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Abstract 

 

This dissertation addresses the problem of assigning the desired dynamic 

behaviour to vibrating systems, with particular attention on the generality of the 

approaches proposed. The main focus of this work is in developing structural 

modification approaches ensuring the feasibility and the optimality of the 

computed solution. The proposed approaches are suitable for both the design of 

new mechanical systems, and the performance optimisation of existing ones. 

Three formulations are proposed: in the first, the original system is modelled by 

means of mass and stiffness matrices, while in the second the Frequency 

Response Functions of the original system are employed. The final formulation 

allows for discrete structural modification, by casting the structural modification 

problem as a mixed-integer non-linear optimisation problem. 

Compared with most of the approaches appearing in literature, one of the 

strengths of the approaches proposed is the capability to handle different design 

tasks. Also, the proposed approaches allow the modification of an arbitrary 

number of parameters (even in the presence of linear interrelated modifications) 

and of assigned vibration modes (regardless of their magnitude), as well as the 

possibility of dealing with mass and stiffness matrices with an arbitrary topology. 

To this purpose, the structural modification problem is formulated as a 

constrained inverse eigenvalue problem. The problem is constrained in the sense 

that a wide family of parameter constraints can be included in the formulations 

adopted in order to incorporate the physical constraints to the system 

modifications. Moreover, a regularization term biases the solution towards 

preferable modifications and assures good numerical conditioning. The problem is 
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then solved within the frame of constrained convex optimisation, which ensures 

that a unique, and hence global, optimal and feasible solution exists and that it can 

be efficiently computed by means of reliable numerical algorithms. 

The effectiveness and the capabilities of the proposed approaches are 

demonstrated by firstly applying it to theoretical test cases and secondly through 

experiments on industrial and laboratory test cases. Such test cases involve 

lumped and distributed parameter modifications, as well as multimode and single 

mode assignments.  
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Sommario 

 

In questa Tesi si affronta il problema di assegnare il comportamento 

dinamico desiderato a sistemi vibranti, e si dedica particolare attenzione alla 

generalità degli approcci proposti. Questo lavoro si concentra sullo sviluppo di 

approcci per il calcolo di modifiche strutturali che siano in grado di assicurare la 

realizzabilità fisica e l’ottimalità della soluzione calcolata. Gli approcci proposti 

sono adatti sia al progetto di nuovi sistemi meccanici, sia all’ottimizzazione delle 

performance di quelli esistenti. Vengono proposte tre formulazioni: nella prima il 

sistema originale é modellato per mezzo di matrici di massa e rigidezza, mentre 

nella seconda vengono impiegate le funzioni di risposta in frequenza (Frequency 

Response Functions). La terza formulazione prende in considerazione modifiche 

strutturali discrete, in quanto il problema delle modifiche strutturali viene 

formulato come un problema di ottimizzazione non-lineare mista-intera. 

In confronto agli approcci presenti in letteratura, uno dei punti di forza 

degli approcci proposti risiede nella capacità di poter affrontare obiettivi di 

progetto diversificati tra loro. Degna di nota é la modifica di un numero arbitrario 

di parametri (anche in presenza di modifiche tra loro linearmente correlate) e di 

modi di vibrare (a prescindere dalla loro normalizzazione), cosi pure la possibilità 

di trattare matrici di massa e rigidezza con topologia arbitraria. A tale fine, il 

problema di modifica strutturale viene formulato come un problema agli 

autovalori inverso vincolato. Il problema é vincolato nel senso che una ampia 

famiglia di vincoli sui parametri può essere introdotta nelle formulazioni adottate, 

per includere nel problema i vincoli fisici sulle modifiche del sistema. Inoltre, un 
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termine di regolarizzazione permette di dirigere la soluzione verso modifiche 

preferenziali, ed assicura un buon condizionamento numerico. Il problema è 

risolto all’interno del contesto matematico dell’ottimizzazione convessa vincolata, 

che assicura l’esistenza di un’unica, e quindi globale, soluzione ottima 

realizzabile, e che tale soluzione sia calcolabile efficacemente per mezzo di 

algoritmi numerici consolidati ed affidabili. 

L’efficacia degli approcci proposti, e la loro capacità di fornire soluzioni 

realizzabili è stata dapprima dimostrata applicandoli dapprima su esempi teorici, e 

successivamente su test case industriali e da laboratorio. Tali test case includono 

sia modifiche di parametri concentrati che parametri distribuiti, così come 

l’assegnazione di uno o più modi di vibrare. 
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Introduction 

 

Scope of the Thesis 

The scope of this Thesis is to provide a collection of innovative methods 

for computing the physical parameters of mechanical systems ensuring the 

prescribed dynamic behaviour. Such computed physical parameters can be 

employed in the design phase of new devices or in the performance optimisation 

of existing ones. The problem of assigning prescribed dynamics through 

parameter modification is traditionally called “Inverse Structural Modification 

Problem”, and several approaches have been proposed in literature for the solution 

of some specific problem subclasses. The methods introduced in this Thesis 

address the problem of assigning dynamic behaviours prescribed by means of the 

system eigenstructure, and are based on the solution of inverse eigenvalue 

problems. In many applications it is in fact convenient to express the desired 

dynamic behaviour in terms of system eigenstructure. This is especially effective 

when only a small number of modes dominates in the system dynamic response at 

the frequencies of interest. Popular examples of such a condition are vibratory 

conveyors, linear feeders and sieves, which are actuated at a specific single-

harmonic excitation frequency. Peculiar to the methods proposed is the interest 

towards the feasibility and the optimality of the computed solution. Noteworthy is 

also the method generality with respect to the data employed, to the parameters to 

be modified and to the dimension of the desired eigenstructure. These aims are 

achieved by formulating the mathematical problems in suitable work frames, 

allowing for the introduction of feasibility constraints and of penalty terms 
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reflecting the requirements of the designer. Finally, the solution of the 

mathematical problems within the frame of the convex optimisation provides 

useful mathematical and numerical tools, as well as algorithms which are very 

effective in the computation of the system modification. Noteworthy is the 

solution of structural modification problems in the mathematical frame of mixed-

integer non linear programming, since it intrinsically reflects the industrial need of 

modularisation. 

The Thesis is organised as follows: first, a literature review is proposed. 

Then, in the first Chapter, three formulations of methods for calculating structural 

modifications are developed. These formulations differ for the system model 

employed (spatial model or frequency response model) and for the mathematical 

frame of solution (real or mixed-integer non linear optimisation). Chapters 2, 3 

and 4 are devoted to the application of the developed methods on simulated test 

cases: in the second Chapter the method employing the system spatial model is 

applied on lumped- and distributed-parameter systems, and a comparison is 

carried out with two state-of-the-art methods. In the third Chapter, a comparative 

application of the method employing the system frequency response is proposed. 

This section is focused on how to effectively exploit FRF data in order to compute 

structural modifications. The fourth Chapter contains a detailed explanation of the 

technique employed for computing effective structural modifications. Chapters 5, 

6, 7 are devoted to the experimental validations of the methods developed: in 

chapter 5 the method employing the system spatial model is validated with 

reference to the optimisation of an industrial vibrating device. The validation of 

the method based on frequency response data is given in chapter 6, with reference 
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to a laboratory test rig. The same test rig has been used for providing experimental 

evidence of the effectiveness of the discrete modifications, as demonstrated in 

chapter 7. 

 

Literature review 

The optimisation of vibrating systems is aimed at improving the dynamic 

behaviour by properly choosing inertial, stiffness and damping parameters. This 

design problem is generally referred to as structural modification and two 

complementary approaches can be adopted: direct (forward) and inverse. In the 

direct structural modification problem the dynamic behaviour of a modified 

system is predicted, given known modifications. Conversely, in the inverse 

structural modification problem the suitable parameter modifications ensuring the 

desired change in the system dynamic behaviour are computed. 

Several approaches for the solution of inverse structural modification 

problems have been developed, starting from the pioneering work [RAM 1991]. A 

wide collection of inverse problems in vibration can be found in 

[GLADWELL 2004]. Two main criteria can be adopted in order to group the 

approaches proposed in literature. The first grouping criterion is based on the 

dynamic properties to be assigned through structural modification: such properties 

usually are the system natural frequencies, the system vibration modes and the 

system point- and cross-receptances (in particular the system point- and cross-

antiresonances). The second grouping criterion, used in the literature review 

proposed below, is the kind of description adopted for the original system model 
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and, hence, the original system data employed by the methods. According to this 

criterion, the works in literature can be grouped into three sets : 

• the approaches based on physical models of the systems (e.g. 

[FARAHANI 2004A-B] and [LIANGSHENG 2003]), which employ 

inertial, stiffness and damping matrices; 

• the approaches based on modal data (e.g. [BRAUN 2001], 

[BUCHER 1993]), which employ the system eigenstructures; 

• the approaches directly based on the system receptances (Frequency 

Response Functions, FRF) (e.g. [MOTTERSHEAD 2001], 

[OUYANG 2009] and [PARK 2000]). 

 

Approaches employing the original system spatial model 

The early inverse structural modification techniques are based on the 

sensitivity analysis of the eigenstructure. These studies take advantage of the 

derivatives of the eigenvalues and of the eigenvectors of a dynamic system with 

respect to system parameter perturbations. Just to mention a few examples, in 

[FARAHANI 2004A-B] the modification in the system eigenstructure is 

approximated respectively thorough its first- and second-order derivatives with 

respect to the system physical modifications. The main problem associated with 

the perturbation approach is that it provides reliable and computationally efficient 

results as long as modifications are “small”. If the modifications are not small, 

numerical iterations are needed and the computational effort increases. 

The method in [LIANGSHENG 2003] is targeted to the simultaneous 

modification of masses and stiffnesses for assigning a reduced subset of modes, 
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starting from the complete system model expressed in physical coordinates. 

Arbitrary matrix topologies are allowed for in this method. On the contrary, the 

number of assigned modes is not arbitrary since it is strictly related to the system 

model dimensions and to the number of design variables. Additionally, no 

constraints ensure the physical and technical feasibility of the solution. 

The theory of the multi-degree-of-freedom dynamic absorber provided in 

[RAM 1996] is also based on system spatial models. The vibration absorption can 

be achieved for multiply-connected vibrating systems, but solutions are available 

only for the special case of absorbing the vibration in simply-connected systems 

through the addition of simply-connected systems. 

The objective of the papers [WANG 2004] and [WANG 2006] is the 

maximisation of a system natural frequency, to be achieved by mean of proper 

placement of elastic supports. These studies are based on the derivatives of the 

system natural frequencies with respect to the support position. 

A recent application of a procedure for maximizing the least eigenvalue of 

a constrained affine sum is exploited in [RAM 2009] in order to determine the 

mass distribution in vibrating system. The optimisation consists in maximising the 

lowest eigenvalue or in minimizing the highest. The method is based on the 

recursive solution of quadratic equations, and allows for a constraint on the total 

mass employed. 

 

Approaches employing the original system modal model 

In their pioneering work, Ram and Braun [RAM 1991] formulated the 

modification problem as an optimised inverse eigenvalue problem. In particular, 
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they dealt with the incompleteness of the original system model. They constrained 

the desired mode shapes to lie in the span of the known ones, and provided 

formulae for evaluating the family of all the mathematical solutions of the 

modification problem. The normalisation adopted for the desired mode shapes is 

crucial, since the solutions are dependent upon the magnitude of the desired mode 

shapes. The Authors also tackled the problem of attaining feasible and realistic 

mass and stiffness modifications, by defining a family of physically realizable 

solutions. Nevertheless, the Authors explicitly stated that there still remained the 

problem of developing an efficient algorithm for the evaluation of such a 

realizable solution. In addition, the number of assigned modes was limited by the 

dimension of the incomplete set of  known modes and the computation of 

interrelated modifications (e.g. parameter modifications affecting both the mass 

and the stiffness matrices) was prevented. 

Subsequently, Sivan and Ram [SIVAN 1999] improved the method in 

[RAM 1991] and focused on the feasibility problem. Under certain connectivity 

assumptions (lumped mass simply-connected systems) they extracted from the set 

of all the mathematical solutions those that can be realised by actual system 

modifications.  

The method in [BUCHER 1993] takes advantage of the concept of left 

modal eigenvectors in order to overcome the truncated information of 

experimental FRFs. The Authors proved that if a structure is excited by a force 

vector that lies in the span of the truncated left modal vectors, then the steady-

state response of the structure can be described exactly by the truncated modes. 

The basic equations for the extraction of the system left eigenvectors from 
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experimental FRFs are also proposed, and the exact solutions of the problems 

whose desired eigenvectors lie in the subspace of the extracted modes are also 

presented. Hence, at a maximum, the number of assigned modes is equal to the 

dimension of the incomplete set of known modes. Also, interrelated modifications 

are not considered, and no constraints ensure the feasibility of the computed 

modifications. A refined version of the method is proposed in [BRAUN 2001]: it 

is shown that solutions without truncation errors may be obtained if left 

eigenvectors are included in the modification procedure. However, the extraction 

of left eigenvectors from experimental FRFs implies ill-conditioned computations 

and hence is very sensitive to measurement noise, even if regularisation methods 

are suggested in [BUCHER 1997] in order to reduce such a  sensitivity to 

measurement noise. In addition, such methods are tailored to the optimisation of 

simple connected systems, which can be modelled through diagonal mass 

matrices and tri-diagonal symmetric stiffness matrices. Moreover, the knowledge 

of the system mass matrix is implicitly required, since proper mass-related 

normalisation is required for the eigenvectors employed in the computations. 

In [SIVAN 1996] the problems arising from the availability of truncated 

modal data has been dealt with in the assignment of natural frequencies. This 

paper is one of the few works which deals explicitly with interrelated mass and 

stiffness. Moreover, the explicit non-negativity constraints employed in the 

solution algorithm ensure obtaining feasible mass and stiffness modifications. 

In [SIVAN 1997]  Sivan and Ram proposed a method for constructing 

physically realizable multiple-connected mass-spring systems approximating 

prescribed eigenstructures. Non-negative constraints are imposed in the 
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computation, thus ensuring the system feasibility. In the method proposed, only 

the mass matrix is assumed to be diagonal. It is required to include all the system 

modes (i.e. the complete modal set) in the prescribed eigenstructure, and that the 

desired eigenvectors be mass-normalised, since the eigenvector magnitude 

considerably influences the method performance.  

 

Approaches employing the original system Frequency Responses 

Generally speaking, both the system physical models and the 

experimentally derived modal data suffer from the modal truncation arising from 

the finite dimensional models assumed and from the high amount of computations 

required for the model synthesis. In particular, the physical model experimental 

identification is often challenging when dealing with complex and uncertain 

systems, while the determination of complete modal models usually involves 

intrinsically ill-conditioned computations. These problems should therefore be 

properly tackled in the modification process. 

In contrast with such models, the direct use of the measured receptances in 

structural modification problems overcomes both the incompleteness of the modal 

representation of large-scale systems and the need for accurate and updated modal 

or physical models. This simplifies significantly the numerical data analysis and 

increases the algorithm robustness with respect to parameter uncertainty, although 

receptances describe the system only in a finite frequency range. 

The aforementioned appealing advantages have encouraged the 

development of FRF-based inverse structural modification approaches in recent 

years. In particular, FRF data have been directly employed in [MOTTERSHEAD 
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2001] in order to calculate structural modification for the assignment of 

antiresonances. In this paper, the concept of the adjoint system is employed in 

order to compute the system modifications assigning desired zeros to both the 

point- and cross-receptances of a structure. Such a result is attained by assigning 

the proper resonances to the adjoint system. The technique proposed requires a 

very small set of data from the unmodified structure: three and four frequency 

responses are required in the assignment of respectively point- and cross-

receptances. In [KYPRIANOU 2004] the assignment of natural frequencies on the 

basis of the original system frequency responses is considered. The method is 

based on adding an oscillating mass connected to the original structure by mean of 

one or two springs, and hence implies the addition of a degree of freedom and a 

natural frequency. The conditions for computing realistic parameters are given, 

and the effect of the added mass and spring(s) on the system poles and zeros is 

explained. Furthermore, in [KYPRIANOU 2005] the solution of multivariate 

polynomial systems for the assignment of natural frequencies and antiresonances 

is proposed. Such systems arise when the modifications yield couplings between 

coordinates, e.g. the addition of beams. Important system modifications (e.g. 

addition of beams) may requires also the measurement of rotational receptances, 

which is usually difficult because of the practical problems of applying a pure 

moment. In [MOTTERSHEAD 2005] a method is proposed in order to estimate 

rotational receptances. The method is based on the attachment of a flexible 

substructure, and requires measurements of sole linear displacements and applied 

forces. However, the resulting equations are generally ill-conditioned (thus 

requiring regularisation techniques in the computations) and the natural 
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frequencies of the attached substructure may influence the measurements. The 

system frequency responses have been recently employed also in the prediction 

and in the assignment of the latent roots [OUYANG 2009] of asymmetric systems 

by means of mass, stiffness and damping modifications. The problem is not trivial 

since the major issue in asymmetric systems is the lack of stability. Therefore, the 

assignment of the real part of latent roots is much more important than the 

assignment of frequencies. Other FRF-based methods (e.g. [LI 1999], and [PARK 

2000]) deal with the assignment of normal modes in vibrating systems. The 

former is based on the solution of linear equations. Nevertheless, as the Authors 

admit, it can usually be applied when either masses or stiffnesses are to be 

modified. Moreover, no condition assures the feasibility of the solutions. 

Furthermore, the number of modifiable parameters is dependent upon the number 

of equations translating the prescriptions of the assignment problem, since the 

method is based on solving a determined problem. The latter ([PARK 2000]) can 

handle also under-determined problems (i.e. problems with more modification 

parameters than equations), while an approximate procedure is only suggested for 

dealing with under-determination. In the selection of the best solution, however, 

no optimisation problem is explicitly defined and hence such a selection is not 

straightforward. 

The journal papers [MOTTERSHEAD 1999-2000] describe the 

relationships between vibration nodes and the cancellation of poles and zeros. The 

former deals with the condition for creating a vibration node from zero-pole 

cancellation, while in the latter the special cases of multiple poles and zeros are 

discussed. 
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The analysis of the aforementioned works highlights that several issues are 

still open in this field since most of the approaches proposed so far lack flexibility 

and generality both in the formulation and in the solution of the problems. In such 

an open frame, the chief contribution of the work presented in this paper consists 

in formulating the modal optimisation problem so as to provide designers with the 

widest set of tools for coping with different design requirements. Starting from a 

dynamic model of the original (nominal) undamped system (either in spatial 

coordinates or made of frequency responses), the proposed formulations are 

targeted to the simultaneous modification of an arbitrary number of modes, 

through the assignment of both the frequencies and the mode shapes (without the 

need to meet the frequent requirement of a specific eigenvector normalization). 

The simultaneous modification of an arbitrary number of mass and stiffness 

parameters is also allowed, even when they are linearly interrelated, and 

regardless of the number of assignment requirements. These facts overcomes the 

limitations of most of the available methods where specific assumptions on both 

the number of assigned modes and on the class of modifiable parameters are 

stated. In particular, the method proposed in [LI 1999] allows the imposition of 

just a single mode while in [SIVAN 1997] all the modes must be simultaneously 

assigned. Alternatively, the number of assigned modes is limited by either the 

dimension of the system model and the number of modification parameters 

 [LIANGSHENG 2003], or the dimension of the incomplete set of known modes 

( [RAM 1991] and  [BRAUN 2001]). As far as the class of modifiable parameters 

is concerned, the simultaneous modification of mass and stiffness parameters [LI 
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1999] or the interrelated modifications (e.g. parameter modifications affecting 

both the mass and the stiffness matrices) are often prevented ( [RAM 1991], 

[BRAUN 2001] and  [SIVAN 1997]). 

Besides being general with respect to the number of problem unknowns 

and requirements, the approaches proposed in this Thesis allow adopting non-

diagonal mass matrices (both for the original and the modified systems) and non-

tridiagonal symmetric stiffness matrices (e.g. those of finite elements). Such a 

possibility significantly enlarges the range of design problems to which the 

proposed design approach can be applied. It should be pointed out that in most of 

the works appearing in literature it is explicitly assumed that mass matrices are 

diagonal and stiffness matrices are tridiagonal symmetric (see e.g.  [SIVAN 1997], 

 [BRAUN 2001] and [RAM 2009]). 

Another relevant feature of the proposed problem formulations is its 

capability to include in the problem solution physical constraints on the design 

variable values, translated into mathematical constraints. So far, the adoption of 

constraints in modal optimisation has instead been only partially exploited in a 

few other works, where only positivity constraints ( [SIVAN 1997], 

 [BRAUN 2001]), lower and upper bounds on single variables ( [BRAUN 2001], 

[PARK 2000]), or constraint on the system total mass [RAM 2009] have been 

imposed. The formulations proposed in this work considerably improve the 

possibility of incorporating physical constraints by handling a wide family of 

complicated constraints in the form of arbitrary linear combinations of 

inhomogeneous design variables. The presence of these constraints on all the 

modification parameters together with the introduction of an additional term 
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penalizing large modifications, ensures the physical and technical feasibility of 

the solution, and also allows encouraging solutions which are small (in some 

norm sense), hence reducing the amount of parameter modifications required. 

This is usually desirable in practice. As a further aid to designers, some specific 

tools have been introduced in order to reflect differing levels of concern about 

both the modifications to be adopted (e.g. to penalize the modifications of some 

parameters) and the different requirements of the problem (e.g. different modes). 

Finally, it is noteworthy that the formulations proposed allow to easily compute 

optimal discrete modifications, which perfectly reflect the industrial need of 

modularisation. To the best of our knowledge, no study has ever been carried out 

on discretisation problems in inverse structural modification. 

Besides the discussed generality and flexibility, a further relevant issue in 

inverse structural modification problems is the problem solvability, i.e. the 

capability to compute a reliable and optimal solution. Only some specific modal 

modification problems have analytical solutions ( [BUCHER 1993],  [LI 1999] and 

 [LIANGSHENG 2003]), and hence numerical approaches generally need to be 

adopted, in particular when parameter constraints are to be taken into account. 

The main drawback of numerical solutions is that iterative algorithms usually find 

solutions depending on the chosen initial guess and that such solutions could be 

only one among the unknown number of local optima. A peculiar feature of all the 

approaches proposed in this paper is the convexity of the function to be optimised. 

The optimisation of convex functions on convex domains allows overcoming 

most limitations of general nonlinear optimisation, by ensuring that a globally 

optimal solution is found. In addition, efficient, highly robust and reliable 
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algorithms are available for solving convex optimisation problems  [BOYD 2004]. 

These motivations have boosted the use of convex optimisation in a wide range of 

mechanical design problems  [DEMEULENAERE 2006]. The chief challenge in 

adopting convex optimisation lies in the problem formulation, since recognizing 

its convexity is not straightforward  [DEMEULENAERE 2006]. Once a problem 

is formulated within the frame of convex optimisation, it is quite straightforward 

to solve it. The capability of the proposed approaches to provide unique optima is 

further strengthened by its complete lack of dependence on eigenvector 

magnitude, i.e. on the normalization scheme adopted for the imposed 

eigenvectors. This is not the case with most of the reviewed works ( [RAM 1991], 

 [BUCHER 1993],  [BRAUN 2001],  [LIANGSHENG 2003] and  [SIVAN 1997]), 

where eigenvector normalisation considerably affects the results (examples 

showing such a problem are proposed in this work). 

Finally, problem numerical conditioning should also be tackled, both when 

analytical and numerical solutions are adopted. Numerical problems, for example, 

do not allow selecting eigenvectors with zero or close-to-zero components in one 

of the solutions proposed in  [BUCHER 1993]. Numerical problems may also 

impose consistent modifications of the natural frequencies of the modes to be 

modified  [LI 1999]. The approaches proposed in this work do not suffer from 

these limitations since the previously mentioned penalty term adopted for 

penalizing large modifications also plays a crucial role in the increase of both the 

numerical reliability of the solution, and of its robustness with respect to system 

model uncertainty.  
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Chapter 1. Modal design optimisation 

1.1. Introductory theory 

The aim of dynamic models is to describe the dynamic properties of real 

mechanical systems with the desired accuracy. This means that it is not necessary 

to model all the system interaction but that, in most cases, it is sufficient to 

consider the basic dynamic properties separated into simple discrete elements. 

Such system properties are mass, stiffness and damping which are responsible for 

inertial, elastic and dissipative forces respectively. Depending upon the number of 

degrees of freedom (DOF), models can be classified into single degree-of-freedom 

(SDOF) and multiple degree-of-freedom (MDOF) systems. 

Good approximations of real structures are usually realized through 

models with finite number of elements representative of the most important 

features from a dynamic point of view: commonly used models consider 

discretised masses connected with springs and dashpots. 

In such models of undamped systems composed by n masses and 

connected through springs, the equilibrium equation can be written in compact 

matrix form: 

 

( ) ( ) ( )t t t +  = Mx Κx f&&  (1.1) 

 

where M n n×∈�  is the system mass matrix, K n n×∈�  is the system stiffness matrix, 

vectors 1( ) nt ×∈x �  and 1( ) nt ×∈x�� �  represent respectively the system 

displacements and accelerations and 1( ) nt ×∈f �  is the vector of the external forces 

acting on the system. The number of degrees of freedom of such a system is n. 
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The solution of equation (1.1), when exciting the system with a harmonic 

force, is in the form: 

 

( ) sin( )t tω =x u  (1.2) 

 

where 1n×∈u � is the vector of displacement amplitudes. 

Considering the free motion, an eigenvalue problem is obtained: 

( )2ω − =Κ M u 0  (1.3) 

 

whose solution vector u is non-trivial if: 

 

( )2det  = 0ω −  Κ M  (1.4) 

 

Eq. (1.4) yields n solutions 2 2 2

1 2 n
ω ω ω , , ,K  which are the system eigenvalues and 

whose square roots are the natural frequencies of the MDOF system. For each ωi 

of the n natural frequencies, the solution of Eq. (1.3) is the non trivial vector ui. 

Such vectors are called the eigenvectors of the system. 

The eigenvectors possess peculiar ortoghonality characteristics so that, if no 

particular normalisation is adopted, the following hold: 

 

0
j i

k if i j

if i j

 =
= 

≠

T
u uΚ 

�

 (1.5) 

0
j i

m if i j

if i j

=
= 

≠

T
u uM 

�
 (1.6) 
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Also, by multiplying Eq. (1.3) at left by u
T
 and subsequently dividing through 

u
T
Mu, it is possible to obtain an alternative expression for the eigenvalue in terms 

of its eigenvector, called the “Rayleigh Quotient” [MEIROVITCH 1980]: 

 

2 i i
i

i i

ω =
T

T

u u

u u
 

Κ 

M 
 1, ,i n∀ = …  (1.7) 

 

 

1.2. Formulation of the method for system models in 

spatial coordinates 

1.2.1. Multiple inverse eigenvalue problem 

Let consider an undamped N-dof linear system to be modified in order to 

get a desired dynamic behaviour. Let assume that M, K N N×∈�  are the mass and 

stiffness matrices of the system. The desired dynamic behaviour is assumed to be 

specified through an arbitrary number n N≤  of eigenpairs ( )2 , ,  1, ,
h h

h nω =u …  

where 
h

ω  is the natural frequency of the mode with shape 
h

u . 

The allowed additive parameter modifications are described by the 

modification matrices ∆∆∆∆M(x), ∆∆∆∆K(x) N N×∈� , where xN∈x � collects the 
x

N  

problem unknowns, i.e. the design variables. The structures of ∆∆∆∆M and ∆∆∆∆K are a 

priori assumed and are coherent with the physically and technically feasible 

modifications of the system parameters. 

For any desired eigenpair of the modified system ( )2 ,
h h

ω u , both the 

eigenvalue problem equation and the Rayleigh quotient associated with matrices 

M+∆∆∆∆M(x) and K+∆∆∆∆K(x) must hold: 
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( )( ) ( )( )2

h h h
ω + =M ∆M u K + ∆K ux x  1, ,h n∀ = …  (1.8) 

( )( )
( )( )

2 h

h

h

h

h

ω
+

=
T

T

u K + ∆K u

u M ∆M u

x

x
 1, ,h n∀ = …  (1.9) 

Let the modification parameters be only those linearly affecting the entries 

ij
m∆  and 

ij
k∆ . For each 1, ,h n= …  the real matrix xN N

h

×∈U� � allows expressing 

the following equality: 

( ) ( )2

h h hω − =∆M x u ∆K x u U x�  (1.10) 

where, using the vector differentiation operator 1 , ,
xN

x x ∂ ∂ = ∂ ∂ ∂ ∂ x …  

( )2

h h

h

ω ∂ − 
=

∂

∆M ∆K u
U

x
�  

(1.11) 

The matrix 
h

U�  only depends on the desired eigenpair ( )2 ,
h h

ω u  and on the 

parameters selected for modification. 

On the basis of Eq. (1.10) the h
th

 inverse eigenvalue problem stated 

through Eqs. (1.8) and (1.9) can be reformulated as the linear system 

h h
U x = b  (1.12) 

where both the matrix 
( )1 xN N

h

+ ×
∈U �  

h
U h

h h
β

 
=  
 

T

U

u U

�

�
 

(1.13) 

and the vector 
( )1N

h

+
∈b �  

( )

( )

2

2

h h

h

h hh h

ω

ωβ

 − + 
=  

− +  
T

u

u u

M K
b

M K
 

(1.14) 
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depend on the original system characteristics and on the desired h
th

 vibration 

mode. The positive scalar coefficient 
h

β  has been introduced to suitably weigh 

the Rayleigh equation (1.9) in the linear system (1.12), in order to boost the 

natural frequency achievement in the inverse eigenvalue problem. 

Since no assumption has been made on the number of modification 

parameters and hence on the dimensions and on the rank of 
h

U , an exact solution 

of the linear system (1.12) is not ensured for the general case. A least-squares 

solution of the linear system, must therefore be computed:  

( ){ }2

2
min :h h hf = −

x
x U x b  (1.15) 

Subsequently, in order to explicitly state the modification problem for the 

n eigenpairs, the h
th

 single mode eigenvalue problem (1.15) is weighed by means 

of the positive scalar 
h

α . The multimode inverse eigenvalue problem can 

therefore be written as: 

( ) ( )
2

2
1

min :
n

h h

h

f fα
=

 
= = − 

 
∑

x
x x Ux b  

(1.16) 

where 
T

T T

1 1: , ,
n n

α α =  U U U…  and 
T

T T

1 1: , ,
n n

α α =  b b b… . The different 

values of the weights 
h

α  are chosen so as to reflect differing levels of concern 

about the sizes of the h
th

 residual 
h h

−U x b . 

 

1.2.2. Regularised multiple inverse eigenvalue problem 

The solution of the quadratic optimisation problem can be improved by 

including in Eq. (1.20) an extra term penalizing large mass and stiffness 

modifications. As a matter of fact, not only may large structural modification 
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cause spillover phenomena on the neglected modes, but also small parameter 

modifications are highly desirable from a technical and economical point of view. 

Additionally, robustness issues may arise in calculating the numerical value of the 

solution of the quadratic optimisation problem in Eq. (1.20). Robust solutions of 

the inverse eigenvalue problem are those exhibiting small variations with respect 

to the problem parameter variations (e.g. U  and b ). Such variations are mainly 

caused by the unavoidable system model uncertainties. The robustness issue is 

tightly related to the ill-posed nature of the least-squares solutions. This problem 

arises even when dealing with the unconstrained problem in Eq. (1.16), since the 

numerical value of the analytical solution +=x U b  (where +
U  is the pseudo-

inverse of U ) generally overestimates the actual solution and is very sensitive to 

the problem parameter uncertainties [CALVETTI 2005]. Similar ill-posed nature 

and robustness issues obviously need to be coped with when solving the 

constrained problem in Eq. (1.20). 

Both the robustness issue and the technical requirement of small 

modifications can be tackled by adding a Tikhonov’s regularising term to the 

formulation of the problem. Such a term allows stating the multiple inverse 

eigenvalue problem as a Tikhonov-regularised bi-criterion quadratic optimisation 

of the convex objective function ( )g x : 

{ }2

2
min ( ) : ( )g f λ= + x

x
x x Ω x  (1.17) 

The scalar positive value λ is the regularisation parameter, trading between the 

cost of missing the target specifications ( ( )f x ) and the cost of using large values 

of the design variables (
2

2x
Ω x ). The positive-definite diagonal matrix 
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x xN N×∈
x

Ω �  is the regularisation operator, and defines a scalar product which 

induces a norm on xN
� . 

x
Ω  is employed in order to suitably weigh the 

components of x, i.e. to selectively penalize the modifications of the design 

variables, in accordance to their technological feasibility and economic outcome. 

 

1.2.3. Constrained Regularised multiple inverse eigenvalue problem 

In order to avoid physically and technologically infeasible modifications 

(e.g. negative masses or too large modifications), the solution must be constrained 

within a feasible domain Γ . Peculiar are the constraints expressed through 

{ }: , ,xN N Nγ γ×
Γ = ≤ ∈ ∈Ax c A cx � �  (1.18) 

The polyhedron Γ  allows simultaneously dealing with an arbitrary number of Nγ  

constraints and is a convex set, because for any 1 2, ∈Γx x  and any real θ  

( 0 1θ≤ ≤ ), the following holds [BOYD 2004]: 

( )1 21θ θ+ − ∈Γx x  (1.19) 

By means of a proper selection of A and c, the adopted definition of Γ  allows 

imposing lower and upper bounds both on each variable and on linear 

combinations of the variables (e.g. constraints on the total mass modification can 

be set, as well as constraints on the ratios of unknowns).  

The inverse eigenvalue problem is therefore expressed as a constrained 

quadratic optimisation problem 

( ){ }min ,g ∈Γ
x

x x  (1.20) 

in which the residual of the linear system (1.17) is minimized over the feasible 

domain Γ .  
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1.2.4. Convexity of the formulated problem 

It is worth noticing that the formulation of the inverse structural 

modification problem proposed in Eq. (1.20) represents a convex optimisation 

problem, since it consists in minimizing the convex function :g Γ → �  on the 

polyhedron Γ , which is itself a convex domain [BOYD 2004]. The function 

( )

2

2 2

2 2

2

g λ
λ

   
= − + = −   

  
x

x

U b
x Ux b Ω x x

0Ω
 is also convex, because it is 

defined on a convex set Γ  and satisfies the inequality below for any real σ  

( 0 1σ≤ ≤ ), for any 1 2, ∈Γx x , and for any rank or dimension of matrix U: 

( )( )
2

1 2

2

1σ σ
λ

   
+ − − ≤   

  x

U b
x x

0Ω
 

( )

2 2

1 2

2 2

1σ σ
λ λ

      
− + − −      
      x x

U Ub b
x x

0 0Ω Ω
 

(1.21) 

The convexity of the problem stated in Eq. (1.20) ensures that an unique 

global optimum exists and can be computed numerically regardless of the initial 

solution guess. Additionally, since ( ) 0λ+ >T T

x x
U U Ω Ω  for any rank or 

dimension of matrix U and for any λ > 0, and the rank of λ+T T

x x
U U Ω Ω  is 

maximum, the regularised problem in Eq. (1.17) has an analytical solution for the 

unconstrained problem ( Γ = xN
� ): 

( )
1

λ
−

= +T T T

x x
x U U Ω Ω U b  (1.22) 

When dealing with the constrained problem, if the unconstrained solution 

in Eq. (1.22) does not lie in the feasible set Γ , the constrained optimal solution 

must be computed numerically by exploiting the convex optimisation algorithms. 



 23 

Equation (1.22) clearly proves the effectiveness of the regularisation term 

in improving the numerical conditioning and the robustness of the solution: the 

condition number of the matrix λ+T T

x x
U U Ω Ω , i.e. 

( ) ( )
1

λ λ
−

+ +T T T T

x x x x
U U Ω Ω U U Ω Ω , is a decreasing function of 

λ  [CALVETTI 2004]. The bigger λ is, the more reliable and the less sensitive the 

solution is. 

The selection of an optimal value of λ clearly depends on the acceptability 

of missing the target specifications and of using large parameter modifications, 

which are often conflicting requirements. Among the methods presented in 

literature for a proper choice of the regularisation parameter λ, one should recall 

the L-curve method [CHOI 2007], the L-ribbon and the curvature-ribbon 

[CALVETTI 2004], the discrepancy principle and the crossvalidation principle 

[HANSEN 2002]. In particular the L-curve method suggests choosing λ on the 

basis of the curve: 

( )( ){ }2

2
: log , log : 0L fλ λ λ= >

x
Ω x x  

(1.23) 

where λx  is the problem solution for a given λ. Such a curve is usually called the 

L-curve, since its graph looks like a letter “L”, when plotted with a log-log scale. 

In [CHOI 2007] it is proposed to choose the value of λ that corresponds to the 

point at the “vertex” of the “L”, where the vertex is defined to be the point on the 

L-curve with the largest magnitude curvature. 

Examples of the method application on simulated test case are provided in 

Chapter 2. 
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1.3. Formulation of the method employing FRF system 

models 

1.3.1. Definition of the modification problem 

Let consider that the dynamics of the system to be modified can be 

adequately described through an N-dof undamped linear model. The problem of 

assigning the desired eigenstructure is aimed at computing the matrices ∆M  and 

∆K  satisfying the eigenvalue problem: 

( ) ( )2 1, ,h h h h n Nω + + = ≤=M ∆M u K ∆K u K  (1.24) 

In Eq. (1.24) , N N×∈M K �  are the mass and stiffness matrices of the original 

(unmodified) system, ( )2 ,
h h

ω u  is the h
th

 eigenpair to be assigned ( 1, ,h n= K ) and 

, N N×∈∆M ∆K �  are the additive modification mass and stiffness matrices 

representing the modifiable parameters and their locations. Since 

( ) ( )
1

2

2 2
1̀

N
i i

h h

i i h

ω ω
ω ω

−

=

= − =
−

∑
T

u u
H K M  is the frequency response function matrix 

(the receptance matrix) of the original system at the frequency 
h

ω , Eq. (1.24) can 

be rewritten as: 

2( )( ) 1, ,
h h h h

h nω ω − = =H ∆M ∆K u u K  (1.25) 

Equation (1.25) is a system of linear equations whose unknowns are the Nm 

entries of matrix ∆M  and the Nk entries of matrix ∆K . By collecting all the 
x

N  

(
x m k

N N N= + ) unknowns into vector x , it is possible to rearrange the single 

eigenpair assignment problem in Eq. (1.25) as: 
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( )
h h h

ω =H U x u  (1.26) 

where, using the vector differentiation operator 1 , ,
xN

x x ∂ ∂ = ∂ ∂ ∂ ∂ x … , 

( )2

h h

h

ω ∂ − 
=

∂

∆M ∆K u
U

x
 

(1.27) 

The matrix 
h

U  only depends on the desired eigenpair ( )2 ,
h h

ω u  and on the 

parameters selected for modification, which impose the structure of the 

modification matrices. 

It should be stressed that the single eigenpair assignment problem stated in 

Eq. (1.26) does not admit an exact solution for general cases, since no assumption 

has been made on the rank of the real matrix ( ) : ( )
h h h h

ω ω=G H U  

( ( ) xN N

h h
ω ×∈G � ). As a consequence it is necessary to compute a least-square 

solution, by minimizing the square of the Euclidean norm of the residual 

( )
2

2h h h
ω −G x u . In order to formulate the generalized multi-mode modification 

problem, each h
th

 single eigenpair assignment problem is weighed through the 

positive scalars 
h

α , which reflect the level of concern on the minimization of the 

h
th

 residual. The multiple eigenstructure assignment problem can therefore be cast 

as: 

( )
2

2
1

min
n

h h h h

h

α ω
=

 
− 

 
∑

x
G x u  

(1.28) 

Problem (5) can be rewritten in the more compact matrix form 

( ){ }2

1 2
min , ,

n
ω ω −

x
G x u…  

(1.29) 

where 
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( ) ( )1 1 1: , ,
n n n

α ω α ω =  

T
T T

G G GK , 1 1: , ,
n n

α α =  

T
T T

u u uK . 
(1.30) 

Such a receptance-based problem formulation does not require the 

knowledge of the nominal values of mass and stiffness matrices, which makes the 

proposed approach suitable for the modification of systems whose masses and 

stiffnesses are either unknown or difficult to estimate. 

 

1.3.2. Problem constraints and solution 

The straightforward minimization of problem (1.28), which admits an 

analytical solution, does not prevent theoretical modifications from being 

physically and technically infeasible (e.g. with negative masses or too large 

modifications) and/or not robust and numerically unreliable. 

Firstly, the feasibility requirement imposes both lower and upper bounds 

on the values of the design variables. In addition, constraints on linear 

combinations of the design variables (e.g. constraints on the total mass or stiffness 

modifications) are often required. These problem specifications may be translated 

into the structural modification problem through a feasible domain Γ  constraining 

the set of allowed modifications: 

{ }: , ,xN N Nγ γ×
Γ = ≤ ∈ ∈Ax c A cx � �  (1.31) 

where Nγ  is the number of constraints to be simultaneously satisfied. The inverse 

eigenvalue problem can therefore be expressed as a constrained quadratic 

optimisation problem, minimizing the square Euclidean norm of the linear system 

residual over the feasible domain Γ : 
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( ){ }2

1 2
min , , ,

n
ω ω − ∈Γ

x
G x u xK  

(1.32) 

Secondly, the robustness and numerical issues are tackled by properly 

regularising the problem to be minimized. Robust solutions are those exhibiting 

small changes in response to small parameter variations, which are caused by the 

uncertainty affecting the measured FRFs. In particular, unmodeled dynamics (e.g. 

damping), measurement disturbances and errors, may considerably affect the 

numerical results. The robustness issue is strictly related to the numerical ill-posed 

nature of the problem stated in Eq. (1.32), whose computed solution generally 

overestimates the actual solution and is very sensitive to the parameter 

uncertainties [CALVETTI 2005]. Both issues can be simultaneously tackled by 

adding the Tikhonov regularisation term [BOYD 2004]. The regularised inverse 

eigenvalue problem finally becomes the following bi-criterion optimisation 

problem: 

( ){ }2 2

1 22
min ( ) : , , ,

n
f ω ω λ= − + ∈Γ

x
x

x G x u Ω x xK  
(1.33) 

The positive definite matrix x xN N×∈
x

Ω � , is the regularisation operator and is 

adopted to suitably weigh the components of x. The scalar 0λ >  is the 

regularisation parameter and is selected to trade between the cost of using “large” 

values of 
2

2x
Ω x  and the cost of missing the target specification 

( )
2

1 2
, ,

n
ω ω −G x uK . The bigger λ, the more reliable and the less sensitive the 

solution [CALVETTI 2005]. The regularisation parameter λ  is often chosen as 

the vertex of the so called L-curve, which is obtained by plotting the couple 

( ) ( )( ){ }22

12 2
log , log , ,

nλ λω ω −
x

Ω x G x uK  for every λ , where λx  is the 
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solution for a given λ. The L-curve approach is successfully adopted also in 

model updating providing reliable and robust results [AHMADIAN 1998]. 

It should be noticed that the polyhedron Γ  is a convex set [BOYD 2004], 

since for any 1 2, ∈ Γx x  and any θ ∈� , 0 1θ≤ ≤ , it holds ( )1 21θ θ+ − ∈ Γx x . In 

addition, the function ( ) :f Γ →x �  in (1.33) is itself a convex function for any 

0λ > , since for any 1 2, ∈Γx x , and any real α , 0 1α≤ ≤ , it holds 

( )( ) ( ) ( ) ( )1 2 1 21 1f f fα α α α+ − ≤ + −x x x x . Hence, the optimisation problem in 

Eq. (1.33) is a convex optimisation problem [BOYD 2004]. This ensures that a 

global optimum exists, and can be computed regardless of the initial guess. In 

addition, since G, u, ΩΩΩΩx are real, the problem solution is also real. Since 

( ) 0λ+ >T T

x x
G G Ω Ω , an analytical solution of the regularised problem (1.33) is 

available for the specific case xNΓ ≡ �  (unconstrained problem): 

( )
1

λ
−

= +T T T

x x
x G G Ω Ω G u  (1.34) 

If such a solution does not lie inside the feasible domain Γ , the constrained 

optimum must be computed numerically by exploiting convex optimisation 

algorithms. Once a problem is formulated within such a frame of convex 

optimisation, it is straightforward to solve it since numerous effective and reliable 

numerical techniques are available in literature (e.g. [BOYD 2004], 

[GRANT 2008] 

As a final advantage, besides increasing robustness and numerical 

reliability, the Tikhonov regularisation adopted allows penalizing large mass and 

stiffness modifications, which are often undesirable from a technical and 

economical point of view and may lead to spillover phenomenon. In particular, 
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through a proper selection of 
x

Ω , it is possible to influence the solution, i.e. to 

selectively penalize the modification of the design variables, in accordance with 

their technological feasibility and economic outcome. 

Examples of the method application on simulated test case are provided in 

Chapter 3. 

 

1.4. Formulation of the method allowing for discrete 

modification 

1.4.1. Inverse Eigenvalue Problem as a mixed-integer non linear 

optimisation 

When dealing with a generic structural optimisation problem, both 

continuous and discrete design variables may simultaneously exist. In order to 

keep the problem formulation as general as possible, vector x is partitioned into a 

discrete Nz-dimensional vector zd, collecting the discrete design variable, and the 

Nr-dimensional real vector r, collecting the continuous design variable (Nz+ Nr = 

Nx): 

{ }
T

T T=
d

x z r  (1.35) 

The discrete design variables are those admitting only values which are 

integer multiple of a discretization value di:  

dz z , z
i i i i

d= ⋅ ∈�  (1.36) 

Equation (1.36) allows defining the integer vector zN∈z � , and therefore 

translating the problem stated by Eq. (1.20) into a mixed-integer non linear 

optimisation (MINLP), 
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( ) { }
2 2

T
T T

2 2

min : , : , ,
Nz

Nr

d
δ

∈

∈

     
= − + = ∈ Ψ ∈ ϒ     

     
χ

z

r

z z
χ U b Ω χ z r z r

r r�

�

g  (1.37) 

where xN N

d

×∈U �  is attained by multiplying the i-th column of U (i=1: Nz ) with 

the discretisation value di. The feasible domain Γ  is introduced in order to ensure 

strictly feasible modifications: 

{ }, : ,z rN NΓ = ∈ Ψ ⊂ ∈ ϒ ⊂z r z r� �  (1.38) 

where: 

{ }: , ,zz
N N NN ψ ψ×

Ψ = ∈ ≤ ∈ ∈
z z z z

z A z c A c� � �  

{ }: , ,rr
N N NN γ γ×

ϒ = ∈ ≤ ∈ ∈
r r r r

r A r c A c� � �  

(1.39) 

The sets ϒ  and Ψ  allow defining Nγ  and Nψ constraints on, respectively, the 

integer and on the continuous variable. For example, lower and upper bounds can 

be imposed both on each variable and on linear combinations of the variables. The 

polyhedron ϒ  is a convex set, since for any 1 2, ∈ ϒr r  and any real θ  ( 0 1θ≤ ≤ ), 

it holds ( )1 21θ θ+ − ∈ ϒr r  [BOYD 2004]. On the other hand, the constraint of the 

integer variables, Ψ , is not convex since it contains a discrete number of points. 

Nevertheless, the definition assumed by Eq. (1.39) ensures that the continuous 

relaxation of Ψ , i.e. the polyhedron 

{ }: , ,zz
N N NN ψ ψ×

Ψ = ∈ ≤ ∈ ∈
z z z z

z A z c A c
�

� � �  is convex and it is equal to the 

convex hull of Ψ . 

The proposed formulation of the MINLP inverse structural modification 

problem, given by (1.37), (1.38) and (1.39) leads to a convex integer 

programming problem, since it consists in minimizing the convex function 
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: Γ → �g  on the set Γ , whose continuous relaxation Γ
R

 is convex. The function 

( )χg  is convex since for any real θ  ( 0 1θ≤ ≤ ), for any 1 2,χ χ , and for any rank 

or dimension of matrix U the following inequality holds:  

( (1 ) ) ( ) (1 ) ( )θ θ θ θ+ − ≤ + −
1 2 1 2
χ χ χ χg g g  (1.40) 

The convexity of the problem ensures that a global optimal solution of the 

continuous relaxation of problem (1.37) exists and that such a global optimal 

solution can be computed numerically regardless of the initial solution guess. This 

feature allows overcoming the lack of an analytical solution for the constrained 

mixed-integer problem.  

 

1.4.2. Solution of the mixed-integer non linear optimisation problem 

1.4.2.a. Proximity between the continuous solution and the 

integer solution 

The computation of the mixed-integer solution of the inverse structural 

modification problem, stated by the non-separable function ( )χg , cannot be 

performed by simply rounding the continuous optimal solution to the nearest 

integer, since rounded solutions can be significantly far from the optimality and 

might also be infeasible. A useful result for the estimation of an upper bound of 

the Euclidean norm of the distance between the mixed-integer minimiser of ( )χg , 

opt
χ , and the continuous one 

R
χ , arises from [LI 2006]. 

Let consider the continuous relaxation of ( )χg , i.e. ( ) : xN →χ � �g . It is 

a twice differentiable convex function, which satisfies the strong convexity 

condition for any δ >0 [BOYD 2004]: 
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( ) ( )2 2

L min max U0 λ ( ) ( ) λ xNλ λ< ≤ ∇ ≤ ∇ ≤ ∀ ∈χ χ χ �g g  (1.41) 

where min max,λ λ  denote respectively the minimum and the maximum eigenvalues, 

while L Uλ ,λ  are two real positive scalar, representing respectively the lower and 

the upper bound on the eigenvalues. 

If the unconstrained problem is considered, it holds that:  

U

2
L

1 λ

2 λ
xN− ≤opt Rχ χ  

(1.42) 

It should be pointed out that, beside increasing the robustness and the numerical 

reliability of the solution, the regularisation adopted allows reducing the distance 

between the continuous and the mixed-integer solutions. In fact, since 

( )2 ( ) 2 T

d d
δ∇ = +

χ
χ U U Ωg , the ratio 

( )
( )

2

max

2

min

( )

( )

λ

λ

∇

∇

χ

χ

g

g
, i.e. the condition number of 

matrix T

d d δ+ χU U Ω , is a decreasing function of δ  [CALVETTI 2004]. In 

particular, if =
χ

Ω I , then 
( )
( )

( )
( )

2 2

max max

2 2

min min

( )

( )

T

d d

T

d d

λ λ δ

λ λ δ

∇ +
=

∇ +

χ U U

χ U U

g

g
 [HOLDER 2004]. 

As a corollary of Eq. (1.42), when the constrained problem is considered, 

opt
χ must lie in the intersection of the Euclidean ball in xN

�  given by Eq. (1.42), 

and the feasible domain Γ (1.38): 

U

2
L

1 λ
:

2 λ
x

N
   

∈ − ≤ ∩ Γ =  
   

opt R
χ χ χ Φ  

(1.43) 

where ΦΦΦΦ denotes the set to be investigated for the computation of the mixed-

integer solution. 
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1.4.2.b. The Branch and Bound method 

Equation (1.42) and (1.43) clearly highlight that the higher the number of 

design variables, the larger is the set ΦΦΦΦ. When solving large scale problems, this 

implies that the full solution enumeration, i.e. the explicit analysis of all the 

feasible combinations of the design variables within ΦΦΦΦ, is practically infeasible. It 

follows that the partial enumeration of the solution is an attractive approach in 

case the formulation adopted for the inverse structural modification problem 

ensures the computation of the exact optimal solution 
opt
χ . In particular, in this 

work the non-linear Branch and Bound technique has been applied to perform the 

partial enumeration of the convex MINLP inverse structural modification problem 

described by (1.37), (1.38) and (1.39). The Branch and Bound idea was originally 

developed for the solution of Mixed-Integer Linear Problems [LAND 1960] and 

then extended to the solution of MINLP by Gupta [GUPTA 1985]. 

The basic idea behind the Branch and Bound method is to branch the 

initial problem (1.37), denoted with P, into a set of subproblems Pi, by attaining a 

node-tree structure where each node represents a subproblem. The method is 

based on computing the optimal solution of the continuous relaxation of each 

subproblems, and therefore leads to the solution of a NLP at each node. Clearly, 

the solution of the continuous relaxation of problem Pi will provide a minimum 

not greater than the value provided by the integer solution. 

The branching phase is usually performed by selecting a fractional (non-

integer) variable 
j

χ  (the branching variable) of the solution of the continuous 

relaxation of Pi within the respective feasible domain i Γ
R

, and by splitting 
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problem Pi into two sub-problems. The two sub-problems defined at node i are 

attained by adding further closed half-space constraints to i Γ
R

: 

{ }*( )i i i

right j j
ceilχ χΓ = Γ ∩ ≥

R R
 

{ }*( )i i i

left j j
floorχ χΓ Γ ∩ ≤

R R
 

(1.44) 

where i

right ΓR  and i

left ΓR  denote the feasible domain of respectively, the “right 

hand” and “left hand” sub-problems of problem Pi, and the scalar *i

jχ  denotes the 

value of the j-th variable of the solution of the i-th node. The functions ceil and 

floor round the function argument to the nearest integer towards, respectively, 

plus and minus infinity. The addition of the closed half-space constraints given by 

Eq. (1.44) to the existing constraints preserves the convexity of the feasible 

domain, and therefore a global optimal solution is still computed for any sub-

problem. 

The current best integer feasible solution found is called the incumbent. 

The incumbent is updated whenever a better integer feasible solution is found. 

A node, and the corresponding problem Pi, is said to be fully investigated, 

and therefore it has no sub-problems deserving investigation, when one among the 

following conditions holds: 

1. Pi has an integer feasible solution, which becomes the current incumbent; 

2. the constraints defining Pi make it infeasible; 

3. the lower bound on the minimum of Pi is greater than the minimum 

provided by the current incumbent, and therefore the addition of further 

constraints would not allow reducing the cost. This condition is called 

bounding. 
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This procedures ensures systematically discarding non-promising sub-problems, 

hopeless in achieving optimality for P. The last two conditions are typically 

implemented by computing the lower bound on the Pi minimum as the minimum 

of the continuous relaxation of problem Pi. The branching is performed until all 

the nodes have been fully investigated, and therefore no more new sub-problems 

can be generated. 

A key issue in the development of an efficient branch-and-bound method, 

ensuring the computation of the actual optimum, is to provide the lower bound on 

the problem Pi minimum. The more reliable the lower bound, the higher the 

number of analysed sub-problems and the faster the algorithm convergence rate. 

When applied to the minimization of nonlinear convex problem, such as 

the one stated in Eq. (1.37), such a technique ensures the convergence to the exact 

optimal global solution within a finite and reduced number of steps [LI 2006]. 

Other algorithms have been proposed to solve convex MINLP, such as Extended 

Cutting Plane method, Outer Approximation, Generalized Benders 

Decomposition, Branch-and-Cut [LI 2006]. Nevertheless the analysis of the most 

suitable approach goes beyond the scope of this thesis. 

A first method application demonstrating the method effectiveness is 

proposed in Chapter 4 with reference to a simulated lumped parameter system. 

Further experimental evidence is provided in Chapter 7, where effective discrete 

modifications of a laboratory test-rig are computed and applied. Also, in 

Chapter 7, different rules for the selection of the branching variable are applied 

and discussed. 
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Chapter 2. Comparative applications of the method 
based on the system mass and stiffness matrices on 
simulated test cases 

 

In order to prove the effectiveness of the method proposed in the first 

Section of Chapter 1, it is applied to two examples of mechanical systems. The 

first one is a lumped parameter three-mass system, while the second one 

comprises both distributed and lumped parameter components. Beam finite 

elements are adopted to model such a second system. The two systems are 

sketched in Figs. 2.1 and 2.2. 

In addition, in order to highlight the features of the proposed method and 

to asses its performances, a comparison is proposed with the outcomes of the 

methods described in [LIANGSHENG 2003] and in [SIVAN 1997], applied to 

achieve identical modifications target of the first mechanical system. 
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The convex problem stated in Eq. 1.20 has been solved by means of the 

efficient numerical algorithm proposed in [GRANT 2008] and [GRANT 2010], 

which is suitable for solving large scale convex problems. 

 

2.1. Lumped parameter system 

The lumped parameter system is a three-dof system with three masses and 

two springs. The inertial and elastic parameters of the system, which are the 

modifiable parameters, are listed in the third column of Table 2.1, while the 

original system eigenstructure is shown in Table 2.2. 

Two investigations are carried out to demonstrate the effectiveness of the 

proposed method: in the first investigation one vibration mode is assigned to the 

system, while in the second investigation the target is to assign the complete 

three-mode eigenstructure. For the sake of comparison, the well established 

methods presented in [LIANGSHENG 2003] and in [SIVAN 1997] have been 

applied. Henceforth, they will be referred to as respectively “method B1”, and 

“method B2”. 

Thanks to its general nature, the proposed method can be applied to both 

the investigations. On the contrary, method B2 cannot be applied to the first 

investigation (single mode assignment), since it imposes the complete three-mode 

eigenstructure to be defined for the assignment. Method B1 cannot instead be 

employed in the second investigation, since it requires an equal number of 

modifiable parameters and system equations. 

Nonetheless, these benchmark methods have been chosen being probably 

the most relevant appearing in literature, among those making use of system 
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complete models, showing promising results in their original papers. In particular, 

method B2 is the sole approach specifically aimed at the simultaneous assignment 

of the complete eigenstructure. It also ensures the system physical feasibility, by 

applying non negative constraints on masses and stiffnesses. 

As far as method B1 is concerned, it is targeted to the simultaneous 

modification of masses and stiffnesses for assigning a reduced subset of modes, 

starting from the complete system model expressed in physical coordinates. 

Nonetheless, the number of assigned modes is not arbitrary since it is strictly 

related to the system model dimensions and to the number of design variables. 

Additionally, no constraints ensure the physical and technical feasibility of the 

solution. 

 

Table 2.1 
Lumped parameter system properties. 

 Original values Constraints 

m1 [kg] m1,0=45 [-45,∞) 

m2 [kg] m2,0=25 [-25,∞) 

m3 [kg] m3,0=25 [-25,∞) 

k1 [kN/m] k1,0=2.50e3 [-2.5e3,∞) 

k2 [kN/m] k2,0=2.50e3 [-2.5e3,∞) 

 

  Table 2.2 

  Original system eigenstructure. 

Mode number (i) 1 2 3 

ui(1) 1.0 0 -1.1 

ui(2) 1.0 1.0 1.0 

ui(3) 1.0 -1.0 1.0 

fi [Hz] 0 50.33 73.13 

 

2.1.1. Single mode assignment 

The goal is to assign a vibration mode with the mode shape 

{ }2,1.5,1.0= −
T

u  at f1=50 Hz (ω1=2πf1). The eigenvector of the original system 
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whose natural frequency is closest to 50 Hz is reported in the second column of 

Table 2.2: the cosine of the angle between such an eigenvector and the desired one 

is 0.1313. 

In order to properly apply method B1, four modification parameters have 

to be chosen among the five available, since four problem equations can be 

written. The parameters selected for modification are the values of the masses m1, 

m2 and the stiffnesses of the springs k1 and k2: { }1 2 1 2, , ,m m k k= ∆ ∆ ∆ ∆
T

x . 

Coherently, the same parameters are assumed modifiable when applying the 

method proposed in this paper. Additionally, for the proposed method, the 

regularisation operator 1 1 1 1( , , , )1,0 2,0 1,0 2,0diag m m k k
− − − −=xΩ  has been chosen in order to 

equally weigh parameter percentage modifications with respect to their original 

values. Finally, it has been taken λ = 1e8 and 3β =  (see Eqs. 1.13, 1.14 and 1.17) 

and the feasible solution set Γ has been constrained by only posing lower bounds 

coinciding with the initial values of the variables. Such a choice prevents getting 

physically meaningless solutions (see second column of Table 2.1). 

Method B1 yields the modification shown in the first row of Table 2.3, 

while the proposed method generates the results shown in the second row of Table 

2.3. It immediately arises that method B1 leads to a physically meaningless 

solution. Other solutions might be achieved through a different normalization of 

the eigenvector (e.g. setting * 0.05=u u  yields 1 58.93m = , 2 61.90m = , 

1 2.62 6k e= , 2 0.82 6k e= ). Nonetheless such an influence of the eigenvector 

normalization on the result is a major drawback of method B1.  
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The proposed method leads instead to modifications which are 

concurrently feasible and very effective, since the cosine between the desired 

eigenvector and the one of the modified system is 1.0000, and the natural 

frequency differs from the desired one by just 7.08e-3 Hz. 

 

Table 2.3 
Parameter modifications for the single mode assignment. 

 m1 [kg] m2 [kg] k1 [kN/m] k2 [kN/m] 

Method B1 45 – 43.1 25 - 39.10 2.5e3 - 3.096e3 2.5e3 - 1.678e3 

Proposed Method 45 - 8.32 25 + 6.79 2.5e3 - 1.151e3 2.5e3 - 1.667e3 

 

 

2.1.2. Complete eigenstructure assignment 

In this investigation, a complete eigenstructure (see Table 2.4) is assigned. 

It is also assumed that all the system parameters can be modified, which leads to 

five problem unknowns collected in the unknown vector 5∈x � , 

{ }1 2 3 1 2, , , ,m m m k k= ∆ ∆ ∆ ∆ ∆
T

x . 

A comparison is carried out with the method B2. A proper comparison 

makes it necessary to choose a feasible solution set overlapping the solution set of 

method B2 (non-negative modifiable parameters). To this purpose it has been set 

Γ=[xmin,+∞∞∞∞), where { }
T

, , , ,
1,0 2,0 3,0 1,0 2,0

m m m k k= −
min

x . Additionally, it has been 

taken 1 1 1 1 1( , , , , )1,0 2,0 3,0 1,0 2,0diag m m m k k
− − − − −=xΩ , λ = 1e9 and each Rayleigh equation in 

the problem formulation has been weighed with 2β = . 

The first two rows in Table 2.5 summarize the results achieved by 

applying the two methods. Similarly, the rows 1, 2, 4 and 5 in Table 2.6 show the 

differences between the desired eigenstructure and the eigenstructures computed 
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through the two methods. The discrepancies are shown in terms of both natural 

frequencies and cosines between mode shapes. Clearly, both methods lead to 

physically realizable systems: the masses and the stiffnesses of the modified 

systems are all positive. Nonetheless, the inertial and stiffness parameters 

computed through method B2 appear quite undersized and hence unconvincing. 

Additionally even in terms of cosines and natural frequencies method B2 appears 

less effective. 

A different choice of the norm of the mode shape can considerably 

improve method B2 performances. As an example, by applying method B2 after 

normalizing the desired eigenvectors with respect to the mass matrix of the 

original system, the results shown in Table 2.5 (third row, referred to as method 

B2’) and in Table 2.6 (third and sixth row) can be achieved. The interested reader 

should refer to the next section to check the values taken by the matrices Φ  and 

''Φ  (defined according to [SIVAN 1997]) in both investigations made using 

method B2. 

It should be noticed that, contrary to method B2, the method proposed in 

this paper is not affected by the desired mode shape normalization, and therefore 

it does not require a priori knowledge of the goal system inertial characteristics, 

which is an important advantage. 

 

 

 

 

  Table 2.4 

  Desired eigenstructure. 

Mode number 1 2 3 

ui(1) 1.0 1.0 -2.0 

ui(2) 1.0 6.5 1.5 

ui(3) 1.0 -8.0 1.0 

fi [Hz] 0 32 50 
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Table 2.5 

System modifications for the complete eigenstructure assignment. 

 m1 [kg] m2 [kg] m3 [kg] k1 [kN/m] k2 [kN/m] 

Method B2 45 - 44.78 25 - 24.96 25 - 24.98 2.5e3 - 2.497e3 2.5e3 - 2.499e3 

Proposed Method (PM) 45 - 4.23 25 + 5.74 25 + 3.89 2.5e3 - 1.149e3 2.5e3 - 1.459e3 

Method B2’ 45 - 6.81 25 + 3.82 25 + 1.32 2.5e3 - 1.217e3 2.5e3 - 1.564e3 

 

Table 2.6 

Eigenstructure comparison. 

Mode number, i 1 2 3 

cos(ui, ui
B2

) 1 0.8849 0.7866 

cos(ui, ui
PM

) 1 0.9996 0.9990 

cos(ui, ui
B2’

) 1 0.9996 0.9989 

fi-fi
B2

 (Hz) 0 -4.459e0 4.594e0 

fi-fi
PM

 (Hz) 0 4.741e-1 -1.942e-1 

fi-fi
B2’

 (Hz) 0 5.612e-1 -1.235e-1 

 

2.1.3. Method B2 relevant matrices 

By applying method B2 to the investigation described in Section 2.1.2, 

without the normalisation of the desired eigenstructure with respect to the original 

system mass matrix, the following holds:  

1.5361 0.0922 1.5101

2.8608 2.5979 3.0687

2.9803 6.4012 2.6407

 
 =  
  

Φ  

1.9112 -0.3078 -0.9494

'' 1.9112 -1.4423 4.3148

1.9112 7.1286 1.5364

 
 =  
  

Φ  

With desired eigenstructure normalisation with respect to the original system 

mass matrix, it holds: 

0.1026 0.0192 -0.1237

0.1026 0.1251 0.0928

0.1026 -0.1539 0.0619

 
 =  
  

Φ  

0.1035 0.0145 -0.1235

'' 0.1035 0.1178 0.1006

0.1035 -0.1500 0.0691

 
 =  
  

Φ  

2.2. Distributed-and-lumped parameter system 

The aim of this test is to validate the proposed modal optimisation method 

on the design of a complicated system, which includes finite elements (and 

therefore a non-diagonal mass matrix and non-triangular stiffness matrix), an 

arbitrary number of design variables (also including interrelated modifications) 
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and different kinds of constraints (also relating non-homogeneous variables). It 

should be noticed that none of the previously adopted benchmark methods can be 

employed in this test case. 

The distributed-and-lumped parameter system considered is shown in 

Fig. 2.2. It consists of a beam and three concentrated masses (m1, m2, m3) 

connected to the beam through three linear springs (k3, k4, k5). The beam is 

modeled through four Euler-Bernoulli beam finite elements. Two linear springs k1 

and k2 also connect the external tips of the first and fourth beams to the frame. 

The adopted system model leads to thirteen dofs. The inertial and elastic 

characteristics of the system are summarized in the third column of Table 2.7. 

Such a system may be thought of as a simplified representation of a linear 

vibratory feeder, similar to those typically employed in the food industry. As a 

matter of fact, the beam represents the feeder tray, while the concentrated masses 

represent the external electromagnetic actuator masses.  

In this test case it is assumed that system modifications also include 

distributed parameters (i.e. the beam bending stiffness EJ and the beam linear 

mass density ρΑ). In addition, all the lumped masses and all the springs are 

modifiable and it is assumed that three further nodal masses (m4, m5, m6) can be 

added (they are represented in Fig. 2.2 by the circles in dotted lines). The relative 

distances between the springs are instead set constant and equal to 0.5 m. 

Both box constraints on each modifiable variable and a constraint on two 

interrelated modifications are employed. In other words, lower and upper bounds 

are imposed in the optimisation problem for each variable modification 

{ }1 min max:Γ = ≤ ≤x x xx , as well as limits on the ratio between Aρ  and EJ  
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min max

A A A

EJ EJ EJ

ρ ρ ρ   
≤ ≤   

   
, which should be typically bounded by realistic values. 

Hence, the feasible domain is 2 1

min max

A A A

EJ EJ EJ

ρ ρ ρ      
Γ = Γ ≤ ≤     

      
∩ . The 

values of the bounds for the mass and stiffness modifications and for the 
A

EJ

ρ
 

ratio are stated in the fourth column of Table 2.7.  

The regularisation operator has been selected to penalize the modifications 

of the beam properties more than the modifications of the other parameters, and, 

at the same time, to favour modifications of the masses m1, m2, m3. In order to 

account for the different magnitude of the components of x, the weights of the 

modifications (i.e. the entries of 
x

Ω ) have been normalized with respect to their 

original value (e.g. ki,0, i=1,...,5, or mj,0, j=1,...,3, (ρA)0, (EJ )0 ) or to their largest 

allowed modification when the original value was equal to zero (mj,max, j=4,...,6). 

There follows that 

2

( )diag=x

w
Ω

w
, where vector w has been chosen as follows: 

( ) ( ){ }1 11 1 1 1 1 1 1 1 1 1 1,0.01 ,0.01 ,0.01 , , , , , .1,0 2,0 3,0 4,0 5,0 1,0 2,0 3,0 4,max 5,max 6,max 0 0
k ,k ,k ,k ,k m m m m m m A EJρ

− −− − − − − − − − − − −=w

The regularisation parameter selected is λ=1e3. 

The structural modification goal is to assign to the system a vibration 

mode at 50 Hz with the mode shape reported in the third column of Table 2.8. 

Basically, only identical translations of the nodes of the beams (u(1), u(3), u(5), 

u(7), u(9)) are desired, while the rotations of the nodes (u(2), u(4), u(6), u(8), 

u(10)) should be prevented, and the opposite movements of the concentrated 

masses m1, m2, m3 (u(11), u(12), u(13)) should be kept lower than the node 

displacements. The uniform translation of the beam at the excitation frequency 
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ensures a uniform product flow along the tray. Such a goal is coherent with the 

typical design specifications of linear vibratory feeders, which are operated under 

a single-harmonic oscillatory forced motion whose excitation frequency is 

constant and is usually close to 50 or 60 Hz [VAN DEN BERG 2004]. 

The choice of this assignment test, together with the definition of the 

design parameters, leads to fourteen equations and thirteen unknowns, which are 

listed in the second column of Table 2.8. Clearly, it might be possible to apply the 

method proposed with a different choice of system parameters subjected to 

redesign: the method can be applied regardless of the number of modifiable 

parameters. 

The mode shape of the original system eigenvector with the highest 

participation factor at 50 Hz is shown in the second column of Table 2.8, together 

with its natural frequency. It is also depicted in Fig. 2.3, where the relative 

displacements between the concentrated masses m1, m2, m3 have been magnified 

ten times in order to provide a clearer representation, and the thin lines are 

employed to show the system undeformed configuration. 

The parameter modification obtained through the method proposed are 

listed in the fifth column of Table 2.7: as requested, each modification is feasible, 

as well as the 
A

EJ

ρ
 ratio. As one could expect, the solution provided is on the 

lower bound of the 
A

EJ

ρ
 ratio, i.e., a very stiff and light beam is needed. What it is 

worth noticing is the not trivial way to achieve the best 
A

EJ

ρ
 ratio: the computed 
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solution suggests boosting the reduction of the beam linear density (so as to reach 

its lower bound), rather than increasing the beam bending stiffness. 

The fourth column of Table 2.8 reports the vibration mode of the system 

computed through the method proposed in this paper. The mode shape is also 

depicted in Fig. 2.4. Three criteria are adopted to assess the effectiveness of the 

method proposed: the comparison among the modes of the original, modified and 

desired systems, the cosines of the angles δ between eigenvectors, and the 

difference between the natural frequencies. These data are collected in Table 2.9. 

It can be noticed that both the eigenvector and the eigenvalue specifications are 

considerably missed in the original system, while the mode of the modified 

system almost coincides with the desired one. Implementative details are provided 

in the next subsection. 

 
Table 2.7 
Properties and modifications of the distributed-and-lumped parameter system. 

 Unknowns Original 

values 

Constraints Modified values 

k1 [kN/m] x(1) 1.0 [-0.8,1.0e4] 1.0 + 311 

k2 [kN/m] x(2) 1.0 [-0.8,1.0e4] 1.0 + 311 

k3 [kN/m] x(3) 8.7e2 [-7.0e2,8.7e2] 8.7e2 – 2.65e2 

k4 [kN/m] x(4) 8.7e2 [-7.0e2,8.7e2] 8.7e2 – 2.65e2 

k5 [kN/m] x(5) 8.7e2 [-7.0e2,8.7e2] 8.7e2 – 2.65e2 

m1 [kg] x(6) 25 [0,5] 25 + 0.00 

m2 [kg] x(7) 25 [0,5] 25 + 0.00 

m3 [kg] x(8) 25 [0,5] 25 + 0.00 

m4 [kg] x(9) - [0,2] 1.80 

m5 [kg] x(10) - [0,2] 1.80 

m6 [kg] x(11) - [0,2] 1.80 

EJ [Nm
2
] x(12) 4.5e5 [-0.9e5,0.9e5] 4.5e5 - 0.29e5 

ρΑ [kg/m] x(13) 15.8 [-3.16,3.16] 15.8 - 3.16 

ρΑ/ EJ [kg/(Nm
3
)]  3.51e-5 [3.0e-5,2.5e-3] 3.0e-5 
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Fig. 2.3 Original mode shape at 53.74 Hz. 

 
Fig. 2.4 Modified mode shape at 49.98 Hz. 

 

Table 2.8 

Eigenstructure comparison. 

 Original  Desired Modified  

u(1) 0.4572 0.4337 0.4266 

u(2) -0.1461 0 0.0258 

u(3) 0.3887 0.4337 0.4362 

u(4) -0.1097 0 0.0128 

u(5) 0.3599 0.4337 0.4394 

u(6) 0 0 0 

u(7) 0.3887 0.4337 0.4362 

u(8) 0.1097 0 -0.0128 

u(9) 0.4572 0.4337 0.4266 

u(10) 0.1461 0 -0.0258 

u(11) -0.1709 - 0.1408 -0.1418 

u(12) -0.1582 - 0.1408 -0.1429 

u(13) -0.1709 - 0.1408 -0.1429 

f1 [Hz] 53.74 50.00 49.98 

 

Table 2.9 

Aggregated evaluation parameters. 

 Original system Modified system 

cos(δ) 0.9618 0.9991 

∆f1 [Hz] 3.74 0.02 

 

 

2.2.1 Implementative details on the application of the method 

proposed to the distributed-and-lumped parameter system 

The system mass and stiffness matrices are obtained by assembling the 

mass and stiffness matrices of the four beam finite elements ( FEM  and FEK ) and 

those of the lumped masses and stiffnesses ( LM  and LK ): 

L FE= +M M M   

L FE= +K K K  

(2.1) 
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As far as the contributions of the lumped masses and stiffnesses is 

concerned, the following matrices have been adopted: 

L M

s s

s

m
∈ψ

=∑M C     where    
1

0

M

ssM M

s ij M

ij

c
c

c elsewhere

 =
 = =   =

C  (2.2) 

and 

,

L K

dr dr

d r
r d

k
∈φ

≠

= ∑K C     where     

1

1

0 

K K

dd rr

K K K K

dr ij dr rd

K

ij

c c

c c c

c elsewhere

 = =


 = = = = − 
 =

C  

(2.3) 

In (2.2) ψ denotes the set of six concentrated masses and the index s refers to the 

related degrees of freedom. Similarly, in (2.3) φ denotes the set of degrees of 

freedom r and d connected through the five concentrated springs. 

As far as the distributed masses and stiffnesses is concerned: 

( )

( )

FE Beam

Aug e

e

FE Beam

Aug e

e

ζ

ζ

∈

∈

=

=

∑

∑

M M

K K

 (2.4) 

where ζ denotes the set of beam finite elements adopted, while Beam

AugM  and Beam

AugK  

are the augmented mass and stiffness matrices of each beam element. Such 

matrices are attained by augmenting the element matrices with a suitable number 

of null entries. 

Similarly, the modification matrices can be expressed as the sum of two 

contributions: 
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L FE∆ = ∆ + ∆M M M  

L FE∆ = ∆ + ∆K K K  

(2.5) 

Which leads to the following decomposition of matrix ,L FE =  U U U� � �  (see Eq. 

1.10). The contribution of the lumped mass and stiffness, L
U� , can be written as 

follows: 

2

( ) ( ) ( )

( ) ( )

0

ir

s

L L i

ij s

u r u i x j k

U u i x j m

elsewhere

ω

 − = ∆


 = = = ∆ 



U� �  (2.6) 

where the scalars m∆  and k∆  are the parameter modification ( ),m k∆ ∆ ∈x  

adopted in the formulation of L∆M  and L
∆K : 

L M

s s

s

m
∈ψ

= ∆∑∆M C  

,

L K

dr dr

d r
d r

k
∈φ

≠

= ∆∑∆K C  
(2.7) 

The contribution of the modification of the finite elements, FE
U� , can in 

turn be separated into the terms due to the modification of ρA and those related to 

the modification of EJ, : ,FE A EJρ =  U U U� � � , where 

( )
( )

4
2 10 1

1

Beam

AugA e

e A

ρ ω
ρ

×

=

∂
= ∈

∂
∑

∆M
U u� �  (2.8) 

( )

4
10 1

1

( )Beam

Aug eEJ

b EJ

×

=

∂
= − ∈

∂
∑

∆K
U u� �  (2.9) 

Similarly with Eq. (2.4), the matrices Beam

Aug∆M  and Beam

Aug∆K  are attained by 

augmenting the mass and stiffness modification matrices of each beam element 

( Beam
∆M  and Beam

∆K ) with a suitable number of null entries. In particular, in this 
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example the Euler-Bernoulli formulation has been adopted, and the axial 

flexibility has been neglected. Which leads to the following derivatives: 

( )

2 2

2 2

156 22 54 13

22 4 13 3( )

54 13 156 22420

13 3 22 4

e e

Beam
e e e ee

e e

e e e

L L

L L L LL

L LA

L L L L

ρ

− 
 −∂  =

− ∂
 
− − − 

∆M
 (2.10) 

( )

3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6

6 4 6 2

( )

12 6 12 6

6 2 6 4

e e e e

Beam
e e e e

e e e e

e e e e

L L L L

L L L L

EJ

L L L L

L L L L

 
− 

 
 

− ∂  =
∂  

− − − 
 
 

− 
 

∆K
 (2.11) 

where Le is the length of the finite element considered. 
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Chapter 3. Application of the method based on the 
system Frequency Responses on simulated test cases 

3.1. Simulated test-case 

In order to assess numerically the effectiveness of the method proposed in 

the second Section of Chapter 1, it has been firstly applied to the modification of 

the vibrating system sketched in Figure 3.1. It is a five-degree-of-freedom system 

with five lumped masses (mi, i=1,…,5), each one connected to the rigid ground 

through springs kgi (i=1,…,5) and to the contiguous masses through springs 

kij (i ≠ j). The values of the original system parameters are listed in the first row of 

Table 3.1, where the same stiffness value kg  has been assumed for all the ground 

springs kgi.  

 
Table 3.1: System parameter nominal values and modification bounds 

 
k12 

[N/m] 

k23 

[N/m] 

k34 

[N/m] 

k45 

[N/m] 

kg 

[N/m] 
m1 [kg] m2 [kg] m3 [kg] m4 [kg] m5 [kg] 

Nominal 7.36e4 6.82e4 7.35e4 8.21e4 9.89e4 1.73 5.12 8.21 2.61 1.34 

Modification 

lower bound 
- - - - 0 0 0 0 0 0 

Modification 

upper bound 
- - - - 4.83e5 2 2 2 2 2 

 

 

Figure 3.1: Simulated 5-dof system 
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3.2. Benchmark method description 

In order to highlight the effectiveness and the ease of implementation of 

the proposed approach, also in the presence of uncertainty affecting the system 

parameters, a comparison is made with the results of the well established 

technique proposed by Braun and Ram in [BRAUN 2001]. Such a method, 

henceforth referred to as “method BR”, has been chosen being the one showing 

the most promising results among those reported in literature making use of 

incomplete experimental data. In addition, it can also account for inequality 

constraints, so as to ensure the physical feasibility of the solution. All these 

features meet those of the method proposed in this work, and therefore make it 

suitable for comparison. As it has been quoted in the introductive literature 

review, method BR takes advantage of the left and right eigenvectors extracted 

from the measured frequency responses for attaining general results of the 

structural modification problem. In the comparison proposed, the left and right 

eigenvector extraction has been performed through the technique proposed in 

[BUCHER 1997] by Braun and Bucher, as it is suggested in [BRAUN 2001]. 

Though very effective, the chosen benchmark method has some 

drawbacks. On the one hand, the extraction of the system left eigenvectors 

requires acquiring FRFs over a wider spectrum and is intrinsically ill-conditioned 

[BUCHER 1997]. On the other hand, in order to calculate reliable eigenvectors, 

regularisation techniques need to be employed, which in general are based on the 

knowledge of the system mass matrix. However, the system mass may be often 

only approximately known or may be even unknown. In method BR the 

knowledge of the mass matrix is implicitly required also in the computation of 
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parameter modifications, since the approach is based on mass normalized 

eigenvectors. In contrast, the method proposed in this paper relies only on the 

frequency responses of the original system, without requiring the estimation of the 

mass matrix. 

 

3.3. Modification objectives and constraints 

The goal of this investigation is to assign the two vibration modes listed in 

Table 3.2 at frequencies f1 and f2 (with 2
h h

fω π= ). All the masses and the five 

grounded springs are assumed to be modifiable. This leads to ten problem 

unknowns. The feasible domain Γ has been set by defining lower and upper 

bounds on each modifiable parameter, as listed in the third and the fourth rows of 

Table 3.1. Since the masses and the stiffnesses of the original system may not be 

known in the application of the proposed method, the lowest bounds of the 

parameter modifications ensuring a physically realizable system could be 

unknown. In this numerical investigation this is simply tackled by not allowing 

negative modifications, i.e. reduction of the original masses and stiffnesses. 

Indeed, allowing only positive modifications of the system parameters ensures 

that the modified system makes sense from a physical point of view. The same 

bounds have been adopted also in the application of method BR. Finally, the 

original system eigenstructure is presented in Table 3.3. It should be noticed that 

both the eigenvector and the eigenvalue to be assigned are considerably different 

from those of the original system dynamics. 
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Table 3.2: Desired igenstructure 

Mode number, h 1 2 

fh [Hz] 39.00 55.00 

uh(1) 1.00 0 

uh(2) -0.55 0.01 

uh(3) 0.2 -0.10 

uh(4) 0 0.80 

uh(5) 0.05 1.00 

 

Table 3.3: Original system eigenstructure 

Mode number, i 1 2 3 4 5 

fi [Hz] 22.28 32.61 42.94 52.74 64.59 

ui(1) 0.357 0.736 0.094 1.000 0.003 

ui(2) 0.673 1.000 0.060 -0.234 -0.004 

ui(3) 1.000 -0.418 -0.217 0.025 0.032 

ui(4) 0.460 -0.337 1.000 -0.008 -0.482 

ui(5) 0.244 -0.222 0.983 -0.019 1.000 

 

3.4. Application of the methods: results and discussion 

For the numerical application of the proposed method, the system FRFs 

have been computed by inverting matrix 2

h
ω − M K  at the natural frequencies of 

the desired modes 1ω  and 2ω . 

The parameters 1α  and 2α  in Eq. (1.30) have been set equal to 1 in order 

to impose the two vibration modes with the same level of concern. Such a choice 

allows reproducing the same operating conditions of method BR. For the same 

reason, 
x

Ω  has been selected so as to equally weigh the percentage modifications 

of all the modifiable parameters: 
2

( / )diag=xΩ w w , where 

{ }1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 1 2 3 4 5, , , , , , , , ,
g g g g g

m m m m m k k k k k− − − − − − − − − −=w . Finally, it has been set 

1 3eλ = − . With such choices, the proposed method yields the modifications listed 

in the second column of Table 3.4. 
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Table 3.4: System modifications 

 
Proposed 

method 
Method BR  

m1 [kg] 1.723 + 1.816 1.723 + 1.907 

m2 [kg] 5.123 + 1.495 5.123 + 2.000 

m3 [kg] 8.214 + 0.808 8.214 + 0.000 

m4 [kg] 2.609 + 0.000 2.609 + 0.953 

m5 [kg] 1.334 + 0.878 1.334 + 0.000 

kg1 [kN/m] 98.94 + 0 98.94 + 5.294 

kg2 [kN/m] 98.94 + 11.94 98.94 + 28.43 

kg3 [kN/m] 98.94 + 0.00 98.94 + 78.16 

kg4 [kN/m] 98.94 + 153.20 98.94 + 264.22 

kg5 [kN/m] 98.94 + 149.69 98.94 + 44.13 
2

2x
Ω x  5.79 8.74 

 

Table 3.5: Modified mode shapes and eigenstructure comparison  

 Proposed method Method BR 

Modified system 

mode number, i 
1 2 3 4 5 1 2 3 4 5 

fi [Hz] 21.62 28.89 39.07 55.02 68.97 24.47 31.82 38.99 54.93 70.55 

ui (1) 0.585 1.000 1.000 -0.003 -0.001 0.801 -0.848 1.000 -0.003 0.000 

ui (2) 0.853 0.759 -0.558 0.009 0.004 1.000 -0.375 -0.547 0.011 -0.002 

ui (3) 1.000 -0.693 0.116 -0.071 -0.051 0.614 1.000 0.192 -0.090 0.026 

ui (4) 0.219 -0.172 0.039 0.801 1.000 0.113 0.218 0.055 0.799 -0.463 

ui (5) 0.002 -0.055 0.016 1.000 -0.957 0.048 0.104 0.031 1.000 1.000 

Desired mode 

number, h 
- - 1 2 - - - 1 2 - 

|fh-fi| [Hz] - - 0.068 0.020 - - - 0.014 0.066 - 

cos(ui,uh) - - 0.9964 0.9997 - - - 0.9987 1.0000 - 

 

For the application of method BR the unmodified system eigenstructure 

has to be extracted from the system FRFs. In this work, such frequency responses 

are computed numerically by inverting matrix 2ω − M K  at five selected 

frequencies, and therefore the effect of noise and disturbances is only marginal. 

As a consequence, the application of the method proposed in [BUCHER 1997] 

leads to an exact eigenvector computation regardless of the frequencies at which 

the FRFs are evaluated. On the other hand, the selection of the evaluation 

frequencies has great importance when dealing with experimental, and hence 

noisy, receptances: it may cause a wrong eigenvector extraction. The solution 
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computed through the application of method BR is listed in the third column of 

Table 3.4. 

The eigenstructures of the systems obtained by applying the modifications 

in Table 3.4 are collected in Table 3.5.  

A set of indexes is useful to compare the performances of the two 

methods: 

• the solution 
x

Ω -norm, shown in the last row of Table 3.4; 

• the difference between the desired and the attained natural frequency 

of each assigned mode, shown in the second last row of Table 3.5; 

• the cosine between the desired eigenvector and the attained one of each 

assigned mode, shown in the last row of Table 3.5. 

It is apparent that the proposed method provides effective results, 

comparable with those of method BR. It should be noticed that the 
x

Ω -norm of 

the solution calculated through the proposed method is smaller, as a consequence 

of the regularisation term included in the problem. Small values of the solution 

x
Ω -norm indicate that a minor amount of modifications is required, which is 

usually important from a technical and economic point of view. Other remarkable 

advantages of the proposed method are that it is not affected by the ill-

conditioning of the eigenstructure extraction [BUCHER 1997], and that no 

knowledge of the original physical model is needed. On the contrary, since 

method BR requires knowing the system mass matrix, the solution computed 

through method BR is quite sensitive to the uncertainty affecting the knowledge 

of the system mass matrix. In order to assess such sensitivity, a statistical analysis 

has been carried out by perturbing all the mass matrix entries with an uncertainty 
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term. In particular, uniform-distributed random values have been added to the 

mass elements. Each value ranges independently from -5% to 5% of the nominal 

value. Then 500,000 system modification attempts with the identical task have 

been carried out. The effectiveness of method BR considerably decreases with 

such a level of uncertainty. On average, the uncertainty impact on the method 

performance is mainly reflected by the natural frequency mismatches: their mean 

absolute values are 0.165 Hz and 0.143 Hz respectively for the first and the 

second desired natural frequencies. It is worth highlighting that mass matrix 

uncertainty has no impact on the performance of the method proposed in this 

Thesis, since the method is based solely on the system receptances. 

As a further proof of the results attained, Figure 3.2 shows the absolute 

values of the frequency responses ,5 ( )
i

ωH  (i=1,…,5) of the original system 

(dotted line) and of the systems modified according to both the proposed method 

(solid line) and the BR method (dashed line). It is evident that both methods can 

modify the system so as to attain natural frequencies which are very close to those 

of the desired modes.  

 



 60 

 

Figure 3.2: Frequency response comparison 
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Chapter 4. Comparative application of the method 
allowing for discrete modifications 

 

In this chapter the method described in the fourth section of Chapter 1 is 

applied to a three degree-of-freedom system. Such method is based on the system 

spatial model and allows for discrete modifications. A comparison is carried out 

with the results provided by the method based on the same model data (i.e. the 

system spatial model) but yielding real modifications. This chapter is organised as 

follows: a brief description of the simulated system and of the modification 

objective are firstly given. Then, the solution of the modification problem is 

sought for in the mathematical set of real numbers. Finally, the solution of the 

modification problem is sought for in the integer field by means of the Branch and 

Bound technique. Each step of the Branch and Bound techniques is illustrated. 

4.1 System description and modification problem 

The mechanical system consists in three vibrating masses connected 

through two springs, and is shown in Figure 4.1. The values of the system 

parameters are listed in the second column of Table 4.1. 

 

Figure 4.1: Simulated vibrating system 
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Table 4.1: system properties and constraints. 

 
Original 

value 

Lower 

bound 

Upper 

bound 

m1 [kg] 45 -10 10 

m2[kg] 32 0 10 

m3[kg] 32 0 10 

k1[N/m] 2.5e6 -2.25e6 1.25e6 

k2[N/m] 2.5e6 -2.25e6 1.25e6 
 

In this example, it is desired to assign to the system the eigenvector 

{ }1.5,1,0.5−
T

u =  at the natural frequency of 60 Hz. All the system parameters are 

assumed modifiable, and the modification values are constrained by the lower and 

upper bound listed respectively in the third and in the fourth column of Table 4.1. 

In order to prove the effectiveness of the proposed method, the system masses are 

also constrained to assume only integer values.  

4.2 Solution of the problem within the field of real 
numbers 

A set of effective modifications are firstly computed by means of the 

method described in the second section of Chapter 1. With reference to objective 

function ( )
22

2 2
  λ= − +

χ
χ Uχ b Ω χg , it has been set λ = 1 and 

{ }1 1 1 1 1

1 2 3 1 2, , , ,m m m k k− − − − −=
χ

Ω . Such a choice allows equally weighing the 

percentage modification of the parameters. The solution provided is listed in the 

penultimate row of Table 4.2. 

The effectiveness of such a solution can be evaluated by means of the 

following parameters: 

• The value of the function ( )χg  at the computed solution; 

• The difference δf between the achieved and the desired natural 

frequencies; 
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• The cosine cos(φ) of the angle φ between the achieved and desired 

eigenvectors. 

For the computed modifications, such indexes are listed in the penultimate row of 

Table 4.3. 

Clearly, the computed solution is very effective, since both the natural 

frequency and the eigenvector shape perfectly match the desired ones. However, 

the computed modifications are real values which do not respect the integer 

constraints on the masses, and therefore may be impossible to realize in an 

industrial context. An integer solution must be therefore sought for.  

 

4.3 Integer solution of the problem 

4.3.1 Complete solution enumeration 

The optimal integer solution of the problem described in section 4.1 cannot 

be obtained by simply rounding the continuous optimal modification of each 

discrete variable to the nearest integer, since rounded solutions can be 

significantly far from the optimality [LI 2006]. The complete solution 

enumeration ensures computing the optimal integer solution. Nevertheless, such 

an approach becomes infeasible as the number of unknowns increases. In this 

modification problem, the complete solution enumeration consists in solving 2541 

optimisation problems, and subsequently in choosing the solution providing the 

smallest among the minima of the objective function. In each of the 2541 

optimisation problems the integer values of the mass modifications are set and the 

stiffness modifications are unknown. The computed optimum is listed in the last 

row of Table 4.2, and its effectiveness, though lower, is comparable with that of 
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the real solution, as proved by the set of indexes provided in the last row of Table 

4.3. It is evident that such a solution cannot be obtained by simply rounding the 

variables of the optimal solution to the nearest integer, even in such a low-scale 

problem. 

Table 4.2: Optimal solutions    

 δm1 [kg] δm2 [kg] δm3 [kg] δk1 [kN/m] δk2 [kN/m] 
Real -6.755 5.612 7.509 -3.61e2 -1.096e3 

Integer -7 5 8 -3.97e2 -1.079e3 

 

Table 4.3: Solution effectiveness 

 g(χχχχ) cos(φ) δf [Hz] 

Real 0.3208 1.000 0.000 

Integer 0.3223 1.000 0.000 

 

4.3.2 Partial solution enumeration 

As pointed out in the previous section, the complete solution enumeration 

becomes infeasible in usual problems. Thanks to the convexity of continuous 

relaxation of the modification problem, the partial solution enumeration allows 

providing the integer optimum with a lower number of function evaluation. In this 

section, such partial solution enumeration is performed by means of the Branch 

and Bound algorithm. As far as the branching rule adopted, the selection of the 

branching variable has been done on the basis of the variable index: the branching 

variable is the one with the lowest index among those not having an integer value 

(Lowest-Index-First). Also, in each bounding phase, the lower bound on the 

optimum of the discrete function has been set equal to the optimum of the 

continuous relaxation of the respective constrained problem. Of course, it is 

expected that the application of the Branch and Bound technique yields the same 

result of the complete enumeration in a lower number of evaluated solutions. 
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The application of the Branch and Bound technique for the partial solution 

enumeration yields the solution listed in the last row of Table 4.2, whose 

effectiveness can be evaluated by means of the indexes in the last row of Table 

4.3. As expected, the optimal integer modifications are those provided also 

through the complete solution enumerations. On the contrary, the solution 

computation required only seven steps (and hence, the solution of only seven 

optimisation problems). Details about each step of the Branch and Bound 

technique are listed in Table 4.4. The complete tree of the technique application is 

shown in Figure 4.2. It is noteworthy that, even if at the node P5 an integer 

solution was provided, the algorithm proceeded by branching node P4, according 

to the Branch and Bound rules, since P4 Objective Function (O.F.) was lower. 

 

Table 4.4: Branch and bound application 

Node δm1 [kg] δm2 [kg] δm3 [kg] δk1 [kN/m] δk2 [kN/m] O.F. 

P1 -6.755 5.612 7.509 -3.62e2 -1.096e3 0.3208 

P2 -7 5.346 7.309 -3.77e2 -1.103e3 0.3213 

P3 -6 6.475 8.051 -3.13e2 -1.077e3 0.3228 

P4 -7.149 5 7.554 -3.97 e2 -1.095e3 0.3213 

P5 -7 6 6 -3.40e2 -1.150e3 0.3247 

P6 -7.333 5 7 -3.97e2 -1.114e3 0.3228 

P7 -7 5 8 -3.97e2 -1.079e3 0.3223 
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Figure 4.2: Branch and Boud tree 

 

P3 
O.F.=0.3228 

χ(1) ≥ -6 

P1   
O.F.= 0.3208 

P2 
O.F.=0.3213 

χ(1) ≤ -7 
 

P4 

O.F.=0.3213 

χ(2) ≤  5 

P5 
O.F.=0.3247 

χ(2) ≥ -6 
 

P6 
O.F.=0.3228 

χ(3) ≤  7 

P7 
O.F.=0.3223 

 χ(3) ≥ 8 
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Chapter 5. Design of an industrial linear feeder by 
means of a spatial model based structural modification 
method 

5.1 Device description 

The theory developed in the second section of Chapter 1 has been applied 

to an industrial device similar to the one shown in Figure 5.1. Such a device is a 

linear feeder commonly employed in the food packaging industry. It consists of a 

steel tray which is actuated by inertial electromagnetic exciters. This type of 

device exploits the vibrations of the feeder tray to make the transported items 

continuously impact with the tray itself, and hence carried from the back tip to the 

front tip of the tray, in conformity with the tray vibration direction. 

The steel tray is strengthened with an aluminium beam, which is connected 

to each of the actuators by means of leaf springs. The stiffness of the leaf springs 

can be varied by choosing the number of plastic plates of each leaf spring stack. 

The tray is also connected to a steel U-beam through a variable number of 

suspension units allowing movement in both the horizontal and the vertical 

directions. Finally, the U-beam is mounted on two steel legs, in order to set the 

device at the proper working height. 

The device configuration can be changed by adding or removing 

electromagnetic exciters and suspension units, and by altering the inertial 

properties of the exciters and the stiffness of the leaf springs employed in the 

electromagnetic exciters. 



 68 

 
Figure 5.1: Example of short length linear feeder 

 

A frequency response survey has been carried out on the system in a 

configuration employing three exciters. The acceleration of twelve points along 

the tray has been measured in working condition. Subsequently, the system 

frequency responses, with reference to the same aforementioned twelve points 

along the tray, have been acquired through a series of impact tests. Such 

frequency response functions permitted the extraction of the system vibration 

modes. In particular, truncated vibration modes, with reference to the sole twelve 

measurements points, have been extracted by peak picking [EWINS 1994]. 

Experimental evidence shows that the dynamic behaviour of such devices 

is dominated by just one of the system vibration modes. Figure 5.2, in fact, perfect 

overlapping between the system vibration mode at 39.37 Hz (pictured in solid 

line) and the tray oscillation (pictured in dashed line) in working condition at 

38.76 Hz. Both the eigenvector and the vector collecting the forced vibration 

amplitudes have been normalised so that their norm is unitary. As a matter of fact, 

the cosine between the two vectors is 0.9998.  
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Figure 5.2: Mode shape and forced vibration distribution along the tray 

 

5.2 Single-mode excitation 

The reason for this peculiar behaviour is the shape of the forcing vector f 

in the system dynamic equilibrium equation + =Mx Kx f�� . Since such a forcing 

vector is nearly parallel to one of the system modes, it follows that generally 

speaking the system dynamic behaviour is dominated by a single mode, which 

will be called “the dominating mode”. In fact, the response x can be written as: 

( )
1

2ω
−

= −x K M f  (5.1) 

where 

( )
1

2

2 2

1

i

diagω
ω ω

−  
− =  

− 

T
K M Φ Φ ,  1..i n=  

(5.2) 

Clearly, if f is parallel to any of the left eigenvectors of the system lj, 

(f = αlj), the following holds     

2 2 2 2

1 j

j

i j

diag
α

α
ω ω ω ω

 
= = 

− − 

T
φ

x Φ Φ l  
(5.3) 

thanks to the orthonormality relationship between the left and the right system 

eigenvectors 
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lj
Tϕϕϕϕi=δij (5.4) 

Eq. (5.3) shows that the system dynamic response is participated by only one 

vibration mode, regardless of the excitation frequency, if the excitation force 

vector f is parallel to any of the system left eigenvectors. 

Such a parallelism condition is hard to attain in systems in which only a 

limited number of degrees of freedom is actuated, nonetheless it is possible to 

achieve very similar conditions when the forcing term is nearly parallel to a 

system right eigenvector. In this case, the closer the excitation frequency to the 

vibration mode natural frequency, the higher the participation factor of the mode 

with respect to the participation factor of the remaining modes. 

Numerical simulations on lumped- and distributed- parameter systems 

recalling linear feeders confirm that not only for excitation frequencies close to 

the natural frequency of the dominating mode, but also quite far from it (but still 

avoiding other natural frequencies) the system response is dominated by the 

working mode. 

As a first example, let us consider the lumped parameter system in Figure 

5.3. The system parameters and the system eigenstructure are listed respectively 

in Table 5.1 and Table 5.2. Figure 5.4 shows the ratio between the modal 

participation factors of the highest frequency mode and the most excited among 

the other modes, with the excitation vector { }3, 1, 1, 1= − − −
T

f . Such a forcing 

vector recalls the typical excitation vector in linear feeders and, as a matter of fact, 

is mainly spanned by the highest frequency mode shape, as is evident from the 

cosines (listed in Table 5.3) between the forcing vector f and the system 

eigenvectors. 
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Figure 5.3: Lumped parameter system 

 

 

 
Table 5.1: Lumped system 

parameters 

m1 [kg] 10  

m2 [kg] 3  

m3 [kg] 3  

m4 [kg] 3  

k1 [kN/m] 10  

k2 [kN/m] 100  

k3[kN/m] 100  

k4 [kN/m] 100  

 

 

 
  Table 5.2: Lumped paramete system eigenstructure. 

Mode number  1 2 3 4 

u(1) 0.4941 0.0000 0.0000 -0.4668 

u(2) 0.5020 -0.5774 -0.5026 0.5106 

u(3) 0.5020 0.7887 -0.3059 0.5106 

u(4) 0.5020 -0.2113 0.8086 0.5106 

f [Hz] 3.6376 29.058 29.058 40.207 

 

 

 
Table 5.3: Force vector 

projections 

Eigenvector, i cos(f,ui) 

1 0.0068 

2 4.2e-17 

3 1.1e-16 

4 0.8465 
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Figure 5.4: Ratio between modal participation factors 

 

Clearly, at the fourth system natural frequency ( 4 1
exc

ω ω = ) the dominant 

mode is the fourth. Also, as one could expect, at the other system natural 

frequencies the contribution of the fourth vibration mode is usually negligible 

with respect to the most participated mode. It is also significant that in a very wide 

range of frequencies the most excited mode is the fourth, even when other natural 

frequencies are much closer to the excitation frequency than the fourth system 

natural frequency. It must be highlighted that, for this peculiar case of perfectly 

symmetric system and under such excitation conditions, the contributions of the 

second and of the third vibration modes is always null, as a consequence of the 

cosines listed in Table 5.3. Nonetheless, such a perfectly symmetric system can 

represent very well systems with up to 5% uncertainty on each system parameter. 

As a second example, the system in Figure 5.5 is considered. Its 

characteristics and its natural frequencies are shown respectively in Table 5.4 and 

in the second column of Table 5.5. Let us assume the excitation vector to be 
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{ }0,0,1,0,1,0,1,0,0,0, 1, 1, 1= − − −
T

f  (i.e., electromagnetic forces are exchanged at 

the connecting points). Also in this case vector f is mainly spanned by a sole 

eigenvector, namely the fifth system eigenvector (cosines between vector f and 

the eigenvectors are listed in the third column of Table 5.5). As a consequence, 

the fifth vibration mode is the dominating mode in a very wide range of 

frequencies, as is it evident in Figure 5.6, which shows the ratio between the 

modal participation vectors of the fifth vibration mode and the most participating 

among the other system modes. 

 

Figure 5.5: Distributed-and-lumped parameter system 

 
Table 5.4: Properties of the 

distributed-and-lumped parameter 

system. 

k1 [kN/m] 1.0 

k2 [kN/m] 1.0 

k3 [kN/m] 8.7e2 

k4 [kN/m] 8.7e2 

k5 [kN/m] 8.7e2 

m1 [kg] 25 

m2 [kg] 25 

m3 [kg] 25 

EJ [Nm
2
] 4.5e5 

ρΑ [kg/m] 15.8 

 

Table 5.5: Force vector projections 

Mode number, i Natural frequency [Hz] cos(f,ui) 

1 0.6891 0.0002 

2 1.4820 0.0000 

3 29.2840 0.0064 

4 43.6799 0.0000 

5 53.7383 0.6684 

6 154.3357 0.0839 

7 419.0886 0.0000 

8 820.5652 0.0023 
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All these facts suggest that the optimal design of the device can be attained 

by imposing the shape of the most participated eigenvector in working condition. 

Such a shape must reflect the design requirements typical of linear feeders in 

industrial context. 

 

 
Figure 5.6: Ratio between modal participation factors 

 

5.3 Linear feeder dynamic model 

In modelling the vibrating feeder, it has been assumed that the tray can 

perform a planar motion only in the x-y plane and that the tray is horizontal at 

rest. Furthermore, it has been assumed that the natural frequencies of the tray 

longitudinal modes are much higher than the frequency range of interest. 

Consequently, the dynamic behaviour of the steel tray-strengthening beam has 

been modelled using both Euler-Bernoulli beam finite elements (as far as the 

vertical displacements are concerned) and a rigid-body model (as far as the 

horizontal displacement is concerned). The suspension units have been modelled 

through both two linear springs acting respectively along the horizontal and the 
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vertical axes, and a torsion spring. The nodes of the finite element mesh on the 

tray have been chosen so as to properly collocate the forces acting between the 

tray, the actuators and the suspension units. The bending stiffness of the finite 

elements and the stiffness of the springs representing the suspension units have 

been deduced by means of a comparison between the modelled natural 

frequencies and those measured through modal testing on a suspended tray in 

absence of the actuators; the natural frequencies listed in Table 5.6 demonstrate 

close agreement between the experimental data and the model prediction, and 

hence, good tuning of the model parameters. 

 

Table 5.6: Tuning of model parameters: natural frequency comparison 

Measured Frequency [Hz] Modeled Frequency [Hz] 

8.62 8.85 

13.12 13.5 

29.07 28.02 

68.21 68.31 

108.87 111.13 

 

As far as the electromagnetic actuators are concerned, preliminary 

considerations on the axial stiffness of the leaf springs led to the assumption that 

at the frequency range of interest no relative rotation occurs between each actuator 

and its connecting points with the tray. As a consequence, each actuator has been 

given a single degree of freedom with respect to the node on the tray to which it is 

connected. The degree of freedom considered is the relative displacement of the 

actuator in the direction of the normal to the leaf spring stacks (Figure 5.7). 

Hence, the stiffness properties of the leaf springs have been modelled through a 

linear spring connecting the node on the tray with the actuator centre of mass, 

which takes account of the inertial properties of the actuator. Therefore, the 



 76 

motion of the each actuator in the plane x-y is fully described by the set of 

coordinates (x1, y1, φ1, n): 

( ) ( )
( ) ( )

1

2

1

2

2

1

1 0 cos sin

0 1 sin cos

0 0 0 1

x
x l

y
y l

n

α γ

α γ

φ
φ

 
−    

    
=    

          

 (5.5) 

 

where x1 and y1 are respectively the horizontal and vertical displacement of the 

node on the tray, φ1 is the rotation of both the tray node and the actuator and n is 

the linear spring extension (i.e. the relative displacement), as in Figure 5.8. 

Electromagnetic actuators 

 

 

Figure 5.7: Schematic drawing Figure 5.8: Lumped parameter model 

 

With the purpose of a modular implementation in a numerical simulation 

environment, the following stiffness and mass matrices have been calculated for 

each electromagnetic actuator, by mean of expression (5.5): 
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where k is the stiffness equivalent to that of the leaf spring stacks and m is the 

total mass of the electromagnetic actuator. Also, since no relative rotation is 

assumed to take place between the electromagnetic actuators and their connecting 

points on the tray, actuator rotational inertia J is added to the rotational inertia of 

the connecting point on the tray.  

Finally, the tray front tip deserves some considerations: its shape is 

different from the rest of the tray (see the examples in Figure 5.9) and, moreover, 

it is not strengthened through the aluminium beam. Therefore, the tip inertial and 

stiffness characteristics have been considered at the end of the aluminium beam. 

Clearly, a finite element node has been set on such a point. 

 

Figure 5.9: Examples of feeder tips 

 

The implementation of a modular simulator of vibrating feeders in the 

Matlab programming environment allows to easily evaluate different set up 

configurations. For the case of a linear feeder with two electromagnetic actuators 
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and four suspension units, a 23 degree-of-freedom model is provided. Such a 

model is pictured in Figure 5.10. With reference to Figure 5.10, y1,…,y10 are the 

beam vertical displacements, φ1,…, φ10 are the beam nodal rotation, x1 is the beam 

horizontal displacement and n1 and n2 are the electromagnetic actuator relative 

displacements with respect to the connecting point on the tray. 

 

 
Figure 5.10: Linear feeder simplified model 

 

5.4 Modification calculation 

The model described in Section 5.3 has been used to optimally design the 

vibrating linear feeder by means of the method in the second Section of Chapter 1. 

The design requirement is to make the transported items advance with a constant 

speed along most of the tray. In the remaining part, which is the back tip of the 

tray, transported items are required to advance with a higher speed than the rest of 

the tray, in order avoid jams between the material feeder and the vibrating tray. 

Such design requirements are reflected by the desired tray shape shown in dotted 

line in Figure 5.11, where the desired vibrating amplitude is constant between 

x = -0.07 and x = 2.85, and is a linear increasing function of the position along the 

tray between x = 2.85 and x = 3.6. The highest vibrating amplitude is desired on 

the back tip of the tray, and is 2 times the value of the desired constant amplitude. 
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The horizontal displacement of the tray has been set on the basis of an optimal 

value of 20° for the angle between the horizontal and the vertical tray 

displacements. 

In order to achieve the desired dynamic behaviour, the shape in Figure 

5.11 has been itself selected as desired mode shape, and coherent values for the 

relative displacement between the tray and the electromagnetic exciters have been 

chosen. The natural frequency of the desired mode has been set to 35 Hz, 

coherently with an excitation frequency possibly used in an industrial context. The 

desired vibrating mode is listed in the third column of Table 5.9, with reference to 

the model in Figure 5.10. For the sake of clarity, a different normalisation for the 

shape of the desired vibrating mode is listed in brackets in the third column of 

Table 5.9. 

 

 
Figure 5.11: Mode shape comparison: desired and first design guess system 

 

In order to demonstrate the capability of the method described in the 

second section of Chapter 1 in handling both lumped and distributed parameters 

modifications, the following system parameters have been chosen as modifiable, 

and collected in the unknown vector x: 
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• the tray equivalent bending stiffness (EJ)Eq; 

• the tray linear density ρ; 

• the stiffness of the suspension units k1…k4; 

• the mass of the electromagnetic actuators m1, m2; 

• the stiffness of the leaf springs connecting the tray with the 

electromagnetic actuators k5, k6. 

In order to apply the method in the second section of Chapter 1, a first 

design guess is needed. The first design guess values of the modifiable parameter 

are listed in the third column of Table 5.7. The tray bending stiffness and the tray 

linear density at the first design guess are those corresponding to a conventional 

steel tray strengthened through an aluminium beam of rectangular cross section. 

Only two suspension units are employed in the first design guess, but a further 

two more can be connected. Therefore, four suspension units are totally accounted 

for, but the stiffness of two among them is set to zero. The two electromagnetic 

actuators are in their base form, i.e. at the minimum weight and their stiffness 

corresponds to three leaf springs, each provided with a stack of nine plastic plates. 

Such first guess values yield to a vibrating system whose natural frequencies are 

partially shown in Table 5.8. The working mode, i.e. the mode with the highest 

participation factor in the design working condition, is the sixth (listed in the 

second column of Table 5.9), though its natural frequency lies quite far from the 

desired natural frequency. 

The upper and lower bounds constraining each single parameter and 

combinations of parameters are shown in the fourth column of Table 5.7. In 
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particular, the bounds on the distributed parameters ( )EJ and ( )Aρ , as well as 

those on the ratio 
A

EJ

ρ
, constrain the beam cross section to realistic values. 

As to the optimisation parameters, it has been chosen 

( ) ( )
1 11 1 1 1 1 1 1 1(20 , 20 ,0.1 ,0.1 ,0.1 ,0.1 ,2 ,2 , , )

1,0 2,0 1,0 2,0 3,0 4 ,0 5,0 6 ,0 0 0
diag m m k k k k k k EI Aρ

− −− − − − − − − −=
x

Ω  

and λ = 1e9, where the subscript “0” indicates the first design values of the system 

parameters, as listed in the third column of Table 5.7. The Rayleigh quotient 

equation in the problem formulation has been weighed with 10β = . 

 

Table 5.7: Properties and modifications of the first design guess system. 

 Unknowns Original 

values 

Constraints Modified values 

k1 [kN/m] x(1) 1.80e2 [-1.80e2,0] 1.80e2 + 0 

k2 [kN/m] x(2) 0 [0,1.80e2] 0 + 1.80e2 

k3 [kN/m] x(3) 0 [0,1.80e2] 0 + 1.80e2 

k4 [kN/m] x(4) 1.80e2 [-1.80e2,0] 1.80e2 + 0 

k5 [kN/m] x(5) 4.59e2 [-3.06e2,6.12e2] 4.59e2 + 0.43e2 

k6 [kN/m] x(6) 4.59e2 [-3.06e2,6.12e2] 4.59e2 + 1.86e2 

m1 [kg] x(7) 23 [0,6.05] 23 + 0.85 

m2 [kg] x(8) 23 [0,6.05] 23 + 1.70 

EJ [Nm
2
] x(9) 1.93e5 [-6.19e4,0] 1.93e5 - 6.19e4 

ρΑ [kg/m] x(10) 22.87 [-11.77,0] 22.87 - 11.77 

ρΑ/ EJ [kg/(Nm
3
)]  1.18e-4 [8.45e-5,1.18e-4] 8.45e-5 

 

Table 5.8: Natural frequencies comparison 

Mode number, i First design system [Hz] Modified system [Hz] 

1 5.5186 8.9584 

2 7.0008 13.0692 

3 11.1248 13.5709 

4 22.1164 24.2713 

5 24.4751 28.7661 

6 27.7528 34.8396 

7 52.3809 54.2614 

8 99.2722 102.7709 
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Figure 5.12: Mode shape comparison: desired and obtained 

 

 
Table 5.9: Working mode comparison. 

  First design  Desired Modified  

u(1) y1 0.2354 0.1058 (1.000) 0.1003 

u(2) φ1 -0.2319 0 -0.0036 

u(3) y2 0.1693 0.1058 (1.000) 0.0998 

u(4) φ2 -0.2202 0 0.0032 

u(5) y3 0.0779 0.1058 (1.000) 0.1102 

u(6) φ3 -0.1534 0 0.0485 

u(7) y4 0.0024 0.1058 (1.000) 0.1216 

u(8) φ4 -0.0868 0 -0.0127 

u(9) y5 -0.0236 0.1058 (1.000) 0.1058 

u(10) φ5 -0.0166 0 -0.0472 

u(11) y6 -0.0099 0.1058 (1.000) 0.0831 

u(12) φ6 -0.0705 0 -0.0257 

u(13) y7 0.0295 0.1058 (1.000) 0.0861 

u(14) φ7 0.1371 0 0.0510 

u(15) y8 0.0768 0.1255 (1.1867) 0.1145 

u(16) φ8 0.1901 0.1410 (1.333) 0.1519 

u(17) y9 0.1609 0.1862 (1.7600) 0.1817 

u(18) φ9 0.1984 0.1410 (1.333) 0.1583 

u(19) y10 0.1967 0.2115 (2.000) 0.2102 

u(20) φ10 0.1990 0.1410 (1.333) 0.1591 

u(21) n1 0.5694 0.5288 (5.000) 0.5283 

u(22) n2 0.4634 0.6346 (6.000) 0.6309 

u(23) x1 -0.1626 -0.2906 (-2.748) -0.2804 

f [Hz] 27.75 35.00 34.84 

cos(u,u
*
) 0.8574 1.0000 0.9949 

|δf| [Hz] 7.25 0.00 0.16 

 

Application of the optimisation procedure yields the values listed in fifth 

column of Table 5.7. The system modified according to the computed solution 

displays the dynamic behaviour whose natural frequencies are listed in the third 
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column of Table 5.8. The working mode of such a system is listed in the fifth 

column of Table 5.9. The last two rows of Table 5.9 also collects a set of useful 

indexes for the evaluation of the results attained. It is noteworthy that the 

computed solution results in a very close approximation of the desired 

eigenproperties. The mode shape obtained for the modified system at 34.84 Hz is 

shown in solid line in Figure 5.12, together with the desired mode shape in dotted 

line. 

 

5.5 Results and discussion 

The physical implementation of the modifications causes some 

approximations of the computed theoretical solution, in order to conform to the 

commercial availability of masses and springs. The values applied are listed in the 

third column of Table 5.10. In particular, the stiffness modifications of the 

electromagnetic actuators leaf springs have been realized by adding or removing 

the integer number of standard plastic plates which allows the closest 

approximation of the theoretical stiffness modification. The same procedure has 

been followed to calculate the number of mass modules to add to the 

electromagnetic actuators. The nominal stiffness of each plastic plate spring is 

5.10e4 kN/m, while the mass of each mass module is 0.165 kg. As far as the 

stiffness of the suspension units is concerned, the alterations computed are 

perfectly reflected by the addition two further suspension units. No investigation 

of the best integer approximation of the continuous solution has been performed, 

since it is beyond the scope of this experimental validation. 
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Table 5.10: Computed and applied system modification values 

 Computed 

modifications 

Applied 

modifications 

k1 [kN/m] 0 0 

k2 [kN/m] 1.80e2 1.80e2 

k3 [kN/m] 1.80e2 1.80e2 

k4 [kN/m] 0 0 

k5 [kN/m] 0.43e2 0.51e2 

k6 [kN/m] 1.86e2 2.04e2 

m1 [kg] 0.85 0.78 

m2 [kg] 1.70 1.72 

EJ [Nm
2
] 6.19e4 6.19e4 

ρΑ [kg/m] 11.77 11.77 

 

The same peak-picking procedure described in the first section of this 

chapter has been adopted for the partial identification of the modified system 

eigenstructure. In Table 5.11 a comparison between a choice of some of the 

measured natural frequencies and the expected ones (computed by means of the 

system simplified model on the basis of the system values in the third column of 

Table 5.10) is proposed. Four system vibration modes have been also extracted, 

and their shapes are shown in dotted line in Figure 5.13. They match almost 

perfectly the modeled ones, pictured in solid line in Figure 5.13. As far as the 

desired mode shape at 35 Hz, it is shown in the bottom-left hand side picture of 

Figure 5.13 in dashed line. With reference to the first design guess, the clear 

improvement, in the indexes introduced in section 5.3 and listed in the last rows of 

Table 5.9 (cosine between mode shapes and natural frequency mismatch) 

confirms that a very good achievement of the goal vibration mode has been 

attained. In fact, the cosines between the measured mode shape at 35.28 Hz, and 

the modeled and the desired ones are respectively 0.9964 and 0.9861. 

Furthermore, the mismatch between the measured natural frequency and the 
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modeled and the desired ones are only 0.08 Hz and 0.28 Hz, thus confirming the 

method effectiveness in the design of vibrating devices. 

Table 5.11: Natural frequency comparison 

Measured Frequency [Hz]Modeled Frequency [Hz]

24.78 24.46 

29.42 28.83 

35.28 35.20 

54.93 54.23 

 

Figure 5.13: Mode shape comparison: modelled and measured mode shapes 
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Chapter 6. Experimental validation of the method 
based on the system Frequency Responses 

 

In this chapter the experimental validation of the method proposed in the 

second Section of Chapter 1 is carried out with reference to a laboratory test-rig.  

6.1. Experimental set up 

The set up shown in Figure 6.1 has been adopted for the experimental 

validation of the method proposed in the second section of Chapter 1. It consists 

of five masses, each one connected to the very rigid test bench by a couple of steel 

cantilever straight beam springs that provide only bending stiffness. Four 

additional curved beam springs connect each mass with the contiguous ones. All 

the beam springs are 50 mm wide. All the other relevant dimensions are shown in 

the schematic drawing in Figure 6.2, and are nominally equal for all the beams 

having the same shape. 

The modular structure of the test rig allows easy set up extension or 

reduction, by adding or removing mass-spring subsytems. Each subsystem has 

been designed in such a way that the lumped masses remain always parallel to the 

ground during the motion. In fact, the portal frame structure of each subsystem 

makes the masses move without rotating. Furthermore, the high radius of the 

curved beam springs allows large amplitude oscillations of the masses without 

significantly altering the curved beam radius and, hence, the curved beam 

stiffnesses and linear behavior. All the beams can be modeled as massless lumped 

springs, since each beam mass and damping are negligible. In addition, the 

hypothesis of small displacements allows adopting linear spring models. 
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Therefore, the set up very well represents the undamped 5-dof lumped element 

system sketched in Figure 6.3.  

In this eigenstructure assignment problem, all the lumped masses and 

grounded springs are modifiable. The eigenstructure of the original system is 

shown in Table 6.1. It has been  

 

 

Figure 6.1: Experimental set up 

 

 

Figure 6.2: Set up significant dimensions [mm] 

 

experimentally identified just for carrying out the comparison with the modified 

system. The identification has been performed by exciting the system with an 

electro-dynamic shaker connected to the mass m5 through a stinger (see Figure 

6.1). The shaker employed is a LDS V406, driven by a LDS PA100E power 

amplifier capable of delivering power up to 147 W to the shaker. The excitation 

force has been measured by a load cell (PCB 208A02) placed between the mass 
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m5 and the stinger. Each mass has been instrumented with a Kistler 8636C50 

piezoelectric accelerometer. All the measurements have been recorded by the 

means of a LMS SCADAS III signal acquisition front-end connected to a PC. The 

LMS software Test.Lab has been adopted to generate the shaker excitation signal, 

and to identify the eigenstructure by applying the least squares method in 

[PEETERS 2004]. The system has been forced with a random excitation over the 

frequency range 0-100 Hz, which is the interval of interest for the proposed 

modification task. 

 

Figure 6.3: Set up model 

 

Table 6.1: Original system eigenstructure 

Mode number, i 1 2 3 4 5 

fi [Hz] 22.28 32.61 42.94 52.74 64.59 

ui(1) 0.391 0.792 0.114 1.000 0.003 

ui(2) 0.717 1.000 0.071 -0.249 -0.006 

ui(3) 1.000 -0.452 -0.232 0.029 0.038 

ui(4) 0.474 -0.404 0.971 -0.011 -0.525 

ui(5) 0.233 -0.264 1.000 0.009 1.000 

 

6.2. FRF data acquisition 

The application of the method introduced in this paper requires measuring 

the original system FRFs at the two desired natural frequencies. For this purpose, 
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a rowing hammer test has been carried out by employing a PCB 086C03 hammer. 

The measurements of the excitation force as well as of the acceleration of each 

mass have been acquired through the aforementioned LMS SCADAS III. The 

software LMS Test.Lab has been adopted to compute the system FRFs. In order to 

match the hypotheses made in the third section of Chapter 1, the direct use of the 

rough measured receptances ( )m

h
jωH  has not been possible. In fact, the 

unavoidable presence of measurement noise, of structural damping and of 

nonlinearities introduces complex and non-symmetric terms in the frequency 

response. Consequently ( )
h

ωH  has been calculated from the real and symmetric 

part of ( )m

h

N N
jω ×∈H � : 

( ) ( ) ( )( )1
Re

2

m m

h h h
j jω ω ω= +

T

H H H  
(6.1) 

Matrices 1( )m
jωH , 2( )m

jωH , 1( )ωH  and 2( )ωH  are presented in Appendix A. 

The norm ratio  

2

2

( ) ( )

( )

m

h h

h

h

j
W

ω ω

ω

−
=

H H

H
  (h=1,2) 

(6.2) 

 can be taken as a measure of the uncertainty due to the truncated part of the 

measured receptances. The values attained, (W1= 0.0295 and W2=0.0232) prove 

that the test rig can be correctly modeled as an undamped symmetric system, thus 

corroborating the hypotheses initially made. 
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6.3. Design parameter modification  

The purpose of the modification is to assign the eigenstructure listed in 

Table 6.2 and reported in brackets in Table 6.4 ( 2
h h

fω π= ). Such an 

eigenstructure is considerably different from that of the original system both in 

terms of frequencies and mode shapes. 

As far as the parameters of the modification problem are concerned, they 

have been chosen so as to mathematically express both the differing levels of 

concern about the single eigenpair assignment (which leads to the selection of 

, 1, 2
h

hα = ) and the preferred structural modification strategy (which leads to the 

selection of 
x

Ω ). In detail, it has been set 1 1α =  and 2 3α = , in order to encourage 

the achievement of the higher frequency mode realization. The regularisation 

operator has been chosen to penalize the relative modifications of mass 3m  and of 

stiffnesses 2g
k  and 3g

k , and to encourage the modifications of masses 2m  and 

4m . Specifically it has been set 
2

( / )diag=xΩ w w , where 

{ }1 1 1 1 1 1 1 1 1 1

1, 2, 3, 4, 5, 1, 2, 3, 4, 5,,0.1 ,100 ,0.1 , , ,10 ,10 , ,
ub ub ub ub ub g ub g ub g ub g ub g ub

m m m m m k k k k k− − − − − − − − − −=w . 

Clearly, a normalization with respect to their upper bound (denoted with the 

subscript ub) has been adopted. The regularisation parameter selected through the 

L-curve of the unbounded problem is equal to 500.  

 

Table 6.2: Desired eigenstructure 

Mode number, h 1 2 

fh [Hz] 39.00 55.00 

uh(1) 1.00 0 

uh(2) -0.55 0.01 

uh(3) 0.2 -0.10 

uh(4) 0 0.80 

uh(5) 0.05 1.00 
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Finally, the values in the second and the third columns of Table 6.3 define 

the lower ( minx ) and upper ( maxx ) bounds of the solution vector x. The physical 

realizability of the modiefied system is ensured by allowing only positive 

modifications, thus overcoming the lack of knowledge of the values of the 

original system parameters. The feasible domain is further restricted by adding an 

upper bound on the total mass modification: 

1 2 3 4 5 maxm m m m m mδ δ δ δ δ δ+ + + + ≤ , where maxmδ = 3 kg. It follows that 

{ }{ }min max 1 2 3 4 5 max: m m m m m mδ δ δ δ δ δΓ = ≤ ≤ + + + + ≤∩x x xx . 

The application of the proposed approach leads to the solution listed in the 

fourth column of Table 6.3, which is referred to as the computed modifications. 

 

Table 6.3: Modification bounds and values 

 
Lower  

bound 

Upper 

bound 

Computed 

modifications 

Applied 

modifications 

δm1 [kg] 0 2 1.375 1.4 

δm2 [kg] 0 2 1.412 1.4 

δm3 [kg] 0 2 0.000 0 

δm4 [kg] 0 2 0.000 0 

δm5 [kg] 0 2 0.053 0 

δkg1 [kN/m] 0 483 0.000 0 

δkg2 [kN/m] 0 483 0.359 0 

δkg3 [kN/m] 0 483 0.000 0 

δkg4 [kN/m] 0 483 135.837 148.5 

δkg5 [kN/m] 0 483 52.568 49.5 

 

6.4. Results and discussion 

The physical implementation of the modifications causes some 

approximations of the theoretical solution computed, in order to conform to the 

actual availability of masses and springs. The values applied are listed in the fifth 

column of Table 6.3. In particular, the stiffness modifications have been realized 
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by adding the integer number of standard steel cantilever beams which allows the 

closest approximation of the theoretical stiffness modification. No investigation of 

the best integer approximation of the continuous solution has been performed, 

since it is beyond the scope of this experimental validation. The nominal stiffness 

of each spring is 49.5 kN/m. 

The same procedure and equipment described in Section 6.1 have been 

adopted for the identification of the modified system eigenstructure. The five 

modes are listed in Table 6.4, where the two desired modes are also rewritten in 

brackets in order to improve the readability. The shapes of the third and fourth 

modes, i.e. the assigned ones, are also shown in dashed line in Figure 6.4 and in 

Figure 6.5. They match almost perfectly the desired ones (plotted in continuous 

bold line in the same Figure 6.4 and Figure 6.5), as also shown from the 

eigenstructure comparison in the last two rows of Table 6.4. Only a small 

difference in the natural frequency of the first desired mode can be noticed, as a 

consequence of the applied modification approximations with respect to the 

theoretical ones. 

As a final piece of experimental evidence, the absolute values of the 

modified system measured frequency responses ,5 ( )m

i jωH  (i=1,…,5) are shown in 

solid lines in Figure 6.5, where they are compared with those of the original 

system (dotted lines). The vertical solid lines highlight the two frequencies of the 

assigned modes of the modified system. 
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Table 6.4: Modified mode shapes and eigenstructure comparison 

Modified system mode 

number, i 
1 2 3 4 5 

fi [Hz] 21.96 29.89 39.67 (39.00) 54.98 (55.00) 74.15 

ui (1) 0.674 1.000 1.000 (1.000) -0.003 (0.000) -0.001 

ui (2) 1.000 0.705 -0.498 (-0.550) 0.014 (0.010) 0.003 

ui (3) 0.894 -0.900 0.130 (0.200) -0.089 (-0.100) -0.039 

ui (4) 0.205 -0.274 0.026 (0.000) 0.793 (0.800) 0.670 

ui (5) 0.074 -0.123 0.118 (0.050) 1.000 (1.000) -1.000 

Desired mode number, h   1 2  

|fh-fi| [Hz] - - 0.67 0.02 - 

cos(ui,uh) - - 0.9954 1.000 - 

 

 
Figure 6.4: Lower frequency mode shapes Figure 6.5: Higher frequency mode shapes 

 

 
Figure 6.6: System FRFs and assigned natural frequencies 
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Chapter 7. Experimental validation of the method 
allowing for discrete modifications 

 

In this chapter the experimental validation of the method proposed in the 

fourth section of Chapter 1 is carried out with reference to the same laboratory 

test-rig described in Chapter 6. A description of the experimental set up is firstly 

given in the first section. Then, the application of the method is described in the 

second section, where the rules adopted for the branching and bounding phases 

are given and the results of the method application on the system model are 

described. Finally, in third section, the effects of the calculated modifications on 

the experimental set up are described: the measurement chain is illustrated and a 

comparison between the desired and the obtained eigenstructure is proposed. 

7.1. Experimental set up 

The set up shown in Figure 7.1 has been adopted for the experimental 

validation of the method proposed in the third section of Chapter 1. It consists of 

five masses, each one connected to the very rigid test bench by a couple of steel 

cantilever straight beam springs that provide only bending stiffness. Four 

additional curved beam springs connect each mass with the contiguous ones. All 

the beam springs are 50 mm wide. All the other relevant dimensions are shown in 

the schematic drawing in Figure 7.2, and are nominally equal for all the beams 

having the same shape. 

The modular structure of the test rig allows easy set up extension or 

reduction, by adding or removing mass-spring subsytems. Each subsystem has 

been designed in such a way that the lumped masses remain always parallel to the 
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ground during the motion. In fact, the portal frame structure of each subsystem 

makes the masses move without rotating. Furthermore, the high radius of the 

curved beam springs allows large amplitude oscillations of the masses without 

significantly altering the curved beam radius and, hence, the curved beam 

stiffnesses and linear behavior. All the beams can be modeled as massless lumped 

springs, since each beam mass and damping are negligible. In addition, the 

hypothesis of small displacements allows adopting linear spring models. 

Therefore, the set up is very well represented by the undamped 5-dof lumped 

element system sketched in Figure 7.3. 

 

 

Figure 7.1: Experimental set up 

 

The original system parameters are listed in Table 7.1, where the same 

stiffness value kg has been assumed for all the ground springs kgi, i = 1..5. The 

eigenstructure of the original system has been computed on the basis of the 

system nominal model, and is shown in Table 7.2. 
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Figure 7.2: Set up significant dimensions [mm] 

 

 

 

Figure 7.3: Lumped parameter model of the set up 

 

Table 7.1: Original system parameters 

 Applied modifications 

m1 [kg] 1.727 

m2 [kg] 5.123 

m3 [kg] 8.214 

m4 [kg] 2.609 

m5 [kg] 1.339 

kg   [kN/m] 94.26 

k12 [kN/m] 75.14 

k23 [kN/m] 67.74 

k34 [kN/m] 75.47 

k45 [kN/m] 83.40 

 

Table 7.2: Original system eigenstructure 

Mode number, i 1 2 3 4 5 

fi [Hz] 21.87 32.13 42.48 52.44 64.36 

ui(1) 0.111 0.269 0.048 -0.702 0.002 

ui(2) 0.201 0.354 0.030 0.169 -0.003 

ui(3) 0.294 -0.150 -0.109 -0.018 0.024 

ui(4) 0.141 -0.125 0.474 0.006 -0.351 

ui(5) 0.077 -0.085 0.480 0.014 0.709 
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7.2. Application of the method and simulated tests 

7.2.1 Definition of the B&B rules 

As it has been pointed out in the fourth section of Chapter 1, the rule 

adopted for the selection of branching variables may have a meaningful effect on 

the overall computational efficiency of a branch and bound algorithm. In this 

work, three different variable selection strategies have been selected and tested: 

1. Most Fractional Integer Variable. This strategy suggests selecting as the 

branching variable the farthest from the respectively nearest integer value. 

This heuristic strategy is aimed at attaining the largest degradation of the 

objective function when the branching is performed, in order to fathom a 

high number of nodes at an early stage. 

2. Lowest-Index-First. The branching variable is the one with the lower 

index among those which have not an integer value. The variable are 

usually indexed coherently with the problem definition. 

3. Highest-Index-First. Contrary to the previous approach, the branching 

variable is the one with the higher index among those not displaying an 

integer value. 

As far as the selection of the branching nodes is concerned, the strategy 

adopted suggests selecting the node with the lowest bound on the objective 

function. The chief advantage of this approach is that, for a given problem, any 

branching operation performed under this strategy must also be performed under 

any other strategy [LI 2006]. 

Other heuristic techniques have been proposed in literature for reducing 

the number of problems to be solved by adopting the so-called pseudo costs, 
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which are estimations of the importance of the integer variables and of the local 

behaviour of the function to be minimised [LI 2006]. 

In each bounding phase, finally, the lower bound on the optimum of the 

discrete function has been set equal to the optimum of the continuous relaxation 

of the respective problem. Since no analytical solution exists for such a 

continuous relaxation (the non linear constrained problem), at each node the NLP 

subproblems have been solved numerically by applying the reflective Newton 

methods discussed in [COLEMANN 1990] and in [COLEMANN 1996]. Such a 

technique is suitable for large scale problems and ensures quadratic convergence 

to the unique solution. 

The Branch and Bound algorithm has been implemented using Matlab on a 

PC running Microsoft Windows XP Professional. The PC has 2 GB RAM and a 2 

GHz Intel Centrino Processor. 

 

7.2.2 Lumped parameter modification  

The purpose of the modification is to assign the eigenstructure listed in 

Table 7.3 ( 2
h h

fω π= ). Such an eigenstructure is considerably different from that 

of the original system both in terms of frequencies and mode shapes. In this 

eigenstructure assignment problem, all the lumped masses and grounded springs 

are modifiable. The discretisation values have been set equal to 0.18 kg and 47.13 

kN/m respectively for the mass and the stiffness modifications. Such chosen 

values allow conforming the discretisation adopted in the method to the 

parameters of the mass modules and springs actually available. 
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As far as the parameters of the modification problem are concerned, they 

have been chosen so as to mathematically express both the equal levels of concern 

about the single eigenpair assignment (which leads to the selection of , 1, 2
h

hα = ) 

and the preferred structural modification strategy (which leads to the selection of 

x
Ω ). In detail, it has been set 1 2 1α α= = , and the regularisation operator has been 

chosen to equally weigh the relative parameter modifications with respect to the 

respective discretisation step. Specifically it has been set 
2

( / )diag=xΩ w w , 

where { }1,1,1,1,1,1,1,1,1,1=w . The regularisation parameter selected through the 

L-curve of the unbounded problem is equal to 0.1.  

 

Table 7.3: Desired 

eigenstructure 

Mode 

number, h 

1 2 

fh [Hz] 50.00 60.00 

uh(1) -0.55 0.0025 

uh(2) 0.2 -0.005 

uh(3) -0.03 0.03 

uh(4) 0.015 -0.375 

uh(5) 0.025 0.525 

 

Finally, the values in the second and the third columns of Table 7.4 define 

the lower ( minx ) and upper ( maxx ) bounds of the solution vector x. 

The application of the proposed approach leads to the solution listed in the 

fifth column of Table 7.4, which is referred to as optimal discrete. It is noteworthy 

that the optimal discrete modifications cannot be obtained by simply rounding the 

optimal continuous solution (listed in the fourth column of Table 7.4) to the 

nearest integer. 
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Table 7.4: Discrete modification bounds and values 

χχχχ    Lower 

bound 

Upper 

bound 

Optimal 

continuous 

Optimal 

discrete 

zm1 0 6 6 4 

zm2 0 6 0.613 0 

zm3 0 6 5.455 5 

zm4 0 6 0.200 4 

zm5 0 6 6 2 

zkg1 0 3 1.663 1 

zkg2 0 3 1.294 1 

zkg3 0 3 3.000 3 

zkg4 0 3 0 2 

zkg5 0 3 2.206 0 

 

The eigenstructure of the systems obtained by applying the modifications 

in Table 7.4 are collected in Table 7.5.  

A set of indexes is useful to understand the performances of the 

modifications proposed: 

• the difference between the desired and the attained natural frequency 

of each assigned mode, shown in the second last row of Table 7.5. 

• the cosine between the desired eigenvector and the attained one of each 

assigned mode, shown in the forth last row of Table 7.5, and the 

respective angle, shown in the third last row of Table 7.5. 

• the value of the function to be minimised ( )χf , shown in the last row 

of Table 7.5. 

It is apparent that the proposed method provides a discrete solution whose 

effectiveness is comparable with that of the continuous solution. In fact the value 

of function f  at the discrete optimum, though higher than at the continuous 

optimum, is much lower than the original system one. As a consequence, both the 

frequency mismatches and the cosines are only slightly better for the system 
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modified according to optimal continuous solution which, however, is impossible 

to put into operation with the adopted parameter discretisation.  

Table 7.5: Simulated systems: Modified mode shapes and eigenstructure comparison 

 Original Optimal continuous Optimal discrete 

 4
th

 Mode 5
th

 Mode 4
th

 Mode 5
th

 Mode 4
th

 Mode 5
th

 Mode 

x1 -0.7016 0.0019 -0.5326 0.0025 0.5690 0.0034 

x2 0.1691 -0.0029 0.1931 -0.0050 -0.1978 -0.0057 

x3 -0.0181 0.02416 -0.0267 0.0302 0.0258 0.0332 

x4 0.0055 -0.3513 0.0125 -0.3665 -0.0023 -0.3921 

x5 0.0144 0.7089 0.0230 0.5127 -0.0239 0.5302 

f [Hz] 52.44 64.36 49.99 60.00 50.23 59.74 

cosine 0.9929 0.9870 0.9999 0.9999 0.9996 0.9998 

angle [°] 6.79 9.22 0.33 0.09 1.56 0.97 

∆f [Hz] 2.44 4.36 0.00 0.00 0.23 0.26 

( )χf  2.4e9 5.36e6 33.6e6 

 

As far as the computational effort is concerned, it is clear from the number of 

investigated discrete solutions, listed in the second column of Table 7.6, that the 

Branch and Bound technique allows effectively computing the optimal solution. 

In fact, with reference to the total solution enumeration, the Branch and Bound 

partial enumeration leads to the optimal solution with a much lower number of 

investigated solutions. Also, as could be expected, the rule adopted in the 

selection of the branching variable plays an important role: in this case, branching 

the variable with the highest fractional part reduces the number of investigated 

solutions by more than half. 

 

Table 7.6: Computational efficiency comparison 

Scheme adopted 
Number of investigated 

discrete solutions 

Total enumeration 17210368 

BB Lowest Index First 621 

BB Highest Index First 393 

BB Most Fractional Integer Variable 263 
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7.3. Experimental validation 

The physical implementation of the discrete modifications is intrinsically 

straightforward, since no approximation of the theoretical solution computed is 

required in order to conform to the actual availability of masses and springs. 

The eigenstructure of the modified system has been experimentally 

identified. The measured data have been produced by exciting the system with an 

electro-dynamic shaker connected to the mass m5 through a stinger (see Figure 

7.1). The shaker employed is a LDS V406, driven by a LDS PA100E power 

amplifier capable of delivering power up to 147 W to the shaker. The excitation 

force has been measured by a load cell (PCB 208A02) placed between the mass 

m5 and the stinger. Each mass has been instrumented with a Kistler 8636C50 

piezoelectric accelerometer. All the measurements have been recorded through a 

LMS SCADAS III signal acquisition front-end connected to a PC. The LMS 

software Test.Lab has been adopted to generate the shaker excitation signal, and 

to identify the eigenstructure by applying the least squares method in [PEETERS 

2004]. The system has been forced with a random excitation over the frequency 

range 0-100 Hz, which is the frequency interval of interest for the proposed 

modification task. 

The five modes are listed in Table 7.7, where the two desired modes are 

also rewritten in brackets in order to improve the readability. The shapes of the 

fourth and fifth modes, i.e. the assigned ones, are also shown in solid line in 

Figure 7.4 and in Figure 7.5. They match almost perfectly the desired ones 

(plotted in dashed line in the same Figure 7.4 and Figure 7.5), as shown also in the 

eigenstructure comparison in the last two rows of Table 7.7. Only a small 
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difference in the natural frequency of the first desired mode can be noticed, as a 

consequence of the unavoidable model approximations. 

As a final piece of experimental evidence, the absolute values of the 

modified system measured frequency responses ,5 ( )m

i jωH  (i=1,…,5) are shown in 

solid lines in Figure 7.5, where they are compared with those of the original 

system (dotted lines). The vertical solid lines highlight the two frequencies of the 

assigned modes of the modified system. 

Table 7.7: Experimental set up: Modified mode shapes and eigenstructure comparison  

Modified system mode 

number, i 

1 2 3 4 5 

fi [Hz] 28.90 36.19 43.60 50.43 (50.00) 60.45 (60.00) 

ui (1) 0.520 0.849 0.121 1.000 (1.000) 0.008 (0.005) 

ui (2) 0.950 1.000 0.058 -0.361 (-0.364) -0.013 (-0.010) 

ui (3) 1.000 -0.577 -0.191 0.055 (0.055) 0.067 (0.057) 

ui (4) 0.397 -0.436 0.642 -0.012 (0.027) -0.740 (-0.714) 

ui (5) 0.247 -0.378 1.000 -0.019 (0.046) 1.000 (1.000) 

Desired mode number, h    1 2 

|fh-fi| [Hz] - - - 0.43 0.45 

cos(ui,uh) - - - 0.9996 0.9998 

 

 

 
Figure 7.4: Lower frequency mode shapes Figure 7.5: Higher frequency mode shapes 
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Figure 7.6: System FRFs and assigned natural frequencies 
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Conclusions 

In this Thesis the research on structural modification approaches to modal 

design optimisation is presented. State-of-the-art methods in the field of inverse 

structural modification allow computing effective structural modifications. 

However, they lack flexibility both in the formulation and in the solution of the 

problems and solutions are not ensured to be feasible. Original formulations based 

on convex constrained optimisation are proposed and validated for the optimal 

inverse structural modification of multi-body vibrating systems. The approaches 

developed aim to compute the optimal inertial and stiffness parameter 

modifications for attaining a desired eigenstructure. Such approaches are 

particularly suitable when a small number of mode shapes at specific natural 

frequencies need to be imposed in the system dynamics. The modification 

parameters include those affecting both the inertial and the elastic properties of 

the system and do not need to impose diagonal or tridiagonal matrices. 

A strength of the proposed approaches is that they allow finding an 

optimal solution for any number of dofs and of design parameters. Therefore, such 

approaches are suitable for the optimisation of high order systems. The adopted 

formulations allow including constraints on both the single design parameters and 

on linear combinations of such parameters. 

Additionally, the introduction of a regularisation term penalizing large 

modifications, ensures obtaining physically and technically feasible solutions and 

therefore enlarges the practical applications where it can be successfully 

employed. Through the suggested regularisation it is also possible to translate 

differing levels of concern about the modifications to be adopted (e.g. to penalize 
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the modifications of some parameters), and hence to bias the solution towards 

preferable modifications 

In this Thesis, three different approaches are presented for calculating 

realizable mass and stiffness modifications of undamped systems. These 

approaches differ for the system model employed and for the mathematical frame 

of solution. In particular, the first approach is based on the spatial model and 

employs the system mass and stiffness matrices, while the second relies on the 

sole system frequency responses. Such approaches consist in formulating 

continuous optimisation problems. On the contrary, in the third approach the 

modification problem has been cast as a mixed-integer non-linear optimisation 

problem, in order to reflect discretisation constraints on modification parameters. 

The aforementioned convexity of the problem ensures computing global optima 

with all the approaches provided. 

The theory developed has been applied to test cases involving lumped-parameter 

systems and distributed parameter systems. Comparative evaluations have been 

carried out with reference to state-of-the-art methods. Not only do the results 

achieved prove the effectiveness of the methods but they also highlight their 

computational efficiency. Given the good results in the numerical simulations, 

experimental activity has been carried out in order to validate the approaches on 

real structures 

Experimental evidence for the effectiveness of the proposed approaches 

have also been provided. The approach employing the system spatial model has 

been used to design a vibrating device of industrial relevance on the basis of the 

desired dynamic behavior expressed by means of a vibration mode. Also, an 
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eigenstructure assignment on a laboratory set up has been considered for the 

approach based on the sole FRF data. Furthermore, the same laboratory set up has 

been used to validate the approach allowing for discrete modification. The 

experimental results are very satisfactory, in the sense that the modifications are 

easily computed and the desired eigenstructure is achieved. 
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