling exponent :

D(q) = Hq

As we will see in the last section of this chapter, for processes that are not strictly
self-affine, the scaling function D(q) may have not a costant slope, and thus an
Hurst exponent H(q) may depend on the order q.

There are two main problems in performing the above procedure, both coming
from the finiteness of our data set. The first concerns the very existence of the
moments: as we already said in section (1.4), the finite size N of our time series
makes the summation in eq. (1.10) always finite, but one should take the outcome
very carefully if the theoretical limit Mq(τ) does not exist. The next chapter is
entirely devoted to this problem. In this chapter we take into account process with
converging moments of all orders q. However, even if every moment Mq(τ) exists a
second problem still remains.

Once the process is given, the theoretical moments are completely determined;
on the contrary the empirical ones depend on the particular realization, namely on
the particular sample path. So they are stochastic variables themselves. This in turn
means that the Hurst exponent H is a stochastic variable too. Hence, its calculation
must be followed by an estimation of the statistical uncertainty.

Since the uncertainty associated to the Hurst exponent H, or to the scaling
exponent D(q), is due to its sample dependence, usually one can obtain a confidence
interval simply by repeating the calculation on many different samples, each of size
N . This set of outcomes for H is a statistical ensemble whose mean and standard
deviations provides us with the best value and its uncertainty. Unfortunately in
many applications, like finance, a single time series is only available. There is a
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single history and we cannot repeat it. However, the bootstrap procedure allows us
to get many samples from a single time series.

The bootstrap is a powerful statistical estimator which belongs to the wider class
of the so called resampling methods. The key idea is to extract many sample of size
n < N from the whole time series and to perform the calculation on each subsample,
thus obtaining a set of values. These samples are regarded as an ensemble and the
set of values thus calculated as indipendent realization of H, or D(q). Hence we
can look at the dispersion of this set of values or at the spreading of this bundle
of curves in order to evaluate a confidence interval. Essentially a small dispersion
suggest a great robustness; on the contrary if our outcomes spread over a large range
it means that H is more unreliable and sample dependent. In what follows we will
always evaluate the uncertainty associated to the Hurst exponent H or to the scaling
exponent D(q) by means of a bootstrap method.

2.4 Some simple scaling processes

In this section we are going to apply the generalized Hurst exponent analysis to
two well known processes: the Brownian motion (BM) and the fractional Brown-
ian motion (FBM). They are two self-affine processes, so the simple scaling holds
rigorously for them. Hence it is surely a good idea to check the Hurst exponent
reliability for these processes. Our aim is to test the generalized Hurst exponent on
a simulated time series for which a theoretical result is already known. Hence we
apply the procedure of the previous section, namely the Hurst exponent analysis, on
a single simulation and collect all the returns r(τ) along such history with a sliding
window method. Lets start with the BM.

Definition 3 (Brownian Motion). A process x(t) is a Brownian motion if

1. it is continuous

2. its non overlapping increments are independent;

3. rt(τ) is distributed according to a zero mean Gaussian with variance σ2 = σ2
0τ .

where σ0 is a width parameter.

It is obvious from the definition that the BM is a stationary process as the PDF of
its increments rt(τ) does not depend on the instant t. The most important property
for what concern us is the scaling law of the BM. From the definition itself, the PDF
of the increments r(τ) is

pτ (u) =
1√
2πτ

exp[− 1

2τ

(

u

σ0

)2

]
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Hence the BM is a self-affine process with Hölder exponent α =
1

2
:

pτ (u) =
1√
τ
g(

u√
τ
)

Where the scaling PDF is just a Gauss’ law with vanishing mean and variance σ2
0 :

g(u) =
1√
2π

exp[−1

2

(

u

σ0

)2

] (2.16)

Therefore

� the sample path of a BM has Hausdorff dimension DH = 1.5, see theorem (2)
in the previous section. This makes the graph of a BM rather irregular11.

� we have simple scaling with Hurst exponent H = 0.5:

M (e)
q (τ) ∝ τ

1

2
q

To check the above properties we must first simulate a Brownian motion. Fol-
lowing the definition we can take our increments r(1) independently from the PDF
g of eq. (2.16) and then construct the whole process by summation:

x(t) =

t−1
∑

i=0

ri(1) 0 ≤ t ≤ N

This is a general scheme for a so called Random Walk. It is easy to prove that non
overlapping increments are independent too. Furthermore since the returns over a
time window τ

rt(τ) =
t+τ−1
∑

i=t

ri(1)

are the sum of many independent, identically distributed increments, according to
eq. (2.7) their CF is the product of all the CFs of these increments:

ϕr(τ)(k) =
τ
∏

i=1

ϕri(1)(k)

The CF of the Gauss’ law in eq. (2.16) is exp(−1

2
σ2

0k
2), thus

ϕr(τ)(k) = exp(−1

2
σ2

0τk
2)

11indeed a Brownian motion has not derivative at any point almost surely, otherwise it would
have Hausdorff dimension DH = 1
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which is again the CF of a Gauss’ law12, but with variance σ2
0τ . Hence the returns

r(τ) have the right PDF and this random walk approximates a Brownian motion13.
In fig. (2.1) we show the sample path of a BM with N = 25000 and σ0 = 0.01136;

the time series has about the same size of our financial indexes, see table (1.1), and
the standard deviation σ0 was chosen accordingly, see the unconditioned standard
deviation of the daily returns of the DJI index in table (1.3). In fig. (2.2) we can
see the scaling function D(q) calculated on the whole time series and on several
uniformly extracted samples of size N = 5000. Clearly the Hurst exponent analysis
gives a simple scaling with a very low uncertainty. Our expectation H = 0.5 is
fulfilled regardless of the sample extracted. However we stress that in this case all
the theoretical moments exist.

So far we took a random walk with increments distributed according to a Gauss’
law, but this demand is not necessary in order to have simple scaling with H = 0.5.
Suppose the increments r(1) are independent and equally distributed according to
any density function with finite variance, then the Central Limit Theorem states that
the returns r(τ) are asymptotically distributed according to a Gauss’ law. Hence, at
least asymptotically, the process would seem a BM. This why the particular value
H = 0.5 is called normal scaling. In order to get anomalous scaling, namely a simple
scaling process with H 6= 0.5, we need to relax one of the conditions which allow
the CLT to work. In this chapter we will deal always with density functions whose
moments exist for all orders q; we devote the next one to process for which high
order moments fail to converge. However, we can consider dependent increments.

Definition 4 (Fractional Brownian Motion). A process x(t) is a fractional

Brownian motion of index α if

1. its sample path is continuous;

2. rt(τ) is distributed according to a zero mean Gaussian with variance σ2 =
σ2

0τ
2α.

where σ2
0 is a width parameter, namely the variance of the increments r(1).

If 0 < α < 1 a process satisfying the above definition exists [2]. As in the case
of BM the self-affinity of a FBM is obvious from definition, but now the Hölder
exponent is no longer equal to 1

2
:

r(τ) ∼ ταr(1)

There are two main consequences.

12in other words the Gauss’ law is stable. We will meet again the class of the stable law in the
next chapter

13one may think to the first condition as always satisfied since the continuity concerns a limit
which does not make sense for a discrete random walk
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� According to theorem (2) the sample path has dimension DH = 2− α. Hence
upon varying α we may have a very irregular path with large fluctuations, for
α close to 0, or a more regular graph for an α close to 1.

� The scaling function D(q) turns out to be linear with slope α.

In order to check this expectation we apply the generalized Hurst exponent analysis
to a simulated FBM. However here a problem arises as we know that any random
walk with independent increments cannot help us in simulating a FBM, so we must
first describe a procedure to get such a process.

Note that the definition does not demand independence among increments; in-
deed they are not. Remembering that x(t) = r0(t) as x(t) = 0 one can calculate the
linear correlation between the present value x(t) of the process and the next return
rt(τ).

〈x2(t + τ)〉 = 〈x2(t)〉+ 〈r2
t (τ)〉 + 2〈x(t)rt(τ)〉

Hence, using that

σ2 = 〈x2(t)〉

due to the vanishing of the mean 〈x(t)〉 = 0, one get:

〈x(t)rt(τ)〉 =
1

2
σ2

0[(t+ τ)2α − (t)2α − (τ)2α] (2.17)

It is worth stressing that if α =
1

2
, as in the case of a BM, then the last expression

vanish. Otherwise the increments are correlated. For α < 1
2

the next increments
is negatively correlated with the present value of the process: a positive past trend
give rise to a negative coming return. On the contrary, for α > 1

2
, positive values

likely give rise to positive returns.

Using eq.(2.17) we easily find the correlation between the values of the process
at two different instants t2 ≥ t1. Since 〈x(t1)x(t2)〉 = 〈x2(t1)〉+ 〈x(t1)rt1(t2 − t1)〉:

〈x(t1)x(t2)〉 =
1

2
σ2

0[t
2α
1 + t2α

2 − (t2 − t1)2α]

Then we use this result to define a random walk and show such random walk to be
the discretization of a FBM.

1. Take the symmetric matrix A of size N with entries

Aj i =
1

2
[j2α + i2α − |j − i|2α]
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2. Let us consider the matrix L such as

L
T
L = A

The matrix L is just the Cholesky decomposition of A and, due to the sym-
metry of A itself, it is actually an upper-triangular matrix [16].

3. Let ~B be a vector of N independent realizations of a stochastic variable dis-
tributed according to a Gauss’ law, as in eq. (2.16). The elements Bi of ~B are
the increments of a BM.

4. Build the vector ~F by applying the matrix L to ~B:

~F = L ~B

The elements Fi of ~F are the values of our FBM at time i.

To see that the random walk Fi for j = 1 . . .N is a FBM of lenght N we start
by proving that it has the right correlations. Indeed

〈FjFi〉 = 〈(
N
∑

µ=1

Lj µBµ)(
N
∑

ν=1

Li νBν)〉

=
∑

µ ν

Lj µLi ν〈BµBν〉

= σ0

∑

µ

Lj µLi µ = σ0Aj i

where the independence and the variance σ0 of the elements of ~B have been used.
Our process has thus the expected correlations among their values. To show that
the returns over a time window τ are distributed according to a Gauss’ law with
zero mean and standard deviation σ2 = σ0τ

α we can use the characteristic function
of Fj. Since the characteristic function of Bi is ϕBi

(k) = e−
1

2
k2

we get14, using the

14here we need the scaling property of the characteristic functions. Let x be a stochastic variable
and c any real constant, then cx is a stochastic variable too. From the definition of CF in eq. (2.3)
it is easy to prove that

ϕcx(k) = ϕx(ck)
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summation rule of the CFs (eq. 2.7):

ϕFi
(k) =

N
∏

µ=1

ϕLi µBµ
(k)

=

N
∏

µ=1

ϕBµ
(Li µk)

= exp(−1

2

N
∑

µ=1

L
2
i µk

2)

Due to the symmetry Li µ = Lµ i

N
∑

µ=1

L
2
i µ = Ai i

and so

ϕFi
(k) = exp[−1

2
(iαk)2]

This means that the process is self-affine with Hölder exponent α:

Fi ∼ iαF1

and, as expected, the variance grows accordingly.
In fig. (2.3) and (2.4) we show the sample path of a FBM with Hölder exponent

α = 0.25 and α = 0.75 respectively. The size of both the time series is N = 5000
and the width parameter was chosen according to that of the DJI index, see table
(1.3): σ0 = 0.01136. It is worth noting that, according to theorem (2) the sample
path of the first simulation looks much more irregular than that of the second one.

In fig. (2.5) we can see the scaling function D(q) calculated on the whole time
series and on several uniformly extracted samples of size N = 1000 for both the
previous simulations. Clearly the Hurst exponent analysis gives a simple scaling
with a quite low uncertainty. Our expectation H = 0.25 for the first simulation and
H = 0.75 for the second one is fulfilled regardless of the sample extracted. However,
we remark that, for every FBM, the q-order moment of the returns r(τ) always
exists, no matter how large is q.

2.5 The concept of multiscaling

Until now we have regarded the Hölder exponent α as a constant. Indeed we defined
it in eq. (2.10) for strictly self-affine processes only. In this section we are going
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Figure 2.1: Random walk simulation of a Brownian motion of size N = 25000. The independent
increments were drawn out from a zero mean Gauss’ distribution with standard deviation σ0 =
0.001136.
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Figure 2.2: Scaling function D(q) for several samples (N=5000,black curves) extracted from the

whole time series (red curve) of fig. (2.1). The theoretical line D(q) =
1

2
q is drawn in blue.
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Figure 2.3: Random walk simulation of size N = 5000 of a Fractional Brownian motion with
Hölder exponent α = 0.25. The increments are distributed according to a zero mean Gauss’ law
with standard deviation σ0 = 0.001136.
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Figure 2.4: Random walk simulation of size N = 5000 of a Fractional Brownian motion with
Hölder exponent α = 0.75. The increments are distributed according to a zero mean Gauss’ law
with standard deviation σ0 = 0.001136.
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Figure 2.5: Scaling function D(q) for several samples (N=1000,black curves) extracted from

the whole time series (red curve) of fig. (2.3) and (2.4). The theoretical lines D(q) =
1

4
q and

D(q) =
3

4
q are drawn in blue.

to generalize the concept of Hölder exponent to process for which self-affinity does
not hold. Let x(t) be a continuous stochastic process and rt(τ) = x(t + τ) − x(t)
the returns over a time window τ , as usual; then the local Hölder exponent at the
instant t is defined as follows15 [9, 21]:

α(t) = lim
τ→0

ln |rt(τ)|
ln τ

(2.18)

Some remarks are in order at this point.

� Empirically one cannot achieve the limit in eq. (2.18) since a discrete time
series has necessarily a minimum time window: in dealing with our financial
indexes, for instance, one cannot take a time window less than one day. How-
ever, since we are interested in the relationship between the Hölder exponent
and the Hurst one, we will consider the local Hölder exponent from a theoret-
ical viewpoint only and do not attempt to calculate it. In particular we will
see that eq. (2.14) does not hold anymore if α is not a constant.

� We are considering processes with stationary increments, as in the previous
sections. The local Hölder exponent is defined on a single realization, while

15sometime this limit is regarded as a logarithmic derivative [21]
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stationarity concerns the density function pt,τ of the increment rt(τ): if such
PDF does not depend on time then the process has stationary increments. In
other words the limit in eq. (2.18) depend on the particular realization we
are considering: if, for certain instant t, one gets a certain α(t) in the present
realization, then for another realization, at the same instant, one may find a
different result for α(t)

It is worth noting that α(t) retains the meaning that the Hölder exponent has for
self-affine processes. According to the interpretation we gave of α in section (2.3), if
we rescale a small part of a self-affine time series we statistically get a graph equal
to the whole time series, while the exponent α links together the rescaling factors
on the time axis and on the vertical one. Looking at eq. (2.18) we recover the same
interpretation if such rescaling takes place on a very small interval around a fixed
instant t.

In order to compare eq. (2.18) with the previous one (eq. 2.10) it is worth
showing their equivalence for a stationary self-affine process with Hölder exponent
α0. Using self-affinity we have

ln |rt(τ)|
ln τ

∼ α0 +
ln |r(1)|

ln τ

where ∼, as usual, means ’equally distributed’. Next, using the Chebyshev inequality
[12] we find the probability for the rate in the righthand side to exceed any fixed
positive and very small constant ε:

∀ε P
(
∣

∣

∣

∣

ln |r(1)|
ln τ

∣

∣

∣

∣

≥ ε

)

≤ 1

(ε ln τ)2

∫ ∞

−∞
u2pln |r(1)|(u) du

=
1

(ε ln τ)2

∫ ∞

−∞
(ln |u|)2g(u) du ∝ (ε ln τ)−2

where g is the PDF of the returns r(1). Hence, when τ → 0, this probability vanishes
for every ε implying that

∀ε lim
τ→0
P
(
∣

∣

∣

∣

ln |rt(τ)|
ln τ

− α0

∣

∣

∣

∣

≥ ε

)

= 0

This in turn means that for every self-affine process:

α(t) = α0

In section (2.3) we defined a simple scaling process and found that a self-affine
process with Hölder exponent α0 is simple scaling, i.e. it has a linear scaling exponent
D(q) with slope H = α0. Since we are interested just in the Hurst exponent H we
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wonder the behaviour of D(q) when a time series has a time varying Hölder exponent
α(t).

Let x(t) 0 ≤ t ≤ T be the realization of a continuous process with fixed size T .
Then divide the interval [0;T ] into m parts by means of m points tj j = 1 . . .m,

thus obtaining a mesh of m subintervals {tj; tj+1} of size τ =
T

m
. Inside each

subinterval we have a return rj(τ) = x(tj+1)− x(tj) over a time window τ . Now let
mτ (α, ε) be the number of instants tj for which the return inside the corresponding
subinterval satisfy:

τα+ε ≤ |rj(τ)| ≤ τα−ε

Provided the following double limit exists, we can define [9] the multifractal

spectrum S(α) of our continuous process x(t) as

S(α) = lim
τ→0 , ε→0

− lnmτ (α, ε)

ln τ
(2.19)

We are going to show that this spectrum allows us to find the scaling exponent D(q)
and thus the Hurst exponent, but first some remarks are in order. The expression in
eq. (2.19) may seem rather obscure, it has a straightforward physical interpretation
instead [21]. Take the subset E(α) ∈ [0;T ] containing the instant t whose local
Hölder exponent is α(t) = α; then S(α) is just the Box-dimension of the set E(α).

In fractal theory the Box-dimension of a geometrical set is often used in place
of the Hausdorff dimension DH since it is much more easy to calculate, both from
an empirical and a theoretical point of view, see [9]. Furthermore in many cases
these two dimensions turn out to be equal16. Hence the spectrum S(α) provides an
estimation of the size of the set E(α): the larger the spectrum the more numerous
the instant t at which α(t) = α. In other words S(α) tells us how frequently α(t) = α
along our time series. In particular if S(α) < 1 the set E(α) has a vanishing lenght
and thus the instants at which α(t) = α occur very rarely. However, as we are going
to see, even such a rare α can affect the scaling exponent D(q).

The following theorem [9] is a first step in order to relate the multifractal spec-
trum to the scaling exponent.

Theorem 3. If S(α) exists, then

sup
α

[S(α)− αq] = 1− lim
τ→0

lnM
(e)
q (τ)

ln τ
(2.20)

Recall that M
(e)
q (τ), as defined in eq. (2.9), are the empirical moments of the

PDF of the returns r(τ) collected along the time series. We remark that for the

16for the sake of precision it can be shown that the Hausdorff dimension DH(E) of any set E is
never larger than the corresponding Box-dimension
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validity of this theorem, as for the validity of all the results of this section, the
existence of the moments is needed.

It is worth noting that for a self-affine process with Hölder exponent α0 we get
a pointwise spectrum. Since we have M

(e)
q (τ) ∝ τα0q, from eq. (2.12), then we get:

∀q ∈ R sup
α

[S(α)− αq] = 1− α0q =⇒ S(α) =

{

1 if α = α0

−∞ otherwise

According to the previous interpretation of S(α) as the Box-dimension of the set
E(α), this means that α(t) = α0 always, at all instant. Therefore, as expected,
we have a single Hölder exponent α0 and the set of instants for which α(t) = α0

has Box-dimension S = 1, namely the maximum possible17. If the spectrum has a
support wider than a single point, then there are many exponents in our time series:
the broader the spectrum the wider the range of exponents available. In this case
we have multifractality.

The link between S(α) and the scaling exponent D(q) comes at once from the
definition of D(q) in eq. (2.15):

M (e)
q (τ) ∝ τD(q)

Substituting the above expression in eq. (2.20) one finds that the scaling exponent
and the multifractal spectrum are related by a Legendre transform:

sup
α

[S(α)− αq] = 1−D(q) (2.21)

Then, once the spectrum S(α) is given, one can calculate D(q).

For instance a pointwise spectrum with support on α0, as that of a self-affine
process, implies

D(q) = α0q

namely a linear scaling function, which is distinctive of simple scaling. On the
contrary a broader spectrum gives a non linear scaling function D(q), and thus a
non costant Hurst exponent H(q). In this case we have multiscaling:

Definition 5. A stationary time series is multiscaling if:

M (e)
q (τ) ∝ τD(q) (2.22)

where the scaling exponent D(q) is not linear.

17this is because the interval [0; T ] containing all the sets E(α) has just this dimension. On the
other hand it is easy to see from the definition (eq. 2.19) that S(α) ≤ 1
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A comment is in order at this stage. We saw in section (2.3) that for a strictly
self-affine process with Hölder exponent α0 the invariance under rescaling holds, or
better the PDFs pτ of the returns r(τ) satisfy eq. (2.11). Now one may wonder
about the validity of such invariance for multiscaling time series. Surely eq. (2.11)
does not hold for a multifractal process as it implies simple scaling at once. However,
according to the interpretation of the multifractal spectrum S(α) as the dimension
of the set E(α), it turns out that the invariance under rescaling may still hold
approximately.

Suppose S(α) to have a single maximum in α∗, namely: S(α∗) = 1 and S < 1
elsewhere. Then such an exponent leads the whole time series as any other exponent
α 6= α∗ has a set E(α) of vanishing lenght. In other words, even if the spectrum
S(α) is broad, it may happen that a single exponent α∗ is much more likely than all
others, so that it leads the observable behaviour of our time series. In conclusion,
even for a multiscaling time series, one may empirically find an approximate scaling
invariance with Hölder exponent α∗:

pτ (u) ≈
1

τα∗
g(

u

τα∗
)

While the estimation of an Hölder exponent may be quite hard to beat, due to
the limit in eq. (2.18), the evaluation of D(q) is much simpler. Hence, in order
to get α∗, we use the scaling exponent D(q). For each q, let S(α) − αq to have a
maximum in α(q), so that

∂

∂α
S[α(q)] = q

Then, using eq. (2.21) we get S[α(q)]−qα(q) = 1−D(q) and, by derivation on both
side:

∂

∂q
D(q) = q

∂

∂q
α(q) + α(q)− ∂

∂q
α(q)

∂

∂α
S[α(q)]

= α(q) (2.23)

Now consider q = 0. Since18 D(0) = 0, from eq. (2.21) we find that:

sup
α
S(α) = 1 ⇒ S[α(0)] = 1

If the spectrum S has a single maximum, then α(0) = α∗ and using eq. (2.23):

α∗ ≈
∂

∂q
D(0) (2.24)

18indeed, according to eq. (2.15) and (2.9), for q = 0 we get M
(e)
0 (τ) = 1 for each window τ ,

and thus D(0) = 0
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2.6 Hurst exponent estimation for some financial

indexes

Many real time series coming from several fields of the physics of the complex systems
display a non linear scaling exponent [62, 66], and thus are multiscaling, according
to eq. (2.22). In finance the non linearity of the scaling exponent is a common
feature to a large number of time series [57, 58, 59]. In this section we are going to
estimate the scaling exponent D(q) for the time series of the financial indexes we
analized in chapter (1) by performing the procedure outlined in section (2.3).

As in the case of the Brownian motion and of the fractional Brownian motion
of section (2.4), in order to test the robustness of the outcoming scaling exponent
D(q) we use a bootstrap method: the generalized Hurst exponent analysis has been
performed on the whole time series and on many uniformly extracted samples. This
results in a bundle of curves D(q) for each index. In fig. (2.6 - 2.9) the red curves
are the scaling exponents estimated, for each index, on the available time series,
while the black ones are the scaling exponent estimated on many samples extracted
from the whole series itself.

Since the returns of our financial time series are strongly correlated, the extracted
subsample should not overlap too much otherwise they cannot regarded as distincts:
their separation should be greater than the decorrelation time, namely the time
interval needed to regard two returns as independent, see section (1.2). However,
the reliability of the bootstrap estimator is as greater as the extracted samples are
longer and more numerous. Hence, the size of the samples we have drawn from the
whole series has been set equal to N = 5000; moreover in the extraction procedure
very overlapping subsamples have been avoided.

The first feature one can note is the common global pattern of all the graphs.
Taking into account the scaling exponent related to the whole time series, namely
the red thick curves, one can see that:

� for low orders the shape of D(q) is nearly linear with slope H ≈ 1

2
;

� as the order increases all the scaling exponents start to bend and their be-
haviour is no longer linear.

In section (1.3) we have seen that our financial time series are invariant under
rescaling and so that the PDFs of the returns over different time windows τ , if
properly rescaled according to τα, collapse in a singlescaling function. In that section
we estimated empirically the value of α by attempting to obtain the best collapse
possible. According to eq. (2.24), the slope of the scaling exponent D(q) near the
origin q = 0 accounts for the estimation α ≈ 0.5 we have given in eq. (1.6).
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The global behaviour of D(q) is not linear. It is worth noting that some indexes,
like the DJI and specially the S&P, display a quite strong downward bending, while
the others diverge slightly from the line D(q) = 1

2
q. This behaviour is generally

accepted as multiscaling.
However, in taking into account also the bootstrap samples for each index,

namely the black curves, one can easily distinguish two regions:

� for q lower than a certain order q∗ the curves D(q) related to the samples
extracted from the whole time series are all close together, thus suggesting
that the outcoming scaling exponent is not sample dependent;

� on the contrary, for q > q∗, the behaviour of D(q) become very erratic and
strongly sample dependent and accordingly its uncertainty becomes very high;

� for q > q∗ there is also a kind of clustering among the curves D(q) estimated
from different extracted samples. Their spreading does not span a continous
area: the behaviour of D(q) is nearly the same for some extracted samples and
then changes abruptly.

One can approximately estimate
q∗ ∼ 3

for all the indexes considered.

In order to understand the erratic behaviour of the scaling exponents D(q) it
is worth going back to the case of the BM and of the FBM. In section (2.4) we
performed the generalized Hurst exponent analysis on a single history and get the
scalind exponent D(q) for two kinds of exactly solvable models: the Brownin motion
and the fractional Brownian motion. We saw that the outcoming D(q) was a line
with the expected slope H. Furthermore the uncertainty, estimated with a bootstrap
method, was much lower than in the present case: the scaling exponent did not
depend on the extracted sample.

One of the main differences between our financial indexes and the BM, or the
FBM, is the asymptotic behaviour of the density function of their increments. While
the BM and the FBM have tails that decay faster than exponentially, the return
PDFs of our indexes are fat-tailed, see section (1.4). More precisely, for large abso-
lute arguments, the scaling function g(u) follows a power law:

g(u) ≈ 1

uγ
if |u| � 1

see eq. (1.7). This means that the theoretical q-order moments Mq(τ), as defined in
eq. (2.8), do not exist for q ≥ q0; where q0 = γ − 1. We estimated γ ≈ 4, and thus

q∗ ≈ q0
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Figure 2.6: Scaling function D(q) for several samples (N=5000,black curves) extracted from the
whole time series (red curve) of the Dow Jones Industrial (DJI) index.

This means that the order at which the scaling exponent D(q) becomes very
sample dependent agrees with the threshold order q0 beyond which the moments
are expected to diverge. There is no any reason for such a coincidence. We believe
it is a clue suggesting that the non-existence of a limit for the sum in eq. (2.9) makes
the determination of the scaling exponent very sample dependent. This is the first
evidence suggesting that the scaling exponent D(q) resulting from the generalized
Hurst exponent analysis becomes unreliable inside the range of the orders for which
the corresponding moment does not exist. In the next chapter we will see another
one, even more persuasive, with deep consequences on many multiscaling claimed
until now in finance.
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Figure 2.7: Scaling function D(q) for several samples (N=5000,black curves) extracted from the
whole time series (red curve) of the Standard & Poor’s Composite (SPC) index.

0 1 2 3 4 5 6 7

q
0

1

2

3

4 D(q)

Figure 2.8: Scaling function D(q) for several samples (N=5000,black curves) extracted from the
whole time series (red curve) of the Dow Jones Transportation (DJT) index.
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Figure 2.9: Scaling function D(q) for several samples (N=5000,black curves) extracted from the
whole time series (red curve) of the Standard & Poor’s (S&P) index.
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Chapter 3

Hurst exponent reliability

In the previous chapter the Hurst exponent analysis led correctly and with great
accuracy to simple scaling when applied to simple scaling processes. On the contrary
it led to multiscaling when performed on financial indexes. Can we claim such a
multiscaling to be a reliable result as in the examples of section (2.3)? There are
two main differences:

1. the statistical uncertainty associated to the scaling function for high orders
is very important, much larger than in the case of BM and FBM, see section
(2.6);

2. while the increments of a BM or a FBM are distributed according to a Gauss’
law, those of our financial indexes follow a density function whose tails decay
as a power law, see section (1.4).

In particular the second point implies that the theoretical moments no longer exist
for large orders and therefore the scaling exponent becomes ill-defined, as it is based
on moments’ existence (eq. 2.13). We wonder whether the Hurst exponent still
leads to a correct picture when large returns follow a Pareto tail.

3.1 Lorentzian Random Walks

To test the reliability and the meaning of the Hurst exponent when large increments
are distributed according to a power law we need an exactly soluble model displaying
this feature. In other words we need to calculate the theoretical scaling exponent
D(q) of our model and then to compare it with that coming from a simulation. From
a mathematical viewpoint a random walk with independent identically distributed
increments would make calculations easy to perform, but the density function g of
these increments should be stable and fat-tailed.

59
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A density function g(u) is stable if the sum y =
∑τ

i=1 xi of many stochastic
variables xi identically distributed according to g(u) follows again the same rescaled
PDF:

py(u) =
1

τα
g(
u

τα
) (3.1)

If the variables xi are the increments rt+i(1) i = 1 . . . τ then their sum y is the
return rt(τ) over a time window τ . Therefore the stability of g guarantees the self
affinity of our random walk and the exponent α in eq. (3.1) is just the Hölder
exponent.

We know the Gauss’ law to be stable, see section (2.3), but its tails decay ex-
ponentially and all its moments exist, so we must consider other stable density
functions, namely the so called Levy stable law. Since we are dealing with the sum
of independent increments, in order to find the class of the stable laws it is conve-
nient to look at the CFs. Consider the characteristic function ψ(k) of the stable law
g(u). Due to the main property of CFs (eq. 2.7), the CF ϕy of the sum y is written
as

ϕy(k) = ψτ (k)

Since the stability condition (eq. 3.1) is just a scaling relation among PDFs, then
we can use the scaling rule for CFs

ϕy(k) = ψ(ταk)

to get
ψτ (k) = ψ(ταk)

Taking logarithms, one obtains

τ lnψ(k) = lnψ(ταk)

Here the time window τ is an integer as the summation can involve only an integer
number of addends, but one can show that the above equation also holds for every
real τ . Hence, the class of the CFs whose density is stable1 can be written as:

ψ(k) = exp(−|σk| 1α ) (3.2)

where σ > 0 is a width parameter2. In order ϕ(k) to be a CF, i.e. in order the

corresponding PDF to be positive definite α must satisfy [8]: α ≥ 1

2
. Then for α

1and symmetric
2this parameter is positive because the modulus of a CF must be less than 1. Indeed recalling

the very definition of CF in eq. (2.3) we find that

∀k ∈ R |ϕ(k)| ≤ 1

since |eiku| = 1
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ranging inside this interval [ 1
2
;∞], each CF in eq. (3.2) corresponds to a given Levy

stable law, but finding its analytical form is a more difficult task. For α = 1
2

we
recognize the CF of a Gauss’ law, then the normal distribution belongs to the class
of the Levy stable laws and the corresponding independent random walk is just the
brownian motion of section (2.3).

For general values of α > 1
2

the exact form of the related stable PDF Lα(u) is
not known, but one can show that asymptotically the tails of such PDF decay as a
power law:

Lα(u) ≈ c

u1+ 1

α

This means that, if α 6= 1
2
, the theoretical q-order moments of Lα exist for q < 1

α

only. In particular the Gauss’ law is the only element of the class for which the
variance exist3, moreover it is the only element whose tails decay exponentially.
Since we were looking for a stable PDF with power law tails to build our random
walk, we can draw out the increments from any density Lα(u) save the Gauss’ law.

For what follows we will need the analytical form of Lα. Fortunately for α = 1
the CF ϕ1(k) = e−σ|k| is simple enough to make the inverse Fourier transform exactly
soluble. Hence

L1(u) =
1

2π

∫ ∞

−∞
ϕ1(k)e

−iku dk

=
1

2π

∫ ∞

0

[

e−(σ+iu)k + e−(σ−iu)k
]

dk

= − 1

2π

[

e−(σ+iu)k

σ + iu
+
e−(σ−iu)k

σ − iu

]∞

0

=
1

2π
(

1

σ + iu
+

1

σ − iu)

=
σ

π

1

σ2 + u2

This PDF is the Lorentz distribution and will be denoted simply with

L(u) =
σ

π

1

σ2 + u2
(3.3)

thus dropping the subscript 1.
To conclude we perform a stationary random walk by extracting the independent

increments r(1) from a symmetric Lorentz distribution with zero mean and width
parameter σ and summing them up to get a Lorentzian Random Walk (LRW). Since

3If the variance exist then the Central Limit Theorem would state that the sum of many
independent variables distributed according to Lα follows a Gauss’ law, therefore Lα could not be
stable.
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the process is stationary, as in section (2.2) we denote the increments rt(τ) simply
with r(τ), thus dropping the subscript t. The notation with the subscript will be
used only when we will need to take into account these increments individually, like
inside a summation. It is worth stressing some very important points.

� Since L does not depend on the instant t this random walk is stationary.

� Since this L is stable, the returns r(τ) over a time window τ are exactly self
affine with Hölder exponent α = 1:

r(τ) ∼ τr(1)

Hence

pτ (u) =
1

τ
g(
u

τ
) (3.4)

where pτ is the PDF of the returns rt(τ), as usual, and g = L is just the scaling
PDF.

� Since the tails of a Lorentz distribution asymptotically follow a power law:

L(u) ≈ σ

πu2
when u� σ

and thus the theoretical q-order moment Mq of L exists for q < 1 only.

Since the return PDFs pτ are all equal up to a scale factor τ , we could forecast
D(q) to be a straight line with slope H = 1, as in the case of the Gaussian Random
Walk, no matter how large the order q is, provided that the sample size N is large
enough4:

D(q) = q ∀ q ≥ 0

Surely the above equation is true for q < 1, when theoretical moments Mq(τ) exist,
see eq. (2.8). For q ≥ 1 the theoretical moments diverge, but for a given sample of

size N we empirically get a finite value M
(e)
q (τ), see eq. (2.9). However, even for

N → ∞, this value cannot converge to anything as the limit Mq(τ) does not exist,
so we ask whether the scaling exponent D(q) should be still linear.

In order to find the behaviour of D(q), according to the procedure outlined in
section (2.3), we are going to calculate the logarithm of the empirical moments

M
(e)
q (τ). We can regard lnM

(e)
q (τ) as a stochastic variable depending on a set of N

returns r(τ). Then we prove the following theorem, which tells us that for a simple
scaling the expected value of the scaling exponent D(q) is linear no matter whether
the theoretical moment exist or not.

4for an increasing sample size N the sum in eq. (2.9) approaches the theoretical value (eq. 2.8)
better and better provided that the latter exists
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Theorem 4. For every self affine process with Hölder exponent α:

〈lnM (e)
q (τ)〉 = 〈lnM (e)

q 〉 + αq ln τ (3.5)

where M
(e)
q is the empirical q-order moment of the scaling PDF g.

Proof:
Let us calculate the density function P

(τ)
q (u) of the logarithm of the empirical mo-

ments in term of the density pτ of r(τ). The stochastic variables |ri(τ)|q are dis-
tributed according to5

|ri(τ)|q ∼
2

q

pτ (u
1/q)

u1−1/q

hence their characteristic function is

ϕ(τ)
q (k) =

2

q

∫ ∞

0

du exp ikuqpτ (u)

Using the self-similarity of pτ , see eq. (3.4), one easily gets6:

ϕ(τ)
q (k) = ϕ

(q)
1 (ταqk)

Since |rτ(i)|q are independent, the characteristic function of their sum is the product

of all characteristic functions, so the CF of M
(e)
q (τ) is:

[

ϕ(τ)
q (

k

N
)

]N

=

[

ϕ(1)
q (ταq k

N
)

]N

This means that the PDFs of M
(e)
q (τ) also are self-similar:

M (e)
q (τ) ∼ τ qαM (e)

q

This in turn implies7 that the PDFs P
(τ)
q of the logarithm of q-order moments are

shifted by a quantity αq ln τ :

P(τ)
q (u) = P (1)

q (u− qα ln τ)

so the result follows.

5if x is a stochastic variable with PDF px then the variable y = xq has PDF py(u) =
1

q

px(u1/q)

u1−1/q
.

The factor 2 in front comes from the symmetry of Lλ(u) for the transformation u → −u
6for the sake of generality, since the theorem is valid for every α, in what follows we left the

Hölder exponent unspecified, but it should be borne in mind that α = 1 in the present case
7if the stochastic variable x has distribution px then y = ln x is distributed according to py(u) =

eu p(eu)
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2

In our case, a Lorentzian random walk, the theorem above states a linear average
scaling exponent with slope α = 1. Indeed, consider a large amount N of indepen-
dent returns coming from a Lorentz law L. For q < 1 the theoretical moment exists
and, due to the Law of Large Numbers, M

(e)
q (τ) are very close to Mq(τ), at least

for N large enough. Therefore P
(τ)
q are very close to Dirac δ functions centered in

lnMq(τ) and eq. (3.5) simply becomes:

lnMq(τ) = lnMq(1) +D(q) ln τ with D(q) = q

as expected.
Suppose now q ≥ 1. In this case limN→∞〈lnM e

q (τ)〉 = ∞ and P
(τ)
q cannot

converge to a Dirac δ. Actually it cannot converge to any density function. This
means that for q ≥ 1 the empirical scaling exponent D(q) may display important
deviations from its average behaviour, even for a very large N . Anyway eq. (3.5)
always holds, no matter how large is the order q. Therefore, once N is given, the
dependence on τ of P

(τ)
q still implies that the empirical curve D(q) should follow

a straight line with slope α = 1 if one consider statistical averages of lnM
(e)
q (τ).

In conclusion a self-affine process with independent increments has a linear scaling
exponent D(q) no matter whether the theoretical moments exist or not8.

In order to verify empirically theorem (4) we

� fix the order q and generate a set of N returns r(τ) for each time window τ ;

� calculate the corresponding moments M
(e)
q (τ) by means of eq. (2.9);

� find the scaling exponent D(q) by means of eq. (2.15);

� repeat the whole procedure many times for each order q, thus getting a set of
exponents D(q).

Fig. (3.1) shows the theoretical line D(q) = q and the scaling exponents calculated
in this way together with their average at each q. For each order q we calculated
70 exponent D(q), using the procedure just outlined above. When the theoretical
moment exists, for q < 1, we can see that the scaling exponents D(q) follow a
straight line with slope α = 1, while for q ≥ 1 they start to behave very chaotically,
although the size N = 25000 is quite large. However, their average follows the
theoretical line almost perfectly, according to theorem (4). We stress that for every

8at least in a probabilistic sense. In deriving eq. (3.5) we made not any hypothesis on the
existence of moments, but an exact equation is only possible when they are finite. However the
key point here is that the scaling exponent D(q) is expected to grow with the order q
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order q and window τ the variables lnM e
q (τ) are calculated by means of different

sets of returns, each of size N .

Since in many practical cases, like finance, one cannot restart the process to get
returns from different histories, one may worry about the validity of the theorem (4)
when a single time series is only available. Hence we generate a single time series of
size N and calculate the scaling exponent by means of the returns collected on such
history using a sliding window method.

A simulation of a lorentzian random walk is shown in fig. (3.2); as before in the
case of the gaussian random walk N = 25000. When the generalized Hurst exponent
calculation is performed on the simulated series and on many randomly extracted
samples of size N = 5000 we get a somehow unexpected result: within a small error,
all curves strongly bend downward at q = 1. It is very important to stress that now
we collect returns from a single history, as we have to do for any financial index.

For smaller orders the slope is H = 1, but beyond q = 1 the Hurst exponent
vanishes and the curves D(q) become horizontal, see fig. (3.3). We stress that all
the curves D(q) become suddenly horizontal when q = 1, i.e. at the threshold order
for diverging moments:

D(q) =

{

q if q < 1
1 if q ≥ 1

(3.6)

Furthermore such behaviour does not depend on the choice of the sample. However
we just saw that the average ofD(q) should follow a straight line with slopeH = 1, so
our scaling exponent should statistically grow with q. Why does the Hurst exponent
fail to show the correct simple scaling if estimated on the basis of a single history?

The bending of D(q) is generally accepted as multiscaling, or bifractality, but in
the next section we try to explain the behaviour of D(q) otherwise. We claim that
the process is really simple scaling, but when returns are collected along the same
time series a very simple mechanism arising from power law tails bends the curve
D(q) and leads to a strong spurious multiscaling.

3.2 Pareto tails as generators of apparent multi-

scaling

Consider again a single Lorentzian random walk of size N and suppose the empirical
sum M

(e)
q (τ) of eq. (2.9) can be well approximated by an integral like that in eq.

(2.8), at least when N is large. For an order q ≥ 1 this integral does not exist, but
the sum does because the sample size is finite.

Hence, we stop the upper limit of integration at some finite value R. This could
be a reasonable request: R can be seen as the largest return in our sample, see also
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Figure 3.1: Scaling exponents of the empirical moments calculated on a set of returns of size
N = 25000 (black points). For each order q we obtained 70 exponents D(q). The red curve show
the average scaling exponent, while the blue line is the theoretical expectation.
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Figure 3.2: Simulation of a Lorentzian random walk of size N = 25000. The independent
increments were drawn out from a zero mean Lorentz’s distribution with width parameter γ =
0.00614. This parameter, see eq. (3.3) was set in order to fit the width of the PDF of the daily
returns of the DJI index, see table (1.3).
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Figure 3.3: Scaling exponents D(q) for several samples (N = 5000, black curves) extracted from
the whole series (red curve) plotted in fig. (3.2). The theoretical line D(q) = q is drawn in blue.

[5]. Actually R should be written as R(τ) because it depends on the time window9

τ of the returns r(τ). Indeed we are collecting returns using a sliding window from
a single history of size N ; this means that for every τ we get a set of N returns; so,
for every τ there is an upper bound to the corresponding set of returns.

In particular, one would expect R(τ) to be an incresing function of the time
window τ . Consider for instance a Brownian motion: we know, from its definition
in section (2.4), that the variance of p(τ) grows linearly with τ . Hence, for a given
time series of fixed size N we expect the largest return among rt(τ) t = 1 . . . N to
grow as

√
τ . For a fractional Brownian motion of index α, see section (2.4) again,

one expect R(τ) ∝ τα. Moreover, for a general self-affine process with a given Hölder
exponent α, we would expect, on the basis of eq. (2.10), that

R(τ) ∝ τα

On the contrary our key theorem states that for a LRW R(τ) is costant.

Theorem 5. Consider a single Lorentzian random walk, namely a single time series

with independent increments distributed according to a Lorentz law L. If all the

returns are collected along this history by means of a sliding window, then

R(τ) ≈ R

9for example, in the case of a gaussian random walk one must take R(τ) =
√

τR(1) in order for
the integral

∫

|u|<R(τ) |u|qpτ (u) du to behave like the empirical sum (eq. 2.9)
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i.e. R(τ) does not depend on the window τ .

Surely R grows if the sample size N is increased, since with more data available
one can explore tails better and better, but for a fixed N it is a constant. In the
next section we are going to justify this somehow strange statement10, but first we
show that it can explain the observed behaviour of D(q).

According to the theorem (5), for a large sample size N we assume as a starting
point that11:

M (e)
q (τ) ' 2

∫ R

0

uqpτ (u) du (3.7)

If this is true, take12 q =
n

m
m ≥ 1.

Using simple scaling (eq. 3.4) and the substitution u = wm

M (e)
q (τ) = 2τ q

∫ R/τ

0

du uqL(u)

=
2m

π
(στ)q

∫ R̂

0

dw
wn+m−1

1 + w2m

=
2m

π
(στ)q

∫ R̂

0

dw

(

n−m−1
∑

i=0

ai w
i −

2m−1
∑

i=0

ai
wi

1 + w2m

)

(3.8)

Where we put R̂ =

(

R

στ

)1/m

The last equality (eq. 3.8) comes at once from this algebraic identity:

un+m−1 = (1 + u2m)

n−m−1
∑

i=0

ai u
i −

2m−1
∑

i=0

ai u
i

ai =

{

(−1)j+1 if ∃ j | i = n− 1− (2j − 1)m
0 otherwise

(3.9)

Actually, the last sum on the right hand side of eq. (3.8) contains a single term
only. Indeed one can prove, using the definition of the coefficients ai in eq. (3.9),
that they all vanish except one in the range 0 ≤ i ≤ 2m − 1. Let a` = (−1)`+1 be
this non zero coefficient; then, according to eq. (3.9) the integer ` must satisfy

0 ≤ φ ≤ 2m− 1 with φ = n− 1− (2`− 1)m (3.10)

10moreover we are going to generalize it to a random walk with independent increments asymp-
totically distributed as a power law

11The Lorentz law is symmetric
12It’s easy to show that Mq(τ) is a continous function of q, so there isn’t any loss of generality

in restricting attention to rational orders q = n
m
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Therefore eq. (3.8) is written as:

M (e)
q (τ) =

2m

π
(στ)q

[

n−m−1
∑

i=0

ai

i + 1
R̂ i+1 + (−1)`

∫ R̂

0

du
uφ

1 + u2m

]

(3.11)

Suppose now the range of the time windows to have an upper bound. We stress
that this is often the case in many practical cases: for instance, we already saw in
section (1.3) that the invariance under rescaling of the time series of our financial
indexes does not hold any more for very large windows τ . This is why until now
we performed the generalized Hurst exponent analysis inside a bounded range of
windows; even in dealing with models for which the invariance under rescaling holds
exactly for all the windows τ , like BM and FBM in section (2.4) and the LRW in
section (3.1).

Since the largest return in our time series R grows with the size N of our time
series and since the windows τ are bounded, we have

R

στ
� 1 (3.12)

for N very large. This allows us to perform the following approximations.

� If q < 1, then n < m. This means that only the integral appears into the right
hand side of eq. (3.11); moreover ` = 0 is the solution of eq. (3.10), and thus
φ = n+m− 1. Then, using eq. (3.12), after some changes of variable we find:

2m

π
σq

∫ R̂

0

un+m−1

1 + u2m
du =

2

π
σq

∫ R̂m

0

uq

1 + u2
du

= 2
σ

π

∫ σR̂m

0

uq

1 + u2
du

≈ 2

∫ ∞

0

uqL(u) du = Mq

Therefore, since the q-order moment of L exists for q < 1, the integral is very
close to a constant which does not depend on τ . Thus:

M (e)
q (τ) ≈ Mq τ

q ∝ τ q

� If q = 1, as before, only the integral appears into the right hand side of eq.
(3.11) and ` = 0, but now φ = 2n− 1. Using again eq. (3.12) we find

2n

∫ R̂

0

u2n−1

1 + u2n
du = ln(1 + R̂2n)

≈ 2 ln
R

στ
≈ 2 lnR
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Thus:

M (e)
q (τ) ≈ 2

π
σ lnR τ ∝ τ

� If q > 1, take into account the sum which appears into the right hand side
of eq. (3.11). Due to eq. (3.12), the term of this sum which has the highest
power of R̂ overwhelms all other terms and the contribution of the integral
as well. On the other hand, it is easy to prove, starting from eq. (3.9), that
an−m−1 = 1, and thus:

M (e)
q (τ) ≈ 2m

π
(στ)q R̂

n−m

n−m

=
2σ

π(q − 1)
τ q

(

R

τ

)q−1

=
2σ

π

Rq−1

q − 1
τ ∝ τ

To summarize, if our starting theorem (5) is true, one gets

M (e)
q (τ) ∝

{

τ q q ≤ 1
τ q > 1

⇒ D(q) =

{

q q < 1
1 q ≥ 1

(3.13)

This is exactly the empirical behaviour observed for D(q) in spite of self-affinity (eq.
3.4), which would imply D(q) = q for every order q.

Assuming eq. (3.7), the above argument accounts for the observed spurious
multiscaling in the case of a LRW, namely a random walk whose independent in-
crements are distributed according to a Lorentz law L. We wonder whether it still
holds when such independent increments are drawn out from a general Levy stable
PDF Lα. The main problem here is that the analytical form of Lα for a general
α 6= 1 is not known. Furthermore we wonder whether this argument still holds for
a random walk whose returns, perhaps strongly dependent returns, are distributed
according to any scaling PDF g with fat tails. We are going to show, at least qual-
itatively, that the previous result of eq. (3.13) is actually valid under these more
general conditions too.

It is worth noting that, from an empirical viewpoint, this is a very important
issue. Indeed in many practical applications, like finance, the PDF of the returns
cannot be determined exactly: it can only be fitted by approximations. Take, for
instance, the financial time series of the first chapter. In section (1.3) we have found
that the PDFs of the returns are invariant under rescaling while in section (1.4)
we have detected the power law behaviour of their tails and we have estimated the
related decaying parameter. However, obviously the analytical form of the scaling
PDF g is not known.
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Suppose the scaling PDF g to have tails asymptotically distributed according to
a power law of parameter γ:

pτ (u) =
1

τα
g(
u

τα
)

g(u) ' c

uγ
for |u| � 1 (3.14)

where c is a constant. Consider a very high order q � 1; then in the calculation
of the empirical moments M

(e)
q (τ) by means of eq. (3.7) only very large returns

r(τ) > R∗ give a sensible contribution to the integral.
Then substituting eq. (3.14) in eq. (3.7) and using the scaling invariance:

M (e)
q (τ) ≈ 2

∫ R

R∗

uqpτ (u) du

= 2ταq

∫ R/τα

R∗/τα

uqg(u) du ≈ 2cταq

∫ R/τα

R∗/τα

uq−γ du

=
2A

q − γ + 1
ταq

[

uq−γ+1
]R/τα

R∗/τα =
2A

q − γ + 1

[

uq−γ+1
]R

R∗
τα(γ−1)

Hence the empirical Hurst exponent H(q) should vanish, at least for very high
orders q. This suggests that the Hurst exponent analysis performed on a single time
series whose returns are asymptotically power law distributed leads to a spurious
multiscaling also for every self-affine process, and not only for a Lorentzian random
walk.

Since the time series is invariant under rescaling we know that for low orders
simple scaling holds. For the sake of precision, the scaling exponent D(q) is linear
with slope H = α for q < q0, where

q0 = γ − 1

is the threshold order beyond which the theoretical q-order moment Mq diverge, see
section (2.3). In conclusion we can guess, on the basis of the above argument, that

D(q) =

{

αq if q < q0
αq0 if q ≥ q0

(3.15)

if theorem (5) is valid. In other words, for a time series with independent increments
asymptotically distributed according to a power law, this theorem leads to a very
strong form of multiscaling: the so called biscaling. Moreover, the empirical scaling
exponent D(q) displays such a multiscaling even for time series coming from a strictly
self-affine process.

We remark that a key point for the argument outlined in this section to work
is the divergence of the theoretical moments Mq(τ). Indeed, when the sum in eq.
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(2.9) converges, we have not to care about the behaviour of R(τ) against τ because
the large returns contribution is negligible. This means that in eq. (3.7) the upper
bound of integration runs to infinity and, for a self-affine process, the expected simple
scaling follows, see section (2.3). This is why in eq. (3.15) the scaling exponent is
linear with the correct slope H = α until the threshold order q0 and shows a ficticious
biscaling beyond q = q0.

3.3 The proof of our result: simple case

Let us now prove our theorem (5). Consider the simulation of a LRW, namely a
random walk with N independent increments distributed according to a Lorentz law
L(u). For each time window τ collect the returns rt(τ) t = 1 . . .N along the time
series using a sliding window. Then the constancy of R against τ means that the
largest among the returns rt(1) t = 1 . . .N is nearly equal to the largest among
the returns rt(τ) t = 1 . . .N . In the following we are going to show that this is
actually the case, at least for τ = 1 and τ = 2:

R(1) ' R(2) (3.16)

if the size N of the time series is large enough. The proof in the general case follows
the same strategy with minor modifications and is given in the last section.

Consider two returns in succession: ri(1) and ri+1(1); their sum ri(2) = ri(1) +
ri+1(1) is a return over a time window τ = 2. Let the modulus of such return be
much larger than σ:

|ri(2)| = z z � σ

where σ is the width parameter of the scaling PDF L, see eq. (3.3). Since σ is only
a constant scaling factor, it does not affect our calculations and thus we can put
σ = 1 without any loss of generality. Now we have a large return in a time window
τ = 2 made of two single returns and we want to calculate the probability P that
there is one between them whose magnitude is nearly equal to z. In other words P
is the probability that ri(1) ' z or ri+1(1) ' z.

Formally, setting z � 1, we are concerned with two events:

event A : ri(1) + ri+1(1) = z

event A′ : |ri(1)| ≤ √z or |ri+1(1)| ≤ √z
And we want to calculate

P = Prob(A′|A)

Hence P is the probability that one of two returns r1, which make the return r2 = z,
has an absolute value less than

√
z and so it is negligible in comparison to z if z � 1.

Let’s first define the following two events on the basis of the formers:
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event B : B = A ∩ A′

event B̄ : B̄ = A− B

By construction:
A = B ∪ B̄ and B ∩ B̄ = ∅
Prob(A) = Prob(B) + Prob(B̄)

Thus:

P =
Prob(A ∩ A′)

Prob(A)
=

1

1 +
Prob(B̄)

Prob(B)

(3.17)

Since the increments are supposed to be independent with PDF L(u) the prob-
abilities defined above are written as:

Prob(B) = 2

∫

√
z

−√
z

duL(u)L(z − u) (3.18a)

Prob(B̄) = 2

∫ −√
z

−∞
duL(u)L(z − u) + 2

∫ z/2

√
z

duL(u)L(z − u) (3.18b)

The factor 2 in front of the integrals comes from the restriction of the integration
range to z/2. The probabilities Prob(B) and Prob(B̄) are invariant under returns
exchange ri(1)←→ ri+1(1) and such symmetry reflects on the range of integration13

because
∫ z/2

−∞
duL(u)L(z − u) =

∫ ∞

z/2

duL(u)L(z − u)

Lorentz law has a single maximum in u = 0 and this allows us to find:

� In eq. (3.18a): L(z − u) ≥ L(z +
√
z)

� In eq. (3.18b): L(z−u) ≤ L(z+
√
z) in the first integral, and L(z−u) ≤ L(z/2)

in the second one.

Thus:

Prob(B) ≥ 2L(z +
√
z) (1− 2ω) ≥ 2L(2z) (1− 2ω) (3.19a)

Prob(B̄) ≤ 2ω
[

L(z +
√
z) + L(

z

2
)
]

≤ 4L(
z

2
) ω (3.19b)

Where we put

ω =

∫ ∞

√
z

duL(u)

13Moreover this does not depend on the actual shape of the density function
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We now use the analytical form of L(u) with σ = 1, see eq. (3.3), and thus we
get:

Prob(B) ≥ 1

2π

1− 2ω

1 + z2
(3.20a)

Prob(B̄) ≤ 16

π

ω

1 + z2
(3.20b)

Substituting eq. (3.20) in eq. (3.17):

P = Prob(A′ | A) ≥ 1

1 + 32ω
1−2ω

=
1− 2ω

1 + 30ω
(3.21)

We can find an upper bound on ω:

ω ≤ 1

π

∫ ∞

√
z

dx

x2
=

1

π
√
z

If z � 1 then ω → 0 and this implies:

P → 1 (3.22)

What does this mean? If z is very large then every time event A happens, event
B happens too. A large two-period return r2(i) is very likely to be made of two
one-period returns r1(i) and r1(i + 1) one of which is very close to r2(i) and the
other one is negligible.

It’s worth noting that, as we demonstrated in section (3.2), this mechanism
leads to multiscaling no matter how many events N there are in our time series,
provided that their number is finite. The uncertainty in the determination of D(q)
may depend on N : for a larger N we get a confidence interval much smaller; but
bifractality still holds, giving robustness to this spurious feature. The strong bending
at q = 1, which is often regarded as a multiscaling effect, is due to Pareto tails and
the finiteness itself of the size N .

The sliding window method of collecting returns and the availability of a single
time series is a key point here. The very definition of event A at the beginning of
our calculation says that the two-period return r2 is made of two one-period returns
r1 and so it is not independently extracted: once the two returns r1 are given then
the return r2 is also determined. If, for each window τ , we draw out the returns
r(τ) from different simulations, then the theorem (5) would fail.

It’s easy to check that eqs. (3.20) fail when the tails of return PDFs decay faster
than any power law, like in the Gaussian case. Indeed for our reasoning to work14

14That is, to deduce eq. (3.20) from eq. (3.19). The latters are true for very general distribution,
but they imply the formers for power law decay of tails only
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it’s fundamental that15 L(au) ' C(a)L(u) and, while this is true for any power law,
it fails for a short tailed distribution like the Gaussian one.

In fact, consider a scaling PDF behaving as a power law for large returns16:

g(u) ' a

uγ

then, going back to eq. (3.20), we get

P ≥ 1− 2ω

1 + 2ω(22γ − 1)

with
ω ≤ a

γ − 1
z−

γ−1

2

Since limz→∞ ω = 0 for γ ≥ 2 then P → 1. This is very important since it allows
us to generalize the result of the theorem (5) to any scaling PDF g with power law
tails. Since in the case of our financial indexes the scaling PDF g actually has power
law tails, see section (1.4), then the theorem (5) applies.

3.4 The effect due to the volatility clustering

Now we come back to section (2.6) where the generalized Hurst exponent analysis
was performed on the financial indexes of chapter (1). Since the financial time series
of our indexes are invariant under rescaling and since the scaling PDF g of their daily
returns has power law tails, according to the previous two sections one may expect
to find biscaling like that in eq. (3.15). However this not the case: in fig. (2.6)
and in the subsequent ones we can clearly see a quite different global behaviour. In
particular the observed scaling exponents D(q) differ qualitatively from that of a
LRW (eq. 3.13) for two reasons:

1. a very high uncertainty beyond the threshold order q0 of diverging theoretical
moments;

2. a weaker bending of D(q) for q & q0.

A possible explanation of the great uncertainty and clustering exhibited by scal-
ing functions D(q) in the case of real financial time series in comparison to gaussian
or lorentzian random walk (LRW) lies in the form of the scaling density functions
g(u) of the daily returns. May be there is a competition between the central bulk

15C(a) is a function of the multiplicative factor only
16for a Lorentzian Random Walk γ = 2
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and tails. In contrast to a Lorentz distribution (eq. 3.3) we can see in fig. (1.10)
that the tails of g(u) start to be important for very large returns only. This means
that, in order to well explore tails, we need the size N of the time series to be larger
in comparison to that of a LRW.

If N is not large enough, then our extracted sample may not contain any large
return at all and so cannot feel tails: it lies in the central bulk like for the Gaussian
random walk. Therefore it behaves as if the theoretical moments would all exist and
the argument of section (3.2) does not apply. In such a case we find a straight line
with slope close to H = 1

2
. In alternative it may happen that a subsample contains

a few large oscillations. Hence, due to the probabilistic mechanism outlined in the
previous sections, it behaves according to eq. (3.15) and display a strong spurious
multiscaling. This makes the Hurst exponent H(q) very sample dependent, and thus
unreliable, for q & q0.

The second difference is even more interesting. In section (3.2) we saw that, for
independent increments decaying like a power law, the theorem (5) leads to a strong
spurious multiscaling. However, the scaling function of our financial indexes does
not agree with such a strong multiscaling, although their returns are collected along
a single time series and are asymptotically distributed according to a power law. In
what follows we are going to see, at least qualitatively, that this discrepancy comes
from volatility clustering. Indeed, the sharp biscaling in eq.(3.15) strictly holds for
independent returns as it is based on (3.16).

Our theorem (eq. 3.16) in the section (3.3) implies that, if a return r(2) has size
z � 1 then it is the sum of two returns r(1), one of which has size very close to
z, while the other is negligible. This is why, due to eq. (3.22), such configuration
is more likely to happen than any other. We saw that this is true when dealing
with a Lorentzian random walk (LRW) where returns are independent; moreover we
showed that it is also true for every self-affine process with independent increments
asymptotically distributed according to a power law.

Now we proceed in taking into account correlations among returns. We saw
in section (1.2) that the autocorrelation function Avol(s) among the absolute daily
returns r(1) of our financial time series is a slowly decaying function of the time gap
s between two such returns. Hence the increments of our financial time series are
strongly correlated during large time intervals. What happens when the absolute
value of two consecutive returns are positively correlated?

Roughly speaking, if returns are positively correlated it is more likely than in the
independent case that two successive return are both large. Hence, the maximum
absolute return R(τ) may be a function growing with τ and not a constant. So, our
theorem (3.16) no longer holds. Indeed, since a large return is likely to be followed
by another large return, we no longer need a return r1 to be very close to z because
the very next one will probably have rather the same size; so the first oscillation
needs only to reach a fraction of the size z. Hence the configuration with a return



3.4. THE EFFECT DUE TO THE VOLATILITY CLUSTERING 77

negligible in comparison to the other is no more the most probable one.
In order to forecast the consequences of this fact, we note that the case of Gaus-

sian random walk is very similar: R grows with the time window, precisely

R(τ) ≈ σ0

√
τ

where σ0 is the standard deviation of the Gaussian scaling PDF. On the ground
of the above qualitative argument we expect volatility clustering to attenuate the
strong bending observed in D(q) for an independent LRW. Hence:

� Below the threshold order q0 of converging theoretical moments we still get a
line with slope H.

� Beyond q0, we expect a weaker bending in D(q): perhaps we get a line with a
slope smaller than H, but not necessarily an horizontal one.

We stress that this weaker bending in the function D(q) would still be spurious as
it would be generated by the same probabilistic mechanism outlined in the previous
sections.

To empirically check the previous argument and test the influence of the volatility
clustering we would need a correlated self-affine process displaying fat tails in return
PDFs and which is analitically soluble. Then we could compare the scaling exponent
coming from a simulation with the expected one. Otherwise we may consider our
real financial indexes. Of course, we cannot solve analitically the problem, but we
can destroy any correlation by reshuffling data randomly.

A permutation on the set of daily returns r(1) available surely make the volatility
clustering negligible. Then a comparison between the curve D(q) obtained by real
data and by the same reshuffled data should provided us with an understanding of
the volatility clustering effect. So, we randomly reshuffled the whole series of the
daily returns of our indexes and then performed the usual Hurst exponent analysis
on the reshuffled series.

It’s important to remember that for the PDF of the returns the variance σ2 is
very strongly suggested to exist, see section (1.4), thus the PDF of returns rτ tends
to a Gauss’ law as τ →∞, see the remark at the end of section (1.3). Correlations
avoid such convergence until the time window τ become so large to make them
negligible. If the correlations are destroyed one may worry about the existence of
scaling properties themselves, i.e. the validity of eq. (1.5) which implies the same
functional form for return PDFs regardless of the time window τ . Fortunately it
seems that sums of variables distributed according to a law whith long tails converge
to the Gaussian very slowly [7], so we can approximatively regard at scaling as still
holding in the range 1 ≤ τ ≤ 32, see section (1.3).

In fig. (3.4 - 3.7) we show the result obtained. The new curves D(q) compares
with the original ones, see fig. (2.6 - 2.9). Here we find that the volatility clustering
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Figure 3.4: Scaling exponent of the DJI Index (black curve) and of the same time series with
all the daily increments randomly reshuffled (red curve).

attenuates the multiscaling behaviour of our index; while correlation among returns
should be one of the causes of multiscaling. When there is not dependence between
returns, D(q) behaves approximately according to eq. (3.15), i.e. as if it would
be affected by the same spurious effect seen in section (3.2). In our opinion this is
another fact supporting that the multiscaling observed in our financial indexes is
ficticious: here the correlation does not attenuate a real multiscaling, but only the
effects due to the mechanism described in section (3.3).

3.5 The proof of our result: general case

In the following we generalized the proof in section (3.3) when τ = n:

R(n) ≈ R(1)

namely when n returns r(1) i = 1 . . . n are added up to get a return r(τ) = z: this
proves our theorem (5). As before we let r(τ) be very large:

z � 1

and try to prove that in such a case the probability that all returns r(1) are negligible
but one, which magnitude is then very close to z. Precisely, let P be the probability



3.5. THE PROOF OF OUR RESULT: GENERAL CASE 79

0 1 2 3 4 5 6 7

q
0

1

2

3
D(q)

Figure 3.5: Scaling exponent of the SPC Index (black curve) and of the same time series with
all the daily increments randomly reshuffled (red curve).
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Figure 3.6: Scaling exponent of the DJT Index (black curve) and of the same time series with
all the daily increments randomly reshuffled (red curve).
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Figure 3.7: Scaling exponent of the S&P Index (black curve) and of the same time series with
all the daily increments randomly reshuffled (red curve).

that ∀i 6= j |ri(1) ≤ √z|, then limz→∞P = 1. Hence the probability P that
∃j | |r1(j)| ≥ z − (n− 1)

√
z tends to 1 for z →∞. We recall that L(u) is the PDF

of the increments r(1).

Consider the events:

event A :
n
∑

i=1

ri = z

event A′
j : ∀i 6= j |ri| ≤

√
z

event A′ =

n
⋃

j=1

A′
j

Then, as before:

P = Prob(A′|A)

Now we define again the two events:

B = A ∩ A′

B̄ = A− B
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Hence, by construction:

P =
1

1 +
Prob(B̄)

Prob(B)

(3.23)

We now obtain a lower bound for Prob(B) =
n
⋃

j=1

A ∩ A′
j using independence and

symmetry among returns:

Prob(A ∩ A′
j) =

∫

dujL(uj)

∫

√
z

−√
z

du1 . . . duj−1duj+1 . . . dun

δ(z −
n
∑

i=1

ui)L(u1) . . . L(uj−1)L(uj+1) . . . L(un)

=

∫

√
z

−√
z

du1 . . . dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

Since A′
j ∩ A′

k = if j 6= k we get:

Prob(B) = n

∫

√
z

−√
z

du1 . . . dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

(3.24)

which corresponds to eq.(3.18a) in the case n = 2. Since Lorentz law17 has a single
maximum in u = 0 then18, in eq. (3.24):

L

(

z −
n−1
∑

i=1

ui

)

≥ L[z + (n− 1)
√
z] ≥ L(nz) (3.25)

which in turn implies:

Prob(B) ≥ n(1− 2ω)n−1L(nz) (3.26)

which corresponds to eq.(3.19a) in the case n = 2. Here we put again

ω =

∫ ∞

√
z

duL(u)

As a second step we obtain an upper bound for Prob(B̄) = Prob(A)−Prob(B).
The probability of the event A is:

Prob(A) =

∫

du1 . . . dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

(3.27)

17which we denote with p(u) here
18taking z � 1 we can obviously ask for z � √z to hold
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where the integration is performed on the whole R
n−1. Hence, using eq.(3.24):

Prob(B̄) = Prob(A)− n
∫

C
du1 . . . dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

(3.28)

where C :
→
u∈ R

n−1 | |ui| ≤
√
z i = 1 . . . n− 1 is simply the cube of side 2

√
z cen-

tered in the origin O. At this point we want to carry the last factor L(z −
n−1
∑

i=1

ui)

out of the integrals by replacing it with a constant upper bound, like in eq.(3.25)
where we was able to find a constant lower bound and hence to greatly simplify the
calculation.

However there are n − 1 points
→
v (j) which prevent us to find a good constant

upper bound: indeed taking into account

→
v (j) | vi(j) =

{

0 if i 6= j
z if i = j

the factor L(z −
n−1
∑

i=1

ui) can be bounded by 1 only. To get around this difficulty we

need a geometrical trick very similar to that used in writing eq.(20b)19. The idea is

to restrict the integral in a region as far as possible from the points
→
v (j) using the

symmetry of the integrand.

Consider n− 1 changes of coordinates Sj :
→
u⇒

→
u′ in R

n−1:

Sj : u′i =

{

ui if i 6= j

z −∑n−1
k=1 uk if i = j

It is straightforward to show that the integral in eq.(3.27) is invariant for all these
transformations:

∀E ⊆ R
n−1

∫

E
dun−1L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

=

=
∫

Sj(E)
dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

) (3.29)

Furthermore, by construction:

n−1
∑

i=1

u′i = z − uj (3.30)

19in that case we had to avoid the point z on the real line
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for every transformation Sj.

Let

Π :
→
u |

n−1
∑

i=1

ui ≤ (1− 1

n
)z

a subset of R
n−1 and Sj(Π) the transformed set under Sj. It’s easy to prove that

R
n−1 ⊆ Π ∪

n−1
⋃

j=1

Sj(Π)

Indeed let
→
w∈ R

n−1, if
∑n−1

i=1 wi ≥ (1 − 1
n
)z then ∃j | wj ≥ 1

n
. By eq.(3.30) we get

∑n−1
i=1 w

′
i ≤ (1− 1

n
)z, i.e. it exist Sj such that Sj

→
w∈ Π. We are now ready to write

eq.(3.27) in a more suitable form:

Prob(A) =

∫

Rn−1

dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

=

∫

Π∪
Sn−1

j=1
Sj(Π)

dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

≤
n−1
∑

j=1

∫

Sj(Π)

dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

+

∫

Π

dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

= n

∫

Π

dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

Where the last equality comes from eq.(3.29).

Hence, substituting in eq.(3.28), we find:

ProbB̄ = n

∫

Π−C
dun−1 L(u1) . . . L(un−1)L

(

z −
n−1
∑

i=1

ui

)

(3.31)

which corresponds to eq.(3.18b) for n = 2. Since L(u) has a single maximum in
u = 0 we have

L

(

z −
n−1
∑

i=1

ui

)

≤ L(
z

n
)
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and by replacing in eq.(3.31):

Prob(B̄) ≤ nL(
z

n
)

∫

Π−C
dun−1 L(u1) . . . L(un−1)

≤ nL(
z

n
)

∫

Rn−1−C
dun−1 L(u1) . . . L(un−1)

= nL(
z

n
)(1−

∫

C
dun−1 L(u1) . . . L(un−1))

= nL(
z

n
) [1− (1− 2ω)n−1] (3.32)

which corresponds to eq.(3.19b) for n = 2.
Finally we substitute eq.(3.26) and (3.32) in definition (3.23):

P ≥ 1

1 +
L( z

n
)[1− (1− 2ω)n−1]

L(nz)(1− 2ω)n−1

As in the main text, making explicit the functional form of L(u) =
σ

π

1

σ2 + u2
we

find20

L( z
n
)

L(nz)
=

1 + z2n2

1 + z2

n2

≤ n4

Hence

P ≥ 1

1 +
1− w
w

n4
=

w

n4 − w(n4 − 1)

where
w = (1− 2ω)n−1

This corresponds to eq.(3.21) for n = 2.
Since21

lim
z→∞

ω = 0

it is straightforward to find that, for any given n

lim
z→∞

w = 1

20we again stress that the exact analytical form of p(u) doesn’t matter, see the end of section

(3.3). The key point here is to find an upper bound to the rate p(z/n)
p(nz) which does not depend on

z. Such a constant bound exist for every p(u) whose tails decay asymptotically according to some
power law; while it does not exist for short tailed density functions, like the Gaussian one.

21in the main text we saw that ω ≤ λ

π
√

z
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This means that, for a fixed n, the probability P is very close to one:

P → 1 (3.33)

when z is very large; and this concludes our proof.
As stressed in section (3.3) P is the probability that, given a very large return

rτ = z, the τ = n returns r1(i) i = 1 . . . n are all negligible in comparison with z
except one, whose magnitude is close to z. In other words it is the probability that
there are not two or more large22 returns in a sequence of n consecutive returns r1.
We remark that in order eq. (3.33) to hold we need to fix the maximum window
τ = n and then to take z � 1, otherwise we it could not be true that a large return
is surrounded by n − 1 smaller returns. The size of z, and thus the lenght of the
time series, must be as larger as the maximum window n increases. In conclusion,
fix a given range n within which the time window τ may vary; then P → 1 if the
size of the time series is large enough.

22in comparison with z





Conclusions

This thesis has been devoted to the characterization of the invariance under rescaling
of financial time series. Our main result is that the multiscaling observed until
now in many financial time series could be a spurious effect. We proved that a
probabilistic mechanism working in the empirical statistical analysis of a single time
series and based on the power law tails of the density function of the returns, can
affect the outcoming Hurst exponent and leads to a strong spurious multiscaling
even for a strictly simple scaling underlying process. Since this effect is due only
to the availability of a single empirical time series and to the presence of extreme
events whose distribution follows a power law, we cannot exclude that our results
could be relevant to fields of complex systems physics different from finance.

In chapter (3) we estimated the Hurst exponent for an exactly solvable model,
the Lorentzian random walk, in order to compare it with the expected one. Based
on the fact that this model is strictly self-similar, we first proved that the empirical
scaling exponent D(q) should follow a straight line with slope H = 1 for all orders
q. However, we found D(q) to display a strong form of multiscaling for orders
larger than a certain threshold q0 when the Hurst exponent analysis is performed
on a single history. Remarkably, this threshold order equals the order at which the
theoretical moments of the Lorentz’s law no longer exist.

Next, we were able to account for this spurious multiscaling by proving that for
every time series, generated by a simple scaling model, the empirical D(q) leads to
a strong ficticious multiscaling if the returns are independent and asymptotically
power law distributed. More precisely, for orders less than the threshold order q0

beyond which the moments diverge, the moment scaling exponent analysis gives the
correct result one expects on the basis of the simple scaling. However, for q ≥ q0 it
displays an horizontal line, thus leading to a spurious H = 0.

This spurious multiscaling has already been studied in [5], but the argument
given does not hold when the increments are collected by means of a sliding window
method, as it is often the case; moreover it cannot be generalized to time series
with correlated increments. Our main contribution was to provide a convincing
mechanism able to account for this multiscaling under very general conditions. In
particular it retains its validity also in the case of strongly dependent increments.

87
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Indeed, we generalized it to scaling invariant time series whose increments have a
slowly decaying second order correlation, at least qualitatively. According to the
argument given in section (3.4), a strong correlation among the absolute returns
can attenuate the probabilistic effect previously outlined, and thus give rise to a
weaker spurious multiscaling than in the independent case.

We tested this claim on our financial indexes directly. After a reshuffling of the
increments of the time series, we calculated again the Hurst exponent and found
that its behaviour agree with the ficticious multiscaling obtained in the case of the
Lorentzian random walk. Hence, the observed empirical multiscaling observed in
many financial time series could be a spurious effect due to the interplay between the
volatility clustering and the mechanism which leads to a strong ficticious multiscaling
in the case of independent returns. We stress also that this statement holds for any
time series whose large absolute increments follow a Pareto tail and not for the
financial ones only.

On the other hand, the Hurst exponent is defined on the basis of the existence
of the moments. However, a well established stylized fact states that in finance
the extreme events are power law distributed, and thus the summation used to
calculate the empirical q-order moment does not converge for an order q larger than
a threshold q0.

In chapter (2) we estimated, for our financial indexes, the uncertainty associated
to the scaling exponent D(q) by means of a non-parametric bootstrap method. The
same method has been used in [3] to estimate a confidence interval for the scaling
exponent in the case of the spatial distribution of mining induced microearthquakes.
The main empirical results are shown in fig. (2.6 - 2.9): the sample dependence of
D(q) becomes clearly important beyond the threshold order q0 at which the moments
no longer exist.

In conclusion we believe that the Hurst exponent analysis is reliable for low order
q only, inside the range where the theoretical moments are expected to exist. This is
because the existence of this moments prevents the mechanism outlined in chapter
(3) to work and makes the sample dependence of the scaling exponent negligible.

It is worth mentioning that the first observation of multiscaling in finance was
made on time series relative to exchange rates [26], and led to the suggestion of a
close analogy between finance and turbulence. In spite of the fact that this analogy
has been subsequently criticized [27, 28], the multiscaling of financial time series
has been considered an important stylized fact by several authors [57, 60], and was
put at the basis of some modelization of the market [18, 19, 22]. On the basis
of the above evidencies, also theoretical models based on simple scaling could be
good candidates for simulating the most important financial stylized facts, including
the empirical observed multiscaling and the power law decay of the second order
correlations. We believe that the elucidation of the probabilistic mechanism leading
to this multiscaling is a useful contribution towards a better understanding of the
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field.
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