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Summary

This thesis aims at developing new methodologies for the reliability analysis of 

structural systems with applications to offshore and aeronautical fields. In general, sructures 

of practical interest are complex redundant systems, in which more than one element is 

required to fail in order to have catastrophic failure. Moreover, ramdomness inherently exists 

in both material properties and external loads. As a result, complex structural systems are 

typically characterised by a huge number of possible failure sequences, of which only some 

are most likely to occour. Therefore, for an efficient risk analysis, only the dominant failure 

modes need to be considered, so as to minimise the number of failure paths as well as the 

computational costs associated to their enumeration and evaluation. However, although 

several techniques have been developed for the identification of the critical failure sequences, 

these methods are still either time-demanding or prone to miss potential failure modes. 

These challenges motivated the first part of the thesis, in which the merits of a risk 

assessment framework recently developed for truss and frame structures are here investigated 

in view of its extensive application to the offshore field. To this end, the case study of a 

jacket-type platform under an extreme sea state is considered. First, the dominant failure 

modes of the structure are rapidly identified by a multi-point parallel search employing a 

genetic algorithm. Then, a multi-scale system reliability analysis is performed, in which the 

statistical dependence among both structural elements and failure modes is fully considered 

through simple matrix operations. Finally, the accuracy and the efficiency of the proposed 

approach are successfully validated against crude Monte Carlo simulation.

In the second part of the thesis, system reliability theory is applied to the uncertainty 

quantification of the longitudinal tensile strength of UniDirectional (UD) composites, a 

structural component very common in aircraft structures. Predictive models for size effects in 

this class of materials are paramount for scaling small-coupon experimental results to the 

design of large composite structures. In this respect, a Monte Carlo progressive failure 

analysis is proposed to calculate the strength distributions of hierarchical fibre bundles, which 

are formed by grouping a predefined number of smaller-order bundles into a larger-order one. 

The present approach is firstly validated against a recent analytical model to be later applied 

to more complex load-sharing configurations. The resulting distributions are finally used to 

analyse the damage accumulation process and the formation of clusters of broken fibres 

during progressive failure.
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Sommario

Lo scopo principale di questa tesi è lo sviluppo di nuove metodologie per determinare 

l’affidabilità dei sistemi strutturali con applicazioni sia in campo offshore che aeronautico. In 

generale, strutture di interesse pratico sono caratterizzate da un elevato grado di ridondanza, 

per cui il collasso globale richiede la rottura simulatanea e/o progressiva di più elementi. 

Inoltre, i sistemi fisici sono influenzati da diverse fonti di incertezza, quali le prorietà dei 

materiali e le condizioni ambientali e operative. Pertanto, il collasso strutturale può avvenire 

con diverse modalità (modi di guasto), di cui solo alcune possiedono una probabilità di 

accadimento significativa (modi di guasto dominanti). Per una valutazione efficiente del 

rischio risulta dunque indispensabile limitare l’analisi ai soli modi dominanti, così da ridurre 

il costo computazionale associato alle fasi di identificazione e di valutazione dei modi stessi. 

Tuttavia, nonostante in letteratura vi siano numerose soluzioni per l’analisi del rischio, tali 

metodi richiedono ancora tempi di calcolo notevoli e sono inclini a tralasciare potenziali modi 

di guasto.

Queste motivazioni conducono alla prima parte delle tesi, in cui si ripropone un 

metodo recentemente sviluppato per l’analisi del rischio di strutture discrete (reticolari e telai) 

in previsione di una sua applicazione al campo offshore. A tale scopo si considera il caso di 

studio di una piattaforma di tipo jacket in condizioni di mare estremo. Dapprima, i modi di 

guasto dominanti vengono rapidamente identificati per mezzo di un algoritmo genetico. In 

seguito, l’affidabilità del sistema viene calcolata mediante un approccio multi-scala che fa uso 

di semplici operazioni matriciali, in cui la dipendenza statistica viene considerata sia tra le 

componenti strutturali che tra i modi di guasto dominanti. Infine, l’accuratezza e l’efficienza 

del metodo vengono testate con successo tramite comparazione con Monte Carlo.

Nella seconda parte della tesi, la teoria dell’affidabilità dei sistemi viene applicata per 

la quantificazione dell’incertezza nella resistenza a trazione di compositi UniDirezionali 

(UD), problema di notevole interesse per l’ambito aeronautico e non solo. Infatti, il 

comportamento aletorio di questi materiali è fortemente influenzato da effetti di scala, che 

limitano la progettazione di strutture in composito di grandi dimensioni sulla base dei dati 

sperimentali ricavati da provini. In quest’ottica, si propone di modellare fasci di fibre secondo 

una legge di scala gerarchica, ossia raggruppando un numero prestabilito di fasci più piccoli 

in un fascio di ordine superiore. La distribuzione di resistenza di tali fasci viene quindi 

simulata attraverso un’analisi di collasso progressivo. Questo approccio, dapprima validato 

rispetto ad un modello analitico recentemente sviluppato per disposizioni semplici di fasci, 

viene poi esteso a configurazioni più realistiche. I risultati così ottenuti sono infine processati 

per l’analisi statistica del danno. 
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1 Introduction

1.1 Motivation and scope of this thesis

Since the late 1960s, structural reliability theory has been extensively applied to the 

analysis, design and maintenance of structural systems in civil, nuclear, offshore and 

aerospace fields (Frangopol & Maute, 2003; Haldar, 2006; Moan, 1994, 2005; Thoft-

Cristensen, 1998). In particular, most of the reliability applications have been primarily aimed 

at developing limit state design formats, e.g., the North American codes for steel structures 

(AISC), movable highway bridges (AASHTO), and offshore platforms (API RP2A). Such 

specifications are mainly component-based with the underlying hypothesis that a structural 

system will be safe as long as all its members are safe according to the corresponding limit 

state equations. Hence, most research has been focusing on component reliability analysis 

over the years, where a single limit state function is used to describe the failure event of 

interest (e.g., overload, buckling or fatigue failure of a member). As a consequence, ensuring 

pre-established target reliabilities to structural components became a part of everyday 

common practice, but the calculation of the probability of a system-level failure (e.g., 

sequence of member failures leading to structural collapse) still poses very difficult 

theoretical and practical challenges. 

However, it has been increasingly recognized over the last few decades that system 

reliability analysis is a matter of primary importance in the field of structural engineering. 

First of all, it should be noted that the overall reliability of real structures is typically different 

from the calibrated component reliabilities provided by present day design codes. In fact, 

structures of practical interest are generally complex redundant systems, in which more than 

one element is required to fail in order to have system-level failure. This is due to the residual 

strength provided by non-failed elements, which resist the external loads by redistribution of 

the internal load effects. Some effort has been made in present day design codes to account 

for such system reserve strength. For instance, a simplified system approach has been 

developed by the Joint Industry Project (JIP) (Bomel Ltd., 2002) to derive environmental load 

factors for fixed steel offshore structures. Here, the calibration process is carried out on a 

global failure function defined by the difference between the structural reserve strength and 

the environmental load, in which the reserve strength is evaluated by deterministic 
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progressive failure analyses. Nevertheless, from a reliability viewpoint this approach is still 

component-based, since a single limit state equation is involved in the definition of the system 

failure. In a similar way, a single-function event is often used to model the system failure of 

offshore structures under extreme sea loading, where both the load and resistance terms in the 

limit state equation are referred to as the overall base shear. Although this approach is 

computationally efficient and particularly attractive for planning of inspection, maintenance 

and repair strategies (Ayala-Uraga & Moan, 2002), it has been validated only for cases where 

the load uncertainties are dominant and the resulting stresses in the components are highly 

correlated (Wu & Moan, 1989). Such an assumption may not be true, as in the case of fatigue 

failure, where the uncertainties related to resistance properties are higher and the correlation 

among components is lower. Thus, it is clear that a more general and rigorous risk assessment 

framework employing system-based reliability analysis is needed, in which the reliability of a 

structural system is estimated with respect to all its potential (or dominant) failure modes and 

their statistical dependence. 

In general, complex structural systems are characterised by a huge number of critical 

sequences of component failures leading to a system failure, of which only some (i.e., the 

dominant failure modes) are most likely to contribute to the overall failure. Therefore, for an 

efficient risk analysis, only the dominant failure modes need to be considered so as to 

minimise the number of failure paths as well as the computational costs associated to their 

enumeration and evaluation. Although several techniques have been developed for the 

identification of the critical failure sequences (see review from Karamchandani, Dalane & 

Bjerager, 1992), these methods are still either time-demanding or likely to miss potential 

failure modes. In the latter case, the risk is underestimated due to heuristic rules that are often 

introduced to improve the efficiency of the enumeration process. Concerning the evaluation 

of the system failure probability, various approximate techniques have been proposed such as 

the first-order system reliability method (Hohenbichler & Rackwitz, 1983) that applies 

component reliability analyses to series and parallel systems directly, while it involves

theoretical bounding formulas (Ditlevsen, 1979) in the case of more complex systems. These 

approaches are not flexible in incorporating various types and amount of available 

information on components and their statistical dependence (Song & Kang, 2009). Moreover, 

the complexity of a system event complicates the reliability computations and may require 

overwhelming time costs.

These challenges motivated the first part of the present research, which aims to 

investigate and develop new methodologies for the system reliability analysis of offshore 

structures. A powerful risk assessment methodology has been recently developed for truss and 

frame structures (Kim et al., 2013; Kurtz et al., 2010). Differently from standard probabilistic 

approaches (Karamchandani, 1987; Lee & Song 2011, 2012; Murotsu et al., 1984; Thoft-

Christensen & Murotsu, 1986), the proposed method offers the main advantage that the 

identification process of dominant failure modes is decoupled from the evaluation process of 

their probabilities. In this way, the approach avoids performing reliability analyses repeatedly 
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during the identification process, which otherwise may lead to huge computational costs 

especially for large and highly-redundant structures. Here, the dominant failure modes are 

rapidly identified in the decreasing order of their likelihood by means of a multi-point parallel 

search employing a genetic algorithm. Once the identification phase is completed, the system 

failure probability is evaluated by a multi-scale analysis employing the matrix-based system 

reliability method (MSR) (Kang et al., 2012; Kang, Song & Gardoni, 2008; Lee et al., 2011;

Nguyen, Song & Paulino, 2010, 2011; Song and Kang 2009; Song and Ok, 2010), which has 

been recently developed for accurate and efficient system reliability analysis through simple 

matrix operations.

Figure 1.1: Jacket-type platform under an extreme sea loading.

In order to investigate the applicability of the proposed method to the risk assessment 

of offshore structures, the case study of a jacket-type platform under an extreme sea loading is 

considered (see Figure 1.1). Following the procedure adopted in (Thoft-Christensen & 

Murotsu, 1986), the probabilistic model of the extreme sea loading is derived from a short-

term design storm, in which uncertainties are assumed both in the wave model (i.e., in the 

wave height and the current speed) and the hydrodynamic model (i.e., in the drag and mass 

coefficients of the tubular members). The structure is analysed as a truss and a further source 

of uncertainty affects the yield stress of the members, which are assumed to fail either in

tension or compression. Nonlinearities on the structural response are mainly due to the top 

side of the structure (the deck), which causes a sharp increase in wave-current forces as soon 

as the wave height exceeds a certain value. Further nonlinear contributions arise from the 

hydrodynamic model and the post-failure behaviour of the members, which is assumed purely 

ductile in tension and brittle-ductile in compression. In particular, the effect of the post-

buckling factor on the redundancy of the structure is also investigated.

WAVE

DECK

JACKET
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In the second part of this thesis, system reliability theory is applied to the uncertainty 

quantification of the longitudinal tensile strength of UniDirectional (UD) composites, a 

structural component very common in aircraft structures. The damage accumulation and 

failure of this class of materials is governed by statistical size effects, which pose a challenge 

to use coupon-based experimental data for the design of large structures. Although most 

authors agree that the statistics of fibre strength are essential for establishing the relationship 

between composite longitudinal tensile strength and size effects, a widely accepted strategy 

for the stochastic analysis of Fibre-Reinforced Polymers (FRPs) is still to be developed

(Wisnom, 1999).

Pimenta and Pinho (2013) recently proposed a hierarchical scaling law for the strength 

of composite fibre bundles, which has been extensively validated against experimental results 

and predicts full strength distributions for bundles of any size. As illustrated in Figure 1.2a, 

the model assumes that hierarchical bundles are formed by grouping two smaller-order 

bundles into a larger-order bundle (i.e., a coordination number = 2 is used). Once a sub-

bundle fails, stresses are recovered according to a plastic shear-lag model, so that linear stress 

concentrations apply in the surrounding intact sub-bundle. Although this approach leads to an 

efficient computation of bundle strength distributions, imposing a coordination number equal 

to two results in very high stress concentrations in the proximity of fibre breaks. 

Figure 1.2: a) First 4 bundle levels with coordination number = 2; b) Fibre arrangements 

for different coordination numbers.

The objective of the present work is therefore to extend Pimenta and Pinho’s (2013) 

model to more realistic load-sharing configurations, generalising the hierarchical approach to 

higher coordination numbers (Figure 1.2b) and, consequently, reducing stress concentration 

factors in the neighbourhood of fibre breaks. However, at higher coordination numbers, the 

increasing number of possible sequences of failure events in a bundle complicates the 

   

  
  

 

a)

b)
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analytical evaluation of its strength distribution and, thus, a new numerical approach is 

needed. In this work, a Monte Carlo progressive failure analysis is proposed to calculate the 

bundle strength distributions, where the failure events are simulated through a discrete 

representation of hierarchical bundles. The damage accumulation into clusters of fibre breaks 

is also investigated.

1.2 Outline of this thesis

This thesis is divided into five chapters, which can be summarised as follows:

Chapter 2 serves as an introduction to the system reliability theory. The probabilistic 

concept of reliability is first introduced at the component level. First, a closed-form 

solution is derived for the failure probability associated to linear limit state functions and 

normal random variables. Second, the general case of non-linear limit state functions and 

arbitrary distributions is addressed by means of approximate techniques, such as first-

and second-order reliability methods (FORM and SORM), and Monte Carlo simulation

(MCS). Lastly, the concept of reliability is extended to the system level, providing the 

basic mathematical tools for the applications in Chapters 3 and 4.

Chapter 3 proposes a novel strategy for the risk assessment of offshore structures. The 

genetic algorithm developed by Kim et al. (2013) is here combined with the MSR method 

(Song & Kang, 2009) and applied to the analysis of a jacket platform under an extreme 

sea state. First, the structural model and the loading conditions are derived, providing the 

input random variables for the multi-point parallel search. Second, the main steps of the 

failure mode identification process are summarised, followed by a detailed explanation of 

the MSR method. Lastly, results and discussion are presented, and the main conclusions 

are drawn.

Chapter 4 proposes a numerical approach to model size effects on the stochastic 

longitudinal tensile strength of composite fibre bundles. First, the hierarchical scaling law 

developed by Pimenta and Pinho (2013) is briefly introduced. Second, a Monte Carlo 

progressive failure analysis is implemented extending the analysis to more realistic load-

sharing configurations. Lastly, results are verified against the hierarchical scaling law,

pros and cons of the present method are discussed, and the main conclusions are finally 

drawn.

Chapter 5 summarises the major findings of this work and presents possible related future 

research topics.
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2 Structural reliability theory

The main aim of this chapter is to provide the necessary background on the system 

reliability theory as well as on the numerical methods that are at the base of the present work. 

In Section 2.1, the probabilistic concept of reliability is introduced at the component level. 

Here, the safe state of a structural element (or system) is expressed by a single functional 

relationship between a vector of input random variables and a design performance (such as 

the maximum stress or displacement). First, a closed-form solution for the probability of 

failure is presented for the simple case of normally distributed random variables and linear 

performance function. Then, approximate techniques for the general case of arbitrary 

distributions and non-linear performance function are discussed, and particular attention is

focused on first-order approaches. Furthermore, a brief introduction to second-order 

approaches and Monte Carlo simulation is presented, and their accuracy and efficiency are

investigated through a simple example. Finally, in Section 2.2, the reliability problem is

extended to the system level, where the failure event is defined by a logical function 

consisting of multiple component events, each one expressing the failure of a structural 

member or the occurrence of a failure mode. 

2.1 Component reliability analysis

2.1.1 Fundamental concepts of reliability theory

Reliability-based analyses can be used in different applications, such as code checking 

for structural design, uncertainty analysis and design optimisation. In all these contexts, the 

common thread is represented by the need to evaluate the performance function, = ( ),

which specifies the relationship between a performance and the input variables =

( , , … , ). Generally, the performance function is defined such that

{   ( ) > 0} = safe region

{   ( ) 0} = failure region

(2.1)



Structural reliability theory

8

In other words, a threshold equal to zero is chosen as the limit state: when the performance 

reaches this value, the state of the structural system or component switches from safety to 

failure.

Within the framework of the reliability theory, is defined by a random vector 

containing the uncertain input quantities, such as material properties, geometry, and both load 

and environmental conditions. Thus, even the performance is a random variable, and the 

probability that its value reaches the limit state is called probability of failure, i.e. 

= [ ( ) 0] = (0)  = ( )

( )

(2.2)

where is the cumulative distribution function (CDF) of , and is the joint probability 

density function (PDF) of . The complement of the probability of failure is called reliability,

i.e. 

= [ ( ) > 0] = 1  (2.3)

Now, refer to the performance function ( ) as the difference between the strength 

of a structural component and the load effect acting on the member itself, i.e. ( ) =

, being = ( , ). If all the random variables are independent,

( ) = ( )    
          

   , ( , ) = ( ) ( ) (2.4)

where , is the joint PDF of and , and and are their marginal PDFs, respectively. 

The following well known expression for the probability of failure is then derived,

= ( ) ( ) = ( ) ( ) = ( ) ( ) (2.5)

In this case, is given by the convolution integral between and the CDF of , i.e. . The 

geometrical interpretation of this formula is shown in Figure 2.1.
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Figure 2.1: Geometrical interpretation of the convolution integral in Eq. (2.5).

The red area under the left tail of is the probability that is less than = , i.e. 

( ) = ( ); and the blue rectangle is the probability that is equal to , i.e. 

( ) = ( = ). Therefore, the probability of the failure event relative to = is 

simply given by the product of the two terms above. Finally, the total failure probability, , is 

the sum of the event failure probabilities associated to all the possible outcomes of , i.e.

( ) ( ) = ( ) ( = ) (2.6)

It should be noted that Eqs. (2.5) and (2.6) are only valid in the case of statistical 

independence between and . Indeed, the right-hand side of Eq. (2.6) is a particular case of 

the total probability theorem (Zwillinger & Kokoska, 2000), which will prove very useful in 

the next chapter. The theorem states that if the events ( = 1, 2, … , ) are mutually 

exclusive and collectively exhaustive, and each event is measurable, then for any event 

is

( ) = ( | ) ( ) (2.7)

where ( | ) is the conditional probability of given . The analogy with the previous 

case can be found by letting = ( = ) and = ( 0), where = . Thus,

= (0) = (0| ) ( = ) = (0| ) ( ) (2.8)

where (0| ) = ( 0| = ) is equal to ( ) if and are independent. In this 

case, Eq. (2.8) reduces to the convolution integral in Eq. (2.5). 

The general situation with statistical dependence between and is illustrated in 

Figure 2.2, which shows the joint PDF , ( , ) and the failure domain ( , ) 0. The 
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missing volume of the joint PDF cut by the negative region represents the probability of 

failure, , which is quantified by the integral in Eq. (2.2). However, the number of random 

variables in many engineering applications is usually high. Thus, both the performance 

function ( ) and the joint PDF are defined in a hyperspace, where the evaluation of 

may become a very computationally expensive task. The geometry is further complicated 

when the integration boundary ( ) = 0 is a nonlinear function of . Finally, the exact 

expression of ( ) may not be known as it often comes with the output of complex FE 

analyses. 

Figure 2.2: Geometrical interpretation of the probability of failure

for a 2D problem (Du, 2015).

Because of the difficulties mentioned above, analytical solutions to the integral in Eq. 

(2.2) are only limited to very special cases. For this reason, starting from the seventies many 

authors proposed an alternative way to look at the reliability problem. The main idea was to 

avoid the direct integration in Eq. (2.2) and, instead, to calculate the distance from the failure 

region to the mean value of the random vector . Such a distance is called reliability index,

and it is indicated with  (Ditlevsen & Madsen, 2007). As the name suggests, a higher 

corresponds to a more reliable system (or component). Indeed, a higher value of means that 

the failure region is closer to the tail of ( ), where the subtended volume is smaller. This 

concept is further developed in the next section, which illustrates a very special case 

admitting exact analytical solution.
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2.1.2 Closed-form solution of the probability integral

Consider the performance function ( , ) = , where and are independent 

normal random variables, being , the means and , the standard deviations. The 

following transformation can be introduced,

=    ,          = (2.9)

which maps the mean vector ( , ) into the origin of the independent standard normal 

variable space ( , ). By transforming ( , ) into ( , ), it is found that

( , ) =    
          

   ( , ) = + (2.10)

As shown in Figure 2.3, the limit state equation ( , ) = 0 is the expression of a line in 

the space ( , ), whose distance from the origin provides the analytical expression of the 

reliability index ,

=
+

(2.11)

Figure 2.3: Limit state equation and failure domain before (a) and after (b) transformation.

In order to further investigate the meaning of the index , let be a linear 

combination of the random variables = ( , , … , ), such that = + . The mean 

and the standard deviation of are calculated as follows,
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= [ ] = + (2.12)

= [( ) ] =  (2.13)

where [ ] is the expectation operator (Sheldon, 2007), and = , , … , and 

are the mean vector and the covariance matrix of respectively. By applying these rules to 

Eq. (2.10), the reliability index in Eq. (2.11) can be rewritten as

= (2.14)

Both Eqs. (2.11) and (2.14) are true under the following hypotheses:

i) the failure surface ( ) = 0 is a linear function of ;

ii) the random vector is normally distributed.

Under such circumstances, the reliability index can also be interpreted as the 

number of standard deviations that the mean value of the performance function falls in 

the safe region ( , ) > 0 (i.e., = , as shown in Figure 2.4). 

Furthermore, since any linear combination of a normal random vector is normally 

distributed, hypotheses i) and ii) also imply ( ) to be normally distributed, so that

= (0) =
0

= ( ) (2.15)

where is the CDF of the standard normal distribution. The identities in Eq. (2.15) are 

illustrated in Figure 2.4. A one-one relationship is then provided between the probability of 

failure and the reliability index ,

= ( )   
          

   = (2.16)

Next, these expressions will be used to estimate the reliability in a general situation 

where i) and ii) are not verified, as in the case of non-normal random variables and/or non-

linear performance function.
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Figure 2.4: Closed-form solution of the probability integral.

2.1.3 Random variable transformations

Consider now the case where = ( , , … , ) is a vector of non-normal random 

variables. The reliability problem can be solved through a nonlinear transformation of the 

joint PDF from the original space to a space of independent standard normal variables 

= ( , , … , ), where the contour lines of become circular and concentric (Figure 

2.5).

Figure 2.5: Contour lines of a 2D joint PDF in the original space (a), in the correlated 

standard normal space (b), and in the independent standard normal space (c).

An intermediate step is generally needed, transforming into a vector of correlated 

standard normal variables, = ( , , … , ). To this end, transformations like Rosenblatt 

(Rosenblatt, 1952) or Nataf (Der Kiureghian, 2005; Liu & Der Kiureghian, 1986a) are usually 

performed. This thesis will focus on the latter, which is expressed by
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= ( )  ,         = 1, 2, … , (2.17)

being the marginal CDF of . The correlation matrix = of is defined in terms 

of the correlation matrix = of through the integral relation

= , , (2.18)

where is the 2D standard normal PDF with correlation coefficient . For each pair

, with known correlation , Eq. (2.18) should be solved to determine correlation 

between , . In general, 2D numerical Gauss integration is needed, and the number 

of integration points must be carefully selected in the case of strong correlation (Bourinet, 

2010; Bourinet, Mattrand, & Dubourg, 2009). Approximate solutions of Eq. (2.18) are 

provided in (Liu & Der Kiureghian, 1986a) for most common statistical distributions.

Independent standard normal variables U are then obtained from Z variables by means 

of a linear transformation,

= + (2.19)

where matrix and vector are determined from Eqs. (2.12) and (2.13) imposing =

= (null vector) and = ,

= +    
          

   = (2.20)

=    
          

   =  (2.21)

Eq. (2.21) can then be solved for using the Cholesky decomposition of 

= ( ) =    
          

   =  (2.22)

where is a lower triangular matrix. In this way, Eq. (2.19) can be combined with Eq. (2.17) 

providing the final relation between and 

=

( )

( )

(2.23)
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EXAMPLE 2.1

To give an example of variable transformation using Eq. (2.23), the analysis of the 

previous section is extended to the case of a linear performance function ( ) = ,

where = ( , ) is a vector of normally distributed and correlated random variables. Then, 

let the covariance matrix be defined as

=  (2.24)

where is the correlation coefficient between and . For this simple case Eq. (2.18) admits 

closed-form solution and the following expressions for and can be found,

=
1

1
   

          
   =

1 0

1
 (2.25)

Since and are normally distributed, Eq. (2.23) reduces to

=
( )

( )
(2.26)

By transforming ( , ) into ( , ), one gets

( , ) =    
          

   ( , ) = ( ) 1 + (2.27)

whose distance from the origin of the standard normal space is

=
+ 2

 (2.28)

This expression generalises Eq. (2.11) for 0. The same result could have been easily 

found by substituting Eq. (2.24) into Eq. (2.13) so as to provide the expression of to be 

used in Eq. (2.14).
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2.1.4 Toward an approximate calculation of the reliability index

This Section moves a step closer to the solution of a general reliability problem, where 

( ) is a nonlinear performance function, and is a vector of random variables with 

arbitrary distributions. An approximate evaluation of the reliability index is here obtained in 

two steps: 

Step 1: the performance function ( ) is expanded in a Taylor series about the 

linearisation point and higher order terms are neglected, 

( ) (  ) + (  ) (2.29)

where the gradient is evaluated at . Approximate values for and are then obtained 

from Eqs. (2.12) and (2.13), 

(  ) + (  ) (2.30)

 (2.31)

Step 2: the vector is simply treated as a vector of normal random variables (Nataf or 

Rosenblatt transforms could be used instead, without introducing any further approximation), 

so that the expressions above can be substituted into Eq. (2.14) to provide an approximate 

expression of the reliability index,

(  ) + (  )
 (2.32)

Clearly, the value of depends on the choice of the linearization point; in the 

particular case of = , Eq. (2.32) only involves the second moment of the input random 

vector , thus leading to the so called Mean-Value-First-Order-Second-Moment (MVFOSM) 

reliability index (Haldar & Mahadevan, 2000). Despite MVFOSM allows a straightforward 

evaluation of the reliability, significant error can be introduced by retaining only the linear 

terms. Furthermore, the value of is not invariant under different but equivalent formulations 

of the same performance function. 

EXAMPLE 2.2

This concept is here illustrated through the case of an axially loaded tension member, 

indicating with the yield strength, the cross-sectional area, and the external axial force. 

Let and be independent normal variables ( = 100 MPa, =  10 MPa, =  75 mm ,

=  5 mm ), and let be a deterministic parameter equal to 5000 N . The reliability 
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problem can then be formulated based on two different performance functions, here referred 

to as the strength formulation, 

( , ) =    
          

   =
+

= 2.774 (2.33)

and the stress formulation,

( , ) =    
          

   =

+

= 3.046 

(2.34)

Such expressions of ( , ) are “mechanically” equivalent in that they lead to the same limit 

state equation, ( , ) = ( , ) = 0 . This is not true for the linearised performance 

functions, which depend on what formulation is considered during MVFOSM (see Figure 

2.6), thus leading to different estimates of the reliability index (see Eqs. (2.33) and (2.34)).

Figure 2.6: Actual limit state equation and linearised limit state equations.

The arbitrariness in the reliability index is circumvented if the linearisation point is 

chosen within the failure surface ( ) = 0, which is invariant to equivalent formulations of 

the performance function. However, there are infinite points of the limit state that can be used 

for Taylor expansion, and the right point must be carefully selected, as described in the next 

section.
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2.1.5 First-Order Reliability Method (FORM)

An invariant formulation of the reliability index is provided by the First-Order 

Reliability Method (FORM), which represents the most common technique of structural 

reliability analysis. Differently from the approximation methods seen before, the optimal 

point about which to linearise the failure surface is found in the space of the standard normal 

variables . In this way, the probability integral in Eq. (2.2) becomes

= [ ( ) 0]  = ( ; )

( )

(2.35)

where ( ) is the joint PDF of , whose contour lines have been shown in Figure 2.5c for 

the 2D problem. The expression for a multivariate normal PDF with zero mean and identity 

covariance matrix is given by

( ; ) =
1

2

1

2
(2.36)

The optimal point for the linearization of the failure surface ( ) = 0 has to be 

searched among the points with the highest contribution to the probability integral in Eq. 2.35. 

This is equivalent to finding the point of ( ) = 0 with the minimum norm =

(corresponding to highest value of the integrand ),

 

min 

subject to  ( ) = 0 

(2.37)

The solution of this optimization problem goes under the name of most probable point (MPP) 

and it is indicated by = ( , , , ). As illustrated in Figure 2.7 and Figure 2.8, the 

MPP is the shortest distance point from the failure surface ( ) = 0 to the origin of the 

standard normal space. Such a distance leads to the so-called Hasofer-Lind reliability index 

(Hasofer & Lind, 1974), which is denoted by = (it is worth noticing that the closed-

form solutions in Eq.s (2.11) and (2.28) are special cases of the Hasofer-Lind reliability 

index). 

The failure surface ( ) = 0 is then expanded in a Taylor series about the 

linearisation point defined by the MPP, 

( ) (  ) + (  ) (2.38)

where the gradient is evaluated at . Analogously to the procedure reported in the 

previous section, the following expression of the reliability index is recovered,
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Figure 2.7: Highest value of the joint PDF at the MPP (Du, 2015).

Figure 2.8: Plan view of the integration domain in FORM (Du, 2015).
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=
(  ) + (  )

 (2.39)

Since (  ) = 0 (the MPP is a point of the failure surface) and has zero mean and 

identity covariance matrix, Eq. (2.39) is simplified to 

= =  (2.40)

where = / is the negative normalised gradient vector. As shown in Figure 2.9,

the MPP is the tangent point between the limit state ( ) = 0 and the circular contour line 

with radius . Therefore, both the unit vector and the MPP vector have the same 

direction perpendicular to the curve ( ) = 0. Since = , the following equivalence 

can then be established,

=    
          

   =  (2.41)

Figure 2.9: Relation among , the unit vector and the MPP vector .

Finally, the probability of failure is derived by replacing Eq. (2.40) into Eq. (2.15), so 

that

( ) = ( ) (2.42)

The expression above provides an approximate evaluation of the failure probability, and it 

matches with the exact solution if the performance function ( ) is linear (i.e., if both 

hypotheses i) and ii) in Section 2.2 are verified). 
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2.1.6 The MPP search algorithm

The solution of the optimization problem (2.37) has motivated development of 

dedicated algorithms, as the Hasofer and Lind (1974) and Rackwitz and Fiessler (1978) 

algorithm (HLRF). This algorithm consists on a recursive approach, where a linear 

approximation to the limit state is operated at every search point. 

Let the MPP in the k-th iteration be . The performance function ( ) is then expanded 

in a Taylor series about providing the following recursive formula,

(  ) = (  ) + ( ) (  ) (2.43)

being the gradient vector at . At converge, is the shortest distance point of the 

limit state to the origin of the space , so that the second of Eqs. (2.41) applies, 

=    ,          = /  (2.44)

where the subscript of has been omitted for readability. Eq. (2.43) can then be solved by 

letting (  ) = 0 and approximating = ,

(  ) + ( ) (  ) = (  ) + (  ) (2.45)

Rearranging Eq. (2.45) leads to the recursive formula

= +
(  )

(2.46)

Finally, Eq. (2.46) is substituted into Eq. (2.44) leading to the following explicit scheme,

= ( ) +
(  )

 (2.47)

Two convergence criteria may be used to terminate the MPP search process. First, the 

design point should be located on the failure surface, so that

(  )

(  )
<  (2.48)

where is the starting point and is a user-defined acceptance tolerance. A common 

choice is to set = (at the origin) and = 10
-3

. Second, the design point should be 

parallel to the gradient vector, therefore the vector difference between and the component 

of in the direction of must satisfy the following criterion,
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( ) <  (2.49)

where is also commonly selected as 10
-3

(Liu, Lin, & Der Kiureghian, 1989).

However, despite HLRF method has been shown to be very efficient, there is no 

mathematical proof for its convergence and it fails to converge for a considerable number of 

problems (Liu & Der Kiureghian, 1986b, 1992). Zhang and Der Kiureghian (1997) developed 

an improved HLRF algorithm (iHLRF), by introducing a non-differentiable merit function 

and using the Armijo rule (Polak, 1997) for the step size. In other words, the search direction 

yielded by HLRF,

= ( ) +
(  )

 (2.50)

is used to define a so-called linear search scheme,

= +  (2.51)

where the step size is selected along the pre-selected search direction (note that the 

recursive formula in Eq. (2.47) is recovered when a full step is used, i.e. = 1). The ideal 

step size is found using the Armijo rule (e.g., dividing in half) each time a trial step size 

does not satisfy a condition of sufficient decrease in the merit function

( ) =
1

2
+ | ( )|   ,          >

( )
(2.52)

where the inequality establishes the conditions for in Eq. (2.50) to be a descent direction 

for the merit function ( ). The flowchart of the iHLRF algorithm is shown in Figure 2.10.
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Figure 2.10: The flowchart of the iHLRF algorithm.
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2.1.7 Second-Order Reliability Method (SORM)

Despite FORM requires a very small computational effort, a first order approximation 

can significantly depart from the true solution when dealing with highly nonlinear limit states. 

Nonlinearities are due to nonlinear relationship between the random variables, or because 

some variables are non-normal (even a linear limit state in the original space becomes 

nonlinear after the transformation to the standard normal space). In such instances, a better 

accuracy can be achieved by the Second-Order-Reliability-Method (SORM), which takes into 

account the curvature of the failure surface around the MMP ,

( ) (  ) + (  ) +
1

2
(  ) (  ) (2.53)

where is the Hessian matrix evaluated at .

Several approximations of the failure probability based on a second-order 

approximation have been proposed (Der Kiureghian, Lin, & Hwang, 1987). Breitung (1984) 

suggested an exact asymptotic expression of the failure probability based on the reliability 

index estimated by FORM,

= ( )
1

1 +
(2.54)

where denotes the principal curvature of the failuire surface at the MPP . It is worth 

noticing that Eq. (2.54) can be viewed as a correction of the FORM formula in Eq. (2.42). 

An improved Breitung’s model was provided by Hohenbichler and Rackwitz (1988), while 

Tvedt (1983) added two higher order terms to Breitung’s formula. Exact results for a 

paraboloid were derived by Tvedt (1988) and further extended to all the quadratic forms of 

Gaussian variables (Tvedt, 1990). All these approaches are referred to as curvature fitting 

methods, in that they need the second derivative of the limit state function and the eigenvalues 

of the Hessian matrix (i.e., the curvatures). Conversely, a point fitting method was developed 

by Der Kiureghian et al. (1987), where the limit state is fitted at discrete points in the 

proximity of the design point and successively approximated by two semi-parabolas. Neither 

second derivatives nor eigen solution are needed in the latter approach. This method, however 

requires an iterative search to determine the fitting points. 

An in-depth description of the second order reliability methods is beyond the scope of 

the present work, and SORM will only be used to verify the accuracy of the first-order 

estimates along with Monte Carlo analysis, which will be introduced in the next section.
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2.1.8 Monte Carlo analysis

Monte Carlo methods are widely used for simulating systems with significant 

uncertainty in inputs and with a large number of coupled degrees of freedom. Areas of 

application range from the simulation of complex physical phenomena such as atom collisions 

to the analysis of portfolios in finance. Of particular interest is their capability of evaluating 

multidimensional definite integrals with complicated boundary conditions, which relies on a 

large number of realisations of the input random variables and on the statistical analysis of the 

outcomes.

Consider the general reliability problem in Eq. (2.2), which is here rewritten as

 = ( )

( )

= ( ) ( ) (2.55)

where ( ) is an indicator function, which is equal to 1 if belongs to the failure domain 

( ) 0, and 0 otherwise; as a consequence, the associated random variable ( ) follows a 

binomial distribution. The last integral in Eq. (2.55) is simply the mean value of ( ), i.e. 

= . Therefore, the main idea at the base of the Monte Carlo analysis is to estimate by 

the empirical average of the indicator function

 =
1

( ) = (2.56)

where is the number of deterministic analyses (simulations) run by Monte Carlo, and is 

the number of times that the samples fall into the negative region ( ) 0. The inverse

transformation method (Devroye, 1986) is most commonly used for the generation of the 

input vector , however, other sampling methods can be used such as composition method, 

convolution method and acceptance-rejection method (Law & Kelton, 2000; Fishman, 1995).

The Monte Carlo simulation as expressed in Eq. (2.56) always converges to the exact 

value of for . The main problem, therefore, is to determine the minimum number of 

analyses satisfying the target accuracy and the confidence interval on the accuracy. This 

task is accomplished estimating the error as 

=    ,          =
1

( + + ) (2.57)

where { , = 1, … , } is a set of independent identically distributed random variables 

following the binomial distribution of ( ), while is the random variable associated to the 

sample . Indicating with the variance of ( ), for the Central Limit Theorem (Rice, 
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2007) the error converges to a Gaussian random variable with mean 0 and variance / .

It follows that for all <

lim < < =
2

(2.58)

Eq. (2.58) can be used to calculate the accuracy with a given confidence interval ,

| |
1 +

2
(2.59)

For instance, | | 1.96 / with a probability of 95% ( = 0.95). However, the true 

variance of ( ) is not known, and the empirical variance can be used as an estimate,

=
1

1
( ( ) ) (2.60)

Since = and = for , the coefficient of variation CoV = is often 

used to check for the convergence of the simulation. Furthermore, to increase the precision of 

the estimate, the ratio / needs to be small. This might be difficult to achieve if the single 

analysis requires too much computational effort, so that cannot be too large. However, a 

directly proportional relationship is established by Eq. (2.59) between and the minimum 

number of analyses which guaranties a target accuracy | |. As a result, variance-reduction 

techniques have been developed to limit the minimum number of required analyses by 

decreasing the variability of the simulation output. Among these are antithetic variates, 

control variates, moment matching methods, stratified and Latin hypercube sampling, 

importance sampling, and conditional Monte Carlo (see review from Boyle et al., 1997). All 

these methods increase the efficiency of the simulation approach described above, which is 

normally referred to as crude Monte Carlo Simulation (MCS).

EXAMPLE 2.3

The efficiency and accuracy of FORM, SORM and crude MCS are here compared 

through the case of the axially loaded tension member introduced in Example 2.2, where 

( , ) = , being and independent normal variables ( =100 MPa, = 10 MPa, 

= 75 mm
2
, = 5 mm

2
), and a deterministic parameter equal to 5000 N. 

A coefficient of variation CoV = 0.05 is chosen as the target value for the 

convergence of MCS (full line in Figure 2.11). The simulation terminates after = 1.61

10 evaluations of the performance function ( , ) (run in 46 s), of which only = 2503

lead to failure (Figure 2.12). The probability of failure is then estimated as = /N ± | |,
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where a confidence interval of 99.99% is chosen for the absolute error. At convergence, 

| | 2 10 (dashed line in Figure 2.11), so that = 0.0015546 ± 2 10 . Figure 2.12 

illustrates the sample points generated by Monte Carlo mapped into the space of the standard 

normal variables ( , ), being = ( )/ and = ( )/ .

Figure 2.11: Converge of crude Monte Carlo: coefficient of variation (full line) and estimated 

error (dashed line).

Figure 2.12: Random points generated by MCS mapped into the standard normal space.
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FORM and SORM are implemented using the open-source Matlab® toolbox FERUM 

(Finite Element Reliability Using Matlab®) (Bourinet, 2010). FERUM output file is reported 

in Table 2.1, and the results are summarised in Table 2.2 along with the percentage errors 

calculated assuming MCS to provide the exact value of the reliability index.

Table 2.1: FERUM output file relative to FORM and SORM analyses.

###############################################################################

#              RESULTS FROM RUNNING FORM RELIABILITY ANALYSIS                 #

###############################################################################

Number of iterations: 6

Time to complete the analysis: 0.109

Reliability index beta1: 2.9943

Failure probability pf1: 1.37523e-003

SENSITIVITIES OF THE RELIABILITY INDEX WITH RESPECT TO DISTRIBUTION PARAMETERS

----------------------------------------------------------------------------------------------

var          mean        std dev           par1           par2           par3           par4

1   8.78811e-002 -2.31245e-001   8.78811e-002 -2.31245e-001   0.00000e+000   0.00000e+000

2   9.54338e-002 -1.36376e-001   9.54338e-002 -1.36376e-001   0.00000e+000   0.00000e+000

----------------------------------------------------------------------------------------------

SENSITIVITIES of THE FAILURE PROBABILITY WITH RESPECT TO DISTRIBUTION PARAMETERS

----------------------------------------------------------------------------------------------

var          mean        std dev           par1           par2           par3           par4

1 -3.96149e-004   1.04240e-003 -3.96149e-004   1.04240e-003 -0.00000e+000 -0.00000e+000

2 -4.30195e-004   6.14751e-004 -4.30195e-004   6.14751e-004 -0.00000e+000 -0.00000e+000

----------------------------------------------------------------------------------------------

###############################################################################

#       RESULTS FROM RUNNING CURVATURE-FITTED SORM RELIABILITY ANALYSIS       #

###############################################################################

Time to complete the analysis:    0.078

Main curvatures in (n-1)x(n-1) space: -5.43103e-002

Breitung formula

Reliability index beta2 :                  2.9672

Failure probability  pf2:                  1.50285e-003

Improved Breitung (Hohenbichler / Rackwitz)

Reliability index beta2 : 2.9643

Failure probability  pf2:                  1.51686e-003

Tvedt Exact Integral

Reliability index beta2 :                  2.9648

Failure probability  pf2:                  1.51458e-003

 

Table 2.2: Percentage errors with the respect to the reliability index provided by MCS.

Failure Probability Reliability Index Error [%]

MCS 0.0015546 2.9567 0.00

FORM 0.0013752 2.9943 -1.27

SORM (Breitung’s formula) 0.0015029 2.9672 -0.36

SORM (Hohenbichler / Rackwitz) 0.0015169 2.9643 -0.26

SORM (Tvedt Exact Integral) 0.0015146 2.9648 -0.27
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As expected, SORM methods provide more accurate results than FORM. This can be 

explained by the almost quadratic shape of the failure surface ( , ) = 0, which is better 

described by a second order approximation. Although SORM gives more accurate results, one 

has to pay the price of a higher CPU-time due to the additional calculation of the main 

curvatures. In general, the CPU-time depends on the time necessary to evaluate the 

performance function, and while the CPU-time for FORM is almost linear in the number of 

random variables , the additional CPU-time for SORM grows approximately with 

(Bjerager, 1991). However, in this simple case, only 23 evaluations of the performance 

function ( , ) are required by FORM (run in 0.109 s) and just 8 more by SORM (run in

(0.109 + 0.078) s). The linear approximation operated by FORM is shown Figure 2.13, and 

the iterations for the MPP search are summarised in Table 2.3.

Figure 2.13: Linear approximation operated by FORM.

Table 2.3: Iteration points of the MPP search by iHLRF.

iter. 1 iter. 2 iter. 3 iter. 4 iter. 5
iter. 6 

(MPP)

0 -2.30769 -2.60118 -2.62652 -2.63066 -2.63134

0 -1.53846 -1.48639 -1.43804 -1.43026 -1.42901

( , ) 2500 177.515 -0.76412 -0.06125 -0.00161 -4.26E-05
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2.2 System reliability analysis

2.2.1 Component and system failures

In structural reliability theory, the notions of component and system do not necessarily 

correspond to their structural counterparts. An event is called component event if it is defined 

by a single performance function or system event if more functions are involved. Take a beam 

as an example, if both yielding and buckling are considered as failure modes (i.e., two limit 

state equations are defined), the physical component is a system in a reliability analysis sense. 

Conversely, the two-element structure shown in Figure 2.14 is a component if a constraint on 

the displacement of node N2 is chosen as the unique failure criterion.

Figure 2.14: Statically determinate truss structure.

Consider the structural system shown in Figure 2.14 loaded by a single concentrated 

load . Assume that system failure occurs if at least one element fails in compression. Let the 

compressive strength of the material be and the cross-sectional areas of element 1 and 2 be 

and . As it will be explained in the next section, this structure corresponds to a series 

system, whose failure is defined by the union of the component failure events

= [( < 0) ( < 0)]          where   =
2

   ,     = 1, 2   (2.61)

Assuming and normally distributed and deterministic variables, the exact expressions 

of the component reliability indexes can be found from Eq. 2.14, 

=
2

+
2

   ,           = 1, 2 (2.62)

Figure 2.15 illustrates the system failure domain in the standard normal space, which 

is given by the union of the two linear half spaces ( , ) < 0 and ( , ) < 0, where 

= ( )/ and = ( )/ .
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Figure 2.15: System failure domain ( < 0) ( < 0).

In order to calculate the integral over the dotted area, the component performance 

functions are expanded in a Taylor series about the MPP point as in Eq. (2.38) (note that 

no approximations are made in this case, since the limit states are already linear). In this way, 

the performance functions can be rewritten as follows

( ) = (  ) + (  ) 0   ,          = 1, 2

 

(  ) 0

(  ) 0   ,          

0    

=

(2.63)

where is a standard normal variable defined by the inner product between the negative 

normalised gradient vector and the random vector . Therefore, the failure probability in 

Eq. (2.61) may be expressed as

= { 0}    ,          = 2 (2.64)

Applying the De Morgan’s rule in set theory, = where the subscripts indicate 

the complementary events (Goodstein, 2007), one gets
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= 1 { > 0}    ,          = 2

= 1 { < }

= 1 ( , ) (2.65)

where is the -dimensional standard normal CDF ( = 2 in this case), is the vector of 

’s, and is the matrix of correlation coefficients defined by

= corr ,   

= = ( ) = [ ]

= (2.66)

The expression above also defines the correlation coefficient between the two 

performances = and = , i.e. = = cos( ), where is the 

angle between the two linear limit states in the space of the standard normal variables (see 

Figure 2.15). 

2.2.2 Series systems

A series system is generally used to model a statically determinate (non-redundant) 

structure, where the failure of any structural element results in a system failure (e.g., 

formation of a mechanism, as in the truss structure shown in Figure 2.16a). 

Figure 2.16: Formation of a mechanism in a statically determinate structure (a), and 

corresponding series system (b).
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Such a system can then be represented by a chain of component events as illustrated in 

Figure 2.16b, where indicates the -th member failure. The chain is also called weakest-link 

system, as its strength corresponds to the strength of the weakest element. Equivalently, a 

chain withstands an external load only if all its elements survive the resulting stresses. From a 

reliability viewpoint, this can be expressed as

= { > 0}  (2.67)

where is the reliability of a series system composed by failure elements. Hence, the 

probability of failure of a series system is given by

= 1 { > 0}

= { 0}
(2.68)

If the probabilities of the component events are estimated by FORM, then Eq. (2.68) 

reduces to Eq. (2.65). However, despite the latter equation simplifies the calculation of , the 

numerical evaluation of becomes intractable for greater than 4. Therefore, approximate 

approaches must be used, as the reliability bounds originally proposed by Boole (1854), i.e.

max 1 (1 ) min 1,  (2.69)

In this expression, the lower bound is the probability of the most likely failure event, and 

corresponds to the extreme case of perfect dependence ( = 1 for all and ) between 

component failure events. The opposite case of perfect independence ( = 0 , ) is 

expressed by the upper bounds, where the probability of the intersections (or unions) in Eq. 

(2.68) is replaced by the product (or sum) of the probabilities. These bounds are also called 

simple bounds, since they only involve unicomponent probabilities. Narrower bounds can be 

obtained if the bicomponent probabilities are taken into account (Ditlevsen, 1979; Hunter, 

1976; Kounias, 1968)

+ max 0, + max  (2.70)

where is the probability of the joint component failure . These bounds depend on 

the ordering of the component events, and an algorithm for optimal ordering has been 
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proposed by Ditlevsen (1979). Higher-order bounds have also been developed, including joint 

probabilities of larger sets of component events, such as tricomponent probabilities and 

multicomponent probabilities (Zhang Y. C., 1993).

2.2.3 Parallel systems

In the case of a statically indeterminate (redundant) structure, failure in a single 

element does not always result in a system failure. This is due to the residual strength 

provided by non-failed elements, which resist the external loads by redistribution of the 

internal load effects. As a consequence, more than one element is generally required to fail 

before leading to system failure. 

Figure 2.17: Formation of a mechanism in a statically indeterminate structure (a) and 

corresponding parallel system (b).

Figure 2.17a illustrates the formation of a mechanism in a frame structure due to 

simultaneous plastic hinging at nodes 2 , 4 and 5 . In a reliability analysis sense, such a 

mechanism is equivalent to the parallel system shown in Figure 2.17b, which represents the 

system event . Therefore, the probability of failure of a general parallel system is 

defined as

= { 0}  (2.71)
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Analogously to series systems, simple bounds can be derived for the probability in Eq. 

(2.71) by considering the extreme cases of perfect independence (lower bound) and perfect 

dependence (upper bound) between the component failure events (Cornell, 1967)

min  (2.72)

These bounds are generally too wide to be of practical use. Higher-order bounds considering 

bi- or tri-component probabilities do not exist for parallel systems. However, as suggested by 

Song and Der Kiureghian (2003), the De Morgan’s rule can be applied to convert the 

complement of the parallel system to a series system involving the complementary component 

events, so that Eq. (2.69) or (2.70) can be used instead.

Alternatively, if FORM is used to estimate the probabilities of the component events, 

similarly to the procedure adopted for series systems (see Eqs. (2.65)), it is easily found that 

Eq. (2.71) reduces to 

= ( , ) (2.73)

Of particular interest is the case of = 2, for which Eq. (2.73) can be rewritten into a 

more useful expression that will be widely used in the next chapter. The main steps to take 

can be summarized as follows. First, by definition is

( , ; ) = ( , ;  )  
(2.74a)

( , ;  ) =
1

2 1

+ 2

2(1 )
 (2.74b)

It follows that (Ditlevsen & Madsen, 2007)

( , ;  )
=

( , ; )

( ) ( )
 (2.75)

Therefore,

( , ;  ) = ( , ;  0) +
( , ;  )

= ( ) ( ) + ( , ;  )
(2.76)
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From a numerical point of view, Eq. (2.76) is easier to calculate than Eq. (2.74a) because only 

a single integral is involved (Thoft-Christensen & Murotsu, 1986). Eq. (2.76) can also be used 

to calculate the correlation between two events with known reliability indexes and .

2.2.4 General systems

The number of failure modes in a redundant structure is usually very high, and system 

failure occurs when the weakest mode occurs. Therefore, a general structure can be 

represented as a chain (series) of failure modes (parallel systems), as shown in Figure 2.18.

Figure 2.18: Failure modes with respect to the frame structure in Figure 2.17.

In order to better formalise such a representation of structural systems, consider a set 

of component events, = { , … , }, where is the number of failure elements (e.g., 

= 7 for the structure of Figure 2.17). Each component is assumed to be either in a failure or 

in a non-failure state. Therefore, the following Boolean variable can be defined:

=  
0

1
 

-th component failed 

-th component safe
(2.77)

A subset, = {  |  },   {1,2, … , }, of is called a cut set if the structure is in a failure 

state when all the elements in are in a failure state and all the elements in the complement 

of set are in a non-failure state, that is

= 0 ,   

= 1 ,   
    

          
  system failed (2.78)

Finally, a cut set is defined as a minimal cut set if the non-failure of any element in 

results in the non-failure of the system. The difference between cut set and minimal cut set is 

illustrated in Figure 2.19 with reference to the failure modes of the frame structure shown in 

Figure 2.17.
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Figure 2.19: a) Cut set = { , , , }: the system fails even if survives; b) Minimal 

cut set = { , , }: if any element in survives, the system survives as well.

From Figure 2.19b, it is clear that any minimal cut set is defined as a subsystem in 

parallel. The occurrence of the system failure can, therefore, be due to element failures in any 

of these minimal cut sets. As a consequence, the system event can be described by the union 

of all the minimal cut sets of the system,

= =

   

 (2.79)

where is the k-th minimal cut set (failure mode), and are component events of .

It is noted that component events in Eq. (2.79) are generally statistically dependent on 

each other due to common or correlated random variables in the limit-state functions. At a 

higher level, failure modes are also statistically dependent on each other due to common or 

correlated component events. Therefore, a system reliability analysis approach is needed to 

account for statistical dependence at both levels of the hierarchical problem, i.e. among 

component events (lower level) as well as among failure modes (higher level). 

Several system reliability methods have been developed, such as theoretical bounding 

formulas (Ditlevsen, 1979; Feng, 1989; Park, 2001), sequentially conditioned importance 

sampling (SCIS) (Ambartzumian et al., 1998), the product of conditional marginal (PCM) 

method (Pandey 1998, Yuan & Pandey 2006), the multivariate normal integral method (Genz, 

1992), and first-order approaches to multinormal integration (Hohenbichler & Rackwitz 1983,

Tang & Melchers, 1987) that applies component reliability analyses to series and parallel 

systems directly, and to cut-set systems in conjunction with bounding formulas. However, 

these methods are not flexible in incorporating various types and amount of available 

information on the individual or joint component probabilities. Moreover, the complexity of a 

general system event can lead to more complicated and time-consuming reliability 

computations. 
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To solve these problems, a bounding approach was developed by Song and Der 

Kiureghian (2003) using linear programming (LP), and it was further extended to multi-scale 

analysis (Der Kiureghian & Song, 2008). Despite this method provides the narrowest possible 

bounds on the probability of any general systems, it is prone to numerical issues when the 

available information on the joint component probabilities is complete (which leads to an 

over-constrained LP problem). To preserve the main framework of the LP bounds method 

even in the case of complete information, Song and Kang (2007) proposed a matrix-based 

system reliability (MSR) method, in which the reliability is computed by simple matrix 

calculations instead of solving an LP problem. The MSR method is capable of solving general 

system events with a high degree of accuracy and efficiency (Kang et al., 2012; Kang, Song 

& Gardoni, 2008; Lee et al., 2011; Nguyen, Song & Paulino, 2010, 2011; Song and Kang 

2009; Song and Ok, 2010).

Furthermore, several studies have focused on reducing the complexity of the system 

event in Eq. (2.79) by using only the dominant failure modes, i.e. failure modes that are most 

likely to contribute to the system failure. According to Karamchandani, Dalane and Bjerager

(1992), three techniques are commonly used to identify critical failure sequences: 

deterministic search; locally most-likely-to-fail-based search; and branch-and-bound 

algorithm. 

In the deterministic search (Gharaibeh, Frangopol & Onoufriou, 2002; Thoft-

Christensen & Murotsu, 1986), a deterministic structural analysis is performed using the mean 

values of the random variables to identify the first failure sequence. To obtain additional 

sequences, the values of some variables are modified (e.g., strengthening some members of 

the identified sequence) and the deterministic analysis is repeated. However, such an 

approach is likely to miss important failure sequences since the identified modes may not 

have the largest probability of occurrence. 

The locally most-likely-to-fail-based search performs a series of component reliability 

analyses, and the element with the largest failure probability (i.e., the “most-likely-to-fail” 

member) is assumed to fail first. The structural model is then updated according to the post-

failure behaviour of the identified member, and a second series of component reliability 

analyses determines the successive most-likely-to-fail member. This process is repeated until 

collapse occurs and, analogously to the deterministic search, additional failure modes are 

identified by modifying some random variables. However, the failure modes identified by this 

approach may not be the most critical sequences overall. For instance, there may be a member 

whose failure probability is lower than that of the most-likely-to-fail member, but the 

conditional probability of structural collapse given its failure can be high. 

Differently from the previous approaches, the branch-and-bound method (Guenard,

1984; Murotsu et al., 1984) compares the probabilities of all the partial failure sequences that 

have been investigated during the search process and further damage is assumed for the most 
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likely sequence until structural collapse is observed. In this way, system failure sequences are 

identified in the decreasing order of their likelihood, and the search process terminates without 

ignoring critical failure modes.

Despite the branch-and-bound method provides a valid alternative to the identification 

of the dominant failure modes, this method requires component and system reliability 

analyses to be performed repeatedly during the search process, which can be computationally 

too demanding for large structures with a high level of redundancy. Moreover, the branch-

and-bound method employs theoretical bounding formulas, so that estimates of the failure 

mode probabilities may not be accurate. In order to overcome these challenges, a new risk 

assessment framework was proposed by Kim et al. (2013), where the identification process of 

dominant failure modes is decupled from the evaluation process of their probabilities. High 

accuracy and efficiency are achieved by means of a rapid multi-point parallel search 

employing a genetic algorithm, which is followed by a multi-scale system reliability analysis 

employing the MSR method (Song and Kang, 2007). In the next chapter, the applicability of 

this risk assessment framework to the offshore field will be investigated.
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3 Reliability analysis of offshore structures

In this chapter, the merits of a new risk assessment framework, originally developed 

for truss and frame structures, are investigated in view of its extensive application to offshore 

structural systems. The main advantage of the proposed method is that the identification 

process of dominant failure modes is decoupled from the evaluation process of the 

probabilities of failure modes and the system failure event. The identification phase consists 

of a multi-point parallel search employing a genetic algorithm, and it is followed by the 

evaluation phase, which performs a multi-scale matrix-based system reliability analysis where 

the statistical dependence among both components and failure modes is fully considered. In 

order to demonstrate the applicability of the proposed method to the offshore field, the 

problem of a jacket platform under an extreme sea state is considered, in which the 

uncertainties are assumed both in the wave and hydrodynamic models and in the material 

properties of the structural members. The computational efficiency and accuracy of the 

proposed approach are successfully demonstrated through comparison with Monte Carlo 

simulations.

The chapter is organized as follows. Section 3.1 focuses on the probabilistic modelling 

of the extreme environment. In Section 3.2, the structural model of the jacket platform is 

introduced and the expression of the hydrodynamic forces is derived. The main steps of the 

failure mode identification process are then presented in Section 3.3, followed by a detailed 

explanation of the probability evaluation process in Section 3.4. Results, discussion and 

concluding remarks are presented in the last two sections.

3.1 Ocean environment

3.1.1 Design approaches

Several design procedures and codes have been developed to deal with uncertainties in 

the marine environment, which is primarily described in terms of wind, current and wave 

forces. These forces are major sources of loading on offshore structures, and various wave 
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and hydrodynamic models relate the forces on a particular member to the amplitude, period 

and water depth of a regular deterministic wave (Boccotti, 2000). Therefore, checking for 

structural safety requires time-dependent reliability analysis. With reference to a single 

component, the evaluation of during a prescribed duration of time is defined by 

( ) = [ ( ) 0 in ] (3.1)

where is the component random strength and ( ) a time varying load. Eq. (3.1) can be 

solved through a standard time-independent reliability analysis by reformulating the problem 

as (Guenard, 1984)

( ) = max ( ) 0 (3.2)

where max ( ) is a random variable whose distribution is derived applying the theory of 

extremes of random variables. In particular, three main approaches can be distinguished for 

the design of offshore structures under extreme environmental loading, which are commonly 

referred to as design wave, short-term design and long-term design (Chakrabarti, 2005; 

Guenard, 1984).

The design wave provides a relatively simple approach to the design of those 

structures where the load effect is primarily of quasi-static nature. In the case of fixed 

platforms the design wave is related to the so-called 100-year wave, i.e. the height of which is 

exceeded only once every 100 years. According to the ISO 19902 Code and standard 

practices, the 100-year design load is subject to a bias of 9% and a coefficient of variation 

(CoV) of 16.5% relative to the actual 100-year value. Such variability arises from uncertainty 

in extrapolation of metocean data and from wave force model (Bomel Ltd., 2002).

A more accurate approach for the analysis of the extreme environment is provided by 

the short-term design, which can be applied to both quasi-static and dynamic problems. Here, 

“short-term” is related to the concept of sea state, i.e. a stationary situation in which the 

statistical properties of the sea remain the same. A sea state is typically assumed with a 

specified duration of 3 or 6 hours. Over this period, the sea is described by a constant-

parameter wave spectrum, i.e. the power spectral density (PSD, see Lutes & Sarkani, 2004) of 

the sea surface elevation. This spectral description retains both the random nature and the 

frequency content of the sea, thus providing a realistic representation of the wave features. 

Finally, the long-term design involves a succession of sea states over a season, a year 

or the design service life of the structure. The long-term design is the most accurate approach 

but it is not economical from the computational point of view. In fact, it may involve response 

calculations for sea states that do not contribute to the design loads. 
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In the following, a short-term analysis is presented for the probabilistic modelling of 

an extreme sea storm. The wave spectrum model is introduced in Section 3.1.2, and the 

distribution of the wave height is derived in Section 3.1.3, which provides the input for the 

calculation of the wave forces on a jacket-type platform, as described in Section 3.2. In the 

present analysis, only wave-current loads are considered. However, the proposed approach is 

general and can be easily applied to more complete models, both of the marine environment 

and of the loads applied to the platform.

3.1.2 Wave spectrum model

When dealing with the random ocean environment, the sea state is typically defined by 

the power spectral density of the sea surface elevation. The PSD describes how the variance 

of the sea surface elevation is distributed over the frequency domain. Therefore, since the 

variance of a signal has units which are the square of the signal units, the wave spectrum has 

dimensions m per unit frequency (or m /[rad/s]). Several power spectrum models have 

been developed over the years, and the most commonly used ones in the design of offshore 

structures are the JONSWAP and Pierson-Moskowitz spectrum (Boccotti, 2000; Chakrabarti, 

2005).

Wave spectra are defined by a set of parameters, which are constant over the sea state 

duration. Two of the most important parameters are the peak period (= 2 / , see Figure 

3.1) and the significant wave height , respectively defined as the period at which the 

spectrum peaks and the average height of the highest ( /4) waves in the short-term record (

being the total number of waves forming during the sea state). Selecting appropriate values of 

and can result in a challenging task, especially if the sea state describes an extreme 

design storm. In this case, the environmental contour line approach (Chakrabarti, 2005)

provides a rational way for choosing short-term design storm corresponding to a prescribed 

return period (or annual probability of exceedance). Here, the joint probability density 

function (PDF) for and is calibrated to fit the experimental data relative to an offshore 

site. A contour plot is then generated in the , domain, so that each contour line collects 

different combinations of and , each one leading to sea states with the same return 

period. The most unfavorable sea state along the selected contour line is finally identified by 

means of a limited number of structural analyses. 

For the present analysis, the most unfavourable sea state is assumed to be given by a 

JONSWAP spectrum with peak period = 14 s and significant height = 10 m . The 

spectrum is defined over the positive frequency domain (one-sided PSD), and it is given by 

the following expression 
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( ) = 1.25 (3.3)

where = 0.0081 is the modified Phillips constant (function of and ); = 9.81 m/s

is the gravitational acceleration; is the peak frequency ( = 2 / );  =  3.3 is the 

peakedness parameter; and is the spectral width parameter, i.e. = 0.07 for ,

= 0.09 for > . The resulting power spectrum of the sea state is shown in Figure 3.1.

Figure 3.1: JONSWAP spectrum ( = 10 m, = 14 s).

3.1.3 Short-term design approach

Consider a random time history of the sea surface elevation, ( ) recorded at a fixed 

point on the mean water level. Based on the power spectrum defined above, the random 

surface elevation ( ) can be modeled by the following formula:

( ) = 2 (3.4)

where is the upper bound of summation; is the frequency within the band as shown 

in Figure 3.1; is the average value of the PSD within this band; and are the random 

phase angles, which are assumed uniformly distributed on [0, 2 ] and statistically 

independent from each other. When , is large enough, due to the central limit theorem ( )

is approximately a Gaussian process. Furthermore, ( ) can be considered stationary during 
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the sea state duration and with zero mean because of the choice of the fixed point on the mean 

water level. It can be also shown that the variance of ( ), is given by the integral of the 

related one-sided PSD over the positive frequency domain (Lutes & Sarkani, 2004), i.e.

= ( ) (3.5)

In order to obtain the short-term extreme values, the distribution of the wave crests is 

first derived based on the concept of mean level upcrossing rate, i.e the average number of 

times per unit time, ( ) that ( ) crosses the level over the zero level ( = 0) (Lin, 

1967),

( ) =
1

2
 

1

2
(3.6a)

= ( )  (3.6b)

where is the -th order spectral moment, with = . At the zero level, (0) is called 

the mean zero-upcrossing rate and its inverse value is commonly referred to as mean zero-

upcrossing period . For a narrow band process, where there is typically only one peak 

between an upcrossing and the subsequent downcrossing of zero level, the distribution of 

the wave crests can be defined by the following cumulative distribution function (CDF)

> =
( )

(0)
      ( ) = 1

( )

(0)
 ,          ( 0) (3.7)

By substituting Eq. (3.6a) into Eq. (3.7), it is found that the peak of a zero-mean stationary 

Gaussian process ( ) with narrow band is a Rayleigh distributed random variable, whose 

CDF is given by

( ) = 1
1

2
 ,          ( 0) (3.8)

The statistical distribution of the wave height, , is then calculated assuming the wave 

crest and the subsequent wave trough having the same size, i.e. = 2 . From Eq. (3.8), one 

gets 

( ) = 1
1

2

( 2)
 ,          ( 0) (3.9)
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Finally, the short-term extreme values for the wave height is obtained calculating the 

distribution of the largest heights during the storm duration . From the order statistics 

theory (Arnold, Balakrishnan & Nagarja, 1992), it can be shown that

( ) = [ ( )]  (3.10)

where is the expected total number of zero-crossing waves during the short-term duration 

, i.e. = (0) .

Considering the JONSWAP spectrum defined above and assuming a duration period 

of 3 h , the variance of ( ) is found to be = 6.25 m ; the value of the mean zero-

upcrossing rate is (0) = 0.088 s ; and = 950. Given these parameters, the values of 

can be simulated by the inverse transform sampling method (Devroye, 1986) 

= ( ) = ( )  (3.11)

where is a uniformly distributed random variable over the interval [0,1]. A set of 10

samples was simulated and the probability density function (PDF) of was modeled as a 

generalized extreme value (GEV) distribution (Kotz & Nadarajah, 2000)

( ; , , ) =
1

1 +

( )

exp 1 +  (3.12)

whose parameters have been fitted using a Maximum Likelihood Estimation (MLE) method 

(Embrechts, Klüppelberg & Mikosch, 1997), thus leading to = 18.51 m, = 1.35 m and 

= -0.065.

The resulting distribution is shown in Figure 3.2, where it is compared to the Gaussian 

distribution of the water elevation and to the Rayleigh distribution of the wave height. The 

GEV distribution is shifted to the upper values of the wave heights, while its variance is 

lower. It can be shown that the mean value increases to infinity and the variance decreases to 

zero as increases. 



Chapter 3

47

Figure 3.2: Statistical characterisation of the short-term sea state.

3.2 Structural model and load definition

The jacket-type platform shown in Figure 3.3 is considered. The structure is composed 

of slender cylindrical members, and the properties of the members are shown in Table 3.1.

The randomness in the structural model is due to the uncertainty in the yield stress of the 

members, which are assumed to be uncorrelated and normally distributed.

Members are assumed to fail either in tension or compression. In the case of tension 

failure, the limit state equation, , is given by the difference between the yield stress and the 

axial stress, i.e. = , and a purely ductile post-failure behavior is considered, so that 

a residual stress = acts in the bar after the member failure. In the case of compression 

failure, the limit state equation, , is given by the difference between the critical buckling 

stress and the axial stress, i.e. = , and the residual stress after member failure is 

defined according to a brittle-ductile behaviour, i.e. = , being [0, 1]. Residual 

stresses after tension and compression failure will be illustrated in Section 3.3 (in Figure 3.7).

In this work only the horizontal and diagonal braces of the jacket (elements with 

section S3, S4 and S5, see Table 3.1) are allowed to fail. This assumption seems reasonable 

when considering the extra strength provided by the piles inside the legs (vertical members of 

the jacket). It is also assumed that the members of the deck (elements with section S7 and S8, 

see Table 3.1) do not fail; indeed the upper part of the structure is only introduced for a more 

accurate evaluation of the external forces. The structure shown in Figure 3.3 is modelled as a 

truss. System failure is assumed to occur when the global stiffness matrix is no more definite, 

i.e. the structure results in a system-level failure mechanism.
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Figure 3.3: Jacket-type platform.

Table 3.1: Geometrical and material properties of members.

Section Elements
Outside diameter

[m]

Thickness

[m]

S1 1, 2 0.75 0.018

S2 3 - 6 0.70 0.015

S3 19 - 21, 33, 34 0.35 0.008

S4 7 - 10 0.45 0.009

S5 11 - 18 0.45 0.008

S6 39, 40 0.60 0.013

S7 22 - 32 0.55 0.010

S8 35 - 38 0.30 0.008

Young’s modulus: = 210 GPa for each member

Mean value of yield stress = 276 MPa, CoV = 0.08

Correlation coefficients among member yield stresses: 

= 1 and = 0 for .
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The following set of loading conditions is applied to the structure: wave plus current 

loads, self-weight and buoyancy forces in the flooded members. Moreover, four vertical 

forces of 5000 kN are applied on the upper hinges of the deck in order to simulate the weight 

of the platform modules. Among these forces, only the self-weight and the nodal forces on the 

deck (see Figure 3.3) are modelled deterministic. As explained below, all the other forces 

depend on the wave height, , which is defined by the GEV distribution provided in the 

previous section. In particular, the combined wave-current loads are estimated by Morison’s 

formula (Boccotti, 2000):

( ; ) =
1

2
( + )| + | +       ( ) = ( ; )  (3.13)

where is the instantaneous wave force per unit of length acting at the position = ( , )

in the direction normal to the -th member; is the total force on the -th member of length 

; = 1025 kg/m
3

is the sea water density; is the member diameter (including marine 

growth, see below); is the cross-sectional area (= D2 4 ); is the instantaneous velocity 

of the water particle, normal to the longitudinal axis of the member; is the current velocity, 

which follows a normal distribution (see Table 3.2) while the current profile is uniform from 

the sea bed to the still water level (SWL, see Figure 3.3); and and are respectively the 

drag and mass coefficients. Experimental results indicate that such coefficients are negatively 

correlated ( = -0.9) (Thoft-Christensen & Murotsu, 1986). Moreover, a multivariate 

Gaussian distribution is assumed as the joint PDF of and (see Table 3.2), the 

parameters of which have been selected according to design codes (API RP2A-LRFD, 1993)

for rough cylindrical members. Implicitly considered in the definition of and there is 

the marine growth, which increases wave forces by increasing member diameter and surface 

roughness. A marine growth thickness of 5 cm with density equal to 1400 kg/m is assumed 

for each flooded member.

Table 3.2: Statistical properties of current speed and drag and mass coefficients.

Mean CoV 

1.8 m/s 0.1

0.9 0.1

1.3 0.1

The dependence of the wave-current loads on the random wave height (described 

in Section 3.1) is accounted for in Eq. (3.13) by the instantaneous velocity term, , which is 

calculated by means of stream function theory of the 5-th order (Dean, 1974). This theory has 

been developed for regular waves (i.e., the period is such that each cycle has exactly the same 

form), whose kinematics is completely defined by the wave height, , the wave period, ,

and the water depth, (= 43 m, see Figure 3.3) (see Appendix A for further details).
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Among the three quantities ( , , and ), only still needs to be determined. For 

this purpose, the same approach adopted in (Thoft-Christensen & Murotsu, 1986) is used, in 

which the following deterministic relationship between and is chosen: 

= ( )  (3.14)

where and are empirical constants, which are assumed equal to 4.427 and 0.5 ,

respectively (Thoft-Christensen & Murotsu, 1986).

Since the principal aim of the analysis is the extreme load response, the effect of the 

position of the wave crest relative to the central line of the platform is now investigated. To 

this end, Ansys-ASAS
TM

software (ASAS User Manual, 2010) has been used to calculate the 

wave-current forces on the platform, where the following mean values for the input random 

variables have been introduced: = 19.2 m , = 19.4 s ,  = 1.8 m/s , = 0.9 and 

= 1.3. The trend of the resulting shear force at the base of the jacket versus the wave 

phase is shown in Figure 3.4, and the base shear is maximum when the wave crest is 

approaching approximately -2.5 m (corresponding to a wave phase of -2 deg) in front of the 

central line of the structure. In this way, the time dependence in Eq. (3.13) can be 

conservatively neglected by considering the instant with the maximum static load condition. 

Figure 3.5 illustrates the distributed loads due to the wave-current forces for the particular 

case when the wave phase is equal to -2 deg. For clarity, only the forces on the vertical 

elements of the jacket are displayed, however, similar distributions of forces are applied to all 

the members below the local water level (i.e., the diagonal and horizontal braces of the jacket 

and the flooded zones of the deck).
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Figure 3.4: Variation of the base shear force with the wave phase.

Figure 3.5: Distribution of the wave-current forces when wave phase is equal to -2 deg.
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3.3 Identification of the dominant failure modes

Highly redundant systems, like the structure considered in this paper, are generally 

characterized by numerous failure modes, of which only some have high probabilities of 

occurrence and are most likely to contribute to the system reliability. Based on this 

observation, a new searching technique was recently proposed by Kim et al. (2013), where 

such dominant failure modes are rapidly and simultaneously identified by means of a genetic 

algorithm (GA). A brief introduction to this method is given in this section; more detailed 

information can be found in the reference above.

Figure 3.6: Failure mode in standard normal random variable space (Kim et al., 2013).

Let be an n-dimensional space of random variables representing uncertain quantities 

in a system reliability problem. With reference to the structural model and the loading 

configuration proposed in Section 3.2, the random vector is defined as 

= , , , , , where , = 1, … ,17 are the yield stress values of the horizontal 

and diagonal members of the jacket (see Figure 3.3). 

Consider now a nonlinear transformation (e.g., the Nataf transformation in Section 

2.1.3) mapping the joint PDF of into the corresponding space of uncorrelated standard 

normal variables . An example of two-dimensional standard normal space is illustrated in 

Figure 3.6. Here, a failure mode is defined by the joint realisation of three component failures, 

i.e. A, B and C, whose limit-state surfaces are represented by dotted lines and their 

intersection area by solid lines. In particular, the volume cut from the intersection area by the 

joint PDF provides the probability of the failure mode. Since the joint probability density 

function in the -space is determined solely by the distance from the origin, , and the 
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probability densities decay exponentially in both radial and tangential directions, the distance 

measure can be used to approximately indicate the dominance of identified failure modes. In 

order to identify the most dominant failure modes first, the searching method proposed by 

Kim et al. (2013) explores the random variable space outwardly, i.e. from the points on a 

hypersphere with a smaller radius (closer to the origin) to the points on a hypersphere with a 

larger radius (farther from the origin). Multiple dominant failure modes are then identified in 

the decreasing order of their likelihood and the searching process terminates as the 

contributions by newly identified modes become negligible. The searching procedure is 

implemented as follows to identify the dominant failure modes of the offshore structure 

considered in this work.

Step 1: A population of points (chromosomes) is randomly generated on the 

surface of the hypersphere with the smallest selected distance from the origin of the -

space (see Figure 3.6), i.e.

( ) = =  ,     = 1, … ,  (3.15)

where is the selected radius of the hypersphere, and =    is a normalized 

“direction vector” that is randomly generated by Latin Hypercube Sampling (LHS) method 

(McKay, Beckman & Conover, 1979) or a similar sampling method. 

Figure 3.7: Progressive failure analysis and formation of a mechanism after redistribution of 

the internal load effects (T = tension failure, C = compression failure).

Step 2: A deterministic analysis is carried out for each chromosome (transformed back 

to the -space). The resulting stresses are used in combination with given limit state functions 

criteria (tension or compression failure) to check if any members have failed. In such a case, 

the structural model is updated on the base of a pre-established post failure behaviour (e.g., 

failed members with ductile behaviour are removed from the structure and replaced by their 

residual strength). This procedure of structural analysis and model updating is repeated until a 

mechanism is formed (see Figure 3.7) or load-redistributions cause no more local failures. 

The identified failure modes and the corresponding chromosomes are stored.
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Step 3: Crossover and mutation operators (Goldberg, 1989) are introduced to generate 

a new offspring from previously recorded chromosomes. Generally, many failure modes are 

strongly correlated with each other as they share some elements and resist the same loadings. 

It follows that many failure modes tend to be close to each other in the random variable space. 

Crossover operation is then used to generate a new offspring in the vicinity of the parent 

population. As shown in Figure 3.8, two parent chromosomes are selected and a real value is 

randomly generated between 0 and 1 for each of their genes. If the real value is larger than a 

certain threshold (e.g., 0.5 in Figure 3.8), the corresponding gene of parent 1 is selected as 

that of the new chromosome (otherwise, the parent 2 ’s gene is used). The resulting 

chromosome is further modified by the mutation operator, where the signs of its genes can be 

inverted according to a mutation probability (e.g., 0.3 in Figure 3.8). This sign-changing 

operation turns the searching into the opposite direction, allowing potential failure modes 

located far from the identified ones to be found. Crossover and mutation operations are then 

repeated until a new population of chromosomes is generated.

Figure 3.8: Searching operations in GA by crossover and mutation operators.

Step 4: If new failure modes are not detected over a prescribed number of 

successive generations, the radius of the hypersphere, , is increased by a small amount (e.g., 

0.25 is used in this work) 

Step 5: The searching process is terminated if: (a) the current radius is large enough 

(e.g., over 5, which corresponds to a failure probability in the order of ( 5) 10 ), or (b)

the probabilities of newly observed failure modes become less than a prescribed fraction (e.g., 

0.1%) of the probability of the most probable failure mode identified. If both (a) and (b) are 

not satisfied, the procedure goes to Step 1.

The flowchart of the multi-point parallel search explained above is illustrated in Figure 3.9.
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Figure 3.9: Flowchart of the multi-point parallel searching method (Kim et al., 2013).
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3.4 System reliability analysis

Once the dominant failure modes are identified by the searching process described in 

the previous section, each of the identified modes forms a minimal cut set, , = 1, … , N

(see Section 2.2.4). The system failure event is defined by Eq. (2.79), which is here rewritten 

for convenience,

= =

   

 (3.16)

where , is the -th component event (or member failure); and is the index set of 

components that constitute the -th cut set, . The remaining tasks of the present analysis are 

summarized into the following steps:

Step 1: Estimation of the probabilities of the identified failure modes; 

Step 2: Evaluation of the statistical dependence among the failure modes; 

Step 3: Estimation of the probability of the system failure event. 

Aside from providing inputs to the following steps, Step 1 also helps satisfy the 

termination criterion (b) of the searching process. The calculation of the probability 

associated to the system failure event in Eq. (3.16) requires the use of a system reliability 

analysis method, because of the statistical dependence among component events (during Step 

1), as well as among failure modes (during Step 3). 

In order to perform these system reliability analyses with statistical dependence fully 

considered, Kim et al. (2013) proposed to use a multi-scale system reliability analysis 

framework employing the MSR method (Kang et al., 2012; Kang, Song & Gardoni, 2008; Lee

et al., 2011; Nguyen, Song & Paulino, 2010, 2011; Song and Kang 2009; Song and Ok, 

2010). The MSR method will be presented in the next section to provide the essential 

background for the comprehension of the multi-scale framework, which will be described in 

Section 3.4.2.

3.4.1 Matrix-based System Reliability (MSR) method

Consider the system event shown in Figure 3.10, i.e. = ( ) , and let 

the outcome of be defined by a Boolean variable, i.e. its value is either 1 (failure) or 0

(non-failure). The system event is characterized by = 3 components, thus, the sample space 

can be divided into = 2 = 8 basic, mutually exclusive and collectively exhaustive 

(MECE, see Section 2.1.1) events, , = 1, … , as shown in Table 3.3.
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Figure 3.10: Network representation of a system event consisting of two failure modes: 

(  and ) or .

Table 3.3: Basic MECE events for the three-component system in Figure 3.10.

1 1 1 

0 1 1 

1 0 1 

0 0 1 

1 1 0 

0 1 0 

1 0 0 

0 0 0 

As a result, the probability of the system event can be defined by the sum of 

the probabilities of basics events that belong to the system event, i.e.

=  (3.17)

where is the “event” vector, whose -th element is 1 if belongs to the system event and 0

otherwise; is the “probability” vector, whose -th element is = , = 1, … , . These 

vectors are calculated as follows. At first, the following iterative procedure is used in order to 

generate the binary matrix of Table 3.3:

[ ] =
1

0
 ,   [ ] =

[ ]

[ ]
          where   = 2, … , k (3.18)

Once the matrix is completed, its -th column provides the event vector, ,

representing the -th component . For instance, the three columns in Table 3.3 are the event 

vectors , , . The system vector in Eq. (3.17) can be obtained by using the 

following expressions for the set operations in :
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=

…  = . .

…  = ( ). . ( )

 

(3.19a)

(3.19b)

(3.19c)

where “.*” is the element-by-element multiplication and is the complementary event of .

As for the probability vector in Eq. (3.17), consider first the case of independent 

component events, for which the following iterative procedure is used:

[ ] =  ,   [ ] =
[ ]

[ ]

          where   = 2, … , k (3.20)

where denotes the probability of the -th component; and = 1 . For the example in 

Figure 3.10, the probability of the system event = ( ) is calculated as 

follows:

= ( )  =  ( . ). ( ) = {1, 1, 1, 1, 1, 0, 0, 0} (3.21a)

[ ] = { , , , , , , , } (3.21b)

= [ ] = +  + + +

 =  ( ) +  ( )  +  ( )  +  ( ) +  ( ) (3.21c)

Eq. (3.21a) indicates that can be seen as the union of the basic MECE events , , ,

and  . Due to the mutual exclusivity of ’s, the probability of the system event is the 

sum of the probabilities of the first five ’s, as reported in Eq. (3.21c). The geometrical 

interpretation of Eq. (3.21c) is illustrated in Figure 3.11, where is represented by the 

shaded area.
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Figure 3.11: Sample space for the three-component system in Figure 3.10.

Consider now the problem of statistically dependent component events. In such a case, 

the basic MECE events cannot be computed simply by products of probabilities of 

components and their complementary events. However, a conditional independence between 

component events can be achieved given outcomes of the random variables representing the 

sources of statistical dependence. For instance, let , and be three independent random 

variables and and two component events defined as

=

=
 (3.22)

It follows that and are correlated by sharing the variable S. Such a variable is named 

common source random variable (CSRV). Only a disjoint formulation for the events and

allows the use of the MSR method, thus, a parameterization of the cause of that 

dependence is needed. In other words, in the expressions of and the CSRV S is replaced 

by one of its possible outcomes s (i.e., = ). Hence, the expressions in Eq. (3.22) are 

transformed into the following disjoint problem:

| =

| =
 (3.23)

When the probability of a particular system event is required (e.g., = ), all the 

possible outcomes s of S should be evaluated. This task is achieved by using the total 

probability theorem (see Section 2.1.1)

= | ( )  (3.24)
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For a more general problem with CSRVs, indicating with the CSRVs’ vector and 

an outcome of , the system probability is given by

= | ( ) = ( ) ( )  (3.25)

where c is obtained by the same matrix-based procedure as that in Eq. (3.18) and Eq. (3.19); 

and ( ) can be obtained by the iterative procedure in Eq. (3.20), where is replaced by the 

conditional probability ( ) because of the conditional independence of components given S

= s.

The identification of CSRVs can be facilitated if the probabilities of the component 

events are estimated by first-order reliability method (FORM, see Section 2.1.5). Here, the 

failure event of the -th component is defined by 0 , where is the FORM 

reliability index and is a standard normal variable. In such a case, the correlation 

coefficients between and is computed by the inner product of the negative 

normalized gradient vectors (see Section 2.2.1), and can be fitted with a generalized Dunnett-

Sobel (DS) class correlation model (Song & Kang, 2009), i.e.

 1 +  (3.26)

where , = 1, … , and , = 1, … , are independent standard normal variables, and 

’s are the generalized DS model coefficients, so that = (see Appendix B 

for further details). In this way, the entire common source effect is implicitly allocated in the 

random variables and, as a consequence, the joint PDF ( ) in Eq. (3.25) is replaced by 

( ), i.e. the m-variate uncorrelated standard normal PDF. Furthermore, the conditional 

probability vector ( ) in Eq. (3.25) is obtained by the matrix-based procedure in Eq. (3.20) 

with replaced by the following conditional component probabilities:

( ) = ( 0 | ) =

1

 (3.27)

where is the CDF of the standard normal distribution. Numerical integration of Eq. (3.25) 

can be easily carried out when the CSRVs used to fit the DS model are not more than = 3

(as in the present analysis).
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3.4.2 Multi-scale system reliability analysis framework

The multi-scale system reliability analysis framework (Lim & Song, 2012; Song & 

Ok, 2010) is summarized into the following steps, as listed at the beginning of Section 3.4.

Step 1: First, the failure probabilities of structural members that have progressively 

failed in the same failure mode need to be calculated. For this purpose, first- or second-order 

reliability methods (FORM or SORM; see Sections 2.1.5 and 2.1.7) are performed, which also 

provide the correlation coefficient, , between the standard normal variables and of the 

component events and as described above. The resulting correlation matrix = is 

fitted with a generalized DS model ( ) = through a nonlinear constrained 

optimisation (Kang et al., 2012) (see Appendix B). The probabilities of the failure modes 

( ), = 1, … , are then evaluated by Eq. (3.25). In particular, the system vector of a 

parallel system, , resulting from the iterative procedure in Eq. (3.18) has only its first 

component different than zero, i.e. = (1,0, … ,0) , so that Eq. (3.25) can be further 

simplified as follows:

( ) =

  

=   ( ) ( ; )  (3.28)

where ( ) is defined by Eq. (3.27), and is the × identity matrix. 

Step 2: The statistical dependence between the identified failure modes needs to be 

calculated. For this purpose, the probability of the intersection of the -th and -th failure 

modes is first described by the bi-variate normal probability formula (see Eq. 2.76), i.e. 

( ) + , ,  (3.29)

where is the generalized reliability index of the -th failure mode defined as =

[ ( )] and is the unknown correlation coefficient which represents the statistical 

dependence between the failure modes, and . The joint probability in the left-hand-side of 

Eq. (3.29) can be calculated by MSR method in the same way as that shown in Eq (3.28), i.e.

=   ( )   ( ) ( ; )  (3.30)

where the values of ( ) are available from the lower-scale analysis as well as the values of 

( ), ( ), and . Once is calculated by Eq. (3.30), Eq. (3.29) can then be 

numerically solved for .
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Step 3: Given the probabilities of the identified dominant failure modes and their 

correlation coefficients, a higher-scale system reliability analysis can now be performed to 

compute the structure-level system failure probability = ( ) . First, the 

correlation matrix of the failure modes, = is fitted by a generalized DS model 

( ) = . Finally, the system failure probability is computed by applying the De 

Morgan’s rule to a series system

 = = 1

 = 1 [1 (  | )] ( ; )

 

(3.31)

where (  | ) is computed by Eq.(3.27) introducing (instead of ) and the coefficients 

of the DS model ( ). More details about the procedure described above can be found in 

framework (Lim & Song, 2012; Song & Ok, 2010).

3.5 Results and discussion

A database of nodal forces is generated by using Ansys-ASAS software (ASAS User 

Manual, 2010) for the integration in Eq. (3.13). In this way, during the selective searching 

process, the nodal forces are simply obtained by interpolating the database for the current 

samples of the input random variables , , and . Such an approach results in huge 

saving on computational time since no wave theories need to be solved during the searching 

process.

A series of crude Monte Carlo (MCS) analyses is also performed to evaluate the 

accuracy and efficiency of the selective searching technique combined with the multi-scale 

MSR method. The convergence of MCS is achieved when the coefficient of variations (CoVs) 

of the system and failure mode probabilities reach 0.03 (see Appendix C for further details).

Since the computational time required by MCS varies exponentially with the system 

reliability, in order to speed up the MCS analysis, the thicknesses given in Table 3.1 are 

reduced by 50%. As a result, a weaker structure is obtained and the system failure probability 

is increased. Such a modification does not undermine the validity of the proposed method, 

which works well whether the system failure probability is low or high, as shown in Figure 

3.12a where the system reliability index, , is plotted versus the post-buckling factor, .

The relative errors are plotted in Figure 3.12b and summarized in Table 3.4: an excellent 

agreement is found between the proposed method and MCS.
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A further consideration about Figure 3.12 reveals the monotonically increasing trend 

of the system reliability index. As far as the post-failure behaviour moves from the brittle 

zone (lower ) to the ductile zone (higher ), the redundancy level in the structure increases. 

On the other hand, the system failure probability decreases with and this increases the 

computational cost of MCS exponentially as shown in Figure 3.13, especially for exceeding

0.5. Below this threshold, the number of iterations (and time) required by MCS is almost 

constant due to the fact that a minimum of 500,000 analyses is performed to account for the 

transient at the beginning of the convergence process (see Section 2.1.8, Example 2.3). By 

contrast, the computational cost of the selective searching technique is not heavily affected by 

the system failure probability (or , as shown in Figure 3.13). The number of iterations and 

the computational time required by this method are 1-2 orders of magnitude less than those 

required by MCS and this gap increases as the system failure probability decreases. It is 

important to note that the total time trend for the selective searching technique is not strictly 

related to the corresponding number of iterations trend, as in the case of MCS. This is due to 

the integrations performed by the MSR solver, whose computational time depends on the 

number of failure modes identified during the searching process. The numerical data 

corresponding to Figure 3.13 are summarized in Table 3.5.
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Figure 3.12: a) Influence of the post-buckling factor on the system reliability; b) relative 

errors between the proposed method (GA-MSR) and MCS.

Table 3.4: Results comparison between the selective searching technique and MCS.

Post-buckling Factor
Reliability Index error [%]

GA-MSR MCS (CoV = 3%)

0.00 2.1209 2.1218 0.04

0.10 2.1233 2.1219 0.07

0.20 2.1350 2.1264 0.40

0.30 2.1615 2.1303 1.46

0.40 2.2169 2.1853 1.45

0.50 2.3613 2.3461 0.65

0.60 2.5515 2.5771 0.99

0.70 2.7880 2.8088 0.74

0.80 2.9851 3.0156 1.01

0.90 3.3057 3.2445 1.89

1.00 3.3992 3.4182 0.56
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Figure 3.13: Influence of the post-buckling factor on the computational costs of the 

selective searching technique and MCS in terms of a) iteration number and b) computational 

time.

Table 3.5: Comparison of the computational costs required by the selective searching

technique and MCS.

Post-

buckling 

factor

GA-MSR MCS (CoV = 3%)

CPU time [s]

# iterations
CPU time 

[s]
# iterations

Failure 

mode 

search

System 

reliability
Total

0.00 201 166 367 15105 11862 730000

0.10 215 227 442 5542 11628 730000

0.20 65 0.1 65 3113 7959 500000

0.30 89 18 107 4484 8347 500000

0.40 214 950 1164 76190 8077 500000

0.50 256 1301 1557 22881 8054 500000

0.60 198 1117 1315 42256 11743 700000

0.70 345 1623 1968 27526 14462 890000

0.80 418 2536 2955 38669 25015 1530000

0.90 193 1.155 1348 33685 52203 3180000

1.00 461 1327 1788 11025 85145 4890000
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Figure 3.14 illustrates the failure modes identified for = 0.5, and their reliability 

indexes are reported in Table 3.6a for comparison with MCS. The failure modes are here 

arranged in the decreasing order of their likelihood. The following notation is used: -9 

 (7,8) means, after element 9 fails in compression and the corresponding stress redistribution 

occurs, both elements 7 and 8 fail in tension. It is worthwhile to note the relative error 

increases with higher reliability indexes, especially for the last three modes. This is probably 

due to nonlinearities in the wave-current loads that occur for high values of the wave height, 

. This fact can be explained by means of Figure 3.15, where the horizontal wave-current 

force is evaluated at two different locations, a node of the jacket (at the intersection between 

elements 15 and 16, see Figure 3.3) and a node of the deck (between elements 24 and 27). 

The load is plotted versus the wave height, , while , and are assumed equal to their 

mean values. As long as is small, the wave affects the jacket only, and the response is 

linear. Conversely, nonlinearities are introduced in the deck nodal load for exceeding 

22 m, when the wave reaches the top side of the platform. So far, the results provided by 

MSR have been calculated performing FORM method. If SORM is used to calculate the 

reliability indexes in Eq. (3.27), a better accuracy of MSR can be achieved for low probability 

failure modes, as can be noted in Table 3.6b for the last three modes. However, for small 

values of (or equivalently, for low reliability indexes) MSR combined with FORM method 

still provides a better approximation, as shown in Table 3.6a for the first three modes. 

A similar behaviour is presented in Table 3.7, where the accuracy of MSR employing 

FORM and SORM is verified for a post-buckling factor = 0.8. The results provided by 

SORM are not always more accurate to those provided by FORM, but, on average, the 

relative error of the first is 10% less. The minimal cut set representation of the system failure 

event for = 0.8 is illustrated in Figure 3.16.

Figure 3.14: Minimal cut set representation of the system failure event for = 0.5.
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Table 3.6: Failure modes and corresponding reliability indexes for = 0.5: a) Results 

provided by MSR performing FORM compared to MCS; and b) results provided by MSR 

performing SORM compared to MCS.

Reliability Index a)

Failure modes MSR (FORM) MCS (CoV = 3%) Error %

- 2.4227 2.4217 0.04

- 2.4521 2.4577 0.23

- 2.5527 2.5752 0.87

- -13) 3.0402 3.0777 1.22

(-9,-10) 3.4201 3.4923 2.07

(-9,-10,-13) 3.5631 3.6535 2.47

Reliability Index b)

Failure modes MSR (SORM) MCS (CoV = 3%) Error %

- 2.4013 2.4217 0.84

- 2.4321 2.4577 1.04

- 2.5285 2.5752 1.81

- -13) 3.0518 3.0777 0.84

(-9,-10) 3.454 3.4923 1.10

(-9,-10,-13) 3.5974 3.6535 1.54

Figure 3.15: Horizontal component of wave-current load calculated at a) the node between 

elements 15-16 (see Figure 3.3) and b) the node between elements 24-27.
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Figure 3.16: Minimal cut set representation of the system failure event for = 0.8.

Table 3.7: Failure modes and corresponding reliability indexes for = 0.8: a) Results 

provided by MSR performing FORM compared to MCS; and b) results provided by MSR 

performing SORM compared to MCS.

Reliability Index a)

Failure modes MSR (FORM) MCS (CoV = 3%) Error %

- 3.0467 3.1018 1.78

- 3.0798 3.1347 1.75

- 3.1728 3.2397 2.07

- -13) 3.2381 3.3231 2.56

- -13) 3.2460 3.3310 2.55

- -13) 3.2658 3.3493 2.49

(-9,-10) 3.4201 3.4796 1.71

(-9,-10,-13) 3.5631 3.6419 2.16

Reliability Index b)

Failure modes MSR (SORM) MCS (CoV = 3%) Error %

- 3.0374 3.1018 2.08

- 3.0777 3.1347 1.82

- 3.1669 3.2397 2.25

- -13) 3.2516 3.3231 2.15

- -13) 3.2606 3.3310 2.11

- -13) 3.2795 3.3493 2.08

(-9,-10) 3.4494 3.4796 0.87

(-9,-10,-13) 3.5683 3.6419 2.02
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3.6 Conclusions

This chapter presents an efficient and accurate method for risk assessment of offshore 

structures. First, the problem of a jacket-type platform under an extreme sea state is 

considered. The structure is modelled as a truss and uncertainty affects the yield stress of the 

members, which are assumed to fail either in tension or compression. Environmental loading 

includes current-wave forces, self-weight, buoyancy forces and applied loads, in which the 

probability density function of the wave height is fitted by a generalized extreme value 

distribution, while the current speed and the drag and mass coefficients are assumed to be 

normally distributed. Then, a risk assessment framework recently developed for truss and 

frame structures is applied to an offshore structure. The main advantage of the approach is 

that the identification process of dominant failure modes is decoupled from the evaluation 

process of the probabilities of failure modes and the system event. As a result, the dominant 

failure modes of the jacket-type platform can be rapidly identified. For this purpose, a multi-

point parallel search employing a genetic algorithm is used. Finally, the evaluation process is 

carried out by a multi-scale Matrix-based System Reliability (MSR) analysis, in which the 

statistical dependence among both components and failure modes is fully considered.

The accuracy and the efficiency of the proposed approach are successfully validated 

against crude Monte Carlo Simulation (MCS). In particular, the computational time and the 

number of iterations are 1-2 orders of magnitude less than those required by MCS. The effect 

of the post-buckling factor on structure-level failure probability is also investigated. As far as 

the post-failure behaviour moves away from the brittle zone (lower post-buckling factor) to 

the ductile zone (higher post-buckling factor) the redundancy level in the structure is 

enhanced and accordingly, the system reliability index increases. Moreover, while the 

computational time required by MCS varies exponentially with system reliability index, the 

time required by the proposed method is insensitive to this value. 

Finally, the effect of nonlinearities in the wave-current loads on the accuracy of the 

results is analysed. When the wave height exceeds a certain value, even the top side of the 

structure (the deck) is involved in the calculation of the wave-current forces. As a 

consequence, a sharp nonlinear increase in wave-current forces is typically related to outer 

regions of the random variables space (where the wave height is higher). It follows that the 

probabilities estimated by MSR performing first-order reliability method (FORM) may be 

less accurate for failure modes that are less likely to occur. In some cases, a more accurate 

estimation of such failure probabilities can be obtained by coupling MSR with second-order 

reliability method (SORM). 

In conclusion, the computational efficiency and accuracy arising from the capability to 

separate the failure mode identification from the probability evaluation processes first, and to 

rationally consider the statistical dependence among failure events then, make the proposed 
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approach particularly attractive to the offshore industry. Further research will investigate the 

applicability of this method to both design and planning of inspection, maintenance and repair 

strategies.
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4 Simulation of the longitudinal tensile 

strength and damage accumulation

in fibre-reinforced composites 

In this chapter, system reliability theory is applied to the uncertainty quantification of 

the longitudinal tensile strength of fibre-reinforced composites. The damage accumulation 

and failure of this class of materials is governed by statistical size effects, which pose a 

challenge to use coupon-based experimental data for the design of large structures. In this 

respect, a Monte Carlo progressive failure analysis is proposed to evaluate the strength 

distributions of hierarchical fibre bundles, which are formed by grouping a predefined number 

(coordination number) of smaller-order bundles into a larger-order bundle. The present 

approach is firstly validated against a recent analytical model, which has been extensively 

validated against experimental results. Based on this model, hierarchical bundles are formed 

by grouping sub-bundles two by two (i.e., a coordination number equal to two is used), and 

their full strength distributions are derived based on given fibre-strength distribution and 

matrix shear-lag near fibre breaks. Furthermore, such a model allows the damage 

accumulation into clusters of fibre breaks to be analysed. In addition to providing the same 

results of the analytical model, the proposed numerical approach is also applied to higher 

coordination numbers, thus extending the analysis to more realistic load-sharing 

configurations and making this approach suitable for the stochastic analysis of fibre-

reinforced composites and the associated size effects.

This chapter is organised as follows: Section 4.1 introduces the problem of size effects 

on the longitudinal tensile strength of fibre bundles. Then, a brief overview of the reference 

analytical model is presented in Section 4.2, providing the basis for the numerical 

implementation in Section 4.3. Results of the proposed numerical model are shown in Section 

4.4, and pros and cons are discussed in Section 4.5. Finally, the main conclusions are drawn 

in Section 4.6.
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4.1 Size effects 

UniDirectional (UD) fibre-reinforced polymers (FRPs) are generally composed of 

millions of individual fibres all aligned in the same direction. Technical fibres, such as glass-

and carbon-fibres, are characterised by micro-scale diameters ( 4 7 m ), high tensile 

stiffness ( 200 600 GPa ), and high tensile strength ( 3 7 GPa ) (Pimenta, 2015).

Nevertheless, they are usually very brittle, and their failure is governed by the statistics of 

defects. As a consequence, the fibre strength is a random quantity dependent on the size 

(length) of the fibre itself; longer fibres are associated to a higher percentage of defects and, 

therefore, to weaker strengths. From a reliability point of view, this is explained by the 

Weakest Link Theory (WLT) (Weibull, 1951), which states that chain of elements 

withstands an external load only if all its elements survive the resulting stresses. This is 

mathematically expressed by Eq. (2.68), which is here rewritten as

= 1 { > 0} (4.1)

where is the remote applied stress, and is the longitudinal tensile strength of the -th 

fibre element. Let the random variables be all statistically identical and independent, with 

= , , in which the subscript U indicates the uniform loading condition, and r indicates 

the reference length of the element. Therefore, Eq. (4.1) becomes

= 1 , > = 1 1 , (4.2)

Analogously to the notation used for the strength variables, the failure probabilities are 

denoted by , for the elements (length ) and , for the chain (length = ), so that 

Eq. (4.2) can be reformulated as

, ( ) = 1 1 , ( ) (4.3)

This is the expression of the WLT for length scaling of the individual fibre strength 

distribution. Figure 4.1 illustrates how the length scaling law operates for different ratios 

. For any given distribution , (black curve), the output cumulative distribution 

function (CDF) of , shifts to lower strength values if > (red curve); conversely, 

higher strength values are associated to shorter fibres, i.e. < (green curve).
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Figure 4.1: Size effects on the fibre-strength distributions.

The Weibull distribution (Weibull, 1951) is typically used to model the strength of 

brittle materials. In this case, the failure probability of a fibre under uniform stress is 

, ( ) = 1 exp (4.4)

where is the fibre length, and m and are respectively the shape (size independent) and 

scale (measured at the reference length ) parameters of the distribution. It should be noted 

that the Weibull distribution verifies Eq. (4.3), therefore Eq. (4.4) is consistent with the WLT.

At the FRP level, the presence of matrix and the load redistribution among parallel 

fibres result in a quasi-brittle failure. Micro-bundle (with 4 7 fibres) strengths have been 

measured by Beyerlein and Phoenix (1996) and Kazanci (2004), highlighting significant 

deviations from the Weibull model; in particular, some bundles resulted in higher mean 

strengths and lower variability than the single fibres. At the macroscopic scale (with 

thousands of fibres), Okabe and Takeda (2002) and Scott et al. (2011) observed several 

clusters of fibre breaks forming before global failure; moreover, both the mean value and the 

variability of strength decrease for larger specimens (Wisnom, 1999). All these observations 

are incompatible with the WLT applied directly to the single-fibre level (Bažant, 1999; 

Wisnom, 1999).

Hence, several modelling approaches have been suggested for the stochastic analysis 

of FRPs (Bažant, 1999; Wisnom, 1999). Fibre Bundle Models (FBMs) (Pradhan, Hansen & 

Chakrabarti, 2010) accurately represent the physics involved in longitudinal tensile failure 

and the associated size effects. This type of model focuses on calculating the strength 

distribution of a bundle of fibres with a given characteristic length, and the WLT is only used 

to scale the result for a longer chain of bundles (Curtin, 1991; Harlow & Phoenix, 1978a,b). 
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Figure 4.2: Fracture contours within a fibre bundle, at three different

magnification levels (Pimenta et al., 2010).

In general, the complexity of FBMs increases with the number of fibres in the 

bundle’s cross-section, and exact solutions are attainable for small bundles only. However, 

quasi-fractal fracture surfaces (i.e. fracture surfaces with similar contours at different 

magnification levels, see Figure 4.2) have been reported in UD laminas and fibre bundles 

(Laffan et al., 2010; Pimenta et al., 2010), providing experimental evidence for a hierarchical 

failure process. Consequently, Pimenta and Pinho (2013) recently proposed a hierarchical 

scaling law relating the strength distributions of consecutive bundle levels, in which the 

number of fibres scales by a power of two (i.e., a coordination number = 2 is used; see 

Figure 4.3a). 

Figure 4.3: a) First 4 bundle levels with coordination number = 2; b) Fibre arrangements 

for different coordination numbers.

Despite this approach allows a fast calculation of bundle strength distributions, 

imposing a coordination number equal to 2 results in too high stress concentrations in the 

proximity of fibre breaks. In order to improve the model and to investigate the physics at the 
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base of the damage accumulation and failure processes of UD composites, the hierarchical 

approach is here generalised to higher values of (see Figure 4.3b), thus extending the 

analysis to more realistic load-sharing configurations (of particular interest is the case of 

 =  7, which better represents the actual disposition of fibres in the bundle cross-section).

However, the number of possible bundle failure sequences becomes extremely high 

for > 2, thus preventing the bundle strength distributions to be evaluated analytically. A 

new numerical approach is then proposed, where the failure events are simulated through a 

discrete representation of hierarchical bundles, and their distributions are evaluated by means 

of a Monte Carlo progressive failure analysis.

4.2 Overview of the hierarchical analytical model for

composite fibre bundles

4.2.1 Hierarchical scaling law for the bundle strengths

As shown in Figure 4.3a, the analytical model (Pimenta & Pinho, 2013) assumes that 

hierarchical bundles are formed by pairing two individual fibres (level-[0]) into a level-[1]

bundle, and sequentially grouping two level-[ ] bundles into one level-[ + 1] bundle.

Consider first a level-[1] bundle composed by two level-[0] fibres, and , and 

assume the far-field stress progressively increasing until a first break occurs in the middle 

of fibre (see Figure 4.4). Based on a perfectly-plastic shear-lag model, the failed fibre 

recovers the remote stress within the level- [0] effective recovery length (Pimenta & 

Pinho, 2013), i.e.

[ ]
( ) = 2

[ ]
(4.5)

where is the cross-sectional area of a single fibre, is the matrix/interface yield stress in 

shear, and [ ] is the perimeter of the level-[0] shear-lag boundary, at which shear stresses 

can be transferred. From equilibrium, a linear stress concentration applies to fibre , which 

reaches a stress concentration factor = 2 in the proximity of the fibre break ( = 0).

Bundle failure requires fibre to fail nearby the break in fibre , so as to promote 

complete yielding of the matrix/interface between the two fibre-breaks (see Figure 4.5). 

Therefore, once fibre fails, the level-[1] control region is defined as the region where a 

break in fibre would lead to bundle failure, i.e.

[ ]
( ) = 2

[ ]
( ) (4.6)
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Figure 4.4: A first break occurs in the middle of fibre , the matrix yields plastically, and a 

linear stress concentration applies to fibre (Pimenta & Pinho, 2013).

Figure 4.5: Definition of the critical distance between fibre breaks: the bundle fails

if fibre breaks at a distance smaller than /2 = e from the break

in fibre (Pimenta & Pinho, 2013).

Figure 4.6: Definition of the control region and fibre segments in a

level-[1] bundle (Pimenta & Pinho, 2013).
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As illustrated in Figure 4.6, the control region is partitioned into 4 segments ( , ,

and ) of equal length 
[ ]

, and two assumptions are made:

( ) the bundle is represented by a chain of independent control regions (to avoid bundle-

end effects by shifting the first fibre-break to the centre of the control region);

( ) within a control region, each fibre can fail only once (to guarantee simple stress fields 

as those presented in Figure 4.5).

Based on the assumptions above, the list of sequences of events leading to bundle 

failure is defined as follows:

: failure of segment and unstable failure (with no increase of the far-field stress) of 

segment due to stress concentrations;

: failure of segment and stable failure (after incrementing ) of segment due to 

stress concentrations;

: failure of segment and stable failure of segment due to independent fibre flaws 

(including growth and coalescence of matrix damage between fibre breaks).

Therefore, the total failure probability of the bundle is given by the union of events ,

and , which yields the following expression for the level-[1] bundle survival probability 

under uniform stress within the control length 
[ ]

(see Appendix D):

,

[ ]
( ) = ,

[ ]
( ) + 2 1 ,

[ ]
( ) ,

[ ]
( ) ,

[ ]
( ) (4.7)

where ,

[ ]
and ,

[ ]
are the survival probability of a single-fibre segment of length 

[ ]
, and 

the subscripts U and K respectively refer to a uniform stress loading ( ) and a linear stress 

profile with concentration factor = 2. The level-[1] bundle strength distribution is then 

obtained as the complement of the level-[1] bundle survival probability, i.e. ,

[ ]
( ) = 1

,

[ ]
( ).

Eq. (4.7) relates the strength distribution of the level-[1] bundle to that of a single 

fibre, for which a Weibull distribution is used in (Pimenta & Pinho, 2013). Assuming a 

hierarchical failure process, Eq. (4.7) is then extended to any bundle level, so that the 

following recursive formula is provided:

,

[ ]
( ) = ,

[ ]
( ) + 2 1 ,

[ ]
( ) ,

[ ]
( ) ,

[ ]
( ) (4.8)

in which the control length and the recovery length scale hierarchically too:
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[ ]
( ) = 2

[ ]

[ ]
  ,          

[ ]
( ) = 2

[ ]
( ) (4.9)

where [ ] = 2 is the number fibres in the level-[ ] bundle, and [ ] is the shear-lag perimeter 

(see Figure 4.7), which is defined as (Pimenta & Pinho, 2013),

[ ] = 3 + 4 [ ] 1
2

1 + [ ] 2
2

(4.10)

in which indicates the fibre diameter, and the fibre volume fraction.

Figure 4.7: Shear-lag boundary for square fibre arrangement (Pimenta & Pinho, 2013).

Finally, the WLT can be used within any bundle level to scale the survival probability 

,

[ ]
to the reference length of the bundle, i.e.

,

[ ]
( ) = 1 1 ,

[ ]
( )

[ ]

   
         

     ,

[ ]
( ) = ,

[ ]
( )

[ ]

(4.11)

4.2.2 Accumulation and clustering of fibre breaks

From the last expression in Eq. (4.11), it can be noticed that the first term on the right-

hand side of Eq. (4.8) corresponds to the WLT applied to the previous-level bundle. In other 

words, in the brittle domain, a level-[ + 1] bundle of length 
[ ]

behaves identically to a 

level-[ ] bundle of length 4
[ ]

. During brittle failure, only uniform stress applies to the 

bundle, so that the subscript is used to indicate the brittle term of Eq. (4.8), i.e. 

[ ]
( ) = ,

[ ]
( ) (4.12)

Conversely, the second term of Eq. (4.8) accounts for the non-brittle behaviour, i.e. the 

survivability of the level-[ + 1] bundle after one of the two level-[ ] bundles fails (see Figure 

4.8). In this case, a linear stress concentration applies to the surviving level-[ ] bundle, so that 

the subscript is used to indicate the non-brittle term of Eq. (4.8), i.e.
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[ ]
( ) = 2 1 ,

[ ]
( ) ,

[ ]
( ) ,

[ ]
( ) (4.13)

Eq. (4.13) can then be used to determine the frequency of occurrence of level-[ ]

clusters, which are defined considering every occurrence of a failed level-[ ] bundle with a 

surviving level-[ ] neighbour (see Figure 4.8). In particular, the density of level-[ ] clusters in 

any bundle of level greater than or equal to [ + 1] is given by (Pimenta, 2014)

[ ]
( ) =

[ ]
( )

[ ]
( )

    ,        
[ ]

( ) = [ ] [ ]
( ) (4.14)

where 
[ ]

represents the control volume of the level-[ + 1] bundle.

Figure 4.8: Damaged level-[ + 1] bundle of length 
[ ]

, in which only one of 

the two level-[ ] bundles withstands the external load.

From the definition of clusters given above, the surviving level-[ ] bundle may still 

present broken fibres, whose density is denoted by 
[ ]

. With reference to Figure 4.8, the 

following recursive formula is provided

[ ]
( ) = [ ] [ ]

( ) +
[ ]

( ) (4.15)

in which the first term represents the contribution of the broken level-[ ] bundle (blu area), 

and the second term is the contribution of the survived level-[ ] bundle (red area).

The total number of broken level-[ ] clusters and fibre breaks in a level-[ ] bundle of 

length can be defined as 

[ | ]
( ) =

[ ]
( )

[ ]
   ,          {0, … , 1}           (4.16)

[ ]
( ) =

[ ]
( )

[ ]
  ,         where 

[ ]
= [ ]  (4.17)
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Finally, the largest cluster in a level-[ ] bundle is defined as the largest level ,

[ ]

which guaranties a pre-established minimum value of 
[ | ]

, e.g. 

,

[ ]
( ) = max {0, … , 1}  

[ | ]
( ) 0.5  (4.18)

4.3 Numerical implementation

4.3.1 Simulation of failure events in a bundle with 2 fibres

The analytical hierarchical model introduced in the previous section is here 

reformulated using a discrete representation of fibres and bundles. Consider first a level-[1]

bundle of length [ ] and coordination number = 2 (i.e. a 2-fibres bundle), in which each 

fibre is discretised into a large number of level-[0] elements of equal length [ ]. A value of 

strength is then generated for each fibre-element (Figure 4.9a), based on a random sampling 

of level-[0] strength distribution. A Weibull distribution is assumed for the individual fibres 

(for consistency with Pimenta and Pinho’s (2013) analytical model); being the reference 

length at which the Weibull parameters were measured, the distribution used in the model is 

then scaled to the element length [ ] by applying the WLT,

, [ ]

[ ]
( ) = 1 1 ,

[ ]
( )

[ ]

     (4.19)

where ,

[ ]
and 

, [ ]

[ ]
denote the Weibull distribution at length and [ ] , respectively. 

Finally, the element strengths are generated by inverse transform sampling method (Devroye, 

1986), applied to the level-[0] strength distribution, 
, [ ]

[ ]
.

Figure 4.9a illustrates a situation where the applied stress overcomes the strength 

of elements 6 and 8 of fibre , and of element 15 of fibre , thus leading to local failures 

(highlighted in red colour). The corresponding stress field is shown in Figure 4.9b, which 

satisfies the equilibrium equation

, + , = 2  (4.20)

where the stresses , and , are evaluated at the centre of the -th element of fibre and 

, respectively.
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As shown in Figure 4.9b, the resulting stress fields can be more complex than those 

assumed in the analytical model (Figure 4.5). This is because the numerical implementation 

does not involve assumptions ( ) and ( ), and the recovery regions can be here defined by 

superimposition of multiple stress-recovery fields (e.g., recovery region 1 in Figure 4.9b).

Figure 4.9: a) Elements 6 and 8 of fibre and element 15 of fibre fail under the uniform 

stress ; b) Resulting stress fields with recovery regions in red

and stress concentrations in green.

However, the proposed implementation preserves the basic sequences of events 

leading to bundle failure, i.e. , and defined in Section 4.2.1. This result is achieved by 

means of a progressive failure analysis, where the far-field stress is increased starting 

from the strength value of the weakest element (at which the first local failure occurs), up to 

the termination of the analysis once a global failure of the bundle is detected (see Figure 4.10

- Figure 4.12). Global failures occur when a recovery region in one fibre overlaps at least one 

recovery region in the other fibre, so that the equilibrium Eq. (4.20) cannot be satisfied. At 

that point, the value of the far-field stress is stored as an outcome of the stochastic level-

[1] bundle strength, 
, [ ]

[ ]
. The corresponding distribution 

, [ ]

[ ]
is obtained by a Monte

Carlo analysis, repeating the progressive failure analysis ( = 10 ) times, each time 

randomly sampling the element strengths from the given individual fibre strength distribution.
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Figure 4.10: Unstable failure (event ); the level-[1] bundle fails at the first iteration of

the progressive failure analysis when is equal to the strength value of the weakest

element (i.e., element 15 of fibre : after its failure, fibre does not survive the

stress concentrations in elements 15 and 16). Note the different values of

strength and stress in the vertical axes.

Figure 4.11: Stable failure (event ); the bundle fails after three iterations (the last iteration is 

highlighted in red colour). After element 6 of fibre fails, fibre survives the stress 

concentrations until reaches the strength of element 7 of fibre . Note

the different values of strength and stress in the vertical axes.
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Figure 4.12: Stable failure (event ); the bundle fails due to growth and coalescence

of the recovery regions between two previously formed breaks (in element 15 of 

fibre and element 8 of fibre ). Note the different values of strength and

stress in the vertical axes.

4.3.2 Simulation of larger bundles and asymptotic analysis of the strength 

distribution

The resulting level- [1] strength distribution is subsequently used to sample the 

strengths of level-[1] elements in the simulation of a level-[2] bundle (Figure 4.13). As in the 

previous level, the WLT is used for length scaling, so that the level-[1] bundle distribution 

can be evaluated at the element length [ ]:

, [ ]

[ ]
( ) = 1 1

, [ ]

[ ]
( )

[ ] [ ]

 (4.21)

Figure 4.13: The WLT is applied to scale the bundle distribution from the full level-[1]

bundle length ( [ ]) to the level-[1] element length ( [ ]), so that the level-[1] element 

strengths can be sampled for the analysis of the level-[2] bundle.
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However, the accuracy of 
, [ ]

[ ]
is limited by the finite number of Monte Carlo 

analyses ( ), as the right tail of 
, [ ]

[ ]
above the (1 1/ ) -th quantile is unavoidably 

rounded up to 1. Consequently, the small ratio [ ] [ ] in Eq. (4.21) leads to the complete 

loss of a large portion of 
, [ ]

[ ]
(segment - in Figure 4.14), making it impossible to sample 

values for the element strength 
, [ ]

[ ]
.

Figure 4.14: a) The limited number of Monte Carlo analyses rounds up to 1 the right tail of 

both the bundle strength (
, [ ]

[ ]
, blue curve) and the element strength (

, [ ]

[ ]
, black curve) 

distributions; the latter is fitted with the asymptotic distribution (lim
, [ ]

[ ]
( ),

red curve) provided by the WLT applied to the previous level bundle (Eq. (4.23));

b) region from plot a) highlighted.

This problem is circumvented by means of an asymptotic approximation of the bundle 

strength distributions. Pimenta and Pinho (2013) proved that if the individual fibre strength 

follows a Weibull distribution, then the Right Tail Asymptote (RTA) of any bundle strength 

distribution corresponds to the WLT applied to the single-fibre level, i.e.

lim
, [ ]

[ ]
( ) = 1 1

, [ ]

[ ]
( ) (4.22)

where is the number of individual fibres in the level-[ ] bundle (being the coordination 

number). Therefore, a level-[ ] bundle behaves asymptotically like an individual fibre (series 

system) with length times the bundle length (see Figure 4.15). Moreover, since the Weibull 

distribution is scale-invariant, the RTA defined above is still a Weibull distribution. 

However, it can be shown that as the bundle size increases (i.e., large and/or large ), 

these asymptotes are valid for progressively more reduced tails (Pimenta & Pinho, 2013). A 

modification to the asymptotic analysis is then needed, providing asymptotes that are suitable 

for the fitting of the bundle strength distributions even at the macroscopic scale. 
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Figure 4.15: WLT applied to the single-fibre level (case for = = 2).

Since the right tail of any strength distribution falls into the domain of large stresses 

, its shape is governed by unstable bundle failure due to stress concentrations (i.e., event 

). In other words, the RTA of the level-[ ] bundle is determined by the strength of its 

weakest sub-bundle of level [ 1]. Such a consideration is consistent with the WLT applied 

to the previous-level bundle, so that the following model of the RTA is here proposed:

lim
, [ ]

[ ]
( ) = 1 1

, [ ]

[ ]
( )  

(4.23)

The geometrical interpretation of Eq. (4.23) is illustrated in Figure 4.16, in which the 

asymptotic behaviour of a level-[2] bundle is expressed by the series of its sub-bundles of 

level [1].

Figure 4.16: WLT applied to the previous-level bundle (case for = = 2).

Eq. (4.23) is used to fit 
, [ ]

[ ]
(by letting = 1, and = 2 in this particular case), 

which is then defined by the curve - - - (Figure 4.14). Finally, a tolerance is established 

for the residual gap - , which can be further reduced by increasing the ratio [ ] [ ] to a 

value closer to unity.
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The difference between the two asymptotic models is shown in the Weibull plot of 

Figure 4.17, where the Weibull distributions are represented by straight lines. The data 

relative to the first 3 levels are taken from the results that will be presented in Section 4.4, 

assuming [ ]= 0.1 mm, = 1, 2 and 3.

Figure 4.17: a) Asymptotic analysis of the first 3 levels using the WLT applied to the

single-fibre level (dashed lines) and to the previous-bundle level (dotted lines);

b) region from plot a) highlighted.
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At level [1] (blue curves), the previous-bundle level corresponds to level [0] (i.e., the 

single-fibre level), so that both Eq. (4.22) and Eq. (4.23) provide the same RTA (dashed blue 

line). As shown in Figure 4.17b, numerical errors affect the last portion of 
, [ ]

[ ]
(solid blue 

line) before it is rounded up to 1 (point ). As a consequence, the fitting point is anticipated 

from to , where is the first point of 
, [ ]

[ ]
such that the vertical segment satisfies 

the pre-established tolerance on the residual gap (e.g., 0.03). In this way, the fitted curve - -

- is replaced by the more accurate curve - - - .

This fitting procedure is extended to higher levels (i.e., 2), at which the RTAs

defined by Eq. (4.23) (dotted lines) depart from the Weibull distribution. It should be noted 

the distance between and the Weibull asymptote (dashed lines) increases at higher levels, 

thereby preventing 
, [ ]

[ ]
to be fitted using Eq. (4.22). Conversely, the fitting point is 

progressively anticipated, suggesting full convergence of high level distributions to the WLT 

applied to the previous-bundle level. This fact will be proved in Section 4.4 for 5.

4.3.3 Extension of the numerical model to higher coordination numbers

Figure 4.18a illustrates the case of a level-[1] bundle with coordination number = 3,

where local failures affect elements 4 and 15 of fibre , elements 8 and 12 of fibre , and 

element 14 of fibre . Figure 4.18b shows the corresponding stress field, which is calculated 

assuming the stress concentration to be equally distributed among intact elements. Therefore, 

indicating with , the value of stress evaluated at the -th element of the -th fibre it can be 

shown that 

, =  

[ ]

2
,      if  

+ ( 1) min , , ,      if  

(4.24)

where , is the positive distance from the -th element of the -th fibre to the closest broken 

element in the recovery region (more than one element can fail within the same recovery 

region, e.g. recovery regions 1 and 2 in Figure 4.18b); and , is a logic operator, which is 1

if the -th element of the -th fibre belongs to and 0 otherwise. The first expression of Eq. 

(4.24) comes from Eq. (4.5) and defines the linear stress field in the proximity of the fibre

breaks (red stresses in Figure 4.18b). In the second expression of Eq. (4.24), the term inside 

square brackets represents the total stress that must be added to in order to guarantee the 

equilibrium within the elements of the -th column. This additional stress is then equally 

distributed among the intact elements of the -th column, whose number is given by the term 

inside round brackets. The second expression of Eq. (4.24) can also be rewritten as
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, = 1 +
( 1) min 1,

,

,

= ,        if  (4.25)

where , ( 1) represents the stress concentration factor that applies to the -th element of 

the -th fibre. It should be noted that , enters in the definition of , only if , < , i.e. 

when the -th element of the -th fibre ( ) belongs to the recovery region . This implies

, =

[ ]

2
,      if   ,   

(4.26)

Figure 4.18: a) Elements 4 and 15 of fibre , elements 8 and 12 of fibre , and element 14 of 

fibre fail under uniform stress loading ; b) The whole bundle fails due to non-

equilibrium in elements 13 and 14 (dashed areas).

In order to extend the Monte Carlo progressive failure analysis to higher ’s, it is here 

assumed that a global bundle failure occurs when all sub-bundles are broken and all recovery 

regions overlap in at least one element (e.g., elements = 13 and = 14 in Figure 4.18b). 

When this statement is true, the equilibrium cannot be satisfied, i.e.

    : , <
(4.27)
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4.3.4 Optimal discretisation of the fibre bundles

The accuracy of the simulated strength distributions strongly depends on the ratios 
[ ] [ ]. If, on the one hand, a finer discretisation leads to more accurate estimates of the 

strength statistics (mean and coefficient of variation), on the other, it entails longer 

computation times. Therefore, the optimal values of element and bundle lengths are 

determined at each level [ ], so as to use the minimum number of elements which guarantees 

both efficiency and convergence of the output strength distribution.

Figure 4.19: Strategy for an optimal discretisation of the fibre bundles.
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The main steps of the optimisation process are illustrated in Figure 4.19 and they can 

be summarised as follows. 

Step 1: The analysis starts at level = 1 for given values of [ ] and [ ]. These values 

are chosen based on the reference length of the individual fibre, e.g. [ ] =  10 and 
[ ]= [ ] 1000.

Step 2: In the first loop (yellow blocks), the length of the elements is set equal to [ ]

and their number is increased multiplying the bundle length [ ] by 1.5 until convergence of 

, [ ]

[ ]
. The latter is achieved when the relative error between the last two estimates is lower 

than 0.05% for the mean value and 0.5% for the coefficient of variation. The resulting 

distribution is stored as the most accurate estimate of the level-[1] bundle strength 

distribution, and it is denoted by 
,

[ ]

[ ]
(the subscript “ma” stands for “most accurate”). 

Step 3: In the second loop (blue blocks), the bundle length [ ] is decreased by 10% 

until the scaled distribution 
, [ ]

[ ]
can be fitted with the RTA defined in Eq. (4.23). However, 

since [ ] has been reduced during the last loop, the accuracy of 
, [ ]

[ ]
must be verified with 

respect to the most accurate estimate 
,

[ ]

[ ]
. To this end, 

, [ ]

[ ]
is scaled to 

[ ]
for the 

comparison with 
,

[ ]

[ ]
. In this case, a threshold equal to 1% and 2% is chosen for the 

relative error on the mean value and the coefficient of variation, respectively. If this 

requirement cannot be satisfied, the analysis stops, otherwise the current value of [ ] is 

stored as the optimal length for the level-[1] bundle (
[ ]

). 

Step 4: The last loop (green blocks) searches for the optimal value of the element 

length, 
[ ]

. Here, the initial value [ ] is increased by 50% until the relative error between 

the new generated 
,

[ ]

[ ]
and 

,
[ ]

[ ]
is reduced to 0.05% and 0.5% respectively for the mean 

value and the coefficient of variation; the penultimate value of [ ] is then stored as 
[ ]

.

Step 5: Finally,
[ ]

and 
[ ]

are used to define the initial values of [ ] and [ ] for 

the analysis of the level-[2] bundle. This choice is consistent with the evidence that higher 

level distributions converge to the WLT applied to the previous-bundle level (Section 4.3.2). 

Therefore, the contribution of the stable failure modes (in particular of event , which 

includes growth and coalescence of matrix damage between fibre breaks) becomes 

progressively less important and always fewer elements (i.e., ratios [ ] [ ] closer to unity)

are then required to properly simulate the distributions of the bundle strengths. The 

optimisation process terminates when a pre-established level [ ] is analysed.

 



Chapter 4

91

4.4 Results

4.4.1 Inputs and outputs

Table 4.1 presents the list of nominal input parameters of the hypothetical material 

considered in the original analytical model (Pimenta & Pinho, 2013). The first four 

parameters refer to the Weibull distribution for the strength of individual fibres, being the 

mean value and CoV the coefficient of variation, while and are respectively the scale 

and the shape parameters. Finally, is the matrix/interface yield stress, the fibre 

diameter, the fibre volume fraction, and is the reference length for the scale parameter 

. The progressive failure analysis is repeated = 10 times during the Monte Carlo 

simulation, and the starting values [ ] and [ ] of the optimisation process (Section 4.3.4) are 

set equal to [ ] = 1 mm and [ ]= 0.001 mm (i.e., [ ] =  10 and [ ]= [ ] 1000).

Table 4.1: Input parameters for the numerical implementation.

Mechanical properties Geometry

(GPa) (%) (GPa) (MPa) (%) (mm)

4.5 25 4.93 4.54 70 5 60 10

Figure 4.20: Simulated bundle strength distributions from level [1] to level [15],

and comparison with Pimenta and Pinho’s (2013) model.
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4.4.2 Comparison between Monte Carlo analysis and the analytical model

Figure 4.20 illustrates the bundle strength distributions for = 2 and a specimen 

length of 10 mm . The simulated strengths (solid lines) of the first 15 levels show good 

agreement with Pimenta and Pinho’s (2013) model (dashed lines), proving that the numerical 

simulation correctly models the same features as the analytical one. 

4.4.3 Effects of the coordination number

Figure 4.21 describes the size effects on the statistics of the strength distributions, 

where the value of ranges from 2 to 7. Both the mean value and the CoV of the strength 

exhibit common behaviours at different ’s: after an initial strengthening and steep reduction 

in variability, both the mean value and the variability of tensile strength gradually decrease 

with increasing specimen cross-section (the number of fibres in a level-[ ] bundle is 

calculated as ). In particular, for all ’s, the magnitude of size effects starts decreasing for 

bundle levels higher than 3, as indicated by the upwards curvature of the right tail of the 

curves in Figure 4.21a. 

As the coordination number increases, the curves in Figure 4.21 shift to higher mean 

strengths and lower CoVs. This strengthening effect is mainly due to lower average stress 

concentration factors among intact fibres (or sub-bundles) in the proximity of fibre breaks. 

For instance, = 2 and = 1.5 are respectively applied for = 2 as shown in Figure 4.9b

and = 3 in Figure 4.18b.

Table 4.2 reports the optimal discretisation resulting from the procedure described in 

Section 4.3.4. The ratio [ ] [ ] corresponds to the number of elements that has been used 

to simulate the strength distribution of the level-[ ] bundle. As expected, this number 

decreases at higher levels [ ]. In particular, the ratio [ ] [ ] approaches unity about level 

[5], at which the strength distribution converges to the WLT applied to the previous-bundle 

level. This means that the bundle strength distributions are completely defined by Eq. (4.23) 

for 5, so that

, [ ]

[ ]
( ) 1 1

, [ ]

[ ]
( )

[ ] [ ]

  ,       5 (4.28)

Furthermore, a more detailed analysis of Table 4.2 suggests a faster convergence to 

the WLT for larger values of (e.g., the ratios [ ] [ ] for = 4 decrease for increasing 

values of ). However, a better understanding of this trend would be achieved increasing the 

number of simulations , which strongly influences the variability of the data in Table 4.2.
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Figure 4.21: Bundle strength size effects on the mean value (a) and on the CoV (b)

for coordination numbers ranging from 2 to 7, and comparison

with Pimenta and Pinho’s (2013) model.
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Table 4.2: Optimal discretisation of fibre bundles and convergence to the WLT

for different values of the coordination number.

=

1 2 3 4 5 6 7 15
[ ] 1.5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25
[ ] 0.001 0.0114 0.0259 0.0388 0.0577 2.25 2.25 2.25 2.25
[ ] [ ] 1500 197 87 58 39 1 1 1 1

=  

1 2 3 4 5 6 10
[ ] 3.375 3.375 3.375 3.375 3.375 3.375 3.375 3.375

[ ] 0.00764 0.01722 0.02576 0.05921 3.375 3.375 3.375 3.375

[ ] [ ] 442 196 131 57 1 1 1 1

=  

1 2 3 4 5 6 7 8
[ ] 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25

[ ] 0.001001 0.017176 0.025862 0.086538 2.25 2.25 2.25 2.25

[ ] [ ] 2248 131 87 26 1 1 1 1

=

1 2 3 4 5 6 7
[ ] 1.575 1.575 1.575 1.575 1.575 1.575 1.575

[ ] 0.001001 0.017120 0.025820 0.131250 0.131250 0.131250 1.575

[ ] [ ] 1573 92 61 12 12 12 1

=

1 2 3 4 5 6
[ ] 1.2 1.2 1.2 1.2 1.2 1.2

[ ] 0.001 0.001 0.0076 0.1714 1.2 1.2

[ ] [ ] 1200 1200 158 7 1 1

=  

1 2 3 4 5 6
[ ] 1.05 1.05 1.575 1.575 3.54375 3.54375

[ ] 0.001 0.002253 0.039375 0.221484 3.54375 3.54375

[ ] [ ] 1050 466 40 7 1 1

 



Chapter 4

95

4.4.4 Analysis of damage accumulation

Consider first the case of = 2. The damage evolution into clusters of broken fibres is 

completely defined by the non-brittle term introduced in Section 4.2.2. This term is 

evaluated combining Eq. (4.8) and Eq. (4.13) into the following expression

[ ]
( ) = ,

[ ]
( )

,

[ ]
( )  (4.29)

where the right-hand side is recovered by scaling the simulated distributions (Figure 4.20) to 

the control length 
[ ]

and the recovery length 
[ ]

.

Figure 4.22: Simulated number of broken level-[ ] clusters in the level-[10] bundle of length 

= 10 mm, and comparison with Pimenta and Pinho’s (2013) model.

Figure 4.22 illustrates the total number of broken level-[ ] clusters in the level-[10]

bundle of length = 10 mm. The simulated curves (red lines) show good agreement with 

Pimenta and Pinho’s (2013) model, with the exception of Figure 4.22d, where the limited 

number of analyses run by Monte Carlo leads to zero occurrences of level-[3] clusters. Fibre 

breaks start forming at low applied stresses; as approaches the average strength of the 
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bundle (4446 MPa), clusters of broken fibres starts forming and growing, until the largest 

cluster triggers catastrophic failure of the entire bundle. These results are consistent with 

experimental observations (Scott et al., 2011). Similar trends are reported in Figure 4.23 for 

the total number of fibre breaks and the associated density.

Figure 4.23: Simulated number of broken fibres (a) and associated density (b) in

the level-[10] bundle of length = 10 mm, and comparison

with Pimenta and Pinho’s (2013) model.

The total number of fibre breaks in the largest cluster can be estimated as ,
[ ]

,

where is the coordination number ( = 2 in this case) and ,

[ ]
is defined by Eq. (4.18). 

The corresponding curve is shown in Figure 4.24. As expected from Figure 4.22c-d, the 

largest cluster level is [2] (i.e, 4 broken fibres) by simulation, and [3] (i.e, 8 broken fibres) by 

applying Pimenta and Pinho’s (2013) model.

Figure 4.24: Simulated number of broken fibres in the largest cluster of the level-[10] bundle 

of length = 10 mm, and comparison with Pimenta and Pinho’s (2013) model.
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Finally, the analysis of damage accumulation is extended to higher coordination 

numbers rewriting the brittle term of Eq. (4.12) as a function of . As stated in Section 

4.2.2, in the brittle domain, the level-[ + 1] bundle strength converges to the WLT applied to 

the previous-bundle level, so that

[ ]
( ) = ,

[ ]
( ) = ,

[ ]
( ) (4.30)

Therefore, Eq. (4.29) for the non-brittle term can now be generalised as

[ ]
( ) = ,

[ ]
( )

,

[ ]
( )  (4.31)

In Figure 4.25a-b, the density of fibre breaks and the size of the largest cluster are 

compared with reference to three bundles with equal length = 10 mm and similar cross-

sectional areas: two bundles are defined by 1204 (= 2 , red line; and 4 , green line) fibres 

and one bundle by 1296 (= 6 , blue line) fibres. A further example is illustrated in Figure 

4.25c-d considering four bundles, of which two with 256 (= 2 , green line; and 4 , red line) 

fibres, one with 243 (= 3 , blue line) fibres, and one with 216 (= 6 , grey line) fibres. 

Figure 4.25: Density of fibre breaks and size of the largest cluster in bundles with

equal length = 10 mm and similar cross-sectional areas.
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Despite the coordination number strongly influences the mean values and the 

coefficients of variation of the strength distributions (see Figure 4.21), the initial evolution of 

fibre breaks and formation of clusters are almost unaffected by different ’s. Therefore, the 

damage accumulation at low far-field stresses weakly depends on stress concentration around

fibre breaks, but it is rather due to the intrinsic variability of the fibre strength. 

4.5 Discussion

4.5.1 Limitations of the present model

Computational time and convergence to the exact solution are the key factors to 

consider when running Monte Carlo progressive failure analysis. On the one hand, small 

ratios [ ] [ ] must be used with low-level bundles (see Figure 4.13), where stable failure 

events ( and ) are most likely to occur and need a finer discretisation of the fibres (or 

sub-bundles) to be accurately simulated. On the other hand, small ratios [ ] [ ]

compromise the RTA fitting (see Figure 4.14) and lead to large data sets slowing down the 

computation. Optimal ratios [ ] [ ] must then be established as in Section 4.3.4 for each 

bundle level and for each set of mechanical and geometrical properties of the composite 

material.

Figure 4.26: Different load-sharing configurations for a bundle with 4 fibres.

Moreover, in the present numerical implementation, bundles with identical number of 

fibres but higher coordination number result in higher mean strengths. As explained in 

Section 4.4.3, this is mainly due to lower average stress concentration factors among intact 

fibres (or sub-bundles) at higher ’s. Figure 4.26 illustrates the case of a bundle with 4 fibres, 

which is modelled both as a bundle of level [2] with = 2 (Figure 4.26a) and as a bundle of 
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level [1] with = 4 (Figure 4.26b). According to Eq. (4.25), a stress concentration factor 

= 2 applies in the first case, and = 4 3 in the second case. The lower stress 

concentration in the latter case leads to a higher mean value of the bundle strength. 

Nevertheless, the analytical sequences of events leading to bundle failure ( , and 

) are here collected into only one exhaustive global failure criterion, which is defined by the 

inequality in Eq. (4.27). Such a criterion may result in very high peaks in the stress profile as 

in the case of fibres and in Figure 4.18b, while, in reality, the matrix would not be able to 

transfer stresses so effectively without failing. Therefore, the present numerical approach 

leads to and overestimation of the strength for high values of the coordination number , and 

this contributes to the strengthening effect observed in Figure 4.21.

4.5.2 Advantages of the present model

The numerical model copes with more complex stress fields (see Figure 4.18b) than 

the analytical model (Pimenta & Pinho, 2013) (see Figure 4.5), and there is no need to define 

a control region – and, consequently, no need to impose assumptions ( ) and ( ) (see 

Section 4.2.1) in the former. Therefore, the good agreement between analytical and numerical 

results in Figure 4.20 suggests that the predictions of the analytical model are not affected by 

these restrictions on the control region. 

The arbitrariness of the stress profiles also allows the present analysis to be easily 

generalised to any value of the coordination number . Therefore, the coordination number is 

treated as a free parameter, and no modifications are made to the numerical implementation 

when dealing with different load-sharing configurations. 

Finally, a user-defined input distribution (i.e., not necessarily a Weibull) can be used 

for the individual fibre strength. For instance, a bi-modal Weibull strength distribution has 

been proposed (Watanabe et al., 2014) to account for the effects of two different flaw 

populations in the fibres, one operating at longer gauge lengths and characterised by large 

variability, and another operating at shorter gauge lengths and associated with smaller 

strength variability. Such distribution could be introduced in the present implementation to 

further investigate the stochastic behaviour of fibre-reinforced composites and the related size 

effects.
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4.6 Conclusions

A new numerical approach was developed to model size effects on the longitudinal 

tensile strength of composite fibre bundles. The method applies a discretisation of hierarchical 

bundles by grouping chains of level-[ ] bundles into a level-[ + 1] bundle, and a Monte 

Carlo progressive failure analysis evaluates the corresponding strength distribution. 

A comparison was carried out with the analytical model developed by Pimenta and 

Pinho (2013) for the simple case of coordination number = 2 (i.e., grouping fibres and 

bundles 2 by 2); the good agreement of results proved that the numerical approach is able to 

model the same features as the analytical one (see Figure 4.20).

Furthermore, the numerical method was generalised to any value of the coordination 

number . Of particular interest is the case for  =  7, which better represents the actual 

disposition of fibres in the bundle cross-section. A series of analyses was then carried out for 

ranging from 2 to 7, and a strengthening effect was observed for increasing values of (see

Figure 4.21), which is mainly due to lower average stress concentration factors among intact 

fibres in the proximity of fibre breaks.

The proposed method was also employed for the analysis of the damage accumulation 

process during progressive failure. Although the coordination number strongly influences 

the mean values of the strength distributions, the evolution of clusters of broken fibres is not 

significantly affected by different configurations of the bundle cross-sections, but it rather 

depends on the intrinsic variability of the individual fibre strength.

Work is still underway to improve the global failure criterion and to validate results

against experimental data available in literature. Concerning the first task, more accurate 

estimates of the bundle strength distributions would be achieved by redefining the recovery 

length to account for the total number of broken fibres in the bundle. This concept is 

illustrated in Figure 4.27, representing a level-[1] bundle with coordination number = 4 and

3 broken fibres ( , and ); stresses are recovered within a recovery length 
[ ]

(given by 

Eq. (4.5)), and a stress concentration factor equal to 4 applies to the intact fibre ( ) due to the 

equilibrium. As a result, the stress field slope in fibre exceeds the maximum speed (slope) 

at which stresses are recovered in the broken fibres (red dashed lines in Figure 4.27). In

reality, the matrix would not be able to transfer stresses so effectively without failing and, 

therefore, the present numerical approach leads to and overestimation of the bundle strengths, 

which contributes in part to the strengthening effect mentioned above.
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Figure 4.27: Influence of the total number of broken fibres on the recovery length.

In the present numerical implementation, the maximum slope of the stress-recovery 

field in the broken fibres is assumed to be dependent only on the geometrical properties of the 

fibres (i.e., the cross sectional area, , and the shear-lag perimeter, [ ]) and on the material 

properties of the matrix (i.e., the yield stress in shear, ). However, the same limit should 

also apply to the stress field in the intact fibre , and this would increase the length of the 

recovery region as indicated by the red double arrow in Figure 4.27. It follows that a new 

definition of the recovery length is needed based on the stress concentration factor in the 

intact fibres (or sub-bundles), which in turn depends on the total number of broken fibres (or 

sub-bundles) in the bundle. 
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5 General conclusions

5.1 Summary of major findings

This thesis developed novel methods for reliability analysis of complex structural 

systems with particular focus on the risk assessment of offshore structures and the uncertainty 

quantification of composite fibre bundles. The overall failure of both these types of structures 

is characterised by a huge number of critical sequences of component failures, thus resulting 

in a complex system event. However, accurate and efficient evaluation of the system-level 

risk can be achieved retaining only the dominant failure modes, i.e. the critical failure 

sequences that are most likely to contribute to global structural collapse. These modes must 

be identified with respect to the redistribution of the internal load effects after member 

failures, and a system reliability analysis method is needed to account for statistical 

dependence among components events as well as among failure modes.

In this regard, the merits of a risk assessment framework recently developed for truss 

and frame structures (Kim et al., 2013) have been investigated in the first part of this work 

(Chapter 3), in view of its extensive application to the offshore field. To this end, the problem 

of a jacket-type platform under an extreme sea state was considered, and the accuracy and the 

efficiency of the proposed approach were successfully validated against crude Monte Carlo 

Simulation (MCS). In the second part of the thesis (Chapter 4), system reliability theory was 

applied to the uncertainty quantification of the longitudinal tensile strength of UniDirectional 

(UD) composites. Here, a Monte Carlo progressive failure analysis has been proposed to 

model the full strength distributions of fibre bundles of any size, thus allowing experimental

data measured in small coupons to be used for the design of large composite structures. These 

studies provided the following major findings:

In Chapter 3, a jacket-type platform was modelled as a truss structure with 

members failing either in tension or compression. Sources of uncertainty were considered 

both in the material properties (yield stress) and in the environmental loading (current-wave 

forces mainly). Using the risk assessment framework developed by Kim et al. (2013), the 

dominant failure modes of the jacket-type platform were rapidly identified by means of a 

multi-point parallel search employing a genetic algorithm. This searching scheme explores 
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regions of the random variable space that are progressively more distant from the mean of the 

input random vector (i.e., the point of the random space corresponding to the expected values

of the yield stresses, the wave height, the current speed, and the drag and mass coefficients of 

the tubular members). In this way, multiple dominant failure modes are identified in the 

decreasing order of their likelihood so that the searching process can be terminated as the 

contributions by newly identified modes become negligible (without missing critical failure 

sequences). Then, the evaluation process of the probabilities of failure modes and the system 

event is carried out by a multi-scale Matrix-based System Reliability (MSR) analysis, in 

which the statistical dependence among both components and failure modes is fully 

considered through simple matrix operations. Differently from other existing approaches, the 

identification process is here decoupled from the probability evaluation process. This feature 

helps avoid component and system reliability analyses to be performed repeatedly during the 

search process, which otherwise would be computationally too demanding for large structures 

with a high level of redundancy. As a result, the proposed method guarantees an efficient 

estimation of the system-level risk; in particular, the number of iterations was found to be 1-2

orders of magnitude less than those required by MCS. In order to test the accuracy of the 

method, the effect of the post-buckling factor on structure-level failure probability was also 

investigated. As far as the post-failure behaviour moves away from the brittle zone (lower 

post-buckling factor) to the ductile zone (higher post-buckling factor) the redundancy level in 

the structure is enhanced and accordingly, the system reliability index increases. An excellent 

agreement was found between the reliability indexes estimated by the proposed method and 

by MCS in the entire domain of the post-buckling factor. Moreover, while the computational 

time required by MCS varies exponentially with system reliability index, the time required by 

the proposed method is insensitive to this value. 

In Chapter 4, a new numerical approach was developed to model size effects 

on the stochastic longitudinal tensile strength of composite fibre bundles. The method applies 

a discretisation of hierarchical bundles by grouping a predefined number (termed 

“coordination number”) of chains of level- [ ] bundles into a level- [ + 1] bundle; the 

corresponding strength distribution is then simulated by means of a Monte Carlo progressive 

failure analysis. This study extended the capabilities of the analytical model developed by 

Pimenta and Pinho (2013), which is limited to the simple case of coordination number = 2

(i.e., bundles are grouped 2 by 2). Despite this model allows a straightforward evaluation of 

the bundle strengths, imposing = 2 results in very high stress concentrations in the 

proximity of fibre breaks. In order to deal with different load-sharing configurations, the 

present approach treats the coordination number as a free parameter. Of particular interest is 

the case for  =  7, which better represents the actual disposition of fibres in the bundle 

cross-section. A series of analyses was then carried out for ranging from 2 to 7, and a 

strengthening effect was observed for increasing values of , which can be explained by lower 

average stress concentrations among intact fibres in the proximity of fibre breaks. The 

proposed method was also employed for the analysis of the damage accumulation process 
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during progressive failure. Although the coordination number strongly influences the mean 

values of the strength distributions, the evolution of clusters of broken fibres is not 

significantly affected by different configurations of the bundle cross-sections, but it rather 

depends on the intrinsic variability of the individual fibre strength

5.2 Future research topics

In the following, some recommendations for future studies and improvements are 

suggested:

Concerning the study in Chapter 3, the computational efficiency and accuracy 

arising from the capability to separate the failure mode identification from the probability 

evaluation processes first, and to rationally consider the statistical dependence among failure 

events then, make the proposed approach particularly attractive to the offshore industry. 

Further research will then investigate the applicability of this method to both design and 

planning of inspection, maintenance and repair strategies. Performing an inspection implies 

the reduction of the uncertainty associated with the knowledge of the system. This fact is 

reflected by an increase of the reliability index in the case of in-service inspection as well as 

in the case of inspection planning at the design stage. In the first case, the reliability of a 

structure subjected to fatigue failure can be updated based on new information obtained 

during non-destructive inspections (NDIs). In this context, the proposed reliability method 

would provide an efficient tool for assessment of lifetime extension of structures beyond their 

original design lives. At the design stage, this method would help estimate the time to first 

inspection and the interval between subsequent inspections so that a pre-established reliability 

level could be guaranteed.

Concerning the study in Chapter 4, work is still underway to improve the 

global failure criterion of the fibre bundles and to validate results against experimental data

available in literature. In the current numerical implementation, the stress field is calculated 

assuming the stress concentration to be equally distributed among intact elements in the 

proximity of fibre breaks. Such a criterion may result in very high peaks in the stress profile,

while, in reality, the matrix would not be able to transfer stresses so effectively without 

failing. Therefore, the present numerical approach leads to and overestimation of the mean 

values of the bundle strength distributions, and developing a new global failure criterion 

would increase the accuracy of the results. 
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Appendix A:

Regular wave theories

The integration of Morison’s formula in Eq. (3.13) requires the evaluation of the wave 

particle velocity, , for which a stream function theory of the 5-th order (Dean, 1974) is 

implemented using Ansys-ASAS
TM

software (ASAS User Manual, 2010). This theory has 

been developed for regular (periodic) waves, whose kinematics is completely defined by three 

parameters: the wave height, , the wave period, , and the water depth, .

The simplest form of regular wave theory is the linear wave theory (or Airy theory), in 

which the wave profile is described in terms of a sine function (see Figure A.1),

( , ) = sin( ) (A.1)

where the three constants , and respectively indicate the amplitude of the wave ( =

/2), the (time) frequency and the wave number (spatial frequency). Eq. (A.1) suggests that 

the constant wave profile moves in the horizontal direction with a velocity

= =
2

2
=  (A.2)

being the wave length and the wave period. Furthermore, a dispersion relationship relates 

the wave frequency to the wave number ,

= tanh( )    
          

   =
2

tanh
2

 (A.3)

where is the gravitational acceleration. Therefore, Eq. (A.3) provides a recursive approach 

to the determination of the wave length given the wave period and the water depth (at 

the first iteration, tanh can be set equal to 1). Once (and ) is determined, the wave speed 

is calculated from Eq. (A.2). Then, the wave particle velocity field ( , ) is recovered from 

Airy theory as a linear function of the wave height (Chakrabarti, 2005),

=
2

cosh ( + )

cosh( )
cos ( ) (A.4)

=
2

sinh ( + )

( )
sin ( ) (A.5)

where the coordinate system ( , ) is fixed at the still water level (SWL) as illustrated in 

Figure A.1.
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Figure A.1: 2D wave motion over flat bottom.

It should be noted that the vertical component is null at the sea bed ( = ) for all 

depths in order to satisfy the bottom boundary conditions. Conversely, the value of at the 

bottom depends on the ratio / , and it becomes negligible in deep water ( / > 1/2). 

Furthermore, the expressions in Eqs. (A.4) and (A.5) are orthogonal to each other so that 

when the value of is maximum, the vertical component is null and vice versa. As a 

consequence, in the linear theory, the motion of water particles is described by elliptical 

closed paths (see Figure A.1). However, net mass transport is generally associated to waves in 

the ocean, thus indicating open orbital paths. Such a motion is accounted for by the present 

guidelines as an additional current (e.g. 0.2 knots by API guidelines).

Higher-order theories have been developed to deal with deep-water high waves, which 

result in wave profiles with steeper crests and shallower troughs. In Chapter 3, a regular 

stream function theory is implemented (Dean, 1974). Here, the velocity field is defined by the 

stream function ( , , ), i.e. a scalar quantity defined as

( , , )
=    ,          

( , , )
=  (A.6)

The dependence of on time is circumvented in the stream function theory by expanding 

in a series form in a moving coordinate system, i.e.

( , ) = ( ) + ( ) sinh( ) cos( ) (A.7)

where is speed of moving system (the same as the wave velocity), the current velocity (in 

this formulation, is negative for opposing current), and the upper limit of the summation 
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determines the order of the theory. In order to select the appropriate order of the theory, the 

plot in Figure A.2 needs to be consulted.

Figure A.2: The range of validity of various wave theories (WAVE User Manual, 2010).

With reference to Section 3.2, the dimensionless ratios / and / in Figure 

A.2 are calculated using the significant wave height, = 10 m, the peak period, = 14 s,

and the water depth, = 43 m. The resulting point (0.023,0.005) is highlighted in red colour 

and lies close to the region of the stream function theory of the 5-th order. Such a theory is 

then selected for the purposes of this work.
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Appendix B:

Dunnett-Sobel class correlation model

The matrix-based procedure described in Chapter 3 (see Eq. 3.25) can be used even in 

the case CSRVs are not explicitly identified. One way to identify such implicit common effect 

is provided by Dunnett-Sobel (DS) class correlation model (Dunnet & Sobel, 1955). Suppose 

= ( , … , ) is a vector of DS class standard normal random variables. This means the 

correlation coefficient between and is defined by = for and = 1 .

Then, ’s can be represented by ( + 1) independent random variables:

=  1 +  (B.1)

where and , = 1, … , are independent standard normal random variables. In this way, 

all the common source effect is implicitly allocated in the random variable S. 

When the difference between the actual correlation matrix and the DS-fitted 

correlation matrix causes significant errors in the system reliability estimate, one can 

generalise the DS model by adding more CSRVs (Song & Kang, 2009). If CSRVs , =

1, … , are used for accuracy, ’s are represented as

=  1 +  (B.2)

The correlation coefficients of this generalised DS model are determined by =

, where ’s are the generalised DS model coefficients that describe the 

contribution of the CSVR into . The best fit to minimise the error of the DS model 

correlation coefficients is obtained by solving the following nonlinear constrained 

optimization problem (Powell, 1969)

 

min ( )

s. t.    1 > 0,     

          1 < < 1,   ,

 (B.3)

where denotes the set of , = 1, … , and = 1, … , ; and are respectively the 

original correlation matrix and the DS correlation matrix; and denotes the Euclidean norm 

of the matrix.
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To illustrate the DS fitting procedure, consider a random vector defined by 4

standard normal variables , = 1, … ,4 with an arbitrary correlation matrix, e.g.

= =

1 0.9

0.9 1

0.8 0.6

0.7 0.5

0.8 0.7

0.6 0.5

1 0.4

0.4 1

 (B.4)

If one CSRV is used ( = 1), the optimisation problem in Eq. (B.3) leads to

= =

1.0000

0.8558

0.7364

0.6254

 (B.5)

= =

1.0000 0.8558

0.8558 0.7324

0.7364 0.6302

0.6254 0.5352

0.7364 0.6254

0.6302 0.5352

0.5422 0.4605

0.4605 0.3911

(B.6)

The coefficients in Eq. (B.6) are pretty far from the original values in Eq. (B.4) and the 

objective function is ( ) = 0.6354. A better accuracy can be achieved using two 

CSRVs ( = 2):

= =

0.8846 0.4664

0.7891 0.3271

0.3983 0.9172

0.6400 0.1663

 (B.7)

= =

1.0000 0.8506

0.8506 0.7296

0.7802 0.6144

0.6437 0.5594

0.7802 0.6437

0.6144 0.5594

1.0000 0.4075

0.4075 0.4372

(B.8)

that implies ( ) = 0.5781. The error can be further reduced using three CSRVs 

( = 3):

= =

0.6736 0.4732 0.5678

0.6882 0.6903 0.1934

0.8081 +0.0817 0.5183

0.0233 0.4742 0.8101

 (B.9)
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= =

1.0000 0.9000

0.9000 0.9875

0.8000 0.6000

0.7000 0.5000

0.8000 0.7000

0.6000 0.5000

0.9284 0.4000

0.4000 0.8817

(B.10)

This matrix is very close to the original correlation matrix in Eq. (B.4) and the objective 

function has been reduced to ( ) = 0.1183.

By substituting the coefficients in Eq. (B.9) into the generalised DS model in Eq. 

(B.2), the standard normal random vector can be rewritten as 

=

0.0000

0.1116

0.2677

0.3440

+

0.6736 0.4732 0.5678

0.6882 0.6903 0.1934

0.8081 +0.0817 0.5183

0.0233 0.4742 0.8101

(B.11)

If a system event is defined as a function of , all the common source effect is 

stored in the independent standard normal variables , and . Therefore, from the total 

probability theorem, it follows

= | , , ( , , ; )  (B.12)

where the trivariate normal distribution with zero mean and 3 × 3 identity correlation 

matrix .
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Appendix C:

System reliability analysis using Monte Carlo

In Chapter 3, the accuracy of the matrix-based system reliability (MSR) method is 

validated against crude Monte Carlo analysis. The simulative procedure is here illustrated 

through the case study of the bicomponent series system shown in Figure C.1.

Figure C.1: Series systems consisting of two structural components.

Let the yield strengths and be correlated normal variables ( = =

100 MPa, = =  10 MPa, , = 0.5), the external force be an independent normal 

variable ( = 5000 N, =  500 N), and the cross sectional areas and be respectively 

equal to 80 and 70 mm . Finally, the following system event is considered

=  = ( 0) ( 0)

( , ) =    ,     = 1,2
 (C.1)

Following the Monte Carlo procedure presented in Section 2.1.8, is estimated 

by the empirical average of the indicator function ( , , ), which is equal to 1 if the 

outcome ( , , ) of the random vector ( , , ) belongs to the failure domain, and 0

otherwise. In other words, ( , , ) is equal to 1 if any of the following events is verified:

= only the first component fails

= only the second component fails

 = both the components fail

(C.2)

The union of the three basic events above is represented by the shaded area in Figure C.2, and 

it is equivalent to the system event defined in Eq. (C.1), i.e. =  .

 

 
,  ,  
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Figure C.2: Sample space for the bicomponent system in Figure C.1.

After running = 6 10 analyses (the simulation terminates when CoV = 0.05), the 

following frequencies are obtained by crude MCS,

( ) = 247 = 4.1167 10

( ) = 5819 = 9.6983 10

( ) = 172 = 2.8667 10

(C.3)

Therefore,

= ( ) = ( ) + ( ) + ( )

= (247 + 5819 + 172) = 1.0397 10
(C.4)

A post-processing of MCS results is then needed to find the failure probabilities of the 

dominant failure modes, i.e. ( ) and ( ). For this simple case study, the failure mode 

probabilities can be recovered from the total probability theorem (see Eq. (2.7)):

( ) = ( | ) ( ) + ( | ) ( )

= ( ) + ( ) = 6.9833 10 (C.5)

( ) = ( | ) ( ) + ( | ) ( )

= ( ) + ( ) = 9.9850 10

 

(C.6)

However, in general system reliability problems, more than two failure modes are 

involved, and the amount of data provided by MCS is not enough to calculate the total 

probability of the identified failure modes. Therefore, a second MCS analysis must be 
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performed, in which the indicator function of a given failure mode is set equal to 1 even if a 

different mode occurs, as long as this mode contains the first one. Hence, with reference to 

the previous case study, the frequency of event is updated if any of the following events is 

verified:

= only the first component fails

 = both the components fail

(C.7)

Analogously, the frequency of event is updated when any of the following events occurs:

= only the second component fails

 = both the components fail

(C.8)

In this way, the total probabilities in Eqs. (C.5) and (C.6) can be estimated directly by MCS. 

As in the case of the system event, the convergence to the exact values of ( ) and ( ) is 

here assumed when the CoVs of both the estimates reach the target value of 0.05 . The 

convergence process requires = 4.2 10 analyses for ( ) and = 8 10 analyses 

for ( ), and the corresponding frequencies are reported below:

( ) = ( ) + ( )

= (1345 + 1627) = 7.0762 10 (C.9)

( ) = ( ) + ( )

= (275 + 7915) = 1.0238 10

 

(C.10)

These estimates are more accurate than those obtained in Eqs. (C.5) and (C.6) using the total 

probability theorem (which can only be used for bicomponent systems). This result is due to 

the convergence process of the second MCS analysis, which considers the CoVs of ( ) and 

( ) rather than the CoV of .
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Appendix D:

Derivation of the hierarchical scaling law

As illustrated in Figure D.1, the control region (of length 
[ ]

) is partitioned into 4 

segments ( , , and ) of equal length 
[ ]

=
[ ]

2 , and the first fibre break is 

supposed to occur in the middle of segment .

Figure D.1: Definition of fibre segments in a level-[1] bundle (Pimenta & Pinho, 2013).

The hierarchical scaling law presented in (Pimenta & Pinho, 2013) is derived using the 

following definition of the system failure event:

= (D.1)

where , and are the failure modes introduced in Section 4.2.1. This system event 

assumes the weakest segment is , which represents only 1 4 of the cases. Therefore, the 

bundle strength is given by

,

[ ]
( ) = 4 [ ( ) + ( ) + ( )] (D.2)

where , and are assumed independent from each other. Eq. (4.7) is then recovered 

from the complement of Eq. (D.2), i.e. ,

[ ]
( ) = 1 ,

[ ]
( ).

In this appendix, a simpler approach is presented for the derivation of Eq. (4.7), in 

which the sequences of events , and leading to bundle failure are reformulated in 

terms of safety events. Let , and , be the segment strengths under uniform stresses and 

linear stress concentrations, respectively. Then, a level-[1] bundle of length 
[ ]

survives the 

remote stress if
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(i) all the 4 segments survive the uniform stress :

= , > , > , > , > (D.3)

(ii) the weakest fibre (e.g., ) fails under and the strongest fibre survives the 

resulting stress fields (one segment under uniform stress, and another segment under 

linear stress concentration):

 = , ,
  

> ,
  

>  (D.4)

The safety event must be counted twice to consider the case when is the weakest fibre. 

Therefore, the survival probability of the level-[1] bundle is calculated as

,

[ ]
( ) = ( ) + 2 ( ) (D.5)

Since the random strengths are assumed statistically identical and independent, the following 

simplifications are obtained

( ) = , > = ,

[ ]
( ) (D.6)

( ) = 2 , , > , >

= 2 1 ,

[ ]
( ) ,

[ ]
( ) ,

[ ]
( )

 

(D.7)

The WLT in Eq. (4.11) is then used to scale ,

[ ]
to the recovery length 

[ ]
, so that Eq. (D.7) 

can be rewritten as

( ) = 2 1 ,

[ ]
( ) ,

[ ]
( ) ,

[ ]
( ) (D.8)

Finally, the hierarchical scaling law obtained by introducing Eqs. (D.6) and (D.8) into Eq. 

(D.5).


