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If, in some cataclysm, all scientific knowledge were to be destroyed,

and only one sentence passed on to the next generation of creatures,

what statement would contain the most information in the fewest words?

I believe it is the atomic hypothesis (or atomic fact, or whatever

you wish to call it) that all things are made of atoms little particles

that move around in perpetual motion, attracting each other when they

are a little distance apart, but repelling upon being squeezed into one another.

In that one sentence you will see an enormous amount of information

about the world, if just a little imagination and thinking are applied.

Richard P. Feynman

The Guide is definitive. Reality is frequently inaccurate.

Douglas Adams
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1
Introduction

1.1 Modelling of liquid crystals

Liquid crystals (LCs) are a condensed phase between the isotropic liquid and the solid

crystalline phases; for this reason they are also called mesophases. The constituting

molecules, called mesogens, are preferentially aligned along a direction, the director, con-

ventionally identified by a unit vector n (see Figure 1.1). This direction corresponds to

the optical axis of macroscopically aligned samples. Mesophases with only orientational

order are called nematics; if, in addition, some positional order is present, the phases

are classified as smectics. Thus, in nematics, which are the simplest and most widely

used LC phases, the molecular centres of mass are randomly distributed, like in ordinary

(isotropic) liquids.

As a consequence of their mesoscale organisation, LCs exhibit great sensitivity to

external fields; for instance electro-optical applications are based on the reorientation of

the optical axis under the action of electric fields.

The molecules constituting LCs may exhibit different structures, but they have some

common characteristics:

• a rather rigid and elongated core (mesogenic unit), usually made of aromatic rings,

which gives molecules the typical anisometric shape;

• one or more flexible parts, generally an alkyl chains, which introduce some confor-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Cartoon of a nematic liquid crystal. The black line represents the director.

mational disorder.

The stability of mesophases is determined by the balance between shape anisotropy and

flexibility.

The development of computational tools able to connect the molecular structure of

mesogens to the properties of liquid crystals is motivated by several reasons. Of course,

such methods would be useful to guide the synthetic design of materials with tailored

properties. Furthermore, there are fundamental reasons of interest: liquid crystals, having

properties which strongly depend on the molecular structure, can represent a benchmark

for theoretical and computational approaches.

Methods suitable for the atomistic study of LC properties are Monte Carlo and Molec-

ular Dynamics simulations [1, 2]. However, they also have time- and length-scale limita-

tions: (i) due to the relative molecular complexity of mesogens, samples cannot contain

more than some hundreds of molecules, and such dimensions may be insufficient to study

collective properties like dielectric permittivity and elastic constants; (ii) trajectories of

a few hundreds of nanoseconds, feasible at relatively high computational cost, may be

insufficient to study collective properties, whose dynamics is characterised by time-scales

longer than microseconds.

Therefore simulation techniques, though very important for the comprehension of the

molecular origin of the liquid crystal behaviour, at present cannot be of great practical

aid, in particular in relation to the design of materials. Alternative approaches, exploiting
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1.2. LIQUID CRYSTALS: PROPERTIES

some modelling of the interactions of single molecules with the environment, can be useful

to this purpose; such approaches are very common in other contexts, for instance in the

field of solvation [3].

The present thesis focuses on the development and the application of a computational

methodology, based on a molecular field theory and atomistic modelling, to connect di-

electric and elastic properties of nematic liquid crystals to the structure of the constituent

molecules. The theoretical tool used to this purpose is a phenomenological model, known

with the name of ‘Surface Interaction’ (SI) [4–6].

The following issues have been addressed in this thesis.

• Extension of the SI model: molecular expressions for the elastic constants of ne-

matics have been derived, using the SI model and the continuum elastic theory.

• Development of an integrated computational procedure which, starting from molec-

ular coordinates, by suitable handling of the conformational degrees of freedom,

leads to the desired liquid crystal properties. A flexible procedure has been set up,

using the Python programming language to glue together home-made Fortran codes

and third-party software.

• Application of the methodology to the class of mesogens known as ‘liquid crystal

dimers’, which exhibit peculiar and not fully understood properties. A preliminary

analysis of geometry, energy and charges has been carried out to define a set of

transferable fragments, which have been used as building blocks for a systematic

investigation of the properties of LC dimers.

1.2 Liquid crystals: properties

The popular LC applications, like liquid crystal displays, are based on the electro-optical

effect, which is the reorientation of the optical axis as a consequence of the application

of an electric field. The first and still widely used device based on the electro-optical

effect is the twisted nematic cell [7], whose general scheme is reported in Figure 1.2. The

transmittance of the cell is determined by the competition between the reorientation of

the director under the electric field, which is controlled by the dielectric anisotropy of the
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CHAPTER 1. INTRODUCTION

LC material, and the restoring forces opposing director reorientation, which depend on

the elastic moduli of the material.

Figure 1.2: General scheme of the ON (left) and OFF (right) states of a twisted nematic cell.

The labels LC and L denote the liquid crystal and the polarised light, respectively.

In this thesis we have focused our interest on the dielectric anisotropy, the elastic

constants and the flexoelectric coefficients of nematics. These properties will be briefly

described in the following.

The director reorientation is the most widely used effect in electro-optical devices.

The relevant property is the dielectric anisotropy ∆ε = ε‖ − ε⊥, defined as the difference

between the permittivity parallel (ε‖) and perpendicular (ε⊥) to the director. This differ-

ence vanishes in the isotropic phase. Materials with non-zero dielectric anisotropy tend

to reorient in presence of an applied electric field; the larger ∆ε, the stronger is the torque

experienced by the director, therefore in most cases the LC research has been addressed

to materials with large dielectric anisotropy.

Director deformations in nematics can be described in terms of three modes, called

splay, twist and bend, which are illustrated in Figure 1.3. The elastic constants K11

(splay), K22 (twist) and K33 (bend) are associated to these modes; they play a crucial

role in determining the performance of a twisted nematic cell [8]. The ratio K33/K11, for

instance, affects the static and dynamic behaviour of a twisted nematic display. The op-

tical threshold of a twisted nematic-LCD, i.e. the threshold voltage for the field-induced

director reorientation, depends on both the dielectric anisotropy and the elastic con-
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1.3. LIQUID CRYSTAL DIMERS

stants: low thresholds, therefore low-operating voltages, are attained by large dielectric

anisotropy and/or small values of the elastic parameter K = [K11 + (K33− 2K22)/4] [8].

Figure 1.3: Splay, twist and bend deformations of nematics.

In this study we have also investigated the flexoelectric effect, which is the coupling

between polarisation and director deformation. This phenomenon appears promising for

the development of next generation electro-optical devices. At present, it is exploited in

the zenithal bistable display technology [9]. Among the factors which have limited the

use of this property so far, there are the difficulties in improving material characteristics.

This is partly due to the strong and not easy to rationalise relation between molecular

structure and flexoelectric coupling. Simple models, ignoring molecular details, have

provided a general understanding of the origin of the phenomenon [10, 11], but they are

scarcely useful when dealing with real molecules. In this original model, Meyer showed

that flexoelectric coupling can be associated to splay and bend deformations. In addition,

he suggested as molecular requirements for the flexoelectric effect (i) permanent electric

dipoles and (ii) anisometry of the molecular shape. Figure 1.4 shows how splay and bend

deformations can induce a flexoelectric polarisation, according to the Meyer picture.

1.3 Liquid crystal dimers

Liquid crystals can be classified as monomers, constituted by a single mesogenic core,

dimers, with two mesogenic cores linked together, and polymers. This thesis focuses on

LC dimers; for the sake of comparison, also the corresponding monomers are considered.

Figure 1.5 shows the systems which have been investigated.

In these systems the mesogenic core is either a cyanobiphenyl or a difluorobiphenyl
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CHAPTER 1. INTRODUCTION

Figure 1.4: Splay and bend polarisations as a consequence of director deformations.

Figure 1.5: Chemical structures of the liquid crystal systems which have been studied in

this thesis. CBOnOFF [α-(2’,4-difluorobiphenyl-4’-yloxy)-ω-(4-cyanobiphenyl-4’-yloxy)alkanes],

CBOnOCB [α,ω-bis(4-cyanobiphenyl-4’-yloxy)alkanes], CBnCB [α,ω-bis(4-cyanobiphenyl-4’-

yl)alkanes], nOCB [4-cyano-4’-n-alkoxybiphenyl] and nCB [4-cyano-4’-n-alkylbiphenyl].
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1.3. LIQUID CRYSTAL DIMERS

unit, and the flexible spacer is constituted by alkyloxy or alkyl chains. Hereafter the

generic molecular structures reported in Figure 1.5 will be denoted as CBOnOFF, CBOnOCB,

CBnCB, nOCB and nCB; where n is the number of methylene units in the spacer, CB

indicates the cyanobiphenyl group, FF the difluorobiphenyl group and O is used for ether-

linked spacer.

LC dimers display interesting properties, intermediate between those of monomers

and polymers. The systems shown in Figure 1.5 appear structurally similar to each

other; however, they show distinct elastic and flexoelectric behaviour [12–14]. Besides,

some of them exhibit very unusual properties, as the formation of LC ‘blue phases’ with

very wide range, upon doping with a chiral solute [15].

Table 1.1 collects the experimental nematic-isotropic transition temperatures for some

of the systems under investigation. We can notice the alternation of the transition temper-

atures with the number of methylene groups in the spacer; this is the so called odd-even

effect, which was found also for other properties of dimers [12,14].

Table 1.1: Experimental values of the nematic-isotropic temperature temperature, TNI , for

5OCB [16], 5CB and 8CB [17], CBOnOCB [18] and CBOnOFF [12], as a function of the number

n of methylene groups in the alkyl chain.

nOCB nCB

TNI / K TNI / K

5OCB 34 5CB 308

8CB 314

CBOnOCB CBOnOFF CBnCB

n TNI /K TNI /K TNI / K

4 523 - -

5 459 378 -

6 494 434 503

7 454 386 387

8 474 416 469
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CHAPTER 1. INTRODUCTION

1.4 Outline

The thesis is organised as follows.

In chapter 2 we shall summarise the state of the art of the theoretical-computational

methods employed for studying LC phases and we shall present the ‘Surface Interaction’

(SI) model which has been used. The molecular expressions of the investigated properties

in the SI framework will be reported.

In chapter 3, molecular expressions for the elastic constants of nematics will be derived,

using the SI model and the elastic continuum theory.

In chapter 4 we shall present the integrated computational procedure which has been

set up, to calculate LC properties starting from the atomic coordinates of the molecular

constituents. Furthermore, we shall review the quantum mechanical single molecule cal-

culations which have been performed to define the parameters needed for the atomistic

modelling of the LC dimers.

Chapters 5, 6, 7 report the numerical results. In chapter 5 the model for elastic

constant described in chapter 3 is applied to typical low molar mass LCs. In chapter 6

and 7 we shall present the flexoelectric, elastic and dielectric properties of LC dimers,

calculated using two different methods to treat the conformational degrees of freedom.
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2
Theoretical methods

2.1 Bridging time- and length- scales

Liquid Crystals are self-organising materials characterised by the interplay of several and

very different phenomena which occur over a wide range of time- and length-scales, from

intra-molecular configurational changes to collective molecular motions on the director

length-scale. Different theoretical and computational methodologies are available to ad-

dress problems at a specific scale, e.g. accurate estimates of single molecule properties

can be obtained by Quantum Mechanics ab-initio calculations, and on the opposite side

continuum theories can be used to describe phenomena on the director length-scale.

The challenging problem is then how to transfer information between different levels

of modelling and how to effectively link the different descriptions together.

In the following section an overview of the state of the art of the methodologies

nowadays available is presented; then, we shall focus on the theoretical approach employed

in this study. The molecular expression provided by this approach for the thermodynamic,

dielectric and elastic properties of LCs, will be reported in the final section.

2.2 Theoretical methodologies: state of the art

The nematic phase is characterised by orientational order: molecules are preferentially

aligned along the director. This behaviour originates from the anisotropy of the inter-

11



CHAPTER 2. THEORETICAL METHODS

molecular interactions; their nature is complicated and is a result from different contribu-

tions, comprising electrostatic long-range interactions, induction forces and dispersion and

repulsive short-range interactions. All of them contribute to the molecular ordering [19]

and ultimately to the material properties of LCs.

Monte Carlo (MC) and Molecular Dynamics (MD) simulations, which belong to the

so called all-atom simulation techniques, simultaneously include all these interactions,

defined by the parameters collected in Force Fields. Hence, by virtue of this advantage,

combined with the possibility of taking into account the full chemical detail of the system,

MC and MD simulations have been, and still are, among the methodologies of choice for

studying LCs. They have been proven successful, for example, to account for the molec-

ular ordering and the nematic-isotropic transition of low molar mass liquid crystals [20].

However, to date, the state of the art of these simulations is applied to systems contain-

ing a few hundred molecules for time-scales of tens of nano-seconds, and clearly they can

hardly be used to account for material properties which involve collective motions on the

director scale, like elastic and dielectric properties [1]. Methodologies meant to overcome

these restraints have recently been developed. In these, the molecules are mapped onto

groups of atoms, the so called coarse grained particles, which interact through poten-

tials softer than those generally involved in all-atom simulations, so allowing a simulation

timestep a few order of magnitude longer. Coarse Graining can then improve the time-

and length-scales covered by the simulations, although this is mostly achieved by reducing

the chemical detail of the system. In the literature, examples of this kind for LC systems

can be found, e.g. mixing of Lennard-Jones potentials for methylene units of alkyl chains

and Gay-Berne potentials for mesogenic units [21], or, at a lower level of detail, rods and

spheres mapping of molecules [1, 22].

However, these methods are yet far from being a predictive tool, useful for the synthesis

and application of new materials. Firstly, because of their computational expensiveness, it

is difficult to perform a sufficient number of simulations to estimate, e.g., the temperature

dependence of a property. Secondly, a statistical treatment is still required to connect

the microscopic information, resulting from the simulation trajectories, to bulk material

properties such as the elastic constants [23].

As an alternative to MC and MD simulations, statistical theories have been devel-

oped, which use a mean field potential to approximate the anisotropy of the interactions

12



2.3. THE SURFACE INTERACTION MODEL

experienced by a molecule in LC phases. This may appear, and indeed is, a crude approx-

imation of the variety of inter-molecular forces; nevertheless, mean field methods have a

long history in the field of liquid crystals and have provided very important insights into

the origin of orientational order and LC properties.

These mean field approaches trace back to the original Maier-Saupe theory [24, 25].

In this description the molecules are approximated by rods, ignoring in this way all the

chemical and structural detail. Each molecule is viewed as moving in the average field

exerted by the surrounding molecules; this is assumed to have the form

U(θ) = −c〈P2〉P2(cos θ) (2.1)

where θ is the angle between the long molecular axis and the director and c is a parameter

with the dimension of energy, which scales the mean field interaction. The function P2

is the second Legendre polynomial P2(x) = 1.5x2 − 0.5, and the average value 〈P2〉 is

the molecular order parameter, which vanishes in the isotropic phase and in the nematic

phase 0 < 〈P2〉 < 1. The form of the Maier-Saupe mean field potential is quite general,

being the simplest expression accounting for the correct molecular and phase symmetry.

Extensions to the original Maier-Saupe theory have been proposed since then, at-

tempting to account for less than cylindrical symmetry [26] but without fully taking into

account the molecular shape. This is a serious drawback, considering the importance

of the molecular shape in determining LC properties: as an example, experimentally it

has been found that by simply substituting the O- linkage of a CBOnOCB dimer by a

methylene groups, which brings the chain perpendicular to the linked phenyl group, thus

producing a change in shape, leads to a variation in the order parameter.

2.3 The Surface Interaction model

The Surface Interaction (SI) method can be seen as the simplest generalisation of the

Maier-Saupe theory, to take into account the molecular shape [4–6]. It makes use of a

phenomenological form for U(Ω), the mean field potential experienced by a molecule in

the orientation specified by the Euler angles Ω in the nematic phases. In analogy with the

Rapini-Papoular expression for the anchoring free energy of nematics [27], the orienting

13



CHAPTER 2. THEORETICAL METHODS

potential is expressed as

U(Ω) = kBTε

∫
S

P2(n · s)dS (2.2)

where S is the molecular surface, n and s are unit vectors parallel to the local director

axis and perpendicular to the surface element dS, respectively. T is the temperature and

kB is the Boltzmann constant. The parameter ε, with the dimensions of inverse square

length, quantifies the orienting strength; it is related to the degree of order as [28]:

ε = − ξ2

vkBT
〈
∫

S

P2(n · s)dS〉 (2.3)

where v is the volume per molecule, and the angular brackets denote the orientational

average.

This is defined as

〈. . .〉 =
∫
f(Ω) . . . dΩ (2.4)

where f(Ω) is the orientational distribution function, which is related to the orienting

potential U(Ω):

f(Ω) =
exp[−U(Ω)/kBT ]

Q
(2.5)

with Q being the orientational partition function

Q =
∫

exp[−U(Ω)/kBT ]dΩ (2.6)

which takes the value Qiso = 8π2 in the isotropic phase, where the orientational distribu-

tion function is simply f iso = 1/8π2.

Within the SI model, a molecule tends to align along the director axis as much surface

as possible. For example, for a model ellipsoidal particle, the minimum of the mean field

potential, i.e. the most stable orientation, is obtained when the long axis is parallel to the

nematic director. Using a suitable definition of the molecular surface S, it is possible to

take into account the geometrical details of the molecule, as shown in Figure 2.1. Thus,

the mean field potential U(Ω) can be unambiguously defined for molecules of any shape,

independently on their symmetry properties.

The SI model has been successfully used to connect the molecular structure to liquid

crystal properties [4–6,29]; the reason of its success can be identified in the fact that the

anisotropy of short range dispersion intermolecular interactions depends on the molecular

shape. Furthermore, the SI model has the great advantage to be generalisable to flexible

14
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FRAMEWORK

Figure 2.1: Representation of the molecular surface.

molecule in a straightforward way. This is an important feature, because flexibility is a

requirement for the existence of LC phases, and cannot be neglected.

In the next section the molecular expressions for LC properties obtained in the SI

framework are reported.

2.4 Molecular expressions for LC properties in the SI frame-

work

2.4.1 The Saupe ordering matrix

The molecular order in nematics is described by the Saupe matrix, whose elements are

defined by [30]:

Sij =
〈3 cos(ei · n) cos(ej · n)〉 − δij

2
(2.7)

where ei and ej are unit vectors parallel to the molecular axes i, j, and δij is the Kronecker

symbol. The diagonal element Sii specifies the degree of orientational order of the i

axis, with respect to the director. It can take all the values within the interval −1/2 ≤
Sii ≤ 1, where Sii = 1 and Sii = −1/2 indicate perfect orientational order parallel and

perpendicular to the director, respectively.
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2.4.2 Properties at the Nematic-Isotropic (NI) transition

Let us consider a system with N molecules, in the volume V , at temperature T . The

nematic-isotropic transition can be located using the condition that the Helmholtz free

energy must be identical for the two phases coexisting phases, thus ∆ANI = AN−AI = 0.

The molecular expression for the free energy change ∆ANI can be obtained using the

thermodynamic relation ∆ANI = ∆UNI − T∆SNI , where ∆UNI and ∆SNI are the

internal energy and entropy differences between the two phases, respectively.

Assuming that the entropy difference between the two phases derives from the orien-

tational order in the nematic phase, the Gibbs expression can be used:

∆S = −kBN

[∫
dΩf(Ω) ln f(Ω)−

∫
dΩf iso(Ω) ln f iso(Ω)

]
. (2.8)

The internal energy difference can be approximated by the average value of the ori-

enting mean field:

∆U = 1/2N〈U〉 (2.9)

where the factor 1/2 is introduced to avoid double-counting of interactions.

Using Eqs. 2.8 and 2.9, we obtain

∆A
NkBT

= −1
2
〈U〉 − ln

Q

Qiso
; (2.10)

the value of ∆A can be calculated as a function of the parameter ε appearing in Eq. 2.2.

The NI transition can be then identified with the point at which ∆ANI = 0.

Using Eq. 2.3, the dependence of thermodynamic properties on the orienting strength,

ε, can be converted into the temperature dependence, which is more suitable for the

comparison with experimental data; we can write:

T ∗ =

√
〈U〉
〈U〉NI

εNI2

ε2
(2.11)

where again the index NI is used to denote values at the nematic-isotropic transition,

and T ∗ = T/TNI is the reduced temperature.
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2.4.3 Dielectric permittivity

The dielectric permittivity of nematics is represented by the axially symmetric tensor:

ε =


ε⊥

ε⊥

ε‖


where ε‖ and ε⊥ indicate the components parallel and perpendicular to the director [30].

The average value of the permittivity tensor ε = (2ε⊥ + ε‖)/3, and even more the di-

electric anisotropy, ∆ε = ε‖−ε⊥, determine the response of the liquid-crystalline material

to the applied electric field. The elements of the permittivity tensor are related to the

molecular electric dipole µ and to the orientational order by the Maier-Meier relation [30]:

εJ(0) = 1 +
N

ε0V kBT
〈µ2

J〉 J =‖,⊥ (2.12)

where µ2
J is the square value of the dipole moment, along the direction parallel or perpen-

dicular to the director axis, and the angular brackets indicate the average as expressed in

Eq. 2.4. Neglecting the correlations among dipoles, 〈µ2
J〉 can be approximated by

〈µ2
‖〉 =

µ2

3
+

2
3
Tr[S(µ⊗ µ)] (2.13)

〈µ2
⊥〉 =

µ2

3
− 1

3
Tr[S(µ⊗ µ)] (2.14)

where the symbol ⊗ denotes the tensor product, Tr the trace, and S is the Saupe ma-

trix defined by Eq. 2.7. Given the molecular structure and the molecular dipole, the

permittivity can be evaluated by Eqs. 2.12-2.14.

2.4.4 Flexoelectric coefficients

The flexoelectric polarisation, i.e. the polarisation associated with splay and bend defor-

mation in nematics, can be expressed as [10]:

P = e1n(5 · n) + e3(5× n)× n (2.15)

where P is the polarisation and n(5 · n), (5 × n) × n represent the splay and bend

deformations, respectively, and e1, e3 are the flexoelectric coefficients. These are charac-

teristic materials parameters and depend on the molecular structure of the mesogen and

the order of the phase.
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Molecular expressions for the flexoelectric coefficients can be derived from the defini-

tion of polarisation:

P = N〈µ〉1,3/V (2.16)

where µ indicates the molecular dipole moment. The indexes 1, 3 indicate the mean

values calculated in the presence of the splay and bend deformations. Let us use Eqs.

2.2 and 2.4 and define the charge distribution of the molecule in terms of atomic charges;

if we expand in power series the spatial dependence of the director field, n(R), in the

presence of the deformations, and truncate this expansion at the linear term, by virtue

of the different order of magnitude between the length-scale of the deformations and the

molecular dimensions, we obtain:

e1 = −3Nε
∑
m

qm

∫
S

dS

[
〈rm

Z rXsXsZ〉 −
1
2
〈rm

Z r
m
XsXsZ〉

]
(2.17)

e3 = −3Nε
∑
m

qm

∫
S

dS

[
〈rm

XrZsXsZ〉 −
1
2
〈rm

Xr
m
Z sXsZ〉

]
(2.18)

where qm and rm indicate the atomic charges and their positions, respectively. Again S

denotes the molecular surface; r is the vector position of points on the surface and s the

unit vector normal to the surface at each point. X,Y, Z are the cartesian components in

the laboratory coordinate system, with the Z axis parallel to the director. Notice that

in Eqs. 2.17-2.18 the average values are calculated using the orientational distribution

function of undeformed nematics. Eqs. 2.17-2.18 explicitly show the connection between

molecular parameters (partial charges and their positions) and flexoelectric coefficients:

the complicated coupling between charge distribution, order and ultimately the molecular

shape, is the reason why it is so hard to find simple correlations between flexoelectric

behaviour and molecular structure.

The property directly accessible to experiments is the effective flexoelectric coefficient

[12,13], defined as

ē =
es − eb

2
. (2.19)

2.4.5 Molecular flexibility

The expressions reported in the previous sections, which refer to rigid molecules, can be

easily generalised to take into account the molecular flexibility. Let Nc be the number of
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conformers; the orientational average for the j-th conformer reads:

〈· · · 〉j =
∫
· · · fj(Ω)dΩ (2.20)

where fj is the orientational distribution function for the conformer under examination,

which can be obtained from the mean field potential Uj , calculated according to Eq. 2.2,

using the molecular surface of the conformer.

Then, liquid crystal properties can be calculated as conformational-orientational av-

erages:

〈· · · 〉 =
Nc∑
j=1

wj〈· · · 〉j (2.21)

where wj is the statistical weight of the jth conformer. This is defined as:

wj =
exp(−Ej/kBT )Qj

Q
(2.22)

where Ej is the potential energy of the jth conformer, with the partition functions

Qj =
∫

exp[−Uj(Ω)/kBT ]dΩ (2.23)

and

Q =
Nc∑
j=1

exp(−Ej/kBT )Qj (2.24)

If the full torsional angle distribution is taken into account, Eq. 2.21 becomes:

〈· · · 〉 =
∫
· · · f(ϕ,Ω)dϕdΩ (2.25)

where f(ϕ,Ω) is the coupled distribution function for the orientation, defined by the

angles Ω and the torsional angles ϕ.
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3
Molecular expressions for the elastic constants

3.1 Introduction

In this chapter we derive molecular expressions for the bulk and surfacelike elastic con-

stants of nematics, within the framework of the Surface Interaction model. This requires

extensive use of tensor calculus; after some lengthy algebra, simple expressions are ob-

tained, by exploiting the symmetry of the undeformed nematic phase. These expressions

have been implemented in a Fortran code as a part of the computational procedure de-

scribed in the next chapter.

The molecular theory for the elastic constants is presented here in the form of a paper,

which has been submitted for publication.
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Abstract 

 

Liquid crystals oppose elastic torques to distortions of the director. For nematics this behavior is 

characterized by three bulk elastic moduli (K11, K22 and K33), and two surfacelike constants (k13 and 

k24). These material properties depend on the molecular structure of mesogens, but the relation 

between molecular features and deformations on a much longer length scale has not been fully 

elucidated. The prediction of elastic properties is a challenge for theoretical and computational 

methods: atomistic simulations require large samples and must be integrated by statistical- 

thermodynamics models, to connect the intermolecular correlations to the elastic response. Here we 

present a molecular field theory, wherein expressions for the elastic constants of nematics are 

derived on the basis of the orientational distribution function, which is simply parameterized 

according to the amount of molecular surface which can be aligned to the nematic director. A 

detailed account of the chemical structure is possible; moreover the conformational freedom, which 

is a common feature of mesogens, can be easily introduced. Given the atomic coordinates, the 

elastic constants can be calculated without any adjustable parameter, at a low computational cost. 

We report the results obtained for 4-npentyl-4'-cyanobiphenyl (5CB); we show that even for 5CB, 

which is usually taken a prototypal rod-like molecule, the elastic moduli exhibit a strong 

dependence on the molecular conformation. This model is shown to provide good estimates of the 

magnitude and the temperature dependence of the elastic constants, if the molecular geometry is 

correctly taken into account.  
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Introduction 

 

Liquid crystals (LCs) are characterized by curvature elasticity: they oppose a torque to distortions of 

the director, that is the average direction of molecular alignment. This is one the main properties 

controlling the LC behavior on the sub-micrometric length scale and plays a key role for 

applications. In LC cells, the director profile, which determines the optical properties, is the result 

of the trade-off between the deformation induced by an external electric or magnetic field and the 

elastic response of the LC medium [1].  

 The number and kind of elastic modes of a given material can be derived from symmetry 

considerations. The elastic behavior of nematic liquid crystals is well established since the 40's of 

last century: according to the Oseen-Frank theory [2,3], the bulk elasticity can be described in terms 

of three ‘bulk’ elastic constants, for splay (K11), twist (K22) and bend (K33) deformations, 

respectively (see Figure 1), in addition to k13 and k24 , denoted as splay-bend and saddle-splay, 

respectively, which only contribute to the free energy density in the presence of interfaces. 

 

[insert Figure 1 about here] 

 

The elastic constants depend on the chemical structure of mesogens [4]. They are all 

positive, as required for the stability of the undeformed nematic phase, and their magnitude is of the 

order of some pN. For NLC formed by elongated molecules, the sequence K33 >K11 >K22 is 

generally found. The elastic moduli usually increase with the degree of order, but the splay and 

twist constants exhibit a weak temperature dependence, whereas the bend stiffness changes more 

steeply. In many cases, Kii approximately proportional to Szz
2
 is found, with Szz being the major 

orientational order parameter. The bend elastic constant is also the most sensitive to changes in the 

molecular structure. We shall take as an example 4-npentyl-4'-cyanobiphenyl (5CB), whose 

structure is displayed in Fig. 2. Its elastic constants have been measured by different technique, and 

some discrepancy has been found, which has been mainly ascribed to the errors affecting the 

different techniques or to the chemical purity of samples (see ref. [5] for a survey). As a matter of 

fact, the experimental determination of elastic constants is not trivial and the results are 

characterized by non-negligible uncertainty. Fig. 3 shows the temperature dependence of the bulk 

elastic constants of 5CB, as obtained in some of the reported experiments [6-9].  

 

 

[insert Figure 2 about here] 
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[insert Figure 3 about here] 

 

The anisotropy of elastic constants is an important material property, which exhibits a 

significant, yet scarcely understood, dependence on the molecular structure of the constituents [4]. 

The ratio K33/K11 , which is particularly sensitive to structural changes, was proposed to be an 

increasing function of the length-to-width ratio. However, K33/K11 has been shown to be strongly 

affected by the presence of alkyl chains: it was found to decrease with increasing chain length 

within homologous series [10]. The ratio K33/K11 was also found to change under chemical 

modifications, which did not significantly affect the length-to-width ratio [11]. The anisotropy of 

elasticity can be of utmost relevance for technological applications; for instance, it determines the 

steepness of the voltage–transmittance curve in twisted nematic LC displays [12].  

The elasticity of liquid crystals controls the mesoscale behavior of liquid crystals; it 

introduces anisotropy in the interactions between embedded colloidal particles [13-15] and the ratio 

of elastic constants affect the structure of topological defects [16] and the location of defects in 

confined nematics [17]. 

Clearly, the availability of reliable modeling methods for the elastic constants would be 

extremely useful for the synthetic design of LC materials with tailored elasticity. However, the 

prediction of collective properties, which depend on the intermolecular correlations, is not a simple 

task. The problem, somehow analogous, of dielectric properties, can be treated by single molecule 

calculations, by exploiting the dielectric continuum approximation [18]. Nothing analogous exists 

for the elasticity. In their pioneering work Nehring and Saupe, using a mean field approach, found 

Kii  Szz
2
, where Szz is the major orientational order parameter, and K11 : K22 : K33= 5:11:5 [19]. The 

correct sequence, K33 > K11 > K22 , could be obtained by models of hard axially symmetric particles 

[20-23]; but these overestimate the K33 / K11 ratio and cannot describe the temperature dependence 

of the elastic constants. Better agreement with experiment could be achieved by introducing 

dispersion and dipole or quadrupole interactions between particles [24-26]. Qualitatively similar 

results, though with some differences, were obtained by Molecular Dynamics and Monte Carlo 

simulations of particles with hard core [27] or soft interactions [28,29]. Different routes from 

trajectories to elastic moduli have been proposed, some requiring theoretical models to connect the 

information on the local liquid structure to elastic properties [30]. The need of relatively large 

systems is nowadays a limit for the calculation of elastic constants from atomistic simulations [31]; 

the description of the temperature dependence of elastic properties would be an extremely 

demanding task. Good agreement with experiment was obtained by Zakharov and Maliniak for 5CB 

at 300 K, from Molecular Dynamics simulations with an atomistic force field [32].  
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 Here we shall derive expressions for the elastic constants of nematics using a molecular field 

approach. Mean-field theories of LCs have a long and successful history, which traces back to the 

Maier-Saupe theory [33]. They have also contributed to shed light on the relationship between 

intermolecular interactions and elastic constants [19,34]. The concept of molecular surface has 

enabled the introduction of the molecular structure into this framework. The Surface Interaction (SI) 

model rests on the assumption that a molecule in the nematic phase tends to align to the director as 

much surface as possible [35]. In analogy with the Rapini-Papoular expression of the anchoring free 

energy on the surface of a particle embedded in a nematic phase [36], the simplest form consistent 

with the nematic symmetry, is assumed for the mean field, dU, acting on each element of the 

molecular surface. The orienting potential experienced by the molecule is then obtained by 

integrating dU over the whole surface; in this way, the orientational distribution of a molecule in the 

nematic phase is related to the anisometry of the molecular surface. In this work, the SI model is 

extended to the elastic constants of nematics. The SI approach provides good predictions of 

different properties of nematics: temperature dependence of orientational order and thermodynamic 

properties at the Nematic-Isotropic transition [35,37], helical twisting power of chiral dopants [38], 

flexoelectric coefficients [39]. The success of this simple model is due to the fact that the molecular 

surface represents a reasonable property to scale short range intermolecular interactions. This is 

widely recognized; indeed, the molecular surface is customarily used to parameterize non-polar 

interactions within implicit solvent models [40]. Our results for nematics show that it is also 

suitable for simple but effective modeling of the anisotropy of short-range interactions. 

Some analogy between the theory for the elasticity of nematics presented here and that 

proposed a few years ago by Marrucci and Greco [41] can be found; both can be considered as 

extensions of the Maier-Saupe theory [33], based on the recognition of the importance of the 

geometrical features of molecules. Although the developed methodologies are quite different, in 

both cases the orientational mean field experienced by a molecule in the distorted environment is 

connected to the director orientation in the space region occupied by it. A novelty in the present 

work is represented by the realistic account of the molecular structure; this allows a natural 

inclusion of the structural differences and eliminates some arbitrariness of the molecular model.  

 In this work, molecular expressions for the bulk elastic constants K11 , K22 and K33 and the 

two surfacelike moduli k13 and k24  are derived, using the SI model. This can fully account for the 

molecular geometry and flexibility, which should not be neglected when considering liquid crystals, 

since this is one of the features required for the stabilization of mesophases. The elastic constants 

calculated for 5CB are reported. This simple example allows us to highlight one of the main results 

of the present method which, for the lack of suitable theoretical and computational tools, could not 
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be fully investigated before, i.e. the effect of the molecular flexibility on the elastic response of 

liquid crystals. 

 In the next Section, the theoretical method is outlined. To keep plain the presentation, only 

the main expressions will be reported; all the lengthy derivations are deferred to Appendices. In the 

third Section the results obtained for 5CB are presented and discussed. Conclusions and future 

outlooks will be summarized in the fourth Section.  

 

 

Theory: elastic constants of LC by the Surface Interaction method 

 

The elastic free energy density of nematics can be expressed as [1]: 

       

     

2 22

2 11 22 33

13 22 24

1 1 1

2 2 2

( )

elf k n n K n K n n K n n

k n n K k n n n n

              

               

 

(1) 

Here the first term accounts for the spontaneous tendency to twist of the director, which 

characterizes the chiral nematic (cholesteric) phase, and k2 is generally denoted as the chiral 

strength. The three following terms represent the contributions for splay, twist and bend distortion 

modes, respectively, and Kii are the corresponding elastic constants [2,3]. The two last contributions 

in eq. (1) are usually denoted as splay-bend and saddle-splay, respectively; these divergence terms 

reduce to surface integrals by the use of Gauss theorem. Their role has been a matter of extensive 

debate; at first they were ignored, as purely surface terms which do not contribute to determining 

the director configuration in bulk LCs, but then their relevance for the behavior of LCs in the 

presence of interfaces was recognized [42-44].  

Eq. (1) is the lowest order term of the expansion of the free energy density in powers of the 

director distortions, which are assumed to have long wavelength. The elastic constants appearing 

here are material parameters which depend on the chemical composition of the system. In the 

following, an expression for the free energy will be derived starting from the single molecule 

orientational distribution function, using the SI model. Then, molecular expression for the elastic 

constants will be obtained as derivatives of the free energy density with respect to deformations. 

 The orientational distribution of molecules in the nematic phase, under the conditions of the 

canonical ensemble, is described by the function p(): 

 
 exp / BU k T

p
Q

      
(2) 
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where  are the Euler angles specifying the molecular orientation in a frame with the Z axis parallel 

to the director, and Q is the orientational partition function: 

 d  exp - / BQ U k T      (3) 

In these expressions U () is the potential of mean torque, for which the following form is assumed 

within the SI model [35]:  

   2B
S

U k T dS P   n s  (4) 

where S is the molecular surface, n and s are unit vectors, the former parallel to the director and the 

latter normal to the surface element dS and P2 is the second Legendre polynomial. This is nothing 

else than the first non-vanishing term of the expansions on a suitable basis set, with the correct 

symmetry, of the function expressing the orientational mean field experienced by the surface 

element dS. The parameter , with dimension of inverse square length, specifies the orienting 

strength of the medium, which is an increasing function of the reduced temperature, T*=T/TNI, with 

TNI being the Nematic-Isotropic transition temperature. According to molecular field theories,  is 

assumed to take the form [35,45]: 

2

B

a
vk T


    

(5) 

where v is the volume per molecule,  is a constant, a is the integral  

 2
S

a dS P  n s  (6) 

and the angular brackets denote the orientational average: 

 d  p Ω Ω    (7) 

The average value  a can be seen as an order parameter, which vanishes in the isotropic 

phase and measures the degree of order experienced by molecules in the nematic phase. 

 

To bridge the molecular orientational distribution function to the Helmholtz free energy, we 

shall start from the thermodynamic relationship: 

isof f u T s     (8) 

where fiso  is the free energy density of the isotropic phase, and u, s are the differences of internal 

energy and entropy density between the nematic and the isotropic phase, respectively. These 

differences can be approximated as [45]: 
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1
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lnB

u U
v

k
s p
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 

  

 

(9a) 

 

(9b) 

Using eqs. (9) with eqs. (2)-(6), eq. (8) can be rewritten as: 

2
2

2
ln

2

B
iso

k T
f f a Q

v v
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
 

(10) 

This free energy density bears an intrinsic dependence on the position in deformed nematics, where 

the director is a function of the position, n=n(R). Essential for our approach is the fact that, due to 

the finite dimension of a molecule, the molecular surface ‘feels’ different director orientations, in 

the presence of deformations. This introduces a dependence on the deformation in the potential of 

mean torque, U(), and then, in the orientational distribution function, p(), and in the 

thermodynamic functions which are derived from them. It might be worth noticing the difference 

from other approaches, where the molecular expression of the free energy density is derived from 

suitable averages of the interactions between pairs of molecules [46]. In such cases, the 

orientational distribution function with respect to the local director is generally assumed to be the 

same as in the undeformed nematic phase, and no rotational entropy change is associated with 

deformation. 

The free energy density can be expressed as  , , ,J JK JKLf f n n n  , where nJ are 

components of the director, /JK J Kn n R    are first derivatives of such components with respect to 

the position, 2 /JKM J K Mn n R R     second derivatives, and so on. In the long wavelength limit, the 

Taylor expansion of the free energy density can be truncated at the first terms: 

2

0

0 0 0

1

2
IJ IJK IJ KM

IJ IJK IJKMIJ IJK IJ KM

f f f
f f n n n n

n n n n

       
        

        
    

(11) 

where the subscript 0 refers to the state of uniform director, with 0JKn  , 0JKMn  , and so on. 

Expressions for the derivatives of the molecular form of the free energy density, eq. (10), are 

reported in Appendix A; by substitution of such expressions into eq. (11) we obtain: 
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(12) 

where the angular brackets with zero index denote orientational averages calculated with the 

orientational distribution function in undistorted nematics, p0: 

 00
d  p    (13) 

Using for the derivatives reported in Appendix B, eq. (12) can be rewritten as: 
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(14) 

where the elements of the tensors c
(n)

 (n=3,4,6) and b
(3)

 appear. These are defined in eqs. (B7), as 

integrals over the molecular surface. 

To derive explicit expressions for the elastic constants, let us take a reference frame with the  

Z axis parallel to n
0
=n(R0). With this choice, 0

J JZn  ; moreover, from the constraint 1 n n , the 

relationships 0ZJn   and ZJK XJ XK YJ YKn n n n n    follow. Then, using eqs. (B5) for the derivatives 

of the function a with respect to director distortions, the density of elastic energy, fel= f - f0, reads: 
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(15) 

As a consequence of the symmetry of undeformed nematics, terms containing third-rank tensor 

components, cJKZ and bJKZ, vanish for non-chiral molecules; for chiral molecules, only those with 

JKZ survive (eqs. B8).  
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From comparison between the molecular expression, eq. (15), and the Oseen-Frank form, 

eq. (1), we can write for the elastic constants (see Appendix C): 
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(16d) 

It follows from eqs. (B8) that k2 vanishes for achiral molecules. In agreement with Nehring and 

Saupe, we find k13 0 and 
24 11 13 22( 2 ) / 2k K k K    [19]. It has to be specified, however, that these 

are the bare surfacelike elastic constants; as discussed by various authors [43,47,48], they represent 

only one of the contributions to the effective elastic constants, which determine the behavior of 

nematics at interfaces. 

  

Inclusion of molecular flexibility  

The expressions reported above can be easily generalized to take into account the molecular 

flexibility. In general, for flexible molecules the orientational distribution function, eq. (2), should 

be replaced by the torsional-orientational distribution function: 
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(17) 

with the partition function 

 d  d exp - , / BQ U k T        (18) 

where  collectively denote all the torsional degrees of freedom and U(,) is the torsional- 

orientational potential. The expression for the orienting strength is still given by eq. (5), with: 

   d  d exp - , / ,BU k T a
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If the minima of the torsional potential are separated by large enough barriers, the system 

can be simply treated in terms of a finite number of conformers, each corresponding to a given 

minimum; then, the torsional-orientational partition function, eq. (8), can be approximated as: 

exp - /m B m

m

Q V k T Q     (20) 

where the summation is over all conformers; Vm is the torsional potential and Qm the orientational 

partition function for the mth conformer: 

 d exp - /m m BQ U k T     . (21) 

Then, the average value of any arbitrary function g can be calculated as: 

m m

m

g w g  (22) 

with the average over single conformers: 
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(23) 

here gm is the function evaluated for the mth conformer and wm is the statistical weight of this 

conformer, defined as: 

exp -V /m B m

m

k T Q
w

Q

   . 
(24) 

In the nematic phase the statistical weights of conformers will be different from those in solution, 

and will depend on the degree of order. Namely, depending on their shape, conformers can be more 

or less accommodated in the nematic phase; in general, elongated conformers are stabilized over the 

bent ones. 

In the presence of conformers, an additional contribution, from the torsional energy, must be 

included in the internal energy density, eq. (9a):  

1 1

2
u U V

v v
     

(25) 

where V=V-<V>iso , with <V>iso being the average torsional potential in the isotropic phase. The 

difference in average torsional potential between the nematic and the isotropic phase derives from 

the change in conformational distribution between the nematic and the isotropic phase. Using eq. 

(25), the Helmholtz free energy, eq. (10), becomes: 

2
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(26) 

It is worth remarking that the averages appearing in this equation are taken not only over molecular 

orientations, but also over conformations.  
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Following the same procedure presented above for rigid mesogens, expressions for the 

elastic constants of flexible mesogens are obtained (see Appendix D): 
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(27d) 

 

where d
(n)

 (n=3,4,6) and g
(3)

 are the tensors defined in eqs. (E1)  and V '= V / kBT. For multiple 

conformers with identical torsional potential, i.e. when V '= 0, eqs. (27) reduce to the form of eqs. 

(16), where, however, the averages have to be intended as taken over both orientations and 

conformers.  

 

Computational methodology 

 

The calculation of elastic constants requires the atomic coordinates of all conformers. For each 

conformer, tessellation of the molecular surface is performed [49]. Then the surface integrals, which 

appear in the expressions for the elastic constants, are evaluated as sums over the tesserae. The 

volume integrals in eqs. (B7) are conveniently transformed into surface integrals, according to the 

Stokes theorem, as shown in Appendix F. For a given value of the orienting strength, , order 
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parameters and orientational averages for each conformer are calculated by integrating over the 

orientational distribution function in undeformed nematics, eq. (13). The integrals over orientations 

are conveniently expressed as integrals over the Euler (, ) angles, by properly exploiting the axial 

symmetry of undeformed nematics, as shown in Appendix G. Numerical integration on the (,) 

rectangle is carried out by the Gaussian quadrature rule [50]. Altogether, the full temperature 

dependence of the elastic constants of a conformer can be calculated in a few minutes on a desktop 

PC. Finally, the elastic constants are evaluated as sums of single conformer contributions; the 

computation time scales linearly with the number of conformers. 

 

The elastic constants of 5CB   

 

In the following we shall present the results obtained for 4-npentyl-4'-cyanobiphenyl (5CB), a 

typical mesogen for which many experimental data are available. The structure of 5CB is shown in 

Fig. 2; several conformers are possible, which are obtained by rotation around the alkyl chain bonds 

and the phenyl-phenyl bond [51]. In our calculations we have taken the 15 lowest energy 

conformers, having at most a single gauche state in the tail; the others have been neglected, in view 

of the energy increase associated with the introduction of a gauche, which is of the order of kBT, in 

the temperature range of the nematic phase. An arbitrary conformer is identified by a label, like 

Ptg+t; the first letter specifies the sign of the twist angle between phenyl rings (M and P, for angles 

of about +30° and about -30°, respectively), whereas the subsequent letters denote the 

conformational state of CH2-CH2 bonds, in their order, starting from the benzene ring (t, g+, g-, for 

trans, gauche+ and gauche-, respectively). Fig. 3 shows five of the lowest energy conformers, with 

their labels. Atomic coordinates of the conformers were obtained by geometry optimization at the 

DFT/B3LYP/6-31g** level [52]. Molecular surfaces were generated with van der Waals radii: 

rC=0.185 nm, rN=0.16 nm, rH=0.1 nm [53] and a rolling sphere radius equal to 0.3 nm [54]; a 

density of points equal to 500 nm
-2

 was taken.  

 

[insert Figure 4 about here] 

 

In calculating the elastic constants, the volume per molecule v was taken equal to 275 Å
3
, 

the value obtained from the molecular surface calculation [49]. Given the small differences between 

the values obtained from the DFT calculations, all conformers with a g bond were assumed to have 

the same torsional energy, 2.5 kJ mol
-1

 higher than the energy of the all-trans conformer [51]. 
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Elastic constants were calculated as a function of the orienting strength, or, equivalently, 

of the orientational order parameters. The relation with temperature was then established by 

comparison with the experimental temperature dependence of order parameters reported for 5CB 

[55]. Fig. 5 shows the principal elements of the calculated Saupe matrix [4], as a function of 

temperature. These are obtained by diagonalization of the average Saupe matrix, calculated from 

conformer contributions, all expressed in the same molecular fixed frame. 

 

[insert Figure 5 about here] 

 

Fig. 6 displays the elastic constants calculated for 5CB, according to eqs. (27). These can be 

compared with the experimental data, shown in Fig. 3: we can see that the sequence of elastic 

moduli is correctly predicted, as well as their temperature dependence. Fig. 6 also shows the elastic 

ratios, K22/K11 and K33/K11, which are known to be especially sensitive to changes in the molecular 

structure [46]. The values obtained from our calculations are close to those derived from 

measurements and, in keeping with experiment, K22 and K11 are predicted to have almost the same 

temperature dependence, weaker than that of K33. Even with the uncertainty of the experimental 

data, we can recognize that the calculated elastic constants, especially those for splay and twist, are 

lower than the measured values and the predicted K33/K11 ratio is overestimated. These 

discrepancies between theory and experiment are probably due to the approximate form of the 

potential of mean torque; anyway, the results obtained are quite satisfactory, especially in view of 

the fact that no free parameter enters the calculations and presently no other methodology is 

available to directly connect atomic structure and elastic constants. 

 

[insert Figure 6 about here] 

 

In Fig. 6 we also show the elastic constants calculated by simplified expression, obtained by 

neglecting all the terms containing 
0

'V in eqs. (27), which derive from the change in average 

torsional potential between the nematic and the isotropic phase. The figure shows that this 

contribution is really small, therefore it could be safely neglected in calculations. 

In most molecular theories the elastic constants are expressed as a function of order 

parameters, and contributions of different rank are distinguished; the lowest order term is 

proportional to the square of the second rank order parameter. In the present model, the dependence 

on order parameters is implicitly contained in the average values appearing in the expressions for 

elastic constants, eqs. (27). Fig. 7 displays the elastic constants of 5CB as a function of Szz
2
, the 
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higher principal value of the average Saupe matrix. We can see that for the splay and twist elastic 

moduli the relationship is close to linear in almost the whole range of order parameter; some more 

deviation from linearity appears for the bend stiffness. Such results are in keeping with most 

theories [46], and are related to the different temperature dependence of the elastic ratios, shown in 

Fig. 6. 

 

[insert Figure 7 about here] 

 

 An important and still largely unexplored issue concerns the effects of the molecular 

flexibility on the elastic moduli of nematics. New insights can derive from our methodology, which 

allows us to examine the contribution of individual conformers to the elastic constants. Some results 

obtained for 5CB are shown in Fig. 8. We can see a strong dependence on the alkyl chain 

conformation, understandable because changes in chain conformation can correspond to significant 

changes in the whole molecular shape, as appears in Fig. 4. In general, small elastic constants are 

predicted for bent conformers, and much higher ones for elongated conformers. Remarkably, even 

negative K33 values are obtained for the most bent structures. It is worth stressing that this result is 

not in contrast with the existence of the nematic phase for 5CB; the negative contribution K33 has 

only the effect of lowering the elastic constant obtained after averaging over all the conformers. Fig. 

8 shows that intermediate values of the elastic constants have been calculated for the all-trans 

conformer, the most stable and then the most important, which is slightly bent. Effects of molecular 

flexibility were proposed to explain the experimental dependence of elastic ratios on alkyl chain 

lengths in homologous series [10]. The role of flexibility was also invoked to explain the 

differences between the elastic constants calculated by a statistical mechanics theory for Gay-Berne 

particles and the results obtained from atomistic Molecular Dynamics simulations of 5CB [56]. Our 

calculations show that the conformers of a given molecule can give very different contributions to 

the elastic constants; their effect on the ‘observed’ elastic constants depends on their statistical 

weight. 

 

[insert Figure 8 about here] 

 

 As conformers are chiral, they also give a contribution to the k2 constant, which is related to 

the stabilization of a cholesteric helix in the nematic phase. Our calculations show that individual 

conformers would produce helical pitches in the range 0.1 m-1 m, i.e. comparable to the pitch 

measured [57] and predicted [58] for alkylcyanobiphenyl mesogens with a chiral center in the 
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aliphatic chain. However, for each conformer the mirror image is also present in a sample; since k2 

contributions of opposite sign are obtained for enantiomeric pairs, a vanishing k2 value is obtained 

for the mixture of conformers. 

Finally, Fig. 9 displays the temperature dependence of the surfacelike elastic constants, k13 

and k24. We can see that the former is negative and weakly changing with temperature, whereas the 

latter is positive and increases with lowering temperature; both are significantly smaller than the 

bulk moduli. Unfortunately we cannot evaluate the quality of our predictions by comparison with 

experiment, for the lack of data; only comparison with other theories and simulations is possible. 

Actually, only a few attempts to evaluate surfacelike elastic constants have been reported, all 

dealing with simple particle models. Teixeira et al [59] studied a nematic formed by Gay-Berne 

particles using a generalized Poniewierski-Stecki theory [22], whereas Stelzer at al [60] performed 

Molecular Dynamics simulations for an analogous system. In both cases k13 and k24 significantly 

smaller than the bulk elastic constants were obtained, in keeping with our results for 5CB. However, 

there is complete disagreement on the sign of the two constants. Mostly positive k13 and k24 values 

were predicted by Teixeira et al., whereas Stelzer and colleagues found k24 >0 and k13 <0. The 

discrepancies were ascribed to different approximations used for evaluating the direct correlation 

function, and the strong sensitivity of the surface constants to details of the latter was inferred [60]. 

In our calculations we have found a significant dependence of k13 and k24 on the molecular 

conformation. All this points to the special character of the surfacelike constants, which deserve 

more experimental and theoretical investigation. 

 

 [insert Figure 9 about here] 

 

Conclusions 

  

We have developed a molecular theory for the elasticity of nematic liquid crystals, based on 

the Surface Interaction model [35,37]. The relation between molecular orientation and director 

deformation is introduced through the assumption that the nematic director tends to lie 

perpendicular to each point of the molecular surface. A realistic account of the molecular structure 

is made possible by the use of a surface generated from atomic coordinates. The mesogen flexibility 

is easily introduced, through averages over molecular configurations. The elastic constants are 

expressed in terms of the orientational averages of tensors, defined as integrals of suitable functions 

over the molecular surface; they can be calculated as a function of the orientational order, without 

any free parameter, at low computational cost. This methodology is suitable for chiral and nonchiral 



 39 

nematics. It enables us to investigate the role of molecular features and to explore how changes at 

the atomic level can be conveyed into changes in elastic behavior, on a quite different length scale. 

For this reason we think that it can shed light on the origin, still poorly understood, of the different 

elasticity of the nematic phase formed by mesogens with different structure. The predictive ability 

of this method makes it potentially useful for the synthetic design of tailored mesogens: the elastic 

constants can be easily calculated, once the molecular structure is known. Further investigation of 

different kinds of mesogens and the comparison of the theoretical results with existing data is 

needed to assess the quality of the predictions. Promising results have been obtained for the typical 

case of 5CB. Several elasticity measurements have been reported for this system, with some 

discrepancy. The absolute and relative magnitude of the calculated elastic constants, as well as their 

temperature dependence, are in keeping with experiments. The calculations show the extreme 

sensitivity of the elastic constants, especially that for bending, to the molecular geometry: even for 

5CB, which is generally taken as a prototype of a rod-like structure, we have found remarkable 

differences between conformer contributions. 

Within the theoretical framework presented here, also expressions for the surfacelike elastic 

constants of nematics are provided. The values obtained for k13 and k24 of 5CB have opposite sign, 

and much smaller in magnitude than those of the bulk elastic moduli. They are highly sensitive to 

the molecular geometry; great sensitivity to the details of the direct correlation function was 

evidenced by previous theories and simulations [59,60]. The absence of unambiguous experimental 

data makes it difficult to assess the quality of our results. Actually, as discussed by some authors 

[47,48], theories for the surface elasticity, as well as the interpretation of experiments, should be 

considered within a more framework, taking into account also the anchoring free energy. So, we 

think that what we have presented here should only be seen as a preliminary exploration of the 

problem of the surface elasticity of nematics, which deserves further investigation in the future, and 

we hope that our approach can provide new insights. 

Developments of this work along different lines can be foreseen. In the next future, they 

include the investigation of a wider class of mesogens, including systems more unusual than 5CB, 

like cyanobiphenyl dimers [61] or bent shaped molecules [62], for whose elasticity scarce 

experimental information is available. Considering computational issues, the calculation of elastic 

constants will be introduced in a systematic procedure for generating and treating conformers of 

flexible molecules, with the possibility of Monte Carlo conformational sampling [63]. Moreover, it 

would be interesting to extend our approach to the elastic properties of other phases, e.g. biaxial 

nematics [64].  
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Appendix A 

 

In this appendix expressions for the derivatives of the free energy density, appearing in eq. (11), are 

obtained. From eq. (10), we can write: 
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Considering the form of the potential of mean torque, eq. (2), the derivatives of the orientational 

partition function, eq. (3), are given by: 

2

IJ B IJ IJ

aQ a
Q a

n vk T n n

  
      


 

22 2 2

2
2 2

IJ KM B IJ KM IJ KM IJ KM IJ KM

B IJ KM IJ KM IJ KM IJ KM

a a aQ a a a
Q a a

n n vk T n n n n n n n n

a a a aa a a a
a a a a a a

vk T n n n n n n n n

     
   

         

        
   

         




 

(A2a) 

 

 

(A2b) 

 

 

By substitution of eqs. (A2a-b) into eqs. (A1a-b) we obtain:  
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(A3b) 

For the first derivative of the average value a , we can write:  
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(A4) 

 

which substituted into eq. (A.3b) leads to: 
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An expression analogous in form to eq. (A3a) is obtained for the derivative of the free energy 

density with respect to 2 /JKM J K Mn n R R    . 

 

 

Appendix B 

 

Here we shall make explicit the position dependence of the function  2P n s , appearing in the 

expression for the potential of mean torque, eq. (4), in the presence of director distortions. Let us 

assume that the origin of the molecular frame is located at the point R0 in the sample; if 

 0

0 n n R R  is the director in this point, the function  2P n s  at any arbitrary position on the 

molecular surface, 0 R R r , can be expressed by the Taylor expansion in powers of the 

displacement r: 

   0 0 0

2 2

3 3
3

2 2
I IK J I JK M K I J JKM M K I J IM JK

IJK IJKM IJKM

P P r s s n n r r s s n n r r s s n n        n s n s  
(B1) 

For small displacements on the length scale of the deformation, this expansion can be truncated at 

the first terms. 

Using eq. (B1), the function a defined in eq. (6) can be approximated as: 

0 0

0

3 3
3
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I IKJI JK MKJI JKM MKJI IM JK

IJK IJKM IJKM

a a T n n T n n T n n       
(B2) 

where IJKMT  are elements of the nth rank ( )nT  tensors: 

IJ I J
S

T s s dS   

IJK I J K
S

T r s s dS   

IJKM I J K M
S

T r r s s dS   

(B3a) 

(B3b) 

(B3c) 

From the definition, the following symmetry relations are derived: 
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IJ JIT T  

IJK IKJT T  

IJKM JIKM IJMK JIKMT T T T    

(B4a) 

(B4b) 

(B4c) 

The derivatives of the function a appearing in eq. (12) can then be expressed as: 
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(B5c) 

 

The ( )nT  tensors defined in eqs. (B3) depend on the location of the origin of the molecular frame. 

Under a shift of the origin, O′  O, the coordinates of points in the molecular surface transform as 

r=r′-r0 , where the vector r0 specifies the position of the new origin in the original frame. It follows 

that for the ( )nT  tensors we can write: 

IJ IJT T   

0,IJK IJK I JKT T r T    

0, 0, 0, 0,IJKM IJKM I J KM I JKM J IKMT T r r T r T r T      

(B6a) 

(B6b) 

(B6c) 

where 0, Ir and 0,Jr are Cartesian components of the vector r0. 

The expression for the free energy density, eq. (12), contains averages of the derivatives of the 

function a, eqs. (B5), taken over the orientational distribution function in undeformed nematics, p0, 

introduced in eq. (13). After further averaging over all positions of the origin within the molecular 

volume, as appropriate in a fluid without positional order, we can define the following tensors: 
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(B7a) 

 

(B7b) 

(B7c) 

 

(B7d) 

where v is the molecular volume. 

Some relationships, which exist between the components of the c
(n)

 tensors, by virtue of the 

uniaxial symmetry of the undistorted nematic phase, are exploited in deriving the expressions for 

the elastic constants. In a laboratory frame with the Z axis parallel to the director, after averaging 
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over the distribution function for undeformed nematics, p0, the number of independent components 

of the c
(n)

 tensors is strongly reduced. In particular, for the relevant elements of the third-rank tensor 

we can write: 

0 0IJZ IJZ IJZT T     (= 0   for achiral molecules) 

0 0IJZ IJZ IJZaT aT     (=0  for achiral molecules) 

(B8a) 

(B8b) 

where IJZ is the Levi-Civita symbol [65].  

 The components of the fourth rank tensors obey the following relationships: 
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and for the components of the sixth rank tensors we have: 
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(B10a) 

(B10b) 
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(B10d) 

 

Analogous symmetry relations can be written for the tensors defined in eqs. (B7). 
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Appendix C 

 

For the comparison with eq.(1), it is convenient to collect the terms in eq. (15) as shown in the 

following. 
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(C1) 

In the first line, the relationship nKJM= nKMJ has been used. 

After some algebra, this can be rewritten as: 
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Appendix D 

 

In this appendix we shall obtain expressions for the derivatives of the free energy density suitable 

for flexible mesogens, eq. (26), with respect to director deformations. We can write: 
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(D1a) 

 

(D1b) 

These expressions differ from eqs. (A1a-b) for the presence of terms containing the torsional 

potential V. 

 

It is convenient to exploit the following relationships, which can be derived from the definition of 

orientation-conformational averages, eq. (22), and that of conformer weight, eq. (24):  
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(D2b) 

where summations are extended to all conformers. 

The derivatives of the orientational partition functions for individual conformers, defined in eq. 

(21), are given by: 
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with the the upper bar indicating the orientational average, as in eq. (23). 

For the derivatives of the average torsional potential we can write: 
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By substitution of eqs. (D3) and (D4) into eqs. (D1), using eq. (A4), we obtain: 
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(D5b) 

 

 

An expression analogous in form to eq. (D5a) is obtained for the derivative of the free energy 

density with respect to 2 /JKM J K Mn n R R    . 
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Appendix E 

 

If the mesogen flexibility is taken into account, in addition to those defined by eqs. (B7), some other 

tensors appear in the molecular expressions for the elastic constants. Their components are defined 

as: 
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(E1a) 

 

(E1b) 

 

(E1c) 

 

 

(E1d) 

where the angular brackets denote orientational-conformational averages, defined by eq. (19) or 

eq.(22), according to whether the full torsional potential or only its minima are considered. The 

index 0 is used for averages performed over the orientational distribution in the undistorted nematic 

phase. 

 

Appendix F 

 

For computational purposes it is convenient to transform the volume integrals in eqs. (B7) into 

integrals over the molecular surface, according to the Stokes theorem [65]. For example we can 

write: 
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(F1b) 

 

 

So, if we introduce the tensors  

IJK I J K
S

G dS r r s   

IJKM I J K M
S

G dS r r r s   

(F2a) 

(F2b) 
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the average tensor components cIJL and bIJL appearing in the expressions for elastic constants, and 

defined by eqs. (B7), can be expressed in a compact form as: 

0

0

0
(1/ 2)

IK JL

IJL IJL

IIK JL

G T I K
c T

G T I K

 
  



 

0

0

0
(1/ 2)

IK JL

IJL IJL

IIK JL

aG T I K
b T

aG T I K

 
  



 

0 0 0

0 0 0

0

0 0 0

0 0

,

(1/ 2) (1/ 2) ,

(1/ 2) (1/ 2) ,

(1/3)

IJK LM IK JLM JK ILM

IIJK LM IIK JLM JK ILM

IJLM IJLM

IIJK LM IK JLM JJK ILM

IIIK LM JJK ILM

G T G T G T I K J K

G T G T G T I J I K
c T

G T G T G T I J J K

G T G T I J K

    


   
  

   
   

 

0 0 0

0 0 0
, 0

0 0

0 0

,

(1/ 2) (1/ 2) ,

(1/ 2) (1/ 2) ,

(1/3)

IJKK JL MN IK JLM JK ILM

IIJK LM IIK JLM JK ILM

IJL KMN IJL KMN

IIJK LM IK JLM JJK ILM

IIIK LM JJK ILM

G T T G T G T I K J K

G T G T G T I J I K
c T T

G T G T G T I J J K

G T G T I J K

    


   
  

   
   

 

(F3a) 

 

 

(F3b) 

 

 

(F3c) 

 

(F3d) 

 

 

Appendix G 

 

The tensor components defined in Appendix B depend on the three Euler angles (,,); however, 

exploitation of the axial symmetry of undeformed nematic phase allows us to calculate their average 

values in the undeformed nematic phase, defined by eq. (13), as double integrals over the (,) 

Euler angles. For example, we can calculate 
0XZXZT  and 

0ZXZ ZXZT T as: 

 0 0 0XZXZ XZXZ YZYZT T T   

 0 0 0ZXZ ZXZ ZXZ ZXZ ZYZ ZYZT T T T T T   

(G1a) 

(G1b) 

where 

 
0 0

sin d ,  d p        . (G2) 

with p0 being the orientational partition function in undeformed nematics. 

The integrals 
0XXXXT , 

0XXYYT  and 
0XYXYT  can be obtained by solving the set of algebraic 

equations: 

 

 
0 0 0 0 0 0

0 0 0 0 0
2

XXXX YYYY XXXX YYYY XXYY YYXX
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   


 

(G3) 

together with eq. (B9m). 

Expressions analogous to eqs. (G1a-b) or (G3) can be used for all average tensor components 

appearing in the expressions for the elastic constants. 
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Captions to the Figures 

 

Figure 1 Splay, twist and bending deformations of nematics. 

 

Figure 2 Chemical structure of 4-npentyl-4'-cyanobiphenyl (5CB). 

 

Figure 3 Temperature dependence of the bulk elastic constants of 5CB, as obtained from different 

experiments: full simbols [7,9], open symbols [8], dashed line [6]. 

 

Figure 4 Conformers of 5CB considered for the calculations of elastic constants. The labels P and 

M are used for positive ( +30°) and negative ( -30°) biphenyl twist angles, respectively. The 

symbols t (trans) and g (gauche) denote the conformational state of CH2-CH2 bonds. Each 

conformer is identified by a sequence of symbols, listed in order, starting from the CH2-CH2 bond 

closer to the benzene ring.  

 

Figure 5 Temperature dependence of the principal values of the average Saupe matrix calculated 

for 5CB. 

 

Figure 6 Left: bulk elastic constants calculated for 5CB, as a function of temperature; the dashed 

lines show the results obtained by neglecting the change in average torsional potential from the 

nematic to the isotropic phase. Right: elastic ratios, from calculations (line) and from experiment 

(triangles [6], circles [8]). 

 

Figure 7 Bulk elastic constants calculated for 5CB, as a function of Szz
2
, the square of the major 

eigenvalue of the average Saupe matrix. Dashed lines are introduced to highlight deviations from 

linearity. 

 

Figure 8 Contribution of selected conformers to the elastic constants of 5CB. Conformer labels are 

reported in Figure 4. For comparison, also the values obtained after averaging over conformers are 

shown (dashed line). 

 

Figure 9 Surfacelike elastic constants calculated for 5CB, as a function of temperature. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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4
Computational methodology and

parametrisation for selected systems

4.1 Introduction

An integrated computational procedure has been set up, for the calculation of properties

of nematics starting from the molecular structure of the constituents, according to the

theory presented in chapter 2 and 3. This methodology was employed to investigate the

class of systems shown in Fig. 1.5. To this purpose, a preliminary analysis of selected

subsystems was performed, aimed at the definition of (i) a set of transferable charges,

energy and geometry parameters for the systems under investigation; (ii) a small num-

ber of molecular fragments to be used as building blocks to generate the coordinates of

mesogens. An important feature of the present methodology is the account of the molec-

ular flexibility; this is introduced either in terms of stable conformers, according to the

Rotational Isomeric State (RIS) approximation [31], or by Monte Carlo sampling of the

torsional angles.

This chapter begins with a summary of the results obtained from the study of selected

subsystem; this is followed by the definition of the molecular fragments along with the

parametrisation of angles, dihedrals, torsional energies and atomic charges. Then, the

methods used to treat the conformational degrees of freedom of mesogens are presented.

Finally, the computational methodology is outlined and some of its features are discussed.
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CHAPTER 4. COMPUTATIONAL METHODOLOGY AND PARAMETRISATION
FOR SELECTED SYSTEMS

4.2 Single molecule properties

Transferable geometric and energetic parameters and charges were derived from quantum

mechanics (QM) calculations for selected subsystems. Unless differently stated, the DFT

method was used, at the B3LYP/6-31g** level [32].

4.2.1 Torsional potentials for CBOnOCB and CBOnOFF

Torsional potentials were calculated for the twist angle between the aromatic rings, for

the dihedrals of the alkyl chain and for the bonds connecting aromatic rings and alkyl

chains.

Figure 4.1: Torsional potentials, calculated at the DFT/BY3LYP/6-31g** level, for the di-

hedral angles indicated in the structures shown below. In each plot, the value of the potential

energy at the absolute minimum is taken equal to zero; because of the local symmetry, only the

potential energy over a restricted range is shown. The value of 0◦ corresponds to the planar

geometry in case (a), to the O-CH2 bond on the phenyl plane, on the same side of the F atom

in (b), and to the CH2-CH3 bond on the same side of the bond between oxygen and aromatic

ring in (c). The dashed line in (c) shows the values of the ψ torsional angle. In the molecular

structures shown at the bottom, the colours gray, white, purple and red are used for C, H, F and

O atoms, respectively.
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Figure 4.1 reports the torsional profiles obtained for the angle between the phenyl rings

(χ) and for rotations around the phenyl-O and O-CH2 bonds (ψ and ϕ1, respectively),

in the model systems shown in the same figure. The torsional profiles were obtained by

relaxed scans, i.e. at each point only the selected dihedral angle is fixed, while all the

other degrees of freedom are allowed to relax.

The torsional profile for the angle between the phenyl rings in 2,4’-fluoro-4-methoxybi-

phenyl, reported in Figure 4.1a, has four equivalent minima, two of them at about ±40◦

and the other two symmetrically located at about ±140◦. These minima are separated

by barriers of approximately 9 kJ/mol, at 0◦, 180◦ and ±90◦. These results are in

keeping with those obtained experimentally for biphenyl by electron diffraction [33–35]

and Raman spectroscopy [36]; they agree also well with those obtained for biphenyl by

QM calculations at different levels [37–39]. Thus, we can infer that presence of the fluorine

substituents has scarce influence on the twist angle between the aromatic rings.

Figure 4.1b shows the torsional potential calculated for the phenyl-O bond of 3-fluoro-

1-ethoxybenzene. We can see the presence of two almost equivalent minima at 0◦ (OCH2

on the same side of the F atom) and 180◦ (OCH2 on the opposite side of the F atom);

henceforth the two minima will be denoted as c1 and c5, respectively. The minima are

separated by barriers of nearly 14 kJ/mol at ±90◦. The torsional profile is similar to that

reported in ref. [40] for 1-ethoxybenzene; this indicates that also the rotation around the

phenyl-O bond is scarcely affected by the fluorine substituent in the aromatic ring.

Figure 4.1c shows the torsional potential calculated for the PhO-CH2 bond in 1-

ethoxy-3-fluorobenzene. In the same plot, for each value of the ϕ1 dihedral, also the

corresponding ψ value is reported. The torsional potential has the absolute minimum at

0◦ and two relative minima at ±82◦. The latter are separated by an high energy barrier,

whereas much lower barriers are found between the absolute and the relative minima.

The analogy with the torsional potential for the CH2-CH2 bonds in hydrocarbons can

be noticed [31]; however, the energy difference between the minima is significantly higher

here. As for hydrocarbons, we shall denote the absolute minimum as trans (0◦, t) and

the relative minima as gauche± (±82◦, g±), [31]. The figure shows that the ϕ1 and ψ

dihedrals are correlated; in all the minima ψ takes a value close to 0◦. The results shown

for 1-ethoxy-3-fluorobenzene are in general agreement with those obtained by calculations

for 1-ethoxybenzene [40] and for 1,3-dimethoxypropane [41].
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Figure 4.2: Torsional potentials calculated for pairs of adjacent dihedral angles. On the right

side the rotating bonds are shown by black arrows on the molecular structures; the colours gray,

white, purple and red refer to C, H, F and O atoms, respectively.
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To characterise the flexibility of the spacer in the CBOnOCB and CBOnOFF systems,

we have calculated the torsional potentials for the CH2-CH2 and the O-CH2 bonds. To

analyse also possible correlation between adjacent bonds, we have calculated potential

energy surfaces as a function of pairs of dihedral angles (ϕ1, ϕ2), (ϕ2, ϕ3) and (ϕi, ϕi+1),

with 3 ≤ i ≤ n − 2; these are shown in Figure 4.2. Again, relaxed scans were carried

out. The potential energy surfaces show some common features, first of all the presence

of three minima, corresponding to the trans (t), gauche+ (g+) and gauche− (g−) states,

for each single bond. There are also some differences between the three cases; the most

relevant is probably the stabilisation of the gauche over the trans state for the O-CH2

bond. This is in keeping with the results obtained for 1,3-dimethoxypropane [41, 42].

We can also find some differences in the position of the wells of the torsional potential

between the three cases shown in Figure 4.2. The minima are located at 180◦ and ±66◦

for the CH2-CH2 bond (Figure 4.2c and 4.2b), at 180◦ and ±82◦ for the O-CH2 bond

(Figure 4.2a). The shift of the gauche minimum in the latter case is due to steric clashes

between the hydrogen atoms of the first methylene group in the spacer and the aromatic

ring. The value of ±66◦ for the dihedral in the gauche state of the CH2-CH2 bond is in

agreement with that obtained by QM calculations at an analogous level (DFT/B3LYP/6-

311++g**) [43].

In the potential energy surface for pairs of bonds we can find nine minima, correspond-

ing to the states tt, tg+, tg−, g+g+, g+t, g+g−, g−g−, g−t, g−g+, with the symbols in

each label indicating the state of the adjacent bonds, in their order. The all-trans state

(tt) is the absolute minimum. For all systems, the correlations between adjacent dihedral

angles become non-negligible in the g−g+ and g+g− states (the well known g±g∓ effect

in alkyl chains [31]): in these regions, as a consequence of steric clashes between groups

at the (i, i+4) positions, the potential energy surface become significantly different from

the simple combination of single bond contributions. For the cases, denoted by (a) and

(b) in Figure 4.2, a single conformational minimum is found in the g±g∓ states, with the

dihedral values (±100◦, ∓60◦) in the former and (±75◦, ∓75◦) in the latter. For pairs

of CH2-CH2 bonds (case (c) in Figure 4.2) two equivalent minima can be identified, with

the dihedral values (±60◦, ∓90◦) and (±90◦, ∓60◦), respectively; in the following the

same label, g±g∓, will be used for both. The same result was found by previous QM

calculations for alkyl chains [43–45].
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Table 4.1: Energy increase, with respect to the all trans configuration, upon introduction of

one or more gauche states. Calculations were performed for the CBO8OFF dimer; the geometry

of the conformers was obtained at the DFT/B3LYP/6-31g** level. The label n indicates the

number of methylene groups in the spacer. The labels gi (3 ≤ i ≤ n-2) are used for CH2-CH2

bonds with neighbouring CH2 groups; g1, gn+1 for O-CH2 bonds, and g2, gn for CH2-CH2 bonds

with an oxygen atom on one side.

Energy / kJ mol−1 Energy / kJ mol−1

(DFT/B3LYP/6-31g∗∗) (MP2/6-31g∗∗)

single gauche

gi (3 ≤ i ≤ n-2) 3.52 2.18

g1 , gn+1 5.44 3.47

g2 , gn -1.17 -2.85

pairs of adjacent gauche± gauche∓ and gauche±gauche±

g±i g∓i+1 (3 ≤ i ≤ n-2) 5.94 6.03

g±2 g∓3 , g±n−1 g
∓
n 1.88 1.34

g±1 g∓2 , g±n g∓n+1 7.03 6.74

g±i g±i+1 (3 ≤ i ≤ n-2) -0.08 -0.75

g±2 g±3 , g±n−1 g
±
n -0.42 -1.17

g±1 g±2 , g±n g±n+1 0.42 0.29

c1-c5 0.67 0.63
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It has been pointed out [43,46] that DFT calculations tend to overestimate the energy

increase upon introduction of gauche states in alkyl chains. To check this issue, for

selected conformers of the system shown in Figure 4.3 we have carried out further single

point energy calculations at the MP2/6-31g** level, using the same coordinates obtained

from DFT geometry optimisation. The results reported in Table 4.1 confirm the previous

findings: taking as reference the all-trans state, in all cases a lower energy increase is

predicted by the MP2 calculations. The strongest effects are found for conformers with a

single gauche; the MP2 energy difference for the CH2-CH2 bond (with neighbouring CH2

groups) falls within the range of recent experimental results (0.47-0.71 kcal mol−1) [47–49]

and is in line with other QM calculations reported in the literature [43–46, 50]. Table 1

also shows that, in general, the energies of conformers with more than a single gauche

are less affected by the level of the calculation. The values obtained for pairs of adjacent

CH2-CH2 bonds (Figure 4.2c) are in agreement with those reported by Pastor and co-

workers [44,45].

Figure 4.3: Labelling of dihedral angles in CBOnOFF dimers. The same labels are used for

CBOnOCB dimers.

4.2.2 Torsional potentials for CBnCB

The only difference in the chemical structure of the CBnCB and the CBOnOCB dimers is

the nature of the groups connecting aromatic rings and alkyl spacer (see Figure 1.5). The

simple replacement of methylenes by oxygen atoms has a sizable effect in the shape of

the dimers; in fact, the all-trans alkyl chain lies perpendicular to the phenyl plane in the

CBnCB dimers and on the same plane of the phenyl ring in CBOnOCB dimers. Figure

4.4 shows the torsional potentials calculated for the Ph-CH2 and PhCH2-CH2 bonds in

the model systems which are also shown in the figure.
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Figure 4.4: Torsional potentials calculated at the DFT/BY3LYP/6-31g** level for the dihedral

angles indicated in the structures shown below. In each plot, the value of the potential energy at

the absolute minimum is taken equal to zero; because of the local symmetry, only the potential

energy over a restricted range is shown. The value of 0◦ corresponds to the CH2-CH3 bond in

the phenyl plane in (a); to the CH2-CH2 bond in the same plane and on the same side of the

phenyl-CH2 bond in case (b). In the molecular structures shown at the bottom, the colours gray

and white are used for C and H atoms, respectively.
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The torsional potential for the Ph-CH2 bond (in figure denoted by ψ′) has two minima,

as the torsional potential of the Ph-O bond, reported in Figure 4.1. However the two

profiles differ in the position of the minima, which are located at ±90◦ in the former

case and at 0◦, 180◦ in the latter. Moreover, the height of the barriers for the Ph-CH2

bond is about one third of that for the Ph-O bond. This means that the rotation is

much less hindered in the former case, and we will show in the following that this can

be important for modelling of the systems under investigation. Figure 4.4b reports the

torsional potential for the first CH2-CH2 bond of an alkyl chain attached to a benzene

ring; this is very similar to the torsional profile for the central bond of butane.

Figure 4.5: Labelling of dihedral angles in CBnCB dimers.

4.2.3 Bond angles

Because of their effects on the overall geometry, the bond angles in the spacer can be

particularly important for the LC behaviour of the dimers under investigation [51]. We

have obtained values of 119◦, 107◦ and 113◦ for the CarOC, OCC and CCC bond angles,

respectively, in keeping with the available X-ray data for CBO8OCB [52]. Moreover, our

calculations have shown that the two CarCarO bond angles of a given aromatic ring are

different: the values 125◦ and 115◦ have been obtained for the angles denoted in Figure

4.3 as δ1 and δ2, respectively. This difference, due to steric clash between spatially close

hydrogen atoms belonging to the chain and to the ring, is in very good agreement with

X-ray data for CBO8OCB [52] and electron diffraction results for anisole [35]. For the

CB7CB system, the values 125◦ and 113◦ have been obtained for CarCarC and CCC

bond angles, respectively.
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Table 4.2: Dipole moments calculated at the DFT/B3LYP/6-31g** level for selected LC

monomers and dimers. For monomers the dipole shows a scarce dependence on conformation;

the reported values have been obtained for the all-trans chain. For dimers, the sequence of labels

indicates in order the state of subsequent rotating bonds; so, e.g. the sequence c1tg+g−g+tt

represents the conformer of CBO5OFF having the ψ angle in the c1 state, the next ϕ1 bond in

the trans state, and so on.

Monomers

molecule µ/D

5OCB - c1 7.04 (exp. 4.9 [53])

5OFF - c1 3.39

5OFF - c5 3.97

Dimers

CBO8OCB CBO8OFF

conformer µ/D conformer µ/D conformer µ/D

ttttttttt 0.29 c1ttttttttt 3.72 c5ttttttttt 3.76

g+tttttttt 6.34 c1g+tttttttt 5.84 c5g+tttttttt 4.71

tg+ttttttt 4.78 c1tg+ttttttt 4.83 c5tg+ttttttt 6.22

ttg+tttttt 7.04 c1ttg+tttttt 6.44 c5ttg+tttttt 4.88

tttg+ttttt 4.32 c1tttg+ttttt 4.46 c5tttg+ttttt 5.88

ttttg+tttt 7.15 c1ttttg+tttt 6.47 c5ttttg+tttt 5.45

c1tttttg+ttt 4.42 c5tttttg+ttt 6.26

c1ttttttg+tt 6.49 c5ttttttg+tt 5.07

c1tttttttg+t 4.50 c5tttttttg+t 6.00

c1ttttttttg+ 6.03 c5ttttttttg+ 4.77
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4.2.4 Atomic charges

The accuracy of the predicted of dielectric and flexoelectric properties of LCs also depends

on the use of reliable atomic charges. The dipole moments calculated for mesogens using

the sets of charges available in common force fields are generally far from the experimental

values; for instance, the atomic charges from the OPLS force field yield a net dipole

moment of 3.35 D for the 5OCB mesogen, to be compared with an experimental value

of 4.9 D [53]. For these reasons, in atomistic Molecular Dynamics simulations of LCs,

atomic charges obtained from ab initio calculations are generally used [54–56].

We have calculated atomic charges for some conformers of our dimers and of the

corresponding monomers, using the Merz-Kollman-Singh scheme [57,58], as implemented

in the Gaussian03 suite of programs [32]. Charges estimated at the DFT/B3LYP/6-31g**

level were compared with those obtained with different choices of the basis set; only small

effects were found, in agreement with the results reported for water [59].

Table 4.2 shows the dipole moments calculated at the DFT/B3LYP/6-31g** level

for a few systems. We can see that the change in molecular structure, from nOCB to

nOFF, yields a strong reduction of the net dipole moment of monomers; on the contrary,

rotations around the phenyl-O bond or around chain bonds have only a small effect on

the dipole. Comparison with the measured value, which is available for 5OCB [53], shows

that the calculated dipole is overestimated; analogous discrepancies between calculated

and measured dipoles are generally found. However, slightly too high effective dipoles

can be suitable for calculations in which the molecular polarizability is neglected.

As a consequence of the change of the angle between the mesogenic groups, which bear

the largest charges, the dipole moment of dimers is strongly affected by the introduction

of gauche states in the spacer. The results reported in Table 4.2, show that a shift in

position of a single gauche state in the CBO8OCB molecule can yield a variation of about

2 D in the the overall dipole moment. The same decrease is shown by the CBO8OFF

dimer, whose dipole is also affected by a rotation of 180◦ around the Ph-O bond (states

denoted as c1 and c5, see Figure 4.1).
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4.3 Definition of transferable fragments

The information on geometry and charges, obtained from single molecule calculations,

was exploited for the definition of transferable fragments, to be used as building blocks

for generating conformers of the LC monomers and dimers under investigations. The

molecular fragments are shown in Figure 4.6. Bond lengths and bond angles were assigned

the values obtained by geometry optimisation, as reported previously. Each fragment is

characterised by a set of atomic charges, which are also shown in Figure 4.6, and is globally

neutral.

The definition of the charges of a fragment require some care. The first reason is the

uncertainty affecting charges obtained according to the MKS scheme [57, 58]. We per-

formed calculations for the trans conformer and for all the conformers with a single gauche

in the chain for CBO8OFF and CB8CB. For different conformers of a given compound,

slightly different charges were obtained. The charges of the biphenyl fragments were then

obtained by averaging over all the conformers. Such charges were then slightly adjusted,

to comply with symmetry requirements, if any, and to guarantee electroneutrality of the

fragment. This was done by uniformly distributing the small net charge of the original

set, of the order of 0.001 e, over all the atoms in the fragment. Due to non-equivalence

of atomic charges obtained when the ψ bond is in the c1 or in the c5 state, two kinds of

fragments are defined for the FFO moiety; both are shown in Figure 4.6. Table 4.3 shows

that they have a non-negligible difference in the total dipole moment, which in both cases

is lower than the value calculated for the CBO fragment.

Table 4.3: Values of the dipole moment of the fragments shown in Figure 4.6.

FFO - c1 FFO - c5 CBO CB

µ / D 3.05 4.03 6.55 5.34

The MKS charges on the carbon and hydrogen atoms in the flexible spacer exhibit

fluctuate about values, which anyway are small; for instance, the partial charges on alkyl

carbons can range from 0.12 e to 0. To check the sensitivity of LC properties to the

value of these charges, we calculated the flexoelectric coefficients of some conformers of

CBO5OFF with two different sets of charges for the C and H atoms of the methylene
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groups: (0.00 e / 0.00 e) and (-0.6 e/ 0.3 e). We verified that the flexoelectric coefficients

were scarcely affected by these charges; therefore we have assigned to C and H the value

-0.12 e / +0.06 e in methylene and -0.18 e / +0.06 e in methyl. These are the same

charges assumed for the C and H atoms of methylene and methyl groups in the OPLSA

force field [60].

Figure 4.6: Definition of the molecular fragments used to build conformers of monomers and

dimers, with their atomic charges. The colours blue, gray, white, purple and red refer to N, C,

H, F and O atoms, respectively.

4.4 Rotational Isomeric State approximation (RIS)

The analysis of torsional potentials has shown that in most cases well-defined energy

minima are present, separated from each other by energy barriers higher than a few kBT

units at 300-400 K. Under these conditions, fluctuations around the torsional minima can

be neglected and the system can be described in terms of a finite number of conformers,
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with geometry corresponding to the minima of the torsional potential.

Any arbitrary conformer is identified by a label given by a sequence of symbols, indi-

cating in order the state of subsequent rotating bonds; so, e.g. the sequence c1tg+g−g+tt

represents the conformer of CBO5OFF having the ψ dihedral angle in the c1 state, the

next ϕ1 bond in the trans state, and so on. This is the so called Rotational Isomeric State

(RIS) approximation [31]. In the following, the parameters characterising geometry and

energy of the RIS conformers are summarised.

4.4.1 Geometry

Table 4.4 shows the values of the torsional angles used to define the RIS conformers; these

were obtained from the analysis of the torsional potentials presented at the beginning

of this chapter. Because of the non-negligible geometry effects, special care must be

paid in the presence of adjacent g+g− pairs. For the g±i g
∓
i+1 pairs (3 ≤ i ≤ n-2), both

conformations with dihedral angles (±66◦,∓90◦) and (±90◦,∓66◦) (labelled by “A” and

“B”, respectively, in Table 4.4) must be considered. For the g±1 g
∓
2 and g±n−ig

∓
n pairs in

CBOnOCB or CBOnOFF, the dihedral angle of the adjacent ψ angle was taken equal

to 10◦. Analogously, when the ϕ′1 torsional angle is in the gauche+ or gauche- states in

CBnCB, ψ′ must be changed to 75◦ or to 105◦, respectively.

4.4.2 Energy

According to the RIS approximation [31], the torsional energy of the j-th conformer, Ej ,

can be approximated as:

Ej =
Ng∑

Etgi
(4.1)

where Ng is the total number of gauche states in the alkyl chain and Etgi
is the gauche-

trans energy difference at the i chain position.

To improve this approximation of the potential energy, two terms are added to Eq.

4.1: Eg±g∓ , accounting for the so-called pentane effect, and Eg±g± [44, 45]. Hence, Eq.

4.1 reads:

Ej =
Ng∑

Etgi
+

Ng±g∓∑
Eg±i g∓i+1

+
Ng±g±∑

Eg±i g±i+1
(4.2)

where, again, the index i indicates the position in the spacer chain of a single gauche
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Table 4.4: Values of the torsional angles used in the RIS model for the flexible spacer linking

the biphenyl groups in dimers. The label n indicates the number of methylene groups in the

chain. The labels i and i+1 indicate the bond position in the chain, as shown in Figure 4.3 for

CBOnOFF and CBOnOCB and in Figure 4.5 for CBnCB.

CBOnOCB and CBOnOFF

ϕi/
◦

ti 180

single gauche

g1 , gn+1 ±82

gi (2 ≤ i ≤ n) ±66

pairs of adjacent gauche± gauche∓ ϕi/
◦ ϕi+1/

◦

g±1 g∓2 ± 108 ∓ 66 (ψ = 10)∗

g±n−1 g
∓
n ± 66 ∓ 108 (ψ = 10)∗

g±2 g∓3 ± 75 ∓ 75

g±n−2 g
∓
n−1 ± 75 ∓ 75

g±i g±i+1 (A), (3 ≤ i ≤ n-2) ± 66 ∓ 90

g±i g∓i+1 (B), (3 ≤ i ≤ n-2) ± 90 ∓ 66

CBnCB

ϕi/
◦

ti 180

single gauche

g1 , gn−1 66 (ψ′ = 75), -66 (ψ′ = 105)∗

gi (2 ≤ i ≤ n-2) ±66

pairs of adjacent gauche± gauche∓ ϕi/
◦ ϕi+1/

◦

g±1 g∓2 ± 75 ∓ 75 (ψ′ = 90∓ 15)∗

g±n−2 g
∓
n−1 ± 75 ∓ 75 (ψ′ = 90∓ 15)∗

g±i g±i+1 (A), (2 ≤ i ≤ n-3) ± 66 ∓ 90

g±i g∓i+1 (B), (2 ≤ i ≤ n-3) ± 90 ∓ 66
∗ in brackets the value of the adjacent ψ or ψ′ is reported.
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state and of pairs of adjacent gauche, g±g∓ and g±g±. The symbols Ng±g∓ and Ng±g±

indicate the numbers of adjacent gauche states present in the chain.

The energetic parameters Etgi , Eg±i g∓i+1
and Eg±i g±i+1

employed in our calculations are

collected in Table 4.1. They are obtained by averaging the QM energies of conformers

of CBO8OFF, differing for the position of the gauche states in the spacer. For example,

the value Etgi
was obtained by averaging the energies of the conformers c1g+tttttttt,

c1tg+ttttttt, c1ttg+tttttt, and so on. The other parameters were estimated in analogous

way.

In the calculation of LC properties, the molecular flexibility is taken into account by

averages over molecular conformations, expressed in the form of Eq. 2.21. The potential

energy defined by Eq. 4.2 is then used to calculate the statistical weight wj . In the

presence of g±i g
∓
i+1 pairs (3 ≤ i ≤ n-2), a factor equal to 1/2 is introduced, to take into

account the splitting of the minima in the torsional potential (see Figure 4.2c).

4.4.3 The cut-off distance

According to the RIS approximation, every ϕ or ϕ′ dihedral angle in the alkyl spacer can

exist in one of the three states: trans, and gauche±, whereas two states are assumed for

the ψ and ψ′ dihedrals, as the large barrier reported in Figure 4.1b suggests.

In our calculations, only conformers with a maximum number of five gauche states in

the flexible chain were retained. This can be justified on the basis of the energy increase

associated with the introduction of gauche states.

The number of conformers is further reduced by eliminating those with atom clashes

or with pair of atoms closer than a cut-off distance. A reasonable guess of this distance

for a pair of atoms i and j could be the sum of their van der Waals radii, however since

the RIS approximation for its nature is not sufficiently flexible, this is not a good choice.

The number of accepted conformers varies as a function of the cut-off distance, which can

be expressed as d=x(ri+rj) where ri and rj are the van der Waals radii of the atoms i and

j, and x is a parameter ranging from 0 to 1. The plots in Figure 4.7 show the number of

accepted conformers versus the parameter x for CBO5OCB and CB7CB. As the value of x

increases, the number of accepted conformers decreases, and only the all-trans conformer

is retained when x is larger than 0.92 for the CBO5OCB dimer.

The plots in Figure 4.7 suggest the presence of some common patterns. Considering
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Figure 4.7: Number of accepted conformers as a function of the parameter x (see text) for

CBO5OCB (top) and for CB7CB (bottom).
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CBO5OCB for example, in the range between x= 0.88 and x= 0.90 about 250 conformers

are excluded and all of them are characterised by the ϕ1 angle in a g± state. After having

checked the stability of molecular geometries by DFT/B3LYP/6-31g** optimisations, we

have taken x= 0.82 for CBOnOCB and CBOnOFF dimers, and x= 0.80 for CBnCB

dimers.

4.5 Monte Carlo sampling of conformations

When the energy barriers between the conformational minima are not much higher than

kBT , the torsional probability is broadly distributed around the minima and fluctuations

cannot be neglected. Under these conditions, the system can no longer be described

in terms of conformers, with geometry corresponding to the minima of the torsional

potential. This means that statistical averages must be calculated as integrals over the

full distribution function, as in Eq. 2.25. We have used Monte Carlo sampling of the

conformational space to calculate this kind of integrals.

In the following sections the implementation of the MC sampling procedure is briefly

exposed.

4.5.1 Scheme of the Monte Carlo sampling procedure

The Metropolis algorithm [61] has been used to sample the canonical distribution of

torsional angles. Each step of the Monte Carlo procedure is constituted by:

1. generation of a trial molecular conformation;

2. check of atom distances with the method described in Sec. 4.4.3; if no atom clashes

are present:

(a) calculation of the torsional potential energy for the new conformation;

(b) acceptance of the new conformation according to the Metropolis criterion;

At each step, a new conformation is generated, changing a random number of torsional

angles of torsional angles, by a random angles within the interval [−δ,+δ]. The efficiency

of the sampling is improved by introducing jumps of ±120◦ with frequency F [62, 63].
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The parameters δ and F are chosen to guarantee a Metropolis acceptance around 50%

(we have used F = 0.20 and δ = 30◦).

The same procedure (see Sec. 4.4.3) to avoid atom clashes has been adopted in the

MC procedure. Here, for pair of atoms closer than the cut-off distance we have an infinite

potential, thus for the Metropolis criterion the conformer is not accepted.

Fitting of the QM torsional potentials

The torsional potentials used in the MC calculations were obtained by fitting the torsional

profiles obtained at DFT/B3LYP/6-31g** level. Neglecting correlations, independent

single bond torsional potentials have been assumed. For CBOnOCB dimers we fit the

torsional potentials denoted as ψ, ϕ1 and ϕ2 in Figures 4.1 and 4.3. For the CB7CB dimer

we fit the torsional potentials for the angles involving the aromatic carbon, denoted by

ψ′ and ϕ′1 in Figure 4.4. The following form was used to fit the QM torsional potential

for an arbitrary (θ) dihedral

Etors(θ) = V0 +
∑

j

Vj

2
[1 + cos (jθ + γj)] (4.3)

where the integer j and the phase γj are fixed, whereas the coefficients Vj are fitting

parameters. These were obtained by non-linear fitting, using the LevenbergMarquardt

algorithm as implemented in the GRACE program [64]. By suitable choice of the γj

values this expression becomes the same employed for the torsional parameters of the

OPLSA [60] and AMBER [65] force fields. Analogous expressions were used in recent

papers by Wilson and coworkers [66] and Cacelli et al [67] to interpolate QM potential

energy curves obtained for 1,2-dimethoxyethane and 5CB, respectively.

Figure 4.8 shows the fitting curves obtained in this way; the corresponding Vj and γj

parameters are collected in Table 4.5.
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Figure 4.8: Fitting curves (green dashed lines) of the QM torsional potentials (+). Plots (a,

b, c) refer to the ψ, ϕ1 and ϕ2 torsional angles of the CBOnOCB systems (see Figures 4.1 and

4.3); (d, e) refer to the ψ′ and ϕ′ angles (see Figure 4.5) of the CBnCB system. ϕi in plot (f)

represents the torsional angle for an arbitrary C-C bond of an alkyl chain (see text).
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Table 4.5: Parameters Vj and γj , used to calculate the torsional potentials shown in Figure 4.8

according to Eq. 4.3.

CBOnOCB

Vj γj/◦ ψ / kJ mol−1 γ/◦ ϕ1 / kJ mol−1 γ/◦ ϕ2 / kJ mol−1

V0 - 0.50 - - - 0.68

V1 0 -0.88 0 20.96 0 4.53

V2 180 13.51 180 -8.80 180 -4.49

V3 0 0.18 0 11.93 0 15.73

V4 180 2.13 180 1.30 180 -0.87

V5 0 -0.59

V6 180 -0.95

CB7CB chain

Vn γ/◦ ψ′ / kJ mol−1 γ/◦ ϕ′1 / kJ mol−1 γ/◦ ϕi / kJ mol−1

V0 - 1.00 - - - -

V1 - - 0 6.66 0 9.57

V2 0 4.76 180 -3.64 180 -4.08

V3 - - 0 15.15 0 13.68

V4 0 -1.04 180 0.04 180 -0.56

V5 - -

V6 0 -0.37
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4.6 Computational scheme

The computational procedure for the calculation of LC properties, starting from the

molecular structure, accomplishes four main tasks:

• (i) generation of molecular structures as assembly of molecular fragments;

• (ii) generation of molecular surface for each molecular conformation;

• (iii) calculation of the contribution of each molecular conformation to the orientational-

conformational partition function and to average LC properties;

• (iii) calculation of average LC properties, by summing over all conformations.

All these points are carried out using third-party software (the MSMS code [68] for

generating Connolly molecular surfaces) home-made Fortran codes for the calculation of

LC properties and two Python scripts, the first (PSI) for with I/O file generation, and

the second (PSII) for data analysis. A cartoon of the computational scheme is sketched

in Figure 4.9.

From a pdb file containing the starting atomic coordinates of a molecule, the PSI script

generates different conformations and saves the corresponding coordinates in single pdb

files. In our calculations, the all-trans conformation, as obtained by geometry optimi-

sation at the DFT/B3LYP/6-31g∗∗ level, was taken as the starting molecular structure.

Molecular conformations are then generated according to the RIS approximation, or by

Monte Carlo-Metropolis sampling of the torsional angle distribution, as discussed in in

Sections 4.4 and 4.5. The coordinates of each conformation are saved in a pdb file; then

the input files for MSMS are prepared and the molecular surfaces are generated. Then,

a main Fortran Code for the calculation of LC properties is run and the output files are

archived. The computation time scales linearly with the number of conformers; typically

the calculation of a whole temperature dependence for a given conformer takes about 100

seconds of CPU time on a PentiumIV 2Ghz desktop computer.

The PSII script analyses the output files and collects the useful data exploiting the

powerful regular expressions libraries provided by Python. Then the data analysis is

performed, making use of the Numerical Python (NumPy) module.

An important feature of this procedure is its flexibility. A change of the molecular

system just requires the modification of the first pdb file, that originates all the subsequent
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Figure 4.9: Scheme of the computational methodology set up in this study.
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molecular conformations. Calculation of different LC properties can be easily introduced,

by changing the Fortran code and, accordingly, the analysis program (PSII). The separa-

tion of simulation and analysis in two distinct Python scripts, PSI and PSII respectively,

allows to perform a preliminary analysis of the results while the calculations are running.

The use of Python and Fortran languages has the clear advantage of exploiting the pe-

culiar features of both, i.e. flexibility and high performance calculation. The procedure

relies on Fortran codes for the parts involving intensive computation and on high level

Python scripting to control the whole scheme. By virtue of the clean syntax and the high

modularity, Python allows fast code development. It is particularly recommended when

gluing different applications is required [69], that is when the central tasks are running

programs, grabbing output data and directing them to other programs, as in our case [69].

4.7 Molecular surface

To calculate the integrals over the molecular surface, Eqs. 2.2, 2.17, 2.18, a numerical

description of this surface in terms of position vectors r, surface elements dS and surface

normal vectors s is required.

The definition of molecular surface is not unique; one of the most popular is the

surface obtained as the contour of the volume not accessible to solvent molecules. This

solvent-excluded surface (SES) is generated by rolling a probe sphere, representative of an

external group of atoms, over the surface constituted by van der Waals spheres centered

at the atomic positions.

In our computational procedure, molecular surfaces are generated with the program

MSMS v2.5 [68]. This uses triangulation of the surface, once the positions and the van der

Waals radii of the atoms, the radius of the probe sphere, and density of the vertices are

provided. We take the radius of the probe sphere equal to 3 Å, [70] the density of vertices

equal to 5 vertices/Å2; standard values are employed for the van der Waals radii [71]: 1.5

Å for O and N, 1.85 Å for C and 1.0 Å for H atoms.
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5
Results

Elastic constants of typical mesogens

5.1 Introduction

In this chapter the elastic behaviour of three typical liquid crystals mesogens (PAA, 5CB,

8CB) is investigated, using the molecular field theory presented in Chapter 3. Application

to standard systems, for which many experimental data are available, allows us to assess

the quality of the theoretical predictions.

The study of the elasticity of PAA, 5CB and 8CB is presented in the form of a paper,

which has been submitted for publication.
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Summary 

 

The elastic moduli of low molar mass thermotropic liquid crystals (LCs) exhibit an intriguing 

dependence on the molecular structure of the constituents, which can be very important for 

applications. We have recently developed a molecular field theory, wherein the elastic constants of 

nematics are expressed in terms of the anisometry of the molecular surface. This theory, combined 

with molecular geometry optimization, allows us to connect mesoscale deformations in liquid 

crystals to atomic scale details. Here we investigate typical mesogenic systems, i.e. para-

azoxyanisole (PAA) and 4-n-alkyl,-4'-cyanobiphenyls (nCBs), whose elastic properties exhibit clear 

differences. We show that these can be traced back to the differences in molecular shape. Our 

calculations also highlight the importance of the flexibility of mesogens, which was generally 

ignored by previous theories: in view of their different shape, conformers are shown to give 

different contributions to the elastic constants. The key role of deviations from a rod-like shape, 

which is generally assumed by models of mesogens, emerges from our calculations. The bend 

elastic constant is shown to be particularly sensitive; for a given compound, rod-like conformers 

give a high contribution to the bending stiffness, whereas the contribution of bent conformers is low 

or even negative. The possible implications of these findings are discussed, with special reference to 

the behavior of bent-core mesogens. Finally, we predict the temperature dependence of the 

surfacelike elastic constants, whose experimental determination is still controversial; we find that 

these are generally smaller than the bulk moduli and even more sensitive to changes in molecular 

shape. 
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Introduction 

 

Liquid crystals (LCs) are anisotropic, as a consequence of the anisotropy in the orientational 

distribution of molecules. The average molecular orientation is specified by the unit vector n, 

denoted as the director. Restoring forces oppose distortions of the director; this property plays an 

essential role in most, if not all, LC applications.
1
 The elasticity of nematics is described by the 

Oseen -Frank theory;
2,3

 the elastic energy density is expressed as  
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     

2 22

2 11 22 33

13 22 24

1 1 1

2 2 2

( )

elf k K K K

k K k

              

               
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(1) 

The first term accounts for the spontaneous tendency of the director to twist inchiral nematics 

(cholesterics), and vanishes for achiral nematics. The three subsequent terms correspond to the 

splay, twist and bend distortion modes, respectively, and Kii are the corresponding bulk elastic 

constants. The fourth and fifth contributions are usually denoted as splay-bend and saddle-splay, 

respectively. These pure divergence terms can be expressed as surface integrals, using the Gauss 

theorem. Their role has been widely debated; they were at first ignored, as purely surface terms 

which do not contribute to the response of bulk LCs, but then their importance for the behavior of 

LCs in the proximity of interfaces was proposed.
4-6

 However, the surfacelike contributions elude 

direct experimental determination; therefore uncertainty on their role and their magnitude remains. 

The splay, twist and bend elastic constants have values of the order of some pN and the 

relationships K22 < K11 < K33 are generally found for low molar mass thermotropic nematics formed 

by elongated molecules, as those used in the most common applications. As a first approximation, 

for the splay and twist elastic constants Kii  Szz
2
 is found, where Szz is the major orientational order 

parameter; a different dependence on the order parameter is often exhibited by the bend elastic 

constant. The ratios K22 /K11 and K33/K11, which define the anisotropy of elasticity, show a 

significant dependence on the molecular structure of the LC constituents. This is interesting both for 

fundamental reasons and for application purposes: for instance, such ratios  govern the steepness of 

the transmission/voltage curve in twisted nematic cells.
7,8

 Recently, Monte Carlo simulations 

showed that the splay to bend modulus governs the defect location in spherical nematics,
9
 a result 

which appears rich of implications for the design of organized assemblies of LC colloids.
10

 

In general, the ratio K33/K11 increases with the length-to-width ratio of rather rigid mesogens; 

in the presence of alkyl chains, this ratio was found to decrease with increasing chain length.
11,12

 

This has been know for more than three decades and possible explanations have been proposed,
13

 

without reaching a definite conclusion. The elasticity of nematics has been studied by theories and 
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simulations; a comprehensive review can be found in ref. [14]. It was early suggested that wedged 

and bent molecular shapes could reduce the splay and bend elastic constants of nematics,
15

 but 

subsequent theories and simulations rather dealt with more manageable systems of axially 

symmetric particles: rods, spherocylinders and ellipsoids. Hard particle models have confirmed the 

importance of the length-to-width ratio; however they predict too high K33 values, beside being 

unsuitable to account for the temperature dependence of the elastic constants.
16-18

 The introduction 

of the biaxiality of orientational order was found to have a small effect on the calculated elastic 

constants.
19

 A more complex picture was obtained by generalized van der Waals theories, taking 

into account also attractive intermolecular interactions,
20

 or by theories based on the density 

functional formalism, including dispersion and electric quadrupole interactions between 

molecules;
21,22

 the elastic constants were found to be sensitive to the form of the intermolecular 

potential. In particular, this was shown to affect the relative magnitude of the bend to splay moduli. 

Actually, more realistic representations of molecules are needed to assess the prediction of these 

models, by closer comparison with experimental data. However atomistic simulations, which appear 

the appropriate techniques to investigate the effects of changes in the molecular structure, are 

extremely demanding, because large samples and long trajectories are needed for the prediction of 

elastic constants.
23,24

 Zakharov and Maliniak calculated the bulk elastic constants of 4-n-pentyl-4′-

cyanobiphenyl (5CB), a typical mesogen, at a single temperature of 300 K, using a statistical 

mechanics approach to connect the outcome of atomistic Molecular Dynamics simulations to the 

elastic properties.
25

 They showed the dependence of the results on the assumptions of the statistical 

mechanics theory and, for some choice, they obtained values of the elastic constants in agreement 

with experiment. 

Recently, we have developed a molecular field theory with atomistic modeling for the 

elastic constants of nematics.
26

 The method rests on the so-called Surface Interaction (SI) model: 

the orienting molecular field in the nematic phase is parameterized according to the anisometry of 

the molecular shape. It is assumed that each element of the molecular surface tends to align to the 

nematic director, so that the probability distribution of molecular orientations can be related to the 

amount of surface aligned to the director. For the simple case of an elongated cylindrical particle, 

the resulting molecular field has the Maier-Saupe form
27

 and the preferred orientation would be that 

with the symmetry axis parallel to the director. As a matter of fact, the SI method can be seen as an 

extension of the Maier-Saupe theory, which allows the introduction of molecular features into the 

orienting molecular field. This simple approach has been shown to the able to account for the 

dependence on the molecular structure of the order and thermodynamic properties of nematics,
28,29

 

of the orientational order of solutes in nematic solvents,
30

 of the helical twisting power of chiral 
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dopants in nematics,
31

 as well as of flexoelectric coefficients of nematics.
32,33

 Valuable features of 

this approach are the possibility of introducing the molecular flexibility which, like the anisometry, 

is a common feature of mesogens, and the low computational cost. Indeed, this model is intended to 

account for the anisotropy of the short-range intermolecular interactions, which depend on the 

molecular shape. This determines not only steric repulsions, but also dispersion attractions between 

molecules; indeed, it is just the latter contribution which is responsible for the temperature 

dependence of the properties of thermotropic LCs.
34

 The success of the SI approach can be ascribed 

to the major role played by the anisotropy of short-range intermolecular interactions for the order 

and stability of LC phases. 

In ref. [26] molecular expression for the elastic constants in the framework of the SI model 

were derived and the theory was applied to 4-n-pentyl-4'-cyanobiphenyls (5CB). The good accord 

between calculations and experimental data gives us confidence that the developed methodology 

can be sensitive enough to give new insights into the relationship between chemical structure of 

mesogens and elastic moduli of their nematic phase. Therefore, in the present work the SI theory 

has been used to investigate the elasticity of some typical mesogens, para-azoxyanisole (PAA) and 

4-n-alkyl-4'-cyanobiphenyls (nCBs), whose structures are shown in Fig. 1. Several measurements of 

elastic constants have been performed for PAA and for nCBs. Despite the structural similarity, 

significant differences were found between them; in particular, these systems exhibit different 

elastic anisotropy. For these reasons, they seem appropriate benchmarks for our methodology. 

Despite the speculations on the origin of the experimental differences, no definite explanation has 

been provided, so far. We can now try to shed light on this issue, hoping that our theoretical-

computational methodology can provide new insights. 

In the next Section, a short outline of the theory will be presented. Then the results obtained 

for PAA and nCBs will be reported and discussed. The final section contains the conclusions of this 

study, in relation with existing theories, and some more general considerations on the implications 

of the results of this study. 

 

 

Elastic constants of LC by the Surface Interaction (SI) method 

 

Our recent theoretical model provides molecular expressions for the elastic constants of nematics.
26

 

The starting point is the Helmholtz free energy density in the presence of director distortions, which 

is derived from the single molecule orientational distribution function, p(), where  are the Euler 

angles specifying the molecular orientation in a laboratory frame: 



96 

 

 
 exp / BU k T

p
Q

     . 
(2) 

Here Q is the orientational partition function: 

 d  exp - / BQ U k T      (3) 

and U() is the potential of mean torque, experienced by molecules in the nematic phase. For the 

latter, the SI model is used;
26

 in the following, we shall only outline the main points. 

 The following form is assumed for the potential of mean torque:
28

 

   2B
S

U k T dS P   n s  (4) 

where S is the molecular surface, s and n are unit vectors normal to the surface element dS e parallel 

to the director, respectively, and P2 is the second Legendre polynomial. The parameter , with 

dimension of inverse square length, specifies the orienting strength of the medium, which is an 

increasing function of the reduced temperature, T*=T/TNI, where TNI is the Nematic-Isotropic 

transition temperature.  

In the case of flexible molecules, which can exist in different conformational states, the 

orientational distribution function, eq. (2), should be replaced by the conformational-orientational 

distribution function: 

 
 exp - / exp /m B m B

m

V k T U k T
p

Q

       
 

 
 , 

(5) 

where the index denotes the mth conformer, characterized by the conformational energy Vm and the 

orienting potential Um. Then, the conformational-orientational partition function reads: 

exp - /m B m

m

Q V k T Q    , (6) 

where the sum is over all molecular conformers and Qm is the orientational partition function for the 

mth conformer: 

 d exp - /m m BQ U k T     . (7) 

The average value of any arbitrary function g can be expressed as: 

m m

m

g w g , (8) 

where wm is the statistical weight of the mth conformer: 

exp -V /m B m

m

k T Q
w

Q

   . 
(9) 

and mg  the orientational average of the function for the mth conformer, gm : 
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   d exp - /m B m

m
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U k T g
g
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


; 

(10) 

In the nematic phase the statistical weights of conformers will be different from those in solution, 

and will depend on the degree of order. Namely, depending on their shape, conformers can be more 

or less well accommodated in the nematic phase; in general, elongated conformers are stabilized 

over the bent ones. 

According to molecular field theories, the orienting strength  appearing in eq. (4) is 

assumed to take the form:
28,29,35

 

2

B

a
vk T


    

(11) 

where v is the volume per molecule,  is a constant and <a> is the average value of the surface 

integral appearing in eq. (4). For the mth conformer we can write:  

 2
m

m
S

a dS P  n s , (12) 

with Sm being the molecular surface of the conformer. The average value  a can be seen as an 

order parameter, which vanishes in the isotropic phase and measures the degree of molecular order 

in the nematic phase.  

The density of Helmholtz free energy in the nematic phase can be expressed as: 

isof f u T s     (13) 

where fiso  is the free energy density of the isotropic phase, and u, s are the differences of internal 

energy and entropy density between the nematic and the isotropic phase, respectively. These 

differences can be expressed in terms of the potential of mean torque and of the orientational 

distribution function in the nematic phase, as:
29,35
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(14b) 

where V=V-<V>iso, with <V>iso being the average torsional potential in the isotropic phase. Then, 

the Helmholtz free energy density takes the form: 

2
2

2

1
ln

2

B
iso

k T
f f a Q V

v v v
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
  

(15) 

 

The key point, for the derivation of expressions for the elastic constants, is the recognition that the 

free energy defined by eq. (15) is an implicit function of director distortions. These affect the 
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potential of mean torque, eq. (4), since, in their presence, the vector n becomes a function of the 

position on the molecular surface. For small deformations, characterized by a length scale much 

longer than the molecular dimensions, the Taylor expansion of the free energy density with respect 

to deformations can be truncated at the quadratic contributions and the elastic constants are 

identified with the coefficients of these terms. The following molecular expressions are obtained for 

the elastic constants appearing in the Oseen-Frank elastic energy density, eq. (1):
 36
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(16d) 

 

The terms c JKL, c JKLM, cJKL,JKL, b JKL, appearing in these expressions, are the average values, calculated 

over the orientational distribution for undeformed nematics, of elements of Cartesian tensors, 

defined as integrals over the molecular surface; their forms are reported in ref. [26]. The indices 

X,Y,Z refer to the axes of a laboratory frame. 

 

Results and Discussion 

 

The systems under investigation are para-azoxyanisole (PAA) and 4-n-alkyl-4'-cyanobiphenyls 

(nCBs), whose chemical structures are shown in Fig. 1. These compounds have some differences 

which, though small, have clear effects on the elasticity of the nematic phases. PAA is relatively 

rigid; for it the four conformers shown in Fig. 2 can be identified. They differ only in the orientation 

of the methyl substituents and have very similar overall shape. By virtue of the flexibility of the 

biphenyl moiety, and especially that of the alkyl chains, nCBs have a higher number of conformers 

and display a corresponding variety of overall shapes. Fig. 3 and Fig. 4 show some of the lowest 

energy conformers of 5CB and 8CB, which have at most a single gauche in the alkyl chain.
37

 An 

arbitrary conformer is identified by a label; the first letter specifies the sign of the twist angle 

between phenyl rings (P and P, for twist angles of about +30° and about -30°, respectively), 
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whereas the subsequent letters denote the conformational state of CH2-CH2 bonds, in their order, 

starting from the benzene ring (t, g+, g-, for trans, gauche+ and gauche-, respectively).  

Atomic coordinates and energy of the conformers were obtained by geometry optimization 

at the DFT/B3LYP/6-31g** level.
38

 The energy of the four conformers of PAA are very close to 

each other, therefore we have taken them identical in our calculations. Fo r nCBs, the all-trans 

conformer is the most stable, and the energy increases with the number of gauche states in the alkyl 

chain. Given the gauche–trans energy difference,
39

 we have retained only conformers with at most 

a single gauche state. For 5CB, 14 conformers of this kind can be found, whereas for 8CB this 

number rises to 26. Individual conformers can be chiral, but they can be grouped in pairs of 

enantiomers, so that the ensemble of conformers is globally achiral; therefore the chiral strength k2 

in eq. (1) vanishes. In our calculations we have neglected the small energy differences, obtained 

from the DFT calculations, between conformers having g states at different chain positions, and we 

have assumed that all of them are 2.5 kJ mol
-1

 higher in energy than the all-trans conformer. 

Molecular surfaces were generated with the Sanner code,
40

 giving the van der Waals radii the values 

rC = 0.185 nm, rO = 0.15 nm, rN = 0.16 nm, rH = 0.1 nm
 41

, with a rolling sphere radius equal to 0.3 

nm;
30

 a density of points equal to 500 nm
-2

 was taken. Elastic constants were calculated as a 

function of the orienting strength, . The volume per molecule, v, was given the value 0.256 nm
3
 for 

PAA, 0.275 nm
3 

for 5CB and 0.321 nm
3  

for
 
8CB, as obtained from the molecular surface 

calculation.
40

  

Fig. 5 displays the temperature dependence of the principal values of the molecular Saupe 

matrix, obtained for the three systems under investigation. For each  value, the molecular Saupe 

matrix, S,
13

 was calculated, by averaging the individual Saupe matrices of conformers, all expressed 

in the same molecular fixed frame, according to eq. (8). From comparison between the 

dependence of the major order parameter, Szz, and the experimental temperature dependence 

reported in the literature ([42] for PAA, [43] for 5CB and 8CB), the relationship between orienting 

strength and temperature was derived. In Fig. 5 also the (Sxx-Syy)/Szz ratio is shown; it ranges 

between 0 and 1, and quantifies the biaxiality of molecular order. We can see that the biaxiality is 

rather low for the two CB derivatives, but is significantly higher for PAA, in agreement with the 

shape of this mesogen. 

 

[insert Figure 5 about here] 

 

In Fig. 6 the temperature dependence of the elastic constants calculated for PAA, 5CB and 

8CB is shown; for comparison, experimental data from the literature are also reported. As 
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mentioned in the Introduction, clear differences between the three cases appear, despite the small 

structural diversity. All the three elastic constants decrease on going from PAA to 8CB, through 

5CB, but the effect is small for K22, slightly larger for K11, and significantly larger for K33. We can 

see that the experimental trends are reflected by the calculated elastic constants: these exhibit the 

correct temperature dependence (they increase with lowering temperature), the correct sequence, 

K22 < K11< K33, and the magnitude of elastic moduli is rather well predicted. These general features, 

however, are not extremely critical, and could be predicted also by other molecular theories for the 

elasticity of liquid crystals.
14

 The really interesting issue of the present methodology is its ability to 

account for the changes of elastic moduli induced by modifications in the molecular structure. This 

is also shown in Fig. 7, where the calculated K22/K11 and K33/K11 ratios are compared with the 

corresponding experimental values; as mentioned in the Introduction, the anisotropy of elasticity is 

particularly sensitive to changes in the molecular structure. We can see in Fig. 7 that for all the 

systems under investigation, in keeping with experiment, the calculated K22/K11 ratio is weakly 

dependent on temperature and scarcely affected by structural changes, whilst higher variability is 

exhibited by K33/K11. This ratio is close to one and almost temperature independent for 8CB; it 

becomes higher and increases with lowering temperature for 5CB; the effect is even more 

pronounced for PAA. All these feature are clearly recognizable in the calculated elastic constants; 

some discrepancies between calculated and experimental data probably reflect the intrinsic limits of 

the model, which rests on a phenomenological, though sensible, representation of the orientational 

distribution function.  

 

[insert Figure 6 about here] 

 

[insert Figure 7 about here] 

 

The temperature dependence of the elastic constants mainly derives from the change of 

orientational order; experiments have shown that K11 and K22 are approximately proportional to the 

square of the main order parameter, Szz
2
, whereas this is not always true for K33.

12
 This behavior 

was also found theoretically.
14

 In our model the dependence of the elastic constants on the degree of 

order is implicit in the average values appearing in eqs. (16); they do not simply depend on Szz, but 

also on the biaxiality of order, as well as on higher rank order parameters. The results we have 

obtained for the splay and twist elastic constants of PAA, 5CB and 8CB, shown in Fig. 8, are in 

general agreement with the relation Kii  const·Szz
2
, with higher slope for splay, as in experiment. 
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Significant deviations from linearity appear for the bend elastic constants and are particularly 

pronounced in the case of PAA. 

 

[insert Figure 8 about here] 

 

We can now try to understand the origin of the differences between PAA, 5CB and 8CB. In 

the literature, a role of the molecular biaxiality
19

 and flexibility
11,25

 has been proposed, as well as 

effects of dispersion and electrostatic interactions between molecules.
20-22

 The agreement between 

our results and experimental data suggest that probably the latter do not need to be invoked. 

Flexibility is certainly an important difference between the three mesogens under investigation, 

which can affect our results. PAA has limited conformational freedom; the four conformers shown 

in Fig. 2 are very similar, roughly linear in shape and they do give similar contributions to the 

elastic constants. A wider variety of shapes is possible for 5CB and even more for 8CB, as a 

consequence of the rotational freedom of the alkyl chain. Fig. 9 shows individual contributions to 

the elastic constants of 8CB from the seven conformers shown in Fig. 4; each curve in the plots is 

obtained by restricting to a single conformer the summations in eqs. (16). We can see a strong 

dependence on shape of the elastic constants. The conformers can be grouped in two classes, 

according to the position of the gauche state in the chain: the elastic constants calculated for 

conformers with a gauche at an even chain bond are not too far from those obtained for the all-trans 

structure. On the contrary, large differences, along with an unexpected dependence on order, are 

found for the elastic moduli of conformers with a gauche at an odd chain bond. We can see in Fig. 4 

that the structures belonging to the former group are more elongated and similar to the all-trans, 

which explains the similar results obtained for them. The other structures have the common feature 

of being more or less V-shaped. Thus, the results presented in Fig. 9 suggest a correlation between 

the degree of molecular bending and the deviations from the all-trans behavior: the most dramatic 

effects are exhibited by the Mg-ttttt conformer, which has the alkyl chain almost perpendicular to 

the cyanobiphenyl core. Differences between conformers are found for all the elastic costants, but 

they are particularly pronounced for the bending stiffness: for the bent conformers, even negative 

K33 values are predicted, which would promote spontaneous bending of the director. The effect of 

the molecular bending could be ascribed to the weak and highly biaxial order which characterizes 

bent conformers,
51

 but this is not the case. To highlight this point, we have also reported in Fig. 9 

the elastic constants calculated for the C conformer of PAA, whose orientational order is 

characterized by a biaxiality similar to that of the Mtt g-ttt conformer of 8CB. We can see that the 

elastic constants calculated for the two structures are quite different; actually, the results obtained 
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for the PAA conformer are close to those reported for the elongated conformers of 8CB, though 

these are characterized by a significantly lower biaxiality. We conclude that the biaxiality of order 

does not strongly affect the elastic behavior of nematics; the same conclusion was reached for hard 

ellipsoids by the classical density functional theory .
19

 On the contrary, we suggest that a major role 

is played by the molecular bending, which has the general effect of reducing the elastic moduli. 

Comparing Fig. 9 and Fig. 8, we can provide an explanation for the decrease of the elastic constants 

on going from of PAA to 5CB and then to 8CB: the relatively high stiffness of PAA is due to its 

low flexibility and shape linearity. For the single all-trans conformer of 5CB and 8CB, lower K22 

and K33 values would be predicted, as a consequence of their slightly bent shape. A further 

reduction of the elastic constants derives from the contribution of other conformers; though higher 

in energy than the all-trans, these are quite numerous and some of them give very low, or even 

negative, contributions to the elastic constants. 

 

 [insert Figure 9 about here] 

 

Finally, Fig. 10 shows the temperature dependence of the surfacelike elastic moduli of the 

systems under investigation. We can see a much stronger dependence on molecular structure than 

for bulk elastic constants. The magnitude of k13 and k24 never exceeds a few pN, but positive and 

negative values are predicted for PAA and the nCB derivatives, respectively. Unfortunately, no 

experimental estimates of these surfacelike elastic constants are available and probably, if suitable 

experiments were performed, the measured quantities would not simply be the bare k13 and k24 

constants defined by eqs. (16).
52,53

 Neither comparison with other models can be useful, since few 

and different results have been reported. Positive k13 , much smaller than the bulk elastic constants 

and higher than k24, was obtained for a Gay-Berne model using the classical density functional 

theory.
54

 For the same model, positive k24 along with very small and negative k13 was obtained from 

Molecular Dynamics simulations.
55

 So, we are not presently able to evaluate the real significance of 

our predictions; we can only infer an extreme sensitivity of the surfacelike elastic constants upon 

the details of intermolecular interactions, as was already noticed in ref. [55]. 

 

[insert Figure 10 about here] 
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Conclusions 

 

Using our recently developed molecular field model, based on an atomistic representation of 

mesogen structure within a molecular field approach, we have calculated the bulk and surfacelike 

elastic constants of PAA, 5CB and 8CB. These have been chosen as representative cases because of 

their different elasticity, despite the structural similarity. The results can be summarized as follows. 

 

- Magnitude, order (K22 < K11 < K33) and temperature dependence of the elastic constants are 

correctly estimated. Actually, these general features can also be predicted by other theories. 

The main distinguishing peculiarity of our approach is its ability to account for the 

molecular structure: here, we have shown that the experimental differences between the 

investigated systems, including the anisotropy of elasticity, are well predicted. The only 

specific feature of a given compound required to this purpose is the molecular shape. The 

accord between our results and experimental data gives us confidence that indeed this is the 

main factor behind the different elastic properties of low molar mass nematics. Given the 

essential role played by the molecular shape, the method rests on the availability of 

molecular structures. To this purpose, the molecular field theory can be fruitfully integrated 

with quantum mechanical molecular structure calculations. Remarkably, our predictions are 

comparable to those obtained by MD simulations,
25

 at an extremely lower computational 

cost: the full temperature dependence of the elastic constants for systems like those under 

investigation takes a few hours on a modern desktop PC, and takes some hours. No free 

parameter enters the calculations and the method has predictive ability.  

- The elastic constants calculated for splay and twist distortions are rather similar in 

magnitude for PAA, 5CB and 8CB and are proportional to the square of the major 

orientational order parameter. A less simple behavior is obtained for the bend stiffness, 

which can have a much stronger dependence on temperature and on the structure of the 

mesogen. All these results are in keeping with experimental findings for PAA, 5CB and 

8CB. From experiment, the value of K33 is generally found to lower with increasing the 

length of alkyl chains in homologous series of mesogens. The opposite trend was predicted 

for hard uniaxial particles: the bend modulus should steadily increase with the length-to-

width ratio.
14

 As an explanation for this discrepancy, the increase of flexibility with chain 

length was invoked;
11

 however this hypothesis could not be assessed, because of the 

difficulties related to the introduction of molecular flexibility into molecular models. The 

observed deviations from the predictions for hard particles were also ascribed to the 
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additional presence of other intermolecular forces, with a different dependence on the 

molecular structure, i.e. dispersion or electrostatic interactions between molecular dipoles 

and quadrupoles.
10-22

 Using an atomistic representation of the molecular structure, we can 

now provide another explanation. 

- Our approach can take into account the molecular flexibility; we find that this plays an 

essential role and should not be neglected by molecular models for the elasticity of 

nematics. The extreme sensitivity of the elastic moduli to conformational changes is related 

to the corresponding changes in molecular shape. The importance of the molecular 

flexibility of mesogens for the elasticity of nematics was also singled out by Zakharov et al, 

when comparing atomistic Molecular Dynamics simulations and statistical mechanics 

theories for uniaxial particles.
25

 

- The main result of our investigation concerns the special effects of bent molecular shapes on 

the elastic constants. In general, molecular bending is accompanied by a lowering of the 

stiffness. For K11 and K22 this effect can be associated with the decrease of order, but such an 

explanation is not sufficient for K33. This is much higher than the other elastic constants for 

elongated geometries and rapidly decreases with increasing the deviation from a linear 

shape, reaching even negative values for strongly bent structures. We have found that shape 

bending has the main responsibility for the decrease of the K33/K11 ratio on going from PAA 

to 8CB, trough 5CB. These are generally considered as rod-like mesogens; but in the case of 

flexible mesogens, like nCBs, this is only the result of a conformational average. As can be 

seen in figs. 3 and 4, some of the conformers of 5CB and 8CB are roughly V-shaped; the 

effect is especially pronounced for 8CB, for which even the all-trans conformer exhibits 

some degree of bending. We think that, in general, the following picture can be drawn: most 

mesogens are far from rigid and the variety of accessible molecular shapes increases with 

the length of the flexible chains. In a mixture of conformers, the elongated structures will 

prevail, otherwise the nematic phase would not be found; however, the presence of V-

shaped structures has the effect of reducing the restoring forces opposing bend distortions of 

the director.  

- Some more comments should be deserved to the meaning of negative K33 values, since these 

would imply that the nematic phase with uniform director does not correspond a minimum 

of the free energy. Actually, the presence of a few conformers with negative contributions 

has only the effect of decreasing the average K33 value for mesogens like nCBs. However 

dramatic consequences can be expected for compounds characterized by a V-shape in their 

most stable conformations, as the so called ‘banana’ or ‘bent core’ mesogens. These systems 
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have been found to possess very peculiar properties, most of which remain poorly 

understood. They have scarce propensity to form nematic phases and almost no information 

on the elasticity of this is available: the values K11  K33  2 pN were reported for 4-chloro-

1,3-phenylene bis4-[4'-(9-decenyloxy)benzoyloxy]benzoate (TNI=78°C), 7°C below the 

Isotropic-Nematic transition.
56

 Both values are low, especially in view of the dimension of 

the mesogen; this is particularly remarkable for K33, which is about one fifth of that of PAA 

at the same reduced temperature. However, such results do not appear surprising in the light 

of our findings on the effect of a bent shape on the elastic moduli of nematics. This kind of 

behavior was early predicted by Gruler 
15

 and then by Dozov,
57

 in relation to bent-core 

mesogens. Interestingly, the propensity of bent-core LCs for spontaneous bending of the 

director been recently invoked to explain different phenomena, comprising the segregation 

into chiral domains of opposite handedness in the nematic phase 
58

 and the formation of 

stripe and labyrinthine patterns of the c-director in freely suspended polar smectic SmCPF 

films.
 59

 Certainly the elastic behavior of bent-core LCs deserves more attention, and we 

think that our methodology could be a useful tool in this context.  

- We have also calculated the surfacelike elastic constants, k13 and k24, of PAA, 5CB and 8CB. 

We have found that these are strongly affected by structural changes, even more than the 

bulk elastic constants. In fact, the results obtained for PAA, 5CB and 8CB differ in sign, 

magnitude and temperature dependence. Unfortunately, we cannot assess the quality of 

these predictions, for the scarcity and uncertainty of experimental data. The surfacelike 

elasticity remains poorly understood, though being involved in important phenomena 

occurring at interfaces, like surface anchoring and structure formation in films; further 

investigation in this field is required. 

 

 

Acknowledgments 

The beginning of this work was supported by Italian MIUR (PRIN 2005).  

 

Abbreviations LC: liquid crystal; PAA: para-azoxyanisole; CB 4-n-alkyl-4'-cyanobiphenyl; 5CB: 

4-n-pentyl-4'-cyanobiphenyl; 8CB: 4-n-octyl-4'-cyanobiphenyl; SI: Surface Interaction. 



106 

 

 

References 

[1] D.-K. Yang, S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 

Chichester, 2006). 

[2] C.W. Oseen, Trans. Faraday Soc., 1933, 29, 883-889. 

[3] F.C. Frank, Discuss. Faraday Soc., 1958, 25, 19-28. 

[4] C. Oldano, G. Barbero, Phys. Lett., 1985, 110A, 213-216. 

[5] S. Faetti, M. Riccardi, J. Phys. II (France), 1995, 5, 1165-1191. 

[6] O.D. Lavrentovich, V.M. Pergamenschik, Int. J. Mod. Phys. B, 1995, 9, 2389-2437.  

[7] M. Schadt, P.R. Gerber, Z. Naturforsch., 1982, 37a, 165-178. 

[8] M. Schadt, Ann. Rev. Mat. Res., 1997, 27, 305-379. 

[9] H. Shin, M.J. Bowick, X. Xing, Phys. Rev. Lett., 2008, 101, 037802:1-4. 

[10] M. Ravnik, M. Škarabot,2 S. Ţumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, I. Muševič, 

Phys. Rev. Lett., 2007, 99, 247801:1-4.  

[11] W.H. de Jeu, W.A.P. Claassen, J. Chem. Phys., 1977, 67, 3705-3712.  

[12] D. Dunmur, in Physical Properties of Liquid Crystals, eds. D.A. Dunmur, A. Fukuda, G.R. 

Luckhurst (EMIS Datareviews Series, IEE, London, 2000). 

[13] G. Vertogen, W.H. de Jeu, Thermotropic Liquid Crystals: Fundamentals (Springer, Berlin, 

1988). 

[14] S. Singh, Phys. Rep., 1996, 277, 283-384. 

[15] H. Gruler, J. Chem. Phys., 1974, 61, 5408-5412. 

[16] R.G. Priest, Phys. Rev. A, 1973,7,720-729. 

[17] J.P. Straley, Phys. Rev. A, 1973,8,2181-2183. 

[18] A. Poniewierski, J. Stecki, Mol. Phys., 1979, 38, 1931-1940. 

[19] T.K. Lahiri, K. Rajesh, S. Singh, Liq. Cryst., 1997, 22, 575-578. 

[20] W.M. Gelbart, A. Ben Shaul, J. Chem. Phys., 1982, 77, 916-933. 

[21] A. Srivastava and S. Singh, J. Phys.: Condens. Matter, 2004, 16, 7169-7182. 

[22] J. Stecki, A. Poniewierski, Mol. Phys., 1980, 41, 1451-1461.[23] M.P. Allen, A.J. Masters, J. 

Mater. Chem., 2001, 11, 2678-2689. 

[24] M.R. Wilson, Int. Rev. Phys. Chem., 2005, 24, 421-455. 

[25] A.V. Zakharov and A. Maliniak, Eur. Phys. J. E, 2001, 4, 85-91. 

[26] M. Cestari, A. Bosco, A.Ferrarini, submitted. 

[27] W. Maier, A. Saupe, Z. Naturforsch. A, 1959, 14A, 882-900; ibidem, 1960, 15A, 287-292.  

[28] A. Ferrarini, G.J. Moro, P.L. Nordio, G.R. Luckhurst, Mol. Phys., 1992, 77, 1-15.  



107 

 

[29] A. Ferrarini, G.R. Luckhurst, P.L. Nordio, S.J. Roskilly, J. Chem. Phys., 1994, 100, 1460-

1469. 

[30] A . Ferrarini, F. Janssen, G.J. Moro, P.L. Nordio, Liq. Cryst., 1999, 26, 201-210. 

[31] A. Ferrarini, G.J. Moro, P.L. Nordio, Phys. Rev. E, 1996, 53, 681-688; A. Ferrarini, G.J. Moro, 

P.L. Nordio, Mol. Phys., 1996, 87, 485-499. 

[32] A. Ferrarini, Phys. Rev. E, 2001, 64, 021710:1-11. 

[33] C. Greco, G.R. Luckhurst, A. Ferrarini, J. Mater. Chem., 2007, 17, 1039-1042. 

[34] A. Ferrarini, G.J. Moro, J. Chem. Phys. 114, 596-608 (2001). 

[35] G.R. Luckhurst, G.W. Gray, The Molecular Physics of Liquid Crystals (Academic, London, 

1979). 

[36] Indeed, more complex expressions where obtained for the case for flexible molecules in ref. 

[26], but they reduce to the simpler form of eqs. (16) when the average torsional potential is similar 

in the isotropic and in the nematic phase, i.e. the average difference <V> is small. 

[37] C.J. Adam, S.J. Clark, M.R. Wilson, G.J. Ackland, J. Crain, Molec. Phys., 1998, 93, 947-954. 

[38] M.J. Frisch et al , Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford CT, 2004). 

[38] V.A. Herrebout, B.J. van der Veken, A. Wang, J.R. Durig, J. Phys. Chem., 1995, 99, 578-585.  

[40] M.F. Sanner, J.C. Spehner, A.J. Olson, Biopolymers, 1996, 38, 305-320. 

[41] D.R. Lide (Ed.), Handbook of Chemistry and Physics (CRC; Boca Raton, 1996). 

[42] I.W. Hamley, S. Garnett, G.R. Luckhurst,S.J. Roskilly, J.S. Pedersen, R.M. Richardson, J.M. 

Seddon, J. Chem. Phys., 1996,104, 10046-10054. 

[43] L.G.P. Dalmolen, SJ. Picken, A.F. de Jong, W.H. de Jeu, J. Phys. (France), 1985, 46, 1443-

1449. 

[44] I. Pardowitz, S. Hess, J. Chem. Phys., 1982, 76, 1485-1489. 

[45] W.H. de Jeu, W.A.P. Claassen, M.J. Spruijt, Mol. Cryst. Liq. Cryst., 1976, 37, 269-280. 

[46] N.V. Madhusudana, R. Pratibha, Mol. Cryst. Liq. Cryst., 1982, 89, 249-257. 

[47] M.J. Bradshaw, E.P. Raynes, J.D. Bunning, T.E. Faber, J. Phys. (France), 1985, 46, 1513-

1520. 

[48] G.-P. Chen, H. Takezoe, A. Fukuda, Liq. Cryst.,1989, 5, 341-347. 

[49] H.J. Coles, in The Optics of Thermotropic Liquid Crystals, eds. S. Elston, R. Sambles (Taylor 

& Francis, London, 1998). 

[50] S. Faetti, V. Palleschi, Liq. Cryst., 1987, 2, 261-268. 

[51] A. Ferrarini, G.R. Luckhurst, P.L. Nordio, S.J. Roskilly, Liq. Crystals, 1996, 21, 373-382. 

[52] V.M. Pergamenshchik, S. Zumer, Phys. Rev. E, 1999, 59, R2531- R2534. 

[53] H. Yokoyama, Phys. Rev. E, 1997, 55, 2938-2957. 



108 

 

[54] P.I.C. Teixeira, V.M. Pergamenshchik, T.J. Sluckin, Mol. Phys., 1993, 80, 1339-1357. 

[55] J. Stelzer, H.-R. Trebin, L. Longa, J. Chem. Phys., 1995, 103, 3098-3107; ibidem, 1997, 107, 

1295-1296. 

[56] D. Wiant, J.T. Gleeson, N. Eber, K. Fodor-Csorba, A. Jakli, T. Toth-Katona, Phys. Rev. E, 

2005, 72, 041712:1-12. 

[57] I. Dozov, Europhys. Lett., 2001, 56, 247-253. 

[58] V. Görtz, C. Southern, N.W. Roberts, H.F. Gleeson, J.W. Goodby, Soft Matter, 2009, 5, 463-

471. 

[59] A. Eremin, A. Nemes, R. Stannarius, G. Pelzl, W. Weissflog, Soft Matter, 2008, 4, 2186-2191. 

 



109 

 

 

Captions to the Figures 

 

Figure 1 Chemical structure of para-azoxyanisole (PAA), 4-n-alkyl-4'-cyanobiphenyl (nCB).  

 

Figure 2 Geometry of the conformers of para-azoxyanisole (PAA) considered for the calculation of 

elastic constants, as obtained from DFT/B3LYP/6-31g** calculations.
38

 

 

Figure 3 Geometry of four of the conformers of 4-n-pentyl-4'-cyanobiphenyl (5CB) considered for 

the calculation of elastic constants, as obtained from DFT/B3LYP/6-31g** calculations.
38

 The 

labels P and M are used for positive ( +30°) and negative ( -30°) biphenyl twist angles, 

respectively. The symbols t (trans) and g (gauche) denote the conformational state of CH2-CH2 

bonds. The other conformers, not shown in the figure, differ in the sign of the twist angle between 

the aromatic rings (P in place of M) and the sign of the chain torsional angles (g- in place of g+). 

 

Figure 4 Geometry of seven of the conformers of 4-n-octyl-4'-cyanobiphenyl (8CB) considered for 

the calculation of elastic constants, as obtained from DFT/B3LYP/6-31g** calculations.
38

 The 

labels P and M are used for positive ( +30°) and negative ( -30°) biphenyl twist angles, 

respectively. The symbols t (trans) and g (gauche) denote the conformational state of CH2-CH2 

bonds. The other conformers, not shown in the figure, differ in the sign of the twist angle between 

the aromatic rings and the sign of the chain torsional angles (g+ in place of g-). 

 

Figure 5 Principal values of the Saupe matrix calculated for PAA, 5CB and 8CB, as a function of 

temperature. The dashed line shows the ratio (Sxx-Syy)/Szz; this can range between 0 (uniaxial) and 1. 

 

Figure 6 Bulk elastic constants of PAA, 5CB and 8CB, as a function of temperature. Left: 

calculated values; right: experimental data for PAA (open triangles
44

 and circles
45

), for 5CB (dashed 

lines,
46

 triangles,
47

 open circles,
48

 squares
49

) and for 8CB (dashed lines,
46

 open circles,
47

 squares
50

). 

 

Figure 7 Ratio of the bulk elastic constants for PAA, 5CB and 8CB, as a function of temperature. 

Lines: calculated values; symbols: experimental data, from refs. [44,45] for PAA, [46-49] for 5CB 

and [46,47,50] for 8CB. 
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Figure 8 Bulk elastic constants calculated for PAA, 5CB and 8CB, as a function of the square of 

the largest principal value of the Saupe matrix, Szz. The dotted lines should be intended as a guide 

for the eyes, to highlight deviations from linearity. In the plot for nCBs, solid lines are used for 5CB 

and dashed lines for 8CB. 

 

Figure 9 Elastic constants calculated for single conformers of 8CB, as a function of the Szz
2
 , the 

square of the largest principal value of the Saupe matrix. The curves refer to the conformers shown 

in Fig. 4; the solid line is for the all-trans chain, the other lines for conformers with a single gauche 

in the alkyl chain; the numbers in the labels indicate the position of the g state (starting from the 

aromatic ring). For comparison, also the elastic constants of PAA, calculated for the single C 

conformer, are shown (triangles). 

 

Figure 10 Surfacelike elastic constants of PAA, 5CB and 8CB, as a function of temperature.  
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Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 
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6
Results

Rotational Isomeric State approximation

6.1 Introduction

In this chapter we shall present the results obtained for the dielectric and elastic liquid

crystal properties of CBOnOCB and CBOnOFF dimers, using the RIS approximation to

take into account the molecular flexibility.

The number of conformers included in the calculations for each of the investigated

systems is reported in Table 6.1. For symmetry reasons, this number for the CBOnOCB

series is about a half of the number necessary for the CBOnOFF series.

Table 6.1: Number of conformers included in the calculations as a function of the number n of

methylenes in the flexible spacer.

n CBOnOCB CBOnOFF

4 166 -

5 485 975

6 1368 2705

7 3250 6380

8 6700 13524
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The chapter is organised as follows: firstly the ordering and thermodynamic prop-

erties at the NI transition will be presented; then, flexoelectric, dielectric and elastic

properties will be reported. The theoretical predictions will be discussed in comparison

to experimental data, when these are available.

6.2 Order parameters and NI transition properties

Figure 6.1 displays Szz, the order parameter for the para axis of the biphenyl groups, as

a function of the reduced temperature T ∗ = T/TNI , where TNI is the nematic isotropic

transition temperature, for CBOnOCB and CBOnOFF dimers. For the sake of compari-

son, the results obtained for 5OCB are also reported in the same plot.

A clear difference appears between odd and even CBOnOCB dimers: at a given re-

duced temperature, the former have higher, the latter lower order parameters than 5OCB.

Analogous behaviour is displayed by the CBOnOFF dimers, though these are generally

lower.

Such odd-even effects were also observed experimentally; Table 6.2 reports the order

parameters for the para axis of the biphenyl groups of the CBOnOCB dimers at the

NI transition, obtained from NMR measurements [18, 72, 73], and those derived from

measurements of the birefringence at a reduced temperature T ∗ ∼ 0.95 [74].

Table 6.2: Experimental values of the order parameters Ssz at different temperatures, as a

function of the number n of methylene groups in the flexible spacer.

nOCB

TNI / K Szz [16]

5OCB 341 0.28

CBOnOCB

n TNI / K SNI
zz [18, 72,73] T / K Szz [74]

4 523 - 499 0.59

5 459 0.31 433 0.47

6 494 0.45 491 0.59

7 454 0.32 429 0.50

8 474 0.48 451 0.59
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Figure 6.1: Calculated order parameter Szz as a function of the reduced temperature

T ∗ = T/TNI for the CBOnOCB (a) and CBOnOFF (b) dimers, and for 5OCB, whose chemical

structures are reported in Figure 1.5. The order parameter Szz is the largest principal value of

the Saupe matrix and n is the number of methylene groups in the flexible spacer. The black

circles denote the experimental values of Szz at the NI transition found for CBOnOCB (a) and

reported in Table 6.2.
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If we compare the calculated results, displayed in Figure 6.1a, with the experimental

data reported in Table 6.2, we can see that the order parameter for 5OCB at the NI

transition is correctly predicted and those for even CBOnOCB dimers are slightly under-

estimated; the discrepancy increases in the case of odd dimers, for which too low order

parameters are predicted at the NI transition. The experimental order parameters at the

NI transition are shown by black circles in Figure 6.1.

Table 6.3 collects the entropy changes at the NI transition, ∆SNI/R, calculated as

explained in Sec. 2.4.2. The measured entropy changes for CBOnOCB dimers are also

reported in the table. Only qualitative agreement is found: the calculated values display

strong odd-even effects, as the experimental data, but the predicted entropy changes

are too small. The agreement between experimental and calculated data considerably

improves, if the nematic-isotropic entropy differences are calculated at order parameters

equal to the experimental values, shown in Table 6.2.

Table 6.3: Experimental (Ref. [18]) and calculated entropy difference at the NI transition,

∆SNI , as a function of the number n of methylene groups in the alkyloxy chain. The numbers

in brackets give the values calculated at the experimental SNI
zz value (see Table 6.2).

CBOnOCB CBOnOFF

∆SNI/R ∆SNI/R

n exp. calc. calc.

4 - -0.70 -

5 -0.66 -0.06 (-0.55) -0.04

6 -1.98 -0.70 (-1.07) -0.32

7 -0.78 -0.06 (-0.60) -0.03

8 -2.01 -0.72 (-1.33) -0.11

Indeed, the location of the NI transition can be critical. It is identified as the point at

which the Helmholtz free energy difference between nematic and isotropic phases vanishes,

∆ANI = 0. As explained in chapter 2, in our mean field calculations the free parameter

is ε, the orienting strength in the nematic phase. The entropy difference and the internal

energy difference between the nematic and isotropic phases are decreasing functions of

ε, i.e. they decrease with increasing order. The NI transition results from the trade-
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6.2. ORDER PARAMETERS AND NI TRANSITION PROPERTIES

off between these two contributions, and can be significantly affected by relatively small

changes in the orienting potential U(Ω).

This point is illustrated by the simple model of nematics composed by rigid molecules;

the orienting potential can be expressed by the generalised Maier-Saupe form [75]:

U(Ω) = −c 〈X20〉X20(Ω) (6.1)

where Ω are the Euler angles specifying the molecular orientation in the laboratory frame

and c is a constant for a given system, related to the strength of intermolecular interac-

tions, which depends on the nature of molecules. The function X20(Ω) is defined as

X20(Ω) = D2
00(Ω) + λ[D2

02(Ω) +D2
0−2(Ω)], (6.2)

where D2
0m(Ω) are elements of Wigner rotation matrices [76] and λ is a parameter speci-

fying the biaxiality of the orienting potential, which can be traced back to the biaxiality

of intermolecular interactions. The angular brackets denote the orientational average;

〈X20〉 =
∫
dΩX20(Ω)e〈X20〉X20(Ω)/T SC∫

dΩe〈X20〉X20(Ω)/T SC (6.3)

with the scaled temperature T sc = kBT/c. The nematic-isotropic free energy difference,

∆ANI , can then be expressed as function of the order parameter 〈X20〉 [75] as shown

in Sec. 2.4.2. Figure 6.2 shows the order parameter 〈X20〉, as a function of the scaled

temperature T sc, for two different values of the biaxiality parameter, λ = 0.1 and λ = 0.4.

The curves are obtained by minimising ∆ANI with respect to 〈X20〉 at each value of the

scaled temperature T sc. In the isotropic phase 〈X20〉 = 0, whereas in the nematic phase

〈X20〉 > 0. We can see in the figure that for higher biaxiality the NI transition occurs at

a lower value of the scaled temperature.

In the SI model, the orienting potential is parametrised according to the anisometry of

the molecular surface; in particular, the biaxiality appearing in the orienting potential is

determined by the shape biaxiality of molecules. The location of the NI transition at too

low order, and then the underestimation of transition properties, is probably an indication

of some overestimation of the biaxiality of the orienting mean field by the SI model. To

check this point, we can look at the biaxiality of order, expressed by the difference of

the two lowest eigenvalues of the Saupe ordering matrix, Sxx − Syy. In Table 6.4, the

differences measured for CBOnOCB dimers at the NI transition are compared with those
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Figure 6.2: 〈X20〉 order parameter as a function of the scaled temperature T sc, for a model

system of rigid biaxial molecules. The two curves refer to different values of the molecular

biaxiality (λ).

calculated, in correspondence of the experimental Szz values at the transition. We can

see that indeed the predicted biaxiality of order is slightly larger than that determined by

experiment and the discrepancy is generally higher for odd dimers. Though differences

are small, they can have non negligible effects on the location of the NI transition, just

because this is determined by a delicate balance of contributions; the elastic and dielectric

LC properties which will be presented in the following are less sensitive to small changes

of the biaxiality of the orienting potential.

6.3 Flexoelectric coefficients

In this section we shall present the results obtained for the flexoelectric coefficients of the

CBOnOCB and CBOnOFF dimers and the 5OCB monomer, shown in Figure 1.5. Splay

and bend flexoelectric coefficients were calculated according to Eqs. 2.17 and 2.18, giving

v the volume per molecule, the values obtained from the molecular surface calculation [68];

the set of atomic charges defined in chapter 4 were used.

Experimentally it was found that dimers show a particularly strong flexoelectric cou-

pling, much stronger than that measured for typical mesogens [77], comprising nOCB

monomers [12, 13]. Usually, in the literature the flexoelectric behaviour is interpreted in
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Table 6.4: Experimental (Ref. [18]) and calculated biaxiality of order, Sxx − Syy, as a function

of the number n of methylene groups in the alkyloxy chain. Experimental and calculated data

refer to the value of the Szz order parameters measured at the NI transition (see Table 6.2).

nOCB

Sxx − Syy

5OCB calc. 0.07

CBOnOCB

Sxx − Syy

n exp. calc.

4 -

5 0.03 0.09

6 0.03 0.06

7 0.04 0.09

8 0.02 0.07

terms of electric and steric dipoles, according to the Meyer model [10]. This is a clever

model, which gives a direct insight into the molecular origin of the flexoelectricity. How-

ever, when dealing with real molecules the whole charge distribution and the real shape

have to be taken into account. For example, vanishing flexoelectric coefficients would be

predicted for the even CBOnOCB dimers on the basis of simple considerations on the

all-trans conformer, in clear contrast to the experimental evidence.

Figure 6.3 reports the flexoelectric coefficients e1 and e3 calculated for the CBOnOCB

and CBOnOFF dimers, as a function of the order parameter Szz, the highest principal

value of the Saupe matrix. For the sake of comparison, the flexoelectric coefficients

calculated for 5OCB are also reported.

We can see in Figure 6.3a that the splay coefficients of the CBOnOCB dimers have

approximately the same dependence on order, independently of the number n of methylene

units in the spacer. For all compounds e1 is positive and steadily grows with the order

parameter Szz in the examined range. A similar behaviour is found for the CBOnOFF

dimers in Figure 6.3b, but the slope of e1 as a function of Szz is lower in this case, by

almost a factor of two. We can see in Figure 6.3a that also the splay flexoelectric coefficient
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Figure 6.3: Splay flexoelectric coefficient e1 calculated for the CBOnOCB (a) and CBOnOFF

(b) dimers and for 5OCB as a function of the order parameter Szz, the largest principal value of

the Saupe matrix. n is the number of methylene groups in the spacer.
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calculated for 5OCB is positive and increases with the degree of order; however it is much

lower than that of dimers, despite the presence of a strong longitudinal electric dipole.

From our results we infer that the splay flexoelasticity of the systems under investi-

gation does not strongly depend on specific molecular features or on the presence of net

dipoles, but is determined in a more general way by the overall distribution of charges in

an extended space region, as described by higher order electric multipoles.

Figure 6.4 shows the bend flexoelectric coefficients of the CBOnOCB and CBOnOFF

dimers, in addition to that of 5OCB. We can see that e3 exhibits strong odd-even dif-

ferences; it is large, and increases with the order parameter for even dimers, whereas for

the odd dimers it is much smaller and reaches a maximum at Szz ∼ 0.3. Again, similar

behaviour is predicted for CBOnOCB and CBOnOFF dimers, though smaller values are

obtained in the latter case. The e3 coefficient calculated for 5OCB exhibits a dependence

on order analogous to that of the even CBOnOCB dimers, but it is significantly smaller.

We can try to understand the results obtained for the bend flexoelectric coefficient in

terms of the bend angle β between the cyanobiphenyl units and the transverse electric

dipole moment µ⊥. The all-trans conformer of odd CBOnOCB dimers has a significant

transverse electric dipole, whereas no net dipole is present in the all-trans conformers of

even dimers. However the situation can strongly change from one conformer to another, by

virtue of the change of the angle between the cyanobiphenyl units, which are responsible

for the major contribution to the molecular dipole. Figure 6.5 shows the probability

distribution of the β angle for CBO5OCB and CBO6OCB, calculated at two different

values of the Szz order parameter. We can see that the distribution looks quite different

for the odd and the even dimer. In the case of CBO5OCB, the probability is concentrated

in the region 90◦ < β <150◦; this means that most of the conformers will bear a transverse

dipole. On the other hand, for CBO6OCB high probability around 180◦ is predicted, i.e.

antiparallel cyanobiphenyls, in addition to a rather broad distribution comprising the

region 30◦ < β < 120◦. Thus, in the average, a significantly higher transverse dipole is

expected for CBO5OCB than for CBO6OCB. According to the Meyer model [10], bent

molecules with an outward pointing transverse dipole should yield a negative e3 coefficient

(see Figure 1.4). So, the differences between the bend flexoelectric coefficients of odd and

even CBOnOCB dimers, in Figure 6.4, are compatible with the following picture: the

quadrupolar contribution is similarly large and positive in both systems, whereas the
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Figure 6.4: Bend flexoelectric coefficient e3 calculated for the CBOnOCB (a) and CBOnOFF

(b) dimers and for 5OCB as a function of the order parameter Szz, the largest principal value of

the Saupe matrix. n is the number of methylene groups in the spacer.
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dipolar contribution is much higher for odd dimers. Being negative, it has the effect of

significantly reducing the overall e3 value.

For the comparison with experiments, the relevant quantity is the flexoelastic ratio,

defined as [12,13]:

e =
ē

K
(6.4)

where ē is one half of the flexoelastic anisotropy:1

ē =
e1 − e3

2
(6.5)

and K is the effective elastic constant:

K =
K11 −K33

2
(6.6)

with K11 and K33 being the splay and bend elastic constants.

Figure 6.6 shows the difference ē calculated for the CBOnOCB and the CBOnOFF

dimers as a function of the order parameter Szz. It follows from the expressions of the

flexoelectric coefficients, Eqs. 2.17 and 2.18, that the difference ē is only determined by

the dipolar contribution. Thus, in view of the considerations presented above, it is not

surprising that the values for odd CBOnOCB dimers are significantly higher than those

for the even members, at the same order parameter Szz, and both are higher than the

value obtained for 5OCB.

6.4 Dielectric permittivity

Experimentally it was found that CBOnOCB dimers exhibit positive, yet modest dielec-

tric anisotropy ∆ε = ε‖−ε⊥, in comparison to the corresponding monomers nCBO [12–14].

This result is not obvious, especially for odd dimers. In fact, from simple considerations on

the all-trans conformer, a vanishing dipole contribution to the permittivity would be ex-

pected for even dimers (with no electric dipole), along with negative dielectric anisotropy

for the odd members (with transverse dipole), as shown in Figure 6.7.

The molecular flexibility has to be considered to explain the experimental findings;

the alkyl spacer guarantees a certain degree of decoupling of the terminal dipoles and
1Note that due to a different definition of the e3 sign, Coles and coworkers define the flexoelectric

anisotropy as e∗ = e1 + e3 [12, 13].
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Figure 6.5: Probability distribution of the angle β between the para axes of the two

cyanobiphenyl units, calculated for CBO5OCB (a) and CBO6OCB (b). Red and white are

used to distinguish the distributions obtained with order parameter Szz = 0.36 and Szz = 0.49,

respectively
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Figure 6.6: Flexoelectric difference ē = (e1 − e3)/2 calculated for the CBOnOCB (a) and

CBOnOFF (b) dimers as a function of the order parameter Szz, the largest principal value of

the Saupe matrix. n is the number of the methylene units in the spacer
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Figure 6.7: All-trans conformer of CBO7OCB and CBO8OCB.

allows molecular conformations with a dipole component parallel to the long molecular

axis to give a significant contribution. Figure 6.8 shows ε‖ and ε⊥, the components of the

permittivity tensor parallel and perpendicular to the nematic director, measured for the

symmetric CBO10OCB [78] and CBO11OCB [79] dimers. Another interesting feature

appears in the figure: the dielectric anisotropy ∆ε decreases with lowering temperature,

i.e. as ordering increases. This is the opposite of the usual behaviour of nematics formed

by mesogens with longitudinal dipole [30], whose dielectric anisotropy increases with the

alignment to the director.

With the purpose of understanding the temperature dependence of the dielectric

anisotropy of the nematic phase of CBOnOCB and CBOnOFF dimers, we have cal-

culated the mean square dipole components parallel and perpendicular to the director,〈
µ2
‖(⊥)

〉
. These are related to the static permittivity by Eq. 2.12. Being interested in the

anisotropy of the permittivity, rather than in its average value, we have reported in the

figures the ratio
(〈
µ2
‖(⊥)

〉
−
〈
µ2
〉
iso
)
/
〈
µ2
〉
iso, where

〈
µ2
〉
iso is the mean square value

of the dipole in the isotropic phase. The temperature dependence of the mean square

dipole components was determined using Eq. 2.11.

For the sake of comparison, the results obtained for 5OCB are shown in Figure 6.9.

Here we can see the normal behaviour of mesogens with longitudinal dipole, with
〈
µ2
‖

〉
−〈

µ2
⊥
〉
> 0, which increases with lowering temperature.

134



6.4. DIELECTRIC PERMITTIVITY

Figure 6.8: Experimental dielectric permittivity as a function of the temperature for the

CBO10OCB (top) and CBO11OCB (bottom), from Refs [78] and [79], respectively.
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Figure 6.9: Scaled dipole moment
`˙
µ2
‖(⊥)

¸
−

˙
µ2

¸
iso

´
/

˙
µ2

¸
iso as a function of the reduced

temperature T ∗, calculated for the monomer 5OCB. Continuous and dashed lines indicate the

parallel and perpendicular component, respectively.

Figures 6.10 and 6.11 display the square dipole components of CBOnOCB and CBOnOFF

dimers, obtained from our calculations, as a function of the reduced temperature T ∗. For

all the systems under investigation we have obtained
〈
µ2
‖

〉
>
〈
µ2
⊥
〉
, in keeping with the ex-

perimental data [12–14]. For CBOnOCB dimers, the ratio
(〈
µ2
‖(⊥)

〉
−
〈
µ2
〉
iso
)
/
〈
µ2
〉
iso

increases with the length of the alkyl spacer, which can be ascribed to the weakening of

the correlation between the molecular arms and the stabilisation of the more elongated

conformers. In the case of even CBOnOCB dimers, the temperature dependence of
〈
µ2
‖

〉
and

〈
µ2
⊥
〉

is in qualitative agreement with that found experimentally for the member with

n=12. Somewhat larger differences between theoretical and experimental data appear for

the odd members.

For CBOnOFF dimers the ratio
(〈
µ2
‖(⊥)

〉
−
〈
µ2
〉
iso
)
/
〈
µ2
〉
iso is generally larger than

for the corresponding CBOnOCB dimers. A relatively small influence of the spacer length

is found among the odd members, as well as among the even members, in agreement

with the experimental finding that ∆ε is practically the same for different odd dimers

(n = 5, 7, 9, 11) and for different even dimers (n = 6, 8, 10, 12) [12].
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Figure 6.10: Scaled dipole moment
`˙
µ2
‖(⊥)

¸
−

˙
µ2

¸
iso

´
/

˙
µ2

¸
iso as a function of the reduced

temperature T ∗, calculated for the CBOnOCB dimers. Top: even dimers; bottom: odd dimers.

n is the number of the methylene units in the spacer. Continuous and dashed lines indicate the

parallel and perpendicular components, respectively.
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Figure 6.11: Scaled dipole moment
`˙
µ2
‖(⊥)

¸
−

˙
µ2

¸
iso

´
/

˙
µ2

¸
iso as a function of the reduced

temperature T ∗, calculated for the CBOnOFF dimers. Top: even dimers; bottom: odd dimers.

n is the number of the methylene units in the spacer. Continuous and dashed lines indicate the

parallel and perpendicular components, respectively.
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Figure 6.12: Elastic constants calculated for CBOnOCB dimers as a function of the order

parameter Szz, the largest principal value of the Saupe matrix. n is the number of methylenes

in the flexible spacer. The onset shows that K33 is slightly positive at lower order.

139



CHAPTER 6. RESULTS
ROTATIONAL ISOMERIC STATE APPROXIMATION

6.5 Elastic constants

Figure 6.12 shows the splay, twist and bend elastic constants of the CBOnOCB dimers as

a function of Szz, the largest eigenvalue of the Saupe matrix. For the sake of comparison,

also the results obtained for the 5OCB monomer are shown. We can see that the splay

stiffness for dimers is significantly higher than that of 5OCB and similar dependence

on the order parameter is exhibited by odd and even dimers: at the same Szz value,

very close splay moduli are predicted for them. Analogous considerations can be made

for the twist elastic constants, although some more differences appear between odd and

even dimers; for all compounds K22 < K11, as usual for thermotropic low molar mass

mesogens. A more peculiar behaviour is exhibited by the bend stiffness which, as already

shown for some typical mesogens in chapter 5, is more sensitive to changes in the molecular

structure. Here, huge odd-even differences appear, with K33 (Figure 6.12c) much higher

than that of the monomer for even dimers, and much lower for odd dimers. On one

side, the big values obtained for even dimers can be explained by their large molecular

dimension; in fact, stiff polymers are characterised by high bending stiffness [80]. On

the other side, the drop of the K33 values calculated for odd dimers can be traced back

to their V-shape; the importance of deviations from a linear shape emerged from the

study of the elastic constants of typical mesogens, in chapter 5. Figure 6.13 shows that

the elastic constants calculated for members of the CBOnOFF and the CBOnOCB series

have similar temperature dependence, though the former have smaller magnitude.

It is interesting to analyse whether our results are affected by the molecular flexibil-

ity. In Figure 6.14 the elastic constants obtained for CBO7OCB and CBO8OCB after

averaging over all conformers are compared with the values calculated for the single

all-trans conformers. Somehow surprisingly, we can see that the Kii values for the all-

trans conformer of CBO7OCB, though smaller than those for the all-trans conformer of

CBO8OCB, exhibit analogous temperature dependence. The influence of conformational

averaging can be easily understood in the case of CBO8OCB. The very elongated all-trans

conformer is expected to be highly ordered and to give a strong contribution to the stiff-

ness in the nematic phase; this effect is washed out by the other, less extended conformers.

The same considerations can apply to CBO7OCB, but with a more dramatic result, by

virtue of the more bent shape, in the average, of this compound. Figure 6.15 shows the
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Figure 6.13: Elastic constants calculated for the CBO5OFF (a) and CBO6OFF (b) dimers.

For the sake of comparison, the elastic constants for CBO5OCB (a) and CBO6OCB (b) are also

reported (dashed lines).
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Figure 6.14: Elastic constants calculated for the all-trans conformer of CBO7OCB (top) and

CBO8OCB (bottom), as a function of the order parameter Szz, the largest principal value of the

Saupe matrix. For the sake of comparison, the elastic constants obtained after averaging over

all conformers are also reported (dashed lines).
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Figure 6.15: CPK representation of the all-trans (left) and the tg+ttttt (centre) conformers of

CBO7OCB, and of the all-trans conformer of CBO8OCB (right).

all-trans conformer of CBO7OCB together with another conformer, with a gauche in the

second chain bond, for which low K11 and K22 and very negative K33 are predicted. We

can see that the shape of the all-trans conformer of CBO7OCB is only slightly more bent

than that of the all-trans conformer of CBO8OCB, but the other conformer has a clear

V-shape.

In Figure 6.16 we can see that the splay and twist elastic constants of odd and even

CBOnOCB dimers are approximately proportional to S2
zz, with a similar proportionality

factor, larger than for the monomer. On the contrary, the dependence of K33 on S2
zz

exhibits significant deviations from linearity.

We can try to compare our predictions with the experimental behaviour. The elastic

constants predicted for 5OCB fall in the range typical of most low molar mass rod-like

mesogens (see for instance the results reported in chapter 5), and are in keeping with the

experimental data reported for this system [81]. More unusual, and in this sense more

interesting, is the behaviour predicted for dimers. Scarce experimental information is

available in this case; however, the good agreement found for systems allowing a com-

parison with experiments (for example those presented in chapter 5), gives us confidence

in our predictions. The splay elastic constants of CBOnOCB dimers were measured by

Tsvetkov and coworkers [14]; their results at the temperatures reported in the fourth

column of Table 1.1 are shown in Figure 6.17. We can see clear odd-even effects: val-
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Figure 6.16: Elastic constants calculated for CBOnOCB dimers as a function of the square of

the order parameter Szz, the largest principal value of the Saupe matrix. n is the number of

methylenes in the flexible spacer.
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ues comparable to those typical of low molar mass mesogens are found for odd dimers,

whereas the even homologous exhibit a higher stiffness. In the light of our results, we can

explain this behaviour in terms of the different degree of order of odd and even dimers: at

the same reduced temperature, the former have lower splay elastic constants because they

are less ordered. This is different from the simple interpretation which would ascribe the

decrease of resistance to splay deformation to the wedge shape of odd dimers. In Figure

6.17, also the values obtained from our calculations are displayed, and the agreement

between theory and experiment clearly appears. Coles and colleagues have measured the

splay elastic constants of CBOnOFF dimers with n= 5 − 12 at a reduced temperature

T ∗ ' 0.95 [82]; these are slightly lower than those reported by Tsvetkov for CBOnOCB

at a similar reduced temperature [74]. The uncertainty of the experimental data and that

affecting the temperature dependence of the calculated elastic constants preclude quan-

titative comparisons; however the decrease of K11 from CBOnOCB at the same reduced

temperature is in agreement with our predictions. No experimental values are reported

for the twist elastic constants of CBOnOCB or CBOnOFF dimers. Odd-even effects, with

lower K22 values for odd n values, were inferred for CBOnOCB dimers from ESR exper-

iments [83] and for CBOnOFF dimers from helical twisting power measurements [82].

This can explained by the theoretical results shown in Figures 6.12 and 6.13, in view of

the lower degree of order in the nematic phase of odd dimers, at a given reduced temper-

ature. No experimental values are reported for the twist elastic constants of CBOnOCB

or CBOnOFF dimers.

The behaviour of the bend elastic constants is particularly intriguing. We can see

in Figure 6.12c that K33 is very small and positive at low order, but becomes even

negative at high ordering. This is a really unexpected result, rich of implications, since

negative bending stiffness would promote spontaneous bending of the nematic director.

This ‘pathological’ elasticity was predicted some years ago for V-shaped molecules [84],

and was recently invoked to explain the segregation into domains of opposite handedness,

exhibited by bent-core mesogens [85]. A negative bend elastic constant was recently

assumed to explain the formation of stripe and labyrinthine patterns in freely suspended

polar smectic SmCPF films of a bent-core mesogen [86]. No indication of this kind has

been reported for the LC dimers under investigation, but certainly these were not studied

as thoroughly as bent-core mesogens; we hope that our results can stimulate further
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Figure 6.17: Experimental [14] and calculated splay elastic constants of CBOnOCB dimers, at

the temperatures reported in the fourth column of Table 1.1. n is the number of methylenes in

the flexible spacer.

experimental study of these systems. At the moment, we are not able to assess the

degree of reliability of our results and we cannot exclude that the negative K33 values

derive from the magnification of some effect by our model. We believe anyway that the

strong decrease of bend stiffness predicted for odd dimers is physically meaningful. It is a

clear manifestation of the relationship between bend elasticity and bent molecular shape,

already evidenced in chapter 5 for typical thermotropic mesogens. This seems to be a

peculiarity of the bend elasticity. The splay and twist elastic constants do not seem to

be especially sensitive to specific molecular features; they rather seem to feel the change

of molecular structure in a rather generic way, through a change of orientational order.

Probably these aspects have not been sufficiently explored, only a few references can be

found in the literature. Gleeson et al. report values of about 2 pN for K11 and K33 of a

bent-core nematic system [87]; the low value of the elastic constants and of the K33/K11

ratio can be hardly explained, in comparison to the elasticity of smaller mesogens. Dodge

et al. found that a tiny amount of bent-shaped mesogens can dramatically lower the

bend elastic constant of rod-like nematics (8OCB) [88], an effect which could not be
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explained by simple models. Madhusudana and coworkers [89] measured the splay and

bend elastic constants of mixtures of 8OCB and bent-core mesogens. They found that

both decrease with increasing concentration of bent-core molecules, but K33 exhibits

a much stronger change, together with an unexplained temperature dependence. Our

results for odd dimers can provide a general explanation for these findings. Of course,

the investigation of specific systems is needed to give a definite answer, but we think that

our atomistic model can provide new insight into this matter.

To conclude the discussion on the elastic constants of LC dimers, it might be worth

mentioning the recent discovery that chirally doped mixtures of odd FFOnOFF dimers can

form Blue Phases with a temperature range of about 50◦, enormously broader than the

typical range of about 1◦ [15]. This unusual behaviour, very promising for the development

of fast response applications, raised a number of questions, first of all on what special

properties the employed material should have [90]. Our results suggest that one of the

special features could just be the unusual elasticity of LC dimers. The Blue Phases are not

fully understood; however, recent calculations have shown that their stability is affected

by the relative values of the elastic constants [91].
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7
Results

Monte Carlo sampling of conformations

7.1 Introduction

According to the expressions reported in chapter 2, the dielectric and elastic LC properties

are calculated as orientational-conformational averages of molecular properties. In the

previous chapter we presented the results obtained using the RIS approximation [31] to

treat the conformational degrees of freedom.

According to this approximations the fluctuations within the minima of the torsional

potential are neglected. This is not justified if the barriers between the minima of the

torsional potential are not higher than a few kBT units. This occurs, for instance, for

the torsional potential around the phenyl-methylene bond of the CBnCB dimers, shown

in Figure 4.4a. In general, the RIS approximation can be safely adopted for alkyl chains;

however, there may be cases in which the small amplitude oscillations in the potential wells

can have non-negligible effects. The dimers studied in this thesis could be an example: the

superposition of small rotations around a large number of bonds could produce significant

changes of the molecular shape. Thus, a dimer which cannot be well accommodated in

the nematic phase, with a low energetic cost could change its shape, to make it more

suitable to the ordered environment [62,63]. To check whether small amplitude rotations

around the minima can influence the elastic and dielectric properties of the systems under
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investigation, for some of them we have performed calculations using Monte Carlo (MC)

sampling of the torsional angles. The results are presented in this chapter. The MC

procedure as implemented in our methodology is described in Sec. 4.5.

Calculations with MC sampling of conformations can be significantly more expensive

than those based on the RIS approximation. Table 7.1 reports the number of MC steps

and of accepted conformations in the calculations of the elastic constants of CBOnOCB

dimers. These can be compared with the number of conformers for analogous calculations

with the RIS approximation (see Table 6.1).

Table 7.1: Number of MC steps and number of accepted conformations in calculations of the

elastic constants of CBOnOCB dimers. n is the number of methylenes in the flexible spacer.

CBOnOCB

n MC steps accepted

4 25000 12371

5 50000 26655

6 40000 21511

7 140000 71051

8 75000 34715

The number of MC steps was determined on the basis of the convergence of local and

global properties. Figure 7.1 shows the distribution of the ϕ3 dihedral (see Figure 4.5)

obtained for the CB7CB dimer with a number of 22000 MC steps; we can see that the

whole range of torsional angles is sampled.

Figure 7.2 reports the calculated flexoelectric coefficients and elastic constants of the

CBO5OCB dimer, as a function of the number of accepted conformations. The figure

shows that the number of steps needed for convergence may depend on the property. We

have found that in general the flexoelectric coefficients converge faster than the elastic

constants; among these, the bend modulus K33 has been found to be particularly critical,

especially for odd dimers.

Figure 7.3 shows Szz, the largest principal value of the Saupe matrix, as a function

of the reduced temperature T ∗ = T/TNI obtained for CBO5OCB and CB7CB with MC

sampling of conformations. For the sake of comparison, the RIS results for the same
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Figure 7.1: Probability distribution of the ϕ3 torsional angle (see Figure 4.5) for the CB7CB

dimer (22000 MC steps).

systems are also shown in the figure. We can see that for both systems the NI transition

is shifted at slightly higher order parameter and the predicted Szz value increases over

the whole temperature range, when the geometric constraints of the RIS approximation

are relaxed. This can be understood, on the basis of the considerations presented at the

beginning of this section.

In the following, we shall report the flexoelectric coefficients, dielectric constants and

elastic constants calculated for dimers using MC sampling of conformations. We shall

focus on the cases which exhibit significant differences from the RIS results.
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Figure 7.2: Calculated flexoelectric coefficients (top) and elastic constants (bottom) of the

CBO5OCB dimer, as a function of the number of accepted conformations.
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Figure 7.3: Szz order parameter as a function of the reduced temperature T ∗ for the CBO5OCB

(a) and CB7CB (b) dimers: results obtained by MC sampling of conformations (blue) and RIS

approximation (red). Szz is the largest eigenvalue of the Saupe matrix. The black circles show

the experimental order parameters at the NI transition [18].
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Figure 7.4: Flexoelectric coefficients calculated for CBO5OCB (top) and CB7CB (bottom), by

MC sampling (continuous lines) and RIS approximation (dashed lines).
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7.2 Flexoelectric coefficients

Figure 7.4 shows the splay e1, bend e3 and effective ē = (e1−e3)/2 flexoelectric coefficients

calculated for CBO5OCB and CB7CB. For the sake of comparison the results obtained by

the RIS approximation are also reported. We can see that for both systems the dependence

on order of e1 is not strongly influenced by the MC sampling, whereas significant effects,

from the quantitative point of view, are found for e3.

7.3 Dielectric permittivity

Figure 7.5 displays the scaled mean square components of the electric dipole, parallel and

perpendicular to the nematic director, calculated for CBO5OCB with MC sampling of

conformations. The temperature dependence of the parallel component is quite different

from that predicted using the RIS approximation, and shows better qualitative agreement

with the experimental behaviour reported for CBO11OCB (Figure 6.8). The main reason

behind the difference is the change of the temperature dependence of the Saupe matrix,

shown in Figure 7.3.

Figure 7.6 shows the measured temperature dependence of the dielectric permittivity

for CB7CB [92]. The analogy with the results shown in Figure 6.8 for CBO10OCB and

CBO11OCB appears, with positive dielectric anisotropy, which decreases with lowering

temperature. The results obtained using the RIS approximation and MC sampling of

conformations for CB7CB are reported in Figure 7.7. We can see that a completely

wrong temperature dependence is predicted in the former case.

To understand the reason for the large differences between RIS and MC results found

for CB7CB, it is useful to look at the probability distribution of the β angle between the

para axes of the cyanobiphenyl units, shown in Figure 7.8. Very different distributions

are obtained with the two methods. The RIS distribution is sharp and changes only

slightly with the degree of order: in most of the conformers the angle between the two

arms is close to 120◦. The β distribution obtained by MC sampling is much broader and

is sensitive to the degree of order: we can see that the increase of order favours the more

elongated conformations, which can be better accommodated in the nematic environment.

As shown in Figure 7.9, these conformations are characterised by a low dipole moment;
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Figure 7.5: Scaled dipole moment
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/

˙
µ2

¸
iso as a function of the reduced

temperature T ∗, calculated for CBO5OCB by MC sampling (blue) and RIS approximation (red).

Continuous and dashed lines indicate the parallel and perpendicular component, respectively.

this is the reason for the decrease of the mean square dipole components with lowering

temperature.

It is worth considering in some more detail the difference between CBO5OCB and

CB7CB: the replacement of the oxygen atoms with methylenes has a twofold effect. (i)

The rotation around the bond connecting aromatic ring and flexible chain is significantly

less restricted in CB7CB than in CBO5OCB, as appears from comparison of the torsional

potentials shown in Figures 4.4a and 4.1b. Indeed, given the height of the torsional

barriers, the RIS approximation is clearly inadequate in the case of CB7CB.

(ii) The Car-O-C angle (119◦) is slightly larger than the Car-C-C (113◦) angle; as a

consequence the conformations of CBO5OCB are in average more elongated than those

of CB7CB. As shown by comparison of Figures 7.8 and 7.10, such a seemingly small

difference in bond angles allows the CBO5OCB conformers to have a distribution of the

β angle wider than that found in the case of CB7CB, for which the only available angles

are essentially those tetrahedral. This is another reason why no dramatic differences

appear between RIS and MC results in the case of CBO5OCB.
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Figure 7.6: Experimental dielectric constants for the CB7CB [92]. I and N denote the isotropic

and nematic phase, respectively.
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Figure 7.7: Mean square components of the molecular dipole as a function of the reduced

temperature T ∗, calculated for CB7CB, employing MC sampling of torsional angles (blue) and the

RIS approximation (red). Continuous and dashed lines indicate the parallel and perpendicular

components, respectively.
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Figure 7.8: Probability distribution of the β angle between the para axes of the cyanobiphenyl

units of CB7CB, calculated at two values of the order parameters Szz. Top: RIS approximation;

bottom: MC sampling of torsional angles. Szz is the largest principal value of the Saupe matrix.
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Figure 7.9: Cartoon of two dimer conformations with very different elongation and dipole

moment.

Figure 7.10: Probability distribution of the β angles between the para axes of the cyanobiphenyl

groups of CBO5OCB, calculated with the RIS approximation at two distinct values of the order

parameter. Szz is the largest principal value of the Saupe matrix.
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7.4 Elastic constants

Figure 7.11 shows the elastic constants calculated for CBO5OCB and CBO6OCB, em-

ploying the MC sampling of torsional angles. It is interesting to compare these results

with those obtained with the RIS approximation, also reported in figure with dashed lines.

A clear difference emerges for the bend elastic constant, the most sensitive to the sampling

procedure, whereas similar results are found for the splay and twist elastic constants.

Figure 7.12 reports the elastic constants calculated for all the CBOnOCB dimers.

7.5 Interpretation of experiments

Collecting the results reported in the two last chapters, we can now try to interpret the

experimental results of Coles and coworkers [12, 13]. They have reported the flexoelastic

ratio ē/K̄, with ē = (e1−e3)/2 and K̄ = (K11+K33)/2, for CBOnOFF dimers at a reduced

temperature T ∗ ' 0.95 [12], for CBO8OCB at the same reduced temperature [13], and for

7OCB at T ∗ ' 0.98 [13]. These data are shown in Table 7.2. For the CBOnOFF series we

can see clear odd-even effects: the flexoelectric ratios measured for the odd members are

about twice as large as those determined for the even members; the latter are close to the

value reported for 7OCB. Moreover, the flexoelastic ratio for CBO8OCB and CBO8OFF

are similar.

Table 7.2 also shows the flexoelectric coefficients, along with the elastic constants and

their ratios, calculated for the CBOnOCB dimers and for 5OCB. In the table the values

for dimers refer to the order parameters listed in Table 6.2, which were determined by

Tsvetkov and colleagues for the CBOnOCB series at a reduced temperature T ∗ ' 0.95

[74]. Flexoelectric coefficients and elastic constants exhibit oscillations with the number of

methylenes in the spacer, with regularly lower values for the odd members. In particular,

K11 and e1 are higher for even members, simply as a consequence of the higher order

parameter at the given reduced temperature. In the case of K33 and e3, the reason

behind the odd-even differences is less trivial, i.e. the special effect of shape bending

on bend deformations of the nematic director, and very strong oscillations are found.

Then, the effective flexoelectric coefficients and the effective elastic constants are bigger

and smaller for even dimers. The final result is that the flexoelastic ratio, which is the
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Figure 7.11: Elastic constants calculated for CBO5OCB (a) and CBO6OCB (b), by MC sam-

pling of torsional angles (solid lines). For the sake of comparison, the results obtained for the

same systems using the RIS approximation are also shown (dashed lines). Szz is the largest

principal value of the Saupe matrix.
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Figure 7.12: Splay elastic constants obtained for CBOnOCB dimers as a function of the order

parameter Szz. MC sampling of the torsional angles is used. n is the number of methylenes in

the flexible spacer.
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measured quantity, also displays odd-even oscillations, with lower values for the even

dimers.

Reminding that, as shown in chapter 6, at a given reduced temperature both elastic

constants and flexoelectric coefficients predicted for CBOnOFF dimers are slightly lower

than those obtained for CBOnOCB dimers, we can compare the flexoelastic ratios cal-

culated for the latter with corresponding values measured for the former. The results

reported in Table 7.2 show the good agreement between theoretical predictions and ex-

perimental data. The quality of these results can be better appreciated, considering that

presently no other method exists, which could provide any reliable estimates of elastic

constants or flexoelectric coefficients of these systems.

A last comment deals with the comparison between mesogenic dimers and the corre-

sponding monomers. In agreement with experiment, the flexoelastic ratio predicted for

5OCB is similar to that obtained for even dimers. However, this value for 5OCB results

from the ratio of an effective flexoelectric coefficient and an effective elastic constant which

are about an order of magnitude smaller than those of dimers.
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Table 7.2: Flexoelectric coefficients and elastic constants calculated for CBOnOCB dimers and

for 5OCB at the order parameters reported in Table 6.2. Experimental values of the flexoelastic

ratio ē/K̄ are also reported [12,13].

CBOnOCB

n e1 / e3 / ē / K11 / K33 / K̄ / ē/K̄ calc. / ē/K̄ exp. /

pC m−1 pC m−1 pC m−1 pN pN pN C N−1 m−1 C N−1 m−1

4 27 18 4.5 13 30 21.5 0.2 -

5 22 2 10 8 0 4 2.0 (1.45)a

6 27 17 5 13 28 20.5 0.25 (0.45)a

7 22 1 10.5 9 1 5 2.0 (1.29)a

8 28 17 5.5 12 25 18.5 0.3 0.6 (0.52)a

nOCB

n e1 / e3 / ē / K11 / K33 / K̄ / ē/K̄ calc. / ē/K̄ exp. /

pC m−1 pC m−1 pC m−1 pN pN pN C N−1 m−1 C N−1 m−1

5 7 6 0.5 2 3 2.5 0.2 0.4b

a the experimental values in brackets refer to CBOnOFF [12].
b the experimental value refers to 7OCB [13].
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Summary

This thesis focuses on the development and the application of a computational methodol-

ogy, based on a molecular field theory and atomistic modelling, to connect dielectric and

elastic properties of nematic liquid crystals to the structure of the constituent molecules.

Chapter 1 is a general introduction on the subject of the thesis. Firstly, the problem of

the connection between materials properties and structure of the molecular constituents

is introduced, with special reference to the case of liquid crystals, and the object of this

work is presented. The main features of liquid crystals are then recalled, considering

in particular the elastic and dielectric properties, investigated in this thesis, which are

directly involved in the electro-optical behaviour. We also show the molecular systems

to which the theoretical- computational methodology developed here has been applied.

These have the common structure of two mesogenic, rather rigid units, connected by a

flexible spacer. For these reasons they are called ‘dimers’. These mesogens have several

reasons of interest: their liquid crystal properties are very sensitive to changes in the

molecular structure and exhibit some unusual and unexplained features. Therefore they

can been devised as a benchmark for molecular modelling of liquid crystals.

In chapter 2 the theoretical framework is presented. After a review of the state of

the art of the computational methods for the study of liquid crystals, we present the

molecular field approach used in this thesis, which is based on the ‘Surface Interaction’

(SI) model. Herein, the relation between molecular and mesoscale level is introduced

through the assumption that each element of the molecular surface tends to align to the

nematic director. A realistic account of the molecular structure is made possible by the

use of a surface generated from atomic coordinates. We report the molecular expressions

obtained in this framework for the ordering, thermodynamic, flexoelectric and dielectric

properties of nematic liquid crystals. Given the role played by the molecular flexibility,

special attention is devoted to the conformational degrees of freedom. Two different

ways are proposed for its inclusion in the model: the Rotational Isomeric State (RIS)

approximation, in which only the molecular geometries corresponding to the minima of

the torsional potential are considered, or the Monte Carlo (MC) sampling of torsional

angles.

In chapter 3 we derive molecular expressions for the bulk and surfacelike elastic con-

stants of nematics, within the framework of the SI model. This requires extensive use of
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tensor calculus; after some lengthy algebra, simple expressions are obtained, by exploiting

the symmetry of the undeformed nematic phase. From the point of view of the theoret-

ical development, this is the main result of the present thesis. The elastic constants can

be calculated as a function of the orientational order, without any free parameter, at

low computational cost. It enables us to investigate the role of molecular features and

to explore how changes at the atomic level can be conveyed into changes in elastic be-

haviour, on a quite different length-scale. Therefore it can shed light on the origin, still

poorly understood, of the different elasticity of mesogens with different structure. The

predictive ability of this method makes it potentially useful for the synthetic design of

tailored mesogens: the elastic constants can be easily calculated, if the molecular struc-

ture is known. We also derive molecular expressions for the surfacelike elastic constants

of nematics. The surface elasticity of nematics has been a subject of intense theoretical

and experimental investigation and no consensus has been reached; our analysis can be

seen as a preliminary exploration of this problem, which deserves further investigation in

the future, and we hope that our atomistic level approach can provide some new insight.

In chapter 5 the elastic behaviour of three typical liquid crystals mesogens (PAA,

5CB, 8CB) is investigated, using the molecular field theory presented in Chapter 3. These

have been chosen as representative cases because of their different elasticity, despite the

structural similarity. The availability of experimental data allows us to assess the quality

of the theoretical predictions. We show that the observed temperature dependence of the

splay, twist and bend elastic moduli can be traced back to differences, even not dramatic,

in molecular shape. Our calculations also highlight the importance of the flexibility of

mesogens, which was generally ignored by previous theories: in view of their different

shape, conformers are shown to give different contributions to the elastic moduli. The key

role of deviations from a rod-like shape, which is generally assumed by models of mesogens,

emerges from the calculations. The bend elastic constant is shown to be particularly

sensitive to molecular bending; it can range from high values for rod-like conformers, to

low and even negative values for bent conformers of a given compound. These findings

could have important implications for bent-core mesogens, which are presently the object

of intense investigation because of their unusual and attractive properties. We also report

the surfacelike elastic constants of PAA, 5CB, 8CB, whose experimental determination is

controversial; we have found that these are generally smaller than the bulk elastic moduli
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and even more sensitive to changes in molecular shape.

The results obtained for the LC dimers, taking into account the conformational free-

dom at the RIS level, are reported in chapter 6. A full overview is provided, comprising

order parameters, properties at the nematic-isotropic transition, dielectric permittivity,

elastic and flexoelastic moduli. The molecular model enables us to reach an unprece-

dented insight into the origin of not yet explained experimental findings, and to predict

behaviours not yet probed by experiment. Particularly interesting are the results obtained

for the flexoelectric and elastic properties of the LC dimers. The common view, which

gives electric and steric dipoles the main responsibility for the flexoelectric properties,

cannot explain recent experimental findings for LC dimers; our results single out the im-

portance of taking into account the whole distribution of charges and the real molecular

shape. Experimental data are available for the splay elastic constants of dimers [Tsvetkov

et al, Mol. Cryst. Liq. Cryst.: 331:1901, 1999]: we correctly predict not only magnitude

of the elastic constants, but also their dependence on the length of the flexible spacer. No

comparison with experiment is possible for the twist and bend elastic moduli; however

our results appear very promising, in relation to some intriguing phenomena which have

been recently reported for LC dimers [Coles et al, Nature, 436:997, 2005] and bent-core

LCs [Görtz et al, Soft Matter, 5:463, 2009].

In chapter 7 we investigate whether the small amplitude fluctuations around the min-

ima of the torsional potential, which are neglected by the RIS approximation, can affect

the elastic and dielectric properties of LC dimers. To this purpose, we have performed

calculations with MC sampling of the torsional angles. We show that small amplitude

fluctuations do play a role for those properties which are particularly sensitive to the

balance between elongated and bent conformations; these comprise the bend elasticity

and flexoelectricity. Significant, though less subtle effects of torsional oscillations are also

found for the dielectric permittivity, when some of the torsional angles are characterised

by relatively low barriers between the minima. In this final chapter, collecting all the

results obtained for LC dimers, we are able to provide a complete explanation for the

experiments performed by Coles and colleagues [Coles et al, J. Mater. Chem.,11:2709,

2001; Morris et al, Phys. Rev. E, 75:041701,2007], which simultaneously involve elastic

and flexoelectric properties.
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Riassunto

La tesi ha come oggetto lo sviluppo e l’applicazione di una metodologia computazionale,

basata su una teoria di campo molecolare e su una modellazione atomistica, per connettere

proprietà dielettriche ed elastiche dei nematici alla struttura delle molecole costituenti.

Il capitolo 1 riporta una introduzione generale sull’argomento della tesi. Innanzitutto,

il problema della connessione tra le proprietà di materiali e la struttura molecolare dei

costituenti, con speciale riferimento al caso dei cristalli liquidi, e si introduce l’obiettivo

di questo studio. Vengono poi richiamate le principali caratteristiche dei cristalli liqui-

di, considerando in particolare le proprietà elastiche e dielettriche, investigate in questo

lavoro di tesi, che sono direttamente coinvolte nel comportamento elettro-ottico del ma-

teriale. Si riportano, inoltre, i sistemi molecolari ai quali è stata applicata la metodologia

sviluppata. Questi hanno in comune una struttura costituita da due unità mesogeniche

piuttosto rigide, collegate tramite una catena flessibile e per queste ragioni sono chiamati

dimeri. Questi mesogeni hanno molteplici ragioni di interesse: le loro proprietà di cristallo

liquido sono molto sensibili ai cambiamenti nella struttura molecolare e mostrano com-

portamenti inusuali e tuttora inspiegati. Quindi, costituiscono un buon banco prova per

la modellizzazione molecolare dei cristalli liquidi.

Nel capitolo 2 viene presentato il contesto teorico dello studio. Dopo una rassegna

dello stato dell’arte dei metodi computazionali impiegati per lo studio dei cristalli liquidi,

viene presentato l’approccio di tipo campo molecolare utilizzato, che è basato sul modello

delle ‘Interazioni di Superficie’. In esso, la relazione tra livello molecolare e mesoscala

è introdotta tramite l’assunzione che ogni elemento della superficie molecolare tenda ad

allinearsi al direttore della fase nematica. È possibile rendere conto della struttura moleco-

lare tramite l’uso di una superficie generata dalle coordinate atomiche. Si riportano le

espressioni molecolari ottenute nell’ambito del modello SI per le proprietà di ordine, ter-

modinamiche, flessoelettriche e dielettriche dei cristalli liquidi nematici. Al riguardo,

data l’importanza della flessibilità molecolare, speciale cura è stata dedicata ai gradi di

libertà conformazionali. Due metodi differenti sono stati proposti per la sua inclusione nel

modello: l’approssimazione dello stato rotazionale isomerico (Rotational Isomeric State,

RIS), nel quale si considerano solo le geometrie corrispondenti ai minimi del potenziale

torsionale, e il campionamento Monte Carlo (MC) degli angoli torsionali.
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Nel capitolo 3 si derivano le espressioni molecolari per le costanti elastiche di bulk e di

superficie nel contesto del modello SI. Questo richiede un uso estensivo del calcolo tensoria-

le; alla fine si ottengono espressioni semplici, sfruttando la simmetria della fase nematica

non deformata. Dal punto di vista dello sviluppo teorico, questo è il principale risultato

della presente tesi. Le costanti elastiche possono essere calcolate in funzione dell’ordine

orientazionale, senza l’uso di parametri liberi, ed a basso costo computazionale. La teo-

ria sviluppata ha permesso di investigare il ruolo svolto dalle caratteristiche molecolari e

esplorare come cambiamenti a livello atomistico influiscano sul comportamento elastico,

su una scala di lunghezza assai differente. È stato quindi possibile interpretare l’origine,

tuttora poco chiara, della differente elasticità della fase nematica formata da mesogeni

con differente struttura chimica. L’abilità predittiva di questo metodo lo rende poten-

zialmente utile come strumento per la guida al design sintetico di cristalli liquidi con

proprietà desiderate: le costanti elastiche possono essere facilmente calcolate se si conosce

la struttura molecolare. In questo capitolo, si derivano inoltre espressioni molecolari per le

cosiddette costanti di superficie dei nematici. L’elasticità di superficie dei nematici è stata

oggetto di intensa indagine sia sperimentale che teorica senza peraltro raggiungere un con-

senso comune; la nostra analisi può essere vista come un’esplorazione preliminare di questo

problema, che merita ulteriori approfondimenti in futuro, ed è sperabile che l’approccio

atomistico qua descritto possa dare un contributo alla comprensione del fenomeno.

Dato il contesto teorico, la possibilità di ottenere predizioni di elevata qualità delle

proprietà dei materiali liquido-cristallini risiede nella disponibilità di (i) una procedura

computazionale efficiente e flessibile, (ii) accurati valori delle proprietà a livello moleco-

lare (energia, geometria e cariche) per i sistemi in esame. Entrambi i punti sono stati

trattati nel capitolo 4. È stata realizzata una procedura computazionale integrata; codici

Fortran realizzati ad hoc e software di terze parti sono stati collegati tramite programmi

Python. In tal modo, si sono sfruttate le specifiche caratteristiche di ciascun linguaggio di

programmazione: codice Fortran veloce ed ottimizzato per le parti riguardanti il calcolo

intensivo, e programmazione Python ad alto livello per il controllo dell’intera procedura

computazionale. Particolare attenzione è stata dedicata alla generazione delle confor-

mazioni molecolari. Queste sono convenientemente assemblate da un limitato numero di

unità molecolari, cioè frammenti trasferibili con cariche e geometrie fissate. La definizione

accurata dei parametri ha richiesto un’analisi preliminare, basata principalmente su cal-
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coli quantomeccanici di singola molecola; i risultati sono riportati nel capitolo 4.

Nel capitolo 5 viene riportata l’analisi del comportamento elastico di tipici mesogeni

liquido-cristallini (PAA, 5CB, 8CB), impiegando la teoria di campo molecolare presentata

nel capitolo 3. PAA, 5CB e 8CB sono stati scelti come casi rappresentativi a causa della

loro differente elasticità, a dispetto delle loro piccole differenze strutturali. La disponibilità

di dati sperimentali ha permesso di giudicare la qualità delle predizioni teoriche. Si

mostra che la dipendenza dalla temperatura osservata per il modulo elastico di splay,

twist e bend può essere ricondotta a differenze, anche se piccole, di forma molecolare.

I calcoli riportati evidenziano l’importanza della flessibilità dei mesogeni, che è stata

generalmente ignorata dalle precedenti teorie: a causa delle diverse forme, i conformeri

danno contributi differenti ai moduli elastici. Dai calcoli emerge il ruolo chiave delle

deviazioni della struttura molecolare da una forma cilindrica. La costante elastica di

bend si mostra particolarmente sensibile al ripiegamento nella struttura molecolare e può

variare da alti valori per conformeri approssimatamente cilindrici, a valori bassi e anche

negativi per conformeri ripiegati di un dato composto. Questi risultati possono avere

importanti implicazioni per i mesogeni formati da unità rigide ripiegate (chiamati bent-

core), che sono tuttora oggetto di intensa analisi a causa delle loro proprietà inusuali e

interessanti dal punto di vista applicativo. Per il PAA, il 5CB e 8CB sono state calcolate

anche le costanti elastiche superficiali, la cui determinazione sperimentali è controversa;

abbiamo trovato che queste costanti sono generalmente più piccole dei moduli elastici di

bulk e anche più sensibili ai cambiamenti di forma molecolare.

I risultati ottenuti per i dimeri liquido cristallini, tenendo conto della libertà con-

formazionale a livello RIS, sono riportati nel capitolo 6. Viene presentata una rassegna

completa, comprensiva dei parametri d’ordine, delle proprietà alla transizione nematico-

isotropica, della permittività dielettrica, e dei moduli elastici e flessoelastici. Il modello

molecolare consente di ottenere una maggiore comprensione dell’origine di risultati speri-

mentali, e di predire comportamenti ancora non verificati da esperimenti. Particolarmente

interessanti sono i risultati ottenuti per le proprietà flessoelettriche ed elastiche dei dimeri

liquido-cristallini. La visione comune, che ascrive ai dipoli elettrici e sterici la princi-

pale responsabilità delle proprietà flessoelettriche, non permette di spiegare una serie di

risultati ottenuti recentemente per tali dimeri; i risultati presentati in questo lavoro di

tesi individuano l’importanza di tenere conto dell’intera distribuzione delle cariche e della
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reale forma molecolare. Risultati sperimentali sono disponibili per le costanti elastiche di

splay dei dimeri [Tsvetkov et al, Mol. Cryst. Liq. Cryst., 331:1901, 1999]; di essi viene

correttamente riprodotta sia l’intensità delle costanti elastiche, che la loro dipendenza

dalla lunghezza della catena spaziatrice. Non è possibile confrontare con dati sperimen-

tali i moduli elastici di twist e bend; comunque i risultati sembrano molto promettenti in

relazione a interessanti fenomeni che sono stati recentemente riportati per i dimeri [Coles

et al, Nature, 436:997, 2005] e per cristalli liquidi bent-core [Görtz et al, Soft Matter,

5:463, 2009].

Nel capitolo 7 si valuta se le fluttuazioni di piccola ampiezza attorno ai minimi dei

potenziali torsionali, trascurati nell’approssimazione RIS, possono avere effetti sulle pro-

prietà elastiche e dielettriche dei dimeri liquido-cristallini. A tal fine, sono stati realizzati

calcoli con campionamento MC degli angoli torsionali. Si mostra che le fluttuazioni di

piccola ampiezza giocano un ruolo per quelle proprietà che sono particolarmente sensibili

all’elequilibrio tra conformazioni allungate e quelle ripiegate; queste comprendono le com-

ponenti bend dell’elasticità e della flessoelettricità. Significativi effetti delle oscillazioni

torsionali si sono trovati anche per la permittività dielettrica, quando alcuni angoli torsio-

nali sono caratterizzati da barriere relativamente basse tra i minimi di energia potenziale.

In questo capitolo finale, raccogliendo i risultati ottenuti per dei dimeri liquido cristallini,

si è fornita una spiegazione degli esperimenti realizzati da Coles e collaboratori [Coles et

al, J. Mater. Chem., 11:2709, 2001; Morris et al, Phys. Rev. E, 75:041701, 2007], che

coinvolgono simultaneamente proprietà elastiche e flessoelettriche.
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