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Pures

Finite morphisms

of p-adic curves

Direttore della Scuola

Prof. Pierpaolo Soravia

Coordinatore dell’indirizzo

Prof. Franco Cardin

Supervisori

Prof. Francesco Baldassarri

Prof. Denis Benois

Dottorando

Velibor Bojković



Abstract

In this thesis we study finite morphisms ϕ : Y → X of quasi-smooth k-analytic curves which admit finite

semistable triangulations, and where k is algebraically closed field, complete with respect to a non-trivial,

nonarchimedean valuation and of mixed characteristic. We introduce the notion of (strictly) ϕ-compatible

(strictly) semistable triangulations of Y and X, respectively, and prove their existence as well as various

consequences in terms of ”compatible partitions” of Y and X, and at the same time provide a new proof

of existence of strictly semistable formal models of Y and X, respectively, to which ϕ extends as a finite

morphism.

We introduce and study the main properties of the pro-category W whose objects are built from systems

of wide open curves and inclusions. It is a full subcategory of the pro-category of k-analytic curves. We

introduce a Grothendieck topology on W making it a site, and exploit the ”pro” structure of the objects

which makes them behave particularly nice in coverings, to study (hyper)cohomology groups of complexes

of coherent sheaves on k-analytic curves, and in particular we provide a new point of view on dagger curves

and their de Rham cohomology.

Finally, we state and prove the Riemann-Hurwitz formula for finite morphisms of pro-wide open curves,

which in particular gives Riemann-Hurwitz formula for compact, connected, quasi-smooth k-analytic

curves.





Riassunto

In questa tesi studiamo morfismi finiti ϕ : Y → X di curve quasi-lisce k-analitiche, che ammettono

triangolazioni finite semistabili, dove k è un campo algebricamente chiuso, completo rispetto ad una va-

lutazione non-archimedea, non-triviale, in caratteristica mista. Introduciamo la nozione di triangolazioni

(strettamente) semistabili (strettamente) ϕ-compatibili di Y ed X, rispettivamente, e dimostriamo la loro

esistenza, cos̀ı come varie conseguenze in termini di ”partizioni compatibili” di Y ed X, ed allo stesso

tempo otteniamo una nuova dimostrazione dell’esistenza dei modelli formali strettamente semistabili di Y

ed X, rispettivamente, ai quali ϕ si estende come morfismo finito.

Introduciamo e studiamo le proprietà principali della pro-categoria W, i cui oggetti sono ottenuti da sistemi

di curve largamente aperte e inclusioni. È una sottocategoria piena della categoria di curve k-analitiche.

Introduciamo una topologia di Grothendieck su W, trasformandola in un sito, e utilizziamo la ”pro”

struttura degli oggetti, che li fa comportare particolarmente bene rispetto ai rivestimenti, per studiare i

gruppi di (iper)coomologia dei complessi di fasci coerenti su curve k-analitiche ed in particolare otteniamo

un nuovo punto di vista per le curve dagger e la loro coomologia di De Rham.

Infine, enunciamo e dimostriamo la formula di Riemann-Hurwitz per i morfismi finiti di curve pro-

largamente aperte, che in particolare fornisce la formula di Riemann-Hurwitz per curve k-analitiche, quasi-

lisce, connesse e compatte.





Resumé

Dans cette thèse, nous étudions les morphismes finis φ : Y → X entre des courbes k-analytiques quasi-lisses

admettant une triangulation semistable finie, pour k un corps algébriquement clos et complet par rapport

à une valuation non archimédienne (non triviale), de caractéristique mixte. On introduit la notion de

triangulations (strictement) semistables (strictement) phi-compatibles de Y et X, respectivement, et on

prouve leur existence ainsi que quelque conséquences en terme de ”partitions compatibles” de ces courbes,

tout en donnant une nouvelle preuve de l’existence de mod̀’les formels semistables de Y et X sur lesquels

φ se relève en un morphisme fini.

On présente et étudie les propriétés principales de la pro-catégorie W dont les objets sont construits à

partir de systèmes de courbes largement ouvertes munis d’inclusions. C’est une sous catégorie pleine de la

pro-catégorie des courbes k-analytiques.On définit une topologie de Grothendieck sur W, ce qui en fait un

site, et les objets se comportent particulièrement bien vis à vis des recouvrements grâce à leur structure de

pro objet. Nous étudions ainsi les groupes de (hyper)cohomologie de complexes de faisceaux cohérents sur

les courbes k-analytiques, en donnant un nouveau point de vue sur les courbes dagues et leur cohomologie

de De Rham.

Enfin, on énonce et prouve la formule de Riemann-Hurwitz pour les morphismes finis entre courbes pro-

largement ouvertes, ce qui donne en particulier la formule pour les courbes k-analytiques compactes,

connexes et quasi-lisses.
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Chapter 0

Introduction

The motivational and starting point of this thesis is to study the Riemann-Hurwitz formula

for a finite morphisms

(0.0.0.1) ϕ : Y → X

where Y and X are compact, connected, quasi-smooth, strict Berkovich curves over an

algebraically closed field k which is complete with respect to a nontrivial, nonarchimedean

valuation, and of mixed characteristic (0, p) 1. As such curves are either affinoid, or

projective (i.e. come from analytification of smooth, connected, projective k-algebraic

curves), we are set in two cases: where the curves involved are affinoid, or projective.

One may note that in the later case the Riemann-Hurwitz formula is the classical

(algebraic) one. However, if one stops here, the analytic and topological structure of

the Berkovich curves remains unexploited. An example to see this is perhaps the first

treatment of the Riemann-Hurwitz formula in the context of Berkovich projective curves

which appeared in a paper by John Welliaveetil [39], where the author studied Riemann-

Hurwitz formula having in mind the the inner structure of the curves, namely constructing

1For linearity of exposition, we choose to threat in this thesis only the case of a field with a nontrivial
valuation. However, the general case will be considered in the following papers
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4 CHAPTER 0. INTRODUCTION

compatible skeleta in Y and X to which the curves retract. This showed that the rich

structure of the Berkovich curves provides a fertile ground for studying finite morphisms

from new points of view.

Recently, some instances of Riemann-Hurwitz formula for affinoid curves started ap-

pearing and finding application in the theory of p-adic differential equations (see for ex-

ample [3, 34]). Still, a separate treatment of the case where Y and X are affinoid spaces

or the systematic treatment of both cases seems to be missing from the literature 2. We

hope to start filling in this gap with the present thesis.

Let us go back in time for a moment and start by (oversimplifying) a proof of classical

Riemann-Hurwitz formula, which will serve us to regularly compare the notions and results

that we introduce in the p-adic counterpart. So, for the moment let (0.0.0.1) denote a

finite morphism between compact Riemann surfaces. We divide the proof in the following

major steps:

(0) One proves that the ramification locus of ϕ (i.e. the set of ramified points i.e. the

points in Y in whose neighborhoods ϕ fails to be 1-1) is finite;

(1) Let R be the ramification locus locus and Q = ϕ(R) the branching locus. One

takes a triangulation T of X such that the set of vertices V (T ) of triangles in T contains

the points in Q and such that ϕ−1(T ) is a triangulation of Y . Note that R ⊂ V (ϕ−1(T )).

(2) One proves that over open edges and interiors of elements in T , the map ϕ is an

n-fold covering, where n is the degree of ϕ. Around a ramified point P ∈ Y , the map ϕ

is of degree ep ≥ 2. Around nonramified points, the map ϕ is of degree one, and for each

point x ∈ X, one has
∑

y∈Y,ϕ(y)=x ey = n

(3) Finally, one compares χ(Y ) = vϕ−1(T )−eϕ−1(T ) +fϕ−1(T ) with χ(X) = vT −eT +fT ,

where v∗, e∗ and f∗ stand for the number of vertices, edges and faces, respectively, in the

set ”∗”. It follows from (2) that eϕ−1(T ) = n · eT , fϕ−1(T ) = n · fT , while, because of

2This is not quite true, very recently a paper by Amina-Temkin-Trushin appeared where the authors
proved using different methods the Riemann-Hurwitz formula discussed in this thesis. In the future we
intend to provide a detailed comparison of two methods
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ramification and (2) we have #V (ϕ−1(T )) = n#V (T )−
∑

P∈V (ϕ−1(T ))(eP − 1). All in all,

we conclude that

χ(Y )− nχ(X) = −
∑

P∈V (ϕ−1(T ))

(eP − 1) = −
∑
P∈Y

(eP − 1).

As we said in the beginning we take as an analogue of the compact Riemann surface in

the p-adic world to be a strict, compact, connected, quasi-smooth k-analytic curve which

by the result of Fresnel-Matignon is either projective i.e. an analytification of a smooth,

connected projective k-algebraic curve or a k-affinoid space. In this introduction we will

refer to them simply as our curves.

Let us move to the point (2) of the ”proof” above where important notion of triangu-

lations enter into the picture. To make the parallelism possible between the classical and

p-adic settings, we permit ourselves to loosen the rigor and to dwell further into abstrac-

tion to notice that triangulation is rather a partition of a Riemann surface S into finitely

many simple pieces/topological triangles which together with the gluing data along their

edges capture the main characteristics of the surface. From another point of view, the

vertices and edges of triangles in a triangulation form a finite graph structure Γ in S, such

that S \ Γ is a disjoint union of finitely many pieces all of which are isomorphic to open

discs. What can we say about potential triangulations of our p-adic curves? Well, having

in mind their tree-like3 topological structure, asking for topological triangles is perhaps too

much, but following the alternative point of view it turns out that the parallelism between

the two worlds, classical and p-adic, continues. Namely, we can find a finite graph-like

structure Γ in our p-adic curve X such that X \ Γ is a disjoint union of open analytic

domains isomorphic to open discs, but (unfortunately), their number is infinite.

We stop for a moment with comparison and say what a (strictly) semistable triangu-

lation of our curve X is: a finite set T ⊂ X consisting of type two points such that X \ T

decomposes as a disjoint union of finitely many connected components isomorphic to open

3When we say ” ∗ ”-like, we actually mean resembling ” ∗ ” in its main mathematical properties
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strict annuli and infinitely many connected components all of which are isomorphic to

open unit discs. Our triangulation will have the role which have the vertices of topological

triangles in a triangulation of S, while the role of edges goes to the presence of open annuli

in the connected components in X \T (in fact, the complement of all open discs in an open

annulus is a segment/edge!). The points in triangulation together with the edges in open

annuli will constitute a graph that we talked about before. As in the classical case, the

existence of (strictly) semistable triangulations of our curves is a highly nontrivial fact and

moreover in the p-adic world it is closely related to (strictly) semistable formal models.4

A (resp. strictly) semistable formal model of our curve X is a k◦-formal scheme X such

that Xη = X, where Xη is the generic fiber of X, and such that the special fiber Xs, which

is a k̃-algebraic curve (where k̃ is the residue field of k), has only regular singular points

(resp. and irreducible components don’t self-intersect). There is also a specialization map

spX : X → Xs which is anticontinuous5 and surjective. From a (strictly) semistable formal

model we obtain the corresponding (strictly) semistable triangulation by taking its points

to be the inverse images of the generic points of the irreducible components of the formal

model by the map spX.

Having in mind (0.0.0.1) and the fact that our p-adic curve has (many) semistable

and strictly semistable formal models, the question arises: Do there exist semistable or

even strictly semistable formal models Y and X of Y and X, respectively, and a finite

morphism Φ : Y→ X, such that Φη = ϕ? This question has been studied in the literature

and was answered positively if one looks for semistable Y and X and where Y and X are

projective, by Robert Coleman in his paper [15]. Let us also mention that Coleman’s proof

(almost algebraic in the nature) proceeds by taking the Galois closure of ϕ and using the

results concerning the reduction of affinoids constructs a semistable covering on Y which

via ϕ induces a semistable covering of X (a semistable covering of a curve X-another

4which justifies the terminology used: (strictly) semistable triangulation
5Poetically speaking, a formal model lives between the two worlds of k̃-algebraic and k-analytic curves;

its underlying topological space belongs to the former, while the structure sheaf resembles the structure
sheaf of the later
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notion equivalent to that of a semistable formal model- is a finite covering of X by strict6

wide open curves (i.e. open analytic subdomains isomorphic to projective curves minus

finitely many connected components isomorphic to closed unit disc) and which have as

intersections open annuli, see Remark 1.1.7 for details).

In the present article we provide another proof of Coleman’s theorem, which pretend

to be almost analytic in nature. Namely, we consider an equivalent problem of finding

compatible (strictly) semistable triangulations S and T of Y and X, respectively, and

where compatible means that S = ϕ−1(T ). An observant reader will immediately notice

the similarity with the conditions on triangulations in the end of step (1) of the proof

of the classical Riemann-Hurwitz formula. Since we are working now with semistable

triangulations, a notion which makes sense for other type of curves and not only for ones

having semistable formal models, we are able to prove a similar result on existence of

compatible triangulations for finite morphisms of wide open curves as well (which are a

slight generalization of wide open curves introduced by Coleman).

As a consequence, we prove a partition result (Corollary 2.1.32). Loosely speaking, we

proved that for a morphism (0.0.0.1) (or a finite morphism between wide open curves), we

can partition our curve Y (resp. X) as a disjoint union of elements of two finite sets CY

and AY (resp. CX and AX) such that the elements of CY (resp. CX) are affinoid domains

with good canonical reduction and the elements of AY (resp. AX) are open annuli, such

that: The elements in CX (resp. AX) are the images of elements in CY (resp. AY ) by ϕ,

the inverse images of elements in CX (resp. AX) by ϕ are disjoint unions of elements in

CY (resp. AY ) and finally, ϕ restricted to any of the elements in CY (resp. AY ) is a finite

(resp. finite étale) morphism. This result proves to be useful since we can reduce questions

considering finite morphisms between our curves to finite morphisms between open annuli

or between affinoids with good canonical reduction (we come back to this point later).

While preparing this article, another proof of Coleman’s theorem appeared (see [1]).

6We denote by strict wide open curve for what R. Coleman used wide open curve
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Although, in our opinion, the underlying idea of the proof presented here and in loc.cit. are

similar, we tend to think that the respective realizations are different, and as such the

present proof may (or may not) shed some new light on the problem. We return to the

comparison of the two methods again in Remark 2.1.9.

Let us go back to the analysis of the proof of the classical Riemann-Hurwitz formula,

in particular to steps (0) and (1) where one proves that the ramification locus is finite and

uses it to construct compatible triangulations. If we accept the classical attitude to say

that a ramified point is a point in our curve such that in any of its open neighborhoods

the morphism fails to be 1-1, we face a new phenomena: that the ramification locus in

general is not finite, but rather an infinite closed7 subset of Y (see [20] for the case of a

finite morphism between Berkovich projective lines). This is due to the fact that there

are new types of points present in our curves, rather than just k-rational ones (which are

analogues of points in a Riemann surface). In fact, it can even happen that ϕ is a finite

étale morphism, but still to have a nonempty ramification locus, as we will see in the

examples later on. Although,we note that when we are on connected components which

don’t meet the branching locus (i.e. the image of the ramification locus), our morphism

ϕ will be an n-fold covering over them, so there is similarity with the classical situation.

But, the main question is, is it possible to read off a finite set of numerical data from

such a rich ramification locus which is enough to express the difference between Euler-

Poincaré characteristics χ(Y )− deg(ϕ)χ(X) ? (We will say later what we mean by χ(Y )

and χ(X).) A natural answer would be to take just the ramification indices of ramified

k-rational points (and indeed, there are finitely many of those), and in fact, the answer

would be correct if we assume that Y and X are projective, in which case the Riemann-

Hurwitz formula is the classical (algebraic) one. How about when Y and X are affinoid

curves?

As one may suspect, in this case the Riemann-Hurwitz formula needs to be modified

7in strong topology
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and the following basic example will demonstrate why.

Suppose we are given two finite morphisms f ′1 : P1
k → P1

k, x 7→ y = xp for all x ∈ P1
k,

and f ′2 : P1
k → P1

k, x 7→ y = xp−x. Both maps induce finite morphisms f1, f2 : D(0, 1+)→

D(0, 1+) of the closed unit disc to itself.

The first map, when restricted to D(0, 1+) is classically ramified8 only at x = 0 with

the ramification index e0 = p (although the ramification locus for example contains all

the points connecting x = 0 with the Gauss point η0,1, and even more than this), while

the second one is classically unramified. Assuming for the moment without goint into

details that the Euler-Poincaré characteristic (see Definition 3.1.34) of the closed unit disc

(equipped with the overconvergent structure sheaf) is equal to 1. So in this case, the

classical Riemann-Hurwitz formula would give us 1 = p · 1−
∑

P∈D(0,1+)(k)(eP − 1) which

is true only for the first map.

To see what goes wrong with the second map, we could proceed as follows: Deduce

the Riemann-Hurwitz formula for the map f2 from the classical one by considering the

full map f ′2 and see how the relevant invariants change when removing the open disc at

infinity.

The classical ramification locus for the map f ′2 consists of the points xi = ζip−1/(p−1)

together with the point x∞ = ∞, where ζ is any primitive (p − 1)th root of 1 (and

again, the full ramification locus is much richer). Each xi has the ramification index

exi = 2, while ex∞ = p so the classical Riemann-Hurwitz formula yields (recall χ(P1
k) = 2):

2 = p ·2−
∑p−1

i=1 (2−1)− (p−1) but for the moment let us write χ(P1
k) = deg(f ′2) ·χ(P1)−∑

P∈D(∞,1−)(k)(ep − 1), where D(∞, 1−) is the open unit disc with the center at ∞, i.e.

P1
k \ D(0, 1+). Using the fact that χ(D(0, 1+)) = χ(P1

k) − 1, we obtain χ(D(0, 1+)) =

deg(f2) ·χ(D(0, 1+)) + (deg(f2)− 1)−
∑

P∈D(∞,1−)(k)(eP − 1), so we are led to think that

the term ((deg(f2) − 1) −
∑

P∈D(∞,1−)(k)(eP − 1)) should count the defect. A natural

question is, can we read off the defect out of the properties of the map f2, without using

8Classical ramification, i.e. the ramification with support in rational points; classically ramified points
are also called critical points, as in [20]
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its extension f ′2?

It turns out that the answer is positive under the condition that the map f ′2 is overcon-

vergent, meaning that it extends to some extent over the boundary of the unit disc, and

for this we need to stray in the area of finite étale morphisms of open annuli. Let us put

here A(0; r, 1) to denote the open annulus D(0, 1−) \D(0, r+) (note that every strict open

annulus can be put in this form by a suitable isomorphism). Let ϕ : A(0; r, 1)→ A(0; rn, 1)

be a finite étale morphism of degree n. After introducing suitable coordinates at 0,

the derivative of dS/dT = dϕ#(T )/dT is an invertible function on A(0; r, 1) and let us

denote its order9 by σ. Suppose that our morphism ϕ extends to a finite morphism

ψ : D(0, 1+)→ D(0, 1+), classically ramified at rational points xi, i = 1, . . . , l. Then, one

can prove that σ =
∑l

i=1(exi − 1).

Returning to our morphism f ′2, introducing coordinates at ∞ and considering the

restriction of f ′2 to some annulus A(0; r, 1) (corresponding to the annulus A(0; 1, r′) before

introducing the coordinates at ∞, hence one can see the overconvergence of f2 in the fact

that it extends also to some open annulus A(0; 1, r′), for some r′ > 1), it follows that the

aforementioned defect in fact is equal to the value ν := σ − deg(f2,∞) + 1, where f2,∞ is

the degree of f2 restricted to the open annulus A(0; r, 1).

Let us consider now a more general situation, a finite morphism f : Y → X of quasi-

smooth, connected 1-dimensional affinoids. By a result of Van Der Put [36, Theorem 1.1]

we know that that Y (resp X) can be embedded in a smooth, projective curve Y ′ (resp.

X ′), s.t. Y ′\Y = ]mi=1D
Y
i (resp. X ′\X = ]nj=1D

X
j ), where DY

i (resp. DX
j ) are isomorphic

to open unit discs. Suppose that f extends to a finite morphism f ′ : Y ′ → X ′. Let fi be

the restriction of f ′ to the disc DY
i , and let σi be its derivative when we restrict fi to a

small open annulus living at the boundary of DY
i . Then, with similar arguments as before

9Since dS
dT

is invertible, we can put it in the form dS
dT

= εTσ(1 + h(T )), where for each ρ ∈ (r, 1),
|h(T )|η0,ρ < 1. We say that σ is the order of dS

dT
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and with a bit more effort one can prove that

χ(Y ) = deg(f) · χ(X)−
m∑
i=1

νi −
∑

P∈Y (k)

(eP − 1)

where νi = σi−deg(fi)+1. This is a special case of our Riemann-Hurwitz formula 4.1.10.1.

In the previous paragraph we made an essential assumption in order for the arguments

to work, that the morphism ϕ extends to a finite morphisms of curves Y ′ and X ′ which are

made by adding open discs to the affinoids Y andX, respectively. Is it always possible to do

so, i.e. to compactify our morphism of affinoids? If we allow ourselves to add to our affinoids

more than just open discs but rather wide open curves of higher complexity (i.e. genus),

than the answer is yes by a result of Garuti [22, Proposition 2.4]). Unfortunately, the

above arguments work if we just add open discs to our affinoids, so we needed to find a

way around this obstacle.

Finally, we turn our attention to the definition of the Euler-Poincaré characteristic of

our curves. Although genus of our curves can be defined combinatorially/topologically via

the Euler characteristic of the graph coming from the semistable triangulations (one has to

take into account also the genus of the points themselves) to compute the Euler-Poincaré

characteristic one also has to count the number of ”missing” discs i.e. the number of discs

needed to ”projectify” our affinoid curve in the sense discussed before. For the right choice

of cohomology on our curve, this is achieved with the Euler-Poincaré characteristic defined

as the alternating sum of the dimensions/ranks of the corresponding cohomology groups.

Here one faces a choice which cohomology theory to use, i.e. for which cohomology we will

get the ”right” Euler-Poincaré numbers which will appear in Riemann-Hurwitz formula.

One choice could be the l-adic étale cohomology ([18]) Fand indeed, one would obtain the

right numbers. However, in this thesis we opted for the de Rham cohomology, as we had in

mind future applications in the area of p-adic differential equations. It is well known that

considering structure sheaf to compute de Rham cohomology yields, in general, in k-vector

spaces of infinite dimension and a way to remedy this is to use the overconvergent structure
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sheaf which implies the finite dimensionality. However, overconvergent rings of analytic

functions are naturally assigned to pro-objects, and this is precisely what motivated us to

introduce and study the category of pro-wide open curves.

The way to pass from pro-wide open curves to our affinoid or projective curves is by

using the ”heart”-functor which sends the pro-wide open curve to its ”heart” which is the

intersection of all wide open curves making the given pro-wide open curve. We classify

all the curves that can appear as hearts of the pro-wide open curves and we show that a

pro-wide open curve is essentially determined by its heart 10. This allow us to translate

many of the notions used for our curves into the setting of pro-wide open curves and it

is the category of pro-wide open curves that is the right setting when one considers the

open-closed coverings of our curves with affinoid domains and open subsets, and because

of their pro-structure they behave nicely when one considers questions related to de Rham

cohomology.

We now describe the content of the thesis.

In the first chapter we recall some basic notions concerning Berkovich p-adic curves

focusing our attention to quasi-smooth, compact curves and to wide open curves, as these

are the principal objects of our study. A relation between (strictly) semistable formal

models and (strictly) semistable triangulations is explained as well as the structure of our

curves using the reduction with respect to some model. We introduce what is classically

known as the skeleton of the curve in the form of the skeleton function (acting on the

subsets of our curve) and study its main properties. Finally, we introduce the strong

topology which, as far as we know, was mainly treated for the projective line. The strong

topology on the curves is particularly convenient when one studies the properties of the

ramification locus for the finite morphisms.

In the second chapter we prove the Coleman’s theorem i.e. the existence of strictly

ϕ-compatible triangulations (see Definition 2.1.2) for the curves Y and X and a morphism

10Let us say here that there is a pro-wide open curve which is empty-hearted and which corresponds to
what is classically known as the Robba ring
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ϕ like in (0.0.0.1) and for a finite morphisms of wide open curves as well. We also show

the equivalence of the problem of extension of ϕ to some semistable models and the

problem of finding compatible triangulations. The general path that we follow consists in

studying the problem for the case of a finite morphism between more simple curves and

then gradually increasing the generality. It is here where we also explain how to construct

strictly compatible triangulations for a finite morphism between an annulus and a disc,

which allow us to pass from semistable models/triangulations to strictly semistable ones.

We further apply the results to find compatible partitions of curves Y and X (whether they

are compact or wide open curves); we introduce some invariants for finite étale morphisms

of open annuli which will play an important role in Riemann-Hurwitz formula. We also

deal with an interesting problem of factoring finite morphisms into a morphism which is

residually separable (whose reduction is separable) and a morphism which is residually

purely inseparable11. Finally, we turn our attention to ramification locus, which we study

using the discriminant function, which was already studied by Lütkebohmert [31, 32], but

also by other authors in [37, 13]. We end by describing the ramification locus for a finite

morphism of affinoids with good canonical reduction and which is a lifting of Frobenius

morphism12.

In the third chapter we introduce and study the basic properties of the category W of

pro-wide open curves which are pro-objects built out of wide open curves. We focus on

their connection with our curves, and use their structure to study de Rham cohomology

of our curves13. Because of the overconvergent nature of the functions on pro-wide open

curves, the cohomology groups are finite dimensional. But moreover, their pro structure

makes them behave nicely in the coverings: for example, we explain how to recover the

Euler-Poincaré characteristic of our curves if we know Euler-Poincaré characteristic of its

11Our contribution here is merely to revive a beautiful result of R. Coleman which concerns lifting of
morphisms from characteristic p to characteristic 0

12A case we are particularly interested in because of the applications in studying p-adic differential
equations

13In this aspect pro-wide open curves are very similar to dagger affinoid spaces; In fact, we used a lot
results on dagger affinoid spaces to study pro-wide open curves
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(nice enough) subsets, which is a sort of a Mayer-Vietoris theorem. In particular, W

provides a fertile context to study Robba rings, which correspond to a nonempty objects

in W , which we call Robba proannulus (Definition 3.1.18).

Finally, in the last chapter we turn back to the motivational point of this thesis: The

Riemann-Hurwitz formula for a morphism (0.0.0.1). We formulate and study the formula

in the context of pro-wide open curves, putting in use the results of the previous chapters.

We provide different proof for residually separable morphisms (using the Riemann-Hurwitz

formula in the reduction), but also a general proof of Riemann-Hurwitz formula. Finally,

we provide a different point of view for a Riemann-Hurwitz formula of curves in charac-

teristic p > 0, regardless whether the morphism is separable or not.



Chapter 1

Compact, connected,

quasi-smooth k-analytic curves

From now on, let k be an algebraically closed field which is complete with respect to a

nonarchimedean valuation and of mixed characteristic (0, p). 1 The norm on k will be

denoted by | · |. We denote by k◦ the set of integers of k, i.e. the set {a ∈ k, |a| ≤ 1},

and by k◦◦ the maximal ideal of k◦, i.e. the set {a ∈ k, |a| < 1}. Residual field k̃ is by

definition k◦/k◦◦ and it is an algebraically closed field of characteristic p.

1.0.1. Unless otherwise stated, let X be a strict, compact, connected, quasi-smooth k-

analytic curve. Note that X is not empty.

1.1 Structure of compact, connected, quasi-smooth

k-analytic curves

1.1.1. Basic pieces Recall that the Berkovich projective line P1
k is the one point com-

pactification of the Berkovich affine line A1
k. The points of the affine line correspond to

the multiplicative k-seminorms on the polynomial algebra k[T ]. For a ∈ k and r ∈ R≥0

1As we already noted in the Introduction, for the sake of a straight exposition, we choose to threat only
this case, but the case of characteristic (0, 0) will be considered on equal basis in the following papers

15
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we denote by ηa,r the point in the affine line A1
k corresponding to the multiplicative semi-

norm which is given by: for f(t) ∈ k[T ], |f(ηa,r)| = maxi≥0 |f
(i)(a)
i! |r

i. For the seminorm

corresponding to the point ηa,ρ we will write | · |a,ρ or | · (ηa,ρ)|. If a = 0 we also write | · |ρ

instead of | · |0,ρ. We identify points in k with rational points in P1
k via a ∈ k ←→ ηa,0 ∈ P1

k.

For a ∈ k and r ∈ R≥0 we denote byD(a, r) (resp. D(a, r−)) the Berkovich closed (resp.

open) disc centered at a point a and of radius r. A point ηb,ρ is in D(a, r) (resp. D(a, r−))

iff b ∈ D(a, r) and ρ ≤ r (resp. ρ < r). Note that according to the previous, a rational

point is a closed disc of radius 0. Similarly, we denote by A[a; r1, r2] (resp. A(a; r1, r2)) a

closed (resp. open) Berkovich annulus with radii r1 and r2, where r2 ≥ r1 ∈ R>0 (resp.

r2 ≥ r1 ∈ R≥0). Note that A(a; r1, 0) is a punctured open disc i.e. the open disc D(a; r−2 )

punctured in the point ηa,0. For the later purposes, we will agree to consider a complement

in a projective line of a closed disc to be an open disc. Note that under this assumptions,

affine line A1
k is an open disc (for which we agree to say to be of infinite radius).

In general, let X be a connected, quasi-smooth k-analytic curve. A subset D ⊂ X is

called a standard open disc (or just an open disc) if there is an isomorphism T : D
∼−−→

D(0, r−). A subset A ∈ X is called a standard open annulus (or just an open annulus) if

there is an isomorphism T : A
∼−−→ A(0; r1, r2). A standard open disc D is strict if there

exists an isomorphism D
∼−−→ D(0, 1−), and similarly, a standard open annulus is strict if

there exists an isomorphism A
∼−−→ A(0; , r1, r2), and both r1, . . . , r2 ∈ |k|.

Open discs and open annuli are special cases of wide open curves (or wide open spaces).

We slightly generalize the definition given in [15].

Definition 1.1.2. Let X be as in 1.0.1 and assume that it is projective. An open analytic

subset U of X is called a wide open (resp. strict wide open) in X if X \ U is a finite

disjoint union (possibly empty) of closed discs (resp. strict closed discs) in X. In general,

an analytic curve ( i.e. a 1-dimensional analytic spaces) is called a (strict) wide open curve

if it is isomorphic to a wide open subset in some curve X as before.

An open analytic subset U of X, where X is an affinoid curve like in 1.0.1 such that
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X \ U is a finite nonempty disjoint union of open discs (resp. strict open discs) is called

a generalized wide open curve (resp. a generalized strict wide open curve) in X.

If U ⊆ X is a wide open curve embedded in a curve X, the points in the set Ū \ U ,

where Ū is the closure of U in X, are called endpoints of U in X.

For example, smooth projective k-analytic curves (i.e. analytifications of smooth pro-

jective k-algebraic curves) are wide open curves, but so are the analytifications of smooth

affine k-algebraic curves.

Definition 1.1.3. Let U be an analytic domain in X where X is like in 1.0.1. Then, any

isomorphism (resp. étale morphism) T : U
∼−−→ V where V is an analytic domain in P1

k

is called a coordinate (resp. an étale coordinate) .

For example, for a standard strict open annulus in some curve, there is a coordinate

T : A
∼−−→ A(0; r1, 1) where r ∈ |k×| and two standard strict open annuli T1 : A1

∼−−→

A(0; r1, 1) and T2 : A2
∼−−→ A(0; r2, 1) are isomorphic if and only if r1 = r2.

1.1.4. Semistable triangulations Let X be as in 1.0.1. Then, X is either projective, i.e.

analytification of a smooth k-algebraic curve, or it is an affinoid [21, Théorème 2] (recall

that we assume our affinoids to be strict, unless otherwise stated). Structure of such

curves as well as various constructions concerning their (strictly) semistable reduction

is described in details in [2]. The topic of more general k-analytic curves is thoroughly

studied in the coming book [17], which also contains the (analytic) proof of the existence of

semistable triangulations. For the purpose of this paper, we explain the relation between

strictly semistable triangulations of X and strictly semistable models of X.

Definition 1.1.5. Let X be as in 1.0.1 or a wide open curve. A semistable triangulation

of X is a finite set T of type two points of X such that X \ T decomposes into a disjoint

union of open discs and finitely many open annuli.

Assume that the semistable triangulation T consists of at least two points or that T

has at least one point and X is not isomorphic to a projective curve. Let ξ ∈ T . We
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denote

(i) Cξ to be a maximal subaffinoid in X with respect to T , with good canonical reduction

and maximal point ξ. With respect to T means that for residual classes of Cξ we

only take maximal open disks in X \ T which are attached to ξ. By CT , we denote

the set {Cξ, ξ ∈ T }.

(ii) AT to be the set of connected components in X \ T which are open annuli. If

X is compact then this is the set of all open annuli in X which have both end-

points in T and which don’t contain any point of T . For ξ ∈ T , let Aξ = {A ∈

AT , A has an endpoint in ξ}.

(iii) For ξ ∈ T , Wξ to be the union of Cξ and all annuli in Aξ. Wξ is an open connected

subset of X which is a wide open curve. Let WT = {Wξ, ξ ∈ T }.

Remark 1.1.6. If, for exampleX = P1
k then any type two point in x ∈ X is a triangulation

of X. This means that the the set of all open discs in X attached to x, together with x, is

not an affinoid domain but rather the whole projective curve. That is why in the previous

definition we assume that T has at least two points or simply that X is not isomorphic to

a projective curve.

Remark 1.1.7. We note here that in the terminology of [15], elements of the set WT

define a semistable covering of X. Recall that the later is a finite collection C of wide

open curves in X satisfying the following conditions: (i) for any two different elements

U ,V ∈ C, the intersection U ∩ V is a finite union of open annuli in X, (ii) for any three

distinct elements U ,V,W ∈ C, U∩V∩W = ∅, and finally (iii) for any U ∈ C, the underlying

affinoid domain Uu which is by definition the affinoid domain Uu := U \ ∪V∈C,V6=UV has

a canonical reduction which has only regular singular points. As we have seen, to each

semistable triangulation T of X, we can assign a semistable covering WT . On the other

side, it can be seen that semistable covering C of X comes from a triangulation if and only

if for each element U ∈ C, the underlying affinoid Uu has good canonical reduction.
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Definition 1.1.8. For a semistable triangulation T we say that it is strictly semistable if

each open annulus in AT has distinct endpoints.

Remark 1.1.9. Given a semistable triangulation T , we can always construct a strictly

semistable one by picking the open annuli in A ∈ AT whose endpoints coincide, and then

add to T a type 2 point from the skeleton of A (see Definition 1.2.1 for the definition of

the skeleton).

We extend the Definition 1.1.2 by introducing special classes of wide open curves.

Definition 1.1.10. A wide open curve U is called simple if U has a strictly semistable

triangulation consisting of one point (not necessarily unique).

Similarly, we say that a generalized wide open curve is simple if it has a strictly

semistable triangulation consisting of one point.

1.1.11. Semistable formal models and triangulations Assume X to be as in 1.0.1. To any

semistable triangulation of X we can assign a formal semistable model of X, which we

denote by XT in the following way. We start by constructing formal schemes Spf O◦(Wξ),

for ξ ∈ T and glue them along Spf O◦(Wξ1 ∩Wξ2) where Wξ1 ∩Wξ2 6= ∅. The special fiber

of XT , denoted by XT ,s is a reduced k̃-scheme, with only regular singular points. There is

a well defined specialization map spe : XT → XT ,s, whose main properties are recalled in

the following theorem ([10, Proposition 2.2 and 2.3] and [5, Proposition 2.4.4]).

Theorem 1.1.12. (Bosch-Lütkebohmert-Berkovich) Let X be as in 1.0.1, T a semistable

triangulation of X, XT the corresponding semistable formal model and spe : XT → XT ,s

the specialization map. Let x ∈ XT ,s. Then

(i) The mapping spe induces a 1-1 correspondence between the irreducible components

of XT ,s (or generic points of irreducible components of XT ,s) and of points in T ;

(ii) If x is a smooth point in XT ,s belonging to the irreducible component with generic

point x̃, then spe−1(x) is an open disc with the endpoint spe−1(x̃);
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(iii) If x is a regular singular point in XT ,s belonging to the irreducible components with

generic points x̃1 and x̃1 (x̃1 and x̃2 may coincide), then spe−1(x) is an open annulus

with endpoints spe−1(x̃1) and spe−1(x̃2).

Using this theorem, given a strictly semistable model X ofX, we obtain a corresponding

strictly semistable triangulation TX in the following way. Let {c1, . . . , cr} be the irreducible

components of Xs, let sm(c) denote the smooth part of the component c, and let Sing(Xs)

denote the singular locus of Xs. If gen(ci) denotes the generic point of the component ci,

then TX = {spe−1(gen(ci)), i = 1, . . . , r}. If r > 1 we furthermore have

CTX = {spe−1(sm(ci)), i = 1, . . . , r}

ATX = {spe−1(x), x ∈ Sing(Xs)}

WTX = {spe−1(ci), i = 1, . . . , r}.

1.1.13. Minimal semistable triangulations. Given a curve X like in 1.0.1, one can ask

whether exists a minimal semistable triangulation T of X, i.e. a triangulation such that

every other semistable triangulation of X necessarily contains it. The following theorem

gives us necessary and sufficient conditions and is a translation of a corresponding result

for semistable formal models given in [2, Theorem 1.2.9].

Theorem 1.1.14. Let X be a smooth, connected, projective k-analytic curve. Then, X

has a minimal semistable triangulation if and only if g(X) ≥ 2 or g(X) = 1 and X has a

smooth formal model, where g(X) is the genus of X.

As one can nottice, the cases where X doesn’t have a minimal semistable triangulation

is when X = P1
k or when X is a Tate curve i.e. an analytification of a smooth, projective

k-algebraic curve of genus 1, which doesn’t have a smooth projective model over the ring

of integers k◦. For example, every type two point of P1
k is a semistable triangulation of P1

k.

Assumption 1.1.15. From now on we will assume, unless otherwise stated, that all the
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triangulations and formal models are strictly semistable, and therefore we will sometimes

omit saying strictly semistable.

1.1.16. Tangent space at a point. Let x ∈ X be a point. The inductive limit over the

open connected neighborhoods U of x in X of connected components of U \ {x} is called

the tangent space at x and is denoted by TxX. We will sometimes call the elements of

the set TxX the tangential points and use ”~t” notation for them. If x is of type 1 or 4,

then the set TxX consists of one point [3, Section 4.2], this is because in these cases a

fundamental system of neighborhoods consists of a decreasing sequence of discs Di in X

where Di \ {x} has only one connected component. If x is of type three, then there exists

an open neighborhood A of x in X which is an open annulus with different endpoints (this

follows from the existence of semistable triangulations of X). In this case, TxX consists

of two elements, corresponding to two connected components of A \ {x} (or to the two

endpoints of A in X).

If x is a type 2 point, the space X can be described in another way. Namely, by

choosing a triangulation T of X such that x ∈ T , then from 1.1.12 it follows that x

corresponds to an irreducible component cx of XT ,s. Then, TxX can be identified with the

rational points of the curve cx(k̃) via the correspondence cx(k̃)→ TxX where the point is

sent to the class of its preimage under the specialization map using the 1.1.12. It is clear

that we can identify the tangential points in TxX with the residual classes which have an

endpoint in x.

Suppose now that X is an affinoid. It is well known (see [36]) that X can be embedded

in the analytification X ′ of a smooth, projective k-algebraic curve X ′, s.t. X ′ \ X is a

finite union of disjoint open discs. Moreover, the number of discs is independent of the

choice of X ′ (see Definition 3.1.44 and the remark that follows it). Let us fix one such X ′,

and let X ′ \ X = ]ni=1Bi, where Bi are disjoint open discs. For i = 1, . . . , n, let ξi ∈ X

be the (necessarily) type two endpoint of the disc Bi, and let ~ti ∈ TξiX ′ be the tangent

vector corresponding to Bi.
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Definition 1.1.17. We define TX to be the set of tangent vectors {~t1, . . . ,~tn} constructed

in the previous paragraph. If X is projective, we agree for TX to denote the empty set.

Remark 1.1.18. Let X ′ \X = ]ni=1Bi be as above. Then, the discs Bi correspond to the

points at infinity of the smooth compactification of the canonical reduction of X.

1.1.19. Change of a base field. Because of the different natures of the various complete

residue fields of points in a curve, i.e. different types of points in X, sometimes the notions

defined over points of one type may not be directly defined over points of other types. We

will see an example of this when we introduce discriminant at a point with respect to

the given finite morphism where we have to work over points of type 2. Another glimpse

of this can be seen in the theory of p-adic differential equations when one introduces the

radius of convergence at a point of an integrable connection (where we one needs the point

to be rational). For this aspect, see for example [2].

A way to deal with these problems is to choose a suitable extension of the base field K/k

and to consider the curve XK . In this paragraph we collect some of the main properties

of this operation, detailed in [3, Section 3.1].

We start with a compact, connected, quasi-smooth k-analytic curve X. Let x ∈ X

be a type 2 or 3 point in X (this will be the particular cases that we are interested in)

and let H (x) denote it’s usual complete residue field. Let K/k be a complete valued

extension of k, and let us put XK := X⊗̂kK (see [5, 2.1] for the construction of X⊗̂kK).

We may proceed locally and assume that X is a k-affinoid space corresponding to the

affinoid algebra A, in which case XK is a K-affinoid space corresponding to the K-affinoid

algebra A⊗̂kK. We have a natural projection map ψK : XK → X corresponding to the

isometric embedding A ↪→ AK . For a point x ∈ X, it can be proved that the topological

spaces ψ−1
K (x) and M(H (x)⊗̂kK) are homeomorphic ([3, Section 3.1]).

Suppose now that there is an isometric embedding ι : H (x) ↪→ K. Then we can

introduce the following definition (loc.cit. )
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Definition 1.1.20. The canonical rational point xι,K above x in XK is the unique rational

point in XK corresponding to the character χxι,K = ι ◦ χx : A⊗̂kK → K, where χ : A →

H (x) is the character corresponding to the point x. In particular, when K = H (x) and

ι = id Hx, we write xH (x) for xid ,H (x).

Remark 1.1.21. (i) Moreover, the set of K-rational points in the fiber ψ−1
K (x) is in one-

to-one correspondence with the set of different isometric embeddings H (x) ↪→ K and any

k-rational point x ∈ X lifts to a unique rational point xK ∈ XK (loc.cit. Proposition 3.3

and Corollary 3.5).

(ii) The previous definition and construction are meaningful even if the base field k is

not algebraically closed but rather just a complete valued field.

However, when k is algebraically closed, each point x ∈ X is universal i.e. the complete

residue field H (x) is universally multiplicative which means that for each complete valued

extension K/H (x), the tensor norm on H (x)⊗̂K is multiplicative ([33, Definition 3.2]).

In particular, M(H(x)⊗̂kK) contains a point which corresponds to the (multiplicative)

norm on H (x)⊗̂kK, denoted by σK(x). The map of topological spaces σK : X → XK is

continuous (loc.cit. Corollaire 3.7).

Definition 1.1.22. We call the point σK(x) the K-generic point above x in XK .

Remark 1.1.23. It is shown in [3, Section 3.1] that σK(x) corresponds to the unique

point in the Shilov boundary of the multiplicative spectrumM(H (x)⊗̂kK) of K-Banach

algebra H (x)⊗̂kK. In particular, if |H (x)| ⊂ |K| and x is a type two or three, then the

K-generic point σK(x) is of type two. This will be of importance for us in the Section

2.4.1 and definitions 2.4.8 and 2.4.9.

Example 1.1.24. To get a feeling of the introduced notions, we start with an example

in the form of a closed annulus X =M(k{T, r−1T−1}), r ∈ (0, 1). Let x ∈ X be a point

corresponding to the point η0,ρ, ρ ∈ (r, 1) on the skeleton of the annulusM(k{T, r−1T−1})

and let K be a valued extension of k. Then, XK = M(K{T, r−1T−1}) and we have
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a canonical inclusion k{T, r−1T−1} ↪→ K{T, r−1T−1} which induces a projective map

ψK :M(k{T, r−1T−1})→M(K{T, r−1T−1}).

Let us take K : H (x) and let t be the image of the variable T under the canonical

inclusion k{T, r−1T−1} ↪→ K. Then t is precisely a canonical rational point above x in

XK .

If we take K to be the completion of the algebraic closure of H (x), then σK(x) is

the point ζK0,ρ i.e. a point corresponding to the seminorm defined by |(
∑
aiT

i)(ζK0,ρ)| =

maxi |ai|ρi where
∑

i aiT
i ∈ K{T, r−1T−1}.

1.2 Skeleton

We assume X to be as in 1.0.1 or a wide open curve.

Definition 1.2.1. The skeleton function ΓX is the function ΓX : P (X) → P (X), where

P (X) is the power set of X, that sends a subset S ⊂ X, to a subset ΓX(S) ⊂ X which is

the complement of the union of all open discs in X having an empty intersection with S.

If X is clear from the context, we also write Γ(S) or ΓS instead of ΓX(S).

An arbitrary subset of P (X) which is of the form ΓXS for some subset S is called the

skeleton of X or (X,S)-skeleton if we want to emphasize dependence on S.

Example 1.2.2. 1. ΓX∅ = ∅ if and only if X = P1
k or X an open disc (recall that we

also consider the affine line to be an open disc of infinite radius).

2. Suppose that X is an open annulus and S = ∅. Then Γ∅ is the usual skeleton of the

annulus. More precisely, if T : X
∼−−→ A(0; r, 1) is a coordinate on X, Γ∅ is the set

of points {η0,ρ, ρ ∈ (r, 1)}.

3. Let S be a semistable triangulation of X. Then ΓXS is a connected closed subset of

X consisting of the points in S, and skeleta of the open annuli in AS . Clearly, ΓXS is

a subset of the later set, and the equality follows from the Lemma 1.2.3 and Remark

1.2.4. If X is a semistable model of X, we will write ΓXX for the skeleton ΓXTX .
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4. Let X be as in 1.0.1 and assume that the X is not a projective line. Then ΓX∅ is

classically called the skeleton of the curve X. We will come back to this later.

5. For any dense subset S of X, ΓX(S) = X.

Lemma 1.2.3. Let X be as in 1.0.1 or a wide open curve. Then, for each S ⊂ X, ΓX(S)

is a connected closed subset of X.

Proof. The set ΓX(S) is closed by its very definition. Assume for the moment that X

is compact. Let s1, s2 ∈ S be distinct points in S and let T be any strictly semistable

triangulation of X such that s1, s2 don’t belong to the same open disc in X \ ΓXT . Let

ξ1, ξ2 ∈ T such that si ∈ Cξi . Then, there is a path P from s1 to s2 consisting of the

canonical paths from si to ξi and of the path from ξ1 to ξ2 along the set ΓXT . Moreover,

we can assume that every point of the path is simple.

Suppose that every point of the path P \ {s1, s2} belongs to an open disc which has

an empty intersection with S and let p ∈ P \ {s1, s2} be a type 2 point belonging to some

open disc D′ where D′ ∩ S = ∅. Then each except possibly one residual class at the point

p is an open disc and more over, the set of open discs in X with endnpoint in p, together

with p is a closed disc in X and in D′ which we denote by Dp. The set D of all open discs

containing Dp and with an empty intersection with S is nonempty D′ ∈ D and is ordered

by inclusion (if D1 and D2 are two open discs with a nonempty intersection, then one

of the two is a subset of the other), their union D is an open disc in X not intersecting

S. Let us denote by ξD the endpoint of D in X. By the construction we can conclude

that s1, s2 /∈ D and that ξD ∈ ΓX(S). Moreover, path P contains the point ξD because it

contains the point p and since we assumed that none of the points on P are double, we

obtain a contradiction.

Remark 1.2.4. We proved even more, namely, for every two distinct points s1, s2 ∈ S,

any simple path between them is contained in the set ΓX(S).
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Definition 1.2.5. Let ΓX be the skeleton function and S a subset of X. An endpoint

of the skeleton ΓX(S) is a point x ∈ ΓX(S) such that ΓX(S) intersects only one residual

class attached to x. A branching point of the skeleton ΓX(S) is a point x ∈ ΓX(S) such

that ΓX(S) intersects at least three residual classes attached to x. We say that the skeleton

ΓXS is finite if it has finitely many endpoints.

In the proof of next theorem, we will use the following results.

Lemma 1.2.6. Let X be as in 1.0.1 or a wide open curve and suppose Γ is a finite skeleton

in X with type two endpoints. Then, every open disc/connected components in X \ Γ is

strict i.e. has a type two endpoint in X.

Proof. Let D be an open disc/connected component in X \ Γ. The endpoint ηD of D

necessarily belongs to Γ. If ηD is a type three point, then there are only two tangent

directions emanting from it, one of which corresponds to D. The other one necessarily has

a nonempty intersection with Γ, which by definition means that ηD is an endpoint, which

is a contradiction.

Lemma 1.2.7. Let X be as in the previous lemma and let T be a nonempty semistable

triangulation of X. Let D be an open disc/connected component in X \ ΓT , Let ηD be

the endpoint of D in X(necessarily belonging to ΓT ) and suppose that D ∩ T 6= ∅. Then,

T ′ : {ηD} ∪ (T \ (T ∩D)) is a semistable triangulation of X.

Proof. First of all we nottice that the set T ′′ := {ηD} ∪ T is a strictly semistable tri-

angulation of X. The set of connected components in X \ T ′′ can be sorted in two

families: namely, connected components which are subsets of the set X \D and the con-

nected components which are contained in D. More precisely, let ID,1 be the set of open

discs/connected components of X \ T ′′ which are contained in X \ D, IA,1 be the open

annuli/connected components of X \ T ′′ which are contained in X \D, ID,2 be the set of

open discs/connected components of X \ T ′′ which are contained in D, and IA,2 be the
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open annuli/connected components of X \ T ′′ which are contained in D. Note that IA,i,

i = 1, 2 are finite sets. We can write

X \ T ′′ =
( ⊎
B∈ID,1

B
)⊎( ⊎

A∈IA1,

A
)⊎( ⊎

B∈ID,2

B
)⊎( ⊎

A∈IA,2

A
)
.

On the other hand, we simply have

X \ T ′ =
( ⊎
B∈ID,1

B
)⊎( ⊎

A∈IA1,

A
)⊎

D,

so it follows that T ′ is a semistable triangulation of X.

We are ready for the main result of this section, namely, finite graphs with type two

endpoints are precisely the ones coming from the semistable triangulations as in Example

1.2.2(3).

Theorem 1.2.8. Let X be as in 1.0.1 and let Γ be a (nonempty) finite skeleton only with

type two endpoints. Then there exists a (strictly) semistable triangulation T of X such

that Γ = ΓT .

Proof. Let E be the set of endpoints of Γ (possibly empty). Let us prove that there exists

a strictly semistable triangulation S of X which contains E, has a nonempty intersection

with Γ (the first condition will be used later in the proof while the second one is there to

simplify the argument in the case that E = ∅) and such that S ⊂ Γ. Let S ′ be any strictly

semistable triangulation of Γ which contains E, has a nonempty intersection with Γ and

let S ′ be such that the number n = |S ′ \Γ| is the minimal possible. If n > 0 let ξ ∈ S ′ \Γ.

By construction, ξ ∈ D, where D is an open disc/connected component in X \ Γ. Note

that the endpoint ηD of disc D is a type two point by Lemma 1.2.6, and it belongs to Γ

but also to ΓS′ because ΓS′ is connected, has a nonempty intersection with Γ and contains

a point in D. It follows that S ′′ := S ′ ∪ ηD is also a strictly semistable triangulation of X.

But then, S ′′ \ (S ′ ∩D) is a strictly semistable triangulation of X by Lemma 1.2.7 and we
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have |(S ′′ \ (S ′ ∩D)) \ Γ| < n which is a contradiction. We conclude n = 0.

As a consequence, there exists a strictly semistable triangulation S of X such that

E ⊂ S and S ⊂ Γ. Next we prove that ΓS = Γ. As S ⊂ Γ it follows ΓS ⊂ ΓXΓ = Γ.

Suppose that ΓS ( Γ i.e. there exists an open disc/connected component D in X \ ΓS

such that D ∩ Γ 6= ∅. If we prove that D contains an endpoint of Γ then we obtain the

contradiction as by the constraction E ⊂ S. So, the proof of the Theorem will follow from

the following:

Lemma 1.2.9. Let Γ be a finite skeleton in X and D an open disc in X having a nonempty

intersection with Γ. Then, D contains an endpoint of Γ.

Proof. We identify D with an open disc D(c, t−), where t ∈ R>0. Since D can be repre-

sented as a union of increasing sequence of closed discs contained in D, there is a closed disc

D0 = D(a0, ρ0) contained in D such that D0∩Γ 6= ∅. As Γ is connected, the endpoint ηa0,ρ0

of D0 belongs to Γ. Let (εn) be a decreasing sequence of positive real numbers converging

to 0. Let r0 := inf{ρ, s.t. ηa,ρ ∈ D0 ∩ Γ for some a ∈ D0(k)} and let ηa1,ρ1 ∈ D0 ∩ Γ

such that ρ1 < r0 + ε0. More generally, given ηan,ρn we put rn = inf{ρ, s.t. ηa,ρ ∈

D(an, ρn) ∩ Γ for some a ∈ D(an, ρn)(k)}, and take ηan+1,ρn+1 ∈ D(an, ρn) ∩ Γ with ρn+1

satisfying ρn+1 < rn + εn.

In this way, we obtained a sequence of points (ηan,ρn) such that the sequence of closed

discs D(an, ρn) is nested (meaning that for all n, D(an+1, ρn+1) ⊆ D(an, ρn)). It is known

then that the intersection ∩nD(an, ρn) is either a closed disc D(a, r) or a type 4 point.

Let ηa,ρ be the maximal point of the ∩nD(an, ρn) in case the intersection is a closed disc

D(a, ρ), or just the intersection itself, in the case the later is a type 4 point. The point ηa,ρ

must belong to Γ, because otherwise there exists an open disc in D\Γ which contains it and

this implies that the intersection ∩nD(an, ρn) is strictly bigger than D(a, ρ). Finally, let

us prove that ηa,ρ is an endpoint of Γ. If ηa,ρ is a type 4 point, then it is automatically an

endpoint, so let us assume that ηa,ρ is not of type 4. Suppose that ηa,ρ is not an endpoint

of Γ and let D′ be an open disc in D(a, ρ) attached to ηa,ρ such that D′ ∩ Γ 6= ∅ and let
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ηb,r ∈ D′ ∩ Γ for some b ∈ D′(k). Necessarily r < ρ and let i ∈ N be such that εi < ρ− r.

Then, by the construction of the sequence (ηan,ρn) we have ρi+1 < ri + εi ≤ r + εi < ρ

which is a contradiction. Hence, ηa,ρ is an endpoint of Γ.

1.2.10. Skeleton and minimal triangulations. For this paragraph, we assume that X is a

smooth, projective, connected k-analytic curve.

Theorem 1.2.11. Suppose that X has a minimal semistable triangulation and let T be

the minimal semistable triangulation of X. Then, ΓX contains T .

Proof. Suppose that there is a point t ∈ T such that t /∈ ΓX . Let D be the connected

component/open disc in X \ ΓX which contains t and let ηD be the endpoint of D.

Lemma 1.2.12. The point ηD belongs to ΓXT .

Proof. If not, then, ΓXT being connected and closed, and containing the point t, is com-

pletely contained in disc D. Then it follows that X = P1
k, which is a contradiction since

X has a minimal triangulation.

We can apply then Lemma 1.2.7 to conclude that {ηD}∪ (T \ (T ∩D)), which doesn’t

contain T , hence T is not the minimal semistable triangulation of X, which is a contra-

diction.

1.3 Strong topology on k-analytic curves

1.3.1 (Big) metric on k-analytic curves

1.3.1. Let D(0, 1−) be the (Berkovich) open unit disc. Let us introduce the function

dD(0,1−) : D(0, 1−) × D(0, 1−) → R≥0 in the following way: For two points ηa,ρ1 , ηa,ρ2 ∈

D(0, 1−) we put dD(0,1−)(ηa,ρ1 , ηa,ρ2) = dD(0,1−)(ηa,ρ2 , ηa,ρ1) := |ρ2 − ρ1|∞ where the

| · |∞ as usual denotes the ordinary archimedean absolute value on R. In general, for
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two points ηa1,ρ1 , ηa2,ρ2 ∈ D(0, 1−), let ηa,ρ = ηa1,ρ = ηa2,ρ be the maximal point of

the minimal closed disc in D(0, 1) containing both points (if ηa,ρ doesn’t coincide with

one of the points ηa1,ρ1 and ηa2,ρ2 , then it can be seen that ηa,ρ is the unique branch-

ing point of the skeleton Γ
D(0,1−)
{ηa1,ρ1 ,ηa2,ρ2}

). In this case, we put dD(0,1−)(ηa1,ρ1 , ηa2,ρ2) :=

dD(0,1−)(ηa1,ρ1 , ηa1,ρ) + dD(0,1−)(ηa2,ρ2 , ηa2,ρ).

Lemma 1.3.2. The function dD(0,1−) is a metric on D(0, 1−).

Proof. The proof is straightforward but we present it for the sake of the reader. We put for

the moment d := dD(0,1−). As the other properties for a metric are clear, we just prove the

triangle inequality: For three points η1, η2, η3 ∈ D(0, 1−), d(η1, η2) ≤ d(η1, η3) + d(η2, η3).

As the other cases are trivial, we assume that η1 6= η2 6= η3 6= η1.

Let η = ηa,ρ be the maximal point of the minimal closed disc which contains both of

the points η1 and η2. We distinguish the following cases.

The point η3 doesn’t belong to the closed disc D(a, ρ) and let η4 be the maximal point

of the minimal closed disc containing η2, η2 (hence η) and η3. We have

d(η1, η3) + d(η2, η3) = d(η1, η4) + d(η4, η3) + d(η2, η4) + d(η4, η3)

= d(η1, η) + d(η, η4) + +d(η4, η3) + d(η2, η) + d(η, η4) + d(η4, η3)

≥ d(η1, η) + d(η2, η) = d(η1, η2)

so the triangle inequality is satisfied.

Suppose that η3 ∈ D(a, ρ). If η3 = η the triangle inequality is trivial so assume that

η3 6= η. We distinguish two cases (a) and (b) below.

(a) The open disc attached to η which contains η3 also contains one of the two points

η1 or η2. Without loss of generality, we assume that η1 and η3 belong to the same residual

class at η and let η4 be the maximal point of the minimal closed disc containing both

points η1 and η3. Note also that the maximal point of the minimal closed disc containing

η4 and η2 (as well as η3 and η2) is η. Then,
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d(η1, η3) + d(η2, η3) = d(η1, η4) + d(η4, η3) + d(η3, η) + d(η, η2)

= d(η1, η4) + d(η4, η3) + d(η3, η4) + d(η4, η) + d(η, η2)

= d(η1, η4) + d(η4, η) + d(η, η2) + 2d(η3, η4)

≥ d(η1, η) + d(η2, η) = d(η1, η2).

(b) All the three points η1, η2, η3 belong to different open discs attached to η. We have

d(η1, η3) + d(η2, η3) = d(η1, η) + d(η, η3) + d(η2, η) + d(η, η3)

≥ d(η1, η) + d(η2, η) = d(η1, η2).

In general, for a strict open disc D and a coordinate on it T : D
∼−−→ D(0, 1−), we can

equip D with a metric dD,T by setting dD,T := T ∗dD(0,1−) i.e. dD,T is the pullback via T

of the metric dD(0,1−). For the points x, y ∈ D we have dD(x, y) = dD(0,1−)(T (x), T (y)).

In fact, dD,T doesn’t depend on T , because automorphisms of the open unit disc preserve

the radius of the points, therefore for such a metric on D we will simply write dD.

1.3.3. Let A(0; r, 1) be the open annulus with inner radius r and the outer radius 1. For

two points x, y ∈ A(0; r, 1) we define the function dA(0;r,1) : A(0; r, 1)×A(0; r, 1)→ R≥0 as

dA(0;r,1)(x, y) := dD(0,1−)(x, y), where dD(0,1−) is like in the previous paragraph. In other

words dA(0;r,1) = (dD(0,1−))|A(0;r,1). It follows that dA(0;r,1) is a metric on A(0; r, 1).

For a general strict open annulus A and a coordinate T : A
∼−−→ A(0; r, 1) we define

metric dA,T as the pullback T ∗dA(0;r,1) of the metric dA(0;r,1) via coordinate T . Note that

contrary to the case of an open disc, dA,T depends on the coordinate T as there are two

orientations of the open annulus. More precisely, assuming that A is strict open annulus,

if we introduce the coordinate T1 : A
∼−−→ A(r, 1) which sends the point x ∈ A to α

T (x) ,
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where α ∈ k such that |α| = r, then the radius of the points is changed hence we get a

different metric on A. But if the two coordinates have the same orientation, the induced

metrics are the same.

1.3.4. Let X be a compact, connected, quasi-smooth k-affinoid with good canonical re-

duction and let ξ be the maximal point of X i.e. the unique point in the Shilov boundary

of X. We define the function dX : X ×X → R≥0 as follows.

Let x1, x2 be two points in X contained in the same open disc D which is a residual

class attached to ξ. In this case we put dX(x1, x2) := dDx1, x2 where dD is like in the end

of the Paragraph 1.3.1.

Let x ∈ X be a point and let D be the open disc attached to ξ that contains x. We

set dX(x, ξ) = dX(ξ, x) := 1− ρD(x), where ρD(x) is the radius of the point of x taken for

(any) coordinate T : D
∼−−→ D(0, 1−).

Finally, for two points x1, x2 ∈ X and not belonging to the same residual class attached

to ξ, we put dX(x1, x2) := dX(x1, ξ) + dX(x2, ξ).

Lemma 1.3.5. The function dX is a metric on X.

Proof. As before, we just prove the triangle inequality. Let x1 6= x2 6= x3 6= x1 be three

points in X.

If x1, x2 belong to the same residual class D attached to ξ, and x3 = ξ or x3 belongs

to the residual class at ξ which doesn’t contain x1, x3, let x4 be the maximal point of

the minimal closed disc in D containing x1, x2. Then we can check directly the following

equalities

(1.3.5.1)

dX(x1, x3) + dX(x2, x3) = dX(x1, x4) + dX(x3, x4) + dX(x2, x4) + dX(x4, x3) ≥ dX(x1, x2).

If x3 = ξ and x1, x2 belong to the different residual classes at ξ, then the triangle inequality

becomes equality.
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Similarly, if one of the pairs {x1, x3}, {x2, x3} is contained in one residual class at ξ

(without loss of generality we assume that {x1, x3} is contained in an open disc D attached

to ξ) and if x2 = ξ or x2 belongs to an open disc attached to ξ and different from D, we

can refer again to (1.3.5.1).

If all the three points belong to different residual classes at ξ, then the triangle in-

equality becomes equality and is easy to check. Finally, the only remaining case is the

case where all the three points belong to the same residual class at ξ, in which case we

refer to Paragraph 1.3.1 and Lemma 1.3.2.

1.3.6. Let W be a simple wide open (see Definition 1.1.10), let {ξ} be a strictly semistable

triangulation of W , let W0 be the underlying affinoid domain with the maximal point

W0. Let W \W0 = ]si=1Ai, where Ai are disjoint open annuli. For each i = 1, . . . , s, let

Ti : A
∼−−→ A(0; r, 1) be a coordinate on Ai such that the sequence of points η0,ρn , ρn → 1−

is converging to ξ (note that even if the annulus Ai is not strict, such a coordinate does

exist as Ai is attached to ξ).

The function dW,ξ : W ×W → R≥0 is defined as follows. Suppose w1, w2 ∈ W0 (resp.

to some Ai as above). Then, we put dW,ξ(w1, w2) := dW0(w1, w2) (resp. dW,ξ(w1, w2) :=

dAi,Ti(w1, w2)). where dW0 (resp. dAi,Ti) is as in Paragraph 1.3.4 (resp. Paragraph 1.3.3).

If w ∈ W , and w belongs to some maximal open disc D in W attached to ξ (resp.

to some open annulus Ai as above), we put dW,ξ(w, ξ) = dW,ξ(ξ, w) := 1 − ρD(w) (resp.

dW,ξ(w, ξ) = dW,ξ(ξ, w) := 1− ρAi,Ti(w)).

Finally, if two points w1, w2 ∈W don’t belong to the same residual class in W attached

to ξ, we set dW,ξ(w1, w2) = dW,ξ(w1, ξ) + dW,ξ(w2, ξ).

Theorem 1.3.7. The function dW,ξ : W ×W → R≥. (w1, w2) 7→ dW,ξ(w1, w2) is a metric

on W .

Proof. The proof follows similar arguments as those of Lemmas 1.3.2 and 1.3.5.
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Remark 1.3.8. Following the previous paragraph, we can introduce the big metric for

a bigger class of analytic curves. For example, if U is a k-analytic curve such that there

exists a morphism i : U → W , where W is a simple wide open can take the pullback

metric via i of the restriction of dW,ξ to i(U), that is we have the metric on U which is

di,W,ξ := i∗((dW,ξ)|i(U)). Even for a wider class of k-analytic curves a similar metric can

be defined, but this is not necessary for our purposes.

We agree that when we write di,W,ξ for a metric on U that it is precisely the metric

described above.

1.3.2 Strong topology on k-analytic curves

1.3.9. Let U be a quasi-smooth k-analytic curve and i : U →W a morphism such that W

is a simple wide open curve and such that i induces an isomorphism U
∼−−→ i(U). For a

given strictly semistable triangulation {ξ}, we have a metric di,W,ξ defined as in Paragraph

1.3.8.

Definition 1.3.10. We denote the topology on U induced by the metric di,W,ξ by τi,W,ξ.

1.3.11. It follows from the Remark 1.3.8 that for the same curve U , we can introduce

different metrics di,W,ξ depending on the morphism i : U → W but also on the choice

of the strictly semistable triangulation {ξ} of W , if it is not unique. For example, if we

take the Berkovich projective line A1
k, for any type two point ξ in A1

k we obtain different

metric on A1
k. However, although a priori for each such a metric di,W,ξ we have a different

induced topology τi,W,ξ, it turns out that the topologies are equivalent.

Theorem 1.3.12. Let U be a quasi-smooth k-analytic curve and i1 : U → W1 and i2 :

U → W2 two morphisms such that W1 and W2 are simple wide open curves and such

that U
∼−−→ i1(U) and U

∼−−→ i2(U). Then, the topologies τi1,W1 and τi2,W2 on U are

equivalent.

Proof.
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1.3.13. Let X be like in 1.0.1 or a wide open curve, and let T be a nonempty strictly

semistable triangulation of X, and assume for simplicity that T has at least two elements.

Recall the sets WT from the Definition 1.1.5. For each element U ∈ WT we can introduce

a topology τ on it by embedding i : U → W , where W is a simple wide open curve and

such that i induces an isomorphism i : U → i(U). More precisely, U is a simple wide open

curve or a generalized simple wide open curve. In the first case we can take i : U →W to

be id : U → U while in the second case, which only occurs if X is an affinoid space and U

corresponds to a point ξ ∈ T which is in the Shilov boundary of X, we proceed as follows.

From the Van der Put’s theorem ([36]), X can be embedded in the analytification X ′

of a smooth, connected, projective k-algebraic curve such that X ′ \ X is a finite union

of disjoint open discs, some of which are necessarily attached to the point ξ. Adding

boundary open annuli of these discs to the the point ξ and to the set U we obtain a simple

wide open curve W containing U . We take i : U →W to be id : U →W .

In this way, each of the elements in U ∈ WT can be equipped with a strong topology

τU which by Theorem 1.3.12 does not depend on the choices made. In the same way we

can equip annuli in AT with the strong topology and if A ∈ AT is such that A ⊂ U , for a

U ∈ WT , then the restriction of the topology τU to A coincides with the strong topology

on A. Moreover, as the spaces U ∈ WT have as intersections finite unions of elements in

A we can glue topological spaces (U, τU ), U ∈ WT along (A, τA) to obtain a topology τX,s

on our initial curve X. It doesn’t depend on the strictly semistable triangulation T .

Definition 1.3.14. We call the topology τX the strong topology on the curve X.
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Chapter 2

Finite morphism between

k-analytic curves

2.0.15. Setting Throughout the paper, unless otherwise stated, ϕ : Y → X will denote a

finite morphism between compact, connected, quasi-smooth k-analytic curves.

2.1 Compatible models and triangulations

Definition 2.1.1. Let ϕ : Y → X be as in 2.0.15, and let Y and X be some formal

(resp. strictly) semistable models of Y and X, respectively. We say that ϕ extends to a

finite morphism between models Y and X if there exists a finite morphism Φ : Y → X

such that ϕ = Φη, where Φη is the generic fiber of Φ. If ϕ extends to a finite morphism

between models Y and X, we also say that Y and X are (resp. strictly) ϕ-compatible. We

sometimes just say compatible, if ϕ is understood from the context.

We have a similar notions for triangulations.

Definition 2.1.2. Let ϕ : Y → X be as in 2.0.15. We say that semistable triangulations

S and T of Y and X, respectively, are ϕ-compatible (or just compatible if ϕ is understood

from the context) if S = ϕ−1(T ). We say that they are strictly ϕ-compatible (or just strictly

37
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compatible if ϕ is understood from the context) if no two adjacent vertices of S are mapped

to a single vertex of T . Two vertices of a triangulation are said to be adjacent if they are

endpoints of an open annulus which has an empty intersection with the triangulation itself.

Theorem 2.1.3. Let ϕ : Y → X be as in 2.0.15 and let Y and X be semistable formal

models of Y and X, respectively. Then, Y and X are ϕ-compatible if and only if the

triangulations TY and TX are ϕ-compatible.

Proof. Let Φ : Y → X be the extension of ϕ. Then it is known that the generic points

of the irreducible components of Ys are surjectively mapped to the generic points of

the irreducible components of Xs which implies that the triangulations TY and TX are

ϕ-compatible.

We postpone the proof of the converse implication until after the Corollary 2.1.32.

The main results of this section are the following theorems.

Theorem 2.1.4. Let ϕ : Y → X be a finite morphism of compact, connected, quasi-

smooth, k-analytic curves. Then, there exists triangulations S and T of Y and X, respec-

tively, which are (strictly) ϕ-compatible.

Theorem 2.1.5. Let ϕ : T → X be as in 2.0.15. Then, there exist (strictly) semistable

formal models Y and X of Y and X, respectively, such that ϕ extends to a finite morphism

Φ : Y→ X.

There is a counterpart for the finite morphisms of wide open curves.

Theorem 2.1.6. Let ϕ : W → V be a finite morphisms of wide open curves. Then, there

exists triangulations S and T of W and V , respectively, which are (strictly) ϕ-compatible.

Before going to the proofs, we give some remarks.

Remark 2.1.7. Suppose that S and T are ϕ-compatible semistable triangulations of Y

and X, respectively, then, at the level of skeletons, ΓYS = ϕ−1(ΓXT ). As was seen before,
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ΓYS (resp. ΓXT ) is a disjoint union of the skeleta of the annuli in AS (resp. AT ) and S (resp.

T ). It will be shown later (Corollary 2.1.32) that each A2 ∈ AT is of the form ϕ(A1) for

some A1 ∈ AS and for each A1 ∈ AS there exists an A2 ∈ AT such that ϕ restricts to a

finite morphism ϕ : A1 → A2. Having in mind this, to prove ΓYS = ϕ−1(ΓXT ) it is enough

to prove that if ϕ : A1 → A2 is a finite morphism of open annuli, then ΓA1 = ϕ−1(ΓA2).

But this is a consequence of the fact that, for a choice of coordinates on A1 and A2, the

valuation polygon of the function ϕ consists of a single segment of nonzero slope without

breaks, and essentially (the second and the third paragraph of) the proof of Lemma 2.1.17.

Remark 2.1.8. Let ϕ : Y → X, S and T be as in Theorem 2.1.4 and suppose that

ξ ∈ ΓXT \ T is a type two point. Necessarily, ξ belongs to a skeleton of an open annulus

in AT and therefore T1 := T ∪ {ξ} is a strictly semistable triangulation of X. Then

S1 = ϕ−1(T1) = S ∪ ϕ−1(ξ) is a (strictly semistable) triangulation of Y which is ϕ-

compatible with T1. Again, this is a consequence of Corollary 2.1.32 and the previous

remark. Namely, we simply note that every point in ϕ−1(ξ) belongs to a skeleton of some

open annulus in AS .

Remark 2.1.9. As we have seen in the Remark 2.1.7 if we have a finite morphism of

quasi-smooth, k-analytic curves ϕ : Y → X and strictly ϕ-compatible triangulations S

and T of Y and X, respectively, then it follows that for skeleta ΓS = ϕ−1(ΓT ). In the

other direction, if we have Γ1 = ϕ−1(Γ2), where Γ1 and Γ2 are finite skeleta with type

2 endpoints, then we can find strictly semistable triangulations S ′ and T ′ of Y and X,

respectively, such that Γ1 = ΓYS′ and Γ2 = ΓXT ′ (Lemma 1.2.8). Then, for the reasons

similar as in the previous remarks T := ϕ(S ′) ∪ T ′ is a semistable triangulation of X and

S := ϕ−1(T ′) is a semistable triangulation of Y and S and T are strictly ϕ-compatible.

In fact, this gives a way to prove the Theorem 2.1.4, which was adapted in article [1] of

which the author learned while writing this note. We explain, in our own words the main

idea of [1], and compare it to our method. Namely, in loc.cit. Section 4.10, it is proved

that, in our terminology, given a semistable skeleton Γ1 in the curve Y , and a semistable
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skeleton Γ2 in the curve X, we can find a semistable skeleton Γ3 in X containing Γ2∪ϕ(Γ1).

As semistable skeleton Γ1 corresponds to a semistable triangulation TΓ2 of X which as a

complement has a finite disjoint union of open annuli and a disjoint union of open discs,

one is led to prove that for each open annulus A ∈ ATΓ2
, ϕ(Γ1)∩A is a finite (semistable)

skeleton in A and for each open disc/connected component in X \Γ2, ϕ(Γ1)∩D is a finite

(semistable) skeleton in D. Similarly, in the other direction one shows that ϕ−1(Γ3) is a

semistable skeleton of Y , again by studying intersections of ϕ−1(Γ3) with the open discs

in Y \ Γ1 and with the open annuli in ASΓ1
.

Let us explain the underlying idea of the proof of Theorem 2.1.4. Let S1 be any

semistable triangulation of Y and let T1 be any semistable triangulation of X containing

the points in the set ϕ(S1). Then, the connected components of Y \ ϕ−1(T1) are open

discs and wide open curves isomorphic to wide open curves in a projective line P1
k. Then,

because of the next theorem, our morphism ϕ restricts to a finite morphism between

such wide open curves in Y and open annuli and open discs in X and we are led to find

compatible triangulations for these type of objects.

We start by considering simple cases first, compatible triangulations for a finite family

of finite morphisms of open discs to an open disc. We describe in details how to find

compatible triangulations for a finite morphism from an open annulus to an open disc,

and the main tool here is the valuation polygon for our morphism/function ϕ as we have

the advantage of coordinates in this situation. We end up with the more involved case of

finding up compatible triangulations for a finite family of finite morphisms between wide

open curves in a projective line and an open annulus (as it turns out, we don’t have to

consider more general case than this).

For the proof of the Theorem 2.1.4, we use the following well known results. As the

proof are short, we choose to present them for the convenience of the reader.

Theorem 2.1.10. Let ϕ : Y → X be a finite morphism of k-analytic spaces. Let V ⊂ X

be an analytic domain in X and let U ⊂ Y be a connected component of ϕ−1(V ). Then,
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ϕ restricts to a finite morphism ϕU : U → V .

Remark 2.1.11. For the definition and basic properties of analytic domains see [4, Section

1.3].

Proof. We will need the following (well known) result, proved in [5].

Lemma 2.1.12. Let X be a k-affinoid space. Then, X has finitely many connected com-

ponents and arbitrary union of connected components is a k-affinoid domain in X.

Proof. That X has only finitely many connected components follows from the fact that X

is compact. To prove the second part of the assertion, we show that connected components

are closely related to the canonical maps OX(X)→ OX,x, where x ∈ X. More precisely:

X is connected if and only if for all points x ∈ X the canonical map OX(X) → OX,x

is injective.

For the ”only if” part, let f ∈ OX(X), f 6= 0, and suppose that for some point x ∈ X,

the image fx of f in OX,x is 0. This means that f is identically zero on some open neigh-

borhood of x and by the identity theorem, it vanishes on the whole connected component

containing x. Since f 6= 0, it follows that X is not connected. On the other side, suppose

that X is not connected and let U ⊂ X be a connected component and let x ∈ U . Choose

a function fU ∈ OX(X) s.t. fU|U = 0 and fU|X\U = 1. Then fU 6= 0 and fUx = 0.

Furthermore, if U1, . . . Un are some connected components of the affinoid X, then

U = U1 ∪ · · · ∪ Un can be described as the set {x ∈ X, |fU (x)| ≤ 1/2} for the function fU

constructed above, so U is an affinoid domain.

Let us prove that U is an analytic domain in Y . Let y ∈ U . Since ϕ−1(V ) is an

analytic domain and y ∈ ϕ−1(V ), there exists affinoid domains V1, . . . , Vn ⊂ ϕ−1(V ) s.t.

y ∈ V1 ∩ · · · ∩ Vn and V1 ∪ · · · ∪ Vn is a neighborhood of y. The intersection Wi = Vi ∩ U

i = 1, . . . , n is an affinoid domain because of the previous lemma and contains y. Also,

W1 ∪ · · · ∪Wn = U ∩ (V1 ∪ · · · ∪ Vn) which implies that W1 ∪ · · · ∪Wn is a neighborhood

of y, hence U is an analytic domain.
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Next we show that the inclusion j : U ↪→ ϕ−1(V ) is a closed embedding (thus a

finite morphism). We use the characterisation [4, Lemma 1.3.7] (we note here that in

loc.cit. there is a condition missing in the statement of this Lemma, namely: in a) it

should also be stated that V1 ∪ · · · ∪ Vn is a neighborhood of the point x). Let W ⊂ X

be an affinoid domain in X. Then, j−1(W ) = W ∩U . It follows from the previous lemma

that W ∩U is an affinoid domain. Then the inclusion W ∩U →W is a closed embedding

given by admissible epimorphism OX(W )→ OX(W ∩ U).

Finally, the restriction ϕU : U → V factors through the inclusion U ↪→ X followed by

ϕ, which is a composition of finite maps, which itself then is finite.

Corollary 2.1.13. Let ϕ : Y → X be a finite morphism where Y and X are compact,

connected, quasi-smooth, k-analytic curves or wide open curves. Let A1 be an open annulus

in Y with endpoints η1 and η2 in Y , η1 6= η2 and let ξi = ϕ(ηi), i = 1, 2. Suppose that

ϕ−1(ξ1) ∩A1 = ϕ−1(ξ2) ∩A1 = ∅.

(i) Suppose that ξ1 6= ξ2 and that ξ1 and ξ2 are endpoints of an open annulus A2 in X,

such that there exists a point η ∈ A1 with ϕ(η) ∈ A2. Then, A2 = ϕ(A1) and ϕ

restricts to a finite morphism ϕA1 : A1 → A2.

(ii) Suppose that ξ1 = ξ2 and that D is an open disc in X attached to the point ξ1 such

that there exists a point η ∈ A1 with ϕ(η) ∈ D. Then, D = ϕ(A1) and ϕ restricts to

a finite morphism ϕA1 : A1 → D.

Proof. (i) Note that ϕ(A1) is path connected since ϕ is continuous and A1 is path con-

nected. Since ϕ(A1) doesn’t contain neither of the points ξ1, ξ2, and since ϕ(η) ∈ A2, it

follows that ϕ(A1) ⊆ A2. Let us prove that equality holds.

Let yn, n = 1, 2, . . . be a sequence of points in A1 converging to the point η1 (resp.

η2). Then, ϕ(yn), n = 1, 2, . . . converges to the point ξ1 (resp. ξ2), which together with

the previous remark implies that the image of the skeleton of A1 contains the skeleton

of A2 (any path contained in A2 connecting the endpoints of A2 contains the skeleton of
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A2). To prove that ϕ(A1) = A2, it is enough to show surjectivity on rational points. For

this, let T (resp. S) be a coordinate on A1 (resp. A2), which identifies A1 (resp. A2) with

A(0; r1, 1) (resp. A(0; r2, 1)). The morphsim ϕ can be expressed in coordinates S and T

as S = ϕ#(T ) =
∑

i∈Z aiT
i. Since ϕ#(T ) doesn’t have zeros, it follows that its valuation

polygon consists of a line segment without breaks (with necessarily nonzero slope equal to

the degree of ϕ!), as shown in the Picture 1. Let β ∈ A(0; r2, 1)(k). Then, the valuation

polygon of the function ϕ#(T ) − β defined on A(0; r1, 1) and shown in Picture 2, has a

break at the level log |β|, hence a zero in A(0; r1, 1). As noted before, this implies that

ϕ(A1) = A2.
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On the other side, by the conditions of lemma, one of the connected components of the

set ϕ−1(A2) is A1, hence by Lemma 2.1.10, ϕ restricts to a finite morphism ϕA1 : A1 → A2.

(ii) As before, we can conclude that ϕ(A1) is path connected and that ϕ(A1) ⊆ D.

We first prove the equality ϕ(A1) = D. It is enough, as before, to prove surjectivity on

rational points.

Let x ∈ D(k) be a rational point, and let us fix a coordinate S on A1, which identifies

A1 with A(0; r1, 1) and let us choose a coordinate T : D
∼−−→ D(0, 1−), with T (x) = 0. We

have a coordinate representation S = ϕ#(T ) =
∑

i∈Z aiT
i. If we take a sequence of points

yi, i = 1, 2, . . . converging to the point η1 (resp. η2), then ϕ(yi), i = 1, 2, . . . converges to
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the point ξ1. This implies that the valuation polygon, which is a convex function of the

variable log ρ, log ρ ∈ (log r1, 0), near the boundary points for the function ϕ#(T ) looks

like in the Picture 3 (note that it cannot be a line segment) i.e. it has nonzero slopes of

the opposite signs.
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It follows that the function log |ϕ#(T )|ρ has a break, which means there exists a rational

point α ∈ A(0; r1, 1)(k), with ϕ(α) = 0 i.e. there exists y ∈ A1(k), s.t. ϕ(y) = x, that is

ϕ is surjective on rational points.

Once again, the conditions of the lemma imply that one of the connected components

of the set ϕ−1(D) is A1, which together with Lemma 2.1.10 finishes the proof.

With similar arguments one can prove the following

Corollary 2.1.14. Let ϕ : Y → X be a finite morphism between quasi-smooth k-analytic

curves, and suppose that D1 is an open disc in Y whose image is contained in an open

disc D2 in X. Then, ϕ(D1) is an open disc in X and ϕ restricts to a finite morphism

ϕ : D1 → ϕ(D1).

Proof. Let ξ be the end point of D1 and let η = ϕ(ξ). It is enough to prove that ϕ−1(η)∩

D1 = ∅. Suppose the contrary, that there exists a point ξ1 in D1 which is mapped to
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η. Let y ∈ D1(k) be a rational point such that the canonical path from y to ξ contains

the point ξ1. Let T : D1
∼−−→ D(0, r−1 ) be a coordinate on D1 with T (y) = 0 and

S : D2
∼−−→ D(0, r−2 ) a coordinate on D2 with S(ϕ(y)) = 0. Then, the restriction of ϕ on

D1 has a a coordinate representation which is a power series S = ϕ#(T ) =
∑

n≥0 anT
n.

Since the valuation polygon of ϕ#(T ) is a strictly increasing, convex function it follows

that ϕ(ξ1) ∈ D2 which is a contradiction.

Remark 2.1.15. Keep the notation from the Theorem 2.1.4. Let x ∈ X be a point and

let Bx be an open disc which is a connected component in X \ ΓT containing x. Let By

be any open disc which a connected component in Y \ ΓS which contains a point y ∈ By

with ϕ(y) = x. Then ϕ restricts to a finite morphism ϕ : By → Bx. This is almost

an immediate consequence of the previous Corollary and the Remark 2.1.7. Namely, the

endpoint of By is mapped to the endpoint of Bx and since ΓYS = ϕ−1(ΓXT ) we are in the

situation of the Corollary 2.1.14.

Corollary 2.1.16. Let ϕi : Wi → V , i = 1, . . . , n be a finite family of finite morphisms

of wide open curves, and assume that Wi (hence also V ) is not projective. Then, for a

sufficiently small boundary (see below) open annulus AV of V , there is a boundary open

annulus Ai ∈Wi, for each i, such that ϕ induces a finite morphism ϕi|Ai : Ai → AV .

Let U be a wide open curve in a curve X (see Definition 1.1.2), and let {u1, . . . , un}

be the endpoints of U in X. Then, any open annulus in U and not equal to U with an

endpoint in a ui is called a boundary open annulus in U . For a general wide open curve U ,

an open annulus A in U is said to be boundary if i(A) is a boundary open annulus in U ′,

where U ′ is a wide open curve in X and i : U → U ′ is an isomorphism from the Definition

1.1.2. In other words, an open annulus A in a wide open curve U is called boundary if it

is not precompact in U .

Proof. Let V0 be an affinoid domain in V . Then, Wi,0 = ϕ−1
i (V0) is an affinoid domain in

Wi, hence compact and not containing any boundary open annuli in Wi. As V and Wi are
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exhausted by affinoid domains, by increasing V0 we may achieve that V \V0 is a finite union

of open boundary annuli and that Wi \Wi,0 is a finite union of boundary open annuli. Let

AV be a boundary open annulus in V which is a connected component of V \ V0 and let

Ai be a boundary open annulus which is a connected component of Wi \Wi,0 such that

ϕi(Ai) has a nonempty intersection with AV . Then, ϕi(Ai) being connected, is in fact

contained in AV . On the other side, ϕ−1
i (AV ) contains Ai and has an empty intersection

with Wi,0, therefore Ai is a connected component of it which by Theorem 2.1.10 implies

that ϕi|Ai : Ai → AV is finite.

2.1.1 Compatible triangulations of discs

Lemma 2.1.17. Let ϕ : D1 → D2 be a finite morphism between closed unit discs and let

ξ ∈ D2 be a type two point. Then, there exists triangulations T1 of D1 and T2 of D2 such

that ξ ∈ T2 and the triangulations T1 and T2 are strictly compatible.

Proof. Let x ∈ D2(k) be a rational point such that the canonical path from x to the

maximal point of D2 contains the point ξ and let S = ϕ−1(x) = {y2, . . . , ys}. Let us prove

that ΓS = ϕ−1(Γx).

Let Ti be a coordinate on D1 such that Ti(yi) = 0 and T a coordinate on D2 with

T (x) = 0. With respect to coordinates T and Ti, ϕ has representation T =
∑

n≥0 ai,nT
n
i .

Let (ρj , ρj+1) be any segment contained in (0, 1) such that the valuation polygon of ϕ

over (log ρj , log ρj+1) consists of a segment with constant slope (see Figure 2.1). Then, we

can write T = ϕ#(Ti) = adT
d
i (1 + h(Ti)) where d is the slope of ϕ#(Ti) over (log ρj , ρj+1)

and h(Ti) is an analytic function convergent on the open annulus A(0; ρj , ρj+1) and such

that |h|ρ < 1 for all ρ ∈ (ρj , ρj+1). Let us prove that ϕ(η0,ρ) = η0,|ad|ρd for all ρ ∈

(ρj , ρj+1). It is enough to check that for any analytic function f(T ) in k{T} we have

|f(ϕ(η0,ρ))| = |f |0,|ad|ρ and since the ring of polynomials k[T ] is everywhere dense in k{T}

with respect to the norm | · |ρ it is enough to check the equality |f(ϕ(η0,ρ))| = |f |0,|ad|ρ for

a polynomial f(T ) = btT
t + · · ·+ b0 ∈ k[T ]. But the last claim follows from the fact that



2.1. COMPATIBLE MODELS AND TRIANGULATIONS 47

�

?

r (0,0)log ρ``−∞

log |ϕ#(T )|ρ

�
�
�
�
�
�
��r











r̀````r

�
�
�r

����r̀````r̀��������

`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
r̀log(ρj)

`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
r̀log(ρj+1)

`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
r̀log(ρj−1)

slope sj

slope sj+1

Figure 2.1: The valuation polygon for the function T = ϕ#(Ti); The number of zeros of
the function ϕ#(Ti) of norm ρj is sj+1 − sj
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|f(ϕ(η0,ρ))| = |f(ϕ#(Ti))|ρ = max1≤l≤t |bl||T dli |ρ = max1≤l≤t |bl||adT dli |ρ = |f |0,|ad|ρd . By

continuity it follows that ϕ(Γyi) = Γx.

Suppose that η ∈ D1 is a type two point such that ϕ(η) ∈ Γx and let y ∈ D1(k) be

such that the canonical path from y to the maximal point of D1 contains η. If we choose a

coordinate T0 on D1 with T0(y) = 0, then we may write η = η0,ρ for some ρ ∈ (0, 1). The

valuation polygon of the function T = ϕ#(T0) cannot be constant as ϕ(η0,ρ) ∈ Γx which

implies there is a zero in D1(k) for the equation ϕ#(T0) = 0 with norm less or equal to ρ.

It follows that η ∈ Γ{y,...,ys}. We conclude that ϕ−(Γx) = Γ{y1,...,ys}.

At this point we can invoke the Remark 2.1.9 and conclude the proof.

In a similar way, we can prove as well the following corollary.

Corollary 2.1.18. Let ϕ : D1 → D2 be a finite morphism between open unit discs and let

ξ ∈ D2 be a type two point. Then, there exist triangulations T1 of D1 and T2 of D2 such

that ξ ∈ T2 and the triangulations T1 and T2 are strictly compatible.

Proof. It follows from Corollary 2.1.16 that we can decompose D1 (resp. D2) as a disjoint

union of a closed disc D′1 (resp. D′2) and a boundary open annulus A1 (resp. A2) such

that the restrictions ϕ|D′1 : D′1 → D′2 and ϕ|A1
: A1 → A2 are finite morphisms. Then we

can apply the previous lemma.

Corollary 2.1.19. Let ϕi : Di → D, i = 1, . . . , s be a finite family of finite morphisms

of closed (resp. open) unit discs and let ξ ∈ D be a type two point. Then, we can

find triangulations Ti of Di, i = 1, . . . , s and T of D such that Ti and T are strictly

ϕi-compatible for each i = 1, . . . , s and ξ ∈ T .

Proof. We can reduce the case where the discs involved are open to the case where the discs

are closed by using the Corollary 2.1.16, similarly like in the previous corollary, therefore

we just consider the case where all discs are closed. It follows from Lemma 2.1.17 that

for each i = 1, . . . , s there exist triangulations T ′i of Di and T i of D which are strictly

ϕi-compatible and such that ξ ∈ T i. By construction of T i and T ′i in Lemma 2.1.17 we
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have Γξ = ΓT i , so the union T := ∪iT i is a triangulation of D and moreover Ti := ϕ−1(T )

is a triangulation of Di which is strictly ϕi-compatible with T .

Theorem 2.1.20. Let ϕi : Di → D, i = 1, . . . , s, be a finite family of finite morphisms

of closed (resp. open) discs and let S ⊂ D be a finite set of type two points. Then we can

find triangulations Ti of Di, i = 1, . . . , s and T of D such that S ⊂ T and such that Ti

and T are strictly ϕi-compatible for each i = 1, . . . , s.

Proof. We proceed by induction on the number of points in S. For S an empty set or S

having a one element, we can use Corollary 2.1.19. Suppose that the Theorem 2.1.20 is

true for any S with |S| ≤ n− 1. Let S be a subset of D consisting of n type two points,

let ξ ∈ S and put S′ = S \ {ξ}. Then there exist triangulations TS′ of D and for each

i = 1, . . . , s, TS′,i of Di such that S′ ⊂ TS′ and TS′ and TS′,i are strictly ϕi-compatible.

There are two possibilities for the point ξ: either ξ ∈ ΓS′ , or ξ belongs to an open

disc attached to ΓS′ . In the first case we can take T := TS′ ∪ {ξ} and Ti := TS′,i ∪ ϕ−1
i (ξ)

(see Remark 2.1.8) so let us assume that we are in the second case. Let B be a maximal

open disc in D attached to ΓS′ and containing ξ and let for each i = 1, . . . , s, Bi,j ,

j = 1, . . . , α(i) denote maximal open discs in Di, attached to ΓS′,i and which have a non

empty intersection with ϕ−1
i (ξ). Let us also put η to be the (necessarily type two) point in

ΓS′ to which the disc B is attached. Then, ϕi restricts to a finite morphism ϕj : Bi,j → B

for each i and j and we can apply the Theorem 2.1.19 to find triangulations Ti,j of Bi,j

and T ′ of B such that ξ ∈ T ′ and Ti,j and T ′ are ϕi-compatible. Then we can take

Ti := TS′ ∪ ϕ−1
i (T ′ ∪ {η}) and T := TS′ ∪ T ′ ∪ {η}.

We are ready to prove the following lemma which in some forms we have already seen

in this section.

Lemma 2.1.21. Let ϕ : Y → X be a finite morphism where Y and X are like in 2.0.15

i.e. compact, connected, quasi-smooth k-analytic curves or Y and X are simultaneously

wide open curves. Suppose that S and T are strictly semistable triangulations of Y and
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X, respectively, which are (strictly) ϕ-compatible and let S be a finite set of type two points

in X not contained in ΓXT . Then we can find strictly ϕ-compatible triangulations S ′ and

T ′ of Y and X which refine S and T , respectively, such that S ⊂ T ′.

More precisely, let Di, i = 1, . . . , n be all the open discs in X which have a nonempty

intersection with S and with endpoints in ΓΓXT
. Then, we can find T ′ such that ΓXT ′ =

ΓXT ∪ ∪ni=1ΓDiDi∩S.

Proof. For each i = 1, . . . , n, let Di,j , j = 1, . . . , α(i) be the open discs which are connected

components of ϕ−1(Di). Then ϕ restricts to finite morphisms ϕ|Di,j : Di,j → D (Remark

2.1.15). Let us fix i and let Si = S ∩Di = {si,1, . . . , si,β(i)}. Then we can apply Theorem

2.1.20 for the family of morphisms ϕ|Di,j : Di,j → Di, j = 1, . . . , α(i) and subset Si ⊂ Di

to find ϕ|Di,j -compatible triangulations Ti,j and Ti for Di,j and Di with Si ⊂ Ti. But

from the proof of the same theorem we can conclude that ΓDiTi = ΓDiSi = ∪β(i)
l=1 ΓDisi,l and that

Γ
Di,j
Ti,j = ϕ−1

|Di,j (Γ
Di
Ti ). To conclude the proof, we notice that ΓYS∪∪i,jTi,j = ϕ−1(ΓXT ∪∪iTi) and

recall the Remark 2.1.9 to prove the existence of strictly ϕ-compatible triangulations S ′′

and T ′′ of Y and X, respectively such that ΓYS′′ = ΓYS∪∪i,jTi,j and ΓXTi = ΓDiTi . Then we can

take T ′ = T ′′ ∪ T and S ′ = ϕ−1(T ′) (note that S belongs to T ′′ automatically as being

the endpoints of the corresponding skeleton).

2.1.2 Compatible triangulations of annuli and discs

To motivate this section, we again recall the difference between strictly compatible and

compatible triangulations S and T . Namely, in the case of compatible triangulations we

may have an open annulus in AS which is mapped to an open disc with the boundary

point in T . We would like to know how to refine triangulations such that an open annulus

in AS is mapped to an open annulus in AT . Therefore, we proceed by studying with some

extra details finite morphisms between annuli and discs.

Theorem 2.1.22. Let ϕ : A → D be a finite morphism between a closed annulus and a

closed disc. Then there exist strictly ϕ-compatible triangulations S and T of A and D,
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respectively.

Proof. Let us start with the case where both annulus and disc are strict. If we fix coor-

dinates T : A
∼−−→ A[0; r, 1] and S : D

∼−−→ D(0, 1) where r ∈ (0, 1) ∩ |k×|, then ϕ can

be expressed as S = ϕ#(T ) =
∑

n∈Z anT
n and since ϕ can always be decomposed as a

morphism S = ϕ′#(T ) =
∑

n∈Z,n 6=0 anT
n followed by translation by a0, and translation is

an isomorphism, we will assume that in coordinate representation of ϕ, a0 = 0. In this

case, valuation polygon of the function ϕ#(T ) (see Figure 2) doesn’t have flat components

and achieves its minimum in a unique point log(ρmin).
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Figure 2.2: Valuation polygon for
the function ϕ#(T )
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Let (ρj , ρj+1) ⊆ [r, 1] be a segment such that valuation polygon of the function ϕ#(T )

over (log ρj , log ρj+1) consists of a segment with a single slope, say d. Then ϕ#(T ) re-

stricted to the open annulus A(0; ρj , ρj+1) can be written as ϕ#(T ) = adT
d(1 + h(T )),

where h(T ) =
∑

n∈Z bnT
n is an analytic function on A(0; ρj , ρj+1) with |h(T )|ρ < 1 for all

ρ ∈ (ρj , ρj+1). It follows as in the proof of Lemma 2.1.17 that ϕ(η0,ρ) = η0,|ad|ρd and more

precisely by continuity we have ϕ(ΓA) = ΓDη0,ρ′
min

, where η0,ρ′min
= ϕ(η0,ρmin).

Let ρ0 ∈ (r, 1)∩|k×|. Depending whether the valuation polygon of the function ϕ#(T )
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has a break in the point log(ρ0) we have the following two lemmas.

Lemma 2.1.23. Suppose that the valuation polygon of ϕ#(T ) doesn’t have a break point

in log(ρ0). Then, ϕ restricts to a finite morphism ϕ : A[0; ρ0, ρ0] → A[0; ρ′0, ρ
′
0], where

η0,ρ′0
= ϕ(η0,ρ).

Proof. Because of Theorem 2.1.10 it is enough to prove that A[0; ρ0, ρ0] is a connected com-

ponent of the set ϕ−1(A[0; ρ′0, ρ
′
0]). First we note that ϕ(A[0; ρ0, ρ0](k)) = A[0; ρ′0, ρ

′
0](k):

this follows from the valuation polygon of the function ϕ#(T ) − a, for a ∈ A[0; ρ′0, ρ
′
0](k)

(see Figure 3) and the fact that the valuation polygon of ϕ#(T ) doesn’t have a break in

log(ρ0). Moreover, for ε ∈ R>0 and ε sufficiently small, ϕ−1(A[0; ρ′0, ρ
′
0](k)) ∩ A(0; ρ0 −

ε, ρ0 + ε) = A[0; ρ0, ρ0](k) and since rational points are everywhere dense, we conclude

that ϕ−1(A[0; ρ′0, ρ
′
0]) ∩A(0; ρ0 − ε, ρ0 + ε) = A[0; ρ0, ρ0], hence the conclusion.

Lemma 2.1.24. Suppose that the valuation polygon of ϕ#(T ) has a break point in log(ρ0)

(we allow ρ0 to be 1 or r as well). Then

(i) There exist finitely many open discs Dρ0,i, i = 1, . . . , α(ρ0) attached to the point η0,ρ0

such that ϕ restricts to a finite morphism ϕ : A[0; ρ0, ρ0] \ ∪α(ρ0)
i=1 Dρ0,i → A[0; ρ′0, ρ

′
0]

where as before ϕ(η0,ρ0) = η0,ρ′0
;

(ii) For each i = 1, . . . , α(ρ0), ϕ restricts to a finite morphism of open discs ϕ : Dρ0,i →

D(0, ρ′0
−).

Proof. Let y1, . . . , ys be all the zeros of ϕ#(T ) in A[0; ρ0, ρ0](k), and let Dρ0,1, . . . , Dρ0,α(ρ0)

be all the maximal open discs in A[0; ρ0, ρ0] containing at least one of the points y1, . . . , ys.

Since for each i = 1, . . . , α(ρ0), there is a point yj ∈ Dρ0,i, we can choose a coordinate

Ti : Dρ0,i
∼−−→ D(0, ρ−0 ), Ti(yj) = 0 and because the valuation polygon for the function

ϕ#(Ti) is convex, strictly increasing function it follows that Dρ0,i∩ϕ−1(η0,ρ′0
) = ∅. Hence,

ϕ restricts to a finite morphism ϕ : Dρ0,i → D(0, ρ′−0 ) (Corollary 2.1.14) and this proves

(ii).
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To prove the claim (ii), let us note that ϕ−1(D(0, ρ′−0 )) ∩ A[0; ρ0, ρ0] = ∪α(ρ0)
i=1 Dρ0,i.

Indeed, any maximal open disc in A[0; ρ0, ρ0] which has a nonempty intersection with

ϕ−1(D(0, ρ′−0 )) necessarily contains a point whose immage by ϕ is 0 = η0,0 ∈ D(0, ρ′−0 ),

as follows from the second paragraph of the proof of Lemma 2.1.17, hence contains one of

the points yi. This implies that one of the connected components of ϕ−1(A[0; ρ′0, ρ
′
0]) is

A[0; ρ0, ρ0] \ ∪α(ρ0)
i=1 Dρ0,i, which proves (i).

We continue the proof of Theorem 2.1.22. Let log ρ′0 = 0 > log ρ′1 > · · · > log ρ′l =

log ρ′min be in [log ρ′min, 0] such that for all i = 1, . . . , l there exists ρ ∈ [r, 1] ∩ |k×| such

that ϕ(η0,ρ) = η0,ρ′i
and the valuation polygon of ϕ#(T ) has a break in log(ρ) (see Figure

2). For each i = 0, . . . , l − 1 let ρi,1 < ρi,2 be the two points in [r, 1] ∩ |k×| such that

(log(ρi,j), log ρ′i), j = 1, 2, belongs to the valuation polygon of ϕ#(T ). For each i = 0, . . . , l,

let Di,1, . . . , Di,β(i) be all the open discs attached to one of the points η0,ρi,1 or η0,ρi,2 from

Lemma 2.1.24.

We construct strictly ϕ-compatible triangulations S and T in the following way. Put

Tl = η0,ρ′m and inductively, for i = l − 1, . . . , 0, let Ti and Si be the strictly ϕ-compatible

triangulations from Theorem 2.1.20 applied to the family of morphisms ϕ|Di,j → D(0, ρ′−j ),

j = 1, . . . , β(i) and with set S = Ti+1 ∪ {η0,ρi+1}. Then we can take T := T0 ∪ {η0,1} and

S := ϕ−1(T ). It follows from Lemmas 2.1.23 2.1.24 and the construction of Ti that S is a

strict triangulation of A and that S and T are strictly ϕ-compatible.

The remaining case where both A and D are non-strict is done in a quite similar way,

again choosing coordinates on A and D and studying properties of the valuation polygon

of the respective coordinate representation of our morphism ϕ.

Corollary 2.1.25. Let ϕ : A→ D be a finite morphism between an open annulus and an

open disc. Then there exist strictly ϕ-compatible triangulations of A and D.

Proof. From Corollary 2.1.16 we may take a sufficiently small open boundary annulus AD

in D such that ϕ−1(AD) is a disjoint union of two open boundary annuli in A whose
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complement is a closed annulus A1 and such that ϕ|A1
: A1 → D \ AD is finite. Then we

can apply the Theorem 2.1.22 to the morphism ϕ|A1
: A1 → D \AD.

Corollary 2.1.26. Let ϕ : A → D be a finite morphism between a closed (resp. open)

annulus and a closed (resp. open) disc, let S be a strictly semistable triangulations of A

and T a strictly semistable triangulation of D such that S and T are strictly ϕ-compatible.

Let S be a finite set of type two points in D. Then, there exist strictly ϕ-compatible

triangulations S ′ and T ′ of A and D, respectively, such that S ⊂ T ′ and S ′ refines S while

T ′ refines T .

Proof. The proof now follows from Theorem 2.1.22 and Corollary 2.1.25 combined with

Lemma 2.1.21.

We summarize the results of this section in the following theorem.

Theorem 2.1.27. Let ϕi : Yi → D, i = 1, . . . , n be a finite family of finite morphisms

where each Yi is a closed (resp. open) disc or annulus and D is a closed (resp. open) disc.

Let S ⊂ D be a finite set of type two points in D. Then, there exist strictly semistable

triangulations Si of Yi and T of D such that S ⊂ T and Si and T are strictly ϕi-compatible.

Moreover, for any finite subset S of type two points in D, we can choose T such that S ∈ T .

Proof. We only consider the case where all the curves involved are closed, the case when

they are open being done in a similar fashion with help of Corollary 2.1.16. For each

i = 1, . . . , n let S ′i and T ′i be ϕi-compatible triangulations of Yi and D, respectively, given

by Lemma 2.1.17 and Theorem 2.1.22. Let us put Γ = ∪iΓDT ′i , and let Si := T ′i \ ∪j 6=iT ′j .

Then we can apply Lemma 2.1.21 to find refinements S ′′i and T ′′i of S ′i and T ′i with Si ⊂ T ′′i .

Note that we have that ΓT ′′i = ΓT ′′j for each i, j = 1, . . . , n (for the first time we use here

the second part of Lemma 2.1.21). Let T := ∪iT ′′i and put Si := ϕ−1
i (T ). Then Si,

i = 1, . . . , n and T satisfy the claim of the theorem.
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2.1.3 Compatible triangulations of k-analytic curves

After studying compatible triangulations for a finite family of finite morphisms from closed

(resp. open ) annuli and discs to closed (resp. open ) discs, we are ready to move to a

more general situation, that is to study compatible triangulations for finite morphisms of

more complicated curves. We do so by starting the

Proof of the Theorem 2.1.4. Let S1 and T1 be any (nonempty) strictly semistable trian-

gulations of Y and X, respectively, and let T2 be a strictly semistable triangulation of X

containing ϕ(S1) ∪ T1. The connected components of Y \ ϕ−1(T2) consists of open discs

and finitely many wide open curves isomorphic to wide open curves in the projective line

and each of the connected components is mapped to a wide open annulus or wide open

disc in X \ T2. So we are led to study compatible triangulations for the finite family of

finite morphisms ϕi : Wi → V , where Wi’s are some wide open curves (we can even assume

that they are isomorphic to wide open curves in a projective line) and where V is an open

disc or an open annulus. In lemmas 2.1.28 and 2.1.30 we study these two situations, in

the former V is an open disc, while in the later V is an open annulus.

Lemma 2.1.28. Let ϕ : W → D be a finite morphism between wide open curves and

suppose that D is an open disc. Then

(i) There exist strictly ϕ-compatible triangulations of W and D.

(ii) For a given finite subset of type two points S of D, we can find strictly ϕ-compatible

triangulations S and T refining any given triangulations S1 and T1 of W and D,

respectively, such that S ⊂ T .

(iii) Let ϕi : Wi → D, i = 1, . . . , n be finitely many finite morphisms of wide open curves

where D is an open disc. Then there exist strictly semistable triangulations Si of

Wi, i = 1, . . . , n and T of D such that Si and T are strictly ϕi-compatible.

Remark 2.1.29. This lemma is a generalization of lemmas 2.1.26 and 2.1.17.
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Proof. (i) We find it easier to work with skeleta in this contexts rather than with triangu-

lations, so in the proof we will have in mind Remark 2.1.9. Let S1 be a strictly semistable

triangulation of W and let ΓWS1
be the corresponding skeleton. Then

Claim 1. The image ϕ(ΓWS1
) is a finite skeleton with type two endpoints in D.

Proof of the Claim 1. To find the image ϕ(ΓWS1
) it is enough to find the images ϕ(ΓA),

where A is an open annulus in W \ S1 and add to it the images of the points in S1. Let A

be an connected component/open annulus in W \S1 i.e. in AS1 . Then, by using valuation

polygon of the function ϕ restricted to A (after a suitable choice of coordinates on A and

D so that the mentioned valuation polygon doesn’t have flat parts), similarly like in the

proof of Lemma 2.1.17 or Lemma 2.1.22, it follows that ϕ(ΓA) is a skeleton of an annulus

in disc D. The endpoints of ϕ(ΓA) are necessarily type two points as they are the images

of the endpoints of ΓA or the images of a point η0,ρ such that the valuation polygon of ϕ|A

has a break in log ρ (compare for example with the valuation polygon in Figure 2). As

there are only finitely many elements in AS1 , then the image ϕ(ΓWS1
) is connected subset

consisting of finitely many skeleta of open annuli in D and has finitely many endpoints.

It remains to prove that ϕ(ΓWS1
) is not contained in any open disc D′ which is strictly

smaller than D (if this were the case, then D \ ϕ(ΓWS1
) would have an open annulus ”at

the boundary” as a connected component, hence ϕ(ΓWS1
) would not be a skeleton in D).

But, if ϕ(ΓWS1
) is contained in such a D′, then it would be contained in a proper compact

subset of D, and this would imply that ΓWS1
is contained in a compact subset of W (recall

that ϕ is a proper map), which is a contradiction.

Claim 2. ϕ−1(ϕ(ΓWS1
)) is a finite skeleton with type two endpoints in W .

Proof of the Claim 2. Similarly to what we did in the previous claim, let A be an open

annulus in AS1 equipped with a coordinate T : A
∼−−→ A(0; r, 1). With a right choice of

coordinate S : D
∼−−→ D(0, 1) we can assume that the valuation polygon of the function

S = ϕ#(T ) doesn’t contain segments with zero slope. Again, from the valuation polygon
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for the function ϕ#(T ) we conclude, like in Lemmas 2.1.24 and 2.1.23, that there are only

finitely many discs in the annulus A whose endpoints belong to ΓA and whose images have

a nonempty intersection with ϕ(ΓA), these will be precisely the maximal open discs in A

that contain a zero of the function ϕ#(T ). Also, there are only finitely many open discs

with endpoint in ΓA whose image has a nonempty intersection with ϕ(ΓWS1
). To prove it,

let D′ be one such disc. Then ϕ(D′) is an open disc attached to ϕ(ΓA) (Corollary 2.1.14)

and because of the assumption on D′ there is a part of ϕ(ΓWS1
) contained in ϕ(D′). We

can be more precise, either ϕ(D′) has a nonempty intersection with ϕ(ΓA) or ϕ(D′) is

disjoint from ϕ(ΓA) and the endpoint of ϕ(D′) belongs to ϕ(ΓWS1
\ ΓA). The first case

has already been discussed, so let us assume that we are in the second one. Let the

corresponding endpoint be η′. To conclude, there are only finitely many branches of the

skeleton ϕ(ΓWS1
\ ΓA) emanating from η′, hence only finitely many open discs containing

these branches and attached to η′, and therefore only finitely many open discs attached

to ΓA which are mapped to these disc, because of the finiteness of the morphism. Let us

prove that there are only finitely many points η′ as above. First of all, point η′ belongs

to ϕ(ΓA), and as we assumed that ϕ(ΓWS1
) has a nonempty intersection with D′, η′ must

be a branching point. We proved in Claim 1. that ϕ(ΓWS1
) is a finite skeleton in D having

type two endpoints, so it follows that there are only finitely many branching points.

The same conclusion goes for the open discs attached to points of S1, namely, there

are only finitely many of them whose image by ϕ intersects the skeleton ϕ(ΓWS1
). Let us

consider a fixed point s ∈ S1 and let us show that there are only finitely many open

discs with endpoint s whose image has a nonempty intersection with ϕ(ΓWS1
). Similar

as before, ϕ(s) is a type two point of ϕ(ΓWS1
) and there are only finitely many branches

of ϕ(ΓWS1
) emanating from ϕ(s). Hence only finitely many open discs attached to ϕ(s)

which potentially contain one of the branches, and therefore finitely many open discs with

endpoint in s whose images have a nonempty intersection with ϕ(ΓWS1
).

What we showed is that the there are only finitely many maximal open discs in W \ΓWS1
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attached to ΓWS1
whose images have a nonempty intersection with ϕ(ΓWS1

). Let D1, . . . , Ds

be these open discs and let us fix i ∈ {1, . . . , s}. The intersection ϕ(Di) ∩ ϕ(ΓWS1
) is a

finite skeleton with type two endpoints in ϕ(Di) connected to the endpoint of ϕ(Di). It

follows from the proof of Lemma 2.1.17 (see also Lemma 2.1.21) that the inverse image of

ϕ(Di)∩ϕ(ΓS1) is a finite skeleton with type two endpoints in Di connected to the endpoint

of Di. The claim follows.

We end the proof of Lemma 2.1.28(i) by recalling the Remark 2.1.9 together with

Claims 1 and 2.

The part (ii) of lemma is a consequence of (i) and Lemma 2.1.21. while (iii) is proved

arguing like in Theorem 2.1.27 and having in mind arguments in Remark 2.1.21 and claims

(i) and (ii).

The following is an equivalent statement for finite morphisms of wide open curves to

an open annulus.

Lemma 2.1.30. Let ϕ : W → V be a finite morphisms of wide open curves and assume

that V is an open annulus. Then

(i) There exist strictly ϕ-compatible triangulations of W and V .

(ii) For a given finite subset S of type two points in V , we can find strictly ϕ-compatible

triangulations S and T refining any given triangulations S1 and T1 of W and V ,

respectively, such that S ⊂ T .

(iii) Let ϕi : Wi → V , i = 1, . . . , n be finitely many finite morphisms of wide open curves

where V is an open annulus. Then, there exist strictly semistable triangulations Si

of Wi, i = 1, . . . , n and T of V such that Si and T are strictly ϕi-compatible.

Proof. (i) The idea of the proof is to reduce the problem to the case of Lemma 2.1.28, so for

this let {w1, . . . , wδ} be a strictly semistable triangulation of W (if W is an open annulus

or an open disc we may take empty triangulations, so we may assume that W is not an
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open annulus or an open disc, so that the later set is nonempty). For each j = 1, . . . , δ,

let Cj be an affinoid domain with good canonical reduction in W with maximal point wj

and containing all open discs in W attached to wj and not containing any of the points

wl, l 6= j. Since ϕ, seen as a function on W , has no zeros or poles on W , the absolute

value (we fix once and for all a coordinate on V : T : V
∼−−→ A(0; r, 1)) of the function ϕ

over Cj is constant, and we denote it by dj (cf. [31, Lemma 2.3]). We also note that the

absolute value of ϕ can vary only over the open annuli connecting Cj .

Let c1, . . . , cα be numbers dj put in an increasing order and without repetition. We

chose a triangulation on V = A(0; r, 1) given by the points η0,cj , j = 1, . . . , α. Then we

have the following finite morphisms induced by restriction of ϕ:

ϕ|∆j : ∆j := W ×V A(0; cj−1, cj)→ A(0; cj−1, cj) j = 2, . . . , α

and

ϕj := ϕ|Θj : Θj = W ×V A[0; cj , cj ]→ A[0; cj , cj ], j = 1, . . . , α.

We note here that ∆j is a disjoint union of open annuli, while Θj is an affinoid do-

main in W . At this point we would like to find compatible triangulations for a family of

morphisms ϕjl := ϕj
|Θjl

: Θj
l → A[0; cj , cj ], l = 1, . . . , β, and where Θj

l , l = 1, . . . , β are

connected components of the affinoid Θj . Let Sh(Θj
l ) be the Shilov boundary of Θj

l . Then

(ϕjl )
−1(η0,cj ) = Sh(Θj

l ). For each ξ ∈ Sh(Θj
l ), let Cξ be the maximal affinoid in Θj

l with

good canonical reduction and with the maximal point ξ. Then ϕ maps connected compo-

nents of Θj
l \∪ξ∈Sh(Θjl )

Cξ ( these are all wide open curves and more precisely the connected

components of Θj
l \ Sh(Θj

l ) which are not open discs) to some open discs in A[0; cj , cj ] at-

tached to η0,cj . More precisely, if U is a connected component of Θj
l \ ∪ξ∈Sh(Θjl )

Cξ, there

is a maximal open disc D′ in A[0; cj , cj ] containing ϕjl (U), since U is connected and since

(ϕjl )
−1(η0,cj ) ∩ U = ∅. But then U is a connected component of the set (ϕjl )

−1(D′), from

which we conclude with help of Theorem 2.1.10 that ϕ restricts to a finite morphism
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ϕU : U → ϕ(U), where ϕ(U) is an open disc in A[0; cj , cj ] with the endpoint η0,cj . Now let

D be the set of all the maximal open discs D in A[0; cj , cj ] such that one of the connected

components of the set (ϕj)−1(D) is a wide open component in Θj
l \ ∪ξ∈Sh(Θjl )

Cξ for some

l = 1, . . . , β and not equal to an open disc (note that at this point we are considering

ϕj instead of ϕjl since we want to construct a simultaneous compatible strictly semistable

triangulation of D and of connected components in (ϕj)−1(D), as follows; also note that

we ask that at least one component in (ϕj)−1(D) is not equal to an open disc to ensure

that D is finite). Then for each D ∈ D, and a family of finite morphisms ϕ|U : U → D, U

a connected component in (ϕj)−1(D), we can find strictly ϕ|U -compatible triangulations

SU and TD (Lemma 2.1.28 (iii)). Then we construct strictly ϕjl -compatible triangulations

Sjl and T jl of Θj
l and A[0; cj , cj ], respectively, by taking Sjl = Sh(Θj

l ) ∪ ∪USU , where

U goes through the connected components of (ϕjl )
−1(D) and D goes through D, while

T jl = {η0,cj} ∪D TD, where D goes through D. Moreover, from the previous constructions

it follows that we can find compatible triangulations Sj and T j of Θj and A[0; cj , cj ],

respectively, by simply taking Sj = ∪lSjl , l = 1, . . . , β and T j = ∪lT jl , l = 1, . . . , β. Fi-

nally, since for j1 6= j2, ϕ(Θj1) is disjoint from ϕ(Θj2), we conclude that SWi = ∪jSi,j and

TV = ∪jTi,j are strictly ϕi-compatible triangulations of Wi and V , respectively. The part

(ii) is done with help of Lemma 2.1.21 while part (iii) is proved like Theorem 2.1.27 and

with help of Lemma 2.1.21, and claims (i) and (ii).

Continuation of the Proof of Theorem 2.1.4. We continue using the notation from the

beginning of the proof. Let W ′ be a finite set of connected components in Y \ ϕ−1(T2)

which are not isomorphic to open discs (if there is no such a component, then ϕ−1(T2) is a

strictly semistable triangulation of Y and T2 and ϕ−1(T2) are strictly ϕ-compatible). From

Theorem 2.1.10 we have for each W ∈ W ′, ϕ restricts to a finite morphisms ϕ|W : W →

ϕ(W ) and ϕ(W ) is a connected component in X \T2 i.e. an open disc or an open annulus.

Let V := {ϕ(W ),W ∈ W ′} and let W be the set of connected components of ϕ−1(ϕ(W )),

while W ∈ W ′. Let V ∈ V (V is necessarily an open disc or an open annulus) and let WV
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be the finite set of connected components of ϕ−1(V ). Then for each V ∈ V we have finitely

many finite morphisms ϕ|W : W → V , W ∈ WV (Theorem 2.1.10) and since we are in one

of the situations discussed in Lemmas 2.1.28 or 2.1.30 we have strictly ϕ|W -compatible

strictly semistable triangulations SW of W , for W ∈ WV and TV of V . To finish the proof

we can take T := T2 ∪ ∪V ∈VTV and for S := ϕ−1(T ) = S2 ∪V ∈V ∪W∈WV
SW .

Proof of the Theorem 2.1.6. From Corollary 2.1.16 we can find an affinoid domain W0 in

W and an affinoid domain V0 in V such that the restriction of ϕ to W0, ϕ|W0
: W0 → V0 is a

finite morphism and such that each connected component A of W \W0 (resp. A′ of V \V0) is

an open annulus inW (resp. V ) and whileA′ goes through the set of connected components

of V \ V0, connected components of ϕ−1(A′) go through the connected components of

W \W0. It follows that for the strictly ϕ-compatible strictly semistable triangulations S

and T of W and V , respectively, we can take the triangulations from the Theorem 2.1.4

applied to the finite morphism of affinoid domains ϕ|W0
: W0 → V0.

Remark 2.1.31. For the practical purposes we emphasize here once again that we can

find compatible triangulations in Theorem 2.1.4 (resp. 2.1.6) containing any given finite

set of type two points in Y and X (resp. W and V ).

2.1.4 Compatible partitions of curves

Given a finite morphism ϕ : Y → X like in 2.0.15 or where Y and X are wide open curves,

we use Theorem 2.1.4 to partition (understood here as division into finitely many analytic

subdomains) our curves into pieces on which ϕ induces finite morphisms and which often

have a simpler structure compared to those of Y and X.

Corollary 2.1.32. Let ϕ : Y → X be a finite morphism between compact, connected,

quasi-smooth k-analytic curves or a finite morphism between wide open curves. Then, there

exist partitions of Y and X, PY = {AY ,BY , CY } and PX = {AX ,BX , CX}, respectively,

where AY (resp. AX) is a finite set of disjoint open annuli, BY (resp. BX) is a finite
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set of disjoint open discs and CY (resp. CX) is a finite set of disjoint affinoids with good

canonical reduction such that

(i) For all A ∈ AY , B ∈ BY and C ∈ CY (resp. For all A ∈ AX , and all B ∈ BX and

C ∈ CX ), A ∩B = ∅, A ∩ C = ∅ and B ∩ C = ∅,

(ii) AX = {ϕ(A), A ∈ AY }, BX = {ϕ(B), B ∈ BY } and CX = {ϕ(C), C ∈ CY } and for

all A ∈ AX (resp. B ∈ BX , resp. C ∈ CX) ϕ−1(A) is a disjoint union of elements

in AY (resp. BY , resp. CY ),

(iii) For each C ∈ CY , ϕ restricts to a finite, étale morphism ϕ : C → ϕ(C) of affinoid

spaces,

(iv) For each A ∈ AY , ϕ restricts to a finite, étale morphism ϕ : A → ϕ(A) of open

annuli,

(v) For each B ∈ BY , ϕ restricts to a finite morphism ϕ : B → ϕ(B) of open discs.

Proof. Let {y1, . . . , ys} ⊂ Y (k) be the saturation of the set of rational points of Y which

are ramified, and let S and T be any strictly ϕ-compatible semistable triangulations of Y

and X, respectively such that no two different points in {y1, . . . , ys} belong to the same

open disc attached to ΓYS (note that we can always achieve this by choosing sufficiently

small disjoint closed discs containing points {y1, . . . , ys} and adding their maximal points

to S as in the Remark 2.1.31).

Let BY be the finite family of open discs in Y attached to the points in S and having

nonempty intersection with {y1, . . . , ys}. Then, the set BX := {ϕ(B), B ∈ BY } is a finite

family of open discs attached to points in T and containing the rational branching locus of

ϕ in X (see Remark 2.1.15). Moreover, for each B ∈ BY , ϕ restricts to a finite morphism

ϕ : B → ϕ(B) and by the choice of the set {y1, . . . , ys}, we have ϕ−1(B), for B ∈ BX is a

disjoint union of elements in BY . This proves (v).

Let us put AY := AS and AX := AT . Since S and T are strictly ϕ-compatible, for

each A ∈ AY , ϕ restricts to a finite morphism ϕ : A → ϕ(A), where ϕ(A) ∈ AX , and
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for each A ∈ AX , ϕ−1(A) is a finite union of elements in AY . As there are no ramified

rational points belonging to annuli in AY the (iv) follows.

Finally, for each point y ∈ S let Cy be the affinoid domain in Y with maximal point

y and containing all the open discs attached to y and having an empty intersection with

S and with discs in BY and let CY be the set of all such Cy. Then for each C ∈ CY ,

ϕ restricts to a finite étale morphism ϕ : C → ϕ(C), where C is an affinoid domain

in X with good canonical reduction and with the maximal point ϕ(y) ∈ T and having

an empty intersection with the set T \ {ϕ(y)} and with the open discs in BX . We put

CX := {ϕ(C), C ∈ CY }. Note that for each element C ∈ CX , ϕ−1(C) is a disjoint union

of elements in CY and moreover the elements of the sets CY , AY , BY (resp. CX , AX , BX)

cover Y (resp. X), which together with the previous finishes the proof of the corollary.

Remark 2.1.33. From the proof of Corollary 2.1.32, we see that the partitions PY and PX

depend on the chosen triangulations S and T , respectively. If we want to emphasize this

fact, we will write in the subscript PS and PT . If the triangulations S and T come from

semistable models Y and X, respectively, we will write PY and PX for the corresponding

compatible partitions. Similarly, we will write AS , AT (AY, AX) and so on.

Proof of Theorem 2.1.3. Let us suppose that the triangulations TY and TX, which are

nonempty and have at least two points, are strictly ϕ-compatible, and let WTY and WTX

be as in the Definition 1.1.5. From the proof of the previous Corollary it follows that

the triangulations TY and TX give us compatible partitions of Y and X, respectively.

Moreover, for each W ∈ WTY , ϕ induces a finite morphism ϕ : W → ϕ(W ), where

ϕ(W ) ∈ WTX and for each element W ∈ WTX , ϕ−1(W ) is a disjoint union of elements

in WTY (more precisely, an element W ∈ WTX consists of the affinoid in C). But then

morphisms ϕ : W → ϕ(W ) induce morphisms ϕ : O(ϕ(W ))→ O(W ) which again induce

morphism ϕ : O◦(ϕ(W )) → O◦(W ) of elements of spectral norm smaller or equal than

1, which we can glue along the induced morphisms (for W1,W2 ∈ WTY , W1 6= W2)

ϕ : O◦(W1 ∩W2) → ϕ(O◦(W1 ∩W2)) which are all open annuli in ATY and ATX . This
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precisely means that we have a finite morphism of formal models Φ : Y→ X.

Proof of Theorem 2.1.5. now follows from Theorems 2.1.4 and 2.1.3. Namely, it is enough

to find compatible triangulations of Y and X, respectively, which have more than two

points (see Remark 1.1.7).

Finally, we give the following corollary which can be proved with a little effort with

the help of Corollary 2.1.32.

Corollary 2.1.34. Let ϕ : Y → X be a finite morphism like in 2.0.15 or a finite morphism

between wide open curves, and let S and T be nonempty strictly ϕ-compatible semistable

triangulations and suppose that they have at least two points each. Let y ∈ ΓS be a type 2

point, let x = ϕ(y) and let CS,y (resp. CT ,x) be an affinoid domain in Y (resp. X) with

maximal point y (resp. x) and containing all the open discs in Y (resp. X) attached to y

(resp. x) and having an empty intersection with ΓS (resp. ΓT ). Then, ϕ induces a finite

morphism ϕ : CS,y → CT ,x.

Proof. We note that T ′ := T ∪{x} is a strictly semistable triangulation of X and similarly

S ′ := S ∪ ϕ−1(x) is a strictly semistable triangulation of Y and S ′ and T ′ are strictly ϕ-

compatible. Moreover, ΓXT ′ = ΓXT and ΓYS′ = ΓYS (this all follows from the Remark 2.1.8).

It follows that affinoid domains CS,y and CT ,x are either elements in the sets CS′ and CT ′ ,

respectively, or CS,y and CT ,x are qa disjoint union of an element in CS′ and CT ′ and some

elements in BS′ and BT ′ , respectively. In either case, it follows from Corollary 2.1.32 that

CS,y is a connected component of the set ϕ−1(CT ,x), which ends the proof.

2.2 Finite étale morphisms of open annuli

Let ϕ : A1 → A2 be a finite étale morphism of open annuli of degree d. Let S : A2
∼−−→

A(0; ρd, 1) (resp. T : A1
∼−−→ A(0; ρ, 1)) be a coordinate on A1 (resp. A2). Then ϕ can be

represented as S = ϕ#(T ) = adT
du(T ), where |u(T ) − 1|ρ0 < 1 for every ρ0 ∈ (ρ, 1) and



2.2. FINITE ÉTALE MORPHISMS OF OPEN ANNULI 65

with |ad| = 1. By choosing a different coordinate T , we may achieve that ad = 1 so we will

assume, unless otherwise stated that ad = 1. Since ϕ is étale, derivative of ϕ is an invertible

function on A1, hence has the following coordinate representation dS
dT = ϕ′#(T ) = εT σv(T ),

where again |v(T )− 1|(ρ,1) < 1 and ε ∈ k◦◦. We put

(2.2.0.1) ν = σ − d+ 1

If we want to emphasize the dependence on the morphism ϕ, we will write σ(ϕ), d(ϕ),

ν(ϕ), ε(ϕ), and so on. We will see later that sometimes our annulus will correspond to

a tangent vector ~t belonging to the tangent space of a type two point in a curve. If this

is the case, to emphasize also the dependence on ~t, we may write σ(ϕ,~t), d(ϕ,~t), ν(ϕ,~t),

ε(ϕ,~t).

We collect some properties of finite étale maps of open annuli in the following lemma.

Lemma 2.2.1. Let ϕ : A(0; ρ, 1)→ A(0; ρd(ϕ), 1) and ψ : A(0; ρd(ϕ), 1)→ A(0; ρd(ϕ)d(ψ), 1)

be finite étale morphisms of open annuli of degree dϕ and dψ, respectively. Then

(i) |ε(ϕ)| ≥ |d(ϕ)| (here | · | is the norm of the field k).

(ii) Let S1 = rd/S and T1 = r/T , where r ∈ k, |r| = ρ be ”inverted” coordinates on

A(0; ρ, 1) and A(0; ρd, 1), respectively. Then,

σ1(ϕ) = −σ(ϕ) + 2d(ϕ)− 2,

ε1(ϕ) = rν(ϕ) · ε(ϕ)

ν1(ϕ) = −ν(ϕ).

(iii) We have ν(ψ ◦ ϕ) = d(ψ)ν(ϕ) + ν(ψ) and σ(ψ ◦ ϕ) = d(ϕ)σ(ψ) + σ(ϕ).

Proof. (i) We can write ϕ#(T ) =
∑

l∈Z alT
l, so d

dT ϕ#(T ) =
∑

l∈Z lalT
l−1, which implies
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that ε(~t) = aσl+1(σl + 1). Then |ε(~t)| = |aσl+1(σl + 1)| ≥ |dad| = |d|. For (ii), we have

S1 =
rd

ϕ( r
T1

)
= T d1 (u(

r

T1
))−1 = T d1 u1(T1)

and

dS1

dT1
= rd · 1(

ϕ( r
T1

)
)2 · ϕ′#(

r

T1
) · r
T 2

1

= rd · T
2d
1

r2d
· (u1(T ))2 · ε r

σ

T σ1
· v(

r

T1
) · r
T 2

1

= rν · ε · T−σ+2d−2
1 · v1(T1)

= ε1 · T σ1 · v1(T1).

We just note here that u1(T1) = u(r/T1) and v1(T1) =
(
u1(T1)

)2
v(r/T1) are units so

formulae follow.

(iii) If we introduce coordinates U , S and T on A(ρdϕdψ , 1), A(ρdϕ , 1) and A(ρ, 1),

respectively, we may write U = ψ#(S) = Sd(ψ)h1(S), and S = ϕ#(T ) = T d(ϕ)h2(T ),

where h1 and h2 are units in their respective rings, and |h2|(ρ,1) = 1 and |h1|(ρd,1) = 1.

Let us write dU
dS = ε(ψ)Sσ(ψ)g1(S) and dS

dT = ε(ϕ)T σ(ϕ)g2(T ) with usual assumptions on

functions g1 and g2. Then it is a straightforward computation using the chain rule:

dU

dT
=

d

dT
(ψ#(ϕ#(T ))) =

dψ#

dS
(ϕ#(T ))

dϕ#

dT
(T )

= ε(ψ)(ϕ#(T ))σ(ψ)g1(ϕ#(T ))ε(ϕ)T σ(ϕ)g2(T )

= ε(ϕ)ε(ψ)T d(ϕ)σ(ψ)+σ(ϕ)g1(ϕ#(T ))g2(T ).

which implies σ(ψ ◦ ϕ) = d(ϕ)σ(ψ) + σ(ϕ). Then, ν(ψ ◦ ϕ) = σ(ψ ◦ ϕ)− d(ϕ)d(ψ) + 1 =

d(ϕ)(σ(ψ)− d(ψ) + 1) + σ(ϕ)− d(ϕ) + 1 = d(ψ)ν(ϕ) + ν(ψ).

Remark 2.2.2. A priori, for a given morphism of an open annulus as above, the terms σ

and consequently ν depend on the choice of coordinates. But, taking a different choice of
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coordinates doesn’t affect the values because the change of coordinate(s) just represents

an isomorphism of the corresponding open annulus. Then, we can use the previous Lemma

to conclude because for such an isomorphism, the corresponding terms are d = 1, σ = 0,

ν = 0 and ε = 1.

Lemma 2.2.3. Suppose that ϕ : A1 → A2 extends to a finite map of the whole open

disc B(0, 1−) to itself with ramified points x1, . . . , xs and ramification indexes ex1 , . . . , exs,

respectively. Then σ =
∑

1≤i≤s(exi − 1).

Proof. The map ϕ has a coordinate representation as a power series S = ϕ#(T ) =∑
i≥0 aiT

i, and by a choice of coordinates we can assume that zero is not a ramified point

of ϕ. The derivative of ϕ is again a power series and we can factor it as dS
dT = P (T )g(T ),

where P (T ) = (T − x1)ex1−1 · · · (T − xs)exs−1, while g(T ) is invertible on B(0, 1−) [12,

Proposition 2.24]. As ρ ∈ (0, 1) approaches 1, the theory of valuation polygons tells us

that the the logarithmic derivative dlog−| dSdT |ρ(1) is, on one side equal to the number of

zeros in B(0, 1−) of dS
dT counted with multiplicities, so exactly

∑
1≤i≤s(exi − 1), but on the

other side it is equal to σ.

Corollary 2.2.4. Suppose that ϕ is ramified at only one point in B(0, 1−). Then σ = d−1.

2.2.5. The norm of the operator d
dT . Let T : A

∼−−→ A(0; ρ, 1) be a coordinate on an open

annulus A. Then, every function f on A can be seen via T as a function f(T ) =
∑

i∈Z aiT
i,

where coefficients ai ∈ k satisfy the condition: for each ρ0 ∈ (ρ, 1), lim|i|∞→∞ |ai|ρi0 = 0,

where | · |∞ is the usual archimedean absolute value.

On the other side, the derivative d
dT f(T ) =

∑
i∈Z aiiT

i−1 can also be seen as a function

on A(0; ρ, 1) because for all i ∈ Z, |i| ≤ 1 and therefore for each ρ0 ∈ (ρ, 1) we have

lim|i|∞→∞ |ai||i|ρi0 →∞ = 0. In this way we can see d
dT as an operator acting on the space

of fuctions on A(0; ρ, 1).

Lemma 2.2.6. Let ρ0 ∈ (ρ, 1) and let | ddT |ρ0 be the operator norm of the operator d
dT

seen as acting on the space of functions on A(0; ρ, 1) equipped with the norm | · |ρ. Then,
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| ddT |ρ0 = ρ−1
0 .

Proof. The proof is straightforward: if f(T ) is an analytic function on A(0; ρ, 1), f(T ) =∑
i∈Z aiT

i, then d
dT f(T ) =

∑
i∈Z aiiT

i−1. Furthermore,

|T d

dT
f(T )|ρ0 = max

i∈Z
|ai||i|ρi0 ≤ max

i∈Z
|ai|ρi0 = |f(T )|ρ0

which implies | ddT f(T )|ρ0 ≤ ρ−1
0 |f(T )|ρ0 . Finally, since | ddT (T )|ρ0 = ρ−1

0 |T |ρ0 , the proof

follows.

2.3 Factoring finite morphisms

2.3.1. Absolute and relative Frobenius. (We recall that char(k̃) = p > 0). Recall that

the absolute Frobenius morphism of a field k̃ is the automorphism Fabs : k̃ → k̃ given by

Fabs(a) = ap. We will also denote the induced morphism Spec k̃ → Spec k̃ by Fabs. More

generally, for a smooth, connected curve X over the field k̃, absolute Frobenius is the

morphism Fabs : X → X which at the level of sections acts as raising to the p-th power,

and which (consequently) is the identity at the topological level acting on the structure

sheaf as rising functions to the p-th power. Then it can be shown that absolute Frobenius

acts as the identity map on the points of X. It is easy to see that Fabs is not k̃-linear.

Let X(p) denote the fiber product X ×
Spec (k̃)

Spec (k̃) with respect to the structure

morphism X → Spec k̃ and the absolute Frobenius Fabs : Spec (k̃) → Spec (k̃). The rela-

tive Frobenius morphism (also called k̃-linear Frobenius morphism) Frel is a k̃-morphisms

Frel : X → X(p), given as a Frel = (Fabs, Id). In more concrete terms, if we put

X = Spec (k̃[T1, . . . , Tn]/(f1, . . . , fm)) where Ti are indeterminates and fi ∈ k̃[T1, . . . , Tn],

then X(p) = Spec (k̃[T1, . . . , Tn]/(fp1 , . . . , f
p
m)). The relative Frobenius morphisms is then

induced by a k̃-morphism k̃[T1, . . . , Tn]/(fp1 , . . . , f
p
m)→ k̃[T1, . . . , Tn]/(f1, . . . , fm) given by∑

aIT
I 7→ aIT

pI . More generally, we define F rrel to be r-uple composition of Frel with

itself, that is F 1
rel := Frel and for r ≥ 1, F rrel := Frel ◦F r−1

rel . For r ≥ 1, we denote Y (pr) :=
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Y (pr−1)×Spec
k̃

Spec k̃, where again the fiber product is taken with respect to the structure

morphism Y (pr−1) → Spec (k̃) and the absolute Frobenius Fabs : Spec (k̃)→ Spec (k̃).

2.3.2. Recall that if f : Y → X is a finite morphism of smooth, connected k̃-curves, then

f factors as f = fsep ◦ finsep where finsep = Y → Z is purely inseparable morphism,

while fsep : Z → X is a generically étale morphism. This corresponds to the inclusion

of the fields K(X) ↪→ K(Z) ↪→ K(Y ), where K(X) and K(Y ) are function fields of X

and Y respectively, while K(Z) is the separable closure of K(X) in K(Y ). More precisely,

Z ' Y (pr) where pr is the degree of the morphism finsep and finsep = F rrel (see [27, Chapter

IV, Proposition 2.5]).

2.3.3. Composite Hensel’s lemma. Since we study affinoids over a field of characteristic 0,

we cannot speak about purely inseparable morphisms between them. Nevertheless, since

the residue field k̃ is of positive characteristic, we introduce the following definition.

Definition 2.3.4. Let ϕ : Y → X be a finite morphism of quasismooth, connected, 1-

dimensional k-affinoids with good canonical reduction. We say that ϕ is residually sepa-

rable (resp. purely inseparable) if the reduction morphism ϕ̃ : Ỹ → X̃ is separable (resp.

purely inseparable). In the case where ϕ is residually purely inseparable of degree pr, we

also say that ϕ is a lifting of the relative Frobenius morphism F rrel.

We are particularly interested in the case when we can lift the decomposition of a finite

morphism of the previous paragraph to the decomposition of a morphism between suitable

affinoids. We tend to think of the next result as a sort of a composite Hensel’s lemma.

Theorem 2.3.5. Let ϕ : Y → X be a finite étale morphism of one-dimensional, quasi-

smooth connected k-affinoid spaces which have good canonical reduction. Then, after pos-

sibly removing finitely many residual classes from Y and X, ϕ factors through ϕ = ϕ1 ◦ϕ2

where ϕ1 is residually separable and ϕ2 is residually purely inseparable morphism.

Proof. Consider the reduction ϕ̃ : Ỹ → X̃ of ϕ : Y → X. We know that ϕ̃ factors

as ϕ̃2 : Ỹ → Ỹ (pr) which is purely inseparable (say of degree pr i.e. the r-fold relative
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Frobenius map) and ϕ̃1 : Ỹ (pr) → X̃ which is generically étale ([30, p. 291]). Moreover,

after removing some points from Ỹ and X̃, we may assume that ϕ̃1 is smooth.

We have the following diagrams (the diagram on the left is commutative while on that

one on the right we look for a lifting ”?” which will make the diagram commute):

Ỹ (pr)

Ỹ X̃

ϕ̃1

ϕ̃

ϕ̃2

Y (pr)

Y X

ϕ1

ϕ

?

where in the diagram on the right, ϕ1 : Y (pr) → X is any lifting of the morphism ϕ̃1 :

Ỹ (pr) → X̃ (a lifting exists as X̃ is smooth). Since we assumed that Ỹ (pr) is smooth over

X̃ we can apply Coleman’s theorem about lifting morphisms [16, Theorem 1.1, p. 115],

to obtain a morphism ϕ2 : Y → Y (pr) which lifts the morphism ϕ̃2 : Ỹ → Ỹ (pr) in such a

way that the diagram on the right is commutative.

2.3.6. Factoring étale morphisms of open annuli

2.4 Ramification locus

2.4.1 Finite extensions of complete residue fields and discriminant func-

tion

2.4.1. Stable fields Let (K, | · |K) be a normed field of characteristic 0, where | · |K is

nontrivial and nonarchimedean. As usual, we denote by K◦ = {x ∈ K, |x|K ≤ 1} the ring

of integers of K, by K◦◦ its maximal ideal and by K̃ the residual field K◦/K◦◦ . Recall

that a finite extension of normed fields (L, | · |L) of (K, | · |K) (we assume that | · |L extends

| · |K) is called K-cartesian (or for brevity just cartesian) if there exists a basis x1, . . . , xd

of L over K such that for each m = m1x1 + · · · + mdxd ∈ L, m1, . . . ,md ∈ K, we have

|m|L = maxi |mi|K |xi|L. Such a basis is called orthogonal or K-cartesian and if its elemets

in addition have norm 1, we call the basis orthonormal. We say that the field K is stable

if every finite extension of it is cartesian.
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For some criteria for stability of complete normed fields, we refer to [9, Section 3.6.2,

Propositions 1 to 6 ]. In particular, a complete field K is stable if it is discretely valued

or algebraically closed. If K is complete, then it is stable if and only if for each finite

extension L/K of degree n we have n = e · f , where f = f(L̃/K̃) is the degree of the

residual extension L̃/K̃ and e = e(L̃/K̃) is the ramification index of the valuation groups,

that is, e =
∣∣|L∗| : |K∗|∣∣.

In what follows we assume that K is stable and that the valuation group |K∗| is discrete

or divisible. Let L/K be a finite extension of valued fields. Then, by [32, Lemma 1.6] this

implies that the integral closure of K◦ in L (i.e. L◦) is finite and free module over K◦. In

particular, following Lütkebohmert ([31, 32]) we give

Definition 2.4.2. The fractional ideal CL/K := {y ∈ L, trL/K(yL◦ ⊂ K◦)}, where tr is

the trace pairing for the extension L/K, is called codifferent of the extension L/K. It is

a fractional principal ideal of L◦. A base is given by the dual base of L◦ over K◦ with

respect to trace pairing. Its inverse DL/K := (CL/K)−1 is called different of the extension

L/K (see [32, Definition 1.8, Remark 1.9.1]).

Definition 2.4.3. Let y1, . . . , yn be a basis of L◦ over K◦. Then the principal ideal

d ⊂ K◦ generated by the element (det(tr(yiyj))i,j=1,...,n is called the discriminant ideal of

the extension L/K. ([32, Definition 1.8]). Its ideal norm is denoted by δL/K and is called

discriminant.

We collect some of the main properties of the objects just introduced in the following

lemma.

Lemma 2.4.4. 1. If y1, . . . , yn is a K◦-basis of L◦, then the dual basis y∗1, . . . , y
∗
n with

respect to the trace pairing trL/K is a K◦-basis of the codifferent CL/K .

2. dL/K = NL/K(DL/K)K◦, where NL/K is the ideal norm function.

3. If L = K(a) is a separable extension and if L◦ = K◦[a], then we have DL/K =
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f ′a(a)L◦, where f ′a is the usual derivative of the minimal polynomial fa of a over K.

Consequently, δL/K = |f ′a(a)|nL.

4. If M/L and L/K are finite separable extensions, then DM/K = DM/LDL/K and

dM/K = NL/K(dM/L)d
[M :L]
L/K .

5. Let l/k be the residue field extension of the finite extension L/K and suppose [l :

k] = [L : K]. Then

(a) Any lifting of a k-basis of l to L◦ is an orthonormal K◦-basis of L◦ (a basis of

L◦ over K◦ is orthonormal if it is orthogonal, in a similar sense as above, and

its elements have norm 1).

(b) If both extensions L/K and l/k are separable, then δL/K = |dL/K |K = 1.

Proof. [32, Remark 1.9, Lemma 1.13].

2.4.5. Stability of completed residue field H (y). The following theorem is well known,

but nevertheless we give the proof.

Theorem 2.4.6. Let Y be a compact, connected, quasi-smooth k-analytic curve and let y

be a type two point. Then the residue field H (y) is stable.

Proof. First suppose that H (y) has genus zero. This means that the point y can be

embedded into analytic projective line, in particular H (y) is isomorphic to the completion

of the fraction field of the affinoid algebra k{T} with respect to the Gauss norm. The

later field is stable by the theorem of Grauert-Remmert and Gruson [9, Theorem 5.3.2/1].

If H (y) has a positive genus, then we can take an affinoid neighborhood V ⊂ Y of y

and a finite morphism f : V → W , where W is an affinoid domain in P1
k. Put x = f(y).

Then, we have an induced finite extension H (y)/H (x) and since H (x) is complete and

stable by the previous case, we conclude that H (y) is stable as well by [9, 3.6. Corollary

7].
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2.4.7. Function δ. In this paragraph we return to our initial setting and a finite morphism

ϕ : Y → X like in 2.0.15 or a finite morphisms between wide open curves. We agree in this

section to denote the set of type 2 (resp. type 3, resp. type 2 or 3) points in a curve Z by

ZII (resp. ZIII , resp. ZH
′
). Let y ∈ Y be a type two point and put x = ϕ(y). Then, our

morphism ϕ induces a finite field extension H (y)/H (x) which is of degree νϕ(y) (recall

that νϕ(y) is the geometric ramification index of ϕ at y, defined in [4, 6.3, Remark 6.3.1].

For the basic properties of the function νϕ(y) we refer to the loc.cit. ). As we have just

seen, H (x) is stable and we know that the group |H (x)×| is divisible because |k∗| itself

is divisible, hence we have a well defined discriminant δH (y)/H (x).

Definition 2.4.8. We define function δ : Y II → (0, 1] to be defined as δ(y) = δH (y)/H (x)

and call it the discriminant function.

Contrary to the case when x ∈ XII , if x ∈ XIII the integral closure of H (x)◦ in a

finite extension of H (x) is not finite over H (x)◦, except if the extension is trivial. This

could be seen from [32, Lemma 1.6] or [11, VI, Section 8, Theorem 2]. Therefore, we

cannot a priori extend the function δ to the points of type 3. However, there is a way to

overcome this problem.

Definition 2.4.9. (Continuing 2.4.8) Let y ∈ Y III . We define δ(y) to be δσK(y)/σK(x),

where K =
_

H (x) (see Paragraph 1.1.19 for the definition of K and for an explanation

why σK(x) is a type 2 point).

Combining the previous two definitions, we have a function (still denoted by ) δ defined

on the subset Y H′ of Y consisting of type 2 and type 3 points.

Lemma 2.4.10. Let ϕ : Y → X be a finite étale morphism of degree n of strict open

annuli. Then, the discriminant function δ : Y H′ → (0, 1] is continuous along the skeleton

of Y . Moreover, δ(ηρ) = |ε|n|ρ|nν and, in particular, when ν = 0, δ(ηρ) = |n|n.

Proof. Let T : Y
∼−−→ A(r, 1) and S : X

∼−−→ A(rn, 1) be coordinates on Y and X, where
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n is the degree of the map ϕ, so that we have S = ϕ#(T ) = Tn(1 + h(T )) where h(T ) is

convergent on A(r, 1) and |h(T )|ρ < 1 for each ρ ∈ (r, 1).

Suppose ρ ∈ |k∗|. Then, ϕ restricts to a finite morphism ϕρ : A[ρ, ρ] → A[ρn, ρn]

and we have the corresponding morphism of affinoid algebras ϕ#
ρ : k{ρnS, ρ−nS−1} →

k{ρT, ρ−1T−1} is given by S 7→ ϕ#(T ). Note that ϕ#
ρ extends to a finite morphism of

fields ϕ#
ρ : H (ηρn) → H (ηρ). Let s and t be the images of S and T , respectively under

the canonical embeddings k{ρnS, ρ−nS−1} ↪→ H (ηρn) and k{ρT, ρ−1T−1} ↪→ H (ηρ),

respectively, and let us put for the moment Hρn,s := H (ηρn) and Hρ,t := H (ηρ). We

have the following commutative diagram

k{ρnS, ρ−nS−1} k{ρT, ρ−1T−1}

Hρn,s Hρ,t

ϕ#

ϕ#
ρ

where the vertical maps are canonical embeddings.

After introducing integral coordinates S1 = α−nS and T1 = α−1T , where α ∈ k and

|α| = ρ so that S1 = φ(T1) = α−nϕ(αT1), the previous diagram is transformed into a

commutative diagram

k{S1, S
−1
1 } k{T1, T

−1
1 }

H1,s1 H1,t1

φ#

φ#
1

where now s1 = α−ns and t1 = α−1t with |s1| = |t1| = 1. The next thing to note is that

the elements 1, t1, . . . , t
n−1
1 form an orthonormal H ◦

1,s1
-basis for H1,t1 . This follows from

Lemma 2.4.4 5.(a). Let Pt1(X) ∈ H1,s1 [X] be the minimal polynomial of t1 over H1,s1 .

Then from Lemma 2.4.4 we have δ(ηρ) = |P ′t1(t1)|n. On the other side, t1 is a zero of the

series equation given by φ(X)− s1 = 0. Let us prove that |φ′(t1)| = |P ′t1(t1)|.

We proceed by proving an equivalent (after returning the former coordinates) equation

|ϕ′#(t)| = |P ′t(t)|. From the valuation polygon of the function ϕ(X)−s (seen as a function

with coefficients in Hρn,s) we see that it has a break at the point ( 1
n log |s|, log |s|) so
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that ϕ(X) − s has n zeros (counted with multiplicity and t being one of them) of the

norm |t|. Moreover, ϕ(X) − s factorizes as the product Q(X)(1 + q(X)), where Q(X) ∈

Hρn,s[X] is of degree n and has the same zeros (with multiplicities) as ϕ(X) − s, while

|1 + q(t)| = 1. We conclude that Pt(X) divides Q(X) and again from the valuation

polygons we see that the norm of the leading coefficient of Q(X) is 1. Hence Pt(X) and

Q(X) are equal after the possible multiplication by a unit in Hρn,s. Finally, we have

|ϕ′#(t)| = |Q′(t)(1 + q(t)) +Q(t)q′(t)| = |Q′(t)| = |P ′t(t)| which implies |P ′t1(t1)| = |φ′(t1)|.

Furthermore, note that |φ′(t1)| = |ασ−n+1εtσ1 (1 + h(t1))| = |ε|ρν which implies δ(ηρ) =

|ε|nρnν .

The same calculations apply for a ρ ∈ (r, 1) \ |k∗| after extension from a base field k

to K =
_

H (ηρ). The Lemma follows.

2.4.11. Function d. In general, function δ : Y H′ → (0, 1] is not continuous. However, a

cousin function d that we introduce below is.

Definition 2.4.12. Let ϕ : Y → X be as in 2.0.15 and let x ∈ XH′. We define the

function d : XH′ → [0, 1] as d(x) =
∏
y∈Y,ϕ(y)=x δ(y).

Remark 2.4.13. In [31] Lütkebohmert introduced and studied another function closely

related with our function d. In fact in the papers [31] and [32] Lütkebohmert’s function is

denoted by δ. To show the relation between the two functions, we choose a symbol δ′ for

the Lütkebohmert’s one. We recall the definition of δ′ in a slightly more general situation

than those considered in [31, 32]. Let ϕ : Y → X be as in 2.0.15. For a type two point

x ∈ X let Cx be an affinoid domain in X with good canonical reduction and maximal

point x. We define δ′(x) (we also write δ′(x, ϕ) if we want to emphasize the dependence on

ϕ) to be the discriminant of the extensionM(ϕ−1(Cx))/M(Cx), whereM(ϕ−1(Cx)) and

M(Cx) are the total fraction rings of meromorphic functions on affinoid domains ϕ−1(Cx)

and Cx, respectively, and where the norms involved are coming from the corresponding

maximal points. Another way to see this is, if y1, . . . , yr ∈ Y such that ϕ(yi) = x, if Cx
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is small enough and if Cyi is an affinoid domain in Y with good canonical reduction and

with maximal point yi and which is a connected component of ϕ−1(Cx), for i = 1, . . . , r,

then δ′(x) =
∏r
i=1 δ

′(x, ϕ|Cyi ).

We obtain Lütkebohmert definition if we take X to be a unit disc D(0, 1) and Cx =

D(0, r), where x = η0,r, and in fact, the function δ′ is the function on the radius r ∈

(0, 1) ∩ |k×| rather than the function of the point η0,r.

Lemma 2.4.14. Let ϕ : Y → X as in 2.0.15 and let x ∈ X be a type two point. Then,

d(x) = δ′(x).

Proof. Having in mind the previous remark it is enough to prove the lemma in the case

where Y and X are with good canonical reduction and where x is the maximal point

of X. Let y ∈ Y be the maximal point of Y so that ϕ(y) = x. Note that in this case

d(x) = δ(y) as ϕ−1(x) = y. Suppose that t1, . . . , tn ∈ M(Y )◦ is an orthonormal M(X)◦-

basis, and let i : M(Y ) ↪→ H (y) be the canonical inclusion. Then (i(t1), . . . , i(tn))

is an orthonormal H (x)◦-basis because of the Lemma 2.4.4 5.(a). Moreover we have

(det(tr(titj))i,j=1,...,n = (det(tr(i(ti)t(tj))i,j=1,...,n which implies δ′(x) = δ(y) = d(x).

Remark 2.4.15. The previous lemma also shows that δ′ is well defined, i.e. it doesn’t

depend on the choice of the affinoid domain Cx in Remark 2.4.13.

Theorem 2.4.16. For ϕ : Y → X as before, d : XH′ → [0, 1] is continuous in the strong

topology of XH′.

Proof. By taking a finite morphism from X to an affinoid domain in a projective line

P1
k and having in mind 2.4.4 4, we can assume that X is a unit affinoid disc. In this

case, by a choice of coordinate on X we may write X = D(0, 1). Let ρ ∈ (0, 1) and let

X(ρ) := Y ×X D(0, ρ). If we (ambiguously) put ζ : (0, 1) → ζρ = ζ0,ρ, then we know

that: (1) The function ρ 7→ δ′(ζρ) is continuous on the set (0, 1] ∩ |k×| which follows from

[32, Proposition 3.6], and (2) δ′(ζρ) = d(ζρ) which follows from Lemma 2.4.14. The two

assertions imply that the d ◦ ζ is continuous on (0, 1] ∩ |k×|. If ρ /∈ (0, 1] ∩ |k×|, the type
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three point ζρ has a neighborhood which is an open annulus A, such that ϕ−1(A) is a

disjoint union of open annuli Ai, i = 1, . . . , s and ϕAi : Ai → A is a finite étale morphism.

Recall that for each i = 1, . . . , s ϕ−1(ΓA) = ΓAi . Then, the continuity of d◦ ζ follows from

Lemma 2.4.10 and definition of the function d.

In conclusion, d ◦ ζ is continuous on (0, 1] or that d is continuous along the canonical

path (excluding 0) from the point 0 to point ζ0,1. On the other side, if we choose another

coordinate T : X → D(0, 1), T (x) = 0 for an arbitrary rational point x ∈ X, we obtain

that d is continuous along the canonical path (excluding x) from x to the maximal point

of X. This precisely means that d is continuous on XH′ in the strong topology.

2.4.2 Inseparable ramification locus for the liftings of relative Frobenius

morphisms

We apply the previous results to study the ramification locus for liftings of relative Frobe-

nius morphisms (Definition 2.3.4). More precisely, let ϕ : Y → X be a finite morphism

where Y and X are like in 2.0.15 or wide open curves and let y ∈ Y be a type two point and

let x = ϕ(y). Than we can find affinoid domain Cy in Y and Cx in X, with good canonical

reductions and with maximal points y and x, respectively, such that ϕy := ϕ|Cy : Cy → Cx

is a finite morphism. We have canonical reduction ϕ̃y of the morphism ϕy. Recalling the

Definition 2.3.4, we introduce the following one (compare with [20, Section 5]).

Definition 2.4.17. We say ϕ is residually separable (resp. inseparable, resp. purely

inseparable) at a type two point y if the morphism ϕ̃y is separable (resp. inseparable, resp.

purely inseparable).

If y is a type three point in Y , we say that ϕ is residually separable (resp. insepara-

ble, resp. purely inseparable) at y if the morphism ϕ⊗̂K : Y ⊗̂K → X⊗̂K is residually

separable (resp. inseparable, resp. purely inseparable) at σK(y), where K =
_

H (y).

We denote by Rsep(ϕ) (resp. Rins(ϕ)) the set of points y ∈ Y at which ϕ is residually

separable (resp. residually inseparable).
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Remark 2.4.18. (i) The previous definition does not depend on the choice of the affinoid

Cy.

(ii) It follows from Lemma 2.4.4 that ϕ is inseparable at y if and only if δ(y) = δϕ(y) <

1.

We are ready to state the main theorem.

Theorem 2.4.19. Let ϕ : Y → X be a finite étale morphism of degree p > 0, where p is

a prime number, of quasi-smooth k-affinoid curves with good canonical reduction and let η

and ξ be the maximal points of Y and X, respectively. Suppose that ϕ is residually purely

inseparable ( i.e. a relative Frobenius morphism). Then, Rins(ϕ) = {y ∈ Y, dY (η, y) < γ},

where dY is metric on Y defined in Paragraph 1.3.4 and where γ = δ(η)
1

p(p−1) .

Proof. We start with a simple observation:

Lemma 2.4.20. Let y ∈ Y H′. Then, y /∈ Rins(ϕ) implies d(ϕ(y)) = 1(= δ(y)).

Proof. It is enough to show that ϕ is residually separable at all the points z ∈ ϕ−1(ϕ(y)).

But, this is true since deg(ϕ) =
∑

z∈ϕ−1(ϕ(y)) νϕ(z) = p and where νϕ(z) is the geometric

ramification index of ϕ at z ([4, 6.3.1.(iii)]), so for each z ∈ ϕ−1(ϕ(y)), νϕ(z) < p, therefore

ϕ cannot be residually inseparable at z.

It follows that Rins(ϕ) = ϕ−1({x ∈ X, d(x) < 1}). On the other hand, if for a

point x ∈ X, d(x) < 1, it follows that there is only one point in the set ϕ−1(x) and

d(x) = δ(ϕ−1(x)). This implies that the function δ : Y H′ → (0, 1] is continuous on Y H′

for the strong topology, because the function d : XH′ → (0, 1] is.

Let D be a residual class attached to the point η. Then, ϕ(D) is a residual class

attached to ξ and ϕ restricts to a finite morphism ϕD : D → ϕ(D) which is necessarily of

degree p as ϕ is purely inseparable at η. It follows that for any residual class DX attached

to ξ, ϕ−1(DX) is a single residual class attached to η. We are now going to study more

precisely the set Rins(ϕD) = Rins(ϕ) ∩D.
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For this, let T : D → D(0, 1) and S : ϕ(D) → D(0, 1) be coordinates on D and

ϕ(D). Let A = A(0; r, 1) be an open annulus living at the boundary of the disc D such

that ϕA : A(0; r, 1) → ϕ(A) = A(0; rp, 1) is a finite étale morphism of open annuli of

degree p. As ϕ is étale morphism it follows that σ(ϕD) = 0 which implies that νD :=

ν(ϕA) = −p + 1. We conclude that for a point ηρ = η0,ρ ∈ A(0; r, 1), ρ ∈ (0, 1), the

discriminant δ(ηρ) = |ε(ϕA)|pρ−p(p−1) (Lemma 2.4.10). Because of the continuity of δ along

the skeleton it follows that δ(ηr) = |ε(ϕA)|pr−p(p−1). Also, the continuity of δ established

above implies that the minimal r ∈ (0, 1) such that ϕ restricts to a finite étale morphism

ϕA : A = A(0; r, 1) → A(0; rp, 1) is such an r for which δ(ηr) = 1 = |ε(ϕA)|pr−p(p−1),

i.e. r = |ε(ϕA)|
1
p−1 . We also note here that |ε(ϕA)|p = δ(η), for the reasons of continuity

as before. In a nutshell, a point η0,ρ on the canonical path from 0 to η in the disc D(0, 1)

is in Rins(ϕD) if and only if ρ ∈ (|ε(ϕA)|
1
p−1 , 1) if and only if ρ ∈ (δ(η)

1
p(p−1) , 1). The

computations are independent on the choice of coordinates T and S, so we conclude that

Rins(ϕD) = {y ∈ D, dY (η, y) < δ(η)
1

p(p−1) }.

Finally, Rins(ϕ) = {η} ∪ ∪DRins(ϕD) = {y ∈ Y, dY (η, y) < δ(η)
1

p(p−1) }.
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Chapter 3

Pro-wide open curves

3.1 Category W

In order to find a nice setting for the objects that we will have to work with latter on

(cf. definition 3.1.18 Robba proannuli, Robba rings), and inspired by Lemma 3.1.43, we

introduce a pro-category of wide open curves.

3.1.1. Recall that a wide open curve (Definition 1.1.2) is an open analytic subset isomor-

phic to a complement of a disjoint union (possibly empty) of finitely many closed discs in

a smooth, connected, projective k-analytic curve.

By W we denote a full subcategory of category of k-analytic curves whose objects are

wide open curves. We can thus form a category pro-W, of pro objects in the category W.

Let us recall what the later category is.

The elements of Ob(pro−W) are functors I →W, where I is a small cofiltered cate-

gory. We also denote them by ” lim← ”t∈IXt, or simply ” lim← I
”Xt or ” lim← ”Xt if the indexing

set is understood to be known. For two objects X = I →W = ” lim← ”tXt and Y = J →

W = ” lim← ”sYs, the set of morphisms between them is given by Hompro−W(X,Y ) :=

lim← t
colim−→ s

HomW(Xt, Ys).

81



82 CHAPTER 3. PRO-WIDE OPEN CURVES

3.1.2. However, for our purposes we will restrict our attention to a subcategory of pro-W,

denoted by W and which we call category of pro-wide open curves.

Definition 3.1.3. Objects of the category of pro-wide open curves W, consists of pro-

objects ”lim← I
”Ui, where the system (Ui)i ∈ I is subject to the following conditions:

(i) Each Ui, i ∈ I is an open subset in X isomorphic to a wide open curve, where X is

a smooth, connected, projective k-analytic curve X is the same for all Ui,

(ii) For all i, j ∈ I, j → i we have an inclusion Uj ↪→ Ui. Furthermore, we ask that

Ui \Uj is a (finite) disjoint union of n open annuli. The number n depends only on

U and not on i, j.

Morphisms are morphisms of the category pro-W. We will call the above curve X, the

curve of definition for ”lim← I
”Ui, and we will assume without necessarily emphasizing it

that X is the part of the datum for a pro-wide open curve ” lim← I
”Ui.

Remark 3.1.4. We can simplify objects and morphisms in category W in the following

way. By definition of a pro-category, an element f ∈ Hom(” lim← ”tUt, ” lim← ”sVs) is an

inverse system of morphisms {fs : ” lim← ”tUt → Vs}s∈J , and each fs is an element of

colim−→ t
Hom(Ut, Vs). By [19, Proposition 2.1.4], we can reindex the elements ” lim← ”tUt

and ” lim← ”sVs by the same index category I such that f is represented by a family of

compatible morphisms fi : Ui → Vi, i ∈ I. Furthermore, this can be done uniformly for

any finite diagram without loops in the category W [19, Proposition 2.1.5].

As for the objects ” lim← ”tUt ∈W, we note here that we can assume the index category

to be cofinite and strongly directed [19, Theorem, 2.1.6], and in fact, we may use the set

N for the indexing category.

We refer to [19] for all the details and notions.

Remark 3.1.5. Studying pro-objects in the setting of k-analytic spaces is nothing new.

For example, the category of pro-k-analytic spaces was studied by Berkovich in [6] as an
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approach to dagger spaces, and we introduce the category W just to restrict our attention

to particular pro-objects which are well behaved for the topic of our study.

To further simplify objects, we introduce the following definition.

Definition 3.1.6. Let U = ” lim← ”tUt ∈W with the curve of definition X. If Ut is a wide

open curve in X, then we call such U a standard pro-wide open curve.

Remark 3.1.7. Every pro-wide open curve U = ” lim← ”t∈IUt is isomorphic to a standard

pro-wide open curve in the following way. Pick a t ∈ I and the curve Ut. As Ut is

isomorphic to a wide open curve, there exists a smooth projective k-analytic curve Y ,

such that Ut can be seen as a wide open curve in Y . Then, for every s ∈ I and s→ t, the

curve Us is a wide open curve in Y . Finally, we note that pro-objects ” lim← ”s∈I,s→tUs and

” lim← ”t∈IUt are isomorphic.

3.1.8. The heart of a pro-wide open curve. Let U = ” lim←− ”Un be a pro-wide open curve,

and let us denote by ♥(U) the intersection ∩nUn and call it the heart of U . (Note that

taking intersection makes sense, as all Un are subsets of the curve of definition of U .) The

following two theorems show a strong bond between an object in W and its heart.

Theorem 3.1.9. Let U = ” lim← n∈N
”Un ∈ W. Then there are the following possibilities

for ♥(U):

1. ♥(U) = X where X is the curve of definition of U ;

2. ♥(U) = ∅;

3. ♥(U) = x, where x is a type 1, 3 or 4 point in X;

4. ♥(U) is a wide open set;

5. ♥(U) is an affinoid curve;

6. ♥(U) is a semi-open affinoid curve.
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We say that X is a semi-open affinoid curve if it is isomorphic to a complement of

finitely many open, and finitely many closed discs in a smooth, projective, connected

k-analytic curve.

Proof. It is easy to show that each of the 6 possibilities above appear. By taking each Ui

to be equal to the curve of definition X, we are in situation 1.. Then, taking X = P1
k and

Ui to be a family of open annuli A(0, 1− 1/n, 1) (with respect to the standard projective

coordinate), we obtain a pro-object in the situation 2.. Similarly, taking any type 3

point (resp. type 1, resp. type 4) in a projective curve and a suitable system of open

neighborhoods consisting of strict open annuli (resp. strict open discs, resp. strict open

discs), we obtain a pro-object from 3.. The cases 4, 5, and 6. are dealt with similarly. For

example, if we start with a smooth, connected, projective k-analytic curve X, and V an

affinoid domain in X such that X \ V is a disjoint union of open discs, then, a suitable

system of open neighborhoods of V in X consisting of wide open curves will give us a

pro-wide open curve from the situation 4.

To show that situations 1− 6 are the only ones that can occur, we may assume that U

is a standard pro-wide open curve. Let X be the curve of definition of U and let us write

♥(U) = X \ (]mi=1 ∪n Di,n), where Di,n are closed discs and Di,n ⊂ Di,l for l < n. Then

we distinguish the following cases:

1) The curve X has a semistable triangulation. Then, every complement of finitely

many disjoint open discs in X contains ΓX which is nonempty as it contains the minimal

semistable triangulation of X (Theorem 1.2.11). In particular, for each i = 1, . . . , n, every

closed disc Di,n has either an empty intersection with ΓX , or its Shilov point. In the

former case, the whole family (Di,n)n is contained in an open disc in X \ ΓX and ∪nDi,n

is an open or a closed disc in X. In the later case, the family (Di,n)n is stationary (as two

closed disc having a nonempty intersection and a common maximal point coincide) and

again the union ∪nDi,n is a closed disc. In this case, the Theorem follows.

2) The curve X is a Tate curve. Since ΓX is again nonempty, we argue just like in the
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previous case.

3) The curve X is a projective line P1
k. In this case, the computations are direct and

we omit them.

Remark 3.1.10. It follows directly from the previous theorem that for any standard pro-

wide open curve U with the curve of definition X, such that ♥(U) is a point (of necessarily

type 1, 3 or 4) or ♥(U) = ∅, the X is P1
k, as these cases only occur if ΓX = ∅ i.e. X = P1

k.

Theorem 3.1.11. Let U1, U2 ∈W with hearts which are nonempty and not points. Then

♥(U1) ' ♥(U2) (in the category of k-analytic curves) implies U1 ' U2. There are three

types of pro-wide open curves with empty heart.

Proof. We may assume that the pro-wide open curves are standard. We will consider the

case where the hearts are strict analytic curves, the non-strict case being done in a similar

way.

Let us start with the case where ♥(U1) ' ♥(U2) is an affinoid curve and let us put

U1 = X†1 and U2 = X†2, with ♥(X†1) = X1 and ♥(X†2) = X2. Let X ′1 and X ′2 be the curves

of definition for X†1 and X†2, respectively. Then, we may write X1 = X ′1 \(D1,1∪· · ·∪D1,n)

(resp. X2 = X ′2 \D2,1 ∪ · · · ∪D2,m), where D1,1, . . . , D1,n (resp. D2,1, . . . , D2,m) is a finite

number of disjoint open discs in X ′1 (resp. X ′2) each of which is isomorphic to the open

unit disc (in fact, we will have n = m, but a priori we don’t know that, but also at the

moment we don’t need it). Note that it is enough to prove that some open neighborhoods

of X1 and X2 in X ′1 and X ′2 are isomorphic.

By a theorem of Fresnel-Matignon, [21, Theorem 1], there exists a rational function

f1 (resp. f2) on X ′1 (resp. X ′2) s.t. X1 = {x ∈ X ′1, |f1(x)| ≤ 1} (resp. X2 = {x ∈

X ′2, |f2(x)| ≤ 1}). Let us put, for an ε > 1, Xi,ε := {x ∈ X ′i, |fi(x)| ≤ ε}, for i = 1, 2.

Then, for i = 1, 2, Xi,ε is an affinoid domain in X ′i and Xi = Xi,1 is contained in the

interior of Xi,ε for ε > 1.

Furthermore, let us fix some ε0 > 1 and introduce the temporary notation and put

Aε to denote the corresponding affinoid algebra of the affinoid domain X1,ε and let B
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be the affinoid algebra corresponding to the affinoid domain X2,ε0 . Then, we are exactly

in the situation of [8] (with the notation as used in loc.cit. ) and we can conclude that

the isomorphism that we started with i : X1 → X2 can be deformed to an isomorphism

i1 : X1,ε → i1(X1,ε), for some ε > 1 and such that i1(X1 = X2). This implies that there

are open neighborhoods of X1 and X2 in X ′1 and X ′2, respectively, which are isomorphic

and the theorem follows.

We continue with the case where♥(U1) ∼= ♥(U2) is a semi-open affinoid. LetX ′1 andX ′2

be the curves of definition for U1 and U2, respectively. An isomorphism ♥(U1)
∼−−→ ♥(U2)

induces an isomorphism X1
∼−−→ X2 where X1 (resp. X2) is an affinoid subdomain in

♥(U1) (resp. ♥(U2)) such that ♥(U1) \X1 (resp. ♥(U2) \X2) is a finite disjoint union of

open annuli. Then, X1 (resp. X2) is a heart of a pro-object X†1 (resp. X†2) with the curve

of definition X ′1 (resp. X ′2). We argue as in the previous case to obtain an isomorphism

of some open neighborhoods of X1 and X2 in X ′1 and X ′2, respectively, which restricts to

an isomorphism between X1 and X2. By approximating ♥(U1) by affinoids X1 (which in

turn induces an approximation of ♥(U2) by affinoids X2), arguing as before, and using

that U1 and U2 are standard, we obtain an isomorphism of open neighborhoods of ♥(U1)

and ♥(U2), and hence of the pro-objects U1 and U2.

At last, we discuss the case where ♥(U1) = ∅. In this case, the curve of definition is

necessarily P1
k, see Remark 3.1.10. It is easy to show, using the projective coordinate on

P1
k that an arbitrary union of a nondecreasing family of closed discs is either an open or

closed disc of finite radius, or P1
k minus a type 1 or type 4 point. As before, we can write

♥(U1) = P1
k \∪ni=1 ∪tBi

t, where Bi
t are closed discs in P1

k, and for t > s, Bi
s ⊂ Bi

t. Suppose

first that, (after fixing a projective coordinate on P1
k) for some i = 1, . . . , n, say i = 1, the

radii of the family of discs B1
t go to infinity, their union is then P1

k \ {x}, where x is a type

1 or a type 4 point. This is because the complements form a family of open discs whose

radii go to zero, hence their intersection is a type 1 or a type 4 point. Becuase the heart

is empty, the complement, i.e. the point x, must be equal to the union ∪ni=2 ∪t Bi
t. This
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is possible only if n = 2, x is of type 1 and for every t, B2
t = {x}. After introducing a

projective coordinate with T (x) = 0, we obtain that U is of the form ” lim← ”εA(0; 0, ε).

Now suppose that we don’t have a family (Bi
t)t whose radii go to infinity in any

projective coordinate. Let Bi = ∪tBi
t. We fix a suitable coordinate and we identify B1

with D(0, r) or D(0, r−), depending whether it is an open or closed disc. Assume for

the moment that B1 is an open disc. It follows that ∪ni=2 ∪t Bi
t := ]ni=2Bi covers the

complement which is a closed disc in P1
k. It is easy to show that a closed or an open disc

cannot be nontrivially covered with a finite disjoint union of closed or open discs, hence

we conclude that again n = 2 and B2 = P1
k \ B1. With a bit more effort and the right

choice of coordinates, one can show that in this case the pro-wide open curve U can be

put in the form U = ” lim← ”εA(0; r − ε, r). Furthermore, if r ∈ |k×|, U is isomorphic to

” lim← ”εA(0; 1− ε, 1).

We end the theorem with the following lemma.

Lemma 3.1.12. The pro-objects ” lim← ”εA(0; 1− ε, 1), ” lim← ”εA(0; r − ε, r), where r /∈ |k|

and ” lim← ”εA(0; r − ε, r) are not isomorphic pairwise.

Proof.

Remark 3.1.13. The category W is very similar to the category of germs of analytic

spaces, introduced and studied by Vladimir Berkovich in [4, 7]. However, a germ is defined

as a pair (S,X), where X is a k-analytic space and S is a subset of the underlying

topological space (similarly as an object in W with a non-empty heart is defined by its

heart and the curve of definition), and as such, it is not suitable for studying pro-objects

which have empty hearts.

3.1.14. For a subset U ⊂ X of a quasi-smooth, connected, projective k-analytic curve X,

which is a heart of some pro-wide open, we will write U † for the corresponding pro-wide
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open. By a type 1,2,3 or 4 point of a pro-wide open, we mean a type 1,2,3 or 4 point of

its heart. The set of rational points in a pro-wide open U is denoted by U(k).

We give special names to the objects that we will mostly work with.

Definition 3.1.15. Let U ∈ W, and suppose that ♥(U) is an (strict) affinoid curve

(resp. (strict) semiopen affinoid). Then we call such an U a (strict) dagger affinoid (resp.

semiopen (strict) dagger affinoid). If ♥(U) is a curve of definition of U , then we call U a

projective curve.

Remark 3.1.16. A semiopen affinoid curve X is called strict if it can be embedded in a

smooth-projective curve X ′, such that X ′ \X is a finite union of disjoint strict open and

closed discs.

We say that a dagger affinoid X† has a good canonical reduction, if X has a good

canonical reduction. In this case when we refer to the maximal i.e. Shilov point of X†, we

mean the Shilov point of X.

Remark 3.1.17. We do not intend to change the classical terminology of dagger affinoids

but rather to express how one might want to think about some particular pro-wide open

curves: namely, as their name suggests.

Definition 3.1.18. Suppose that U ∈ W and ♥(U) = ∅. Then, as follows from the

previous theorem, U is isomorphic to a pro-wide open of the form ” lim← ”εA(0; 1 − ε, 1)

or ” lim← ”εA(0; 0, ε) or ” lim← ”εA(0; r − ε, r) for some real number r such that r /∈ |k×|.

In the first case we call such an U Robba proannulus of the first type or simply Robba

proannulus, in the second case we say that U is a Robba proannulus of the second type

while in the third case we say that U is a Robba proannulus of the third type.

Remark 3.1.19. If U = ” lim← ”Ui ∈ W and ♥(U) is a wide open, then U is isomorphic

to a stable pro-object (meaning that starting from some i on, all Ui are equal), so in fact

isomorphic to the constant pro-object ” lim← ”♥(U). In this case, risking the ambiguity, we

will sometimes call U a wide open curve as well.
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3.1.20. Intersections and fiber products. Let U = ” lim← ”tUt and V = ” lim← ”tVt be pro-

wide open curves, both with the same curve of definition X. Then, Ut∩Vt is a finite union

of disjoint wide open curves. Increasing t stabilizes the number of connected components

of Ut ∩ Vt and we may write Ut ∩ Vt = ]ni=1Wi,t, where Wi,t are wide open curves. Then,

we define U ×X V (and also write U ∩X V , or simply U ∩V if X is clear from the context)

to be a collection of pro-wide open curves Wi = ” lim← ”tWi,t, i = 1, . . . , n where X is the

curve of definition for all of them. We will still symbolically write U ∩ V = ]ni=1Wi. If

U ∩ V = V , then we say that V is a sub-pro-wide open curve of U and write V ⊂ U . For

a sub-pro-wide open V ⊂ U , we define U \ V as a collection of pro-wide open curves Vi

and write U \V := ]Vi, where Vi are pro-wide open curves whose hearts are in one-to-one

correspondence with the connected components of ♥(U) \ ♥(V ).

More generally, suppose that both U and V can be embedded in some smooth, con-

nected, projective k-analytic curve X. This means that for some t, there exists open

embeddings Ut ↪→ X and Vt ↪→ X (X doesn’t have to be a curve of definition of U and

V ). Let iU : U → X and iV : V → X be the open embeddings. Then, we define U ×X V

to be iU (U) ∩ iV (V ) and call it the fiber product of iU : U → X and iV : V → X or just

the fiber product of U and V in X if iU and iV are understood from the context.

Definition 3.1.21. A finite collection of open embeddings of pro-wide open curves U =

{ii : Ui → U, i = 1, . . . , n} is said to be a finite admissible covering of a pro-wide open U if

{♥(ii(Ui)), i = 1, . . . , n} is a topological covering of ♥(U). We say that a finite admissible

covering U of U is basic, if the intersections ii(Ui) ∩ ij(Uj), i 6= j are either empty or

Robba proannuli. Basic coverings will be studied in more details later on.

Theorem 3.1.22. Category W together with the assignment to each object U ∈ W a set

of finite admissible coverings is a site.

3.1.23. Presheaf on W.

We endow W with a presheaf in the following way. Let U = ” lim← ”Ui ∈ W be a pro-

wide open curve. Then we assign to U a ring of functions O(U) := lim→ O(Ui), where O(Ui)
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is the ring of analytic functions assigned to a wide open curve in the curve of definition.

For example, suppose that U is a Robba proannulus of type one (resp. two). Then,

O(U) is isomorphic to the ring of power series f(T ) =
∑

i∈Z aiT
i s.t. f converges on

some open annulus A(0; 1 − ε, 1) (resp. A(0; ε, 0)). Note that the later is equivalent to

lim|i|→∞ |ai|ri → 0, for all r ∈ (1− ε, 1) (resp r ∈ (0, ε)).

If U ∈ W is a wide open, then it follows that O(U) = O(♥(U)), the ring of analytic

functions on the open set (in the curve of definition) ♥(U).

3.1.24. Triangulations and formal models of pro-wide open curves. We may introduce

many notions connected to k-analytic curves by simply doing so in a naive way, by taking

the corresponding notion for the heart of the pro-wide open curve (when this makes sense).

In particular we introduce semistable triangulations, reductions and formal models.

Let U ∈ W be a pro-wide open such that ♥(U) is a wide open curve, a semiopen

affinoid or an affinoid. We say that a finite set of type two points T ⊂ ♥(U) is a (strictly)

semistable triangulation of U if T is a (strictly) semistable triangulation of ♥(U).

Remark 3.1.25. A semistable triangulation for a semiopen affinoid X is introduced

analogously as for k-analytic curves. The same goes for X an affinoid which is not strict,

except we don’t ask that the connected complements of the triangulation to be strict open

discs or annuli.

Note that for a strictly semistable triangulation T of a pro-wide open U , the elements

of sets CT ,AT and WT (with respect to ♥(U)) are naturally hearts of pro-wide open

curves with the same curve of definition as for U . We write C†T = {C†ξ , ξ ∈ T }, and

similarly A†T = {A†, A ∈ AT }, W†T = {W †,W ∈ WT }. However, there are some more

interestings sets here whose elements are Robba proannuli coming from the intersection

of the elements of C†T and A†T . They will be of importance for us when later when we will

deal with cohomology issues on pro-wide open curves, so we set R†ξ to denote the finite

set of Robba proannuli coming from the intersections of C†ξ with the elements of A†ξ, and

we put R†T = {R,R ∈ R†ξ, ξ ∈ T }. Finally, we set for A ∈ AT , R†A to be the set of two
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Robba proannuli embedded at the ”ends” of the proannulus A† i.e. elements of R†A are

intersections of A with the elements of C†T .

Next, we define reduction with respect to a given strictly semistable triangulation T

of a strict dagger affinoid X† or of a pro-wide open projective curve, as the reduction of

its heart with respect to T .

For dagger affinoids and projective curves, we can do more and study their formal

models. By formal model of a dagger affinoid we simply mean the formal model of its

heart. Then hopefully, the reader will not find bigger difficulties in translating the notation

from the Subsection 1.1 by just putting a superfix † for the corresponding elements and

sets. Once again, for a formal model X of X†, we introduce set R†X which is a set of Robba

proannuli made by intersecting the elements of C†X and AX.

3.1.26. Tangent space. For a pro-wide open curve U with a nonempty heart, and a point

x ∈ U , we set TxU := Tx♥(U). For a dagger affinoid U , we can define as well TU as

T♥(U), where the last set is always taken with respect to the curve of definition of U .

Recall that TU is then a (finite) set {~t1, . . . ,~tn} of ”outer” tangent vectors living at the

boundary of the affinoid ♥(U), i.e. they correspond to the connected components of the

set Ut \ ♥(U) = ]ni=1Ai,t. Each Ai,t is an open annulus, and the collection {Ai,t} forms a

projective system, hence a pro-object R~ti = Ri := ” lim← ”Ai,t which is a Robba proannulus.

A similar procedure goes for a pro-wide open curve with the heart which is a type 1 or

type 4 point, or trivially when U is projective.

However, for a pro-wide open curve U , with the heart which is a wide open or a

semiopen affinoid, the situation is a bit different. Namely, let X be the curve of definition

of U . Then X \ ♥(U) =
⊎n
i=1Bi ]

⊎m
j=1Dj , where Bi are closed and Dj are open disjoint

discs. For each i = 1, . . . , n, let ηBi be the maximal point of Bi, and let ~tBi be the unique

tangent vector in TBi. We denote the by TinU the set of tangent vectors tBi , i = 1, . . . , n

and call it the set of inner tangent vector. Note that for each inner tangent vector there is

a natural assignment of a Robba proannuli corresponding to it. More precisely, for each
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i = 1, . . . , n we put R~tBi
to denote the Robba proannuli corresponding to the intersection

of pro-wide open curves U ∩B†i .

On the other hand, for each j = 1, . . . , n, we can apply the previous construction

for the open disc Dj to obtain set TinDj consisting of only one tangent vector which we

denote ~tDj . We put ToutU := {~tDj , j = 1, . . . ,m} and call it the set of outer tangent

vectors of U . Note as well that to each ~tDj we can naturally assign a Robba proannulus

R~tDj
corresponding to the intersection of the pro-wide curves U and Dj .

In the end we put TU := TinU ∪ ToutU . We note as well that for U a dagger affinoid

TinU = ∅, and the previous construction coincides with the standard one.

3.1.1 Cohomology on pro-wide open curves

3.1.27. Recall that a quasi-Stein space is an increasing countable union ∪nXn of affinoid

subdomains which correspond to morphisms of affinoid algebras in : An+1 → An such

that in(An+1) is dense in An with respect to the spectral seminorm on An. Wide open

curves are quasi-Stein spaces, they can indeed be presented as an increasing union of

affinoid subdomains, and the condition about morphism of affinoid algebras can be seen

for example from the Runge theorem in rigid geometry[38, Corollaire 3.5.1].

In particular, for a coherent OU -module F on a wide open curve U , F is acyclic for

the Čech resolution and higher cohomology groups H i(U,F), i > 0 vanish (see [29, Satz

2.4]).

Now, let U be a wide open curve and let F∗ be a complex of sheaves of coherent OU -

modules on U (we will always assume that F∗ is zero in negative degrees). Let Hi(U,F∗)

denote the ith hypercohomology group of the complex F∗. For an inclusion of wide open

curves j : V ↪→ U , we have a natural morphism of sheaves on U , F∗ → j∗F∗|V which

induces a natural morphism of the groups Hi(U,F∗) → Hi(U, j∗F∗|V ). The later group

can be identified (because both U and V are quasi-Stein) with the group Hi(V,F∗|V ) and

we will (ambiguously) also write Hi(V,F∗). This allows us to introduce the following
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definition.

Definition 3.1.28. Let U = ” lim← ”tUt ∈ W. A complex of sheaves F∗ on U is any

complex of sheaves of coherent OUt-modules on some wide open Ut. Furthermore, we

define Hi(U,F∗) := lim→ t
Hi(Ut,F∗) and call it ith hypercohomology of the complex F∗ on

U .

To study hypercohomology on pro-wide open curves, we begin with the following sim-

ple, but useful observation in the form of Mayer-Vietoris sequence on wide open curves

which then easily transfers to the Mayer-Vietoris sequence of pro-wide open curves.

Lemma 3.1.29. Let U be a wide open and let V = {Vi}i∈I be a finite covering of U by

wide open curves s.t. Vi ∩ Vj ∩ Vk = ∅ whenever i 6= j 6= k 6= i. For a subset J ⊆ I,

let us denote by VJ = ∩j∈JVj and by |J | the cardinality of J . Then we have a long exact

sequence

(3.1.29.1)

0→ H0(U,F∗)→
⊕

J⊂I,|J |=1

H0(VJ ,F∗|VJ )→
⊕

J⊂I,|J |=2

H0(VJ ,F∗|VJ )→ H1(U,F∗)→ · · · .

Proof. For, J ⊂ I, let jJ : VJ → U be the inclusion of VJ into U and let F∗J = jJ∗(F∗|VJ ).

First we observe that the sequence of complexes 0 → F∗ → ⊕|J |=1F∗J → ⊕|J |=2F∗J → 0

is exact, as for each i ≥ 0, 0 → F i → ⊕|J |=1F iJ ⊕|J |=2 F iJ → 0 is a Čech resolution of

F i with respect to covering V. Then, such an exact sequence of complexes induces a long

exact sequence of the form

0→ H0(U,F∗)→
⊕

J⊂I,|J |=1

H0(U,F∗J)→
⊕

J⊂I,|J |=2

H0(U,F∗J)→ H1(U,F∗)→ · · · .

We end the proof by noticing that Hl(U,F∗J) = Hl(VJ ,F∗|VJ ) because of the reasons we

mentioned above.

The following theorem is inspired and based on [26].
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Theorem 3.1.30. Let V = {Vi}i∈I be a finite admissible covering of a pro-wide open

U given by sub-pro-wide open curves such that any three distinct elements of U have an

empty intersection and let us put V ′ := {Vi ∩ Vj , i 6= j, i, j ∈ I}. Let F∗ be a complex of

sheaves on U . Then, we have a long exact sequence

(3.1.30.1) 0→ H0(U,F∗)→
⊕
V ∈V

H0(V,F∗|V )→
⊕
V ∈V ′

H0(V,F∗|V )→ H1(U,F∗)→ · · · .

Proof. Let us write V ′ = {Wl}l∈L. Since we have a finite amount of data, to simplify the

notation we can use the same indexing set T for all the pro-wide open curves involved

(see Remark 3.1.4) and by reindexing if needed we can assume that for t ∈ T and a wide

open Ut (U = ” lim← ”tUt), we can find for each i ∈ I a wide open Vi,t (Vi = ” lim← ”tVi,t) s.t.

VT = {Vi,t, i ∈ I} is a covering of Ut satisfying the conditions of Lemma 3.1.29 and s.t. for

each element Wl ∈ V ′ (Wl = ” lim← ”tWl,t), Wl,t = Vi,t ∩ Vj,t for some i, j ∈ I i 6= j. Lemma

3.1.29 then implies

0→ H0(Ut,F∗)→
⊕
i∈I

H0(Vi,t,F∗|Vi,t)→
⊕
l∈L

H0(Wl,t,F∗|Wl,t
)→ H1(Ut,F∗)→ · · · .

Since inductive limit is an exact functor in the category of modules, by taking lim→ t
we

obtain the required result.

Definition 3.1.31. Suppose U is a pro-wide open, and let F∗ be a complex of sheaves

of coherent OU -modules on U . If there are finitely many s ≥ 0 s.t. Hs(U,F∗) 6= 0

and if for all such s, Hs(U,F∗) is a finite dimensional k-vector space, then the quantity

χ(U,F∗) =
∑

s≥0(−1)s dimkHs(U,F∗) is well defined and will be called Euler-Poincaré

characteristic of U with coefficients in F∗.

Corollary 3.1.32. Keep the notation from the Theorem 3.1.30. Suppose that the long

exact sequence (3.1.30.1) is finite and all the groups in it are finite dimensional vector
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spaces over k. Then,

(3.1.32.1) χ(U,F∗) =
∑
i∈I

χ(Vi,F∗Vi)−
∑
l∈L

χ(Wl,F∗|Wl
).

Proof. Under the assumptions of the corollary, we can take the alternating sum of the

dimensions of the groups in (3.1.30.1) which is 0. The corollary follows.

3.1.33. De Rham cohomology.

Definition 3.1.34. For a pro-wide open U = ” lim← ”Ut we define Hi
dR(U) as Hi(U,Ω∗U ),

where Ω∗U is the de Rham complex on a wide open curve U (recall that this means that Ω∗U

is in fact the de Rham complex on some wide open Ut). Furthermore, if all k-vector spaces

Hi
dR(U), i ≥ 0 are finite dimensional (as it turns out in Theorem 3.1.39, they are), we set

χ(U) =
∑

i≥0(−1)i dimk Hi
dR(U) and call χ(U) the Euler-Poincare characteristic of U .

Remark 3.1.35. A priori, de Rham cohomology groups depend on the chosen Ut from

the system defining U ∈ W. However, it follows from the very definition that this is not

the case.

Remark 3.1.36. Note that when U ∈W is a projective curve, the Hi
dR(U) coincides with

the algebraic de Rham cohomology of the curve U (by GAGA). Furthermore, if U is a

proper wide open, then H1
dR(U) is isomorphic to the group Ω1(U)/dO(U). This is because

in this case U is a quasi-Stein space, hence all the higher sheaf cohomology groups for a

coherent sheaf vanish, which implies the degeneration of the spectral sequence (used to

compute hypercohomology) at the first sheet.

Remark 3.1.37. In [35], a notion of overconvergent presentation is introduced. For

an affinoid X with corresponding affinoid algebra A, the overconvergent presentation

(ϕ,A) (loc.cit. , Definition on page 224.) coincides (up to an isomorphism) with O(X†).

Then, following loc.cit. , we can introduce the module Ω1(X†) of continuous differentials

of O(X†), which coincides with Ω1(ϕ,A)† in loc.cit. . Accordingly, we can define de Rham
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complex which depends on the curve of definition, but however the corresponding de Rham

cohomology groups don’t and they are isomorphic to the groups in 3.1.34.

Remark 3.1.38. When U is a dagger affinoid, our de Rham cohomology groups are

isomorphic to the de Rham cohomology groups for dagger spaces introduced by Grosse-

Klönne ([25]).

Theorem 3.1.39. Let U = ” lim← ”tUt ∈ W and let X be a curve of definition of U .

Assume that X \ ♥(U) 6= ∅. Then X \ Ut = ]ni=1Di is a disjoint union of closed discs.

For any disc Di, let us choose a rational point xi ∈ Di(k) and put S = {x1, . . . , xn}. Let

H1
dr(X \ S) be algebraic de Rham cohomology of the curve X \ S. Then,

(i) (Compare with [14, Theorem 4.2], and [35, Corollary 2.7] ) H1
dR(U) is finite di-

mensional over k and the natural restriction map H1
dR(X \ S) → H1

dR(U) is an

isomorphism;

(ii) (Compare with [35, Theorem 2.1]) The de Rham cohomology groups of U are:

H0
dR(U) ∼= k, H1

dR(U) ∼= k2g−1+n and Hi
dR(U) = 0, i > 1, where g is the genus of X.

Proof. (i) Due to Grothendieck, we have a natural isomorphism of groups HidR(X \S) and

Hi
dR(X \ S) (where in the later group, X \ S is seen as an analytic curve, or a pro-wide

open curve, as it doesn’t change the group itself), so we we will prove that the natural map

from Hi
dR(X \S) to Hi

dR(U) is an isomorphism. Consider the finite admissible covering of

(X \ S)† given by U and {Ui}ni=1, where Ui’s are pro-wide open curves whose hearts are

connected components of (X \S)\♥(U). Two distinct elements Ui and Uj have an empty

intersection, and intersection Ui ∩U is a Robba proannulus denoted by Wi. Since each of

the pro-wide open curves (X \U)†, U, Ui,Wi, i = 1, . . . , n has H0
dR = k because the kernel

of the derivation on any wide open curve is 0, the long exact sequence (3.1.30.1) splits for

dimension reasons into short exact sequences 0→ H0
dR(X \S)→ H0

dR(U)⊕ni=1 H0
dR(Wi)→

⊕ni=1H0
dR(Wi) → 0 and 0 → H1

dR(X \ S) → H1
dR(U) ⊕ni=1 H1

dR(Wi) → ⊕ni=1H1
dR(Wi) → 0.

From the later sequence we conclude that H1
dR(U) has a finite dimension over k since
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H1
dR(Wi) = k, and that the natural morphism H1

dR(X\S)→ H1
dR(U) is injective. But, from

Corollary 3.1.32.1 we have χ(X \ S) = χ(U), which implies that the injective morphism

H1
dR(X \ S)→ H1

dR(U) is in fact an isomorphism.

(ii) We could use (i) but we give a slightly different argument which at the same time

proves finite dimensionality of Hi
dR(X \ S). Take a finite admissible covering of X given

by U and pro-wide open curves Ui, i = 1, . . . , n whose hearts correspond to connected

components of X \ ♥(U) and set Wi = U ∩ Ui (note that ♥(Ui) is either a point, open

disc or a closed disc and that Wi is a Robba proannulus). Then χ(Ui) = 1 and the

χ(Wi) = 0 for every i, so (3.1.30.1) gives us χ(U) = χ(X) − n. Once again, using that

H0
dR(U) = H0

dR(X) = k, H1
dR(X) = k2g and H2

dR(X) = k yields the result.

Corollary 3.1.40. Let U ↪→ V be an open embedding of pro-wide open curves s.t. ♥(V )\

♥(U) is a finite disjoint union of semi-open, open or closed annuli and Robba proannuli.

Then, the natural restriction H1
dR(V )→ H1

dR(U) is an isomorphism.

Remark 3.1.41. The previous corollary in fact tells us that ”chopping out” finitely many

Robba proannuli or annuli such that the remaining part is still connected, doesn’t affect

the cohomology and in particular Euler-Poincaré characteristic of a pro-wide open curve.

3.1.42. Basic coverings and genus

Putting F∗ = Ω∗U as in 3.1.30 and using that χ(W ) = 0 for a Robba proannulus W ,

we have the following:

Corollary 3.1.43. Let U be a pro-wide open and U be a basic covering of U . Then

χ(U) =
∑
V ∈U

χ(V ).

When U is a dagger affinoid or a projective curve, basic coverings can naturally be

assigned to a given strictly semistable triangulation T . Namely, elements of the sets C†T
and A†T form a basic covering of U .
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Definition 3.1.44. Let U be a standard pro-wide open curve with the curve of definition

X. We define the genus of U, g(U) to be the genus of the curve X. We also set δ(U) to

denote the number of connected components of X \ ♥(U) and call it defect.

It follows from the Theorem 3.1.39 that the defect is in fact an invariant for a pro-wide

open, i.e. isomorphic pro-wide open curves have the same defect.

As a direct application of the Corollary 3.1.43 (using χ(U) = 2 − 2g(U) − δ(U), for

a pro-wide open U , as is computed directly from Theorem 3.1.39), we deduce the genus

formula.

Theorem 3.1.45. (The genus formula) Let U be a dagger affinoid or a projective curve,

and let U = {Ui}ni=1 be a basic covering of U . Then,

(3.1.45.1) g(U) =

n∑
i=1

g(Ui) +
1

2
(

n∑
i=1

δ(Ui)− δ(U))− (n− 1).

We end this section noting that in the case when U is projective, i.e. when δ(U) = 0,

then the sum 1
2(
∑n

i=1 δ(Ui) − δ(U)) + (n − 1) is the Betti number β(ΓU ) of the graph

ΓU associated to the covering U (the graph ΓU is formed by taking its vertices to be in

one-one correspondence with elements of U , and edges correspond to the intersections of

the elements in U).



Chapter 4

Riemann-Hurwitz formula

4.1 Generalized Riemann-Hurwitz formula

4.1.1 Finite morphisms of pro-wide open curves

Definition 4.1.1. We say that a morphism of pro-wide open curves ϕ : U → V is finite,

if there exists indexing of U and V , U = ” lim← ”tUt and V = ” lim← ”tVt, s.t. ϕ can be

represented by ϕt : Ut → Vt, and s.t. ϕt is is a finite morphism of wide open curves. We

say that ϕ is finite étale if ϕt is finite and étale. As a finite morphism of smooth curves is

flat, it has a well defined degree as long as the target is non-empty and connected. So we

can define the degree of ϕ, deg(ϕ), to be the degree of some (and hence all) ϕt. A point

x ∈ U is said to be ramified if it is a ramification point of some ϕt. Similarly we define

branching points.

4.1.2. Finite morphisms of dagger affinoids and pro-wide projective curves

Lemma 4.1.3. Let ϕ : Y † → X† be a finite morphism of dagger affinoids. Then, ϕ

induces a finite morphism ϕ♥ : Y → X.

Proof. Let ϕt : Yt → Xt be a level t representation of ϕ, and let us fix some t0 from the

index set. Then, for all t > t0, ϕt = ϕt0 |Yt , so we will write ϕt0 instead of ϕt and assume

99
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t > t0. Since ϕ−1
t0

(Xt) = Yt, it follows that ϕ−1
t0

(X) = Y and since ϕt0 is finite, we are

done.

Definition 4.1.4. The ramification index of a point x ∈ U is the ramification index of

the point x with respect to the induced morphism ϕ♥.

Remark 4.1.5. In fact, a stronger statement is true. Namely, every morphism ϕ : Y → X

compactifies (see [22, Proposition 2.4]) in the sense that it extends to a finite morphism

ϕ′ : Y ′ → X ′, where Y ′ and X ′ are smooth, connected, projective curves containing Y and

X, respectively. Compactification implies that we have a finite morphism of some open

neighborhoods of Y and X, isomorphic to wide open curves and this in turn implies that

we also have a finite morphism between our pro-wide open curves Y † and X†.

The previous lemma and remark give us the proof of the following result.

Theorem 4.1.6. The category of quasi-smooth, compact, connected, k-analytic curves

with finite morphisms is equivalent to the category of dagger k-affinoids and pro-wide open

projective curves with finite morphisms. The equivalence functor is given by X 7→ ♥(X)

and ϕ : Y → X 7→ ϕ♥ : ♥(Y )→ ♥(X).

Now we can translate Theorem 2.1.5 and Corollary 2.1.32 in the setting of dagger

affinoids. For the convenience, we do so only for the Corollary 2.1.32.

Corollary 4.1.7. Let ϕ : Y → X be a finite morphism between dagger affinoids or pro-

wide projective curves. Then, there exist coverings of Y and X, by the elements of the sets

A †Y ,B
†
Y ,C

†
Y and A †X ,B

†
X ,C

†
X , respectively, where A †Y (resp. A †X) is a finite set of disjoint

pro-wide open annuli, B†Y (resp. B†X) is a finite set of disjoint pro-wide open discs and

C †Y (resp. C †X) is a finite set of disjoint dagger affinoids with good canonical reduction s.t.

(i) Both coverings are basic

(ii) A †X = {ϕ(A), A ∈ A †Y }, B†X = {ϕ(B), B ∈ B†Y } and C †X = {ϕ(C), C ∈ C †Y } and for

all A ∈ A †X (resp. B ∈ B†X , resp. C ∈ C †X) ϕ−1(A) is a disjoint union of elements
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in A †Y (resp. B†Y , resp. C †Y ) (for a pro-wide open U , ϕ−1(U) is defined as the

union of pro-wide open curves whose hearts correspond to the connected components

of ϕ−1
♥ (♥(U)), where ϕ♥ is the induced morphism from Lemma 4.1.3 )

(iii) For each C† ∈ C †Y , ϕ restricts to a finite, étale morphism ϕ : C† → ϕ(C†) of dagger

affinoids

(iv) For each A ∈ A †Y , ϕ restricts to a finite, étale morphism ϕ : A→ ϕ(A) of pro-wide

open annuli

(v) For each B ∈ B†Y , ϕ restricts to a finite morphism ϕ : B → ϕ(B) of pro-wide open

discs.

(vi) Let R†Y (resp. R†X) be the set of Robba proannuli coming from the basic covering

of Y (resp. X). Then for each R ∈ R†Y , ϕ(R) ∈ R†X , ϕ restricts to a finite étale

morphism ϕ : R → ϕ(R), and for each R ∈ R†X , ϕ−1(R) is a disjoint union of

elements in R†Y .

Proof. The only new part is the claim (vi). Let f : A1 := A(0; r, 1) → A2 := A(0; rn, 1)

be a general finite étale map of open annuli expressed in corresponding coordinates as

S = f(T ) = Tn(1 + h(T )), with |h(T )|(r,1) < 1. Then, as Tn is the dominating term, it is

easy to show with the help of Newton polygons that f−1(A(0, ρ, 1)) = A(0; ρ1/n, 1) for all

ρ ∈ (rn, 1), which means that f induces a finite morphism f : A(0; r1, 1)→ A(0; rn1 , 1), for

all r1 ∈ (r, 1), which in turn induces a finite morphism of Robba proannuli ” lim← ε
”A(0, 1−

ε, 1)→ ” lim← ε
”A(0, 1− ε, 1). From this we deduce all the claims in (vi).

4.1.8. Finite morphisms of Robba proannuli Let ϕ : ” lim← t
”At → ” lim← t

”At, where At =

A(0; 1 − t, 1), be a finite étale morphism of Robba proannuli. Then, it induces a finite

étale morphism at some sheet ϕt : At → At, so we have a coordinate representation as

well as the terms d(ϕt), σ(ϕt), ν(ϕt) and ε(ϕt). As they don’t depend on t, we will write

d(ϕ), σ(ϕ), ν(ϕ) and ε(ϕ).
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If f : A1 = A(0; r, 1) → A2 = A(0; rn, 1) is a finite étale morphism of open annuli,

then we have naturally two induced isomorphisms of Robba proannuli living at the ”ends”

of A1 and A2. The relation among the parameters σ, ν, ε will be the same as in Lemma

2.2.1, so the Lemma naturally translates to the setting of finite étale morphism of Robba

proannuli. We choose not to repeat the lemma here, hoping that the its formulation in

the context of Robba proannuli is clear.

4.1.2 Riemann-Hurwitz formula for compact k-analytic curves

We will use the following reformulation of the classical Riemann-Hurwitz formula.

Theorem 4.1.9. Let ϕ : Y → X be a finite morphism of projective, quasi-smooth, con-

nected, (pro-wide open) k-analytic curves. Let S and T be strictly ϕ-compatible trian-

gulations of Y and X, respectively, such that the elements of AS don’t contain rational

ramified points. Then

χ(Y ) = deg(ϕ)χ(X)−
∑
y∈S

∑
~t∈TyY

σ(~t).

Proof. We start with the classical Riemann-Hurwitz formula for ϕ which gives us χ(Y ) =

deg(ϕ)χ(X) −
∑

P∈Y (k)(ep − 1), where ep is the ramification index at the rational point

P ∈ Y (k). We note also that under the assumptions in the theorem, all the ramified

points are contained in the open discs attached to points y ∈ S and having a nonempty

intersection with ΓYS . Let D be one such a disc. By Remark 2.1.15, the restriction

ϕ|D : D → ϕ(D) is a finite morphism of open discs where ϕ(D) is attached to ΓXT . We

finally invoke Lemma 2.2.3 to conclude the proof.

Theorem 4.1.10. Let ϕ : Y † → X† be a finite morphism of compact, connected, quasi-

smooth pro-wide open k-analytic curves. Then

(4.1.10.1) χ(Y †) = deg(ϕ) · χ(X†)−
∑
~t∈TY †

ν~t −
∑

P∈Y †(k)

(eP − 1)
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Before proving the theorem, we consider a special case.

Lemma 4.1.11. Let ϕ : Y † → X† be as in theorem 4.1.10 and assume that Y † (hence

also X†) has good canonical reduction. Then, formula (4.1.10.1) is true.

Proof. First we show that if (4.1.10.1) is valid for finite étale morphisms, then it is valid for

finite morphisms. Indeed, letDX†
j , j = 1, . . . , n be a finite number of disjoint maximal open

discs in X† containing the rational branching locus of ϕ and let ]mi=1D
Y †i = ϕ−1(∪nj=1D

X†j ),

where DY †i , i = 1, . . . ,m are disjoint maximal open discs in Y †. Then ϕ restricts to a finite

étale morphism

(4.1.11.1) ϕ : Y † \ ]mi=1D
Y †i → X† \ ∪nj=1D

X†j ,

and the following are equivalent

(4.1.11.2)

χ
(
Y † \ ]mi=1D

Y †i
)

= deg(ϕ) · χ
(
X† \ ∪nj=1D

X†j
)
−

∑
~t∈T
(
Y †\]mi=1D

Y
i

) ν(~t)

⇐⇒ χ(Y †) = deg(ϕ) · χ(X†) + (m− deg(ϕ)n)−
m∑
i=1

ν(~ti)−
∑
~t∈TY †

ν(~t)

⇐⇒ χ(Y †) = deg(ϕ) · χ(X†)−
m∑
i=1

(d(~ti)− 1)−
m∑
i=1

ν(~ti)−
∑
~t∈TY †

ν(~t)

⇐⇒ χ(Y †) = deg(ϕ) · χ(X†)−
m∑
i=1

σ(~ti)−
∑
~t∈TY †

ν(~t)

⇐⇒ χ(Y †) = deg(ϕ) · χ(X†)−
∑

P∈Y †(k)

(eP − 1)−
∑
~t∈TY †

ν(~t),

where in the last implication we used Lemma 2.2.3.

Next we show that we can assume that X† is a dagger affinoid isomorphic to Z† =

P1
k \ ]ni=1D(ci, 1

−), where D(ci, 1
−), i = 1, . . . , n are disjoint open unit discs in the wide-

open projective line P1
k, one of which contains ∞. For this we first note that there exists

a finite morphism ψ : X† → D†(0, 1+) (= dagger closed unit disc) because there exists

a finite morphism X → D(0, 1+). Next, we take away from Y †, X† and D(0, 1+) finitely
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many maximal open discs such that ψ becomes étale morphism between the remaining

spaces. So we have morphisms ϕ : Y † → X† and ψ : X† → Z† where ϕ and ψ are

finite étale. Lemma 2.2.1(b) implies that if (4.1.10.1) holds for any two of the morphisms

ψ ◦ ϕ, ϕ, ψ, then it must hold for the third one. Therefore, we may and will assume that

ϕ : Y † → X† is a finite étale morphism where X† is isomorphic to P1
k \ ]ni=1D(ci, 1

−).

Let Y ′ be a smooth projective curve s.t. Y ′ \♥(Y †) = ]li=1D
Y
i , where DY

i , i = 1, . . . , l

are disjoint (unit) open discs, like in Theorem 1.1 in [36]. For each i = 1, . . . , l, chose

a point yi ∈ DY
i (k). By Runge theorem in rigid geometry (Corollaire 3.5.2. [38] ) the

set of rational functions on Y ′ with poles at most in the points yi is dense in the ring of

analytic functions on Y (w.r.t spectral norm, which in our case coincide with the norm

| · |η) and hence in the ring of functions in O(Y †). Suppose that ϕ can be approximated

with a rational function f (recall that ϕ comes from a function ϕt defined on some open

wide Yt containing ♥(Y †)) s.t. for each ~t ∈ TηY † we have σ(ϕ,~t) = σ(f,~t), where η is the

maximal point of Y †. Then, f defines a finite covering of the projective line P1
k, which

is possibly ramified only in the points of DY
i , i = 1, . . . , l, so we have Riemann-Hurwitz

formula 4.1.9 (note that deg(f) = deg(ϕ) as long as |f − ϕ|η < 1)

χ(Y ′) = deg(ϕ)χ(P1
k)−

∑
~t∈TY †

(σ(ϕ,~t)).

from which we can deduce (4.1.10.1) arguing like in (4.1.11.2). We will now exhibit a

sufficient approximation of ϕ by a rational function f .

For a point ~t ∈ TηY † and the corresponding residual class R~t (recall that R~t is either an

open disc or a pro-annulus depending on whether ~t ∈ TY † or not) we choose a coordinate

T~t and similarly we choose a coordinate Sϕ(~t) = S~v for the residual class Rϕ(~t) = ϕ(R~t)

attached to the maximal point ξ of X† (in fact ξ is the Gauss point of P1
k). We then may

write S~v = ϕ#(T~t) = T
d~t
~t
· h(T~t) and dS~v

dT~t
= ε~t · T

σ~t
~t
· g(T~t). Let us suppose now that R~t is

an open disc. In this case, since ϕ is étale, σ(~t) = 0, hence dS~v
dT~t

has constant norm |ε(~t)| all

over R~t. In Lemma 2.2.1(i), we proved that |ε(~t)| ≥ |d(ϕ,~t)|, and since d(ϕ,~t) ∈ {1, . . . , d},



4.1. GENERALIZED RIEMANN-HURWITZ FORMULA 105

there exists a global constant c1 ∈ R>0 s.t. for all ~t ∈ TηY †, |ε(~t)| > c1. On the other hand,

for ~t ∈ TY †, we have the equality |dS~vdT~t
|~t,ρ = |ε|ρσ(~t), so as long as we fix some ρ0 ∈ (0, 1)

and big enough and only allow ρ ∈ (ρ0, 1), we can bound |dS~vdT~t
|~t,ρ from below with some

constant c2 ∈ R>0 not depending on ~t ∈ TY †. In final conclusion, there exists a positive

constant C ∈ R>0 s.t. for all ~t ∈ TηY † and ρ close to 1, |dS~vdT~t
|~t,ρ > C. Finally we prove that

a rational function f , s.t. |f −ϕ|η < ρ0C satisfies our needs from the previous paragraph.

Indeed, for a vector ~t ∈ TηY †, we have (in the second inequality we use Lemma 2.2.6)

| ddT~t f −
d
dT~t
ϕ|~t,ρ ≤ |

d
dT~t
|ρ|f − ϕ|~t,ρ ≤ ρ−1ρ0C ≤ C < | ddT~tϕ|~t,ρ, hence | ddT~t f |~t,ρ = | ddT~tϕ|~t,ρ,

which implies σ(f,~t) = σ(ϕ,~t), which finishes the proof of lemma.

Proof of theorem 4.1.10. If Y † is projective, then so is X†, and (4.1.10.1) is then classic.

So let us assume that Y † is a dagger affinoid.

Let S and T be compatible triangulations of Y † and X†, respectively. Corollary 3.1.43

implies that

χ(Y †) =
∑
C∈C†S

χ(C) and χ(X†) =
∑
C∈C†T

χ(C) =
∑
C∈C†S

χ(ϕ(C)).

Previous lemma implies that for all C ∈ C†S ,

(4.1.11.3) χ(C) = deg(ϕC)χ(ϕ(C))−
∑

P∈C(k)

(e(P )− 1)−
∑
~t∈∂C†

ν~t.

Moreover, for a dagger affinoid C ∈ C†T , if we denote ϕ−1(C) = {C1, . . . , Cl} ⊂ C†S , we have∑l
i=1 deg(ϕCi) = deg(ϕ). Finally we note that whenever ~t ∈ ∂C† doesn’t belong to TY †,

there exists a dagger affinoid C ′ ∈ C†S , C 6= C ′ and a tangential vector ~v ∈ ∂C ′†, ~v /∈ TY †

s.t. the corresponding annuli A~t, A~v ∈ A
†
S coincide. Then lemma 2.2.1(ii) implies that

ν(ϕC ,~t) = −ν(ϕC′ , ~v). Having in mind all of this, and summing (4.1.11.3) over C ∈ C†S
yields the proof.
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4.1.3 Riemann-Hurwitz formula for pro-wide open curves

Theorem 4.1.12. Let ϕ : U → V be a finite morphism of pro-wide open curves with

nonempty hearts. Then,

χ(U) = degϕχ(V )−
∑

P∈U(k)

(eP − 1)−
∑

~t∈ToutU

ν~t +
∑

~t∈TinU

ν~t.

Proof. Let V0 be a dagger affinoid domain in V such that V \V0 is a disjoint union of open

annuli and Robba proannuli. Then, U0 := ϕ−1(V0) is a dagger affinoid domain in U and

by increasing V0 we may assume that U \U0 is a disjoint union of open annuli and Robba

proannuli. Let RU0 (resp. RV0) be the disjoint union of Robba proannuli in U \ U0 (resp

in V \ V0) and let AU0 (resp. AV0) be the disjoint union of open annuli in U \ U0 (resp.

V \V0). Note that for each element W ∈ RU0 (resp. W ∈ AU0), ϕ restricts to a finite étale

morphism ϕ|W : W → ϕ(W ) and ϕ(W ) ∈ RV0 (resp. ϕ(W ) ∈ AV0), and furthermore for

each element W ∈ RV0 (resp. W ∈ AV0), ϕ−1(W ) is a disjoint union of elements in RU0

(resp. in AU0).

From Theorem 4.1.10 we obtain

(4.1.12.1) χ(U0) = deg(ϕ)χ(V0)−
∑

P∈U0(k)

(eP − 1)−
∑
~t∈TU0

ν~t.

First, we notice that χ(U0) = χ(U) and χ(V0) = χ(V ). Then, the set TU0 decomposes as a

disjoint union of set ToutU and a set of tangential points corresponding to the intersection

of U0 and open annuli in AU0 . For each A ∈ AU0 , there are two inner tangential vectors

~tA,1 and ~tA,2, one of which (say ~tA,1) corresponds to the intersection of U0 and A. In other

words, the Robba proannulus attached to the vector ~tA ∈ TU0 which ”points” towards

A coincides with the Robba proannulus corresponding to the vector ~tA,1. From Lemma
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2.2.1(ii) it follows that

ν(~tA, ϕ|R~tA
) = ν(~tA,1, ϕ|R~tA,1

) = −ν(~tA,2, ϕ|R~tA,2
),

therefore the formula (4.1.12.1) can be rewritten as

χ(U0) = deg(ϕ)χ(V0)−
∑

P∈U(k)

(eP − 1)−
∑

~t∈ToutU

ν~t +
∑

A∈AU0

ν~tA,2 .

To conclude the proof, we note that the set of tangential points {~tA,2, A ∈ AU0} is equal

to the set of inner tangential vectors TinU .

Remark 4.1.13. The previous theorem is a generalization of [28, Proposition 5.7].

4.2 Riemann-Hurwitz formula for curves in characteristic

p > 0

Let ϕ̃ : Ỹ ′ → X̃ ′ be a finite morphism of smooth, projective k̃-algebraic curves. When

one classically looks for a Riemann-Hurwitz formula for a morphism ϕ i.e. for a formula

of the form

χ(Ỹ ′) = deg(ϕ̃)χ(X̃ ′)−R,

where R should be counted for the degree of the ramification divisor, one faces some

problems. First of all, the true ramification divisor may be too big, as for example in the

case where ϕ̃ is purely inseparable the ramification locus has support on the whole curve

Ỹ ′. One is led to decompose the morphism ϕ̃ into purely inseparable and separable parts,

and one only considers the Riemann-Hurwitz formula for the separable part (the purely

inseparable part doesn’t change the Euler-Poincare characteristic of Ỹ ′). However, in this

way we break the similarity with the classical Riemann-Hurwitz formula for curves in

characteristic 0. In this section, we propose another approach to study Riemann-Hurwitz
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formula for the morphism ϕ̃.

We start by asking the following questions:

1. How can one choose a divisor on Ỹ ′ whose degree will be equal to R?

2. Can we choose D in a canonical way?

To answer the question 1, we proceed as follows: Let x̃ ∈ X̃ ′(k̃) be a rational point,

and let ϕ̃−1(x̃) = {ỹ1, . . . , ỹs}, and let us put X̃ := X̃ ′ \ {x̃} and Ỹ := Ỹ ′ \ {ỹ1, . . . , ỹs}.

Then, ϕ̃ restricts to a finite morphism (which we still denote by ϕ̃) ϕ̃ : Ỹ → X̃ of smooth

affine curves.

Definition 4.2.1. We say that ϕ̃ : Ỹ → X̃ lifts to characteristic 0 (or simply lifts) if

there exist k-affinoid curves Y and X, and a finite morphism ϕ : Y → X such that the

canonical reduction of ϕ : Y → X is ϕ̃ : Ỹ → X̃. We also say that ϕ : Y → X, or just ϕ,

is a lift of ϕ̃ : Ỹ → X̃.

We know that in our case the morphism ϕ̃ : Ỹ → X̃ lifts to a finite morphism ϕ : Y →

X of quasi-smooth dagger affinoids with good canonical reduction, because X̃ is affine and

Ỹ is smooth. We put η to be the maximal point of Y and ξ = ϕ(η) the maximal point of X.

To each rational point in Ỹ ′ which is different from ỹ1, . . . , ỹs corresponds a vector/point

in a tangent space TηY , which again corresponds to a residual class in Y which is an

open disc. On the other side, to each of the points ỹ1, . . . , ỹs corresponds a vector/point

in TηY which corresponds to a Robba proannulus attached to η. In conclusion, let the

correspondence be given by ỹ ↔ ~tỹ and let R~t be a residual class of Y corresponding to

the tangent vector ~t.

We also introduce smooth projective curves Y ′ (resp. X ′), containing Y (resp. X),

such that Y ′ \ Y (resp. X ′ \X) is a disjoint union of open disc attached to η (resp. ξ).

Recall that χ(Y ′) = χ(Ỹ ′) (see for example [23, Theorem p.139]) and χ(X ′) = χ(X̃ ′).

To each vector ~t ∈ TηY we can assign the degree/order σ(~t) = σ(~t, ϕ) of the derivative

of the ϕ restricted to the corresponding residual class R~t (more precisely to the small
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enough annulus at the boundary of the class R~t). We have the Riemannn-Hurwitz formula

χ(Y ) = deg(ϕ)χ(X)−
∑

y∈Y (k)

(ey − 1)−
s∑
i=1

(σ(~tỹi)− d(~tỹi) + 1),

which is equivalent to

χ(Y ′) = deg(ϕ)χ(X ′)−
∑

ỹ∈Ỹ ′(k̃)

σ(~tỹ)

which, by using the standard isomorphism for Euler-Poincare characteristics (reference

needed?), is equivalent to

χ(Ỹ ′) = deg(ϕ̃)χ(X̃ ′)−
∑

ỹ∈Ỹ ′(k̃)

σ(~tỹ).

Note that for almost all ỹ ∈ Ỹ ′(k̃), σ(~tỹ) is 0.

Finally, we can proceed as follows. We assign a divisor

D(ϕ) :=
∑

ỹ∈Ỹ ′(k̃)

σ(ỹ, ϕ)ỹ

where σ(̃(y), ϕ) := σ(~tỹ, ϕ) (which has a support in finitely many points) and the Riemann-

Hurwitz formula can be expressed in the following form:

χ(Ỹ ′) = deg(ϕ̃)χ(X̃ ′)− deg(D(ϕ)).

This gives a possible answer to the question 1 above. For the question 2, the following

remark suggests that we shouldn’t raise our hopes.

Remark 4.2.2. For two lifts ϕ1 and ϕ2 of ϕ̃ : Ỹ ′ → X̃ ′ and for a ỹ ∈ Ỹ ′(k̃), in general

we have σ(ỹ, ϕ1) 6= σ(ỹ, ϕ2). For example, take two mappings ϕ1, ϕ2 : D(0, 1)→ D(0, 1),

where D(0, 1) is a dagger affinoid unit disc and where S = ϕ1(T ) = T p and S = ϕ2(T ) =

(T − 1)p + 1. Then, both ϕ1 and ϕ2 are lifts of a Frobenius covering of the affine line by
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affine line over the field k̃, while we have σ(0̃, ϕ1) = p − 1 6= 0 = σ(0̃, ϕ2). This implies

that, using the approach above, the answer to the question 2 is negative.

To reconcile, we propose the following theorem.

Theorem 4.2.3. For two lifts ϕ1 and ϕ2 of ϕ̃ : Ỹ ′ → X̃ ′, we have divisors D(ϕ1) and

D(ϕ2) are linearly equivalent.

Proof.
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