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Abstract

In this thesis we discuss the asymptotic behavior of thetismis of scaled reaction-diffusion equa-
tions in the unbounded domaRr® x (0 + o), in the cases when such a behavior is described in
terms of moving interfaces.

As first class of asymptotic problems we consider the sindutat of bistable reaction-diffusion
equations in the case when the velocity of the traveling veanetion depends on the space variable,
i.e. ¢ = f(x), and it satisfies, in some suitable sens¢s”™ — a, ase — 0%, wherea is a
discontinuous function andis an integer that can be equaltor 1.

The second part of the thesis concerns semilinear readiffusion equations with diffusion
term of typetr(A. (x) D*u.), wheretr denotes the trace operater, = 0.0’ for some matrix map
0. : R" — R™ (™) and A, converges to a degenerate matrix.

In order to establish such results rigorously, we modify aiapt to our problems the "geometric
approach” introduced by G. Barles and P. E. Souganidis ftwirgp problems inR", and then
partially revisited by G. Barles and F. Da Lio for reactioifftcsion equations in bounded domains.
When it is possible we always consider the question of thépesledness of the Cauchy problems
governing the motion of the fronts that describe the asytigstave consider.

Sommario

In questa tesi discutiamo il comportamento asintoticoedgtiluzioni di equazioni di reazione-
diffusione nel dominio illimitatdR™ x (0, +oc) nei casi in cui tale comportamento sia descritto da
un’interfaccia in movimento.

Come primo tipo di problemi asintotici consideriamo il [imsingolare di equazioni di reazione-
diffusione bistabili nel caso in cui la velocita dell’ongeggiante dipenda dalla variabile di stato,
cioec® = ¢°(z), e sia soddisfatto, al tendereada zero e in qualche modo opporturd/c™ — «,
laddoven € una funzione discontinuasee un intero che puo essere uguale@al.

La seconda parte della tesi riguarda equazioni di reaziiffiesione semilineari e aventi termini
di diffusione del tipatr( A, (z)D?u.), laddovetr denota I'operatore traccial, = o.0! per qualche
funzioneo, : R® — R™(™+") e A_ converge ad una matrice degenere.

Al fine di provare tali risultati in modo rigoroso, abbiamo dificato e adattato "I'approccio
geometrico” introdotto da G. Barles e P. E. Souganidis maivere problemi irR™ e in seguito
parzialmente rivisto dallo stesso G. Barles assieme a F.iDpdr equazioni di reazione-diffusione
in domini limitati. Laddove possibile abbiamo sempre cdesito la questione della buona po-
sizione dei problemi di Cauchy che governano il moto deitirohe descrivono le asintotiche da
noi considerate.
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Introduction

Interfacial phenomena are commonplace in physics, chgnastd biology. They occur whenever
a continuum is present that can exists in at least two diftecemical or physical "states”, and
there is some mechanism that generates or enforces a sggieahtion between these states. The
separation boundary is what we calliaterface.

Some examples of physical processes where we can obsenyerteetion of an interface are:

¢ the so callegbhase transitionthat occurs whenever there is a double-well potential the¢sl
a substance into one of two possible phases, such as soiiiat; |

¢ theelectrophoresis phenomenunthat is the motion of ions in a fluid under the influence of
an electric fields;

e in the combustion phenomenatwo different temperatures establish two different zomes i
the flame profile: the preheat zone, where the temperatusgvisthough so that no chemical
reaction has yet occurred and the burned zone where the gastamed its final state.

In mathematics interfaces appear in the study of the asytropimits of evolving systems, like
reaction-diffusion equations whose solution, often aorder parameteris expected to approach
for large times the equilibria of the system. When there isartban one equilibrium, interfaces
separate regions where the parameter tends to the diffegeriibria, called phases for instance in
phase transition models.

To fix the ideas assume we have a smooth state variabl&inction of space and time depending
also on a small parameter> 0,

uf(x,t) = u(z,t;e), zeR"te|0,+00).
Typically »° is the solution of a semilinear reaction-diffusion equatio

u; + £5(uf,z) =0



satisfying an initial condition
u(z,0) = g(x),

whereg is a continuous bounded function. If such a solutidrexists for anye > 0 one can try
to look at the behavior of the familf:*). ase — 0. A famous example of semilinear reaction-
diffusion equation is the so calledlen-Cahn equation

uj (z,t) — Au®(x,t) + W =0, (x,t) €R" x(0,+00), (1)

where the reaction terryi is the derivative of a double well potenti#ll, f = TW’. In particular
f : R — Ris a cubic function with zeroes._ < m < m., with structure conditions modeled on
the following main example

fla) =2(q — m-)(q — mo)(q — my4). (2)
It is known in the literature that, if the wells & have the same depth, i.e.
W(my) = W(m-),

and the initial conditiory represents a sharp interface across the unstable equnitibrj, then the
asymptotics is governed by the mean curvature equation

{ () wlz,t) —tr [(1— @Ziﬁ’z' ® ‘gz((xx”?)‘)D%(x,t)] —0, in R"x (0, +00),
(i) u(x,0) =uy(z), in R",

3)
where the initial condition:, € C(R") is chosen in such a way that the initial frang = {z €
R™ : u,(z) =0} = {x € R" : g(x) = mo} is a nonempty and closed set (ideally an hypersurface).
Moreoveru,(x) > 0 (resp.u,(x) < 0) if g(z) > mq (resp.g(x) < my). Indeed one proves that the
convergence occurs locally uniformly off the moving froetermined by (3) to the stable equilibria

of the reaction-diffusion equation, namely

my  ifu(z,t) >0,
m_ if u(z,t) <0,

u(z,t) — {

whereu is the solution of (3). Equivalently we have that the asyriptoehavior of the solutions
u® of the Cauchy problem for the Allen-Cahn equation is desctiby moving interfaces— T,
with I'; = {z : u(x,t) = 0}.

Equation (1) was proposed by Allen and Cahn [1] as a phassitian model for a moving



interface with normal velocity being the mean curvaturehef front. The first formal study of the
asymptotics of the Allen-Cahn equation is by Fife [28], Cedp [11], [12] and Keller Rubinstein
and Sternberg [35]. In [16] Chen gives a rigorous local iretipnoof of the generation and propaga-
tion of a smooth interface in (1) under the assumption thetiban curvature motion is smooth. The
first rigorous and global in time proof of the asymptotics, aesuming particular conditions on the
regularity of the mean curvature motion, is due to Evanseand Souganidis in [26]. A general
study of the asymptotics of equations of the form (1) fordda nonlinearities and the propagation
of interfaces was done by Barles, Soner and Souganidis f8dan the theory of weak front evo-
lutions. The application of these methods to study the asytiegbehavior of FitzHugh-Nagumo
type systems can be found in the paper of Soravia and Soug§id. The particular case of the
asymptotics of the Allen-Cahn equation has been the obfemtem more study. For an exhaustive
treatment of the argument we refer to the work of Sougan#li$ Wwhere the author also presents
three different approaches to the study of the limiting beédraof the solutions of (1). Finally we
observe that the mean curvature equation in (3) is a queailiparabolic degenerate equation with
a singularity forDu = 0. To be solved globally in time, the Cauchy problem (3) hasdaoreant

in the sense of viscosity solutions, see Chen, Giga and G8foof Evans and Spruck [27], and it
turns out that it has a unique continuous solutioa C(R" x [0, +o0)) for anyu, € C(R").

The study of front propagation is a classical problem andaiit lose formulated in the following
way. Let(), be an open subset &", study the evolution of the interfaces— I'; moving with
normal velocity

V =v(Dn(x),n(x),z,t) 4)

and starting at timeé = 0 from I’y = 0€),. Interfaces with normal velocity as in (4) satisfy mono-
tonicity property, i.e., loosely speaking, if two fronts wirog with velocity as in (4) are separated at
some time, then they remain separated.

The mainissues of interface dynamics as in (4) are the deredat of singularities in finite time,
independently of the smoothness of the initial surfBgeClassical examples in this directions are
the evolutions by mean curvature of "bar-bells” and "tonr’'IR”. To overcome this geometric
difficulty and interpret the evolution past the singulastit was necessary to develop some weak
(generalized) notions of evolving fronts. In [41] Sougassummarizes some different approaches
to the problem and shows that they turn out to be equivaleatwitere is no-fattening phenomenon,
i.e when the interfac€, has empty interior for any > 0.

An equivalent way to formulate problem (4) is the so-callkedel set approachif « : R™ x
[0, 4+00) — Ris afunction such that, for arty> 0, 2, = {z : u(x,t) > 0}, I = {z : u(z,t) = 0},
and|Du(z,t)| # 0 for anyz € T, then problem (4) becomes

wy(z,t) + F(x,t, Du(z,t), D*u(z,t)) = 0 (5)



where the functiort’ is related tal” by,

1 PRp
Fla,t,p,X) = ~|plo(— (1 -

_ : )X,—ﬂ,x,t), X €8, paeR", te(0,4+00).
| Ip| |

Geometric equations, as for example equation (5), arecpdatipde’s in which one can observe that
if u is a solution of (5) and : R — R is smooth and increasing, then algf.) is a solution of (5).
As a consequence, it is easy to see thaf iindu? are two initial conditions such that

{2 uj(z) = 0} = {x : ul(x) = 0},
andu', «? are the solutions of the corresponding Cauchy problem fioitlign one has
{z:u(2,t) =0} =T, = {x: u*(x,t) = 0},

forall t > 0. One can therefordefinethe family of closed setd;), to be the geometric flow of the
front or interfacel’, with normal velocity—F'. In general, a geometric flow describes the motion
of fronts with prescribed normal velocity, possibly depiagdipon position, time, normal direction
and principal curvatures. It is easy to realize that thesgame exibit many interesting qualitative
properties, for instance they may develop singularitibange topology or become extinct in finite
time, and one needs to define a weak front propagation viasitycsolutions in order to have a
well defined flow globally in time. The level set approach wasppsed by Osher and Sethian
[36] for numerical computations of solutions of geometiguiations of type (5) while the rigorous
theory started with the work by Evans and Spruck [27] for theamcurvature flow and by Chen
Giga and Goto [18] for more general geometric flows. For ththeraatical analysis of the level set
method via viscosity solutions, the reader is referred édoibok by Giga [31], where the approach is
discussed in detail. Among others, one of the most strikpdieations of the theory of weak front
propagation is the fact that it allows to rigorously deterenthe asymptotics of reaction-diffusion
equations and systems which model phase transitions. Btanice, we described above that the
Allen-Cahn equation (1) as— 0 gives rise to an interface moving according (3).

More recently Barles and Souganidis in [8], and subsequ8attles and Da Lio in [5], proposed
a new and more geometric approach to study singular limiiagrise to moving interfaces, which
allows to include in the analysis both the generation angaggation phenomena. The approach
is more flexible to describe geometric flows also in KPP-typsteans, equations with oscillating
coefficients, nonlocal terms or appearing in the study odrantting particle systems, see again
Souganidis [41] where the reader can find many more refeseridee approach in [8] is based on
a new definition of generalized propagation of frontdRify, which turns out to be equivalent to
the level set approach when there is no fattening phenomemahleads to a general method for



establishing the asymptotic limit of a large class of reactliffusion equations. Since a family of
moving hypersurfaced’;), separates, at arty> 0, two open and disjoint subsetsf, the idea of
Barles and Souganidis is to consider the evolution of opesets ofR” instead oft — T, itself.
This can be done through a "local monotonicity test”. Roygleaking, the localized monotonicity
property claims that, ifQ)sc(a.p), (27)se(p are two families of open subsets evolving with the
same normal velocity and if, for some> 0 andt € (a, b),

Qf N B(x,r) C N B(x,r),
and if, for allt < s < b, we have
QLN oB(x,r) Cc Q*NOB(x, 1),

then,
QN B(z,r) C N B(zx,r) foranys e [t,b).

The new definition of generalized propagation of fronts h&es the local monotonicity prop-
erty above to study the evolution of a family of open subsét®'bthrough the comparison with
smooth evolutions: roughly speaking one may say that a ja(ﬂf)se(avb) is a generalized flow
with normal velocity greater thaw if it satisfies the local monotonicity property when testedso
suitable class of familie@ﬂi)se(mb) evolving smoothly and with normal velocity less thén Since
a family of open subset?,),c.» has normal velocity smaller thaki if and only if the family
(£29)se(a,p) has normal velocity grater thanl”, a notion of generalized motion with normal velocity
smaller than/ can be defined analogously. The main issues of this new defirof generalized
propagation of fronts are that

1. itis enough to make the monotonicity test against famieopen subsets evolvirsgnoothly
2. the test can be domecally in space and only on small time intervals,

3. as said above, one can use families whose normal vels@tyaller or grater than the normal
velocity considered.

Barles and Souganidis use this new definition to study thenpsytics of reaction-diffusion
equations. They revisit with their new approach the resnlf26] and [7] about the limiting behav-
ior of the solution of the Allen-Cahn equation (1) and theggant some new results regarding the
asymptotics of semilinear reaction-diffusion equatiogeagction-diffusion equations with oscillating
coefficients and nonlocal fully nonlinear integral-di#f@tial equations. In [5] Barles and Da Lio
slightly modify the definition in [8] to study the asymptobehavior of the solution of semilinear
and quasilinear Allen-Cahn equations wjth ¢)-dependent cubic functiofiin a bounded domain



with Neumann boundary conditions. The proofs in [5] extelmel idea in [8] to define a family
of open subset&;),c(.» and to prove that they move with a certain normal velocitgsthopen
subsets are, roughly speaking, the interiors of the setsanheonverges to the stable equilibria of
the equation with an(c") rate of convergence, wheredepends on the problem.

In our thesis we study two families of reaction-diffusionuatjons. Chapter 3 is about the
singular limit of bistable reaction-diffusion equatiomsthe case when the velocity of the traveling
wave solution=® depends on the space variabland satisfies the following

6 ~
Cg(f) T a(z), locally uniformly off an hypersurfacé C R"”, (6)
e—
whereq is only piecewise continuous with discontinuity $eandr is an integer that can be equal
only to 0 or 1. To be more precise we assume thatR" — [p, +o0) is a bounded measurable
function which is piecewise continuous across an orierleded hypersurfadeé ¢ R” and satisfies

{ni1(x)} if c?(x) <0,
a(xz) € ¢ {ny(x)} if c%(x) > 0,
[n1(2), na(2)]if d(2) =0,

whered is the signed distance function frafrandn; andn. are two bounded and locally Lipschitz
continuous functions such that(x) < nq(z), for all z € R". The reaction-diffusion equations we
consider in Chapter 3 are

uf (w,t) — eAu(z,t) + e f(uf,2) =0,  InR"™ x (0, +00) (7)
and the nonlinear Allen-Cahn equation
ul (m,t) — Auf(z,t) + e 2f5(uf,2) =0 inR™ x (0, +00) (8)

wheref® : R x R" — R is of bistable type, with structure conditions modeled am fibllowing
main example

g =2(s - D)2 1) ©

with —1 < ¢“(z)/2 < 1. In both cases we ask the functiaiisto satisfy a Cauchy condition at time

Zero, i.e.
u(z,0) = g(z), (10)

whereg is a continuous real function which takes values in the a1, 1]. As it regards”®,
we will assume that it satisfies assumption (6) wite- 0 when we study the limit behavior of the



solutions of the equation (7) and= 1 when we consider (8).

We will show that the family:® of the solutions of (7) converges to the stable equilibrigodff
the evolving interface which moves with normal velocityr and is determined by the geometric
equation

(11)

{ w(z,t) + a(x)|Du(z, 1) = 0, (x,t) € R" x (0, +00),
u(z,0) = uo(x), =x€R",

once we initialize it by setting, in the case (9),

a*éx) < glx) < a*(x)

Io={xeR":u,(x) =0} ={r e R":

wherea,, o indicate the lower and upper semicontinuous envelopes céspectively. Moreover
a(z) a(z)

uo(x) > 0 (resp.u,(z) < 0)if g(x) > —~ (resp.g(z) < —x). We notice thal’, may contain

2
relatively open subsets of the hypersurface of discortymfi « where a*éx) < g(z) < a (9:).

The initial front that controls the convergence of the dohs of reaction-diffusion equation (7)
to the stable equilibria moves in this case with a velocityiolhis discontinuous in space. In
geometric optics, discontinuous coefficient the propagation equation (11) arise in the refraction
phenomenon ant/« is then the discontinuous refraction index.

The main steps to apply the new definition of generalized ggapon of fronts in [8] and [5]
to the study of the asymptotics of our problems are the falgw(i) prove the well-posedness of
the Cauchy problem that governs the motion of the moving sypéace describing the limiting
behavior of theu®’s; (ii) define two collections of open subsetsRf (2!)co.r) and (22)sco.1)
so thatu®(z, s) converges ton_ if € Q! and tom . if x € Q2; (iii) find suitable traces of these
families at time zero{2; and(23, and prove tha{u, > 0} C Q and{u, < 0} C Q2; (iv) prove
that(Q!)sco) (respectively(Q?)sco.r) ) moves (according the new definition above) with normal
velocity smaller (resp. greater) than the velocity of tranfrthat describes the limiting behavior of
theu®’s.

The novelty of our study is that the functians only piecewise continuous. In our master thesis
[21] and then in [22] we proved that the problem (11) is welked, and a comparison principle
holds for viscosity solutions as defined by Ishii [33] whehas constant sign and is piecewise con-
tinuous across an hypersurface. Actually in [21], [22] wesider the well-posedness of the Cauchy
problem for noncoercive and more general Hamilton-Jacqbagons. The particular equation in
(11) is coercive and a uniqueness result for it was also pusly proved by Camilli [14].

When « is piecewise continuous and we study the asymptotics of @hawve to allow the
sequence’ to converge tav only almost everywhere off the hypersurface. Moreover threns of
the gradients and of the Laplaciafi$)c® ||, and||Ac® ||, may blow up ag — 0. We have to link
the blow up rate of Dc?|| (respectively| Ac®|| ) to the parameterand require that it is not faster




thane~%/2 (resp.c™!). A further difficulty is to prove that a family of open (resglose) subsets of
R" is a generalized superflow (resp. subflow) with a discontisumwrmal velocityy. To do this we
have to approximate the definition of super- and subflow bggisuitable families of continuous
velocities and we construct these families starting froenstmooth functions®’s.

With similar methods we prove that, whefi/s — « locally uniformly off T', the limiting
behavior of the solutions of the Allen-Cahn equation (8)séging (10) gives rise to an interface
moving with normal velocityC — «, whereK indicates the mean curvature of the interface, i.e.
according to the geometric equation

w(x,t) + a(z)|Du(x, t)| + F(Du(z,t), Dzu(x, t)) =0, (z,t) €R" x (0,+00), (12)
u(z,0) = u,(x), xeR",
whereF : R" x 8" — R is defined as
p p
Fip,X)=—tr | (71— 2 o 2 )x]. 13
7. X) r[( | p| \pl) } 13)

In this second case the front is initialized in the standaag oy the initial front
[, ={zeR":uy(z) =0} ={z e R": g(x) =0}

and choosing the initial condition, € C'(R") such thatu,(x) > 0, (respectivelyu,(z) < 0) if
and only ifg(xz) > 0 (resp.g(xz) < 0). A comparison principle for (12) when is only piecewise
continuous does not yet appear in the literature and we ptavd heorem 3.3.8 under some par-
ticular assumptions on the seof discontinuity ofe. For exampld has to be the global graph of a
Lipschitz continuous function with Lipschitz constant dimathan1/p. In the comparison result in
Theorem 3.3.8 we ask the subsolutiofor to the supersolution) to be continuous along a suitable
directionn transversal td". This assumption turns out to be crucial in the proof of ouediiem and
recovers the ideas used by Soravia in his works about theieneass of viscosity solutions for some
kinds of discontinuous Hamilton-Jacobi equations (seg [33], [39] and the references therein).
The existence of a continuous solution of (12) remains am qggeblem. We try to solve it with
Perron’s method but we obtain only an upper semicontinu@eosity solution of (12).

In [8], [5] the authors study the asymptotics of solution#hte initial-value problem for a semi-
linear reaction-diffusion equations of type

{ ul (z,t) — tr(A(z)D*uf (2, 1)) + e 2 f(u(2,t)) =0 (x,t) € R" x (0, +00), (14)

u®(z,0) =g(x) xzeR"



whereA(-) is a matrix map that takes values in the space ofitlven symmetric matrices such that
A(x)p-p > pl pl,

for somey > 0 and for anyz,p € R". Barles, Souganidis (and then Barles and Da Lio for
the same problem in a bounded open set with Neumann boundadjtion) proved that, when

c = 2my — m4 —m_ = 0, the asymptotics of the solutions of (14)as+ 0" is described by the
the following Cauchy problem

{ (i) w+ G(z,Du, D*u) =0 (15)

(i) wu(z,0) =uy(x),

where the functiont : R” x R” x 8™ — R is defined as

_ ’ ’ o'(x)p _ o'(x)p

G(z,p, X) = — tr(A(z)X) + tr ((A(x)X +0'(2) D @)p) s O o (x)p‘)
ando : R" — S” is the square root matrix of, i.e. A(z) = o(z)o'(z), for anyx € R™. SinceA
is positive definite the quadratic fori (z)~'¢, ¢) is a Riemannian tensgrand the set of vector
fields {¢(z),i = 1,...,n} spansR" for anyz € R". We observe that the equation in (15-i)
differs from the mean curvature equation in the megrfor the term— tr(o*(x) Do’ (z)p). In the
last chapter of this thesis we look for the right reactioffiudion equation that gives rise to a front
moving according to the mean curvature equation in a sub&mmian metric. Indeed we assume
that the matrix ma (-) takes values in the space of the< m real matricesyn < n, and thus at
any pointz € R” the matrixA(x) = o(x)o' () is only semi-positive definite. If we define, for any
x € R™ and for any: > 0, a matrix

o.(z) = [o(x) sk]n} e Rxmtn)
wherek > 0 and/,, denotes the. x n identity matrix, we have that the matrix map
A, =o.0t

£

is a Riemannian approximation of. We prove that, under some particular assumptions on the
matrix o, the asymptotic behavior of the solutions of the semilimeaction-diffusion equation

u(x,t) — tr(A(x) D*uf (2, t) + o.(2) Do (x) Duf(z,t)) + e 2 f(u(x, 1)) =0,  (16)

satisfying the initial condition (10), is governed by théwgmn of the Cauchy problem for the mean



curvature equation in the sub-Riemannian me#ric

_ o'(x)Du o'(z)Du _
D © Tompa)) =% an

(i) wg—tr ((A(x)D2u + o' (z) Do (x) Du) (I
(i) wu(z,0) = up(z).

A crucial property in the theory of the mean curvature equma(3-i) is the correspondence
between the points where this equation degenerates, thasetof the gradient and of the Hessian
matrix of suitable powers of the Euclidean norm. To be moeeige, if| z| denotes the standard
Euclidean norm| z| = (2% + x% + - - - + 2%)"/2, then

D(|z|*)=0 ifandonlyif D?*(jz|*)=0 ifandonlyif z=0.

Since equation (17-i) becomes degenerate in a set biggerthieaone of (3-i), we have to use a
different norm. If then vector fieldsX; = ¢V - V. ..., X,, = ¢™ .V, generate a Carnot group of
step twoGG = (R", o, 4, ), whereo is a composition law o™ and{d, } » is a family of dilatations,
then there exists an homogeneous noomG defined as

lelle = [ zal' +2v]",  @=(eu,av) €ER™ xR*™
If we put N(z) = || z||¢, we have that the functiolV satisfies a crucial property, in fact we have
| XN(x)| =0 ifandonlyif | X?N(x)|=0 ifandonlyif z; =0. (18)

In other wordg| - || plays ing the role that the Euclidean norm has in the Euclidean md®riaperty
(18) is crucial since it allows us to restrict the family o$téunctions in the definition of viscosity
solution. To be more precise we have that; i a viscosity subsolution of (17) andc C*(R" x
(0,400)) is a test function so that — ¢ has a maximum iz, ), then there are two possibilities,
either Xp(x,t) # 0, or Xp(x,t) = 0 and X?p(z,t) = 0. This new characterization of the
test functions for viscosity solutions allows us to use tkistence and uniqueness result for (17)
obtained by Capogna and Citti in [15] in the framework of Qar@roups and for some particular
initial datau,. The definition of weak solution they use is the sub-ellipi@logous of the viscosity
solution in the formulation stated by Evans and Spruck ir}.[RYthe Euclidean case it is clear that
the definition of viscosity solution formulated in [27] ideed the same of Crandall, Ishii and Lions

we callhomogeneous noran the Carnot groug, every continuous functiodi : G — [0, oo) such that
1. d(6x(x)) = Ad(z) for everyA > 0 andz € G;
2. d(z) =0iff z = 0.



(see [20]). In the sub-elliptic case this is not obvious. lafter 4 we use norih-||¢ to prove it
for Carnot Groups of step two. We just point out that in [25irDDragoni and von Renesse exhibit
another existence result for (17), in particular they shioat the value function of suitable family
of stochastic control problems is a viscosity solution af)(1

As it regards the study of the asymptotic behavior of thetsmiuwf (16), our proof of the gen-
eration of the front that describes the asymptotics of (1&ka& without any particular assumption
on the matrixo, i.e. on the sub-Riemannian metgc For the proof of the propagation of such
a front we need to restrict again to Carnot groups of step tworder to use property (18). As
we said before Barles, Souganidis and Da Lio in their pa@jrgg] defined a family of open sets
(€2)sec(0,m) to be a generalized flow with normal velocity if it satisfies a (local in space and time)
monotonicity tesagainst families of open subsets evolving smoothly withmadrvelocity smaller
or bigger than-F'. We use agaifj || and its property (18) to modify the definition of generalized
flow when we consider ak the function

o'(x)p _ o'(x)p
Fla,p, X) = — tr ((A@)X + 0'(2) D' (2)p) (I - ol © 1ol ). @)
In our definition we avoid the monotonicity test against fiasiof open subsets where the velocity
—F becomes degenerate.
In Chapter 4 we also consider the asymptotic behavior of theien of a semilinear reaction-
diffusion equation with a rescaling different from the on€16). In fact at the beginning of Chapter
4 we consider the asymptoticsas+ 0 of the solutions of the Cauchy problems for the equations

ui(x,t) — e tr(A () D*us(z,t) + o (2)' Do (z) Duf (x,t)) + e f(u (2, 1)) = 0 (20)

and we prove that, when = 2mg — m, — m_ # 0, it is described by the evolutional eikonal
equation
ug(z,t) + c| o (x) Du(x,t)| = 0. (21)

In the study of this asymptotics we succeed in the proof ofethitére result without assuming any
particular condition on the matrix. Obviously the front evolving according to the equation)(21
can have some points in which the standard Euclidean normal vector is well-defibet it is
orthogonal to the vector fields") (), ..., o™ (z). We are able to prove our result also in these
points by choosing the exponénthat appears in the definition ef in a suitable way.

The thesis is organized as follows. In Chapter 1 we recalti#fmition of viscosity solution as
defined in [20] and we give the proof of some results that wihtout to be useful later. A complete
treatment of the subject can be found in the User’s guidedfd]in the book of Bardi and Capuzzo
Dolcetta [3]. Chapter 2 is a collection of definitions andutesabout front propagation. We talk



about the level-set approach to the problem (see also thie dfoBiga [31]) and the geometrical
approach introduced by Barles and Souganidis in [8] and teeovered and partially revisited by
Barles and Da Lio in [5]. See also [41]. Chapter 3 and 4 are thdyzt of a joint work of the
author and her advisor Soravia. In Chapter 3 we treat bistaalction-diffusion equations when
the velocity of the traveling wave solutiafi depends on the space variable ahdr, - € {0, 1},
converges in a suitable sense to a discontinuous functiomed¥er we consider the well-posedness
of the geometric equation that describes the asymptotiabehof these equations. These results
can be found in [22], [23], [24]. Finally Chapter 4 is aboug fimiting behavior of two particular
semilinear reaction-diffusion equations withdependent diffusion term that gives rise to some
interesting pde’s in the framework of sub-Riemannian ggom®n the contents of this last section
two papers are in preparation.



Chapter 1
Viscosity Solutions

In this preliminary chapter we just want to present the dediniof viscosity solution together
with some classic results that we will use in the followingpters. For a complete treatise of the
argument we remand to [19] and [20].

We consider parabolic equations of the form

wy(z,t) + F(z, Du(z,t), D*u(z,t)) = 0, (1.1)

whereF' : R" x R" x §" — R andS" is the set of symmetriaz x n matrices. One of the
main virtues of this theory is that it allows also to discantus functions to be solutions of fully
nonlinear equations of second order.

We recall that a functiorf : R" — R is upper semicontinuougfor any pointz € R" ande > 0
there exist$ > 0 such that

fly) < fla) +e,

forall y € [x — §,z + 0]. Similarly, f is lower semicontinuout for any pointz € R" ande > 0
there exist$ > 0 such that

fly) = f(x) —«,

forally € [x — 6,z + J].
If f:R" — Risageneric discontinuous function we definedupper semicontinuous envelope
of f
fr(z)=lim sup f(y)=inf sup f(y),

r—0t | y—z|<r >0 | y—z|<r

and thdower semicontinuous envelopé f

fe(z) = lim inf f(y) =sup inf f(y).

r—0t |y—z|<r r>0 |y—z|<r

15



Definition 1.0.1. (i) An upper semicontinuous functiom : R" x (0,+00) — R is aviscosity
subsolutiorof the equation (1.1) if and only if for every € C*(R" x (0, +00)) and for every local
maximum point(z, t) € R" x (0, +o0) of u — ¢, we have

¢i(z,t) + Fi(z, Dp(z,t), D*p(z,t)) < 0.

We call atest functiorat (x, t) for the subsolution.

(i) Similarly a lower semicontinuous function: R" x (0, +00) — R is aviscosity supersolution
of the equation (1.1) if and only if for every € C*(R" x (0, +oc)) and for every local minimum
point(z,t) € R" x (0, 400) of u — ¢, we have

¢i(x,t) + F*(z, Do(x,t), D*p(x,t)) > 0.

We callp atest functiomat (x, t) for the supersolution.
(i) A function u : R" x (0, +00) — R is aviscosity solutiorof the equation (1.1) if and only if*
is a viscosity subsolution of (1.1) and is a viscosity subsolution of (1.1)

Remark 1.0.2. Using a density argument it can be easily shown that an elgaivdefinition of
viscosity solution can be given by usiag®(R" x (0, 4+-00)) instead ofC?(R™ x (0, +o00)) as "test
function space”.

Sometimes itis useful to consider a fully nonlinear parabeduation like (1.1) only in bounded
time interval, i.e. we consider (1.1) IR" x (0,7") with 7" < +o0. In the following proposition we
show that any viscosity subsolution (resp. supersolutidrfl.1) inR™ x (0,7") can be extended
in a suitable way to a viscosity subsolution (supersolytmi(1.1) in R™ x (0,7]. The proof is
well-known in the literature, see for example [3].

Proposition 1.0.3.Let T € (0, +00), and2 C R" open. We consider a Borel measurable function
F:QxR"x8" — Rand we assume that(resp.v): Q2 x (0,7') — R is an upper semicontinuous
viscosity subsolution (resp. lower semicontinuous sugeti®n) of

w(e,t) + Fz, Du(z,t), D*u(z, ) =0, (a,t) € Q2 x (0,T), (1.2)
and that

w(z, T):= limsup wu(y,s) (respu(xz,T):= liminf wv(y,s)).
(y,8)—=(=,T7) (y,8)—=(2,77)

Thenu (resp.v) is a viscosity subsolution (resp. supersolution) of

uy(z,t) + F(z, Du(z,t), D*u(x,t)) =0, (z,t) € Qx (0,T]. (1.3)



Proof. We prove the result only for the subsolutien To do this we consider a pait:, 7") €
Q x {t = T} and a functionp € C*((0,T] x R™) such that#, T) is a strict local maximum for
Y :=u — p. Letr > 0 so that

v(z,T) > Y(x,t), forany(z,t) € B(z,r) x (T —r,T].

Let (z,,t,) be a maximum point of

1
v'(st) = ule ) = (9o )+ s ) nEN
in B(z,r] x [T —r,T[. We want to prove that
(T, tn) — (2,T). (1.4)

Up to some subsequende,,, t,) — (#,t) € B(&,7] x [T — r,T], and thus, to get (1.4) we have
to prove thaiz, T') = (%, ). Let's consider a sequence,, t,) € Q x [0, T) such that

(ZTn, ) — (2,7, w(Zp, t,) — u(z,T) (1.5)

and .

Since(z,, t,) € B(&,r] x [T — r, T[ for n big enough, we get

1

m < w(l’m tn)7

and then, by taking them sup asn — +oo,

W(#,T) < limsup (. t,) < 0(3, ).
Since(z,T) is a strict maximum point for in B(z,r] x [T — r,T] we immediately getz, T) =
(z,t). Therefore (1.4) is proved.
By the definition of subsolution we get

1 2
0 > SOt(xn,tn) + m + F*(%u D‘P(xm tn)u D @(xmtn))

> th(xna tn) + F*(:L'n, D‘P(xna tn)> D290(5L'm tn))7



and thus, by lettingg — +o0,

0o > liminf(apt(xn, tn) + Fu(xn, Dp(x,,t,), D2g0(xn, tn)))
n——+oo
> (2, T) + F.(2, Dp(2,T), D*p(2,T)).

O

Another important property of viscosity solutions is thecadled stability property i.e. the
construction of a limit subsolution (resp. supersolutifmn an arbitrary sequence of subsolutions
(resp. supersolutions) of approximate problems withowtcamtrol of the derivatives.

We recall that iff. : £ — R, EF C R" ande > 0 is a family of real functions, we can define the
lower weak limitat the point(z,¢) € E x (0,400) as

u(x,t) = liarg(i)rjf* us(z,t) = (y’s}ai)ril)(igtf’oﬂug(y, s)
= supinf{u.(y,s): |z —y|,|t —s| < 0,0 < e < 3},
5>0

and theupper weak limit

u(x,t) = limsup”® us(x,t) = limsup uc(y,s)
e+ (y,8,6)—(z,t,01)

:;ngsup{ug(y,s):|x—y|,|t—s| < 0,0 <e <4}
>

Obviouslyu is a lower semicontinuous function ands an upper semicontinuous function.
Again, the proof of the stability result stated in the nex@dtem, wher¥ is a continuous func-
tion, can be found also in the book of Bardi and Capuzzo Dtdél.

Theorem 1.0.4.Let ) C R" open andf, : R" x R" x 8" — R, ¢ > 0 be a family of continuous
function such that
F*(z,p, X) = limsup” F.(x,p, X),

e—0t

F.(z,p, X) = liminf, F.(z,p, X),
e—0t

for any (z,p, X) € R" x R" x §". We consider a family of functions. : R" x (0,4+00) — R,
e > 0 such that, for any compactutd C R" x (0, +oco) there exists a positive constafif such
that

s%p| us| < Cx, foranye > 0.

() If u. is an upper semicontinuous viscosity subsolution of

wy(z,t) + F.(z, Du(x,t), D*u(x,t)) =0, (z,t) € Q x (0, 4+00) 1.7)



for all ¢ > 0, then the upper weak limit is a viscosity subsolution of (1.1) 2 x (0, +o0);
(i) If u. is a lower semicontinuous viscosity supersolution of

wy(z,t) + F.(z, Du(x,t), D*u(x,t)) =0, (z,t) € Q x (0, 4+00)

for all e > 0, then the lower weak limit. is a viscosity supersolution of (1.1) f&a x (0, +c0).

Proof. (i) Let o € C*(Q2 x (0, +00)) and(x,t) € Q x (0, +00) be a local maximum point fat — .
It is not restrictive to assume that, ¢) is a strict local maximum point faf — ¢. Letr > 0 so that

ﬂ(‘%t) - @(xat) > ﬂ(ya S) - 30(1%3)7 | (y —z,t— S)| < Ty (y,s) 7é (l‘,t).

We want to prove that
oi(x,t) + F.(z, Do(z,t), D*¢o(z,t)) < 0. (1.8)

We defineB := B((z,t), r] and we divide the proof into two steps.

STeEP 1. There exists a sequence of poifits, t,,) € B ande,, — 0 so that(z,,, t,,) is @ maximum
point foru., — ¢ in B and(x,,t,) — (z,t), u., (x,, t,) — w(z,t).

To prove this first claim we considey — 07 and a sequence of points™, t™)) such that

(@™, t) = (1), ue, (@, 1) s a(e,t),  ifn— o

Let (z,,t,) be a maximum point for., — ¢ in B. Since(x,,t,) andu,, (z,,t,) are two bounded
sequences, we can extract two subsequences, that we sttiedeith indexn, such that

(Tn,tn) — (T,1) € B, ue, (T, t,) — s.
If we sendn — 400 iN e, (Zn, tn) — @(Zn, tn) > e, (2, ™) — o™ ™) we obtain
s —o(Z, 1) 2 u(x,t) — p(z,1).
By the definition ofu we gets < u(z,t) and so
u(z,t) — p(T,1) > s — p(7,t) > U, t) — p(,1).
Thus, sincdz, t) is the uniqgue maximum point far — ¢ in B we can conclude that:, t) = (z, t)

andu(z,t) = s = limu,, (xp, t,).
STEP 2. The inequality in (1.8) holds. Lét,,.t,) € B, ¢, — 07 be the sequences of Step 1. Since



u,, IS a viscosity subsolution of (1.7), with= ¢,,, we get

‘Pt(xna tn) + Fen(xm DSO(xm tn)a D290(35n> tn)) <0

and thus
0o > liminf (gpt(xn,tn) + F. (2, Dp(n, tn), D*o(2n, tn)))
n——+0o0
> o, (x,t) + F.(x, Do(x,t), D*p(x,t)).
(ii) The proof of this second statement is close to the firgt and we omit it. O

We now state and prove a nice proposition which allow us ttrictghe choice of the test
functions in Definition 1.0.1. The first formulation of thestat is given in [6] for the mean curvature
equation (3) and it is due to Barles and Georgelin. The samef pvorks also for more general
equation of type (1.1). Here we generalized the result ofedBaand Georgelin and we repeat the
proof they give in [6].

Proposition 1.0.5.Let F' : R" x R" x §™ — R be alocally bounded function so that for anyg R"
F*(z,0,0) = F,(z,0,0) = 0. (1.9)

Suppose moreover thdt satisfies theellipticity condition i.e. for any(z,¢) € R" x (0, +00),
peR"andX,Y € 8"
F(z,t,p,X) < F(z,t,p,Y), ifX>Y. (1.10)

An upper (respectively lower) semicontinuous functiois a viscosity subsolution (respectively
supersolution) of (1.1) if and only if for any € C*(R" x (0, +00)), if (x,t) € R" x (0, +00) is a
local maximum (respectively minimum) point far— ¢, one has

¢i(x,t) + Fu(z, Dp(x,t), D*¢(x,1)) <0 if Do(z,t) #0 (1.11)
and
¢y(x,t) <0 if De(x,t) =0andD?*¢(z,t) = 0, (1.12)

(respectively
¢u(z,t) + F*(z, Dd(x,t), D*¢(x,t)) > 0 if Dp(,t) #0
and

¢i(x,t) >0 if De(x,t) =0andD?*¢(z,t) = 0. (1.13)

Proof. We treat only the subsolution case since the other one is ledetypanalogous. Lei be an
upper semicontinuous function that satisfies (1.11) ark®j1 We want to show thatis a viscosity



subsolution of (1.1). Lep be aC?-function onR™ x (0, +-cc) and(z, t) be a strict local maximum
point ofu — ¢. The only difficultis whenD¢(x, t) = 0 andD?¢(z,t) # 0. In this case we consider

the function A
|z —y|

Ve, y,t) = — P(y, 1),

wheree > 0. Since(z, t) is a strict maximum point of — ¢, one can prove that there is a sequence
(7, ., t.) of local maximum points of, — v, converging to(z, z,t) ase — 07. We have in they
variable the classical properties of a local maximum point

4 Te —Ye)| Te — Ye 2
D¢(y€7te) = ( )8‘ | (114)
and
2 4| Te — y8|2 8(1‘5 - ya) ® (xa - ya)

Two cases now may occur.

If Dp(y.,t.) = 0 the equality in (1.14) implies that. = y.. If we fix y = y. the function
(z,t) — u(x,t) — (x,y., t) has a maximum ate., t.). Therefore, using that satisfies (1.12)
we get

Gt (Ye, =) < 0.

SinceD?*¢(y.,t.) > 0 and assumptions (1.9) and (1.10) Bnthis implies
(bt(yt?? t&) + F*(y€7 D(b(ytﬁ tE)? D2¢(y€7 tE)) S O
We conclude by letting — 0. Indeed we obtain

0 > harg(l)gf (¢t(ya> ta) + F*(ya, D¢(ya> ta)> D2¢(ya> ta)))
> ¢y(x,t) + Fi(x, Do(x,t), D*¢(x,1)).

On the contrary ifDé(y., t.) # 0 we observe thatz., t.) is a maximum point of

‘xe_y€‘4 _

(ZL’,t) — u(x,t) - ¢a(x>x - (xa - ya)vt) = u(x,t) - -

¢(l‘ - (xa - ya)a t)
and using (1.11), we obtain
¢t(y€7t€) + F*([Ea, D¢(y£7t€)v D2¢(y87t8)) S 0

Again we conclude by letting — 07, O

Remark 1.0.6. From this last proposition it immediately follows that wenaastrict the family of



test functions in the definition of viscosity sub and supkertsan. Indeed ifF : R" x R" x 8" — R
is a locally bounded function that satisfies assumptiorsy éind (1.10) it is not restrictive to assume
in Definition 1.0.1 that, ifu (respectively) is an upper semicontinuous subsolution (resp. a lower
semicontinuous supersolution) of equation (1.1) and C*(R" x (0, +00) is a test function for
(resp. forv) at the point(z, ¢), then

Dy(z,t) =0,

implies
D*p(x,t) = 0.

Moreover by looking at the proof of Proposition 1.0.5 we alieghat we can also assume that, if
Dy(x,t) = 0thenDyp(y, s) # 0 forany(y, s) # (z,t).

With some simple modifications of the proof of Propositiod.%.we obtain the following Corol-
lary in which we further restrict the possibility of choicerftest functions in Definition 1.0.1.

Corollary 1.0.7. Let k£ be a fixed natural number arid : R" x R" x 8" — R a locally bounded
function that satisfies assumptions (1.9) and (1.10). lbts@strictive to assume in Definition 1.0.1
that, if u (respectivelyv) is an upper semicontinuous subsolution (resp. a lower@tinuous
supersolution) of equation (1.1) apde C*(R™ x (0, +00)) is a test function for (resp. forv) at
the point(z, t), then

Dy(z,t) =0,
implies
De(y, s) # 0, whenevefy, s) # (z,1),
and
Or, o(x,t) = Oy, Oy p(w,1) = -+ =0y, O, - .&Bikap(x,t) =0,

foranyiy, ..., ir € {1,...,n}.

Proof. To get this Corollary one has to repeat the proof of Propmsili.0.5 with the function).

defined as
‘ T — y|k’+l
@ba(x,y,t) = —+ ¢(y7t)
if kis odd, or
‘ T — y|k’+2

Ve(2,y,t) = +¢(y, 1)

if kis even. O



Chapter 2
Front Propagation

In this chapter we briefly talk about the evolution of inteda (for example fronts or surfaces). For
a summary about the argument we remand also to the work ofabadig [41] and the references
therein.

We start with the formulation of the problem. LB{ be a generical interface at tinte> 0,
we suppose thdt; is the topological boundary of an open subseR6f(2,, i.e. I', = 0Q2; C R".
Assume moreover that, for any pointe R", the exterior normal vectati(z) at 2, in = is well
defined and that evolves with normal velocity

V =v(x,t,n(x), Dn(x))

wherev is a continuous function of its argument.
A classical problem to study is the following one. L@t be an open subset &", study the
evolution of the interfaces—— I'; moving with normal velocity

V =v(z,t, Dn(z),n(z)) (2.1)

and starting at time = 0 from I'y = 0€2.

As we mentioned in the Introduction one of the main problefisterface dynamics as in (2.1)
is the development of singularities in finite time, indepemtly of the smoothness of the initial
surfacel’y. To interpret the evolution past the singularities it isessary to use some weak notions
of evolving fronts. In this chapter we present two differapproaches to the problem above. These
approaches turn out to be equivalent when the interfadeas empty interior for any > 0 (no-
fattening phenomengn
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2.1 The classical level set approach

We start with the so called level set approach. This approalith is based on viscosity solutions,
was first developed independently by Evans and Spruck ind@dJoy Chen, Giga and Goto in [18]
for more general geometric motions. These works were lateneded by Ishii and Souganidis in
[34] and by Goto in [32] for more general motion and more gehgritial surfaces, see also the
work of Barles, Soner and Souganidis in [7]. For a detailealyais of the approach we referred to
the book of Giga [31].

Problem (2.1) can be formulated in an equivalent way. Asstlmaethere exists a smooth func-
tionu : R" x [0, +00) — R such that

I''={zeR":u(z,t) =0}, Q={reR":u(z,t)>0} and Du#0onTl,

it can be easily seen that

:ﬁ, n:—‘g—z‘ and Dnz—ﬁ([—%)l}z
and so the equation (2.1) becomes
u, = F(x,t, Du, D*u) (2.2)
with F defined as
Fla.t.p. X) = plo(x., _|%|’ —“17'(1 _ pﬁf)x), (2.£,p, X) € R x (04 00) x R x S",

where S denote the space of the x n symmetric matrices. Obviously this means tiais
smooth ag with possible discontinuity gt = 0 and thatF' is geometric, i.e. it satisfies, for any
(x,t) € R" x (0,+00),p € R"andX € S,

F(x,t, \p,\X + pu(p®p)) = AF(x,t,p,X) forall A > 0andy € R.

In this formal reasoning we have derived equation (2.2) f(@m). In the so calledevel-set
approachone wants to solve the interface evolution equation (24iXisg at a giverl’y = 0€)
looking at the (viscosity) solutions of (2.2). To do this vede an auxiliary function, : R" — R,
at least continuous and such that

I'y = {ZE e R": UQ(IE) = 0}, QQ = {Ilf e R": UO(ZE') > 0}



The assumption that, is positive in{2, gives the orientation offy; in fact, with this choice ot
the normal unit vector td'y, outward tof), is given byn = Dug /| Duy|.
Once functionu, is chosen one solve (2.2) with initial datéz,0) = uo(x) and define for any
t>0,

I't={z e R" : u(z,t) = 0}, O ={z e R" : u(z,t) > 0}.

In order to consider the collection of pair;, §2;);>, as a kind of generalized solution of our evolu-
tion problem with initial datd Ty, €2) it is necessary to prove that, under some suitable hypotesis
(I';, ©¢)¢>0 depends only ofil’y, €29) and not on the particular functian.

In conclusion the main issues to follow the approach aboVdoeni

¢ the well-posedness of the Cauchy problem

{ wlz,t) = F(z,t, Du(z,t), D*u(z,t)), (z,t) € R" x (0, +00), 23)

u(z,0) = uy(x), z € R

e the uniqueness of thgeneralized evolutior(T';, ©;, )~ once(Ty, o, 25) is given.

The first issue will be developed under particular assumptmn /' in the next chapters. In this
section we want to treat the second topic, i.e. we want taudsevhetherl’; depends only o',
and not on the particular choice of the function The issue was settled in [7], [41] and in the book
of Giga [31]. We start with a rigorous definition.

Definition 2.1.1. Consider an open sé€1, € R". A collection of pair(I';, ;)0 is a level set
evolutionof (T', = 99,, 2,) with normal velocityl = v if there exists a viscosity solution of (2.2)
such that, for any > 0,

[y ={xeR":u(x,t) =0}, Q={xecR":u(zt) >0},

and
I'y=T,, Qo = Q,.

To prove that this is a good definition we will assume that tirecfion F* satisfies the following
assumptions.

(F1) Fis areal-valued, locally bounded function Bfi x (0, +00) x R" x §" and satisfying
F*(2,t,0,0) = Fy(x,t,0,0), forall (z,t) € R" x (0,4+00); (2.4)
(F2) F satisfies thellipticity condition i.e. for any(z,t) € R" x (0, +o00),p € R*andX,Y € "

F(a,t,p,X) < F(z,t,p,Y), if X >V, (2.5)



(F3) finally F' has to begeometrigi.e., as already said,
F(x,t, \p, \X + p(p®@p)) = A\F(x,t,p,X) forallA>0anducR (2.6)

for every(z,t) € R" x (0,+00), p € R"andX € S".
Moreover we suppose that a comparison result holds for {(Ba)s
if there exist two functions andv, respectively a viscosity sub- and super-solution of (2.2)

(CP) inR"™ x (0,7T) so thatu(z, 0) < v(x,0) foranyz € R", thenu(z, t) < v(x,t), for any
(x,t) € R" x [0,T].

We state a Proposition in which we claim thatFifis geometric, then equation (2.2) is invariant
by nondecreasing changes of variables 6(u).

Proposition 2.1.2. Assume that’ satisfies assumptiorfgl), (F2) and(F3) above and lef : R —
R be a continuous and nondecreasing function. i a viscosity subsolution (resp. supersolution)
thend(w) is also a viscosity subsolution (resp. supersolution).

Proof. We omit it. Anyway this proof can be found in [18]. 0

The invariance by nondecreasing changes of variable of geanequations is a crucial point
to prove the following theorem in which the uniqueness ofitlvel set evolution of a paiff’,, 2,)
becomes clear.

Theorem 2.1.3.Assume that the comparison principteR) holds for the equation (2.2). if and
v are two continuous solutions of the equation (2.2Rihx [0, +00) so that

{z :u(z,0) >0} = {z :v(z,0) > 0}, {z:u(x,0) <0} ={z:v(z,0) <0},

{z :u(z,0) =0} = {z : v(z,0) =0}
and

lim |u(z,0)[, lim |ov(z,0)] > 0.

| z]—+o0 | 2| =400
Then, for allt > 0,

{z:u(x,t) >0} ={z:v(z,t) >0}, {z:u(x,t) <0} ={z:v(z,t) <0},

and{z : u(z,t) =0} = {z : v(z,t) = 0}.

Proof. For the proof of this result we refer to [18] or to the book o§&{31].



The properties and the regularity of the level set evolutiame been the object of extensive
study. One of the more basic question is whether the soecktéening phenomenooccurs, i.e.

whether the seU I'; x {t} has an interior. We give a more precise definition.
t>0

Definition 2.1.4. Let (I';, Q;), be the level set evolution ¢f", = 99,,2,). We say that theo-
interior condition holds for(I';);> if

c{(z,t) :u(z,t) > 0} = {(z,t) : u(z,t) > 0} and

' (2.7)
int{(z,t) : u(x,t) > 0} = {(z,t) : u(x,t) > 0},

where u is a solution of the level set pde (2.2) null'jnand strictly positive irf2,,.

Clearly if the no-interior condition in (2.7) holds then thetU, ., (I'; x {t} ) has an empty interior
in R" x [0,400). In most examples it can be proved that this is equivalentdeethatl’, has an
empty interior inR" for any¢ > 0. From now on we always denote witl;, Q,"), the level set
evolution of(I',, ©2,). Moreover for any > 0 we putQ; =T, UQ,".

Theorem 2.1.5.Suppose that’ satisfies (2.4) and (2.6).

(i) The two functionsy(z,t) = L+, (2) — Lo-(2), x(2,1) = 1o+ (z) — Lo, (x) are viscosity
solutions of (2.2) associated respectively with the disicoious initial dataw, = 1o+ p, —

]lQ; andwo = ]lQ;L — ]IQJUFO'

(i) Suppose thaf, has an empty interior and that a comparison re€iit)(holds for the equation
(2.2). Then the Cauchy problem for (2.2) associated withrtiial dataw, = 1o+ — 1,- has
a unique discontinuous solution if and only if the no-indercondition (2.7) holds, and this
solution is given by the function

x(z,t) = ]lﬂj@) —1q- (). (2.8)

Remark 2.1.6. In the above statement, uniqueness of discontinuous spkiis meant in the sense
that v, w are locally boundedy(z,0) = w(z,0) = w,(x) andu,w are continuous atz,0) €
QF N Q) andu® = w*, u, = w, INR™ x [0, 400).

Proof. In [7, 41], Barles, Soner and Souganidis proves this reshdtn¥#’ is a function continuous
in R™ x (0,400) x R"\{0} x 8". Here we slightly modify their proof to obtain the result for
generic geometric functiof’ satisfying (2.4).

(i) The first statement of the theorem follows from the sigpf viscosity solutions which holds
for discontinuous equations as well (see Theorem 1.0.4)prdge that the functiory(z,) is a
solution of (2.2) associated with the initial datum = 1+ — 1, -, we consider the change of



variablesy(r) = tanh (r — \ﬁ) Since for every > 0 the functiony© in strictly increasing we
also have that everny (z, t) = ¢“(u(z, t)) is a continuous viscosity solution of (2.2) associated with
the initial datumy“(u,). Moreover we can easily see thgt(z,t) = limsup® u(z,t), x(z,t) =

e—0t

X, (z,t) = hgrﬂoi?f* u‘(z,t) and hence, by the stability property of viscosity sub/ssplettions,y is

a discontinuous viscosity solution of (2.2).

(i) Now we assume thalf, has empty interior. If the sdtu = 0} doesn't satisfy (2.7) by point
() we have thaty and x have different semicontinuous envelopes and are bothigotubf the
Cauchy problem. To deal with the other implication, assuméhe@ contrary that condition (2.7)
holds and lety as in (2.8). Then* = X, x. = x and so, by (i),x is a solution of (2.2). The
proof of uniqueness follows the argument in [7, 41] once weetessume that a comparison result
holds for the equation (2.2). Indeed:if is a discontinuous solution of (2.2) with discontinuous
initial conditionw, = 1o+ — 1, then by comparison principlel < w < 1inR" x [0, +-o0).
Consider now a family of increasing smooth functidns, },, such that-1 < ¢,, < 1, ¢,(r) =1

if - > 0 andinf¢,, = —1in (—o0,0). By the comparison principle, we obtain that for all
w < w* < Y, (u), whereu is the solution of (2.3) and thus = —1 in ;. Similarly one proves
thatw = 1in ©;” and we conclude by the no-interior condition. O

2.2 Generalized propagation of fronts

An equivalent way to study the evolution of a collection opbysurfaces is the so callgdneralized
propagation of frontgntroduced for the first time by Barles and Souganidis in$&f also [41], and
then reformulated (and partially revisited) by Barles aralllo in [5] for bounded domains with
Neumann boundary condition.

In this section we denote witf2,).co,r) a family of open subsets &" and we sef’, = 05,
for anyt > 0. The signed distance functiatiz, t) from x to I'; is defined by

d( t) d(..'lf, Ft) if € Qt7
x) - .
—d(z,T;) otherwise

whered(z,I';) denotes the usual non negative distance frore R" to I';. If I'; is a smooth
hypersurface, thed is a smooth function in a neighborhood Bf, and forz € T, n(x,t) =
—Dd(x,t) is the unit normal td"; pointing away from(2,. Again we assume that the functién
satisfies assumptiorig1), (F2) and(F3).

We recall here the definition of generalized flowRf but in the formulation given in [5].

Definition 2.2.1. Let F' be a real-valued, locally bounded function Bf x [0, +00) x R" x S".
A family (€)¢c(o,r) (resp. (Fi)iweo,r)) Of open (resp. close) subsets®f is called ageneralized



superflowm(resp. subflow with normal velocity— F'(x, t, Dd, D?d) if, for any z, € R™, t € (0,7,
r >0, h > 0sothatt + h < T and for any smooth function : R" x [0, 7] — R such that:

(i) 0¢(x,s)/0t + F*(x,s, Dp(x,s), D*¢(x,s)) < 0in B(zg,7] x [t,t + h] (resp.d¢(z, s)/0t +
F.(z,s,Do(x,5), D*¢(x,s)) > 01in B(xg, 7] X [t,t + h]),

(i) foranys € [t,t + h], {z € B(xg, 7] : ¢(z,s) =0} # (@ and

|Do(z,s)] #00on{(z,s) € B(xg,r] x [t,t+ h]: ¢(z,s) =0},

(iii)y {x € B(xo,r]: ¢(x,t) >0} C Q, (resp.{x € B(zo, 7] : ¢(x,t) <0} C Fy),

(iv) forall s € [t,t + h], {x € 0B(xg,r] : p(x,s) > 0} C Q, (resp.{x € OB(xo,7] : ¢(x,s) <
0} € F5),

then we have
{z € B(xo,r]: ¢(x,s) >0} CQ,, (resp.{z € B(zo,r|: ¢(x,s) <0} C FS,)

for everys € (t,t + h).
A family (€;).c0,7) Of open subsets dt" is called ageneralized flowvith normal velocity—F'
if (Q)ie(0.7) is a superflow an€, ), 7) is a subflow.

Remark. In smooth classical flows, if we change orientation, i.ewéf consider—d instead ofd
and we look at the motion d@f2;)c(o,r) instead o €2;).c (0,7, then we have to consider as prescribed
normal velocityV = —uv(xz,t, —n, —Dn) instead ofl” = v(z, ¢, n, Dn). This elementary fact still
holds in Definition 2.2.1. Indeed it can be easily shown (&, .1 is a generalized superflow
with normal velocity—F(x, t, Dd, D*d) if and only if (2)teo,r) is @ generalized subflow with
normal velocityF (z,t, —Dd, — D*d).

In the study of the evolution of a family of hypersurfacestie approaches described, the level
set approach and the notion of generalized sub- and supgitdillwout to be equivalent, as we claim
in the following results.

Theorem 2.2.2. (i) Let (€2;):c0,r) be a family of open subsets &' such that the se,
Q= U O x {t},is openinR™ x [0, 7. Then(£),co,r) is a generalized superflow with

te(0,7)
normal velocity— F' if and only if the functiony = 1, — 1. is a viscosity supersolution of

(2.2).



(i) Let(F)ic(o,r) be afamily of close subsets Bf' such that the sef := U F; x{t} is closed
te(0,T)
iNnR" x [0, T]. Then(F;)« (o) is @ generalized subflow with normal velocity if and only

if the function’y = 1 — 1 . is a viscosity subsolution of (2.2).

Proof. The proof follows the one in [5] although here the functioormay be discontinuous in the
x variable. We give here in detail the superflow/supersofutiase.

We first assume that = 1, — 1o is a supersolution of (2.2) and we show th@t),co.r) is a
generalized superflow. To do this we consider a smooth fonetj a point(xy,t) € R" x (0,7)
andr, h > 0 satisfying conditions (i), (ii), (i), (iv) in Definition 2.1. We assume that < 1
in B(xg,r] x [t,t + h](otherwise we change with n¢ for n > 0 small enough and we use the
assumption (2.6) o#’). We consider

m = min{x(z, s) — ¢(x,s) : (x,s) € B(xo,r| X [t,t + h|}

Sinceg satisfies condition (i) ang is a supersolution of equation (2.2) B(x¢, ) x (¢,t + h) and,
by Proposition 1.0.3 also iB(zo, ) x (¢,t + h], the minimumm cannot be attained iB(zq, r) x
(t,t + h]. Therefore it has to be attained eitheiB(x, r) or at timet.
We observe that, for anyt, s) € (0B(zo,7) X [t,t + h]) U (B(zo, 7] x {t}),

if x € Qg, thenx(z,s) = 1and(x — ¢)(x,s) > 0 because < 1in B(xo,r| x [t,t + h],

if © & Q, theny(z, s) = —1 and, by (i) and (iv),(x — ¢)(z,s) > —1 + § with § > 0.
Anyway we can conclude that > —1 + ¢ and so if(y, s) € B(xo, 7] % [t,t + h| andy & g, we
have

X<y7 S) - ¢(y7 8) > -1+ 57

i.e. ¢(y,s) < —4. This means that for everye [t,t + h],
{y € B(xo, 7] : ¢(y,s) 2 0y N QT =10,

which implies that);).c ) is @ generalized superflow with normal velocity-.

Conversely, we assume thal, ). (o,r) is a generalized superflow and we show thé a super-
solution of the equation (2.2) IR™ x (0,7"). To this aim we consider a poifit,t) € R" x (0,7
and a functionp € C*°(R" x [0, T']) so that(x, t) is a strict local minimum point of — ¢. Changing
¢ to ¢ — ¢(z,t), if necessary, we may assume thét, t) = 0. We have to show that

a¢ * 2
If (x,t) is in the interior of eithe{y = 1} or {x = —1} theny is constant in a neighborhood of
(z,t) and thereforé),¢(z,t) = 0, D(z,t) = 0 and D*¢(z,t) < 0. Thanks to assumptions (2.4)



and (2.5) onF' the inequality in (2.9) thus follows.

Assume thatz,t) € 0{x = 1} N 9{x = —1}. The lower semicontinuity of yields x(z,t) =
—1. We suppose by contradiction that the inequality in (2.9t hold; therefore, for some
a > 0, we have

oo

ot
Since¢ is smooth andF™ is upper semicontinuous, we can findv > 0 such that for al(y, s) €
B(z,r] x [t — h,t+ hl,

(z,t) + F*(z,t, Do(x,t), D*¢(1,1)) < —a.

20 y.5) + F* .5, Doy, 5), D6y, 5)) < —o- 210)

Moreover, sincéz, t) is a strict local minimum point of — ¢, by taking smaller andh if necessary,
we can assume also, foy, s) € B(x,r| x [t — h,t + h] and(y, s) # (z, 1),

X(,t) — d(z,t) = =1 < x(y,8) — ¢(y, 5). (2.11)

We first consider the cas®¢(x, t)| # 0. For0 < § < 1, we introduce the test functiaby(y, s) :=

d(y,s) +0(s — (t — h)). Sincegp(x,t) = 0andD¢(z,t) # 0, it is easy to see that if and¢ are
small enough then, for any— h < s <t + h, the sef{y € B(xz,r) : ¢s(y,s) = 0} is non empty.
Moreover choosing smallet » andd, we may also assume thdd¢| # 0in B(x, 7] x [t —h, t+ h].

We observe that, fo¥ > 0 small enough, because of (2.10) and (2.11), we have both

¢5(y,s) —1 < x(y,s) (2.12)
for all (y, s) € (B(z,7) x {t — h}) U (8B(x,r) x [t — h,t + h]) and

%(y, s)+ F*(y,5,D9(y, s), D*6(y, s)) < —%
for all (y,s) € B(x,r] x [t — h,t + h]. The inequality in (2.12) implies that
{y € B(x,r]: ¢5(y,t —h) = 0} C Qyp,
and for alls € [t — h,t + 1,
{y € 0B(z,r) : ¢s(y,s) = 0} C Q.

By the definition of superflow this yield

{y € B(z,7] : ¢5(y,s) > 0} C Qs,



for everys € (t — h,t + h). But, sinceps(z,t) = dh > 0, we deduce that € €, and this is a
contradiction.
Now we turn to the case whenD¢(x,t)| = 0. We can assume without loss of generality that
D?*¢(z,t) = 0 as well, see Proposition 1.0.5. Thus, to prove (2.9), we tagaow that
9¢

— > 0.
(1) 2 0

99

Suppose by contradiction that= E(x’ t) < 0. We have

o(y,s) = o(x,t) —i-g—f(x,t)(s —t)+o(|s—t])+ol|ly—x*) ass—t, |y—x|—0.

=0
Thus, for alle > 0, there exist = r., h = h., k' = h. > 0 such that

2
Er
h<——

a

and, for any(y, s) € B(x,r| x [t — h,t + I]

By (2.11) we can takg > 0 such that

28+ é(y,s) — 1 < x(v,s)

forall (y,s) € (B(z,r] x {t —h}) U (0B(z,r) x (t — h,t+ h')). By taking 3 smaller we may also
suppose? < er?/2. We consider the function(y, s) = (a/2)(s —t) — |y — z|* + . Since we
can takeh’ smaller we assume from now on that< —3/a. Combining the last two inequalities
and the assumptions gh , i’ andr we get

Ys(y,s) — 1 < x(v,s) (2.13)

for all (y,s) € (B(x,r] x {t — h}) U (0B(z,r) x [t — h,t + h']). Furthermore consider a fixed
s € [t—h,t+1]. We haveys(z,s) = a(s —t)/2+ 8 > ah'/2+ 3 > 0 and

h 2
Usly,s) = S(s— 1) —er®+ 5 < -T2 <0




for |y — x| = r. Thus the sef{y € B(x,r| : ¢¥s(y,s) = 0} is non empty and Dy3(y, s)| # 0 for
every(y,s) € {B(z,r] x [t = h,t + }'] : ¥s(y, s) = 0}.
SinceF™ is upper semicontinuous aid (y, s,0,0) = 0 for anyy ands, for smalle we have

g + F*(y, s, —2e(y — x), —2¢I) <0 onB(a,r] x [t — h,t + K.

Finally by (2.13) we get
{y € B(x,r] : gy, t —h) = 0} € Qyp,
and for alls € [t — h,t + I,
{y € 9B(z,7) : ¥ply, s) = 0} € Q.
Thus, since(),), is a generalized superflow, we have
{y € B(x,r] - 9s(y,s) > 0} € Q,

foranys € (t — h,t + 1'). But againys(z,t) = § > 0, and this means € ;, which is a
contradiction.
L

Corollary 2.2.3. Assume to have two families of open subset®f(2; );co.7) and(§2})iepo,r) such
that(2;)se(o,r) and((227))ie(0,7) are respectively super- and subflows with normal veloeifyand
alsoUsc(0m Q) % {t}, Ueo.r)$% x {t} are open and disjoint. Suppose moreover that there exists
(095,08, Qg) € € such that)y C Q) andQy C Q. Then, if we denote withil';, 7, 2 )ico.1)
the level set evolution oo, F, Q5 ), we have:

(i) forall t € [0,7),

Qf cQ cQfuly, QO CcQPcQ uly,

(i) if U I'; x {t} satisfies the no-interior condition (2.7), then fortad [0,7"),
t

OF =0l Q=02

Proof. The proof of this theorem follows by combining the result$heorem 2.1.5 and in Theorem
2.2.2. O



2.3 Applications to the asymptotics of reaction-diffusionequa-
tions. The abstract method

In this section we present an abstract method to study thag@syic behavior of solutions to semi-
linear reaction-diffusion equations by means of genegdlgub- and superflows. We do this follow-
ing the ideas explained in [8] and in [5].

Consider a given familyu. ). of bounded functions oR™ x [0, T'], typically the solution of a
Cauchy problem for a reaction-diffusion equation with drpafameter > 0. Our aim will be to
prove that, for any € [0, 7], there exist two region®; and()? where theu®(-,t)’s are close to
two different values, and to study the evolution of the mgvirontt — T, that separateQ; and
Q7. The key point will be to prove thdt2; )ic(o.r) and((27)%).c(.r) are respectively a super and a
subflow with normal velocity determined by the data of thelgem. In other words we will prove
that there exists a generalized flél;, Q;, 7),c(0,7) such that, as — 0,

wi(a,t) = b(a,t) if (z,t) € Q= | QF x {t},
te(0,7)
u(x,t) — a(z,t) if (z,1) € Q? = U Q2 x {t},

te(0,7)

where, for all(z,t) € R" x [0,T7], a(x,t),b(x,t) € R can be interpreted as the stable equilibria
of the system. To be more precise we first assume that these ssquenceéa. ). and (b.). of
real-valued functions defined IR x [0, 7' such that

ac(z,t) < u(x,t) < be(x,t), forany(z,t) € R" x [0,7],

anda. — a, b. — b uniformly in R™ x [0, 7] ase — 0. Then we define two open ses and)?,
and two familieg; )0, and(Q7)ico) by putting, for some suitable > 0,

0! = Int {(x,t) € R" x [0,7] : liminf, [“ _Tba] (2,t) >0
e—0 uaﬁ_ . (214)
QQZInt{(x,t)eR"x [0,77] : limsup” [ €}(as,t)SO},
e—0+ e”
and, for allt € (0,7),
Q ={xeR": (2,t) € W'} = prga(Q' N (R™ x {t})), (2.15)

QF ={zecR": (2,t) € O’}

ObviouslyQ' = Uieo.r)Q % {t}, Q* = U0 x {t}. SinceQ' and©* are open and disjoint



subsets oR" x (0,7") the two step functiong andy, defined as
X(.TJ, t) =1 — ]l(Ql)c, Y(x,t) = ]].(Q2)c — 12 (2.16)

are respectively lower and upper semicontinuou®'irx (0, 7"). Finally we observe thag, x can be
extended by lower and upper semicontinuity to the whol@'d [0, T']. For simplicity of notation
we’ll call againy andy these extensions.

The proof of the asymptotics result for our functiariscan be divided into the following three
main steps.
1. Initialization: we define the traceQ; and2; of Q' and? for t = 0 as

Q= {r € R": x(z,0) = 1}, 02 ={r eR":x(z,0) = —1}. (2.17)

We do this by constructing suitable sub and supersolutibtiga:“’s equation in the sé&k™ x (0, k),
with h small enough.

2. Propagation we show tha{<2;),c(o,r) and((27)).c (0.7 are respectively a generalized subflow
and a generalized superflow with normal velocity’. To do this we have to construct suitable
smooth sub- and supersolutions to the Cauchy problem eatisyiu in sets of the formB(z, r] x

[t,t + h] with Dirichlet boundary conditions oiB(xz,r) x [t,t + h|. We just notice that, unlike
the first step, we build these sub- and supersolutions jpogalpace but not in time sindeis not
suppose to be small.

3. Conclusionwe conclude our proof by applying Corollary 2.2.3(£0} ) ;<o) and((€27)°)epo.1)-



Chapter 3
Discontinuous velocities

In their paper [7], Barles, Soner and Souganidis considaati@n-diffusion equations of the form
¢t — Ap+ f(z,t,0) =0 InR" x (0, +00)

with the two scalinggz /e, t/¢) and(z /e, t/e%). These give rise to two different singular perturba-
tion problems

€ t € .
u — eAuF + M =0 inR" x (0, +00), (3.1)
and (ot o
u; — Au® + % =0 inR" x (0,+00), (3.2)

with initial datum
u(z,0) = g(z),

whereg is a given function that initializes the front and— f°(x,t, ) is a cubic type function,
i.e., it has two stable and one unstable equilibria. Classixamples off© are

fo(atq) =2(q— a(z,t)(¢® — 1) + b (3.3)

and
[, t,q) = 2(q — ea(x, 1)(¢* — 1), (3.4)

wherea € WH*(R" x [0,+00)) N C(R" x [0,+)), # € R are given andy takes values in
(—1,1). If, as in (3.3), the unstable equilibrium ¢f converges locally uniformly as — 07 to
some continuum function then the fronts that described the asymptotics of the Capoblylem
for (3.1) propagate with normal velocity

V =a.

36



On the contrary in (3.4) the unstable equilibrium f6fgoes uniformly to zero whea — 0" and
one has to go to the following scalirfig/<,t/<?), i.e. one has to consider the equation (3.2). The
interface that describes the limiting behavior of the soha of the Cauchy problem (3.2) moves
with normal velocity

1
V:OZ—lei.

In this chapter we want to generalize these results allowartfpe functiona : R" — [—1,1]
to be a bounded measurable function, piecewise continumassan oriented, closed and Lipshitz
hypersurfacd c R”. Indeed we consider reaction terms of tyfie R x R” — R

()

f(g,x) = 2<q - )(q2 - 1)

with —1 < ¢°/2 < 1. When the unstable equilibrium satisfies

¢ (;) — a(x), locally uniformly off the hypersurface c R™,

and the initial conditiory represents a sharp interface acr@s® we consider the Cauchy problem
for the reaction-diffusion equation (3.1) and we prove thatlimiting behavior of its solutions is
governed by the following first order Hamilton-Jacobi edprat

{ (1)  u(z,t) + a(x)|Du(z,t)] =0, (z,t) € R" x (0,+00), (3.5)

(17) u(z,0) =uy(z), xeR"™

The initial conditionu, is chosen in such a way that the initial fronf = {x € R" : u,(z) =

0} ={z eR":g(z) = @} is a nonempty and closed set (ideally an hypersurface). dtere

a(z) a(z)

uo(x) > 0 (resp.u,(x) < 0)if g(x) > Tx (resp.g(z) < T)
On the contrary if

), a(z), locally uniformly off T ¢ R”,
3 e—0t

the equilibriumc® goes to zero uniformly oR™ and the asymptotic of the Cauchy problem for (3.2)
is described by the geometric Hamilton-Jacobi equation

_ Du ® Du
| Du| — | Dul

uy + a(x)|Du| — tr [([ )DQU] =0, inR"x (0,+00). (3.6)

The technique used to study the asymptotics we are lookirigllatvs the ideas of Barles and
Souganidis in [8] and then partially revisited by Barles &adLio in [5]. We briefly described this



approach in Chapter 2. As we said in the Introduction the iypweé the problem we consider here
is that now the convergence of the sequetige”, 7 € {0, 1}, occurs off the discontinuity set of
«. This compel us to approximate the standard definition oegdized sub- and superflows with
normal velocity—a by means of continuous velocities. We prove that this isiptess Propositions
3.1.6 and 3.3.4. Finally we point out that in our relaxed agsions the term§ D¢ ||, and||Ac? ||
may blow up as — 0. To overcome this difficulty we have to link their blow up rdtethe
parametee.

3.1 Asymptotics of reaction diffusion equation

3.1.1 Main assumptions

We are now ready to study the asymptotic behavior of the isplsiof the Cauchy problem

{ (i) w(z,t) —eAu(z,t) +e  f(u,2) =0 inR" x (0, +00), 3.7)

(i) u(z,0) = g(x) in R".

Throughout this section we will suppose thiat C(R™), —1 < g < 1 while ¢ € C*(R x R"),
satisfies the following properties, wheyep € (0, 1):

( for anyz € R,
f°(-,z) has exactly three zeroes 1, m;(z), 1, with0 < p < mi(z) <1 —p,
fe(,x) > 0in (=1,mi(x)) U (1,400) and f*(-,z) < 0in (—oc, —=1) U (m(x),1),  (3.8)
filg,x) >~y forallg € (—oo, =1 +~]U [l — 7, +00),

1,r) <0andf; (1,x) >0,

qq(_

. 1
and also, ifk € [0, 5],

for every compact{ C R there exisC = C(K),C; = C;(K) >0, i = 1,2
such that, for allg,z) € K xR", 1 <i,j <mn, (3.9)

£ £ £ € C € C
£ )l e )| £ C 10 )| | foa(a, ) £ 2 1y (00)] < S

Below we denote withi(z) = limsup® m{(x), m(z) = lim igf* m; (z) the upper semicontinuous
e—0t =0

and, respectively, lower semicontinuous half relaxedtBrof the family{m;(-) : ¢ > 0}. We also
assume oty that:



for every compack’; C R" andm; > sup m(x), ms < inlg m, there are two functions
reKy TELH

f. [ € C*(R) satisfying(3.8), (3.9)
with zeroes in{—1,my, 1}, {—1, ms, 1} respectively, (3.10)
andf < f* < f, forallz € K3, ¢q € [-1,1], € > 0 sufficiently small.

As we said before a typical example for the functins

()
2

F(a,2)i=2(a = 2 ) (¢ = 1), (3.11)

It satisfies all the assumptions listed above with(x) = ¢*(z)/2, provided that

e C*R"),0<p<c(x)/2<1—p,

o C) . (3.12)
| 0, ¢ (z)] < g |0xixjca(x)| < T Ve e R", i,7 € {1,...n},

and in (3.10) we can choogéq) := 2(q¢ — m1)(¢* — 1), f(q) := 2(q¢ — m2)(¢* — 1).

Thanks to these properties ff, as proven by Aronsson-Weinberger [2] and Fife-McLeod [30]
for all z € R" there is a unique pai°(-, =), ¢*(z)), solution of the traveling wave equation

G (1, 7) + (@) e (r, 2) = f(¢(r, @), 2),  (r@) e RXRY, (3.13)
subject to the following conditions
¢ (—o0,x) = =1, ¢°(+00,z) =1, ¢°(0,2) = m;(x)

and we have thaf. > 0. We will assume that the pajy°(-), ¢°(z)) satisfies a series of properties.
There arer, b > 0 such that

ian ¢ (r,x) > 1—ae " asr — +oo, sup ¢°(r,z) < —1+ ae” asr — —oo, (3.14)
zeR™ r€eR™

and moreover
¢(r,x) > K(z,7) >0, forzeR" |r| <TF,

sup  [(1+ [7))gE(r,x) + (1 + |73, (7, 2)] < +o0. (3.15)
(r,x)ERXR™
For any compack; C R" there exist constant¥/;, M/, > 0 such that
M M.
|Dg(r, )], | Dg; (r,z)| < 5—,: | D2 (r, )] < ET,f forallz € Ky, r € R. (3.16)



For instance in the case (3.11) easy explicit calculatioegassible. It turns out that the traveling
wave equation admits as unique solution the function

¢ (r,z) = tanh(r + r°(x)), (3.17)

wherer®(z) = %ln @%__7;83

Some simple computations, using the properties gghow that properties (3.14), (3.15) and (3.16)
are satisfied for each> 0.

We also notice that there existsiasuch that, for als € [—4, 6] the functionf*’ = f< 4§
satisfies similar properties to those ff, (3.8) (3.9) and (3.10), and it has exactly three zeroes
in m>’(z) < m2%(x) < m%°(x). In particular, for eaclh € [—4,4], there exists a unique pair

(¢>°(-), ¢°) which solves the traveling wave equation

) and the velocity of the traveling wave is preciselyr) of (3.11).

g (r,x) + X (@)gr* (r,2) = f(q™°(r,2), @), (r,2) € R xR,

subject to
¢’ (—00,z) = =1, ¢*°(+00,z) = 1, ¢°(0,2) = mS°(x)

o

and such that® > 0. The pair moreover satisfies (3.14), (3.15), (3.16) unifgrin § and we
suppose that there is a constant> 0 independent of such that

sup [\05(56) — @)+ [1=m3 ()| + | 1+ m2°(2)]| < M| 4] <, (3.18)
z€R™

for § small enough. In the case (3.11), one can explicitly compute

() = 2m50 (x) = m (@) — m™ ()
and therefore the estimate (3.18) is an easy consequenceurfifarm estimate of the derivative
|fs(q,z)| = ~v >0, forallz € R" andq in a neighborhood of the three zeroes, which follows from
(3.8).

Now for the asymptotics of the velocity of the traveling wayeve suppose that there are two
bounded and locally Lipschitz continuous functiensn, : R" — [p, +o0c) and an oriented, closed,
Lipschitz hypersurfacé that satisfy

0<2p<n(x)<c(x) <ng(z) <2(1—-p), foranyzeR",

. N (3.19)
¢ — «, locally uniformly off I,

wherea : R" — [p, +00) is a bounded measurable function which is piecewise cootis&cross



[ in the following way. Letd be the signed distance function frdma has to satisfies

{ni(2)} if d(x) <0,
a(z) € { {ny(z)} if d(z) >0, (3.20)
[ny(z),ne(x)] if d(z) = 0.
We observe that in (3.11)p = % andm = %. Finally in the case (3.11), we can explicitly
choose the family of velocities satisfying the assumptions above. As for instance if

¢ (z) = "léx) (1 - tanh (%)) + "zéx) (1+ tanh (%)), (3.21)

whered € C*(R"™) and coincides with a signed distance function frbrim a neighborhood of it.

Remark. It is clear that the case (3.11) is cleaner and only need2)33.19) and (3.20) in order
to have the whole set of assumptions satisfied. Many techassamptions may thus be avoided,
in particular due to the direct relationship between theahie equilibrium and the velocity of the
approximating front provided by the traveling waves.

3.1.2 The result

We now state one of the two main results of this chapter. Ifdlewing theorem the asymptotic
behavior of the solutions of the Cauchy problem (3.7) isliptéescribed.

Theorem 3.1.1.Assume (3.8), (3.9), (3.10), (3.14), (3.15), (3.16), (3.18.19) and (3.20). Let
u® be the unique (and continuous) solution of (3.7), where R" — [—1,1] is a continuous
function such that the sef§, = {z : m(z) < g(z) < m(2)}, & = {x : g(x) > m(z)},
Q. = {z: g(x) < m(z)} are nonempty and mutually disjoint subset®Réf Then, ag — 07,

1, ifu(z,t) >0,
-1, ifu(x,t) <0,

u(z,t) — {
locally uniformly, whereu is the unique viscosity solution of

{ w(z,t) + a(z)|Du(z,t)] = 0 inR™ x (0, +00), 3.22)

andd, is the signed distance 10, which is positive in2} and negative i, . If in addition the



no-interior condition (2.7) for the s¢t. = 0} holds, then, as — 07,

1 if (z,t) € {u> 0},

ut(z,t) — { . - .
-1 if (z,t) € {u> 0},

locally uniformly.

Remark 3.1.2. The existence (and uniqueness) of the viscosity solutiohthe Cauchy problem
(3.22) will be treat in the next section.

Remark 3.1.3. The results of the theorem are more elegant in the case thatitlalized frontl’,
has empty interior. In the open sets wheie= m = m, then the family{m:} converges locally
uniformly, andI’, is determined by the equatign= m. If this is not the casel’, may contain

relatively open subsets ¢f: : m(x) > m(z)}. Notice also that in the case (3.11) then= % and

m= therefore even in that case it is preferable to have a sasobutinuities ofo with empty
interior.

Proof. For the proof of this Theorem we follow the abstract methoscdbed in section 2.3 and
we define two families of open sets Bf', (2} )ic(0.r) and (7)o, @s in (2.14), (2.15) and two
further set€)}, Q2 as in @.17). We recall that by maximum principle1 < u® < 1. We are now
ready for the first step of the proof.

First step: initialization.We want to show that

Qf ={d, >0}, Qy ={d, <0} C Q2.

Since the proofs of these two inclusions are similar we ohlgwsthe first one. Consider €
{d, > 0}, then we have thaj(z) > m(z) and so, by the continuity of, upper semicontinuity and
definition of/z, we can find am, o > 0 such that

g(z) > sup m+ o > mi(z) + —o,
B(&,r)
for all z € B(z,r) ande sufficiently small. This means that
u(x,0) = g(x) > ( sup m + a)]lB@,r) () — Lp@re(x). (3.23)

B(&,r)

Now we introduce the functiof® : R" x [0, 7] — R defined by

®(z,t) =r* — |x — 2|* — Ct, (3.24)



with C' > 0 a constant that will be chosen later. We denotelpyt) the signed distance to the set
{®(-,t) = 0} defined in such a way to have the same sigi.oExplicitly d(z, t) = \/(r2 — Ct)*—
|z — z|. Note in particular thai(x,0) > gifand only ifx € B(z,r — 3.

To prove the first step we need the two following lemmas.

Lemma 3.1.4. Under the assumptions of Theorem 3.1.1 we have that forfany 0 there exist
T =71(f) > 0andz = £(8) such that, for alb < ¢ < &, we have

u(z,te) = (1= ) a0z () = La0<py(2), = € RY,

wheret. = 7 andd(z,t) = \/(r2 — Ct)* — |z — 2.
Lemma 3.1.5. There existh = h(r,2) > 0, 3 = B(r, ) independent of such that if3 < 3,
B > 0, ands < &(3), then there is a subsolutiari*’ of (3.7-i) iINR™ x (0, ) that satisfies

W (2,0) < (1= B)Lia026(7) — Liao<sy(2), = €R™
If moreover(x,t) € B(#,r) x (0, k) andd(z,t) > 34, then

liminf, w*?(x,t) > 1 — 3.

e—0t

Before proving Lemmas 3.1.4 and 3.1.5 we give the short csimh of the first step which
follows [5]. To do this, we first notice that, combining theéa® Lemmas, we get the existence of a
(viscosity) subsolution®? of (3.7-i) inR™ x (0, k) such that

w*f(z,0) < uf(xz,t.), forallx € R",
and so, by the maximum principle,

wf(z,8) <u(z,s +t.), forall(z,s) € R" x[0,h]
Therefore, using the second part of Lemma 3.1.5, we get thalf (z,s) € B(Z,7) x (0,h),
d(.,'):', S) > 35;
liminf, u®(x,s) > 1 —30.

e—0t

Sincep is arbitrary and does not depend brve can send it to zero in order to obtain that, for all
(z,s) € B(&,7) x (0,h),d(z,s) >0,

liminf, u®(x,s) > 1,
e—0t



i.e. z € Q! by definition. According to the definition af, it follows that there exish < r, < h S0
that B(%,7%) C {d(-,t) > 0} for any0 < ¢ < ¢. This implies thatB(,7) C ] forany0 < t <t
and therefore((,0) = 1 andz € .

Proof of Lemma.1.4. For the proof of this lemma we follow the ideas of Chen [16,, bésed on
the fact that for= small in the reaction-diffusion equation the diffusionnteis negligible for short
time, and of Barles-Da Lio [5]. This lemma is a local shorteigeneration of the interface. The
corresponding proof in [16] is more precise since thereithe heeded to generate the interface is
precisely determined. Lét > 0 be fixed. Due to the maximum principle we just need to show that
u®(z,t.) > 1—pif d(z,0) > 5.

1. We denote by = x(7,&;x) € C*([0, +00) x R x R™) the solution of

{ X7, &) + [ (x(r&2),2) =0, 7>0, (3.25)

x(0,&2) =&

It is then simple to see, by the properties of ordinary défgial equations, that satisfies the
following properties

Xe(T,&2) >0, forany(r,&;z) € [0,400) x R x R”, (x1)

and there exists, = 7,(5) > 0 such that, for al- > 7,

X(7—7£§$) >1—p8, V&> sup m+ g_

2
B(ér) 2 (x2)

(Regarding the proof of the estimate ix2), which is independent of andx, we just notice that

we can choose a cubic-like functignas in (3.10) withK = B(, 7], m; = sup m + % such that
B(&,r)

flq) > f(q,2),

forall z € B(z,r), ¢ € [-1, 1], ande sufficiently small.)
Moreover, since for any’ > 1 we have thaty(7,¢,z) € [-C,C] forall ¢ € [-C,C], 7 > 0,
xz € R", it also holds that for ang’ > 1, 7 > 0 there exists a constai., > 0 such that

MCT
|X55(7',£7£L’)| < MC7TX§<T7§;'T)7 |XJE1(77£7$>|7 < E—k’

Mec ,

M, (x3)
Xew (T, &5 2) < —7xe(T.62), I (T, €5 2)] < 57 xe(7, &5 0),

forany¢ € [-C,C], x e R", i € {1,2,--- ,n} ande small enough.



2. Lety be a nondecreasing smooth functiorRirsuch that

-1 if 2 <0,
U(z) = sup m+ o iszﬁ/\g.
B(é.r) 2

We can define a functiow in R" x [0, 7] as

u (a,t) = x (2. 0(d(a,0)) - Ktiw),

for K a constant to be decided later. Thanks to a computationagitoilthose in [8] one can prove
that, if K is large enoughy® is a subsolution of (3.7-i) ilR™ x (0, 7,¢), with 7, as in (¢2). In fact,
sincey satisfies (3.25) and’ has compact support, we obtain

fe(w,

- v _X Kxe —¢ [m‘ W' Dd(z, 0)‘2 + e (zp” ' Ad(x, 0))

u; —eAuf +
5

+ Ay +2Dxe - (¥/Dd(x,0))] + / 80; z) (3.26)

< —Kx¢ + e[Mi] Xee| + Maxe + | Ax| + Mz| Dxel].

Now we want to use propertieg 1) and (y3) in order to get an estimate for the termg:/|, | Dx¢/,
| Ax|. Indeed since)(d(z,0)) € I = [-1,1 + o] for all z € R", by evaluating (3.26) at a point of
R™ x (0, 7,¢) we obtain

€ € M 1
u; —6Ay5+M < —Xe (K—€M2 —eM,, (M1 +—k3 - W)) <0,
£ £ g

for K large enough. Moreover,

u®(z,0) = ¥(d(z,0)) < < S(up)m + 0>]1{d(x,o)>o}(56) — 1 {a(z.0)<0y (@)
B(z,r

= ( sup m + U)]IB(QE,T) () = Lpge-
B(&,r)
Therefore combining the last inequality with (3.23) we get
u®(x,0) < u(x,0), forall zin R™.

Thus, by the maximum principle,

u(z,t) < uf(z,t) iINR"™ x [0, 7,¢].



Now if we evaluate the last inequality fare {d(-,0) > 8 A ¢/2} andt = t. = 7,&, we get

u(z,te) > X(TO, sup m—+4o — KTog,x) > X(TO, sup m + g)x),
B(i,r) B(d,r) 2

g

fore < . Therefore by {2) and we obtain

o

us(x7t€) Z 1— B7

forall z € {d(-,0) > 5}. ]

Proof of Lemma.1.5. The proof follows with some modifications the ideas in [5] #8[ First of
all we consider the smooth functidndefined in (3.24) where now is fixed and satisfies

C > 8. (3.27)

SinceD®(x,t) # 0if ®(x,t) = 0, there existy, h > 0 such thath < r?/C, d is smooth in the
setQ.; = {(z,t) : | (d(z,1))| < 7, |z — 2] > v, 0 <t < h},andD®(z,t) # 0in Q. ;. Now we
construct a subsolution by steps.

1. We first define a smooth functien in @, ; as

d(z, 15()€ — 2ﬁ,x)

vi(a,t) = ¢ - 28,

with § € [0, 6] to be chosen later. Using the definition &fthe assumption (3.27) ofi and the
properties (3.18), (3.19) satisfied By and¢*, we can see that Q. 5,

f&(v<27 JI) Q?(;dt o ﬁ fa(qa,é - 2ﬁ7 .CL’)

v —eAv® + -z e 2Dg;" - Dd — g;Ad — eAg™ + 3
£,0 -C —1 1)
<& + @) b o) — ~ = 2Dq" - Dd — eAg®’

€ "2vr2 - Ct |z — 2
20 ) | 280 fy
£ £

1 5
< = =" =285 @) + 28] Fiyllo ]+ [—g +2| Dgz*| + e[ Ag] |,

for ¢ and| §| small enough. Since for anye R", § € [0, 4],
(- x) € [m™P(x), mS° ()] € [-1 — 6,1+ 4],

here and below thé> norm of the derivatives of are taken for its first argumenin the compact



set[—1 — 6,1 + 4]. To prove that? is a subsolution of (3.7-i) it remains to see that the rightcha
side of the last inequality above is non positive. For thétrlgracket we use the properties (3.16)
satisfied by;*° and we compute

0 2M, M, )

0
—— 12| D@’ | 4| A < -+ T +¢ ——
- H2ADgT +el AT S —— 4 — Ty

whené > 0 is fixed ande is small enough. For the left bracket, we recall that, conmigii§3.8) and
(3.18), f5(mF’(z), %) > v > 0 andg**(r,x) — m3’(z) if r — oo exponentially fast, uniformly
for x € R™. This means that we may suppose that there existsan such that

fo(q(r,2), ) > =, forany|r| > 7,

DO =2

and we can choose small enough, independentgfd, in order to get

Bll Fiylloe = Bsup{l fiy(a2)] : (q,2) € [F1 = 8,14 0] x R} < .
Thus we consider two cases.|d(z, t) — 25| > <7, we have that

fe(vs, x) @ J

vy — eAv® +
€ € 2e

for ¢ small enough. If, on the other handyx,t) — 25| < 7 and we denote with<" a strictly
positive constant (which depends onso thatg®(r, ) > K > 0 for any|r| < 7, z € R", we get
that, for 5 small compared tds,

= 1> 5
PO < L 4 2800 F o+ 28] i) — oz < 0.

vy — eAv® + 5
€

M | =

2. We define for eache, t) € {(z,t) € R* x [0, h] : d(x,t) <7},

—a( t) sup(ve(x,t), _1) If - < d(l’, t) S v
v T =
7 -1 if d(z,t) < —.

7° is a continuous viscosity subsolution of (3.7-i) fiw,t) € R™ x [0,h] : d(z,t) < ~}, for e
sufficiently small. This in obvious in the sgfd| < ~} sincev® is the supremum of two subsolutions.
Consider a pointz, t) such thati(z,t) < —~/2; by properties (3.14) we have that

_ b(v+48)

4
_ate 67x>—2ﬁ§mi5(x)+ae T =28 <m0 (x) < -1

5 1) < a,é(
vi(z,t) < q 5

andv®(r,t) = —1. Thereforer® is a subsolution of (3.7-i) id(z,t) € R" x [0, h] : d(z,t) < ~}.



3. We finally define our function®” : R™ x [0, h] — R as

W (z,t) = { P(d(z, 1)0" (2, t) + (1 = p(d(z, 1)) (1 = B) if d(x,t) <7,
’ 1-8 if d(z,t) >,

wherey : R — R is a smooth function such that < 0inR, ¢ = 1in (—c0,7/2],0 < ¢ < 1in
(v/2,3v/4) andy = 0 in [3v/4, +c0). The only subset dR™ x (0, k) in which we have to check
thatw®” is a subsolution i§(x, t) € R™ x (0,h) : v/2 < d(x,t) < 3v/4}. Since| Dd| = 1

e(, &0
wt&ﬁ — eAwP + M =p(T5 — eATF) — 2e¢)' Dd - Dv°

3.28
O

€

+ (Ydy — e Ad — &) (0" = (1 - B)) +

If we take23 < /4 we obtain that

vi(a,t) > (Lor) 28
€
> mi’%x) e 28>1— Mo — ae % — 203

and so fok, 8, § smallv®(z, t) = v°(z, ) andv®(z,t) — (1—3) < —j3. Moreover, since;, (1, 1) >
0, ff(w™?, x) < Y fe(v®, x) + (1 — ) f5(1 — B, x). Thus (3.28) becomes

Wi~ eAweh 4 W) €<“’j’ Do w% — /g7 + 26" M,
st — (=) + -T2 o
<=2 (V5 + 0= 070 Bia)) + B+ 0u(1) <0,

for £ small enough. To get the last inequality, we also used thetffiatd;, < 0 and sup f°(1 —
z€R™
B, x) < 0for g small enough.

B

4. Now we observe that, if(z, t) < 3, thenv®(z,t) < ¢ (==, 2) — 26 < m*’(z) + ae= % —
£

26 < m*’(x) < —1 for ¢ small enough (and fixed). This means that, farsmall enough

v, t) < (1= P)lazpy (2, 1) = Lacpy (1),

By definition of 7° and ofw®” the last inequality still holds fos* andw®” (we just point out that
if d(z,t) > B thenw™’(x,t) is equal tol — 3 or to a convex linear combination of elements of
(—o0, 1 — f]). If we consider = 0 we have proved the second part of our Lemma.

5. Finally we just remark that, with a reasoning similar te time in point 4. one can prove that



if (z,t) € B(2,7) x (0,h) andd(z,t) > 33, then

ve(x,t) > q€’5(§,x) —26>1-— ae~ % — 28 — Moé.

Hencelim inf, w*’(z,t) > 1 — 34, for 3 > M.
e—07+ B

Second step: propagationn this step we show tha(ﬂtl)te(oj) and((Qf)C)te(QT) are respec-
tively super and subflows with normal velocityr. Since the two proofs are similar we only show
that (2} ).c(o,r) is a superflow. One of the difficulties here is due to the faat e want to approx-
imate the definition of super- and subflow by using continugelecities. We do that by means of
the smooth functions® to approximate our discontinuous velocity We consider the following
modified families of continuous functions and define:

(@) =0 (@na(z) + (1 = (2))c(x), () = (@)m(z) + (1 - (x)c(2),

wheren®, & € C*(R"), n°(x), £ () € [0,1],

Notice that

<o, <a" <

andlimsup® ¢ (z) = o*(x), liminf, ¢’(z) = a.(z) We denote below aF = {¢, ¢ > 0},
e—0t e—0F

F={c, >0}

Proposition 3.1.6.(i) A family (€2¢).c(o,r) of open subsets &" such that the sé? := U, 1) 2 x
{t} is open inR"™ x [0, T, is ageneralized superflowith normal velocity—« if and only if it is a
generalized superflow with normal velocitye € C(R™), for all ¢ € F;

(ii) A family (F;)c(0,r) Of close subsets dR™ such that the seF := U F: x {t} is closed
in R™ x [0, 7] is ageneralized subflowvith normal velocity—« if and only if it is a generalized
subflow with normal velocity-c, for all ¢ € F.

Proof. (i) In view of Theorem 2.2.2, in order to prove this propasitiwve have to prove that the
functiony = 1 — 1. is a viscosity supersolution of (3.5-i) if and only if it is #&seosity superso-
lution of

xt(z,t) + ()| Dx(z,t)] =0, (z,t) € R" x (0,7), (3.29)

for all e > 0. We start assuming that for every continuous functigry is a viscosity supersolution



of (3.29). The conclusion follows from the stability of vasity supersolutions and the fact that
o* = limsup® ¢. Thereforey is a supersolution also of (3.5-i). Sin€e> «*, the other implication

e—0t

is trivial.
(ii) The proof concerning the subflow is similar and we omit it O

Next we want to show thdf2; ). (o7 is a superflow with normal velocityz, for anyc € F.

Proposition 3.1.7.Letc € F be fixed and lety € R*, ¢ € (0,7),r > 0,h > 0sothatt + h < T.
Suppose thap : R™ x [0, 7] — R is a smooth function such that, for a suitable> 0,

(i) ¢¢(x, s) +&(z)|Dp(z, s)| < —C < 0, forall (z,s) € B(xo, 7] x [t,t + h],

(i) forany s € [t,t + h], {z € B(xo,7] : ¢(z,s) =0} # 0 and

|Dé(z, )| # 0on{(x,s) € B(xg,r| X [t,t+ h] : ¢(z,s) = 0},

(iii) {z € B(wo,7] : ¢(x,t) >0} C Q,
(iv) forall s € [t,t + h], {x € OB(xo,7] : ¢(x,s) > 0} C QL.
Then, for every € (t,t + h),

{x € B(xg,r]: ¢(x,5) > 0} C QL.

Proof. Using the assumptions and the definition(@ﬁ)te(o,;p) we need to prove that for all €
B(zo,7), s € (t,t + h) such that(z, s) > 0, then we have

lierg(i)gf* u(y,7) >1
for (y,7) in a neighborhood ofz, s). This proof proceeds like the one of the first step with the
difference that here we have to construct a subsolution.@fif3nly in the ballB(z, ) and not
in the whole spac®&”. We will need to use an extra boundary condition coming fram (n fact
to prove this result it is enough to prove the following lemwtaich plays the role of Lemma 3.1.5
in the first step. We denote below with-, s) the signed distance function to the e, s) = 0}
which has the same sign of

Lemma 3.1.8.Let the assumptions of Proposition 3.1.7 hold true. Theisi®% small enough such
that, if 3 < § ands < &(3) then there is a viscosity subsolutioh” of (3.7-i) in B(zq, ) x (t,t+h)
that satisfies,

Lw (2, 1) < (1= B) L p2p (%) = Liaen<py(2), forallz € B, 7],

2. w P (z,8) < (1= B)Lyas)>p)(x) — Liaes<py(z), forallz € OB(xo,r], s € [t,t + h).



3.if (z,s) € B(xo,r] x [t,t + h] satisfiesi(z, s) > 30, then

lim inf, ws’ﬁ(x, s)>1-p.

e—0t

If we assume for the moment that Lemma 3.1.8 holds true thecangrove Proposition 3.1.7
as a direct consequence (see also [5]). In faet(ift) > g > 0, then alsop(x, t) > 0 and so, by
property (iii) of ¢, z € Q;. By definition of(Q; )< (o) this means thalisrgégf* u (x,t) >1>1-7
and so there exists an; > 0 such that, foralk < e, ,, (y,7) € B(z,644) X (t — €44, t +44), WE
haveu®(y,7) > 1 — . Thus, by the compactness pf € B(z,,7] : ¢(z,t) > 0} we can select an
£ > 0, possibly depending only ofy, so that, for ale < &, andx € {y € B(zo,7] : d(y,t) > S},
we haveu®(x,t) > 1 — 3. Therefore

uf(2,t) > (1= B)acn>p (%) — Liac.n<py (2).

foralle < &,z € B(x,r]. In a similar way we can also obtain that, tosmall enough,

u (2, 8) 2 (1= B) 1,026 (7) — Liac,s)<p3 (),

for any(z,s) € 0B(x¢,r| x [t,t + h]. Combining these inequalities with those in 1. and 2. in the
statement of Lemma 3.1.8, by the maximum principle we cawclcoie that

wf(x,8) <uf(x,s), forall (z,s) € B(xg,r] x [t,t+ hl.

By 3. in Lemma 3.1.81im31+1f* u®(x,s) > 1 — g forevery(z,s) € B(xo,r] X [t,t + h] such that
e—
d(x,s) > 3/. Sincef is arbitrary we can now senglto zero in order to obtain that

liminf, u®(x,s) > 1

e—=0t
if (x,s) € B(xzo, 7] Xx[t,t+h]and¢(z, s) > 0. Finally we remark that, i§ € (t,t+h), x € B(xzo,7)
are given ands(z,s) > 0, we have thaty(y,7) > 0 in a neighborhood ofz, s) and therefore
lim inf, u*(y,7) > 1for (y, 7) in a neighborhood ofz, s) in B(xg, ) x (t,t+h). Thusz € Q. O

e—0t

Proof of Lemma 3.1.8This proof is similar to the one of Lemma 3.1.5, although vatHifferent

and not explicit functionp, and therefore we just give a sketch. First of all we obsenma¢ since

¢ satisfies property (ii) of Proposition 3.1.7 there exigts- 0 such thatd is smooth in the set

Q, ={(z,s) € B(zo,r] x [t,t +h] :|d(z,s)| <~} [Do(z,s)| # 0in Q.. SinceDd = Do and

D¢




bt

d = ——
" D¢

on{¢ = 0}, and using (i), we may also suppose that

di(z,s) + ¢(x) <

C
> _W for all (JI, S) S ny. (330)

We notice that for every sufficiently small we have that < ¢ and will restrict to such values ef
in the reaction-diffusion equation.

As in Lemma 3.1.5 we first define a functiohin @, asv®(z,t) = qe";(M, x) — 28,
with a suitable auxiliary parametér € (0,4]. Thanks to inequality (3.30), gthe traveling wave
equation and (3.18), we can see that(fort) € @,

f€<U€’x> q6,5 - C’ ) 5
£ _ A 5 <& B o . - A K
v, — AV + c = ¢ ( é(x) 4|D¢(x,s)|+c (xr) —¢ d) €+
2 5 5,6’1, 2 2 5 -
+2| Dg:?| + ] Ag9) — 5fq<€q ), 28 ||€qq||
< l[qe,cS(Mé— ¢ +¢| Ad|) —28F (g5, ) + 282 £l
- T 4” D¢|Q'y||00 q ) 9q
o 2M; M,
T TR T
1 C s ey . 5
< 5[ 16]| D¢|QW||OOQ7~ Q/qu(q ,x) + 2087 quoo o

for 6 > 0 (independent off) and there small enough. As in Lemma 3.1.5 it can be easily seen
that, if we choosed small enough and independentffthe sum of the terms inside the square
brackets is non positive and 86 is a strict subsolution id),. From now on the extension to a
global subsolution*” in B(z,,r] x [t,t + h] and the proof that such a function satisfies 1, 2, 3, is
similar to that of Lemma 3.1.5 and we omit it. 0

The proof of Theorem 3.1.1 is now easy. In fact, siGge(-,t) = 0}, {u(-,t) > 0}, {u(-,t) <
0}):>0 is thegeneralized evolutiofor the level-set evolution) af{d, = 0}, {d, > 0}, {d, < 0}),
Corollary 2.2.3 and the previous two steps hold

{u(-,t) > 0} c QF C {u(-,t) > 0}
{u(-,t) <0} € QF C {u(-t) <0},

for anyt > 0. Thus by the definition of2; and2? Theorem 3.1.1 is proved. O



3.2 Well-posedness of the Cauchy problem

We now study the well-posedness of the Cauchy problem (3.5).
In [22] we prove that there exists a unique continuous visgaeslution of the Cauchy problem

(3.31)

{ w(x,t) + a(x)H(z, Du(z,t)) =0, R" x (0,+00),
u(z,0) = u,(x) € C(R™),

where the Hamiltonia#i/ : R" x R" — [0, +00) is continuous and positively 1-homogeneous and
« satisfies the following assumptions

« is bounded, piecewise Lipschitz continuous across Lipattyipersurfaces and

(3.32)
a(z) > p > 0foranyz € R".

Since in (3.5) we are considering a particular coercive haman H (z, p) = | p| a uniqueness
result for (3.5) was also previously proved by Camilli in [LAnyway the comparison principle,
that we are going to prove here, follows the ideas we developg2] for a more generall.

3.2.1 Comparison principle for the HJ equation
We start with a precise definition pfecewise Lipschitz continuous function

Definition 3.2.1. We say thatv : R" — [0, +00) is a piecewise Lipschitz continuous function if its
discontinuity sef” C R" is a finite union of Lipschitz hypersurfaces with the follogiproperties.
For anyz € I there isr > 0 such that: we can partition

B(z,7) =Qf uQ; U(T'nB(z,7)),

whereQ: are nonempty, open, connected (locally, the two siddé).oMoreover,infoz > sup a; o
Qg Q

is locally Lipschitz continuous iR™\I'; a has a Lipschitz continuous extensiofifU(I'NB(z, 7))
(i.,e.a®), and inQ2; U (I'N B(z, 7)) (a.); for all z € I' we havex(z) € (o (z), o ()]
Below, we usually drop the subscripin Q3.

Remark 3.2.2. Whena is piecewise continuous addis the union of disjoint Lipschitz hypersur-
faces, at everyy € I" we can always find unit vectors™, = € R” inward Q*, Q™ respectively
(transversal td"). This means that for some . > 0 we haveB(y + tn*,tc) c QF for all

y € B(&,h) N Q" andt € (0,c), see [4]. Similarly for)™.

We now state the comparison principle for solutions of (35finite time-interval. Since the
termq is discontinuous, it requires some a-priori continuitytod functions to be compared.



Theorem 3.2.3.LetT € (0, +o0] and assume that satisfies (3.32). Let, v : R" x [0,7] — R be
respectively an upper semicontinuous subsolution and arleamicontinuous supersolution of the
HJ equation

wy(x,t) + a(x)| Dw(z,t)]| =0, (z,t) € R" x (0,T) (3.33)

such thatu(x,0) < v(z,0) and, ifT" < +o0,

w(z,T) = limsup wu(y,s), wv(zx,T)= liminf o(y,s).
(y,8)—(2,T7) (y,8)—=(2,T7)

Suppose moreover that for dlt,#) € T' x (0,7] we can find sequences — 0%, o.
p* € R™, [p°*| — 0" such that,, < 0if £ = T, and either

. — 0,

lim w(@ + et + e, t+0.,) = u(i, 1)

k——+o0

or
lim v( + e +epp™, t +o.,) = v(d, 1),

k——+o00

wheren™, n~ are inward unit vectors tQ*, Q~, respectively with the notation of Definition 3.2.1
and Remark 3.2.2.
Thenu < wvinR" x [0, 7.

Remark 3.2.4. The coefficient has as discontinuity sét x [0, 7], in the spac€z,t). In this

sense the continuity of the functionsv is required along families of points., t.) = (2 + en™ +
T, — T
t

ep°, 1 + o.) such tha — n (transversal td"), but the wayo. tends to 0 is not prescribed.
6 A,

For example, it = o(o.), then(z.,t.) tend to(z,t) € I" x [0, 7] in a tangential fashion. For this

reason the comparison principle above is not a direct caresem of the general result of Soravia

in [39], although the method of proof we use is similar.

Proof. Since our equation is invariant by an increasing changeetidgpendent variable, it is not
restrictive to suppose that v are bounded.
Assume now by contradiction that therg(is, t,) € R" x (0,7 such that

u(Zo, to) — (T, t,) = A > 0.
We set by simplicity of notatiom, = 0. For any3, 6 > 0,0 < m < 1 sufficiently small, le{, t) be

the maximum ofb(xz, t) := u(z,t) —v(z, t) — f{z)™ — 6t in R x [0, T], where(z) = (1 + |z|?)Y/2.
In the rest of the proof we will suppose that- ¢, < A. Therefored(z,,t,) > 0 and thus # 0.



Moreover from®(z,t) > ®(z,,t,) we get

A

w(@,t) —v(z,t) > 2y > 0.

We have(z,t) € T x (0,7]. Thus by the assumption, we suppose that we can find sequences
er — 07, 0., — 0,p% € R, |p*| — 0T, ando., < 0if £ = T, such thatklim (T +exn +
—+00

exp™,t + o.,) = v(2,1). We drop the index from now on.
Notice that ag — 0" we can always fing*, |p°| — 0 ando. — 0 such that

lim v(# +e(p +n),t +0.) = v(,1),

e—0t

where

n=n_if zel.

{nzo if &¢T

We now define

T — 2 t—s
W@yt s) = e, t) = o(y,s) — 2 (| =2+ +|

2 € \/ﬁ)

(Jo =& + [t = I*) — Bla)™ — ot

,
2

and considefz., y.,t.,s.) € R*" x [0, T]? such that
W€<$€7 Ye, t€7 Se) = max{we(x, Y, t7 S) : (.CL’, Y, t? 8) € RQTL X [07 T]z}

By definition w®(z., ye, to, 5.) > w(@,2,1,1) = ®(2,1) — %|77|2 > 0 for a sufficiently smalky.

From here the sequences, y. are bounded anft. — y.| < (C + 1)e, |t. — s.| < C+/| o¢|, for
someC' > 0. We therefore get that

lim (7., 9., te, s.) = (,7,t,t) € R*™ x [0, T)>.

e—0t



By semicontinuity ofu, v we compute

O(z,1) = u(z, t) — v(z, 1) — B(T)™ —

> lim SUP(u(xsa ts) - U(y€7 Se) - B<x€>m - 5t€)

e—0t

> liminf(w® (2., e, te, 52) + = (|2 — 2> + |t. — 1))

r
e—0t 2

.. A rop r o -~
> lim inf (w*(2, & + (p° + 1), 1, &+ 0) + —(Ixa — &[* 4 |t — £[%))

e—0t

lim wu(ze,t:) — v(ye, s:) = u(z, f) - v(a?,f).

e—0t

We make this information more precise by observing that

u(i, f) > lim SU-pu(xaat ) > lim lnfu(xaat ) = lim inf((u(xaa ta) - U(yaa Sa)) + U(yaa Sa))

e0+ e—07t e—07*

> (u(2,1) —v(3,t)) + v(, 1) = u(d, ),

and then
lim u(z.,t.) = u(z,t), lim v(y.,s.) = v(Z,1).
e—0+ e—0+
Again from
( T+ (p + 77) f,f—}— Ua) < Wa(l'aa Ye, Le, Sa) < u(xaata) - U(yaa sa)
Y (| Te t. — s, |2 m
5( (o >_6<x8> — Ot
€
we obtain .
lim 5_y€+n‘:o, lim | —%| —o:
e—0t € e—0t | O'£|

and hence for sufficiently small
|ze —y. +en| < ce

(3.34)

(3.35)

(3.36)

wherec > 0 appears in Remark 3.2.2. In particulatiE I" andz. € Q~ U T, theny. € Q™ which

is something that we keep in mind for later.



Sincet., s. € (0,7] we can use the definition of sub and supersolution (and Pitopo4.0.3)
and compute, respectively,

Y <t€ — Se

0>
\/|Ua| \/|Ua|

and

7 Y Te — Ye
)+r(t€ t)+5+a*(xg)g< -

1) (@, — &)+ Bma.(z.)"?|

v <t€ - Se) + ot (y.)

RVAR:A V|Ua|

Combining the two inequalities we obtain

S )]
€ € )

T<t€ - tA) + 0 S a*<ye)

l(l’e — Ye +n>‘ - OK*<.T€) l(«rz—: — Ye
e e e e

—H]) +r(z. — &)+ pma.(z)™ 2

a* — oz To —

. r(r. — 2) + Bma{x)™ 2

)

and hence taking thiém sup ass — 07,

| " (ye) — a*(xa)l’ x

6§7hmsup< 5

e—0t

) # lalleBml 2@ (3.37)

Now we compute the limsup in the right hand side of (3.37). Vdet svith the cases ¢ T', or else
zel, z. € Q UTl andthug. € 7, for all e small enough. By (3.35) we get

L, —
0 < ~limsup |y — 2|

e—0t €

T — e
Y 4 1] =0+l ()

If instead? € I" and along a subsequenee € O, we have two further cases: either fosmall
y. € QT UT and we proceed again as aboveyor 2~ on a subsequence. In the latter situation
(3.37) becomes

« — oy —
0 < ~vlimsup | o (ye) ()| ) Te =Y | 77) + ||| soBm| | {2) ™2
e—0t € 1 €
. ) AT s Te — e
< [0 (@) — o (@) timsup - | = 4|+ [laf o] @)™ 2
" -~ e—0t € €

<0
< llallocBml| 2| (z)™*

In any case we thus obtain< ||a|/..3m| Z|{(#)™ 2, hence a contradiction for a sufficiently small
m and giver, . 0

The following uniqueness result is an immediate consequehtheorem 3.2.3.



Corollary 3.2.5. Assume the same hypotesis of Theorem 3.2.3. A viscositytiealu € C(R" x
[0, 4+00)) of (3.5) is unique within the class of discontinuous solnsio

3.2.2 Existence of (the) continuous viscosity solution

We now construct the (unique) continuous viscosity sotufar the Cauchy problem (3.5). Once
more time we recall that in [22] we made a similar constructio obtain a continuous viscosity
solution for the more general Cauchy problem in (3.31).

In order to use the control theoretic interpretation of sohs and avoid dealing with discontin-
uous vector fields, we rather look at (3.5) as the followingrion-Jacobi-Bellman equation

A u(x,t) B n o
(4) ) + r(]lneajc{—a -Du(x,t)} =0,  (2,t) € R" x (0, +00), (3.38)
(17) wu(x,0) = uy(x), r e R",

whereA = {a € R" : | a] < 1}, and construct the corresponding value function.
We consider the following control system

x(s) = a(s), z(0) = x,,

. B | . (3.39)
t(s) =t, —/0 a(x(r))dr , to >0,

where we will make precise the second equation by using timécsatinuous envelopes gf. As
control set we will consider the sgt defined as

A={a:[0,400) — A, a(-) measurable functign

From now onx(-) = z(-;x,,a) will be a trajectory of the first equation in (3.39) corresgny
to the control functior: € A. We have two possible candidate value functions. If wefggt=
® 1 . - ,
to — / ———ds, and,, ;, is such that(7,,;,) = 0, then we define
o a*(z(s))

(20, t,) = 325 Uo(T(Tig 5 Tos @)

ds, andf,, ,, is such that(7,, ;,) = 0, then we define

s 1
If on the other hand(s) = t, — /
(s) ) o (2(s)

(T, t,) = igﬁ Uo(T(Tig 15 Tos @)). (3.40)

We claim that under suitable assumptianandv coincide and are the unique continuous solution
of the Cauchy problem (3.5) (and of (3.38)).



Remark 3.2.6. Suppose thaty, (z) > as(z) > p > 0, then for(z,t) € R" x (0,400) and all
controlsa € A we definer’ = 7'(a), i = 1,2, by setting

tzlﬁm;w“'

Eachr’ is well defined since is strictly positive. We have that' > 72 since

[ awees | sl aww

Now for givenz € R™ we modify the control by setting

aﬁ:{d$s§r,

0, s> 72

and we obtain

2(7%(a); 7, a) = 2(7*(a); 2, a) = (74 (a@); z, @).

From here the corresponding value functions satisfy traicgiship

uy(z,t) = ggﬁuo(w(Tl)) < ;gﬁ Uo(2(7?)) = ug(x,t).

A first consequence of Remark 3.2.6 is that o.
We show that the Hamilton-Jacobi-Bellman equation (3.8&aitisfied by approximation with
problems without discontinuities. We prove the followirgngral result.

Theorem 3.2.7.Suppose that the functionsatisfies assumptions (3.32).

(i) The functionv is lower semicontinuous iR" x [0, +o0), continuous at the points df(z,0) :
r € R"}.

(i) If we approximaten™ (from above) by the family of Lipschitz continuous functgon

22 7

af(x) = Sl;p{a*(y)

thend(z,t) = sup v°(x,t), wherev® € C(R" x [0, +00)) solves the HJ equation in (3.38-i) with
el0
replaced by»*.

(i) v is the minimal viscosity solution of (3.38-i).

Proof. We start by observing that the sequentdas uniform bounds, singe< o < o° < ||/|oo-



Moreover by well known results, each sup-convolutions Lipschitz continuousy® | «*, and thus

a*(z) =infa®(z) = lim sup o (y) (=: limsup._, +a°(x)),
€ r—0t ly—z|<r,0<e<r (341)
a,(x) = lim inf af(y) (=: liminf, g+ a®(z)).

r—0t |y—z|<r,0<e<r

We consider the approximating Cauchy problem

+

{ w(w,t) + o*(z)] Du(w, 1) = 0, (3.42)
u(z,0) = uy(x),

and for any giver{z,,t,) € R" x [0, +00) and controls:(-), define the unique; , > 0 such that

7—Ioﬂfo 1
0=t,— ————ds, wherex(-) = x(-;z,,a). Notice thatt,p < 75 , < t,||a||s. In
= () = a(320) p < %0 < Lol
particular every value function

ve(x,t) = ;Ielﬁluo(x(Tm))

is continuous at the points ¢fz,0) : « € R"}. Indeed this follows from
|uo((77, 1,)) = wo(®)] < wal[2(77, 1,) = To| + |2 = o|) < wallltl[oclo + |2 — 2ol),
wherew, is a local modulus of continuity fak,. Thus
|05 (2o, to) — to(2)] < walllalscto + |2 — 2ol).

We pause to observe that for the same reason this fact hela$oal andv. By classical results®
is therefore the unique continuous viscosity solution o423, see e.g. [3].

Observe now that, by Remark 3.2.6, the fanfily } increases as — 0". Therefore we can
define the lower semicontinuous function

v(z,t) = supv®(x,t) = liminf, v*(z,1),
€ e—0t
which also satisfies

v*(z,t) = limsup® v°(z, t).
e—07t

By stability of viscosity solutions, see Theorem 1.0.4 sithen well known that is a viscosity
solution of the HJ equation in (3.38).

We now show that = v. By Remark 3.2.6, it is clear that < © and therw < ©. Now we
suppose by contradiction thafz, t) + 26 < o(z,t) for some(z, t) € R" x (0,400) andé > 0. By



definition, for alle > 0 sufficiently small, we can choose a strategysuch that,

Uo(x(75 52, a.)) + 6 < 0(x, t). (3.43)

x,t)
We will find a control functiom: € A such that, at least for a subsequence,

~E .

w3 Ty 0:) = T(Te; T, ). (3.44)

i
This will give a contradiction in (3.43) by continuity af, and definition ofo.
To prove (3.44) we consider the subsequence- 1/n. By viewinga,,, as an element of the
space
L2((0, tllell; A) = (L'((0,t]|all), A))*

which is compact the weak star topology we can find a subsegyen} and an elemeni € A
such that

BNy
e, — G

From the definition of weak convergence and Lemma 3.2.8 wegbostpone after the end of the
proof, we know that

x(s; 7, ac, ) = x(s;r,a), foralls € [0, +o0)
T:

Tpi(@) > T = limsup %;Zk (ac,, )-

Eny, —0t

We then restrict ourselves to a further subsequence thaimysysdenoten.,, such that’;’; (a.,) —
T and get

~Em

T‘L,t
(7w, a.,) = +/ ae, (s)ds
0

T o
=z+ / ae, (s)ds + / ae, (s)ds
0

T

T
—>x+/ a(s) = z(T;x,a), n — oo.
0

We now modify the strategy by setting

and we obtain (3.44) as desired.
Concerning the fact that is the minimal viscosity solution, observe that since> o* > a,,



theno® is a continuous viscosity subsolution of (3.38). Thus byc¢bmparison principle of the
previous section, for any viscosity solutiorof (3.38) we have© < v, and thereforé < v,. [

We are left to show the claimed Lemma.

Lemma 3.2.8.7,,(a) > T := limsup %;Z’“ (ac,, )-

e—0t

Proof. We restrict ourselves to a subsequence, that for simpheéyindicate withe,, such that
T := lim 75(a., ). By definition
e—0t+ 7

7:ﬁvat(a’) 1 %;ﬁ(asn) 1
-  ds=t= d
/o o (w(s;ma) / o (2(si7,00,))

and hence from Fatou’s Lemma and the approximating pra@gseofia® in (3.41) we have that

T 1
£> / Y s
~Jo ar(x(s;x,a))
The conclusion then holds. O

The following is the corresponding statement for the apjpnaxion of the solution of our prob-
lem from above and it has an identical proof.

Theorem 3.2.9.Suppose that the function satisfies the assumptions in (3.32). Given the inf-
convolutions

. [z —y/?
€ = inf{a. )
0c(2) = ffa.(y) + 720
'F;,t(a) 1
letv(z,t) = infv.(z,t), wheret = / ———dsand
it ) (e ea)

ve(a,t) = inf uy(w(7,(a)),
ve € C(R™ x [0, +00)) solves the HJ equation in (3.38) withreplaced byyx.. Theno = v is upper
semicontinuous iR™ x [0, +00), continuous at the points df{z,0) : z € R"} and the maximal
viscosity solution of (3.38).

Proof. The proof is identical to the one of the previous Theorem pkéar the identitys = w.
Therefore we now show that

v(x,t) = 0(x,t) = ;23 Uo(X(Tr s T, @)).



Suppose on the contrary that for some 0, (z,t) € R" x (0, 4+00)
v(x,t) > o(x,t) + 20.

Therefore we can find € A such that

Uo( (T s x,a)) + 0 < T(x,t). (3.45)
If we verify that
lim 7¢,(a) = 7.4(a), (3.46)
e—=0t 77

where

7V’gi,t(a) 1
- ds=t
/o on(a(s;ma)

then we reach a contradiction {B.45) for ¢ sufficiently small, because

U(z,t) < vz, t) < up(x(7s ;5 2,a)).

z,t)

Now we prove (3.46). Since; , is bounded, we take any converging subsequefice:) — T.
Then we pass to the limitin

Tt (@) 1 A 1
R P -
/0 o (@(si2,0) /0 oz (x(s;2,0)

and obtain @ i
o (8 1 1
—  _ds = —d
A a*(x(s;x,d)) i /0 CY*(ZE'(S;{L',&)) S’
hencer, (a) = T. O

Remark 3.2.10. By the classical dynamic programming principle we couldvgldaectly thato is
a viscosity solution of (3.38). This is a matter that we skip.

We have reached the following point.

Corollary 3.2.11. Suppose that the functiansatisfies the assumptions in (3.32). Then
0 <0,
ando, v are lower and upper semicontinuous, respectively, anasigcsolutions of (3.5).

We plan now to prove that indeed under appropriate assunsatie © by using the comparison
principle in Theorem 3.2.3, so there is a unique continuoligisn of (3.38) which is the uniform



limit of suitable approximation of continuous problems.eféfore we now discuss how to obtain
the extra continuity properties of a value function that veechin order to apply that theorem. We
define the following property of the the trajectories of tloatrol system.

Definition 3.2.12. We say that condition () holds atz € I if there are sequences | 0, a,, € A,
an inward vecton™ to Q" andk > 0 such that

Tn = 2(Sn; 2, a) = = + (52)"n" 4 0o((s0)"), (3.47)
z(0;z,a,) = x.
We have the following consequence.

Proposition 3.2.13.If condition (T,) holds atz € T" then for anyt > 0, at(z, t) we have that

o(x,t) = nl_lglooﬁ(xn,tn),
. Sn 1 ..
wheret,, = i(s,) =t — / ————ds, Ty = (S5 n) = T+ (5,)"0T +0((5,)")), nT is inward
| ) on(a(s)
unit vector toQ .
Proof. The result is a consequence of the dynamic programmingipl&cindeed for any > 0

we have

O(x,t) = iggf)(x(s A Tut), t(S A Tut)).

Therefore we immediately obtain by choosing: s,, andn sufficiently large
o(z,t) < v(xp, t,)

and the conclusion follows since we already know from Theo8e2.9 thatv is an upper semicon-
tinuous function. O

Proposition 3.2.14.The trajectories of the control system (3.39) satisfies ¢malition (T,.) for all
rel.

Proof. For anyx € I" consider az € A such that)” - « > 0 with ;" as in Remark 3.2.2. Then we
can choose,, = a, s, = 1/n,n = a, to reach condition (J) with k£ = 1. O

We have obtained the following result.

Theorem 3.2.15.Suppose that the functian satisfies assumptions (3.32). Then the Cauchy prob-
lem (3.38) has a unique viscosity solutior= v = v € C(R" x [0, +00)).



Proof. By Proposition 3.2.13 and Proposition 3.2.14 we can applgofém 3.2.3 to the lower
semicontinuous subsolutianand the upper semicontinuous supersolutiotWe thus obtain that
v < v andv = v = v is a continuous solution of (3.5). Then Corollary 3.2.5ed4dts uniqueness
within discontinuous solutions. 0

3.2.3 The no-interior condition

In this section we want to prove that, since the velocithas a constant sign, the zero level set
{z : v(z,t) = 0} of the (unique) viscosity solution of the Cauchy problem (3.5) has an empty
interior provided so does the zero level set of the initialdition {x : u,(x) = 0}. To be more
precise we will use the representation formula:fan (3.40) to prove that condition (2.7) is fullfilled
by v if we assume that the initial datum satisfies

{ug >0} £ 0, {ug <0} #0,

(3.48)
I'y = {UQ :0} = 8{u0 > 0} :a{UO < 0}

Theorem 3.2.16.Suppose that satisfies assumptions (3.32). If the initial datup: R" — R is
a continuous function so that (3.48) holds, then the zerel le®t{(x,t) : v(z,t) = 0} satisfies the
no-interior condition in (2.7).

Proof. For all(z,#) € R" x (0, +00) we define the (bounded) set of reachable points ffon) as
Rii={z(7;4(a);2,a) :a € A}

First of all observe thaB(z, pf] C R, ;. Infactifz € B(&,pt] « # &, thenz = & + m| z — &,

with m = |9: — xA| . We consider the control
r—X
) LT s < |a— 4],
a(s) = |.’lj — .I|
0 if s>|x—2z|

We have that, ;(a) > pt > |z — 2| andz(7;4(a); 2,a) = (| x — &[;&,a) = z, i.e. © € Ry
Using this inclusion and concatenation of control funcsiomne can then easily show that for every
h e (0,1)

Ri”i_h < U B(Jf,pg) c U B(.T,ph) C U Rm,h C Rq}’f,

€Rs 1 p T€R; 1 T€R; ¢



and so
Riin CR;; forall (2,) € R" x [0, +00), h > 0. (3.49)

Next we claim that ifu(z,7) = 0 thenv (@, — h) > 0 for everyh > 0, thus(z, %) ¢ Int{(x, 1) :
v(x,t) = 0}. Indeed suppose thati,¢) = 0 andh > 0. By (3.49) and the representation formula
(3.40) forv we have thav(&,¢ — h) = inf{ug(y) : y € R;;_,} > 0. Assume by contradiction
thatv(#,t — h) = 0, i.e. there exist§ € R,;_, such thatu(g) = 0. Letr > 0 be such that
B(y,r) C 70%,5 by (3.48) we have that there exigt, y» € B(y,r) such thatuy(y,) < 0 and
uo(y2) > 0. Again, this means that

v(@,t) = inf wue(y) < uo(yy) <O,
YER; ¢
and we get a contradiction sineéz, t) = 0.
Assuming the claim, our Theorem immediately follows since ave that, for anyi, ) ¢
R"™ x (0,400), h > 0 sufficiently small,

if v(2,7) =0, then wv(&,¢—h) > 0andv(d,t+h) < 0.

3.3 Another asymptotic problem

In this last section of the chapter we want to briefly discudgfarent scaling with respect to the
reaction-diffusion equation (3.7) , namely we will congide

{ () wi(z,t) — Auf(z,t) + e 2f(uf,2) =0 inR" x (0, +00), (350

(i) u(z,0) =g(x) in R™.

Under different assumptions to those in Theorem 3.1.1 ocube functionf<, we will prove that
the front which describes the asymptotic behavior of thésgss — 0™ has normal velocity given
by K — «, whereK is the mean curvature of the front. To be more precise we wa@ that the
front that "separates” the two regions where the solutidi§8.60) converges to the stable equilibria
of the system evolves according to the geometric pde

ug(z,t) + F(Du(x,t), D*u(z,t)) + a(x)|Du(x, t)| =0, (z,t) € R" x (0,+00),  (3.51)



where the terna satisfies condition (3.20) and : R" x S" — R is defined as

F(p, X) = —tr [(I _ Py i)X] (3.52)
lpl |1l
Unlucky we are not able to claim that the Cauchy problem fds1Bis well-posed (even if we
conjectured this). We are able to prove a comparison pri@¢pP) for viscosity sub and super-
solutions of the equation (3.51) that tells us that, if a tardus viscosity solution of (3.51) exists,
then it is unique. What we are not able to do it to construchsucontinuous solution.

3.3.1 The result

We now modify some of the assumptions of section 3.1.1 inrdastudy the asymptotic behavior
of the solutions of (3.50).

We have a cubic functiori® with the same structure as in section 3.1.1 but with (3.9l
by the stronger condition, this time for sorhes [0, 1),

for every compack’ C R there exists a consta6t= C'(K) > 0
such that, forallg,z) € K xR", 1 <i,j < n, (3.53)

€ (3 € € C (3 C
fo (@ @)l [fog(a: 2)] < Oy |7 (g, 2|51 f7,4(a, 2)| < gk—_ll foia; (@ 7)] < gz,il-

Moreover we assume that
ms —s 0% uniformly in R™, (3.54)

i.e. for anyec > 0 we can find are, > 0 such thatm(x) € (0,0] foralle < ¢,, x € R™. This
means that instead of (3.10) we will assume that for@any 0 there exists two functions

f. f € C*(R x R") satisfying(3.8), (3.53)
with zeroes i —1, 0,1}, {—1,0, 1} respectively, (3.55)
andf < f* < f,forallz e R", g€ [-1,1], 0 <e <e,.

Consequently we adapt the growth rate in (3.16) as

M M.
D (r,2)|, |Dg;(r,2)| < S5, ID(ro)] < 575, forallz € R, r € R (3.56)
During the proofs we also need to modify the cubic-like fimetf® asf<’ = f°4¢d,ford € [—d, ]

and modify accordingly the notations for the propertieg@f. Moreover we assume that there is a



constantV/ > 0 independent of, 6 such that

sup [\f(:c) — (@) + 1= m (@) + 1+ m ()| < Moe. (3.57)
zER™

As for the asymptotics of the velocity of the traveling wawdusions, we replace (3.19) by

()
<no(x) <2(1—-p), foranyx e R",
- 2() ( p) (3.58)

— — «, locally uniformly off T,
£

0<2p<m(z)<

Q
)

where the functions, n,, n, are assumed as in (3.20) ahds a Lipshitz hypersurface.
We formalize the asymptotic result for (3.50) in the follogitheorem.

Theorem 3.3.1.Assume (3.8), (3.53), (3.55), (3.14), (3.15), (3.56), 13.33.58) and (3.20). Let
u® be the unique solution of (3.50), whege R" — [—1, 1] is a continuous function such that the
setsl', = {z: g(z) =0}, Qf = {x: g(z) > 0}, Q, = {z: g(x) < 0} are nonempty and mutually
disjoint subsets aR".

We suppose that the (unique) continuous viscosity solutiohthe Cauchy problem

{ u(z,t) + F(Du(z,t), D*u(z,t)) + a(z)|Du(z, t)] = 0in R™ x (0, 400), (3.59)

u(z,0) = dy(z),

exists, whereF is as in (3.52) andl, is the signed distance f©, which is positive inQ} and
negative in2, .

Then
1 in {(x,t):u(x,t) > 0},

u(z,t) — { -
—1 in {(z,t) : u(x,t) <0},

locally uniformly ase — 0, If in addition the no-interior condition (2.7) for the st = 0} holds,
then, ax — 0,
1 in 0
u?(a,t) — n te=0h
-1 in {u>0},

locally uniformly.

Proof. The proof follows the same steps as the one of Theorem 3d vie gust point out the main

changes. Consider two regioft$ and2? as in (2.14) withr = 1. Define two families of open sets

of R™, (2} )icjo.r) @and(Q7)epo.1), @s in (2.15) and (2.17). By the maximum principlé < u® < 1.
First step: initialization.We want to show tha} = {d, > 0} C Q} andQ, = {d, < 0} C Q2.



For the first inclusion we considerc {z : d,(z) > 0} and findr, o > 0 such that

So forallxz € B(z,r)
¢(z)+40 forallz € B(z,r),e <e,

g(z) >
>

and
m;(x) € (0,0], forallz e R" e <e,.

o

This means in particular that
u(z,0) = g(x) > 50l g () — Lpre(T). (3.60)

As in (3.24) we define the functio® : R” x [0,T] — R as®(z,t) = 7* — |z — &> — Ot with
C > 0 a constant that will be chosen later.
Now we state the analogous of Lemma 3.1.4 and of Lemma 3.1.5

Lemma 3.3.2.Under the same assumptions of Theorem 3.3.1 we have thahyot a> 0 there
existt = 7(f8) > 0 ande = &() such that, for alD < ¢ < £, we have

u(z,te) 2 (1= Be)liag 02y (2) = Lac.0)<py(2),  © € R”,

wheret, = 7¢%|1ge| andd(x,t) = /(r2 — Ct)* — |z — 2| is the signed distance to the det :
O (x,t) =0}.

Lemma 3.3.3. There existh = h(r, %), 8 = B(r,#) > 0 independent of such that if3 < 5 and
e < &(B), then there exists a subsolutiofi® of (3.50-i) inR™ x (0, h) that satisfies

w(x,0) < (1= Be) a0z (7) — Lacoy<p(z), = ER™
If moreover(x,t) € B(#,r) x (0, k) andd(z,t) > 34, then

Bz, t) —1
i nf, “o 1) — 1
e—0t g

> —28.

Proof of Lemma.3.2. Let 8 > 0 fixed. From now on we restrietto ¢ < ¢,. To prove our thesis
we have to modify the functiori® as in [16, 5]. Letf € C*(R x R™) be a function as in (3.55)
with my = 20. Consider a smooth cut-off € C;°(R) such thal) < p < 1, p(s) = 1if |s] < 1
andp(s) = 0 if |s| > 2. Assume moreover thatsatisfies—2 < sp'(s) < 0 and|p”(s)| < 4 for all

s € R. Now define two further smooth functiops, p» : R — [0, 1] as

pi(q) = /)(q — 20) pa(q) = ,0<q ;20)

g 4




and set

(g 2) = (1= pi(@) f*(q, ) + pi(q) f(q)
and
20 —q

Folg,x) = (1 — pa(q)) fo(q, 2) + palq) e

Notice that for any: € R", f*(-, z) has{—1, 20, 1} as zeros and satisfies properties similafto
Moreover /¢ does not depend anfor all ¢ € [0, 30] and f¢ < min{ f*, f°}.
1. As in Chen [16], if we denote by = x(7, &; x) € C?*([0, +00) x R x R™) the solution of

{ X(r,& ) + f(x(r & 2),2) =0, 7>0, (3.61)

x(0,&2) =&,

it follows that y satisfies propertyy(1) in the proof of Lemma 3.1.4 while propertieg2) and (y3)
are replaced by the following: for all, o > 0 there existr, = 7,(8,0),£, = €,(8,0) > 0 such
that, for allT > 7,|loge| ande < ¢,

X(1,&2) >1— e VE> 4o (x2)

Moreover, since for any’ > 1 we have thaty(7,¢,z) € [-C,C] forall ¢ € [-C,C], 7 > 0,
x € R", it also holds that for ang’ > 1, a > 0 there exists a constait, > 0 such that

MC#I MC,a
|X§g(’7‘,€;l‘)| S Xﬁ(Tvg;x)a |X1‘i(7—7§;x)|7 S k-1 _
M, M (x3)
C,a Cia
Xeai (7, & 20)] < S27xe(T 62), X (7,6 2)] < 557 Xe(7 652),

foranyr <allne|, £ € [-C,C], x e R", i € {1,2,--- ,n} ande small enough.
2. Consider a smooth nondecreasing functiosuch that)(z) = —1if z < 0 andy(z) = 50 if
2> B A %. Similarly as before, the function

(,t) = x (5, v(d(a,0) - =

satisfiesu(z,0) < u®(z,0). Moreoveru® is a subsolution of (3.50-i) iRR™ x (0, 7,¢%|1g¢]). Indeed



we can compute by@),
(uf,  + f°(x, @ / /
/ (;2 ) _X iz(x ) _ K% — Xee(¥)? = xe(¥" + ¢/ Ad)
+2¢'Dx¢ - Dd + Ax

_ fa<X7x>;f€<X7x> +%[—K—€(w//+¢/Ad)—|—
Mo () + 27 My) + 827

< (K = Mo | 1%+ 0:(1)) <0,

up — Au +

for K large enough. Therefore using the maximum principle anggny (y2) we can prove that
uf(x,t.) > 1— peif t. = 7,6|lge| andd(x, 0) > 3 (from which Lemma 3.3.2 follows). ]

Proof of Lemma&s.3.3. The construction of a subsolution that satisfies this Lenmsnaery similar
to the one in Lemma 3.1.5. Lét, d andQ, ; defined as in (3.24) where now the fixed constant

satisfies
n—1

Y
The construction of our subsolutiai” follows the usual steps. We first define for dmyt) < Qv

szr[ +4]

v¥(x,t) =¢q g,

d -2

6,5( (x7t) /873:)_2/6
g
whereg®” is the solution of the travelling wave equation (3.13) withreplaced byfs° = f€ + &4.
The functiomv® is a subsolution of (3.50-i) i), ;. Indeed,

€ (1€ £,6 £,0 €,0

v — Avt 1L (”2’x> _ G 2 e pg o ST A A
S 5 g S £
— L f " w) + 28% ] £yl

) M,y M,

1 5 6 2
< [ - 20t o)+ 25l ] + [ -2 224 S

e( HE0
Al = 28, %)

and then we conclude as before. The extensias &b a subsolution in the entire strigp® x [0, A]
proceed now similarly to the one in Lemma 3.1.5. We first prihag the functions® : {(z,t) €
R™ x [0,h] : d(z,t) < v} — R, defined as

—5( t) sup(ve(x,t), _1) if — < d(l’, t) < e
v (x,t) = .
-1 if d(z,t) < —,



is a subsolution of (3.50-i). Eventually we define our subtohw®"” as

W 1) = U(d(@, 0)v"(z, 1) + (1 — ¢(d(z,1)))(1 —eB) if dz,t) <7,
’ 1-¢B if d(z,t) > 1.

for (x,t) € R™ x [0, h]. Anyway since these proofs does not contain any new idedsraspect to
the ones in Lemma 3.1.5 we omit them. O

Second step: propagatior.he proof of the fact tha(tQi)te(QT) and((Qf)c)te(QT) are respec-
tively super and subflows with normal velocit— o, wherelC is the mean curvature of the level set,
is very close to the one in Theorem 3.1.1. We sketch the pm(ﬁﬂ%)te(oﬂ“). Here we approximate
our discontinuous limit velocity: with the following continuous functions:

()

() = (@)na(2) + (1= n*(2))——, &) = E@)m(e) + (1 - &(2)—,

with 7° and¢® as in Theorem 3.1.1. If we piE = {&°, £ > 0}, F = {&, ¢ > 0}, then Proposition
3.1.6 takes the following form.

Proposition 3.3.4.Let ' : R” x " — R be defined as in (3.52).

(i) A family (£2;).c0,r) of open subsets dR" such that the se&@ := U012 x {t} is open in
R™ x [0,T] is ageneralized superflowith normal velocity—F — « if and only if it is a
generalized superflow with normal velocityF” — ¢ € C(R"), for all ¢ € F;

(i) A family (F;):co,r) Of close subsets dk™ such that the seF := U, F: x {t} is closed
in R™ x [0, 7] is ageneralized subflowith normal velocity—F' — « if and only if it is a
generalized subflow with normal velocityF' — ¢, for all ¢ € F.

Thus, by this proposition, to prove tr(ét%)te(oﬂ“) is a superflow with normal velocit{. — a we
have to prove that; )< (0.7 is a superflow with normal velociti. — ¢ for anyé € F, i.e. we have
to prove the following proposition

Proposition 3.3.5.Let¢ € F be fixed and lety € R",t € (0,T),r > 0,h > 0sothatt +h < T.
Suppose thap : R" x [0, 7] — R is a smooth function such that, for a suitable> 0,

(i) ¢¢(x, s) + F*(Do(x, s), D*p(x, 5)) + ¢(z)|Do(z, s)| < —C < 0, for all (x, s) € B(xg,r] X
[t,t + h),

(i) forany s € [t,t + h], {z € B(xo,7] : ¢(z,s) =0} # 0 and

|Dé(z, )| # 0on{(x,s) € B(xg,r| X [t,t+ h] : ¢(z,s) = 0},

(iii) {z € B(wo, 7] : ¢(x,t) >0} C Qf,



(iv) forall s € [t,t + h], {x € OB(xo,7] : ¢(x,s) > 0} C QL.
Then, for everys € (t,t + h),

{x € B(zo,7] : ¢(x,5) >0} C QL.

Proof. We denote withi(-, s) the signed distance function to the gex-, s) = 0} which has the
same sign ofs. Using the definition of 2} );co.r) we need to prove that for at € B(z,,r),
s € (t,t+ h) such that(z, s) > 0, then we have

lim inf, <M) >0
e—07+ €

for (y, ) in a suitable neighborhood @f, s). To see this we have to construct a subsolution of

(3.50-i) in B(xq, ) x (t,t + h) as we claim in the following lemma.

Lemma 3.3.6.Let the assumptions of Proposition 3.3.5 hold true. Theigi®% small enough such
that, if 3 < 5 ande < £(33) then there is a viscosity subsolutiof” of (3.50-i) in B(x, r) x (t, t-+h)
that satisfies,

1. wa’ﬁ(x, t) < (1 — 56)]1{61(.@25}(1') — ]l{d(-,t)<6}(x)> forall x € B(:L'Q,T’],
2. ws’ﬁ(x, 8) < (1 — ﬁé)]l{d(.’s)zg}<x) — ]l{d(.75)<5}(.7}), forall z € aB(.TO,’F], S € [t, t+ h]
3.if (x,s) € B(xg,r| x [t,t + h] satisfiesi(z, s) > 34, then

lim inf, <m> > —0.

e—0t

The proof of this lemma follows combining the ideas in thegfsoof Lemma 3.1.8, Lemma
3.1.5and Lemma 3.3.3. O

O

3.3.2 Comparison principle for the second order equation

We conclude the Chapter with a comparison result for thetemua
uy(z,t) + a(x)|Du(x, )| + F(Du(z,t), D*u(x,t)) = 0, (3.62)

whereF : R™ x §" is the standard mean curvature term

Fp,X) = —t](I — -2 o 2yx]

Il ~ Ip|

and the first order term satisfies the following assumptions.



(al) a:R" — [pa, +00) is a bounded measurable function, piecewise Lipschitzicoots across
an hypersurfacg that partitionsR”™ asR™ = Q~UT'UQT with Q* andQ~ open and disjoint.
Moreover there exist, ~ > 0 and a unit vector; so that

B(y % tn, ct) C Q* foranyy € B(&, h) N O ,t>0andieT. (3.63)

Finally « is locally Lipschitz continuous irR"\f“ with Lipschitz continuous extension in
QF = QT UT (calleda) and inQ~ = Q™ UT (callede,) and it satisfies.

inf a > sup «
O+ -
and
a(z) € [ay(z), ()], forallz eT.

Remark 3.3.7.We just notice that the assumption (3.63)lois satisfied whei is the global graph
of a Lipschitz continuous function with Lipshitz constamaller thanl /c.

We now state and prove our comparison result for the equéi@?2) in{2 x (0,7), with 2 an
unbounded subset &". The techniques used in this proof are a mixed between tlas ioleChen,
Giga and Goto to treat the singularity of the mean curvaemainp = 0 (see [18] and [31]) and the
techniques developed by Soravia to prove the uniquenesisaisity solutions for discontinuous
Hamilton-Jacobi equations.

We denote witH2; the open se2 x (0,7"), and withd, (2, its parabolic boundary, i.€),Qr =
Qx {t=0}U0Q x[0,T].

Theorem 3.3.8.Let (2 be an unbounded open subseRdf Fix 7' > 0 and suppose that satisfies
all the assumptions iiiwl). Consider two functions, v : R™ x [0,7], respectively an upper
semicontinuous subsolution and a lower semicontinuousrsofution of (3.62) irf)y. Assume
moreover that: is continuous in the direction, i.e. for any poin{z, t) € R" x (0, T) there are two
sequences, = & + en + o(¢) andt; =t + o(§) so that

li ts) = u(a,t 11
(875)1_?(10’0)“(1'87 5) U(ZE, )7 ( )

and that there exists a functian: [0, +o00) — [0, +00) such thato(r) — 0 if »r — 07 and

sup{u(z,t) —u(y, s), |z —y| <e, |t —s| <9, |z| >1/p} <w(e+I+p) (12)



for anye, d andp > 0. Finallyu > —o0, v < oo on 9,2y and they satisfy

lim sup {u(z,t) —v(y,s): |z —y| <9, |t—s| <4 dist((x,1),0,0r) <6,

6—0t

(3.64)
dist((y, ), 3,Qr) < 8, (2, 1), (y,8) € T x [0,T"]} < 0

foreachT” € (0,7). Then
5h%1+ sup{u(x,t) —v(y,s): |z —y| <5, |t —s] <5, (x,t),(y,5) €QAx[0,T]} <0 (3.65)
—>

for eachT” € (0,7).

Remark 3.3.9. The hypotesis in (I1) and in (I12) can be replaced by the amalsgnes fow with
the only difference that has to be continuous in the directiem ( that is in (11) we have to replace
n with —n)

Proof. First of all we notice that thanks to Proposition 1.0.3 we aasume thal” = 7' with u

andv respectively a viscosity sub and supersolution of (3.62) ir (0,7]. We may assume that

u andv are bounded if; and that]| u|«, || v|| < ¢*/2, with c as in(al). Indeed, since, and

—v are upper semicontinuous {&; they are bounded from above. Moreover since the function
Y 1 R — [—c'/2,¢'/2], ¥(2) = ¢'/2tanh(z) is strictly increasing and the equation (3.62) is
geometric alsa = ¢ (u) ando = ¢ (v) are respectively an upper semicontinuous subsolution and a
lower semicontinuous supersolution of (3.62)Ip with || ||, || 7] < ¢*/2. Thus, sincei still
satisfies (11) and (12), it is possible to consideandv instead ofu andv or, equivalently, to assume
that|| ul|se, || v]|ee < ¢*/2. We assume thakt u||s., || v]|s < ¢*/2. Suppose that the conclusion is
false and that

0o := lim SU.p{U(ZlZ',t) - U(ya S) : (l’,t,’y, S) S ﬁT X ﬁT» | (ZIZ' /N S)| < T} > 0;

r—0t

thus alsoM := sup{u(x,t) — v(y,s) : (z,t),(y,5) € Qr x Qr} > 6, > 0, M < ¢*. Then for
a > 0 sufficiently small we have that

o = lim sup{u(z,t) —v(y,s) —at: (v, t,y,s) € Qp X Qp, | (x —y,t —s)| <r} > 0.

r—0t

We fixeda > 0 in such a way to havg, > 0 and we consider another positive constant 0 so
thatu, > 5 > 0. By the definition of, this means that, for any > 0,

Sup{U(l’,t)—’U(y,S)—CLti(.T,t,y,S) EﬁT XﬁTa‘ (l’—y,t—8)| <T} 2B>0



and thus also
sup{u(z,t) — v(y,s) —at : (z,t,y,5) € U x O, | (t —y —ent—s)| <1} = 5> 0

foranyr > 0, ¢ > 0. Therefore we can conclude that

fio i= lim sup{u(z,t) = o(y,s)—at : (w,t,,5) € Uy x O | (1 =y —em,t—s)| <1} = B> 0.

r—0+t

For any pair of fixed parameters § > 0 we now define if2; x Qr a functionw’ as

) oAl T el

liz—y 4 1t—8‘2

W (x,y,t,8) :=u(x,t) —v(y,s —at, o=1(g0),¢,d>0,

and, for anyr > 0,

pn(r) = sup{w’(z,t,y,5): (v,t,y,5) € Qr x Qp, |z —y —en| <7}
< sup w’ =:0.
ﬁTXQT
Observe that;; andy¥ depend orr and that lirgl+ u1(r) > fip uniformly in o. This means that there
_>
existsr; > 0 independent of such that

pp(r) > %, forr € (0,7r).
By the hypothesis (3.64) on the valuesiodindv on the boundary there is > 0, r, < r; such that
sup{w’(x,t,y,8) : (z,t,9,8) € 0,07 x Qr UQr x 8,07, | v —y, t —s] <.} < %.
Sincew? (z,t,y, s) > 0 implies
|z —y—en| < MY <ece, |t—s| < MY?,

we can find a pait,, , > 0 so that, forany < ¢,,0 < 6,, if w(z,t,y,s) > 0then|(z—y,t—s)| <
r.. Therefore we observe that, by the choice ofif w?(z,t,y, s) > fip/2 ande < gy, < do, then
(x,t), (y,s) € Q x(0,T).

Case 1.There exists a sequeneg— 07, ¢; < g, such that for each > 0 andr € (0, r,) there
isad, = d6,(j) so thatd(e;,d,) = i (r;ej,6,) andd, — 0F asr — 0F. We first fixe; < g, and



r € (0,r,). By the definition ofu; there exists a sequengér,,,, t., Ym, Sm)} such that

|xm_ym_5jn|§fr

1
wa(xma tmayma Sm) 2 ﬁ(gj? 57“) - -
m

Therefore there exists a subseque{(@s,, . tm, , Ym, > Sm, ) }r SO that(t,,, , sm, ) — (,5) andz,,, —
Ym,, +€51 — w; ask — 400, with |w;| < r.We omit from now on the subindéx We now consider
the functions

¢+($at) = u(x7t> - 90+<$7t)

T — UYm 4
o) = ) 4]
€j

t— Sm

Oy

—~

2 N
‘ +at+ (t =12+ |z — ym — e5m — w;|*

Let (&, Tn) be @ maximum point for™ in Q7. This implies

¢+(xmv tm) < ?/)+(€m, Tim)

and thus, if we subtraet(y,,, s,,) from both sides we obtain

W0<$matmaymu Sm) - (tm - £>2 - ‘ Tm — Ym — &5 — wj|4 <

< W (Emy Tons Yy Sm) — (T — )2 = | Em — ym — €1 — wy|*. (3.66)

Since by the definition of, w’ (&, T, Yims Sm) < U(g;, 6,) this becomes

A

‘ Em — Ym — &4M — Wj|4 + (Tm - t)z < 19(53'7 5r) - w”(mm,tm,ym, Sm)+
+(tm — f)z + | T = Ym — €N — wj|4

< +(tm_£)2+‘xm_ym_5jn_wj‘4

1
m
and so als&,, — ym — ;7 = wj, T, — t asm — +oo. Moreover since: < r, < r, and

V(ej, 6r) = pa(r;€4,9,) > 3fi,/4 the inequality in (3.66) becomes

R 1 BITR
w(T(gmuTm?ym? Sm) + (tm - t>2 + | Ty, — Ym — €57 — Wj|4 2 79<6j757‘) - 2 a

1
m 4 m
Thus form large enoughv® (&, 7oy Yy Sm) > fio/2 @and SO we gete,,, 7 ), (Ym, Sm) € 2 x (0, T7.
Using the fact that is a viscosity subsolution of (3.62) in x (0, 7] we have

Tm — Sm

i (Emi Tm) = <+ 2mm =) +0 <0



if, up to some subsequenég — y,, + ;7 = 0, and

@j(&m, Tm) + (&) D@+<£mv7—m>| + F(D‘P+(£mv7—m)a D290+(£m77—m>> <0

if &, — ym — €;m # 0 for m large enough. We send to infinity to get

~

t—3s
52 +a<0 (3.67)
if w; =0, and
t—38 . + ‘Wj|2
0 > —=+a+limsup(e.(&m)| D™ (&m, T)|) + —7—F(wj, In)
57“ m—+oo S — Ej
L g Pe? ) (3.68)
>t—$+a+p | wj Jr(1_7,L)|Wj|
-2 ¢ el &5

if w; # 0. Similarly, if we consider the functions

’QD_(:L',t) = _U(y> S) + (p_(l’,t)

_ Tm — Y 4
¢~ (1) :_‘ —n‘ —‘
€5

tm — S|2 R
| = (=9~ |am —y — e —wyl’

and we denote withi¢,,,, 0,,) @ maximum point for)™ in  x (0, 7], with an argument similar to
the one fory™ we getz,, — ( — ;0 — wj, 0 — § aNd (G, o) € Q x (0,7)]. Sincev is a
supersolution we obtain

tm —Om A~

©r (Gmyom) = 52 +2(5—0pm) 20

T

if, up to some subsequeneg, — ¢, — ;7 = 0, and

@1 (Cms Om) + & (Cn) | D™ (Gns Om)| + F (D™ Gy 01, Dz‘P_(Cma om)) 20

if z,,, — G — g;n # 0 for m large enough. As: goes to infinity we find

0< 52 (3.69)
if w; =0, and
t—3 | w;]? | w;|?
0< 72 + |l allo 8% +(n—1) &é (3.70)

if w; # 0. If w; = 0 the inequalities in (3.67) and (3.69) immediately yield atcadictiona < 0.



If insteadw; # 0 we have to combine (3.68) and (3.70) to obtain

’ |Wj|2

1 -

|wj|

a< 1
J

(I elloe = pa) +2(n = 1)

9 9

.

To conclude we notice that; depends om; more preciselyw;| < r and so we send — 07 to get
again the contradictioa < 0.

Case 2. For sufficiently smalk, let's saye < ¢, there are. € (0,7,) andé. > 0 such that
V(g,8) > pi(re; e, 0) for any§ < 6.. We define a functiol,,, in Qr x Qr as

Voo, t,y, s) = w(z,t,y,s) — p(| 2> + ] y|?)

with p > 0. Obviously¥,, attains a maximum at some poiat’, t°7, y°*, s°”) € Qr x Q. Since

sup ¥, , T ¥(o)asp — 07 we can find g, = po(c) > 0 so that
ﬁTXQT

sup Wo, > fip 1= f11(7c; €, 0).
ﬁTXﬁT

foranyp < po. ThusW,,(x7”,t77, 47", s7) > e > 3fip/4 and so(x””,t77), (y°”, s77) € Q x
(0,T]. Moreover since
W (xP 17P Yyl s7P) > W, (27, 7Pyl s7P) > pa(re;e,0) >0 (3.71)
we get, by the definition gf,;,
| 277 — y7P —en| > r.

and, by the strict positivity ofiq,
277 =y —en| < (Jlullot[[0]lec) e < cg, 177 =57 < (|Jufl oot [|v]]o0) /20 < €20, (3.72)

Finally we observe that, singe< W, , (277,17, y7”, 577) < || ulloo + || v]|oe — p(] 27| + | y7?]?),
then
p(| 7| +|y°?]) = 0 asp— 0F. (3.73)

We denote withkt and( the pairs(x, t) and(y, s) respectively, and we define the functipras

liz—y 4 11t—s52
=4 +al 5T

Since the mayz, t, y, s) — u(z,t) —v(y, s) —at—p(x,t,y,s) — p(|z|*+|y|?) takes its maximum



overQr x Qp at (277,17, y*,5°?) € Q x (0,T] x Q x (0, T], we get
D
((57)4) € 12 (u(e) = v(c™) = at™ = p(| 272 + | y7]%)),
D¢y

where
e ( Deep Degyp )
Diep Dicp, )
Dep = Dep(€9°,(°%), Dep = Dep(€°7,¢°F) and so on. Now we apply the well-known Theorem
on Sum (see [20] and [19]) that tells us that for every 0 there exist two matrice¥°”, Y ¥ € §"
such that

(a4 (€77, C7P), Dap(£77,(7P) + 2pa”° X + 2pl,) € P (2P, 1°°)

o o o o o o 2= o o
(_()08(5 p’C p)’ _DyW(g va p) - pr P7Y P— 2pIn) eP 'U(y p7$ p)

and
1 X 0
—(X 14} 1 < < oy ) < Ag + M43, (3.74)
where
D? D? B —-B
AO — S;ZCSO gygp — ’
D,.¢ D,,¢ -B B
op|2 2 op __ ,,0p
B:|p€2|l+€_2p0p®pap’ pap:«T gy — .

Moreover if we compute explicitly the derivatives gfwith respect tar andy we see that

1
Da:gp(gapv Cap) = _Dygp(gﬁp’ Cap) = g| p0p|2pap.

Now we use the hypothesis thaandv are respectively a sub and a supersolution to obtain

top _ gop
a+ <7s> + . (z°°)

| p°°|?p7°
- ' _|_ 2 ap
02 € P

| p7PPp7”
+ F<f 4 227", XOP 4 2p[n> <0,

(t"p — 5P

winom| 127D
T)Jra )| ———

€

+ F

| p7P?p7°
9P <7
py .

—2py°? YP — 2,0[n) > 0.



Since the hamiltoniad’ is elliptic and (3.74) impliesX°? < Y°” we thus get

op|2,,0p
a< a*(y"”)‘ ki v i 20y°*
9

op|2,,0p
_a*(xap)‘ | p7P?p
£

+ 2p2°P| +

~~

A

Tp|2,,0p
F<u_2py0p7){op_2pln> o

| p7P2p7P
: ("

+ 20277, XOP + 2,01n) . (3.75)

-

B
To get our contradiction (and to conclude the proof of ourdreen) we want to sengto zero. We
start with the analysis of the second tefinFirst of all we observe that, sinee/c < | p??| < ¢,

then
p’? —p° asp— 0", (3.76)

with r./e < | p?| < c. As it concerns the matriX ??, (3.74) implies that| X°?|| < || Ao| +
M| A2|| + 1/); therefore to get a bound fof 7 we need a bound o,. Some easy computations
show that 6 6
| Aoll <211 BIl < 51 <

and thus 6 % 1

XP <=4+ A—+—.
XN < S+25+5
Since we have obtained an estimate|féi°”|| independent from we have that there exists a matrix

X7 sothat]| X7|| < 6/¢* + A36/¢* +1/) and
Xor 5 X7, asp—0F. (3.77)

Using (3.73), (3.76) and (3.77) we can claim tiffagoes to zero ap — 0*. As it concerns the
behaviour of tems ind asp goes to zero we notice that
1 — 15 *(p, 0P op |pop|2pcrp
limsup A = limsup[(a”(y7”) — a.(z?))| —

p—0t p—0t
| 7P
€

— 2py°?|

o) _ | | p??Pp7P

+a(z77)(] 20y — 2pz°”])]

< lim Sup[(a*(ygp) — a*(xcrp) )‘

P71+ 2] alll o3l | + L2 D]
p_>(]+ €

< lim sup (O‘* (y7*) — o ($0p))

op |3.
p_>0+ £

|p

To conclude we notice that the usual bound|§s¥ |, | p°?| < ¢, impliesy®? € B(z°" —en, ce). Thus



by the definition ofy and fore small enough, we have that,4f” € 2~ U T then alsoy°” € Q.
This means that, it?” € Q= U I" we can use the Lipschitz continuity of in Q~ U I" to get

|y — x|
—1p

limsup A < limsup L,
p—0+ p—0t

P13 = limsup La| p°° + || p°*|? (3.78)
p—0+

If 27 € Q1 we have to distinguish whatevgt” ¢ QT UL ory”” € Q. Infact in the latter situation
we haven*(y7?) = a(y°?) < a(z°?) = a.(2°?) that immediately gives us a contradiction in (3.75)

asp — 0 since it implieslim sup A < 0. Instead ify?” € Q* U T’ we use the Lipschitz continuity
p—0t

of a*in Q" = Q" UT to obtain again the inequality in (3.78). Therefore to gebatadiction in
(3.75) inthe cases”” € O~ UT, y?? € O~ andz” € QF, 477 € QT UT we need to prove that the
right hand side of the inequality in (3.78) goes to zera@ as 0"; to do this it is enough to prove
that

lim lim | p?] = 0. (3.79)

=0t p—0t
We have to differentiate three cases.
CASE 2.A There exists a constaat > 0 so that| 77| < C for ¢ andp small enough. This means
that for anyo > 0 there exists a sequenge = p;(c) — 07 so that(z?%,¢7%7,y7Pi s7P7) —
(x7,t%,y%,s7) asj — +oo. Since| 27| < C, |27 —y —en| < e and|t? — s7| < ¢ we can find
another sequenes, = (¢4, 0;) — (07,07) so that(x, 17 y7*, s°%) — (&,t,2,1) € Qr x Qr as
k — +oo. We omit from now on the subindexg@ndk. By the definition of(x”,t77 y7°, s77),

~

W, , (27,17 4P s7P) > W, (& + en, t, &, 1),

and thus

| p7?|*

lim lim sup < lim limsup (u(z?”,t77) — u(Z +en, i)+
o—=0t o+ o—=0t o+
+0(@,8) = v(y™, ™) + at = t7) + p(| & + | & + en?)).

Sincea(t — t°°) andp(| £|* — | # + en|?) goes to zero agando — 0T we get

| pP|*

lim lim sup < lim lim sup <u(x"”,t"”) —u(@, 1)+
oc—0t p—0+ oc—0t p—0+ ~ ~ -

(a)
+u(2,t) — u(@ +en,t) + (2,

J
-~ ~~

(0) (c)

Using the upper semicontinuity afin the term(a), the lower semicontinuity of in (¢) and (I11) in



(b) we can obtain (3.79) from this last inequality.

CASE 2.8 For anyo > 0 there exist two positive constant§ (o), Cz2(o) so thatCy (o), Ca(o) —
+oo aso — 0T andCy (o) < | 27| < Cy(o) for anyp > 0 small enough. This means that there
exist two infinitesimal sequences = p;(o) andoy, so that for any > 0 (277,777 y7Pi s7P1) —
(z7,t7,y%,87)) asj — +oo and| z°%|, | y™| — +o0, t°%, s — t ask — +oo. Again we omit
the subindexeg andk and we use the definition 0£°7, t°?, 477, s°7) in order to obtain

‘I,Up(xap’tap’yap’ Sap) 2 \I;Up(ya + 677, Sa,ya, SU)

and
0p‘4

4

L < u(x??t°P) —u(y® +en,s7) + v(y?,s7) — v(y’”, s°P)+

+a(s” =)+ p(ly” +enl* + [y7]%).
If we add+u(z?,t7) to the right hand side this implies that

op|4
lim [P < lim sup (u(m"p, t7P) — u(z?,t7) + u(z?,t7) — u(y’ +en, s7)+
p—0t 4 p—0t
vy, 87) = oy s7) + (s = ) + plly” +enl? + |y )
< limsup (u(z?,t7) — u(y” + en, s7))
p—0t 1

<wle+d+ Cl(a))

where to obtain the last inequality we have used (12). Takiegimit asc — 0% we obtain (3.79).
CASE 2.c There exists a sequen¢e;); so thato; — 0" asi — +oo and for anyo;, p > 0 we can
find a constant’,, (p) such thatz?*| > C,.(p) andC,,(p) — +oo asp — 0. Obviously this means
that for anyi > 0 there exists another sequer(gé); such thap!” — 0 and| 277" | = too as
j — +o0. By (3.72) we can assume that’"#7 — t°i%i| — 0if i, 7 — +00. We omit the indexes j
and we obtain, as in the previous cases,

\IIUP(xap7 tap’ yap’ Sap) 2 \IIUp(yap + 5777 Sap’ yﬁp’ Sap)

and so, since satisfies (12)
op|4

4

< (P, 17) — u(y’ + en, s7°) + a(s7 = t7°) + p(| y7* + enl* — | 27|?)

<w(Ee+d+ )+ a(s™ —t7°) + p(| Y7 + en|® — | z7°).

1
Cy(p)



We sends, p — 07 and we obtain{3.79) also in this case. O

Example of solution that satisfies (12)

Assume that,, € UC3(R") for somes € R, i.e. ug — § is a uniformly continuous function with
compact support ifR", and thatuy(z) > 5 for anyxz € R". Let R > 0 so thatuy(z) = j for
any| z| > R. In this section we want to show that,ifis a viscosity solution of (3.62) such that
u(x,0) = ug(x), then

u(z,t) =5, forany(z,t) € R" x [0,+00), |z| > R

and thusu satisfies (12).
Consider the function : R" x [0, +00) — R defined as

M

w(w,t) = qp(m

(B = | af?) = Mt + 3)
wherey) : R — [§,4+00), ¥(r) := rV gandM > 1 is a constant that we will choose in a right
way. A simple computation shows thatis a solution of the mean curvature equation and then a
supersolution of our equation (3.62). Sineger, t) = 5 if | x| > R we can choos@/ small enough
to obtainw(z, 0) > ug(x) for anyz € R™. Obviously also the function = 3 is a solution of (3.62)
andv(z,0) < uy(z) for everyz € R". Sincev andw satisfy the hypotesis of Theorem 3.3.8 we
obtain

B =uv(z,t) < uzrt)

and
u*(z,t) < wl(x,t).

Combining this two inequalities we can conclude that, t) = 5 for any| z| > R, t > 0.



Chapter 4
Degenerate Asymptotics

Leto™, ... o™ € C*(R",R")nW>*>(R", R") be a family ofm vector fields orR™ with m < n.
We define the so-callgabrizontal gradienobf a C*-functionh as

oW (z) - Dh(x)
Dyh(z) := o'(z)Dh(z) = : e R™, r € R",
o™ (z) - Dh(z)

wheres = (o;1,)i € C*(R", R™™) N W23 (R", R™*™) denote the matrix map with'", ..., 5™
as columns, i.e.

o= [0(1), ce ,U(m)].

Similarly we define also thiorizontal Hessian matrigf , D2 h(z), and thesymmetrized horizon-
tal Hessian matrixof h D% h(z) by putting

D3h(x) = Dy(Dygh(x)) = (o (2)D(0(x) Dh(x)))
cWV(z)D(eW (z)Dh(z)) -+ oW(z)D(c™ (x)Dh(z))

o™ (2)D(cW(2)Dh(x)) --- "™ (2)D(c"™ (z)Dh(x))
= o'(2)D*h(z)o(z) + o' (z) D(c" (z)) Dh(z)

and . .
D% h(z) + D% h(z)

Dh(w) = (Dyh(a))” = :

85



where, o' (z) D (o' (x)) Dh(z) denotes the following (non symmetric) matrix

ot (x)D(c'(z))Dh(z) = (a<i>(x)p(a<j>(x))ph(x))

Z7j:1 7777 m

_ ( zn: o (g;)(axkg;”(x))émh(x))

k=1

ij=1,....m
We define a matrix mag(-) € C*(R", S") N W*>*(R",S") as
A(z) = o'(z)o(x), foranyx € R".
Clearly A satisfies the following conditions,

foralli,j, k € {1,...,n}, a;;, a;j -, are bounded and continuous BA, 4.1)
A(z)q-q > 0forany(z,q) € R" x R". (4.2)

Moreover
tr(Dyh(x)) = tr(Dih(x)) = te(A(x) D*h(x)) + tr(o' () D(o* (x)) Dh(x)).
Reaction-diffusion equations of the forms
il t) — Ag(a,t) + f((x,8)) =0, (2,1) € R" x (0, +00) (4.3)

arise naturally in a lot of mathematical models, such as el@nsition, flame propagation, etc.
In most of these applications one can observe, for largestirtiee development of fronts as the
boundaries of the regions where the solutipf (4.3) converges to the stable equilibria of the
cubic f. Formal results of Fife [28] and Caginalp [11], [12] and [EBow that the fronts propagate
with normal velocity

1 1
V:a+¥m+0<t—2>, > 1, (4.4)

wherea = 2my — my, — m_, withm_ < mg < m, zeroes off, andx denotes the curvature of
the front. Barles, Soner and Souganidis give a rigorougfigegion of this result when the cubic
function depend also by the variableg (i.e. f = f(q, x,t)). To obtain the first term in (4.4) one
has to consider the equation in (4.3) with the scaling'z, s~ 't). If « = 0 one has to go to the
next time-scalinds 'z, £~2¢) in order to obtain the second term in the expansion of thecitgld”

in (4.4). This means that one has to consider the equation

N f (<b(:, t))

65 (2, t) — A (1) 0,



whena # 0, and

£ £ f ¢ x7t
it 0) — Age(a ) + TOED g
whena = 0.

In this chapter we would like to replace the standard Eualidgerivatives with the derivatives
along them vector fieldso4, . . ., 0,,,, that is we would like to study the asymptotic behavior of the
solutionsu® of the Cauchy problems for the following reaction-diffusiequations

(1) — e te( D2 (1, 8)) + L0 f D) _ o inR® x (0, +00)
and (.t
us (z,t) — tr(DHu (x,t)) + W =0 IinR" x (0,4+c0),

where the mag — f(q) is a cubic-type linearity such that

f € C*(R) has exactly three zeroes_ < m, < m..,
f(s) >0in (m_,m,) andf(s) < 0in (m,, m4), (4.5)
f'(me) >d >0, f'(m,) < —d<0,f"(m_) <0andf”(my) > 0.

Writing explicitly the trace ofD7,u° we have that the equations above can be rewritten respigctive
as

us(x,t) — e tr(A(z)D*uf(z,t)) — e tr((o' () D (o (x)) Du (2, 1)) + e f(uf) = 0, (4.6)
and
us (x,t) — tr(A(z)D*us(z,t)) — tr((o'(2)D (o (2)) Du (2, 1)) + e 2f (uf) = 0. 4.7)

Since, by assumption (4.2), the matriXx) is only semi-positive definite the equations in (4.6)
and (4.7) do not satisfy a uniform ellipticity condition. d$iwe can’t apply the classical theory of
elliptic equations to get the existence of a smooth solutibthe Cauchy problems for (4.6) and
4.7).

We introduce a Riemannian approximation of the mattiXWe start by defining a matrix map
0. € C?(R", R™min)y A 2R, R™mF1)) « > 0 as

0:(-) = o () e"1.], (4.8)

wherek > 0 and I, denotes the: x n identity matrix. As Riemannian approximation df we



consider
A() = 0:(-)al(-) = A() + %1,

For anyz € R" the matrixA.(z) € R"*" is strictly positive definite, in fact
A(r)g-q=Alx)g- g+ ™ g > | ¢* (4.9)
Moreover

A. — Auniformly ass — 0.

If we put
Dy. = ol(x)D,

)

we have that

bt st 70 ) (i)

Dy h(z) =

D4h(x) | e*o'(x)D?h(x)
" D(o'(x)Dh(x)) | e*D?h(x)

and

_ D} .h(z) + D} h(z)!
= 5 .
The inequality in (4.9) leads us to consider instead of (44Y) the equations

Dy h(z) = (D h(@))*

ug(w,t) — e tr(DF u(z,t) + e f(u®) =0 (4.10)
and
ug(z,t) — tr(Dy us(z,t)) + e f(u®) = 0. (4.11)

We prove that the front that describes the asymptotics @Dj4s governed by
ur(z,t) + c|Dyu(z,t)| = 0.

As it regards equation (4.11) we show, without adding anym@ggions on the vector fields
o1, . .. 0m, that the asymptotic behavior of the solutions of (4.11)egates a front at time= 0. To
prove that that this front evolves according to the "degatemean curvature equation”

Dyu(z,t) - Dyu(z,t)
| Dyu(z,t)| — | Dyu(z,t)]

ug(x,t) — tr [(I — )D%u(m,t}] =0, (4.12)



we need to restrict to the Carnot group of step two.
To conclude we just remark that, for ahye C*(R"), » € R™ ande > 0,

| Dy h(x)]* = | Dyh(x)|* + €*| Dh(x)|* > €| Dh(x)[?,

| Dy ch(z)] — | Dgh(z)|, ase — 0

and
{r €eR": Dyh(z) =0} D {x € R" : Dh(z) =0} = {zx € R" : Dy h(xz) =0}

Therefore in the study of the evolution of a frant— {¢(-,¢) = 0} there can exist some point
x € {¢(-,t) = 0} in which the normal vector is well-defined (i/&p(x,t) # 0) but Dy ¢(z,t) = 0.
Moreover in these points it holds

0 # DH7€¢(JI,t) — 0

e—0t

and so, when we study of the asymptotic behavior of the swiatf the equations (4.10) and (4.11),
we have to choose the exponérthat appears in the Riemannian approximationioh a suitable
way in order to obtain the right rate of convergence.

4.0.3 The traveling wave equation

Thanks to the properties gfin (4.5) it can be shown (see for example [2] and [30]) thatdlexists
a unique pairq(-), ¢), solution of the traveling wave equation

G+cqg=flq) (4.13)

with
lim Q(T) =Mz, Q(O) = M.

r—=+oo

Moreover we assume thatsatisfies the following properties

SUp|(1+ |r)q(r) + (Irl + [Pl (r)]] < +oo

Ja,b> 0such thatqm = My ac \ T oo,
q(r) <m_ 4 ae” " asr — —oo,

and
there exists a constant > 0 such thatj| < Ng. (4.15)



A typical example for the functiorf is

fla) =2(q —m-)(qg —mo)(q — m); (4.16)
in this case we have
o _ _ . my —m_
c=2m, my —m-—, q(r) =m_+ 1+ e~ (my—m_)(r+7)’

_ 1 My — M _ ) _

wherer = In ( ). Moreover the constany’ in (4.15) will be smaller than
my —m-— m4y — Mg

my —me_.

If we linearize around the equation satisfied by the traveling wave we obtain
p+cep=flp)=fla)+ f(@)p—q)
and so, since satisfies (4.13),
P—d+clp—d) = f(a)p—q).

This leads us to consider the linear operator L*(R) — L*(R) defined by

Ap:=—p—cp+ f(o)p,  peL*R),
and, for suitable functiong € L*(R), the inhomogeneous equation

Ap = . (4.17)

Some simple computations show that i 0 the operatorA is self-adjointand € ker A = ker A",
while if ¢ # 0 theng € ker A andq € ker A* with §(s) = ¢(—s) for anys € R. In the sequel we
will assume that

ker A = ker A* = gR

if c=0,and
ker A = R, ker A* = ¢R

if ¢ # 0.
Moreover we also assume that for apy L?(R) such thaty € (ker A*)*, i.e.

/  S)i(s)ds =0, ife=0, (4.18)

[e.9]



or,

/+O° X(s)i(=s)ds =0,  ifc£0, (4.19)
there exists a uniquec C*(R) N H*(R), solution of the equation (4.17) and such that
p(s) = 0, as| s| — +oo (4.20)
and
sup(| ()| + (1 4] sDI (o)) < +00. (4.21)

In the special case
flg) =2q(¢* = 1)
the traveling wave equation (4.13) becomes

i=f(q)

and its solutiory is
q(s) = tanh(s).

Moreover in this special case the solutjpof the inhomogeneous equation (4.17) has the form

p) = i) [ s ([ xmitnin)in

4.1 The first asymptotic problem

As we said at the beginning of the chapter, the first asympfothblem we will consider is the
Cauchy problem for the equation (4.10). We will prove that, i

c=2myg—my —m_ #0,

then the evolution of the front associated with this probleas a first order normal velocity and it
is governed by the following geometric pde

u(z,t) + F(z, Du(x,1) =0, (a,) € R" x (0, +00), (4.22)
wherel" : R” x R” — R is defined as

F(z,p) = c| o' (x)pl.



It is well known that the Cauchy problem for this equation isliwosed. In fact since we
supposed that = (01,),x € C*(R™, R™™) N W>>(R™, R™™) we get that there exists a positive
constantZ, so that

| F(x,p) = F(y.p)| < cLo| =yl p|.

This assures us that a a comparison retiR) for sub and supersolution of the equation (4.22)
holds (see for example [20]). As it regards the existence wbkeosity solution we observe that
equation (4.22) can be rewritten as

rglean{—(ut(x,t), Du(x,t)") - (=1, co(x)b)} = 0, (x,t) € R" x (0, +00),

if c> 0, or

min{—(u(z, 1), Du(z, 1)) - (=1, co(x)b)} =0, (z,t) € R" x (0,+00),

S

if ¢ < 0, where the control seB is the set{b € R™ : || < 1}. This leads us to consider, for
any control functions € B = {5 : [0, +00) — B measurable functignand for anyz € R", the
Caratheodory solution, (-, #) of the dynamical system

{ i(s) = coy(s))B(s)
y(0) = z.

By regularity assumptions anand classical results in control theory (see for exampl®[8posi-
tion 3.12 ch.IV) one can prove that the value functionR" x [0, +00) — R defined as

v(z,t) = [igglfguo(yx(t;ﬁ)), (4.23)
if ¢> 0, and
v(z,t) = sup uo(yz(t; 8)), (4.24)

if ¢ < 0, is (the unigque) continuous viscosity solution of (4.223ttkatisfies the initial condition
v(+,0) = uo(:) € UC(R").

Now we are ready to study the asymptotic behavior of the swiwdf the Cauchy problem for
(4.10).

Theorem 4.1.1.Assume that the matrix magp and the functiory’ satisfy (4.1), (4.2) (4.5), (4.14)
and (4.15). Let: be the unique solution of

{ () ui(z,t) —etr(Df u(z, )+ f5(u) =0 (x,t) € R" x (0, +00) (4.25)

(i) w(z,0)=g(x), ze€R",



whereg : R" — [m_,m,] is a continuous function such that the sBfs= {z : g(z) = m,},
QF ={z:g(x) >me}, Q = {x: g(x) < my} are nonempty and mutually disjoint subset®Rsf
Moreover we assume that the exponkim (4.8) satisfie$) < £ < 1. Then,

my in {u >0},
m_ in {u<0},

ut(z,t) — {
locally uniformly ass — 0, whereuw is the unique viscosity solution of

{ () w(z,t) +clo'(z)Du(z,t)] =0, (z,t) € R" x (0, +00), (4.26)

(i) wu(x,0)=dy(x), z=e€R"

andd, is the signed distance 10, which is positive inQ)" and negative i, . If in addition the
no-interior condition (2.7) for the s¢t. = 0} holds, then, as — 0,

my in {u> 0},
m_ in {u>0},

ut(z,t) — {

locally uniformly.

Remark 4.1.2. For what we said at the beginning of the section we have tleafutiictionu is just
the value functior defined in (4.23) it: > 0, or in (4.24) ifc < 0, with u, replaced by/,.

Before proving this theorem we stop for some preliminaryag. In fact in our proof it will
be necessary to construct, for any> 0, some suitable sub and supersolutions of the equation
(4.25-i) in a neighborhood of a frofiy(-,t) = 0} whereD¢ # 0. Following the idea of Barles,
Soner and Souganidis in [7] we look for subsolutions (suget®ns) ®° of the typed®(z,t) =
q<26({22',t)) whereq is the solution of (4.13) and® is a function to be chosen in a right way. In

order to understand the conditions thahas to satisfy we ask® to be a subsolution of (4.25-i) in
a neighborhood of» = 0} and we obtain

g[zt —etr(Dy.2) +d + 5%[1 — |ot(z) D=2 < 0.
Obviously this last inequality is satisfied if it holds

z(x,t) — etr(Dyy 2(x, ) + ¢ <0

| Dy cz(z,t)| = ‘az(x)Dz(Lt)‘ —1. (4.27)

Let's observe the second condition required in (4.27). langethat, for any € (0,+o0) the



functionz®(-,¢) has to be a solution of the equation
A*(2) Dp(z) - Dp(x) = |o(z) Dp(w)|* = |o" (x) Dp(z)[* + | Dp(x)[* = 1 (4.28)
in a neighborhood of p = 0}. Since{¢ = 0} is compactD¢ # 0 on{¢ = 0} and
A(x)p-p=A(x)p-p+ e pf> > *[p]*>  foranyz e R",

we can apply the method of characteristic to get the existef@ classical solutiop. of (4.28)
having the same sign af. By the definition of4., A. — A uniformly ase — 0" and thus one
could expect that the sequenge). converges (in some sense) to a solution of the equation

A(2)Dp(x) - Dp(x) = |o% (x) Dp(a) > = 1.

SinceA can be degenerate we are not able to claim the existence a$siadl solution of this last
equation providing a problem in the study of the behaviop.ofor smalls. This suggests us to
modify slightly the idea of Barles and Souganidis in [8] andbnsider ag® not p. but a function
of type¢| Dy.4|~'. This choice of:* create additional terms in the computations; in fact

DH,&(QM DH,€¢‘_1) = DH7E¢

= Dpg) T ¢Pnel D) = £1+ 0Dne(| Dueo| ™).

To estimate these additional terms for smatlwill be crucial the choice of the exponeht
Now we are ready to prove Theorem 4.1.1.

Proof. Following the abstract method described in Chapter 2 we edfuo families of open sets
of R”, (})ico,ry and(Q7)sc(o,r) @s in (2.14), (2.15) an®(17) with a.,a = m_, b.,b = m, and
7 = 0. We observe that by the maximum principte. < «® < m_. The proof will be divided into
the usual three steps, initialization, propagation andiumon.

First step: initialization.We want to show tha} = {d, > 0} C Q} andQ, = {d, < 0} C Q2.
Since the proofs of these two inclusions are similar we ohgmsthe first one. Considérc {d, >
0} and findr, o > 0 so thatg(z) > m, + o for anyz € B(z,r). This means that

ua(xv 0) = g(fL’) > (mo + U)]lB(i,r)(x) + Tn—]lB(i,r)C (l’) (429)
Now we introduce the functiof® : R" x [0, 7] — R defined as
®(z,t) =r? — |z — 2|* — Ct, (4.30)

with C' > 0 a suitable constant that will be chosen later. Using thevahg two lemmas it is



possible to conclude thate ) (We omit this proof since it is close to the one in Theorem$.1.

Lemma 4.1.3. Under the assumption of Theorem 4.1.1 we have that for/any 0 there exist
T =7(8) > 0 ande = &(3) such that, for all < ¢ < &, we have

ut(z,t.) > (my — ﬁ)]l{@(.70)25}(1’) + m_]l{<1>(.70)<5}($), xr € R",

wheret, = 7.

Lemma 4.1.4. There existh = h(r, &), 3 = (r,2) > 0 independent of such that if3 < 5 and
e < &(B) A1, then there exists a subsolutiof” of (4.25-i) inR™ x (0, h) that satisfies

wa’B(ZL', 0) < (m+ — 5)]1{@(.70)25}(1') + m_]l{<1>(.70)<5}(1’), r € R".
If moreover(x,t) € B(#,r) x (0,h) and®(x,t) > 343, then
liminf, w*?(x,t) > m, — 2.
e—0t

Proof of Lemmat.1.3. Since the proof of this first lemma is very close to the onesliager 3
and in [5] we only give a sketch. The main idea of this proothattfor = small enough and for
short time the diffusion term in (4.25-i) is negligible, s@iso Chen [16, 17]. Let = x(7,¢&) €
C?([0, +00) x R) be the solution of

{ X(m€) + f(x(1,€) =0, T>0,
x(0,§) =¢

With some simple computations one can see thsdtisfies the following properties
Xe(7,€) >0, in[0,+00) x R; (x1)
there exists, = 7,(5) > 0 such that, for all > 7,
X(E) 2 my =B, VEZm+ o ()

finally, since for anyC' > max{|m_ — mo|, |m+ — my|} we have thay (7, &) € [mo — C,mg + C]|
forall ¢ € [-C,C], 7 > 0, it also holds that there exists a constant . > 0 such that, for any
¢ € [-C, C] ande small enough,

[Xee(T,§)| < Morxe(T,§). (x3)



Now we can define a functioar in R™ x [0, 7] as

u (1) = x (. 0(@(2,0)) - Kt),

whereK is a constant to be chosen later ahgs a nondecreasing smooth functionRrsuch that

m_ if z <0,
¥(z) = me,+ 0 iszﬁ/\%.

With some simple computation it can be easily shown that femitable choice of the constafht
ande small enough.® is a subsolution of (4.25-i) ilR"™ x (0, 7,¢). Indeed, by (1) and (3) we
obtain
u; — e tr(Dfuf) + @ = —Kxe — [(Xee(')* + xe¥")| D@ + xet' tr(A° () D?*®)]
—exet tr(of(z) Dot (x) DP)
<xe(=K +0(g)) <0

for e small enough. Moreover, sineé(-,0) = ¢ (®(-,0)) < u*(-,0) we can apply the maximum
principle in order to obtain®(x,t) < u°(x,t) forany(z,t) € R" x [0, 7,¢]. In particular

ua(x’ 7_05) > Qa(xa 7_05) = X(TOJ/)((I)(:E» 0)) - KTOE)
> X (70, Mo + 0 — KT,6) if &(x,0) > p.

From this last inequality and property%) of x we getu®(z, 7,¢) > m, —f, fore small enough. [

Proof of Lemmat.1.4. For the proof of this second lemma it will be very useful thenial reason-
ing we made above. L&t be the smooth function defined in (4.30) where novs a fixed constant
that satisfies
C > (c+ 1)sup (|Dy®* + [DDP)* > 0. (4.31)
~,h
Since D®(x,t) # 0 if ®(z,t) = 0,t < r*/C, there existy, h > 0 such thath < »*/C and
D®(z,t) #0inthe set)., ; = {|®(z,t)| < v, 0 <t < h}. Obviously this also means that

Dy ®(x,t) #0  forany(z,t) € Q 5, € > 0.

Using the ideas in [8] and [5] we now construct a subsolutiof@ ®5-i) by steps.
1. Construction of a strict subsolution of (4.25-i) in thé &€ ;.



We define a smooth functiari in Q. ;, as

(l’,t) B 25

v¥(x,t) = Q(q) - x,t) — 20,

with @ a suitable function irC*(R x R" x [0, +00); R) to be chosen later. If we puf inside
(4.25-i) we obtain

. ' . ‘
i i) + 1 @Yo 9, 0P 20,0, Dy0) — (D)
~Qu(y,) + 192
’ e
<Lyl
g S
where )
I = _Q|DH,€(I)|2 + f(Q)
I, = Q@ — e tr(D,.®)) — 281(Q) +2I| fjn_mlloc? (4.32)
1. = Q, — etr(D} Q) — 2(Dy-Q, Dy . ®)
If we set
S
t)y=q| =—— 4.33
Qo0 = (i 5—gar) (4.33)
with ¢ the solution of the traveling wave equation (4.13) we fiet= cq(| DS q)‘), with s =
H;e
o — 24
8 )
I = 5 grl=C o+ 20 (A°(@) + 0'(2) D' (2)(x = )] = 267(0) + 21 Ffo_ sl
qJ / " 2
< — -2 2 0o
< (€ + 0E) = 287 (@) + 20 sl
and
1I. =0 — egstr (DF ( ! ) — 5432}17,,,5(#)}2
’ | DH,a(I)| | DH,a(I)|
qs ) 1
— o —— Dy o(———), D .®).
<\ D] 1) (D (Dpoa) Pre®)
With a simple computation we obtain
1 (D% . ®Dy ., Dy D)
D e\T o~ &/ 7D aq) = - ’ : ’ s
< H, (| DH,a(I)|) H, > |DH7€(I>|3



and we estimaté//. in the following way

: 1 | G|s? | ql] sl A | DF .2l
I < —egstr (DY, +e D3, +2( i)
q ( H, (‘ DH’€®‘)) ‘DH,gq)HH H, || ‘-DH’€®‘ q |DH7€(I)|
By (4.14),4| s|| Du®| ™" + | d|(| s|| Du®| ™ + s*| Dy .®|7%) = O(1) and thus
1 15 1
1. < —egste (D () + O +
a5t (Dne(15, 1)+ O 5, a0 * Thase])
< —cistr (D () + O 4270
q ( H, |DH75(I)‘ ) ( )
Since
5 ( 1 ) B _(D?{,afb)z _ A(2)D*(Dy®) - Dy @
e\ Dy @ | Dy @3 | Dy ®|3
4 (D 2Dpe®) ® (D 2Dy e®) ') Do’ (2) D(Dprc®) - Diy @
| DH,:S(I>|5 | DH7<2(I)|3 ’
we get
1 D% 9|? A% (z)| D*(Dy @ Y(z)Dot(z)D(Dy . @
o (Dlng( ))g (n+3)|| 7, ||3 tr(A%(x) | D*(Dp®)| +|o (:2) o'(x)D(DgP)])
’ | DH,s(I)| | DH,E(I)| ‘ DH,s(I)‘

<0< LI )
~ \|DpP? | Dp 9O

where||-|| denotes a generical matrix norm and*(Dy .®) |, o' Do’ D(Dy .®) | are two quadratic
matrices defined as

n-+m

| D*(De®)] = (| (De®)asa, )ijmtm = ([ Y (08 (2) DR(2,1))zz,)] )it

o'Do'D(Dy . ®)| = (|ePDaDD(Dy . ®))iic1
: : J=1,

n+m

= ([Q_ (0V(2) Do (2) D(a" () DB, 1)))*] )i gt con

=1

Again by (4.14), .
c":‘q.S tr (D%{ﬁ(m)) = 0(51—216)7

and thus, sincé < k < 1, we obtain/ll, = O(s"f) andelll. = o.(1). Combining all the estimates



obtained above and using the assumptiordan (4.31) we get

£

q

¢ 1 C
Uf — €tr(D?{’€U€) —+ f(: ) [ (C— |DH€(I)| + 06(1>) - 25f/<Q)+2B2H f|/[/m,,m+} Hoo+ Os(lﬂ

f;%Lﬂ_l*-%(w)—2ﬁqu)+2ﬁﬂ\ﬁﬂlmuﬂu3+og1ﬂ,
and thus, as — 07,

f (%)

£

<

™| =

v — e tr(D ) + [~ 257 + 287 il 0] (@30)

To prove that© is a subsolution of (4.25-i) it remains to see that the rigirdside of (4.34) is non
positive. To do this we recall thgt(m.) > d > 0 andq(r) — m if r — $o0. This means that
there exists ail/ > 0 such that

fla(r)) >

d
2 for any|r| > M,

moreover we can choogesmall enough in order to get

45” f|,[/m,,m+}||00 < d.

Therefore ifM > M, we have that
€‘DH’€(I)‘
c o o, J) 1 ¢ pBd I pd Ad
_ <Z|_1_22 < |22 < 22
v; — e tr(Dyy v°) + —— 5[ 5 5 +0€(1)] < 5[ 5 +o.(1)| < ” <0

2 — 20
H,aq)|
positive constant (which depends bf) so that;(r) > K for any|r| < M we get that there exists

au > 0 so that, fors small compared tdé,

f(v%)
€

for e small enough. Now we consider the ¢ < M; if we denote withK a strictly

<

v; — etr(D} %) + + 28] ']l + 287 f"]| + 0-(1)] < == < 0.

[

1. K
e 2

™=

for 5 small compared withi' ands small enough.

2. Construction of a subsolution of (4.25-i) in the §gt, t) € R" x [0,h] : ®(z,t) < 7}.
Once we have proved that is a strict subsolution of (4.25-i) i@, ;, we define, for eaclir, t) €
{(z,t) € R" x [0,h] : (x,t) <7},

_5< t) sup(vs(x, t)7m—) if —7 < (I)('Tu t) <,
v (T =
7 m_ if Oz, t) < —.



7° is a continuous viscosity subsolution of (4.25-i){ifw,t) € R™ x [0,h] : ®(z,t) < v}, fore
sufficiently small. Thisis obvious in the sgd| < ~} sincev® is the supremum of two subsolutions.
Consider a pointz, t) such thatb(x,t) < —~v/2; by properties (4.14) we have that

¥ + 45 ) _ _b(y+48)
. _ 2 < _ 2¢| Dy Pl __ 2 < _
72€| D0 B <m_—+ae 6<m

vi(x,t) < q(
andv®(x,t) = m_. Thereforeir is a subsolution of (4.25-i) ifi(z,t) € R™ x [0, h] : ®(z,t) < v}
3. Construction of the subsolutiari® of (4.25-i) inR™ x [0, A].
Finally we define our function®” : R™ x [0, 2] — R as

(1) = | V@@ 1) + (1= 9@z 0))(ms = B) if &z, 8) <,
’ my — 3 if D(x,8) > 7,

wherey : R — R is a smooth function such that < 0inR, ¢ = 1in (—c0,7/2],0 < ¢ < 1in
(v/2,3v/4) andy = 0in [3y/4, +00). We show that* is a subsolution of (4.25-i) ilR" x [0, A]
and fore small. The only subset &" x (0, &) in which we have to check that*” is a subsolution
is {(z,t) € R" x (0,h) : v/2 < ®(x,t) < 3v/4}. If we take so that23 < ~/4 we have that
O(z,t) — 26 > v/4,v°(x,t) > my — ae_‘*E‘DbiZLS‘P‘ — 24 andv®(x,t) = v°(z,t). We obtain

Wi — e tr(D3y ) + L) < (@, — 2 ta(DR,0)) — 20| Dy B0 — (my — )

f(w=?)
€

+ (0§ — etr(D 7)) — 260/ (Dpr,e®, Digov”) + (4.35)

Since by definitionp® — (m, — 5) < —f3, f is convex in a neighborhood ef, andv* is a strict
subsolution of (4.25-i) ir)., 7, the inequality in (4.35) becomes

i = eur(D ) + L) < _ourer - (my - )+ 0 (v — e (0309 + L)
o)+ (1 -yl =P
< —Wg(m +0@) +(1 _@M

:_ggﬂwy+u—wx—ﬂm+—m0+wxa

~

— _% + O(e) <0, for s and there small enough

In the last chain of inequalitie®(5) = u A 5d/4 and in the last line we have used the fact that the
term inside the bracket is strictly posive since it is a cors@mbination of strictly positive terms.
4. Proof of the estimates far"’(z, 0), 2 € R”. Now we observe that ifz,t) € Q. ; satisfies



d(x,t) < B, then

e| Dy O (z,t)|

b
ve(x,t) < q( —2B8<m_+ae P — 28 < m_

for e small enough. This means that for apy¢) € @, ; it holds

ve(x,t) < (m+ — 5)1{@26}(1’,0 + m_]l{q><5}(x,t),

for e small enough. By definition af and ofw®” this inequality still holds for® andw®* in their
domain of definition. If we takeé = 0 we have proved the second part of the lemma.

5. Finally we just remark that, with a reasoning similar te time in point 4., one can prove that
if (z,t) € B(2,7) x (0,h) andy > ®(x,t) > 343, then

€ 5 _5675)
v (z,t) > Q(m) —2B8>my —ae TPHST — 20,
Hencelim inf, w™’(z,t) > m, — 28 forany(z,t) € Q. ;. 0

e—0t

Second step: propagationn this step we want to show thé®, );cor) and ((€2))icor) are
respectively super and subflow with normal velocity’ with F' defined as

F(z,p) = clo’(z)p]*.

Since the two proofs are similar we’ll do only the one o )ic(o.1)-
Letxy € R", t € (0,7),r > 0,h > 0sothatt + h < T. Suppose thap : R" x [0,7] — Ris a
smooth function such that, for a suitaldle> 0,

(i) ¢¢(x, s) + clo(z)Dp(x, s)| < —C < 0, forall (z,s) € B(xo,7] x [t,t + h],

(i) forany s € [t,t + h], {z € B(xo,7] : ¢(x,s) =0} # 0 and

|Dé(z, s)| #00on{(x,s) € B(xg,r| X [t,t+ h] : ¢(z,s) = 0},
(iii) {z € B(wo,7] : ¢(z,t) > 0} C O,
(iv) forall s € [t,t + h], {x € OB(xo,7] : ¢(x,s) > 0} C QL.
We have to show that for evesye (t,¢ + h),

{x € B(zo,7] : ¢(x,5) >0} C QL.

Using the assumptions and the definition(ﬁﬂ)te(o,T) this is equivalent to prove that for anye<



B(xg,r), s € (t,t + h) such thatp(z, s) > 0, we have

li;g(iﬁlf* u(y, 7) > my (4.36)
for (y, 7) in a neighborhood ofz, s) where, for any: > 0, v is the solution of the Cauchy problem
(4.25). This proof proceeds like the one of the first step whth difference that here we have to
construct a subsolution of (4.25-i) only in the b&l(x(, ) and not in the whole spad®”. In fact
to prove this result it is enough to prove the following lemwtzich plays the role of Lemma 4.1.4
in the first step.

Lemma 4.1.5.Let ¢ be a smooth function as above. There existsmall enough such that, if
B < B ande < &(B) then there is a viscosity subsolutiaft” of (4.25-i) in B(xg,7) x (t,t + h)
that satisfies,

1. waﬁ(x t) < ( ﬁ)]l{(b( )>5}(£L') + m_]l{¢(.,t)<5}(x), forall z € B(:L'Q,T’],
2. wP(z,8) < (my—B) g s)sp (T) +m_Lig.9<p(x), forallz € 0B(xo,r], s € [t,t+h],
3.if (x,s) € B(xg,r] x [t,t + h| satisfiesp(x, s) > 33, then

lim inf, ws’ﬁ(x, s) > my — 30.
e—0t

We assume for the moment that Lemma 4.1.5 holds and we pra®@)(4in fact if ¢(z,t) >
B > 0 then, by property (iii) ofp, » € O, i.e.

liminf, u®(x,t) > m, — .
e—07t

This means that there exists an, = <,,(5) > 0 such that, for alk < ¢, ,, (v,7) € B(x,e,4) X
(t—ezt,t+e21), we haveu®(y, 7) > my — 5. Thus, by the compactnessfof € B(xz,,r]: ¢ > 0}
we can select afn > 0, possibly depending only o, so that, for alk < £, andz € {x € B(zo, 7] :
o(-,t) > B} we haveu®(x,t) > m, — 3. Therefore

ue(x,t) > (m+ — ﬁ)1{¢(.,t)25}($) + m_]l{¢(.7t)<5}(x).
foralle <&,z € B(xo,r]. Inthe same way we can also obtain that,f@mall enough,

u(x,8) > (my — B)Lis(.026 () + m_Tig 5)<py(2),

for any(z, s) € 0B(zo,7] X [t,t + h]. Combining these inequalities with those in 1. and 2. in the
statement of Lemma 4.1.5 we can conclude, by the maximurgipte) that

W (x,5) <u(x,s), forall(x,s) € B(wg,r] x [t,t+ h].



Moreover by property 3. ab** in Lemma 4.1.5,

liminf, u(x,s) > my — 303

e—0t
for every(z, s) € B(xo, ] X [t,t + h] such that(z, s) > 3. Sinceg is arbitrary we can now send
[ to zero in order to obtain that

liminf, u®(x,s) > m4
e—0t

if (z,s) € B(zo,r] x[t,t+h]andg(x, s) > 0. Finally we remark that, i§ € (¢,t+h), x € B(xg, )
ando(z, s) > 0 we have that(y, 7) > 0 in a neighborhood ofz, s) and thus (4.36) is proved.

Proof of Lemma 4.1.5The proof is similar to the one of Lemma 4.1.4 and we just giomipout
the main changes. First of all we observe that sineatisfies property (ii) above we have that there
existsy > 0 such thatD¢(z, s)| # Ointhe set)., = {(x, s) € B(xo,r] X [t,t+h] : |¢p(z,s)| < v}
Obviously this also mean®y .¢(x, s)| # 0 for any (z,s) € Q,, € > 0. Asin Lemma 4.1.4 we
construct our subsolution by steps and to do this we first defifunctionv® in @, asv®(z, s) =

-2 . . .
Q(M,x, s) —20. Let(z, s) € Q.; with the usual computations it turns out that

c I. Il
vi (z, s) — e tr(Dy 0% (2, 5)) + M = + — + 1.,

wherel,, II., III. are exactly the same terms defined in (4.32) witreplaced by). We put

QUo.r.5) = a5

in (4.32) and we get
I. =cq

and

< — L [-C— | Dud| — e te(D3.0)] — 26(a) + 2] "1 5°
|DH75¢|

where( is the constant that appears in (i). As far it concerns thmsen I77. we proceed as in
Lemma 4.1.4 with the only difference that now we can’t claimatt), is null. Anyway,

0o =5 05) =0, ) 06

and thus also in this case

B 1 1 1 _ 1-2k —ky _ —k
1. = O(£<| Pl DH7£¢|)> + 0(7| DH7£¢|) — O + O(=™%) = O(=").



Since| Dy .¢| — | Dy¢| uniformly in @.,, we have

v; — etr(D} %) +

ff) 114 5
= =:paal- CMQDH@@T;'DHMZ_

—=tr(D}.0)) =285 () + 20| "8 + 0. (1) (437)

1 qC / "
[_ A Do 268 (q) + 282 || + 05(1)}

€
for e small enough. To prove that the right hand side of (4.37istBt negative we proceed like in
the proof of Lemma 4.1.4. In fact, singgm4) > d > 0 andq(r) — m.+ asr — +oo, there exists
an7 > 0 so that

fla(r) > 2. forany|r| >

Thusiif|¢(z, s)—208| > 7e| Dy ¢(z, s)| and we choos@ small enough in order to gég|| /|| < d,
we have

F°) }( ¢C__pd
€

'Uf — EtI‘(D?{@Ua) + - m - 7

for e small enough.
If instead| ¢(z, s) — 25| < 7¢| Du-¢|, we denote withil' = K () a strictly positive constant so
thatg(r) > K > 0for any| r| < 7. If we assume that satisfies

ke

261 'l + Il £l +1) sup [| Dug(x,s)]* + | Dé(z, )"/ < ==,

(z,5)€Qy

then the inequality in (4.37) becomes

: 1 KC
if = eu(Dh )+ L < 2o B o) 2] )+ o)
< (=28 +0.1) < -5,

for £ small enough compared with fixed. Now that we have proved is a strict subsolution of
(4.25-i), the extension af° to a global subsolution®” in B(z,,r] x [t,t + h] and the proof that
such a function satisfies 1, 2, 3, is similar to that of Lemniad4and we omit it. O

Once we have proved the first two steps (initialization aroppgation of the front) the proof of
Theorem 4.1.1 follows immediately using Corollary 2.2.3
O



4.2 The second asymptotic problem: the degenerate Allen-Qa
equation

In this second section we consider the asymptotics of th&isak of the Cauchy problem for the
equation (4.11). To be more precise we consider the behésar — 0) of the solution of the
Cauchy problem

{ () wuf—tr(A°(z)D* + o' (x) Do’ (x) Du’) + W) — 0 inke « (0, +00), (4.38)

2
(i) u(z,0)=g(xr) INnR", )

where the exponerit that appears in (4.8) is a fixed real number so that £ < 1/3 andg is
a continuous real function iR" which takes values ifin_, m.]. Moreover we suppose that the
zeroes off satisfyc = 2m, —m, —m_ = 0.

We study the limiting behavior as— 07 of the solutions:® of (4.38) only in the framework of
Carnot groups. To be more precise we will show th&t'ifcan be endowed with a particular group
law so that(R", o) is isomorphic to a Carnot group of step two and we define twansg2' and
0? asin (2.14) withu, = @ = m_, b. = b = m, andr = 1, then the front that separat@s and()?
evolves according to the geometric pde

wy(z,t) + F(z, Du(z,t), D*u(z,t)) =0, (x,t) € R" x (0, +00), (4.39)

whereF : R" x R" x 8" — R is defined as

T)p ® Ut(x)p)} .

= —tr [(o"(x)Xo(z) + o' () Dot (x _ o
F(r.p.X) = ~tr [(0'(2)Xo(a) + ' ()Dao" (o)) (T = T s

(4.40)

We start the section with some preliminary definitions arsiiits about Carnot groups.

4.2.1 Carnot groups

Let o be a given group law oR"™ and suppose that the maps
R"xR" > (z,y) »zoy € R"

and
R'sz— a2 'eR?

are smooth. Thet¥ := (R", o) is called aLie group onR" . To make the notation simpler we shall
assume that the origihof R" is the identity ofG.



We say that the Lie groupr = (R",0) is ahomogeneous (Lie) group dR" if there exists
ann—uple of real numbers = (0y,...,0,), with1 < o4 < --- < 0, so that the dilatation
R = R™, 0x(x1, ..., 2,) == (Axq,...,\"x,) is an automorphism of the groudp for every
A > 0. We shall denote by = (R", o, §,) the homogeneous Lie group @& with composition
law o and dilatation{d, } x~o-

Leta € G, we denote by, : G — G, 7,(x) := a o x the left translation byx on G. A vector
field X onRR" is calledleft-invarianton G if

X(p(7a())) = (Xe)(7a(2))

for everyx € R", o € G andp : R" — R smooth function. We denote hythe set of the left-
invariant vector fields od=. Since for anyX,Y € gand\,u € R we havelX + uY € g and
[X,Y] € g, theng is a Lie algebra of vector fields. It is called thi algebraof G.

A non -identically-vanishing linear differential operat is calledd,—homogeneousf degree
m € R if and only if, for everyy € C*(R"), z € R" and\ > 0, it holds

X(p(0xr(2))) = A"(Xp)(0r(x)).

Definition 4.2.1. We say that a Lie group dR", G = (R", o), is a(homogeneous) Carnot grop
a(homogenous) stratified grouih the following properties hold:

(C1) R"can be splita®” = R™ x --- x R"", and the dilatation, : R" — R"
on(x) = ox(xW, . 2"y = Aae®W A22@ o X)) 20 e R

is an automorphism of the grodpfor every A > 0.

(C2) if gisthe Lie algebra of andg; is the linear subspace gfof the left-invariant vector fields
which ared,-homogeneous of degréethen

Lie{g:} = g."

We say that? has stepr andn; = dim(g;) generators.

Lf U € T(R™) is a set of smooth vector fields @f* and we set
Uy :=span{U}, U, :=spanf{[u,v]:uecUveU,_1}, n>2,

then
Lie{U} = span{U, : n € N}.



We denote with7, (y) the Jacobian matrix at point of the mapr,. If {e;,
canonical basis dR”, we define thdacobian basief g, {Z1,...,7,} as

Z;I(x) = J.,(0) - ¢; = j — th column of 7, (0) Vz € R".2
SinceJ,,(y) = L,, we haveZ;1(0) = e; and thus

(0) = — forj=1,...,n.
]() axjm’ ] ) 7”

With these notations conditiqi€2) means that
rank(Lie{Zy, ..., Z,, }(z))® =n, foranyz ¢ R"

and
Lie{Zy,...,Zn,} = 9.

From a set of Vector Fields to a Carnot Group

...,e,} is the

We now want to see when a set of smooth vector fieldR'an{ X1, ..., X,,}, m < n, is a basis for
the Lie algebra of a Carnot group @f. For a complete treatment of the subject see the book of

Bonfiglioli, Lanconelli and Uguzzoni [9], section 4.2.
We put, for everyk € N,

W(k) = Span{XJ‘J € {17 s .’m}k}’

2I(x) = (Ii(z), ..., In(z)) = (z1,...,7,), 2 € R™. If X is a linear differential operator with
mean the action ok’ upon the components déf i.e.

XIl (:v)
XI(x) =
XI,(z)
Therefore ifX = " a;0;, then
i=1
a1 (x)
XI(x) =
an ()

3If U € T(R™) is a set of smooth vector fields @i we define
rank(LieU(z)) = dimg{ZI(x) : Z € Lie{U}}

foranyz € R™.

the notatigh/ we



where, ifJ = (ji,. .., Jk),

X(jl ~~~~~ jk):[Xj17[Xj27"'>[Xj Xj H]

k—17?
We assume that the vector fields’s satisfy the following conditions:

(HO) Xi,...,X,, are linearly independent anig-homogeneous of degree one with respect to a
suitable family of dilatationgd, } »~( of the following type

O iR = R 6y (2) =0 (2W, .., 20) = AW, a2,

wherer > 1is anintegerz® e R fori =1,...,7,ny = mandn; + - -+ n, = n;
(H1) dim(W®) = dim{X1(0): X € W™} foreveryk =1,...,7;
(H2) dim(Lie{X1,..., Xn}(0)) = n.
It can be shown that i, . . ., X,, satisfy these assumptions , then they also satisfy
(H1)* dim(W®I(z)) = dim(W®) foranyk <r,z € R",
(H2)* dim(Lie{X1,..., X;x}(x)) =n foranyz € R".

For everyk = 1, ..., we consider a fixed basis oV *). We know that

(Zy,.o 2o}y ={2M, ..,z 20 720}

Ny

is a basis of = Lie{Xy,..., X,,}. Thereforen = {¢ - Z = ¢ Z;: £ € R"}.
j=1
It can be shown that the map, t) — exp(t§ - Z)(x) is well defined for everyz, t) € R x R.

Furthermore,
Exp:R" - R", Exp(£) :=exp(£- Z)(0)

is a global diffeomorphism. We denote witlg its inverse function and we set
z oy = exp(Log(y) - Z)(0), z,y € R". (4.41)

We now state a Theorem that characterizes the Carnot grogpR", o, 6, ) whose Lie algebra is
generated by the vector field\,, . .., X,,}. For the proof we refer to [9].

Theorem 4.2.2.Let{X1, ..., X,,} be smooth vector fields IR" satisfying hypothesisH{0), (H1)
and H2). Let {4, }.,~0 be the family of dilatations defined i#0). Finally, leto be the composition



law onR™ introduced in (4.41). Then
G = (Rn, o, (5)\)

is a homogeneous Carnot group of stepith m generators whose Lie algebgas Lie-generated
by {Xl, ceey Xm}, i.e.
g= Lie{Xl, . ,Xm}

4.2.2 The mean curvature equation in Carnot groups

We want to consider equation (4.39) in a Carnot grougR8n G = (R",0,4,). With the no-
tations above we calf; the linear subspace g@f of the left-invariant vector fields which aig-
homogeneous of degree one and we put

m = dim g;.
We set, for a generical point= (x4, ..., z,) € R",
g = (z1,...,2y) and zy = (Tpe1, ..., Tn).
If {X1,...,X,,}isan orthonormal basis @f by property(C2) we have
Lie{X1,....Xn} =g.
We assume that

Xy
X = : =o'(z) -V, (4.42)

whereos : R" — R™™. We point out that if we consider as orthonormal basis theldiaa basis
{Z,,..., Z,} the matrixo is just the matrix obtained by taking the firstcolumns of 7. (0). With
this notations the equation in (4.39) can be rewritten as

m

Xou(x, t) Xu(z, t) B
wlet) =Y (5 St O )Xinu(x,t) —0, (4.43)

ij=1

or
w(x,t) + F(Xu(z,t), X2u(z,t) =0



whereF : R™ x 8™ — R is defined as

Fp, X) = —tx[ (I — ‘%‘ ® ‘%)X], (p, X) € R™ x S™. (4.44)
This last equivalent formulation explicitly shows us thgqtiation (4.39) is indeed the mean curva-
ture equation in the sub-Riemannian metic

In [15] Capogna and Citti prove that,@ = (R", o, d,) is an homogeneous Carnot group, then
the Cauchy problem for the equation (4.43),

(4.45)

{ w(z,t) + F(Xu(z,t), X2u(z,t)) =0, (z,t) € R" x (0, +00),
u(z,0) = ug(x), ze€R",

is well-posed under some particular assumptions on thialidétumu,. To treat the discontinuity
that appears in (4.43) foXu(zx, t) = 0 they use the following definition affeak solution

Definition 4.2.3. A functionu € C(G x [0, +00) is aweak subsolution (supersolutiooi) (4.43) in
G x (0, +00) if for any (x,t) € G x (0, +00) and any functiony € C*(G x (0, +o0)) such that
u — ¢ has a local maximum (minimum) &t, ¢) then

- Xi0X;0 .

> (00— Tan )Xo, i | x| #0
0 < (2)q "

t > (6i — pipy) X X;¢ for somep € R™, [ p| < 1, if | X¢| = 0.

1,j=1
A weak solutiorof (4.43) is a function: which is both a weak subsolution and a weak supersolution.

This definition of weak solution is quite different from thiagsical definition of viscosity solu-
tion. Anyway, as we now show, the two definitions turn out toeljeivalent, at least for homoge-
neous Carnot groups of step two.

Carnot group of step two

Consider an homogeneous Carnot group of step@ve- (R",o,d,) where the dilatatior, is
defined as
oy R" — R", o) = Azg, N2ay). (4.46)

By Theorem 1.3.15 on page 39 in [9] the composition tatakes the form

roy = (xg,vv)o (Ym,yv) = (g + vy, vv + yv + (Brw, yu)). (4.47)



where(Bxy, yg) denotes thén — m)-tuple

(<B(1)J}'H, ?JH>7 SR <B(n_m)xH7 yH>)7

(-,-) is the inner product iiR™ and BV, ... B"~™ is a suitablgn — m)-tuple ofm x m matrices
with real entries. Obviously the identity element for thengmsition law defined in (4.47) is the
origin 0 and the inverse of a generic element R" is given byz ™' = (—xy, —xv + (Bry, v5)).

We point out that the inverse! is equal to—z if and only if (B®) 2, z) = 0 for anyz € R™ and
k=1,...,n—m,i.e.if and only if the matrice®* are skew-symmetric. The Jacobian matrix at
the origin0 of the left translation by, 7., is the following matrix block,

L | Ouxn-m)

I (0) =

B.IH I[n—ma

whereBzy denotes the — m x m matrix

Snlhe LB o LBl
(B(l)xH)T = J J = J
B(n_m).TH T - n—m - n—m . n—m
( ) SOBEa SUBS e S BT
j=1 j=1 j=1

This means that the Jacobian basis of the Lie algebaisf

X, afo(ZB >0xk i=1,....m,

k=m+1 j=1

,—Ti = 0 ) = 17 yI—m
axm—i—i
A simple computation shows that, for any € {1,...,m},

Z Tk7



whereC'® is the skew-symmetric part &%), i.e. C*) = (B® — (B®)T) /2 1f ¢V, ... ™)
are linearly independent this implies that

span{[X;, X;] : 4,7 =1,...,m} =span{Ty, ..., T,_,}
and therefore
rank(Lie{ X7, ..., X,,}(0,0)) = dim(span{0y,, . .., 0s, }) = n.

This shows that G is a Carnot group of step two and JacobiaergemsX, ..., X,,. Since the
condition of the linear independence of the matri€és, ..., C"~™ is also necessary for G to be
a Carnot group we can conclude tlat= (R", o, d,), with o as in (4.47) and, as in (4.46) is a
Carnot group of step two and generatdss, . . ., X,, if and only if CV, ..., C™~™) are linearly
independent.

We now observe that any Carnot groGp= (R", o, §,) is isomorphic, by means of the group

isomorphismp : R — R", o(z) = ¢(zy, xy) = (2, vv — (=2x, 2x)), to the Carnot group’ =

2
(R", 5,0,) where the group operatichis defined as in (4.47) with the matricés?, ..., B~
replaced by their skew-symmetric pait!, ..., C"~™. Therefore we can assume, without loss of
generality, that the matricé3®), k = 1,...,n —m, that appear in the definition of the composition

law (4.47) are all skew-symmetric.

Example 4.2.4(The Heisenberg grouphe most famous example of Carnot group of step 2 is the
so called Heisenberg group. Let us considetinx R the following composition law

(w,2) 0 (W, 7)) = (w+w,z+ 2" + 2Im(w - &')).

If we identify C" with R*" and we denote the points Bf" ™ as(z,y, z), with 2,y € R", z € R,
the compositior» can be written explicitly as

(ryy,2)0 (2,9, 2 )= (x+2,y+y, 2+ 2 +2({y,2") — (x,v))) (4.48)

The Heisenberg groud” = (R*"' o) is a Lie group homogeneous with respect to the family of
dilatationss, : H" — H", 0\(x,y, 2) = (Az, Ay, A*2), A > 0.
The Jacobian matrix of the left translation , ., at zero is

HTL @nxn O
jT(w,y-,z)(O) = @nxn Hn 0
2" —2z7 1



and so the Jacobian basis of the lie algebrél af given by the 2n vectors
Xi(z) = Oy, + 2y;0,, Yi(x) =0, —2x;0,, i=1,...,n.

Since [X;,Y;] = —40. for anyi = 1,...,n we can conclude that the Heisenberg group is an
homogeneous Carnot group of step two. Moreover followirggrtbtations above we have that the
matrix B is a2n x 2n skew-symmetric matrix defined as

B— @nxn 2Hn
_2I[n @nxn
1

andinfact(z,y,2)” = (—x, —y, —=2).

Following the notations above we define the horizontal gnaidand the horizontal (symmetric)
Hessian matrix of a twice differentiable functigh G — R as

Xy f(x)
Xf(x) = : = o'(x)Df(x),
X f () (4.49)

X2 f(2) = ((Xinf(ﬁ) ;Xinf(x)%j:l m) — o'(2) D f(x)o ().

-----

where the matrix is obtained by taking the first. columns of 7. (0),

L
o(x) = ( ) (4.50)
BIL’H
We just point out that the horizontal (symmetric) Hessianrinaoes not contain first order terms
because of the skew-symmetry of the matrigés, - - . , B,

When it will be necessary to emphasize the variabla which we are computing the vector
fields X; (and with respect to we are computing the derivatives), wié deinote the horizontal
gradient and the horizontal Hessian matrix’asand X2 . For example ify = g(z,y) is aC?
function defined inG' x G and(z,, y,) is a generic point ofr x G we will denote withX,, f(z,, y,)
the horizontal gradient of with respect to the variable and with X, f(z,,y,) the horizontal
gradient off with respect ta;, both computed in the poinit,, y,). Analogous definitions hold for
X2 (2o, o) @NAX] f (0, o).



We consider an homogeneous (with respect to any dilatagiokh > 0) norm onG,
lzlle = [Jeul* + |lov Y, (4.51)
and we define a left invariant metrdg; : G x G — [0, +0) as

de(v.y) =" oyle

(4.52)
= H Y _$H|4+ | Yy — Ty — <B$H7yH

P
We now prove a nice property of the homogeneous megridefined in (4.52).
Lemma 4.2.5.PutN(z) = || z||§, for anyz € RY,
() {reG:|XN@)|=0}={r€G: X’N(x) =0} ={r € G:a2y =0,}.

(il) | Xodg(z,y)| = |X,dg(x,y)| and X2dg (z, y) = X d(x, y) for anyz, y € G; moreover they
all have as zero-set the sgtr,y) € G X G : g = yu }.

Proof. (i) The proof of the first point follows immediately by somengile computations. In fact
since

XN(z) = 4| vg)?ry +2 (zv) B®zy
k=1

we have
XN (2)]” =16]zy|® + 4> (wv)i(ev)(B®zy, BYzy)
k,l
(we recall that, since the matricés*) are all skew symmetric the mixed products are all null).
Moreover
X2N(2) = 4oy P Ly + 82y @ vy + 2(Bry)" Bry.

(ii) First of all we observe that, since the vector fieldls are invariant by left composition of the
operation law, we have

X,db(x,y) = X, Nz oy) = XN(z~ o)
X2dg(z,y) = X°N(z ' oy)

and so by point ()X, d¢; (z, y) andX2dg(z, y) are nullifand only iz oy) V) = 0, i.e.yy = 2.
To compute the horizontal gradient and the horizontal Hessiatrix with respect the variable



we observe that, sind¥ (z~!) = N(x), itholdsd}(z,y) = N(z 7' oy) = N(y ' o) and

Xadg(z,y) = XN(y™' o z)
Xzdg(v,y) = X*N(y~ o),

and againX,d,(z,y) and X2dg,(x, y) are null exactly whewy = .
Finally we observe thatX,d¢(z, y)|* = | Xodg(z,y)]> and X dg (2, y) = XZdg (2, y) O

We use this Lemma to prove the equivalence between the dafirt weak solutionin Def-
inition 4.2.3 and the usual definition efscosity solutiorfor the equation (4.39). It immediately
follows from the following property of viscosity solutiorms equation (4.39). The analogous result
in the Euclidean case can be found in [6] and in the first Chiagfteur thesis.

Proposition 4.2.6. An upper (respectively lower) semicontinuous functioris a viscosity sub-
solution (respectively supersolution) of (4.39) if andyoiflfor any ¢ € C*(R™ x (0, +00)), if
(z,t) € R" x (0,400) is a local maximum (respectively minimum) point for- ¢, one has

WD XAEDEXD ) i <0 ot 20 @s9)
e 8¢g’ Do i Xé(z,t) = 0 and X¢(x,t) = 0, (4.54)
(respectively
8¢(£t) (- X¢(T;;§$T’2(x’t)) X2(x,8)] >0 if Xo(a,t) # 0
e agbg;’t) >0 if X¢(z,t)=0and X¢(z,t) =0). (4.55)

Proof. Let u be an upper semicontinuous function which satisfies (4.68)4.54). Considey €
C*(R" x (0, +00)) and(z, ) € R™ x (0, +oc) alocal maximum point fou— ¢ such that\ ¢(z, t) =
0 and X?¢(z,%) # 0. Without loss of generality we can assume thas bounded andz, t) is a
strict local maximum point for, — ¢. If we prove that
~ E B R R

% + F(Xo(, 1), X20(2,1)) <0, (4.56)
with F as in (4.44), we have thatis a viscosity subsolution of (4.43). For any> 0 we consider
a function

de(z, y)

¢€('T7y7t) = u(x7t> - £ c - ¢(y7t)



and we denote witliz., y.,t.) the maximum point of). in R" x (0, 4+o00). With some classical
computations one easily proves tiat, y.,t.) converges tdqz, &, £).Moreover since the function
y — Y (z.,y,t.) has a local maximum ip. we have

_Dydé(xm ya)

Do(ye,t.) = -

Dd¢ (., y:)
D2 i t€ > y 'G\ver Je)
O(Ye, te) > -

thus
4
Xofy 1) = — 06T be) (4.57)
X2d% (x., .
X2o(ya, 1) > — et be) (4.58)

3

Two cases now may occur.
1. X¢(y.,t.) = 0. This means thak,d}(z.,y.) = 0 and by the previous Lemma. )y =

dg(w, ye)
(ye)u. Since the magz,t) — u(z,t) — p(x,t), with p(z,t) = %

maximum on(z., t.) and

+ ¢(y., t) attains a

Xo(z,t) =0 vy = (y.)u & X2¢(z,t) =0,

by (4.54) we get
dp _ 09
E(xayta) - E
Moreover, since in this case (4.58) becom€$p(y.,t.) > Op..m, Using the ellipticity ofF, it
holds

(ye, te) < 0.

0 ~ 0 ~ 0
e te) (X001, X200, 1)) < 0 (3 ) + Fo(0,0) = 22 (02, 1) < 0
—_——— t ot

=0
and we conclude by lettinggo to 0.

2. Xo(y,t.) # 0; using (4.57) and the previous Lemma this me@nsy # (z.)y. The point
(z.,t.) is a maximum for

_dg(ze, ye)
S
u(z,t) — p(z, t)

(x,t) = Y (z,z0 x;l oy, t) =u(x,t) — ¢(x o x;l O Ye, ) .

Let 7,(z) = x o « be the right translation by and 7:, () = J;, its Jacobian matrix; a simple



computation shows thaf:, has the form

Hm @an ]Im @mxn
o= | (BY) an)” = | (-=BWay)"
: I, : L,
(B™) am)" (—=B™an)"
]Im ‘ ©m><n
—BOéH Hna

By the chain rule we get

Xo(ae,t.) = U(xe)Tj%:: D¢( Tz toy. (2:),te)

€

= ( z;wj(a» Dy, t.)

=o(2z. — yg)TD¢(ya te)
— X¢(2,1) =0, ase —0

and
X2p(ae,t.) =o(x )ijTl D*p(7, 1oy5($€>7t€>\7?w710y5‘7($€)

Teg OYe

- 0(21’5 ys)TD2¢(y€7 ) (21’5 ys)
— X?¢(2,1) #0, ase — 0.

MoreoverX ¢(x.,t.) # 0; in fact,

X(,O(SCE, te) = 0(21’5 - ye)TD(b(yea ) = _5_10<2$€ - ye)TDyd‘(l;CCea ye)
= - to(2z, — ya)ij 1DN( Louy.)
= lo(r. —y)" DN( Yoy.)=c'o(r. —y.)" DN (y- ' o 2.)

z;‘lXN(y(E ox.)

and by the previous Lemma this is null if and only(if ) ; = (z.)x. Thus by (4.53) it holds

Oy

5 (e, te) + F(Xp(ae, te), X2p(e, 1)) <0



and we conclude by letting— 0,

. . 8@0 ~ 2
> L
0o > hlén_)lglf ( Y (xo,t:) + F(Xp(xe, t.), X2p(z, ta))>

> 95,1 + F(Xo(2.1), X (D)

O

As for Euclidean derivatives, from this last proposition wemediately get the following char-
acterization of viscosity sub and supersolution of equaib39).

Remark 4.2.7.1t is not restrictive to assume in Definition 1.0.1 thaty frespectively) is an upper
semicontinuous subsolution (respectively a lower sentinanus supersolution) of equation (4.39)
andy € C*(R" x (0, 400)) is a test function for (resp. forv) at the point(z, t), then

Xo(x,t) =0

implies
X2p(z,t) = 0.

Moreover we can assume that, at any pgints) in a neighborhood ofz, ¢) so that
Xo(y,s) = Xe(z,t) =0,

it holds
X?p(y, s) = 0.

We conclude the section with the comparison principle piddvyg Capogna and Citti in [15].
It holds for weak sub- and supersolutions and thereforakih#o the proposition above, also for
viscosity sub- and supersolutions if the grasips an homogeneous Carnot group of step two.

Theorem 4.2.8.Consider an homogeneous Carnot gra@ep= (R",0,d,). Assume that: is a
bounded weak subsolution ands a bounded weak supersolution of (4.39). Suppose further:
(i) for any pair(zy, zv), (zg,yv) € G, u(zy,zv,0) < v(xy,yy,0);

(ii) eitherw or v is uniformly continuous when restricted o x {t = 0}.

Thenu(z,t) < wv(zx,t) forallx € G andt > 0.

Using this theorem we immediately get the uniqueness of éireayus weak subsolution of
(4.45) but only for a particular type of uniformly continuunitial datau,.

Corollary 4.2.9. Letuy : R® — R be a bounded uniformly continuous function so that, for any
fixedxzy € R™, the map
R™™ 3y — uo(zn, y)



is a constant map. A bounded weak solution of (4:48) C(G x [0, +00)) is unique.
As last result Capogna and Citti proved the existence of &wektion of our Cauchy problem.

Theorem 4.2.10.For any bounded continuous functiop : R" — R there exists a weak solution
u € C(G x [0,400)) of (4.45).

4.2.3 The degenerate Allen-Cahn equation

We now study the limiting behavior, asgoes to zero, of the solutions of the "degenerate Allen-
Cahn equation” (4.7) whe& = (R", o, d,) is an homogenous Carnot group of step two (for the
precise definition see the previous section). We denoteatltli.), . .., o™ () the columns of the
matrix o (-) and we definen vector fieldsX;, ..., X,, as

X, =09 (z)-V, reR" i=1,...m, (4.59)

We recall that, by Theorem 4.2.2 X, ..., X,, satisfy the hypothesid{0), (H1) and H2) with
r = 2, then they generate an homogeneous Carnot group of step two.

Theorem 4.2.11.Assume that the matrix map = o'(x)o(z) and the vector fields(,, ..., X,,
defined in (4.59) satisfy (4.1), (4.2)HQ), (H1) and H2) with » = 2. Moreover condition (4.5)
holds withc = 2m, — m, — m_ = 0. Finally we suppose that the functionsandp, solutions
respectively of the travelling wave equation (4.13) and4o17), satisfy (4.14), (4.15), (4.20) and
(4.21).

Let «° be the unique solution of the Cauchy problem (4.38), wita (0,1/3) andg : R" —
[m_, m,] a continuous function such that the sBis= {z : g(x) = m,}, & = {z : g(x) > m,},
Q. = {z:g(x) <m,} are nonempty ant’,, 2, Q) € £. Then

my in {u> 0},
m_ in {u<0},

ut(z,t) — {
locally uniformly ass — 0, whereu is the unique viscosity solution of

{ w(z,t) + F(z, Du(z, t), D*u(z,t)) = 0in R™ x (0, +00), (4.60)



whereF is as in (4.40) and, is the signed distance 0, which is positive in2} and negative in
2. If in addition the no-interior condition (2.7) for the st = 0} holds, then, as — 0,

my in {u> 0},
m_ in {u>0},

u(z,t) — {

locally uniformly.

Remark. As said before conditiond0), (H1) and H2) with » = 2 guarantee us that,, ..., X,,
generate a Carnot group of step t&wo= (R", o, d,), whereo is the composition law ofR™ intro-
duced in (4.41) andJ, } - is the family of dilatations defined ifH{0). This allows us to use, in
the following definition and proofs, the nice properties weve in Lemma 4.2.5 and in Proposition
4.2.6

Before proving Theorem 4.2.11 we give a different definitddigeneralized super- and subflow
with normal velocityF' defined in (4.40) and we prove that it turns out to be equivdtethe usual
Definition in 2.2.1.

Definition 4.2.12. Let F' be the real-valued, locally bounded functionBh x R" x S" defined
in (4.40). A family (Q¢).c0,7) (resp. (Fi)ico,r)) Of open (resp. close) subsetsl®f is called a
generalized superfloresp. subflowy with normal velocity—F'(z, Dd, D*d) if, for any z, € R",

t € (0,7),r>0,h > 0sothatt + h < T and for any smooth functiop : R" x [0,7] — R such
that:

(i) 0¢(x,s)/0t + F*(x, Dé(x,s), D*¢(z,s)) < 0in B(xg,r] x [t,t + h] (resp. O¢(x,s)/0t +
F.(x,D¢(z,s), D*¢(x,s)) > 0in B(xo, 7] x [t, t + h]),

(i) foranys € [t,t + h], {z € B(xg,r]: ¢(z,s) =0} # () and

|Do(z,s)] #00on{(z,s) € B(xg,r] X [t,t + h]: ¢(x,s) =0},
(iii) if there exists a paifz, s) € B(xo,r] X [t,t + h] so that| Dy¢(z, s)| = 0, then it holds also
| Dyo(x,5)| =0,
(iv) {z € B(xg,r]: ¢(z,t) > 0} C Q, (resp.{z € B(xo,r|: ¢(x,t) <0} C F)),

(v) forall s € [t,t + h], {x € OB(xq,r] : ¢(z,s) > 0} C Qg (resp.{zx € IB(xo,7] : ¢(x,s) <
0} € F9,

then we have

{z € B(xg,r]|: ¢(z,s) >0} CQy, (resp.{z € B(xy,r]|: ¢d(z,s) <0} C Fs,)



for everys € (t,t + h).
A family (€).c0,r) Of open subsets d" is called ageneralized flowvith normal velocity—F
if (Q)ic0.7) is @ superflow an€, ), (o 7) is a subflow.

We now state and prove the analogous result of Theorem 2.2.2.

Theorem 4.2.13. (i)Let (Q¢).c0,r) be a family of open subsets &" such that the sef :=

U O, x {t} is open inR"™ x [0,T]. Then (£%),co,r) iS a generalized superflow with
te(0,7)
normal velocity— F', with F" defined as in (4.40), if and only if the function= 1 — 1. IS

a viscosity supersolution of (4.39).

(i) Let(F)ic(o,r) be afamily of close subsets Bf' such that the sef := U Fi x{t} is closed
te(0,7)
inR"™ x [0, T]. Then(F;)« (o) is a generalized subflow with normal velocity”, with F' as

in (4.40), if and only if the functiory = 1 — 1 x. is a viscosity subsolution of (4.39).

Proof. As the proof of Theorem 2.2.2 also this one follows the ideg$]. Here we point out the
main changes in the superflow/supersolution case. SinceetheDefinition 4.2.12 of generalized
superflow restricts the set of the test functipthe proof that(2;).c ) is a a generalized superflow
wheny is a viscosity supersolution of the equation in (4.39) f@ammediately from Theorem
2.2.2. Conversely, we assume thig%),c o1 is a generalized superflow and we show théds a
supersolution of the equation (4.39)R¥ x (0,7"). As in the proof of Theorem 2.2.2 we consider
a point(z,t) € R" x (0,7) and a functionp € C*(R" x [0,77]) so that(z,t) is a strict local
minimum point ofy — ¢ and¢(z, t) = 0 and we show that

%(x, t) + F*(x, Dé(z,t), D*¢(x,t)) > 0. (4.61)
When(z, t) is in the interior of eithef y = 1} or {x = —1} theny is constant in a neighborhood of
(z,t) and thereforé),¢(x, t) = 0, Do(z,t) = 0 andD?*¢(z,t) < 0. SinceF satisfies the ellipticity
condition in (2.5) and

F*(2,0,0) = Fi(z,0,0) =0

the inequality in (4.61) is true. Assume that¢) € 0{x = 1} N d{x = —1}. Thus, by the lower

semicontinuity ofy, x(x,t) = —1. We suppose by contradiction that there exista.an 0 so that
we have 5
2 1) + F* (2, Dol 1), D*6(,1)) < —a.
As in Theorem 2.2.2 we can findh > 0 such that for ally, s) € B(xz,r] x [t — h,t + h],
0 . «
®(9.5) + F* (g, Doy, ), D*(y, ) < . (4.62)

ot 9



and
X(l’,t) - ¢($,t) =-1< X(yv 3) - (b(y? S)? (y7 5) 7£ (x7t)' (463)

We consider the cagd¢(x,t)| # 0 and we introduce the test functi@n(y, s) := ¢(y, s) +
d(s—(t—h)), for0 < § < 1. In the proof of Theorem 2.2.2 we showed thasatisfies conditions
(1), (i), (iv) and (v) in Definition 4.2.12. We want to showahalso assumption (iii) holds. Indeed, if
|Dpo(x,t)| # 0, choosing smaller andh, we may assume thby¢| # 0in B(x, r|x[t—h,t+h].
On the contrary if Dy ¢(x, t)| = 0 by Proposition 4.2.6 and Remark 4.2.7 we may also assume that
|D?%.¢(z,t)| = 0 and, in general,D%,¢(y, s)| = 0 whenevel Dy é(y, s)| = 0, (y,s) € B(z,r] x
[t — h,t + h]. Thus¢, satisfies also assumption (iii). By the Definition 4.2.12 opearflow this
yields

{y € B(x,r] : ¢s5(y,s) > 0} C Qs,

for everys € (t—h,t+h). But, sinceps(x,t) = dh > 0, we getr € €, and this is a contradiction.
Now we turn to the case whenD¢(z,t)| = 0. By Corollary 1.0.7 we have restricted the test
functions so that
&
02,0z,

M0}
('Tu t) - amzam]amk ('Tu t)

'

= 78xlam]amkaml (.T, t) =0

holds for anyi, j, k, 1l € {1,...,n}. To prove (4.61), we have to show that

99

_ > (.
o (0.1 2 0
- 0p
Suppose by contradiction that= 5@’ t) < 0. We have
Oy, s) = ol 1) +—(x, t)(s —t) +o(| s —t[ + |y —x[") ass =1, |y—a[ = 0.
—— Ot

=0
Thus, for alle > 0, there exist = r., h = h.,h’ = h. > 0 such that

2
er
h<——

a

and, for any(y, s) € B(x,r| x [t — h,t + }]



Let dg be the distance function defined in (4.52). For any compacfise- R" there exists a
positive constant’; > 0 so that

|z —y|
K

< da(z,y) < Cxlz —y"?

foranyz,y € K, (see, for example, Proposition 5.15.1in [9]). Thus, if we @, = (CB(:C’T])‘*, we

get
4
l‘ —
% < d(}(ﬁay)4 < Cr‘ T — y|2
and

Oy, ) = 5 (s — 1) — eCrda(a,y)* + alf

forany(y, s) € B(x,r] x [t — h,t + 1']. By (4.63) we can takg > 0 such that

28+ d(y,s) — 1 < x(y,5)

forall (y,s) € (B(z,r] x {t — h}) U (0B(x,r) x (t — h,t + 1)). By taking 8 smaller we may
also supposg < er*/2. We consider the functiofis(y, s) = (a/2)(s — t) — eC,dg(z,y)* + B.
Since we can také’ smaller we assume from now on thdt < —3/a. Combining the last two
inequalities and the assumptions @, " andr we get

Yp(y,s) — 1 < x(y,s) (4.64)

forall (y,s) € (B(z,r] x {t — h}) U (0B(z,r) x [t — h,t + h']). Thus, with a reasoning similar to
the one in Theorem 2.2.2, it is possible to prove thasatisfies conditions (iv) and (v) in Definition
4.2.12. Furthermore we consider a fixed [t — h,t + h']. We have)s(z,s) = a(s —t)/2+ 5 >
ah’'/2+ 3 > 0and

Valy,s) = g(s ) — eCode(z,y)t + B < g(s ) —ely—alt+ B

ah + ert <0

<—%—5r4+6§—

for |y — x| = r. Thus the se{y € B(x,r] : ¥3(y,s) = 0} is non empty. Lety € B(x,r], we
computeD;(y, s),

n—m

A yr —vul*(yg —78) =2 Ymei — Tmei — (BP2y, yu)) B zy
DQ/’B(?/» S) = _ECT’ ;

Q(Z/V — Ty — <B$H,?JH>)-



Thus, since the matrice’” are skew-symmetrid)y3(y, s) = 0 if and only ify = « and therefore
| Ds(y, s)| # 0 for every(y, s) € {B(z,r] x [t — h,t + k'] : ¥5(y,s) = 0}. This proves thats
satisfies (ii) in Definition 4.2.12. Moreover it satisfiesa(8i) since, by Lemma 4.2.5,

| Dubs(y, s)| =0« ym = xi < | Diys(y, s)| = 0.

It remains to prove that (i) holds. Sinéé is upper semicontinuous arffj*(o, 0) = 0, we have that

0 % a L%
%(y, s) + F*(X(y, s), X2y, s)) = 3 + F*(—eC. X, da(x, y)*, —€Cerd(;(l', )t < 0.

for (y,s) € B(z,r] x [t — h,t + h'] ande small enough.
Thus, sincg$;).c(o,r) is a generalized superflow, we have

{y € B(z,r] : s(y,s) > 0} €

foranys € (t — h,t + h'). But againys(x,t) = § > 0, and this means € €, which is a
contradiction. O

We are now ready to prove Theorem 4.2.11.

Proof. As in the proof of Theorem 3.3.1 we define two families of opets ©f R" (Qtl)te[oj)
and (})ico,r) a@s in (2.14), (2.15), (2.17), with. = a = m_, b. = b = my andT = 1. By
the maximum principlen_ < u® < m,. The proof will be divided into the three usual steps,
initialization, propagation and conclusion.

First step: initialization.In this first part we want to show that

QOFf = {d, > 0} C Q, Q) ={d, <0} C Q.

For the proof of the first inclusion (the proof of the secondesy similar) we consider a poirit
such thatd,(z) > 0, i.e. g(z) > m,. By the continuity ofg we can find an,o > 0 such that
g(x) > m, + 4o, for anyz € B(z,r). This means that

ue(xv 0) = g(l’) > (mo + 40)]1B(i’,r) ([L’) + Tn—]lB(ai’,r)c ([L’) (465)

We consider the same functidn: R" x [0,7] — R defined (4.30) and we state the analogous of
Lemma4.1.3 and Lemma 4.1.4.

Lemma 4.2.14.Under the same assumptions of Theorem 4.2.11 we have thanygt > 0 there



existt = 7(f8) > 0 andé = () > 0 such that, for alD < ¢ < £, we have

uS(z,te) 2 (my — Be) a0z (2) + m-Lia(0<py(z), = €R,

wheret, = 7?|1ge|.

Lemma 4.2.15.There existh = h(r,2), 3 = B(r, &) > 0 independent of such that if3 < 5 and
e < &(B) A 1, then there exists a subsolutiof” of (4.38-i) inR™ x (0, ) that satisfies

we’ﬁ(x, 0) < (m+ - 58)1{@(.70)25}<$) + m_]l{q>(.,0)<5}(x), x e R"
If moreover(z,t) € B(z,r) x (0,h) and®(x,t) > 34, then

ws(z,t) — my

lim inf, > —3p0.

e—07t £
Proof of Lemmal.2.14. Let 5 > 0 fixed. To prove our thesis we have to modify the functifin
Consider a smooth cut-off € C5° suchthat) < p < 1inR, p(s) = 1if |s] < 1andp(s) =0
if |s| > 2; moreoverp satisfies—2 < sp'(s) < 0 and|p”(s)| < 4 for all s € R. Now define two
smooth functiongy, p, : R — [0, 1] as

)=o) i =o( )

and set

f(@) = (1= pi(q) f(a) + pr(q) flg—0/2)

and g 4
re 3 5 my — ¢
fo@) = (1= pa(0) (@) + p2(@) 2= ——
g el
Notice thatf® satisfies properties similar to those foith zeroes{m_, m,+ /2, m, }. Moreover
f<re
1. If we denote by = (7, &) € C*([0, +o0) x R™) the solution of

{ X(m€) + FF(x(r,€) =0, >0,
x(0,¢) =&,

it follows that y satisfies propertyy(1) (stated in the proof of Lemma 4.1.4), while propertig8)(
and (y3) are replaced by the following ones:



there exists, = 7,(3,0), e, = €,(8,0) > 0 such that, for al > 7,|lge| ande < ¢,
3 -
(7€) 2my = fe VE=m,+ S0 (x2)

Moreover for anyC' > max{| m_|,| m|} we havex(r,¢) € [-C,C]forall £ € [-C,C], 7 > 0.
Thus, for anyC' > max{| m_|, | m4|}, a > 0 there exists a constanf, > 0 such that

xeelm. ) < 720 (r, ), ()

foranyr < a|lne|, & € [-C,C], i € {1,2,---,n} ande small enough.
2. Consider a smooth nondecreasing functiosuch that)(z) = m_ if z < 0 andy(z) =
my + 40 if 2> B A % The functionu® defined by

(o 1) = x5 (e, 0) - 2

€

is a subsolution of (4.38-i) ilR™ x (0, 7,£?|1ge|) and it satisfies (z,0) < u(z,0). In fact, since

f<f.

fw®) x+f(x) + XK 1 0()

< X (K +0() <0,

u; — tr(Dy u°) +

IA

for ¢ small enough. Thus using the maximum principle and propéy) we can prove that
u(x,t.) > 1 — Beif t. = 7,62 lge| and®(z, 0) > B (from which Lemma 4.2.14 follows). [

Proof of Lemmat.2.15. As in Lemma 4.1.4 we have that there exjsth > 0 such that, < r*/C
and
D@(.I‘,t) % 07 DH7€(I)(.CL’,t) % 07

for any (z,t) € Q.5 = {|®(z,t)] < 7,0 <t < h}, e > 0. We assume from now on that the
constantC that appears in the definition @fin (4.30) satisfies

C > 2(n + 1) sup{[|| DE®(z,t)|| + || o' (x) D*®(x, 1) + || D(o" (x) DP(x, 1))
+l D*@(x,t)ll],  (2.t) € Qyp}, (4.66)

where|| -|| denotes a matrix norm. We now construct a subsolution o8¢).3
1. For any(z,t) € Q. ;, we define a smooth functiari (z, t) as

vi(x,t) = Q(M,x,t) —l—e[P(w,x,t) — 26},



with Q, P € C*(R x R" x [0, +00); R) two suitable functions that we will choose later. If we put
v° inside (4.38-i) we obtain

f(z,t)) 1. I

vf (z, t) — tr(D} 0% (2, 1)) + ==t ? + 111,
where
I. = =Q|Dy 0 + f(Q), (4.67)
I, = Q(®; — tr(D3.®)) — 2(Dp .Q, Du®) — P| Dy 0 + f/(Q)(P — 2), (4.68)
and

1. = Q, — tr(D},.Q) + [P, — tr(D}, . P)] + P(®, — tr(D}, . ))

"
i malle

_2<DH,aPa DH,a(I)> 2

(P —2B)% (4.69)

If we set

5
Q(s,x,t) = q<m) (4.70)

whereq is the solution of the traveling wave equation (4.13) with 0, we obtain

]Ia = ﬁa - 26f/(Q()‘))7

i _ (I)<*T7 t) - 2ﬁ
with A = Do 0. 1) and

1. = g(A\) _ 2 of s . 1

1. = 15, gy (% — (D)) 2(GNA+d(N) ) (D2, Di( 5,

— P|Dy B + f(g(\)P.

If we puts = w and

X(s,z,t) = (Qii(m)s - S )> (D}, ®(x, 1) Dy ®(x, 1), Dy O(, 1))

X\S, T, ‘ DH75®<x,t)‘ | DH75(I)<$, t>| ‘ DH,g(I)(I', t)|3 ;



e ) (D} ®(2,t) Dy o ®(, 1), Dy (2, 1))
]]a = | DH75(I>(I',t)| (bt(xvt) - tr(DH,e(I)(xvt)) + | DH75(I>(I',t)|2 ]
(B2 ) Py (e ) + )P

With a simple computation we can see that

+o0 ~ ) B
[ w01l ) =

o0

S

Therefore by (4.18) there exists a uniquec C*(R) so that—j + f’(Q(m
He )

Np =

—x(s,z,t). We put
S

P(s,x,t) = p(m)

insideI,. and we obtain, by assumption (4.66) Gn

- q(A)
I, =
| DH76(I)|
q(\)
N |DH76(I>|

((D}.®) Dy P, DH,€<I>>>

| Dpz @[
__Cq(»)
2| Dy @[

< — C — tr(D} @) +

(-C+m+1)Dy.2) <

Furthermore with this choice @ and P, III. takes the form

1. = (4 + gﬁ)s( % <ﬁ) — tr(D%nE(ﬁ))) — (G +ep)s°| DH,e(ﬁ) E
€ € °

=0

(@~ tr(D},.@))—2( bs ) (D ( ! ),DH,€<1>>+M(19—25)2,

p s 1
| Dy - 9| | Dy D 2

_l_i
| DH,a(I)|
and then, using the same notations as those of Lemma 4.1ptapelties (4.14), (4.21) gfandp,

r D%{aq)2 r(A®(x 2 He r(lot(z ot(x e
v AL L) et

| D3 ®|? P 15|s| | D@
2 = o, — tr(D? _® +2< +p> < 1+ 0(1
prE) Dyoa]  ~ WD)+ 2 g ) g, g T OW

1 | 1
= O(\ Din-®F Do ] DH,€q>|) +0() = O(\ DH,€<I>\3> +0(1)
<O0(7*) +0(1).

+2| G+ €pls




Therefore, sincé < 1/3,

fo) I I

vp = (D) + =57 = 5+ + L
& q(x
= é [_ 2] g;%@ - 25]“(@1()\))} +0(e*) +0(1)
11 C 4 ,
[~ S A~ 257 + oc(1)]

To prove that© is a subsolution of (4.38-i) i)., ;, it remains to see that the right hand side of
the inequality above is non positive. As in Lemma 4.1.4 waltébat /' (m.) > 0 andg(r) — m4
if r — £o0; let M > 0 be a positive constant so that

f'(q(r)) > g, forany|r| > M.
Therefore, ifM > M, we have that
€|DH7€(I)|
. . foi(x,t)) 1 pd
vi (2, t) — tr(DF 0% (1)) + = < . [ — fd + 05(1)] <-5

b —2 . : .
for ¢ small enough. If on the contrar% < M and we denote withk a strictly positive
€ He

constant (which depends hy/) so thatj(r) > K for any |r| < M, we get that there exists a
w=u(B),0 < p < pd/2so that, forg small compared té,

€ 1 CK
v — tr(Djv°) + ﬂ!i ) < SEarpyay 2 el + <(1)]
1 N
< —[=2u(8) +0.(1)] < L.

for smalle.

2. Once we have proved that is a strict subsolution of (4.38-i) iy, ;, we define, for each
(z,t) € {(z,t) € R" x [0, h] : ®(z,t) <7},

_5< t) sup(vs(x, t)7m—) if —7 < (I)('Ta t) <,
v (T =
7 m_ if Oz, t) < —.

We prove that* is a continuous viscosity subsolution of equation (4.38-{)(x,t) € R™ x [0, A]
O (z,t) < v}, for e sufficiently small. This in obvious in the sgt®| < ~} sincev® is the supremum
of two subsolutions. Consider a poift, t) such thatd(x,¢) < —v/2; by properties (4.14) and



(4.20) we have that

__b(v+4p)

vi(z,t) <m_ +ae *TPH 4 e(0(1) —268) <m_

for smalle and thus®(z, t) = m_. Therefores® is a subsolution of (4.38-i) ifi(z, t) € R™x [0, A] :
D(z,t) <7}
3. Finally we can define our functias™’ : R" x [0,h] — R as

(1) = | V@@ + (1= p(@(z ) (ms - fe) if Oz, 8) <,
’ my — fBe if Dz, 1) >,

wherey : R — R is a smooth function such that < 0inR, ¢ = 1in (—c0,7/2],0 < ¢ < 1in
(v/2,3v/4) andy) = 0 in [3v/4, +0cc). The only subset dR™ x (0, k) in which we have to check
thatw®* is a subsolution of (4.38-) i§(z,t) € R" x (0,h) : 7/2 < ®(,t) < 3y/4}. We have

f(w™?)

c2

wi? = tr(Dyyw™) + = [V'(®¢ — tr(D} @) — ¢"| D @*)(v° — (my — fe))

f(w=?)

+ (75 — tr(D,%La@&)) — 20Dy .®, Dy %) + =

(4.71)

If we take2/ < /4 we haved(z,t) —25 > ~v/4 andv®(x,t) > my — ae‘*f‘gigs‘“ +e(0-(1) —25);

thus, for smalk, v°(z,t) = v°(x,t) andv®(z,t) — (m4 — Pe) < e(o-(1) — B) < 0. Moreover
by (4.5) f is convex in a neighborhood af, and f(w*") < ¢ f(v°) + (1 — ) f(my — Be). The
equality (4.71) thus becomes

f(@=?)

e2

wi? — tr(Dfy .w?) + < [W(=C = tr(DF @) — ¢"| Dy O (v° — (my — Be))
—wg — 2¢/<DH’€(I), DH75’U€> + (1 — w)w
<—ph+(1- w>w
—"| Dy ®|*(v° — (my — Be)) — 2¢/'(Dy . ®, Dy .0°)

_ _wg (- ¢)7f(m+€2_ %) L oqy + o),

Finally we observe that far small and by assumption (4.5) gi

flmy = Be) _ f(my — Be) — f(my) < _@ <0
g2 B £2 - ¢ '
Thus iy
i (D) + PO < Ly s+ 0+ ) <0



for e small enough.
4. Now we want to examine®”(-, 0). To this end we first observe that, by (4.20), there exists a
¢ > 0 such that, iff u| > ¢, then

| p(u)] < 5;
in particular if(z,t) € Q. 5, is such that ®(z,t) — 28| > ce| Dy P(x,1)|, then
e (I)(Jf,t) B 2ﬁ
< — Be < — Be. :
(o, t) < q(g‘ DH@(DW)‘) Be <my — fe (4.72)

We consider the caseb(xz,t) — 28| < ce| Dy ®(x,1)|, (2,t) € Q.. Letr(c) > 0 be a positive
constant so that, for any| < ¢,
a(u) < my — v(@).

Therefore, for: small enough,
v*(z,t) <my —v(e) + (|| pllec — 28) < my — 20, (4.73)

Combining the estimates in (4.72) and (4.73)domwe can conclude thai*’(z, ) < m, — f3e for
any(x,t) € R" x [0, k] and in particular for = 0. If we also assume thatis such that

sup ¢e| Dy D(xz,t)| < B,
(z,)€Q, 1

we get that foranyz,t) € Q. sothatb(z,t) < githolds®(z,t) 28 < —3 < —ce[ Dy P(z,1)|
and

—B
e| Dy ®(, t)]

___ b8
v (z,t) < q( ) —fBe <m_+ae TP — Fe <m_.

Therefore if®(x, t) < B thent®(z,t) = m_ and, since we have assumee: /8, w*’(z,t) = m_.
We conclude that

w P (z,t) < (my — Be)liaspy (2, 1) + m_Ligep (2, 1),

for any(z,t) € R™ x [0, k], and in particular for = 0.
5. Finally we just remark that, with a reasoning similar te time in point 4., one can prove that
if (z,t) € B(2,7) x (0,h),y > ®(x,t) > 33, ande is so small to haves g(lgx)| Dy .®| < 3, then

B

b
m) — 355 Z my —ae I Dh®l 358

ve(z,t) > g



WP (x,t)
5

— M > _3gforany(x,t) € B(i,r) x (0,h) with &(z,¢) > 38. O

Hencelim inf,
e—0t

Second step: propagationn this step we show tha(ﬂtl)te(oj) and((Qf)C)te(QT) are respec-
tively super and subflow with normal velocityF’ with F' defined as in (4.40). Since the two proofs
are similar we only show th&t2;);c 0.7 is a superflow. Let; € R", ¢t € (0,7),r > 0, h > 0 s0
thatt + h < T. Suppose thap : R" x [0,7] — R is a smooth function such that, for a suitable
C >0,

() ¢¢(x, s) + F*(x, D (x, 5), D*¢(x,5)) < —C < 0, for all (z, s) € B(wo,r] x [t,t + h],

(i) forany s € [t,t + h], {z € B(xo,7] : ¢(x,s) =0} # 0 and

|Dé(z, s)| #00on{(x,s) € B(xg,r| X [t,t + h] : ¢(z,s) = 0},

(iii) if there exists(x,s) € B(xo,r] x [t,t 4+ h] so that| Dy¢(z,s)| = 0, then it holds also
| Dy (. )| =0,
(iv) {x € B(xg,7]: ¢(x,t) > 0} C Q},
(v) forall s € [t,t + h), {x € OB(wq,7] : (x,5) >0} C QL
We have to show that for evesye (.t + h),

{x € B(xg,r]: ¢(x,5) >0} C QL.

Using the assumptions and the definition(Qﬂ)tE(QT) this is equivalent to prove that for ail €
B(zo,7), s € (t,t + h) such that(z, s) > 0, we have

lim inf, (m) >0 (4.74)
e—0t e

for (y, 7) in a neighborhood ofz, s). As in Theorem 3.1.1 to prove this result it is enough to prove

the following lemma.

Lemma 4.2.16.Let ¢ be a smooth function as above. There existsmall enough such that, if
B < B ande < &(B3) then there is a viscosity subsolutia®”® of (4.38-i) in B(zo,r) x (t,t + h)
that satisfies,

1w (2, 1) < (my — Be)Ligepzp (@) + m_Lise<p(x), forallz € B(wzo,r],

2. wa’ﬁ(l’, s) < (m+—58)]1{¢(.7s)25}(.T)+m_]l{¢(.,s)<g}(x), forall z € 0B(xg,r|, s € [t,t+h]

3.if (z,s) € B(xo,r] x [t,t + h] satisfiesp(x, s) > 3/, then

87/3 J—
wP(x, s) m+>_36‘

lim inf,
e—0t £



Proof of Lemma 4.2.16This proof is similar to the one of Lemma 4.2.15 and we jushpout the
main changes. First of all we observe that sipcgatisfies property (ii) above we have that there
existsy > 0 suchthatD¢(z, s)| # 0inthe se)., = {(z,s) € B(xzo, 7] X [t,t+h] : |p(z,s)| < 7}
Obviously this also mean®y .¢(z, s)| # 0 for any(z, s) € Q,, ¢ > 0. Asin Lemma 4.2.15 we
construct our subsolution by steps and to do this we first defifunctiornv® in (), as

. _ H(0z,s) —28 ¢(x,s) — 2
v (x, s) = Q<f,x, s) —i—é[P(f,x, s) — 25}
Let (z, s) € Q. With the usual computations it turns out that

frls) _ L I

vi (@, 5) = tr(Dh v (x, 8) + =5 = 5+ — + 1L,

wherel,, II., III. are exactly the same terms defined in (4.67), (4.68) and &&8 the function
® replaced byy. We put

Qa.9) = a([p—s);

P(a,z,s) = p(W‘M)

in (4.67), (4.68) and we gdt = ¢(\) + f(¢(\)) =0and

II& = ﬁa - 25]0/((]()‘))

AN e ((DR0)Dued Do)y
= gy (0 = (D 0) + SRR ) — 251 (),
with A\ = M By property (i) of¢, ¢, < —C' — F*(x, D¢, D*¢) and thus
5|DH,€¢<'T78)‘
_ 2 t <(D2 ¢)DH5¢>DH75¢>
TDH&M( DDiU(;D; o Gy ¢>D 9
2 H H * 2k 2 He HeW, /He
< (DhO B Tmgl) — OO+ == 5 o)
(4.75)
Since

((D}.0)Dred, Dued)  ((D}¢)Du¢, Dro) o210 (2) D*0) Do, D)

Dol 1 Dusdlt ) [ Dy -0
| DH€¢‘2 ‘ DH,€¢‘2

((D%¢)Dr¢, Do)
- | Dy 0|2

+e"|| o' (x) D*¢l| +¢*|| Do'(x) Dgl| +**|| D*¢||

0-(1)




the inequality in (4.75) becomes

Dy¢  Dgo
| Dl | Dyl

(D}¢)Du¢, Do)
| Dy ]2

)"+

1. < 1Y (Lo i)

< Tpa +0€(1)> (4.76)

whereDy ¢, Dy .¢ and D%,¢ are computed itf, s).
We first consider the casé; ¢(z, s)| = 0. By assumption (i) ony we havel D7, ¢(z, s)| = 0.
Thus we obtain

i - ey
e = Dy o) = =55,
for e small enough.
If | Dgo(x,t)| # 0 the inequality in (4.76) becomes
_ (A ~ 1 1
i (A = Doy’
D (-¢-up H@Dii’j; g@\ Do Do V) @10
q
< gl — O+ Didllrp =25 +ox(1)
To conclude also in this case that, fosmall enough/I. < _2|1§Jq p we have to prove that
He
2 e Dg(x, s)|* e Dg(x, s)|* _
1D M, otw s ~ | Pne N gt 9+ o pag, o — 1) 478)

To do this we distinguish two cases.| Dy ¢(z, s)|* > ¥ we get

e?| Dg(, 5)|°
Dpco(x, s)|?

I D¢, )l ‘ < &¥|| Do(x, s)ll| De(z, s)]* = O(e").

On the contrary if Dyé(z, s)|* < c* we observe that

e?| Dg(, 5)|”
Dy ep(x, 5)[?

< || Dy o(z, )|
< sup{|| Dy;¢(x, s)|| : (x,5) € Qy, | Dué(z, s)* < £}

I DF (=, )H‘

To get (4.78) also in this case it remains to prove that tha hgnd side of this last inequality goes
to zero as — 0. This immediately follows using the following Lemma and peaty (iii) of ¢.

Lemma 4.2.17.Let K ¢ R" andf,g : K — [0,+00) be a compact set and two continuous



functions such that
if f(x) = 0forsomez € K, theng(z) = 0.

Then, it holds
lim sup{g(z): f(x) <e} =0

e—=0t% zeK

Proof. We suppose by contradiction that there exists>a 0 such that for any > 0 there exists
r. = x:(c) € K so that

g(xa) > c and f(xa) <e. (4.79)
SinceK is compact there exists a subsequenceso thatr., — = € K for somez € K. Passing
to the limitass — 07 in (4.79) we obtain the contradictigr{z) > ¢ > 0 and f(z) = 0. O
Thus we have proved that .
ﬁs < CQ()‘)
2| DH,egb(x? S)|

for any(z, s) € @, and fore small enough. As far it concerns the termdif one can prove, with
exactly the same reasoning of Lemma 4.1.5, that

1. =o(1+ ) =06,

1
| D]

As in the proof of Lemma 4.1.5 the only difference with thelagaus result in step one is that now
we can't claim that the terr@,; and P, are null. Anyway by (4.14), (4.21),

(s . DH,aCb ) DH,a¢t
Qi +eb = —(4(A) +ep(A))a Do
[gM)lal | [PV ¢ — 28] _ 1 1 2k
= (\ Dy 4|2 * | Dy -¢|? )| Drenl = O(\ Dy )| + \DH,€¢\2) =0,
a o QS(I’, S) - 26

with, as usual) =

 |Dueo(z,5)]  e|Dped(x,s)]
To conclude, sincé < k < 1/3, we get

i) — (D) + LG < GO ] 4 0
=2 [~ g pk — 280 ) +o.(1)],

With the same reasoning in Lemma 4.2.15 one can see thagtitehand side of this last inequality
is non negative for anyz, s) € (), ande small enough.



The proof of the extension af to a global subsolution of (4.38-)°" in B(x,,7] x [t,t + h]
and the proof that such a function satisfies 1, 2, 3, is sinl@inat of Lemma 4.2.15 and we omit
it. O

Once we have proved the first two steps (initialization aroppgation of the front) the proof of
Theorem 4.2.11 follows immediately using Corollary 2.2.3. 0
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