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Abstract 

The purpose of the work presented in this thesis is to investigate the fully and 

partially saturated behaviour of soils, behaviour that can be extended also to 

geomaterials like concrete. 

The physical - mathematical approach proposed within this manuscript is a coupled 

thermo-hydro-mechanical model, suitable for consolidation / subsidence analyses 

of unsaturated soils. This coupled formulation, can therefore be qualified as u ! pw 

! pg ! (T), by the introduction of basic state variables involved in the processes, that 

here are: the displacements field u, the liquid (water) pressure field pw, the gas (dry 

air and water vapour) pressure field pg, and eventually the temperature T that is 

involved on the modelling of non " isothermal process. Due to the coexistence of 

two different fluid phases, liquid and gaseous one, this model can be regarded as a 

multiphase approach to a deforming porous medium as proposed by Lewis and 

Schrefler [1] in the framework of the hybrid mixture theory for porous media firstly 

presented by Hassanizadeh and Gray [2, 3] and Zienkiewicz et al. [4, 5]. 

The evolution at macroscopic scale of the state variables above mentioned, in 

particular of pressures of both liquid and gas, is basically influenced by the 

microstructure of the material that characterizes the behaviour of a soil with relation 

on capillary effects and deformability. The physical approach proposed here is 

based on averaging techniques applied to the physical quantities that can be 

estimated in a representative elementary volume (REV) [6, 7]. With the addition of 

water retention functions that provide a description of the relation that exists among 

capillary pressure and the degree of water saturation [8-10], a complete set of fluid 

balance equations and mechanical and thermodynamic equilibrium equations can 

be obtained for the medium in a macroscopic scale. 

A coupled (thermo)-hydro-mechanical formulation u ! p ! (T) that deals with a fully 

saturated porous medium has been implemented with success in the past in the 

F.E. two-dimensional program PLASCON [11] and its further extensions to three- 

dimensionality with PLASCON3D [12-14].  

The present work focused on the extension and upgrading of the relative simple 

single phase theory along with its numerical implementations, towards a more 

realistic multiphase description of the porous material, where voids may be filled up 

with both liquid and gas that interacts each other by mean of the concept of 

capillary pressure. An improved code PLASCON3D_PS based on the fully coupled   

u ! pw ! pg ! (T) formulation and developed from previous versions has been 

realized. Due to the lack in literature of three-dimensional coupled numerical and 
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experimental tests, some numerical results of benchmark tests and real case 

problems, that derive from two-dimensional domains [15, 16], will be presented. 
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Abstract (Italian) 

Lo scopo del lavoro presentato con questa tesi è di studiare il comportamento dei 

terreni in stato di totale e parziale saturazione, comportamento che può essere 

anche esteso ad altri geomateriali come il calcestruzzo.  

Il modello fisico - matematico proposto in questo lavoro è denominato termo- idro- 

meccanico in formulazione accoppiata, adatto ad analisi di consolidazione / 

subsidenza per suoli non saturi. La formulazione accoppiata può essere quindi 

qualificata come u ! pw ! pg ! (T), attraverso l!introduzione delle variabili di stato, 

che qui sono: il campo degli spostamenti u, il campo di pressione liquida (acqua) pw 

e quello di pressione del gas (aria secca e vapore acqueo) pg ed eventualmente la 

temperatura T coinvolta nella modellazione di processi non isotermi. Data la 

coesistenza di due differenti fasi fluide, liquida e gassosa, il modello può essere 

visto come un approccio multifase al mezzo poroso deformabile, come già proposto 

da Lewis and Schrefler [1] nel contesto della teoria delle miscele ibride per mezzo 

poroso, inizialmente presentata da Hassanizadeh and Gray [2, 3] e Zienkiewicz et 

al. [4, 5]. 

L!evoluzione a scala macroscopica delle variabili di stato menzionate sopra, in 

particolare delle pressioni del liquido e del gas, sono fondamentalmente influenzate 

dalla microstruttura del materiale che caratterizza il comportamento del suolo in 

relazione agli effetti capillari e alla deformabilità. L!approccio fisico proposto qui è 

basato sull!uso di tecniche di media applicate alle grandezze fisiche stimate su un 

volume rappresentativo elementare (REV) [6, 7]. Con l!aggiunta di funzioni di 

ritenzione dell!acqua che forniscono una descrizione della relazione che esiste tra 

pressione capillare e grado di saturazione dell!acqua [8-10], si può ottenere un set 

completo di equazioni di bilancio di massa per i fluidi e di equilibrio meccanico e 

termodinamico per il mezzo a scala macroscopica. 

Una formulazione accoppiata termo-idro-meccanica u ! p ! (T) che tratta mezzi 

porosi completamente saturi è stata implementata con successo in passato nel 

codice bidimensionale a elementi finiti PLASCON [11] e le successive estensioni 

alla tridimensionalità con PLASCON3D [12-14]. 

Il presente lavoro si focalizza sull!estensione e aggiornamento della relativamente 

semplice teoria a singola fase, con relative implementazioni numeriche, verso una 

più realistica descrizione multifase del materiale poroso, dove i vuoti possono 

essere riempiti da liquido e gas che interagiscono tra loro attraverso il concetto di 

pressione capillare. Sulla base delle versioni precedenti è stato realizzato un codice 

chiamato PLASCON3D_PS che implementa la formulazione accoppiata u ! pw ! pg 



Abstract 

 

8 
 

! (T). Data la mancanza in letteratura di test sperimentali e numerici su domini 

tridimensionali, verranno presentati alcuni risultati numerici di benchmark test e casi 

reali derivanti da domini bidimensionali  [15, 16]. 
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Introduction 

The study of the soils as well as a wide range of porous media, is a very 

challenging topic by way of the diversity that characterizes each geomaterial that 

we can encounter every day and the variety in terms of physical and chemical 

behaviour that can be observed in nature and in the engineering practice. 

In the past, like today, the Science tried to give a mathematical description to the 

various phenomena that occurs when these material are subjected to general load 

processes (e.g. mechanical, thermal or hydraulic loads conditions), that can be 

caused by natural events or man activities. Often simply theories, (such the one 

proposed by Terzaghi [1] for soils) and related formulae, were the most robust, 

cheapest and affordable solutions to get rid of the problems in the most of cases.  

However, these approaches that have great validity in practice, are not suitable to 

predict the complexity of each porous medium, the response in terms of mechanics 

and hydraulic quantities, that each sample that have an unique genesis, can give 

when analysed or reworked. Biot M.A. [2-8] understood this fact and followed and 

extended the work of Terzaghi trying to find the effects of the fluid phase on the 

solid one and to describe the three-dimensional effects that arise during 

consolidation processes in soils. Later, Ghaboussi and Wilson [9] introduced the 

concept of fluid compressibility and the change in  volume for the solid phase, 

usually constituted by grains, was presented by Zienkiewicz [10]. 

From this point of view, it!s clear that the interaction between solid and fluid phases 

is a key concept of paramount importance to understand and model as best as 

possible the real nature of each porous medium. Most of engineering applications 

deal with a fully saturated material approach and neglect in part or totally of the 

capillarity effects that arise from the coexistence among grains of a gas phase. To 

understand the effects of capillarity phenomena on the behaviour of the material at 

a macroscopic scale, a multiphase framework is necessary, and the multiphase 

approach to a deforming porous medium as proposed by Lewis and Schrefler [11] 

in the context of the hybrid mixture theory by Hassanizadeh and Gray [12, 13] and 

Zienkiewicz et al. [14, 15], represents the ideal mathematical theory to model the 

saturated " unsaturated material.  

The physical - mathematical model proposed within this work, and based on the 

above mentioned approach considers the effects of each phase coupled with 

others, trying to catch the thermo-hydro-mechanical response of the medium at a 

macroscopic scale as close as possible to the reality. 
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This coupled formulation, that suits well for consolidation / subsidence analyses of 

unsaturated soils, can therefore be qualified as u ! pw ! pg ! (T),  and represents 

an extension of the classical fully saturated formulation u ! p  ! (T) [11]. 

The present work focused on the extension and upgrading of the relative simple 

single phase theory, already implemented in a research numerical code towards the 

above mentioned fully coupled multiphase formulation, implemented concretely on 

an improved code, named PLASCON3D_PS.  

Chapter 1 introduces the physical model approach and gives the theoretical 

framework with the necessary equilibrium, balance and constitutive equations that 

govern the hydro-, thermo-, mechanical behaviour of a porous medium with respect 

to partial saturated states. Water retention characteristics of soil are also widely 

explained. 

Chapter 2 recalls the final equations obtained from mechanical and thermodynamic 

equilibrium and from the mass balances introducing the boundary value problem 

and the necessary initial and boundary conditions. The F.E. formulation is then 

presented applied to the set of equations for the solid, liquid and gas phases both 

for isothermal and non-isothermal problem. Spatial and time discretizations as well 

as the monolithic solving procedure are also presented. 

In Chapter 3, the upgraded numerical code PLASCON3D_PS is explained and a 

comparison with the previous versions is also carried out. The main modifications 

and upgrades are pointed out giving an idea of the new contributes added to the 

original form. 

Chapter 5 reports the numerical analyses starting from the validation of the code 

with a benchmark test and the approach and solution of two other different 

problems. 

In the Appendix is reported my contribution to the structural analyses performed on 

a nuclear beam test facility that is actually in construction. The design of the 

MITICA Injector device integrated with the surrounding building is presented [16]. 
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1 A physical model for a partial 

saturated porous medium 

1.1. Introduction 

In order to give and affordable theoretical treatment of equations involved on the 

macroscopic description of the behaviour of a partial saturated geomaterial, a 

physical approach has been chosen, as presented in literature at [1, 2]. This 

approach is an alternative point of view, rather than a necessary part, of the more 

formal and basic principle at the base of the hybrid mixture theory. 

The hybrid mixture theory, first observes the porous medium at microscopic scale 

with clear distinction of phases among the skeleton structure, and then defines on 

each phase, not only fluid ones, the physical quantities (such temperature, pressure 

etc.) that will be then averaged by the introduction averaging principles on a 

representative elementary volume (REV). This theoretical procedure makes 

available these physical quantities at macroscopic scale over a porous medium that 

can be considered as homogeneous. 

Here the equilibrium equations and the mass balance equations are derived in a 

more direct way, along with constitutive relations, in order to provide a complete set 

of governing equations able to describe states of partial saturation in a deforming 

material. For a complete framework on hybrid mixture theory and to better 

contextualize this approach along with this theory, the reader can refer to [1, 2]. 

1.2. The physical model 

The porous medium can be represented with a solid skeleton or matrix that is 

constituted by the solid grains and eventually petals of cohesive material like clay. 

The voids between the grains are filled by the fluid phases that in general, are liquid 

(water, oil) or gaseous (air, water vapour or other gas like hydrocarbons). In the 

following, for sake of simplicity, three fluid phases will be considered: the liquid 

phase constituted by water, and the gas phase constituted by dry air and water 
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vapour. Figure 1.2.1a gives an example of the three coexisting phases on a soil 

matrix that is the porous medium par excellence. 

  
(a) (b) 

Figure 1.2.1: Unsaturated voids between grains (a); Phases volume with respect to total 

volume (b). 

In order to treat a partial saturated porous medium is mandatory to define the main 

parameters that qualify the soak process of voids. 

The volumetric water content, , is defined mathematically as the ratio between the 

volume occupied by the liquid (water) phase and the total volume of the specimen 

considered  

 
wdv

dv
 (1.2.1)

where dv is the total volume of REV and is the sum of the infinitesimal volume of 

solid skeleton sdv  and the infinitesimal volume occupied by voids vdv  (air or gas 

gdv  and water wdv ) 

 
s g wdv dv dv dv  (1.2.2)

as showed by Figure 1.2.1b. The water content concept is widely used in 

Hydrogeology, but in Soil Mechanics and Petroleum Engineering, the term water 

saturation or degree of water saturation, wS is preferred. It can be defined it as: 

 
w w w

w

v w g

dv dv dv
S

dv dv dv n dv n
 (1.2.3)
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where the porosity n  relative to a REV is defined as following: 

 
w g v

dv dv dv
n

dv dv
 (1.2.4)

The degree of water saturation wS , hence, is the ratio between the volume 

occupied by the water and the total pore volume in the representative elementary 

volume (REV). Values of wS can range from 0 (dry) to 1 (complete saturation of 

voids with water). In reality, wS never reaches 0 or 1, due to the irregular nature of 

the soil matrix. These limits are idealizations for engineering use and will be further 

explained when the retention curves will be described on section 1.5. The definition 

of degree of gas saturation gS is immediate:  

 
g g

g

w gf

dv dv
S

dv dv dv
 (1.2.5)

The void volume occupied by the gas is referred to both dry air and water vapour. It 

is clear that both the degrees of saturations sum to one, i.e.  1w gS S . 

The degree of water saturation (and so on the degree of gas saturation) can be 

expressed as function of the temperature T  and of the capillary pressure cp  as: 

 ,w w cS S p T  (1.2.6)

and the capillary pressure can be defined as:  

 
c g wp p p  (1.2.7)

where wp  and gp  are the water and gas pressure. Usually, the inverse relation of 

,w w cS S p T  is more used. In fact ,c c wp p S T  is determined experimentally 

and usually shows hysteresis characteristic, that have to take into account in the 

case of cyclic processes of saturation " desaturation, as wetting by rain and drying 

processes. In fact, the retention curves of saturation and desaturation depend 
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mainly by the matrix texture of the porous medium. The relations between capillary 

pressure and saturation will be widely discussed on section 1.5. 

The effective stress principle can express the solid-phase relation:  

 ' s
= I p  (1.2.8)

Here '  is the effective stress tensor and  the total stress tensor. The second-

order unit tensor is expressed by I  and the average pressure of both the water and 

air surrounding the grains is expressed by s
p . 

 

Figure 1.2.2 " Total and effective stresses in the porous media. 

The stress tensor for the fluid phases (here the  phase is general)  is given by 

 = I p  (1.2.9)

where  is the shear stress. For the fluids, it can be assumed that shear stress is 

negligible and so the following expression can be obtained: 

 1 w g

w

s

gn n S p S pI  (1.2.10)

where 

 
s w w g gp S p S p  (1.2.11)

represents the intrinsically averaged (or mean) pressure of the fluid phases.  

Grains are usually assumed incompressible and in this case no stress state in the 

grains is produced by the effects of this weighted pore pressure. Due to this fact, 

here, the deformation of the solid skeleton, which depends on the effective stress, 

is due only to the skeleton matrix.  
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Equation (1.2.10) can be updated to  

 1

1 1

'

s

s s s

s

s

sp

p p

n

n

p

n

n pn

I

I I I

I

 (1.2.12)

The presence of several fluid phases, allows the splitting of the effective stress 

tensor similarly to the Terzaghi!s principle. It becomes: 

 ' w g

w gS p S pI  (1.2.13)

The  Biot!s constant can be assumed here as a corrective coefficient that takes 

into account of the deformability of the solid grains and in such way, the previous 

equation becomes:  

 T w g

w gS p S p''- m  (1.2.14)

where m  is the vector 1,1,1,0,0,0
TTm . The value of the corrective term  will 

be discussed further.  

1.3. Constitutive equations 

The Constitutive equations are now introduced in order to give a complete 

description of the mechanical behaviour of the medium.  

Under small displacements hypothesis with the addition of linear elastic and 

isotropic material, it can be assumed that strain as well displacements remain small 

and limited during the deformation process due to external load conditions or 

environmental conditions variation. Due to this fact, in the following the constitutive 

equations are principally expressed with infinitesimal terms.  

The effective stress is responsible for all major deformations in the skeleton and the 

constitutive equations, which relate this effective stress, with the infinitesimal 

deformations of the solid skeleton, are independent from the pore pressure. In 

general, in the case of linear elastic isotropic and homogeneous material the 

following relation holds:  

 
0= e Td d d d' D  (1.3.1)
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And in the case of a non - linear material, remaining in the small strain field, the 

(1.3.1) becomes 

 
0= s

T v Td d d d d' D  (1.3.2)

Where TD is the tangent constitutive tensor that substitutes the elastic constitutive 

tensor eD  when material non-linearity occurs. Creep effects are neglected for the 

moment. 

The term   

 , , , , ,x y z xy yz zxd  (1.3.3)

is the vector form for the total deformation tensor of the skeleton, and can be 

considered as: 

 d duL  (1.3.4)

Where , ,x y zd du du duu =  is the displacements field and L  is the differential 

operator defined as 

 
0 0

0 0

0 0

0

0

0

x

y

z

y x

z y

z x

L  (1.3.5)

The deformation caused by the uniform compression of the particles by means of 

the pore fluid pressure, named s

vd can be expressed as:  

 

3

s
s

v

S

dp
d

K
I  (1.3.6)
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where SK  is the compressibility bulk modulus for the solid phase. In soils this last 

term is generally not relevant compared to the others due that the solid grains have 

the bulk modulus much greater than the skeleton one. This is why it has been 

omitted in (1.3.1). However in rocks mechanics, where the compressibility of the 

solid grains is comparable to the skeleton one this term cannot be neglected. 

The deformation due to thermal effects is given by the following relation: 

 

3

s
Td Tm  (1.3.7)

Where T  is the temperature s is the thermal expansion coefficient.  At least, 0d  

represent all the other deformations which cannot be directly associated to a stress 

variation (i.e. swelling, thermal, chemical, etc.) and named #autogeneous 

deformations$.  

The effective stress relation rewritten for the non-linear case and taking into 

account of grain compression using the Biot!s constant  is: 

 
=

3

s
s

T v T T

S

dp
d d d d I

K
' D D D  (1.3.8)

The equations (1.2.11) and (1.2.13) become: 

 
' ''

3

s
s s

T

s

dp
d d dp d D dp

K
I I I  (1.3.9)

where d '' represents the stress responsible for all the deformation of the solid. 

Replacing the unity tensor I with the Kronecker symbol the (1.3.9) can be rewritten 

as given by Zinkiewicz and Shiomi [3]: 

 
mn nm mn mnkl kl

1 1
-

3 3

s

ij ij ij

s

d d '' - D dp
K

 (1.3.10)

Introducing the isotropic elastic material characterised by the Young!s elastic 

modulus E and the Poisson!s coefficient   holds 

 
mn mnkl kl

3
9

1 2
T

E
D K  (1.3.11)
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The bulk modulus of the overall skeleton is given by TK . The (1.3.10) can be written 

as  

 
1 s sT

ij ij ij ij ij

s

K
d d '' - dp d '' dp

K
 (1.3.12)

where  is Biot's constant. Therefore, the resultant expression of the constitutive 

relationship can be written with this compact form  

 '' Td dD  (1.3.13)

Each fluid phase  is characterized by its intrinsic pore pressure p  that causes a 

purely volumetric strain for the considered phase,  again represented by 

 
v

p

K
 (1.3.14)

K  is the bulk modulus of the considered fluid phase. 

In the section 1.4 will be presented the balance equations for the phases that 

constitute the porous medium. In order to understand them some useful relations 

will be now introduced.  

Density of the solid phase 

To deal with the density of the solid phase, a material time derivative relationship 

will be now introduced for a compressible solid phase. From the mass conservation 

equation in differential form, with total material time derivatives can be obtained: 

 
0

s

s sD V

Dt
 (1.3.15)

Further, the use of partial derivative instead of material time one will be adopted. In 

the case of small displacements the two derivatives coincide. For a shake of 

generality here and in the following relations the time derivative will be maintained. 

The solid density s  is assumed to be a function of (1.2.11), a function of the 

temperature and of the first invariant of the effective stress. The (1.3.15) becomes 

 tr '1 1 1 1

3 1

ss s s s

s s s
s

s s S S

DD D V D p D T

Dt V Dt K Dt Dt n K Dt
 (1.3.16)
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where it must be kept in mind that 

 

'

1 1 1 1 1
, ,

3 1

s s s
s

s s S s s I Sp K T n KI
 (1.3.17)

where SK , is the bulk modulus of the grain material, s , is the thermal expansion 

coefficient for the solid and 'tr ' II , is the first stress invariant. 

The constitutive relationship for the first stress invariant can be now introduced   

 
' 1

3 div

s s s
I s s

T s

S

D D D T
K

Dt K Dt Dt

I
v  (1.3.18)

and the term 

 1
s

s

S

D

K Dt
 (1.3.19)

represents an overall volumetric strain rate caused by uniform compression of 

particles (as opposed to the skeleton) by the average pressure sp .  

Soils present a compressibility of the solid phase that is significantly higher than the 

compressibility of the medium. Due to this fact this volumetric strain is relatively 

insignificant and can be ignored, but it is important in rock mechanics and in 

concrete, where the compressibility of the solid phase is comparable to that of the 

skeleton. 

Hence, the  Biot!s  constant [4] can be defined as 

 
1 T

S

K

K
 (1.3.20)

Reworking the (1.3.16) the following result can be obtained 

 1 1 1
1 div

1

s s s
ss s

s

s S

D D D T
n n

Dt n K Dt Dt
v  (1.3.21)

 

For incompressible grain material 1 0, 1SK .This does not imply that the solid 

skeleton is rigid, because of rearrangements of the voids. The necessary evolution 
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equation is the mass balance equation for the solid phase that expressed with total 

derivatives is 

 1
1 div 0

s

s s

s

D n
n

Dt
v  (1.3.22)

Permeability effects. The Darcy"s law 

Due to the impossibility to describe analytically and univocally the texture of the 

porous medium matrix, to describe the filtration process of both phases among the 

porous matrix, averaged variables must be considered in order to simplify and 

generalize the approach.  

The averaged filtration velocity vector wv , also known as Darcy!s velocity or volume 

velocity, for a fully water saturated medium can be written as  

 1
( grad )w w w w

w

pv k g  (1.3.23)

Where wk  is the absolute water permeability tensor of the medium, which is 

different for every material (usually soil) considered, w  is the dynamic viscosity of 

the water, g is the gravity vector.  

When dealing with a multiphase fluid flowing in a porous matrix (e.g. water and air), 

some dissipative terms arise at fluid - solid and fluid - fluid interfaces. Due to this 

fact, the (1.3.23) has to be modified to take into account of the presence of the 

other fluids. 

Starting from the (1.3.23) the water permeability tensor of the fully saturated case 

wk ,  can be rewritten as 

 = rwkwk k  (1.3.24)

The term k  that is called intrinsic permeability of the medium, has the dimension of 

[L²], and depends only on the internal geometry and structure of voids among the 

solid skeleton, is multiplied by a relative permeability rwk , a dimensionless 

parameter that can take values from 0 to 1. rwk  quantify the reduction, or better, the 

magnitude with respect to the intrinsic permeability, that has to be adopted in the 

case of multiphase flow, in order to express an equivalent absolute permeability 
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wk for the water phase. Like the (1.3.24) the absolute gas permeability tensor can 

be rewritten as     

 = rgkgk k  (1.3.25)

A more general expression for the   - phase Darcy!s velocity can be rewritten as  

 
( grad )rk

p
k

v g  (1.3.26)

Where all the constants and variable have the same mean of the previous ones but 

referred to the generic phase . 

The Darcy!s velocity formulation here presented doesn!t take into account of 

temperature gradients, that have a significant effect only in heat conduction (by 

fluid) phenomena and that inertial and macroscopic viscous effects are neglected 

[5].  

The relative permeability varies with the void ratio 

 
w g

s

dv dv
e

dv
 (1.3.27)

and degree of saturation. For many situations the change of void ratio may be of 

secondary importance and rk may be defined mainly as a function of the degree of 

saturation. 

For each particular porous medium, the relations ( )r wk S are either predicted by 

models based on some more or less realistic capillary assumption, or 

experimentally determined under laboratory and field conditions. The relation that 

exist between relative permeability coefficients will be widely explained in section 

1.5  

Gaseous mixture of dry air and water vapour 

Gas phase that fill totally the voids partially or in some cases totally can be 

regarded usually as a perfect mixture of dry air and water vapour, which behaviour 

is assumed to be ideal. With this assumption, the ideal gas law can be used and the 

partial pressure gp  of the gas phase , can be related to the mass concentration 

(density) g of species  in the gas phase and the absolute temperature  using 

the molar mass M  of constituent   and R  that is universal gas constant. 
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The state equations of a perfect gas applied to dry air (ga), vapour (gw) and moist 

air (g) are 

 
ga ga a

gw gw w

p R M

p R M
 (1.3.28)

 
g ga gw

g ga gwp p p
 (1.3.29)

 1

1 1gw ga

g

g w g a

M
M M

 (1.3.30)

The Dalton's law [6] is the second equation in (1.3.29). The volume fraction 

occupied by dry air, vapour and moist air is expressed by gn S . This is useful when 

dealing with averaged quantities such the relative volume velocities as reported in 

(1.3.26). 

Relative Humidity and capillary effects 

When exposing to a wet environment, a dehydrated sample of the medium (after 

drying it on oven), the water present in the moist air is absorbed resulting in an 

increasing of the sample weight. The sorption process starts filling by water the 

finest pores and continuing with the ones of bigger size. The condensed water in 

pores is separated from its vapour by a concave meniscus, because of the surface 

tension. Recalling the definition of capillary pressure already defined in the (1.2.7), 

i.e. the pressure difference between the gas phase and the liquid one, the 

relationship between the relative humidity (RH) and the capillary pressure in the 

pores, the Kelvin - Laplace law is assumed to be valid: 

 
ln ln

gw c w

gws w

p p M
RH

p R
 (1.3.31)

The water vapour saturation pressure gwsp , which is a function of the temperature 

only, can be obtained from the Clausius - Clapeyron equation indicated below at 

number (1.3.33). Empirical formulas have been also used in literature to predict this 

parameter, such as the one proposed by Hyland and Wexler [24]. 

The contact angle between the liquid phase and the solid phase, as is usually 

accepted for pore water, is assumed to be zero. 
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The capillary pressure can be obtained through the Young " Laplace equation: 

 2 st
cp

r
 

(1.3.32)

where r  is the pore radius and st  is the surface tension. Water present in 

molecular layers adsorbed on the surface of a solid because of the van der Waals 

and/or other interactions are here neglected. These considerations apply if the 

water is present in the pores as a condensed liquid (capillary region).  

Water vapour saturation pressure as function of temperature  

To link the water vapour saturation pressure with temperature, the Clausius - 

Clapeyron equation must be used: 

 
0

0

1 1
exp

w gw

gws gws

M H
p p

R
 (1.3.33)

Where gwsp  is the water vapour saturation pressure at the reference temperature 

, 0

gwsp is the water vapour saturation pressure at the temperature 0  and gwH  is 

the specific enthalpy of evaporation. This equation derived from the laws of the 

thermodynamics and holds for temperatures next to 0 .  

State Equation for water 

To express the changes in terms of water density by effects of temperature and 

pressure (environmental conditions), an equation, named equation of state for 

water, must be given. The relationship presented here was obtained by Fernandez 

[7, 8], and states 

 0 0

0expw w w w w wC p p  (1.3.34)

0

w and 0

wp  refer respectively to the density and pressure of water at the initial 

steady state with all the phases at the standard conditions. The thermal expansion 

coefficient w quantifies the effects of relative temperature variations and the 

compressibility coefficient wC denotes the effects caused by confinement pressure.  

A series expansion of the (1.3.34) can be done and, once maintained only the first 

order terms, what it can be obtained is: 

 
0 0 01w w w w w wC p p  (1.3.35)
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Following, the mass conservation equation for water, written in in material time 

derivatives reads  

 
0

w

w wD V

Dt
 (1.3.36)

Carrying out the differentiation of the product w wV  and considering as before the 

density as function of states variables, i.e.  ,w w wp T , it results in 

 1 1 1
w w w w

w w w w w

w w w w

D D V D p D T

Dt V Dt p Dt T Dt
 (1.3.37)

The following relations also hold 

 

0 0

1 1 1
,w w

w

w w W wp K T
 (1.3.38)

and so, it follows 

 

0

1 1
w w w

w w
w

w W

D D p D T

Dt K Dt Dt
 (1.3.39)

In the (1.3.39) the term 1 WK corresponds to the water compressibility wC . This 

result obtained here by derivation of the mass balance equation of water, can be 

obtained with the (1.3.35) from the series expansion of (1.3.34). 

Diffusive ! dispersive mass flux. The Fick"s law 

To consider the diffusive-dispersive mass flux that occurs in the medium the Fick's 

law is now introduced 

 
gradJ D  (1.3.40)

To quantify these fluxes, an effective dispersion tensor D  must be taken into 

account. The dispersion tensor depends strictly on which phase diffuses ( ) and on 

the phase in which diffusion takes place ( , where ,w g ). D is a function of the 

tortuosity that the diffusing phase encounters in the diffusion process in the 

medium. D is also correlated with seepage velocity, when a diffusion caused by 

mechanical deformation contribute is considered. 
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For a binary system of dry air and water vapour the following set can be written 

 
grad and grad

ga gwga ga gw gw

g g g g g g

g g

J D J D  (1.3.41)

The first equation of (1.3.29) leads to 

 
grad grad grad

ga g gw gw

g g g

 (1.3.42)

A diffusive " dispersive velocity u with  = ga, gw can be now defined as  reported 

by [7, 8]: 

 g g
u v v v  (1.3.43)

The over-bar sign in (1.3.43) denotes averaged quantities. It holds 

 0ga ga gw gw g cu u u  (1.3.44)

Each component  can be related to its mass fraction by the expression 

 gc  (1.3.45)

and  

 1 ,c gw ga  (1.3.46)

From (1.3.44) and (1.3.42) it follows, that 

 ga gw

g g gD D D  (1.3.47)

Using (1.3.47) in the case of binary gas it results 

 

2 2

w g ga w g gwga gw

g g g g g g

g g g g

M M M M
grad grad

M M
J D D J  (1.3.48)

The gas diffusion phenomena take place even in the absence of a gas pressure 

gradient. The mass-weighted velocity of the gas phase in this case is 

 1
0g ga gw

ga gw

g

v v v  (1.3.49)
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Temperature induced transport expressions for the diffusive - dispersive flux can be 

derived from the entropy inequality  [9] and [8].  

Heat flux in the porous medium. The Fourier"s law 

A constitutive expression for the heat flux is given by the generalized version of 

Fourier's law, written as follow 

 
eff gradTq =  (1.3.50)

The effective thermal conductivity tensor is reported as eff and q  is the heat flux of 

the multiphase medium and q  is the sum of the partial heat fluxes q .  

The empirical version of Fourier's law is 

 
eff gradTq =  (1.3.51)

The effective thermal conductivity can be predicted theoretically as well as 

determined experimentally. A wider description of methods to determine the 

parameter eff  is given by Whitaker [10] and Nozad et al. [11]. 

Bomberg and Shirtlitfe [12] gave a linear relationship for porous building material: 

 

eff dry 1 4
1

w w

s

nS

n
 (1.3.52)

1.4. Governing equations 

The following section has the role to present the governing equations used for the 

model. In following equations the convective terms are neglected. For convenience 

the fluid velocities are conveniently referred to the velocity of the solid phase. 

Expression for the relative velocities for water and gas can be obtained: 

 ws w s
v v v  (1.4.1)

and 

 gs g s
v v v  (1.4.2)
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As well for the velocities, also for the accelerations, the relative expressions can be 

obtained, without convective terms: 

 ws w s
a a a  (1.4.3)

 gs g s
a a a  (1.4.4)

where ws
a  is the acceleration of water relative to the solid phase and gs

a is the 

relative acceleration of gas. Full expressions are reported on [13]. 

Linear momentum balance equation: multiphase medium 

Writing the dynamics equations for the individual phases, relative to the solid phase 

via (1.4.3) and (1.4.4), a first expression for the linear momentum balance equation 

for the multiphase system can be obtained: 

 div 0s ws gs

w w g gnS nSa a a g =  (1.4.5) 

The acceleration of the solid phase is multiplied by the averaged density of the 

multiphase system 

 1 s w w g gn nS nS  (1.4.6)

The densities  are to be considered as intrinsic densities, i.e. referred to the 

volume of each phase as discussed in the section 1.2. The acceleration g  is 

usually related to gravitational effects.  

As well as the intrinsic densities in the (1.4.6) are multiplied by the volume fraction 

of  the respective fluid phase ( wnS and gnS ), also the expression of the phases 

velocities, as given by Darcy!s law have to be referred to the phase volume fraction, 

due to the fact that Darcy's law is expressed in terms of volume-averaged relative 

velocities.  The generalised form of Darcy's laws takes the following form: 

 
gradws s wsrw

w w w w

w

k
nS p

k
v g a a  (1.4.7)

 
grad

rggs s gs

g g g g

g

k
nS p

k
v g a a  (1.4.8)
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Again, as in the previous section, k is the intrinsic permeability tensor, rwk and rgk  

are the relative permeabilities of water and gas. The relative permeabilities vary 

between 0 and 1 and they are a function of the degree of saturation (Section 1.5). 

w and g  are the dynamic viscosities, which are temperature dependent, i.e. 

, ,T w g . In the generalised form of Darcy's law for the gas phase, the 

body forces are usually neglected. These are the velocities measured from 

experimental works like the ones presented in [14]. 

Mass balance equations 

The mass balance equation for the solid takes the following form 

 1
div 1 0

s s

s

n
n

t
v  (1.4.9)

whereas the equation of balance for the generic - fluid phase holds 

 
div

n S
n S m

t
v  (1.4.10)

again m  is the mass exchange term between the two phases, principally given by 

evaporation processes and this term takes negative values for water and positive 

values for the gas.  

After and after the gradient of 1 sn  has been neglected, the (1.4.9) can be 

divided by s , and becomes 

 1
1 div 0

s
s

s

n n
n

t t
v  (1.4.11)

The relative velocities (1.4.1) and (1.4.2) are now introduced into the (1.4.10). After 

the time derivative have been carried out and every term has been divided by  

S  the following vector identity can be applied  

 div ( ) div grads s s

s s sv v v  (1.4.12)
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and the (1.4.10) can be written as: 

 1
div divs sSn n n m

n S n
t t S t S S

v v  (1.4.13)

Summing the (1.4.11) and the (1.4.13) the time derivative of the porosity can be 

eliminated and the continuity equation of the fluid phases can be finally obtained 

 1 1
div divs ss

s

Sn n n m
n S

t t S t S S
v v (1.4.14)

Using partial derivatives instead of material time derivatives is possible due to the 

fact that, considering small displacements, the two derivatives coincide. 

The introduction of the constitutive relationships for the time derivatives of water 

density (1.3.39) and solid density (1.3.21) along with the pressure in the solid phase 

(1.2.11), and the multiplication by wS  to the water continuity equation reads 

 
2 div

1
div

g sw w
w w g w sw

S W S

wsw
w w g w w w

S S w w

pn S pn n T
S S S S

K K t K t t

Sn n m
p S p S n nS

K K t

v

v

 (1.4.15)

where T  is the temperature above a reference value and  is the thermal 

expansion coefficient that has to be introduced into 

 
sw w sw wS n n  (1.4.16)

The following relationship has also to be taken into account 

 
g w

S S

t t
 (1.4.17)

The Darcy's law (1.4.7) can be now introduced as well as the capillary pressure 

definition (1.2.7). What it can be obtained is  

2 div

1
div grad

g sw w w
w w g w c w

S W S S

s wsw rw
sw w w w

w w w

pn S p Sn n n
S S S S p S

K K t K t K t

S kT m
n p

t t

v

k
g a a

 (1.4.18) 
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where  

 
sw w w s wS n n  (1.4.19)

Recalling that the (1.2.6) implies 

 
w w c w

c

S S p S T

t p t T t
 (1.4.20)

The continuity equation for gas can be obtained in a very similar way to that used 

for water. Thus, the time derivative of the gas density has to be considered along 

with the use of the (1.3.28) , of the (1.3.30) and of time derivative of solid density. 

The (1.4.14) has to be multiplied by gS  and again with the definition of capillary 

pressure, it yields: 

 
2 div

1
div

g sw w
w g g c g g

S S S

g g g gs

s g g g

g g g

pp Sn n n
S S S p S n S

K t K t K t

nS p MT m
n S nS

t t R

v

v

 (1.4.21)

with gM  as molar mass of gas, obtained with the (1.3.30). The term  is the 

absolute temperature. Now, Darcy's law for gas (1.4.8)  can be introduced and the 

final expression for the gas mass balance equation can be obtained  

 
2

div

1
div grad

gw w
w g g c g

S S S

g g gs

s g g

g

rg s gs

g g g

g g g

pp Sn n n
S S S p S n

K t K t K t

nS p MT
n S S

t t R

k m
p

v

k
g a a

 (1.4.22)

The use of equations (1.4.18) and (1.4.22), both with 0m , can be found in a 

model of heat and mass transfer in deforming porous media with low or absent  

temperature gradients, where phase change phenomena are negligible [15]. This 

assumption can be done also in the case of pollutant transport analysis [16]. 

Analyses that involve heat transfer processes, it is more convenient to consider the 

mass balance equation for dry air separated from the water vapour one. As 
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consequence a mass balance equations for both water species, liquid water and 

water vapour must be written [17, 18].  

Thus, the term relative to the mass rate of water evaporation m  can be cancelled 

from both mass balance equations. Furthermore, an expression for m  must be 

specified from the energy balance equation. In this way, the mass rate of water 

evaporation doesn!t need of a constitutive model. 

Detailed derivation of the expressions to obtain the vapour phase mass balance 

equation is reported in [2]. The vapour phase mass balance equation gives m as: 

 
2

2

1

gw w
w g gw g gw g c gw

s s s

T

gw sg g gw g gw w

rg
gwT T a w

gw g g g gg

g w

pp Sn n n
m S S S S p n

K t K t K t

T
S S n p M

t t t R

pM Mk
p

M p

u
m

k
g D

L  (1.4.23)

The mass source term is now eliminated by substituting the (1.4.23) into the 

(1.4.18), obtaining the so called water species mass balance equation: 

 

2

w
w gw g w w w w

s w

g T

g gw g w w gw g w w

s

w
gw g c w w w w w c w gw

s

gwTw a w
w swg g gw g g

g w

rg
T

gw

pn n
S S S S

K K t

pn
S S S S S

K t t

Sn
S p S p S p n

K t

pM M MT
S nS p

t t R M p

k

u
m

D

k

L

0
rw

T

g g w w wg r

k
p p

k
g g

 (1.4.24)

where 

 
swg s gw g w w w w wn S S n S  (1.4.25)
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Taking into account that ga g gw  and substituting the (1.4.23) into the 

(1.4.22), the mass balance equation for dry air phase results: 

 
2

2
0

gw w
w g ga g ga g c ga

s s s

ga aT

ga sg g ga g

rg
gwT T a w

ga g g g gg

g g

pp Sn n n
S S S S p n

K t K t K t

p MT
S S n

t t t R

pM Mk
p

M p

u
m

k
g D

L  (1.4.26)

Where 

 
sg s gn S  (1.4.27)

With the assumption of small displacements and quasi static loads (i.e. neglecting 

dynamic loads and assuming that relative accelerations (1.4.3) and (1.4.4) are 

negligible) only the gravity acceleration g  is relevant, and so it is the only 

acceleration term that can be taken into account from the (1.4.23) to the (1.4.26). 

Energy balance equations 

The following equations represents the balance equation of thermal energy written 

for constituent  [19] and can be obtained after a subtraction of the kinetic energy 

term from a global energy balance: 

 
div div div :gradE E p R

t
v q v v  

(1.4.28)

here E is the specific internal energy, is the deviatoric part of the stress tensor 

and p  the hydrostatic part (or mean stress). The rate of accumulation of internal 

energy in a control volume is given by left-hand side terms. The rate of internal 

energy changed due to convection, the rate of internal energy changed due to 

conduction, the reversible rate of internal energy increased due to pressure, the 

irreversible rate of internal energy increased by viscous dissipation, and the 

contribution of heat sources are given, respectively, by the right-hand side terms. 

Using the following vector identity: 

 div div gradE E Ev v v  (1.4.29)
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and writing the (1.4.28)  as 

 
grad div div

div :grad

E E E
t

p R

v v q

v v

 (1.4.30)

The following form for the continuity equation can be taken into account when 

(1.4.29) is considered along with the equation (1.4.9) with 0n : 

 
grad div div 0

t t
+ v v v  (1.4.31)

At the end the energy balance equation becomes 

 
grad div div :grad

E
E p R

t
+ v q v v  (1.4.32)

Viscous dissipation effects are neglected in the following. Through the concept of 

enthalpy, the (1.4.30) can be expressed in a more conveniently way, i.e. in terms of 

temperature and heat capacity instead of internal energy [19]. Hence, the energy 

balance equation can be rewritten as  

 
grad divp

T
C T R

t
v q  (1.4.33)

For  = s, w. These two phases can be considered incompressible regarding their 

use in the energy balance. 

 
grad div grad

g gg g g

g p g g g g g

T p
C T p R

t t
v q v  (1.4.34)

where g

pC  is the specific heat at constant pressure. The time derivatives of gas 

pressure, as well as the convective terms, are negligible with respect to the other 

terms in (1.4.34). A local equilibrium state is assumed to hold, i.e. 

 
g w sT T T  (1.4.35)

Introducing the constitutive equation far heat fluxes (1.3.50) and adding together the 

(1.4.33) and the (1.4.34), then is possible to introduce the appropriate heat sources 

to obtain the following form of the energy balance equation: 

effeff
grad div gradw w g g

p w p g p vap

T
C C C T T m H

t
v v

(1.4.36)
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where the effective thermal capacity 
effpC and the effective thermal 

conductivity eff  are defined by  

 
eff

s w g

p s p w p g pC C C C  (1.4.37)

 
eff s w g  (1.4.38)

 
vap gw wH H H  (1.4.39)

The convective heat flux in the solid phase has been neglected. vapH  is the latent 

heat of evaporation. The mass rate of water evaporation is eliminated from the 

(1.4.35) by means of the mass balance equation for water (1.4.14). 

1.5. Water retention characteristics of soil  

Describing the heterogeneity and the variety of all the soil compositions and 

structures in nature is quite impossible with the use of few parameters and the 

same is for the hydraulic features of a soil, in terms of the capacity to absorb, retain 

and release water and fluids. However, starting from empirical observations, some 

simplified relations were created in the past, with the aim to easy describe the 

retention behaviour of the most commons soils, achieving a good agreement with 

most of the experimental results. 

Here, in a concise but exhaustive way, some retention models are now presented, 

with particular attention to the mathematical forms that are suitable for the 

numerical implementations. Part of the theory presented here as well as further 

insights can be found in literature at [20] and [21]. 

Assuming that water and air are the only wetting and non-wetting fluid, respectively, 

present in the soil. Hence, the notation will pertain to air - water systems only, and 

might be different for other multi-fluid soil systems. As further assumed, here the 

soil is considered homogeneous.  

A schematic representation from of a typical soil water retention curve is presented 

in Figure 1.5.1 [20]. 
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Figure 1.5.1: Water retention curve in plotted in terms of volumetric water content vs. matrix 

suction. 

By definition, the volumetric water content , is equal to the saturated water 

content, s , when the soil matrix head mh , defined as  

 
c

m

w

p
h  (1.5.1) 

is equal to zero. mh  denotes a suction effect on matrix, i.e. a negative head. 

However, only under specific circumstances the water content is equal to the 

porosity n.  Due to entrapped air, it generally can be determined that s   0.85 - 

0.9n. 

For many soils, the value of  will remain at s  for values of mh slightly less than 

zero. The value of mh  at which the soil starts to desaturate is defined as air entry 

value ,m ah . The air entry value is related to the air pressure required to force air 

through a porous medium, which has been thoroughly wetted with water. The 

relation of the pore size to the air entry value is often defined by the equation [22]: 

 30 /D Y P  (1.5.2) 

where D  is the pore diameter measured in microns; P  is the air entry value or air 

entry value measured in [mmHg]; and Y  is the surface tension of water measured 

in [dynes/cm].  
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It is assumed to be inversely proportional to the maximum pore size forming a 

continuous network of flow paths within the soil. As mh  decreases below ,m ah ,  

usually decreases according to a S-shaped curve with an inflection point. In Figure 

1.5.1 [20], the matrix head at the inflection point is denoted by ,m ih . As mh  

decreases further,  decreases seemingly asymptotically towards a soil-specific 

minimum water content known as the residual water content r . More in detail, r , 

is the water content value for which the gradient h  becomes 0. 

The reason for the finite value of r  is that the preponderance of historical water 

content measurements were in the wet range and the typical soil water retention 

models assumed asymptotic behaviour at low water content values. As a result, 

most retention models describe retention curves in the range of r s . It is 

convenient to define an effective saturation as define by van Genuchten [23] :  

 
,

,1

w w irrr
e

s r w irr

S S
S

S
 (1.5.3) 

which varies between zero and one.  

Due to the relation between water content  and water saturation wS , related by the 

porosity n, also an expression in terms of degree of saturation has been given in 

the previous equation. 

It should be noted that the nature of r  is still controversial since the water content 

theoretically goes to zero as mh  becomes infinitely negative. In practice, r is 

treated as a fitting parameter.  

In addition to the four parameters ,m ah , ,m ih , s , and r , most retention models 

include a dimensionless parameter, which characterizes the width of the soil pore 

size distribution, the so called pore size distribution index  (Brooks and Corey 

[24]).  

The parameter  depends on the range of pore sizes that can be observed in the 

porous medium. The more the porous medium presents regular sized pores, the 

more   is higher.   

Many functions have been proposed to relate the matrix head to volumetric water 

content. Most of these functional relationships are empirical in nature, but might 



A physical model for a partial saturated porous medium 

 

41 
 

include parameters that have a physical basis. The following sections include the 

most widely used expressions. 

Brooks and Corey Type Power Function 

Among the earlier models proposed is the Brooks and Corey [24, 25] water 

retention model, which expresses the effective saturation eS , as a power function 

of mh :  

 
,

,

,1

m a

e m m a

m

e m m a

h
S for h h

h

S for h h

 (1.5.4) 

The dimensionless parameter  characterizes the pore-size distribution, as above 

explained. Theoretically, its value approaches to infinity for a medium with a uniform 

pore-size distribution, whereas it approaches to zero for soils with a wide range of 

pore sizes. Usually,  values are in the range between 0.3 and 10.0. Assuming that 

soil pore structure satisfies the general fractal geometry conditions, Tyler and 

Wheatcraft  [26, 27] showed that  can be determined from the fractal dimension of 

soil texture. Approximate values of both ,m ah  and  can be obtained by plotting 

log( eS ) vs. log(- mh ). 

The absolute value of the slope of the resulting straight lines is equal to the value of  

 and the ,m ah  is determined from the intercept.  

However, a more straightforward estimation of the parameters can be achieved by 

model fitting by means of nonlinear least squares optimization procedures. 

Parameters are optimized to minimize an objective function p , which contains 

the residual sum of squares of observed and fitted water content and/or hydraulic 

conductivity values: 

 2 2

1 1

  log log
KI I

i i i i

i i

w K Kp  (1.5.5) 

where p  is the vector containing the fitted parameters, i  and  
i  are the observed 

and fitted water content data, respectively, iK  and  
iK are the observed and fitted 

unsaturated hydraulic conductivity values, respectively, l  and Kl  are the number 

of measured retention and hydraulic conductivity data points, respectively, and w is 
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a weighting factor to correct for differences in the number of data points and units 

between  and K  data.  

Since the (1.5.4) does not include an inflection point, but instead identifies a distinct 

air-entry value, the Brooks and Corey expression usually shows excellent 

agreement with experimental data for soils with well-defined air-entry values and J-

shaped retention curves Figure 1.5.2. 

 

Figure 1.5.2: (a) Observed and fitted retention curves for a Rubicon sandy loam, and (b) a 

Touchet silt loam. The observed data were taken from the soil catalog of Mualem [28]. The 

saturated water content values, s  , were fixed as listed in the Mualem catalog. 

However, as van Genuchten and Nielsen [29] and Milly [30] pointed out, the model 

may give relatively poor fits for soils with S-shaped retention data Figure 1.5.2 [20], 

such as finer-textured soils and undisturbed field soils. 

The retention model used by Campbell [31] is identical to the power function of 

Brooks and Corey (1.5.4). However, the dependent variable is defined as the 

degree of saturation, that is / s , instead of effective saturation 

 
,

,

,1

m a

m m a

S m

m m a

S

h
for h h

h

for h h

 (1.5.6) 

In order to provide a more affordable relation in order to be numerically 

implemented along with the formulation presented in this work a slightly different 

Brooks and Corey equation will be now provided.  
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Due to the relation between water content and water saturation, mentioned above, 

the (1.5.6) can be rewritten as: 

 
, ,1

1

bb
w w irr w irr

w b

p
S S S for s p

s

S for s p

 (1.5.7) 

where wS  is the degree of saturation, ,w irrS the irreducible degree of saturation, i.e. 

the residual saturation due to adhesive water that remains attached to the grains of 

the porous matrix and that can be eliminated only via thermal treatments, s  is the 

so called suction that here coincide with the capillary pressure c g ws p p p ,  is 

again the pore size distribution index and bp  is the bubbling pressure. A plot of the 

Brooks & Corey relationship between capillary pressure and the degree of water 

saturation is given in Figure 1.5.3a [21]. The bubbling pressure is the equivalent 

value of the capillary pressure to ,m ah . It denotes the value at which the air starts to 

naturally enter in the porous medium.  

As the capillary pressure approaches to the bp  value, the degree of water 

saturation wS  increases rapidly. Otherwise, for high values of capillary pressure the 

saturation reaches asymptotically the irreducible value of saturation.  

To improve the numerical behaviour of the above mentioned equation, the 

,g irrS term has been introduced: 

 
, , ,

,

1

1

b
w w irr w irr g irr b

w g irr b

p
S S S S for s p

s

S S for s p

 (1.5.8) 

This term physically can be identified as a small percentage of air trapped between 

the grains and the liquid phase. Numerically, it prevents (in the same way of ,w irrS ) 

that when the bubbling pressure value is reached the degree of gas saturation gS , 

involved as wS in the equations of the model, doesn!t assume a null value, as stated 

by the relation 1w gS S . A null value for gS can lead in some cases to a 

numerical labilities of the system matrix, i.e. the determinant det 0tB + C . 

However the ,g irrS value must assume small values, such 0.01 " 0.05 or less. 
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Figure 1.5.3: Representative Brooks and Corey two-phase characteristic curves (a) 

Capillary pressure, (b) Liquid relative permeability, (c) Gas relative permeability. 
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Brooks and Corey used the Burdine [32] theory to derive expressions for the 

wetting (liquid) and non-wetting (gas) phases  relative permeabilities. Expressions 

for the relative permeabilities are the followings: 

 (2 3 )/

2 (2 )/1 1

rw e

rg e e

k S

k S S
 (1.5.9) 

Plots of relative permeabilities functions are given in Figure 1.5.3b-c [21]. 

Lloret and Alonso Function 

Lloret and Alonso starting from experimental tests [33], tried to provide a number of 

analytical simple models, in order to describe the state surfaces for volume (in 

terms of void ratio e) and the degree of saturation change of partially saturated soils 

subjected to confined or isotropic compression.    

 

Figure 1.5.4: State surface for clayey sand. 

Lloret and Alonso observed [33]  that the same soil subjected to increasing effective 

stress loads presents a progressive evolution of the w cS p curve. The curve 

plotted versus the effective stress describes the above mentioned #state surface$ 

for the water saturation in this case. Figure 1.5.4 shows a state surface for clayey 

sand. Is immediate to see that the state surface shows that the same soil, at higher 

effective stress loads, presents at the same value of capillary pressure a higher 

degree of saturation, i.e. is more difficult to desaturate a loaded soil than a 

unloaded one.  
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This effect can be easily taken into account once found the proper c

wS p  law that 

describes in the best way the retention behaviour of the analysed soil.   

Excellent results in terms of experimental data agreement have been obtained with 

the following two expressions: 

 tanh

1 exp

c g

w

c g

w

S a bp c d p

S a b p c d p
 (1.5.10) 

where a, b, c, d are material parameter deriving from the data fitting and optimization 

techniques based on data collect from experimental tests. Providing an effective 

stress evolution of these parameters, is possible to obtain the best description of 

the w cS p  for each load state. However, for sake of simplicity, this feature hasn!t 

been taken into account in the present work, opting for a fixed parameter law, 

leaving the stress state evolution for further development.  

In order to implement this law accordingly with the theory presented in this work, 

the first of (1.5.10) can be rewritten as: 

 1 tanh 0wS m l s s  (1.5.11) 

Where m and l again are material constants (in particular m is equivalent to 

,1 w irrS ) and s is the suction, again equivalent to a positive value of the capillary 

pressure. Figure 1.5.5 [2] shows a comparison between Brooks and Corey power 

law and Lloret and Alonso law. As the same as the (1.5.8) to improve the numerical 

behaviour of the previous equation the term ,g irrS  has been introduced such that: 

 
,

,

1 tanh 0

1 0

w g irr

w g irr

S S m l s s

S S s
 (1.5.12) 

van Genuchten law 

Brutsaert [34] proposed the following power function model, which describes an S-

shaped retention curve  

 b

e mS a a h  (1.5.13) 

where a and b are fitting parameters, which can either be determined from moment 

analysis (Brutsaert, [34]) or by model fitting with similar procedure described with 
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the (1.5.5). The retention model suggested by Ahuja and Swartzendruber [35] has 

the same functional form as (1.5.13), whereas Haverkamp et al. [36] used (1.5.13) 

to test various numerical algorithms for the solution of one-dimensional infiltration. 

 

Figure 1.5.5:Comparison between Lloret and Alonso (a) relationship and Brooks and Corey 

relationship (b). 

A more general version of (1.5.13)  was suggested by van Genuchten [23, 37]  and 

is currently one of the most commonly used soil water retention models.  

 
1

m
n

e mS h  (1.5.14) 

where 1L   is a parameter ( > 0) to scale the matrix head, and both n and m 

are dimensionless parameters. The n value is generally restricted to values larger 

than one, so that the slope of the soil water retention curve, mh , is zero as the 

water content approaches the saturated water content (van Genuchten & Nielsen, 

[29]). If m is fixed at a value 1, the model reduces to (1.5.13). 

Instead of using a constant m value, van Genuchten (1980) proposed the 

relationship of m = 1 - 1/n  (n > 1, 0 < m < 1). Using this relationship (1.5.14) does not 

account for an air-entry value, but does include an inflection point, allowing this 

model to perform better than the Brooks and Corey type model for soils with S-

shaped retention curves as is shown in Figure 1.5.2b [20]. However, the model 

cannot accurately describe retention characteristics for soils with distinct air-entry 

regions Figure 1.5.2a [20].  Table 1.5.1 summarizes approximate parameter values 

for typical soil textural groups as estimated by Carsel and Parrish [38]. 
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Table 1.5.1: Average values of the parameters in the van Genuchten retention model 

(1.5.14). 

 

Although van Genuchten [37] provides various graphical and analytical procedures 

to estimate  and m, routinely parameters are obtained using fitting algorithms such 

as RETC software (van Genuchten et al. [39]) and UNSODA (Leij et al., [40]). 

Whereas the parameter  is related to the inverse of the air-entry value (van 

Genuchten [23]), the strict definition of this parameter is unclear.  

Assuming m = 1 - 1/n, van Genuchten [37] differentiated (1.5.14) twice with respect 

to mh  to obtain the matrix head at the inflection point ( ,m ih ):  

 1

,

m

m i

m
h  (1.5.15) 

Inverting this equation with respect to  and substituting the result into (1.5.14), 

yields an alternative equivalent expression for the soil water retention curve Kosugi, 

[41]): 

 

,

1

m
n

m
e

m i

h
S m

h
 (1.5.16) 

where m = 1 - 1/n. 

Although van Genuchten includes special cases for m = 1 ! 1 / n (n > 1, 0 < m < 1) 

and m = 1 - 2/n (n > 2, 0 < m < 1), to derive hydraulic conductivity relations, the most 

general form of (1.5.14)  includes the case for which m (m > 0) is independent of n. 

Increasing the number of parameters from two to three (excluding s  and r ), 

allows more flexibility in the fitting of soil water retention data. Van Genuchten and 



A physical model for a partial saturated porous medium 

 

49 
 

Nielsen demonstrated that (1.5.14)  is almost equivalent to the Brooks and Corey 

model if n is increased and m is simultaneously decreased so that the product mn 

remains constant. Under this condition, the values of mn and (-  -1) of the (1.5.14) 

correspond to  and ,m ah of (1.5.4), respectively. Therefore, the case with m 

independent of n provides acceptable fits for soils with distinct air-entry values 

(Figure 1.5.2a), whereas the model simultaneously retains its capability to fit 

sigmoidal-shaped retention curves as shown in Figure 1.5.2b. 

Two other three-parameter related models have been presented that allow the 

inclusion of an air-entry value, while maintaining the general form of (1.5.14). First, 

Vogel and Císlerová [42] modified the (1.5.14) to allow for a non-zero ,m ah value:

 '

,

,

1 for

for

s

m
n

r r m m m a

s m m a

h h h

h h

 (1.5.17) 

where 1 1 1m n n  and ' 's s s  is a fitting parameter. The selected value 

of ,m ah  will depend on values of the other parameters to ensure the continuity of the 

 value at ,m m ah h . The case of 's s  leads to , 0m ah , so that  (1.5.17) is 

identical to (1.5.14). The added flexibility of  (1.5.17) is included in Simnek et al. [43] 

for the simulation of variably saturated water flow. Second, Kosugi [41] modified 

(1.5.16) to include an air-entry head value as well, while maintaining the physical 

meaning of ,m ih  as the matrix head at the inflection point: 

 
, , , ,

,

1 / for

1 for

m
n

e m a m m a m i m m a

e m m a

S m h h h h h h

S h h

 (1.5.18) 

where 1 1 1m n n . Again, if , 0m ah , (1.5.18) reduces to  (1.5.16), which is 

equivalent to (1.5.14). 

In order to give a more practical relation to implement in the code the following 

capillary pressure relationship has been chosen:  

 
1

1

m

e n

c

S
p

 (1.5.19) 
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This can be rearranged as  

 1/
1/1

1
n

m

c ep S  (1.5.20) 

where now w , and has the dimension of [Pa-1], in order to maintain eS  

dimensionless.  The coefficients m and n are the same used in the previous 

relations written in terms of water content and matrix head. A plot of the van 

Genuchten relationship between capillary pressure and the degree of water 

saturation is given in Figure 1.5.6a [21]. 

The relative permeability of the liquid phase can be predicted from the capillary 

pressure curve expression using the integral expressions of Mualem [44] or Burdine 

[32]. The resulting liquid phase relative permeability integral can be expressed as a 

closed form expression for certain relationships between the m and n fitting 

parameters as detailed by van Genuchten [23, 37]. For Mualem [44], the 

relationship m = 1  1/n leads to a closed form solution for the liquid-phase relative 

permeability, which is given by 

 2
1/2 1/1 1 1 1/

m
m

rw e ek S S m n  (1.5.21) 

For Burdine [32], the relationship m = 1 2/n leads to a closed form expression, or 

 2 1/1 1 1 2 /
m

m

rw e ek S S m n  (1.5.22) 

In both cases, m must be between 0 and 1. With these restricted forms, the limits 

on the parameter n are n  1 for Mualem and n  2 for Burdine. As discussed by 

van Genuchten [23, 37] and van Genuchten and Nielsen [29], both forms give 

similar results, but the Mualem form is preferred because of it has more general 

applicability due to the larger range for n, and the Mualem restricted form with m = 

1  1/n is generally recommended.  

An important point for the present discussion is that van Genuchten [23, 37] did not 

address gas-phase relative permeability. Parker et al. [45, 46] extended the van 

Genuchten"Mualem characteristic curves to include the gas-phase relative 

permeability, or  

 2
1/2 1/1 1

m
m

rg e ek S S  (1.5.23) 
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Similarly, Luckner et al. [47] present a gas-phase relative permeability expression 

for the van Genuchten"Mualem characteristic curves. 

 2
1/3 1/1 1

m
m

rg e ek S S  (1.5.24) 

Figure 1.5.6 shows some generic van Genuchten"Mualem two-phase characteristic 

curves for some typical parameters as noted on the figures. The van Genuchten 

capillary pressure curve exhibits unphysical behavior as the liquid saturation is 

reduced (gas saturation is increased). As the liquid residual value (0.2 in this case) 

is approached, the value of capillary pressure goes to infinity. The liquid relative 

permeability starts out low and increases dramatically with increasing liquid 

saturation. The gas-phase relative permeability decreases with increasing liquid 

saturation and is concave down. The difference between the Parker et al. [45, 46] 

and Luckner et al. [47] expressions is small for these parameter values. Plots of 

relative permeability functions are given in Figure 1.5.6b-c [21]. 

Typical values of the van Genuchten " Mualem parameters for 34 soils are 

tabulated by Stephens [48] , and the original tabulations in Stephens et al. [49] and 

van Genuchten  [23, 37]. The parameter ranges are  from 0.004  to 0.12 cm-1 (1/  

from 817 to 24500 Pa), n from 1.17 to 7.62 (m from 0.15 to 0.87), and rS  from 0 to 

0.4/n (Stephens et al. [49], used a water content form of the effective saturation 

equation). 

While the van Genuchten and Brooks and Corey two-phase characteristic curves 

may look similar, there are important differences when they are used in flow 

situations. McWhorter and Sunada [50] and Webb [51] evaluated the differences 

between the two sets of characteristic curves for analytical two-phase flow 

situations. The differences in the saturation profiles are significant, probably due to 

the different shape of the gas-phase relative permeability expressions. In general, 

the van Genuchten (and Parker) set of curves lead to a much sharper interface, 

while the Brooks and Corey predictions are much blunter. 
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Figure 1.5.6: Representative van Genuchten"Mualem two-phase characteristic curves (a) 

Capillary pressure, (b) Liquid relative permeability, (c) Gas relative permeability. 
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2 Discretized equations for the 

deforming porous medium 

2.1. Introduction 

In this chapter some shorts recalls of basic equilibrium and mass balances 

equations for water species and dry air are given, in order to introduce properly the 

boundary value problem and boundary conditions. The Finite Element Method is 

then shortly presented, applied to the boundary value problem presented before. 

Discretized equations for the solid phase, water species, dry air and thermal 

coupling are therefore presented for the non-isothermal problem. The isothermal 

case of air flow and water flow in a deforming porous medium is then discussed and 

the relative simplifications to the general problem introduced. An ideal finite element 

that can be used in the spatial discretization of three-dimensional domains is 

presented. 

Solving techniques and time discretization are finally discussed. Further insights 

can be found on literature on [1]. 

2.2. Governing equations: recall 

The linear momentum balance equation (1.4.5) in terms of total stress can be 

expressed as  

 0TL g  (2.2.1)

with effective stress principle that is given by (1.2.14):  

 T w g

w gS p S p''- m  (2.2.2)

For the multiphase medium the density is given from the (1.4.6): 

 1 s w w g gn nS nS  (2.2.3)
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The water and gas mass balance equations are given by the (1.4.18) and the 

(1.4.22). An expression of the mass balance equation for the water species (vapour 

and liquid water) can be given by the (1.4.23). i.e. 
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(2.2.4)

Summing both the mass conservation equations for the liquid water equation 

(1.4.18) and for the vapour equation (1.4.22), it results a null right hand side term in 

the previous equation.  Even if the mass source term is not explicitly present, this 

equation takes into account any phase change, i.e. evaporation condensation 

phenomena.  

Along with the (2.2.4) a mass balance equation for dry air must be expressed: 
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(2.2.5)

Last balance equation recalled regards the enthalpy as given in the (1.4.33): 

 
eff

eff

w w g g

p w w p g g p

T

vap

T
C nS C nS C T

t

T m H

v v
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With the effective heat capacity that in this case is: 

 
eff

1 s w g

p s p w w p g g pC n C nS C nS C  (2.2.7)

For completeness, also the mass source term that comes from the water mass 

conservation equation is reported here: 
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 (2.2.8)

The constitutive relationship for a linear isotropic material, in infinitesimal form, is 

given with the (1.3.1) and now can be rewritten in total form 

 
0= e T' D  (2.2.9)

As widely discussed on section 1.5, where the degree of water saturation has been 

related to the capillary pressure, the equation (1.2.6) express briefly the relation  

 ,w w cS S p T  (2.2.10)

or its inverse 

 ,c c wp p S T  (2.2.11)

with the condition that 

 1w gS S  (2.2.12)

The relationships between relative permeabilities and degrees of saturation, 

pressures and temperature are briefly expressed as 

 , ,rw rw w rw rw wk k S T or k k p T  (2.2.13)

 , ,rg rg g rg rg gk k S T or k k p T  (2.2.14)

as dealt in section 1.5. 
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2.3. The boundary value problem 

The following problem 

 !=! !=! in!A(u) C(u) + p 0  (2.3.1)

with 

 =! !=! in!B(u) M(u) + q 0  (2.3.2)

represents a boundary value problem, where C  is differential operator, u  a generic 

field variable and p  is a known function, that is independent of u . M  is again  an 

appropriate operator and q  a known function independent of u  which is the exact 

solution of the boundary value problem. 

The following integral form: 

 0T Td dv A(u) v B(u)  (2.3.3)

is satisfied for a proper choice of the set of functions, i.e. the differential equation 

(2.3.1) and the boundary condition (2.3.2) are satisfied. If an arbitrary choice of v  

and v  satisfy the (2.3.3), (2.3.1) and (2.3.2) has to be satisfied in each point within 

the domain  and on the boundary .  

Functions for which any term in the integrals (2.3.3) becomes infinite, have to be 

avoided as proper choice for the functions v  and v . In the literature at [2] can be 

found details on the restrictions to be applied on the choice of v  and v  in order to 

maintain the validity of the integral statement 

When solving the boundary value problem with the finite element method, an 

approximation of the solution, as most of practical problems require, is sought in the 

class of functions 

 
 

r

i i

i

u u = N Naa  (2.3.4) 

In (2.3.4) a set of so called shape function N  has been introduced. These functions 

depend from independent variables as the coordinates. ia  is a vector that 

represents the values of the unknowns at the i-th points or nodes defined in the 

domain . Further insights on shape functions can be found on standard finite 
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element textbooks as [2] and the section 2.5. Substituting  u  into the (2.3.1) and the 

(2.3.2) an error occurs and so a residual can be found as 

   R = R + R = A(u)+ B(u)  (2.3.5)

The goal would be to minimize the residual for each node on the domain  and the 

boundary and this can done, for example, with the weighted residual method, 

briefly applied to the (2.3.3)  

 
  0T Td dw A(u) w B(u)  (2.3.6) 

where in general, the functions w  and w can be independently chosen.  

The system that results approximating the (2.3.3) with the (2.3.6) can be written as 

 Ka =f  (2.3.7)

With 
 

1 1

m m
e e

ij ij i i

e e

K K f f  (2.3.8)

Weighting functions w  and w have to be chosen carefully in order to preserve 

possible symmetries of the system (2.3.7). Shape functions have to possess at 

least the same order of derivative of the differential operators A  and B  and these 

derivatives must be continuous. 

2.4. Initial and boundary conditions  

In order to solve the equations recalled in the previous section, the displacements 

in the three Cartesian directions , ,x y zu u u , the water pressure wp , the gas 

pressure gp , and the temperature T   have been chosen as basic variables of the 

previous equations.  

In order to solve the boundary value problem (2.3.1) a set of conditions that 

represent the initial state of the system, in terms of basic variables and the value 

that these variables assume at the boundary of the domain, has to be stated. At 

time t = 0 the full field of displacements water and gas pressures and temperature 

is:  

 0 0 0 0 in andw w g gp p p p T Tu u  (2.4.1)
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where  is the domain of interest and  its boundary. The boundary conditions can 

be either fixed values on  or fluxes on q , where the boundary q . 

The imposed boundary values for the six variables can be of the Dirichlet type as 

follows: 

   in , in

  in , in

u w w w

g g g T

p p

p p T T

u u
 (2.4.2)

Or of the Neumann type i.e. 

 = onT q

uI t  (2.4.3)

That represent the boundary traction for stress on the boundary q

u  and for the 

water and gas phase the relative Neumann condition is represented by the fluxes, 

i.e. 
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and  

 

2
on

Trg gw qa w
ga g g g g ga g

g g g

k pM M
p q

M p

k
g D n  (2.4.5)

The heat flux has the form 

 onw q

w vap eff T C TH T q T Tv n  (2.4.6)

where gaq  is the imposed mass flux of dry air. c  is the convective mass transfer 

coefficient and gw  is the partial density of vapour in the surrounding air at a great 

distance from the interface, Tq  is the imposed heat flux, C  the convective heat 

transfer coefficient and finally the T is the temperature  for the gas phase that can 

be observed at a not disturbed point of the domain. The term at right hand side of 

the (2.4.4) is analogous to the last term in the (2.4.6). They are representative of 

the cooling process as the porous bodies dry.  
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2.5. Discretized equations for the non-isothermal airflow 

and water flow in a deforming porous medium with the 

Finite Element Method. Boundary problem solution 

By applying the weighted residual method to the linear momentum balance 

equation (2.2.1), i.e. the integral equation (2.3.6) with the boundary condition (2.4.3) 

results 

 0T T T TL d dw g w I t  (2.5.1)

The choice of the weighting functions is limited in such a way that 

 =0 on uw  (2.5.2)

and 

 = on q

uw w  (2.5.3)

The Green 's theorem can be applied to the left hand side of (2.5.1) and it can be 

proved that [2]: 

 
xd d n d

x x
 (2.5.4)

Hence the (2.5.1) becomes  

 T
T T T T Td d d dw w I w g w I tL

 

(2.5.5)

If weighting functions are chosen in order to satisfy the (2.5.2) and the (2.5.3). The 

previous equation can be rewritten as: 

 T T TL d d dw w g w t  (2.5.6)

After a proper expressions for the weighting functions has been taken (here 
*w stands for water species and w  for dry air), the Green's theorem can be 

applied to the water mass conservation equation and the corresponding boundary 

equation. 
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It yields 
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(2.5.7)

Applying the Green!s theorem to the gas mass conservation equation, taking into 

account that ga g gw  gives 
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Applying the weighted residual method to the energy conservation equation it yields 
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(2.5.9)

Where the weighting functions for the boundary are   

 0 on u  (2.5.10)

and 

 onT q

uw  (2.5.11)

The finite element method can be applied now to (2.5.6), (2.5.7), (2.5.8) and (2.5.9). 

This consists on considering the basic variables , ,w gp p Tu and  expressed in the 

form of (2.3.4): 

 , , ,u w p w g p g tp p Tu N u N p N p N T  (2.5.12)

where , ,w gu p p  Tand are the vectors of the nodal values of the unknowns. 

Taking into account of (2.2.1), (2.2.2) and (2.2.3), is possible to use the (2.5.12) and 

further the Galerkin method [3] can be applied, to the equations (2.5.6) to (2.5.9).  

Thus, the weighting functions are replaced by the shape functions, yielding to 

 
q
u

T T T T

w p w g p g u ud S S d d dB '' m N p N p N g N t (2.5.13)
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The following relationships hold:  

 
gw w c w w w w w

c c c

pS S p S S S p ST T

t p t T t p t p t T t
 (2.5.14)

 
gw g gw gww w w w

gw

c c c

p p p pM M p M T
p

t R R p p p R T t
 (2.5.15)

 

2 2

1gw gw gw gw gw

g g w g

g g g cg g

p p p p p
p p p p

p p p pp p
 (2.5.16)

 

2

g gw aga a ga a

gw g gw gww w w

c

p p Mp M pM M T

t R t R R t R t

p p p pM p M T

R p t t R T t

 (2.5.17)

The final set of discretized equations started with the (2.5.13), has to be completed 

with the discretized equation for water phase (water species): 
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along with the equation for the gas phase (dry air): 
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and the last for the energy conservation (in terms of temperature) 
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Remembering that derivatives of shape functions are 

  ,
TT

u uL LB N B N  (2.5.21)

And considering the (2.5.13) for a linear elastic solid medium, it results 

 ''T

E TEdP(u) B K u + K T  (2.5.22)

A time differentiation can be performed and the discretised mechanical equilibrium 

equation can be obtained in the following form: 
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w g u

C C
t t t t t

u T p p f
 (2.5.23)
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where the matrices EK , TEK , swC  and sgC are defined as: 

 T

E EK = dB D B  (2.5.24)

 
T

TE EK d
3

s
tB D m N  (2.5.25)

 T

sw wS dC
p

B m N  (2.5.26)

 T

sg gS dC
p

B m N  (2.5.27)

For the non-linear solid-phase behaviour, the elastic matrices have to be 

substituted by the proper tangent matrices 

 
T

T T d
P(u)

K B D B
u

 (2.5.28)

 
T

TT T d
3

s
t

P(u)
K B D m N

T
 (2.5.29)

where EK  and TEK may be replaced by TK  and TTK  respectively. The discretised 

mass and energy conservation equations can be written as: 

 
ww wg wt ww wg

w g
w g w

wsC P C C H K
t t t t

u p p T
p p f (2.5.30)

 
gw gg gt gg

w g
w g g

gs gwC C P C K H
t t t t

u p p T
p p f  (2.5.31)

 
tw gt tt

w g
w g t

ts tw ttC C C P K H
t t t t

u p p T
p p f  (2.5.32)

The equations (2.5.23) to (2.5.32) can finally be written in the following matrix from: 

 

t

X
HX + S = F  (2.5.33)
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Where hyper - matrices are: 

 
T sw sg tT

ws ww wg wt

gs gw gg gt

ts tw tg tt

K KC C

C P C C

C C P C

C C C P

S  (2.5.34)

 

ww wg

gw gg

tw tt

0 0 0 0

0 0

0 0

0 0

H K

K H

K H

H  (2.5.35)

 
w

g

u

p

p

T

X  (2.5.36)

 u

w

g

t

t

f

f

f

f

F  (2.5.37)

The matrices are defined as following: 

 ws g wS S dT

gw wC T

p u
N m L N  (2.5.38) 

 

ww w g w w

g

g w w

w

S S S S d

S d

S S S

d

gw w w

s w

gww

c

gw c w w w c

s

w gw

c

n n
P

K K

pM
n

R p

n
p p p

K

S
n p

p

T

p p

T

p p

T

p

p

N N

N N

N

N

 (2.5.39) 
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wg g g w

g

w
g w w

S S S d

S d

S S S d

gw w

s

gww

c

gw c w w w w w gw

s c

n
C

K

pM
n

R p

Sn
p p p n

K p

T

p p

T

p p

T

p p

N N

N N

N N

(2.5.40) 

 

wt w g

g w w

w

d S d

S S S

d

gw gww
sgw

gw c w w w c

s

w gw

p pM
C S n

R T

n
p p p

K

S
n

T

T T

p t p t

T

p

t

N N N N

N

N

 (2.5.41) 

 

ww

2

g

d

1
d

T
rw

w

w

T gwa w
g

g c

k
H

pM M

M p p

p p

p g p

k
N N

N D N

 (2.5.42) 

 

wg 2

g

2

1
d

T
a w

g

gw gw rg

gw

g c gg

M M
K

M

p p k

p p

p g

p p p

N D

k
N N N

 (2.5.43) 

 gs gS dT

gaC T

p uN m L N  (2.5.44) 

 

w
gw w g

g

S S d S d

S d

g ga c ga

s s c

gww

c

Sn n
C p n

K K p

pM
n

R p

T T

p p p p

T

p p

N N N N

N N

 

(2.5.45) 



Discretized equations for the deforming porous medium 

 

72 
 

 

2 w
gg g

g g

S d - S d

S d S d

g ga c ga

s s c

gwa w

c

Sn n
P p n

K K p

pM M
n n

R R p

T T

p p p p

T T

p p p p

N N N N

N N N N

 (2.5.46) 

 

w
gt g

g g2

d S d

S S d

ga sg c ga

s

gw gwa w

Sn
C p n

K T

p pM M
n n

R R T

T T

p t p t

T

p t t

N N N N

N N N

 (2.5.47) 

 gw 2

g

1
d

T gwa w
g

g c

pM M
K

M p p
p g pN D N  (2.5.48) 

 

gg

22

g

d

1
d

T rg

ga

g

T gw gwa w
g

g c g

k
H

p pM M

M p p p

p p

p g p p

k
N N

N D N N

 (2.5.49) 

 ts wS dT

vap wC HT

t uN m L N  (2.5.50) 

 

2

tw w w

w
w w

S +S d

S S d

vap w

s w

vap w w g

s s c

n n
C H

K K

Sn n
H p p n

K K p

T

t p

T

p p

N N

N N

 (2.5.51) 

 

tg w g

w
w w

S S d

S S d

vap w

s

vap w w g

s s c

n
C H

K

Sn n
H p p n

K K p

T

t p

T

p p

N N

N N

 (2.5.52) 

 

tt w

w
w

d S

S d

p vap sw w weff
s

g

s

n
P C H p

K

Sn
p n

K T

T T

t t t t

t

N N N N

N

 (2.5.53) 
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 tw d
T

rw
vap w

w

k
K Ht p

k
N N  (2.5.54) 

 

tt w

g

S d

S d d

Tw rw
w p w w

w

TTrgg

g p g g eff

g

k
H n C p

k
n C p

T

t t

T

t t t t

k
N g N

k
N g N N N

 (2.5.55) 

The right hand side terms of the (2.5.23), (2.5.30), (2.5.31) and (2.5.32) are 

 
1T T

u u s w w g g un S n S n d df N g N t  (2.5.56)

 T

w p w gw c gw gw

T T rgrw
p w w p gw g

w g

q q d

kk
d d

f N 

kk
N g N g

 (2.5.57)

 T

g p gaq df N  (2.5.58)

 
0

T
Trw

T T vap w w t T c

w

k
H d q T T d

k
f N g N 

 

(2.5.59)

2.6. Isothermal airflow and waterflow in deforming 

porous medium 

This case foreseen two fluids that are moving both and one of these has the 

capability to displace the other fluid from pores during the deformation process. In 

most of engineering applications, that involve soils as material for a constructions or 

granular material is studied in order to model natural phenomena, such landslides 

or debris flow, the effect of temperature can be neglected and the full formulation 

presented in the section 2.5 can be simplified. This is not the case of modelling 

concrete or other construction porous material, subjected to fire o high temperature 

gradient, because the variation of temperature in time is very high in certain cases 

and in the same way the temperature gradients. In these cases, the effect of the 
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phase change from liquid to gas has a paramount role on determining the pore 

pressure that can reach high levels and can produce spalling effects. In the case of 

an aquifer used as a storage of air or gas, or for a tunnel or shaft construction 

below the water table, where seepage towards the opening is prevented by the use 

of compressed air, the isothermal conditions is accepted. 

Dealing with such problems, means that the basic variables involved on the system 

of equations mentioned a while ago, reduce to the three Cartesian directions 

, ,x y zu u u , the water pressure wp  and the gas pressure
gp . 

In order to investigate isothermal process, such the cases discussed above or such 

isothermal consolidation of unsaturated soil, the system of equations in the form 

(2.5.23), (2.5.30), (2.5.31) and (2.5.32) has to be changed, due that the 

dependency of some processes from temperature gradients and thermal energy 

exchange to one phase to another can be neglected, resulting in a simplification of 

the set of equations. The temperature doesn!t vary during the processes, and so, 

can be excluded from computation, except of using the reference temperature  

when is needed. In the simplified set of equations, now, the mass balance 

equations that will be used in the following formulation, take into account of the 

liquid water mass balance, this last and of the gas mass balance equation, 

considered as a mixture of dry air and water vapour. This assumption holds by the 

fact that without thermal variations or energy exchanges between the phases, the 

source term  m  is every time null and the liquid water and the gas mixture, 

preserve during the processes. 

Again the linear momentum balance equation (2.2.1) and the density of the 

multiphase medium (2.2.3) hold. The mass balance equation for water and gas is 

obtained from the (1.4.18) and (1.4.22) neglecting the accelerations terms (except 

gravity), the term that takes into account of any phase change ( 0m ), and the 

gradient of the water and gas density that depends on the temperature. The 

resulting equations for the water and the gas mixture of air and water vapour are: 

 
2

0

gw w
w w g

S W S

T Tw rw
w c w w w

S w

pn S pn n
S S S

K K t K t

S kn
S p S n p

t K t

ku
m gL

(2.6.1)
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2

0

gw w
w g g c g

S S S

g g g rgT T

g g g

g g

pp Sn n n
S S S p S n

K t K t K t

nS p M k
S p

t t R

ku
m gL

 (2.6.2)

Effective stress principle (2.2.2) and constitutive equation (1.3.13) hold. The 

capillary pressure relationship (1.2.6) for isothermal conditions can be rewritten as 

 
w w cS S p  (2.6.3)

All other needed properties hold like the general case.  

The initial conditions (2.4.1) and boundary conditions (2.4.2) are valid also in the 

isothermal case, like the general case, with except for the conditions on initial 

temperature that now is constant during time and equal to  on whole domain. The 

traction boundary conditions (2.4.3)  for the stress are unchanged. The water flux 

on boundary q

w  reduces to   

 
on

rw
T q

w w w w wr

k
p q

k
g n  (2.6.4)

And the gas flux on boundary q

g reduces to 

 
on

Trg q

g g g g g

g

k
p q

k
g n  (2.6.5)

Displacements and pressures values can be expressed in terms of their nodal 

values like in (2.5.12): 

 , ,u w p w g p gp pu N u N p N p  (2.6.6)

Like in the section 2.5 the application of standard finite element discretization 

procedures, i.e. the weighted residual method and then the Galerkin method [3], 

and the consequent substitution of weight functions with the approximations (2.6.6) 

followed by an introduction of the effective stress principle (2.2.2), results in the 

following expression for the equilibrium equation 

 

1
q
u

T T

w p w g p g

T T

u s w w g g u

d S S d

n S n S n d d

B '' m N p N p

N g N t
 (2.6.7)
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That is the same of (2.5.13), but now for a linear elastic solid holds 

 ''T

edP(u) B K u  (2.6.8)

due that the isothermal conditions allow that thermal contribute  have no 

contribution. 

Again for non-linear solid phase behaviour the tangent stiffness matrices has to be 

taken into account and so the expression (2.5.23), change in  

 
T sw sgK

w g u

C C
t t t t

u p p f
 (2.6.9)

The matrices TK , swC and sgC  are defined as the (2.5.24), the (2.5.26) and the 

(2.5.27), as the u
f term is defined as the (2.5.56). 

The specific moisture content  

 
w

S

c

S
C

p
 (2.6.10)

arises from considering in the mass balance equations (2.6.1) and (2.6.2) that 

 
gw w c w

S

c

pS S p p
n n C

t p t t t
 (2.6.11)

The weighted residual method applied to the balance equations gives for the liquid 

water phase the following expression 

 
*

*

* *

* 0
q
w

T S S w w
w w w g S

S W

gT S S
w g w g S

S

T T T rw
w w w w

w

T w

w

C C nS pn
S S p p C d

K n n K t

pC Cn
S S p p C d

K n n t

k
S d p d

t

q
d

w

w

ku
w m w g

w

L

 (2.6.12)
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And for the gas phase 

 

0
q
w

g g gT S S
g g g w S

S g

T S S w
g w g w S

S

rgT T T

g w w w

g

gT

g

nS M pC Cn
S S p p C d

K n n R t

C C pn
S S p p C d

K n n t

k
S d p d

t

q
d

w

w

ku
w m w g

w

L

 (2.6.13)

Substituting the weight functions with the approximations (2.6.6), as done in section 

2.5 the (2.5.30) and the (2.5.31) change in 

 
ww wg ww

w g
T w w

swC P C H
t t t

u p p
p f  (2.6.14)

 
gw gg gg

w g
T g g

sgC C P H
t t t

u p p
p f  (2.6.15)

Again the set of three differential equations (2.6.7), (2.6.14) and (2.6.15) can be 

written in the synthetic form (2.5.33). The hyper matrix and vector of the system 

now will be 

 
T sw sg

ww wg

gw gg

K
T

sw

T

sg

C C

C P C

C C P

S  (2.6.16)

 

ww

gg

0 0 0

0 0

0 0

H

H

H  (2.6.17)

 

w

g

u

p

p

X  (2.6.18)
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 u

w

g

t

f

f

f

F  (2.6.19)

Others matrices are defined as follows:  

 dT T

sw wC ST

p u
N m L N  (2.6.20) 

 
ww dS S w

w w w g S

S W

C C nSn
P S S p p C

K n n K

T

p pN N  (2.6.21) 

 wg dS S
w g w g S

S

C Cn
C S S p C

K n n

T

p pN N  (2.6.22) 

 ww d
T

rw

w

k
H p p

k
N N  (2.6.23) 

 
gs dT

gC ST

p uN m L N  (2.6.24) 

 gw dS S
g w g w S

s

C Cn
C S S p p C

K n n

T

p pN N  (2.6.25) 

 
gg d

g gS S
g g g w S

S g

nS MC Cn
P S S p p C

K n n R

T

p pN N  (2.6.26) 

 
gg d

T rg

g

k
H p p

k
N N  (2.6.27) 

The specific moisture content that is present in the (2.6.21), the (2.6.22), the 

(2.6.25) and the (2.6.26) corresponds to the derivative of the degree of water 

saturation function (or capillary pressure function) (2.6.3). The expression of 

SC depends on the formulation chosen from the ones proposed on section 1.5. In 

particular for Brooks and Corey [4, 5] relationship (1.5.8) the SC is defined as:  

 

, ,1

0

w b
S w irr g irr c b

c c c

w b

S c

c

S p
C S S for p p

p p p

S
C for p p

p

 (2.6.28)
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For the van Genuchten [6] relationship (1.5.14) the SC is 

 1

, ,1 1

0

m
n n

w irr g irr c cw

S

c c

c

S S m n p pS
C

p p

for p

 (2.6.29)

For a detailed description of the parameter in the (2.6.28) and (2.6.29) please refer 

to section 1.5. It has been seen from numerical tests that SC has to be set equal to 

0 before reaching a null value of capillary pressure also using van Genuchten 

formulation that has not a limiting value like the Brooks and Corey formulation.  

The right hand side terms of the (2.5.12), the (2.5.23) and the (2.5.24) are 

 
1T T

u u s w w g g un S n S n d df N g N t  (2.6.30)

 T
Trw w

w p w w p

w w

k q
d d

k
f N g N  (2.6.31)

 T rg gT

g p g g p

g g

k q
d d

k
f N g N  (2.6.32)

Finally, further simplification to the set of equations can be achieved for example 

considering an isothermal one-phase flow in a partially saturated medium. In this 

case, instead of having the variation in time of both pressures ( wp and gp ), one of 

two, usually gp , is fixed and take for example the value of atmospheric pressure, 

all along the time span and the whole domain. The degree of water saturation, so, 

is function only of water pressure, and due to the thermal and gas phase fixed 

degrees of freedom, the number of terms in the hyper matrices decrease again.  

The simplest case is given by water flow in a fully saturated porous medium where 

the degree of water saturation is always equal to 1. These two cases are widely 

discussed on [1, 7].  

2.7. Solution procedures. Time discretization 

The analysis of water and gas flow as well as the heat flow through a partial 

saturated, deforming porous medium represents a field problem with at maximum 
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six degrees of freedom. By the way if isothermal processes have to been 

investigated, the isothermal set of equations can be solved, with relevant benefits 

on computational economy. Fixing the temperature degree of freedom, i.e. working 

with a fixed reference temperature, reduces the number of terms that has to been 

calculated to form the hyper matrices and the overall dimension of them as can see 

comparing the (2.5.34) and the (2.5.35), with the (2.6.16) and the (2.6.17). 

The solution of the system of equations (2.5.33) both in the non-isothermal and 

isothermal version can be done in two basic ways: 

 Monolithic approach 

 Partitioned approach 

The monolithic argumentation approach [3] first proposed by Incropera et al. [8] has 

the advantage to preserve the full coupling of the set of equations, resulting, 

however, in a lack of symmetry of the coefficient matrix for the combined equations 

after the discretization in time has been done. In order to try to preserve the 

symmetry of the system matrix the partitioned approach performs a partitioning of 

the combined system of equations after the integration in the time domain. One 

particular partitioning technique, proposed by Schrefler [9], produces a symmetric 

coefficient matrix and an effective gain in computing time. Both the monolithic 

argumentation approach and the partitioned solution procedure refer to the same 

discretization process for the time domain. The partitioning strategies are often 

adopted due to the fact that the solution of equations presented in this chapter can 

be separated and treated in two different steps. Thus, depending on the equations 

of the phase solved first, only one variable will be independent, and once calculated 

for the current time step the values will be utilized in the calculations of the others 

dependent variables, in order to fulfil the equilibrium and continuity equations. 

Despite the advantages in computational time and the possibility to use different 

kind or order of elements between the phases, the solution is affected by the fact 

that the computations for all phases are not contemporary and errors can occur in 

each phase. Insights on uncoupled solution methods are given by Morris [10].  

The monolithic approach is the one selected for the present work, in order to obtain 

a direct solution and preserve the coupling of the system. The lack of symmetry of 

the system matrix, along with the lack in performance foreseen, will be treated with 

the adoption, in the F.E. code, of sparse solvers that are optimized for non-

symmetric systems of equations. 
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The discretization in time can be done with the finite differences in time or with the 

weighted residual method in time with point collocation [2]. The same equations 

emanate from the two methods. 

Considering the (2.5.33) and the hyper matrices involved in this equation, it can be 

easily seen that the matrices S  (2.5.34) and H  (2.5.35) are in general non-

symmetric depending strongly by the unknowns vector X  (2.5.36). With the 

generalized midpoint rule (or trapezoidal method) that has an implicit scheme, the 

unknowns vector and relative derivative can be approximated as 

 

1 1

d
/ (1

d
n n n n n

n

t )
t

X
X X X X X  (2.7.1) 

and from the evaluation of the (2.5.33) at time nt , it can be written 

 
1 (1n n nt ) t tS + H X S H X F  (2.7.2)

In the previous equation, t  is the time step length, 1nX  and nX  are the state 

vectors at times 1nt and nt ,  is a parameter which has limits 0 1 and its 

value may be obtained from the numerical properties of the scheme. Rewriting the 

(2.7.2) for the non-isothermal case gives 
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+
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T
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(2.7.3)

For  1=  the scheme is fully implicit (forward differences) , with = 0 results in a 

fully explicit scheme (backward differences), with = 0.5  it results the Crank-
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Nicolson scheme that is the one adopted for the analyses in the present work. For 

the monolithic approach also the value of = 0.875 has been used with good 

results. Hwang et al. and Sandhu [11, 12] proposed different values for  that lead 

to different schemes from the above mentioned. The matrices in the (2.7.2) are 

evaluated at time nt . 

For the isothermal case the (2.7.3) educes to 

T sw sw

w

sw ww ww wg wg

g

sg gw gw gg gg 1

u

T sw sw

w w

sw ww ww wg wg

g g

sg gw gw gg gg

K

K

1 1

1 1

T

T

nn

T

T

nn

C C

C P tH C tK

C C tK P tH

C C t

C P tH C tK t

C C tK P tH

u

p

p

f

u

p f

p f

+

+ +

n

(2.7.4) 

The components of (2.7.4) are the ones presented in section 2.6. The (2.7.2) can 

be rewritten in the following concise form and a single step finite difference operator 

can be obtained 

 
1 1 (1 0n n n nn n

t ) t tX S + H X S H X F  (2.7.5)

where  

 
11n n nX X X  (2.7.6)

and 

 
1 1 1 1 1, , ,

T
u w g T

n n n n nX X X X X  (2.7.7)

The coupled equation system (2.7.2), presented in section 2.5 and 2.6 reveals that 

the system of equations is non-linear and can be linearized by an iterative Newton-

Raphson procedure, synthetically recalled as 

 

1

1 1 , , ,
i
n

i i

n n u w g T

X

X X
X

 (2.7.8)
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In the previous, the Jacobian matrix takes the following form 

 

1

1

i
n

i
n

u u u u

w g

w w w w

w g

g g g g

w g
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with an unknowns increment vector that for the i-th iteration is 
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The updating equations for the basic variable vector is 

 1

1 1 1

i i i

n n nX = X X  (2.7.11)

Jacobian matrix can be updated also after a fixed number of time steps, rather than 

every time step and in this case the linearization is done by a modified Newton 

Raphson method. Numerical properties of the time discretization in the non-linear 

(along with linear) case are deepen in detail in the bibliography at number [1]. 

2.8. Spatial discretization. Choice of elements 

The numerical integration is usually realized using computational techniques, for 

instance Gauss quadrature, Newton-Cotes quadrature [2], where the integral 

function is evaluated in a series of specific points inside the domain and on the 

border of it and then it is weighted and added up. 

All the procedure has been developed in local or normalized coordinates , ,  

which take ad maximum value of 1, positive or negative depending on the reference 

system adopted, as showed in Figure 2.8.1.  
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For each element it is possible to write 
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 (2.8.1)

In which N  are standard shape functions given in terms of local coordinates 

, , . The points that have coordinates 1x , 1y , 1z , etc. will lie at appropriate 

points of the element boundary. These points can establish nodes a priori. The 

global coordinates are so expressed in terms of nodal coordinates by means of a 

relation where weight functions depending on the local coordinate system. Figure 

2.8.1 shows the 20-node isoparametric element, also called brick element or 

Hexa20.  

 

Figure 2.8.1: The 20-node isoparametric element. 

The shape functions in terms of local coordinates for this element are for the corner 

nodes 
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And for a typical mid-side node: 

 

2

0 0

0 1 1

1
1 1 1

4

i i i

iN
 (2.8.3)

This element has been chosen to perform the discretization of problems in space 

for the present work and for the F.E. code PLASCON3D and PLASCON3D_PS that 

will be discussed in chapter 4. 
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3 Implementation of the numerical 

code PLASCON3D_PS 

3.1. Introduction 

One of the most time demanding task of the work presented within this thesis and 

necessary to pursue the final goal of realizing a numerical F.E. code, has been the 

programming activity related to the numerical implementation of the discretized 

equations of the previous chapter. The numerical code produced is the result of a 

rewriting and extension work based on the F.E. #in house$ code PLASCON3D. This 

code will be briefly introduced on next sections. 

3.2. Finite Element code PLASCON3D 

The code that has been chosen for the implementation of the partial saturated 

formulation is the fully coupled F.E. research code PLASCON3D that deals with a 

u-p-T formulation (i.e. u stands for displacements, p for pressure and T for 

temperature). PLASCON3D is based on the fully saturated, eventually non-

isothermal, one-phase flow applied to a deformable porous medium. This 

formulation represents the most simplified set of equations that can be derived from 

the set of equations presented on chapter 2, at section 2.6. The fully saturated 

formulation can be obtained once conserving as fluid phase only the liquid phase. 

In this way is possible to impose the full saturation of voids, i.e. Sw = 1 and Sg = 0, 

the liquid pressure will be the only representative pressure basic variable. As result 

of unitary degree of saturation and a unique pressure variable, the terms related to 

the gas phase disappear and the dimension of the problem reduces. Furthermore, 

the system matrices H  and S  are independent from the state vector X  and 

linearity holds (except that the constitutive relations of the material can even 

introduce material nonlinearities). The consistency and stability conditions are less 

strictly and computationally this formulation is less onerous than the one that will be 

present further. 
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Together with the assumption of small displacements and neglecting the inertial 

effects as done in previous chapters when dealing with the acceleration terms 

(section 1.4), the code has been written taking into account of other simplifying 

assumptions: 

(a) Viscosity of liquid phase will be neglected; 

(b) Volume forces and hydraulic pressures are constant and act in the direction 

of one of global coordinates; 

(c) Permeability matrix has null terms out of the diagonal. 

The assumption (a) neglecting the viscosity term and its variations in time, has the 

effect that the permeability coefficients first introduced in chapter 1, and preserved 

constant during calculations, have to take into account of the eventually initial and 

constant viscosity, as a factor that affect the permeability itself. 

Second assumption (b) says that the volume forces that will be calculated from the 

average density of the fully saturated medium and the gravity acceleration term as 

well as the hydrostatic pressure, act in the direction of one of global coordinates, in 

this case the coordinate z. 

Assumption (c), cause that the intrinsic permeability matrix k  as defined in chapter 

1, presents only diagonal terms, with null extra-diagonal coefficients. Setting to zero 

the values of the extra-diagonal coefficients, means that only the direct 

permeabilities have been taken into account, and the contribute given in each 

direction (x, y, z) by the permeability characteristics of the medium in the other two 

directions, has been neglected.  

The constitutive model implemented in the original version of PLASCON3D is the 

elastoplastic model following the formulation proposed by Mohr " Coulomb and 

Modified Cam-Clay [1]. 

The complete manual for  the first release two-dimensional version named 

PLASCON as well the descriptions of the variables and routines involved, can be 

found on bibliography at number [2]. A manual for the three-dimensional 

implementation named PLASCON 3D can be found in the references [3].  

Further developing on the code PLASCON and PLASCON 3D has been done by 

Majorana C.E., Salomoni V.A. and Zanetti S. [4] and Salomoni V.A and Fincato R. 

[5-8]. In particular Salomoni, following the work of Bolzon et al. [9], introduced the  

generalized elastoplastic constitutive relation that was developed by Pastor, 

Zienkiewicz e Chan [10]. Furthermore Salomoni and Fincato introduced an 
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unconventional plasticity approach based on the subloading surface plasticity 

model to study the subsidence phenomena above gas reservoir [5-8]. 

Figure 3.2.1: Simple block schematic of the program PLASCON3D.  

Figure 3.2.1 shows a simple schematic of the main program PLASCON in the 

original version and the mains subroutines. Some minor dependencies has been 

omitted. In particular the constitutive equations and relative developments that 

regard the plasticity models are dealt in the routine SETDEP recalled by PLISQX. 

The improvements introduced by present work that will be discussed in next section 

don!t interest the plasticity routine SETDEP that has been frozen for the moment 

and will not recalled. Due to this exclusion, the resulting code that has been chosen 

as starting point for further implementations deals with a pure isotropic and elastic 

medium.  

The finite element used in the PLASCON3D code is the 20-node isoparametric 

element with quadratic shape functions as described in section 2.8. 
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3.3. Finite Element code PLASCON3D_PS 

In order to implement the discretized set of equations as presented in chapter 2, an 

important upgrade has been necessary to the fully saturated code presented in 

section 3.2.  

The code has been subjected to various modifications during time since his first 

release, where the instruction were inputted in Fortran IV language and the results 

as well as the wide arrays were stored in tape unit. The developing of new standard 

for Fortran and new compilers  along with the substitution of obsolete features like 

the commons in favour of modules and  the possibility of dynamic allocation of 

variable, allowed have to rewrite in more efficient way the code in order to improve 

the capabilities and the portability. In the first version, the code was thought to run 

on VAX calculators, now along with the possibility to run code on dedicated servers 

the main need is to be sure that the code will compile and run efficiently under 

Windows systems as well as under UNIX machines.  

As explained in section 3.2 the main modifications, that have been already done 

have been the extension of the analysis capabilities in order to treat two-

dimensional domains to three-dimensional domains and the integrations that take 

into account of better plasticity relations for the solid phase. Such integrations, as 

the last mentioned, are focused on the constitutive routine and on the routines 

related to the iterative solving procedure, that has been improved to deal with 

nonlinearities derived from plasticity [11]. 

The work that now has been necessary to convert the previous fully saturated 

version to the new one, comprehensive of a fully coupled partial saturated 

formulation, has been more extensive if looking at the number of  routines that has 

been subjected even to slight rather than deep modifications. This means only that 

the rewriting and upgrading work has affected more or less all the standard routines 

of the previous version, with the introduction of new instructions, with except of 

constitutive routines that has been deactivated for the part of instructions that 

involve the plasticity algorithms, taking into account, only for the moment of a linear 

elastic relation for the solid phase, which calculations are performed in the PLISQX 

routine.  

In PLASCON3D_PS the viscosities of gas and water have been considered as 

factor that affects the hydraulic conductivity of water and gas. Again like the 

previous version, the intrinsic permeability matrix k  presents non-zero terms only 

in the diagonal, neglecting thus the cross related effects on directions done by the 
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other two directions. This means that basically the vertical permeability can be 

different from the horizontals ones, taking into account of the anisotropy due to the 

deposition process of sedimentary porous media during the geological formation of 

the material. 

Figure 3.3.1: Simplified schematic of the structure of the code PLASCON3D_PS. 
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Along with the increase of degrees of freedom of the problem and  to the presence 

now of two pressure terms (one for liquid phase and one for gas phase) the 

standard skyline solver (subroutines SOLVE and BSUB on Figure 3.3.1) involved in 

the solution of the system (2.7.2) with the Gaussian elimination method [12] has 

been maintained. However, due to the lack of performances of the standard solver, 

new routines that utilise optimized solvers [13-15] has been written in order to 

speed up the solving procedures and reduce the computational time. In particular, 

one of these solvers is able to carry on parallel computation. In this way, the code 

PLASCON3D_PS that is written in a sequential manner, single thread, can be 

parallelized during the solving procedures.  

The upgrading work has been done using the Fortran 95 language, taking 

advantage of dynamic allocation of arrays. By the way, the standard routines written 

in Fortran 77 have been maintained, where possible. Comparing the two program 

versions, also the semi - dynamic allocation done by the system vector A [2], has 

been dismissed, in favour of a complete declaration of variables. 

Concluding, in the current version of PLASCON3D_PS the isothermal formulation 

presented in section 3.6 has been fully coded and tested. Furthermore the routines 

involved in the thermal coupling have been implemented in a basic way, but are in a 

debug stage and due to this have not been used in the present work. 

3.4. Description of new routines 

With respect of the schematic presented on Figure 3.2.1, some routines and 

procedures has been added or modified in order to provide the code instructions to 

calculate new system matrix terms, as already explained in section 3.3. The 

complete description of the new code as well the complete manual is not intended 

to be given here. As previously mentioned the manual of the classical PLASCON 

and PLASCON3D [2, 3]  can still cover and explain very well also this version of the 

code.  Hence, only the description of the most important new procedures and the 

sections of the code that has been modified deeply will be reported. 

SWESG 

The routine SWESG plays a main role on the code framework. In fact it contains all 

the code that is implied on the calculus of the degrees of saturation Sw and Sg. This 

routine also calculates the relative permeability coefficients, due to the direct 

relation with the equivalent saturation Se. The functions implemented are those 

given by Lloret and Alonso [16], by Brooks and Corey [17], Liakopoulos [18] and 
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van Genuchten [19, 20].When a specific expression for  the calculus of the relative 

permeability coefficients isn!t supplied with above mentioned relationships, the  

Brooks and Corey relations have been used by default. 

This routine is called before prior to perform the gauss point integration over the 

single element, that is the main purpose of the FL36QX routine. The routine 

SWESG provides as output for each node of the current element the vectors 

SW(20), SG(20), KRW(20) and KRG(20). A vector containing the nodal capillary 

pressure ELPORECP(20) is also calculated from the liquid and gas nodal pressure 

vectors ELPOREW(20) and ELPOREG(20). 

    subroutine SWESG (PROP,ELPOREW,ELPOREG,ELPORECP,NODEL) 
!--- 
!---  Description 
!--- 
! *** CALCULATE SW AND SG AS A FUNCTION OF CAPILLARY PRESSURE  
!--- 
!---  Modules included 
!--- 
      use PARSAT 
      use DIMPARSAT 
      use STORAGE_PS 
      use DIMVAR 
!--- 
      implicit none 
!--- 
!---  Variable declaration 
!--- 
      . . .  
!--- 
!--- 
!---  Saturation initialization 
!--- 
      SW = 0.d0 
      SG = 0.d0 
      SE = 0.d0 
       
!---  Read from input file initial saturations      
      IF (sw_ext .eq. 1) THEN 
            READ(46,*) (ext_saturations(J), J=1,4) 
            SW = ext_saturations(1)  
            SG = ext_saturations(2) 
            SWIRR = ext_saturations(3) 
            SGIRR = ext_saturations(4) 
            DO I = 1, NCN 
                SE(I)    =  (SW(I) - SWIRR) / (1-SWIRR) 
            END DO 
            DO I = 1,NCN 
                i_node = NODEL(I) 
                SWW (i_node)  =    SW(I) 
                SGG (i_node)  =    SG(I) 
            END DO 
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            DO I = 1,NCN 
                ELPORECP(I) = ELPOREG(I) - ELPOREW(I) 
            END DO 
            DO I = 1, NCN 
                SE(I)    =  (SW(I) - SWIRR) / (1-SWIRR) 
            END DO 
      ENDIF 
!--- 
!--- Read from input file the irreducible saturation 
!--- 
      SWIRR     = PROPPS(MAT,15) 
      SGIRR     = PROPPS(MAT,16)  
!--- 
!--- Calculate the capillary pressure for each node 
!--- 
      DO I = 1,NCN 
         ELPORECP(I) = ELPOREG(I) - ELPOREW(I) 
      END DO 
!--- 
!--- Initialize suction    
!--- 
      SUCTION  =    0.D0 
!--- 
!--- Impose the initial water saturation (optional) 
!--- 
      IF (NSTEP .EQ. 1 .AND. SWINIT .EQ. 1) THEN 
              SW     =    SWIN 
              SG     =    1.D0 - SW  
      ELSE IF (NSTEP .GT. 1 .OR. SWINIT .NE. 1) THEN 
!--- 
!--- Calculus of degree of saturation with the selected function 
!---  
      SELECT CASE (sw_form) 
!--- 

!--- Alonso et al. (1990) SW function 
!--- 
      CASE (1)                               
      EMME     =    1.D0 - SWIRR  
      ELLE     =    5.D0          
      DO I = 1,NCN 
       SUCTION = ELPORECP(I) 
       IF (PRESSUREPA) THEN 
         SUCTION = SUCTION / 1000000.D0 
       END IF 
!---  
       If (SUCTION .GE. 0.d0) then 
           SW(I)  = 1.D0 - EMME * TANH (ELLE * SUCTION) 
       SG(I)  = 1.D0 - SW(I) 
              if (SG(I) .LT. SGIRR) then 
                  SG(I) = SGIRR 
                  SW(I) = 1.d0 - SGIRR 
              end if 
       else if (SUCTION .LT. 0.d0) then 
              SW(I) = 1.d0 - SGIRR 
              SG(I) = SGIRR        
       end if 
       If (ONE_PHASE_FLOW .EQ. 1 .AND. SG(I) .GT. SGIRR) 
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          ELPOREG(I) = PROPPS(MAT,14) 
!---           
      END DO 
!--- 
!--- Brooks & Corey (1966) SW function 
!--- 
      CASE (2)                              
      !IF (PRESSUREPA) p_bubbl = p_bubbl / 1000000.D0  
      p_bubbl   = PROPPS(MAT,17)  
      PSDIND    = PROPPS(MAT,18) 
      maxsuct   = PROPPS(MAT,20)      
       !IF (PRESSUREPA)  maxsuct = maxsuct /  1000000.D0 
       DO I = 1,NCN 
       SUCTION = ELPORECP(I) 
       !IF (PRESSUREPA) THEN 
       !  SUCTION = SUCTION / 1000000.D0 
       !END IF 
       if (SUCTION .GE. p_bubbl .AND. SUCTION .LE. maxsuct) then 
           SW(I) = SWIRR + (1.d0 - SGIRR - SWIRR) *   
                   (p_bubbl/SUCTION)**PSDIND 
           SG(I) = 1.D0 - SW(I)  
       else if (SUCTION .GT. maxsuct) then  
           SW(I) = SWIRR + (1.d0 - SWIRR) * 
                  (p_bubbl/maxsuct)**PSDIND 
           SG(I) = 1.D0 - SW(I) 
       else if (SUCTION .LT. p_bubbl) then 
              SW(I) = 1.d0 - SGIRR 
              SG(I) = SGIRR 
       end if 
!--- 
      If (ONE_PHASE_FLOW .EQ. 1 .AND. SG(I) .GT. SGIRR)  
      ELPOREG(I) = PROPPS(MAT,14) 
!--- 
!--- Liakopoulos SW function 
!--- 
     CASE (4)                                        
       DO I = 1,NCN 
 
       If (ELPORECP(I) .GE. 0.d0) then 
       SW(I)  = 1.D0 - 1.9722D-11 * (ELPORECP(I)**2.4279D0) !Questa 
funzione restituisce Sw = 0 a Pc = 25555 Pa 
       SG(I)  = 1.D0 - SW(I) 
              if (SG(I) .LT. SGIRR) then 
                  SG(I) = SGIRR 
                  SW(I) = 1.d0 - SGIRR 
              end if 
       else if (ELPORECP(I) .LT. 0.d0) then 
              SW(I) = 1.d0 - SGIRR 
              SG(I) = SGIRR 
       end if 
       If (ONE_PHASE_FLOW .EQ. 1 .AND. SG(I) .GT. SGIRR)  
       ELPOREG(I) = PROPPS(MAT,14) 
!---           
      END DO 
!--- 
!--- van Genuchten (1978, 1980) SW function 
!--- 
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      CASE (5)  
      AVG  = PROPPS(MAT,21)  
      NVG  = PROPPS(MAT,22)  
      MVG  = PROPPS(MAT,23)      
!--- 
       DO I = 1,NCN 
       SUCTION = ELPORECP(I) 
       if (SUCTION .GT. 0.d0) then 
           SW(I) = SWIRR + (1.d0 - SGIRR - SWIRR) * 
                   (1/(1+(AVG*SUCTION)**NVG))**MVG 
           SG(I) = 1.D0 - SW(I)  
       else if (SUCTION .LE. 0.d0) then 
              SW(I) = 1.d0 - SGIRR 
              SG(I) = SGIRR 
       end if 
!--- 
       If (ONE_PHASE_FLOW .EQ. 1 .AND. SG(I) .GT. SGIRR) 
       ELPOREG(I) = PROPPS(MAT,14) 
!---       
      END DO        
      END SELECT 
      ENDIF 
!--- 
!--- Copying the saturation values on global vectors 
!--- 
      DO I = 1,NCN 
        i_node = NODEL(I) 
        SWW (i_node)  =    SW(I) 
        SGG (i_node)  =    SG(I) 
      END DO  
!!------------------------------------------------------------------
!--- 
!--- Calculus of equivalent saturation 
!--- 
     DO I = 1, NCN  
            i_node = NODEL(I) 
            SE(I)    =  (SW(I) - SWIRR) / (1-SWIRR) 
!--- 
!--- Calculus of relative permeability coefficient 
!--- 
            SELECT CASE (sw_form) 
!--- 
!--- 
!--- Liakopoulos 
!--- 
            CASE (4) 
            !--- Wetting Phase     
            KRW(I) = 1.d0 - 2.207d0 * (1.d0 - SW(I)) ** 1.0121d0    
            !--- Non-Wetting Phase 
            KRG(I) = ((1.d0 - SE(I))**2.D0) *  
                     (1.D0 - SE(I) ** ((2.d0 + PSDIND)/PSDIND)) 
            IF (KRG(I) .LT. PROPPS(MAT,19)) KRG(I) = PROPPS(MAT,19) 
!--- 
!--- van Genuchten (1978 - 1980) 
!--- Mualem        (m = 1-1/n) 
!--- Burdine       (m = 1-2/n) 
!--- 
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            IF (INT(NVG*(1.d0-MVG)) .EQ. 1) THEN  
            KRW(I) = (SE(I) ** 0.5d0) * (1.d0 - (1.d0 -SE(I) ** 
                     (1/MVG)) ** MVG) ** 2.d0 
            KRG(I) = (1.d0 -SE(I)) ** 0.5d0 * (1.d0 -SE(I) ** 
                     (1/MVG)) ** (2.d0 * MVG) 
            ELSE IF (INT(NVG*(1.d0-MVG)) .EQ. 2) THEN 
            KRW(I) = (SE(I) ** 2.d0) * (1.d0 - (1.d0 -SE(I) **  
                     (1/MVG)) ** MVG) 
            KRG(I) = (1.d0 -SE(I)) ** (1.d0/3.d0) * (1.d0 -SE(I) ** 
                     (1/MVG)) ** (2.d0 * MVG) 
            ELSE 
            write(*,*) ' Not Mualem or Burdine for van Genutchen  
                         permeability' 
            pause 
            END IF 
            IF (KRG(I) .LT. PROPPS(MAT,19)) KRG(I) = PROPPS(MAT,19) 
!--- 
!--- Standard Brooks & Corey (1966) relative permeability  
!--- coefficients 
!---             
            CASE DEFAULT 
            !--- Wetting Phase   
            KRW(I) = SE(I) ** ((2.d0 + 3.d0 * PSDIND) / PSDIND) 
            !--- Non-Wetting Phase 
            KRG(I) = ((1.d0 - SE(I))**2.D0) * (1.D0 - SE(I) ** 
            ((2.d0 + PSDIND)/PSDIND)) 
            IF (KRG(I) .LT. PROPPS(MAT,19)) KRG(I) = PROPPS(MAT,19) 
!--- 
            END SELECT 
!--- 
!--- Check for krw and krg  not on 0-1 range  
!---  
            IF (KRW(I) .LT. 0.d0 .OR. KRW(I) .GT. 1.d0) THEN 
                write (IOUT, *) "WARNING: Rel. permeabil. (w) out 
                                  of range! node:", i_node 
            END IF     
!--- 
            IF (KRG(I) .LT. 0.d0 .OR. KRG(I) .GT. 1.d0) THEN 
                write (IOUT, *) "WARNING: Rel. permeabil. (g) out 
                                  of range! node:", i_node 
            END IF             
!--- 
!--- Copying the relative permeability coefficients on global  
!--- vectors 
!--- 
      KRWW (i_node)  =    KRW(I) 
      KRGG (i_node)  =    KRG(I) 
 
      END DO 
 
      END IF 
!--- 
!--- End of Subroutine 
!--- 
      RETURN 
    END 
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The routine selects the proper saturation function by mean of the sw_form 

parameter that has been set on the input file of the program. Then calculates the 

degree of saturation eventually swapping the existence domain depending on the 

capillary pressure, i.e. for negative capillary pressure values or that approaches to 

bubbling pressure the code sets automatically the value of saturations to the limits 

value (except the irreducible values set on the input file). The equivalent saturation 

is calculated for each node of the element considered and relative permeability 

coefficients are calculated so on, in order to be utilized in the FLISQX routine.  

At each time step the global vector provides the full storage of saturations and 

permeabilities for printing purposes. 

SET_PSAT_PARAMETER  

This routine is a minor one and is implied for very few purposes when performing 

isothermal analyses. The main role of this subroutine is to set values for useful 

parameters from the values given in the input files. 

    subroutine SET_PSAT_PARAMETER (PROP,ELTEMP) 
!--- 
!--- Description 
!---     
!---  Calculate some of partially saturated parameters needed   
!--- 
!--- Modules included 
!---        
      use DIMPARSAT 
      use PARSAT 
      use STORAGE_PS 
      use DIMVAR 
!--- 
      implicit none 
!--- 
!---  Variable Declaration 
!--- 
      . . . 
!--- 
      POR       =    PROP(MAT,16) 
      THREF     =    PROPPS(MAT,1) 
      MW        =    PROPPS(MAT,2)  !Molar Mass of Liquid 
      MA        =    PROPPS(MAT,3)  !Molar Mass of Gas 
      RCONST    =    PROPPS(MAT,4)  !Universal gas constant 
      GVECT     =    PROPPS(MAT,13) !Gravity vector  
      !KW        =    1.0d0 / PROP(MAT,6) 
      !KA        =    PROPPS(MAT,14) 
!--- 
!---  Computing the Molar Mass of Gas  
!--- 
      MG      =   ((DENS_GW / DENS_G) * (1.d0 / MW) +  
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                  (DENS_GA / DENS_G) * (1.d0 / MA)) 
!--- 
!---  Setting the reference temperature  
!--- 
      TH = THREF 
!--- 
!---  Calculating the relative pressure of air and water vapour 
!--- (optional in the isothermal analysis)  
!--- 
      KINDPRESS = 1  
      SELECT CASE (KINDPRESS) 
! 
! CASE (1) 
        PGW     =   DENS_GW * TH * RCONST / MW 
        PGA = PG - PGW 
 CASE (2) 
        PGA     =   DENS_GA * TH * RCONST / MA 
        PGW     = PG - PGA 
 END SELECT 
!---  
!--- End of subroutine  
!--- 
      return 
      end subroutine 

 

Optionally it calculates the relative gas pressure of air and water vapour (if the gas 

is not dry air). 

DENSALL 

Routine DENSALL is involved on the calculation of the various densities utilized in 

the general formulation. 

    subroutine DENSALL(PROP,P,NEA1,ELTEMP,ELPOREW,ELPOREG) 
!--- 
!--- Description 
!---     
!--- This routine calculates the medium, water, air and water vapour 
!--- density.  
!--- 
!--- Modules included 
!---        
      use MTMTB 
      use DIM 
      use SPC 
      use SPC1 
      use SPC3 
      use SPC5 
      use CTR1 
      use VAR 
      use PLAST 
      use PARSAT 
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      use DIMPARSAT 
      use STORAGE_PS 
      use DIMVAR 
!--- 
      implicit none 
!--- 
!---  Variable Declaration 
!--- 
      . . . 
!--- 
!--- Reading from PROP array 
!--- 
 
         ROW  = PROP   (MAT,18) 
         ROGA = PROPPS (MAT,5) 
         ROGW = PROPPS (MAT,6) 
         ROG  = ROGA + ROGW 
         ROS  = PROPPS (MAT,7)  
!--- 
!--- Isothermal case 
!--- 
    
      IF (NTHERM .EQ. 0) THEN 
         DENS_W    = ROW     
         DENS_GA   = ROGA 
         DENS_GW   = ROGW   
         DENS_G    = ROG 
         DO I = 1,NCN 
            DENS      =  (1.D0 - POR) * ROS + POR * SW(I) * DENS_W + 
                          POR * SG(I) * DENS_G  
         END DO 
            DENS = DENS / 20.d0  
!--- 
!--- Non- isothermal case 
!--- 
 
      ELSE IF (NTHERM .EQ. 1) THEN 
!--- 
!--- Reading from PROP array 
!--- 
     
      ALPHA    =    PROP(MAT,20) 
      WCOMP    =    PROP(MAT,6) / PROP(MAT,16)  !(n/K_W) / (1/K_S 
      DENSIN   =    PROP(MAT,18)                 
      AIN2     =    0.D0 
      BIN2     =    0.D0 
      CIN2     =    0.D0 
!--- 
!--- Computes  nodal contributes 
!--- 
      DO I = 1,NCN 
!--- Water (Fernandez 1972) 
           AIN2     =    AIN2 + P(I) * ELTEMP(I)  * ALPHA   
                         - P(I) * ELPOREW(I) * WCOMP          
!--- Water Vapour 
           BIN2     =    BIN2 + P(I) * (- P(I) * ELPOREG(I)) * MW / 
                         (RCONST * P(I) * ELTEMP(I)) 
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!--- Air  (ARIA)      
           CIN2     =    CIN2 + P(I)* ROGAIR(ELTEMP(I)) 
!--- 
      END DO 
!--- 
!--- Storage of updated values on g.p. 
!--- 
      DENSWW (2,IGJG,NEL) =    AIN2 
      DENSGW (2,IGJG,NEL) =    BIN2 
      DENSGA (2,IGJG,NEL) =    CIN2 
!--- 
!--- Computes  densities at g.p. 
!--- 
       
      IF (NSTEP .EQ. 1) THEN 
!---  Water density 
          DENS_W    = ROW     
!---  Water vapour density 
          DENS_GW   = ROGW   !@20°C 
!---  Air density 
     DENS_GA = 0.d0 
     DO I =1,NCN 
   DENS_GA   = DENS_GA +P(I)*ROGAIR(ELTEMP(I))    
     END DO 
          ROGA      = DENS_GA   !@20°C - 293 K 
!---  Gas density 
          ROG       = ROGA + ROGW  
          DENS_G    = ROG           
!---  Multiphase medium 
          DO I = 1,NCN 
              DENS      =  (1.D0 - POR) * ROS + POR * SW(I) * DENS_W 
                                                 + POR * SG(I) * DENS_G  
          END DO 
!--- 
         DENS = DENS / 20.d0 !Densità media 
!---       
       ELSE 
!--- Water density (Fernandez 1972)     
         DENS_W    = ROW  + ROW * (DENSWW(1,IGJG,NEL)- 
                     DENSWW(2,IGJG,NEL)) 
!--- Water vapour density         
         DENS_GW   = ROGW + ROGW * (DENSGW(1,IGJG,NEL)- 
                     DENSGW(2,IGJG,NEL)) 
!--- Air density    
         DENS_GA   = ROGA + ROGA * (DENSGA(1,IGJG,NEL)- 
                     DENSGA(2,IGJG,NEL)) 
!--- Gas density    
         DENS_G    =  DENS_GW + DENS_GA 
!--- Multiphase medium 
        DO I = 1,NCN 
             DENS      =  (1.D0 - POR) * ROS + POR * SW(I) * DENS_W 
                         + POR * SG(I) * DENS_G  
        END DO 
!--- 
        DENS = DENS / 20.d0 !Densità media    
!---           
      ENDIF 
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!--- 
!---  Storage of old g.p. contribution  
!--- 
     
      DENSWW (1,IGJG,NEL)  =    AIN2 
      DENSGW (1,IGJG,NEL)  =    BIN2 
      DENSGA (1,IGJG,NEL)  =    CIN2 
!---  
!--- End of subroutine  
!--- 
      END IF     
      RETURN 
      END 

 

In the case of isothermal analysis, the routine set the various densities to the values 

given in the input files for the reference temperature. The density of the multiphase 

medium is calculated with the equation (3.2.3) using the degrees of saturation 

computed with the routine SWESG.   

The variation of the density of the phases due to variation of mere pressure fields, 

in the isothermal case, is neglected here, by the fact that the water compressibility 

has been taken into account with water bulk modulus in the equation that form the 

wwP  component of matrix S  (2.6.21). The change in volume for the gas, instead, 

has been taken into account in the (2.6.26) with the term that involves the universal 

gas constant R at reference temperature .  

In the non-isothermal case a specific formulation for densities depending on 

temperature must be provided, and this has been done with the formulation of 

Fernandez [21, 22]  for the water, with the curves provided with the function 

ROGAIR that computes the change in volume, and so in density of dry air, and with 

the state equation (1.3.28) for the water vapour or for a more accurate prevision of 

dry air density. Here the densities for water, dry air and water vapour are stored for 

the actual time step and for each gauss point in an array, in order to compute at 

each time step the density variations.  

FLISQX 

The routine FLISQX plays a main role on computations of matrix coefficients that 

form the hyper matrix of the system. First the routine computes the diagonal terms 

relative to water and gas phase named PWW and PGG and the corresponding 

extra diagonal terms CWG and CGW that assure the fully coupling of the two 

phases. Secondly the routine SETD and SETD_PS are recalled in order to compute 
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the flux terms HWW and HGG respectively of water phase and gas phase. The 

moisture content CS is calculated calling the PDERIV_SW_PC_ND.  

    subroutine FLISQX(PROP,SLOAD, B, D,DB,P,HWW, KWG, HGG, KGW, HTT, 
         KTW, PWW, CWG, CGW, PGG, ELPOREW,ELPOREG,ELLPORECP,DEL,CEL,
                                              QLOADW,QLOADG,FGW,FGG)
!--- 
!--- Description 
!---     
!--- This routine perform the computations relative to the  
!--- components of hyper matrix H (HWW, KWG, KGW, HGG, KTW, HTT) 
!--- and the routine SETD_PS is recalled to calculate the  
!--- contributions of this term  
!--- This routines perform also the calculations relative the   
!--- components of hyper matrix S (PWW, PGG, CWG and CGW)  
!--- and some load vectors as  SLOAD, QLOADW, QLOADG  
!--- 
!--- Modules included 
!---        
      . . . 
      . . . 
      use DIMPARSAT 
      use PARSAT 
      use DIMVAR 
!        
      implicit real(REAL_KIND) (a-h,o-z) 
!--- 
!---  Variable Declaration 
!--- 
      . . . 
!--- 
!---  Set Some parameters 
!---  n / K_w 
      ROWC    =    PROP(MAT,16) * PROP(MAT,6) 
!---  n * M_g /(rog * t_ref * R) 
      ROGC    =    PROP(MAT,16) * MG / (ROG * TH * RCONST)  
!---  Specific weight of material 
      BODYF   =    PROP(MAT,7) 
!---  1 / (3 * K_s)  
      ROCKC   =    PROP(MAT,17) / 3.d0  
!---  (n - 1) / K_s 
      ROCKCN  =   (PROP(MAT,16) - 1.d0) * PROP(MAT,17) 
!---  Gravity vector      
      GVECT1  =    0.d0 
      GVECT2  =    0.d0   
      GVECT3  =    GVECT 
 
!---  ROCKCN2 =   (ALFACMP-POR)/KS 
!--- 
!---  Calculation of stiffness matrix D  
!--- 
      CALL    SETD  (PROP,P,D,DEL,ICS1,0) 
!--- 
      DSUM    =    D(1,1) + D(1,2) + D(1,3) + D(2,1) + D(2,2) +   
                   D(2,3)+ D(3,1) + D(3,2) + D(3,3)  
!---  [(alpha - n) / K_s + n / K_w ] 
      CONC    =    ROWC - ROCKCN - (ROCKC * ROCKC * DSUM) / DAREA 
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!---  (alpha - n) / K_s 
      CONCX   =         - ROCKCN - (ROCKC * ROCKC * DSUM) / DAREA 
!--- 
      DO I = 1,KSIZE2 
           AIT     =    P(I) * DAREA 
           CONC1   =    0.d0 
           CONC2   =    0.d0 
           CONC3   =    0.d0 
!--- 
!---  Calculation of moisture content with PDERIV_SW_PC_ND  
!--- 
               CS = PDERIV_SW_PC_ND (ELPORECP(I)) 
!--- 
!---  Calculation of contributes for PWW when isothermal case is 
!---  considered 
!--- 
 
               CONC1 = CONCX * SW(I) * (SW(I) - ELPOREW(I) * CS/POR  
                       + ELPOREG(I) * CS/POR) - CS + SW(I) * ROWC 
!--- 
!---  Calculation of contributes for CWG when isothermal case is 
!---  considered 
!--- 
               CONC2 = CONCX * SW(I) * (SG(I) + ELPOREW(I) * CS/POR  
                      - ELPOREG(I) * CS/POR) + CS 
!--- 
!---  Calculation of contributes for CGW when isothermal case is 
!---  considered 
!--- 
               CONC3 = CONCX * SG(I) * (SW(I) - ELPOREW(I) * CS/POR  
                      + ELPOREG(I) * CS/POR) + CS 
!--- 
!---  Calculation of contributes for PGG when isothermal case is 
!---  considered 
!--- 
               CONC4 = CONCX * SG(I) * (SG(I) - ELPOREG(I) * CS/POR  
                       + ELPOREW(I) * CS/POR) - CS + SG(I) * ROGC 
!--- 
!---  Loop through nodes to calculate HWW and HGG contributions 
!--- 
           DO J = 1,KSIZE2 
                BIT1   =    0.D0 
                BIT2   =    0.D0 
                BIT3   =    0.D0 
                BIT4   =    0.D0 
                BIT5   =    0.D0 
                BIT6   =    0.D0 
                BIT61  =    0.D0 
                BIT7   =    0.D0 
                DIT1   =    0.D0 
                FIT1   =    0.D0 
                GIT1   =    0.D0 
!--- 
!---  Calculation of contributes for HWW (isothermal) 
!--- 
                KRX = KRW(I) 
                CALL    SETB  (B,CEL,P, ICS2) 
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                CALL    SETD  (PROP,P,D,DEL,ICS2,1) 
                CALL    SETDB (B,D,DB,KSIZE2,ICS2) 
           DO K = 1,ICS2 
                     BIT2     =    BIT2 + B(K,I) * DB(K,J) 
                END DO 
!--- FGW  
                IF (J .EQ. I) BIT2F     =   (B(1,I) * D(1,1) * 
GVECT1 + B(2,I) * D(2,2) * GVECT2 + B(3,I) * D(3,3) * GVECT3) * 
DENS_W 
!--- 
!---  Calculation of contributes for HGG (isothermal) 
!--- 
                KRX = KRG(I) 
                CALL    SETB  (B,CEL,P, ICS2) 
                CALL    SETD  (PROP,P,D,DEL,ICS2,3) 
                CALL    SETDB (B,D,DB,KSIZE2,ICS2) 
           DO K = 1,ICS2 
                     BIT4     =    BIT4 + B(K,I) * DB(K,J) 
                ENDDO  
!--- 
!---  Assembly of contributes of hyper matrices H 
!--- 
        HWW(I,J) = HWW(I,J) + BIT2  
!---        
        HGG(I,J) = HGG(I,J) + BIT4  
!--- 
!---  Assembly of contributes of hyper matrices S 
!---       
        BIT1 = PWW (I,J) + AIT * P(J) * CONC1 
        PWW (I,J) = BIT1 
!---        
        DIT1 = CWG (I,J) + AIT * P(J) * CONC2 
        CWG(I,J) = DIT1 
!---        
        FIT1 = CGW (I,J) + AIT * P(J) * CONC3 
        CGW(I,J) = FIT1 
!---           
        GIT1 = PGG (I,J) + AIT * P(J) * CONC4 
        PGG(I,J) = GIT1 
 
           ENDDO 
           II      =    I * 3 
!--- 
!---  Calculations of flux vectors due to sources elements   
!---       
           QLOADW(I)    =    QLOADW(I)  +  AIT * ELFLOWW 
           QLOADG(I)    =    QLOADG(I)  +  AIT * ELFLOWG 
!--- 
!---  Calculations of body forces " alternative 1 (now disabled) 
!---       
!           SLOAD(II)    =    SLOAD(II)  -  AIT * BODYF 
!--- 
!---  Calculations of body forces " alternative 2 
!---       
           SLOAD(II)    =    SLOAD(II)  -  AIT * DENS * GVECT3 
      END DO 
!---  
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!--- End of subroutine  
!--- 
      RETURN 
      END 

 

 

FUNCTION PDERIV_SW_PC_ND 

This function has been created to perform the partial derivative of degree of water 

saturation over the capillary pressure. In the isothermal formulation, this derivative 

has been alternatively expressed by the term (2.6.10) that represents the moisture 

content. The derivative depends on the water saturation function chosen during the 

analysis from those discussed on section 1.5 and an section 2.6. This function is 

recalled in the subroutine FLISQX and is computed for each node. 

     real(REAL_KIND) function PDERIV_SW_PC_ND (CP)  
!--- 
!--- Description 
!---     
!---  Evaluate DESW / DEPC 
!--- 
!--- Modules included 
!---        
      use PARSAT 
      use CTR1 
      use DIMVAR 
!--- 
      implicit none 
!--- 
!---  Variable Declaration 
!--- 
      . . . 
!--- 
      parameter(TOLL = -0.0006d0) 
 
!--- 
!--- Select the SW formulation  
!--- 
       SELECT CASE (sw_form) 
!--- Lloret and Alonso formulation 
       CASE (1)  
       IF (PRESSUREPA) THEN 
         CP = CP / 1000000.D0 
       END IF 
       PDERIV_SW_PC_ND = - (EMME * ELLE * 1.d0) /  
                        ((COSH(ELLE*CP))**2.d0) 
!--- Brooks & Corey 
       CASE (2)  
       maxsuct = PROPPS(MAT,20) 
       p_bubbl   = PROPPS(MAT,17)  
       IF (CP .LT. p_bubbl) THEN 
        PDERIV_SW_PC_ND = 0.d0                  
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       ELSE IF (CP .GT. maxsuct) THEN 
        PDERIV_SW_PC_ND = -((1.d0 - SGIRR - SWIRR) * PSDIND *  
    (p_bubbl/maxsuct) ** PSDIND)  / maxsuct 
       ELSE 
        PDERIV_SW_PC_ND = -((1.d0 - SGIRR - SWIRR) * PSDIND *  
    (p_bubbl/CP) ** PSDIND)  / CP 
       END IF  
!--- Liakopoulos 
       CASE (4)  
       PDERIV_SW_PC_ND = - 1.9722D-11 * 2.4279D0 * 
     (CP **(2.4279D0 - 1.D0))   
!--- Van Genutchen 
       CASE (5)  
       AVG  = PROPPS(MAT,21)  
       NVG  = PROPPS(MAT,22)  
       MVG  = PROPPS(MAT,23)  
       IF (CP .LE. 0.d0) THEN 
        PDERIV_SW_PC_ND = 0.d0                  
       ELSE 
        PDERIV_SW_PC_ND = -(1.d0/CP)*(1.d0-SWIRR-SGIRR)* MVG * 
     NVG * ((AVG*CP)**NVG)    
     * ((AVG*CP)**NVG + 1.d0)**(-MVG-1.d0) 
       END IF  
       CASE  DEFAULT  
       write (*,*) 'Error in PDERIV_SW_PC_ND' 
       END SELECT 
!---  
!--- End of function  
!--- 
      return 
      end function 

 

 

SETD_PS  

The SETD_PS routine is implied on determining the terms that enter in the HWW, 

HGG, KGW and KWG matrix coefficients. This routine use the intrinsic permeability 

coefficients in each direction (x, y and z) and pre multiply them by the relative 

permeability coefficients rwk and rgk . 

    subroutine SETD_PS (PROP,P,D,DEL,MPARSAT)
!--- 
!--- Description 
!---     
!---  CALCULUS OF COEFFICENTS FOR THE MATRIX HWW, HGG, KGW and KWG 
!--- 
!--- Modules included 
!---  
      . . . 
      . . .    
      use DIMPARSAT 
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      use PARSAT 
      use DIMVAR 
!--- 
      implicit none 
!--- 
!--- Variable declaration 
!---     
     . . . 
!--- 
!--- Setting viscosities and other parameters 
!---     
       MUW    = PROPPS(MAT,8) 
       MUG    = PROPPS(MAT,9) 
       GPFAC = 1.d0 
!--- 
!--- Setting intrinsic permeabilities  
!---     
 
      IF (PERMPS .EQ. 1) THEN 
  KABS1   = PROPPS(MAT,10) ! x-direction 
  KABS2   = PROPPS(MAT,11) ! y-direction 
  KABS3   = PROPPS(MAT,12) ! z-direction 
      ELSE 
  KABS1   = PROP(MAT,3) ! x-direction 
  KABS2   = PROP(MAT,4) ! y-direction 
  KABS3   = PROP(MAT,5) ! z-direction 
      END IF 
!--- 
!--- Setting the amplification factor for one-phase flow 
!---     
 
      IF (ONE_PHASE_FLOW .EQ. 1) GPFAC = 1.0D+00  
!--- 
!--- Selecting the matrix calculation recalled from FLISQX 
!---     
      SELECT CASE (MPARSAT) 
!--- 
      CASE(1) 
!---           
!---  HWW (EQ. 3.126) 
!--- 
      IF (PERMPS .EQ. 1) THEN 
        DD1 = KABS1 * KRX/MUW 
        DD2 = KABS2 * KRX/MUW 
        DD3 = KABS3 * KRX/MUW 
!---  
        DDD1 = 0.d0 
        DDD2 = 0.d0 
        DDD3 = 0.d0 
!---    
        D(1,1)  =    DD1 * DAREA + DDD1 * DAREA 
        D(2,2)  =    DD2 * DAREA + DDD2 * DAREA 
        D(3,3)  =    DD3 * DAREA + DDD3 * DAREA 
!--- 
      ELSE IF (PERMPS .EQ. 0) THEN 
!--- 
        DD1 =  KABS1 * KRX *  (1.d0 / ROW) 
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        DD2 =  KABS2 * KRX *  (1.d0 / ROW) 
        DD3 =  KABS3 * KRX *  (1.d0 / ROW) 
!--- 
        D(1,1)  =    DD1 * DAREA 
        D(2,2)  =    DD2 * DAREA 
        D(3,3)  =    DD3 * DAREA 
      END IF     
!---  
!---  HGG (EQ. 10B.13) 
!--- 
      CASE(3) 
!--- 
      IF (PERMPS .EQ. 1) THEN 
      DDD1 = KABS1 * KRX * GPFAC /MUG 
      DDD2 = KABS2 * KRX * GPFAC /MUG 
      DDD3 = KABS3 * KRX * GPFAC /MUG 
!--- 
      D(1,1)  =    DDD1 * DAREA 
      D(2,2)  =    DDD2 * DAREA 
      D(3,3)  =    DDD3 * DAREA 
!--- 
      ELSE IF (PERMPS .EQ. 0) THEN 
!--- 
        DD1 =  KABS1 * KRX * GPFAC * (MUW/MUG) *   (1.d0 / ROG)  
        DD2 =  KABS2 * KRX * GPFAC * (MUW/MUG) *   (1.d0 / ROG) 
        DD3 =  KABS3 * KRX * GPFAC * (MUW/MUG) *   (1.d0 / ROG) 
!--- 
        D(1,1)  =    DD1 * DAREA 
        D(2,2)  =    DD2 * DAREA 
        D(3,3)  =    DD3 * DAREA 
      END IF 
! 
      CASE DEFAULT 
      write (IOUT,*) 'WRONG MPARSAT CODE IN SETD_PS' 
!--- 
      CONTINUE 
      END SELECT 
!---  
!---  End of subroutine 
!--- 
 
      return 
      end subroutine 

 

 
The routine is called together the SETD routine in FLISQX. In the fully saturated 

version of the code PLASCON3D the permeability matrix is calculated directly in 

SETD. A dedicated routine has been now created in order to access to keep 

distinguished the calculations done for the mechanical contribution (that uses SETD 

as well for the mechanical part), from those performed for the permeability 

contribution for both gas and liquid. The right calculation procedure is selected by 

the parameter MPARSAT  that for isothermal analysis can assume the values 0 for 
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stiffness matrix coefficient calculations, 3 for the liquid permeability matrix 

coefficients (HWW) and 6 for the gas permeability matrix coefficients (HGG). In the 

standard version of the code, the permeability coefficient is not given by the product 

of intrinsic permeability times the relative permeability of the phase, but is given 

directly in the form w wK that holds for the only liquid phase. In order to maintain 

the older representation for the permeability coefficients, due to the fact that 

sometimes intrinsic permeability for the medium is not available, different 

calculations are performed varying the parameter PERMPS from the integer value 

of 0 to 1. When PERMPS is equal to 0 the older permeability coefficient is used and 

adapted with the viscosities ratio. This is not an exact procedure but help to carry 

on calculation when leak of parameter occurs. The value of the permeability 

coefficients for the three directions is stored in the KASB1, KASB2, KASB3 

variables. The value of these coefficients are so multiplied by the volume afferent to 

the gauss point (DAREA) and the stored in the diagonal components of the matrix 

D. SETD_PS exchanges here the diagonal components of the array D (that is used 

also for the mechanical stiffness calculations in PLISQX), to the routine FLISQX 

that evaluates them by multiplying with the shape functions contained in the array 

P. 

 

ALTERNATIVE_SOLVERS 

The subroutine ALTERNATIVE_SOLVERS has been written to put beside to the 

standard skyline solver implemented originally on PLASCON a set of sparse solving 

tools. This routine provides four different types of solution procedures that are 

based on two kinds of solver libraries. These solvers, basically, perform the solution 

of system (2.7.2).  

This routine implement solver routines contained in the #Linear Algebra PACKage$ 

(LAPACK 3.3) libraries [15, 23] and the PARDISO [13, 24] solver that is optimized 

for multithread processors in order to perform eventually parallel computation. 

Manuals as well further insights, relative to the nature of these solvers, can be 

found on literature at the [25]. 

For each of this two solving techniques, the user can choose between two criteria to 

apply the boundary conditions on fixed node. This can allow four different way of 

solve the linear system. The first criterion for the imposition of boundary conditions 
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on certain fixed degrees of freedom, use the so called #row and column elimination$ 

and the second the so called #penalty coefficient$.  

The first, represents the clean way of impose the Dirichlet boundary conditions and 

reduce the dimension of the system matrix to solve, eliminating the equations that 

correspond to the know value (solution) imposed. This method however, is not very 

cheap because force to do recursive reallocations of global system matrix in 

memory and this costs several operations. The second one is faster, but the 

resolution process is influenced by proper choice of the penalty coefficient value 

that multiplies the diagonal terms corresponding to the degree of freedom that has 

to be fixed. This method maintains the original dimensions of the global system 

matrix that had before the imposition of boundary conditions, due to the fact that 

only scalar multiplications are involved in this operation. A careful reading of the 

source code attached below can explains how these methods work.  

In order to preserve the possibility to use the original solvers of previous version of 

PLASCON all the operations, such local element to global system matrix assembly, 

set up of boundary conditions and compact row storing has been implemented or 

recalled in this subroutine. This is not an efficient way to perform these operations 

due to the fact that they can be done simultaneously to the local matrix computation 

operations (subroutine FL36QX), but is more suitable in order to maintain 

compatibility with older routines. 

     subroutine ALTERNATIVE_SOLVERS (FIX,NOP,R1,U,NBC,GASHT, 
                                     IGS,MDF1,SOLVER_METHOD) 
 
!---  Description 
 
!--- ASSEMBLE THE WHOLE SYSTEM MATRIX AND SOLVE THE SYSTEM 
!--- LAPACK SOLVERS AND PARDISO PARALLEL SOLVER IMPLEMENTED 
 
!---  Modules included 
 
      . . . 
      . . . 
      use PARSAT 
!--- 
      implicit none 
 
!---  Variable declaration 
 
      . . .      
      . . . 
      . . . 
      integer(INT_KIND)                           :: SOLVER_METHOD  
 
!--- 0 = Standard Skyline Gaussian Elimination,  
!--- 1 = Lapack Non - Symm Solver with PENALTY,  
!--- 2 = Lapack Non - Symm Solver with 0 -1,  
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!--- 3 = PARDISO with PENALTY, 
!--- 4 = Lapack with row/column elimination,  
!--- 5 = PARDISO with row/column elimination   
 
!---  Initialization of main parameters 
 
      parameter(PENALTY_COEFF = 10.0D+20) 
      parameter(TRANS = 'N') 
      parameter(UPLO  = 'U') 
      parameter(msglvl = 0) 
 
!---  Initialization right hand side term 
 
 
      allocate(b(MRHS)) 
      b = R1 
 
!---  Global matrix allocation 
 
      msize = NP * NDF 
      allocate(SYSMAT(msize,msize)) 
      SYSMAT = 0.d0 
 
 
!---  Looping on local element matrix to form global matrix 
 
      
      DO EL_COUNT = 1,NE 
      ESTIFM  = 0.d0 
 
!---  Reading the local stiffness matrix 
 
      READ    (ITP2)    N,((ESTIFM(I,J), J=1,KSIZE),I=1,KSIZE) 
      . . .      
      . . . 
      . . . 
      END DO 
 
!---  Setting auxiliary system array 
        
      omsize = msize 
      allocate(SYSMAT2(omsize,omsize)) 
      SYSMAT2 = SYSMAT 
 
!---  Setting up the d.o.f fixity vector 
       
      FIXVECTOR = 0 
      J = 0 
            DO I = 1, NBN 
              nbound_index = NBC(I) 
              IZ = 10**(NDF-1) 
              FIXCODE = NFIX(nbound_index) 
              DO L = 1,NDF 
                     bccode = 1 
                     IF (L .EQ. 4 .OR. L .EQ. 5) bccode = 2 
                     J = nbound_index*NDF - NDF + L 
                     IF (FIXCODE .LT. IZ) THEN  
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                     FIXVECTOR(J) = 0 
                     ELSE IF (FIXCODE .GE. IZ) THEN 
                     FIXVECTOR(J) = bccode 
                     FIXCODE = FIXCODE - IZ 
                     END IF 
!                     J = J+1 
                     IZ = IZ / 10 
              END DO 
            END DO 
!-------------------------------------------------------------------
 
!---  SETTING UP THE BOUNDARY CONDITIONS (SOLVERS 1, 4, 5) 
        
IF (SOLVER_METHOD .EQ. 1 .OR. SOLVER_METHOD .GE. 4) THEN 
     
    SELECT CASE (SOLVER_METHOD) 
     
!--- with penalty coefficient (SOLVER 1) 
 
    CASE(1) 
               J = 1 
               DO I = 1, NBN 
                      nbound_index = NBC(I) 
                      c = nbound_index * NDF + 1 - NDF 
                      d = nbound_index * NDF 
                      DO L = c, d     
                      IF (FIXVECTOR(J) .NE. 0) THEN 
                          SYSMAT(L,L) = PENALTY_COEFF 
                          b(L)        = PENALTY_COEFF * U(L) 
                      IF (FIXVECTOR(J) .EQ. 2) b(L)= b(L) / CURILL 
                      END IF 
                      J = J + 1 
                      END DO 
               END DO 
    msize2 = msize 
 
!--- with row and column elimination (SOLVER 4 and 5) 
 
    CASE DEFAULT 
    allocate(SYSMAT_dummy(msize,msize)) 
    allocate(b_dummy(msize)) 
    x = 0.d0 
    count = 0 
    SYSMAT_dummy = SYSMAT 
    b_dummy      = b 
 
!--- deallocation 
 
    deallocate(SYSMAT) 
    deallocate(b) 
 
    DO I = 1, msize 
        IF (FIXVECTOR(I) .NE. 0) THEN 
           count = count + 1 
           x(I) =  U(I)  
           SYSMAT_dummy (I,I) = 0.d0  
           IF (FIXVECTOR(I) .EQ. 2) x(I) = x(I) / CURILL 
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           b_dummy(:) = b_dummy(:) - SYSMAT_dummy(:,I) * x(I)        
           SYSMAT_dummy (:,I) = 0.d0  
           SYSMAT_dummy (I,:) = 0.d0  
        ENDIF 
    END DO 
 
!--- reduced allocation 
 
    allocate(SYSMAT(msize2,msize2)) 
    allocate(b(msize2)) 
    SYSMAT = 0.d0 
 
!--- copying on reduced system array 
 
      . . .      
      . . . 
      . . .     
 
!--- Final deallocation of dummy arrays 
 
    deallocate(SYSMAT_dummy) 
    deallocate(b_dummy) 
    END SELECT   
!--- 
 
    SELECT CASE (SOLVER_METHOD) 
 
!--- *************** SOLUTION WITH PARDISO ********************** 
 
    CASE (5) 
 
!--- COMPACT SPARSE ROW STORAGE 
 
      . . .      
      . . . 
      . . .     
           CALL CSRS_ (SYSMAT,msize2,count,A,ia,ja) 
 
!--- SET UP PARDISO PARAMETER 
 
           maxfct = 1 
           mnum   = 1 
           mtype  = 11 
           perm   = 0 
           xs = 0.d0 
 
           call SET_IPARM(iparm)  
 
           pt = 0  
 
!--- set optimal core number 
   
                  call mkl_set_num_threads(iparm(3)) 
 
!--- Calling the pardiso routine 
 
           phase  = 11 
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                  call pardiso (pt, maxfct, mnum, mtype, phase, 
                                msize2, A, ia, ja, perm, 1, iparm, 
                                msglvl, b, xs, error) 
           phase  = 22 
                  call pardiso (pt, maxfct, mnum, mtype, phase, 
                                msize2, A, ia, ja, perm, 1, iparm, 
                                msglvl, b, xs, error                 
           phase  = 33 
                  call pardiso (pt, maxfct, mnum, mtype, phase, 
                                msize2, A, ia, ja, perm, 1, iparm, 
                                msglvl, b, xs, error 
         
    CASE DEFAULT 
 
!--- SET UP LAPACK ROUTINES PARAMETER 
 
               allocate(ipiv(msize2)) 
               ipiv = 0 
 
!--- *************** SOLUTION WITH LAPACK ********************** 
 
               call dgetrf(msize2, msize2, SYSMAT, msize2, ipiv, 
                            info1) 
! 
               call dgetrs(TRANS,msize2,1,SYSMAT,msize2,ipiv,b, 
                            msize2,info2) 
!                
               deallocate(ipiv) 
    END SELECT            
!-------------------------------------------------------------------
ELSE IF (SOLVER_METHOD .EQ. 2) THEN 
 
!---  SETTING UP THE BOUNDARY CONDITIONS (SOLVERS 2) 
        
               J = 1 
               DO I = 1, NBN 
                      nbound_index = NBC(I) 
                      c = nbound_index * NDF + 1 - NDF 
                      d = nbound_index * NDF 
                      DO L = c, d 
                      IF (FIXVECTOR(J) .NE. 0) THEN 
                          SYSMAT(L,:) = 0.d0 
                          SYSMAT(L,L) = 1.d0 
                          b(L)        =  U(L) 
                          IF (FIXVECTOR(J) .EQ. 2) b(L) = b(L) /  
                                                              CURILL
                      END IF 
                      J = J + 1 
                      END DO 
               END DO 
 
           ISYMM = 0 
 
!--- SET UP LAPACK ROUTINES PARAMETER 
 
               allocate(ipiv(msize)) 
               ipiv = 0 
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!--- *************** SOLUTION WITH LAPACK ********************** 
 
 
               call dgetrf(msize,msize,SYSMAT,msize,ipiv,info1) 
! 
               call dgetrs(TRANS,msize,1,SYSMAT,msize,ipiv,b,MRHS, 
                                                            info2) 
!                
               deallocate(ipiv)                
!-------------------------------------------------------------------
ELSE IF (SOLVER_METHOD .EQ. 3) THEN 
 
!---  SETTING UP THE BOUNDARY CONDITIONS (SOLVERS 3) 
        
!--- Application of penalty 
               J = 1 
               DO I = 1, NBN 
                      nbound_index = NBC(I) 
                      c = nbound_index * NDF + 1 - NDF 
                      d = nbound_index * NDF 
                      DO L = c, d    
                      IF (FIXVECTOR(J) .NE. 0) THEN 
                          SYSMAT(L,L) = PENALTY_COEFF 
                          b(L)        = PENALTY_COEFF * U(L) 
                          IF (FIXVECTOR(J) .EQ. 2) b(L) = b(L) /     
                                                          CURILL    
                      END IF 
                      J = J + 1 
                      END DO 
               END DO 
 
!--- COMPACT SPARSE ROW STORAGE 
 
      . . .      
      . . . 
      . . .     
           CALL CSRS_ (SYSMAT,msize2,count,A,ia,ja) 
 
!--- SET UP PARDISO PARAMETER 
 
maxfct = 1 
mnum   = 1 
mtype  = 11 
perm   = 0 
xs = 0.d0 
call SET_IPARM(iparm)  
pt = 0     
 
!--- set optimal core number 
   
                  call mkl_set_num_threads(iparm(3)) 
 
!--- Calling the pardiso routine 
 
phase  = 11 
       call pardiso (pt, maxfct, mnum, mtype, phase, msize, A, ia,  
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                          ja, perm, 1, iparm, msglvl, b, xs, error) 
phase  = 22 
       call pardiso (pt, maxfct, mnum, mtype, phase, msize, A, ia,  
                          ja, perm, 1, iparm, msglvl, b, xs, error) 
phase  = 33 
       call pardiso (pt, maxfct, mnum, mtype, phase, msize, A, ia,  
                          ja, perm, 1, iparm, msglvl, b, xs, error) 
        
!-------------------------------------------------------------------
 
END IF 
 
!--- Copying the solution to GASHT array 
 
     . . . 
     . . .  
     . . .   
 
!--- Rewind output binary units 
 
 
      REWIND       ITP2 
      REWIND       ITP21 
 
!--- Dismantle all pardiso allocations in memory 
 
          phase  = - 1 
          call pardiso (pt, maxfct, mnum, mtype, phase, msize, A,   
                      ia, ja, perm, 1, iparm, msglvl, b, xs, error) 
      deallocate(A) 
      deallocate(ja) 
      deallocate(ia) 
      deallocate(SYSMAT) 
      deallocate(b) 
 
!--- Creating an update R1 vector for updated fluxes 
 
      allocate(b(omsize)) 
      b = 0.d0 
      R1 = 0.d0 
      J = 1  
      DO I = 1, NP 
          DO L = 1, NDF 
              b(J) = GASHT(2,L,I) 
              J = J + 1 
          END DO 
      END DO 
 !---             
      xs = 0.d0 
      DO L = 1 ,MRHS  
        DO J = 1 ,MRHS 
            xs(L) = xs(L) + SYSMAT2(L,J) * b(J) 
        END DO 
      END DO   
            R1 = xs - R1 
              
      END IF 
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      deallocate(SYSMAT2) 
      deallocate(b)   
     
!--- Conditioning the results with CURILL FACTOR 
 
     GASHT (2,4,:) = GASHT (2,4,:) * CURILL 
     GASHT (2,5,:) = GASHT (2,5,:) * CURILL 
 
!--- End of subroutine 
      
    RETURN 
    END subroutine ALTERNATIVE_SOLVERS 

 

The term CURILL that appear in this routine, is set in the routine ILLCON (System 

Matrix Set Up in Figure 3.2.1). This coefficient rescales the terms that correspond to 

the fluid phases, in this way the solution at each time step, of the linear system of 

equations (2.7.4)  
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is equal to the solution of this system 
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where  is equal to the CURILL value. This technique has the purpose to normalize 

the orders of magnitude of the components of the global system matrix. Sometimes 

discrepancies of several orders of magnitude between the stiffness values and the 

permeability coefficients, of solid and liquid phases produce a malconditioned 

system and the impossibility to obtain good results. With a prudent choice of the 

value of CURILL factor, discrepancies can be reduced and an equivalent system 

can be solved. Also the boundary conditions values imposed by row and column 

elimination technique or by penalty coefficient have to be resized by the CURILL 

value in order to proper conditioning the system. At the end the array GASHT that 

contains the updated solution for each node has to be multiplied by the conditioning 

term for the fluid phase in order to obtain the right results. 

ROUTINE CSRS 

This short routines perform the assembly of a generic square matrix, not necessary 

symmetric, with the compact row storage algorithm [26, 27] as requested by the 

PARDISO solver [13, 24, 25]. More details on the CSRS algorithm and on the 

format of input arrays for PARDISO are available on suggested literature. 

      subroutine CSRS (SYSMAT,msize,count,A,IA,JA) 
 
!--- Description 
     
!---  Assembly of CSRS storing arrays 
 
!--- Modules included 
 
      . . . 
      . . .    
      use DIMVAR 
!--- 
      implicit none 
 
!--- Variable declaration 
     
 
      . . . 
      . . .    
 
!--- Creation of sysmat, ia and ja 
    
 
count2 = 1 
count3 = 0 
 
do i = 1,msize 
   count3 = count3 + 1 
   first = 0    
   do j = 1,msize 
      if (SYSMAT(i,j) .NE. 0.d0) then 
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         A (count2)  = SYSMAT(i,j) 
         ja(count2) = j 
         if (first .EQ. 0) ia(count3) = count2   
         first = 1  
         count2 = count2+1   
      end if 
   end do 
   if (first .EQ. 0) count3 = count3 - 1 
end do 
 
!--- End of routine 
 
return 
end 
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4 Numerical analyses 

4.1. Introduction 

In this chapter some numerical tests are presented. First of all, the results of 

analyses on test problems obtained with the code PLASCON3D_PS and a 

commercial code has been compared, in order to check the reliability of mechanical 

phase and fluid phases computations.  

Further, a drainage by gravity test that reproduce the Liakopoulos experiment [1] on 

a sand column, will be discussed. Along with the presentation of this case, 

numerical strategies adopted to avoid numerical problems that can arise from the 

transition between states with different degrees of saturation (in particular from the 

fully saturation with water to the partially saturated conditions).  

Comparison between two different water retention functions will be done in a case 

of flexible footing resting in a partially saturated soil, while a portion of aquifer will 

be analysed in the case of gas injection. 

Finally, a comparison based on computing performances of the different 

implemented solvers will be given. 

4.2. Phases tests 

Solid phase 

This first series of tests has been performed in order to check the mechanical 

solution and to compare the results obtained with the code with the commercial F.E. 

code Straus7. The test problem, involves one 20-nodes brick element with 27 

gauss points, fully restrained at the bottom base and restrained horizontally on 

lateral surface, in the way that only vertical displacements are allowed (Figure 

4.2.1a). The porosity of the medium is 0n , the degrees of saturation are 

0wS and 0gS  as well as null pressure fields 0wp and 0gp  are set on all 

nodes. The solid phase is loaded with a unitary pressure * 1p  on top surface, and 

null water and gas flux was imposed. The reference temperature was set to be 
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293.15K . The Young!s modulus was set to 44.0 10 MPaE with a null 

Poisson!s coefficient. The boundary conditions are summarized in Figure 4.2.1a 

while the comparison of results in terms of displacements has been reported in 

Figure 4.2.2. As it can be seen the agreement between results is perfect. The test 

on solid phase has been done also for a column mesh of ten elements with identical 

material properties and boundary conditions (Figure 4.2.1b), in order to check the 

global assembling procedure of the local matrix contributes. The results in terms of 

vertical displacements are reported on Figure 4.2.3. As before the agreement is 

very good. 

  

 
     (a)     (b) 

Figure 4.2.1: Schematics of test problems for the solid phase. One brick element (a); ten 

brick elements (b). 

               (a)                                                                         (b) 
Figure 4.2.2: Displacements along z direction obtained with PLASCON3D_PS (a); results 

obtained with Straus7 (b). 
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(a)                                                            (b) 
Figure 4.2.3: Displacements along z direction obtained with PLASCON3D_PS (a); results 

obtained with Straus7 (b). 

Liquid and gas phases 

The liquid and gas phases have been checked comparing the results of one phase 

at once with the results obtained with the classical PLASCON3D where alternatively 

the properties of water and gas were set. Again, two meshes, one with one brick 

element and another with ten brick elements, have been tested. The boundary 

conditions consist on a full restrain of displacements at the base, then on the nodes 

at the base and on top surfaces the pressure of the phase that has to be checked is 

set to zero. Other nodes have the pressure degree of freedom free to vary, while 

the other phase has null value on all nodes. The degree of saturation of the phase 

that has to be checked is set to 1. The top surface nodes on the two mesh are 

subjected to a increasing vertical displacement that evolves linearly to a final value 

of 5 mm. The boundary conditions are summarized in Figure 4.2.4a-b while the 

comparison of results in terms of liquid pressures has been reported in Figure 4.2.5 

and for the mesh with ten elements on Figure 4.2.6. As can be seen, again, the 

agreement between the two codes is perfect and the results obtained for the gas 

phase where saturations are set to 0wS and 1gS  are similar to the one obtained 

for the liquid phase, and denoted perfect matching as well. 
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         (a)        (b) 

Figure 4.2.4: Schematic of test problem for the liquid phase. One brick element (a); ten brick 

elements (b). 

 

 

 

                (a)                                      (b)                                (c) 

Figure 4.2.5: Displacements obtained at the end of load process of a brick element (a); 

liquid pressure obtained with PLASCON3D_PS (b); liquid pressure obtained with 

PLASCON3D (b). 
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                          (a)                                 (b)                             (c) 

Figure 4.2.6: Displacements obtained at the end of load process of a ten elements mesh (a); 

liquid pressure obtained with PLASCON3D_PS (b); liquid pressure obtained with 

PLASCON3D (b). 

4.3. Drainage test 

The case presented in the following is used quite often as validation test of 

numerical codes that implement the partial saturated formulation. This benchmark 

is based on the experimental test that Liakopoulos [1] carried out in laboratory on 

an instrumented sand column, to observe the desaturation of a material sample 

subjected to only gravitational effects. 

Experimental test 

In the experiment of Liakopoulos [1] a 1.0 m column of Del Monte sand was packed 

into a Perspex box having a square base with edge length of 0.1 m. The column 

was instrumented with a sufficient number of tensiometers to measure the moisture 

tension at several points along the column. Before the starting of the experiment, at 

t < 0, the sand sample was continuously wetted by addition of water from top 

surface and was allowed to drain freely at the bottom through a micro pore filter, 

until uniform flow conditions were established. At starting of the experiment (t = 0) 

the wetting from the top of the column was ceased and the tensiometers readings 

were recorded. 
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For the degree of water saturation vs. capillary pressure relationship, an 

approximated Brooks and Corey function, given by of Liakopoulos [1], can  applied 

(Figure 4.3.1): 

 11 2.42791.0 1.9722 10w cS p  (4.3.1)

 1.0121
1.0 2.207 1rw wk S  (4.3.2)

While for gas relative permeability holds again the relation given by Brooks and 

Corey:  

 2 5/31 1rg e ek S S  (4.3.3)

With 

 0.2 / 1 0.2e wS S  (4.3.4)

 

Figure 4.3.1: Evolution with capillary pressure of the degrees of saturation and relative 

permeabilities for the Liakopoulos [1] suggested law. 

Boundary conditions and mesh discretization 

The test problem was solved numerically by Liakopoulos [1], Narashiman and 

Whitherspoon [2], Schrefler and Simoni [3], Zienkiewicz et al. [4], Schrefler and 

Zhan [5], Gawin et al. [6], as well as by Gawin and Schrefler [7] to check their 

numerical models.  

In particular [8] adopted the following initial and boundary conditions (also reported 

in Figure 4.3.2). The initial conditions on all the nodes are: 

 0 1c wp S  (4.3.5)
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A Steady vertical flow of water, as well as a state of mechanical equilibrium was 

assumed. For the lateral surfaces the boundary conditions are: 

 0, 0, 0

0

T w g

h

q q q

u
 (4.3.6)

Where hu  are the horizontal displacements of soil. For the top surface: 

 
g atmp p  (4.3.7)

while for the bottom surface 
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v h

p p p

u u
 (4.3.8)

Where vu  are the horizontal displacements of soil.  

The properties of the Del Monte sand sample are reported on Table 4.3.1. 

Table 4.3.1: Property of Del Monte sand used in the Liakopoulos experiment 

Young!s  modulus =1.3!MPaE  

Poisson!s ratio 0.4  

Solid grain density -2=2000kg ms  

Liquid density -2=1000kg mw  

Porosity 0.2975n  

Intrinsic permeability -13 2k =4.5! 10 m  

Water viscosity -31 10 Pa sw  

Air viscosity -51.8 10 Pa sa  

Gravitational acceleration -2=9.806m sg  

Atmospheric pressure =101325Paatmp  

 

Due to the fact that an isothermal analysis was carried out, a reference temperature 

on the whole domain was taken ( 293.15K ). Furthermore, the Biot!s constants 

was taken 1denoting non deformable solid grains, i.e. all displacements 
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involved on the process are given by a rearrangements of soil skeletons and voids 

volume. 

Figure 4.3.2: Boundary conditions for the test performed by Liakopoulos.  

 
10 elements 20 elements 80 elements 

Figure 4.3.3: Three-dimensional meshes of the Del Monte sand column from Liakopoulos 

experiment. 

In order to compare the two-dimensional analyses in the above mentioned works 

with a three-dimensional one, the mesh geometry tested with PLASCON3D_PS 

follows  the two-dimensional mesh adopted in  [8]. The mesh has been simply 

extruded over the plane by 0.1 meter. In this way, the domain that was subdivided 

in ten 8-nodes isoparametric elements in [8], here is subdivided in ten 20-nodes 
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isoparametric brick elements (details about the element that has been adopted can 

be found in the Section 2.8). Furthermore, all the initial and boundary conditions 

has been maintained as given in (4.3.6), (4.3.7) and (4.3.8), with the addition that 

now horizontal displacements are xu  , yu  and the vertical one is zu . Now to 

maintain as in [8] the axial symmetry given by the horizontal constraints, both the 

degrees of freedom relative to xu  and yu  have been fixed. 

The gravity flux has been implemented with the following equation 

 
p

T
rw

w

w

k
dw

k
f N g  (4.3.9)

Where only the vertical component of the gravity vector g , is different from zero. 

For the analyses, the domain has been discretized in 10, 20 and 80 brick elements. 

The resulting three-dimensional meshes have been reported on Figure 4.3.3.  

Transition from fully saturated to partial saturated state 

This test has been solved in the past by the different authors in three different ways, 

in order to manage the numerical complexities that arise when the transition from 

fully saturated state to the partially saturated state take place. They are: 

a. The gas pressure value in the partially saturated zone is assumed to be 

equal to the atmospheric pressure (one phase-flow approach), which implies 

a infinite, not physically realistic, value of gas relative permeability. This 

assumption was used by Schrefler and Simoni [3], Schrefler and Zhan [5] 

and Gawin et al. [6, 7] ; 

b. A very small, but finite, value of gas relative permeability exists even for the 

fully saturated state. This physically implies that a flow of gas exists for the 

fully saturated state and can be obtained by appropriate modification to the 

capillary pressure-saturation relationship [5] and/or the relative permeability 

curve [7]. With this approach the gas-phase continuity equation is always 

maintained; 

c. A so called #switching$ between the one-phase, saturated flow and full two-

phase solutions could occur at a certain value of the saturation, e.g. at the 

value corresponding to the bubbling pressure, which has a physical 

justification. Also, the application of and additional lower limit for the gas 

relative permeability is usually necessary in order to avoid oscillations in the 

pressure solution. This approach was proposed by Gawin et al. [6] and 

Gawin and Schrefler [7]. 
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In the present work, the problem of the changing in the saturation state, has been 

solved pursuing the method a) and b). The first implies that even for small degrees 

of gas saturation the pressure of the gas phase is always at standard atmospheric 

pressure and the gas relative permeability, that usually depends as well as the one 

for the water, on the degree of saturation wS  , is set to higher values. The second 

method allows, rather than the third, that the gas phase continuity equation last also 

for degrees of saturation very close to the full saturation. To achieve this goal, both 

the degrees of saturation, have not to reach null values in every point of capillary 

pressure range, otherwise the corresponding equations will be multiplied by a null 

value leading very soon to singularities in the global system matrix, with the 

impossibility to solve the whole system of equations that will be malconditioned with 

respect to every solving scheme. 

In PLASCON3D_PS, as presented within the discussion of this case and the ones 

that will follow, two strategies can be adopted to avoid this numerical problem. 

The first numerical strategy is to add a positive term to the water retention function 

as evidenced for example comparing the (1.5.7) with the (1.5.8). The additional 

term ,g irrS has the same physical meaning of the irreducible degree of water 

saturation ,w irrS , that take into account of the presence, even little, of one phase 

into the other. This is the method adopted in the solution with PLASCON3D_PS of 

this test case. After that the assumption of the existence of a small but positive 

value of irreducible degree of gas saturation has been made during the developing 

of the present work, it has been discovered that a very similar strategy has been 

adopted also by Laloui et al. [9]. In order to avoid numerical problems, Laloui et al. 

make some assumption on the maximum degree of saturation, set to the value of 

0.99wS and the minimal gas relative permeability set to 0.01rgk . In addition they 

fixed the maximal change in relative permeability to a maximum of 5* each step 

from the previous step of the analysis. 

The second numerical strategy,  is to set a small but positive value of initial capillary 

pressure that allows, with respect to the retention curve adopted, a small but 

positive, initial value of degree of water saturation. While this last strategy affects 

only the initial conditions and guess a good numerical path at the onset, for the 

solution of the initial time steps, the first strategy acts during all the analysis and 

prevents null values of gas saturation at each time step. In practice, while the first is 

a compulsory assumption, the second is recommended where initial conditions 

involve fully saturation of a part of the domain. In most of cases, the two strategies 

have to be used simultaneously.  
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The method c) that is not implemented in PLASCON3D_PS can be regarded as 

alternative to method b), with the difference that the one-phase, fully saturated, 

formulation coexists with the partial one, and holds on that nodes that reach the full 

saturation 1wS . The #switch$ is performed monitoring the capillary pressure on 

nodes, and with this method, a single finite element can have nodes on which is 

applied one formulation and nodes in which holds the partially formulation. Without 

such switch or the assumption done with method b) and above mentioned, the 

presence of a null degree of saturation induces to a mal conditioned problem. The 

method c) despite its correctness introduces the need of locating the isobar that 

may cross an element and requires a dedicated implementation of the switch 

procedure that affect deeply the code structure and need of an evaluation of optimal 

time step to avoid pressure oscillation [6, 10]. The switching procedure well 

explained in [10].  

Numerical results 

Numerical results will be given for the 10 elements mesh and the finest mesh with 

80 elements in order to test sensitivity of the results with the mesh refinement. The 

results presented regard both the method with only one phase flow (water flow) in 

partially saturated state, with pressure of the gas phase at atmospheric pressure 

and the method that take into account of airflow and water flow in the porous 

medium. Results are given plotting the variation of pressures, degree of water 

saturation and vertical displacements vs. the column height (1 m) for 0, 5, 10, 20, 

30, 60 and 120 minutes. Contour maps for water pressure, gas pressure, capillary 

pressure, degree of water saturation and displacements are reported for the mesh 

with 10 elements (Figure 4.3.9 to Figure 4.3.17).  

The results in terms of gas pressure has been reported only for the second method 

of analysis due to the fact that in the first method gas pressure reaches immediately 

the atmospheric pressure value in the partial saturated zone. This can be done 

setting the relative permeability of the gas a finite but very high value. 

As can be seen from graphs reported on Figure 4.3.4 to Figure 4.3.8, where two 

methods are compared, the final water pressures and displacements have the 

same distribution along the height of the column (Figure 4.3.4 and Figure 4.3.8). 

Despite capillary pressure values on top are very similar between two cases (Figure 

4.3.6) the first case presents higher values at each height, and generally this values 

are reached before in time than the second case. This result is achieved by effect of 

the higher relative permeability of the gas that allows that in each point of the partial 

saturated zone the pressure of the gas is equal to the atmospheric one. This fact 

influences directly the degree of water saturation along height that for the first case 
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shows a desaturation effects pretty homogeneous along all the height, in the other 

hand, the second case shows that desaturation effects occurs principally on the first 

30 cm from the top of the column where the air entry effect, as well as gas relative 

permeability are higher (Figure 4.3.7). Water pressure decrease by effect of gravity 

forces more rapidly in the second case, where the capillary effects are less than the 

first case (Figure 4.3.4).  

Displacements behave in the same way, denoting that values of vertical 

displacements close to final value at 120 minutes are reached faster than the case 

where one phase water flow is considered (Figure 4.3.8).  

Finally the suction effects induced on the gas phase by the gravity water flow are 

higher, as expected, during the firsts 20 minutes of analysis (second method), 

denoting during this time span the lowest values of gas pressure ( less than 98000 

Pa at 10 minutes). 

 

Graph results of the one-phase water flow case compared with two-phase flow 

results for the 10 elements mesh 

Figure 4.3.4: Water pressure [Pa] vs. height [m] for the one phase water flow case (black 

lines) and two-phase flow case (red lines with indicators), for the 10 element mesh. 
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Figure 4.3.5: Gas Pressure [Pa] vs. height [m] for two-phase flow case (red lines with 

indicators), for the 10 element mesh. 

Figure 4.3.6: Capillary Pressure [Pa] vs. height [m] for the one phase water flow case (black 

lines) and two-phase flow case (red lines with indicators), for the 10 element mesh. 
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Figure 4.3.7: Water Saturation vs. height [m] for the one phase water flow case (black lines) 

and two-phase flow case (red lines with indicators), for the 10 element mesh. 

Figure 4.3.8: Vertical displacements [m] vs. height [m] for the one phase water flow case 

(black lines) and two-phase flow case (red lines with indicators), for the 10 element mesh. 
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Contour maps for the one-phase water flow results 

    

0 minutes 5 minutes 10 minutes 20 minutes 

   

 

30 minutes 60 minutes 120 minutes  

Figure 4.3.9: Water Pressure [Pa] for the one-phase water flow case, for the 10 element 

mesh. 
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Figure 4.3.10: Capillary pressure [Pa] for the one-phase water flow case, for the 10 element 

mesh. 
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Figure 4.3.11: Displacements [m] for the one-phase water flow case, for the 10 element 

mesh. 
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Figure 4.3.12: Degree of water saturation for the one-phase water flow case, for the 10 

element mesh. 
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Contour maps for the two-phase flow results 
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Figure 4.3.13: Water Pressure [Pa] for the two-phase flow case, for the 10 element mesh. 
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Figure 4.3.14: Gas Pressure [Pa] for the two-phase flow case, for the 10 element mesh. 
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Figure 4.3.15: Capillary pressure [Pa] for the two-phase flow case, for the 10 element mesh. 
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Figure 4.3.16: Displacements [m] for the two-phase flow case, for the 10 element mesh. 
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Figure 4.3.17: Degree of water saturation for the two-phase flow case, for the 10 element 

mesh. 
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For completeness the graph results relative to the analyses with the fine mesh (80 

elements) are here reported (Figure 4.3.18 to Figure 4.3.22). The same 

considerations that have been done for the mesh with 10 elements are valid.  

Figure 4.3.23 to Figure 4.3.27 show results in terms of capillary pressure, vertical 

displacements and degree of water saturation for the two phase flow case, only. 

Furthermore, as can be seen, a comparison between 10 elements mesh and 80 

elements mesh is done and the results from these sensitivity analyses are very 

similar among two space discretization, i.e. mesh refining doesn!t affect the results 

significantly. However, limited differences can be noticed, in particular for gas 

pressure, for the capillary pressure and for the degree of water saturation for the 

initial times of 5 and 10 minutes. This limited gap between results disappears for 

time higher than 30 minutes.   

 

Graph results of the one-phase water flow case compared with  two-phase flow 

results for the 80 elements mesh. 

Figure 4.3.18: Water pressure [Pa] vs. height [m] for the one phase water flow case (black 

lines) and two-phase flow case (red lines with indicators), for the 80 element mesh. 
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Figure 4.3.19: Gas Pressure [Pa] vs. height [m] for the two-phase flow case (red lines with 

indicators), for the 80 element mesh. 

Figure 4.3.20: Capillary Pressure [Pa] vs. height [m] for the one phase water flow case 

(black lines) and two-phase flow case (red lines with indicators), for the 80 element mesh. 



Numerical analyses 

 

148 
 

Figure 4.3.21: Water Saturation vs. height [m] for the one phase water flow case (black 

lines) and two-phase flow case (red lines with indicators), for the 10 element mesh. 

Figure 4.3.22: Vertical displacements [m] vs. height [m] for the one phase water flow case 

(black lines) and two-phase flow case (red lines with indicators), for the 80 element mesh. 
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Comparison between the 10 elements mesh results and 80 mesh results 

 
Figure 4.3.23: Water pressure [Pa] vs. height [m] result comparison between 10 elements 

mesh (black lines) and 80 element mesh (red lines with indicators). 

 
Figure 4.3.24: Gas pressure [Pa] vs. height [m] result comparison between 10 elements 

mesh (black lines) and 80 element mesh (red lines with indicators). 
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Figure 4.3.25: Capillary pressure [Pa] vs. height [m] result comparison between 10 elements 

mesh (black lines) and 80 element mesh (red lines with indicators). 

Figure 4.3.26: Vertical displacements [m] vs. height [m] result comparison between 10 

elements mesh (black lines) and 80 element mesh (red lines with indicators). 
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Figure 4.3.27: Water Saturation vs. height [m] result comparison between 10 elements 

mesh (black lines) and 80 element mesh (red lines with indicators). 

The last three graphs (Figure 4.3.28 to Figure 4.3.30) show the comparison in 

terms of vertical displacements and water outflows between the results   obtained 

with PLASCON3D_PS with a three-dimensional model and those obtained by 

Gawin and Schrefler [11] with a two-dimensional model, in both cases with the 10 

element mesh.  

While the results for the case of one phase flow are the same in terms of vertical 

displacements, the same is not for the case of two phase, water and air flow. 

Results obtained by  Gawin and Schrefler [11] approach to the final value of vertical 

displacement more rapidly in the first hour of analysis than the results obtained with 

the PLASCON3D_PS. Conversely, results with PLASCON3D_PS are faster in the 

second hour of analysis with respect to the two-dimensional model. However the 

final value of displacements is the same. These differences are given by the 

different approach used in [11] with respect to the one used in this work, to treat the 

transition between full saturated states to partial saturated states. While in [11] the 

transition is performed with a switch from a u ! p, fully saturated formulation to a u 

! pw !pg partial saturated formulation, in PLASCON3D_PS, as explained before, 

the formulation used is always the u ! pw !pg partially saturated maintaining also 

for states near the unitary degree of water saturation the coupling with the balance 

gas equation.  
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Figure 4.3.28: Vertical displacements vs. height [m] result comparison, between the solution 

obtained with PLASCON3D_PS (black discontinued lines) and results obtained by Gawin 

and Schrefler [11] (red solid lines),  in the case of one-phase water flow. 

 
Figure 4.3.29: Vertical displacements vs. height [m] result comparison between the solution 

obtained with PLASCON3D_PS (black discontinued lines)  and results obtained by Gawin 

and Schrefler [11] (red solid lines),  in the case of two-phase flow. 
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Figure 4.3.30: Outflows comparison. Dashed line is the experimental outflow (Liakopoulos); 

Dotted lines are from numerical computation with PLASCON3D_PS; Solid lines are from 

numerical computations performed by Gawin and Schrefler [11]. 

Finally, comparing the water outflows from the bottom of the column, a good 

achievement with the experimental data and the previous simulations found in [11], 

has been obtained with the numerical computations performed with 

PLASCON3D_PS with the first method and this means that the one phase water 

flow method gives a more realistic forecast of the real behaviour found with the 

experiment of Liakopoulos and the real  material characteristics.     

4.4. Flexible footing in a partially saturated soil 

The numerical analyses presented here deal with a flexible footing that rests on a 

partial saturated soil. The main cross section of the domain is a rectangular which 

dimensions are 12 m height and 19 m length. This problem was first solved by 

Lloret et al. [12] using two computer programs, the ICFEP (Imperial College) that is 

a general stress-strain computer code and a program named NOSAT that solves 

the flow stage. From these information is not clear how far the coupling was 

preserved with this partitioned procedure.  To model the relation between capillary 

pressure and degree of saturation, the state surface approach [13] were used in 

[12]  by the authors, in order to obtain a valid expression for (2.6.3). The first of 
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(1.5.10) was used but no information about the parameters was given. Despite the 

lack of information regarding the material parameter  and the load conditions, at 

least, contours of degree of saturation and vertical displacement evolution in time 

are available from [12]. 

Schrefler and Zhan [5] solved the problem using the Brooks and Corey relation 

(1.5.7), but again they didn!t give any information on the material properties and on 

the parameter used in the water retention curve relation (1.5.7). Due to this fact, 

only qualitative comparison can be done between the original results presented in 

[12], the ones presented in [5] and the ones presented in this work. 

Boundary conditions and mesh discretization 

The two-dimensional mesh used by Lloret et al. [12] and Schrefler and Zhan [5], 

with the pressure load over the footing, can be seen in Figure 4.4.1, as well as the 

three points where authors gave results. The dimension of this discretization of the 

domain has been adopted also for the three-dimensional meshes, obtained by a 1 

meter extrusion along the y direction of the rectangular domain. As results the 

three-dimensional mesh of Figure 4.4.2a has been created, while Figure 4.4.2b 

shows the fine mesh that has been done carrying out a refinement of the first mesh. 

The coarse mesh of Figure 4.4.2a has 40 elements for a total of 348 nodes, while 

the fine one has 440 elements for a total of 2681 nodes (details about the element 

that has been adopted can be found in the Section 2.8). 

Figure 4.4.1: Mesh utilized by Lloret et al. [12] and Schrefler and Zhan [5] to discretize the 

flexible footing problem. Results in terms of displacements are given by authors for the 

points A, B and C. 

The boundary conditions applied to the two meshes are the following:  

 For t < 0, the saturation on bottom surface is Sw = 1 , while for top surface Sw 

= 0.75. The capillary pressure is assumed to vary linearly from bottom to top 
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surface, while the degree of water saturation varies accordingly with the 

water saturation " capillary pressure relation adopted;  

 For t > 0, the lateral surfaces are impervious and constrained to horizontal 

displacements. The nodes on the bottom surface are all constrained with 

respect to vertical and horizontal displacements. The top surface outside the 

footing (that is supposed to lay over the first three elements of top surface 

as showed in Figure 4.4.1) has Sw = 1, while under the footing a load of 

405300 N/m² insist on the soil for all the time of the simulation. 

For the water saturation " capillary pressure relation the Brooks & Corey [14, 15] 

relation has been used 
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Where the relative permeabilities are expressed as 
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                                 (a)                                                                     (b) 

Figure 4.4.2: Discretization of the domain for the flexible footing problem. Coarse (a) and 

fine (b) mesh. The red surface represents the loaded footing. 

 

 



Numerical analyses 

 

156 
 

In the same way, the van Genuchten relationship has been also considered in the 

final analyses, in order to compare results  
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c

S
p

 (4.4.3)

For Mualem [16], the relationship 1 1m n  holds. The two relationships are 

showed in Figure 4.4.3. 

The (1.5.21) has been adopted for the relative permeability for the liquid phase 

 2
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m
m
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while for the gas phase holds the relation proposed by Parker et al.[17, 18] 

 2
1/2 1/1 1
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Figure 4.4.4 plots the relative permeability functions for water and gas (dry air) for 

the Brooks and Corey relationship and the van Genuchten relationship.  

 

Figure 4.4.3: Comparison of Brooks-Corey vs. van Genuchten water saturation functions. 

As widely discussed in the previous section 4.3, in order to better achieve the 

convergence of the solution and avoid numerical problems for the initial steps a 

minimum capillary pressure at the time t=0 has been set to the value of , =c i bp p  

when using the Brooks and Corey relation and , = ( 1.0)c i c wp p S when using the 
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van Genuchten expression, where unitary degree of water saturation is required by 

the initial conditions and boundary conditions (Figure 4.4.5 and  

Table 4.4.2). Together with this assumption on initial capillary pressure a minimum 

degree of gas saturation has been set equal to , 0.001g irrS  (see also equation 

(1.5.8)). Finally, a condition on the minimum relative permeability for the gas phase 

has also done, fixing the inferior limit value to 0.0005rgk . Varying this parameter 

with values not far from the curves (Figure 4.4.4) can allow a better calculation of 

the permeability contributions (in particular when the Brooks and Corey relation is 

used), with a sensible smoothing effects on pressure results over the domain. 

However, varying this limiting parameter of some degree of magnitude (e.g. setting 

it to a hundred times greater) can affect considerably the results. Here a careful 

choice of this parameter has been done in order to prevent excessive influence on 

the final results.  

 

Figure 4.4.4: Comparison of Brooks-Corey vs. van Genuchten water saturation functions. 

Numerical Results 

Several sets of material characteristics have been tested in order to find a 

qualitative matching with the results presented in literature [5, 12]. The 

characteristics of the material that allow a good average fitting with the 

displacements results presents in literature at [5] are reported in Table 4.4.1 and  

Table 4.4.2 , is plausible with a silty sand moderately dense. The initial state for the 

following analyses is the one given by the initial conditions described above and the 

initial conditions capillary pressure and saturations profile can be seen in Figure 

4.4.5a-b.  
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While for the coarse mesh the choice of the time interval for the single time steps 

doesn!t have effects on the convergence to a solution, for the fine mesh an initial 

time step of 10 s has been chosen to carry out the analyses and allow a better 

computation at initial time steps. 

Table 4.4.1: Material characteristics of a silty sand moderately densed. 

Young!s  modulus =8.5!MPaE  

Poisson!s ratio 0.35  

Solid grain density  3=2000kg / ms  

Liquid density (STC) 3=1000kg / mw  

Air density (STC) 
3=1.22kg / mg  

Porosity 0.2n  

Intrinsic permeability -14 2k =5.0! 10 m  

Water viscosity -43 10 Pa sw  

Air viscosity -52.4 10 Pa sa  

Atmospheric pressure 101325Paatmp  

 

Table 4.4.2: Degree of water saturation vs. capillary pressure curve parameters for a silty 

sand. Brooks and Corey (B.C.) and van Genuchten (V.G.). 

Bubbling pressure  (B.C.) 1680Pabp  

Pore size distribution index (B.C.) 3.0  

Irriducible degree of water saturation  (B.C.) , 0.2w irrS  

Capillary pressure at fully saturated conditions (B.C.) , 1680c ip Pa  

alpha  (V.G.)  4 12.50 10 Pa  

m  (V.G.) 0.75  

n  (V.G.) 4  

Capillary pressure at fully saturated conditions (V.G.) , 500c ip Pa  

 

Results are here presented for both the two meshes with coarse and fine 

discretizations, for an intermediate time of t = 105 s and for the later time of t = 5 108 
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s. In the last contours maps (the ones that refer to a time of t = 5 108 s) the 

precision on the legends has been increased in some cases in order to better 

appreciate slight differences on the contours.   

(a) 

(b) 
Figure 4.4.5: Capillary pressure [Pa] and degree of water saturation for t = 0. With Brook 

and Corey function (a) and van Genuchten " Mualem function (b). 

The two relationship relative to the degree of water saturation vs. capillary pressure 

presented before has been used for the analyses.  Case 1 refers to the analyses 

where Brooks and Corey relationship has been used, Case2 a where van 

Genuchten relationship has been used. 

Figure 4.4.18 shows the deformed mesh, magnified five times than the normal 

values, compared with the underformed one. In order to plot the graphs, the point A 

(on the left, under the footing), the point B (outside the footing) and the point C (far 

from the footing) on the top surface have been taken as reference point (Figure 

4.4.1). 
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Results with the Brooks and Corey relationship (Case 1). Results for t = 105 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.6: Vertical displacements [m] (a); Horizontal displacements [m] (b); Capillary 

pressure (c); for the Case 1 at t = 10
5
 s. 
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Results with the Brooks and Corey relationship (Case 1). Results for t = 105 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.7: Water Pressure [Pa] (a); Water saturation (b); Relative water permeability(c); 

for the Case 1 at t = 10
5
 s. 
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Results with the Brooks and Corey relationship (Case 1). Results for t = 105 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.8: Gas Pressure [Pa] (a); Gas saturation (b); Relative gas permeability(c); for the 

Case 1 at t = 10
5
 s. 
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Results with the van Genuchten relationship (Case 2). Results for t = 105 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.9: Vertical displacements [m] (a); Horizontal displacements [m] (b); Capillary 

pressure (c); for the Case 2 at t = 10
5
 s. 
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Results with the van Genuchten relationship (Case 2). Results for t = 105 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.10: Water Pressure [Pa] (a); Water saturation (b); Relative water permeability(c); 

for the Case 2 at t = 10
5
 s. 
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Results with the van Genuchten relationship (Case 2). Results for t = 105 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.11: Gas Pressure [Pa] (a); Gas saturation (b); Relative gas permeability(c); for 

the Case 2 at t = 10
5
 s. 
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Results with the Brooks and Corey relationship (Case 1). Results for t = 5 108 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.12: Vertical displacements [m] (a); Horizontal displacements [m] (b); Capillary 

pressure (c); for the Case 1 at t = 5 10
8
 s. 
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Results with the Brooks and Corey relationship (Case 1). Results for t = 5 108 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.13: Water Pressure [Pa] (a); Water saturation (b); Relative water permeability(c); 

for the Case 1 at t = 5 10
8
 s. 
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Results with the Brooks and Corey relationship (Case 1). Results for t = 5 108 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.14: Gas Pressure [Pa] (a); Gas saturation (b); Relative gas permeability(c); for 

the Case 1 at t = 5 10
8
 s. 
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Results with the van Genuchten relationship (Case 2). Results for t = 5 108 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.15: Vertical displacements [m] (a); Horizontal displacements [m] (b); Capillary 

pressure (c); for the Case 2 at t = 5 10
8
 s. 
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Results with the van Genuchten relationship (Case 2). Results for t = 5 108 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.16: Water Pressure [Pa] (a); Water saturation (b); Relative water permeability(c); 

for the Case 2 at t = 5 10
8
 s. 
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Results with the van Genuchten relationship (Case 2). Results for t = 5 108 s 

Coarse mesh Fine mesh 

(a) 

(b) 

(c) 

Figure 4.4.17: Gas Pressure [Pa] (a); Gas saturation (b); Relative gas permeability(c); for 

the Case 2 at t = 5 10
8
 s. 
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Figure 4.4.18: 2D visualization of the vertical displacements for t = 10
5 s (Brooks and Corey 

relationship) with the coarse mesh. Results are plotted on the deformed mesh (5 x ). Grey 

mesh is at initial undeformed conditions.  

Generally speaking, the results obtained with the fine mesh are smoother than 

those obtained with the coarse mesh, due to the higher number of nodes in which 

results are calculated, and so the results displaying as well as the calculations over 

the domain are more precise.  

The displacements distributions on the domain for the solid phase are pretty similar 

and values are very close comparing the Case 1 with the Case 2. The same can be 

said comparing results achieved with the two mesh discretizations, here differences 

are very slight. By effect of Poisson!s coefficient of the material, the vertical load 

induces horizontal displacements that consequently provoke a short of expansion 

effect that rise the portion of top surface farthest from the load. 

While the displacements fields among the two cases are matching quite well the 

same doesn!t occur for the others fields. In particular, if qualitatively the shapes of 

the pressures distribution are quite identical, denoting high pressure values right 

under the footing, as expected, the limit values reached in the Case 1 for water and 

gas pressure are higher that the Case 2 (Figure 4.4.7 and Figure 4.4.8 compared 

with Figure 4.4.10 and Figure 4.4.11). Despite that higher values for pressures have 

been obtained in the Case 1, the capillary pressure values, that denote the 

difference between the fluid phases pressures, are higher in the Case 2, as can be 

seen also from Figure 4.4.19, where capillary pressure evolutions have been 

plotted for the reference point A (the one under the footing). Figure 4.4.20 shows 
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instead the evolution in time of the degree of water saturation for the same point, in 

both cases. As expected, differents values of capillary pressure doesn!t mean great 

differences of degrees of saturation, at least for lower times (see also Figure 4.4.3). 

Due to these considerations, together with the fact that the same material 

properties and general parameter configurations have been adopted, it can be clear 

that the difference between cases, in value of the capillary pressure for the initial 

times, influences also the initial vertical displacement observed at the reference 

point A (the same occurs at the point B and C). As can be seen from the graphs 

plotted in Figure 4.4.21 to Figure 4.4.23, the maximum negative value of vertical 

displacement is observed for the point A for the Case 1, that records lower values 

of capillary pressure at a relative initial time of 103 s. This displacement value is 

higher than the one obtained by the Case 2. The entity of capillary pressure, as well 

as its variation in time, directly affects the response of the medium to the constant 

load. In fact, the Case 1 shows very slow variation in time of capillary pressure and 

water saturation in the point A, with a quasi horizontal plateau for the most of the 

simulation time (Figure 4.4.19 and Figure 4.4.20), while steeper profiles can be 

obtained for Case 2. In the Case 2, the higher negative value of vertical 

displacement is reached more rapidly than in the Case 1.  

Around time of 106 seconds, the value of capillary pressure for the Case 2 

decreases first moderately then more rapidly towards the inferior limit of 500 Pa that 

has been taken as boundary condition of fully saturation. As can be seen from 

contour maps for the highest time presented, the full saturation by water of the 

whole domain, occurs for the Case 2, around the time of 5 108 seconds, that 

correspond to the initial steady value of capillary pressure of 500 Pa. The capillary 

pressure of the Case 1, decreases appreciably later, at the time of 108 seconds 

towards the initial steady value that coincides with the bubbling pressure (1680 Pa), 

neverthless, the fully saturated condition is reached only for a time greater than 1010 

s. Despite that the fully saturated conditions are not reached in Case 1, whitin the 

simulation time set for the analyses, from contour maps relative to Case 1 ( Figure 

4.4.13 and Figure 4.4.14), it can be seen that ranges of pressures are very close to 

the one imposed at the boundaries and so the system is going to approach slowly 

to the steady conditions.  

Finally, comparing the vertical displacements for the point A, B and C with those 

obtained by Schrefler and Zhan [5], for a closer span of simulation time, it can be 

seen, from Figure 4.4.21 to Figure 4.4.23, that no perfect matching of the results 

has been obtained with the supposed parameters for the water retention 

relationships (Table 4.4.2), however, the average displacements correspond at 
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each reference point, and this mean that a satisfactory achivement of mechanical 

charachteristics of soil has been obtained.  

Figure 4.4.19: Capillary pressure evolution in time for the point A on top surface of the 

domain. Comparison between Case 1 and Case 2 results obtained with PLASCON3D_PS. 

Figure 4.4.20: Water saturation evolution in time for the point A on top surface of the 

domain. Comparison between Case 1 and Case 2 results obtained with PLASCON3D_PS. 
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Figure 4.4.21: Vertical displacements evolution in time for the point A on top surface of the 

domain. Comparison between results obtained with PLASCON3D_PS (with Brooks and 

Corey and van Genuchten relationships) and results given by Schrefler and Zhan [5].  

Figure 4.4.22: Vertical displacements evolution in time for the point B on top surface of the 

domain. Comparison between results obtained with PLASCON3D_PS (with Brooks and 

Corey and van Genuchten relationships) and results given by Schrefler and Zhan [5].  
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Figure 4.4.23: Vertical displacements evolution in time for the point C on top surface of the 

domain. Comparison between results obtained with PLASCON3D_PS (with Brooks and 

Corey and van Genuchten relationships) and results given by Schrefler and Zhan [5].  

Schrefler and Zhan observed, for increasing times, a swelling (or expansion) of the 

top cross section, that is typical of clay soils. What that can be observed from the 

results obtained with the PLASCOND3D_PS is that a very similar recovery of the 

vertical displacements occurs, after the time of 106 second, for the Case 2. The 

recover of the vertical displacements are greater for the reference point A, and 

coincides with the change of slope in the capillary pressure vs. time diagram 

(Figure 4.4.19), i.e. when capillary pressure decreases rapidly. This recover is not 

appreciable in the Case 1, even if it is present, due to the restricted range of 

variation of capillary pressure from the maximum value to the one set by the 

bonduary conditions. Comparing the two water saturation vs. capillary pressure 

relations, the one given by Brooks and Corey (4.4.1) and the one given by van 

Genutchen (4.4.3) it can be said that for the first part of the simulation. i.e. before  

the maximum vertical settlement value for each reference point has been reached, 

the Case 1 that adopt the (4.4.1) shows the same slope that the results presented 

in [5],  but with shifted values. The (4.4.3) behaves better at greater times, when is 

able to reproduce a vertical displacements recovery as observed by Schrefler and 

Zhan [5].   

All the alternative solvers introduced in the chapter 4, have been successful 

employed. PARDISO, running in multi threads (parallel) mode, with row and column 
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elimination method for the imposition of boundary conditions, has proved to be the 

most efficient solver for the resolution of the fine mesh, while for the coarse mesh 

LAPACK routines with rows and columns elimination running in single thread 

(sequential) mode has proved to be the most computationally efficient. Results 

about the performances of the solvers are discussed on section 4.6. 

4.5. Air injection into an aquifer in air storage aquifer 

model: Media Gallesville Acquifer  

This numerical example has the aim to analyse a greater domain, with respect to 

the ones presented in the sections before, like and aquifer, located at a certain 

deep, subjected to gas injection operations. This case study has been already 

performed by Meiri [19], Meiri and Karadi [20], assuming a crushproof solid 

skeleton, and so, no results for the displacements field were produced. By the way, 

the deformability of the solid phase has been take into account by Schrefler et al. 

[5].  

The dimensions and parameters that describe the aquifer reservoir are similar to 

the Media Gallesville Aquifer studied by Katz et al. [21]. The aquifer has 110 m of 

diameter and the height is 20 m and the homogeneous material which it is made is 

sand.  

Boundary conditions and mesh discretization 

The material specifications, as well the other model parameters are reported in 

Table 4.5.1 and a schematization of the aquifer model is given in Figure 4.5.1. 

The medium of which the aquifer is made, is assumed to be at the beginning fully 

saturated of water, with relative permeability of 135! !10 m²k , a porosity 0.2n  

and the aquifer is subjected to a constant temperature of 149°C. The initial aquifer 

pressure is 5.066 x 106 Pa (  50 atm).  

Due to the fully saturated initial conditions, the formulation implemented in the 

PLASCON3D_PS requires initial values for the water and gas pressure that 

correspond to the saturated state. The saturation state transition from the full 

saturation to the partial saturation of the medium is again performed maintaining the 

full coupling of the gas balance equation with other balancing equations, also in the 

case that the degree of water saturation reaches the unitary value (as previously 

done in the cases presented in the sections 4.3 and 4.4). This means that even if 

the fully saturated state is reached, the value of the  degree of water saturation will 
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assume a value very close to 1, allowing that a residual, but small (<1*), degree of 

gas saturation always exists. This assumption was made similarly in the work of 

Laloui et al. [9]. As consequence to this approach the value of the water pressure 

has been set in order to obtain a small positive value of capillary pressure, while the 

gas pressure has been maintained at the aquifer initial pressure, that is also been 

taken as average gas injection pressure in the following. The value of the initial 

capillary pressure, that match with the above mentioned requirement is 

, 1680Pac ip . Following, also an initial capillary pressure , 500Pac ip has been set, 

in order to compare the solution when values less than the bubbling pressure, are 

chosen as initial values for the capillary pressure.  

Table 4.5.1: Aquifer model characteristics. 

Young!s  modulus =0.692!MPaE  

Poisson!s ratio 0.27  

Solid grain density  3=2000kg / ms  

Liquid density (STC) 3=1000kg / mw  

Air density (STC) 
3=1.22kg / mg  

Porosity 0.2n  

Intrinsic permeability -13 2k =5.0! 10 m  

Water viscosity -43 10 Pa sw  

Air viscosity -52.4 10 Pa sa  

Gravitational acceleration -2=9.806m sg  

Aquifer confinement pressure 50!atmatmp  

 

The boundary conditions for t > 0 are: impervious lateral surfaces ( 0, 0w aq q ) 

and fixed horizontal displacements ( 0hu ). On bottom surface both horizontal and 

vertical displacements are not allowed ( 0hu  and 0vu ), as well the gas flux 

( 0aq ). The water pressure is equal to the initial pressure of the aquifer minus the 

value of bubbling pressure discussed in the following ( 65.06432 10 Pawp ). Top 

surface is subjected to a constant gas flux and zero water flux. All nodes that don!t 

belong to the bottom surface are free to move vertically. 
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In order to provide a correct boundary condition for the gas flux that is injected 

homogeneously on the top surface of the aquifer, the constant flux in terms of mass 

of gas injected per seconds per unit area ( -4 22.44 10 kg/s!×maq ) must be 

translated to a volumetric value that depends on the gas density. 

 

Figure 4.5.1: Schematics of a quart of aquifer and main boundary conditions. 

Due to the dramatically different conditions prevailing at the deep where reservoir is 

located, compared with the conditions at the surface, it must be kept in mind that 

the same quantity of gas mass occupies different volumes depending on conditions 

considered. At the ground surface where deep is equal to zero, the air is at 

standard tank conditions (STC). In other words, the air density value of 1.22 kg/m³ 

that correspond to a specific volume for the air of about 0.82 m³/kg must be 

recalculated at the reservoir conditions. 

Assuming that air behaves as an ideal gas, Meiri [22] provided a suitable relation 

for the formation volume factor of air at the reservoir temperature  

 1.46a a ap p  (4.5.1)

The formation volume factor of a gas is defined as the ratio of the volume of the gas 

at the reservoir temperature and pressure to the volume at the standard or surface 

temperature and pressure. This coefficient relates the volume of fluids that are 
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obtained at the surface (stock tank) to the volume that the fluid actually occupied 

when it was compressed in the reservoir.  

This relation can be easily written as 

 
,

,

a RES

a

a STC

V

V
 (4.5.2)

With 50atmap  the formation volume factor is 0.03a . Thus, the gas flux 

expressed in terms of mass can be calculated in terms of volume at standard 

conditions and then calculated in terms of volumetric flux at reservoir conditions, at 

least for the discovery initial pressure.   

For the water saturation " capillary pressure relation the Brooks & Corey [14, 15] 

relation has been used 
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The values of ,w irrS , bp  and  are respectively 0.2, 1680 Pa and 3.0. The 

relationship is the one presented in the previous section in Figure 4.4.3. 

As schematized in Figure 4.5.1 the domain that has been tested, consists in a quart 

of the whole aquifer. The domain has been subdivided with 270 20-node iso-

parametric elements (details about the element that has been adopted can be 

found in the Section 2.8) , for a total of 1438 nodes. The height has been 

subdivided by ten elements. The final mesh has been reported on Figure 4.5.2. 
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Figure 4.5.2: Discretization of a quart of the circular aquifer. 

Numerical results 

The simulated injection takes place during a time span of 80 hours. A time step of 

1800 s (0.5 hour) and of 180 (0.05 hour) has been used, with no appreciable 

differences on final results.  Results have been plotted in graph for 0, 10, 20, 30, 

40, 50, 60, 70 and 80 hours. 

Contour maps for water and gas pressures and for displacements and water 

saturation have been reported at 10 and 80 hours of simulation (Figure 4.5.3 to 

Figure 4.5.6). The results for the other simulation times are qualitatively similar. 

Graphical results are reported for water and gas pressures and for displacements 

and water saturation (Figure 4.5.7 to Figure 4.5.11). Comparisons with the results 

of other authors have been done in Figure 4.5.10 to Figure 4.5.12. 

With reference to the graphs reported in Figure 4.5.7 to Figure 4.5.9 can be seen 

that, in the first part of the simulation that takes about 40 hours, the aquifer is 

compacting, with a decreasing trend in terms of pressure values both for water and 

gas. The gas displaces the water present in the aquifer and with time occupies the 

voids volume released by water. This fact can be observed also in the graph 

relative to the degree of water saturation vs. height (Figure 4.5.10). For later times 

than 40 hours the aquifer reverses its trend and starts progressively to expand. As 

long as the storage of gas volume at higher height levels increases, the pressures, 

initially decreasing, start to recover progressively. The pressure has a minimum at 

the interface of two fluids and as can be seen from Figure 4.5.7 and Figure 4.5.8. 

the minimum value of pressure, both for water and gas, is more or less constant 

with time, however, the corresponding height where it can be observed, decreases, 

moving with time towards the bottom of the aquifer, i.e. the aquifer is storing gas 

progressively.  
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10 hours 

 

 

80 hours 

Figure 4.5.3: Contour maps obtained with PLASCON3D_PS for the water pressure [Pa] for 

10 and 80 hours. 

 

 

10 hours 

 

 

80 hours 

Figure 4.5.4: Contour maps obtained with PLASCON3D_PS for the gas pressure [Pa] for 10 

and 80 hours. 
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10 hours 

 

 

80 hours 

Figure 4.5.5: Contour maps obtained with PLASCON3D_PS for the degree of water 

saturation for 10 and 80 hours. 

 

 

10 hours 

 

 

80 hours 

Figure 4.5.6: Contour maps obtained with PLASCON3D_PS for vertical displacements [m] 

for 10 and 80 hours. 
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Figure 4.5.7: Water pressure vs. height [m] results obtained with PLASCON3D_PS. 

 

Figure 4.5.8: Gas pressure vs. height [m] results obtained with PLASCON3D_PS. 
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Figure 4.5.9: Vertical displacements [m]   vs. height [m] results obtained with 

PLASCON3D_PS. 

Figure 4.5.10: Degree of water saturation  vs. height [m]  results obtained with 

PLASCON3D_PS (dashed lines) compared with those obtained by Schrefler and Zhan [5] 

(continuous lines). 
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Figure 4.5.11: Degree of water saturation  vs. height [m] results obtained with 

PLASCON3D_PS (dashed lines) compared with those obtained by Meiri and Karadi [20] 

(continuous lines). 

Figure 4.5.12: Vertical displacements [m]  vs. height [m] results obtained with 

PLASCON3D_PS (dotted lines for pc,i = 1680 Pa and dashed lines for pc,i = 500 Pa) 

compared with those obtained by Schrefler and Zhan [5] (continuous lines). 
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Schrefler and Zhan [5], solved the problem with a coupled formulation, using a two-

dimensional domain similar to the two-dimensional column adopted to treat the 

Liakopoulos test case by the same authors (obviously with the dimensions of the 

central cross section of the aquifer), which is solved here in the section 4.3. Here 

the one-dimensional problem for the solid phase has been solved adopting a three-

dimensional domain that corresponds to the quart of aquifer. The agreement with 

the results obtained by the above mentioned authors is very good in terms of 

degree of water saturation and displacements ( Figure 4.5.10 and Figure 4.5.12).  

With respect to the Meiri [19] and Meiri and Karadi [20] works, a proper Young!s 

modulus and Poisson!s coefficients for the material has been used and the effects a 

of the deformable solid skeleton on the degree of water saturation profiles on can 

be seen in Figure 4.5.11, where a comparison with the original authors has been 

done. While for a rigid skeleton the desaturation on the domain is larger at the 

beginning of the simulation, for a deformable material present larger desaturation 

effects for later times of simulation.  

As explained before the initial conditions for gas and pressure are different and 

values are shifted by a small positive value of capillary pressure in order to ensure 

a proper correspondence of the initial state on the water saturation vs. capillary 

pressure curve (Figure 4.4.3). In fact for values above the bubbling pressure bp , the 

entry of the air/gas into the porous matrix occurs (see also section 1.5) and so a 

positive value for the degree of gas saturation can be achieved, as required by the 

approach, in order to ensure full coupling between the phases. However, the 

modification to the (1.5.8), along with a proper setting of initial conditions has 

important consequences as described in the section 4.3. 

Here, as result of the introduction of the residual gas saturation, the solution of the 

problem is possible also for initial values of capillary pressure less than the bubbling 

pressure. This can be done ensuring a residual gas saturation of 0.1* also for 

value of , 500Pac ip . In particular, as showed by Figure 4.5.12, at the onset results 

in terms of vertical displacements adhere more to the results obtained in [5] for 

,c i bp p ,although results with , 500Pac ip  are good. Later the influence of the 

initial conditions disappears and the results in two cases are identical, as expected.  

All the alternative solvers introduced in the chapter 4 have been successful 

employed, however LAPACK routines running in sequential mode, with row and 

column elimination method used for the imposition of boundary conditions, has 

proved to be the computationally most efficient solver for the resolution of the 

problem. Results about the performances of the solvers are discussed on section 

4.6. 
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4.6. Analysis of the solvers performances 

In the following, the computational performances in terms of CPU time spent into 

the block of code relative to solution procedures have been reported. Results refer 

to the average time, in seconds, that has been spent for a singular time step. The 

computations have been performed on multi core UNIX servers named Antares. 

Table 4.6.1 summarizes the dimension of the problems that have been analysed in 

the present work. 

Table 4.6.1: Summary of problems dimension considered in the present work. 

 Elements Nodes 

Liakopoulos 10 el. mesh 10 128 

Liakopoulos 80 el. mesh 80 621 

Footing coarse mesh 40 348 

Footing fine mesh 440 2681 

Aquifer mesh 270 1438 

 

All the analyses presented, have been carried out with all the solvers implemented 

in the code. The alternative solvers presented, that are put by side of the standard 

skyline solver, are based on the LAPACK routines [23] and on the PARDISO solver 

[24]. Two different way of imposing the boundary conditions have been tested, as 

first, the method that uses the penalty coefficient has been considered. The second 

method uses the row and column elimination (section 3.4). An average value of the 

time spent to solve the linear system of equations for a single time step has been 

calculated and reported in Table 4.6.2 for the computations done in single-thread 

mode, while in Table 4.6.3 for the computations done in parallel model (the value is 

the sum of time over all cores). 

Table 4.6.2: Performances in terms of CPU time [s] spent into the solver routines when 

running on sequential mode (one thread). Values in bold are the best for the relative mesh. 

 Standard 

Skyline 

LAPACK w. 

penalty coeff. 

PARDISO w. 

penalty coeff. 

LAPACK w. 

row / col. elim. 

PARDISO w. 

row / col. elim. 

Liakopoulos 10 el. 0.36 0.02 0.0240 0.0120 0.008 

Liakopoulos 80 el. 230 1.25 0.52 0.44 0.41 

Footing coarse 35 0.25 0.18 0.12 0.13 

Footing fine - 90.4 10.7 33.8 9.2 

Aquifer - 13.8 3 1.6 2 
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As can be seen comparing the two tables, the multi-thread mode doesn!t affect the 

CPU time needed to standard skyline solver to achieve the solution of the 

problems. This was expected, due to the fact that the standard solver routine is 

made by a code block of sequential instructions that don!t allow a parallelization, 

thus, the solver uses only a  CPU core even the parallelization of the code is 

allowed by the compiler settings. However, this solver has a great lack of efficiency 

when is employed to solve meshes larger than a certain number of elements, such 

the fine mesh used in the flexible footing problem (section 4.4) or the mesh related 

to the gas injection in aquifer (section 4.5). 

Table 4.6.3: Performances in terms of CPU time [s] spent into the solver routines when 

running on parallel mode (multi thread). Values in bold are the best for the relative mesh. 

 Standard 

Skyline 

LAPACK w. 

penalty coeff. 

PARDISO w. 

penalty coeff 

LAPACK w. 

row / col elim. 

PARDISO w. 

row / col. elim. 

Liakopoulos 10 el. 0.36 0.22 0.5 0.19 0.23 

Liakopoulos 80 el. 230 4 1.5 1.17 0.84 

Footing coarse 35 0.78 0.61 0.4 0.38 

Footing fine - 91.1 10.8 34.1 8.2 

Aquifer - 23.3 8 3.5 3.4 

 

PARDISO has been proved to be the best solver, denoting a considerable saving in   

computational time and a good choice in every situation. However, also LAPACK 

routines work very well.  

The time take into account of the global system matrix assembly, followed by the 

imposition of boundary conditions and the by the solution of the system of 

equations. With reference to the dimension of the problems that have been treated 

within this work, the row and column method is the best method to impose the 

boundary conditions and preparing the linear system to the solving operations. In 

fact, this method reduces the dimension of the global matrix that is attempt to being 

solved, resulting in less computational cost and a gain in CPU time. The penalty 

coefficient, instead, despite is faster than the first, preserve the global system 

dimension with a consequently larger computational cost and CPU time in order to 

obtain solution.   

Concluding the best choice for a mesh of small dimension is PARDISO running in 

sequential, single-thread mode, with row and column elimination method. However, 

also the use of LAPACK routines with the same configurations obtains good results. 

For larger mesh (e.g. 400 elements and 2500 nodes) best results are obtained with 

PARDISO running in parallel mode. 
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5 Conclusions 

The present work can be inserted in the framework of the Solid Mechanics, applied 

to the porous media theories. The model for the saturated and unsaturated medium  

presented here in the chapter 1, is a macro scale, physical approach 

characterization of the continuum  presented in the more complex hybrid mixture 

theory developed first by Hassanizadeh and Gray [1, 2] and then by Lewis and 

Schrefler [3] and Zienkiewicz et al. [4, 5].  Along with the equations that govern the 

porous medium, a set of constitutive equations, able to describe all the mechanical, 

hydraulic and thermodynamic aspects were needed to complete the multiphase 

formulation.  

The principal goal of this work has been to achieve a numerical tool, that was able 

to solve finite elements (F.E.) numerical problems, in order to foresight the 

behaviour of different geomaterials, such soils, in partial saturated states, where 

capillarity effects play a paramount role on the determination of mechanical 

quantities.  

Due to this challenging purpose, it has been determinant understanding the physic 

processes related to the saturation and desaturation of the solid skeleton and to 

find some mathematical relations [6-8], suitable for the numerical implementation 

into the three-dimensional research F.E. code PLASCON3D [9]. 

To numerically solve the new initial and boundary value problem presented in the 

Chapter 2, the basic pressure variable (p) considered as representative of the 

saturated fluid phase in previous works [10-14] has been split, in order to take into 

account of the two separated fluid phases. Thus, with respect to the formulation 

used in the past, it has been necessary to specify a new set of discretized 

equations that refers to the non-isothermal and isothermal airflow and water flow. 

Along with this set of equations, the finite element method applied to system 

equations and the solution procedures needed have been presented.  

The finite element numerical code PLASCON3D_PS, that implement a coupled 

hydro-thermo-mechanical formulation has been obtained at the end of an intensive 

programming activity, basically targeted to update and extend the previous releases 

of the research code already in use. Most relevant differences between the two 

codes and the major modifications have been discussed in Chapter 3, where most 

important routines of the code have been listed. 



Conclusions 

 

194 
 

In order to check the functionality of the code during and at the end of the 

programming activity, several benchmark tests have been carried out with previous 

version and commercial software.  

The research of suitable test cases for the validation and the fruition of the code 

has not been an easy task, due to the lack of three-dimensional coupled solutions 

for partially saturated problems for soil, as well for other geomaterials. However, 

some two-dimensional coupled problems dealing with unsaturated soils were 

solved in literature and an experimental test was available to perform a validation of 

the code.  

Chapter 4 resumes the numerical analyses that followed the numerical 

implementation of PLASCON3D_PS, first of all the code has been employed to 

solve the Liakopoulos test case [15]  that deals with the desaturation processes that 

occurs to a sand column subjected to gravity water flux and natural air flow from the 

top.  

This first test, put the attention on how was possible to manage the transition to the 

initial fully saturated state, where the degree of saturation of water is unitary and 

only the water pressure has meaning, to the partial saturated state, where the 

degrees of saturation depends strictly from the capillarity effects of the soil. As 

explained in section 1.5 and 4.3, null values of degree of gas saturation cause 

severe numerical problems or the impossibility to solve the linear system of 

equation, due to the null determinant of the linear system that is being attempted to 

solve.  

With respect to most of approaches that can be found in literature, and summarized 

in [16], the approach followed maintains the gas balance equation also for states 

very close or that coincide to the full saturation with water, introducing a small 

irreducible degree of gas saturation that avoid  the cancellation of the gas phase 

terms. This approach was also followed by Laloui et al. [17] putting some limitations 

on the maximum value of the degree of water saturation.  

Solutions for the Liakopoulos test case have been obtained, both for one phase 

water flow, considering the air at the atmospheric conditions that for the case of a 

two phase fluid flow. The partially saturated formulation implemented in the code, 

has evidenced the ability to well reproduce the distributions in the domain of 

pressures, degrees of saturation, vertical displacements and outflow that can be 

found in literature results [18] and experimental results.  

This goal, as well the procedures to manage the transition between different 

saturation states, have been confirmed when flexible footing on partially saturated 
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soil [19, 20] and the simulation of a gas injection into aquifer problem [20-22] have 

been approached and solved with good results. 

In particular, with respect to the previous works, two different three-dimensional 

mesh refinement and two different relationships, able to model the degree of water 

saturation vs. capillary pressure relation [6, 8], have been compared when dealing 

with the flexible footing problem. The comparison denotes the capabilities of the 

code to manage different water retention models for the soil and the numerical 

efficiency and accuracy of the code approaching to different mesh discretization. 

The full set of results in terms of displacements, water, gas and capillary pressures, 

water and gas saturations and relative permeabilities have been computed, for a 

wide time span, necessary to follow the evolution of the above mentioned quantities 

from the initial state to the final, fully saturated state. 

With the need to obtain computationally efficient solutions of the problems 

presented in the sections 4.4 and 4.5 , that were difficult to obtain with the standard 

solver implemented in the original code, a set of optimized and parallelizable sparse 

solvers [23, 24] have been interfaced  with PLASCON3D_PS, obtaining as results a 

gain in memory and processor performance and reducing drastically the 

computational time both on local machines that on the #Antares$ research server.  

The work presented in this thesis, along with the first and new three-dimensional 

coupled F.E. code PLASCON3D_PS, are only the starting point of several research  

developments, that concern the study of partially saturated porous media, in the 

more general framework of coupled problems. Further possible activities, just to 

give some examples, can deal with the test and validation of non-isothermal 

numerical problems, as well as the numerical analysis parallel to experimental 

works on real domains, such embankments or heart dams. But also the 

implementation of new constitutive models for the solid phase such plasticity, 

unconventional plasticity or creep such the ones that has been recently developed 

[10-14] or those under developing and the study of the influence of the stress of the 

solid phase on the expressions that aim to model the degree of water saturation vs. 

capillary pressure relation, as evidenced by [7]. Finally, the extension of this work to 

other geomaterials different from soils, such concrete, is foreseen to be one of the 

closest goals to achieve.        
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6 Appendix: Structural analyses and 

integrated design of the MITICA 

Injector assembly 

6.1. Introduction 

In the framework of the activities foreseen for PRIMA (Padova Research on Injector 

Megavolt Accelerated) the MITICA neutral beam injector plays the role of main 

experiment, aiming to build, operate, test and optimize a full power and full scale 

prototype of the ITER Heating Neutral Beam Injector [1-3]. 

The entire MITICA system will be housed in special buildings, suitably designed to 

provide all the necessary supports, interfaces and shielding walls for nuclear 

radiation safety. Therefore, an integrated design of the MITICA system and relevant 

buildings shall be developed and verified carefully, considering all the different 

configurations, operational modes and load combinations.  

This contribution explains in detail the set of finite elements numerical models and 

results presented in [4] about the MITICA assembly integrated analyses. The model 

takes into account properly constraints to ground and surrounding buildings, to 

study and verify the static and seismic response of the whole assembly. 

The load cases are defined and the numerical analyses described. Load definition 

and analyses have been performed considering the requirements of both the ASME 

[5, 6] and the National Standard N.T.C. 2008  [7] for the seismic verification of 

structures subject to design response spectra. 

The obtained results are finally shown in detail and discussed, also comparing 

some different design options for design optimization. 

Section 6.2 is dedicated to the description of the geometry of the different parts of 

the system such the transmission line, the vessels, and the high voltage bushing 

and the modelling choices are presented, with respect to the employed numerical 

tool: ANSYS (Release 13.0).  
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Section 6.3 is about the modelling of the three bellows elements. The theoretical 

considerations made to assign the three different design shear stiffness to the 

bellow devices are here shown and the benchmark tests for validation are reported, 

as well.  

Section 6.4 focuses on the modelling of the supports of the transmission line, with 

respect to the element choice, the degree of restraint and their assumed position 

along the transmission line. 

6.2. Geometry of the structures and equipment 

Transmission line geometry 

The following references to the subdivision of the whole transmission line, reported 

in the numbered scheme below in Figure 6.2.1, will be considered, in order to better 

define the geometrical properties of the pipes. The same scheme will be used also 

in section 6.4, to assign the design mass weight at each discrete piece of the 

pipeline. 

 

Figure 6.2.1: Schematic subdivision of the transmission line. 

In Table 6.2.1 the length of the single pieces of line are reported. The modelling of 

the transmission line has been extended until the last elbow pipe element, the 

presence of the remaining pipes being negligible from the point of view of the 

dynamic analysis of the global model, if they are properly supported. The 

transmission line is characterized by three different diameters; the thickness of the 

pipes has been assumed constant equal to 20 mm. The assigned geometry is 

reported in Table 6.2.2. 
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Table 6.2.1: Length of the single parts of transmission line as in Figure 6.2.1. 

Pipe number Length [mm] Pipe number Length [mm] 

1 775 8 1570 

2 4773 9 2837 

3-bis 1000 10 9282 

3 1225 15 2922 

4 4485 11 3770 

5 6425 12 6621 

6 4173 13 5859 

7 2710 14 3770 

 

The modelling of the transmission line has been extended until the last elbow pipe 

element, the presence of the remaining pipes being negligible from the point of view 

of the dynamic analysis of the global model, if they are properly supported.  

The transmission line is characterized by three different diameters; the thickness of 

the pipes has been assumed constant equal to 20 mm. The assigned geometry is 

reported in Table 6.2.2. 

Table 6.2.2: Section assignment. 

Pipe number Section ID 

2-3-4-5-6 1 

7-8-9 

15 - 11-12-13-14 
2 

10 3 

 

Section 1 comprises parts from 2 to 6 of the whole transmission line (excluding part 

3-bis, which stand for bellow 3, which will be illustrated in section 6.3. Section 2 

comprises two continuous parts of the transmission line: from 7 to 9 and from 15 to 

14. Finally, section 3 is assigned to pipe 10. The section of the bushing is 

characterized by the parameters reported in the last column of Table 6.2.3, where I 

is the moment of inertia and J the torsion constant of the circular sections. 

Table 6.2.3: Geometry of transmission line sections. 

 Section 1 Section 2 Section 3 Bushing 

External radius [mm] 1236 857 1220 1400 

Thickness [mm] 20 20 20 20 

Area [mm2] 153944 106354 151935 174673 

I [mm4] 0.116·1012 0.381·1011 0.111·1012 0.169·1012 

J [mm4] 0.231·1012 0.762·1011 0.222·1012 0.169·1012 
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For the numerical analyses the model has been discretized through BEAM188 

elements. 

 
                             (a)                                                    (b) 

Figure 6.2.2: Bushing support slab model (a); Vessel and Source model (b). 

Bushing support geometry 

The frame structure supporting the bushing has been implemented according to the 

geometry and the structural considerations that lead to an optimization with respect 

to the stress and displacement field under the seismic load case. In the global 

model the bushing support frame has been meshed with BEAM188 elements.  

The bushing support slab, instead, has been modelled with SHELL281 elements, 

which are assigned thickness 150 mm (Figure 6.2.2a). 

Beam line vessel and beam source vessel 

The beam line and the beam source vessels geometry have following dimensions 

respectively:  3550 x 3454 x 9550 mm and 4550 x 4495 x 3765 mm. For sake of 

simplicity the connection element of the Vessel to the Source has been assimilated 

to the first one and assigned its cross-sectional area and properties. The Dome has 

dimensions: 2800 x 1820 x 2800 mm (Figure 6.2.2b). 

The beam line vessel and the beam source vessel, as well as the Dome, have been 

meshed with SHELL281 elements. The Dome and also the high voltage bushing 

support slab have been endowed of one series of in-plane rigid links each, in 

addition, as illustrated in Figure 6.2.3a, in order to guarantee a sufficient rigid 

behaviour of these components.  

The beam line and the beam source vessels have been assigned thickness 147 

mm, i.e. an average equivalent value, not considering the stiffening bars on the 

surface of the two components; the Dome has thickness 50 mm. The use of an 

equivalent thickness guarantees that the real stiffness, coming from the real 
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thickness of the vessel (20 mm) plus the stiffening ribs, is actually applied to the 

model.   

 
                                  (a)                                                         (b) 

Figure 6.2.3: Rigid links detail (a); Vessel support beams model (b). 

The support structure for the beam line vessel consists in BEAM188 elements with 

the IPE600 cross-section of properties reported in Table 6.2.4. 

Table 6.2.4: Geometry of the support beam of the Vessel. 

h [mm] 600 

b [mm] 300 

Area [mm2] 15600 

I11 [mm4] 9.208·108 

I22 [mm4] 3.387·107 

J [mm4] 1.330·106 

Truss Structure 

For the truss structure reinforcing the line against horizontal displacements, when 

outside from the MITICA building, elements LINK180 are adopted; they are uniaxial 

tension-compression elements, which do not consider bending transmission, as 

required for pin-jointed structures (Figure 6.2.4).  

Figure 6.2.4: Truss structure model. 

The cross-sectional area of these elements has been set to 3900 mm2. 
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6.3. Shear stiffness of bellows 

Three bellows are placed in the transmission line. The lengths are reported in Table 

6.3.1. 

Table 6.3.1: Length of the bellows. 

Bellow number  Length [mm] 
1 775 
2 550 
3 1000 

 

Bellow 1 and 3 are localized along the transmission line as reported in Figure 6.2.1; 

bellow 2 is between the Dome and the High Voltage Bushing. 

 

Figure 6.3.1: Static scheme for bellows. 

The design shear stiffness of 1.5-3-4.5 t/mm has been assigned to the bellow 

elements, according to the static scheme in Figure 6.3.1, describing the bending of 

a beam restrained as it is the bellow along the transmission line (i.e. preventing 

axial displacement and rotations), under a shear force F : 

 3

12

Fl
u

EI
 

(6.3.1) 

where u  is the maximum displacement at the end free to translate, l   is length of 

the beam, F  the external shear force and EI  the bending stiffness. 

Imposing the bellow to resist 1.5-3-4.5 t/mm against shear forces, requires to 

assign a proper moment of inertia I  to the bellow section, according to (6.3.1), 

provided the material is known (stainless steel 316L, E  = 193000 MPa). 
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At the same time, for the axial stiffness EA  of the bellow, with A  resistant cross-

section area, the axial stiffness of the pipes contiguous to the bellows is assigned. 

The finite elements chosen for meshing the bellows are BEAM4; this kind of beam 

requires the definition of A  and  I , not necessarily imposing the geometry of the 

section, which is not known in fact.    

These are the imposed quantities for the three bellows, for each design shear 

stiffness: 

Table 6.3.2: Parameters for shear stiffness assignment of each bellow configuration 

Bellow number  1 2 3 

Area [mm2] 174673 153944 153944 

Shear stiffness = 1.5t/mm 

I11 = I22 [mm4] 2770741 990328 5952383 

Shear stiffness = 3t/mm 

I11 = I22 [mm4] 5541482 1980655 11904765 

Shear stiffness = 4.5t/mm 

I11 = I22 [mm4] 8312223 2970983 17857148 

 

In Figure 6.3.2 results in terms of transversal displacements of one of the 

benchmark tests, held to model the behaviour of the bellows under shear forces, 

are reported; nodal displacements of bellow 3 are here shown, under a shear force 

of 1.5 t; the maximum displacement, compatibly with the restraints, is on top and 

equal to 1 mm, as required. Similar tests have been made for the other 

configurations.  

 
Figure 6.3.2: Displacements for bellow 3 under a shear force of 1.5 t [mm]. 
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6.4. Transmission line supports modelling 

Figure 6.4.1: Supporting system. 

Support devices constraint in several ways the pipeline to the ground and to the 

MITICA building. They can fix all the degrees of freedom (displacements and 

rotations) or partially restrain the model at the points of interest.  

Four different supporting systems can be identified along the transmission line, as 

shown in Figure 6.4.1, and they are described in the following paragraphs. 

 

Beam line and beam source vessels supports 

The beam line and the beam source vessels are supported by a frame made of an 

IPE shape section as previously described in paragraph 1.3 and showed in Figure 

6.4.2a. The support frame is restrained to the ground with un-deformable beams, 

modelled with rigid links MPC184, so that, when the seismic load case occurs, they 

can totally transmit the seismic acceleration to the IPE beams, without contributing 

with local displacements to the global vessel!s displacements. 

The support frame to the beam line vessel and the beam source vessel is modelled 

with BEAM188 elements of assigned section. The density of the support can be 

neglected in the analysis, in order to consider only the beam line vessel and the 

beam source vessel modes in the natural frequency analyses. 
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                                          (a)                                                                   (b) 

Figure 6.4.2: Beam line and beam source vessel frame. F.E model with elements BEAM188 

and rigid beam - MPC184 (a); Bushing support structure. F.E. model with elements 

SHELL281 for the slab and monolithic wall, BEAM188 for the bushing support (b). 

High voltage bushing supports 

This sub-structure is addressed to support the bushing and the attached parts of 

the transmission line. The high voltage bushing is one of the most heavy and 

sensitive device of the whole pipeline. Its weight is entirely transmitted to the 

support slab and the support frame structure, which enable to transfer the load 

finally to the ground and to the vertical monolithic wall of the surrounding building.   

The bushing support structure has been constrained to the ground at the two 

columns ends and to the wall of the MITICA. Figure 6.4.2b shows more in detail the 

support structure in relations to the high voltage bushing, bellows and the first 

elbow of the transmission line. 

 

Transmission line supports 

The transmission line has been subdivided in four parts named: TL2, HVD, HV and 

TL3. The horizontal part of the transmission line is supposed to be constrained to 

the top floor of MITICA with a system of restraints, which have been modelled with 

BEAM188 elements of suitable cross-section area ad stiffness, in order to obtain a 

rigid behaviour in all directions and to perform, this way, the most severe 

transmission of the dynamic load to the structure. 
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Beams highlighted with red boxes (Figure 6.4.3) are #end-realeased$.  

 

Figure 6.4.3: Detail of the slider beam constraint device along the transmission line. 

  
                                   (a)                                                         (b) 

Figure 6.4.4: CAD drawing of transmission line fixing device detail (a); Detail of the axial 

constraint device along the transmission line (b). 

Traslational displacements along the direction of the pipeline are allowed. All the 

remaining degrees of freedom are fixed, so that the constraints act as slider 

elements during the dynamic load, uncoupling the displacements of the line in its 

longitudinal direction, from the building displacements along the same direction. 

The support spacing is approximately 2m. 

The yellow boxed beam in the same figure is totally restrained both in translational 

and rotational displacementents, to accomplish the RFX request to simulate an 

axial costraint after the transmission line, part TL3 (see Figure 6.4.4a-b).  



Appendix: Structural analyses and integrated design of the MITICA Injector 
assembly 

 

209 
 

Vertical line support 

To support the part of the transmission line located outside the MITICA building, a 

truss structure has been modelled, which the vertical line is restrained to, at the 

three points marked with red arrows in Figure 6.4.5. The truss structure is fixed at 

the base corner nodes. 

Figure 6.4.5: Vertical line restraints to the truss structure support. 

6.5. Load cases on the transmission line 

Static loads 

The static analysis evaluates the stress and the displacement field on the structure, 

subject to the gravity loads, also referred to as #dead loads$, both structural and 

non-structural (e.g. equipment devices), and the pressure load inside the line. The 

static loads to be combined with the dynamic action of the design earthquake are:  

 self-weight of the structural elements given by manufacturer specifications; 

 weight of the non-structural mass flowing inside the pipes; 

 internal pressure on the pipeline (6bar).   

Seismic load case evaluation. Modal and response spectrum analysis 

Seismic design and verification is performed through linear combinations of effects, 

involving permanent and variable actions on the structure. According to the ASME 

approach, static and dynamic actions combine linearly to give the global design 

load case combination. The seismic load case is evaluated by means of the modal 

analysis and subsequent response spectrum analysis. 
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As regards the modal analysis, 150 eigenvalues are sought, in order to reach over 

90* of mass participation factor in all three directions, X, Y and Z. Despite the 

number of eigenvalue extracted, only few vibrational modes contribute with an 

important mass participation factor.  

 

With the spectral response analysis is possible to calculate the response of a 

structure subjected seismic (dynamic) load given as base excitation in almost one 

of directions (X, Y or Z). The base excitation spectrum is applied as a translational 

excitation at the base, equally at all fixed degrees of freedom. The excitation may 

act in any arbitrary direction in the global X-Y-Z system and defined in terms of 

acceleration. The typical input spectra used for these analyses are the ones 

provided by N.T.C. 2008 [7] ( Figure 6.5.1 and Figure 6.5.2). 

 

Figure 6.5.1: Damage limit state as provided by [7] for the MITICA site.  

The results of a spectral analysis are given as envelopes of maximum values of 

nodal displacements, element stresses, and element strains, recovered reactions at 
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constrained nodes and elastic forces at unconstrained nodes. The maximum 

response values are calculated by combining the maximum response of all modes 

included in the analysis.  Contributions from individual modes are available as well 

as the combined maximum values. 

 

Figure 6.5.2: Life safeguard limit state as provided by [7] for the MITICA site. 

A single-point response spectrum analysis (SPRS) has been applied. The solver is 

based on the mode superposition technique and, basically, studies the structure 

when excited by a spectrum of known direction and frequency components, acting 

uniformly on all supports.  

The damping of the structure is taken into account by setting the structural damping 

ratio to 0.05 (5*).  This damping ratio is independent from Rayleigh damping, 

material damping and modal damping. 

The combination of modes is made applying the CQC method. The total mode 

response is given by: 

 1/2

1 1

N N

a ij i j

i j

R R R  (6.5.1)
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where: 

 Ra = total modal response 

 N = total number of expanded modes 

 ij= coupling coefficient (the value of ij = 0.0 implies modes i and j are 

independent and approaches 1.0 as the dependency increases) 

 Ri = Ai i = modal response in the i-th mode 

 Rj = Aj j = modal response in the j-th mode 

 Ai = mode coefficient for the i-th mode 

 Aj = mode coefficient for the j-th mode 

 i = the i-th mode shape 

 j = the j-th mode shape 

i and j may be the degree of freedom response, reactions, or stresses. 

Finally, the N.T.C. 2008 [7] provides the seismic load case combinations that take 

into account of the seismic loads adding then the static loads:  

 FOR A SEISMIC LOAD ON  X DIRECTION (LOAD CASE 1) : 

 

 
X Y Z 1 21.0 E   0.3 E  0.3 E   G  G   (6.5.2)

  

 FOR A SEISMIC LOAD ON  Y DIRECTION (LOAD CASE 2) : 

  

X Y Z 1 20.3 E   1.0 E  0.3 E   G  G   
(6.5.3)

  

 FOR A  SEISMIC LOAD ON  Z DIRECTION (LOAD CASE 3) : 

 

 
X Y Z 1 20.3 E   0.3 E  1.0 E   G  G   (6.5.4)

where G1 stands for the load of the structural Mass, G2 for the load of the non-

structural mass (equipment), EY, EX, EZ  for the seismic action along X, Y and Z  

directions, respectively. 
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6.6. Analyses overview 

The reference system for the model is shown in the following: 

 

Figure 6.6.1: Global Reference System adopted for the model. 

In the following a brief description of the numerical analyses is given. The most 

relevant numerical results are reported for each kind of analysis; in particular three 

configurations have been studied, due to the different characterization of the 

transverse stiffness of bellows. 

Table 6.6.1: Configurations studied. 

Configuration Bellows shear stiffness [t/mm] 

1 1.5 

2 3.0 

3 4.5 

 

A further configuration (configuration 4) has been taken into account, considering 

set 1 (bellows with 1.5 t/mm shear stiffness) and no constraint point along the 

horizontal part of the line (see Figure 6.4.4), so that the line is free to slide along the 

longitudinal direction (X direction of the model), and only the outer truss structure is 

meant to restrain the transmission line. 
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Displacement results summary 

Table 6.6.2 summarizes the total displacements DXYZ [mm] for the global model 

(transmission line and components) and for the reduced model (bushing-bellows 

system), for each configuration of bellows (1, 2, 3, 4) and each seismic loading 

direction (X, Y, Z) or seismic combination. The red values are the highest and 

correspond to configuration 4, as expected, for any seismic combination. The green 

values are the best results in terms of displacements, for each seismic combination. 

Table 6.6.2: Displacement field (DXYZ) [mm]. Results summary for SLV Limit State. 

 
Seismic 
load 
direction 

Configuration 1 
(1.5 t/mm) 

Configuration 2 
(3 t/mm) 

Configuration 3 
(4.5 t/mm) 

Configuration 4 
(1.5 t/mm " 
free sliding) 

Whole 
transmission 
line 

X 6.094 6.125 6.097 24.384 

Y 5.871 5.847 5.801 8.770 

Z 3.773 3.774 3.756 6.947 

Bushing - 
bellows 

X 4.336 3.532 3.491 23.823 

Y 4.182 3.601 3.656 5.928 

Z 1.809 1.498 1.522 5.556 

 

Finally , Table 6.6.3 compares static results (gravity loads + pressure loads), again 

for each configuration of bellows and each seismic loading direction. The red values 

are the worst, the green ones, instead, the best both for the global model and the 

model limited to the bushing-bellows system.  

Table 6.6.3: Displacement field (DXYZ) [mm]. Results summary for static loads. 

 
Configuration 
1 
(1.5 t/mm) 

Configuration 2 
(3 t/mm) 

Configuration 3 
(4.5 t/mm) 

Configuration 4 
(1.5 t/mm " 
free sliding) 

Whole 

transmission line 
1.986 1.988 1.989 3.857 

Bushing - bellows 1.024 1.007 0.999 3.857 

 

With reference to Table 6.6.2 and Table 6.6.3, the contour maps of most relevant 

results (the highest for the configuration 4 and the best results for the other 

configurations) in terms of displacements are following reported.  
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Static analysis and Results 

Configuration 1 

 
Figure 6.6.2: Displacement Results (DXYZ) for gravity + pressure loads [mm]. 

 

Figure 6.6.3: Displacement Results (DXYZ) for gravity + pressure loads [mm]. Detail of 

Bushing, TL3, and HVD. 
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Configuration 4 

 

Figure 6.6.4: Displacement Results (DXYZ) for gravity + pressure loads [mm]. 

 

Figure 6.6.5: Displacement Results (DXYZ) for gravity + pressure loads [mm]. Detail of 

Bushing, TL3, and HVD. 
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Modal analysis and Results 

Numerical results are shown below for each configuration, in terms of natural 

frequencies of the global model. Participation factors must be intended as 

percentage fraction of total mass. The first 4 values in descending order of 

magnitude, with respect to the mass participation, are reported, for X and Y 

direction. The modal shapes corresponding to the 3 most relevant frequencies 

(highlighted in yellow in the table) are then plotted. 

Configuration 1 

Table 6.6.4: First four modal results (natural frequencies and relative participation factors) 

X - Direction  Y - Direction 

Mode 
No. 

Frequency 
[Hz] 

Mass 
Participation 
Factor [*] 

 Mode 
No. 

Frequency 
[Hz] 

Mass 
Participation 
Factor [*] 

15 17.4929 12.65  4 10.4827 44.25 

14 16.3751 11.28  6 11.5722 10.40 

 
 

 
Figure 6.6.6: Vibrational mode corresponding to 10.4827 Hz (Y). 
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Figure 6.6.7: Vibrational mode corresponding to 17.4929 Hz (X). 

 

Figure 6.6.8: Vibrational mode corresponding to 16.3751 Hz (X). 

 



Appendix: Structural analyses and integrated design of the MITICA Injector 
assembly 

 

219 
 

Configuration 4 

Table 6.6.5: First four modal results (natural frequencies and relative participation factors). 

X - Direction  Y - Direction 

Mode 
No. 

Frequency 
[Hz] 

Mass 
Participation 
Factor [*] 

 Mode 
No. 

Frequency 
[Hz] 

Mass 
Participation 
Factor [*] 

15 17.3129 18.71  5 10.6581 50.13 

12 14.6731 12.58  6 10.9493 8.90 

 

 

Figure 6.6.9: Vibrational mode corresponding to 10.6581 Hz (Y). 

Figure 6.6.10: Vibrational mode corresponding to 17.3129 Hz (X). 
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Figure 6.6.11: Vibrational mode corresponding to 14.6731 Hz (X). 

 Results from response spectrum analyses 

Configuration 1 

 

Figure 6.6.12: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along X 

direction. 
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Figure 6.6.13: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along X 

direction. Detail. 

Configuration 2 

 
Figure 6.6.14: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along Y 

direction. Detail. 
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Figure 6.6.15: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along Z 

direction. Detail. 

Configuration 3 

 
Figure 6.6.16: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along Y 

direction. 
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Figure 6.6.17: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along Z 

direction. 

 

Figure 6.6.18: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along X 

direction. Detail. 
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Configuration 4 

 

Figure 6.6.19: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along X 

direction. 

 

Figure 6.6.20: Displacements (DXYZ) [mm]. Seismic analysis with seismic action along X 

direction. Detail. 
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Results Comments 

As shown in the table above, static results in terms of displacements (Table 6.6.3) 

are quite similar for the firsts three configurations. In general configuration 4 returns 

the maximum displacement, both in static and dynamic analyses, due to a lack of 

constraining action, along the longitudinal direction of the line. The maximum 

displacement occurs when the seismic load is in X direction, as main direction.  

The difference in terms of maximum displacement in the bellows are negligible for 

Configurations 2 and 3, in fact they are pretty similar. Configuration 4 returns the 

maximum displacement result (in X direction), that is higher about four time than the 

previous configurations results.  

Finally, one can observe that, with a lack of constraints along the transmission line 

(Configuration 4), the behaviour of the transmission line is strongly influenced by 

the remaining constraint conditions. In particular, the pin-jointed structure out from 

the MITICA Building, designed to vertically support the line, seems to strongly 

influence the magnitude of the displacements, under this freedom case, leading to 

results near to the bellows that are widely beyond the threshold imposed by the 

design bellows. 

6.7. Conclusions 

An integrated model of the RFX neutral beam injector with the MITICA building that 

surrounds and houses all the experimental devices has been done [4]. 

Furthermore, the MITICA building has the function to prevent the diffusion of the 

nuclear radiations that represent a danger for health and life, in the proximities of 

the plant. This critical task is done by the concrete bio-shielding that offer enough 

protection from the hazardous environment.  

Different load configurations applied to the structure and inner devices has been 

considered in the case of dynamic events, such an earthquake, in order to ensure 

the reliability of the whole plant, to check the behaviour of the transmission line and 

beam source and line vessels and design the linkage and support structures for the 

various parts of equipment that are heavy and delicate.  

An accurate integrated modelling of the MITICA system and buildings is mandatory 

to evaluate correctly the overall structural response and carry out all the necessary 

verifications. Several static and dynamic FEM analyses have been performed 

considering both the assembly"disassembly and operational conditions, in order to 
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allow design optimization. In particular, analyses helped to design the high voltage 

bushing support structure, finding the best configuration for the truss elements that 

provides that stress and strain are far below the material limits and a high buckling 

factor. A suitable combination of sliding supports and bellows with different stiffness 

values allowed a first design optimization.  

The integrated models will be further used for next design verifications, following 

the on-going activities for design and integration of MITICA components. 
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