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Riassunto

Questa tesi si compone di due parti. Nella prima parte viene presentata
un’estensione della formula di quadratura di Gauss per l’approssimazione
dei funzionali lineari quasi-definiti. Tale estensione viene costruita partendo
dalla teoria dei polinomi ortogonali e in particolare dalla relazione tra le suc-
cessioni di tali polinomi e alcune matrici dette matrici di Jacobi. La formula
qui proposta, detta quadratura di Gauss a n pesi, soddisfa tutte le princi-
pali proprietà delle formula “classica” che definiremo quadratura di Gauss a
n nodi. Inoltre, la tesi mostra come tale estensione possa essere calcolata
tramite l’algoritmo di Lanczos non Hermitiano, al pari della formula a n
nodi che può essere ottenuta tramite l’algoritmo di Lanczos Hermitiano. Al
termine della prima parte sono presentati alcuni risultati preliminari relativi
a una delle possibili applicazioni. Si tratta dell’approssimazione di indici di
centralità di reti complesse, ovvero indici che stabiliscono quale nodo in un
grafo è considerato più importante in termini di facilità di trasmissione di
informazioni con altri nodi.

Nella seconda parte sono proposte alcune trasformazioni di successioni.
Tali trasformazioni sono utilizzate al fine di ottenere, a partire da alcuni el-
ementi di una successione data, un’altra successione che converge allo stesso
limite ma a velocità maggiore. Infatti, spesso in analisi numerica e nella
matematica applicata vi sono esempi di successioni, ottenute per esempio
dai metodi iterativi, che convergono talmente lentamente da risultare inu-
tili. È ben nota l’impossibilità di definire una trasformazione in grado di
accelerare la convergenza di qualunque successione. Inoltre, usualmente le
trasformazioni costruite per accelerare piccole classi di successione danno
risultati migliori. Per questa ragione nel secondo capitolo di questa parte
sono definite tre nuove trasformazioni in grado di accelerare una classe di
successioni che estende quella relativa al noto processo di Aitken. Nella tesi
vengono poi date condizioni necessarie affinché si abbia accelerazione della
convergenza per la migliore delle tre trasformazioni proposte. Infine, tale
trasformazione viene confrontata con altre trasformazioni. Da tale confronto
si sono ottenuti risultati competitivi con alcuni dei più noti metodi di ac-
celerazione (processo di Aitken, algoritmo ε, algoritmo θ, trasformazione di
Levin).
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Abstract

This thesis is divided into two parts. In the first one we present an ex-
tension of the Gauss quadrature formula for the approximation of the quasi-
definite linear functionals. This extension is obtained using the orthogonal
polynomials theory and, in particular, using the relation between sequences
of these polynomials and some matrices called Jacobi matrices. We call this
proposed formula n-weight Gauss quadrature and we show that it satisfies all
the main properties of the “classical” formula, which we call n-node Gauss
quadrature. Furthermore, we show that the proposed quadrature can be com-
puted by the non-Hermitian Lanczos algorithm, in the same way in which
the n-node Gauss quadrature can be computed by the Hermitian Lanczos
algorithm. In the last chapter of the first part we present some preliminary
results about possible applications. We approximate the centrality indexes
of a complex network. These are indexes that measure the importance of a
node in terms of communicability in a graph.

In the second part we propose some sequence transformations. Using
sequence transformations we can use the elements of a sequence to obtain
another sequence which converges faster to the same limit of the original
one. Indeed, in numerical analysis and applied mathematics we often consider
sequences arising, for example, from iterative methods that converge so slowly
that they become useless. It has been proved that there cannot exist a
transformation able to accelerate every sequence. Moreover, usually better
results are given by transformations which are built to accelerate little classes
of sequences. For this reason in the second chapter of this part we define three
new transformations able to accelerate a class of sequences which extends the
class of the well-known Aitken’s process. We then consider the best of the
three transformations and give some necessary conditions under which it
accelerates the convergence of a given sequence. Finally, this transformation
is compared with some of the most used transformations (Aitken’s process,
ε-algorithm, θ-algorithm, Levin type transformation) obtaining competitive
results.
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Introduction

Gauss quadrature and sequence transformations are two fundamental topics
in numerical analysis. The first one is classical, however its extension to
the approximation of linear functionals is not completely developed, even if
many parts of this theory has been already stated for the case of quasi-definite
linear functionals. In the first part of the thesis we present some results that
try to improve this situation. The second topic considers a useful tool for
the acceleration of slowly converging sequences: sequence transformations.
In particular, in the last years many works were published on the effective
use of sequence transformations; see [5, 24, 26, 30], and [19] in which many
numerical techniques for the evaluation of power series expansions for special
functions are investigated. Hence, it is of interest to introduce new sequence
transformations.

This thesis extends and completes the results presented in the submitted
paper [74] and in the published paper [14]. The first one concerns the ap-
proximation of a class of linear functionals through a Gauss quadrature-like
rule that we investigate in Part I. The second one is about the acceleration
of the convergence of sequences in a particular class with some sequence
transformations (Part II).

Please, notice that the references are related to two different bibliogra-
phies, one for each part of the thesis.

Part I In the classical theory we are interested in the approximation of a
Riemann, a weighted Riemann or a Riemann-Stieltjes integral∫

R
fdµ,

1
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with respect to a non-decreasing distribution function µ having finite limits
at ±∞ and infinitely many points of increase (see [33], [54], [16], [17] and
[84]). Since µ is of bounded variation, the integral exists for every continuous
function f .

In the classical theory, we can introduce the well-known Gauss Quadra-
ture Rule, which is the unique n-node quadrature with algebraic degree of
exactness 2n − 1. The quadrature formula is usually obtained through or-
thogonal polynomials and their properties. A sequence of formal orthogonal
polynomials p0, p1, p2, . . . is a sequence such that

∫
R pipdµ = 0 for every poly-

nomial p of degree lower than i. When we consider these kind of integrals,
orthogonal polynomials are unique. In addition, every polynomial pi has de-
gree i and its roots are distinct. These last properties are fundamental for
obtaining a Gauss quadrature for the considered integral.

When we consider an integral with respect to the measure µ, orthogo-
nal polynomials and Gauss quadrature are strictly related with the set of
real tridiagonal symmetric matrices with nonzero elements on their sub- and
super-diagonal, which are usually known as Jacobi matrices. In particular,
every finite sequence of orthogonal polynomials p0, . . . , pn can be associated
with a Jacobi matrix Jn whose eigenvalues coincide with the roots of pn.
Moreover, these eigenvalues are the nodes of the n-node Gauss quadrature
rule for the integral with respect to whom the polynomials are orthogonal.
As remarked by Liesen and Strakoš in [63], Jacobi matrices are like a cor-
nerstone between two wings of a building. The purpose of the first one is to
approximate functions and integrals and it related to orthogonal polynomi-
als, moments and continued fraction theories. The goal of the second one is
matrix computations (solving linear systems, approximation of eigenvalues,
. . . ) and it is related to vectors, vector spaces and matrices. Naturally, there
exist many references about the classical theory of orthogonal polynomials
and Gauss quadrature. In this thesis we will refer to [87, 15, 35, 36, 63].

In Part I our goal is to extend the Gauss quadrature to the approximation
of a linear functional L : P → C, P being the space of complex polynomi-
als. Indeed, it is well-known that we can define a sequence of orthogonal
polynomials p0, . . . , pn with respect to L if the functional is quasi-definite.
Unfortunately, these polynomials loose some of the important properties de-
scribed before. For this reason extending the Gauss quadrature formula for a
linear functional is not trivial and until now it has been done only under some
restrictive assumptions (see [44, 78]). We achieve our goal under the assump-
tion that L is quasi-definite and generalizing the expression of the quadrature
rule. Furthermore, we show why we consider the introduced quadrature rule
as the maximal extension of the Gauss quadrature concept for linear func-
tionals. Moreover, we recover the link with Jacobi matrices extending the
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definition of a Jacobi matrix in order to consider the complex case. This
modify some properties of Jacobi matrices. Hence we need to recover or to
give an extended version of the properties of real Jacobi matrices.

A discrete linear functional can be represented using a matrix A ∈ Cn×n

and two vectors u,v ∈ Cn in the following way

L(f) = u∗f(A)v,

with f a matrix function. When A is Hermitian and u = v it is classical to
notice that the approximation of this bilinear form is equivalent to approx-
imating an integral with respect to a nonnegative discrete measure. Hence,
it can be approximated through Gauss quadrature. Let Jn be the Jacobi
matrix obtained by the first n-th steps of the Hermitian Lanczos algorithm
with input A and v. It is well known that

L(p) = eT1 p(Jn)e1,

for every polynomial p of degree 2n − 1. Moreover, eT1 p(Jn)e1 is equivalent
to the n-node Gauss quadrature for the integral and Jn is the Jacobi matrix
associated with a sequence of orthogonal polynomials with respect to L.

Furthermore, the previous formula is valid even if A is a complex non-
Hermitian matrix and v 6= u are complex vectors. In this case, if L is
quasi-definite, then Jn is complex and can be obtained by the non-Hermitian
Lanczos algorithm; as proved, e.g, in [85]. Hence, in this thesis we investigate
the relation between non-Hermitian Lanczos algorithm and the proposed
extension of quadrature for linear functional.

Finally, we describe a numerical application in the complex networks
field. Indeed, we will approximate the subgraph centrality index of a node in
a graph approximating a bilinear form of the kind

eT1 exp(A) e1,

with A real and non-symmetric, and exp(A) a matrix function.

We now summarize the contents of each chapter:

Chapter 1 We recall definitions and main properties of orthogonal polyno-
mials with respect to a linear functional. In particular, we show some
important properties of the positive definite case.

Chapter 2 Matrix functions can be defined in many different ways. We
show the equivalence between the different definitions and prove useful
properties.



4 CONTENTS

Chapter 3 We give the definition of Jacobi matrix including the complex
matrices. We prove some important spectral theorems and proposi-
tions, in particular regarding Jacobi matrices as tridiagonal matrices,
and Jacobi matrices as symmetric matrices.

Chapter 4 Using the results of the previous chapters we introduce the n-
weight Gauss quadrature, a quadrature rule for quasi-definite linear
functionals with degree of exactness 2n− 1.

Chapter 5 We show the relation between non-Hermitian Lanczos algorithm
and the n-weight Gauss quadrature. In particular, we consider a for-
mulation of the algorithm for the real non-symmetric case.

Chapter 6 We give an introduction to the complex networks theory in order
to show the preliminary results of an application of the non-Hermitian
Lanczos algorithm for the computation of the subgraph centrality of a
node in a graph.

Part II In numerical analysis and applied mathematics we often consider
sequences and series which can arise, for example, from iterative methods
or other approximation technique. Frequently these sequences converge so
slowly that they become useless. Hence, sequence transformations are fun-
damental since they potentially accelerate the convergence of a sequence.
Indeed, we can try to transform a sequence to another one with better con-
vergence properties.

Sequence transformation are based on extrapolation methods and have
particular relations with the orthogonal polynomials theory and other topic,
e.g., Padé approximation, continued fractions and projection methods. The
literature on sequence transformation is ample; we refer to , e.g., [7, 11, 12,
15, 28, 32, 37]. It is well-known that there does not exist a transformation
able to accelerate every sequence. Hence, it is of interest to introduce trans-
formations specific for a class of sequences. Moreover, usually such tailored
transformations produce better acceleration performance than more general
ones.

The goal of the second part is to introduce three new sequence transfor-
mations whose kernel is

Sn = S + anλ
n,

with an a given sequence and S, λ unknowns. Clearly, it is a generalization
of the Aitken’ ∆2 process kernel

Sn = S + aλn,
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where S, a, λ are unknowns. To obtain these three transformations we follow
a path similar to the one used by Brezinski and Redivo-Zaglia in [13]. In ad-
dition, we prove some acceleration properties for the transformation with the
best performance. Then we compare this latter transformation with the ones
proposed in [13] and with several important transformations, i.e, Aitken’s
∆2 process, Shanks’ transformation, θ-algorithm and Levin type transforma-
tion. Furthermore, we report the results obtained by the acceleration of the
sequence of the approximations of the digamma function using our proposed
transformation. Finally, we observe what happens when the acceleration
is not guaranteed by the proved theorems, i.e., the cases of logarithmically
convergent or monotone sequences. The numerical experiments show that
the proposed transformation can be competitive for sequences near its kernel
with respect to all the other considered transformations. Moreover, we have
some particularly interesting results in the case of diverging sequences, since
the proposed transformation seems to have a good semiconvergent behavior.

We now summarize the contents of each chapter:

Chapter 1 We introduce the basic theory of sequence transformations and
extrapolation methods. Moreover, we define and recall some properties
of Aitken’s ∆2 process, Shanks’ transformation, θ-algorithm and Levin
type transformation.

Chapter 2 We define three new sequence transformations and analyze their
convergence and acceleration properties. Then, in several numerical
examples we compare the best of these new transformations with the
ones introduced in the previous chapter. In particular, we test it in the
acceleration of a sequence approximating the digamma function.
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CHAPTER 1

Linear Functionals

and Orthogonal Polynomials

The history of orthogonal polynomials began in the nineteenth century from
investigations on a particular kind of continued fractions named after Stielt-
jes. The theory is classical, and there are many books on this topic. As a
basic reference we consider, besides the classical monograph by Szegö [87],
the beautiful summary by Chihara [15]. We also mention, for the computa-
tional aspects, the book by Gautschi [35].

Let L be a linear functional on the space of (complex) polynomials,
L : P → C. We say that π0, π1, . . . , πk is a sequence of formal orthogo-
nal polynomials if

πj ∈ Pj and L(p πj) = 0, ∀p ∈ Pj−1, for j = 1, 2, . . . , k,

where Pj is the space of polynomials of degree at most j.
In the classical case (see [33], [54], [16], [17] and [84]) L is the Riemann,

the weighted Riemann or the more general Riemann-Stieltjes integral with
respect to a non-decreasing distribution function µ defined on the real axis
having finite limits at ±∞ and infinitely many points of increase. Since µ is
of bounded variation, the integral

∫
fdµ exists for every continuous function

f . Moreover, under these assumptions, and with L(f) =
∫
fdµ, formal or-

thogonal polynomials πj have some additional properties: they exist, they are
unique up to a nonzero constant factor, they satisfy a three-term recurrence
relation, πj is of degree j and L(π2

j ) 6= 0 for j = 0, 1, . . . These properties can
be extended to sequences of orthogonal polynomials with respect to a partic-

9
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ular class of linear functionals (quasi-definite linear functionals). In Section
1.1 we present the main results about this kind of orthogonal polynomials
sequences. In particular, we focus on their zeros, on the fact that they satisfy
a three-term recurrence relation and on their relation with Jacobi matrices.
In Section 1.2 we discuss the case of positive-definite linear functionals and
their properties.

1.1 Orthogonal Polynomials

The term orthogonal polynomials usually refers to polynomials orthogonal
with respect to an inner product

〈p, q〉 =

∫
R
pq dµ,

with µ a positive Borel measure. We consider a more general case in which
the polynomials are orthogonal with respect to a linear functional; see [15].
Let the linear functional L : P → C defined on the space of (complex) poly-
nomials P . The functional L is fully determined by its values on monomials,
called moments,

L(xk) = mk, k = 0, 1, . . . . (1.1)

From now on L will always refer to this kind of linear functionals.

Definition 1.1. A sequence of polynomials π0, π1, . . . , πk satisfying the con-
ditions

1. deg(πj) = j (πj is of degree j),

2. L(πi πj) = 0, i < j,

3. L(π2
j ) 6= 0,

is called a sequence of orthogonal polynomials with respect to the linear func-
tional L.

The linearity of L and the condition 3. implies π0(x) 6= 0 and m0 6= 0.
Furthermore, the conditions 2.–3. are equivalent respectively to the following:

L(pπj) = 0, ∀p ∈ Pj−1, and L(pπj) 6= 0, if deg(p) = j. (1.2)

Indeed, since π0, . . . , πj−1 is a basis of Pj−1 p can be written as p =∑j−1
k=0 akπk. Hence, if L(πi πj) = 0 then L(pπj) = 0, for all p ∈ Pj−1.
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Moreover, if p has degree j and L(π2
j ) 6= 0 then the same argument gives

L(pπj) 6= 0. The converse implications are trivial.
As we mentioned above, π0, π1, . . . , πn are a basis for Pn. Hence, given a

polynomial p ∈ Pn we can rewrite it as

p =
n∑
k=0

akπk,

with

ak =
L(pπk)

L(π2
k)

for k = 0, . . . , n. (1.3)

The expression for ak follows since for k = 0, . . . , n L(π2
k) 6= 0 and

L(pπk) =
n∑
j=0

akL(πjπk) = akL(π2
k).

Providing that they exist, πn(x), n = 1, 2, . . . , k are uniquely determined
up to a nonzero constant factor. Indeed, if both πn and π̃n are orthogonal
polynomials then π̃n =

∑n
k=0 akπk, and by (1.3) we conclude π̃n = anπn.

About the question of existence of orthogonal polynomials, this is con-
sidered, for example, in [15, Chapter I]; for the case of classical orthogonal
polynomials see also Theorem 2.1.1 and pages 24 and 25 of [87]. In the fol-
lowing we will discuss this issue using the Hankel determinants ∆j of the
matrices of moments (see (1.1)),

∆j =

∣∣∣∣∣∣∣∣∣
m0 m1 . . . mj

m1 m2 . . . mj+1
...

...
. . .

...
mj mj+1 . . . m2j

∣∣∣∣∣∣∣∣∣ . (1.4)

Definition 1.2. A linear functional L for which the first k+1 Hankel deter-
minants are nonzero, i.e. ∆j 6= 0 for j = 0, 1, . . . , k, is called quasi-definite
on the space Pk of polynomials of degree at most k.

Theorem 1.3. [15, Chapter I, Theorem 3.1] A sequence π0, . . . , πk of or-
thogonal polynomials with respect to L exists if and only if L is quasi-definite
on Pk.

Proof. Assume that π0, . . . , πn−1 exist and write

πn(x) =
n∑
i=0

an,ix
i.
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orthogonality conditions (1.2) give L(xnπn) = bn 6= 0 and

L(xkπn) =
n∑
i=0

an,imi+k =

{
0, for k = 0, . . . , n− 1
bn, for k = n;

. These conditions are equivalent to the linear systems
m0 m1 · · · mn

m1 m2 · · · mn+1
...

... · · · ...
mn mn+1 · · · m2n



an,0
an,1

...
an,n

 =


0
0
...
bn

 (1.5)

If the n-th orthogonal polynomial exists, then it is uniquely determined by
bn. Then the system (1.5) has a unique solution, thus ∆n 6= 0. Conversely,
let ∆n 6= 0. If we choose a value bn 6= 0, then the system (1.5) has a unique
solution. Moreover, for n = 0, . . . , k,

an,n =
bn∆n−1

∆n

6= 0, (1.6)

with ∆−1 = 1. Hence, pn has degree n.

A fundamental property of orthogonal polynomials is the simple relation
that holds between any three consecutive monic polynomials of the sequence;
see [87, Theorem 3.2.1] and [15, Theorem 4.1]. From now on π is always used
for monic orthogonal polynomials.

Theorem 1.4. Let L be a quasi-definite linear functional on Pn and π0, . . . , πk
the monic orthogonal polynomials with respect to L, then

πn(x) = (x− δn−1)πn−1 − ηn−1πn−2, n = 1, 2, . . . , k (1.7)

where we set η0 = m0, while the other elements are defined as

δn−1 =
L(xπ2

n−1)

L(π2
n−1)

, ηn−1 =
L(π2

n−1)

L(π2
n−2)

6= 0, π−1 ≡ 0, π0 ≡ 1;

Proof. xπn−1(x) is a polynomial of degree n, thus it can be written

xπn−1(x) =
n∑
i=0

an−1,iπi,

with

an−1,i =
L(xπn−1(x)πi(x))

L(π2
i (x))

for i = 0, . . . , n.
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Since xπi(x) has degree i + 1, an−1,i = 0 for i = 0, . . . , n − 3. Moreover,
xπn−1(x) is monic, thus an−1,n = 1. Then we have

xπn−1(x) = πn + an−1,n−1πn−1 + an−1,n−2πn−2.

Setting δn−1 = −an−1,n−1, ηn−1 = −an−1,n−2, η0 = m0, π−1(x) = 0, and
π0(x) = 1 we obtain (1.7).

Multiplying (1.7) by πn−1 and applying L we obtain

0 = L(xπ2
n−1(x))− δn−1L(π2

n−1),

from which we easily obtain δn−1. Multiplying (1.7) by πn−2 and using a
similar argument we conclude the proof.

Unlike in the classical case, in which the functional is an integral, for L
quasi-definite the coefficients of the associated orthogonal polynomials are
not necessarily real, the coefficients in the three-term recurrence relation are,
in general, complex, and zeros of the orthogonal polynomials can be complex
and multiple.

We obtain a sequence of orthonormal polynomials p̃j with the normaliza-
tion of the individual polynomials πj. The normalized sequences are unique
up to multiplication by (−1), and one particular sequence within the whole
family can be expressed as

p̃j(x) =
πj(x)√
L(π2

j )
=

πj(x)
√
η0η1 . . . ηj

, j = 1, 2, . . . , k , (1.8)

where we take arg(
√
c) ∈ (−π/2, π/2], i.e., consider the principal value of

the square root. Hence, if there exist a sequence of monic orthogonal poly-
nomials π0, ..., πk, then there are 2k+1 associated sequences of orthonormal
polynomials. These sequences clearly differ in the computation of the com-
plex square roots of the individual coefficients η1, . . . , ηk. The three-term
recurrence relation for orthonormal polynomials p̃0, . . . , p̃n, n ≤ k, can be
written as

x


p̃0(x)
p̃1(x)

...
p̃n−1(x)

 = Jn


p̃0(x)
p̃1(x)

...
p̃n−1(x)

+
√
ηn


0
0
...

p̃n(x)

 , (1.9)
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where Jn is the (complex) tridiagonal symmetric matrix

Jn =



δ0
√
η1√

η1 δ1
√
η2

√
η2 δ2

. . .

. . . . . .
√
ηn−1√

ηn−1 δn−1


. (1.10)

From (1.9) we see that the zeros λi, i = 1, . . . , n, of p̃n are the eigenvalues of
Jn, with

wi = [p̃0(λi), p̃1(λi), . . . , p̃n−1(λi)]
T , i = 1, . . . , n, (1.11)

the associated eigenvectors.
Theorem 1.4 can be extended to the general case of a sequence of orthog-

onal polynomials p0, p1, . . . . Indeed, it satisfies the three-term recurrence
relationship of the form

βnpn(x) = (x− αn−1)pn−1(x)− γn−1pn−2(x), for n = 1, 2, . . . , (1.12)

where we set γ0 = 0, p−1 ≡ 0, p0 ≡ c (c is a given complex number different
from zero) and

αn−1 =
L(xp2

n−1)

L(p2
n−1)

, βn =
L(xpn−1pn)

L(p2
n)

, γn−1 =
L(xpn−2pn−1)

L(p2
n−2)

, (1.13)

(see [87, Theorem 3.2.1], [15, p. 19], [6, Theorem 2.4]). Providing that
p0, p1, . . . , pn exist, all coefficients βj and γj−1, for j = 0, . . . , n, are different
from zero by 3. of Definition 1.1. The recurrences (1.12) can be written in
matrix form

x


p0(x)
p1(x)

...
pn−1(x)

 = Tn


p0(x)
p1(x)

...
pn−1(x)

+ βn


0
0
...

pn(x)

 . (1.14)

Now, Tn is a tridiagonal complex matrix

Tn =


α0 β1

γ1 α1
. . .

. . . . . . βn−1

γn−1 αn−1

 .
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On the other hand, we can obtain orthogonal polynomials with respect to
a linear functional from a three-term recurrence relation defining a sequence
of polynomials. This was shown firstly for the classical case by Favard in [27]
and for the general case, for example, in [15, Chapter I, Theorem 4.4]; see
also the survey [64, Theorem 2.14]. Here we adapt the proof so that we can
consider three-term recurrence relations with a finite number of polynomials
p0, . . . , pk+1.

Theorem 1.5 (Favard). Let p0, . . . , pk+1 polynomials satisfying

bn+1pn+1(x) = (x− an)pn(x)− cnpn−1(x), n = 0, 1, . . . , k (1.15)

where
p−1 ≡ 0, p0 ≡ c, c0 = 0, an, bn, cn, d ∈ C, bn, cn, c 6= 0,

then there exists a linear functional L : P2k+1 → C quasi-definite on Pk such
that p0, p1, . . . , pk are orthogonal polynomials with respect to L.

In other words, providing that c, bn, cn 6= 0, polynomials generated by
(1.15) are always orthogonal polynomials. In addition, they are orthonormal
if and only if cn = bn and p0 is such that L(p2

0) = 1.

Proof. Since bn 6= 0 for n = 1, . . . , k and p0 = c, polynomial pn has degree
n for n = 0, . . . , k + 1. Let L : P2k → C a linear functional defined by the
conditions

L(p0) = 1, (1.16)

L(pn) = 0 for n = 1, . . . , k, (1.17)

L(xjpk+1) = 0 for j = 0, . . . , k. (1.18)

The polynomial xjpk+1 has degree k + 1 + j for j = 0, . . . , k − 1, thus
p0, . . . , pk, pk+1, xpk+1, . . . , x

kpk+1 is a basis for P2k+1. This means that L
is well defined by the previous conditions.

We can rewrite (1.15) as

xpn(x) = −bn+1pn+1(x) + anpn(x) + cnpn−1(x), n = 0, 1, . . . , k, (1.19)

which combined with assumption (1.17) gives

L(xpn(x)) = 0, n = 2, . . . , k − 1.

Assumptions (1.18) extend this equation for n = k. Multiplying (1.19) by x
and using the previous results gives

L(x2pn(x)) = 0, n = 3, . . . , k.
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Repeating this argument we obtain

L(xjpn(x)) = 0, for 0 ≤ j < n ≤ k.

Multiplying again (1.19) by xn−1, using the orthogonality property just ob-
tained and using (1.18) we get

L(xnpn) = cnL(xn−1pn−1), for n = 1, . . . , k,

which, with assumption (1.16), gives

L(xnpn) = c1c2 · · · cn, for n = 1, . . . , k − 1.

Since c0, . . . , cn 6= 0 this conclude the proof.

Moreover, Theorem 1.5 says that for any tridiagonal matrix Tn without
any zero components on the sub- and super-diagonal there exists a linear
functional L quasi-definite on Pn−1 for which Tn is determined by the mo-
ments m0, . . . ,m2n−1 of L. We clarify the non uniqueness of determining Tn
from the moments of L with the following statement.

Proposition 1.6. Let Tn and T̂n be two tridiagonal matrices without zero
components on the sub- and super-diagonal. Then, Tn and T̂n are deter-
mined by the first 2n moments of the same linear functional which is quasi-
definite on Pn−1 if and only if Tn and T̂n are similar matrices such that
Tn = D−1T̂nD, where D is an invertible diagonal matrix.

Proof. The proof uses formula (1.14) and the observation that two sets of
polynomials p0, . . . , pn−1 and p̂0, . . . , p̂n−1 are orthogonal with respect to the
same linear functional if and only if p̂0(x)

...
p̂n−1(x)

 = D

 p0(x)
...

pn−1(x)

 ,
where D is an invertible diagonal matrix.

We first assume that Tn and T̂n are two matrices determined by the same
moments of the linear functional L quasi-definite on Pn−1. The matrices Tn
and T̂n determine two sequences of orthogonal polynomials that we name re-
spectively p0, . . . , pn−1 and p̂0, . . . , p̂n−1. Using the recurrence relation (1.12)
we can define the polynomial

qn = (x− αn−1)pn−1 − γn−1pn−2. (1.20)
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and analogously the polynomial q̂n. The recurrence relation (1.14) for the
polynomials p̂0, . . . , p̂n−1 and q̂n then gives

xD

 p0(x)
...

pn−1(x)

 = T̂nD

 p0(x)
...

pn−1(x)

+

 0
...

q̂n(x)

 . (1.21)

Hence, we obtain that Tn = D−1T̂nD and qn = q̂n/dn, with dn the last
diagonal element of D.

Vice versa, putting Tn = D−1T̂nD in (1.14) and multiplying from the left
by D we get (1.21) which means that we obtain two sequences of orthogonal
polynomials such that [p̂0, . . . , p̂n−1]T = D[p0, ..., pn−1]T .

Remark 1.7. Using (1.20) and (1.14) we can show that qn has degree n and
its zeros are the eigenvalues of Tn (analogously to the positive definite linear
functional case in [63, Sections 3.2.1 and 3.4.1]). Moreover, qn is orthogonal
to Pn−1.

In the following the elements of T̂n are marked with a hat.

Corollary 1.8. Let Tn and T̂n be two tridiagonal matrices without zero com-
ponents on the sub- and super-diagonals. Tn and T̂n are determined by the
first 2n moments of the same linear functional if and only if

• αi = α̂i for i = 0, . . . , n− 1;

• βiγi = β̂iγ̂i for i = 1, . . . , n− 1.

Proof. By Proposition 1.6 we know that Tn and T̂n are determined by the
first 2n moments of the same linear functional if and only if Tn = D−1T̂nD,
with D = diag(d1, . . . , dn) an invertible diagonal matrix. We first assume

that Tn = D−1T̂nD. Comparing the corresponding entries of matrices Tn
and D−1T̂nD we get αi = α̂i, for i = 0, . . . , n− 1, as well as γi = (di/di+1)γ̂i
and βi = (di+1/di)β̂i for i = 1, . . . , n − 1. Thus we see that γiβi = γ̂iβ̂i for
i = 1, . . . , n− 1.

Vice versa, if αi = α̂i for i = 0, . . . , n − 1 and βiγi = β̂iγ̂i for i =
1, . . . , n − 1, then the diagonal matrix D = diag(d1, . . . , dn) whose elements
are d1 = 1 and

di =
β1β2 · · · βi−1

β̂1β̂2 · · · β̂i−1

=
γ̂1γ̂2 · · · γ̂i−1

γ1γ2 · · · γi−1

, for i = 2, . . . , n,

gives Tn = D−1T̂nD.
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Moreover, if Tn is a tridiagonal matrix with nonzero entries on sub- and
super-diagonal, then it is similar to a complex tridiagonal symmetric matrix
Jn. Indeed, the diagonal matrix D = diag(d1, . . . , dn) with

d1 = 1, di =

(
γ1γ2 . . . γi−1

β1β2 . . . βi−1

)1/2

, for i = 2, . . . , n, (1.22)

gives the similarity transformation we need. This result is well-known in
the classical case for which Jn is a real tridiagonal symmetric matrix ([95,
pp. 335-336]). We want to stress out that in the case of quasi-definite linear
functionals the matrix Jn is, in general, complex. Hence Jn is symmetric but
it may not be a Hermitian matrix.

Corollary 1.8 implies that there exist 2n−1 different tridiagonal symmet-
ric matrices Jn determined by the moments m0, . . . ,m2n−1. In fact, two
symmetric tridiagonal matrices Jn and Ĵn with nonzero entries on the sub-
diagonal (or super-diagonal) are determined by the first 2n moments of a
linear functional if and only if they have the same diagonal and βi = ±β̂i for
i = 1, . . . , n− 1. Notice that this correspond with the nonuniqueness of the
sequences of orthonormal polynomials mentioned above in this section.

We recall the following important identities for orthogonal polynomials;
see [15, Chapter I, Theorem 4-5], [87, Theorem 3.2.2].

Theorem 1.9 (Christoffel-Darboux identity). Let π0, . . . , πk be monic or-
thogonal polynomials, then for n = 0, . . . , k − 1

n∑
j=0

πj(x)πj(y)

Kj

=
1

Kn

πn+1(x)πn(y)− πn+1(y)πn(x)

x− y
, (1.23)

with Kj = L(π2
j ) = η0η1 . . . ηj, j = 0, . . . , n.

Proof. The three-term recurrence relation (1.7) gives

xπi(x)πi(y) = πi+1(x)πi(y) + δiπi(x)πi(y) + ηiπi−1(x)πi(y)

yπi(y)πi(x) = πi+1(y)πi(x) + δiπi(y)πi(x) + ηiπi−1(y)πi(x),

for i = 0, . . . , k− 1. Subtracting the second equation from the first produces

(x− y)πi(x)πi(y) = πi+1(x)πi(y)− πi+1(y)πi(x)

− ηi(πi−1(y)πi(x)− πi−1(x)πi(y))

Let Fi(x, y) be the right-hand side of equation (1.23). The previous equality
becomes

πi(x)πi(y)

Ki

= Fi(x, y)− Fi−1(x, y), for i = 0, . . . , k − 1.

Summing the last equation for j = 0, . . . , n finishes the proof.
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Finally, rewriting the numerator of the right-hand side of (1.23) as

(πn+1(x)− πn+1(y))πn(x)− (πn(x)− πn(y))πn+1(x),

and letting y → x gives

n∑
j=0

πj(x)2

Kj

=
π′n+1(x)πn(x)− π′n(x)πn+1(x)

Kn

, (1.24)

for n = 0, . . . , k − 1.

1.2 Positive Definite Linear Functionals

In this section we present some well-known facts about the positive defi-
nite case. Let L be a linear functional, m0,m1,m2, . . . its moments and
∆0,∆1,∆2, . . . its Hankel determinants (1.4), In the same spirit of Defini-
tion 1.2 we define positive definite functionals (see for example [15, Chapter
I, Definition 3.1]).

Definition 1.10. The linear functional L is said to be positive definite on
Pk if ms ∈ R for s = 0, . . . , 2k and ∆j > 0 for j = 0, . . . , k.

By Theorem 1.3 given a linear functional positive definite on Pk there
exist p0, . . . , pk orthogonal polynomials with respect to Pk. Moreover, (1.5)
implies that the coefficient of the polynomials p0, . . . , pk are real.

We are going to show that, as it is well-known, the classical theory of
orthogonal polynomials is equivalent to the positive definite case. We say
that a real polynomial f (i.e. a polynomial with real coefficients) is non-
negative if f(x) ≥ 0 for all real variable x. We recall the following lemma;
see [15, p. 15].

Lemma 1.11. Let f be a non-negative polynomial of degree n. Then there
exist real polynomials p and q such that

f(x) = p2(x) + q2(x),

with p2 and q2 of degree at most n.

Proof. If f is non-negative and has real coefficients, then its real zeros have
even multiplicity and the non-real zeros occur in conjugate pairs. Then we
can rewrite f as

f(x) = r2(x)
n∏
k=1

(x− ak − ibk)(x− ak + ibk),
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with r a real polynomial (with the same zeros and multiplicities as the real
zeros of f), ak, bk real numbers and i the imaginary unit. The products can
be rewritten as (s(x) + it(x))(s(x) − it(x)) with s, t real polynomials given
by

n∏
k=1

(x− ak − ibk) = s(x) + it(x).

The proof finishes since

f(x) = r2(x)(s2(x) + t2(x)).

Moreover, clearly r2s2 and r2t2 have degree at most n.

Theorem 1.12. The linear functional L is positive definite on Pk if and
only if L(f) > 0 for every nonzero and nonnegative real polynomial f from
P2k.

Proof. Let L be positive definite on Pk. Then, there exist π0, . . . , πk monic
orthogonal polynomials with respect to L. Above in this section we have
noticed that the monic polynomials π0, . . . , πk have real coefficients, moreover
they are a basis for Pk. Thus, if p is a real polynomial of degree n ≤ k then

p =
n∑
j=0

ajπj,

with a0, . . . , an real coefficients and an 6= 0. By (1.6) and since πn is monic

bj =
∆j

∆j−1

, for j = 0, . . . , k,

with ∆−1 = 1 and bj = L(xjπj). Hence

L(π2
j ) = L(xjπj) =

∆j

∆j−1

> 0, for j = 0, . . . , k. (1.25)

Therefore

L(p2) =
n∑

i,j=0

aiajL(πiπj) =
n∑
j=0

a2
jL(π2

j ) > 0.

Lemma 1.11 implies L(f) > 0 for every nonzero and nonnegative real poly-
nomial f from P2k.

Conversely, for n = 0, . . . , k m2n = L(x2n) > 0 and since

0 < L[(x+ 1)2n] =
2n∑
j=0

(
2n
j

)
m2n−j
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m2n−1 is real by induction. Using the three-term recurrence relation (1.7) it is
easy to see that we can build a sequence of real monic orthogonal polynomials
π0, . . . , πk with respect to L. Indeed, δn−1 is real and ηn−1 > 0 for n =
1, . . . , k. Using (1.25) we get

0 < L(π2
j ) =

∆j

∆j−1

, for j = 0, . . . , k.

Recalling that ∆−1 = 1 we get ∆j > 0 for j = 0, . . . , k.

In addition, in Appendix A we show that L is positive definite on Pk
if and only if there exists a positive non-decreasing distribution function
µ supported on the real axis such that L(p) =

∫
p(x)dµ(x) for all p from

P2k. Hence, the classical theory of orthogonal polynomials concern positive
definite linear functionals.

Zeros of the orthogonal polynomials with respect to a positive definite
functional have a regular behavior.

Definition 1.13 ([15, Chapter I, Definition 5.1]). Given a subset E ⊂
(−∞,+∞), a linear functional L is positive definite on E if and only if
L(p) > 0 for every polynomial p non-negative and not identically zero on E.
We say that E is a supporting set for L.

Theorem 1.14 ([15, Chapter I, Theorem 5.1]). If L is positive definite on
a infinite subset E ⊂ (−∞,+∞), then it is positive definite on every set
containing E and on every dense subset of E.

Proof. Let p be a polynomial nonnegative and not identically zero on S.
Since E is an infinite set p cannot be identically zero on E. If S is a subset
of E, then trivially p is nonnegative, and not identically zero, on E. Hence,
L(p) > 0. Conversely, let S be a dense subset of E. By continuity p(x) ≥ 0
for every x ∈ E and it is not identically zero.

Thus, in general, the “smallest” infinite supporting set does not exist for
a positive definite linear functional.

The following theorem will be fundamental for the definition of Gauss
quadrature and, moreover, to understand the main problem behind the ex-
tension of a Gauss-like quadrature for the case of general linear functionals.
We refer in particular to [87, Theorem 3.3.1] and [15, Chapter I, Theorem
5.2].

Theorem 1.15. Let I be an interval and a supporting set for a positive
definite functional L on Pk. Let p0, . . . , pk be orthogonal polynomials with
respect to L. The zeros of pn are all real, simple and located in the interior
of I, for n = 0, . . . , k.
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Proof. At least one of the roots of pn must lay in I. Indeed, L(pn) = 0 implies
that pn cannot be positive (or negative) on the interior of the supporting set
I. Let λ1, . . . , λ` be the distinct zeros of pn with odd multiplicity that lay
in the interior of I. Multiplying r(x) = (x − λ1) · · · (x − λ`) by pn gives
r(x)pn(x), a polynomial without zeros of odd multiplicity in the interior
of I. Thus, since r(x)pn(x) ≥ 0 for x ∈ I we get L(rpn) > 0. Since
pn is an orthogonal polynomial this is a contradiction unless ` ≥ n, hence
unless ` = n. Therefore, pn has n distinct zeros in the interior of I, for
n = 0, . . . , k.

We present the interlacing property for the zeros of a sequence of orthog-
onal polynomial. In this section we prove it using orthogonal polynomials
properties. In the literature we can find several different formulations of this
result [84, Chapter 1, Section 3], [87, Theorem 3.3.2 and 3.3.3], [15, Chapter
I, Theorem 5.3 and Chapter II, Section 4] and [63, Theorem 3.3.1]. Since
it is possible to give this proof through many approaches the property has
been rediscovered many times, see [53, Chapter 4, Theorem 4, p. 168], [95,
Chapter 2, Section 41 and 47], [38, Theorem 2, p. 121] and [89, Theorem 6.1,
pp. 663–664].

Theorem 1.16 (Strict Interlacing Property). Let L be a linear functional
positive definite on Pk and let π0, . . . , πk its related monic orthogonal poly-
nomials. If λ

(n)
0 , . . . , λ

(n)
k are the zeros of πn for n = 0, . . . , k, then

λ
(n+1)
i < λ

(n)
i < λ

(n+1)
i+1 , for n = 0, . . . , k − 1, i = 1, . . . , n.

Proof. By Theorem 1.15 πn has real and distinct zeros

λ
(n)
1 < λ

(n)
2 < · · · < λ(n)

n , for n = 0, . . . , k.

Thus the zeros of π′n are all distinct from the zeros of πn. Moreover, by Rolle’s
Theorem, π′n has at least one zero, and hence exactly one, on each interval

(λ
(n)
i , λ

(n)
i+1), for i = 1, . . . , n− 1. Again, the zeros of π′n are real and distinct,

hence π′n(λ
(n)
i ) alternates its sign as i = 1, . . . , n. The leading coefficient of

π′n is positive thus

π′n(x) > 0 for x ≥ λ(n)
n , sgn(π′n(x)) = (−1)n for x ≤ λ

(n)
1 ,

with sgn the sign function. Therefore

sgn(π′n(λ
(n)
i )) = (−1)n−i, for i = 1, . . . , n. (1.26)

Since L is positive definite on Pk (1.24) gives

π′n+1(x)πn(x)− π′n(x)πn+1(x) > 0
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for n = 0, . . . , k − 1. Therefore

π′n+1(λ
(n+1)
i )πn(λ

(n+1)
i ) > 0, for n = 0, . . . , k − 1, i = 1, . . . , n+ 1.

Using (1.26) we get sgn(πn(λ
(n+1)
i )) = (−1)n+1−i, for n = 0, . . . , k − 1, i =

1, . . . , n+ 1, that finishes the proof.

Finally, if L is positive definite on P , we have the following immedi-
ate consequence of the interlacing property. For each fixed i the sequence
λ

(1)
i , λ

(2)
i , . . . is a decreasing sequence, and the sequence λ

(i)
1 , λ

(i+1)
2 , . . . is an

increasing sequence. Hence, both limn→∞ λ
(n)
i and limn→∞ λ

(n−i+1)
n exist in

the extended real number line.
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CHAPTER 2

Matrix Functions

2.1 Definition and Properties

Since the power of a matrix is a basic concept it is natural to define the
matrix polynomial as the function p : Ck×k → Ck×k given by

p(A) = anA
n + an−1A

n−1 + · · ·+ a0I, for A ∈ Ck×k, (2.1)

with I the identity matrix. In the same spirit, the idea is to define a function
of matrices f : Ck×k → Ck×k not elementwise, but substituting a matrix to
the variable of a scalar function. Moreover, if the series f(x) =

∑∞
n=0 anx

n

converges for x ∈ C ⊂ C, we would like to define the matrix function as

f(A) =
∞∑
n=0

anA
n,

with A in a subset of Ck×k for which the series is convergent. However, this is
only one of the equivalent approaches by whom we can define a matrix func-
tion. Indeed, as noticed by Rinehart in [76], eight equivalent definitions have
been given since 1880 by Weyr [93], Sylvester and Buchheim [86, 12], Giorgi
[37], Cartan, Fantappiè [28], Cipolla [19], Schwerdtfeger [79] and Richter [75].

To define matrix functions and give their properties we will start from one
definition, useful for our case, and then we will show the equivalence of this
definition with some other possible definitions. We refer to [51, in particular
Chapter 1, Section 2] for a deeper discussion. First, we recall the definition
of Jordan normal form of a matrix.

25
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Definition 2.1 (Jordan normal form). Each k × k matrix A with values
in C is similar to a matrix in the Jordan normal form, i.e., there exist an
invertible matrix W such that W−1AW = diag(Λ1, . . . ,Λν) = Λ a block
diagonal matrix, with

Λi = Λsi(λi) =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . . 1

0 . . . . . . 0 λi

 ∈ Csi×si .

These matrices are called Jordan blocks, s1 + · · ·+ sν = k and λ1, . . . , λν are
the eigenvalues of A (not necessarily distinct). Moreover, we call s(λ), index
of the eigenvalue λ, the size of the largest Jordan block associated with λ.

We recall that the Jordan normal form of a matrix is not unique. However,
it is unique up to the order of the Jordan blocks. Naming the columns of W

w1,1, . . . ,w1,s1 ,w2,1, . . . ,w2,s2 , . . . ,wν,1, . . . ,wν,sν ,

from AW = WΛ, we get the relation

(A− λi)wi,j = wi,j−1, wi,0 = 0, for i = 1, . . . , ν, j = 1, . . . , si.

Clearly, wi,1 is an eigenvector of A associated with the eigenvalue λi. Con-
versely, if W is an invertible matrix whose columns wi,2, . . . ,wi,si satisfy the
previous relation, then W−1AW = Λ, with Λ a Jordan normal form of A. We
recall that vectors wi,2, . . . ,wi,si satisfying the previous relation are known as
generalized eigenvectors of A (or Jordan canonical vectors of A or principal
vectors) associated with the eigenvalue λi. It will be useful to remember that
the number of Jordan blocks associated with the same eigenvalue λ is equal
to the dimension of the eigenspace of λ, i.e., the geometric multiplicity of λ.

We say that a function f is defined on the spectrum of the given matrix
J if for every eigenvalue λi of J there exists f (j)(λi) for j = 0, 1, . . . , s(λi),
(where s(λi) is the index of λi); see, e.g., [51, p. 3, Definition 1.1] We can
give the following definition of matrix function, first given in [37], see [51,
p. 3, Definition 1.2].

Definition 2.2 (Matrix function). Let f be a function defined on the spec-
trum of a given matrix A and W−1AW = diag(Λ1, . . . ,Λν) be the Jordan
normal form of A. The matrix function f(A) is then defined as

f(A) = Wdiag(f(Λ1), . . . , f(Λν))W
−1,
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with

f(Λi) =



f(λi)
f ′(λi)

1!
f (2)(λi)

2!
. . . f (si−1)(λi)

(si−1)!

0 f(λi)
f ′(λi)

1!
. . . f (si−2)(λi)

(si−2)!
...

. . . . . . . . .
...

...
. . . . . . . . . f ′(λi)

1!

0 . . . . . . 0 f(λi)


,

for i = 1, . . . , ν.

Naturally, when A is a k×k diagonalizable matrix its Jordan normal form is a
diagonal matrix W−1AW = diag(λ1, . . . , λk), with λ1, . . . , λn the eigenvalues
of A. Hence, if f is a function defined on the spectrum of A, then f(A) =
Wdiag(f(λ1), . . . , f(λk))W

−1.
Definition 2.2 seems to depend on the Jordan normal form of the matrix.

However, in the following we will show that the definition is independent
from the chosen Jordan normal form. For the moment let us assume a choice
of a Jordan normal form for the given matrix.

By direct computation we have the following properties.

Lemma 2.3. Let A be a complex k × k matrix and f, g be functions defined
on the spectrum of A, then

1. (f + g)(A) = f(A) + g(A);

2. (f · g)(A) = f(A)g(A);

3. if f(x) = αx, with α ∈ C, then f(A) = αA;

4. if f(x) = α ∈ C, then f(A) = αIk;

5. if f(x) = 1/(α − x) (α cannot be an eigenvalue of A), then f(A) =
(αIk − A)−1, i.e., it is the resolvent of A at α.

We remark that, given an invertible matrix A, by Property 5 the inverse of
the matrix A−1 is the matrix function f(A) with f(x) = 1/x. Moreover, let
fj(x) = xj for j ∈ Z, then properties 2, 4 and 5 of Lemma 2.3 give

fj(A) = Aj, for j ∈ Z

for every complex matrix A. Hence, from now on Aj will represent both
the (typical) j-th power of a matrix and the matrix function fj apply to A.
Thus, by Property 1 and 3 of Lemma 2.3 we get that given a polynomial
p(x) = anx

n + · · ·+ a0 the matrix function p(A) is equal to anA
n + · · ·+ a0Ik
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for every k × k complex matrix A. This shows that a polynomial matrix
function is equivalent to the matrix polynomial (2.1).

Another equivalent way to define matrix functions f(A) is through gener-
alized Hermite interpolation (see, e.g., [51, p. 5, Theorem 1.3]). We say that
a polynomial p interpolate f on the spectrum of A in the Hermite sense if

p(λi)
(j) = f(λi)

(j), for i = 1, . . . , `, j = 0, . . . , s(λi)− 1,

with λi the eigenvalue of A of index s(λi).

Corollary 2.4. A polynomial p interpolates a function f on the spectrum
of a matrix A in the Hermite sense if and only if f(A) = p(A). Moreover,
there exists a unique polynomial p such that f(A) = p(A) with degree lower
than or equal to the degree of the minimal polynomial of A.

Proof. If p interpolates f on the spectrum of a matrix A in the Hermite
sense, then by Definition 2.2 p(A) = f(A). Vice versa, if f(A) = p(A), then

f(A) = Wf(Λ)W−1 = Wp(Λ)W−1 = p(A),

with Λ = W−1AW the Jordan normal form of A. Since f(Λ) = p(Λ) p
interpolates f on the spectrum of a matrix A in the Hermite sense.

Finally, there exists a polynomial p satisfying the conditions

p(λi)
(j) = f(λi)

(j), for i = 1, . . . , `, j = 0, . . . , s(λi)− 1,

with λi the eigenvalue of A of index s(λi). The minimal degree of p is
lower than or equal to s(λ1) + · · ·+ s(λ`), that is, the degree of the minimal
polynomial of A. Moreover, p is unique.

Corollary 2.4 then shows that the definition of f(A) is independent from the
chosen Jordan normal form in Definition 2.2.

It is important to remark that the polynomial p of Corollary 2.4 depends
on the matrix A. However, given two matrices A,B it is always possible to
define a polynomial p such that f(A) = p(A) and f(B) = p(B). Indeed, it
is enough to choose a polynomial that interpolates f on the spectrum of A
and B in the Hermite sense. Naturally, the degree of p will be lower than or
equal to the sum of the degrees of the minimal polynomials respectively of
A and B.

The equivalence given by Corollary 2.4 allows us to prove the following
properties for matrix functions. First, we remark that if p is a polynomial,
then it is defined on the spectrum of every complex matrix A. Moreover,

p(A∗) = (p̄(A))∗, (2.2)
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with p̄ the polynomial whose coefficients are the conjugate coefficients of p.
Indeed,

p(A∗) = αn(A∗)n + αn−1(A∗)n−1 · · ·+ α0I

= αn(An)∗ + αn−1(An−1)∗ · · ·+ α0I = (p̄(A))∗.

Proposition 2.5 (see [51, p. 13, Theorem 1.18]). If the function f is defined
on the spectrum of the matrix A, then f(A∗) = (f(A))∗ if and only if

f (j)(λ̄i) = f (j)(λi), for i = 1, . . . , `, j = 0, . . . , s(λi), (2.3)

with λi eigenvalues with index s(λi).

Proof. By Corollary 2.4 there exist a polynomial p such that f(A) = p(A)
and f(A∗) = p(A∗). Equation (2.2) then gives

f(A∗) = p(A∗) = (p̄(A))∗.

By Definition 2.2 p̄(A) = f(A) = p(A) if and only if (2.3) is satisfied.

Proposition 2.6. Let A be a matrix and X be an invertible matrix. More-
over, let the function f be defined on the spectrum of A and XAX−1. Then

f(XAX−1) = Xf(A)X−1.

Proof. By Corollary 2.4 there exists a polynomial p(x) = αnx
n + . . . α0 for

which f(A) = p(A) and f(XAX−1) = p(XAX−1). Thus

f(XAX−1) = αnXA
nX−1 + . . . α0I = Xp(A)X−1 = Xf(A)X−1.

With a similar proof we can show that if X permutes with A, then it also
permutes with f(A).

In 1928 E. Cartan proposed in a letter to G. Giorgi to define matrix func-
tions using the Cauchy integral formula, see [76, Section 2.3]. The following
proposition gives the equivalence of this definition with Definition 2.2, when
f is an analytic function.

Proposition 2.7. Let f be an analytic function on some open Ω ∈ C, and
Γ ∈ Ω be a system of Jordan curves encircling each eigenvalue of A exactly
one time, with mathematical positive orientation, then

f(A) =

∫
Γ

f(x) (xI − A)−1 dx.
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Proof. The equivalence was first given in [76]. By Property 5 of Lemma 2.3
(xI−A)−1 is a matrix function. Hence, it is enough to show that this formula
stands for a Jordan block Λi, i.e.,

(xI − Λi)
−1 =


1

(x−λi)
1

(x−λi)2 . . . 1
(x−λi)si

0 1
(x−λi) . . .

...
...

. . . . . . 1
(x−λi)2

0 . . . . . . 1
(x−λi)

 .
Using Cauchy integral formula for f and its derivative elementwise finishes
the proof.

Consider now a function f analytic at x0 ∈ C, then we have

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ fn(x0)

n!
(x− x0)n + . . . . (2.4)

We say that a sequence of matrices A0, A1, A2, . . . converges if it converges
elementwise, i.e., each sequence given by the corresponding elements is con-
vergent. Moreover, we say that an infinite series of matrix

∑∞
i=0Ai is con-

vergent if the sequence of the partial sums converges. We want to show that
the matrix obtained by a convergent series

f(x0)I + f ′(x0)(A− x0I) + · · ·+ fn(x0)

n!
(A− x0I)n + . . . (2.5)

is equal to the matrix function f(A). We remark that this is the way in
which Weyr defined a matrix function in [93]. The following theorem for the
convergence of series (2.5) was first proved by Hensel in [47] for Maclaurin
series (see also [76]).

Theorem 2.8. The power series (2.5) converges if and only if every eigen-
value of A lies within or on the circle of convergence of the series f(z) (2.4).

We will show this in the proof of the following proposition.

Proposition 2.9 (see [76, pp. 12–13]). Let the series (2.5) be convergent,
then it is equal to the matrix function f(A), with f given by the corresponding
scalar series (2.4).

Proof. Let us consider the partial sum

Sn(A) = f(x0)I + f ′(x0)(A− x0I) + · · ·+ fn(x0)

n!
(A− x0I)n.
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Sn(A) is a matrix polynomial for every n = 0, 1, . . . , hence, it can be rewritten
using Definition 2.2 as Sn(A) = WSn(Λ)W−1, with Λ = W−1AW the Jordan
normal form of A. Therefore, it is enough to show that Sn(Λi) converges to
f(Λi), for every Λi Jordan block of Λ of dimension si associated with the
eigenvalue λi. Indeed,

Sn(Λi) =


Sn(λi) S ′n(λi) . . . S

(si−1)
n (λi)
(si−1)!

0 Sn(λi) . . .
...

...
. . . . . . S ′n(λi)

0 . . . . . . Sn(λi)

 .
Then, Sn(A) converges if and only if the sequence Sn(λi) and its derivatives

sequences S
(j)
n (λi)

(si−1)!
converge, for j = 1, . . . , si − 1. Since the derivative of a

power series has the same radius of convergence of the series itself, Sn(A)
converges if and only if every eigenvalue of A lies within or on the circle of
convergence of the series f(z) (2.4), which proves Theorem 2.8. Moreover, if
(2.5) converges, then it converges to f(A).

Matrix exponential.
We conclude this chapter introducing one of the most well-known matrix
function: the matrix exponential; we refer to [51, Chapter 10]. Many mathe-
matical models for physical, biological, and economic problems, in particular
the solution of parabolic PDE equations (such as the heat equation), involve
the solution of ordinary differential equations

ż(t) = Az(t), t ∈ R

with A a square complex matrix and z(0) = z0 the initial condition. The
solution is given by

z(t) = eAtz0 = exp(At)z0,

with exp(At) the matrix exponential obtained by Definition 2.2. Moreover,
in Chapter 6 we will see an application of the matrix function exp(A) in the
complex networks theory.

The matrix function exp(A) is defined for every complex matrixA, indeed,
the exponential is defined on the spectrum of every complex matrix A, or
equivalently, the Maclaurin series for the exponential

ex =
∞∑
i=0

xi

i!

is convergent for every x ∈ C.
We recall here some well-known properties of the matrix exponential.
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Proposition 2.10. Let A,B be complex matrices of the same dimension,
then we have the following properties for the matrix exponential:

1. d
dx
eAx = AeAx, for x ∈ C;

2. e0 = I, for every null matrix 0;

3. eAteAs = eA(t+s), for s, t ∈ R;

4. If AB = BA, then eAteBt = e(A+B)t, for t ∈ R;

5. (eA)−1 = e−A

Proof. 1. Using the series form of the derivative of exp(Ax) gives

d

dx
eAx =

d

dx

∞∑
i=0

Aixi

i!
.

Considering the partial sum up to n we get

d

dx

n∑
i=0

Aixi

i!
=

d

dx
I +

n∑
i=1

d

dx

Aixi

i!
=

n∑
i=1

Aixi−1

(i− 1)!
= A

n−1∑
j=0

Ajxj

j!
.

Letting n→∞ finishes the proof.
2. It directly comes from Definition 2.2.
3. Let y(t) =

(
eAteAs − eA(t+s)

)
y0, then by Property 1

d

dt
y(t) = (AeAteAs − AeA(t+s))y0 = Ay(t),

for every y0 ∈ C. Hence, Solving the previous differential equation we get
y(t) = eAty(0). Since y(0) = 0 we get y(t) ≡ 0, which concludes the proof.

4. By Corollary 2.4 we can write eAt as a polynomial. Hence, since A
and B commute

eAtB =

(∑̀
i=0

αiA
iti

)
B = BeAt.

Now, let us define y(t) =
(
eAteBt − e(A+B)t

)
y0, then

d

dx
y(t) = (AeAteBt + eAtBeBt − (A+B)e(A+B)t)y0 = (A+B)y(t).

We finish using the same arguments as in the previous proof.
5. From properties 2 and 3 we obtained eAe−A = e0 = I.



2.1. DEFINITION AND PROPERTIES 33

We remark that by Property 3 of Proposition 2.10(
e(A/m)

)m
= eA,

for every complex A and m = 1, 2, . . . .
However, not all the properties we would like to have are satisfied by the

exponential. For example, let

A1 =

[
2 0
0 1

]
, A2 =

[
1 1
0 1

]
.

Since A1A2 6= A2A1, Property 4 of Proposition 2.10 may not hold. Indeed,
we get

eA1 =

[
e2 0
0 e

]
, eA2 =

[
e e
0 e

]
and so

eA1eA2 =

[
e3 e3

0 e2

]
6= eA1+A2 =

[
e3 e
0 e2

]
.

In this chapter we showed that matrix functions from Definition 2.2 sat-
isfy many properties that, intuitively, we would like a matrix function to
have. Indeed, the definition comprehends polynomials of matrices (2.1), sat-
isfies the Cauchy integral formula from Proposition 2.7 for analytic functions,
and, when we have convergence, it is equivalent to use a matrix instead of
the scalar variable in the Taylor series of a function. Moreover, it has the
basic properties of Lemma 2.3. However, we must be careful, since impor-
tant properties of specific scalar functions are not true for the corresponding
matrix functions, as we have seen in the previous examples.
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CHAPTER 3

Jacobi Matrices

3.1 Definition

In Chapter 1 we saw that any sequence of orthonormal polynomials p0, . . . , pn−1

is associated with a tridiagonal symmetric matrix (1.10) with nonzero ele-
ments on its sub- and super-diagonal. Let L be a positive definite linear
functional (see Definition 1.10), then Definition 1.10, (1.12) and (1.13) show
that the polynomials p0, . . . , pn−1 orthonormal with respect to L are real and,
in addition, the tridiagonal symmetric matrix (1.10) is a real matrix. Usu-
ally a real tridiagonal symmetric matrix with nonzero elements on its sub-
and super-diagonal is called a Jacobi matrix. However, we are dealing with
quasi-definite linear functionals (Definition 1.2). Hence, the matrix (1.10)
may be complex.

There are many different definitions of Jacobi matrices in the literature.
In the most frequent one, a Jacobi matrix is defined as a real, symmetric,
tridiagonal matrix with positive elements on the super-diagonal ([1, p. 2],
[18, p. 72], [42, p. 13], [63, p. 30]). Jacobi matrices are important in matrix
computations (approximating eigenvalues and eigenvectors or solving linear
algebraic systems) and in approximation theory (approximating functions
and integrals). They were named after Carl Gustav Jacob Jacobi (1804-
1851), one of the most prolific mathematician of the 19th century. He proved
that using a linear transformation with determinant equal to ±1 it is possible
to reduce any quadratic form with n variables into a particular quadratic form
defined by 2n− 1 coefficients (see [55]). Nowadays, this last quadratic form

35
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can be expressed in terms of the n×n Jacobi matrix. To our knowledge, the
first Jacobi matrix appeared on [49, p. 202]. A paper in which Toeplitz and
Hellinger discussed the relationship between quadratic forms with infinitely
many unknowns and the analytic theory of continued fractions by Stieltjes
[84]. For a detailed history of Jacobi matrices we refer to [63, Section 3.4.3].

Other definitions of Jacobi matrices can be found in [32, Vol. 2, p. 99] (a
real tridiagonal matrix), [52, p. 86] (a tridiagonal matrix with a real diagonal
and such that the product of the corresponding elements of the sub- and
super-diagonal is non-negative), [50] (a tridiagonal symmetric matrix with
a complex diagonal and with nonzero real elements on the sub- and super-
diagonal). In this paper we use the definition by Beckermann from the paper
about spectral properties of complex Jacobi matrices [2].

Definition 3.1 (Jacobi matrix). A square complex matrix is called a Jacobi
matrix if it is tridiagonal, symmetric and has no zero elements on its sub-
and super-diagonal.

Probably the first study of this class of matrices appeared in [92, p. 226],
where Wall investigated the convergence of complex Jacobi continued frac-
tions (J-fractions). We remark that a (complex) Jacobi matrix is Hermitian
if and only if it is real.

As described in Section 1.1, k orthonormal polynomials p0, p1, . . . , pk−1,
determine a Jacobi matrix Jk. Conversely, by Favard Theorem 1.5 every
Jacobi matrix defines a sequence of polynomials orthogonal with respect
to a certain linear functional. Moreover, if there exist n − 1 orthogonal
polynomials, then we have n Jacobi matrices J1, . . . , Jn. Since adding a
polynomial to a set of orthogonal polynomials does not change the three-
term relationship among the original set, then Jk−1 is the k − 1 × k − 1
leading principal submatrix of Jk for k = 2, . . . , n. Let us show it with an
example.

Example 3.1 Let L be a linear functional defined by a sequence of mo-
ments with the first seven terms given by

1, 3, 8, 20, 52, 156, i.

Please, notice that here i =
√
−1 is the imaginary unit. Then L is quasi-

definite on P3, since

∆0 = 1, ∆1 = −1, ∆2 = −4, ∆3 = 2128− 4i.

The associated monic orthogonal polynomials are

π0 = 1, π1(x) = x−3, π2(x) = x2−4x+4, π3(x) = x3−7x2 +20x−24,
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and a sequence of orthonormal polynomials is

p0 = 1, p1(x) =
x− 3

i
, p2(x) = −x

2 − 4x+ 4

2
, p3(x) =

2x3 − 14x2 + 40x− 48√
i− 532

.

Then

J1 = [ 3 ] , J2 =

[
3 i
i 1

]
, J3 =

 3 i 0
i 1 2i
0 2i 3


are the corresponding first 3 Jacobi matrices.

In this Chapter we will show some spectral properties of Jacobi matrices.
We will first see some theorems about complex tridiagonal matrices (Section
3.2), then we will investigate complex symmetric matrices (Section 3.3). In
Section 3.4 we will prove the moment matching property for quasi-definite
linear functionals and complex Jacobi matrices. Finally, in Section 3.5 we
will recall some additional properties of real Jacobi matrices.

3.2 Complex Tridiagonal Matrices

Some spectral properties of complex tridiagonal matrices (with nonzero el-
ements on the sub- and super-diagonal) will be important for the following
chapters. We first recall the main results.

Theorem 3.2. Every tridiagonal matrix T ∈ Cn×n with nonzero elements
on its super-diagonal (or sub-diagonal) is non-derogatory, i.e., its eigenvalues
have geometric multiplicity 1.

Proof. Let λ be an eigenvalue of a tridiagonal matrix T with nonzero elements
on the super-diagonal (the other case is analogous). Deleting the first column
and the last row of T−λI gives a lower triangular non-singular matrix. Thus,
the null space of T −λI has dimension 1 because its rank is not smaller than
n− 1.

Corollary 3.3. Every tridiagonal matrix T ∈ Cn×n with nonzero elements
on its super-diagonal (or sub-diagonal) is diagonalizable if and only if it has
distinct eigenvalues.

It is known that we can use the adjoint matrix (sometimes the term ad-
jugate is used to avoid confusion with the Hermitian adjoint) in order to give
an explicit formulation of the eigenvectors corresponding to the eigenvalues
of geometric multiplicity one. Indeed, if λ is an eigenvalue with geometric
multiplicity one, then rank(A − λI) = n − 1. Hence, adj(A − λI) is not
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identically zero. Then let adj(A−λI)ei be a nonzero column of adj(A−λI).
For later convenience, let us consider any ξ ∈ C, we get

(A− ξI) adj(A− ξI) = det(A− ξI) I,

and thus the i-th column gives

(A− ξI)z(ξ) = det(A− ξI)ei,

with z(ξ) = adj(A− ξI)ei. Fixing ξ = λ gives (A−λI)z(λ) = 0 which shows
that z(λ) is an eigenvector of A associated with λ. We remark that the same
eigenvector (apart from the normalization) is given by any nonzero column
of adj(A− λI).

Following [21], we differentiate j times (A − ξI)z(ξ) = det(A − ξI)ei,
which gives

(A− ξI)z(j)(ξ) = jz(j−1)(ξ) +
dj

dξj
det(A− ξI)ei.

Denoting

w0(ξ) = 0, w1(ξ) = z(ξ), wj+1(ξ) =
1

j
w′j(ξ) =

1

j!
z(j)(ξ), (3.1)

for j = 1, 2, . . ., we obtain

(A− ξI)wj+1(ξ) = wj(ξ) +
1

j!

dj

dξj
det(A− ξI)ei, where j = 0, 1, . . . .

If λ is an eigenvalue with geometric multiplicity 1 and algebraic multiplicity
s, then we get

(A− λI)wj+1(λ) = wj(λ) for j = 0, . . . , s− 1. (3.2)

Therefore w1(λ) is the eigenvector and wj(λ) for j = 2, . . . , s are the gener-
alized eigenvectors of A (Jordan canonical vectors of A) corresponding to λ;
see in particular Definition 2.1. Moreover, w1(λ) 6= 0 and (3.2) imply that
w2(λ), . . . ,ws(λ) are also nonzero vectors.

Let Tn be a tridiagonal matrix of dimension n× n, then z(ξ) = adj(Tn −
ξI)en 6= 0. By direct computation we then get an explicit formulation

z(ξ) =


β1 · · · βn−1

−β2 · · · βn−1φ1(ξ)
...

(−1)n−2βn−1φn−2(ξ)
(−1)n−1φn−1(ξ)

 , (3.3)
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where β1, . . . , βn−1 are the elements of the super-diagonal and φi(ξ) = det(Ti−
ξI), with Ti the i-th leading principal submatrix of Tn. This was proved
for Hermitian tridiagonal matrices by Wilkinson in [95, Chapter 5, Sec-
tion 48]. Providing that Tn has no zeros on its super- and sub-diagonal,
φi(ξ) = (−1)iπi(ξ), i = 1, . . . , n, where π1, . . . , πn is the sequence of monic
orthogonal polynomials corresponding to Tn. The following property was
presented in the lecture of Ipsen at the ILAS 2005 conference.

Proposition 3.4. Let Tn ∈ Cn×n be a tridiagonal matrix with nonzero ele-
ments on its super-diagonal. Let λ be an eigenvalue of algebraic multiplicity s
and wj+1(λ), for j = 1, . . . , s− 1, the corresponding generalized eigenvectors
satisfying (Tn − λI)wj+1(λ) = wj(λ) (with w0 = 0, w1 = z(λ) from (3.3)).
Then we can give the following explicit formulation

wj(λ) =
1

(j − 1)!



0j−1

βj · · · βn−1

(−1)jβj+1 · · · βn−1φ
(j−1)
j (λ)

...

(−1)n−2βn−1φ
(j−1)
n−2 (λ)

(−1)n−1φ
(j−1)
n−1 (λ)


, j = 2, . . . , s,

where 0` is the zero vector of length `, β1, . . . , βn−1 are the elements of the
super-diagonal of Tn and φi(λ) = det(Ti − λI), with Ti the i-th leading prin-
cipal submatrix of Tn.

Proof. Since β1, β2, . . . , βn−1 6= 0, every eigenvector of Tn corresponding to
the eigenvalue λ can be expressed as a nonzero multiple of z(λ) from (3.3).
Using (3.1) we obtain the form of wj(λ) in the statement.

Moreover, we can give the following result about eigenvectors.

Proposition 3.5. Let A a tridiagonal matrix with nonzero elements on the
super- and sub-diagonal. Then, the first and the last component of every
eigenvector of A is nonzero.

Proof. The formula (3.3) for z(λ) shows that the first component of an eigen-
vector is nonzero. In order to prove the same for the last element of an
eigenvector, we need to prove φn−1(λ) 6= 0, i.e., that the eigenvalues of Tn
and Tn−1 are distinct. Using a standard argument, if λ is a root of both the
orthogonal polynomials φn and φn−1, then by (1.12) it is also a root of φn−2.
Hence, by induction, φ0 = 0, which is a contradiction.
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3.3 Complex Symmetric Matrices

Here we introduce and prove some spectral properties related to complex
symmetric matrices. In the end of the section we will use these results to
prove sufficient and necessary conditions for the diagonalizability of a com-
plex Jacobi matrix.

It is important to remark that unlike real symmetric matrices, complex
symmetric matrices may not be diagonalizable. This fact is related with the
existence (in the complex field) of isotropic vectors. An isotropic vector is a
vector x such that xTx = 0 and x 6= 0 (for example (1, i)T ). In the following
we present some results proved by Craven in [20, Theorem 3].

Lemma 3.6 ([20], Lemma 5). Let v1, . . . ,vn be vectors in Ck, with n < k,
such that vTi vj = 0 for i 6= j and vTi vi = 1. Then, there exists a vector vn+1

for which vTn+1vn+1 = 1 and vTn+1vi = 0 for i = 1, . . . , n.

Proof. The vectors v1, . . . ,vn are linearly independent. If we consider the
canonical basis e1, . . . , ek, up to a renumbering of the vectors, we can assume
that e1, . . . , e` are linearly dependent on v1, . . . ,vn, with ` ≤ n. Now, let
j = `+ 1, . . . , k, then we can define

uj = ej −
n∑
i=1

αivi, with αi = vTi ej.

Direct computation shows that uTj vi = 0 for i = 0, . . . , n and j = `+1, . . . , k.
To end the proof we need to show that there exist uj such that uTj uj 6= 0,
indeed we can obtain the vector vn+1 rescaling uj. First consider

uTj uj =

(
ej −

n∑
i=1

αivi

)T (
ej −

n∑
i=1

αivi

)

= 1− 2
n∑
i=1

αie
T
j vi +

n∑
i=1

α2
i

= 1−
n∑
i=1

(eTj vi)
2.

Moreover, e1, . . . , e` are linearly dependent on v1, . . . ,vn, thus we can rewrite
ej as

ej =
n∑
i=1

βi,jvi, with βi,j = vTi ej, for j = 1, . . . , `.
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Then,

1 = eTj ej =
n∑
i=1

(βi,j)
2 =

n∑
i=1

(vTi ej)
2.

By contradiction, assuming uTj uj = 0 for j = `+ 1, . . . , n− 1, then

n∑
i=1

(eTj vi)
2 = 1, for j = `+ 1, . . . , k.

Hence

k =
k∑
j=1

(
n∑
i=1

(eTj vi)
2

)
=

n∑
i=1

(
k∑
j=1

(eTj vi)
2

)
=

n∑
i=1

vTi vi = n.

Since we assumed n < k we have a contradiction.

By induction on the result of Lemma 3.6 we have the following theorem.

Theorem 3.7 ([20], Theorem 2). Let v1, . . . ,vn be vectors as in Lemma 3.6,
then there exist vectors vn+1, . . . ,vk such that

vTi vj = 0, if i 6= j, and vTi vi = 1,

for i, j = 1, . . . , k.

Using the previous statements we can give the following result.

Theorem 3.8 ([20], Theorem 3). If A is a complex k×k symmetric matrix,
then the following statements are equivalent:

1. There exists a (complex) nonsingular matrix V such that V −1 = V T

and V TAV is a diagonal matrix;

2. Every eigenspace of A has a basis v1, . . . ,vs without isotropic vectors
and such that vTi vj = 0 for i 6= j.

Proof. The implication 1. ⇒ 2. is trivial. Hence, it remains to show the
opposite implication. If the union of the eigenspaces bases of the kind of 2.
is a basis for Ck, then A is diagonalizable and we get the first statement. If
not, then we have a basis w1, . . . ,wn, with n < k satisfying conditions

wT
i wj = 0, for i 6= j and wT

i wi = 1. (3.4)
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By Theorem 3.7 then we can complete this basis with wn+1, . . . ,wk, vectors
satisfying conditions (3.4). Then, defining the matrix W = [w1, . . . ,wk] we
get

W TAW =

[
B 0
0 C

]
,

with B an n× n diagonal matrix and C = [wn+1, . . . ,wk]
T A [wn+1, . . . ,wk]

a symmetric complex matrix. Naturally, the spectrum of A is given by the
union of the spectrum of B and the spectrum of C. Now, take an eigenvalue
λ of C and one related eigenvector u. Then A has the same eigenvalue and
V û is a related eigenvector, with ûT = [ 0n,u

T ]. The eigenvector V û is
linearly independent of w1, . . . ,wn, indeed, if

n∑
i=1

αiwi + βV û = 0,

then for j = 1, . . . , n

n∑
i=1

αiw
T
j wi + β (wT

j V ) û = 0.

Since wT
j V = 0, αi = 0 for i = 1, . . . , n and β = 0. Therefore, the eigenspace

of λ is not span by any subset of w1, . . . ,wn. This contradicts the fact that
the union of the bases of the eigenspaces in statement 2. is not a basis for
Ck.

Now, we consider the propositions presented in [80].

Theorem 3.9 ([80], Theorem 1). If the null space of a complex symmetric
matrix A contains a nonzero isotropic vector, then the trace of the adjoint
(or adjugate) of the matrix vanishes, i.e., tr (A) = 0.

Proof. Since the null space of A contains a nonzero vector det(A) = 0. Then
the dimension of the null space, ν(A), is greater than zero. If ν(A) > 1 then
adj(A), the adjoint of A, vanishes.

Hence, it remains to prove the theorem for ν(A) = 1. Let v be the
isotropic vector generating the null space. We recall the well-known property

A adj(A) = det(A)I,

that gives

A adj(A) = 0.
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This means that each column of adj(A) is a vector lying on the null space of
A, i.e., each column is a scalar multiple of v. Hence, there exists a vector u,
for which

adj(A) = v · uT . (3.5)

Indeed, it is enough to define u so that the i-th column of adj(A) is equal to
uiv, with ui the i-th element of u. By the symmetry of A we have

v · uT = u · vT .

Multiplying the previous equation by v gives

v · uTv = u
(
vTv

)
, (3.6)

which become (
uTv

)
v = 0,

since v is isotropic. Then, v 6= 0 implies uTv = 0. Noticing that tr(A) = uTv
finishes the proof.

Moreover, we have a partial converse theorem.

Theorem 3.10 ([80], Theorem 2). Let A be a singular symmetric matrix
with a null space of dimension 1. Then the null space contains an isotropic
vector if the trace of its adjugate vanishes.

Proof. As shown in the previous proof, since the dimension of the null space
is 1 we can represent the adjoint of A as in (3.5), with v 6= 0 a vector
generating the null space and u 6= 0. Using the symmetry of A equation
(3.6) holds. Then, since uTv = tr(A) = 0 and u 6= 0, v is an isotropic vector
generating the null space of A.

For completeness we state the converse of Theorem 3.9.

Theorem 3.11 ([80], Theorem 3). The null space of a singular symmetric
matrix contains an isotropic vector if the trace of its adjugate vanishes.

Proof. We can assume that the dimension of the null space is greater than
2, ν(A) ≥ 2. Indeed, the case ν(A) = 1 has already been proved in Theorem
3.10. Let v1 and v2 linearly independent vectors lying in the null space of
A, then if one of them is isotropic we are done, otherwise we can normalized
v1 onto v̂1, such that v̂T1 v̂1 = 1. Therefore, we can use Gram-Schmidt
orthogonalization procedure to obtain v̄2 = v2 − (vT2 v̂1)v̂1. If v̄2 is isotropic
we are done. Otherwise, setting v̂2 = v̄2/(v̄

T
2 v̄2) we get two vectors v̂1, v̂2

linearly independent, lying on the null space of A and such that v̂T1 v̂2 = 0
and v̂T1 v̂1 = v̂T2 v̂2 = 1. Then the vector v̂1 + iv̂2 is an isotropic vector in the
null space of A.
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We will use the preceding theorems to give some properties of Jacobi
matrices. First we state the following lemma.

Lemma 3.12. Let λ be an eigenvalue of a complex Jacobi matrix J and v an
associated eigenvector. Then, v is isotropic if and only if λ has an algebraic
multiplicity greater than 1.

Proof. Given a matrix A(ξ) depending on a parameter ξ, Jacobi’s formula
states that

d

dξ
detA(ξ) = tr(adj(A(ξ)

dA(ξ)

dξ
));

for a proof see, e.g., [65, Theorem 1 at p. 149]. If A(ξ) = ξI − J , then the
previous formula becomes

d

dξ
φ(ξ) = tr(adj(ξI − J)),

where, φ is the characteristic polynomial of J . Let λ be an eigenvalue of J ,
then (λI − J) is a complex symmetric matrix such that

det(λI − J) = 0 and tr(adj(λI − J)) = φ′(λ).

Since φ′(λ) = 0 if and only if the algebraic multiplicity of λ is greater than 1,
by Theorems 3.9 and 3.10 the eigenspace of J corresponding to λ contains an
isotropic vector if and only if the algebraic multiplicity of λ is greater than
1. Since by Theorem 3.2 any complex Jacobi matrix is non-derogatory, the
proof is finished.

We summarize the situation in the following proposition.

Proposition 3.13. If J is a Jacobi matrix, then the following properties are
equivalent:

1. J is diagonalizable;

2. There exists a (complex) nonsingular matrix V such that V −1 = V T

and V TJV is a diagonal matrix;

3. None of the eigenvectors of J is isotropic.

Proof. The second and the third properties are equivalent by Theorem 3.8.
Obviously the second one implies the first one. So it remains to prove that if J
is diagonalizable, then no eigenvector is isotropic. Since J is non-derogatory,
using Lemma 3.12 finishes the proof.
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Moreover, we can give a theorem for the non-diagonalizable case.

Proposition 3.14. If J is a Jacobi matrix, then the following statements
are equivalent:

1. J is not diagonalizable;

2. It does not exist a nonsingular matrix V such that V −1 = V T and
V TJV is a Jordan form for J .

3. There exists an isotropic eigenvector of J .

Proof. The statement 1. ⇔ 3. has already been proved in Proposition 3.13.
Furthermore, 2.⇒ 1. . In fact, 2. implies that it does not exist a nonsingular
matrix V such that V −1 = V T and V TJV is a diagonal matrix. Thus, by
Proposition 3.13, J is not diagonalizable.

We finish by proving that 3. ⇒ 2. . Let Λ be the Jordan form of J and
W such that JW = WΛ. Since J is non-derogatory, at least one column wi

of W is a multiple of the isotropic eigenvector. Since wT
i wi = 0 we see that

W TW cannot be equal to the identity matrix.

3.4 Moment Matching Property for Jacobi

matrices

If a linear functional is defined by the moments L(xi) = v∗Aiv, i = 0, 1, . . . ,
where A is a Hermitian matrix, v is a nonzero vector and v∗ is the conjugate
transpose of v. Then the following is a well-known result (e.g., refer to [42])

L(xi) = v∗Aiv = ||v||2 eT1 (Jn)i e1,= m0 eT1 (Jn)i e1, i = 0, 1, . . . , 2n− 1,

where Jn is the Jacobi matrix associated with the first n orthogonal polyno-
mial with respect to L (for details refer to Chapter 1, in particular (1.10)).
Using the Vorobyev method of moments [91, in particular Chapter III], this
property can easily be extended, assuming the existence of the first n steps of
the non-Hermitian Lanczos process (see Algorithm 5.4), to a general complex
matrix A; see [85]. In this section we give a proof for an analogous property
for Jacobi matrices determined by any quasi-definite linear functional.

Theorem 3.15. [Moment Matching Property] Let L be a quasi-definite linear
functional on Pn and let Jn be the Jacobi matrix of coefficients from the
recurrence relations for orthogonal polynomials with respect to L; see (1.9).
Then

L(xi) = m0 eT1 (Jn)i e1, i = 0, . . . , 2n− 1, (3.7)

where m0 = L(x0).
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We prove this theorem throughout the following two lemmas.

Lemma 3.16. The polynomials p0, . . . , pn−1 associated with the three-term
recurrence relation whose coefficients are given by the Jacobi matrix Jn are
orthonormal with respect to the functional L̃ defined by

L̃(xi) = m0 eT1 (Jn)i e1,

with m0 = 1/p2
0.

Proof. If Jn is a Jacobi matrix associated with the polynomials p0, . . . , pn−1,
then for i = 0, . . . , n− 1 the (i+ 1)-st entry of the vector (Jn)ie1 is nonzero,
and, for i = 0, . . . , n−2, the entries i+2, . . . , n of (Jn)ie1 are zero. Therefore
the canonical basis e1, . . . , ek is an orthonormal basis of the Krylov subspaces

Kk(Jn, e1) = span{e1, Jne1, . . . , (Jn)k−1 e1}, k = 1, . . . , n,

i.e., ek = p̃k−1(Jn) e1 for a polynomial p̃k−1 of degree k − 1.
The polynomials p̂k−1 = p̃k−1/

√
m0, k = 1, . . . , n, are orthonormal with

respect to L̃. Indeed,

L̃(p̂ip̂j) = m0 eT1 p̂i(Jn)p̂j(Jn) e1 = eTi ej.

From e1 = p̃0(Jn) e1 we obtain p̃0 ≡ 1, or equivalently, p̂0 = 1/
√
m0 = p0.

We finally show that p̂k = pk for k = 1, . . . , n− 1. Notice that

L̃(xp̂ip̂j) = m0 eT1 p̂i(Jn)Jnp̂j(Jn) e1 = (Jn)i,j.

Hence, by (1.9) the coefficients from the three-term recurrence relation for
xp̂0, . . . , xp̂n−1 are the same as those for xp0, . . . , xpn−1. And the proof is
finished.

The following lemma finishes the proof of Theorem 3.15.

Lemma 3.17. Let L and L̃ be linear functionals such that there exists a
sequence of polynomials pi for i = 0, . . . , n−1 that are orthogonal with respect
to both L and L̃. Let L(x0) = L̃(x0). Then

L(xi) = L̃(xi) for i = 0, . . . , 2n− 1. (3.8)

Proof. We prove the result by induction. Using (1.13),

L(xp2
0(x))

L(p2
0(x))

= α0 =
L̃(xp2

0(x))

L̃(p2
0(x))

, i.e.,
m1

m0

=
m̃1

m̃0

.
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Since we have assumed m0 = m̃0, we conclude m1 = m̃1. Let mi = m̃i for
i = 0, . . . , 2k − 3. Using (1.13) we have

L(xpk−1(x)pk−2(x))

L(p2
k−2(x))

= γk−1 =
L̃(xpk−1(x)pk−2(x))

L̃(p2
k−2(x))

.

Rewriting

xpk−1(x)pk−2(x) =
2k−2∑
i=0

aix
i and p2

k−2(x) =
2k−4∑
i=0

bix
i,

the induction assumptions give m2k−2 = m̃2k−2. Repeating the same argu-
ment with the coefficient αk−1 finishes the proof.

A different normalization of the orthogonal polynomials is associated with
a tridiagonal matrix Tn such that Jn = D−1TnD, with D the diagonal matrix
with elements given in (1.22) (see also Proposition 1.6). Hence, the statement
of Theorem 3.15 remains valid for any tridiagonal matrix Tn associated with
a sequence of orthogonal polynomials defined by the functional L.

3.5 Real Jacobi Matrices

When we deal with real Jacobi matrices we have some important additional
properties, which we summarize in this section. First of all we notice that
any real n × n Jacobi matrix Jn is a symmetric matrix. Thus it has real
eigenvalues and can be orthogonally diagonalized, i.e.,

JnW = Wdiag(λ1, . . . , λn),

where λ1, . . . , λn are the eigenvalues of the matrix Jn andW = [w1, . . . ,wn] ∈
Rn×n is an orthogonal matrix whose columns are the normalized eigenvectors
of Jn, W TW = WW T = I. Then, Proposition 3.5 and Corollary 3.3 give the
following statement.

Theorem 3.18. The following properties hold for every real Jacobi matrix:

1. Eigenvalues are real and distinct;

2. The first and the last component of each of its eigenvectors are nonzero.

As we have seen in Chapter 1, every Jacobi matrix is associated to a
sequence of orthonormal polynomials p0, . . . , pn (see Favard Theorem 1.5).
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Moreover, by (1.9) the eigenvalues Jn are the roots of pn. Hence, the Strict
Interlacing Property 1.16 holds for the eigenvalues of any real Jacobi matrix.

Moreover, let J1, . . . , Jn be Jacobi matrices such that Ji is the leading
principal i× i submatrix of Jn for i = 1, . . . , n− 1. From now on J1, . . . , Jn
will always denote the described sequence of Jacobi matrices.

Theorem 3.19 (Interlacing Property). Let J1, . . . , Jn be real Jacobi matrices

as described above. Let k and ` be integers with k + 1 ≤ ` ≤ n and let λ
(k)
i

for i = 1, . . . , k be the eigenvalues of Jk. Then at least one of the eigenvalues
of J` is contained in any of the k + 1 open intervals(

−∞, λ(k)
1

)
,
(
λ

(k)
1 , λ

(k)
2

)
, . . . ,

(
λ

(k)
k−1, λ

(k)
k

)
,
(
λ

(k)
k ,+∞

)
.

The proof of this theorem uses Gauss quadrature and can be found in [63,
Theorem 3.3.1, p. 92 and Remark 3.4.4, p. 115]. It is important to remark
that the proof cannot be extended to non positive definite linear function-
als. As a trivial consequence we get the strict interlacing property for the
eigenvalues of two subsequent Jacobi matrices Jk and Jk+1 and, equivalently,
the strict interlacing property of the roots of two consecutive orthogonal
polynomials.



CHAPTER 4

Gauss Quadrature for Linear Functionals

4.1 Gauss Quadrature under Restrictive As-

sumptions

Let L be a Positive definite linear functional (see Definition 1.10). Let f be
a function from the space on which L is defined, then we can approximate
the value L(f) with the n-node quadrature rule

L(f) ≈
n∑
i=1

ωif(λi),

where λ1, . . . , λn are the nodes and ω1, . . . , ωn are the weights. With a partic-
ular choice of the nodes and the weights, depending only on L, the quadrature
rule is exact for every polynomial f of degree lower than or equal to 2n− 1.
In this case we have a Gauss quadrature rule. The classical theory of Gauss
quadrature can be found in many books; see, for example, [87, Chapters III
and XV], [15, Chapter I, Section 6], [35], [36, Chapter 3.2], [63, Section 3.2].

We recall that in the classical case (see [33], [54], [16], [17] and [84]) L is
the Riemann, the weighted Riemann or the more general Riemann-Stieltjes
integral with respect to a non-decreasing distribution function µ defined on
the real axis having finite limits at ±∞ and infinitely many points of increase.
Since µ is of bounded variation, the integral

∫
fdµ exists for every continuous

function f . However, every positive definite linear functional can be seen as
an integral with respect to a positive non-decreasing distribution function
supported on the real axis; see Appendix A and Section 1.2.

49
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Let us recall some basic properties of Gauss quadrature:

• G1: The n-node Gauss quadrature rule attains the maximal algebraic
degree of exactness 2n− 1.

• G2: The n-node Gauss quadrature is well-defined and it is unique.
Naturally, the Gauss quadrature rules with a smaller number of nodes
also exist and they are unique.

• G3: The Gauss quadrature of the function f can be written in the form
m0 eT1 f(Jn)e1, where Jn is the Jacobi matrix containing the coefficients
from the three-term recurrence relation for orthonormal polynomials
associated with L; m0 = L(x0).

Since the degree of exactness is larger than n − 1, the Gauss quadrature is
an interpolatory quadrature, i.e., the weights ωi satisfy

ωi = L(`i), i = 1, . . . , n, (4.1)

where `i(x) is the Lagrange interpolation polynomial, defined as

`i(x) =
(x− λ1) . . . (x− λi−1)(x− λi+1) . . . (x− λn)

(λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λn)
=

πn(x)

(x− λi)π′n(λi)
.

In fact, since `i(x) has degree n− 1, then

L(`i) =
n∑
j=1

ωj`i(λj) = ωi,

for i = 1, . . . , n.
We will now revisit the situation for the functional L that is only quasi-

definite. We start with the usual form of an n-node quadrature rule

L(f) =
n∑
i=1

ωif(λi) +Rn(f), (4.2)

where the nodes λ1, . . . , λn are distinct and the last term stands for the
quadrature error.

Theorem 4.1. The quadrature rule (4.2) is exact for every f in P2n−1 if
and only if it is interpolatory and the polynomial

ϕn(x) =
n∏
i=1

(x− λi) (4.3)

satisfies L(ϕnp) = 0 for every p ∈ Pn−1.
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Proof. Let (4.2) be exact for every f ∈ P2n−1. Then for every p ∈ Pn−1 we
get Rn(ϕnp) = 0 and moreover, since ϕn(λi) = 0 for i = 1, ..., n,

L(ϕnp) =
n∑
i=1

ωiϕn(λi)p(λi) = 0.

Vice versa, let L(ϕnp) = 0 for all p from Pn−1. Since any f ∈ P2n−1 can be
written as

f(x) = ϕn(x)q(x) + r(x) (4.4)

for some q and r from Pn−1, L(f) = L(r). The quadrature is an interpolatory
quadrature on n nodes, hence it has algebraic degree of exactness at least
n− 1. Thus L(r) =

∑n
i=1 ωi r(λi). Since ϕn(λi) = 0, by (4.4) we get r(λi) =

f(λi) for i = 1, . . . , n. This finishes the proof.

We can interpret Theorem 4.1 with the orthogonal polynomials theory
presented in Chapter 1. The monic polynomial ϕn of degree n has n distinct
roots λ1, . . . , λn. Moreover, it is orthogonal to the space Pn−1 with respect
to the linear functional L, i.e., L(ϕnp) = 0 for every p from Pn−1. Then
the interpolatory quadrature with the nodes λ1, . . . , λn has algebraic degree
of exactness at least 2n − 1. We recall that a sequence of n + 1 orthogonal
polynomials exists if and only if L is quasi-definite on Pn; see Theorem 1.3.
Therefore, the quadrature rule (4.2) has the properties G1 and G2 if and
only if the following conditions simultaneously hold:

1. There exists a sequence of orthogonal polynomials p0, . . . , pn with re-
spect to the linear functional L (i.e., L is quasi-definite on Pn);

2. Zeros of the individual polynomials pj, j = 1, . . . , n, in the sequence
are distinct;

Let J1, . . . , Jn be the Jacobi matrices associated with a sequence of orthonor-
mal polynomials with respect to L; see (1.10). Then by Corollary 3.3 and
Theorem 1.3 the conditions 1. and 2. are respectively equivalent to the fol-
lowing ones.

1. L is quasi-definite on Pn;

2. The Jacobi matrices J1, . . . , Jn associated with L are diagonalizable.

Assuming that L satisfy conditions 1. and 2., by the moment matching
Theorem 3.15 we know that for every polynomial f ∈ P2n−1

L(f) = m0 eT1 f(Jn) e1,
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with m0 = L(x0). Since we assume Jn diagonalizable, then Λ = V −1JnV is
diagonal. Moreover, Proposition 3.13 implies V −1 = V T . By the definition
of matrix function (Definition 2.2)

eT1 V


f(λ1) 0 · · · 0

0 f(λ2)
. . .

...
...

. . . . . . 0
0 · · · 0 f(λn)

V T e1 =
n∑
i=1

(vi)
2f(λi), (4.5)

where vi is the first element of the i-th column of V , for i = 1, . . . , n. By
Property G2 the n-node quadrature rule (4.2) is unique. Hence, the quadra-
ture (4.2) can be expressed in the form m0 eT1 f(Jn) e1, i.e., the property G3
is generalized in a straightforward way; see [35, p. 153], [78, p. 267-268].
Moreover, using (4.5) and the uniqueness of the quadrature rule (4.2) we get

ωi = m0(vi)
2, for i = 1, . . . , n.

Hence, the weights of the quadrature rule are m0 times the square of the first
element of the eigenvectors v1, . . . ,vn of the Jacobi matrix Jn, normalized
such that vTi vi = 1. Of course, the nodes are the eigenvalues of Jn.

When L is positive definite, Jn and V are real matrices. Hence, we recover
the well-known property ωi = m0(vi)

2 > 0, for every weight ωi of a Gauss
quadrature rule; see, e.g., [94, Sections 2.5 and 2.9] and [43].

To our knowledge quadrature (4.2) was considered for the first time by
Gragg in [44] for real valued linear functionals. A generalization for complex
valued functionals was considered by Saylor and Smolarski in [78]. However,
due to the assumption on the distinctness of the nodes, see Property 2, this
construction is restrictive. Indeed, if L is quasi-definite on Pk, then the
orthogonal polynomials in the sequence p1, . . . , pk can have multiple zeros.
Hence it can happen that for some values `, ` ≤ k, the `-point quadrature
defined by

L(f) ≈
∑̀
i=1

ωif(λi)

cannot be properly defined, i.e., it represents an interpolatory quadrature
on strictly less than ` distinct points. Thus it cannot achieve the algebraic
degree of exactness 2`− 1. We demonstrate this with the following example.

Example 4.1 Let L a linear functional defined by a sequence of moments
with the first seven terms given by

1, 3, 8, 20, 52, 156, i,



4.2. N -WEIGHT GAUSS QUADRATURE 53

as in Example 3.1. Then L is quasi-definite on P3, since

∆0 = 1, ∆1 = −1, ∆2 = −4, ∆3 = 2128− 4i.

The associated monic orthogonal polynomials are

π0 = 1, π1(x) = x−3, π2(x) = x2−4x+4, π3(x) = x3−7x2 +20x−24.

The zeros of π2 are λ1 = λ2 = 2, which means that the 2-node quadrature
(4.2) which is exact on P3 does not exist. However, the zeros of π3 are
λ1 = 3, λ2 = 2 − 2i and λ3 = 2 + 2i, which means that there exists the
3-node quadrature (4.2) which is exact on P5. The corresponding Jacobi
matrix is

J3 =

 3 i 0
i 1 2i
0 2i 3

 .
The matrix J3 is diagonalizable, whereas its leading principal 2×2 submatrix
is not.

4.2 n-weight Gauss Quadrature

To overcome restrictions for quasi-definite linear functionals that produce
diagonalizable Jacobi matrices, we need to modify the quadrature concept of
relation (4.2). We then consider the n-weight quadrature formula

L(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi) +Rn(f), (4.6)

with n = s1 + . . . + s`. We remark that quadrature (4.2) is the special
case of the quadrature (4.6) when ` = n and s1 = . . . = sn = 1. So we
are generalizing the rule (4.2) in the way that considers, in addition to the
function values f(λ1), . . . , f(λ`), also the values of the derivatives of f at the
points λ1, . . . , λ`. Therefore the quadrature (4.6) needs more smoothness of
the argument function f in L(f). We explain the construction (4.6) using
the following theorems that show how to choose the values s1, . . . , s` when
we want to achieve the maximal degree of exactness.

Theorem 4.2 ([74]). Let L be an arbitrary linear functional on P. The
quadrature rule (4.6) is exact for every f in P2n−1 if and only if it is exact
for Pn−1 and the polynomial

ϕn(x) = (x− λ1)s1(x− λ2)s2 . . . (x− λ`)s` (4.7)

satisfies L(ϕn p) = 0 for every p ∈ Pn−1.
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Proof. As done in [83] for each root λ1, . . . , λ` of ϕn we define the polynomials
hi,j of degree n− 1

hi,j(x) =
(x− λi)j

j!

{
si−1−j∑
ν=0

(x− λi)ν

ν!

(
1

gi(x)

)(ν)
∣∣∣∣∣
x=λi

}
gi(x),

j = 0, 1, . . . , si − 1,

(4.8)

with gi(x) =
∏̀
t = 1
t 6= i

(x− λt)st . From (4.8) we obtain

h
(t)
i,j (λk) = 1 for λk = λi and t = j,

h
(t)
i,j (λk) = 0 for λk 6= λi or t 6= j,

where k = 1, 2, . . . , `, and t = 0, 1, . . . , si − 1; see [82, Section 3]. Now, we
can define the generalized (Hermite) interpolating polynomial as

hn−1(x) =
∑̀
i=1

si−1∑
j=0

f (j)(λi)hi,j(x);

we refer to [82]. So we get that the formula (4.6) is exact for any polynomial
f ∈ Pn−1 if and only if

L(f) =
∑̀
i=1

si−1∑
j=0

wi,jf
(j)(λi) =

∑̀
i=1

si−1∑
j=0

L(hi,j)f
(j)(λi),

i.e., if and only if the weights of the quadrature (4.6) can be expressed as

ωi,j = L(hi,j).

The remaining part of the proof is completely similar to the proof of Theorem
4.1.

We say that the n-weight quadrature rule (4.6) is unique if the nodes and
the weights are uniquely determined by L and n.

Theorem 4.3 ([74]). Let L be an arbitrary linear functional on P. The
n-weight quadrature (4.6) of degree of exactness at least 2n − 1 exists and
is unique if and only if the n-th Hankel determinant (1.4) is nonzero, i.e.,
∆n−1 6= 0.
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Proof. By Theorem 4.2 the n-weight interpolatory quadrature (4.6) is of
degree of exactness at least 2n− 1 if and only if the monic polynomial (4.7)

ϕn(x) = xn + cn−1x
n−1 + . . .+ c1x+ c0

is orthogonal to the space Pn−1. The conditions L(xjϕn) = 0, j = 0, . . . , n−1
then are equivalent to the system

m0 m1 . . . mn−1

m1 m2 . . . mn
...

...
. . .

...
mn−1 mn . . . m2n−2



c0

c1
...
cn−1

 =


−mn

−mn+1
...
−m2n−1

 , (4.9)

which has a unique solution if and if and only if ∆n−1 6= 0.

Finally, we give the condition under which the degree of exactness of (4.6)
is exactly 2n − 1 (i.e., it does not exceed 2n − 1). This has no counterpart
in the positive-definite case, in which the n-node Gauss quadrature cannot
have algebraic degree of exactness larger than 2n− 1.

Theorem 4.4 ([74]). Let L be an arbitrary linear functional on P and let
the n-weight quadrature (4.6) has degree of exactness at least 2n − 1. Then
the degree of exactness of the quadrature (4.6) is (exactly) 2n− 1 if and only
if the (n+ 1)-st Hankel determinant (1.4) is nonzero, i.e., ∆n 6= 0.

Proof. The n-weight quadrature rule (4.6) has degree of exactness at least
2n − 1. Then the polynomial ϕn (4.7) is orthogonal to Pn−1. In addition,
ϕn is orthogonal to Pn if and only if L(ϕ2

n) = 0 in which case the degree of
exactness of (4.6) is at least 2n. Therefore, the quadrature (4.6) has degree
of exactness larger than 2n − 1 if and only if L(ϕnx

j) = 0 for j = 0, . . . , n,
or equivalently, if and only if there is a vector [c0, . . . , cn−1, 1]T such that

m0 m1 . . . mn

m1 m2 . . . mn+1
...

...
. . .

...
mn mn+1 . . . m2n



c0
...
cn−1

1

 =


0
...
0
0

 , (4.10)

which implies ∆n = 0.

Corollary 4.5 ([74]). The quadrature rule (4.6) has the properties G1 and
G2 if and only if L is quasi-definite on Pn.
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Proof. The n-weight quadrature rule (4.6) is unique and of degree of exact-
ness 2n−1 if and only if both ∆n−1 and ∆n are different from zero. The prop-
erty G2 requires the same for all j-weight quadratures with j = 1, . . . , n− 1,
and thus all Hankel determinants ∆j, j = 0, . . . , n have to be nonzero and
this is equivalent to ask L to be quasi-definite on Pn.

Now we want to show that property G3 is true for the quadrature rule
(4.6) when L is quasi definite. Let Jn be an n × n Jacobi matrix, with
λi its eigenvalues of algebraic multiplicities si, i = 1, . . . , `. By Theorem
3.2 the matrix Jn is non-derogatory. Hence, its Jordan normal form (2.1)
W−1JnW = [Λ1, . . . ,Λ`], has only one Jordan block Λi for every distinct
eigenvalue λi, for i = 1, . . . , `. Recalling the definition of a matrix function
(Definition 2.2), and denoting the first row of W as

wT = [w1,0, . . . , w1,s1−1, w2,0, . . . , w2,s2−1, . . . , w`,0, . . . , w`,s`−1],

and the first column of W−1 as

ŵ = [ŵ1,0, . . . , ŵ1,s1−1, ŵ2,0, . . . , ŵ2,s2−1, . . . , ŵ`,0, . . . , ŵ`,s`−1]T ,

we obtain

eT1 f(Jn) e1 = eT1 Wdiag(f(Λ1), . . . , f(Λ`))W
−1e1

= wTdiag(f(Λ1), . . . , f(Λ`)) ŵ

=
∑̀
i=1

[wi,0, . . . , wi,si−1]f(Λi)[ŵi,0, . . . , ŵi,si−1]T .

Equation (3.3) in Chapter 3 gives an explicit form for the eigenvectors of
tridiagonal matrices with nonzero elements on the sub- and super-diagonal.
Similarly Proposition 3.4 gives an explicit form for generalized eigenvectors
of the same kind of matrices. From these results we deduce that the first
elements of the columns of the matrix W are zero except for the columns
that are eigenvectors of Jn. Moreover we remark that the first element of
every eigenvector of such a matrix is nonzero (see Proposition 3.5). Therefore,
the individual terms in the previous sum can be written as

[wi,0, 0, . . . , 0]


f(λi)

f ′(λi)
1!

. . . f (si−1)(λi)
(si−1)!

0 f(λi) . . . f (si−2)(λi)
(si−2)!

...
. . . . . .

...
0 . . . 0 f(λi)




ŵi,0
ŵi,1

...
ŵi,si−1

 .
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Hence we have

eT1 f(Jn) e1 =
∑̀
i=1

si−1∑
j=0

wi,0ŵi,j
j!

f (j)(λi) =
∑̀
i=1

si−1∑
j=0

ω̃i,j f
(j)(λi), (4.11)

with

ω̃i,j =
wi,0ŵi,j
j!

, for i = 1, . . . , `, j = 0, . . . , si − 1.

Using ωi,j = m0ω̃i,j in (4.11) we get

m0e
T
1 f(Jn) e1 =

∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi). (4.12)

We can prove the following corollary.

Corollary 4.6 ([74]). The quadrature rule (4.6) having the properties G1
and G2 satisfies also the property G3.

Proof. Notice that the right-hand side of (4.12) is of the form (4.6). Hence, it
is enough to prove that the weights ωi,j are equal to L(hi,j), with polynomials
hi,j defined by (4.8) (see the proof of Theorem 4.2). Quadrature (4.6) satisfies
the properties G1 and G2, thus, using Corollary 4.5, the functional L is quasi-
definite on Pn. Moreover, by Theorem 3.15 its values on monomials xi must
then be equal for i = 0, 1, . . . , 2n−1 to the right-hand side of (4.12) with f(λ)
replaced by the same monomials. Therefore, the right-hand side of (4.12) is
a quadrature rule of algebraic degree at least 2n − 1. Using uniqueness it
must be equal to the quadrature rule (4.6) with the weights L(hi,j).

The following theorem summarizes the results about the relation between
the n-weight quadrature formula (4.6) and the associated Jacobi matrix.

Theorem 4.7 ([74]). Let L be an arbitrary linear functional on P and m0 =
L(x0). There exists a Jacobi matrix Jn of dimension n such that

L(xi) = m0 eT1 (Jn)i e1, for i = 0, . . . , 2n− 1, (4.13)

L(x2n) 6= m0 eT1 (Jn)2n e1, (4.14)

if and only if L is quasi-definite on Pn.

Proof. If Jn is the Jacobi matrix satisfying (4.13) and (4.14), then, by (4.12)
there exists the n-weight quadrature rule (4.6) with the degree of exactness
2n− 1. Therefore, Theorem 4.4 implies ∆n 6= 0. We need to prove that L is
quasi-definite on Pn−1 in order to show that L is quasi-definite on Pn. Let



58 CHAPTER 4. QUADRATURE FOR FUNCTIONALS

p0, . . . , pn−1 be the polynomials associated with the three-term recurrence
relation whose coefficients are given by Jn. Then, using Lemma 3.16 they
are orthonormal with respect to the linear functional

L̃(f) = m0 eT1 f(Jn) e1, for f ∈ P .

In addition, they are orthonormal with respect to L by (4.13), i.e., L is quasi-
definite on Pn−1, by Theorem 1.3. The converse statement directly follows
from corollaries 4.5 and 4.6.

If the linear functional is quasi-definite, construction (4.6) and the related
statements proved in this section show that it is possible to construct the
n-weight quadrature (4.6) satisfying the properties G1,G2 and G3 of the
classical Gauss quadrature. We remark that the quadrature (4.6) is different
from the Gauss quadrature with multiple nodes considered in [14] and [73],
and later in [41]. In particular, the latter assumes positive-definite linear
functionals and has degree of exactness equal to

(the number of weights) + (the number of nodes)− 1.

The Gauss quadrature proposed in this section is constructed for quasi-
definite linear functionals and has the degree of exactness

2× (the number of weights)− 1

that is larger than in the previous case.
We have proved that quasi-definiteness of L is a necessary and sufficient

condition for the n-weight quadrature rule (4.6) to have all three properties
G1, G2 and G3. Thus, for non-definite linear functionals all three properties
cannot be satisfied.

Let L be a linear functional for which the n-th Hankel determinant (1.4) is
equal to zero, i.e., ∆n−1 = 0. By Theorem 4.3, the n-weight quadrature (4.6)
having degree of exactness at least 2n − 1 either does not exist (the system
(4.9) has no solution), or there are infinitely many of them (the system (4.9)
has infinitely many solutions). Therefore the property G2 cannot be satisfied.
If there exist infinitely many n-weight quadrature rules (4.6), then ∆n must
be equal to zero. Indeed, by (4.9), the first n rows of the matrix of the system
(4.10) are linearly dependent. Thus, by Theorem 4.4 the degree of exactness
of the n-weight quadratures (4.6) is greater than or equal to 2n. Hence the
property G1 is not satisfied as well.

In addition, if n is the smallest index for which ∆n−1 = 0, then there
exists a unique (n − 1)-weight quadrature Qn−1 of the form (4.6) having
degree of exactness at least 2n − 3. However, by Theorem 4.4 it does not
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satisfy the property G1 since its degree of exactness is larger than 2n − 3.
In the quasi-definite case the degree of exactness is uniquely determined;
see theorems 4.3 and 4.4. While, with the (n − 1)-weight quadrature Qn−1

the situation is different. If we only know the moments m0, . . . ,m2n−2, then
it is not possible to determine the degree of exactness of Qn−1. Indeed, if
Qn−1(x2n−1) 6= m2n−1, then the degree of exactness is 2n − 2. However, if
Qn−1(x2n−1) = m2n−1, then the degree of exactness of Qn−1 is at least 2n−1,
and so on. The following example show this fact.

Example 4.2 Let the linear functional L from Example 4.1 be defined
by a sequence of moments with the first seven terms given by

1, 3, 8, 20, 52, 156, i.

Then, L is quasi-definite on P3. Moreover, we saw above that the 2-node
quadrature (4.2) of degree of exactness 3 does not exist, since the zeros of
π2 are x1 = x2 = 2. However, we can consider the 2-weight quadrature rule
of the form (4.6), i.e., ω1f(2) + ω2f

′(2). Since ∆1 6= 0, by Theorem 4.3 the
nonlinear system ω1z

j + jω2z
j−1 = mj for monomials 1, z, z2 and z3, i.e.,

ω1 · 1 + ω2 · 0 = 1

ω1z + ω2 · 1 = 3

ω1z
2 + 2ω2(z) = 8

ω1z
3 + 3ω2(z2) = 20

has a unique solution (in C): ω1 = 1, ω2 = 1, z1 = 2. Moreover, since ∆2 6= 0
by Theorem 4.4 the quadrature f(2) + f ′(2) has degree of exactness 3. We
would have an higher degree of exactness if and only if m4 = 24 + 4 · 23 = 48.
However, we would have ∆2 = 0, i.e., L would not be quasi-definite on P2.
Furthermore, if m5 = 25 + 5 · 24 = 112, then the quadrature f(2) + f ′(2)
would have degree of exactness at least 5, and so on.

The goal of this part of the thesis is to see how far we can go with general-
ization of the Gauss quadrature as an approximant for arbitrary linear func-
tionals. In order to define some minimal properties of Gauss quadrature we
proposed that any (generalization of the) Gauss quadrature should have the
properties G1–G3. Hence, in this sense, we showed that the quasi-definiteness
of the linear functional represents the necessary and sufficient condition for
the existence of the Gauss quadrature. Hence, we will call an n-weight Gauss
Quadrature the quadrature rule (4.6), and this is the quadrature for linear
functionals quasi-definite on Pn which gives the maximal possible extension
of this concept.
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CHAPTER 5

Lanczos Algorithms

The goal of this chapter is to approximate the bilinear form

w∗f(A)v, (5.1)

with A a complex matrix, w,v complex vectors and f a matrix function
(see Chapter 2). In particular, we use the results presented in the previous
chapters to show how Lanczos algorithms can compute an approximation
of (5.1). Lower and upper bounds for (5.1) are well-known when A is an
Hermitian matrix and w = v 6= 0; we refer to [42, Chapter 7]. It is possible
to extend the approximation to the non-Hermitian case, i.e., when A is not
Hermitian and w and v can be different, using the non-Hermitian Lanczos
algorithm (this was proved throughout the Vorobyev moment method in
[85]). Furthermore, we want to show the strict relationship between the
approximation of (5.1) in the non-Hermitian case and the n-weight Gauss
quadrature rule introduced in Chapter 4, see in particular (4.6).

In Section 5.1 we recall that the space Pn−1 of polynomial of degree
at most n − 1 is isomorphic to Krylov subspaces of dimension n, under
some assumptions. Then we obtain Lanczos algorithms through the Stieltjes
procedure for the computation of orthogonal polynomials (Section 5.2). In
Section 5.3 we show the connection between moment matching property of
the n-weight Gauss quadrature rule and the approximation of (5.1) obtained
by the n-th iteration of a Lanczos algorithm.

61



62 CHAPTER 5. LANCZOS ALGORITHMS

5.1 Orthogonal Polynomials and Krylov Sub-

spaces

Given a matrix A ∈ Ck×k and a vector v ∈ Ck, we define the n-th Krylov
subspace generated by A and v as

Kn(A,v) = span{v, Av, . . . , An−1v}.

Let ` be the dimension of Kn(A,v), clearly ` ≤ n and ` ≤ k. Moreover, we
have the following well-known equivalence.

Lemma 5.1. Let ` be the dimension of Kn(A,v), with A ∈ Ck×k and v ∈ Ck

a non zero vector. The following statements are equivalent:

• ` is the maximal integer such that the dimension of K`(A,v) is `;

• ` is the degree of the minimal polynomial of v with respect to A, i.e.
the polynomial p of minimal degree such that p(A)v = 0;

• ` is the smallest integer for which K`(A,v) is an A-invariant subspace,
i.e. Aw ∈ K`(A,v) for every w ∈ K`(A,v).

Proof. If ` is the maximal integer such that the dimension K`(A,v) is `, then
given w ∈ K`(A,v), Aw can be written using a basis of K`(A,v). Moreover,
Kn(A,v) has dimension n, for every n < `. Therefore Anv /∈ Kn(A,v).
Hence the first statement implies the third one.

If ` is the smallest integer for which K`(A,v) is an A-invariant subspace,
then

A`v =
`−1∑
i=0

γiA
iv.

Hence the polynomial q(x) = x` −
∑`

i=0 γix
i satisfies q(A)v = 0. Let q̂ be

a polynomial of degree n < ` such that q̂(A)v = 0. We can rewrite this
equation as

Anv =
n−1∑
i=0

γ̂iA
iv.

Thus, every w ∈ Kn+1(A,v) can be expressed using a basis of Kn(A,v). But
this contradict the assumption. Hence q is the minimal polynomial of v with
respect to A.

Let ` be the degree of the minimal polynomial of v with respect to A.
Since p(A)v 6= 0 for every polynomial p of degree strictly lower than `, vectors
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v, . . . , Anv are linearly independent. Moreover, K`+1(A,v) has dimension
`− 1. Indeed, equation q(A)v = 0 can be expressed as

A`v =
`−1∑
i=0

γiA
iv.

This ends the proof.

As remarked in [29, Section 1.1] there is a relation between Kn(A,v)
and Pn−1, the subspace of polynomials of degree at most n − 1. Indeed,
every u ∈ Kn(A,v) can be written as u = αn−1A

n−1v + · · · + α0, for some
coefficients α0, . . . , αn−1 ∈ C. Thus, u can be associated with the polynomial
p(u)(x) = αn−1x

n−1 + · · ·+ α0. Moreover, any basis of Pn−1 produces a basis
for Kn(A,v) and

Kn(A,v) = {p(A)v : p ∈ Pn−1}.
Assuming that `, the dimension of Kn(A,v), is equal to n, the map u→ p(u)

is an isomorphism between Kn(A,v) and Pn−1. Moreover, we can then define
an inner product on Kn(A,v) given an inner product 〈·, ·〉 on Pn−1

〈u,w〉 := 〈p(u), p(w)〉.

Now, take the matrix A, the vectors v,w and the linear functional defined
on Pn−1 by

L(p) = w∗p(A)v, for p ∈ Pn−1.

We recall that given a polynomial p we have

p(A)∗ = p̄(A∗),

with p̄ the polynomial whose coefficients are the conjugates of the coefficients
of p; see (2.2), Chapter 2. Then, for p, q ∈ Pn−1

L(pq) = w∗p(A)q(A)v = ŵ∗v̂,

with v̂ = q(A)v ∈ Kn(A,v) and ŵ = p̄(A∗)w ∈ Kn(A∗,w),
Then, the orthogonal polynomials p0, . . . , pn−1 with respect to L exist if

and only if there exist bases v0, . . . ,vn−1 and w0 . . . ,wn−1 for Kn(A,v) and
Kn(A∗,w) respectively with the biorthogonality condition

w∗ivj = 0 for i 6= j, and w∗ivi 6= 0, (5.2)

for i, j = 0, . . . , n. Indeed, vi = pi(A)v and wi = p̄i(A
∗)w for i = 0, . . . , n−1.

When A is Hermitian and v = w 6= 0 we have some important properties
related to properties of positive definite linear functionals. We first notice
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that Kn(A,v) = Kn(A∗,w). Moreover, L(pq) is an inner product. Hence,
the moments of L are real and positive and L is a positive-definite linear
functional; see Chapter 1, Definition 1.10. Furthermore, there exists a pos-
itive non-decreasing distribution function µ supported on the real axis and
having finitely many points of increase such that

L(p) =

∫
R
p(x)dµ(x), for all p ∈ P .

Indeed, since A is diagonalizable it can be rewritten as

A = Q∗ΛQ,

where Λ is the diagonal matrix containing the eigenvalues λ1, . . . , λk of A and
Q is the unitary matrix whose columns are the corresponding eigenvectors.
Hence,

v∗p(A) v = v∗Q∗ΛQv = q∗p(A)q =
k∑
i=1

q2
i p(λi),

with q1, . . . , qk the elements of q = Qv. Hence, µ can be defined as

µn(x) =


0, if x < λ1∑j

i=1 q
2
i , if λj ≤ x < λj+1, j = 1, . . . , n− 1∑n

i=1 q
2
i = m0, if λn ≤ x.

,

where m0 = L(x0) = v∗v = ||v||2; see for example [42, Section 7.1]. We refer
to Appendix A for the general case of a positive definite linear functional.
The orthogonal polynomials p0, . . . , pn−1 with respect to L exist and are
associated with the orthogonal basis v0, . . . ,vn−1 for Kn(A,v) given by vi =
pi(A)v for i = 0, . . . , n− 1.

5.2 Hermitian and non-Hermitian Lanczos Al-

gorithm

In order to find a sequence of polynomials orthonormal with respect to a
general linear functional L we can use the three-term recurrence relation
(see (1.12), Chapter 1), that corresponds to the so called Stieltjes Procedure
(Algorithm 5.2); refer to [29, Algorithm 2.1.3], [34, p. 119], [42, Chapter 7]
and [63, Section 3.5]. We remark that in this chapter we always consider
algorithms in exact arithmetic.
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Algorithm 5.2 (Stieltjes Procedure).
Input: a linear functional L quasi-definite on Pn
Output: the polynomial p0, . . . , pn orthonormal with respect to L.

Initialize: p−1 = 0, β0 =
√
m0 =

√
L(x0), p0 = 1/β0.

For j = 1, 2, . . . , n

αj−1 = L(xp2
j−1(x)),

p̂j(x) = (x− αj−1)pj−1(x)− βj−1pj−2(x),

βj =
√
L(p̂2

j),

pj(x) = p̂j(x)/βj,

end.

Let A be a k×k Hermitian matrix and v be a nonzero vector of dimension
k. We are interested in finding an orthogonal basis for Kn(A,v). Using Algo-
rithm 5.2 we can obtain p0, . . . , pn−1 orthonormal polynomials with respect
to the linear functional L determined by

L(f) = v∗f(A)v, for f ∈ P .

Notice that, since A is Hermitian and v 6= 0, L is positive-definite. Indeed,
L(p) > 0 for every nonzero and nonnegative real polynomial from P2k. As
we showed in the previous section an orthonormal basis for Kn(A,v) is given
by the vectors vi = pi(A)v for i = 0, . . . , n − 1. Modifying Algorithm 5.2
in order to compute vectors vi we obtain the Hermitian Lanczos Algorithm
5.3. This method was introduced by Lanczos in [58, 59] (we also refer to [29,
Section 4], [42, Section 4.1], [63, Section 2.4.1] and [66]).
We notice that the algorithm stops before the n-th iteration when βj = 0.
However, βj = 0 if and only if L(p̂2

j) = 0. Hence, if and only if L is not
quasi-definite on Pj. In addition, β` = 0 if and only if v̂` = 0. In this case,
as shown in the previous section, v0, . . . ,v`−1 is an orthonormal basis for
K`(A,v). Moreover, K`(A,v) is an A-invariant subspace since we have

Av`−1 = α`−1v`−1 + β`−1v`−2.

Then, by Lemma 5.1, Algorithm 5.3 stops at the ` step if and only if β` = 0
or, equivalently, ` is:

• the maximal integer such that the dimension K`(A,v) is `;
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Algorithm 5.3 (Hermitian Lanczos Algorithm).
Input: a Hermitian matrix A ∈ Ck×k, a nonzero vector v ∈ Ck.
Output: the vectors v0, . . . ,vn−1 orthonormal basis of Kn(A,v).

Initialize: v−1 = 0, β0 = ||v|| =
√

v∗v, v0 = v/β0.

For j = 1, 2, . . . , n

uj−1 = Avj−1 − βj−1vj−2,

αj−1 = u∗j−1vj−1,

v̂j = uj−1 − αj−1vj−1,

βj = ||v̂j||,
if βj = 0 then stop,

vj = v̂j/βj,

end.

• the degree of the minimal polynomial of v with respect to A;

• the smallest integer for which K`(A,v) is an A-invariant subspace.

The vectors v0, . . . ,vn−1 from Algorithm 5.3 satisfy the three-term recur-
rence relation of the orthogonal polynomials p0, . . . , pn−1, i.e.

βjvj = (A− αj−1)vj−1 − βj−1vj−2, for j = 1, . . . , n.

Hence, letting Vn = [v0, . . . ,vn−1] we get

AVn = VnJn + βnvne
T
n . for n = 1, 2, . . . , `

where Jn is the real Jacobi matrix associated with polynomials p0, . . . , pn−1.
Notice that for n = ` in the equation above we consider v` = v̂`. The
orthonormality property of p0, . . . , pn−1 gives V ∗n Vn = In, with In the identity
matrix of dimension n. Moreover V ∗n vn = 0; see Chapter 1, Remark 1.7.
Hence, Vn is a unitary transformation such that

V ∗nAVn = Jn.

For this reason the Hermitian Lanczos algorithm can be seen as a unitary
reduction of a Hermitian matrix to a real Jacobi matrix of lower dimension.
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Algorithm 5.4 (non-Hermitian Lanczos Algorithm).
Input: a matrix A ∈ Ck×k, two vectors v,w ∈ Ck such that w∗v 6= 0.
Output: the vectors v0, . . . ,vn−1 and w0, . . . ,wn−1 bases of Kn(A,v) and
Kn(A∗,w) respectively.

Initialize: v−1 = w−1 = 0, β0 = δ0 = 0,

v0 = v/||v||, w0 = w/(w∗v0).

For j = 1, 2, . . . , n

αj−1 = w∗j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − βj−1vj−2,

ŵj = A∗wj−1 − ᾱj−1wj−1 − β̄j−1wj−2,

βj =
√

w∗j−1Av̂j,

if βj = 0 then stop,

vj = v̂j/βj,

wj = ŵj/βj,

end.
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Now, let A be a k × k complex matrix, and v,w complex vectors of
dimension k. We define the linear functional

L(f) = w∗f(A)v, for f ∈ P . (5.3)

Assuming that L is quasi-definite on Pn, we can compute orthogonal poly-
nomials p0, . . . , pn with respect to L using Algorithm 5.2. In this case, the
vectors

vj = pj(A)v, wj = p̄j(A
∗)w, for j = 0, . . . , n,

satisfy biorthogonality conditions (5.2). Using these conditions and Algo-
rithm 5.2 we get the non-Hermitian Lanczos Algorithm 5.4. This method
was introduced by Lanczos in [58] and [59] (for details we refer to [6, Section
2.7.2], [42, Section 4.2], [63, Section 2.4.2] and [77, Chapter 7]).

We remark that it is possible to obtain different versions of the non-
Hermitian Lanczos Algorithm using different orthogonal polynomial sequences
with respect to the functional (5.3). In our case, Algorithm 5.4 is based on
a family of orthonormal polynomials with respect to the functional (5.3).
Indeed, using (1.13) in Chapter 1 gives

αj−1 = L(xp2
j−1(x)) = w∗0pj−1(A)Apj−1(A)v0 = w∗j−1Avj−1,

for j = 1, . . . , n. Moreover, since β2
jL(p̂2

j(x)) = L(xpj−1p̂j(x)) we get

βj =
√
L(xpj−1(x)p̂j) =

√
w∗0pj−1(A)Ap̂j(A)v0 =

√
w∗j−1Av̂j, (5.4)

for j = 1, . . . , n. As we noticed in Section 1.1, we consider the principal value
of the square root.

When β` = 0 for some ` < n we say that algorithm 5.4 has a breakdown.
For a detailed discussion about breakdowns we refer to [72, 8, 11, 45, 71, 46].
If p̂` is such that L(p2

`) = 0, then β` = 0 and L is not quasi definite on P`.
However, breakdowns can occur even if L is quasi-definite on Pn if we choose
another version of the non-Hermitian Lanczos algorithm. In [95, pp. 389–
391] Wilkinson showed that breakdowns can arise in the case of matrices with
very well conditioned eigenvalues and eigenvectors. Thus, the potential for
breakdowns is a specific problem of the non-Hermitian Lanczos Algorithm.

Similarly to the Hermitian case, vectors v0, . . . ,vn−1 satisfy the same
three-term recurrence relation of p0, . . . , pn−1, i.e.

βjvj = (A− αj−1)vj−1 − βj−1vj−2,

for j = 1, . . . , n. Since wj = p̄j(A
∗) w0, vectors w0, . . . ,wn−1 satisfy the

three-term recurrence relation of p0, . . . , pn−1 with conjugate coefficients, i.e.

βjwj = (A∗ − ᾱj−1)wj−1 − β̄j−1wj−2,
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for j = 1, . . . , n. Let ` be the first breakdown index or let ` = k. For
n = 1, 2, . . . , ` matrices Vn = [v0, . . . ,vn−1] and Wn = [w0, . . . ,wn−1] satisfy

AVn = VnJn + βnvne
T
n ,

A∗Wn = WnJ
∗
n + β̄nwne

T
n ,

with Jn the Jacobi matrix associated with polynomials p0, . . . , pn−1. The
biorthogonality conditions (5.2) then give

W ∗
nVn = In

W ∗
nAVn = Jn.

Therefore, the non-Hermitian Lanczos Algorithm can be seen as a reduction
of a matrix to a Jacobi matrix of lower dimension. For a further discussion
see [63, Section 2.4.1 and 2.4.2].

Finally, when A, v,w are all real we have a real linear functional (5.3).
However, since A may not be Hermitian and w 6= v, the Jacobi matrix ob-
tained by Algorithm 5.4 can be complex. Nevertheless, we can define a vari-
ant of the non-Hermitian Lanczos algorithm 5.4, using a different sequence of
orthogonal polynomials, which uses only real values in the computations and
for the tridiagonal matrix Tn associated with the chosen orthogonal polyno-
mials. We will build the algorithm starting from the orthonormal polynomials
sequence, and we will modify the sequence when complex coefficients arise.
We first notice that α0, p0(x) and p−1(x) are real, then we can proceed by
induction. Assume that p0, . . . , pj−1 are polynomials with real coefficients,
and α`−1, β` are real coefficients for ` = 1, . . . , j − 1. Then by Algorithm 5.2
αj−1 and p̂j are real. While,

βj =
√
L(p̂2

j),

is complex if and only if L(p̂2
j) < 0. Moreover, if βj is not real then it is

purely imaginary. Hence, dividing it by the imaginary unit we obtain a real
number. Equivalently, we can normalize p̂j in the following ways

β̄j =
√
|L(p̂2

j)|, p̄j =
p̂j
β̄j
.

The orthogonal polynomial p̄j is not orthonormal since

L(p̄2
j) =

p̂2
j

|L(p̂2
j)|

= −1.
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Algorithm 5.5 (Real non-Hermitian Lanczos Algorithm).
Input: a matrix A ∈ Rk×k, two vectors v,w ∈ Rk such that w∗v 6= 0.
Output: the vectors v0, . . . ,vn−1 and w0, . . . ,wn−1 bases of Kn(A,v) and
Kn(A∗,w) respectively.

Initialize: v−1 = w−1 = 0, β0 = δ0 = 0, ŝ = 1, s = 1,

v0 = v/||v||, w0 = w/(w∗v0).

For j = 1, 2, . . . , n

αj−1 = s ·w∗j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − γj−1vj−2,

ŵj = A∗wj−1 − αj−1wj−1 − γj−1wj−2,

s = sign (w∗j−1Av̂j),

if s = 0 then stop,

βj =
√
|w∗j−1Av̂j|,

γj = s · ŝ · βj,
ŝ = s,

vj = v̂j/βj,

wj = ŵj/βj,

end.

Now, let us modify Algorithm 5.2 defining βj =
√
|L(p̂2

j)|. Then, (1.13) gives

γj =
L(xpj−1pj)

L(p2
j−1)

=
L(p2

j)

L(p2
j−1)

βj =

{
βj, if L(p2

j−1) · L(p2
j) = 1

−βj, if L(p2
j−1) · L(p2

j) = −1,

αj =
L(xp2

j)

L(p2
j)

=

{
L(xp2

j), if L(p2
j) = 1

−L(xp2
j), if L(p2

j) = −1.

Notice that αj, γj are real. Hence, this shows that Algorithm 5.5 involves
only real computations and real outputs. Moreover, the tridiagonal matrix
Tn = W ∗

nAVn obtained by the first n iterations of the algorithm has sub- and
super diagonal elements such that βj = ±γj for j = 1, . . . , n− 1.
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5.3 Lanczos methods and Moment Matching

Property

Now we are ready to obtain an approximation of

w∗f(A) v, (5.5)

with A a k × k complex matrix, v,w vectors in Ck such that w∗v 6= 0, and
f a matrix function defined on the spectrum of A (see Chapter 2). Every
matrix function can be seen as a matrix polynomial, indeed there exists
p ∈ Pk depending on A such that f(A) = p(A); see Corollary 2.4. The
approximation of (5.5) can be seen as the problem of approximating the
linear functional L : Pk → C defined by

L(xi) = w∗(A)i v, for i = 0, . . . , k. (5.6)

In Chapter 4 we introduced the n-weight Gauss quadrature rule (4.6)

L(f) ≈
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi),

with ωi,j the weights, λi the nodes, and n = s1 + · · ·+s`. If L is quasi-definite
on Pn by Theorem 3.15 and Theorem 4.2 for every f ∈ P2n−1 we have

L(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi) = m0 eT1 f(Jn) e1,

with m0 = L(x0) = w∗v and Jn the Jacobi matrix associated with the
sequence of polynomial p0, . . . , pn orthonormal with respect to L.

In the previous section we saw that we can compute Jn by the non-
Hermitian Lanczos Algorithm 5.4. Assuming that there are no breakdowns
in the non-Hermitian Lanczos Algorithm in the first n steps we can compute
Jn and hence the approximation of (5.5). Moreover, if a breakdown arises
at the `-th iteration, then L(p2

`) = 0. Hence, L is not quasi-definite on P`.
This means that the `-th weight Gauss quadrature rule may have some prob-
lems, see Theorems 4.3 and 4.4. This implies that the (` + 1)-st orthogonal
polynomial p` does not exist. In this case the breakdown is known as true
breakdown.

If A is Hermitian and v = w we obtain the same results. However, in this
case we can use the n-node Gauss quadrature rule (4.2) for positive definite
linear functional L. Hence,

L(f) =
n∑
i=1

ωi f(λi) = m0 eT1 f(Jn) e1,
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where in this case Jn is a real Jacobi matrix obtained using the first n-steps of
the Hermitian Lanczos Algorithm. Of course, these are classical well-known
results (see [87, Chapters III and XV], [15, Chapter I, Section 6], [35], [42,
Section 7.1], [36, Chapter 3.2], [63, Section 3.2], [39] and [40]). In addition,
for the Hermitian case it is possible to give upper and lower bounds for the
value of (5.5) using Gauss–Radau and Gauss–Lobatto quadrature rules; for
more details see [42, Chapter 7]

We conclude this section showing the link between the results presented
in this thesis and the Krylov subspaces, through the Vorobyev Method of
Moments. Let Vn, Wn and Jn be the outputs of the n-th iteration of Algo-
rithm 5.4 with inputs A,v,w. By the biorthogonality W ∗

nVn = In the oblique
projection onto Kn(A,v) orthogonal to Kn(A∗,w) is expressed by

Pn = VnW
∗
n .

Hence, we can define the matrix

An = PnAPn = VnW
∗
nAVnW

∗
n = VnJnW

∗
n ,

that is the projection of A onto Kn(A,v) orthogonally to Kn(A∗,w). There-
fore, we get

(An)i = Vn(Jn)iW ∗
n , and w∗(An)i v = m0 eT1 (Jn)i e1, for i = 0, 1, . . . .

Then, Moment Matching Property gives

w∗Ai v = m0 eT1 (Jn)i e1 = w∗(An)i v, for i = 0, . . . , 2n− 1.

Moreover, since P is a projection onto Kn(A,v) we get

Anv = Av

An(Av) = A2v

...

An(An−2v) = An−1v

An(An−1v) = VnW
∗
nA

nv.

Or equivalently

Anv = Av

A2
nv = A2v

...

An−1
n v = An−1v

Annv = VnW
∗
nA

nv.
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These equations are the operator (or vector) moment problem given by
Vorobyev; see [91, Chapter VI] and, for the Hermitian case, [91, Chapter
III, Sections 2-4, in particular equation (11) p. 54]. In [85] Strakoš shows
that using Vn and Wn obtained by the first n steps of the non-Hermitian
Lanczos Algorithm we can prove the Moment Matching Property 3.15

L(xi) = m0 eT1 (Jn)i e1, for i = 0, . . . , 2n− 1

using the Vorobyev moment problem for a linear functional such that L(xi) =
w∗Ai v for i = 0, . . . , 2n− 1.
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CHAPTER 6

Applications

6.1 Subgraph Centrality for Complex Net-

works

The analysis of networks has became important in many fields during the
last years. In fact, we can use networks to represent many different kinds of
relationships between different objects. From the relations between people
(social networks), to the interactions between different species in ecology,
from the hyperlinks between web sites, to the study of transport routes. For
a deeper discussion and more details we refer to [4, 5, 13, 22, 23, 67, 68, 69].

Intuitively a network, or a graph, is a set of objects, called nodes, and
links between them, called edges. Usually, we represent a graph with a set
of points called the nodes, and when two nodes are connected, there is an
arrow (called the edge) from the first to the second node. One of the issues
in network analysis is to understand which nodes are the most important
ones in a network. For this reason we are interested in computing indexes of
importance for every node, these are known as centrality indexes. Usually,
the nodes are then sorted accordingly to their centrality index. Naturally, the
meaning of this rank depends on what we consider important and, hence, how
we define the centrality of a node. For more details we refer to [5]. There are
many definitions and many algorithms for computing ranking and centrality
indexes (see, e.g., [30, 60, 57, 61, 62, 90]). In this Chapter we consider a
particular kind of node centrality, known as subgraph centrality, that was
introduced by Estrada and Rodŕıguez-Velázquez in [26]. We refer also to

75
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[26, 3, 25].
We start by recalling some definitions and main properties of graph the-

ory.

Definition 6.1 (Graph). A graph G is an ordered pair of sets (V (G), E(G))
such that V (G) is the nodes (or vertices) set and E(G) ⊂ V (G) × V (G) is
the edges set.

The elements of E(G) could be ordered or unordered. We will call a
directed graph or digraph the graph of the first case and an undirected graph
the second one. An edge (u, v) of a directed graph is usually represented
by an arrow from the first node u, the tail, to the second one v, the head.
Two nodes connected by an edge of the graph are said to be adjacent nodes?
The set of the vertices adjacent to a vertex is called the neighborhood of the
vertex. Moreover, we say that an edge is incident to a node if the node is
the tail or the head of the edge.

Definition 6.2 (Degree of a vertex). The degree of a vertex v in a graph,
deg(v), is the number of edges incident to it. In a directed graph we call the
outdegree of a vertex v, outdeg(v), the number of edges for which v is the
tail, while the indegree of a vertex v, indeg(v), is the number of edges for
which v is the head.

Definition 6.3 (adjacency matrix). The adjacency matrix of a graph G is
the matrix A such that Ai,j = 1 if i and j are nodes such that (i, j) ∈ E(G)
and Ai,j = 0 elsewhere.

We remark that an adjacency matrix is symmetric if and only if the graph is
undirected. Moreover, in the directed case, the summation of the elements
in the i-th row of an adjacency matrix is the outdegree of the i-th node.
While the summation of the elements in the j-th column is the indegree of
the j-th vertex. A path is a sequence of edges (i1, i2), (i2, i3), . . . , (in−1, in)
of a graph. The following proposition is fundamental for the definition of
subgraph centrality indexes.

Proposition 6.4. Let A be the incidence matrix of a graph, then

(Ak)i,j = number of paths of length k from i to j.

Proof. We prove the result by induction. First, we notice that Ai,j counts
the number of path of length 1 between i and j. Let us assume that Ak−1

i,`

is the number of paths of length k − 1 from the node i to the node `, for
` = 1, . . . , k. Multiplying the i-th row of Ak−1 by the j-th column of A means
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to add the number of paths of length k − 1 from the node i to the node `
for every node ` that is adjacent to the node j. Hence, Aki,j is the number of
paths of length k from i to j.

A complex network is a graph that for our purpose can be thought as a
graph obtained from the representation of relationships existent in nature.
For example the relations of people in a social network or the mutual citations
of the scientific articles in a database. In particular we are interested in two
important properties of the adjacency matrix A of a complex network:

• A is a large matrix;

• A is a sparse matrix.

A sparse matrix is a matrix such that the number of non-zero elements of
the matrix is of the order of log(k), where k is the order of the matrix.

The degree of a vertex can be seen as a centrality index. Indeed, a vertex
adjacent to a many other vertices can be considered more important than
a vertex with a low degree. However, it is a local index, since it considers
only the neighborhood of the vertex and ignores what is the structure in the
other part of the network, or within its neighborhood. Then, to understand
the importance of a node in a network it could be interesting to investigate
all the possible paths in which that node is involved. For this reason, we will
present the following results; see [26, Subsection 7.2.3].

By Proposition 6.4 we can define a subgraph centrality index SC that
consists in a weighted sum of the number of closed paths (cycles) passing
through a node i, i.e.,

SC(i) =

(
∞∑
`=0

α`A
`

)
i,i

Proposition 2.9 in Chapter 2 shows that, when it converges, the series

f(A) =
∞∑
`=0

α`A
` (6.1)

is a matrix function, see Definition 2.2. Moreover, f is the function defined
by the scalar series

f(x) =
∞∑
`=0

α`x
`,

for every x for which it converges. For more details see Chapter 2. Hence,
we have to choose the weights α` so that the series is convergent for the
adjacency matrices we are considering. Moreover, the choice must have an
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interpretation with respect to the main idea of counting the number of paths
passing through the node i. For these reasons we need a decreasing sequence
of weights α0, α1, . . . . In particular, we can consider the following two choices:

• α` = 1/`!, which gives f(A) = exp(A) = eA, where eA is the exponential
of a matrix (see Chapter 2);

• α` = α` with 0 < α < 1/|λk|, which gives f(A) = (I − αA)−1, the
resolvent of a matrix, with λk the eigenvalue of A of maximal modulus.

Thus, we can compute the centrality index using a bilinear form

SC(i) = eTi f(A)ei, (6.2)

where ei is the i-th vector of the canonical basis.
Then to approximate (6.2) we will use Lanczos algorithms, that we illus-

trated in Chapter 5. Indeed, from the j-th iteration of the real non-Hermitian
Lanczos algorithm 5.5 we obtain a tridiagonal matrix Tj, of dimension j, such
that

SC(i) = eTi f(A)ei ≈ eT1 f(Tj)e1,

see Section 5.2. Hence, we reduce the problem from the approximation of the
matrix function of a k×k matrix to the approximation of the matrix function
of a j × j matrix. This was first proposed by Benzi in [3] for undirected
networks, i.e., for symmetric (Hermitian) adjacency matrices. Hence, our
purpose is to use the non-Hermitian Lanczos algorithm for directed graphs,
since we are dealing with non-symmetric adjacency matrices.

6.2 Numerical Experiments

In this section we present some preliminary results. We are still studying
the problem and many questions arising from the first experiments still need
an answer. We want to approximate some diagonal entries of the matrix
exp(A), with A the adjacency matrix of a directed network. We will consider
the matrix A from a data set of small web graphs consisting of web sites
on various topics. We use one of the matrices used in the experiments in
[3] obtained following the procedure in [56] with query death penalty ; see in
particular [88, Section 6.1]. This is a real non-symmetric 1850× 1850 matrix
with 7363 nonzero elements. Indeed, it represents a directed graph with 1850
nodes and 7363 edges. Every node corresponds to a web page and every edge
is a hyperlink from a page to another one. This kind of networks is known
as hyperlink graph. We compute the ten greatest entries in the diagonal
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of exp(A) and we compare the results with those of the expm function of
Matlab. All the experiments were performed using Matlab 7.12.0. We
used Algorithm 5.5 (Real non-Hermitian Lanczos Algorithm) to compute a
real tridiagonal matrix Tj, with j the last iteration of the method. Then we
obtained the approximation by

eT1 exp(Tj)e1,

in which we use expm Matlab function to estimate the exponential of Tj.
Using Algorithm 5.5 for computing the diagonal entries of exp(A) a prob-

lem arise. Let v0 = w0 = ei be the input vector of the algorithm. Then from
the first iteration we get α0 = Ai,i, the i-th element of the diagonal of the
input k × k real matrix A. Hence

v̂1 = Aei − Ai,iei = ai − Ai,iei,

with ai the i-th column of A. Therefore, denoting âi the vector obtained by
the i-th row of A, we obtain

wT
0 A v̂1 = eTi A(ai − Ai,iei) = âTi ai − (Ai,i)

2,

which is different from zero if and only if there exist an index j 6= i such that
Ai,j = Aj,i = 1. Since A is a sparse matrix this is very unlikely. Thus we
often have a breakdown at the first step of the algorithm.

To overcome this problem we need to use some non-sparse vector v as
input. We propose the following procedure. Let us define the vectors:

e = (1, . . . , 1)T , v =
ei + e√
k + 3

, w =

√
k + 3 ei

2
.

Then, wTv = 1 and

2 wT exp(A) v = eTi exp(A) ei + ei
T exp(A) e,

and so we can compute eTi exp(A) ei subtracting an approximation of ei
T exp(A) e

to an approximation of 2 wT exp(A) v.
The approximation in Table 6.1 are obtained using two times Algorithm

5.5, hence, the last column represents the number of iterations necessary to
compute respectively 2 wT exp(A) v and ei

T exp(A) e. We stop the algorithm
at the 10-th iteration for both approximations, with some exceptions we will
explain. Moreover, we stop the algorithm at the j-th iteration, with j < 10,
if βj < 1e− 10.

As we can see in Table 6.1, the approximation is good for the first ten
values sorted from the biggest to the lowest. However, not all the elements
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Table 6.1: First ten entries of the diagonal of exp(A), with A adjacency
matrix of the death penalty hyperlink graph

Index value err abs err rel n. it
1632 2.56307786e+03 3.85171006e-10 1.50276747e-13 10 + 10
1671 7.21827144e+02 2.33171704e-10 3.23029836e-13 10 + 10
1653 5.38668944e+02 2.88764567e-11 5.36070569e-14 10 + 10
1662 4.70964536e+02 9.89075488e-11 2.10010608e-13 10 + 10
552 2.20355022e+02 1.85644921e-09 8.42481006e-12 10 + 10
1651 1.91520312e+02 1.77095671e-10 9.24683494e-13 10 + 10
1640 1.60758638e+02 8.93010110e-11 5.55497432e-13 10 + 10
1639 1.51747810e+02 1.82467374e-11 1.20243826e-13 11 + 11
1638 1.51747810e+02 7.03437308e-11 4.63556809e-13 10 + 10
1641 1.27189646e+02 2.72720512e-10 2.14420372e-12 10 + 10

of the diagonal of exp(A) were well computed. Indeed, in 8 cases we have a
NaN, not a number answer, i.e. some divisions by zero occurred.

Finally, in Figure 6.1 we plot the relative error of the approximation
of the 1632-nd entry of the exponential matrix stopping the procedure at
the i-th iteration, for i = 1, . . . , 10. As we can see, the value converges to
the one obtained by the expm function of Matlab. However, at the fourth
iteration we have a wrong result which seems to not influence the following
iterations behavior. This is why sometimes we had to add an iteration in
order to have a good approximation. It seems that in some isolated iterations
one of the approximated values diverges, for then converging again in the
following steps. In our opinion, this could be linked with some not well-
conditioned tridiagonal matrices obtained by the algorithm. Indeed, if the
tridiagonal matrix Tj−1 is not well conditioned we could have problems with
the approximation of exp(Tj−1). Nevertheless, since the tridiagonal matrix
Tj obtained by the following iteration has different eigenvalues (see Theorem
3.19), then we obtain a better result for the evaluation of exp(Tj). We hope
to give a better interpretation of the phenomenon in future works.
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Figure 6.1: Relative errors at every iteration for the computation of the 1632
entry of the diagonal of exp(A), with A the adjacency matrix of the death
penalty hyperlink graph. We remark that at every iteration we use two times
Algorithm 5.5.
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CHAPTER A

The Representation Theorem

Let L be a linear functional defined on P , the space of polynomials, and
let m0,m1,m2, . . . its moments; see (1.1) Chapter 1. We want to show the
equivalence between positive definite linear functionals (see Definition 1.10,
Chapter 1) and integrals with respect to some distribution functions.

Theorem A.1. The linear functional L is positive definite on Pk if and only
if there exists a positive non-decreasing distribution function µ supported on
the real axis such that

L(p) =

∫
R
p(x)dµ(x), for all p ∈ P2k. (A.1)

Proof. Le µ be the measure defined in the theorem. Since µ is positive∫
R
p(x)dµ(x) > 0,

for every nonzero and nonnegative polynomial p. By Theorem 1.12 of Chap-
ter 1 the integral is a positive definite linear functional on P .

Conversely, let L be positive definite on Pk. For n = 1, . . . , k the classical
n-node Gauss quadrature formula (4.2) gives the relation

mj = L(xj) =
n∑
i=1

ωiλ
j
i , for j = 0, . . . , 2n− 1 (A.2)

with ω1, . . . , ωn positive weights and λ1 < · · · < λn distinct real nodes; see
Section 4.1.
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Let n ≤ k and define the non-decreasing distribution functions µn as

µn(x) =


0, if x < λ1∑`

i=1 ωi, if λ` ≤ x < λ`+1, ` = 1, . . . , n− 1∑n
i=1 ωi = m0, if λn ≤ x.

(A.3)

Clearly, µn is a bounded, right continuous step function. In addition its
points of increase are λ1, . . . , λn and the jumps at λi are ωi, for i = 1, . . . , n.
Hence ∫

R
p dµn =

n∑
i=1

ωip(λ
j
i ), for any p ∈ P2n−1. (A.4)

For n = k we obtain the desired measure.

If L is positive definite on P and we want that (A.1) holds for every p
from P , then we need to complete the previous proof; see Chapter II, sections
1,2 and 3 of [15]. We begin recalling some convergence theorems.

Theorem A.2. Let f0, f1, . . . be a sequence of real functions defined on a
countable set E. If for every x from E f0(x), f1(x), . . . is a bounded sequence,
then there exists a subsequence that converges for every x ∈ E.

Proof. Let E = {x1, x2, . . . }. The sequence f0(x1), f1(x1), f2(x1), . . . is a

bounded sequence of real numbers, hence there exists a subsequence f
(1)
0 , f

(1)
1 , . . .

which is convergent for x = x1. Moreover, f
(1)
0 (x2), f

(1)
1 (x2), . . . is a bounded

sequence, hence there exist f
(2)
0 , f

(2)
1 , . . . a subsequence of f

(1)
0 , f

(1)
1 , . . . that

is convergent in x = x2. Repeating the argument and defining f
(0)
n ≡ fn for

n = 0, 1, . . . gives

1. there exists f
(k)
0 , f

(k)
1 , . . . , a subsequence of f

(k−1)
0 , f

(k−1)
1 , . . . ;

2. f
(k)
0 (x), f

(k)
1 (x), . . . is convergent for x ∈ Ek = {x1, . . . , xk}.

With a little care in order to preserve the relative order of the terms, by
(1) the diagonal sequence f

(0)
0 , f

(1)
1 , f

(2)
2 , . . . is a subsequence of f0, f1, . . . .

Moreover, f
(k)
k , f

(k+1)
k+1 , . . . is a subsequence of f

(k)
0 , f

(k)
1 . Thus, by property

(2) above f
(0)
0 , f

(1)
1 , f

(2)
2 , . . . converges for x ∈ E =

⋃∞
k=0Ek.

If stated in terms of function of bounded variation the following theorem is
known as Helly’s Selection Principle or Theorem of Choice. As suggested by
Chihara [15, p. 53] for our purpose it is enough to state it for non-decreasing
functions.
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Theorem A.3. Let µ0, µ1, µ2, . . . be a uniformly bounded sequence of non-
decreasing functions defined on (−∞,+∞). There exists a subsequence of
µ0, µ1, µ2, . . . which converges on (−∞,+∞) to a bounded, non-decreasing
function µ.

Proof. By Theorem A.2 there exists a subsequence µt0 , µt1 , µt2 , . . . that is
convergent on Q. If we define on Q a function µ̂ such that

µ̂(x) = lim
i→∞

µti , for every x ∈ Q,

then µ̂ is bounded and non-decreasing on Q. Let us extend the domain of µ̂
on R. We define

µ̂(x) = sup{µ̂(y) | y ∈ Q, y < x}, for every x ∈ R \Q,

so that µ̂ is bounded and non-decreasing on R. Now we show that the
subsequence converges to µ̂(x) at all the points x of continuity of µ̂ from R.
Suppose µ̂ continuous at a point x ∈ R \Q. By the density of Q in R given
ε1, ε2 > 0 there exist x1, x2 ∈ Q such that x1 < x < x2 and

µ̂(x)− ε1 ≤ µ̂(x1)

µ̂(x2) ≤ µ̂(x) + ε2.

Moreover,

µti(x1) ≤ µti(x) ≤ µti(x2).

Hence,

µ̂(x1) ≤ lim inf
i→∞

µti(x) ≤ lim sup
i→∞

µti(x) ≤ µ̂(x2).

Therefore

µ̂(x)− ε1 ≤ lim inf
i→∞

µti(x) ≤ lim sup
i→∞

µti(x) ≤ µ̂(x) + ε2,

hence µt0 , µt1 , µt2 , . . . converges to µ̂ at all its points of continuity. However,
since µ̂ is non-decreasing, the set of its points of discontinuity D is a countable
set. Using Theorem A.2 to the subsequence µt0 , µt1 , µt2 , . . . and the set D
we obtain a subsequence of µt0 , µt1 , µt2 , . . . that converges on D, and hence
on R, to a bounded non-decreasing function µ. Clearly, µ ≡ µ̂ on R \D.

We now state Helly’s second theorem, as done for the previous one we
consider only non-decreasing functions.
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Theorem A.4. Let µ0, µ1, µ2, . . . be a uniformly bounded sequence of non-
decreasing functions defined on a compact interval [a, b]. If the sequence
converges to a limit function µ, then

lim
n→∞

∫ b

a

f dµn =

∫ b

a

f dµ,

for every real function f continuous on [a, b].

Proof. Since µ0, µ1, µ2, . . . is uniformly bounded there exists M > 0 such
that

0 ≤ µ(b)− µ(a) ≤M and 0 ≤ µn(b)− µn(a) ≤M, for n = 0, 1, 2, . . . .

The function f is real and continuous on [a, b], hence it is uniformly continu-
ous on [a, b]. Then, given ε > 0 there exists a partition Pε = {x0, x1, . . . , xν}
of [a, b] for which

|f(x̃)− f(˜̃x)| < ε, for x̃, ˜̃x ∈ [xi−1, xi], for i = 1, . . . , ν.

Let us define

∆iµ = µ(xi)− µ(xi−1), and ∆iµn = µn(xi)− µn(xi−1),

for n = 0, 1, . . . and i = 0, . . . , ν. We remark that we use ∆i as the for-
ward difference just in this proof, since in the rest of Part I it is the Hankel
determinant. Fixing yi ∈ [xi−1, xi] by the mean value theorem for Stieltjes
integrals we get ∫ xi

xi−1

f dµ− f(yi)∆iµ = (f(ỹi)− f(yi))∆iµ,

for some ỹi ∈ [xi−1, xi].
Summing over i gives∣∣∣∣∣

∫ b

a

f dµ−
ν∑
i=0

f(yi)∆iµ

∣∣∣∣∣ ≤
ν∑
i=0

|(f(ỹi)− f(yi))|∆iµ

< ε

ν∑
i=0

∆iµ ≤ εM.

Repeating the same argument we obtain∣∣∣∣∣
∫ b

a

f dµn −
ν∑
i=0

f(yi)∆iµn

∣∣∣∣∣ < εM, for n = 0, 1, . . . .
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Thus∣∣∣∣∫ b

a

f dµ−
∫ b

a

f dµn

∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

f dµ−
ν∑
i=0

f(yi)∆iµ

∣∣∣∣∣+

∣∣∣∣∣
ν∑
i=0

f(yi)(∆iµ−∆iµn)

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

f dµn −
ν∑
i=0

f(yi)∆iµn

∣∣∣∣∣
< 2εM +

ν∑
i=0

|f(yi)||(∆i(µ− µn))|.

Fixing the partition Pε we get limn→∞∆i(µ−µn) = 0 for i = 0, . . . , ν. Hence

lim sup
n→∞

∣∣∣∣∫ b

a

f dµ−
∫ b

a

f dµn

∣∣∣∣ < 2εM

ends the proof.

If L is positive definite on P , then (A.2) stands for n = 0, 1, 2, . . . . Equa-
tion (A.3) defines the sequence µ1, µ2, . . . . Again, µn is a bounded, right con-
tinuous, non-decreasing step function and its points of increase are λ1, . . . , λn.
Since 0 ≤ µn(x) ≤ m0 for every x ∈ R and n = 1, 2, . . . , µ1, µ2, . . . is
a uniformly bounded sequence. Then, Theorem A.3 shows that there ex-
ists a subsequence µt1 , µt2 , . . . of the sequence µ1, µ2, . . . which converges on
(−∞,+∞) to a bounded, non-decreasing function µ. Denoting φi = µti for
i = 1, 2, . . . and using (A.4) gives∫

R
xj dφi = mj, for ti ≥

j + 1

2
.

Theorem A.4 implies

lim
i→∞

∫ b

a

xj dφi =

∫ b

a

xj dφ, for j = 0, 1, . . . , (A.5)

for every compact interval [a, b]. Setting a < 0 < b and ni >
j+1

2
gives∣∣∣∣mj −

∫ b

a

xj dφ

∣∣∣∣ =

∣∣∣∣∫
R
xj dφi −

∫ b

a

xj dφ

∣∣∣∣
≤
∣∣∣∣∫ a

−∞
xj dφi

∣∣∣∣+

∣∣∣∣∫ +∞

b

xj dφi

∣∣∣∣+

∣∣∣∣∫ b

a

xj dφi −
∫ b

a

xj dφ

∣∣∣∣
However, we get∣∣∣∣∫ +∞

b

xj dφi

∣∣∣∣ =

∣∣∣∣∫ +∞

b

x2j+2

xj+2
dφi

∣∣∣∣ ≤ b−(j+2)

∣∣∣∣∫ +∞

b

x2j+2 dφi

∣∣∣∣ ≤ b−(j+2)m2j+2,
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since x−(j+2) ≤ b−(j+2) for x ≥ b, and x2j+2 ≥ 0 for x ∈ R. Similarly we have∣∣∣∣∫ a

−∞
xj dφi

∣∣∣∣ ≤ |a|−(j+2)m2j+2.

Hence, we obtain∣∣∣∣mj −
∫ b

a

xj dφ

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

xj dφi −
∫ b

a

xj dφ

∣∣∣∣+ (|a|−(j+2) + b−(j+2))m2j+2.

For i→∞ by (A.5) we get∣∣∣∣mj −
∫ b

a

xj dφ

∣∣∣∣ ≤ (|a|−(j+2) + b−(j+2))m2j+2.

Letting a→ −∞ and b→ +∞ finishes the proof.
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[28] L. Fantappiè, Le calcul des matrices, Comptes Rendus 186 (1928) 619–
621.

[29] B. Fischer, Polynomial based iteration methods for symmetric linear sys-
tems, Wiley-Teubner Series Advances in Numerical Mathematics, John
Wiley & Sons Ltd., Chichester, 1996.

[30] M. Franceschet, PageRank: Standing on the shoulders of giants, Comm.
ACM 54 (2011) 92–101.

[31] R.W. Freund, M. Hochbruck, Gauss quadratures associated with the
Arnoldi process and the Lanczos algorithm, in: M.S. Moonen, G.H.
Golub, B.L.R. De Moor (Eds.), Linear Algebra for Large Scale and
Real-Time Application, Kluwer, Dordrecht, The Netherlands, 1993, pp.
377–380.

[32] F.R. Gantmakher, The Theory of matrices 1,2, Chelsea Publishing Co.,
New York, 1959.

[33] C.F. Gauss, Methodus nova integralium valores per approximationem
inveniendi, Commentationes Societatis Regiae Scientiarum Gottingensis
(1814) 39–76. Reprinted in: Werke, vol. 3, Göttingen, 1876, pp. 163–196.

[34] W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, in:
P. Butzer, F. Fehér (Eds.), E.B. Christoffel: The influence of his work
in mathematics and the physical sciences, Birkhäuser, Basel, 1981, pp.
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CHAPTER 1

Sequence Transformations

In many occasions, in numerical analysis we deal with sequences slowly
converging to their limits. Frequently they converge so slowly that it
becomes impractical to effectively use them. For this reason sequence
transformations have a fundamental role since they could potentially
accelerate the convergence of a sequence.

Sequence transformations are a really useful numerical tool, and a vast
literature has been developed. We refer to, e.g., [7], [11], [12], [15], [28],
[32], [37]. In addition, in these last years many works have appeared on
how to effectively use sequence transformations in practical situations.
See for example [5], [24], [26], and [30]. We refer also to [19], in which is
discussed the efficiency of many numerical techniques for the evaluation
of power series expansions for special functions.

1.1 Introduction

In this chapter we give an introduction to convergence acceleration. In
particular, we follow and refer to the book by Brezinski and Redivo-
Zaglia [12].

Let (Sn) be a sequence of real or complex numbers converging to a
finite number S. We want to define a transformation T from a set of
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sequences to another one, i.e., T : (Sn) 7→ (Tn), with (Tn) a sequence
with the following properties

1. (Tn) converges;

2. (Tn) converges to the same limit as (Sn), i.e., S;

3. (Tn) converges faster than (Sn), i.e., limn→∞(Tn−S)/(Sn−S) = 0.

If the sequence transformation T gives the sequence Tn satisfying only
properties 1. and 2. we say that T is regular for the sequence (Sn).
While, if sequences Tn satisfy property 3 we say that T accelerates the
convergence of (Sn).

Delahaye and Germain-Bonne in [16, 15] proved that an universal trans-
formation able to accelerate any converging sequence does not exist. In
particular, in [15, 17, 21, 22] it was proved that it is impossible to give
a transformation able to accelerate all the sequences in some sets, in
particular:

• the set of monotone sequences, i.e., sequences such that Sn+1 ≥ Sn
or Sn+1 ≤ Sn for n = 0, 1, . . . ;

• the set of logarithmic sequences, i.e., sequences such that
limn→∞(Sn+1 − S)/(Sn − S) = 1.

Then, in practical situations it is important to develop specific algo-
rithms for the class of sequences of interest. However, if this class is too
small, such a transformation will be useful only in particular cases; on
the other hand, a specialization typically provides a faster acceleration.

A sequence transformation T can be represented by infinite sets of dou-
bly indexed quantities T kn , for n, k = 0, 1, . . . . Typically, n is the mini-
mal index of the sequence elements Sn, . . . , Sn+` which are used for the
computation of the transformation T kn , and k is a measure for the com-
plexity of the computation of T kn , as for example the number of sequence
elements necessary to compute it. Usually, the transformed sequence is
given by an index-constant path, i.e., the sequence T kn , T

k
n+1, T

k
n+2, ... with

fixed minimal index k and n→∞. However, in other cases, the transfor-
mation order n is kept fixed and k →∞, i.e., we get an order-constant
path T kn , T

k+1
n , T k+2

n , .... For details and a further discussion about dif-
ferent paths we refer to [33, Section 2]. In principle, the index-constant
approach is more efficient since it uses more available input data. How-
ever, we will consider and define order-constant transformations.
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Let Sn, . . . , Sn+` the elements needed to compute Tn, the n-th elements
of the transformed sequence obtained applying T to the sequence (Sn).
Then for some sequence it is possible that

lim
n→∞

Tn − S
Sn − S

= 0, while lim
n→∞

Tn − S
Sn+j − S

6= 0,

for some j between 1, . . . , `. This means that Tn is not faster than
the sequence given by (Sn+j). Hence, it would be better to study
the convergence rate of a sequence transformation looking at the ra-
tio (Tn − S)/(Sn+` − S). However, notice that

Tn − S
Sn+` − S

=
Tn − S
Sn − S

Sn − S
Sn+1 − S

· · · Sn+`−1 − S
Sn+` − S

.

Hence, if (Sn+1 − S)/(Sn − S) 6= 0 for every n, and does not tend to
zero, then limn→∞(Tn − S)/(Sn − S) = 0 if and only if limn→∞(Tn −
S)/(Sn+` − S) = 0. However, if

lim
n→∞

Sn+1 − S
Sn − S

= 0

we say that the sequence (Sn) is hyperlinearly convergent and, in prac-
tice, we can exclude this case from our analysis since it does not need
to be accelerated.

In the analysis of a sequence transformation, the notion of kernel is par-
ticularly useful. We define the kernel of a transformation T : (Sn) 7−→
(Tn) as the set of all sequences (Sn) which are transformed by T into a
constant sequence, i.e., for every sequence in the kernel there exists S
for which Tn = S for all n, or eventually for every n ≥ N , with N > 0.
Usually, S is the limit of the sequence, if it exists. The importance of the
kernel came from the fact that, even if it has not yet been proven, the
“closer” a sequence is to the kernel, the faster the transformed sequence
converges to the same limit, as numerical experiments have always con-
firmed.

The standard way of defining a transformation is to start from the kernel.
In particular, we can express it by an implicit relation R that consider
` elements of a sequence and a value S, i.e.,

R(Sn, . . . , Sn+`, S) = 0.

We say that a sequence (Sn) is in the kernel K if it satisfies the previ-
ous equation for every n. Moreover, we call extrapolation method every
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sequence transformation T : (Sn) 7−→ (Tn) for which Tn = S for every
n, if (Sn) ∈ K. The name extrapolation comes from interpolation and it
is explained by the procedure to build a transformation from its kernel.

Let Sn, . . . , Sn+`+m be given, and (un) a sequence in the kernel K which
satisfies the interpolation conditions

ui = Si, for i = n, . . . , n+ `+m.

Since, (un) is in the kernel, it satisfies the implicit conditions

R(ui, . . . , ui+`, S) = 0, for i = 1, 2, . . . ,

which we assume depends on m parameters a1, . . . , am. Then, using the
interpolation conditions we get

R(Si, . . . , Si+`, S) = 0, for i = n, . . . ,m,

that is a system of m + 1 equations in m + 1 unknowns a1, . . . , am, S.
Hence, if we solve this system we obtain S. Notice that the computed
value of S depend on n and k = ` + m. Then, we can define the trans-
formation setting T kn = S. Notice that if R is linear with respect to the
unknowns a1, . . . , am, S, then T kn can be expressed as the solution of a
linear system, and, hence, as a ratio of two determinants.

Now, we will obtain the well-known Aitken’s ∆2 process starting from
its kernel. Doing a short digression we recall that the method is named
after Aitken since Alexander Craig Aitken (1895-1967) used it in [3]
(1926). However, the Aitken’s ∆2 process was actually discovered by
Japanese Mathematician Takakazu Seki (?-1708) before 1680. The same
method was obtained by Hans von Naegelsbach (1838-?) in 1876 and
by James Clerk Maxwell (1831-1879) in 1873 but none of them used it
for the purpose of acceleration; see, e.g., [9, 25].

Let us consider the kernel given by sequences of the form

Sn = S + aλn, n = 0, 1, . . . , (1.1)

where a ∈ C is different from 0 and λ ∈ C is different from 0 and 1. If
|λ| < 1, then S is the limit of the sequence; otherwise, for (Sn) diverging,
S is called the antilimit of the sequence. Then, the implicit form of the
kernel is

ui+1 − S = λ(ui − S), for i = 1, 2, . . .

or equivalently

R(ui, ui+1, S) = a1(ui − S) + a2(ui+1 − S) = 0 for i = 1, 2, . . . , (1.2)
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with a1, a2 6= 0. Then, given the values Sn, Sn+1 we get the system{
a1(Sn − S) + a2(Sn+1 − S) = 0
a1(Sn+1 − S) + a2(Sn+2 − S) = 0

Solving it and setting Tn = S we obtain

Tn =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, . . . ,

which is the Aitken’s ∆2 process.

Notice that, by construction, we have proved that the kernel of Aitken’s
∆2 process consists of all the sequences of the form of (1.1) and only
them. However, sufficiency is usually difficult to prove for a general
sequence transformation.

The previous formula is unstable since, when Sn, Sn+1, Sn+2 are almost
equal, cancellation errors arise in the denominator and in the numerator;
see, e.g., [12, p.34 - 35, pp.400 - 403],[13, p. 173]. Then we can give the
following more stable equivalent formulas

Tn = Sn −
(∆Sn)2

∆2Sn
= Sn+1 −

∆Sn∆Sn+1

∆2Sn
= Sn+2 −

(∆Sn+1)2

∆2Sn
, (1.3)

for n = 0, 1, . . ., where ∆ is the forward difference operator defined as

∆Sn = Sn+1 − Sn.

Notice that in all the formulas the denominator is ∆2Sn = ∆Sn+1−∆Sn,
which explains the name of the method. For more details on Aitken’s
∆2 process, we refer to [12, Chapter 1].

In the following sections we will present the definitions of some well-
known sequence transformations we will use in the numerical exper-
iments of Chapter 2: Shanks’ transformation and ε-algorithm, θ-
algorithm, and Levin’s algorithm.

1.2 Shanks’ Transformation

Let us generalize the Kernel of Aitken’s process (1.2) considering the
kernel given by the implicit relation

R(ui, . . . , ui+`, S) = a1(ui − S) + · · ·+ a`+1(ui+` − S) = 0 (1.4)
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with a`+1 6= 0 and a1 + · · · + a` 6= 0, for i = 1, 2, . . . . We now follow
the procedure shown in the previous chapter, setting m = `, ui = Si for
i = n, . . . , n + 2`, and Tn = S. Moreover, since R(ui, . . . , ui+`, S) = 0 is
invariant for multiplication by scalars different from zero, we can assume
a1 + · · ·+ a`+1 = 1. Then we get the following linear system

Sn = Tn + b1∆Sn + · · ·+ b`∆Sn+`−1

Sn+1 = Tn + b1∆Sn+1 + · · ·+ b`∆Sn+`
...

...
Sn+` = Tn + b1∆Sn+` + · · ·+ b`∆Sn+2`−1,

with Tn = S, ai = bi − bi−1, for i = 2, . . . , ` + 1, a1 = b1 + 1 and
b`+1 = 0. Using the classical determinant formula for the solution of a
linear system we get

Tn =

∣∣∣∣∣∣∣∣∣
Sn Sn+1 . . . Sn+`

∆Sn ∆Sn+1 . . . ∆Sn+`
...

...
...

∆Sn+`−1 ∆Sn+` . . . ∆Sn+2`−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

∆Sn ∆Sn+1 . . . ∆Sn+`
...

...
...

∆Sn+`−1 ∆Sn+` . . . ∆Sn+2`−1

∣∣∣∣∣∣∣∣∣

.

This transformation is known as Shanks’ transformation and it is usually
denoted as e`(Sn). It was introduced by Shanks in [27]. In [10] Brezinski
and Crouzeix proved that every sequence in the Kernel of the Shanks’
transformation can be written in the form (1.4). In addition, they show
that these sequences can be explicitly written as

Sn = S +
m∑
i=1

Ai(n)rni +
k∑

i=m+1

[Bi(n) cos(bin) + Ci(n) sin(bin)] ewin+

+
t∑
i=0

ciδin,

where ri 6= 1 for i = 1, . . . ,m, δin is the Kronecker’s symbol, and
Ai, Bi, Ci are polynomials in n such that

t+
m∑
i=1

di + 2
k∑

i=m+1

di = `− 1,
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with di the degree of Ai plus one for i = 1, . . . ,m and the maximum of
the degrees between Bi and Ci plus one for i = m+ 1, . . . , k. We use the
convention t = −1 if the last sum in the formula does not appear.

The most important method for the computation of ek(Sn) is the so
called ε-algorithm introduced by Wynn in [38]. It consists in computing

scalars ε
(n)
k following the rules

ε
(n)
−1 = 0, ε

(n)
0 = Sn, n = 0, 1, . . . (1.5)

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε(n)

k

, k, n = 0, 1, . . . . (1.6)

The ε-algorithm is related to Shanks’ transformation by the equivalence

ε
(n)
2k = ek(Sn), for k, n = 0, 1, . . . ,

which was proved by Beckermann in [4]. The values of ε
(n)
k can be rep-

resented in the following double entry table in which k is the index of
the columns

ε
(0)
−1 = 0

ε
(0)
0 = S0

ε
(1)
−1 = 0 ε

(0)
1

ε
(1)
0 = S1 ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1 ε

(0)
3

ε
(2)
0 = S2 ε

(1)
2

. . .

ε
(3)
−1 = 0 ε

(2)
1 ε

(1)
3

...
...

. . . . . .

We remark that the rules of the ε-algorithm relates the quantities at the
four corners of a rhombus in the table

ε
(n)
k

↗ ↘
ε

(n+1)
k−1 ε

(n)
k+1

↘ ↗
ε

(n+1)
k

.

Hence, following this scheme, we can compute all the table elements over
the diagonal from ε

(n)
0 = Sn to ε

(0)
n knowing S0, . . . , Sn values.
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1.3 θ-algorithm

The θ-algorithm was first proposed by Brezinski in [6]. We will describe
it following Section 2.9 of [12]. First, notice that we can rewrite the rule
(1.6) of the ε-algorithm as follow

ε
(n)
k+1 = ε

(n+1)
k−1 +D

(n)
k ,

with D
(n)
k =

(
ε

(n+1)
k − ε(n)

k

)−1

.

Before going on we recall the following theorem.

Theorem 1.1 ([12, Theorem 1.25]). Assuming tha there exist λ, ρ such
that

lim
n→∞

∆Tn+1

∆Tn
= ρ, and lim

n→∞

∆Sn+1

∆Sn
= λ,

with |λ| < 1 and |ρ| < 1. Then,

lim
n→∞

Tn − S
Sn − S

= a

if and only if

lim
n→∞

∆Tn
∆Sn

= a,

with a ∈ C.

For a proof we refer to [8, Theorem 5] and [31, Theorem 3.5].

If sequences ε
(n)
2k+2 and ε

(n)
2k satisfy the assumptions of the previous the-

orem, then

lim
n→∞

∆ε
(n)
2k+2

∆ε
(n)
2k

= 0

implies

lim
n→∞

ε
(n)
2k+2 − S
ε

(n)
2k − S

= 0.

It means that ε
(n)
2k+2 converges faster than ε

(n)
2k if and only if

lim
n→∞

∆D
(n)
2k+1

∆ε
(n+1)
2k

= −1. (1.7)
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Hence, when this last condition is not satisfied we can introduce a pa-
rameter ωk in the algorithm obtaining the new rule

ε
(n)
2k+2 = ε

(n+1)
2k + ωkD

(n)
2k+1.

Then, if we set

ωk = − lim
n→∞

∆ε
(n+1)
2k

∆D
(n)
2k+1

the new sequence satisfies condition 1.7. From a practical point of view
the computation of ωk is difficult since it involves a limit. Hence, we will
give it as

ωk = −∆ε
(n+1)
2k

∆D
(n)
2k+1

.

We can give the rule for the θ-algorithm.

θ
(n)
−1 = 0, θ

(n)
0 = Sn, n = 0, 1, . . .

θ
(n)
2k+1 = θ

(n+1)
2k−1 +D

(n)
2k , k, n = 0, 1, . . .

θ
(n)
2k+2 = θ

(n+1)
2k − ∆θ

(n+1)
2k

D
(n)
2k+1

D
(n)
2k+1, k, n = 0, 1, . . . ,

with D
(n)
k =

(
θ

(n+1)
k − θ(n)

k

)−1

.

Finally, we recall the following result about the kernel of θ-algorithm for
k = 2.

Theorem 1.2 ([12, Theorem 2.36]). A sequence (Sn) is in the kernel of

θ-algorithm with k = 2 (i.e., θ
(n)
2 = S for n = 0, 1, . . . ) if and only if the

sequence has one of the following form

1. Sn = S + (S0 − S)λn, with S0 6= S and λ 6= 0, 1;

2. Sn = S + (S0 − S)
∏n−1

i=0 [1− d(i−m)−1], with S0 6= S, d 6= 1 and
m,m+ d not integers;

3. S0 = S and Sn = S + (S1 − S)
∏n−1

i=0 (1− di−1) for n = 1, 2, . . . ,
with S1 6= S and d not an integer.

1.4 Levin type Transformation

Levin’s transformation was introduced by Levin in [23] and can be con-
sidered a generalization of the Aitken’s ∆2 process. In order to obtain
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it we will follow the path described in [12, Section 2.7]. As we have seen
in Section 1.1 the sequences in the kernel of the Aitken’s ∆2 process are
of the form

Sn − S = a∆Sn, n = 0, 1, . . . .

We replace the constant a with a polynomial of degree k − 1 in the
variable (n + b)−1, with b a non-zero real coefficient different from the
negative integers. Moreover, instead of ∆Sn we introduce an auxiliary
sequence (g(n)). Hence, we consider sequences of the kind

Sn−S = g(n)
(
a1 + a2(n+ b)−1 + · · ·+ ak(n+ b)−(k−1)

)
, n = 0, 1, . . . .

Multiplying both sides of this equation by (n+ b)k−1 gives

(n+b)k−1Sn − S
g(n)

= a1(n+b)k−1 +a2(n+b)k−2 + · · ·+ak, n = 0, 1, . . . .

Let ∆k the operator obtained applying k times the operator ∆. Then
∆kp(n) = 0 for every polynomial p of degree k − 1. Hence, if we apply
∆k to the previous equation we get

∆k

(
(n+ b)k−1Sn − S

g(n)

)
= 0,

for n = 0, 1, . . . . Moreover, since ∆k is a linear operator we have

∆k

(
(n+ b)k−1 Sn

g(n)

)
= S∆k

(
(n+ b)k−1

g(n)

)
.

Setting L
(n)
k = S, then we get the transformation

L
(n)
k =

∆k
(
Sn (n+ b)k−1/g(n)

)
∆k ((n+ b)k−1/g(n))

, n = 0, 1, . . . .

With the following choices for g(n) we obtain the Levin transformations:

• u-transform: g(n) = (n+ b)∆Sn−1;

• t-transform: g(n) = ∆Sn−1;

• v-transform: g(n) = −∆Sn−1∆Sn/∆
2Sn−1.

Finally, we remark that Levin’s transformation can be computed by a
recursive algorithm, see [18].



CHAPTER 2

Generalizations of Aitken’s Process

In this chapter we present the results we obtained in [14]. In [13], Brezin-
ski and Redivo-Zaglia considered two kernels consisting of sequences of
the form

Sn = S + (a+ bxn)λn, n = 0, 1, . . . ,

or

Sn = S + (a+ bxn)−1λn, n = 0, 1, . . . ,

where S, a, b and λ are unknown numbers and (xn) a known sequence.
These kernels obviously contain Aitken’s ∆2 process kernel (1.1).

In this chapter, we will construct several sequence transformations whose
kernel is another generalization of kernel (1.1), consisting of sequences
of the form

Sn = S + anλ
n, n = 0, 1, . . . ,

where S and λ are unknown parameters, and (an) is a known sequence.

After defining them (Section 2.1), we will give some results on their ac-
celeration properties (Section 2.2). Finally, in Section 2.3, we will present
numerical tests on the best of this transformations and we will compare
it with other well-known transformations.
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2.1 New Transformations

We consider a kernel containing sequences of the form

Sn = S + anλ
n, n = 0, 1, . . . , (2.1)

with S and λ unknown parameters, and (an) a known sequence.

We remark that the convergence of sequences of the form (2.1) depends
on the term anλ

n as n→∞. Therefore, both (an) and λ determine the
convergence of the sequence. For example, if an ≡ a, then the sequence
converges if and only if |λ| ≤ 1. We remark that if λ = 1 then the limit
of the sequence is S + a, with a = limn→∞ an. In addition, for a slowly
increasing (an) we will have convergence only when |λ| < 1. We will
make further comments on convergence in Section 2.2.

First, we will introduce sequence transformations with kernel containing
the sequences of the kind (2.1), where (an) is a given sequence and S, λ
are unknowns. As done in Section 1.1, we will express S as a function
using the kernel, i.e.

S = f(Sn, . . . , Sn+k; an, . . . , an+`)

for n = 0, 1, . . . and k, ` ∈ N, in order to compute an, . . . , an+` using an
interpolation process depending on n. Then we can define the transfor-
mation as follows

Tn := f(Sn, . . . , Sn+k; an, . . . , an+`), for n = 0, 1, . . . .

The first transformation 1Tn is given by solving a linear system. The
other two transformations are similar, but each of them needs a different
estimate of the parameter λ.

Considering the kernel (2.1) for indexes n and n+ 1 gives

Sn = S + anλ
n

Sn+1 = S + an+1λ
n+1.

(2.2)

By the first equation we get λn = (Sn − S)/an. Therefore, the second
equation can be rewritten as

anS − an+1λS + an+1Snλ = anSn+1. (2.3)
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Since (2.3) is nonlinear with respect to S and λ, we consider the linear
system with unknowns S, λS and λ obtained by (2.3) for indexes n, n+
1, n+ 2

anS − an+1λS + an+1Snλ = anSn+1,

an+1S − an+2λS + an+2Sn+1λ = an+1Sn+2, (2.4)

an+2S − an+3λS + an+3Sn+2λ = an+2Sn+3.

If we compute S by the system (2.4) as a ratio of determinants we can
define the first new transformation

1Tn =

∣∣∣∣∣∣
anSn+1 −an+1 an+1Sn
an+1Sn+2 −an+2 an+2Sn+1

an+2Sn+3 −an+3 an+3Sn+2

∣∣∣∣∣∣∣∣∣∣∣∣
an −an+1 an+1Sn
an+1 −an+2 an+2Sn+1

an+2 −an+3 an+3Sn+2

∣∣∣∣∣∣
(2.5)

=

∣∣∣∣∣∣
an+1 an+2 an+3

anSn+1 an+1Sn+2 an+2Sn+3

an+1Sn an+2Sn+1 an+3Sn+2

∣∣∣∣∣∣∣∣∣∣∣∣
an+1 an+2 an+3

an an+1 an+2

an+1Sn an+2Sn+1 an+3Sn+2

∣∣∣∣∣∣
=
Nn

Dn

. (2.6)

The numerator Nn and the denominator Dn can be written as

Nn = an+3∆Sn+1(a2
n+1Sn+2 − anan+2Sn+1)

−an+1∆Sn(a2
n+2Sn+3 − an+1an+3Sn+2),

Dn = an+3∆Sn+1(a2
n+1 − anan+2)− an+1∆Sn(a2

n+2 − an+1an+3)

= an+3Sn+2(a2
n+1 − anan+2) + an+2Sn+1(anan+3 − an+1an+2)

+an+1Sn(a2
n+2 − an+1an+3).

As it is well-known, a transformation expressed in the previous way is
unstable. However, 1Tn can be rewritten in the equivalent form, 1Tn =
Sn+i − (Sn+iDn − Nn)/Dn, for i = 0, 1, 2, 3. Simplifying the numerator
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gives the following alternative expressions

1Tn = Sn −
1

Dn

[
−a2

n+1an+3 (∆Sn+1 + ∆Sn)2

+
(
anan+2an+3∆Sn+1 + an+1a

2
n+2 (Sn+3 − Sn)

)
∆Sn

]
= Sn+1 −

1

Dn

[
an+1a

2
n+2∆Sn (∆Sn+2 + ∆Sn+1)

− a2
n+1an+3∆Sn+1 (∆Sn+1 + ∆Sn)

]
= Sn+2 −

1

Dn

[
an+1a

2
n+2∆Sn∆Sn+2

− anan+2an+3 (∆Sn+1)2

]
= Sn+3 −

1

Dn

[
a2
n+1an+3∆Sn+2 (∆Sn+1 + ∆Sn)

− anan+2an+3∆Sn+1 (∆Sn+1 + ∆Sn+2)

]
.

(2.7)

If we assume an 6= 0 for all n ∈ N0 we can give another equivalent
expression of the transformation. Let us divide the i-th column of both
the numerator and the denominator of (2.5) by an+i and replace the
second and third column by their difference with the preceding ones.
Then, the determinants have only two rows and columns. Setting βn =
an/an+1 gives

1Tn =

∣∣∣∣ ∆(βnSn+1) ∆(βn+1Sn+2)
∆Sn ∆Sn+1

∣∣∣∣∣∣∣∣ ∆βn ∆βn+1

∆Sn ∆Sn+1

∣∣∣∣ .

Assuming ∆Sn 6= 0 for n = 0, 1, . . . we can divide the i-th column by
∆Sn+i−1, for i = 1, 2, obtaining a compact form of the transformation
1Tn

1Tn =

∆

(
∆ (βnSn+1)

∆Sn

)
∆

(
∆βn
∆Sn

) . (2.8)



2.1. NEW TRANSFORMATIONS 113

Similarly to (2.7) we get some equivalent formulations

1Tn = Sn +

∆2βn + ∆βn+1
∆Sn

∆Sn+1

+ ∆

(
βn+1

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

)

= Sn+1 +

∆βn+1 + ∆

(
βn+1

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

)

= Sn+2 +

∆βn+1
∆Sn+2

∆Sn+1

+ ∆

(
βn

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

)

= Sn+3 +

∆βn
∆Sn+2

∆Sn
+ ∆

(
βn

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

) .

(2.9)

Remark 2.1. If an = a for n = 0, 1, . . . , then (2.1) is the kernel of
the Aitken’s ∆2 process (1.1). Moreover, the system (2.4) has more than
one solution, which are given by S

λS
λ

 = α

 1
1
0

+

 Sn+1

Sn∆Sn+1/∆Sn
∆Sn+1/∆Sn

 , for α ∈ R. (2.10)

The first element of this vector is 1Tn. In addition, taking α =

−∆Sn∆Sn+1

∆2Sn
, gives the process of Aitken as the second expression (1.3).

The second sequence transformation is directly given by the system
(2.2). Indeed, assuming βn 6= λ gives S, and taking Tn = S we get
the transformation

Tn =
an+1Snλ− anSn+1

an+1λ− an
, (2.11)

that can be rewritten, as previously discussed, in a more stable form

Tn = Sn −
an∆Sn

an+1λ− an
= Sn −

βn∆Sn
λ− βn

= Sn+1 −
an+1∆Snλ

an+1λ− an
= Sn+1 −

∆Snλ

λ− βn
.

(2.12)
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However, we need to compute the unknown λ. Hence, we propose two
approaches that give λ as the solution of a linear system. The first
method is given by the solution of the system (2.4). Then, using the
computed λ in (2.12), we obtain a transformation which we denote 2Tn.
The value of λ obtained as the solution of system (2.4) can be expressed
as the following ratio of determinants

λ =

∣∣∣∣∣∣
an −an+1 an Sn+1

an+1 −an+2 an+1 Sn+2

an+2 −an+3 an+2 Sn+3

∣∣∣∣∣∣∣∣∣∣∣∣
an −an+1 an+1 Sn
an+1 −an+2 an+2 Sn+1

an+2 −an+3 an+3 Sn+2

∣∣∣∣∣∣

=

∣∣∣∣∣∣
an+1 an+2 an+3

an an+1 an+2

anSn+1 an+1Sn+2 an+2Sn+3

∣∣∣∣∣∣∣∣∣∣∣∣
an+1 an+2 an+3

an an+1 an+2

an+1Sn an+2Sn+1 an+3Sn+2

∣∣∣∣∣∣
.

(2.13)

Similarly to what is done for (2.5), if we assume an 6= 0 for n ∈ N0 and
∆βn 6= 0, we get

λ =

∆

(
∆ (βnSn+1)

∆βn

)
∆

(
∆Sn
∆βn

) . (2.14)

Now, if βn converges to β ∈ R, with β 6= λ, then bn+1
∆Sn+1

∆Sn
converges

to λ. Thus, (2.14) can be expressed as follows

λ = bn+2
∆Sn+2

∆Sn+1

+

∆Sn∆

(
βnβn+1

∆Sn+1

∆Sn

)
βn+1∆βn∆

(
∆Sn
∆βn

) .
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Hence, we can define 2Tn as

2Tn = Sn −
βn∆Sn∆

(
∆Sn
∆βn

)
∆

(
∆ (βnSn+1)

∆βn

)
− βn∆

(
∆Sn
∆βn

)

= Sn+1 −
∆Sn∆

(
∆ (βnSn+1)

∆βn

)
∆

(
∆ (βnSn+1)

∆βn

)
− βn∆

(
∆Sn
∆βn

) .
(2.15)

We can compute λ in a different way. Indeed, if we apply the forward
difference operator ∆ to the system (2.2) we obtain

∆Sn = λn(an+1λ− an),

∆Sn+1 = λn+1(an+2λ− an+1).

Since the unknowns λn, λn+1 can be eliminated by division, we get the
following quadratic equation for the unknown λ

an+2∆Snλ
2 − an+1(∆Sn + ∆Sn+1)λ+ an∆Sn+1 = 0. (2.16)

Clearly, the equation has two solutions for λ, but we cannot choose one
of them a priori. Indeed, the criterion according to which we accept one
of them and reject the other one, is based on λ itself. Hence, we obtain
λ solving the following system obtained by (2.16)

an+1(∆Sn + ∆Sn+1)λ− an+2∆Snλ
2 = an∆Sn+1,

an+2(∆Sn+1 + ∆Sn+2)λ− an+3∆Sn+1λ
2 = an+1∆Sn+2.

(2.17)

Now, setting λ and λ2 as two unrelated unknowns, the system is linear.
Hence, we can get λ as the solution of the above system. Finally, using
this value of λ in (2.12) we define the transformation 3Tn.

We notice that it is possible to express λ explicitly in the following way

λ =

∆

(
βnβn+1

∆Sn+1

∆Sn

)
∆

(
βn+1

∆Sn + ∆Sn+1

∆Sn

) .
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Therefore, transformation 3Tn can be equivalently stated in the follow-
ing forms

3Tn = Sn + βn
∆Sn

∆Sn+2

∆

(
βn+1

∆Sn + ∆Sn+1

∆Sn

)
βn

∆βn+1

∆Sn+2

− βn+2
∆βn

∆Sn+1

= Sn+1 +
∆Sn

∆Sn+2

∆

(
βnβn+1

∆Sn+1

∆Sn

)
βn

∆βn+1

∆Sn+2

− βn+2
∆βn

∆Sn+1

.

In the numerical experiments (see Section 2.3) we will see that comput-
ing λ as the solution of the system (2.4) seems to be more accurate than
obtaining it by the system (2.17).

Remark 2.2. If an = a for n = 0, 1, . . . , then (2.1) is the kernel of
the Aitken’s ∆2 process (1.1); see Remark 2.1. Moreover, the solutions
of the system (2.4) are given by the equation (2.10). However, the value

of λ computed solving the system (2.4) is
∆Sn+1

∆Sn
,∀α ∈ R. Thus, (2.12)

becomes equal to (1.3), i.e., from 2Tn we recover Aitken’s ∆2 process.

We can give the same result for transformation 3Tn. Indeed, if an is

constant, then λ =
∆Sn+1

∆Sn
is a solution of the system (2.17), since the

solutions of this system are(
λ
λ2

)
= α

(
∆Sn

∆Sn + ∆Sn+1

)
+

(
1
1

)
, for α ∈ R.

Then for α =
∆2Sn

(∆Sn)2
we recover Aitken’s process.

2.2 Convergence and Acceleration Prop-

erties

In this section we will analyze the behavior and the convergence prop-
erty of the introduced transformations. The transformation with the
best performances is 2Tn. We will see it in Section 2.3 using numerical
experiments. Thus, we decide to analyze mainly this transformation, in
particular for the convergence analysis.
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To begin, we recall the following well-known criterion for the convergence
of some sequences. Assume that the elements of the sequence Sn =
S + anλ

n + gn satisfy

lim
n→∞

Sn+1 − S
Sn − S

= ρ.

We call |ρ| the convergence rate of the sequence. In particular, as intro-
duced in Section 1.1, we say that Sn converges linearly if 0 < |ρ| < 1,
that converges logarithmic if ρ = 1, and that converges hyperlinearly if
ρ = 0. If |ρ| > 1 then the sequence Sn diverges.

Let us consider the sequence

S̃n = S + anλ
n + gn, n = 0, 1, . . . , (2.18)

with gn a “noise term”. This means that we want gn such that S̃n is not
“too far” from the kernel (2.1). We characterize this concept assuming
that gn is subdominant to anλ

n as n → ∞, i.e., limn→∞ gn/(anλ
n) = 0.

This also implies that the convergence rate of S̃n depends only on the
term anλ

n.

Let us define
β = lim

n→∞
βn = lim

n→∞

an
an+1

,

then, if |β| exists and is finite we get

lim
n→∞

S̃n+1 − S
S̃n − S

=
λ

β
.

Therefore, if |λ| < |β| S̃n is linearly convergent, if λ = β it has logarith-
mic convergence, while if |λ| > |β| the sequence diverges. Moreover, if
|β| =∞, then S̃n is hyperlinearly convergent for every value of λ. Hence,
in the latter case convergence acceleration methods are not useful, unless
|λ| is sufficiently large. Therefore, we exclude the case in which |β| =∞
from our analysis of the acceleration behavior of 2Tn.

When we consider the sequence S̃n instead of the sequence Sn, the value
of λ obtained by solving the system (2.4) depends on n, we denote it as
λn. With the same procedure used to obtain expression (2.14), we get
the following formula for λn

λn =

∆

∆
(
βnS̃n+1

)
∆βn


∆

(
∆S̃n
∆βn

) . (2.19)
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We will find useful the following statements about the convergence of
λn to λ, as n→∞. First, we need the following technical lemmas.

Lemma 2.3 ([14]). If gn/(anλ
n) → 0 and βn is bounded, then

∆gn/(an+1λ
n)→ 0.

Proof.

lim
n→∞

∆gn
an+1λn

= lim
n→∞

(
gn+1

an+1λn
− gn
an+1λn

)
= lim

n→∞

(
λ

gn+1

an+1λn+1
− gn
anλn

βn

)
= λ0− 0 = 0.

Lemma 2.4 ([14]). Consider the sequence S̃n = S + anλ
n + gn, n =

0, 1, . . . Assume that

1. lim
n→∞

gn
anλn

= 0 ,

2. there exists a finite number β such that β 6= λ for which lim
n→∞

βn =

lim
n→∞

an
an+1

= β .

Then lim
n→∞

βn+1
∆S̃n+1

∆S̃n
= λ .

Proof.

lim
n→∞

βn+1
∆S̃n+1

∆S̃n
= lim

n→∞

an+1

an+2

an+2λ
n+1

(
λ− an+1

an+2

+
∆gn+1

an+2λn+1

)
an+1λn

(
λ− an

an+1

+
∆gn
an+1λn

)

= lim
n→∞

λ

λ− βn+1 +
∆gn+1

an+2λn+1

λ− βn +
∆gn
an+1λn

= λ
λ− β + 0

λ− β + 0
= λ.

We remark that ∆gn/(an+1λ
n) and ∆gn+1/(an+2λ

n+1) converge to zero
by Lemma 2.3.
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We recall that the meaning of hypothesis 1 is that the sequence is “not
too far” from the kernel of the transformation. Moreover, notice that
if β = λ (hypothesis 2 is not satisfied), then S̃n is logarithmically con-
vergent. The case in which β does not exist is not easily interpreted.
In Section 2.3.5 we discuss several numerical examples related to these
situations.

Let us define the sequence

γn =
a2
n+2 − an+1an+3

a2
n+1 − anan+2

.

Then we can give the following theorem.

Theorem 2.5 ([14]). The sequence (λn) converges to λ if the following
conditions are satisfied:

1. lim
n→∞

gn
anλn

= 0 ,

2. there exists β ∈ R such that lim
n→∞

βn = β ,

3. there exists γ ∈ R such that lim
n→∞

γn = γ ,

4. λ, β and γ are such that β 6= λ and λ− β3γ 6= 0 .

Proof. From (2.19) we get the following formulas for λn

λn =
βn+2 ∆βn ∆S̃n+2 − βn ∆βn+1 ∆S̃n+1

∆βn ∆S̃n+1 −∆βn+1 ∆S̃n

=

βn+2
∆S̃n+2

∆S̃n+1

− βn
∆βn+1

∆βn

1− ∆βn+1

∆βn

∆S̃n

∆S̃n+1

.

Moreover, we rewrite the term ∆βn+1/∆βn as

∆βn+1

∆βn
=
an+1

an+3

(
a2
n+2 − an+1an+3

a2
n+1 − anan+2

)
= βn+1βn+2γn.
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Now, using Lemmas 2.3 and 2.4 gives

lim
n→∞

λn = lim
n→∞

βn+2
∆S̃n+2

∆S̃n+1

− βnβn+1βn+2γn

1− βn+1βn+2γn
∆S̃n

∆S̃n+1

= lim
n→∞

βn+2
∆S̃n+2

∆S̃n+1

− βnβn+1βn+2γn

1− β2
n+1βn+2γn

(
βn+1

∆S̃n+1

∆S̃n

)−1

=
λ− β3γ

1− β3γ

λ

= λ
λ− β3γ

λ− β3γ
= λ.

Note that βn and γn only depend on the sequence (an). Then, since in
our study (an) is considered to be known, we can check if sequences
(βn) and (γn) have a limit, and, if we are able to compute them, we
can know the values of λ for which the estimate λn may not converge to
the correct limit. Moreover, we remark that γn may not be well defined
if a2

n+1 − anan+2 = 0 for some n. However, if a2
n+2 − an+1an+3 6= 0,

we can skip this iteration, and compute the following one. If both the
numerator and the denominator of γn are equal to zero, then also the
denominator of λ as expressed in (2.13) is equal to zero. Hence, if γn is
not well defined, λn cannot be computed.

Now, we can state some results on the acceleration properties of 2Tn.
Let us consider first the convergent case.

If S̃n → S, then we get

2Tn =
(an − an+1λn)S̃n+1 + an+1(S̃n+1 − S̃n)λn

an − an+1λn

=
anS̃n+1 − an+1S̃nλn

an − an+1λn

=

an
an+1

S̃n+1 − S̃nλn
an
an+1
− λn

.

Hence,

2Tn − S =
βn(S̃n+1 − S)− (S̃n − S)λn

βn − λn
. (2.20)
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Using (2.20) we immediately deduce the following theorem.

Theorem 2.6 ([14]). Transformation 2Tn converges to S under the
following conditions:

1. lim
n→∞

S̃n = S ,

2. there exist N ∈ N and δ > 0 such that |λn − βn| > δ for every
n > N .

It remains to prove that transformation 2Tn accelerates the convergence
of sequences of the form of (2.18). First, we need the following lemma.

Lemma 2.7 ([14]). If gn/(anλ
n)→ 0, then

lim
n→∞

βn
S̃n+1 − S
S̃n − S

= λ .

Proof.

lim
n→∞

βn
S̃n+1 − S
S̃n − S

= lim
n→∞

βn
an+1λ

n+1 + gn+1

anλn + gn

= lim
n→∞

βn
an+1

an
λ

1 +
gn+1

an+1λn+1

1 +
gn
anλn

= lim
n→∞

λ

1 +
gn+1

an+1λn+1

1 +
gn
anλn

= λ.

Theorem 2.8 ([14]). Under the assumptions of Theorem 2.5, transfor-
mation 2Tn accelerates the convergence of the sequence (2.18).

Proof. By (2.20) we get

2Tn − S
S̃n − S

=
βn(S̃n+1 − S)− (S̃n − S)λn

(βn − λn)(S̃n − S)
=
βn

S̃n+1−S
S̃n−S

− λn
βn − λn

.

Moreover, Theorem 2.5 gives λn → λ. Therefore, assuming β 6= λ implies

lim
n→∞

2Tn − S
S̃n − S

= 0.
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Notice that the theorem holds for any estimate λ̃n converging to λ. In
addition, the convergence of λn to λ is the key to prove acceleration and
convergence.

Finally, let us consider a divergent sequence S̃n

By equation (2.20) we get

2Tn − S =
βn(an+1λ

n+1 + gn+1)− λn(anλ
n + gn)

βn − λn

=
anλ

n(λ− λn) + βngn+1 − λngn
βn − λn

=
anλ

n(λ− λn)

βn − λn
+
βngn+1 − λngn

βn − λn
.

It is easy to give assumptions under which the term

βngn+1 − λngn
βn − λn

of the last equation converges to zero. Nevertheless, since the sequence
anλ

n is divergent there are not meaningful conditions for which the term

anλ
n(λ− λn)

βn − λn
does not diverge. In particular, hypotheses of Theorem 2.5 gives λ −
λn → 0, but they do not ensures the convergence of 2Tn. In general, our
numerical experiments show that transformation 2Tn does not converge
when the sequence diverges.

However, we can give some results about semi-convergence in the follow-
ing remark. We have semi-convergence when a sequence has a convergent
behavior at the first iterations, but then it diverges. To our knowledge
the concept of semi-convergence was introduced by Stieltjes [29]. For a
review about semi-convergence we refer to [36, Appendix E].

Remark 2.9. When λn rapidly converges to λ and anλ
n does not diverge

too quickly at the beginning, 2Tn may have a semi-convergent behavior,
we will see this in the numerical experiments in Section 2.3.

We last remark that if λm = λ for a certain m, then Tm = S + ε, where
ε = (βmgm+1−λmgm)/(βm−λm) can be supposed to be very small. This
may explain why in the numerical experiments we sometimes have values
of 2Tn which are very close to S, even if the transformation generally
diverges.
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Figure 2.1: Comparison of the absolute value of the error in the estimate of
λ solving systems (2.4) (solid), and (2.17) (dashed).

2.3 Numerical Experiments

In this Section, we will present the numerical experiments reported in
[14]. We first discuss the approximation of λ and the results of the trans-
formations 1Tn,

2 Tn and 3Tn. Secondly, we compare the best of the three
transformations, 2Tn, with other well-known and classical transforma-
tions and with the transformations presented in [13]. Finally, we will
consider some cases in which the convergence of λn to λ is not ensured
and so 2Tn could fail, see Section 2.2.

The experiments were obtained using Matlab 7.12.0. While comput-
ing λ or 2Tn by solving a linear system, sometimes a singular matrix
appears. Then, we mark this with a circle ◦ in the plot at the corre-
sponding iteration. Moreover, we mark with a × the iterations in which
2Tn or λ are computed at machine precision. We remark that whenever
we compute λ as the solution of systems (2.4) or (2.17), we use the
Matlab backslash command \.

2.3.1 Estimation of λ

Let us consider two sequences. The first one is linearly convergent and
satisfies the condition of Theorem 2.8

Sn = 1 + log

(
1 +

1

n

)(
4

5

)n
+ e−n(1 + n2). (2.21)
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Figure 2.2: Comparison of |S − Sn| (dash-dotted) and |S − Tn| for transfor-
mations 1Tn (dashed), 2Tn (bold) and 3Tn (solid).

It has convergence rate ρ = 4
5

and β = limn→∞ an/an+1 = 1. The sec-
ond one is divergent and such that 2Tn is expected to semi-converge,
accordingly to Remark 2.9. Indeed, it is alternating, divergent and has
β = limn→∞ an/an+1 = 1.

Sn = 1 +

[
10 sin

(
π

(
1 +

1

n2

))
+

+2 cos

(
π

(
1 +

1

n2

))](
−6

5

)n
+ e−n(1 + n2).

(2.22)

In Figure 2.1, the solid line is the absolute error of the estimate of
λ obtained by solving the system (2.4), while the dashed line is the
corresponding absolute error obtained by solving (2.17). The first system
seems to give a better approximation than the second one. In particular,
in certain cases (see Figure 2.1b), the solution of the system (2.4) rapidly
reaches machine precision. Nevertheless, for converging sequences we
have ∆Sn → 0. Hence, rounding errors appear in the solution of the
systems (2.4) and (2.17). Indeed, as we can see in Figure 2.1a, both
approximations reach a good precision before diverging.

2.3.2 Comparison between the proposed transfor-
mations

When Sn is convergent, we consider the best transformation the one
that converges to S with fewest iterations and good precision. However,
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for diverging sequences, we expect a good transformation to perform
a semi-convergence behavior as shown in Remark 2.9; see in particular
[13].

We present the comparison between the performance of the three trans-
formations in Figure 2.2. The results are obtained using for 1Tn the last
expression of (2.7) with denominator Dn = an+3Sn+2(a2

n+1 − anan+2) +
an+2Sn+1(anan+3−an+1an+2)+an+1Sn(a2

n+2−an+1an+3). While, for both
2Tn, 3Tn we use the third formula of (2.12), with λ the solution of the
system (2.4) and (2.17) respectively. The absolute errors |S − iTn|, for
i = 1, 2, 3, are plotted in dashed, bold, solid lines, respectively, while the
dash-dotted line correspond to |S − Sn|. The three transformations ac-
celerate the convergence of the sequence. Moreover, their performance is
good even when the estimate of λ is not, as we can see looking at figures
2.1a and 2.2a. Clearly, the best result is the one given by transforma-
tion 2Tn. Note that for every n all the transformations use the same
sequence terms Sn, Sn+1, Sn+2, Sn+3, hence their computational cost is
almost the same. However, assuming that the sequences are known, the
time needed for computing the first 100 values in the plots of figure 2.2a
are 0.0025 seconds for 1Tn, 0.0076 seconds for 2Tn and 0.0072 seconds
for 3Tn. While the time needed for the first 100 values in the plots of fig-
ure 2.2b are 0.0032 seconds for 1Tn, 0.0083 seconds for 2Tn and 0.0070
for 3Tn. Clearly computing the values of 1Tn is faster than the other
transformations since it has not to solve a linear system.

2.3.3 Comparison with other transformations

We compare transformation 2Tn with other well-known transformations,
and with the transformations introduced by Brezinski and Redivo-Zaglia
in [13].

In Figure 2.3 we plot the absolute error, |S − Tn|, for every iteration n,
with Tn one of the following transformations:

• transformation 2Tn, plotted in solid bold line, which uses four terms
of the sequence;

• ε-algorithm (ε
(n)
2k ) with k = 2 (see Section 1.2), plotted in dashed

bold line, which uses five terms;

• Aitken’s ∆2 process uses three terms and it is plotted in dashed
line. Since it is known that Tn = ε

(n)
2 for n = 1, 2, . . . (see Section

1.2), where Tn is the Aitken’s ∆2 process, we use the ε-algorithm
for the computation of the Aitken’s ∆2 process;



126 CHAPTER 2. GENERALIZATIONS OF AITKEN’S PROCESS

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(a) sequence (2.21)
0 10 20 30 40 50 60 70 80 90

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

(b) sequence (2.22)

Figure 2.3: Comparison of |S−Sn| (solid) and |S−Tn| values using Aitken’s

∆2 process (dashed), ε
(n)
4 (dashed bold), θ

(n)
2 (dash-dotted), Levin type trans-

formation (dotted) and transformation 2Tn (bold).

• algorithm θ
(n)
2 (see Section 1.3), which uses four terms and is plotted

in dash-dotted line;

• Levin type transformation L(n)
k (β, Sn, ωn) (see Section 1.4), plot-

ted with dots. For ωn we use the formula that gives the u-
transformation and we set k = 3 so that the transformation uses
four terms. The parameter b is chosen equal to 1, that is the optimal
choice for our sequences following the procedure described in [1].
However, other values of b give similar results in our experiments.

Analyzing Figure 2.3a we first notice that 2Tn converges faster than
the other transformations. Moreover, in Figure 2.3b we consider the
divergent sequence (2.22). As we can see, all the transformations semi-
converge, however 2Tn is the one who reaches the highest accuracy, be-
fore diverging. We underline that we expected this performance by 2Tn

since the transformation was built from the kernel Sn = S+anλ
n, hence

it should have a good performance for sequences of the type of (2.18),
as the one we are considering. Assuming that the sequences are known,
the time needed for computing the values in the plots of figure 2.3a are
0.0082 seconds for 2Tn, 0.0092 seconds for Aitken’s process, 0.0146 sec-
onds for the ε-algorithm, 0.0025 seconds for the θ-algorithm, and 0.0037
seconds for the Levin type transformation. While the time needed for
the values in the plots of figure 2.3b are 0.0081 seconds for 2Tn, 0.0070
seconds for Aitken’s process, 0.0120 seconds for the ε-algorithm, 0.0026
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(a) Comparison of |S−Sn| (dash-dotted)
and |S − Tn| using the transformations
(2.25) (dashed), (2.26) (solid) and trans-
formation 2Tn (bold) on sequence (2.28).

0 5 10 15 20 25 30 35 40 45 50
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4
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and |S−Tn| using transformations (2.27)
(bold-dashed) and transformation 2Tn

(bold) on sequence (2.29).

Figure 2.4

seconds for the θ-algorithm, and 0.0044 seconds for the Levin type trans-
formation.

We now compare 2Tn with the transformations proposed by Brezinski
and Redivo-Zaglia in [13]. They introduce two kernels consisting of se-
quences of the form

Sn = S + (a+ bxn)λn, n = 0, 1, . . . , (2.23)

or
Sn = S + (a+ bxn)−1λn, n = 0, 1, . . . , (2.24)

where S, a, b and λ are unknown parameters and (xn) a known sequence.
Then they define these following two transformations for sequences in
the first kernel (2.23)

4Tn = Sn+1 −
∆Sn+1 − λ2rn∆Sn
(λrn − 1)(1− λ)

, with rn =
∆xn+1

∆xn
, (2.25)

and

5Tn = Sn+1 +
∆Sn+1 − λ2∆Sn

(1− λ)2
. (2.26)

In both cases λ is obtained by solving a linear systems.

The sequences in the form (2.24) are treated using the following trans-
formation

6Tn =
Nn

Dn

, (2.27)



128 CHAPTER 2. GENERALIZATIONS OF AITKEN’S PROCESS

with

Nn = λ2Sn+1(Sn+2 − Sn)− 2λ(Sn+3Sn+1 − Sn+2Sn) + Sn+2(Sn+3 − Sn+1),

Dn = λ2(Sn+2 − Sn)− 2λ(Sn+3 − Sn+2 + Sn+1 − Sn) + (Sn+3 − Sn+1).

The unknowns λ and λ2 are computed by solving the following linear
system with unknowns λ, λ2, λ2S, λS, S

λ2Sn+1+i(Sn+2+i − Sn+i)− 2λ(Sn+1+iSn+3+i − Sn+iSn+2+i)

−λ2S(Sn+2+i − Sn+i) + 2λS(Sn+3+i − Sn+2+i + Sn+1+i − Sn+i)

−S(Sn+3+i − Sn+1+i) = −Sn+2+i(Sn+3+i − Sn+1+i), i = 0, . . . , 4.

We compare transformation 2Tn with transformations 4Tn,
5 Tn and 6Tn

on the same sequences used in [13], that are

Sn = S + λn(2− n
7
2 ) + e−n(1 + n2), with λ =

23

20
, (2.28)

and

Sn = S + λn
1(

2 + 11
10
n
) +

(
1

10

)n
n

5
2 , with λ = −6

5
. (2.29)

In Figure 2.4a the dashed line is the absolute error of transformation
(2.25) (which uses 6 terms), the solid line is the absolute error of trans-
formation (2.26) (which uses 5 terms) and the bold line the absolute
error of transformation 2Tn (which uses 4 terms). In Figure 2.4b the
bold-dashed line is the absolute error of transformation (2.27) (which
uses 8 terms) and the bold line is the absolute error of transformation
2Tn. Discussing the results it is important to remark that in our compu-
tations we took as known the sequence an = a+bxn or an = (a+bxn)−1,
whereas, in [13] a and b are unknowns and only xn is known. This may
explain why the bold line of 2Tn seems to converge faster than the
other transformations. Nevertheless, even if this holds for transforma-
tions (2.25) and (2.26), in Figure 2.4b the transformation (2.27) produces
better results than 2Tn. Finally, assuming that the sequences are known,
the time needed for computing the values in the plots of figure 2.4a are
0.0042 seconds for 2Tn, 0.0033 seconds for 4Tn and 0.0020 seconds for
5Tn. While the time needed for the values in the plots of figure 2.4b are
0.0023 seconds for 2Tn and 0.0019 seconds for 6Tn.
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Figure 2.5: Digamma function. Comparison of |Z(z) − Zn(z)| (solid) and

|S−Tn| values using Aitken’s ∆2 process (dashed), θ
(n)
2 (dash-dotted), Levin

type transformation (dotted) and transformation 2Tn (bold).

2.3.4 Computation of the digamma function

In this subsection we show some results on the acceleration through
transformation 2Tn of a sequence approximating the digamma func-
tion. We consider the following power series representation of the psi or
digamma function (see [2])

ψ(1 + z) = −γ + zZ(z) (2.30)

Z(z) =
∞∑
ν=0

ζ(ν + 2)(−z)ν (2.31)

where γ is the Euler’s constant and ζ(ν+2) is the Riemann zeta function;
we refer to, e.g., [2, Equations (6.1.3) and (23.2.1)] respectively or [34,
Equation 1.2]. Notice that the series in (2.31) converges for |z| < 1.
Following the path described in [34], we rewrite (2.31) as

Z(z) = Zn(z) +Rn(z), (2.32)

Zn(z) =
n∑
ν=0

ζ(ν + 2)(−z)ν , (2.33)

Rn(z) = (−z)n+1

∞∑
ν=0

ζ(n+ ν + 3)(−z)ν ; (2.34)

see [34, Equation 2.1]. We can increase the convergence rate of the se-
quence Z(z) transforming the truncation errors Rn(z) into other trun-
cation errors R′n(z) with better numerical properties. Replacing the zeta
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functions ζ(n+ ν + 3) in (2.34) by their Dirichlet series and interchange
the order of summations,

Zn(z) = Z(z)− (−1)n+1

∞∑
m=0

[z/(m+ 1)]n+1

(m+ 1)(m+ z + 1)
; (2.35)

see [34, Equation 2.2]. By the preceding equation we can see that the
partial sums Zn(z) are a special case of the class of sequences

sn = s+ (−1)n+1

∞∑
j=1

cj(qj)
n+1,

with qj = z/j and cj = −1/[j(j + z)]; see [34, Equation 2.3]. As done in
[34, Equation 2.4], we assume that q1, q2, . . . have all the same sign and
are ordered in magnitude, i.e,

1 > |q1| > |q2| > ... > |q`| > |q`+1| > ... ≥ 0.

Whereas, the cj are unspecified coefficients.

The digamma function expressed as in (2.35) is of the type of (2.18),
with

S̃n = Zn(z),

S = Z(z),

an = (−1)n
z

z + 1
,

λ = z,

gn = (−1)n
∞∑
m=1

[z/(m+ 1)]n+1

(m+ 1)(m+ z + 1)
.

In this numerical experiment the value of λ is known. Hence, there is no
need to approximate it for transformation 2Tn. Therefore, to compute
2Tn we only need two terms of the sequence. For this reason in the
numerical experiments of the digamma function we will not consider
the algorithm ε

(n)
4 .

Figure 2.5 shows that transformation 2Tn has a similar behavior,
or slightly better, than Aitken’s ∆2 process, θ

(n)
2 algorithm and u-

transformation. In particular, when z < 0 transformation 2Tn reaches
a better precision. Assuming that the sequences are known, the time
needed for computing the values in the plots of figure 2.5a are 0.0011
seconds for 2Tn, 0.0024 seconds for Aitken’s process, 0.0016 seconds for
the θ-algorithm, and 0.0023 seconds for the Levin type transformation.
We underline that since in this case we do not need to compute λ the
computation of 2Tn values is faster than in the previous examples.
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Figure 2.6: On the left, the errors in the estimate of λ (obtained by sys-
tem (2.4)) for sequence (2.36). On the right, the values |S − Sn| (solid) are

compared with the errors obtained using Aitken’s ∆2 process (dashed), ε
(n)
4

(dashed bold), θ
(n)
2 (dash-dotted), Levin type transformation (dotted) and

transformation 2Tn (bold).

2.3.5 Problematic cases

We will show several examples of sequences for which at least one of the
assumptions of Theorem 2.5 does not hold. As we have already discussed,
if β = ±∞, then S̃n converges very rapidly. Hence, this case will not be
taken into account. We consider sequences of the form

Sn = 1 + anλ
n + gn,

with S = 1 and gn = (1 + n2)e−n a sequence converging to zero and
subdominant to anλ

n.

In figures 2.6, 2.7 and 2.8 the curves on the left are the absolute error
of the estimate of λ obtained by solving system (2.4). On the right,
we plot the comparison between the absolute errors of respectively the
transformations 2Tn, Aitken’s ∆2 process, ε-algorithm, θ

(n)
2 algorithm

and u-transformation; see subsection 2.3.3.

In the first two examples we assume β = λ. As shown in Section 2.2,
a convergent sequence of the kind of (2.18) for which β = λ has a log-
arithmic convergence. It is well-known that Aitken’s ∆2 process and
ε-algorithm are not able to accelerate logarithmically convergent se-
quences; see, e.g., [12]. However, we try 2Tn on a logarithmically con-
vergent sequence to see if its behavior is similar to the one of Aitken’s
∆2 process and Wynn’s ε-algorithm.
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Figure 2.7: On the left, the errors in the estimate of λ (obtained by sys-
tem (2.4)) for sequence (2.37). On the right, the values |S − Sn| (solid) are

compared with the errors obtained using Aitken’s ∆2 process (dashed), ε
(n)
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(dashed bold), θ
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2 (dash-dotted), Levin type transformation (dotted) and

transformation 2Tn (bold).

Setting an = (5/4)n+ 16
5 /n and λ = 4/5, we get the sequence

Sn = 1 +
1

n

(
5

4

)n+ 16
5
(

4

5

)n
+ (1 + n2)e−n. (2.36)

Notice that in this case β = λ and γ = β−2. As we expect, In Figure 2.6a
λn does not converge to λ. Moreover, in Figure 2.6b 2Tn converges to S,
but it does not accelerate the convergence, as happened for Aitken’s ∆2

process and ε-algorithm. Therefore, 2Tn seems to inherit this inability.
Finally, θ

(n)
2 and u-transformation perform a good acceleration.

Let us consider a diverging sequence S̃n for which λ = β. It can-
not be a sequence with alternating sign. Indeed, it can be rewritten
as S̃n = (−1)nanλ

n + gn, with an and λ positive for every n. Then,
β = limn→∞−an/an+1 < 0, while λ > 0. Hence, S̃n must be a sequence
with positive terms. We underline that the summation of such sequences
can be very difficult; for a further discussion about problems in the sum-
mation of this kind of sequence we refer to, e.g., [35, pp. 15-17].

Therefore, if an = n (5/4)n+ 16
5 , we get the following divergent sequence

Sn = 1 + n

(
5

4

)n+ 16
5
(

4

5

)n
+ (1 + n2)e−n. (2.37)

For this sequence we still have β = λ and γ = β−2. Thus, the fourth
assumption of Theorem 2.5 is not satisfied. However, as we can see in
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Figure 2.7 transformation 2Tn semiconverges, which agrees with Remark
2.9. In particular, λn converges to λ. Then, the assumption in Theorem
2.5 appears to be sufficient but not necessary. Moreover, the Aitken’s
process and ε-algorithm diverge, θ

(n)
2 and u-transformation diverge at

the same rate of the sequence.

Summarizing, when S̃n is a convergent sequence, β = λ if and only if
S̃n converges logarithmically. In this case Sequence (2.36) is an example
of a logarithmically convergent sequence that 2Tn is not able to acceler-
ate. This result is consistent, since there is no sequence transformation
that can accelerate the convergence of all logarithmically convergent se-
quences, see Section 1.1 and [16, 17]. Moreover, we have shown that if
β = λ then the sequence is definitely positive. Thus, if the sequence is
divergent, then we are summing a monotone sequence, that is a class of
sequences difficult to treat.

Finally, we define a different kind of sequence where

an =
3

2
+

(−1)n

2
,

which alternatively assumes the values 1 and 2. That is

Sn = 1 +

(
3

2
+

(−1)n

2

)
λn + (1 + n2)e−n. (2.38)

The sequence βn is bounded and has no limit, since it takes alternatively
the values 2 and 1/2. Moreover, γ = −1. We consider three different
cases:

• λ = 1
2

(Figure 2.8a): Sn is convergent, and λ = lim infn→∞ βn
(hence an accumulation point);

• λ = 2 (Figure 2.8b): Sn is divergent, and λ = lim supn→∞ βn (hence
an accumulation point);

• λ = 9
10

(Figure 2.8c): Sn is convergent, and |λ− βn| > 1
2

for any n
(hence 2Tn → S by Theorem 2.6).

The lack of a limit for βn seems to not influence the convergence of the
transformation. Indeed, we obtain good results in all cases. This means
that the second condition of Theorem 2.5 is not a necessary condition.

We underline that for λ = 1/2, the determinant of the system (2.4) is
equal to −3(Sn+2−Sn)−2(Sn+1−Sn). Hence, when ∆Sn is close to the
machine precision, we have singularity problems; see the circle in Figure
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Figure 2.8: On the left, the errors in the estimate of λ (obtained by system
(2.4)) for sequence (2.38) with different values of λ. On the right, the values
|S − Sn| (solid) are compared with the errors obtained using Aitken’s ∆2

process (dashed), ε
(n)
4 (dashed bold), θ

(n)
2 (dash-dotted), Levin type transfor-

mation (dotted) and transformation 2Tn (bold).
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2.8a. However, this is not a problem since it happens when Sn reaches
the value of S at machine precision.

Moreover, in Figure 2.8b when λn = 2 at machine precision, the de-
nominator in transformation 2Tn is alternatively equal to 0 or 1. Hence,
after the first iterations 2Tn is not computed for n odd.

Finally, all the other transformations considered do not accelerate any
of these sequences, except for ε

(n)
4 which accelerates the first case, semi-

converges in the last case, and partially in the second one. However, we
remark that 2Tn uses less terms of the sequence than ε

(n)
4 .

Summarizing, in this chapter we introduced three new transformations
which accelerate the convergence of sequences that are not far from the
ones of the form of (2.1), with an and Sn given sequences. Numerical re-
sults showed that transformation 2Tn performed better than the other
two on the example we considered. Moreover, we compared 2Tn with
several well-known transformations, obtaining competitive results under
the assumptions of the convergence and acceleration theorems proved in
Section 2.2. However, numerical experiments showed that these condi-
tions are not necessary.

In addition, we compared 2Tn with the transformations introduced in
[13]. We get some good results. Nevertheless, it is important to remark
that 2Tn consider more information about sequence (Sn) than the other
ones.

2.4 Accelerating Gauss quadrature, some

prospectives

We present some ideas on possible new developments. Let us consider
the kernel defined by the following kind of sequences

Sn = S + an(λn)n, (2.39)

with S unknown, an a known sequence and λn an unknown sequence.
Clearly it extends kernel (2.1) in which λn is a constant sequence. It
could be of interest to give a transformation similar to 2T in order to
accelerate sequences closed to kernel 2.39.

In Part I Chapter 4 we deeply discuss Gauss quadrature formula for the
approximation of integrals and linear functionals. In particular, let f be
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a continuous function and

I(f) =

∫
R
fdµ,

the Riemann-Stieltjes integral with respect to a non-decreasing distri-
bution function µ defined on the real axis having finite limits at ±∞
and infinitely many points of increase. Let Gn(f) be the n-node Gauss
quadrature approximating I(f) (see (4.2) in Part I), and θ1 < · · · < θn
be its nodes. Then as shown for example in [20] we can express its error
as

En(f) = I(f)−Gn(f) =
f (2n)(ξn)

2n!
I(π2

n),

with θ1 < ξn < θn and πn the n + 1 monic orthogonal polynomial
with respect to I (for a definition see Part I Chapter 1). If we consider
f(x) = xk with k an integer, then

En(f) =

(
k
2n

)
I(π2

n)

(
1

ξn

)2n−k

.

Hence, we can rewrite Gn as

Gn(xk) = I(xk)−
(

k
2n

)
I(π2

n)

(
1

ξn

)2n−k

.

The Gauss quadrature Gn so expressed is of the type of (2.39), with

Sn = Gn(xk),

S = I(xk),

an = −
(

k
2n

)
I(π2

n),

λn =
1

ξ
2−k/n
n

.

Therefore, a transformation similar to 2Tn could be useful for the accel-
eration of the sequence of Gauss quadrature G1, G2, . . . . However, the
behavior of λn is not clear and its estimation could be more difficult then
in the case we have considered in the previous chapters. Once we find a
way to accelerate Gn(xk) we can try to extend it to any Gn(f) with f
a polynomial. Finally, we may consider an analogous study for the case
of n-weight Gauss quadrature for the approximation of quasi-definite
linear functionals (see Part I Section 4.2).
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