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Abstract

In this thesis we discuss the asymptotic behavior of the solutions of scaled reaction-diffusion equa-

tions in the unbounded domainRn × (0 + ∞), in the cases when such a behavior is described in

terms of moving interfaces.

As first class of asymptotic problems we consider the singular limit of bistable reaction-diffusion

equations in the case when the velocity of the traveling waveequation depends on the space variable,

i.e. cε = cε(x), and it satisfies, in some suitable sense,cε/ετ → α, asε → 0+, whereα is a

discontinuous function andτ is an integer that can be equal to0 or 1.

The second part of the thesis concerns semilinear reaction-diffusion equations with diffusion

term of typetr(Aε(x)D
2uε), wheretr denotes the trace operator,Aε = σεσ

t
ε for some matrix map

σε : R
n → Rn×(m+n) andAε converges to a degenerate matrix.

In order to establish such results rigorously, we modify andadapt to our problems the ”geometric

approach” introduced by G. Barles and P. E. Souganidis for solving problems inRn, and then

partially revisited by G. Barles and F. Da Lio for reaction-diffusion equations in bounded domains.

When it is possible we always consider the question of the well posedness of the Cauchy problems

governing the motion of the fronts that describe the asymptotics we consider.

Sommario

In questa tesi discutiamo il comportamento asintotico delle soluzioni di equazioni di reazione-

diffusione nel dominio illimitatoRn × (0,+∞) nei casi in cui tale comportamento sia descritto da

un’interfaccia in movimento.

Come primo tipo di problemi asintotici consideriamo il limite singolare di equazioni di reazione-

diffusione bistabili nel caso in cui la velocità dell’ondaviaggiante dipenda dalla variabile di stato,

cioècε = cε(x), e sia soddisfatto, al tendere diε a zero e in qualche modo opportuno,cε/ετ → α,

laddoveα è una funzione discontinua eτ è un intero che può essere uguale a0 o a1.

La seconda parte della tesi riguarda equazioni di reazione-diffusione semilineari e aventi termini

di diffusione del tipotr(Aε(x)D
2uε), laddovetr denota l’operatore traccia,Aε = σεσ

t
ε per qualche

funzioneσε : R
n → Rn×(m+n) eAε converge ad una matrice degenere.

Al fine di provare tali risultati in modo rigoroso, abbiamo modificato e adattato ”l’approccio

geometrico” introdotto da G. Barles e P. E. Souganidis per risolvere problemi inRn e in seguito

parzialmente rivisto dallo stesso G. Barles assieme a F. Da Lio per equazioni di reazione-diffusione

in domini limitati. Laddove possibile abbiamo sempre considerato la questione della buona po-

sizione dei problemi di Cauchy che governano il moto dei fronti che descrivono le asintotiche da

noi considerate.
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Introduction

Interfacial phenomena are commonplace in physics, chemistry and biology. They occur whenever

a continuum is present that can exists in at least two different chemical or physical ”states”, and

there is some mechanism that generates or enforces a spatialseparation between these states. The

separation boundary is what we call aninterface.

Some examples of physical processes where we can observe thegeneration of an interface are:

• the so calledphase transitionthat occurs whenever there is a double-well potential that drives

a substance into one of two possible phases, such as solid or liquid;

• theelectrophoresis phenomenumthat is the motion of ions in a fluid under the influence of

an electric fields;

• in the combustion phenomenatwo different temperatures establish two different zones in

the flame profile: the preheat zone, where the temperature is low enough so that no chemical

reaction has yet occurred and the burned zone where the gas has attained its final state.

In mathematics interfaces appear in the study of the asymptotic limits of evolving systems, like

reaction-diffusion equations, whose solution, often anorder parameter, is expected to approach

for large times the equilibria of the system. When there is more than one equilibrium, interfaces

separate regions where the parameter tends to the differentequilibria, called phases for instance in

phase transition models.

To fix the ideas assume we have a smooth state variableu, a function of space and time depending

also on a small parameterε > 0,

uε(x, t) = u(x, t; ε), x ∈ Rn, t ∈ [0,+∞).

Typically uε is the solution of a semilinear reaction-diffusion equation

uεt + Lε(uε, x) = 0

3



satisfying an initial condition

uε(x, 0) = g(x),

whereg is a continuous bounded function. If such a solutionuε exists for anyε > 0 one can try

to look at the behavior of the family(uε)ε asε → 0+. A famous example of semilinear reaction-

diffusion equation is the so calledAllen-Cahn equation

uεt (x, t)−∆uε(x, t) +
f(uε(x, t))

ε2
= 0, (x, t) ∈ Rn × (0,+∞), (1)

where the reaction termf is the derivative of a double well potentialW , f = W ′. In particular

f : R → R is a cubic function with zeroesm− < m0 < m+, with structure conditions modeled on

the following main example

f(q) = 2(q −m−)(q −m0)(q −m+). (2)

It is known in the literature that, if the wells ofW have the same depth, i.e.

W (m+) =W (m−),

and the initial conditiong represents a sharp interface across the unstable equilibriumm0, then the

asymptotics is governed by the mean curvature equation







(i) ut(x, t)− tr
[(

I − Du(x, t)

|Du(x, t)| ⊗
Du(x, t)

|Du(x, t)|
)

D2u(x, t)
]
= 0, in Rn × (0,+∞),

(ii) u(x, 0) = uo(x), in Rn,
(3)

where the initial conditionuo ∈ C(Rn) is chosen in such a way that the initial frontΓo = {x ∈
Rn : uo(x) = 0} = {x ∈ Rn : g(x) = m0} is a nonempty and closed set (ideally an hypersurface).

Moreoveruo(x) > 0 (resp.uo(x) < 0) if g(x) > m0 (resp.g(x) < m0). Indeed one proves that the

convergence occurs locally uniformly off the moving front determined by (3) to the stable equilibria

of the reaction-diffusion equation, namely

uε(x, t) →
{

m+ if u(x, t) > 0,

m− if u(x, t) < 0,

whereu is the solution of (3). Equivalently we have that the asymptotic behavior of the solutions

uε of the Cauchy problem for the Allen-Cahn equation is described by moving interfacest 7−→ Γt,

with Γt = {x : u(x, t) = 0}.

Equation (1) was proposed by Allen and Cahn [1] as a phase transition model for a moving



interface with normal velocity being the mean curvature of the front. The first formal study of the

asymptotics of the Allen-Cahn equation is by Fife [28], Caginalp [11], [12] and Keller Rubinstein

and Sternberg [35]. In [16] Chen gives a rigorous local in time proof of the generation and propaga-

tion of a smooth interface in (1) under the assumption that the mean curvature motion is smooth. The

first rigorous and global in time proof of the asymptotics, not assuming particular conditions on the

regularity of the mean curvature motion, is due to Evans, Soner and Souganidis in [26]. A general

study of the asymptotics of equations of the form (1) for bistable nonlinearities and the propagation

of interfaces was done by Barles, Soner and Souganidis [7] based on the theory of weak front evo-

lutions. The application of these methods to study the asymptotic behavior of FitzHugh-Nagumo

type systems can be found in the paper of Soravia and Souganidis [40]. The particular case of the

asymptotics of the Allen-Cahn equation has been the object of even more study. For an exhaustive

treatment of the argument we refer to the work of Souganidis [41] where the author also presents

three different approaches to the study of the limiting behavior of the solutions of (1). Finally we

observe that the mean curvature equation in (3) is a quasilinear parabolic degenerate equation with

a singularity forDu = 0. To be solved globally in time, the Cauchy problem (3) has to be meant

in the sense of viscosity solutions, see Chen, Giga and Goto [18] or Evans and Spruck [27], and it

turns out that it has a unique continuous solutionu ∈ C(Rn × [0,+∞)) for anyuo ∈ C(Rn).

The study of front propagation is a classical problem and it can be formulated in the following

way. LetΩ0 be an open subset ofRn, study the evolution of the interfacest 7−→ Γt moving with

normal velocity

V = v(Dn(x), n(x), x, t) (4)

and starting at timet = 0 from Γ0 = ∂Ω0. Interfaces with normal velocity as in (4) satisfy mono-

tonicity property, i.e., loosely speaking, if two fronts moving with velocity as in (4) are separated at

some time, then they remain separated.

The main issues of interface dynamics as in (4) are the development of singularities in finite time,

independently of the smoothness of the initial surfaceΓ0. Classical examples in this directions are

the evolutions by mean curvature of ”bar-bells” and ”tori” in Rn. To overcome this geometric

difficulty and interpret the evolution past the singularities it was necessary to develop some weak

(generalized) notions of evolving fronts. In [41] Souganidis summarizes some different approaches

to the problem and shows that they turn out to be equivalent when there is no-fattening phenomenon,

i.e when the interfaceΓt has empty interior for anyt > 0.

An equivalent way to formulate problem (4) is the so-calledlevel set approach: if u : Rn ×
[0,+∞) → R is a function such that, for anyt > 0,Ωt = {x : u(x, t) > 0}, Γt = {x : u(x, t) = 0},

and|Du(x, t)| 6= 0 for anyx ∈ Γt, then problem (4) becomes

ut(x, t) + F (x, t,Du(x, t), D2u(x, t)) = 0 (5)



where the functionF is related toV by,

F (x, t, p,X) = −|p|v(− 1

|p|
(

I − p⊗ p

|p|2
)

X,− p

|p| , x, t), X ∈ Sn, p, x ∈ Rn, t ∈ (0,+∞).

Geometric equations, as for example equation (5), are particular pde’s in which one can observe that

if u is a solution of (5) andψ : R → R is smooth and increasing, then alsoψ(u) is a solution of (5).

As a consequence, it is easy to see that ifu1o andu2o are two initial conditions such that

{x : u1o(x) = 0} = {x : u2o(x) = 0},

andu1, u2 are the solutions of the corresponding Cauchy problem for (5), then one has

{x : u1(x, t) = 0} = Γt = {x : u2(x, t) = 0},

for all t > 0. One can thereforedefinethe family of closed sets(Γt)t to be the geometric flow of the

front or interfaceΓ0 with normal velocity−F . In general, a geometric flow describes the motion

of fronts with prescribed normal velocity, possibly depending upon position, time, normal direction

and principal curvatures. It is easy to realize that these motions exibit many interesting qualitative

properties, for instance they may develop singularities, change topology or become extinct in finite

time, and one needs to define a weak front propagation via viscosity solutions in order to have a

well defined flow globally in time. The level set approach was proposed by Osher and Sethian

[36] for numerical computations of solutions of geometric equations of type (5) while the rigorous

theory started with the work by Evans and Spruck [27] for the mean curvature flow and by Chen

Giga and Goto [18] for more general geometric flows. For the mathematical analysis of the level set

method via viscosity solutions, the reader is referred to the book by Giga [31], where the approach is

discussed in detail. Among others, one of the most striking applications of the theory of weak front

propagation is the fact that it allows to rigorously determine the asymptotics of reaction-diffusion

equations and systems which model phase transitions. For instance, we described above that the

Allen-Cahn equation (1) asε→ 0 gives rise to an interface moving according (3).

More recently Barles and Souganidis in [8], and subsequently Barles and Da Lio in [5], proposed

a new and more geometric approach to study singular limits giving rise to moving interfaces, which

allows to include in the analysis both the generation and propagation phenomena. The approach

is more flexible to describe geometric flows also in KPP-type systems, equations with oscillating

coefficients, nonlocal terms or appearing in the study of interacting particle systems, see again

Souganidis [41] where the reader can find many more references. The approach in [8] is based on

a new definition of generalized propagation of fronts inRn, which turns out to be equivalent to

the level set approach when there is no fattening phenomenon, and leads to a general method for



establishing the asymptotic limit of a large class of reaction-diffusion equations. Since a family of

moving hypersurfaces(Γt)t separates, at anyt > 0, two open and disjoint subsets ofRn, the idea of

Barles and Souganidis is to consider the evolution of open subsets ofRn instead oft 7−→ Γt itself.

This can be done through a ”local monotonicity test”. Roughly speaking, the localized monotonicity

property claims that, if(Ω1
s)s∈(a,b), (Ω

2
s)s∈(a,b) are two families of open subsets evolving with the

same normal velocity and if, for somer > 0 andt ∈ (a, b),

Ω1
t ∩ B(x, r) ⊂ Ω2

t ∩ B(x, r),

and if, for all t ≤ s < b, we have

Ω1
s ∩ ∂B(x, r) ⊂ Ω2

s ∩ ∂B(x, r),

then,

Ω1
s ∩ B(x, r) ⊂ Ω2

s ∩B(x, r) for anys ∈ [t, b).

The new definition of generalized propagation of fronts in [5] uses the local monotonicity prop-

erty above to study the evolution of a family of open subsets of Rn through the comparison with

smooth evolutions: roughly speaking one may say that a family (Ω2
s)s∈(a,b) is a generalized flow

with normal velocity greater thanV if it satisfies the local monotonicity property when tested on a

suitable class of families(Ω1
s)s∈(a,b) evolving smoothly and with normal velocity less thanV . Since

a family of open subsets(Ωs)s∈(a,b) has normal velocity smaller thanV if and only if the family

(Ωc
s)s∈(a,b) has normal velocity grater than−V , a notion of generalized motion with normal velocity

smaller thanV can be defined analogously. The main issues of this new definition of generalized

propagation of fronts are that

1. it is enough to make the monotonicity test against families of open subsets evolvingsmoothly,

2. the test can be donelocally in space and only on small time intervals,

3. as said above, one can use families whose normal velocity is smaller or grater than the normal

velocity considered.

Barles and Souganidis use this new definition to study the asymptotics of reaction-diffusion

equations. They revisit with their new approach the resultsin [26] and [7] about the limiting behav-

ior of the solution of the Allen-Cahn equation (1) and they present some new results regarding the

asymptotics of semilinear reaction-diffusion equations,reaction-diffusion equations with oscillating

coefficients and nonlocal fully nonlinear integral-differential equations. In [5] Barles and Da Lio

slightly modify the definition in [8] to study the asymptoticbehavior of the solution of semilinear

and quasilinear Allen-Cahn equations with(x, t)-dependent cubic functionf in a bounded domain



with Neumann boundary conditions. The proofs in [5] extend the idea in [8] to define a family

of open subsets(Ωs)s∈(a,b) and to prove that they move with a certain normal velocity; these open

subsets are, roughly speaking, the interiors of the sets whereuε converges to the stable equilibria of

the equation with ano(ετ) rate of convergence, whereτ depends on the problem.

In our thesis we study two families of reaction-diffusion equations. Chapter 3 is about the

singular limit of bistable reaction-diffusion equations in the case when the velocity of the traveling

wave solutioncε depends on the space variablex and satisfies the following

cε(x)

ετ
−−−→
ε→0+

α(x), locally uniformly off an hypersurfacẽΓ ⊂ Rn, (6)

whereα is only piecewise continuous with discontinuity setΓ̃ andτ is an integer that can be equal

only to 0 or 1. To be more precise we assume thatα : Rn → [ρ,+∞) is a bounded measurable

function which is piecewise continuous across an oriented,closed hypersurfacẽΓ ⊂ Rn and satisfies

α(x) ∈







{n1(x)} if d̃(x) < 0,

{n2(x)} if d̃(x) > 0,

[n1(x), n2(x)] if d̃(x) = 0,

whered̃ is the signed distance function from̃Γ andn1 andn2 are two bounded and locally Lipschitz

continuous functions such thatn1(x) < n2(x), for all x ∈ Rn. The reaction-diffusion equations we

consider in Chapter 3 are

uεt (x, t)− ε∆uε(x, t) + ε−1f ε(uε, x) = 0, in Rn × (0,+∞) (7)

and the nonlinear Allen-Cahn equation

uεt(x, t)−∆uε(x, t) + ε−2f ε(uε, x) = 0 in Rn × (0,+∞) (8)

wheref ε : R × Rn −→ R is of bistable type, with structure conditions modeled on the following

main example

f ε(q, x) := 2
(

q − cε(x)

2

)

(q2 − 1) (9)

with −1 < cε(x)/2 < 1. In both cases we ask the functionsuε to satisfy a Cauchy condition at time

zero, i.e.

uε(x, 0) = g(x), (10)

whereg is a continuous real function which takes values in the interval [−1, 1]. As it regardscε,

we will assume that it satisfies assumption (6) withτ = 0 when we study the limit behavior of the



solutions of the equation (7) andτ = 1 when we consider (8).

We will show that the familyuε of the solutions of (7) converges to the stable equilibria off ε off

the evolving interface which moves with normal velocity−α and is determined by the geometric

equation
{

ut(x, t) + α(x)|Du(x, t)| = 0, (x, t) ∈ Rn × (0,+∞),

u(x, 0) = uo(x), x ∈ Rn,
(11)

once we initialize it by setting, in the case (9),

Γo = {x ∈ Rn : uo(x) = 0} = {x ∈ Rn :
α∗(x)

2
≤ g(x) ≤ α∗(x)

2
},

whereα∗, α
∗ indicate the lower and upper semicontinuous envelopes ofα, respectively. Moreover

uo(x) > 0 (resp.uo(x) < 0) if g(x) >
α(x)

2
(resp.g(x) <

α(x)

2
). We notice thatΓo may contain

relatively open subsets of the hypersurface of discontinuity of α where
α∗(x)

2
< g(x) <

α∗(x)

2
.

The initial front that controls the convergence of the solutions of reaction-diffusion equation (7)

to the stable equilibria moves in this case with a velocity which is discontinuous in space. In

geometric optics, discontinuous coefficientsα in the propagation equation (11) arise in the refraction

phenomenon and1/α is then the discontinuous refraction index.

The main steps to apply the new definition of generalized propagation of fronts in [8] and [5]

to the study of the asymptotics of our problems are the following: (i) prove the well-posedness of

the Cauchy problem that governs the motion of the moving hypersurface describing the limiting

behavior of theuε’s; (ii) define two collections of open subsets ofRn (Ω1
s)s∈(0,T ) and(Ω2

s)s∈(0,T )

so thatuε(x, s) converges tom− if x ∈ Ω1
s and tom+ if x ∈ Ω2

s; (iii) find suitable traces of these

families at time zero,Ω1
0 andΩ2

0, and prove that{uo > 0} ⊆ Ω1
0 and{uo < 0} ⊆ Ω2

0; (iv) prove

that(Ω1
s)s∈(0,T ) (respectively(Ω2

s)s∈(0,T ) ) moves (according the new definition above) with normal

velocity smaller (resp. greater) than the velocity of the front that describes the limiting behavior of

theuε’s.

The novelty of our study is that the functionα is only piecewise continuous. In our master thesis

[21] and then in [22] we proved that the problem (11) is well-posed, and a comparison principle

holds for viscosity solutions as defined by Ishii [33] whenα has constant sign and is piecewise con-

tinuous across an hypersurface. Actually in [21], [22] we consider the well-posedness of the Cauchy

problem for noncoercive and more general Hamilton-Jacobi equations. The particular equation in

(11) is coercive and a uniqueness result for it was also previously proved by Camilli [14].

Whenα is piecewise continuous and we study the asymptotics of (7) we have to allow the

sequencecε to converge toα only almost everywhere off the hypersurface. Moreover the norms of

the gradients and of the Laplacians,‖Dcε‖∞ and‖∆cε‖∞, may blow up asε → 0. We have to link

the blow up rate of‖Dcε‖∞ (respectively‖∆cε‖∞) to the parameterε and require that it is not faster



thanε−1/2 (resp.ε−1). A further difficulty is to prove that a family of open (resp.close) subsets of

Rn is a generalized superflow (resp. subflow) with a discontinuous normal velocityα. To do this we

have to approximate the definition of super- and subflow by using suitable families of continuous

velocities and we construct these families starting from the smooth functionscε’s.

With similar methods we prove that, whencε/ε → α locally uniformly off Γ̃, the limiting

behavior of the solutions of the Allen-Cahn equation (8) satisfying (10) gives rise to an interface

moving with normal velocityK − α, whereK indicates the mean curvature of the interface, i.e.

according to the geometric equation

{

ut(x, t) + α(x)|Du(x, t)|+ F (Du(x, t), D2u(x, t)) = 0, (x, t) ∈ Rn × (0,+∞),

u(x, 0) = uo(x), x ∈ Rn,
(12)

whereF : Rn × Sn → R is defined as

F (p,X) = − tr
[(

I − p

| p| ⊗
p

| p|
)

X
]

. (13)

In this second case the front is initialized in the standard way by the initial front

Γo = {x ∈ Rn : uo(x) = 0} = {x ∈ Rn : g(x) = 0}

and choosing the initial conditionuo ∈ C(Rn) such thatuo(x) > 0, (respectivelyuo(x) < 0) if

and only ifg(x) > 0 (resp.g(x) < 0). A comparison principle for (12) whenα is only piecewise

continuous does not yet appear in the literature and we proveit in Theorem 3.3.8 under some par-

ticular assumptions on the setΓ̃ of discontinuity ofα. For examplẽΓ has to be the global graph of a

Lipschitz continuous function with Lipschitz constant smaller than1/ρ. In the comparison result in

Theorem 3.3.8 we ask the subsolutionu (or to the supersolutionv) to be continuous along a suitable

directionη transversal tõΓ. This assumption turns out to be crucial in the proof of our Theorem and

recovers the ideas used by Soravia in his works about the uniqueness of viscosity solutions for some

kinds of discontinuous Hamilton-Jacobi equations (see [38], [37], [39] and the references therein).

The existence of a continuous solution of (12) remains an open problem. We try to solve it with

Perron’s method but we obtain only an upper semicontinuous viscosity solution of (12).

In [8], [5] the authors study the asymptotics of solutions tothe initial-value problem for a semi-

linear reaction-diffusion equations of type

{

uεt(x, t)− tr(A(x)D2uε(x, t)) + ε−2f(uε(x, t)) = 0 (x, t) ∈ Rn × (0,+∞),

uε(x, 0) = g(x) x ∈ Rn
(14)



whereA(·) is a matrix map that takes values in the space of then× n symmetric matrices such that

A(x)p · p ≥ µ| p|2,

for someµ > 0 and for anyx, p ∈ Rn. Barles, Souganidis (and then Barles and Da Lio for

the same problem in a bounded open set with Neumann boundary condition) proved that, when

c = 2m0 −m+ −m− = 0, the asymptotics of the solutions of (14) asε → 0+ is described by the

the following Cauchy problem

{

(i) ut +G(x,Du,D2u) = 0

(ii) u(x, 0) = uo(x),
(15)

where the functionG : Rn × Rn × Sn → R is defined as

G(x, p,X) = − tr(A(x)X) + tr
((
A(x)X + σt(x)Dσt(x)p)

σt(x)p

| σt(x)p| ⊗
σt(x)p

| σt(x)p|
)

andσ : Rn → Sn is the square root matrix ofA, i.e. A(x) = σ(x)σt(x), for anyx ∈ Rn. SinceA

is positive definite the quadratic form〈A(x)−1ξ, ξ〉 is a Riemannian tensorg and the set of vector

fields {σ(i)(x), i = 1, . . . , n} spansRn for any x ∈ Rn. We observe that the equation in (15-i)

differs from the mean curvature equation in the metricg for the term− tr(σt(x)Dσt(x)p). In the

last chapter of this thesis we look for the right reaction-diffusion equation that gives rise to a front

moving according to the mean curvature equation in a sub-Riemannian metric. Indeed we assume

that the matrix mapσ(·) takes values in the space of then ×m real matrices,m < n, and thus at

any pointx ∈ Rn the matrixA(x) = σ(x)σt(x) is only semi-positive definite. If we define, for any

x ∈ Rn and for anyε > 0, a matrix

σε(x) =
[
σ(x) εkIn

]
∈ Rn×(m+n),

wherek > 0 andIn denotes then× n identity matrix, we have that the matrix map

Aε ≡ σεσ
t
ε

is a Riemannian approximation ofA. We prove that, under some particular assumptions on the

matrixσ, the asymptotic behavior of the solutions of the semilinearreaction-diffusion equation

uεt(x, t)− tr(Aε(x)D
2uε(x, t) + σε(x)

tDσε(x)
tDuε(x, t)) + ε−2f(uε(x, t)) = 0, (16)

satisfying the initial condition (10), is governed by the solution of the Cauchy problem for the mean



curvature equation in the sub-Riemannian metricA,







(i) ut − tr
((
A(x)D2u+ σt(x)Dσt(x)Du)

(
I − σt(x)Du

| σt(x)Du| ⊗
σt(x)Du

| σt(x)Du|
))

= 0,

(ii) u(x, 0) = u0(x).
(17)

A crucial property in the theory of the mean curvature equation (3-i) is the correspondence

between the points where this equation degenerates, the zero set of the gradient and of the Hessian

matrix of suitable powers of the Euclidean norm. To be more precise, if| x| denotes the standard

Euclidean norm,| x| = (x21 + x22 + · · ·+ x2n)
1/2, then

D(| x|4) = 0 if and only if D2(| x|4) = 0 if and only if x = 0.

Since equation (17-i) becomes degenerate in a set bigger than the one of (3-i), we have to use a

different norm. If them vector fieldsX1 = σ(1) ·∇, . . . , Xm = σ(m) ·∇, generate a Carnot group of

step twoG = (Rn, ◦, δλ), where◦ is a composition law onRn and{δλ}λ>0 is a family of dilatations,

then there exists an homogeneous norm1 onG defined as

‖ x‖G = [| xH |4 + | xV |2]1/4, x = (xH , xV ) ∈ Rm × Rn−m.

If we putN(x) = ‖ x‖4G we have that the functionN satisfies a crucial property, in fact we have

|XN(x)| = 0 if and only if |X2N(x)| = 0 if and only if xH = 0. (18)

In other words‖·‖G plays ing the role that the Euclidean norm has in the Euclidean metric.Property

(18) is crucial since it allows us to restrict the family of test functions in the definition of viscosity

solution. To be more precise we have that, ifu is a viscosity subsolution of (17) andϕ ∈ C2(Rn ×
(0,+∞)) is a test function so thatu − ϕ has a maximum in(x, t), then there are two possibilities,

eitherXϕ(x, t) 6= 0, or Xϕ(x, t) = 0 andX2ϕ(x, t) = 0. This new characterization of the

test functions for viscosity solutions allows us to use the existence and uniqueness result for (17)

obtained by Capogna and Citti in [15] in the framework of Carnot Groups and for some particular

initial datauo. The definition of weak solution they use is the sub-ellipticanalogous of the viscosity

solution in the formulation stated by Evans and Spruck in [27]. In the Euclidean case it is clear that

the definition of viscosity solution formulated in [27] is indeed the same of Crandall, Ishii and Lions

1We callhomogeneous normon the Carnot groupG, every continuous functiond : G → [0,∞) such that

1. d(δλ(x)) = λd(x) for everyλ > 0 andx ∈ G;

2. d(x) = 0 iff x = 0.



(see [20]). In the sub-elliptic case this is not obvious. In Chapter 4 we use norm‖ ·‖G to prove it

for Carnot Groups of step two. We just point out that in [25] Dirr, Dragoni and von Renesse exhibit

another existence result for (17), in particular they show that the value function of suitable family

of stochastic control problems is a viscosity solution of (17).

As it regards the study of the asymptotic behavior of the solution of (16), our proof of the gen-

eration of the front that describes the asymptotics of (16) works without any particular assumption

on the matrixσ, i.e. on the sub-Riemannian metricg. For the proof of the propagation of such

a front we need to restrict again to Carnot groups of step two in order to use property (18). As

we said before Barles, Souganidis and Da Lio in their papers [8], [5] defined a family of open sets

(Ωt)t∈(0,T ) to be a generalized flow with normal velocity−F if it satisfies a (local in space and time)

monotonicity testagainst families of open subsets evolving smoothly with normal velocity smaller

or bigger than−F . We use again‖ ·‖G and its property (18) to modify the definition of generalized

flow when we consider asF the function

F (x, p,X) = − tr
((
A(x)X + σt(x)Dσt(x)p)

(
I − σt(x)p

| σt(x)p| ⊗
σt(x)p

| σt(x)p|
))

. (19)

In our definition we avoid the monotonicity test against families of open subsets where the velocity

−F becomes degenerate.

In Chapter 4 we also consider the asymptotic behavior of the solution of a semilinear reaction-

diffusion equation with a rescaling different from the one in (16). In fact at the beginning of Chapter

4 we consider the asymptotics asε→ 0 of the solutions of the Cauchy problems for the equations

uεt(x, t)− ε tr(Aε(x)D
2uε(x, t) + σε(x)

tDσε(x)
tDuε(x, t)) + ε−1f ε(uε(x, t)) = 0 (20)

and we prove that, whenc = 2m0 − m+ − m− 6= 0, it is described by the evolutional eikonal

equation

ut(x, t) + c| σt(x)Du(x, t)| = 0. (21)

In the study of this asymptotics we succeed in the proof of theentire result without assuming any

particular condition on the matrixσ. Obviously the front evolving according to the equation (21)

can have some pointsx in which the standard Euclidean normal vector is well-defined but it is

orthogonal to the vector fieldsσ(1)(x), . . . , σ(m)(x). We are able to prove our result also in these

points by choosing the exponentk that appears in the definition ofσε in a suitable way.

The thesis is organized as follows. In Chapter 1 we recall thedefinition of viscosity solution as

defined in [20] and we give the proof of some results that will turn out to be useful later. A complete

treatment of the subject can be found in the User’s guide [20]and in the book of Bardi and Capuzzo

Dolcetta [3]. Chapter 2 is a collection of definitions and results about front propagation. We talk



about the level-set approach to the problem (see also the book of Giga [31]) and the geometrical

approach introduced by Barles and Souganidis in [8] and thenrecovered and partially revisited by

Barles and Da Lio in [5]. See also [41]. Chapter 3 and 4 are the product of a joint work of the

author and her advisor Soravia. In Chapter 3 we treat bistable reaction-diffusion equations when

the velocity of the traveling wave solutioncε depends on the space variable andcε/τ , τ ∈ {0, 1},

converges in a suitable sense to a discontinuous function. Moreover we consider the well-posedness

of the geometric equation that describes the asymptotic behavior of these equations. These results

can be found in [22], [23], [24]. Finally Chapter 4 is about the limiting behavior of two particular

semilinear reaction-diffusion equations withx-dependent diffusion term that gives rise to some

interesting pde’s in the framework of sub-Riemannian geometry. On the contents of this last section

two papers are in preparation.



Chapter 1

Viscosity Solutions

In this preliminary chapter we just want to present the definition of viscosity solution together

with some classic results that we will use in the following chapters. For a complete treatise of the

argument we remand to [19] and [20].

We consider parabolic equations of the form

ut(x, t) + F (x,Du(x, t), D2u(x, t)) = 0, (1.1)

whereF : Rn × Rn × Sn → R andSn is the set of symmetricn × n matrices. One of the

main virtues of this theory is that it allows also to discontinuous functions to be solutions of fully

nonlinear equations of second order.

We recall that a functionf : Rn → R is upper semicontinuousif for any pointx ∈ Rn andε > 0

there existsδ > 0 such that

f(y) ≤ f(x) + ε,

for all y ∈ [x − δ, x + δ]. Similarly, f is lower semicontinuousif for any pointx ∈ Rn andε > 0

there existsδ > 0 such that

f(y) ≥ f(x)− ε,

for all y ∈ [x− δ, x+ δ].

If f : Rn → R is a generic discontinuous function we defined theupper semicontinuous envelope

of f

f ∗(x) = lim
r→0+

sup
| y−x|<r

f(y) = inf
r>0

sup
| y−x|<r

f(y),

and thelower semicontinuous envelopeof f

f∗(x) = lim
r→0+

inf
| y−x|<r

f(y) = sup
r>0

inf
| y−x|<r

f(y).
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Definition 1.0.1. (i) An upper semicontinuous functionu : Rn × (0,+∞) → R is a viscosity

subsolutionof the equation (1.1) if and only if for everyϕ ∈ C2(Rn× (0,+∞)) and for every local

maximum point(x, t) ∈ Rn × (0,+∞) of u− ϕ, we have

ϕt(x, t) + F∗(x,Dϕ(x, t), D
2ϕ(x, t)) ≤ 0.

We callϕ a test functionat (x, t) for the subsolutionu.

(ii) Similarly a lower semicontinuous functionu : Rn × (0,+∞) → R is aviscosity supersolution

of the equation (1.1) if and only if for everyϕ ∈ C2(Rn × (0,+∞)) and for every local minimum

point (x, t) ∈ Rn × (0,+∞) of u− ϕ, we have

ϕt(x, t) + F ∗(x,Dϕ(x, t), D2ϕ(x, t)) ≥ 0.

We callϕ a test functionat (x, t) for the supersolutionv.

(iii) A function u : Rn × (0,+∞) → R is aviscosity solutionof the equation (1.1) if and only ifu∗

is a viscosity subsolution of (1.1) andu∗ is a viscosity subsolution of (1.1)

Remark 1.0.2. Using a density argument it can be easily shown that an equivalent definition of

viscosity solution can be given by usingC∞(Rn × (0,+∞)) instead ofC2(Rn × (0,+∞)) as ”test

function space”.

Sometimes it is useful to consider a fully nonlinear parabolic equation like (1.1) only in bounded

time interval, i.e. we consider (1.1) inRn × (0, T ) with T < +∞. In the following proposition we

show that any viscosity subsolution (resp. supersolution)of (1.1) inRn × (0, T ) can be extended

in a suitable way to a viscosity subsolution (supersolution) of (1.1) inRn × (0, T ]. The proof is

well-known in the literature, see for example [3].

Proposition 1.0.3.Let T ∈ (0,+∞), andΩ ⊆ Rn open. We consider a Borel measurable function

F : Ω×Rn ×Sn → R and we assume thatu (resp.v): Ω× (0, T ) → R is an upper semicontinuous

viscosity subsolution (resp. lower semicontinuous supersolution) of

ut(x, t) + F (x,Du(x, t), D2u(x, t)) = 0, (x, t) ∈ Ω× (0, T ), (1.2)

and that

u(x, T ) := lim sup
(y,s)→(x,T−)

u(y, s) (resp.v(x, T ) := lim inf
(y,s)→(x,T−)

v(y, s)).

Thenu (resp.v) is a viscosity subsolution (resp. supersolution) of

ut(x, t) + F (x,Du(x, t), D2u(x, t)) = 0, (x, t) ∈ Ω× (0, T ]. (1.3)



Proof. We prove the result only for the subsolutionu. To do this we consider a pair(x̂, T ) ∈
Ω × {t = T} and a functionϕ ∈ C2((0, T ] × Rn) such that(x̂, T ) is a strict local maximum for

ψ := u− ϕ. Let r > 0 so that

ψ(x̂, T ) > ψ(x, t), for any(x, t) ∈ B(x̂, r)× (T − r, T ].

Let (xn, tn) be a maximum point of

ψn(x, t) := u(x, t)−
(

ϕ(x, t) +
1

n(T − t)

)

, n ∈ N

in B(x̂, r]× [T − r, T [. We want to prove that

(xn, tn) −→ (x̂, T ). (1.4)

Up to some subsequence,(xn, tn) −→ (x̃, t̃) ∈ B(x̂, r]× [T − r, T ], and thus, to get (1.4) we have

to prove that(x̂, T ) = (x̃, t̃). Let’s consider a sequence(x̄n, t̄n) ∈ Ω× [0, T ) such that

(x̄n, t̄n) −→ (x̂, T ), u(x̄n, t̄n) −→ u(x̂, T ) (1.5)

and
1

n(T − t̄n)
−→ 0. (1.6)

Since(x̄n, t̄n) ∈ B(x̂, r]× [T − r, T [ for n big enough, we get

ψn(x̄n, t̄n) ≤ ψn(xn, tn) = ψ(xn, tn)−
1

n(T − tn)
≤ ψ(xn, tn),

and then, by taking thelim sup asn→ +∞,

ψ(x̂, T ) ≤ lim sup
n→∞

ψ(xn, tn) ≤ ψ(x̃, t̃).

Since(x̂, T ) is a strict maximum point forψ in B(x̂, r]× [T − r, T ] we immediately get(x̂, T ) =

(x̃, t̃). Therefore (1.4) is proved.

By the definition of subsolution we get

0 ≥ ϕt(xn, tn) +
1

n(T − tn)2
+ F∗(xn, Dϕ(xn, tn), D

2ϕ(xn, tn))

≥ ϕt(xn, tn) + F∗(xn, Dϕ(xn, tn), D
2ϕ(xn, tn)),



and thus, by lettingn→ +∞,

0 ≥ lim inf
n→+∞

(ϕt(xn, tn) + F∗(xn, Dϕ(xn, tn), D
2ϕ(xn, tn)))

≥ ϕt(x̂, T ) + F∗(x̂, Dϕ(x̂, T ), D
2ϕ(x̂, T )).

Another important property of viscosity solutions is the so-called stability property, i.e. the

construction of a limit subsolution (resp. supersolution)form an arbitrary sequence of subsolutions

(resp. supersolutions) of approximate problems without any control of the derivatives.

We recall that iffε : E → R, E ⊆ Rn andε > 0 is a family of real functions, we can define the

lower weak limitat the point(x, t) ∈ E × (0,+∞) as

u(x, t) = lim inf
ε→0+

∗ uε(x, t) := lim inf
(y,s,ε)→(x,t,0+)

uε(y, s)

= sup
δ>0

inf{uε(y, s) : | x− y|, | t− s| < δ, 0 < ε < δ},

and theupper weak limit

u(x, t) = lim sup
ε→0+

∗ uε(x, t) := lim sup
(y,s,ε)→(x,t,0+)

uε(y, s)

= inf
δ>0

sup{uε(y, s) : | x− y|, | t− s| < δ, 0 < ε < δ}.

Obviouslyu is a lower semicontinuous function andu is an upper semicontinuous function.

Again, the proof of the stability result stated in the next theorem, whenF is a continuous func-

tion, can be found also in the book of Bardi and Capuzzo Dolcetta [5].

Theorem 1.0.4.Let Ω ⊆ Rn open andFε : R
n × Rn × Sn → R, ε > 0 be a family of continuous

function such that

F ∗(x, p,X) = lim sup
ε→0+

∗ Fε(x, p,X),

F∗(x, p,X) = lim inf
ε→0+

∗ Fε(x, p,X),

for any(x, p,X) ∈ Rn × Rn × Sn. We consider a family of functionsuε : Rn × (0,+∞) → R,

ε > 0 such that, for any compactumK ⊂ Rn × (0,+∞) there exists a positive constantCK such

that

sup
K

| uε| ≤ CK, for anyε > 0.

(i) If uε is an upper semicontinuous viscosity subsolution of

ut(x, t) + Fε(x,Du(x, t), D
2u(x, t)) = 0, (x, t) ∈ Ω× (0,+∞) (1.7)



for all ε > 0, then the upper weak limitu is a viscosity subsolution of (1.1) inΩ× (0,+∞);

(ii) If uε is a lower semicontinuous viscosity supersolution of

ut(x, t) + Fε(x,Du(x, t), D
2u(x, t)) = 0, (x, t) ∈ Ω× (0,+∞)

for all ε > 0, then the lower weak limitu is a viscosity supersolution of (1.1) inΩ× (0,+∞).

Proof. (i) Let ϕ ∈ C2(Ω×(0,+∞)) and(x, t) ∈ Ω×(0,+∞) be a local maximum point foru−ϕ.

It is not restrictive to assume that(x, t) is a strict local maximum point foru− ϕ. Let r > 0 so that

u(x, t)− ϕ(x, t) > u(y, s)− ϕ(y, s), | (y − x, t− s)| ≤ r, (y, s) 6= (x, t).

We want to prove that

ϕt(x, t) + F∗(x,Dϕ(x, t), D
2ϕ(x, t)) ≤ 0. (1.8)

We defineB := B((x, t), r] and we divide the proof into two steps.

STEP 1. There exists a sequence of points(xn, tn) ∈ B andǫn → 0+ so that(xn, tn) is a maximum

point foruǫn − ϕ in B and(xn, tn) −→ (x, t), uǫn(xn, tn) −→ u(x, t).

To prove this first claim we considerǫn → 0+ and a sequence of points(x(n), t(n)) such that

(x(n), t(n)) → (x, t), uǫn(x
(n), t(n)) → u(x, t), if n→ ∞.

Let (xn, tn) be a maximum point foruǫn − ϕ in B. Since(xn, tn) anduǫn(xn, tn) are two bounded

sequences, we can extract two subsequences, that we still denote with indexn, such that

(xn, tn) −→ (x̄, t̄) ∈ B, uǫn(xn, tn) −→ s.

If we sendn→ +∞ in uǫn(xn, tn)− ϕ(xn, tn) ≥ uǫn(x
(n), t(n))− ϕ(x(n), t(n)) we obtain

s− ϕ(x̄, t̄) ≥ u(x, t)− ϕ(x, t).

By the definition ofu we gets ≤ u(x̄, t̄) and so

u(x̄, t̄)− ϕ(x̄, t̄) ≥ s− ϕ(x̄, t̄) ≥ u(x, t)− ϕ(x, t).

Thus, since(x, t) is the unique maximum point foru− ϕ in B we can conclude that(x, t) = (x̄, t̄)

andu(x̄, t̄) = s = lim uǫn(xn, tn).

STEP 2. The inequality in (1.8) holds. Let(xn, tn) ∈ B, ǫn → 0+ be the sequences of Step 1. Since



uǫn is a viscosity subsolution of (1.7), withε = εn, we get

ϕt(xn, tn) + Fεn(xn, Dϕ(xn, tn), D
2ϕ(xn, tn)) ≤ 0

and thus
0 ≥ lim inf

n→+∞

(
ϕt(xn, tn) + Fεn(xn, Dϕ(xn, tn), D

2ϕ(xn, tn))
)

≥ ϕt(x, t) + F∗(x,Dϕ(x, t), D
2ϕ(x, t)).

(ii) The proof of this second statement is close to the first one and we omit it.

We now state and prove a nice proposition which allow us to restrict the choice of the test

functions in Definition 1.0.1. The first formulation of the result is given in [6] for the mean curvature

equation (3) and it is due to Barles and Georgelin. The same proof works also for more general

equation of type (1.1). Here we generalized the result of Barles and Georgelin and we repeat the

proof they give in [6].

Proposition 1.0.5.LetF : Rn×Rn×Sn → R be a locally bounded function so that for anyx ∈ Rn

F ∗(x, 0, 0) = F∗(x, 0, 0) = 0. (1.9)

Suppose moreover thatF satisfies theellipticity condition, i.e. for any(x, t) ∈ Rn × (0,+∞),

p ∈ Rn andX, Y ∈ Sn

F (x, t, p,X) ≤ F (x, t, p, Y ), if X ≥ Y. (1.10)

An upper (respectively lower) semicontinuous functionu is a viscosity subsolution (respectively

supersolution) of (1.1) if and only if for anyφ ∈ C2(Rn × (0,+∞)), if (x, t) ∈ Rn × (0,+∞) is a

local maximum (respectively minimum) point foru− φ, one has

φt(x, t) + F∗

(
x,Dφ(x, t), D2φ(x, t)

)
≤ 0 if Dφ(x, t) 6= 0 (1.11)

and

φt(x, t) ≤ 0 if Dφ(x, t) = 0 andD2φ(x, t) = 0, (1.12)

(respectively

φt(x, t) + F ∗
(
x,Dφ(x, t), D2φ(x, t)

)
≥ 0 if Dφ(x, t) 6= 0

and

φt(x, t) ≥ 0 if Dφ(x, t) = 0 andD2φ(x, t) = 0. (1.13)

Proof. We treat only the subsolution case since the other one is completely analogous. Letu be an

upper semicontinuous function that satisfies (1.11) and (1.12). We want to show thatu is a viscosity



subsolution of (1.1). Letφ be aC2-function onRn × (0,+∞) and(x, t) be a strict local maximum

point ofu−φ. The only difficult is whenDφ(x, t) = 0 andD2φ(x, t) 6= 0. In this case we consider

the function

ψε(x, y, t) =
| x− y|4

ε
+ φ(y, t),

whereε > 0. Since(x, t) is a strict maximum point ofu− φ, one can prove that there is a sequence

(xε, yε, tε) of local maximum points ofu − ψε converging to(x, x, t) asε → 0+. We have in they

variable the classical properties of a local maximum point

Dφ(yε, tε) =
4(xε − yε)| xε − yε|2

ε
(1.14)

and

D2φ(yε, tε) ≥ −4| xε − yε|2
ε

In −
8(xε − yε)⊗ (xε − yε)

ε
.

Two cases now may occur.

If Dφ(yε, tε) = 0 the equality in (1.14) implies thatxε = yε. If we fix y = yε the function

(x, t) 7−→ u(x, t) − ψε(x, yε, t) has a maximum at(xε, tε). Therefore, using thatu satisfies (1.12)

we get

φt(yε, tε) ≤ 0.

SinceD2φ(yε, tε) ≥ 0 and assumptions (1.9) and (1.10) onF , this implies

φt(yε, tε) + F∗(yε, Dφ(yε, tε), D
2φ(yε, tε)) ≤ 0.

We conclude by lettingε→ 0+. Indeed we obtain

0 ≥ lim inf
ε→0+

(
φt(yε, tε) + F∗(yε, Dφ(yε, tε), D

2φ(yε, tε))
)

≥ φt(x, t) + F∗(x,Dφ(x, t), D
2φ(x, t)).

On the contrary ifDφ(yε, tε) 6= 0 we observe that(xε, tε) is a maximum point of

(x, t) 7−→ u(x, t)− ψε(x, x− (xε − yε), t) = u(x, t)− | xε − yε|4
ε

− φ(x− (xε − yε), t)

and using (1.11), we obtain

φt(yε, tε) + F∗(xε, Dφ(yε, tε), D
2φ(yε, tε)) ≤ 0.

Again we conclude by lettingε → 0+.

Remark 1.0.6. From this last proposition it immediately follows that we can restrict the family of



test functions in the definition of viscosity sub and supersolution. Indeed ifF : Rn×Rn×Sn → R

is a locally bounded function that satisfies assumptions (1.9) and (1.10) it is not restrictive to assume

in Definition 1.0.1 that, ifu (respectivelyv) is an upper semicontinuous subsolution (resp. a lower

semicontinuous supersolution) of equation (1.1) andϕ ∈ C2(Rn × (0,+∞) is a test function foru

(resp. forv) at the point(x, t), then

Dϕ(x, t) = 0,

implies

D2ϕ(x, t) = 0.

Moreover by looking at the proof of Proposition 1.0.5 we observe that we can also assume that, if

Dϕ(x, t) = 0 thenDϕ(y, s) 6= 0 for any(y, s) 6= (x, t).

With some simple modifications of the proof of Proposition 1.0.5 we obtain the following Corol-

lary in which we further restrict the possibility of choice for test functions in Definition 1.0.1.

Corollary 1.0.7. Let k be a fixed natural number andF : Rn × Rn × Sn → R a locally bounded

function that satisfies assumptions (1.9) and (1.10). It is not restrictive to assume in Definition 1.0.1

that, if u (respectivelyv) is an upper semicontinuous subsolution (resp. a lower semicontinuous

supersolution) of equation (1.1) andϕ ∈ Ck(Rn × (0,+∞)) is a test function foru (resp. forv) at

the point(x, t), then

Dϕ(x, t) = 0,

implies

Dϕ(y, s) 6= 0, whenever(y, s) 6= (x, t),

and

∂xi1
ϕ(x, t) = ∂xi1

∂xi2
ϕ(x, t) = · · · = ∂xi1

∂xi2
. . . ∂xik

ϕ(x, t) = 0,

for anyi1, . . . , ik ∈ {1, . . . , n}.

Proof. To get this Corollary one has to repeat the proof of Proposition 1.0.5 with the functionψε

defined as

ψε(x, y, t) =
| x− y|k+1

ε
+ φ(y, t)

if k is odd, or

ψε(x, y, t) =
| x− y|k+2

ε
+ φ(y, t)

if k is even.



Chapter 2

Front Propagation

In this chapter we briefly talk about the evolution of interfaces (for example fronts or surfaces). For

a summary about the argument we remand also to the work of Souganidis [41] and the references

therein.

We start with the formulation of the problem. LetΓt be a generical interface at timet > 0,

we suppose thatΓt is the topological boundary of an open subset ofRn Ωt, i.e. Γt = ∂Ωt ⊂ Rn.

Assume moreover that, for any pointx ∈ Rn, the exterior normal vectorn(x) at Ωt in x is well

defined and thatx evolves with normal velocity

V = v(x, t,n(x), Dn(x))

wherev is a continuous function of its argument.

A classical problem to study is the following one. LetΩ0 be an open subset ofRn, study the

evolution of the interfacest 7−→ Γt moving with normal velocity

V = v(x, t,Dn(x),n(x)) (2.1)

and starting at timet = 0 from Γ0 = ∂Ω0.

As we mentioned in the Introduction one of the main problems of interface dynamics as in (2.1)

is the development of singularities in finite time, independently of the smoothness of the initial

surfaceΓ0. To interpret the evolution past the singularities it is necessary to use some weak notions

of evolving fronts. In this chapter we present two differentapproaches to the problem above. These

approaches turn out to be equivalent when the interfaceΓt has empty interior for anyt > 0 (no-

fattening phenomenon).
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2.1 The classical level set approach

We start with the so called level set approach. This approach, which is based on viscosity solutions,

was first developed independently by Evans and Spruck in [27]and by Chen, Giga and Goto in [18]

for more general geometric motions. These works were later extended by Ishii and Souganidis in

[34] and by Goto in [32] for more general motion and more general initial surfaces, see also the

work of Barles, Soner and Souganidis in [7]. For a detailed analysis of the approach we referred to

the book of Giga [31].

Problem (2.1) can be formulated in an equivalent way. Assumethat there exists a smooth func-

tion u : Rn × [0,+∞) → R such that

Γt = {x ∈ Rn : u(x, t) = 0}, Ωt = {x ∈ Rn : u(x, t) > 0} and Du 6= 0 onΓt

it can be easily seen that

V =
ut

|Du| , n = − Du

|Du| and Dn = − 1

|Du|
(

I − Du⊗Du

|Du|2
)

D2u

and so the equation (2.1) becomes

ut = F (x, t,Du,D2u) (2.2)

with F defined as

F (x, t, p,X) = |p|v
(

x, t,− p

|p| ,−
1

|p|(I−
p⊗ p

|p|2 )X
)

, (x, t, p,X) ∈ Rn× (0+∞)×Rn×Sn,

whereSn denote the space of then × n symmetric matrices. Obviously this means thatF is

smooth asv with possible discontinuity atp = 0 and thatF is geometric, i.e. it satisfies, for any

(x, t) ∈ Rn × (0,+∞), p ∈ Rn andX ∈ Sn,

F (x, t, λp, λX + µ(p⊗ p)) = λF (x, t, p,X) for all λ > 0 andµ ∈ R.

In this formal reasoning we have derived equation (2.2) from(2.1). In the so calledlevel-set

approachone wants to solve the interface evolution equation (2.1) starting at a givenΓ0 = ∂Ω0

looking at the (viscosity) solutions of (2.2). To do this we take an auxiliary functionu0 : R
n → R,

at least continuous and such that

Γ0 = {x ∈ Rn : u0(x) = 0}, Ω0 = {x ∈ Rn : u0(x) > 0}.



The assumption thatu0 is positive inΩ0 gives the orientation ofΓ0; in fact, with this choice ofu0
the normal unit vector toΓ0, outward toΩ0 is given byn = Du0/|Du0|.
Once functionu0 is chosen one solve (2.2) with initial datau(x, 0) = u0(x) and define for any

t > 0,

Γt = {x ∈ Rn : u(x, t) = 0}, Ωt = {x ∈ Rn : u(x, t) > 0}.

In order to consider the collection of pair(Γt,Ωt)t≥0 as a kind of generalized solution of our evolu-

tion problem with initial data(Γ0,Ω0) it is necessary to prove that, under some suitable hypotesis,

(Γt,Ωt)t≥0 depends only on(Γ0,Ω0) and not on the particular functionu0.

In conclusion the main issues to follow the approach above will be:

• the well-posedness of the Cauchy problem

{

ut(x, t) = F (x, t,Du(x, t), D2u(x, t)), (x, t) ∈ Rn × (0,+∞),

u(x, 0) = uo(x), x ∈ Rn;
(2.3)

• the uniqueness of thegeneralized evolution(Γt,Ωt, Ω̄
c
t)t>0 once(Γ0,Ω0, Ω̄

c
0) is given.

The first issue will be developed under particular assumptions onF in the next chapters. In this

section we want to treat the second topic, i.e. we want to discuss whetherΓt depends only onΓo

and not on the particular choice of the functionuo. The issue was settled in [7], [41] and in the book

of Giga [31]. We start with a rigorous definition.

Definition 2.1.1. Consider an open setΩo ∈ Rn. A collection of pair(Γt,Ωt)t≥0 is a level set

evolutionof (Γo = ∂Ωo,Ωo) with normal velocityV = v if there exists a viscosity solution of (2.2)

such that, for anyt ≥ 0,

Γt = {x ∈ Rn : u(x, t) = 0}, Ωt = {x ∈ Rn : u(x, t) > 0},

and

Γ0 = Γo, Ω0 = Ωo.

To prove that this is a good definition we will assume that the functionF satisfies the following

assumptions.

(F1) F is a real-valued, locally bounded function onRn × (0,+∞)× Rn × Sn and satisfying

F ∗(x, t, 0, 0) = F∗(x, t, 0, 0), for all (x, t) ∈ Rn × (0,+∞); (2.4)

(F2) F satisfies theellipticity condition, i.e. for any(x, t) ∈ Rn× (0,+∞), p ∈ Rn andX, Y ∈ Sn

F (x, t, p,X) ≤ F (x, t, p, Y ), if X ≥ Y ; (2.5)



(F3) finally F has to begeometric, i.e., as already said,

F (x, t, λp, λX + µ(p⊗ p)) = λF (x, t, p,X) for all λ > 0 andµ ∈ R (2.6)

for every(x, t) ∈ Rn × (0,+∞), p ∈ Rn andX ∈ Sn.

Moreover we suppose that a comparison result holds for (2.2)that is

(CP)

if there exist two functionsu andv, respectively a viscosity sub- and super-solution of (2.2)

in Rn × (0, T ) so thatu(x, 0) ≤ v(x, 0) for anyx ∈ Rn, thenu(x, t) ≤ v(x, t), for any

(x, t) ∈ Rn × [0, T ].

We state a Proposition in which we claim that, ifF is geometric, then equation (2.2) is invariant

by nondecreasing changes of variableu 7→ θ(u).

Proposition 2.1.2.Assume thatF satisfies assumptions(F1), (F2) and(F3) above and letθ : R →
R be a continuous and nondecreasing function. Ifu is a viscosity subsolution (resp. supersolution)

thenθ(u) is also a viscosity subsolution (resp. supersolution).

Proof. We omit it. Anyway this proof can be found in [18].

The invariance by nondecreasing changes of variable of geometric equations is a crucial point

to prove the following theorem in which the uniqueness of thelevel set evolution of a pair(Γo,Ωo)

becomes clear.

Theorem 2.1.3.Assume that the comparison principle (CP) holds for the equation (2.2). Ifu and

v are two continuous solutions of the equation (2.2) inRn × [0,+∞) so that

{x : u(x, 0) > 0} = {x : v(x, 0) > 0}, {x : u(x, 0) < 0} = {x : v(x, 0) < 0},

{x : u(x, 0) = 0} = {x : v(x, 0) = 0}

and

lim
| x|→+∞

| u(x, 0)|, lim
| x|→+∞

| v(x, 0)| > 0.

Then, for allt > 0,

{x : u(x, t) > 0} = {x : v(x, t) > 0}, {x : u(x, t) < 0} = {x : v(x, t) < 0},

and{x : u(x, t) = 0} = {x : v(x, t) = 0}.

Proof. For the proof of this result we refer to [18] or to the book of Giga [31].



The properties and the regularity of the level set evolutionhave been the object of extensive

study. One of the more basic question is whether the so-called fattening phenomenonoccurs, i.e.

whether the set
⋃

t>0

Γt × {t} has an interior. We give a more precise definition.

Definition 2.1.4. Let (Γt,Ωt)t be the level set evolution of(Γo = ∂Ωo,Ωo). We say that theno-

interior condition holds for(Γt)t≥0 if

cl{(x, t) : u(x, t) > 0} = {(x, t) : u(x, t) ≥ 0} and

int{(x, t) : u(x, t) ≥ 0} = {(x, t) : u(x, t) > 0},
(2.7)

where u is a solution of the level set pde (2.2) null inΓo and strictly positive inΩo.

Clearly if the no-interior condition in (2.7) holds then theset∪t≥0(Γt×{t}) has an empty interior

in Rn × [0,+∞). In most examples it can be proved that this is equivalent to prove thatΓt has an

empty interior inRn for any t ≥ 0. From now on we always denote with(Γt,Ω
+
t )t the level set

evolution of(Γo,Ωo). Moreover for anyt > 0 we putΩ−
t = Γt ∪ Ωt

c
.

Theorem 2.1.5.Suppose thatF satisfies (2.4) and (2.6).

(i) The two functionsχ(x, t) = 1Ω+
t ∪Γt

(x)− 1Ω−
t
(x), χ(x, t) = 1Ω+

t
(x)− 1Ω−

t ∪Γt
(x) are viscosity

solutions of (2.2) associated respectively with the discontinuous initial datawo = 1Ω+
o ∪Γo

−
1Ω−

o
andwo = 1Ω+

o
− 1Ω−

o ∪Γo
.

(ii) Suppose thatΓo has an empty interior and that a comparison result (CP) holds for the equation

(2.2). Then the Cauchy problem for (2.2) associated with theinitial datawo = 1Ω+
o
−1Ω−

o
has

a unique discontinuous solution if and only if the no-interior condition (2.7) holds, and this

solution is given by the function

χ(x, t) = 1Ω+
t
(x)− 1Ω−

t
(x). (2.8)

Remark 2.1.6. In the above statement, uniqueness of discontinuous solutions is meant in the sense

that u, w are locally bounded,u(x, 0) = w(x, 0) = wo(x) andu, w are continuous at(x, 0) ∈
Ω+

o ∩ Ω−
o andu∗ = w∗, u∗ = w∗ in Rn × [0,+∞).

Proof. In [7, 41], Barles, Soner and Souganidis proves this result whenF is a function continuous

in Rn × (0,+∞) × Rn\{0} × Sn. Here we slightly modify their proof to obtain the result fora

generic geometric functionF satisfying (2.4).

(i) The first statement of the theorem follows from the stability of viscosity solutions which holds

for discontinuous equations as well (see Theorem 1.0.4). Toprove that the functionχ(x, t) is a

solution of (2.2) associated with the initial datumwo = 1Ω+
o
− 1Ω−

o ∪Γo
, we consider the change of



variablesψǫ(r) = tanh
(r −√

ǫ

ǫ

)
. Since for everyǫ > 0 the functionψǫ in strictly increasing we

also have that everyuǫ(x, t) = ψǫ(u(x, t)) is a continuous viscosity solution of (2.2) associated with

the initial datumψǫ(uo). Moreover we can easily see thatχ∗(x, t) = lim sup
ε→0+

∗ uǫ(x, t), χ(x, t) =

χ
∗
(x, t) = lim inf

ε→0+
∗ u

ǫ(x, t) and hence, by the stability property of viscosity sub/supersolutions,χ is

a discontinuous viscosity solution of (2.2).

(ii) Now we assume thatΓo has empty interior. If the set{u = 0} doesn’t satisfy (2.7) by point

(i) we have thatχ andχ have different semicontinuous envelopes and are both solutions of the

Cauchy problem. To deal with the other implication, assume on the contrary that condition (2.7)

holds and letχ as in (2.8). Thenχ∗ = χ, χ∗ = χ and so, by (i),χ is a solution of (2.2). The

proof of uniqueness follows the argument in [7, 41] once we have assume that a comparison result

holds for the equation (2.2). Indeed ifw is a discontinuous solution of (2.2) with discontinuous

initial conditionwo = 1Ω+
o
− 1Ω−

o
, then by comparison principle−1 ≤ w ≤ 1 in Rn × [0,+∞).

Consider now a family of increasing smooth functions{ψn}n such that−1 ≤ ψn ≤ 1, ψn(r) = 1

if r ≥ 0 and inf
n
ψn = −1 in (−∞, 0). By the comparison principle, we obtain that for alln,

w ≤ w∗ ≤ ψn(u), whereu is the solution of (2.3) and thusw = −1 in Ω−
t . Similarly one proves

thatw = 1 in Ω+
t and we conclude by the no-interior condition.

2.2 Generalized propagation of fronts

An equivalent way to study the evolution of a collection of hypersurfaces is the so calledgeneralized

propagation of frontsintroduced for the first time by Barles and Souganidis in [8],see also [41], and

then reformulated (and partially revisited) by Barles and Da Lio in [5] for bounded domains with

Neumann boundary condition.

In this section we denote with(Ωt)t∈(0,T ) a family of open subsets ofRn and we setΓt = ∂Ωt,

for anyt ≥ 0. The signed distance functiond(x, t) from x to Γt is defined by

d(x, t) =

{

d(x,Γt) if x ∈ Ωt,

−d(x,Γt) otherwise,

whered(x,Γt) denotes the usual non negative distance fromx ∈ Rn to Γt. If Γt is a smooth

hypersurface, thend is a smooth function in a neighborhood ofΓt, and forx ∈ Γt, n(x, t) =

−Dd(x, t) is the unit normal toΓt pointing away fromΩt. Again we assume that the functionF

satisfies assumptions(F1), (F2)and(F3).

We recall here the definition of generalized flow inRn but in the formulation given in [5].

Definition 2.2.1. Let F be a real-valued, locally bounded function onRn × [0,+∞) × Rn × Sn.

A family (Ωt)t∈(0,T ) (resp. (Ft)t∈(0,T )) of open (resp. close) subsets ofRn is called ageneralized



superflow(resp.subflow) with normal velocity−F (x, t,Dd,D2d) if, for any x0 ∈ Rn, t ∈ (0, T ),

r > 0, h > 0 so thatt + h < T and for any smooth functionφ : Rn × [0, T ] → R such that:

(i) ∂φ(x, s)/∂t + F ∗(x, s,Dφ(x, s), D2φ(x, s)) < 0 in B(x0, r] × [t, t + h] (resp.∂φ(x, s)/∂t +

F∗(x, s,Dφ(x, s), D
2φ(x, s)) > 0 in B(x0, r]× [t, t + h]),

(ii) for anys ∈ [t, t + h], {x ∈ B(x0, r] : φ(x, s) = 0} 6= ∅ and

|Dφ(x, s)| 6= 0 on{(x, s) ∈ B(x0, r]× [t, t + h] : φ(x, s) = 0},

(iii) {x ∈ B(x0, r] : φ(x, t) ≥ 0} ⊂ Ωt (resp.{x ∈ B(x0, r] : φ(x, t) ≤ 0} ⊂ F c
t ),

(iv) for all s ∈ [t, t + h], {x ∈ ∂B(x0, r] : φ(x, s) ≥ 0} ⊂ Ωs (resp.{x ∈ ∂B(x0, r] : φ(x, s) ≤
0} ⊂ F c

s ),

then we have

{x ∈ B(x0, r] : φ(x, s) > 0} ⊂ Ωs, (resp.{x ∈ B(x0, r] : φ(x, s) < 0} ⊂ F c
s , )

for everys ∈ (t, t+ h).

A family (Ωt)t∈(0,T ) of open subsets ofRn is called ageneralized flowwith normal velocity−F
if (Ωt)t∈(0,T ) is a superflow and(Ωt)t∈(0,T ) is a subflow.

Remark. In smooth classical flows, if we change orientation, i.e., ifwe consider−d instead ofd

and we look at the motion of(Ωc
t)t∈(0,T ) instead of(Ωt)t∈(0,T ), then we have to consider as prescribed

normal velocityV = −v(x, t,−n,−Dn) instead ofV = v(x, t,n, Dn). This elementary fact still

holds in Definition 2.2.1. Indeed it can be easily shown that(Ωt)t∈(0,T ) is a generalized superflow

with normal velocity−F (x, t,Dd,D2d) if and only if (Ωc
t)t∈(0,T ) is a generalized subflow with

normal velocityF (x, t,−Dd,−D2d).

In the study of the evolution of a family of hypersurfaces thetwo approaches described, the level

set approach and the notion of generalized sub- and superflow, turn out to be equivalent, as we claim

in the following results.

Theorem 2.2.2. (i) Let (Ωt)t∈(0,T ) be a family of open subsets ofRn such that the setΩ,

Ω :=
⋃

t∈(0,T )

Ωt × {t}, is open inRn × [0, T ]. Then(Ωt)t∈(0,T ) is a generalized superflow with

normal velocity−F if and only if the functionχ = 1Ω − 1Ωc is a viscosity supersolution of

(2.2).



(ii) Let (Ft)t∈(0,T ) be a family of close subsets ofRn such that the setF :=
⋃

t∈(0,T )

Ft×{t} is closed

in Rn× [0, T ]. Then(Ft)t∈(0,T ) is a generalized subflow with normal velocity−F if and only

if the functionχ = 1F − 1Fc is a viscosity subsolution of (2.2).

Proof. The proof follows the one in [5] although here the functionF may be discontinuous in the

x variable. We give here in detail the superflow/supersolution case.

We first assume thatχ = 1Ω − 1Ωc is a supersolution of (2.2) and we show that(Ωt)t∈(0,T ) is a

generalized superflow. To do this we consider a smooth functionφ, a point(x0, t) ∈ Rn × (0, T )

andr, h > 0 satisfying conditions (i), (ii), (iii), (iv) in Definition 2.2.1. We assume thatφ ≤ 1

in B(x0, r] × [t, t + h](otherwise we changeφ with ηφ for η > 0 small enough and we use the

assumption (2.6) onF ). We consider

m := min{χ(x, s)− φ(x, s) : (x, s) ∈ B(x0, r]× [t, t+ h]}

Sinceφ satisfies condition (i) andχ is a supersolution of equation (2.2) inB(x0, r)× (t, t+ h) and,

by Proposition 1.0.3 also inB(x0, r)× (t, t+ h], the minimumm cannot be attained inB(x0, r)×
(t, t+ h]. Therefore it has to be attained either in∂B(x0, r) or at timet.

We observe that, for any(x, s) ∈ (∂B(x0, r)× [t, t+ h]) ∪ (B(x0, r]× {t}),
if x ∈ Ωs, thenχ(x, s) = 1 and(χ− φ)(x, s) ≥ 0 becauseφ ≤ 1 in B(x0, r]× [t, t+ h],

if x 6∈ Ωs, thenχ(x, s) = −1 and, by (iii) and (iv),(χ− φ)(x, s) ≥ −1 + δ with δ > 0.

Anyway we can conclude thatm ≥ −1 + δ and so if(y, s) ∈ B(x0, r]× [t, t + h] andy 6∈ Ωs, we

have

χ(y, s)− φ(y, s) ≥ −1 + δ,

i.e. φ(y, s) ≤ −δ. This means that for everys ∈ [t, t+ h],

{y ∈ B(x0, r] : φ(y, s) ≥ 0} ∩ Ωc
s = ∅,

which implies that(Ωt)t∈(0,T ) is a generalized superflow with normal velocity−F .

Conversely, we assume that(Ωt)t∈(0,T ) is a generalized superflow and we show thatχ is a super-

solution of the equation (2.2) inRn × (0, T ). To this aim we consider a point(x, t) ∈ Rn × (0, T )

and a functionφ ∈ C∞(Rn× [0, T ]) so that(x, t) is a strict local minimum point ofχ−φ. Changing

φ to φ− φ(x, t), if necessary, we may assume thatφ(x, t) = 0. We have to show that

∂φ

∂t
(x, t) + F ∗(x, t,Dφ(x, t), D2φ(x, t)) ≥ 0. (2.9)

If (x, t) is in the interior of either{χ = 1} or {χ = −1} thenχ is constant in a neighborhood of

(x, t) and therefore∂tφ(x, t) = 0, Dφ(x, t) = 0 andD2φ(x, t) ≤ 0. Thanks to assumptions (2.4)



and (2.5) onF the inequality in (2.9) thus follows.

Assume that(x, t) ∈ ∂{χ = 1} ∩ ∂{χ = −1}. The lower semicontinuity ofχ yieldsχ(x, t) =

−1. We suppose by contradiction that the inequality in (2.9) doesn’t hold; therefore, for some

α > 0, we have
∂φ

∂t
(x, t) + F ∗(x, t,Dφ(x, t), D2φ(x, t)) < −α.

Sinceφ is smooth andF ∗ is upper semicontinuous, we can findr, h > 0 such that for all(y, s) ∈
B(x, r]× [t− h, t+ h],

∂φ

∂t
(y, s) + F ∗(y, s,Dφ(y, s), D2φ(y, s)) < −α

2
. (2.10)

Moreover, since(x, t) is a strict local minimum point ofχ−φ, by taking smallerr andh if necessary,

we can assume also, for(y, s) ∈ B(x, r]× [t− h, t+ h] and(y, s) 6= (x, t),

χ(x, t)− φ(x, t) = −1 < χ(y, s)− φ(y, s). (2.11)

We first consider the case|Dφ(x, t)| 6= 0. For0 < δ ≪ 1, we introduce the test functionφδ(y, s) :=

φ(y, s) + δ(s − (t − h)). Sinceφ(x, t) = 0 andDφ(x, t) 6= 0, it is easy to see that ifh andδ are

small enough then, for anyt − h ≤ s ≤ t + h, the set{y ∈ B(x, r) : φδ(y, s) = 0} is non empty.

Moreover choosing smallerr, h andδ, we may also assume that|Dφ| 6= 0 inB(x, r]× [t−h, t+h].
We observe that, forδ > 0 small enough, because of (2.10) and (2.11), we have both

φδ(y, s)− 1 < χ(y, s) (2.12)

for all (y, s) ∈ (B(x, r)× {t− h}) ∪ (∂B(x, r)× [t− h, t + h]) and

∂φ

∂t
(y, s) + F ∗(y, s,Dφ(y, s), D2φ(y, s)) < −α

4

for all (y, s) ∈ B(x, r]× [t− h, t+ h]. The inequality in (2.12) implies that

{y ∈ B(x, r] : φδ(y, t− h) ≥ 0} ⊂ Ωt−h,

and for alls ∈ [t− h, t+ h],

{y ∈ ∂B(x, r) : φδ(y, s) ≥ 0} ⊂ Ωs.

By the definition of superflow this yield

{y ∈ B(x, r] : φδ(y, s) > 0} ⊂ Ωs,



for everys ∈ (t − h, t + h). But, sinceφδ(x, t) = δh > 0, we deduce thatx ∈ Ωt, and this is a

contradiction.

Now we turn to the case when| Dφ(x, t)| = 0. We can assume without loss of generality that

D2φ(x, t) = 0 as well, see Proposition 1.0.5. Thus, to prove (2.9), we haveto show that

∂φ

∂t
(x, t) ≥ 0.

Suppose by contradiction thata :=
∂φ

∂t
(x, t) < 0. We have

φ(y, s) = φ(x, t)
︸ ︷︷ ︸

=0

+
∂φ

∂t
(x, t)(s− t) + o(| s− t|) + o(| y − x|2) ass→ t, | y − x| → 0.

Thus, for allε > 0, there existr = rε, h = hε, h
′ = h′ε > 0 such that

h < −εr
2

a

and, for any(y, s) ∈ B(x, r]× [t− h, t+ h′]

φ(y, s) ≥ a(s− t) +
a

2
| s− t| − ε| y − x|2

=
a

2
(s− t) + a(s− t)+ − ε| y − x|2

≥ a

2
(s− t)− ε| y − x|2 + ah′.

By (2.11) we can takeβ > 0 such that

2β + φ(y, s)− 1 < χ(y, s)

for all (y, s) ∈ (B(x, r]×{t− h})∪ (∂B(x, r)× (t− h, t+ h′)). By takingβ smaller we may also

supposeβ < εr2/2. We consider the functionψβ(y, s) = (a/2)(s− t)− ε| y − x|2 + β. Since we

can takeh′ smaller we assume from now on thath′ ≤ −β/a. Combining the last two inequalities

and the assumptions onβ, h, h′ andr we get

ψβ(y, s)− 1 < χ(y, s) (2.13)

for all (y, s) ∈ (B(x, r] × {t − h}) ∪ (∂B(x, r) × [t − h, t + h′]). Furthermore consider a fixed

s ∈ [t− h, t+ h′]. We haveψβ(x, s) = a(s− t)/2 + β ≥ ah′/2 + β > 0 and

ψβ(y, s) =
a

2
(s− t)− εr2 + β ≤ −ah + εr2

2
≤ 0



for | y − x| = r. Thus the set{y ∈ B(x, r] : ψβ(y, s) = 0} is non empty and| Dψβ(y, s)| 6= 0 for

every(y, s) ∈ {B(x, r]× [t− h, t+ h′] : ψβ(y, s) = 0}.

SinceF ∗ is upper semicontinuous andF ∗(y, s, 0, 0) = 0 for anyy ands, for smallε we have

a

2
+ F ∗(y, s,−2ε(y − x),−2εI) < 0 onB(x, r]× [t− h, t+ h′].

Finally by (2.13) we get

{y ∈ B(x, r] : ψβ(y, t− h) ≥ 0} ∈ Ωt−h,

and for alls ∈ [t− h, t+ h′],

{y ∈ ∂B(x, r) : ψβ(y, s) ≥ 0} ∈ Ωs.

Thus, since(Ωt)t is a generalized superflow, we have

{y ∈ B(x, r] : ψβ(y, s) > 0} ∈ Ωs

for any s ∈ (t − h, t + h′). But againψβ(x, t) = β > 0, and this meansx ∈ Ωt, which is a

contradiction.

Corollary 2.2.3. Assume to have two families of open subsets ofRn, (Ω1
t )t∈[0,T ) and(Ω2

t )t∈[0,T ) such

that(Ω1
t )t∈(0,T ) and((Ω2

t )
c)t∈(0,T ) are respectively super- and subflows with normal velocity−F and

also∪t∈(0,T )Ω
1
t × {t}, ∪t∈(0,T )Ω

2
t × {t} are open and disjoint. Suppose moreover that there exists

(∂Ω+
0 ,Ω

+
0 ,Ω

−
0 ) ∈ E such thatΩ+

0 ⊆ Ω1
0 andΩ−

0 ⊆ Ω2
0. Then, if we denote with(Γt,Ω

+
t ,Ω

−
t )t∈(0,T )

the level set evolution of(∂Ω+
0 ,Ω

+
0 ,Ω

−
0 ), we have:

(i) for all t ∈ [0, T ),

Ω+
t ⊂ Ω1

t ⊂ Ω+
t ∪ Γt, Ω−

t ⊂ Ω2
t ⊂ Ω−

t ∪ Γt,

(ii) if
⋃

t

Γt × {t} satisfies the no-interior condition (2.7), then for allt ∈ [0, T ),

Ω+
t = Ω1

t , Ω−
t = Ω2

t .

Proof. The proof of this theorem follows by combining the results inTheorem 2.1.5 and in Theorem

2.2.2.



2.3 Applications to the asymptotics of reaction-diffusionequa-

tions. The abstract method

In this section we present an abstract method to study the asymptotic behavior of solutions to semi-

linear reaction-diffusion equations by means of generalized sub- and superflows. We do this follow-

ing the ideas explained in [8] and in [5].

Consider a given family(uε)ε of bounded functions onRn × [0, T ], typically the solution of a

Cauchy problem for a reaction-diffusion equation with small parameterε > 0. Our aim will be to

prove that, for anyt ∈ [0, T ], there exist two regionsΩ1
t andΩ2

t where theuε(·, t)’s are close to

two different values, and to study the evolution of the moving front t 7→ Γt that separatesΩ1
t and

Ω2
t . The key point will be to prove that(Ω1

t )t∈(0,T ) and((Ω2
t )

c)t∈(0,T ) are respectively a super and a

subflow with normal velocity determined by the data of the problem. In other words we will prove

that there exists a generalized flow(Γt,Ω
1
t ,Ω

2
t )t∈[0,T ) such that, asε→ 0,

uε(x, t) → b(x, t) if (x, t) ∈ Ω1 :=
⋃

t∈(0,T )

Ω1
t × {t},

uε(x, t) → a(x, t) if (x, t) ∈ Ω2 :=
⋃

t∈(0,T )

Ω2
t × {t},

where, for all(x, t) ∈ Rn × [0, T ], a(x, t), b(x, t) ∈ R can be interpreted as the stable equilibria

of the system. To be more precise we first assume that there exist sequences(aε)ε and (bε)ε of

real-valued functions defined inRn × [0, T ] such that

aε(x, t) ≤ uε(x, t) ≤ bε(x, t), for any(x, t) ∈ Rn × [0, T ],

andaε → a, bε → b uniformly in Rn × [0, T ] asε → 0. Then we define two open setsΩ1 andΩ2,

and two families(Ω1
t )t∈(0,T ) and(Ω2

t )t∈(0,T ) by putting, for some suitableτ ≥ 0,

Ω1 = Int
{

(x, t) ∈ Rn × [0, T ] : lim inf
ε→0+

∗

[uε − bε
ετ

]

(x, t) ≥ 0
}

Ω2 = Int
{

(x, t) ∈ Rn × [0, T ] : lim sup
ε→0+

∗
[uε − aε

ετ

]

(x, t) ≤ 0
}

,
(2.14)

and, for allt ∈ (0, T ),

Ω1
t = {x ∈ Rn : (x, t) ∈ Ω1} = prRn(Ω1 ∩ (Rn × {t})),

Ω2
t = {x ∈ Rn : (x, t) ∈ Ω2}.

(2.15)

ObviouslyΩ1 = ∪t∈(0,T )Ω
1
t × {t}, Ω2 = ∪t∈(0,T )Ω

2
t × {t}. SinceΩ1 andΩ2 are open and disjoint



subsets ofRn × (0, T ) the two step functionsχ andχ, defined as

χ(x, t) = 1Ω1 − 1(Ω1)c , χ(x, t) = 1(Ω2)c − 1Ω2 (2.16)

are respectively lower and upper semicontinuous inRn×(0, T ). Finally we observe thatχ, χ can be

extended by lower and upper semicontinuity to the whole ofRn × [0, T ]. For simplicity of notation

we’ll call againχ andχ these extensions.

The proof of the asymptotics result for our functionsuε can be divided into the following three

main steps.

1. Initialization: we define the tracesΩ1
0 andΩ2

0 of Ω1 andΩ2 for t = 0 as

Ω1
0 = {x ∈ Rn : χ(x, 0) = 1}, Ω2

0 = {x ∈ Rn : χ(x, 0) = −1}. (2.17)

We do this by constructing suitable sub and supersolutions of theuε’s equation in the setRn×(0, h̄),

with h̄ small enough.

2. Propagation: we show that(Ω1
t )t∈(0,T ) and((Ω2

t )
c)t∈(0,T ) are respectively a generalized subflow

and a generalized superflow with normal velocity−F . To do this we have to construct suitable

smooth sub- and supersolutions to the Cauchy problem satisfied byuε in sets of the formB(x, r]×
[t, t + h] with Dirichlet boundary conditions on∂B(x, r) × [t, t + h]. We just notice that, unlike

the first step, we build these sub- and supersolutions locally in space but not in time sinceh is not

suppose to be small.

3. Conclusion: we conclude our proof by applying Corollary 2.2.3 to(Ω1
t )t∈[0,T ) and((Ω2

t )
c)t∈[0,T ).



Chapter 3

Discontinuous velocities

In their paper [7], Barles, Soner and Souganidis consider reaction-diffusion equations of the form

φt −∆φ + f ε(x, t, φ) = 0 in Rn × (0,+∞)

with the two scalings(x/ε, t/ε) and(x/ε, t/ε2). These give rise to two different singular perturba-

tion problems

uεt − ε∆uε +
f ε(x, t, uε)

ε
= 0 in Rn × (0,+∞), (3.1)

and

uεt −∆uε +
f ε(x, t, uε)

ε2
= 0 in Rn × (0,+∞), (3.2)

with initial datum

uε(x, 0) = g(x),

whereg is a given function that initializes the front andu 7−→ f ε(x, t, u) is a cubic type function,

i.e., it has two stable and one unstable equilibria. Classical examples off ε are

f ε(x, t, q) = 2(q − α(x, t))(q2 − 1) + εθ (3.3)

and

f ε(x, t, q) = 2(q − εα(x, t))(q2 − 1), (3.4)

whereα ∈ W 1,∞(Rn × [0,+∞)) ∩ C(Rn × [0,+∞)), θ ∈ R are given andα takes values in

(−1, 1). If, as in (3.3), the unstable equilibrium off ε converges locally uniformly asε → 0+ to

some continuum functionα then the fronts that described the asymptotics of the Cauchyproblem

for (3.1) propagate with normal velocity

V = α.
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On the contrary in (3.4) the unstable equilibrium off ε goes uniformly to zero whenε → 0+ and

one has to go to the following scaling(x/ε, t/ε2), i.e. one has to consider the equation (3.2). The

interface that describes the limiting behavior of the solutions of the Cauchy problem (3.2) moves

with normal velocity

V = α +
1

t
κ.

In this chapter we want to generalize these results allowingto the functionα : Rn → [−1, 1]

to be a bounded measurable function, piecewise continuous across an oriented, closed and Lipshitz

hypersurfacẽΓ ⊂ Rn. Indeed we consider reaction terms of typef ε : R× Rn → R

f ε(q, x) := 2
(

q − cε(x)

2

)

(q2 − 1)

with −1 < cε/2 < 1. When the unstable equilibrium satisfies

cε(x)

2
−−−→
ε→0+

α(x), locally uniformly off the hypersurfacẽΓ ⊂ Rn,

and the initial conditiong represents a sharp interface acrosscε/2 we consider the Cauchy problem

for the reaction-diffusion equation (3.1) and we prove thatthe limiting behavior of its solutions is

governed by the following first order Hamilton-Jacobi equation

{

(i) ut(x, t) + α(x)|Du(x, t)| = 0, (x, t) ∈ Rn × (0,+∞),

(ii) u(x, 0) = uo(x), x ∈ Rn.
(3.5)

The initial conditionuo is chosen in such a way that the initial frontΓo = {x ∈ Rn : uo(x) =

0} = {x ∈ Rn : g(x) =
α(x)

2
} is a nonempty and closed set (ideally an hypersurface). Moreover

uo(x) > 0 (resp.uo(x) < 0) if g(x) >
α(x)

2
(resp.g(x) <

α(x)

2
).

On the contrary if

cε(x)

ε
−−−→
ε→0+

α(x), locally uniformly off Γ̃ ⊂ Rn,

the equilibriumcε goes to zero uniformly onRn and the asymptotic of the Cauchy problem for (3.2)

is described by the geometric Hamilton-Jacobi equation

ut + α(x)|Du| − tr
[(

I − Du

|Du| ⊗
Du

|Du|
)

D2u
]

= 0, in Rn × (0,+∞). (3.6)

The technique used to study the asymptotics we are looking atfollows the ideas of Barles and

Souganidis in [8] and then partially revisited by Barles andDa Lio in [5]. We briefly described this



approach in Chapter 2. As we said in the Introduction the novelty of the problem we consider here

is that now the convergence of the sequencecε/ετ , τ ∈ {0, 1}, occurs off the discontinuity set of

α. This compel us to approximate the standard definition of generalized sub- and superflows with

normal velocity−α by means of continuous velocities. We prove that this is possible in Propositions

3.1.6 and 3.3.4. Finally we point out that in our relaxed assumptions the terms‖Dcε‖∞ and‖∆cε‖∞
may blow up asε → 0+. To overcome this difficulty we have to link their blow up rateto the

parameterε.

3.1 Asymptotics of reaction diffusion equation

3.1.1 Main assumptions

We are now ready to study the asymptotic behavior of the solutions of the Cauchy problem

{

(i) uεt (x, t)− ε∆uε(x, t) + ε−1f ε(uε, x) = 0 in Rn × (0,+∞),

(ii) uε(x, 0) = g(x) in Rn.
(3.7)

Throughout this section we will suppose thatg ∈ C(Rn), −1 ≤ g ≤ 1 while f ε ∈ C2(R × Rn),

satisfies the following properties, whereγ, ρ ∈ (0, 1):







for anyx ∈ Rn,

f ε(·, x) has exactly three zeroes− 1, mε
o(x), 1, with 0 < ρ < mε

o(x) < 1− ρ,

f ε(·, x) > 0 in (−1, mε
o(x)) ∪ (1,+∞) andf ε(·, x) < 0 in (−∞,−1) ∪ (mε

o(x), 1),

f ε
q (q, x) ≥ γ for all q ∈ (−∞,−1 + γ] ∪ [1− γ,+∞),

f ε
qq(−1, x) < 0 andf ε

qq(1, x) > 0,

(3.8)

and also, ifk ∈ [0,
1

2
],







for every compactK ⊂ R there existC = C(K), Ci = Ci(K) > 0, i = 1, 2

such that, for all(q, x) ∈ K × Rn, 1 ≤ i, j ≤ n,

|f ε
q (q, x)|, |f ε

qq(q, x)| ≤ C, |f ε
xi
(q, x)|, |f ε

xiq
(q, x)| ≤ C1

εk
, |f ε

xixj
(q, x)| ≤ C2

ε2k
.

(3.9)

Below we denote withm(x) = lim sup
ε→0+

∗ mε
o(x), m(x) = lim inf

ε→0+
∗ m

ε
o(x) the upper semicontinuous

and, respectively, lower semicontinuous half relaxed limits of the family{mε
o(·) : ε > 0}. We also

assume onf that:



for every compactK1 ⊂ Rn andm1 > sup
x∈K1

m(x),m2 < inf
x∈K1

m, there are two functions

f̄ , f ∈ C2(R) satisfying(3.8), (3.9)

with zeroes in{−1, m1, 1}, {−1, m2, 1} respectively,

andf ≤ f ε ≤ f, for all x ∈ K1, q ∈ [−1, 1], ε > 0 sufficiently small.

(3.10)

As we said before a typical example for the functionf ε is

f ε(q, x) := 2
(

q − cε(x)

2

)

(q2 − 1). (3.11)

It satisfies all the assumptions listed above withmε
o(x) = cε(x)/2, provided that

cε ∈ C2(Rn), 0 < ρ < cε(x)/2 < 1− ρ,

| ∂xi
cε(x)| ≤ C1

εk
, | ∂2xixj

cε(x)| ≤ C2

ε2k
, ∀x ∈ Rn, i, j ∈ {1, . . . n},

(3.12)

and in (3.10) we can choosef(q) := 2(q −m1)(q
2 − 1), f(q) := 2(q −m2)(q

2 − 1).

Thanks to these properties off ε, as proven by Aronsson-Weinberger [2] and Fife-McLeod [30],

for all x ∈ Rn there is a unique pair(qε(·, x), cε(x)), solution of the traveling wave equation

qεrr(r, x) + cε(x)qεr(r, x) = f ε(qε(r, x), x), (r, x) ∈ R× Rn, (3.13)

subject to the following conditions

qε(−∞, x) = −1, qε(+∞, x) = 1, qε(0, x) = mε
o(x)

and we have thatqεr > 0. We will assume that the pair(qε(·), cε(x)) satisfies a series of properties.

There area, b > 0 such that

inf
x∈Rn

qε(r, x) ≥ 1− ae−br asr → +∞, sup
x∈Rn

qε(r, x) ≤ −1 + aebr asr → −∞, (3.14)

and moreover
qεr(r, x) ≥ K(x, r̄) > 0, for x ∈ Rn, |r| ≤ r̄,

sup
(r,x)∈R×Rn

[(1 + |r|)qεr(r, x) + (1 + |r|2)qεrr(r, x)] < +∞. (3.15)

For any compactK1 ⊂ Rn there exist constantsM1,M2 > 0 such that

|Dqε(r, x)|, |Dqεr(r, x)| ≤
M1

εk
, |D2qε(r, x)| ≤ M2

ε2k
, for all x ∈ K1, r ∈ R. (3.16)



For instance in the case (3.11) easy explicit calculations are possible. It turns out that the traveling

wave equation admits as unique solution the function

qε(r, x) = tanh(r + rε(x)), (3.17)

whererε(x) =
1

2
ln

(
2 + cε(x)

2− cε(x)

)

and the velocity of the traveling wave is preciselycε(x) of (3.11).

Some simple computations, using the properties ofcε, show that properties (3.14), (3.15) and (3.16)

are satisfied for eachε > 0.

We also notice that there exists aδ̄ such that, for allδ ∈ [−δ̄, δ̄] the functionf ε,δ = f ε + δ

satisfies similar properties to those off ε, (3.8) (3.9) and (3.10), and it has exactly three zeroes

in mε,δ
− (x) < mε,δ

o (x) < mε,δ
+ (x). In particular, for eachδ ∈ [−δ̄, δ̄], there exists a unique pair

(qε,δ(·), cε,δ) which solves the traveling wave equation

qε,δrr (r, x) + cε,δ(x)qε,δr (r, x) = f ε,δ(qε,δ(r, x), x), (r, x) ∈ R× Rn,

subject to

qε,δ(−∞, x) = −1, qε,δ(+∞, x) = 1, qε,δ(0, x) = mε,δ
o (x)

and such thatqε,δr > 0. The pair moreover satisfies (3.14), (3.15), (3.16) uniformly in δ and we

suppose that there is a constantM > 0 independent ofε such that

sup
x∈Rn

[

|cε(x)− cε,δ(x)| + | 1−mε,δ
+ (x)|+ | 1 +mε,δ

− (x)|
]

≤M | δ| ≤ γ, (3.18)

for δ̄ small enough. In the case (3.11), one can explicitly compute

cε,δ(x) = 2mε,δ
o (x)−mε,δ

+ (x)−mε,δ
− (x)

and therefore the estimate (3.18) is an easy consequence of an uniform estimate of the derivative

|f ε
q (q, x)| ≥ γ > 0, for all x ∈ Rn andq in a neighborhood of the three zeroes, which follows from

(3.8).

Now for the asymptotics of the velocity of the traveling waves, we suppose that there are two

bounded and locally Lipschitz continuous functionsn1, n2 : R
n → [ρ,+∞) and an oriented, closed,

Lipschitz hypersurfacẽΓ that satisfy

0 < 2ρ ≤ n1(x) < cε(x) < n2(x) ≤ 2(1− ρ), for anyx ∈ Rn,

cε −→ α, locally uniformly off Γ̃,
(3.19)

whereα : Rn → [ρ,+∞) is a bounded measurable function which is piecewise continuous across



Γ̃ in the following way. Letd̃ be the signed distance function from̃Γ, α has to satisfies

α(x) ∈







{n1(x)} if d̃(x) < 0,

{n2(x)} if d̃(x) > 0,

[n1(x), n2(x)] if d̃(x) = 0.

(3.20)

We observe that in (3.11),m =
α∗

2
andm =

α∗

2
. Finally in the case (3.11), we can explicitly

choose the family of velocitiescε satisfying the assumptions above. As for instance if

cε(x) =
n1(x)

2

(

1− tanh
( d̄(x)

εk
))

+
n2(x)

2

(

1 + tanh
( d̄(x)

εk
))

, (3.21)

whered̄ ∈ C2(Rn) and coincides with a signed distance function fromΓ̃ in a neighborhood of it.

Remark. It is clear that the case (3.11) is cleaner and only needs (3.12), (3.19) and (3.20) in order

to have the whole set of assumptions satisfied. Many technical assumptions may thus be avoided,

in particular due to the direct relationship between the unstable equilibrium and the velocity of the

approximating front provided by the traveling waves.

3.1.2 The result

We now state one of the two main results of this chapter. In thefollowing theorem the asymptotic

behavior of the solutions of the Cauchy problem (3.7) is totally described.

Theorem 3.1.1.Assume (3.8), (3.9), (3.10), (3.14), (3.15), (3.16), (3.18), (3.19) and (3.20). Let

uε be the unique (and continuous) solution of (3.7), whereg : Rn → [−1, 1] is a continuous

function such that the setsΓo = {x : m(x) ≤ g(x) ≤ m(x)}, Ω+
o = {x : g(x) > m(x)},

Ω−
o = {x : g(x) < m(x)} are nonempty and mutually disjoint subsets ofRn. Then, asε→ 0+,

uε(x, t) −→
{

1, if u(x, t) > 0,

−1, if u(x, t) < 0,

locally uniformly, whereu is the unique viscosity solution of

{

ut(x, t) + α(x)|Du(x, t)| = 0 in Rn × (0,+∞),

u(x, 0) = do(x),
(3.22)

anddo is the signed distance toΓo which is positive inΩ+
o and negative inΩ−

o . If in addition the



no-interior condition (2.7) for the set{u = 0} holds, then, asε → 0+,

uε(x, t) −→
{

1 if (x, t) ∈ {u > 0},
−1 if (x, t) ∈ {u > 0}c,

locally uniformly.

Remark 3.1.2. The existence (and uniqueness) of the viscosity solutionu of the Cauchy problem

(3.22) will be treat in the next section.

Remark 3.1.3. The results of the theorem are more elegant in the case that the initialized frontΓo

has empty interior. In the open sets wherem = m = m, then the family{mε
o} converges locally

uniformly, andΓo is determined by the equationg = m. If this is not the case,Γo may contain

relatively open subsets of{x : m(x) > m(x)}. Notice also that in the case (3.11) thenm =
α∗

2
and

m =
α∗

2
, therefore even in that case it is preferable to have a set of discontinuities ofα with empty

interior.

Proof. For the proof of this Theorem we follow the abstract method described in section 2.3 and

we define two families of open sets ofRn, (Ω1
t )t∈(0,T ) and(Ω2

t )t∈(0,T ) as in (2.14), (2.15) and two

further setsΩ1
0, Ω

2
0 as in (2.17). We recall that by maximum principle−1 ≤ uε ≤ 1. We are now

ready for the first step of the proof.

First step: initialization.We want to show that

Ω+
0 = {do > 0} ⊆ Ω1

0, Ω−
0 = {do < 0} ⊆ Ω2

0.

Since the proofs of these two inclusions are similar we only show the first one. Consider̂x ∈
{do > 0}, then we have thatg(x̂) > m(x̂) and so, by the continuity ofg, upper semicontinuity and

definition ofm, we can find anr, σ > 0 such that

g(x) ≥ sup
B(x̂,r)

m+ σ ≥ mε
o(x) +

3

4
σ,

for all x ∈ B(x̂, r) andε sufficiently small. This means that

uε(x, 0) = g(x) ≥
(

sup
B(x̂,r)

m+ σ
)

1B(x̂,r)(x)− 1B(x̂,r)c(x). (3.23)

Now we introduce the functionΦ : Rn × [0, T ] → R defined by

Φ(x, t) = r2 − |x− x̂|2 − Ct, (3.24)



with C > 0 a constant that will be chosen later. We denote byd(·, t) the signed distance to the set

{Φ(·, t) = 0} defined in such a way to have the same sign ofΦ. Explicitly d(x, t) =
√

(r2 − Ct)+−
|x− x̂|. Note in particular thatd(x, 0) ≥ β if and only if x ∈ B(x̂, r − β].

To prove the first step we need the two following lemmas.

Lemma 3.1.4. Under the assumptions of Theorem 3.1.1 we have that for anyβ > 0 there exist

τ = τ(β) > 0 andε̄ = ε̄(β) such that, for all0 < ε ≤ ε̄, we have

uε(x, tε) ≥ (1− β)1{d(·,0)≥β}(x)− 1{d(·,0)<β}(x), x ∈ Rn,

wheretε = τε andd(x, t) =
√

(r2 − Ct)+ − |x− x̂|.

Lemma 3.1.5. There exist̄h = h̄(r, x̂) > 0, β̄ = β̄(r, x̂) independent ofε such that ifβ ≤ β̄,

β > 0, andε ≤ ε̄(β), then there is a subsolutionωε,β of (3.7-i) inRn × (0, h̄) that satisfies

ωε,β(x, 0) ≤ (1− β)1{d(·,0)≥β}(x)− 1{d(·,0)<β}(x), x ∈ Rn.

If moreover(x, t) ∈ B(x̂, r)× (0, h̄) andd(x, t) > 3β, then

lim inf
ε→0+

∗ ω
ε,β(x, t) ≥ 1− 3β.

Before proving Lemmas 3.1.4 and 3.1.5 we give the short conclusion of the first step which

follows [5]. To do this, we first notice that, combining thesetwo Lemmas, we get the existence of a

(viscosity) subsolutionωε,β of (3.7-i) inRn × (0, h̄) such that

ωε,β(x, 0) ≤ uε(x, tε), for all x ∈ Rn,

and so, by the maximum principle,

ωε,β(x, s) ≤ uε(x, s+ tε), for all (x, s) ∈ Rn × [0, h̄].

Therefore, using the second part of Lemma 3.1.5, we get that for all (x, s) ∈ B(x̂, r) × (0, h̄),

d(x, s) > 3β,

lim inf
ε→0+

∗ u
ε(x, s) ≥ 1− 3β.

Sinceβ is arbitrary and does not depend onh̄ we can send it to zero in order to obtain that, for all

(x, s) ∈ B(x̂, r)× (0, h̄), d(x, s) > 0,

lim inf
ε→0+

∗ u
ε(x, s) ≥ 1,



i.e. x ∈ Ω1
s by definition. According to the definition ofd, it follows that there exist̄η < r, t̄ < h̄ so

thatB(x̂, η̄) ⊂ {d(·, t) > 0} for any0 < t < t̄. This implies thatB(x̂, η̄) ⊂ Ω1
t for any0 < t < t̄

and thereforeχ(x̂, 0) = 1 andx̂ ∈ Ω1
0.

Proof of Lemma3.1.4. For the proof of this lemma we follow the ideas of Chen [16, 17], based on

the fact that forε small in the reaction-diffusion equation the diffusion term is negligible for short

time, and of Barles-Da Lio [5]. This lemma is a local short time generation of the interface. The

corresponding proof in [16] is more precise since there the time needed to generate the interface is

precisely determined. Letβ > 0 be fixed. Due to the maximum principle we just need to show that

uε(x, tε) ≥ 1− β if d(x, 0) ≥ β.

1. We denote byχ = χ(τ, ξ; x) ∈ C2([0,+∞)× R× Rn) the solution of

{

χ̇(τ, ξ; x) + f ε(χ(τ, ξ; x), x) = 0, τ > 0,

χ(0, ξ; x) = ξ.
(3.25)

It is then simple to see, by the properties of ordinary differential equations, thatχ satisfies the

following properties

χξ(τ, ξ; x) > 0, for any(τ, ξ; x) ∈ [0,+∞)× R× Rn, (χ1)

and there existsτo = τo(β) > 0 such that, for allτ ≥ τo

χ(τ, ξ; x) ≥ 1− β, ∀ ξ ≥ sup
B(x̂,r)

m+
σ

2
. (χ2)

(Regarding the proof of the estimate in (χ2), which is independent ofε andx, we just notice that

we can choose a cubic-like functionf as in (3.10) withK = B(x̂, r], m1 = sup
B(x̂,r)

m+
σ

4
such that

f(q) ≥ f ε(q, x),

for all x ∈ B(x̂, r), q ∈ [−1, 1], andε sufficiently small.)

Moreover, since for anyC > 1 we have thatχ(τ, ξ, x) ∈ [−C,C] for all ξ ∈ [−C,C], τ ≥ 0,

x ∈ Rn, it also holds that for anyC > 1, τ > 0 there exists a constantMC,τ > 0 such that

|χξξ(τ, ξ; x)| ≤MC,τχξ(τ, ξ; x), |χxi
(τ, ξ; x)|,≤ MC,τ

εk

|χξxi
(τ, ξ; x)| ≤ MC,τ

εk
χξ(τ, ξ; x), |χxixi

(τ, ξ; x)| ≤ MC,τ

ε2k
χξ(τ, ξ; x),

(χ3)

for anyξ ∈ [−C,C], x ∈ Rn, i ∈ {1, 2, · · · , n} andε small enough.



2. Letψ be a nondecreasing smooth function inR such that

ψ(z) =







−1 if z ≤ 0,

sup
B(x̂,r)

m+ σ if z ≥ β ∧ σ

2
.

We can define a functionuε in Rn × [0, T ] as

uε(x, t) = χ
( t

ε
, ψ(d(x, 0))−Kt; x

)

,

for K a constant to be decided later. Thanks to a computation similar to those in [8] one can prove

that, ifK is large enough,uε is a subsolution of (3.7-i) inRn × (0, τoε), with τo as in (χ2). In fact,

sinceχ satisfies (3.25) andψ′ has compact support, we obtain

uεt − ε∆uε +
f ε(uε, x)

ε
=
χ̇

ε
−Kχξ − ε

[

χξξ

∣
∣
∣ ψ′Dd(x, 0)

∣
∣
∣

2

+ χξ

(

ψ′′ + ψ′∆d(x, 0)
)

+∆χ+ 2Dχξ ·
(

ψ′Dd(x, 0)
)]

+
f ε(χ, x)

ε

≤ −Kχξ + ε[M1| χξξ|+M2χξ + |∆χ|+M3|Dχξ|].

(3.26)

Now we want to use properties (χ1) and (χ3) in order to get an estimate for the terms| χξξ|, |Dχξ|,
|∆χ|. Indeed sinceψ(d(x, 0)) ∈ I = [−1, 1 + σ] for all x ∈ Rn, by evaluating (3.26) at a point of

Rn × (0, τoε) we obtain

uεt − ε∆uε +
f ε(uε, x)

ε
≤ −χξ

(

K − εM2 − εM2,τo

(

M1 +
M3

εk
+

1

ε2k

))

≤ 0,

for K large enough. Moreover,

uε(x, 0) = ψ(d(x, 0)) ≤
(

sup
B(x̂,r)

m+ σ
)

1{d(x,0)>0}(x)− 1{d(x,0)≤0}(x)

=
(

sup
B(x̂,r)

m+ σ
)

1B(x̂,r)(x)− 1B(x̂,r)c .

Therefore combining the last inequality with (3.23) we get

uε(x, 0) ≤ uε(x, 0), for all x in Rn.

Thus, by the maximum principle,

uε(x, t) ≤ uε(x, t) in Rn × [0, τoε].



Now if we evaluate the last inequality forx ∈ {d(·, 0) ≥ β ∧ σ/2} andt = tε = τoε, we get

uε(x, tε) ≥ χ
(
τo, sup

B(x̂,r)

m+ σ −Kτoε, x
)
≥ χ

(
τo, sup

B(x̂,r)

m+
σ

2
, x
)
,

for ε ≤ σ

2Kτo
. Therefore by (χ2) and we obtain

uε(x, tε) ≥ 1− β,

for all x ∈ {d(·, 0) ≥ β}.

Proof of Lemma3.1.5. The proof follows with some modifications the ideas in [5] and[8]. First of

all we consider the smooth functionΦ defined in (3.24) where nowC is fixed and satisfies

C ≥ 8r. (3.27)

SinceDΦ(x, t) 6= 0 if Φ(x, t) = 0, there existγ, h̄ > 0 such that̄h < r2/C, d is smooth in the

setQγ,h̄ = {(x, t) : | (d(x, t))| ≤ γ, |x− x̂| ≥ γ, 0 ≤ t ≤ h̄}, andDΦ(x, t) 6= 0 in Qγ,h̄. Now we

construct a subsolution by steps.

1. We first define a smooth functionvε in Qγ,h̄ as

vε(x, t) = qε,δ
(d(x, t)− 2β

ε
, x
)

− 2β,

with δ ∈ [0, δ̄] to be chosen later. Using the definition ofd, the assumption (3.27) onC and the

properties (3.18), (3.19) satisfied bycε,δ andcε, we can see that inQγ,h̄,

vεt − ε∆vε +
f ε(vε, x)

ε
=
qε,δr dt
ε

− qε,δrr

ε
− 2Dqε,δr ·Dd− qr∆d− ε∆qε,δ +

f ε(qε,δ − 2β, x)

ε

≤ qε,δr

ε

( −C
2
√
r2 − Ct

+ cε,δ(x) + ε
n− 1

| x− x̂|
)
− δ

ε
− 2Dqε,δr ·Dd− ε∆qε,δ

−
2βf ε

q (q
ε,δ, x)

ε
+

2β2‖ f ε
qq‖∞
ε

≤ 1

ε

[

− qε,δr − 2βf ε
q (q

ε,δ, x) + 2β2‖ f ε
qq‖∞

]

+

[

−δ
ε
+ 2|Dqε,δr |+ ε|∆qε,δ|

]

,

for ε and| δ| small enough. Since for anyx ∈ Rn, δ ∈ [0, δ̄],

qε,δ(·, x) ∈ [mε,δ
− (x), mε,δ

+ (x)] ⊆ [−1− δ, 1 + δ],

here and below theL∞ norm of the derivatives off ε are taken for its first argumentq in the compact



set[−1 − δ̄, 1 + δ̄]. To prove thatvε is a subsolution of (3.7-i) it remains to see that the right hand

side of the last inequality above is non positive. For the right bracket we use the properties (3.16)

satisfied byqε,δ and we compute

−δ
ε
+ 2|Dqε,δr |+ ε|∆qε,δ| ≤ −δ

ε
+

2M1

εk
+ ε

M2

ε2k
≤ − δ

2ε

whenδ > 0 is fixed andε is small enough. For the left bracket, we recall that, combining (3.8) and

(3.18),f ε
q (m

ε,δ
± (x), x) ≥ γ > 0 andqε,δ(r, x) → mε,δ

± (x) if r → ±∞ exponentially fast, uniformly

for x ∈ Rn. This means that we may suppose that there exists anr̄ > 0 such that

f ε
q (q

ε,δ(r, x), x) ≥ γ

2
, for any|r| ≥ r̄,

and we can chooseβ small enough, independent ofε, δ, in order to get

β‖ f ε
qq‖∞ = β sup{| f ε

qq(q, x)| : (q, x) ∈ [−1− δ̄, 1 + δ̄]× Rn} ≤ γ

2
.

Thus we consider two cases. If|d(x, t)− 2β| ≥ εr̄, we have that

vεt − ε∆vε +
f ε(vε, x)

ε
≤ −q

ε,δ
r

ε
− δ

2ε
< 0

for ε small enough. If, on the other hand,|d(x, t)− 2β| < εr̄ and we denote withK a strictly

positive constant (which depends onr̄) so thatqε,δr (r, x) ≥ K > 0 for any |r| ≤ r̄, x ∈ Rn, we get

that, forβ small compared toK,

vεt − ε∆vε +
f ε(vε, x)

ε
≤ 1

ε
(−K + 2β(‖ f ε

q ‖∞ + 2β‖ f ε
qq‖∞))− δ

2ε
< 0.

2. We define for each(x, t) ∈ {(x, t) ∈ Rn × [0, h̄] : d(x, t) ≤ γ},

v̄ε(x, t) =

{

sup(vε(x, t),−1) if −γ < d(x, t) ≤ γ,

−1 if d(x, t) ≤ −γ.

v̄ε is a continuous viscosity subsolution of (3.7-i) in{(x, t) ∈ Rn × [0, h̄] : d(x, t) ≤ γ}, for ε

sufficiently small. This in obvious in the set{|d| ≤ γ} sincev̄ε is the supremum of two subsolutions.

Consider a point(x, t) such thatd(x, t) ≤ −γ/2; by properties (3.14) we have that

vε(x, t) ≤ qε,δ
(

− γ + 4β

2ε
, x
)

− 2β ≤ mε,δ
− (x) + ae−

b(γ+4β)
2ε − 2β ≤ mε,δ

− (x) ≤ −1

andv̄ε(x, t) = −1. Thereforēvε is a subsolution of (3.7-i) in{(x, t) ∈ Rn × [0, h̄] : d(x, t) ≤ γ}.



3. We finally define our functionωε,β : Rn × [0, h̄] → R as

ωε,β(x, t) =

{

ψ(d(x, t))v̄ε(x, t) + (1− ψ(d(x, t)))(1− β) if d(x, t) < γ,

1− β if d(x, t) ≥ γ,

whereψ : R → R is a smooth function such thatψ′ ≤ 0 in R, ψ = 1 in (−∞, γ/2], 0 < ψ < 1 in

(γ/2, 3γ/4) andψ = 0 in [3γ/4,+∞). The only subset ofRn × (0, h̄) in which we have to check

thatωε,β is a subsolution is{(x, t) ∈ Rn × (0, h̄) : γ/2 ≤ d(x, t) ≤ 3γ/4}. Since|Dd| = 1

ωε,β
t − ε∆ωε,β +

f ε(ωε,β, x)

ε
=ψ(v̄εt − ε∆v̄ε)− 2εψ′Dd ·Dv̄ε

+ (ψ′dt − εψ′∆d− εψ′′)(v̄ε − (1− β)) +
f ε(ωε,β, x)

ε
.

(3.28)

If we take2β < γ/4 we obtain that

vε(x, t) ≥ qε,δ
( γ

4ε
, x
)

− 2β

≥ mε,δ
+ (x)− ae−

bγ
4ε − 2β ≥ 1−Mδ − ae−

bγ
4ε − 2β

and so forε, β, δ smallv̄ε(x, t) = vε(x, t) andv̄ε(x, t)−(1−β) ≤ −β. Moreover, sincef ε
qq(1, x) >

0, f ε(ωε,β, x) ≤ ψf ε(vε, x) + (1− ψ)f ε(1− β, x). Thus (3.28) becomes

ωε,β
t − ε∆ωε,β +

f ε(ωε,β, x)

ε
≤− ψ

δ

2ε
− 2ψ′qε,δr + 2ε1−kM1

+ ψ′dt(v
ε − (1− β)) + (1− ψ)

f ε(1− β, x)

ε
+O(ε)

≤− 1

ε

(

ψ
δ

2
+ (1− ψ)(−f ε(1− β, x))

)

+ M̃3 + oε(1) ≤ 0,

for ε small enough. To get the last inequality, we also used the fact thatdt ≤ 0 and sup
x∈Rn

f ε(1 −
β, x) < 0 for β small enough.

4. Now we observe that, ifd(x, t) < β, thenvε(x, t) ≤ qε,δ(−β
ε
, x)− 2β ≤ mε,δ

− (x) + ae−
bβ
ε −

2β ≤ mε,δ
− (x) ≤ −1 for ε small enough (andβ fixed). This means that, forε small enough

vε(x, t) ≤ (1− β)1{d≥β}(x, t)− 1{d<β}(x, t).

By definition of v̄ε and ofωε,β the last inequality still holds for̄vε andωε,β (we just point out that

if d(x, t) ≥ β thenωε,β(x, t) is equal to1 − β or to a convex linear combination of elements of

(−∞, 1− β]). If we considert = 0 we have proved the second part of our Lemma.

5. Finally we just remark that, with a reasoning similar to the one in point 4. one can prove that



if (x, t) ∈ B(x̂, r)× (0, h̄) andd(x, t) > 3β, then

vε(x, t) ≥ qε,δ(
β

ε
, x)− 2β ≥ 1− ae−

bβ
ε − 2β −Mδ.

Hencelim inf
ε→0+

∗ ω
ε,β(x, t) ≥ 1− 3β, for β ≥Mδ.

Second step: propagation.In this step we show that(Ω1
t )t∈(0,T ) and((Ω2

t )
c)t∈(0,T ) are respec-

tively super and subflows with normal velocity−α. Since the two proofs are similar we only show

that(Ω1
t )t∈(0,T ) is a superflow. One of the difficulties here is due to the fact that we want to approx-

imate the definition of super- and subflow by using continuousvelocities. We do that by means of

the smooth functionscε to approximate our discontinuous velocityα. We consider the following

modified families of continuous functions and define:

cε(x) := ηε(x)n2(x) + (1− ηε(x))cε(x), cε(x) := ξε(x)n1(x) + (1− ξε(x))cε(x),

whereηε, ξε ∈ C2(Rn), ηε(x), ξε(x) ∈ [0, 1],

ηε(x) :=

{

1 if d̃(x) ≥ −ε
0 if d̃(x) ≤ −2ε

; ξε(x) :=

{

1 if d̃(x) ≤ ε

0 if d̃(x) ≥ 2ε
.

Notice that

n1 ≤ cε ≤ cε ≤ cε ≤ n2, cε ≤ α∗ ≤ α∗ ≤ cε

and lim sup
ε→0+

∗ cε(x) = α∗(x), lim inf
ε→0+

∗ cε(x) = α∗(x) We denote below asF = {c̄ε, ε > 0},

F = {cε, ε > 0}.

Proposition 3.1.6.(i) A family (Ωt)t∈(0,T ) of open subsets ofRn such that the setΩ := ∪t∈(0,T )Ωt×
{t} is open inRn × [0, T ], is ageneralized superflowwith normal velocity−α if and only if it is a

generalized superflow with normal velocity−c ∈ C(Rn), for all c̄ ∈ F ;

(ii) A family (Ft)t∈(0,T ) of close subsets ofRn such that the setF := ∪t∈(0,T )Ft × {t} is closed

in Rn × [0, T ] is a generalized subflowwith normal velocity−α if and only if it is a generalized

subflow with normal velocity−c, for all c ∈ F .

Proof. (i) In view of Theorem 2.2.2, in order to prove this proposition we have to prove that the

functionχ = 1Ω − 1Ωc is a viscosity supersolution of (3.5-i) if and only if it is a viscosity superso-

lution of

χt(x, t) + cε(x)|Dχ(x, t)| = 0, (x, t) ∈ Rn × (0, T ), (3.29)

for all ε > 0. We start assuming that for every continuous functioncε, χ is a viscosity supersolution



of (3.29). The conclusion follows from the stability of viscosity supersolutions and the fact that

α⋆ = lim sup
ε→0+

∗ cε. Thereforeχ is a supersolution also of (3.5-i). Sincecε ≥ α∗, the other implication

is trivial.

(ii) The proof concerning the subflow is similar and we omit it.

Next we want to show that(Ω1
t )t∈(0,T ) is a superflow with normal velocity−c, for anyc ∈ F .

Proposition 3.1.7.Let c ∈ F be fixed and letx0 ∈ Rn, t ∈ (0, T ), r > 0, h > 0 so thatt+ h < T .

Suppose thatφ : Rn × [0, T ] → R is a smooth function such that, for a suitableC̃ > 0,

(i) φt(x, s) + c(x)|Dφ(x, s)| ≤ −C̃ < 0, for all (x, s) ∈ B(x0, r]× [t, t+ h],

(ii) for any s ∈ [t, t + h], {x ∈ B(x0, r] : φ(x, s) = 0} 6= ∅ and

|Dφ(x, s)| 6= 0 on{(x, s) ∈ B(x0, r]× [t, t + h] : φ(x, s) = 0},

(iii) {x ∈ B(x0, r] : φ(x, t) ≥ 0} ⊂ Ω1
t ,

(iv) for all s ∈ [t, t + h], {x ∈ ∂B(x0, r] : φ(x, s) ≥ 0} ⊂ Ω1
s.

Then, for everys ∈ (t, t + h),

{x ∈ B(x0, r] : φ(x, s) > 0} ⊂ Ω1
s.

Proof. Using the assumptions and the definition of(Ω1
t )t∈(0,T ) we need to prove that for allx ∈

B(x0, r), s ∈ (t, t+ h) such thatφ(x, s) > 0, then we have

lim inf
ε→0+

∗ u
ε(y, τ) ≥ 1

for (y, τ) in a neighborhood of(x, s). This proof proceeds like the one of the first step with the

difference that here we have to construct a subsolution of (3.7-i) only in the ballB(x0, r) and not

in the whole spaceRn. We will need to use an extra boundary condition coming from (iv). In fact

to prove this result it is enough to prove the following lemmawhich plays the role of Lemma 3.1.5

in the first step. We denote below withd(·, s) the signed distance function to the set{φ(·, s) = 0}
which has the same sign ofφ.

Lemma 3.1.8.Let the assumptions of Proposition 3.1.7 hold true. There existsβ̄ small enough such

that, ifβ ≤ β̄ andε ≤ ε̄(β) then there is a viscosity subsolutionωε,β of (3.7-i) inB(x0, r)×(t, t+h)

that satisfies,

1. ωε,β(x, t) ≤ (1− β)1{d(·,t)≥β}(x)− 1{d(·,t)<β}(x), for all x ∈ B(x0, r],

2. ωε,β(x, s) ≤ (1− β)1{d(·,s)≥β}(x)− 1{d(·,s)<β}(x), for all x ∈ ∂B(x0, r], s ∈ [t, t+ h].



3. if (x, s) ∈ B(x0, r]× [t, t+ h] satisfiesd(x, s) > 3β, then

lim inf
ε→0+

∗ ω
ε,β(x, s) ≥ 1− β.

If we assume for the moment that Lemma 3.1.8 holds true then wecan prove Proposition 3.1.7

as a direct consequence (see also [5]). In fact, ifd(x, t) ≥ β > 0, then alsoφ(x, t) > 0 and so, by

property (iii) ofφ, x ∈ Ω1
t . By definition of(Ω1

t )t∈(0,T ) this means thatlim inf
ε→0+

∗ u
ε(x, t) ≥ 1 > 1−β

and so there exists anεx,t > 0 such that, for allε ≤ εx,t, (y, τ) ∈ B(x, εx,t)× (t− εx,t, t+ εx,t), we

haveuε(y, τ) ≥ 1− β. Thus, by the compactness of{x ∈ B(xo, r] : φ(x, t) ≥ 0} we can select an

ε̄ > 0, possibly depending only onβ, so that, for allε ≤ ε̄, andx ∈ {y ∈ B(x0, r] : d(y, t) ≥ β},

we haveuε(x, t) ≥ 1− β. Therefore

uε(x, t) ≥ (1− β)1{d(·,t)≥β}(x)− 1{d(·,t)<β}(x).

for all ε ≤ ε̄, x ∈ B(x0, r]. In a similar way we can also obtain that, forε small enough,

uε(x, s) ≥ (1− β)1{d(·,s)≥β}(x)− 1{d(·,s)<β}(x),

for any(x, s) ∈ ∂B(x0, r]× [t, t + h]. Combining these inequalities with those in 1. and 2. in the

statement of Lemma 3.1.8, by the maximum principle we can conclude that

ωε,β(x, s) ≤ uε(x, s), for all (x, s) ∈ B(x0, r]× [t, t + h].

By 3. in Lemma 3.1.8,lim inf
ε→0+

∗ u
ε(x, s) ≥ 1 − β for every(x, s) ∈ B(x0, r] × [t, t + h] such that

d(x, s) > 3β. Sinceβ is arbitrary we can now sendβ to zero in order to obtain that

lim inf
ε→0+

∗ u
ε(x, s) ≥ 1

if (x, s) ∈ B(x0, r]×[t, t+h] andφ(x, s) > 0. Finally we remark that, ifs ∈ (t, t+h), x ∈ B(x0, r)

are given andφ(x, s) > 0, we have thatφ(y, τ) > 0 in a neighborhood of(x, s) and therefore

lim inf
ε→0+

∗ u
ε(y, τ) ≥ 1 for (y, τ) in a neighborhood of(x, s) inB(x0, r)×(t, t+h). Thusx ∈ Ω1

s.

Proof of Lemma 3.1.8.This proof is similar to the one of Lemma 3.1.5, although witha different

and not explicit functionΦ, and therefore we just give a sketch. First of all we observe that since

φ satisfies property (ii) of Proposition 3.1.7 there existsγ > 0 such thatd is smooth in the set

Qγ = {(x, s) ∈ B(x0, r]× [t, t + h] : |d(x, s)| ≤ γ}, |Dφ(x, s)| 6= 0 in Qγ . SinceDd =
Dφ

|Dφ| and



dt =
φt

|Dφ| on{φ = 0}, and using (i), we may also suppose that

dt(x, s) + c̄(x) ≤ − C̃

4|Dφ(x, s)| for all (x, s) ∈ Qγ. (3.30)

We notice that for everyε sufficiently small we have thatcε ≤ c and will restrict to such values ofε

in the reaction-diffusion equation.

As in Lemma 3.1.5 we first define a functionvε in Qγ asvε(x, t) = qε,δ
(d(x, t)− 2β

ε
, x
)

− 2β,

with a suitable auxiliary parameterδ ∈ (0, δ̄]. Thanks to inequality (3.30), the traveling wave

equation and (3.18), we can see that for(x, t) ∈ Qγ ,

vεt − ε∆vε +
f ε(vε, x)

ε
≤ qε,δr

ε

(
− c̄(x)− C̃

4|Dφ(x, s)| + cε,δ(x)− ε∆d
)
− δ

ε
+

+ 2|Dqε,δr |+ ε|∆qε,δ| − 2βf ε
q (q

ε,δ, x)

ε
+

2β2‖ f ε
qq‖∞
ε

≤ 1

ε

[

qε,δr

(
Mδ − C̃

4‖Dφ|Qγ
‖∞

+ ε|∆d|
)
− 2βf ε

q (q
ε,δ, x) + 2β2‖ f ε

qq‖∞
]

− δ

ε
+

2M1

εk
+ ε

M2

ε2k

≤ 1

ε

[

− C̃

16‖Dφ|Qγ
‖∞

qε,δr − 2βf ε
q (q

ε,δ, x) + 2β2‖ f ε
qq‖∞

]

− δ

2ε
,

for δ > 0 (independent ofβ) and thenε small enough. As in Lemma 3.1.5 it can be easily seen

that, if we chooseβ small enough and independent ofδ, the sum of the terms inside the square

brackets is non positive and sovε is a strict subsolution inQγ . From now on the extension to a

global subsolutionωε,β in B(xo, r]× [t, t + h] and the proof that such a function satisfies 1, 2, 3, is

similar to that of Lemma 3.1.5 and we omit it.

The proof of Theorem 3.1.1 is now easy. In fact, since({u(·, t) = 0}, {u(·, t) > 0}, {u(·, t) <
0})t>0 is thegeneralized evolution(or the level-set evolution) of({do = 0}, {do > 0}, {do < 0}),
Corollary 2.2.3 and the previous two steps hold

{u(·, t) > 0} ⊂ Ω1
t ⊂ {u(·, t) ≥ 0}

{u(·, t) < 0} ⊂ Ω2
t ⊂ {u(·, t) ≤ 0},

for anyt ≥ 0. Thus by the definition ofΩ1
t andΩ2

t Theorem 3.1.1 is proved.



3.2 Well-posedness of the Cauchy problem

We now study the well-posedness of the Cauchy problem (3.5).

In [22] we prove that there exists a unique continuous viscosity solution of the Cauchy problem

{

ut(x, t) + α(x)H(x,Du(x, t)) = 0, Rn × (0,+∞),

u(x, 0) = uo(x) ∈ C(Rn),
(3.31)

where the HamiltonianH : Rn × Rn → [0,+∞) is continuous and positively 1-homogeneous and

α satisfies the following assumptions

α is bounded, piecewise Lipschitz continuous across Lipschitz hypersurfaces and

α(x) ≥ ρ > 0 for anyx ∈ Rn.
(3.32)

Since in (3.5) we are considering a particular coercive hamiltonianH(x, p) = | p| a uniqueness

result for (3.5) was also previously proved by Camilli in [14]. Anyway the comparison principle,

that we are going to prove here, follows the ideas we developed in [22] for a more generalH.

3.2.1 Comparison principle for the HJ equation

We start with a precise definition ofpiecewise Lipschitz continuous function.

Definition 3.2.1. We say thatα : Rn → [0,+∞) is a piecewise Lipschitz continuous function if its

discontinuity setΓ ⊂ Rn is a finite union of Lipschitz hypersurfaces with the following properties.

For anyx̂ ∈ Γ there isr̂ > 0 such that: we can partition

B(x̂, r̂) = Ω+
x̂ ∪ Ω−

x̂ ∪ (Γ ∩B(x̂, r̂)),

whereΩ±
x̂ are nonempty, open, connected (locally, the two sides ofΓ). Moreover,inf

Ω+
x̂

α > sup
Ω−

x̂

α; α

is locally Lipschitz continuous inRn\Γ; α has a Lipschitz continuous extension inΩ+
x̂ ∪(Γ∩B(x̂, r̂))

(i.e. α∗), and inΩ−
x̂ ∪ (Γ ∩ B(x̂, r̂)) (α∗); for all x ∈ Γ we haveα(x) ∈ [α∗(x), α

∗(x)].

Below, we usually drop the subscriptx̂ in Ω±
x̂ .

Remark 3.2.2. Whenα is piecewise continuous andΓ is the union of disjoint Lipschitz hypersur-

faces, at everŷx ∈ Γ we can always find unit vectorsη+, η− ∈ Rn inwardΩ+,Ω− respectively

(transversal toΓ). This means that for somec, h > 0 we haveB(y + tη+, tc) ⊂ Ω+ for all

y ∈ B(x̂, h) ∩ Ω
+

andt ∈ (0, c), see [4]. Similarly forη−.

We now state the comparison principle for solutions of (3.5)in finite time-interval. Since the

termα is discontinuous, it requires some a-priori continuity of the functions to be compared.



Theorem 3.2.3.Let T ∈ (0,+∞] and assume thatα satisfies (3.32). Letu, v : Rn × [0, T ] → R be

respectively an upper semicontinuous subsolution and a lower semicontinuous supersolution of the

HJ equation

wt(x, t) + α(x)|Dw(x, t)| = 0, (x, t) ∈ Rn × (0, T ) (3.33)

such thatu(x, 0) ≤ v(x, 0) and, ifT < +∞,

u(x, T ) = lim sup
(y,s)→(x,T−)

u(y, s), v(x, T ) = lim inf
(y,s)→(x,T−)

v(y, s).

Suppose moreover that for all(x̂, t̂) ∈ Γ × (0, T ] we can find sequencesεk → 0+, σεk → 0,

pεk ∈ Rn, |pεk | → 0+ such thatσεk ≤ 0 if t̂ = T , and either

lim
k→+∞

u(x̂+ εkη
+ + εkp

εk , t̂+ σεk) = u(x̂, t̂)

or

lim
k→+∞

v(x̂+ εkη
− + εkp

εk , t̂+ σεk) = v(x̂, t̂),

whereη+, η− are inward unit vectors toΩ+, Ω−, respectively with the notation of Definition 3.2.1

and Remark 3.2.2.

Thenu ≤ v in Rn × [0, T ].

Remark 3.2.4. The coefficientα has as discontinuity setΓ × [0, T ], in the space(x, t). In this

sense the continuity of the functionsu, v is required along families of points(xε, tε) = (x̂+ εη± +

εpε, t̂ + σε) such that
xε − x̂

ε
→ η± (transversal toΓ), but the wayσε tends to 0 is not prescribed.

For example, ifε = o(σε), then(xε, tε) tend to(x̂, t̂) ∈ Γ × [0, T ] in a tangential fashion. For this

reason the comparison principle above is not a direct consequence of the general result of Soravia

in [39], although the method of proof we use is similar.

Proof. Since our equation is invariant by an increasing change of the dependent variable, it is not

restrictive to suppose thatu, v are bounded.

Assume now by contradiction that there is(xo, to) ∈ Rn × (0, T ] such that

u(xo, to)− v(xo, to) = A > 0.

We set by simplicity of notationxo = 0. For anyβ, δ > 0, 0 < m < 1 sufficiently small, let(x̂, t̂) be

the maximum ofΦ(x, t) := u(x, t)−v(x, t)−β〈x〉m−δt in Rn× [0, T ], where〈x〉 = (1+ |x|2)1/2.
In the rest of the proof we will suppose thatβ + δto < A. ThereforeΦ(xo, to) > 0 and thuŝt 6= 0.



Moreover fromΦ(x̂, t̂) ≥ Φ(xo, to) we get

u(x̂, t̂)− v(x̂, t̂) > 2γ > 0.

We have(x̂, t̂) ∈ Γ × (0, T ]. Thus by the assumption, we suppose that we can find sequences

εk → 0+, σεk → 0, pεk ∈ Rn, |pεk | → 0+, andσεk ≤ 0 if t̂ = T , such that lim
k→+∞

v(x̂ + εkη
− +

εkp
εk , t̂+ σεk) = v(x̂, t̂). We drop the indexk from now on.

Notice that asε → 0+ we can always findpε, |pε| → 0 andσε → 0 such that

lim
ε→0+

v(x̂+ ε(pε + η), t̂+ σε) = v(x̂, t̂),

where {

η = 0 if x̂ /∈ Γ

η = η− if x̂ ∈ Γ.

We now define

ωε(x, y, t, s) := u(x, t)− v(y, s)− γ

2

(∣
∣
∣
x− y

ε
+ η
∣
∣
∣

2

+
∣
∣
∣
t− s
√

| σε|

∣
∣
∣

2)

− r

2
(|x− x̂|2 + |t− t̂|2)− β〈x〉m − δt

and consider(xε, yε, tε, sε) ∈ R2n × [0, T ]2 such that

ωε(xε, yε, tε, sε) = max{ωε(x, y, t, s) : (x, y, t, s) ∈ R2n × [0, T ]2}.

By definitionωε(xε, yε, tε, sε) ≥ ωε(x̂, x̂, t̂, t̂) = Φ(x̂, t̂) − γ

2
|η|2 > 0 for a sufficiently smallγ.

From here the sequencesxε, yε are bounded and|xε − yε| ≤ (C + 1)ε, |tε − sε| ≤ C
√

| σε|, for

someC > 0. We therefore get that

lim
ε→0+

(xε, yε, tε, sε) = (x̄, x̄, t̄, t̄) ∈ R2n × [0, T ]2.



By semicontinuity ofu, v we compute

Φ(x̄, t̄) = u(x̄, t̄)− v(x̄, t̄)− β〈x̄〉m − δt̄

≥ lim sup
ε→0+

(u(xε, tε)− v(yε, sε)− β〈xε〉m − δtε)

≥ lim inf
ε→0+

(ωε(xε, yε, tε, sε) +
r

2
(|xε − x̂|2 + |tε − t̂|2))

≥ lim inf
ε→0+

(ωε(x̂, x̂+ ε(pε + η), t̂, t̂+ σε) +
r

2
(|xε − x̂|2 + |tε − t̂|2))

= lim inf
ε→0+

(u(x̂, t̂)− v(x̂+ ε(pε + η), t̂+ σε)−
γ

2
(|pε|2 + |

√

| σε||2)

− β〈x̂〉m − δt̂+
r

2
(|xε − x̂|2 + |tε − t̂|2))

= Φ(x̂, t̂) +
r

2
(|x̄− x̂|2 + |t̄− t̂|2).

From here, as(x̂, t̂) is a maximum ofΦ in Rn × [0, T ], we obtainx̄ = x̂, t̄ = t̂ and

lim
ε→0+

u(xε, tε)− v(yε, sε) = u(x̂, t̂)− v(x̂, t̂).

We make this information more precise by observing that

u(x̂, t̂) ≥ lim sup
ε→0+

u(xε, tε) ≥ lim inf
ε→0+

u(xε, tε) = lim inf
ε→0+

((u(xε, tε)− v(yε, sε)) + v(yε, sε))

≥ (u(x̂, t̂)− v(x̂, t̂)) + v(x̂, t̂) = u(x̂, t̂),

and then

lim
ε→0+

u(xε, tε) = u(x̂, t̂), lim
ε→0+

v(yε, sε) = v(x̂, t̂). (3.34)

Again from

ωε(x̂, x̂+ ε(pε + η), t̂, t̂+ σε) ≤ ωε(xε, yε, tε, sε) ≤ u(xε, tε)− v(yε, sε)

−γ
2

(∣
∣
∣
xε − yε

ε
+ η
∣
∣
∣

2

+
∣
∣
∣
tε − sε
√

| σε|

∣
∣
∣

2)

− β〈xε〉m − δtε

we obtain

lim
ε→0+

∣
∣
∣
xε − yε
ε

+ η
∣
∣
∣ = 0, lim

ε→0+

∣
∣
∣
tε − sε
√

| σε|

∣
∣
∣ = 0; (3.35)

and hence forε sufficiently small

|xε − yε + εη| ≤ cε (3.36)

wherec > 0 appears in Remark 3.2.2. In particular ifx̂ ∈ Γ andxε ∈ Ω− ∪ Γ, thenyε ∈ Ω− which

is something that we keep in mind for later.



Sincetε, sε ∈ (0, T ] we can use the definition of sub and supersolution (and Proposition 1.0.3)

and compute, respectively,

0 ≥ γ
√

| σε|
(tε − sε
√

| σε|
)

+ r(tε− t̂)+ δ+α∗(xε)
∣
∣
∣
γ

ε

(xε − yε
ε

+η
)

+ r(xε− x̂)+βmxε〈xε〉m−2
∣
∣
∣,

and

0 ≤ γ
√

| σε|

(tε − sε
√

| σε|

)

+ α∗(yε)
∣
∣
∣
γ

ε

(xε − yε
ε

+ η
)∣
∣
∣.

Combining the two inequalities we obtain

r(tε − t̂) + δ≤ α∗(yε)
∣
∣
∣
γ

ε

(xε − yε
ε

+η
)∣
∣
∣− α∗(xε)

∣
∣
∣
γ

ε

(xε − yε
ε

+η
)

+r(xε − x̂)+βmxε〈xε〉m−2
∣
∣
∣

≤ γ
| α∗(yε)− α∗(xε)|

ε

∣
∣
∣
xε − yε
ε

+ η
∣
∣
∣+ ‖α‖∞

∣
∣
∣ r(xε − x̂) + βmxε〈xε〉m−2

∣
∣
∣,

and hence taking thelim sup asε → 0+,

δ ≤ γ lim sup
ε→0+

( | α∗(yε)− α∗(xε)|
ε

∣
∣
∣
xε − yε

ε
+ η
∣
∣
∣

)

+ ‖α‖∞βm| x̂|〈x̂〉m−2. (3.37)

Now we compute the limsup in the right hand side of (3.37). We start with the caseŝx /∈ Γ, or else

x̂ ∈ Γ, xε ∈ Ω− ∪ Γ and thusyε ∈ Ω−, for all ε small enough. By (3.35) we get

δ ≤ γ lim sup
ε→0+

Lα| yε − xε|
ε

∣
∣
∣
xε − yε
ε

+ η
∣
∣
∣ = 0 + ‖α‖∞βm| x̂|〈x̂〉m−2.

If insteadx̂ ∈ Γ and along a subsequencexε ∈ Ω+, we have two further cases: either forε small

yε ∈ Ω+ ∪ Γ and we proceed again as above, oryε ∈ Ω− on a subsequence. In the latter situation

(3.37) becomes

δ ≤ γ lim sup
ε→0+

| α(yε)− α(xε)|
ε

∣
∣
∣
xε − yε

ε
+ η
∣
∣
∣+ ‖α‖∞βm| x̂|〈x̂〉m−2

≤ γ [α∗(x̂)− α∗(x̂)]
︸ ︷︷ ︸

<0

lim sup
ε→0+

1

ε

∣
∣
∣
xε − yε
ε

+ η
∣
∣
∣+ ‖α‖∞βm| x̂|〈x̂〉m−2

≤ ‖α‖∞βm| x̂|〈x̂〉m−2

In any case we thus obtainδ ≤ ‖α‖∞βm| x̂|〈x̂〉m−2, hence a contradiction for a sufficiently small

m and givenδ, β.

The following uniqueness result is an immediate consequence of Theorem 3.2.3.



Corollary 3.2.5. Assume the same hypotesis of Theorem 3.2.3. A viscosity solution u ∈ C(Rn ×
[0,+∞)) of (3.5) is unique within the class of discontinuous solutions.

3.2.2 Existence of (the) continuous viscosity solution

We now construct the (unique) continuous viscosity solution for the Cauchy problem (3.5). Once

more time we recall that in [22] we made a similar construction to obtain a continuous viscosity

solution for the more general Cauchy problem in (3.31).

In order to use the control theoretic interpretation of solutions and avoid dealing with discontin-

uous vector fields, we rather look at (3.5) as the following Hamilton-Jacobi-Bellman equation







(i)
ut(x, t)

α(x)
+ max

a∈A
{−a ·Du(x, t)} = 0, (x, t) ∈ Rn × (0,+∞),

(ii) u(x, 0) = uo(x), x ∈ Rn,
(3.38)

whereA = {a ∈ Rn : | a| ≤ 1}, and construct the corresponding value function.

We consider the following control system







ẋ(s) = a(s), x(0) = xo,

”t(s) = to −
∫ s

o

1

α(x(r))
dr”, to > 0,

(3.39)

where we will make precise the second equation by using the semicontinuous envelopes off . As

control set we will consider the setA defined as

A = {a : [0,+∞) → A, a(·) measurable function}.

From now onx(·) = x(·; xo, a) will be a trajectory of the first equation in (3.39) corresponding

to the control functiona ∈ A. We have two possible candidate value functions. If we sett̂(s) =

to −
∫ s

o

1

α∗(x(s))
ds, andτ̂xo,to is such that̂t(τ̂xo,to) = 0, then we define

v̂(xo, to) = inf
a∈A

uo(x(τ̂xo,to ; xo, a)),

If on the other hanďt(s) = to −
∫ s

0

1

α∗(x(s))
ds, andτ̌xo,to is such thaťt(τ̌xo,to) = 0, then we define

v̌(xo, to) = inf
a∈A

uo(x(τ̌xo,to ; xo, a)). (3.40)

We claim that under suitable assumptionsv̂ andv̌ coincide and are the unique continuous solution

of the Cauchy problem (3.5) (and of (3.38)).



Remark 3.2.6. Suppose thatα1(x) ≥ α2(x) ≥ ρ > 0, then for(x, t) ∈ Rn × (0,+∞) and all

controlsa ∈ A we defineτ i = τ i(a), i = 1, 2, by setting

t =

∫ τ i

0

1

αi(x(s))
ds.

Eachτ i is well defined sincef is strictly positive. We have thatτ 1 ≥ τ 2 since

∫ τ1

0

1

α2(x(s))
ds ≥

∫ τ1

0

1

α1(x(s))
ds =

∫ τ2

0

1

α2(x(s))
ds.

Now for givenx ∈ Rn we modify the control by setting

ã(s) :=

{

a(s) s ≤ τ 2,

0, s > τ 2

and we obtain

x(τ 2(a); x, a) = x(τ 2(ã); x, ã) = x(τ 1(ã); x, ã).

From here the corresponding value functions satisfy the relationship

u1(x, t) = inf
a∈A

uo(x(τ
1)) ≤ inf

a∈A
uo(x(τ

2)) = u2(x, t).

A first consequence of Remark 3.2.6 is thatv̂ ≤ v̌.

We show that the Hamilton-Jacobi-Bellman equation (3.38) is satisfied by approximation with

problems without discontinuities. We prove the following general result.

Theorem 3.2.7.Suppose that the functionα satisfies assumptions (3.32).

(i) The functionv̂ is lower semicontinuous inRn × [0,+∞), continuous at the points of{(x, 0) :

x ∈ Rn}.

(ii) If we approximateα∗ (from above) by the family of Lipschitz continuous functions

αε(x) = sup
y
{α∗(y)− |x− y|2

2ε2
},

thenv̂(x, t) = sup
ε↓0

vε(x, t), wherevε ∈ C(Rn × [0,+∞)) solves the HJ equation in (3.38-i) withα

replaced byαε.

(iii) v̂ is the minimal viscosity solution of (3.38-i).

Proof. We start by observing that the sequenceαε has uniform bounds, sinceρ ≤ α∗ ≤ αε ≤ ‖α‖∞.



Moreover by well known results, each sup-convolutionαε is Lipschitz continuous,αε ↓ α∗, and thus

α∗(x) = inf
ε
αε(x) = lim

r→0+
sup

|y−x|<r,0<ε<r

αε(y) (=: lim sup∗
ε→0+α

ε(x)),

α∗(x) = lim
r→0+

inf
|y−x|<r,0<ε<r

αε(y) (=: lim inf∗ε→0+α
ε(x)).

(3.41)

We consider the approximating Cauchy problem

{

ut(x, t) + αε(x)|Du(x, t)| = 0,

u(x, 0) = uo(x),
(3.42)

and for any given(xo, to) ∈ Rn × [0,+∞) and controlsa(·), define the uniquêτ εxo,to ≥ 0 such that

0 = to −
∫ τ̂εxo,to

o

1

αε(x(s))
ds, wherex(·) = x(·; xo, a). Notice thattoρ ≤ τ̂ εxo,to ≤ to‖α‖∞. In

particular every value function

vε(x, t) = inf
a∈A

uo(x(τ̂
ε
x,t))

is continuous at the points of{(x, 0) : x ∈ Rn}. Indeed this follows from

|uo(x(τ̂ εxo,to))− uo(x)| ≤ ωx(|x(τ̂ εxo,to)− xo|+ |x− xo|) ≤ ωx(‖α‖∞to + |x− xo|),

whereωx is a local modulus of continuity foruo. Thus

|vε(xo, to)− uo(x)| ≤ ωx(‖α‖∞to + |x− xo|).

We pause to observe that for the same reason this fact holds also for v̂ andv̌. By classical resultsvε

is therefore the unique continuous viscosity solution of (3.42), see e.g. [3].

Observe now that, by Remark 3.2.6, the family{vε} increases asε → 0+. Therefore we can

define the lower semicontinuous function

v(x, t) = sup
ε
vε(x, t) = lim inf

ε→0+
∗ v

ε(x, t),

which also satisfies

v∗(x, t) = lim sup
ε→0+

∗ vε(x, t).

By stability of viscosity solutions, see Theorem 1.0.4, it is then well known thatv is a viscosity

solution of the HJ equation in (3.38).

We now show that̂v = v. By Remark 3.2.6, it is clear thatvε ≤ v̂ and thenv ≤ v̂. Now we

suppose by contradiction thatv(x, t) + 2δ ≤ v̂(x, t) for some(x, t) ∈ Rn × (0,+∞) andδ > 0. By



definition, for allε > 0 sufficiently small, we can choose a strategyaε such that,

uo(x(τ̂
ε
x,t; x, aε)) + δ ≤ v̂(x, t). (3.43)

We will find a control functiona ∈ A such that, at least for a subsequence,

lim
ε→0

x(τ̂ εx,t; x, aε) = x(τ̂x,t; x, a). (3.44)

This will give a contradiction in (3.43) by continuity ofuo and definition of̂v.

To prove (3.44) we consider the subsequenceεn = 1/n. By viewinga1/n as an element of the

space

L∞((0, t‖α‖;A) = (L1((0, t‖α‖), A))∗

which is compact the weak star topology we can find a subsequence{nk} and an element̃a ∈ A
such that

aεnk

∗
⇀ ã.

From the definition of weak convergence and Lemma 3.2.8, thatwe postpone after the end of the

proof, we know that

x(s; x, aεnk
) → x(s; x, ã), for all s ∈ [0,+∞)

τ̂x,t(ã) ≥ T̃ := lim sup
εnk

→0+
τ̂
εnk
x,t (aεnk

).

We then restrict ourselves to a further subsequence that we simply denoteaεn such that̂τ εnx,t(aεn) →
T̃ and get

x̂(τ̂ εnx,t; x, aεn) = x+

∫ τ̂εnx,t

0

aεn(s)ds

= x+

∫ T̃

0

aεn(s)ds+

∫ τ̂εnx,t

T̃

aεn(s)ds

−→ x+

∫ T̃

0

ã(s) = x(T̃ ; x, ã), n→ ∞.

We now modify the strategỹa by setting

a#(s) :=

{

ã(s) s ≤ T̃

0, s > T̃
,

and we obtain (3.44) as desired.

Concerning the fact that̂v is the minimal viscosity solution, observe that sinceαε ≥ α∗ ≥ α∗,



thenvε is a continuous viscosity subsolution of (3.38). Thus by thecomparison principle of the

previous section, for any viscosity solutionv of (3.38) we havevε ≤ v∗ and thereforêv ≤ v∗.

We are left to show the claimed Lemma.

Lemma 3.2.8. τ̂x,t(ã) ≥ T̃ := lim sup
ε→0+

τ̂
εnk
x,t (aεnk

).

Proof. We restrict ourselves to a subsequence, that for simplicitywe indicate withεn such that

T̃ := lim
ε→0+

τ̂ εnx,t(aεn). By definition

∫ τ̂x,t(ã)

0

1

α∗(x(s; x, ã))
ds = t =

∫ τ̂εnx,t(aεn )

0

1

αε
n(x(s; x, aεn))

ds,

and hence from Fatou’s Lemma and the approximating properties ofαε in (3.41) we have that

t ≥
∫ T̃

0

1

α∗(x(s; x, ã))
ds.

The conclusion then holds.

The following is the corresponding statement for the approximation of the solution of our prob-

lem from above and it has an identical proof.

Theorem 3.2.9.Suppose that the functionα satisfies the assumptions in (3.32). Given the inf-

convolutions

αε(x) = inf
y
{α∗(y) +

|x− y|2
2ε2

},

let v(x, t) = inf
ε↓0

vε(x, t), wheret =
∫ τ̌εx,t(a)

0

1

αε(x(s; x, a))
ds and

vε(x, t) = inf
a∈A

uo(x(τ̌
ε
x,t(a))),

vε ∈ C(Rn× [0,+∞)) solves the HJ equation in (3.38) withα replaced byαε. Thenv̌ = v is upper

semicontinuous inRn × [0,+∞), continuous at the points of{(x, 0) : x ∈ Rn} and the maximal

viscosity solution of (3.38).

Proof. The proof is identical to the one of the previous Theorem except for the identityv̌ = v.

Therefore we now show that

v(x, t) = v̌(x, t) = inf
a∈A

uo(x(τ̌x,t; x, a)).



Suppose on the contrary that for someδ > 0, (x, t) ∈ Rn × (0,+∞)

v(x, t) ≥ v̌(x, t) + 2δ.

Therefore we can finďa ∈ A such that

uo(x(τ̌x,t; x, ǎ)) + δ ≤ v(x, t). (3.45)

If we verify that

lim
ε→0+

τ̌ εx,t(ǎ) = τ̌x,t(ǎ), (3.46)

where ∫ τ̌εx,t(ǎ)

0

1

αε(x(s; x, ǎ))
ds = t,

then we reach a contradiction in(3.45) for ε sufficiently small, because

v(x, t) ≤ vε(x, t) ≤ uo(x(τ̌
ε
x,t; x, ǎ)).

Now we prove (3.46). Sincěτ εx,t is bounded, we take any converging subsequenceτ̌ εnx,t(ǎ) −→ T̃ .

Then we pass to the limit in

∫ τ̌x,t(ǎ)

0

1

α∗(x(s; x, ǎ))
ds = t =

∫ τ̌εnx,t(ǎ)

0

1

αεn(x(s; x, ǎ))
ds

and obtain
∫ τ̌x,t(ǎ)

0

1

α∗(x(s; x, ǎ))
ds =

∫ T̃

0

1

α∗(x(s; x, ǎ))
ds,

hencěτx,t(ǎ) = T̃ .

Remark 3.2.10.By the classical dynamic programming principle we could show directly thatv̌ is

a viscosity solution of (3.38). This is a matter that we skip.

We have reached the following point.

Corollary 3.2.11. Suppose that the functionα satisfies the assumptions in (3.32). Then

v̂ ≤ v̌,

andv̂, v̌ are lower and upper semicontinuous, respectively, and viscosity solutions of (3.5).

We plan now to prove that indeed under appropriate assumptionsv̌ ≤ v̂ by using the comparison

principle in Theorem 3.2.3, so there is a unique continuous solution of (3.38) which is the uniform



limit of suitable approximation of continuous problems. Therefore we now discuss how to obtain

the extra continuity properties of a value function that we need in order to apply that theorem. We

define the following property of the the trajectories of the control system.

Definition 3.2.12. We say that condition (Tx) holds atx ∈ Γ if there are sequencessn ↓ 0, an ∈ A,

an inward vectorη+ to Ω+ andk > 0 such that

xn = x(sn; x, an) = x+ (sn)
kη+ + o((sn)

k),

x(0; x, an) = x.
(3.47)

We have the following consequence.

Proposition 3.2.13.If condition (Tx) holds atx ∈ Γ then for anyt > 0, at (x, t) we have that

v̌(x, t) = lim
n→+∞

v̌(xn, tn),

wheretn = ť(sn) = t−
∫ sn

o

1

α∗(x(s))
ds, xn = x(sn; an) = x+ (sn)

kη+ + o((sn)
k)), η+ is inward

unit vector toΩ+.

Proof. The result is a consequence of the dynamic programming principle. Indeed for anys > 0

we have

v̌(x, t) = inf
a∈A

v̌(x(s ∧ τ̌x,t), t(s ∧ τ̌x,t)).

Therefore we immediately obtain by choosings = sn andn sufficiently large

v̌(x, t) ≤ v̌(xn, tn)

and the conclusion follows since we already know from Theorem 3.2.9 thaťv is an upper semicon-

tinuous function.

Proposition 3.2.14.The trajectories of the control system (3.39) satisfies the condition (Tx) for all

x ∈ Γ.

Proof. For anyx ∈ Γ consider aa ∈ A such thatη+x · a > 0 with η+x as in Remark 3.2.2. Then we

can choosean ≡ a, sn = 1/n, η = a, to reach condition (Tx) with k = 1.

We have obtained the following result.

Theorem 3.2.15.Suppose that the functionα satisfies assumptions (3.32). Then the Cauchy prob-

lem (3.38) has a unique viscosity solutionv = v̂ = v̌ ∈ C(Rn × [0,+∞)).



Proof. By Proposition 3.2.13 and Proposition 3.2.14 we can apply Theorem 3.2.3 to the lower

semicontinuous subsolutioňv and the upper semicontinuous supersolutionv̂. We thus obtain that

v̌ ≤ v̂ andv = v̂ = v̌ is a continuous solution of (3.5). Then Corollary 3.2.5 states its uniqueness

within discontinuous solutions.

3.2.3 The no-interior condition

In this section we want to prove that, since the velocityα has a constant sign, the zero level set

{x : v(x, t) = 0} of the (unique) viscosity solutionv of the Cauchy problem (3.5) has an empty

interior provided so does the zero level set of the initial condition {x : uo(x) = 0}. To be more

precise we will use the representation formula forv in (3.40) to prove that condition (2.7) is fullfilled

by v if we assume that the initial datumu0 satisfies

{u0 > 0} 6= ∅, {u0 < 0} 6= ∅,
Γ0 = {u0 = 0} = ∂{u0 > 0} = ∂{u0 < 0}

(3.48)

Theorem 3.2.16.Suppose thatα satisfies assumptions (3.32). If the initial datumu0 : Rn → R is

a continuous function so that (3.48) holds, then the zero level set{(x, t) : v(x, t) = 0} satisfies the

no-interior condition in (2.7).

Proof. For all (x̂, t̂) ∈ Rn × (0,+∞) we define the (bounded) set of reachable points from(x̂, t̂) as

Rx̂,t̂ := {x(τ̌x̂,t̂(a); x̂, a) : a ∈ A}.

First of all observe thatB(x̂, ρt̂] ⊆ Rx̂,t̂. In fact if x ∈ B(x̂, ρt̂] x 6= x̂, thenx = x̂ +m| x − x̂|,
with m =

x− x̂

| x− x̂| . We consider the control

ã(s) =







x− x̂

|x− x̂| , if s ≤ | x− x̂|,

0 if s > | x− x̂|.

We have thaťτx̂,t̂(ã) ≥ ρt̂ ≥ | x − x̂| andx(τ̌x̂,t̂(ã); x̂, ã) = x(| x − x̂|; x̂, ã) = x, i.e. x ∈ Rx̂,t̂.

Using this inclusion and concatenation of control functions, one can then easily show that for every

h ∈ (0, t̂)

Rx̂,t̂−h ⊆
⋃

x∈Rx̂,t̂−h

B(x, ρ
h

2
) ⊆

⋃

x∈Rx̂,t̂−h

B(x, ρh) ⊆
⋃

x∈Rx̂,t̂−h

Rx,h ⊆ Rx̂,t̂,



and so

Rx̂,t̂−h ⊆
◦

Rx̂,t̂ for all (x̂, t̂) ∈ Rn × [0,+∞), h > 0. (3.49)

Next we claim that ifv(x̂, t̂) = 0 thenv(x̂, t̂− h) > 0 for everyh > 0, thus(x̂, t̂) /∈ Int{(x, t) :
v(x, t) = 0}. Indeed suppose thatv(x̂, t̂) = 0 andh > 0. By (3.49) and the representation formula

(3.40) forv we have thatv(x̂, t̂ − h) = inf{u0(y) : y ∈ Rx̂,t̂−h} ≥ 0. Assume by contradiction

that v(x̂, t̂ − h) = 0, i.e. there existŝy ∈ Rx̂,t̂−h such thatu0(ŷ) = 0. Let r > 0 be such that

B(ŷ, r) ⊆
◦

Rx̂,t̂; by (3.48) we have that there existy1, y2 ∈ B(ŷ, r) such thatu0(y1) < 0 and

u0(y2) > 0. Again, this means that

v(x̂, t̂) = inf
y∈Rx̂,t̂

u0(y) ≤ u0(y1) < 0,

and we get a contradiction sincev(x̂, t̂) = 0.

Assuming the claim, our Theorem immediately follows since we have that, for any(x̂, t̂) ∈
Rn × (0,+∞), h > 0 sufficiently small,

if v(x̂, t̂) = 0, then v(x̂, t̂− h) > 0 andv(x̂, t̂+ h) < 0.

3.3 Another asymptotic problem

In this last section of the chapter we want to briefly discuss adifferent scaling with respect to the

reaction-diffusion equation (3.7) , namely we will consider

{

(i) uεt(x, t)−∆uε(x, t) + ε−2f ε(uε, x) = 0 in Rn × (0,+∞),

(ii) uε(x, 0) = g(x) in Rn.
(3.50)

Under different assumptions to those in Theorem 3.1.1 on thecubic functionf ε, we will prove that

the front which describes the asymptotic behavior of theseuε asε → 0+ has normal velocity given

by K − α, whereK is the mean curvature of the front. To be more precise we will prove that the

front that ”separates” the two regions where the solutions of (3.50) converges to the stable equilibria

of the system evolves according to the geometric pde

ut(x, t) + F (Du(x, t), D2u(x, t)) + α(x)|Du(x, t)| = 0, (x, t) ∈ Rn × (0,+∞), (3.51)



where the termα satisfies condition (3.20) andF : Rn × Sn → R is defined as

F (p,X) = − tr
[(

I − p

| p| ⊗
p

| p|
)

X
]

. (3.52)

Unlucky we are not able to claim that the Cauchy problem for (3.51) is well-posed (even if we

conjectured this). We are able to prove a comparison principle (CP) for viscosity sub and super-

solutions of the equation (3.51) that tells us that, if a continuous viscosity solution of (3.51) exists,

then it is unique. What we are not able to do it to construct such a continuous solution.

3.3.1 The result

We now modify some of the assumptions of section 3.1.1 in order to study the asymptotic behavior

of the solutions of (3.50).

We have a cubic functionf ε with the same structure as in section 3.1.1 but with (3.9) replaced

by the stronger condition, this time for somek ∈ [0, 1),







for every compactK ⊂ R there exists a constantC = C(K) > 0

such that, for all(q, x) ∈ K × Rn, 1 ≤ i, j ≤ n,

|f ε
q (q, x)|, |f ε

qq(q, x)| ≤ C, |f ε
xi
(q, x)|, |f ε

xiq
(q, x)| ≤ C1

εk−1
, |f ε

xixj
(q, x)| ≤ C2

ε2k−1
.

(3.53)

Moreover we assume that

mε
o −→ 0+ uniformly inRn, (3.54)

i.e. for anyσ > 0 we can find anεσ > 0 such thatmε
o(x) ∈ (0, σ] for all ε ≤ εσ, x ∈ Rn. This

means that instead of (3.10) we will assume that for anyσ > 0 there exists two functions

f̄ , f ∈ C2(R× Rn) satisfying(3.8), (3.53)

with zeroes in{−1, σ, 1}, {−1, 0, 1} respectively,

andf ≤ f ε ≤ f, for all x ∈ Rn, q ∈ [−1, 1], 0 < ε ≤ εσ.

(3.55)

Consequently we adapt the growth rate in (3.16) as

|Dqε(r, x)|, |Dqεr(r, x)| ≤
M1

εk−1
, |D2qε(r, x)| ≤ M2

ε2k−1
, for all x ∈ Rn, r ∈ R. (3.56)

During the proofs we also need to modify the cubic-like functionf ε asf ε,δ = f ε+εδ, for δ ∈ [−δ, δ]
and modify accordingly the notations for the properties off ε,δ. Moreover we assume that there is a



constantM > 0 independent ofε, δ such that

sup
x∈Rn

[

|cε(x)− cε,δ(x)|+ |1−mε,δ
+ (x)|+ |1 +mε,δ

− (x)|
]

≤ Mδε. (3.57)

As for the asymptotics of the velocity of the traveling wave solutions, we replace (3.19) by

0 < 2ρ ≤ n1(x) <
cε(x)

ε
< n2(x) ≤ 2(1− ρ), for anyx ∈ Rn,

cε

ε
−→ α, locally uniformly off Γ̃,

(3.58)

where the functionsα, n1, n2 are assumed as in (3.20) andΓ̃ is a Lipshitz hypersurface.

We formalize the asymptotic result for (3.50) in the following theorem.

Theorem 3.3.1.Assume (3.8), (3.53), (3.55), (3.14), (3.15), (3.56), (3.57), (3.58) and (3.20). Let

uε be the unique solution of (3.50), whereg : Rn → [−1, 1] is a continuous function such that the

setsΓo = {x : g(x) = 0}, Ω+
o = {x : g(x) > 0}, Ω−

o = {x : g(x) < 0} are nonempty and mutually

disjoint subsets ofRn.

We suppose that the (unique) continuous viscosity solutionu of the Cauchy problem

{

ut(x, t) + F (Du(x, t), D2u(x, t)) + α(x)|Du(x, t)| = 0 in Rn × (0,+∞),

u(x, 0) = do(x),
(3.59)

exists, whereF is as in (3.52) anddo is the signed distance toΓo which is positive inΩ+
o and

negative inΩ−
o .

Then

uε(x, t) −→
{

1 in {(x, t) : u(x, t) > 0},
−1 in {(x, t) : u(x, t) < 0},

locally uniformly asε → 0, If in addition the no-interior condition (2.7) for the set{u = 0} holds,

then, asε→ 0,

uε(x, t) −→
{

1 in {u > 0},
−1 in {u > 0}c,

locally uniformly.

Proof. The proof follows the same steps as the one of Theorem 3.1.1, so we just point out the main

changes. Consider two regionsΩ1 andΩ2 as in (2.14) withτ = 1. Define two families of open sets

of Rn, (Ω1
t )t∈[0,T ) and(Ω2

t )t∈[0,T ), as in (2.15) and (2.17). By the maximum principle−1 ≤ uε ≤ 1.

First step: initialization.We want to show thatΩ+
0 = {do > 0} ⊆ Ω1

0 andΩ−
0 = {do < 0} ⊆ Ω2

0.



For the first inclusion we consider̂x ∈ {x : do(x) > 0} and findr, σ > 0 such that

g(x) ≥ 5σ for all x ∈ B(x̂, r)

≥ cε(x) + 4σ for all x ∈ B(x̂, r), ε ≤ εσ

and

mε
o(x) ∈ (0, σ], for all x ∈ Rn, ε ≤ εσ.

This means in particular that

uε(x, 0) = g(x) ≥ 5σ1B(x̂,r)(x)− 1B(x̂,r)c(x). (3.60)

As in (3.24) we define the functionΦ : Rn × [0, T ] → R asΦ(x, t) = r2 − |x − x̂|2 − Ct with

C > 0 a constant that will be chosen later.

Now we state the analogous of Lemma 3.1.4 and of Lemma 3.1.5

Lemma 3.3.2. Under the same assumptions of Theorem 3.3.1 we have that for any β > 0 there

existτ = τ(β) > 0 andε̄ = ε̄(β) such that, for all0 < ε ≤ ε̄, we have

uε(x, tε) ≥ (1− βε)1{d(·,0)≥β}(x)− 1{d(·,0)<β}(x), x ∈ Rn,

wheretε = τε2| lg ε| andd(x, t) =
√

(r2 − Ct)+ − |x − x̂| is the signed distance to the set{x :

Φ(x, t) = 0}.

Lemma 3.3.3.There exist̄h = h̄(r, x̂), β̄ = β̄(r, x̂) > 0 independent ofε such that ifβ ≤ β̄ and

ε ≤ ε̄(β), then there exists a subsolutionωε,β of (3.50-i) inRn × (0, h̄) that satisfies

ωε,β(x, 0) ≤ (1− βε)1{d(·,0)≥β}(x)− 1{d(·,0)<β}(x), x ∈ Rn.

If moreover(x, t) ∈ B(x̂, r)× (0, h̄) andd(x, t) > 3β, then

lim inf
ε→0+

∗
ωε,β(x, t)− 1

ε
≥ −2β.

Proof of Lemma3.3.2. Let β > 0 fixed. From now on we restrictε to ε ≤ εσ. To prove our thesis

we have to modify the functionf ε as in [16, 5]. Letf̄ ∈ C2(R × Rn) be a function as in (3.55)

with m2 = 2σ. Consider a smooth cut-offρ ∈ C∞
0 (R) such that0 ≤ ρ ≤ 1, ρ(s) = 1 if |s| ≤ 1

andρ(s) = 0 if |s| ≥ 2. Assume moreover thatρ satisfies−2 ≤ sρ′(s) ≤ 0 and|ρ′′(s)| ≤ 4 for all

s ∈ R. Now define two further smooth functionsρ1, ρ2 : R → [0, 1] as

ρ1(q) = ρ
(q − 2σ

σ

)

ρ2(q) = ρ
(q − 2σ

σ
4

)



and set

f̄ ε(q, x) = (1− ρ1(q))f
ε(q, x) + ρ1(q)f̄(q)

and

f̃ ε(q, x) = (1− ρ2(q))f̄
ε(q, x) + ρ2(q)

2σ − q

| lg ε| .

Notice that for anyx ∈ Rn, f̃ ε(·, x) has{−1, 2σ, 1} as zeros and satisfies properties similar tof ε.

Moreoverf̃ ε does not depend onx for all q ∈ [σ, 3σ] andf ε ≤ min{f̄ ε, f̃ ε}.

1. As in Chen [16], if we denote byχ = χ(τ, ξ; x) ∈ C2([0,+∞)× R× Rn) the solution of

{

χ̇(τ, ξ; x) + f̃ ε(χ(τ, ξ; x), x) = 0, τ > 0,

χ(0, ξ; x) = ξ,
(3.61)

it follows thatχ satisfies property (χ1) in the proof of Lemma 3.1.4 while properties (χ2) and (χ3)

are replaced by the following: for allβ, σ > 0 there existτo = τo(β, σ), εo = εo(β, σ) > 0 such

that, for allτ ≥ τo| log ε| andε ≤ εo

χ(τ, ξ; x) ≥ 1− βε ∀ ξ ≥ 4σ. (χ̃2)

Moreover, since for anyC > 1 we have thatχ(τ, ξ, x) ∈ [−C,C] for all ξ ∈ [−C,C], τ ≥ 0,

x ∈ Rn, it also holds that for anyC > 1, a > 0 there exists a constantMC,a > 0 such that

|χξξ(τ, ξ; x)| ≤
MC,a

ε
χξ(τ, ξ; x), |χxi

(τ, ξ; x)|,≤ MC,a

εk−1

|χξxi
(τ, ξ; x)| ≤ MC,a

εk−1
χξ(τ, ξ; x), |χxixi

(τ, ξ; x)| ≤ MC,a

ε2k−1
χξ(τ, ξ; x),

(χ̃3)

for anyτ ≤ a| ln ε|, ξ ∈ [−C,C], x ∈ Rn, i ∈ {1, 2, · · · , n} andε small enough.

2. Consider a smooth nondecreasing functionψ such thatψ(z) = −1 if z ≤ 0 andψ(z) = 5σ if

z ≥ β ∧ σ

2
. Similarly as before, the function

uε(x, t) = χ
( t

ε2
, ψ(d(x, 0))− Kt

ε
, x
)

satisfiesuε(x, 0) ≤ uε(x, 0). Moreoveruε is a subsolution of (3.50-i) inRn× (0, τoε
2| lg ε|). Indeed



we can compute by (̃χ3),

uεt −∆uε +
f ε(uε, x)

ε2
=
χ̇+ f ε(χ, x)

ε2
−K

χξ

ε
− χξξ(ψ

′)2 − χξ(ψ
′′ + ψ′∆d)

+2ψ′Dχξ ·Dd+∆χ

=
f ε(χ, x)− f̃ ε(χ, x)

ε2
+
χξ

ε
[−K − ε(ψ′′ + ψ′∆d)+

+M2,τ0((ψ
′)2 + ε2−kψ′) + ε2−2k]

≤ −χξ

ε

(
K −M2,τ0‖ ψ′‖2∞ + oε(1)

)
≤ 0,

for K large enough. Therefore using the maximum principle and property (χ̃2) we can prove that

uε(x, tε) ≥ 1− βε if tε = τoε
2| lg ε| andd(x, 0) ≥ β (from which Lemma 3.3.2 follows).

Proof of Lemma3.3.3. The construction of a subsolution that satisfies this Lemma is very similar

to the one in Lemma 3.1.5. LetΦ, d andQγ,h̄ defined as in (3.24) where now the fixed constantC

satisfies

C ≥ 2r
[n− 1

γ
+ 4
]

.

The construction of our subsolutionωε,β follows the usual steps. We first define for any(x, t) ∈ Qγ,h̄

vε(x, t) = qε,δ
(d(x, t)− 2β

ε
, x
)

− 2βε,

whereqε,δ is the solution of the travelling wave equation (3.13) withf ε replaced byf ε,δ = f ε + εδ.

The functionvε is a subsolution of (3.50-i) inQγ,h̄. Indeed,

vεt −∆vε +
f ε(vε, x)

ε2
=
qε,δr dt
ε

− qε,δrr

ε
− 2

ε
Dqε,δr ·Dd− qε,δr

ε
∆d−∆qε,δ +

f ε(qε,δ − 2β, x)

ε2

−2β

ε
f ε
q (q

ε,δ, x) + 2β2ε‖ f ε
qq‖∞

≤ 1

ε

[

− qε,δr − 2βf ε
q (q

ε,δ, x) + 2β2ε‖ f ε
qq‖∞

]

+

[

−δ
ε
+ 2

M1

εk
+

M2

ε2k−1

]

,

and then we conclude as before. The extension ofvε to a subsolution in the entire stripRn × [0, h̄]

proceed now similarly to the one in Lemma 3.1.5. We first provethat the function̄vε : {(x, t) ∈
Rn × [0, h̄] : d(x, t) ≤ γ} → R, defined as

v̄ε(x, t) =

{

sup(vε(x, t),−1) if −γ < d(x, t) ≤ γ,

−1 if d(x, t) ≤ −γ,



is a subsolution of (3.50-i). Eventually we define our subsolutionωε,β as

ωε,β(x, t) =

{

ψ(d(x, t))v̄ε(x, t) + (1− ψ(d(x, t)))(1− εβ) if d(x, t) < γ,

1− εβ if d(x, t) ≥ γ.

for (x, t) ∈ Rn × [0, h̄]. Anyway since these proofs does not contain any new ideas with respect to

the ones in Lemma 3.1.5 we omit them.

Second step: propagation.The proof of the fact that(Ω1
t )t∈(0,T ) and((Ω2

t )
c)t∈(0,T ) are respec-

tively super and subflows with normal velocityK−α, whereK is the mean curvature of the level set,

is very close to the one in Theorem 3.1.1. We sketch the proof for (Ω1
t )t∈(0,T ). Here we approximate

our discontinuous limit velocityα with the following continuous functions:

ĉε(x) := ηε(x)n2(x) + (1− ηε(x))
cε(x)

ε
, čε(x) := ξε(x)n1(x) + (1− ξε(x))

cε(x)

ε
,

with ηε andξε as in Theorem 3.1.1. If we put̂F = {ĉε, ε > 0}, F̌ = {čε, ε > 0}, then Proposition

3.1.6 takes the following form.

Proposition 3.3.4.Let F : Rn × Sn → R be defined as in (3.52).

(i) A family (Ωt)t∈(0,T ) of open subsets ofRn such that the setΩ := ∪t∈(0,T )Ωt × {t} is open in

Rn × [0, T ] is a generalized superflowwith normal velocity−F − α if and only if it is a

generalized superflow with normal velocity−F − ĉ ∈ C(Rn), for all ĉ ∈ F̂ ;

(ii) A family (Ft)t∈(0,T ) of close subsets ofRn such that the setF := ∪t∈(0,T )Ft × {t} is closed

in Rn × [0, T ] is a generalized subflowwith normal velocity−F − α if and only if it is a

generalized subflow with normal velocity−F − č, for all č ∈ F̌ .

Thus, by this proposition, to prove that(Ω1
t )t∈(0,T ) is a superflow with normal velocityK−α we

have to prove that(Ω1
t )t∈(0,T ) is a superflow with normal velocityK− c̄ for any c̄ ∈ F , i.e. we have

to prove the following proposition

Proposition 3.3.5.Let c ∈ F be fixed and letx0 ∈ Rn, t ∈ (0, T ), r > 0, h > 0 so thatt+ h < T .

Suppose thatφ : Rn × [0, T ] → R is a smooth function such that, for a suitableC̃ > 0,

(i) φt(x, s) + F ∗(Dφ(x, s), D2φ(x, s)) + c(x)|Dφ(x, s)| ≤ −C̃ < 0, for all (x, s) ∈ B(x0, r]×
[t, t+ h],

(ii) for any s ∈ [t, t + h], {x ∈ B(x0, r] : φ(x, s) = 0} 6= ∅ and

|Dφ(x, s)| 6= 0 on{(x, s) ∈ B(x0, r]× [t, t + h] : φ(x, s) = 0},

(iii) {x ∈ B(x0, r] : φ(x, t) ≥ 0} ⊂ Ω1
t ,



(iv) for all s ∈ [t, t + h], {x ∈ ∂B(x0, r] : φ(x, s) ≥ 0} ⊂ Ω1
s.

Then, for everys ∈ (t, t + h),

{x ∈ B(x0, r] : φ(x, s) > 0} ⊂ Ω1
s.

Proof. We denote withd(·, s) the signed distance function to the set{φ(·, s) = 0} which has the

same sign ofφ. Using the definition of(Ω1
t )t∈(0,T ) we need to prove that for allx ∈ B(xo, r),

s ∈ (t, t+ h) such thatφ(x, s) > 0, then we have

lim inf
ε→0+

∗

(uε(y, τ)− 1

ε

)

≥ 0

for (y, τ) in a suitable neighborhood of(x, s). To see this we have to construct a subsolution of

(3.50-i) inB(x0, r)× (t, t+ h) as we claim in the following lemma.

Lemma 3.3.6.Let the assumptions of Proposition 3.3.5 hold true. There existsβ̄ small enough such

that, ifβ ≤ β̄ andε ≤ ε̄(β) then there is a viscosity subsolutionωε,β of (3.50-i) inB(x0, r)×(t, t+h)

that satisfies,

1. ωε,β(x, t) ≤ (1− βε)1{d(·,t)≥β}(x)− 1{d(·,t)<β}(x), for all x ∈ B(x0, r],

2. ωε,β(x, s) ≤ (1− βε)1{d(·,s)≥β}(x)− 1{d(·,s)<β}(x), for all x ∈ ∂B(x0, r], s ∈ [t, t + h]

3. if (x, s) ∈ B(x0, r]× [t, t+ h] satisfiesd(x, s) > 3β, then

lim inf
ε→0+

∗

(ωε,β(x, s)− 1

ε

)

≥ −β.

The proof of this lemma follows combining the ideas in the proofs of Lemma 3.1.8, Lemma

3.1.5 and Lemma 3.3.3.

3.3.2 Comparison principle for the second order equation

We conclude the Chapter with a comparison result for the equation

ut(x, t) + α(x)|Du(x, t)|+ F (Du(x, t), D2u(x, t)) = 0, (3.62)

whereF : Rn × Sn is the standard mean curvature term

F (p,X) = − tr[(I −− p

|p| ⊗
p

|p|)X ]

and the first order termα satisfies the following assumptions.



(α1) α : Rn → [ρα,+∞) is a bounded measurable function, piecewise Lipschitz continuous across

an hypersurfacẽΓ that partitionsRn asRn = Ω−∪̇Γ∪̇Ω+ with Ω+ andΩ− open and disjoint.

Moreover there existc, h > 0 and a unit vectorη so that

B(y ± tη, ct) ⊂ Ω±, for anyy ∈ B(x̂, h) ∩ Ω
±

, t > 0 andx̂ ∈ Γ̃. (3.63)

Finally α is locally Lipschitz continuous inRn\Γ̃ with Lipschitz continuous extension in

Ω+ = Ω+ ∪ Γ̃ (calledα∗) and inΩ− = Ω− ∪ Γ̃ (calledα∗) and it satisfies.

inf
Ω+

α > sup
Ω−

α

and

α(x) ∈ [α∗(x), α
∗(x)], for all x ∈ Γ̃.

Remark 3.3.7.We just notice that the assumption (3.63) onΓ̃ is satisfied wheñΓ is the global graph

of a Lipschitz continuous function with Lipshitz constant smaller than1/c.

We now state and prove our comparison result for the equation(3.62) inΩ × (0, T ), with Ω an

unbounded subset ofRn. The techniques used in this proof are a mixed between the ideas of Chen,

Giga and Goto to treat the singularity of the mean curvature term inp = 0 (see [18] and [31]) and the

techniques developed by Soravia to prove the uniqueness of viscosity solutions for discontinuous

Hamilton-Jacobi equations.

We denote withΩT the open setΩ× (0, T ), and with∂pΩT its parabolic boundary, i.e.∂pΩT =

Ω× {t = 0} ∪ ∂Ω× [0, T ].

Theorem 3.3.8.Let Ω be an unbounded open subset ofRn. Fix T > 0 and suppose thatα satisfies

all the assumptions in(α1). Consider two functionsu, v : Rn × [0, T ], respectively an upper

semicontinuous subsolution and a lower semicontinuous supersolution of (3.62) inΩT . Assume

moreover thatu is continuous in the directionη, i.e. for any point(x̂, t̂) ∈ Rn× (0, T ) there are two

sequencesxε = x̂+ εη + o(ε) andtδ = t̂+ o(δ) so that

lim
(ε,δ)→(0,0)

u(xε, tδ) = u(x̂, t̂), (I1)

and that there exists a function̄ω : [0,+∞) → [0,+∞) such that̄ω(r) → 0 if r → 0+ and

sup{u(x, t)− u(y, s), | x− y| < ε, | t− s| < δ, | x| > 1/ρ} ≤ ω̄(ε+ δ + ρ) (I2)



for anyε, δ andρ > 0. Finally u > −∞, v <∞ on∂pΩT and they satisfy

lim
δ→0+

sup { u(x, t)− v(y, s) : | x− y| ≤ δ, | t− s| ≤ δ, dist((x, t), ∂pΩT ) ≤ δ,

dist((y, s), ∂pΩT ) ≤ δ, (x, t), (y, s) ∈ Ω× [0, T ′] } ≤ 0

(3.64)

for eachT ′ ∈ (0, T ). Then

lim
δ→0+

sup{u(x, t)− v(y, s) : | x− y| ≤ δ, | t− s| ≤ δ, (x, t), (y, s) ∈ Ω× [0, T ′]} ≤ 0 (3.65)

for eachT ′ ∈ (0, T ).

Remark 3.3.9. The hypotesis in (I1) and in (I2) can be replaced by the analogous ones forv with

the only difference thatv has to be continuous in the direction−η ( that is in (I1) we have to replace

η with −η)

Proof. First of all we notice that thanks to Proposition 1.0.3 we canassume thatT ′ = T with u

andv respectively a viscosity sub and supersolution of (3.62) inΩ × (0, T ]. We may assume that

u andv are bounded inΩT and that‖ u‖∞, ‖ v‖∞ ≤ c4/2, with c as in(α1). Indeed, sinceu and

−v are upper semicontinuous inΩT they are bounded from above. Moreover since the function

ψ : R → [−c4/2, c4/2], ψ(z) = c4/2 tanh(z) is strictly increasing and the equation (3.62) is

geometric alsõu = ψ(u) andṽ = ψ(v) are respectively an upper semicontinuous subsolution and a

lower semicontinuous supersolution of (3.62) inΩT with ‖ ũ‖∞, ‖ ṽ‖∞ ≤ c4/2. Thus, sincẽu still

satisfies (I1) and (I2), it is possible to considerũ andṽ instead ofu andv or, equivalently, to assume

that‖ u‖∞, ‖ v‖∞ ≤ c4/2. We assume that‖ u‖∞, ‖ v‖∞ ≤ c4/2. Suppose that the conclusion is

false and that

θ0 := lim
r→0+

sup{u(x, t)− v(y, s) : (x, t, y, s) ∈ ΩT × ΩT , | (x− y, t− s)| < r} > 0;

thus alsoM := sup{u(x, t) − v(y, s) : (x, t), (y, s) ∈ ΩT × ΩT} ≥ θ0 > 0, M ≤ c4. Then for

a > 0 sufficiently small we have that

µ0 := lim
r→0+

sup{u(x, t)− v(y, s)− at : (x, t, y, s) ∈ ΩT × ΩT , | (x− y, t− s)| < r} > 0.

We fixeda > 0 in such a way to haveµ0 > 0 and we consider another positive constantβ > 0 so

thatµ0 ≥ β > 0. By the definition ofµ0 this means that, for anyr > 0,

sup{u(x, t)− v(y, s)− at : (x, t, y, s) ∈ ΩT × ΩT , | (x− y, t− s)| < r} ≥ β > 0



and thus also

sup{u(x, t)− v(y, s)− at : (x, t, y, s) ∈ ΩT × ΩT , | (x− y − εη, t− s)| < r} ≥ β > 0

for anyr > 0, ε > 0. Therefore we can conclude that

µ̃0 := lim
r→0+

sup{u(x, t)− v(y, s)− at : (x, t, y, s) ∈ ΩT ×ΩT , | (x− y− εη, t− s)| < r} ≥ β > 0.

For any pair of fixed parametersε, δ > 0 we now define inΩT × ΩT a functionωσ as

ωσ(x, y, t, s) := u(x, t)− v(y, s)− 1

4

∣
∣
∣
x− y

ε
− η
∣
∣
∣

4

− 1

2

∣
∣
∣
t− s

δ

∣
∣
∣

2

− at, σ = (ε, δ), ε, δ > 0,

and, for anyr > 0,

µ1(r) := sup{ωσ(x, t, y, s) : (x, t, y, s) ∈ ΩT × ΩT , | x− y − εη| ≤ r}
≤ sup

ΩT×ΩT

ωσ =: ϑ.

Observe thatµ1 andϑ depend onσ and that lim
r→0+

µ1(r) ≥ µ̃0 uniformly in σ. This means that there

existsr1 > 0 independent ofσ such that

µ1(r) ≥
3µ̃0

4
, for r ∈ (0, r1).

By the hypothesis (3.64) on the values ofu andv on the boundary there isr∗ > 0, r∗ < r1 such that

sup{ωσ(x, t, y, s) : (x, t, y, s) ∈ ∂pΩT × ΩT ∪ ΩT × ∂pΩT , | x− y, t− s| ≤ r∗} ≤ µ̃0

2
.

Sinceωσ(x, t, y, s) > 0 implies

| x− y − εη| ≤M1/4ε ≤ cε, | t− s| ≤M1/2δ,

we can find a pairεo, δo > 0 so that, for anyε ≤ εo, δ ≤ δo, if ωσ(x, t, y, s) > 0 then|(x−y, t−s)| ≤
r∗. Therefore we observe that, by the choice ofr∗, if ωσ(x, t, y, s) > µ̃0/2 andε ≤ ε0, δ ≤ δ0, then

(x, t), (y, s) ∈ Ω× (0, T ].

Case 1.There exists a sequenceεj → 0+, εj ≤ ε0 such that for eachj > 0 andr ∈ (0, r∗) there

is a δr = δr(j) so thatϑ(εj, δr) = µ1(r; εj, δr) andδr → 0+ asr → 0+. We first fix εj ≤ ε0 and



r ∈ (0, r∗). By the definition ofµ1 there exists a sequence{(xm, tm, ym, sm)} such that







| xm − ym − εjη| ≤ r

ωσ(xm, tm, ym, sm) ≥ ϑ(εj , δr)−
1

m
.

Therefore there exists a subsequence{(xmk
, tmk

, ymk
, smk

)}k so that(tmk
, smk

) → (t̂, ŝ) andxmk
−

ymk
+εjη → ωj ask → +∞, with |ωj| ≤ r.We omit from now on the subindexk. We now consider

the functions

ψ+(x, t) = u(x, t)− ϕ+(x, t)

ϕ+(x, t) =
∣
∣
∣
x− ym
εj

− η
∣
∣
∣

4

+
∣
∣
∣
t− sm
δr

∣
∣
∣

2

+ at + (t− t̂)2 + | x− ym − εjη − ωj|4

Let (ξm, τm) be a maximum point forψ+ in ΩT . This implies

ψ+(xm, tm) ≤ ψ+(ξm, τm)

and thus, if we subtractv(ym, sm) from both sides we obtain

ωσ(xm, tm, ym, sm)− (tm − t̂)2 − | xm − ym − εjη − ωj |4 ≤
≤ ωσ(ξm, τm, ym, sm)− (τm − t̂)2 − | ξm − ym − εjη − ωj|4. (3.66)

Since by the definition ofϑ, ωσ(ξm, τm, ym, sm) ≤ ϑ(εj , δr) this becomes

| ξm − ym − εjη − ωj|4 + (τm − t̂)2 ≤ ϑ(εj , δr)− ωσ(xm, tm, ym, sm)+

+(tm − t̂)2 + | xm − ym − εjη − ωj |4

≤ 1

m
+ (tm − t̂)2 + | xm − ym − εjη − ωj|4

and so alsoξm − ym − εjη → ωj, τm → t̂ asm → +∞. Moreover sincer < r∗ < r1 and

ϑ(εj, δr) = µ1(r; εj, δr) ≥ 3µ̃o/4 the inequality in (3.66) becomes

ωσ(ξm, τm, ym, sm) + (tm − t̂)2 + | xm − ym − εjη − ωj|4 ≥ ϑ(εj , δr)−
1

m
≥ 3µ̃o

4
− 1

m
.

Thus form large enoughωσ(ξm, τm, ym, sm) > µ̃o/2 and so we get(ξm, τm), (ym, sm) ∈ Ω× (0, T ].

Using the fact thatu is a viscosity subsolution of (3.62) inΩ× (0, T ] we have

ϕ+
t (ξm, τm) =

τm − sm
δ2r

+ 2(τm − t̂) + a ≤ 0



if, up to some subsequenceξm − ym + εjη = 0, and

ϕ+
t (ξm, τm) + α∗(ξm)|Dϕ+(ξm, τm)|+ F (Dϕ+(ξm, τm), D

2ϕ+(ξm, τm)) ≤ 0

if ξm − ym − εjη 6= 0 for m large enough. We sendm to infinity to get

t̂− ŝ

δ2r
+ a ≤ 0 (3.67)

if ωj = 0, and

0 ≥ t̂− ŝ

δ2r
+ a + lim sup

m→+∞
(α∗(ξm)
︸ ︷︷ ︸

≥ρα>0

|Dϕ+(ξm, τm)|) +
| ωj|2
ε4j

F (ωj, In)

≥ t̂− ŝ

δ2r
+ a + ρα

| ωj|3
ε4j

+ (1− n)
| ωj|2
ε4j

(3.68)

if ωj 6= 0. Similarly, if we consider the functions

ψ−(x, t) = −v(y, s) + ϕ−(x, t)

ϕ−(x, t) = −
∣
∣
∣
xm − y

εj
− η
∣
∣
∣

4

−
∣
∣
∣
tm − s

δr

∣
∣
∣

2

− (s− ŝ)2 − | xm − y − εjη − ωj |4

and we denote with(ζm, σm) a maximum point forψ− in Ω × (0, T ], with an argument similar to

the one forψ+ we getxm − ζm − εjη → ωj , σm → ŝ and(ζm, σm) ∈ Ω × (0, T ]. Sincev is a

supersolution we obtain

ϕ−
t (ζm, σm) =

tm − σm
δ2r

+ 2(ŝ− σm) ≥ 0

if, up to some subsequencexm − ζm − εjη = 0, and

ϕ−
t (ζm, σm) + α∗(ζm)|Dϕ−(ζm, σm)|+ F (Dϕ−(ζm, σm), D

2ϕ−(ζm, σm)) ≥ 0

if xm − ζm − εjη 6= 0 for m large enough. Asm goes to infinity we find

0 ≤ t̂− ŝ

δ2r
(3.69)

if ωj = 0, and

0 ≤ t̂− ŝ

δ2r
+ ‖ α‖∞

| ωj |3
ε4j

+ (n− 1)
| ωj |2
ε4j

(3.70)

if ωj 6= 0. If ωj = 0 the inequalities in (3.67) and (3.69) immediately yield a contradictiona ≤ 0.



If insteadωj 6= 0 we have to combine (3.68) and (3.70) to obtain

a ≤ | ωj |3
ε4j

(‖ α‖∞ − ρα) + 2(n− 1)
| ωj|2
ε4j

.

To conclude we notice thatωj depends onr; more precisely|ωj | ≤ r and so we sendr → 0+ to get

again the contradictiona ≤ 0.

Case 2. For sufficiently smallε, let’s sayε ≤ ε̃, there arerε ∈ (0, r∗) andδε > 0 such that

ϑ(ε, δ) > µ1(rε; ε, δ) for anyδ ≤ δε. We define a functionΨσρ in ΩT × ΩT as

Ψσρ(x, t, y, s) = ωσ(x, t, y, s)− ρ(| x|2 + | y|2)

with ρ > 0. ObviouslyΨσρ attains a maximum at some point(xσρ, tσρ, yσρ, sσρ) ∈ ΩT ×ΩT . Since

sup
ΩT×ΩT

Ψσ,ρ ↑ ϑ(σ) asρ→ 0+ we can find aρ0 = ρ0(σ) > 0 so that

sup
ΩT×ΩT

Ψσρ > µ2 := µ1(rε; ε, δ).

for any ρ ≤ ρ0. ThusΨσρ(x
σρ, tσρ, yσρ, sσρ) > µ2 ≥ 3µ̃0/4 and so(xσρ, tσρ), (yσρ, sσρ) ∈ Ω ×

(0, T ]. Moreover since

ωσ(xσρ, tσρ, yσρ, sσρ) ≥ Ψσρ(x
σρ, tσρ, yσρ, sσρ) > µ1(rε; ε, δ) > 0 (3.71)

we get, by the definition ofµ1,

| xσρ − yσρ − εη| > rε

and, by the strict positivity ofµ1,

|xσρ−yσρ−εη| ≤ (‖u‖∞+‖v‖∞)1/4ε ≤ cε, |tσρ−sσρ| ≤ (‖u‖∞+‖v‖∞)1/2δ ≤ c2δ. (3.72)

Finally we observe that, since0 < Ψσρ(x
σρ, tσρ, yσρ, sσρ) ≤ ‖ u‖∞ + ‖ v‖∞ − ρ(| xσρ|2 + | yσρ|2),

then

ρ(| xσρ|+ | yσρ|) → 0 asρ→ 0+. (3.73)

We denote withξ andζ the pairs(x, t) and(y, s) respectively, and we define the functionϕ as

ϕ(x, t, y, s) =
1

4

∣
∣
∣
x− y

ε
− η
∣
∣
∣

4

+
1

2

∣
∣
∣
t− s

δ

∣
∣
∣

2

.

Since the map(x, t, y, s) 7−→ u(x, t)−v(y, s)−at−ϕ(x, t, y, s)−ρ(|x|2+ |y|2) takes its maximum



overΩT × ΩT at (xσρ, tσρ, yσρ, sσρ) ∈ Ω× (0, T ]× Ω× (0, T ], we get

((Dξϕ

Dζϕ

)

, A
)

∈ J2,+
(
u(ξσρ)− v(ζσρ)− atσρ − ρ(| xσρ|2 + | yσρ|2)

)
,

where

A =

(

D2
ξξϕ D2

ξζϕ

D2
ζξϕ D2

ζζϕ,

)

,

Dξϕ = Dξϕ(ξ
σρ, ζσρ), Dζϕ = Dζϕ(ξ

σρ, ζσρ) and so on. Now we apply the well-known Theorem

on Sum (see [20] and [19]) that tells us that for everyλ > 0 there exist two matricesXσρ, Y σρ ∈ Sn

such that

(a+ ϕt(ξ
σρ, ζσρ), Dxϕ(ξ

σρ, ζσρ) + 2ρxσρ, Xσρ + 2ρIn) ∈ P2,+
u(xσρ, tσρ)

(−ϕs(ξ
σρ, ζσρ),−Dyϕ(ξ

σρ, ζσρ)− 2ρyσρ, Y σρ − 2ρIn) ∈ P2,−
v(yσρ, sσρ)

and

−
(1

λ
+ ‖ A0‖

)

I ≤
(

Xσρ O

O −Y σρ

)

≤ A0 + λA2
0, (3.74)

where

A0 =

(

D2
xxϕ D2

xyϕ

D2
yxϕ D2

yyϕ

)

=

(

B −B
−B B

)

,

B =
| pσρ|2
ε2

I +
2

ε2
pσρ ⊗ pσρ, pσρ =

xσρ − yσρ

ε
− η.

Moreover if we compute explicitly the derivatives ofϕ with respect tox andy we see that

Dxϕ(ξ
σρ, ζσρ) = −Dyϕ(ξ

σρ, ζσρ) =
1

ε
| pσρ|2pσρ.

Now we use the hypothesis thatu andv are respectively a sub and a supersolution to obtain

a +
(tσρ − sσρ

δ2

)

+ α∗(x
σρ)
∣
∣
∣
| pσρ|2pσρ

ε
+ 2ρxσρ

∣
∣
∣ + F

( | pσρ|2pσρ
ε

+ 2ρxσρ, Xσρ + 2ρIn

)

≤ 0,

(tσρ − sσρ

δ2

)

+ α∗(yσρ)
∣
∣
∣
| pσρ|2pσρ

ε
− 2ρyσρ

∣
∣
∣ + F

( | pσρ|2pσρ
ε

− 2ρyσρ, Y σρ − 2ρIn

)

≥ 0.



Since the hamiltonianF is elliptic and (3.74) impliesXσρ ≤ Y σρ we thus get

a ≤ α∗(yσρ)
∣
∣
∣
| pσρ|2pσρ

ε
− 2ρyσρ

∣
∣
∣− α∗(x

σρ)
∣
∣
∣
| pσρ|2pσρ

ε
+ 2ρxσρ

∣
∣
∣

︸ ︷︷ ︸

A

+

F
( | pσρ|2pσρ

ε
− 2ρyσρ, Xσρ − 2ρIn

)

− F
( | pσρ|2pσρ

ε
+ 2ρxσρ, Xσρ + 2ρIn

)

︸ ︷︷ ︸

B

. (3.75)

To get our contradiction (and to conclude the proof of our Theorem) we want to sendρ to zero. We

start with the analysis of the second termB. First of all we observe that, sincerε/ε < | pσρ| ≤ c ,

then

pσρ → pσ asρ→ 0+, (3.76)

with rε/ε ≤ | pσ| ≤ c. As it concerns the matrixXσρ, (3.74) implies that‖ Xσρ‖ ≤ ‖ A0‖ +

λ‖ A2
0‖ + 1/λ; therefore to get a bound forXσρ we need a bound onA0. Some easy computations

show that

‖ A0‖ ≤ 2‖B‖ ≤ 6

ε2
| pσρ|2 ≤ 6

ε2

and thus

‖Xσρ‖ ≤ 6

ε2
+ λ

36

ε4
+

1

λ
.

Since we have obtained an estimate for‖Xσρ‖ independent fromρwe have that there exists a matrix

X
σ

so that‖Xσ‖ ≤ 6/ε2 + λ36/ε4 + 1/λ and

Xσρ → X
σ
, asρ→ 0+. (3.77)

Using (3.73), (3.76) and (3.77) we can claim thatB goes to zero asρ → 0+. As it concerns the

behaviour of tems inA asρ goes to zero we notice that

lim sup
ρ→0+

A = lim sup
ρ→0+

[(α∗(yσρ)− α∗(x
σρ))| | p

σρ|2pσρ
ε

− 2ρyσρ|

+α∗(x
σρ)(| | p

σρ|2pσρ
ε

− 2ρyσρ| − | | p
σρ|2pσρ
ε

− 2ρxσρ|)]

≤ lim sup
ρ→0+

[
(α∗(yσρ)− α∗(x

σρ)

ε

)
| pσρ|3 + 2‖ α‖| ρ(3| yσρ|+ | xσρ|)|]

≤ lim sup
ρ→0+

(α∗(yσρ)− α∗(x
σρ)

ε

)
| pσρ|3.

To conclude we notice that the usual bound for|pσρ|, |pσρ| ≤ c, impliesyσρ ∈ B(xσρ−εη, cε). Thus



by the definition ofη and forε small enough, we have that, ifxσρ ∈ Ω− ∪ Γ then alsoyσρ ∈ Ω−.

This means that, ifxσρ ∈ Ω− ∪ Γ we can use the Lipschitz continuity ofα∗ in Ω− ∪ Γ to get

lim sup
ρ→0+

A ≤ lim sup
ρ→0+

Lα
| yσρ − xσρ|

ε
| pσρ|3 = lim sup

ρ→0+
Lα| pσρ + η|| pσρ|3 (3.78)

If xσρ ∈ Ω+ we have to distinguish whateveryσρ ∈ Ω+∪Γ oryσρ ∈ Ω−. In fact in the latter situation

we haveα∗(yσρ) = α(yσρ) ≤ α(xσρ) = α∗(x
σρ) that immediately gives us a contradiction in (3.75)

asρ → 0 since it implieslim sup
ρ→0+

A ≤ 0. Instead ifyσρ ∈ Ω+ ∪ Γ we use the Lipschitz continuity

of α∗ in Ω
+
= Ω+ ∪ Γ to obtain again the inequality in (3.78). Therefore to get a contradiction in

(3.75) in the casesxσρ ∈ Ω− ∪Γ, yσρ ∈ Ω− andxσρ ∈ Ω+, yσρ ∈ Ω+ ∪Γ we need to prove that the

right hand side of the inequality in (3.78) goes to zero asε → 0+; to do this it is enough to prove

that

lim
σ→0+

lim
ρ→0+

| pσρ| = 0. (3.79)

We have to differentiate three cases.

CASE 2.A There exists a constantC > 0 so that| xσρ| ≤ C for σ andρ small enough. This means

that for anyσ > 0 there exists a sequenceρj = ρj(σ) → 0+ so that(xσρj , tσρj , yσρj , sσρj ) →
(xσ, tσ, yσ, sσ) asj → +∞. Since| xσ| ≤ C, | xσ − yσ − εη| ≤ ε and| tσ − sσ| ≤ δ we can find

another sequenceσk = (εk, δk) → (0+, 0+) so that(xσk , tσk , yσk , sσk) → (x̂, t̂, x̂, t̂) ∈ ΩT × ΩT as

k → +∞. We omit from now on the subindexesj andk. By the definition of(xσρ, tσρ, yσρ, sσρ),

Ψσρ(x
σρ, tσρ, yσρ, sσρ) ≥ Ψσρ(x̂+ εη, t̂, x̂, t̂),

and thus

lim
σ→0+

lim sup
ρ→0+

| pσρ|4
4

≤ lim
σ→0+

lim sup
ρ→0+

(
u(xσρ, tσρ)− u(x̂+ εη, t̂)+

+ v(x̂, t̂)− v(yσ,ρ, sσ,ρ) + a(t̂− tσρ) + ρ(| x̂|2 + | x̂+ εη|2)
)
.

Sinceα(t̂− tσρ) andρ(| x̂|2 − | x̂+ εη|2) goes to zero asρ andσ → 0+ we get

lim
σ→0+

lim sup
ρ→0+

| pσρ|4
4

≤ lim
σ→0+

lim sup
ρ→0+

(

u(xσρ, tσρ)− u(x̂, t̂)
︸ ︷︷ ︸

(a)

+

+ u(x̂, t̂)− u(x̂+ εη, t̂)
︸ ︷︷ ︸

(b)

+ v(x̂, t̂)− v(yσρ, sσρ)
︸ ︷︷ ︸

(c)

)

.

Using the upper semicontinuity ofu in the term(a), the lower semicontinuity ofv in (c) and (I1) in



(b) we can obtain (3.79) from this last inequality.

CASE 2.B For anyσ > 0 there exist two positive constantsC1(σ), C2(σ) so thatC1(σ), C2(σ) →
+∞ asσ → 0+ andC1(σ) ≤ | xσρ| ≤ C2(σ) for anyρ > 0 small enough. This means that there

exist two infinitesimal sequencesρj = ρj(σ) andσk so that for anyσ > 0 (xσρj , tσρj , yσρj , sσρj ) →
(xσ, tσ, yσ, sσ)) asj → +∞ and| xσk |, | yσk | → +∞, tσk , sσk → t̂ ask → +∞. Again we omit

the subindexesj andk and we use the definition of(xσρ, tσρ, yσρ, sσρ) in order to obtain

Ψσρ(x
σρ, tσρ, yσρ, sσρ) ≥ Ψσρ(y

σ + εη, sσ, yσ, sσ)

and

| pσρ|4
4

≤ u(xσρ, tσρ)− u(yσ + εη, sσ) + v(yσ, sσ)− v(yσρ, sσρ)+

+ α(sσ − tσρ) + ρ(| yσ + εη|2 + | yσ|2).

If we add±u(xσ, tσ) to the right hand side this implies that

lim
ρ→0+

| pσρ|4
4

≤ lim sup
ρ→0+

(

u(xσρ, tσρ)− u(xσ, tσ) + u(xσ, tσ)− u(yσ + εη, sσ)+

v(yσ, sσ)− v(yσρ, sσρ) + α(sσ − tσρ) + ρ(| yσ + εη|2 + | yσ|2
)

≤ lim sup
ρ→0+

(
u(xσ, tσ)− u(yσ + εη, sσ)

)

≤ ω̄(ε+ δ +
1

C1(σ)
)

where to obtain the last inequality we have used (I2). Takingthe limit asσ → 0+ we obtain (3.79).

CASE 2.C There exists a sequence(σi)i so thatσi → 0+ asi → +∞ and for anyσi, ρ > 0 we can

find a constantCσi
(ρ) such that|xσiρ| ≥ Cσi

(ρ) andCσi
(ρ) → +∞ asρ→ 0. Obviously this means

that for anyi > 0 there exists another sequence(ρ
(i)
j )j such thatρ(i)j → 0+ and| xσiρ

(i)
j | → +∞ as

j → +∞. By (3.72) we can assume that| sσiρj − tσiρj | → 0 if i, j → +∞. We omit the indexesi, j

and we obtain, as in the previous cases,

Ψσρ(x
σρ, tσρ, yσρ, sσρ) ≥ Ψσρ(y

σρ + εη, sσρ, yσρ, sσρ)

and so, sinceu satisfies (I2)

| pσρ|4
4

≤ u(xσρ, tσρ)− u(yσρ + εη, sσρ) + α(sσρ − tσρ) + ρ(| yσρ + εη|2 − | xσρ|2)

≤ ω̄(ε+ δ +
1

Cσ(ρ)
) + α(sσρ − tσρ) + ρ(| yσρ + εη|2 − | xσρ|2).



We sendσ, ρ→ 0+ and we obtain(3.79) also in this case.

Example of solution that satisfies (I2)

Assume thatu0 ∈ UCβ(R
n) for someβ ∈ R, i.e. u0 − β is a uniformly continuous function with

compact support inRn, and thatu0(x) ≥ β for anyx ∈ Rn. Let R > 0 so thatu0(x) = β for

any | x| ≥ R. In this section we want to show that, ifu is a viscosity solution of (3.62) such that

u(x, 0) = u0(x), then

u(x, t) ≡ β, for any(x, t) ∈ Rn × [0,+∞), | x| ≥ R

and thusu satisfies (I2).

Consider the functionω : Rn × [0,+∞) → R defined as

ω(x, t) = ψ
( M

2(n− 1)
(R2 − | x|2)−Mt + β

)

whereψ : R → [β,+∞), ψ(r) := r ∨ β andM ≥ 1 is a constant that we will choose in a right

way. A simple computation shows thatω is a solution of the mean curvature equation and then a

supersolution of our equation (3.62). Sinceω(x, t) = β if | x| ≥ R we can chooseM small enough

to obtainω(x, 0) ≥ u0(x) for anyx ∈ Rn. Obviously also the functionv ≡ β is a solution of (3.62)

andv(x, 0) ≤ u0(x) for everyx ∈ Rn. Sincev andω satisfy the hypotesis of Theorem 3.3.8 we

obtain

β = v(x, t) ≤ u∗(x, t)

and

u∗(x, t) ≤ ω(x, t).

Combining this two inequalities we can conclude thatu(x, t) ≡ β for any| x| ≥ R, t ≥ 0.



Chapter 4

Degenerate Asymptotics

Letσ(1), . . . , σ(m) ∈ C2(Rn,Rn)∩W 2,∞(Rn,Rn) be a family ofm vector fields onRn withm < n.

We define the so-calledhorizontal gradientof aC1-functionh as

DHh(x) := σt(x)Dh(x) =







σ(1)(x) ·Dh(x)
...

σ(m)(x) ·Dh(x)







∈ Rm, x ∈ Rn,

whereσ = (σik)i,k ∈ C2(Rn,Rn×m)∩W 2,∞(Rn,Rn×m) denote the matrix map withσ(1), . . . , σ(m)

as columns, i.e.

σ ≡
[
σ(1), . . . , σ(m)

]
.

Similarly we define also thehorizontal Hessian matrixof h, D̃2
Hh(x), and thesymmetrized horizon-

tal Hessian matrixof h D2
Hh(x) by putting

D̃2
Hh(x) := DH(DHh(x)) =

(

σ(i)(x)D(σ(j)(x)Dh(x))
)

i,j=1,...,m

=







σ(1)(x)D(σ(1)(x)Dh(x)) · · · σ(1)(x)D(σ(m)(x)Dh(x))
...

. . .
...

σ(m)(x)D(σ(1)(x)Dh(x)) · · · σ(m)(x)D(σ(m)(x)Dh(x))







= σt(x)D2h(x)σ(x) + σt(x)D(σt(x))Dh(x)

and

D2
Hh(x) = (D̃2

Hh(x))
∗ =

D̃2
Hh(x) + D̃2

Hh(x)
t

2

85



where,σt(x)D(σt(x))Dh(x) denotes the following (non symmetric) matrix

σt(x)D(σt(x))Dh(x) =
(

σ(i)(x)D(σ(j)(x))Dh(x)
)

i,j=1,...,m

=
( n∑

k,l=1

σ
(i)
k (x)(∂xk

σ
(j)
l (x))∂xl

h(x)
)

i,j=1,...,m
.

We define a matrix mapA(·) ∈ C2(Rn,Sn) ∩W 2,∞(Rn,Sn) as

A(x) = σt(x)σ(x), for anyx ∈ Rn.

ClearlyA satisfies the following conditions,

for all i, j, k ∈ {1, . . . , n}, aij , aij,xk
are bounded and continuous onRn, (4.1)

A(x)q · q ≥ 0 for any(x, q) ∈ Rn × Rn. (4.2)

Moreover

tr(D2
Hh(x)) = tr(D̃2

Hh(x)) = tr(A(x)D2h(x)) + tr(σt(x)D(σt(x))Dh(x)).

Reaction-diffusion equations of the forms

φt(x, t)−∆φ(x, t) + f(φ(x, t)) = 0, (x, t) ∈ Rn × (0,+∞) (4.3)

arise naturally in a lot of mathematical models, such as phase transition, flame propagation, etc.

In most of these applications one can observe, for large times, the development of fronts as the

boundaries of the regions where the solutionφ of (4.3) converges to the stable equilibria of the

cubicf . Formal results of Fife [28] and Caginalp [11], [12] and [13]show that the fronts propagate

with normal velocity

V = α +
1

t
κ+O

( 1

t2

)

, t≫ 1, (4.4)

whereα = 2m0 − m+ − m−, with m− < m0 < m+ zeroes off , andκ denotes the curvature of

the front. Barles, Soner and Souganidis give a rigorous justification of this result when the cubic

function depend also by the variablesx, t (i.e. f = f(q, x, t)). To obtain the first term in (4.4) one

has to consider the equation in (4.3) with the scaling(ε−1x, ε−1t). If α = 0 one has to go to the

next time-scaling(ε−1x, ε−2t) in order to obtain the second term in the expansion of the velocity V

in (4.4). This means that one has to consider the equation

φε
t (x, t)− ε∆φε(x, t) +

f(φ(x, t))

ε
= 0,



whenα 6= 0, and

φε
t (x, t)−∆φε(x, t) +

f(φ(x, t))

ε2
= 0,

whenα = 0.

In this chapter we would like to replace the standard Euclidean derivatives with the derivatives

along them vector fieldsσ1, . . . , σm, that is we would like to study the asymptotic behavior of the

solutionsuε of the Cauchy problems for the following reaction-diffusion equations

uεt(x, t)− ε tr(D2
Hu

ε(x, t)) +
f(uε(x, t))

ε
= 0 in Rn × (0,+∞)

and

uεt(x, t)− tr(D2
Hu

ε(x, t)) +
f(uε(x, t))

ε2
= 0 in Rn × (0,+∞),

where the mapq 7→ f(q) is a cubic-type linearity such that

f ∈ C2(R) has exactly three zeroesm− < mo < m+,

f(s) > 0 in (m−, mo) andf(s) < 0 in (mo, m+),

f ′(m±) ≥ d > 0, f ′(mo) < −d < 0, f ′′(m−) < 0 andf ′′(m+) > 0.

(4.5)

Writing explicitly the trace ofD2
Hu

ε we have that the equations above can be rewritten respectively

as

uεt(x, t)− ε tr(A(x)D2uε(x, t))− ε tr((σt(x)D(σt(x))Duε(x, t))) + ε−1f(uε) = 0, (4.6)

and

uεt (x, t)− tr(A(x)D2uε(x, t))− tr((σt(x)D(σt(x))Duε(x, t))) + ε−2f(uε) = 0. (4.7)

Since, by assumption (4.2), the matrixA(x) is only semi-positive definite the equations in (4.6)

and (4.7) do not satisfy a uniform ellipticity condition. Thus we can’t apply the classical theory of

elliptic equations to get the existence of a smooth solutionof the Cauchy problems for (4.6) and

(4.7).

We introduce a Riemannian approximation of the matrixA. We start by defining a matrix map

σε ∈ C2(Rn,Rn×(m+n)) ∩W 2,∞(Rn,Rn×(m+n)), ε > 0 as

σε(·) = [σ(·) εkIn], (4.8)

wherek > 0 andIn denotes then × n identity matrix. As Riemannian approximation ofA we



consider

Aε(·) = σε(·)σt
ε(·) = A(·) + ε2kIn.

For anyx ∈ Rn the matrixAε(x) ∈ Rn×n is strictly positive definite, in fact

Aε(x)q · q = A(x)q · q + ε2k| q|2 ≥ ε2k| q|2. (4.9)

Moreover

Aε → A uniformly asε→ 0+.

If we put

DH,ε = σt
ε(x)D,

we have that

DH,εh(x) = σt
ε(x)Dh(x) =

(

σt(x)Dh(x)

εkDh(x)

)

=

(

DHh(x)

εkDh(x)

)

,

D2
H,εh(x) =

(

D2
Hh(x) εkσt(x)D2h(x)

εkD(σt(x)Dh(x)) ε2kD2h(x)

)

and

D2
H,εh(x) = (D2

H,εh(x))
∗ =

D2
H,εh(x) +D2

H,εh(x)
t

2
.

The inequality in (4.9) leads us to consider instead of (4.6), (4.7) the equations

uεt(x, t)− ε tr(D2
H,εu

ε(x, t)) + ε−1f(uε) = 0 (4.10)

and

uεt(x, t)− tr(D2
H,εu

ε(x, t)) + ε−2f(uε) = 0. (4.11)

We prove that the front that describes the asymptotics of (4.10) is governed by

ut(x, t) + c|DHu(x, t)| = 0.

As it regards equation (4.11) we show, without adding any assumptions on the vector fields

σ1, . . . σm, that the asymptotic behavior of the solutions of (4.11) generates a front at timet = 0. To

prove that that this front evolves according to the ”degenerate mean curvature equation”

ut(x, t)− tr
[(

I − DHu(x, t)

|DHu(x, t)|
⊗ DHu(x, t)

|DHu(x, t)|
)

D2
Hu(x, t)

]
= 0, (4.12)



we need to restrict to the Carnot group of step two.

To conclude we just remark that, for anyh ∈ C1(Rn), x ∈ Rn andε > 0,

|DH,εh(x)|2 = |DHh(x)|2 + ε2k|Dh(x)|2 ≥ ε2k|Dh(x)|2,

|DH,εh(x)| −→ |DHh(x)|, asε→ 0+

and

{x ∈ Rn : DHh(x) = 0} ) {x ∈ Rn : Dh(x) = 0} = {x ∈ Rn : DH,εh(x) = 0}

Therefore in the study of the evolution of a frontt 7−→ {φ(·, t) = 0} there can exist some point

x ∈ {φ(·, t) = 0} in which the normal vector is well-defined (i.eDφ(x, t) 6= 0) butDHφ(x, t) = 0.

Moreover in these points it holds

0 6= DH,εφ(x, t) −−−→
ε→0+

0

and so, when we study of the asymptotic behavior of the solutions of the equations (4.10) and (4.11),

we have to choose the exponentk that appears in the Riemannian approximation ofA in a suitable

way in order to obtain the right rate of convergence.

4.0.3 The traveling wave equation

Thanks to the properties off in (4.5) it can be shown (see for example [2] and [30]) that there exists

a unique pair(q(·), c), solution of the traveling wave equation

q̈ + cq̇ = f(q) (4.13)

with

lim
r→±∞

q(r) = m±, q(0) = mo.

Moreover we assume thatq satisfies the following properties

sup
r∈R

[(1 + |r|)q̇(r) + (|r|+ |r|2)| q̈(r)|] < +∞

∃ a, b > 0 such that
q(r) ≥ m+ − ae−br asr → +∞,

q(r) ≤ m− + ae−br asr → −∞,

(4.14)

and

there exists a constantN > 0 such that|q̈| ≤ Nq̇. (4.15)



A typical example for the functionf is

f(q) = 2(q −m−)(q −mo)(q −m+); (4.16)

in this case we have

c = 2mo −m+ −m−, q(r) = m− +
m+ −m−

1 + e−(m+−m−)(r+r̄)
,

where r̄ =
1

m+ −m−

ln
(mo −m−

m+ −mo

)
. Moreover the constantN in (4.15) will be smaller than

m+ −m−.

If we linearize aroundq the equation satisfied by the traveling wave we obtain

p̈ + cṗ = f(p) = f(q) + f ′(q)(p− q)

and so, sinceq satisfies (4.13),

p̈− q̈ + c(ṗ− q̇) = f ′(q)(p− q).

This leads us to consider the linear operatorA : L2(R) → L2(R) defined by

Ap := −p̈− cṗ+ f ′(q)p, p ∈ L2(R),

and, for suitable functionsχ ∈ L2(R), the inhomogeneous equation

Ap = χ. (4.17)

Some simple computations show that ifc = 0 the operatorA is self-adjoint anḋq ∈ kerA = kerA∗,

while if c 6= 0 thenq̇ ∈ kerA and ˙̃q ∈ kerA∗ with q̃(s) = q(−s) for anys ∈ R. In the sequel we

will assume that

kerA = kerA∗ = q̇R

if c = 0, and

kerA = q̇R, kerA∗ = ˙̃qR

if c 6= 0.

Moreover we also assume that for anyχ ∈ L2(R) such thatχ ∈ (kerA∗)⊥, i.e.

∫ +∞

−∞

χ(s)q̇(s)ds = 0, if c = 0, (4.18)



or,
∫ +∞

−∞

χ(s)q̇(−s)ds = 0, if c 6= 0, (4.19)

there exists a uniquep ∈ C2(R) ∩H1(R), solution of the equation (4.17) and such that

p(s) → 0, as| s| → +∞ (4.20)

and

sup
s∈R

(| ṗ(s)|+ (1 + | s|)| p̈(s)|) < +∞. (4.21)

In the special case

f(q) = 2q(q2 − 1)

the traveling wave equation (4.13) becomes

q̈ = f(q)

and its solutionq is

q(s) = tanh(s).

Moreover in this special case the solutionp of the inhomogeneous equation (4.17) has the form

p(s) = q̇(s)

∫ s

−∞

1

(q̇(τ))2

(∫ τ

−∞

χ(η)q̇(η)dη
)

dτ.

4.1 The first asymptotic problem

As we said at the beginning of the chapter, the first asymptotic problem we will consider is the

Cauchy problem for the equation (4.10). We will prove that, if

c = 2m0 −m+ −m− 6= 0,

then the evolution of the front associated with this problemhas a first order normal velocity and it

is governed by the following geometric pde

ut(x, t) + F (x,Du(x, t)) = 0, (x, t) ∈ Rn × (0,+∞), (4.22)

whereF : Rn × Rn → R is defined as

F (x, p) = c| σt(x)p|.



It is well known that the Cauchy problem for this equation is well-posed. In fact since we

supposed thatσ = (σik)i,k ∈ C2(Rn,Rn×m) ∩W 2,∞(Rn,Rn×m) we get that there exists a positive

constantLσ so that

| F (x, p)− F (y, p)| ≤ cLσ| x− y|| p|.

This assures us that a a comparison result(CP) for sub and supersolution of the equation (4.22)

holds (see for example [20]). As it regards the existence of aviscosity solution we observe that

equation (4.22) can be rewritten as

max
b∈B

{−(ut(x, t), Du(x, t)
t) · (−1, cσ(x)b)} = 0, (x, t) ∈ Rn × (0,+∞),

if c > 0, or

min
b∈B

{−(ut(x, t), Du(x, t)
t) · (−1, cσ(x)b)} = 0, (x, t) ∈ Rn × (0,+∞),

if c < 0, where the control setB is the set{b ∈ Rm : | b| ≤ 1}. This leads us to consider, for

any control functionβ ∈ B = {β : [0,+∞) → B measurable function} and for anyx ∈ Rn, the

Caratheodory solutionyx(·, β) of the dynamical system

{

ẏ(s) = cσ(y(s))β(s)

y(0) = x.

By regularity assumptions onσ and classical results in control theory (see for example [3]Proposi-

tion 3.12 ch.IV) one can prove that the value functionv : Rn × [0,+∞) → R defined as

v(x, t) = inf
β∈B

u0(yx(t; β)), (4.23)

if c > 0, and

v(x, t) = sup
β∈B

u0(yx(t; β)), (4.24)

if c < 0, is (the unique) continuous viscosity solution of (4.22) that satisfies the initial condition

v(·, 0) = u0(·) ∈ UC(Rn).

Now we are ready to study the asymptotic behavior of the solution of the Cauchy problem for

(4.10).

Theorem 4.1.1.Assume that the matrix mapA and the functionf satisfy (4.1), (4.2) (4.5), (4.14)

and (4.15). Letuε be the unique solution of

{

(i) uεt(x, t)− ε tr(D2
H,εu

ε(x, t)) + ε−1f ε(uε) = 0 (x, t) ∈ Rn × (0,+∞)

(ii) uε(x, 0) = g(x), x ∈ Rn,
(4.25)



whereg : Rn → [m−, m+] is a continuous function such that the setsΓo = {x : g(x) = mo},

Ω+
o = {x : g(x) > m0}, Ω−

o = {x : g(x) < m0} are nonempty and mutually disjoint subsets ofRn.

Moreover we assume that the exponentk in (4.8) satisfies0 < k < 1. Then,

uε(x, t) −→
{

m+ in {u > 0},
m− in {u < 0},

locally uniformly asε → 0, whereu is the unique viscosity solution of

{

(i) ut(x, t) + c|σt(x)Du(x, t)| = 0, (x, t) ∈ Rn × (0,+∞),

(ii) u(x, 0) = do(x), x ∈ Rn,
(4.26)

anddo is the signed distance toΓo which is positive inΩ+
o and negative inΩ−

o . If in addition the

no-interior condition (2.7) for the set{u = 0} holds, then, asε → 0,

uε(x, t) −→
{

m+ in {u > 0},
m− in {u > 0}c,

locally uniformly.

Remark 4.1.2. For what we said at the beginning of the section we have that the functionu is just

the value functionv defined in (4.23) ifc > 0, or in (4.24) ifc < 0, with u0 replaced bydo.

Before proving this theorem we stop for some preliminary remarks. In fact in our proof it will

be necessary to construct, for anyε > 0, some suitable sub and supersolutions of the equation

(4.25-i) in a neighborhood of a front{φ(·, t) = 0} whereDφ 6= 0. Following the idea of Barles,

Soner and Souganidis in [7] we look for subsolutions (supersolutions)Φε of the typeΦε(x, t) =

q(
zε(x, t)

ε
) whereq is the solution of (4.13) andzε is a function to be chosen in a right way. In

order to understand the conditions thatzε has to satisfy we askΦε to be a subsolution of (4.25-i) in

a neighborhood of{φ = 0} and we obtain

q̇

ε
[zt − ε tr(D2

H,εz) + c] +
q̈

ε2
[1− |σt

ε(x)Dz|2] ≤ 0.

Obviously this last inequality is satisfied if it holds

zt(x, t)− ε tr(D2
H,εz(x, t)) + c ≤ 0

|DH,εz(x, t)| = |σt
ε(x)Dz(x, t)| = 1.

(4.27)

Let’s observe the second condition required in (4.27). It means that, for anyt ∈ (0,+∞) the



functionzε(·, t) has to be a solution of the equation

Aε(x)Dp(x) ·Dp(x) = |σt
ε(x)Dp(x)|2 = |σt(x)Dp(x)|2 + ε2k|Dp(x)|2 = 1 (4.28)

in a neighborhood of{φ = 0}. Since{φ = 0} is compact,Dφ 6= 0 on{φ = 0} and

Aε(x)p · p = A(x)p · p+ ε2k| p|2 ≥ ε2k| p|2 for anyx ∈ Rn,

we can apply the method of characteristic to get the existence of a classical solutionρε of (4.28)

having the same sign ofφ. By the definition ofAε, Aε → A uniformly asε → 0+ and thus one

could expect that the sequence(ρε)ε converges (in some sense) to a solution of the equation

A(x)Dp(x) ·Dp(x) = |σt
H(x)Dp(x)|2 = 1.

SinceA can be degenerate we are not able to claim the existence of a classical solution of this last

equation providing a problem in the study of the behavior ofρε for small ε. This suggests us to

modify slightly the idea of Barles and Souganidis in [8] and to consider aszε not ρε but a function

of typeφ|DH,εφ|−1. This choice ofzε create additional terms in the computations; in fact

DH,ε

(
φ|DH,εφ|−1

)
=

DH,εφ

|DH,εφ|
+ φDH,ε

(
|DHεφ|−1

)
= ±1 + φDH,ε

(
|DHεφ|−1

)
.

To estimate these additional terms for smallε it will be crucial the choice of the exponentk.

Now we are ready to prove Theorem 4.1.1.

Proof. Following the abstract method described in Chapter 2 we define two families of open sets

of Rn, (Ω1
t )t∈(0,T ) and(Ω2

t )t∈(0,T ) as in (2.14), (2.15) and (2.17) with aε, a = m−, bε, b = m+ and

τ = 0. We observe that by the maximum principlem− ≤ uε ≤ m+. The proof will be divided into

the usual three steps, initialization, propagation and conclusion.

First step: initialization.We want to show thatΩ+
0 = {do > 0} ⊆ Ω1

0 andΩ−
0 = {do < 0} ⊆ Ω2

0.

Since the proofs of these two inclusions are similar we only show the first one. Consider̂x ∈ {do >
0} and findr, σ > 0 so thatg(x) ≥ mo + σ for anyx ∈ B(x̂, r). This means that

uε(x, 0) = g(x) ≥ (mo + σ)1B(x̂,r)(x) +m−1B(x̂,r)c(x). (4.29)

Now we introduce the functionΦ : Rn × [0, T ] → R defined as

Φ(x, t) = r2 − |x− x̂|2 − Ct, (4.30)

with C > 0 a suitable constant that will be chosen later. Using the following two lemmas it is



possible to conclude that̂x ∈ Ω1
0 (We omit this proof since it is close to the one in Theorem 3.1.1).

Lemma 4.1.3. Under the assumption of Theorem 4.1.1 we have that for anyβ > 0 there exist

τ = τ(β) > 0 andε̄ = ε̄(β) such that, for all0 < ε ≤ ε̄, we have

uε(x, tε) ≥ (m+ − β)1{Φ(·,0)≥β}(x) +m−1{Φ(·,0)<β}(x), x ∈ Rn,

wheretε = τε.

Lemma 4.1.4.There exist̄h = h̄(r, x̂), β̄ = β̄(r, x̂) > 0 independent ofε such that ifβ ≤ β̄ and

ε ≤ ε̄(β) ∧ 1, then there exists a subsolutionωε,β of (4.25-i) inRn × (0, h̄) that satisfies

ωε,β(x, 0) ≤ (m+ − β)1{Φ(·,0)≥β}(x) +m−1{Φ(·,0)<β}(x), x ∈ Rn.

If moreover(x, t) ∈ B(x̂, r)× (0, h̄) andΦ(x, t) > 3β, then

lim inf
ε→0+

∗ ω
ε,β(x, t) ≥ m+ − 2β.

Proof of Lemma4.1.3. Since the proof of this first lemma is very close to the ones in Chapter 3

and in [5] we only give a sketch. The main idea of this proof is that for ε small enough and for

short time the diffusion term in (4.25-i) is negligible, seealso Chen [16, 17]. Letχ = χ(τ, ξ) ∈
C2([0,+∞)× R) be the solution of

{

χ̇(τ, ξ) + f(χ(τ, ξ)) = 0, τ > 0,

χ(0, ξ) = ξ.

With some simple computations one can see thatχ satisfies the following properties

χξ(τ, ξ) > 0, in [0,+∞)× R; (χ1)

there existsτo = τo(β) > 0 such that, for allτ ≥ τo

χ(τ, ξ) ≥ m+ − β, ∀ ξ ≥ mo +
σ

2
; (χ2)

finally, since for anyC > max{|m− −m0|, |m+ −m0|} we have thatχ(τ, ξ) ∈ [m0 − C,m0 + C]

for all ξ ∈ [−C,C], τ ≥ 0, it also holds that there exists a constantMC,τ > 0 such that, for any

ξ ∈ [−C,C] andε small enough,

|χξξ(τ, ξ)| ≤ MC,τχξ(τ, ξ). (χ3)



Now we can define a functionuε in Rn × [0, T ] as

uε(x, t) = χ
( t

ε
, ψ(Φ(x, 0))−Kt

)

,

whereK is a constant to be chosen later andψ is a nondecreasing smooth function inR such that

ψ(z) =

{

m− if z ≤ 0,

mo + σ if z ≥ β ∧ σ

2
.

With some simple computation it can be easily shown that for asuitable choice of the constantK

andε small enoughuε is a subsolution of (4.25-i) inRn × (0, τoε). Indeed, by (χ1) and (χ3) we

obtain

uεt − ε tr(D2
H,εu

ε) +
f(uε)

ε
= −Kχξ − ε

[
(χξξ(ψ

′)2 + χξψ
′′)|DH,εΦ|2 + χξψ

′ tr(Aε(x)D2Φ)
]

−εχξψ
′ tr(σt(x)Dσt(x)DΦ)

≤ χξ(−K +O(ε)) ≤ 0

for ε small enough. Moreover, sinceuε(·, 0) = ψ(Φ(·, 0)) ≤ uε(·, 0) we can apply the maximum

principle in order to obtainuε(x, t) ≤ uε(x, t) for any(x, t) ∈ Rn × [0, τoε]. In particular

uε(x, τoε) ≥ uε(x, τoε) = χ(τo, ψ(Φ(x, 0))−Kτoε)

≥ χ(τo, mo + σ −Kτoε) if Φ(x, 0) ≥ β.

From this last inequality and property (χ2) of χwe getuε(x, τoε) ≥ m+−β, for ε small enough.

Proof of Lemma4.1.4. For the proof of this second lemma it will be very useful the formal reason-

ing we made above. LetΦ be the smooth function defined in (4.30) where nowC is a fixed constant

that satisfies

C ≥ (c+ 1) sup
Qγ,h̄

(
|DHΦ|2 + |DΦ|2

)1/2
> 0. (4.31)

SinceDΦ(x, t) 6= 0 if Φ(x, t) = 0, t < r2/C, there existγ, h̄ > 0 such that̄h < r2/C and

DΦ(x, t) 6= 0 in the setQγ,h̄ = {|Φ(x, t)| ≤ γ, 0 ≤ t ≤ h̄}. Obviously this also means that

DH,εΦ(x, t) 6= 0 for any(x, t) ∈ Qγ,h̄, ε > 0.

Using the ideas in [8] and [5] we now construct a subsolution of (4.25-i) by steps.

1. Construction of a strict subsolution of (4.25-i) in the set Qγ,h̄.



We define a smooth functionvε in Qγ,h̄ as

vε(x, t) = Q
(Φ(x, t)− 2β

ε
, x, t

)

− 2β,

with Q a suitable function inC2(R × Rn × [0,+∞);R) to be chosen later. If we putvε inside

(4.25-i) we obtain

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
=
Q̇Φt

ε
+Qt −

Q̈

ε
|DH,εΦ|2 − 2〈DH,εQ̇,DH,εΦ〉 − ε tr(D2

H,εQ)

−Q̇ tr(D2
H,εΦ) +

f(Q− 2β)

ε

≤ Iε
ε
+
IIε
ε

+ IIIε

where
Iε = −Q̈|DH,εΦ|2 + f(Q)

IIε = Q̇
(
Φt − ε tr(D2

H,εΦ)
)
− 2βf ′(Q) + 2‖ f ′′

|[m−,m+]‖∞β2

IIIε = Qt − ε tr(D2
H,εQ)− 2〈DH,εQ̇,DH,εΦ〉

(4.32)

If we set

Q(s, x, t) = q
( s

|DH,εΦ(x, t)|
)

, (4.33)

with q the solution of the traveling wave equation (4.13) we getIε = cq̇(
s

|DH,εΦ|
), with s =

Φ− 2β

ε
,

IIε =
q̇

|DH,εΦ|
[−C + 2ε tr(Aε(x) + σt(x)Dσt(x)(x− x̂))]− 2βf ′(q) + 2‖ f ′′

|[m−,m+]‖∞β2

≤ q̇

|DH,εΦ|
(−C +O(ε))− 2βf ′(q) + 2‖ f ′′

|[m−,m+]‖∞β2

and

IIIε = 0− εq̇s tr
(
D2

H,ε(
1

|DH,εΦ|
)
)
− εq̈s2

∣
∣DH,ε(

1

|DH,εΦ|
)
∣
∣2

− 2
( q̈s

|DH,εΦ|
+ q̇
)

〈DH,ε(
1

|DH,εΦ|
), DH,εΦ〉.

With a simple computation we obtain

〈DH,ε(
1

|DH,εΦ|
), DH,εΦ〉 = −

〈D2
H,εΦDH,εΦ, DH,εΦ〉

|DH,εΦ|3
,



and we estimateIIIε in the following way

IIIε ≤ −εq̇s tr
(
D2

H,ε(
1

|DH,εΦ|
)
)
+ ε

| q̈|s2
|DH,εΦ|4

‖D2
H,εΦ‖2 + 2

( | q̈|| s|
|DH,εΦ|

+ q̇
)‖D2

H,εΦ‖
|DH,εΦ|

.

By (4.14),q̇| s||DH,εΦ|−1 + | q̈|(| s||DH,εΦ|−1 + s2|DH,εΦ|−2) = O(1) and thus

IIIε ≤ −εq̇s tr
(
D2

H,ε

( 1

|DH,εΦ|
))

+O(
ε

|DH,εΦ|2
+

1

|DH,εΦ|
)

≤ −εq̇s tr
(
D2

H,ε

( 1

|DH,εΦ|
))

+O(ε1−2k + ε−k).

Since

D2
H,ε

( 1

|DH,εΦ|
)

= −
(D2

H,εΦ)
2

|DH,εΦ|3
− Aε(x)D2(DH,εΦ) ·DH,εΦ

|DH,εΦ|3

+ 3
(D2

H,εΦDH,εΦ)⊗ (D2
H,εΦDH,εΦ)

|DH,εΦ|5
− σt(x)Dσt(x)D(DH,εΦ) ·DH,εΦ

|DH,εΦ|3
,

we get

tr
(
D2

H,ε

( 1

|DH,εΦ|
))

≤ (n+3)
‖D2

H,εΦ‖2
|DH,εΦ|3

+
tr(Aε(x)⌊D2(DH,εΦ)⌋+⌊σt(x)Dσt(x)D(DH,εΦ)⌋)

|DH,εΦ|2

≤ O
( 1

|DH,εΦ|3
+

1

|DH,εΦ|2
)

where‖·‖ denotes a generical matrix norm and⌊D2(DH,εΦ)⌋, ⌊σtDσtD(DH,εΦ)⌋ are two quadratic

matrices defined as

⌊D2(DH,εΦ)⌋ = (| (DH,εΦ)xixj
|)i,j=1,...n = (

[
n+m∑

l=1

((σ(l)
ε (x)DΦ(x, t))xixj

)2
]1/2

)i,j=1,...n

⌊σtDσtD(DH,εΦ)⌋ = (| σ(i)Dσ(j)D(DH,εΦ)|)i,j=1,...m

= ([

n+m∑

l=1

(σ(i)(x)Dσ(j)(x)D(σ(l)
ε (x)DΦ(x, t)))2]1/2)i,j=1,...m

.

Again by (4.14),

εq̇s tr
(
D2

H,ε

( 1

|DH,εΦ|
))

= O(ε1−2k),

and thus, since0 < k < 1, we obtainIIIε = O(ε−k) andεIIIε = oε(1). Combining all the estimates



obtained above and using the assumption onC in (4.31) we get

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
≤ 1

ε

[

q̇
(

c− C

|DH,εΦ|
+ oε(1)

)

− 2βf ′(q)+2β2‖ f ′′
|[m−,m+]‖∞+ oε(1)

]

≤ 1

ε

[

q̇(−1 + oε(1))− 2βf ′(q) + 2β2‖ f ′′
|[m−,m+]‖∞ + oε(1)

]

,

and thus, asε → 0+,

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
≤ 1

ε

[

− q̇

2
− 2βf ′(q) + 2β2‖ f ′′

|[m−,m+]‖∞ + oε(1)
]

. (4.34)

To prove thatvε is a subsolution of (4.25-i) it remains to see that the right hand side of (4.34) is non

positive. To do this we recall thatf ′(m±) ≥ d > 0 andq(r) → m± if r → ±∞. This means that

there exists anM > 0 such that

f ′(q(r)) ≥ d

2
, for any|r| ≥M ;

moreover we can chooseβ small enough in order to get

4β‖ f ′′
|[m−,m+]‖∞ ≤ d.

Therefore if
|Φ− 2β|
ε|DH,εΦ|

≥M , we have that

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
≤ 1

ε

[

− q̇

2
− βd

2
+ oε(1)

]

≤ 1

ε

[

− βd

2
+ oε(1)

]

≤ −βd
4ε

< 0

for ε small enough. Now we consider the case
|Φ− 2β|
ε|DH,εΦ|

< M ; if we denote withK a strictly

positive constant (which depends byM) so thatq̇(r) ≥ K for any |r| ≤ M we get that there exists

aµ > 0 so that, forβ small compared toK,

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
≤ 1

ε
[−K

2
+ 2β‖ f ′‖+ 2β2‖ f ′′‖+ oε(1)] ≤ −µ

ε
< 0.

for β small compared withK andε small enough.

2. Construction of a subsolution of (4.25-i) in the set{(x, t) ∈ Rn × [0, h̄] : Φ(x, t) ≤ γ}.

Once we have proved thatvε is a strict subsolution of (4.25-i) inQγ,h̄ we define, for each(x, t) ∈
{(x, t) ∈ Rn × [0, h̄] : Φ(x, t) ≤ γ},

v̄ε(x, t) =

{

sup(vε(x, t), m−) if −γ < Φ(x, t) ≤ γ,

m− if Φ(x, t) ≤ −γ.



v̄ε is a continuous viscosity subsolution of (4.25-i) in{(x, t) ∈ Rn × [0, h̄] : Φ(x, t) ≤ γ}, for ε

sufficiently small. This is obvious in the set{|Φ| ≤ γ} sincev̄ε is the supremum of two subsolutions.

Consider a point(x, t) such thatΦ(x, t) ≤ −γ/2; by properties (4.14) we have that

vε(x, t) ≤ q
(

− γ + 4β

2ε|DH,εΦ|
)

− 2β ≤ m− + ae
−

b(γ+4β)
2ε| DH,εΦ| − 2β ≤ m−

andv̄ε(x, t) = m−. Thereforēvε is a subsolution of (4.25-i) in{(x, t) ∈ Rn × [0, h̄] : Φ(x, t) ≤ γ}.

3. Construction of the subsolutionωε,β of (4.25-i) inRn × [0, h̄].

Finally we define our functionωε,β : Rn × [0, h̄] → R as

ωε,β(x, t) =

{

ψ(Φ(x, t))v̄ε(x, t) + (1− ψ(Φ(x, t)))(m+ − β) if Φ(x, t) < γ,

m+ − β if Φ(x, t) ≥ γ,

whereψ : R → R is a smooth function such thatψ′ ≤ 0 in R, ψ = 1 in (−∞, γ/2], 0 < ψ < 1 in

(γ/2, 3γ/4) andψ = 0 in [3γ/4,+∞). We show thatωε,β is a subsolution of (4.25-i) inRn × [0, h̄]

and forε small. The only subset ofRn × (0, h̄) in which we have to check thatωε,β is a subsolution

is {(x, t) ∈ Rn × (0, h̄) : γ/2 ≤ Φ(x, t) ≤ 3γ/4}. If we takeβ so that2β < γ/4 we have that

Φ(x, t)− 2β > γ/4, vε(x, t) ≥ m+ − ae
− bγ

4ε| DH,εΦ| − 2β andv̄ε(x, t) = vε(x, t). We obtain

ωε,β
t − ε tr(D2

H,εω
ε,β) +

f(ωε,β)

ε
≤ [ψ′(Φt − ε tr(D2

H,εΦ))− εψ′′|DH,εΦ|2](vε − (m+ − β))

+ ψ(vεt − ε tr(D2
H,εv

ε))− 2εψ′〈DH,εΦ, DH,εv
ε〉+ f(ωε,β)

ε
(4.35)

Since by definition,vε − (m+ − β) ≤ −β, f is convex in a neighborhood ofm+ andvε is a strict

subsolution of (4.25-i) inQγ,h̄, the inequality in (4.35) becomes

ωε,β
t − ε tr(D2

H,εω
ε,β) +

f ε(ωε,β)

ε
≤ −Cψ′(vε − (m+ − β)) + ψ

(

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε

)

+O(ε) + (1− ψ)
f(m+ − β)

ε

≤ −ψµ̄(β)
ε

+O(ε) + (1− ψ)
f(m+ − β)

ε

= −1

ε

(

ψµ̄(β) + (1− ψ)(−f(m+ − β))
)

+O(ε)

= − α̂β

ε
+O(ε) ≤ 0, for β and thenε small enough.

In the last chain of inequalities̄µ(β) = µ ∧ βd/4 and in the last line we have used the fact that the

term inside the bracket is strictly posive since it is a convex combination of strictly positive terms.

4. Proof of the estimates forωε,β(x, 0), x ∈ Rn. Now we observe that if(x, t) ∈ Qγ,h̄ satisfies



Φ(x, t) < β, then

vε(x, t) ≤ q
( −β
ε|DH,εΦ(x, t)|

)

− 2β ≤ m− + ae
− bβ

ε| DH,εΦ| − 2β ≤ m−

for ε small enough. This means that for any(x, t) ∈ Qγ,h̄ it holds

vε(x, t) ≤ (m+ − β)1{Φ≥β}(x, t) +m−1{Φ<β}(x, t),

for ε small enough. By definition of̄vε and ofωε,β this inequality still holds for̄vε andωε,β in their

domain of definition. If we taket = 0 we have proved the second part of the lemma.

5. Finally we just remark that, with a reasoning similar to the one in point 4., one can prove that

if (x, t) ∈ B(x̂, r)× (0, h̄) andγ ≥ Φ(x, t) > 3β, then

vε(x, t) ≥ q(
β

ε|DH,εΦ|
)− 2β ≥ m+ − ae

− bβ
ε| DH,εΦ| − 2β.

Hencelim inf
ε→0+

∗ ω
ε,β(x, t) ≥ m+ − 2β for any(x, t) ∈ Qγ,h̄.

Second step: propagation.In this step we want to show that(Ω1
t )t∈(0,T ) and((Ω2

t )
c)t∈(0,T ) are

respectively super and subflow with normal velocity−F with F defined as

F (x, p) = c|σt(x)p|2.

Since the two proofs are similar we’ll do only the one for(Ω1
t )t∈(0,T ).

Let x0 ∈ Rn, t ∈ (0, T ), r > 0, h > 0 so thatt + h < T . Suppose thatφ : Rn × [0, T ] → R is a

smooth function such that, for a suitableC̃ > 0,

(i) φt(x, s) + c|σt(x)Dφ(x, s)| ≤ −C̃ < 0, for all (x, s) ∈ B(x0, r]× [t, t + h],

(ii) for any s ∈ [t, t + h], {x ∈ B(x0, r] : φ(x, s) = 0} 6= ∅ and

|Dφ(x, s)| 6= 0 on{(x, s) ∈ B(x0, r]× [t, t + h] : φ(x, s) = 0},

(iii) {x ∈ B(x0, r] : φ(x, t) ≥ 0} ⊂ Ω1
t ,

(iv) for all s ∈ [t, t + h], {x ∈ ∂B(x0, r] : φ(x, s) ≥ 0} ⊂ Ω1
s.

We have to show that for everys ∈ (t, t+ h),

{x ∈ B(x0, r] : φ(x, s) > 0} ⊂ Ω1
s.

Using the assumptions and the definition of(Ω1
t )t∈(0,T ) this is equivalent to prove that for anyx ∈



B(x0, r), s ∈ (t, t+ h) such thatφ(x, s) > 0, we have

lim inf
ε→0+

∗ u
ε(y, τ) ≥ m+ (4.36)

for (y, τ) in a neighborhood of(x, s) where, for anyε > 0, uε is the solution of the Cauchy problem

(4.25). This proof proceeds like the one of the first step withthe difference that here we have to

construct a subsolution of (4.25-i) only in the ballB(x0, r) and not in the whole spaceRn. In fact

to prove this result it is enough to prove the following lemmawhich plays the role of Lemma 4.1.4

in the first step.

Lemma 4.1.5. Let φ be a smooth function as above. There existsβ̄ small enough such that, if

β ≤ β̄ andε ≤ ε̄(β) then there is a viscosity subsolutionωε,β of (4.25-i) inB(x0, r) × (t, t + h)

that satisfies,

1. ωε,β(x, t) ≤ (m+ − β)1{φ(·,t)≥β}(x) +m−1{φ(·,t)<β}(x), for all x ∈ B(x0, r],

2. ωε,β(x, s) ≤ (m+−β)1{φ(·,s)≥β}(x)+m−1{φ(·,s)<β}(x), for all x ∈ ∂B(x0, r], s ∈ [t, t+h],

3. if (x, s) ∈ B(x0, r]× [t, t+ h] satisfiesφ(x, s) > 3β, then

lim inf
ε→0+

∗ ω
ε,β(x, s) ≥ m+ − 3β.

We assume for the moment that Lemma 4.1.5 holds and we prove (4.36). In fact ifφ(x, t) ≥
β > 0 then, by property (iii) ofφ, x ∈ Ω1

t , i.e.

lim inf
ε→0+

∗ u
ε(x, t) > m+ − β.

This means that there exists anεx,t = εx,t(β) > 0 such that, for allε ≤ εx,t, (y, τ) ∈ B(x, εx,t) ×
(t−εx,t, t+εx,t), we haveuε(y, τ) ≥ m+−β. Thus, by the compactness of{x ∈ B(xo, r] : φ ≥ 0}
we can select an̄ε > 0, possibly depending only onβ, so that, for allε ≤ ε̄, andx ∈ {x ∈ B(x0, r] :

φ(·, t) ≥ β} we haveuε(x, t) ≥ m+ − β. Therefore

uε(x, t) ≥ (m+ − β)1{φ(·,t)≥β}(x) +m−1{φ(·,t)<β}(x).

for all ε ≤ ε̄, x ∈ B(x0, r]. In the same way we can also obtain that, forε small enough,

uε(x, s) ≥ (m+ − β)1{φ(·,s)≥β}(x) +m−1{φ(·,s)<β}(x),

for any(x, s) ∈ ∂B(x0, r]× [t, t + h]. Combining these inequalities with those in 1. and 2. in the

statement of Lemma 4.1.5 we can conclude, by the maximum principle, that

ωε,β(x, s) ≤ uε(x, s), for all (x, s) ∈ B(x0, r]× [t, t + h].



Moreover by property 3. ofωε,β in Lemma 4.1.5,

lim inf
ε→0+

∗ u
ε(x, s) ≥ m+ − 3β

for every(x, s) ∈ B(x0, r]× [t, t+ h] such thatφ(x, s) > 3β. Sinceβ is arbitrary we can now send

β to zero in order to obtain that

lim inf
ε→0+

∗ u
ε(x, s) ≥ m+

if (x, s) ∈ B(x0, r]×[t, t+h] andφ(x, s) > 0. Finally we remark that, ifs ∈ (t, t+h), x ∈ B(x0, r)

andφ(x, s) > 0 we have thatφ(y, τ) > 0 in a neighborhood of(x, s) and thus (4.36) is proved.

Proof of Lemma 4.1.5.The proof is similar to the one of Lemma 4.1.4 and we just give point out

the main changes. First of all we observe that sinceφ satisfies property (ii) above we have that there

existsγ > 0 such that|Dφ(x, s)| 6= 0 in the setQγ = {(x, s) ∈ B(x0, r]× [t, t+h] : |φ(x, s)| ≤ γ}.

Obviously this also means|DH,εφ(x, s)| 6= 0 for any (x, s) ∈ Qγ , ε > 0. As in Lemma 4.1.4 we

construct our subsolution by steps and to do this we first define a functionvε in Qγ asvε(x, s) =

Q
(φ(x, s)− 2β

ε
, x, s

)

− 2β. Let (x, s) ∈ Qγ ; with the usual computations it turns out that

vεt (x, s)− ε tr(D2
H,εv

ε(x, s)) +
f(vε(x, s))

ε
=
Iε
ε
+
IIε
ε

+ IIIε,

whereIε, IIε, IIIε are exactly the same terms defined in (4.32) withΦ replaced byφ. We put

Q(a, x, s) = q
( a

|DH,εφ(x, s)|
)

in (4.32) and we get

Iε = cq̇

and

IIε ≤
q̇

|DH,εφ|
[−C̃ − c|DHφ| − ε tr(D2

H,εφ)]− 2βf ′(q) + 2‖ f ′′‖β2,

whereC̃ is the constant that appears in (i). As far it concerns the terms in IIIε we proceed as in

Lemma 4.1.4 with the only difference that now we can’t claim thatQs is null. Anyway,

Qs = q̇a
(

− DH,εφ ·DH,εφs

|DH,εφ|3
)

= O
( 1

|DH,εφ|
)

= O(ε−k),

and thus also in this case

IIIε = O(ε
( 1

|DH,εφ|2
+

1

|DH,εφ|
)

) +O
( 1

|DH,εφ|
)

= O(ε1−2k) +O(ε−k) = O(ε−k).



Since|DH,εφ| → |DHφ| uniformly inQγ , we have

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
≤ 1

ε

[ q̇

|DH,εφ|
(

− C̃ + c (|DH,εφ| − |DHφ|)
︸ ︷︷ ︸

oε(1)

−

−ε tr(D2
H,εφ)

)

− 2βf ′(q) + 2‖ f ′′‖β2 + oε(1)
]

≤ 1

ε

[

− q̇C̃

2|DH,εφ|
− 2βf ′(q) + 2β2‖ f ′′‖+ oε(1)

]

(4.37)

for ε small enough. To prove that the right hand side of (4.37) is strictly negative we proceed like in

the proof of Lemma 4.1.4. In fact, sincef ′(m±) ≥ d > 0 andq(r) → m± asr → ±∞, there exists

an r̄ > 0 so that

f ′(q(r)) ≥ d

2
, for any| r| ≥ r̄.

Thus if |φ(x, s)−2β| ≥ r̄ε|DH,εφ(x, s)| and we chooseβ small enough in order to get4β‖f ′′‖ ≤ d,

we have

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
≤ 1

ε

(

− q̇C̃

2|DH,εφ|
− βd

2
+ oε(1)

)

≤ 1

ε

(
− βd

2
+ oε(1)

)
≤ −βd

4ε

for ε small enough.

If instead| φ(x, s) − 2β| < r̄ε| DH,εφ|, we denote withK = K(r̄) a strictly positive constant so

that q̇(r) ≥ K > 0 for any| r| ≤ r̄. If we assume thatβ satisfies

2β
(
‖ f ′‖+ β‖ f ′′‖+ 1

)
sup

(x,s)∈Qγ

[|DHφ(x, s)|2 + |Dφ(x, s)|2]1/2 ≤ KC̃

2
,

then the inequality in (4.37) becomes

vεt − ε tr(D2
H,εv

ε) +
f(vε)

ε
≤ 1

ε

[

− KC̃

2|DH,εφ|
+ 2β‖ f ′‖+ 2β2‖ f ′′‖+ oε(1)

]

≤ 1

ε
(−2β + oε(1)) ≤ −β

ε
,

for ε small enough compared withβ fixed. Now that we have provedvε is a strict subsolution of

(4.25-i), the extension ofvε to a global subsolutionωε,β in B(xo, r] × [t, t + h] and the proof that

such a function satisfies 1, 2, 3, is similar to that of Lemma 4.1.4 and we omit it.

Once we have proved the first two steps (initialization and propagation of the front) the proof of

Theorem 4.1.1 follows immediately using Corollary 2.2.3



4.2 The second asymptotic problem: the degenerate Allen-Cahn

equation

In this second section we consider the asymptotics of the solutions of the Cauchy problem for the

equation (4.11). To be more precise we consider the behavior(asε → 0) of the solution of the

Cauchy problem







(i) uεt − tr (Aε(x)D2uε + σt(x)Dσt(x)Duε) +
f(uε)

ε2
= 0 in Rn × (0,+∞),

(ii) uε(x, 0) = g(x) in Rn,
(4.38)

where the exponentk that appears in (4.8) is a fixed real number so that0 < k < 1/3 andg is

a continuous real function inRn which takes values in[m−, m+]. Moreover we suppose that the

zeroes off satisfyc = 2mo −m+ −m− = 0.

We study the limiting behavior asε→ 0+ of the solutionsuε of (4.38) only in the framework of

Carnot groups. To be more precise we will show that ifRn can be endowed with a particular group

law so that(Rn, ◦) is isomorphic to a Carnot group of step two and we define two regionsΩ1 and

Ω2 as in (2.14) withaε = a = m−, bε = b = m+ andτ = 1, then the front that separatesΩ1 andΩ2

evolves according to the geometric pde

ut(x, t) + F (x,Du(x, t), D2u(x, t)) = 0, (x, t) ∈ Rn × (0,+∞), (4.39)

whereF : Rn × Rn × Sn → R is defined as

F (x, p,X) = − tr
[(
σt(x)Xσ(x) + σt(x)Dxσ

t(x)p
)(

I − σt(x)p⊗ σt(x)p

| σt(x)p|2
)]

. (4.40)

We start the section with some preliminary definitions and results about Carnot groups.

4.2.1 Carnot groups

Let ◦ be a given group law onRn and suppose that the maps

Rn × Rn ∋ (x, y) 7→ x ◦ y ∈ Rn

and

Rn ∋ x 7→ x−1 ∈ Rn

are smooth. ThenG := (Rn, ◦) is called aLie group onRn . To make the notation simpler we shall

assume that the origin0 of Rn is the identity ofG.



We say that the Lie groupG = (Rn, ◦) is a homogeneous (Lie) group onRn if there exists

an n−uple of real numbersσ = (σ1, . . . , σn), with 1 ≤ σ1 ≤ · · · ≤ σn, so that the dilatation

δλ : Rn → Rn, δλ(x1, . . . , xn) := (λσ1x1, . . . , λ
σnxn) is an automorphism of the groupG for every

λ > 0. We shall denote byG = (Rn, ◦, δλ) the homogeneous Lie group onRn with composition

law ◦ and dilatation{δλ}λ>0.

Let α ∈ G , we denote byτα : G → G, τα(x) := α ◦ x the left translation byα onG. A vector

fieldX onRn is calledleft-invariantonG if

X(ϕ(τα(x))) = (Xϕ)(τα(x))

for everyx ∈ Rn, α ∈ G andϕ : Rn → R smooth function. We denote byg the set of the left-

invariant vector fields onG. Since for anyX, Y ∈ g andλ, µ ∈ R we haveλX + µY ∈ g and

[X, Y ] ∈ g, theng is a Lie algebra of vector fields. It is called theLie algebraof G.

A non -identically-vanishing linear differential operator X is calledδλ−homogeneousof degree

m ∈ R if and only if, for everyϕ ∈ C∞(Rn), x ∈ Rn andλ > 0, it holds

X(ϕ(δλ(x))) = λm(Xϕ)(δλ(x)).

Definition 4.2.1. We say that a Lie group onRn,G = (Rn, ◦), is a(homogeneous) Carnot groupor

a (homogenous) stratified group, if the following properties hold:

(C1) Rn can be split asRn = Rn1 × · · · × Rnr , and the dilatationδλ : Rn → Rn

δλ(x) = δλ(x
(1), . . . , x(r)) = (λx(1), λ2x(2), . . . , λrx(r)), x(i) ∈ Rni ,

is an automorphism of the groupG for everyλ > 0.

(C2) if g is the Lie algebra ofG andg1 is the linear subspace ofg of the left-invariant vector fields

which areδλ-homogeneous of degree1, then

Lie{g1} = g.1

We say thatG has stepr andn1 = dim(g1) generators.

1If U ⊆ T (Rn) is a set of smooth vector fields onRn and we set

U1 := span{U}, Un := span{[u, v] : u ∈ U, v ∈ Un−1}, n ≥ 2,

then
Lie{U} = span{Un : n ∈ N}.



We denote withJτx(y) the Jacobian matrix at pointy of the mapτx. If {e1, . . . , en} is the

canonical basis ofRn, we define theJacobian basisof g, {Z1, . . . , Zn} as

ZjI(x) = Jτx(0) · ej = j − th column ofJτx(0) ∀x ∈ Rn.2

SinceJτ0(y) ≡ In, we haveZjI(0) = ej and thus

Zj(0) =
∂

∂xj |0
, for j = 1, . . . , n.

With these notations condition(C2) means that

rank(Lie{Z1, . . . , Zn1}(x))3 = n, for anyx ∈ Rn

and

Lie{Z1, . . . , Zn1} = g.

From a set of Vector Fields to a Carnot Group

We now want to see when a set of smooth vector fields onRn, {X1, . . . , Xm},m < n, is a basis for

the Lie algebra of a Carnot group onRn. For a complete treatment of the subject see the book of

Bonfiglioli, Lanconelli and Uguzzoni [9], section 4.2.

We put, for everyk ∈ N,

W (k) = span{XJ |J ∈ {1, . . . , m}k},
2I(x) = (I1(x), . . . , In(x)) = (x1, . . . , xn), x ∈ Rn. If X is a linear differential operator with the notationXI we

mean the action ofX upon the components ofI, i.e.

XI(x) =






XI1(x)
...

XIn(x)






Therefore ifX =

n∑

i=1

aj∂j , then

XI(x) =






a1(x)
...

an(x)






3If U ⊆ T (Rn) is a set of smooth vector fields onRn we define

rank(LieU(x)) = dimR{ZI(x) : Z ∈ Lie{U}}

for anyx ∈ Rn.



where, ifJ = (j1, . . . , jk),

X(j1,...,jk) = [Xj1, [Xj2, . . . , [Xjk−1
, Xjk ]] . . . ].

We assume that the vector fieldsXj ’s satisfy the following conditions:

(H0) X1, . . . , Xm are linearly independent andδλ-homogeneous of degree one with respect to a

suitable family of dilatations{δλ}λ>0 of the following type

δλ : Rn → Rn, δλ(x) = δλ(x
(1), . . . , x(r)) := (λx(1), . . . , λrx(r)),

wherer ≥ 1 is an integer,x(i) ∈ Rni for i = 1, . . . , r, n1 = m andn1 + · · ·+ nr = n;

(H1) dim(W (k)) = dim{XI(0) : X ∈ W (k)} for everyk = 1, . . . , r;

(H2) dim(Lie{X1, . . . , Xm}I(0)) = n.

It can be shown that ifX1, . . . , Xm satisfy these assumptions , then they also satisfy

(H1)* dim(W (k)I(x)) = dim(W (k)) for anyk ≤ r, x ∈ Rn,

(H2)* dim(Lie{X1, . . . , Xm}I(x)) = n for anyx ∈ Rn.

For everyk = 1, . . . , r we consider a fixed basis forW (k). We know that

{Z1, . . . , Zn} := {Z(1)
1 , . . . , Z(1)

n1
, . . . , Z

(r)
1 , . . . , Z(r)

nr
}

is a basis ofa = Lie{X1, . . . , Xm}. Thereforea = {ξ · Z =
n∑

j=1

ξjZj : ξ ∈ Rn}.

It can be shown that the map(x, t) 7−→ exp(tξ ·Z)(x) is well defined for every(x, t) ∈ Rn×R.

Furthermore,

Exp : Rn → Rn, Exp(ξ) := exp(ξ · Z)(0)

is a global diffeomorphism. We denote withLog its inverse function and we set

x ◦ y := exp(Log(y) · Z)(0), x, y ∈ Rn. (4.41)

We now state a Theorem that characterizes the Carnot groupG = (Rn, ◦, δλ) whose Lie algebra is

generated by the vector field{X1, . . . , Xm}. For the proof we refer to [9].

Theorem 4.2.2.Let {X1, . . . , Xm} be smooth vector fields inRn satisfying hypothesis (H0), (H1)

and (H2). Let{δλ}λ>0 be the family of dilatations defined in (H0). Finally, let◦ be the composition



law onRn introduced in (4.41). Then

G = (Rn, ◦, δλ)

is a homogeneous Carnot group of stepr with m generators whose Lie algebrag is Lie-generated

by {X1, . . . , Xm}, i.e.

g = Lie{X1, . . . , Xm}.

4.2.2 The mean curvature equation in Carnot groups

We want to consider equation (4.39) in a Carnot group onRn, G = (Rn, ◦, δλ). With the no-

tations above we callg1 the linear subspace ofg of the left-invariant vector fields which areδλ-

homogeneous of degree one and we put

m = dim g1.

We set, for a generical pointx = (x1, . . . , xn) ∈ Rn,

xH = (x1, . . . , xm) and xV = (xm+1, . . . , xn).

If {X1, . . . , Xm} is an orthonormal basis ofg1 by property(C2) we have

Lie{X1, . . . , Xm} = g.

We assume that

X =







X1

...

Xm







= σt(x) · ∇, (4.42)

whereσ : Rn → Rn×m. We point out that if we consider as orthonormal basis the Jacobian basis

{Z1, . . . , Zn} the matrixσ is just the matrix obtained by taking the firstm columns ofJτx(0). With

this notations the equation in (4.39) can be rewritten as

ut(x, t)−
m∑

i,j=1

(

δij −
Xiu(x, t)Xju(x, t)
∑m

i=1(Xiu(x, t))2

)

XiXju(x, t) = 0, (4.43)

or

ut(x, t) + F̃ (Xu(x, t), X2u(x, t)) = 0



whereF̃ : Rm × Sm → R is defined as

F̃ (p,X) = − tr[
(
I − p

| p| ⊗
p

| p|
)
X ], (p,X) ∈ Rm × Sm. (4.44)

This last equivalent formulation explicitly shows us that equation (4.39) is indeed the mean curva-

ture equation in the sub-Riemannian metricg.

In [15] Capogna and Citti prove that, ifG = (Rn, ◦, δλ) is an homogeneous Carnot group, then

the Cauchy problem for the equation (4.43),

{

ut(x, t) + F̃ (Xu(x, t), X2u(x, t)) = 0, (x, t) ∈ Rn × (0,+∞),

u(x, 0) = u0(x), x ∈ Rn,
(4.45)

is well-posed under some particular assumptions on the initial datumu0. To treat the discontinuity

that appears in (4.43) forXu(x, t) = 0 they use the following definition ofweak solution.

Definition 4.2.3. A functionu ∈ C(G× [0,+∞) is aweak subsolution (supersolution)of (4.43) in

G × (0,+∞) if for any (x, t) ∈ G × (0,+∞) and any functionφ ∈ C2(G × (0,+∞)) such that

u− φ has a local maximum (minimum) at(x, t) then

∂

∂t
φ ≤ (≥)







m∑

i,j=1

(

δij −
XiφXjφ

|Xφ|2
)

XiXjφ, if |Xφ| 6= 0

m∑

i,j=1

(δij − pipj)XiXjφ for somep ∈ Rm, | p| ≤ 1, if |Xφ| = 0.

A weak solutionof (4.43) is a functionuwhich is both a weak subsolution and a weak supersolution.

This definition of weak solution is quite different from the classical definition of viscosity solu-

tion. Anyway, as we now show, the two definitions turn out to beequivalent, at least for homoge-

neous Carnot groups of step two.

Carnot group of step two

Consider an homogeneous Carnot group of step twoG = (Rn, ◦, δλ) where the dilatationδλ is

defined as

δλ : Rn → Rn, δλ(x) = (λxH , λ
2xV ). (4.46)

By Theorem 1.3.15 on page 39 in [9] the composition law◦ takes the form

x ◦ y = (xH , xV ) ◦ (yH , yV ) = (xH + yH , xV + yV + 〈BxH , yH〉). (4.47)



where〈BxH , yH〉 denotes the(n−m)-tuple

(
〈B(1)xH , yH〉, . . . , 〈B(n−m)xH , yH〉

)
,

〈·, ·〉 is the inner product inRm andB(1), . . . B(n−m) is a suitable(n−m)-tuple ofm×m matrices

with real entries. Obviously the identity element for the composition law defined in (4.47) is the

origin 0 and the inverse of a generic elementx ∈ Rn is given byx−1 = (−xH ,−xV + 〈BxH , xH〉).
We point out that the inversex−1 is equal to−x if and only if 〈B(k)z, z〉 = 0 for anyx ∈ Rm and

k = 1, . . . , n−m, i.e. if and only if the matricesB(k) are skew-symmetric. The Jacobian matrix at

the origin0 of the left translation byx, τx, is the following matrix block,

Jτx(0) =






Im Om×(n−m)

BxH In−m,






whereBxH denotes then−m×m matrix







(B(1)xH)
T

...

(B(n−m)xH)
T







=












m∑

j=1

B
(1)
1,jxj

m∑

j=1

B
(1)
2,jxj . . .

m∑

j=1

B
(1)
m,jxj

...
...

. . .
...

m∑

j=1

B
(n−m)
1,j xj

m∑

j=1

B
(n−m)
2,j xj . . .

m∑

j=1

B
(n−m)
m,j xj












.

This means that the Jacobian basis of the Lie algebra ofG is

Xi =
∂

∂xi
+

n∑

k=m+1

( m∑

j=1

B
(k)
i,j xj

) ∂

∂xk
, i = 1, . . . , m,

Ti =
∂

∂xm+i
, i = 1, . . . , n−m.

A simple computation shows that, for anyi, j ∈ {1, . . . , m},

[Xj , Xi] =

n−m∑

k=1

C
(k)
i,j Tk,



whereC(k) is the skew-symmetric part ofB(k), i.e.C(k) = (B(k)− (B(k))T )/2. If C(1), . . . , C(n−m)

are linearly independent this implies that

span{[Xj, Xi] : i, j = 1, . . . , m} = span{T1, . . . , Tn−m}

and therefore

rank(Lie{X1, . . . , Xm}(0, 0)) = dim(span{∂x1 , . . . , ∂xn
}) = n.

This shows that G is a Carnot group of step two and Jacobian generatorsX1, . . . , Xm. Since the

condition of the linear independence of the matricesC(1), . . . , C(n−m) is also necessary for G to be

a Carnot group we can conclude thatG = (Rn, ◦, δλ), with ◦ as in (4.47) andδλ as in (4.46) is a

Carnot group of step two and generatorsX1, . . . , Xm if and only if C(1), . . . , C(n−m) are linearly

independent.

We now observe that any Carnot groupG = (Rn, ◦, δλ) is isomorphic, by means of the group

isomorphismϕ : Rn → Rn, ϕ(x) = ϕ(xH , xV ) = (xH , xV −〈B
2
xH , xH〉), to the Carnot group̃G =

(Rn, ◦̃, δλ) where the group operatioñ◦ is defined as in (4.47) with the matricesB(1), . . . , B(n−m)

replaced by their skew-symmetric partC(1), . . . , C(n−m). Therefore we can assume, without loss of

generality, that the matricesB(k), k = 1, . . . , n−m, that appear in the definition of the composition

law (4.47) are all skew-symmetric.

Example 4.2.4(The Heisenberg group). The most famous example of Carnot group of step 2 is the

so called Heisenberg group. Let us consider inCn × R the following composition law

(ω, z) ◦ (ω′, z′) = (ω + ω, z + z′ + 2Im(ω · ω′)).

If we identify Cn with R2n and we denote the points ofR2n+1 as(x, y, z), with x, y ∈ Rn, z ∈ R,

the composition◦ can be written explicitly as

(x, y, z) ◦ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + 2(〈y, x′〉 − 〈x, y′〉)) (4.48)

The Heisenberg groupHn = (R2n+1, ◦) is a Lie group homogeneous with respect to the family of

dilatationsδλ : Hn → Hn, δλ(x, y, z) = (λx, λy, λ2z), λ > 0.

The Jacobian matrix of the left translationτ(x,y,z) at zero is

Jτ(x,y,z)(0) =






In On×n 0

On×n In 0

2yT −2xT 1








and so the Jacobian basis of the lie algebra ofH is given by the 2n vectors

Xi(x) = ∂xi
+ 2yi∂z, Yi(x) = ∂yi − 2xi∂z, i = 1, . . . , n.

Since [Xi, Yi] = −4∂z for any i = 1, . . . , n we can conclude that the Heisenberg group is an

homogeneous Carnot group of step two. Moreover following the notations above we have that the

matrixB is a2n× 2n skew-symmetric matrix defined as

B =

(

On×n 2In

−2In On×n

)

and in fact(x, y, z)−1 = (−x,−y,−z).

Following the notations above we define the horizontal gradient and the horizontal (symmetric)

Hessian matrix of a twice differentiable functionf : G→ R as

Xf(x) =







X1f(x)
...

Xmf(x)







= σt(x)Df(x),

X2f(x) =

((XiXjf(x) +XjXif(x)

2

)

i,j=1,...,m

)

= σt(x)D2f(x)σ(x).

(4.49)

where the matrixσ is obtained by taking the firstm columns ofJτx(0),

σ(x) :=

(

Im

BxH

)

(4.50)

We just point out that the horizontal (symmetric) Hessian matrix does not contain first order terms

because of the skew-symmetry of the matricesB(1), · · · , B(n−m).

When it will be necessary to emphasize the variablex in which we are computing the vector

fieldsXi (and with respect to we are computing the derivatives), we will denote the horizontal

gradient and the horizontal Hessian matrix asXx andX2
x . For example ifg = g(x, y) is aC2

function defined inG×G and(xo, yo) is a generic point ofG×G we will denote withXxf(xo, yo)

the horizontal gradient off with respect to the variablex and withXyf(xo, yo) the horizontal

gradient off with respect toy, both computed in the point(xo, yo). Analogous definitions hold for

X2
xf(xo, yo) andX2

yf(xo, yo).



We consider an homogeneous (with respect to any dilatationδλ, λ > 0) norm onG,

‖ x‖G = [|xH |4 + |xV |2]1/4, (4.51)

and we define a left invariant metricdG : G×G→ [0,+∞) as

dG(x, y) = ‖ x−1 ◦ y‖G
= [| yH − xH |4 + | yV − xV − 〈BxH , yH〉|2]1/4.

(4.52)

We now prove a nice property of the homogeneous metricdG defined in (4.52).

Lemma 4.2.5.PutN(x) = ‖ x‖4G for anyx ∈ RN .

(i) {x ∈ G : |XN(x)| = 0} = {x ∈ G : X2N(x) = O} = {x ∈ G : xH = 0m}.

(ii) |Xxd
4
G(x, y)| = |Xyd

4
G(x, y)| andX2

xd
4
G(x, y) = X2

yd
4
G(x, y) for anyx, y ∈ G; moreover they

all have as zero-set the set{(x, y) ∈ G×G : xH = yH}.

Proof. (i) The proof of the first point follows immediately by some simple computations. In fact

since

XN(x) = 4| xH |2xH + 2

n−m∑

k=1

(xV )kB
(k)xH

we have

|XN(x)|2 = 16|xH |6 + 4
∑

k,l

(xV )k(xV )l〈B(k)xH , B
(l)xH〉

(we recall that, since the matricesB(k) are all skew symmetric the mixed products are all null).

Moreover

X2N(x) = 4|xH |2Im + 8xH ⊗ xH + 2(BxH)
TBxH .

(ii) First of all we observe that, since the vector fieldsXi are invariant by left composition of the

operation law◦, we have

Xyd
4
G(x, y) = XyN(x−1 ◦ y) = XN(x−1 ◦ y)

X2
yd

4
G(x, y) = X2N(x−1 ◦ y)

and so by point (i)Xyd
4
G(x, y) andX2

yd
4
G(x, y) are null if and only if(x−1 ◦y)(1) = 0, i.e. yH = xH .

To compute the horizontal gradient and the horizontal Hessian matrix with respect thex variable



we observe that, sinceN(x−1) = N(x), it holdsd4G(x, y) = N(x−1 ◦ y) = N(y−1 ◦ x) and

Xxd
4
G(x, y) = XN(y−1 ◦ x)

X2
xd

4
G(x, y) = X2N(y−1 ◦ x),

and againXxd
4
G(x, y) andX2

xd
4
G(x, y) are null exactly whenyH = xH .

Finally we observe that|Xyd
4
G(x, y)|2 = |Xxd

4
G(x, y)|2 andX2

yd
4
G(x, y) = X2

xd
4
G(x, y)

We use this Lemma to prove the equivalence between the definition of weak solutionin Def-

inition 4.2.3 and the usual definition ofviscosity solutionfor the equation (4.39). It immediately

follows from the following property of viscosity solutionsof equation (4.39). The analogous result

in the Euclidean case can be found in [6] and in the first Chapter of our thesis.

Proposition 4.2.6. An upper (respectively lower) semicontinuous functionu is a viscosity sub-

solution (respectively supersolution) of (4.39) if and only if for any φ ∈ C2(Rn × (0,+∞)), if

(x, t) ∈ Rn × (0,+∞) is a local maximum (respectively minimum) point foru− φ, one has

∂φ(x, t)

∂t
− tr

[(
I − Xφ(x, t)⊗Xφ(x, t)

|Xφ(x, t)|2
)
X2φ(x, t)

]
≤ 0 if Xφ(x, t) 6= 0 (4.53)

and
∂φ(x, t)

∂t
≤ 0 if Xφ(x, t) = 0 and X2φ(x, t) = 0, (4.54)

(respectively

∂φ(x, t)

∂t
− tr

[(
I − Xφ(x, t)⊗Xφ(x, t)

|Xφ(x, t)|2
)
X2φ(x, t)

]
≥ 0 if Xφ(x, t) 6= 0

and
∂φ(x, t)

∂t
≥ 0 if Xφ(x, t) = 0 and X2φ(x, t) = 0). (4.55)

Proof. Let u be an upper semicontinuous function which satisfies (4.53) and (4.54). Considerφ ∈
C2(Rn×(0,+∞)) and(x̂, t̂) ∈ Rn×(0,+∞) a local maximum point foru−φ such thatXφ(x̂, t̂) =

0 andX2φ(x̂, t̂) 6= 0. Without loss of generality we can assume thatu is bounded and(x̂, t̂) is a

strict local maximum point foru− φ. If we prove that

∂φ(x̂, t̂)

∂t
+ F̃∗(Xφ(x̂, t̂), X

2φ(x̂, t̂)) ≤ 0, (4.56)

with F̃ as in (4.44), we have thatu is a viscosity subsolution of (4.43). For anyε > 0 we consider

a function

ψε(x, y, t) = u(x, t)− d4G(x, y)

ε
− φ(y, t)



and we denote with(xε, yε, tε) the maximum point ofψε in Rn × (0,+∞). With some classical

computations one easily proves that(xε, yε, tε) converges to(x̂, x̂, t̂).Moreover since the function

y 7→ ψε(xε, y, tε) has a local maximum inyε we have

Dφ(yε, tε) = −Dyd
4
G(xε, yε)

ε
,

D2φ(yε, tε) ≥ −D
2
yd

4
G(xε, yε)

ε
;

thus

Xφ(yε, tε) = −Xyd
4
G(xε, yε)

ε
(4.57)

X2φ(yε, tε) ≥ −
X2

yd
4
G(xε, yε)

ε
, (4.58)

Two cases now may occur.

1. Xφ(yε, tε) = 0. This means thatXyd
4
G(xε, yε) = 0 and by the previous Lemma(xε)H =

(yε)H . Since the map(x, t) 7→ u(x, t) − ϕ(x, t), with ϕ(x, t) =
d4G(x, yε)

ε
+ φ(yε, t) attains a

maximum on(xε, tε) and

Xϕ(x, t) = 0 ⇔ xH = (yε)H ⇔ X2ϕ(x, t) = 0,

by (4.54) we get
∂ϕ

∂t
(xε, tε) =

∂φ

∂t
(yε, tε) ≤ 0.

Moreover, since in this case (4.58) becomesX2φ(yε, tε) ≥ Om×m, using the ellipticity ofF∗ it

holds

∂φ

∂t
(yε, tε) + F̃∗(Xφ(yε, tε)

︸ ︷︷ ︸

=0

, X2φ(yε, tε)) ≤
∂φ

∂t
(yε, tε) + F̃∗(0, 0) =

∂φ

∂t
(yε, tε) ≤ 0

and we conclude by lettingε go to 0.

2. Xφ(yε, tε) 6= 0; using (4.57) and the previous Lemma this means(yε)H 6= (xε)H . The point

(xε, tε) is a maximum for

(x, t) 7→ ψε(x, x ◦ x−1
ε ◦ yε, t) = u(x, t)− d4G(xε, yε)

ε
− φ(x ◦ x−1

ε ◦ yε, t)
= u(x, t)− ϕ(x, t)

.

Let τ̃α(x) = x ◦ α be the right translation byα andJτ̃α(x) ≡ Jτ̃α its Jacobian matrix; a simple



computation shows thatJτ̃α has the form

Jτ̃α =












Im Om×n

((B(1))TαH)
T

... In

((B(n))TαH)
T












=












Im Om×n

(−B(1)αH)
T

... In

(−B(n)αH)
T












=






Im Om×n

−BαH In,




 .

By the chain rule we get

Xϕ(xε, tε) = σ(xε)
TJ T

τ̃
x
−1
ε ◦yε

Dφ(τ̃x−1
ε ◦yε

(xε), tε)

=
(
Jτ̃

x
−1
ε ◦yε

σ(xε)
)T
Dφ(yε, tε)

= σ(2xε − yε)
TDφ(yε, tε)

−→ Xφ(x̂, t̂) = 0, asε→ 0

and
X2ϕ(xε, tε) = σ(xε)

TJ T
τ̃
x
−1
ε ◦yε

D2φ(τ̃x−1
ε ◦yε

(xε), tε)Jτ̃
x
−1
ε ◦yε

σ(xε)

= σ(2xε − yε)
TD2φ(yε, tε)σ(2xε − yε)

−→ X2φ(x̂, t̂) 6= 0, asε → 0.

MoreoverXϕ(xε, tε) 6= 0; in fact,

Xϕ(xε, tε) = σ(2xε − yε)
TDφ(yε, tε) = −ε−1σ(2xε − yε)

TDyd
4
G(xε, yε)

= −ε−1σ(2xε − yε)
TJ T

τ
x
−1
ε

DN(x−1
ε ◦ yε)

= −ε−1σ(xε − yε)
TDN(x−1

ε ◦ yε) = ε−1σ(xε − yε)
TDN(y−1

ε ◦ xε)
= ε−1XN(y−1

ε ◦ xε)

and by the previous Lemma this is null if and only if(yε)H = (xε)H . Thus by (4.53) it holds

∂ϕ

∂t
(xε, tε) + F̃ (Xϕ(xε, tε), X

2ϕ(xε, tε)) ≤ 0



and we conclude by lettingε → 0,

0 ≥ lim inf
ε→0

(∂ϕ

∂t
(xε, tε) + F̃ (Xϕ(xε, tε), X

2ϕ(xε, tε))
)

≥ ∂φ

∂t
(x̂, t̂) + F̃∗(Xφ(x̂, t̂), X

2φ(x̂, t̂)).

As for Euclidean derivatives, from this last proposition weimmediately get the following char-

acterization of viscosity sub and supersolution of equation (4.39).

Remark 4.2.7. It is not restrictive to assume in Definition 1.0.1 that, ifu (respectivelyv) is an upper

semicontinuous subsolution (respectively a lower semicontinuous supersolution) of equation (4.39)

andϕ ∈ C2(Rn × (0,+∞)) is a test function foru (resp. forv) at the point(x, t), then

Xϕ(x, t) = 0

implies

X2ϕ(x, t) = 0.

Moreover we can assume that, at any point(y, s) in a neighborhood of(x, t) so that

Xϕ(y, s) = Xϕ(x, t) = 0,

it holds

X2ϕ(y, s) = 0.

We conclude the section with the comparison principle proved by Capogna and Citti in [15].

It holds for weak sub- and supersolutions and therefore, thanks to the proposition above, also for

viscosity sub- and supersolutions if the groupG is an homogeneous Carnot group of step two.

Theorem 4.2.8.Consider an homogeneous Carnot groupG = (Rn, ◦, δλ). Assume thatu is a

bounded weak subsolution andv is a bounded weak supersolution of (4.39). Suppose further:

(i) for any pair(xH , xV ), (xH , yV ) ∈ G, u(xH , xV , 0) ≤ v(xH , yV , 0);

(ii) eitheru or v is uniformly continuous when restricted toG× {t = 0}.

Thenu(x, t) ≤ v(x, t) for all x ∈ G andt ≥ 0.

Using this theorem we immediately get the uniqueness of a continuous weak subsolution of

(4.45) but only for a particular type of uniformly continuous initial datau0.

Corollary 4.2.9. Let u0 : Rn → R be a bounded uniformly continuous function so that, for any

fixedxH ∈ Rm, the map

Rn−m ∋ y 7−→ u0(xH , y)



is a constant map. A bounded weak solution of (4.45)u ∈ C(G× [0,+∞)) is unique.

As last result Capogna and Citti proved the existence of a weak solution of our Cauchy problem.

Theorem 4.2.10.For any bounded continuous functionu0 : Rn → R there exists a weak solution

u ∈ C(G× [0,+∞)) of (4.45).

4.2.3 The degenerate Allen-Cahn equation

We now study the limiting behavior, asε goes to zero, of the solutions of the ”degenerate Allen-

Cahn equation” (4.7) whenG = (Rn, ◦, δλ) is an homogenous Carnot group of step two (for the

precise definition see the previous section). We denote withσ(1)(·), . . . , σ(m)(·) the columns of the

matrixσ(·) and we definem vector fieldsX1, . . . , Xm as

Xi = σ(i)(x) · ∇, x ∈ Rn, i = 1, . . .m, (4.59)

i.e.

X =







X1

...

Xm







= σt(x) · ∇.

We recall that, by Theorem 4.2.2, ifX1, . . . , Xm satisfy the hypothesis (H0), (H1) and (H2) with

r = 2, then they generate an homogeneous Carnot group of step two.

Theorem 4.2.11.Assume that the matrix mapA ≡ σt(x)σ(x) and the vector fieldsX1, . . . , Xm

defined in (4.59) satisfy (4.1), (4.2), (H0), (H1) and (H2) with r = 2. Moreover condition (4.5)

holds withc = 2mo − m+ − m− = 0. Finally we suppose that the functionsq andp, solutions

respectively of the travelling wave equation (4.13) and of (4.17), satisfy (4.14), (4.15), (4.20) and

(4.21).

Let uε be the unique solution of the Cauchy problem (4.38), withk ∈ (0, 1/3) andg : Rn →
[m−, m+] a continuous function such that the setsΓo = {x : g(x) = mo}, Ω+

o = {x : g(x) > mo},

Ω−
o = {x : g(x) < mo} are nonempty and(Γo,Ω

+
o ,Ω

−
o ) ∈ E . Then

uε(x, t) −→
{

m+ in {u > 0},
m− in {u < 0},

locally uniformly asε → 0, whereu is the unique viscosity solution of

{

ut(x, t) + F (x,Du(x, t), D2u(x, t)) = 0 in Rn × (0,+∞),

u(x, 0) = do(x),
(4.60)



whereF is as in (4.40) anddo is the signed distance toΓo which is positive inΩ+
o and negative in

Ω−
o . If in addition the no-interior condition (2.7) for the set{u = 0} holds, then, asε → 0,

uε(x, t) −→
{

m+ in {u > 0},
m− in {u > 0}c,

locally uniformly.

Remark. As said before conditions (H0), (H1) and (H2) with r = 2 guarantee us thatX1, . . . , Xm

generate a Carnot group of step twoG = (Rn, ◦, δλ), where◦ is the composition law onRn intro-

duced in (4.41) and{δλ}λ>0 is the family of dilatations defined in (H0). This allows us to use, in

the following definition and proofs, the nice properties we prove in Lemma 4.2.5 and in Proposition

4.2.6

Before proving Theorem 4.2.11 we give a different definitionof generalized super- and subflow

with normal velocityF defined in (4.40) and we prove that it turns out to be equivalent to the usual

Definition in 2.2.1.

Definition 4.2.12. Let F be the real-valued, locally bounded function onRn × Rn × Sn defined

in (4.40). A family (Ωt)t∈(0,T ) (resp. (Ft)t∈(0,T )) of open (resp. close) subsets ofRn is called a

generalized superflow(resp. subflow) with normal velocity−F (x,Dd,D2d) if, for any x0 ∈ Rn,

t ∈ (0, T ), r > 0, h > 0 so thatt + h < T and for any smooth functionφ : Rn × [0, T ] → R such

that:

(i) ∂φ(x, s)/∂t + F ∗(x,Dφ(x, s), D2φ(x, s)) < 0 in B(x0, r] × [t, t + h] (resp. ∂φ(x, s)/∂t +

F∗(x,Dφ(x, s), D
2φ(x, s)) > 0 in B(x0, r]× [t, t+ h]),

(ii) for anys ∈ [t, t + h], {x ∈ B(x0, r] : φ(x, s) = 0} 6= ∅ and

|Dφ(x, s)| 6= 0 on{(x, s) ∈ B(x0, r]× [t, t + h] : φ(x, s) = 0},

(iii) if there exists a pair(x, s) ∈ B(x0, r] × [t, t + h] so that| DHφ(x, s)| = 0, then it holds also

|D2
Hφ(x, s)| = 0,

(iv) {x ∈ B(x0, r] : φ(x, t) ≥ 0} ⊂ Ωt (resp.{x ∈ B(x0, r] : φ(x, t) ≤ 0} ⊂ F c
t ),

(v) for all s ∈ [t, t + h], {x ∈ ∂B(x0, r] : φ(x, s) ≥ 0} ⊂ Ωs (resp.{x ∈ ∂B(x0, r] : φ(x, s) ≤
0} ⊂ F c

s ),

then we have

{x ∈ B(x0, r] : φ(x, s) > 0} ⊂ Ωs, (resp.{x ∈ B(x0, r] : φ(x, s) < 0} ⊂ F c
s , )



for everys ∈ (t, t+ h).

A family (Ωt)t∈(0,T ) of open subsets ofRn is called ageneralized flowwith normal velocity−F
if (Ωt)t∈(0,T ) is a superflow and(Ωt)t∈(0,T ) is a subflow.

We now state and prove the analogous result of Theorem 2.2.2.

Theorem 4.2.13. (i)Let (Ωt)t∈(0,T ) be a family of open subsets ofRn such that the setΩ :=
⋃

t∈(0,T )

Ωt × {t} is open inRn × [0, T ]. Then (Ωt)t∈(0,T ) is a generalized superflow with

normal velocity−F , with F defined as in (4.40), if and only if the functionχ = 1Ω − 1Ωc is

a viscosity supersolution of (4.39).

(ii) Let (Ft)t∈(0,T ) be a family of close subsets ofRn such that the setF :=
⋃

t∈(0,T )

Ft×{t} is closed

in Rn × [0, T ]. Then(Ft)t∈(0,T ) is a generalized subflow with normal velocity−F , with F as

in (4.40), if and only if the functionχ = 1F − 1Fc is a viscosity subsolution of (4.39).

Proof. As the proof of Theorem 2.2.2 also this one follows the ideas in [5]. Here we point out the

main changes in the superflow/supersolution case. Since thenew Definition 4.2.12 of generalized

superflow restricts the set of the test functionφ the proof that(Ωt)t∈(0,T ) is a a generalized superflow

whenχ is a viscosity supersolution of the equation in (4.39) follows immediately from Theorem

2.2.2. Conversely, we assume that(Ωt)t∈(0,T ) is a generalized superflow and we show thatχ is a

supersolution of the equation (4.39) inRn × (0, T ). As in the proof of Theorem 2.2.2 we consider

a point(x, t) ∈ Rn × (0, T ) and a functionφ ∈ C∞(Rn × [0, T ]) so that(x, t) is a strict local

minimum point ofχ− φ andφ(x, t) = 0 and we show that

∂φ

∂t
(x, t) + F ∗(x,Dφ(x, t), D2φ(x, t)) ≥ 0. (4.61)

When(x, t) is in the interior of either{χ = 1} or {χ = −1} thenχ is constant in a neighborhood of

(x, t) and therefore∂tφ(x, t) = 0,Dφ(x, t) = 0 andD2φ(x, t) ≤ 0. SinceF satisfies the ellipticity

condition in (2.5) and

F ∗(x, 0, 0) = F∗(x, 0, 0) = 0

the inequality in (4.61) is true. Assume that(x, t) ∈ ∂{χ = 1} ∩ ∂{χ = −1}. Thus, by the lower

semicontinuity ofχ, χ(x, t) = −1. We suppose by contradiction that there exists anα > 0 so that

we have
∂φ

∂t
(x, t) + F ∗(x,Dφ(x, t), D2φ(x, t)) < −α.

As in Theorem 2.2.2 we can findr, h > 0 such that for all(y, s) ∈ B(x, r]× [t− h, t+ h],

∂φ

∂t
(y, s) + F ∗(y,Dφ(y, s), D2φ(y, s)) < −α

2
. (4.62)



and

χ(x, t)− φ(x, t) = −1 < χ(y, s)− φ(y, s), (y, s) 6= (x, t). (4.63)

We consider the case|Dφ(x, t)| 6= 0 and we introduce the test functionφδ(y, s) := φ(y, s) +

δ(s− (t−h)), for 0 < δ ≪ 1. In the proof of Theorem 2.2.2 we showed thatφδ satisfies conditions

(i), (ii), (iv) and (v) in Definition 4.2.12. We want to show that also assumption (iii) holds. Indeed, if

|DHφ(x, t)| 6= 0, choosing smallerr andh, we may assume that|DHφ| 6= 0 inB(x, r]×[t−h, t+h].
On the contrary if|DHφ(x, t)| = 0 by Proposition 4.2.6 and Remark 4.2.7 we may also assume that

|D2
Hφ(x, t)| = 0 and, in general,|D2

Hφ(y, s)| = 0 whenever|DHφ(y, s)| = 0, (y, s) ∈ B(x, r] ×
[t − h, t + h]. Thusφδ satisfies also assumption (iii). By the Definition 4.2.12 of superflow this

yields

{y ∈ B(x, r] : φδ(y, s) > 0} ⊂ Ωs,

for everys ∈ (t−h, t+h). But, sinceφδ(x, t) = δh > 0, we getx ∈ Ωt, and this is a contradiction.

Now we turn to the case when| Dφ(x, t)| = 0. By Corollary 1.0.7 we have restricted the test

functions so that

∂2φ

∂xi
∂xj

(x, t) =
∂3φ

∂xi
∂xj

∂xk

(x, t) =
∂4φ

∂xi
∂xj

∂xk
∂xl

(x, t) = 0

holds for anyi, j, k, l ∈ {1, . . . , n}. To prove (4.61), we have to show that

∂φ

∂t
(x, t) ≥ 0.

Suppose by contradiction thata :=
∂φ

∂t
(x, t) < 0. We have

φ(y, s) = φ(x, t)
︸ ︷︷ ︸

=0

+
∂φ

∂t
(x, t)(s− t) + o(| s− t|+ | y − x|4) ass→ t, | y − x| → 0.

Thus, for allε > 0, there existr = rε, h = hε, h
′ = h′ε > 0 such that

h < −εr
2

a

and, for any(y, s) ∈ B(x, r]× [t− h, t+ h′]

φ(y, s) ≥ a(s− t) +
a

2
| s− t| − ε| y − x|4

=
a

2
(s− t) + a(s− t)+ − ε| y − x|4

≥ a

2
(s− t)− ε| y − x|4 + ah′.



Let dG be the distance function defined in (4.52). For any compact set K ⊂ Rn there exists a

positive constantCK > 0 so that

| x− y|
CK

≤ dG(x, y) ≤ CK | x− y|1/2,

for anyx, y ∈ K, (see, for example, Proposition 5.15.1 in [9]). Thus, if we putCr = (CB(x,r])
4, we

get
| x− y|4
Cr

≤ dG(x, y)
4 ≤ Cr| x− y|2

and

φ(y, s) ≥ a

2
(s− t)− εCrdG(x, y)

4 + ah′

for any(y, s) ∈ B(x, r]× [t− h, t + h′]. By (4.63) we can takeβ > 0 such that

2β + φ(y, s)− 1 < χ(y, s)

for all (y, s) ∈ (B(x, r] × {t − h}) ∪ (∂B(x, r) × (t − h, t + h′)). By takingβ smaller we may

also supposeβ < εr4/2. We consider the functionψβ(y, s) = (a/2)(s − t) − εCrdG(x, y)
4 + β.

Since we can takeh′ smaller we assume from now on thath′ ≤ −β/a. Combining the last two

inequalities and the assumptions onβ, h, h′ andr we get

ψβ(y, s)− 1 < χ(y, s) (4.64)

for all (y, s) ∈ (B(x, r]×{t− h})∪ (∂B(x, r)× [t− h, t+ h′]). Thus, with a reasoning similar to

the one in Theorem 2.2.2, it is possible to prove thatψβ satisfies conditions (iv) and (v) in Definition

4.2.12. Furthermore we consider a fixeds ∈ [t− h, t + h′]. We haveψβ(x, s) = a(s− t)/2 + β ≥
ah′/2 + β > 0 and

ψβ(y, s) =
a

2
(s− t)− εCrdG(x, y)

4 + β ≤ a

2
(s− t)− ε| y − x|4 + β

≤ −ah
2

− εr4 + β ≤ −ah + εr4

2
≤ 0

for | y − x| = r. Thus the set{y ∈ B(x, r] : ψβ(y, s) = 0} is non empty. Lety ∈ B(x, r], we

computeDψβ(y, s),

Dψβ(y, s) = −εCr






4| yH − xH |2(yH − xH)− 2

n−m∑

i=1

(ym+i − xm+i − 〈B(i)xH , yH〉)B(i)xH

2(yV − xV − 〈BxH , yH〉).








Thus, since the matricesB(i) are skew-symmetric,Dψβ(y, s) = 0 if and only if y = x and therefore

|Dψβ(y, s)| 6= 0 for every(y, s) ∈ {B(x, r]× [t − h, t + h′] : ψβ(y, s) = 0}. This proves thatψβ

satisfies (ii) in Definition 4.2.12. Moreover it satisfies also (iii) since, by Lemma 4.2.5,

|DHψβ(y, s)| = 0 ⇔ yH = xH ⇔ |D2
Hψβ(y, s)| = 0.

It remains to prove that (i) holds. SincẽF ∗ is upper semicontinuous and̃F ∗(0, 0) = 0, we have that

∂ψβ

∂s
(y, s) + F̃ ∗(Xψβ(y, s), X

2ψβ(y, s)) =
a

2
+ F̃ ∗(−εCrXydG(x, y)

4,−εCrX
2
ydG(x, y)

4) < 0.

for (y, s) ∈ B(x, r]× [t− h, t+ h′] andε small enough.

Thus, since(Ωt)t∈(0,T ) is a generalized superflow, we have

{y ∈ B(x, r] : ψβ(y, s) > 0} ∈ Ωs

for any s ∈ (t − h, t + h′). But againψβ(x, t) = β > 0, and this meansx ∈ Ωt, which is a

contradiction.

We are now ready to prove Theorem 4.2.11.

Proof. As in the proof of Theorem 3.3.1 we define two families of open sets ofRn (Ω1
t )t∈[0,T )

and (Ω2
t )t∈[0,T ) as in (2.14), (2.15), (2.17), withaε = a = m−, bε = b = m+ and τ = 1. By

the maximum principlem− ≤ uε ≤ m+. The proof will be divided into the three usual steps,

initialization, propagation and conclusion.

First step: initialization.In this first part we want to show that

Ω+
o = {do > 0} ⊆ Ω1

o, Ω−
o = {do < 0} ⊆ Ω2

o.

For the proof of the first inclusion (the proof of the second isvery similar) we consider a point̂x

such thatdo(x̂) > 0, i.e. g(x̂) > mo. By the continuity ofg we can find anr, σ > 0 such that

g(x) ≥ mo + 4σ, for anyx ∈ B(x̂, r). This means that

uε(x, 0) = g(x) ≥ (mo + 4σ)1B(x̂,r)(x) +m−1B(x̂,r)c(x). (4.65)

We consider the same functionΦ : Rn × [0, T ] → R defined (4.30) and we state the analogous of

Lemma 4.1.3 and Lemma 4.1.4.

Lemma 4.2.14.Under the same assumptions of Theorem 4.2.11 we have that foranyβ > 0 there



existτ = τ(β) > 0 andε̄ = ε̄(β) > 0 such that, for all0 < ε ≤ ε̄, we have

uε(x, tε) ≥ (m+ − βε)1{Φ(·,0)≥β}(x) +m−1{Φ(·,0)<β}(x), x ∈ Rn,

wheretε = τε2| lg ε|.

Lemma 4.2.15.There exist̄h = h̄(r, x̂), β̄ = β̄(r, x̂) > 0 independent ofε such that ifβ ≤ β̄ and

ε ≤ ε̄(β) ∧ 1, then there exists a subsolutionωε,β of (4.38-i) inRn × (0, h̄) that satisfies

ωε,β(x, 0) ≤ (m+ − βε)1{Φ(·,0)≥β}(x) +m−1{Φ(·,0)<β}(x), x ∈ Rn.

If moreover(x, t) ∈ B(x̂, r)× (0, h̄) andΦ(x, t) > 3β, then

lim inf
ε→0+

∗
ωε,β(x, t)−m+

ε
≥ −3β.

Proof of Lemma4.2.14. Let β > 0 fixed. To prove our thesis we have to modify the functionf .

Consider a smooth cut-offρ ∈ C∞
0 such that0 ≤ ρ ≤ 1 in R, ρ(s) = 1 if |s| ≤ 1 andρ(s) = 0

if |s| ≥ 2; moreoverρ satisfies−2 ≤ sρ′(s) ≤ 0 and|ρ′′(s)| ≤ 4 for all s ∈ R. Now define two

smooth functionsρ1, ρ2 : R → [0, 1] as

ρ1(q) = ρ
(q −mo − σ/2

σ/2

)

ρ2(q) = ρ
(q −mo − σ/2

σ/4

)

and set

f̄(q) = (1− ρ1(q))f(q) + ρ1(q)f(q − σ/2)

and

f̃ ε(q) = (1− ρ2(q))f̄(q) + ρ2(q)
σ
2
+mo − q

| lg ε| .

Notice thatf̃ ε satisfies properties similar to those off with zeroes{m−, mo+σ/2, m+}. Moreover

f ≤ f̃ ε.

1. If we denote byχ = χ(τ, ξ) ∈ C2([0,+∞)× Rn) the solution of

{

χ̇(τ, ξ) + f̃ ε(χ(τ, ξ)) = 0, τ > 0,

χ(0, ξ) = ξ,

it follows thatχ satisfies property (χ1) (stated in the proof of Lemma 4.1.4), while properties (χ2)

and (χ3) are replaced by the following ones:



there existsτo = τo(β, σ), εo = εo(β, σ) > 0 such that, for allτ ≥ τo| lg ε| andε ≤ εo

χ(τ, ξ) ≥ m+ − βε ∀ ξ ≥ mo +
3

2
σ. (χ̃2)

Moreover for anyC ≥ max{|m−|, |m+|} we haveχ(τ, ξ) ∈ [−C,C] for all ξ ∈ [−C,C], τ ≥ 0.

Thus, for anyC ≥ max{|m−|, |m+|}, a > 0 there exists a constantMC,a > 0 such that

|χξξ(τ, ξ)| ≤
MC,a

ε
χξ(τ, ξ), (χ̃3)

for anyτ ≤ a| ln ε|, ξ ∈ [−C,C], i ∈ {1, 2, · · · , n} andε small enough.

2. Consider a smooth nondecreasing functionψ such thatψ(z) = m− if z ≤ 0 andψ(z) =

mo + 4σ if z ≥ β ∧ σ

2
. The functionuε defined by

uε(x, t) = χ
( t

ε2
, ψ(Φ(x, 0))− Kt

ε

)

is a subsolution of (4.38-i) inRn × (0, τoε
2| lg ε|) and it satisfiesuε(x, 0) ≤ uε(x, 0). In fact, since

f ≤ f̃ ε,

uεt − tr(D2
H,εu

ε) +
f(uε)

ε2
≤ χ̇+ f(χ)

ε2
+
χξ

ε
(−K +O(ε))

≤ χξ

ε
(−K +O(ε)) ≤ 0,

for ε small enough. Thus using the maximum principle and property(χ̃2) we can prove that

uε(x, tε) ≥ 1− βε if tε = τoε
2| lg ε| andΦ(x, 0) ≥ β (from which Lemma 4.2.14 follows).

Proof of Lemma4.2.15. As in Lemma 4.1.4 we have that there existγ, h̄ > 0 such that̄h < r2/C

and

DΦ(x, t) 6= 0, DH,εΦ(x, t) 6= 0,

for any (x, t) ∈ Qγ,h̄ = {|Φ(x, t)| ≤ γ, 0 ≤ t ≤ h̄}, ε > 0. We assume from now on that the

constantC that appears in the definition ofΦ in (4.30) satisfies

C ≥ 2(n+ 1) sup{
[
‖D2

HΦ(x, t)‖ + ‖ σt(x)D2Φ(x, t)‖ + ‖D(σt(x)DΦ(x, t))‖
+ ‖D2Φ(x, t)‖

]
, (x, t) ∈ Qγ,h̄ }, (4.66)

where‖ ·‖ denotes a matrix norm. We now construct a subsolution of (4.38-i).

1. For any(x, t) ∈ Qγ,h̄ we define a smooth functionvε(x, t) as

vε(x, t) = Q
(Φ(x, t)− 2β

ε
, x, t

)

+ ε
[

P
(Φ(x, t)− 2β

ε
, x, t

)

− 2β
]

,



with Q,P ∈ C2(R× Rn × [0,+∞);R) two suitable functions that we will choose later. If we put

vε inside (4.38-i) we obtain

vεt (x, t)− tr(D2
H,εv

ε(x, t)) +
f(vε(x, t))

ε2
=
Iε
ε2

+
IIε
ε

+ IIIε

where

Iε = −Q̈|DH,εΦ|2 + f(Q), (4.67)

IIε = Q̇
(
Φt − tr(D2

H,εΦ)
)
− 2〈DH,εQ̇,DH,εΦ〉 − P̈ |DH,εΦ|2 + f ′(Q)(P − 2β), (4.68)

and

IIIε = Qt − tr(D2
H,εQ) + ε[Pt − tr(D2

H,εP )] + Ṗ
(
Φt − tr(D2

H,εΦ)
)

− 2〈DH,εṖ , DH,εΦ〉+
‖ f ′′

|[m−,m+]‖∞
2

(P − 2β)2. (4.69)

If we set

Q(s, x, t) = q
( s

|DH,εΦ(x, t)|
)

(4.70)

whereq is the solution of the traveling wave equation (4.13) withc = 0, we obtain

Iε = 0,

IIε = IIε − 2βf ′(q(λ)),

with λ =
Φ(x, t)− 2β

ε|DH,εΦ(x, t)|
and

IIε =
q̇(λ)

|DH,εΦ|
(
Φt − tr(D2

H,εΦ)
)
− 2
(

q̈(λ)λ+ q̇(λ)
)

〈DH,εΦ, DH,ε

( 1

|DH,εΦ|
)
〉

− P̈ |DH,εΦ|2 + f ′(q(λ))P.

If we puts =
Φ(x, t)− 2β

ε
and

χ̃(s, x, t) =
(2q̈

(
s

|DH,εΦ(x,t)|

)
s

|DH,εΦ(x, t)|
+ q̇(

s

|DH,εΦ(x, t)|
)
)〈(D2

H,εΦ(x, t))DH,εΦ(x, t), DH,εΦ(x, t)〉
|DH,εΦ(x, t)|3

,



then

IIε =
q̇(λ)

|DH,εΦ(x, t)|
[

Φt(x, t)− tr(D2
H,εΦ(x, t)) +

〈D2
H,εΦ(x, t)DH,εΦ(x, t), DH,εΦ(x, t)〉

|DH,εΦ(x, t)|2
]

+

+ χ̃
(Φ(x, t)− 2β

ε
, x, t

)
− P̈ |DH,εΦ(x, t)|2 + f ′(q)P.

With a simple computation we can see that

∫ +∞

−∞

χ̃(s, x, t)q̇
( s

|DH,εΦ(x, t)|
)

ds = 0.

Therefore by (4.18) there exists a uniquep ∈ C2(R) so that−p̈ + f ′(q(
s

|DH,εΦ(x, t)|
))p =

−χ̃(s, x, t). We put

P (s, x, t) = p
( s

|DH,εΦ(x, t)|
)

insideIIε and we obtain, by assumption (4.66) onC,

IIε =
q̇(λ)

|DH,εΦ|
(

− C − tr(D2
H,εΦ) +

〈(D2
H,εΦ)DH,εΦ, DH,εΦ〉

|DH,εΦ|2
)

≤ q̇(λ)

|DH,εΦ|
(

− C + (n+ 1)‖D2
H,εΦ‖

)

≤ − Cq̇(λ)

2|DH,εΦ|
.

Furthermore with this choice ofQ andP , IIIε takes the form

IIIε = (q̇ + εṗ)s
( ∂

∂t

( 1

|DH,εΦ|
)

︸ ︷︷ ︸

=0

− tr(D2
H,ε

( 1

|DH,εΦ|
)

)
)

− (q̈ + εp̈)s2|DH,ε

( 1

|DH,εΦ|
)

|2

+
ṗ

|DH,εΦ|
(Φt−tr(D2

H,εΦ))−2
( p̈s

|DH,εΦ|
+ṗ
)

〈DH,ε

( 1

|DH,εΦ|
)

, DH,εΦ〉+
‖ f ′′

|[m−,m+]‖∞
2

(p−2β)2,

and then, using the same notations as those of Lemma 4.1.4 andproperties (4.14), (4.21) ofq andp,

IIIε ≤ (q̇ + ε| ṗ|)| s|
[tr((D2

H,εΦ)
2)

|DH,εΦ|3
+

tr(Aε(x)⌊D2(DH,εΦ)⌋)
|DH,εΦ|2

+
tr(⌊σt(x)Dσt(x)D(DH,εΦ)⌋)

|DH,εΦ|2
]

+2| q̈ + εp̈|s2
‖D2

H,εΦ‖2
|DH,εΦ|4

+
ṗ

|DH,εΦ|
(Φt − tr(D2

H,εΦ)) + 2
( | p̈|| s|
|DH,εΦ|

+ ṗ
)‖D2

H,εΦ‖
|DH,εΦ|

+O(1)

≤ O
( 1

|DH,εΦ|3
+

1

|DH,εΦ|2
+

1

|DH,εΦ|
)

+O(1) = O
( 1

|DH,εΦ|3
)

+O(1)

≤ O
(
ε−3k

)
+O(1).



Therefore, sincek < 1/3,

vεt − tr(D2
H,εv

ε) +
f(vε)

ε2
=
Iε
ε2

+
IIε
ε

+ IIIε

≤ 1

ε

[

− C

2

q̇(λ)

|DH,εΦ|
− 2βf ′(q(λ))

]

+O
(
ε−3k

)
+O(1)

=
1

ε

[

− C

2

q̇(λ)

|DH,εΦ|
− 2βf ′(q(λ)) + oε(1)

]

.

To prove thatvε is a subsolution of (4.38-i) inQγ,h̄ it remains to see that the right hand side of

the inequality above is non positive. As in Lemma 4.1.4 we recall thatf ′(m±) > 0 andq(r) → m±

if r → ±∞; letM > 0 be a positive constant so that

f ′(q(r)) ≥ d

2
, for any|r| ≥M.

Therefore, if
|Φ− 2β|
ε|DH,εΦ|

≥M , we have that

vεt (x, t)− tr(D2
H,εv

ε(x, t)) +
f(vε(x, t))

ε2
≤ 1

ε

[

− βd+ oε(1)
]

< −βd
2ε

for ε small enough. If on the contrary
|Φ− 2β|
ε|DH,εΦ|

< M and we denote withK a strictly positive

constant (which depends byM) so thatq̇(r) ≥ K for any |r| ≤ M , we get that there exists a

µ = µ(β), 0 < µ ≤ βd/2 so that, forβ small compared toK,

vεt − tr(D2
H,εv

ε) +
f(vε)

ε2
≤ 1

ε
[− CK

2|DH,εΦ|
+ 2β‖ f ′

|[m−,m+]‖+ oε(1)]

≤ 1

ε
[−2µ(β) + oε(1)] ≤ −µ

ε
.

for smallε.

2. Once we have proved thatvε is a strict subsolution of (4.38-i) inQγ,h̄ we define, for each

(x, t) ∈ {(x, t) ∈ Rn × [0, h̄] : Φ(x, t) ≤ γ},

v̄ε(x, t) =

{

sup(vε(x, t), m−) if −γ < Φ(x, t) ≤ γ,

m− if Φ(x, t) ≤ −γ.

We prove that̄vε is a continuous viscosity subsolution of equation (4.38-i)in {(x, t) ∈ Rn × [0, h̄] :

Φ(x, t) ≤ γ}, for ε sufficiently small. This in obvious in the set{|Φ| ≤ γ} sincev̄ε is the supremum

of two subsolutions. Consider a point(x, t) such thatΦ(x, t) ≤ −γ/2; by properties (4.14) and



(4.20) we have that

vε(x, t) ≤ m− + ae
− b(γ+4β)

2ε| DH,εΦ| + ε(oε(1)− 2β) ≤ m−

for smallε and thus̄vε(x, t) = m−. Thereforēvε is a subsolution of (4.38-i) in{(x, t) ∈ Rn×[0, h̄] :

Φ(x, t) ≤ γ}.

3. Finally we can define our functionωε,β : Rn × [0, h̄] → R as

ωε,β(x, t) =

{

ψ(Φ(x, t))v̄ε(x, t) + (1− ψ(Φ(x, t)))(m+ − βε) if Φ(x, t) < γ,

m+ − βε if Φ(x, t) ≥ γ,

whereψ : R → R is a smooth function such thatψ′ ≤ 0 in R, ψ = 1 in (−∞, γ/2], 0 < ψ < 1 in

(γ/2, 3γ/4) andψ = 0 in [3γ/4,+∞). The only subset ofRn × (0, h̄) in which we have to check

thatωε,β is a subsolution of (4.38-i) is{(x, t) ∈ Rn × (0, h̄) : γ/2 ≤ Φ(x, t) ≤ 3γ/4}. We have

ωε,β
t − tr(D2

H,εω
ε,β) +

f(ωε,β)

ε2
= [ψ′(Φt − tr(D2

H,εΦ))− ψ′′|DH,εΦ|2](v̄ε − (m+ − βε))

+ ψ(v̄εt − tr(D2
H,εv̄

ε))− 2ψ′〈DH,εΦ, DH,εv̄
ε〉+ f(ωε,β)

ε2
(4.71)

If we take2β < γ/4 we haveΦ(x, t)−2β > γ/4 andvε(x, t) ≥ m+−ae
−bγ

4ε| DH,εΦ| + ε(oε(1)−2β);

thus, for smallε, v̄ε(x, t) = vε(x, t) andvε(x, t) − (m+ − βε) ≤ ε(oε(1) − β) ≤ 0. Moreover

by (4.5) f is convex in a neighborhood ofm+ andf(ωε,β) ≤ ψf(vε) + (1 − ψ)f(m+ − βε). The

equality (4.71) thus becomes

ωε,β
t − tr(D2

H,εω
ε,β) +

f(ωε,β)

ε2
≤ [ψ′(−C − tr(D2

H,εΦ))− ψ′′|DH,εΦ|2](vε − (m+ − βε))

−ψµ
ε
− 2ψ′〈DH,εΦ, DH,εv

ε〉+ (1− ψ)
f(m+ − βε)

ε2

≤ −ψµ
ε
+ (1− ψ)

f(m+ − βε)

ε2

−ψ′′|DH,εΦ|2(vε − (m+ − βε))− 2ψ′〈DH,εΦ, DH,εv
ε〉

= −ψµ
ε
+ (1− ψ)

f(m+ − βε)

ε2
+O(1) +O(εk−1).

Finally we observe that forε small and by assumption (4.5) onf ,

f(m+ − βε)

ε2
=
f(m+ − βε)− f(m+)

ε2
≤ −dβ

ε
< 0.

Thus

ωε,β
t − tr(D2

H,εω
ε,β) +

f(ωε,β)

ε2
≤ 1

ε
[−ψµ − (1− ψ)dβ +O(ε+ εk)] < 0



for ε small enough.

4. Now we want to examineωε,β(·, 0). To this end we first observe that, by (4.20), there exists a

c̄ > 0 such that, if| u| ≥ c̄, then

| p(u)| ≤ β;

in particular if(x, t) ∈ Qγ,h̄ is such that| Φ(x, t)− 2β| ≥ c̄ε|DH,εΦ(x, t)|, then

vε(x, t) ≤ q
( Φ(x, t)− 2β

ε|DH,εΦ(x, t)|
)

− βε ≤ m+ − βε. (4.72)

We consider the case| Φ(x, t) − 2β| ≤ c̄ε| DH,εΦ(x, t)|, (x, t) ∈ Qγ,h̄. Let ν(c̄) > 0 be a positive

constant so that, for any| u| ≤ c̄,

q(u) ≤ m+ − ν(c̄).

Therefore, forε small enough,

vε(x, t) ≤ m+ − ν(c̄) + ε(‖ p‖∞ − 2β) ≤ m+ − 2βε. (4.73)

Combining the estimates in (4.72) and (4.73) forvε we can conclude thatωε,β(x, t) ≤ m+ − βε for

any(x, t) ∈ Rn × [0, h̄] and in particular fort = 0. If we also assume thatε is such that

sup
(x,t)∈Qγ,h̄

c̄ε|DH,εΦ(x, t)| ≤ β,

we get that for any(x, t) ∈ Qγ,h̄ so thatΦ(x, t) < β it holdsΦ(x, t)−2β < −β ≤ −c̄ε|DH,εΦ(x, t)|
and

vε(x, t) ≤ q
( −β
ε|DH,εΦ(x, t)|

)

− βε ≤ m− + ae
− bβ

ε| DH,εΦ| − βε ≤ m−.

Therefore ifΦ(x, t) < β thenv̄ε(x, t) = m− and, since we have assumedβ < γ/8,ωε,β(x, t) = m−.

We conclude that

ωε,β(x, t) ≤ (m+ − βε)1{Φ≥β}(x, t) +m−1{Φ<β}(x, t),

for any(x, t) ∈ Rn × [0, h̄], and in particular fort = 0.

5. Finally we just remark that, with a reasoning similar to the one in point 4., one can prove that

if (x, t) ∈ B(x̂, r)× (0, h̄), γ ≥ Φ(x, t) > 3β, andε is so small to havēcε max
B(x̂,r)

|DH,εΦ| ≤ β, then

vε(x, t) ≥ q(
β

ε|DH,εΦ|
)− 3βε ≥ m+ − ae

− bβ
ε| DH,εΦ| − 3βε.



Hencelim inf
ε→0+

∗
ωε,β(x, t)−m+

ε
≥ −3β for any(x, t) ∈ B(x̂, r)× (0, h̄) with Φ(x, t) > 3β.

Second step: propagation.In this step we show that(Ω1
t )t∈(0,T ) and((Ω2

t )
c)t∈(0,T ) are respec-

tively super and subflow with normal velocity−F with F defined as in (4.40). Since the two proofs

are similar we only show that(Ω1
t )t∈(0,T ) is a superflow. Letx0 ∈ Rn, t ∈ (0, T ), r > 0, h > 0 so

that t + h < T . Suppose thatφ : Rn × [0, T ] → R is a smooth function such that, for a suitable

C̃ > 0,

(i) φt(x, s) + F ∗(x,Dφ(x, s), D2φ(x, s)) ≤ −C̃ < 0, for all (x, s) ∈ B(x0, r]× [t, t+ h],

(ii) for any s ∈ [t, t + h], {x ∈ B(x0, r] : φ(x, s) = 0} 6= ∅ and

|Dφ(x, s)| 6= 0 on{(x, s) ∈ B(x0, r]× [t, t + h] : φ(x, s) = 0},

(iii) if there exists(x, s) ∈ B(x0, r] × [t, t + h] so that| DHφ(x, s)| = 0, then it holds also

|D2
Hφ(x, s)| = 0,

(iv) {x ∈ B(x0, r] : φ(x, t) ≥ 0} ⊂ Ω1
t ,

(v) for all s ∈ [t, t + h], {x ∈ ∂B(x0, r] : φ(x, s) ≥ 0} ⊂ Ω1
s.

We have to show that for everys ∈ (t, t+ h),

{x ∈ B(x0, r] : φ(x, s) > 0} ⊂ Ω1
s.

Using the assumptions and the definition of(Ω1
t )t∈(0,T ) this is equivalent to prove that for allx ∈

B(x0, r), s ∈ (t, t+ h) such thatφ(x, s) > 0, we have

lim inf
ε→0+

∗

(uε(y, τ)−m+

ε

)

≥ 0 (4.74)

for (y, τ) in a neighborhood of(x, s). As in Theorem 3.1.1 to prove this result it is enough to prove

the following lemma.

Lemma 4.2.16.Let φ be a smooth function as above. There existsβ̄ small enough such that, if

β ≤ β̄ andε ≤ ε̄(β) then there is a viscosity subsolutionωε,β of (4.38-i) inB(x0, r) × (t, t + h)

that satisfies,

1. ωε,β(x, t) ≤ (m+ − βε)1{φ(·,t)≥β}(x) +m−1{φ(·,t)<β}(x), for all x ∈ B(x0, r],

2. ωε,β(x, s) ≤ (m+−βε)1{φ(·,s)≥β}(x)+m−1{φ(·,s)<β}(x), for all x ∈ ∂B(x0, r], s ∈ [t, t+h]

3. if (x, s) ∈ B(x0, r]× [t, t+ h] satisfiesφ(x, s) > 3β, then

lim inf
ε→0+

∗
ωε,β(x, s)−m+

ε
≥ −3β.



Proof of Lemma 4.2.16.This proof is similar to the one of Lemma 4.2.15 and we just point out the

main changes. First of all we observe that sinceφ satisfies property (ii) above we have that there

existsγ > 0 such that|Dφ(x, s)| 6= 0 in the setQγ = {(x, s) ∈ B(x0, r]× [t, t+h] : |φ(x, s)| ≤ γ}.

Obviously this also means|DH,εφ(x, s)| 6= 0 for any(x, s) ∈ Qγ , ε > 0. As in Lemma 4.2.15 we

construct our subsolution by steps and to do this we first define a functionvε in Qγ as

vε(x, s) = Q
(φ(x, s)− 2β

ε
, x, s

)

+ ε
[

P
(φ(x, s)− 2β

ε
, x, s

)

− 2β
]

.

Let (x, s) ∈ Qγ . With the usual computations it turns out that

vεt (x, s)− tr(D2
H,εv

ε(x, s)) +
f(vε(x, s))

ε2
=
Iε
ε2

+
IIε
ε

+ IIIε,

whereIε, IIε, IIIε are exactly the same terms defined in (4.67), (4.68) and (4.69) with the function

Φ replaced byφ. We put

Q(a, x, s) = q
( a

|DH,εφ(x, s)|
)

,

P (a, x, s) = p
( a

|DH,εφ(x, s)|
)

in (4.67), (4.68) and we getIε = q̈(λ) + f(q(λ)) = 0 and

IIε = IIε − 2βf ′(q(λ))

=
q̇(λ)

|DH,εφ|
(

φt − tr(D2
H,εφ) +

〈(D2
H,εφ)DH,εφ,DH,εφ〉

|DH,εφ|2
)

− 2βf ′(q(λ)),

with λ =
φ(x, s)− 2β

ε|DH,εφ(x, s)|
. By property (i) ofφ, φt ≤ −C̃ − F ∗(x,Dφ,D2φ) and thus

IIε=
q̇(λ)

|DH,εφ|
(

φt−tr(Aε(x)D2φ+σt(x)Dσt(x)Dφ)+
〈(D2

H,εφ)DH,εφ,DH,εφ〉
|DH,εφ|2

)

≤ q̇(λ)

|DH,εφ|
(

−C̃−〈(D2
Hφ)

DHφ

|DHφ|
,
DHφ

|DHφ|
〉∗−ε2k tr(D2φ)+

〈(D2
H,εφ)DH,εφ,DH,εφ〉

|DH,εφ|2
)

(4.75)

Since

〈(D2
H,εφ)DH,εφ,DH,εφ〉

|DH,εφ|2
=

〈(D2
Hφ)DHφ,DHφ〉
|DH,εφ|2

+ 2ε2k
〈(σt(x)D2φ)Dφ,DHφ〉

|DH,εφ|2

+ε2k
〈(Dσt(x)Dφ)DHφ,Dφ〉

|DH,εφ|2
+ ε4k

〈(D2φ)Dφ,Dφ〉
|DH,εφ|2

≤ 〈(D2
Hφ)DHφ,DHφ〉
|DH,εφ|2

+εk‖ σt(x)D2φ‖+εk‖Dσt(x)Dφ‖+ε2k‖D2φ‖
︸ ︷︷ ︸

oε(1)



the inequality in (4.75) becomes

IIε ≤
q̇(λ)

|DH,εφ|
(

− C̃ − 〈(D2
Hφ)

DHφ

|DHφ|
,
DHφ

|DHφ|
〉∗ + 〈(D2

Hφ)DHφ,DHφ〉
|DH,εφ|2

+ oε(1)
)

(4.76)

whereDHφ,DH,εφ andD2
Hφ are computed in(x, s).

We first consider the case|DHφ(x, s)| = 0. By assumption (iii) onφ we have|D2
Hφ(x, s)| = 0.

Thus we obtain

IIε ≤
q̇(λ)

|DH,εφ|
(
− C̃ + oε(1)

)
≤ − C̃q̇(λ)

2|DH,εφ|
for ε small enough.

If |DHφ(x, t)| 6= 0 the inequality in (4.76) becomes

IIε ≤ q̇(λ)

|DH,εφ|
(

− C̃ + 〈(D2
Hφ)DHφ,DHφ〉

( 1

|DH,εφ|2
− 1

|DHφ|2
)
+ oε(1)

)

=
q̇(λ)

|DH,εφ|
(

− C̃ − 〈(D2
Hφ)DHφ,DHφ〉

ε2k|Dφ|2
|DHφ|2|DH,εφ|2

+ oε(1)
)

≤ q̇(λ)

|DH,εφ|
(

− C̃ + ‖D2
Hφ‖

ε2k|Dφ|2
|DH,εφ|2

+ oε(1)
)

(4.77)

To conclude also in this case that, forε small enough,IIε ≤ − C̃q̇

2|DH,εφ|
we have to prove that

‖D2
Hφ(x, s)‖

ε2k|Dφ(x, s)|2
|DH,εφ(x, s)|2

= ‖D2
Hφ(x, s)‖

ε2k|Dφ(x, s)|2
|DHφ(x, s)|2 + ε2k|Dφ(x, s)|2 = oε(1). (4.78)

To do this we distinguish two cases. If|DHφ(x, s)|2 > εk we get

‖D2
Hφ(x, s)‖

ε2k|Dφ(x, s)|2
|DH,εφ(x, s)|2

< εk‖D2
Hφ(x, s)‖|Dφ(x, s)|2 = O(εk).

On the contrary if|DHφ(x, s)|2 ≤ εk we observe that

‖D2
Hφ(x, s)‖

ε2k|Dφ(x, s)|2
|DH,εφ(x, s)|2

≤ ‖D2
Hφ(x, s)‖

≤ sup{‖D2
Hφ(x, s)‖ : (x, s) ∈ Qγ, |DHφ(x, s)|2 ≤ εk}

To get (4.78) also in this case it remains to prove that the right hand side of this last inequality goes

to zero asε→ 0+. This immediately follows using the following Lemma and property (iii) of φ.

Lemma 4.2.17.Let K ⊂ Rn and f, g : K → [0,+∞) be a compact set and two continuous



functions such that

if f(x) = 0 for somex ∈ K, theng(x) = 0.

Then, it holds

lim
ε→0+

sup
x∈K

{g(x) : f(x) ≤ ε} = 0

Proof. We suppose by contradiction that there exists ac > 0 such that for anyε > 0 there exists

xε = xε(c) ∈ K so that

g(xε) ≥ c and f(xε) ≤ ε. (4.79)

SinceK is compact there exists a subsequencexεn so thatxεn → x̂ ∈ K for somex̂ ∈ K. Passing

to the limit asε→ 0+ in (4.79) we obtain the contradictiong(x̂) ≥ c > 0 andf(x̂) = 0.

Thus we have proved that

IIε ≤ − C̃q̇(λ)

2|DH,εφ(x, s)|
for any(x, s) ∈ Qγ and forε small enough. As far it concerns the terms inIIIε one can prove, with

exactly the same reasoning of Lemma 4.1.5, that

IIIε = O
(

1 +
1

|DH,εφ|3
)

= O(ε−3k).

As in the proof of Lemma 4.1.5 the only difference with the analogous result in step one is that now

we can’t claim that the termQt andPt are null. Anyway by (4.14), (4.21),

Qt + εPt = −(q̇(λ) + εṗ(λ))a
DH,εφ ·DH,εφt

|DH,εφ|3

≤
( | q̇(λ)|| a|
|DH,εφ|2

+
| ṗ(λ)|| φ− 2β|

|DH,εφ|2
)
|DH,εφt| = O

( 1

|DH,εφ|
+

1

|DH,εφ|2
)

= O(ε−2k),

with, as usual,λ =
a

|DH,εφ(x, s)|
=

φ(x, s)− 2β

ε|DH,εφ(x, s)|
.

To conclude, since0 < k < 1/3, we get

vεt (x, s)− tr(D2
H,εv

ε(x, s)) +
f(vε(x, s))

ε2
≤ 1

ε

[

− C̃q̇(λ)

2|DH,εφ|
− 2βf ′(q(λ))

]

+O(ε−3k)

=
1

ε

[

− C̃q̇(λ)

2|DH,εφ|
− 2βf ′(q(λ)) + oε(1)

]

.

With the same reasoning in Lemma 4.2.15 one can see that the right hand side of this last inequality

is non negative for any(x, s) ∈ Qγ andε small enough.



The proof of the extension ofvε to a global subsolution of (4.38-i)ωε,β in B(xo, r] × [t, t + h]

and the proof that such a function satisfies 1, 2, 3, is similarto that of Lemma 4.2.15 and we omit

it.

Once we have proved the first two steps (initialization and propagation of the front) the proof of

Theorem 4.2.11 follows immediately using Corollary 2.2.3.
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