
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Multi-Agent Distributed Optimization
and Estimation over Lossy Networks

Ph.D. candidate

Nicoletta Bof

Advisor

Prof. Luca Schenato

Co-Advisor

Prof. Ruggero Carli

Director & Coordinator

Prof. Andrea Neviani

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

University of Padova

2018

ii

Abstract

Nowadays, optimization is a pervasive tool, employed in a lot different fields. Due to its

flexibility, it can be used to solve many diverse problems, some of which do not seem to

require an optimization framework. As so, the research on this topic is always active and

copious. Another very interesting and current investigation field involves multi-agent

systems, that is, systems composed by a lot of (possibly different) agents. The research

on cyber-physical systems, believed to be one of the challenges of the 21st century, is very

extensive, and comprises very complex systems like smart cities and smart power-grids,

but also much more simple ones, like wireless sensor networks or camera networks. In a

multi-agent context, the optimization framework is extensively used. As a consequence,

optimization in multi-agent systems is an attractive topic to investigate.

The contents of this thesis focus on distributed optimization within a multi-agent

scenario, i.e., optimization performed by a set of peers, among which there is no leader.

Accordingly, when these agents have to perform a task, formulated as an optimization

problem, they have to collaborate to solve it, all using the same kind of update rule.

Collaboration clearly implies the need of messages exchange among the agents, and

the focus of the thesis is on the criticalities related to the communication step. In

particular, no reliability of this step is assumed, meaning that the packets exchanged

between two agents can sometime be lost. Also, the sought-for solution does not have

to employ an acknowledge protocol, that is, when an agent has to send a packet, it just

sends it and goes on with its computation, without waiting for a confirmation that the

receiver has actually received the packet. Almost all works in the existing literature deal

with packet losses employing an acknowledge (ACK) system; the effort in this thesis

is to avoid the use of an ACK system, since it can slow down the communication step.

However, this choice of averting the use of ACKs makes the development of optimization

algorithms, and especially their convergence proof, more involved. Apart from robustness

to packet losses, the algorithms developed in this dissertation are also asynchronous, that

is, the agents do not need to be synchronized to perform the update and communication

steps.

iv

Three types of optimization problems are analyzed in the thesis. The first one is the

patrolling problem for camera networks. The algorithm developed to solve this problem

has a restricted applicability, since it is very task-dependent. The other two problems

are more general, because both concern the minimization of the sum of cost functions,

one for each agent in the system. In the first case, the form of the local cost functions is

particular: these, in fact, are locally coupled, in the sense that the cost function of an

agent depends on the variables of the agent itself and on those of its direct neighbors.

The sought-for algorithm has to satisfy two properties (apart from asynchronicity and

robustness to packet losses): the requirement of asking a single communication exchange

per iteration (which also reduces the need of synchronicity) and the requirement that the

communication among agents is only between direct neighbors. In the second case, the

local functions depend all on the same variables. The analysis first focuses on the special

case of local quadratic cost functions and their strong relationship with the consensus

problem. Besides the development of a robust and asynchronous algorithm for the average

consensus problem, a comparison among algorithms to solve the minimization of the

sum of quadratic cost functions is carried out. Finally, the distributed minimization of

the sum of more general local cost functions is tackled, leading to the development of a

robust version of the Newton-Raphson consensus.

The theoretical tools employed in the thesis to prove convergence of the algorithms

mainly rely on Lyapunov theory and the separation of scales theory.

Sommario

Oggigiorno l’ottimizzazione è uno strumento pervasivo, utilizzato in molti ambiti differenti.

Grazie alla sua flessibilità, può essere utilizzato per risolvere numerosi problemi, alcuni dei

quali non sembrano a prima vista poter essere formulati come problemi di ottimizzazione.

Proprio grazie a questa versatilità, la ricerca sulle tecniche di ottimizzazione è sempre

attiva e copiosa. Un altro tema di ricerca molto interessante e attuale riguarda i sistemi

multi-agente, cioè sistemi composti da molti agenti (anche diversi fra di loro). La

ricerca sui sistemi ciberfisici, ritenuta una delle sfide del ventunesimo secolo, è molto

vasta, e comprende sistemi molto complessi come le città intelligenti e le reti di potenza

intelligenti, ma anche quelli molto più semplici, come le reti di sensori senza filo o le

reti di telecamere. In un contesto multi-agente, lo strumento dell’ottimizzazione è molto

usato. Di conseguenza, l’ottimizzazione in sistemi multi-agente è un argomento attraente

da investigare.

Questa tesi si concentra sull’ottimizzazione distribuita in uno scenario multi-agente,

cioè in uno scenario in cui l’ottimizzazione è svolta da un insieme di entità con pari

capacità, tra le quali non c’è un leader. Di conseguenza, quando questi agenti devono

portare a termine una attività, formulata come un problema di ottimizzazione, devono

collaborare per svolgerla usando tutti lo stesso tipo di azioni.

La collaborazione chiaramente richiede lo scambio di messaggi tra gli agenti, e in

questa tesi l’attenzione è focalizzata sulle criticità relative alla fase di comunicazione. In

particolare,non si assume che la comunicazione sia affidabile, e di conseguenza i pacchetti

(cioè i messaggi) scambiati tra due agenti possono essere talvolta persi. Inoltre, la

soluzione ricercata non deve richiedere un protocollo di conferma, cioè, quando un agente

deve inviare un pacchetto semplicemente lo invia e continua con le sue computazioni, senza

aspettare la conferma che l’agente a cui ha inviato il pacchetto lo abbia effettivamente

ricevuto. Quasi tutti i lavori esistenti in letteratura gestiscono le perdite di pacchetto

utilizzando un sistema di conferma; lo sforzo in questa tesi è proprio quello di evitare

l’uso di messaggi di conferma, dal momento che questi possono rallentare la fase di

comunicazione. Questa scelta rende però lo sviluppo di algoritmi di ottimizzazione, e

vi

specialmente la dimostrazione della loro convergenza, più complicati. Oltre alla robustezza

alla perdita di pacchetti, gli algoritmi sviluppati in questa tesi sono anche asincroni,

cioè gli agenti non devono necessariamente essere sincronizzati per svolgere le fasi di

aggiornamento e comunicazione.

In questa tesi vengono analizzati tre tipi di problemi di ottimizzazione. Il primo è il

problema della perlustrazione effettuata da reti di telecamere. L’algoritmo sviluppato per

questo problema ha una applicabilità limitata, essendo molto legato al problema stesso.

I rimanenti due problemi sono più generali, e riguardano la minimizzazione della somma

di funzioni costo, una per ogni agente nel sistema. Nel primo problema, la forma delle

funzioni costo locali è particolare. Le funzioni costo sono infatti localmente accoppiate,

nel senso che la funzione costo di un agente dipende dalla variabile dell’agente stesso e da

quelle dei suoi vicini diretti. L’algoritmo ricercato deve soddisfare due richieste (oltre alla

asincronia e alla robustezza alla perdita di pacchetti): deve richiedere un solo scambio di

messaggi per iterazione (per ridurre la necessità di sincronizzazione) e deve richiedere lo

scambio di informazioni solo tra vicini diretti. Nel secondo problema, le funzioni locali

dipendono tutte dalle stesse variabili. L’analisi in questo caso prima si focalizza sul caso

speciale di minimizzazione di funzioni costo quadratiche e la loro forte relazione con

il problema di consenso. Oltre allo sviluppo di un algoritmo robusto e asincrono per

il problema del consenso alla media, viene anche svolta una comparazione tra diversi

algoritmi che risolvono la minimizzazione della somma di funzioni costo quadratiche.

Infine viene affrontata la minimizzazione distribuita della somma di funzioni costo

locali più generali, portando allo sviluppo di una versione robusta del Newton-Rapshon

consensus.

Gli strumenti teorici impiegati in questa tesi per provare la convergenza degli algoritmi

sono soprattutto la teoria di Lyapunov e la teoria della separazione delle scale temporali.

Contents

1 Introduction 1

1.1 Multi-agent systems . 1

1.2 Distributed optimization . 7

1.3 Challenges & contributions . 12

1.4 Manuscript outline . 19

2 Distributed optimization 21

2.1 Optimization problems . 21

2.2 Distributed algorithms . 26

2.3 Communication issues . 30

2.4 Applications’ features that call for a distributed approach 37

3 Patrolling for camera networks 41

3.1 Introduction and state of the art . 42

3.2 Problem formulation . 43

3.3 A coordinated broadcast partitioning algorithm (CB algorithm) 49

3.4 r-CB: a version robust to packet losses 52

3.5 Final considerations on the patrolling problem 57

4 Minimization of locally coupled cost functions 59

4.1 Introduction and state of the art . 60

4.2 Problem formulation . 64

4.3 Motivating example: state estimation in smart power distribution grids . 66

4.4 Synchronous update and reliable communication 71

4.5 Asynchronous updates and unreliable communication: the Resilient Block

Jacobi (RBJ) algorithm . 74

4.6 Smart power grid application . 80

4.7 Final considerations on the minimization of locally coupled costs 84

viii Contents

5 Average consensus and quadratic cost minimization 85

5.1 Introduction and state of the art . 86

5.2 Problem formulation . 90

5.3 Consensus based algorithms: standard consensus (C) 92

5.4 Consensus based algorithms: accelerated consensus (AC) 93

5.5 Lagrangian based algorithms: dual ascent method (DA) 94

5.6 Lagrangian based algorithms: Alternating Direction Method of Multipliers

(ADMM) . 97

5.7 Analytic and simulative comparison: scalar case 99

5.8 Simulative comparison: multidimensional case 104

5.9 Robust and Asynchronous Average Consensus (ra-AC) 106

5.10 Proof of convergence . 110

5.11 Simulations for the ra-AC algorithm . 114

5.12 Final considerations . 117

6 Minimization of additively separable cost functions 119

6.1 Introduction and state of the art . 120

6.2 Problem formulation . 123

6.3 Building blocks . 124

6.4 The robust asynchronous Newton-Raphson Consensus (ra-NRC) 127

6.5 Dynamical system interpretation of ra-NRC 132

6.6 Theoretical analysis of the ra-NRC . 138

6.7 Numerical experiments . 144

6.8 Final considerations . 147

7 Conclusions and future directions 149

A Mathematical preliminaries, symbols and notation 153

B Appendix for Chapter 3 159

B.1 Proof of Theorem 3.3.1 . 159

B.2 Proof of Theorem 3.4.1 . 162

C Appendix for Chapter 4 165

C.1 Proof of Theorem 4.5.3 . 165

D Appendix for Chapter 5 173

D.1 Proof of Proposition 5.5.2 and 5.5.3 . 173

Contents ix

D.2 Proof for the matrix form for ADMM . 174

D.3 Proof of Proposition 5.6.2 . 175

D.4 Proof of Theorem 5.9.4 . 177

E Appendix for Chapter 6 187

E.1 Proof of Proposition 6.5.1 . 187

E.2 Proof of Lemma 6.5.3 . 189

E.3 General results on discrete-time nonlinear systems 190

References 195

Acknowledgements 211

x Contents

1
Introduction

1.1 Multi-agent systems

Nowadays, the presence of the so-called smart systems is becoming more and more

pervading. The concept of smart system is no more only known by people working in the

research world, but it is also a topic of interest for magazines and newspapers.

An example are smart cities Albino, Berardi, and Dangelico (2015). They can be

thought as cities where the different systems (communication, transportation, electricity,

infrastructures, and so on) share the information collected by their own sensors, and

join efforts to improve the sustainability of the cities themselves but also the quality

of life of its citizens. Smart cities are the protagonists of many articles: most of them

praise their promise to guarantee a safer, healthier and more efficient and sustainable

environment, which clearly makes them appealing and interesting for everyone Kotkin

(2009); Balch (2013); Singh (2014); Wheeland (2016); Totty (2017). However, some

pieces appearing in the magazines also highlight some drawbacks which may affect these

intelligent cities Perlroth (2015). Figure 1.1 shows how many different systems have

to work together to realize a smart city, while Figure 1.2 shows some of the smart city

projects in development.

Clearly, smart buildings will be a fundamental actor in the development of smart

cities. All the different available services in a building will work together to offer a better

2 Introduction

Figure 1.1: Different systems which are involved in the creation of a smart city.
Credits: https://smartcitiesworld.net/news/news/smart-cities-services-worth-225bn-by-2026-1618 smart city

Tianjin
Wuhan

Shenzhen

Glasgow

Los Angeles
New York

Toronto

San Francisco

Vancouver

Paris
London Berlin

Barcelona

Amsterdam

Seattle

Tokyo

Singapore

Calgary

Chicago

Vienna

Copenhagen

Oslo

Seoul

Beijing

Helsinki

Sydney

Image Source: Dreamstime

Source: Forbes Smart City List 2009; Innovation Cities Global Index 2012-2013; specific Smart Project Websites for each city; Frost & Sullivan

Stockholm

Smart Cities, Global, 2025

Boston

San Diego

Luxembourg
Chengdu

Johannesburg

Delhi

Jakarta
Smart cities in 2025

Select smart city projects* in 2025**

*Smart City projects are city projects that are being

trialled/implemented within a small-scale for a specific

industry/public entity/industry cluster. e.g., The Buffalo

(United States) Smart Education Initiative

**This list is not exhaustive. The cities highlighted here

have implemented at least one of six smart city aspects in

their smart city projects.

Figure 1.2: Some of the smart city projects around the world.
Credits: http://www.egr.msu.edu/ aesc310-web/resources/SmartCities/Smart%20City%20Market%20Report%202.pdf

living experience (see Figure 1.3). For example smart house appliances will coordinate

their daily use of the electric power in order to reduce the overall cost (thanks to the

time-varying price of the electricity) Sou, Weimer, Sandberg, and Johansson (2011),

offering at the same time a better experience to the house’s inhabitants Cook, Youngblood,

and Das (2006). The security of such systems is of paramount importance, due to their

vulnerability to hacker attacks Twentyman (2017).

1.1 Multi-agent systems 5

Finally, also the term cyber-physical system (CPS) Kim and Kumar (2012) conquered

newspapers Marr (2016b); Poole (2017). The definitions of this concept are usually very

broad, like the following one “The term cyber-physical systems refers to the tight conjoining

of and coordination between computational and physical resources. We envision that the

cyber-physical systems of tomorrow will far exceed those of today in terms of adaptability,

autonomy, efficiency, functionality, reliability, safety, and usability. Research advances

in cyber-physical systems promise to transform our world with systems that respond more

quickly (e.g., autonomous collision avoidance), are more precise (e.g., robotic surgery and

nano-tolerance manufacturing), work in dangerous or inaccessible environments (e.g.,

autonomous systems for search and rescue, firefighting, and exploration), provide large-

scale, distributed coordination (e.g., automated traffic control), are highly efficient (e.g.,

zero-net energy buildings), augment human capabilities, and enhance societal wellbeing

(e.g., assistive technologies and ubiquitous healthcare monitoring and delivery).” NSF

(2008), and as so, a cyber-physical system subsumes all the previous systems presented,

and includes also, for example, Factory 4.0 projects Bryant (2014); Marr (2016a). Clearly,

due to all the envisioned benefits of such a technology, CPSs are considered one of the

challenges of the 21st century and lot of effort is devoted to research on this topic Kim

and Kumar (2012); Esterle and Grosu (2016).

The figures presented above well show how many different entities are involved in

a smart system or in a CPS. In all these, it is possible to identify different agents that

collect and share information, perform some computation and then decide an action to

take. Consequently, they are all example of very complex multi-agent systems.

A multi-agent system is composed by a number of independent smart agents (or nodes)

which can interact among themselves and can possibly collaborate to perform some tasks.

These kind of systems have become more and more permeating in everyday life (even

without considering the previous recalled complex smart systems), due to technological

advancement. As a matter of fact, it is nowadays possible to produce micro-processors

with significant computational capability at a small price. The employment of such

processors allows to cheaply make much smarter sensors and robots, together with a

number of different every day objects (for example house appliances).

Examples of multi-agent systems range from systems involving very small agents to

those involving very big entities, from systems involving agents with a lot of different

capabilities to those composed of agents with just sensing capabilities (apart from the

computational power), and also the aim of these systems can be very different. The

examples presented at the beginning of the chapter involve multi-agent systems that are

currently being designed, and their full development and use will happen in the future. In

20 Introduction

2
Distributed optimization

After pointing out in the introduction the wide applicability of optimization in man fields,

this chapter formally introduces the optimization framework. In particular, it will focus

on unconstrained convex minimization, since the problems analyzed in the remaining

chapters mainly belong to this class. Most of the notions of this first part of the chapter

are extracted from Boyd and Vandenberghe (2004). Then, the meaning of distributed

approach will be explored, together with some state of the art in distributed optimization.

This chapter also introduces the challenges related to communication between agents in

a distributed approach. It finally closes with a brief description of the different problems

studied in the thesis, to highlight the peculiarities of each application and of the methods

proposed.

2.1 Optimization problems

An optimization problem is made of three ingredients, a function f(x) : Rn → R, a set

X ⊆ R
n where the optimization variable x which minimizes f(x) has to be searched, and

a task, whether the function has to be minimized or maximized. Since the maximum of a

function f corresponds to the minimum of −f , here the task is always the minimization

of the function. In view of this choice, function f will be called cost function.

22 Distributed optimization

f

local minimizer global minimizer

Figure 2.1: A function with a local and a global minimizer.

Mathematically, an optimization problem can be written as

min
x∈X

f(x), (2.1)

and its solution requires to determine the minimum value that f can achieve over the

set X . In general, more than finding the value of the minimum, one is interested in

the elements (there might be more than one) in X that minimize the function, that

is to find (at least one) x∗ ∈ X such that f(x∗) ≤ f(x), ∀ x ∈ X . Such an x∗ is

called minimizer. Recalling some of the examples given in the introduction, in optimal

control one is interested in determining a controller which minimizes a given cost function.

This cost function might for example quantify the control effort and guarantee some

performance. In portfolio optimization, on the other hand, one is interested to know

what are the investments that will produce the best profit. Note that the minimizer

previously defined is a global minimizer, but for a general function f it is possible to also

have local minimizers. For clarity, a formal definition of both is now given (Figure 2.1

graphically shows the difference).

Definition 2.1.1. A vector x∗ ∈ X is a local minimizer of f if ∃ ε > 0 such that

f(x∗) ≤ f(x) for all x ∈ X for which ‖x− x∗‖ < ε.

Definition 2.1.2. A vector x∗ ∈ X is a global minimizer of f if f(x∗) ≤ f(x) for all

x ∈ X .

In both definitions, the minimizer is said to be strict if the inequality is strict.

An optimization problem can be classified according to its type of cost function f

and of set X . An exhaustive treatment of optimization problems is out of the scope of

this thesis, and some readings are here suggested for the interested reader Bertsimas and

Tsitsiklis (1997); Boyd and Vandenberghe (2004); Bertsekas (2014); Horst et al. (2000).

In the following we will only describe the class of optimization problems which is of

interest for this work, namely unconstrained convex optimization problems.

2.1 Optimization problems 23

An optimization problem is unconstrained if the set X corresponds to R
n, that is

if the search for a minimizer x∗ of function f can be done in the whole space R
n. For

these problems, it is possible to give some simple conditions to help identifying whether

a point x is a local minimizer, as shown in the following.

If f ∈ C1, then a necessary condition for x∗ to be a (local) minimizer is for ∇f(x∗)

to be equal to 0. As a matter of fact, using the Taylor series expansion of f in x∗, for all

(sufficiently small) ∆x, it holds

f(x∗ + ∆x)− f(x∗) ≈ ∇f(x∗)>∆x.

Since f(x∗) is a minimum, f(x∗ + ∆x)− f(x∗) has to be greater than or equal to zero,

which implies that also the quantity ∇f(x∗)>∆x has to be non-negative. Consequently

∇f(x∗) = 0.

If f ∈ C2, there is also a necessary condition involving ∇2f(x∗). In particular, if x∗ is

a (local) minimizer, then ∇2f(x∗) has to be positive semidefinite, since for the previous

consideration the Taylor expansion in x∗ is

f(x∗ + ∆x)− f(x∗) ≈ ∆x>∇2f(x∗)∆x, (2.2)

and this quantity has to be greater than or equal to 0.

The previous conditions are necessary for a point x∗ to be a local minimizer. To

obtain a sufficient condition for a point to be a local minimizer it is necessary to enforce

the Hessian to be strictly positive definite, in order to avoid saddle points. The following

theorem formally states this sufficient condition for optimality:

Theorem 2.1.3. Let f : Rn 7→ R belong to C2. If vector x∗ ∈ R
n satisfies

∇f(x∗) = 0, ∇2f(x∗) � 0,

then x∗ is a (strict) local minimizer of function f .

Note that this can be easily proven since having the Hessian strictly positive definite

assures that the function strictly increases in a neighborhood of x∗ (see Equation (2.2)).

The other property of interest in this thesis for an optimization problem is convexity.

An optimization problem is said to be convex if both the function f and the set X are

convex. Note that since the set R
n is convex, an unconstrained optimization problem is

convex if the function f is convex.

Convexity is a very nice property to have when one is dealing with an optimization

problem. As a matter of fact, a convex optimization problem has a unique minimum

24 Distributed optimization

(even though there might be more than one minimizer); if in addition f is strictly convex,

the minimizer itself is unique. These properties are here proven under the assumption

that f ∈ C1 and that X = R
n, both for convenience and also because this assumption

holds for most of the functions employed in the Thesis. In fact, if function f is C1, then

f is convex if and only if

f(y) ≥ f(x) +∇f(x)>(y − x), ∀ x,y ∈ R
n, (2.3)

and it is strictly convex if and only if the previous inequality is strict for all y 6= x.

Equation (2.3) implies that if there is an x∗ ∈ R
n such that ∇f(x∗) = 0, then x∗ is a

global minimizer. Moreover, if f is strictly convex, the strict inequality in Equation (2.3),

which holds for all yv 6= x, shows that x∗ is the unique global minimizer of the function.

Given an unconstrained convex optimization problem, its solution is obtained in

an iterative way; only if the solution has an analytical closed form (for example if f

is quadratic) one can avoid an iterative approach. The algorithms developed to solve

such problems start from a tentative solution of the problem and step by step move the

estimate of the minimizer towards one of the real minimizers of the cost function. Next

paragraph is dedicated to the description of such an algorithm, the Newton method.

This algorithm will be a starting point for the applications described in Chapters 4 and

6. Newton’s method needs f to be C2 in order to be applicable, and it also needs the

Hessian ∇2f(x) to be positive definite at each x ∈ R
n. As so, the underlying assumption

of next paragraph is that the problem to be solved is unconstrained and convex, with a

twice differentiable function f with positive definite Hessian.

Before describing the algorithm, it is interesting to connect convexity and the Hessian

properties. In particular, a function f ∈ C2 is convex if and only if

∇2f(x) � 0, ∀ x ∈ R
n. (2.4)

Differently from what happened with the gradient, strict convexity is not completely

defined looking at the Hessian of f . In fact, having ∇2f(x) � 0 is only a sufficient but

not necessary condition for the function to be strictly convex.

Newton’s method

Newton’s method is an optimization algorithm belonging to the class of descent methods.

According to these methods, the minimizer x∗ is obtained in an iterative fashion. In

2.1 Optimization problems 25

particular, starting from an x(0) = x̄, the update is carried out as

x(k + 1) = x(k) + ε(k)∆x(k), (2.5)

where ε(k) is a step size, and ∆x(k) is the search direction. The search direction has to

be chosen in order to have f(x(k + 1)) < f(x(k)) as long as x(k) is not optimal. Due

to (2.3), ∆x(k) has to satisfy ∇f(x(k))>∆x(k) < 0. According to the way the search

direction is chosen, different algorithms are recovered. In particular,

• if ∆x(k) = −∇f(x(k)), gradient descent is obtained

• if ∆x(k) = −∇2f(x(k))−1∇f(x(k)), the Newton method is obtained

As can be inferred from Newton’s search direction, to be implementable this method

needs f to have a positive definite Hessian since it has to be inverted and f is convex,

and so function f has to be strictly convex. Using such a direction it holds that

∇f(x(k))>∆x(k) = −∇f(x(k))>∇2f(x(k))−1∇f(x(k)) < 0,

which shows that it is in fact a descent direction if ∇f(x(k)) is not optimal. Concerning

the step size ε(k), this can be chosen fixed in time. If ε is chosen equal to 1, then the

method is known as Pure Newton’s method, while if 0 < ε < 1 the algorithm is called

Damped Newton’s method.

Algorithm 2.1 contains a formal description of Damped Newton’s method. The

stopping condition usually regards the decrease between two consecutive steps of the

algorithm. When this decrease is smaller than a threshold, than the algorithm is stopped.

Algorithm 2.1 Damped Newton’s method

1: Initialize x(0) to a vector in R
n

2: while stopping condition verified do
3: x(k + 1) = x(k)− ε∇2f(x(k))−1∇f(x(k))
4: end while

It is possible to give an interesting interpretation of the algorithm (in its pure version).

In fact, second order Taylor’s series expansion of f near a point x is

f̂ |x(x+ v) = f(x) +∇f(x)>v +
1

2
v>∇2f(x)v.

This quadratic function is minimized choosing v equal to the Newton direction

−∇2f(x(k))−1∇f(x(k)), and so the point x+ v is the minimizer of the approximated

version of f . Therefore, at each time step Newton’s method quadratically approximates

26 Distributed optimization

f

f̂ |
x(k)

x(k) x(k + 1)

Figure 2.2: Graphical interpretation of one step of Newton’s method

the function f at the current minimizer’s estimate x(k), and evaluate the following

estimate x(k + 1) as the minimizer of this quadratic approximation of f . Figure 2.2

graphically describes how a step of the algorithm works.

A detailed proof of convergence for Newton’s method can be found in Boyd and

Vandenberghe (2004)[Chp. 9.5].

2.2 Distributed algorithms

In the previous section the formulation of an optimization problem was introduced in

total generality, without any specific address to the set up of the system which has to

solve the problem. The only algorithm presented, Newton’s method, was declared to

be a centralized approach without any further explanation. In this section the meaning

of centralized and distributed approach is investigated, underlying advantages and

disadvantages of both approaches. To clarify the terminology, the terms computational

unit, node and agent will be used interchangeably to denote an entity which is able to

perform some computation.

Given an optimization problem, a centralized approach relies on the presence of a

unique computational node to carry out all the computation. All the information required

to solve the problem is stored and processed in this node. Each step of the iterative

algorithm which solves the problem consists just in the update of the estimate of the

minimizer and possibly of some related variables.

On the other hand, in a distributed approach, the solution is obtained as a joined

28 Distributed optimization

Tsitsiklis (1989). As long as the size of the problem is not too big, one can employ either

a centralized or a distributed approach. A centralized approach might be preferable

since there exist many efficient centralized algorithms for the solution of an optimization

problem and there is no need of information’s exchange. However, as the size of the

problem to be solved becomes larger and larger, a centralized approach becomes more

difficult. As a matter of fact it requires a unique computational unit sized for the problem,

that is with huge computational and memory capabilities, making this solution very

expensive. Moreover, not only the node has to be properly sized, but also the management

of the big quantity of data becomes difficult from an algorithmic point of view. Differently,

if a distributed approach is employed, the size of the problem at each node is smaller,

and so easier to manage and requiring much cheaper nodes. The advent of the Big Data

era, with an enormous quantity of data collected every day (for example from scientific

experiments or from the Internet usage) gave a big boost to research in distributed

algorithms in order to achieve parallel computing Dobre and Xhafa (2014); Tsai, Lin,

and Ke (2016); Boyd et al. (2011). However, in parallel computing the choice of solving

the problem in a distributed way is done on purpose, it is not a strict consequence of

the problem, since in principle this can be solved in a centralized way. The architectures

employed for parallel computing are specifically designed for collaboration among nodes.

Therefore, even though the algorithms require communication, the communication set

up is usually reliable and synchronism of the nodes is not so difficult to achieve. Another

very important feature is that the architectures used in parallel computing are usually

composed by a master node and a lot of slave nodes, where the slave nodes solve a part

of the problem while the master merges the different solutions.

As opposed to parallel computing, in a peer-to-peer architecture there is no hierarchy

among the agents involved in the computation, there is just a group of similar agents

which need to solve a problem in a collaborative manner, with no distinction of importance

among them. The agents themselves might not be computers, but other entities endowed

with some computational power (like sensors or robots). This is the set-up of interest for

multi-agent systems since they are made of generic smart agents among which there might

be (in total generality) no hierarchy. Examples are systems which cover huge geographical

areas (and where cabling is not possible) or system where a presence of a central entity is

not possible or advisable. Imagine a wireless sensor network with sensors placed on a very

wide area. In this case it is infeasible to have each sensor communicate to a central unit

and usually there are only few nodes which can communicate to some higher level entity.

As a consequence, the sensors first have to collaborate among themselves to perform

some data fusion, and then the information is sent to the high level entity. Furthermore,

2.2 Distributed algorithms 29

in parallel computing the problem usually allows a (perhaps difficult) centralized solution,

while in peer-to-peer optimization the interest is also for problems that can only be solved

using a distributed solution due to their nature. In particular, the information known by

each peer might be private and so cannot be collected at a central node. In a multi-agent

set-up this is not uncommon. For example it is possible to have a group of agents, each

endowed with a private cost function which depends on the same variable for all the

agents. If these agents want to agree on the choice of this variable in order to minimize

the sum of the private cost functions, it would be impossible to solve the problem in a

centralized way, since no agent would be willing to disclose its private function to another

entity. In this case only a distributed approach is possible. In general, every time there

is a privacy issue, a distributed approach is preferable to a centralized one.

Aside from the cases in which it is necessary, in a multi-agent system a distributed

approach (as intended in peer-to-peer optimization) has some advantages with respect

to a centralized solution. The first one is that since all the agents in the system have

computational power, it would be wasteful not to exploit it. Another advantage is that

the system does not rely on a central unit for all the computation, and this makes

the approach more robust. As a matter of fact, if the central unit fails no agent in

the system can act, while if a (properly developed) distributed algorithm is employed,

apart from some potential failing agents, the other can continue to act. However, the

necessary communication step between the agents can be really challenging. Considering

peer-to-peer optimization for a multi-agent set-up, communication is generally unreliable.

Wireless communication, with its wide applicability and usage, is an example of unreliable

transmission mean and is adopted for example in sensor networks or in groups of mobile

robots. Moreover, when peer-to-peer optimization is applied to multi-agent systems,

most of the time it is not possible to decide the communication network (that is which

agent communicates with which). Using again the wireless communication as an example,

an agent can communicate only with those that are near to it, and so the communication

network depends on the agents’ disposition. Chapter 5 will show that the communication

network is a determinant factor for the convergence rate (intuitively how many iterations

are necessary to get a good approximation of the optimal solution).

The state of the art for algorithms for peer-to-peer architectures will be explored in

detail later on in the thesis. Depending on the specific problem analyzed, the kind of

algorithms employed to solve it are different. Therefore, it is more straightforward to

explore the literature connecting it to the specific problem.

Before describing the challenges of real world communication, the communication

network for the multi-agent systems examined in this thesis are here formally described.

2.3 Communication issues 31

systems, where wireless communication is often adopted, the assumption of reliable

communication is rarely met. As a matter of fact, wireless communication is prone to

packet losses due to disturbances (especially if the power employed for communication is

limited) Hou and Kumar (2012); Zamalloa and Krishnamachari (2007). In any case, also

for other kinds of communication it is difficult to achieve perfect communication and

some packets can be lost due to ambient noise, collisions, or other effects (for example,

during a congestion period, also the Internet can lose some packets). When a distributed

algorithm is implemented in a real application, it is therefore necessary to be able to

deal with packet losses. As a matter of fact, if the presence of packet losses is ignored,

when an agent does not receive the packet it is expecting, the agent does not know how

to act (see Figure 1.13). There are two possible solution to adopt in order to tackle the

consequences of packet losses: either modifying the communication step or modifying the

algorithm.

A very simple way to deal with packet losses is modifying the communication pro-

tocol. In particular, the use of acknowledge messages can easily solve the problem of

unreliable communication. Without acknowledge, from the point of view of the sender, a

communication exchange is concluded upon sending the message. On the other hand,

using a protocol with acknowledge, the receiver, upon reception of the message, sends a

message, called acknowledge message or ACK, to the sender. Only the reception of the

ACK by the sender concludes the exchange, while if the sender does not receive the ACK

sent from a given agent within a (fixed) period of time, it sends the packet again, and

repeats the sending until reception of the ACK (see Figure 1.14). Clearly, with such a

communication protocol, packet losses are avoided since the communication step goes on

until all the packets’ exchanges are successful. However, the use of ACKs has its own

drawbacks. One of these is that it requires the receiver to send a message; in scenarios

where energy is limited, for example in WSNs, the consumption of energy is reduced

to the minimum. Since communication is a very demanding operation from a power

consumption point of view, in these scenarios this additional packets’ exchange should

be avoided. Another drawback is that the communication step does not have a fixed

length, since when a packet (or the related ACK, even though this second event rarely

happens) is lost, the sender after some time has to send the message again and this can

happen for many consecutive times if the communication link is particularly disturbed.

Obviously, a longer communication step implies longer algorithm’s execution time, and if

the communication system is particularly unreliable the duration of the communication

step can become considerable. Also, even if the communication is reliable, the sender has

to wait for all its neighbors’ ACKs, and since it can handle just one message at a time,

32 Distributed optimization

the time interval for communication is longer than the one required if no ACK is used.

Every time a distributed algorithm has a fixed communication graph and does not

consider packet losses, an underlying assumption of perfect reliability of the communi-

cation network is made, or the use of an acknowledge protocol is tacit. Note that one

might think that assuming a time-varying communication network implies that one is

somehow also dealing with packet losses. In Chapters 5 and 6, it is shown that this is not

the case. As a matter of fact, in many cases the analyses of scenarios with time varying

communication graphs assume that at each time step the agents exactly know to whom

it is sending the packet (and so packet losses are not considered).

Alternatively to the use of ACKs, one can deal with unreliable communications

modifying the algorithm itself. In this case, the idea is to develop an algorithm in which

the agents send the packets but do not care whether the neighbors actually receive the

message or not. This kind of algorithms are hereafter denoted as robust (to packet losses)

and among the scopes of this thesis is the introduction of robust algorithms which rely

on a communication protocol without acknowledge. There are different possible ways to

make an algorithm robust, and in this dissertation three different methods are analyzed.

In particular, one of the solutions presented relies on a modification of the (non robust)

algorithm (recall Figure 1.18), another one on the use of memory (see Figure 1.20) and

still another on the use of additional variables and a consequent algorithm modification

(remember Figure 1.22).

Using a robust algorithm makes the communication protocol easier to implement

(with respect to a protocol that uses ACKs), solves the problem of the variable duration

of the communication step, making it shorter, and also avoids non strictly necessary

communication. However, the convergence proof becomes more complicated, since the

set of information used by each agent is possibly different among the agents, and this

introduces some difficulties.

In the following chapters, when the communication network is unreliable, the following

assumption holds:

Assumption 2.3.1 (Bounded packet losses). There exists a positive integer h such

that the number of consecutive communication failures over every directed edge in the

communication graph is smaller than h.

According to this assumption, a link in the communication network cannot be

unreliable for an infinite number of consecutive times.

2.3 Communication issues 33

C1 C2

+ +

u1 u2

x2

+

x0 ∼ N (0, σ2)

x1

v ∼ N (0, 1)

C1 C2

+ +

u1 u2

x2

+

x0 ∼ N (0, σ2)

x1

v ∼ N (0, 1)

Reliable communication scenario Unreliable communication scenario

Figure 2.5: System employed in the Witsenhausen counterexample. On the left side the
system with reliable communication, on the right the system with unreliable communication

(a dashed line indicate an unreliable link).

Before analyzing the challenges of synchronism, it might be useful to show how

important the assumption on the reliability of communication is. As a matter of fact, one

might think that the loss of packets might not be too detrimental for the overall system.

The following discussion, based on Witsenhausen’s counterexample Witsenhausen (1968);

Sahai and Grover (2010), shows the effects of an unreliable communication system.

Witsenhausen’s counterexample

The deceivingly simple example introduced by Witsenhausen in 1968 Witsenhausen

(1968) aimed at showing the difficulties introduced by a decentralized control. It is

described here in a slightly different context in order to show the importance of a perfect

communication assumption.

Consider the system on the left part of Figure 2.5. It is a system where a scalar

quantity (x0) evolves in discrete time according to linear dynamics. Two controllers act

on the state in two consecutive steps. Controller C1 receives as input x0 and can act on

the state (x0 again), adding u1, which is a function of the controller’s input x0. A noisy

version of the resulting state, x1, is given as input to the second controller, C2, together

with the variable x0. C2 then acts on the state x1 adding u2, generating the resulting

variable x2. The inputs of the overall system, that is x0 and v (the noise measurement

for x1), are Gaussian variables, respectively x0 ∼ N
(
0, σ2

)
, σ > 0, and v ∼ N (0, 1).

The aim of the overall system is to solve an optimal control problem. The cost function

to be minimized is the expectation of the following quadratic function

E

[
ku2

1 + x2
2

]
, k > 0

and the minimization is done on the controllers’ functions u1 and u2. In this first system,

34 Distributed optimization

perfect communication is assumed, and the overall problem can be interpreted as a Linear

Quadratic Gaussian (LQG) one. An LQG problem can be optimally solved choosing the

controllers’ functions as linear functions of the inputs using Riccati’s equations Anderson

and Moore (1971). For the system analyzed here, the optimal choices for the controllers’

functions simply are

u1(x0) = 0, u2(x0, x1 + v) = −x0,

according to which it is easy to verify that the value of the cost function is 0.

Now, consider the system on the right of Figure 2.5. In this new system, the

communication link which brings x0 to C2 is unreliable. Assume also that the controller

C1 does not know whether C2 receives or not x0 (that is there are no ACKs). The

previous choice of functions u1 and u2 is not possible anymore, since when C2 does not

receive x0 the controller would not know what to do. The new control strategy to be

developed has therefore to ignore the fact that C2 may receive x0 as input. This new

scenario is the one introduced by Witsenhausen, who wanted to show that, even though

this problem seems very similar to an LQG problem again, the fact of not sharing the

same variable can make the solution very challenging (and so that distributed solutions

can be much more arduous). Witsenhausen was in fact able to show that if controller

C1 is constrained to be linear (that is u1 is chosen as a linear function of x0) than also

controller C2 has to be a linear fnction of x1 + v to minimize the cost function. At that

time, this solution was conjectured to be the optimal one even without the restriction on

C1, due to its similarity to the standard LQG problem Witsenhausen (1968). However,

Witsenhausen showed the existence (for some values of k and σ) of non-linear functions

ũ1 and ũ2 which achieve a smaller value of the cost function than the one obtained using

linear controllers. Interestingly, the non-linear functions proposed by Witsenhausen have

a “communication” interpretation. As a matter of fact, the function ũ1 is chosen in

such a way that the true value of the resulting variable x1 can be with good probability

recovered by C2 even though this controller receives only a noisy observation of this

variable. Somehow, the control acts as a communication system, and this kind of implicit

communication is known in the control literature as signaling. Since Witsenhausen

was also able to prove the existence of an optimal solution, his counterexample showed

that linear controllers are not the best choice in a decentralized scenario. Until now,

the optimal solution of this “trivial” example (which is a non-convex and NP-complete

problem) is unknown, and only some numerical solutions, which are thought to be good

approximation of the true solution, exist.

For the sake of this thesis, this counterexample showed how much the solution of a

problem can be different if one considers reliable or unreliable communication.

2.3 Communication issues 35

Synchronism

A distributed algorithm can be classified either as synchronous or as asynchronous Kung

(1976). In the specific case of optimization with a peer-to-peer architecture, a distributed

algorithm is synchronous if all the agents in the system need to exchange information at

the same time, while it is asynchronous if the communication step can be performed only

by a subset of the nodes (and not necessarily all of them at the same time). In particular,

in a synchronous algorithm an iteration of the algorithm involves all the nodes in the

system, while in an asynchronous one an iteration can modify only the variables of a

subset of the nodes. In accordance to the algorithm, the former employs a synchronous

communication protocol, while the latter an asynchronous one (recall Figure 1.15).

In a real situation, performing the communication step for a synchronous algorithm

can be challenging. As a matter of fact, the nodes have to be able to verify whether all

the other nodes in the network have reached the communication step before performing

it, or there has to be a common notion of time among the nodes (and some guarantee

on the duration of the update step). As the number of agents in the system increases,

verifying synchronization or maintaining a common notion of time becomes more and more

challenging from a technological point of view. Moreover, this type of communication

protocol can slow down the entire algorithm. Suppose in fact that there exists in the

system a node that is slower than the other ones. Since all the nodes have to synchronize

before performing the message exchange, at each iteration all the nodes have to wait for

the slowest one.

Asynchronous algorithms, on the other hand, require much less coordination if

compared to synchronous ones. As a matter of fact, only a small subset of all the nodes

in the network performs the communication and updating steps. In order to clarify

the terminology, the verbs to wake up, to be activated or to be selected are referred

to the nodes/edges that at each iteration are the ones that determine which agents

exchange information. In the following some of the most used asynchronous protocols

are described. In the asymmetric broadcast protocol, at each iteration there is only

one node transmitting information to its out-neighbours, which, based on the received

messages, update their internal variables. The convergecast (or coordinate broadcast)

can be considered as the dual protocol of the broadcast asymmetric. Indeed, at each

iteration, there is only one node which wakes up, but, instead of sending information,

it polls all its in-neighbours in order to receive from them some desired messages. In

asymmetric gossip again only one node wakes up but it sends information to only one of

its out-neighbours, typically randomly chosen. Finally, the symmetric gossip is a protocol

that requires bidirectional communication, that is the communication graph G has to be

2.4 Applications’ features that call for a distributed approach 37

2.4 Applications’ features that call for a distributed

approach

This section wants to underline why one should choose a distributed approach in the

applications analyzed in this thesis. In particular, the salient features of each problem

that suggest a distributed algorithm are analyzed. The idea is also to show that one can

decide to employ a distributed algorithm to answer to different demands.

Patrolling problem

In the patrolling problem, analyzed in Chapter 3, the presence of a central unit is not

considered, and so the distributed approach to solve the problem is the only possible

solution (and the same fact holds for all the other application presented). However,

also the problem structure makes a distributed approach desirable. As a matter of fact,

according to its formulation as an optimization problem, the optimization variable can

be divided into pieces, one for each agent (that is each camera) of the network. In order

to patrol the area, each agent only needs to know the part of the optimization variable

which strictly belong to itself, and this suggests that a distributed approach is adequate,

since each camera is only interested in its own part of the optimization variable. In a

multi-agent set-up, the problems in which each agent in the network is only interested

in a piece of the optimization variable can be denoted as local estimation problems

(sometime referred as partition based problem). If a distributed approach is employed,

each agent can work only on its part of the optimization variable (and the information’s

exchange among neighbors assures that the overall optimization variable converges to the

minimizer). In this way, even though the number of agents increases in the network, the

algorithm run by each agent remains simple. Therefore, this distributed algorithm scales

well with the system’s dimension. Moreover, as will be better explained in Chapter 3, a

distributed approach in this case is also desirable, since the patrolling problem is strictly

related to the tracking problem. Namely, if an intruder is found during the patrolling, the

camera which finds it leaves the patrolling mode and tracks the intruder. At the same

time, its neighboring cameras have to start patrolling the area which is not patrolled

anymore. A distributed approach helps to make such an arrangement in a very fast way.

In case of a centralized approach, this might require more time.

Locally coupled cost

The second problem analyzed is the minimization of the sum of local cost functions, which

are locally coupled. Chapter 4 is dedicated to this problem. As can be inferred looking

38 Distributed optimization

at Figure 1.19, each agent needs only information from its neighbors to compute its cost

function. It is also possible to foresee that in order to minimize the sum of the cost

functions, an agent is interested in looking only at a partial part of the overall network.

The solution here proposed, in fact, is inspired by the centralized Newton method, and so

each agent needs to evaluate a part of the overall gradient and Hessian. The particular

form of the problem generally implies that this part of the gradient and of the Hessian

depends on information coming not only from its one-hop neighbors but also from its

two-hops neighbors. Due to these local aspects, it makes sense to apply a distributed

algorithm. Moreover, in many cases, each agent is only interested in its own part of the

(overall) optimization variable, and so this kind of problem can be also seen as a local

estimation problem, as for the patrolling problem.

It is important to note that the dependence on two-hops neighbors’ information is

problematic in the communication set-up of interest for the thesis, described at the end

of Section 2.2. As a matter of fact, direct communication between two-hops neighbors

is not permitted, and to make the algorithm implementable it is necessary to let each

agent remember the last packet received by the one-hop neighbors. Interestingly, as

will be proved in Chapter 4, this additional memory, apart from solving the two-hops

communication issue, also solves the problem of packet losses.

Consensus problem and quadratic cost minimization

Concerning the consensus problem, examined in Chapter 5, a distributed approach

is advisable because in this case each agent in the system has its own quantity, so

the information is local by nature. Moreover, if some privacy issues exists, the use

of a distributed approach helps to preserve it (it the algorithm is properly designed).

Considering the problem as the minimization of the sum of quadratic cost functions (a

function for each agent), conversely to the previous applications, in this case each agent

in the system is interested in retrieving the full minimizer of the overall cost function

(and not just part of it). Due to this feature, consensus is a global estimation problem.

Additively separable cost function

The last application examined in this dissertation involves the minimization of additively

separable cost functions. In a multi-agent set-up such a problem exists if each agent

is endowed with a private cost function and each agent wants to minimize the sum of

the cost functions. As a consequence, a distributed approach is necessary. As already

pointed out in the introduction, the consensus problem is a special case of additively

separable cost function minimization, and, as so, the problem analyzed in Chapter 6 is a

2.4 Applications’ features that call for a distributed approach 39

global estimation one. Interestingly, precisely because it is a global estimation problem,

consensus can play an important role in the development of a distributed algorithm for

the solution of the problem. This intuition is confirmed by some of the existing algorithms

to solve this kind of problems.

40 Distributed optimization

3
Patrolling for camera networks

The contents of this chapter are based on the paper

Bof N., Carli R., Cenedese A., and Schenato L. Asynchronous distributed

camera network patrolling under unreliable communication. IEEE Transactions on

Automatic Control, 62(11):5982–5989, 2017b.

This chapter is devoted to the study of the patrolling problem for smart camera

networks Aghajan and Cavallaro (2009). Particular attention is therefore given to features

related to this multi-agent system. However, the results obtained can be useful also for

robot networks where the agents have to monitor an area Acevedo, Arrue, Maza, and

Ollero (2013).

In the first part of the chapter the patrolling problem is introduced, together with

an optimal formulation for the same. A preliminary algorithm to solve the optimization

problem is then described. This algorithm is asynchronous but relies on a reliable

communication system and it is possible to show its convergence to a unique point in the

minimizers’ set. On the other hand, when the communication is not reliable, this first

algorithm is not usable anymore, because part of the area to be monitored might remain

temporarily uncovered and this is not admissible. An adjustment of the algorithm is then

proposed in order to deal with packet losses, and its convergence is showed. However, in

this case it is only possible to show convergence to the set of minimizers.

42 Patrolling for camera networks

3.1 Introduction and state of the art

Video surveillance systems are nowadays increasingly used for security and prevention

purposes in a variety of different situations. They can be used as a deterrent for intruders,

but also for the early detection of anomalous events.

Important tasks required to these systems are target acquisition, tracking, activ-

ity recognition Song, Kamal, Soto, Ding, Farrell, and Roy-Chowdhury (2010); Kari-

otoglou, Raimondo, Summers, and Lygeros (2015); Ding, Song, Morye, Farrell, and

Roy-Chowdhury (2012) and patrolling.

Here, the task analyzed is the patrolling problem for networks of Pan-Tilt-Zoom

(PTZ) cameras. This problem corresponds to the repetitive monitoring of a perimeter or

of an area realized by a group of cameras, in order to be able to detect intruders or to

locate unexpected events. The examined scenario is given by a group of already deployed

and fixed PTZ cameras that have to patrol a given one-dimensional environment.

The patrolling problem on a one-dimensional environment using a network of PTZ

cameras is studied in Alberton, Carli, Cenedese, and Schenato (2012), where it is reduced

to a partitioning problem. This approach is effective in case the intruder is static. To

deal with dynamic intruders, the partitioning has to be combined with a given schedule

for the movements of the cameras, as shown in Pasqualetti, Zanella, Peters, Spindler,

Carli, and Bullo (2014); Borra, Pasqualetti, and Bullo (2015). For the patrolling of

two-dimensional areas, randomized strategies have been proposed in Huck, Kariotoglou,

Summers, Raimondo, and Lygeros (2012); Raimondo, Kariotoglou, Summers, and Lygeros

(2011).

The patrolling problem for networks of PTZ cameras has similarities to that for

mobile-agents, which is studied in many papers. With no intention of providing an

exhaustive overview on the subject, some related literature is reported in the following.

The problem of patrolling different disjoint areas using agents that can move from one area

to the other is studied for example in Chevaleyre (2004) and Chu, Glad, Simonin, Sempé,

Drogoul, and Charpillet (2007): the first solves it as a travelling salesman problem, while

the latter uses a swarm intelligence approach. Different solutions are provided in Mao

and Ray (2014), where reinforcement learning is adopted to deal with a similar problem

and in Cassandras, Lin, and Ding (2013), where the patrolling of a one-dimensional

environment is addressed solving an optimal control problem. More interestingly with

respect to the solution proposed in this chapter, the authors of Acevedo et al. (2013) and

Acevedo, Arrue, Diaz-Bañez, Ventura, Maza, and Ollero (2014) consider the patrolling

of a one or two-dimensional environment and reduce this problem to a partitioning one

similar to that in Alberton et al. (2012).

3.2 Problem formulation 43

Like the algorithms that will be proposed in the remaining of this chapter, many

of the articles just cited adopt a distributed approach to solve the patrolling problem.

For the particular multi-agent system which is here analyzed, it is possible to mention

some specific advantages in using such an approach. As will be shown later, a distributed

approach is really scalable in this case, and require information only from neighboring

agents. Moreover, it may be difficult to collect all the information in a single unit if the

communication is not reliable. A distributed approach may also be safer in presence

of attackers/intruders, who would have to compromise each single camera and not just

a central unit. Finally a distributed algorithm can adapt fast to dynamic scenarios in

which cameras switch from patrolling mode to tracking mode and vice-versa, or in which

some cameras may be malfunctioning.

All the distributed algorithms proposed in the literature for the patrolling problem

assume reliable communications. If this is realistic enough for cabled camera networks, this

assumption may be inaccurate when the camera networks are wireless. These networks are

becoming very popular thanks to their reduced installation and configuration costs and

increased bandwidth performances. The aim of this chapter is to propose an asynchronous

distributed algorithm for camera network patrolling that is guaranteed to converge to an

optimal solution, while ensuring certain coverage properties even if the communication is

not reliable and there is no acknowledges’ exchange.

3.2 Problem formulation

The problem which is specifically addressed is the patrolling of a one-dimensional envi-

ronment of finite length using a finite number of cameras. This situation is typical of

outdoor camera networks monitoring the boundary of an area of interest, such as urban

neighbourhoods or large facility perimeters. Let L = [0, L], L > 0, denote the segment to

be monitored and let N be the cardinality of the cameras’ set, with the cameras labeled

1 through N . For the sake of simplicity, it is assumed that (a) the cameras are 1-d.o.f.,

meaning that the field of view (f.o.v.) of each camera is allowed to change due to pan

movements only, (b) the cameras have fixed coverage range, meaning that during pan

movements the camera coverage range is not altered by the view perspective, (c) cameras

have point f.o.v..

The patrolling range Di is defined as the total allowed area that the i-th camera can

patrol due to the scenario topology, the agent configuration and its physical constraints.

More formally

Di =
[
di, di

]
⊂ L, di < di,

3.2 Problem formulation 45

x is visited for the j−th time (counting times starting from time t = 0) by at least a

camera i ∈ {1, . . . , N}. Namely, for all t ∈ τ̄j there exists a camera i such that zi(k) = x.

If point x is visited at time k only by a passing camera i, i.e, zi(k) = x and żi(k) 6= 0, it

holds tj(x) = t̄j(x). Now, for each point x ∈ L, it is possible to introduce the following

cost function

γ(x) :=





sup
j∈N

(
tj+1(x)− t̄j(x)

)
if ∀ j ∃ tj+1(x) <∞

+∞ otherwise.

The global cost function is then given by the following time lag

Tlag = sup
x∈L

γ(x)

and the corresponding problem is the minimization of Tlag, that is the minimization

of the elapsed time between two consecutive visits of the same location of L. To have

Tlag <∞ it is necessary that each point x ∈ L belongs to at least one patrolling area Ai,

namely, that the covering constraint
⋃

i∈{1,...,N}Ai = L is satisfied. Observe that, if

the following interlacing constraints

`i < `i+1 ≤ ri < ri+1, ∀i = 1, . . . , N (3.2)

are satisfied and if it also holds that `1 = 0 and rN = L, then the covering constraint is

satisfied. In the following, the standing assumption is that the conditions `1 = 0 and

rN = L are always satisfied.

The minimization of Tlag in case there are no physical constraints for the cameras is

a tricky problem. As a matter of fact, one could reasonably think to use a partitioning

approach to solve the problem as done in Czyzowicz, Gasieniec, Kosowski, and Kranakis

(2011). In the aforementioned paper, the following conjecture is given:

Conjecture 3.2.1. Assume Di = L for all i. Then the optimal minimum value for Tlag

is attained by partitioning L into non-overlapping intervals of lengths proportional to

the cameras speeds, specifically

`1 = 0, rN = L, ri = `i+1 = `i +
v̄i∑N

i=1 v̄i

L,

and letting each camera i sweeping back and forth Ai at its maximum pan speed v̄i. This

strategy obtains

Tlag =
2L

∑N
i=1 v̄i

. (3.3)

46 Patrolling for camera networks

The above conjecture has been shown to be true in the following two scenarios

Kawamura and Kobayashi (2015):

1. when N = 1, 2, 3;

2. for any N > 3 in case v̄1, . . . v̄N are all equal to each other (i.e, there exist v̄ such

that v̄1 = · · · = v̄N = v̄).

Remarkably, in case the maximum pan speeds are not all equal to each other, the authors

in Kawamura and Kobayashi (2015) have shown the existence of some particular N -tuples

(v̄1, . . . , v̄N), N > 3, for which it is possible to design cameras’ trajectories attaining a

value of Tlag smaller than that in (3.3), thus invalidating Conjecture 3.2.1. Despite the

presence of these counterexamples, in Kawamura and Kobayashi (2015) it is however

argued that the solution illustrated in Czyzowicz et al. (2011) attains a value of Tlag that

is very close to the optimal one, that is, it can be regarded as a significant sub-optimal

solution.

Therefore, since the very simple “partitioning and sweeping back and forth at maximum

speed” strategy described in Conjecture 3.2.1 is likely to be an almost optimal solution of

the patrolling problem, one can change the set of possible cameras’ trajectories: instead

of minimizing the patrolling time lag among all possible trajectories, the set of possible

trajectories is restricted, hoping that the solution on the restricted will not be too far

from optimality.

In particular, the possible trajectories are constructed in the following way: the

environment is partitioned into N parts, and each camera sweep its own part of the

perimeter at maximum speed. The problem is then to find the partition that minimizes

Tlag under this restriction on the trajectories. Therefore, the problem that is actually

tackled is a partitioning one. Apart from its semplicity and suboptimality, the choice

of partitioning acquires even more significance in the set-up considered here, since the

presence of physical constraints might impose severe limitations to the areas to be

patrolled by the cameras.

After partitioning, by sweeping back and forth at speed v̄i a given interval Ai = [`i, ri],

the time lag for camera i, i = 1, . . . , N , is Tlag(Ai) := 2|Ai|
v̄i

, where |Ai| := ri − `i. As a

consequence, the problem to be solved can be cast as

P1 : T ∗
P1

= minA1,...,AN
maxi{Tlag(Ai)}

s.t.

{
Ai ⊆ Di, i = 1, . . . , N

∪N
i=1Ai = L

where the objective is the minimization of the largest patrolling time lag among all

3.2 Problem formulation 47

areas Ai, and the constraints represent the physical limitations of the cameras and the

requirement that all points in L are eventually visited, respectively. The previous problem

can be re-cast as a linear program (LP) as follows (the proof can be found in Alberton

et al. (2012)):

Proposition 3.2.2. Alberton et al. (2012) The optimization problem P1 is equivalent

to the following LP problem:

P ′
1 : T ∗

P1
= minξ,α 2α

s.t.





ri−`i

vi
≤ α i = 1, . . . , N

di ≤ `i ≤ di, di ≤ ri ≤ di i = 1, . . . , N

ri ≥ `i+1 i = 1, . . . , N

d1 = `1 = 0, dN = rN = L

Analysing the previous problem, for the cost functional

J∞(ξ) = max
i

2(ri − `i)
v̄i

, (3.4)

it holds that the minimum value J∗
∞ achievable for J∞(ξ), with ξ respecting the physical

and interlacing constraints, is equal to the optimal solution T ∗
P1

of problem P ′
1. Ξ∗

P1

denotes the set of minimizers of J∞(ξ) or, equivalently, of P ′
1.

The previous proposition provides a centralized solution to the patrolling problem, but

cannot be easily computed in a distributed fashion. Although distributed algorithms exist

for the solution of LP problems Notarstefano and Bullo (2011), these involve the solution

of the entire problem at each node, which is a futile computational effort. Moreover,

the previous optimization problem might have multiple minimizers. Again, it is possible

to formulate a new optimization problem, P2, whose minimizer is unique and is also a

minimizer for the original problem P1. Introducing the following cost functional

J2(ξ) =
N∑

i=1

1

v̄i
(ri − `i)2, (3.5)

the following proposition holds (its proof can again be found in Alberton et al. (2012))

48 Patrolling for camera networks

Proposition 3.2.3. Alberton et al. (2012) Consider the optimization problem

P2 : J∗
2 = minξ∈R2N J2(ξ)

s.t.





di ≤ `i ≤ di, di ≤ ri ≤ di i = 1, . . . , N

ri ≥ `i+1 i = 1, . . . , N − 1

d1 = `1 = 0, dN = rN = L

The corresponding set of minimizers Ξ∗
P2

is a singleton and Ξ∗
P2
⊆ Ξ∗

P1
.

The benefits of the optimization problem P2 as compared to the optimization problem

P1 are mainly two, namely: (i) using specific communication strategies P2 can be

solved with distributed, scalable and parallelizable algorithms; (ii) the uniqueness of the

minimizer in P2 guarantees the practical convergence of iterative numerical algorithms.

Remark 3.2.4. Note that, intuitively speaking, the solution of problem P2 shares the

patrolling burden as evenly as possible among all the cameras. The unique partition that

solves P2 is such that each camera has a time lag that is as similar as possible to the

time lag of its neighbors. In some way, it is similar to what happens with the problem

of finding x such that Ax = b, when A ∈ R
n×n is singular and b ∈ Rn is a given vector.

The problem has many solutions, but the one obtained by using the pseudo inverse of A

is the one that minimizes the norm of vector x.

Remark 3.2.5. As pointed out in Pasqualetti et al. (2014), having the cameras sweep the

assigned portions of the perimeter at the maximum speed is efficient for static intruders,

while for smart dynamic intruders a more sophisticated law is needed. In particular,

this law entails the synchronization of the neighboring cameras in such a way that they

simultaneously visit the extreme in common. However, this control law can be applied to

any partitioning of the environment to be patrolled. Therefore, to better manage smart

intruders, one can apply the equal-waiting trajectory algorithm suggested in Pasqualetti

et al. (2014) on the partitioning of L given by the optimal solution of problem P2. In this

way it is possible to combine good performance for both static and dynamic intruders.

Problems P ′
1 and P2 can be rapidly solved using a centralized algorithm. However,

a distributed approach has its own advantages, already highlighted in the introduction.

Perhaps the more interesting is the capability to adapt to dynamic changes like intruders

tracking or the presence of faulty cameras Pasqualetti et al. (2014). These events are

usually only local, and in a centralized approach, each time a new intruder appears or

each time a camera fails the algorithm has to be reset for the whole network.

Now that the problem have been presented, the set-up for the optimization is described.

The communication graph among the agents (that is the cameras) is very particular. In

3.3 A coordinated broadcast partitioning algorithm (CB algorithm) 49

fact, according to the cameras’ disposition along the perimeter, each camera communicates

only with the previous and the following one, that is camera i = {2, . . . , N − 1} exchanges

information with cameras i− 1 and i+ 1, while camera 1 (camera N) communicates only

with camera 2 (camera N − 1 respectively). The corresponding communication graph is

therefore a line graph.

The algorithm designed to solve Problem P1 has to have the following features:

1. Asymptotic local estimation: each camera i has to asymptotically estimate only its

own optimal patrolling area, defined by `∗i and r∗
i .

2. Peer-to-peer (leaderless): each cameras’ update has to consider the limited com-

putational and memory capability available at the camera itself and there is no

“master” camera. Moreover, the algorithm can only require communication between

one-hop neighbors.

3. Distributed: the update-rule of the local variables at each camera has to depend

only on the variables stored by the camera and by its neighbors. No multi-hop

information exchange is allowed.

4. Asynchronous: the algorithm has to allow the cameras to perform the update step

and the communication step in any moment, without any coordination among the

agents.

5. Lossy broadcast communication without ACK : the convergence of the algorithm

has to be assured even if communication is lossy and broadcast-based. No ACK

mechanisms has to be employed.

3.3 A coordinated broadcast partitioning algorithm (CB

algorithm)

The aim of this section is to introduce a distributed algorithm to solve problem P2 which

works with a reliable communication scenario. Concerning the communication protocol,

the one employed is a combination of an asymmetric broadcast and a coordinated

broadcast. In fact, at each time step there is one camera that wakes up, sends some

information to its neighbors (and so it is an asymmetric broadcast), but its neighbors

are also supposed to send the result of their computation back to the node.

The algorithm proposed is not developed according to standard optimization algo-

50 Patrolling for camera networks

rithms. In a way it is an intuitive procedure to solve the problem that can be shown to

be effective. In order to solve the problem, the update of the patrolling area has to be

such that (i) the physical constraints and the covering constraint are satisfied at each

iteration, and (ii) the set of patrolling areas converges to the optimal partition.

The strategy proposed is next described and reported as Algorithm 3.1. Suppose the

patrolling areas are initialized in such a way that the physical and interlacing constraints

are satisfied and let the iterations of the algorithm be indexed by the discrete time

variable k ∈ N. In the following the algorithm is described in case the activated camera is

neither the first one nor the last one. However, if the selected camera is i = 1 (i = N) an

ad hoc adjustment has to be done, i.e. only the update of camera i+ 1 (resp. i− 1) has

to be done. Assume that at iteration k camera i is activated and transmits the values of

`i(k) and ri(k) to its neighboring cameras i− 1, i+ 1. Based on the information received,

cameras i− 1 and i+ 1 update the extremes of their patrolling areas that are “closer” to

camera i, namely, ri−1 and `i+1, respectively. For simplicity, only the update performed

by camera i− 1 is described.

Let mi−1(k) and mi(k) be the middle points of Ai−1(k) and Ai(k), respectively, i.e,

mi−1(k) =
`i−1(k) + ri−1(k)

2
, mi(k) =

`i(k) + ri(k)

2
. (3.6)

Camera i− 1 computes the point c∗
` which splits the segment [mi−1(k),mi(k)] into two

parts that require the same time to be swept by the respective cameras. Mathematically,

c∗
` =

v̄i(`i−1(k) + ri−1(k)) + v̄i−1(ri(k) + `i(k))

2(v̄i + v̄i−1)

Camera i− 1 then sets ri−1(k + 1) = c∗
` , provided that this update does not violate

the physical constraints, i.e, it must holds c∗
` ∈

[
di, di−1

]
; otherwise ri−1(k + 1) is set

equal to the closest point to c∗
` that satisfies the physical constraint (see lines 4 through

10). Finally camera i− 1 sends the value ri−1(k + 1) to camera i which updates its left

extreme accordingly, that is, `i(k + 1) = ri−1(k + 1) (see line 22). Camera i+ 1 carries

out an analogous update: in this case `i+1(k+ 1) and ri(k+ 1) are the extremes involved

(see lines 12 through 19 and line 23).

Figure 3.2 shows one step of the execution of the algorithm. Observe that each

iteration of the CB algorithm involves two communication rounds; the first one from

camera i to cameras i − 1 and i + 1, referred to as the forward communication, and

the second one from cameras i − 1 and i + 1 to camera i, referred to as backward

communication.

The convergence properties of the CB algorithm can be characterized by the following

3.3 A coordinated broadcast partitioning algorithm (CB algorithm) 51

Algorithm 3.1 CB algorithm (time k, camera i activated)

1: Broadcast forward communication: camera i transmits ri(k) and `i(k) to cameras
i+ 1 and i− 1.

2: {% Update of the right extreme of camera i− 1}

3: c∗
` = v̄i(`i−1(k)+ri−1(k))+v̄i−1(ri(k)+`i(k))

2(v̄i+v̄i−1) ;

4: if c∗
` < di then

5: ri−1(k + 1) = di;
6: else if c∗

` > di−1 then
7: ri−1(k + 1) = di−1;
8: else
9: ri−1(k + 1) = c∗

` ;
10: end if
11: {% Update of the left extreme of camera i+ 1}

12: c∗
r = v̄i+1(`i(k)+ri(k))+v̄i(`i+1(k)+ri+1(k))

v̄i+v̄i+1
;

13: if cr∗ > di then
14: `i+1(k + 1) = di;
15: else if c∗

r < di+1 then
16: `i+1(k + 1) = di+1;
17: else
18: `i+1(k + 1) = c∗

r ;
19: end if
20: {% Update of the extremes of camera i}
21: Peer to peer backward communication: camera i receives
22: from its neighbours `i+1(k + 1) and ri−1(k + 1).
23: `i(k + 1) = ri−1(k + 1);
24: ri(k + 1) = `i+1(k + 1);

time

k

A3(k) A5(k)A4(k)

`4(k), r4(k)`4(k), r4(k)
Forward comm.

m3(k)
m4(k)

m5(k)
c∗rc∗

`

A3(k + 1) A5(k + 1)

`5(k + 1)r3(k + 1) Backward comm.
time

k + 1 A3(k + 1) A5(k + 1)A4(k + 1)

Figure 3.2: Execution of one step of the algorithm in a simplified set-up with Di = L and
equal v̄i for all i. The camera activated at time k is camera 4.

result.

Theorem 3.3.1. Let ξ(0) describe the initial patrolling areas, satisfying the physical

52 Patrolling for camera networks

and interlacing constraints. Assume Assumption 2.3.2 holds true. Then the trajectory

{ξ(k)}k generated by the CB algorithm satisfies that

1. the physical, interlacing and covering constraints are verified for all k ∈ N;

2. the cost functional J2 is non increasing and satisfies

J2(ξ(k + 1)) < J2(ξ(k)), if ξ(k + 1) 6= ξ(k).

3. the cost functional J∞ is non increasing and satisfies

J∞(ξ(k + τ̄)) < J∞(ξ(k)), if ξ(k) /∈ Ξ∗
P1
,

where τ̄ = (N − 1)(τ + 1);

4. the cost functionals J2 and J∞ converges, respectively, to J∗
2 and J∗

∞.

A detailed proof can be found in Appendix B.1. Looking at the iterations of the

algorithm as the evolution of a dynamical system, the proof aims at showing that this

system meets the assumptions of Theorem 4.3 in Bullo, Carli, and Frasca (2012), which

regards convergence of set-valued dynamical systems. The proof mainly reduces to

show that J2 is a Lyapunov function for the system. Having J2 Lyapunov function has

the advantage that the solution eventually reached is unique (since J2 has a unique

minimizer). In fact, as a consequence of the fourth item in the previous theorem, it is

possible to state the following corollary:

Corollary 3.3.2. Under the same hypotheses of Theorem 3.3.1, the trajectory {ξ(k)}k
generated by the CB algorithm converges to the optimal solution of Problem P2, i.e,

ξ(k)→ ξ∗
2 as k tends to infinity, and, in turn, to an optimal solution of P1.

3.4 r-CB: a version robust to packet losses

CB algorithm assumes that the communication channels are reliable and, in particular,

that no packet losses occur. In this section this assumption is relaxed and so transmission

failures are allowed in the communication between neighboring cameras. In presence of

unreliable communications, the CB algorithm presents a major shortcoming, as explained

in the following. Observe that, during each iteration of the CB algorithm, there are

two possible “sources” of packet loss: (i) the packet broadcast by camera i during the

forward communication is not received by camera i− 1 (or analogously by camera i+ 1);

3.4 r-CB: a version robust to packet losses 53

time

k

Ai−1(k) Ai+1(k)Ai(k)

time

k + 1 Ai−1(k + 1) Ai+1(k + 1)
Ai(k + 1)

Overlap Uncovered

Figure 3.3: Consequences of the failure of the backward communication: generation of
an overlap between the patrolling areas and of an uncovered part of the environment. The

situation at time k corresponds to that presented in Figure 3.2

in this case, the respective extremes remain unchanged and nothing happens; (ii) the

packet sent by camera i− 1 (or analogously by i+ 1) to camera i during the backward

communication is not received, and, in turn, camera i does not update the respective

extreme; it might result that ri−1(k + 1) 6= `i(k + 1) and the interlacing and covering

constraints might be violated (see Figure 3.3).

The latter failure is the most critical one; indeed it might cause the presence of

parts of the perimeter that are left unassigned and so are uncovered. To deal with such

presence of uncovered areas, it is possible to modify the CB algorithm. Specifically,

consider iteration k and assume that the interlacing constraints (3.2) among all the

cameras are satisfied. Moreover assume that camera i is the camera performing the

forward communication round. If camera i− 1 receives the information related to `i(k)

and ri(k), then it computes c∗
` as done for the CB algorithm, and it updates ri−1 as

follows

ri−1(k + 1) =





`i(k) if c∗
` ≤ `i(k)

min
{
c∗

` , di−1

}
if c∗

` > `i(k)
(3.7)

Then camera i− 1 sends the value ri−1(k + 1) to camera i; if the packet is received, then

camera i sets `i(k+1) = ri−1(k+1), otherwise `i remains unchanged, i.e., `i(k+1) = `i(k).

Observe that, according to the update proposed in (3.7), it holds that `i(k + 1) ≤
ri−1(k + 1), and, hence, the interlacing constraint between cameras i− 1 and i is still

satisfied. This new algorithm robust to packet losses, is denoted hereafter as r-CB (its

algorithmic description is given in Algorithm 3.2).

To characterize the convergence properties of r-CB an assumption on the frequencies

of transmission failures is needed. It is enough to use Assumption 2.3.1 with a slight

modification, in particular there has to be a limit on the number of consecutive communi-

cation failures between camera i and j only regarding the forward communication, while

for the backward communication the packet losses can be unbounded. Clearly, this is not

really an advantage with respect to considering all the communication types to have a

bounded consecutive packet loss but it is interesting to notice nevertheless.

54 Patrolling for camera networks

Algorithm 3.2 r-CB algorithm (time k, camera i activated)

Broadcast forward communication: camera i transmits ri(k) and `i(k) to
cameras i+ 1 and i− 1.
Update if camera i− 1 receives information

1: c∗
` = v̄i(`i−1(k)+ri−1(k))+v̄i−1(ri(k)+`i(k))

2(v̄i+v̄i−1) ;

2: if c∗
` < `i(k) then

3: ri−1(k + 1) = `i(k);
4: else
5: ri−1(k + 1) = min

{
c∗

` , d̄i−1

}
;

6: end if
Update if camera i+ 1 receives information

7: c∗
r = v̄i+1(`i(k)+ri(k))+v̄i(`i+1(k)+ri+1(k))

v̄i+v̄i+1
;

8: if cr∗ > ri(k) then
9: `i+1(k + 1) = ri(k);

10: else
11: `i+1(k + 1) = max {c∗

r , ri(k)};
12: end if
13: The algorithm performs steps 20 ÷ 23 of Algorithm 3.1, provided the backward

communications are successful.

The convergence results of r-CB are given in this theorem:

Theorem 3.4.1. Let ξ(0) describe the initial patrolling areas, satisfying the physical

and interlacing constraints, and let Assumptions 2.3.2 and 2.3.1 hold true. Then, the

trajectory {ξ(k)}k generated by the r-CB algorithm satisfies that

1. the physical, interlacing and covering constraints are verified for all k ∈ N;

2. the cost functional J∞(k) is not increasing and satisfies

J∞(ξ(k + τmax)) < J∞ (ξ(k)) if ξ(k) /∈ Ξ∗
∞.

where τmax := 2hτ(N − 1) + 1.

3. J∞(ξ(k)) converges to J∗
∞.

The detailed proof is reported in Appendix B.2. In this case, the situation is a bit

more complicated than the one for the CB algorithm. The Lyapunov function employed

in the proof of the CB algorithm is not Lyapunov anymore for the r-CB one. It is

therefore necessary to study the evolution in time of J∞, which, conversely to J2, does

not have a unique minimizer. The proof relies on the introduction of a theorem similar

to that in Bullo et al. (2012), and on showing that, if the current partitioning is not

3.4 r-CB: a version robust to packet losses 55

optimal, J∞ is strictly decreasing after a bounded number of consecutive iterations of the

r-CB algorithm. Since J∞ does not have a unique minimizer, in this case it is possible to

show only convergence to the set of minimizers of problem P1:

Corollary 3.4.2. Under the same assumptions of Theorem 3.4.1, the trajectory {ξ(k)}k
generated by the r-CB algorithm converges to the set of optimal solutions of problem P1,

i.e., ξ(k)→ Ξ∗
∞ as k tends to infinity.

Remark 3.4.3. The algorithm presented in this work is similar to the one presented in

Alberton et al. (2012); Borra et al. (2015). However, the mathematical machinery used

here is substantially different from the one employed in Alberton et al. (2012); Borra

et al. (2015), which considers only the lossless scenario and which strongly relies on

the monotonicity of J2(ξ) and on its minimum being unique. In fact, when packet loss

is considered neither J2(ξ) nor J∞(ξ) satisfy the hypotheses of the theorems in Borra

et al. (2015). Moreover, Theorem 3.4.1 is rather general and might be applicable to

other relevant applications such as 2D/3D partitioning in cooperative robotics with

asynchronous and lossy communication.

Some simulations are also presented to further show the effectiveness of the algorithm.

The setting for the first simulation is the following: the number N of cameras takes

different values, the length of the environment is L = 10N and the maximum speed is v̄i =

2 for all cameras. The patrolling range of cameras i = 2, . . . , N−1 is [10(i−1)−2, 10i+2],

for camera 1 is [0, 12] and for camera N is [10(N − 1) − 2, 10N]. Concerning the

communication reliability, a communication works with a probability of 70% and the

value for threshold h is 10 (in the implementation it is assured that Assumption 2.3.1 is

satisfied); also, every N iterations all the cameras are activated once, implying a value

for parameter τ in Assumption 2.3.2 equal to N . The initialization for the algorithm

is li(0) = di, ri(0) = di(0) for all the cameras. Figure 3.4 shows the normalized cost

functions for a realization of the r-CB algorithm. Given a cost function J(k) with optimal

value J∗, its normalized form J̃ is given by

J̃(k) =
J(k)− J∗

J(0)− J∗ . (3.8)

The figure confirms that, as demonstrated in Theorem 3.4.1, J̃∞ does not increase as

the number of iterations increases and converges to the optimal value, while for J̃2 the

non-increasing property does not hold. This clearly shows that J2(k) cannot be used as

a Lyapunov function. Nevertheless, J2(k) still seems to converge to its optimal value. It

is therefore possible to conjecture that r-CB still converges to a unique point (the unique

optimizer of problem P2), which is not so strange intuitively since the modification only

3.5 Final considerations on the patrolling problem 57

Figure 3.5 contains an additional simulation. In this case, the maximum speed and

the physical limits of each camera are randomly chosen (always respecting the interlacing

physical coverage constraints (3.1)). In the previous case, due to the symmetry of the

set-up, the physical constraints do not play any role in determining the optimal solution,

since the extremes of each optimal patrolling area strictly satisfy

di < `i < di+1, di+1 < ri < di

for all cameras. The solution is reached only asymptotically, since it is obtained through

a redistribution method. Conversely, in the second case, the differences in speed and

physical constraints create a different situation. In particular, in Figure 3.5, what happens

is that the value J∗
∞ is determined by the sweeping time of camera 44, whose optimal

value of the extremes `44 and r44 of its patrolling areas correspond respectively to d43

and d45, the physical constraints of its neighbor. This means that there is no way that

the sweeping time of camera 44 can be diminished below that value, since the neighbors

cameras cannot further help camera 44. In this case the algorithm reaches in a finite

and very short time the minimum value for J∞ (every camera is activated less than 4

times in order to reach its minimum), which is determined by camera 44. On the other

hand, the value of J2 continues to decrease (as a trend), because the remaining cameras

continue to divide as equally as possible their patrolling burden.

3.5 Final considerations on the patrolling problem

This chapter focused on an application for smart camera networks, a multi-agent system

which is nowadays highly utilized especially for security reasons. The advantages of the

use of a distributed approach for this specific application have been highlighted, and

can be summarized into good problem scalability, safety and possibility to easily adapt

to dynamic changes. The convergence is shown for both algorithms introduced, but

the differences in the two proofs shows that for the robust version of the algorithm the

demonstration is more complicated and it is not possible to show convergence to a unique

point, but only to a set.

58 Patrolling for camera networks

4
Minimization of locally coupled cost functions

The results of this chapter are the subject of the following submitted paper

Todescato M., Bof N., Cavraro G., Carli R., and Schenato L. Generalized

gradient optimization over lossy networks for partition-based estimation. arXiv preprint,

arXiv:1710.10829

The algorithm developed in this chapter can be used to solve a particular class of

problems that arises in multi-agent systems, when each agent is endowed with a private

cost. It has therefore a wider applicability than the algorithms introduced in Chapter

3, where the problem was really specific. In the class of problems here analyzed, each

agent has its own optimization variable, but its cost function depends not only on its own

optimization variable but also on those of its one-hop neighbors. The agents’ aim is to

minimize the sum of the private cost functions, using the communication set-up defined

in Section 2.2, an asynchronous protocol and not assuming perfect communication. Even

though many algorithms exist to solve similar problems, at the best of the author’s

knowledge there is none which address simultaneously all the features that are desired.

The algorithm developed is applied to solve an estimation task for smart power grids, but

the same algorithm can be useful also in other multi-agent systems like robot networks,

sensor networks and so on (as long as the function to minimize is locally coupled).

60 Minimization of locally coupled cost functions

4.1 Introduction and state of the art

The problem considered in this chapter has evident similarities with the one analyzed in

Chapter 6. In both cases, given a set of agents, each is endowed with a cost function, and

the agents’ aim is to minimize the sum of these cost functions. The difference between

the two chapters is in the specific cost functions utilized.

In particular, as already described in the introduction, on the one hand this chapter

deals with the minimization of locally coupled cost functions (see Figure 1.19), and, on

the other hand, Chapter 6 deals with additively separable cost functions, where the

agents have to reach consensus on the optimization variable (see Figure 1.23). The state

of the art presented below, briefly involves also some works that concern the minimization

of additively separable cost functions, and that will be useful in Chapter 6.

It is possible to find many papers that tackle the distributed minimization of the sum

of cost functions. This optimization has to be carried out by a group of agents, each of

them contributing to the final cost function with its own private term. There are mainly

three kinds of distributed algorithms to solve such problems.

The first class of algorithms relies on primal sub-gradient or descent iterations, as

in Nedić and Ozdaglar (2009); Nedić, Ozdaglar, and Parrilo (2010); Marelli and Fu

(2015). These methods have the advantage to be easy to implement and suitable for

asynchronous computation. In the first two cited works, the problem is the minimization

of additively separable cost functions, with all the agents that have to agree on the choice

of the minimizer. The third work, Marelli and Fu (2015), concerns instead a problem

very similar to the one studied in this chapter.

A second class of algorithms involves dual variables. In particular, augmented

Lagrangian algorithms such as the Alternating Direction Methods of Multipliers (ADMM)

recently became popular, especially because they usually present a good convergence

speed. ADMM was developed as a centralized algorithm, but can be used to manage a

distributed set-up (in Chapter 5 the idea behind its distributed version will be explained).

Boyd et al. (2011) contains a survey on ADMM and its wide applicability. However,

most of the ADMM distributed algorithms are based on a consensus iteration Wei and

Ozdaglar (2013). Thus, each node must store in its local memory a copy of the entire state

vector. To avoid this problem, a recent partition-based and scalable approach applied

to the ADMM algorithm is presented in Erseghe (2012). A similar idea is presented

in Kekatos and Giannakis (2013). Most of the previous works requires a synchronous

communication set-up, and only recently suitable modification of the ADMM algorithm

have been proposed to cope with an asynchronous set-up Wei and Ozdaglar (2013);

Iutzeler, Bianchi, Ciblat, and Hachem (2013); Bianchi, Hachem, and Iutzeler (2014). In

4.1 Introduction and state of the art 61

all the latter works, the agents have to agree to the same minimizer.

There exist also other distributed algorithms for the solution of the problem (in case

consensus on the minimizer is sought), which are based on Newton methods Zargham,

Ribeiro, Ozdaglar, and Jadbabaie (2014); Zanella, Varagnolo, Cenedese, Pillonetto, and

Schenato (2011). The algorithm presented in the latter work will be the starting point

for Chapter 6.

This chapter addresses the minimization of a global cost function which is the sum

of convex locally coupled local costs (see Figure 1.19). The minimization (which is

unconstrained) has to be carried out in a distributed way by a group of agents (each owner

of one of the local costs). The algorithm developed has to cope with an asynchronous

and possibly lossy communication set-up. The aim is to actually exploit the fact that the

costs are locally coupled and to have each agent evaluate only the part of the optimization

variable which it owns (so consensus among agents is not sought). Moreover, each agent’s

update has to exploit information coming only from one-hop neighbors.

The problem itself is interesting since its structure characterizes a large variety

of applications such as multi-area electric grid state estimation Conejo, de la Torre,

and Canas (2007); Bolognani, Carli, and Todescato (2014), localization in multi-robots

formation and sensor networks Carron, Todescato, Carli, and Schenato (2014); Bof,

Todescato, Carli, and Schenato (2016a) and Network Utility Maximization Palomar and

Chiang (2006). As a consequence, the algorithm developed to solve this problem can be

applied in different situations.

From an algorithmic point of view, the solution proposed, which is gradient descent

based, has some peculiarity with respect to other gradient-based algorithms like Nedić

and Ozdaglar (2009); Nedić et al. (2010); Marelli and Fu (2015). In particular, for the

class of cost functions considered in this chapter, the solution given by the works just

cited (and by similar approaches) usually does not lead to a distributed algorithm (as

intended in this thesis). Indeed, even though the cost is the sum of locally coupled costs,

its derivatives are not usually locally coupled (meaning that they only depend on the

neighbors’ information), but depend on information related to multi-hop processing units.

Hence, the local functional dependence cannot be directly exploited. To overcome this

issue, in some cases (Nedić and Ozdaglar (2009); Nedić et al. (2010)) the algorithms

require the local exchange of global information, hence all the agents eventually reach

consensus to an optimal solution. Conversely, the algorithm presented here allows each

agent to work only on its own part of the solution. In other cases, the algorithms

require multiple communication rounds within the same algorithmic iteration (Marelli

62 Minimization of locally coupled cost functions

and Fu (2015)), with this latter solution implicitly asking for synchronicity. Instead, the

algorithm introduced here requires just one communication exchange per iteration, and

this exchange is allowed only between one-hop neighbors.

Another very important aspect is that the solution proposed works in a lossy com-

munication scenario. To do so it employs what might look like a natural approach: the

processing units store the last successfully received information from the neighboring

nodes. This idea to solve the problem of packet losses is similar to the one adopted

in the partially asynchronous iterative methods Bertsekas and Tsitsiklis (1989); Tsitsik-

lis, Bertsekas, and Athans (1986). However, as later described in Section 4.3, in the

algorithm developed here, because of packet drops, the same state variables appears

in multiple delayed version in the same update, which is not allowed in partially asyn-

chronous iterative methods (see Equation 1.2 in Bertsekas and Tsitsiklis (1989)[Chp

7]). Thus, it is not possible to reduce the algorithm proposed in this chapter to these

latter methods. Moreover, regarding the problem of computing non-locally coupled

derivatives, in partially asynchronous methods each computational unit uses information

also from multi-hop neighbors, that is in the update the variables used belong not only

to neighbors, but only to the neighbors of the neighbors. As so, information is not shared

only between the neighbors in the communication graph, but also among neighbors in a

hyper-communication graph (using for example multi-hop communication). For example,

consider the case where the communication graph has a star topology. According to

this graph, each peripheral node can communicate only with the central node, while the

central processor can communicate with everyone else, and so each peripheral node has

information coming only from the central node, and the central node has information from

everyone else. Conversely, if a two-hop communication is exploited, then the nodes use

information coming from all the others, and the hyper-communication graph is complete.

Figure 4.1 shows the two situations. This latter aspect was perhaps less relevant in the

context explored in Bertsekas and Tsitsiklis (1989), especially because it focused on the

parallelization of the computation. In a peer-to-peer situation (that is in a multi-agent

system) this aspect is much more important.

The main contribution of the paper is a truly distributed algorithm, based on a

modified generalized gradient descent iteration which, under suitable assumptions on

the step size, is provably convergent and which is resilient to the presence of packet

losses in the communication channel. To the best of the author’s knowledge, this is one

of the first provably convergent algorithms in the presence of packet losses, since even

if both ADMM algorithms and distributed sub-gradient methods (DSM) can handle

asynchronous computations, they still require reliable communication and usually require

64 Minimization of locally coupled cost functions

4.2 Problem formulation

Consider a set of N agents V = {1, . . . , N}, where each agent i ∈ V is described by its state

vector xi ∈ R
ni and assume that they can communicate accordingly to communication

graph G = (V, E) which has to meet the following assumption

Assumption 4.2.1. The communication graph G is time-invariant, undirected and

satisfy the Assumption 2.2.1 on connectivity.

Defining the overall state vector as x := [x>
1 , . . . ,x

>
N]> ∈ R

n (n =
∑

i ni), the

optimization problem to be solved is

min
x
J(x) ≡ min

x1,...,xN

N∑

i=1

Ji(xi, {xj}j∈Ni
) . (4.1)

Observe that the Jis’ local dependence coincides with the communication graph G, i.e.,

each cost function Ji depends on information regarding only agent j ∈ N+
i .

The convergence of the algorithm proposed will be assured it the following assumption

on the total cost function is met:

Assumption 4.2.2 (Strict convexity and radial unboundedness). The function J(x) is

assumed to be strictly convex and radially unbounded.

Under the previous assumption the minimizer x∗ of Problem (4.1) exists and is unique

x∗ := argmin
x

J(x) , (4.2)

but the local costs function Jis do not need to be strictly convex and radially unbounded.

Indeed in many estimation problems the local cost functions Jis are just strictly convex

but not radially unbounded. The standard approach to solve the previous optimization

problem is to resort to some centralized iterative algorithm acting on J , e.g., Newton-

Raphson, which makes use of global knowledge of the network’ states, costs and topology.

Conversely, the algorithm developed in this chapter has to respect some features,

which limit the agents’ possibility to obtain global knowledge on the network. These

features are described in the following.

4.2 Problem formulation 65

The algorithm designed to solve Problem (4.1) has to have the following features:

1. Asymptotic local estimation: each agent i has to asymptotically estimate only its

part x∗
i of the overall optimal solution x∗.

2. Peer-to-peer (leaderless): each node’s update has to consider the limited computa-

tional and memory capability available at the node itself and there is no master

node among the agents. Moreover, the algorithm can only require communication

between one-hop neighbors and it has to assure convergence on any communication

graph G satisfying Assumption 4.2.1.

3. Distributed: the update-rule of the local variables at each node has to depend

only on the variables stored by the local node and by its neighbors. No multi-hop

information exchange is allowed.

4. Asynchronous: the algorithm has to allow the agents to perform the update step

and the communication step in any moment, without any coordination among the

agents.

5. Lossy broadcast communication without ACK : the convergence of the algorithm

has to be assured even if communication is lossy and broadcast-based. No ACK

mechanisms has to be employed.

To simplify the notation, the local components of gradients and Hessians will be

denoted as:

∇iJj =
∂Jj

∂xi
, ∇2

i`Jj =
∂2Jj

∂xi∂x`
.

Remark 4.2.3. The class of functions considered can arise in diverse applications such

as state estimation in smart electric grids Todescato et al. (2015) and sensor networks

localization Bof et al. (2016a). In these applications usually a quadratic cost on the

residuals is applied, leading to a standard linear least-squares framework. Nevertheless,

as shown in Section 4.6, the class of functions that can be used is much more general

and comprises penalty functions used, e.g., to perform robust statistics and general

nonlinear least-squares optimization. Also, this set-up may arise in parallel computation,

if, especially for privacy but also for efficiency reasons, each agent is given only one Ji.

In this case, to preserve privacy, thanks to local exchange of information, the machines

must distributely compute a solution of (4.1).

66 Minimization of locally coupled cost functions

4.3 Motivating example: state estimation in smart power

distribution grids

Before proceeding to introduce the algorithm, the application on which it is tested at the

end of the chapter is described. The tackled problem is state estimation in smart power

distribution grids. For the ease of exposition, voltages and currents at a node in the grid

are expressed as a real number even though they are phasors, i.e., should be represented

as complex numbers. The discussion can be extended w.l.o.g. also to the more realistic

scenario (which is indeed considered in Section 4.6 below).

In steady state the voltages and currents in a power distribution grid with Nb busses

are regulated by the Kirchhoff’s laws which can be written as follow:

Lv = ic .

L ∈ R
Nb×Nb is the admittance matrix, and v ∈ R

Nb and ic ∈ R
Nb are the vectors

collecting all the Nb voltages and currents of the busses in the grid, respectively. The

admittance matrix is a sparse matrix, in the sense that the current at a specific bus `,

namely ic`, depends only on its own voltage and the voltages of its physically connected

neighbor busses in N`, i.e.

ic` =
∑

j∈N +
`

L`jvj .

In future smart distribution grids, it is expected that each bus ` will be able to take

noisy measurements of its voltage and current, i.e.

yv
` = v` + wv

` ,

yic

` = ic` + wic

` =
∑

j∈N +
`

L`jvj + wic

` ,

where wv
` , w

ic

` represent the measurement noise for the voltage and current measurements

at bus `, respectively.

The (centralized) state estimation problem assumes that all these measurements are

collected at a central unit, which than evaluates the best estimate of all the voltages and

currents {v`}Nb

`=1. Usually, the unknown quantities to be estimated are the voltages v∗,

and from these the currents can be estimated via the Kirchhoff’s law ic∗ = Lv∗.

In this work, the interest is for solving this problem in a distributed fashion via a

partition-based communication architecture. If one consider each bus in the power grid

as an agent (which has to solve the estimation problem), the situation is as follows: each

4.3 Motivating example: state estimation in smart power distribution grids67

agent has its own (current and voltage) measurements and can communicate with its

physically connected neighbors. In fact, it is expected that, in a smart grid, the busses

will be embedded with communication capabilities, such as power line communication

(PLC), which allow them to communicate with their physically connected neighbors. As

so, the communication network and the physical network will coincide.

Even though in the following it is assumed that each bus is a node for the distributed

algorithm, this is not compulsory. As a matter of fact, one can consider the presence of

N computational units, each associated to a group of busses. This computational unit

collects the measurements obtained by the busses, performs the voltage estimation and

for example decide some control action to apply on its own part of the power grid.

Assume that each bus is a node (or agent), that is N = Nb. Agent ` is described

by its voltage x` ∈ R, its measurements y` := [yv
` yic

`]> ∈ R
2 and corresponding

measurement errors w` := [wv
` w

ic

`]> ∈ R
2. Define also vectors x := [x1, . . . , xN]> ∈ R

N ,

y := [y>
1 , . . . , y

>
N]> ∈ R

2N , w := [w>
1 , . . . ,w

>
N]> ∈ R

2N . As so, the measurement model

for each node i ∈ {1, . . . , N} can be written as:

yi =
N∑

j=1

Aijxj +wi =
∑

j∈N +
i

Aijxj +wi (Aij = 0 if j /∈ N+
i) ,

where Aij can be obtained from matrix
[
INb

L>
]>

after a row and column permutation.

The overall measurement model can be rewritten as

y = Ax+w ,

where A := [A>
1 , . . . , A

>
N]> ∈ R

2N×N and Ai := [Ai1, . . . , AiN] ∈ R
2×N .

Now that the measurement model has been derived, it is possible to show why, even

though the local costs are locally coupled, each agents needs information coming from

two-hops neighbors. The cost function used is the quadratic one, which allows an easy

derivation of the algorithm. However, the two-hops information dependence appears in

more general functions, and in particular in the one used in the simulation section.

One of the standard estimation technique is to minimize the 2-norm of the residuals.

According to this estimation, the cost functions employed are:

Ji(xi, {xj}j∈Ni
) :=

1

2
‖yi −Aix‖2, J(x) :=

N∑

i=1

Ji(xi, {xj}j∈Ni
) =

1

2
‖y −Ax‖2,

68 Minimization of locally coupled cost functions

whose gradient and Hessians are

∇J(x) = A>(Ax− y) , ∇2J(x) = H = A>A ,

Hij =
N∑

`=1

A>
`iA`j =

∑

`∈N +
i

A>
`iA`j =

∑

`∈(N +
i

∩N +
j

)

A>
`iA`j .

The optimal (centralized) least squares solution1 is given by:

x∗ = argminxJ(x) = (A>A)−1A>y .

A standard approach to asymptotically obtain the optimal solution (in a centralized

approach) is to employ an iterative algorithm based on the generalized gradient descent

(in order to simplify the notation, the variables at the current time step are denoted

without the time, and the variables at the following time step are denoted with a +

superscript):

x+ = x− εD−1A>(Ax− y) = x− εD−1∇J(x) = x− εD−1(Hx−A>y) ,

where ε is a suitable stepsize and D is a strictly positive definite matrix, i.e. D > 0. Note

that the Hessian of J is a strictly positive matrix so it is possible to substitute D with the

Hessian, recovering the Newton method. A typical way to solve the previous update in a

distributed fashion is to pick a block-diagonal matrix D, i.e. D = blkdiag(D1, . . . , DN),

so that the previous centralized update can be written as

x+
i = xi − εD−1

i

(N∑

j=1

Hijxj −
N∑

j=1

A>
jiyj

)

= xi − εD−1
i

(N∑

j=1

N∑

`=1

A>
`iA`jxj −

N∑

j=1

A>
jiyj

)

= xi − εD−1
i




∑

j∈N +
`

,∀`∈N +
i

A>
`iA`jxj −

∑

j∈N +
i

A>
jiyj


 , (4.3)

where in the last step the property that Aij = 0 if j /∈ N+
i was exploited. Note that the

term within brackets concerns the gradient evaluation (and so it has to be evaluated

also when a sub-gradient method is used). While the second summation involves only

1The formulation can be extended to the weighed least square solutions if noise with different variances
R are included which would lead to the solution x∗ = (A>R−1A)−1A>R−1y, but for the sake of clarity
in the notation of this section, it is omitted.

4.3 Motivating example: state estimation in smart power distribution grids69

measurements that belong to the neighbors of node i, the first summation requires the

node i to collect the state variables xj that belongs to the neighbors of the neighbors. As

so, this implementation is not really distributed, since two-hop communication is required.

Although this is not impossible from a practical perspective, it requires substantial

additional communication and synchronization efforts. An alternative approach that

allows the implementation of a truly distributed algorithm is to create the following

additional local variable at each node i:

zi = Aix =
∑

j∈N +
i

Aijxj , ∀i ,

which can be collected in the vector z := [z>
1 , . . . ,z

>
N]>, so that in matrix form the

previous expression can be written as z = Ax. With this notation the generalized

gradient descent can be written as:

z+
i =

∑

j∈N +
i

Aijxj

x+
i = xi − εD−1

i

(N∑

`=1

A>
`i

N∑

j=1

A`jxj

︸ ︷︷ ︸
z`

−
N∑

j=1

A>
jiyj

)

= xi − εD−1
i

∑

`∈N +
i

A>
`i(z

+
` − y`) .

This alternative solution requires two communication rounds to compute x+
i , since first it

is necessary to send the xis to compute z+
i s, and then to transmit the zis. For simplicity,

here it is assumed that node i sends its own measurements yi to its neighbors (which

store it) at the initialization phase, since the measurements do not change during the

course of the evolution of the algorithm. Again, a double communication exchange per

iteration requires additional synchronization. In practical scenarios, such as using PLC

protocols, synchronization of transmissions and updates can be difficult. Moreover packet

losses might occur, i.e. some messages from the neighbors might not be received. A naive

solution to both problems is to use local registers that keep in memory the latest message

received from the neighbors, and then use these values whenever an update of the local

variables xis and zis is needed. It can be shown that this is equivalent to a scenario

where every node j ∈ Ni use a delayed version of the local variables xis and zis. Since

the variables zis are function of the (possibly delayed) state variables xis, the update of

the variables xis can be rewritten as a function of the delayed version of the variables

70 Minimization of locally coupled cost functions

xis. More specifically, the previous update equations can be written as

zi(k + 1) =
∑

j∈N +
i

Aijxj(τ ′
ij(k)) , (4.4)

xi(k + 1) = xi(k)− εD−1
i

(N∑

`=1

A>
`i

N∑

j=1

A`jxj(τ`j(k))

︸ ︷︷ ︸
z`(τ̃`j(k))

−
N∑

j=1

A>
jiyj

)
. (4.5)

where 0 ≤ τij(k), τ ′
ij(k) ≤ k represent the delay with respect to the current time k

according to which variable xj appears in the update of zi and xi respectively, and τ̃`j(k)

is the delay according to which z` appears in the update of xi. All these delays depend

on the specific sequence of packet losses and variable updates, and explicitly included

the time dependency of each variable. Note that in the last equation a variable xj might

appear with multiple instances with different delays into the update of the variable

xi. As a consequence, it is not possible to write the variables’ evolution of the original

generalized gradient descent algorithm given in Eqn. (4.3) as a partially asynchronous

iterative methods (see chapter 7 of Bertsekas and Tsitsiklis (1989)), that is as

xi(k + 1) = xi(k)− εD−1
i

(N∑

j=1

Hijxj(τij(k))−
N∑

j=1

A>
jiyj

)
. (4.6)

This implies that it is not possible to use the results of the extensive body of literature

related to these methods.

Motivated by this observation, an alternative mathematical machinery based on

Lyapunov theory and the separation of time scale principle will be proposed to prove

convergence of the asynchronous algorithm (4.5) for a sufficiently small stepsize ε.

The ideas used to obtain the algorithm can also be applied to more general convex

problems. For example, in the presence of outliers or sensor faults in order, more robust

estimators than least squares should be used. In particular, outliers are measurements

that are completely wrong.

A common way to enforce robustness in the estimation is to replace the quadratic

cost function defined above with the 1-norm of the residuals, that is

Ji(xi, {xj}j∈Ni
) = ‖yi −Aix‖1 . (4.7)

As can be seen from the left part of Figure 4.2, using a 1-norm, an outlier is weighted

much less with respect to its weight using the 2-norm, and so it does not influence too

much the estimate.

4.4 Synchronous update and reliable communication 71

−3 −2 −1 0 1 2 3

0

2

4

6

8

z

‖ · ‖1

‖ · ‖2

−3 −2 −1 0 1 2 3

0

1

2

3

z

‖
·
‖
1
,
ν ν = 0

ν = 0.1

ν = 0.5

ν = 1

Figure 4.2: On the left comparison between the 2-norm and 1-norm. On the right, modified
1-norm for different values of the parametere ν.

However, since (4.7) is not differentiable, it cannot be directly used in the procedure

just explained, since the gradient is needed. To deal with this issue, in the Simulation

section 4.6, where this cost function is employed, the following modification of the 1-norm

Argaez, Ramirez, and Sanchez (2011) is used

‖ · ‖1,ν : RN → R , x 7→ ‖x‖1,ν :=
N∑

i=1

√
x2

i + ν , (4.8)

where ν > 0 is such that the smaller the selected value of ν is, the better the approximation

of the 1-norm is (see the right part of Figure 4.2. In particular, the approximation of

each term in the summation of the cost function is quadratic when xi belongs to a small

neighborhood of 0.

The next two sections generalize what was presented here, providing a fully distributed

generalized gradient descent algorithm which is resilient to lossy communication.

4.4 Synchronous update and reliable communication

The idea is to first present an algorithm for the case of synchronous and ideal, i.e.,

reliable, communications among neighbors, and then to consider the extension to the

more realistic case of unreliable communication in Section 4.5.

Consider the optimization Problem (4.1). In the ideal communication case, one

possible choice to iteratively solve Problem (4.1) is to exploit the so called generalized

gradient descent iteration

x+ = x− εD−1(x)∇J(x) , x(0) = x0 , (4.9)

where ∇J(x) :=
[

∂J(x)
∂x |x

]>
is the gradient of J evaluated at the current value x, D(x)

72 Minimization of locally coupled cost functions

is a generic positive definite matrix, possibly function of x itself, and ε a suitable positive

constant, referred to as step size. Observe that depending on the particular choice of

D(x), Eq. (4.9) describes various types of algorithms. Indeed, if D(x) = I, the standard

gradient descent iteration is obtained; if D(x) is chosen to be diagonal with diagonal

elements equal to those of the Hessian matrix, then a Jacobi descent iteration is retrieved;

while, if D(x) is equal to the entire Hessian, then Eq. (4.9) returns classical Newton’s

iteration.

The algorithm proposed is inspired by a particular case of (4.9). Namely, D(x) is chosen

to be a block diagonal matrix such that

D(x) = blkdiag(D1(x), . . . , DN (x)) , Di(x) := ∇2
iiJ(x) , i ∈ V , (4.10)

i.e., where each diagonal block coincides with the second order derivative of J w.r.t. xi.

This algorithm is denoted as block Jacobi.

Thanks to this choice for the matrix D, Eq. (4.9) can be split into partial state

updates each of which equal to

x+
i = xi − εD−1

i (x)∇iJ(x) , i ∈ V . (4.11)

Now, it is convenient to explicitly take into account the separable structure of the cost

function J in order to show that each gradient block ∇iJ as well as each Di block can

be computed exploiting only (sub-)local information coming from agent’s i two-steps

neighbors, i.e., agents connected to agent i by a directed path of length two. Indeed, for

the gradient it holds that

∇iJ(x) =
∑

j∈N +
i

∇iJj({x`}`∈N +
j

) = ∇iJi(xi, {xj}j∈Ni
) +

∑

j∈Ni

∇iJj(xj , {x`}`∈Nj
).

(4.12)

The first term on the right-hand side of Eq. (4.12) depends only on information coming

from j ∈ N+
i ; while, the second term possibly depends on information coming from

neighbors of node i and from the neighbors of its neighbors, ` ∈ N+
j . A similar reasoning

applies to Di. Indeed,

Di(x) =
∑

j∈N +
i

∇2
iiJj({x`}`∈N +

j
)

= ∇2
iiJi(xi, {xj}j∈Ni

) +
∑

j∈Ni

∇2
iiJj(xj , {x`}`∈Nj

) . (4.13)

4.4 Synchronous update and reliable communication 73

Again, the first term in the right-hand side of Eq. (4.13) depends only on node i direct

neighbors, j ∈ N+
i , while the second term requires information coming from the neighbors

of its neighbors. In view of a distributed computation, it is assumed that each agent

i ∈ V, once gathered the neighbors states {xj}j∈Ni
, can compute and store in its local

memory, in addition to the state xi, the following variables

ρ
(j)
i (x) := ∇jJi(xi, {xj}j∈Ni

) , ξ
(j)
i (x) := ∇2

jjJi(xi, {xj}j∈Ni
) , (4.14)

which represent the partial components of the first and second derivatives of its local cost

Ji with respect to variable xj , evaluated at the current state value. Observe that, since

in a distributed framework each agent is assumed to have information only regarding

its local cost Ji, the ρ’s and ξ’s variables represents the quantities that agent i must

compute and send to its neighbors in order to let them compute their corresponding

gradient and hessian blocks. Likewise, agent i needs to receive similar variables from

each one of its neighbors. Indeed, thanks to Eqs. (4.12)–(4.13), it holds that

∇iJ(x) =
∑

j∈N +
i

ρ
(i)
j (x) , Di(x) =

∑

j∈N +
i

ξ
(i)
j (x) . (4.15)

As stressed above, to iteratively compute (4.11), each agent i ∈ V can perform its

computations autonomously assuming it has at its disposal information coming from its

two-steps neighbors. However, this presents two major drawbacks:

1. it clashes with a truly distributed setting which exploits the exchange of information

only among one-step neighbors;

2. within successive iterations, to ensure consistency and thus convergence of the proce-

dure to a minimizer of Problem (4.1), all the communications must be synchronous

and reliable.

To workaround the first issue one possible solution would be, at each iteration, to perform

two communication rounds among one-step neighbors as illustratively shown in Figure 4.3.

The first round is used to exchange the state values among neighboring agents in order

them to compute all the partial information terms according to Eqs. (4.14)–(4.15); the

second round is used to communicate the computed variables in order to perform the

state update as in Eq. (4.11). Regarding the second issue, it necessarily enforces the

use of suitable synchronization algorithms as well as re-transmission protocols in case of

packet failures.

A more compact description of the procedure is given in in Algorithm 4.1 in which

flagtransmission denotes a variable to control communication and update among the agents.

74 Minimization of locally coupled cost functions

Agent i:

1st comm.
round compute{

ρ
(j)
i (t), ξ

(j)
i (t)

}
j∈N

+

i

to j ∈ Ni from j ∈ Ni

xi xj

2nd comm.
round

update xi(t)

single iteration

to j ∈ Ni from j ∈ Ni

{ρ
(j)
i , ξ

(j)
i } {ρ

(i)
j , ξ

(i)
j }

Figure 4.3: Communication scheme to perform one single block Jacobi iteration (4.11) in a
distributed setting which assumes only information exchange among one-step neighbors.

Even though this procedure provides a possible solution to the problem, this is not really

satisfactory for real-world applications. Consequently, next section presents a truly

distributed and resilient iterative procedure which, by naturally exploiting information

coming from one-step neighbors and being resilient to packet losses and communication

non idealities, is much more appealing from an engineering perspective.

Algorithm 4.1 Distributed Block Jacobi algorithm (node i).

Require: xo
i , ε

1: xi ← xo
i

2: if flagtransmission = 1 then
3: Broadcast: xi

4: Receive: xj , ∀j ∈ Ni

5: ρ
(j)
i ← ∇jJi({xk}k∈N +

j
), ∀j ∈ N+

i

6: ξ
(j)
i ← ∇2

jjJi({xk}k∈N +
j

), ∀j ∈ N+
i

7: Broadcast: ρ
(j)
i , ξ

(j)
i , ∀j ∈ Ni

8: Receive: {ρ(i)
j , ξ

(i)
j }, ∀j ∈ Ni

9: xi ← xi − ε
(∑

j∈N +
i
ξ

(i)
j

)−1(∑
j∈N +

i
ρ

(i)
j

)

10: end if

4.5 Asynchronous updates and unreliable communication:

the Resilient Block Jacobi (RBJ) algorithm

In this section the assumption on ideal communication is relaxed. From now on communi-

cation is asynchronous and unreliable. As a consequence each agent might either receive

asynchronous information coming from its neighbors, or not receive it. In particular,

a modified iteration is presented and its corresponding iterative algorithm is analyzed.

This new algorithm is referred to as resilient block Jacobi. It (i) exploits only information

coming from one-step neighbors; (ii) requires only one communication round per algorith-

4.5 Asynchronous updates and unreliable communication: the Resilient
Block Jacobi (RBJ) algorithm 75

mic iteration; (iii) is based on an asynchronous communication protocol; (iv) is resilient

to communication failures. The algorithm is first presented for the general case of sepa-

rable convex costs. Later, it is particularized to suit two special cases to show its flexibility.

Consider the standard block Jacobi iteration (4.11). As pointed out in Section 4.4,

the procedure exhibits some fundamental issues which deeply compromise its distributed

and asynchronous implementation and also its robustness properties. Thus, it is necessary

to suitably modify iteration (4.11) in order to obtain an algorithm more appropriate for

a real distributed application.

The proposed modification is apparently naive since the idea is to simply equip each

agent with an additional amount of memory storage to keep track of the last received and

available information corresponding to each neighbor. This additional memory is then

used to perform Eq. (4.11). Indeed, note that in the block-Jacobi algorithm, if agent i

does not receive some of the information coming from its neighbors, it does not have the

necessary information to synchronously compute neither (4.14) nor (4.15) and thus it is

not able to update its state according to (4.11).

To model randomly occurring packet losses it is convenient to introduce the indicator

function

γ
(i)
j (k) =

{
1 if i received the information sent by j at iteration k

0 otherwise.

with the assumption that γ
(i)
i (k) = 1, since node i has always access to its local variables.

Then, as suggested above, the main idea is to equip each agent i with the auxiliary

variables
{
x̂

(i)
j , ρ̂

(i)
j , ξ̂

(i)
j

}
j∈Ni

, used to keep track of the last available information received

by i from each of its neighbors. Specifically, the dynamic for the j-th set of additional

variables is given by

{
x̂

(i)
j (k), ρ̂

(i)
j (k), ξ̂

(i)
j (k)

}
=





{
xj(k),ρ

(i)
j (k), ξ

(i)
j (k)

}
, if γ

(i)
j (k) = 1 ;

{
x̂

(i)
j (k − 1), ρ̂

(i)
j (k − 1), ξ̂

(i)
j (k − 1)

}
, if γ

(i)
j (k) = 0 .

(4.16)

Thanks to this additional memory, at every algorithmic iteration, each agent can perform

its local update which is inspired on Eq. (4.11):

xi(k + 1) = xi(k)− ε



∑

j∈N +
i

ξ̂
(i)
j (k)




−1

∑

j∈N +
i

ρ̂
(i)
j (k)


 . (4.17)

76 Minimization of locally coupled cost functions

xi(t),
{
ρ
(j)
i (t), ξ

(j)
i (t)

}
j∈Ni{

x̂
(i)
j (t), ρ̂

(i)
j (t), ξ̂

(i)
j (t)

}
j∈Ni

Agent i

Agent j ∈ Ni
xi(t),ρ

(j)
i (t), ξ

(j)
i (t)

γ
(j)
i

xj(t),ρ
(i)
j (t), ξ

(i)
j (t)

γ
(i)
j

Figure 4.4: Memory storage and communication scheme between pairs of neighbors agents
for the RBJ algorithm.

The differences between Eqs. (4.11) and (4.17) are mainly two:

1. the variables in agent i’s memory used to store the first and second partial derivatives

of Ji w.r.t. xj , j ∈ Ni, are necessarily computed as

ρ
(j)
i (k) = ∇jJi(xi(k), {x̂(i)

` (k)}`∈Ni
), ξ

(j)
i (k) = ∇2

jjJi(xi(k), {x̂(i)
` (k)}`∈Ni

),

(4.18)

that is, they are evaluated at the last stored states’ values; likewise, the values of

the additional variables {ρ̂(i)
j , ξ̂

(i)
j }j∈Ni

correspond to those last received from each

neighbor and computed by each of them using the last available information on

their neighbors’ states;

2. conversely to the synchronous implementation of the algorithm, at each iteration

only one communication round is performed. This means that the agents send only

one packet per iteration, consisting of the state and the partial derivatives. See

Figure 4.4 for an illustrative representation.

Thanks to this simple modification the agents can perform their updates asyn-

chronously and independently. Moreover, since only one communication round per

iteration is required, both the communication burden and the number of possible commu-

nication failures are reduced. Nevertheless, it is worth stressing that, even if no packet

losses occur, the classical block Jacobi and our resilient block Jacobi iteration does not

exactly coincide. Indeed, in the resilient case, by sending only one packet per iteration,

the state and the partial derivative information would be “delayed” one from each other

of one iteration if compared with the synchronous implementation. The resilient block

Jacobi algorithm (hereafter referred to as RBJ algorithm) for separable convex functions

is formally described in Algorithm 4.2 where it is presented in an event-based update

performed by a generic node i. The variables flagtransmission, flagreception, flagupdate

are flag variables which determines which specific action a node is performing, namely

4.5 Asynchronous updates and unreliable communication: the Resilient
Block Jacobi (RBJ) algorithm 77

transmission, reception or update. When each action is started it cannot be interrupted,

but the specific order or consecutive calls of an action do not impair the convergence of

the proposed algorithm and therefore the algorithm can be used independently of the

specific communication protocol or CPU multitasking scheduling (if some assumptions

later introduced on the communication are met).

Remark 4.5.1. The memory (and consequently also the communication) requirement of

the RBJ can be demanding. In fact, assuming for simplicity that all the variables xi

have the same dimension n̄, node i has to keep in memory (from one iteration to the

following one) 2|Ni|+ 1 vectors of dimension n̄ (namely for xi, {x̂j}j∈Ni
and

{
ρ̂

(i)
j

}
j∈Ni

),

and |Ni| matrices of dimension n̄× n̄ (for
{
ξ̂

(i)
j

}
j∈Ni

). If memory, communication and

computational complexity are a concern, it is possible to modify the proposed algorithm

mimicking the standard gradient descent algorithm. In this framework, the second

order information is not needed and therefore the variables ξ
(i)
j , ξ̂

(i)
j (lines 5, 6, 20

in Algorithm 4.2) do not need to be computed and stored (saving the memory space

of |Ni| matrices of dimension n̄× n̄). The update for the local variable xi (line 22 in

Algorithm 4.2) is replaced with the following:

xi ← xi − ε
∑

j∈N +
i

ρ̂
(i)
j .

Obviously, the price to pay for this choice is a likely decrease in convergence speed. This

robust and asynchronous version of the gradient descent algorithm is denoted as resilient

gradient descent (RGD) algorithm.

Remark 4.5.2. If the local cost functions are quadratic, i.e:

Ji(xi, {xj}j∈Ni
) =

1

2
‖yi −Aix‖2Wi

=
1

2
(yi −

∑

j∈N +
i

Aijxj)>Wi(yi −
∑

j∈N +
i

Aijxj) ,

where Wi > 0 are the local weights, then the problem to be solved becomes a Weighted

Least Squares problem. For this special case, the gradient and the hessian components

simplify to:

ρ
(j)
i (x) := A>

ijWi(
∑

j∈N +
i

Aijxj − yi) , ξ
(j)
i (x) := A>

ijWiAij , (4.19)

therefore the RBJ Algorithm can be simplified by substituting lines 10 and 11 with

78 Minimization of locally coupled cost functions

Algorithm 4.2 Resilient Block Jacobi (RBJ) Algorithm (node i)

Require: xo
i , ε

Initialization (atomic)
1: xi ← xo

i

2: x̂
(i)
j ← 0, ∀j ∈ Ni

3: ρ
(j)
i ← 0, ∀j ∈ Ni

4: ρ̂
(i)
j ← 0, ∀j ∈ Ni

5: ξ
(j)
i ← Inj

, ∀j ∈ Ni

6: ξ̂
(i)
j ← Ini

, ∀j ∈ Ni

7: flagtransmission ← 1 (optional)
Transmission (atomic)

8: if flagtransmission = 1 then
9: transmitter_node_ID← i

10: ρ
(j)
i ← ∇jJi(xi, {x̂(i)

` }`∈Ni
), ∀j ∈ Ni

11: ξ
(j)
i ← ∇2

jjJi(xi, {x̂(i)
` }`∈Ni

), ∀j ∈ Ni

12: Broadcast: transmitter_node_ID,xi, {ρ(j)
i , ξ

(j)
i }j∈Ni

13: flagtransmission ← 0
14: flagreception ← 1 (optional)
15: end if

Reception (atomic)
16: if flagreception = 1 then
17: j ← transmitter_node_ID

18: x̂
(i)
j ← xj

19: ρ̂
(i)
j ← ρ

(i)
j

20: ξ̂
(i)
j ← ξ

(i)
j

21: flagreception ← 0
22: flagupdate ← 1 (optional)
23: end if

Estimate update (atomic)
24: if flagupdate = 1 then

25: ρ̂
(i)
i ← ∇iJi(xi, {x̂(i)

` }`∈Ni
)

26: ξ̂
(i)
i ← ∇2

iiJi(xi, {x̂(i)
` }`∈Ni

)

27: xi ← xi − ε
(∑

j∈N +
i
ξ̂

(i)
j

)−1(∑
j∈N +

i
ρ̂

(i)
j

)

28: flagupdate ← 0
29: flagtransmission ← 1 (optional)
30: end if

4.5 Asynchronous updates and unreliable communication: the Resilient
Block Jacobi (RBJ) algorithm 79

the following updates:

ρ
(j)
i ← A>

ijWi(Aiixi +
∑

j∈Ni

Aijx̂
(i)
j − yi), ∀j ∈ Ni , (4.20)

ξ
(j)
i ← A>

ijWiAij . (4.21)

It is clear from the previous expression, that the algorithm could be modified by having

a preliminary phase when the ξ
(j)
i are transmitted reliably to the neighbours so that

eventually ξ̂
(j)
i = ξ

(j)
i , and then the algorithm could simply transmit the variables xi,ρ

(j)
i

and update the variables xi, x̂
(i)
j , ρ̂

(i)
j which are the only variables that evolve over time,

thus considerably reducing the communication complexity which corresponds with that of

the RGD algorithm. This specialized version of the RBJ is hereafter denoted as resilient

weighted least squares (RWLS) algorithm.

Theoretical analysis of RBJ algorithm

To state the major theoretical result characterizing the convergence properties of the

proposed RBJ algorithm, it is necessary to establish some properties for the asynchronous

and lossy communication considered. As was done in the previous chapter, the as-

sumptions needed on the communication are the ones introduced in Section 2.3, that is

Assumptions 2.3.1 and 2.3.2. As a consequence of the combination of these assumptions,

each agent i ∈ V receives information coming from each agent j ∈ Ni at least once within

any window of T = hτ iterations of the algorithm.

It is now possible to state the following theorem:

Theorem 4.5.3 (Local convergence of the RBJ algorithm). Let Assumptions

4.2.2, 2.3.1 and 2.3.2 hold. Moreover assume that the cost functions Ji are three-times

differentiable and continuous. Consider Problem (4.1) and the RBJ algorithm. Let x∗

be the minimizer of (4.1). There exists ε̄ > 0 and δ > 0, such that, if 0 < ε < ε̄ and

‖x(0) − x∗‖ < δ, then the trajectory x(k), generated by the RBJ algorithm, converges

exponentially fast to x∗, i.e.,

‖x(k)− x∗‖ ≤ Cρk

for some constants C > 0 and 0 < ρ < 1.

The proof of Theorem 4.5.3 can be found in Appendix C, and basically relies on the

separation of time scales principle between the dynamics of the states xis and those of

the auxiliary variables x̂
(i)
j s, ρ

(i)
j s, ρ̂

(j)
i s, ξ

(i)
j s and ξ̂

(j)
i ’s. Loosely speaking, the result

builds on the idea that if the step-size ε is small enough, the variation of the true states

80 Minimization of locally coupled cost functions

xis is sufficiently slow and, despite the lossy communication, the values of the auxiliary

variables stored in memory equal the true values.

Remark 4.5.4. The same argument used in the previous theorem can be applied to the

robust gradient descent algorithm presented in Remark 4.5.1, under the weaker assumption

that the cost functions Ji are two-times differentiable, thus providing the same local

exponential convergence. Typically, the critical value ε̄ for the RGD algorithm is smaller

than that of the RBJ algorithm, and consequently also the rate of convergence is slower.

Lemma 4.5.5 (Theorem 4 in Todescato et al. (2015)). Let Assumptions 4.2.2, 2.3.1 and

2.3.2 hold. Consider Problem (4.1) with a quadratic cost function J(x) and the RWLS

algorithm. There exists ε̄ such that, if 0 < ε < ε̄, then, for any x(0) ∈ R
n, the trajectory

x(k), generated by the RWLS algorithm, converges exponentially fast to the minimizer

x∗ of the corresponding problem, i.e.,

‖x(k)− x∗‖ ≤ Cρk

for some constants C > 0 and 0 < ρ < 1.

4.6 Smart power grid application

This section contains some simulative results obtained using the RBJ algorithm. The

simulations involve the IEEE 123 nodes distribution grid benchmark (see Bolognani et al.

(2014)). The problem addressed is the robust estimation of the voltage level at each node

of the grid (except the PCC node which is assumed fixed and known), given voltage and

current measurements in the presence of measurements outliers. Voltages and currents

in an AC power distribution grid are complex values. In view of the state estimation

problem considered, it is convenient to exploit an equivalent standard reformulation in

rectangular coordinates. In particular, given the complex vectors of voltages and currents,

denoted as v ∈ C
122 and i

c ∈ C
122 respectively, and the weighted Laplacian matrix

L ∈ C
122×122 describing the electric grid, thanks to Kirchhoff’s voltage and current laws,

it holds that

i
c = Lv. (4.22)

By rewriting voltages and currents in rectangular coordinates as

v := [<(v)> =(v)>]> ∈ R
244 , ic := [<(ic)> =(ic)>]> ∈ R

244 .

4.6 Smart power grid application 81

and, similarly, by splitting L into its real and imaginary parts as

L =

[
<(L) −=(L)

=(L) <(L)

]
,

Eq. (4.22) is equivalent to

ic = Lv .

Thus, by assuming to collect both current and voltage measurements directly in rectan-

gular coordinates2, the measurement model reads as

[
yv

yic

]
=

[
I

L

]
v +

[
wv

wic

]
+

[
ov

oic

]
,

[
wv

wic

]
∼ N

([
0

0

]
,

[
σ2

v diag(|v|)
σ2

ic diag(|ic|)

])
,

where I ∈ R
244×244 is the identity matrix, yv,yic ∈ R

244 are the measurements, collected

in vector y ∈ R
488, wv,wic ∈ R

244 are the measurements’ noise, and ov,oic ∈ R
244 are

sparse vectors which contain possible measurement outliers. The standard deviation

of the measurement errors is chosen as3 σv = 10−3[p.u.] and σic = 10−1[p.u.]. Finally,

concerning the outliers, 10% of the measurements are corrupted, and the distribution

of the outliers is uniform between 1/100 and 1/80 of the respective measurement for

voltages and between 1/2 and 1 of the respective current measurement.

As suggested at the end of Section 4.3, to perform robust state estimation in the presence

of outliers, one interesting choice for the cost function is the modified 1-norm defined is

Eq. (4.8) as

‖r‖1,ν

where r = y −Av are the measurements residuals with A = [I L>]>. To run the RBJ

algorithm the grid has to be partitioned. To do so, the feeder is divided into N non

overlapping areas, and a computing unit, which can collect the measurements of the

busses belonging to the area and can run the algorithm, is associated to each area. An

example of the division in areas is given in Figure 4.5. The communication graph G can

be obtained from the division in areas, and in particular, two units can communicate

with each other if the two areas are physically connected (that is if there exist two busses,

2According to the future smart grids paradigm, it is assumed that each node of the grid is equipped with
a smart measurement units, e.g., a Phasor Measurement Unit (PMU), which can return measurements of
current and voltage. Usually, electric quantities are measured in polar coordinates. However, for the sake
of simplicity, measurements are taken to be directly in rectangular coordinates, stressing that, thanks to
a suitable linearization, it is always possible to pass from polar to rectangular coordinates.

3The choice for the measurements error standard deviations is dictated by the fact that the de facto
standard for modern PMUs requires at most a 0.1% error in the voltage measurements. This translates
in a current error of more or less 10%.

84 Minimization of locally coupled cost functions

must be considered.

4.7 Final considerations on the minimization of locally

coupled costs

This chapter focused on the minimization of the sum of locally coupled cost functions,

under the assumption that the communication is unreliable and asynchronous. Particular

emphasis is given to the communication effort required by the algorithm. In fact, the

algorithm that is finally developed requires just one exchange for iteration, and this

exchange comprises only information coming from one-hop neighbors. Moreover, each

agent only estimates its own part of the optimization variable, and exchanges its part of

the estimate only with the one-hop neighbors. This reduces to the minimum the sharing

of information, and so this approach better protects the privacy of the information of each

node, which is an important aspect (see Quinn (2009)). The algorithms in the literature

either deal with a more general problem (the sum of functions with all the agents having

to estimate the whole optimization variable) which requires a bigger communication effort

since the locality of the problem is not exploited, or with a very similar problem but

requiring synchronous communication. In all cases, packet losses are not considered in

the literature, while here particular attention is given to the development of an algorithm

working also in case of unreliable communication.

The algorithm proposed is based on the well-known Jacobi iteration. By leveraging

Lyapunov theory and separation of time scale principle, robustness of the algorithm to

packet drops and communication failures are proven. Some aspects of the algorithm need

further research efforts. In particular it would be very interesting to be able to determine

a priori the maximum value of the step size (namely ε̄). At the moment only its existence

is proven, but its value is not known and the value of the step size has to be manually

set until the algorithm converges. The setting of the step size is a difficult problem for

almost all the optimization algorithms in the literature.

5
Average consensus and quadratic cost

minimization

The contents of this chapter partly extend the following papers

Bof N., Carli R., and Schenato L. On the performance of consensus based versus

Lagrangian based algorithms for quadratic cost functions. In Proceedings of the 2016

European Control Conference, pages 160–165. IEEE, 2016b

Bof N., Carli R., and Schenato L. Is ADMM always faster than average consen-

sus? Provisionally accepted on Automatica, 2017d

Bof N., Carli R., and Schenato L. Average consensus with asynchronous updates

and unreliable communication. In Proceedings of the 20th IFAC World Congress, 2017,

volume 50, pages 601–606. IFAC, 2017a

The average consensus problem and the minimization of the sum of quadratic functions

are tackled in this chapter. These two problems have a very strong relationship, and

being able to solve one means being able to solve also the other. There are several

applications for multi-agent systems in which either of these problems can be found, and

this justify all the research effort devoted to this kind of problems.

A first part of the chapter gives a comparison on the convergence rates of well-known

algorithms to solve either the consensus or the quadratic minimization problem. In

86 Average consensus and quadratic cost minimization

this comparison, particular attention is devoted to the influence of the communication

graph, and specifically on its connectivity among agents. However, the communication is

assumed synchronous and reliable.

Conversely, in the second part of the chapter the challenges of real-world commu-

nication are introduced. In particular, an algorithm for distributed average consensus

working in an asynchronous and unreliable communication scenario is presented. This

algorithm will be later used in Chapter 6.

5.1 Introduction and state of the art

This chapter deals with the average consensus problem in a multi-agent system and its

relationship with the distributed minimization of quadratic functions. Namely, in an

average consensus problem the agents in the system own a private quantity, and their goal

is to evaluate the mean of the values of all these quantities. Average consensus, as will

be shown in the following section, can be employed to solve the distributed minimization

of the sum of quadratic functions, and vice-versa a consensus problem can be solved

minimizing the sum of suitable quadratic cost function. As a consequence, there is again

a strong relationship between this chapter and Chapter 6. However, since consensus and

the quadratic case are really important and investigated problems, a whole chapter is

devoted to these special cases. Moreover, the robust algorithm for average consensus

developed in this chapter will be fundamental in the following one. In the remaining of

this section, the term problem (if not specified) can refer to either of the problems (due

to their strong connection).

This chapter’s problem arise in several applications for multi-agent systems, e.g., in

data fusion Xiao, Boyd, and Lall (2005), Bolognani, Favero, Schenato, and Varagnolo

(2010), Garin and Schenato (2010) or clock synchronization Giridhar and Kumar (2006);

Barooah and Hespanha (2007) for WSN, in sensors’ localization problems Ravazzi,

Frasca, Ishii, and Tempo (2013); Carron et al. (2014), in robot networks for flocking

and coordination Blondel, Hendrickx, Olshevsky, and Tsitsiklis (2005); Jadbabaie, Lin,

and Morse (2003); Nedić and Liu (2014) or for map building Carron, Todescato, Carli,

Schenato, and Pillonetto (2015) and in state estimation of a power network Pasqualetti,

Carli, and Bullo (2012). Moreover, there exist some algorithms which employ an average

consensus algorithm as a building block, e.g. the Newton-Raphson Consensus for convex

optimization (which will be introduced in Chapter 6), some distributed versions of

the Kalman filter Cattivelli and Sayed (2010) or some algorithms for energy resources

distribution in power grids Dominguez-Garcia and Hadjicostis (2010).

5.1 Introduction and state of the art 87

The first part of this chapter assumes an ideal communication network, that is

synchronous and perfectly reliable. For such a communication scenario, a lot of solutions

for this chapter’s problem have been developed and also analyzed from different point

of views. The works cited in the following will try to give an overview of the possible

methods to adopt.

The average consensus algorithm, based on the use of stochastic matrices, has been

widely studied, both in its standard form Garin and Schenato (2010); Boyd, Diaconis,

and Xiao (2004); Olshevsky and Tsitsiklis (2009); Domínguez-García and Hadjicostis

(2011), and in the accelerated one Olshevsky and Tsitsiklis (2009); Oreshkin, Coates,

and Rabbat (2010); Muthukrishnan, Ghosh, and Schultz (1998); Liu and Morse (2011).

These algorithms solve the average consensus problem.

Also primal sub-gradient methods can be employed to have the agents reach consensus.

For example in Nedić et al. (2010) a sub-gradient methods is used to reach consensus in

a constrained set-up (even though this consensus is not necessarily on the average). Also

in this case stochastic matrices play an important role.

Lagrangian methods can be employed to solve the distributed minimization of

quadratic functions. The Lagrangian approach which is used and studied the most

to solve such problems is ADMM Shi, Ling, Yuan, Wu, and Yin (2014); Iutzeler, Bianchi,

Ciblat, and Hachem (2016); Ling, Shi, Wu, and Ribeiro (2015); Makhdoumi and Ozdaglar

(2016); Teixeira, Ghadimi, Shames, Sandberg, and Johansson (2013, 2016).

The aim of the first part of the chapter is to carry out a comparison on the convergence

rates between consensus based algorithms (the standard consensus Garin and Schenato

(2010) and the accelerated consensus Muthukrishnan et al. (1998)) on the one hand, and

Lagrangian methods (the dual ascent algorithm Boyd et al. (2011) and ADMM Boyd

et al. (2011)), on the other hand.

Concerning the ADMM, its analysis is carried out by rewriting it as a linear dynamical

system as done in Erseghe, Zennaro, Dall’Anese, and Vangelista (2011). This latter paper

considers the distributed minimization of the sum of quadratic cost functions for the

special case in which this problem corresponds to an average consensus one. A comparison

of the convergence rates of the consensus algorithm and ADMM is carried out, showing

that ADMM is faster then the consensus algorithm for sparse graph. In this chapter,

a more compact closed form expression for the rate of convergence of ADMM, using a

different mathematical machinery than Erseghe et al. (2011), is given. Moreover, from a

simulative point of view, more general (also multivariate) quadratic cost functions are

analyzed, finding similar results. Differently from Shi et al. (2014) and Makhdoumi and

Ozdaglar (2016), where, in the case of generic convex cost functions, upper bounds for

88 Average consensus and quadratic cost minimization

the ADMM convergence rate are offered, here the optimal convergence rate is given, upon

restricting the cost functions to be quadratic and all with the same curvature. Moreover,

the latter restriction, that allows Iutzeler et al. (2016) to optimize the distributed ADMM

for ring communication graphs, is here exploited to optimize ADMM for general graphs

(the ADMM presents a free parameter to be set, and in this sentence, optimize means to

set this parameter in order to obtain the fastest possible version for the algorithm).

The main contribution of the first part of the chapter regards a study on the con-

vergence rate for the different algorithms. In particular, this study shows how the

latter is influenced by the graph connectivity and by the cost functions’ curvatures. It

is divided into two parts: firstly, the convergence rate of the different algorithms are

analytically determined, assuming that the curvature of the cost functions are all equal.

This analytical analysis shows that accelerated consensus Muthukrishnan et al. (1998)

can be applied with very good results in all situations. Very interestingly, the calculations

show also that while in consensus-based algorithms and in the dual ascent algorithm the

convergence rate improves as the underlying graph gets more connected, in ADMM the

convergence rate plateaus. Secondly, simulations done in more general scenarios show

that these qualitative behaviors are almost always maintained, except for the dual ascent

algorithm, whose performance highly deteriorates. The simulation part also points out

that the main difference between the two types of algorithms is that the performance of

the consensus-based algorithms is not influenced by the curvatures of the cost functions,

differently from the Lagrangian-based algorithms. In fact, the curvatures strongly impact

the rate of convergence of the Lagrangian methods, especially in the multivariate case.

Moreover, both the consensus based algorithms and the Lagrangian based ones have

some parameters to be set. However, the parameters for the consensus algorithms can

be optimally chosen once the communication graph is given (even though to set them

in an optimal way one has to employ a centralized approach), and the convergence rate

remains the same for any curvatures of the cost functions. On the other hand, for the

Lagrangian based algorithms, the optimal choice of the parameter depends on both the

communication graph and the cost functions’ curvatures, which implies that the tuning

of this parameter is not determined only by the graph.

The second part of the chapter considers only the consensus problem (or the specific

quadratic problem related to it), but the focus is on an asynchronous and unreliable

communication scenario.

When unreliability in the communication is introduced, some works have adopted the

acknowledge scheme Chen, Tron, Terzis, and Vidal (2010); Kar and Moura (2009, 2010)

or assumed that each unit can determine whether the communication works Patterson

5.1 Introduction and state of the art 89

et al. (2007); Xiao et al. (2005). However, as already discussed, an acknowledge scheme

has some disadvantages, and it might be preferable to develop a robust algorithm. Other

interesting works related to consensus with imperfect communication are Aysal, Yildiz,

Sarwate, and Scaglione (2009); Nedić (2011) (and with the last one having a wider

applicability than the consensus problem). However, the approach sought for in this

thesis is a deterministic one, while in these two works the approach is not so. The aim of

the second part of the chapter is to find a robust and asynchronous algorithm to solve

the consensus problem.

In an asynchronous setting, Bénézit, Blondel, Thiran, Tsitsiklis, and Vetterli (2010)

introduce an algorithm that reaches average consensus using the so-called ratio consensus.

A very interesting idea is introduced in Dominguez-Garcia, Hadjicostis, and Vaidya (2011)

and Vaidya, Hadjicostis, and Dominguez-Garcia (2011), where the adopted communication

is synchronous and unreliable. In these latter two works, a robust and synchronous

algorithm inspired by Bénézit et al. (2010) is introduced.

Adopting the idea of mass transfer given in Vaidya et al. (2011), but using an

asynchronous protocol as done in Bénézit et al. (2010), a new algorithm for average

consensus is developed in Section 5.9. This algorithm is provably convergent to the average

in an asynchronous and unreliable communication scenario. The convergence proof relies

on the use of two assumptions concerning the communication scheme, one regarding the

frequency of waking up of each node and the other regarding how many consecutive times

a given link can fail. These two assumption (which are deterministic) allow to prove

the exponential convergence of the algorithm, and this exponential property is really of

interest here. As a matter of fact, the algorithm presented in the following chapter will

utilize the algorithm for consensus developed in this chapter, and to prove convergence of

the overall procedure the exponential convergence of the consensus algorithm is required.

The aforementioned works by Bénézit et al. (2010) and Vaidya et al. (2011) do not prove

the exponential convergence (but it is necessary to note that the assumptions on the

communication in these two works are random and not deterministic).

The only one term of comparison for this algorithm has been very recently found by

the author. It is called Primal-Dual Method of Multipliers (PDMM) Sherson, Heusdens,

and Kleijn (2017), it is really recent and has an approach similar to the ADMM. This

algorithm can work in an asynchronous and lossy communication scenario. Simulations

shows that if the graph is sparse, PDMM can be very competitive, while if the graph is well-

connected the algorithm introduced in Chapter 5.9 is faster. However, the convergence

rate of the PDMM really depends on the choice of a parameter, and a wrong choice of

the latter can really slow down the entire algorithm. Conversely, the algorithm proposed

90 Average consensus and quadratic cost minimization

in this chapter does not require any parameters’ tuning. In a multi-agent set-up, where

the communication graph might be unknown, this latter aspect is important, as will be

shown in the simulation section.

5.2 Problem formulation

Consider a group of N agents which can communicate according to the communica-

tion graph G. Until Section 5.9, the communication graph G is assumed undirected

and connected. From Section 5.9 instead, the graph is assumed directed and strongly

connected.

Remark 5.2.1. In some distributed systems, such as Wireless Sensor Networks, the

communication graph is often undirected, in the sense that a node can transmit to any

node from which it can receive. However, communication is typically only half-duplex,

i.e., two nodes cannot communicate simultaneously, so that protocols with multiple

communication rounds and reliable acknowledge (ACK) mechanisms are needed for

bidirectional communication. This, in turn, requires pairwise synchronization and results

in substantial delays; as so, dealing with an undirected graph as a directed one can be

valuable.

In the following, first the average consensus problem, and then the minimization

of the sum of quadratic cost functions problem are presented. Their relationship is

then explored. To ease the exposition, it is assumed that for the consensus problem

the quantities to be averaged are scalars, while for the quadratic problem, the local

cost functions are assumed to be scalar. It is possible to easily extend the work to the

multidimensional case, as briefly shown in Section 5.8.

Average consensus problem

Assume that each node i ∈ {1, . . . , N} has a private scalar quantity vi ∈ R, which can

be collected in vector v ∈ R
N . The average consensus problem corresponds to the

distributed evaluation of the mean of these vi, that is the evaluation of

v̄ =

∑
i vi

N
=

1>v
N

.

Each node has to evaluate v̄ only exchanging information between its neighbors according

to the graph G.

5.2 Problem formulation 91

Minimization of the sum of quadratic cost functions

In this quadratic problem, each agent is endowed with a private scalar quadratic cost

function

fi : R→ R, fi(x) =
1

2
ai(x− θi)

2, (5.1)

where ai > 0, θi ∈ R, i = 1, . . . , N . The N × 1 vectors θ and a (thereafter called

curvature vector) collect the values θi and ai, respectively. Considering now the global

cost function f : R→ R, which is the sum of the cost functions (5.1) of each agent,

f(x) =
N∑

i=1

fi(x),

each agent’s aim is to solve the following problem

x∗ = arg min
x∈R

f(x). (5.2)

The minimizer x∗ ∈ R of f(x) has to be evaluated by the agents in a distributed way.

Namely, each agent can only communicate with its respective neighbors defined by G.

Relationship between the two problems

The minimizer of Problem (5.2) has the following closed form

x∗ =

∑N
i=1 aiθi∑N
i=1 ai

. (5.3)

This quantity can clearly be obtained as the ratio between the following two quantities

∑N
i=1 aiθi

N
,

∑N
i=1 ai

N
.

These latter quantities are the averages of a1θ1, . . . , aNθN and of a1, . . . , aN , respectively.

As a consequence, the minimizer of Problem (5.2) can be recovered solving two average

consensus problems.

On the other hand, if in Problem (5.2) ai = 1 for all i {1, . . . , N}, then the minimizer

of the problem is

x∗ =

∑N
i=1 θi

N

which corresponds to the average consensus of the quantities θ1, . . . , θN .

These relationships justify saying that being able to solve the average consensus

92 Average consensus and quadratic cost minimization

problem implies being able to solve the minimization of the sum of quadratic cost

functions, and vice-versa.

5.3 Consensus based algorithms: standard consensus (C)

The algorithms introduced in this section and in the following one aim at solving the

consensus problem. If one wants to solve a given quadratic problem of the form (5.2),

it is necessary to solve two consensus algorithms in parallel, one to find the average of

a� θ, and one to find the average of a. Then the minimizer can be found computing

the ratio between these two quantities.

Formally, denote by xi(k) the estimate of the mean v̄ stored in memory by node i at

time k, and define the vector x(k) := [x1(k), . . . , xN (k)]T ∈ R
N . To solve the consensus

problem means to develop an algorithm such that

lim
k→∞

xi(k) = v̄, i ∈ {1, . . . , N} ⇔ lim
k→∞

x(k) = v̄1N

and such that the update of xi(k) depends only on quantities that belong to the neighbors

of node i in Ni.

A well known algorithm to compute the mean of a vector in a distributed way is the

average consensus algorithm Garin and Schenato (2010); Olshevsky and Tsitsiklis (2009).

Given the communication graph G, construct a stochastic matrix P consistent with the

graph (see the part on graph notation in Section A). Since G is undirected and connected,

this P can be built symmetric and primitive (and so its eigenvalues λi are real and such

that λ1 = 1 > λ2 ≥ · · · ≥ λN > −1). Due to the Perron-Frobenius theorem (Horn and

Johnson, 1985, Ch. 8), it holds

lim
t→∞

P t =
1

N
1N 1>

N . (5.4)

To obtain in a distributed way the mean of the elements of a vector v ∈ R
N , it is enough

to apply the following iterative scheme

{
x(k + 1) = Px(k)

x(0) = v
, k ≥ 0.

As a matter of fact, introducing the quantity x∗ = v̄1N , the Expression (5.4) implies that

lim
t→∞

x(k) = 1N
1>

Nv

N
= x∗

5.4 Consensus based algorithms: accelerated consensus (AC) 93

The convergence rate of the consensus algorithm, denoted as ρC , is determined by

the essential spectral radius (ESR) of matrix P , see Olshevsky and Tsitsiklis (2009);

Carli, Fagnani, Speranzon, and Zampieri (2008). In particular, for a positive constant c

depending only on x(0), it holds

‖x∗ − x(k)‖2 ≤ cρk
C , ∀t ≥ 0.

In the simulation section, matrices P are constructed via the Metropolis-Hastings weights

(MHW), Boyd et al. (2004), since they are easy to compute and above all can be calculated

locally (each agent needs only to know the number of its neighbors and their degree).

Moreover, compared to the Laplacian weights selection (another simple and popular way

to build P), it has in general better convergence rate Garin and Schenato (2010); Boyd

et al. (2004). Matrix P can be built to have minimal essential radius Boyd et al. (2004),

however to do so it is necessary to solve an optimization problem which needs global

information on the system (and so has to be solved in a centralized manner). Usually,

with MHW, dense graphs far from being bipartite (e.g. random geometric graphs with

high distance threshold as in Section 5.7, or also graphs with many randomly selected

edges Boyd et al. (2004)) have ρC close to 0 (and exactly 0 if G is complete), while for

sparse graphs (i.e. graphs with a small number of edges) ρC tends to 1. A graph, whose

corresponding doubly-stochastic matrix has a small ESR, is called well-connected.

5.4 Consensus based algorithms: accelerated consensus

(AC)

Standard consensus is an easy algorithm to solve the average problem, but its performance

can be poor, especially when the graph is very sparse.

To improve the convergence rate (while keeping the simplicity of the algorithm), the

authors in Muthukrishnan et al. (1998) introduced the use of memory. Other papers

resorting to this idea are Oreshkin et al. (2010); Liu and Morse (2011). Given a matrix

P consistent with G, the accelerated consensus algorithm to evaluate m̄ has the following

scheme Muthukrishnan et al. (1998); Liu and Morse (2011).

{
x(k + 1) = βPx(k) + (1− β)x(k − 1)

x(0) = x(−1) = v
, k ≥ 0. (5.5)

The scalar β has to be selected inside the interval (0, 2) to have a converging algorithm.

94 Average consensus and quadratic cost minimization

Introducing the augmented state z(k) = [x(k)> x(k − 1)>]>, the dynamic of (5.5) can

be rewritten as

z(k + 1) =

[
βP (1− β)IN

IN 0

]
z(k) := Qz(k), (5.6)

with initial condition z(0) = [v> v>]>. Note that matrix Q has an eigenvalue 1 with

corresponding eigenvector 12N , and selecting 0 < β < 2 this eigenvalue is the biggest in

absolute value.

The aim is to select the parameter β in order to minimize the convergence rate of the

algorithm, which corresponds to minimize the ESR of Q. The following result holds

Muthukrishnan et al. (1998); Liu and Morse (2011):

Proposition 5.4.1. Given ρC , the convergence rate of the consensus algorithm ruled by

matrix P , the optimal convergence rate of the accelerated consensus, denoted by ρAC , is

achieved setting β equal to

β∗ :=
2

1 +
√

1− ρ2
C

> 1,

and it is equal to

ρAC :=
ρC

1 +
√

1− ρ2
C

≤ ρC < 1, (5.7)

where ρAC = ρC if and only if ρC = 0.

Since ρAC < 1 and 12N is the eigenvector related to eigenvalue 1 of Q, it holds that

limk→∞ x(k) = α̂1N , α̂ ∈ R. Due to the fact that the update (5.5) is such that the

average of the elements of x(k) is equal to v̄, ∀t > 0, then α̂ = v̄.

Note that the evaluation of β∗ requires the knowledge of ρC , which can be obtained

in a decentralized way Oreshkin et al. (2010).

Remark 5.4.2. The update rule of this accelerated consensus has similarities with a

proportional and derivative feedback control. Moreover, a strong similarity can be found

with the Heavy-Ball method Ghadimi, Shames, and Johansson (2012).

5.5 Lagrangian based algorithms: dual ascent method

(DA)

To solve (5.2) in a distributed way, it is possible to recast the problem by introducing

suitable equality constraints. The Lagrangian function which includes these constraints

is then constructed, in order to solve the problem. The first Lagrangian-based algorithm

presented is the dual ascent approach (Boyd et al., 2011, Ch 2). In the following section

5.5 Lagrangian based algorithms: dual ascent method (DA) 95

ADMM Boyd et al. (2011) will be analyzed. The analytical results presented in these two

sections are obtained upon restricting (in a significant way) the cost functions. Namely,

the curvature vector satisfy a = ā1N . The general case a 6= ā1N is very difficult to be

treated analytically, and will be analyzed in Section 5.7 through simulations.

Assume each agent stores in memory a copy of the optimization variable x denoted

as xi. Let x = [x1, . . . , xN]T . Then, according to the dual ascent approach (Boyd et al.,

2011, Ch 2), the solution of problem (5.2) is equivalent to the constrained problem

arg min
x∈RN

1

2

N∑

i=1

ai (xi − θi)
2

subject to xi = xj , ∀j ∈ Ni, ∀i ∈ {1, . . . , N}
. (5.8)

Let x∗ = [x∗
1, . . . , x

∗
N] be the optimal solution of Problem (5.8). Then, the constraints in

(5.8) ensure that the solution x∗ has the form x∗1N . The Lagrangian for this problem is

L(x,Λ) =
1

2

N∑

i=1

ai(xi − θi)
2 +

N∑

i=1

∑

j∈Ni

λij(xi − xj), (5.9)

where Λ ∈ R
N×N collects the different Lagrangian multipliers λij , which are non-zero if

and only if j ∈ Ni.

The dual ascent method is an iterative algorithm that alternates between a maxi-

mization of the Lagrangian with respect to Λ, keeping fixed x, and a minimization step

on the Lagrangian with respect to x, keeping fixed Λ. Its functioning is strictly related

to dual theory in optimization (see Boyd and Vandenberghe (2004)).The corresponding

maximizer and minimizer have, for the particular Lagrangian in Equation (5.9), a closed

form. Namely, the update steps for λij(k) and for xi(k) are the following





λij(k + 1) = λij(k) + ε[xi(k)− xj(k)],

xi(k + 1) = θi −
∑

j∈Ni
[λij(k + 1)− λji(k + 1)]

ai
,

(5.10)

(5.11)

where ε is a (sufficiently small) fixed step size and x(0) and λij(0) are given initial

conditions.

Recalling that matrix AG is the adjacency matrix of graph G, it is possible to introduce

the matrices A−
G = AG − IN and LG = diag(A−

G 1N)−A−
G , where the latter corresponds

to the Laplacian of the graph G (without the self-loops). The real eigenvalues γi of LG
satisfy γ1 = 0 ≤ γ2 ≤ · · · ≤ γN . If all xi(0) and λij(0) are chosen equal to 0, then the

96 Average consensus and quadratic cost minimization

dynamics of the variables xi(k) given by (5.10) and (5.11) can be written in compact

form as x(k + 1) = V x(k), x(1) = θ where matrix V is given by:

V := IN − 2εdiag(a)−1LG , (5.12)

Matrix V has an eigenvalue in 1 with eigenvector 1N , and if ε is such that all the other

eigenvalues are in modulus smaller than 1, then the algorithm converges.

Remark 5.5.1. If ε < εmax, with εmax := maxi

{
ai

2|Ni|
}

, the dual ascent is a consensus

algorithm. Although the choice ε < εmax guarantees convergence, the best choice in terms

of convergence rate could be achieved for a value ε∗ ≥ εmax.

If the curvature vector is a = ā1N , it is possible to evaluate the optimal value for the

step size ε. The proofs of this and the following proposition can be found in Appendix

D.1.

Proposition 5.5.2. Let γ1 = 0 ≤ γ2 ≤ · · · ≤ γN be the eigenvalues of LG and let a be

equal to ā1N . Then the optimal value for ε and the corresponding convergence rate for

dual ascent are

ε∗ =
ā

γ2 + γN
, ρDA =

γ2 − γN

γ2 + γN
< 1.

In case G is a d−regular graph and the curvature vector is a = ā1N , it is possible to

compare the consensus and the dual ascent algorithms. In fact, in this case the matrix P

(built using the MHW) for the consensus algorithm is P = 1
d+1AG . Starting from (5.12),

V can be rewritten as

V =

(
1− 2(d+ 1)ε

ā

)
IN +

2(d+ 1)ε

ā
P, (5.13)

and the following proposition holds:

Proposition 5.5.3. Let G be a d−regular graph, a is equal to ā1N . Let λ1 = 1 > λ2 ≥
· · · ≥ λN > −1 be the eigenvalues of matrix P (consistent with G) and let ρC be the ESR

of matrix P . Then, the optimal convergence rate ρDA for the dual ascent algorithm is

ρDA =
λ2 − λN

2− λ2 − λN
≤ ρC . (5.14)

Moreover, defining ξ = d−1
d+1 , the following bounds hold

ρDA ≥
ρC

2 + ρC
, if 0 ≤ ρC ≤ ξ, (5.15)

ρDA ≥
ρC

2− ρC
, if ξ < ρC ≤ 1. (5.16)

5.6 Lagrangian based algorithms: Alternating Direction Method of
Multipliers (ADMM) 97

5.6 Lagrangian based algorithms: Alternating Direction

Method of Multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) is a well known and heavily

employed algorithm to solve many different optimization problems (see the survey Boyd

et al. (2011) and reference therein). To solve (5.2) using ADMM, as done for the dual

ascent each agent is allowed to store in memory a copy of the optimization variable x

denoted as xi, but, in this case, also an auxiliary vector z ∈ R
N is introduced, and the

problem becomes





argmin
x,z

∑N
i=1 fi(xi)

subject to xi = zj ∀j ∈ N+
i , ∀i ∈ {1, . . . , N}

. (5.17)

The constraints in this reformulation assure that the optimal solution x∗ is such that

x∗ = x∗1N . Differently from the Lagrangian employed for the dual ascent method

(Equation (5.9)) ADMM uses an augmented Lagrangian with Lagrangian multipliers

λij ∈ R and penalty parameters wij > 0, i, j = 1, . . . , N , (i, j) ∈ E ,

LW (x,z,Λ) =
N∑

i=1

1

2
ai(xi−θi)

2 +
N∑

i=1

∑

j∈N +
i

λij(xi−zj)+
1

2

N∑

i=1

∑

j∈N +
i

wij(xi−zj)2. (5.18)

W ∈ R
N×N and Λ ∈ R

N×N contain respectively the wij and the λij (the wij and λij

corresponding to couples (i, j) not belonging to E are equal to 0). This formulation for

the augmented Lagrangian is a bit different from the standard ADMM, where wij = w̄

for all i, j = 1, . . . , N . The choice done here follows Erseghe et al. (2011).

Similarly to the dual ascent, the ADMM alternates between minimization and maxi-

mization steps on the augmented Lagrangian. In particular, an iteration is as follows:

x(k + 1) = arg min
x
LW (x, z(k),Λ(k)),

z(k + 1) = arg min
z
LW (x(k + 1),z,Λ(k)),

Λ(k + 1) = arg min
Λ
LW (x(k + 1),z(k + 1),Λ).

Again, due to the particular form of the augmented Lagrangian (5.18), these update can

98 Average consensus and quadratic cost minimization

be rewritten in closed form:





xi(t+1)=
aiθi +

∑
j∈N +

i
[wijzj(k)− λij(k)]

ai +
∑

j∈N +
i
wij

,

zj(t+1)=

∑
i∈N +

j
wijxi(k + 1) +

∑
i∈N +

j
λij(k)

∑
i∈N +

j
wij

,

λij(k + 1)=λij(k) + wij (xi(k + 1)− zj(k + 1)) .

(5.19)

(5.20)

(5.21)

ADMM converges for any choice of the initial conditions for xi(0), zi(0) and λij(0).

However, choosing suitable initial conditions (namely zi(0) = 0 and λij(0) = 0 for all

i, j ∈ {1, . . . , N}), this update scheme can be rewritten in a matrix form which only

involves the variable x at time k and k−1 (see Appendix D.2 for the detailed calculations).

Defining matrices

D := diag(W1N) diag(a+W1N)−1,

U := diag(a+W1N)−1W diag(1>
NW)−1W> −D,

M := IN +D + 2U, K := D + U,

the matrix form of the ADMM is





[
x(k + 1)

x(k)

]
=

[
M −K
IN 0N

]

︸ ︷︷ ︸
F

[
x(k)

x(k − 1)

]

x(0) = 0, x(1) = (IN −D)θ

, t ≥ 1. (5.22)

Matrix F determines the rate of convergence of ADMM through its ESR.

In the following analytical study, matrix W is selected as W = µP , with µ > 0 and

P a symmetric stochastic matrix consistent with the graph G. The ADMM obtained

with this choice for W is denoted as ADMMP , and its convergence rate as ρADMMP
. This

particular choice is done to carry out a comparison with the consensus algorithm (as will

be soon clear).

In truth, it is possible to select W in different ways. The choice, W = ϕAG , ϕ > 0,

according to which all the penalty parameters wij are equal, is the one usually done in

the literature. In this particular context, however, it does not allow for an immediate

comparison with the standard consensus. In Section 5.7, some simulations will also

involve ADMM with this choice for matrix W . To avoid confusion, this (standard)

version of ADMM is denoted as ADMMA, and its convergence rate as ρADMMA
. The

simulations will show that the behavior of ADMMA is similar to the one of ADMMP .

5.7 Analytic and simulative comparison: scalar case 99

Remark 5.6.1. Note that, for d−regular graphs, constructing matrix P using the MHW

implies that ADMMP is equivalent to ADMMA.

In case a = ā1N , that is in case all the quadratic cost functions have the same

curvature, it is possible to analytically determine the convergence rate of the ADMMP .

The matrices K and M obtained in this scenario are

K =
µ

ā+ µ
P 2, M=

(
1− µ

ā+ µ

)
IN + 2

µ

ā+ µ
P 2. (5.23)

Adopting the quantity δ = µ
ā+µ , 0 < δ < 1, next proposition holds, whose proof is given

in Appendix D.3.

Proposition 5.6.2. If ρC is the essential spectral radius of matrix P in (5.23) and if the

curvature vector a is equal to ā1N , the optimal convergence rate ρADMMP
for ADMMP is

achieved using the following value for δ




δ∗ = 1

2 if ρC ≤ 1√
2
,

δ∗ = 1

1+2
√

ρ2
C

−ρ4
C

if ρC > 1√
2
,

which leads to 


ρADMMP

= 1
2 if ρC ≤ 1√

2
,

ρADMMP
= ρC

ρC+
√

1−ρ2
C

if ρC > 1√
2
.

(5.24)

5.7 Analytic and simulative comparison: scalar case

In this section the previous four algorithms are compared with respect to the convergence

rate. The first comparison is for the simplified case in which all the curvature of the fi(x)

are equal, i.e. a = ā1N . In this scenario the comparison is analytic. Then, the more

general case a 6= ā1N is examined through simulations.

Case: a = ā1N

Under the equal curvature scenario, by combining the results in the previous section, the

following proposition holds:

Proposition 5.7.1. When the curvature vector a is equal to ā1N , accelerated consensus

has the best performance with respect to the consensus algorithm and ADMM.

An asymptotic result on ρADMMP
is now provided. Consider a sequence of undirected

connected graphs GN of increasing size N , and, for each GN , let PN be the stochastic

matrix consistent with the graph. Assume the following property.

100 Average consensus and quadratic cost minimization

Assumption 5.7.2. Consider the sequence of matrices PN associated to the sequence of

graphs GN above described, and assume that ρCN
= 1− ε(N) + o(ε(N)) with ε : N→ R

+

such that ε(N)→ 0 as N →∞.

Important families of matrices satisfying Assumption 5.7.2 are those built over

the d-dimensional tori and the Cayley graphs (see Carli et al. (2008)). These graphs

exhibit important spectral similarities with the random geometric graphs Boyd, Ghosh,

Prabhakar, and Shah (2006), which is a family of graphs that has been successfully used

to model wireless communication in many applications Franceschetti and Meester (2008).

The following result gives the asymptotic behavior of ρADMMP N
and ρACN

(the subscript

N denotes the dependence on N).

Proposition 5.7.3. Under Assumption 5.7.2 the convergence rate of ADMMP and of

the accelerated consensus asymptotically assume the same value, that is

lim
N→∞

ρADMMP N
= lim

N→∞
ρACN

= 1−
√

2ε(N).

Proof. When ε(N) is sufficiently small, the following calculations hold

ρADMMP N
=

ρCN

ρCN
+
√

1− ρ2
CN

' 1− ε(N)

1− ε(N) +
√

2ε(N)

' (1− ε(N))(1−
√

2ε(N)

1− 2ε(N)
'1−

√
2ε(N) + o(

√
ε(N)).

Similar calculations hold for ρACN
.

Figure 5.1 shows the convergence rate of standard consensus, accelerated consensus

(Proposition 5.4.1), ADMMP (Proposition 5.6.2) and the lower bound for the convergence

rate of dual ascent (Proposition 5.5.3) for the case of 4-regular graphs, all built starting

from the same matrix P . The figure also provides the upper bounds given in Shi et al.

(2014); Makhdoumi and Ozdaglar (2016) for the ADMM, bounds which have been

obtained again for a 4-regular graph1.

The figure allows to easily verify the statement of Propositions 5.7.1 and 5.7.3.

The bounds provided in Shi et al. (2014); Makhdoumi and Ozdaglar (2016) have

been applied to the specific problem of this chapter in case of regular graphs (since

1The bounds in Shi et al. (2014); Makhdoumi and Ozdaglar (2016) depend only on λ2, the second
eigenvalue of the stochastic matrix P consistent with the communication graph and built using the
MHW. So, to evaluate the bounds, in the abscissa of the figure one uses ρC if ρC = λ2; if ρC is instead
determined by λN , to determine the value of the bounds one has to use as abscissa the value of λ2 (in a
d−regular graph, λ2 is always positive since λ2 ≥ 1/(d + 1)).

104 Average consensus and quadratic cost minimization

a = ā1N is not met.

Concerning ADMMP , instead, Figure 5.3 shows that, when a 6= 1N , the behavior of

its convergence rate is qualitatively similar to the one obtained for a = 1N . The same

figure contains the convergence rate for the ADMMA. it is easy to verify that ADMMA

has a convergence rate similar to the one of the ADMMP . Thus the results of Section 5.7

are still consistent in case of a 6= ā1N for ADMMP , while this is not true for DA.

As general observations, AC has the best performance in almost all the simulations

carried out. Moreover, it is possible to affirm that as long as the graph is sparse, ADMMP

is a good algorithm to solve the optimization problem, while for dense graph AC is

preferable. As a matter of fact ρADMM does not decrease as the graph becomes more and

more connected, differently from what is observed for the consensus based algorithms

and also for DA when a = ā1N .

When a 6= ā1N , an important difference between the algorithms can be highlighted.

Consensus based algorithms are independent from the curvature vector a both for the

convergence rate and for the tuning of the possible parameters. For Lagrangian based

algorithms instead, the convergence rate and also the optimal tuning of the free parameters

depend on the specific value of the curvatures ai. Therefore the knowledge of the graph

is not sufficient to determine alone their convergence rate and the optimal parameters.

Both analyzed cases show that accelerated consensus (with optimized parameter β∗)

is (almost always) faster than all the other methods analyzed. However, it is correct

to remind that consensus based algorithms need two consensus algorithms running in

parallel to estimate the variable x. On the other hand, the ADMM algorithm requires

a double message exchange per iteration, one before and one after the update (5.19).

This need of an additional synchronization can slow down the ADMM iteration when the

number of agents increases.

One of the most interesting take home messages is that for dense graph even standard

consensus has a better performance than ADMMP . Therefore, ADMMP is a good

algorithm to apply in graphs with a small number of edges, but it becomes unsuitable

for graphs which are highly connected and far from being bipartite. Finally, if a = ā1N

and the graph is almost bipartite complete, dual ascent can be a very good algorithm.

5.8 Simulative comparison: multidimensional case

Finally, the analysis is extended to the multivariate quadratic case through some simula-

tions. The functions fi : Rp → R are

fi(x) =
1

2
(x− θi)

>Wi(x− θi) ,

106 Average consensus and quadratic cost minimization

influenced by them. Simulations show that when the curvature matrices are multiple of

the identity matrix the analytical convergence rate of Section 5.6 for a = ā1N is recovered,

while for other curvature matrices the behaviors are interesting. In particular if the

cost functions are all quite skewed in the same direction, than ADMMP becomes much

slower as compared to itself when the skewness is randomly distributed. The analytical

convergence rate for scalar ADMMP is still indicative when W d-bal
i , while for W d-un

i the

convergence rate is much worse than the analytical result of Proposition 5.6.2. Therefore,

in the multivariate case, the choice of the algorithm has to take into account both the

graph and the skewness of the agents’ cost functions. In all cases accelerated consensus

seems to be a better choice in term of convergence rate. However, in the multivariate

case AC has to compute means on matrices, requiring therefore to store in memory and

to communicate matrices. As a consequence, large values of p can be problematic from a

communication and memory requirement perspective.

This multivariate analysis concludes the comparison among the algorithms that can

be used to solve the problem examined in this chapter. The algorithms just analyzed

assume that the communication is reliable. The following section is devoted to the

introduction of an algorithm for the consensus problem able to cope with a non-ideal

communication set-up.

5.9 Robust and Asynchronous Average Consensus

(ra-AC)

The aim of the algorithm presented in this section is to solve the consensus problem in a

more realistic communication scenario. Therefore, the problem’s setting is again a group

on N agents, each owning a private quantity vi (collectible in vector v ∈ R
N) and the

aim is to evaluate

v̄ =
1>

Nv

N
=

∑N
i=1 vi

N
. (5.25)

The most salient feature of the algorithm is that it has to employ an asynchronous

protocol and has to be robust to packet losses. The communication graph G among the

agents meets the following assumption

Assumption 5.9.1. The communication graph G is time-invariant, directed and satisfy

the Assumption 2.2.1 on connectivity.

5.9 Robust and Asynchronous Average Consensus (ra-AC) 107

The algorithm designed to solve the consensus problem has to have the following features:

1. Asymptotic global estimation: each agent’s estimate of the global minimizer has to

asymptotically converge to v̄.

2. Peer-to-peer (leaderless): each node’s update has to consider the limited computa-

tional and memory capability available at the node itself and there is no master

node among the agents. Moreover, the algorithm can only require communication

between one-hop neighbors and it has to assure convergence on any communication

graph G satisfying Assumption 5.9.1.

3. Distributed: the update-rule of the local variables at each node has to depend

only on the variables stored by the local node and by its neighbors. No multi-hop

information exchange is allowed.

4. Asynchronous: the algorithm has to allow the agents to perform the update step

and the communication step in any moment, without any coordination among the

agents.

5. Lossy broadcast communication without ACK : the convergence of the algorithm

has to be assured even if communication is lossy and broadcast-based. No ACK

mechanisms has to be employed.

The robust and asynchronous Average Consensus algorithm (ra-AC) takes inspiration

from the algorithm presented in Vaidya et al. (2011) but modify it to work in an

asynchronous communication set-up. In particular the asynchronous protocol adopted is

the broadcast asymmetric one. Namely, only one node and, in a second moment, all its

out-neighbors that receive information, update part of their variables at each iteration. In

Vaidya et al. (2011), instead, all the nodes at each iteration perform some computations.

As the algorithm in Vaidya et al. (2011), also the ra-AC algorithm is based on the

average ratio consensus introduced in Bénézit et al. (2010). Denote again as xi ∈ R the

i−th agent’s estimate of the mean of vector v. According to the ratio consensus, the

variable xi is obtained as the ratio of two appropriate scalar quantities qi ∈ R and si ∈ R;

the update of qi and si are made by node i as a linear combination of its own variable

and of the companion variables of its neighbors. However, differently from Bénézit et al.

(2010)), where the communications are assumed reliable, in the case analyzed here the

packets exchanged between two nodes can be lost. In this case, it is necessary to ensure

that all the information sent by node i to its neighbor j is received by j at least every

108 Average consensus and quadratic cost minimization

once in a while.

The remarkable idea that allows to meet this requirement is that of introducing the

use of counters: in particular node i has a counter σi,q(k) (σi,s(k) respectively) to keep

track of the total q-mass (total s-mass) 3 sent by itself to its neighbors from time 0

to time k, while node j has a counter ρ
(i)
j,q(k) (ρ

(i)
j,s(k) resp.) to take into account the

total q-mass (total s-mass) received from its neighbor i from time 0 to time k (one such

variable for all i ∈ N in
j).

Using these mass counters, if at time k node j receives information from node i, the

information coming from node i used in the update of the variable qj(k) (sj(k) resp.)

will be σi,q(k)− ρ(i)
j,q(k) (σi,s(k)− ρ(i)

j,s(k) resp.); in this way the information sent by an

agent but not received due to packet losses is only delayed and not lost.

The idea of using counters is inherited from the algorithm in Vaidya et al. (2011). The

ra-AC algorithm, taking inspiration from the latter ideas, carries out a ratio consensus

according to an asynchronous communication protocol, and the generic k-th iteration is

described in Algorithm 5.1. To be implemented, each node i ∈ {1, . . . , N} in the network

has to keep in memory the following scalar quantities:

qi(k), si(k), σi,q(k), σi,s(k) ρ
(i)
j,q(k), ρ

(i)
j,s(k), ∀(i, j) ∈ E ,

while the quantity of interest, xi(k), is evaluated as qi(k)/si(k). Variables qi(k) and si(k)

are collected resp. in the N -dimensional vectors q(k) and s(k).

Suppose that at a given iteration node i wakes up. Then, the main steps of ra-AC are

the following: first node i updates its variables qi and si dividing their previous value

by the cardinality of its out-neighbors set augmented by 1 (steps 2-3). Note that this

operation leaves in fact unchanged the value of variable xi. Then it updates the counters

σi,q and σi,s (steps 5-6) and sends these updated values to its out-neighbors. Now, if

node j ∈ N out
i receives the packet from node i, it updates the variables qj and sj as

described in steps 10-11, then it adjourns xj and it finally stores in memory the new

values for ρ
(i)
j,q and ρ

(i)
j,s (steps 11-12-13).

Remark 5.9.2. In case the quantity vi in (5.25) are matrices, vi ∈ R
n×m, the Algorithm

5.1 remains the same. In particular, the quantities si are still scalars and the ratios in

Lines 5,7 and 13 are (standard) ratios between a matrix and a scalar quantity

In order to prove convergence it is necessary to introduce some assumptions on the

communication. Again, the assumptions 2.3.1 and 2.3.2 introduced in Chapter 2 are used.

3As in Vaidya et al. (2011), the words mass and information are used interchangeably, since the
physical idea of the transferring of mass quantities can be helpful in understanding how the algorithm
works.

5.9 Robust and Asynchronous Average Consensus (ra-AC) 109

Algorithm 5.1 ra-AC Algorithm (node i)

Initialization
1: qi(0) = vi;
2: si(0) = 1;
3: σi,q(0) = σi,s(0) = 0;

4: ρ
(j)
i,q (0) = ρ

(j)
i,s (0) = 0, j ∈ N in

i ;
For each time k when node i wakes up

5: qi(k + 1) = qi(k)
|N out

i
|+1

;

6: si(k + 1) = si(k)
|N out

i
|+1

;

7: xi(k + 1) = qi(k+1)
si(k+1) ;

8: σi,q(k + 1) = σi,q(k) + qi(k + 1);
9: σi,s(k + 1) = σi,s(k) + si(k + 1);

Node i broadcasts variable σi,q(k + 1) and σi,s(k + 1) to all j ∈ N out

i

10: if node j receives σi,q(k + 1) and σi,s(k + 1) then

11: qj(k + 1) = qj(k) + σi,q(k + 1)− ρ(i)
j,q(k);

12: sj(k + 1) = sj(k) + σi,s(k + 1)− ρ(i)
j,s(k);

13: xj(k + 1) =
qj(k+1)
sj(k+1) ;

14: ρ
(i)
j,q(k + 1) = σi,q(k + 1);

15: ρ
(i)
j,s(k + 1) = σi,s(k + 1);

16: end if
The variables of the other nodes are not changed

According to these assumptions, each agent i ∈ V receives information coming from each

agent j ∈ N in
i at least once within any window of hτ iterations of the algorithm.

Remark 5.9.3. The assumption that two agents which are supposed to communicate

have in fact to communicate within a finite time window, is standard in the context of

consensus-based algorithms with directed graphs. It is necessary to guarantee determin-

istic exponential convergence as shown in Moreau (2005), in the sense that if this do not

hold, it is possible to construct a sequence of message exchange (among all agents) that

do not guarantee exponential convergence.

The following Theorem shows that, with a proper initialization of the variables, the

ra-AC algorithm works as an average consensus algorithm, that is, the variables xi,

i ∈ {1, . . . , N}, which are updated distributively and iteratively, converge to the average

of the N components of the vector v.

Theorem 5.9.4. Under Assumptions 2.3.2 and 2.3.1 and under the following initializa-

110 Average consensus and quadratic cost minimization

tion for the variables

q(0) = v, s(0) = 1N ,

σi,q(0) = σi,s(0) = 0, ∀i {1, . . . , N} ,
ρ

(i)
j,q(0) = ρ

(i)
j,s(0) = 0, ∀(i, j) ∈ E ,

the evolution, obtained using ra-AC algorithm, of the variable x(k) exponentially converges

to v̄1N , v̄ = v>1N/N , that is, there exist suitable constants C > 0, 0 < d < 1 such that

‖x(k)− v̄1N‖2 ≤ C
(
d

1
τmax

)k
‖x(0)− v̄1N‖2, (5.26)

where τmax = Nhτ .

The complete proof can be found in Appendix D.4. However, to give an idea of

the instruments used in the proof, and to introduce some quantities that will be useful

in Chapter 6, the main steps of the proof are also reported in Section 5.10. A reader

interested in all the passages of the proof can look at the demonstration in Appendix D.4

and then move directly to Section 5.11 (skipping Section 5.10).

Before describing the ideas behind the proof, some discussions are in order. The bound

in (5.26) depends on the communication scenario through τmax. For a fixed number of

nodes N , τmax might increase, either because each node wakes up less often, or because

each communication link may fail for a longer period of time (or both), which implies

that the dissemination of information may become more difficult. In Equation (5.26), if

τmax increases the upper bound becomes larger and larger, which is coherent with the

fact that the information is spread through the network in a slower way.

5.10 Proof of convergence

The proof of Theorem 5.9.4 is based on the theory of ergodic coefficients for positive

matrices Seneta (2006), applied to the particular case of stochastic matrices. The proof

first follows what is done in Vaidya et al. (2011). However, the Assumptions 2.3.2 and

2.3.1 allow to state the results in Vaidya et al. (2011) without resorting to probability

theory. In particular, ergodicity theory is exploited in such a way that the exponential

convergence of the algorithm can be proven.

To proceed with the proof, first a matrix form for the algorithm is introduced, then

the properties of the matrices involved are studied and finally ergodicity theory is used

to prove the convergence of the algorithm.

5.10 Proof of convergence 111

Matrix form and properties

The matrix form for the algorithm is obtained using an augmented state. Namely, the

evolution of variables qi and si is described with the help of some additional variable,

which too evolve in time.

In particular, it is necessary to introduce, for all (i, j) ∈ E , the following variables

ν
(i)
j,q(k) = σi,q(k)− ρ(i)

j,q(k),

ν
(i)
j,s(k) = σi,s(k)− ρ(i)

j,s(k),

which can be collected in the column vectors νq(k) = [ν
(i)
j,q(k)] ∈ R

E , νs(k) = [ν
(i)
j,s(k)] ∈

R
E respectively. Note that each ν

(i)
j,q(k) contains the remaining information at time k

sent by node i which has not yet reached node j (due to packet losses).

Defining the row vectors qa(k) = [q(k)> νq(k)>] and sa(k) = [s(k)> νs(k)>] ∈ R
N+E ,

it is possible to show that there exists a sequence of matrices M(k) ∈ R
(N+E)×(N+E)

according to which it holds

{
qa(k + 1) = qa(k)M(k)

sa(k + 1) = sa(k)M(k)
. (5.27)

Vectors qa(k) and sa(k) represent the augmented states. Each matrix M(k) depends on

the node that wakes up at time k and on which transmissions are successful at the same

time step. In any case, all matrices M(k), which are gathered together in the matrix set

M, satisfy the following lemma.

Lemma 5.10.1. The set of matrices M satisfies

1. M is a finite set;

2. each M ∈M is a row-stochastic matrix;

3. each positive element in any matrix M ∈M is lower bounded by a positive

constant c;

4. given τmax = Nhτ , ∀k ≥ 0, the stochastic matrix

V (τmax)(k) = M(k)M(k + 1) · · ·M(k + τmax − 1), M(t) ∈M,

is such that its first N columns have all the elements which are strictly positive.

Remark 5.10.2. The constant τmax has been evaluated in the worst possible scenario, in

particular assuming that in graph G there are at least two nodes that communicate with

112 Average consensus and quadratic cost minimization

each other in no less than N −1 steps. It was also assumed that the communication along

one link fails L− 1 times consecutively. In a random network G, where the diameter of

the graph is usually much smaller than the number of nodes, the actual constant τmax,

according to which the first N columns of V (τmax)(k) are strictly positive, will be, in

general, much smaller.

Ergodicity theory and convergence of ra-AC

First some useful concepts of ergodicity theory will be briefly recalled. An exhaustive

explanation for ergodicity theory can be found in Seneta (2006).

Given a stochastic matrix P ∈ R
N×N , a coefficient of ergodicity for P quantifies how

much its rows are different from each other. Two well-known coefficients of ergodicity for

a stochastic matrix P are

δ(P) := max
j

max
i1,i2

|[P]i1j − [P]i2j | ,

λ(P) := 1−min
i1,i2

∑

j

min {[P]i1j , [P]i2j} .

As all the coefficients of ergodicity, it holds that 0 ≤ δ(P) ≤ 1 and 0 ≤ λ(P) ≤ 1.

Consider now a stochastic matrix P such that δ(P) < ψ. Selecting two elements in any

column of P , the difference between these two elements is necessarily smaller than ψ.

Consider now a vector q ∈ R
N which sums to 0, that is 1>

Nq = 0. Define the related

quantities

qpos =
∑

i|yi>0

qi ≥ 1, qneg =
∑

i|yi<0

qi ≤ 0, qpos + qneg = 0,

and suppose that4 qpos > 0. It is possible to show that

∣∣∣[q>P]j
∣∣∣ ≤ ψ

N∑

i=1

|qi| (5.28)

An important property that holds for δ(·) and λ(·) is the following: given r stochastic

matrices P1, . . . , Pr, then

δ(P1P2 · · ·Pr) ≤
r∏

i=1

λ(Pi). (5.29)

A stochastic matrix P such that λ(P) < 1 is called scrambling, and a sufficient condition

for P to be scrambling is that at least one column is strictly positive,as can be verified

by the definition of λ(·).
4The bound in Equation 5.28, is still verified if qi = 0 ∀i.

5.10 Proof of convergence 113

It is possible to apply this theory to the forward product of matrices that define the

evolution of the algorithm as seen in (5.27), that is to matrix T (k) = M(0)M(1) · · ·M(k).

According to this matrix, it holds that qa(k + 1) = qa(0)T (k). First define

W (r) =
rτmax−1∏

k=(r−1)τmax

M(k), h ≥ 1, M(k) ∈M

which, by Lemma 5.10.1, has strictly positive columns. As a consequence, λ(W (r)) < 1

for all r ≥ 1. The number of different W (r) is finite and, collecting all W (r) in set W,

it is possible to define value d = maxW ∈W λ(W), d < 1. Due to Formula 5.29, for big

enough k, δ(T (k)) < 1 and in particular the following lemma holds

Lemma 5.10.3. The constant β = d1/(2τmax), 0 < β < 1, is such that δ(T (k)) ≤ βk for

k ≥ τmax.

Lemma 5.10.3 implies that the coefficient of ergodicity for T (k) converges to 0 as k

goes to infinity.

It is now possible to finally prove convergence in case vector v is zero mean, v̄ = 0. For

k ≥ τmax, by Lemma 5.10.3 it holds δ(T (k)) ≤ βk. Starting from Formula (5.28), and

remembering that the first N elements of qa(0) are q(0) and the other elements are 0,

some algebraic manipulation leads to 5

|xi(k + 1)| =
∣∣∣∣
qi(k + 1)

si(k + 1)

∣∣∣∣ ≤
1

si(k)
βk
∑

i

|qi| ≤
1

µ
βk
∑

i

|qi|

and then to

‖x(k + 1)‖2≤ N

µ2β2
(β2)k+1

(
∑

i

|qi|
)2

≤ N2

µ2β2
(β2)k+1‖x(0)‖2.

It is then possible to prove that, using constant C = N2/(µ2d), the inequality holds for

all k, that is

‖x(k)‖2 ≤ C(d1/τmax)k‖x(0)‖2, k ≥ 0. (5.30)

The exponential convergence of the algorithm when vector v is 0-mean has been proven,

since vector x(k) is converging to 01N .

This convergence result can be generalized to the case in which v is such that v̄ 6= 0,

obtaining

‖xv̄(k)− v̄1N‖2 ≤ C(d1/τmax)k‖xv̄(0)− v̄1N‖, k ≥ 0.

5It is possible to show that si(k) > cτmax for all i and k.

114 Average consensus and quadratic cost minimization

Remark 5.10.4. If no packet losses occur, the variables σi,q(k), σi,s(k), ρ
(j)
i,q (k) and ρ

(j)
i,s (k)

can be discarded (and variables qi and si of the nodes that receive the information

are updated directly using the packets they receive). The algorithm obtained in this

case is subsumed by those presented in (Bénézit et al., 2010). The idea of using a

consensus algorithm with an augmented state in order to prove the convergence of this

particular ratio consensus is taken from Vaidya et al. (2011). However, in the latter

the communication is synchronous, that is at each iteration all the nodes perform some

updates, and moreover the results concerning the convergence are given in probability.

In the set-up considered here, the algorithm is asynchronous and the convergence result

is stated considering a worst-case scenario. This is a consequence of the two assumptions

done on the communication, which, remarkably, also allow to prove that the convergence

is exponential.

5.11 Simulations for the ra-AC algorithm

This section shows the results of some simulations done for ra-AC, and also some

comparison with PDMM, which is the only other algorithm (to the best of the author’s

knowledge) provably convergent in case of lossy communication Sherson et al. (2017).

The first simulations concern only the ra-AC. The set-up of these simulations is the

following: the number of agents considered is N = 50, the underlying communication

graph is random geometric with distance threshold equal to r > 0. In addition, in order

to work on directed graphs, some of the links have been forced to be unidirectional. The

value of τ and h for Assumptions 2.3.2 and 2.3.1 are respectively 75 and 10. In particular,

different probability p of losing a given packet are considered, but if the link that is

selected has failed to transmit for h− 1 previous consecutive times, then the link is forced

to be reliable without considering the packet loss probability. In Table 5.1 the averaged

root mean squared error (ARMSE) of the results are given. In particular, for each value

of r and p selected, M = 500 Monte Carlo runs (MCR) for different graph realizations

are carried out. Denoting with x{i}(k) the value x(k) obtained in the i−th MCR, then

ARMSE(k) =
1

M

M∑

i=1

[
1√
N
‖x{i}(k)− v̄1N‖2

]

The results of the simulations show that the more connected the graph is, the faster the

convergence is. On the other hand, the packet loss probability, as expected, makes the

convergence slower. Note that for r = 0.25 , even at iteration 2000 the convergence is

still not good. However, even in the best case, at iteration 2000 all the nodes have woken

5.12 Final considerations 117

As a matter of fact, when the graph is sparse PDMM is faster, but when the graph is

dense, ra-AC has a better performance. Again, ra-AC has no parameter to set, while

PDMM has two parameters to be set. Its convergence rate really depends on the choice

of one of these parameters, ρ > 0 (the other, α in case of quadratic function can be set

to 1), as can be inferred from Table 5.2. The table shows that the communication graph

log10

(
RMSE(2000)

RMSE(0)

)
ρ = 0.9 ρ = 0.45 ρ = 0.1

r = 0.3 −4.4718 −1.7414 −0.5922

r = 0.9 −2.9170 −4.9982 −14.8301

Table 5.2: Values of log10

(
RMSE(2000)

RMSE(0)

)
for the PDMM algorithm at time k = 2000, for

different values of the distance threshold r and PDMM parameter ρ. The packet loss probability
n the simulations is 20%.

really influences the choice of the parameter. Since in a multi-agent system the global

communication network might be unknown, this strong dependence may create some

problem in the setting of parameter ρ. On the other hand, using ra-AC, each agent only

needs to know its neighbors to run the algorithm, and no global knowledge is required.

From a practical point of view, this consideration on the parameters’ tuning is quite

important.

5.12 Final considerations

The first part of the chapter, devoted to the comparison between consensus based and

Lagrangian based algorithm, has shown the importance of the communication graph in

determining the convergence rate of distributed algorithms. The analysis clearly show

that one should choose the algorithm depending on the underlying communication graph.

Also, among all the analyzed algorithms, the accelerated consensus seems a good choice

in almost all scenarios, especially because once matrix P is set, the convergence rate of

this algorithm does not depend on the curvatures of the cost functions.

The second part of the chapter focused on the development of a robust and asyn-

chronous algorithm to solve the consensus problem. The developed approach, ra-AC,

is shown to be exponentially convergent under some deterministic assumption on the

communication. The algorithm is also compared to PDMM Sherson et al. (2017), showing

advantages and disadvantages of both algorithms.

118 Average consensus and quadratic cost minimization

6
Minimization of additively separable cost

functions

This chapter partly extends the following paper (submitted to the IEEE Transactions on

Automatic Control)

Bof N., Carli R., Notarstefano G., Schenato L., and Varagnolo D. Newton-

Raphson Consensus under lossy communication for peer-to-peer optimization. arXiv

preprint arXiv:1707.09178, 2017c

In this chapter, the problem analyzed is the unconstrained minimization of the sum

of convex functions in a fully distributed multi-agent setting subject to a real-world

communication scenario. Even though the distributed optimization of convex functions

is a well studied problem, the focus of this chapter is in considering asynchronous

computation and lossy communication, with the latter being a real novelty. In

particular, this chapter robustify a recently proposed algorithm named Newton-Raphson

Consensus by integrating it with the ra-AC algorithm presented in Section 5.9. Separation

of time scales principle allows to show that under mild conditions (i.e., persistency of

the agents activation and bounded consecutive communication failures) the proposed

algorithm is proved to be locally exponentially stable with respect to the optimal global

solution.

120 Minimization of additively separable cost functions

6.1 Introduction and state of the art

This chapter is devoted to the last optimization problem analyzed in the thesis. The

tackled problem is the minimization of the sum of cost functions. Differently from the

scenario presented in Chapter 4, here the private cost functions of the agents depend all an

the same optimization variable. An example of such a scenario is the quadratic problem

analyzed in the previous chapter. The aim of this chapter is to find an algorithm to solve

more general problems than the quadratic one. Again, the main feature of the developed

algorithm concerns its ability to deal with a real communication scenario. As in all

the previous case, the algorithm has to be able to cope with unreliable communications,

using a communication protocol which does not implement an acknowledge system and

is also asynchronous.

The following analysis of the literature involve also some works that have been

already recalled in the thesis. The analysis in Chapter 4 focused on showing how the

previous works did not simultaneously met the requirement of local information exchange,

asynchronous update and robustness to packet loss. In Chapter 5 the focus was on works

mainly concerning the quadratic case since this was the restriction explored. In this

chapter, the focus is on algorithms for global estimation problems and on the type of

communication scenarios according to which their convergence can be shown.

As already pointed out in Section 4.1, there are mainly three types of algorithms to

deal with the distributed optimization of sums of cost functions.

One of these types are distributed subgradient methods. These are a popular class of

algorithms that are able to cope with asynchronous updates and time-varying graphs.

They are simple to implement, can deal with non-differentiable convex cost functions, and

require only the computation of local (sub)-gradients. However, these algorithms exhibit

sub-linear converge rates even if the cost functions are smooth Nedić and Ozdaglar (2010);

Nedić et al. (2010). Recent works based on this approach have extended these results to

directed and possibly time-varying communication in both discrete-time Lin, Ren, and

Song (2016); Nedić and Olshevsky (2015) and continuous-time settings Gharesifard and

Cortes (2014); Kia, Cortés, and Martínez (2015). However, the use of a diminishing step-

size tacitly implies that the communication is synchronous (since the step-size is designed

as a function of the global time that triggers the algorithm). Moreover, the underlying

assumption for guaranteeing convergence is that the transmitter nodes should know

which packets are successfully transmitted. This assumption corresponds to employing

communication protocols with reliable packet transmission or acknowledge mechanisms.

As already pointed out, such solutions might be difficult or expensive to implement

over wireless media. The recent work Lee and Nedić (2016) proposes an asynchronous

6.1 Introduction and state of the art 121

algorithm, based on random projections, in which the step-size (both diminishing and

constant) is uncoordinated among agents.

The second popular class of distributed optimization algorithms relies on dual decom-

position schemes. In this case the related literature is very large and the reader is referred

to Yang and Johansson (2011) for a comprehensive tutorial. Among these algorithms,

the Alternating Direction Method of Multipliers (ADMM) is one of the most employed,

due to its simple distributed implementation and good convergence speed (as shown

in Sections 5.6 and 5.7 in the particular case of quadratic cost functions). Substantial

research has been dedicated in optimizing the free parameters of ADMM in order to

obtain faster convergence rates. However, these are mainly restricted to synchronous

implementations over undirected communication graphs Ghadimi, Teixeira, Shames,

and Johansson (2015); Teixeira et al. (2013); Nishihara, Lessart, Recht, Packard, and

Jordan (2015); Iutzeler et al. (2016). Some recent exceptions extend dual decomposition,

Notarnicola and Notarstefano (2016), and ADMM, Wei and Ozdaglar (2013); Bianchi,

Hachem, and Iutzeler (2016); Chang, Hong, Liao, and Wang (2016), to asynchronous

scenarios with edge-based or node-based activation schemes. Some recent works have

addressed the problem of random delay in the communication/updates rounds in ADMM

schemes Zhang and Kwok (2014); Peng, Xu, Yan, and Yin (2016); Chang et al. (2016);

however these strategies are restricted to networks with master-slave communication

topologies (see Figure 2.3) and do not explicitly address packet losses.

The PDMM algorithm Sherson et al. (2017) (already used in Section 5.11), belongs

to the latter class of algorithms, and, to the best of the author’s knowledge, is the

only distributed algorithm able to cope with an unreliable communication network

without employing an acknowledge protocol. The version containing the formal proof

of convergence in presence of packet losses and asynchronous updates was very recently

published.

The third class of optimization algorithms, usually referred to as Newton-based meth-

ods, consists of strategies that exploit second-order derivatives, i.e., the Hessians of the

cost functions for computing descent directions. For example in Wei, Ozdaglar, and

Jadbabaie (2013a,b) the authors apply quasi-Newton distributed descent schemes to

general time-varying directed graphs. Also Eisen, Mokhtari, and Ribeiro (2016) propose

decentralized quasi-Newton methods which are provably convergent in an asynchronous

set-up. Another approach, based on computing Newton-Raphson directions through aver-

age consensus algorithms, has been proposed in Varagnolo, Zanella, Cenedese, Gianluigi,

and Schenato (2016). Even if initially proposed for synchronous implementations, this

scheme has been later extended to cope with asynchronous symmetric gossip communi-

122 Minimization of additively separable cost functions

cation schemes Zanella, Varagnolo, Cenedese, Pillonetto, and Schenato (2012). Works

Zanella et al. (2012) and Varagnolo et al. (2016) have introduced the idea of tracking

the gradient of the whole cost function as a mean to replace the diminishing stepsize

with a constant one. This idea has been reconsidered with different averaging schemes

and formalized in Di Lorenzo and Scutari (2016) to handle nonconvex optimization

(combined with a successive convex approximation approach) and in Nedić, Olshevsky,

and Shi (2016) and Qu and Li (2017) to show linear convergence with constant stepsize.

Recently, in Mansoori and Wei (2017) a Newton scheme with almost sure global-linear

and local-superlinear convergence has been proposed for a different problem set-up in

which consistency of the local variables is only penalized but not guaranteed.

Although there exists a large body of literature on distributed convex optimization

schemes employing synchronous and asynchronous communications, only PDMM directly

addressed situations where the communications are unreliable and lossy. In such a

communication scenario, in fact, trying to make the other aforementioned algorithms

cope with packet losses using naïve modifications (e.g., using the most recently received

message from the neighboring nodes, interpretable as using delayed information in the

algorithms) may destroy some of the hypotheses that guarantee the convergence of the

original algorithms (e.g., the doubly stochasticity or the invariance of some quantities

such as the global averages). Distributed convex optimization in the presence of lossy

communications is thus a non-trivial task.

The main contribution of this chapter is to propose a set of distributed optimization

algorithms which are robust to packet losses for general asynchronous peer-to-peer networks

and are guaranteed to have (local) exponential convergence.

More specifically, the starting algorithm is the Newton-Raphson Consensus initially

proposed in Varagnolo et al. (2016). In this distributed algorithm, the only step which

requires exchange of messages is an average consensus step. As a consequence, if the

aim is to robustify the algorithm to make it cope with unreliable communication, this is

the step in which one has to intervene. The idea is then to employ the ra-AC algorithm

developed in Section 5.9, since this algorithm is robust and moreover asynchronous.

This new scheme, together with PDMM, are (to the best of the author’s knowledge)

the first distributed optimization algorithms able to deal with asynchronous and lossy

communication protocols.

Despite the simple intuition of combining a new consensus algorithm with the Newton-

Raphson Consensus approach, the algorithm analysis required the development and appli-

cation of non-standard non-linear control methods, namely ad-hoc results on exponential

stability of non-linear, time-varying discrete-time systems with multiple interconnections

6.2 Problem formulation 123

by means of time-scale separation. One additional element of complexity arises from the

fact that some of the variables involved in the algorithm do not converge to a steady-state

value but oscillate, therefore standard exponential stability proofs cannot be exploited.

Apart from the standard Newton-Raphson consensus, which requires the computation

of the inverse of the Hessian of the functions, also two other computationally lighter

versions are provided. They are referred to as Jacobi Consensus and Gradient Consensus.

The former requires the evaluation of only a part of the Hessian and the inversion of a

diagonal matrix, while the latter requires only first order information (that is only the

gradient) and no matrix inversion. These versions are computationally more efficient at

the price of slower convergence rate, while still guaranteeing linear convergence.

Under mild conditions, i.e., persistency of (asynchronous) node updates, uniformly

bounded consecutive communication link failures, and connectivity of the communication

graph, it is possible to prove the convergence of the algorithm. In particular one can show

that the optimization algorithm is locally exponentially stable with respect to the global

solution as long as the step-size of the updates is smaller than a certain critical value and

the cost functions are sufficiently smooth. The proof is based on time-scale separation

and Lyapunov theory, and extends the results in Carli, Notarstefano, Schenato, and

Varagnolo (2015), where the convergence was proved only for quadratic cost functions.

The theoretical results are complemented with numerical simulations based on real

datasets under lossy, broadcast communication. The robust and asynchronous Newton-

Raphson consensus presented in the chapter is numerically compared against two recently

proposed algorithms Tsianos, Lawlor, and Rabbat (2012); Nedić et al. (2016) under the

special case of asynchronous lossless communication, showing the better performance

of the proposed Newton-Raphson approach. Finally, it is also compared with PDMM

Sherson et al. (2017), and this (initial) comparison shows that the algorithm proposed in

this chapter can be competitive with PDMM.

6.2 Problem formulation

The problem considered in this chapter is the following separable optimization one

x∗ := arg min
x
f(x) = arg min

x

N∑

i=1

fi(x) (6.1)

where x ∈ R
n and where the local costs fi : Rn 7→ R satisfy:

Assumption 6.2.1 (Cost smoothness). Each fi is known only to node i and is C3 and

strongly convex, i.e., its Hessian is bounded from below, ∇2fi(x) � cIn for all x, with

124 Minimization of additively separable cost functions

c > 0 some positive scalar.

The communication among nodes is modeled via a communication graph G that meets

the following assumption

Assumption 6.2.2. The communication graph G is time-invariant, directed and satisfy

the Assumption 2.2.1 on connectivity.

The algorithm designed to solve Problem (6.1) has to have the following features:

1. Asymptotic global estimation: each agent’s estimate of the global minimizer has to

asymptotically converge to the optimal solution x∗.

2. Peer-to-peer (leaderless): each node’s update has to consider the limited computa-

tional and memory capability available at the node itself and there is no master

node among the agents. Moreover, the algorithm can only require communication

between one-hop neighbors and it has to assure convergence on any communication

graph G satisfying Assumption 6.2.2.

3. Distributed: the update-rule of the local variables at each node has to depend

only on the variables stored by the local node and by its neighbors. No multi-hop

information exchange is allowed.

4. Asynchronous: the algorithm has to allow the agents to perform the update step

and the communication step in any moment, without any coordination among the

agents.

5. Lossy broadcast communication without ACK : the convergence of the algorithm

has to be assured even if communication is lossy and broadcast-based. No ACK

mechanisms has to be employed.

To the best of authors’ knowledge, only PDMM Sherson et al. (2017) can offer the

same features.

6.3 Building blocks

The algorithm proposed consists of two different building blocks: i) the Newton-Raphson

Consensus, proposed in Varagnolo et al. (2016) to solve problem (6.1) and ii) the robust

ratio average consensus algorithm ra-AC proposed in Section 5.9.

6.3 Building blocks 125

The Newton-Raphson Consensus, proposed in Varagnolo et al. (2016) possesses the

first three features mentioned above (i.e., 1, 2, and 3) but it assumes synchronous and

reliable communications.

The ra-ACalgorithm on the other hand meets all the features above, but is limited in

the problems it can solve (namely, just the quadratic ones).

The idea is to merge the two schemes above to design a distributed optimization

algorithm that solves problem (6.1) and that exhibits all the features 1-5 above. The

main challenge is showing that feature 1 holds, since the interaction between these

algorithms might lead to instability unless some suitable assumptions are considered.

The key mathematical machinery that will be used to this means is Lyapunov theory

and separation of time-scales.

Before providing the description of the proposed algorithm, the Newton-Raphson

Consensus and the related use of ra-AC are briefly described.

Newton-Raphson Consensus

The Newton-Raphson Consensus Varagnolo et al. (2016) is inspired by the Newton-

Raphson’s update in the standard centralized scenario1 (again, x+ denote x(k + 1))

x+ = x− ε(∇2f(x))−1∇f(x).

This update can be rewritten as

x+ = (1− ε)x+ ε
(
∇2f(x)

)−1(
∇2f(x)x−∇f(x)

)
,

and substituting f(x) with the sum of the fi(x), the update becomes

x+ = (1− ε)x+ ε
(∑

i

∇2fi(x)

︸ ︷︷ ︸
=:H(x)

)−1(∑

i

(∇2fi(x)x−∇fi(x))

︸ ︷︷ ︸
=:g(x)

)
. (6.2)

The latter system is exponentially stable as long as the parameter ε > 0, which is the

stepsize, is chosen in a proper way. Assuming now that all agents can have a different

value xi of the estimate of x∗, and mimicking the previous algorithm, the following N

1Note that the Newton-Raphson method coincides with the Damped Newton method described
in Algorithm 2.1. To be consistent with Varagnolo et al. (2016), in this chapter it is denoted as
Newton-Raphson’s method

126 Minimization of additively separable cost functions

local updates are obtained:

x+
i = (1− ε)xi + ε

(∑

j

∇2fj(xj)
︸ ︷︷ ︸
=:Hj(xj)

︸ ︷︷ ︸
=:H(x1,...,xN)

)−1(∑

j

(∇2fj(xj)xj −∇fj(xj))
︸ ︷︷ ︸

=:gj(xj)
︸ ︷︷ ︸

=:g(x1,...,xN)

)
. (6.3)

The dynamics of the N local systems is identical and exponentially stable, therefore, since

they are all driven by the same forcing term2 κ(x1, . . . ,xn) = (H(x1, . . . ,xN))−1g(x1, . . . ,xN),

intuitively one expects that

xi − xj → 0, ∀i, j ,

which implies that all local variable will be identical. If this is the case, then the dynamics

of each local system will eventually become the dynamics of a standard centralized

Newton-Raphson algorithm.

This algorithm, however, requires each agent to be able to instantaneously compute the

two sums H(x1, . . . ,xN), g(x1, . . . ,xN), which is obviously not possible in a distributed

computation set-up. The original paper Varagnolo et al. (2016) extends the standard

Newton-Raphson algorithm into a distributed scenario via the use of synchronous lossless

average consensus protocols that asymptotically compute these sums, while Zanella et al.

(2012) extends it to the case of asynchronous gossip-based lossless average consensus

strategies.

How ra-AC is exploited

In Formula (6.3) it is possible to identify the presence of two average consensus. In

particular, one can see the quantity (H(x1, . . . ,xN))−1g(x1, . . . ,xN) as

(
H(x1, . . . ,xN)

N

)−1
g(x1, . . . ,xN)

N
.

The idea is to evaluate these 2 averages using two (slightly modified) ra-AC algorithms

running in parallel, one to find the mean of g1(x1), . . . , gN (xN) and the other to determine

the mean of H1(x1), . . . ,HN (xN). Looking at Algorithm 5.1, the two ra-AC algorithms

to evaluate the two means only differ in the initialization of qi in Step 1. To distinguish

between the two different runs, the variables qi of the first ra-AC are called yi, while the

variables qi of the second ra-AC are called Zi instead3. In particular, the initialization of

2Assumption 6.2.1 assures that H(x1, . . . ,xN) is invertible.
3Note that the first ra-AC algorithm performs the mean of a group of vectors, the gi(xi), while the

second performs the mean of matrices, the Hi(xi).

6.4 The robust asynchronous Newton-Raphson Consensus (ra-NRC) 127

the yi and Zi is as follows

yi(0) = gi(xi), i ∈ V,
Zi(0) = Hi(xi), i ∈ V.

According to the ra-AC algorithm, the i−th agent’s estimate at time k of the first mean is

obtained as the ratio of yi(k) and si(k), and the estimate of the second as the ratio of Zi(k)

and si(k) (the si(k) is the same for the two ra-AC, since the agents’ activation sequence

is the same for the two algorithms and it is assumed that the messages concerning the

two different algorithms are sent together, and so are both received or both lost). If the

Assumptions 2.3.1 and 2.3.2 hold, due to the convergence property of ra-AC it holds

lim
k→∞

yi(k)

si(k)
=
g(x1, . . . ,xN)

N
, lim

k→∞
Zi(k)

si(k)
=
H(x1, . . . ,xN)

N
, ∀ i ∈ V.

Due to the properties of the limits, it also holds

lim
k→∞

(
Zi(k)

si(k)

)−1 yi(k)

si(k)
=
(
H(x1, . . . ,xN)

)−1
g(x1, . . . ,xN), ∀ i ∈ V.

The left-hand side of the latter equation can be rewritten simplifying si(k), finally

obtaining

lim
k→∞

(Zi(k))−1 yi(k) =
(
H(x1, . . . ,xN)

)−1
g(x1, . . . ,xN), ∀ i ∈ V.

Remark 6.3.1. The results on the convergence of the proposed algorithm are local and for

this case it is possible to guarantee that Zi(k) � cIn, for all times k. As a consequence it

is always possible to evaluate the inverse of Zi(k).

Since the si(k)s simplify in the ratio of the two means, these variables are not used

in the algorithm presented in the next section.

6.4 The robust asynchronous Newton-Raphson

Consensus (ra-NRC)

This section merges the Newton-Raphson Consensus and the ra-AC algorithm into one

algorithm, called robust asynchronous Newton-Raphson Consensus (ra-NRC). This new

algorithm solves problem (6.1) and exhibits all the features listed in Section 6.2. It can

be organized in a block scheme as in Figure 6.1.

In the following a “meta distributed algorithm” is proposed. It can result in different

128 Minimization of additively separable cost functions

Newton-Raphson
x1

Newton-Raphson
xN

ra-AC

σi,y, ρ
(j)
i,y , σi,z, ρ

(j)
i,z

local computation

local cooperation

g1, H1

gN , HN

y1, Z1

yN , ZN

Figure 6.1: Graphical representation of the robust asynchronous Newton-Raphson Consensus
(ra-NRC).

distributed algorithms depending on the (possibly asynchronous and lossy) communication

protocol implemented in the network.

The meta algorithm consists of four main blocks of code implemented by each node

i ∈ V in the network: Initialization (at startup), Data Transmission, Data Reception and

Estimate Update.

Except for the first block, which corresponds to a one-time execution at startup, the

blocks can be executed asynchronously, with possibly different execution rates. The

scheduling of these three blocks, for each agent i, is determined by three binary variables

flagtransmission,i, flagreception,i, and flagupdate,i, whose evolution is determined by the

communication protocol. Each code block is assumed to be executed sequentially and

atomically, i.e., the local variables and flags cannot be changed by any other process.

For example, if a node is executing Estimate Update and a new packet is incoming, this

packet is either dropped or placed in a buffer till Estimate Update is not completed.

Thus, a distributed algorithm will be simply the combination of the given meta scheme

with a communication protocol defining how the flags are activated. For example, in

an event-triggered communication protocol the reception of a packet may sequentially

trigger (if no other block is being executed) the Data Reception block, which then triggers

the Estimate Update block, and that finally triggers the Data Transmission block. In the

following it is assumed that when an agent is idle, it is always ready to receive a new

packet and when a packet is received by the i-th node then flagreception,i is set to one.

One of the strengths of the proposed algorithm, is that its convergence is independent

of the specific communication protocol as long as this protocol satisfies some mild

6.4 The robust asynchronous Newton-Raphson Consensus (ra-NRC) 129

assumptions in terms of minimum scheduling rate of each block and maximum consecutive

packet losses, as formally stated in the next section.

Algorithm 6.1 provides a pseudo-code description of ra-NRC.

The first block Initialization (lines 1-7) is a one-time operation preformed by each

node at the beginning of the algorithm. The only free parameter to set is the initial

estimate xo for the global optimization, while all other variables depend on this choice

for xo.

The blocks Data Transmission (lines 8-16) and Data Reception (lines 17-25) imple-

ment the ra-AC algorithm (see bottom block in Figure 6.1). Note that, as written in

Algorithm 6.1, the ra-AC is fully parallel, in the sense that multiple nodes can transmit

at the same time, since any potential collision will result in a packet loss already handled

by the algorithm.

Specifically, when node i is performing the Data Transmission block, the updates

of variables yi, Zi (line 10-11) correspond to the update of qi in Algorithm 5.1, line 5.

The update for σi,y (line 12) corresponds to the update of σi,q in Algorithm 5.1 (line

8)(and the same holds for the update of σi,z (line 13)). After computing σi,y and σi,z, the

transmitting node broadcasts σi,y, σi,z and its ID to its neighbors. After transmission,

the node returns to an idle-mode (line 15). When node i is in the receiving mode and it

receives a message (line 17), it extracts the transmitter node ID j and the corresponding

variables σj,y, σi,z (line 18). The variable yi is updated like variable qj in Algorithm 5.1

(line 11) and then the local variable ρ
(j)
i,y is finally updated (line 21) similarly to the

update in line 14 of Algorithm 5.1 (the same comparisons can be made for lines 20 and

22 of Algorithm 6.1 regarding variables Zi and ρ
(j)
i,z).

The last block Estimate Update is responsible for implementing a local version

of the Newton-Raphson method. The update of the local estimate xi of the global

optimizer, available at each node i, is performed via the Newton-Raphson Consensus

described in the previous section. In practice, the roles of yi and Zi are those of (scaled)

local approximations of the global functions g(x1, . . . ,xN) and H(x1, . . . ,xN) defined

above. As so, mimicking Eqn. (6.3), the proposed algorithm uses these variables to

implement an approximated Newton-Raphson (line 27). Since the local variables xi

are continuously updated, also the global functions g(x1, . . . ,xN) =
∑

i gi(xi) and

H(x1, . . . ,xN) =
∑

iHi(xi) need to be updated accordingly. This cannot be done

instantaneously due to the networked nature of the framework and has be achieved

through the ra-AC (see Figure 6.1). In order to be able to track the continuously

changing signals gi and Hi, each node has to compute these signals before and after

updating the xi (gold
i e Hold

i in lines (28-29) and gi and Hi lines (30-31), respectively)

130 Minimization of additively separable cost functions

Algorithm 6.1 robust asynchronous Newton-Raphson Consensus (ra-NRC) for node i

Require: xo, ε, c
Initialization (atomic)

1: xi ← xo

2: yi ← ∇2fi(x
o)xo−∇fi(x

o), gi ← ∇2fi(x
o)xo−∇fi(x

o), gold
i ← ∇2fi(x

o)xo−∇fi(x
o)

3: Zi ← ∇2fi(x
o), Hi ← ∇2fi(x

o), Hold
i ← ∇2fi(x

o)
4: σi,y ← 0, σi,z ← 0

5: ρ
(j)
i,y ← 0, ρ

(j)
i,z ← 0, ∀j ∈ N in

i

6: flagreception,i ← 0, flagupdate,i ← 0
7: flagtransmission,i ← 1

Data Transmission (atomic)
8: if flagtransmission,i = 1 then
9: transmitter_node_ID← i

10: yi ← 1
|N out

i
|+1
yi

11: Zi ← 1
|N out

i
|+1

Zi

12: σi,y ← σi,y + yi

13: σi,z ← σi,z + Zi

14: Broadcast: transmitter_node_ID, σi,y, σi,z

15: flagtransmission,i ← 0
16: end if

Data Reception (atomic)
17: if flagreception,i = 1 and a message is received then

18: j ← transmitter_node_ID, (j ∈ N in
i)

19: yi ← yi + σj,y − ρ(j)
i,y

20: Zi ← Zi + σj,z − ρ(j)
i,z

21: ρ
(j)
i,y ← σj,y

22: ρ
(j)
i,z ← σj,z

23: flagreception,i ← 0
24: flagupdate,i ← 1 (optional)
25: end if

Estimate Update (atomic)
26: if flagupdate,i = 1 then

27: xi ← (1− ε)xi + εZi
−1yi

28: gold
i ← gi

29: Hold
i ← Hi

30: Hi ← ∇2fi(xi)
31: gi ← Hixi −∇fi(xi)
32: yi ← yi + gi − gold

i

33: Zi ← Zi +Hi −Hold
i

34: flagupdate,i ← 0
35: flagtransmission,i ← 1 (optional)
36: end if

6.4 The robust asynchronous Newton-Raphson Consensus (ra-NRC) 131

and then update the “consensus" variables yi and Zi in order to track the current sums

g(x1, . . . ,xN) and H(x1, . . . ,xN) (lines 32-33). In fact, this operation guarantees that

the following relationships hold preserved:

∑

i

(yi(k) +
∑

j∈N in
i

(σj,y(k)− ρ(j)
i,y (k))) =

∑

i

gi(k), (6.4)

∑

i

(Zi(k) +
∑

j∈N in
i

(σj,z(k)− ρ(j)
i,z (k))) =

∑

i

Hi(k), (6.5)

where, with a slight abuse of notation, with gi(k) and Hi(k) we denote gi(xi(k)) and

Hi(xi(k)) respectively (Lemma 6.5.3 shows this property in a particular set-up). The

intuition behind the convergence of the algorithm is that, if the local estimates xi change

slower than the rate at which the ra-AC converges, which can be achieved by choosing a

sufficiently small stepsize ε, then one would expect that

lim
k→∞

(Zi(k))−1
yi(k) =

(
∑

i

Hi(k)

)−1∑

i

gi(k). (6.6)

A formal proof of the ra-NRC algorithm and the necessary conditions in terms of

node activation and packet loss frequencies, when a particular communication protocol is

adopted, are given in the next section. For simplicity, the convergence is formally shown

fixing a communication protocol, but this is not restricting.

Remark 6.4.1. Like the Resilient Block Jacobi algorithm presented in Chapter 4, also

the memory need of the robust asynchronous Newton-Raphson Consensus can be quite

demanding. In fact, from one iteration to the following one, each agent has to store

5 + |N in
i | vectors of dimension n and 4 + |N in

i | matrices of dimension n×n. If the feature

space dimension n is large, it is possible to reduce the transmission and computational

burden of matrix inversion. In particular, similarly to what has been proposed in

Varagnolo et al. (2016), it is possible to modify the proposed algorithm to use Jacobi or

Gradient descents which have reduced communication and computational requirements.

More specifically, the only modification needed is to substitute line 30 with the following

ones

Hi ← diag(∇2fi(xi)), Jacobi Descent Consensus,

Hi ← In, Gradient Descent Consensus.

As so, for the Jacobi Descent Consensus it is necessary to invert n scalars and to transmit

only the n diagonal elements, while for the Gradient consensus no packets needs to be

132 Minimization of additively separable cost functions

transmitted as far as the Hessian is concerned. Of course, the price to pay with these

choices is a likely slower convergence rate.

Note that a similar technique was applied in Chapter 4 with the introduction of the

resilient gradient descent (see Remark 4.5.1).

Remark 6.4.2. As already pointed out in Remark 6.3.1, due to the locality of the results,it

is possible to guarantee that Zi(k) � cIn for all times k. However simulations showed

that in order to increase the basin of attraction and the robustness of the algorithm it is

suitable to force Zi(k) ≥ cIn. A simple solution is to replace line (27) with

xi ← (1− ε)xi + ε[Zi]
−1
c yi

where the operator [·]c is defined as

[Z]c :=

{
Z if Z � cIn

cIn otherwise.

where Z ∈ R
n×n is a positive semidefinite matrix. This does not impair the local stability

analysis provided below since close to the equilibrium point we have [Zi(k)]−1
c = (Zi(k))−1.

6.5 Dynamical system interpretation of ra-NRC

In this section, Algorithm 6.1 is rewritten as a dynamical system (which allows to study

the convergence properties of the algorithm). To do so, it is necessary to define the

evolution of the flags flagupdate, flagtransmission, flagreception, which can be done

choosing an asynchronous protocol for the communication and modeling the packet losses.

As will be shown later, the choice of the communication protocol is not restricting. In

order to keep the notation lighter, from now on, only to the scalar case is considered,

i.e., xi ∈ R for all i. Consistently, the first and second derivatives of the function fi are

denoted as f ′
i and f ′′

i respectively .

The following analysis is done for an asymmetric broadcast communication protocol

subject to packet losses. At each time instant k one node, say i, is activated. Then,

node i performs in order the operations in the Estimate Update block and in the Data

Transmission block, broadcasting to all its out-neighbors in G the updated variables

σi,y, σi,z. The transmitted packet might be received or not by j ∈ N out
i , depending

whether the link (i, j) is reliable or not at the time of transmission. If (i, j) is reliable,

then node j performs, in order, the operations in the Data Reception block, and in the

Estimate Update block.

6.5 Dynamical system interpretation of ra-NRC 133

An algorithmic description of the asymmetric broadcast communication protocol with

packet losses for the ra-NRC Algorithm 6.1 is provided in Algorithm 6.2. Without loss of

generality, the node performing the transmission step during the k-th iteration is node i.

Algorithm 6.2 Asymmetric broadcast for ra-NRC algorithm

Node i is activated
1: flagupdate,i ← 1 (line 26) : Estimate Update
2: flagtransmission,i ← 1 (line 8) : Data transmission

For j ∈ N out

i , if (i, j) is reliable
3: flagreception,j ← 1 (line 17) : Data reception
4: flagupdate,j ← 1 (line 26) : Estimate Update

The protocol selected allows to rewrite the resulting ra-NRC as a dynamical system

of the form: {
x(k + 1) = x(k) + εφ(k,x(k), ξ(k))

ξ(k + 1) = ϕ(k,x(k), ξ(k)),

where proper definitions of variables x, ξ and maps φ and ϕ can be found in Corollary 6.5.2.

Next, for the sake of analysis, a sequential description of the ra-NRC algorithm

obtained adopting the communication protocol in Algorithm 6.2, is given. Observe that,

once activated, node i updates xi, g
old
i , hold

i , gi, hi according to lines 27, 28, 29, 30, 31,

i.e.,4

xi(k + 1) = (1− ε)xi(k) + ε [zi(k)]−1
c yi(k)

gold
i (k + 1) = gi(k)

hold
i (k + 1) = hi(k)

gi(k + 1) = f ′′
i (xi(k + 1))xi(k + 1)− f ′

i(xi(k + 1))

hi(k + 1) = f ′′
i (xi(k + 1)).

Based on gi(k+ 1) and hi(k+ 1), the variables yi and zi are updated performing in order

the steps in lines 32, 10, and 33, 11, respectively, which result in

yi(k + 1) =
1

|N out
i |+ 1

(
yi(k) + gi(k + 1)− gold

i (k + 1)
)

zi(k + 1) =
1

|N out
i |+ 1

(
zi(k) + hi(k + 1)− hold

i (k + 1)
)
,

4Since fi : R 7→ R, all the quantities are now scalars.

134 Minimization of additively separable cost functions

and, in turn, from lines 12, 13,

σi,y(k + 1) = σi,y(k) + yi(k + 1)

σi,z(k + 1) = σi,z(k) + zi(k + 1).

The quantities σi,y(k + 1), σi,z(k + 1) are transmitted by node i to its out-neighbors;

if (i, j) is reliable, then node j, based on the Data Reception packet, updates the local

variables yj , zj , ρ
(i)
j,y, ρ

(i)
j,z as5

y′
j = yj(k) + σi,y(k + 1)− ρ(i)

j,y(k)

z′
j = zj(k) + σi,z(k + 1)− ρ(i)

j,z(k)

ρ
(i)
j,y(k + 1) = σi,y(k + 1)

ρ
(i)
j,z(k + 1) = σi,z(k + 1)

and, subsequently, based on the Data Update packet, updates the local variables xj , gold
j ,

hold
j , gj , hj , yj , zj as

xj(k + 1) = (1− ε)xj(k) + ε
yj(k)

[zj(k)]c

gold
j (k + 1) = gj(k)

hold
j (k + 1) = hj(k)

gj(k + 1) = f ′′
j (xj(k + 1))xj(k + 1)− f ′

j(xj(k + 1))

hj(k + 1) = f ′′
j (xj(k + 1))

yj(k + 1) = y′
j + gj(k + 1)− gold

j (k + 1)

zj(k + 1) = z′
j + hj(k + 1)− hold

j (k + 1).

Next, a suitable vector-form description of the asymmetric broadcast ra-NRC algorithm

is given.

To do so, similarly to the ra-AC algorithm presented in Chapter 5, it is first necessary to

build an augmented network that contains all the nodes in V and also some additional

virtual nodes. In particular, for each (i, j) ∈ E a new node, denoted as (i, j) for

convenience, is introduced, and is connected to the remaining network as an out-neighbor

of node i and an in-neighbor of node j. Formally, denoting the augmented network by

5As far as the variables yj and zj are concerned, to denote their updates in the Data Reception packet

we introduce the auxiliary variables y′
j , z′

j , since the overall updates of the current values of yj and zj are
performed in the subsequent Data Update packet.

6.5 Dynamical system interpretation of ra-NRC 135

Ga = (Va, Ea), it holds Va = V ∪ E and

Ea = E ∪ {(i, (i, j)) | (i, j) ∈ E} ∪ {((i, j), j) | (i, j) ∈ E} .

Similarly to what was done in Section 5.10, the auxiliary variables for each (i, j) ∈ E are

ν
(i)
j,y(k), ν

(i)
j,z(k), defined as

ν
(i)
j,y(k) = σi,y(k)− ρ(i)

j,y(k)

ν
(i)
j,z(k) = σi,z(k)− ρ(i)

j,z(k).

Recall that the role of the above variables is to keep track of the transmitted mass, which

has not been received due to packet losses. Accordingly, let νy and νz be the vectors

that collect, respectively, all the variables ν
(i)
j,y and ν

(i)
j,z , i ∈ V and j ∈ N out

i . Assuming

that |E| = NE , then νy, νz ∈ R
NE . Now, define vectors y, z ∈ R

N as

y =




y1

...

yN


 , z =




z1

...

zN


 ,

and, based on these vectors, build the augmented vectors ya, za ∈ R
N+NE as

ya =

[
y

νy

]
, za =

[
z

νz

]
.

Moreover, let

g = [g1, . . . , gN]T ,

gold =
[
gold

1 , . . . , gold
N

]T
,

f ′′(x)x =
[
f ′′

1 (x1)x1, . . . , f
′′
N (xN)xN

]T
,

f ′(x) =
[
f ′

1(x1), . . . , f ′
N (xN)

]T
,

y/z =

[
y1

z1
, . . . ,

yN

zN

]T

.

Since the communication scenario is lossy, it might happen that the packet transmitted

by node i is either received or not received by node j ∈ N out
i . For this reason, it is

convenient to introduce the sets

Ñi(k) =
{
j ∈ N out

i such that (i, j) is reliable at time k
}
,

136 Minimization of additively separable cost functions

and, its complement on N out
i ,

N̄i(k) = N out
i \ Ñi(k).

To state Proposition 6.5.1, which provides a vector form description of Algorithm 6.2,

it is convenient to resort to the following notational convention. When referring to an

N -dimensional vector, its components are indexed according to the nodes in V , while

when referring to an NE -dimensional vector, its components are indexed according to

the edges in E . In particular, ei ∈ R
N and e(i,j) ∈ R

NE denote the vectors with all the

components equal to zero, except, respectively, the one related to node i and the one

related to edge (i, j), which are equal to one; that is ei, i ∈ V , and e(i,j), (i, j) ∈ E , are

the vectors of the canonical basis of, respectively, RN and RNE .

Proposition 6.5.1. The ra-NRC algorithm with the asymmetric broadcast protocol

(Algorithm 6.1 and Algorithm 6.2), can be written in vector form as6

x(k + 1) = x(k) + ε S(k) (p(k)− x(k)) (6.7)

gold(k + 1) = S(k)g(k) + (I − S(k))gold(k)

g(k + 1) = f ′′(x(k + 1))x(k + 1)− f ′(x(k + 1))

hold(k + 1) = S(k)h(k) + (I − S(k))hold(k)

h(k + 1) = f ′′(x(k + 1))

ya(k + 1) = M(k)ya(k) + T (k)
(
g(k + 1)− gold(k + 1)

)

za(k + 1) = M(k)za(k) + T (k)
(
h(k + 1)− hold(k + 1)

)

p(k + 1) =
y(k + 1)

z(k + 1)

where

S(k) = eie
T
i +

∑

j∈Ñi(k)

eje
T
j and T (k) =

[
TV (k)

TE(k)

]
,

6Matrices S, Sa and M depend on which node is activated, and on which edges between this node
and its out-neighbors are reliable. In order to keep the notation lighter, this dependency is not made
explicit (for instance using some superscript or subscript); instead, only the time-varying nature of these
matrices is underlined, writing S(k), Sa(k) and M(k).

6.5 Dynamical system interpretation of ra-NRC 137

with

TV (k) =
1

|N out
i |+ 1


eie

T
i +

∑

j∈Ñi(k)

eje
T
i


+

∑

j∈Ñi(k)

eje
T
j

TE(k) =
1

|N out
i |+ 1

∑

j∈N̄i

e(i,j)e
T
i

and where M(k) is a column stochastic matrix such that

M(k) =

[
MV V (k) MV E(k)

MEV (k) MEE(k)

]

with

MV V (k) =
1

|N out
i |+ 1


eie

T
i +

∑

j∈Ñi

eje
T
i


+

∑

h 6=i

ehe
T
h

MV E(k) =
∑

j∈Ñi

eje
T
(i,j)

MEV (k) =
1

|N out
i |+ 1

∑

j∈N̄i

e(i,j)e
T
i (= TE(k))

MEE(k) =
∑

j∈N̄i

e(i,j)e
T
(i,j) +

∑

(r,s) : r 6=i

e(r,s)e
T
(r,s).

The proof of the latter proposition can be found in Appendix E.1.

Observe that variables ya,za are trajectories of a linear, time-varying algorithm with

column-stochastic state-matrix, driven by the differences g − gold, h− hold.

From the previous proposition, the next fact follows directly.

Corollary 6.5.2. Let ξ =
[
gT , goldT

,hT ,holdT
,yT

a ,z
T
a ,p

T
]T

, then, system in (6.7) can

be written as: {
x(k + 1) = x(k) + ε φ(k,x(k), ξ(k))

ξ(k + 1) = ϕ(k,x(k), ξ(k)),
(6.8)

where ε > 0, x ∈ R
N , ξ ∈ R

7N+2NE , φ : N× R
N × R

7N+2NE → R
N ,

ϕ : N× R
N × R

7N+2NE → R
7N+2NE , and where equations in (6.7) properly define the

maps φ and ϕ.

Finally, the mass conservation property of system in (6.7), stated in the following

lemma, will be useful in the next section.

138 Minimization of additively separable cost functions

Lemma 6.5.3. Consider system in (6.7). Then, for all k ∈ N, the following equalities

hold true

N∑

`=1


y`(k) +

∑

j∈N out

`

ν
(`)
j,y (k)


 =

N∑

`=1

g`(k)

N∑

`=1


z`(k) +

∑

j∈N out

`

ν
(`)
j,z (k)


 =

N∑

`=1

h`(k).

The proof of this lemma can be found in Appendix E.2.

Remark 6.5.4. The dynamical system description of ra-NRC algorithm given in this section

has been obtained using an asymmetric broadcast communication protocol. However, it is

worth stressing that similar computations hold also for other communication protocols like

symmetric gossip, asymmetric gossip, coordinated broadcast. Adopting one of the above

communication protocols, it turns out that ra-NRC algorithm can again be described

as in (6.7), with the only difference related to the matrix M(k) which is still a column

stochastic matrix but with a slight different structure, and to the selection matrix S(k).

This justifies the fact that the convergence results provided in the next Section, specifically

tailored to the scenario considered in this section, can be technically extended to also

other types of communication protocols.

6.6 Theoretical analysis of the ra-NRC

This section is devoted to the theoretical analysis of the asymmetric broadcast ra-NRC

algorithm, presented in the previous section.

As for all the other algorithms developed in the thesis, to prove the convergence of the

asymmetric broadcast ra-NRC some assumptions concerning the node activation and on

the packet losses are needed. As stands to reason, the assumptions needed are the same

one used in the previous chapter to show the convergence of ra-AC, that is Assumptions

2.3.2 and 2.3.1. Namely, each node updates its local variables and communicates with

its neighbors infinitely often, and the number of consecutive packet losses is bounded.

As for the previous chapters, from the two assumptions it follows that, given i ∈ V

and j ∈ N out
i , node j receives information from node i at least once within the interval

[k, k + hτ].

In order to characterize the convergence properties of the asymmetric broadcast

ra-NRC algorithm, two lemmas are introduced.

6.6 Theoretical analysis of the ra-NRC 139

Let x = [x1, . . . , xN]T and x0 =
[
x0

1, . . . , x
0
N

]T
. The first lemma shows that if the

variable x is kept constant, then the components of the vector p achieve consensus to

the ratio h(x1, . . . , xN)/g(x1, . . . , xN). Vice-versa, the second lemma, shows that if the

components of p have reached consensus, then the vector x exponentially converges to

the global minimizer.

Formally, to state the first result, for a given k̄, it is useful to consider the following

dynamics, for k ≥ k̄,

ξk̄(k + 1) = ϕ
(
k,x(k̄), ξk̄(k)

)
, (6.9)

initialized by ξk̄(k̄) = ξ(k̄). Observe that, ξk̄ describes the evolution of the variable ξ,

starting at iteration k̄, assuming that the variable x is kept constant for k ≥ k̄, that is,

x(k) = x(k̄) for all k ≥ k̄. In particular, the interest is on the behavior of the variable p,

the last block of components of ξk̄. Similarly to ξk̄, p in the given scenario is denoted as

pk̄. The following result holds:

Lemma 6.6.1. For a given k̄, consider, for k ≥ k̄, the dynamics in (6.9). Then, under

Assumptions 2.3.2 and 2.3.1, the point

∑
` g`(x`(k̄))

∑
` h`(x`(k̄))

1

is exponentially stable for the variable pk̄, that is, defined

p̃k̄(k) := pk̄(k)−
∑

` g`(x`(k̄))
∑

` h`(x`(k̄))
1,

there exists Ck̄ > 0 and 0 ≤ ρk̄ < 1 such that

‖p̃k̄(k)‖ ≤ Ck̄ ρ
k−k̄
k̄
‖p̃k̄(k̄)‖. (6.10)

Proof. In the following the block components of ξk̄ corresponding to ya, za are denoted

by ya;k̄, za;k̄ . To study the evolution of pk̄(k), the behavior of the variables ya;k̄(k) and

za;k̄(k) are analyzed separately. Consider ya;k̄(k). Observe that, since x(k) = x(k̄), k ≥ k̄,

according to Assumptions 2.3.2 and 2.3.1 there exists k̄′ > k̄ such that gold(k) = g(k) for

all k ≥ k̄′ and, hence,

ya,k̄(k + 1) = M(k)ya,k̄(k),

for k ≥ k̄′. A similar reasoning holds for za,k̄(k). It follows that the variables ya,k̄(k),

za,k̄(k) and, in turn, the variables yk̄(k), zk̄(k) for k ≥ k̄′ run the same iterations of the

variable qa(k) in the ra-AC algorithm introduced in the previous chapter.

140 Minimization of additively separable cost functions

From Lemma 6.5.3, for k ≥ k̄ and, in particular, for k ≥ k̄′

1Tya,k̄(k) =
N∑

`=1

g`

(
x`(k̄)

)

1Tza,k̄(k) =
N∑

`=1

h`

(
x`(k̄)

)
.

From Theorem 5.9.4, it follows that
yk̄(k)
zk̄(k) converges exponentially to

∑
`

g`(x`(k̄))∑
`

h`(x`(k̄))
1.

Now, assume that, for each k, the variable p(k) has reached consensus and consider

the following dynamics for the variable x,

x(k + 1) = x(k) + ε S(k)

(∑
` g`(x`(k))∑
` h`(x`(k))

1− x(k)

)

= x(k) + ε φ̃(k;x(k)) (6.11)

where

φ̃(k;x(k)) = S(k)

(∑
` g`(x`(k))∑
` h`(x`(k))

1− x(k)

)
. (6.12)

Let

x∗ = x∗1, (6.13)

and recall that x∗ is the minimizer of the optimization problem in (6.1). One can see that

x∗ is an equilibrium of (6.11) by simply plugging each component x∗
` = x∗ of x∗ into

(6.12) and noting that, from the optimality of x∗,
∑

` g`(x
∗) =

∑
l[f

′′
l (x∗)x∗ − f ′

l (x
∗)] =

∑
l f

′′
l (x∗)x∗ and

∑
l hl(x

∗) =
∑

l f
′′
l (x∗). The following result states that the linearized

version of (6.11) around x∗ is an exponentially stable system.

Lemma 6.6.2. Consider system in (6.11) and let x∗ be as in (6.13). Let

A(k) = I + ε
∂φ̃

∂x
(k;x)|x=x∗ ,

and, accordingly, consider the auxiliary system

x̃(k + 1) = A(k)x̃(k). (6.14)

Then, under Assumptions 2.3.2 and 2.3.1, x̃ = 0 is an exponentially stable equilibrium

point for (6.14).

6.6 Theoretical analysis of the ra-NRC 141

Proof. Let

α(x(k)) =

∑
` g`(x`(k))∑
` h`(x`(k))

.

Computing the partial derivative of α with respect to xi, it holds

[
∂α

∂xi

]
|x=x∗ =

g′
i(x

∗)
∑N

`=1 h` (x∗)− h′
i (x∗)

∑N
`=1 g` (x∗)

(∑N
`=1 h` (x∗)

)2

with

g′
i(x

∗)
N∑

`=1

h` (x∗) − h′
i (x∗)

N∑

`=1

g` (x∗) =

=
(
f ′′′

i (x∗)x∗ + f ′′
i (x∗) − f ′′

i (x∗)
) N∑

`=1

f ′′
` (x∗)− f ′′′

i (x∗)
N∑

`=1

(
f ′′

` (x∗) x∗ − f ′
`(x

∗)
)

= f ′′′
i (x∗)x∗

N∑

`=1

f ′′
` (x∗) − f ′′′

i (x∗)x∗
N∑

`=1

f ′′
` (x∗) + f ′′′

i (x∗)
N∑

`=1

f ′
`(x

∗)

= 0,

where, in the last equality, the fact that
∑N

`=1 f
′
`(x

∗) = 0 was used. From the previous

calculations, it turns out that

A(k) = I − εS(k).

By Assumption 2.3.2, matrix

Āk,τ =
k+τ∏

s=k

A(k),

is a diagonal matrix such that 0 <
[
Āk,τ

]
ii
< 1 − ε, for all i. Then, system in (6.11)

satisfies the stated property.

Intuitively, one would conclude that, when the parameter ε is small, the results of

the two lemma can be combined to simultaneously obtain asymptotic consensus and

convergence to the global minimizer. This is formally shown in the next theorem which

characterizes the convergence properties of the asymmetric broadcast ra-NRC algorithm.

Theorem 6.6.3. Under Assumptions 2.3.2 and 2.3.1, and the assumptions posed in

Section 6.2, there exist some positive scalars εc and δ such that, if the initial conditions

xo ∈ R
N satisfy ‖xo − x∗1‖ < δ and if ε satisfies 0 < ε < εc then the local variables xi in

Algorithm 6.1 are exponentially stable with respect to the global minimizer x∗.

Proof. The proof of the result is based on showing that the system in (6.8) satisfies the

142 Minimization of additively separable cost functions

assumptions of Proposition E.3.2 in the Appendix. To do so, define, for k ≥ k̄,

ξ∗
x(k̄),ξ(k̄)

(k) = Ĩ ξk̄(k) + ũ, (6.15)

where ξk̄(k) is defined as in (6.9) and where

Ĩ =

[
I(6N+2NE)×(6N+2NE) 0(6N+2NE)×N

0N×(6N+2NE) 0N×N

]

and

ũ =


 0(6N+2NE ×1

p∗
x(k̄)


 ,

with

p∗
x(k̄)

=

∑
` g`(x`(k̄))

∑
` h`(x`(k̄))

1.

Observe that the first six blocks components of ξ∗
x(k̄),ξ(k̄)

(k) coincide with the first six

blocks components of ξk̄(k), while the last block component is constant for all k ≥ k̄.

Moreover, for k ≥ k̄, let

ξ̃k̄(k) := ξk̄ (k)− ξ∗
x(k̄),ξ(k̄)

(k) .

Based on the previous observation, the first six blocks components of ξ̃k̄(k) are equal to

zero, while the last block component is equal to

pk̄(k)− p∗
x(k̄)

.

Thus, ||ξ̃k̄(k)|| = ||pk̄(k)− p∗
x(k̄)
||, so that from Lemma 6.6.1, it follows that there exists

Ck̄ > 0 and 0 ≤ ρk̄ < 1 such that

‖ξ̃k̄(k)‖ ≤ Ck̄ ρ
k−k̄
k̄
‖ξ̃k̄(k̄)‖. (6.16)

This shows that system in (6.8) satisfies property in (E.8), in Appendix E.3

Consider now the system

x(k + 1) = x(k) + ε φ
(
k,x(k), ξ∗

x(k),ξ(k)(k)
)

(6.17)

= x(k) + ε S(k)

(∑
` g`(x`(k))∑
` h`(x`(k))

1− x(k)

)

= x(k) + ε φ̃(k;x(k)) (6.18)

In Lemma 6.6.2, it is established that the previous system satisfies Assumption E.3.1,

6.6 Theoretical analysis of the ra-NRC 143

in Appendix E.3. Hence, Proposition E.3.2, in Appendix E.3 can be applied to system in

(6.8), yielding the result of the statement.

The major challenges in proving the main results are related to proving that the

ra-NRC algorithm satisfy a number of technical conditions required by standard theory of

separation of time-scales. Different conditions and theorems are available for continuous

time dynamical systems (we refer the interested reader to Chapter 11 in Khalil (2001)).

In particular, it is necessary to prove the exponential stability for a non-autonomous

discrete time dynamical system whose closest counterpart in the continuous time is given

by Theorem 11.4 in Khalil (2001).

Besides some standard conditions on smoothness and uniformity of the dynamical

flows involved, there are three major requirements that need to be satisfied: the first is

that the fast dynamics converges exponentially to an equilibrium manifold, the second is

that the slow dynamics restricted to this manifold is exponentially stable, and the third

is that a number of bounded interconnection conditions which represent the perturbation

of the slow dynamics into the fast dynamics and vice-versa, are satisfied. As for the

first requirement, the algorithm used for the consensus step, the ra-AC algorithm, is

exponentially convergent (note that the work by Vaidya et al. (2011), on which ra-AC

is based, only provides convergence in probability). As for the second one, proving

the local exponential stability of the slow dynamics is not trivial since the dynamics is

non-autonomous. As for the last requirement on the bounded interconnection conditions,

very much depends on cost functions and in the discrete-time domain it is difficult to

provide global guarantees. However, under some mild smoothness conditions, it is possible

to show that the conditions on bounded interconnection conditions are locally satisfied,

and, in turn, to prove local exponential stability.

Remark 6.6.4. Algorithm 6.1 assumes the initial conditions of the local variable xi to be

all identical to xo. Although not being a very stringent requirement, this assumption can

be relaxed, that is, slightly modified versions of Theorem 6.6.3 would hold even in the

case xi is initialized to xo
i , as soon as all the initial conditions are sufficiently close to the

global minimizer x∗, i.e., as soon as |xo
i − x∗| < δ for all i = 1, . . . , N .

The initial conditions on the local variables yi = gold
i = gi = f ′′

i (xo)xo − f ′
i(x

o) and

zi = hold
i = hi = f ′′

i (xo) are instead more critical for the convergence of the local variables

xi to the true minimizer x∗. As shown in Zanella et al. (2011), small perturbations of

these initial conditions can lead to convergence to a point x 6= x∗ (notice that these

perturbations do not affect the stability of the algorithm, so that possible small numerical

errors due to the computation and data quantization do not disrupt the convergence

properties of the algorithm). Moreover, the map from the amplitude of these perturbations

144 Minimization of additively separable cost functions

and the distance ‖x− x∗‖ is continuous, so that if these perturbations are small then

x ≈ x∗.

Remark 6.6.5. Although the previous theorem guarantees only local exponential con-

vergence, numerical simulations on real datasets seem to indicate that the basin of

attraction is rather large and stability is mostly dictated by the choice of the parameter ε.

However, for the special but relevant case when the cost functions fi(x) are quadratic, as

in distributed least-squares problems, local stability implies global stability Carli et al.

(2015).

6.7 Numerical experiments

The problem analyzed is a regression one inspired by the UCI Housing dataset available at

http://archive.ics.uci.edu/ml/datasets/Housing. In this task, an example χj ∈ R
n−1

is a vector representing some features of a house (e.g., per-capita crime rate by town,

index of accessibility to radial highways, etc.), and yj ∈ R denotes the corresponding

median monetary value of of the house. The objective is to obtain a predictor of house

value based on these data. Due to privacy issues, the data are divided among N = 10

nodes. These nodes can communicate according to a random geometric graph with

distance threshold r = 0.5. The regression problem can be formulated as a distributed

problem defined on the local costs

fi (x) :=
∑

j∈Fi

(
yj − χT

j x
′ − x0

)2

∣∣∣yj − χT
j x

′ − x0

∣∣∣+ β
+ γ

∥∥x′∥∥2
2 . (6.19)

where x = (x′, x0) ∈ R
n−1 × R is the vector of coefficient for the linear predictor

ŷ = χTx′ + x0 and γ is a common regularization parameter. The loss function (·)2

|·|+β

corresponds to a smooth version of the Huber robust loss, a loss that is usually employed

to minimize the effects of outliers. In this case β dictates for which arguments the loss is

pseudo-linear or pseudo-quadratic and has been manually chosen to minimize the effects

of outliers. In the experiments the following parameters are used: n = 3 number of

features, β = 50, γ = 1, and |F| = 506 total number of examples in the dataset. The

examples are randomly assigned to the N = 10 agents. The performance index considered

is the Mean Squared Error

MSE(k) =
1

N

N∑

i=1

‖xi(k)− x∗‖ .

6.8 Final considerations 147

6.8 Final considerations

This chapter addressed the problem of distributed unconstrained convex optimization

in the context of lossy communication. This scenario is almost not treated in the

literature, except for the notable work Sherson et al. (2017), which is the only work

found by the author in the literature which is able to cope with a lossy communication

scenario. More specifically, a robustified version of the Newton-Raphson consensus

algorithm originally proposed in Zanella et al. (2011) was proposed. Its (local) convergence

properties are proven under some general mild assumptions on the local costs and on the

communication.In particular, the considered optimization strategy is locally exponentially

stable around the global optimum as soon as the local costs are C3 and strongly convex

with second derivative bounded from below. The simulations on real datasets compare

favourably against some alternative first-order algorithms available in the literature even

under the special case of lossless asynchronous scenario.

Possible future research directions include adaptive strategies to tune the step-size

ε on-line, the inclusion of equality constraints of the form Ax = b, and the extension

of partition-based approaches where each agent is interested in computing only some

components of the global minimizer vector (i.e., to the kind of cost functions studied in

Chapter 4).

148 Minimization of additively separable cost functions

7
Conclusions and future directions

This final chapter draws the conclusion of the entire dissertation. The common thread

which connects all the chapters is certainly the strong emphasis given to to the commu-

nication step of a distributed algorithm. In particular, the thesis aimed at presenting

algorithms which do not assume a reliable communication network.

In the literature, the majority of the works in distributed optimization assume reliable

communication; moreover, they usually rely on a synchronous update and communication

step. Note that, from a practical point of view, if no acknowledge system is implemented,

almost all kind of communication is prone to packet losses. As so, when a developed

distributed algorithm does not consider packet losses, the communication protocol

employed by the agents has an acknowledge system. Recently, some of the literature in

distributed optimization has focused on asynchronous updates, since they require less

coordination among agents. Concerning lossy communication networks, however, the

existing algorithms in the literature which can deal with such networks assume that

the node sending information perfectly knows its out-neighbors set (in a way, a lossy

communication network is considered as a time varying communication network). This

implies again the presence of an acknowledge system or of a system which allows to test if

the link between two agents is reliable at the transmission time. Even though a protocol

with ACKs might not be difficult to implement, it can make the algorithm slower, and

it requires more energy consumption (the latter being an issue only for some kind of

150 Conclusions and future directions

multi-agent systems with limited battery supplies). The only (to the best of the author’s

knowledge) notable exception to the use of ACKs in order to cope with an unreliable

(and asynchronous) communication scenario, is PDMM Sherson et al. (2017). This very

recent algorithm is used for comparison in Chapters 5 and 6.

The aim of the dissertation was to present some algorithms which can cope with an

unreliable communication set-up without requiring an acknowledge system. The problems

analyzed in the chapters are different. Accordingly, also the developed algorithms and

convergence proof are different, even though some of the tools used are common.

Chapter 3 was devoted to the development of a robust distributed algorithm for the

patrolling problem. The robust algorithm is obtained starting from a non-robust one

through a quite simple modification. The proof of convergence of the robustified one,

however, required more effort. The tools used to prove convergence concern Lyapunov

theory and convergence of dynamical switching systems. The algorithm obtained is

task-dependent; as a consequence, its applicability to other problems is limited.

The remaining chapters, on the other hand, deal with more general problems. In

particular the minimization of the sum of cost functions.

In Chapter 4, the local cost functions are locally coupled. The focus is therefore on

developing an algorithm which actually exploits this locality of the information, which

also allows the agents in the network to estimate just their own part of the optimization

variable. This, in turn, allows to better preserve privacy. In particular, to perform the

update step, each agent has to require only information coming from one-hop neighbors.

The “trick” employed to force communication only between direct neighbors, i.e. keeping

in memory the last received packets, simultaneously allows to cope with an unreliable

communication network. The algorithm proposed is based on the well-known Jacobi

iteration, and the convergence proof exploits Lyapunov theory and separation of time

scale principle.

The other two chapters, that is Chapters 5 and 6, are tightly connected. In this case,

the problem to solve was the minimization of the sum of cost functions, where the local

cost functions (possibly) depend on the whole optimization variable. In this case, the

agents are interested in retrieving the whole solution (in other words, the problem is a

global estimation one).

Chapter 5 dealt with the consensus/quadratic minimization problem. The first part

of the chapter was devoted to the comparison between consensus based and Lagrangian

based algorithms to solve the aforementioned problems. This comparison showed the

importance of the communication graph in determining the convergence rate of distributed

algorithms. Moreover, it also underlined the fact that the convergence rate of Lagrangian

151

based algorithms is sensitive to the curvature of the quadratic cost function. The second

part of the chapter was more in line with the other chapters, since it was devoted to

the design of a robust and asynchronous algorithm to solve the consensus problem, the

ra-AC algorithm. This algorithm is based on the ratio-consensus one, which is made

robust introducing additional variables that in a way summarize the past communication

history. This algorithm was shown to be exponentially convergent using ergodicity theory

for stochastic matrices.

Finally, Chapter 6 addressed the minimization of the sum of convex cost functions

(not necessarily quadratic as in the previous scenario) in case of non-ideal communication.

The algorithm introduced, ra-NRC, is a robustification of the Newton-Raphson Consen-

sus Zanella et al. (2011), and is obtained merging the latter with the ra-AC algorithm

developed in Chapter 5. The convergence proof relies on Lyapunov and time-scale

separation theory. The proof is quite involved since a part of the state variable which

describes the algorithm does not converge, even though the part regarding the estimate

of the minimizer converges to the true minimizer.

There are many possible future research directions, some of them regarding open

problems also in the literature.

On-line step-size adaptation Concerning the algorithms in Chapters 4 and 6, an

important aspect to study more deeply is the selection of the step size ε. Its choice is of

paramount importance, since a too big ε results in a diverging algorithm, and a too small

one results in a very slow algorithm. It would be interesting to find an adaptive strategy

to tune the step size ε while the algorithm is running; this should help to increase the rate

of convergence of the algorithms. The adaptive step-size selection is an open problem for

the majority of the optimization algorithms in the literature.

Constrained optimization Except for the first problem, which was constrained, all

the other problems considered in this manuscript are unconstrained. As so, an important

way to improve the applicability of the proposed solutions is to find a way to employ

them to solve also constrained optimization problems, for example problems where the

solution has to satisfy linear equality and inequalities constraints Ax = b, Cx ≥ d.

Time varying optimization Another very interesting direction for future research

is tackling time-varying optimization problems in a distributed set-up (see for example

Simonetto and Leus (2014)). Some of the convergence proofs provided in this thesis are

based on rewriting the algorithm as a time-varying system and then on using tools to prove

its stability. As so, it is possible to envision the prospect of dealing with optimization

problems that varies over time. Time varying problems can arise for example in control.

152 Conclusions and future directions

Figure 7.1: Ball and beam system supported by quadcopters.

Imagine a ball and beam problem, with the beam supported on its two extremes by two

quadcopters, as in Figure 7.1.

The problem of keeping the ball on the beam, controlling the movements of the

quadcopters can be formulated as an optimization problem. Nowadays, a problem like

this is managed and solved in a centralized way using an MPC approach. However, it

might be interesting to make the two quadcopters solve the problem in a distributed

way without relying on a centralized control. Being able to manage the optimization

considering also possible packet losses is of paramount importance, since the control

action has to be chosen very frequently (and there might be no time to wait for the ACKs).

The example reported is quite simple, but it is possible to imagine more complicated

optimal control problems solvable in a distributed way and which have to cope with

non-ideal communication.

A
Mathematical preliminaries, symbols and notation

This appendix provides a list of symbols, definitions and notions used along the thesis.

They are divided in macro-areas in order to help the reader.

Sets

N set of natural numbers

Z set of integer numbers

Z≥0 set of non-negative integer numbers

R set of real numbers

R>0 set of positive real numbers

C set of complex numbers

Uppercase calligraphic symbols, e.g. A,V, E , denote sets.

|A| cardinality of set A
B ⊆ A set B is a (non necessarily proper) subset of A
A ∪ B union of the elements of Aand B
[a, b] real interval between a ∈ R and b ∈ R, a < b

154 Mathematical preliminaries, symbols and notation

Scalar, vectors, matrices and related operators

Lowercase italic letters, e.g. x, v, z, denote scalar values.

|a| absolute value of a ∈ R

Lowercase bold italic letters, e.g. x,v, z, denote vectors of real elements, that is x ∈ R
n.

Lowercase bold gothic letters, e.g. v, i, denote vectors of complex elements, that is

v ∈ C
n.

Given a collection of n scalars x1, . . . , xn, to collect these scalars into vector x means to

define the following

x :=




x1

...

xn


 .

The i−th element of vector x is denoted as xi or as [x]i.

A vector x is strictly positive if xi > 0, ∀i ∈ {1, . . . , n}.

1n all-1s vector of dimension n

0 vector of all-0s (dimension is not specified)

x> transpose of vector x ∈ R
n

diag(x) n× n diagonal matrix with diagonal elements x1, . . . , xn

<(v) real part of v ∈ C
n

=(v) imaginary part of v ∈ C
n

‖x‖ 2-norm of vectos x ∈ R
n, ‖x‖2

x� y Hadamard (component-wise) product of vectors x and y

x/y Hadamard (component-wise) division of vectors x and y

Uppercase italic letters denote, e.g. A,B,X, denote real matrices, that is A ∈ R
n×m.

Uppercase gothic letters, e.g. L, denote complex matrices, that is L ∈ C
n×m.

A square matrix A ∈ R
n×n is positive definite if all its eigenvalues are strictly positive.

A matrix A ∈ R
n is symmetric if its equal to its transpose.

A matrix A ∈ R
n×n with non-negative elements is primitive if there exists 1 ≤ k ≤ n

such that Ak has all positive elements.

A matrix P ∈ R
n×n is stochastic if it has non-negative elements and P1n = 1n. P is

doubly-stochastic if 1>
nP = 1>

n . A stochastic matrix P has an eigenvalue equal to 1. The

eigenvalues λ1, . . . , λn of a stochastic, symmetric and primitive matrix P are real and

respect λ1 = 1 > λ2 ≥ · · · ≥ λn > −1. The quantity max {|λ2|, |λn|} < 1 is the essential

155

spectral radius (ESR) of such a matrix. With a little abuse of notation, given a matrix

which has an eigenvalue in 1 which is also the largest eigenvalue in modulus, its second

largest eigenvalue in absolute value is again called ESR.

In identity matrix of dimension n

0 matrix of all-0s (dimension is not necessarily specified)

A> transpose of matrix A ∈ R
n×m

[A]ij element in position (i, j) of matrix A

A−1 inverse matrix of A ∈ R
n×n

diag(A) diagonal matrix with the same diagonal elements of matrix A ∈ R
n×n

A � 0 matrix A ∈ R
n×n is positive definite

A � B A−B � 0, A,B ∈ R
n×n

Graphs

G = (V, E) graph with nodes V and edges E
V = {1, . . . , N} set of nodes

E = {(i, j) | i, j ∈ V, i 6= j} ∪ {(i, i) | i ∈ V} set of edges (contains self loops)

A graph is directed if (i, j) ∈ E does not imply (j, i) ∈ E .

Given a directed graph G = (V, E), a directed path from ` to j consists of a sequence of

vertices (i1, i2, . . . , ir) such that i1 = `, ir = j, (ij , ij+1) ∈ E for every j ∈ {1, . . . , r − 1}.
A directed graph is strongly connected if for each pair i, j ∈ V there exists a directed

path from i to j and vice-versa.

N in
i = {j | j ∈ V , i 6= j, (j, i) ∈ E} in-neighbors of node i (i is not considered)

N out
i = {j | j ∈ V , i 6= j, (i, j) ∈ E} out-neighbors of node i (i is not considered)

A graph is undirected if (i, j) ∈ E implies (j, i) ∈ E . As a consequence N in
i = N out

i .

A path in G from ` to j consists of a sequence of vertices (i1, i2, . . . , ir) such that either

i1 = `, ir = j, (ij , ij+1) ∈ E or (ij+1, ij) ∈ E for every j ∈ {1, . . . , r − 1}.
An undirected graph G is connected if for each pair i, j ∈ V there exists a path from i to

j.

A matrix Q ∈ R
N×N is said to be consistent with graph G if [Q]ij > 0⇔ (i, j) belongs to

E . Given an undirected and connected graph G, a matrix Q consistent with G is primitive.

For such a graph, a stochastic matrix P consistent with graph G can be chosen symmetric.

As a consequence, this P is stochastic, symmetric and primitive and its eigenvalues have

156 Mathematical preliminaries, symbols and notation

the properties described before (in particular λ1 = 1 > λ2 ≥ · · · ≥ λN > −1).

For an undirected graph these additional symbols for the neighbors are employed

Ni = {j | j ∈ V , i 6= j, (j, i) ∈ E} neighbors of node i (i is not considered)

N+
i = {j | j ∈ V , (i, j) ∈ E} neighbors of node i, i is considered

The adjacency matrix AG of a (either directed or undirected) graph G is an N ×N matrix

with [AG]ij = 1 if (i, j) ∈ E and 0 otherwise.

An undirected graph is regular if |Ni| = |Nj | for all i, j ∈ V.

A (directed or undirected) graph is complete if the edge set E contains all the possible

pair (i, j) ∈ V × V.

A (directed or undirected) graph is bipartite if it is possible to partition the node set V
in two parts, V1 and V2 such that all the edges connect nodes of V1 to nodes of V2 and

vice-versa (the self loops however are still considered), and there are no edges connecting

nodes of V1 (of V2) to nodes of V1 (of V2 resp.).

In a random geometric graph with N nodes, the nodes are randomly arranged in a

squared environment of edge equal to 1. The distance threshold r > 0 determines the

edge set, according to the following rule: agent i and j are connected (that is (i, j) and

(j, i) belong to E) if and only if their distance is smaller or equal to r.

Functions

Cs set of s times continuously differentiable functions

f ′(x) first derivative of function f : R 7→ R evaluated at x

f ′′(x) second derivative of function f : R 7→ R evaluated at x

∇f(x) gradient of function f : Rn 7→ R evaluated at x

∇2f(x) Hessian of function f : Rn 7→ R evaluated at x

A function f : Rn 7→ R is convex if for all x,y in R
n and 0 ≤ θ ≤ 1 it holds

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Convex functions have very interesting properties, that will be used throughout the

dissertation. The interested reader is referred to Boyd and Vandenberghe (2004) for a

better understanding of these properties.

157

Random variables

N (µ,Σ) normal random vector of mean µ ∈ R
n and variance Σ ∈ R

n×n

v ∼ N (µ,Σ) v is a realization of N (µ,Σ)

Time

Concerning the concept of time, it is assumed that the local variables at each node

are updated at discrete time instants (e.g., based on local and possibly unsynchronized

clocks, or based on events like receiving a packet). From a global perspective, all time

instants when at least one variable in one node is updated are collected and ordered in

the sequence {tk}∞k=1. With a little abuse of notation, a variable x at time tk (which is

one of the times when some variables are being modified) is denoted as x(k) instead of

x(tk) and the evolution of the nodes’ variables is studied as a discrete-time system. Also,

sometime the time instant tk is denoted as k, even though this is not formally correct.

158 Mathematical preliminaries, symbols and notation

B
Appendix for Chapter 3

B.1 Proof of Theorem 3.3.1

Point (i) can be easily verified by analysing the steps of the algorithm. For point

(ii) and (iii) only the part concerning J2 is proven (the part of point (ii) related to

J∞ follows from Theorem 3.4.1). Observe that after τ iterations of the BC algorithm,

ri(k) = `i+1(k) for all i = 1, . . . , N . For k ≥ τ , it is then possible to introduce the

auxiliary variables xi(k) = ri(k) = `i+1(k), i = 1, . . . , N − 1, and let x(k) be the vector

collecting all xi(k). Looking at the iterations of the algorithm as the evolution of a

dynamical system, vector x(k) represents the state of this system. The goal is to apply

the following theorem:

Theorem B.1.1. [Theorem 4.3 in Bullo et al. (2012)]

Let (X, d) be a metric space. Given a collection of maps T1, . . . , TN : X 7→ X, define

the set-valued map T : X ⇒ X by T (x) = {T1(x), . . . , TN (x)} and let {xk}k∈Z≥0
be an

evolution of T . Assume that

• There exists a compact set W ⊆ X that is strongly positive invariant for T ;

• There exists a function U : W 7→ R such that U(w′) < U(w) for all w ∈ W and

w′ ∈ T (w) \ {w};

160 Appendix for Chapter 3

• The maps Ti for i ∈ {1, . . . , N} and U are continuous on W ;

• For all i ∈ {1, . . . , N}, there exists an increasing sequence of times {kt | t ∈ Z≥0}
such that xkt+1 = Ti(xkt

) and (kt + 1− kt) is bounded.

If x0 ∈W , there exists c ∈ R such that the evolution {xk}k∈Z≥0
approaches the set

(F1 ∩ · · · ∩ FN) ∩ U−1(c),

where Fi = {w ∈W | Ti(w) = w} is the set of fixed points of Ti in W, i ∈ {1, . . . , N}.
It is therefore necessary to verify that all the hypotheses of this theorem are satisfied.

First of all, observe that, according to the physical constraints, di+1 ≤ xi(k) ≤ di and

so x(k) can take values only in W =
∏N−1

i=1

[
di+1, di

]
. Since W is given by the Cartesian

product of N − 1 closed intervals, it follows that W is compact. Next, for i ∈ {1, . . . , N},
let Ti : W →W be the map describing the updating iteration of CB algorithm in case

camera i is the camera performing the forward communication round. Observe that, for

i ∈ {1, . . . , N}, the map Ti is continuous with respect to the standard Euclidean metric.

Now, for x = [x1, . . . , xN−1] ∈W , consider the function U : W → R such that

U(x(k)) =
1

2

N∑

i=1

Li(k)2

v̄i
, (B.1)

where Li(k) = ri(k) − `i(k) = xi(k) − xi−1(k). It is necessary to show that U is a

Lyapunov function for the update of the algorithm, i.e, that U(x(k + 1)) < U(x(k))

whenever x(k + 1) 6= x(k). To prove this it is useful to introduce the following

FACT. Let L, α, β be three positive real numbers. Then the minimizer of the function

g(z) = z2

α + (L−z)2

β within the interval [0, L] is given by x = αL
α+β .

Suppose that at time k the i−th camera is activated, i 6= 1 and i 6= N , and consider

the following sum of terms:

Γ=
1

2

Li−1(k)2

vi−1

+
1

2

Li(k)2

vi

+
1

2

Li+1(k)2

vi+1

=

=
1

vi−1

(
Li−1(k)

2

)2

+
1

vi−1

(
Li−1(k)

2

)2

+
1

vi

(
Li(k)

2

)2

︸ ︷︷ ︸
γ1

+

+
1

vi

(
Li(k)

2

)2

+
1

vi+1

(
Li+1(k)

2

)2

︸ ︷︷ ︸
γ2

+
1

vi+1

(
Li+1(k)

2

)2

.

Recalling the quantities in Formulas (3.6) and the value of c∗
` (k), considering L̃i−1(k) =

Li−1(k)
2 + Li(k)

2 = mi(k)−mi−1(k), the point c∗
` (k)−mi−1(k) is the minimizer of function

B.1 Proof of Theorem 3.3.1 161

g(z) of parameters L = L̃i−1(k), α = vi−1 and β = vi, as can be verified by calculation.

Introduce now L′
i−1(k) = ri−1(k + 1) − mi−1(k) and L′

i(k) = mi(k) − ri−1(k + 1) =

L̃i−1(k)− L′
i−1(k).

Since that ri−1(k) ≤ ri−1(k + 1) ≤ c∗
` or ri−1(k) ≥ ri−1(k + 1) ≥ c∗

` , the update implies

that

γ1 = g

(
Li−1(k)

2

)
≥ g(L′

i−1(k)).

A similar reasoning holds considering the update of camera i+ 1. According to the latter,

defining L′′
i+1(k) = mi+1(k)− `i+1(k + 1) and L′′

i (k) = `i+1(k + 1)−mi(k), it holds

γ2 ≥
1

vi
(L′′

i (k))2 +
1

vi+1
(L′′

i+1(k))2.

As a consequence,

Γ≥ 1

vi−1

(
Li−1(k)

2

)2

+
1

vi−1
(L′

i−1(k))2

︸ ︷︷ ︸
δ1

+

+
1

vi
(L′

i(k))2+
1

vi
(L′′

i (k))2

︸ ︷︷ ︸
δ2

+
1

vi+1
(L′′

i+1(k))2+
1

vi+1

(
Li+1(k)

2

)2

︸ ︷︷ ︸
δ1

.

Now define Li−1(k + 1) = Li−1(k)
2 + L′

i−1(k), Li+1(k + 1) = Li+1(k)
2 + L′′

i+1(k) and

Li(k + 1) = L′
i(k) + L′′

i (k). Analysing δ1, it holds that

δ1 =
1

vi−1
g

(
Li−1(k)

2

)
≥ 1

vi−1
g

(
Li−1(k + 1)

2

)

where in this case the parameters of function g are L = Li−1(k+1), α = β = 1. A similar

reasoning holds for δ2 and δ3. All the previous considerations lead to the following

U(x(k)) ≥
N∑

j=1
j 6=i,i−1,i+1

Lj(k)2

2
+ 2

1

vi−1

(
Li−1(k + 1)

2

)2

+

+ 2
1

vi

(
Li(k + 1)

2

)2

+2
1

vi+1

(
Li+1(k + 1)

2

)2

=U(x(k + 1).

When the camera that is activated at time k is the 1-st or the N−th a similar reasoning

shows that U(x(k)) ≥ U(x(k+ 1)). Therefore, U(x(k)) ≥ U(x(k+ 1)), and the inequality

is strict as long as at least one of the following holds, li+1(k+1) 6= li+1(k), or ri−1(k+1) 6=
ri−1(k).

162 Appendix for Chapter 3

It is now possible to apply Theorem 4.3 of Bullo et al. (2012) and to conclude that x(k)

converges to the set F1 ∩ · · · ∩FN ∩U−1(c) for some c ∈ R, where Fi = {x ∈W | Ti(x) =

x} is the set of fixed points of Ti. Finally, proving that F1 ∩ · · · ∩FN is a singleton

concludes the proof (since if F1 ∩ · · · ∩FN = x̃, then c = U(x̃)).

To do so, recall that J2 has a unique minimizer ξ∗, and so the corresponding x∗ is a

fixed point of all the maps Ti (note that it is possible to find a bijective correspondence

between an x and a ξ). This follows from the fact that, since U(x(k)) = 1
2J2(ξ(k)),

what was just showed proves that if there exists Ti such that Ti(ξ
∗) 6= ξ∗ then J2(ξ∗) >

J2(Ti(ξ
∗)), and this is a contradiction. Assume now that there exists ξ′ 6= ξ∗ such that

ξ′ ∈ (F1 ∩ · · · ∩FN). Since ξ∗ is the unique minimizer of J2, it holds J2(ξ∗) < J2(ξ′), but

a contradiction arises because ξ′ ∈ (F1 ∩ · · · ∩FN) implies that there is no possibility to

improve the cost function U(x′). Therefore F1 ∩ · · · ∩FN is a singleton that coincides

with the minimizer of problem P3 and so ξ(k) converges to ξ∗. Finally, since J2(k)

converges to J∗
2 , necessarily also J∞(k) converges to J∗

∞.

B.2 Proof of Theorem 3.4.1

The following theorem is a refinement of Theorem 4.3 in Bullo et al. (2012), valid for a

specific class of dynamical switching systems.

Theorem B.2.1. Let W ⊂ R
n be a compact set. Let M be a (finite) positive integer

and let {Ti : W →W, i = 1, . . . ,M} be a set of M functions. Assume that

• There exists a function J : W → R such that

J (Ti(x)) ≤ J(x), ∀x ∈W, (B.2)

J(Ti(x)) < J(x), ∀x /∈ W∗, (B.3)

where W∗ is the minimum value attained by J over W ;

• The maps Ti for i {1, . . . ,M} and J are continuous on W ;

Consider the trajectory generated by

x(k + 1) = Tσ(k)(x(k)), x(0) ∈W,

where σ : Z≥0 → {1, . . . ,m} is a process determining which map within the set {T1, . . . , TM}
is selected at iteration k. Then, if J∗ is the minimum value of J over the set W ,

lim
t→∞

J (x(k)) = J∗

B.2 Proof of Theorem 3.4.1 163

and x(k) converges to the set W∗.

Proof. The proof follows using the same continuity arguments adopted in the proof of

Theorem 4.3 in Bullo et al. (2012).

Proof of Theorem 3.4.1. Point (i) is an immediate consequence of the steps of the

algorithm. Concerning Point (ii), denote Tlag(Ai(k)) as T i
lag(k), and denote Tmax(k) :=

maxi

{
T i

lag(k)
}

. It is possible to state these two preliminary facts.

FACT I. If camera i successfully transmits to camera i+ 1 at time k, and if T i
lag(k) >

T i+1
lag (k), then T i+1

lag (k + 1) < T i
lag(k). As a consequence T i+1

lag (k′) < Tmax
lag (k), ∀k′ > k.

To confirm the validity of the above fact observe that, due to the algorithm step, it holds

T i+1
lag (k + 1) ≤ 2

(
3

8
T i+1

lag (k) +
T i

lag(k)

8

)
< T i

lag(k).

Since T i
lag(k) ≤ Tmax(k), the last sentence follows by induction.

FACT II. If camera i+ 1 successfully transmits to camera i at time k, and if T i
lag(k) >

T i+1
lag (k) and `i+1(k) < ri(k), then T i

lag(k + 1) < T i
lag(k).

Since T i
lag(k) > T i+1

lag (k), the algorithm tries to diminish T i
lag(k). The fact that `i+1(k) <

ri(k) allows to argue that ri(k + 1) < ri(k). The statement easily follows.

Now, observe that from Fact I it follows that J∞(k) is non increasing. To prove

that J∞(k + τmax) < J∞(k) if ξ(k) /∈ Ξ∗
P1

,first suppose that only camera i is such that

T i
lag(k) = Tmax(k). Since ξ(k) /∈ Ξ∗

P1
, it holds that T i

lag(k) = Tmax(k) > T ∗
P1

. As a

consequence it is not possible to have that both, ri−1(k) = d̄i−1 and `i+1(k) = di+1.

Suppose also that `i+1(k) = ri(k) and `i+1(k) > di+1 (all the other starting situations

lead to the same conclusion). Due to the assumptions, defining τ̃ = hτ , there exists a

k̃, k ≤ k̃ ≤ k + τ̃ such that camera i successfully communicates with camera i+ 1. As a

consequence, `i+1(k̃ + 1) < ri(k) due to Fact I. If the backward communication works,

T i
lag(k̃+1) < T i

lag(k) = Tmax(k) and the result follows. Otherwise in [k̃+1, k̃+ τ̃] there is a

working forward communication between cameras i+1 and i, for which (due to Fact I) the

hypothesis of Fact II hold. As a consequence, for sure T i
lag(t+2τ̃+1) < T i

lag(k) = Tmax(k).

If there is more than one camera i such that T i
lag(k) = Tmax(k), it is possible to show

using the previous reasoning that J∞(k + 2τ̃(N − 1) + 1) < J∞(k). This is the time

interval required for the two worst possible cases: one of these is when at time k cameras

1, . . . , N − 1 have time lag Tmax(k), are such that ri(k) = `i+1(k), i = 1 . . . , N − 1, and

only the last camera has a time lag smaller than Tmax(k) (the other case is the one with

164 Appendix for Chapter 3

cameras 2, . . . , N that have time lag Tmax(k)). Defining τmax := 2τ̃(N − 1) + 1 the result

is proven.

Finally, concerning point (iii): consider vector ξ(k) ∈ R
2N associated to {Ai(k)}Ni=1,

and its reduced version ξ′(k) ∈ R
2N−2 corresponding to ξ(k) without its first and last

elements (that are always 0 and L respectively). Consider the sequence {xt}∞t=1 that

represents the evolution of the patrolling areas given by the algorithm every τmax instants,

i.e. x1 = ξ′(1) and xt = ξ′(1 + (t− 1)τmax), t > 1. Due to the physical bounds of the

cameras, xt belongs to the compact set W obtained as the Cartesian product of intervals

(as done for the previous proof).

Now, define maps T1, . . . , TM , with M a finite integer, in the following way: there

exists a map Tj : W → W for every possible camera activation sequence of length

τmax − 1 and the related communications that work for each activation, respecting

both Assumptions 2.3.2 and 2.3.1 (note that these maps are different with respect to

those introduced in the previous proof). In this way, it is always possible to find a

j ∈ {1, . . . ,M} such that xt+1 = Tj(xt). Since each possible step of the algorithm is a

continuous function, also every Ti is a continuous function.

Note now that J∞ is a continuous function such that J∞(Tj(xt)) ≤ J∞(x_t), ∀xt ∈
W, j ∈ {1, . . . ,M}, and J∞(Tj(xt)) < J∞(xt), ∀xt /∈ Ξ∗

P1
, j ∈ {1, . . . ,M} due to point

(ii). Using Theorem B.2.1, J∞(xt) converges to J∗
∞. Since at each iteration of the r-CB

algorithm the cost function is smaller or equal to the previous step, J∞(k) converges to

J∗
∞.

C
Appendix for Chapter 4

C.1 Proof of Theorem 4.5.3

The proof of Theorem 4.5.3 relies on the time scale separation of the dynamic of the

xis and of the auxiliary variables x̂
(i)
j s, ρ̂

(i)
j s and ξ̂

(i)
j s, and fully exploits the following

Lemma

Lemma C.1.1 (Time scale separation principle for discrete time dynamical systems).

Consider the dynamical system

[
x(k + 1)

y(k + 1)

]
=

[
I −εB

C(k) F (k)

] [
x(k)

y(k)

]
. (C.1)

Let the following assumptions hold

1. There exists a matrix G such that y = Gx satisfies the expression y = C(k)x +

F (k)y, ∀k,∀x

2. the system

z(k + 1) = F (k)z(k) (C.2)

is exponentially stable;

166 Appendix for Chapter 4

3. the system

ẋ(k) = −BGx(k) (C.3)

is exponentially stable.

4. The matrices C(k) and F (k) are bounded, i.e. there exists m > 0 such that

‖C(k)‖ < m, ‖F (k)‖ < m,∀k ≥ 0.

Then, there exists ε̄, with 0 < ε < ε̄ such that the origin is an exponentially stable

equilibrium for the system (C.1). �

Proof of Lemma C.1.1. First consider the following change of variables:

z(k) = y(k)−Gx(k)

The dynamics of the system in the variables x,z can be written after some straightforward

manipulations as follows:

[
x(k + 1)

z(k + 1)

]
=




[
I − εBG 0

0 F (k)

]

︸ ︷︷ ︸
Σ(k)

+ε

[
0 −BG

GBG GB

]

︸ ︷︷ ︸
Γ




[
x(k)

z(k)

]

︸ ︷︷ ︸
µ(k)

(C.4)

where Assumption 1 was used. From Assumption 2 and 3, using converse Lyapunov

theorems Khalil (2001), it follows that there exist positive definite matrices Px > 0 and

Pz(k) > 0 such that

−PxBG−GTBTPx ≤ −aI, F (k)TPz(k + 1)F (k)− Pz(k) ≤ −aI,∀k

where a is a positive scalar and Pz(k) is bounded, i.e. ‖Pz(k)‖ ≤ m. The following

positive definite Lyapunov function is useful to prove exponential stability of the whole

system:

U(x,z, k) = xTPxx+ zTPz(k)z =
[
xT zT

] [Px 0

0 Pz(k)

]

︸ ︷︷ ︸
P (k)

[
x

z

]

Defining the time difference of the Lyapunov function as ∆U(x,z, k) = U(x(k+ 1),z(k+

C.1 Proof of Theorem 4.5.3 167

1), t+ 1)− U(x(k), z(k), k) it holds:

∆U(x,z, k) = xT
(
−ε(PxBG+GTBTPx)+ε2GTBTPxBG

)
x+

+zT
(
F (k)TPz(k+1)F (k)−Pz(k)

)
z+2εµT ΣT (k)P (k+1)Γµ+ε2µT ΓTP (k+1)Γµ

≤ −εa‖x‖2−a‖z‖2+ε2‖P
1
2
x BG‖2︸ ︷︷ ︸

b

‖x‖2+2εµT ΣT(k)P (k+1)Γµ+ε2‖P 1
2 (k+1)Γ‖2‖µ‖2

Note that the top left block of Γ is zero and that Σ(k) and P (k) are diagonal and bounded

for all times. From this it follows that

ΣT (k)P (k + 1)Γ =

[
0 ?

? ?

]
=⇒ 2µT ΣT (k)P (k + 1)Γµ ≤ c(2‖x‖‖z‖+ ‖z‖2)

for some positive scalar c. Boundedness of P (k) also implies that

‖P 1
2 (k + 1)Γ‖2‖µ‖2 ≤ d(‖x‖2 + ‖z‖2)

for some positive scalar d. Putting all together we get

∆U(x,z, k) ≤
[[
‖x‖ ‖z‖

]] [−εa+ bε2 εc

εc −a+ εc+ ε2d

] [
‖x‖
‖z‖

]

It follows immediately that there exists a critical ε such that for 0 < ε < ε the matrix in

the above equation is strictly negative definite and therefore the system is exponentially

stable.

It is now possible to state the formal proof of Theorem 4.5.3.

Proof of Theorem 4.5.3. The proof relies on Lemma C.1.1. In order to improve read-

ability, the proof is broken into few steps. The first step is to write the evolution of

the RBJ algorithm as the evolution of a dynamical system. The second step is to find

its equilibrium point and to linearize it around this point. The third step is to show

that the linerized dynamical system satisfies the three assumptions listed in Lemma C.1.1.

RBJ as a dynamical system:

First of all, note that thanks to Assumption 4.2.2 the second order derivatives and in

particular all the variables ξ
(i)
j , ξ̂

(i)
j are always well defined and invertible. Now, let the

vectors ê
(i)
j be the vectorization of ξ̂

(i)
j , ê

(i)
j = vec(ξ̂

(i)
j), and the un-vectorization operator

vec−1 as the inverse of the vectorization operator, i.e. vec−1(ê
(i)
j) = ξ̂

(i)
j . Let x̂i, ρ̂i and

168 Appendix for Chapter 4

êi be the vectors in which all the x̂
(i)
j ’s, the ρ̂

(i)
j ’s, and the ê

(i)
j ’s are stacked, respectively,

i.e. x̂i = (x̂
(i)
j1
· · · x̂(i)

jNi
) and similarly for ρ̂i and êi. Let x, x̂, ρ̂, ê be the vectors collecting

all the xi, x̂i’s, ρ̂i’s and êi’s, respectively, i.e. x = (x1 · · ·xN) and similarly for x̂, ρ̂ and

ê.

For every agent i and neighbours j ∈ Ni, the dynamic of the local variables are given by

the following equations:

xi(k + 1) = f i
1(x(k), ρ̂(k), ê(k)) (C.5a)

x̂
(i)
j (k + 1) = f ij

2 (x(k), x̂(k), k) (C.5b)

ρ̂
(i)
j (k + 1) = f ij

3 (x(k), x̂(k), ρ̂(k), k) (C.5c)

ê
(i)
j (k + 1) = f ij

4 (x(k), x̂(k), ê(k), k) (C.5d)

where

f i
1(x, ρ̂, ê) = xi − ε

(∑

j∈N +
i

vec−1(ê
(i)
j)

︸ ︷︷ ︸
f i

e
(̂e)

)−1(∑

j∈N +
i

ρ̂
(i)
j

︸ ︷︷ ︸
f i

ρ
(ρ̂)

)
(C.6a)

f ij
2 (x, x̂, k) =




x̂

(i)
j if γ

(i)
j (k) = 0

xj if γ
(i)
j (k) = 1

(C.6b)

f ij
3 (x, x̂, ρ̂, k) =




ρ̂

(i)
j if γ

(i)
j (k) = 0

∇iJj(xj , {x̂(j)
` }`∈Nj

) if γ
(i)
j (k) = 1

(C.6c)

f ij
4 (x, x̂, ê, k) =




ê

(i)
j if γ

(i)
j (k) = 0

vec
(
∇2

iiJj(xj , {x̂(j)
` }`∈Nj

)
)

if γ
(i)
j (k) = 1

. (C.6d)

Note that the variables ρ
(i)
j and ξ

(i)
j do not appear in the dynamics since they are

deterministic functions of the variables x and x̂, and therefore can be omitted.

Equilibrium point and linearization:

C.1 Proof of Theorem 4.5.3 169

Let x∗ be the minimizer of the optimization problem and define

Hh` = ∇2
h`J(x∗) =

N∑

j=1

∇2
h`Jj(x∗

j , {x∗
s}s∈Nj

)
︸ ︷︷ ︸

Hj

h`

=
N∑

j=1

Hj
h`

x̂
(i)∗
j = x∗

j

ρ̂
(i)∗
j = ∇iJj(x∗

j , {x∗
`}`∈Nj

)

ê
(i)∗
j = vec

(
∇2

iiJj(x∗
j , {x∗

`}`∈Nj
)
)

= vec(Hj
ii)

Notice that
∑N

j=1 ρ̂
(i)∗
j = ∇iJ(x∗) = 0, since the gradient computed at the minimizer is

zero. It is now simple to verify by direct inspection that (x∗, x̂∗, ρ̂∗, ê∗) is an equilibrium

point for the dynamical system described by (C.5). Next, the behavior of system (C.5)

in the neighborhood of the equilibrium point (x∗, x̂∗, ρ̂∗, ê∗) is analyzed. Consider the

change of variables

ψ = x− x∗

ψ̂ = x̂− x̂∗

η̂ = ρ̂− ρ̂∗

ζ̂ = ê− ê∗

(C.7)

Linearizing equations (C.5) around (x∗, x̂∗, ρ̂∗, ê∗), it holds

ψi(k + 1) ' ψi(k)− εH−1
ii

∑

j∈N +
i

η̂
(i)
j (C.8)

ψ̂
(i)

j (k + 1) '



ψ̂

(i)

j (k) if γ
(i)
j (k) = 0

ψj(k) if γ
(i)
j (k) = 1

(C.9)

η̂
(i)
j (k + 1) '




η̂

(i)
j (k) if γ

(i)
j (k) = 0

Hj
ijψj(k) +

∑
`∈Nj

Hj
i`ψ̂

(i)

` (k) if γ
(i)
j (k) = 1

(C.10)

ζ̂
(i)

j (k + 1) '



ζ̂

(i)

j (k) if γ
(i)
j (k) = 0

Kj
ijψj(k) +

∑
`∈Nj

Kj
i`ψ̂

(i)

` (k) if γ
(i)
j (k) = 1.

. (C.11)

where in Eqn. (C.8) we used the fact that
∂f i

1

∂ê

∣∣∣∣
x∗,ρ̂∗ ,̂e

∗
= −ε∂(f i

e
)−1

∂ê
f i
ρ

∣∣∣
x∗,ρ̂∗ ,̂e

∗ = 0 since

f i
ρ

∣∣∣
x∗,ρ̂

∗
,̂e

= ∇iJ(x∗) = 0, and the fact that f i
e(ê

∗) = Hii. In Eqn.(C.10) we used the

fact that Hj
i` = ∇2

i`Jj(x
∗
j , {x∗

s}s∈Nj
). Finally, in Eqn. (C.11) the matrices Kj

i` depends

on third order derivatives of J(x) whose values are unimportant for the analysis of the

170 Appendix for Chapter 4

stability of the dynamics. By collecting all the variables together, we obtain the system




ψ(k + 1)

ψ̂(k + 1)

η̂(k + 1)

ζ̂(k + 1)




=




I 0 −εB 0

C1(k) F1(k) 0 0

C2(k) F2(k) F3(k) 0

C3(k) F4(k) 0 F5(k)







ψ(k)

ψ̂(k)

η̂(k)

ζ̂(k)




[
ψ(k + 1)

y(k + 1)

]
=


 I 0 − εB 0

C(k) F (k)



[
ψ(k)

y(k)

]
. (C.12)

where y = (ψ̂, ξ̂, ζ̂) collects the fast dynamic variables. Notice that F1(k), F3(k) and

F5(k) are diagonal matrices whose entries are either 1 or 0, depending on the communi-

cation between agent success, and, as a consequence, F (k) is a lower triangular matrix, ∀t.

Assumption 1 of Lemma C.1.1:

It is finally necessary to prove that the linearized dynamics above satisfies the three

assumptions of Lemma C.1.1, where ψ plays the role of x in the Lemma. It is simple to

verify by direct inspection that for a fixed ψ, the following maps satisfy Assumption 1 of

Lemma C.1.1:

ψ̂
(i)

j = ψj (C.13)

η̂
(i)
j = Hj

ijψj +
∑

s∈Nj

Hj
isψs (C.14)

ζ̂
(i)

j = Kj
ijψj +

∑

s∈Nj

Kj
isψs (C.15)

in fact, this is equivalent of saying that there exists a matrix G such that y = Gψ satisfies

the equality y = C(k)ψ + F (k)y for all ψ and k.

Assumption 2 of Lemma C.1.1:

Consider now the fast dynamics of the system given by the following system:

z(k) = F (k − 1) · · ·F (0)z(0) = Ω(k)z(0)

C.1 Proof of Theorem 4.5.3 171

Assumptions 2.3.1 and 2.3.2 on the communication among the agents, assure that

F1(T − 1) · · ·F1(0) = Ω1(k) = 0

F3(T − 1) · · ·F3(0) = Ω3(k) = 0

F5(T − 1) · · ·F5(0) = Ω5(k) = 0

in fact when γ
(i)
j (k) = 1, the corresponding rows in the matrices F1(k), F3(k), F5(k)

become zero, and this property will be inherited also by the product matrices Ω1(k),

Ω2(k), Ω3(k) since all F1(k), F2(k), F3(k) are diagonal. Since all γ
(i)
j (k) will be equal

to one at least once within the window k ∈ [0, · · · , T − 1], then the matrices Ω1(k),

Ω2(k), Ω3(k) must be all zero. Finally, since the matrix F (k) is lower triangular, after

a maximum of (2T + 1) iterations the product matrix Ω(2T + 1) will be zero and thus

z(2T + 1) = 0. That is, the fast variable dynamic is exponentially stable, since it reaches

the equilibrium in a finite number of iteration.

Assumption 3 of Lemma C.1.1:

Finally, consider the slow dynamical system

ψ̇(k) = −BGψ(k). (C.16)

which by direct substitution from the previous analysis can be locally written as:

ψ̇i(k) = −H−1
ii



∑

j∈N +
i


Hj

ijψj +
∑

s∈Ni

Hj
isψs





 = −H−1

ii H
iψ

where H was defined above and corresponds to the Hessian of the global cost J computed

at x∗, i.e. H = ∇2J(x∗) and H i is its i-th block-row,

i.e., H i = [∇2
i1J(x∗) · · · ∇2

iNJ(x∗)]. This implies that

BG = (diag(H))−1H ,

therefore, choosing

V (ψ) =
1

2
ψ>Hψ,

as a Lyapunov function, it is straightforward to see that system (C.16) is asymptotically

stable since V̇ (ψ(k)) = −ψ>(k)H (diag(H))−1Hψ(k) < 0,x 6= 0 being H > 0 by

assumption.

Assumption 4 of Lemma C.1.1:

172 Appendix for Chapter 4

This comes from the observation that the time-variance of the state matrices depends on

the specific sequence of packet losses that can occur. Since there are only a finite number

of possible different sequences, the assumption is clearly satisfied.

Concluding, system (C.12) satisfies the hypothesis of Lemma C.1.1, and thus there

exists ε̄, with 0 < ε < ε̄ such that, by using the resilient block Jacobi Algorithm 4.2,

lim
t→∞

x(k) = x∗.

locally exponentially fast.

D
Appendix for Chapter 5

D.1 Proof of Proposition 5.5.2 and 5.5.3

Due to (5.12), the eigenvalue Φi(ε) of V, i = 1, . . . , N , has the form Φi(ε) = 1 − 2 ε
āγi,

where γi is the i−th eigenvalue of LG . The convergence rate of dual ascent is given by

the second largest eigenvalue of V in modulus (determined either by Φ2(ε) or by ΦN (ε)).

The optimal value ε∗ of ε is such that |Φ2(ε∗)| = |ΦN (ε∗)|, from which the value ε∗ and

the corresponding convergence rate immediately follow.

Now, to prove Proposition 5.5.3, note that when G is a d−regular graph, it holds

LG = (d + 1)(IN − P). After expressing the eigenvalues of LG as a function of the

eigenvalues of P , the results for the optimal ε and the optimal convergence rate follow.

Regarding the bounds, if µ1 = d > µ2 ≥ · · · ≥ µN ≥ −d are the eigenvalues of A−
G ,

then λi = 1
d+1(µi + 1). For a node i of G, consider x̂ ∈ R

N such that x̂j = 1 if j = i,

x̂j = d−1 if j|(i, j) ∈ E , and x̂j = 0 otherwise. It holds

µN = min
x∈RN

x>A−
Gx

x>x
≤ x̂

>A−
G x̂

x̂>x̂
≤ −2 + (d−1)

d

1 + 1
d

= −1.

Now µN = (d + 1)λN − 1 ≤ −1 and so λN ≤ 0. From µN ≥ −d follows 0 ≥ λN ≥
−d−1

d+1 := ξ.

174 Appendix for Chapter 5

Concerning λ2, for a non complete graph consider nodes i, j such that (i, j) /∈ E , and

build x̂ ∈ R
N such that x̂j = 1 if k = i,x̂k = −1 if k = j and x̂k = 0 otherwise.

1N is the eigenvector related to the eigenvalue d, and it also holds that x̂>1N = 0. Using

Rayleigh quotient

µ2 = max
x|x>1N =0

x>A−
Gx

x>x
≥ x̂

>A−
G x̂

x̂>x̂
= 0,

since there is no edge between node i and j. Therefore µ2 ≥ 0, and so, for λ2, µ2 =

(d+ 1)λ2 − 1 ≥ 0 and λ2 ≥ 1
d+1 . Since µ2 < d it follows 1

d+1 ≤ λ2 ≤ 1.

This part of the proof was obtained starting from Trevisan (2012). As long as ρC ≤ ξ,
the smallest value for ρDA is achieved when ρC = |λN | and λ2 is as small as possible.

In order not to have a bound that depends on d, λ2 has been set to 0 in this case, and

bound (5.15) follows. Instead, when ρC > ξ, it must hold that ρC = λ2, and in this

case the value of λN which minimizes ρDA is the biggest possible, that is λN = 0. This

demonstrates (5.16). In case the graph is complete, both λ2 and λN are 0 (and therefore

also ρC), and this implies that ρDA is 0 and the bounds still hold.

D.2 Proof for the matrix form for ADMM

To obtain Formula (5.22), start by fixing the initial condition of λij and of zi to 0. With

these initial conditions, expliciting
∑

i∈N +
j
λij(k) from equation (5.20) and substituting

this formula into (5.21), after summing both sides over all i ∈ Nj , it can be shown that
∑

i∈N +
j
λij(k + 1) = 0, t ≥ −1. Introducing w̄j =

∑
i∈N +

j
wij , the update of zj(k) can be

rewritten as

zj(k + 1) =
1

w̄j

∑

i∈N +
j

wijxi(k + 1), t ≥ 0. (D.1)

Now, replacing (D.1) in (5.21) and summing in j ∈ N+
i

∑

j∈N +
i

λij(k) =
∑

j∈N +
i

λij(t− 1) +
∑

j∈N +
i

wijxi(k)

−
∑

j∈N +
i

wij
1

w̄j

∑

s∈N +
j

wsjxs(k), t ≥ 1. (D.2)

D.3 Proof of Proposition 5.6.2 175

Defining the quantities ŵi =
∑

j∈N +
i
wij and di = ŵi

ai+ŵi
, the substitution of (D.1) and

(D.2) in (5.19) yields the following

xi(k + 1)=(1− di)θi + λ̄i(k)+dixi(k) + 2ui(k), (D.3)

λ̄i(k) := −
∑

j∈N +
i

λij(t− 1)

ai + ŵi
, (D.4)

ui(k) :=
∑

j∈N +
i

wij

ai + ŵi

∑

s∈N +
j

wsj

w̄j
xs(k)−

∑

j∈N +
i

wij

ai + ŵi
xi(k)

=

(
1

ai + ŵi
Wi diag(1>

NW)−1W> −D
)
x(k),

which are valid for t ≥ 1.

The new variable λ̄i(k) is updated as λ̄i(k + 1) = λ̄i(k) + ui(k), t ≥ 1. Collecting in

vector λ̄ ∈ R
N all the λ̄i and using matrices D and U defined in subsection 5.6, the

following matrix form for the updating can be obtained, which is valid for all t ≥ 1:

x(k + 1) = (IN −D)θ + λ̄(k) +Dx(k) + 2Ux(k),

λ̄(k + 1) = λ̄(k) + Ux(k).

From the initial conditions zi(0) = 0, λij(0) = 0, the initial conditions for this new

algorithm are x(1) = (IN −D)θ and λ̄(1) = 0N .

Now, adding and subtracting x(k) in the first equation and making further calculation,

the update of x(k) can be written in the following way

x(k + 1) = (IN +D + 2U)x(k)− (D + U)x(t− 1), t ≥ 1,

with initial condition x(0) = 0 and x(1) = (IN −D)θ.

From the latter Formula, equation (5.22) follows.

D.3 Proof of Proposition 5.6.2

Due to the symmetry of P and to the form of M and K in Formula (5.23), F is similar

to an N−blocks diagonal matrix, whose blocks have the following form

BF
i =

[
1− δ + 2δλ2

i −δλ2
i

1 0

]
, i = 1, . . . , N, (D.5)

176 Appendix for Chapter 5

Real

Imag.

1

2

1− δ

(a) δ < 1

2

Real

Imag.

1− δ

1

2

(b) δ > 1

2

Figure D.1: Root locus for the characteristic polynomial of BF
i with respect to λi, for 2

values of δ

where δ = µ
ā+µ , 0 < δ < 1 and λi are the eigenvalues of P . The roots of the characteristic

polynomial of BF
i are

ξ1i,2i
=

1− δ + 2δλ2
i ±

√
δ2(1− 2λ2

i)2 + 1− 2δ

2
, (D.6)

for all λi, i = 1, . . . , N . The eigenvalues related to λ1 = 1 can be evaluated from (D.6),

and correspond to 1 and δ. To study the eigenvalues of the other blocks, the positive

root locus of z(z − (1− δ)) + λ2
i (δ − 2δz) with respect to the parameter λ2

i are studied

(note that the polynomial is a rewriting of the characteristic polynomial of BF
i). The

root locus is represented in Figure D.1. In particular, it is necessary to determine the

value δ∗ for δ which minimizes all ξ1i,2i
.

First consider δ = 1
2 . In this case the eigenvalues of the i−th block can be evaluated

by (D.6), and are 1
2 and λ2

i .

Denote with k̂ the index (equal to 2 or to N) such that |λk̂| = ρ. As long as λ2
k̂

is

smaller or equal to 1
2 , the optimal choice for δ is 1

2 . As a matter of fact, for smaller δ,

Figure (D.1a) shows that there are eigenvalues bigger than 1
2 , while for bigger δ, the

eigenvalue in δ of block 1 is bigger than 1
2 .

When λ2
k̂

is bigger than 1
2 , the biggest eigenvalue in absolute value is determined by

λk̂, as can be inferred when δ < 2, and from the same when δ > 1/2 together with the

fact that the modulus of the eigenvalues when λ2
i = 1

2 is bigger than the modulus when

λ2
i = 0. In order to minimize max

{
|ξ1

k̂
|, |ξ2

k̂
|
}

it suffices to choose a δ such that the term

D.4 Proof of Theorem 5.9.4 177

under root is 0. The calculations give the following values for δ∗ and for |ξ1
k̂
| = |ξ2

k̂
|:

δ∗ =
1

1 + 2
√
ρ2

C − ρ4
C

, |ξ1
k̂
| = |ξ2

k̂
| = ρC

ρC +
√

1− ρ2
C

.

It can be verified that |ξ1
k̂
| > δ∗, so when λ2

k̂
> 1

2 the optimal convergence rate is

ρADMMP
= |ξ1

k̂
|.

D.4 Proof of Theorem 5.9.4

The proof of Theorem 5.9.4 is based on the theory of ergodic coefficients for positive

matrices Seneta (2006), applied to the particular case of stochastic matrices. To proceed

with the proof, first the algorithm iteration is written in a matrix form:

Matrix form for ra-AC First introduce the indicator variables χi(k) and χ(i,j)(k),

i, j ∈ {1, . . . , N}. The variable χi(k) is equal to 1 if node i wakes up at time k, otherwise

is 0; at this regard, recall that since a broadcast asymmetric protocol is adopted only one

node turns on at each iteration. Concerning χ(i,j)(k), the variable is 1 if node i wakes

up at time k, if j ∈ N out
i and if the edge (i, j) ∈ E is reliable at time k, while it is 0

otherwise. Formally

χi(k) =

{
1 if node i wakes up at time k

0 otherwise
(D.7)

and

χ(i,j)(k)=

{
1 if χi(k)=1, (i,j)∈E active at time k

0 otherwise1
(D.8)

Observe that χ(i,j)(k) is considered identically 0 for all k, if (i, j) /∈ E and that
∑N

i=1 χi(k) = 1. In the following, only the matrices which describe the evolution of

variable q(k) are described, since the same matrices drive the evolution of variable s(k).

Using the indicator variables the update for the total sent-mass counter σi,q(k) and for

the total received-mass counter ρ
(i)
j,q(k) can be rewritten as

σi,q(k + 1) = σi,q(k) + χi(k)
qi(k)

|N out
i |+ 1

(D.9)

ρ
(i)
j,q(k + 1) = ρ

(i)
j,q(k)− χi(k)χ(i,j)(k)

(
ρ

(i)
j,q(k)− σi,q(k + 1)

)
(D.10)

178 Appendix for Chapter 5

Introduce now the variables

ν
(i)
j,q(k) = σi,q(k)− ρ(i)

j,q(k), ∀(i, j) ∈ E .

These variables indicate how much of the mass sent by node i is still to be received by

node j. If at time k − 1 node i turns on and the communication between node i and

j (where j is a neighbour of i) is successful, then ν
(i)
j,q(k) is 0, otherwise it contains the

information missing in node j. Using equations (D.9) and (D.10) the update of these

variables can be written as

ν
(i)
j,q(k + 1)=

[
1−χi(k)χ(i,j)(k)

][
σi,q(k + 1)−ρ(i)

j,q(k)
]

=
[
1− χi(k)χ(i,j)(k)

] [
χi(k)

qi(k)

|N out
i |+ 1

+ ν
(i)
j,q(k)

]
. (D.11)

These variables are now exploited to rewrite the update of vector q(k) in a matrix form.

Note that these quantities are not actually computed by the nodes, and are just auxiliary

variables used to enable the matrix version of the update.

To rewrite the update for the qi(k) variable, consider three different cases:

• if χi(k) = 1, it holds qi(k + 1) = qi(k)
|N out

i
|+1

;

• if χj(k) = 1 and i ∈ N in
j and χ(j,i)(k) = 1, then

qi(k + 1) = σj,q(k + 1)− ρ(j)
i,q (k) + qi(k) = ν

(j)
i,q (k) +

qj(k)

|N out
j |+ 1

+ qi(k);

• if χj(k) = 1 and i ∈ N in
j and χ(j,i)(k) = 0 or if i /∈ N in

j , then it holds

qi(k + 1) = qi(k).

The above three cases are all captured by the following update

qi(k + 1) = χi(k)
qi(k)

|N out
i |+ 1

+ [1− χi(k)]·

·



∑

j 6=i

[
χj(k)χ(j,i)(k)

(
ν

(j)
i,q (k)+

qj(k)

|N out
j |+1

)]
+qi(k)



 . (D.12)

Now introduce the column vector νq(k) = [ν
(i)
j,q(k)] ∈ R

E , which collects all different

D.4 Proof of Theorem 5.9.4 179

ν
(i)
j,q(k). Moreover define the row vector

qa(k) = [q(k)> νq(k)>] ∈ R
N+E .

The aim is to find matrix M(k) ∈ R
(N+E)×(N+E) according to which it holds

qa(k + 1) = qa(k)M(k). (D.13)

Start by considering the i−th row of matrix M(k), with i ∈ {1, . . . , N}. The element

[M(k)]ii indicates how qi(k) influences qi(k + 1), so

[M(k)]ii =
χi(k)

|N out
i |+ 1

+ [1− χi(k)].

The element [M(k)]ij , j ∈ {1, . . . , N} \ {i} indicates how qi(k) influences qj(k + 1). It

holds

[M(k)]ij = [1− χj(k)]

[
χi(k)χ(i,j)(k)

|N out
i |+ 1

]
.

Finally, if ` ∈ {N + 1, . . . , N + E} is such that [qa(k)]` = ν
(r)
j,q (k), the element [M(k)]i`

indicates how qi(k) influences ν
(r)
j,q (k). It holds

[M(k)]i` =





[
1− χi(k)χ(i,j)(k)

] [
χi(k)

|N out
i

|+1

]
if r = i

0 if r 6= i

Now analyze the h−th row of M(k), with h ∈ {N + 1, . . . , N + E}. Suppose that

[qa(k)]h = ν
(r)
`,q (k). Reasoning as before, it holds

[M(k)]hh = 1− χr(k)χ(r,`)(k),

[M(k)]h` = [1− χ`(k)]
[
χr(k)χ(r,`)(k)

]
.

and all the other elements in the h−th row are 0.

Using the matrices M(k) just defined and introducing variables ν
(i)
j,s(k) = σi,s(k) −

ρ
(i)
j,s(k), ∀(i, j) ∈ E and sa(k) = [s(k)> νs(k)>], the evolution of qa(k) and sa(k) is given

by {
qa(k + 1) = qa(k)M(k)

sa(k + 1) = sa(k)M(k)
(D.14)

Recall that the first N elements of vectors qa(k) and sa(k) corresponds respectively to

q(k) and s(k).

180 Appendix for Chapter 5

In the following, the properties of the matrices that describe the algorithm are studied.

Properties of matrices M(k) Introducing the set M, which collects all possible

matrices M(k), the following lemma holds true.

Lemma D.4.1. The set of matrices M satisfies

1. M is a finite set;

2. each M ∈M is a row-stochastic matrix;

3. each positive element in any matrix M ∈M is lower bounded by a positive constant

c;

4. given τmax = Nhτ , for all k ≥ 0, the stochastic matrix

V (τmax)(k) = M(k)M(k + 1) · · ·M(k + τmax − 1), M(k) ∈M,

is such that its first N columns have all the elements which are strictly positive.

Proof. (1) Each matrix M ∈M depends on which node wakes up and on which commu-

nication links from this node to its neighbours work. Since the number of all possible

combinations is finite (and in particular equal to
∑N

i=1 2|N out
i |) the property is verified.

(2) Consider first the i−th row of M , with i ∈ {1, . . . , N}. Then, either χi(k) = 0, from

which it follows 



[M(k)]ii = 1

[M(k)]ij = 0 if j ∈ {1, . . . , N} \ {i}
[M(k)]ij = 0 if j ∈ {N + 1, . . . , N + E}

,

or χi(k) = 1 (and all other χj(k) = 0, j 6= i), implying





[M(k)]ii = 1
|N out

i
|+1

[M(k)]ij =
χ(i,j)(k)

|N out
i

|+1
if j ∈ {1, . . . , N} \ {i}

and

[M(k)]i` =
1− χ(i,j)(k)

|N out
i |+ 1

for those ` ∈ {N + 1, . . . , N + E} for which there exists a j ∈ {1, . . . , N} \ {i} such that

ψ`(k) = ν
(i)
j,q(k) and [M(k)]i` = 0 otherwise. Note that in both cases the sum of the row

is 1.

D.4 Proof of Theorem 5.9.4 181

Consider now the h−th row of matrix M(k), with h such that [qa(k)]h = ν
(r)
`,q (k). If

χr(k) = 0 it holds

{
[M(k)]hh = 1

[M(k)]h` = 0 if ` ∈ {1, . . . , N + E} \ {i}
.

On the other hand, if χr(k) = 1





[M(k)]hh = 1− χ(r,`)(k)

[M(k)]h` = χ(r,`)(k)

[M(k)]hj = 0 if j ∈ {1, . . . , N + E} \ {i, `}

In both cases the row sums up to 1.

(3) This directly follows from the construction of M(k).

(4) Define V (h)(k) = M(k)M(k + 1) . . .M(k + h− 1), k ≥ 0, h ≥ 1, V (0)(k) = IN , k ≥ 0,

which can be divided as

V (h)(k) =


A

(h)
11 (k) A

(h)
12 (k)

A
(h)
21 (k) A

(h)
22 (k)


 ,

with A
(h)
11 (k) ∈ R

N×N , A
(h)
22 (k) ∈ R

E×E , A
(h)
12 (k) ∈ R

N×E and A
(h)
21 (k) ∈ R

E×N . Since

every matrix M ∈M is such that [M]ii > 0 if i ∈ {1, . . . , N}, it holds, for h ≥ 1, that if

in the product which yields V (h)(k) there exists a matrix with the element in position

(i, j) strictly greater than 0, then also [V (h)(k)]ij > 0. Due to Assumptions 2.3.2 and 2.3.1,

after hτ iterations, all the links in graph G have successfully transmitted at least once.

Moreover, if at time k + ∆, 0 ≤ ∆ ≤ hτ , the communication link of the edge (i, j) ∈ E is

reliable, then considering index s such that [qa(·)]s = ν
(i)
j,q(·), it holds [M(k + ∆)]sj > 0.

As a consequence, each row of A
(hτ)
21 (k) has at least one non zero element. Using a similar

reasoning, for all (i, j) ∈ E , it holds that [V (hτ)(k)]ij > 0. Since graph G is connected,

it holds that all the elements of A
((N−1)hτ)
11 (k) are strictly positive. Due to the last two

properties, choosing τmax = Nhτ , matrix V (τmax)(k) has the first N columns with all the

elements strictly positive.

Remark D.4.2. The constant τmax has been evaluated in the worst possible scenario.

As a matter of fact it has been evaluated assuming that in graph G there are at least

two nodes that communicate with each other in no less than N − 1 steps and that the

communication along one link fails h − 1 times consecutively. This implies that in a

random network G, where the diameter of the graph is usually much smaller than the

182 Appendix for Chapter 5

number of nodes, the actual constant τmax according to which the first N columns of

V (τmax)(k) are strictly positive will be, in general, much smaller.

It is now time to use ergodicity theory and to prove the convergence of the algorithm.

Ergodicity theory and convergence of ra-AC First some useful concepts of

ergodicity theory to be later applied to prove the convergence of the algorithm are

recalled. An exhaustive explanation for ergodicity theory can be found in Seneta (2006).

Given a stochastic matrix P ∈ R
N×N , a coefficient of ergodicity for P quantifies how

much its rows are different from each other . Two well-known coefficients of ergodicity

for a stochastic matrix P are

δ(P) := max
j

max
i1,i2

|[P]i1j − [P]i2j | ,

λ(P) := 1−min
i1,i2

∑

j

min {[P]i1j , [P]i2j} .

These coefficients are proper (that is δ(P) = 0 and λ(P) = 0 if and only if P = 1nw
>,

with w such that w>1n = 1), and, as all the coefficients of ergodicity, 0 ≤ δ(P) ≤ 1 and

0 ≤ λ(P) ≤ 1.

Consider now a stochastic matrix P such that δ(P) < ψ. Selecting two elements in any

column of P , the difference between these two elements is necessarily smaller than ψ.

Consider now a vector q ∈ R
N which sums to 0, that is 1>

Nq = 0. Define the related

quantities

qpos =
∑

i|yi>0

qi ≥ 1, qneg =
∑

i|yi<0

qi ≤ 0, qpos + qneg = 0,

and also, for any j ∈ {1, . . . , N}, the quantities

P j = max
s

[P]sj , P j = min
s

[P]sj , P j − ψ ≤ P j ≤ P j .

Suppose now that2 qpos > 0. The aim is to find an upper and lower bound for [q>P]j ,

for any 1 ≤ j ≤ N . The maximum value for this product is achieved in case the positive

elements of vector q are multiplied by P j and the negative elements of the same vector

are multiplied by P j , that is

[q>P]j ≤ qposP j + qnegP j ≤ qposP j + qnegP j − qnegψ

which reduces to [q>P]j ≤ −qnegψ. The minimum value of [q>P]j is instead produced if

2It is possible to verify that the bound in Equation D.15, is still verified if qi = 0 ∀i.

D.4 Proof of Theorem 5.9.4 183

the negative elements are multiplied by P j and the positive ones by P j , i.e.

[q>P]j ≥ qnegP j + qposP j ≤ qnegP j + qposP j − qposψ

which implies [q>P]j ≥ −qposψ. From these two bounds the next bound follows

∣∣∣[q>P]j
∣∣∣ ≤ ψ

N∑

i=1

|qi| (D.15)

This bound will be used to prove the convergence of the algorithm. In particular, the

stochastic matrix involved will be the forward product of the matrices that define the

evolution of the algorithm as seen in (D.14), that is matrix T (k) = M(0)M(1) · · ·M(k).

This matrix allows to evaluate qa(k + 1) given qa(0) (supposing the initial time is 0).

The next property is important to evaluate the coefficient δ(T (k)). The property holds

for δ(·) and λ(·) when the product of row stochastic matrices is considered: given r

stochastic matrices P1, . . . , Pr, then

δ(P1P2 · · ·Pr) ≤
r∏

i=1

λ(Pi). (D.16)

As a consequence if some of the matrices Pi are such that λ(Pi) < 1, then also

δ(P1P2 · · ·Pr) will be strictly less than 1. A stochastic matrix P such that λ(P) < 1 is

called scrambling, and a sufficient condition for P to be scrambling is that at least one

column is strictly positive,as can be verified by the definition of λ(·).
It is possible to apply this theory to the forward product of matrices. Start by defining

the following

W (r) =
rτmax−1∏

k=(r−1)τmax

M(k), r ≥ 1, M(k) ∈M

which, by Lemma D.4.1, have strictly positive columns. As a consequence, λ(W (r)) < 1

for all r ≥ 1. Moreover, the number of different W (r) is finite since matrices M(k) are

finite and the Assumptions 2.3.2 and 2.3.1 have to be satisfied. Collecting all W (r) in

set W, it is possible to define value

d = max
W ∈W

λ(W),

which is strictly smaller than 1.

The following lemma holds

Lemma D.4.3. The constant β = d1/(2τmax), 0 < β < 1, is such that δ(T (k)) ≤ βk for

184 Appendix for Chapter 5

k ≥ τmax.

Proof. If k ≥ τmax, T (k) can be rewritten as

T (k) = W (1) · · ·W (r)M(sτmax)M(rτmax + 1) · · ·M(rτmax + ∆)

with r = bk/τmaxc and ∆ = k − rτmax, 0 ≤ ∆ ≤ τmax − 1. As a consequence, using

Formula (D.16)

δ(T (k)) ≤ λ(W (1)) · · ·λ(W (r))λ




∆∏

j=0

M(rτmax + j)


 ≤ dr.

Since r ≥ k/(2τmax), dr ≤ dk/(2τmax), so choosing β = d1/(2τmax), δ(T (k)) ≤ βk.

Lemma D.4.3 implies that the coefficient of ergodicity for T (k) converges to 0 as k

goes to infinity.

Before showing the convergence of ra-AC, it is necessary to show that each component

of s(k) is lower bounded by a constant µ > 0, since the variable x(k) is obtained through

the Hadamard division by s(k). Note that if k ≥ τmax, the elements of the first N columns

of T (k) are strictly bigger than cτmax . As a consequence, si(k + 1) ≥ cτmax
∑N

j=1 sj(0) ≥
cτmax . On the other hand, since the first N elements of the diagonals of matrices M(k)

are strictly positive, if 1 ≤ k ≤ τmax−1, then si(k+ 1) ≥ cksi(0) ≥ cτmax , since 0 < c < 1

and s(0) = 1N . Therefore it is possible to choose µ as cτmax .

Finally, it is possible to prove convergence: first the exponential convergence is shown

in case vector v is zero mean, v̄ = 0, and then this will be generalized to the case,

v̄ 6= 0. For k ≥ τmax, by Lemma D.4.3 it holds δ(T (k)) ≤ βk, where T (k) is such that

qa(k+ 1) = qa(0)T (k). Starting from Formula (D.15), and remembering that the first N

elements of qa(0) are q(0) and the other elements are 0, for all 1 ≤ i ≤ N it holds

|[qa(k + 1)]i|= |[qa(0)T (k + 1)]i| ≤ βk
∑

i

|qi|

Now, since for 1 ≤ i ≤ N , qi(k + 1) = [qa(k + 1)]i and the elements of s(k) are strictly

greater than µ,

|qi(k + 1)| =
∣∣∣∣
si(k + 1)

si(k + 1)
qi(k + 1)

∣∣∣∣ ≤ βk
∑

i

|qi|

which implies

|xi(k + 1)| =
∣∣∣∣
qi(k + 1)

si(k + 1)

∣∣∣∣ ≤
1

si(k)
βk
∑

i

|qi| ≤
1

µ
βk
∑

i

|qi|

D.4 Proof of Theorem 5.9.4 185

and then

‖x(k + 1)‖2≤ N

µ2β2
(β2)k+1

(
∑

i

|qi|
)2

≤ N2

µ2β2
(β2)k+1‖x(0)‖2

where the last inequality is a consequence of the Cauchy-Schwarz inequality and the fact

that x(0) = q(0).

Defining C∞ := N2

µ2β2 the latter becomes

‖x(k)‖2 ≤ C∞(d1/τmax)k‖x(0)‖2, k ≥ τmax + 1.

If 0 ≤ k ≤ τmax, T (k) is still stochastic and it surely holds that δ(T (k)) ≤ 1, so

applying a similar reasoning

‖x(k)‖2 ≤ Ck(d1/τmax)k‖x(0)‖2, Ck =
N2

µ2(d1/τmax)k
.

Introducing C = max{C1, . . . , Cτmax , C∞} = Cτmax it holds

‖x(k)‖2 ≤ C(d1/τmax)k‖x(0)‖2, k ≥ 0, (D.17)

that is the algorithm exponentially converges when vector v is 0, since the mean v̄ is 0,

and the vector x(k) is converging to 01N .

It is now possible to finally generalize to the case in which v is such that v̄ 6= 0.

Introducing vector v0 = v− v̄1N , consider two evolutions of the algorithm, one initialized

using v0 and the other initialized to v. At each time step k the same matrix M(k) is

applied for both initializations. The subscript 0 is used to indicate the variables of the

evolution starting from the zero-mean vector v0 and the subscript v̄ to indicate those

starting from vector v (vectors s(k) and sa(k) do not have a subscript since they are the

same in both evolutions). Remembering that s(0) = 1N ,

x0(0)=
q0(0)

s(0)
, xv̄ =

qv̄(0)

s(0)
=
q0(0)+v̄1N

s(0)
=
q0(0)

s(0)
+v̄1N

so xv̄(0) = x0(0) + v̄1N . Moreover, it is possible to verify that φ
(q)
v̄ (0) = φ

(q)
0 (0) + v̄sa(0),

186 Appendix for Chapter 5

according to which for all 1 ≤ i ≤ N

[x0(k)]i =

[
φ

(q)
0 (k)

sa(k)

]

i

=

[
φ

(q)
0 (0)T (k − 1)

sa(0)T (k − 1)

]

i

[xv̄(k)]i =

[
φ

(q)
v̄ (k)

sa(k)

]

i

=

[
φ

(q)
v̄ (0)T (k − 1)

sa(0)T (k − 1)

]

i

=

[
φ

(q)
0 (0)T (k − 1)

sa(0)T (k − 1)

]

i

+

[
v̄
sa(0)T (k − 1)

sa(0)T (k − 1)

]

i

= [x0(k)]i + v̄.

This proves that xv̄(k) can be always obtained as x0(k)+ v̄1N for all k ≥ 0, and therefore,

since for x0(k) Equation (D.17) holds, and so

‖xv̄(k)− v̄1N‖2 ≤ C(d1/τmax)k‖xv̄(0)− v̄1N‖, k ≥ 0.

This implies that the exponential convergence of x to v̄1N holds for any vector v ∈ R
N .

E
Appendix for Chapter 6

E.1 Proof of Proposition 6.5.1

The following proof has strong similarity to the proof for the ra-AC algorithm. The main

(apparent) difference is that in the ra-AC algorithm the matrix form for the update of qa()

is given by the multiplication of a row-vector with a row-stochastic matrix, while here

the matrix form for the update of ya and za is given by the multiplication of a column-

stochastic matrix with a column-vector. Obviously, to move from one representation to

the other it is enough to transpose the update.

Start by observing that, only nodes in Ñi(k) ∪ {i} update the variables x, gold, g,

hold, h. Moreover, observe that the matrix S(k) can be seen as a selection matrix which

selects the nodes in Ñi(k) ∪ {i}. This explains the vector form of the first five equations

in (6.7).

Now, to each edge (i, j), j ∈ N out
i , an indicator function variable Xi,j(k) is associated

as follows:

Xi,j(k) =

{
1, if (i, j) reliable at time k

0, if (i, j) not reliable at time k.

For the sake of simplicity, only the update of ya is considered (since the update of za is

188 Appendix for Chapter 6

similar). Recall that

yi(k + 1) =
1

|N out
i |+ 1

(
yi(k) + gi(k + 1)− gold

i (k + 1)
)
. (E.1)

Observe that, for j ∈ N out
i , by using the indicator function defined above, it holds

that

ρ
(i)
j,y(k + 1) = Xi,j(k)σi,y(k + 1) + (1−Xi,j(k)) ρ

(i)
j,y(k).

Since

ν
(i)
j,y(k) = σi,y(k)− ρ(i)

j,y(k),

and

σi,y(k + 1) = σi,y(k) + yi(k + 1),

it follows that

ν
(i)
j,y(k + 1) = (1−Xi,j(k))

(
ν

(i)
j,y(k) +

1

|N out
i |+ 1

[
yi(k) + gi(k + 1)− gold

i (k + 1)
])

(E.2)

and that

yj(k + 1) = yj(k) +Xi,j(k)
[
yi(k + 1) + gj(k + 1)− gold

j (k + 1) + ν
(i)
j,y(k)

]

and, in turn, that

yj(k + 1) = yj(k) +Xi,j(k)
1

|N out
i |+ 1

yi(k)+ (E.3)

+Xi,j(k)

[
gj(k + 1)− gold

j (k + 1) + ν
(i)
j,y(k) +

1

|N out
i |+ 1

[
gi(k + 1)− gold

i (k + 1)
]]
.

From (E.1) and (E.3) it is possible to write that

y(k + 1) =


 1

|N out
i |+ 1


ei +

∑

j∈Ñi(k)

ej


 eT

i +
∑

h 6=i

ehe
T
h


y(k) +

∑

j∈Ñi

eje
T
(i,j) ν+

+


 1

|N out
i |+ 1


ei +

∑

j∈Ñi(k)

ej


 eT

i +
∑

j∈Ñi(k)

eje
T
j



(
g(k + 1)− gold(k + 1)

)

= MV V (k)y +MV E(k)νy(k) + TV (k)
(
g(k + 1)− gold(k + 1)

)
.

E.2 Proof of Lemma 6.5.3 189

From (E.2), it follows

νy(k + 1) =


∑

j∈N̄i

e(i,j)e
T
(i,j) +

∑

(r,s) : r 6=i

e(r,s)e
T
(r,s)


νy+

+


 1

|N out
i |+ 1

∑

j∈N̄i

e(i,j)e
T
i



(
y + g(k + 1)− gold(k + 1)

)

= MEV (k)y(k) +MEE(k)νy(k) + TE(k)
(
g(k + 1)− gold(k + 1)

)
.

The above computations explain the vector-form illustrated in equations (6.7).

The fact that M(k) is a column-stochastic matrix can be shown by verifying that

the sum of the elements of each column is equal to one. In particular, note that all the

columns of M(k) have only one element equal to 1, except for the column relative to

node i, and that the sum of the latter is 1.

E.2 Proof of Lemma 6.5.3

The proof is only the first equality; the second one can be proved analogously. The

proof is by induction. The property is trivially true for k = 0. Indeed, according to the

Initialization block, y`(0) = g`(0) = gold
` (0) = ν

(`)
j,y(0) = 0 for all ` and j ∈ N out

` ; the

fact that g`(0) = gold
` (0) = 0 implies that also gold

` (1) = 0 for all `. Now, assume the

property to be true for k. The idea is to show that it holds also for k + 1. Without loss

of generality, assume that node i is activated at iteration k. Then,

N∑

`=1


y`(k + 1) +

∑

j∈N out
`

ν
(`)
j,y (k + 1)


 = 1T ya(k + 1)

= 1TM(k)ya(k) + 1T T (k)
(
g(k + 1)− gold(k + 1)

)

=
N∑

`=1


y`(k) +

∑

j∈N out
`

ν
(`)
j,y (k)


+ gi(k + 1)− gold

i (k + 1)+

+
∑

j∈N out
i

Xi,j(k)
(
gj(k + 1)− gold

j (k + 1)
)

=
N∑

`=1

g`(k) +
∑

j ∈ Ñi(k) ∪ {i}

(
gj(k + 1)− gold

j (k + 1)
)
,

190 Appendix for Chapter 6

which follows from the properties

1TM(k) = 1T , 1T T (k) = eT
i +

∑

j∈Ñi

eT
j ,

and the inductive hypothesis

N∑

`=1


y`(k) +

∑

j∈N out
`

ν
(`)
j,y (k)


 =

N∑

`=1

g`(k).

By simple algebraic manipulations, it holds

N∑

`=1

g`(k) +
∑

j∈Ñi(k) ∪ {i}

(
gj(k + 1)− gold

j (k + 1)
)

=
∑

j∈Ñi(k) ∪ {i}
gj(k) +

∑

j /∈Ñi(k) ∪ {i}
gj(k) +

∑

j∈Ñi(k) ∪ {i}

(
gj(k + 1)− gold

j (k + 1)
)

=
∑

j∈Ñi(k) ∪ {i}
gj(k + 1) +

∑

j /∈Ñi(k) ∪ {i}
gj(k) +

∑

j∈Ñi(k) ∪ {i}

(
gj(k)− gold

j (k + 1)
)
.

Now, observe that, if ` /∈ Ñi(k) ∪ {i} then g`(k + 1) = g`(k), and, if ` ∈ Ñi(k) ∪ {i}
then gold

` (k + 1) = g`(k). Then, from the previous expression, it follows

N∑

`=1

g`(k) +
∑

j∈Ñi(k) ∪ {i}

(
gj(k + 1)− gold

j (k + 1)
)

=
N∑

`=1

g`(k + 1).

This concludes the proof.

E.3 General results on discrete-time nonlinear systems

The proofs and results of this appendix can be found in Section 6 of the technical report

Bof, Carli, and Schenato (2017e). Consider the system

{
x(k + 1) = x(k) + εφ(k,x(k), ξ(k))

ξ(k + 1) = ϕ(k,x(k), ξ(k))
(E.4)

where x ∈ R
n1 , ξ ∈ R

n2 , φ : N× R
n1 × R

n2 → R
n1 , ϕ : N× R

n1 × R
n2 → R

n2 , ε > 0

and with given initial conditions x(0), ξ(0).

E.3 General results on discrete-time nonlinear systems 191

For a given k̄ ∈ N, consider the system, for k ≥ k̄,

ξk̄(k + 1) = ϕ
(
k, x(k̄), ξ̃k̄(k)

)
, (E.5)

initialized by ξk̄(k̄) = ξ(k̄), where ξ(k̄) is obtained ruling system (E.4) up to k̄.

Given k̄, assume that, for k ≥ k̄, there exists a sequence

k → ξ∗
x(k̄),ξ(k̄)

(k) , (E.6)

in general dependent on x(k̄) and ξ(k̄), such that the evolution

ξ̃k̄(k) := ξk̄ (k)− ξ∗
x(k̄),ξ(k̄)

(k) (E.7)

satisfies the property

‖ξ̃k̄(k)‖ ≤ Ck̄ ρ
k−k̄
k̄
‖ξ̃k̄(k̄)‖, (E.8)

for suitable Ck̄ > 0 and 0 ≤ ρk̄ < 1, that is ξ̃
′
k̄ = 0 is an exponentially stable point for

the evolution in (E.7). Basically, the property in (E.8) establishes that there exists a

trajectory ξ∗ to which the trajectory of the variable ξ, generated keeping the variable x

constant, converges asymptotically.

Next, assume that, for each k, the variable ξ has already reached the asymptotic

convergence to the corresponding trajectory ξ∗. More precisely, observe that there exists

a family of sequences of the type (E.6), where each sequence starts from a different index

k. From this family it is possible to build the following new sequence

k → ξ∗
x(k),ξ(k) (k) , (E.9)

where, to the index k, the first element of the sequence which starts at k is associated.

Based on (E.9), consider the system

x(k + 1) = x(k) + ε φ
(
k,x(k), ξ∗

x(k),ξ(k)(k)
)
. (E.10)

Assume that ξ∗
x(k),ξ(k)(k) is such that there exists a suitable map φ̃ : N × R

n1 → R
n1

such that (E.10) can be, equivalently, rewritten as

x(k + 1) = x(k) + ε φ̃ (k,x(k)) , (E.11)

that is, φ̃ (k,x(k)) = φ
(
k,x(k), ξ∗

x(k),ξ(k)(k)
)
. We make the following assumption.

Assumption E.3.1. Let x∗ be an equilibrium point for (E.11). There exists r > 0 such

192 Appendix for Chapter 6

that φ̃ is continuously differentiable on D = {x ∈ R
n1 | ‖x− x∗‖ < r} and the Jacobian

matrix [∂φ̃/∂x] is bounded and Lipschitz on D, uniformly in k. In addition, defining

A(k) = I + ε
∂φ̃

∂x
(k;x)|x=x∗ ,

and considering the auxiliary system

x̃(k + 1) = A(k)x̃(k), (E.12)

x̃ = 0 is an exponentially stable equilibrium point for (E.12).

The following Proposition characterizes the convergence properties of system (E.4).

Proposition E.3.2. Consider system in (E.4). For any k̄, assume that there exists a

sequence as in (E.6) such that property (E.8) is satisfied. Consider system in (E.10).

Let x∗ be an equilibrium point for (E.10). Assume Assumption (E.3.1) holds true. Then,

there exist r > 0 and ε∗ > 0, such that, for all ε ∈ (0, ε∗] and for all x(0) ∈ Bn
r =

{x ∈ R
n : ‖x− x∗‖ < r}, the trajectory x(t) generated by (E.4), converges exponentially

to x∗, i.e., there exist C > 0 and 0 < λ < 1 such that

‖x(k)− x∗‖ ≤ Cλk‖x(0)− x∗‖.

References

References 195

Acevedo J. J., Arrue B. C., Diaz-Bañez J. M., Ventura I., Maza I., and Ollero

A. One-to-one coordination algorithm for decentralized area partition in surveillance

missions with a team of aerial robots. Journal of Intelligent & Robotic Systems, 74

(1-2):269–285, 2014.

Acevedo J. J., Arrue B. C., Maza I., and Ollero A. Cooperative perimeter

surveillance with a team of mobile robots under communication constraints. In

Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 5067–5072. IEEE, 2013.

Aghajan H. and Cavallaro A. Multi-camera networks: principles and applications.

Academic Press, Cambridge, MA, 2009.

Alberton R., Carli R., Cenedese A., and Schenato L. Multi-agent perimeter

patrolling subject to mobility constraints. In Proceedings of the 2012 American Control

Conference, pages 4498–4503, 2012.

Albino V., Berardi U., and Dangelico R. M. Smart cities: Definitions, dimensions,

performance, and initiatives. Journal of Urban Technology, 22(1):3–21, 2015.

Anderson B. D. and Moore J. B. Linear optimal control, volume 197. Prentice-Hall,

Upper Saddle River, NJ, 1971.

Argaez M., Ramirez C., and Sanchez R. An `1-algorithm for underdetermined

systems and applications. In Proceedings of the 2011 Annual Meeting of the North

American Fuzzy Information Processing Society, pages 1–6. IEEE, 2011.

Aysal T. C., Yildiz M. E., Sarwate A. D., and Scaglione A. Broadcast gossip

algorithms for consensus. IEEE Transactions on Signal Processing, 57(7):2748–2761,

July 2009. ISSN 1053-587X.

Balch O. Smart cities: how to build sustainable urban environments? Forbes, Mar. 20,

2013.

Barooah P. and Hespanha J. Estimation on graphs from relative measurements:

Distributed algorithms and fundamental limit. IEEE Control Systems Magazine, 27

(4):57–74, 2007.

Belgioioso G., Cenedese A., and Michieletto G. Distributed partitioning strategies

with visual optimization for camera network perimeter patrolling. In Proceedings of the

55th IEEE Conference on Decision and Control, 2016, pages 5912–5917. IEEE, 2016.

196

Bénézit F., Blondel V., Thiran P., Tsitsiklis J., and Vetterli M. Weighted

gossip: distributed averaging using non-doubly stochastic matrices. In Proceedings of

the 2010 IEEE International Symposium on Information Theory Proceedings, pages

1753–1757. IEEE, 2010.

Bertsekas D. P. Constrained optimization and Lagrange multiplier methods. Academic

Press, Cambridge, MA, 2014.

Bertsekas D. P. and Tsitsiklis J. N. Parallel and distributed computation: numerical

methods, volume 23. Prentice-Hall, Upper Saddle River, NJ, 1989.

Bertsimas D. and Tsitsiklis J. N. Introduction to linear optimization, volume 6.

Athena Scientific, Belmont, MA, 1997.

Bianchi P., Hachem W., and Iutzeler F. A stochastic coordinate descent primal-

dual algorithm and applications to distributed optimization. IEEE Transactions on

Automatic Control, 61(10):2947–2957, 2016.

Bianchi P., Hachem W., and Iutzeler F. A stochastic coordinate descent primal-

dual algorithm and applications to large-scale composite optimization. arXiv preprint

arXiv:1407.0898, 2014.

Bin S.-Y. and Lin C.-H. An implementable distributed state estimator and distributed

bad data processing schemes for electric power systems. IEEE Transactions on Power

Systems, 9(3):1277–1284, 1994.

Blondel V. D., Hendrickx J. M., Olshevsky A., and Tsitsiklis J. N. Convergence

in multiagent coordination, consensus, and flocking. In Proceedings of the 44th IEEE

Conference on Decision and Control and European Control Conference, 2005, pages

2996–3000. IEEE, 2005.

Bof N., Carli R., and Schenato L. Average consensus with asynchronous updates

and unreliable communication. In Proceedings of the 20th IFAC World Congress, 2017,

volume 50, pages 601–606. IFAC, 2017a.

Bof N., Todescato M., Carli R., and Schenato L. Robust distributed estimation

for localization in lossy sensor networks. In Proceedings of the 6th IFAC Workshop on

Distributed Estimation and control in Networked System, 2016, pages 250–255. IFAC,

2016a.

References 197

Bof N., Carli R., Cenedese A., and Schenato L. Asynchronous distributed camera

network patrolling under unreliable communication. IEEE Transactions on Automatic

Control, 62(11):5982–5989, 2017b.

Bof N., Carli R., Notarstefano G., Schenato L., and Varagnolo D. Newton-

Raphson Consensus under lossy communication for peer-to-peer optimization. arXiv

preprint arXiv:1707.09178, 2017c.

Bof N., Carli R., and Schenato L. On the performance of consensus based versus

Lagrangian based algorithms for quadratic cost functions. In Proceedings of the 2016

European Control Conference, pages 160–165. IEEE, 2016b.

Bof N., Carli R., and Schenato L. Is ADMM always faster than average consensus?

Provisionally accepted on Automatica, 2017d.

Bof N., Carli R., and Schenato L. Lyapunov theory for discrete time systems.

Technical report, 2017e. [Online] Available at http://automatica.dei.unipd.it/

tl_files/utenti2/bof/Papers/NoteDiscreteLyapunov.pdf.

Bolognani S., Carli R., and Todescato M. State estimation in power distribution

networks with poorly synchronized measurements. In Proceedings of the 53rd IEEE

Conference on Decision and Control, 2014, pages 2579–2584. IEEE, 2014.

Bolognani S., Favero S. D., Schenato L., and Varagnolo D. Consensus-based

distributed sensor calibration and least-square parameter identification in WSNs.

International Journal of Robust and Nonlinear Control, 20(2):176–193, 2010.

Borra D., Pasqualetti F., and Bullo F. Continuous graph partitioning for camera

network surveillance. Automatica, 52:227–231, 2015.

Boyd S., Ghosh A., Prabhakar B., and Shah D. Randomized gossip algorithms.

IEEE Transactions on Information Theory/ACM Transactions on Networking, 52(6):

2508–2530, June 2006.

Boyd S., Diaconis P., and Xiao L. Fastest mixing markov chain on a graph. SIAM

review, 46(4):667–689, 2004.

Boyd S., Parikh N., Chu E., Peleato B., and Eckstein J. Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations

and Trends R© in Machine Learning, 3(1):1–122, 2011.

198

Boyd S. and Vandenberghe L. Convex optimization. Cambridge University Press,

Cambridge, GB, 2004.

Bryant C. Europe’s manufacturers experiment with the smart factory. Financial Times,

Apr. 10, 2014.

Bullo F., Carli R., and Frasca P. Gossip coverage control for robotic networks: dy-

namical systems on the space of partitions. SIAM Journal on Control and Optimization,

50(1):419–447, 2012.

Cardwell D. Grid sensors could ease disruptions of power. The New York Times, Feb.

05, 2015.

Cardwell D. Smart bus can alter its route to avoid jams. The Times, May 10, 2017.

Carli R., Fagnani F., Speranzon A., and Zampieri S. Communication constraints

in the average consensus problem. Automatica, 44(3):671–684, 2008.

Carli R., Notarstefano G., Schenato L., and Varagnolo D. Distributed quadratic

programming under asynchronous and lossy communications via Newton-Raphson

Consensus. In Proceedings of the 2015 IEEE European Control Conference, 2015.

Carron A., Todescato M., Carli R., Schenato L., and Pillonetto G. Multi-agents

adaptive estimation and coverage control using gaussian regression. In Proceedings of

the 2015 IEEE European Control Conference, 2015.

Carron A., Todescato M., Carli R., and Schenato L. An asynchronous consensus-

based algorithm for estimation from noisy relative measurements. IEEE Transactions

on Control of Network Systems, 1(3):283–295, 2014.

Cassandras C., Lin X., and Ding X. An optimal control approach to the multi-

agent persistent monitoring problem. IEEE Transactions on Automatic Control, 58(4):

947–961, 2013.

Cattivelli F. S. and Sayed A. H. Diffusion strategies for distributed Kalman filtering

and smoothing. IEEE Transactions on Automatic Control, 55(9):2069–2084, 2010.

Chang T.-H., Hong M., Liao W.-C., and Wang X. Asynchronous distributed

ADMM for large-scale optimization- part I: algorithm and convergence analysis. IEEE

Transactions on Signal Processing, 64(12):3118–3130, 2016.

References 199

Chazal M., Jouini E., and Tahraoui R. Production planning and inventories

optimization: a backward approach in the convex storage cost case. Journal of

Mathematical Economics, 44(9):997–1023, 2008.

Chen Y., Tron R., Terzis A., and Vidal R. Corrective consensus: converging to the

exact average. In Proceedings of the 49th IEEE Conference on Decision and Control,

2010, pages 1221–1228. IEEE, 2010.

Chevaleyre Y. Theoretical analysis of the multi-agent patrolling problem. Proceedings

of the 2004 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,

pages 302 – 308, sep. 2004.

Chu H.-N., Glad A., Simonin O., Sempé F., Drogoul A., and Charpillet F.

Swarm approaches for the patrolling problem, information propagation vs. pheromone

evaporation. In Proceedings of the 19th IEEE International Conference on Tools with

Artificial Intelligence, 2007, volume 1, pages 442–449. IEEE, 2007.

Colias M. and Higgins T. GM to test fleet of self-driving cars in New York. New

York Times, Oct. 17, 2017.

Conejo A. J., de la Torre S., and Canas M. An optimization approach to multiarea

state estimation. IEEE Transactions on Power Systems, 1(22):213–221, 2007.

Cook D. J., Youngblood M., and Das S. K. A multi-agent approach to controlling

a smart environment. Designing smart homes, 4008:165–182, 2006.

Curtis S. Humans could be banned from driving within the next 25 years as autonomous

cars take over the roads. New York Times, Oct. 9, 2017.

Czyzowicz J., Gasieniec L., Kosowski A., and Kranakis E. Boundary patrolling

by mobile agents with distinct maximal speeds. In Algorithms–ESA 2011, pages

701–712. Springer, 2011.

Di Lorenzo P. and Scutari G. Next: in-network nonconvex optimization. IEEE

Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

Ding C., Song B., Morye A., Farrell J. A., and Roy-Chowdhury A. K. Col-

laborative sensing in a distributed ptz camera network. Image Processing, IEEE

Transactions on, 21(7):3282–3295, 2012.

Dobre C. and Xhafa F. Parallel programming paradigms and frameworks in big data

era. International Journal of Parallel Programming, 42(5):710–738, 2014.

200

Dominguez-Garcia A. D. and Hadjicostis C. N. Coordination and control of

distributed energy resources for provision of ancillary services. In Proceedings of the 1st

IEEE International Conference on Smart Grid Communications, 2010, pages 537–542.

IEEE, 2010.

Domínguez-García A. D. and Hadjicostis C. N. Distributed strategies for average

consensus in directed graphs. In Proceedings of the 50th IEEE Conference on Decision

and Control and European Control Conference, 2011, pages 2124–2129. IEEE, 2011.

Dominguez-Garcia A. D., Hadjicostis C. N., and Vaidya N. H. Distributed al-

gorithms for consensus and coordination in the presence of packet-dropping communica-

tion links-part I: Statistical moments analysis approach. arXiv preprint arXiv:1109.6391,

2011.

Dresner K. and Stone P. A multiagent approach to autonomous intersection man-

agement. Journal of artificial intelligence research, 31:591–656, 2008.

Eisen M., Mokhtari A., and Ribeiro A. Decentralized quasi-newton methods. arXiv

preprint arXiv:1605.00933, 2016.

Erseghe T. A distributed and scalable processing method based upon ADMM. IEEE

Signal Processing Letters, 19(9):563–566, 2012.

Erseghe T., Zennaro D., Dall’Anese E., and Vangelista L. Fast consensus by the

Alternating Direction Multipliers Method. IEEE Transactions on Signal Processing,

59(11):5523–5537, 2011.

Esterle L. and Grosu R. Cyber-physical systems: challenge of the 21st century. e & i

Elektrotechnik und Informationstechnik, 133(7):299–303, 2016.

Estrin D., Girod L., Pottie G., and Srivastava M. Instrumenting the world with

wireless sensor networks. In Proceedings of the 2001 IEEE International Conference

on Acoustics, Speech, and Signal Processing, volume 4, pages 2033–2036. IEEE, 2001.

Franceschetti M. and Meester R. Random networks for communication: from

statistical physics to information systems, volume 24. Cambridge University Press,

Cambridge, GB, 2008.

Garin F. and Schenato L. A survey on distributed estimation and control applications

using linear consensus algorithms. In Networked Control Systems, pages 75–107.

Springer, London, GB, 2010.

References 201

Ghadimi E., Teixeira A., Shames I., and Johansson M. Optimal parameter

selection for the Alternating Direction Method of Multipliers (ADMM): quadratic

problems. IEEE Transactions on Automatic Control, 60(3):644–658, 2015. ISSN

0018-9286.

Ghadimi E., Shames I., and Johansson M. Accelerated gradient methods for

networked optimization. arXiv preprint arXiv:1211.2132, 2012.

Gharesifard B. and Cortes J. Distributed continuous-time convex optimization on

weight-balanced digraphs. IEEE Transactions on Automatic Control, 59(3):781–786,

2014.

Giridhar A. and Kumar P. Distributed clock synchronization over wireless networks:

algorithms and analysis. In Proceedings of the 45th IEEE Conference on Decision and

Control, 2006, pages 4915–4920. IEEE, 2006.

Horn R. A. and Johnson C. R. Matrix Analysis. Cambridge University Press,

Cambridge, GB, 1985.

Horst R., Pardalos P. M., and Van Thoai N. Introduction to global optimization.

Springer Science & Business Media, Berlin/Heidelberg, D, 2000.

Horton C. In Taiwan, modest test of driverless bus may hint at big things to come.

New York Times, Sep. 28, 2017.

Hou I.-H. and Kumar P. Real-time communication over unreliable wireless links: a

theory and its applications. IEEE Wireless Communications, 19(1), 2012.

Huck S. M., Kariotoglou N., Summers S., Raimondo D. M., and Lygeros J.

Design of importance-map based randomized patrolling strategies. In Complexity in

Engineering (COMPENG), 2012, pages 1–6. IEEE, 2012.

Iocchi L., Nardi D., and Salerno M. Reactivity and deliberation: a survey on

multi-robot systems. In Workshop on Balancing Reactivity and Social Deliberation in

Multi-Agent Systems, pages 9–32. Springer, 2000.

Ipakchi A. and Albuyeh F. Grid of the future. IEEE Power and Energy Magazine, 7

(2):52–62, 2009.

Iutzeler F., Bianchi P., Ciblat P., and Hachem W. Asynchronous distributed

optimization using a randomized Alternating Direction Method of Multipliers. In

202

Proceedings of the 52nd IEEE Conference on Decision and Control, 2013, pages

3671–3676. IEEE, 2013.

Iutzeler F., Bianchi P., Ciblat P., and Hachem W. Explicit convergence rate of

a distributed Alternating Direction Method of Multipliers. IEEE Transactions on

Automatic Control, 61(4):892–904, 2016.

Jadbabaie A., Lin J., and Morse A. S. Coordination of groups of mobile autonomous

agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6):

988–1001, 2003.

Kar S. and Moura J. M. Distributed consensus algorithms in sensor networks with

imperfect communication: link failures and channel noise. IEEE Transactions on

Signal Processing, 57(1):355–369, 2009.

Kar S. and Moura J. M. Distributed consensus algorithms in sensor networks:

quantized data and random link failures. IEEE Transactions on Signal Processing, 58

(3):1383–1400, 2010.

Kariotoglou N., Raimondo D. M., Summers S. J., and Lygeros J. Multi-agent

autonomous surveillance: a framework based on stochastic reachability and hierarchical

task allocation. Journal of dynamic systems, measurement, and control, 137(3):031008,

2015.

Kawamura A. and Kobayashi Y. Fence patrolling by mobile agents with distinct

speeds. Distributed Computing, 28(2):147–154, 2015.

Kekatos V. and Giannakis G. B. Distributed robust power system state estimation.

IEEE Transactions on Power Systems, 28(2):1617–1626, 2013.

Khalil H. K. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, third edition,

2001.

Kia S. S., Cortés J., and Martínez S. Distributed convex optimization via continuous-

time coordination algorithms with discrete-time communication. Automatica, 55:

254–264, 2015.

Kim K.-D. and Kumar P. R. Cyber–physical systems: a perspective at the centennial.

Proceedings of the IEEE, 100(Special Centennial Issue):1287–1308, 2012.

Kotkin J. The world’s smartest cities. Forbes, Mar. 12, 2009.

References 203

Kung H. Synchronized and asynchronous parallel algorithms for multiprocessors.

Carnegie-Mellon University, 1976.

Lee S. and Nedić A. Asynchronous gossip-based random projection algorithms over

networks. IEEE Transactions on Automatic Control, 61(4):953–968, 2016.

Lin P., Ren W., and Song Y. Distributed multi-agent optimization subject to

nonidentical constraints and communication delays. Automatica, 65:120–131, 2016.

Ling Q., Shi W., Wu G., and Ribeiro A. Dlm: Decentralized linearized alternating

direction method of multipliers. IEEE Transactions on Signal Processing, 63(15):

4051–4064, 2015.

Liu J. and Morse A. S. Accelerated linear iterations for distributed averaging. Annual

Reviews in Control, 35(2):160–165, 2011.

Makhdoumi A. and Ozdaglar A. Convergence rate of distributed ADMM over

networks. arXiv preprint arXiv:1601.00194, 2016.

Mansoori F. and Wei E. Superlinearly convergent asynchronous distributed network

Newton method. arXiv preprint arXiv:1705.03952, 2017.

Mao T. and Ray L. Frequency-based patrolling with heterogeneous agents and limited

communication. arXiv preprint arXiv:1402.1757, 2014.

Marelli D. E. and Fu M. Distributed weighted least-squares estimation with fast

convergence for large-scale systems. Automatica, 51:27–39, 2015.

Marr B. What everyone must know about industry 4.0. Forbes, Jun. 20, 2016a.

Marr B. Why everyone must get ready for the 4th industrial revolution. Forbes, Apr. 5,

2016b.

Moreau L. Stability of multiagent systems with time-dependent communication links.

IEEE Transactions on Automatic Control, 50(2):169–182, 2005.

Muthukrishnan S., Ghosh B., and Schultz M. H. First-and second-order diffusive

methods for rapid, coarse, distributed load balancing. Theory of computing systems,

31(4):331–354, 1998.

National Science Foundation . Cyber-Physical Systems (CPS) NSF 08-611. http:

//www.nsf.gov/pubs/2008/nsf08611/nsf08611.htm, 2008. Accessed: 2017-10-12.

204

Nedić A. Asynchronous broadcast-based convex optimization over a network. IEEE

Transactions on Automatic Control, 56(6):1337–1351, June 2011.

Nedić A. and Ozdaglar A. Convex optimization in signal processing and communi-

cations, chapter Cooperative Distributed Multi-Agent Optimization, pages 340–386.

Cambridge University Press, Cambridge, GB, 2010.

Nedić A. and Liu J. A Lyapunov approach to discrete-time linear consensus. In

Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing,

pages 842–846. IEEE, 2014.

Nedić A. and Olshevsky A. Distributed optimization over time-varying directed

graphs. IEEE Transactions on Automatic Control, 60(3):601–615, 2015.

Nedić A., Olshevsky A., and Shi W. Achieving geometric convergence for distributed

optimization over time-varying graphs. arXiv preprint arXiv:1607.03218, 2016.

Nedić A. and Ozdaglar A. Distributed subgradient methods for multi-agent opti-

mization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Nedić A., Ozdaglar A., and Parrilo P. A. Constrained consensus and optimization

in multi-agent networks. IEEE Transactions on Automatic Control, 55(4):922–938,

2010.

Nishihara R., Lessart L., Recht B., Packard A., and Jordan M. I. A general

analysis of the convergence of ADMM. In Proceedings of the 32nd International

Conference on Machine Learning (ICML), 2015.

Notarnicola I. and Notarstefano G. Asynchronous distributed optimization via

randomized dual proximal gradient. IEEE Transactions on Automatic Control, 2016.

Notarstefano G. and Bullo F. Distributed abstract optimization via constraints

consensus: theory and applications. IEEE Transactions on Automatic Control, 56(10):

2247–2261, October 2011.

O’Boyle M. How a smart grid relies on customer demand response to manage wind

and solar. Forbes, Mar. 13, 2017.

Olshevsky A. and Tsitsiklis J. N. Convergence speed in distributed consensus and

averaging. SIAM Journal on Control and Optimization, 48(1):33–55, 2009.

References 205

Oreshkin B. N., Coates M. J., and Rabbat M. G. Optimization and analysis

of distributed averaging with short node memory. IEEE Transactions on Signal

Processing, 58(5):2850–2865, 2010.

Palomar D. P. and Chiang M. A tutorial on decomposition methods for network

utility maximization. IEEE Journal on Selected Areas in Communications, 24(8):

1439–1451, 2006.

Pasqualetti F., Carli R., and Bullo F. Distributed estimation via iterative projections

with application to power network monitoring. Automatica, 48(5):747–758, 2012.

Pasqualetti F., Zanella F., Peters J. R., Spindler M., Carli R., and Bullo F.

Camera network coordination for intruder detection. IEEE Transactions on Control

Systems Technology, 22(5):1669–1683, 2014.

Patterson S., Bamieh B., and El Abbadi A. Distributed average consensus with

stochastic communication failures. In Proceedings of the 46th IEEE Conference on

Decision and Control, 2007, pages 4215–4220. IEEE, 2007.

Peng Z., Xu Y., Yan M., and Yin W. ARock: an algorithmic framework for

asynchronous parallel coordinate updates. SIAM Journal on Scientific Computing, 38

(5):A2851–A2879, 2016.

Perlroth N. Smart city technology may be vulnerable to hackers. The New York Times,

Apr. 21, 2015.

Poole S. The fourth industrial revolution review: adapt to new technology or perish.

The Guardian, Jan. 6, 2017.

Portugal D. and Rocha R. A survey on multi-robot patrolling algorithms. Techno-

logical innovation for sustainability, pages 139–146, 2011.

Puccinelli D. and Haenggi M. Wireless sensor networks: applications and challenges

of ubiquitous sensing. IEEE Circuits and systems magazine, 5(3):19–31, 2005.

Qu G. and Li N. Harnessing smoothness to accelerate distributed optimization. IEEE

Transactions on Control of Network Systems, 2017.

Quain J. R. Cars will talk to one another. Exactly how is less certain. The New York

Times, Mar. 09, 2017.

Quinn E. L. Privacy and the new energy infrastructure. SSRN Electronic Journal,

2009.

206

Raimondo D. M., Kariotoglou N., Summers S., and Lygeros J. Probabilistic

certification of pan-tilt-zoom camera surveillance systems. In Proceedings of the 50th

IEEE Conference on Decision and Control and European Control Conference, 2011,

pages 2064–2069. IEEE, 2011.

Ravazzi C., Frasca P., Ishii H., and Tempo R. A distributed randomized algorithm

for relative localization in sensor networks. In Proceedings of the 2013 European Control

Conference, pages 1776–1781. IEEE, 2013.

Rogers A., Ramchurn S. D., and Jennings N. R. Delivering the smart grid:

challenges for autonomous agents and multi-agent systems research. In AAAI, 2012.

Sahai A. and Grover P. Demystifying the Witsenhausen counterexample [ask the

experts]. IEEE Control Systems, 30(6):20–24, 2010.

Sanburn J. How smart traffic lights could transform your commute. Time, May 05,

2015.

Seneta E. Non-negative matrices and Markov chains. Springer Science & Business

Media, Berlin/Heidelberg, D, 2006.

Sherson T., Heusdens R., and Kleijn W. B. Derivation and analysis of the

primal-dual method of multipliers based on monotone operator theory. arXiv preprint

arXiv:1706.02654, 2017.

Shi W., Ling Q., Yuan K., Wu G., and Yin W. On the linear convergence of

the ADMM in decentralized consensus optimization. IEEE Transactions on Signal

Processing, 62(7):1750–1761, 2014.

Simonetto A. and Leus G. Distributed asynchronous time-varying constrained

optimization. In Proceedings of the 48th Asilomar Conference on Signals, Systems and

Computers, 2014, pages 2142–2146. IEEE, 2014.

Singh S. Smart cities - a $1.5 trillion market opportunity. Forbes, Jun. 19, 2014.

Song B., Kamal A. T., Soto C., Ding C., Farrell J. A., and Roy-Chowdhury

A. K. Tracking and activity recognition through consensus in distributed camera

networks. IEEE Transactions on Image Processing, 19(10):2564–2579, 2010.

Sou K. C., Weimer J., Sandberg H., and Johansson K. H. Scheduling smart

home appliances using mixed integer linear programming. In Proceedings of the 50th

References 207

IEEE Conference on Decision and Control and European Control Conference, 2011,

pages 5144–5149. IEEE, 2011.

Teixeira A., Ghadimi E., Shames I., Sandberg H., and Johansson M. Optimal

scaling of the ADMM algorithm for distributed quadratic programming. In Proceed-

ings of the 52nd IEEE Conference on Decision and Control and European Control

Conference, 2013, pages 6868–6873. IEEE, 2013.

Teixeira A., Ghadimi E., Shames I., Sandberg H., and Johansson M. The

ADMM algorithm for distributed quadratic problems: parameter selection and con-

straint preconditioning. IEEE Transactions on Signal Processing, 64(2):290–305, 2016.

Todescato M., Cavraro G., Carli R., and Schenato L. A robust block-jacobi al-

gorithm for quadratic programming under lossy communications. IFAC-PapersOnLine,

48(22):126–131, 2015.

Todescato M., Bof N., Cavraro G., Carli R., and Schenato L. Generalized

gradient optimization over lossy networks for partition-based estimation. arXiv preprint,

arXiv:1710.10829.

Totty M. The rise of the smart city. The Wall Street Journal, Apr. 16, 2017.

Trevisan L. Max cut and the smallest eigenvalue. SIAM Journal on Computing, 41(6):

1769–1786, 2012.

Tsai C.-F., Lin W.-C., and Ke S.-W. Big data mining with parallel computing:

a comparison of distributed and mapreduce methodologies. Journal of Systems and

Software, 122:83–92, 2016.

Tsianos K. I., Lawlor S., and Rabbat M. G. Push-sum distributed dual averaging

for convex optimization. In Proceedings of the 51st IEEE Conference on Decision and

Control, 2012, pages 5453–5458. IEEE, 2012.

Tsitsiklis J., Bertsekas D., and Athans M. Distributed asynchronous deterministic

and stochastic gradient optimization algorithms. IEEE Transactions on Automatic

Control, 31(9):803–812, 1986.

Tsitsiklis J. N. Problems in decentralized decision making and computation. Technical

report, Massachusetts Instituite of Technology Cambridge Lab For Information and

Decision Systems, 1984.

208

Twentyman J. Smart buildings could open door to hackers. Financial Times, May 15,

2017.

Vaidya N. H., Hadjicostis C. N., and Dominguez-Garcia A. D. Distributed

algorithms for consensus and coordination in the presence of packet-dropping com-

munication links-part II: coefficients of ergodicity analysis approach. arXiv preprint

arXiv:1109.6392, 2011.

Varagnolo D., Zanella F., Cenedese A., Gianluigi P., and Schenato L. Newton-

Raphson Consensus for distributed convex optimization. IEEE Transactions on

Automatic Control, 61(4):994 – 1009, 2016.

Walsh B. Miami’s smart grid: A blueprint for the power future. Time, Apr. 22, 2009.

Wei E. and Ozdaglar A. On the O(1/k) convergence of asynchronous distributed

Alternating Direction Method of Multipliers. In Proceedings of the 2013 IEEE Global

Conference on Signal and Information Processing, pages 551–554, 2013.

Wei E., Ozdaglar A., and Jadbabaie A. A distributed Newton method for network

utility maximization - Part I: algorithm. IEEE Transactions on Automatic Control, 58

(9):2162–2175, 2013a.

Wei E., Ozdaglar A., and Jadbabaie A. A distributed Newton method for network

utility maximization - Part II: convergence. IEEE Transactions on Automatic Control,

58(9):2176 – 2188, 2013b.

Wheeland M. How Florida and Colorado are trying to build smart cities from the

ground up. The Guardian, Aug. 9, 2016.

Witsenhausen H. S. A counterexample in stochastic optimum control. SIAM Journal

on Control, 6(1):131–147, 1968.

Xiao L., Boyd S., and Lall S. A scheme for robust distributed sensor fusion based on

average consensus. In Proceedings of the 4th International Symposium on Information

Processing in Sensor Networks, 2005, pages 63–70. IEEE, 2005.

Yang B. and Johansson M. Distributed optimization and games: a tutorial overview.

Networked Control Systems, pages 109–148, 2011.

Zamalloa M. Z. and Krishnamachari B. An analysis of unreliability and asymmetry

in low-power wireless links. ACM Transactions on Sensor Networks, 3(2):7, 2007.

References 209

Zanella F., Varagnolo D., Cenedese A., Pillonetto G., and Schenato L. Newton-

Raphson consensus for distributed convex optimization. In Proceedings of the 50th

IEEE Conference on Decision and Control and European Control Conference, 2011,

pages 5917–5922. IEEE, 2011.

Zanella F., Varagnolo D., Cenedese A., Pillonetto G., and Schenato L. Asyn-

chronous Newton-Raphson Consensus for distributed convex optimization. In Proceed-

ings of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked

Systems, 2012. IEEE, 2012.

Zargham M., Ribeiro A., Ozdaglar A., and Jadbabaie A. Accelerated dual

descent for network flow optimization. IEEE Transactions on Automatic Control, 59

(4):905–920, 2014.

Zhang R. and Kwok J. Asynchronous distributed ADMM for consensus optimization.

In Proceedings of the 31st International Conference on Machine Learning, pages

1701–1709, 2014.

210

Acknowledgments

...and finally another step in my travel turns to the conclusion. In these three years,

many people have sustained and helped me, and above all showed their faith in me. I

especially appreciate all the patience accorded to me when I was living those periods

in which my recurring thought was "What am I doing? Am I really fit to it?". Even

though my reactions to your encouragements were probably not really gratifying for you

(given my situation and doubts), without all your support these periods would have been

extremely difficult to overcome. Some of you will receive special thanks in the following.

However, know that if you feel like I neglected you, you should blame my very short

memory, not my heart. In the latter there is a place for each and every one of you.

The first thanks are for my supervisor, Prof. Luca Schenato. You really helped me,

guiding me and giving me very useful suggestions in the course of all my Ph.D.. You also

encouraged me a lot, both during these three years and also when I decided to become

"the prodigal daughter", leaving optimization to try my luck with cooking. Thank you

very much for everything.

Together with Luca, it would be impossible for me not to thank my co-supervisor,

Prof. Ruggero Carli. Again, the support you gave me not only concerned the research

(with all the time spent on intricate formulas), but also my future intentions. I really

appreciate it.

Now it is my parent’s turn, together with my whole family: I am really lucky to have

such a crazy family. I really love all of you, you are always there when I really need you.

A special mention is for my mother: you are a true example of love, patience, sensibility

and perseverance.

Big thanks also go to my office mates (both former and current). I can vividly

remember many times in which you patiently listened to my worries and helped me,

and also many times in which you encouraged me to at least try new things. I also

appreciated your cake/cookies enthusiasm! Thank you for all the funny moments, the

serious ones and also the stressful ones. We lived these three years in a very full way, we

were more than just colleagues! Among you, special thanks are for Giacomo. We helped

212

and sustained each other a lot, not only on Ph.D.’s matters. This is what really matters,

and I really appreciate it!

Even though my office mates received a major mention, I want to extend my thanks

to all the people I met in the university world, both here in Padua and in Stanford, with

special thanks to my Stanford’s supervisor, Prof. Marco Pavone, who kindly welcomed

me in his lab for my six months permanence there, and to Prof. Ettore Fornasini, who

mentored me in my first months of the Ph.D.. I learned a lot from all of you and I had

the possibility to engage in deep and interesting discussions. A note also for the reviewers

of this thesis, Angelia Nedić and Mikael Johansson, who carefully read it and gave me

very useful and interesting comments.

The final thanks go to all my old friends (from childhood, high school and university),

with whom I continue to have a very nice relationship, even though we rarely see each

other. The fact that you were mentioned in my two former theses, and that you also

found a place in the third one should count for something.

I leave the reader with a quote which is really inspiring to me

“Choose a job you love, and you will never have to work a day in your life.”

Old wiseman

	Introduction
	Multi-agent systems
	Distributed optimization
	Challenges & contributions
	Manuscript outline

	Distributed optimization
	Optimization problems
	Distributed algorithms
	Communication issues
	Applications' features that call for a distributed approach

	Patrolling for camera networks
	Introduction and state of the art
	Problem formulation
	A coordinated broadcast partitioning algorithm (CB algorithm)
	r-CB: a version robust to packet losses
	Final considerations on the patrolling problem

	Minimization of locally coupled cost functions
	Introduction and state of the art
	Problem formulation
	Motivating example: state estimation in smart power distribution grids
	Synchronous update and reliable communication
	Asynchronous updates and unreliable communication: the Resilient Block Jacobi (RBJ) algorithm
	Smart power grid application
	Final considerations on the minimization of locally coupled costs

	Average consensus and quadratic cost minimization
	Introduction and state of the art
	Problem formulation
	Consensus based algorithms: standard consensus (C)
	Consensus based algorithms: accelerated consensus (AC)
	Lagrangian based algorithms: dual ascent method (DA)
	Lagrangian based algorithms: Alternating Direction Method of Multipliers (ADMM)
	Analytic and simulative comparison: scalar case
	Simulative comparison: multidimensional case
	Robust and Asynchronous Average Consensus (ra-AC)
	Proof of convergence
	Simulations for the ra-AC algorithm
	Final considerations

	Minimization of additively separable cost functions
	Introduction and state of the art
	Problem formulation
	Building blocks
	The robust asynchronous Newton-Raphson Consensus (ra-NRC)
	Dynamical system interpretation of ra-NRC
	Theoretical analysis of the ra-NRC
	Numerical experiments
	Final considerations

	Conclusions and future directions
	Mathematical preliminaries, symbols and notation
	Appendix for Chapter 3
	Proof of Theorem 3.3.1
	Proof of Theorem 3.4.1

	Appendix for Chapter 4
	Proof of Theorem 4.5.3

	Appendix for Chapter 5
	Proof of Proposition 5.5.2 and 5.5.3
	Proof for the matrix form for ADMM
	Proof of Proposition 5.6.2
	Proof of Theorem 5.9.4

	Appendix for Chapter 6
	Proof of Proposition 6.5.1
	Proof of Lemma 6.5.3
	General results on discrete-time nonlinear systems

	References
	Acknowledgements

