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Abstract

The Internet of Things (IoT) is a novel paradigm that promises to

offer us enhanced awareness of our surroundings through the intro-

duction of processing, communication and sensing capabilities in ev-

eryday objects. Any object, which is now “smart”, will help providing

an augmented reality experience thanks to its machine–to–machine in-

teractions with other smart objects and with the web services in the

Internet cloud as well.

To make the IoT paradigm a reality, an interoperable, efficient and

flexible Internet protocol stack is a key requirement; many research

institutions and standardization bodies have been working to this end

in the current years.

This thesis is centered around the technical challenges involved in the

realization of such a protocol stack, including their definition and eval-

uation. Beyond the experimentation of current protocol proposals,

this thesis also contains novel approaches, optimizations and architec-

tures critical for building IoT nodes using cost, energy, and processing

constrained devices, such as the ones readily available on the market

for building IoT prototypes.

Implementation, simulation and experimentation of such technologies

have revealed several issues preventing an efficient realization of such

IoT systems. These issues have been addressed by the software and

protocol architecture proposed in this thesis, which has proved to be

more efficient than the state-of-the-art during simulations and field

trials in realistic operation conditions.



Sommario

La Internet of Things (IoT), ossia la Internet delle Cose, è un nuovo

paradigma tecnologico che promette di offrirci una migliore consape-

volezza di cosa ci circonda aggiungendo agli oggetti di uso quotidiano

capacità elaborative, comunicative e sensoriali. Ogni oggetto, reso cos̀ı

“intelligente”, collaborerà nel provvedere all’utente un’esperienza di

realtà aumentata, ottenuta grazie alle interazioni macchina–macchina

con gli alri oggetti intelligenti, ed anche con i servizi presenti nella

nuvola di Internet.

Per rendere la IoT una realtà, un requisito chiave è rappresentato

dall’avere un insieme di protocolli Internet che siano al contempo

interoperabili, efficienti e flessibili; molti istituti di ricerca e organismi

di standardizzazione hanno lavorato a questo scopo durante questi

anni.

Questo lavoro di tesi è centrato intorno alle complessità tecniche che

minano la realizazzione pratica di tale protocol stack, includendo

quindi la loro definizione e valutazione. Oltre la sperimentazione delle

proposte protocollari correnti, questa tesi contiene nuovi approcci, ot-

timizzazioni e architetture critiche per la costruzione di nodi della IoT

tramite dispositivi limitati in termini di costo, energia e capacità di

elaborazione, come quelli che sono attualmente disponibili sul mercato

per la costruzione di prototipi.

L’implementazione, la simulazione e la sperimentazione di queste tec-

nologie hanno rilevato numerose problematiche che possono prevenire

la realizzazione efficiente di tale sistema IoT. Queste problematiche

sono state gestite nell’architettura protocollare e software proposta

in questa tesi, che infatti si è dimostrata essere più efficiente dello



stato dell’arte durante le simulazioni e la sperimentazione sul campo

in condizioni operative realistiche.
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1

Introduction

The research presented in this thesis focused on the field of Internet of Things

networking and, in particular, on the investigation of its relations with the well-

known research topic of sensor networks, with the aim of producing a full-featured

Internet-viable protocol stack. This stack has been realized as a proof-of-concept,

demonstrating its feasibility on real devices and evaluating the performance of

Internet-enabled smart sensor nodes.

This activity has been particularly inspired by the problem of defining a net-

working stack architecture for realizing efficient, interoperable and flexible smart

objects.

In fact, in recent years the vision of ubiquitous, mobile, and pervasive comput-

ing systems has received extensive attention by the research community. As the

result of a change in living habits worldwide, these days the demand for personal

digital communication and computing devices is exponentially growing. Digital

assistance is still limited in its interactions to regular Internet contents, which

are in large part provided by humans feeding information systems with data, and

where unattended operations are the exception rather than the norm.

In the future, a growing number of ordinary objects are expected to receive

digital communication and computing extensions, to become smarter devices,

helping their users in the interactions they have with them.

Any real-life system can be affected by this digital revolution, in fact, nowa-

days the application of the so-called Internet of Things (IoT) paradigm is pro-

posed in many contexts.

1



1. INTRODUCTION

In this thesis, the discussion will not be focused on a specific application, but

rather we will discuss the technology as it could be applicable to multiple IoT

scenarios. In fact, from a communication perspective, fundamental protocol stack

characteristics are not impacted by specific use cases, and the whole dissertation

has a benefit from a general purpose approach in its writing.

Practically speaking, however, in the aforementioned technical environment, a

number of relevant technical issues have to be solved. The main problem are the

severe constraints, in terms of amount of resources available on cheap constrained

devices; since cost-effective nodes are desirably the majority of the hardware

involved, system and protocol design is tightly limited to a very strict subset of

feasible choices.

Moreover, the ubiquitous spatial deployment nature of smart devices, together

with their inherent energy limitations, generally involve using an impaired com-

munication infrastructure with characteristics similar to the ones available in the

first years of the Internet computing. Additionally, nodes are required to share

those limited communication resources with peer devices that cannot by them-

selves route their messages through the network without this active collaboration.

Last but not least, the importance of interoperable solutions has required

special attention towards recent work done by standard organizations active in

Internet protocols, and in particular a partecipation to the IETF standardization

activity has been an integral part of this research.

The above grand vision has entailed the design of a system solution able to

match real life hardware requirements of the involved devices, by active imple-

mentation and experimentation of all the proposed protocols and formats; this

approach has required a large amount of time in the software design and evalua-

tion, but has made it possible to gather an in-depth understanding of the whole

problem, and has led to valuable architectural and practical guidance.

1.1 Structure of the thesis

This thesis work is structured as follows:

2



1.1 Structure of the thesis

Chapter 2. gives an overview of seminal work done on lower layers of the system,

required during our investigation and experimentation, and introduces relevant

tools that have been vastly used throughout the thesis.

Chapter 3. is focused on prototyping the Internet of Things, by exploring the

usage scenarios with their specific needs, and by eventually building the technical

design of a working IoT system prototype.

Chapter 4. takes into account the impact and related complexity required for

building functional IP networking on constrained devices, by proposing an effi-

cient design of an IPv6/6LoWPAN stack. Moreover, it contains the design of a

feasible congestion control approach for such networking environment allowing a

scalable deployment of such technologies.

Chapter 5. contains the design and experimentation of application layer proto-

cols for smart objects, starting from the seminal work done during the SENSEI

project, up to the recent involvement in the subsequent standardization activities

within the IETF. Moreover, it contains the discussion of an innovative implemen-

tation of an XML data encoder for IoT devices, and the related experimentation

results.

Chapter 6. presents tools and technologies required to integrate IoT nodes into

the ordinary HTTP-based Internet. Beyond considering the required protocol

mappings, the chapter contains also the design of a novel web framework specifi-

cally targeting IoT application design.

Chapter 7. concludes the dissertation with some remarks and summarizes the

most relevant results obtained in this work.

3



1. INTRODUCTION

4



2

Background

In this chapter, we will provide an overview of the background work that has

been conducted on link-layer technologies required for the investigation, imple-

mentation and testing of actual sensor network protocols.

First of all, in Section 2.1 we will discuss the design and deployment of the

WISE-WAI testbed located at the University of Padova. This experimental facil-

ity allowed us to run real experiments, which guided us in the design of the proto-

col stack. Differently from many other similar testbeds, the WISE-WAI testbed

spans across several buildings and floors of our campus, where the 2.4GHz ISM

bandwidth suffers from a high number of users concurrently accessing it using

different technologies.

In the second part of the chapter, we will present our original design of

TinyNET, a tiny network framework for TinyOS. This piece of software allows

the flexible integration of different networking components in the link-layer net-

working stack; we tested out its design upon the previously described testbed, to

demonstrate its feasibility to easily realize advanced sensor network applications,

containing routing and environmental monitoring capabilities.

2.1 The WISE-WAI Testbed [1]

The WISE-WAI Testbed is a large experimental platform of wireless sensor nodes.

It has been designed in the context of the WISE-WAI project (see [21]) as a

flexible and reconfigurable platform to test algorithms and protocols for WSNs,

5



2. BACKGROUND

68

24
112

24

32

48

40

50 m

DEI/A
DEI/D

DEI/M

DEI/G

Figure 2.1: WISE-WAI Testbed Overview

and has been endowed of networking devices and solutions which allow wired

communication with sensor devices; having a wired connection is a requisite for

debugging or quick reprogramming purposes. The resulting network features an

intermediate density of 10 to 20 nodes within the coverage area of any sensor, in

case different (e.g., lower) densities should be needed, this number can be tuned by

acting on the maximum transmit power of the nodes. We deployed the testbed

so that every node is connected to the network backbone through a Universal

Serial Bus (USB) cable. USB also provides power supply, this avoids battery

wastage and continuous replacements during setup and test phases. However,

during actual operations communications take place only through the wireless

channel. The USB backbone also provides a cheap and fast way to log data for

debugging, of performing general management and of programming nodes as well.

The areas currently covered with sensors entail lab rooms and offices, and are

located over two separate buildings, and over two and three floor on these build-

ings, respectively. The connection between the buildings is completely wireless,

although the configuration of the network may be changed so that separate sinks

are assigned on each building: these nodes would have the special function to

translate communications from the wireless to the wired domain, thereby reduc-

ing the wireless traffic if necessary. However, for most applications, the radio link

6



2.1 The WISE-WAI Testbed [1]

Figure 2.2: A screenshot of the web interface to the WISE-WAI testbed. The

figure shows nodes of different colors, depending on the area where they are de-

ployed. Each node has a unique label placed next to it (labels are more clearly

visible when appropriate zooming and panning are operated). The plugins attached

to the interface can be activated or deactivated through the check-boxes on the left,

whereas the parameters and functions of the currently selected plugin (in this case

the Routing plugin) are available on the right.

is kept active, so that the size of the network can be fully exploited.

It is worth noting that some of the sensors had to be modified in order to

provide sufficient radio coverage, especially in bottleneck areas: the modifica-

tion included the installation of an external antenna connector, the removal of

a capacitor on the sensor board, the placement of a new capacitor in a different

position, enabling the usage of the external antenna, and the actual installation

of a displaced monopole antenna attached to the board via an antenna cable.

The network has been enriched with new management interfaces based on

the well known Google Web Toolkit (GWT), which provides user friendliness

through one of the most popular user interfaces to date (the same of Google

Maps), and helps create and maintain complex front-end applications written in

Java and Javascript. Ultimately, this allows to map network nodes to their in-

stallation places, and features the advantages of a modular environment enabling

the development of customized applications, as well as of a large beta testing

7



2. BACKGROUND

Figure 2.3: A screenshot of the Routing plugin ran over the Fandango interface.

Only a subset of the nodes has been selected to run the application. The routing

paths are depicted hop-by-hop by means of a red line connecting subsequent relays

over the path. Some features of the lines can be associated to routing performance

metrics (e.g., the thickness to the load over the respective link, the color to packet

error rate).

community. GWT provided the framework for both Google Maps implementa-

tion and the integration of many other popular Google services such as Calendar,

which we employed to provide resource booking functions. Whereas GWT per-

fectly supports the creation of client-side applications, on the server side we opted

for Java Enterprise Edition (Java EE) in order to achieve an efficient and reli-

able server platform: in particular, we used the new, lightweight Java EE 6 Web

Profile to create web applications, which we combined with the popular open

source database MySQL. The applications allow users to build plugins capable

of embedding graphics to show network resources and/or data. In particular it is

possible to create interactive elements such as network nodes that can be clicked

on to activate data representation plugins: an example can be seen in Figure 2.2.

The interface and server-side platform are hosted on an Apache Tomcat server, a

web container that provides a running platform for Web applications developed

in Java. The graphical interface to the testbed has been named Fandango.

8



2.1 The WISE-WAI Testbed [1]

Figure 2.4: Indoor WISE-WAI Testbed Deployment

2.1.1 Related Work

In this section, we will provide a brief historical perspective, which guides the

reader from the dawn of the Wireless Sensor Network (WSN) era to the latest

developments of the IoT. In particular, we will focus on the most representative

efforts on creating autonomous WSN testbeds and on integrating those networks

in the Internet.

One of the earliest examples of sensor testbed has been Sensor Web [22],

which provided a low cost implementation of wireless sensor networks based on

commercial-off-the-shelf components. Sensor Web interconnected a few of the first

WSNs and provided users with an ad hoc graphical environment for visualizing

data.

In 2005 Sensor Web was enhanced with a distributed geospatial infrastruc-

ture based on a service oriented architecture [23]. This infrastructure leveraged

on gateways capable of translating the proprietary communication protocol stacks

9



2. BACKGROUND

Figure 2.5: Node displacement map, with a close-up on the arrangement of nodes

within one of the rooms.

of the different WSNs into Internet compliant messages based on both the Hyper-

Text Transfer Protocol (HTTP) and the eXtensible Markup Language (XML) for

exchanging and enhancing information, respectively. From our experience, while

this solution is successful in integrating many different networks, it is still depen-

dent on the specific WSN realization, thus lacking the seamless interoperability

that will be the main requirement for the IoT.

By 2005, another important testbed had been realized: MoteLab [24]. Mote-

Lab is the first attempt to provide a research platform for independent researchers

to test their own applications. In particular, MoteLab leveraged on TinyOS’s

hardware abstraction layer concepts, thus offering uniform interfaces for applica-

tion design. However, the platform, which was also available for download, was

intended for testbed management only and did not provide Internet connectivity

to the nodes, nor web interfaces for node interactions.

In 2006 two other testbeds were realized: Kansei [25] at The Ohio State Uni-

versity and SignetLab at the University of Padova [26]. The former was designed

with objectives similar to MoteLab, while the latter was our own first contribu-

tion to the IoT. Kansei allowed users to test their own software on the WSN

10



2.1 The WISE-WAI Testbed [1]

testbed. Although smaller, SignetLab not only allowed users to test their own

applications, but also provided them with a simple Java Management framework

which let users deploy custom plugins to control applications and interact with

devices.

Again in 2006, Microsoft created the first portal website for real-time real-

world sensor data, SensorMap [27]. SensorMap leveraged on geo-centric web ser-

vices such as Windows Live Local and Google Maps to provide APIs to visualize

spatially and geographically related data over a map interface.

Later integration examples, both from 2008, are SensorScope [28] and Smart

Space Network [29]. At about the same time, we were extending the Signet-

Lab sensor testbed to the whole Department of Information Engineering (DEI),

now counting about 350 devices [1]. Also, in 2009 a RESTful architecture [30]

was proposed, as well as two concrete implementations based on the Sun SPOT

platform and on the Ploggs wireless energy monitors. In 2010, [31] proposed a fed-

erated testbed approach to interconnect heterogeneous hardware by virtualizing

the physical testbed topology.

Concluding our chronology, Pachube [32] is possibly the most successful IoT

integration framework into the Web and in 2011 reference [33] describes the Web

of Things (WoT) architecture and best practices based on the RESTful principles

that are similar to those that we leveraged on in the following section.

2.1.2 Technical Description

Testbed has been deployed according to a hierarchical organization, whereby

all sensors are connected, via USB hubs, to tiny embedded computers that act

as Node Cluster Gateways (NCGs, see Figure 2.7). USB connections are not

used for actual communication, but rather provide power supply and log data

for debugging purposes. During actual operations, communications take place

only through the wireless channel. For the quick deployment of applications to

be executed on the nodes, USB cables can also convey new application data.

The NCGs are core elements of the network hierarchy, and interact with the

nodes both in the upstream (node-to-gateway) direction, e.g., for reporting debug

and log messages, and in the downstream (gateway-to-node) direction, e.g., to

11



2. BACKGROUND

Figure 2.6: WISE-WAI Testbed Architecture

reprogram, reset, and power up or down the nodes. The latter functionality

is provided by fully USB 2.0-compliant hubs and proves particularly useful by

doubling as a sort of hard sensor reset. This is accomplished by powering off the

port to which the sensor is attached. Thanks to this function, the sensors need

not to be manually disconnected, in case they should not respond to software reset

commands. NCGs can be reached from a central server through Virtual Private

Network (VPN) connections, in order to carry out management tasks; otherwise,

their presence is transparent to the user, who interacts with the network as though

he were directly communicating to the sensors. While command line scripts are

available for this purpose, an HTTP interface has also been developed to ease

node programming, as well as other management tasks (power on/off, information

retrieval, and so forth).

The aforementioned architecture (server–NCGs—USB hubs–sensors) is scal-

able and easy to extend; furthermore, its components can be easily replaced in

case of faults. As anticipated, NCGs are a key component of our network hier-

archy. They are small computers of size 15 cm × 15 cm, bearing limited power

supply requirements, which can be supported through the Power-over-Ethernet

(PoE) standard. The nodes have been deployed in the buildings of the Depart-

ment of Information Engineering at the University of Padova, Italy. Part of the

testbed is shown in the map in Figure 2.5, and counts more than 350 nodes

12



2.1 The WISE-WAI Testbed [1]

Figure 2.7: An example of Node Cluster Gateway (NCG), showing the embedded

computer at the center, and the two USB 2.0-compliant hubs at the top.

currently deployed.

In the following we give a brief description of the components of the testbed

following a bottom-up approach.

2.1.2.1 Sensor nodes: TelosB

The wireless embedded sensors we chose for use in our testbed are the TelosB

nodes [34] (Figure 2.8), a widely used platform enjoying wide community sup-

port and usually used as a reference in performance evalutations. Here we recall

that TelosB platforms are low-power IEEE 802.15.4 wireless nodes communicat-

ing with a maximum transmission power of 1 mW within the 2400-2480 MHz

bandwidth, at a maximum bit rate of 250 kbps. This choice has been made since

this platform is undergoing widespread use around the world, and therefore it is

constantly supported and upgraded. TelosB nodes come equipped with tempera-

ture, humidity and light sensors. They can be directly connected to other devices

through an embedded USB port.
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Figure 2.8: The TelosB sensor board showing a breakdown of the main compo-

nents.

TelosB node – TmoteSky: summary of features

• Cpu MSP430 Texas Instruments 8 MHz, RAM 10 KB, ROM 48 KB.

• ZigBee: 250 Kbps, standard 2.4GHz IEEE 802.15.4.

• Temperature, humidity and brightness sensors.

• USB installation.

2.1.2.2 USB hub

Sensor nodes are connected to the gateway through USB self-powered hubs. As

anticipated before in this report, the hubs serve many purposes: primarily, they

supply power to the nodes, and replicate USB ports to extend the connectivity

capabilities of NCGs. Moreover, self-powered hubs allow to toggle power supply

on a per-port basis, allowing, e.g., to switch on or off any sensor connected to

a specific hub port via a straightforward software command. While the latter

14
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individual port power control support is a standard requirement for every self-

powered USB 2.0 hub, most off-the-shelf products do not adhere to full USB

2.0 specifications, and therefore implement only a subset of features that are

expected to be most widely used. However, the capability to switching power

on or off for single USB ports is a critical requirement for a fully functional and

reliable testbed, because it enables hard node resets via remote controls. For

these reasons, a number of USB hubs have been carefully inspected and tested:

only certified USB 2.0 hubs with reliable performance have been chosen for use

in the testbed. Here we summarize the features of the Linksys Proconnect 4-port

USB 2.0 hub, that is representative of the equipment we use in our testbed.

Linksys Proconnect 4-Port USB 2.0 Hub: summary of features

• Supported standards: OHCI, UHCI, USB1.1 and 2.0

• 1 USB Type B Root Port

• 4 USB Type A Device Ports

• LEDs signaling power and activity

• Individual port power control and overcurrent compensation

2.1.2.3 Node Cluster Gateways (NCG)

The main part of our hierarchical structure is made up by NCGs, that connect

sensors via hubs and communicate with the rest of the network through an Ether-

net backbone. The NCGs are embedded PCs with reduced capacity computation,

that run a GNU/Linux kernel augmented with all libraries and tools required to

control the nodes (mainly, TinyOS-2.x and related add-ons) and a Java Virtual

Machine. At this phase of the project, we have not forced ourselves to strictly

define the tasks that should be carried out by the NCGs and to the centralized

network server: this decision will be made at a later stage, after a careful as-

sessment of the capabilities and requirements of the testbed. A more detailed

description of the NCG hardware follows.
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Figure 2.9: Outdoor WISE-WAI Testbed Deployment

Alix 3c2 - Fanless embedded AMD motherboard: summary of features

• CPU: AMD Geode LX800 500 Mhz

• SDRAM: 256 MB on board

• 2 USB Hosts

• 1 RS232 COM port

• 1 Rj-45 Ethernet LAN port

• 1 expansion slot for Compact flash memory cards
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2.2 TinyNET [2, 3]

Wireless Sensor Networks (WSNs) have emerged as a promising paradigm for a

number of smart applications to be implemented in the near future. These appli-

cations are growing beyond simple data collection, localization and information

retrieval services, to incorporate increasingly complex features such as, e.g., smart

sensing, assisted navigation, and sensory extension. It can be foreseen that many

solutions by different distributors will undergo full-fledged development and find

their way to the market, e.g., see [35].

From a developer’s point of view, it is very convenient to create new soft-

ware based on the reuse of as many program components as possible, taken from

both open-source and proprietary repositories. However, as noted in [36], very

few applications are actually built based on reusable components: in fact, the

most widespread approach is to implement ad hoc, monolithic blocks that deliver

the required services. From these macro-blocks, it becomes difficult to distin-

guish which components provide a given set of functionalities. While this usually

bears greater efficiency at execution time and a slightly more contained memory

footprint, a software block-based approach can achieve comparable efficiency and

footprint while bearing the further advantage of greater modularity and broader

system-level view [36].

A first step toward the resolution of these problems is moved by introduc-

ing TinyNET, a modular framework for TinyOS that i) makes it easier to build

applications by reusing software modules; ii) provides any protocol and applica-

tion with a layered network interface that encompasses the whole stack, while

still allowing cross-layer operations and exchange of parameters; iii) allows fast

reconfiguration of applications through new protocols and functionalities, that

transparently become a part of the layered network stack. Our framework oper-

ates on top of TinyOS but below the user application modules, and is completely

transparent (in the sense that TinyOS module binding directives are intercepted

and used to place any module within the framework).

TinyOS is a powerful platform to build applications for WSNs, due to its

limited memory consumption and to its cross-platform support; its design is based

upon tiny components, whose interfaces are linked using a highly optimized C
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dialect (nesC [37]). This paradigm has proven to be effective when building

a system with shared, highly reusable components, and helps reduce the final

binary image size.

The communication abstraction employed in TinyOS is the Active Message

(AM) model [38]. The AM header is composed of 1 byte, the AM type, identifying

the user-level message handler. The rest of the packet is composed of the payload

to be passed on to the handling process. The AM paradigm allows to share the

radio interface, by binding applications to a single AM type of the Active Message

subsystem. Applications employ available interfaces to control the radio subsys-

tem, e.g., to power it on/off and, by means of platform specific commands, read

link quality indicators (TX power, RSSI, LQI). Directly putting an application in

control of the radio subsystem is a valid approach only if the application itself is

very simple; in case a more complex system should be built, a top-down approach

is preferred, which requires to design the architecture and modules of the system

before developing the system itself. However, network applications are usually

designed as holistic modules which are tightly integrated into TinyOS itself, bear-

ing hardly reusable parts and usually incorporating platform-specific code. This

is also due to the intrisic structure of TinyOS, whose architecture do leave an

extensive freedom in the design of components, which unfortunately results in

frequent design of components as monolithic and platform-specific. Furthermore,

there is no logical network architecture available for TinyOS, which represents a

drawback to open contributions of network protocols and applications. TinyNET

is a network framework designed to help fill the gap between TinyOS itself and

any kind of networked system built on top of it.

2.2.1 Related Work

With a few exceptions, most architectures proposed for WSNs are created to

comply with a particular requirement, or to support a specific protocol feature.

For example, the authors in [39] face the challenges of energy management in

WSNs by treating energy as a fundamental design primitive. Their architecture is

composed of three parts, namely a user interface for specifying an energy policy, a

monitoring system to control energy usage, and a management module to enforce
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the energy policy. The use of expressive language to specify the energy policy

enables easier user interaction.

The Tenet architecture [40] has been specifically designed to support tiered

architectures, where slave (low-tier) nodes are only in charge of gathering infor-

mation, whereas the complexity of system-level, computationally-intensive tasks

(such as data fusion) is concentrated on high-tier master nodes, which usually

own a non-volatile power supply. It is worth noting that this is in line with the

Router/End Node paradigm seen, e.g., in the ZigBee standard [41]. Tenet subdi-

vides sensing tasks into tasklets, each of which specifies the sensing operation to

be carried out by low-tier motes, as coordinated by masters. Tasks are flooded

to all motes upon user input.

The SP architecture proposed in [42] aims at providing a link layer abstrac-

tion to all protocols, by means of a shared message pool (formed of data to be

transmitted in packets) and a shared neighbor table, which holds a summary of

neighbor information which is made available to all protocols, instead of having

each protocol maintain its own. The SP approach allows to bind the standard

interfaces of the higher layers of the protocol stack to the link layer: the effective-

ness of this approach is explained in [43]. Chameleon [44] also targets the design

of a reconfigurable architecture, that allows applications to transparently adapt

to different MAC, routing and transport protocols. The key feature of Chameleon

is a universal header format which is based on packet attributes rather than bit

fields.

The approach chosen in [36] is slightly different: the authors propose a MAC

Layer Architecture (MLA), which aims at subdividing usual MAC-layer function-

alities into atomic operations, so that existing as well as new protocols can be

programmed based on a large library of reusable components. Each component

(either hardware-dependent or -independent) is instantiated into TinyOS: when

properly connected, these software blocks allow the creation of MAC protocols

that are entirely analogous to those found in the literature, and yield the same

performance (e.g., throughput) while bearing only a slightly larger memory foot-

print. An approach similar to [36] is also followed in [45], where the authors

propose COPRA, a communication processing architecture based on protocol

processing stages and engines, i.e., components that perform basic operations
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and can recursively become part of larger structures to carry out more complex

tasks. A survey of other ongoing projects regarding networking abstractions in

TinyOS as of a few years ago can be found in [46].

SensorStack [47] is a solution to provide an abstraction of communication

services to the upper layers, in order to facilitate data-centric communication.

It relies on an information broker based on the publish-subscribe paradigm, and

aims at providing simple interfaces and efficient use of memory to share cross-

layer parameters, as well as the support for notifying complex events to related

protocols. Similarly, Cross-Layer Optimization Interface (CLOI) [48] provides an

interface to exchange data between protocols; this interface is also implemented

in the form of data structures such as message pools and neighbor tables.

Unlike the previously cited approaches, our TinyNET architecture works at

a lower level. We focused more on the reusability of any software block, rather

than of specializing the architecture to support a certain network task or appli-

cation. In this light, the most similar approaches are [36, 45]: however, there are

also some differences, in that [36] focuses on MAC protocols, while [45] requires

specific protocol engines and stages to encompass network functionalities. In our

case, instead, the framework’s main task is to let the user promptly instanti-

ate, switch and connect any kind of open or proprietary TinyOS-based software,

with special regard to creating multiple instances of the same components and

to transparently multiplexing protocols over the same interface. In this regard,

it is worth noting that most of the previous architectures, e.g., [39, 40] could be

integrated seamlessly as part of the TinyNET framework. This also applies to

the MAC components of [36]. Finally, it is worth noting that the Contiki oper-

ating system [49] also implements an adaptive networking architecture for WSNs

through the Chameleon/Rime stack [44]. However, as most applications devel-

oped to date have been programmed in TinyOS, TinyNET presents considerable

advantages, as it yields equivalently solid network architecture, modularity and

extensibility to present and future TinyOS applications. Also, while Contiki has

a fixed ROM occupancy of 40 kB, TinyNET and TinyOS present a much smaller

footprint, see Section 2.3.
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Figure 2.10: A sketch of the TinyNET architecture.

2.2.2 Architecture

TinyNET exploits nesC to split any networked system into two parts: the appli-

cation layer and the network layer. The application layer is similar to TinyOS’s

standard developing entry point, with the additional feature that every appli-

cation module represents a single, independent process in the network system.

Utility interfaces have been built to perform such operations as radio state con-

trol and channel selection; in addition, the control of the radio subsystem has been

centralized, thus providing the ability to intercept any control request. In turn,

this common entry point facilitates the development of resolution techniques for

concurrencies in radio control (e.g., through independent locks to be imposed on

the radio by those applications that require exclusive access to this resource). The

network layer is instead a novel layer which contains any modules that require

full access to every packet received and/or transmitted by the node. The network

layer is a direct development entry point for new network protocols to be inserted
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in the framework, transparently to applications. This layer also supports ordered

access of protocols to transmitted/received packets, and provides full control over

the packet itself, e.g., any module can change the field structure of the packets

if required. To ease the differentiation among the application and network layer,

they are programmed inside separate files, allowing system integrators to easily

combine application and network components.

The development of TinyNET has posed various design challenges, mainly in

order to select a minimal yet sufficient set of inter-component interfaces, which

has to be clean and practical for applications, yet powerful for network mod-

ules. Moreover, significant attention has been paid to preserving support for

cross-layer interactions, in that any network module can access and process infor-

mation contained in other modules (this feature is natively available in TinyOS).

A hardware abstraction layer has been introduced to access specific chip features,

in order to provide cross-platform support and access to low-level hardware com-

ponents. Moreover, the development has been carried out on top of TinyOS in

a completely independent fashion, in order to favor the porting of TinyNET to

newer TinyOS versions. (Even the TinyNET code is placed in a different folder

tree with respect to the rest of TinyOS.) As shown in Figure 4.1, the application

packets to be transmitted are taken in charge by the network layer and are sched-

uled across network modules.1 After passing through all linked network modules,

the packets are sent to the MAC module to be scheduled for transmission.2 The

reception of packets takes place following the reverse order, i.e., when the MAC

module signals the reception of a new packet, this packet is processed by all RX

network modules (in reverse order with respect to the transmission phase, see

Figure 2.10) and is eventually passed on to the application corresponding to the

AM type of the received message.

2.2.3 Inter-component interfaces

Four different kinds of interfaces are required in TinyNET.

1In the current implementation, the number of network modules has been fixed to three for

simplicity.
2The MAC module manages channel access independently of actual MAC/routing protocols.

It is used to implement, e.g., ALOHA vs. CSMA.
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Application layer interfaces—Transmission and reception interfaces are re-

quired by applications to access the framework. In general, these are an expansion

of current TinyOS AMSend and Receive interfaces.

interface TX {

command message_t* send(

message_t* pkt,

am_addr_t dst,

uint8_t len,

uint8_t power,

uint8_t prio,

bool swap );

event void sendDone(

message_t* pkt,

error_t status );

}

The send command has been extended over the standard AMSend.send, with

new per-packet TX power and scheduling priority attributes. Moreover a bool

swap parameter is passed, to request a message t* pointer to a free buffer in

exchange to the message t buffer passed for transmission. This can improve

memory utilization in nodes with multiple applications that concurrently access

the network subsystem. At the current stage, the Receive interface is identical to

TinyOS 2.1’s, and has been renamed RX, in order to support later modifications.

Network layer interfaces—Network layer modules require full access to the

packet, and can thus access the internal framework data structures used by

scheduling components. The internal transmission buffer is defined as follows:

typedef struct txring_buffentry_t {

am_addr_t src;

message_t* pkt;

txpkt_state_t state;

uint8_t power;

uint8_t prio;

error_t error;

uint8_t swapped;
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} txring_buffentry_t;

where pkt is a pointer to the message t holding the actual packet to be trans-

mitted: swapping this pointer with a different one allows the network module

to rewrite the entire packet from scratch. The variable state holds the current

scheduling state of the packet, representing which network modules it has already

stepped through; power is the power level at which the packet should be transmit-

ted, prio is the scheduling priority, error stores a general purpose error code and

swapped tells if the buffer space of the current packet has been swapped. More-

over, the source address of the packet is also stored in the structure (src field), to

distinguish between the originator of the packet and the current relay (which is set

by TinyOS). The full txring buffentry t* structure pointer is passed to every

transmit network module which implements the ProcessTXPacket interface:

interface ProcessTXPacket {

command error_t process(

txring_buffentry_t* txbuf );

event void processed(

txring_buffentry_t* txbuf,

error_t error );

}

Network modules handle one packet at a time: they receive the input packet

through the process command, and signal back the processing completion using

the processed event.

typedef struct rxring_buffentry {

message_t* pkt;

rxpkt_state_t state;

error_t error;

uint8_t opt;

} rxring_buffentry_t;

Analogously, an RX buffer structure is defined, storing the pkt message t*

pointer, the state variable of the current processing step, and an error variable

holding any error codes faced during packet processing. Additionally a persistent
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Figure 2.11: Scheme of the wiring of TinyNET components.
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per-packet opt variable is provided for internal module use. A ProcessRXPacket

interface is provided, analogously to the aforementioned ProcessTXPacket.

Apart from the described TX/RX processing interfaces, two more specific

interfaces are required to build a practical network layer: a Route interface and

a TXSchedule interface.

interface Route {

command bool forward(rxring_buffentry_t* rxbuf);

command bool isForMe(rxring_buffentry_t* rxbuf);

}

The Route interface is required to handle the delivery process of received packets.

More specifically, it allows a routing module to implement custom logic to choose

if a packet should be further relayed over a multihop path (returning the forward

command). Moreover, the isForMe command can be implemented to decide

whether a packet must be delivered to the applications running on the local

node. The TXSchedule interface, instead, requests a packet transmission slot to

the MAC module.1

interface TXSchedule {

command error_t schedule(

uint8_t id,

uint16_t dst );

event txring_buffentry_t* doTX(

uint8_t id );

event void TXdone(

txring_buffentry_t* txbuf,

error_t error );

}

Using this interface, the MAC module can be asked to reserve a slot for trans-

mission of packet id to node dst. When the transmission can eventually take

place, the MAC module fires a doTX event, which will return the pointer to the

TX buffer to be transmitted. Upon transmission end, a TXdone event is fired to

return the result of the operation.

1This is required to support reservation-based slotted access protocols: unslotted protocols

may allow access right away or according to specific rules.
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Hardware abstraction interfaces—At the current stage of development only

CC2420-based motes are supported, and the supplied hardware abstraction is

bound to the CC2420 TinyOS implementation. When more radio chips are sup-

ported, the interface definitions and conventions will be refined. The first interface

required to abstract from hardware-specific components is HardPacket:

interface HardPacket {

command uint8_t getPower( message_t* p_msg );

command void setPower(

message_t* p_msg,

uint8_t power );

command int8_t getRssi( message_t* p_msg );

command uint8_t getLqi( message_t* p_msg );

}

The per-packet TX power level, receive RSSI or LQI are extracted from the

radio subsystem using this interface. As reported before, the returned values are

currently interpreted as in the CC2420Packet module:

interface RadioChannel {

command error_t set( uint8_t channel );

event void setDone(

uint8_t channel,

error_t error );

command uint8_t get();

}

The RadioChannel.set command allows to set the operating radio channel of

the RF transceiver, according to the IEEE 802.15.4 standard; upon completion

of the command, a setDone event is propagated. The channel currently in use

can be identified by using the get command.

Legacy application layer interfaces— To facilitate the migration to TinyNET,

a set of standard TinyOS network interfaces is provided: AMSend, Receive,

Packet and AMPacket. These interfaces are sufficient to translate former TinyOS

applications to TinyNET, by instantiating TinyNET components instead of stan-

dard TinyOS components.
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2.2.4 Technical description

The path tree of TinyNET contains the following folders: sys (framework core

modules); interfaces (interface definitions); modules (actual implementation

of network, MAC, and application modules); platforms (collection of platform-

specific components); lib (reusable components, useful to implement common

network modules); 6lowpan (porting of TinyOS’s 6LoWPAN implementation to

TinyNET); examples (sample usage files demonstrating TinyNET); install (in-

stallation procedures and utility files).

The sys directory contains all the components implementing the actual frame-

work. As shown in the wiring scheme reported in Figure 2.11, the BaseSingleNetC

component is the basic module every application should instantiate to signal its

own presence as part of the framework; the instantiation allows every radio-

related event (power on, channel change, radio subsystem boot) to be exposed

through the offered interfaces. BaseSingleNetC actually instantiates BaseNetC,

and binds it to the application with a unique net app id; the BaseNetC compo-

nent is the network layer definition file, which is in charge of wiring all network

layer components, of loading RXRingC, TXRingC and ActiveMessageC, and of se-

lecting and wiring MacC with the three receive and transmit modules, R{1,2,3}
and T{1,2,3}, respectively.

The RXRingC component is in charge of passing on every packet received by

MacC to all receive network modules, and ultimately of delivering the packet to

the application to re-queue it for transmission. Similarly, the TXRingC component

is in charge of handling transmit packets to every TX network module. Further-

more, it reserves a transmission slot from the MAC module, handles the packet to

that module when the slot is available, and signals back to the application when

the packet has actually been transmitted. The MacC component has full direct

access to the TinyOS radio subsystem and is in charge of every transmission and

reception.
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2.3 TinyNET Proof-of-Concept running over the

WISE-WAI testbed

Our first experience with the framework focused on simple tests to measure over-

head and basic functionalities. The BlinkToRadio application has been ported to

TinyNET as a reusable application module using native TX/RX interfaces. Hence,

BlinkToRadio can be loaded by simply instantiating and wiring the component

in the application layer definition file. When the firmware is built using the

described application and no network modules, the overhead due to the frame-

work size can be measured in comparison to a plain BlinkToRadio binary. As

to ROM occupancy, the use of TinyNET increased the BlinkToRadio size by 3.5

kB, reaching a total size of 15 kB. However, it should be noted that this overhead

is fixed, and depends neither on which nor on how many applications are loaded,

and is also independent of how many network modules have been wired to the

framework. The RAM occupancy overhead depends on scheduling queue buffer

sizes as set up in configuration files, plus about 60 B of static variables allocated

by the framework.

After testing TinyNET’s memory footprint, we wish to experience the prac-

tical advantages yielded by usage of TinyNET, as compared to the standard

TinyOS programming approach. To this end, we have built a more complex

system, featuring several application, networking and communication modules.

A multi-hop environmental monitoring and querying system using 6LoWPAN

has been chosen in this regard, as it is complex enough to prove the advantages

brought about by using the TinyNET framework. We highlight that the focus

of the work was to prove that TinyNET allows easy and straightforward im-

plementation of these modules, compared to TinyOS, rather than on collecting

performance metrics related to the system itself.

The following sections will present the components of our system architecture

in more detail.

2.3.1 IPv6/6LoWPAN stack

Research on the integration between standard Internet services and WSNs, as well

as the introduction of novel concepts such as the Internet of Things bestow larger

29



2. BACKGROUND

importance on protocols that allow easy connection between WSN islands and

Internet. 6LoWPAN plays a key role in this regard, as it is specificlly designed to

make any (even tiny) object addressable from anywhere on the Internet through

IPv6; the burden of typical IPv6 processing and header sizes, which are not

optimized for the wireless channel, is alleviated by compressing the IPv6 header;

this is achieved, e.g., by avoiding repeating patterns and useless or redundant

fields, while still allowing use of the full IPv6 address space breadth. Such simple

protocols, that yet make packet communications compatible to Internet protocols

shifts the perspective of WSNs, which are expected to become part of the world-

wide network along with any other kind of connected smart object.

TinyOS features a lightweight 6LoWPAN implementation, which can be found

in the path lib/net/6lowpan; this implementation provides the minimum work-

ing set of features required by IPv6 specifications: ICMPv6 Echo Request/Reply,

header compression and UDP socket support. The implemented features and ex-

posed interfaces fit the requirements of our proof-of-concept application: for this

reason, the 6LoWPAN implementation provided with TinyOS has been ported

to TinyNET. Through the 6LoWPAN component, any node can assign itself any

IPv6 64-bit prefix to be added to its MAC address (TOS NODE ID); additionally,

a node can send UDP packets to any IPv6 address and listen over one or more

UDP ports.

In TinyNET, 6LoWPAN sits on top of the whole framework, behaving as a

standard application. This way, 6LoWPAN can make straightforward use of any

available link layer and network protocol (e.g., routing and security). By using

legacy TinyOS support interfaces, porting 6LoWPAN to TinyNET has been very

easy, as the only changes required involved the instantiation of some components

and the setup of the proper wiring to the 6LoWPAN subsystem. This is a further

clue of how TinyNET straightens up development work when integrating objects

into a more complex application.

2.3.2 Routing network module

A simple routing protocol based on hop count (HC) descent has been imple-

mented: basically, a node with HC equal to n always relays packets to a neighbor

exhibiting HC equal to n− 1. While this might be a suboptimal strategy [50], it
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is sufficiently effective and simple to serve as a proof-of-concept component. The

HC information has to be renewed periodically: to this end, each node sets its

own HC to an arbitrarily high value, and the sink starts a HC flooding procedure

by sending an advertising packet with HC equal to 0; all nodes receiving the

messages set their HC equal to 1, and choose the sink as their next hop. The

procedure is recursively repeated, as every node broadcasts its hop count (say n),

and its neighbors set their own HC to the minimum between the current HC and

the value read from the packet plus one. When the node’s HC is actually updated

(the packet carried a smaller value than currently held by the node), the receiver

selects the packet sender as its next hop toward the sink. This is only one way to

choose the next hop: other choices that lead, e.g., to some cost optimization [50]

can be applied as well. In order to handle dead nodes and topology modifications,

an age variable is associated to any chosen relay. Each time a node propagates

its HC, it also increments the age of its relay by one. When age gets bigger

than a preset MAX AGE, the current next hop becomes outdated, and the node is

required to perform a further relay choice upon reception of a HC update packet

by a neighbor; in any case, the age of a relay is also set to zero any time a HC

packet is received by that relay.

The protocol described above supports node-to-sink communication, but does

not apply to sink-to-node routing, because the sink itself has no knowledge about

which path to go through in order to reach the node. A simple solution to this

shortcoming is to have any node, including the sink, remember which neighbor

is relaying the packet sent from a specific source. By dynamically building a

{relay,source} least recently used (LRU) cache table, any path can be walked in

a reverse, sink-to-node direction. To accomplish the described tasks, a routing

header is required, which carries information about the final destination of the

packet, the chosen next hop, and the original source of the packet (which is also

required in order to to build the route from sink to node).

Implementing the described protocol in TinyNET requires that the network

module provides three interfaces: ProcessTXPacket, used to build the routing

header in the packets queued for transmission (in order to keep implementa-

tion simple, the routing metadata has been appended to the outgoing packet);

ProcessRXPacket, required to extract the routing footer appended by the trans-

mitting node; Route, which updates the LRU table when a packet is queued for
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Figure 2.12: Interconnection between modules of the application performing sen-

sor reading collection and aggregation.

further relaying or delivery to the application.

2.3.3 Environmental monitoring and querying application

The application built upon the described system performs environmental moni-

toring and supports single node querying. The application concept is very simple:

the monitoring component ReadStoreC periodically samples values provided by

on-board sensors, and stores them into the RAM using a circular buffer of fixed

size equal to N PKT. The sampling interval is fixed to READ INTERVAL (and can be

tuned by acting on the variable).

Asynchronous to the gatherer of sensor readings samples, a second compo-

nent (LocalAggregationC) accesses the circular buffer, and stores a synthetic

representation of the values on the flash memory integrated on the sensor node

board. This way, the only permanent trace of past readings is kept in a com-

pressed form, and provides useful information about reading history (which can

be accessed using proper queries), without wasting the flash memory by, e.g.,

storing all samples. As a compressed representation of the readings, we chose

their average value.

The networked component (TotalAggregationC) is the only module in charge

of network-related operations, such as listening for incoming requests and report-
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Figure 2.13: Correlation among

the time series of temperature read-

ings for nodes m1 through m9 in Fig-

ure 2.5.

Figure 2.14: Correlation among

the time series of luminosity read-

ings for nodes m1 through m9 in Fig-

ure 2.5.

ing data back to the sink. The latter operation is performed periodically by all

sensors, but it should be noted that the sink itself can query any specific sensor at

any time, if needed. The 6LoWPAN support discussed before also enables queries

to be originated by any host on the Internet toward any node in the network;

the converse is also true, i.e., sensor readings can be conveyed to any host on the

Internet.

In order to achieve communication efficiency and scalability, the nodes pro-

gressively aggregate the sensor readings while routing packets throughout the

network. As commonly done in many similar approaches , we have organized the

nodes into an aggregation tree. The tree is formed in such a way that hierar-

chically higher nodes aggregate the readings received by the sensors from lower

hierarchy levels. Hierarchical connections are devised so that nodes expected to

yield correlated measurements are at the same hierarchy level and report to the

same head node. Such nodes are said to form ma group. For example the nodes

in the same room report to a node which is also inside the room, and which can

decide if and how to aggregate the data coming from its siblings. In turn, further

levels of aggregation are possible; for example head nodes representing groups

of sensors within rooms on the same floor or wing of a building may report to

another head node, which occupies a higher hierarchy position; this node receives

information on a per-group basis, and can thus decide whether or not to fur-
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Figure 2.15: Correlation among

the time series of temperature read-

ings for nodes c1 through c5 in Fig-

ure 2.5.

Figure 2.16: Correlation among

the time series of luminosity readings

for nodes c1 through c5 in Figure 2.5.

ther aggregate the readings, depending on whether the end user requires a coarse

or fine reading. We note that this structure is scalable and fast to replicate.

All aggregation operations applied to group readings are again demanded to the

TotalAggregationC component.

The aforementioned application elements are connected through a custom in-

terface ReadData, supporting asynchronous replies to get commands by means

of getDone events. Therefore, upper layer modules propagate queries in a top-

to-bottom direction whenever data is required, thereby limiting the further oc-

cupation of the sensor RAM. We recall that the average of past readings are

available on the flash memory of the node, whereas a limited amount of recent,

non-averaged readings can be retrieved from the node circular buffer.

Examples of the data retrieved by the application can be found in Figures 2.13

through 2.16. In particular, Figures 2.13 and 2.14 respectively show the corre-

lation among the time series of temperature and luminosity readings output by

sensors m1 through m9, in the bottom-right room of the map in Figure 2.5. Fig-

ures 2.15 and 2.16, instead show the came correlation metrics taken over the

readings of sensors c1 through c5, along the corridor. From the graphs, we infer

that the correlation among the luminosity levels perceived by nodes in the room

(Figure 2.13) is very high, meaning that this metric can be aggregated and repre-

sented with an average among readings with little if any loss of information. The

same applies to the temperature readings of nodes in the corridor (Figure 2.15).
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The reason behind the very high correlation is that the room features very uniform

lighting from windows and sometimes ceiling lights, which leads to very similar

sensor readings. The same is verified for the corridor temperatures, which tend

to be uniform across the corridor itself, with slightly larger deviations, which are

small enough to make the temperature information amenable to be represented

with an average value. The luminosity in the corridor (Figure 2.16) behaves

differently: in this case, there are no windows, and lighting comes from rooms,

window-doors, and side corridors as well, making the luminosity non-uniform, and

more so for nodes placed farther from each other (e.g., node c1 and c5, which have

the lowest luminosity correlation. The same argument applies to the temperature

readings in the room (Figure 2.13), where this time the source of different heat

levels is the equipment placed in the room itself.

While these results are just samples of which data can be gathered from our

sensor network, they indeed suggest that aggregation is a viable and effective

option for environmental data, making the environmental monitoring application

an effective part of our proof-of-concept TinyNET application.
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Prototyping the Internet of

Things

The gravitational core formed by the concepts of Web 2.0 and the Internet of

Things (IoT) is shifting Web applications and services concepts towards wider

integration and accessibility, in light of an anytime, anywhere, anything inter-

networking paradigm. The future Internet builds on these bricks to make up a

dynamic entity, yielding novel means of interaction with services, other users,

and the environment. Wireless Sensor Networks (WSNs) have been recognized

as a very important block of this internetworking concept. Tiny, distributed

objects as they are, WSNs constitute a reasonably cheap sensory extension to

Internet-connected devices; moreover, their computational capabilities allow for

further (though possibly limited) use flexibility and functional expansion. Any

kind of next-generation Internet-enabled portable device will set up advanced

interactions with the “things” making up the new IoT, resulting in a pervasive

infrastructure of fixed and mobile heterogeneous nodes, seamlessly providing,

exploiting or sharing context-based services and applications. In particular, cap-

turing the context and surroundings of devices will constitute a key component,

making such operations as “Googling” physical reality possible and common [51].

Such a wide perspective requires stable foundations, starting from a widely agreed

upon protocol and communication infrastructure, which has currently been iden-

tified in the IPv6/6LoWPAN protocol suite [52]. By integrating any object into

the IP infrastructure, 6LoWPAN is an important enabling technology allowing
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to merge newer and older Web services, as well as to support the cited IoT in-

teraction paradigm, while still running everything over the widespread Internet

infrastructure.

As part of the SENSEI [53] consortium and in the context of the WISE-WAI

project [21], at the University of Padova we early put this vision into practice,

by channeling experience in the field of wireless sensor networking towards the

realization of a scalable and easily extendable network structure, which is basically

formed of three classes of nodes (base stations, mobile nodes and specialized

nodes) running compatible code but providing different functions and carrying

out different tasks.

In this chapter, our work in the design of a IoT system based upon sensor

nodes will be presented.

Nodes in our WISE-WAI testbed (see Chapter 2) have been flashed with an

IPv6-compatible stack, which makes them directly addressable from any Internet-

capable device. The nodes have been programmed to support diverse services,

from environmental parameter monitoring to localization, and are in turn sup-

ported by lower-level functionalities allowing, e.g., to switch the application being

run on the node, to change the class/role of a node, to spread software changes

and updates over the air, or to perform low-level resets in case of malfunctions [1].

Offering such services through our network provided us with an opportunity

to realize part of the IoT vision and focus research efforts in the field: in addition,

it demonstrates the advantages of the IoT in the management as well as everyday

occurrences of University life, as explained in Sec. 3.2.1. In fact, thanks to our

early experience, we built our vision for a full-featured, doable and interoperable

IoT protocol stack.

3.1 Related work

The interconnection of WSNs to the Internet has been widely researched in the

last few years. At the beginning of the WSN era, researchers focused on the devel-

opment of dedicated systems, where highly specialized but non-standard protocols

were used within the sensor network, whereas one or multiple gateways were used

to translate messages and ultimately connect the WSN to the external IP world.

While these systems were generally efficient in the specific application scenario
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they were designed for, they lacked flexibility: developing new applications on

top of them was therefore time-consuming and cumbersome, as it required mod-

ifications to the specialized protocols within the WSN. As a remedy to that, the

6LoWPAN standard has recently been proposed as a viable method to bring IPv6

to WSNs [54, 55] so that sensor nodes can be natively addressed and connected

through the IP protocol. This has obvious advantages such as rapid connectivity

and compatibility with pre-existing architectures, plug-and-play installation of

WSNs, rapid development of applications as well as the possibility of integrating

with existing Web services developed for standard IP networks.

Web services are extensively and successfully used mechanisms in Informa-

tion Technology (IT) systems; they may be defined as techniques to develop

interoperable and distributed applications exploiting Web standards like HTTP.

As discussed in [56], sensor networks can greatly benefit from their usage, as Web

services allow the integration of WSNs into any system that is built on standard

IT components, e.g., industry/home automation as well as home energy manage-

ment systems. TinyREST [56] efficiently implements Web services on WSNs by

carefully minimizing the overhead introduced by the transport layer whilst using

data formats such as XML and WSDL.

The authors of [57] have recently demonstrated that SOAP-based Web services

are doable for WSNs. The RESTful approach is however currently preferred for

these networks due to its lightweight character [58]. RESTful has the sensor

resource as its main abstraction and every resource in every sensor node is linked

and retrieved through a Uniform Resource Locator (URL). In addition, standard

HTTP methods such as GET, POST, PUT and DELETE are used respectively

to acquire, modify or delete the value of a given resource.

Recent research efforts explore the feasibility and the performance limits of

the RESTful approach for Web services on top of 6LoWPAN for WSNs. These

studies aim at improving the usability of WSNs, making them suitable for com-

plex installations, while retaining the flexibility of IP-based networks. A recent

paper [58] presents an IP-based WSN where nodes send data using Web services.

We show that this approach is doable for resource constrained sensor nodes in

terms of acquisition time for the sensor data and power consumption. In addi-

tion, they prove that TCP can be supported under particular network settings. A

similar approach has been presented in [59] where WSN resources are integrated
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into IP-based networks exploiting Web services.

In this chapter, the seminal work done on designing a web service architecture

for the IoT will be presented. Resources are handled according to the RESTful

approach and binary encoded XML is used to reduce the transmission overhead.

In addition, we exploit standard interfaces for access (Resource Access Inter-

face, RAI) and publication (Resource Publication Interface, RPI) of resources.

The peculiarity of our work is that of presenting an actual system, using stan-

dard protocols to offer various WSN services to both the administrative staff and

regular users of the University (i.e., students and professors). The resulting ar-

chitecture will be able to provide network services to a specific, custom-designed

base-station, as well as to generic mobile nodes accessing the network using stan-

dard protocols.

3.2 Scenarios and Use Cases

While aiming at providing a network stack for IoT devices, a constant comparison

with real-life application scenarios was required. In fact, we used a number of

realistic target use cases as a reference that guided us in the definition of the

characteristics that are required for the protocol stack.

Along these lines, those application scenarios will be discussed together with

their specific characteristics.

3.2.1 University [4]

A University offers many application scenarios for demonstrating the advantages

brought about by the IoT in real life. In particular, at least three service categories

can be offered in a University facility: i) Office automation: the services belonging

to this category are automated applications, meant to help, e.g., the management

staff; ii) Teaching : this category includes all functionalities that can be exploited

by full registered users only; iii) Guest : visitors can access this class of services to

retrieve basic information (e.g., to navigate around buildings) or to locate people.

These services involve quite diverse technology, security and quality require-

ments. For instance, the first category includes such services as door access

control, which aims at granting access to qualified persons and therefore needs
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Figure 3.1: Graphic representation of the testbed at the University of Padova.

integration with identification technologies (e.g., RFID) and a reliable backbone

network, Ethernet in our case. Moreover, this application calls for complex secu-

rity features, since the network needs both to authenticate the users entering a

certain area and to avoid granting passage to forged IDs. On the contrary, guest

services do not need a particularly high security level, but must be able to man-

age a large number of users, hence requiring high scalability. In fact, in order to

route visitors through the building, the system needs to run a reliable positioning

system while, at the same time, reporting information (such as location) to the

users. This can be performed with low-power radio interfaces, such as the IEEE

802.15.4, so that users only require a USB dongle for setting up communications

with the fixed network.

Even though our testbed can offer each of these services, in this chapter we

only focus on those enabled by the wireless sensor network backbone. In its actual

configuration, outlined in Figure 3.1, our testbed consists of more than 350 static

sensor nodes and 100 more nodes that can be used both as mobile stand-alone

devices or as USB devices for laptop connection.

By using Synapse++ [60], a fast and reliable over-the-air reprogramming sys-
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tem, the static backbone can be programmed with any of the following applica-

tions: i) Web Services; ii) Localization; iii) Experimental protocols. Experimen-

tal protocols and Localization can be installed on demand in an arbitrarily large

fraction of the network; however, Web Services [7] constitute the default applica-

tion being run by the nodes using the Binary Web Service (BWS) protocol.

In more detail, web service enabled nodes communicate through the IEEE

802.15.4 radio using the IPv6/UDP [52] protocol stack, thus enabling interoper-

ability between our testbed and the Internet: in other words, it will be possible

from any browser to open a page on the IP address of a specific node and look

up/subscribe to its offered services, or read its sensor data. The majority of our

nodes offer baseline sensing capabilities (light, temperature and humidity) as well

as some management parameters (battery level, transmission power); however,

nodes installed in specific locations are programmed with additional services: for

instance, sensors in the proximity of the teaching rooms can be asked for the

schedule of that room as well as a booking service; offices have sensors that can

record the name of the visitor and the time of the visit; furthermore, the admin-

istrative staff can use the testbed in order to read the temperature in the whole

building, and steer it to a comfortable level for employees and students.

We can connect our testbed to available actuators, such as heaters, air condi-

tioners, light switches, etc. and a number of new devices, such as an automated

door key lock with RFID, routing monitors for visitors and so on. In terms

of smart automation, we can develop control mechanisms to monitor the envi-

ronmental status of the buildings and generate reports if critical or abnormal

conditions are found. The communication aspect is of fundamental importance,

as we aim at connecting every device using standard mobile protocols either by

browsing through gateway nodes or by directly accessing nodes through native

BWS. Thanks to the aforementioned possibilities, our wireless sensor network be-

comes much more than an experimental research tool, turning it into a complete

infrastructure allowing University users to experience typical IoT services.

3.2.2 Smart Grid [5]

Since the end of the twentieth century, several factors have started to change the

energy scenario: the foreseen oil shortage brought to the forefront research efforts

42



3.2 Scenarios and Use Cases

for new and renewable energy sources; the increasing demand for energy called for

a drastic improvement of the efficiency of the energy production and distribution

plants, and a new attention to the environment changed the behavior of many

energy players, leading them towards a more “green” attitude of judicious use of

the energy resources.

A first consequence of these trends has been a model change in the energy mar-

ket. From a monopolistic, single-provider scenario, the market is going through

a number of intermediate phases featuring several players, mostly providers and

vendors, and is expected to ultimately approach an open model where consumers

may themselves become producers, thanks to the availability of cheap photo-

voltaic panels and other affordable and easy-to-use renewable energy sources.

This new market model is clearly more dynamic, due to its distributed nature,

and also because the instantaneous availability of energy will depend on sunlight,

wind or other similarly intermittent sources. The behavior of the users is also

undergoing substantial changes, as energy providers are aggressively promoting

energy usage during off–peak hours by offering cheaper tariffs.

Central administrations are fostering this change by committing large amounts

of money to support more efficient energy distribution and management models.

For example the U.S. Presidency has already invested billions of dollars on grid-

related projects [61], including research, development and assessment. The overall

objective of this operation is to improve energy efficiency, by promoting energy

savings and the adoption of alternative energy sources.

The Smart Grid (SG) is the technological paradigm that is being proposed to

satisfy the aforementioned needs: SGs are expected to spread the intelligence of

the energy distribution and control system from some central core to many pe-

ripheral nodes, thus enabling a more accurate monitoring of energy losses as well

as more precise control and adaptation. By including SGs in the IoT, a number of

advantages will become directly available. For instance, the system can leverage

on widely accepted security and privacy frameworks, on broad connectivity and

seamless interoperability, on the possibility of developing cloud computing sys-

tems for enabling service virtualization and distribution, and on the availability

of a rich set of widely accepted standards.

The visions of SGs and IoT have been recently combined into the Internet

of Energy (IoE) [62]: Figure 3.2 shows a graphic example of the scenario. The
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Figure 3.2: The Internet of Energy: a vision of the evolution of Smart Grids into

the web.

IoE will allow a decentralized control of the network, thus relieving the network

itself from the communication burden needed to harvest data and gather it into

central servers; web and mobile applications can be easily realized as standard

web services and exploited by energy consumers and small producers for real–time

energy consumption monitoring and optimization.

Furthermore, the recent trends of IoT communications [63] are promoting the

usage of low–cost, low–power devices, thus contributing to reducing the power

demand for energy grid operations, as a further step towards lower power con-

sumption, improved energy efficiency, and lower electro-magnetic pollution. Due

to the inherent hardware limitations of these constrained devices (e.g., computa-

tion and storage), communication technologies need to be extremely efficient, and

therefore require the use of highly optimized versions of Internet protocols [11].

There are two key factors for the acceptance of the SG vision by the commu-

nity at large: demonstrating the benefits that producers, consumers and users can

derive from an intelligent and efficient management of the energy distribution,

and a thorough support for a wide set of accessible application for both everyday

energy interactions and market scale operations. The most typical applications

of a pervasive Smart Grid system include, but are not limited to:
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• Asset management and fault tolerance

• Control and management of demand, outage statistics

• System support and reconfiguration

• Integration of distributed resources

Most Smart Grid scenarios involve metering of one or more physical quantities

that characterize the way energy is produced, transported and consumed over any

sort of premises. Note that “energy” here is not necessarily restricted to electric-

ity, but may involve other sources as well, such as natural gas. Depending on the

scenario, the quantities to be measured and the frequency of the measurements

may vary considerably. For example, the energy consumption in a house may

be monitored in many ways. One could generate periodic reports of the electric

power drained by home appliances, in order to come up with policies such as

“do not use this set of appliances together”, “it is better to defer the usage of

this appliance to low-cost hours”, or “if only a quick room warming is needed,

the electric heater is cheaper than gas heating”. Applied to a broad slice of the

population, such policies not only have the potential to bring savings to individ-

ual users, but may also help quench the overall energy consumption of an entire

area or country. Beyond energy consumption evaluation, a SG residential system

may also be involved in monitoring the quality of the power transmission over

power lines, and hence infrequently but regularly generate a set of very high-rate

samples of the 50/60 Hz AC waveforms, with the objective of detecting glitches or

excess reactive power consumption by powered objects. Even though this would

generate a very large amount of data [64], it is not necessary to transfer all of

it to remote control centers: smart meters within the house may be in charge of

detecting anomalous situations locally, and possibly only report the most relevant

sets of samples for external analysis.

The extension of Smart Grid technologies to an urban scenario leads to “smart

neighborhoods,” where multiple smart places, such as houses, shops, multi-dwelling

residential units and shopping centers are jointly monitored and managed, in or-

der to ensure continuous provision of power and timely reaction to faults or to

overloads. The typical scenario in this case is a wide-area monitoring applica-

tion gathering consumption measurements from around the neighborhood and
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deciding how to route power through the grid [65] so as to avoid that critical

distribution lines are excessively loaded. Applied at both the local and the global

level, this system will eventually help relieve the risks of power outages and the

consequent economic impacts (estimated at around 150 Billion dollars for major

power outages in the US [66]).

Factory scenarios are usually characterized by different objectives than home

scenarios. Power usage monitoring and anomaly detection are employed for

prompt maintenance of production lines, for the safety of operators and for open

as well as closed-loop control of production processes [67]. Beside energy supply,

Smart Grid systems, applied to an urban scenario, can be exploited to monitor

other vital systems, such as sewage or water-supply in order to automate the gen-

eration of quality reports, alarm propagation, and the optimization of resource

distribution [63]. Although some security concerns remain when routing criti-

cal power management data over the Internet, the realization of the Smart Grid

vision has the potential to bring considerable advantages to people and to the

economy, in terms of power savings and efficient energy management.

Small, cheap, resource-constrained devices, extensively investigated by a wealth

of studies in the wireless sensor and actuator networks (WSANs) area are deemed

to be the key enabling technology to make the SG implementable in practice. The

maturity reached by the research on WSANs and by multiple generations of de-

vices has made them capable to autonomously organize and reliably route data

through large multihop topologies. WSANs are a widely recognized technology to

efficiently realize pervasive computing applications: this capability is extremely

useful to the practical realization of an efficient energy monitoring and control

system. In fact, several nodes can be inexpensively deployed close to key power

usage points, even in typical cost-constrained environments, such as residential

ones. The main problem in using WSANs as the technology foundation of Smart

Grids is to understand i) which protocols or data formats can efficiently trans-

port the wide variety of data expected in a SG system; ii) which communication

technology best serves as the user interface to a machine-to-machine system such

as the SG; iii) which current standards are believed to be flexible enough to boost

SGs as an interoperable multi-vendor technology.

The described scenarios and the issues above are the ultimate objectives for

the advent of the Internet of Energy. To this extent, some technical goals are still
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to be achieved, and will constitute the next challenges for researchers to imple-

ment (and for the market to adopt) the IoE. From a networking point of view, a

standardized solution is needed for letting constrained devices, such as WSANs

and other IoT hardware, be seamlessly used in the Web. For what concerns

communication practices, common languages and scalable data representation

are paramount for the IoE market. In any event, the final enabler of the IoE is

the usability of the system by untrained users, a feature that must be carefully

addressed.

3.2.3 e-Health [6]

The Internet of Things can also be a suitable communication framework aiding

the migration to e-Health systems. Patients subject to remote assistance will be

the core of the system, and will be constantly aided by next-generation, low–

power, low–cost, Internet-enabled smart healthcare devices.

The devices each patient is equipped with, e.g., blood pressure monitors and

others wearable sensors, will be directly connected to his healthcare records, that

can be either stored into home appliances or using cloud-based storage systems.

These devices will be smart enough to provide reminders, and assistance to the

patient; moreover, as soon as they spot alert conditions, either the patient or the

physician can be digitally advised of the current situation.

In particular, security attributes define and constrain what healthcare can be

accessed by any given user: for example, a physician can access any information

related to medical devices that his patients are wearing, but he will not be able to

know the geographical position of the patient; however, during critical emergency,

all the required information will be provided to the rescue team.

Beside patients, the IoT system will know hospitals, medical clinics and physi-

cians, in order for patients to locate their nearest contact point for medical in-

formation and assistance. Again physicians information is subject to security

policies, so that they can be contacted directly by authorized patients, searched

for from a list or contacted in case of emergency

Finally, healthcare management software will know any medical device avail-

able to the patient or physician, and may communicate when needed directly with

those objects to check patient conditions during emergency or for management
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purposes; moreover, it can promptly notify users of any emergency situation,

and, in this case, may also activate alternative methods of communications such

as sending an e-mail or placing automatic calls using a software PBX, e.g., As-

terisk.

3.3 Technical Requirements [4]

Notwithstanding the constraints (especially in terms of nodes computational

power and storage capabilities) of the aforementioned scenarios, support to stan-

dard protocols adapted for operation in a WSN (such as 6LoWPAN/UDP) is

highly recommended in order to achieve interoperability and integration with

current Internet-aware devices. In light of these considerations, a minimal set of

protocols encompassing all required functionalities is to be selected, in order to

minimize complexity by maximizing code reuse. To keep network operations effi-

cient, the architecture of the network hosting these functionalities should be scal-

able and easily extendable. To this end, we envision a resource-oriented paradigm,

whereby heterogeneous services are provided both to sinks and to mobile nodes,

which may be heterogeneous and not designed to receive a custom service in a

specific network.

We distinguish among three types of nodes with correspondingly different fea-

ture sets, depending on node mobility, operating range, and level of specialization:

i) Base Station Node (BSN), e.g., an IPv6 sink/router; ii) Mobile Node (MN)

(e.g., wireless dongle to add WSN connectivity to a standard laptop); iii) Spe-

cialized Node (SN) (e.g., offering services like temperature readings or actuation).

BSNs are usually static nodes, bearing no specialization and a network-wide op-

erating range; to this end, they must be provided with bidirectional and simulta-

neous communication with one, many and possibly all nodes in the network, also

exploiting data aggregation techniques as appropriate. Usually BSNs have direct

connection to the Internet and can provide connectivity to the WSN; a dedicated

channel for receiving events and subscribed data is also required. MNs, in a typi-

cal use case, are external nodes running no specific firmware for the WSN in use,

but rather featuring compatibility with the network specifications and protocols.

Given such compatibility MNs should be provided zero-knowledge access to any

particular node in the network, possibly including BSNs; to this end, network
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probing, direct access to resources, temporary network join and resource sub-

scription are relevant features to be supported. Finally, SNs are nodes in charge

of delivering one or more very specific services, which makes SNs become a core

part of the network, and potentially the most limited devices. Even though they

are specialized, they might be in charge of diverse activities: they need to serve

requests by BSNs, MNs or even other SNs requiring cooperation or relaying.

This preliminary description allows us to identify a set of requirements that

should be supported by the network communication paradigm. In light of the

interoperability and integration of the network with Internet-based communica-

tions, we choose to employ the Representational State Transfer (REST) paradigm [68]

well known in the Internet domain, whereby any resource is addressed by a unique

identifier of standard format. The features to be supported are summarized as

follows: i) direct simple resource request/response; ii) concise one-to-many re-

source request/response; iii) structured resource request/response; iv) resource

subscription and event or delayed notification; v) zero-knowledge network prob-

ing.

While being powerful enough to address interoperability, REST makes the

access to any resource as easy as a web server interrogation. REST also simplifies

the development of the network communication paradigm, which can be built

around a single protocol by properly leveraging our flexible Binary Web Service

[7] implementation in a versatile resource-oriented node design.

3.4 SENSEI case-study [7]

Thanks to our active involvement in the European SENSEI project [53], we re-

alized a prototype of IoT system feasible to address the technical requirements

described above.

Our framework implementation is optimized, so as to allow easy provision

and configuration of real-life resources. In the context of the European SENSEI

project [53], the BWS module has been connected to two different Binary XML

Services, Resource Access and Resource Publish, providing project-specific node

interfaces.

The Resource Access Interface (RAI) provides access to specific resources

identified by the URL or the ID specified by the BWS module. BWS methods
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are mapped as follows: i) GET provides a reading of the current value of the

resource; ii) PUT sets, if applicable, the resource value or inputs a new command;

iii) POST is used to subscribe to the resource by setting an appropriate criterion

to push notifications directly to the sender. The Resource Publish Interface (RPI)

is used instead to provide a comprehensive description of node properties and Web

services offered to a BSN.

RAI and RPI communication is based on an out-of-band agreement on an

XML schema representing the information to be conveyed in the various opera-

tions, and then on an XML content exchange whenever required. EXI [69] has

been selected as the standard format for Binary XML: however a full implemen-

tation of an EXI encoder/decoder is not advisable for a SN; therefore, a simplified

implementation is to be preferred.

By investigating the EXI standard and the agreed XML schemas, the EXI

coded schemas have been mapped to static and variable parts; furthermore, the

process of encoding and decoding an EXI request body is done as follows: for

every resource, headers, footers and separators are known; between such tags,

resource-related values are read or written according to the simple algorithm

required to encode/decode numeric values in the EXI coding.

Considering the well-known telosb sensor node architecture [34], we evalu-

ated the ROM/RAM usage of the system described above, and summarized it in

Table 3.1. We highlight that implementation of the Binary Web Service module

makes efficient use of both ROM and RAM size, independently of the number

of clients or servers required by the upper layers. The RAI component trans-

lates request and associates them to the appropriate resource; it also implements

a highly specialized EXI encoder/decoder which proves to be effective in terms

of ROM occupancy. Resource components (temperature, humidity, light, etc.)

require a larger memory footprint mainly because a specialized driver compo-

nent is required for every on-board chip. RAM occupancy, on the other hand

is low with respect to the available space (approximately 10 kB), except for the

UDP/6LoWPAN implementation which requires a large static RAM allocation,

mainly due to a 1280-byte buffer required for re-assembling fragmented data-

grams.
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Table 3.1: TinyOS components ROM/RAM utilization

Component ROM RAM

TinyOS core 1398 4

802.15.4 and ActiveMessage 9418 328

UDP/6LoWPAN 5182 1936

BWS 2950 326

RAI/RPI 1374 156

Resources 9800 354

3.5 Lessons learned and Vision [4]

Thanks to the experience acquired up to the current stage of the SENSEI project,

we have envisioned a next-generation system which leverages on the strengths of

the architecture set up to date. A Web Service model for WSNs has proved to be

valid for the current purposes and a careful implementation is strictly required

to adapt this communication model to a limited sensor node. The versatility of

our implementation, together with the flexibility of Web services allows to make

further steps towards a fully integrated system built around the BWS component.

Our vision has required that every interaction, as those devised at the end

of Section 3.3, are managed internally by the BWS. Each interaction will be

mapped to use standard REST methods, paired with a proper XML definition of

the data required in the process, to allow strong code reuse even for very different

operations or services offered.

As shown in the previous section direct simple request/response interactions

have been easily implemented, even though a specific interaction to gather many

responses from different nodes through a single request (concise one-to-many

communication) has been currently left as a future work. Another interesting

feature required by next-generation systems is support for structured requests,

required to gather multiple values from the same node; also, interpreting complex

requests based on the current state of the resources (e.g., turn on the air condi-

tioning system in rooms with temperature higher than a certain threshold and

where the lights are turned on) is also a required function that can be provided.

In any event, the previous interactions will be implemented thanks to the BWS
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component flexibility which, together with the versatility of Web services, can

support complex XML interactions without redesigning the paradigm and the

components already in use.

In this vision EXI coding plays a central role, as binary XML coding should

be easy to implement and should allow strong code reuse in order to facilitate

the implementation of multifaceted Web services on sensor nodes. However, our

understanding of EXI format has led to the conclusion that the procedure re-

quired for coding two different XML schemas with minimal differences could be

completely different, so a minimal variation of the schema may require a very

different implementation. In this light, we have started evaluating the EXI cod-

ing for sensor nodes, by building an XML schema pre-processor that will directly

output the variable part of the C code required to encode/decode that schema; as

a second step, we will supply the pre-processor with a set of optimizations aimed

at minimizing the output code size.

The last step in building our next-generation network will be the standardiza-

tion of the offered resources and services. This will be accomplished by assigning

a URL to all resources in a standard, reusable and extendable fashion, and then

by mapping the procedure to opt-in and configure guest mobile nodes to a web

service URL. We are confident that such a system can be easily replicated in

different scenarios through small changes specific to the different resources and

services offered, but without requiring any modification to its core architecture.

Afterwards this experience, a new standardization effort has been started at

the IETF called 6lowapp [70] with the goal of realizing application layer paradigms

for constrained networks and devices. That working group has been recently

named as Constrained RESTful Environments [71], which is currently leading to

the standardization of the CoAP protocol [10].
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IPv6 on Smart Objects

In this chapter we present an overview of our innovative network layer design,

that introduces advanced memory management in TinyOS, to efficiently handle

concurrent transmission, reception, and relaying of multiple IP packets. Our

design allows even tightly constrained devices to hold longer queue lengths at the

IP layer, thus permitting higher throughputs and lower loss probability.

Section 4.1 motivates the choice of IPv6/6LoWPAN and RPL as network layer

protocols; Section 4.2 presents our innovative design of the network layer imple-

mentation, together with its experimental validation over real hardware boards,

and its performance comparison against a state-of-the-art implementation, i.e.,

BLIP [72].

In Section 4.3, following the research lines identified in [73], we develop practi-

cal congestion control algorithms for constrained Internet of Things (IoT) exploit-

ing 6LoWPAN technology. These networks are characterized by very constrained

processing, memory and communication capabilities [4], a potentially large num-

ber of nodes, and infrequent communication patterns which very much differ from

standard Internet flows. The main contributions contained in Section 4.3 are:

• We propose a number of practical and lightweight congestion control algo-

rithms for constrained devices, devising CC policies based on distributed

back pressure control, with the objectives of detecting and alleviating net-

work congestion, providing reliability and ultimately controlling the injec-

tion of data traffic into the network.

• We present extensive simulation results by comparing the performance of
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the proposed CC policies with that of ideal back pressure algorithms and

showing that layer-3 BP congestion control is feasible on constrained IoT

devices, and results in significant performance gains at the expense of a

minimal added complexity.

• We present protocols and results for unidirectional and upstream data traffic

as well as for bidirectional CoAP flows.

4.1 Overview [5]

Many platform integrators have been providing proprietary solutions for realizing

the Internet of Things, and many standardization activities have been started for

bridging the IoT to the Web. The solution proposed for the networking of smart

objects, as well as its implementation as a full-fledged web-operable tool, must use

emerging web standards, easily interoperable with widely adopted HTTP-based

web services. This is mandatory for the system to work as a proper extension of

the web. To address the requirements described in Section 3.2, we choose those

standards being discussed within the Internet Engineering Task Force (IETF)

and the World Wide Web Consortium (W3C).

The IETF is leading many efforts on networking constrained devices with low-

energy requirements, whose results will be directly applicable to Smart Objects.

The interest for IP-based solutions on devices with various hardware constraints,

e.g., WSANs, motivated the creation of several working groups, aimed at steering

the adaptation of typical Internet standards towards variants more appropriate

to constrained wireless networks. Such activities include i) IPv6 over Low power

Wireless Personal Area Networks (6LoWPAN) for the network layer; ii) Routing

Over Low power and Lossy networks (ROLL) for the routing of datagrams; iii)

Constrained RESTful Environment (CoRE) for the application layer. Moreover,

W3C’s definition for the Efficient XML Interchange specification (EXI) is being

completed. This effort was mainly motivated by the need for a compressed binary

representation of the eXtensible Markup Language (XML) on devices unable to

use XML in its original format due to memory limitations.
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4.1.1 IPv6 over Low power WPANs (6LoWPAN)

6LoWPAN has been the first working group (WG) formed inside the IETF to

investigate this topic [74], with main focus on providing Internet connectivity to

constrained WPAN devices through IPv6.

The WG has been initially focused solely on designing a cross-layer solution

for IEEE 802.15.4 networks. This initial effort resulted in the publication of RFC

4944, which defines the frame format, fragmentation method and generic header

compression technique required to fit IPv6/UDP datagrams in the very limited

IEEE 802.15.4 frame size. The 6LoWPAN format allows access to the IP world

to a completely new generation of networked devices: cheap constrained hosts

can get access to the Internet via the large addressing space of IPv6, which is

fully supported under 6LoWPAN.

The most important technical feature introduced in 6LoWPAN is header com-

pression. First of all the minimum size of the IPv6 header, without extensions,

is 40 bytes, which would greatly threaten the adoption of IPv6 on constrained

devices, because it amounts to about half the payload size of a regular packet. In

order to heavily reduce IPv6/UDP header size while maintaining the function-

alities and addressing space size, a cross-layer optimization approach has been

used. Header compression is applicable to devices sharing the same network. In

this case, some portions of the IP header are inferred from the MAC header,

e.g., IPv6 link-local addresses are derived from the MAC addressing fields. An

IPv6 40-byte header can be shrunk to a single-byte HC1 header; through similar

considerations the UDP 8-byte header can also be reduced down to a 4-byte HC2

header.

The compression mechanism heavily relies on deriving upper-layer fields from

MAC-level information; in order to overcome this limitation, a stateful header

compression technique is being discussed in the WG, which can also avoid mak-

ing explicit reference to data deducible from lower layers. This independence

is obtained by exploiting information shared between the communication end-

points. The 6LoWPAN format has been showcased by several implementations,

which have demonstrated its feasibility for severely constrained devices. ETSI,

OMA, and IPSO, among others, strongly promote a wide adoption of this stan-

dard, and a new class of smart, IP-enabled objects is expected to populate the
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market of the IoT.

4.1.2 Routing Over Low power and Lossy networks (ROLL)

IETF tasked the ROLL WG [75] to lay down the Routing Protocol for Low

power and lossy networks (RPL) specification [76]. An explicit design guideline

for RPL is the support of different routing objectives: in SGs, this means that

alarm propagation can be routed to offer low delivery delay, whereas background

monitoring traffic can be configured to cause limited energy consumption.

Different instances of RPL can co-exist in the same network, in order to op-

timize routing structures, called Directed Acyclic Graphs (DAG), according to

different metrics. Every instance deploys one or more destination-oriented DAGs,

(DODAGs for short), which are rooted at a specific node, e.g., the data center

collecting measurements from smart appliances. All data is routed through the

DODAG to its root. Roots form DODAGs by propagating DODAG Informa-

tion Objects (DIOs) downstream via the Trickle probabilistic broadcasting algo-

rithm [63], which helps suppress redundant transmissions of the same message.

The reception of a DIO causes nodes to select their rank, which is a measure of

distance from the root of the DODAG, and to choose one or more parent node

among those neighbors characterized by a lower rank. The chosen parent will

then be the preferred next hop when routing towards the root of the DODAG.

To allow the root to become aware of the tree and thus be able to perform

downstream routing towards the nodes, each receiver of the DIO propagates a

Destination Advertisement Object (DAO) towards the root (the message will

reach the root through all parents of the nodes along the path). In case interme-

diate nodes are “storing nodes”, they will keep track of the local topology of the

tree, and tell the route to reach the DAO sender through themselves. Otherwise,

the information required to reconstruct the downstream route will be stored in

the DAO, so that the root can reach every tree node via source routing using the

information in the DAO.

The behavior of RPL is particularly suited to SGs, where each node in the

tree may be connected to a different appliance or sampling point along the power

distribution cables: routing trees connect all nodes to a data center, and may

be organized as needed. For example, third-party home emergency detection
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systems may leverage on the available network by providing an additional root

node to collect data via a low delay high priority tree, which RPL allows to exist

on the same SG wireless network. Similarly, the data centers of different utility

providers can share the same wireless network to route data. For example, the

sensors attached to the power grid and the sensors attached to the gas pipes may

collaborate to route each other’s data whenever this provides advantages in terms

of the routing metric being optimized: provided that all nodes are part of the

same SG network, the adoption of RPL makes this cooperation seamless.

4.2 SiGLoWPAN [8]

In this section, we describe an innovative implementation of the IPv6 proto-

col stack, whose main features are: i) an advanced memory management ap-

proach, ii) link-layer independence, and iii) optimized RAM/ROM footprint.

More specifically, we present the design principles at the basis of our implemen-

tation of IPv6/6LoWPAN, called SiGLoWPAN, and the results of a preliminary

experimental campaign of such technologies in order to better understand their

applicability to smart object systems.

4.2.1 Related Work

In the past decade, Wireless Sensor Network (WSN) research has been more

focused on protocol optimization rather than on defining the protocol stack ar-

chitecture. An effect of this trend has been noticed in the stack implementations,

e.g., Levis et al. [46] noted a lack of consensus on the networking abstractions

required in TinyOS, a popular open-source operating system for embedded de-

vices. With the aim of defining a networking abstraction, TinyNET [2, 3] pro-

vided a networking framework able to support a wide set of protocol interactions

and network services, including 6LoWPAN, but traditional layering was still not

adopted.

As the IoT concept became more popular, the feasibility of more traditional

networking stack architectures have been investigated [4, 11] with the aim of

building smart objects using a set of protocols as similar as possible to the ones

widely adopted in the Internet. At the same time a number of implementations
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of the IPv6/6LoWPAN protocol suite have been developed by many institutions.

Out of those, the most popular open-source implementations [49] are BLIP for

TinyOS, and uIPv6 for Contiki.

Recently Chauvenet et al. [77] showed the applicability of 6LoWPAN tech-

niques on Low-Rate Power Line Communication (LR-PLC) by evaluating a MAC

similar to IEEE 802.15.4 and performing 6LoWPAN header compression over it.

We believe that the IPv6/6LoWPAN protocol stack suits well the Smart Grid

use-case as well as the general IoT concept. However, the IP stack should be

carefully designed to be easily portable to different physical layers, flexibly sup-

port IP layer routing (e.g., RPL [76]), handle concurrent communications, and

fulfill strict memory requirements posed by the SG scenario.

In this section a novel IPv6/6LoWPAN implementation, SiGLoWPAN, is pre-

sented and compared with BLIP [72], highlighting the benefits of its design in

the SG context. In particular, its novelty is related to the memory management

approach used in the stack, which enables a better support for multi-hop com-

munications typical of meshed low-power lossy networks, such as those expected

in real-world deployments of the SS.

4.2.2 Requirements and design goals

Since a large number of different transmission technologies are expected to be

involved in the any Smart System, and on top of that, even single SG subsystems

could require the cooperation of different wired and wireless technologies [78], an

IP stack implementation suitable for the SG has to properly address the technical

difficulties that may arise from such a complex networking infrastructure. This

goal is even more challenging if we keep in mind that many SG devices are

cheap hardware-constrained nodes which can handle only a very limited set of

networking protocols.

With the aim of addressing such requirements, the design of SiGLoWPAN was

driven by the following goals.

4.2.2.1 Effective layer-3 routing

Given the very wide range of medium access technologies that will be involved in

the SG, the requirement of effective routing support on top of different link-layers
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Figure 4.1: SiGLoWPAN architecture

is a key objective for SiGLoWPAN. Even if other implementations already sup-

port L3 routing, our architectural design and in particular the advanced memory

management approach spanning from the lower layers up to the application allows

SiGLoWPAN to efficiently handle relaying operations even on very constrained

devices with few kilobytes of RAM and limited computing resources.

4.2.2.2 Link-layer independence

Motivated by the same consideration about the number of PHY layers upon

which the SG will be built, the modules composing SiGLoWPAN have been care-

fully selected with the intent to achieve a cleanly layered implementation, possibly

maintaining one-to-one correspondence between a protocol and the module where

it is implemented. Thanks to this flexible but clean modularization, which con-

fines each protocol within a single component, a high-level of flexibility and code

reuse has been possible in our complex stack implementation, which supports

6LoWPAN independently from a specific link-layer and point-to-point protocol

(PPP) communication over the serial link.

4.2.2.3 Lightweight implementation

The constrained nature of the majority of the devices involved in IoT scenarios,

imposes hard limits on the number of instructions and the amount of memory that
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a device can handle. Although the efficiency of the implementation initially had

lower priority with respect to the other objectives previously discussed, a careful

evaluation of the design choices made it possible to pursue this requirement as

an additional goal. Thanks to the clean modularization, and by maximizing the

level of code reuse, SiGLoWPAN implements the whole set of protocols using a

small fraction of the ROM resources available on a realistic 16-bit RISC MCU

(i.e., MSP430). On the same platform, the aforementioned memory manage-

ment approach leads also to a very efficient RAM allocation. As a consequence,

this efficient resource usage has become a key feature of our implementation, and

allows the system to allocate more memory to the small IP queues, which are typ-

ical of constrained devices, thus directly improving the transmission and relaying

performance network-wide.

4.2.3 Architectural overview

As discussed in the previous paragraphs, and shown in Figure 4.1, the SiGLoW-

PAN architecture is clearly layered and organized in self-contained modules corre-

sponding to single protocols. As an exception, the memory management module

spans across all the networking components up to the highest application layer

of the node (L+). Besides the well-known layers 3 and 4, Figure 4.1 also shows

the IP adaptation layer (i.e., layer 2.5) that performs the adaptations required to

transport IP packets over specific link-layers.

From a high-level perspective, SiGLoWPAN gives the application layer access

to the IPv6 stack by means of the TinyOS interfaces of the layer 4 protocols, such

as UDP, ICMPv6Rx and ICMPv6Tx. Different instances of such interfaces are present,

allowing multiple components to be linked to the same protocol; multiplexing is

obtained using protocol parameters such as the local UDP port, e.g., an L+

application will setup UDP listening by linking to a specific instance of UDP

interface identified by the local UDP port number.

The architecture proposed in Figure 4.1 is memory-centric because of the cen-

trality of the MemoryManager component, which is shared from the lower layer 2.5,

up to the application layer of the stack. This design choice is motivated by the

consideration that every component not using the MemoryManager must allocate

a static buffer. The problem is that such a static buffer must be big enough to
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accommodate the maximum data which could be supported by this component,

leading to memory usage inefficiencies inside the application components. Since

IPv6 MTU is 1280 bytes, in real-life applications a single datagram may represent

a considerable fraction of the available RAM on constrained devices (e.g., telosb

has 10kiB of RAM). In addition, when a datagram is statically allocated at L+,

lower layers have to either fully process it immediately or duplicate it in RAM for

delayed processing, which always results in some kind of inefficiency. Moreover,

for datagrams received for forwarding, tighter requirements apply on immedi-

ate processing or duplication, thus dynamic memory management becomes the

only feasible choice to efficiently handle the transmission chain across the stack,

especially when concurrent routing of multiple IP datagrams is required.

Link-layer independence is another important design goal of our implemen-

tation. In order to meet this requirement, the design of adaptation layers has

been carried out in a highly modular fashion. IPv6 module handles a set of IPv6

adaptation layers using the IPv6Adaptation interface. Modules providing such

interface have to offer the capability to transmit or receive IP datagrams over a

specific medium, one at a time. The 6LoWPAN header compression and frag-

mentation approach has been implemented in a separate module, shared across

the subset of adaptation layers supporting such compression (i.e., IEEE 802.15.4,

LR-PLC, BT-LE [79], etc.). Unconstrained mediums that do not require such

kind of adaptation may use other techniques, i.e., serial communication with a

PC has been implemented using PPP.

Apart from the IP layer routing, SiGLoWPAN provides the capability to

perform layer 2 routing (mesh-under) through the MeshUnder interface available

at layer 2.5. Even if this approach can also be used in conjunction with layer 3

routing, this topic is out of the scope of this work.

4.2.4 Components

SiGLoWPAN stack is composed of both TinyOS modules and reusable standard

C files, which are described in Table 4.1.

The set of TinyOS modules forming SiGLoWPAN are shown in Figure 4.1.

The main components will be briefly described in the following.
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Table 4.1: List of SiGLoWPAN header files

6LOWPAN.h IPv6 packet format definitions

RFC4944.h
fragmentation header structure definition,

mesh-under header structure definition

RFC6282.h
LOWPAN IPHC header structure definition,

LOWPAN NHC structure definition

RFC4944.c
fragmentation handling functions, mesh-under

header handling functions

RFC6282.c
LOWPAN IPHC handling functions,

LOWPAN NHC handling functions

L2 send

IPv6 packet

IPv6

metadata

IPv6 packet compression and

fragmentation

802.15.4
frame

802.15.4

frame

802.15.4 layer

802.15.4
frame

    L3 send L2.5 fragmentation

IPv6 queue

buffer

802.15.4 output

Figure 4.2: SiGLoWPAN sending procedure workflow

4.2.4.1 MemoryManager

In our memory-centric design, the MemoryManager component has paramount

relevance. Though this module has been designed as a general purpose memory

allocation component, it is currently involved only in handling the buffer space

required for IPv6 datagrams. At compile time, a fraction of the available RAM

of the node is statically allocated to this component, which will be assigned to

the modules that need it by means of the alloc call. In order to enable complex

interactions with buffer spaces, the memory manager makes the available RAM

virtual by identifying each specific allocation using a virtual memory ID (vmID)

rather than a physical memory address. The pointer to the physical address is

obtained using the id2p call.

RAM virtualization enables transparent reallocation of the buffer space, which

is especially useful in optimizing RAM requirements for single datagrams along

the whole network stack. In fact, vmID is a global identifier for the buffer space

and can be passed between layers removing the need for static memory alloca-

tions. This process is managed using the header reallocation feature of the buffer
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through the hrealloc call. This function resizes the buffer by changing the phys-

ical address of the first byte and thus makes it possible to transparently add or

remove headers to a buffer space.

When a packet is to be sent, at each layer of SiGLoWPAN the first part of the

buffer is moved backwards and filled with the corresponding layer header, then

only the vmID is signaled to the next layer. Network modules may also remove

headers by calling the function hrealloc requesting a negative header reallocation

on the buffer. The reallocation procedure is performed by the MemoryManager,

by leveraging the fact that its memory pool is assigned starting from the bottom,

the hrealloc procedure is simple and involves only memory pointer arithmetics

without requiring any memory copying operation.

The current implementation of the MemoryManager component is still at an

early stage of development and various optimizations are currently being evalu-

ated, i.e., efficient proactive allocation techniques minimizing hrealloc complexity,

or defragmentation policies to prevent fragmentation of the free memory space,

thus allowing future usage of the MemoryManager component also for bigger long-

term allocations.

4.2.4.2 L2.5

Layer 2.5 is the lowest level of the SiGLoWPAN stack, and performs the adap-

tation required to transmit IPv6 datagrams over a specific network interface. As

the corresponding IP-over-X IETF specification, these modules can be either sim-

ple or complex depending on what are the operations required in order to adapt

IPv6 packets for transmission on a specific L2 frame format. Modules at this

layer receive a datagram to be transmitted as well as the next-hop target from

the IPv6 component. As soon as the adaptation module is ready to receive a new

datagram, it notifies IPv6 of this status by signaling a sendDone event.

The design of the 6LoWPAN component required a more careful consideration

in order to get a high level of code reuse across the different link-layer drivers. For

this purpose we managed the interactions of 6LoWPAN with actual layer 2.5 com-

ponents designing a 6LPAdaptation interface, which provides compression and

fragmentation procedures for transmission, and their counterparts for reception.

Each module using the 6LPAdaptation interface offloads the operations required

to build and process L2 frames to 6LoWPAN.
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Fig. 4.2 shows from a high level perspective the workflow performed during

the send operation of an IPv6 datagram over IEEE 802.15.4 (6LoWPAN). As

soon as the datagram to be sent is received by the IPv6over154 component,

the datagram and the data-link layer specific metadata required to compress the

packet are passed to the 6LoWPAN component using the compress command of

the 6LPAdaptation interface; the compress command builds a single L2 frame of

the datagram at every call. As long as the IPv6over154 has available slots in its

internal output frame buffer, all the 6LoWPAN fragments are built subsequently;

otherwise the remaining fragments will be built after each successful transmission.

The receive procedure is very similar, each unprocessed L2 frame is passed to

the 6LoWPAN component which will reconstruct the IPv6 datagram. As soon as the

IPv6 datagram is fully reconstructed, it is passed to the corresponding adaptation

layer module using the 6LPAdaptation interface. This approach makes it possible

to use a single queue to store the datagrams during the reconstruction phase. This

queue is shared among the whole set of adaptation modules.

IPv6over154 statically allocates a pool of L2 frames to hold the processed

fragments waiting for transmission as well as the unprocessed fragments waiting

for reconstruction. In our implementation the buffer space is shared for both the

transmission and reception queues. Further investigation is needed to understand

whether this buffer space may be shared also across multiple link-layer adaptation

modules using different transmission technologies. This would further optimize

RAM requirements and the overall efficiency.

4.2.4.3 L3

The layer 3 of our IPv6 stack is composed of the IPv6 module and its companion

modules, i.e., IPv6Address and IPv6RoutingTable.

The IPv6 component is characterized by the following features: i) it provides

send and receive primitives to the upper layers, ii) it keeps track of the available

link-layer interfaces and their operational state, iii) it keeps track of the local

IPv6 addresses along with IPv6Address, iv) it performs routing operations and

decisions on each IPv6 datagram together with IPv6RoutingTable, and v) it

provides IPv6 pseudo-header support to enable upper-layer protocols to perform

checksum calculations.

For each datagram IPv6 puts in or pops out the IPv6 header from the cor-
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responding buffer space, leveraging the hrealloc function, and thus without any

additional memory allocation.

Each datagram received by the IPv6 layer, either from the network or from

the upper layers, passes through the routing engine which either i) delivers it

locally if its destination corresponds to the local node, ii) flags it to be routed

towards a specific link-local next-hop of an active adaptation interface, or iii)

silently discards it.

The local delivery procedure is performed by querying the IPv6Address com-

ponent to understand whether the target IPv6 is the local node. This component

maintains a list of all the local IPv6 addresses, keeping track of the name and type

of the interface associated to each address. The classification type of the interface

depends on the address characteristics, i.e., unicast or multicast, global, site-local

or link-local. The IPv6Address component is also used to assign a source IPv6

address to each locally outgoing datagram.

The routing procedure is assisted by the IPv6RoutingTable component, that

is queried for the next-hop node, once the IPv6 destination of the datagram

is given. This component maintains a table containing the next-hop host for

every particular IPv6 prefix known by the local node. In order to simplify the

prefix matching process, which could take a considerable amount of time, entries

are kept sorted using the destination prefix length field, from the longest to the

shortest. Maintenance of the routing table entries is out of the scope of the

IPv6 component. An appropriate routing protocol, e.g., RPL [76], is required to

dynamically populate the table.

4.2.4.4 L4

Layer 4 is composed of the modules typically used by the application layer. In

our implementation, we currently provide only UDP and ICMPv6, but additional

protocols can be easily added to our stack by implementing a specific protocol on

top of the IPv6 module.

The UDP module handles UDP datagrams, i.e., IPv6 datagrams containing the

UDP next-header received by the node delivered by IPv6. This delivery process

is implemented leveraging static linking of TinyOS by means of parameterized

interfaces. The same applies to ICMPv6.

Thanks to the RAM manager, when an L4 packet is sent, each module real-
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Table 4.2: SiGLoWPAN ROM and RAM

Component ROM RAM

TinyOS & CC2420 transceiver 10714 383

MemoryManager 1002 69961

L2.5: 6LoWPAN & IPv6over154 7176 1904

L3: all 2572 956

L4: UDP 130 -

Total 21594 10239

Free space 27558 6994

locates the buffer and adds the proper header on top of it. Analogously, when

a packet is received, the module extracts the header information and deallocates

the buffer memory pertaining to the header, without any additional RAM re-

quirement inside the L4 component.

4.2.5 Evaluation

An experimental evaluation campaign has been performed using our SiGLoW-

PAN implementation to show i) its RAM and ROM memory footprint, and ii)

the achievable throughput at layer 4 compared to another 6LoWPAN implemen-

tation, i.e., BLIP.

Table 4.2 shows the overall ROM and RAM allocations across the different

components of the stack. In the proposed experiment the MemoryManager offers

6170 bytes of RAM to the components, IPv6RoutingTable holds up to 20 en-

tries, IPv6 queue is 10 datagrams long, IPv6over154 can queue up to 12 IEEE

802.15.4 frames, the 6LoWPAN reconstruction queue is 10 IPv6 packets long and

the application at layer L+ can send packets of arbitrary size up to 1240 bytes

of payload.

It can be noted that more than two-thirds of the RAM is allocated to the

Memory component and the remaining third is mainly split between L2.5 and

L3 components. The memory assigned to the 6LoWPAN components is mainly

used to allocate the L2 output frame buffer, but also to hold metadata required

1Unused RAM is assigned to the MemoryManager. This value includes 6994 bytes of free

RAM available and dynamically allocable by L+ components.
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for fragmented IPv6 datagrams reconstruction; the RAM allocated to layer 3 is

mainly used to store the routing table but also for the metadata required by IP

layer queuing. This result highlights the memory efficiency of our implementation

that makes it possible to assign the biggest part of the node resources to network

buffers and IP routing. As a future optimization, we target building the L2

output frame buffer and the routing table out of a dynamic buffer maintained by

the MemoryManager component.

Table 4.2 shows the amount of ROM required for program code of the various

SiGLoWPAN subsystems; the grand total of ROM occupied by SiGLoWPAN is

11kiB, required mainly by the 6LoWPAN header compression and fragmenta-

tion handling functions. This result motivates the introduction of our reusable

6LoWPAN component shared across the different network interfaces using this

compression. ROM occupancy is about 2kiB less than BLIP, even though a de-

tailed comparison is not possible because there may exist minor differences in the

implemented features that have an impact on the program size; for example our

protocol stack includes a more complex MemoryManager component supporting

hrealloc, whereas BLIP has a simpler and hence smaller one.

To test the throughput of the whole protocol stack, an application implement-

ing the Iperf [80] protocol has been developed over both SiGLoWPAN and BLIP

measuring the goodput, packet loss and jitter of a UDP unicast constant bitrate

(CBR) session.

Figure 4.3 shows a comparison between SiGLoWPAN and BLIP. In this ex-

periment, we measured the goodput at the receiver between two telosb [34] nodes

on the same IEEE 802.15.4 PAN within range of each other; to this end the client

node starts a UDP CBR session towards the server which measures the average

speed at which the data at the L+ layer is received. To perform a fair compari-

son between BLIP and SiGLoWPAN, all the comparable network buffers in the

two implementations have been set to the same length. In our experiments the

bottleneck was at the client side for both BLIP and SiGLoWPAN, which were

unable to send the IPv6 datagrams faster than the speed shown, whereas at the

receiver side the packet loss was negligible. Very small datagrams experience slow

throughput due to the high fixed time required to successfully emit an L2 frame,

the overhead added by the 6LoWPAN header, and its complex compression pro-

cess. The sawtooth-like pattern in the graph is due to the reduced efficiency
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caused by the introduction of an additional L2 frame required to transmit an

IPv6 datagram when its last fragment grows exceeds the L2 frame MTU.

SiGLoWPAN outperforms BLIP for larger datagrams up to 13%, mainly due

to the fact that BLIP fragments an IPv6 datagram at the 6LoWPAN layer in

a single step, thus requiring that the L2 queue has enough space for all the

fragments at once. SiGLoWPAN can build the datagram in successive steps,

thanks to the advanced memory system supporting the hrealloc function that does

not require static allocation at the L+ layers and makes it possible to perform

the free operation at the lowest layers of the stack.

4.3 Back Pressure Congestion Control [9]

In the last few years, we have witnessed considerable advances in terms of protocol

design for wireless sensor networking. These have led to a solid understanding

of the problems related to channel access, routing and data gathering, delivering

efficient protocol stacks and ultimately spurring the standardization of protocols

for data collection and addressing.

The work in this chapter considers network protocols recently standardized by

IETF, namely, CoAP [10] and 6LoWPAN [81], whose combined use permits Web-

based bi-directional communications between sensor devices and Internet servers.

6LoWPAN provides header compression and specifies communication profiles that

allow the implementation of IPv6 addressing. CoAP is a stateless protocol that

is aimed at replacing HTTP for lightweight and resource constrained devices.

As such, it implements a reduced set of functionalities with respect to HTTP.

While CoAP and 6LoWPAN provide the basis for Web-oriented protocol stacks

for embedded devices and natively support UDP traffic, they do not fully address

the congestion problem, and only provide some conservative recommendations,

as we discuss below in Section 4.3.3.

The Internet protocol suite, i.e., TCP/IP, has been designed adopting the

“end-to-end argument” [82], which has been proven to be very effective in net-

works of smart terminals operating bulk data transfers. However, TCP congestion

control (CC) [83] has been designed with an implicit assumption: data transfers

causing congestion are usually long enough to be efficiently controlled through

end-to-end CC algorithms. By their own nature, slow start and congestion avoid-
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ance are techniques that converge after some time and after a potentially large

amount of data has been transferred. However, when the amount of data required

to create congestion on the network is very small, these techniques do not provide

an efficient solution to the CC problem. In addition to this, TCP is known to be

severely impacted by the long delays that are typical of constrained networks.

Our present work quantifies the benefits of implementing congestion control

at layer-3 by exploiting practical and lightweight algorithms based on the con-

cept of back pressure routing by Tassiulas and Ephremides [84]. Since its con-

ception, Back Pressure (BP) policies have been extensively explored, leading to

distributed theoretical algorithms that achieve optimal throughput performance

in distributed networks. Practical applications of these schemes have also been

studied in several papers such as [85], which applies a similar policy to the queues

of wireless sensor nodes to realize an efficient data collection protocol. However,

that solution makes strong use of channel snooping and poses limitations on the

implementation of radio duty-cycling (RDC). In [86] the authors propose CODA,

a distributed algorithm that uses explicit messages to detect congestion and there-

fore can also work in the presence of RDC. An evaluation of CODA in 6LoWPAN

networks can be found in [87], where the authors measure the loss probability and

the number of delivered packets. While these studies on CODA are of interest for

the application of congestion control principles in energy efficient networks, some

practical issues still remain open, namely: i) the explicit BP messages are not

provided in standard existing protocols, and therefore cannot be used in stan-

dard networking stacks, and ii) there is no discussion on some important issues

such as the effect of the required number of hop-by-hop retransmissions and of

bidirectional CoAP traffic support.

Our main objective in this chapter is to systematically compare through de-

tailed simulations different lightweight BP approaches, including existing as well

as original algorithms, in order to assess their suitability for the implementation

into IoT devices and their benefits in terms of performance gains.

The remainder of this chapter is organized as follows. In Section 4.3.1 we

describe the system model and present our practical BP-based congestion con-

trol algorithms for constrained devices. First, in Section 4.3.2 we evaluate the

performance of these algorithms focusing on unidirectional and upstream data

collection. Thus, in Section 4.3.3 we consider bidirectional communication sce-
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narios as those arising from CoAP-based Web-services.

4.3.1 Back Pressure Congestion Control on 6LoWPAN

In the following, we present some CC designs that are explicitly tailored to con-

strained networks featuring infrequent communication patterns. Specifically, we

propose to perform congestion control actions at the network layer, as this allows

the implementation of BP algorithms that work on aggregates of datagrams, i.e.,

on IP queues. Note that working on aggregates is desirable due to the nature

of the traffic found in 6LoWPAN networks, which usually reaches considerable

volumes only when the output of multiple nodes is combined. Moreover, this

results in a lower complexity in terms of software structure, memory utilization

and communication requirements for the control of network queues.

4.3.1.1 Node Model

Each node has been modeled according to the Internet Host model [88], which

classifies protocols into Link, Network, Transport and Application layers.

• Link: 6LoWPAN has been specifically designed for the IEEE 802.15.4

PHY/MAC [89]. Thus, in our model each node is equipped with an IEEE 802.15.4

radio transceiver operating at 2.4 GHz with a nominal available transmis-

sion rate of 250 kb/s. Layer-2 operates according to the IEEE 802.15.4

standard and the total number of transmissions per packet is limited to a

maximum of 7.

• Network: IPv6 and 6LoWPAN belong to this category; our node has

been equipped with a standard layer-3 device (L3D) operating as follows.

For each IP datagram, received either from the applications residing in the

upper layers or from the radio, L3D first understands whether this datagram

has to be delivered to the local host.

As a second step, L3D looks in the Internet routing table, extracts the

next-hop toward which the datagram has to be sent, and places the received

datagram into the layer-3 queue for outbound traffic. This queue is managed

according to a First-In First-Out Drop Tail (FIFO-DT) discipline. Note
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that we account for a single IP queue at layer-3, this limitation is realistic

and typical of constrained devices.

Our L3Ds implement hop-by-hop layer-3 retransmissions and different BP

control algorithms as specified below, in Sections 4.3.1.2 and 4.3.3.1.

• Transport: The UDP transport protocol is adopted. UDP only performs a

checksum check for every received datagram, without any further processing

or buffering operations.

• Application: We have considered two usage scenarios:

1. Unidirectional flows (Section 4.3.2): for the study of unidirec-

tional upstream data traffic, we have adopted the Iperf [80] protocol.

It permits to evaluate at the receiver the number of lost packets, the

number of out-of-order deliveries, the multi-hop delay and the per-

packet jitter. Data sources emit UDP traffic at a constant bit-rate

(CBR), except for the cases where the local layer-3 queue is full. In

these cases, the emission of the datagram is delayed until a layer-3

queue slot becomes available.

2. Bidirectional flows (Section 4.3.3): to evaluate the effectiveness of

the proposed congestion control algorithms for bidirectional traffic, we

have used the Constrained Application Protocol (CoAP) [10] to trans-

port Iperf messages. CoAP implements a lightweight bidirectional ex-

change targeted to client-server architectures. In this case clients are

placed outside the constrained IoT domain and emit CoAP requests

at a constant bit rate. These requests are sent to a border gateway

and from here to the IoT nodes. Upon receiving these requests, IoT

nodes reply with CoAP responses that flow in the opposite direction.

4.3.1.2 Layer-3 Device Types

We advocate the implementation of congestion control through the use of prac-

tical back pressure techniques, which are embedded into the layer-3 device of

each sensor node. Next, these augmented L3Ds are presented in detail, whereas

their performance evaluation is carried out in Sections 4.3.2 and 4.3.3, where we
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respectively look at unidirectional and bidirectional flows.

Static With this term we refer to the L3D described in Section 4.3.1.1, which

does not account for any congestion control mechanism. This is a baseline scheme

considered here to gauge the advantages offered by the following BP schemes.

IdealBP refrains from transmitting as long as the queue length at the next-hop

is higher than that of the local queue. This behavior mimics the ideal BP policies

devised by Tassiulas and Ephremides [84]. Note that in actual implementations

nodes can only know the queue length at the next-hop through the exchange

of proper control signals. For IdealBP, in our simulations this information is

made available to any node through a genie. Although IdealBP is impractical,

we have considered it here to validate the BP approach and also see how much

its performance deviates from that of the practical algorithms that we propose

next.

According to IdealBP ’s BP policy, the datagram at the current node is trans-

mitted to the next hop whenever their queue differential is positive and the remote

queue length at layer-3 is smaller than a pre-determined threshold Qthr > 0. This

threshold is required because it could happen that multiple devices concurrently

send1 their datagrams (one per device) to the same next hop. In this case, the

queue at the next hops could overflow even though the preceding queue differen-

tial was positive.

Griping uses an explicit BP signal on congestion and is similar to the CODA BP

policy [86], that has also been evaluated in [87]. Differently from [86] and [87], in

Griping subsequent BP control messages must be transmitted at least K seconds

apart, where K is a tunable parameter. In fact, we noticed that close transmis-

sions of BP control messages toward the same source lead to inefficicies in terms

of transmission overhead.

Whenever a Griping L3D receiver gets a new datagram and its layer-3 queue

length is larger than a threshold Qthr > 0, it emits a unicast BP control message

toward the source of that datagram. At any time, each Griping transmitter sends

1Note that the concurrent transmissions occur at layer-3; lower layers will multiplex these

transmissions so as to avoid collisions, by possibly retransmitting collided packets.
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its own datagrams at a rate that is updated according to an Additive Increase

and Multiplicative Decrease (AIMD) approach. Specifically, the rate is halved

upon receiving a BP control message and is otherwise increased by one datagram

every T seconds. Further, as stated above, subsequent BP control messages must

be transmitted at least K seconds apart. In our simulations, the parameters K

and T have been tuned and subsequently set to 100 ms and 750 ms, respectively.

Due to its simplicity, Griping is amenable to the implementation on con-

strained nodes. Moreover, we note that this technique does not require any

interaction with the PHY and MAC layers and therefore does not rely on their

specific implementation. This makes it possible to implement Griping with radio

duty cycling, which is a critical feature for wireless sensor networks.

Layer-3 losses in Griping occur in two cases.

C1) Receiver side: a packet is correctly received at layer-2 and is passed to

layer-3, where the network queue is full. The packet is thus discarded and

a layer-3 queue overflow occurs.

C2) Sender side: a packet is discarded when none of the allowed retransmissions

at layer-3 has led to its successful reception.

Deaf is an alternative approach that aims at removing the complexity associated

with the transmission of BP control messages. Specifically, a Deaf receiver stops

sending layer-2 acknowledgements whenever the layer-3 queue length is larger

than a threshold Qthr > 0. The stopped acknowledgment flow is perceived by the

Deaf transmitter as an implicit BP notification.

A Deaf transmitter handles layer-3 retransmissions as follows: after a new

transmission, a back off timer is initialized to W seconds, where W is drawn from

a random variable uniformly distributed in [0, cW2ew ]. After each retransmission

of the same datagram the transmission counter, ntx, is increased by one and the

length of the latter interval is adapted by picking a new value of ew as follows ew =

min (ntx, n
max
tx ), with nmax

tx = 4. ntx is initialized to zero for the first transmission

and the constant cW has been set to 0.1. We say that a packet failure event

occurs whenever the maximum number of retransmissions is reached for a given

layer-3 packet, which is still unsuccessfully delivered.
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Note that this technique does require some cross-layer interaction between

layer-3 and layer-2. In fact, a given layer-2 frame is not acknowledged by Deaf when-

ever the overlying layer-3 communicates to the lower layer a failure for that packet.

However, this does not require to process further PHY- or MAC-layer metrics.

For this reason, we argue that Deaf does not interfere with radio duty-cycling as

others cross-layer approaches usually do.

Note that congestion control in this case is enforced by spacing apart the

retransmissions of the same packet at layer-3. This amounts to decreasing the

actual layer-3 transmission rate through implicit notifications from the Deaf re-

ceiver.

Deaf never acknowledges layer-2 packets whenever the layer-3 queue is full.

Thus, event C1 above never occurs and packets can only be discarded due to

event C2.

Fuse Fuse behaves as Griping until its queue length is smaller than the max-

imum queue size Qmax. When the layer-3 queue is full, Fuse combines the BP

actions of Griping and Deaf. That is, in this case Fuse stops sending layer-2

acknowledgments (as Deaf does) but also continues to send explicit congestion

notification messages (as Griping does). As we shall see below, this combined

action effectively reaps the benefits of both Deaf and Griping BP policies.

4.3.2 Unidirectional Upstream Data Traffic

In this section we analyze the performance of the back pressure algorithms of Sec-

tion 4.3.1.2 when applied to 6LoWPAN networks adopting RPL [76] and transmit-

ting data packets over unidirectional and upstream flows, i.e., from some source

sensor nodes to the border router which interconnects the constrained sensor

network to the unconstrained Internet, see the first case study of Fig. 4.4.

4.3.2.1 System Parameters

The following parameters have been chosen to evaluate their impact on the per-

formance.

Offered Traffic Load (λtx) defines the rate at which each source emits UDP
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datagrams at layer-3 and is measured in packets per second.

Number of retransmissions (Nretx) controls the maximum number of retrans-

missions. Specifically, when Nretx = 0 retransmissions are disabled at both layer-2

and layer-3. When Nretx = 1 retransmissions are disabled at layer-3, whereas a

maximum of 7 transmissions per packet is possible at layer-2. When Nretx > 1,

the maximum number of allowed layer-2 transmissions is set to 7, and the maxi-

mum number of layer-3 retransmissions is set to Nretx − 1.

Maximum queue length (Qmax) defines the maximum available memory for

the layer-3 queue, which is the same for every node and is expressed in terms of

number of layer-3 packets.

Queue threshold (Qthr) is a threshold on the queue length at the L3D receiver

that is used to assess when a control action is required by the BP algorithms, as

detailed in Section 4.3.1.2.
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4.3.2.2 Performance Metrics

To compare the performance of the various L3Ds, the following metrics have been

considered.

Reception rate (λrx) defines the average rate at which layer-3 packets are cor-

rectly received by the destination, and is measured in packets per second.

Multihop delay (D) refers to the time taken by a packet to be correctly received

by the border router (BR, see Fig. 4.4) from its transmission instant at the source

(one of the 9 leaf nodes of the routing tree of Fig. 4.4). D is the average delay,

which is obtained averaging the packet delay over all packets that are correctly

received by the border router.

Loss probability (Ploss) represents the probability that an emitted datagram

is lost either due to buffer overrun or because the maximum number of retrans-

missions has been reached. Ploss is computed as a ratio of the total number of

datagrams lost into the network to the total number of datagrams emitted by all

sources.

Rejection rate (R) defines the average rate at which packets from the applica-

tion are rejected by the network layer due to a full layer-3 queue. In this case,

application layer packets are not lost at layer-3 but their insertion into the layer-3

queue is denied and an error message is propagated toward the application layer.

Upon receiving this error message, the application slows down its transmission

rate, temporarily stopping its transmission flow and resuming it whenever new

buffer space becomes available at layer-3.

Transmission Overhead (Ntx) represents the average total number of layer-2

packets that are transmitted in the network for the successful end-to-end (from

a leaf node to the border router) delivery of a single layer-3 datagram. This

metric accounts for the number of layer-2 packets that are sent to carry layer-3

data messages as well as layer-3 BP control messages, such as those sent by

Griping and Fuse for the explicit signaling of a congestion event.
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4.3.2.3 Results for Upstream Unidirectional Traffic

Simulation setup: Simulations have been run in ns-3 [90], using IEEE 802.15.4

at the PHY and MAC layers. At layer-2 packets have a fixed size of 127 bytes,

including 12 bytes for the layer-2 headers. Layer-3 datagrams have a fixed size

of 115 bytes, which means that a layer-3 datagram fits into a layer-2 packet

and fragmentation is not needed. A tree topology has been built, see Fig. 4.4,

containing 9 leaf nodes, 4 routers (R) and a border router (BR).

This topology is representative of a typical routing scenario for 6LoWPAN

networks adopting RPL [76], a recently standardized routing protocol for low-

power lossy networks.

In the following results, errors due to wireless transmissions have not been

considered as neglecting channel impairments makes it possible to isolate and

characterize the effects that are solely due to the considered congestion control

algorithms, which is the main purpose of our study in this paper.

The simulation duration is set to 200 seconds, and Qmax is set to 31 packets

to resemble typical limitations of IPv6/6LoWPAN stacks on constrained hard-

ware platforms (see [8]). Each of the points in the following graphs is obtained

averaging 21 independent simulation runs.

Impact of varying the transmission rate λtx: In Fig. 4.5 we show λrx and

D for each L3D device as a function of λtx ∈ [1, 30] pkt/s. The remaining system

parameters have been set to: Nretx = 15, Qmax = 31 packets, and Qthr = 15

packets.

Considering the Static device, as long as the input rate λtx remains smaller

than a certain saturation threshold λsat (of about 9 pkt/s in Fig. 4.5), we have

that the reception rate λStaticrx is approximately equal to λStatictx and DStatic is stable

and small. This means that the network can effectively serve the injected data

traffic. Here, the packet delay is typically dominated by the transmission and

propagation delays over the involved multiple-hop paths from the sources to the

BR, whereas the queueing delay is negligible. As λStatictx grows larger than λsat,

λStaticrx saturates reaching the so called saturation throughput. At this point, DStatic

grows abruptly and this is due to the queueing component of the delay, that

considerably increases as λtx becomes higher than the actual layer-2 service rate.
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Similar performance tradeoffs are observed for all L3Ds.

While there are no substantial differences between Static and the other L3Ds

in terms of λrx, we note that all the other devices obtain an average delay D

increased by a factor of about 4 during congestion if compared with Static. This

is due to the fact that these devices put off the transmission of new layer-3

packets when the network is congested, whereas Static keeps transmitting at a

fixed rate, irrespective of the congestion status of the network. Also, Griping and

Fuse account for the longest delay, and this is due to their explicit transmission of

back pressure messages. From this first figure we observe that back pressure tends

to increase the delay but is able to retain most of the throughput performance of

the greedy Static transmission policy.

The rejection rate R has been plotted in Fig. 4.6 for the same simulation

parameters. For BP devices, flow congestion actions are taken as soon as λtx

becomes equal to λsat and are enforced as long as λtx ≥ λsat. These actions
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Figure 4.6: Rejection rate R vs. the offered traffic load λtx.

correspond to increasing the layer-3 rejection rate R. We note that IdealBP has

the lowest rejection rate and the highest reception rate among all BP schemes,

and thus, as expected, it is the best performing algorithm, i.e., the one able to

fully exploit the benefits of back pressure.

R of Deaf, Griping and Fuse is very similar and close to that of IdealBP.

Moreover, their back pressure policy becomes effective when λtx ≥ λsat, which

is testified by the prompt increase in R when the network operates beyond the

saturation point.

Static keeps sending packets at the maximum possible rate, irrespective of

the queue status at the relays. This moves to the right the value of λ for which

layer-3 queues are filled up and packets start to be rejected (the increase of R

becomes apparent for λtx ≥ 20 pkt/s in Fig. 4.6). However, as we shall see below

the drawback of this aggressive transmission behavior is that layer-3 queues are

subject to higher loss rates.

As we show shortly, Griping, Deaf and Fuse have a substantially smaller
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Figure 4.7: Transmission overhead Ntx vs. the offered traffic load λtx.

Ploss than Static as they reject only the data traffic that the network cannot

sustain, mimicking IdealBP ’s behavior. Note that layer-3 rejection does not imply

discarding packets but rather slowing down the packet generation rate at the

application.1

In Fig. 4.7 we show the transmission overhead Ntx as a function of the of-

fered traffic load λtx. As expected, IdealBP has the best performance among

all schemes as it applies BP control by leveraging the exact and instantaneous

knowledge of all network queues, which is provided in the simulations through a

genie. As λtx increases beyond λsat all the remaining schemes show a degraded

performance in terms of Ntx. Deaf is the scheme that leads to the highest trans-

mission overhead and this is inherent in its design, as this scheme tends to hit the

maximum number of retransmission attempts while handling congestion control.

1Rejecting traffic that cannot be successfully handled by the network results in improved

performance for all users. This can be supported with minimal impact by those applications

featuring elastic data traffic. Otherwise, the application will see some degraded performance.
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Static is the second-worst as in this case congestion is emphasized through the

careless injection of data traffic. Griping and both perform very close to Ide-

alBP as the corresponding BP policies explicitly send congestion notifications to

the senders and this has the effect of timely slowing down the volume of data

that is injected into the network, alleviating the congestion.

Impact of varying Nretx: Fig. 4.8 shows the loss probability Ploss as a function

of Nretx. The remaining system parameters have been set to: λtx = 20 pkt/s,

Qmax = 31 packets, and Qthr = 15 packets. Note that a transmission rate λtx >

λsat has been chosen so as to measure the ability of the different L3Ds to handle

network congestion.

From Fig. 4.8 we observe the expected result that Ploss generally decreases

as Nretx grows. This decrease is faster for Griping, Fuse and IdealBP as these

algorithms use explicit signaling to detect congestion. The initial Ploss decrease

is slower for Deaf which therefore shows worse Ploss performance for small values

of Nretx, say, Nretx ≤ 7. As expected, Static has the worst reliability performance

as retransmissions are disabled for this scheme.

Also, Griping has a floor at Ploss ' 0.02, which is due to the inherent delay

incurred in the explicit BP notification from the relay nodes. In fact, between the

instant when a BP message is issued by a relay node and the instant when the

controller at the corresponding source node enforces some back pressure action,

the transmission rate remains equal to the one that has caused the congestion

and, in turn, layer-3 losses are possible at the receiver node due to the overflow of

its buffer. Thus, a vulnerable period exists between the instant when congestion

is detected at the relays (that is, when their queue size increases beyond Qthr)

and the instant when the layer-3 flow is effectively slowed down at the sources.

During this vulnerable period, losses due to buffer overflows are likely to occur.

For Deaf, losses are still present due to the exhaustion of the overall number of

retransmissions per packet per hop (both layer-2 and layer-3 ) and for this reason

its Ploss monotonically decreases with an increasing Nretx.

Fuse has the best Ploss performance and the reason for this is the combined

effect of Griping and Deaf. In particular, the explicit signaling of Griping allows

for a prompter reaction to congestion events, which substantially decreases the

probability of Fuse reaching the maximum number of retransmissions. More-
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Figure 4.8: Loss probability Ploss vs. the number of retransmissions Nretx.

over, the vulnerable period issue is solved as, whenever the receiver’s queue is

filled up, Deaf ’s BP control is invoked and packets that overflow from this queue

are subsequently retransmitted by the corresponding sender (due to the stopped

acknowledgement flow).

For what concerns previously shown performance metrics, all of them stabilize

for small values of Nretx to the values shown in Figs. 4.5, 4.6, and 4.7.

Furthermore, when Nretx = 0, network congestion goes undetected and back

pressure algorithms are never activated. In fact, in this case packets are trans-

mitted but never retained in local queues, which are therefore filled up at a much

slower pace. Thus, increasing Nretx allows the fill-up of layer-3 queues and, in

turn, the detection of congestion events: in fact, the rejection rate R is positive

for Nretx > 0. Nretx = 0 leads to poor performance on all metrics for all BP

schemes.

Even Nretx = 1 leads to substantial throughput improvements in terms of λrx.

Setting Nretx = 2, which means up to 7 layer-2 and just 1 layer-3 retransmis-
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sion, grants a throughput that is very close to the maximum achievable for the

given network setup. The throughput increase is always accompanied by a corre-

sponding increase in the delay performance, which also stabilizes for small values

of Nretx. Counterintuitively, Ntx remains stable for all BP devices when Nretx > 1.

Impact of varying Qthr: Fig. 4.9 shows the impact of Qthr for Nretx = 15,

λtx = 20 pkt/s, Qmax = 31 packets. Here, we only show the plot for Ntx, the

other metrics are just discussed as their behavior is similar to what observed

above. Static is represented as a horizontal line in the plot, since its behavior

does not depend upon Qthr.

As expected, λrx grows for increasing Qthr, as a larger threshold lowers the

probability of having buffer under-runs, thus leading to higher throughput effi-

ciencies. For the average delay D, an increasing Qthr puts off the enforcement of

back pressure control actions. Correspondingly, the number of packets stored in

layer-3 queues and their average delay both increase. On the other hand, very
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low values of Qthr lead to long delays too as in this case back pressure control

is almost always active, i.e., transmission rates are often slowed down and this

implies longer L3D service times.

As expected, R decreases monotonically with Qthr for all BP schemes as the

rate of back pressure control actions is lowered for increasing values of Qthr.

The behavior of Ploss differs among the considered layer-3 devices. These

results are just commented but not plotted for the sake of space. IdealBP shows

no losses at all as its control action is deterministic and immediate. Lowering Qthr

for Griping implies an earlier enforcement of back pressure policies, which leads

to a larger buffer space to compensate for incoming packets during its vulnerable

period. Thus, an increasing Qthr implies larger buffer overflow probabilities (i.e.,

larger Ploss). Conversely, for Deaf, Ploss decreases with increasing Qthr, ranging

between 0.2% and 0.01%. This is because using the Deaf device packet losses only

occur whenever a source reaches the maximum number of allowed retransmissions

for a datagram (see C2 above). This event for Deaf is more likely to occur when

Qthr is small, because in this case BP congestion control is activated more often,

which means that layer-2 packets are acknowledged less frequently and this leads

to more layer-2 failures. Fuse has the best performance among all L3Ds with a

Ploss that is smaller than 10−4 for Qthr ≤ 26, whereas its Ploss converges to that

of Deaf as Qthr approaches Qmax. This good performance is due to the combined

effect of Griping and Deaf BP control.

Finally, from Fig. 4.9 we observe that IdealBP has the best overhead perfor-

mance, whereas Deaf has the worst. Griping performs very close to IdealBP for

all values of Qthr. Fuse performs very close to both IdealBP and Griping for Qthr

smaller than, say, Qmax/2, whereas as Qthr increases toward Qmax the transmis-

sion overhead of Fuse converges to that of Deaf. This is representative of the fact

that the overhead in the latter case is dominated by the retransmissions due to

the stopped acknowledgment flow.

4.3.3 Back Pressure Congestion Control for CoAP

Current trends in IoT networking involve the use of web services on constrained

IoT devices. These entail the bi-directional exchange of messages according to a

request/response paradigm, see Fig. 4.4, as per the REST architectural style [33].
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The Constrained Application Protocol (CoAP) [10] defines a simple, efficient, and

flexible protocol to allow REST architectures to scale down to smart objects, by

preserving interoperability with HTTP [12].

In this section, we apply back pressure congestion control to bidirectional

CoAP traffic. In this case, typical communication patterns amount to the trans-

mission of CoAP control messages from the outside Internet network to the con-

strained IoT nodes and their subsequent CoAP responses. CoAP makes it possible

for IoT resources to be accessible as web services, and in particular makes them

available on the Internet as HTTP web services (through CoAP to/from HTTP

mapping, see, e.g., [12]).

Referring to the second case study of Fig. 4.4, CoAP requests are sent over the

constrained network as IPv6 datagrams flowing from the 6LoWPAN border router

down to the leaf nodes. Upon receiving these requests, leaf nodes reply with IPv6

datagrams carrying the corresponding CoAP responses; the latter datagrams flow

from the leaf nodes to the border router.

Note that the congestion problem is only marginally handled by the CoAP

specification, which recommends a fixed congestion window of 1 packet at the

CoAP senders. However, this static window may result in underutilized trans-

mission resources when the network has some residual transport capacity and is

as well inefficient when even this small window value suffices to create conges-

tion. Differently, our approach is to prevent network queues from overrunning

and as well to avoid the injection by the border router of an excessive number

of requests into the constrained network. The latter objective is accomplished

at the border router through the rejection of requests coming from the external

Internet network using a “503 Service Unavailable” error response, which signals

to the requesting client that the wanted resource is temporarily unavailable. This

combined control is the purpose of our study in the following.

4.3.3.1 L3 Devices for Bidirectional Back Pressure

Differently from traditional BP, when bidirectional traffic is taken into account

some additional mechanisms need to be added to the congestion control policies.

In fact, BP should not slow down response traffic, because any dropped CoAP

response would mean a network loss from the client’s perspective.

Taking into account the fact that every CoAP request solicits a CoAP re-
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sponse flowing along the reverse path, the length of the network queues is still a

valid measure of network congestion. However, this measure alone is not entirely

representative of the number of outstanding CoAP requests that are still wait-

ing for a corresponding CoAP response message. Note that these responses may

still cause buffer overruns as they are transmitted over the constrained network.

Ideally, one would need to track the number of outstanding CoAP requests, so

as to gauge the expected future load due to CoAP responses and shape the data

traffic accordingly. However, such a task is generally too complex for resource

constrained IoT devices. Aiming at a lightweight design, in the following we

modify the L3Ds of Section 4.3.1.2 with the objective of pushing back CoAP

requests only based on the queue length metric alone. While suboptimal, this

solution entails little changes on current CoAP stacks and incurs low commu-

nication overhead. The goal of this section is to check whether, in spite of its

simplicity, our queue-length-based control can provide satisfactory performance

and also check which are the most important parameters that have to be tuned

for its successful utilization.

Henceforth, the L3D devices of Section 4.3.1.2 have been modified as follows:

• Static this device does not apply any congestion control algorithm and is

unchanged with respect to that of Section 4.3.1.2.

• IdealBP only applies its queue-length-based differential BP to the CoAP

request traffic flowing from the border router to the leaf IoT nodes.

• Griping emits its explicit back pressure messages only upon the reception

of CoAP requests.

• Deaf implements the backoff policy of Section 4.3.1.2 and refrains from

transmitting layer-2 acknowledgements when the corresponding network

layer datagrams are CoAP requests.

• Fuse extends the Fuse BP policy of Section 4.3.1.2 adding a further thresh-

old Qthr2 such that Qthr < Qthr2 < Qmax. Hence, the Deaf BP policy is

activated when the queue length grows beyond the new threshold Qthr2,

whereas the behavior of the Griping BP policy remains unchanged. This

second threshold allows the activation of BP congestion before the layer-3
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queue is filled with packets and this leaves some room to accommodate the

CoAP reverse traffic.1 As for Griping and Deaf, BP is only applied to CoAP

requests.

For the border router, whenever its layer-3 queue becomes full, it rejects

any further incoming CoAP request by issuing a “503 Service Unavailable” error

message.

4.3.3.2 System Parameters

Offered request load (λtx) defines the rate at which each CoAP client, placed

in the external Internet network, sends CoAP requests toward a specific CoAP

server placed within the constrained IoT network. Note that a server corresponds

to an IoT leaf node in our simulation scenario, see Fig. 4.4.

The definition of the remaining system parameters Qthr, Qmax, Nretx remains

the same as that of Section 4.3.2.1, the new threshold Qthr2 has been set to Qthr+5

packets.

4.3.3.3 Performance Metrics

To compare the performance of the proposed L3Ds, the following performance

metrics have been considered.

Received response rate (λrx) defines the average per server (running on a leaf

node) rate of CoAP responses that are correctly received by the border router

and is measured in correctly received CoAP responses per second per server.

Round trip-time (D) defines the average lapse of time (seconds) spent at the

border router waiting for a CoAP response to an accepted CoAP request.

Loss probability (Ploss) defines the percentage of CoAP responses that are not

received by the border router, although the corresponding CoAP requests have

1In other terms, the difference Qmax − Qthr2 is our best a priori estimate of the impact

of the CoAP responses that will follow the CoAP requests that are currently admitted in the

network.
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been accepted into the constrained network.

Rate of rejects (R) defines the average per client rate of CoAP requests that

are not accepted into the network by the border router (issuing an HTTP 503

status code, as per our discussion above) and is measured in terms of rejected

CoAP requests per second per client.

Transmission Overhead (Ntx) represents the average number of layer-2 packets

that are transmitted in the network for the successful end-to-end bidirectional

exchange (from the border router to a leaf node and back to the border router)

of a single CoAP request and response pair. This metrics accounts for the layer-2

packets that are sent to carry CoAP requests and responses as well as layer-3

BP control messages, such as those sent by Griping and Fuse for the explicit

signaling of a congestion event.

4.3.3.4 Results for Bidirectional CoAP Traffic

Simulation setup: simulations have been run over the topology of Fig. 4.4,

where a CoAP server has been deployed on each of the 9 leaf nodes; the bor-

der router hosts a CoAP proxy, which accepts CoAP requests from 9 CoAP

clients placed in the external Internet network. Each CoAP client emits Non-

Confirmable (NON)1 requests at a constant rate λtx toward a CoAP server run-

ning on a leaf node. CoAP requests and responses have a fixed layer-3 size of

12 bytes and 115 bytes, respectively, including 6LoWPAN/UDP headers. The

duration for each simulation run is 500 seconds, and the queue size of all nodes

is 31 packets. The simulation points on the following graphs have been obtained

averaging over 21 independent simulation runs.

Impact of varying λtx: as a first result, Fig. 4.10 shows λrx and D as a func-

tion of λtx ∈ {1, . . . , 15} req/client/s. The remaining simulation parameters are

Qmax = 31 packets, Qthr = 20 packets, Qthr2 = 25 packets and Nretx = 15.

For Fig. 4.10, we note that the general behavior of all metrics is similar to

1NON requests do not have application-layer retransmissions; we chose to use this kind of

requests, since our objective is the layer-3 evaluation of the congestion control performance.
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Figure 4.10: Received response rate λrx, and round-trip time D vs. the offered

request load λtx.

that observed for unidirectional traffic, see Fig. 4.5. The main difference is that

in this case λsat is nearly halved due to the presence of CoAP bidirectional ex-

changes, whereby two packets (CoAP request and response) must be handled by

the network for each accepted CoAP request. In fact, although CoAP requests

and responses differ in size, their cost in terms of overall time spent, including

retransmissions, is nearly the same and this is due to the dominating effect of

MAC layer tasks such as the time required to gain access to the channel, back off

times, etc., which do not depend on the data frame size.

Also, we note that λStaticrx equals λStatictx up to about λsat = 5 req/client/s,

beyond which the response rate starts decreasing to a floor of about 3 req/client/s.

This behavior is due to the so called congestion collapse event, similar to that

observed in the early days of the Internet (see [83, 91]). The congestion collapse

is caused by the border router accepting more requests than those that can be

served by the network, which is given by λStaticsat . For the delay, we note that D
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grows until λrx stabilizes.

Notably, IdealBP, Griping, Deaf and Fuse are not subject to the congestion

collapse of Static but their throughput performance stabilizes as soon as λtx

increases beyond λsat. Moreover, their delay remains stable even with λtx larger

than λsat. This occurs because the border router acts as a proxy by rejecting

traffic as soon as its outbound queue toward the constrained network becomes

full.

For the rejection rate R, similarly to what observed for Fig. 4.6 (unidirectional

flows), Static starts rejecting packets when λStaticrx is approximately 10 req/client/s,

which is about twice λsat. The remaining L3Ds react to an increasing λtx by

rejecting packets as soon as the offered traffic increases beyond λsat, with λsat

halved with respect to that of Fig. 4.6. As for the unidirectional traffic scenario,

IdealBP shows no losses, PGriping
loss converges to about 0.5%, PDeaf

loss and PFuse
loss both

stabilize around 10−5.

Overall, it is worth noting that Fuse obtains nearly the same throughput as

Griping but has the same Ploss performance as Deaf. This is due to the com-

bined effect of Griping ’s explicit signaling, which effectively limits the send rate

within the network, and the fact that all requests are deterministically rejected

by the border router when its queue length increases beyond Qthr2, which helps

preventing congestion events.

In Fig. 4.11 we look at the transmission overhead Ntx. As for the unidirec-

tional traffic scenario, IdealBP shows a smaller transmission overhead than the

other schemes for λtx ≤ λsat. Static presents the highest Ntx, which increases for

increasing λtx until it hits a maximum and this occurs at around 2λsat, when the

corresponding R starts increasing. The remaining back pressure schemes effec-

tively limit the maximum overhead and in particular we note that Deaf performs

quite well here, in contrast to its unsatisfactory overhead performance for unidi-

rectional traffic. The reason for this is that in this case the border router is the

only source of data traffic and sends its packets directly over the bottleneck link

of the network. In this case, Deaf ’s exponential backoff mechanism effectively

keeps the overhead at a small value. This is in contrast to what happens for

the unidirectional scenario where: i) there are multiple sources competing for the

channel (multiple leaf nodes), ii) the considered tree topology is such that these

multiple sources all insist onto the same routers and the data traffic is ultimately
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Figure 4.11: Transmission overhead Ntx vs. the offered request load λtx.

conveyed to a single border router (from many nodes to one), leading to an in-

creasing congestion status as the data gets closer to the border router. Thus,

in the unidirectional upstream case these facts result in a much more congested

network and Deaf ’s exponential backoff alone is ineffective.

The good performance of Deaf for bidirectional CoAP flows makes it suitable

to add BP functionalities to current CoAP/6LoWPAN protocol stacks, without

requiring the definition of further BP messages. In fact, this scheme in spite of its

simplicity effectively avoids the network collapse and also leads to a reasonably

small traffic overhead.

Impact of varying Nretx: Fig. 4.12 shows Ploss by varying Nretx in {0, 1, . . . , 15}.
The remaining simulation parameters are λtx = 20 req/client/s (the system is

congested), Qmax = 31 packets, Qthr = 20 packets and Qthr2 = 25 packets.

As observed in Section 4.3.1, BP requires an adequate number of hop-by-

hop retransmissions to work. In fact, IdealBP obtains no substantial advantage
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Figure 4.12: Loss probability Ploss vs. the number of retransmissions Nretx.

over Static when no retransmissions are allowed, whereas a very small number of

retransmissions (Nretx ≤ 3 for the considered setup) is sufficient for it to effectively

relieve network congestion (see the sudden drop of P IdealBP
loss as Nretx grows).

Griping and Deaf require as well an adequate number of retransmissions to

effectively work. PGriping
loss drops quickly and then stabilizes to a floor of about

0.02%. Ploss monotonically decreases for increasing Nretx for both Deaf and Fuse,

although the latter requires a higher number of retransmissions due to the delayed

BP control implied by the new threshold Qthr2 > Qthr. As in the unidirectional

scenario, a high number of retransmissions does not negatively impact Ntx, which

remains stable for all devices with Nretx > 3.

Impact of varying Qmax: memory requirements have a strong relevance for

constrained devices. In particular, the available memory and its management

limit the queue length in actual implementations, e.g., see [8].

Figs. 4.13 and 4.14 show λrx and Ploss by varying Qmax in {3, 6, . . . , 60}. The
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Figure 4.13: Received response rate λrx vs. the maximum queue length Qmax.

remaining simulation parameters are: Qthr = d(2/3)Qmaxe packets, Qthr2 = Qthr+

5 packets, Nretx = 15 and λtx = 20 req/client/s.

The throughput λrx of Static remains stable around 3 res/client/s and is only

marginally affected by Qmax. For IdealBP, Griping and Fuse, λrx converges to

about 5.2 res/client/s for Qmax ≥ 15 packets. Thus, besides improving reliability,

BP control also makes it possible to roughly double the throughput performance.

We also observe that Deaf has a throughput performance that is roughly from 5

to 10% worse than that of the other BP schemes. The reason of this is inherent

in how Deaf reacts to congestion events. In fact, Deaf detects congestion by

stopping the transmission of the layer-2 acknowledgments associated with layer-3

CoAP requests. This has the twofold effect of slowing down the send rate of

CoAP requests, while occupying the channel with their retransmissions. However,

these retransmissions prevent the senders from exploiting the channel for other

useful traffic such as the transmission of CoAP responses, whose correct delivery

would contribute to a higher throughput performance. The performance gap
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Figure 4.14: Loss probability Ploss vs. the maximum queue length Qmax.

between Fuse and the other BP schemes decreases for increasing Qmax, as Qthr

also increases, leading to a less frequent activation of BP control policies and of

the just discussed inefficiencies in terms of channel utilization (waste of channel

resources).

For Ploss from Fig. 4.14 we see that Static is unaffected by Qmax, whereas

the reliability performance improves for all other L3Ds for increasing Qmax. This

occurs because a larger Qmax implies that network queues have more room to

absorb traffic bursts and this makes buffer overruns less likely to occur. We also

observe that Deaf has a slightly smaller Ploss than Fuse as its smaller BP thresh-

old Qthr < Qthr2 implies a prompter reaction to congestion events.
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5

Application Protocols and

Formats

Starting from the eighties, worldwide communications popularity has always been

increasing. The Internet paradigm has become a common denominator for net-

working applications. Nowadays, many information and communications services

rely on IP technology: web-shopping, online-databases, social networks being

three notable examples.

Smart Grids (SG) [92, 93] and the Internet of Things (IoT) [94] are nowadays

popular research topics in the ICT community. Even though born from different

needs, they have quite a few aspects in common and are characterized by similar

challenges. Key objectives for both scenarios are: seamless integration with

IP, system scalability and interoperability.

Both scenarios comprise millions of heterogeneous embedded devices featuring

different technologies, each developed to satisfy particular needs. Just to name

a few, wireless sensor and actuator networks (WS&ANs) [63] adopt low–power

radios and simple CPUs, Radio Frequency Identifiers (RFIDs) [95] and Near

Field Communication (NFC) [96] rely on little computational power and very

short range radios, whereas wired embedded devices are equipped with Power

Line Communication (PLC) [97] and ARM CPUs. The seamless and scalable

interworking of such diverse technologies is crucial to the success of SG and IoT.

Also, communication protocols should scale to a large number of devices; this

implies a clever design of the architecture together with efficient implementations
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of communication paradigms.

1) Seamless integration with IP: this objective involves the provision of a

seamless link between the Internet world and the machine–communications

world.

2) Scalability and interoperability: both scenarios comprise millions of

embedded devices characterized by numerous different hardware and com-

munication technologies, to satisfy particular needs.

The Internet world is now in its mature age: the Internet Protocol (IP) is the

most used network protocol along with the Hyper–Text Transmission Protocol

(HTTP). Interconnecting IP and embedded systems/machines has always been

a hot research topic, however, only recently did standardization bodies start to

play a decisive role in this respect. Currently, many initiatives are competing to

be the first to provide a feasible standard for SG/IoT.

First of all, we describe the Binary Web Service (BWS) protocol, developed

within the SENSEI project [53], which introduced the concept of an efficient,

binary and simple realization of web services for smart Internet-enabled objects;

its pioneering development has heavily contributed to the subsequent formation

of the CoRE charter in the IETF [71].

Last but not least, we illustrate some of the strengths of the Internet Engineer-

ing Task Force (IETF) approach. To this end, we detail the realization of simple,

but powerful Web Services for IoT applications that use the Constrained Appli-

cation Protocol (CoAP) [98], which is being defined in the Constrained RESTful

Environment (CoRE) charter [71], and the eXtensible Markup Language (XML),

which is combined with the Efficient XML Interchange (EXI) format [69].

5.1 Related Work

Recently standardization bodies started to play a decisive role in interconnecting

constrained devices with the Internet. Currently, many initiatives are competing

to be the first to provide a feasible standard for SG/IoT.

Recent research efforts explore the performance and the practical feasibil-

ity of a REST-based approach [4] on top of a 6LoWPAN stack [52] in WSNs;
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Web services have to be suitable in complex installations and easily deployable

while retaining the flexibility typical of IP-based protocols. Other recent pa-

pers [57, 58, 59] have already highlighted the benefits of lightweight Web-based

protocols accessing sensors resource data through Uniform Resource Identifiers

(URI) and request methods (GET, PUT, POST, DELETE) [4, 56, 63]; these con-

cepts are the basis of Web Services and their introduction in WSNs environments

is straightforward. However, Web Service-enabled WSNs still need a complete

protocol stack definition for their direct integration in the Internet, proving that

a Web-based system can smoothly bridge information, objects and new services

through WSNs.

XML has been acknowledged as the de facto standard for data representation

and exchange but its great flexibility comes at the price of being very redun-

dant; to alleviate this, many solutions (see [99] for a thorough review of XML

compression techniques) are available: blind compressors, such as gzip, bzip2,

DTDPPM [100] treat XML as plain text files; a second group of compressors

(e.g., enhanced XMill [101], XMLPPM [102]) takes the XML document structure

into account to achieve higher compression ratios; which can be given using a sep-

arate source or can be obtained from the document itself. An exhaustive survey

on XML compression techniques can be found in [99]. To the best of our knowl-

edge, XBC and EXI have been the first working groups focusing on optimizing

XML for constrained devices and the W3C [103] selected EXI as its standard.

5.2 Constrained Web Services

The Internet of Things (IoT) is constantly focusing higher efforts to build the

technological foundation required to bring the Internet concept to anything, any-

time and anywhere. Next-generation Web services are envisioned to be seamlessly

connected to everyday objects, and to provide smarter interactions possible only

thanks to the tight connection to the physical world. Wireless Sensor & Actuator

Networks (WS&ANs) have been recognized as the technology required to bridge

the Internet to the ”things”, tiny cheap objects that through specialization and

expansion can perform a wide range of tasks, supporting battery-operation and

wireless connectivity which are the key foundations to pervasive deployment.

Nevertheless practical realization of this vision is hard to achieve reusing es-
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tablished standards and technology. Problem statement is two-fold: i) WS&AN

nodes have severe constraints in terms of memory, processing speed, energy, trans-

mission range and bandwidth, which set tight requirements in terms of architec-

tural design and protocol selection, ii) the Web model is the core of the Internet

and for this reason we want to transpose the current REST paradigm down to

the IoT node.

In this section, we present the evolution of the definition of a REST commu-

nication protocol doable on constrained IoT devices, by initially introducing the

original design of BinaryWS. As the results obtained with BWS were encourag-

ing, this protocol has been carried to the IETF, where it is now at an advanced

state of standardization and is proceeding towards becoming an Internet standard

for application layer communications in the Internet of Things ecosystem [10].

5.2.1 Web-enabled Smart Objects

WS&AN has been a hot research topic for nearly 10 years now and can be consid-

ered mature. This is testified, e.g., by the huge number of ZigBee devices being

shipped, which has been doubling every year, hitting 20 millions in 2009 [104].

The main characteristics of the sensor devices in a WS&AN are: low–power

radio, providing wireless communication capabilities, but very little bandwidth,

low–power CPU, enabling substantial energy savings in the face of little compu-

tational capabilities, and small footprint, allowing easy installation, but posing

design constraints.

The combination of these characteristics has led to very economic devices,

easy to install and able to work unattended for long periods of time before need-

ing a battery replacement. These features make WS&AN one of the main actors

in the IoT world. In fact, a sensor node can transform any appliance, any switch,

any controllable machinery into a fully-connected object. In Figure 5.1 we show

how a home environment can be instrumented with sensor nodes for smart me-

tering and control of appliances. These features enabled the development of very

economic devices, easy to install and showing long lifetime on batteries, thus

making WS&AN one of the main actors in the IoT world. In fact, a sensor

node can transform any appliance, any switch, any controllable machinery into a

fully-connected object.
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Figure 5.1: Internet of Things in domestic environments: appliances and utilities

can be monitored and controlled in near-realtime using smart embedded systems

with IP connectivity.

While this figure shows a domestic environment, where every electronic device

is part of the home network, this concept can be extended to a larger number

of scenarios, such as hospitals, offices, shopping malls, factories and even cities;

thus realizing any sort of smart–environment. Adding Internet connectivity to

these smart-environments, will make them interoperable and interconnected and a

whole set of new services can be thought of. Finally, if every interconnected device

can communicate using the same language(s), this will become the Internet of

Things, where every single network element can be treated as a tiny Web-Server,

characterized by a unique identifier and (potentially) providing information and

services.

In order for the IoT to become a reality there are still many requirements to

be satisfied: as already said, there is the need for common languages, but also of

a common framework for the description of the information. In addition, these

requirements, that are just the first two of a longer list, must be satisfied for the

aforementioned constrained devices. In order to integrate these sensor devices

with the Internet as seamlessly as possible, the most natural choice would be

using the most popular protocols in the Web: HTTP-IP and XML. Moreover, it

is possible to mutuate the concept of resources from the Internet: Web resources

are information and service providers such as websites, but can be used to describe

smart–devices too, because they provide the same functionalities.

Ideally, in the IoT each device will be represented as a resource providing its
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own description in terms of hardware capabilities and software interfaces as well

as a description of the services that it provides. For instance, the refrigerator

will provide information about its description, such as its main physical function,

its retailer, its operating status, but will also provide access to smart–services

such as “best before”–notifiers when products in it are passing that date or an

“out-of-stock”–notifier, informing the user about which products are needed. The

user will thus be able to interact with the refrigerator in the same way as with

any website, by just connecting to the appropriate (IP) address and modifying

parameters or activating services.

5.2.2 Binary Web Services [7]

Motivation The structure of the a typical web service stack can be described as

follows. TCP is initially used to set up a connection between client and server

end-points. Then HTTP request messages are sent from the client to the server.

Requests can make use of any HTTP method, typically GET, POST, PUT or

DELETE. Finally, the client specifies the resource on the server to request in the

form of a URL. The server responds with a response and a Code. HTTP is able to

carry a body in either direction using any MIME type and encoding. The body of

the HTTP web service message is typically XML, in a format known by the client

and server. In order to perform sequences of Remote Procedure Calls (RPCs),

the SOAP protocol may be used in the XML body, adding a layer of complexity.

After the sequence of requests is complete the TCP connection is closed. The

major problems limiting the use of HTTP in 6LoWPAN sensor networks include:

High Overhead caused by plain text encoding and verbosity of the HTTP header

format, TCP Binding, which seriously penalizes performance in ad-hoc wireless

networks especially when connections are short-lived and Complexity because real

HTTP servers, client and proxies use a large number of optional headers which

can be very complex and often deliver unnecessary side informations.

Overview The Binary Web Service (BWS) protocol [7] is a binary, scaled-down

realization of REST, but compatible with the verbose HTTP protocol [105]. BWS

is based on UDP, enabling the REST interaction model on severely limited devices

such as wireless sensors. To access a resource through BWS, a request message
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is issued. In the 2-3 bytes long header of the message are specified the target

resource (identified by a URL), the access method (GET, PUT, POST, etc.) and

the format of the payload (Content-Type); the payload contains any data required

to fully describe the request. A response describing the result of the request is

sent by the receiving resource to the requesting entity, which is identified by its

source (IP, port) pair; the header of the response contains the HTTP status code

summarizing the result and the Content-Type (if any). All the aforementioned

fields are encoded in binary form in a simple, short header; full support for URL

strings is preserved but, alternatively, the target resource can be specified using

a binary code.

BWS delegates payload data compression, and advocates the use of Efficient

XML Interchange (EXI) from W3C [69] for Binary XML encoding. This choice

is mainly due to the chance of operating the encoder in a schema-informed byte-

aligned mode [69] which makes coding simpler and reduces the output size. How-

ever, we note that building the grammar and thus the specific implementation

from a schema is quite complex; moreover building any generic EXI encoder

is indeed difficult, but simple implementations can be derived only by analyzing

specific schemas and by deriving the subset of features required by those schemas.

5.2.2.1 Implementation description

In our implementation, the communication with any resource is uniformed us-

ing common, flexible components (e.g., Binary XML Services), through a single-

instance and resource-shared BWS implementation on top of the UDP/6LoWPAN

stack. The same BWS module is designed to provide both server and client capa-

bilities. It supports opening multiple servers, each able to serve parallel incoming

requests from clients; as a client, it can handle concurrent communication with

multiple different servers; therefore our implementation allows flexible services to

be based on a single, reusable component. Both the client and the server entities

provide support for URL requests or compressed URL requests, i.e., numerical

identifiers (ID).

The BWS component provides server functionalities through the BWSServer

interface, triggering an event for each incoming request to the registered resource.

interface BWSServer{
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event error_t request(

uint16_t rid,

uint8_t id,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint16_t length );

event error_t requestURL(

uint16_t rid,

uint8_t *url,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint16_t length );

command void response(

uint16_t rid,

error_t status,

uint8_t content_type,

uint8_t *content,

uint8_t length); }

The interpretation of the method and content is left to the appropriate re-

source depending on the requested web service, which is identified by the server

port and the URL or ID. Every request is identified by a 16 bits locally unique

field (rid), in order to support triggering multiple requests to the same compo-

nent. A web service can still be configured to handle one request at a time by

refusing further inquiries using an appropriate status response; more advanced

components can track multiple requests and independently respond to each. The

BWS module keeps track of every active request, by mapping every rid to the re-

questing node IPv6 address and UDP port. Responses can be sent asynchronously

issuing a response command to the BWS server and providing the rid matching

the request being served.

Remote BWS servers can be accessed through a complemental interface (BWSClient),

which provides methods to access BWS features. On a client, every request is

mapped to a command which requires a service to the BWS component; the

corresponding response is an event triggered by the BWS module. To support

104



5.2 Constrained Web Services

clients sending concurrent requests, a 16-bit rid is associated to each request and

returned to the resource as the result of the request or requestURL command.

The response event is fired within the initiating component when the response

message is received.

interface BWSClient{

command uint16_t request(

ip6_addr_t *addr,

uint16_t port,

uint8_t id,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint8_t length );

command uint16_t requestURL(

ip6_addr_t *addr,

uint16_t port,

uint8_t *url,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint8_t length );

event void response(

uint16_t rid,

error_t status,

uint8_t content,

uint8_t *payload,

uint8_t length); }

The versatile design of the BWS component has been enabled by a proper

modification of the 6lowpan component interfaces. The IP6P component has

been re-engineered to exploit the flexibility of parameterized interfaces as used

in a similar manner by the ActiveMessageC; this allows the BWS module to

take full control over the 6LoWPAN subsystem using the UDP interface described

below. Note that the component IP6P parameterizes the interfaces depending

on the local UDP port: for this reason, it does not appear among the function

arguments. This modification allows easy code reuse for processing incoming

packets or for writing outgoing packets to different UDP ports.
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Figure 5.2: Components wiring in the SENSEI node.

interface UDP {

command error_t sendTo(

const ip6_addr_t *addr,

uint16_t port,

const uint8_t *buf,

uint16_t len );

event void sendDone(

error_t result,

void* buf);

event void receive(

const ip6_addr_t *addr,

uint16_t port,

uint8_t *buf,

uint16_t len );

5.2.3 Constrained RESTful Environments (CoRE)

IETF formed this WG in 2010 with the main objective of defining the Constrained

Application Protocol (CoAP), a RESTful protocol suitable for constrained en-

vironments. The REpresentational State Transfer (REST) paradigm refers to
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designing APIs so that every data exchange can be made with the GET, POST,

DELETE and UPDATE operations of the HTTP protocol.

The work of the CoRE WG has been chartered towards obtaining a web-

oriented binary protocol, simple enough to be handled by severely limited devices,

yet easy to map onto HTTP. The thrust behind the latter intent is driven by

the pervasiveness of HTTP in the Web: enabling HTTP communication over

constrained environments will further extend its applicability and will make it

ubiquitous. The currently proposed protocol is trying to achieve this objective

defining a binary representation of REST, which includes the most popular and

useful features of HTTP.

Next-generation M2M environments are expected to be the killer application

for this protocol: for instance, a lot of attention has been devoted to the design

of publish/subscribe mechanisms, since this approach is deemed to be key for

connecting limited devices and avoiding network congestion.

As many distributed content-generating networks, Smart Grids would expe-

rience various benefits from a web-like communication paradigm: in fact, web

services are well-known in the traditional Internet for their applicability to al-

most every kind of application. Following this guideline, the WG is pushing the

Constrained Application Protocol (CoAP) to be used for M2M communication,

resulting in a web-compatible standard for M2M applicability.

By design CoAP is directly mappable to the current HTTP realization: by

leveraging its intrinsic interoperability, the SG system design can be heavily sim-

plified, by directly enabling each network device to interact with standard Internet

languages and, at the same time, keeping the energy and traffic burden on the

constrained environment low.

To give a brief example of CoAP’s performance, an HTTP request with size

in the order of some tens of bytes can be mapped into a CoAP request with the

same functionalities in as few as 4 bytes. The latter occupation is more suitable

for lower-layer frames in constrained environments. Moreover, CoAP’s binary

realization of REST eases the implementation of its paradigm on hardware with

very limited computational power, as has been proven in the case study described

in [11], where technical details on the design and realization of the complete

protocol stack are given.

107



5. APPLICATION PROTOCOLS AND FORMATS

5.2.3.1 Constrained Application Protocol (CoAP) [10]

CoAP [98] is currently being defined within the CoRE [71] working group of the

IETF, which aims at providing a REST–based framework for resource–oriented

applications optimized for constrained IP networks and devices, by designing

a protocol set able to cope with limited packet sizes, low-energy devices and

unreliable channels.

CoAP is based on the REST architectural style sharing the objectives and the

intrinsic limitation listed above. It is designed for easy stateless mapping with

HTTP, and for providing M2M interaction. HTTP compatibility is obtained by

maintaining the same interaction model, using a subset of the HTTP methods.

Nodes supporting CoAP provide flexible services over any IP network using

UDP, and they also provide a solid communication framework to connect sensor

nodes to the Internet. Any HTTP client or server can interoperate with CoAP–

Ready endpoints by simply installing a translation proxy between the two devices.

This will not be a burden for the proxy, since these translation operations have

been designed not to be time and computationally demanding. Also, CoAP

features a message layer between the application protocol and UDP to provide

basic reliability and session matching support1.

CoAP State Machines Even if CoAP has been defined to be implementable on

constrained devices, designing such a CoAP implementation could be a complex

error-prone time-consuming task. In fact, as [19] points out, implementors should

take into account also infrequent events when designing their implementations. To

this end, [19] aims at providing interesting examples of CoAP separate responses

that are useful to aid CoAP implementers in understanding rare situations that

may occur.

In fact, building a robust implementation of the CoAP state machine is com-

plex on very constrained devices. This usually leads to simplify implementations

by not accounting for unusual situations, apparently negligible. [19] describes

rare message exchanges, with the intent of demonstrating possible risks for some

simplified CoAP designs.

Figure 5.3 shows a first attempt to draw the CoAP state machine, assuming

that it shall be implemented in a monolithic component design. The graph shows

1These functionalities are provided by the transport layer in the ISO/OSI stack.
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Figure 5.3: State machine for CoAP monolithic implementation
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Figure 5.4: State machine for CoAP message-layer implementation

that the complexity required by such monolithic approach is high. In fact, to

handle both message and request/response layers in a single software component,

code complexity grows easily as soon as full compliance with the CoAP protocol

is needed.

In Figures 5.4 and 5.5 we show a split design approach, where the message

and request/response layers have been handled as different software components

talking with each other through a specified software interface.
In particular, the required software interface to enable communication between

the two components is as follows:

interface CoAPMessage {

command error_t send (

coap_session_t* session,

uint8_t *data,

uint16_t size,

bool reliable );

command void cancel (

coap_session_t* session );

event void recv (

coap_session_t* session,

uint8_t *data,
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IDLE

TX Request
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M Evt(recv)
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M Evt(timeout)

M Evt(cancel)

CLIENT SERVER

SERVING

M Evt(recv)
RX Request

TX Response
M Cmd((un)reliable_send)

M Cmd(reject)

Figure 5.5: State machine for CoAP request/response-layer implementation

uint16_t size );

event void fail (

coap_session_t* session,

error_t error ); }

The coap session t is a C struct containing information univocally iden-

tifying the session, that is i) the peer IP address and UDP port endpoint, ii)

the Message ID (MID) assigned to the session, and iii) state information of the

session itself, e.g., closed, waiting ack, or others, which can be useful to the

request/response layer to correctly process that session.

The commands and the events represented in Figures 5.4 and 5.5 correspond

to the ones described in the software interface. Commands not present in the soft-

ware interface are mapped as follows: i) reliable send and unreliable send

correspond to calling the send command with the reliable flag set as true or

false respectively, ii) reject and cancel commands have equivalent semantics,

so only the latter has been offered in the API, iii) timeout and fail have equiv-

alent semantics as well, the latter has been offered together with a parameter

indicating the reason of failure.

CoAP API description [11] We designed a CoAP implementation over Har-

van’s TinyOS 6LoWPAN library [106], which implements the first version of
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the HC (RFC 4944) [81]. CoAPP is the REST component providing client and

server functionalities; it handles session data regardless of its type (either client

or server), thus optimizing its memory usage. The actual implementation of this

component can handle up to COAP MAX TRANSACTIONS concurrent trans-

actions 1. Transactions are univocally identified by the transaction ID, that is an

integer assigned locally to each request.

The CoAPClient interface provides the CoAPP module with a TinyOS com-

mand to send any arbitrary request to a CoAP endpoint, and a TinyOS event

to manage the response it gets back. Next, we show the TinyOS code of the

interface:

interface CoAPClient {

command coap_tid_t request (

coap_absuri_t* absuri,

coap_method_t method,

coap_content_t* content,

bool acked );

event void response (

coap_tid_t tid,

coap_status_t status,

coap_content_t* content ); }

The interface defines different custom data types to provide better readability

and high-level operations. When a request command is issued the user must pro-

vide i) absuri describing endpoint host, port and URI of the requested resource,

ii) method specifying which method is used to access the requested resource,

iii) content providing a pointer to the content to be attached to the request,

if present, iv) acked to request a response message; the request command pro-

vides the user with the coap tid t internally assigned to the transaction. A

response event is triggered when the related reply is received. This response

contains i) a tid field identifying the transaction, ii) a status field containing

the status code resulted after processing the request and iii) a pointer to the

content piggybacked in the response.

1this value can be chosen arbitrarily at build time by trading between memory occupation

and flexibility
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The CoAPServer interface provides the CoAPP module with server capabilities:

external components can use this interface to serve resources using a CoAP server.

The CoAPServer and the the CoAPClient are complementary in the sense that

commands issued using one interface trigger events managed by the other interface

and viceversa.

interface CoAPServer {

event void request (

coap_rid_t rid,

coap_absuri_t* uri,

coap_method_t method,

coap_content_t* content,

bool toack );

command error_t response (

coap_rid_t rid,

coap_status_t status,

coap_content_t* content ); }

In order for a request to be properly processed, the following data is needed:

i) a rid value internally assigned to univocally identify the request, ii) the uri

of the requested resource, iii) method describing the access method, iv) a pointer

to the content, if present, and v) a toack flag to signal if the client requested an

ACK. The response command can be used by the serving module together with

the following parameters, i) a rid to match the related request, ii) status value

resulted from the processing of the request and iii) content pointer to data to

be sent in the response.

The CoAPServer interface is characterized within the CoAPP module by a port

parameter identifying on which UDP port the CoAP service has to be activated

in the node.

The client/server architecture of the CoAPP module allows the implementation

of lightweight Web services on constrained WS&AN nodes. Moreover, it makes it

possible to implement M2M interactions, such as publish/subscribe, and to create

multiple Web servers and services without burdening a constrained node system.

As it will become evident from our experimental campaign, our design choices

do not need heavy computational power, on the contrary the resulting CoAPP

software proved to be fast and reliable in managing requests and responses.
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Table 5.1: ROM/RAM utilization of TinyOS components

Component ROM RAM

TinyOS core 1396 4

802.15.4 and ActiveMessage 9258 327

UDP/6LoWPAN 5804 1983

CoAP 2668 1801

RAI/RPI 1752 548

libEXI 7134 1016

Subscription 1580 522

Resources 12402 526

HW drivers 7338 160

CoAP web-services 3632 208

EXI handling 1432 158

Experimental Results Table 5.1 shows the ROM/RAM footprint of our CoAP-

enabled node implementation, which implements an extended version of the SEN-

SEI TinyOS native-island node described in [4]. Our previous implementation led

to a higher memory (ROM) consumption as it accounted for a separate imple-

mentation of the interface toward each component on the nodes (resources such as

leds, on-board sensors and actuators, etc.), also considering the specific require-

ments of their XML schemas and the hardware drivers needed for their physical

access. The current component instead leverages uniform interfaces which are

reused for all components, leading to a lightweight implementation of Web servers

on sensor devices.

In order to prove that CoAP components do not negatively impact the perfor-

mance of the nodes, we set up an experiment with up to 20 CoAP servers running

on a single telosb node (serving node). A second telosb node (client node) was

used to send requests to these servers at a rate that was kept constant during

each experiment and varied across them so as to highlight the dependence on

this parameter. The outcomes of this test are shown in Figure 5.6 where we plot

the CoAP request success probability (intended as the percentage of occurrences
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Figure 5.6: CoAP success rate vs. requests rate.

for which a request is successfully handled by the serving node) as a function of

the request rate by the client node. The experiment has been run considering

5, 10 and 20 CoAP servers. Due to our efficient implementation of CoAP, the

success probability depends only slightly on the number of servers running on the

nodes. As expected, a very high (i.e., higher than 60 requests/second) request

rate severely impacts the access performance but this is due to the inherent lim-

itations of the old 6LoWPAN library [106] that we used during the experiments.

Given that, we can conclude that our CoAP implementation scales well with the

number of server instances without causing a major and noticeable decrease in

the access performance.

5.2.4 Other IETF Contributions

During the standardization process at the IETF, a number of technical analyses,

proposals and reviews have been contributed to the CoRE WG, towards the design
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and specification of CoAP; we will not discuss that work here, the interested

reader can find it in the CoRE mailing list [107].

Beyond this collaboration with the WG in the specification of CoAP, some

other contributions have been sent to the IETF in the form of Internet Drafts

on topics related to CoRE; these documents are briefly discussed in the following

paragraphs.

Protocol analysis [17] This document highlighted some aspects of the protocol

design not fully optimized.

In the first part of the document, the complexity required for implementing

both the Token Option and the Message ID have been analyzed; the resulting

output to the working group has been to discourage the use of the Token Option

in the vast majority of the cases, where it is not strictly required. Moreover,

the document points out that avoiding its usage results in higher efficiency in

terms of protocol overhead, which is a valuable property for its intended use on

constrained networks.

In the second part, transport-related aspects have been analyzed, and some

technical proposals have been made, such as the availability of the response code

class (e.g., 2xx, 3xx, etc.) in a distinct field, to support implementations which,

for simplicity, do not want to understand all the available response codes. After-

wards, this feature has been added also to the CoAP protocol. Moreover, this

draft proposed the introduction of a sequential MID (SMID), enabling partial

reordering of Non-Confirmable messages. It covered also the possible application

of SMID to transfer large resource representations.

Alternative transport [18] This document aims at exploring the benefits

of designing a more general-purpose transport protocol for CoAP: it proposed

the Constrained Messaging Protocol, which is designed to be implementated

on constrained devices and proves to be suitable for transporting CoAP re-

quest/responses, as well as other Internet protocols.

CMP is a UDP protocol extension intended to reliably or unreliably transport

messages from an endpoint to another, and to unreliably transmit messages to a

multicast destination. CMP adds the following features on top of UDP: i) clear

session definition supporting multiple messages; ii) reliable message transport
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handling retransmissions and network duplication; iii) unreliable message trans-

port partly handling duplication and out-of-order delivery; iv) reliable message

fragmentation in multiple UDP datagrams.

Alive message [20] In the context of a Constrained RESTful Environment

(CoRE), hosts could frequently be energy-constrained and be turned off most of

the time for energy-saving purposes. In the case of a CoAP server, while it is

offline, it is not available to serve requests. Clients desiring to access its resources

have no way to understand when they will find it up again. This specification

provides a simple new message that gives a CoAP server the ability to signal its

current availability in the network, i.e., the “Alive” message.

An “Alive” message (ALV) indicates that a CoAP server is up and ready to

serve requests. When a client receives an ALV message from a server, if it is

interested in any resource served by it, the client can immediately send a request

to it since the Alive message provides an indication of its current availability.

5.3 Efficient XML Interchange

The EXI W3C working group has been formed mainly with the task of mitigating

the size and parsing complexity of the XML information set; this activity has

been supported by the XML Binary Characterization WG, which identified and

described a set of use cases where the regular XML format was not viable and

called for a binary representation of it.

The result of the EXI WG is a valid tool to exchange structured information

in bandwidth-limited networks, and to process a wide range of data obtaining

acceptable performance even under severe limitations. The EXI format has been

specifically designed to reach the broadest set of technologies, via a design prin-

ciple focused on simple and efficient solutions.

The well-known flexibility of the XML data format properly fits the needs

of scenarios featuring a large variety of data types. SGs are expected to be

composed of a wide range of devices, varying in terms of vendors, capabilities and

functionalities. For instance there will be devices for measuring or visualizing a

particular set of data, devices in charge of monitoring the network behavior as

117



5. APPLICATION PROTOCOLS AND FORMATS

well as actuators interacting with the system.

A versatile data representation is of paramount importance for the implemen-

tation and user-friendliness of the whole system. A practical and compact XML

representation coupled with a light-weight processing engine as those conceived

in the EXI framework are key to this objective.

The standard itself defines both a schema-informed and a non-informed oper-

ating mode. While the best flexibility is obtained in the non-informed mode, this

characteristic is deemed not to be mandatory in SGs. Therefore, it is better to

resort to schema-informed operations, which achieve the best results in terms of

processing and compression efficiency. The latter exploits available information

about the document structure to generate a document grammar, i.e., a set of rules

describing the organization of the contents within the document. The grammar

information can then be used to define a set of short event codes. The schema-

informed mode, coupled with the short event codes, allows for compression factors

of up to 90% in terms of memory occupancy on the device.

EXI content format is particularly suitable for SG environments, where many

devices are deployed with very specific tasks in different points of the grid: while

leading to the generation of different types of data, all the devices forming a SG

are likely to be describeable using a single schema, thus making the information

directly useable within the SG with M2M communication only. For example, a

data report may contain a set of contents and attributes (i.e., data) of specified

type and length which are readily understandable by any device regardless of

whether the report has been produced by powerline metering equipment or by a

light/temperature sensor for green HVAC control.

As an added benefit, a schema-informed EXI stream results in a very compact

version of an XML document, thus reducing the size of encoded information down

to about 20 to 50 times less than the original, ASCII-encoded XML document [11].

The transmission of XML contents via EXI streams has been successfully applied

on MSP430-based devices supporting a generic schema-informed EXI processor,

instructed to interpret and process a specific schema via a grammar description

designed to be easily accessible and processed in the limited memory of the de-

vice [11] The processor takes up about 7 kB of program size and 1 kB of RAM,

which is an affordable memory cost for implementing web service capabilities in

constrained hardware.
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5.3.1 EXI compressor [11]

EXI compression exploits information about the document structure to internally

generate small tags based upon the current XML schema, the current process-

ing stage and the context. Also, tags data representation is optimized to be as

compact as possible.

Although an efficient compression can be achieved from the XML schema, the

standard defines other operating modes to produce a more compact representation

of the XML file using only partial or no XML schema information.

The encoded XML document results in an EXI stream, which represents the

document in binary format where every data tag of the document is encoded

using an event code. Event codes are binary tags that preserve their value only

in their assigned position within the EXI stream.

Thus, EXI implements event-based encoding: for efficient encoding, at any

given point of an XML stream a set of grammars is used to understand which

event is most likely to occur next. Such a set of grammars, representing the XML

document structure, has to be produced before the actual EXI processing. The

sequence of events describes the sequence of finite-state machines defined using

each different grammar as transition function.

In an EXI stream every XML element is represented using a specific grammar;

each grammar consists of a set of productions, defining the set of possible events

in a specific state. EXI assigns an event–code (EC) to each production. The

sequence of XML elements coded into ECs forms an EXI stream. When a new

element of the EXI stream is parsed, a new grammar associated with the element

is stacked upon the preceding one and the control is passed to a new automa-

ton which is in charge of handling the new grammar, until the new element is

completed and the control returns to the preceding routine.

We designed and implemented libEXI, a realization of the EXI processor that

has been specifically targeted for resource constrained MCUs (e.g., Texas Instru-

ment MSP430). The design required to limit the number of features implemented.

libEXI is a byte-aligned and schema-informed EXI processor, which encodes EXI

streams using a preprocessed grammar set (defining the XML schema in use) and

a pre-processed C data structure set (representing a document compliant to the

XML schema).
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Figure 5.7: Usage diagram for the EXI processor and pre-processor.

Hence, libEXI can translate EXI streams into a structured memory repre-

sentation which can be stored and processed by CPU-constrained devices. Bit-

aligned encoding, even if very efficient, showed to be too complex to match our

requirements.

As shown in Figure 5.7, our EXI library uses the results of a preprocessing

phase: a Ruby pre-processor has to run on the XML schemas before libEXI

can process EXI streams. This preprocessor extracts from any XML schema

the set of grammars required to encode and decode EXI streams; in addition, it

builds a set of C structures representing the XML document layers. The libEXI

memory representation built by the pre-processor is an optimized translation of

the XML document contents, needed for constrained devices to properly manage

EXI streams.

The libEXI processor uses a grammar stack to encode/decode EXI streams.

Grammars contain the list of events as well as the information of which grammar

has to be stacked to handle the next part of the EXI stream, and into which

production the current grammar will be when the control returns to it. Any

new grammar piled in the grammar stack corresponds to a new execution of the

encode/decode function call: in this way, there is a one-to-one mapping between

the processor internal stack and the current grammars stack.
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Table 5.2: XML compression performance: size of the compressed stream (bytes)

and compression ratio (between parentheses)

Format Schema-1 Schema-2 Schema-3

Uncompressed XML 591 bytes 242 bytes 229 bytes

Gzip 302 bytes (0.51 ) 206 bytes (0.85 ) 175 bytes (0.76 )

enhanced Xmill (Xwrt) [101] 784 bytes (1.33 ) 431 bytes (1.78 ) 453 bytes (1.97 )

XMLPPM [102] 262 bytes (0.44 ) 164 bytes (0.68 ) 128 bytes (0.55 )

EXI w/o schema byte-aligned 298 bytes (0.50 ) 104 bytes (0.43 ) 99 bytes (0.43 )

EXI w/o schema bit-aligned 237 bytes (0.40 ) 96 bytes (0.40 ) 83 bytes (0.36 )

EXI w/ schema byte-aligned 58 bytes (0.10 ) 10 bytes (0.04 ) 41 bytes (0.17 )

EXI w/ schema bit-aligned 27 bytes (0.05 ) 4 bytes (0.02 ) 26 bytes (0.11 )

5.3.2 Results

In Table 5.2 we show the compression efficiency for EXI, also showing that of other

compression schemes, i.e., Gzip, enhanced Xmill (Xwrt) [101] and XMLPPM [102].

The size of the Uncompressed XML document, which is taken as the reference

document for the experiment, is expressed in bytes. For the compression schemes

we show the size of the compressed documents (also in bytes) and their com-

pression ratio (within parentheses in the table), defined as the ratio between the

sizes of the compressed stream and that of the uncompressed XML. The XML

document we picked for our experiments is described by simple schemas that are

suitable for, e.g., environmental monitoring and binary actuation (i.e., the opera-

tions that we expect from a sensor node). As demonstrated by the experimental

results in Table 5.2, EXI compression is extremely efficient especially for schema-

informed XML compression, leading to compressed files that are as small as just

4 bytes, thus achieving a compression efficiency of 50 times (the inverse of the

compression ratio). We remark that this is particularly important for resource

constrained sensor nodes as EXI dramatically reduces the amount of data that

has to be transferred (most likely via radio transmission) through the network.

As a last remark, we note that the bit-aligned mode is the most convenient
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Figure 5.8: EXI processing time against iteration number.

choice, however, its implementation is more complex on MCUs working in byte-

aligned mode. Thus, implementors may want to use the byte-aligned mode even

though it provides inferior results.

As a third set of experiments, our EXI implementation has been extensively

tested on a regular desktop PC and compared against EXIficient [108], a well-

known and freely available Java implementation of EXI. The design criteria of

EXIficient are very different from those of libEXI: Java was chosen due to its

portability and all EXI features were implemented. However, the resulting im-

plementation is not optimized for energy constrained devices and, as we show

shortly, its performance is not consistent across repeated applications to the same

document.

The steady-state XML throughput (number of processed XML elements per

second) has been measured for libEXI and EXIficient. The latter can output an

EXI stream at the maximum rate of about 0.9 millions of XML elements per

second, whereas libEXI outputs about 6 millions XML elements per second.
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ments.

Next, we look at the XML processing time, which is the time taken to com-

press an input XML file (and is inversely proportional to the XML throughput).

Notably, the processing time of EXIficient decreases across repeated applications

to the same XML file, showing a (non-negligible) transient phase at the beginning

of which its performance is much worse (up to 50 times) than that in steady-state.

This is shown in Figure 5.8, where we plot the average processing time for libEXI

and EXIficient for a reference document containing 50 XML elements. As can be

seen from the same figure, the processing time of libEXI is nearly constant across

repeated compressions of the same XML file.

Finally, in Figure 5.9 we shown the average libEXI processing time for XML

documents containing a single XML element. These small-sized documents are

relevant to the IoT as they can represent queries to, e.g., acquire the readings of

specific sensor nodes. Obtaining the compressed EXI stream of these documents

is very fast (less than 10 micro-seconds), which is desirable for, e.g., a proxy
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connecting devices within the Internet domain with the IoT. In fact, one of the

main functions of this proxy will be that of performing conversions between EXI

and XML. EXI will be the preferred format for the constrained devices residing

within the IoT, whereas XML will be used by the more powerful computers

located within the Internet.
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Browsing the Internet of Things

The term Web 2.0, which has been introduced in 2005 [109], refers to a sub-

stantial change in the design of web applications; the new version of the Internet,

while not asking for a similar technological upgrade, is nowadays more focused on

the user experience, offering participatory content sharing, interoperability and

social collaboration. Modern websites do not restrict users to be passive content

consumers, but they enable cooperative interaction aimed at creating, sharing

and exploiting contents in a virtual community.

Similarly, with the advent of the Internet of Things (IoT) [110], smart things

are assuming a central role in the Internet community. A smart thing can be

any device capable of processing and communication; hence, IoT devices can be

as simple as a temperature sensor, or as complex as a Personal Digital Assistant

(PDA) connected to a whole Body Area Network (BAN) designed for medical

purposes [111], or anything in between these two examples.

Recent efforts to integrate the IoT into the Web 2.0 obtained some valuable

results, such as Pachube [32] and SensorMap [27], aimed at providing the user

with a web platform capable of visualizing networked things in a similar way as

Google Maps does for Points of Interest. However, to the best of our knowledge,

all these tools restrict users to using a simple predefined interface. In our opinion,

a complete integration of smart things into the Web 2.0 will only be achieved when

users are able to develop, deploy and exploit their own IoT applications as they

already do for website and online contents. The key enablers for the success

of such an integration are i) the adoption of capable open standards for web
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communications [11], and ii) a next-generation “Web 2.0”-enabled application

design framework for smart things [6].

The first part of this chapter describes how to smoothly bridge the CoAP

application protocol with the Internet by using a web proxy that transparently

operates the translation between CoAP and HTTP. Also some advanced HTTP-

CoAP cross-protocol proxying techniques will be presented, which are still cur-

rently under discussion at the IETF [12].

In the second part, we address the need for a web application framework for the

IoT by presenting the design of WebIoT [6]. WebIoT is a novel web application

framework, based on the Google Web Toolkit [112], which provides users with

simple methods for integrating smart things into a flexible visualization tool, for

manipulating them both graphically and functionally, and for managing them and

their interactions. Our framework has been developed leveraging on the following

principles: thing-centric design, modularity and web service communications.

6.1 Cross-Protocol HTTP-CoAP Mapping [12]

CoAP is designed beyond communicating only with CoAP endpoints, but span-

ning across the REST-based protocols domain to support HTTP. HTTP inter-

working is a central goal while aiming to integrate into “the Web” smart con-

strained objects while pursuing the Internet of Things paradigm.

CoAP achieves this design goal thanks to the REST architectural style shared

with HTTP [12], and in particular to the fact that both CoAP and HTTP can

interoperate through proxies; a REST intermediary between CoAP and HTTP

endpoints is an ideal candidate for unobtrusive and transparent translation be-

tween the two protocols, without posing further requirements either on the client

or on the server. Self-described REST messages may be handled by stateless

intermediaries and either parsed or represented in any REST-based dialect, i.e.,

CoAP or HTTP.

The mapping process between CoAP and HTTP is straightforward, based

on the fact that equivalent methods, response codes and options are present in

both protocols, thus enabling a simple translation process by applying a static

mapping.

Even if resources are identified using URIs in CoAP and HTTP, URI domains
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are distinct between them; for this reason an additional URI mapping process

may be required, in order to support endpoints unaware of both URI domains.

For example, thanks to this process, a CoAP resource can be made available at

a regular HTTP URI so that older web clients can access it even if completely

unaware of the CoAP protocol domain.

Such a protocol translation, usable even by legacy HTTP agents, should be

provided by a transparent, unobstrusive and effective proxy; this goal may be

obtained by implementing and deploying it in different ways. Among the various

techniques it is worth to mention that it is possible to provide such a service even

through an Interception Proxy (RFC3040); this proxy deployed in a network

location suitable for traffic interception will automatically redirect client requests

to itself and provide protocol translation transparently, thus obtaining a seamless

Web extension across the two protocol domains.

This proxy-based approach leaves space to even more complex communication

patterns across HTTP and CoAP, such as multicast communication. Leveraging

the multiplexing role of the proxy in such architecture, further steps towards

connecting smart object clusters to the Internet may include extending its func-

tionalities to support, for example, the mapping of unicast HTTP requests to

multicast CoAP messages, by aggregating multiple responses in a single HTTP

response payload.

6.1.1 Cross-Protocol Proxies

A device providing cross-protocol HTTP-CoAP mapping is called an HTTP-

CoAP cross-protocol proxy (cross proxy).

At least two different kinds of HC proxies exist: i) One-way cross proxy :

translates from a client of a protocol to a server of another protocol but not vice-

versa, and ii) Bidirectional cross proxy : translates from a client of both protocols

to a server supporting one protocol.

1-way and 2-way HC proxies are realized using the following general types of

proxies:

• Forward proxy (F): It is a proxy known by the client (either CoAP or

HTTP) used to access a specific cross-protocol server (respectively HTTP

or CoAP). Main feature: server(s) do not require to be known in advance
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by the proxy (ZSC: Zero Server Configuration).

• Reverse proxy (R): It is a proxy known by the client to be the server,

however for a subset of resources it works as a proxy, by knowing the real

server(s) serving each resource. When a cross-protocol resource is accessed

by a client, the request will be silently forwarded by the reverse proxy to

the real server (running a different protocol). If a response is received by

the reverse proxy, it will be mapped, if possible, to the original protocol

and sent back to the client. Main feature: client(s) do not require to know

in advance the proxy (ZCC: Zero Client Configuration).

• Interception proxy (I): This proxy can intercept any origin protocol

request (HTTP or CoAP) and map it to the destination protocol, without

any kind of knowledge about the client or server involved in the exchange.

Main feature: client(s) and server(s) do not require to know or be known

in advance by the proxy (ZCC and ZSC).

A server side proxy is placed in the same network domain of the server. Con-

versely a client side is in the same network domain of the client. Differently from

these two cases, the proxy is said to be external.

For example, an HTTP-CoAP Reverse Cross (HCRC) Proxy is accessed by

web clients only supporting HTTP, and handles their requests directed to CoAP

servers by mapping them to CoAP, and mapping back the received response to

HTTP. This mechanism is transparent to the client, which may assume that it is

communicating with a regular HTTP server.

Typically, the HCRC Proxy is expected to be located at the server side, in

particular deployed at the edge of the constrained network. The arguments sup-

porting SS placement in this case are the following:

TCP/UDP: Translation between HTTP and CoAP also requires a TCP to UDP

mapping; the UDP performance over the unconstrained Internet may not be

adequate. In order to minimize the number of required retransmissions and overall

reliability, TCP/UDP conversion SHOULD be performed at a server side placed

proxy.

Caching: Efficient caching requires that all the CoAP traffic is intercepted by the

same proxy, thus a server side placement, collecting all the traffic, is strategical

for this need.
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Multicast: To support CoAP using local-multicast functionalities available in

the constrained network, the cross proxy MAY require a network interface directly

attached to the constrained network.

6.1.2 Cross-Protocol URI Mapping

Motivation — A Uniform Resource Identifier (URI) provides a simple and ex-

tensible means for identifying a resource. It enables uniform identification of

resources via a separately defined extensible set of naming schemes [113].

URIs are formed of at least three components: scheme, authority and path.

The scheme is the first part of the URI, and it often corresponds to the protocol

used to access the resource. However, the scheme does not imply that a particular

protocol is used to access the resource.

Both CoAP and HTTP implement the REST paradigm, so, in general, the

same web resource, i.e., identified by the same URI, can be accessed using either

one of these protocols.

This could happen as long as the URI scheme of the target resource is sup-

ported by the client; however, web clients may support only a limited set of

schemes. Example: HTTP clients typically support only ’http’ and ’https’ schemes.

Whenever there does not exist a URI to access the resource with a scheme sup-

ported by the client, communication may still happen if the cross proxy supports

mapping URIs to a supported scheme.

URI mapping — Identifies the act of providing an alternative URI to access a

target resource.

Example: Assume that the target resource is

“coap://node.coap.something.net/foo”. A possible URI mapping could be

“http://node.something.net/foobar”.

In the previous example the scheme changes between the mapped URI and

the original one; this special kind of URI is defined here as cross-protocol URI (or

cross URI). Cross proxies may provide cross URIs to enable clients supporting

only a limited set of schemes, to have access even to resources identified by a

scheme they do not natively support.

However, when a cross-protocol URI exists, the authority and path parts

of the URI may change as well. For example, assume that the following re-
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source exists - “coap://node.coap.something.net/foo”; the resource identified by

“http://node.coap.something.net/foo” may not exist or be non-equivalent to the

one identified by the ’coap’ scheme.

Generally speaking, the process of providing cross URIs could be complex,

since a proper mechanism to statically or dynamically (discover) map the resource

is needed. Two static HC URI mappings are discussed along the following lines.

• Homogeneous Cross URI : A cross URI is defined as homogeneous, when on

two different schemes the very same authority and path identifies the same

resource. E.g., “coap://node.coap.something.net/foo” and

“http://node.coap.something.net/foo” identify the same resource.

• Embedded Cross URI : A cross URI containing in its own URI path, the

authority and path of the target URI, is said to be an embedded cross URI.

E.g., the cross URI

“http://hc-proxy.something.net/coap/node.coap.something.net/foo”, iden-

tifying the URI “coap://node.coap.something.net/foo”, explicitly contains

the target URI in its path.

Through cross-protocol URI mappings, cross-protocol proxies can interoperate

even with HTTP web clients that are not aware at all of CoAP, thus easing its

adoption and interoperation with the traditional Internet formed by regular web

browsers.

6.1.3 Advanced Mappings [13]

By leveraging the multiplexing role of the cross proxy in a constrained net-

work, and as a further step toward realizing efficient communication between

web browsers and smart objects, proxy functionalities may be extended to sup-

port more advanced cross-protocol interactions, such as: i) concurrent tunneling

of IPv4 in IPv6 combined with the HTTP-CoAP mapping, ii) the mapping of

unicast HTTP requests to multicast CoAP messages, and the consequent ag-

gregation of multiple responses in a single HTTP response payload and iii) the

establishment of an observe relationship through the proxy using well-known

HTTP bidirectional techniques.
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HTTP Client (C) Cross Proxy (P) CoAP Server (S)

IPv4 SRC: C DST: P
GET /temperature HTTP/1.1
Host: node.coap.foo.com

IPv6 SRC: C or P DST: S
CON temperature

IPv6 SRC: S DST: C or P
ACK 2.05
22.5 C

IPv4 SRC: P DST: C
HTTP/1.1 200 OK
22.5 C

Figure 6.1: An example of mapping from HTTP/IPv4 to CoAP/IPv6.

6.1.3.1 HTTP/IPv4-CoAP/IPv6

Since IPv4 is still the dominant addressing technology used nowadays, and taking

into account that a pervasive deployment of constrained nodes exploiting the IPv6

address space is expected: a v4/v6 gateway will be required to enable IPv4-only

hosts to access CoAP resources offered by 6LoWPAN nodes.

To avoid complexity and reduce the number of required network services, the

cross proxy itself could be in charge of operating the v4/v6 mapping together

with the cross-protocol translation.

The v4/v6 translation could be simply operated by exploiting the URI au-

thority information available in the HTTP Host header, in conjuction with con-

veniently compiled DNS entries that contain the actual v4/v6 mapping.

Assume that the DNS A entry for the target CoAP server, e.g.,

“node.coap.something.net”, contains the IPv4 address of the cross proxy, whereas

the AAAA entry contains the regular record, i.e., the address of the CoAP server.

Since the A record points to the cross proxy, it will receive the HTTP/v4 traffic

for the target server, then it can operate the HTTP-CoAP mapping and use the

AAAA record to forward the request to the involved server. When a response
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S3S1

GET /temp HTTP/1.1
Host: group-of-nodes.coap.foo.com
[...] NON GET temp

S2

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=not

--not
Content-Type: message/http

HTTP/1.1 200 OK
Link: <http://node2.coap.foo.com/temp>; rel=via

21.2 C

--not
Content-Type: message/http

HTTP/1.1 200 OK
Link: <http://node1.coap.foo.com/temp>; rel=via

22.5 C

--not--

NON 2.05
21.2 C

NON 2.05
23.9 C

NON 2.05
22.5 C

(Timeout.)

HTTP Client (C) Cross Proxy (P)
CoAP Servers

Figure 6.2: An example of mapping from unicast HTTP to multicast CoAP.

comes back, it will be translated to HTTP and forwarded to the waiting client.

Figure 6.1 is a graphical representation of the message exchange, when the

cross proxy is also operating the v4/v6 mapping. If P is an interception cross

proxy, it emits the CoAP request with the IPv6 of C as source address.

In order to obtain a working deployment for HTTP/IPv6 clients, an intercep-

tion cross proxy deployment should be used, or Internet AAAA records should

not point to the node anymore and the cross proxy should use a different DNS

database pointing to the node.

6.1.3.2 Multicast

Figure 6.2 shows an HTTP client (C) requesting the resource ”/foo” to a group

of CoAP servers (S1/S2/S3) through an HC proxy (P) that uses IP multicast to
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send the corresponding CoAP request.

The example proposed in the above diagram does not make any assumption on

which underlying group communication technology is available in the constrained

network. Some detailed discussion is provided about it along the following lines.

C makes a GET request to group-of-nodes.coap.something.net. This domain

name may resolve either to the address of P, or to the IPv6 multicast address of

the nodes (if IP multicast is supported and P is an interception proxy), or the

proxy P is specifically known by the client that sends this request to it.

To successfully start multicast proxying operation, the HC proxy MUST know

that the destination URI involves a group of CoAP servers, e.g., the authority

“group-of-nodes.coap.something.net” is known to identify a group of nodes either

by using an internal lookup table, using DNS paired with IPv6 multicast, or by

using some other special technique.

A specific implementation option is proposed to further explain the proposed

example. Assume that DNS is configured such that all subdomain queries to

coap.something.net, such as group-of-nodes.coap.something.net, resolve to the

address of P. P performs the HC URI mapping by removing the ’coap’ subdo-

main from the authority and by switching the scheme from ’http’ to ’coap’ (result:

“coap://group-of-node.something.net/foo”); “group-of-nodes.something.net” is re-

solved to an IPv6 multicast address to which S1, S2 and S3 belong. The proxy

handles this request as multicast and sends the request to the multicast group .

6.1.3.3 Observe

Figure 6.3 shows the interaction between an HTTP client (C), an HC proxy (P),

and a CoAP server (S) for the observation of the resource ”temperature” (T)

available on S.

C manifests its intention to observe T by including the Expect Header in the

request; if P or S do not support this interaction, the request MUST fail with

”417 Expectation Failed” return code. In the presented example, both P and C

support this interaction, and the subscription is successful, as stated by the ”206

Partial Content” return code.

At every notification corresponds the emission of an HTTP chunk formed by

a single part, which has a ”message/http” payload containing the full mapping

of the notification. When the observation is dropped by the CoAP server, the
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HTTP Client (C) Cross Proxy (P) CoAP Server (S)

GET /temperature HTTP/1.1
Expect: 206-partial-content
[...]

CON GET temperature
Observe: 0

ACK 2.05
Observe: 2841
22.5 C

HTTP/1.1 206 Partial Content
Content-Type: multipart/mixed
[...]
22.5 C

[...]
21.9 C

NON 2.05
Observe: 2883
21.9 C

CON 2.05
21.9 C

ACK

[...]
20.5 C

(Connection closed.)

Figure 6.3: An example of mapping from HTTP streaming to CoAP observe.

HTTP streaming session is closed.

6.2 WebIoT [6]

WebIoT is a plugin based web application framework, which makes it possible for

easy and quick development of graphical interfaces for the management of IoT

networks. A heterogeneous device set can be visualized and controlled through

an extensible user interface (UI) and backend application framework.

Figure 6.4 provides a snapshot of the WebIoT interface: the central UI ele-

ment, which determines the visualization mode, is provided by a module of the

web application, thus enabling transparent substitution and run time switching.

The sidebar contains UI elements defined by plugins. The two panels are in charge

of operations and settings, respectively. The toothed wheel on the sidebar allows

for toggling the selected plugin from operation mode to configuration mode.
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6.2.1 Design principles

Our design focused on a small set of design principles: i) Thing-centrality, ii)

Modularity and iii) RESTful interactions. Although new IoT applications are

appearing every day, these principles provides our framework the needed flexibil-

ity and adaptability to support them. Figure 6.5 highlights the main components

of WebIoT.

Thing-centric design — The core of the framework consists of a single

component providing a uniform container for Thing objects, which are abstrac-

tions used to represent real things in the framework. A Thing is defined by i)

ThingFeatures, specifying the device characteristics and ii)

ThingDataSourceFeatures, virtualizing the data sources available on it.

Thanks to this generalization, WebIoT can handle an arbitrary set of het-

erogeneous objects, which can be shared across the software components. In

addition, plugins can leverage on these abstractions to implement generic behav-

iors on specific features: e.g., a map visualization plugin will show only objects

defining a position feature.

High modularity — All the framework functionalities are provided by plu-

gins: i) the background map overlays are offered by the Maps plugin, ii) the set

of known devices is cooperatively built by a set of plugins, iii) the device control

is managed through the Things plugin.

Plugins are totally independent and cooperate by sending or receiving specific

events. Their shared functions are implemented in the web application core for

enhancing code reuse. Also, heterogeneous devices may use different communi-

cation protocols, thus a common and extensible device interaction scheme for

harmonizing different access interfaces is needed.

REST paradigm — The WebIoT framework has been developed as a web

centric application based on the REpresentational State Transfer paradigm [4],

due to the following reasons. First and foremost, web services are becoming more

and more popular, and while this is due to their ease of access and maintenance,

they proved to be a valid interaction model to access a wide spectrum of services.

Moreover, WebIoT can provide direct access to devices and to other web

services through web interactions: thus, regardless of whether functionalities are

provided by Things or are available in the Web, WebIoT can interact with them
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Figure 6.4: A snapshot of WebIoT.
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WebIoT

core

client server

plugin

plugin plugin

ThingContainer

EventManager

ThingContainer

Figure 6.5: WebIoT architecture.

identically.

Last but not least, the framework is developed using the Google Web Toolkit

(GWT) [112], allowing cross-platform development of both client-side and server-

side components, using a uniform Java based programming language. The com-

munications between client and server components are easily arranged using

GWT translating component interfaces and Remote Procedure Calls (RPC), into

low-level network interactions with servlets. Finally, GWT translates the client-

side Java code into Javascript for multi-browser compatibility.

6.2.2 Core Services

Thing objects have a central role in WebIoT, since they provide real thing ab-

stractions by reusing the same software object. Any Thing object is fully defined

by the set of ThingFeatures associated to it. A ThingFeature is a specific

characteristic that defines the object in WebIoT. A ThingDataSourceFeature

virtualizes a specific information source available on the related device, and

is technically implemented as a special class of a ThingFeature; specific data

sources should further extend this class of features, e.g., for a temperature sensor

a ThingTempSourceFeature class may be defined. Identification and univoc-
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ity of ThingFeatures, where needed, is guaranteed by the fact that a Thing

cannot have multiple features with the same name, e.g., multiple temperature

sensors present on the same device will have different names. For instance, a

commonly used ThingFeature is the device position, which can be known a pri-

ori, user defined or, in case of a GPS equipped device, derived from available

ThingDataSourceFeature readings obtained from the GPS sensors.

WebIoT core is in charge of implementing the shared backend functionalities,

which are summarized in the following categories1: i) handling Thing container;

ii) managing Event registration, processing and dispatching; iii) providing the

web authentication functions and process; iv) saving and reloading the state of

the web application.

Modularity is based upon two different shared objects: i) ThingContainer,

a Thing objects database and ii) Events, shared message structures for inter-

component interactions. The ThingContainer stores and indexes the features

available in each object, by type and by name, in order to enable the components

to quickly access the subset of Thing objects with the required characteristics,

e.g., all the ThingDataSourceFeatures present on a device, or a specific sensor

requesting it by name. Events are defined as global objects, which are dispatched

when a significant change of state occurrs, so that any affected component may

take actions.

Common functions, such as authentication and handling of favorites, have

been placed in the core and help make development quicker for applications by

defining and reusing general purpose features. Authentication functions and pro-

cess provide the means for identifying a user by providing a single sign-on process

to the various components of the web application. Handling of favorites consists

in a generalization that allows plugins to export and reload their operational

states in XML format.

IoT applications often imply complex interactions, such as selecting a large

number of things and assigning them a series of common operations; saving such

complex interactions through favorites helps the user to easily perform such tasks

without wasting time in repetitive command sequences.

1Due to space constraints, in this paper it is not possible to give a detailed description of

WebIoT internal components.
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6.2.3 Event-driven communication

Given that the overall software features will be offered by the set of plugins

collaboratively, the model used for communication and interaction between a

heterogeneous set of them has a very critical role in the software architecture.

Whereas typical component interactions are usually characterized through

the definition of shared APIs, the use of a fixed software interface model leads to

strict requirements on the set of components forming the whole software. This

software characteristic is known as tight coupling and, even if it is usually simpler

to design, it leads to lower flexibility in the system that is formed by hardly

reusable components.

Event-driven inter-component communication is known to provide a looser

coupling model between plugins, thus enabling easier component interconnection,

higher code reuse and an overall higher flexibility of the system itself.

Events are defined as global objects available across the software, and their

definition requires careful consideration to minimize the event dispatching over-

head. In general an event is required when a “significant change of state” in

a component occurs, so that any other interested component may take action

depending upon it.

In WebIoT any plugin could be an event producer, but events will be dis-

patched only to modules that have expressed interest with respect to that specific

event: this interest is expressed by enforcing that every component must register

to relevant events.

Any event is characterized by its identifier and is enhanced with specific prop-

erties; in addition events may support the following functionalities: i) having

a specific callback that each event consumer must call reporting the resulting

state after event processing, ii) being combinable so that multiple events can be

aggregated into a single one.

All the side information related to the handling of such special classes of events

is stored in an EventEnvelope object attached to them, and is required by the

event handling process to correctly perform the event dispatch operation.

Moreover an event may be related to a specific set of Thing objects, and, in

this circumstance, using targeted dispatching reduces the event handling overhead.

Using this technique, the references to Thing objects travel with the event itself
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Table 6.1: ThingsContainer events supported in the core

NewThing A new Thing object has been created

DeleteThing A Thing object has been deleted

ThingShowInfo A ThingInfoPanel has been opened

ThingFeatureUpdate A ThingFeature property has been updated

ThingDataUpdate A data source has updated data

ThingSelectionUpdate A set of selected Thing objects have changed

inside the EventEnvelope, helping the dispatching module in determining which

components are interested in receiving events related to the attached objects, and

providing to each destination component only the subset of objects in which it

will be interested.

The definition of events has an important role in the WebIoT context, because

typical events involve specific Thing objects, and having a convenient way to route

events related to objects across the plugins highly reduces plugin complexity and

dispatching overhead.

Core event definition — WebIoT core defines a set of events enabling

basic interactions among plugins, as shown in Table 6.1. The outlined events are

focused on the interaction between the generic plugin and the ThingContainer

object.

Components, depending upon their role in the overall framework, provide or

consume a specific set of such Events. For example a plugin may be interested

in dispatching object creation and deletion Events, which are, in turn, captured

and consumed by interested plugins, e.g., a graphic module.

A special class of events are RemoteEvent objects, which are serializable, and

can thus be passed between the application server and the web clients. This gen-

eralization allows smoother communication between parts of the plugins running

on the web clients and their counterpart on the server; moreover, an event gener-

ated in a web client may be directly dispatched to other web clients or targeted

to a subset of those clients by using targeted dispatching.
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6.2.4 Plugin model

A plugin is a piece of application which interacts with the core using well-known

interfaces; although plugins can be totally independent from one another, inter-

plugin communication can be achieved using Events.

Any plugin can belong to one or more of the following classes: i) Visualizer,

to define UI parts, ii) Provider, to define Thing objects, and iii) Manager, to

operate on them. Detailed descriptions of each class and examples of plugins

belonging to them are offered in Sections 6.2.4.1, 6.2.4.2 and 6.2.4.3

Building the whole system using a cooperative approach easily allows the

implementation of software combining any number of providers, visualizers and

managers. This is obtained thanks to the loose coupling provided by the event-

driven communication model. In addition, when working on some specialized

Thing objects, ad hoc providers or visualizers may be required and built; they

can still interact within the same software framework: general purpose plugins

can integrate information from those objects, whereas specific plugins could work

on the subset of specialized objects only.

6.2.4.1 Visualizers

A visualizer plugin can offer any element of the overall UI (e.g., the central el-

ement, the sidebar, etc.); a plugin providing the central UI element is called a

Base Visualizer. Its graphical content is built using information contained in the

ThingContainer object, by representing the subset of the supported ThingFeature

and ThingDataSourceFeature objects.

Visualizers can easily be shared among different applications and, according

to our experience, a map visualizer usually fits most of the IoT application use

cases. However, advanced application requirements can be satisfied by extending

the Base Visualizer with specialized UI provided by custom plugins.

Maps plugin — the Maps plugin specializes WebIoT with a georeferenced

user interface providing object representations over a geographic map by using a

Google Maps widget as its central UI element.

Through a map representation, it is also easy to specify object characteristics

using graphic elements, the graphical side information, such as color, icon, label

and size. WebIoT provides a wide range of ThingFeatures to easily enrich object
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representation using this graphical side information.

6.2.4.2 Providers

A provider plugin adds new Thing objects to the ThingContainer and im-

plements specific interactions with them; there are no constraints on how the

provider should fetch and interact with such objects, nor on the type of objects

that can be handled. For better modularization, technology-specific behaviors

should be provided as high-level functionalities (where possible), while hardware

specific implementations should be realized by the plugin itself.

On the current WebIoT implementation, we have developed two different

providers. One implements the interactions with our department-wide testbed

exploiting its software interfaces for firmware reprogramming, power manage-

ment, node reservation and serial forwarding. This provider must be deployed on

the application server managing the testbed itself.

The other provider, called NC-HTTP, interacts with a simple daemon access-

ing nodes physically connected via USB. NC-HTTP exports an HTTP interface,

enabling the browser to directly interact with the provider using cross-origin re-

source sharing communication [114], without the requirement that the exchange

goes through an application server.

6.2.4.3 Managers

A plugin operating on the ThingContainer and on its Thing objects is called a

Manager plugin. A manager plugin will build on high-level functionalities offered

by providers and will exploit general purpose visualizers to represent its specific

content.

Implementing a manager plugin on top of a working set of visualizers and

providers is an easy operation, and allows a high level of code reuse. Also, man-

agers may be specialized to work on a subset of the Thing objects, thus enabling

a quick development of the UI parts of some feature-specific application.

Things plugin — Exploiting the Thing object abstraction, we implemented

the Things manager plugin, as an example of Manager plugins, which handles

visualization and selection options of the Thing offered by the various providers.

WebResources plugin — Another plugin, successfully implemented in the
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Figure 6.6: A snapshot of the WebResources plugin.

framework, is meant for Thing objects featuring CoAP [4] communication and

runs the required software on the backend server in order to establish IP intercon-

nectivity with the involved smart objects. The web resources plugin automatically

detects nodes published on a reverse HTTP-CoAP proxy [12] by the web client

and attaches a specific ThingFeature object containing all the resources a device

offers to the related Thing object.

Every Thing that has the web resources ThingFeature will be visualized

with an extended InfoPanel offering direct access to those resources, as shown in

Figure 6.6: using cross-site resource sharing communication with the reverse HC

proxy, resources can be accessed directly by the user web client.
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Conclusions

This thesis has been devoted to the design, implementation and experimenta-

tion of a full-feature Internet of Things protocol stack, which is an important

requirement to foster real adoption of such an innovative technology.

Along the dissertation we have evaluated available proposals for the realiza-

tion of such a protocol stack, by active implementation and experimental evalua-

tion, highlighting the issues that may technically undermine the straightforward

adoption of such technologies.

This experience has allowed us to propose innovative technical approaches to

solve these issues, such as the back pressure congestion control technique and the

application of virtual memory to network buffers in constrained devices which

have been shown in Chapter 4. Moreover, it has contributed to the realization

of new standard protocols for the IoT, such as the pioneering work done on

the Binary Web Service protocol, which contributed to the subsequent CoAP

standardization, as well as the fruitful collaboration with the CoRE working-

group on the definition of such protocols as discussed in Chapter 5.

During this thesis a constant attention has been devoted to practical exper-

imentation and application of such technologies. Among others, these activities

include: i) the deployment of the WISE-WAI Testbed, ii) the design of TinyNET

(see Chapter 2), iii) the realization of SENSEI nodes (see Chapter 3), and iv)

the design of WebIoT (see Chapter 6). These applied research experiences, which

have been carried out in collaboration with SIGNET colleagues, have guided us

in the definition of protocol requirements, and also have given us the possibility

145



7. CONCLUSIONS

to perform experimentation in realistic environments.

The results we have shown demonstrate the applicability of such technologies

for the realization of the Internet of Things vision; we hope that this vision

will be put into practice in the next years, but only a widespread adoption will

demonstrate their usability and will feed in new research topics for innovation in

this field.
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