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più diversi. Un grande ringraziamento va a tutta la mia famiglia, soprattutto ai miei
genitori e a Chiara, per essere un punto di riferimento su cui poter contare sempre.

This work has been financially supported by a Ph.D scholarship of Università di
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Abstract

In this thesis we address two problems. In the first part we consider hypoelliptic
diffusions, under both strong and weak Hörmander condition. We find Gaussian
estimates for the density of the law of the solution at a fixed, short time. A main tool
to prove these estimates is Malliavin Calculus, in particular some techniques recently
developed to deal with degenerate problems. We then use these short-time estimates
to show exponential two-sided bounds for the probability that the diffusion remains
in a small tube around a deterministic path up to a given time. In our hypoelliptic
framework, the shape of the tube must reflect the fact the diffusion moves with a
different speed in the direction of the diffusion coefficient and in the direction of the
Lie brackets. For this reason we introduce a norm accounting of this anisotropic
behavior, which can be adapted to both the strong and weak Hörmander framework.
We establish an equivalence between this norm and the standard control distance in
the strong Hörmander case. In the weak Hörmander case, we introduce a suitable
equivalent control distance.

In the second part of the thesis we work with mean reverting stochastic volatility
models, with a volatility driven by a jump process. We first suppose that the jumps
follow a Poisson process, and consider the decay of cross asset correlations, both
theoretically and empirically. This leads us to study an algorithm for the detection
of jumps in the volatility profile. We then consider a more subtle phenomenon widely
observed in financial indices: the multiscaling of moments, i.e. the fact that the
q-moment of the log-increment of the price on a time lag of length h scales as h
to a certain power of q, which is non-linear in q. We work with models where the
volatility follows a mean reverting SDE driven by a Lévy subordinator. We show
that multiscaling occurs if the characteristic measure of the Lévy has power law tails
and the mean reversion is super-linear at infinity. In this case the scaling function is
piecewise linear.

Keywords: hypoellipticity, Hörmander condition, tube estimates for Ito pro-
cesses, density estimates, stochastic volatility, multi-scaling.
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Résumé

Dans cette thèse on aborde deux problèmes. Dans la première partie on considère
des diffusions hypoelliptiques, à la fois sur une condition d’Hörmander forte et faible.
On trouve des estimations gaussiennes pour la densité de la loi de la solution à un
temps court fixé. Un outil fondamental pour prouver ces estimations est le calcul de
Malliavin. On utilise en particulier des techniques développées récemment pour faire
face à des problèmes de dégénérescence. Ensuite, grâce à ces estimations en temps
court, on trouve des bornes inférieures et supérieures exponentielles sur la probabilité
que la diffusion reste dans un petit tube autour d’une trajectoire déterministe jusqu’à
un moment fixé. Dans ce cadre hypoelliptique, la forme du tube doit tenir compte
du fait que la diffusion se déplace avec une vitesse différente dans les directions du
coefficient de diffusion et dans les directions des crochets de Lie. Pour cette raison, on
introduit une norme qui prend en compte ce comportement anisotrope, qui peut être
adaptée aux cas d’Hörmander fort et faible. Dans le cas Hörmander fort on établit
une équivalence entre cette norme et la distance de contrôle classique. Dans le cas
Hörmander faible on introduit une distance de contrôle équivalente appropriée.

Dans la deuxième partie de la thèse, on travaille avec des modèles à volatilité
+stochastique avec retour à la moyenne, où la volatilité est dirigée par un processus
de saut. On suppose d’abord que les sauts suivent un processus de Poisson, et on
considère la décroissance des corrélations croisées, théoriquement et empiriquement.
Ceci nous amène à étudier un algorithme pour la détection de sauts de la volatilité.
On considère ensuite un phénomène plus subtil largement observé dans les indices
financiers: le ”multiscaling” des moments, c’est-à-dire le fait que les moments d’ordre
q des log-incréments du prix sur un temps h, ont une amplitude d’ordre h à une
certaine puissance, qui est non linéaire dans q. On travaille avec des modèles où la
volatilité suit une EDS avec retour à la moyenne dirigée par un subordinateur de Lévy.
On montre que le multiscaling se produit si la mesure caractéristique du Lévy a des
queues de loi de puissance et le retour à la moyenne est superlinéaire à l’infini. Dans
ce cas l’exposant de scaling est linéaire par morceaux.

Mots clés: hypoellipticité, condition d’Hörmander, estimations des tube pour les
processus d’Ito, estimations de densité, volatilité stochastique, multi-échelle.
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Sommario

In questa tesi ci occupiamo di due problemi. Nella prima parte consideriamo
delle diffusioni ipoellittiche, sia sotto una condizione di Hörmander forte che debole.
Troviamo delle stime gaussiane per la densità della legge della soluzione in tempo
corto. Uno strumento fondamentale per dimostrare questo tipo di stime è il calcolo di
Malliavin. In particolare, utilizziamo delle tecniche sviluppate negli ultimi anni per
affrontare dei problemi degeneri. Poi, grazie a queste stime in tempo corto, troviamo
dei bound inferiore e superiore esponenziali per la probabilità che la diffusione rimanga
in un piccolo tubo attorno a una traiettoria deterministica, fino a un tempo fissato. In
questo contesto ipoellittico, la forma del tubo deve riflettere il fatto che la diffusione
si muove con una velocità diversa nella direzione dei coefficienti di diffusione e nella
direzione delle parentesi di Lie. Per questo motivo introduciamo una norma che tenga
conto di questo comportamento anisotropo, adattabile al caso di Hörmander forte e
debole. Nel caso Hörmander forte stabiliamo un’equivalenza tra questa norma e la
distanza di controllo classica. Nel caso Hörmander debole introduciamo una distanza
di controllo equivalente adeguata.

Nella seconda parte della tesi lavoriamo con dei modelli a volatilità stocastica con
ritorno alla media, in cui la volatilità è diretta da un processo di salto. Supponiamo
inizialmente che i salti siano dati da un processo di Poisson, e consideriamo il decadi-
mento delle correlazioni incrociate, sia teoricamente che empiricamente. Questo ci
porta a studiare un algoritmo per identificare i picchi nel profilo della volatilità. Con-
sideriamo successivamente un fenomeno più sottile largamente osservato negli indici
finanziari: il ”multiscaling” dei momenti, ovvero il fatto che i momenti d’ordine q dei
log-incrementi del prezzo su un tempo h, hanno un’ampiezza di ordine h a una certa
potenza, che è non lineare in q. Lavoriamo con dei modelli in cui la volatilità è data da
un’equazione differenziale stocastica con ritorno alla media, diretta da un subordina-
tore di Lévy. Mostriamo che il multiscaling si produce se la misura caratteristica del
Lévy ha delle code di legge di potenza e il ritorno alla media è superlineare all’infinito.
In questo caso l’esponente di scaling è lineare a tratti.

Parole chiave: ipoellitticità, condizione di Hörmander, stime di tubo per i pro-
cessi di Ito, stime di densità, volatilità stocastica, multiscaling.
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Chapter 1

Introduction

1.1 Regularity of Stochastic Differential Equations

The investigation of regularity properties of solutions of Stochastic Differential Equa-
tions (SDEs) driven by the Brownian motion is one of the motivations and most
important applications of the Malliavin calculus on the Wiener space. Consider the
diffusion process in Rn solution of

dXt =
d∑
j=1

σj(Xt) dW
j
t + b(Xt)dt, X0 = x, (1.1.1)

where W = (W 1, ...,W d) is a d-dimensional Brownian motion, b, σj ∈ C∞b (Rn,Rn) for
j = 1, . . . d. Denoting (σ)i,j = σij, we say that (1.1.1) is uniformly elliptic if there
exist c > 0 such that σσT (y) ≥ cIdn, for all y ∈ Rn, where we denote with σT the
transpose of σ and Idn the n × n identity matrix. It is well known that under these
assumptions (1.1.1) admits a unique strong solution for every initial condition x, and
that the following two-sided bound holds for the fixed-time marginals. Fix a time
horizon T > 0.

Theorem 1.1. For every initial condition x ∈ Rn and every 0 < t ≤ T , the law of
Xt is absolutely continuous with respect to the Lebesgue measure, and its density in y,
pt(x, y), is infinitely differentiable with respect to each variable. Moreover, there exist
constants c0,T , C0,T ∈ R+ and functions k0, K0 : R+ → R+ such that

k0(t) exp

(
−c0,T |y − x|2

t

)
≤ pt(x, y) ≤ K0(t) exp

(
−C0,T |y − x|2

t

)
, (1.1.2)

where | · | denotes the Euclidean norm.

This result can be proved with PDE’s methods (see for example [2]) or with Malli-
avin calculus techniques. Being able to investigate regularity properties of the law of
solutions of SDEs was the original motivation for developing the theory of Malliavin
calculus, and since then many other applications has been considered. The Malliavin

1



2 CHAPTER 1. INTRODUCTION

derivative permits to quantify the sensitivity of the system with respect to the noise,
and if the so-called “Malliavin covariance matrix” is non-degenerate, the sensibility is
non-zero in any direction. Then Xt admits a density, and it is in some cases possible
to obtain bounds for it.

Besides Malliavin, the foudations of this theory were laid by Stroock, Bismut,
Watanabe, Ikeda, Shigekawa and others. We mention here [74] and the series of
papers by Kusuoka and Stroock [70], [71], [72].

It is clear that these assumptions on the coefficients of (1.1.1) are quite demanding.
Uniform ellipticity, for instance, implies that d, the dimension of the Brownian Motion,
is greater or equal to n, the dimension of the diffusion. One way to relax the ellipticiy
condition is to assume the Hörmander condition, a celebrated hypoelliptic condition
which is one of the key points of our work. For f, g : Rn → Rn we recall the definition
of the directional derivative of f in the direction g as

∂gf(x) = ∇f g(x) =
n∑
i=1

gi(x)∂xif(x).

The Lie bracket [f, g] in x is then defined as

[f, g](x) = ∂fg(x)− ∂gf(x).

We denote now σ0 = b, and say that the Hörmander condition holds at point x ∈ Rn

if the vector fields

σ1, . . . , σd, [σi, σj], 0 ≤ i, j ≤ d, [σi, [σj, σk]], 0 ≤ i, j, k ≤ d, . . . (1.1.3)

span Rn at x. Under this condition the following theorem holds (see [79], Theorem
2.3.3).

Theorem 1.2. Assume that (Xt)t>0 is the solution to (1.1.1). Suppose that the coef-
ficients σ1, . . . , σd, b are infinitely differentiable with bounded partial derivatives of all
orders and that Hörmander’s condition (1.1.3) holds. Then for any t > 0 the random
vector Xt has an infinitely differentiable density.

This result can be considered as a probabilistic version of Hörmander’s theorem
on the hypoellipticity of the second-order differential operators. We refer to [98],
[79] for details regarding this interpretation. For many related issues see [64], [92],
[79], [90], [96] and the bibliography there. Similar results are also available for SDEs
with coefficients with dependence on time, under very weak regularity assumptions
([34]), SDEs driven by a fractional Brownian Motion ([15]) and for rough differential
equations ([33]). Besides the existence and differentiability of the density, the problem
of finding bounds for the density of Xt in the spirit of (1.1.2) has been widely addressed
in the literature, also in a hypoelliptic framework. One outstanding contribution is
certainly the work of Kusuoka and Stroock. Denote with α a multi-index (α1, ..., αk) ∈
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{1, ..., n}k, and with |α| the lenght of α. In [71], supposing (1.1.3), the following upper
bounds for the density and its derivatives are proved:

pt(x, y) ≤ K0(t) exp

(
−C0,T |y − x|2

t

)
,

|∂αy pt(x, y)| ≤ K|α|(t) exp

(
−
C|α|,T |y − x|2

t

)
,

(1.1.4)

where the constant C|α|,T and the function K|α|(·) depend on how many iterated Lie
Brackets we need to take in (1.1.3) to span Rn. Remark that in this case we have only
the upper bound, whereas if the diffusion is elliptic an analogous lower bound holds.

A two-sided bound for the density of Xt is proved in [72], under a more demanding
condition. Consider (1.1.3), but imagine that we are not allowed to take brackets
involving the drift vector field b(·) = σ0(·). More formally, suppose that Rn is spanned
by

σ1, . . . , σd, [σi, σj], 1 ≤ i, j ≤ d, [σi, [σj, σk]], 1 ≤ i, j, k ≤ d, . . . (1.1.5)

This hypothesis is usually referred to as Strong Hörmander condition, and in oppo-
sition to this (1.1.3) is often called Weak Hörmander condition. In [72] the strong
Hörmander non-degeneracy condition is assumed, and moreover the drift b is supposed
to be generated by the vector fields of the diffusive part, i.e.: b(x) =

∑d
j=1 αiσi(x),

with αi ∈ C∞b (Rn).
Under this assumption, a Gaussian bound is proved in the control distance that we

now define. For x, y ∈ Rn we denote by C(x, y) the set of controls ψ ∈ L2([0, 1];Rd)
such that the corresponding skeleton solution of

dut(ψ) =
d∑
j=1

σj(ut(ψ))ψjtdt, u0(ψ) = x

satisfies u1(ψ) = y. The control (Caratheodory) distance is defined as

dc(x, y) = inf
{(∫ 1

0

|ψs|2 ds
)1/2

: ψ ∈ C(x, y)
}
.

Geometrically speaking, this corresponds to take the geodesic (i.e. the length-minimizing
curve) joining x and y on the sub-Riemannian manifold associated with the diffusion
coefficient σ. The main result in [72] is the following: there exist a constant M ≥ 1
such that

1

M |Bdc(x, t
1/2)|

exp

(
−Mdc(x, y)2

t

)
≤ pt(x, y) ≤ M

|Bdc(x, t
1/2)|

exp

(
−dc(x, y)2

Mt

) (1.1.6)

for (t, x, y) ∈ (0, 1]× Rn × Rn, where Bd(x, r) = {y ∈ Rn : d(x, y) < r}.



4 CHAPTER 1. INTRODUCTION

Again under a strong Hörmander condition, Ben Arous and Léandre investigate
the decay of the heat kernel of a hypoelliptic diffusion over the diagonal in their
celebrated paper [18]. An important difference here is that the authors are interested
in asymptotic results, whereas the works previously mentioned provide results holding
for finite positive times.

Loosely speaking, strong Hörmander means that we take advantage of the noise
propagating in the system through the vector fields of the diffusion and their Lie
brackets, whereas when the non-degeneracy is of weak Hörmander type the drift gives
an additional specific contribution which is usually difficult to handle when trying
to estimate the desity of the solution. Some related works are [11] and [42], where
bounds are provided for the density of the Asian type SDE and for a chain of SDEs,
and [63], where a stable driven degenerate SDE is considered. An analytical approach
to similar density estimates is given by Polidoro, Pascucci and Boscain in [85], [80],
[24].

In this thesis we consider a problem which is closely related to the issues mentioned
above: the so-called tube estimates, i.e. estimates on the probability that an Ito
process remains around a deterministic path up to a given time. More precisely, we
consider (1.1.1) and introduce the associated skeleton path solution of the following
ODE:

dxt(φ) =
d∑
j=1

σj(xt(φ))φjtdt+ b(xt(φ))dt, x0(φ) = x, (1.1.7)

for a certain control φ ∈ L2([0, T ],Rd). With tube estimate we mean that we are
interested in P

(
supt≤T ‖Xt − xt(φ)‖ ≤ R

)
. Several works have considered this subject,

starting from Stroock and Varadhan in [94], where such result is used to prove the
support theorem fo diffusion processes. In their work ‖ · ‖ is the Euclidean norm,
but later on different norms have been used to take into account the regularity of the
trajectories (about this, see for example [16] and [53]). This kind of problems are also
related to the Onsager-Machlup functional, large and moderate deviation theory: see
e.g. [30], [64], [58].

There is a strong connection between tube and density estimates. In this work
we will use a concatenation of short time density estimates to prove a tube estimate,
but one may proceed in reverse order: tubes estimates, for instance, easily give lower
bounds for the density. In [10] tube estimates for locally elliptic diffusions with time
dependent radius are proved, and applied to find lower bounds for the probability to
be in a ball at fixed time and bounds for the distribution function. In [9], this is
applied to lognormal-like stochastic volatility models, finding estimates for the tails
of the distribution, and estimates on the implied volatility.

1.2 Outline of results: Part I

In Chapter 2 we work in a fairly abstract framework, applying general Malliavin
Calculus techniques. We obtain some estimates for the density of a random variable,
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based on the fact that we can measure the distance between the densities of the laws
of two random variables F and G in terms of the Malliavin-Sobolev norm of F − G,
under some non-degeneracy conditions.

In Chapter 3 we consider a two-dimensional diffusionX driven by a one-dimensional
Brownian Motion W , in a (local) weak Hörmander framework. As we already men-
tioned, similar models have been considered in the literature ([11], [42], [85], [80], [24]).
Here we allow for a more general coefficient for the Brownian Motion, since we suppose
∂σσ(y) = κσ(y)σ(y), whereas the works mentioned above would apply for σ = (σ1, 0),
which is a more restrictive condition. We prove a short time non-asymptotic den-
sity estimate, which allows us to find exponential lower and upper bounds for the
probability that the diffusion remains in the tube. For this result we only need local
hypoellipticity along the control, which is also a novelty of our work.

Since we work under Hörmander-type conditions, in order to give accurate esti-
mates it is necessary to consider some norms accounting for the non-diffusive time
scale of the process. Indeed, thanks to the Hörmander condition, the noise propagates
in the whole R2, but with different speeds in the directions generated by the diffusion
coefficient and the Lie brackets. With this purpose we define the following norm: let
M be a n ×m matrix with full row rank. We write MT for the transposed matrix,
and since MMT is invertible we can set, for y ∈ Rn,

|y|M =
√
〈(MMT )−1y, y〉. (1.2.1)

For any R > 0, we denote with AR(x) the matrix
(
R1/2σ(x), R3/2[σ, b](x)

)
. We assume

the following weak Hörmander condition: σ, [σ, b] span R2 locally around x(φ) (given
by (1.1.7)), and so AR(xt(φ)) is invertible, and we can define | · |AR as in (1.2.1). We
prove, for small δ and y in a neighborhood of x+ b(x)δ,

K1

δ2
exp

(
−L1|y − x− b(x)δ|2Aδ(x)

)
≤ pXδ(y) ≤ K2

δ2
exp

(
−L2|y − x− b(x)δ|2Aδ(x)

)
.

We stress that our density estimates are in short time, but differently from [17], where
asymptotics for the heat kernel are proved, our result holds for finite, positive time.
This is crucial to prove the following tube estimate: for small R

exp

(
−CT

∫ T

0

(
1

R
+ |φt|2

)
dt

)
≤

P
(

sup
t≤T
|Xt − xt(φ)|AR(xt(φ)) ≤ 1

)
≤

exp

(
− 1

CT

∫ T

0

(
1

R
+ |φt|2

)
dt

)
. (1.2.2)

In this chapter we also prove a diagonal density estimate in short time for the chain
of stochastic differential equations considered in [42], under local hypoellipticity con-
ditions, which is consistent with the main result of the original paper.
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In Chapter 4 we consider a SDE in dimension n, assuming a (local) strong
Hörmander condition of order one, meaning that we suppose that {σi, [σj, σp] : i, j, p =
1, ..., d} span Rn locally around the control x(φ). Here we allow for a general drift,
and we work with time-dependent coefficients, differently from [71], [72] (see [34] for
the regularity of the law of Xt with time dependent-coefficients).

We define AR(t, x) = (
√
Rσi(t, x), R[σj, σp](t, x))i,j,p=1,...,d,j 6=p and find, for small R,

a tube estimates analogous to (1.2.2) in the | · |AR(t,xt(φ)) norm (remark that here we
have also the dependence on t in the matrix). Also in this case the proof is based on a
diagonal density estimate in short time. In general, one application of tube estimates
is to prove lower bound for the density. This looks particularly interesting in this case
since the classical lower bound in [72] holds under much more demanding hypothesis
on the drift coefficient (b is generated by the vector fields of the diffusive part).

We also establish a link between the norm | · |M and the control-Caratheodory
distance (see [78] for classical results). In the strong Hörmander case we establish a
local equivalence that allows us to write the tube estimate in the control distance. This
is interesting again in comparison with [72], where Gaussain bounds are proved, but
only for a very specific form of the drift. In the weak Hörmander case this equivalence
cannot hold, since the definition of the standard control distance involves only σ,
which is not enough to span the whole space even if we consider its Lie brackets. We
nevertheless introduce a suitable control distance and prove a local equivalence with
the matrix norm | · |M .

1.3 Modeling Stylized Facts of Financial Markets

In the last few decades a number of researchers has shown an increasing interest in
the field of economics and finance and their links with statistical mechanics. Many
interesting phenomena arise when looking at financial data with mathematical tools
coming from statistical physics, this being motivated by the fact that a financial mar-
ket is somehow analogous to a physical “complex system”, being the reflexion of the
interactions of a huge number of agents. What we are looking at is not the behavior
of the single agent, but some macroscopic quantity that we consider important. This
new viewpoint has led to the discovery of some striking empirical properties, detected
in various types of financial markets, considered now as stylized facts of these mar-
kets. Examples of such facts are scaling properties, auto-similarity, properties of the
volatility profile, such as peaks and clustering, and long range dependence (see [37]).

In the second part of this thesis we deal with such phenomena, but the point of
view we adopt comes from mathematical finance more than statistical mechanics. We
do not look at the microscopic behavior, but directly at the macroscopic quantities
mentioned above. We can suppose that the large-scale phenomena under study have
their origin in some small-scale interactions, but what we try to model here is just the
macroscopic world. For this purpose we put ourselves in the framework of continuous-
time stochastic volatility models. More precisely, the market models that will be used
in this part are mean reverting stochastic volatility models, with a volatility driven



1.3. MODELING STYLIZED FACTS OF FINANCIAL MARKETS 7

by a jump process. This means that the process for the detrended log-price evolves
through dXt = σtdBt, where B is a Brownian motion and the volatility σt =

√
Vt is

the square root of the stationary solution of a SDE of the following form:

dVt = −f(Vt)dt+ dLt. (1.3.1)

The function f , what we call “mean reversion”, has the role of pushing the volatility
back to a certain equilibrium value, whereas L = (Lt)t is a process which models the
noise in the volatility, and it is often taken as a Levy process (see [50], [67], [12]). If
V is independent of B and has paths in L2

loc(R) a.s., the process X can be seen as a
random time-change of a Brownian motion:

Xt = WI(t), (1.3.2)

where I(t) =
∫ t

0
Vsds is sometimes called trading time. An example of such process

is the model presented in [1], which accounts a number of the stylized facts men-
tioned above, namely: the crossover in the log-return distribution from a power-law
to a Gaussian behavior, the slow decay in the volatility autocorrelation, the diffusive
scaling and the multi-scaling of moments, while keeping a simple formulation and an
explicit dependence on the parameters. In this thesis we analyze cross-correlations of
log returns for a bivariate version of this model. The correlation of both increments
and absolute increments of two assets at a certain time has been widely studied, es-
pecially because of its direct link with systemic risk and portfolio management (see
for instance [48], [25]). It is also possible to consider the cross-correlation of absolute
increments at different times, and compute how this correlation decays as the time
difference increases. This issue has been addressed by Podobnik et al. in [83], where
they analyze the Dow Jones industrial and the S&P500 indices, and in [84], [97], where
long range cross-correlations between magnitudes are found in a number of studies in-
cluding nanodevices, atmospheric geophysics, seismology and finance. This aspect,
together with the analysis of an algorithm for the detection of peaks in the volatility
profile, will be the focus of Chapter 5.

In Chapter 6 we consider a generalization of the model in [1], and focus on one
of the stylized facts mentioned above, namely the multi-scaling of moments. Let
(Xt)t≥0 be some stochastic process representing the detrended log-price of an asset.
We say that the multi-scaling of moments occurs if E (|Xt+h −Xt|q) scales, in the
limit as h ↓ 0, as hA(q), with scaling exponent A(q) non-linear. This pattern is rather
systematically observed in time series of financial assets ([95, 56, 54, 44, 43]).

A class of stochastic processes that exhibit multi-scaling for a rather arbitrary
scaling function A(q) are the so-called multifractal models ([28, 27, 26]). In these
models, the process Xt is given as the random time change of a Brownian motion
(as in (1.3.2)), where I(t) is a stochastic process, often taken to be independent of
W , with continuous and increasing trajectories. Modeling financial series through a
random time-change of Brownian motion is a classical topic, dating back to Clark
([35]), and reflects the natural idea that external information influences the speed at
which exchanges take place in a market. In multifractal models, the trading time
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I(t) is a process with non absolutely continuous trajectories. As a consequence, Xt

cannot be written as a stochastic volatility model, and this makes the analysis of
multifractal models hard in many respects, as the standard tools of Ito’s Calculus
cannot be applied.

The model constructed in [1] exhibits a bi-scaling behavior, meaning that A(q) is
piecewise linear and the slope A′(q) takes two different values, which suffices to fit most
of the cases observed. This process, in opposition to general multi-fractal models, is a
stochastic volatility model. In Chapter 6 we will prove that this behaviour is common
to a much wider class of stochastic volatility models of the form (1.3.1).

1.4 Outline of results: Part II

Chapter 5 is based on [22]. We consider the model introduced in [1], addressing the
two following issues: a study of a bivariate version of the model, and an algorithm for
the detection of peaks in the volatility profile. These two aspects are linked by the
fact that the cross-correlation between the magnitude of the increments of two indices
is highly dependent on the jumps of the volatility process.

We find an explicit formula for the decay of cross-asset correlations between ab-
solute returns depending on the time lag, analogous to the formula for the decay of
autocorrelations. We then apply this result to the time series of the Dow Jones In-
dustrial Average (DJIA) and the Financial Times Stock Exchange (FTSE) 100, from
1984 to 2013, finding an excellent agreement between predictions of the model and
empirical findings. In particular we find that in both modeling and empirical data the
decay of autocorrelations and cross-correlations is almost coincident, and it is slow
over time, confirming that this is a long-memory processes.

In our model cross-correlation is highly dependent on the jumps of the volatility
process, and for this reason we propose here an algorithm for the detection of jumps
in the volatility, which shares some features with the commonly used ICSS-GARCH
algorithm, but works well under less demanding assumptions. We prove formally some
results justifying the convergence, and some heuristic considerations on the output of
the algorithm confirm its validity in the detection of jumps.

The fact that our model displays a behavior that is completely analogous to real
data in all of these aspects, even the most subtle, is an interesting validation of our
model. We mention that the satistical analysis performed by Podobnik et al. in [83],
[97] lead to results analogous to ours, concerning also the similarity in the decay of
autocorrelations and cross-asset correlations.

In Chapter 6, following [41], we analyze multi-scaling of moments in the class of
models dXt = σtdBt, with a volatility process σt independent of the Brownian motion
Bt: these processes are exactly those that can be written in the form (1.3.2) with a
trading time I(t) independent of W , and with absolutely continuous trajectories. We
say the multi-scaling of moments occurs if the limit

lim sup
h↓0

logE (|Xt+h −Xt|q)
log h

=: A(q)
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is non-linear on the set {q ≥ 1 : |A(q)| < +∞}. Since it is reasonable to expect
A(q) = q

2
, multi-scaling of moments can be identified with deviations from this dif-

fusive scaling. This is exactly what happens for the empirical time series of many
financial indices, for q above a given threshold.

We devote special attention to models in which Vt := σ2
t is a stationary solution of

a stochastic differential equation of the form(1.3.1), for a Levy subordinator Lt whose
characteristic measure has power law tails at infinity. We first show multi-scaling is
not possible if f(·) has linear growth, and therefore the heavy tails produced by the
Levy process are not sufficient to produce multi-scaling. On the other hand, we show
that, if f(·) behaves as Cxγ as x → +∞, with C > 0 and γ > 1, then the stochastic
volatility process whose volatility is a stationary solution of (1.3.1) exhibits multi-
scaling (see Theorem 6.10 for the precise result). The class of processes considered
in this paper are also of the form (1.3.2), where the time change I(t) =

∫ t
0
Vsds

has absolutely continuous paths. This structure, although quite restrictive, provides
considerable advantages when these model are used in Mathematical Finance, e.g. in
option pricing. A further feature of these model is that the scaling function A(q) is
piecewise linear, with two values for the slope, providing a good fit for most of the
observed cases, as remarked before.

1.5 Perspectives

We conclude this introduction pointing out some possible developments of the work
presented in this thesis.

The theoretical starting point of the density estimates presented in Part I is the
recent series of papers by Bally and Caramellino [5, 7, 8], where a variant of Malli-
avin calculus is developed, in order to obtain estimates of the distance between the
density function of two random variables in terms of the inverse of their Malliavin
covariance matrix and of Sobolev type norms. In our work we use this type of tech-
niques to estimates the law of solutions of SDEs under some specific non-degeneracy
conditions. An interesting example of application is the system of coupled oscillators
analyzed in [42] (see also the related models 5.1, 5.1). In [42] Delarue and Menozzi
provide Gaussian estimates for the density of the solution, using parametrix and con-
trol methods. In section 5.1, we find similar estimates with the Malliavin calculus
techniques mentioned above, but it is reasonable to expect that our techniques may
produce estimates for the derivatives of the density as well. We believe this would be
an interesting continuation of our work, in particular for the specific model in [42].

Another aspect which is worth considering concerns the development of higher
order schemes for the simulation of degenerate SDEs. The proofs of our density
estimates require a stochastic Taylor development of the diffusion, which brings out
a geometric structure associated with the equation, linked to the degeneracy of the
covariance matrix of the process and to the different speeds of the dynamic in the
different directions. We think it may be possible to use this structure to implement
higher order simulation methods, which may apply in particular to the pricing of
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Asian Options, a remarkable example of degenerate diffusion in the weak-Hörmander
framework. Another model which would possibly be concerned, in neuroscience, is the
”Stochastic Hodgkin-Huxley” (see [61, 62]). Some simulations presented in [61] suggest
a possible connection between the weak non-degeneracy and the spiking behavior of
the system, and this would certainly be an interesting topic to investigate, also in
connection with numerical aspects.

A more distant but possible development could be the generalization of the abstract
techniques presented in chapter 2. Indeed, it may be possible to develop analogous
estimates for different kind of stochastic differential equations. The first reasonable
attempt would be to try an extension to equations driven by a fractional Brownian
Motion. This might produce some better understanding of the speed/scaling of the
solution of such equations.

We look now at Part II. For the model presented in chapter 5, pricing and implied
volatility issues have been considered in [31, 32], but for the generalization of chapter
6 many applied aspects are still open. In [31] the asymptotic behavior of the call
and put option prices is explicitly linked to the tail probabilities P(|Xt| > κ), where
Xt denotes the risk-neutral (or detrended) log-return. When this is applied to the
stochastic volatility model in [1], an interesting property concerning the divergence of
the implied volatility appears, which is usually obtained only in presence of jumps in
the price. Being related to the tail probabilities, this fact looks naturally connected to
the multiscaling of moments, and therefore we believe it would be worth considering
implied volatility also for the generalization introduced in chapter 6. Besides this
precise aspect, option pricing, calibration and many other applied financial issues are
still to explore.

Another possible direction to take would be to suppose that the driving Lévy is an
α-stable process, and try to find more explicit theoretical results, for instance concern-
ing the stationary distribution of the volatility, or the asymptotics of the distribution
in short or long time, similarly to what is done in [49].

A much deeper problem to address would be to try to understand how the super-
linear mean reversion, which is a key feature of these systems, could be produced. This
phenomenon is observed for instance in aggregated indices, so a possible origin could
lie in the fact that we are averaging on a large number of stocks, whose mutual corre-
lations follow dynamics that are not clearly understood. In particular, the superlinear
mean reversion that appears in our model is reminiscent of the asymptotic dynamics of
critical fluctuations (see [36]) of various models with mean-field interaction, although
this analogy is quite vague.



Part I

Tube and density estimates for
hypoelliptic diffusion processes

11





Chapter 2

Malliavin calculus and density
estimates for random variables

In this chapter we work in the framework of Malliavin calculus, for which our main
reference is [79]. We present some techniques for obtaining quantitative estimates of
the density of a random variable on the Wiener space, based on the recent work of
Bally and Caramellino, developed in [7], [8]. For some computations we also refer to
[81]. Such estimates can be used to study the behavior of a diffusion in short time,
and we give various applications in this sense in Chapter 3 and 4. These techniques
are based on the fact that we can measure the distance between the densities of the
laws of two random variables F and G in terms of the Malliavin-Sobolev norm of
F − G, under a non degeneracy condition for F and G. Using this fact, if we can
approximate F with some proxy G with explicit law, we are able to recover an estimate
for the density of F . We apply it in particular to diffusions, and in that case our G is
some main Gaussian component that we put in evidence trough a stochastic Taylor
development. The main result of this section (cf. Theorem 2.4) consists in a two
sided bound for pF in terms of a localization of pG, where the lower bound involves
the Malliavin covariance of G and the upper bound involves the Malliavin covariance
of F . When we apply this result to diffusions in short time in Chapter 3 and 4, this
leads to very different technical difficulties when dealing with the lower or the upper
bound.

2.1 Elements of Malliavin Calculus

2.1.1 Notations

We recall some basic notions in Malliavin calculus. Our main reference is [79]. We
consider a probability space (Ω,F ,P), a Brownian motion W = (W 1

t , ...,W
d
t )t≥0 and

the filtration (Ft)t≥0 generated by W . For fixed T > 0, we denote with H the Hilbert
space L2([0, T ],Rd). For h ∈ H we introduce this notation for the Itô integral of h:

W (h) =
∑d

j=1

∫ T
0
hj(s)dW j

s .

13
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We denote by C∞p (Rn) the set of all infinitely continuously differentiable functions
f : Rn → R such that f and all of its partial derivatives have polynomial growth. We
also denote by S the class of simple random variables of the form

F = f(W (h1), ...,W (hn)),

for some f ∈ C∞p (Rn), h1, ..., hn in H, n ≥ 1. The Malliavin derivative of F ∈ S is
the H valued random variable given by

DF =
n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn))hi.

We introduce the Sobolev norm of F :

‖F‖1,p = [E|F |p + ‖DF‖pH]
1
p

where

‖DF‖H =

(∫ T

0

|DsF |2ds
) 1

2

.

It is possible to prove that D is a closable operator an take the extension of D in the
standard way. We can now define in the obvious way DF for any F in the closure of
S with respect to this norm. Therefore, the domain of D will be the closure of S.

The higher order derivative of F is obtained by iteration. For any k ∈ N, for a
multi-index α = (α1, ..., αk) ∈ {1, ..., d}k and (s1, ..., sk) ∈ [0, T ]k, we can define

Dα
s1,...,sk

F := Dα1
s1
...Dαk

sk
F.

We denote with |α| = k the length of the multi-index. Remark that Dα
s1,...,sk

F , is a
random variable with values in H⊗k, and so we define its Sobolev norm as

‖F‖k,p = [E|F |p +
k∑
j=1

|D(j)F |p]
1
p

where

|D(j)F |2 =

∑
|α|=j

∫
[0,T ]k

|Dα
s1,...,sk

F |2ds1...dsk

1/2

.

The extension to the closure of S with respect to this norm is analogous to the first
order derivative. We denote by Dk,p the space of the random variables which are k
times differentiable in the Malliavin sense in Lp, and Dk,∞ =

⋂∞
p=1 Dk,p. As usual, we

also denote with L the Ornstein-Uhlenbeck operator, i.e. L = −δ ◦D, where δ is the
adjoint operator of D.



2.1. ELEMENTS OF MALLIAVIN CALCULUS 15

2.1.2 Non-degeneracy

We consider random vector F = (F1, ..., Fn) in the domain of D. We define its
Malliavin covariance matrix as follows:

γi,jF = 〈DFi, DFj〉H =
d∑

k=1

∫ T

0

Dk
sFi ×Dk

sFjds.

We say that F is non-degenerate if its Malliavin covariance matrix is invertible and

E(| det γF |−p) <∞, ∀p ∈ N. (2.1.1)

We denote with γ̂F the inverse of γF .

2.1.3 Conditional Expectation

The following representation theorem for the conditional expectation has been proved
in [5]. The same representation formula, under slightly more demanding hypothesis
on the regularity, is a result by Malliavin and Thalmaier (see [75] and [92]).

Proposition 2.1. Let F = (F 1, · · · , F n) be such that F 1, · · · , F n ∈
⋂
p∈ND2,p and let

G ∈
⋂
p∈N D1,p. Assume (2.1.1). Then

E(G|F = x) = 1{pF>0}
pF,G(x)

pF (x)

with

pF,G(x) = E

[
n∑
i=1

∂iQn(F − x)Hi(F ;G)

]
,

where Qn denotes the Poisson kernel on Rn, i.e. the fundamental solution of the
Laplace operator ∆Qn = δ0. This is given by

Q1(x) = max(x, 0); Q2(x) = A−1
2 ln |x|; Qn(x) = −A−1

n |x|2−n, n > 2,

where An is the area of the unit sphere in Rn. The Malliavin weights are given by

H(F ;G) = Gγ̂F × LF − 〈D(γ̂FG), DF 〉

Remark 2.2. With G = 1 this result gives a representation formula for the density:

pF (x) = −
n∑
i=1

E [∂iQn(F − x)Hi(F ; 1)] (2.1.2)
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2.1.4 Localization

The following notion of localization is introduced in [7]. Consider a random variable
U ∈ [0, 1] and denote

dPU = UdP.

We also denote

‖F‖p,U = (EU(|F |p))1/p = (E(|F |pU))1/p

‖F‖k,p,U = ‖F‖p,U +
∑

1≤|α|≤k

(EU(|D(α)F |p))1/p.

We assume that U ∈ D1,∞ and for every p ≥ 1

mU(k, p) := 1 +
k+1∑
i=1

(EU |Di lnU |p)1/p <∞.

The specific localizing function we will use is the following. Consider the function
depending on a parameter a > 0:

ψa(x) = 1|x|≤a + exp

(
1− a2

a2 − (x− a)2

)
1a<|x|<2a.

For Θi ∈ D2,∞ and ai > 0, i = 1 . . . , n we define the localization variable:

U =
n∏
i=1

ψai(Θi) (2.1.3)

For this choice of U we have that for any p, k ∈ N0

mU(k, p) ≤ Cp,k

(
1 +

k+1∑
i=1

‖DiΘ‖p
|a|

)k+1

≤ Cp,k

(
1 +
‖Θ‖k+1,p

|a|

)k+1

(2.1.4)

and, for k ≥ 1,

‖1− U‖k,p ≤ Ck,p

(∑
i

P(|Θi|p > αpi )
1/(2p)

)(
1 +

k∑
i=1

‖D(i)Θ‖2p

|a|i

)
≤ Ck,p
|a|k
‖Θ‖k,2p

(2.1.5)

The proof of (2.1.4) follows from standard computations and inequality

sup
x
|(lnψa)(k)(x)|pψa(x) ≤ Ck,p

akp
<∞, k = 1, 2, . . . (2.1.6)
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To prove (2.1.5) we use again (2.1.6) and Markov inequality. For F = (F 1, · · · , F n)
such that F 1, · · · , F n ∈

⋂
p∈N D2,p and V ∈

⋂
p∈N D1,p, for any localization function U

we introduce the localized Malliavin weights

Hi,U(F, V ) =
n∑
j=1

V γ̂i,jF LF
j − 〈D(V γ̂i,jF ), DF j〉 − V γ̂i,jF 〈D lnU,DF j〉

and the vector
HU(F, V ) = (Hi,U(F, V ))i=1,...n .

The following representation formula for the density, which is the localized version of
(2.1.2), has been proved in [5].

Theorem 2.3. Let U be a localizing r.v. such that under PU (2.1.1) holds, i.e.

EU [| det γF |−p] <∞, ∀p ∈ N.

Then, under PU the law of F is absolutely continuous and has a continuous density
pF,U which may be represented as

pF,U(x) = −
n∑
i=1

EU [∂iQn(F − x)Hi,U(F, 1)] (2.1.7)

2.2 Density estimates

We discuss some techniques, based on Malliavin calculus, for estimating the density of
a random variable. These ideas are based on the recent work of Bally and Caramellino,
see for instance [7], [8].

2.2.1 The distance between two local densities

In what follows for a given matrix A we consider its Frobenius norm, given as

‖A‖F =

√∑
i,j

|A2
i,j| =

√
Tr(ATA).

We will employ the fact that the Frobenius norm is sub-multiplicative. Take a square
d × d matrix γ, symmetric and positive definite. Denote with λ∗(γ) and λ∗(γ) the
largest and the smallest eigenvalues of γ. From the equivalence between Frobenius
and spectral norm we have

λ∗(γ) ≤ ‖γ‖F ≤
√
dλ∗(γ).

Denoting γ̂ = γ−1, it holds λ∗(γ̂) = 1/λ∗(γ). So

1

λ∗(γ)
≤ ‖γ̂‖F ≤

√
d

λ∗(γ)
.



18 CHAPTER 2. MALLIAVIN CALCULUS AND DENSITY ESTIMATES

For two time dependent matrices As, Bs, we have the following ”Cauchy-Schwartz”
inequality:

|
∫
AsBsds|2F ≤

∫
|As|2Fds

∫
|Bs|2Fds.

In particular, if Bs = vs is a vector,

|
∫
Asvsds|2 ≤

∫
|As|2Fds

∫
|vs|2ds.

We fix some notation. Let W be a Brownian Motion in Rd. For two random variables
F = (F1, . . . Fn), G = (G1, . . . Gn) and a localization function U , we denote

ΓF,U(p) = 1 +
(
EUλ∗(γF )−p

)1/p

ΓF,G,U(p) = 1 + sup
0≤ε≤1

(
EUλ∗(γG+ε(F−G))

−p)1/p

nF,G,U(k, p) = 1 + ‖F‖k+2,p,U + ‖G‖k+2,p,U + ‖LF‖k,p,U + ‖LG‖k,p,U

∆j(F,G) =

j∑
i=1

|D(i)(F −G)|+
j−2∑
i=0

|D(i)L(F −G)|, j ≥ 2.

When U = 1, i.e. the localization is ”trivial”, we omit it in the notation. We also
write nF,U(k, p) for nF,0,U(k, p). Since we are differentiating with respect to a Brownian
Motion, as a direct consequence of Meyer’s inequality (see for instance [79]), we have

nF,G,U(k, p) ≤ 1 + C (‖F‖k+2,p + ‖G‖k+2,p) . (2.2.1)

Also notice that
nF,G,U(0, p) ≤ 2nF,U(0, p) + ‖∆2(F,G)‖2,p.

We are now able to give the main result of this section, which consists in a lower
bound for pF which does not involve the Malliavin covariance of F , and an upper
bound for pF which does not involve the Malliavin covariance of G.

Theorem 2.4. Take F,G ∈ D3,32n. Suppose mU(1, 32n) <∞ and nF,G(1, 32n) <∞.
If ΓG,U(32n) <∞, there exists a constant C1 such that

pG,U(y)− C1‖∆2(F,G)‖32n,U ≤ pF,U(y) ≤ pF (y)

If ΓF (32n) <∞, there exists a constant C2 such that

pF (y) ≤ pG,U(y) + C2(‖∆2(F,G)‖32n,U + ‖1− U‖1,14n)

Remark 2.5. We can take

C1 = C [mU(1, 32n)ΓG,U(32n)nF,G,U(1, 32n)]24n2

C2 = C [mU(1, 32n)ΓF (32n)nF,G(1, 32n)]24n2

where C is a universal constant depending only on the dimension n.
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The lower bound for pF,U is a version of Proposition 2.5. in [7], where here we have
specified as possible choice for the exponent p = 32n. Similar estimates can be found
also in [8].

Proof. We first need an estimate for the localized Malliavin weights and for the dif-
ference of weights:

Lemma 2.6. Let k and p be given. There exists a constant C depending just on p
and the dimension n such that

‖HU(F, V )‖k,p,U ≤ C‖V ‖k+1,p1mU(k, p2)ΓF,U(p3)k+2nF,U(k, p4)2k+3 (2.2.2)

for every pi, i = 1, . . . , 4 with 1
p

= 1
p1

+ 1
p2

+ k+2
p3

+ 2k+3
p4

. Moreover

‖HU(F, V )−HU(G, V )‖k,p,U
≤ C‖V ‖k+1,p1mU(k, p2)ΓF,G,U(p3)k+3nF,G,U(k, p4)2k+4‖∆k+2(F,G)‖p5,U .

(2.2.3)

for every pi, i = 1, . . . , 5 with 1
p

= 1
p1

+ 1
p2

+ k+3
p3

+ 2k+4
p4

+ 1
p5

.

Proof. Consider the weight:

HU(F, V ) = V [γ̂F × LF − 〈Dγ̂F , DF 〉]− 〈γ̂F (DV + V D lnU), DF 〉 (2.2.4)

(1) We first consider DγF and have the following estimate:

d∑
l=1

∫ t

0

‖Dl
sγF‖2

Fds

=
d∑
l=1

∫ t

0

∥∥∥∥∥∥
(

d∑
k=1

∫ t

0

Dl
sD

k
uFi ×Dk

uFj +Dk
uFi ×Dl

sD
k
uFjdu

)
i,j

∥∥∥∥∥∥
2

F

ds

≤ 4|D(2)F |2|DF |2

(2) We now consider Dγ̂F . From the chain rule and the derivative of the inversion
of matrices,

Dkγ̂F = −γ̂F (DkγF )γ̂F . (2.2.5)

So, applying also the previous estimate∑
k

∫
‖Dk

s γ̂F‖2
Fds ≤ ‖γ̂F‖4

F

∑
k

∫
‖Dk

sγF‖2
Fds ≤ 4‖γ̂F‖4

F |DF |2|D(2)F |2.

Now the estimate of ‖HU(F,U)‖p,U follows easily applying Minkowski and Holder
inequalities for Lp norms to (2.2.4).
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The estimate of ‖HU(F,U)‖k,p,U follows using very similar techniques. The part
giving the ”main” contribution is D(k+1)γ̂F , for which, iterating (2.2.5), it is not
difficult to see

|D(k+1)γ̂F | ≤ C(|DF |+ · · ·+ |D(k+2)F |)2k+2 ‖γ̂F‖k+2
F

(Recall that D(l) means ”derivative of order l” and Dl means ”derivative with respect
to W l”). This term is also multiplied by |DF |, so we have the estimate of the term
giving the main contribution. We leave out the similar estimate of the other terms.

When considering the difference ‖HU(F, V )−HU(G, V )‖k,p,U , we use similar argu-
ments and the following property of norms: |ab− cd| ≤ |a− c||b|+ |c||b−d|. As before
the main contribution comes from Dk+1(γ̂F − γ̂G), so we consider this and leave out
the estimates of the other terms. We remark that

γ̂F − γ̂G = γ̂F (γG − γF )γ̂G

and differentiate this product, finding

|Dk+1(γ̂F − γ̂G)| ≤ C(1 + ‖γF‖F ∨ ‖γG‖F )k+3(
1 +

k+1∑
i=1

|D(i)γF | ∨ |D(i)γG|

)k+1 k+1∑
i=0

|D(i)(γF − γG)|

where (
1 +

k+1∑
i=1

|D(i)γF | ∨ |D(i)γG|

)k+1

≤ C

(
1 +

k+2∑
i=1

|D(i)F | ∨ |D(i)G|

)2k+2

and

‖D(i)(γF − γG)‖F ≤ C

i+1∑
l=1

|D(l)(F −G)|
i+1∑
l=1

|D(l)(F +G)|.

Multiplying with |DF |, and applying Holder inequality, we prove the statement.

Lemma 2.7. There exists a constant C depending just on the dimension n such that

|pF,U(y)− pG,U(y)|

≤ C [mU(1, 32n)ΓF,G,U(32n)nF,G,U(1, 32n)]12n2

‖∆2(F,G)‖32n,U

Proof. We write the densities using (2.1.7):

pF,U(y)− pG,U(y) = EU(〈∇Qd(F − y), HU(F, 1)〉 − 〈∇Qd(G− y), HU(G, 1)〉)
= EU〈∇Qd(F − y), HU(G, 1)−HU(F, 1)〉
+ EU〈∇Qd(G− y)−∇Qd(F − y), HU(G, 1)〉
= I + J
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We recall the following inequality proved in [5]. For p > n, with p′ = p/(p− 1),

(EU |∇Qd(F − y)|p′)1/p′ ≤ Cp,n(EU |HU(F, 1)|p)p
n−1
p−n .

In particular, for p = 2n (fixed from now on), applying (2.2.2) with k = 0, p1 = p2 =
p3 = p4 = 7p = 14n,

(EU |∇Qd(F − y)|2n/(2n−1))(2n−1)/(2n)

≤ C(EU |HU(F, 1)|2n)2(n−1)

≤ C
[
mU(0, 14n)ΓF,U(14n)2nF,U(0, 14n)3

]4n(n−1)
.

(2.2.6)

We use now Lemma 2.6 to estimate I and J :

I =EU |〈∇Qd(F − y), HU(G, 1)−HU(F, 1)〉|
≤ ‖∇Qd(F − y)‖ 2n

2n−1
,U‖HU(G, 1)−HU(F, 1)‖2n,U

and we have just provided the estimate for the first factor. For the second we apply
(2.2.3):

‖HU(F, 1)−HU(G, 1)‖2n,U

≤ CmU(0, 18n)ΓF,G,U(18n)3nF,G,U(0, 18n)4‖∆2(F,G)‖18n,U ,

We now study J . For λ ∈ [0, 1] we denote Fλ = G + λ(F − G). With a Taylor
expansion, applying Holder inequality, integrating again by parts and denoting Vj,k =
Hj,U(G, 1)(F −G)k.

EU〈∇Qd(F − y)−∇Qd(G− y), HU(G, 1)〉

=
d∑

k,j=1

∫ 1

0

EU(∂k∂jQd(Fλ − y)Hj,U(G, 1)(F −G)k)dλ

=
d∑

k,j=1

∫ 1

0

EU(∂jQd(Fλ − y)Hk,U(Fλ, Hj,U(G, 1)(F −G)k))dλ

=
d∑

k,j=1

∫ 1

0

EU(∂jQd(Fλ − y)Hk,U(Fλ, Vj,k))dλ

Now, applying twice (2.2.2), first with k = 0 and then with k = 1, with some compu-
tations in the same fashion as before, it is possible to show

‖(Hk,U(Fλ, Vj,k))j=1,...,n‖2n,U

≤ CmU(1, 32n)2ΓF,G,U(32n)5nF,G,U(1, 32n)8‖F −G‖1,32n,U .

From (2.2.6) and Holder as before,

|J | ≤ Cn
[
mU(1, 32n)ΓF,G,U(32n)2nF,G,U(1, 32n)3

]4n2

‖F −G‖1,32n,U .

The statement follows.
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Lemma 2.8. There exists a universal constant C depending just on the dimension n
such that

|pF,U(y)− pG,U(y)|

≤ C [mU(1, 32n)(ΓF,U ∨ ΓG,U)(32n)nF,G,U(1, 32n)]24n2

‖∆2(F,G)‖32n,U

Proof. We denote in this proof M = γ̂G(γFλ − γG), and define, as in (2.1.3),

V =
∏

1≤i,j≤n

ψ1/(8n2)(Mi,j).

We have from Lemma 2.7

|pF,UV (y)− pG,UV (y)|

≤ C [mUV (1, 32n)ΓF,G,UV (32n)nF,G,UV (1, 32n)]12n2

‖∆2(F,G)‖32n,UV

(2.2.7)

Remark
γ̂G − γ̂Fλ = γ̂G(γFλ − γG)γ̂Fλ ,

so
‖γ̂Fλ − γ̂G‖F ≤ ‖γ̂G(γFλ − γG)‖F‖γ̂Fλ‖F

On V 6= 0 we have ‖γ̂G(γFλ − γG)‖F ≤ 1/2 so

‖γ̂Fλ‖F ≤ 2‖γ̂G‖F
and therefore

ΓF,G,UV (32n) ≤ 2ΓG,UV (32n) ≤ 2ΓG,U(32n). (2.2.8)

Now,
pF,U(1−V )(y) = EU(〈∇Qn(F − y), HU(F, 1− V )〉)

which implies, using as before (2.2.2) and (2.2.6)

pF,U(1−V )(y) = EU(1−V )〈∇Qd(F − y), HU(F, 1− V )〉

≤ C
[
mU(0, 14n)ΓF,U(14n)2nF,U(0, 14n)3

]4n(n−1) ‖HU(F, 1− V )‖2n,U

≤ C
[
mU(0, 24n)ΓF,U(24n)2nF,U(0, 24n)3

]8n(n−1)+1 ‖1− V ‖4n,U

and, using (2.1.5) and some standard computations

‖1− V ‖1,4n,U ≤ C‖γ̂G(γFλ − γG)‖1,4n,U

≤ CΓ2
G,U(20n)n2

F,G,U(0, 20n)‖F −G‖2,20n,U

so

pF,U(1−V )(y)

≤ C
[
mU(0, 24n)(ΓF,U ∨ ΓG,U)(24n)2nF,G,U(0, 24n)3

]8n2

‖∆2(F,G)‖32n,U

(2.2.9)

We conclude writing

|pF,U(y)− pG,U(y)| ≤ |pF,UV (y)− pG,UV (y)|+ pF,U(1−V )(y) + pG,U(1−V )(y)

and the statement follows easily.
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We can now prove the theorem. Let V as in the last proof. We can write

pF,U(y) ≥ pF,UV (y) ≥ pG,UV (y)− |pF,UV (y)− pG,UV (y)|
= pG,U(y)− pG,U(1−V )(y)− |pF,UV (y)− pG,UV (y)|.

From (2.2.2) and (2.2.6) as before

pG,U(1−V )(y) ≤ C
[
mU(0, 14n)ΓG,U(14n)2nF,G,U(0, 14n)3

]8n2

‖∆2(F,G)‖32n,U .

Using also (2.2.7) and (2.2.8) we obtain the desired lower bound for pF .
For the upper bound we apply Proposition 2.1 with G = 1− U . We have

pF,1−U(x) = E

(
n∑
i=1

∂iQn(F − x)Hi(F ; 1− U)

)
, (2.2.10)

We use (2.2.6) with U = 1:

(E|∇Qd(F − y)|2n/(2n−1))(2n−1)/(2n) ≤ C
(
ΓF (14n)2nF (14n)3

)4n(n−1)
.

Now we apply Holder to (2.2.10), and using also (2.2.2) as before and (2.2.6) we find

pF,1−U ≤ C‖1− U‖1,14n

[
ΓF (14n)2nF (14n)3

]4n2

. (2.2.11)

We apply now the lower bound result to pG,U , interchanging the roles of F and G,
and find

pF,U(y) ≤ pG,U(y) + [mU(1, 32n)ΓF,U(32n)nF,G(1, 32n)]24n2

‖∆2(F,G)‖32n,U .

Putting together this inequality and (2.2.11), we have the upper bound.

2.2.2 Estimates of the derivatives of the density

We derive now analogous local estimates for the derivatives of the density. For α ≥ 1
we set qn,α = 8n(α + 1)(α + 3).

Theorem 2.9. Suppose mU(α + 1, qn,α) <∞ and nF,G,U(α + 1, qn,α) <∞.
If ΓG,U(qn,α) <∞, there exists a constant C1 such that

|∇αpF (y)| ≥ |∇αpF,U(y)| ≥ |∇αpG,U(y)| − C1‖∆α+2(F,G)‖qn,α,U

If ΓF (qn,α) <∞, there exists a constant C2 such that

|∇αpF (y)| ≤ |∇αpG,U(y)|+ C2(‖∆α+2(F,G)‖qn,α,U + ‖1− U‖α+1,qn,α)

If ΓG,U(qn,α) and ΓF,U(qn,α) are both finite,

|∇αpF,U(y)−∇αpG,U(y)| ≤ C3‖∆α+2(F,G)‖qn,α
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Remark 2.10. We can take

C1 = C [mU(α + 1, qn,α)ΓG,U(qn,α)nF,G(α + 1, qn,α)]q
2
n,α

C2 = C [mU(α + 1, qn,α)ΓF (qn,α)nF,G,U(α + 1, qn,α)]q
2
n,α

C3 = C[mU(α + 1, qn,α)ΓF,U ∨ ΓG,U(qn,α)nF,G,U(α + 1, qn,α)]q
2
n,α

where C is a universal constant depending only on n and α.

Proof. We do not go through all the details here since the computations are analogous
to the proof of theorem 2.4. We start proving

|∇αpF,U(y)−∇αpG,U(y)|
≤ C‖∆α+2(F,G)‖qn,α [mU(α + 1, qn,α)ΓF,G,U(qn,α)nF,G,U(α + 1, qn,α)]q

2
n,α

Defining by induction H1
U(F,G) = HU(F,G) and Hα+1

U (F,G) = HU(F,Hα
U(F,G)),

integrating by parts we have

∇αpF,U(y) = EU [∇α+1Qn(F − y)HU(F, 1)] = EU [∇Qn(F − y)Hα+1
U (F, 1)].

So

∇αpF,U(y)−∇αpG,U(y)

= EU [∇Qn(F − y)Hα+1
U (F, 1)]− EU [∇Qn(G− y)Hα+1

U (G, 1)]

= EU [∇Qn(F − y)(Hα+1
U (F, 1)−Hα+1

U (G, 1))]

+ EU [(∇Qn(F − y)−∇Qn(G− y))Hα+1
U (G, 1)]

= I + J.

Now,

J = EU [(∇Qn(F − y)−∇Qn(G− y))Hα+1
U (G, 1)]

= EU [

∫ 1

0

(∇2Qn(Fλ − y))Hα+1
U (G, 1)(F −G)dλ]

= EU [

∫ 1

0

(∇Qn(Fλ − y))HU(Fλ, H
α+1
U (G, 1))(F −G)dλ]

Apply Holder inequality and for 1/q1 + 1/q2 + 1/q3 = 1 and

J ≤ ‖∇Qn(Fλ − y)‖q1,U‖HU(Fλ, H
α+1
U (G, 1))‖q2,U‖F −G‖q3,U .

Iterating (2.2.2),

‖HU(Fλ, H
α+1
U (G, 1))‖p,U

≤ C(mU(α + 1, p1))α+1ΓF,U(p2)(α+1)(a+3)nF,U(α + 1, p3)(2α+3)2
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with α+1
p1

+ (α+1)(α+4)/2
p2

+ (α+1)(a+3)
p3

= 1
p
. Now,

|I| = ‖∇Qn(F − y)‖p′,U‖Hα+1
U (F, 1)−Hα+1

U (G, 1)‖p,U .

For ‖∇Qn(F − y)‖p,U we use (2.2.6). For the second factor,

‖Hα+1
U (F, 1)−Hα+1

U (G, 1)‖k,p,U ≤ ‖HU(F,Hα
U(F, 1))−HU(G,Hα

U(F, 1))‖k,p,U
+ ‖HU(G,Hα

U(F, 1))−HU(G,Hα
U(G, 1))‖k,p,U .

(2.2.3) implies

‖HU(F,Hα
U(F, 1))−HU(G,Hα

U(F, 1))‖k,p,U
≤ C‖Hα

U(F, 1)‖k+1,p1,UmU(k, p2)Γk+3
F,G,U(p3)nF,G,U(k, p4)2k+4‖∆k+2(F,G)‖p5,U

with 1
p

= 1
p1

+ 1
p2

+ k+3
p3

+ 2k+4
p4

+ 1
p5

. Linearity of HU in the second variable and (2.2.2)
lead to

‖HU(G,Hα
U(F, 1))−HU(G,Hα

U(G, 1))‖k,p,U
≤ ‖HU (G,Hα

U(F, 1)−Hα
U(G, 1))‖k,p,U

≤ C‖Hα
U(F, 1)−Hα

U(G, 1)‖k+1,p1,UmU(k, p2)Γk+2
F,G,U(p3)nF,G,U(k, p4, U)2k+3

By induction on α

‖Hα+1
U (F, 1)−Hα+1

U (G, 1)‖p,U
≤ mU(α, p1)α+1Γ

(α+1)(α+4)/2
F,G,U (p2)nF,G,U(α, p3)(α+1)(a+3)‖∆α+2(F,G)‖p4,U

with 1
p

= α+1
p1

+ (α+1)(α+4)/2
p2

+ (α+1)(a+3)
p3

+ 1
p4

. Therefore, taking p = 2n,

|∇αpF,U(y)−∇αpG,U(y)|
≤ ‖∆α+2(F,G)‖qn,α [mU(α + 1, qn,α)ΓF,G,U(qn,α)nF,G,U(k, qn,α)]q

2
n,α

It is possible to prove the analogous of Lemma 2.7 and 2.8. One first shows

|∇αpF,U(y)−∇αpG,U(y)|
≤ C‖∆α+2(F,G)‖qn,α [mU(α + 1, qn,α)(ΓF,U ∨ ΓG,U)(qn,α)nF,G,U(α, qn,α)]q

2
n,α ,

following the proof of Lemma 2.7 and iterating (2.2.2). As a consequence we find a
lower bound for |∇αpF | which does not involve the Malliavin covariance of F , and an
upper bound for |∇αpF | which does not involve the Malliavin covariance of G. We
follow the proof of Lemma 2.8 and apply (2.1.5).



26 CHAPTER 2. MALLIAVIN CALCULUS AND DENSITY ESTIMATES

2.2.3 Density estimates via local inversion

In this section we recall some results from [6], Appendix 2. We see how to use the
inverse function theorem to transfer a known estimate for a Gaussian random variable
to its image via a certain function η. This provide us some estimates for the localized
density, from which we obtain lower bounds for the global density. To deal with the
global upper bound problem we will need some Malliavin calculus techniques. For a
standard version of the inverse function theorem see [88].

We consider Φ(θ) = θ+η(θ), for a three times differentiable function η : Rd → Rd.
Define

c2(η) = max
i,j=1,..,d

sup
|x|≤hη

|∂2
ijη(x)|, c3(η) = max

i,j,k=1,..,d
sup
|x|≤hη

|∂3
ijkη(x)|,

and

hη =
1

16d2(c2(η) +
√
c3(η))

(2.2.12)

Lemma 2.11. Take hη as above. If the function η is such that

η ∈ C3(Rd,Rd), η(0) = 0, ∇η(0) ≤ 1

2
,

then there exists a neighborhood of 0, that we denote with Vhη ⊂ B(0, 2hη), such that
Φ : Vhη → B

(
0, 1

2
hη
)

is a diffeomorphism. In particular, if we denote with Φ−1 the
local inverse of Φ, we have

Φ−1 : B

(
0,

1

2
hη

)
→ B (0, 2hη) ,

and we have this quantitative estimate:

∀y ∈ B
(

0,
1

2
hη

)
,

1

4
|Φ−1(y)| ≤ |y| ≤ 4|Φ−1(y)|. (2.2.13)

Remark 2.12. Here we write Φ−1 for the inverse of the restriction of Φ to Vhη , what
is called a local inverse.

Proof. We have
∇Φ(0) = Id+∇η(0).

So

|∇Φ(0)x|2 ≥ 1

2
|x|2 − |∇η(0)x|2 ≥ 1

2
|x|2 − 1

4
|x|2 =

1

4
|x|2.

and

|∇Φ(0)x|2 ≤ 2|x|2 + 2|∇η(0)x|2 ≤ 2|x|2 +
1

2
|x|2 ≤ 5

2
|x|2.

Therefore
1

2
|x| ≤ |∇Φ(0)x| ≤

√
3|x|



2.2. DENSITY ESTIMATES 27

This implies Φ(0) is invertible locally around 0, and the local inverse differentiable,
using the classical inverse function theorem. We now look now at the image of the
inverse, and at the estimates (2.2.13). We develop η around 0, writing ∇2η(x)[u, v] to
denote ∇2η(x) computed in u and v.

η(θ) = ∇η(0)θ +

∫ 1

0

(1− t)∇2η(tθ)[θ, θ]dt.

Fix y ∈ Rd. Suppose Φ(θ) = y. Then

θ = (∇Φ(0))−1∇Φ(0)θ

= (∇Φ(0))−1(θ +∇η(0)θ)

= (∇Φ(0))−1

(
θ + η(θ)−

∫ 1

0

(1− t)∇2η(tθ)[θ, θ]dt

)
= (∇Φ(0))−1

(
y −

∫ 1

0

(1− t)∇2η(tθ)[θ, θ]dt

)
.

We define

Uy(θ) =

(
y −

∫ 1

0

(1− t)∇2η(tθ)[θ, θ]dt

)
,

so that θ can be seen as a fixed point for Uy. Recall that |1
2
x| ≤ |∇Φ(0)x|.

|Uy(θ1)− Uy(θ2)| =
∣∣∣∣(∇Φ(0))−1

(∫ 1

0

(1− t)(∇2η(tθ2)[θ2, θ2]−∇2η(tθ1)[θ1, θ1])dt

)∣∣∣∣
≤ 2

∣∣∣∣∫ 1

0

(1− t)(∇2η(tθ2)[θ2, θ2]−∇2η(tθ1)[θ1, θ1])dt

∣∣∣∣
≤ 2

∫ 1

0

(1− t)(|∇2η(tθ1)[θ1, θ1 − θ2]|+ |∇2η(tθ1)[θ1 − θ2, θ2]|

+ |∇2η(tθ1)[θ2, θ2]−∇2η(tθ2)[θ2, θ2]|)dt.

Now, form (2.2.12), for θ1, θ2 ∈ B(0, hη)

|∇2η(tθ1)[θ1, θ1 − θ2]| ≤ d2c2(η)hη|θ1 − θ2| ≤
1

16
|θ1 − θ2|,

and

|∇2η(tθ1)[θ2, θ2]−∇2η(tθ2)[θ2, θ2]| ≤ d3c3(η)|θ1 − θ2|h2
η ≤

1

256
|θ1 − θ2|,

and therefore

|Uy(θ1)− Uy(θ2)| ≤ 1

4
|θ1 − θ2|. (2.2.14)

For y ∈ B(0, 1
2
hη) and θ ∈ B(0, 2hη) this implies

|Uy(θ)| ≤ |Uy(θ)− Uy(0)|+ |Uy(0)| ≤ 1

4
|θ|+ 2y ≤ 2hη
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Define now the sequence
θ0 = 0, θk+1 = Uy(θk).

We know that θk ∈ B(0, 2hη) for any k ∈ N, and therefore inequality (2.2.14) implies

|Uy(θk)− Uy(θk+1)| ≤ 1

4
|θk − θk+1|.

The Banach fixed-point theorem tells us that θk converges to the unique solution of
θ = Uy(θ), which is θ = Φ−1(y), and θ ∈ B(0, 2hη). So it is possible to define the local
inverse Φ−1 on B

(
0, 1

2
hη
)
, and

Vhη := Φ−1B

(
0,

1

2
hη

)
⊂ B(0, 2hη).

Now, for y ∈ B(0, 1
2
hη), let θ = Φ−1(y) and the following inequalities hold

|θ| = |Uy(θ)| ≤
1

2
θ + 2|y| ⇒|θ| ≤ 4|y|

|θ| = Uy(θ) ≥ |Uy(0)| − |Uy(θ)− Uy(0)| ≥ 1

2
|y| − 1

2
|θ| ⇒|θ| ≥ 1

4
|y|.

Let now Θ be a d-dimensional centered Gaussian variable with covariance matrix
Q. Denote by λ and λ the lower and the upper eigenvalues of Q. Keeping in mind
the setting of the last subsection, we also introduce the notation

c∗(η, h) = sup
|x|≤2h

max
i,j
|∂iηj(x)|

for h > 0. Recall we are supposing η ∈ C3(Rd,Rd) and η(0) = 0.
Suppose now Q non-degenerate and take r > 0 such that

c∗(η, 16r) ≤ 1

2d

√
λ

λ
, r ≤ hη =

1

16d2(c2(η) +
√
c3(η))

. (2.2.15)

We take a localizing function as in (2.1.3), with ai = r ∀i = 1, . . . d, and U =∏d
i=1 ψr(Θi).

Lemma 2.13. The density pG,U of

G := Φ(Θ) = Θ + η(Θ)

under PU has the following bounds on B(0, r):

1

C detQ1/2
exp

(
−C
λ
|z|2
)
≤ pG,U(z) ≤ C

detQ1/2
exp

(
− 1

Cλ
|z|2
)

(2.2.16)
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Proof. For a general nonnegative, measurable function f : Rd → R with support
included in B(0, 4r), we compute E(f(G)1{Θ∈Φ−1B(0,4r)}). Here Φ−1 is the local dif-
feomorphism of the inverse function theorem. After the multiplication with the char-
acteristic function, on the support of the random variable that we are averaging, Φ is
a diffeomorphism and the first equality holds. The second follows from the change of
variable suggested by Lemma 2.11 for G = Φ(Θ)

E
(
f(G)1{Θ∈Φ−1B(0,4r)}

)
=

=

∫
Φ−1(B(0,4r))

f(Φ(θ))
1

(2π)d/2 detQ1/2
exp

(
−1

2
〈Q−1θ, θ〉

)
dθ

=

∫
B(0,4r)

f(z)p̄G(z)dz,

where for z ∈ B(0, 4r)

p̄G(z) =
1

(2π)d/2 detQ1/2| det∇Φ(Φ−1(z))|
exp

(
−1

2
〈Q−1Φ−1(z),Φ−1(z)〉

)
.

Again from Lemma 2.11, since 4r ≤ hη
2

, we have z ∈ B(0, 4r)⇒ θ ∈ B(0, 16r). Using

c∗(η, 16r) ≤ 1
2d

√
λ

λ
,

1

2
|x|2 ≤ (1− d c∗(η, hη))|x|2 ≤ |〈∇Φ(θ)x, x〉| ≤ (1 + d c∗(η, hη))|x|2 ≤ 2|x|2.

Therefore if z ∈ B(0, 4r)

2−d ≤ | det Φ(Φ−1(z))| ≤ 2d.

Moreover, using Lemma 2.11

〈Q−1Φ−1(z),Φ−1(z)〉 ≤ 1

λ
|Φ−1(z)|2 ≤ 16

λ
|z|2,

〈Q−1Φ−1(z),Φ−1(z)〉 ≥ 1

λ
|Φ−1(z)|2 ≥ 1

16λ
|z|2.

Therefore

1

(8π)d/2 detQ1/2
exp

(
−8

λ
|z|2
)
≤ p̄G(z) ≤ 2d/2

πd/2 detQ1/2
exp

(
− 1

32λ
|z|2
)
.

Now we define, as in (2.1.3) the localization variables

U1 =
d∏
i=1

ψ16r(Θi), U2 =
d∏
i=1

ψr(Θi).

Notice that
U2 ≤ 1{Θ∈Φ−1B(0,4r)} ≤ U1,



30 CHAPTER 2. MALLIAVIN CALCULUS AND DENSITY ESTIMATES

so that we have

E (f(G)U2) ≤ E
(
f(G)1{Θ∈Φ−1B(0,4r)}

)
≤ E (f(G)U1) .

The following bounds for the local densities follow:

pG,U1(z) ≥ 1

(8π)d/2 detQ1/2
exp

(
−8

λ
|z|2
)
,

pG,U2(z) ≤ 2d/2

πd/2 detQ1/2
exp

(
− 1

32λ
|z|2
)
.

U1 ≥ U = U2, so for the localization via U both bounds hold.



Chapter 3

Tube and density estimates for
diffusion processes under a weak
Hörmander condition

3.1 Introduction

Following [81], we consider a stochastic differential equation on [0, T ]:

Xt = x+

∫ t

0

σ(Xs) ◦ dWs +

∫ t

0

b(Xs)ds (3.1.1)

where the diffusionX is two-dimensional and the Brownian MotionW is one-dimensional.
◦dWs denotes the Stratonovich integral and, as we said, we suppose ∂σσ(y) = κσ(y)σ(y).
For this system the ellipticity assumption fails at any point, and the strong Hörmander
condition fails as well. The prototype of this kind of problems is a two dimensional
system where the first component X1 follows a stochastic dynamic, and the second
component X2 is a deterministic functional of X1, so the randomness acts indirectly
on X2. Besides the natural application to the Asian option, there are others such as
in [61], [62]. In these papers the functioning of a neuron is modeled: X2 is the concen-
tration of some chemicals resulting from a reaction involving the first component X1.
Differently from our setting, though, there are several measurements corresponding
to the input X1, so X2 is multi-dimensional. The pattern, however, is similar.

Under a non-degeneracy assumption of weak Hörmander type we find diagonal
Gaussian estimates for the density in short time (for density estimates in a weak
Hörmander framework we refer to [11], [42], [63], [85], [80], [24], [13])). In this paper
we consider a more general coefficient for the Brownian Motion, in the sense that we
suppose ∂σσ(y) = κσ(y)σ(y), whereas the works mentioned above would apply for
σ = (σ1, 0) which is a more restrictive condition. Moreover, our coefficients are just
locally hypoelliptic.

The other novelty is that thanks to our short time non-asymptotic result we find
exponential lower and upper bounds for probability that the diffusion remains in

31
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a small tube around a deterministic trajectory (theorem 3.10). More precisely, we
consider (3.1.1) and introduce the associated skeleton path solution of the following
ODE:

xt(φ) = x+

∫ t

0

σ(xs(φ))φsds+

∫ t

0

b(xs(φ))ds. (3.1.2)

for a certain control φ ∈ L2[0, T ]. A tube estimate for (3.1.1), is an estimate of
P
(
supt≤T ‖Xt − xt(φ)‖ ≤ R

)
. We obtain this result in a norm which reflects the fact

that the diffusion moves with speed t1/2 in the direction σ and t3/2 in the direction
[σ, b], and establish a connection between this norm and the standard control distance
(cf. [78]).

We also consider, in section 3.5, the system of stochastic differential equations
studied in [42]. We take a Brownian Motion in W ∈ Rd, and a chain of n differential
equations in dimension d:

dX1
t = B1(X1

t , . . . , X
n
t )dt+ σ(X1

t , . . . , X
n
t ) ◦ dWt

dX2
t = B2(X1

t , . . . , X
n
t )dt

dX3
t = B3(X2

t , . . . , X
n
t )dt

. . .

dXn
t = Bn(Xn−1

t , Xn
t )dt

each X i
t being Rd valued as well. An example of physical system satisfying (3.5.1) is a

chain of n coupled oscillators, each of them connected to the nearest neighbors, with
the first oscillator forced by a random noise. For n = 2, d = 1, this equation corre-
sponds again to the dynamics used in mathematical finance to price Asian options.
We apply the Malliavin calculus techniques introduced in chapter 2, finding a Gaus-
sian density estimate in short time. This is coherent with the result of [42], proved
by the authors using both parametrix and optimal stochastic control techniques. Our
estimate holds just in short time, in a neighborhood of the initial condition of the
diffusion, and we consider coefficients that do not depend on time, whereas in [42] the
estimate is global, holds for any t ∈ (0, T ], and the coefficients may depend on t. On
the other hand, we require only local non-degeneracy, in contrast to what is done in
[42], and our result is more precise for small enough times.

3.2 Notation and results

3.2.1 Notations

We introduce some notations. For any function η : D ⊂ Rd → Rm we denote with
∇η(x) the differential of η in x, which is a linear function from Rd in Rm, given by
the Jacobian matrix. For f, g : Rn → Rn we recall the definition of the directional
derivative of f in the direction g as

∂gf(x) = (∇f) g(x) =
n∑
i=1

gi(x)∂xif(x).



3.2. NOTATION AND RESULTS 33

The Lie bracket [f, g] in x is defined as

[f, g](x) = ∂fg(x)− ∂gf(x).

We denote with MT the transpose of any matrix M . For a squared matrix M we
also use the notation λ∗(M) for the smallest absolute value of an eigenvalue of M ,
and λ∗(M) for the largest one. For x ∈ R2, we denote with A(x) the 2 × 2 matrix
(σ(x), [σ, b](x)). For anyR > 0, we denote withAR(x) the matrix

(
R1/2σ(x), R3/2[σ, b](x)

)
.

For fixed R and x, since we suppose AR(x) invertible, we associate to AR(x) the norm
on R2

|ξ|AR(x) =
√
〈(ARAR(x)T )−1ξ, ξ〉 = |A−1

R (x)ξ|.

We suppose σ, b differentiable three times and define

n(x) =
3∑

k=0

∑
|α|=k

(|∂αx b(x)|+ |∂αxσ(x)|)

and λ(x) = λ∗(A(x)). We denote with L(µ, h) the class of non-negative functions
which have the property

f(t) ≤ µf(s) for |t− s| ≤ h. (3.2.1)

3.2.2 Results

We assume that:

H1 Locally uniform weak Hörmander condition: there exists a function λ· : [0, T ]→
(0, 1] such that

λ(y) ≥ λt, ∀|y − xt(φ)| < 1,∀t ∈ [0, T ].

H2 Locally uniform bounds for derivatives: there exists a function n· : [0, T ] →
[1,∞) such that

n(y) ≤ nt, ∀|y − xt(φ)| < 1,∀t ∈ [0, T ].

H3 Geometric condition on volatility: ∃κσ : R2 → R s. t.

∂σσ(x) = κσ(x)σ(x). (3.2.2)

We suppose w.l.o.g. that |κσ(x)| ≤ n(x), |κ′σ(x)| ≤ n(x) (this is a consequence of
H2). If σ(x) = (σ1(x), 0), i.e. the Asian option stochastic differential equation,
this property holds true with κσ = σ′1/σ1.

H4 Control on the growth of bounds: we suppose |φ·|2, λ·, n· ∈ L(µ, h), for some
h ∈ R>0, µ ≥ 1.
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Notice that the above hypothesis do not involve global controls of our bounds on
R2: they concern the behavior of the coefficients only along the tube, and may vary
with t ∈ [0, T ].

Under assumptions H1, H2, H3 we prove the following Gaussian bounds for the
density in short time. Define, for fixed δ, x̂ = x+ δb(x).

Theorem 3.3 . There exist constants L,L1, L2, K1, K2, δ
∗ such that: for any r∗ > 0,

for δ ≤ δ∗ exp (−Lr2
∗), for |y − x̂|Aδ(x) ≤ r∗,

K1

δ2
exp

(
−L1|y − x̂|2Aδ(x)

)
≤ pXδ(y) ≤ K2

δ2
exp

(
−L2|y − x̂|2Aδ(x)

)
.

This estimate is local around the point x̂. In this general framework it is not
possible to obtain global lower bounds, since the weak Hörmander condition does not
ensure the positivity of the density. See Remark 3.5 for details.

Using this estimate we prove the following result for the tube in the AR-matrix
norm:

Theorem 3.10 . We assume that H1, H2, H3, H4 holds, with xt(φ) given by (3.1.2).

There exist K, q universal constants such that for Ht = K
(
µnt
λt

)q
, for R ≤ R∗(φ)

(defined in (3.3.8)), holds

exp

(
−
∫ T

0

Ht

(
1

R
+ |φt|2

)
dt

)
≤

P
(

sup
t≤T
|Xt − xt(φ)|AR(xt(φ)) ≤ 1

)
≤

exp

(
−
∫ T

0

1

Ht

(
1

R
+ |φt|2

)
dt

)
(3.2.3)

Remark 3.1. Notice that µ is involved in the definition of Ht, so estimate (3.2.3)
holds for the controls φ which belong to the class L(µ, h). In this sense, Ht depends
on the ”growth property” (3.2.1) of φ.

Both of these theorems can be stated in a control metric as well, a variant of the
Caratheodory distance which looks appropriate to our framework. Here we just briefly
give the definition, for more details see section 3.4.2. For φ ∈ L2((0, 1),R2), we define
the norm

‖φ‖(1,3) =
∥∥(φ1, φ2)

∥∥
(1,3)

=
∥∥(|φ1|, |φ2|1/3)

∥∥
L2(0,1)

.

and, given A(x) = (σ(x), [σ, b](x)), the set

CA(x, y) = {φ ∈ L2((0, 1),R2) : dvs = A(vs)φsds, x = v0, y = v1}.

We define the control norm as

dc(x, y) = inf
{
‖φ‖(1,3) : φ ∈ CA(x, y)

}
.
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Just remark that this distance accounts of the different speed in the [σ, b] direction.
We define also the following quasi-distance (which is naturally associated to the norm
| · |AR()):

d(x, y) ≤
√
R⇔ |x− y|AR(x) ≤ 1.

In section 3.4.2 we prove that d and dc are locally equivalent. Now we can restate
theorem 3.10 as follows:

Corollary 3.2. For Ht = K
(
µnt
λt

)q
, with K, q universal constants, for small R it

holds

exp

(
−
∫ T

0

Ht

(
1

R
+ |φt|2

)
dt

)
≤

P
(

sup
0≤t≤T

dc(Xt, xt(φ)) ≤
√
R

)
≤

exp

(
−
∫ T

0

1

Ht

(
1

R
+ |φt|2

)
dt

)
Example 1: Asian option (see for instance [52]). Consider a system given Black
and Scholes model for the price of an asset, and an (arithmetic average) Asian option
on that asset with time horizon T . This is a problem of real interest in mathematical
finance. The associated SDE is

dX1
t = X1

t (σ ◦ dWt + rdt); X1
0 = ξ > 0, dX2

t =
X1
t

T
dt; X2

0 = 0.

(the stochastic integral is in Stratonovich form so to recover the classical formulation
r → r + σ2/2). In this case

A−1
R (x) =

(
σx1R1/2 0

0 σx1

T
R3/2

)−1

=
1

σx1

(
1

R1/2 0
0 T

R3/2

)
Remark that this matrix is invertible for x1 6= 0. Since we are working under local
non-degeneracy assumptions, our tube estimates hold for any initial condition ξ > 0,
since this implies the positivity of the first component of the skeleton path at any
time t > 0. On the other hand, results requiring ”global” non degeneracy, such as the
density estimates in [42], do not hold for this model. We take as control φt = 0 so

xt(φ) = ξ
(
ert, 1

T

∫ t
0
ersds

)
. We have

|Xt − xt(φ)|AR(xt(φ)) =
1

σξert

√
|X1

t − ξert|2
R

+
T 2|X2

t − ξ
T

∫ t
0
ersds|2

R3

=
1

σξert

√
ξ2|ert(eσWt − 1)|2

R
+
ξ2|
∫ t

0
ers+σWsds−

∫ t
0
ersds|2

R3

=
1

σert

√
|ert(eσWt − 1)|2

R
+
|
∫ t

0
ers(eσWs − 1)ds|2

R3
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and applying our tube estimate we find

e−C1T/R ≤ P

(
sup
t≤T

{
|eσWt − 1|2

Rσ2
+
|
∫ t

0
er(s−t)(eσWs − 1)ds|2

R3σ2

}
≤ 1

)
≤ e−C2T/R.

Example 2: Geometric average Asian option ([52]). The following SDE may
represent the Black and Scholes model for the log-price of an asset, and the log-price
of a geometric Asian option on that asset with time horizon T :

dX1
t = σ ◦ dWt + rdt = σdWt + rdt; X1

0 = ξ, dX2
t =

X1
t

T
dt; X2

0 = 0.

The matrix

A−1
R (x) =

(
σR1/2 0

0 σ
T
R3/2

)−1

=
1

σ

(
1

R1/2 0
0 T

R3/2

)
does not depend on x. With φt = 0 we have xt(φ) =

(
ξ + rt, ξt+rt

2/2
T

)
, so

|Xt − xt(φ)|AR(xt(φ)) =
1

σ

√
|X1

t − ξ + rt|2
R

+
T 2|X2

t − (ξt+ rt2/2)/T |2
R3

=
1

σ

√
|σWt|2
R

+
|σ
∫ t

0
Wsds|2

R3
,

and we find, with our tube estimate,

e−C1T/R ≤ P

(
sup
t≤T

{
|Wt|2

R
+
|
∫ t

0
Wsds|2

R3

}
≤ 1

)
≤ e−C2T/R.

3.3 Density and tube estimate of the diffusion pro-

cess

We study the behavior of the diffusion X, defined in (3.1.1), on a small time interval
[0, δ]. We end up finding exponential lower and upper bound for the density of Xδ, for
δ small enough, in the matrix norm associated to the diffusion. Recall x̂ = x+ δb(x).
We introduce the class of constants

C = {C = K (n(x)/λ(x))q , ∃K, q ≥ 1 universal constants}

(recall n(x), λ(x) are defined in Subsection 3.2.1). We will also denote with 1/C =
{δ : 1/δ ∈ C}. For this result we need to suppose H1, H2, H3 locally around x, and
we do not require H4, which is needed only in the concatenation involved in the tube
estimate.
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Theorem 3.3. There exist constants L,L1, K2 ∈ C, L2, K1, δ
∗ ∈ 1/C such that: for

any r∗ > 0, for

δ ≤ δ∗ exp
(
−2Lr2

∗
)
, (3.3.1)

for |y − x̂|Aδ(x) ≤ r∗,

K1

δ2
exp

(
−L1|y − x̂|2Aδ(x)

)
≤ pXδ(y) ≤ K2

δ2
exp

(
−L2|y − x̂|2Aδ(x)

)
. (3.3.2)

Remark 3.4. Taking r∗ = L−1/2, this implies in particular the following fact: there
exist constants K2 ∈ C, K1, δ

∗, r∗ ∈ 1/C such that: for δ ≤ δ∗, for y with |y− x̂|Aδ(x) ≤
r∗,

K1

δ2
≤ pXδ(y) ≤ K2

δ2
.

The last two results also hold in the same form if we replace the norm | · |Aδ(x) with
| · |Aδ(x̂), because of (3.4.5).

Remark 3.5. The weak Hörmander condition ensures the existence of the density
for Xδ, but not its positivity. The fact that we have lower bounds for the density
supposing just a local weak Hörmander condition might appear contradictory. In
fact, our estimates are local around x̂ (and not around x!), and this contradiction
does not subsist, as we see in the following example (see for instance [40] (3.2.6)).
Take

X1
t = 1 +Wt, X2

t =

∫ t

0

(X1
s )2ds.

Clearly pXd(y) = 0 for any y ∈ R−. We are taking X0 = x =

(
1
0

)
, and weak

Hörmander holds locally around this point, but pXd(x) = 0 ∀δ > 0.

σ(x) =

(
1
0

)
, b(x) =

(
0
x2

1

)
=

(
0
1

)
, [σ, b](x) =

(
0

2x1

)
=

(
0
2

)
The set {y : |y− x̂|Aδ(x) ≤ r∗}, on which (3.3.2) holds, is included in R+, so this is not
in contrast with the fact that the density pXd = 0 on R−. Indeed y satisfies

|y − x̂|Aδ(x) =

√
δ−1(y1 − 1)2 +

1

4
δ−3(y2 − δ)2 ≤ r∗

For y2 < 0,

|y − x̂|Aδ ≤ r∗ ⇒
1

2
δ−1/2 ≤ r∗ ⇒ δ ≥ 1

4r2
∗
≥ δ∗ exp(−2Lr2

∗)

for any choice of r∗ > 0, if δ∗ ≤ 1
4
, and this is in contrast with (3.3.1).
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3.3.1 Development

In this section x ∈ R2 will be fixed. It represents the initial condition of the diffusion
process Xt (so X0 = x). In order to lighten the notation we will not mention it (so,
for example, we denote A instead of A(x), and so on). We write the stochastic Taylor
development of Xt with a reminder of order t2. We need to introduce some notation.
Consider a small time δ ∈ (0, 1). We define

• x̂ = x+ b(x)δ

• The matrices Ā and Āδ as

Ā = (Ā1, A2), with Ā1 = σ + δ∂bσ, A2 = [σ, b]

and

Āδ =
(
δ1/2Ā1, δ

3/2A2

)
.

Remark that from H1 these matrices are always invertible if δ is small enough.

• The Gaussian r.v.

Θ =

(
Θ1

Θ2

)
=

(
δ−1/2Wδ

δ−3/2
∫ δ

0
(δ − s)dWs

)

• The polynomial of degree 3 and direction σ (recall κσ defined in (3.2.2)):

η(u) =

(
κσ(x)

2
u2 +

(∂σκσ + κ2
σ)(x)

6
u3

)
σ(x).

• G = Θ + η̃(Θ), where η̃(Θ) = Ā−1
δ η(δ1/2Θ1)

• The remainder Rδ:

Rδ =

∫ δ

0

∫ s

0

∂bσ(Xu)− ∂bσ(x)du ◦ dWs+∫ δ

0

∫ s

0

∂σb(Xu)− ∂σb(x) ◦ dWuds+∫ δ

0

∫ s

0

∂bb(Xu)duds+∫ δ

0

∫ s

0

∫ u

0

∂σ∂σσ(Xv)− ∂σ∂σσ(x) ◦ dWv ◦ dWu ◦ dWs+∫ δ

0

∫ s

0

∫ u

0

∂b∂σσ(Xv) ◦ dv ◦ dWu ◦ dWs.

Notice that ‖Rδ‖2,p ≤ Cδ2. We also denote R̃δ := Ā−1
δ Rδ.
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We now prove that the following decomposition holds:

Xδ = x̂+ Āδ(G+ R̃δ) (3.3.3)

This is a main tool in our approach. Indeed we are able to find exponential bounds
for the density of the variable F := G + R̃δ in the Euclidean metric of R2. The fact
that in Theorem 3.3 the bounds for the diffusion are in the Aδ(x)-norm follows from
the change of variable suggested by (3.3.3).

Let us prove (3.3.3). With a stochastic Taylor development we obtain

Xt = x+ b(x)t+ Ut +Rt

where

Ut = σ(x)Wt + ∂σσ(x)

∫ t

0

Ws ◦ dWs

+ ∂σ∂σσ(x)

∫ t

0

∫ s

0

Wu ◦ dWu ◦ dWs

+ ∂bσ(x)

∫ t

0

sdWs + ∂σb(x)

∫ t

0

Wsds

Now we write ∫ t

0

Wsds =

∫ t

0

(t− s)dWs∫ t

0

sdWs = −
∫ t

0

(t− s)dWs + tWt

Therefore

Ut = (σ(x) + t∂bσ(x))Wt + (∂σb(x)− ∂bσ(x))

∫ t

0

(t− s)dWs

+ ∂σσ(x)
W 2
t

2
+ ∂σ∂σσ(x)

W 3
t

6

So we have the following decomposition of Xt:

Xt = x+ b(x)t+ (σ(x) + t∂bσ(x))Wt + [σ, b](x)

∫ t

0

(t− s)dWs + η(Wt) +Rt

where x is the initial condition. With η we denote the polynomial of degree 3. Remark
that H3 implies that both the coefficients of this polynomial have the same direction
as σ:

η(u) =
∂σσ(x)

2
u2 +

∂σ∂σσ(x)

6
u3 =

(
κσ(x)

2
u2 +

(∂σκσ + κ2
σ)(x)

6
u3

)
σ(x).
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3.3.2 Density of the rescaled diffusion

We prove in this section the following theorem for F = G+ R̃δ.

Lemma 3.6. There exist L1, L2, K1, K2 positive constants, δ∗ ∈ 1/C such that: for
any r∗ > 0, for

δ ≤ δ∗ exp
(
−2L1(r∗)

2
)

and |z| ≤ r∗,
K1 exp

(
−L1|z|2

)
≤ pF (z) ≤ K2 exp

(
−L2|z|2

)
.

Remark 3.7. With a simple change of variable we have that for |y − x̂|Āδ(x) ≤ r∗,

K1

| det Āδ(x)|
exp

(
−L1|y − x̂|2Āδ(x)

)
≤ pXδ(y)

≤ K2

| det Āδ(x)|
exp

(
−L2|y − x̂|2Āδ(x)

)
.

These estimates and (3.4.4) imply Theorem 3.3

Proof. STEP 1: In the proof, wlog, we suppose r∗ ≥ 1. In what follows, C ∈ C, and
may vary from line to line. We start by computing the derivatives of η:

η(y) =

(
κσ
2
y2 +

∂σκσ + κ2
σ

6
y3

)
σ

η′(y) =

(
κσy +

∂σκσ + κ2
σ

2
y2

)
σ

η′′(y) = (κσ + (∂σκσ + κ2
σ)y)σ

η′′′(y) = (∂σκσ + κ2
σ)σ.

By the definition of Ā−1
δ ,

Ā−1
δ δ1/2(σ + δ∂bσ) = (1, 0)T .

Therefore

Ā−1
δ σ = δ−1/2(1, 0)T − Ā−1

δ δ∂bσ.

By (3.4.2) we have |Ā−1
δ δ∂bσ| ≤ δ−1/2, so that |Ā−1

δ σ| ≤ Cδ−1/2. We stress that this
upper bound is δ−1/2 in contrast with δ−3/2 in (3.4.2), because Āδ works in the specific
direction σ. Now we can estimate the norms of η̃ and its derivatives. Since they are
collinear with σ, we have

|η̃(u)| = |Ā−1
δ η(δ1/2u1)| ≤ C(|u1|2δ1/2 + |u1|3δ)

|∂u1 η̃(u)| = |Ā−1
δ δ1/2η′(δ1/2u1)| ≤ C(|u1|δ1/2 + |u1|2δ)

|∂2
u1
η̃(u)| = |Ā−1

δ δη′′(δ1/2u1)| ≤ C(δ1/2 + |u1|δ)
|∂3
u1
η̃(u)| = |Ā−1

δ δ3/2η′′′(δ1/2u1)| ≤ Cδ

|∂u2 η̃(u)| = 0.
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So, referring to the notation of Section 2.2.3, we have

c∗(η̃, h) = sup
|u|≤2h

max
i,j

∣∣∂iη̃j(u)
∣∣ ≤ Chδ1/2

c2(η̃) = max
i,j

sup
|u|≤1

∣∣∂2
i,j η̃(u)

∣∣ ≤ Cδ1/2

c3(η̃) = max
i,j,k

sup
|u|≤1

∣∣∂3
i,j,kη̃(u)

∣∣ ≤ Cδ.

(3.3.4)

We first want to apply Lemma 2.13 to G = Θ + η̃(Θ). Here d = 2, and the covariance
matrix of Θ is

γΘ = Q =

(
1 1/2

1/2 1/3

)
.

It has 2 positive eigenvalues, 0 < λ1 < λ2, and det(Q) = 1/12. We are supposing here
δ ≤ δ∗ exp (−2L1r

2
∗) ≤ δ∗/r2

∗. Since

hη =
1

64(c2(η) +
√
c3(η))

≥ 1

C3

√
δ
≥ r∗

C3

√
δ∗

and
c∗(η, 16r∗) ≤ C4r∗

√
δ ≤ C4

√
δ∗,

choosing δ∗ ≤ 1
16
λ1
λ2

1
C2

3C
2
4

the conditions (2.2.15) are satisfied:

c∗(η, 16r∗) ≤
1

4

√
λ1

λ2

, r∗ ≤ hη.

So there exist L1, L2, K1, K2 universal constants, such that for |z| ≤ r∗,

K1 exp
(
−L1|z|2

)
≤ pG,U(z) ≤ K2 exp

(
−L2|z|2

)
. (3.3.5)

STEP 2 (lower bound for pF ). From (3.3.5), using theorem 2.4, we recover estimates
for pF . We start checking that C1, C2 in Remark 2.5 are in C. n = 2, and from(2.1.4)
and r∗ ≥ 1,

mU(1, 64) ≤ C

(
1 +
‖Θ‖2,64

r∗

)2

≤ C ∈ C.

Now we consider ΓG,U = 1 + (EUλ∗(γG)−p)p.

〈γGξ, ξ〉 =

∫
〈DsG, ξ〉2

≥
∫

1

2
〈DsΘ, ξ〉2 − 〈Dsη(Θ), ξ〉2ds

= S1 + S2.

We have

S2 =

∫
〈∇η(Θ)DsΘ, ξ〉2ds =

∫
〈DsΘ,∇η(Θ)T ξ〉2ds ≤ λ2|∇η(Θ)|2|ξ|2
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and S1 ≥ λ1/2, so

λ∗(γG) ≥ λ1

(
1

2
− λ2

λ1

|∇η(Θ)|2
)
.

From and c∗(η, 16r∗) ≤ 1
4

√
λ1
λ2

(proved before) and |∇η(Θ)| ≤ 2c∗(η,Θ) follows

|∇η(Θ)| ≤ 1

2

√
λ1

λ2

,

and therefore 4λ∗(γG) ≥ λ1, which implies ΓG,U(32n) ≤ C. Standard computations
give nF,G,U(1, p) ≤ C ∈ C, so from corollary 2.4 we have that ∃C ∈ C such that for
|z| ≤ r

pF (z) ≥ pG,U(z)− C‖R̃δ‖64,U ≥ K1 exp
(
−L1|z|2

)
− C‖R̃δ‖64,U .

Notice
‖R̃δ‖64,U = ‖Ā−1

δ Rδ‖64,U ≤ Cδ2/δ3/2 = C
√
δ,

so pF (z) ≥ K1 exp (−L1|z|2)−C5

√
δ, ∃C5 ∈ C. We have that if δ ≤

(
K1

2C5

)2

exp(−2L1r
2
∗),

pF (z) ≥ K1

2
exp

(
−L1|z|2

)
.

So taking

δ∗ ≤ 1

16

λ1

λ2

1

C2
3C

2
4

(
K1

2C5

)2

the estimate holds.
STEP 3 (upper bound for pF ). The proof of the upper bound follows again from in
theorem 2.4. We deal with C2 exactly as for the lower bound, with the difference that
we need ΓF (64) <∞, instead of ΓG,U(64) <∞. This fact is proved in Lemma 3.8.

We also need to prove that ‖1− U‖1,14n decays as C exp(−L|z|2) ≤ C exp(−Lr2).
This follows from (2.1.5):

‖1− U‖1,28 ≤
∑
i=1,2

P(|Θi| > r)
1
56C(1 + 1/r) ≤ Ce−Lr

2
∗ .

The moments of γ̂F are bounded, and these bounds do not depend on δ. This
result looks interesting by itself, since it means that we are able to account precisely
of the of the scaling of the diffusion in the two main directions σ and [σ, b]. In this
particular case this is a refinement of the classical result on the bounds of the Malliavin
covariance under the (weak) Hörmander condition (see Norris Lemma in [79], or [71]
).
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Lemma 3.8. For any fixed p > 1, exists δ∗ ∈ 1/C, C ∈ C, such that for any δ ≤ δ∗,
ΓF (p) ≤ Cp.

(In particular, this is true for p = 32n = 64).

Proof. Following [79] we define the tangent flow of X as the derivative with respect
to the initial condition of X, Yt := ∂xXt. We also denote its inverse Zt = Y −1

t . They
satisfy the following stochastic differential equations

Yt = Id+

∫ t

0

∇σ(Xs)Ys ◦ dWs +

∫ t

0

∇b(Xs)Ysds

Zt = Id−
∫ t

0

Zs∇σ(Xs) ◦ dWs −
∫ t

0

Zs∇b(Xs)ds

Then
DsXt = YtZsσ(Xs),

and
DsF = DsĀ

−1
δ (Xδ − x̂) = Ā−1

δ YδZsσ(Xs).

We define

γ̄δ =

∫ δ

0

A−1
δ Zsσ(Xs)σ(Xs)

TZT
s A
−1,T
δ ds.

and then
γF = 〈DF,DF 〉 = Ā−1

δ YδAδγ̄δA
T
δ Y

T
δ Ā

−1,T
δ .

Remark that
γ−1
F = ĀTδ Z

T
δ A
−1,T
δ γ̄−1

δ A−1
δ ZδĀδ,

and that in this representation we have both Aδ and its ”perturbed” version Āδ. We
have to check the integrability of A−1

δ ZδĀδ, which we expect to be close to the identity
matrix for small δ, and the integrability of γ̄−1

δ . We use the following representation,
holding for general φ, which follows applying Ito’s formula (details in [79])

Ztφ(Xt) = φ(x) +

∫ t

0

Zs[σ, φ](Xs)dW
k
s +

∫ t

0

Zs

{
[b, φ] +

1

2
[σ, [σ, φ]]

}
(Xs)ds (3.3.6)

In our framework d = 1, σ1 = σ, σ0 = b. Taking φ = σ the representation above
reduces to

Ztσ(Xt) = σ(x) +

∫ t

0

Zs[b, σ](Xs)ds

= σ(x) + t[b, σ](x) + Lt,

with Lt =
∫ t

0
Zs[b, σ](Xs)− Z0[b, σ](x)ds. We have

A−1
δ Zsσ(Xs) = A−1

δ (σ(x) + s[b, σ](x) + Ls)

=
1

δ1/2

(
1
−s/δ

)
+ L′s,
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with L′s = A−1
δ Ls. Standard computations show

E

[∣∣∣∣∫ δε

0

LsL
T
s ds

∣∣∣∣q
]
≤ C(δε)4q, ∀q > 0, ∃C ∈ C.

For constant c, that we will chose in the sequel, and fixed ε, we introduce the stopping
time

Sε = inf

{
s ≥ 0 :

∣∣∣∣∫ s

0

LuL
T
udu

∣∣∣∣ ≥ c(δε)3

}
∧ δ,

Remark that for any q > 0

P(Sε < δε) ≤ P

(∣∣∣∣∫ δε

0

LsL
T
s ds

∣∣∣∣q ≥ cq(δε)3q

)

≤
E
[∣∣∣∫ δε0

LsL
T
s ds
∣∣∣q]

cq(δε)3q

≤ C(δε)4q

cq(δε)3q

≤ C/cq (δε)q ≤ εq

(3.3.7)

for δ ≤ δq. Now we suppose to be on Sε
δ
≥ ε. Applying the inequality

〈(v +R)(v +R)T ξ, ξ〉 ≥ 1

2
〈vvT ξ, ξ〉 − 〈RRT ξ, ξ〉,

which holds for any vectors v, R, ξ, we obtain

γ̄δ =

∫ δ

0

A−1
δ Zsσ(Xs)σ(Xs)

TZT
s A
−1,T
δ ds

≥
∫ Sε

0

A−1
δ Zsσ(Xs)σ(Xs)

TZT
s A
−1,T
δ ds

=

∫ Sε

0

1

δ

(
1 −s/δ
−s/δ (s/δ)2

)
ds− A−1

δ

∫ Sε

0

LsL
T
s dsA

−1,T
δ .

We have∫ Sε

0

1

δ

(
1 −s/δ
−s/δ (s/δ)2

)
ds ≥

∫ δε

0

1

δ

(
1 −s/δ
−s/δ (s/δ)2

)
ds ≥

(
ε − ε2

2

− ε2

2
ε3

3

)
≥ ε3

16

and, chosing now the constant c in the definition of Sε small enough,∣∣∣∣A−1
δ

∫ Sε

0

LsL
T
s dsA

−1,T
δ

∣∣∣∣ ≤ C

δ3

′
c(δε)3 ≤ ε3

32
.

so

〈γ̄δξ, ξ〉 ≥
ε3

32
|ξ|2, ∀|ξ| = 1.
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Therefore, using also (3.3.7), we have that for any q, for any ε ≤ ε0, δ ≤ δq,

P(〈γ̄δξ, ξ〉 < ε3/32) ≤ P[Sε < δε] ≤ εq.

Now we apply Lemma 3.9. Remark that we do not need all the moments but just up
to a certain q, and so the estimate we find holds uniformly in δ for δ ≤ δ0. We are
left with the estimate of A−1

δ ZδĀδ. Applying (3.3.6) and H3, one can prove that

Ztσ(x) = (1− κσ(x)Wt)σ(x) + Jt,

with E|Jt|p ≤ Ctp. So

ZδĀδ =
(√

δ(1− κσ(x)Wδ)σ(x), 0
)

+Mδ

where Mδ ∈ R2 with E|Mδ|q ≤ Cδ3q/2, C ∈ C. Since Aδ = (δ1/2σ, δ3/2[σ, b]), this
implies

A−1
δ ZδĀδ ≤ C ∈ C.

The following lemma is a slight modification of Lemma 2.3.1. in [79].

Lemma 3.9. Let γ be a symmetric nonnegative definite n × n matrix. Denoting
|C| =

∑
1≤i,j≤n |γi,j|2)1/2, we assume that E|C|p+1 <∞, and that for ε ≤ εp+2n,

sup
|ξ|=1

P[〈γξ, ξ〉 < ε] ≤ εp+2n

Then
Eλ∗(γ)−p ≤ Cε−pp+2n.

Proof. Denote with λ := λ∗(γ) = inf |ξ|=1〈γξ, ξ〉 the smallest eigenvalue of γ. It is
proved in [79] that for every p > 2n under our hypothesis

P[λ < ε] ≤ KE|C|pεp.

for any ε ≤ εp+2n. We have

E
[
λ−p
]
≤ p

∫ ∞
0

P[1/λ > x)xp−1dx

= p

∫ 1/εp+2n

0

P[1/λ > x)xp−1dx+ p

∫ ∞
1/εp+2n

P[1/λ > x)xp−1dx

The first term is bounded by (1/εp+2n)p. For the second we apply the computations
above:

p

∫ ∞
1/εp+2n

P[λ < 1/x)xp−1dx ≤ pKE|C|p+1

∫ ∞
1/εp+2n

(1/x)p+1xp−1dx

= KE|C|p+1εp+2n.
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3.3.3 Tubes estimates on the diffusion

As an application of Theorem 3.3, we are now able to prove the following tube estimate.
We consider the diffusion on [0, T ], and for φ ∈ L2[0, T ], let

xt(φ) = x0 +

∫ t

0

σ(xs(φ))φsds+

∫ t

0

b(xs(φ))ds, for t ∈ [0, T ].

Recall that we suppose |φ·|2, λ·, n· ∈ L(µ, h), for some h ∈ R>0, µ ≥ 1, where L(µ, h)
is the class of non-negative functions which have the property

f(t) ≤ µf(s) for |t− s| ≤ h.

We denote in this section, for fixed t ∈ [0, T ],

Ct = {Ct = K (nt/λt)
q ,∃K, q ≥ 1 universal constants} ,

Denote, for K∗ and q∗ constants,

R∗(φ) = inf
0≤t≤T

(
1

K∗

λt
µnt

)q∗ (
h ∧ inf

{
δ
/∫ t+δ

t

|φs|2ds : t ∈ [0, T ], δ ∈ [0, h]

})
(3.3.8)

Theorem 3.10. There exist positive constants K, q such that for R ∈]0, 1] holds

exp

(
−K

∫ T

0

(
µnt
λt

)q (
1

h
+

1

R
+ |φt|2dt

))
≤ P

(
sup
t≤T
|Xt − xt(φ)|AR(xt(φ)) ≤ 1

)
.

Moreover, exist constants K, q,K∗, q∗ such that for R ≤ R∗(φ) holds

P
(

sup
t≤T
|Xt − xt(φ)|AR(xt(φ)) ≤ 1

)
≤ exp

(
−
∫ T

0

1

K

(
λt
µnt

)q (
1

R
+ |φt|2

)
dt

)
Remark 3.11. For R ≤ R∗(φ) ≤ h the lower bound holds as in (3.2.3)

Proof. A main point in this proof is the choice a sequence of short time intervals in
a way such that we are able to apply the short time density estimate. This issue is
related to the choice of a an ”elliptic evolution sequence” in [11]. We write xt for xt(φ)
to have a more readable notation. We start proving the lower bound.
STEP 1: We set, for large q1, K1 to be fixed in the sequel,

fR(t) = K1

(
µnt
λt

)q1 (1

h
+

1

R
+ |φt|2

)
.

Recall H4: |φ.|2, n., λ. ∈ L(µ, h), ∃µ ≥ 1, 0 < h ≤ 1, where

L(µ, h) = {f : f(t) ≤ µf(s) for |t− s| ≤ h}.
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This implies fR ∈ L(µ2q1+1, h). We also define

δ(t) = inf
δ>0

{∫ t+δ

t

fR(s)ds ≥ 1

µ2q1+1

}
. (3.3.9)

Clearly δ(t) ≤ h, so we can use on the intervals [t, t + δ(t)] the fact that our bounds
are in L(µ, h). If 0 < t− t′ ≤ h,

µ2q1+1fR(t)δ(t) ≥
∫ t+δ(t)

t

fR(s)ds = 1 =

∫ t′+δ(t′)

t′
fR(s)ds ≥ µ−(2q1+1)fR(t)δ(t′),

so δ(t′)/δ(t) ≤ µ4q1+2. Also the converse holds, and δ(·) ∈ L(µ4q1+2, h). We set

ε(t) =

(∫ t+δ(t)

t

|φs|2ds

)1/2

.

We have
1

µ2q1+1
=

∫ t+δ(t)

t

fR(s)ds ≥
∫ t+δ(t)

t

fR(t)

µ2q1+1
ds ≥ δ(t)

fR(t)

µ2q1+1
,

so

δ(t) ≤ 1

fR(t)
≤ R

K1

(
λt
µnt

)q1
. (3.3.10)

Similarly,

1

µ2q1+1
≥
∫ t+δ(t)

t

K1

(
µns
λs

)q1
|φs|2ds ≥

1

µ2q1
K1

(
µnt
λt

)q1
ε(t)2,

and we can write both

δ(t) ≤ 1

K1

(
λt
µnt

)q1
, and ε(t)2 ≤ 1

K1

(
λt
µnt

)q1
. (3.3.11)

We set our time grid as
t0 = 0; tk = tk−1 + δ(tk−1),

and introduce the following notation on the grid:

δk = δ(tk); εk = ε(tk); nk = n(xk); λk = λ(xk); Xk = Xtk ; xk = xtk .

We also define
X̂k = Xk + b(Xk)δk; x̂k = xk + b(xk)δk,

and for tk ≤ t ≤ tk+1,

X̂k(t) = Xk + b(Xk)(t− tk); x̂k(t) = xk + b(xk)(t− tk).

Moreover we denote
|ξ|k = |ξ|Aδk (xk); Ck = Ctk ,
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and rk∗ ∈ Ck the ray r∗ of remark 3.4 associated to xk. Lemmas 3.14, 3.15, 3.16, 3.17
hold for δk and εk small enough, and in particular Lemma 3.17 says that

1

C1
k

|ξ|Aδ(xk) ≤ |ξ|Aδ(xk+1) ≤ C1
k |ξ|Aδ(xk), (3.3.12)

for some C1
k ∈ Ck, for any δ ≤ δk. Moreover we have |xk+1− x̂k|k ≤ Ck(εk∨δk), and for

all tk ≤ t ≤ tk+1, applying also (3.4.1), |xt − x̂k(t)|AR(xt) ≤ Ck(εk ∨ δk) for all R ≥ δk.
Recall (3.3.11), and we fix q3, K3 such that, for q1 ≥ q3, K1 ≥ K3, the lemmas 3.14,
3.15, 3.16, 3.17 hold and

|xk+1 − x̂k|k ≤ rk∗/8 (3.3.13)

|x̂k(t)− xt|AR(xt) ≤
1

16
for all tk ≤ t ≤ tk+1, (3.3.14)

and moreover the theorem in short time 3.3 holds in the form of remark 3.4. Now,
δ(·) ∈ L(µ4q1+2, h) implies δk/δk+1 ≤ µ4q1+2 and δk+1/δk ≤ µ4q1+2. This, (3.3.12) and
(3.4.1) give

1

C1
kµ

2q1+1
|ξ|k ≤ |ξ|k+1 ≤ µ2q1+1C1

k |ξ|k, (3.3.15)

where C1
k is in Ck, depending on K3, q3. We now set, for K2, q2 to be fixed in the

sequel,

rk =
1

K2µ2q1+2q2+1

(
λk
nk

)q2
, (3.3.16)

and define

Γk = {|Xk − xk|k ≤ rk}, Dk = { sup
tk≤t≤tk+1

|Xt − xt|AR(xt) ≤ 1},

and Pk as the conditional probability

Pk(·) = P (·|Wt, t ≤ tk;Xk ∈ Γk) .

We denote pk the density of Xk+1 with respect to this probability. We prove that on
{| · −xk+1|k+1 ≤ rk+1} we can apply Theorem 3.3 in the form of remark 3.4 to pk and
so there exists Ck ∈ Ck such that

1

Ckδ
2
k

≤ pk(y) (3.3.17)

We estimate

|y − X̂k|k ≤ |y − xk+1|k + |xk+1 − x̂k|k + |x̂k − X̂k|k. (3.3.18)

We already have (3.3.13). Since we are on |y− xk+1|k+1 ≤ rk+1, from (3.3.15) and the
fact that rk+1/rk ≤ µ2q2

|y − xk+1|k ≤ C1
kµ

2q1+1|y − xk+1|k+1 ≤ C1
kµ

2q1+1rk+1 ≤ C1
kµ

2q1+2q2+1rk ≤
C1
k

K2

(
λk
nk

)q2
.
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It also holds |x̂k − X̂k|k ≤ Ck|xk − Xk|k ≤ Ckrk, for some Ck ∈ Ck. Similarly,
|x̂k(t)− X̂k(t)|AR(xt) ≤ Ckrk, for all tk ≤ t ≤ tk+1. Recalling (3.3.16), we can fix K2, q2

such that |y − xk+1|k ≤ rk∗/16, |x̂k − X̂k|k ≤ rk∗/16, and

|X̂k(t)− x̂k(t)|AR(xt) ≤ 1/4, for all tk ≤ t ≤ tk+1. (3.3.19)

From (3.3.18), (3.3.13) this implies |y − X̂k|k ≤ rk∗/4. We also have, from (3.4.2),
|xk−Xk| ≤ |xk−Xk|kλk

√
δk, so we can also fix K2, q2 such that rkλk ≤ 1/C in lemma

3.15. Therefore
1

4
|ξ|k ≤ |ξ|Aδk (Xk) ≤ 4|ξ|k.

So |y − X̂k|Aδk (Xk) ≤ rk∗ . Now, also from lemma 3.15 and (3.3.15)

{| · −xk+1|Aδk (Xk) ≤ rk+1/(4C
1
kµ

2q1+1)} ⊂ {| · −xk+1|k ≤ rk+1/(C
1
kµ

2q1+1)}
⊂ {| · −xk+1|k+1 ≤ rk+1},

and rk+1/(4C
1
kµ

2q1+1) ≥ rk/(4C
1
kµ

2q1+2q2+1) = 1
4C1

kK2µ4q1+4q2+2

(
λk
nk

)q2
. So

Leb(| · −xk+1|k+1 ≤ rk+1) ≥ δ2
k detA(xk+1)

(
1

4C1
kK2µ4q1+4q2+2

(
λk
nk

)q2)2

.

Now, detA(xk+1) ≥ λk+1 ≥ λk/µ so, from (3.3.17),

Pk(Γk+1) ≥ Ck

(
1

4C1
kK2µ4q1+4q2+2

(
λk
nk

)q2)2
λk
µ

where Ck ∈ 1/Ck is the constant in remark 3.4. This implies

2µ−4q1 exp(−K4(log µ+ log nk − log λk)) ≤ Pk(Γk+1)

for some constant K4 (depending on K2, K3, q2, q3; on the contrary, we keep explicit
the dependence in q1, which is not fixed yet).
STEP 2: Consider now tk ≤ t ≤ tk+1. Recall the definition

Dk =

{
sup

tk≤t≤tk+1

|Xt − xt|AR(xt) ≤ 1

}
,

and introduce

Ek =

{
sup

tk≤t≤tk+1

|Xt − X̂k(t)|AR(xt) ≤
1

2

}
.

We decompose

|Xt − xt|AR(xt) ≤ |Xt − X̂k(t)|AR(xt) + |X̂k(t)− x̂k(t)|AR(xt) + |x̂k(t)− xt|AR(xt),
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and, from the previous part of the proof, (3.3.14) gives |x̂k(t) − xt|AR(xt) ≤ 1/4, and

(3.3.19) gives |X̂k(t) − x̂k(t)|AR(xt) ≤ 1/4. So |Xt − xt|AR(xt) ≤ |Xt − X̂k(t)|AR(xt) +
1/2, and therefore Ek ⊂ Dk. Using (3.3.3), some standard computations and the
exponential martingale inequality we find that

Pk(Ec
k) ≤ exp

(
− 1

K5

(
λk
µnk

)q5 R
δk

)
for some constants K5, q5. From (3.3.10), R/δk ≥ K1(µnk/λk)

q1 , so choosing and
fixing now q1, K1 large enough we conclude

Pk(Ec
k) ≤ µ−4q1 exp(−K4(log µ+ log nk − log λk)) ≤

1

2
Pk(Γk+1),

so

Pk(Γk+1 ∩Dk) ≥ Pk(Γk+1 ∩ Ek) ≥ Pk(Γk+1)− Pk(Ec
k) ≥

1

2
Pk(Γk+1)

≥ exp (−K6(log µ+ log nk − log λk)) ,
(3.3.20)

for some constant K6. Let now N(T ) = max{k : tk ≤ T}. From Definition 3.3.9

∫ T

0

fR(t)dt =

N(T )∑
k=1

∫ tk

tk−1

fR(t)dt ≥ N(T )

µ2q1+1
.

From (3.3.20),

P
(

sup
t≤T
|Xt − xt(φ)|AR(xt(φ)) ≤ 1

)
≥ P

N(T )⋂
k=1

Γk+1 ∩Dk


≥

N(T )∏
k=1

exp(−K6(log µ+ log nk − log λk))

= exp

−K6

N(T )∑
k=1

log µ+ log nk − log λk

 .

Since

N(T )∑
k=1

(log µ+ log nk − log λk) = µ2q1+1

N(T )∑
k=1

∫ tk+1

tk

fR(s)ds(log µ+ log nk − log λk)

≤
∫ T

0

µ2q1+1fR(t) log

(
µ3nt
λt

)
dt,

the lower bound follows.
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STEP 3: We now prove the upper bound. Now recall (3.3.8), and R ≤ R∗(φ). We
define, with the same K1, q1 as in STEP 1 and 2,

gR(t) =
1

h
+

1

R

1

µ2q7K7

(
λt
µnt

)q7
+K1µ

2q1+1

(
µnt
λt

)q1
|φt|2.

for some constants K7 > K1, q7 > q1 + 1 to be fixed in the sequel. We define a new
δ(t)

δ(t) = inf
δ>0

{∫ t+δ

t

gR(s)ds ≥ 1

}
.

Clearly δ(t) ≤ h, so we can use on the intervals [t, t + δ(t)] the property of being in
L(µ, h). If 0 < t− t′ ≤ h,

µ2q7gR(t)δ(t) ≥
∫ t+δ(t)

t

gR(s)ds = 1 =

∫ t′+δ(t′)

t′
gR(s)ds ≥ µ−2q7gR(t)δ(t′),

so δ(t′)/δ(t) ≤ µ4q7 . Taking q∗ and K∗ in (3.3.8) large enough such that q∗ > 5q1 +
1 + q7, K∗ > K1K7, ∫ t+δ(t)

t

1

h
ds ≤

∫ δ(t)

t

1

R

1

µ2q7K7

(
λs
µns

)q7
ds

and again from (3.3.8)∫ t+δ(t)

t

K1µ
2q1+1

(
µns
λs

)q1
|φs|2ds ≤ K1µ

4q1+1

(
µnt
λt

)q1 ∫ t+δ(t)

t

|φs|2ds

≤ K1µ
4q1+1

(
µnt
λt

)q1 δ(t)
R

1

K∗

(
λt
µnt

)q∗
≤
∫ t+δ(t)

t

1

R

1

µ2q7K7

(
λs
µns

)q7
ds.

Therefore, since 1 =
∫ t+δ(t)
t

gR(s)ds and∫ t+δ(t)

t

1

R

1

K7µ2q7

(
λs
µns

)q7
ds ≤

∫ t+δ(t)

t

gR(s)ds ≤ 3

∫ t+δ(t)

t

1

R

1

K7µ2q7

(
λs
µns

)q7
ds,

we find that forall t

1

K7µ4q7

(
λt
µnt

)q7
≤ R

δ(t)
≤ 3

K7

(
λt
µnt

)q7
For q∗, K∗ large enough this also implies

δ(t) ≤ 1

K1

(
λt
µnt

)q1
.
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We set

ε(t) =

(∫ t+δ(t)

t

|φs|2ds

)1/2

.

We find, with the same computations as before,

ε(t)2 ≤ 1

K1

(
λt
µnt

)q1
.

This implies that (3.3.11) also holds with this new grid, and also the lemmas used
before. Since we are taking the same K1 and q1 as before (3.3.15) holds. For the same
reason, the theorem in short time 3.3 also holds. We define

∆k = {|Xk − xk|AR(xk) ≤ 1},

P̃k as the conditional probability P̃k(·) = P (·|Wt, t ≤ tk;Xk ∈ ∆k). As we did in STEP
1, if q∗, K∗ are large enough, R is small enough and the upper bound for the density
holds on ∆k+1. Because of (3.3.12),

Leb(| · −xk|AR(xk+1) ≤ 1) ≤ Leb(| · −xk|AR(xk) ≤ 1)(C1
k)2 = (C1

k)2 det(A(xk))R
2.

Now, using the density estimate,

P̃k(∆k+1) ≤ (C1
k)2 det(A(xk))R

2Ck δ
−2
k ≤ (C1

k)2 det(A(xk))Ck

(
R

δ

)2

.

where Ck is the constant of remark 3.4. Recall

R

δ(t)
≤ 3

K7

(
λt
µnt

)q7
,

so we fix now K7, q7 large enough to have

P̃k(∆k+1) ≤ exp(−K10)

for a K10 > 0. (We also fix now q∗, K∗, whose size depend on q7, K7). From the
definition of N(T ) ∫ T

0

gR(t)dt =

N(T )∑
k=1

∫ tk

tk−1

gR(t)dt = N(T ).

As before

P
(

sup
t≤T
|Xt − xt(φ)|AR(xt(φ)) ≤ 1

)
≤

N(T )∏
k=1

P̃k(∆k+1)

≤
N(T )∏
k=1

exp(−K10) = exp(−K10N(T )) ≤ exp

(
−K10

∫ T

0

gR(t)

)
,

and we have the upper bound. Remark that because of the choice of R ≤ R∗(φ), we
can drop the dependence on h in the upper bound of Theorem 3.10.
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3.4 Matrix norm and control metric

3.4.1 Matrix norms

In this chapter we use a number of properties of norms associated to the matrix A
and AR. Recall that in general we can associate a norm to a matrix M via

|y|M =
√
〈(MMT )−1y, y〉.

In this case we take AR =
(
R1/2σ,R3/2[σ, b]

)
, for R > 0. Since these are square

matrices, the associated norm can be defined as well as

|y|AR = |A−1
R y|.

Lemma 3.12. For every y ∈ R2 and 0 < R ≤ R′ ≤ 1,

(R/R′)1/2|y|AR ≥ |y|AR′ ≥ (R/R′)3/2|y|AR (3.4.1)
1

R1/2λ∗(A)
|y| ≤ |y|AR ≤ 1

R3/2λ∗(A)
|y| (3.4.2)

Proof. Writing explicitly the inequalities (3.4.1), we easily see that they are verified
if 0 < R ≤ R′ < 1. Taking R′ = 1, we have

R1/2|y|AR ≥ |y|A ≥ R3/2|y|AR

and so
1

R1/2λ∗(A)
|y| ≤ |y|AR ≤

1

R3/2λ∗(A)
|y|

Remark 3.13. Recall the following properties of matrices:

∀ξ, C |ξ|2B ≥ |ξ|2A ⇔ C
(
BBT

)−1 ≥
(
AAT

)−1 ⇔ BBT ≤ C AAT

and

〈MMT ξ, ξ〉 =
∑
i

〈Mi, ξ〉2,

so that for λ#(M) := λ∗(MMT ), λ#(M) := λ∗(MMT )

λ#(M) = inf
|ξ|=1

∑
i

〈Mi, ξ〉2 and λ#(M) = sup
|ξ|=1

∑
i

〈Mi, ξ〉2

where Mi are the columns of M . Taking M = A(x) = (σ(x), [σ, b](x)) we have in
particular that

λ∗(A(x))2|ξ|2 ≤ 〈σ(x), ξ〉2 + 〈[σ, b](x), ξ〉2 ≤ λ∗(A(x))2|ξ|2 ∀ξ ∈ R2 (3.4.3)
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Lemma 3.14. There exists C ∈ C, δ∗ ∈ 1/C such that for δ ≤ δ∗, for any ξ ∈ R2,

1
C
|ξ|Aδ(x) ≤ |ξ|Āδ(x) ≤ C|ξ|Aδ(x) (3.4.4)

1
C
|ξ|Aδ(x) ≤ |ξ|Aδ(x̂) ≤ C|ξ|Aδ(x) (3.4.5)

Proof. We take M = Aδ(x) and M = Āδ(x) in remark 3.13. Notice

δ3〈∂bσ(x), ξ〉2 ≤ δ3Cλ∗(A(x))|ξ|2 ≤ C(δ〈σ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2)

We have

δ〈σ(x) + δ∂bσ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2 ≤ 2δ〈σ(x), ξ〉2 + 2δ3〈∂bσ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2

≤ C(δ〈σ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2),

and so |ξ|2Aδ ≤ C|ξ|2
Āδ(x)

. Analogously, since

δ〈σ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2 ≤ C(〈δσ(x) + δ∂bσ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2),

we have |ξ|2
Āδ(x)

≤ C|ξ|2Aδ(x). From

|σ(x̂)− σ(x)| = |σ(x+ b(x)δ)− σ(x)| ≤
∫ δ

0

|σ′(x+ b(x)t)b(x)|dt ≤ Cδ,

applying again Remark 3.13 as in the previous point, also (3.4.5) follows.

We prove now some estimates that will be needed in the concatenation along the
tube. The following lemma establish the equivalence of matrix norms of this kind
when the matrix is taken in two points that are close in such matrix norms, uniformly
in δ.

Lemma 3.15. Consider two points x, y ∈ R2. It exist ρ, δ∗ ∈ 1/C such that: If
|x− y|Aδ(x) ≤ ρ, for any δ ≤ δ∗, for any ξ ∈ R2,

1

4
|ξ|Aδ(x) ≤ |ξ|Aδ(y) ≤ 4|ξ|Aδ(x).

Proof. We write C for a constant in C that may vary from line to line. Remark that
(3.4.2) implies

|x− y| ≤ δ1/2C|x− y|Aδ(x) ≤ ρCδ1/2 ≤ 1.

From

σ(x) = σ(y) +

∫ 1

0

σ′(x)(x− y)ds+

∫ 1

0

(σ′(y + (x− y)s)− σ′(x))(x− y)ds

follows

〈σ(x), ξ〉2 ≤ 4〈σ(y), ξ〉2 + 4〈σ′(x)(x− y), ξ〉2

+ 4〈
∫ 1

0

(σ′(y + (x− y)s)− σ′(x))(x− y)ds, ξ〉2



3.4. MATRIX NORM AND CONTROL METRIC 55

Since Aδ(x) is invertible,

σ′(x)(x− y) = σ′(x)Aδ(x)A−1
δ (x)(x− y).

From Cauchy-Schwartz inequality and |A−1
δ (x)(x− y)| ≤ ρ

〈σ′(x)(x− y), ξ〉 = 〈A−1
δ (x)(x− y), (σ′(x)Aδ(x))T ξ〉

≤ ρ|(σ′(x)Aδ(x))T ξ|.

Recalling H3

σ′(x)Aδ(x) = σ′(x)(δ1/2σ(x), δ3/2[σ, b](x))

= (δ1/2κσ(x)σ(x), δ3/2∂[σ,b]σ(x))

so
|(σ′(x)Aδ(x))T ξ|2 = δκ2

σ(x)〈σ(x), ξ〉2 + δ3〈∂[σ,b]σ(x), ξ〉2

and therefore

〈σ′(x)(x− y), ξ〉 ≤ ρ(δκ2
σ(x)〈σ(x), ξ〉2 + δ3〈∂[σ,b]σ(x), ξ〉2)

≤ Cρδ〈σ(x), ξ〉2 + Cρδ3|ξ|2

Now

〈
∫ 1

0

(σ′(y + (x− y)s)− σ′(x))(x− y)ds, ξ〉2 ≤
∫ 1

0

|n(x)||y − x|2(1− s)ds|2|ξ|2

≤ Cρ4δ2|ξ|2.

So
〈σ(x), ξ〉2 ≤ 4〈σ(y), ξ〉2 + Cρδ〈σ(x), ξ〉2 + Cρδ3|ξ|2 + Cρ4δ2|ξ|2.

Taking δ, ρ small enough in 1/C, this implies

〈σ(x), ξ〉2 ≤ 4〈σ(y), ξ〉2 + ρδ2|ξ|2.

In the direction [σ, b]:

〈[σ, b](x), ξ〉2 = 〈[σ, b](y) +

∫ 1

0

[σ, b]′(y + (x− y)s)(x− y)ds, ξ〉2

≤ 2〈[σ, b](y), ξ〉2 + C|x− y|2|ξ|2

≤ 2〈[σ, b](y), ξ〉2 + Cδρ2|ξ|2.

We can conclude that

δ〈σ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2 ≤ 4δ〈σ(y), ξ〉2 + 2δ3〈[σ, b](y), ξ〉2 + Cρδ3|ξ|2.

So taking ρ small enough in C, we have

δ〈σ(x), ξ〉2 + δ3〈[σ, b](x), ξ〉2 ≤ 16δ〈σ(y), ξ〉2 + 16δ3〈[σ, b](y), ξ〉2.

We have shown |ξ|Aδ(x) ≤ 4|ξ|Aδ(y). The converse inequality follows from an analogous
reasoning.
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We prove now that moving along a control φ ∈ L2[0, T ] for a small time, the
trajectory remains close to the initial point in the Aδ-norm. Define, for fixed δ,

ε =

(∫ δ

0

|φs|2ds
)1/2

.

For

xt(φ) = x0 +

∫ t

0

σ(xs(φ))φsds+

∫ t

0

b(xs(φ))ds,

we have:

Lemma 3.16. There exist δ∗, ε∗ ∈ 1/C such that for δ ≤ δ∗, ε ≤ ε∗

|xδ(φ)− (x0 + b(x0)δ)|Āδ(x0) ≤ C(ε ∨ δ1/2).

Proof. Via computations analogous to Decomposition 3.3.3 it is possible to write

xδ(φ)− (x0 + b(x0)δ) = Āδ(Gφ + R̃φ,δ) (3.4.6)

where

Gφ = Θφ + η̃(Θφ), Θφ =

(
δ−1/2

∫ δ
0
φsds

δ−3/2
∫ δ

0
(δ − s)φsds

)
and

|R̃φ,δ| ≤ Cδ1/2.

Remark that, by Hölder inequality,

|δ−1/2

∫ δ

0

φsds| ≤ ε, |δ−3/2

∫ δ

0

(δ − s)φsds| ≤ ε

so |Θφ| ≤ 2ε and by (3.3.4) |η̃(Θφ)| ≤ 4ε2. Therefore |Gφ| ≤ 4ε and

|Ā−1
δ (xδ(φ)− (x0 + b(x0)δ))| = |Gφ + R̃φ,δ| ≤ C(ε ∨ δ1/2).

Lemma 3.17. There exist δ∗, ε∗ ∈ 1/C, C ∈ C such that for δ ≤ δ∗, ε ≤ ε∗

1

C
|ξ|Aδ(x0) ≤ |ξ|Aδ(xδ) ≤ C|ξ|Aδ(x0)

Proof. Applying in this order (3.4.5), Lemma (3.4.4), Lemma 3.16 we obtain

|xδ − x̂|Aδ(x̂) ≤ C|xδ − (x0 + b(x0)δ)|Aδ(x0) ≤ C|xδ − (x0 + b(x0)δ)|Āδ(x0) ≤ C(ε ∨ δ1/2).

Now, choosing δ∗, ε∗ small enough, we can apply Lemma 3.15 to the points xδ, x̂, and

1

4
|ξ|Aδ(x̂) ≤ |ξ|Aδ(xδ) ≤ 4|ξ|Aδ(x̂).

Now again (3.4.5) concludes the proof.



3.4. MATRIX NORM AND CONTROL METRIC 57

3.4.2 The control metric

Here we write AR(·) instead of AR because we need to consider this matrix on different
points. A natural way to associate a quasi-distance to the matrix norm | · |AR(·) used
in this chapter is to define

d(x, y) <
√
R⇔ |x− y|AR(x) < 1.

d is a quasi-distance on Ω = {x ∈ R2 : detA(x) 6= 0}, verifying the following three
properties (see [78]):

i) for every r > 0, the set {y ∈ Ω : d(x, y) < r} is open;

ii) d(x, y) = 0 if and only if x = y;

iii) for every compact set K b Ω there exists C > 0 such that d(x, y) ≤ C
(
d(x, z)+

d(z, y)
)

holds for every x, y, z ∈ K .

We say that two quasi-distances d1 : Ω×Ω→ R+ and d2 : Ω×Ω→ R+ are equivalent
if for every compact set K b Ω there exists a constant C such that for every x, y ∈ K

1

C
d1(x, y) ≤ d2(x, y) ≤ Cd1(x, y). (3.4.7)

In particular if d1 is a distance and d2 is equivalent with d1 then d2 is a quasi-distance.
d1 and d2 are locally equivalent if for every x0 ∈ Ω there exist a neighborhood V of
x0 and a constant C such that (3.4.7) holds for every x, y ∈ V .

On the other hand, the distance usually considered in the framework of stochastic
differential equations is the control distance defined as follows: denote

C(x, y) = {φ ∈ L2(0, 1) : dvs = σ(vs)φsds, x = v0, y = v1}. (3.4.8)

The control distance dc between x and y is

dc(x, y) = inf

{(∫ 1

0

|φs|2ds
)1/2

: φ ∈ C(x, y)

}
.

Geometrically speaking, this corresponds to take the geodesic (i.e. the shortest dis-
tance curve) joining x and y on the sub-Riemannian manifold associated with the
diffusion coefficient σ. In our case this notion looks inadequate: we are supposing just
a weak Hörmander condition, and this means that we have to use the drift coefficient
b to generate the whole space R2. Therefore any reasonable associated norm should
incorporate b as well. Moreover it should account of the different speed associated to
the vector field given by [σ, b]. This is the reason for the following

Definition 3.18. We first introduce a norm for the control which accounts of the
scales associated to the different directions. For φ = (φ1

s, φ
2
s) ∈ L2((0, 1),R2), we

define the norm
‖φ‖(1,3) =

∥∥(|φ1
s|, |φ2

s|1/3)
∥∥
L2(0,1)

.
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Now we generalize (3.4.8) to

CA(x, y) = {φ ∈ L2((0, 1),R2) : dvs = A(vs)φsds, x = v0, y = v1}. (3.4.9)

This is non-empty if A = (σ, [σ, b]) is invertible. We introduce

dc(x, y) = inf
{
‖φ‖(1,3) : φ ∈ CA(x, y)

}
.

We are interested in establishing an equivalence between d, the semi-distance com-
ing from the matrix-norm, and dc, the distance in term of the control.

Lemma 3.19. d and dc are locally equivalent.

Proof. We use in this proof some notions on similar metrics and pseudo-metrics for
which we refer to [78]. Define

ρ(x, y) = inf{δ > 0|∃φ ∈ CA(x, y), |φ1
s| < δ, |φ2

s| < δ3}.

It is also possible to allow only constant linear combinations of the vector fields:

C̄A(x, y) = {θ ∈ R2 : dvs = A(vs)θds, x = v0, y = v1}, (3.4.10)

and define
ρ2(x, y) = inf{δ > 0|∃θ ∈ C̄A(x, y), |θ1| < δ, |θ2| < δ3}.

In [78] the pseudo-distances ρ and ρ2 are proved equivalent. We use here only the
trivial inequality ρ ≤ ρ2. Remark that the difference between ρ and dc is that we take

‖φ‖∞ = sup0≤s≤1 |φs| instead of ‖φ‖2 =
(∫ 1

0
|φs|2ds

)1/2

. So dc ≤ ρ follows easily from

the fact that the L2(0, 1) norm is dominated by the L∞(0, 1) norm.
For fixed x, we consider a compact K containing x, and define

CK =

{
C = sup

x∈K
L (n(x)/λ(x))q , ∃L, q ≥ 1 universal constants

}
,

1/CK = {δ : 1/δ ∈ CK}. We prove that

d(x, y) <
√
R⇒ ρ2(x, y) < C

√
R,

for R ≤ R∗ ∈ 1/CK , C ∈ CK . By definition, d(x, y) <
√
R means |x− y|AR(x) < 1. We

prove that this implies the existence of θ ∈ C̄A(x, y) with |θ1| < CR1/2, |θ2| < CR3/2.
Indeed, consider the function

Φ(θ) =

∫ 1

0

A(vs(θ))θds,

with v satisfying dvs = A(vs)θds, v0(θ) = x. Remark that Φ : R2 → R2, Φ(0) = 0
and Φ′(0) = A(x), which is non-degenerate because of H1. Therefore it is locally
invertible. Recall (from (3.4.2))

|x− y|AR(x) < 1⇒ |x− y| < C
√
R ≤ C

√
R∗,
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C ∈ CA. For R∗ ∈ 1/C small enough, we have that it exists θ ∈ C̄A(x, y). We now
show

|θ1| < CR1/2, |θ2| < CR3/2.

It is clear that |θ| < CR
1
2 . Now,

AR(x)−1(x− y) = AR(x)−1

∫ 1

0

A(vs(θ))θds

=

(
θ1

R1/2
,
θ2

R3/2

)
+ J(θ, R)

with

J(θ, R) = AR(x)−1

∫ 1

0

(A(vs(θ))− A(x))θds.

Using as usual H3 and development (3.4.6), it is possible to prove |(J(θ, R))2| ≤
C|θ||θ2|R−3/2. So, supposing R∗ ∈ 1/CK , we have that |θ2| < CR−3/2.

It also holds

dc(x, y) <

√
R

C∗
⇒ d(x, y) <

√
R,

if C∗ is large enough constant. With the same notation as above, in particular sup-

posing φ ∈ CA(x, y) with ‖φ‖1,3 ≤
√
R
K

, and applying H3,

|x− y|AR(x) =

∣∣∣∣AR(x)−1

∫ 1

0

A(vs)φsds

∣∣∣∣
≤ C

√√√√(∫ 1

0
φ1
sds
)2

R
+

(∫ 1

0
φ2
sds
)2

R3

≤ C/C∗ < 1

This concludes the local equivalence of d, dc, ρ, ρ2.

3.5 Density estimates for a chain of stochastic dif-

ferential equations

3.5.1 Setting, notations and results

In this last section we consider a different model. We work with the system of stochas-
tic differential equations considered in [42] (related models are studied in [77], [59]).
We apply the techniques we introduced in chapter 2, and find a local Gaussian den-
sity estimate in short time coherent with the result of [42]. Differently from [42], here
coefficients do not depend on time. We work under local non degeneracy, finding local
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estimates, whereas in the original work hypothesis and results are global. We take a
Brownian Motion in W ∈ Rd, and a chain of n differential equations in dimension d:

dX1
t = B1(X1

t , . . . , X
n
t )dt+ σ(X1

t , . . . , X
n
t ) ◦ dWt

dX2
t = B2(X1

t , . . . , X
n
t )dt

dX3
t = B3(X2

t , . . . , X
n
t )dt

. . .

dXn
t = Bn(Xn−1

t , Xn
t )dt

(3.5.1)

each X i
t being Rd valued as well. We write the equation in Stratonovic form, whereas

in [42] the stochastic integral is written in Ito’s form. The equivalence between the
two is clear, since the correction term we need to add when converting the integrals
is non-zero only in the first d components. Therefore, the structure of the differential
equation does not change. (3.5.1) corresponds to a diffusion X ∈ Rnd,

X0 = x, dXt = σ̄(Xt) ◦ dWt +B(Xt)dt

where the coefficients have the specific form

B =

 B1
...
Bn

 and σ̄ =


σ
0
...
0

 .

and for i > 1 Bi(X) depends just on Xi−1, . . . , Xn. We denote with σi and σ̄i the
i− th columns of σ and σ̄. We take B, σ ∈ C∞ and suppose

(H1) λ∗
(
σ(x)Dx1B2(x) . . . Dxn−1Bn(x)

)
≥ λ(x) > 0,

(H2) ∀k ∈ N, x ∈ Rnd, |∇kB(x)|+ |∇kσ(x)| ≤ C <∞.

(H1) implies that the diffusion satisfies the weak Hörmander condition at x, so Xt

admits a density. This is explained in detail in [42].
We introduce some notations. For m ∈ N, let M(m) be the set of all m × m

matrices on R.

• For fixed δ > 0, Tδ ∈ M(nd) is a diagonal matrix given by n diagonal blocks
in M(d), with δiIdd as ith diagonal block, where Idd ∈ M(d) is the identity
matrix.

• A ∈ M(nd) is a block-diagonal matrix given by n blocks in M(d), with the
product Dxi−1

Bi . . . Dx1B2σ(x) as ith diagonal block:

A =


σ(x) 0

. . . 0

0 Dx1B2σ(x) 0
. . .

. . . 0
. . . 0

0
. . . 0 Dxn−1Bn . . . Dx1B2σ(x)

 . (3.5.2)
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This matrix is invertible because of (H1). For fixed δ we also define

Aδ =
ATδ√
δ

=
TδA√
δ
. (3.5.3)

We do not write the dependence on x, since we are working with the diffusion
in short time and the initial condition is fixed.

• Q is a symmetric positive definite block matrix inM(nd), given by n2 diagonal
blocks: for 1 ≤ i, j ≤ n, the block in position (i, j) is

Idd
(i+ j − 1)(i− 1)!(j − 1)!

(3.5.4)

(see remark 3.24). We also define Mδ = TδA
√
Q/δ = Aδ

√
Q, and recall that

for any M square, invertible matrix |ξ|M = |M−1ξ|.

• We also introduce the following ODE

X̄0 = x, dX̄t = B(X̄t)dt,

and its solution at time δ, X̄δ.

In [42] the following Gaussian two sided bound is proved, using the parametrix method,
under some regularity of the coefficients and a version of (H1) uniform in space.

Theorem 3.20. Let Xt be the solution of (3.5.1) with initial condition x, with final
time horizon T . Xt admits a density pXδ in y, and there exists a constant CT such
that, for any δ ∈ (0, T ],

C−1
T δ−n

2d/2 exp
(
−CT δ|y − X̄δ|2Tδ

)
≤ pXδ(y) ≤ CT δ

−n2d/2 exp
(
−C−1

T δ|y − X̄δ|2Tδ
)
.

(3.5.5)

We prove here, with the Malliavin calculus techniques of chapter 2, the following
result:

Theorem 3.21. There exists C > 0 such that for any ε > 0, r > 0, for δ ≤ ε2 exp(−r2)
C

,
for y such that |y − X̄δ|Mδ

≤ r

1− ε
cδn2d/2

exp

(
−
|y − X̄δ|2Mδ

2

)
≤ pXδ(y) ≤ 1 + ε

cδn2d/2
exp

(
−
|y − X̄δ|2Mδ

2

) (3.5.6)

where c =

(∏n−1
i=1 i!

/√∏2n−1
i=1 i!

)d
(2π)nd/2 detA.
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Remark 3.22. We first notice that ∃C > 0 such that C−1
√
δ|ξ|Tδ ≤ |ξ|Mδ

≤
C
√
δ|ξ|Tδ . Therefore, our result implies

C−1δ−n
2d/2 exp

(
−Cδ|y − X̄δ|2Tδ

)
≤ pXδ(y) ≤ Cδ−n

2d/2 exp
(
−C−1δ|y − X̄δ|2Tδ

)
,

(3.5.7)

which is analogous to (3.5.5), but weaker in the sense that it holds just locally around
X̄δ and for small δ. On the other hand, our result holds under local hypoellipticity,
whereas in [42] global hypoellipticity is required. Moreover, in (3.5.6) there is no
constant in the exponential, and ε can be taken abitrarily small (but also δ must be
taken depending on ε), so our estimate is more significant in small time.

We present in the following sections the proof of this result, which is based on the
Malliavin calculus techniques presented in chapter 2. In section 3.5.3 we consider a
related control distance.

3.5.2 Development

Remark 3.23. [Lie Brackets] Take F = (F1, . . . Fn), G = (G1, . . . Gn) functions in
Rnd, each Fi, Gi being in Rd. We consider the Lie Brackets [G,F ] = (∇F )G−(∇G)F .
Supposing Fk+1 = Fk+2 = · · · = Fn = 0 and Gl+1 = Gl+2 = · · · = Gl = 0, we have
[G,F ]i = 0 for i > max(k, l). We have

∇B =



Dx1B1 × . . .
Dx1B2 Dx2B2 × . . .

0 Dx2B3
. . .

... 0
. . . × ...

...
. . . Dxn−2Bn−1 Dxn−1Bn−1 ×

0 . . . 0 Dxn−1Bn DxnBn


In particular for k < n, [F,B]k+1 = (DxkBk+1)Fk, and [F,B]i = 0 for i > k + 1.

Define the following r.v. in Rd, for k = 1, . . . , n:

Jkt =

∫ t

0

. . .

∫ sk−2

0

Wsk−1
dsk−1 . . . ds1 =

∫ t

0

(t− s)k−1

(k − 1)!
dWs.

With a first order stochastic Taylor development we obtain:

Xt − X̄t = σ̄(x)J1
t +

∫ t

0

σ̄(Xs)− σ̄(x) ◦ dWs +

∫ t

0

B(Xs)−B(X̄s)ds.

So in the first d components (i.e., in the space where the first stochastic differential
equation lives) we have

Xt − X̄t = σ̄(x)J1
t +


L1
t

×
...
×

 =


σ(x)J1

t

0
...
0

+


L1
t

×
...
×

 .
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where L1
t ∈ Rd is of order t, meaning E|L1

t |q ≤ Cqt
q for any q, t ≤ t0. When we push

further the development find

Xt − X̄t = σ̄(x)J1
t + (∇B)σ̄(x)J2

t

+

∫ t

0

∫ s

0

(∇σ̄)σ̄(Xu) ◦ dWu ◦ dWs +

∫ t

0

∫ s

0

(∇σ̄)B(Xu)du ◦ dWs

+

∫ t

0

∫ s

0

(∇B)σ̄(Xu)− (∇B)σ̄(x) ◦ dWuds

+

∫ t

0

∫ s

0

(∇B)B(Xu)− (∇B)B(X̄u)duds.

From Remark 3.23

(∇B)σ̄(x) =


×

Dx1B2σ(x)
0
...
0


and, denoting with L2

t ∈ Rd the vector of the components from d + 1 to 2d of the
integrals above, for any q > 0 it holds E|L2

t |q ≤ Cqt
2q. Therefore

Xt − X̄t =


σ(x)J1

Dx1B2σ(x)J2

0
...
0

+


L1
t

L2
t

×
...
×


where for any q > 0 E|L1

t |q ≤ Cqt
q and E|L2

t |q ≤ Cqt
2q. Iterating this procedure n

times we find

Xt − X̄t =


σ(x)J1

t + L1
t

Dx1B2σ(x)J2
t + L2

t
... +

. . .

Dxn−1Bn . . . Dx1B2σ(x)Jnt + Lnt


where E|Lit|q ≤ Cqt

iq. Clearly

F := A−1
δ (Xδ − X̄δ) = Θ + A−1

δ Lδ, (3.5.8)

where

Θ =

 Θ1
...

Θn

 , Θk =
Jkδ

δk−1/2
∈ Rd.
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Θ is a non-degenerate Gaussian since its covariance can be expressed as a block matrix
as

Q = Cov(Θ) =

(
Idd

(i+ j − 1)(i− 1)!(j − 1)!

)
1≤i,j≤n

,

and det(Q) > 0 (see (3.5.11)).

Remark 3.24. In linear algebra a Hilbert matrix is a square matrix with entries
given by Hi,j = 1

i+j−1
, i, j = 1, . . . n. For this matrix an explicit expression for the

determinant is known:

det

(
1

i+ j − 1

)
1≤i,j≤n

=
(
∏n−1

i=1 i!)
4∏2n−1

i=1 i!
. (3.5.9)

In our setting it is more convenient to define H as a block matrix inM(nd), given by
n2 diagonal d× d blocks. For 1 ≤ i, j ≤ n, the block in position i, j is Idd

(i+j−1)
. Using

(3.5.9), we can see that

detH =

(
(
∏n−1

i=1 i!)
4∏2n−1

i=1 i!

)d

. (3.5.10)

We also set U as a diagonal matrix inM(dn) where on the diagonal we have n blocks
given by Idd

(i−1)!
, i = 1, . . . n. Clearly detU = (

∏n−1
i=1 i!)

−d. For Q defined in (3.5.4)

holds Q = UHU , so from (3.5.10)

det(Q) = det(H) det(Q)2 =

(
(
∏n−1

i=1 i!)
2∏2n−1

i=1 i!

)d

6= 0 (3.5.11)

3.5.3 Density estimate

Lemma 3.25. For y ∈ Rnd, for δ ≤ 1,

1

(2π)nd/2 detMδ

(
exp

(
−
|y − X̄δ|2Mδ

2

)
− C
√
δ

)
≤ pXδ(y)

≤ 1

(2π)nd/2 detMδ

(
exp

(
−
|y − X̄δ|2Mδ

2

)
+ C
√
δ

) (3.5.12)

Remark 3.26. Theorem 3.21 follows directly from this lemma. Remark, from 3.5.11,

(2π)nd/2 detMδ = detA

n−1∏
i=1

i!
/√√√√2n−1∏

i=1

i!

d

(2π)nd/2 δn
2d/2.
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Proof. We start using (3.5.8) to give an estimate for the density of F . We apply
theorem 2.4 with U = 1, F = F and G = Θ and R = A−1

δ Lδ. We have

pΘ(y)− CΓΘ(32nd)‖A−1
δ Lδ‖2,32nd ≤ pF (y) ≤ pΘ(y) + CΓF (32nd)‖A−1

δ Lδ‖2,32nd.

Standard computations give ‖A−1
δ Lδ‖2,32nd ≤ Cqδ

1/2. Θ is a non degenerate Gaussian,
so ΓΘ(32nd) < ∞. We prove non-degeneracy of the Malliavin covariance of F in
lemma 3.27. More precisely, we prove that there exists δ∗ > 0 such that, for any
δ ≤ δ∗, ΓF (32nd) < C <∞. We obtain that for any δ ≤ δ∗.

pΘ(y)− C
√
δ ≤ pF (y) ≤ pΘ(y) + C

√
δ.

Since Θ ∼ N(0, Q), multiplying by Q−1/2 we have Q−1/2F = M−1
δ (Xδ − X̄δ) and

1

(2π)dn/2
exp

(
−|y|

2

2

)
− C
√
δ

≤ pM−1
δ (Xδ−X̄δ)(y) ≤ 1

(2π)dn/2
exp

(
−|y|

2

2

)
+ C
√
δ.

(3.5.13)

(3.5.12) follows from the change of variable y →Mδy.

Lemma 3.27. There exists C > 0 such that, for any δ ≤ 1, ΓF (32nd) < C <∞.

Proof. We actually prove ΓF (p) < C < ∞ for any p > 1. The proof is analogous to
the proof of lemma 3.8. Recall that ΓF (p) = 1 + (E|λ∗(γF (γ))|−p)1/p.

Following [79] we define the tangent flow of X as the derivative with respect to the
initial condition of X, Yt := ∂xXt. We also denote its inverse Zt = Y −1

t . They satisfy
the following stochastic differential equations in Stratonovic form:

Yt = Id+
∑
k

∫ t

0

∇σ̄k(Xs)Ys ◦ dW k
s +

∫ t

0

∇B(Xs)Ysds

Zt = Id−
∑
k

∫ t

0

Zs∇σ̄k(Xs) ◦ dW k
s −

∫ t

0

Zs∇B(Xs)ds

(3.5.14)

Then
DsXt = YtZsσ̄(Xs),

and, for φ ∈ C2, applying Ito’s formula (see([79])),

Ztφ(Xt) = φ(x) +

∫ t

0
Zs

d∑
k=1

[σ̄k, φ](Xs)dW
k
s +

∫ t

0
Zs

{
[B,φ] +

1

2

d∑
k=1

[σ̄k, [σ̄k, φ]]

}
(Xs)ds.

(3.5.15)

We compute the derivative of F :

DsF = DsA
−1
δ (Xδ − X̄δ) = A−1

δ YδZsσ̄(Xs). (3.5.16)
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Now, multipling by Idnd = AδA
−1
δ , we write

γF = 〈DF,DF 〉 = A−1
δ YδAδγ̄δA

T
δ Y

T
δ A

−1,T
δ , (3.5.17)

with

γ̄δ =

∫ δ

0

A−1
δ Zsσ̄(Xs)σ̄(Xs)

TZT
s A
−1,T
δ ds. (3.5.18)

Remark that
γ−1
F = ATδ Z

T
δ A
−1,T
δ γ̄−1

δ A−1
δ ZδAδ. (3.5.19)

We now deal with γ̄−1
δ . We apply formula (3.5.15) to σi, i = 1 . . . d, and then to the

Lie Brackets appearing in the development, iterating until the order of the remainder
is small enough to find

Ztσ
i(Xt) =


σi(x) + O(t1/2)

Dx1B2σ
i(x)t + O(t3/2)

Dx2B3Dx1B2σ
i(x) t

2

2!
+ O(t5/2)

... +
. . .

Dxn−1Bn . . . Dx1B2σ
i(x) tn−1

(n−1)!
+ O(tn−1/2)

 .

We have denoted as O(tα) the integrals we find iterating (3.5.15). They involve Zs
and σi, B and their Lie brackets up to a certain finite order. Writing O(tα) we mean
that for any q > 0 the q-moment of this quantity is bounded by Cqt

α, and this follows
from standard computations.

We can write the result above as a matrix product:

Ztσ(Xt) =


σ(x) + R1

t

Dx1B2σ(x)t + R2
t

Dx2B3Dx1B2σ(x) t
2

2!
+ R3

t
... +

. . .

Dxn−1Bn . . . Dx1B2σ(x) tn−1

(n−1)!
+ Rn

t .

 (3.5.20)

The remainder Ri
t, for i = 1, . . . , n, is a square d× d matrix, and it is of order ti−1/2,

meaning E|Ri
t|q ≤ Cqt

q(i−1/2), for any q > 0. From (3.5.20), using the block-diagonal
structure of Aδ we have

A−1
δ Zsσ(Xs) = δ−1/2


Idd
Idd

s
δ

...
Idd

(n−1)!

(
s
δ

)n−1

+


R̃1
t /(δ

1/2)

R̃2
t /δ
...

R̃n
t /(δ

n/2)


where E|R̃i

t|q ≤ Cqt
q(i−1/2) still holds. For fixed ε we introduce the stopping time

Sε = inf

{
s ≥ 0 : ∃i, j = 1, . . . , n

∫ s

0
|R̃iuR̃lu|du ≥

ci,j(δε)
i+j−1

(i+ j − 1)(i− 1)!(j − 1)!

}
∧ δ,

(3.5.21)
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with ci,j universal constants small enough to have (3.5.23). Remark

P[Sε < δε] ≤
∑
i,j

P

[(∫ δε

0

|Ri
uR

l
u|du

)q
≥ c(δε)q(i+j−1)

]

≤
∑
i,j

E
(∫ δε

0
|Ri

uR
l
u|du

)q
cq(δε)q(i+j−1)

≤
∑
i,j

Cq(δε)
q(i+j)

cq(δε)q(i+j−1)
≤ εq

(3.5.22)

for δ ≤ δq, ε ≤ 1, for any q > 0.

Now we suppose to be on Sε
δ
≥ ε. Applying the inequality

〈(M +R)(M +R)T ξ, ξ〉 ≥ 1

2
〈MMT ξ, ξ〉 − 〈RRT ξ, ξ〉,

which holds for any matrix M, R, vector ξ, we obtain

γ̄δ =

∫ δ

0

A−1
δ Zsσ(Xs)σ(Xs)

TZT
s A
−1,T
δ ds

≥
∫ Sε

0

A−1
δ Zsσ(Xs)σ(Xs)

TZT
s A
−1,T
δ ds

≥ 1

2

∫ Sε

0

δ−1


Idd
Idd

s
δ

...
Idd

(n−1)!

(
s
δ

)n−1




Idd
Idd

s
δ

...
Idd

(n−1)!

(
s
δ

)n−1


T

ds

−
∫ Sε

0


R̃1
s/(δ

1/2)

R̃2
s/(δ

3/2)
...

R̃n
s /(δ

n−1/2)




R̃1
s/(δ

1/2)

R̃2
s/(δ

3/2)
...

R̃n
s /(δ

n−1/2)


T

ds

=

(
(Sε/δ)

(i+j−1)

(i+ j − 1)(i− 1)!(j − 1)!
Idd −

∫ Sε

0

R̃i
sR̃

j
s/δ

(i+j−1)ds

)
1≤i,j≤n

=

Idd − (i+j−1)(i−1)!(j−1)!

S
(i+j−1)
ε

∫ Sε
0
R̃i
sR̃

j
sds

(i+ j − 1)(i− 1)!(j − 1)!

(
Sε
δ

)(i+j−1)


1≤i,j≤n
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From (3.5.21) we have∣∣∣∣(i+ j − 1)(i− 1)!(j − 1)!

S
(i+j−1)
ε

∫ Sε

0

R̃i
sR̃

j
sds

∣∣∣∣
≤ (i+ j − 1)(i− 1)!(j − 1)!

S
(i+j−1)
ε

∫ Sε

0

|R̃i
sR̃

j
s|ds

≤ ci,j

(
δε

Sε

)i+j−1

≤ ci,j

Choosing ci,j small enough, independently of δ, we have:

〈γ̄δξ, ξ〉 ≥
1

2

〈(
Idd

(i+ j − 1)(i− 1)!(j − 1)!

(
Sε
δ

)i+j−1
)

1≤i,j≤n

ξ, ξ

〉

≥ c

(
Sε
δ

)2n−1

≥ cε2n−1,

(3.5.23)

since Sε
δ
≥ ε. So ∃ε∗ such that taking ε ≤ ε∗, ∀δ ≤ 1, ∀|ξ| = 1,

〈γ̄δξ, ξ〉 ≥ ε2n.

Using also (3.5.22) we have that for any q, for any ε ≤ ε∗, δ ≤ 1,

P(〈γ̄δξ, ξ〉 < ε2n) ≤ P[Sε < δε] ≤ Cqε
q.

Now we apply Lemma 3.9, as in lemma 3.8 and we have (E|λ∗(γ̄δ)|−p)1/p ≤ C.

The estimate of A−1
δ ZδAδ is standard, and from (3.5.19) we have the estimate for

(E|λ∗(γF )|−p)1/p ≤ C.

3.5.4 On the control distance

As in previous sections, we can define the norm |ξ|AR = |A−1
R ξ|. It is straightforward

to see that ∃C > 0 such that C−1
√
δ|ξ|Tδ ≤ |ξ|Aδ ≤ C

√
δ|ξ|Tδ . In what follows we

establish a local equivalence between | · |AR and an appropriate control distance as in
section 3.4.2, and so (3.5.7) could be stated in this control norm as well. We write
AR(·) instead of AR because here we need to consider this matrix on different points.
As before, we associate a semi-distance to the matrix norm | · |AR(·):

d(x, y) <
√
R⇔ |x− y|AR(x) < 1.

We give the following definition in analogy to definition 3.18:
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Definition 3.28. For φ ∈ L2((0, 1),Rnd), we introduce the formal degrees dj = 2i−1,
for j = (i− 1)d+ 1, . . . id, for i = 1 . . . , n. We define the norm

‖φ‖we =
∥∥(|φjs|1/dj)j=1,...,nd

∥∥
L2(0,1)

.

Now, as for (3.4.9), we generalize 3.4.8 to

CA(x, y) = {φ ∈ L2((0, 1),Rnd) : dvs = A(vs)φsds, x = v0, y = v1

. and we introduce
dc(x, y) = inf {‖φ‖we : φ ∈ CA(x, y)} .

Remark that when n = 1, i.e. we have just one elliptic d-dim differential equation,
this corresponds to the usual definition of the Caratheodory distance.

We are interested in establishing a local equivalence between d, the semi-distance
coming from the matrix-norm, and dc, the distance in term of the control.

Proposition 3.29. d, dc are locally equivalent.

Proof. Recall that in our notation d is the dimension of σ, dj are the degrees associated
to the directions j. We use in this proof some notions on similar metrics and pseudo-
metrics for which we refer to [78]. Define

ρ(x, y) = inf{δ > 0|∃φ ∈ CA(x, y), |φjs| < δdj , j = 1, . . . , nd}.

It is also possible to allow only constant linear combinations of the vector fields:

C̄A(x, y) = {θ ∈ Rnd : dvs = A(vs)θds, x = v0, y = v1}, (3.5.24)

and define

ρ2(x, y) = inf{δ > 0|∃θ ∈ C̄A(x, y), |θj| < δdj , j = 1, . . . , nd}.

In [78] the pseudo-distances ρ and ρ2 are proved equivalent. We use here only the
trivial inequality ρ ≤ ρ2. Remark that an equivalent definition of ρ would be to define

it as dc taking the norm ‖φ‖∞ = sup0≤s≤1 |φs| instead of ‖φ‖2 =
(∫ 1

0
|φs|2ds

)1/2

. So

dc ≤ ρ follows easily from the fact that the L2(0, 1) norm is dominated by the L∞(0, 1)
norm.

The proof of
d(x, y) <

√
R⇒ ρ2(x, y) < C

√
R,

for R ≤ Rx is analogous to what we have done in Lemma 3.19. By definition, d(x, y) <√
R means |x − y|AR(x) < 1. This implies that it exists θ ∈ C̄A(x, y) such that

|θi(d−1)+1,...,id| < (2
√
R)2i−1, v(0) = x, v(1) = y. Indeed, consider the function

Φ(θ) =

∫ 1

0

A(vs(θ))θds, (3.5.25)
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with v(θ) satisfying dvs(θ) = A(vs(θ))θds, v0(θ) = x. Remark that Φ : Rnd → Rnd,
Φ(0) = 0 and Φ′(0) = A(x), which is invertible because of (H1). Recall

|x− y|AR(x) < 1⇒ |x− y| < Cx
√
R ≤ Cx

√
Rx.

For Rx small enough, we have that there exist θ such that Φ(θ) = x−y (local inversion

theorem), so θ ∈ C̄A. From (3.5.25) it is also clear that |θ| < CR
1
2 . We now show

|θi(d−1)+1,...,id| < (2
√
R)2i−1, j = 1 . . . , nd.

We have

AR(x)−1(x− y) = AR(x)−1

∫ 1

0

A(vs(θ))θds

= AR(x)−1A(x)θ + AR(x)−1

∫ 1

0

(A(vs(θ))− A(x))θds

=

(
θj

Rdj/2

)
j=1,...,nd

+ J(θ, R).

Consider

J(θ, R) = AR(x)−1

∫ 1

0

(A(vs(θ))− A(x))θds.

Remark |A(vs(θ))− A(x)| ≤ C|θ|. Because of the block-triangular structure of A,

(J(θ, R)k)k=n(d−1)+1,...,nd =
(Dxn−1Bn . . . Dx1B2σ(x))−1

Rn−1/2
×(∫ 1

0

[Dxn−1Bn . . . Dx1B2σ(vs(θ))−Dxn−1Bn . . . Dx1B2σ(x)]θn(d−1)+1,...,ndds

)
so, since |θ| < CR

1
2 ,

|(J(θ, R)k)k=n(d−1)+1,...,nd| ≤ C|θ| |θ
n(d−1)+1,...,nd|
Rn−1/2

.

For R ≤ Rx small enough, C|θ| ≤ CR
1/2
x < 1/2. So

|(J(θ, R)k)k=n(d−1)+1,...,nd| <
1

2

|θn(d−1)+1,...,nd|
Rn−1/2

.

Recall that

1 ≥ |AR(x)−1(x− y)| =

∣∣∣∣∣
(

θj
Rdj/2

)
j=1...nd

+ J(θ, R)

∣∣∣∣∣
≥

∣∣∣∣∣
(

θj
Rdj/2

)
j=n(d−1)+1,...,nd

+ (J(θ, R)j)j=n(d−1)+1,...,nd

∣∣∣∣∣
≥

∣∣∣∣∣
(
θn(d−1)+1,...,nd

Rn−1/2

)
j=n(d−1)+1,...,nd

∣∣∣∣∣− |(J(θ, R)j)j=n(d−1)+1,...,nd|

>
1

2

|θn(d−1)+1,...,nd|
Rn−1/2

.
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Then we have
|θn(d−1)+1,...,nd| < 2Rn−1/2 < (2

√
R)2n−1.

With the same method, considering n− j with an induction j, we can prove that

|θi(d−1)+1,...,id| < (2
√
R)2i−1, 1 ≤ i ≤ n.

It also holds

dc(x, y) <

√
R

K
⇒ d(x, y) <

√
R,

if K is large enough. With the same notation as above, in particular supposing

∃φ ∈ CA(x, y) with ‖φ‖we ≤
√
R
K

,

|x− y|AR(x) =

∣∣∣∣AR(x)−1

∫ 1

0

A(vs)φsds

∣∣∣∣
≤ C

∣∣∣∣∣∣
(∫ 1

0
φjsds

Rdj/2

)
j=1...,nd

∣∣∣∣∣∣
≤ C/K < 1

So d(x, y) ≤
√
R, and this concludes the local equivalence of d, dc, ρ, ρ2.
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Chapter 4

Tubes estimates for diffusion
processes under a local Hörmander
condition of order one

4.1 Introduction

In this chapter we consider a diffusion process in Rn solution of

dXt =
d∑
j=1

σj(t,Xt) ◦ dW j
t + b(t,Xt)dt, X0 = x. (4.1.1)

where W = (W 1, ...,W d) is a standard Brownian motion and ◦dW j
t denotes the

Stratonovich integral. We assume σj, b : R+ × Rn → Rn three time differentiable
in x ∈ Rn and one time differentiable in time t ∈ R+, and that the derivatives with
respect to the space x ∈ Rn are one time differentiable with respect to t. We as-
sume that the coefficients σj, b verify the strong Hörmander condition of order one
(involving σj and the first order Lie brackets [σi, σj]) locally around a skeleton path

dxt(φ) =
d∑
j=1

σj(t, xt(φ))φjtdt+ b(t, xt(φ))dt. (4.1.2)

As in chapter 3, we use a norm which reflects the non isotropic structure of the
problem, i.e. the fact that the diffusion process Xt moves with speed

√
t in the

direction of the diffusion vector fields σj and with speed t =
√
t×
√
t in the direction

of [σi, σj]. We prove that this norm, that we denote |ξ|AR (see (4.2.3)) is equivalent
with the standard control metric dc. We find exponential lower and upper bounds for
the probability that the diffusion remains in a small tube around the skeleton path, i.e.
P
(
supt≤T |Xt − xt(φ)|AR(t,xt(φ)) ≤ 1

)
. The proof of this result is based on a diagonal

two-sided bound for the density in short time, and a concatenation procedure. Our
density estimate is interesting in comparison with the classical result (1.1.6) (see [72]),

73
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since also here we work in a strong Hörmander framework, but we allow for a general
drift, and moreover our coefficients may depend on t (see [34]). This work is the
continuation of [6], where the lower bound was proved.

4.2 Notations and main results

For (t, x) ∈ R+×Rn we denote by n(t, x) a constant such that for every s ∈ [(t− 1)∨
0, t+ 1], y ∈ B(x, 1) and for every multi index α of length less than or equal to three

|∂αx b(s, y)|+ |∂t∂αx b(s, y)|+
d∑
j=1

|∂αxσj(s, y)|+ |∂t∂αxσj(s, y)|) ≤ n(t, x). (4.2.1)

Here, α = (α1, ..., αk) ∈ {1, ..., n}k represents a multi-index, |α| = k the length of
α and ∂αx = ∂xα1 ...∂xαk . We do not assume global Lipschitz continuity or sublinear
growth properties for the coefficients, so the above SDE might not have a unique
solution. We only assume to work with a continuous adapted process X solving
(4.1.1) on the time interval [0, T ].

We need to recall some notations. For f, g : R+×Rn → Rn we define the directional
derivative ∂gf(t, x) =

∑n
i=1 g

i(t, x)∂xif(t, x), and we recall that the Lie bracket (with
respect to the space variable x) is defined as [g, f ](t, x) = ∂gf(t, x) − ∂fg(t, x). Let
M ∈Mn×m be a matrix with full row rank. We write MT for the transposed matrix,
and MMT is invertible. We denote by λ#(M) (respectively λ#(M)) the smallest
(respectively the largest) eigenvalue of MMT and we consider the following norm on
Rn:

|y|M =
√
〈(MMT )−1y, y〉. (4.2.2)

Here and all along this chapter d2 = m. We are concerned with the matrix A(t, x) =
(Al(t, x))l=1,...,m, defined as follows. Let l = (p − 1)d + i ∈ {1, . . . ,m}, with p, i ∈
{1, . . . , d}.

Al(t, x) = [σi, σp](t, x) if i 6= p,

= σi(t, x) if i = p.

For R > 0, we define R the diagonal m × m matrix with Rl,l = R for i 6= p and
Rl,l =

√
R for i = p. Moreover,

AR(t, x) = A(t, x)R = (
√
Rσi(t, x), [

√
Rσj,

√
Rσp](t, x))i,j,p=1,...,d,j 6=p. (4.2.3)

We denote by λ(t, x) the smallest eigenvalue of A(t, x)A(t, x)T , i.e.

λ(t, x) = inf
|ξ|=1

m∑
i=1

〈Ai(t, x), ξ〉2 , (4.2.4)

Consider now some x ∈ Rn, t ≥ 0 such that (σi(t, x), [σj, σp](t, x))i,j,p=1,...,d,j 6=p span Rn.
Then ARA

T
R(t, x) is invertible and we may define |y|AR(t,x). We also denote 〈σ(t, x)〉

the subspace of Rn spanned by σi(t, x), i = 1, ..., d.
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For µ ≥ 1 and 0 < h ≤ 1 we denote by L(µ, h) the class of non negative functions
f : R+ → R+ which have the property

f(t) ≤ µf(s) for |t− s| ≤ h.

We will make the following hypothesis: there exists some functions n : [0, T ]→ [1,∞)
and λ : [0, T ]→ (0, 1] such that for some µ ≥ 1 and 0 < h ≤ 1 we have

(H1) n(t, xt(φ)) ≤ nt,∀t ∈ [0, T ],

(H2) λ(t, xt(φ)) ≥ λt > 0,∀t ∈ [0, T ],

(H3) |φ.|2 , n., λ. ∈ L(µ, h).

(4.2.5)

Remark 4.1. Hypothesis (H2) implies that for each t ∈ (0, T ), the space Rn is
spanned by the vectors (σi(t, xt), [σj, σp](t, xt))i,j,p=1,...,d,j<p, so the Hörmander condi-
tion holds along the curve xt(φ).

The main result in this chapter is the following:

Theorem 4.14 . Suppose that (H1), (H2) and (H3) hold and that X0 = x0(φ). There

exist K, q universal constants such that for Ht = K
(
µnt
λt

)q
, for R ≤ R∗(φ) (defined

in (4.6.1)),

exp

(
−
∫ T

0

Ht

(
1

R
+ |φt|2

)
dt

)
≤ P

(
sup
t≤T
|Xt − xt(φ)|AR(t,xt(φ)) ≤ 1

)
≤ exp

(
−
∫ T

0

1

Ht

(
1

R
+ |φt|2

)
dt

)
(4.2.6)

Remark 4.2. Suppose Xt = Wt and xt(φ) = 0, so that nt = 1, λt = 1, µ = 1
and φt = 0. Then |Xt − xt(φ)|AR(t,xt(φ)) = R−1/2Wt and we obtain exp(−C1T/R) ≤
P(supt≤T |Wt| ≤

√
R) ≤ exp(−C2T/R) which is coherent with the standard estimate

(see [64]).

The proof of Theorem 4.14 relies on the following two-sided bound for the density
of equation (4.1.1) in short time. The estimate is diagonal, meaning that it is local
around the drifted initial condition X0 + b(0, X0)δ.

Theorem 4.5 . Suppose that (H1) and (H2) hold locally around X0. Then there exist
constants r, δ∗, C such that for δ ≤ δ∗, |y −X0 − b(0, X0)δ|Aδ(0,X0) ≤ r,

1

Cδn−
dim〈σ(0,X0)〉

2

≤ pXδ(y) ≤ C

δn−
dim〈σ(0,X0)〉

2

.

A global two-sided bound for the density of Xt is proved in [72], under the strong
Hörmander non-degeneracy condition. It is also assumed that the coefficients do not
depend time, i.e. b(t, x) = b(x), σ(t, x) = σ(x), and that b(x) =

∑d
j=1 αiσi(x), with
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αi ∈ C∞b (Rn) (i.e. the drift is generated by the vector fields of the diffusive part, which
is a quite restrictive hypothesis). This bound is Gaussian in the control metric that we
now define. For x, y ∈ Rn we denote by C(x, y) the set of controls ψ ∈ L2([0, 1];Rd)
such that the corresponding skeleton solution of

dut(ψ) =
d∑
j=1

σj(ut(ψ))ψjtdt, u0(ψ) = x

satisfies u1(ψ) = y. The control (Caratheodory) distance is defined as

dc(x, y) = inf
{(∫ 1

0

|ψs|2 ds
)1/2

: ψ ∈ C(x, y)
}
.

Their result is the following: there exist a constant M ≥ 1 such that

1

M |Bdc(x, t
1/2)|

exp

(
−Mdc(x, y)2

t

)
≤ pt(x, y) ≤ M

|Bdc(x, t
1/2)|

exp

(
−dc(x, y)2

Mt

)
for (t, x, y) ∈ (0, 1]× Rn × Rn, where Bd(x, r) = {y ∈ Rn : d(x, y) < r}. It is natural
at this point to wonder if dc and | · |AR are somehow related. Recall that now, as in
[72], b(t, x) = b(x), σ(t, x) = σ(x). We define the semi distance d via: d(x, y) <

√
R

if |x − y|AR(x) < 1, and prove in section 4.7.2 the local equivalence of d and dc. This
allows us to state theorem 4.14 in the control metric:

Corollary 4.3. There exist K, q constants such that for Ht = K
(
µnt
λt

)q
, for R ≤

R∗(φ),

exp

(
−
∫ T

0

Ht

(
1

R
+ |φt|2

)
dt

)
≤ P

(
sup

0≤t≤T
dc(Xt, xt(φ)) ≤

√
R

)
≤ exp

(
−
∫ T

0

1

Ht

(
1

R
+ |φt|2

)
dt

)
. (4.2.7)

We present now two examples of application:
Example 1. Consider the two dimensional diffusion process

X1
t = x1 +W 1

t , X2
t = x2 +

∫ t

0

X1
sdW

2
s .

Since ARA
T
R(x) =

[
R 0
0 R(x1 + 2R)

]
, the associated norm is |ξ|2AR(x) =

ξ21
R

+
ξ22

R(x1+2R)
.

On {x1 = 0}, |ξ|2AR(x) =
ξ21
R

+
ξ22

2R2 and consequently for R small {ξ : |ξ|AR(x) ≤ 1} is an
ellipsoid.



4.2. NOTATIONS AND MAIN RESULTS 77

If we take a path x(t) with x1(t) which keeps far from zero then we have ellipticity
along the path and we may use estimates for elliptic SDEs (see [10]). If x1(t) = 0 for
some t ∈ [0, T ] we need our estimate. Let us compare the norm in the two cases: if
x1 > 0 the diffusion matrix is non-degenerate and we can consider the norm |ξ|BR(x)

with BR(x) = R
√
σσT (x). We have

|ξ|2BR(x) =
1

R
ξ2

1 +
1

Rx2
1

ξ2
2 ≥

1

R
ξ2

1 +
1

R(2R + x1)
ξ2

2 = |ξ|2AR(x) ,

and the two norms are equivalent for R small. Let us now take xt(φ) = (0, 0). We
have ns = 1 and λs = 1 and Xt − xt = (W 1

t ,
∫ t

0
W 1
s dW

2
s ), so we obtain

e−C1T/R ≤ P

(
sup
t≤T

{
1

R

∣∣W 1
t

∣∣2 +
1

2R2

∣∣∣∣∫ t

0

W 1
s dW

2
s

∣∣∣∣2
}
≤ 1

)

= P
(

sup
t≤T

(|Xt − xt|2AR(xt)
≤ 1

)
≤ e−C2T/R.

Example 2: The principal invariant diffusion on the Heisenberg group.
Consider on R3 the vector fields ∂x − y

2
∂z and ∂y − x

2
∂z. The associated Markov

process is a Brownian motion on R2 and its L̈ı¿1
2
vy area.

X1
t = x1 +W 1

t , X2
t = x2 +W 2

t , X3
t = x3 +

1

2

∫ t

0

X1
sdW

2
s −

1

2

∫ t

0

X2
sdW

1
s .

(cf. [47], [3], [73], where gradient bounds for the heat kernel are obtained, and [14]).
Since the diffusion is in dimension n = 3 and the driving Brownian in dimension d = 2,
ellipticity cannot hold. Direct computations give

σ1(x) =

 1
0

−x2/2

 , σ2(x) =

 0
1

x1/2.

 , [σ1, σ2](x) = ∂σ1σ2 − ∂σ2σ1 =

 0
0
1.


Therefore σ1(x), σ2(x), [σ1, σ2](x) span R3 and hypoellipticity holds. In x = 0 we have

|ξ|2AR(0) =
ξ21+ξ22
R

+
ξ23

2R2 , so taking as control φt = 0, denoting At(W ) = 1
2

∫ t
0
X1
sdW

2
s −

1
2

∫ t
0
X2
sdW

1
s (the L̈ı¿1

2
vy area) we obtain

P

(
sup
t≤T/R

|W 1
t |2 + |W 2

t |2 +
|At(W )|2

2
≤ 1

)
= P

(
sup
t≤T

|W 1
t |2 + |W 2

t |2

R
+
|At(W )|2

2R2
≤ 1

)
= P

(
sup
t≤T
|Xt|2AR(xt(φ)) ≤ 1

)
.

Appling our tube estimate we have

e−C1T/R ≤ P

(
sup
t≤T/R

|W 1
t |2 + |W 2

t |2 +
|At(W )|2

2
≤ 1

)
≤ e−C2T/R.
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4.3 Decomposition

We start with the decomposition of the process that will allow us to produce the lower
bound in short time. Writing this decomposition we also introduce some notations
that we will employ in this chapter, mainly in section 4.4.

4.3.1 Development

Using a development in stochastic Taylor series of order two we write

Xt = X0 + Zt + b(0, X0)t+Rt (4.3.1)

where

Zt =
d∑
i=1

aiW
i
t +

d∑
i,j=1

ai,j

∫ t

0

W i
s ◦ dW j

s (4.3.2)

with ai = σi(0, X0), ai,j = ∂σiσj(0, X0), and

Rt =
d∑

j,i=1

∫ t

0

∫ s

0

(∂σiσj(u,Xu)− ∂σiσj(0, X0)) ◦ dW i
u ◦ dW j

s (4.3.3)

+
d∑
i=1

∫ t

0

∫ s

0

∂bσi(u,Xu)du ◦ dW i
s +

d∑
i=1

∫ t

0

∫ s

0

∂uσj(u,Xu)du ◦ dW i
s

+
d∑
i=1

∫ t

0

∫ s

0

∂σib(u,Xu) ◦ dW i
uds+

∫ t

0

∫ s

0

∂bb(u,Xu)duds.

Since O(Rt) = t3/2, we expect the behavior of Xt and Zt to be somehow close. Our
first goal is to give a decomposition for Zt in (4.3.2). We start introducing some
notation: we will write [a]i,j = ai,j − aj,i = [σi, σj](0, X0). We fix δ > 0 and denote
sk(δ) = k

d
δ and

∆i
k(δ,W ) = W i

sk(δ) −W i
sk−1(δ), ∆i,j

k (δ,W ) =

∫ sk(δ)

sk−1(δ)

(W i
s −W i

sk−1
) ◦ dW j

s .

Notice that ∆i,j
k (δ,W ) is the Stratonovich integral, but for i 6= j it coincides with the

Ito integral. When no confusion is possible we use the short notation sk = sk(δ),∆
i
k =
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∆i
k(δ,W ),∆i,j

k = ∆i,j
k (δ,W ). Moreover for p = 1, ..., d we define

µp(δ,W ) =
∑
i 6=p

∆p
i

ψp(δ,W ) =
∑

i 6=j,i6=p,j 6=p

ai,j∆
i,j
p +

d∑
l=p+1

∑
i 6=p

d∑
j 6=l

ai,j∆
j
l∆

i
p +

1

2

d∑
i 6=p

ai,i
∣∣∆i

p

∣∣2
εp(δ,W ) =

d∑
l>p

d∑
j 6=l

ap,j∆
j
l +

d∑
p>l

d∑
j 6=l

aj,p∆
j
l +
∑
j 6=p

ap,j∆
j
p

ηp(δ,W ) =
1

2
ap,p

∣∣∆p
p

∣∣2 +
d∑
l>p

ap,l∆
l
l∆

p
p + ∆p

pεp.

(4.3.4)

We write η(δ,W ) =
∑d

p=1 ηp(δ,W ) and ψ(δ,W ) =
∑d

p=1 ψp(δ,W ). Our aim is to
prove the following decomposition.

Zδ =
d∑
p=1

ap(∆
p
p(δ,W )+µp(δ,W ))+

d∑
p=1

∑
i 6=p

[a]i,p∆
i,p
p (δ,W )+η(δ,W )+ψ(δ,W ) (4.3.5)

Remark 4.4. The reason of this decomposition is the following. We split the time
interval (0, δ) in d sub intervals of length δ/d. We also split the Brownian motion
in corresponding increments: (W p

s − W p
sk−1

)sk−1≤s≤sk , p = 1, ..., d. Let us fix p. For

s ∈ (sp−1, sp) we have the processes (W i
s − W i

sp−1
)sp−1≤s≤sp , i = 1, ..., d. Our idea is

to settle a calculus which is based on W p and to take conditional expectation with
respect to W i, i 6= p. So (W i

s −W i
sp−1

)sp−1≤s≤sp , i 6= p will appear as parameters (or
controls) which we may choose in an appropriate way. The random variables on which
the calculus is based are ∆p

p = W p
sp −W

p
sp−1

and ∆i,p
p =

∫ sp
sp−1

(W i
s −W i

sp−1
)dW p

s , j 6= p.

These are the r.v. that we have emphasized in the decomposition of Zδ. Notice that,
conditionally to the controls (W i

s −W i
sp−1

)sp−1≤s≤sp , i 6= p, this is a centered Gaussian
vector and, under appropriate hypothesis on the controls this Gaussian vector is non
degenerate (we treat in section 4.4.3 the problem of the choice of the controls). In
order to handle the term ∆p,i

p =
∫ sp
sp−1

(W p
s −W p

sp−1
)dW i

s . we use the identity ∆p,i
p =

∆i
p∆

p
p −∆i,p

p . This is the reason for which (ap,i − ai,p) = [a]p,i appears.

We now prove (4.3.5). We decompose

Zδ =
d∑
l=1

Z(sl)− Z(sl−1) =
d∑
l=1

(
d∑
i=1

ai∆
i
l +

d∑
i,j=1

ai,j

∫ sl

sl−1

W i
s ◦ dW j

s

)

and write ∫ sl

sl−1

W i
s ◦ dW j

s = W i
sl−1

∆j
l + ∆i,j

l = (
l−1∑
p=1

∆i
p)∆

j
l + ∆i,j

l .
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Then

Zδ =
d∑
l=1

d∑
i=1

ai∆
i
l +

d∑
l=1

d∑
i,j=1

ai,j(
l−1∑
p=1

∆i
p)∆

j
l +

d∑
l=1

d∑
i,j=1

ai,j∆
i,j
l =: S1 + S2 + S3.

Notice first that

S1 =
d∑
l=1

al∆
l
l +

d∑
l=1

∑
i 6=l

ai∆
i
l.

We treat now S3. We will use the identities

∣∣∆i
l

∣∣2 = 2∆i,i
l and ∆i

l∆
j
l = ∆i,j

l + ∆j,i
l .

Then

S3 =
d∑
l=1

d∑
i=1

ai,i∆
i,i
l +

d∑
l=1

∑
i 6=j

ai,j∆
i,j
l

=
d∑
l=1

d∑
i=1

ai,i∆
i,i
l +

d∑
l=1

∑
i 6=l

ai,l∆
i,l
l +

d∑
l=1

∑
j 6=l

al,j∆
l,j
l +

d∑
l=1

∑
i 6=j,i6=lj 6=l

ai,j∆
i,j
l

=
1

2

d∑
l=1

d∑
i=1

ai,i
∣∣∆i

l

∣∣2 +
d∑
l=1

∑
i 6=l

ai,l∆
i,l
l

+
d∑
l=1

∑
j 6=l

al,j

(
∆j
l∆

l
l −∆j,l

l

)
+

d∑
l=1

∑
i 6=j,i6=l,j 6=l

ai,j∆
i,j
l

=
1

2

d∑
i=1

ai,i
∣∣∆i

i

∣∣2 +
1

2

d∑
l=1

d∑
i 6=l

ai,i
∣∣∆i

l

∣∣2 +
d∑
l=1

∑
i 6=l

(ai,l − al,i)∆i,l
l

+
d∑
l=1

(∑
j 6=l

al,j∆
j
l

)
∆l
l +

d∑
l=1

∑
i 6=j,i6=l, 6=j 6=

ai,j∆
i,j
l .

We treat now S2. We want to emphasize the terms containing ∆i
i. We have

S2 =
d∑
l>p

d∑
i,j=1

ai,j∆
i
p∆

j
l = S ′2 + S ′′2 + S ′′′2 + Siv2

with
∑d

l>p =
∑d

p=1

∑d
l=p+1 and

S ′2 =
d∑
l>p

ap,l∆
p
p∆

l
l, S ′′2 =

d∑
l>p

d∑
j 6=l

ap,j∆
p
p∆

j
l

S ′′′2 =
d∑
l>p

d∑
i 6=p

ai,l∆
i
p∆

l
l, Siv2 =

d∑
l>p

d∑
i 6=p,j 6=l

ai,j∆
i
p∆

j
l .
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We have

S ′′2 =
d∑
p=1

∆p
p

(
d∑

l=p+1

d∑
j 6=l

ap,j∆
j
l

)
and

S ′′′2 =
d∑
l=1

∆l
l

(
l−1∑
p=1

d∑
i 6=p

ai,l∆
i
p

)
=

d∑
p=1

∆p
p

(
p−1∑
l=1

d∑
j 6=l

aj,p∆
j
l

)
so that

S ′′2 + S ′′′2 =
d∑
p=1

∆p
p

(
d∑

l=p+1

d∑
j 6=l

ap,j∆
j
l +

p−1∑
l=1

d∑
j 6=l

aj,p∆
j
l

)
.

Finally

Zδ =
d∑
l=1

al∆
l
l +

d∑
l=1

∑
i 6=l

ai∆
i
l

+
d∑
l>p

ap,l∆
p
p∆

l
l +

d∑
p=1

∆p
p

(
d∑
l>p

d∑
j 6=l

ap,j∆
j
l +

d∑
p>l

d∑
j 6=l

aj,p∆
j
l

)

+
d∑
l>p

d∑
i 6=p,j 6=l

ai,j∆
i
p∆

j
l +

1

2

d∑
i=1

ai,i
∣∣∆i

i

∣∣2 +
1

2

d∑
l=1

d∑
i 6=l

ai,i
∣∣∆i

l

∣∣2
+

d∑
l=1

∑
i 6=l

(ai,l − al,i)∆i,l
l +

d∑
l=1

(∑
j 6=l

al,j∆
j
l

)
∆l
l +

d∑
l=1

∑
i 6=j,i6=l,j 6=l

ai,j∆
i,j
l .

We want to compute the coefficient of ∆p
p : this term appears in

∑d
p=1 ∆p

p(ap + εp),
with

εp =
d∑
l>p

d∑
j 6=l

ap,j∆
j
l +

d∑
p>l

d∑
j 6=l

aj,p∆
j
l +
∑
j 6=p

ap,j∆
j
p.

We consider now ∆i,p
p . It appears in

d∑
p=1

∑
i 6=p

(ai,p − ap,i)∆i,p
p

The other terms are

d∑
l=1

∑
i 6=l

ai∆
i
l +

d∑
l>p

d∑
i 6=p,j 6=l

ai,j∆
i
p∆

j
l +

1

2

d∑
i=1

ai,i
∣∣∆i

i

∣∣2 +
1

2

d∑
l=1

d∑
i 6=l

ai,i
∣∣∆i

l

∣∣2
+

d∑
l=1

∑
i 6=j,i6=l,j 6=l

ai,j∆
i,j
l +

d∑
l=p+1

ap,l∆
p
p∆

l
l.

We put everything together and (4.3.5) is proved.
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4.3.2 Main Gaussian component

Let l = (p − 1)d + i ∈ {1, ...,m} with p, i ∈ {1, ..., d}. We define Bt = δ−1/2Wtδ and
denote

Θl =
1

δ
∆i,p
p =

∫ p
d

p−1
d

(Bi
s −Bi

p−1
d

)dBp
s if i 6= p (4.3.6)

=
1√
δ

∆p
p = Bp

p
d
−Bp

p−1
d

if i = p.

We will also denote l(p) = (p− 1)d+ p so that Θl(p) = 1√
δ
∆p
p. We consider the σ field

G := σ(W j
s −W

j
sp−1(δ), sp−1(δ) ≤ s ≤ sp(δ), p = 1, ...d, j 6= p). (4.3.7)

For p = 1, ..., d we denote Θ(p) = (Θ(p−1)d+1, ...,Θpd). Notice that conditionally to G the
random variables Θ(p), p = 1, ..., d are independent centered Gaussian d dimensional
vectors and the covariance matrix Qp of Θ(p) is given by

Qp,j
p = Qj,p

p =

∫ p
d

p−1
d

(
Bj
s −B

j
p−1
d

)
ds, j 6= p,

Qi,j
p =

∫ p
d

p−1
d

(
Bj
s −B

j
p−1
d

)(
Bi
s −Bi

p−1
d

)
ds, j 6= p, i 6= p,

Qp,p
p =

1

d
.

It is easy to see that detQp 6= 0 almost surely. It follows that conditionally to G
the random variable Θ = (Θ(1), ...,Θ(d)) is a centered m = d2 dimensional Gaussian
vector. Its covariance matrix Q is a block-diagonal matrix built with Qp, p = 1, . . . , d.

In particular detQ =
∏d

p=1 detQp 6= 0 almost surely, and λ∗(Q) = minp=1,...,d λ∗,p(Q).
We also have λ∗(Q) = maxp=1,...,d λ

∗
p(Q). We will need to work on subsets where we

have a quantitative control of this quantities.

4.3.3 Decomposition.

Recall (4.7.10). We have

Al(0, X0) = [a]i,p if i 6= p, (4.3.8)

= ap if i = p,

We denote by Aiδ ∈ Rm, i = 1, ..., n the rows of the matrix Aδ. We also denote
S = 〈A1

δ , ..., A
n
δ 〉 ⊂ Rm and S⊥ its orthogonal. If hypothesis (H2) holds the columns

of Aδ span Rn so the rows are linearly independent. It follows that S⊥ has dimension
m− n. We take Γiδ, i = n + 1, ...,m to be an orthonormal basis in S⊥ and we denote
Γiδ = Aiδ(0, X0) for i = 1, ..., n. We also denote Γδ the (m− n)×m matrix with rows
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Γiδ, i = n + 1, . . . ,m. Finally we denote by Γδ the m × m dimensional matrix with
rows Γiδ, i = 1, ...,m. Notice that

ΓδΓ
T
δ =

(
AδA

T
δ (0, X0) 0

0 Idm−n

)
(4.3.9)

where Idm−n is the identity matrix in Rm−n. It follows that for a point y = (y(1), y(2)) ∈
Rm with y(1) ∈ Rn, y(2) ∈ Rm−n we have

|y|2Γδ =
∣∣y(1)

∣∣2
Aδ(0,X0)

+
∣∣y(2)

∣∣2 (4.3.10)

where we recall that |y|2Γδ =
〈
(ΓδΓ

T
δ )−1y, y

〉
. For a ∈ Rm we define the immersion

Ja : Rn → Rm by

z ∈ Rn → Ja(z) = y ∈ Rm with yi = zi, i = 1, ..., n and yi =
〈
Γiδ, a

〉
, i = n+1, ...,m.

(4.3.11)
In particular J0(z) = (z, 0, ..., 0) and

|J0z|Γδ = |z|Aδ(0,X0) . (4.3.12)

Finally we denote

Vω =
d∑
p=1

apµp(δ,W ) + ψ(δ,W ), (4.3.13)

ηω(Θ) =
d∑
p=1

(
ap,p
2
δΘ2

l(p) + δ1/2Θl(p)εp +
d∑
q>p

ap,qδΘl(q)Θl(p)

)

where µp(δ,W ), ψ(δ,W ) and εp are defined in (4.3.4). Recall that Θl(p) = δ−1/2∆p
p so

that ηω(Θ) =
∑d

p=1 ηp(δ,W ). Now the decomposition (4.3.5) may be written as

Zδ = Vω + Aδ(0, X0)Θ + ηω(Θ).

We embed this relation in Rm and obtain

JΘ(Zδ) = J0(Vω) + ΓδΘ + J0(ηω(Θ)).

Multiplying with Γ−1
δ we set Ṽω = Γ−1

δ J0(Vω), η̃ω(Θ) = Γ−1
δ J0(ηω(Θ)), Z̃ = Γ−1

δ JΘ(Zδ).
Now we define

G = Θ + η̃ω(Θ), (4.3.14)

and we have

Z̃ = Ṽω + Θ + η̃ω(Θ) = Ṽω +G. (4.3.15)



84 CHAPTER 4. DIFFUSIONS UNDER HÖRMANDER OF ORDER ONE

4.4 Lower bound for the density in short time

In this section we prove the lower bound of Theorem 4.5. First, using the local
inversion theorem, we deal with the ”Gaussian” part of the diffusion. We find a lower
bound for the density conditioning in an appropriate way on the Brownian paths.
Regarding this, we refer to section 4.4.3 for some technical results. The second step
requires Malliavin calculus techniques, presented in Chapter 2. Those techniques allow
us to handle the ”non-Gaussian” remainder, and find lower bounds for the density of
the rescaled diffusion F (cf. (4.4.14)). We recover the result for pXδ with a suitable
change of variable.

Let Xt be solution of (4.1.1), and X0 its initial condition. We introduce the class
of constants

C = {C = K (n(0, X0)/λ(0, X0))q ,∃K, q ≥ 1constants} , 1/C = {1/C : C ∈ C}.

In what follows when we write C we mean constants in this class, which may vary
from line to line. In this section, since the initial condition is fixed and the notation
heavy, we write σ = σ(0, X0), b = b(0, X0), Aδ = Aδ(0, X0). We recall that 〈σ〉 is the
subspace of Rn spanned by σi, i = 1, . . . , d. In what follows we prove the lower bound
of the following theorem:

Theorem 4.5. There exist r∗, δ∗ ∈ 1/C, C ∈ C such that for δ ≤ δ∗, |y−X0−bδ|Aδ ≤ r

1

Cδn−
dim〈σ〉

2

≤ pXδ(y)
C

δn−
dim〈σ〉

2

. (4.4.1)

4.4.1 Localized density

We need to determine a set of Brownian trajectories where we have a quantitative
control on the ”non-degeneracy” of the main Gaussian Θ, and for this purpose we
use the notion of localization introduced in [7]. Suppose to have a probability space
(Ω,F ,P) and a random variable U ∈ [0, 1]. We denote dPU = UdP, and pF,U the
density of a r.v. F when we endow Ω with the measure UdP. For details on this
aspect (in particular in relation with Malliavin calculus) we refer to section 2.1.4. We
denote

qp(B) =
∑
j 6=p

∣∣∣Bj
p
d
−Bj

p−1
d

∣∣∣+
∑

j 6=p,i 6=p

∣∣∣∣∣
∫ p

d

p−1
d

(Bj
s −B

j
i−1
d

)dBi
s

∣∣∣∣∣ and q(B) =
d∑
p=1

qp(B).

For fixed ε, ρ > 0, for p = 1, ..., d we define the sets

Λρ,ε,p =
{

detQp ≥ ερ, sup
p−1
d
≤t≤ p

d

∑
j 6=p

∣∣∣Bj
t −B

j
p−1
d

∣∣∣ ≤ ε−ρ, qp(B) ≤ ε
}
.

By (4.4.25), using the scale invariance of Brownian Motion, we may find some con-
stants c and ε∗ such that

P(Λρ,ε,p) ≥ cε
1
2
d(d+1) for ε ≤ ε∗.
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Let Λρ,ε = ∩dp=1Λρ,ε,p. Using the independence property we obtain

P
(
Λρ,ε

)
≥ c× ε

1
2
d2(d+1). (4.4.2)

On the set Λρ,ε ∈ G we have detQ =
∏d

p=1 detQp ≥ εdρ and λ∗(Q) ≤ ε−2ρ. Remark
that

λ∗(Q)√
m
≤ |Q|l :=

(
1

m

∑
1≤i,j≤m

Q2
i,j

)1/2

≤ λ∗(Q). (4.4.3)

For a > 0 we introduce the following function,

ψa(x) = 1|x|≤a + exp

(
1− a2

a2 − (x− a)2

)
1a<|x|<2a,

which is a mollified version of 1[0,a]. We can now define our localization variables.
Taking a1 = ε−dρ, a2 = ε−2ρ, a3 = dε, we set

Ũ = (ψa1(1/ detQ))ψa2(|Q|l)ψa3(q(B)).

The following inclusions hold:

Λρ,ε ⊂
{

detQ ≥ εdρ, |Q|l ≤ ε−2ρ, q(B) ≤ dε
}

= {Ũ = 1} ⊂ {Ũ 6= 0}. (4.4.4)

We can consider Ũ as a smooth version of the indicator function of Λρ,ε. We also
define, for fixed r, Ū =

∏
i=1n ψr(Θi). Remark that Ũ depends on ε and Ū depends

on r, and that Ũ is G measurable. We set U = Ū Ũ .

Lemma 4.6. There exist C ∈ C, ε, r ∈ 1/C such that for |z| ≤ r/2,

1

C
≤ pZ̃,U(z). (4.4.5)

Proof. STEP 1: We start proving that there exist C ∈ C, ε, r ∈ 1/C such that, on
Ũ 6= 0, for |z| ≤ r/2

1

C
≤ pZ̃,Ū ,|G(z).

Here pZ̃,Ū ,|G represents the localized density of Z̃ conditioned to G, i.e.

E[f(Z̃)Ū |G] =

∫
f(z)pZ̃,Ū ,|G(z)dz. (4.4.6)

for f positive, measurable, with support included in B(0, r/2). On Ũ 6= 0, λ∗(Q) ≤
2
√
mε−2ρ, and

εdρ

2
≤ detQ ≤ λ∗(Q)λ∗(Q)m−1 ≤ λ∗(Q)(2

√
m)m−1ε−2ρ(m−1),
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and this gives λ∗(Q) ≥ ε3mρ

(2
√
m)m

. So, fixing ρ = 1/(8m), for ε ≤ ε∗,

1

16m2

λ∗(Q)

λ∗(Q)
≥ Cmε

3mρ+2ρ ≥ ε. (4.4.7)

To apply (2.2.16) to G = Θ + η̃ω(Θ) (with m = d), we need to check the hypothesis
of Lemma 2.13. We use in the following the notation of section 2.2.3, in particular for
c∗(η̃ω, r) and ci(η̃ω). The third order derivatives of ηω are null so we have c3(η̃ω) = 0.
For i = l(p) and j = l(q) we have ∂i,jηω(Θ) = δaij, otherwise we get ∂i,jηω(Θ) = 0.
So |∂i,jηω(Θ)| ≤ δ

∑
i,j ai,j. Using (4.7.2) we obtain

|∂i,j η̃ω(Θ)| = |J0(∂i,jηω(Θ))|Γδ = |∂i,jηω(Θ)|Aδ ≤ C ∈ C.

So
1

C1

≤ 1

16m2(c2(η̃ω) +
√
c3(η̃ω))

, ∃C1 ∈ C (4.4.8)

We compute now the first order derivatives. For j /∈ {l(p) : p = 1, ..., d} we have
∂jηω = 0 and for j = l(p) we have

∂pηω(Θ) = δ
d∑
q=p

ap∧q,p∨qΘl(q) +
√
δεp.

So, as above, we obtain |∂j η̃ω(Θ)| ≤ C(|Θ|+ |εj|/
√
δ). Remark now that on {Ū 6= 0}

we have |Θ| ≤ Cr, and on {Ũ 6= 0} we have q(B) ≤ 2dε, so

d∑
j=1

|εj| ≤ C
√
δq(B) ≤ C

√
δε. (4.4.9)

Therefore

c∗(η̃ω, 16r) ≤ C2(r + ε), ∃C2 ∈ C. (4.4.10)

We also consider the following estimate of
∣∣∣Ṽω∣∣∣ = |Vω|Aδ . We have

∣∣∣∣∣
d∑
p=1

apµp(δ,W )

∣∣∣∣∣
Aδ

=
1√
δ
|AδJ0(µp(δ,W ))|Aδ ≤

1√
δ
|µp(δ,W ))| ≤ Cq(B)

and

|ψ(δ,W )|Aδ ≤
|ψ(δ,W )|
δ
√
λ#(A)

≤ Cq(B)

so ∣∣∣Ṽω∣∣∣ ≤ Cq(B) ≤ C3ε, ∃C3 ∈ C. (4.4.11)
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We consider (4.4.11), and fix r
ε

= 2C3 ∈ C, so |Ṽω| ≤ r/2. Then we consider (4.4.10),
and

c∗(η̃ω, 4r) ≤ C2(2C3 + 1)ε ≤ ε1/2, for ε ≤ 1

(4C2C3)2
∈ 1

C
.

Moreover, looking at (4.4.8)

r = 2C3ε ≤
1

C1

for ε ≤ 1

2C1C3

∈ 1

C
.

So, with

ε = ε∗ ∧ 1

(4C2C3)2
∧ 1

2C1C3

∈ 1

C
,

and r = 2C3ε we have

|Ṽω| ≤
r

2
; c∗(η̃ω, 4r) ≤ ε1/2; r ≤ 1

C1

.

Now, using also (4.4.7) and (4.4.8), we prove that (2.2.15) holds, and we can apply
Lemma 2.13. We obtain

1

K detQ1/2
exp

(
− K

λ∗(Q)
|z|2
)
≤ pG,Ū,|G(z)

for |z| ≤ r, where K does not depend on σ, b. Remark that, using λ∗(Q) ≥ ε3mρ

(2
√
m)m

,

ρ = 1
8m

, r/ε = 2C1 and ε ≤ 1/(4C2C1)2,

|z|2

λ∗(Q)
≤ (2

√
m)mr2

ε3mρ
≤ (2
√
m)m

r2

ε
≤ (2
√
m)m

r2

ε2
ε ≤ (2

√
m)m(2C1)2ε ≤ K̄ (4.4.12)

where K̄ does not depend on σ, b. Therefore 1
C
≤ pG,Ū,|G(z), for |z| ≤ r, for some

C ∈ C, on Ũ 6= 0. Now recall |Ṽω| ≤ r/2 and (4.3.15). Hence for |z| ≤ r/2

1

C
≤ pZ̃,Ū ,|G(z). (4.4.13)

STEP 2: We want to get rid of the conditioning on G to have non-conditional bound
for pZ̃,U . Since Ũ is G measurable, for f measurable, non-negative, with support
included in B(0, r/2),

E[f(Z̃)U ] = E[E[f(Z̃)Ū |G]Ũ ]

and, by (4.4.6) and (4.4.13), we obtain

1

C
E[Ũ ]

∫
f(z)dz ≤ E[f(Z̃)U ]

Λρ,ε ⊂ {Ũ = 1}, (4.4.2) and ε ∈ 1/C imply E[Ũ ] ≥ 1
C

, so (4.4.5) is proved.
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4.4.2 Lower bound for the density

We use results and notations of chapter 2. In particular, we denote with D the
Malliavin derivative with respect to W , the Brownian Motion driving equation (4.1.1).

We recall (4.3.3) and Γδ =

(
Aδ
Γδ

)
and define

F = Z̃ + R̃, with R̃ = Γ−1
δ (Rδ, 0m−n). (4.4.14)

Lemma 4.7. There exist C ∈ C, δ∗, r ∈ 1/C such that for δ ≤ δ∗, |z| ≤ r/2,

1

C
≤ pF,U(z). (4.4.15)

Proof. We want to apply Theorem 2.4 with F = F and G = Z̃ defined in (4.3.15).
Fix p = 32n. We are going to check that C1 ∈ C. Moreover, from (4.4.14),

‖∆2(F − Z̃)‖p = ‖R̃‖2,p ≤ |Γ−1
δ |‖R‖2,p ≤ Cδ−1δ3/2 = C ′

√
δ, C ′ ∈ C.

Choosing an appropriate δ ≤ δ∗ ∈ 1/C, since (4.4.5),

1

C
≤ pF,U(z), for |z| ≤ r/2.

Let us check that the quantities involved in the definition of C1 in Theorem 2.4 are in
C. For nF,G,U(1, p) this is elementary. We start with mU(k, p). Standard computations
and (4.4.22) give ∀p

‖1/ detQ‖2,p + ‖ |Q|l‖2,p + ‖q(B)‖2,p + ‖Θ‖2,p ≤ C,

so we can apply (2.1.4) and conclude

mU(1, p) ≤ C, ‖1− U‖1,p ≤ C, ∃C ∈ C. (4.4.16)

Now (see (4.3.15)),

〈γZ̃ξ, ξ〉 =
d∑
i=1

∫ δ

0

〈Di
sZ̃, ξ〉2 =

d∑
i=1

∫ si(δ)

si−1(δ)

〈Di
sZ̃, ξ〉2 =

d∑
i=1

∫ si(δ)

si−1(δ)

〈Di
sG, ξ〉2

≥
d∑
i=1

∫ si(δ)

si−1(δ)

1

2
〈Di

sΘ, ξ〉2 − 〈Di
sη(Θ), ξ〉2ds

= S1 + S2.

We have

S2 =
d∑
i=1

∫ si(δ)

si−1(δ)

〈∇η(Θ)Di
sΘ, ξ〉2ds =

d∑
i=1

∫ si(δ)

si−1(δ)

〈Di
sΘ,∇η(Θ)T ξ〉2ds ≤ λ∗(Q)|∇η(Θ)|2|ξ|2
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and S1 =
∑d

i=1

∫ si(δ)
si−1(δ)

1
2
〈Di

sΘ, ξ〉2 ≥
λ∗(Q)

2
, so

λ∗(γZ̃) ≥ λ∗(Q)

(
1

2
− λ∗(Q)

λ∗(Q)
|∇η(Θ)|2

)
.

On {Ũ 6= 0}, c∗(η,Θ) ≤
√
λ∗(Q)/λ∗(Q)

2m
(proved in lemma 4.6). Since |∇η(Θ)| ≤

mc∗(η,Θ),

|∇η(Θ)| ≤ 1

2

√
λ∗(Q)

λ∗(Q)
,

and therefore 4λ∗(γZ̃) ≥ λ∗(Q) ≥ ε3mρ, which implies ΓZ̃,U(p) ≤ 4ΓΘ,U(p) ≤ C ∈
C.

We now make the change of variable that gives us (4.4.1), proving that there exist
C ∈ C, δ∗, r∗ ∈ 1/C such that for δ ≤ δ∗, |y −X0 − bδ|Aδ ≤ r∗,

1

Cδn−
dim〈σ〉

2

≤ pXδ(y).

Proof. We take the same δ∗, r as in Lemma 4.7. Writing

X̃ = ΓδΘ, X̄δ = (Xδ, X̃), X̄0 = (X0 + bδ, 0m−n)

and recalling (4.3.1), (4.3.15), (4.4.14), we have

X̄δ = X̄0 + ΓδF. (4.4.17)

We denote with Pr : Rm → Rn the projection of the first n components, and with
Pr : Rm → Rm−n the projection of the last m−n components. From (4.4.17) we have

Xδ = X0 + bδ + PrΓδF, X̃ = PrΓδF. (4.4.18)

Writing (4.4.17) in coordinates as

y = (y(1), y(2)) = (X0 + bδ + PrΓδz, PrΓδz) = X̄0 + Γδz,

we want to recover a lower bound for pXδ(y(1)) from (4.4.15). From (4.3.10) follows

{|Xδ −X0 − bδ|Aδ ≤ r/4} ∩ {|X̃| ≤ r/4} ⊂ {|X̄δ − X̄0|Γδ ≤ r/2} = {|F | ≤ r/2}
(4.4.19)

We consider a positive, measurable function f : Rn → R with support included in

{y(1) : |y(1) −X0 + bδ|Aδ ≤ r/4} (4.4.20)
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Applying (4.4.18), (4.4.19) and (4.4.15) we obtain

E[f(Xδ)] ≥ EU [f(Xδ)] = EU [f(X0 + bδ + PrΓδF )]

=

∫
f(X0 + bδ + PrΓδz)pF,U(z)dz

≥ 1

C

∫
{|z|≤r/2}

f(X0 + bδ + PrΓδz)dz

≥ 1

C| det Γδ|

∫
{|y(1)−X0−bδ|Aδ≤r/4}∩{|y(2)|≤r/4}

f(y(1))dy(1)dy(2)

=
1

C
√
| detAδATδ |

(r
4

)m−n ∫
{|y(1)−X0−b(0,X0)δ|Aδ≤r/4}

f(y1)dy1.

From (4.2.3) and Cauchy-Binet formula we obtain

1

C
δn−

dim〈σ〉
2 ≤

√
| detAδATδ | ≤ Cδn−

dim〈σ〉
2 (4.4.21)

Since r ∈ 1/C, this gives that for some C ∈ C, r∗ ∈ 1/C, for |y−X0 +b(0, X0)δ|Aδ ≤ r∗

1

Cδn−
dim〈σ〉

2

≤ pXδ(y).

4.4.3 Support Property

In this section we prove ((4.4.25)). Let B = (B1, ..., Bd−1) be a standard Brownian
motion. We consider the analogues of the covariance matrix Qi(B) considered in the
previous sections: we define a symmetric square matrix of dimension d× d by

Qd,d = 1, Qd,j = Qj,d =

∫ 1

0

Bj
sds, j = 1, ..., d− 1,

Qj,p = Qp,j =

∫ 1

0

Bj
sB

p
sds, j, p = 1, ..., d− 1

and we denote by λ∗(Q) (respectively by λ∗(Q)) the lower (respectively larger) eigen-
value of Q.

For a measurable function g : [0, 1]→ Rd−1 we denote

αg(ξ) = ξd +

∫ 1

0

〈gs, ξ∗〉 ds, βg(ξ) =

∫ 1

0

〈gs, ξ∗〉2 ds−
(∫ 1

0

〈gs, ξ∗〉 ds
)2

with

ξ = (ξ1, ..., ξd) ∈ Rd and ξ∗ = (ξ1, ..., ξd−1).

We need the following two preliminary lemmas.
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Lemma 4.8. With g(s) = Bs, s ∈ [0, 1] we have

〈Qξ, ξ〉 = α2
B(ξ) + βB(ξ).

As a consequence, one has

λ∗(Q) = inf
|ξ|=1

(α2
B(ξ) + βB(ξ)) and λ∗(Q) ≤ sup

|ξ|=1

(α2
B(ξ) + βB(ξ)) ≤

(
1 + sup

t≤1
|Bt|

)2
.

Taking ξ∗ = 0 and ξd = 1 we obtain 〈Qξ, ξ〉 = 1 so that λ∗(Q) ≤ 1 ≤ λ∗(Q).

Proof. By direct computation

〈Qξ, ξ〉 = ξ2
d + 2ξd

∫ 1

0

〈Bs, ξ∗〉 ds+

(∫ 1

0

〈Bs, ξ∗〉 ds)
)2

+

∫ 1

0

〈Bs, ξ∗〉2 ds−
(∫ 1

0

〈Bs, ξ∗〉 ds
)2

=

(
ξd +

∫ 1

0

〈Bs, ξ∗〉 ds
)2

+

∫ 1

0

〈Bs, ξ∗〉2 ds−
(∫ 1

0

〈Bs, ξ∗〉 ds
)2

.

The remaining statements follow straightforwardly.

Proposition 4.9. For each p ≥ 1 one has

E(|detQ|−p) ≤ Cp,d <∞ (4.4.22)

where Cp,d is a constant depending on p, d only.

Proof. By Lemma 7-29, pg 92 in [20], for every p ∈ (0,∞) one has

1

|detQ|p
≤ 1

Γ(p)

∫
Rd
|ξ|d(2p−1) e−〈Qξ,ξ〉dξ.

Let θ(ξ∗) :=
∫ 1

0
〈Bs, ξ∗〉 ds. Using the previous lemma∫

Rd
|ξ|d(2p−1) e−〈Qξ,ξ〉dξ =

∫
Rd

(ξ2
d + |ξ∗|2)d(2p−1)/2e−(ξd+θ(ξ∗))2−βB(ξ∗)dξ

≤ C

∫
Rd−1

((1 + θ2(ξ∗))
d(2p−1)/2 + |ξ∗|d(2p−1))e−βB(ξ∗)dξ∗

≤ C

∫
Rd−1

sup
t≤1

1 ∨ |Bt|d(2p−1) (1 + |ξ∗|d(2p−1)+1)e−βB(ξ∗)dξ∗.

We integrate and we use Schwartz inequality in order to obtain

E
( 1

|detQ|p
)
≤ C + C

∫
{|ξ∗|≥1}

(E((1 + |ξ∗|d(2p−1)+1)2e−2βB(ξ∗)))1/2dξ∗.
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For each fixed ξ∗ the process bξ∗(t) := |ξ∗|−1 〈Bt, ξ∗〉 is a standard Brownian motion

and βB(ξ∗) = |ξ∗|2
∫ 1

0
(bξ∗(t) −

∫ 1

0
bξ∗(s)ds)

2dt =: |ξ∗|2 Vξ∗ where Vξ∗ is the variance of
bξ∗ with respect to the time. Then it is proved in [46] (see (1.f), p. 183) that

E(e−2βB(ξ∗)) = E(e−2|ξ∗|2Vξ∗ ) =
2 |ξ∗|2

sinh 2 |ξ∗|2
.

We insert this in the previous inequality and we obtain E(|detQ|−p) <∞.

We are now able to give the main result in this section. We define

q(B) =
d−1∑
i=1

∣∣Bi
1

∣∣+
∑
j 6=p

∣∣∣∣∫ 1

0

Bj
sdB

p
s

∣∣∣∣ (4.4.23)

and for ε, ρ > 0 we denote

Λρ,ε(B) = {detQ ≥ ερ, sup
t≤1
|Bt| ≤ ε−ρ, q(B) ≤ ε}. (4.4.24)

Proposition 4.10. There exist some universal constants cρ,d, ερ,d ∈ (0, 1) (depending
on ρ and d only) such that for every ε ∈ (0, ερ,d) one has

P (Λρ,ε(B)) ≥ cρ,d × ε
1
2
d(d+1). (4.4.25)

Proof. Using the previous proposition and Chebyshev’s inequality we get

P (detQ < ερ) ≤ εpρE |detQ|−p ≤ Cp,dε
pρ and P (sup

t≤1
|Bt| > ε−ρ) ≤ exp(− 1

Cε2ρ
).

Let q′(B) =
∑d−1

i=1 |Bi
1|+

∑
j<p

∣∣∣∫ 1

0
Bj
sdB

p
s

∣∣∣ . Since
∣∣∣∫ 1

0
Bj
sdB

p
s

∣∣∣ ≤ ∣∣Bj
1

∣∣ |Bp
1 |+

∣∣∣∫ 1

0
Bp
sdB

j
s

∣∣∣
we have q(B) ≤ 2q′(B) + q′(B)2 so that {q′(B) ≤ 1

3
ε} ⊂ {q(B) ≤ ε}. We will now use

the following fact: consider the diffusion process X = (X i, Xj,p, i = 1, ..., d, 1 ≤ j <
p ≤ d) solution of the equation dX i

t = dBi
t, dX

j,p
t = Xj

t dB
p
t . The strong Hörmander

condition holds for this process and the support of the law of X1 is the whole space.
So the law of X1 is absolutely continuous with respect to the Lebesgue measure and
has a continuous and strictly positive density p. This result is well known (see for
example [72] or [7]). We denote cd := inf |x|≤1 p(x) > 0 and this is a constant which
depends on d only. Then, by observing that q′(B) ≤

√
m |X1|, where m = 1

2
d(d + 1)

is the dimension of the diffusion X, we get

P (q(B) ≤ ε) ≥ P
(
q′(B) ≤ ε

3

)
≥ P

(
|X1| ≤

ε

3
√
m

)
≥ εm

(3
√
m)m

× c̄d,

with c̄d > 0. So finally we obtain

P (Λρ,ε(B)) ≥ c̄dε
1
2
d(d+1) − Cp,dεpρ − exp(− 1

Cε2ρ
).

Choosing p > 1
2ρ
d(d+ 1) and ε small we obtain our inequality.
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4.5 Upper bound for the density in short time

4.5.1 Upper bound for the density

We prove here the upper bound of theorem (4.5).

Theorem 4.5 . (Upper bound). There exist C ∈ C, δ∗ ∈ 1/C such that for δ ≤ δ∗,

pXδ(y) ≤ C

δn−
dim〈σ〉

2

.

Proof. As for the lower bound, we rescale Xδ, but using a different matrix α that we
are now going to define.

We consider the matrix Aδ(t, x) = Aδ, for fixed δ > 0, and take a singular value
decomposition (SVD): Aδ = UΣV T , where U is a n × n orthogonal matrix and V T

denotes the transpose of the m × m orthogonal matrix V . Σ is a n × m matrix,
Σ = [Σ̄ 0] where Σ̄ is a n × n diagonal matrix with positive real numbers on the
diagonal (since Aδ has full row rank). We define α = UΣ̄. Note that α is a n × n
matrix. We also define the change of variable

Tα : Rn → Rn, Tα(y) = α−1y,

and its adjoint T ∗α(y) = α−1,Ty.
Properties:

|y|Aδ = |Tαy| = |y|α, ∀y ∈ Rm, and detα =
√
AδATδ (4.5.1)

∀v ∈ Rn with |v| = 1, ∃j = 1, . . . ,m : |T ∗αv · A
j
δ| ≥

1

m
(4.5.2)

∀j = 1, . . . , d,
√
δ|Tασj| ≤ C (4.5.3)

Proof. 113 (4.5.1) follows easily from α = UΣ̄ and the definition of | · |M . Now,
(T ∗αv)TAδ = vTα−1Aδ = [vT0]V T . So (T ∗αv)TAδ = 1, and therefore ∃j = 1, . . . ,m :
|T ∗αv · A

j
δ| ≥ 1

m
, so (4.5.2) is proved. Moreover, TαAδ = [Idn 0]V T and so ∀i =

1, . . . ,m, |TαAiδ| ≤ 1. For Aiδ = σj
√
δ we have (4.5.3).

We define now
F = α−1(Xδ −X0) = Tα(Xδ −X0)

We use now some estimates from chapter 2. From Hölder inequality applied to repre-
sentation 2.1.2 with p = 2n

pF (z) ≤ E[∇Qn(F − z)H(F, 1)] ≤ ‖H(F, 1)‖2n‖Qn(F − z)‖2n/(2n−1),

and since ‖Qn(F − z)‖2n/(2n−1) ≤ ‖H(F, 1)‖4n(n−1)
2n (proved in [5], see equation (2.2.6)

in this work), we have

pF (z) ≤ C‖H(F, 1)‖4n2

2n .
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Equation (2.2.2) with V = U = 1, k = 0, p = 2n, p3 = p4 = 10n gives ‖H(F, 1)‖2n ≤
CΓF (10n)2nF (0, 10n)3. In next section, lemma 4.12 we prove ΓF (10n) ≤ C ∈ C.
nF (0, 10n) ≤ C ∈ C from standard computation. We prove just ‖F‖p ≤ C, ∀p, for
the Malliavin derivatives the proof is heavier but analogous.

F = Tα

(
d∑
j=1

∫ δ

0

σj(t,Xt) ◦ dW j
t +

∫ δ

0

b(t,Xt)dt

)

= Tα

(
d∑
j=1

σj(0, X0)W j
δ +

d∑
j=1

∫ δ

0

σj(t,Xt)− σj(0, X0) ◦ dW j
t +

∫ δ

0

b(t,Xt)dt

)

= Tα

(
d∑
j=1

σj(0, X0)W j
δ +Bδ

)
.

Therefore

|F | =

∣∣∣∣∣Tα
(

d∑
j=1

σj(0, X0)W j
δ +Bδ

)∣∣∣∣∣
≤

d∑
j=1

|Tασj(0, X0)W j
δ |+ |TαBδ|.

(4.5.3) implies E|Tασj(0, X0)W j
δ |p ≤ C, j = 1, . . . , d. |TαBδ| ≤ |Bδ|Aδ ≤ |Bδ|/δ, and

since Bδ is of order δ we conclude that E|F |p ≤ C ∈ C.
ΓF (p), ∀p is bounded uniformly in δ ↓ 0, as we prove in the following section, and

we conclude that pF (z) ≤ C ∈ C. The upper bound for the density of Xδ comes from
a simple change of variable. For a positive, measurable f : Rn → R

Ef(Xδ) = Ef(X0+αF ) =

∫
f(X0+αz)pF (z)dz ≤ C

∫
f(X0+αz)dz ≤ C

| det(α)|

∫
f(y)dy.

so pXδ(y) ≤ C
|detα| = C√

AδA
T
δ

≤ C

δn−
dim〈σ〉

2

(from (4.4.21)).

4.5.2 Covariance Matrix of the rescaled diffusion

Recall ΓF (p) = 1 + (E|λ∗(γF )|−p)1/p. We need to prove that this quantity is bounded
uniformly in δ ↓ 0, (in particular for p = 10n), to be able to prove the upper bound
for pF (see Lemma 4.7). We need this preliminary result.

Lemma 4.11. Take at, bt, t ∈ [0, T ] stochastic processes a.s. increasing, b0 = 0, p
fixed and E[bpt ] ≤ Cpt

(k+1)p. Suppose

at ≥
tk − bt
δk

.

Fix δ ≤ 1

2C
1/p
p

. For t ≤ δ, ε ≤ 1,

P(aδ ≤ ε) ≤ εp.
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Proof. Set

Sε = inf

{
s ≥ 0 : bs ≥

(δε)k

2

}
∧ δ,

Remark that for any p > 0

P(Sε < δε) = P
(
bpδε ≥

(
(δε)k

2

)p)
≤ 2p

Ebpδε
(δε)kp

≤ 2pCp(δε)
p

≤ εp.

On the other hand, on Sε ≥ δε,

aSε ≥ aδε ≥
(δε)k − (δε)k/2

δk
≥ εk/2.

Therefore for any p, for any ε ≤ 1,

P(aδ < εk/2) ≤ P(aSε < εk/2) ≤ P(Sε < δε) ≤ εp.

This implies that for for any p ≥ 1, for δ ≤ δp, ε ≤ 1,

P(aδ < ε) ≤ εp.

Lemma 4.12. For any q > 0 there exists δ∗ ∈ 1/C such that, for δ ≤ δ∗ ∈ 1/C,
ΓF (q) ≤ C ∈ C.

Proof. We need a bound for the moments of the inverse of

γF =
d∑

k=1

∫ δ

0

Dk
sFD

k
sF

Tds.

Following [79] we define the tangent flow of X as the derivative with respect to the
initial condition of X, Yt := ∂xXt. We also denote its inverse Zt = Y −1

t . They satisfy
the following stochastic differential equations (remark that the equations we consider
for X, Y and Z are all in Stratonovich form):

Yt = Id+
d∑

k=1

∫ t

0

∇σk(s,Xs)Ys ◦ dW k
s +

∫ t

0

∇b(s,Xs)Ysds

Zt = Id−
d∑

k=1

∫ t

0

Zs∇σk(s,Xs) ◦ dW k
s −

∫ t

0

Zs∇b(s,Xs)ds,
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where ∇σk and ∇b are the Jacobian matrix with respect to the space variable. It
holds

DsXδ = YδZsσ(s,Xs).

Applying Ito’s formula we have the following representation for φ ∈ C2:

Ztφ(t,Xt) = φ(0, x) +

∫ t

0

Zs

d∑
k=1

[σk, φ](s,Xs)dW
k
s

+

∫ t

0

Zs

{
[b, φ] +

1

2

d∑
k=1

[σk, [σk, φ]] +
dφ

ds

}
(s,Xs) ds.

(4.5.4)

(Details in [79] for the autonomous case. Remark that here we are taking an Ito
integral). We now compute

DsF = α−1DsXδ = α−1YδZsσ(s,Xs) = α−1Yδαα
−1Zsσ(s,Xs)

so

γF = α−1Yδα γ̄F (α−1Yδα)T where γ̄F = α−1

∫ δ

0

Zsσ(s,Xs)σ(s,Xs)
TZT

s ds α
−1,T ,

and
γ̂F = (α−1Yδα)−1,T γ̄−1

F (α−1Yδα)−1

Since
(α−1Yδα)−1 = α−1Zδα = Idd + α−1(Zδ − Idd)α

standard computations give

Eλ∗
(
(α−1Yδα)−1

)q ≤ C ∈ C, ∀q.

We now need to estimate the reduced matrix, i.e. prove

Eλ∗(γ̄F )−q ≤ C ∈ C, ∀q. (4.5.5)

We recall lemma 3.9, which is a slight modification of Lemma 2.3.1. in [79], and we
use it again in this proof.

Lemma: Let γ be a symmetric nonnegative definite n × n matrix. Denoting
|C| =

∑
1≤i,j≤n |γi,j|2)1/2, we assume that E|C|p+1 <∞, and that for ε ≤ εp+2n,

sup
|ξ|=1

P[〈γξ, ξ〉 < ε] ≤ εp+2n

Then
Eλ∗(γ)−p ≤ Cε−pp+2n.

We show now that for any p > 0, sup|v|=1 P (〈γ̄Fv, v〉 ≤ ε) ≤ εp, for δ ≤ δp for
ε ≤ εp ∈ 1/C not depending on δ. Together with the previous lemma this implies
(4.5.5).
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Denote ξ = T ∗αv. From (4.5.2) and the definition (4.2.3) of Aδ we have two possible
cases: A) |ξ · σj(t, x)| ≥ 1

mδ1/2
for some j = 1 . . . d, or B) |ξ · [σj, σl](t, x)| ≥ 1

mδ
for

some j, l = 1 . . . d, j 6= l. Moreover

αγ̄Fα
T =

∫ δ

0

Zsσ(s,Xs)σ(s,Xs)
TZT

s ds. (4.5.6)

Therefore, with ξ = T ∗αv, we have for any q > 1

P(〈γ̄Fv, v〉 ≤ εq) = P
(
ξT
∫ δ

0

Zsσ(s,Xs)σ(s,Xs)
TZT

s ds ξ ≤ εq
)

We decompose this probability:

P(〈γ̄Fv, v〉 ≤ εq) = P

(
d∑
i=1

∫ δ

0

|ξTZtσi(t,Xt)|2dt ≤ εq

)

≤ P

(
d∑
i=1

∫ δ

0

|ξTZtσi(t,Xt)|2dt ≤ εq and
d∑

i,k=1

∫ δ

0

|ξTZt[σi, σk](t,Xt)|2dt ≤
ε

δ

)

+ P

(
d∑
i=1

∫ δ

0

|ξTZtσi(t,Xt)|2dt ≤ εq and
d∑

i,k=1

∫ δ

0

|ξTZt[σi, σk](t,Xt)|2dt >
ε

δ

)
=: I1 + I2

To estimate I1 we distinguish two cases:
Case A): |ξ · σj(t, x)| ≥ 1

mδ1/2
for some j = 1 . . . d. We fix this j. For t̄ ≤ δ,

I1 ≤ P

(∫ δ

0
|ξTZtσj(t,Xt)|2dt ≤ εq and

∫ δ

0
|ξT

d∑
k=1

Zt[σk, σj ](t,Xt)|2dt <
ε

δ

)

≤ P

(∫ t̄

0
|ξTZtσj(t,Xt)|2dt ≤ εq and

∫ t̄

0
|
∫ t

0
ξT

d∑
k=1

Zs[σk, σj ](s,Xs)dW
k
s |2dt <

t̄

12m2δ

)

+ P

{∫ t̄

0
|
∫ t

0
ξT

d∑
k=1

Zs[σk, σj ](s,Xs)dW
k
s |2dt ≥

t̄

12m2δ
and

∫ t̄

0
|ξT

d∑
k=1

Zt[σk, σj ](t,Xt)|2dt <
ε

δ

}

Now remark that from the exponential martingale inequality, setting
us = (ξTZs[σk, σj](s,Xs))k=1,...,d,

P

{∫ t̄

0

|
d∑

k=1

∫ t

0

uksdW
k
s |2dt ≥

t̄

12m2δ
,

∫ t̄

0

|ut|2dt <
ε

δ

}

≤ P

{
sup

0≤t≤t̄
|

d∑
k=1

∫ t

0

uksdW
k
s |2 ≥

1

t̄

t̄

12m2δ
,

∫ t̄

0

|ut|2dt <
ε

δ

}

≤ 2 exp

(
− 1

12m2δ

δ

2ε

)
= 2 exp

(
− 1

24m2ε

)
.

(4.5.7)



98 CHAPTER 4. DIFFUSIONS UNDER HÖRMANDER OF ORDER ONE

So ∀p > 1,

P
{∫ t̄

0

|
∫ t

0

ξT
d∑

k=1

Zs[σk, σj](s,Xs)dW
k
s |2dt ≥

t̄

12m2δ

and

∫ t̄

0

|ξT
d∑

k=1

Zt[σk, σj](t,Xt)|2dt <
ε

δ

}
< εp.

Now we define D :=
{∫ t̄

0
|
∫ t

0
ξT
∑δ

k=1 Zs[σk, σj](s,Xs)dW
k
s |2dt < t̄

12m2δ

}
and prove

P

({∫ t̄

0

|ξTZtσj(t,Xt)|2dt ≤
εq

4m2

}
∩D

)
≤ εp

(equivalent to the desired estimate P
({∫ t̄

0
|ξTZtσj(t,Xt)|2dt ≤ εq

}
∩D

)
≤ εp). From

representation (4.5.4), for φ = σj we find

Ztσj(t,Xt) = σj(0, X0) +

∫ t

0

d∑
k=1

Zs[σk, σj](s,Xs)dW
k
s +Rt,

with

Rt =

∫ t

0

Zs

{
[b, σj] +

1

2

d∑
k=1

[σk, [σk, σj]] +
dφ

ds

}
(s,Xs) ds.

From (a+ b+ c)2 ≥ a2/3− b2 − c2 and |ξ · σj(x)| ≥ 1
mδ1/2∫ t̄

0

|ξTZtσj(t,Xt)|2dt

≥ t̄|ξTσj(0, X0)|2

3
−
∫ t̄

0

|
d∑

k=1

∫ t

0

ξTZs[σk, σj](s,Xs)dW
k
s |2dt−

∫ t̄

0

|ξTRt|2dt

≥ t̄

3δm2
−
∫ t̄

0

|
d∑

k=1

∫ t

0

ξTZs[σk, σj](s,Xs)dW
k
s |2dt−

∫ t̄

0

|ξTRt|2dt

and on D ∫ t̄

0

|ξTZtσj(t,Xt)|2dt ≥
t̄

4m2δ
−
∫ t̄

0

|ξTRt|2dt,

so

4m2

∫ t̄

0

|ξTZtσj(t,Xt)|2dt ≥
t̄− 4m2δ

∫ t̄
0
|ξTRt|2dt

δ
.

We set

at̄ = 4m2

∫ t̄

0

|ξTZtσj(t,Xt)|2dt ∨
t̄− 4m2δ

∫ t̄
0
|ξTRt|2dt

δ
,
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and we have {∫ t̄

0

|ξTZtσj(t,Xt)|2dt ≤
εq

4m2

}
∩D = {at̄ ≤ εq} ∩D

Standard computations, considering also |ξ| = |T ∗αv| ≤ |v|C/δ = C/δ, give

E(
∫ t̄

0
|ξTRt|2dt)q ≤ Ct̄3q/δ2q, so E(4δm2

∫ t̄
0
|ξTRt|2dt)q ≤ Ct̄2q. Setting

bt̄ = 4δm2

∫ t̄

0

|ξTRt|2dt,

we can apply lemma 4.11, and we have

P

({∫ t̄

0

|ξTZtσj(t,Xt)|2dt ≤
εq

4m2

}
∩D

)
= P({at̄ ≤ εq} ∩D) ≤ P(at̄ ≤ εq) ≤ εp.

We obtain I1 < εp for any p > 1, for δ ≤ δp.
Case B) |ξ · [σj, σl](t, x)| ≥ 1

mδ
for some j, l = 1 . . . d, j 6= l.

I1 ≤ P

(∫ t̄

0

|ξTZt[σj, σl](t,Xt)|2dt ≤
ε

δ

)
From representation (4.5.4) with φ = [σj, σl] we find

Zt[σj, σl](t,Xt) = [σj, σl](0, X0) +Rt,

with

Rt =

∫ t

0

Zs

d∑
k=1

[σk, [σj, σl]](s,Xs)dW
k
s

+

∫ t

0

Zs

{
[b, [σj, σl]] +

1

2

d∑
k=1

[σk, [σk, [σj, σl]]] +
dφ

ds

}
(s,Xs) ds.

(4.5.8)

From (a+ b)2 ≥ a2/2− b2 and |ξ · [σj, σl](x)| ≥ 1
mδ∫ t̄

0

|ξTZt[σj, σl](t,Xt)|2dt ≥
t̄|ξT [σj, σl](0, X0)|2

2
−
∫ t̄

0

|ξTRt|2dt =
t̄

2δ2m2
−
∫ t̄

0

|ξTRt|2dt.

Since

P

(∫ t̄

0

|ξTZs[σj, σl](s,Xs)|2ds ≤
ε

δ

)
≤ P

(
δ

∫ t̄

0

|ξTZs[σj, σl](s,Xs)|2ds ≤ ε

)
,

and

2m2δ

∫ t̄

0

|ξTZs[σj, σl](s,Xs)|2ds =
t̄− 2m2δ2

∫ t̄
0
|ξTRt|2dt

δ
.
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We apply lemma 4.11 with bt̄ = 2m2δ2
∫ t̄

0
|ξTRt|2dt. Indeed from (4.5.8) and |ξ| ≤ C/δ,

E|bt̄|q ≤ Ct̄2.

So we find I1 < εp, for δ ≤ δp, ε ≤ εp uniform in δ. We estimate now

I2 = P

(
d∑
i=1

∫ δ

0

|ξTZsσi(s,Xs)|2ds ≤ ε and
d∑

i,j=1

∫ δ

0

|ξTZs[σi, σj](s,Xs)|2ds >
ε

δ

)
.

We use again (4.5.4) and find

ξTZtσi(t,Xt) =
n∑
j=1

∫ t

0

ξTZs[σi, σj](s,Xs)dW
j
s

+

∫ t

0

ξTZs

{
[b, σi] +

1

2

n∑
j=1

[σj, [σj, σi]] +
dφ

ds

}
(s,Xs)ds.

We can apply tha variant of Norris Lemma given in Lemma 4.13. Indeed for t0 = δ,
from the fact that |ξ| ≤ C

δ
, we have

E[ sup
0≤s≤δ

|ξTZs[σi, σj](s,Xs)|p] ≤
C

δp
and

E

[
sup

0≤s≤δ
|ξTZs

{
[b, σi] +

1

2

d∑
k=1

[σk, [σk, σi]]

}
(s,Xs)|p

]
≤ C

δp
.

Thus

P

(
d∑
i=1

∫ δ

0

|ξTZsσi(s,Xs)|2ds ≤ εq and
d∑

i,j=1

∫ δ

0

|ξTZs[σi, σj](s,Xs)|2ds >
ε

δ

)
≤ εp

for any p > 0, δ ≤ δp for ε ≤ εp uniform in δ. Both the estimate of I1 and I2 do not
depend on v, so it also holds

sup
|v|=1

P(〈γ̄Fv, v〉 ≤ εq) ≤ εp

p > 0, δ ≤ δp for ε ≤ εp uniform in δ.

4.5.3 A specific version of Norris lemma

Lemma 4.13. Suppose u(t) = (u1(t), . . . , ud(t)) and a(t) are adapted processes such
that for some p ≥ 1

E
[

sup
0≤s≤t0

|us|p
]
≤ C

tp0
, E

[
sup

0≤s≤t0
|as|p

]
≤ C

tp0
. (4.5.9)
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for t0 ≤ 1. Set

Y (t) = y +

∫ t

0

a(s)ds+
d∑

k=1

∫ t

0

uk(s)dW
k
s

Then, for any q > 4, for any r > 0 such that 6r + 4 < q, there exists ε0(q, r, p) such
that ∀t0 ≤ 1, ε ≤ ε0(q, r, p)

P
{∫ t0

0

Y 2
t dt < εq,

∫ t0

0

|u(t)|2dt ≥ ε

t0

}
≤ εrp.

Proof. 114 Set θt = |at|+ |ut|, and

T = inf

{
s ≥ 0 : sup

0≤u≤s
θu >

ε−r

t0

}
∧ t0.

We have

P
{∫ t0

0

Y 2
t dt < εq,

∫ t0

0

|u(t)|2dt ≥ ε

t0

}
≤ A1 + A2.

where A1 = P[T < t0] and

A2 = P
{∫ t0

0

Y 2
t dt < εq,

∫ t0

0

|ut|2dt ≥
ε

t0
, T = t0

}
An upper bound for A1 easily follows from (4.5.9). Indeed

P[T < t0] ≤ P
[

sup
0≤s≤t0

θu >
ε−r

t0

]
≤ tp0ε

rpE
[

sup
0≤s≤t0

θps

]
≤ cεrp.

for ε ≤ ε0 and c not dependent upon t0. To estimate A2 we introduce

Nt =

∫ t

0

Ys

d∑
k=1

uksdW
k
s .

For

δ =
ε2r+2

t0
, ρ =

εq−2r

t20

define

B =

[
〈N〉T < ρ, sup

0≤s≤T
|Ns| ≥ δ

]
,

By the exponential martingale inequality

P(B) ≤ exp(
−δ2

2ρ
) ≤ exp

(
−ε2r+4−q)

We show {∫ t0

0

Y 2
t dt < εq,

∫ t0

0

|ut|2dt ≥
ε

t0
, T = t0

}
⊂ B, (4.5.10)
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and this finishes the proof. We suppose ω /∈ B,
∫ t0

0
Y 2
t dt < εq and T = t0 and show∫ t0

0
|ut|2dt < ε/t0. With these assumption,

〈N〉T =

∫ T

0

Y 2
t |ut|2dt <

εq−2r

t20
= ρ.

We are also supposing ω /∈ B, so sup0≤t≤T |
∫ t

0
Ys
∑d

k=1 u
k
sdW

k
s | < δ = ε2r+2/t0 must

hold. From 6r + 4 ≤ q,

sup
0≤t≤T

∣∣∣∣∫ t

0

Ysasds

∣∣∣∣ ≤ (t0 ∫ T

0

Y 2
s a

2
sds

)1/2

< t
1/2
0

ε−r+q/2

t0
≤ ε2r+2

t0

Thus

sup
0≤t≤T

∣∣∣∣∫ t

0

YsdYs

∣∣∣∣ < sup
0≤t≤T

∣∣∣∣∫ t

0

Ysasds+

∫ t

0

YsusdWs

∣∣∣∣ < 2ε2r+2

t0
.

By Ito’s formula Y 2
t = y2 + 2

∫ t
0
YsdYs + 〈M〉t, with

Mt =
d∑

k=1

∫ t

0

uk(s)dW
k
s .

So ∫ T

0

〈M〉tdt =

∫ T

0

Y 2
t dt− Ty2 − 2

∫ T

0

∫ t

0

YsdYsdt

< εq + 2ε2r+2 < 3ε2r+2,

.

Since 〈M〉t is increasing in t, for 0 < γ < T

γ〈M〉T−γ < 3ε2r+2.

Using also the fact that

〈M〉T − 〈M〉T−γ =

∫ T

T−γ
|us|2ds ≤ γ

ε−2r

t20

we have

〈M〉T <
3ε2r+2

γ
+ γ

ε−2r

t20
.

With γ = t0ε
2r+1, this gives

〈MT 〉 =

∫ T

0

|us|2ds <
4ε

t0
.
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4.6 Tube estimates

We consider the diffusion (4.1.1) and, for φ ∈ L2[0, T ], the skeleton (4.1.2) on [0, T ].
We denote in this section, for fixed t ∈ [0, T ],

Ct = {Ct = K (nt/λt)
q ,∃K, q ≥ 1 universal constants} .

Recall (H3), and remark that the function t → Ct = K (nt/λt)
q is in L(µ2q, h), for p

large enough. Denote, for K∗ and q∗ constants,

R∗(φ) = inf
0≤t≤T

(
1

K∗

λt
µnt

)q∗ (
h ∧ inf

{
δ
/∫ t+δ

t

|φs|2ds : t ∈ [0, T ], δ ∈ [0, h]

})
.

(4.6.1)

Theorem 4.14. There exist universal positive constants K, q such that for R ∈]0, 1]

exp

(
−K

∫ T

0

(
µnt
λt

)q (
1

h
+

1

R
+ |φt|2dt

))
≤ P

(
sup
t≤T
|Xt − xt(φ)|AR(t,xt(φ)) ≤ 1

)
.

Moreover, exist K∗, q∗, K, q such that for R ≤ R∗(φ)

P
(

sup
t≤T
|Xt − xt(φ)|AR(t,xt(φ)) ≤ 1

)
≤ exp

(
−
∫ T

0

1

K

(
λt
µnt

)q (
1

R
+ |φt|2

)
dt

)
Remark 4.15. For R ≤ R∗(φ) ≤ h the lower bound holds as in (4.2.6)

We prove first that moving along a control φ ∈ L2[0, T ] for a small time, the
trajectory remains close to the initial point in the Aδ-norm. Recall (4.1.2), ad take
initial condition x0.

xt(φ) = x0 +

∫ t

0

σ(s, xs(φ))φsds+

∫ t

0

b(s, xs(φ))ds.

We write here xt for xt(φ) to have a more readable notation. Define, for δ > 0,

ε =

(∫ δ

0

|φs|2ds
)1/2

.

Set

C(0,x0) =
{
C(0,x0) = K (n(0, x0)/λ(0, x0))q ,∃K, q ≥ 1 universal constants

}
.

Lemma 4.16. There exist δ∗, ε∗ ∈ 1/C such that for δ ≤ δ∗, ε ≤ ε∗, for every
0 ≤ t ≤ δ and z ∈ Rn,

|z|2Aδ(0,x0) ≤ 4 |z|2Aδ(t,xt) ≤ 16 |z|2Aδ(0,x0) . (4.6.2)

Moreover ∃C ∈ C such that

sup
0≤t≤δ

|xt(φ)− (x0 + b(0, x0)t)|Aδ(0,x0) ≤ C(ε ∨ δ). (4.6.3)
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Proof. Since δ ≤ δ∗, ε ≤ ε∗, we can choose δ∗, ε∗ such that

|xs − x0|+ |s| ≤ C
√
δ(ε+

√
δ) ≤

√
δ/C. (4.6.4)

(4.6.2) follows from Lemma 4.18. For t ≤ δ we write

Jt := xt − x0 − b(0, x0)t =

∫ t

0

∂sxs − b(s, xs)ds+

∫ t

0

b(s, xs)− b(0, x0)ds.

Using (4.7.4) we get

|Jt|2Aδ(0,x0) ≤ 2t

∫ t

0

|∂sxs − b(s, xs)|2Aδ(0,x0)ds+ 2t

∫ t

0

|b(s, xs)− b(0, x0)|2Aδ(0,x0)ds.

For s ≤ t ≤ δ, from (4.6.2), we have

|∂sxs − b(s, xs)|2Aδ(0,x0) ≤ 4|∂sxs − b(s, xs)|2Aδ(s,xs).

Moreover, for i = 1, . . . ,m, we set ψ(j−1)d+j = 1√
δ
φj for j = 1, . . . , d, ψi = 0 otherwise.

We can write

∂sxs − b(s, xs) =
d∑
j=1

σj(s, xs)φ
j
s = Aδ(s, xs)ψs

so that

|∂sxs − b(s, xs)|Aδ(s,xs) ≤ |ψs| =
1√
δ
|φs| .

Then, for t ≤ δ

2t

∫ t

0

|∂sxs−b(s, xs)|2Aδ(0,x0)ds ≤ 8δ

∫ δ

0

|∂sxs − b(s, xs)|2Aδ(s,xs) ds ≤ 8

∫ δ

0

|φs|2 ds = 8ε2.

With the following estimate the statement is proved:

2t

∫ t

0

|b(s, xs)− b(0, x0)|2Aδ(0,x0)ds ≤ Cδ

∫ δ

0

|b(s, xs)− b(0, x0)|2ds

≤ C

∫ δ

0

(|s|+ |xs − x0|)2ds ≤ Cδ2.

Proof. (of Theorem 4.14)
STEP 1: We first prove the lower bound. We set, for large q1, K1 to be fixed in the
sequel,

fR(t) = K1

(
µnt
λt

)q1 (1

h
+

1

R
+ |φt|2

)
.

Recall (H3): |φ.|2, n., λ. ∈ L(µ, h), ∃µ ≥ 1, 0 < h ≤ 1, where

L(µ, h) = {f : f(t) ≤ µf(s) for |t− s| ≤ h}.
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This implies fR ∈ L(µ2q1+1, h). We also define

δ(t) = inf
δ>0

{∫ t+δ

t

fR(s)ds ≥ 1

µ2q1+1

}
. (4.6.5)

Clearly δ(t) ≤ h, so we can use on the intervals [t, t + δ(t)] the fact that our bounds
are in L(µ, h). If 0 < t− t′ ≤ h,

µ2q1+1fR(t)δ(t) ≥
∫ t+δ(t)

t

fR(s)ds = 1 =

∫ t′+δ(t′)

t′
fR(s)ds ≥ µ−(2q1+1)fR(t)δ(t′),

so δ(t′)/δ(t) ≤ µ4q1+2.The converse holds as well, so δ(·) ∈ L(µ4q1+2, h). We also set
the energy

ε(t) =

(∫ t+δ(t)

t

|φs|2ds

)1/2

.

We have
1

µ2q1+1
=

∫ t+δ(t)

t

fR(s)ds ≥
∫ t+δ(t)

t

fR(t)

µ2q1+1
ds ≥ δ(t)

fR(t)

µ2q1+1
,

so

δ(t) ≤ 1

fR(t)
≤ R

K1

(
λt
µnt

)q1
. (4.6.6)

Similarly,

1

µ2q1+1
≥
∫ t+δ(t)

t

K1

(
µns
λs

)q1
|φs|2ds =

1

µ2q1
K1

(
µnt
λt

)q1
ε(t)2,

and we can write both

δ(t) ≤ 1

K1

(
λt
µnt

)q1
, and ε(t)2 ≤ 1

K1

(
λt
µnt

)q1
. (4.6.7)

We set our time grid as
t0 = 0; tk = tk−1 + δ(tk−1),

and introduce the following notation on the grid:

δk = δ(tk); εk = ε(tk); nk = n(tk, xk); λk = λ(tk, xk); Xk = Xtk ; xk = xtk .

We also define
X̂k = Xk + b(tk, Xk)δk; x̂k = xk + b(tk, xk)δk,

and for tk ≤ t ≤ tk+1,

X̂k(t) = Xk + b(tk, Xk)(t− tk); x̂k(t) = xk + b(tk, xk)(t− tk).

Moreover we denote
|ξ|k = |ξ|Aδk (tk,xk); Ck = Ctk ,
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and rk∗ ∈ Ck the ray r∗ of Theorem 4.5 associated to xk. Lemma 4.16 holds for δk
and εk small enough, and in this case |xk+1 − x̂k|k ≤ Ck(εk ∨ δk). Moreover, for all
tk ≤ t ≤ tk+1, applying also (4.7.1), |xt − x̂k(t)|AR(t,xt) ≤ Ck(εk ∨ δk)

√
δk/R. Recall

(4.6.7), and we fix q3, K3 such that, for q1 ≥ q3, K1 ≥ K3, Lemma 4.16 holds and

|xk+1 − x̂k|k ≤ rk∗/4 (4.6.8)

|x̂k(t)− xt|AR(t,xt) ≤
1

4
for all tk ≤ t ≤ tk+1, (4.6.9)

and moreover the theorem in short time 4.5 holds. Also (4.6.2) holds and

1

2
|ξ|Aδk (tk,xk) ≤ |ξ|Aδk (tk+1,xk+1) ≤ 2|ξ|Aδk (tk,xk).

now, δ(·) ∈ L(µ4q1+2, h) implies δk/δk+1 ≤ µ4q1+2 and δk+1/δk ≤ µ4q1+2. Together with
(4.7.1) this gives

1

2µ2q1+1
|ξ|k ≤ |ξ|k+1 ≤ 2µ2q1+1|ξ|k (4.6.10)

We now set, for K2, q2 to be fixed in the sequel,

rk =
1

K2µ2q1+2q2+1

(
λk
nk

)q2
, (4.6.11)

and define

Γk = {|Xk − xk|k ≤ rk}, Dk = { sup
tk≤t≤tk+1

|Xt − xt|AR(t,xt) ≤ 1},

and Pk as the conditional probability

Pk(·) = P (·|Wt, t ≤ tk;Xk ∈ Γk) .

We denote pk the density of Xk+1 with respect to this probability. We prove that on
{| · −xk+1|k+1 ≤ rk+1} we can apply Theorem 4.5 to pk and so there exists Ck ∈ Ck
such that

1

Ckδ
n− dim〈σ(tk,Xk)〉

2
k

≤ pk(y)

or, because of (4.4.21),

1

Ck

√
detAδkA

T
δk

(tk, Xk)
≤ pk(y) (4.6.12)

We estimate

|y − X̂k|k ≤ |y − xk+1|k + |xk+1 − x̂k|k + |x̂k − X̂k|k. (4.6.13)
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We already have (4.6.8). Since we are on |y − xk+1|k+1 ≤ rk+1, from (4.6.10) and the
fact that rk+1/rk ≤ µ2q2

|y − xk+1|k ≤ 2µ2q1+1|y − xk+1|k+1 ≤ 2µ2q1+1rk+1 ≤ 2µ2q1+2q2+1rk ≤
2

K2

(
λk
nk

)q2
.

It also holds |x̂k − X̂k|k ≤ Ck|xk − Xk|k ≤ Ckrk, for some Ck ∈ Ck. Similarly,
|x̂k(t) − X̂k(t)|AR(t,xt) ≤ Ckrk, for all tk ≤ t ≤ tk+1. Recalling (4.6.11), we can fix

K2, q2 such that |y − xk+1|k ≤ rk∗/8, |x̂k − X̂k|k ≤ rk∗/8, and

|X̂k(t)− x̂k(t)|AR(t,xt) ≤ 1/4, for all tk ≤ t ≤ tk+1. (4.6.14)

From (4.6.13), this implies |y − X̂k|k ≤ rk∗/2. We also have, from (4.7.2), |xk −Xk| ≤
|xk − Xk|k

√
λk
√
δk, so we can also fix K2, q2 such that rk

√
λk ≤ 1/C in (4.7.5).

Therefore
1

2
|ξ|k ≤ |ξ|Aδk (tk,Xk) ≤ 2|ξ|k.

So |y − X̂k|Aδk (tk,Xk) ≤ rk∗ . Now, also from (4.6.10)

{|·−xk+1|Aδk (tk,Xk) ≤ rk+1/(4µ
2q1+1)} ⊂ {|·−xk+1|k ≤ rk+1/(2µ

2q1+1)} ⊂ {|·−xk+1|k+1 ≤ rk+1},

and rk+1/(4µ
2q1+1) ≥ rk/(4µ

2q1+2q2+1) = 1
4K2µ4q1+4q2+2

(
λk
nk

)q2
. So

Leb(| · −xk+1|k+1 ≤ rk+1) ≥
√

det(AδkA
T
δk

(tk, Xk))

(
1

4K2µ4q1+4q2+2

(
λk
nk

)q2)n
.

So, from (4.6.12),

Pk(Γk+1) ≥ 1

Ck

(
1

4K2µ4q1+4q2+2

(
λk
nk

)q2)n
where Ck ∈ 1/Ck is the constant in (4.4.1). This implies

2µ−4q1 exp(−K4(log µ+ log nk − log λk)) ≤ Pk(Γk+1)

for some constant K4 (depending on K2, K3, q2, q3, remark that q1 is not a constant,
since we have not fixed it yet, and that is why we keep the explicit dependence on q1

in the expression above).
STEP 2: Consider now tk ≤ t ≤ tk+1. Recall the definition

Dk =

{
sup

tk≤t≤tk+1

|Xt − xt|AR(t,xt) ≤ 1

}
,

and introduce

Ek =

{
sup

tk≤t≤tk+1

|Xt − X̂k(t)|AR(t,xt) ≤
1

2

}
.
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We decompose

|Xt − xt|AR(t,xt) ≤ |Xt − X̂k(t)|AR(t,xt) + |X̂k(t)− x̂k(t)|AR(t,xt) + |x̂k(t)− xt|AR(t,xt),

and, from the previous part of the proof, (4.6.9) gives |x̂k(t) − xt|AR(t,xt) ≤ 1/4, and

(4.6.14) gives |X̂k(t)− x̂k(t)|AR(t,xt) ≤ 1/4. So |Xt− xt|AR(t,xt) ≤ |Xt− X̂k(t)|AR(t,xt) +
1/2, and therefore Ek ⊂ Dk. Since, passing from Stratonovic to Ito integrals,

|Xt − X̂k(t)|AR(t,xt) ≤
1√
R
|σ(tk, Xtk)(Wt −Wtk)|A(t,xt)

+ |AR(t, xt)
−1

∫ t

tk

σ(s,Xs)− σ(tk, Xk)dWs|

+ |AR(t, xt)
−1

∫ t

tk

b(s,Xs)− b(tk, Xk)ds|

+
d∑
l=1

|AR(t, xt)
−1

∫ t

tk

∇σl(s,Xs)(σl(s,Xs)− σl(tk, Xk))ds|,

using the exponential martingale inequality we find that

Pk(Ec
k) ≤ exp

(
− 1

K5

(
λk
µnk

)q5 R
δk

)
for some constants K5, q5. From (4.6.6), R/δk ≥ K1(µnk/λk)

q1 , so choosing and fixing
now q1, K1 large enough we conclude

Pk(Ec
k) ≤ µ−4q1 exp(−K4(log µ+ log nk − log λk)) ≤

1

2
Pk(Γk+1),

so

Pk(Γk+1 ∩Dk) ≥ Pk(Γk+1 ∩ Ek) ≥ Pk(Γk+1)− Pk(Ec
k) ≥

1

2
Pk(Γk+1)

≥ exp (−K6(log µ+ log nk − log λk)) ,
(4.6.15)

for some constant K6. Let now N(T ) = max{k : tk ≤ T}. From Definition 4.6.5∫ T

0

fR(t)dt ≥
N(T )∑
k=1

∫ tk

tk−1

fR(t)dt =
N(T )

µ2q1+1
.

From (4.6.15),

P
(

sup
t≤T
|Xt − xt|AR(t,xt)) ≤ 1

)
≥ P

N(T )⋂
k=1

Γk+1 ∩Dk


≥

N(T )∏
k=1

exp(−K6(log µ+ log nk − log λk))

= exp

−K6

N(T )∑
k=1

log µ+ log nk − log λk

 .
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Since

N(T )∑
k=1

(log µ+ log nk − log λk) = µ2q1+1

N(T )∑
k=1

∫ tk+1

tk

fR(s)ds(log µ+ log nk − log λk)

≤ µ2q1+1

∫ T

0

fR(t) log

(
µ3nt
λt

)
dt,

the lower bound follows.
STEP 3: We now prove the upper bound. Now recall (4.6.1), and R ≤ R∗(φ). We
define, with the same K1, q1 as in STEP 1 and 2,

gR(t) =
1

h
+

1

R

1

µ2q7K7

(
λt
µnt

)q7
+K1µ

2q1+1

(
µnt
λt

)q1
|φt|2.

for some constants K7 > K1, q7 > q1 + 1 to be fixed in the sequel. We define a new
δ(t)

δ(t) = inf
δ>0

{∫ t+δ

t

gR(s)ds ≥ 1

}
.

Clearly δ(t) ≤ h, so we can use on the intervals [t, t + δ(t)] the property of being in
L(µ, h). If 0 < t− t′ ≤ h,

µ2q7gR(t)δ(t) ≥
∫ t+δ(t)

t

gR(s)ds = 1 =

∫ t′+δ(t′)

t′
gR(s)ds ≥ µ−2q7gR(t)δ(t′),

so δ(t′)/δ(t) ≤ µ4q7 . Taking q∗ and K∗ in (4.6.1) large enough such that q∗ > 5q1 +
1 + q7, K∗ > K1K7, ∫ t+δ(t)

t

1

h
ds ≤

∫ δ(t)

t

1

R

1

µ2q7K7

(
λs
µns

)q7
ds

and again from (4.6.1)∫ t+δ(t)

t

K1µ
2q1+1

(
µns
λs

)q1
|φs|2ds ≤ K1µ

4q1+1

(
µnt
λt

)q1 ∫ t+δ(t)

t

|φs|2ds

≤ K1µ
4q1+1

(
µnt
λt

)q1 δ(t)
R

1

K∗

(
λt
µnt

)q∗
≤
∫ t+δ(t)

t

1

R

1

µ2q7K7

(
λs
µns

)q7
ds.

Therefore, since 1 =
∫ t+δ(t)
t

gR(s)ds and∫ t+δ(t)

t

1

R

1

K7µ2q7

(
λs
µns

)q7
ds ≤

∫ t+δ(t)

t

gR(s)ds ≤ 3

∫ t+δ(t)

t

1

R

1

K7µ2q7

(
λs
µns

)q7
ds,
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we find that forall t

1

K7µ4q7

(
λt
µnt

)q7
≤ R

δ(t)
≤ 3

K7

(
λt
µnt

)q7
For q∗, K∗ large enough this also implies

δ(t) ≤ 1

K1

(
λt
µnt

)q1
.

We set

ε(t) =

(∫ t+δ(t)

t

|φs|2ds

)1/2

.

We find, with the same computations as before,

ε(t)2 ≤ 1

K1

(
λt
µnt

)q1
.

This implies that (4.6.7) also holds with this new grid, and also lemma 4.16. Since
we are taking the same K1 and q1 as before (4.6.10) holds. For the same reason, the
theorem in short time 4.5 also holds. We define

∆k = {|Xk − xk|AR(tk,xk) ≤ 1},

P̃k as the conditional probability P̃k(·) = P (·|Wt, t ≤ tk;Xk ∈ ∆k). As we did in STEP
1, if q∗, K∗ are large enough, R is small enough and the upper bound for the density
holds on ∆k+1. Because of (4.6.2),

Leb(|·−xk|AR(tk+1,xk+1) ≤ 1) ≤ 2nLeb(|·−xk|AR(tk,xk) ≤ 1) = 2n det(A(tk, xk))R
n−dim〈σ(tk,xk)〉

2 .

Now, using the short time density estimate,

P̃k(∆k+1) ≤ 2n det(A(tk, xk))R
n−dim〈σ(tk,xk)〉

2 Ck δ
n−dim〈σ(tk,xk)〉

2
k

≤ 2n det(A(tk, xk))Ck

(
R

δ

)n−dim〈σ(tk,xk)〉
2

.

where Ck is the constant of theorem 4.5. Recall

R

δ(t)
≤ 3

K7

(
λt
µnt

)q7
,

so we fix now K7, q7 large enough to have

P̃k(∆k+1) ≤ exp(−K10)
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for a K10 > 0. (We also fix now q∗, K∗, whose size depend on q7, K7). From the
definition of N(T )

∫ T

0

gR(t)dt =

N(T )∑
k=1

∫ tk

tk−1

gR(t)dt = N(T ).

As before

P
(

sup
t≤T
|Xt − xt(φ)|AR(t,xt(φ)) ≤ 1

)
≤

N(T )∏
k=1

P̃k(∆k+1)

≤
N(T )∏
k=1

exp(−K10) = exp(−K10N(T )) ≤ exp

(
−K10

∫ T

0

gR(t)

)
,

and we have the upper bound.

4.7 Norms and distances

4.7.1 Matrix norms

We write AR = AR(0, X0) and we work with the norm |y|2AR =
〈
(ARA

T
R)−1y, y

〉
,

y ∈ Rn.

Lemma 4.17. i) For every y ∈ Rn and 0 < R ≤ R′ ≤ 1√
R

R′
|y|AR ≥ |y|AR′ ≥

R

R′
|y|AR (4.7.1)

1√
R
√
λ#(A)

|y| ≤ |y|AR ≤
1

R
√
λ#(A)

|y| . (4.7.2)

ii) For every z ∈ Rm and R > 0

|ARz|AR ≤ |z| . (4.7.3)

iii) For every µ ∈ L2([0, T ];Rm) and R > 0∣∣∣ ∫ t

0

µs ds
∣∣∣2
AR
≤ t

∫ t

0

|µs|2AR ds, t ∈ [0, T ]. (4.7.4)

Proof. 115 i) It is easy to check that

R′

R
ARA

T
R ≤ AR′A

T
R′ ≤

(
R′

R

)2

ARA
T
R
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which is equivalent to (4.7.1). This also implies (taking R′ = 1 so AR′ = A) that

1

R
λ#(AR) ≤ λ#(A) ≤ 1

R2
λ#(AR) and

1

R
λ#(AR) ≤ λ#(A) ≤ 1

R2
λ#(AR)

which immediately gives (4.7.2).
ii) For z ∈ Rm, we write z = ATRy + w with y ∈ Rn and w ∈ (ImATR)⊥ = KerAR.

Then ARz = ARA
T
Ry so that

|ARz|2AR =
∣∣ARATRy∣∣2AR =

〈
(ARA

T
R)−1ARA

T
Ry, ARA

T
Ry
〉

=
〈
z, ARA

T
Rz
〉

=
〈
ATRy, A

T
Ry
〉

=
∣∣ATRy∣∣2 ≤ |z|2

and (4.7.3) holds.
iii) For µ ∈ L2([0, T ];Rm) and t ∈ [0, T ]

∣∣∣ ∫ t

0

µsds
∣∣∣2
AR

=
〈
AR
−1

∫ t

0

µsds,

∫ t

0

µsds
〉

=

∫ t

0

∫ t

0

〈
AR
−1µs, µu

〉
dsdu

=
1

2

∫ t

0

∫ t

0

(〈
AR
−1(µs − µu), µs − µu

〉
−
〈
AR
−1µs, µs

〉
−
〈
AR
−1µu, µu

〉)
dsdu

=
1

2

∫ t

0

∫ t

0

(
|µs − µu|2AR − 2|µs|2AR

)
dsdu

≤
∫ t

0

∫ t

0

|µu|2ARdsdu = t

∫ t

0

|µu|2ARdu.

From now on we consider the specific situation when ai = σi(t, x), [a]i,j = [σi, σj](t, x)
and we denote by A(t, x) respectively AR(t, x) the matrices associated to these coef-
ficients.

Lemma 4.18. Let x, y ∈ Rn, s, t ∈ [0, 1], δ ≤ 1. There exists C ∈ C such that if

|x− y|+ |t− s| ≤
√
δ/C, (4.7.5)

then for every z ∈ Rn

1

4
|z|2Aδ(t,x) ≤ |z|

2
Aδ(s,y) ≤ 4 |z|2Aδ(t,x) . (4.7.6)

Proof. (4.7.6) is equivalent to

4(AδA
T
δ )(t, x) ≥ (AδA

T
δ )(s, y) ≥ 1

4
(AδA

T
δ )(t, x).
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Recall that Aδ, k the columns of Aδ. We use (4.7.5) and the fact that (a+b)2 ≥ 1
2
a2−b2:

〈AδATδ (s, y)z, z〉 =
m∑
k=1

〈Aδ,k(s, y), z〉2

=
m∑
k=1

(〈Aδ,k(t, x), z〉+ 〈Aδ,k(s, y)− Aδ,k(t, x), z〉)2

≥ 1

2

m∑
k=1

〈Aδ,k(t, x), z〉2 −
m∑
k=1

(〈Aδ,k(s, y)− Aδ,k(t, x), z〉)2

≥ 1

2

m∑
k=1

〈Aδ,k(t, x), z〉2 − C̄δ(|x− y|2 + |t− s|2) |z|2

C̄ ∈ C. From λ#(Aδ(t, x)) ≥ δ2λ#(A(t, x)) follows

C̄δ(|x− y|2 + |t− s|2) |z|2 ≤ 1

4

m∑
k=1

〈Aδ,k(t, x), z〉2 .

So 〈
(AδA

T
δ )(s, y)z, z

〉
≥ 1

4

m∑
k=1

〈Aδ,k(t, x), z〉2 =
1

4

〈
(AδA

T
δ )(t, x)z, z

〉
.

The converse inequality follows from analogous computations and inequality (a+b)2 ≤
2a2 + 2b2.

4.7.2 The control distance

We establish the link between the norm |·|AR(t,x) and the control (Caratheodory) dis-
tance. We will use in a crucial way the alternative characterizations given in [78].
Since these results hold in the homogeneous case, we suppose now σj(t, x) = σj(x).
Consequently, AR(t, x) = AR(x).

We first introduce a quasi-distance d which is naturally associated to the family
of norms |y|AR(x). We set Ω = {x ∈ Rn : λ∗(A(x)) > 0} = {x : det(AAT (x)) 6= 0},
which is open because the function x 7→ detAAT (x) is continuous. Notice that if
x ∈ Ω then det(ARA

T
R(x)) > 0 for every R > 0. For x, y ∈ Ω, we define d(x, y) by

d(x, y) <
√
R ⇔ |y − x|AR(x) < 1.

The motivation for taking
√
R is the following: in the elliptic case |y − x|AR(x) ∼

R−1/2 |y − x| so |y − x|AR(x) ≤ 1 amounts to |y − x| ≤
√
R. It is straightforward

to see that d is a quasi-distance on Ω, meaning that d verifies the following three
properties (see [78]):

i) for every r > 0, the set {y ∈ Ω : d(x, y) < r} is open;
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ii) d(x, y) = 0 if and only if x = y;

iii) for every compact set K b Ω there exists C > 0 such that d(x, y) ≤ C
(
d(x, z)+

d(z, y)
)

holds for every x, y, z ∈ K .

We recall the definition of equivalence of semi-distances, given in section 3.4.2. Two
quasi-distances d1 : Ω × Ω → R+ and d2 : Ω × Ω → R+ are equivalent if for every
compact set K b Ω there exists a constant C such that for every x, y ∈ K

1

C
d1(x, y) ≤ d2(x, y) ≤ Cd1(x, y). (4.7.7)

d1 and d2 are locally equivalent if for every x0 ∈ Ω there exist a neighborhood V of
x0 and a constant C such that (4.7.7) holds for every x, y ∈ V .

We introduce now the control metric. For x, y ∈ Rn we denote by C(x, y) the set
of controls ψ ∈ L2([0, 1];Rd) such that the corresponding skeleton solution of

dut(ψ) =
d∑
j=1

σj(ut(ψ))ψjtdt, u0(ψ) = x (4.7.8)

satisfies u1(ψ) = y. Notice that the drift b does not appear in the equation of ut(ψ).
We define the control (Caratheodory) distance as

dc(x, y) = inf
{(∫ 1

0

|ψs|2 ds
)1/2

: ψ ∈ C(x, y)
}
.

We define C∞(x, y) the set of controls ψ ∈ L∞([0, 1];Rd) such that the corresponding
skeleton solution of (4.7.8) satisfies u1(ψ) = y, and

d∞(x, y) = inf
{
‖ψ‖∞ : ψ ∈ C∞(x, y)

}
.

We also denote Cδ(x, y) the set of controls φ ∈ L2([0, δ];Rd) such that the correspond-
ing skeleton ut(φ) with u0(φ) = x verifies uδ(φ) = y, and the associated energy

εφ(δ) =
(∫ δ

0

|φs|2 ds
)1/2

.

Theorem 4.19. Let ε∗, δ∗ the constants in lemma 4.16 Cx ∈ Cx be the constant in
(4.6.3). We also suppose, wlog, 1/Cx ≤ ε∗ ∧ δ∗ ∈ 1/Cx.
A. For every x, y ∈ Ω such that dc(x, y) ≤ 1/C2

x it holds d(x, y) ≤ Cxdc(x, y).
B. d is locally equivalent to dc on Ω.
C. In particular for every compact set K b Ω there exists rK and CK such that for
every x, y ∈ K with d(x, y) ≤ rK one has dc(x, y) ≤ CKd(x, y).

Proof. A. Let δ > 0, x, y ∈ Ω and ψ ∈ C(x, y). Setting xt = ut/δ(ψ), we obtain

dxt =
∑d

j=1 σj(xt)φ
j
tdt with φ(t) = δ−1ψ(tδ−1), which means that xt = ut(φ). Notice

also that
∫ 1

0
|ψs|2 ds = δ

∫ δ
0
|φs|2 ds. This implies

dc(x, y) =
√
δ inf{εφ(δ) : φ ∈ Cδ(x, y)}.
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Consider now two points such that dc(x, y) ≤ 1/C2
x. Take δ = C2

xdc(x, y)2. Then there
exists a control φ ∈ Cδ(x, y) such that εφ(δ) ≤ 1/Cx. Since εφ(δ) ∨ δ ≤ 1/Cx, from

(4.6.3), we obtain |y − x|Aδ(x) ≤ 1, and this implies d(x, y) ≤
√
δ ≤ Cxdc(x, y).

B. We prove now the converse inequality. We use a result from [78], for which we need

to recall the definition of the quasi-distance d∗ (denoted by ρ2 in [78]). The definition
we give here is slightly different but clearly equivalent. For θ ∈ Rm we consider the
equation

vt(θ) = x+

∫ t

0

A(vs(θ))θds (4.7.9)

denote
C̄A(x, y) = {θ ∈ Rm, satisfying (4.7.9) , v1(θ) = y}

Notice that θ is a constant vector, and not a time depending control as in the standard
skeleton, and that in (4.7.9) are involved also the vector fields [σi, σj], in contrast with
(4.7.8). In both equations the drift term b does not appear. Recall that R is the
diagonal m×m matrix with Rl,l = R for i 6= p and Rl,l =

√
R, and AR(x) = A(x)R.

Recall that, taking l = (p− 1)d+ i ∈ {1, . . . ,m}, with p, i ∈ {1, . . . , d}.

Al(t, x) = [σi, σp](t, x) if i 6= p,

= σi(t, x) if i = p,
(4.7.10)

R is the diagonal m×m matrix with Rl,l = R for i 6= p and Rl,l =
√
R for i = p, and

AR(t, x) = A(t, x)R = (
√
Rσi(t, x), [

√
Rσj,

√
Rσp](t, x))i,j,p=1,...,d,j 6=p.

We define
d∗(x, y) = inf{R > 0|∃θ ∈ C̄A(x, y), |R−1

θ| < 1}

As a consequence of Theorem 2 and Theorem 4 from [78] d∗ is locally equivalent with
d∞. Since dc(x, y) ≤ d∞(x, y) for every x and y, one gets that dc is locally dominated
from above by d∗. To conclude we need to prove that d∗ is locally dominated by d.

Let us be more precise: we fix x ∈ Ω and we look for two constants Cx, Rx > 0
such that the following holds: if 0 < R ≤ Rx and d(x, y) ≤

√
R, then exists a control

θ ∈ C̄A(x, y) such that |R−1
θ| < Cx. This implies d∗(x, y) ≤ Cx

√
R, and the statement

holds. Notice that we discuss local equivalence, and that is why we can take Cx, Rx

depending on x.
d(x, y) ≤

√
R means |x − y|AR(x) ≤ 1, and this also implies |x − y| ≤ C

√
R. We

look for θ such that v1(θ) in (4.7.9) is y. We define

Φ(θ) =

∫ t

0

A(vs(θ))θds = A(x)θ + r(θ)

with r(θ) =
∫ t

0
(A(vs(θ)) − A(x))θds. With this notation, we look for θ such that

Φ(θ) = y − x. We introduce now the Moore-Penrose pseudoinverse of A(x): A(x)+ =
A(x)T (AAT (x))−1. The idea here is to use it as in the least squares problem, but
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we need some computations to overcome the fact that we are in a non-linear setting.
We use the following properties: AA(x)+ = Id, |x − y|A(x) = |A(x)+ (x − y)|. Write
θ = A(x)+γ, γ ∈ Rd. This implies A(x)θ = γ, and so

Φ(A(x)+γ) = γ + r(A(x)+γ) = x− y.

Remark r(0) = 0, ∇r(0) = 0, |r(θ)| ≤ Cx|θ|2. From local inversion theorem, there
exists lx ∈ Cx an a diffeomorphism from B(0, lx) to a neighborhood of 0 such that
|γ| ≤ 2|x− y|. Remark that |x− y| ≤ Cx

√
R, and lx is uniform in R for R ↓ 0. Now,

using (4.7.2)

|r(A(x)+γ)|AR(x) ≤
Cx|r(A(x)+γ)|

R
≤ Cx

|A(x)+γ|2

R
≤ Cx

|x− y|2

R
≤ Cx|x− y|2AR(x).

Since γ = x− y − r(A(x)+γ),

|γ|AR(x) ≤ |x− y|AR(x) + Cx|x− y|2AR(x) ≤ Cx,

(using |x − y|AR(x) ≤ 1). We have |R−1
θ| = |R−1

A(x)+γ|. Since A+
RAR(x) =

A+
R(x)A(x)R is an orthogonal projection and AA+(x) is the identity,

|R−1
θ| = |A+

R(x)A(x)RR
−1
A(x)+γ| = |A+

R(x)γ| = |γ|AR(x).

So |R−1
θ| ≤ Cx, and as we said before this implies d∗(x, y) ≤ Cx

√
R.

C. Standard
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Chapter 5

A multivariate model for financial
indices

5.1 Introduction

This chapter is based on [22], with Bonino and Camelia. We consider a process for
the detrended log-price given by dXt = σtdBt, where B is a Brownian motion and
the volatility σ is the square root of the stationary solution of a SDE of the following
form:

dσ2
t = −f(σ2

t )dt+ dLt, (5.1.1)

and in this chapter L is a pure jump process (see [50], [67], [12]). We work with
the model presented in [1], (inspired by [4] and [93]), considering a bivariate version
and an algorithm for the detection of shocks in the market (peaks in the volatility
profile). These two aspects are linked by the fact that the cross-correlation between
two indices is in fact the correlation between the two time changes, and those are
highly dependent on the jumps of the volatility process.

In section 5.2 we present the univariate model introduced in [1], recalling main
properties and some proofs. In section 5.3 we consider the bivariate version, defining
the joint process of shocks through correlated Poisson point processes. This is a main
ingredient in our modeling since the long range dependence heavily relies on the jumps
of the volatility process. Defining

dXt = σXt dB
X
t , d(σXt )2 = −f((σXt )2)dt+ dLXt ,

dYt = σYt dB
Y
t , d(σYt )2 = −f((σYt )2)dt+ dLYt ,

it is easy to show under mild hypothesis on the volatility (σXt , σ
Y
t )t that

lim
h↓0

corr(|Xh −X0|, |Yt+h − Yt|) = corr(σX0 , σ
Y
t ).

If the volatilities are of the precise form considered in [1], explicit computations are
possible and the evolution of (σX , σY ) depends just on the jumps of LX and LY . We

119
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consider the cross-correlation of absolute increments at different times, and compute
how this correlation decays as the time difference increases. This issue has been
addressed by Podobnik et al. in [83], [84], [97]. In our framework we find this explicit
formula for the decay of cross-asset correlations between absolute returns depending on
the time lag, analogous to the formula for the decay of autocorrelations (see Corollary
5.9):

lim
h↓0

Cov(|Xh −X0|, |Yt+h − Yt|)
h

=
4

π
σ̄X σ̄Y

√
DXDY

(
λX
)1/2−DX (

λY
)1/2−DY ×

Cov
(

(SX)D
X−1/2, (λY t+ SY )D

Y −1/2
)
e−λ

Y t

The quantities involved are constant parameters of the volatilities σX and σY , except
from SX and SY which are correlated exponential variables coming from the jump
process L = (LX , LY ).

In section 5.4 we apply this result to the time series of the Dow Jones Industrial
Average (DJIA) and the Financial Times Stock Exchange (FTSE) 100, from 1984 to
2013, finding an excellent agreement between predictions of the model and empirical
findings. In particular we find that in both modeling and empirical data the decay of
autocorrelations and cross-correlations is almost coincident, and it is slow over time,
confirming that this is a long-memory processes. On the other hand, we empirically
find a non-significant cross-correlation between returns of FTSE and DJIA, even for
very small time lags, and this is consistent with the model as well. This is not
surprising, since for both indices there are no long-range autocorrelations of returns,
and this is easily seen to be consistent with our model. In contrast, as already said,
the decay of cross-correlation of absolute returns is very slow (see Fig. 5.1).

Figure 5.1: Decay of DJA-FTSE cross-correlations

Since cross-correlation is highly dependent on the jumps of the volatility pro-
cess, we propose here an algorithm for the detection of such jumps. The problem
of finding shocks in financial time series is a classical one. For example, GARCH
models (Generalized Autoregressive Conditional Heteroskedasticity, [21]) are widely
used, but in practice “volatility seems to behave more like a jump process, where it
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fluctuates around some value for an extended period of time, before undergoing an
abrupt change, after which if fluctuates around a new value” (see [87]). To adress this
issue, regime-switching GARCH models have been developed (see [57], [60]), but they
can be hard to implement. Therefore, a common approach is to use an approximate
procedure, the so-called ICSS-GARCH algorithm, introduced in [65]. This algorithm
is similar to the algorithm that we present because they both use squared returns to
detect volatility shocks. However, the ICSS-GARCH algorithm works well under the
assumption that the returns are normally distributed. Our algorithm, on the con-
trary, does not need any particular assumption on the distribution of the returns, but
is simply based on geometrical considerations.

In section 5.4 we prove formally some results justifying the convergence of the
algorithm for the detection of shocks in the volatility. We stick to this precise model
for the linearity of the exposition but the same proof would give an analogous result
for a wider class of volatilities solving (5.1.1). Some heuristic considerations on the
output of the algorithm confirm its validity in the detection of jumps. We use it on
the two empirical time series finding that the majority of the peaks of the volatility
are shared by the two indices. This is a motivation to our choice to consider two
processes of shocks with a common part.

5.2 Definition and properties of the univariate model

In this chapter we describe the model and state properties and results related to
stylized facts.

5.2.1 Definition of the univariate model

Given three real numbers D ∈ (0, 1/2], λ ∈ (0,∞), σ̄ ∈ (0,∞), the model is defined
upon two sources of randomness:

• a Brownian motion W = (Wt)t≥0;

• a Poisson point process T = (τn)n∈Z of rate λ on R.

We suppose W and T independent. By convention we label the points of T so that
τ0 < 0 < τ1. For t ≥ 0, we define

i(t) := sup{n ≥ 0 : τn ≤ t} = #{T ∩ (0, t]}.

i(t) is the number of positive times in the Poisson process before t, so that τi(t) is the
location of the last point in T before t. We introduce the process I = (It)t≥0 defining

It = σ̄2

(t− τi(t))2D +

i(t)∑
k=1

(τk − τk−1)2D − (−τ0)2D

 (5.2.1)
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where we agree that the sum in the right hand side is 0 if i(t) = 0. Now we define the
process which is the model for the detrended log price as

Xt = WI(t). (5.2.2)

Observe that I is a strictly increasing process with absolutely continuous paths, and
it is independent of the Brownian motion W . Thus this model may be viewed as an
independent random time change of a Brownian motion.

We shortly give a motivation for this definition. Remark that for D = 1/2 the
model reduces to Black & Scholes with volatility σ̄. For D < 1/2, the introduction
of a time inhomogeneity t → t2D at times τn is meant to represent the trading time
of a financial time series, where at ”random” times there are shocks in the market,
modeled by our Poisson point process. The reaction of the market is an acceleration
of the dynamics immediately after the shock, and a gradual slowing down at later
times, until a new shock accelerates the dynamics again. This behavior is due to the
shape of the function t→ t2D, D ∈ (0, 1/2], which is steep for t close to 0 and bends
down for increasing t.

Figure 5.2: Time inhomogeneity

The definition of the model as a time changed Brownian Motion implies that we
can equivalently express it as a a stochastic volatility model, where the volatility is

σt =
√
I ′(t) =

√
2Dσ̄(t− τi(t))D−1/2,

and the evolution of X is given by dXt = σtdBt. To write the volatility as solution of
a stochastic differential equation of the form (5.1.1), we can define think of it as the
the stationary solution of

d(σ2
t ) = −α(σ2

t )
γdt+∞ di(t),

where the constants are

γ = 2 +
2D

1− 2D
> 2, α =

1− 2D

(2D)1/(1−2D)

1

σ̄2/(1−2D)
.
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This process is well defined, since after the infinite jumps the super-linear drift term
instantaneously produces a finite pathwise solution. We refer to Chapter 6 for the
details of the correspondence between time change and stochastic volatility in this
framework, for a wider class of stochastic volatility models.

Remark 5.1. In the most general version of this model the parameter σ̄ is not con-
stant. A sequence of random variables (σ̄n)n∈N is simulated, and each of them is
associated to the corresponding jump. The results presented here are still valid in
this case, with a slightly more complicated formulation. We have decided to assume
σ̄ constant in this work, since calibration on data coming from financial time series
leads in any case to this type of choice.

5.2.2 Main properties

We briefly recall some properties of the process X. For proofs, more detailed state-
ments and some additional considerations we refer to [1].

Proposition 5.2 (Basic Properties). Let X be the process defined in (5.2.2). The
following assertions are satisfied:

(1) X has stationary increments.

(2) X is a zero-mean, continuous, square-integrable martingale, with quadratic vari-
ation 〈X〉t = It.

(3) The distributions of the increments of X is ergodic.

(4) E(|Xt|q) <∞ for some (and hence any) t > 0, q ∈ [0,∞).

We are now ready to state some results, important because they establish a link
between our model and the stylized fact presented in the introduction. The process X
defined in (5.2.2) is consistent with important facts empirically detected in many (fi-
nancial) real time series, namely: diffusive scaling of returns, multiscaling of moments,
slow decay of volatility autocorrelation.

The first result, proved in section 5.2.3, shows that the increments (Xt+h − Xt)
have an approximate diffusive scaling both when h ↓ 0, with a heavy-tailed limit
distribution, and when h ↑ ∞, with a normal limit distribution. This is a precise
mathematical formulation of a crossover phenomenon in the log-return distribution,
from approximately heavy-tailed (for small time) to approximately Gaussian (for large
time).

Theorem 5.3 (Diffusive scaling). The following convergences in distribution hold for
any choice of the parameters D,λ, σ̄.

• Small-time diffusive scaling:

(Xt+h −Xt)√
h

d−−−→
h↓0

f(x) dx := law of σ̄
(√

2Dλ
1
2
−D)SD− 1

2 W1 , (5.2.3)
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where S ∼ Exp(1) and W1 ∼ N (0, 1) are independent random variables:

f(x) =

∫ ∞
0

dt λe−λt
t1/2−D

σ̄
√

4Dπ
exp

(
−t

1−2Dx2

4Dσ̄2

)
.

• Large-time diffusive scaling:

(Xt+h −Xt)√
h

d−−−−→
h↑∞

e−x
2/(2c2)

√
2πc

dx = N (0, c2) , c2 = σ̄2 λ1−2D Γ(2D + 1) ,

(5.2.4)

where Γ(α) :=
∫∞

0
xα−1e−xdx denotes Euler’s Gamma function.

The density f , when D < 1
2
, has power-law tails :

Ef (|x|q) =∞⇔ q ≥ q∗ := (1/2−D)−1.

The function f , which describes the asymptotic law, for h ↓ 0, of Xt+h−Xt√
h

, has a

different tail behavior from the density of Xt+h −Xt, for fixed h (cf. Proposition 5.2
point 4). This feature of f is linked to another property of our model: the multiscaling
of moments. Let us define the q − th moment of the log returns, at time scale h:

mq(h) := E (|Xt+h −Xt|q) = E (|Xh|q)

the last equality holding for the stationarity of increments. Because of the diffusive
scaling properties (Theorem 5.3), we would expect mq(h) to approximate in some
sense h

q
2

∫
xqf(x)dx = Cq h

q
2 , for h ↓ 0. This is actually true for q < q∗, that is, for

q such that the q − th moment of the limit distribution is finite. For q ≥ q∗, the
q − th moment of the limit distribution is not finite, and it turns out that a faster
scaling holds, namely mq(h) ≈ hDq+1. This transition in the scaling of mq(h) is known
as multiscaling of moments, a property empirically detected in many time series, in
particular in financial series. The following theorem states that for this model the
multiscaling exponent is a piecewise linear function of q. In chapter 6 the problem of
multiscaling in more general stochastic volatility models is considered, finding that an
analogous behavior is common to a much wider class.

Theorem 5.4 (Multi-scaling of moments). For q > 0 the q−th moment of log returns
mq(h) has the following asymptotic behavior as h ↓ 0:

mq(h) ∼


Cqh

q
2 , if q < q∗

Cqh
q
2 log

(
1

h

)
, if q = q∗

Cqh
Dq+1, if q > q∗
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The constant Cq ∈ (0,∞) is given by

Cq :=


E(|W1|q) σ̄q λq/q

∗
(2D)q/2 Γ(1− q/q∗) if q < q∗

E(|W1|q) σ̄q λ (2D)q/2 if q = q∗

E(|W1|q) σ̄q λ
[ ∫∞

0
((1 + x)2D − x2D)

q
2 dx + 1

Dq+1

]
if q > q∗

, (5.2.5)

where Γ(α) :=
∫∞

0
xα−1e−xdx denotes Euler’s Gamma function. As a consequence,

the scaling exponent A(q) is

A(q) = lim
h↓0

logmq(h)

log h
=


q

2
if q ≤ q∗

Dq + 1 if q ≥ q∗

We now state a result concerning the volatility autocorrelation of the process X,
that is the correlations of absolute values of returns at a given time distance. Recall
that the correlation coefficient of two random variables X and Y is

ρ(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.

For the process X, introduce ξ = (ξt)t≥0, the process of absolute values of increments,
for h fixed: ξt = |Xt+h −Xt|. Then the volatility autocorrelation of X is

ρ(t− s) = lim
h↓0

ρ(ξs, ξt) =
Cov(ξs, ξt)√
V ar(ξs)V ar(ξt)

Indeed, being the process stationary, the quantity we have defined above depends just
on the time difference t−s. Let’s state our result, concerning as above the asymptotic
behavior as h ↓ 0.

Theorem 5.5 (Volatility autocorrelaton). For t ≥ 0,

ρ(t) =
2

π

Cov
(
SD−1/2, (λt+ S)D−1/2

)
V ar(|N |SD−1/2)

e−λt

where S is an exponential variable with parameter 1, N is a standard normal variable
and they are mutually independent.

This theorem is actually a special case of Corollary 5.9. It shows that the decay
of volatility autocorrelation is between polynomial and exponential for t = O(1/λ),
exponential for t >> 1/λ.
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5.2.3 Scaling and multiscaling: proof of Theorem 5.3 and 5.4

We prove the scaling properties of our model. Recall that for all fixed t, h > 0 we
have the equality in law Xt+h − Xt ∼

√
IhW1, as it follows by the definition of

(Xt)t≥0 = (WIt)t≥0. We also observe that i(h) = #{T ∩ (0, h]} ∼ Po(λh), as it follows
from the properties of the Poisson process.

Proof of Theorem 5.3: Since P(i(h) ≥ 1) = 1 − e−λh → 0 as h ↓ 0, we may focus
on the event {i(h) = 0} = {T ∩ (0, h] = ∅}, on which we have Ih = σ̄2((h − τ0)2D −
(−τ0)2D), with −τ0 ∼ Exp(λ). In particular,

lim
h↓0

Ih
h

= I ′(0) = 2Dσ̄2 (−τ0)2D−1 a.s. .

Since Xt+h −Xt ∼
√
IhW1, the convergence in distribution (5.2.3) follows:

Xt+h −Xt√
h

d−→
√

2D σ̄ (−τ0)D−1/2W1 as h ↓ 0 .

Next we focus on the case h ↑ ∞. The random variables {(τk − τk−1)2D}k≥1 are
independent and identically distributed with finite mean, hence by the strong law of
large numbers

lim
n→∞

1

n

n∑
k=1

(τk − τk−1)2D = E((τ1)2D) = λ−2D Γ(2D + 1) a.s. .

Plainly, limh→+∞ i(h)/h = λ a.s., by the strong law of large numbers applied to the
random variables {τk}k≥1. Recalling (5.2.1), it follows easily that

lim
h↑∞

I(h)

h
= σ̄2λ1−2D Γ(2D + 1) a.s. .

Since Xt+h −Xt ∼
√
IhW1, we obtain the convergence in distribution

Xt+h −Xt√
h

d−→
√
σ̄2 λ1−2D Γ(2D + 1)W1 as h ↑ ∞ ,

which coincides with (5.2.4).

Proof of Theorem 5.4: Since Xt+h −Xt ∼
√
IhW1, we can write

E(|Xt+h −Xt|q) = E(|Ih|q/2|W1|q) = E(|W1|q)E(|Ih|q/2) = cq E(|Ih|q/2) , (5.2.6)

where we set cq := E(|W1|q). We therefore focus on E(|Ih|
q
2 ), that we write as the sum

of three terms, that will be analyzed separately:

E(|Ih|
q
2 ) = E(|Ih|

q
2 1{i(h)=0}) + E(|Ih|

q
2 1{i(h)=1}) + E(|Ih|

q
2 1{i(h)≥2}) . (5.2.7)
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For the first term in the right hand side of (5.2.7), we note that P(i(h) = 0) =
e−λh → 1 as h ↓ 0 and that Ih = σ̄2((h − τ0)2D − (−τ0)2D) on the event {i(h) = 0}.
Setting −τ0 =: λ−1S with S ∼ Exp(1), we obtain as h ↓ 0

E(|Ih|
q
2 1{i(h)=0}) = σ̄q λ−Dq E

(
((S + λh)2D − S2D)

q
2

) (
1 + o(1)

)
. (5.2.8)

Recalling that q∗ := (1
2
−D)−1, we have

q T q∗ ⇐⇒ q

2
T Dq + 1 ⇐⇒ −1 T

(
D − 1

2

)
q .

As δ ↓ 0 we have δ−1((S + δ)2D − S2D) ↑ 2DS2D−1 and note that E
(
S(D− 1

2
)q
)

=
Γ(1 − q/q∗) is finite if and only if (D − 1

2
)q > −1, that is q < q∗. Therefore the

monotone convergence theorem yields

for q < q∗ : lim
h↓0

E
((

(S + λh)2D − S2D
) q

2
)

λ
q
2 h

q
2

= (2D)q/2 Γ(1− q/q∗) ∈ (0,∞) .

(5.2.9)
Next observe that, by the change of variables s = (λh)x, we can write

E
(
((S + λh)2D − S2D)

q
2

)
=

∫ ∞
0

((s+ λh)2D − s2D)
q
2 e−s ds

= (λh)Dq+1

∫ ∞
0

((1 + x)2D − x2D)
q
2 e−λhx dx .

(5.2.10)

Note that ((1 + x)2D − x2D)
q
2 ∼ (2D)

q
2x(D− 1

2
)q as x→ +∞ and that (D− 1

2
)q < −1 if

and only if q > q∗. Therefore, again by the monotone convergence theorem, we obtain

for q > q∗ : lim
h↓0

E
(
((S + λh)2D − S2D)

q
2

)
λDq+1 hDq+1

=

∫ ∞
0

((1 + x)2D − x2D)
q
2 dx ∈ (0,∞) .

(5.2.11)
Finally, in the case q = q∗ we have ((1+x)2D−x2D)q

∗/2 ∼ (2D)q
∗/2 x−1 as x→ +∞ and

we want to study the integral in the second line of (5.2.10). Fix an arbitrary (large)
M > 0 and note that, integrating by parts and performing a change of variables, as
h ↓ 0 we have∫ ∞
M

e−λhx

x
dx = − logMe−λhM + λh

∫ ∞
M

(log x) e−λhx dx = O(1) +

∫ ∞
λhM

log
( y

λh

)
e−y dy

= O(1) +

∫ ∞
λhM

log
(y
λ

)
e−y dy + log

(
1

h

)∫ ∞
λhM

e−y dy = log

(
1

h

) (
1 + o(1)

)
.

From this it is easy to see that as h ↓ 0∫ ∞
0

((1 + x)2D − x2D)
q∗
2 e−λhx dx ∼ (2D)

q∗
2 log

(
1

h

)
.
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Coming back to (5.2.10), noting that Dq + 1 = q
2

for q = q∗, it follows that

lim
h↓0

E
(
((S + h)2D − S2D)

q∗
2

)
λDq∗+1 h

q∗
2 log( 1

h
)

= (2D)
q∗
2 . (5.2.12)

Recalling (5.2.6) and (5.2.8), the relations (5.2.9), (5.2.11) and (5.2.12) show that the
first term in the right hand side of (5.2.7) has the same asymptotic behavior as in the
statement of the theorem, except for the regime q > q∗ where the constant does not
match (the missing contribution will be obtained in a moment).

We now focus on the second term in the right hand side of (5.2.7). Note that,
conditionally on the event {i(h) = 1} = {τ1 ≤ h, τ2 > h}, we have

Ih = σ̄2
(
(h−τ1)2D+(τ1−τ0)2D−(−τ0)2D

)
∼ σ̄2

(
(h−hU)2D+

(
hU+

S

λ

)2D

−
(
S

λ

)2D)
,

where S ∼ Exp(1) and U ∼ U(0, 1) (uniformly distributed on the interval (0, 1)).
Since P(i(h) = 1) = λh+ o(h) as h ↓ 0, we obtain

E(|Ih|
q
2 1{i(h)=1}) = λσ̄qhDq+1 E

[(
(1− U)2D +

((
U +

S

λh

)2D

−
(
S

λh

)2D)) q
2
]
.

(5.2.13)
Since (u+ x)2D − x2D → 0 as x→∞, for every u ≥ 0, by the dominated convergence
theorem we have (for every q ∈ (0,∞))

lim
h↓0

E(|Ih|
q
2 1{i(h)=1})

hDq+1
= λσ̄q E

(
(1− U)Dq

)
=

λσ̄q

Dq + 1
. (5.2.14)

This shows that the second term in the right hand side of (5.2.7) gives a contribution
of the order hDq+1 as h ↓ 0. This is relevant only for q > q∗, because for q ≤ q∗ the
first term gives a much bigger contribution of the order hq/2 (see (5.2.9) and (5.2.12)).
Recalling (5.2.6), it follows from (5.2.14) and (5.2.11) that the contribution of the first
and the second term in the right hand side of (5.2.7) matches the statement of the
theorem (including the constant).

It only remains to show that the third term in the right hand side of (5.2.7) gives
a negligible contribution. We begin by deriving a simple upper bound for Ih. Since
(a + b)2D − b2D ≤ a2D for all a, b ≥ 0 (we recall that 2D ≤ 1), when i(h) ≥ 1, i.e.
τ1 ≤ h, we can write

Ih = σ̄2

(h− τi(h))
2D +

i(h)∑
k=2

(τk − τk−1)2D +
[
(τ1 − τ0)2D − (−τ0)2D

]
≤ σ̄2

(h− τi(h))
2D +

i(h)∑
k=2

(τk − τk−1)2D + τ 2D
1

 ,

(5.2.15)
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where we agree that the sum over k is zero if i(h) = 1. Since τk ≤ h for all k ≤ i(h),
by the definition of i(h), relation (5.2.15) yields the bound Ih ≤ σ̄2h2D(i(h)+1), which
holds clearly also when i(h) = 0. In conclusion, we have shown that for all h, q > 0

|Ih|q/2 ≤ hDqσ̄q(i(h) + 1)q/2. (5.2.16)

For any fixed a > 0, by the Hölder inequality with p = 3 and p′ = 3/2 we can write
for h ≤ 1

E
(
(i(h) + 1)q/2 1{i(h)≥2}

)
≤ E

(
(i(h) + 1)3q/2

)1/3 P(i(h) ≥ 2)2/3

≤ E
(
(i(1) + 1)3q/2

)1/3
(1− e−λh − e−λhλh)2/3 ≤ (const.)h4/3 ,

(5.2.17)

because E
(
(i(1) + 1)3q/2

)
<∞ (recall that i(h) ∼ Po(λ)) and (1− e−λh − e−λhλh) ∼

1
2
(λh)2 as h ↓ 0. Then it follows from (5.2.17) that

E
(
|Ih|q/2 1{i(h)≥2}

)
≤ (const.′)hDq+4/3 .

This shows that the contribution of the third term in the right hand side of (5.2.7) is
always negligible with respect to the contribution of the second term (recall (5.2.14)).

5.3 The bivariate model

5.3.1 Definition of the bivariate model

We investigate here the decay of correlation of the absolute returns of a bivariate
version (X, Y ) = (Xt, Yt)t≥0 of the model defined in Section 5.2. We need the following
quantities:

• two Brownian motions WX =
(
WX
t

)
t≥0

and W Y =
(
W Y
t

)
t≥0

;

• two Poisson point processes on R: T X = (τXn )n∈Z and T Y = (τYn )n∈Z, of rates
respectively λX and λY ;

• positive constants DX , DY , σ̄X and σ̄Y .

The tricky point is the definition of the Poisson processes, that we want dependent
but different. We introduce T i, i = 1, 2, 3 independent Poisson point processes with
intensities λi, i = 1, 2, 3. Then we define T X = T 1 ∪ T 2, T Y = T 1 ∪ T 3. These are
again Poisson processes, with intensity λ1 + λ2 and λ1 + λ3, and they are actually
mutually dependent if T 1 is non-degenerate.

We want to have a correlation coefficient ρ ∈ [−1, 1] also between the Brown-
ian motions, and this is a standard issue in financial modeling. We introduce two
independent Brownian motions WX , W̃ , and define

W Y
t = ρWX

t +
√

1− ρ2W̃t.
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The correlation between W Y and WX will play no role in this paper, but the parameter
ρ is important for the correlation of the increments of X and Y at the same time,
which could be an interesting aspect to consider.

We suppose that the two-dim Brownian W = (WX ,W Y ) and the two-dim time
change T = (T X , T Y ) are independent. The requirements of section 5.2 on the
marginal one-dim processes are satisfied and we can define X and Y as

Xt = WX
IXt
, Yt = W Y

IYt

where the random time changes IXt and IYt are defined as in (5.2.1). This definition
is motivated by the fact that in empirical data the occurrence of a shock in one of
the two indices often coincides with a peak in the volatility of the other, as we will
see in Section 5.4.2. So it is reasonable to suppose that part of the shock process is
”common”.

5.3.2 Covariance and correlations of absolute log-returns

For a given time h,
ξt = |Xt+h −Xt|, ηt = |Yt+h − Yt|,

are the absolute values of the returns of X and Y at time t. We are interested in the
correlations between these two variables, and we start computing their covariance. In
fact, we are now going to state a result on the asymptotic behavior of the covariance
of log-returns as the time scale goes to 0.

Theorem 5.6 (Covariance of absolute log-returns). Let the process (X, Y ) be defined
as above. Then, for any t ≥ s ≥ 0, the following holds:

lim
h↓0

Cov(ξs, ηt)

h
= lim

h↓0

Cov(ξ0, ηt−s)

h
=

4 σ̄X σ̄Y
√
DXDY

π
Cov

(
(−τX0 )D

X−1/2, (t− s− τY0 )D
Y −1/2

)
e−λ

Y (t−s)

Remark 5.7. Using the definition of T X and T Y and the properties of Poisson
processes it is possible to rewrite this expression as

lim
h↓0

Cov(ξ0, ηt)

h
=

4

π
σ̄X σ̄Y

√
DXDY

(
λX
)1/2−DX (

λY
)1/2−DY ×

Cov
(

(SX)D
X−1/2, (λY t+ SY )D

Y −1/2
)
e−λ

Y t

where SX = min{S1,X , S2} and SY = min{S1,Y , S3} are correlated exponential vari-
ables of parameter 1, and

(λ1 + λ2)S1,X = (λ1 + λ3)S1,Y ∼ exp (λ1) ,

S2 ∼ exp

(
λ2

λ1 + λ2

)
, S3 ∼ exp

(
λ3

λ1 + λ3

)
are mutually independent.
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Remark 5.8. If instead of taking absolute returns we consider simple returns, we
find that limh↓0Cov(Xh −X0, Yt+h − Yt) = 0, for any t > 0. This is why we say that
our model is consistent with the fact that empirical cross-correlations of returns are
not significant even for very small time lags, in analogy with the autocorrelations.

From this theorem we obtain an asymptotic evaluation for correlations between
log-returns, when the time scale goes to 0. Recall that the correlation coefficient
between ξ0 and ηt is defined as

ρ(ξ0, ηt) = ρ(|Xh|, |Yt+h − Yt|) =
Cov(ξ0, ηt)√
V ar(ξ0)V ar(ηt)

.

Corollary 5.9 (Decay of cross-asset correlations). For the process (X, Y ) defined
above, for any t ≥ s ≥ 0, the following expression holds as h ↓ 0:

lim
h↓0

ρ(ξ0, ηt) =
2

π

Cov
(

(SX)D
X−1/2, (λY t+ SY )D

Y −1/2
)

√
V ar(|N |SDX−1/2)V ar(|N |SDY −1/2)

e−λ
Y t

where with S we denote an exponential variable of parameter 1 and with N a standard
normal variable, they are mutually independent and both independent of all the other
random variables. SX and SY are defined in Remark 5.7.

Remark 5.10. Suppose we are dealing with X and Y produced by the same time
change of two different Brownian motions, i.e IX = IY =: I, or:

DX = DY , T X = T Y , σ̄X = σ̄Y .

The expression for the decay of cross-asset correlation becomes in this case

lim
h↓0

ρ(ξ0, ηt) =
2

π

Cov
(
σ̄SD−1/2, σ̄(λt+ S)D−1/2

)
e−λt

V ar(σ̄|N |SD−1/2)
,

which is exactly the expression for the decay of autocorrelation coefficients (cf. The-
orem 5.5). An analysis of real data suggests that this property is very close to what
we see in financial markets.

5.3.3 Proof of theorem 5.6

We start the computations on Cov(ξs, ηt) writing more explicitly the quantities in-
volved. Recall that the increments of WX and W Y are independent on disjoint time
intervals, and WX and W̃ are independent Brownian Motions. So for h < t− s

Cov(ξs, ηt) = E(|Xs+h −Xs||Yt+h − Yt|)− E|Xs+h −Xs|E|Yt+h − Yt|

= E
(
|WX

1 |
√
IXs+h − IXs |W̃1|

√
IYt+h − IYt

)
− E

(
|WX

1 |
√
IXs+h − IXs

)
E
(
|W̃1|

√
IYt+h − IYt

)
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and using independence

Cov(ξs, ηt) = (E|WX
1 |)2Cov

(√
IXs+h − IXs ,

√
IYt+h − IYt

)
=

2

π
Cov

(√
IXs+h − IXs ,

√
IYt+h − IYt

)
.

From our choice of T X and T Y we have the stationarity of the increments of (IX , IY ),
therefore

Cov

(√
IXs+h − IXs ,

√
IYt+h − IYt

)
= Cov

(√
IXh ,

√
IYt−s+h − IYt−s

)
.

Remark that the covariance of the absolute values of the returns actually depends just

on Cov
(√

IXh ,
√
IYt+h − IYt

)
, where t is the time difference. Recall

Ih = σ̄2

(h− τi(h))
2D +

i(h)∑
k=1

(τk − τk−1)2D − (−τ0)2D


Almost surely, for h small enough, i(h) = i(0) = 0, so the sum in the right hand
vanishes and a.s.

lim
h↓0

Ih
h

= lim
h↓0

σ̄2 (h− τi(h))
2D − (−τ0)2D

h

= σ̄2 lim
h↓0

(h− τ0)2D − (−τ0)2D

h
= 2Dσ̄2(−τ0)2D−1,

and analogously

lim
h↓0

It+h − It
h

= 2Dσ̄2(t− τi(t))2D−1.

Lemma 5.11 implies the uniform integrability of the families{
IXh
h

: h ∈ (0, 1]

}
,

{
IYt+h − IYt

h
: h ∈ (0, 1]

}
,

therefore we first apply bi-linearity of covariance and then take the limit inside, ob-
taining

lim
h↓0

Cov
(√

IXh ,
√
IYt+h − IYt

)
h

= Cov

lim
h↓0

√
IXh
h
, lim
h↓0

√
IYt+h − IYt

h


= 2
√
DXDY σ̄X σ̄YCov

(
(−τX0 )D

X−1/2, (t− τYiY (t))
DY −1/2

)
.
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We can obtain a better representation of this quantity multiplying the right term in
the covariance by the characteristic function of {iY (t) = 0} plus the characteristic
function of its complement:

Cov
(

(−τX0 )D
X−1/2, (t− τYiY (t))

DY −1/2
)

= Cov
(

(−τX0 )D
X−1/2, (t− τYiY (t))

DY −1/21{iY (t)=0}

)
+ Cov

(
(−τX0 )D

X−1/2, (t− τYiY (t))
DY −1/21{iY (t)>0}

)
.

The second covariance is 0 because (t−τYiY (t))
DY −1/21{iY (t)>0} is GY>0 measurable, where

GY>0 = σ̄(τYk : k > 0), and GY>0 is independent of τ0 (loss of memory property of Poisson
processes). So, using the fact that 1{iY (t)=0} is GY>0 measurable, because so is 1{iY (t)>0},
we have

Cov
(

(−τX0 )D
X−1/2, (t− τYiY (t))

DY −1/2
)

= Cov
(

(−τX0 )D
X−1/2, (t− τY0 )D

Y −1/21{iY (t)=0}

)
= Cov

(
(−τX0 )D

X−1/2, (t− τY0 )D
Y −1/2

)
E
(
1{iY (t)=0}

)
= Cov

(
(−τX0 )D

X−1/2, (t− τY0 )D
Y −1/2

)
e−λ

Y t,

and the theorem is proved.
We present now the technical lemma used in the proof of Theorem 5.6. Recall that

0 < D < 1/2.

Lemma 5.11. The class of random variables{
IXh
h

: h ∈ (0, 1]

}
is bounded in Lδ for δ < 1

1−2D
.

Proof. Recall

It = σ̄2

(t− τi(t))2D +

i(t)∑
k=1

(τk − τk−1)2D − (−τ0)2D


and decompose E(Iδt )

E(Iδt ) = E(Iδt |i(t) = 0)P(i(t) = 0) +
∞∑
k=1

E(Iδt |i(t) = k)P(i(t) = k)

Conditioning on i(t) = 0 and using convexity,

It = σ̄2
[
(t− τ0)2D − (−τ0)2D

]
≤ 2Dσ̄2(−τ0)2D−1t
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in a right neighborhood of t = 0. So

E(Iδt |i(t) = 0) ≤ (2D)δσ̄2δE
(
(−τ0)δ(2D−1)

)
tδ ≤ C0t

δ

for δ < 1
1−2D

, since −τ0 is an random variable with exponential distribution. Condi-
tioning on i(t) = k, k ≥ 1, and using convexity again,

It = σ̄2

[
(t− τk)2D +

k∑
j=1

(τj − τj−1)2D − (−τ0)2D

]

≤ σ̄2

[
(t− τk)2D +

k∑
j=2

(τj − τj−1)2D + (t− τ0)2D − (−τ0)2D

]

≤ σ̄2

[
(t− τk)2D +

k∑
j=2

(τj − τj−1)2D + 2D(−τ0)2D−1t

]
.

By Jensen inequality and the fact that 2D < 1,

(t− τk)2D +
k∑
j=2

(τj − τj−1)2D ≤ k

(
(t− τk) +

∑k
j=2(τj − τj−1)

k

)2D

≤ k

(
t

k

)2D

Then

It ≤ σ̄2

(
2D(−τ0)2D−1t+ k

(
t

k

)2D
)
.

Now, supposing t ≤ 1, we have that for suitable positive constants C1 and C2

E(Iδt |i(t) = k)P(i(t) = k) ≤ C1
λk

k!
tδ + C2k

δ(1−2D)λ
k

k!
t1+2Dδ.

Recall δ < 1
1−2D

. Therefore δ < 1 + 2Dδ, so t1+2Dδ ≤ tδ, and then

E(Iδt |i(t) = k)P(i(t) = k) ≤
(
C1 + C2k

δ(1−2D)
) λk
k!
tδ.

Therefore

E(Iδt ) ≤

[
C0 +

∞∑
k=1

C3
λk

k!

]
tδ ≤ C4t

δ

where C3 and C4 are positive constants. So
{
IXt
t

: t ∈ (0, 1]
}

is bounded in Lδ.

5.4 Empirical results

We consider the DJIA Index and FTSE Index, from April 2nd, 1984 to July 6th,
2013. For the data analysis we use the software MatLab [76]. What follows is justified
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by the ergodic properties of the increments X. We start considering the two series
separately. We want to assign to the parameters some values such that the predictions
of the model are as close as possible to real data. For this purpose, we choose some
significant quantities (taking into account interesting features related to stylized facts),
and use them for the calibration. Here we consider the multiscaling coefficients C1

and C2, the multiscaling exponent A(q), the volatility autocorrelation function ρ(t).
The procedure for the calibration is described precisely in [1] for what concerns the
one-dimensional model. Here we just outline the basic idea, which is to minimize
an L2 distance between predictions of the model and empirical estimations of these
significant quantities. The details of the calibration of the bivariate version can be
found in [82]. We find the following estimates for the parameters.

FTSE: D ≈ 0.16; λ ≈ 0.0019; σ̄ ≈ 0.11.

DJIA: D ≈ 0.14; λ ≈ 0.0014; σ̄ ≈ 0.127.

In Figure 5.3 we show the empirical multiscaling exponent versus the prediction of
our model with this parameters. Our estimate for the multiscaling exponent looks
smoothed out by the empirical curve. Since a simulation of daily increments of the
model yields a graph analogous to the empirical one, this slight inconsistency is likely
due to the fact that the theoretical line shows the limit for h ↓ 0, whereas the empirical
data come from a daily sample.

Analogously Figure 5.4 concerns volatility autocorrelation. The decay is between
polynomial and exponential, and fits very well empirical data considering the fact
that they are quite widespread. We conclude that the agreement is excellent for both
multiscaling and volatility autocorrelation.

Figure 5.3: Multiscaling exponent

(a) FTSE (b) DJIA

We display now the distribution of log returns for our model pt(·) = P(Xt ∈ ·) =
P(Xn+t − Xn ∈ ·) for t = 1 day, and the analogous empirical quantity. We do not
have an explicit analytic expression for pt, but we can easily obtain it numerically.
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Figure 5.4: Volatility autocorrelation

(a) FTSE log plot (b) DJIA log plot

(c) FTSE loglog plot (d) DJIA loglog plot

Figure (5.5) represent the bulks and the integrated tails of the distributions. We see
that the agreement is remarkable, given that this curves are a test a posteriori, and
no parameter has been estimated using these distributions!

5.4.1 Jumps and quadratic variation

In this section we introduce the theoretical tools and results that have inspired the
algorithm for finding the location of relevant big jumps in the volatility, that will be
presented in the next section. This algorithm has appeared for the first time in [23].

On one hand we know that the quadratic variation of X is given by I (Proposition
5.2), i.e.

〈X〉t = It.

Therefore, since we know that the quadratic variation of Xt is the limit in probability
of the squared increments on shrinking partitions, it seems natural to estimate I by
evaluating the squared increments of a dense sampling of X.
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Figure 5.5: Distribution of log returns

(a) FTSE bulk (b) DJIA bulk

(c) FTSE integrated tails (d) DJIA integrated tails

On the other hand, the process I is piecewise-concave; in fact, we recall that such
process is defined by

It = σ̄2

(t− τi(t))2D +

i(t)∑
k=1

(τk − τk−1)2D − (−τ0)2D


It is clear that between two consecutive shock times the process is concave. Therefore,
if we are at time T and we consider the backward difference quotient defined by

QT (t) :=
IT − IT−t

t

this quantity is, conditional on T , increasing up to the last shock time before T ,
therefore it has a local maximum in t = T − τi(T ). Moreover, the derivative of It is
very big after a shock but it quickly decays over time. Because of that, we expect
that QT (s) < QT (T − τi(T )) if s ∈ (T − τi(T ), T − τi(T ) − L), for some L > 0. We
propose here an algorithm based on the following idea: if we choose a M > 0 such
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that T −M < τi(T ) < T and T −M is “closer to τi(T ) than to τi(T )−1”, then the global
maximum of QT (t) in the interval (T −M,T ) should be attained in t = T − τi(T ).

In view of these two observations, we introduce the following estimator

VT (k) :=
1

k

k∑
i=1

(XT−i+1 −XT−i)
2

In our data analysis, the estimator is an average of daily squared increments of Xt

(the densest sampling we could get), so it should be a good estimate of the quadratic
variation of X. Moreover, it has the following property

E {VT (k)|T } =
1

k

k∑
i=1

E
{

(XT−i+1 −XT−i)
2 |T

}
=

1

k

k∑
i=1

E
{(
WIT−i+1

−WIT−i

)2 |T
}

=
1

k

k∑
i=1

(IT − IT−k)

= QT (k)

Since we can’t observe QT directly, we can use VT as an approximation of it and
implement and algorithm for finding the realised jump time estimating VT on historical
data. We give now a more accurate mathematical explanation of these heuristics. This
work has been developed in [23], [29], [82].

First we introduce the process Q
(N)
T (t), which is an analogous of the estimator

VT , but its time argument is continuous. In order to simpify the notation we set
m = T − τi(T ) and α := τi(T ) − τi(T )−1. Moreover recall from subsection 5.4.1 that

QT (t) =
IT − IT−t

t
, and It = 〈X〉t.

Definition 5.12. Let Xt the stochastic process defined as WIt . We define the process

Q
(N)
T (t) as the discrete version of QT (t).

Q
(N)
T (t) :=

1

t

(
N∑
n=0

((
X (n+1)T

N

−XnT
N

)2

−
(
X (n+1)(T−t)

N

−Xn(T−t)
N

)2
))

QT (·) has some nice geometrical properties which guarantee the existence of an
“isolated” maximum point in m. However we cannot observe on real data the realiza-
tion of QT (·) but we can observe the process Q

(N)
T (·) on the times where it coincides

with VT . Theorem 5.14 shows that in suitable settings maximum points observed
through Q

(N)
T (·) converges to m.

The following lemma shows geometrical properties of QT (·). Given m small enough
QT (·) attains its maximum in m and the peak attained in m is arbitrarily high, i.e.
reducing m increases the distance between the maximum and the next minimum.
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Lemma 5.13. Let m and α as in above and K := ( 1
2D

)
1

1−2D . Then

(1) m is a local maximum point for QT (t) iff m < Kα

(2) The following limit holds

QT (m)−QT (α +m)
m→0+−−−−→ +∞

Proof. (1) QT (t) is everywhere continuous and it is differentiable but in {T−τn}n∈N.
To prove that it attains the maximum in T − τi(T ) we will prove that in m the
left derivative is greater than 0 and the right one is less than 0.

The derivatives are

Q′T (t) =
σ̄22D(T − t− τi(T )−1)2D−1t− (IT − IT−t)

t2
t ∈ (T − τi(T ), T − τi(T )−1)

Q′T (t) =
σ̄22D(T − t− τi(T ))

2D−1t− (IT − IT−t)
t2

t ∈ (0, T − τi(T )) (5.4.1)

Is is concave then
IT − IT−t < I ′(T − t)t

From (5.4.1) we get Q′T (t) > 0 in (0,m).

On the other hand

lim
t→m

σ̄22D(T − t− τi(T )−1)2D−1t− (IT − IT−t)
t2

=
σ̄2

m2

(
2Dα2D−1m−m2D

)
=: Lσ̄(α,m)

(5.4.2)

Lσ̄(α,m) has the following trivial properties

Lσ̄(α,m) = 0⇔ m = α

(
1

2D

) 1
1−2D

lim
m→0+

Lσ̄(α,m) = −∞

lim
m→+∞

Lσ̄(α,m) = +∞

which imply that the right derivative is less than zero if and only if m < Kα,
thus QT (t) attains a local maximum in m if and only if m < Kα.

(2) Note that QT ∈ C∞((T − τi(T ), T − τi(T )−1)) a.s. The second order derivative on
this interval is the following

Q
(2)
T =

2D(2D − 1)(T − t− τi(T )−1)2D−2

t
− 2Q′T

t
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Thus Q′T (t) = 0 implies Q
(2)
T (t) > 0 then all stationary points are minimum

points. Moreover QT can have only one minimum point which in fact exists,
since from hypothesis and from (5.4.2) we get

lim
t→T−τi(T )

Q′T (t) < 0

and

lim
t→T−τi(T )−1

Q′T (t) = +∞

Let γ ∈ (T − τi(T ), T − τi(T )−1) the point in which QT (t) attains its minimum.
By definition

QT (m)−QT (γ) > QT (m)−QT (α +m)

Let ξ = τi(T )−1 − τi(T )−2. We get

QT (m)−QT (α+m) =
IT − Iτi(T )

T − τi(T )

−
IT − Iτi(T )−1

T − τi(T )−1

= σ̄2

(
m2D + α2D

m
− m2D + α2D + ξ2D

m+ α

)
Passing to the limit

QT (m)−QT (α +m) =
σ̄2(α2D+1 +m2Dα−mξ2D)

m(m+ α)

m→0+−−−−→ +∞

then limm→0+QT (m)−QT (γ) = +∞.

Theorem 5.14. Let QT (t), Q
(N)
T (t), α and m as above. Let K := ( 1

2D
)

1
1−2D and

m < Kα. Then there exists an interval I , which contains m, and the sequence
{µN}N∈N of absolute maximum points of Q

(N)
T (t) in I such that the following limit

holds in probability

µN
N→∞−−−→ m

In order to prove this theorem we need to apply lemma 5.16. The most complicated
part is to define a suitable interval I such that I contains m and excludes γ - the
minimum point of QT between m and m + α. Obviously, given such an interval we
are sure that QT |I is increasing before m and decreasing after m because of lemma

5.13. Laboriousness comes up with the fact that we are able to observe only Q
(N)
T

realization, which means that I has to be defined starting from it. To proceed with
our plan we need to find the maximum point of Q

(N)
T which corresponds (in some

sense) to m: therefore we have to get rid of all the maximum points caused by the

irregular realization of Q
(N)
T . The idea is to find a maximum higher than the others:

the following definition moves on this direction.
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Definition 5.15. Let ε > 0. We define µN,ε as the minimum t = kT
N

such that t is

the absolute maximum point of Q
(N)
T on the connected component of Q

(N)←
T (Q

(N)
T (t)−

2ε,+∞) which contains t. We define AN,ε as the connected component such that µN,ε
is maximum of Q

(N)
T on AN,ε.

Proof. Recall Theorem 5.17. For all δ > 0, ε > 0 there exists N̄ such that for all
N ≥ N̄ the following holds

P
[{
d∞

(
QT (·), Q(N)

T (·)
)
> ε
}]

< δ (5.4.3)

Let C := {ω ∈ Ω : d∞(QT (·, ω), Q
(N)
T (·, ω)) > ε}. We will consider only ω ∈ Ω\C e

N ≥ N̄ .
Let γ be the minimum point of QT on the interval (T − τi(T ), T − τi(T )−1). Lemma

5.13 shows that for all ε > 0, taking T close enough to τi(T ) (i.e. taking m small
enough) the following inequality holds 1:

QT (m)−QT (γ) > 4ε (5.4.4)

Let µN,ε and AN.ε defined in definition 5.15. (5.4.4), (5.4.3) imply µN,ε < γ,
thus µN,ε ∈ (0, γ). Moreover from Lemma 5.13 and from the hypothesis T − τi(T ) <
K(τi(T )− τi(T )−1) follows that QT attains the absolute maximum on the interval (0, γ)
in m. Thus

Q
(N)
T (µN,ε)− 2ε ≤ QT (µN,ε)− ε ≤ QT (m)− ε ≤ Q

(N)
T (m)

or equivalently m ∈ AN,ε.
(5.4.4), definition 5.15 and m ∈ AN,ε implies

Q
(N)
T (γ) ≤ QT (γ) + ε < QT (m)− 3ε ≤ Q

(N)
T (m)− 2ε ≤ Q

(N)
T (µN,ε)− 2ε

or equivalently γ /∈ AN,ε.
Let ε > 0 fixed. Consider the interval

I :=
⋂
N≥N̄

AN,ε

taking T close enough to τi(T ), m ∈ I, γ /∈ I. From Lemma 5.13 follows that QT |I
is increasing for x < m and decreasing for x > m. Moreover I is closed since it is
intersection of closed intervals.

From Lemma 5.16 follows that for ω ∈ Ω\C

µN(ω)
N→∞−−−→ m(ω)

Thus arbitrary choice of δ > 0 in (5.4.3) implies the thesis.

1Using the same argument of the proof of Lemma 5.13 we see that there is only a minimum point

between two maximum points, thus QT (m)−QT (γ)
m→0+−−−−→ +∞
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In the proof above we have used the following results (see for instance [66] for
Theorem 5.17).

Lemma 5.16. Let I a closed interval. Let f : I → R a continuous function with the
following properties:

• f attains in m its unique local maximum in I

• f is strictly increasing for x < m, strictly decreasing for x > m,

• {fn}n∈N is a sequence of continuous function in I uniformly convergent to f .
Moreover, for all n ∈ N, mn is the absolute maximum point of fn.

Then
mn

N→∞−−−→ m

Theorem 5.17. Let M ∈Mc,loc. The process S
(2)
n (M) converges to 〈M〉 in probabil-

ity, uniformly on compact intervals [0, T ].

5.4.2 An algorithm for the detection of jumps in the volatility

We explain now the empirical usage of the algorithm, justified by previous compu-
tations, in particular by theorem 5.14. We start introducing some notation. The
financial index time series will be denoted by (si)0≤i≤N , whereas the detrended loga-
rithmic time series will be indicated by (xi)250≤i≤N , where

xi := log(si)− d̄(i)

and d̄(i) := 1
250

∑i−1
k=i−250 log(si); we observe that it is not possible to define xi for

i < 250. We moreover define (y(i))0≤i≤N to be the corresponding series of the trading
dates. We also introduce the empirical estimate of VN as

V̂N(k) :=
1

k

k∑
i=1

(xN−i+1 − xN−i)2

Now, suppose that we want to know when the last shock time in the time series
occurred. We recall that the idea is to choose an appropriate integer M such that
0 < M ≤ N and see where the sequence (V̂N(k))N−M≤k≤N attains its maximum. This
leads us to introduce the following definition.

Definition 5.18. Let (si), (xi), (yi), N,M be as above; given as integer Ñ such that
M ≤ Ñ ≤ N , we define

k̂(Ñ ,M) := argmaxÑ−M≤k≤Ñ
1

k

k∑
i=1

(
xÑ−i+1 − xÑ−i

)2
.
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This quantity is an estimate of the distance of the last shock time before yÑ from Ñ .
Using this we define also

î(Ñ ,M) := Ñ − k̂(Ñ ,M) + 1,

our estimate of the index of the last shock time estimate, and consequently our esti-
mate of the last shock time before yÑ is

τ̂(Ñ ,M) := y
(̂
i(Ñ ,M)

)
.

It is worth compare briefly our algorithm with the so called ICSS-GARCH algo-
rithm. Following [87], we can describe the ICSS-GARCH algorithm as follows. Given
a series of financial returns r1, . . . , rn, with mean 0 we define the cumulative sum of
squares Ck =

∑k
i=1 r

2
i and let

Dk =
Ck
Cn
− k

n
, 1 ≤ k ≤ n, D0 = Dn = 0

The idea is that if the sequence r1, . . . , rn has constant variance, then the sequence
D1, . . . , Dn should oscillate around 0. However, if there is a shock in the variance, the
sequence should exhibit extreme behavior around that point.

We remark that both algorithms use squared returns to detect volatility shocks.
However, the ICSS-GARCH algorithm works well under the assumption that the
returns are normally distributed, but not with heavy-tailed distributions, as proved in
[87]. Our algorithm, on the contrary, does not need any particular assumption on the
distribution of the returns, but it is simply based on geometrical considerations. In
fact it exploits the particular characteristics of a piecewise-concave Brownian motion
time change to locate shocks. We point out the assumption of a piecewise-concave
Brownian motion time change is very natural in the context of stochastic volatility
models. In fact, to reproduce jumps in the volatility, one has to introduce a process
that makes the volatility dramatically increase when a shock occurs, and then slowly
decay over time. To reproduce such a behavior, it seems natural to introduce a
piecewise-concave time change. Furthermore, we remark that this algorithm does not
work just with the model that presented here. For instance it is possible to prove that
it works with any model where the detrended log-price is given by WJt , where W is a
Brownian motion and Jt is a time change such that

Jt = g(t− τi(t)) +

i(t)∑
k=1

g(τk − τk−1),

with {τi}i∈Z and i(t) as in the model in [1] and g : [0,+∞)→ [0,+∞) is concave and
satisfies g(0) = 0, limh→0+ g(h)/h = +∞. 2

2In the model presented above, g(h) = h2D
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Recall that for the empirical discussion outlined here, we decided to use the DJIA
Index and FTSE Index, from April 2nd, 1984 to July 6th, 2013, so that N = 7368. A
similar data analysis has been done on the Standard & Poor’s 500 Index, from January
3rd, 1950 to July 23th, 2013, finding analogous result and confirming the validity of
the method we present here on aggregate indices. All the calculations and pictures
presented here have been obtained using the software MatLab [76]. An example of
the empirical procedure to estimate the last shock time is given in Figure 5.6.

Figure 5.6: Plot of the quantity V̂Ñ(k) for k = 1, . . . , 2000 (M = 2000). Ñ has been
choosen so that yÑ is the 10th of May 2011. The peak corresponds to the the 15th of
September 2008, the day of the Lehman Brothers bank bankruptcy.

However, we are not sure whether the choice of M that we made is good or not.
Therefore, to confirm that the shock time estimate is good, we may repeat the estimate
approaching the shock time, for example dropping the last observation, or dropping a
particular number of the last observations. Then we can repeat this procedure many
times and if we see that the last shock time estimate is confirmed, then we have a
clear indication of the presence of a shock there (see Figure 5.7–(a)). We remark that
when more than one shock is present on the time interval we consider, the most recent
is always found as the maximum peak of V̂ if we take yÑ close enough to it. When
we get further, the chosen peak is not necessarily the most recent, as we can see in
Figure 5.7–(b). This is exactly what we expect from Theorem 5.14.

We can now apply the algorithm to try to locate all the past shocks in a given
financial index time series. To do so, we simply calculate the quantity î(Ñ ,M) for
Ñ = N, . . . ,M . We introduce the following sequence.

Definition 5.19. Given the quantities defined in definition 5.18, we introduce the
past shock time sequence as

ĥ((xi)250≤i≤N ,M) :=
(̂
i(Ñ ,M)

)
M≤Ñ≤N

However, we slightly tweak the procedure in order to get a clearer result. When
calculating k̂(Ñ ,M) we ignore the last 20 elements of the sum, in order words, instead



5.4. EMPIRICAL RESULTS 145

Figure 5.7: Plot of the quantities V̂Ñ(k) for k = 1, . . . , 2000 (M = 2000), for the
DJIA. In each figure we shift Ñ 4 times of 20 working days. In (a) Ñ has been
chosen so that yÑ is the 10/05/11(red), the 11/04/11(yellow), the 14/03/11(green)
and the 11/02/11(blue). The four maxima are all located the 15/09/08, the day of
the Lehman Brothers bank bankruptcy, confirming the presence of a shock there. In
(b) Ñ has been chosen so that yÑ is the 27/02/12(red), the 27/01/12(yellow), the
28/12/11(green) and the 29/11/11(blue). We can see that when yÑ is close to the
05/08/11 (European sovereign debt crisis), this date corresponds to the maximum of
V̂ , whereas when we move further the maximum is again on the 15/09/08.

(a) (b)

of calculating k̂(Ñ ,M) as the argmax for Ñ−M ≤ k ≤ Ñ , we drop the last 20 elements
of the series. This leads us to recognize shocks that are at least 20 days old, removing
the noise due to the excess volatility. We do this because when Ñ is very close to a
shock, the procedure becomes unstable since near a shock the volatility is very high,
so it is not always clear where the maximum is.

Finally, to get a clear picture of which are the big shocks in the time series, we can
plot the number of the occurrences of each element of the sequence ĥ((xi)250≤i≤N ,M).
We may choose to consider an element of the sequence of dates a shock if its numbers
of occurrences exceeds a certain threshold. Table 5.1 contains our estimated shock-
dates. In Figure 5.8 you can see the graphical evidence that maxima are concentrated
on a small set of days for both FTSE and DJIA, supporting the validity of the method.
The choice of the threshold is not completely determined, and we have based it on
two criteria. Firstly, the number of estimated shocks should be consistent with the
number of expected jumps of the Poisson process (whose rate will be calibrated in
section 5.3). Secondly, we see that in both series it is possible to find a big interval in
N for which almost no date has a number of occurrences contained in that interval.
More explicitly, for the DJIA there are just 3 dates found approximately 50 times,
whereas all the others are found more than 80 times or less than 25. Analogously, for
the FTSE there are just 2 dates found approximately 50 times, whereas all the others
are found more than 80 times or less than 20. It is therefore reasonable to consider
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true shocks the ones occurred more than 80 times, whereas it is not that clear how to
consider the dates with approximately 50 occurrences. In any case, these choices are
consistent with the number of expected jumps of the Poisson process. Another issue
in the choice of shock dates is the fact that sometimes there are two or more very
close dates which are found a considerable number of times. In this case we consider
them as related to the same shock. These dates are marked with the word ”sparse”
in table 5.1, where we have reported our estimated dates.

Figure 5.8: Shock times; x-axis: increasing time index; y-axis: y(i)=number of times
the maximum of V̂ is realized at i

(a) FTSE shock times (b) DJIA shock times

It is natural at this point to wonder if there is a relation between the shocks in
the two indices, and a straightforward experiment is to try to superimpose the two
graphics (see Figure 5.9). What we get is a clear indication that the shock times of
the two series are almost coincident, only the magnitude (or evidence) being different
and having very few shocks which are present just in one of the two indices. This is
a validation of our choice of modeling the joint process of jumps T = (T X , T Y ) as
explained in section 5.3, taking T X = T 1 ∪ T 2 and T Y = T 1 ∪ T 3.

5.4.3 Application to cross asset correlation

As a consequence of previous section, a first idea to try a rough modeling of cross
asset correlations is to suppose T f , jump process for FTSE, and T d, jump process for
DJIA, to be the same process. But if this is true from Remark 5.10, and from the
fact that D and σ̄ are very similar for FTSE and DJIA, we would expect the decay of
volatility autocorrelation in the DJIA, the decay of volatility autocorrelation in the
FTSE and the decay of cross-asset correlation of absolute returns to display a similar
behavior. In fact, this is exactly what happens if we plot these quantities (see Figure
5.10), in agreement with the empirical findings of [83].

Under this rough hypothesis our estimate for cross-asset correlations is therefore
our prediction for the decay of volatility autocorrelation in FTSE or DJIA, or a mean
between the two.
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Table 5.1: Estimated dates of shock times

FTSE DJIA
14/10/87 15/09/87
24/01/89
26/09/89 11/10/89 (questionable, 53)

09/01/96
01/07/96 (questionable, 54)
13/03/97 (sparse)

08/08/97
22/10/97 (questionable, 48) 16/10/97
04/08/98 31/07/98
30/12/99 04/01/00
09/03/01 09/03/01
06/09/01 06/09/01
12/06/02 05/07/02
12/05/07 (questionable, 43)
24/07/07 24/07/07 (questionable, 57)
15/01/08 04/01/08 (sparse)
03/09/08 15/09/08
05/08/11 05/08/11

Figure 5.9: Common jumps: overlap of Figures 5.8 (a) and (b)
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Figure 5.10: Comparison of empirical correlations

(a) log plot; one point out of three is plotted (b) loglog plot; for t ≥ 20, one point out of
three is plotted

We can do better using the bivariate jump process I = (IX , IY ) described at the
beginning of section 5.3. We just have to estimate the intensities λ1, λ2, λ3, subject to
the constraints coming from the estimates of the one dimensional models. The set of
feasible λs is in fact a segment in R3.

Define γ̂h(t) as the empirical correlation coefficient over h days:

γ̂h(t) = corr(|xf·+h − x
f
· |, |xd·+t+h − xd·+t|).

where xf and xd are the FTSE and DJIA series of detrended log returns.
Minimizing a suitable L2 distance between this quantity and the theoretical cross-

correlation (Theorem 5.5 ) we obtain

λ1 = 0.0014; λ2 = 0.0005; λ3 = 0.

In Figure 5.11 we can see the excellent agreement of the prediction of our model and
the empirical decay of the cross-asset correlations, for t = 1, .., 400 days.

The fact that our estimate is λ3 = 0 means that our best fitting with real data is
obtained when the shocks for FTSE are given by the shocks of the DJIA plus some
additional ones, given by a sparser and independent Poisson process. These estimates,
due to the small sample size, are too rough to allow more quantitative considerations.
In any case, if we want to see a reason for the situation above, we can suppose that
shocks in the DJIA index always determine a shock in the FTSE index, whereas it is
possible to see a shock in the FTSE which does not imply a significant increment in
the empirical variance of DJIA.
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Figure 5.11: FTSE and DJIA cross-asset correlations

(a) log plot (b) loglog plot
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Chapter 6

Multi-scaling of moments in
stochastic volatility models

6.1 Introduction

Let (Xt)t≥0 be a continuous-time martingale representing the log-price of an asset.
We say that the multi-scaling of moments occurs if the limit

lim sup
h↓0

logE (|Xt+h −Xt|q)
log h

=: A(q) (6.1.1)

is non-linear on the set {q ≥ 1 : |A(q)| < +∞}. More intuitively, (6.1.1) says that
E (|Xt+h −Xt|q) scales, in the limit as h ↓ 0, as hA(q), with A(q) non-linear. In the
case Xt is a Brownian martingale (i.e. a stochastic integral w.r.t. a Brownian motion),
one would expect A(q) = q

2
, at least for q sufficiently small. In this case, multi-scaling

of moments can be identified with deviations from this diffusive scaling, occurring
for q above a given threshold; this type of multi-scaling is indeed widely observed in
financial data ([95, 56, 54, 44, 43]), as we can see in fig. 6.1. Multifractal models are

Figure 6.1: Scaling exponent A(q) of FTSE and DJIA

a large class of stochastic processes that exhibit multi-scaling for a rather arbitrary

151
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scaling function A(q) ([28, 27, 26]). In these models Xt is defined as a time changed
Brownian motion:

Xt := WI(t), (6.1.2)

but it cannot be expressed as a stochastic volatility model, i.e. in the form dXt = σtdBt,
for a Brownian motion Bt. Some results on the scaling properties of stochastic volatil-
ity models are contained in [55], where the scaling of the log-volatility is investigated.

In chapter 5 a simple stochastic volatility model exhibiting a bi-scaling behavior
has been constructed: (6.1.1) holds with a function A(q) which is piecewise linear and
the slope A′(q) takes two different values. In this chapter, following [41], we analyze
multi-scaling in a more general class of stochastic volatility models, namely those of the
form dXt = σtdBt, with a volatility process σt independent of the Brownian motion
Bt; these processes are exactly those that can be written in the form (6.1.2) with
a trading time I(t) independent of Wt, and with absolutely continuous trajectories.
Remark that considering models with no drift does not affect our analysis, since in
short time the drift has a smaller scale than the Brownian Motion, and therefore its
contribution to A(q) is negligible. We focus in particular on models in which Vt := σ2

t

is a stationary solution of a stochastic differential equation of the form

dVt = −f(Vt)dt+ dLt, (6.1.3)

for a Lévy subordinator Lt whose characteristic measure has power law tails at infinity,
and a function f(·) such that a stationary solution exists, and it is unique in law. We
show that multi-scaling is not possible if f(·) has linear growth, but if f(·) behaves as
Cxγ as x→ +∞, with C > 0 and γ > 1, then the stochastic volatility process whose
volatility is a stationary solution of (6.1.3), exhibits multi-scaling. In this class of
models multi-scaling comes from the combination of heavy tails of Lt and superlinear
mean reversion; technically speaking, as will be seen later, the key point is that the
distribution of Vt has lighter tails than those of Lt. We remark that the class of
processes introduced in [1] can be seen as limiting cases of those considered here, with
γ > 2 and the characteristic measure of the Lévy process Lt concentrated on +∞. For
all of these models the scaling function A(q) is piecewise linear, with two values for the
slope. We discuss in Section 6.4 how this is compatible with empirical data coming,
for instance, from DJIA or FTSE indices or from currency exchange rate data. We
also briefly discuss how the fact that the processes considered in this chapter are also
of the form (6.1.2) can be useful in financial applications such as option pricing.

The chapter is organized as follows. In Section 6.2 we give some basic facts on
stochastic volatility models, and provide some necessary conditions for multi-scaling.
Section 6.3 contains more specific results for models whose volatility is given by (6.1.3).
Section 6.4 deals with possible financial applications, and in section 6.5 we prove that
for these models volatility autocorrelation decays exponentially, finding some estimates
for the rate of decay.
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6.2 Multi-scaling in stochastic volatility models

We consider a stochastic process (Xt)t≥0 that can be expressed in the form

dXt = σtdWt, (6.2.1)

where (Wt)t≥0 is a standard Brownian motion, and (σt)t≥0 is a stationary, [0,+∞)-
valued process, independent of (Xt)t≥0, that we will call the volatility process. We
assume the following weak continuity assumption on the volatility process.

Assumption A. As h ↓ 0, the limit

1

h

∫ h

0

(σs − σ0)2ds → 0

holds in probability.

We begin with a basic result on the scaling function A(q) defined in (6.1.1). It
states that under a uniform integrability condition on the integrated squared volatility,
the diffusive scaling holds. Thus a necessary condition for multi-scaling is the loss of
this uniform integrability.

Proposition 6.1. Assume that, p > 1,

lim sup
h↓0

E

[(
1

h

∫ h

0

σ2
sds

)p/2]
< +∞. (6.2.2)

Then, under Assumption A, A(q) = q
2

for every q < p.

Proof. Note that

Xh −X0√
h

=
1√
h

∫ h

0

σsdWs =

∫ 1

0

σuhdB
h
u ,

where Bh
u := 1√

h
Whu is also a standard Brownian motion. Thus, Xh−X0√

h
has the same

law of
∫ 1

0
σuhdBu, where B is any Brownian motion independent of the volatility

process (σt)t≥0. It follows from Assumption A and the isometry property of the
stochastic integral, that ∫ 1

0

σuhdBu → σ0B1 (6.2.3)

in L2 and therefore in probability, as h ↓ 0. By (6.2.2) and the Burkholder-Davis-
Gundy inequality (see [86]),

E
[∣∣∣∣∫ 1

0

σuhdBu

∣∣∣∣p] ≤ CpE

[(∫ 1

0

σ2
uhdu

)p/2]
= E

[(
1

h

∫ h

0

σ2
sds

)p/2]
,
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so the family of random variables
{∫ 1

0
σuhdBu : h > 0

}
is bounded in Lp. This implies

that the convergence in (6.2.3) is also in Lq, for every q < p. Thus

E
[∣∣∣∣Xh −X0√

h

∣∣∣∣q] = E
[∣∣∣∣∫ 1

0

σuhdBu

∣∣∣∣q] → E (σq0)E [|B1|q]

as h ↓ 0 (in particular E (σq0) < +∞). Taking the logarithms in the limit above, one
obtains A(q) = q

2
.

Remark 6.2. Suppose 1 ≤ q < p. Then A(p)
p
≤ A(q)

q
. This follows immediately from

the fact that, for every h > 0,

logE (|Xt+h −Xt|q)
q

= log ‖Xt+h −Xt‖q

is increasing in q, so that logE(|Xt+h−Xt|q)
q log h

is decreasing in q for all 0 < h < 1.

In what follows, for models of the form (6.2.1), we assume the following further
conditions.
Assumption B. E (σ2

0) < +∞.

Under Assumption B, (6.2.2) holds true for p = 2. By Proposition 6.1 and Remark
6.2, we have that A(q) = q

2
for 1 ≤ q < 2, while q

2
≥ A(q) ≥ −∞ for q ≥ 2. This

suggests the following formal definition of multi-scaling.

Definition 6.3. Under Assumptions A and B, we say that multi-scaling occurs if
{q : −∞ < A(q) < q

2
} has a nonempty interior.

In what follows, Assumptions A and B will be assumed implicitly. Note now that,
by the Burkholder-Davis-Gundy inequality, there are constants cp, Cp such that for
each h > 0

cpE

[(∫ h

0

σ2
t dt

)p/2]
≤ E [|Xh −X0|p] = E

[∣∣∣∣∫ h

0

σsdWs

∣∣∣∣p
]
≤ CpE

[(∫ h

0

σ2
t dt

)p/2]
.

(6.2.4)
Thus, the condition

E

[(
1

h

∫ h

0

σ2
sds

)q/2]
< +∞

for each h > 0 is necessary for A(q) > −∞. Note also that, by Jensen’s inequality,

E

[(
1

h

∫ h

0

σ2
sds

)q/2]
≤ 1

h

∫ h

0

E [σqs ] ds = E [σq0] , (6.2.5)

for q ≥ 2. Thus, whenever E [σq0] < +∞, the assumption of Proposition 6.1 holds.
These remarks, together with Proposition 6.1, yields the following statement.
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Corollary 6.4. A necessary condition for multi-scaling in (6.2.1) is that there exists
p > 2 such that

E

[(
1

h

∫ h

0

σ2
sds

)p/2]
< +∞

for each h > 0, but
E [σp0] = +∞.

From the result above we derive an alternative necessary condition for multi-
scaling, which has sometimes the advantage to be more easily checked in specific
models.

Corollary 6.5. A necessary condition for multi-scaling in (6.2.1) is that, for some
h > 0, there exists p ≥ 2 such that

E [σp0] < +∞ E
[

sup
0≤t≤h

σpt

]
= +∞.

Proof. Assume multi-scaling holds, and define

q∗ := inf{q : E [σq0] = +∞}.

By Corollary 6.4, q∗ < +∞ while, by Assumption B, q∗ ≥ 2. Moreover, by Proposition
6.1, A(q) = q/2 for q < q∗. Thus, by Definition 6.3, A(q) has to be finite for some
q > q∗; in particular, as observed above,

E

[(
1

h

∫ h

0

σ2
sds

)q/2]
< +∞

for h > 0. Consider l, r with q∗ < l < r < q. Setting Mh := sup0≤t≤h σt, we have

1

h

∫ h

0

σlsds ≤M l−2
h

1

h

∫ h

0

σ2
sds.

By stationarity of σt, and by applying Hölder inequality with conjugate exponents r
2

and r/2
r/2−1

, we obtain

E
(
σl0
)
≤
[
E
(
M

r
l/2−1
r/2−1

h

)]1− 2
r

[
E

[(
1

h

∫ h

0

σ2
sds

)r/2]]2/r

.

Since l > q∗, it follows that E
(
σl0
)

= +∞. Moreover, as r < q,

E

[(
1

h

∫ h

0

σ2
sds

)r/2]
< +∞.
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Thus, necessarily,

E
(
M

r
l/2−1
r/2−1

h

)
= +∞.

It is easily checked that, choosing l and q∗ sufficiently close, one gets

r̃ := r
l/2− 1

r/2− 1
< q∗,

which implies

E
(
σr̃0
)
< +∞.

Setting p := max(r̃, 2), the proof is completed.

We conclude this section by showing a further property of the scaling function
A(q)

Remark 6.6. Assume that, for each h > 0, the integrated volatility has moments of
all orders, i.e.

E

[(∫ h

0

σ2
t dt

)q]
< +∞ for every q ≥ 1. (6.2.6)

The following argument shows that, under this assumption, A(q) is increasing in q.
We will see later an example in which the integrated volatility has heavy tails, so it
violates (6.2.6), and A(·) is decreasing in an interval. We begin by observing that, by
(6.2.4),

A(q) = lim sup
h↓0

logE
[(∫ h

0
σ2
t dt
)q/2]

log h
. (6.2.7)

From this it easily follows that

lim inf
h↓0

E
[(∫ h

0
σ2
t dt
)q/2]

hλ
= 0 =⇒ λ ≤ A(q), (6.2.8)

and

λ < A(q) =⇒ lim inf
h↓0

E
[(∫ h

0
σ2
t dt
)q/2]

hλ
= 0. (6.2.9)

Consider p > q ≥ 1. Moreover, let ε > 0, and take l < q such that [A(q)− ε] q
l
< A(q).

Set

ah :=

(∫ h

0

σ2
t dt

)1/2

.
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We now use Young’s inequality αβ ≤ αr

r
+ βr

′

r′
, valid for α, β ≥ 0, r, r′ > 0, 1

r
+ 1

r′
= 1.

Choosing α =
alh

hA(q)−ε , β = ap−lh , r = q
l
, we get

aph
hA(q)−ε ≤

l

q

aqh
h(A(q)−ε) q

l

+
q − l
q

a
q p−l
q−l
h .

Taking expectations:

E
[(∫ h

0
σ2
t dt
)p/2]

hA(q)−ε ≤ l

q

E
[(∫ h

0
σ2
t dt
)q/2]

h(A(q)−ε) q
l

+
q − l
q

E

(∫ h

0

σ2
t dt

)q p−l
2(q−l)

 . (6.2.10)

Since [A(q)− ε] q
l
< A(q), by (6.2.9)

lim inf
h↓0

E
[(∫ h

0
σ2
t dt
)q/2]

h(A(q)−ε) q
l

= 0. (6.2.11)

Moreover,

lim
h↓0

E

(∫ h

0

σ2
t dt

)q p−l
2(q−l)

 = 0 (6.2.12)

by (6.2.6) and dominated convergence. It follows from (6.2.10), (6.2.11) and (6.2.12),
that

lim inf
h↓0

E
[(∫ h

0
σ2
t dt
)p/2]

hA(q)−ε = 0

which, together with (6.2.8), yields A(p) ≥ A(q)−ε. Since ε is arbitrary, the conclusion
follows.

6.3 Superlinear Ornstein-Uhlenbeck volatility

In this section we devote our attention to a specific class of stochastic volatility models,
namely those of the form

dXt = σtdBt

dVt = −f(Vt)dt+ dLt

Vt = σ2
t ,

(6.3.1)

where:

• (Bt)t≥0 is a standard Brownian motion.
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• (Lt)t≥0 is a Lévy process with increasing paths (subordinator) independent of
(Bt)t≥0. More precisely (Lt)t≥0 is a real-valued process, with independent incre-
ments, L0 = 0 and

E [exp(−λLt)] = exp[−tΨ(λ)],

with

Ψ(λ) = mλ+

∫
(0,+∞)

(
1− e−λx

)
ν(dx),

where m ≥ 0 is the drift of the process, and ν is a positive measure on (0,+∞),
called characteristic measure, satisfying the condition∫

(0,+∞)

(1 ∧ x)ν(dx) < +∞.

For generalities on Lévy Processes see [19, 38, 91].

• f(·) is a locally Lipschitz, nonnegative function such that f(0) = 0 (which
guarantees Vt ≥ 0 if V0 ≥ 0).

Some conditions on f(·) are needed for (6.3.1) to have a stationary solution. We will
address this point later. We will always assume that V0 is independent of (Lt)t≥0.
We note now that for many “natural” choices of f , multi-scaling is not allowed. In
particular, multiscaling is not present in Ornstein-Uhlenbeck models (see e.g. [51, 68]).

Proposition 6.7. Suppose f(·) satisfies the linear growth condition

|f(v)| ≤ Av +B

for some A,B > 0 and all v > 0. Moreover, assume (6.3.1) has a solution for which
(Vt)t≥0 is stationary, nonnegative and integrable, such that Assumptions A and B hold.
Then multi-scaling does not occur.

Proof. By Remark 6.2, A(q) ≤ q/2, so we need to show the converse inequality. Let
(V ′t )t≥ be a solution of

dV ′t = −(AV ′t + 2B)dt+ dLt

V ′0 = V0.
(6.3.2)

Note that

d(Vt − V ′t ) = − [f(Vt)− AV ′t − 2B] dt.

In particular Vt − V ′t is continuously differentiable, and V0 − V ′0 = 0. It follows that
Vt − V ′t ≥ 0 for every t ≥ 0: indeed the path of Vt − V ′t cannot downcross the value
zero, since whenever t is such that Vt = V ′

t
= v, then

d

dt
(Vt − V ′t ) = −f(v) + Av + 2B ≥ B > 0.
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Thus for every t ≥ 0

Vt ≥ V ′t = V0e
−At +

2B

A

(
e−At − 1

)
+

∫ t

0

e−A(t−s)dLs ≥ V0e
−At + e−tA/2Lt/2 −

2B

A
.

On the other hand

Vt = V0 −
∫ t

0

f(Vs)ds+ Lt ≤ V0 + Lt,

which yields
sup
t∈[0,h]

Vt ≤ V0 + Lh.

Putting all together

V0e
−Ah + e−Ah/2Lh/2 −

2B

A
≤ Vh ≤ sup

t∈[0,h]

Vt ≤ V0 + Lh. (6.3.3)

Since

V0e
−Ah + e−Ah/2Lh/2 −

2B

A
∈ Lp ⇐⇒ V0 + Lh ∈ Lp,

the conclusion now follows from (6.3.3) and Corollary 6.5.

Proposition 6.7 shows that, for models of the form (6.3.1) to exhibit multi-scaling,
one needs to consider a drift f(·) with a superlinear growth.

Definition 6.8. We say that a function f : (0,+∞) → (0,+∞) is regularly varying
at infinity with exponent α ∈ R if, for every x > 0,

lim
t→+∞

f(tx)

f(t)
= xα.

In the case α = 0 we say that f is slowly varying at infinity. Note that f is
regularly varying at infinity with exponent α if and only if f(u) = uαl(u) where l is
slowly varying at infinity. In what follows we consider models of the form (6.3.1) for
which the following assumptions hold:

A1 (Bt)t≥0 is a standard Brownian motion.

A2 (Lt)t≥0 is a Lévy subordinator with characteristic measure ν. Moreover (Bt)t≥0

and (Lt)t≥0 are independent.

A3 The function u 7→ ν((u,+∞)) is regularly varying at infinity with exponent
−α < 0.

A4 f : [0,+∞) → [0,+∞) is increasing, locally Lipschitz, f(0) = 0, and it is
regularly varying at infinity with exponent γ > 1.

The following result has been proved in [89] (see also [69], [49] for related results).
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Theorem 6.9. Under assumption A2-A4, the equation dVt = −f(Vt)dt+dLt admits
an unique stationary distribution µ. Moreover µ((u,+∞)) is regularly varying at
infinity with exponent −α− γ + 1.

In what follows we assume V0 is independent of (Bt)t≥0 and (Lt)t≥0, and it has
distribution µ. Theorem 6.9 shows that, if γ > 1, Vt has a distribution with lighter
tails than those of the Lévy process Lt.

We are now ready to state the main result of this paper.

Theorem 6.10. Assume A1-A4 are satisfied, and that α+γ > 2 (which, in particular,
implies Assumption B). Then the following statements hold.

(1) If γ ≥ 2 then

A(q) =

{ q
2

for 1 ≤ q < 2(α + γ − 1)
γ−2

2(γ−1)
q + α+γ−1

γ−1
for q > 2(α + γ − 1).

(2) If 1 < γ < 2 then

A(q) =


q
2

for 1 ≤ q < 2(α + γ − 1)
γ−2

2(γ−1)
q + α+γ−1

γ−1
for 2(α + γ − 1) < q < 2α

2−γ
−∞ for q > 2α

2−γ .

Moreover, for q 6= 2(α+ γ− 1), 2α
2−γ , the scaling exponent A(q) in (6.1.1) can be

defined as a limit rather that a lim sup.

We remark that, in the case 1 < γ < 2, A(·) is decreasing for 2(α+γ−1) < q < 2α
2−γ .

This is not in contradiction with Remark 6.6, since assumption (6.2.6) is not satisfied.

Remark 6.11. A simple consequence of Theorem 6.10, is that, by a comparison
argument, Proposition 6.7 can be extended to any f which is regularly varying at
infinity with exponent 1.

The proof of Theorem 6.10 will be divided into several steps. We begin by dealing
with the case f(v) = Cvγ, with C > 0, and Lt is a compound Poisson process.

Proposition 6.12. The conclusion of Theorem 6.10 hold if f(v) = Cvγ, with C > 0,
Lt is a Lévy subordinator with zero drift and finite characteristic measure ν.

Proof. Note that, for q < 2(α + γ − 1), by Theorem 6.9, we have E
[
V
q/2

0

]
< +∞ so

that, by Proposition 6.1 and (6.2.5), A(q) = q
2
. Thus it is enough to consider the case

q > 2(α + γ − 1). In what follows we also write ah ∼ hu for

lim
h→0

log ah
log h

= u. (6.3.4)
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We will repeatedly use the simple fact that (6.3.4) follows if we show that for every
ε > 0 there exist Cε > 1 such that

1

Cε
hu+ε < ah < Cεh

u−ε.

In what follows all estimates on A(q) are based on the fact (see (6.2.7)) that the
limit

lim
h↓0

logE
[(∫ h

0
σ2
t dt
)q/2]

log h

exists if and only if the limit

lim
h↓0

logE (|Xt+h −Xt|q)
log h

exists, and in this case they coincide.
Part 1: γ > 2
By the assumption of finiteness of ν, (Lt) jumps finitely many times in any compact
interval. Denote by (τk)k≥1 the (ordered) set of positive jump times, and τ0 = 0.
Given h > 0, we denote by i(h) the random number of jump times in the interval
(0, h].
Case i(h) = 0. When i(h) = 0, Vt solves, for t ∈ [0, h], the differential equation
d
dt
Vt = −CV γ

t , whose solution is

Vt =
(
V 1−γ

0 + (γ − 1)Ct
) 1

1−γ .

Integrating, we get∫ h

0

Vtdt =
γ − 2

γ − 1

[
(V 1−γ

0 + (γ − 1)Ch)
γ−2
γ−1 − (V 1−γ

0 )
γ−2
γ−1

]
. (6.3.5)

Note that, setting λ := ν([0,+∞)),

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
= E

[(∫ h

0

Vtdt

)q/2 ∣∣∣i(h) = 0

]
e−λh.

The factor e−λh gives no contribution to the behavior of E
[(∫ h

0
Vtdt

)q/2
1{i(h)=0}

]
as

h→ 0, and it can be neglected. Moreover, by (6.3.5), and using the fact that V0 and
{i(h) = 0} are independent,

E

[(∫ h

0

Vtdt

)q/2 ∣∣∣i(h) = 0

]
=

=

(
γ − 2

γ − 1

)q/2
((γ−1)Ch)

γ−2
2(γ−1)

qE


( V 1−γ

0

(γ − 1)Ch
+ 1

) γ−2
γ−1

−
(

V 1−γ
0

(γ − 1)Ch

) γ−2
γ−1

q/2
 .

(6.3.6)
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Since, for 0 < a < 1 and z > 0,

a(z + 1)a−1 ≤ (z + 1)a − za ≤ (z + 1)a−1, (6.3.7)

for computing the limit limh

logE
[
(
∫ h
0 Vtdt)

q/2
]

log h
, the right hand side of (6.3.6) can be

replaced by (using the previous inequality for a = γ−2
γ−1

; recall that γ > 2)

h
γ−2

2(γ−1)
qE


( V 1−γ

0

(γ − 1)Ch
+ 1

) γ−2
γ−1
−1
q/2

 = h
γ−2

2(γ−1)
qE

[(
V 1−γ

0

(γ − 1)Ch
+ 1

)− q
2(γ−1)

]
.

(6.3.8)
In other words:

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
∼ h

γ−2
2(γ−1)

qE

[(
V 1−γ

0

(γ − 1)Ch
+ 1

)− q
2(γ−1)

]
. (6.3.9)

To estimate the r.h.s. of (6.3.9), we observe that for y > 0 and 0 < u < r, the
following inequalities can be easily checked

1

2r
1{y<1} ≤ (1 + y)−r ≤ (1 + y)−u ≤ y−u. (6.3.10)

Setting r := q
2(γ−1)

and Y :=
V 1−γ
0

(γ−1)Ch
, using (6.3.10) we obtain

1

2r
P(Y < 1) ≤ E

[(
V 1−γ

0

(γ − 1)Ch
+ 1

)− q
2(γ−1)

]
≤ E

(
Y −u

)
(6.3.11)

for every u < q
2(γ−1)

. Set ξ := α+γ−1
γ−1

. Note that ξ < r for q > 2(α + γ − 1). By
Theorem 6.9:

P(Y < 1) = P

(
V0 >

(
1

(γ − 1)Ch

) 1
γ−1

)
∼

[(
1

(γ − 1)Ch

) 1
γ−1

]α+γ−1

∼ hξ,

(6.3.12)
Moreover, take u < ξ. We have

E
(
Y −u

)
= [(γ − 1)Ch]u E

[
V
u(γ−1)

0

]
≤ Ahu, (6.3.13)

for some A > 0 that may depend on u but not on h, where we have used the fact that

E
[
V
u(γ−1)

0

]
< +∞, since u(γ − 1) < α+ γ − 1. Since u can be taken arbitrarily close

to ξ, by (6.3.11), (6.3.12) and (6.3.13) we obtain

E

[(
V 1−γ

0

(γ − 1)Ch
+ 1

)− q
2(γ−1)

]
∼ hξ, (6.3.14)
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which yields

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
∼ h

γ−2
2(γ−1)

q+α+γ−1
γ−1 . (6.3.15)

Note that (6.3.15) has the right order, according to the statement of Theorem 6.10.
Therefore, in order to complete the proof for γ > 2, it is enough to show that for each
u < α+γ−1

γ−1

E

[(∫ h

0

Vtdt

)q/2
1{i(h)≥1}

]
≤ Ah

γ−2
2(γ−1)

q+u (6.3.16)

for some A > 0 that may depend on u but not on h.

Case i(h) = 1. Now

Vt =

{ (
V 1−γ

0 + (γ − 1)Ct
) 1

1−γ for 0 ≤ t ≤ τ1(
V 1−γ
τ1

+ (γ − 1)C(t− τ1)
) 1

1−γ for τ1 ≤ t ≤ h,

which yields∫ h

0

Vtdt =
γ − 2

γ − 1

[
(V 1−γ

0 + (γ − 1)Cτ1)
γ−2
γ−1 − (V 1−γ

0 )
γ−2
γ−1

]
+
γ − 2

γ − 1

[
(V 1−γ

τ1
+ (γ − 1)C(h− τ1))

γ−2
γ−1 − (V 1−γ

τ1
)
γ−2
γ−1

]
=: P (h) +Q(h),

(6.3.17)

and therefore

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=1}

]
≤ 2q−1

[
E
(
P q/2(h)1{i(h)=1}

)
+ E

(
Qq/2(h)

)
1{i(h)=1}

]
(6.3.18)

We now show that E
[(∫ h

0
Vtdt

)q/2
1{i(h)=1}

]
can be bounded above as in (6.3.16):

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=1}

]
≤ Ah

γ−2
2(γ−1)

q+u, (6.3.19)

for every u < α+γ−1
γ−1

. By (6.3.18) it suffices to show that both E
(
P q/2(h)1{i(h)=1}

)
and

E
(
Qq/2(h)1{i(h)=1}

)
have an upper bound of the same form.

Note first that

P (h) ≤ γ − 2

γ − 1

[
(V 1−γ

0 + (γ − 1)Ch)
γ−2
γ−1 − (V 1−γ

0 )
γ−2
γ−1

]
,

which coincides with (6.3.5), whose scaling has already been obtained. Since P(i(h) =
1) ∼ h, we have that E

(
P q/2(h)1{i(h)=1}

)
scales as the term studied in the case

i(h) = 0, but with an extra factor h, i.e.

E
(
P q/2(h)1{i(h)=1}

)
≤ Ah1+ γ−2

2(γ−1)
q+u ≤ Ah

γ−2
2(γ−1)

q+u. (6.3.20)
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For the term E
(
Qq/2(h)1{i(h)=1}

)
we repeat the steps of the case i(h) = 0 (note that

all inequalities used there held pointwise) with Vτ1 in place of V0 and h− τ1 in place
of h (see (6.3.9)), obtaining

E
(
Qq/2(h)1{i(h)=1}

)
≤ E

[
(h− τ1)

γ−2
2(γ−1)

q

(
V 1−γ
τ1

(γ − 1)C(h− τ1)
+ 1

)− q
2(γ−1)

1{i(h)=1}

]

≤ h
γ−2

2(γ−1)
qE

[(
V 1−γ
τ1

(γ − 1)C(h− τ1)
+ 1

)− q
2(γ−1)

1{i(h)=1}

]
(6.3.21)

This last term can be bounded from above as follows, for u < q
2(γ−1)

and using the
trivial bound Vτ1 ≤ V0 + Lh

E

[(
V 1−γ
τ1

(γ − 1)C(h− τ1)
+ 1

)− q
2(γ−1)

1{i(h)=1}

]
≤ E

[(
V 1−γ
τ1

(γ − 1)C(h− τ1)
+ 1

)−u
1{i(h)=1}

]

≤ E

[(
V 1−γ
τ1

(γ − 1)C(h− τ1)

)−u
1{i(h)=1}

]

≤ E

[(
V 1−γ
τ1

(γ − 1)Ch)

)−u
1{i(h)=1}

]
≤ AhuE

[
(V0 + Lh)

u(γ−1) 1{i(h)=1}

]
(6.3.22)

for a constant A > 0. Now observe that V0 is independent of 1{i(h)=1}, that Lh has
distribution ν conditioned to {i(h) = 1}, and that P(i(h) = 1) ≤ λh. It follows that,
for a suitable constant C > 0,

E
[
(V0 + Lh)

u(γ−1) 1{i(h)=1}

]
≤ CP(i(h) = 1)

[
E
(
V
u(γ−1)

0

)
+ E

(
L
u(γ−1)
h |i(h) = 1

)]
= CP(i(h) = 1)

[∫
vu(γ−1)µ(dv) +

∫
lu(γ−1)ν(dl)

]
.

(6.3.23)

Since, by Theorem 6.9, the tails of µ are lighter that those of ν, the above integrals
are both finite if an only if

∫
vu(γ−1)ν(dv) < +∞, which holds true for u < α/(γ − 1)

(assumption A3). Thus, for every u < α/(γ − 1),

E
[
(V0 + Lh)

u(γ−1) 1{i(h)=1}

]
≤ Ah (6.3.24)

for someA > 0. By (6.3.21), (6.3.22), (6.3.23) and (6.3.24), we have that E
(
Qq/2(h)1{i(h)=1}

)
is bounded from above by

Bh
γ−2

2(γ−1)
q+u+1
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for every u < α/(γ − 1) and some B > 0 possibly depending on u. Equivalently,

E
(
Qq/2(h)1{i(h)=1}

)
≤ Bh

γ−2
2(γ−1)

q+u (6.3.25)

for all u < α+γ−1
γ−1

. Therefore, by (6.3.20) and (6.3.25), (6.3.19) is established.

Case i(h) ≥ 2. To prove (6.3.16) and thus to complete the whole proof, we are left to
show that

E

[(∫ h

0

Vtdt

)q/2
1{i(h)≥2}

]
≤ Ah

γ−2
2(γ−1)

q+u (6.3.26)

for all u < α+γ−1
γ−1

and some A > 0.

Let n ≥ 2, and restrict to the event {i(h) = n}. We have

Vt =



(
V 1−γ

0 + (γ − 1)Ct
) 1

1−γ for 0 ≤ t ≤ τ1(
V 1−γ
τ1

+ (γ − 1)C(t− τ1)
) 1

1−γ for τ1 ≤ t ≤ τ2
...(

V 1−γ
τn−1

+ (γ − 1)C(t− τn−1)
) 1

1−γ for τn−1 ≤ t ≤ τn(
V 1−γ
τn + (γ − 1)C(t− τn)

) 1
1−γ for τn ≤ t ≤ h,

so that (6.3.17) becomes∫ h

0

Vtdt =
γ − 2

γ − 1

n∑
k=1

[
(V 1−γ

k−1 + (γ − 1)C(τk − τk−1))
γ−2
γ−1 − (V 1−γ

k−1 )
γ−2
γ−1

]
+
γ − 2

γ − 1

[
(V 1−γ

τn + (γ − 1)C(h− τn))
γ−2
γ−1 − (V 1−γ

τn )
γ−2
γ−1

]
=:

n∑
k=1

Pk(h) + Pn+1(h).

(6.3.27)

Each term E
[
P
q/2
k (h)1{i(h)=n}

]
can be estimated as in (6.3.21) and (6.3.22), obtaining

E
[
P
q/2
k (h)1{i(h)=n}

]
≤ Ch

γ−2
2(γ−1)

q+uE
[
(V0 + Lh)

u(γ−1) 1{i(h)=n}

]
≤ C ′h

γ−2
2(γ−1)

q+uP(i(h) = n)
[
E
(
V
u(γ−1)

0

)
+ E

(
L
u(γ−1)
h |i(h) = n

)]
(6.3.28)

for u < q
2(γ−1)

and some constant C,C ′ that may depend on u but not on n and h.

The distribution of Lh given {i(h) = n} is given by the n-fold convolution ν∗n. In
other words, if X1, X2, . . . , Xn are independent random variables with law ν,

E
(
L
u(γ−1)
h |i(h) = n

)
= E

[
(X1 +X2 + · · ·+Xn)u(γ−1)

]
≤ nu(γ−1)−1E

[
X
u(γ−1)
1

]
.
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For u < α/(γ − 1), E
[
X
u(γ−1)
1

]
< +∞ as well as E

(
V
u(γ−1)

0

)
< +∞. Thus

E
[
P
q/2
k (h)1{i(h)=n}

]
≤ Ch

γ−2
2(γ−1)

q+unu(γ−1)−1P(i(h) = n), (6.3.29)

for some constant C independent of n, h and k. By (6.3.27), (6.3.28) and (6.3.29) we
obtain, for u < q

2(γ−1)
,

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=n}

]
≤ nq/2

n+1∑
k=1

E
[
P
q/2
k (h)1{i(h)=n}

]
≤ Ch

γ−2
2(γ−1)

q+unu(γ−1)+q/2P(i(h) = n).

(6.3.30)

We can now sum over n ≥ 2, observing that P(i(h) = n) ≤ λnhn

n!
:

∑
n≥2

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=n}

]
≤ Ch

γ−2
2(γ−1)

q+u+2
∑
n≥2

nu(γ−1)+q/2λ
nhn−2

n!

≤ C ′h
γ−2

2(γ−1)
q+u+2.

(6.3.31)

Since q
2(γ−1)

+ 2 > α+γ−1
γ−1

(recall that q > 2(α + γ − 1)), we have that

E

[(∫ h

0

Vtdt

)q/2
1{i(h)≥2}

]

is negligible with respect to (6.3.15).
This completes the proof for the case γ > 2.
Part 2: 1 < γ < 2

Case i(h) = 0. Formula (6.3.5) still hold, but now γ − 2 < 0. So (6.3.6) becomes

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
=

(
2− γ
γ − 1

)q/2
((γ−1)Ch)

γ−2
2(γ−1)

qE


( V 1−γ

0

(γ − 1)Ch

) γ−2
γ−1

−
(

V 1−γ
0

(γ − 1)Ch
+ 1

) γ−2
γ−1

q/2
 e−λh.
(6.3.32)

To estimate this last expression we need, letting a := 2−γ
γ−1

, the following modifications

of (6.3.7), valid for z > 0:

a(z + 1)−1z−a ≤ z−a − (z + 1)−a ≤ (z + 1)−1z−a for 0 < a ≤ 1
(z + 1)−1z−a ≤ z−a − (z + 1)−a ≤ a(z + 1)−1z−a for a > 1.

(6.3.33)
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Using these inequalities as in (6.3.6) we obtain, for some C > 1

1

C
E

[(
V γ−1

0 h

1 + V γ−1
0 h

V 2−γ
0

)q]
≤ E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
≤ CE

[(
V γ−1

0 h

1 + V γ−1
0 h

V 2−γ
0

)q]
.

(6.3.34)
We now observe that

E

[(
V γ−1

0 h

1 + V γ−1
0 h

V 2−γ
0

)q/2]
= E

[(
V γ−1

0 h

1 + V γ−1
0 h

V 2−γ
0

)q/2
1{V γ−1

0 h≤1}

]

+ E

[(
V γ−1

0 h

1 + V γ−1
0 h

V 2−γ
0

)q/2
1{V γ−1

0 h>1}

]
∼ hq/2E

[
V
q/2

0 1{V γ−1
0 h≤1}

]
+ E

[
V

q
2

(2−γ)

0 1{V γ−1
0 h>1}

]
.

(6.3.35)

In order to estimate the two summand of the left hand side of (6.3.35) we use the
following fact, whose simple proof follows from simple point wise bounds, and it is
omitted. Let µ be a probability on [0,+∞) such that µ((u,+∞)) is regularly varying
with exponent −ξ < 0. Then∫ x

0

upµ(du) ∼ xp−ξ for p > ξ (6.3.36)∫ +∞

x

upµ(du) ∼ xp−ξ for p < ξ. (6.3.37)

Let µ be the law of V0, so that, by Theorem 6.9, ξ = α+γ−1. Since q > 2(α+γ−1),

by (6.3.36) we have E
[
V
q/2

0 1{V γ−1
0 h≤1}

]
∼ h−

1
γ−1

( q
2
−α−γ+1), and therefore

hq/2E
[
V
q/2

0 1{V γ−1
0 h≤1}

]
∼ h

γ−2
2(γ−1)

q+α+γ−1
γ−1 . (6.3.38)

Moreover, by (6.3.37), also

E
[
V

q
2

(2−γ)

0 1{V γ−1
0 h>1}

]
∼ h

γ−2
2(γ−1)

q+α+γ−1
γ−1 . (6.3.39)

for q
2
(2− γ) < α + γ − 1, while

E
[
V

q
2

(2−γ)

0 1{V γ−1
0 h>1}

]
= +∞ (6.3.40)

for q
2
(2− γ) > α + γ − 1.

Summing up, we have shown that

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
∼ h

γ−2
2(γ−1)

q+α+γ−1
γ−1 for 2(α + γ − 1) < q <

2(α + γ − 1)

2− γ

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
= +∞ for q >

2(α + γ − 1)

2− γ
. (6.3.41)
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Case i(h) = 1. This case is dealt with as for γ > 2, and, using the same argument
leading to (6.3.34), one sees that the crucial term to estimate is

E

[(
V γ−1
τ1

(h− τ1)

1 + V γ−1
τ1 (h− τ1)

V 2−γ
τ1

)q/2
1{i(h)=1}

]
. (6.3.42)

Since Vτ1 ≥ Lτ1 , (6.3.42) can be bounded from below by

E

[(
Lγ−1
τ1

(h− τ1)

1 + Lγ−1
τ1 (h− τ1)

L2−γ
τ1

)q/2
1{i(h)=1}

]

which takes the value infinity as soon as E
[(
L2−γ
τ1

)q/2
1{i(h)=1}

]
= +∞. Recalling that

Lτ1 independent of {i(h) = 1} and it has law ν, this holds as q > 2α
2−γ . This implies

that

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=1}

]
= +∞ for q >

2α

2− γ
. (6.3.43)

Comparing with (6.3.41), note that 2α
2−γ <

2(α+γ−1)
2−γ . Thus, assume 2(α+ γ− 1) < q <

2α
2−γ (note that, being by assumption α+γ > 2, indeed 2(α+γ−1) < 2α

2−γ ). An upper

bound for (6.3.42) is given by

E

[(
V γ−1
τ1

(h− τ1)

1 + V γ−1
τ1 (h− τ1)

V 2−γ
τ1

)q/2
1{i(h)=1}

]

≤ E

[(
(V0 + Lτ1)

γ−1h

1 + (V0 + Lτ1)
γ−1h

(V0 + Lτ1)
2−γ
)q/2

1{i(h)=1}

]

= E

[(
(V0 + Lτ1)

γ−1h

1 + (V0 + Lτ1)
γ−1h

(V0 + Lτ1)
2−γ
)q/2]

P(i(h) = 1), (6.3.44)

where we used the facts that V0 and Lτ1 are independent of {i(h) = 1}. Now, (6.3.44)
is estimated exactly as (6.3.35), but with V0 + Lτ1 in place of V0. Since the tails of
V0 + Lτ1 are the same as those of Lτ1 , i.e. regularly varying with exponent α, while
P(i(h) = 1) ∼ h, we get

E

[(
(V0 + Lτ1)

γ−1h

1 + (V0 + Lτ1)
γ−1h

(V0 + Lτ1)
2−γ
)q/2]

∼ h
γ−2

2(γ−1)
q+ α

γ−1P(i(h) = 1) ∼ h
γ−2

2(γ−1)
q+α+γ−1

γ−1 .

Summing up:

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=1}

]
∼ h

γ−2
2(γ−1)

q+α+γ−1
γ−1 for 2(α + γ − 1) < q <

2α

2− γ

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
= +∞ for q >

2α

2− γ
. (6.3.45)
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Case i(h) ≥ 2. This case goes along the same line as for γ > 2, using the upper bound
obtained for i(h) = 1. The details are omitted. The proof for 1 < γ < 2 is thus
completed.
Part 3: γ = 2

In this case we have, in the case of no jumps (i(h) = 0),

Vt =
(
V −1

0 + Ct
)−1

and therefore∫ h

0

Vtdt =
1

C

[
log(V −1

0 + Ch)− log(V −1
0 )
]

=
1

C
[log(1 + ChV0)] . (6.3.46)

An upper bound for E
[(∫ h

0
Vtdt

)q/2
1{i(h)=0}

]
is obtained using (6.3.46) and the in-

equality, valid for y, r > 0,

log(1 + y) ≤ 1

r
yr,

which gives

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
≤ 1

Cq/2
Crq/2hrq/2E

(
V
rq/2

0

)
.

Since E
(
V
rq/2

0

)
< +∞ for rq

2
< α + 1, letting rq

2
↑ α + 1 we obtain

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
≤ Chrq/2, (6.3.47)

for some C > 0 and every r such that rq
2
< α + 1. A corresponding lower bound is

obtained using the inequality

log(1 + y) ≥ 1

2
1(1,+∞)(y),

which gives

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
≥ 1

(2C)q/2
P(ChV0 > 1) ∼ hα+1, (6.3.48)

where we have used Theorem 6.9 for the last inequality. By (6.3.47) and (6.3.48) we
have

E

[(∫ h

0

Vtdt

)q/2
1{i(h)=0}

]
∼ hα+1.

The cases with i(h) ≥ 1 are similar to what seen in Parts 1 and 2, and are omitted.
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Proof of Theorem 6.10. We now complete the proof of Theorem 6.10. We need to
extend Proposition 6.12 in two directions: a) generalize from f(v) = Cvγ to any f
satisfying Assumption A4; b) extend to Lévy subordinator satisfying Assumptions
A2 and A3, thus with a possibly infinite characteristic measure ν.
Step 1. We keep all assumption of Proposition 6.12, except that we require f(v) = Cvγ

only for v > ε, for some ε > 0, and f satisfies Assumption A4. In other words we do
not prescribe the asymptotics of f near v = 0. Let V, V ′ be solutions, respectively, of
the equations

dVt = −f(Vt)dt+ dLt

dV ′t = −CV ′γt + dLt.

Assume V0 = V ′0 = v > 0. We claim that

|Vt − V ′t | ≤ 2ε (6.3.49)

a.s., for every t ≥ 0. This follows from the following fact: there is a constant δ > 0
such that as soon as |Vt − V ′t | ≥ 2ε,

d

dt
|Vt − V ′t | ≤ −δ. (6.3.50)

To see (6.3.50), suppose first Vt − V ′t ≥ 2ε. In particular Vt ≥ ε, so

d

dt
[Vt − V ′t ] = −C

(
V γ
t − V

′γ
t

)
< −C(2ε)γ,

where we have used the fact that, for c > 0, the map (x + c)γ − xγ is increasing for
x > 0. Suppose now V ′t − Vt ≥ 2ε. If Vt ≥ ε then,

d

dt
[V ′t − Vt] = −C

(
V ′γt − V

γ
t

)
< −C(2ε)γ;

If Vt < ε, since f is increasing, then

d

dt
[V ′t − Vt] = −CV ′γt + f(Vt) ≤ −C(2ε)γ + Cεγ < 0.

Thus (6.3.50), and so (6.3.49) is proved. In particular, the law of Vt is stochastically
smaller than that of V ′t + 2ε, which means that for every g increasing and bounded,
E[g(Vt)] ≤ E[g(V ′t + 2ε)]. By the ergodicity results proved in [89], this inequality
can be taken to the limit as t → +∞, so to a stochastic inequality between the
stationary distributions of V and V ′. This implies that we can realize, on a suitable
probability space, two random variables V0 and V ′0 , independent of the Lévy process
L, distributed according to the stationary laws of the corresponding processes, and
such that V0 ≤ V ′0 + 2ε. By repeating the argument above, we see that the inequality
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Vt ≤ V ′t + 2ε is a.s. preserved for all t > 0 also for the stationary processes. It follows
that

E

[(∫ h

0

Vtdt

)q/2]
≤ E

[(∫ h

0

[V ′t + 2ε]dt

)q/2]
≤ 2q/2−1

{
E

[(∫ h

0

V ′t dt

)q/2]
+ (2εh)q/2

}
.

(6.3.51)
Since

A(q) = lim sup
h→0

logE
[(∫ h

0
Vtdt

)q/2]
log h

, (6.3.52)

and

A′(q) = lim
h→0

logE
[(∫ h

0
V ′t dt

)q/2]
log h

≤ q

2
, (6.3.53)

by (6.3.51) we get
A(q) ≥ A′(q).

By exchanging the role of V and V ′ we get A(q) = A′(q). Moreover, the existence of
the limit (6.3.53), which follows from Proposition 6.12, implies that also (6.3.52) is a
limit. Since A′(q) is given by Proposition 6.12, the first extension is obtained.
Step 2. In this step we allow the Lévy process L to have infinite characteristic measure
ν and positive drift m > 0, though satisfying Assumptions A2 and A3. On the other
hand we make a specific choice for f : f(v) = Cvγ for v > ε, while f is linear in
[0, ε), with f(0) = 0 and f(ε) = Cεγ. Moreover we let νε := ν1[ε,+∞), which is a finite
measure. Denote by L(ε) the compound Poisson process with characteristic measure
νε, and by V (ε) the solution of

dV
(ε)
t = −f(V

(ε)
t )dt+ dL

(ε)
t (6.3.54)

The original Lévy process L can be decomposed in the form Lt = L(ε) + L(<ε), where
L(<ε) is independent of L(ε), it has characteristic measure νε := ν1[0,ε) and drift m > 0.
Writing

dVt = −f(Vt)dt+ dLt, (6.3.55)

we obtain
d(Vt − V (ε)

t ) = −[f(Vt)− f(V
(ε)
t )]dt+ dL(<ε). (6.3.56)

This implies, for instance that whenever V
(ε)

0 ≤ V0, then V
(ε)
t ≤ Vt for all t > 0. Thus,

using as above the ergodicity of V and V (ε), Vt dominates stochastically V
(ε)
t also in

equilibrium. Thus, as before, we can start the processes from V
(ε)

0 and V0, each having

the corresponding stationary distribution, and such that V
(ε)

0 ≤ V0. Thus V
(ε)
t ≤ Vt

for all t > 0. Note that with this construction we have that the two processes in
(6.3.54) and (6.3.55) are separately stationary, by not necessarily the Markov process

(V
(ε)
t , Vt), whose law will be denoted by µ

(2)
t , is stationary. To fix this we observe that,

since the family of distribution (µ
(2)
t )t≥0 is tight, by a standard argument its Cesaro



172 CHAPTER 6. MULTI-SCALING IN STOCHASTIC VOLATILITY MODELS

means 1
t

∫ t
0
µ

(2)
s ds admit at least a limit point, which is a stationary distribution for

(V
(ε)
t , Vt). This limiting operation preserves the stochastic order between the laws of

the two components. Thus, we can assume to realize V
(ε)

0 and V0 in such a way their

joint distribution is stationary for (6.3.54) and (6.3.55), and V
(ε)

0 ≤ V0.
Now we use the fact that f is superlinearly increasing, to conclude that

f(Vt)− f(V
(ε)
t ) ≥ c[Vt − V (ε)

t ]

for some c > 0. It follows that

d(Vt − V (ε)
t ) ≤ −c[Vt − V (ε)

t ] + dL
(<ε)
t ,

which implies that

0 ≤ Vt − V (ε)
t ≤ e−ct[V0 − V (ε)

0 ] +

∫ t

0

e−c(t−s)dL(<ε)
s . (6.3.57)

Since the law of Vt−V (ε)
t does not depend on t, it must be stochastically dominated by

the limit of the law of the r.h.s. of (6.3.57), which is just the stationary distribution
of the Ornstein-Uhlenbeck process

dZt = −cZtdt+ dL
(<ε)
t .

As observed e.g. in [51], this stationary law is infinitely divisible with characteristic
pair (m, ν̃), with

ν̃([x,+∞)) =

∫
[x,+∞)

u−1νε(du).

Since νε, and therefore ν̃, has bounded support, the stationary law of Zt has moments
of all order (see e.g. [99]). So, also Vt − V (ε)

t has moments of all order. Thus, using
the inequality (x+ y)q ≤ 2q−1[xq + yq] for x, y ≥ 0, we have

E

[(∫ h

0

V
(ε)
t dt

)q/2]
≤ E

[(∫ h

0

Vtdt

)q/2]

≤ 2q/2−1

{
E

[(∫ h

0

V
(ε)
t dt

)q/2]
+ E

[(∫ h

0

[Vt − V (ε)
t ]dt

)q/2]}

≤ 2q/2−1

{
E

[(∫ h

0

V
(ε)
t dt

)q/2]
+ hq/2E

[(
V0 − V (ε)

0

)q/2]}
.

Since, by Proposition 6.12 and steps 1, E
[(∫ h

0
V

(ε)
t dt

)q/2]
∼ hA(q) for every ε > 0 and

A(q) ≤ q/2, it follows that

E

[(∫ h

0

Vtdt

)q/2]
∼ hA(q),
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thus completing the proof of this step.
Step 3. The extension of Proposition 6.12 to any f which satisfies (A4) is now easy,
and it will only be sketched. In a first stage, repeating the argument in step 1, one
extends from the special f ’s used for step 2, to the larger class of f in step 1.

The further extension to a general f which satisfies (A4) proceeds as follows: for
every δ > 0 we can find f1 and f2 such that f1 ≤ f ≤ f2, and f1(v) = C1v

γ−δ,
f2(v) = C2v

γ+δ for v > ε. By using coupling arguments similar to those in step 1, one
shows that the scaling function A(q) of the process with drift f is bounded above and
below by the scaling functions of the processes with drift f1 and f2. The continuity of
A(q) w.r.t. γ, and the fact that δ is arbitrary, implies that A(q) is given by Proposition
6.12.

6.4 Modeling financial data

In this Section we briefly discuss potential applications of the proposed models to
Mathematical Finance. The phenomenon that has initially motivated the introduction
of the model is that of multiscaling of moments. Multiscaling has been detected, with
similar features, in many time series of financial indices, including DJIA, S&P 500,
FTSE 100, Nikkei 225, as well as in various currency exchange rates. We refer to
[44, 54, 56, 95, 1, 22] for details. In all cases the scaling function A(q) is estimated
from daily data. The empirical q-th moment is computed from data, as function of the
(discrete) time width h (see (6.1.1)). The log-log plot of this function is approximately
linear for small h, and the slope Â(q) is an estimator for the scaling function A(q).
The curve q 7→ Â(q) obtained is a smooth, concave function, which may seem to
contradict the piecewise linear prediction for A(q) of the model. However, if the scaling
function is estimated form “daily” data simulated from the model, the same smoothing
appears (see Figure 6.2). This shows that the model is consistent with the observed
data on multiscaling of moments. The fact that the model we have introduced is an
independent time change of a Brownian motion, allows direct applications in option
prices. Indeed, consider the risk-neutral measure under which the price St := eXt

with, say S0 = 1, evolves according to

dSt
St

= σtdBt,

where B is a Brownian motion, and σt evolves as in the previous section, and it is
independent of B. By Ito’s rule

dXt = σtdBt −
1

2
σ2
t dt. (6.4.1)

Note that this martingale measure is not unique, as one could modify the evolution of
σt, allowing flexibility when the model is calibrated to prices. Equation (6.4.1) implies
that

St = eXt = eWIt−
1
2
It , (6.4.2)
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Figure 6.2: Points indicated with stars refer to the curve q → Â(q) computed on the
DJIA time series (opening prices 1935-2013). Circles represent data obtained by first
simulating the model with estimated values of the parameters, and then by computing
q → Â(q) from the simulated time series.

where W is a Brownian motion, and It :=
∫ t

0
σ2
sds is independent of W . Thus, under

the risk-neutral measure, the price St is a time-changed geometric Brownian motion,
with independent time-change process. For the special γ > 2 and the characteristic
measure of the Lévy subordinator Lt concentrated on +∞, treated in chapter 5, the
representation (6.4.2) is the basis of the computation of sharp asymptotics for the
implied volatility surface in the regime of small maturity or large strike (see [31, 32]).
Moreover, it is shown that the parameters of the model can be tuned to reproduce quite
realistic smile-shapes for the implied volatility. We remark that the model introduced
here, if adopted in a pricing context, would suffer from symmetric smiles. Asymmetry
could be introduced adding a Brownian term of Heston type in the equation for the
volatility:

dVt = −CV γ
t dt+ dLt + C̄

√
VtdW̃t,

where W̃ is a Brownian Motion correlated with Wt.

6.5 Decay of autocorrelation

In this section we consider models of the form 6.3.1, but we the specific assumptions
of Proposition 6.12. In particular, f(v) = Cvγ, with C > 0, Lt is a Lévy subordinator
with zero drift and finite characteristic measure ν (a compound Poisson process).
Recall also that u 7→ ν((u,+∞)) is regularly varying at infinity with exponent−α < 0.
More explicitly,

dXt =
√
VtdBt

dVt = −CV γ
t dt+ dLt
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We prove a result in the spirit of theorem 5.5: autocorrelation of squared returns
decays exponentially in time at infinity. We define

ρ2(t) := lim
h→0

corr(|Xh −X0|2, |Xt+h −Xt|2).

This quantity and volatility autocorrelation ρ(t) := limh→0 corr(|Xh−X0|, |Xt+h−Xt|),
that we have considered in theorem 5.5, have a similar meaning, and both have been
investigated in the literature (see [45] for details). Define, for ρ ∈ (0, 1),

αρ = ρ(1/ρ+ ln ρ− 1), βρ = ρ lnE
[
(1 + (γ − 1)C θ∆Lγ−1)

γ
1−γ

]
,

where θ ∼ exp(λ) and ∆L ∼ ν. Remark αρ, βρ > 0, ∀ρ ∈ (0, 1). We set

r := sup
ρ∈(0,1)

min{αρ, βρ, 1}

We have the following estimates for the decay at ∞ of the autocorrelation of squared
returns.

Theorem 6.13. If α + γ > 3,

−λ ≤ lim inf
t→∞

ln(ρ2(t))

t
≤ lim sup

t→∞

ln(ρ2(t))

t
≤ −λr < 0.

Proof. We introduce the notation

ft : v → (v1−γ + (γ − 1)Ct)
1

1−γ .

We have
f ′t(v) = (1 + (γ − 1)Ctvγ−1)

γ
1−γ ,

which is a decreasing function. We recall that (τk)k≥1 is the set of positive jump times,
and τ0 = 0. Given h > 0, i(h) is the random number of jump times in the interval
(0, h]. We also denote θk = τk − τk−1, k ≥ 1.

ρ2(t) = lim
h→0

Cov(|Xh −X0|2, |Xt+h −Xt|2)√
V ar(|Xh −X0|2)V ar(|Xt+h −Xt|2)

= lim
h→0

E(|Xh −X0|2|Xt+h −Xt|2)− E|Xh −X0|2E|Xt+h −Xt|2

E|Xh −X0|4 − (E|Xh −X0|2)2
.

Now, EV q
0 < ∞ for q < α + γ − 1, and 2 < α + γ − 1. Recall Xt+h − Xt =∫ t+h

t

√
VsdWs. Using uniform integrability analogously to what has been done in the

proof of proposition 6.1 we can prove

lim
h↓0

E(|Xh −X0|2|Xt+h −Xt|2)− E|Xh −X0|2E|Xt+h −Xt|2

h2

=
2

π
E |V0Vt| −

2

π
E |V0|E |Vt| =

2

π
Cov(V0, Vt).
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The same procedure applied to the variance in the denominator leads to

ρ2(t) = corr(V0, Vt) =
Cov(V0, Vt)

V ar(V0)
.

So, to prove the statement we just have to prove

−λ ≤ lim inf
t→∞

ln(Cov(V0, Vt))

t
≤ lim sup

t→∞

ln(Cov(V0, Vt))

t
≤ −λr < 0.

Now,
Cov(V0, Vt) = Cov(V0, Vt1{i(h)=0}) + Cov(V0, Vt1{i(h)≥1})

On {i(h) = 0}, Vt = ft(V0). The first summand is

Cov(V0, Vt1{i(t)=0}) = E[V0ft(V0)1{i(t)=0}]− EV0E[ft(V0)1{i(t)=0}]

= E[V0ft(V0)]P(i(t) = 0)− EV0E[ft(V0)]P(i(t) = 0)

= Cov(V0, ft(V0))e−λt.

This term easily gives

−λ ≤ lim inf
t→∞

ln(Cov(V0, Vt1{i(h)=0}))

t
.

Now we consider Cov(V0, Vt1{i(t)≥1}). We can express Vt1{i(t)≥1} as g(V0, Y ) where g
is increasing in V0 and Y and V0 are independent r.v.s. Therefore

Cov(V0, g(V0, Y )) = E[V0g(V0, Y )]− EV0Eg(V0, Y )

= E[E[V0g(V0, Y )|Y ]]− E[V0]E[E[g(V0, Y )|Y ]]

= E
[
E[V0g(V0, Y )|Y ]− E[V0|Y ]E[g(V0, Y )|Y ]

]
.

E[V0g(V0, Y )|Y ] − E[V0|Y ]E[g(V0, Y )|Y ] is a.s. positive, because of the properties
of covariance and because g is increasing in V0. So also its expectation is positive,
Cov(V0, Vt1{i(t)≥1}) ≥ 0 and the lower bound is proved. Now we prove an upper bound
for the same term. On {i(t) ≥ 1}

Vt = ft−τi(t)(∆Lτi(t) + fθi(t)(∆Lτi(t)−1
+ fθi(t)−1

(. . . fθ1(V0) + ∆Lτ1 . . . )))

It is easy to see that

dVt
dV0

= f ′t−τi(t)(...)× ...× f
′
θ1

(...)

≤ f ′t−τi(t)(∆Lτi(t))× ...× f
′
θ2

(∆Lτ1)× f ′θ1(V0).

Defining
V̂t := fθ1(V0)× f ′θ2(∆Lτ1)× ...× f

′
t−τi(t)(∆Lτi(t)),
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Vt − V̂t is decreasing in V0, and therefore Cov(V0, Vt1{i(t)≥1}) ≤ Cov(V0, V̂t1{i(t)≥1}),
Conditioning w.r.t. τ1, and using independence

Cov(V0, V̂t1{i(t)≥1})

= E[(V0 − EV0)fθ1(V0)× f ′θ2(∆Lτ1)× ...× f
′
t−τi(t)(∆Lτi(t))1{i(t)≥1}]

= E
[
E[(V0 − EV0)fθ1(V0)× f ′θ2(∆Lτ1)× ...× f

′
t−τi(t)(∆Lτi(t))1{i(t)≥1}|τ1]

]
= E

E[(V0 − EV0)fθ1(V0)1{i(t)≥1}|τ1]× E

 i(t)∏
k=2

f ′θk(∆Lτk−1
)× f ′t−τi(t)(∆Lτi(t))|τ1

 ,
where we agree that the product over k is 1 if i(t) = 1. Now we decompose:

E

 i(t)∏
k=2

f ′θk(∆Lτk−1
)× f ′t−τi(t)(∆Lτi(t))|τ1


= E

 i(t)∏
k=2

f ′θk(∆Lτk−1
)× f ′t−τi(t)(∆Lτi(t))1{i(t)≥ρλt}|τ1


+ E

 i(t)∏
k=2

f ′θk(∆Lτk−1
)× f ′t−τi(t)(∆Lτi(t))1{i(t)<ρλt}|τ1


Being f ′t ≤ 1, from a standard result on tails of Poisson processes, the second summand
admits the following upper bound:

E

 i(t)∏
k=2

f ′θk(∆Lτk−1
)× f ′t−τi(t)(∆Lτi(t))1{i(t)<ρλt}|τ1


≤ P (i(t) < ρλt|τ1)

≤ P (Po(λt) < ρλt− τ1 + 1|τ1)

≤ P (Po(λt) < ρλt+ 1) ∼t∼∞ P (Po(λt) < ρλt)

≤ e−λt
(
e

ρ

)ρλt
≤ exp(−αρλt).

For the first summand,

E

 i(t)∏
k=2

f ′θk(∆Lτk−1
)× f ′t−τi(t)(∆Lτi(t))1{i(t)≥ρλt}|τ1


≤ E

[ρλt]+1∏
k=2

f ′θk(∆Lτk−1
)|τ1

 ≤ E [f ′θ(∆L)]
[ρλt]

= E
[
(1 + (γ − 1)C θ∆Lγ−1)

γ
1−γ

][ρλt]
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where θ ∼ exp(λ) and ∆L ∼ ν. This part decays exponentially as well,

∼ exp (−βρλt) .

Remark that the upper bounds we have found are deterministic and we can take them
out of the expectation. Now,

E
[
E[(V0 − EV0)fθ1(V0)1{i(t)≥1}|τ1]

]
= E

[
(V0 − EV0)fθ1(V0)1{i(t)≥1}

]
→ E [(V0 − EV0)fθ1(V0)]

for t→∞, for bounded convergence. Therefore this part does not give any exponential
contribution.

Remark 6.14. On the leverage effect: We have considered the multiscaling
phenomenon for a stochastic volatility model

dXt = σtdWt

where the volatility process σ is independent of W . We wonder if it is possible to
add a term that explains the leverage effect of financial markets, but does not change
the multiscaling phenomenon. A first attempt could be to take a Lévy process J
correlated to σt, and define

dXt = σtdWt − dJt.

In the specific example of OU with superlinear drift this might be something stricly
connected to the process of jumps of the volatility, e.g. J = const L, or J with
the same jump times of L but with jumps of size one (the standard Poisson process
associated to L). This would give

Xh =

∫ h

0

σsdWs − (Jh − J0),

and when computing the moments we have to deal with

E|Jh − J0|q.

This depends on the precise law of the process J , but in general scales as h, inde-
pendently of q, and therefore it changes the multiscaling behavior introducing a term
with a larger scaling, for q > 2, and producing a scaling exponent A(q) = q

2
∧ 1. Some

more informations on this issue can be found in [39]
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local Hörmander condition of order one. ArXiv e-prints, February 2012.

[7] V. Bally and L. Caramellino. Positivity and lower bounds for the density of
Wiener functionals. Potential Analysis, 39:141–168, April 2013.

[8] V. Bally and L. Caramellino. On the distances between probability density func-
tions. Electron. J. Probab., 19:no. 110, 1–33, 2014.

[9] V. Bally and S. De Marco. Some estimates in extended stochastic volatility
models of heston type. Risk and Decision Analysis, 2(4):195–206, 2011.

[10] V. Bally, B. Fernandez, and A. Meda. Estimates for the probability that a
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