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Abstract

My research activity focused on the field of heterogeneous wireless networks and has

been particularly inspired by the problem of sensing a city-wide environment through a

large scale, partially distributed, mobile and low cost network (possibly composed of mo-

bile phones or similar user’s equipment). In my PhD thesis I have been guided by the grand

vision of a two tier architecture which integrates existing cellular systems with different

types of distributed networks (these could be mixtures of ad hoc, sensor networks and so

on). In fact, a fully distributed infrastructure alone would be inappropriate when the net-

work is very large in size and highly populated (e.g., urban area networks). In such a case,

the network organization itself would be energy draining and probably impractical. On the

other hand, a cellular system alone does not have the flexibility and the instruments to get a

fine grained view of all the data generated within such a network.

This envisioned scenario, besides featuring a number of mobile phones, also consists of a

mixture of embedded devices, which are expected to have on-board radio and sensing capa-

bilities. Nowadays technology makes us more and more able to control the environment we

are in through motion sensors, GPS, health care devices, microphones and video-cameras.

Wireless Sensor Networks (WSNs), for instance, are infrastructures made of small devices

(nodes) equipped with “intelligent sensors” able to sense their surroundings for, e.g., light,

temperature, humidity and/or pollution. Therefore, mobile phones as well as other net-

work elements, including base stations, routers and access points hosting diverse wireless

and wired technologies, can cooperate to accomplish a common task like the detection of a

fire or the monitoring of a physical phenomenon.

Exploiting the fact that cell phones are becoming a communication hub in our daily

life, we can foresee the integration of standard cellular systems with overlayed distributed

networks such as WSNs. The ultimate goal of this is to “connect” everything has some com-

munication capability, possibly providing self-configurability and self-adaptability of the

ix



x Abstract

network. We note that current cellular networks already implement some of these features:

user positions, to a certain extent, can be tracked already and services can be provided based

on contextual information. As a matter of fact, we are depicting a Delay Tolerant Network

(DTN) scenario, where heterogeneous, sparse and/or mobile wireless networks communi-

cate with each other, but where, due to the inherent nature of the infrastructure itself, no

continuous connectivity can be assumed.

The above grand vision entails quite a few challenges, and during my research activ-

ity I have been focusing on the following ones: 1) the design of reconstruction algorithms

that from a subset of the data (i.e., from the collection of the sensor readings from a small

fraction of nodes) are able to reconstruct with high accuracy the data monitored over the

entire sensor field (these algorithms allow for scalability of the system as they decrease the

number of data packets to collect for a given accuracy goal); 2) the design of cooperative

networking protocols, where cooperation is utilized to reach a common goal such as the

detection of a fire or/and to increase the network performance in terms of optimization of

given performance metrics, e.g., energy consumption, delivery time, delivery probability.

Concerning the first point, my study explores the capabilities of Compressive Sensing

(CS), a technique that has been proved to be very effective for the compression and recov-

ery of correlated signals, with the objective of designing and implementing a system for the

efficient acquisition of large data sets in distributed (sensor) networks. The goal of this sys-

tem is to reconstruct large signals through the collection of the smallest number of samples

that will keep the reconstruction quality above a minimum target level. The steps of my

research activity can be summarized as follows: 1.a) assess the applicability and potential

benefits of CS in networking applications; 1.b) provide a sound theoretical justification of

the effectiveness of CS recovery when coupled with Principal Component Analysis (PCA)

along with a characterization of the optimality of the reconstruction process as a function of

the statistics of the input signal; 1.c) design an algorithm for signal reconstruction based on

CS and validating the proposed method through Matlab simulations as well as real signal

traces.

For the second point, my work has been centered around distributed optimization meth-

ods whose objective is that of optimizing network wide (global) performance metrics. In

detail, in the investigated scenario nodes collaborate to minimize the sum of local objec-

tive functions, which in general depend on global variables such as the network protocol

parameters or actions taken by all the nodes in the network. In the case where the local



xi

objective functions are convex, it is possible to adopt a framework that relies on local sub-

gradient methods and consensus algorithms to average the information from each node,

while granting convergence towards global optimal solutions. However, existing conver-

gence results for this framework can only be applied in the case of synchronous operations

of the nodes and mobility models without memory. My research addresses and solves these

issues, and its fundamental steps were: 2.a) the extension of the convergence results to the

optimal solution for a more general class of mobility models; 2.b) the application of dis-

tributed sub-gradient methods under asynchronous operations; 2.c) the presentation of a

possible networking scenario to validate the analysis, showing the effectiveness of the con-

sidered distributed optimization technique.

The outcomes of my research are useful tools for the optimization of practical network

protocols and provide recommendations for the design of the integrated communication

and sensing system that we have envisioned above.





Sommario

Durante la mia attività di ricerca mi sono concentrato sullo studio di problematiche rela-

tive alle reti wireless eterogenee, ispirandomi in particolare ad uno scenario di monitoraggio

urbano realizzato per mezzo di una rete di comunicazione estesa su vasta scala, parzial-

mente distribuita, mobile e a basso costo (possibilmente composta da telefoni cellulari o

simili). Nella mia tesi di dottorato, dunque, sono stato guidato dalla visione globale di una

architettura a due livelli, che permettesse l’integrazione dei sistemi cellulari esistenti con

varie tipologie di reti distribuite (quali, ad esempio, le reti ad hoc o di sensori). Infatti,

una infrastruttura completamente distribuita sarebbe inappropriata nel caso di una rete di

grandi dimensioni e composta da numerosi dispositivi (si pensi, ad esempio, a reti su scala

urbana). In questo caso, l’organizzazione stessa dell’infrastruttura di comunicazione risul-

terebbe assai dispendiosa in termini energetici e probabilmente impraticabile. D’altro canto,

il solo sistema cellulare non possiede la flessibilità e gli strumenti per sfruttare la granularità

di informazione prodotta dai dati generati in una tale rete.

Nello scenario considerato, oltre alla presenza di un certo numero di cellulari mobili, è

implicita anche l’esistenza di dispositivi (embedded devices) di varia natura, capaci di comu-

nicare tra loro e con gli altri elementi della rete, e che ci si aspetta possano anche “misurare”

l’ambiente circostante. Al giorno d’oggi, infatti, la tecnologia ci rende sempre più capaci di

controllare la realtà quotidiana attraverso sensori di movimento, GPS, strumentazioni per

il monitoraggio medico, microfoni e video-camere. Le reti di sensori (Wireless Sensor Net-

works, WSN), ad esempio, sono infrastrutture costituite da piccoli dispositivi (nodi) dotati

di “sensori intelligenti” capaci di misurare l’ambiente circostante in termini di luminosità,

temperatura, umidità, inquinamento e/o altro. Perciò, è possibile pensare che i telefoni cel-

lulari, cosı̀ come altri elementi di rete (incluse le base station, i router e gli access point su cui

si basano diverse tecnologie cablate e non), possano cooperare per realizzare un obiettivo

comune come l’individuazione di un incendio o il monitoraggio di un fenomeno fisico.
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xiv Sommario

Osservando il fatto che i telefoni cellulari sono sempre più al centro delle comunicazioni

quotidiane, è possibile prevedere l’integrazione dei sistemi cellulari standard con reti dis-

tribuite aggiuntive come le WSN. Lo scopo ultimo sarebbe quello di “connettere” qualsiasi

cosa in grado di comunicare, trasmettendo e ricevendo dell’informazione, e possibilmente

dotare tale rete di meccanismi autonomi di configurazione e adattamento. Si noti che le

reti cellulari odierne già implementano alcune di queste caratteristiche: sulla base di infor-

mazioni contestuali, infatti, è oggigiorno possibile determinare la posizione di un utente con

una certa accuratezza e fornirgli determinati servizi. Di fatto, si sta considerando una infras-

truttura di rete che può essere classificata come una Delay Tolerant Network (DTN). In questo

tipo di infrastruttura, reti wireless eterogenee, sparse e/o mobili, comunicano tra loro, ma

tale comunicazione non può essere assunta continua a causa della natura stessa della reti

interagenti.

La visione generale di cui sopra porta con sé numerose problematiche, e durante la mia

attività di ricerca mi sono concentrato in particolare sulle seguenti due: 1) la progettazione

di algoritmi di ricostruzione che a partire da un sottoinsieme di dati (ossia, dalla raccolta

parziale delle letture dei nodi che costituiscono l’intera rete) sono in grado di ricostruire

con elevata accuratezza l’intero segnale misurato (tali algoritmi rendono il sistema scalabile,

dal momento che permettono di ridurre il numero di pacchetti dati da raccogliere, fissato

un certo livello di accuratezza che si vuole garantire sulla rappresentazione del segnale da

monitorare); 2) la progettazione di protocolli di rete cooperativi, dove la cooperazione è

utilizzata per raggiungere un obiettivo comune come l’individuazione di un incendio e/o

l’aumento delle prestazioni della rete in termini di metriche quali il consumo energetico, la

latenza, la probabilità di consegna.

Per quanto riguarda il primo punto, il mio studio indaga le potenzialità di Compressive

Sensing (CS), una tecnica molto efficace per l’acquisizione e il recupero di segnali correlati,

con l’obiettivo di progettare e implementare un sistema per la raccolta efficiente di elevate

quantità di dati da reti (di sensori) distribuite. Tale sistema ha l’obiettivo di ricostruire seg-

nali di grandi dimensioni, raccogliendo il minor numero di campioni necessario al recu-

pero del segnale di interesse entro un fissato livello minimo di qualità. I passi della mia

attività di ricerca possono essere riassunti come segue: 1.a) valutazione dell’applicabilità

e dei benefici potenziali di CS in applicazioni di reti; 1.b) giustificazione dell’efficacia del

recupero del segnale tramite CS, quando quest’ultimo è utilizzato in sinergia con la tec-

nica dell’analisi alle componenti principali (Principal Component Analysis, PCA) e caratteriz-
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zazione dell’ottimalità del meccanismo di ricostruzione in funzione della statistica del seg-

nale di ingresso; 1.c) progettazione di un algoritmo per la ricostruzione di segnali basato

su CS, e successiva validazione del metodo proposto per mezzo di simulazioni (Matlab) e

utilizzando tracce reali.

A proposito del secondo punto, invece, il mio lavoro si è focalizzato sullo studio di

metodi distribuiti il cui obiettivo è quello di ottimizzare una metrica globale, nel senso delle

prestazioni dell’intera rete di interesse. Nel dettaglio, nello scenario considerato vi sono più

nodi che collaborano per minimizzare la somma di funzioni obiettivo locali, che in generale

dipendono da variabili globali quali parametri protocollari o decisioni prese dai nodi stessi.

Nel caso in cui le funzioni obiettivo locali siano convesse, è possibile utilizzare una tecnica

che si basa sul metodo del subgradiente e algoritmi di consenso per mediare l’informazione

proveniente da ogni nodo, e che garantisce la convergenza verso una soluzione di ottimo

globale. In letteratura si trovano risultati di convergenza per tale tecnica che considerano

solo il caso di operazioni sincrone tra nodi e modelli di mobilità senza memoria. La mia

ricerca si è occupata di estendere tali risultati ad un contesto più ampio. I passi fondamen-

tali del mio lavoro sono stati: 2.a) estensione dei risultati di convergenza all’ottimo per una

classe più generale di modelli di mobilità (con memoria); 2.b) applicazione del metodo del

subgradiente nel caso di operazioni asincrone tra nodi; 2.c) presentazione di un possibile

scenario di applicazione di rete per validare l’analisi svolta e mostrare l’efficacia della tec-

nica di ottimizzazione distribuita considerata.

I risultati della mia ricerca si sono rivelati strumenti utili per l’ottimizzazione pratica

di protocolli di rete e permettono di formulare raccomandazioni per la progettazione del

complesso sistema integrato discusso sopra.
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My research activity focused on the field of heterogeneous wireless networks and has

been particularly inspired by the problem of sensing a city-wide environment through a

large scale, partially distributed, mobile and low cost network (possibly composed of mobile

phones or similar user’s equipment).

This scenario, which has guided me during three years of research in networking, be-

sides featuring a number of mobile phones, also consists of a mixture of embedded devices,

which are expected to have on-board radio and sensing capabilities. Moreover, considering

the fact that cell phones are becoming a communication hub in our daily life, this scenario

can be thought of as generated by the integration of standard cellular systems with over-

layed distributed networks such as Wireless Sensor Networks (WSNs). The ultimate goal

of this is to “connect” everything has some communication capability, possibly providing

self-configurability and self-adaptability of the network.

Practically speaking, however, in the aforementioned scenario temporal unavailability of

some devices (due e.g., to hardware brakes or software bugs), mobility and/or overloaded

servers can result in the impossibility of guaranteeing full connectivity over a wide net-

work: thus, the overall infrastructure can appear as made of different sub-networks that can

communicate with each other, but where no continuous connections can be assumed. As a

1
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matter of fact, we are depicting a Delay Tolerant Network (DTN) scenario, where different

heterogeneous, sparse and/or mobile wireless networks interact.

The above grand vision entails quite a few challenges, and during my research activity I

have been focusing particularly on the following two: 1) the design of gathering and recon-

struction algorithms for the efficient monitoring of signals over a wide WSN; 2) the design

of cooperative networking protocols to increase the network performance in terms of opti-

mization of given performance metrics, e.g., energy consumption, delivery time, delivery

probability.

Concerning the first point, which is better introduced in Section 1.1, my study explores

the capabilities of Compressive Sensing (CS), a technique that has been proved to be very

effective for the compression and recovery of correlated signals, with the objective of design-

ing and implementing a system for the efficient acquisition of large data sets in distributed

(sensor) networks.

For the second point, which is introduced in Section 1.2, my work has been centered

around distributed optimization methods whose objective is that of optimizing network

wide (global) performance metrics.

A detailed organization of the thesis is presented and discussed in Section 1.3, whilst the

list of publications generated from the research carried out during my PhD can be found in

the Appendix 1.A.
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1.1 Data Gathering and Recovery in Distributed Networks

The area of communication and protocol design for Wireless Sensor Networks (WSN)

has been widely researched in the past few years. An important research topic which needs

further investigation is in-network aggregation and data management to increase the effi-

ciency of data gathering solutions (in terms of energy cost) while being able to measure large

amounts of data with high accuracy. We note that often the proposed solutions for data ag-

gregation are rather ad hoc [1], i.e., they are often specific to certain networks or signals and

lack a solid theoretical foundation.

Gathering data while jointly performing compression, therefore, has been one of the first

problems that spurred my research activity. One of the first studies addressing this issue

is [2], which highlights the interdependence among bandwidth, decoding delay and the

routing strategy employed. Under certain hypotheses of regularity of the observed pro-

cess, justifiable from a physical point of view, the authors claim the feasibility of large-scale

multi-hop networks from a transport capacity perspective. Classical source coding, suit-

able routing algorithms and re-encoding of data at relay nodes have been proposed as key

ingredients for joint data gathering and compression. In fact, sensor network applications

often involve multiple sources which are correlated both temporally and spatially. Subse-

quent work such as [3–7] proposed algorithms that involve collaboration among sensors to

implement classical source coding (e.g., see [8–10]) in a distributed fashion. Along the same

line, [11] shows the relation between routing and location of the aggregation/compression

points according to the joint correlation of data among sources. In this way, it is possible to

enforce the collaboration among nodes that are well suited to the statistical description of

the signal measurements.

In [12], the authors consider a scenariowhere a number of different compression schemes

are available at each node in the network. The selection of which compression scheme to use

is based on the expected tradeoff between computation and communication costs; each node

contributes to this goal through its local data processing. Following the same objective of

minimizing the total energy for compressing and transporting information, [13] investigates

a tunable data compression technique to deal with the tradeoff between computation and

communication costs. In general, for a given connectivity structure, this technique needs to

compute the optimal data gathering tree, which is topology dependent. Moreover, the au-

thors show that when node entropies and the cost for compression are not known, a simple
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greedy approximation of the Minimal Steiner Tree provides acceptable performance.

New methods for distributed sensing and compression have been developed based on

the recent theory of Compressive Sensing [14–16]. CS is a novel data compression technique

that exploits the inherent structure of some input data set to compress it by means of quasi-

random matrices; recovery of the original data is achieved solving a convex optimization

problem, i.e., ℓ1-norm minimization. In detail, if the compression matrix and the original

data x have certain properties, x can be reconstructed from its compressed version y, with

high probability, by minimizing a distance metric over a solution space (whose dimension

is equal to the difference between the size of the original data vector x and that of its com-

pressed version y).

CS was originally developed for the efficient storage and compression of digital images,

which show high spatial correlation. Successively, there has been a growing interest in this

technique also by the telecommunication community, as testified by [17]. In this context,

during the first and the second year of PhD, my research activity has been mainly focused

on the study of CS, following the believe that this technique could help in designing efficient

solutions for WSN monitoring. The overall objective of my work has been the design of a

very general framework exploiting CS, i.e., a solution suitable to be implemented as proto-

col for a monitoring application independently of the observed signal. This requirement is

very appealing when we think about a network of nodes equipped with different sensors,

and therefore capable of sensing different signals. We do not want protocols specifically de-

signed for signals with given statistical characteristics, so that a node should select the right

protocol up to the current sensed signal. Conversely, we would like to have a transmis-

sion protocol totally unaware of the observed signal characteristics, but nevertheless able to

adapt to them.

Pursuing this objective, my research activity brought to the following original contribu-

tions:

• an analysis of the statistical distribution of real worldWSN signals that legitimates the

use of CS in actual wireless sensor networks;

• the design and performance evaluation of an effective and flexible framework inte-

grating CS to achieve distributed sampling, data gathering and recovery of signals

from actual WSN deployments;
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This part of my research is thoroughly described and discussed in Chapter 2, whose

organization is explained in Section 1.3.
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1.2 Distributed Optimization

In networking applications, the performance of a Delay Tolerant Network is a global

measure that depends on decisions (i.e., protocol rules) and variables (i.e., protocol param-

eters) at each network node. Hence, the optimization of any given network protocol can be

described as a global optimization problem which is governed by the local actions taken by

each node. As an example, the message delivery delay and the energy consumption under

the gossip protocol [18, 19] depend on the message forwarding probabilities which can be

locally and independently calculated by each node. To further complicate matters, local (but

globally optimal) decisions at different nodes are not independent and the optimal configu-

ration is in general heterogeneous and depends on the specific scenario, as different nodes

have different roles in the network. Given this, it may be not possible to compute optimal

protocol rules and parameters off-line prior to network deployment. In addition, the discon-

nected nature of DTNs calls for on-line and distributed approaches to optimization where,

in practice, each node has access to local variables and rules which can only be set according

to what occurs within its immediate surroundings (the visibility scope of the node).

The authors of [20] present a distributed solution to this problem for the case where the

global optimization target f can be expressed as sum of M convex functions fi and each

node i only knows the corresponding function fi, referred to as the local objective function.

Many performance metrics of interest have this decomposition property. For example, this

is the case of performance metrics related to nodes (e.g., energy consumption at each node)

or to messages (e.g., delivery time, delivery probability, number of copies in the network).

In either case, the metrics can naturally be expressed as a sum of local cost functions relative

to each node. Convexity may be not guaranteed, but when this assumption does not hold

the system converges in general to a sub-optimal but still desirable solution.

In the framework proposed in [20], and later extended in [21], nodes optimize their own

local objective functions through a sub-gradient method, where they try to reach agreement

on their local estimates by occasionally exchanging their local information and averaging it,

like in a consensus problem [22,23].

This approach, referred to as the distributed sub-gradient method, is particularly appealing

in the context of Delay Tolerant Networks which are sparse and/or highly mobile wireless

ad hoc networks where no continuous connectivity guarantee can be assumed, e.g., see [24]

and [25]. The nature of such networks, in fact, intrinsically leads to the impossibility of
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collecting, at low cost and at a single data processing point, the information needed to solve

network optimization problems in a centralized fashion.

Within the framework proposed in [20, 21], however, the local estimate of each node

is proven to converge to the optimal solution under certain assumptions and two of these

appear to be particularly restrictive for practical use in DTN scenarios. Specifically, the

node mobility process should have strict deterministic bounds on the inter-meeting times

between nodes, see [20], or it should be memory-less, see [21]. Neither of these conditions

is in general satisfied in a real network. Second, all nodes should update their estimates

at the same time, but synchronicity is difficult to achieve in such a disconnected scenario.

My research activity, in this context, has been spurred by the challenge of addressing and

solving both these issues.

As positive outcomes, my work brought to the following original contributions:

• proof of convergence of the distributed sub-gradient method when a general class of

mobility models with memory is considered;

• analysis and practical guidelines for the implementation of the distributed sub-gradient

method under asynchronous operations.

Furthermore, the validity of the analysis carried out is demonstrated through an exam-

ple. In particular, the proposed distributed optimization technique is effectively applied for

the dissemination of dynamic content in a DTN such as a mobile social network.

This part of my research is thoroughly described and discussed in Chapter 3, whose

organization is explained in Section 1.3.
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1.3 Discussion and Organization of the Thesis

This thesis is divided in two parts, corresponding to the two main research topics that I

addressed during my PhD.

Specifically, Chapter 2 presents and discusses the principal steps and outcomes of my

research activity on Compressive Sensing for WSNs. This research activity has been carried

out in collaboration with Dr. Giorgio Quer from the University of Padova. A different

perspective on the same work (and some additional details which fall better within his area

of expertise) can be found in [26].

In Section 2.1 a general overview on the Compressive Sensing technique is presented

at first. In particular, Section 2.1.1 gives an overview on the mathematical background of

CS, whilst 2.1.2 briefly discusses the algorithms that allow to actually implement this tech-

nique. Then, in Section 2.3, is carried out a preliminary investigation to understand how

CS can be efficiently used for signals that are typical of WSNs. In detail, the achievable per-

formance through standard processing techniques (e.g., Discrete Cosine Transform, DCT)

are tested; in this context, the main objective is to understand the implications of the topo-

logical/connectivity structure of the networks on the CS performance. Sections 2.4 and 2.5

contain, instead, the main contribution of the research presented in the chapter. This encom-

passes the design and implementation of a recovery technique exploiting CS that iteratively

adapts to the time varying characteristics of the signal of interest (in time and space) and

that does so starting from incomplete observations of the signal itself. This of course pro-

vides benefits in terms of energy expenditure, network congestion and so forth. Finally, in

Section 2.6 we discuss the obtained research results and their effects for an actual implemen-

tation of CS in real WSNs.

Chapter 3, instead, describes my work on Distributed Subgradient Methods for Delay

Tolerant Networks. This research activity has been carried out during my PhD visiting pe-

riod at the Institut national de recherche en informatique et automatique (INRIA), Sophia Antipo-

lis, France, under the supervision of Dr. Giovanni Neglia, MAESTRO team.

This chapter is organized as follows. In Section 3.1 the distributed sub-gradient method

is reviewed, whilst Section 3.2 shows how to apply it to DTNs and motivates the presented

work. As original contributions, Section 3.3 extends the theoretical results in [20] and [21]

to more general network mobility models and in Section 3.4, the distributed sub-gradient

method’s framework is extended to cope with asynchronous node operations. Hence, in
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Section 3.5, a possible DTN application exploiting the distributed sub-gradient method is

illustrated. Finally, in Section 3.6 we discuss how the presented analysis can be used for the

distributed optimization of practical network protocols.
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In this chapter the principal steps and outcomes of my research activity on Compres-

sive Sensing (CS) for Wireless Sensor Networks (WSNs) are presented and discussed. To

properly introduce them, an overview of Compressive Sensing is presented in Section 2.1.

The research activity reported in this chapter has been carried out in collaboration with

Dr. Giorgio Quer from the University of Padova, thus a different perspective on the same

work (and some additional details which fall better within his area of expertise) can be found

in [26].

As previously mentioned, the overall objective of our research project is to design an al-

gorithm for signal reconstruction based on CS. This algorithm is presented in Section 2.5 and

is composed of several functional blocks: 1) the reconstruction engine, 2) a quality checker

and 3) a control logic. The reconstruction engine is responsible for the approximation of the

original input signal starting from its incomplete measurements; the quality checker contin-

uously monitors the reconstruction quality and the control logic adapts the data gathering

protocol so as to keep the reconstruction error below a minimum target level. However,

before arriving to the aforementioned framework definition we need to address different

issues.

In particular, as first step, we have to evaluate the potential benefits brought about by

CS in distributed networks for an ideal protocol, by only taking the network topology into

account. Here, our purpose is to assess the potential energy savings of CS over different

topologies and to understand the implications of the topological/connectivity structure of

the network on its performance. In parallel with this study, we also look at different standard

processing techniques (e.g., Discrete Cosine Transform, DCT), to understand which is the

best way to process real WSN signals so that they can take fully advantage of CS. Both these

preliminary studies are reviewed and discussed in Section 2.3.

Moreover, as fundamental contribution of our research, we have to provide a sound
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theoretical justification of the effectiveness of CS recovery when exploited in our proposed

monitoring framework. In this analysis, we describe CS under a Bayesian perspective and

study the statistics of real WSN signals. This is done in 2.4. A comparison of the CS perfor-

mance against state-of-the-art signal reconstruction schemes is presented in Section 2.5, right

after the description of our framework called SCoRe1 (Sensing, Compression an Recovery

through ON-line Estimation), proposed to iterative monitor WSN signals.
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2.1 Overview on Compressive Sensing

Compressive Sensing is a recent method to represent compressible signals with signifi-

cantly fewer samples than required by the Nyquist Theorem. Reconstruction of the original

data is possible with high probability through dedicated non-linear recovery algorithms

without loss of information in the absence of noise and with excellent accuracy when obser-

vations are noisy [27]. A general introduction to this technique can be found in [15, 28–30].

Figure 2.1. Example to illustrate the Shannon-Nyquist Theorem. Top graph: considered signal, x (color-

filled circles) and its periodic repetition. Bottom graph: period s (color-filled circles) of the frequency re-

sponse computed from the periodic repetition of x.

Before proceeding further, we present here a simple example to explain the potential

and novelty of CS. Most tutorial papers on this technique do the following claim: CS allows

us to perfectly recover a given signal under-sampling it as respect to the classical Nyquist-

Shannon Sampling Theorem [31]. The example we are going to discuss, clarifies better this

appealing feature of CS. First, let us recall the classical Nyquist-Shannon Sampling Theorem,

that we rephrase as

Theorem 1 (Sampling Theorem). If a signal x contains no frequencies higher than B Hertz, x

can be completely determined by an its sampled version y made of a series of points spaced at most

1/(2B) seconds apart.
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Figure 2.2. Example to illustrate the Shannon-Nyquist Theorem. Top graph: sampled version y (crosses)

of the considered signal, x (color-filled circles) and its periodic repetition. Bottom graph: period s (color-

filled circles) of the frequency response computed from the sampled periodic repetition of x.

We can illustrate Theorem 1 through Figures 2.1 and 2.2. In Figure 2.1 we represent with

color-filled circles a signal of interest x, made of N = 12 elements (top graph). These ele-

ments are equally spaced, being T = 0.25 seconds apart one from another. As commonly

done in signal processing, an equivalent discrete representation in frequency of x can be ob-

tained by just pretending to repeat x infinitely often in time, thus building a periodic signal.

Since we have 12 samples, and two consecutive samples are separated by 0.25 seconds, x

can be thought of as the period of a periodic signal of period Tp = 3 seconds. Therefore, in

frequency the considered signal turns out to be periodic of period Fp = 1/T = 4 Hertz, and

its components spaced F = 1/Tp = 1/3 Hertz apart (Figure 2.1, bottom graph). Note that in

this example the bandwidth of x is B = 2/3. Thus, according to the Sampling Theorem we

can handle the signal x (e.g., for storage or transmission) considering only 4 samples out of

the 12 which composed it, i.e., we can considered, instead of x, its sampled version y that

is represented in Figure 2.2 (top graph) with crosses. In detail, the elements of y are spaced

Ts = 3/4 seconds apart and Ts ≤ 1/(2B); thus, in accordance to Theorem 1, y completely

determines x. To further validate the bijective correspondence between x and y in this case,

the bottom graph of Figure 2.2 shows that we have not signal distortion in frequency. In
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fact, because the condition of the Sampling Theorem is not violated, we observe not aliasing

(i.e., disturbing superpositions of far apart frequency signal components) in the frequency

response of y, which is simply a periodic repetition of the frequency response of x. In sum-

mary, in this first considered example the Nyquist-Shannon Theorem alone guarantees us

that we can perfectly recover x from y.

Figure 2.3. Example to illustrate the potential and novelty of CS. Top graph: considered signal, x (color-

filled circles) and its periodic repetition. Bottom graph: period s (color-filled circles) of the frequency re-

sponse computed from the periodic repetition of x.

However, if we now consider the example in Figure 2.3, we can easily figure out that in

this case we cannot reduce the number of samples of the original signal x (top graph) accord-

ing to the classical theory. That is because, even if we pick just one sample every two, wewill

violate the fundamental condition of the Sampling Theorem: in fact, the signal bandwidth is

now B = 10/3 and 2T = 1/2 is greater than 1/(2B). Therefore, the Nyquist-Shannon theory

teaches us that we should use all the 12 elements of x to handle it. Differently, CS theory

allow us to do better: namely, since the original signal x has a sparse representation s with

only M = 3 significant components, x can be recovered from an its compressed version y

made of L > M logN ≃ 7.45 elements only; further, for larger N we can achieve a bigger

gain as respect to the classical sampling theory.
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Clarified with this simple example the appeal of Compressive Sensing, we are going

to present in Section 2.1.1 a mathematical overview on CS, then in Section 2.1.2 we briefly

discuss about the key concepts of the algorithms that solve the convex optimization problem

at the core of this technique.

2.1.1 Mathematical Background

For the sake of exposition, in this section we consider signals representable through one

dimensional vectors1 x in R
N , where N is the vector length. We assume that these vectors

are such that there exists a transformation under which they are sparse. Specifically, there

must exist an invertible transformation matrixΨ of size N ×N such that we can write

x = Ψs (2.1)

and s is sparse. We say that a vector s is M -sparse if it has at most M non-zero entries,

with M < N . From a practical point of view, s is said to be M -sparse when it has only M

significant components, while the other N −M are negligible with respect to the average

energy per component, defined as Es =
1
N ‖s‖ℓ2 whit ‖ · ‖ℓ2 the ℓ2-norm of a vector, i.e., for a

given vector a of N elements, ‖a‖ℓ2 =
√∑N

i=1 a
2
i . Note that, if we know the matrix Ψ, it is

equivalent to have (or calculate a good approximation of) either of the two vectors x or s, as

due to Equation (2.1) there is an one-to-one mapping between them.

The compression of x entails a linear combination2 of its elements through a further

measurement matrix Φ of size L × N , with L < N . The compressed version of x is thus

obtained as

y = Φx . (2.2)

Now, using (2.1) we can write

y = Φx = ΦΨs
def
= As . (2.3)

In general this system is both ill-posed and ill-conditioned as the number of equations L is

smaller than the number of variables N and small variations of the input signal s can pro-

duce large variations of the output y, respectively. However, if s is sparse, it has been shown

1In this chapter, all the real valued vectors are assumed to be column vectors unless otherwise specified.
2Note that according to the introduced formalism, a sampling operation can be viewed as a special case of

linear combination. In this case, the matrix Φ would be with a single one for each row, at most a single one for

each column and the remaining elements set to zero.
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that (2.3) can be inverted with high probability through the use of special optimization tech-

niques [16, 32, 33]. These allow us to retrieve s, whereas the original signal x is found by

inverting (2.1), i.e., s = Ψ−1x.

Furthermore, when the matrices Φ and Ψ are orthonormal, we can define the following

quantity

µ(Φ,Ψ) =
√
N max

1≤i,j≤N
|〈φi,ψj〉| , (2.4)

where for any two column vectors a and b of the same length, we define 〈a,b〉 = aTb. In

Equation (2.4), φi is the i−th column of the matrices Φ, whilst ψj is the j−th column of

Ψ. µ(Φ,Ψ) is called coherence of the matrices Φ and Ψ; it can assume values in the inter-

val [1,
√
N ] and plays an important role in the CS theory because it bounds the minimum

number of projections (i.e., the dimension of y) required to recover the sparse signal s (and

therefore the original signal x). In detail, we have that L must be greater or equal than

Cµ2(Φ,Ψ)M logN with C a properly chosen constant value [16, 28].

Next, we illustrate the reconstruction process. Given a solution sp of (2.3) such that

Asp = y and given the null space of matrix A, N (A) of dimension N − L, any vector

s′ = sp + s⊥, where s⊥ ∈ N (A), is also a solution of (2.3). However, in [16] it is proved

that: A1) if any set of T ≤ 2M columns of the matrix A approximatively behaves as an

orthonormal system and A2) if s is M -sparse with M smaller than a given threshold, then

the original s is the sparsest admissible solution of (2.3). The solution that we find in this

way, that we call ŝ, is equal to the original s if Assumptions A1 and A2 hold. Otherwise,

there will be a reconstruction error that decreases for increasing L. Of course, when L = N

and A is full rank, the only solution of this system is s and it can be obtained through

standard matrix inversion.

A generalization of the CS technique for 2D signals is detailed in the Appendix 2.A.

2.1.2 Algorithms for CS

In the previous section we have seen that at the core of Compressive Sensing, in order

to reconstruct the original signal x, there is the problem of inverting the ill-posed system

defined by Equation (2.3). Under the assumption that s has a certain degree of sparsity,

inverting (2.3) is equivalent to solving the following

Problem 1 (ℓ0-norm minimization).

ŝ = argmin
s

‖s‖ℓ0 subject to y = As , (2.5)
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where ‖ · ‖ℓ0 is the ℓ0-norm of a vector, i.e., for a given vector a of N elements, the norm computed3

as ‖a‖ℓ0 =
∑N

i=1 1{ai 6= 0}.

Unfortunately, solving (2.5) is NP-hard. However, under specific assumptions on the

matrix A, Problem 1 has been proven [15] to be also equivalent to the following convex

minimization problem

Problem 2 (ℓ1-norm minimization).

ŝ = argmin
s

‖s‖ℓ1 subject to y = As , (2.6)

where ‖ · ‖ℓ1 is the ℓ1-norm of a vector, i.e., for a given vector a of N elements, ‖a‖ℓ1 =
∑N

i=1 |ai|.

As a matter of fact, there is a wide literature that aims to solve both Problem 1 and

Problem 2 through “relaxed” versions of them: in this context, a standard approach that

attempts to reconstruct s from (2.3) can be formalized as [33]

Problem 3 (Standard minimization approach).

ŝ = argmin
s

f(s) subject to ‖As− y‖ℓ2 ≤ ǫ . (2.7)

In Problem 3, ǫ2 can also be interpreted as an estimated upper bound on the noise power

affecting the measurements y; the choice of the regularization (convex) function f(·), in-
stead, depends on prior assumptions about the input s: in particular, if s is (approximately)

sparse, an appropriate function is the ℓ1-norm, as advocate by the CS theory and extensively

discussed in Section 2.4. Note that if in Problem 3 we set ǫ = 0 and choose f(·) = ‖ · ‖ℓ0 or

f(·) = ‖ · ‖ℓ1 , by solving (2.7) we actually solve Problem 1 or Problem 2, respectively.

As particular case of Problem 3, in this section we will describe especially a method to

solve the following

Problem 4 (Quadratically constrained ℓ1-norm minimization [33]).

ŝ = argmin
s

‖s‖ℓ1 subject to ‖As− y‖ℓ2 ≤ ǫ . (2.8)

Solvers based on the solution of Problem 4, in fact, have been extensively used for the study

presented in this chapter, see Sections 2.3 and 2.5. The algorithm proposed in [33] to solve

Problem 4 is called NESTA and is based on the Nesterov minimization method [34], that we

3For any value x ∈ R, the function 1{x 6= 0} is zero if x = 0 and 1 otherwise.
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describe in the following. Subsequently, we discuss the extension of this method to non-

smooth functions and finally we explain how it is applied to CS, thus obtaining NESTA.

More details on this topic can be found in [33], where it is possible to find a nice dis-

cussion and performance comparisons among (2.8) and other two common optimization

approaches that solve the sparse reconstruction problem. In particular, these approaches

are

Problem 5 (Basis Pursuit Denoising Problem [35]).

ŝ = argmin
s

λ‖s‖ℓ1 +
1

2
‖As− y‖2ℓ2 , (2.9)

and

Problem 6 (Lasso [36]).

ŝ = argmin
s

‖As− y‖ℓ2 subject to ‖s‖ℓ1 ≤ τ . (2.10)

In Problems 4–6, ǫ, λ and τ are optimization parameters that must be properly tuned in the

corresponding algorithms; in any case, standard optimization theory [37] shows that since

ǫ, λ and τ obey some special relationships, Problems 4–6 are practically equivalent.

Nesterov minimization: this method solves convex optimization problems of the type

min
x∈Qp

f(x) , (2.11)

where the convex function to minimize, f(x) : Qp → R, is defined in the convex set Qp ⊆
R
N , e.g., of the form

Qp = {x : b = Qx} , (2.12)

where Q is an L×N matrix, with L ≤ N , and b ∈ R
L is a given constant vector. Moreover,

the function f(x) must be smooth, i.e., it must be differentiable and its gradient must be

Lipschitz: for any pair x1 ∈ dom f and x2 ∈ dom f , it must hold

‖∇f(x1)−∇f(x2)‖ℓ2 ≤ C‖x1 − x2‖ℓ2 , (2.13)

where C > 0 is a constant [34]. The algorithm proposed by Nesterov to solve (2.11) is listed

in Table 2.1 and discussed in the following:

0. Initialize x0 to an allowable value. A possible initialization choice for x0 is x0 = QTb.

Set t = 0.
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0. Initialize x0.

For t ≥ 0,

1. Compute ∇f(xt).

2. Compute rt+1:

rt+1 = argmin
x∈Qp

{
p(x,xt) + 〈∇f(xt),x− xt〉

}
.

3. Compute zt+1:

zt+1 = argmin
x∈Qp

{
p(x,x0) +

t∑

i=0

αi〈∇f(xi),x− xi〉
}
.

4. Update xt+1:

xt+1 = τtzt+1 + (1− τt)rt+1 .

5. Stop if a given criterion is satisfied.

Table 2.1. The Nesterov minimization algorithm for smooth functions.

1. Computation of the gradient of f(xt).

2. Computation of rt+1: rt+1 is a first sequence of vectors that converges towards the

minimum of f(x). The first term p(x,xt) is a proximity function (also referred to as

penalty function) weighing more those points that are farther away from the current

solution xt. A common choice is

p(x,xt) =
C

2
‖x− xt‖2ℓ2 . (2.14)

The second term corresponds to a gradient descent minimization with step |x − xt|.
Note that the step size is controlled by the first term, which penalizes large deviations

from xt.

3. Computation of zt+1: zt+1 is a second sequence of vectors that also converges to the

minimum of f(x). The first term is equal to (2.14) but with x0 in place of xt. The sec-

ond term corresponds to a gradient descent minimization accounting for all previous

partial solutions xi, i ≤ t.
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4. The solution is updated as a weighted average of rt and zt, using a suitable combina-

tion coefficient τt.

5. A possible stopping criterion, adopted also in [33], is the following. Let f(·) be the

average of f(·) during the last ten iterations, namely

f(xt) =
1

min{10, t}

min{10,t}∑

i=1

f(xt−i) . (2.15)

The algorithm is terminated when

∆f =
|f(xt)− f(xt)|

f(xt)
< δ . (2.16)

The coefficients αt, τt must be chosen to guarantee convergence, see [38]. The constant δ can

be set arbitrarily upon the desired accuracy; typical values are δ ∈ {10−5, 10−6, 10−7, 10−8},
see [33].

Application of Nesterov minimization to CS: reference [38] extended the Nesterov algo-

rithms to non-smooth functions, showing that this extension is possible when these functions

can be re-written as a maximization problem. Subsequently, with the NESTA algorithm [33],

the theory of [38] has been applied to CS. In detail, (2.8) is re-written as

min
s∈Q′

p

‖s‖ℓ1 , (2.17)

where Q′
p is the convex set defined as

Q′
p =

{
s : ‖y −As‖ℓ2 ≤ ǫ

}
, (2.18)

where s ∈ R
N is a sparse vector with only M significant elements with M ≪ N , ǫ ≥ 0

is a small number and A is an L × N and real matrix having linearly independent rows

(M ≤ L ≤ N ). In [33], ‖s‖ℓ1 is re-written as a maximization problem, i.e.,

‖s‖ℓ1 = max
u∈Qd

〈u, s〉 , (2.19)

where Qd ⊆ R
N is the unit sphere defined as

Qd = {u : ‖u‖∞ ≤ 1} . (2.20)

Hence, ‖s‖ℓ1 is approximated by the smooth function

‖s‖ℓ1 ≃ fµ(s) = max
u∈Qd

{
〈u, s〉 − µ

2
‖u‖2ℓ2

}
, (2.21)
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Figure 2.4. The Huber function. Example of approximation of |s|, s ∈ R, with µ = 0.05 and µ = 0.01.

where fµ(s) is generally known as the “Huber function”. In Figure 2.4 is shown how fµ(s)

can approximate the ℓ1-norm depending on the value set for the parameter µ (in this figure

we illustrate the case of the ℓ1-norm in 1-dimension): roughly speaking, we can obtain better

approximations of the ℓ1-norm by lowering µ.

It can be shown that ∇fµ(s) is Lipschitz with constant C = 1/µ and thus the Nesterov

optimization algorithm can be applied to such function. In conclusion, the NESTA method

of [33] amounts to solving

min
s∈Q′

p

max
u∈Qd

{
〈u, s〉 − µ

2
‖u‖2ℓ2

}
. (2.22)

Note that (2.22) can now be tackled using the algorithm in Table 2.1, where the inner max-

imization problem (2.21) can be solved in linear time through the sequential evaluation of

the elements of u. In fact, defining û as

û = argmax
u∈Qd

{
〈u, s〉 − µ

2
‖u‖2ℓ2

}
(2.23)

we have

ûi =





si/µ for |si| ≤ µ

+1 for |si| > µ and si > 0

−1 for |si| > µ and si < 0

, i = 1, . . . , N . (2.24)
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2.2 Application in WSNs

Quite a few number of papers have been written about the mathematical foundations

of CS and its application to image processing, e.g., [15, 16, 29]. However, when my research

activity moved its first steps, also the study of CS for networking problems was still in its

infancy. In this section, we summarize the work related to the research activity presented in

this chapter by discussing contributions that deal with the application of CS to data gather-

ing in wireless networks.

An early contribution is [39], where the authors use Compressive Sensing and propose a

distributed communication scheme for the energy efficient estimation of the data in a wire-

less sensor network. Properly chosen random projections of this data are used for recon-

struction at the sink. The goal of this scheme is to use CS in a WSN for improving the

performance of data gathering. The authors consider a multi-hop communication, but in-

network data processing and compression are not used and data packets are transmitted

directly to the sink. This requires phase synchronization among nodes. An extended ver-

sion of this work can be found in [40].

[41] proposes an early application involving CS for networkmonitoring. The considered

simulation scenario is a network where a small set of nodes fails. The goal is to correctly

identify these nodes through the transmission of random projections (i.e., linear combina-

tions) indicating the status of the nodes. However, these random projections are obtained

by means of a pre-distribution phase (via simple gossiping algorithms), which is very ex-

pensive in terms of number of transmissions.

[42] also addresses the problem of gathering data in distributed WSNs through multi-

hop routing. In detail, tree topologies are exploited for data gathering and routing, and the

Wavelet transformation [43] is used for data compression. Even though CS is presented as

one of the possible methods for data compression, the authors do not investigate the impact

of the network topology and that of the routing scheme on the compression process.

Another interesting application for networkmonitoring exploiting CS is presented in [44],

where the aim is to efficiently monitor communication metrics, such as loss or delay, over

a set of end-to-end network paths by observing a subset of them. The topology is given

a priori and the algorithm works in three steps: 1) compression, 2) non linear estimations

and 3) suitable path selection. This last step in particular allows the selection of the best

measurements for CS recovery, and therefore highly impacts the overall performance of the
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algorithm.

In [45] and [46] an approach to distributed coding and compression in sensor networks

based on CS is presented. The authors advocate the need to exploit the data both temporally

and spatially. The projections of the signal measurements are performed at each source

node, taking into account only the temporal correlation of the generated information. Thus,

it is possible to design the best approximation of the collection of measurements for each

node, since the projections can contain all the elements of this set. The spatial correlation is

then exploited at the sink by means of suitable decoders through a joint sparsity model that

well characterizes the different types of signals of interest.

A further related line of research is that of real and complex Network Coding [47, 48].

These papers highlight the analogies betweenNetwork Coding (NC) andCompressive Sens-

ing from the viewpoint of distributed data processing and routing rules. An important dif-

ference between NC and CS is that CS works in real fields whereas NC exploits algebraic

operations over Galois fields. This leads to practical issues, such as round-off errors that

arise when dealing with real numbers, which are treated in [47].

Finally, it is also worth to mention the paper [49], which focuses on image recovery and

compares classical CS recovery assuming random projections against an alternative method,

where the projections are obtained through Principal Component Analysis (PCA). We an-

ticipate here that also in our research we addressed both CS and PCA; nevertheless, the

perspective of our study is very different from the one adopted in [49], as we used these

two techniques in combination, by exploiting PCA to obtain good sparsification bases for

the signal and CS to recover the signal given these bases.
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2.3 Preliminary Studies

In the previous sections we have introduced Compressive Sensing and given insights

about its promises for fully distributed compression in Wireless Sensor Networks. We have

seen that, in theory, CS allows us to approximate the readings from a sensor field with

excellent accuracy, while collecting only a small fraction of them at a data gathering point.

However, the conditions under which CS performs well are not necessarily met in practice.

CS requires a suitable transformation that makes the signal sparse in its domain. Also,

the transformation of the data given by the routing protocol and network topology and the

sparse representation of the signal have to be incoherent (see Section 2.1.1), which is not

straightforward to achieve in real networks.

In this section we present an overview of the preliminary studies carried out to address

the data gathering problem inWSNs, where routing is used in conjunction with CS to trans-

port random projections of the data. In these first studies, we considered the signals of

interest mainly as “static pictures”, according to the perspective presented in [40] (in Sec-

tions 2.4 and 2.5, instead, we will consider actually dynamic processes). We report analysis

of both synthetic and real data sets and result comparisons against different techniques. In

doing so, we present a number of popular transformations and we find that, with real data

sets, none of them are able to sparsify the data while being at the same time incoherent with

respect to the routing matrix. The obtained performance is thus not as good as expected, but

such preliminary studies gave us the proper basis to look for the right approach: namely, a

suitable method to build a transformation with good sparsification and incoherence proper-

ties for data gathering in static WSNs, as explained in Section 2.3.5.

2.3.1 Considered Signals and Transformations

In this section we discuss the signals that we considered for the performance evaluation

in our preliminary studies.

First, we investigate synthetic signals that are sparse by construction under the DCT

transformation. For these signals the degree of sparseness can be precisely controlled. As

expected, when they are sufficiently sparse CS achieves substantial gains compared to plain

routing schemes.

Successively, we select a number of static signals from real sensor networks measuring

different physical phenomena. With such signals, we can much better characterize the per-
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formance expected for actual WSN deployments. The problem with real signals, however,

is to find a good transformation that sparsifies them in some domain. This issue is discussed

at the end of the section.

Synthetic signals. Here, for the signal of interest we use a matrix X that we build starting

from a sparse and discrete 2D signal S in the frequency (DCT) domain. In this context,

we refer to the element (i, j) of X or S as x(i, j) or s(i, j), respectively. According to the

introduced formalism, S is obtained through the following steps:

1. Let K be defined as K =
√
N , where N is the number of values of the 2D signal. We

build a preliminary signal S1 of size K × K having all frequencies (i.e., all entries in

the matrix) with amplitude s1(i, j), where s1(i, j) is picked uniformly at random in the

interval [0.5, 1.5], ∀ i, j = 1, 2, . . . ,K.

2. We define a frequency mask as a 2D function that is one for entries in position (i, j)

where i + j ≤ thlow or i + j > thhigh and zero otherwise. thlow and thhigh are two

thresholds in the value range {1, 2, . . . ,K}. This function is defined as

triang(i, j)
def
=





1 if i+ j ≤ thlow or i+ j > thhigh

0 otherwise .

(2.25)

3. We obtain a second signal S2 of sizeK ×K, whose entries s2(i, j) are calculated as

s2(i, j) = s1(i, j)triang(i, j) . (2.26)

4. We finally obtain S as follows: if s2(i, j) = 0 then s(i, j) = ξ where ξ ∈ [0, 0.01] is a

constant. If instead s2(i, j) > 0, s(i, j) = ξ with probability pd and s(i, j) = s2(i, j)

otherwise. The parameter pd represents the fraction of entries that are on average

deleted from S2. The case ξ > 0 is accounted for to mimic non ideal signals, where the

significant components lie within specific regions according to (2.25) and some noise

floor is also present outside these regions. In this case, with CS we would like to only

retrieve the significant values, while ignoring the noise.

Therefore, the signal S is obtained by first applying a frequency mask, which helps to as-

sess the reconstruction performance for low-frequency, mid-frequency, and high-frequency

signals. In addition, we delete some randomly picked frequencies according to a given
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probability pd. This is a simple method to control the characteristics of the signal in the DCT

domain (i.e., the sparsity of the signal and its dominant frequency components) and allows

to understand the effects of the signal structure on the performance of CS. For the results in

Section 2.3.4 synthetic signals are mapped into matricesX of size 20×20, which is consistent

with the network topology in Section 2.3.2 with N = 400 nodes.

Real Signals. We also used real signals from different environmental phenomena, consid-

ering what is likely to be of interest for a realistic wireless sensor network in terms of size

of the network (i.e., number of spatial samples) and type of phenomenon to sense. For the

sensor network, we considered the topology in Section 2.3.2 with N = 400 sensor nodes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5. Real signals: (a) Wi-Fi strength from MIT, (b) Wi-Fi strength from Stevens Institute of

Technology, (c) Ambient temperature from EPFL SensorScope WSN, (d) Solar radiation from EPFL Sen-

sorScope WSN, (e) Rainfall in Texas, (f) Temperature of the ocean in California, (g) Level of pollution in

Benelux and (h) in northern Italy.

The following real signals were utilized:

S1. Two signals representing the Wi-Fi strength of the access points in the MIT campus

(Cambridge, MA) [50] and in the Stevens Institute of Technology (Hoboken, NJ) [51].

S2. Two sets of measurements from the EPFL SensorScope WSN [52], representing ambi-

ent temperature and solar radiation.

S3. Two data readings, one from the Tropical Rainfall Measuring Mission [53] concerning
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rain fall in Texas, and one on the temperature of the ocean off the coast of Califor-

nia [54].

S4. Two signals on the level of pollution in two European regions, namely, Benelux and

Northern Italy [55].

These signals were quantized into five levels and rescaled in grids of 20× 20 pixels. The as-

sumption of measuring quantized signals was made as we think this is likely to be the case

in actual WSN deployments, where the devices, due to communication, energy constraints

or accuracy of the on-board sensor, can only sense or communicate the physical phenom-

ena of interest according to a few discrete levels. In addition, for many signals of interest a

quantized representation suffices to fully capture the needed information about the sensed

phenomenon. The eight sample signals, quantized and rescaled as discussed above, are

shown in Figure 2.5.

Transformations. By construction, for the above synthetic signals the DCT is the right

sparsification method. These signals were in fact created sparse in the DCT domain. An

effective utilization of CS for real signals requires a good sparsification approach. It is not

trivial, however, to determine which approach is best for a given class of signals. Here, we

consider four different transformations, which are commonly used in the image processing

literature:

T1. DCT: this is the standard 2D discrete cosine transformation, see Appendix 2.A for fur-

ther details.

T2. Haar Wavelet: the Haar Wavelet is recognized as the first knownWavelet and is a good

Wavelet transformation for the sparsification of piece-wise constant signals as the ones

in S1–S4, see [56].

T3. Horz-diff: this is a transformation that we propose here to exploit the spatial correlation

of our signals. First, the 2D signal matrixX is written in vector form as follows:

svec(X) = (x(1, 1), x(1, 2), . . . , x(1, k), x(2,K), x(2,K − 1), . . .

. . . , x(2, 1), x(3, 1), x(3, 2), . . . , x(3,K), x(4,K), x(4,K − 1), . . .

. . . , x(4, 1), . . . , x(K,K))T . (2.27)

At this point we obtained the sparse vector s from svec(X) by pair-wise subtraction

of its elements.
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T4. HorzVer-diff: according to this transformation the input signal X is processed by: 1)

pair-wise subtraction of the elements along the columns of X and then 2) pair-wise

subtraction of the elements of the resulting matrix, along its rows.
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Figure 2.6. Degree of sparsity for transformations T1–T4. The plot shows the percentage of zero elements

of vector s after using transformations T1–T4.

In Figure 2.6 we show the degree of sparseness achievable using the above transforma-

tions T1–T4 with the considered real signals (a)–(h). Notably, DCT (T1) and Haar Wavelet

(T2) are not effective, whereas T3 and T4 perform best.

DCT and Wavelet transformations in this case have poor performance as, even though

the sampled input signalsX are quite large (N = 400 data points) for typical sensor deploy-

ments (where each node gathers a single data point), their size is still too small for T1 and T2

to perform satisfactorily. In this case, in fact, N is related to the sampling rate of the trans-

formations, which is also related to the bandwidth of the transformed signal. Due to this,

a small N implies that the components at high frequencies are likely to be non-negligible.

T3 and T4 perform best since they exploit the characteristics of piece-wise constant signals,

even if the sparsity obtained is not sufficient for CS to work properly. Since standard tech-

niques as T1–T4 are not satisfactory, a more fundamental approach, i.e., via estimation of
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the correlation of X and Karhunen-Loève expansion, has been envisioned at this point. We

will discuss properly this line of research in Section 2.4.

2.3.2 Network Model

The concern of our study is about data gathering in 2DWSNs. Hence, for the rest of this

sectionwe consider sensor grids ofN nodes as follows. We considerN nodes to be deployed

in a square area with side length L. This area is split into a grid with N square cells and we

place each of theN nodes uniformly within a given cell so that each cell contains exactly one

node. For the transmission range R of the nodes we adopt a unit disk model, i.e., nodes can

only communicate with all other nodes placed at a distance less than or equal to R.4 We use

R =
√
5L/

√
N as this guarantees that the structure is fully connected under any deployment

of the nodes. A further node, the data gathering point or sink node, is placed in the center

of the deployment area. We consider geographic routing to forward the data towards the

sink, where each node considers as its next hop the node within range that provides the

largest geographical advancement towards the sink. In Figure 2.7, we show an example

topology; as per the above construction process, each cell has a node and the network is

always connected. The tree in this figure is obtained through the above geographic routing

approach, and is used by the data aggregation protocols to route data towards the sink.

According to this network scenario, the input signal is a square matrix X with N ele-

ments, where element x(i, j) is the value sampled by the sensor placed in cell (i, j) of the

sensor grid.

Despite its simplicity and the assumption that each cell contains a sensor node, this

scenario captures the characteristic features (multi-hop routing and all to one transmission

paradigm) of actualWSNdeployments and allows to study the interplay between data gath-

ering and compressive sensing. Actual WSN deployments will be considered in Sections 2.4

and 2.5.

2.3.3 Data Gathering Protocols

As pointed out in Section 2.2, there is a well studied line of research on the application

of CS to data gathering in wireless networks. Previous studies however adapted the routing

technique or the data transmission phase so as to take full advantage of CS.What we do here

4The unit disk graphmodel is used here for simplicity of explanation and topology representation. However,

the presented methodology can be readily applied to more realistic propagation models, e.g., fading channels.
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Figure 2.7. Example of the considered multi-hop topology.

is different as we pick a distributed WSN and consider the usual data gathering paradigm

where sensors forward the packet(s) they receive along shortest paths towards the sink. This

occurs in a completely unsynchronized and distributed manner, without knowledge about

the correlation structure of the data and without knowing how it is processed at the sink

through CS. Thus, our aim is to assess whether CS provides performance benefits with re-

spect to standard schemes even in such distributed and unsynchronized network scenarios.

In what follows we present two schemes: the first is a standard geographical routing

protocol, whereas the second is the same protocol in terms of routing, but it exploits CS for

data recovery at the sink. We then characterize the structure of theΦmatrix (see Section 2.1)

which is determined by the routing policy.

Data gathering protocols. To simplify the investigation and to pinpoint the fundamental

performance trade-offs, in this first study we neglect channel access considerations (i.e.,

collisions, transmission times, etc.). Also, we assume a unit cost for each packet transmission

and we ignore processing overhead at the nodes, as it is expected to be cheap compared to

the cost of packet transmission.
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P1. Random sampling (RS): this is the simplest protocol that we consider. In this case, each

node becomes a source with probability PT = M/N , which was varied in the simula-

tions to obtain tradeoff curves for an increasing transmission overhead. On average,

M nodes transmit a packet containing their own sensor reading. Each packet is routed

to the sink following the path that minimizes the number of transmissions (as defined

by our geographical routing approach). Along this path, the packet is not processed

but simply forwarded. The cost of delivering a single packet to the sink is given by the

number of hops that connect the originating node to the data gathering point. The sig-

nal is reconstructed by interpolation of the collected values according to the method

in [57].

P2. Random sampling with CS (RS-CS): this protocol is similar to RS. As above each node

becomes a source with probability PT = M/N . Again, each of these source nodes

transmits a packet containing the reading of its own sensor. As this packet travels

towards the sink, we combine the value contained therein with that of any other node

that is encountered along the path. Specifically, let xmi with i = 1, 2, ..., ℓm be the

readings of the sensors along the path from nodem to the sink, where xm1 is the reading

of the node itself and ℓm is the length of the path. Node m sends a packet containing

the value ym1 = αm
1 x

m
1 as well as the combination coefficient αm

1 , where αm
1 is a value

chosen uniformly at random either from (0, 1] or from the set {−1,+1}.5 The next

node along the path will update the transmitted value and send out ym2 = ym1 + αm
2 x

m
2

where αm
2 is again a random value. Also the coefficient αm

2 is included in the data

packet along with αm
1 . We proceed with these random combinations, where in general

node i+ 1 sends out

ymi+1 = ymi + αm
i+1x

m
i+1 , (2.28)

until the packet finally reaches the sink. The sink extracts ymℓm =
∑ℓm

i=1 α
m
i x

m
i , together

with coefficients that were used along the route. As explained below, these coefficients

are the non-null elements of the m-th row of matrix Φ, referred to as ϕm. Note that

some optimizations are possible. First, if we know in advance the network topology,

we can assign combination coefficients at setup time to all nodes, rather than including

them in the packets. We can further use the same pseudo-random number generator

at the nodes and the sink and synchronize the seeds. However, all of this goes beyond

5The implications of the selection of the set to use are discussed in Section 2.3.4.
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the scope of this study and we do not focus on how to optimize the control overhead

of CS.

A few observations are in order. Whenwe use CS at the sink, we receive packets carrying

more valuable information than in the plain forwarding case. The received values are linear

random combinations of the readings of several sensor nodes. For example, considering RS-

CS, when the sink receives them-th packet it can build a system of the form

y
def
=




y1ℓ1

y2ℓ2
...

ymℓm




=




ϕ1

ϕ2

...

ϕm



vec(X) = Φvec(X) , (2.29)

where the yrℓr with r = 1, 2, . . . ,m are the combined values that were received by the sink in

the packet that traversed the rth path, X is the input 2D signal, vec(X) is defined as

vec(X)
def
=




x(1, 1)
...

x(1, k)

x(2, 1)
...

x(2, k)
...

x(k, 1)
...

x(k, k)




(2.30)

and Φ is anm×N matrix whose generic row r, ϕr, contains the vector of coefficients α

included in the packet. Note that, in general, some of the elements of ϕr might be equal to

zero. Specifically, the node in cell (i, j) of the 2D grid can only contribute to entry (i−1)K+j

of vector ϕr, as we can figure out from the ordering shown in Equation (2.30). Thus, the

combination coefficient in position (i − 1)K + j of ϕr, with i, j = 1, 2, . . . ,K, is non-zero

if and only if node (i, j) was included in the path followed by the r-th packet and is set

to zero otherwise.6 Hence, matrix Φ highly depends on the network topology and on the

6Given this, we see that setting an entire column of the matrix to zero, say column c = (i− 1)K + j for given

i and j, means that we completely ignore the contribution of the node placed in cell (i, j). This happens when

none of them received packets passes through this node while being routed to the sink.



2.3. Preliminary Studies 37

selected routing rules as each of its rows will have non-zero elements only in those positions

representing nodes that were included in the path followed by the corresponding packet.

Note that (2.29) is a system of linear equations that is in general ill-posed (asm ≤M and

M is expected to be smaller than N ). At the sink, we know vector y and matrix Φ and we

need to find the 2D input signalX. We can now use the derivations in the Appendix 2.A and

rewrite y = Avec(S) which is solved for vec(S) using the standard Compressive Sensing

tools for the 1D case explained7 in Section 2.1, thus finding the sparsest vec(S) that verifies

the system, referred to here as Ŝ. Ŝ is finally used to reconstructX, i.e., X̂ = ΨŜΨT (see also

Equation (2.71) in the Appendix 2.A).

Characterization of the routing matrix Φ. According to our network model, the nodes that

transmit their packet to the sink are chosen at random. As said above, every row ϕj of Φ

represents a path from a given sensor to the sink and each forwarding node in this path

contributes with a non zero coefficient. We characterize the sparsity νj of ϕ
j counting the

number of elements in this row that differ from zero: νj =
∑N

i=1 1{ϕ
j
i 6= 0}, where ϕj

i is the

i-th entry of vector ϕj and 1{E} is the indicator function, which is 1 when event E is true

and zero otherwise. νj is the cost, in terms of number of transmissions, for sending the j-th

packet to the sink. With the network scenario in Section 2.3.2 it is easy to see that, for any

source node in the network, the number of transmissions required for its packet to reach

the sink is O(
√
N). Hence, the total cost for the transmission of M packets is O(M

√
N).

As an example, for a network with N = 400 nodes the cost of delivering a packet to the

sink is ≃ 4.5 transmissions, which is close to
√
N/4. The sparsity of ϕj directly translates

into the sparsity of Φ that, in turn, affects the coherence between the matrices Φ and Ψ (see

Section 2.1.1). In the literature, the concept of coherence (or its dual, called incoherence)

between these two matrices is directly related to the effectiveness of the CS recovery phase

and is well defined when they are orthonormal. Specifically, the routing matrix Φ and Ψ

must be incoherent for CS to work properly [15].

In our settings, however,Φ is built on the fly according to the routing topology, whereas

Ψ is obtained according to any of the transformations T1–T4 that we discussed in Sec-

tion 2.3.1. In the literature the concept of coherence is not defined for non-orthogonal ma-

trices. However, according to the rationale in [15, 45] a quantity that is strictly related to the

7To be in complete accordance with the formalism introduced in Section 2.1, we just have to replace vec(X)

and vec(S) with x and s, respectively
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incoherence can be computed as follows. Roughly speaking, incoherence between two ma-

trices means that none of the elements of one matrix has a sparse representation in terms of

the columns of the other matrix (if used as a basis). Put differently, two matrices are highly

coherent when each element of the first can be represented linearly combining a small num-

ber of columns of the second. Hence, to characterize the incoherence we first project each

row of Φ into the space generated by the columns of Ψ. After this, we take the sparsest

projections obtained in this space as an indication of the incoherence. Formally, we have:

ζj = (ΨTΨ)−1ΨT
(
ϕj

)T
, (2.31)

where ϕj is the j-th row of Φ and ζj is the (column) vector of coefficients corresponding to

its projection on the space generated by the columns of Ψ. A measure of the incoherence is

then obtained as

I(Φ,Ψ) = min
j=1,...,N

[ N∑

i=1

1{ζji 6= 0}
]
∈
[
1, N

]
, (2.32)

where ζji is the i-th entry of vector ζj .
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Figure 2.8. Incoherence I(Φ,Ψ) between the routing matrix Φ, cases R1–R4, and the transformation

matrix Ψ, transformations T1–T4. The maximum value for I(Φ,Ψ) equals the number of nodes in the

network, N = 400.
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In Figure 2.8 we show the incoherence, obtained from (2.32), for the four transformation

methods T1–T4 and for the following matrices Φ:

R1) Φ is built according to the CS routing protocol that we explained above, picking ran-

dom coefficients in {−1,+1};

R2) Φ is built as in case R1, picking random coefficients in (0, 1];

R3) Φ has all coefficients randomly picked in {−1,+1};

R4) Φ has coefficients uniformly and randomly picked in (0, 1].

As can be deduced from the results of [41], cases R3 and R4 are near optimal in terms of

projections of the measurements and can be built through a pre-distribution of the data

(that in a multi-hop WSN is in general demanding in terms of number of transmissions).

From this plot we see that the DCT transformation (T1) has a high incoherence with

respect to all of the considered routing matrices. The remaining transformations T2–T4 all

perform similarly and give satisfactory performance only for cases R3 and R4, whereas for

random projections obtained through the actual routing scheme they are highly coherent

to Φ. This has strong negative implications on the CS recovery performance and will be

discussed in the following section.

2.3.4 Results

In this section we discuss the results of our preliminary study on CS in WSN. These

results have been obtained by simulating the RS and RS-CS data gathering schemes for syn-

thetic and real signals. The metric of interest is the reconstruction quality at the sink, which

is defined as follows. Given a 2D input signal X, a matrix Φ and a vector y (containing

the received values that are linear combinations of the sensor readings in the network) we

have that y = Φvec(X). This system, that in general is ill-posed (asM ≤ N ), is solved for

vec(X) = vec(ΨSΨT ) either through norm one [15] or smoothed zero norm [32] minimiza-

tion. These methods efficiently find the sparsest S, referred to as Ŝ, that verifies the previous

system.8 If X̂ = ΨŜΨT is the solution found for this system and X is the true input signal,

the reconstruction error is defined as

ε =
‖vec(X)− vec(X̂)‖2

‖vec(X)‖2
. (2.33)

8We found that these twomethods are nearly equivalent in terms of quality of the solution, although the zero

norm is simplest and faster. This might be important for practical implementations.
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Results for Synthetic signals
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Figure 2.9. Reconstruction quality ε as a function of the total number of packets transmitted in the

network: comparison between RS and RS-CS for synthetic signals and different values of pd.

In Figure 2.9 we show the reconstruction error ε as a function of the total number of

packets sent in the network for RS and RS-CS. For this plot we considered a low-pass signal

with thlow =
√
N/2 + 1 and thhigh =

√
N , with N = 400. Also, we considered three values

of pd ∈ {0, 0.5, 0.75} so as to vary the sparseness of the signal. As a first observation, ran-

dom sampling performs nicely for low-pass signals. Nevertheless, a perfect reconstruction

of the sensed signal at the sink requires the transmission of a large number of packets (up

to 1800). When the signal is sufficiently sparse (pd ≥ 0.5) CS outperforms standard data

gathering schemes, requiring less than half the packet transmissions (about 900) to achieve

the same recovery performance. We noticed that values of ε larger than 0.3 always led to

very inaccurate reconstructions of the original signal. Figure 2.9 was obtained using L1 min-

imization and combination coefficients in the set {−1,+1}. However, we obtained similar

performance using smoothed L0 norm and/or coefficients in the set (0, 1]. Note that using

the set {−1,+1} allows for reduced overhead as, in practical implementations, a single bit

suffices to transmit each coefficient.
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For high-pass signals the performance of CS is unvaried for the same degree of sparse-

ness. This is expected as CS recovery operates in the frequency domain and is only affected

by the number of non-zero frequency components and not by their position. Clearly, RSwith

the considered interpolation technique is not appropriate for high-pass signals, in which

case it shows poor recovery performance.

As a consequence, CS-RS shows good recovery performance for synthetic signals as, by

construction, the DCT transformation effectively sparsifies the signal and this transforma-

tion is incoherent with respect to the routing matrix Φ (see Figure 2.8).

Further results on CS applied to synthetic signals can be found in both Appendices 2.B

and 2.C. In the Appendix 2.B, we present performance evaluations of CS varying the spar-

sity of the observed signal; in the Appendix 2.C, instead, we evaluate CS-RS against different

protocols than those presented in this section.

Results for Real Signals
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Figure 2.10. Reconstruction error ε vs total number of packets transmitted in the network: comparison

between RS and RS-CS (for transformations T1–T4) for the real signals in Section 2.3.1.

In Figure 2.10 we show the reconstruction error ε as a function of the total number of

packets sent in the network for RS and RS-CS. The sensed signals belong to the data sets
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presented in Section 2.3.1. In this case, differently from the case of synthetic signals, RS-CS

does not outperform RS, even though the performance of the two methods is very close.

The reason for this is twofold. First, the considered transformations T1–T4 sparsify the

real signals only up to 70% (see Section 2.3.1). This is mainly due to the characteristics

of the signals and to the small size of the sample set. Second, the transformations with

the best performance in terms of sparsification have a high coherence with respect to the

routing matrix of CS-RS. Hence, while the sparsification performance may suffice, matrix

Φ (routing) does not have the required properties in terms of coherence for CS to perform

satisfactorily.

In fact, for good recovery performance CS needs a good transformation in terms of

sparsification. Also, transformation and routing matrices must be incoherent. From Fig-

ures 2.6, 2.8 and 2.10 we see that transformations T3 and T4 are the most suitable to sparsify

the considered real signals and this allows them to perform better than T1 and T2 (even

though they perform poorly in terms of incoherence, see Section 2.3.3). In addition, al-

though T2 can sparsify real signals better than T1 (Figure 2.6), the latter performs better

than T2 in terms of transmission cost vs error reconstruction (Figure 2.10), since it has better

incoherence properties I(Φ,Ψ) (Figure 2.8).

Finally, in Figure 2.11 we accounted for a pre-distribution phase of the data so that ma-

trixΦ is as close as possible to that of case R4 of Section 2.3.3 (we verified that case R3 gives

similar performance). In this case, CS-RS outperforms RS as T1 and T2 provide a sparse

representation of the signal and the routing matrix is sufficiently incoherent with respect to

these transformations. However, this pre-distribution phase (which is similar to that pro-

posed in [41]) has a high transmission cost, which is ignored in Figure 2.11.

2.3.5 Discussion on the Preliminary Studies

In these preliminary studies on Compressive Sensing applied toWSNs, we tested the be-

havior of this technique when used jointly with a routing scheme for recovering two types

of signals: synthetic ones and real sensor data. We found out that for synthetic signals the

reconstruction at the sink node is enhanced when applying CS, whereas the application of

CS for real sensor data is not straightforward. Thus, the research on this subject has moved

forward to further investigate which signal representation and routing allows CS to outper-

form random sampling in realistic WSN deployments. To this end, we jointly investigated
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Figure 2.11. Reconstruction error ε vs total number of packets transmitted in the network: comparison

between RS and RS-CS (for transformations T1–T4) when a pre-distribution of the data is allowed so that

the routing matrixΦ approaches that of case R4 of Section 2.3.3.

the design of the twomatricesΦ andΨ, since the sparsity requirements and the incoherence

between routing and signal representation have to be met.

As a result, we found that a good approach for applying CS in WSNs is to use CS in

conjunction with a well-known statistical technique, called Principal Component Analysis

(PCA). In detail, according to this approach, we propose to choose:

• Φ as an L × N matrix with zero-elements but a single one in each row and at most a

single one in each column;

• Ψ as anN ×N orthonormal matrix whose columns are the unitary eigenvectors of the

correlation matrix of the signal of interestX, placed according to the decreasing order

of the corresponding eigenvalues.

We note here that the above selection ofΦ has two advantages: 1) the matrix is orthonor-

mal as generally required by CS, see e.g., [16] and 2) this type of routing matrix can be easily

obtained through realistic routing schemes and does not require additional transmission

overhead, as for implementing a data pre-distribution phase as envisioned in Section 2.3.4.
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Furthermore, the joint use ofΦ andΨ as proposed above, leads to good performance in

terms of coherence [16, 28]. Roughly speaking, this is due to: 1) the orthonormality of both

matrices and 2) their different structure (i.e., Φ is very sparse, whilstΨ is not).

In the following Sections 2.4 and 2.5 we describe in detail our proposed method for the

application of CS to WSN data monitoring.
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2.4 Signal Model and Real Signal Analysis

In the following we present and discuss our solution for exploiting CS inWireless Sensor

Network. As partially anticipated in Section 2.3.5, this approach jointly exploits Compres-

sive Sensing and Principal Component Analysis to reconstruct real world (possibly non-

stationary) signals through the collection of a small number of samples at a data gathering

point. Our method is hereby characterized according to the Bayesian theory, that provides a

general framework for data modeling [58,59]. As matter of fact, the Bayesian framework has

been addressed in the recent literature to develop efficient and auto-tunable algorithms for

CS [60]. However, previous work dealing with CS from a Bayesian perspective has mainly

been focused on the theoretical derivation of CS and its usefulness in the image processing

field. With the present study, instead, we provide empirical evidence of the effectiveness of

CS in actual WSN monitoring scenarios.

In detail, the next sections are structured as follows. In Section 2.4.1, we describe the

mathematical tools needed for implementing our data recovery framework. In doing so,

we first briefly review the PCA theory; then we recall the CS mathematics of Section 2.1.1,

adapting the formalism introduced therein for static signals to the case of signals that can

vary over time; finally, we explain how to jointly exploit CS and PCAwithin our monitoring

framework. This framework is properly presented in Section 2.4.2, along with a descrip-

tion of the signal model upon which is based. The considered real signals, gathered from

actual WSN deployments, are described in Section 2.4.3, whilst, as original contribution, in

Section 2.4.4 we infer the statistical distribution of the principal components of these real

world signals. As concluding remark of the section, we will see how the presented study

allows us to legitimate the use of CS in real world WSN. In particular, in Section 2.4.5 we

shown that, according to the framework of Bayesian estimation, the CS recovery mechanism

is equivalent to optimal maximum a posteriori (MAP) recovery. Moreover, we introduce here

a simple example of protocol to give an insight into the advantages achievable by exploiting

CS for signal monitoring. In Section 2.5, instead, is presented the actual signal monitoring

framework based on CS that we propose as practical outcome of our research.

2.4.1 Mathematical tools

In this section we first review basic tools from PCA and CS and we subsequently illus-

trate a framework which jointly exploits these two techniques.
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Principal Component Analysis

The Karhunen-Loève expansion is the theoretical basis for PCA. It is a method to repre-

sent through the best M -term approximation a generic N -dimensional signal, where N >

M , given that we have full knowledge of its correlation structure. In practical cases, i.e.,

when the correlation structure of the signals is not known a priori, the Karhunen-Loève

expansion can be approximated thanks to PCA [61], which relies on the on-line estimation

of the signal correlation matrix. We assume to collect measurements according to a fixed

sampling rate at discrete times k = 1, 2, . . . ,K. In detail, let x(k) ∈ R
N be the vector of

measurements, at a given time k, from a WSN with N nodes. x(k) can be viewed as a single

sample of a stationary vector process x. The sample mean vector x and the sample covari-

ance matrix Σ̂ of x(k) are defined as:

x =
1

K

K∑

k=1

x(k) , Σ̂ =
1

K

K∑

k=1

(x(k) − x)(x(k) − x)T . (2.34)

Given the above equations, let us consider the orthonormal matrixUwhose columns are the

unitary eigenvectors of Σ̂, placed according to the decreasing order of the corresponding

eigenvalues. It is now possible to project a given measurement x(k) onto the vector space

spanned by the columns of U. Therefore, let us define s(k)
def
= UT (x(k) − x). If the instances

x(1),x(2), · · · ,x(K) of the process x are temporally correlated, then only a fraction of the

elements of s(k) can be sufficient to collect the overall energy of x(k)−x. In other words, each

sample x(k) can be very well approximated in an M -dimensional space by just accounting

forM < N coefficients. According to the previous arguments we can write each sample x(k)

as:

x(k) = x+Us(k) , (2.35)

where the N -dimensional vector s(k) can be seen as an M -sparse vector, namely, a vector

with at most M < N non-zero entries. Note that the set {s(1), s(2), · · · , s(K)} can also be

viewed as a set of samples of a random vector process s. In summary, thanks to PCA, each

original point x(k) ∈ R
N can be transformed into a point s(k), that can be considered M -

sparse. The actual value ofM , and therefore the sparseness of s, depends on the actual level

of correlation among the collected samples x(1),x(2), · · · ,x(K).

Compressive Sensing
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As above, we consider signals representable through one dimensional vectors x(k) ∈ R
N ,

containing the sensor readings at time k of a WSN with N nodes. Referring to Section 2.1.1,

therefore, we just have to rewrite Equation (2.1) as

x(k) = Ψs(k) , (2.36)

and Equation (2.2) as

y(k) = Φx(k) . (2.37)

Here, Φ is still referred to as routing matrix as in Section 2.3 because it captures the way in

which our sensor data is gathered and transmitted to the sink. However, as anticipated in

Section 2.3.5, for the remainder of this thesis (if not otherwise specified)Φwill be considered

as anL×N matrixwith zero-elements but a single one in each row and atmost a single one in

each column (i.e., y(k) is a sampled version of x(k)). We recall here the two main advantages

of this selection: from one hand, the matrix Φ results orthonormal as generally required by

CS, see e.g., [16]; form the other, this type of routing matrix can be easily obtained through

realistic routing schemes.

Finally, using (2.36) and (2.37) we can rewrite Equation (2.3) as

y(k) = Φx(k) = ΦΨs(k)
def
= As(k) . (2.38)

Joint CS and PCA

Here we propose a technique that jointly exploits PCA and CS to reconstruct a signal x(k)

at each time k. Assume that the signal is correlated both in time and in space, but that in

general it is non-stationary. This means that the statistics that we have to use in our solution

(i.e., in Equation (2.34), the sample mean x and the covariance matrix Σ̂) must be learned

at runtime and might not be valid throughout the entire time frame in which we want to

reconstruct the signal. We should also make the following assumption, that will be justified

in the next sections:

1. at each time k we have perfect knowledge of the previousK process samples, namely

we perfectly know the set X (k)
K =

{
x(k−1),x(k−2), · · · ,x(k−K)

}
, referred to in what

follows as training set9;

2. there is a strong temporal correlation between x(k) and the set X (k)
K that will be ex-

plicated in the next section via a Bayesian network. The size K of the training set is

9In Section 2.5 we present a practical scheme that does not need this assumption in order to work.
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chosen according to the temporal correlation of the observed phenomena to validate

this assumption.

Using PCA, from Equation (2.35) at each time k we can map our signal x(k) into a sparse

vector s(k). The matrix U and the average x can be thought of as computed iteratively from

the set X (k)
K , at each time sample k. Accordingly, at time k we indicate matrix U as U(k)

and we refer to the temporal mean and covariance of X (k)
K as x(k) and Σ̂(k), respectively10.

Hence, we can write:

x(k) − x(k) = U(k)s(k) . (2.39)

Now, using Equations (2.37) and (2.39), we can write:

y(k) −Φ(k)x(k) = Φ(k)(x(k) − x(k)) = Φ(k)U(k)s(k) , (2.40)

where with the symbol Φ(k) we make explicit that also the routing matrix Φ can change

over time. The form of Equation (2.40) is similar to that of (2.38) with A = Φ(k)U(k). The

original signal x(k) is approximated as follows: 1) finding a good estimate11 of s(k), namely

ŝ(k), using the techniques in [16] or [32] and 2) applying the following calculation:

x̂(k) = x(k) +U(k)ŝ(k) . (2.41)

2.4.2 Monitoring Framework and Sparse Signal Models

In this section we describe a model to represent a broad range of environmental signals

that can be gathered from a Wireless Sensor Network. The aim is to analyze the stochastic

properties of these signals, in order to select the most appropriate sampling, compression

and recovery techniques to minimize the number of transmitting nodes while keeping a

certain level of reconstruction accuracy, as detailed in Section 2.4.5.

We have chosen to represent the variables involved with a Bayesian Network (BN) [62],

i.e., a Directed Acyclic Graph (DAG) where nodes represent random variables and arrows

represent conditional dependencies among them. From the DAG it is always possible to de-

termine the conditional independence between two variables, applying a set of rules known

as d-separation rules, e.g., see [63] for a detailed description about BNs properties. In this

section, we propose two graphical models which illustrate the perspective we adopted in

Section 2.4.4 and Section 2.4.5, respectively:

10See Equation 2.34.
11Here we refer to a good estimate of s(k) as ŝ(k) such that ‖s(k) − ŝ(k)‖2 ≤ ǫ. Note that by keeping ǫ arbitrarily

small, Assumption 1 above is very accurate.
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Figure 2.12. Bayesian network used to model the probability distribution of the innovation signal s.

1. Figure 2.12 represents a stochastic model for the signal s;

2. Figure 2.13 is a BN which links together all the variables involved in our analysis,

highlighting those required to define the monitoring framework.

In detail, with Figure 2.12 we introduce a Bayesian model to describe the statistical prop-

erties of the elements of s(k). Given the realizations of the signal s(k) at time k = 1, . . . ,K,

we use a Bayesian estimation method, described in Section 2.4.4, to infer a suitable model

M along with the best-fitting values of its parameters. In particular, for a Gaussian model

the parameters to infer are the mean value m of each component and the standard devia-

tion σ, whereas for a Laplacian model are the location parameter µ and the scale parameter

λ, respectively. This modeling approach is exploited in Section 2.4.4 to determine which

stochastic model, chosen among a set of plausible ones, better describes the signal s(k).

Figure 2.13, instead, depicts the whole considered framework that involves the following

variables for each time sample k: the training set X (k), the WSN signal x(k), its compressed

version y(k), obtained sampling x(k) according to matrix Φ(k) as in Equation (2.37), the in-

vertible matrix Ψ(k), obtained through PCA, and the sparse representation s(k), introduced

in Equation (2.35). From the results presented in Section 2.4.4, it turns out that s(k) is well

approximated by a Laplacian distribution. Analyzing the DAG in Figure 2.13, based on the

d-separation rules, we can make the following observations:

• data gathering: the WSN signal x(k) is independent of the stochastic sampling matrix
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Figure 2.13. Bayesian network used to model the considered real signals. In the scheme we highlight the

monitoring framework at each time sample k.

Φ(k), whose nature is better described in Section 2.5, but the observation of y(k) reveals

a link between these two variables;

• PCA transformation: this is the core of our model, that describes how the system

learns the statistics of the signal of interest x(k). According to the dynamic system

framework, Ψ(k) can be seen as the state of a system, since it summarizes at each

instant k all the past history of the system, represented by the set X (k). The system

input is the signal s(k), that can be seen as a Laplacian or Gaussian innovation process.

This type of priors on the signal induces estimators that use, respectively, the ℓ1 and

ℓ2-norm of the signal as regularization terms. Hence, such priors are often used in the

literature in view of the connection with powerful shrinkage methods such as ridge

regression and LASSO, as well as for themany important features characterizing them,

e.g., see Section 3.4 in [64] for a thorough discussion. Note also that the observation of

the WSN signal x(k) has a twofold effect: the former is the creation of a deterministic

dependence between the PCA basis Ψ(k) and the sparse signal s(k), that otherwise

are independent; the latter is the separation of Ψ(k) and s(k) from the data gathering

variables, i.e., they become independent of y(k) and Φ(k);
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• sparse signal model: we observe that the priors assigned to the variable M and to

the corresponding parameters µ (resp. m) and λ (resp. σ) are non informative, except

for the non-negativity of the variance. Here the observation of the sparse signal s(k)

separates the sparse signal model from the monitoring framework, i.e., after observing

the signal s(k), the variable M and the corresponding parameters µ (resp. m) and λ

(resp. σ) will no longer be dependent on the variables of the monitoring framework,

so they can be analyzed separately as we do in Section 2.4.4.

In the next section we will describe the real world signals that will be used to develop a

statistical analysis on the principal component distribution and from which we obtain a set

of realizations for the signal s(k). In Section 2.4.4 we will show that the Laplacian is a good

model to represent the principal components of typical WSN data. In turn, this provides a

justification for using CS in WSNs, as detailed in Section 2.4.5.

2.4.3 Description of Considered Signals and WSNs

The ultimate aim of WSN deployments is to monitor the evolution of a certain physical

phenomenon over time. Examples of applications that require such infrastructure include

monitoring for security, health-care or scientific purposes. Many different types of signals

can be sensed, processed and stored, e.g., the motion of objects and beings, the heart beats,

or environmental signals like the values of temperature and humidity, indoor or outdoor.

Very often the density of sensor network deployments is very high and therefore sensor

observations are strongly correlated in the space domain. Furthermore, the physics itself of

the observed signals makes consecutive observations of a sensor node to be also temporally

correlated.

The spatial and temporal correlation represents a huge potential that can be exploited

designing collaborative protocols for the nodes constituting a WSN. In this perspective, we

can think of reducing the energy consumption of the network by tuning the overall number

of transmissions required to monitor the evolution of a given phenomenon over time. The

appeal of the techniques presented in Section 2.4.1 follows from the fact that CS enables us

to significantly reduce the number of samples needed to estimate a signal of interest with

a certain level of quality. Clearly, the effectiveness of CS is subject to the knowledge of a

transformation basis for which the observed signals result sparse.

In this section we illustrate the WSNs and the gathered signals that will be used in Sec-

tion 2.4.4 to test, using the Bayesian framework presented in Section 2.4.2, whether CS and
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PCA are effective for real signals, i.e., whether the real signal transformed by the PCAmatrix

is actually sparse.

Networks. In addition to our own experimental network deployed on the ground floor of

the Department of Information Engineering at the University of Padova, we consider other

threeWSNswhose sensor reading databases are available on-line, and a further deployment

called Sense&Sensitivity, whose data has been kindly provided to the authors byDr. Thomas

Watteyne of the Dust Networks, Incorporation. A brief technical overview of each of these

five experimental network scenarios follows.

W1 WSN testbed of the Department of Information Engineering (DEI) at the University of

Padova, collecting data from 68 TmoteSky wireless sensor nodes [65], [66]. The node

hardware features an IEEE 802.15.4 Chipcon wireless transceiver working at 2.4 GHz

and allowing a maximum data rate of 250 Kbps. These sensors have a TI MSP430

micro-controller with 10 Kbytes of RAM and 48 Kbytes of internal FLASH;

W2 LUCE (Lausanne Urban Canopy Experiment) WSN testbed at the Ecole Polytechnique

Fédérale de Lausanne (EPFL), [52]. Thismeasurement system exploits 100 SensorScope

weather sensors which have been deployed across the EPFL campus. The node hard-

ware is based on a TinyNodemodule equippedwith a Xemics XE1205 radio transceiver

operating in the 433, 868 and 915 MHz license-free ISM (Industry Scientific and Medi-

cal) frequency bands. Also these sensors have a TI MSP430 micro-controller;

W3 St-Bernard WSN testbed at EPFL, [67]. This experimental WSN deployment is made of

23 SensorScope stations deployed at the Grand St. Bernard pass at 2400 m, between

Switzerland and Italy. See point W2 for a brief description of the related hardware;

W4 CitySenseWSN testbed, developed by Harvard University and BBN Technologies, [68].

CitySense is an urban scale deployment that will consist of 100 wireless sensor nodes

equipped with an ALIX 2d2 single-board computer. The transmitting interface is re-

configurable by the user and by default it operates in 802.11b/g ad hoc mode at 2.4

GHz. Nowadays this WSN deployment counts about twenty nodes;

W5 The Sense&Sensitivity [69] testbed is a WSN of 86 WSN430 nodes, which embed Texas

technology: a MSP430 micro-controller and a CC1100 radio chip operating in the ISM

band (from 315 to 915 MHz).
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Signals. From the above WSNs, we gathered seven different types of signals: S1) tempera-

ture; S2) humidity; S3-S4) luminosity in two different ranges (320− 730 and 320− 1100 nm,

respectively); S5) wind direction; S6) voltage and S7) current. Concerning the signals gath-

ered from our testbed W1, we collected measurements from all nodes every 5 minutes for 3

days. We repeated the data collection for three different measurement campaigns, choosing

different days of the week. Regarding the data collection from WSNs W2–W5, we studied

the raw data available on-line with the aim of identifying a portion of data that could be

used as a suitable benchmark for our research purposes. This task has turned out to be re-

ally challenging due to packet losses, device failures and battery consumption that are very

common and frequent in currently available technology. For the acquisition of the signals we

divided the time axis in frames (or time slots) such that each of the working nodes was able

to produce a new sensed data per frame. Details of the signals extracted from the records of

W1–W5, and organized in different campaigns, are reported schematically in Table 2.2.

2.4.4 Sparsity Analysis of Real Signal Principal Components

In this section we aim to infer the statistical distribution of the vector random process

s from the samples {s(1), s(2), . . . , s(T )} which are obtained from the above WSN signals.

The parameter T is the duration (number of time samples) of each monitoring campaign in

Table 2.2.

From the theory [61] we know that signals in the PCA domain (in our case s) have in

general uncorrelated components. Also, in our particular case we experimentally verified

that this assumption is good since E[sisj ] ≃ E[si]E[sj ] for i, j ∈ {1, . . . , N} and i 6= j. In our

analysis, wemake a stronger assumption, i.e., we build our model of s considering statistical

independence among its components, i.e., p(s1, . . . , sN ) =
∏N

i=1 p(si). A further assumption

that we make is to consider the components of s as stationary over the entire monitoring

period12. The model developed following this approach leads to good results as shown in

Section 2.5, and this allows us to validate these assumptions.

Owing to these assumptions, the problem of statistically characterizing s reduces to that

of characterizing the random variables

si =

N∑

j=1

uji(xj − xj) , i = 1, . . . , N , (2.42)

12Note that this model is able to follow also signals whose frequency content varies over time since the signal

basis adapts to the data.
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where the r.v. uji is an element of matrix U in Equation (2.39) and the r.v. xj is an element

of vector x.

A statistical model for each si can be determined through the Bayesian estimation pro-

cedure detailed below. Similarly to the approach adopted in [70], we rely upon two levels

of inference.

First level of inference. Given a set of competitive models {M1, · · · ,MN} for the observed
phenomenon, each of them depending on the parameter vector θ, we fit each model Mi

to the collected data denoted by D, i.e., we find the θMAP that maximizes the a posteriori

probability density function (pdf)

p(θ|D,Mi) =
p(D|θ,Mi)p(θ|Mi)

p(D|Mi)
, (2.43)

i.e.,

θMAP = argmax
θ

p(θ|D,Mi) , (2.44)

where p(D|θ,Mi) and p(θ|Mi) are known as the likelihood and the prior respectively, whilst

the so called evidence p(D|Mi) is just a normalization factor which plays a key role in the

second level of inference.

Second level of inference. According to Bayesian theory, the most probable model is the

one maximizing the posterior p(Mi|D) ∝ p(D|Mi)p(Mi). Hence, when the models Mi are

equiprobable, they are ranked according to their evidence. In general, evaluating the evi-

dence involves the computation of analytically intractable integrals. For this reason, we rank

the different models according to a widely used approximation, the Bayesian Information

Criterion (BIC) [71], that we define as:

BIC(Mi)
def
= ln [p(D|θMAP ,Mi)p(θMAP |Mi)]−

ℓi
2
ln(T ) , (2.45)

where θMAP is defined in (2.44), ℓi is the number of free parameters of model Mi and T is

the cardinality of the observed data set D. Roughly speaking, the BIC provides insight in

the selection of the best fitting model penalizing those models requiring more parameters.

According to the introduced formalism we consider {s(1), s(2), . . . , s(T )} as the set of col-
lected data D; further, the observation of the experimental data gives empirical evidence for

the selection of four statistical modelsMi and corresponding parameter vectors θ:

M1 a Laplacian distribution with θ = [µ, λ], that we call L;

M2 a Gaussian distribution with θ = [m,σ2], that we call G;
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Figure 2.14. Empirical distribution and model fitting for a principal component of signal S1, temperature.

M3 a Laplacian distribution with µ = 0 and θ = λ, that we call L0;

M4 a Gaussian distribution withm = 0 and θ = σ2, that we call G0.

The space of models for each si is therefore described by the set {L,G,L0,G0}. In detail, for

each signal S1 − S7 in the corresponding WSNs and campaigns of Table 2.2, we collected

the T + K signal samples
{
x(1−K), . . . ,x(−1),x(0),x(1), . . .x(T )

}
from which we computed

{
s(1), s(2), . . . , s(T )

}
according to what explained in Section 2.4.1. Then, for each component

si, i = 1, . . . , N, and for each model Mi, i = 1, . . . , 4, we have estimated the parameters

(i.e., the most probable a posteriori, MAP ) that best fit the data according to (2.43). These

estimations are related to the BN in Figure 2.12 and since we deal with Gaussian and Lapla-

cian distributions, they have well known and closed form solutions [59]. In detail, for each

component si:

M1 µ̂ = µ1/2(si) and λ̂ =

∑T
k=1

∣∣∣s(k)i −µ̂
∣∣∣

T ,with µ1/2(si) the median of the set
{
s
(1)
i , . . . , s

(T )
i

}
;

M2 m̂ =
∑T

j=1 s
(k)
i

T and σ̂2 =

∑T
k=1

(
s
(k)
i −m̂

)2

T−1 ;

M3 λ̂ =

∑T
k=1

∣∣∣s(k)i

∣∣∣
T ;
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Figure 2.15. Empirical distribution and model fitting for a principal component of signal S3, luminosity

in the range 320− 730 nm.

M4 σ̂2 =

∑T
k=1

(
s
(k)
i

)2

T .

Figures 2.14–2.15 show two examples of data fitting according to the aforementioned

models; in these figures we plot the empirical distribution and the corresponding inferred

statistical model for a generic principal component (but not the first one, as explained in

the following) of the temperature (S1) and the luminosity (S3), respectively. Both these sig-

nals have been observed during the data collection of the campaign A, in the WSN testbed

W1 (DEI). From the graphs in Figures 2.14–2.15 we see that the distribution of the princi-

pal components of our signals is well described by a Laplacian distribution. Formally, the

best among the four considered models can be determined ranking them according to the

Bayesian Information Criterion introduced in Equation (2.45). Since we assigned non infor-

mative priors to the model parameters, p(θMAP|Mi) is a constant for eachMi and therefore

the BIC can be redefined as:

BIC(Mi)
def
= ln p(D|θMAP ,Mi)−

ℓi
2
ln(T ) . (2.46)
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Figure 2.16. Bayesian Information Criterion (BIC) per Principal Component, for each model M1–M4,

WSN W1 (DEI), campaign A and signal S2, humidity.

Figure 2.16 shows the BIC for the aforementioned humidity signal, for all its principal

components and for all the considered models. From this figure we see that the Laplacian

models better fit the data for all principal components si, i = 1, 2, . . . , N . The average BIC for

each model, for the different signals, campaigns and WSN testbeds, is shown in Table 2.3.

The values of this table are computed averaging over the N principal components. From

these results we see that model L0 provides the best statistical description of the experimen-

tal data. In fact, the BIC metric is higher for Laplacian models in all cases; furthermore, L0

has a higher evidence with respect to L, since it implies the utilization of a single parameter.

As previously mentioned, the over-parameterization of the model is penalized according

to the factor T
−ℓ
2 (see Equation (2.46)). Based on the above results, we can conclude that

the Laplacian model describes slightly better than the Gaussian one the real signal principal

components obtained according to our proposed framework, for all the considered signals.

Furthermore, it is worth noting that the first principal components (to be more precise, the

first K − 1 principal components13 of the signal, where K is the training set length) have

13Note that, according to Equation (2.41), the matrix U(k) is obtained from the elements of the training set

X (k) minus their mean, i.e., from the set
{
x(k−1) − x(k),x(k−2) − x(k), · · · ,x(k−K) − x(k)

}
which spans a vector
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Figure 2.17. Empirical distribution and model

fitting for the first principal component of signal

S1, temperature.
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Figure 2.18. Empirical distribution and model

fitting for the first principal component of signal

S3, luminosity in the range 320− 730 nm.

different statistics from the remaining ones, in terms of both signal range dynamics and am-

plitude of the components. This is due to the fact that the first K − 1 components actually

map the observed signal into the training set vector space, instead the remaining ones are

random projections of the signals. The former capture the “core” of the signal x, the latter

allow to recover its details which can lie outside the linear span of the training data. In our

simulations we set K = 2, in accordance to the rationale presented in the Appendix 2.D, so

that only the first principal component shows a behavior different from the one illustrated

in Figures 2.14–2.15 as reported in Figures 2.17–2.18. In any case, the Laplacian model still

fits better the observed data compared to the Gaussian one.

2.4.5 Bayesian MAP Condition and CS Recovery for Real Signals

In the previous section we have seen that the Laplacian model is a good representation

for the principal components of typical WSN signals. This legitimates the use of CS inWSNs

when it is exploited according to the framework presented in Section 2.4.1; to support this

claim we review in this section a Bayesian perspective that highlights the equivalence be-

tween the output of the CS reconstruction algorithm and the solution that maximizes the

posterior probability in Equation (2.43).

Assume a sink is placed in the center of a WSN with N sensor nodes and let our goal

space of dimension at most K − 1.



2.4. Signal Model and Real Signal Analysis 61

be to determine at each time k all the N sensor readings by just collecting at the sink a

small fraction of them. To this end we exploit the joint CS and PCA scheme presented in

Section 2.4.1. Equations (2.39)–(2.41) show that the considered framework does not depend

on the particular topology considered; the only requirement is that the sensor nodes be

ordered (e.g., based on the natural order of their IDs). Our monitoring application can be

seen, at each time k, as an interpolation problem: from a sampled M -dimensional vector

y(k) = Φx(k) ∈ R
M , we are interested in recovering, via interpolation, the signal x(k) ∈ R

N .

Typically (e.g., see [70]) this problem can be solved through a linear interpolation on a set

F of h basis functions fi ∈ R
N , i.e., F = {f1, · · · , fh}. We can assume that the interpolated

function has the form:

x(k) = x(k) +
h∑

i=1

θifi . (2.47)

In accordance to what explained in Section 2.4.1, at each time k we can do the following

associations: the columns of the PCA matrix U(k) as the set of h = N basis functions, i.e.,

F = {f1, · · · , fN} = {u(k)
1 , · · · ,u(k)

N } = U (k); the sparse vector s(k) = (s
(k)
1 , · · · , s(k)N )T as the

parameter vector θ = (θ1, · · · , θN )T . In this perspective the interpolated function has the

form (see Equation (2.39))

x(k) − x(k) =
N∑

i=1

s
(k)
i u

(k)
i . (2.48)

A Bayesian approach would estimate the most probable value of s(k) = (s
(k)
1 , · · · , s(k)N )T

by maximizing a posterior pdf of the form p(s(k)|y(k),U (k),M), where M is a plausible

model for the vector s(k). To avoid confusion, it is important to note that in this section the

interpretation of all the variables involved is slightly different from the one adopted in Sec-

tion 2.4.4. In detail, now the vector s(k) is seen as the parameter vector θ in Equation (2.43),

whilst the vector y(k) represents the set D of collected data. Moreover, the observed phe-

nomenon x(k) is modeled through both a set U (k) of basis functions (i.e., the columns of the

matrixU(k)) and amodelM for the parameter vector s(k), according to the BN in Figure 2.13.

In Equation (2.43) we indicated with the symbolMi a possible model for the observed phe-

nomenon: here that symbol is replaced with the couple (U (k),M), where M refers directly

to s(k). Using the symbol M to indicate a model for s(k) (even if s(k) is now interpreted

as the parameter vector θ) allows us to highlight the correspondence between the adoption

of a particular model for s(k) and the results of the study carried out in Section 2.4.4. This

correspondence will become clear in the following.

As in [70], we assume also that M can be specified by a further parameter set α (called
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hyper-prior) related to s(k), so that the posterior can be written as

p(s(k)|y(k),U (k),M) =

∫
p(s(k)|y(k),α,U (k),M)p(α|y(k),U (k),M)dα .

If the hyper-prior can be inferred from the data and has non zero values α̂, maximizing

the posterior corresponds to maximizing p(s(k)|y(k), α̂,U (k),M), that as shown in [70] cor-

responds to maximizing the following expression

p(s(k)|y(k),U (k),M) ∝ p(s(k)|y(k), α̂,U (k),M)

=
p(y(k)|s(k),U (k))p(s(k)|α̂,M)

p(y(k)|α̂,U (k),M)
, (2.49)

where p(y(k)|s(k),U (k)) and p(s(k)|α̂,M) are the likelihood function and the prior, respec-

tively, while p(y(k)|α̂,U (k),M) is a normalization factor. The parameters α̂ are estimated

maximizing the evidence p(y(k)|α,U (k),M), which is a function of α. Note that here the

hyper-prior plays, in regard to s(k), exactly the same role as the parameter vector θ in the

previous section, where s(k) was interpreted as the collected data set D of the observed phe-

nomenon; for example, if we choose M = L0 for s
(k) then α = λ, i.e., the hyper-prior is the

scale parameter of the Laplacian prior assigned to s(k).

In Equation (2.48), without loss of generality we can assume that x(k) = 0, thus the

constraints on the relationship between y(k) and s(k) can be translated into a likelihood of

the form (see Equation (2.40)):

p(y(k)|s(k),U (k)) = δ(y(k),Φ(k)U(k)s(k)) , (2.50)

where δ(x, y) is 1 if x = y and zero otherwise. In Section 2.4.4, we have seen that the statistics

of vector s(k) is well described by a Laplacian density function with location parameter µ

equal to 0 (L0). This pdf is widely used in the literature [32, 60] to statistically model sparse

random vectors and, owing to the assumption of statistical independence of the components

of s(k), we can write it in the form:

p(s(k)|α̂,M) = p(s(k)|λ̂,L0) =
e−λ̂

∑N
i=1 |s

(k)
i |

(2/λ̂)N
. (2.51)

In this equation, all the components of s(k) are assumed to be equally distributed. If (2.49)

holds, we can obtain the following posterior:

p(s(k)|y(k),U (k),L0) ∝ p(s(k)|y(k), λ̂,U (k),L0)

∝ p(y(k)|s(k),U (k))p(s(k)|λ̂,L0). (2.52)
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Using (2.50)–(2.52), maximizing the posterior corresponds to solving the problem

argmax
s(k)

p(s(k)|y(k),U (k),L0)

= argmax
s(k)

p(y(k)|s(k),U (k))p(s(k)|λ̂,L0)

= argmax
s(k)

δ(y(k),Φ(k)U(k)s(k))
e−λ̂

∑N
i=1 |s

(k)
i |

(2/λ̂)N

= argmin
s(k)

N∑

i=1

|s(k)i |, given that y(k) = Φ(k)U(k)s(k)

= argmin
s(k)

‖s(k)‖1, given that y(k) = Φ(k)U(k)s(k) , (2.53)

which is the convex optimization problem solved by the CS reconstruction algorithms (see [16]

and [33]). In our approach, unlike in the classical CS problems, the sparsificationmatrixU(k)

is not fixed but varies over time adapting itself to the current data.

Example of Application

In light of the above results we are legitimate in using CS for WSN monitoring appli-

cations via data reconstruction. In particular, here we describe with illustrative purposes a

naive solution that, despite its simplicity, provides useful insight into the advantages that

can be obtained by exploiting the CS reconstruction algorithm. This solution is detailed and

evaluated thoroughly in the Appendix 2.D.

We assume a data gathering technique that alternates between a training phase and a

monitoring phase. During the former phase, all sensors transmit their data to a central unity

(e.g., an application server) which estimates the signal statistics in terms of mean and co-

variance. This information is subsequently used to reconstruct the WSN signal in the latter

phase, where only a small fraction of nodes transmit. Specifically, we assume that the train-

ing phase lastsK1 time samples or collection rounds. During this period of time, all sensors

transmit their data to the application server which therefore receives K1 complete vectors

with N measurements14. During the monitoring phase, which lasts K2 time samples, each

sensor node transmits its data with probability ptx = L/N , where L < N . The value of

L, and therefore of ptx = L/N , can be chosen by a central entity, based on some metric to

optimize, and sent to the WSN nodes according to a feedback-like mechanism. Thus, for

K2 time samples each sensor transmits its data with this probability (i.e., on average only

14In case there is an error during the transmissions, so that not all N measurements are received, the server

will use as this training set the last complete training set received.
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Figure 2.19. Average reconstruction error for

different types of signals.
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Figure 2.20. Average reconstruction error for

two types of signals. Comparison between sig-

nals gathered in indoor and outdoor environ-

ments, respectively.

L of the N sensors transmit at each time sample). The interleaving between training and

monitoring phases can be viewed as follows:

. . . ,y(k), . . . ,y(k+K1−1)

︸ ︷︷ ︸
training phase

ptx = 1

dim(y(j)) = N

,y(k+K1), . . . ,y(k+K1+K2−1)

︸ ︷︷ ︸
monitoring phase

ptx = L/N

E
[
dim(y(j))

]
= L

, . . .

where dim(y(j)) is the number of the components of y(j) and E[dim(y(j))] is the expected

value of dim(y(j)).

With this simple implementation, the overall energy consumption of the network can

be reduced by limiting the number of transmitting sensor nodes (low ptx) during the mon-

itoring phase. The entire signal of interest is then reconstructed at the application server

using CS. As a first step, at each time k we can associate to the vector y(k) the corresponding

matrix Φ(k), based on the IDs of the transmitting nodes, according to (2.37). Then we can

exploit the samples of the last recorded training set to infer the reconstructed value of x̂(k).

The statistics necessary to build the sparsifying matrixU(k) are derived from the samples of

the recorded training set (i.e., mean and covariance matrix), and the CS recovery problem is

solved via a convex optimization problem, see Section 2.1.2.

Figures 2.19–2.20 show the quality of the monitored signal reconstruction (at the applica-
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tion server) vs the transmission probability ptx. The results are obtained implementing the

simple above mechanism combining software simulation of protocol stack operation with

the real measurements described in Section 2.4.3. The x-axis of the figures represents the

ptx adopted during the monitoring phase, while the y-axis represents the average relative

reconstruction error in the whole simulation (k = 1, . . . ,K), defined as

ξR =
1

K

K∑

k=1

ξ
(k)
R , (2.54)

where ξ
(k)
R is the relative reconstruction error at time k, i.e.,

ξ
(k)
R =

‖x(k) − x̂(k)‖2
‖x(k)‖2

. (2.55)

In our simulations we set the length of the training phase to K1 = 2 and the length of the

monitoring phase to K2 = 4, according to the rationale presented in the Appendix 2.D. In

Figure 2.19 we plot the recovery performance achieved with different kinds of signals. We

note that for highly correlated signals like voltage and humidity, the reconstruction error

is sufficiently small, i.e., below ξR < 0.01, for relatively small values of ptx ≈ 0.6. Instead

for more unpredictable signals like luminosity and wind the error increases sharply with

decreasing ptx; in this case an error below ξR < 0.05 is only achievable with ptx > 0.9. In

Figure 2.20 we make a comparison, instead, between signals of the same kind but measured

in different environments, i.e., in indoor and outdoor environments. In detail, the indoor en-

vironment here considered is the WSN testbedW1 (DEI), where the nodes have been placed

on the ground floor of the Information Engineering Department of the University of Padova,

whilst take W2 (EPFL LUCE) as an outdoor WSN testbed since its nodes have been placed

outside, throughout the EPFL campus. Still, the possibility of reducing the transmission

cost, given a desired quality threshold, strongly depends on the signal statistics. In case of

indoor signals (high correlation and low variation) we can have a reconstruction error below

ξR < 0.01 even with ptx ≈ 0.1, which leads to enormous saving in transmission energy. Con-

versely, with outdoor signals, whose lower correlation depends also on the wider extension

of the WSN itself, we need ptx > 0.7 to make the error ξR go below 0.05. Even if the possible

gains depend on the actual statistic of the observed signal, the proposed approach, despite

its simplicity, adapts to the monitored process and allows us to achieve important savings

in all the considered cases. This open an interesting perspective for an useful and effective

exploitation of CS in WSN, which is explained in Section 2.5.
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2.5 Application of CS in a Monitoring Framework for WSN

Here we present a lightweight and self-adapting framework called SCoRe1 for the esti-

mation of large data sets with high accuracy through the collection of a small number of

sensor readings. Legitimated by the analysis carried out in Section 2.4, this framework is

based on the joint use of CS and PCA to devise a scheme where the processing of the signal

is only required at the sink, whereas data gathering and routing are independent of it. A

detailed description of SCoRe1 is presented in Section 2.5.1. As mentioned at the beginning

of this chapter, the main objective of our framework is to be very general, i.e., suitable to be

implemented as protocol for a monitoring application independently of the observed signal.

This requirement is very appealing when we think about a network of nodes equipped with

different sensors, and therefore capable of sensing different signals. We do not want pro-

tocols specifically designed for signals with given statistical characteristics, so that a node

should select the right protocol up to the current sensed signal. Conversely, we would like

to have a transmission protocol totally unaware of the observed signal characteristics, but

nevertheless able to adapt to them. Further, we stress that SCoRe1 is proposed for WSNs,

but it can be readily applied to other types of network infrastructures that require the ap-

proximation of large and distributed datasets with spatial or temporal correlation.

It is worth to note that traditionally CS is exploited to jointly perform data compression

and aggregation, see Section 2.1. Within our framework, instead, we use the CS recov-

ery mechanism as an interpolation technique and therefore in the following we compare it

against well-known data-fitting methods, presented in Section 2.5.2. In detail, we still refer

to the Bayesian theory [58, 59, 72] as in the previous section, and consider that signals of in-

terest can be approximated according to (i) a deterministic approach, i.e., through a proper

fitting of the collected measurements, as the case of the spline method, and to (ii) a proba-

bilistic approach, i.e., the signal is estimated from the collected measurements and some a

priori statistical knowledge of the signal, as the case of CS or the Least Square Error (LSE)

method. The integration of CS as interpolation technique into an actual network framework

for signal monitoring can be regarded as one important contribution of our research, and in

Section 2.5.3 we show that, within our framework, CS performs as good as or better than

the other state-of-the-art techniques analyzed.
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2.5.1 SCoRe1: Sensing, Compression an Recovery through ON-line Estimation

In Figure 2.21, a diagram shows the logic blocks which compose our iterative monitor-

ing framework called SCoRe1 (Sensing, Compression an Recovery through ON-line Estima-

tion).

Figure 2.21. Diagram of the proposed sensing, compression and recovery scheme. Note that the Con-

troller, which includes the Error estimator and the Feedback Control blocks, is a characteristic of

SCoRe1 and is not present in the other DC techniques.

At each time k the sink, which we call Data Collection Point (DCP), collects a compressed

version y(k) = Φ(k)x(k), y(k) ∈ R
L, of the original signal x(k) ∈ R

N . As seen in Section 2.4,

the routing matrix Φ(k) ∈ R
L×N , with L ≤ N , has one element equal to 1 per row and at

most one element equal to 1 per column, indicating which nodes transmit their data sample

to the DCP at time k, while all the other elements are equal to zero. Thus, the elements in

y(k) ∈ R
L are a subset of those in x(k) (spatial sampling). Note that reducing the number of

nodes that transmit to the DCP is a key aspect as each sensor is supposed to be a tiny battery

powered sensing unit with a finite amount of energy that determines its lifetime. At each

time k the transmitting nodes are chosen in a distributed way according to a simple Random

Sampling (RS) technique to be executed in each node of the WSN, as we detail again shortly.

The DCP can be the sink of theWSN or a remote server that is not battery powered so it does

not have stringent energy requirements and has enough computational resources to execute

signal recovery algorithms. The DCP is responsible for collecting the compressed data y(k),

sending a feedback to the WSN and recovering the original signal from y(k).
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In the following we provide a detailed description of all the blocks that form SCoRe1.

Wireless Sensor Network (WSN)

The geometry of the considered deployment is not important, i.e., the nodes can be placed

arbitrarily in a given area. Our framework, in fact, is flexible and does not depend on a

specific topology; the only requirement is that the sensor nodes can be ordered, e.g., based

on their IDs. Multi-hops paths are taken into account for transmission energy computation

by assigning a weight to each node proportionally to its distance from the sink. The actual

WSN deployments considered in our study have been described in Section 2.4.3.

Random Sampling (RS)

The RS scheme is used to decide in a fully distributed way which sensors transmit their

data to the sink and which remain silent, at any given time k. This scheme has been chosen

because it allows us to have a simple and general solution that can easily adapt to different

signal characteristics and changes. In detail, at each time k each sensor node decides, with

probability p
(k)
tx , whether to transmit its measurement to the DCP. This decision is made

independently of the past and of the behavior of the other nodes, so there is no need for

a large memory in each sensor, nor for further control packets within the network. The

probability of transmission p
(k)
tx can be fixed beforehand and kept constant, or can be varied

as a function of the reconstruction error.

Data Collection Point (DCP)

The role of DCP is threefold: (1) it receives as input y(k) and returns the reconstructed signal

x̂(k); (2) it adapts p
(k)
tx and sends its new value to the sensor nodes; this is done to reduce

the number of transmissions in the network while bounding the reconstruction error; (3) it

provides the recovery block with a training set T̂ (k)
K for x(k). This training set is used to infer

the structure of the signal, which is then exploited by the signal recovery algorithm. T̂ (k)
K , at

each time sample k, is formed by theK previously reconstructed signals x̂(j) for j < k, so it

can be written as T̂ (k)
K = {x̂(k−K), . . . , x̂(k−1)}. Determine a proper value for K is a delicate

issue to deal with. The right choice of this parameter depends on the stationarity of x(k) and

so far it we have determined it only empirically, see Appendix 2.D.

Recovery
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The recovery method adopted in our framework is based on a joint use of CS and PCA, as

explained in Section 2.4.1. In detail, let us consider the training set provided by the DCP,

namely T̂ (k)
K = {x̂(k−K), . . . , x̂(k−1)}. This training set contains K previously recovered sig-

nals: they can be initialized to K entirely collected signals and then updated over time.

Using PCA and substituting X (k)
K with T̂ (k)

K , we can repeat all the steps presented in Sec-

tion 2.4.1 and obtain again Equation (2.41), i.e.,

x̂(k) = x(k) +U(k)ŝ(k) .

Now, the DCP can update T̂ (k)
K by substituting the oldest signal contained in it with the

currently computed x̂(k). Note, that here T̂ (k)
K is made of reconstructed signals whilst in

Section 2.4 we assumed to know X (k)
K , i.e., the set made by the exact K previous samples

of the observed process at time k, and based on this we legitimate the use of CS with real

WSN signals. Therefore, it is important to make T̂ (k)
K a good approximation forX (k)

K (indeed,

this means that we want a good reconstruction of x(k) at each time sample k): this can be

done by estimating and keeping bounded the reconstruction error; the last two blocks of our

framework are in charge of this task.

Error Estimation

The reconstruction error that we want to estimate is again the quantity given by Equa-

tion (2.55), i.e.,

ξ
(k)
R =

‖x(k) − x̂(k)‖2
‖x(k)‖2

,

where x̂(k) is the signal reconstructed by the recovery block at time k. Note that at the

DCP we do not have x(k), but only y(j) = Φ(j)x(j) and x̂(j), for j ≤ k. Since the quantity

ξ
(k)
0 = ‖y(k)−Φ(k)x̂(k)‖2/‖y(k)‖2 is always zero, due to the fact that the received samples are

reconstructed perfectly, i.e., Φ(k)x̂(k) = Φ(k)x(k), one might use some heuristics to calculate

the error from the past samples. In our study we use the following formula:15

ξ(k) =

∥∥∥∥∥∥


 y(k)

y(k−1)


−


 Φ(k)x̂(k−1)

Φ(k−1)x̂(k)



∥∥∥∥∥∥
2

·



∥∥∥∥∥∥


 y(k)

y(k−1)



∥∥∥∥∥∥
2




−1

. (2.56)

With this heuristic we compare the spatial samples collected at time k, i.e., y(k), with the

reconstructed values at time k−1, i.e., x̂(k−1), sampled in the same points of the compressed

15We tried other heuristics and verified through extensive simulation that they perform similarly and worse

than the one in (2.56). These are not listed here as they do not provide additional insights.
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values at time k, i.e., Φ(k)x̂(k−1). Then we compare the same signals inverting k and k −
1. Note that ξ(k) does not only account for the reconstruction error but also for the signal

variability. This introduces a further approximation to the error estimate, but on the other

hand it allows the protocol to react faster if the signal changes abruptly and this is a desirable

feature. In fact, if the signal significantly differs from time k − 1 to time k, ξ(k) will be large

and this will translate into a higher p
(k+1)
tx (see below).

Feedback Control

This block calculates the new p
(k+1)
tx for the next time k + 1 and sends a broadcast message

with this new value to the network nodes. The calculation of the new ptx is made according

to a technique similar to TCP’s congestion window adaptation, where ptx is exponentially

increased in case the error is above a defined error threshold τ (to quickly bound the error)

and is linearly decreased otherwise. In detail, we define the constants C1 ∈ [1,+∞[, C2 ∈
{1, 2, . . . , N} and pmin

tx , the minimum value allowed for the probability of transmission, and

we calculate the new probability of transmission as:

p
(k+1)
tx =





min
{
p
(k)
tx C1, 1

}
if ξ(k) ≥ τ

max
{
p
(k)
tx − C2/N, p

min
tx

}
if ξ(k) < τ .

(2.57)

In the Appendix 2.E we report discussions and some performance evaluations to motivate

our choices for the above blocks of SCoRe1. In the next section, instead, we present state-

of-the-art data-fitting techniques that can be used as alternative to CS. Our main intent is to

prove that Compressive Sensing, used within our iterative monitoring framework, can be

successfully exploited for networking.

2.5.2 Data recovery from an incomplete measurement set

The recovery algorithm (see Figure 2.21) is executed at the DCP and, at any time k, it

tries to recover the original signal x(k) ∈ R
N from its compressed version y(k) ∈ R

M , with

M ≤ N . To this end, in the previous section we presented a mechanism that jointly exploit

CS and PCA for signal interpolation in WSN and that from here on we will call CS-PCA.

Obviously, many alternatives exist in literature, each one of those based on a particular

signal model. Given a signal model, theoretical analysis can tell us which is the best, or the

optimal, recoverymechanism to adopt, see Section 2.4. However, whenwe apply the chosen
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mechanism to real signals, we can obtain unsatisfactory results if the chosen model does not

capture well the reality. It is important to note that, generally, a signal model does not only

capture the signal itself, but it can model how this signal appears when processed according

to a well specified procedure. In Section 2.4, we have seen that the principal components of

real signals, computed exploitingK past sample of the signals themselves, are well modeled

by a Laplacian distribution. With this statistical model the CS recovery algorithm results to

be optimal.

In what follows, we first review well-known state-of-the-art interpolation techniques

that, according to what seen in the previous sections, formally solve the following problem:

Problem 7 (Interpolation Problem). Estimate x̂(k) (such that ‖x̂(k)−x(k)‖2/‖x(k)‖2 ≃ 0) know-

ing that y(k) = Φ(k)x(k), where y(k) ∈ R
L, L ≤ N and Φ(k) is an [L × N ] sampling matrix (i.e.,

all rows of Φ(k) contain exactly one element equal to 1 and all columns of Φ(k) contain at most one

element equal to 1, whilst all the remaining elements are zero).

All these technique are based on particular signal models, that we explicitly describe

as well. At the end of this section, we detail how the presented recovery techniques can be

implementedwithin the iterativemonitoring framework of SCoRe1. In this manner they can

be compared against to the proposed CS-PCA method. The performance results presented

in Section 2.5.3, even if limited to the signals therein explained, will give insights on which

of the analyzed technique is more suitable to be used with real signals (and therefore, which

is the signal model among those considered that best describe the reality).

Signal Models and Interpolation Techniques

The a priori knowledge that we can have about the signal of interest x(k) help us building

a model for such signal. This knowledge can be deterministic, e.g., a description of the

physical characteristics of the observed process, or probabilistic, e.g., the formulation of

a probability distribution (called prior) to describe the possible realizations of x(k) (or an

equivalent representation of x(k)). In both cases, the acquired knowledge on the signal to

recover can be obtained by observing or processing a set of representative realizations of the

signals of interest (i.e., the set X (k)
K or the training set T̂ (k)

K ). In summary, to compute x̂(k)

from y(k), we need a model of x(k) that can be built according to two different approaches:

a deterministic approach or a probabilistic approach.
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Recovery Methods based on Deterministic Signal Models

A possible way to think of x(k) ∈ R
N is as a signal whose elements depend on d−dimen-

sional coordinates. To be more concrete, we can think of an environmental monitored signal

collected from a WSN of N nodes that we order freely (e.g., according to their IDs). Each

node i, with i = {1, . . . , N}, at time k senses a value which is represented by element x
(k)
i of

vector x(k). Since the considered node i is deployed in a specific location of the network, it

is also linked to a set of geographical coordinates (e.g., latitude and longitude, which can be

represented with a d = 2 dimensional coordinate vector c(i)). x
(k)
i represents the reading of

the i−th network’s node, which in turn is associated with a vector of d coordinates c(i), and

therefore we can express x
(k)
i as a function of c(i), i.e., x

(k)
i (c(i)). A straightforward way to

model x(k) is by defining a proper function of the d−dimensional coordinate c, φ(c) (e.g., the

Green function) that satisfies regularity conditions (e.g., smoothness) inferred by “typical”

realizations of the signal of interest x(k) [73]. Thus, we can write each element i of x(k) as

x
(k)
i (c(i)) ≃

L∑

j=1

αjφ(c
(i) − c(j)) , (2.58)

where the function φ(·) is used as a building block for x(k) and αj is the weight associated to

φ(·) centered in c(j), with j = 1, . . . , L, that is the d−dimensional coordinate corresponding

to the physical placement of the node from which we received the j−th measurement.

The Biharmonic Spline Interpolation (Spline) [73] method solves Problem 7 exploiting

the deterministic model in (2.58); the objective is to find a biharmonic function that passes

through L data points stored in the L−dimensional vector y(k). In this context, the elements

of both y(k) and x(k) are seen as a function of d coordinates. Namely, to each element j of the

L−dimensional vector y(k) is associated a d−dimensional index c(j) = [c
(j)
1 , . . . , c

(j)
d ]T . Sim-

ilarly, to each element i of the N−dimensional vector x(k) is associated the d−dimensional

index c(i). In order to interpolate the L points in y(k) we require to satisfy for each element

of x(k) the smoothness condition16 ∇4x̂(k)(c) =
∑L

j=1 αjδ(c − c(j)) , given that, if c = c(j)

then x̂(k)(c(j)) = y
(k)
j , where c(j) is the coordinate vector c(j) = [c

(j)
1 , . . . , c

(j)
d ]T ∈ R

d related

to the reading y
(k)
j (e.g., the geographical location of the reading y

(k)
j ). The solution is proved

16Here, ∇4 is the biharmonic operator which allows to formalize regularity conditions on the fourth-order

derivatives; δ(·) is defined as δ(x) = 1 if x = 0, δ(x) = 0 otherwise.
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to be:

x̂(k)(c) =

L∑

j=1

αjφd(c− c(j)) , (2.59)

where φd(·) is the Green function for the d−dimensional problem17. The constants α1, . . . , αL

are found by solving the linear system y
(k)
i =

∑L
l=1 αlφd(c

(j)−c(l)), ∀ j ∈ {1, . . . , L}. To con-

clude, the solution x̂(k) ∈ R
N is the vector whose element i is equal to x̂(k)(c(i)), namely, the

recovered value associated with the d−dimensional index c(i).

An alternative way to determine a model for x(k) allows us to abstract from the knowl-

edge of where the signal sources are placed. Further, this second method is adaptable to the

spatio-temporal correlation and structure of the signal. Observing that generally a physical

phenomenon is correlated in time and that its spatial correlation can be considered as sta-

tionary over a given time period (e.g., from k − K until k), a natural way to proceed is by

assuming that x(k) lies in the vector space spanned by the K previous samples contained

in X (k)
K (or in T̂ (k)

K as seen in Section 2.5.1), i.e., in span
〈
X (k)
K

〉
. According to the formal-

ism introduced in Section 2.4, let us refer to the temporal mean and covariance matrix of

the elements in X (k)
K as x(k) and Σ̂(k), respectively. Let us consider also the ordered set

U (k) = {u(k)
1 , . . . ,u

(k)
N } of unitary eigenvectors of Σ̂(k), placed according to the decreasing

order of the corresponding eigenvalues. LetU
(k)
M be the [N ×M ]matrix whose columns are

the firstM elements of U (k). To build a model of x(k) based on the assumption that this one

lies in span
〈
X (k)
K

〉
, we can write:

x(k) ≃ x(k) +V(k)s(k) = x(k) +U
(k)
M s(k) , (2.60)

where, in general, V(k) can be a whatsoever [N ×M ] matrix of orthonormal columns (ob-

tained at time k from the set {x(k−K) − x(k), . . . ,x(k−1) − x(k)}, e.g., through the Gram-

Schmidt process [74]), withM ≤ N ; here we setV(k) = U
(k)
M because givenM ≤ N , the best

way to represent withM components each element out of a set ofN−dimensional elements

is through PCA. In fact, from a geometric point of view, we can consider each sample x(k),

for all k, as a point in R
N and look as follows for the M -dimensional plane (with M ≤ N )

which provides the best fit to all the elements in X (k)
K , and therefore for all the vectors that

lie in span
〈
X (k)
K

〉
, in terms of minimum Euclidean distance. The key point of PCA, is the

Ky Fan Theorem [75].

17E.g., φ1(c) = |c|3, φ2(c) = |c|2(ln |c| − 1) and φ3(c) = |c|.



74 Compressive Sensing for Wireless Sensor Networks

Theorem 2 (Ky Fan Theorem). Let Σ ∈ R
N×N be a symmetric matrix, let λ1 ≥ · · · ≥ λN be its

eigenvalues and u1, . . . ,uN the corresponding eigenvectors (which are assumed to be orthonormal,

without loss of generality). GivenM orthonormal vectors b1, . . . ,bM in R
N , withM ≤ N , it holds

that

max
b1,...,bM

M∑

j=1

bT
j Σbj =

M∑

j=1

λi , (2.61)

and the maximum is attained for bi = ui, ∀i.

According to the Ky Fan Theorem, maximizing
∑M

j=1 b
T
j Σ̂

(k)bj corresponds to finding

the linear transformation F :RN →R
M that maximally preserves the information contained

in the training set X (k)
K . In other words, this corresponds to maximize the variance of theM -

dimensional (linear) approximation of each element in span
〈
X (k)
K

〉
that, in turn, is strictly

related to the information content of each signal in X (k)
K . Because of Theorem 2, the best

M -dimensional approximation of any signal x ∈ span
〈
X (k)
K

〉
is given by [61]

x̂ = x(k) +U
(k)
M

(
U

(k)
M

)T
(x− x(k)) ,

where
(
U

(k)
M

)T
(x − x(k)) is the projection of x − x(k) onto its best fitting M -dimensional

plane. In summary, if the original point of interest x(k) ∈ span
〈
X (k)
K

〉
, we can transform it

into a point s(k) ∈ R
M as follows:

s(k)
def
=

(
U

(k)
M

)T
(x(k) − x(k)) . (2.62)

Multiplication of (2.62) by U
(k)
M and summation with the sample mean return the best ap-

proximation of the original vector, in accordance to (2.60).

To solve Problem 7 exploiting the model in Equation (2.60) we can simply use the Ordi-

nary Least Square (OLS) method [72], thus we refer to this recovery solution as Determinis-

tic Ordinary Least Square (DOLS). From y(k) = Φ(k)x(k) and the assumption that Equation

(2.60) holds, we can write

y(k) = Φ(k)(x(k) +U
(k)
M s(k)) . (2.63)

The ordinary least square solution of Equation (2.63) is given by

ŝ(k) = (Φ(k)U
(k)
M )†(y(k) −Φ(k)x(k)) (2.64)

and it allows us to estimate the signal x(k) as x̂(k) = x(k) +U
(k)
M ŝ(k). In the above expression

the symbol † indicates the Moore-Penrose pseudo-inverse matrix.
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Recalling that in Equation (2.63) y(k) is an [L×1] vector whilst s(k) is an [M×1]withM ≤
L, the systems (2.63) is in general overdetermined and may have no solutions (e.g., when

all the L measurements are linearly independent). In this case (2.64) minimizes ‖(y(k) −
Φ(k)x(k)) −Φ(k)U

(k)
M s(k)‖ℓ2 , obtaining ŝ(k) as the nearest (according to the Euclidean norm)

possible vector to all the L collected measurements. If L = M , instead, the Moore-Penrose

pseudo-inverse coincides with the inverse matrix and ŝ(k) is uniquely determined.

Recovery Methods based on Probabilistic Signal Models

This alternative approach allows us to introduce an uncertainty in the model of x(k) thus

improving its effectiveness and robustness when exploited for interpolation, see Section

2.5.3.

Considering Equation (2.60), this can be reformulated as:

x(k) ≃ x(k) +V(k)s(k) = x(k) +U(k)s(k) , (2.65)

where V(k) is now an [N ×N ] matrix of orthonormal columns set equal to the PCA matrix

U(k) following the same rationale than above. Here, the cardinality of the model’s param-

eters is N (i.e., the dimension of vector s(k)), which is surely larger than or equal to the

dimension of span
〈
X (k)
K

〉
. The model in (2.65), therefore, allows us to account for the fact

that x(k) could not perfectly lie in span
〈
X (k)
K

〉
. This kind of approach has been implicitly

adopted also in Section 2.4.2 and, recalling Figure 2.13, we can see that we need further as-

sumptions on the system input s(k) to fully characterize the model in Equation (2.65), i.e., we

have to assign a prior to s(k). Practically, as already seen in Section 2.4, s(k) is a vector ran-

dom process that we can assume to be, e.g., a Gaussian multivariate process18 or a Laplacian

vector process with i.i.d. components.

When we assign a Laplacian prior to s(k), we can solve Problem 7 through our proposed

recovery CS-PCA that corresponds to minimize ‖s(k)‖ℓ1 , given that y(k) = Φ(k)Ψs(k), as

shown in Section 2.4.5.

Differently, whenwe assign a Gaussian prior to s(k), we can solve Problem 7 again via the

Ordinary Least Square Method; we refer to this recovery method as Probabilistic Ordinary

Least Square Method (POLS). In this case, we just have to rewrite Equation (2.64) as

ŝ(k) = (Φ(k)U(k))†(y(k) −Φ(k)x(k)) . (2.66)

18This is the standard way of dealing with such problems, which appeals to the Central Limit Theorem of

probability theory [76].
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In this equation, the dimension of y(k), L, is less then the dimension of s(k), which is N .

Therefore, Equation (2.66) is the solution of an ill-posed system, which theoretically allows

an infinite number of solutions. Nevertheless, a multivariate Gaussian prior on s(k) with

zero mean and independent components19, i.e., p(s(k)) ∼ N (0,Σs) where Σs is a diagonal

matrix, helps us to choose, among all the possible solutions, the one estimated as20

ŝ(k) = argmax
s(k)

p(s(k)|y(k)) = argmax
s(k)

p(y(k)|s(k))p(s(k))

= argmax
s(k)

δ(y(k),Φ(k)U(k)s(k))
1

(2π)
L
2 det(Σs)

L
2

exp

{
−‖Σss

(k)‖22
2

}

= argmin
s(k)

‖Σss
(k)‖22, given that y(k) = Φ(k)U(k)s(k) (2.67)

that corresponds to the solution in Equation (2.66), namely the minimum of ‖s(k)‖ℓ2 given

that y(k) = Φ(k)U(k)s(k).

Implementation of Signal Recovery Methods

Each of the interpolation techniques explained above can be implemented at the data

collection point of our monitoring framework, specifically in the recovery block (see Section

2.5.1 and Figure 2.21). As previously remarked, at each time sample k, we can think of x(k)

as an N−dimensional signal whose elements depend on coordinates in d dimensions. If we

measure x(k) inL different coordinate points, collecting themeasurement set {y(k)1 , . . . , y
(k)
L },

for the recovery stage we can proceed as follows:

1) Biharmonic Spline (Spline)

a) compute α1, . . . , αL solving y
(k)
j (c(j)) =

∑L
l=1 αlφd(c

(j) − c(l)) ∀ j ∈ 1, . . . , L ;

b) estimate x
(k)
i as x̂

(k)
i (c(i)) =

∑L
j=1 αjφd(c

(i) − c(j)) ∀ i ∈ 1, . . . , N .

Alternatively, if we assume to know theK previous samplesX (k)
K = {x(k−K), . . . ,x(k−1)}

or the training set T̂ (k)
K = {x̂(k−K), . . . , x̂(k−1)}, with K ≤ N , we can abstract from the

knowledge of the physical coordinates associated to x(k). In this case we need to compute

the PCA matrix U(k) from X (k)
K (or T̂ (k)

K ) as explained in Section 2.4.1. Then, knowing both

19Note that s(k) can be assumed to have independent components if obtained through (2.62). If s(k) is the

vector of principal components ofX
(k)
K , these are known to be uncorrelated and therefore, under the assumption

of gaussianity and zero mean, they are also independent.
20We recall here that, in the formulas (2.67) δ(·) is a function defined as: δ(x,y) = 1 if x = y, δ(x,y) = 0

otherwise.
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U(k) and y(k) = Φ(k)x(k), for the DOLS method we set M = K − 1 and at each time k we

can estimate x(k) according to:

2) Deterministic Ordinary Least Square (DOLS)

a) estimate s(k) as ŝ(k) = (Φ(k)U
(k)
K−1)

†(y(k) −Φ(k)x(k)) ;

b) estimate x(k) as x̂(k) = x(k) +U
(k)
K−1ŝ

(k) .

Concerning the remaining recovery methods, instead, they can be implemented as follows:

3) Probabilistic Ordinary Least Square (POLS)

a) estimate s(k) as ŝ(k) = (Φ(k)U(k))†(y(k) −Φ(k)x(k)) ;

b) estimate x(k) as x̂(k) = x(k) +U(k)ŝ(k) .

4) Joint CS and PCA (CS-PCA)

a) estimate s(k) as ŝ(k) = argmin
s(k)

‖s(k)‖ℓ1 , given that y(k) = Φ(k)U(k)s(k) ;

b) estimate x(k) as x̂(k) = x(k) +U(k)ŝ(k) .

The performance of these four different reconstruction techniques is compared in the

next section.

2.5.3 Performance Analysis

In this section we analyze the performance of the proposedmonitoring framework when

used in conjunction with the signal recovery methods of Section 2.5.2. First, we analyze

the statistics of all the signals gathered from the WSN deployments W1-W5 described in

Section 2.4.3 andwe choose a relevant subset of them to perform our performance analysis21.

Successively, we investigate the performance of the signal recovery methods.

Signals: We considered five different WSNs, each one of them sensing different types of

signals for a total of 24 signals, see Table 2.2. For each signal x(k) ∈ R
N , we calculate the

average inter-node correlation ρs(x
(k)), defined as the average correlation between the one

21We recall here that the proposed framework is flexible and does not depend on a specific network topology.

Its only requirement is that the sensor nodes must be ordered according to some criterion, e.g., using their IDs.

For this reason, it is expected that signals with similar statistical characteristics have similar performances.
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Figure 2.22. Inter-node correlation for different

signals gathered from the 5 different WSNs con-

sidered.
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Figure 2.23. Intra-node correlation for the sig-

nals chosen among all the signals considered in

Figure 2.22.

dimensional signal sensed by node i, xi(k), and the one sensed by node j, xj(k), for all the

node pairs i, j:

ρs(x
(k)) =

K∑

k=1

1

K

N∑

i=1

∑

j>i

(
x
(k)
i − E[xi]

)(
x
(k)
j − E[xj ]

)

((N2 −N)/2)σxi
σxj

. (2.68)

ρs(x
(k)) gives us a measure of the expected sparsity of the principal components s(k) ∈

R
N . If we calculate the principal components of a signal with maximum inter-node corre-

lation, i.e., ρs(x
(k)) = 1, we will obtain a signal s(k) with only the first component different

from zero. Conversely, if we calculate the principal components of a signal with minimum

inter-node correlation ρs = 0, we will obtain a signal s(k) with no negligible components (as

respect to the overall energy of the signal).

In Figure 2.22 we depict the inter-nodes correlation for all the signals considered and

we divide them according to the signal type, i.e, Temperature, Humidity, Solar Radiation,

Luminosity, Wind and Voltage. We notice that the signals Temperature, Humidity and Solar

Radiation have in average a high inter-node correlation (ρs(x
(k)) ≃ 0.7), while indoor Lu-

minosity, Wind Direction and Voltage have a lower inter node correlation (ρs(x
(k)) ≃ 0.25).

To further analyze these signals, we consider the intra-node correlation ρm(x(k)), that is the

correlation of the one dimensional signal x
(k)
i sensed by a single node with the same signal

shifted by m time samples, i.e., x
(k+m)
i , averaged for all the N signals of x(k) ∈ R

N . It is
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defined as:

ρm(x(k)) =
N∑

i=1

1

N

∑K
k=1

(
x
(k)
i − E[xi]

)(
x
(k+m)
i − E[xi]

)

Kσ2xi

. (2.69)

For representation purposes, we choose one signal for each type, within the 24 signals

depicted in Figure 2.22, and we represent for each chosen signal the temporal correlation

ρm(x(k)), for m = 1, . . . , 8 in Figure 2.23. We notice that Temperature, Humidity and Solar

Radiation signals keep a high intra-node correlation even form = 8 (ρ8(x
(k)) ≥ 0.85), while

for Luminosity and Wind signals the temporal correlation quickly decreases (ρ8(x
(k)) ≤

0.65). The Voltage signal has different characteristics, since, even though it has inter-node

and intra-node correlation similar to Luminosity and Wind Direction, it is a nearly constant

signal.

For our results, we used the signals gathered from the WSN testbed deployed on the

ground floor of the Department of Information Engineering at the University of Padova [77]

using N = 68 TmoteSky wireless nodes equipped with IEEE 802.15.4 compliant radio tran-

sceivers. We have chosen these signals because 1) they are representative of the whole signal

set considered, and 2) we have full control on the WSN from which they have been gath-

ered, so that we could easily collect meaningful traces for the performance evaluation of our

proposed scheme. In particular, we consider 5 signals divided into classes accordingly to

their statistical characteristics:

C1) two signals with high temporal and spatial correlation, i.e., the ambient temperature

[°C] and the ambient humidity [%];

C2) two signals with lower correlation, i.e., the photo sensitivity [A/W] in the range 320−
730 nm and in the range 320− 1100 nm;

C3) the battery level [V] of the sensor nodes during the signal collection campaign.

Over time, each signal has been collected every 5 minutes. The results have been obtained

from 100 independent simulation runs and by averaging the performance over all signals in

each class.

Performance of the Signal Recovery Methods: In the following, we show performance

curves for the different recovery techniques illustrated in Section 2.5.2: Biharmonic Spline

(Spline), Deterministic Ordinary Least Square (DOLS), Probabilistic Ordinary Least Square
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(POLS) and Joint CS and PCA (CS-PCA). Note that DOLS cannot be considered as an effec-

tive solution since it is affected by a numerical stability problem. Nevertheless, we consid-

ered it in view of its simplicity and low complexity.
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Figure 2.24. Performance comparison of different recovery techniques within our iterative monitoring

scheme, for signals in class C1, temperature and humidity.

Along the x-axis of the figures presented in this section we have the normalized cost

expressed as the average fraction of packet transmissions in the network per time sample,

formally:

Cost =
1

TdTOT

T∑

k=1

N∑

n=1

dnI(k)(n) , (2.70)

where T is the number of considered time instants (i.e., the overall duration of the data

collection),N is the total number of nodes in the WSN, dn is the distance in terms of number

of hops from node n to the DCP, dTOT =
∑N

n=1 dn and I(k)(n) is an indicator function, with

I(k)(n) = 1 if node n transmits and I(k)(n) = 0 if node n remains silent at time k. Note that a

normalized cost equal to 1 corresponds to the case where all nodes transmit during all time

instants 1, 2, . . . , T , which accounts for the maximum energy consumption for the network.

Conversely, the normalized cost is zerowhen all nodes remain silent during all time instants.

The y-axis shows the mean signal reconstruction error at the end of the recovery process,
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Figure 2.25. Performance comparison of different recovery techniques within our iterative monitoring

scheme, for signals in class C2, photo sensitivity in the range 320− 730 nm and in the range 320− 1100

nm.

calculated accordingly to Equation (2.54), i.e.,

ξR =
1

K

K∑

k=1

ξ
(k)
R where ξ

(k)
R =

‖x(k) − x̂(k)‖2
‖x(k)‖2

.

In order to vary the metric Cost (x-axis) we modify the parameters of SCoRe1 as explained

in the Appendix 2.E. Solid, dashed and dotted lines without marks represent lower bounds

on the error recovery performance, which are obtained as exploiting a perfect knowledge of

the past in the training set, i.e., considering X (k)
K instead of T̂K .

In Figures 2.24 and 2.25 we can see that an imperfect knowledge of the training set

severely impacts the recovery performance of DOLS. This is however not as dramatic for

CS-PCA and POLS. It is also interesting to note that using T̂ (k)
K POLS outperforms CS-PCA,

whilst with X (k)
K CS-PCA and POLS perform equally good, also for the highly variable sig-

nals of class C2, see Figure 2.25. In fact, the introduction of a further error in the model,

i.e., an uncertainty on the training set, makes the Gaussian prior for s(k) more effective than

the Laplacian one, in accordance to the Central Limit Theorem (e.g., see [76]). Nevertheless,

both POLS and CS-PCA remain valid solutions for a monitoring application framework,
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since the performance loss from the ideal case, which assumes perfect knowledge of X (k)
K ,

to the one that exploits T̂ (k)
K is sufficiently small. Concerning spline, this method allows to

reach good performance only above a transmission probability of 0.8; furthermore, the use

of Spline as recovery technique within the same framework of SCoRe1, instead of CS-PCA,

leads to huge errors due to: (i) the tendency of our protocol to systematically avoid transmis-

sions when possible; (ii) the approximation of the error estimate; (iii) the variability of the

signal and (iv) the fact that Spline does not exploit any previous knowledge on the statistics

of the signal to recover.

The above results provide evidence that SCoRe1 is an effective solution for monitoring

applications for WSNs in different scenarios. Equally important, the achieved performance

shows that CS recovery can be effectively used for networking and this is achieved thanks

to our approach which, differently from the literature, interprets CS as an interpolation tech-

nique, besides as a method to jointly perform data acquisition and compression.
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2.6 Conclusions and Discussions

In this chapter we presented our research activity focused on the study of joint sampling,

recovery and protocol adaptation for distributed signals monitored by a WSN. In particu-

lar, we studied the potential benefits and the applicability on networking of a novel signal

processing technique called Compressive Sensing (CS).

First, we studied the behavior of CS when jointly used with a routing scheme for recov-

ering two types of signals: synthetic ones and real sensor data. We showed that for the syn-

thetic signals the reconstruction at the sink node is enhanced when applying CS, whereas

the application of CS for real sensor data is not straightforward. Thus, as a next step we

investigated the effectiveness of data recovery through joint CS and Principal Component

Analysis (PCA) in Wireless Sensor Networks. At first, we framed our recovery scheme into

the context of Bayesian theory proving that the principal components of different real world

WSN signals are well modeled by a Laplacian distribution. This legitimates the use of CS in

WSN environments and must be regarded as the first original contribution of this work.

Then, based on the above results, we proposed a novel technique for signal monitoring

applications in WSN. This technique, called SCoRe1, is based both on PCA, to learn the data

statistics, and CS, to recover the signal through convex optimization and a feedback con-

troller to bound the error. Using data measured in different testbeds, we have shown that

our technique is robust to unpredictable changes in the signal statistics and achieves good

performance in terms of reconstruction accuracy vs network cost (i.e., number of transmis-

sions required). Thanks to our approach, we showed that CS recovery can be adopted for

networking when exploited as an interpolation technique besides as a method to jointly

perform data acquisition and compression. This must be regarded as the second original

contribution of our work.

Moreover, as further outcome of our research, the good simulation results achieved by

SCoRe1 gave us the possibility of being actively involved in a new project, currently on-

going. The aim of this project is that of implementing the proposed SCoRe1 technique on

real sensor nodes within a Client/Server architecture called WSN-Control , see Figure 2.26.

Here, the WSN (possibly composed of multiple sensor islands) can be accessed through a

number of WSN gateways. Sensor nodes adopt a protocol stack based on 6LoWPAN [78]

and run a suitable routing protocol to send the gathered data to the gateways. For a more

detailed description of the protocols running in the WSN the reader is referred to [79].
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Figure 2.26. WSN-Control architecture.

Concerning SCoRe1, the core of the WSN-Control system is the Application Server (see

Figure 2.26). In detail, this server is a Web application composed of the following blocks: 1)

Visualization, which creates a 3D representation of the gathered data, and is also responsible

for the user interface and for the related Applet and Java Server Page (JSP) technology [80];

2) Communication, which is the block is responsible for the reception of data from the WSN

and for the transmission of data gathering requests to the sensor nodes and 3) Signal Recon-

struction and Feedback Control, where SCoRe1 reconstructs the entire WSN signal from the

received measurements. In particular, our solution will allow us to minimize the number of

nodes that send their measurements at each data collection round, while keeping the recon-

struction error below a certain threshold. A more detailed discussion on the application of

SCoRe1 in WSN-Control can be found in [26].

To conclude, we stress that even though our framework has been designed for WSN

monitoring, it can be readily applied also to awide range of applications and network infras-

tructures (e.g., cellular networks) that require the approximation of a large and distributed

dataset, with a certain spatial or temporal correlation.



2.A. Compressive Sensing in 2D 85

2.A Compressive Sensing in 2D

In this appendix, we review a known method from image processing to generalize the

CS theory in Section 2.1 to 2D signals, as those considered in Section 2.3. Accordingly, the

input signal is aK×K square matrixXwithN = K2 elements. Element (i, j) of this matrix,

x(i, j), is the value sampled by the sensor placed in cell (i, j) of the sensor grid. We assume

that the 2D signalX is sparse under a given transformation. Thus,X can be written as

X = LSR , (2.71)

where L and R are two non singular matrices and S is a K × K matrix representing the

sparse signal in the transformation domain. As an example, the DCT ofX in two dimensions

is calculated as

S = ΨTXΨ , (2.72)

where ΨT indicates the transpose of Ψ, and Ψ is the transformation matrix. The generic

element (i, j) of matrixΨ is given as

ψ(i, j) = ωj cos

(
π(2i− 1)(j − 1)

2K

)
, (2.73)

and ωj is defined as

wj =





1√
K

j = 1
√

2
K 2 < j ≤ K

. (2.74)

In what follows, we use tools from linear algebra to reformulate the 2D problem as an

equivalent 1D problem. It is worth noting that this transformation does not lose any infor-

mation and preserves the correlation among sensed values in the 2D space.

Now we define a vec(·) function, transforming aK ×K matrix into a vector of lengthN

(through a reordering of the matrix elements) as shown in (2.30).

As explained in Section 2.3, the values that we collect at the sink can be represented

through a vector y ofM < N elements. They are linear combinations of the sensor readings

represented by the matrix X of size K ×K, and thus y = Φvec(X). TheM × N matrix Φ

contains the combination coefficients that are picked at random according to a given distri-

bution. From linear algebra we know that the vector form of a given product among three

matrices L,R and C can be rewritten as [81]

vec(LCR) = (LT ⊗R)vec(C) , (2.75)
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where ⊗ is the Kronecker product. Hence, using (2.71) and (2.75) we can write vec(X) =

(LT ⊗ R)vec(S). Using y = Φvec(X) we obtain y = Φ(LT ⊗ R)vec(S) that, defining

A = Φ(LT ⊗R), can be rewritten as

y = Avec(S) , (2.76)

where y is the vector containing the received (combined) values and vec(S) is a column

vector of length N containing the input signal in the transformation domain. Given (2.76)

we can recover the sparse signal vec(S) using the solvers developed for standard CS theory

in 1D.
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2.B CS Recovery Capability with Respect to Sparseness

In this appendix we report more analysis results obtained when Compressive Sensing

is applied to synthetic signals that mimic realistic WSN signals. In detail, here we inves-

tigate the recovery capabilities of CS as a function of the sparseness of the 2D signals that

are collected from a sensor grid. To isolate the impact of the measurement matrix Φ and

the structure of the input signals, we first study some extreme cases for Φ together with

band-pass input signals. The impact of routing and topology, which largely characterize Φ,

is investigated in the Appendix 2.C.

Signal of interest X: Here, the matrix X is built starting from a sparse matrix S, obtained

through the following steps:

1. We build a preliminary signal S1 of size K ×K having all frequencies (i.e., all entries

in the matrix) with the same amplitude, i.e., s1(p, q) = 1, ∀ p, q = 1, 2, . . . ,K.

2. We define a frequency mask as a 2D rectangular function that is one for entries in

position (p, q) with plow < p ≤ phigh and qlow < q ≤ qhigh and zero otherwise. This

rectangular function is defined as

rect(p, q)
def
=





1 if plow < p ≤ phigh and qlow < q ≤ qhigh

0 otherwise .

(2.77)

3. We obtain a second signal S2 of sizeK ×K, whose entries s2(p, q) are calculated as

s2(p, q) = s1(p, q)rect(p, q) . (2.78)

4. We finally obtain S as follows: if s2(p, q) = 0 then s(p, q) = 0. If instead s2(p, q) = 1,

s(p, q) = 0 with probability pd and s(p, q) = 1 otherwise. The parameter pd represents

the fraction of entries that are on average deleted from S2.

Therefore, the signal S is obtained by first applying a frequency mask, which helps to as-

sess the reconstruction performance for low-frequency, mid-frequency, and high-frequency

signals. In addition, we delete some randomly picked frequencies according to a given prob-

ability pd. This is a simple but accurate method to control the characteristics of the signal in

the DCT domain (i.e., the sparsity of the signal and its dominant frequency components and
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allows us to understand the effects of the signal structure on the performance of CS).

Matrix Φ: first we observe that Φ is anM ×N matrix, whereM is the number of collected

packets at the sink andN the number of nodes in the sensor grid. We consider the following

classes of matrices Φ

M1. The first type of matrix has elements picked at random and independently of each

other. The generic element (s, t) of this matrix ϕ(s, t), with 1 ≤ s ≤ M , 1 ≤ t ≤ N ,

is set to ϕ(s, t) = rand(), where rand() returns a random number uniformly picked

in (0, 1]. As proved in [16], this type of matrix used in conjunction with the DCT

transformation gives very good recovery performance for Compressive Sensing.

M2. We consider block matrices, where non-zero elements are grouped in blocks (sub-

matrices) along the diagonal of the matrix Φ. This reflects networks where combi-

nations of sensor readings occur within clusters of nodes rather than over all nodes in

the network. In realistic scenarios, the information carried by a given packet depends

on the specific path that this packet traverses from its first transmission to its delivery

at the sink which, in turn, depends on the structure of the data gathering tree.

M3. As an extension we use a more random setting for the coding matrixΦ than in M2. We

set a certain fraction of matrix entries to 0 as in M2, but do this for randomly picked

coefficients of the matrix. This reflects mixing opportunities for a sparse network with

random node encounters, where mobile nodes exchange information whenever they

meet, or for a sensor network with random unsynchronized sleep cycles, where data

can be exchanged whenever two nodes happen to be awake at the same time.

Reconstruction quality: here we consider the quantity ε, computed as explained in Sec-

tion 2.3.4, Equation (2.33).

Performance evaluation: in what follows we show the performance of CS for various input

signals X (low-, mid-,and high-frequency) and matrices Φ. We further varyM , the number

of packets gathered at the sink, and pd. For comparison, we also show results for random

sampling (RS) which works as follows: for a givenM , we select uniformly at randomM out

of the N nodes in the network. These nodes send their own measurements to the sink. The



2.B. CS Recovery Capability with Respect to Sparseness 89

signal is reconstructed by interpolation of the M collected values according to the method

in [57]. For the following simulations, we use N = 100 andK =
√
N = 10.
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Figure 2.27. Reconstruction error for varying pd and number of received packetsM .

In Figures 2.27(a) and 2.27(b), we show the performance of RS and CS, respectively, con-

sidering low-frequency signals that were shaped according to the frequency mask plow =

qlow = 0 and phigh = qhigh = K/2. In Figures 2.27(c) and 2.27(d), we show the same perfor-

mance metrics for high-frequency signals with plow = qlow = K/2 and phigh = qhigh = K. In

all graphs, the matrix Φ used for CS is as specified in point M1 above. Contour levels are

shown in all plots to represent the average reconstruction error ε. Exact reconstruction of

the signal occurs for the region of the graph above ε = 0.1. While the impact of the recon-

struction error depends on the specific application, from visual inspection we observed that

the reconstructed signal already follows the original signal very well for ε ≤ 0.3.

The performance of RS in the low-frequency case in Figure 2.27(a) is only marginally af-

fected by pd, i.e., the sparseness of the input signal does not influence the behavior of the RS
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scheme. Also, for high-frequency signals (Figure 2.27(c)) the performance of RS is unaccept-

able as full reconstruction is possible only whenM ≈ N , as expected. We now analyze the

behavior of CS. As can be seen by direct comparison of Figures 2.27(b) and 2.27(d), the per-

formance of CS does not depend on the type of frequency mask. This behavior is expected

because, according to the CS theory, the reconstruction algorithm only depends on the num-

ber of zero elements of the sparse matrix S and not on their position. This is important from

a practical standpoint as it makes CS algorithms suitable for any type of spectral shape of

the signal, given that it is sufficiently sparse. In fact, CS can perfectly recover the signal

through the collection of a number of packets M that is much smaller than the number of

nodes N in the network (in most cases, recovering M = 50 packets from N = 100 nodes

suffices).

We also observe that the reconstruction error has a very sharp drop from a completely

random reconstructed signal to the correct signal. This drop occurs over the course of the

reception of a relatively small fraction of the total number of packets (on the order of 10%).

Hence, by tracking how the reconstructed signal varies at the sink, it is easy to determine

when a sufficient amount of data has been received and the data dissemination process for

the current set of sensor readings can be terminated. These observations differ from the

findings in [47, 48], where the authors state that the recovery results in a gradually varying

reconstruction error as more and more packets are received at the sink.
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Figure 2.28. CS, high-frequency mask, block-matrix: reconstruction error for varying pd andM .

We now discuss the impact of different non-idealities of Φ, such as a block structure for

non-zero entries and setting randomly picked elements of the matrix to 0 (M2 and M3). We

performed simulations for all of these cases. In Figure 2.28, we only show the worst case
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where the matrix presents a combination of the discussed non-idealities. Φ is composed of 3

sub-matrices of equal size along the diagonal of the original matrix, and all other entries are

set to 0. In addition, 30% of the remaining entries in the sub-matrices are set to 0. As can be

seen from the graph, the results of this last set of simulations closely match those we obtain

for the ideal case M1. The same holds for simulations where the M2 and M3 non-idealities

are applied separately. Further tests, where we restrict the range of non-zero entries to only

two different values, also confirm the results. This robustness with respect to the matrix

Φ is very important, since it allows the exploitation of CS in real networks with topology

constraints, as we show in the Appendix 2.C.
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2.C Performance Comparison of CS with Selected Protocols

In the Appendix 2.B we investigated different measurement matricesΦ, that correspond

to extreme cases for dissemination processes, and compare the performance of Compressive

Sensing and Random Sampling for different types of signals X. In this appendix, we report

further analysis results obtained when Compressive Sensing is applied to synthetic signals

that mimic realistic WSN signals.

In detail, we now consider true multi-hop topologies and quantify how selected data

gathering protocols perform in terms of energy cost (total number of transmissions) as well

as reconstruction quality, as defined in Equation (2.33)).

Network scenario and topology: as explained in Section 2.3.2.

Selected protocols: the aim of our performance evaluation is to asses the benefits that CS

brings about in multi-hop networks. In what follows, we introduce a few idealized schemes

so as to represent different data gathering protocol classes. Note that we assume a unit cost

for each packet transmission, and that we ignore processing overhead at the nodes, since it

is expected to be cheap compared to the cost of packet transmission.

P1. Random sampling (RS): as P1 in Section 2.3.3.

P2. Random sampling with CS (RS-CS): as P2 in Section 2.3.3.

P3. Data aggregation (DA): for this scheme we account for a preliminary setup phase where

nodes are grouped into clusters of depth D as follows. The process starts by collect-

ing into a first set Q all nodes that are directly connected to the sink. For any given

node m ∈ Q, we consider the tree TD of depth D that has node m as the root and

includes m’s children up to a distance of D. We proceed as follows: A1) group the

nodes within the tree TD into a cluster Cm having node m has the cluster head, A2)

remove nodem fromQ, and A3) consider all leaf nodes of TD and insert their children

in Q. We continue the process in the same manner by picking the next element in Q,

and so forth, until the set is empty. The order with which we pick elements from Q

is irrelevant. After the clusters are formed, we proceed with the data collection phase

as follows: B1) all the nodes in the cluster send their packet to the cluster head using

multi-hop geographic routing. This packet includes the value sensed at the originat-
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ing node. B2) the cluster head collects all incoming packets and averages the values

therein with its own measurement. B3) the cluster head sends this averaged value

to the sink using the shortest path exactly as in RS. The total cost of this operation is

given by the number of transmissions occurring within the cluster (nodes → cluster

head) plus the number of transmissions needed to reach the sink from the cluster head

(cluster head → sink), which is equal to the number of hops in the path. This simple

representation of data aggregation captures the main characteristics of more complex

data aggregation schemes sufficiently well. The parameterD can be varied in the sim-

ulations to obtain suitable trade-offs between representation accuracy (small D) and

overall transmission costs (that decrease for higher D values).

P4. Data aggregation with CS (DA-CS): nodes are aggregated into clusters as in DA. Thus,

for any given cluster Cm with cluster head m, all nodes transmit their sensed value

to the cluster head. This incurs the same cost as in DA. However, the cluster head,

instead of performing a simple average of these values, computes a weighted average

as ym =
∑

u∈Cm
αuxu, where αu = rand() and xu is the value sensed by node u. As

above, ym is stored in a packet along with all combination coefficients α. The packet is

then routed to the sink using the same strategy as in RS-CS. Traversed nodes combine

the aggregated value with their own reading, multiplied by a random coefficient, and

include the used coefficient in the packet. The cost of this second transmission phase

again equals the number of hops separating nodem from the sink.

Reconstruction quality: here we consider the quantity ε, computed as explained in Sec-

tion 2.3.4, Equation (2.33).

Performance evaluation: In the following, we discuss the performance of the above proto-

cols in terms of reconstruction error and total energy cost.

In Figures 2.29(a) and 2.29(b), we show the reconstruction error ε as a function of the

total transmission cost for RS, RS-CS, DA, and DA-CS, considering low- and high-frequency

signals with pd = 0.6. Again, we use N = 100 for the total number of sensor nodes. Results

for RS and RS-CS were obtained by varying the parameterM from 5 to N in steps of 5. The

obtained tradeoff curves are traversed from left to right for increasing M . Results for DA

and DA-CS were instead obtained by varying the cluster depthD from one to five. Tradeoff
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(a) Low-frequency, pd = 0.6.
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(b) High-frequency, pd = 0.6
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Figure 2.29. Reconstruction error vs transmission cost for the selected data gathering schemes.

curves in this case are traversed from left to right for decreasing D. Each data point in the

graphs is obtained by averaging over 10000 simulations. To improve the readability of the

graphs, we omit confidence intervals but confirm that they are smaller than 1% of the plotted

value in all cases.

We observe that the use of Compressive Sensing in both high- and low-frequency cases

drastically improves the performance of the considered baseline schemes. In particular, in

the high-frequency case, CS allows the perfect reconstruction of the signal in all of the cases

we studied, whereas standard solutions achieve the same goal only when all sensor readings

are collected at the sink, which has a much higher cost. For example, for a reconstruction

error threshold of ε = 0.1, we see from Figure 2.29(a) that CS requires 125 transmissions

for recovery, while RS needs almost twice as many transmissions to reach the same quality.

For schemes exploiting data aggregation, DA-CS allows an excellent recovery with D = 2,
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while standard DA techniques do so for D = 1, i.e., upon receiving 100% of the packets.22

This is true for both high- and low-frequency signals. Also, in Figure 2.29(a) there are data

points for which RS slightly outperforms RS-CS. These, however, are not meaningful as they

reside in a region that should be avoided as the reconstruction error ε is too high for a useful

reconstruction of the original signal (ε ≥ 0.55).

As a further observation, we see that DA-CS is more energy consuming than RS-CS for

the same reconstruction quality. This can be explained as follows. For large D, all nodes

within each cluster will be transmitting through multiple hops to reach their cluster head.

From here on, the data will be aggregated and sent via unicast to the sink using the same

strategy as in RS-CS. However, the first transmission phase (within the clusters) dominates

the total cost. Instead, when D is small, say, D = 2, we aggregate packets only among

nodes that are a single hop away. In this case, the transmission cost is still high as all nodes

transmit and only a few packets are aggregated. Overall, for the type of networks that we

consider here, RS-CS is the most efficient technique for data collection and recovery. Note

that this is not obvious a priori as one might expect DA-CS to outperform RS-CS in terms

of reconstruction quality, since the packets received at the sink using DA-CS combine more

information. From this first set of results we can conclude that mixing information from

the different sources that a given packet encounters along its shortest path towards the sink

suffices to achieve a good reconstruction of the original signal if 1) theM source nodes are

picked uniformly at random within the WSN field and 2) M is a sufficiently large fraction

of the total number of readings. In addition, this strategy is superior in terms of transmis-

sion cost to mixing information within clusters of nodes and then sending the result to the

sink. This is an important result as RS-CS is inherently simpler to implement in distributed

fashion, whereas DA-CS requires the organization of nodes into clusters.

Finally, note that schemes exploiting CS are mainly affected by the number of significant

frequencies of the signal and not by their location within the DCT domain, as seen in Ap-

pendix 2.B. This is confirmed by Figures 2.29(a) and 2.29(b) where the performance of CS

techniques does not significantly change, whereas the performance of RS and DA degrades

significantly for high-frequency signals.

Further results are given in Figure 2.29(c), where we consider high-frequency signals

and vary pd ∈ {0.2, 0.6, 0.8}. A single curve is plotted for RS and DA as we found that the

behavior of these schemes only marginally depends on pd. For increasing pd, CS curves shift

22For D = 1, each node forms its own cluster of size one.



96 Compressive Sensing for Wireless Sensor Networks

to the left, which means that a given reconstruction quality requires a smaller number of

transmissions. As expected, RS-CS performs better for increasing pd. The same is true for

DA-CS: for this scheme we obtain a good reconstruction quality for D = 2 when pd = 0.2,

while for pd = 0.6, with this same cluster depth, the reconstruction error is nearly zero. For

pd = 0.8, we can approximate the signal with good accuracy already for D = 3.

Also for other band-pass signals with frequency components in an intermediate range,

the performance results are exactly the same for the case of CS, while RS performance is in

between the cases for high and low frequencies.

We now consider a different performance metric. Specifically, we pick the 10% of the

nodes that performed the highest number of transmissions in each simulation and average

their costs. Note that this metric is tightly related to the network lifetime. For a given

topology, the nodes with the highest energy consumption will be the first to drain their

batteries, thus impacting the network connectivity. Due to the Funneling effect [82], these

are usually the nodes close to the sink. Figure 2.29(d) shows the tradeoff performance of the

selected schemes using the latter metric. We can observe that DA-CS and RS-CS perform

closely for D = 2 (DA-CS) and M = 60 (RS-CS). These parameters are the smallest that

result in a zero reconstruction error for both protocols. Finally, for this cost metric, the

difference between the two schemes is substantially reduced, which makes DA attractive

when the objective is to prolong the network lifetime.

To give a better intuition for the shape of the signals under consideration, as well as the

nature of the reconstruction error, we provide a graphical representation of example signals

in Figure 2.30. The original 2D signal for a low frequency case with pd = 0.6 is shown in

Figure 2.30(a). From Figure 2.30(b) we can see that with M = 60 packets received at the

sink node, RS-CS allows to perfectly reconstruct the signal (ε = 0). The total number of

transmissions required is 146. The RS scheme incurs the same transmission cost, but only

achieves a reconstruction error of ε ≃ 0.4. As is typical for the RS signal reconstruction

shown in Figure 2.30(c), it captures the overall signal relatively well, but the spike in the

signal at position (1,1), as well as the minimum value at position (1,4) are not sampled. Such

extreme values are captured reliably only whenM ≈ N . Aggregation with the DA scheme

for D = 2 is shown in Figure 2.30(d). It is better able to represent those extreme values

(although not perfectly). However, it requires a total of 182 transmissions and has an even

higher overall reconstruction error of ε ≃ 0.5. DA-CS for D = 2 (not shown in the graphs)

by construction has the same transmissions cost of 182 as DA. It achieves the same perfect
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(a) Original signal.
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(b) RS-CS reconstruction withM = 60.
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(c) RS reconstruction withM = 60.

1
2 3

4
5

6 7
8

9 10

1
2

3
4

5
6

7
8

9
10
−1

0

1

2

x positiony position

S
ig

n
a
l 
v
a
lu

e

(d) DA reconstruction withD = 2.

Figure 2.30. Original and reconstructed signal for a low frequency signal with pd = 0.6 for the selected

data gathering schemes.

signal reconstruction as the RS-CS scheme.
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2.D Preliminary Performance Evaluation of joint CS and PCA

2.D.1 Analysis of signals with a fixed support

In this section we study the effectiveness of joint CS and PCA recovery, presented in

Sections 2.4 and 2.5, when applied to synthetic signals that are measured through the grid

network model used in Section 2.3.

Network: as explained in Section 2.3.2.

Signals: as explained in Section 2.3.1 for Synthetic signals.

Data gathering: similarly to what done in Section 2.3, the data collection at the generic time

k adopts a simple random sampling scheme as follows. Each node becomes a source with

probability p = L/N , which was varied in the simulations to obtain tradeoff curves for

increasing transmission overhead. Hence, on average L nodes transmit a packet containing

their own sensor reading. Each packet is routed to the sink via geographic routing. The

sink collects incoming data from all transmitting nodes according to y = Φx, where x is the

original signal and Φ represents the routing matrix. Φ has a single one in each row and at

most a single one in each column. In detail, row i with 1 ≤ i ≤ M has a one in column j

with 1 ≤ j ≤ N if the i-th packet received by the sink was transmitted by node j. The cost of

delivering a single packet to the sink is given by the number of hops that connect the source

node to the sink.23

Recovery: we consider the following recovery techniques:

R1. Random sampling with Spline interpolation (RS-Spline): the signal is reconstructed by

spline interpolation [57] of the values collected through RS.

R2. Compressive Sensing (RS-DCT-CS): we use the CS recovery technique described in Sec-

tion 2.1, where Φ is the RS routing matrix defined above and Ψ implements the DCT

transformation.

R3. Compressive Sensing with PCA (RS-PCA-CS): the original signal is recovered through

joint CS and PCA, as described in Section 2.4. The sample mean x and the covari-

23Other cost metrics, e.g., energy, could also be used.
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ance matrix Σ̂ are calculated from a large enough number of instances of the synthetic

signal so as to obtain accurate estimates of these statistics.

Results: to simplify the investigation and to pinpoint the fundamental performance trade-

offs, we assume a unit cost for each packet transmission. The metrics of interest are the total

number of transmissions in the network for any given time k and the reconstruction quality

at the sink, defined as ε = ‖x− x̂‖2/‖x‖2, where x is the original signal and x̂ is the signal

reconstructed at the sink from the received samples y.
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Figure 2.31. Performance of three different recovery techniques for a synthetic low-pass signal: number of

transmissions per data collection vs ε.

In Figure 2.31 we compare the performance of the above recovery techniques in terms

of ε vs total number of transmissions per data collection for a low-pass signal. RS-DCT-CS

outperforms RS-Spline only when L approaches N , i.e., when the sink receives nearly all

N packets and the total number of transmissions is close to the maximum (about 1800 for

the considered network). In addition, the gain that RS-DCT-CS can provide is very small.

Instead, RS-PCA-CS recovery significantly outperforms both RS-Spline and RS-DCT-CS for

all values of L and allows the recovery of x̂ with small reconstruction errors. For example,

an error requirement of ε = 0.05 is achieved in RS-PCA-CS with about 1000 transmissions,

whereas RS-DCT-CS would need 50% more transmissions for the same error performance.

We note that the performance of RS-Spline for high-frequency signals would be significantly

worse, whereas the performance of RS-DCT-CS and RS-PCA-CS remains almost the same.
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Figure 2.33. Signal sample: luminosity in the

range 320− 730 nm.

2.D.2 Analysis of real signals from a WSN testbed

To test whether the proposed schemeworks in realistic scenarios, in this sectionwe apply

the joint CS and PCA recovery described above to the signals that we gathered from an

actual WSN deployment.

Network: we consider the WSN testbed of Figure 2.32.24 This experimental network is

deployed on the ground floor of the Department of Information Engineering at the Uni-

versity of Padova. The WSN consists of N = 68 TmoteSky wireless nodes equipped with

IEEE 802.15.4 compliant radio transceivers.

Signals: From the aboveWSN, we gathered five different types of signals x: 1) temperature,

2) humidity, 3) voltage, 4-5) luminosity in two different ranges (320−730 and 320−1100 nm,

respectively), collecting measurements from all nodes every 5 minutes for 3 days. We re-

peated the data collection for three different measurement campaigns, choosing different

days of the week, see Table 2.2 for deployment W1. Figure 2.33 shows an example signal of

type 4, i.e., luminosity in the range 320− 730 nm.

Data gathering and Results: to test the effectiveness of the proposed technique we consid-

ered the real data collected through the testbed in Figure 2.32 and a data gathering scheme

based on geographic routing. We placed the sink in the center of the network, where the

signal is reconstructed at each time k based on our joint CS and PCA technique. Note that

24Our framework is flexible and does not depend on a specific topology; the only requirement is that the

sensor nodes can be ordered, e.g., based on their IDs.
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Figure 2.34. ε vs E[Cround]:

humidity.
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Figure 2.35. ε vs E[Cround]:

luminosity.
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Figure 2.36. Average ε (sig-

nals 1–5) vs E[Cround].

the signals in the testbed differ from those we generated in the previous section as they

do not necessarily have the well-defined low-frequency representation that was assumed in

Section 2.D.1 and are characterized by spatial and temporal correlations that are in general

non-stationary. This means that the statistics that we use in our solution (i.e., sample mean

and covariance matrix) must be learned at runtime and might not be valid through the en-

tire data collection phase. Hence, in order to implement PCA in conjunction with CS for real

signals, we alternate the following two phases, as proposed also in Section 2.4:

1. a training phase ofK data collection rounds, during which the sink collects the readings

from allN sensors and uses this information to compute x and Σ̂ as in Equation (2.34);

2. a subsequent monitoring phase of ζK rounds during which, on average, only L ≤ N

nodes become sources according to the random sampling scheme of Section 2.D.1

(each with probability p = L/N ). The input signal is thus reconstructed from this

data subset, using the statistics x and Σ̂ computed in the previous phase.

The ratio ζ between the duration of monitoring and training phases should be chosen

according to the temporal correlation of the observed phenomena.

In Figures 2.34–2.36 we show the performance in terms of reconstruction error (ε) as a

function of the average cost per round, which is given by the number of transmissions for

the collection of a single instance of the signal x. In these plots each training phase lasts

K = 2 rounds and ζ = 4 (the impact of these parameters is addressed at the end of this

section). A training phase entails a costKCN , whereCN is the total number of transmissions

needed to gather the readings from all nodes. The average number of packets sent during

the following 2ζ = 8 monitoring phases depends on p, which is varied from 1/N to 1, and
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Figure 2.37. Average ε (signals 1-5) vs

E[Cround],K = 2, ζ ∈ {2, 4, 6, 8}.
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Figure 2.38. Average ε (signals 1-5) vs

E[Cround],K ∈ {2, 4, 6, 8}, ζ = 4.

ε is computed for each case. For a given p = L/N each monitoring phase has an average

total cost of ζKE[CL], where E[CL] is the total number of transmissions needed to collect

the readings from the source nodes during a data collection round. Thus, the average cost

per round is calculated as:

E[Cround] =
CN + ζE[CL]

1 + ζ
. (2.79)

For comparison, in the plots we also show the recovery performance of RS-Spline, see

Section 2.D.1. The cost per round for RS-Spline is E[CL].
25 In Figures 2.34–2.36 we demon-

strate the effectiveness of our recovery technique (“RS-PCA-CS” in the figures). These re-

sults show that PCA is a suitable transformation to be used in conjunction with CS and that,

despite the cost incurred in the training phases, the approach still provides substantial ben-

efits with respect to standard data gathering schemes. In Figure 2.34 ε is close to zero as this

specific signal varies slowly in time, i.e., its correlation structure is quasi-stationary during a

monitoring phase. Also, we note that for those signals showing higher variations over space

and time, such as luminosity, RS-Spline has unsatisfactory performance.

In the last two graphs, Figures 2.37 and 2.38, we show the impact of K and ζ on the

performance. From Figure 2.37 (fixedK) we see that decreasing ζ leads to: 1) a higher min-

imum admissible cost to bear per round due to an increase of the overhead 2) despite the

increase of overhead, a decreased cost per round for a given quality goal since the signal’s

25We do not analyze the performance of RS-DCT-CS. In contrast to the the synthetic signals of Section 2.D.1,

the real signals considered here are not sparse in the DCT domain, and thus RS-DCT-CS performs much worse

than RS-Spline.
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reconstruction algorithm uses fresher information and 3) a smaller variance for ε. From Fig-

ure 2.38 (fixed ζ) we see that decreasingK is beneficial. This means that, for the considered

signals, a smaller reconstruction error is achievable through more frequent updates of x and

Σ̂. In Figures 2.37 and 2.38 solid and dotted lines without marks represent lower bounds on

the error recovery performance, which are obtained as follows. For each (K, ζ) pair, the ac-

tual recovery performance evaluates the reconstruction accuracy of the signal when training

and monitoring phases alternate. In this case, during a monitoring period each input signal

xk is reconstructed using RS-PCA-CS with x and Σ̂ calculated exploiting the signals gath-

ered during the last training phase. Differently, the lower bound on the reconstruction error

of RS-PCA-CS for each (K, ζ) pair and for each time k is obtained using RS-PCA-CS with

x and Σ̂ calculated assuming perfect knowledge of the previous K instances of the signal

xk−1, . . . , xk−K . The cost associated with the new ε is set equal to that of the real RS-PCA-CS

scheme for the given (K, ζ) pair. These curves reveal the impact of the obsolescence of x

and Σ̂ during the monitoring phase for the considered signals. In particular, the recovery

performance degrades for either increasing ζ (Figure 2.37) orK (Figure 2.38).



104 Compressive Sensing for Wireless Sensor Networks

2.E SCoRe1 Framework: Justification of Choices

In order to illustrate the choices done for the design of SCoRe1, see Section 2.5.1, in this

appendix we consider two simple strategies for iteratively sensing and recovery a given

signal. In particular, this section aims to explain the reasons for: 1) the adoption of an

iterative and approximate training set T̂ (k)
K and 2) the definition of both an Error Estimation

and a Feedback Control block in our monitoring framework.

To this end, let us consider two simple strategies that can be executed at the Data Col-

lection Point. According to the first one, which corresponds to the approach adopted in the

Appendix 2.D and here is referred to as 2 Phases, the network monitors the entire signal x(k)

for a certain period of time (referred to as training phase) and sends it to the DCP, which is

responsible for inferring the signal statistics during this period. For the subsequent period

(monitoring phase), the DCP only requires a small fraction of the nodes to transmit, being able

to accurately reconstruct the signal from its under-sampled version. Due to the fact that the

monitored signal is non-stationary, its statistics may vary with time and should therefore be

periodically updated at the DCP. In detail, this protocol alternates the following two phases

of fixed length:

1. a training phase of K1 data collection rounds, during which the DCP collects the read-

ings from allN sensors and uses them to compute the statistics needed by the recovery

algorithm, see Section 2.4.1. During this phase, the probability of transmission at each

sensor is set to p
(k)
tx = 1, so the DCP collects a training set TK1 = {x(k−K1), . . . ,x(k−1)}

that will be used to infer the relevant statistics;

2. a subsequentmonitoring phase ofK2 rounds, withK2 ≥ K1, during which (on average)

only L ≤ N nodes transmit, according to the adopted random sampling scheme with

p
(k)
tx = L/N . The signal of interest is thus reconstructed from this data set by the

recovery algorithm, using the statistics computed in the training phase.

Note that for the 2 Phases technique the training set TK1 does not contains approximations

(reconstructions) of the past signals, but those actually collected during the training phase.

The major drawback of this technique is that it is very sensitive to the choice of the param-

eters that govern the compression and the recovery phases. These parameters are: (1) the

average number of sensors L that transmit during the monitoring phase, which determines

p
(k)
tx = L/N . (2) The length of the training phase (K1) and of the monitoring phase (K2),
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Figure 2.39. Performance comparison of three

iterative monitoring schemes, with online esti-

mation of the past, for signals in class C1, tem-

perature and humidity.
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Figure 2.40. Performance comparison of three

iterative monitoring schemes, with online esti-

mation of the past, for signals in class C2, photo

sensitivity in the range 320− 730 nm and in the

range 320− 1100 nm.

that should be chosen according to the temporal correlation of the observed phenomenon.

These parameters must be chosen at the beginning of the transmission and they can only

be tuned manually. Hence, even if the initial choice is optimal, this technique is not able to

adapt to sudden changes in the signal statistics. Moreover, the training phase accounts for

the biggest part of the total cost in terms of number of transmissions, as shown by the study

presented in the Appendix 2.D.

A solution to the latter problem is to eliminate the training phase, so the nodes at each

time k transmit with a fixed probability p
(k)
tx = ptx: this is the Fixed ptx technique. Here, the

training set needed by the recovery block to infer the statistics that allows the reconstruction

of x(k) from y(k) is formed by the previously reconstructed signals x̂(j) for j < k, so it can be

written as T̂ (k)
K = {x̂(k−K), . . . , x̂(k−1)}. The main drawbacks of this scheme is that without

any control loop for ptx, the energy consumption cannot be easily adapted to the observed

signal and the reconstruction error can grow unbounded as shown shortly.

To compare SCoRe1 with the above schemes, 2 Phases and Fixed ptx we use signals be-

longing to two out of the three different classes discussed in Section 2.5.3. In particular,

we consider: C1) signals with high temporal and spatial correlation (e.g., the ambient tem-

perature or the ambient humidity) and C2) signals with lower correlation (e.g., the photo

sensitivity or the wind direction).

The results, reported in Figures 2.39 and 2.40, have been obtained from 100 independent
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simulation runs and by averaging the performance over all signals in each class. The x-axis

of these figures represents the normalized cost expressed as the average fraction of packet

transmissions in the network per time sample, computed according to Equation (2.70); the y-

axis still shows the signal reconstruction error at the end of the recovery process, calculated

accordingly to (2.54). In order to vary the cost (x-axis) for the three techniques we modify

the following parameters:

1) for 2 Phases and Fixed ptx we vary the probability of transmission ptx that is set at the

beginning of the data gathering in the range ]0, 1[ ;

2) for SCoRe1, we vary the error threshold τ used in Equation (2.57) in the range ]0, 1[

setting the feedback control parameters as C1 = 1.3, C2 = 3 and pmin = 0.05 .

The training set length has been fixed to K = K1 = 2, whilst the monitoring phase length

set to K2 = 4, as suggested in the Appendix 2.D. From Figure 2.39 we note that the three

techniques all perform very well in case of a slowly varying signal (C1). However, when

the signal varies in an unpredictable way (C2), see Figure 2.40, SCoRe1 clearly outperforms

the other two techniques. In particular, SCoRe1 outperforms the 2 Phases technique because

(i) it avoids the training set phase, thus reducing the overall energy transmission required

and (ii) updates iteratively its training set thus computing a more adaptive transformation

basis for CS and improving its recovery performance. Concerning Fixed ptx, this technique

does not adapt its transmission probability as a function of the reconstruction error that, in

turn, gets very large for small values of ptx. The feedback loop mechanism implemented

in SCoRe1, instead, makes this solution able to adapt to signal variations by decreasing or

increasing ptx, thus reducing the energy consumption or the estimation error, respectively.

These simulation results allow us to support the design choices, explained in Section 2.5.1,

that are at the basis of SCoRe1.
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In this chapter the principal steps and outcomes of my research activity on Distributed

Subgradient Methods for Delay Tolerant Networks (DTNs) are presented and discussed.

The research activity reported in this chapter has been carried out during my PhD visit-

ing period at the Institut national de recherche en informatique et automatique (INRIA), Sophia

Antipolis, France, under the supervision of Dr. Giovanni Neglia, MAESTRO team.

As previously mentioned, we investigate here a distributed optimization method, pre-

sented in Section 3.1, whose objective is that of optimizing network wide (global) perfor-

mance metrics. In the considered framework nodes collaborate to minimize the sum of local

objective functions, which in general depend on global variables such as the network proto-
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col parameters or actions taken by all the nodes in the network. In the case where the local

objective functions are convex, we can adopt a recently proposed framework that relies on

local sub-gradient methods and consensus algorithms to average each node information,

while granting converge towards global optimal solutions. In particular, we advocate the

use of this framework for DTNs, as explained in Section 3.2. However, existing convergence

results for this framework can only be applied to DTNs in the case of synchronous opera-

tions of the nodes and mobility models without memory. In our study we address and solve

both these issues.

As a first contribution, in fact, we relax the above assumptions. First, in Section 3.3

we prove that the distributed sub-gradient method also converges under a more general

Markovian mobility model with memory in the meeting process. In addition, in Section 3.4

we show that a direct application of the framework when nodes operate asynchronously

may introduce a bias, leading to convergence to a sub-optimal solution. Hence, we propose

some adjustments, and show by simulations that they are able to correct the bias.

Furthermore, inspired by the work in [83], in Section 3.5 we propose a possible appli-

cation of the framework to a DTN scenario where a Service Provider (SP) disseminates a

dynamic content over a mobile social network, with the help of the users that opportunisti-

cally share among themselves content updates. In this context the SP should decide how to

allocate its bandwidth optimally, and to this purpose it needs to collect information about

node utility functions and node meeting rates. We show that distributed sub-gradients can

be effectively used to let the nodes perform such optimization.
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3.1 Distributed Sub-gradient Method’s Overview

In this section we review the main results in [20, 21] on convergence and optimality of

the distributed sub-gradient method when a random network scenario is considered.

Let us consider a set ofM nodes (agents), that want to cooperatively solve the following

optimization problem:

Problem 8 (Global Optimization Problem). Given M convex functions fi(x) : R
N → R,

determine:

x∗ ∈ argmin
x∈RN

f(x) =
M∑

i=1

fi(x) .

Clearly, for the above problem we assume that a feasible solution exists. The difficulty of

the task arises from the fact that agent i, for i = 1, 2, · · ·M , only knows the corresponding

function fi(x), namely its local objective function. For example fi could be a performance

metric relative to node i, and f could indicate global network performance.

If the functions fi are differentiable, each node could apply a gradient method to its func-

tion fi to generate a sequence of local estimates, but this would lead toM biased estimates

of the solution of Problem 8. In [20] and [21], it is shown that if nodes perform a gradient

method but are also able to average their local estimates, under opportune conditions, these

estimates all converge to a point of minimum of f , i.e., x∗.

In particular, a time slotted system is assumed, where, at the end of a slot, each node

i communicates its local estimate to a subset of all the other nodes, and then updates the

estimate according to the following equation1:

xi(k + 1) =
M∑

j=1

aij(k)x
j(k)− γ(k)di(k) , (3.1)

where the vector di(k) ∈ R
M is a sub-gradient2 of agent i’s objective function fi(x) com-

puted at x = xi(k), the scalar γ(k) > 0 is the step-size of the sub-gradient algorithm at

iteration k, and aij(k) are non-negative weights, such that aij(k) > 0 if and only if node i

has received node j’s estimate at the step k and
∑M

j=1 aij(k) = 1. We denote by A(k) the

matrix whose elements are the weights, i.e. [A(k)]ij = aij(k).

We observe that the first addend in the right hand side of 3.1 corresponds to average

according to a consensus algorithm [22].

1Also in this chapter, all the real valued vectors are assumed to be column vectors.
2di ∈ RN is a sub-gradient of the function fi at x

i ∈ dom(fi) if and only if fi(x
i) + (di)

T
(x − xi) ≤ fi(x)

for all x ∈ dom(fi).
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[20] proves that the iterations (3.1) generate sequences converging to a minimum of f

under the following set of conditions:

1. the step-size γ(k) is such that
∑∞

k=1 γ(k) = ∞ and
∑∞

k=1 γ(k)
2 <∞;

2. the gradient of each function fi is bounded;

3. each matrix A(k) is symmetric (then doubly stochastic);

4. it exists η > 0, such that aii(k) > η and, if aij(k) > 0, then aij(k) ≥ η;

5. the information of each agent i reaches every other agent j (directly or indirectly) in-

finitely often;

6′) there is a deterministic bound for the intercommunication interval between two nodes.

We better formalize conditions 5 and 6′ (resp. 6′′). Consider the graph (V , E∞), where V is

the set of nodes and the edge (i, j) belongs to E∞ if nodes i and j communicate infinitely

often (i.e., if aij(k) is positive for infinite values k). Condition 5 imposes that the graph

(V , E∞) is (strongly) connected. Condition 6′ requires that there is a positive integer constant

B, such that two nodes communicating infinitely often, communicate at least once every B

slots, i.e., if (i, j) ∈ E∞, then max{aij(k), aij(k + 1), · · · , aij(k +B − 1)} > 0.

In [21], the inter-meeting times are not deterministically bounded, but matrices are re-

quired to be independently and identically distributed. In fact, condition 6′ is replaced by

the following one:

6′′) matrices A(k) are i.i.d. random matrices.

In such case, (i, j) ∈ E∞ if and only if E[aij(k) > 0]. Note that, when the matrices A(k) are

random (like in 6′′), condition 5 requires the matrix E[A(k)] to be irreducible and aperiodic.

Both papers address also the case when the gradient step-size does not vanish, but it is

kept constant (γ(k) = γ). In this case, the sequence of estimates xi does not converge in

general to a point of minimum of f , but it may keep oscillating around one of such point.

It is possible to bound the difference between the values that f assumes at the points of a

smoothed average of xi and the minimum of f . As it is intuitive, the smaller γ, the smaller

such difference.

We are going to provide an intuitive explanation of why the results on convergence and

optimality hold, and an outline of the proofs in [20,21]. This will be useful for our following
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extensions. We first formulate (3.1) in matrix form as follows:

X(k + 1) = A(k)X(k)− γ(k)D(k) , (3.2)

where

X(k)
def
=

[
x1(k + 1), · · · ,xi(k + 1), · · · ,xM (k + 1)

]T

and

D(k)
def
=

[
d1(k + 1), · · · ,di(k + 1), · · · ,dM (k + 1)

]T
.

This equation iteratively leads to (see Appendix 3.A)

X(k + 1) = A
(k)
(1)X(1)−

k∑

s=2

A
(k)
(s)γ(s− 1)D(s− 1)− γ(k)D(k) , (3.3)

where A
(k)
(s) , with s, k ≥ 1 and s ≤ k, is the backward matrix product, i.e.,

A
(k)
(s)

def
= A(k)A(k − 1) · · ·A(s) .

We introduce also the average of all the nodes estimates, y(k) ∈ R
M , defined as:

y(k)T =
1

M
1TX(k) .

By Equation (3.2), we obtain3

y(k + 1)T =
1

M
1TA(k)X(k)− 1T

γ(k)

M
D(k) =

= y(k)T − γ(k)

M
1TD(k) . (3.4)

Assume for a moment that xi(k) = xj(k) = y(k), for each i and j, then sub-gradients di(k)

are all evaluated in y(k) and 1TD(k) is a sub-gradient of the global function f evaluated

in y(k). Thus, the above Equation (3.4) corresponds to a basic iteration of a sub-gradient

method for the global function f . The intuitive explanation of the result is that averaging

keeps the estimates of xi(k), for all i, close each other (and then close to y(k)) and makes the

local sub-gradients updates equivalent to a sub-gradient update for the global function f .

We illustrate this through a simple toy example that we are going to use different times

across this chapter. Consider three nodes, labeled as 1, 2 and 3. Their local objective func-

tions are f1(x) = f2(x) = x(x− 1)/2 and f3(x) = 2x2, where x ∈ R. Then the global function

is f(x) =
∑

i fi(x) = 3x2 − x, it has minimum value equal to −1/12 and a unique point of

3Let us recall here that A(k) is a doubly stochastic matrix, for all k.
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Figure 3.1. Toy example, convergence of the three estimates. Top graph: state’s estimates for each node.

Bottom graph: objective function value computed in the state’s estimates of each node.

minimum in x = 1/6. The weight matrices A(k) are i.i.d. random matrices. At each step

A(k) is equal to one of the following three matrices
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 , (3.5)

with probability 2/3, 1/6 and 1/6, respectively. Figure 3.1 shows the evolution of the esti-

mates at the 3 nodes, when the algorithm is applied with γ(k) = 1/k. We can see that state’s

estimates tends to couple and then converge to the optimal value. In particular, estimates of

node 1 and node 2 are kept closer each other since the first matrix of above is selected with

higher probability. Similar results have been obtained with γ(k) = γ ≪ 1.

The proofs of the convergence results in [20, 21] share mainly the same outline. A key

element is proving that the averaging component (the consensus) of the algorithm con-

verges exponentially fast. More formally, under 6′, [20] proves that A(k)
(s) surely converges

to the matrix J = 1/M11T , and that there are two positive constants C and β such that∥∥∥A(k)
(s) − J

∥∥∥
max

≤ Cβk−s for all k ≥ s, where given a matrix A we define the max norm as

‖A‖max
def
= max{|aij |}. Under 6′′, [21] proves almost surely convergence ofA

(k)
(s) to J, and an
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exponential convergence rate in expectation, i.e. E
[∥∥∥A(k)

(s) − J

∥∥∥
max

]
≤ Cβk−s. Then, sim-

ilar bounds are established for the distance between y and x∗, and between xi and y, and

convergence results (when γ(k) satisfies condition 5) and asymptotic bounds (when γ(k) is

constant) follow from the exponential convergence rate of the averaging component. As a

consequence of the different kind of convergence forA
(k)
(s) in the two cases, these results hold

surely under 6′ and almost surely under 6′′.
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3.2 Application to Optimization in DTNs

The distributed sub-gradient method presented in Section 3.1 is particularly appealing

in the context of Delay Tolerant Networks, see e.g., [24] and [25]. DTNs are sparse and/or

highly mobile wireless ad hoc networks where no continuous connectivity guarantee can be

assumed. This intrinsically leads to the impossibility of collecting, at low cost and at a single

data processing point, the information needed to solve network optimization problems in a

centralized fashion. Due to this, in our study we advocate the use of distributed approaches,

which lend themselves well to distributed and communication efficient optimization. To

be more concrete, in what follows we briefly discuss two possible DTN scenarios where a

global network’s function f has to be optimized.

One central problem in DTNs is related to routing packets towards intended destina-

tions. Common techniques, designed to overcome the absence of a complete route to the

destination, rely on multi-copy dissemination of messages in the network [84]. In this con-

text, it is natural to define global optimization functions that are able to take in account the

trade-off between delivery time and the cost due to the use of resources such as buffer space,

bandwidth and transmission power. Functions of this kind are convex and can be written as

sum of locally measurable quantities, thus we can optimized them through the distributed

sub-gradient framework [85].

A second DTN scenario concerns the dissemination of dynamic content, like news or

traffic information. Referring to the application example of [83], we might think of a Ser-

vice Provider (SP) with limited bandwidth, that has to decide the update rate to assign at

each node. Nodes can share their content when they meet with the global objective of main-

taining the average information in the network as “fresh” as possible. [83] shows that this

problem can also be formalized as a classical convex optimization problem, and that the

corresponding global objective function can be expressed in terms of the sum of local func-

tions. The derivation of the latter local functions entails the collection of statistics which are

computed at each node only considering its ownmeeting occurrences. As an application ex-

ample for our techniques, in Section 3.5 we apply the distributed sub-gradient framework

to this scenario.

From a general perspective, the distributed sub-gradient optimization in DTNs can be

applied as follows. Nodes exchange their local estimates every time they meet and perform

the update step in Equation (3.1) at a given sequence of time instants {tk}k≥1. This sequence
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can either coincide with the meeting times, i.e., each time two nodes meets they exchange

and subsequently update their estimates or be independent from them, i.e., in this case

{tk}k≥1 is defined a priori and is known to every network node. In any case, the weight

matrices A(k) originate from the node meeting process. In particular, we can consider the

contact matrix C(k), where cij(k) = 1 if node i has met node j since last time instant tk−1,

and cij(k) = 0 otherwise. We denote as C the (finite) set of all possible M × M contact

matrices describing the contacts among M nodes. Each node i can thus calculate its own

weights aij(k), for j = 1, . . . ,M , in one of the following two ways (which guarantee that the

matrix A(k) is doubly stochastic):

Rule 1 (Updates independent from meetings) For j 6= i, set aij(k) = 1/M if cij(k) = 1,

otherwise set aij(k) = 0. Set aii(k) = 1−∑
j 6=i aij(k). This method requires each node

to knowM , i.e., the total number of nodes in the system.

Rule 2 (Updates synchronized with meetings) Whenever node i meets node j, it also up-

dates its estimate. In this case, set aij(k) = a with 0 < a < 1, aii(k) = 1 − a and

aih(k) = 0 for h 6= j, i.

Next, we discuss two key issues that can negatively impact the convergence of the dis-

tributed optimization process in a DTN scenario. The first one is related to the validity of

Assumptions 6′ and 6′′. In fact, condition 6′ is essentially equivalent to assume that there is

a deterministic bound for the inter-meeting times of two nodes (that meet infinitely often),

and this is for example not the case for all the random mobility models usually considered,

see e.g., [86]. Condition 6′′ relaxes 6′, but requires the independence of the meetings occur-

ring in each time slot [tk−1, tk], and meetings under realistic mobility are instead correlated

(e.g., if in the recent past i has met j and j has met h, then the three nodes are likely to

be close in space and the probability that i meets h is higher that with uniform and inde-

pendent mobility). We address this issue in Section 3.3, where we prove that convergence

results hold under more general assumptions on the stochastic process of the matricesA(k).

The second issue is related to the synchronicity of the updates. In fact, the original frame-

work [20, 21] requires all the nodes to update their estimates at the same time instants. This

is not always feasible in a disconnected and distributed scenario like a DTN. For example,

under Rule 2 the reader may have noted that synchronous updates require each node to

know when a meeting between any two nodes in the network occurs. This does not appear

to be practical. Under Rule 1, which requires each node to know the total number of nodes
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Figure 3.2. Toy example, convergence of the three estimates in case of fixed step-size γ = 25 · 10−4.

Results have been averaged over 100 simulation runs. Top graph: synchronous updates. Bottom graph:

asynchronous updates.

in the system, nodes should also try to keep their internal clocks synchronized in order to

be able to perform their updates at “close enough” time instants and this presents some dif-

ficulties as well. We now show through an example that we cannot simply ignore the issue

of synchronicity and that a direct application of the algorithm described in the previous sec-

tion in general does not lead to correct results. Coming back to the toy example presented in

Section 3.1, we observe that we can think our three matrices in (3.5) as generated according

to Rule 2, when the meeting process has the following characteristics: at each time slot, node

1 and node 2 meet with probability 2/3, node 1 and 3 meet with probability 1/6 and node

2 and 3 meet with probability 1/6. Figure 3.2 shows the evolution of the estimates when

the step-size is constant and equal to 25 · 10−4, both for the synchronous case, where all the

nodes update their estimates when a meeting occurs (even the node that is not involved in

the meeting), and for the asynchronous case, where only the nodes involved in the meeting

perform the update. The curves represents the average estimates over 100 different simula-

tions with different meeting sequences. We note that in the synchronous case (top graph) all

nodes agree on the optimal value to set x, whereas, in the asynchronous case (bottom graph)
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the estimates still converge, but not to the correct point of minimum for the global function

f . We address this issue in Section 3.4, where we understand the roots of this convergence

problem and propose some simple modifications to the basic framework to effectively cope

with it.

In our opinion, these extensions to the basic framework proposed in [20,21], while moti-

vated in this study by the DTN scenario, are of wide interest for other possible applications

such as mobile wireless ad hoc and sensor networks.
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3.3 Extension to more General Mobility Models

In our DTN scenario, we consider that the weights are determined from the contacts

through a bijective function (as in the case of the two rules presented in Section 3.2). Then

conditions 5 and 6′′ of [21], can be expressed in terms of the sequence of contact matrices as

follows: the contact matrices C(k) are i.i.d. and E[C(k)] is an irreducible aperiodic matrix.

In this section, we extend the convergence results to the following, more general, mobility

model.

Assumption 1 (Mobility model). It exists an irreducible, aperiodic and stationary Markov chain

Φ with a finite or countable set of states S and a function g : S → C, such that C(k) = g(Φk), for

each Φk ∈ S. Moreover, E[C(k)] is an irreducible aperiodic matrix.

Since there is a bijective correspondence among weight and contact matrices, we observe

that under Assumption 1, it also exists a function ĝ : S → A, such that A(k) = ĝ(Φk). The

case when the contact matrices (and then the weight matrices) are i.i.d. is a particular case

of our mobility model.

Our proof follows the same outline of [20,21] presented in Section 3.1. The main issue is

to prove the exponential rate of convergence of the backward productA
(k)
(1) to J = 1/M11T .

Before proving the convergence of the backward product, we need to recall an ergodic

property of the time shift operator θ for irreducible, aperiodic and stationaryMarkov chains.

The definitions of measure-preserving and ergodic operators may be found in the Appendix

3.B (see also Chapter V of [87] for more details).

Proposition 1. Given an irreducible aperiodic and stationary Markov chain Φ with finite or count-

able states, the shift operator θ is measure-preserving and ergodic together with all its powers θk,

where k ∈ N.

Proof. For stationary Markov chains the shift operator and its powers are measure-preser-

ving by definition of stationarity. Moreover, irreducible, aperiodic and stationary Markov

chains with finite or countable states are mixing (see Theorem 3.1 in [88]). From the defini-

tion of mixing, if θ is mixing, also the operator θk is mixing for any given k ∈ N. But every

mixing operator is also ergodic by Theorem 2 in [87], then θk is ergodic for any k ∈ N.

We observe that the stochastic process A(k) = ĝ(Φk) is not in general a Markov chain,

because different states of S may be mapped to the same weight matrix, but nevertheless it

is stationary and ergodic.
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We will also need the following result:

Lemma 1. (Windowing a Markov chain) Let Φ = {Φn, n ∈ N} be an irreducible, aperiodic

and stationary Markov chain. Consider the stochastic process Ψ = {Ψn, n ∈ N}, where Ψn =

(Φn,Φn+1, · · · ,Φn+h−1) with h a positive integer. Ψ is also an irreducible aperiodic stationary

Markov chain.

Proof. First of all it is evident that Ψ is also a Markov chain, whose states are possible h-

uples of states of Φ, e.g (s1, s2, · · · , sh). The transition probabilities could be calculated

starting from those of Φ. Stationarity of Ψ easily follows from the stationarity of Ψ. Ψ is

also irreducible because Φ is irreducible. In fact, given two states s′ = (s1, s2, · · · , sh) and
t′ = (t1, t2, · · · , th), for the irreducibility of Φ, it exists n0, such that the chain Ψ moves from

s′ to a state u′ = (u1, u2, uh−1, t1) after n0 steps, and then it is possible to move from sh to

t1. t
′ is a state of Ψ and therefore it is also a valid sequence of state transitions for Φ, conse-

quently in h − 1 time steps, Φ can move from t1 to th going through t2, · · · , th−1 and Ψ can

move from u′ to t′. In conclusion in n0 + h− 1 steps, Ψ can move from s′ to t′.

Aperiodicity requires a more detailed discussion. In detail, given a possible state s′ =

(s1, s2, · · · , sh), we want to prove that the greatest common divisor of the possible time steps

after which the chain Ψ can return in s′ is equal to 1. Note that even if Φ had the property

that it is possible to directly move from each state to itself, for a state s′ with si 6= s1 for some

i = 2, · · · , h, at least h steps are required to return to that state. Consider the minimum

number k0 of time steps after which the chain Φ can move from sh to s1 (again k0 exists

because Φ is irreducible). Consider then the increasing sequence of all the possible time

steps k1, k2, . . . after which it is possible to return in s1. Observe that also 2ki belongs to this

sequence. It is clear that Ψ can return in s′ after k0 + k1 + h − 1, k0 + k2 + h − 1, . . . steps.

Let us denote g the greatest common divisor of this sequence of numbers, we have that for

each i > 0 (k0 + ki + h − 1) mod g = 0. In particular also (k0 + 2ki + h − 1) mod g = 0,

and it follows that (k1) mod g = 0. This implies that g is also a divisor of the sequence

k1, k2, . . . . Since Φ is aperiodic, it follows that g = 1. This concludes the proof that Ψ is also

aperiodic.

Now we have all the instruments to study the convergence of A
(k)
(1) . First, we prove the

convergence to J. This is a corollary of results in [89].
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Proposition 2 (Convergence of the backward product). Let Assumption 1 hold, then

lim
k→+∞

A
(k)
(1) =

1

M
11T , J almost surely (a. s.) .

Proof. We observe that A(k) is a stationary and ergodic sequence of stochastic matrices

with strictly positive diagonal entries. Moreover, E[A(k)] is an irreducible aperiodic ma-

trix, then its eigenvalue with the second largest module has module strictly smaller than 1

(|λ2(E[A(k)])| < 1). From Theorem 3 in [89], it follows that, with probability one, for each

sequenceA(k) it exists a vector v ∈ R
M , such that

∑
i vi = 1 and

lim
k→+∞

A
(k)
(1) = 1vT .

Note that in general v is a random variable, depending on the specific sequence {A(k)}k≥1.

The matricesA(k) are doubly stochastic, thenw = 1/M1 is a left eigenvector corresponding

to the unit eigenvalue for all the matrices A(k). Theorem 4 in [89], guarantees that in this

case the above vector v is a deterministic constant almost surely and in particular is equal

to w. This concludes the proof.

Now we are ready to prove that the convergence rate is almost always exponential.

Proposition 3. Under Assumption 1 on the mobility models, if the matrices are doubly stochastic,

then for almost all the sequences there exist C > 0 and 0 < β < 1 (with C in general depending of

the sequence) such that for k ≥ s

∥∥∥A(k)
(s) − J

∥∥∥
max

≤ Cβk−s .

Proof. Given a matrixA, consider the coefficient of ergodicity, see e.g., [90]:

τ1(A) =
1

2
max
i,j

M∑

s=1

∣∣∣[A]is − [A]js

∣∣∣ .

In the proof of Theorem 3 in [89] is shown that it exists a positive natural h and η < 1 such

that

P

[
τ1

(
A

(s+rh−1)
(s+(r−1)h)

)
< η for infinitely many r

]
= 1 . (3.6)

Then we decompose A
(k)
(s) , in the product of ik blocks of size h and one block of size

(k + 1) mod h as it follows:

A
(k)
(s) = A

(k)
(s+ikh)

A
(s+hik−1)
(s+h(ik−1)) · · ·A

(s+h−1)
(s) .
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Because of the properties of a coefficient of ergodicity:

τ1

(
A

(k)
(s)

)
≤ τ1

(
A

(k)
(s+ikh)

) ik∏

j=1

τ1

(
A

(s+hj−1)
(s+h(j−1))

)
≤

ik∏

j=1

τ1

(
A

(s+hj−1)
(s+h(j−1))

)
.

Then, we can write:

log
(
τ1

(
A

(k)
(s)

))
≤

ik∑

j=1

log
(
τ1

(
A

(s+hj−1)
(s+h(j−1))

))
.

We now consider the Markov chain Φ, that “generates” the sequence of matrices A(k)

underlying the mobility process. Because of Lemma 1, Ψt = (Φt,Φt+1, · · · ,Φt+h−1) is an

irreducible aperiodic stationary Markov chain, and then all the powers of the shift operator

θ, and in particular θh, are ergodic. We observe that log
(
τ1

(
A

(j+h−1)
(j)

))
is a function of

(Φj ,Φj+1, · · · ,Φj+h−1) and then of Ψj . We call such function f , i.e.,

f(Ψj)
def
= log

(
τ1

(
A

(j+h−1)
(j)

))
.

Note that f(Ψt) ≤ 0 and, from Equation (3.6), f(Ψt) < log(η) < 0 infinitely often almost

surely. To the random sequence {f(Ψs), f(Ψs+h), f(Ψs+2h), · · · }, we can then apply the

Birkhoff’s Ergodic Theorem obtaining that:

lim
i→∞

1

i

i∑

j=1

log
(
τ1

(
A

(s+hj−1)
(s+h(j−1))

))
= lim

i→∞
1

i

i∑

j=1

f(Ψs+hj) = E[f(Ψt)] < 0 a. s. ,

therefore,

lim sup
h→∞

1

h
log

(
τ1

(
A

(s+h)
(s)

))
≤ E[f(Ψt)] < 0 a. s. .

Consider E[f(Ψt)] < ζ < 0, then for almost all the sequences it exists h0, such that for all

h ≥ h0, it holds:

1

h
log

(
τ1

(
A

(s+h)
(s)

))
≤ ζ, i.e., τ1

(
A

(s+h)
(s)

)
≤ eζh .

If we define β = exp(ζ) < 1, C = β−h0 and recall that τ1
(
A

(k)
(s)

)
≤ 1, we obtain:

τ1

(
A

(k)
(s)

)
≤ Cβk−s for k ≥ s . (3.7)

In the above equation, the value of the constant h0 depends on the specific random se-

quence and also on s (while the same value ζ can be selected for all the sequences and in-

dependently from s). We need then to use a corollary of the Ergodic Theorem about “nearly

uniform” convergence that is stated as Proposition (1.5) in [91]: if f(·) is square integrable,

then for almost all the sequences we can select h0 independently from s. Clearly this is the
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case for our function f(Ψt), therefore we can conclude that C in (3.7) only depends on the

considered sequence.

So far we have established the existence of a geometric convergence result for the ergodic

coefficient τ1. The last step of our proof requires us to prove a geometric bound for the

distance between A
(k)
(s) and its almost sure limit J. This is not particular difficult since we

mainly have to follow the proof of Theorem 4.17 in [90].

First we observe that a geometric bound holds also for the difference between any two

elements on the same column and different rows. In fact, from the definition of τ1(·):
∣∣∣∣
[
A

(k)
(s)

]
u,v

−
[
A

(k)
(s)

]
w,v

∣∣∣∣ ≤ 2τ1

(
A

(k)
(s)

)
.

We call ǫ the right side of the above expression that we can rewrite as:

[
A

(k)
(s)

]
u,v

− ǫ ≤
[
A

(k)
(s)

]
w,v

≤
[
A

(k)
(s)

]
u,v

+ ǫ ,

therefore, for the double stochasticity of A(k), for all k we have that

M∑

w=1

[A(k + 1)]z,w

([
A

(k)
(s)

]
u,v

− ǫ

)
≤

≤
M∑

w=1

[A(k + 1)]z,w

[
A

(k)
(s)

]
w,v

≤

≤
M∑

w=1

[A(k + 1)]z,w

([
A

(k)
(s)

]
u,v

+ ǫ

)
,

which is equal to
[
A

(k)
(s)

]
u,v

− ǫ ≤
[
A

(k+1)
(s)

]
z,v

≤
[
A

(k+1)
(s)

]
u,v

+ ǫ .

By induction:
[
A

(k)
(s)

]
u,v

− ǫ ≤
[
A

(k+r)
(s)

]
z,v

≤
[
A

(k+1)
(s)

]
u,v

+ ǫ ,

and letting r go to infinity

[
A

(k)
(s)

]
u,v

− ǫ ≤ 1

M
≤

[
A

(k+1)
(s)

]
u,v

+ ǫ ,

i.e., ∣∣∣∣
[
A

(k)
(s)

]
u,v

− 1

M

∣∣∣∣ ≤ ǫ ,

and being that this inequality is true for all u and all v, a geometric bound can be derived

also for
∥∥∥A(k)

(s) − J

∥∥∥
max

.
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In [21] a different result is proven, i.e., that there exist Ĉ and β̂ such that

E
[∥∥∥A(k)

(s) − J

∥∥∥
max

]
≤ Ĉβ̂k−s .

Then a series of inequalities for the expected values of ‖y(k)− xi(k)‖2 are obtained for all i.

Using Fatou’s Lemma, along with the non-negativeness of distances, it is possible to derive

inequalities that hold with probability 1. Using Proposition 3, instead, it is possible to obtain

the same inequalities directly without the need to consider the expectation.
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3.4 Asynchronous Updates

In this section, we study how the presented framework needs to be extended in order to

support the case when nodes asynchronously update their status. We consider the sequence

{tk}k≥1 of time instants at which one or more nodes perform an update of their estimates.

Again, we denote that the estimate of node i at time tk (immediately before the update) is

xi(k) and represent all the estimates through the matrixX(k). The evolution of the estimates

can still be expressed in a matrix form similarly to (3.2):

X(k + 1) = A(k)X(k)− Γ(k)D(k) , (3.8)

whereΓ(k) is a diagonal matrix and the element [Γ(k)]ii is simply the step-size used by node

i at the k-th update. We denote this step-size as γi(k). If j is not among the nodes which

perform the update at time tk, then it will simply be ajj(k) = 1, ajh(k) = 0 for h 6= j and

γjj(k) = 0.

In what follows we first consider the case of decreasing step-sizes, similarly to condition

1, described in Section 3.1. That is, we will consider that for each i, the sequence {γi(k)}k≥1

satisfies:
∑∞

k=1 γi(k) = ∞ and
∑∞

k=1 γi(k)
2 <∞.

We can go over the rationale in [21] and prove similar results for the new system de-

scription. In particular, our proof of the exponential convergence rate of A
(k)
(s) holds clearly

also in this case. Bounds for the distance between xi(k) and y(k) = 1/M1TX(k) hold with

minimal changes, so that we can prove the analogous of Proposition 2 in [21]:

Proposition 4 (Convergence of Agent Estimates). Under Assumption 1, the estimate of each

node converges almost surely to the vector y(k), i.e.,

lim
k→+∞

‖y(k)− xi(k)‖ℓ2 = 0 a. s. , for all i .

Proof. See Appendix 3.C.

The following step is to use bounds for the distance between y(k) and x∗ (a point of

minimum for f ) to show that limk→+∞ y(k) = x∗.

In particular the following inequality is derived in [21] (for the synchronous case they

are considering):

k∑

s=1

γ(s) [f(y(s))− f(x∗)] ≤ M

2
‖y(1)− x∗‖2ℓ2+

+ 2L
M∑

j=1

k∑

s=1

γ(s)‖y(s)− xj(s)‖ℓ2 +
L2

2

k∑

s=1

γ2(s) .



3.4. Asynchronous Updates 125

The first term at the right hand side of the above inequality is a constant, the last term is

summable because of the assumption on the step-sizes. In [21] it is proven that, almost

surely,
∑∞

s=1 γ(s)‖y(s)− xj(s)‖ℓ2 <∞. Thus they show that

0 ≤
∞∑

s=1

γ(s) [f(y(s))− f(x∗)] <∞ a. s. , (3.9)

from (3.9) and the fact that
∑∞

s=1 γ(s) = ∞, it is possible to conclude that

lim inf
k→∞

f(y(k)) = f(x∗) a. s. , and lim
k→∞

xi(k) = x∗ a. s. .

In the Appendix 3.D, a similar derivation is carried on, leading to the following general-

ization of (3.9):

∞∑

s=1

M∑

i=1

γi(s) [fi(y(s))− fi(x
∗)] <∞ a. s. . (3.10)

Unfortunately, the different values of γi(s) do not allow us to formulate the inequality

above in terms of the global function f as in (3.9).

We do not have currently a formal result stating underwhich conditions the asynchronous

system converges to the optimal solution, but (3.10) suggests us that all the weights γi(k)

should have on average the same value. We then propose the following conjecture, that we

support later with some examples:

Conjecture 1. When updates are asynchronous, convergence results for sub-gradient methods hold

if E[γi(k)] = E[γj(k)] for each i and j.

Let us see how we can guarantee this condition in different cases. We consider that

updates occur after every meeting following rule 2 in Section 3.2. Moreover consider that

γi(k) = 1/ni(k), where ni(k) is the total number of updates node i has performed until the

time instant tk. If the meeting process follows a Poisson process with total rate λ and at each

instant the probability that node imeets another node is pi, we expect that by time k, node i

has pikmeetings (and an equal number of updates). Then the expected value of its step-size

is E[γi(k)] = E[1/ni(k)] = pi/(pik) = 1/k. In conclusion if step-sizes follow the rule γi(k) =

1/ni(k), we expect the asynchronous sub-gradient mechanism to converge to the optimal

solution. Figure 3.3 (top graph) shows that this is true for our toy example. The simulations

for the optimization problem considered in Section 3.5 confirm such convergence.

Let us now revisit the example in Section 3.2 showing that the estimates were not con-

verging to a point of minimum (Figure 3.2, bottom graph). Here step-sizes were constant,
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Figure 3.3. Toy example, convergence of the three estimates in case of asynchronous updates. Results have

been averaged over 100 simulation runs. Top graph: decreasing step-size γi(k) = 1/ni(k). Bottom graph:

weighted fixed step-size γi(k) = p−1

i
· 25 · 10−4.

i.e. γi(k) = γ. Now, reasoning as above we can conclude that E[γi(k)] = piγ. Hence the

expected values are not equal as far as node meeting rates (and then update rates) are not

equal: this was the case of our example, where4 p1 = 5/6, p2 = 5/6 and p3 = 1/3. In-

tuitively, we expect convergence to be biased towards values closer to the optimum of the

local functions of those nodes that perform the updates more often. Equation (3.10) sug-

gests us that what the distributed mechanism was really doing is to minimize the function
∑

i pifi = (3/2)x2 − (5/6)x rather then f =
∑

i fi = 3x2 − x. This is the case, being that

the estimates are converging to 5/18 (dot-dashed line in all the previous figures). If now

we want to correct the bias, it is sufficient to consider that each node selects its step-size

inversely proportional to its meeting rate. Figure 3.3 (bottom graph) shows that also this

correction leads the estimates to converge to the correct results.

4Note that meetings always involve two nodes, this is the reason why p1 + p2 + p3 = 2.
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3.5 Application in DTNs: a Case Study

In this section we apply the distributed sub-gradient method with our enhancements to

a DTN scenario inspired by the work in [83]. As explained in Section 3.4 our enhancements

consist of: 1) allowing nodes to update asynchronously their estimates, i.e., whenever any

two of them meet and 2) applying the decreasing step size rule to avoid possible bias effects

in the convergence towards the global optimum.

All the nodes in the network are interested in the same dynamic information content

and can share it whenever they meet. The information update is performed by a Service

Provider (SP) that injects fresh information in the network according to a Poisson process of

parameter µ update/sec. At a given instant t̄we call ti(t̄) the time at which the SP generated

the most recent content version available at node i, then Yi(t̄) = t̄ − ti(t̄) is the age of such

version. An information content has a non-increasing value in time. For example, we give

value ui(Yi(t̄)) to the information stored in node i, where ui(·) is a non-increasing function.

The goal of the SP is to optimize

f(x) =
M∑

i=1

fi(x) =
M∑

i=1

Ex[ui(Yi)] , (3.11)

where x ∈ R
M is the rate allocation vector, such that

∑M
i=1 xi ≤ µ and xi ≥ 0 for all i. Note

that the age Yi(t̄) is modeled as a random variable Yi depending on x. In [83], Equation (3.11)

is proved to be concave and therefore the optimal x can be obtained by the SP using standard

optimization techniques (see e.g., [92]) such as the projected gradient descent algorithm5:

namely, iteratively computing x(k+1) = Π (x(k) + γk∇f(x(k))), where {γk}k≥0 is a positive

sequence of parameters such that
∑

k γk = ∞, limk→∞ γk = 0 and Π is the projection onto

the feasible set for x. In general, a closed formula for f(x) is not known; thus, the gradient

needs to be estimated as explained in [83]. Here, our purpose is to focus on the distributed

sub-gradient method so we consider the specific case where updates can travel at most two

hops, thus avoiding to address the gradient estimation’s issue. In detail, at a given instant t̄,

let us call tSPj (t̄) the time at which the SP directly injected fresh content to node j, then we

define the following protocol’s rule:

Definition 1 (Content Sharing). When a node j meets a node i at time t̄, j will copy to user

i the last content downloaded directly from the SP if this content is more recent then the

content stored in i, i.e., ti(t̄) < tSPj (t̄) .

5For a discussion about the projected gradient method implemented in a distribute fashion see [93].
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In this case, assuming also that (a) u(Yi) = χ {Yi ≤ τ} for all nodes i, where τ is a given

threshold after which the information is worthless6 (e.g., the information consists of news

about events that expire after some time) and (b) the meeting process among node pairs is

Poisson distributed, we can compute the local utility function for each node as

fi(x) = 1−


 ∏

j∈Ni

xje
−λijτ − λije

−xjτ

xj − λij


 e−xiτ , (3.12)

where λij is the meeting rate between i and j andNi
def
= {j : λij > 0}. The global utility func-

tion in (3.11) is then simply obtained summing (3.12) over i = 1, 2, . . . ,M . The computations

to derive (3.12) can be found in the Appendix 3.E.

The local gradient function needed in (3.1) can be computed directly from (3.12), where

nodes only need to estimate simple statistics on their own meeting rates. Clearly, (3.11) can

be optimized also in a centralized fashion collecting, for example at the SP itself, information

about the statistic of the overall network meeting process [83]. However, in a DTN scenario

the SP may be able to communicate with a group of connected nodes only for short peri-

ods of time, that we would like to exploit transmitting the actual content users care about.

Moreover, issues related to privacy easily apply to this scenario: for example, a node may

prefer not to disclose information about its meetings to the SP and, in some cases, it would

be equally desirable to maintain information about the utility function ui(·) reserved (e.g.,

in military applications). A distributed approach is therefore of actual interest not only for

DTNs, but also for scenarios that go beyond them.

To optimize f(x) in a distributed fashion we can use the framework presented in Sec-

tion 3.1. Each node i can compute a local estimate of the optimal allocation x, i.e., xi, through

iterative updates. In detail, when two nodes i and j meet they: i) update xi and xj as in (3.1)

and, ii) project the result so obtained onto the feasible set
∑M

l=1 xl ≤ µ and xl ≥ 0 for all

l ∈ {1, . . . ,M}.
In our implementation of sub-gradient optimization all the xi eventually converge to the

optimum x∗ of (3.11). Henceforth, the SP can retrieve the optimal transmission rates using

the following “push-policy”. During the execution of the algorithm each node i maintains

its own estimate xi. The SP collects xi from every node and obtains the rate allocation vector

as x = (
∑M

i=1 x
i)/M .

To test the performance achievable by the distributed sub-gradient method under traces

with memory, we simulated meeting events among M = 10 nodes as follows. Calling R1

6χ {y ≤ τ} is equal to 1 if y ≤ τ and 0 otherwise.
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Figure 3.4. Optimal bandwidth allocation for a network of 10 nodes.

and R2 two distinct regions of the space, nodes can be placed either in R1 or in R2. Only

nodes that are within the same region can communicate with each other. We let nodes free

to change region of placement according to a Poisson process of overall rate λd = 0.1, thus

network’s full connectivity is guaranteed. In addition, according to a Poisson process of

parameter λm = 1 (note that λm > λd), we generate meeting events among pair of nodes

belonging to the same region. Each node is selected for a meeting according to a weight

which is proportionally inverse to its index, i.e., node i is selected with weight wi = i−3.

Note that we generate a meeting process that is both stationary and ergodic, and along this

process nodes have diverse contact rates. In particular node 1 has the highest contact rate,

whilst node 10 the lowest. To sum up, letting nodes i and j update their states at their meet-

ing times according to the above process, we obtain a corresponding sequence {A(k)}k≥1

that can be viewed as generated from an ergodic and stationary Markov chain. Also, given

that nodes have different contact rates and asynchronous updates are performed, we know

that a direct application of the distributed sub-gradient algorithm may lead to sub-optimal

results, see the toy example of Section 3.2.

Figures 3.4–3.5 show simulation results for the above setting of parameters and τ = 20.
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Figure 3.5. Example of convergence of estimate for two nodes when the sub-gradient method is used.

Asynchronous updates and decreasing step-size.

Figure 3.4 shows the optimal allocation rate for each user. When the bandwidth that the

SP can use to send updates is very low (i.e., small µ), the best solution is that the SP uniquely

sends updates to the node that has the higher contact rate, i.e., node 1; for large values of

µ, instead, the SP can evenly send updates to all the nodes in the network. Interestingly,

as already observed in [83], for some values of µ (in our case µ around 100.7 update/sec)

the optimal choice is for the SP to allocate more bandwidth (i.e., a larger fraction of µ) to

the node with the lowest contact rate, namely, node 10. For these values of µ, in fact, those

nodes with a large contact rate such as node 1 are able to maintain high values for their

utility functions just by collecting information from the large number of nodes they meet.

In Figure 3.5 we show the mean trajectory towards the optimal for two elements in

x = (
∑M

i=1 x
i)/M , where the vectors xi have been obtained along a sequence of 5 · 104

meetings considering µ = 10−1.1 update/sec. We note that the estimates provided through

the distributed sub-gradient method converge to the theoretical optimal allocation values in

Figure 3.4. Concerns about the convergence rate of such estimates are out of the scope of the

present report and will be addressed in the future research7.

7Note, however, that a wide literature addressing this issue already exists. E.g., for the problem of designing
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Figure 3.6. Performance comparison: centralized solver vs distributed method.

Finally, in Figure 3.6 we draw with a solid-line the maximum of f(x) corresponding to

the optimal rate allocations in Figure 3.4, which was obtained using a centralized solver [92].

Note that with unlimited bandwidth, the maximum of f(x) is equal to 10, i.e., when each

node i has utility ui = 1. For eight different values of the available bandwidth µ, we also plot

with squared points the utility function values corresponding to the optimal rate allocation

achieved again with x = (
∑M

i=1 x
i)/M using sub-gradient optimization together with our

enhancements. With crosses we show the performance of the sub-gradient optimization

with a fixed step size [20], which neglects the asynchronous update issue. As expected, the

results of the latter algorithm are sub-optimal. Most importantly, the solutions achieved

with our approach are very close to the actual optimum for all values of µ. This confirms

the validity of the distributed framework that we presented.

suitable sequences {A(k)} to speed up the convergence of consensus see [94].
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3.6 Conclusions and Discussions

In this chapter we considered the recent framework of the distributed sub-gradient op-

timization proposed in [20], and later extended in [21] for application on random scenarios.

We pointed out that existing convergence results for this framework can be applied to DTNs

only in the case of synchronous node operation and in the presence of simple mobility mod-

els without memory. Therefore, we addressed both these issues.

First, we proved convergence to optimality of the sub-gradient optimization technique

under a more general class of mobility processes formally defined using aMarkovianmobil-

ity model with memory in the meeting process. This result, in particular, must be regarded

as the an original contribution of this work.

Second, we proposed some modifications to the original sub-gradient algorithm so as

to avoid bias problems (i.e., consisting of the convergence towards sub-optimal solutions)

when nodes operate asynchronously. Also this analysis has to be regarded an important

contribution, especially because it can be used for the distributed optimization of practical

network protocols. In fact, as a case study, we applied the presented framework to the

optimization of the dissemination of dynamic content in a DTN.

All the provided results confirmed that the distributed sub-gradient method is an effec-

tive and very promising tool for optimization in distributed contexts.
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3.A Derivation of Equation (3.2)

In this appendix we show the mathematical steps that lead from Equation (3.2) to Equa-

tion (3.3).

From (3.2) we have that

X(k + 2) = A(k + 1)X(k + 1)− Γ(k + 1)D(k + 1) =

= A(k + 1)[A(k)X(k)− Γ(k)D(k)]− Γ(k + 1)D(k + 1) =

= A
(k+1)
(k) X(k)−A

(k+1)
(k+1)Γ(k)D(k)− Γ(k + 1)D(k + 1) ,

where Γ(k) is a diagonal matrix and the element [Γ(k)]ii = γ(k), for all i. Iteratively, re-

placing k + 2 with k + s + 1, k + 1 with k + s and k with k + s − 1, respectively, leads

to

X(k + s+ 1) =

=A
(k+s)
(k+s−1)X(k + s− 1)−A

(k+s)
(k+s)Γ(k + s− 1)D(k + s− 1)− Γ(k + s)D(k + s) =

=A
(k+s)
(k+s−1) [A(k + s− 2)X(k + s− 2)− Γ(k + s− 2)D(k + s− 2)]+

−A
(k+s)
(k+s)Γ(k + s− 1)D(k + s− 1)− Γ(k + s)D(k + s) =

=A
(k+s)
(k+s−2)X(k + s− 2)−A

(k+s)
(k+s−1)Γ(k + s− 2)D(k + s− 2)+

−A
(k+s)
(k+s)Γ(k + s− 1)D(k + s− 1)− Γ(k + s)D(k + s) =

=A
(k+s)
(k+s−2)X(k + s− 2)−

1∑

l=0

A
(k+s)
(k+s−l)Γ(k + s− 1− l)D(k + s− 1− l)+

− Γ(k + s)D(k + s) =

...

=A
(k+s)
(1) X(1)−

k+s−2∑

l=0

A
(k+s)
(k+s−l)Γ(k + s− 1− l)D(k + s− 1− l)− Γ(k + s)D(k + s) ,

and finally, replacing k + s with k, we have that

X(k + 1) = A
(k)
(1)X(1)−

k−2∑

l=0

A
(k)
(k−l)Γ(k − 1− l)D(k − 1− l)− Γ(k)D(k) (3.13)

or, replacing in Equation (3.13) k − l with s

X(k + 1) = A
(k)
(1)X(1)−

k∑

s=2

A
(k)
(s)Γ(s− 1)D(s− 1)− Γ(k)D(k) ,

that is exactly Equation (3.3), as we wanted.
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3.B Stationarity and Ergodicity: Concepts

Let (Ω,F ,P) be a probability spaces. Let also the function T : Ω → Ω be a measurable

transformation of Ω into itself.

Definition 2 (Measure-Preserving). A measurable transformation T : Ω → Ω into Ω is

measure-preserving if, for every B in F , P(TB) = P(B).

Definition 3 (Stationarity). A random sequence ω ∈ Ω is stationary if the shift operator is

measure preserving.

Definition 4 (Invariant set). If T is a measure-preserving transformation, B ∈ F is an

invariant set if TB = B, or equivalently P [(B \ TB) ∪ (TB \B)] = 0.

Definition 5 (Ergodicity). A measure-preserving transformation T is ergodic, if, given any

invariant set B ∈ F , it holds P(B) = 0 or P(B) = 1.

Definition 6 (Mixing). Ameasure-preserving transformation T is mixing if, for all B and C

in F ,

lim
n→∞

P(B ∩ TnC) = P(B)P(C).

Note that when a random sequence is said to be ergodic tout court, it means that the

shift operator is ergodic. Similarly when a random sequence is said to be mixing (or mixing

in the ergodic-theoretic sense), it means that the shift operator is mixing.
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3.C Proof of Proposition 4

In this appendix we prove Proposition 4, reported in the following for reader conve-

nience. Since we proved Proposition 3, the result here presented (along with Proposition 5

in the Appendix 3.D) can be viewed as an easy extension of Theorem 1 in [21] to the case of

mobility process obtained according to Assumption 1.

Let us first to explicitly formalize the following assumption, according to both [20] and

[21]:

Assumption 2 (Bounded Sub-gradients). Given x ∈ R
N , consider the sub-gradients of all the

nodes in the network computed in x, i.e., d1, . . . ,di, . . . ,dM . There exists a scalar L such that

‖di‖ℓ2 ≤ L for any x ∈ R
N and for all i ∈ {1, . . . ,M}. Namely, the sub-gradients of all nodes in

the network are bounded.

Then, we recall the following lemma from [93]:

Lemma 2. Let 0 < β < 1 and let {α(k)}k≥0 be a positive scalar sequence. Assume that limk→+∞ α(k) =

0. Then

lim
k→+∞

k∑

l=0

βk−lα(l) = 0 .

In addition, if
∑∞

k=1 α(k) <∞, then

∞∑

k=1

k∑

l=0

βk−lα(l) <∞ .

Using Lemma 2 we can prove that

Proposition (Convergence of Agent Estimates). Under Assumption 1 and decreasing step-size

rule (see Section 3.4), the estimate of each node converges almost surely to the vector y(k), i.e.

lim
k→+∞

‖y(k)− xi(k)‖ℓ2 = 0 a. s. , for all i .

Proof. Iterating Equation (3.8), and considering only the i−th row of X(k), we obtain

xi(k) =
M∑

j=1

[
A

(k−1)
(1)

]
ij
xj(1)−

k−2∑

s=1

M∑

j=1

[
A

(k−1)
(s+1)

]
ij
γj(s)d

j(s)− γi(k − 1)di(k − 1) . (3.14)

Recalling that y(k)
def
= 1/M1TX(k), we can write

y(k + 1) = y(k)− 1

M

M∑

j=1

γj(k)d
j(k) (3.15)
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and iteratively

y(k) =
1

M

M∑

j=1

xj(1)− 1

M

k−1∑

s=1

M∑

j=1

γj(s)d
j(s) . (3.16)

From (3.14) and (3.16) we have

‖y(k)− xi(k)‖ℓ2 =

=

∥∥∥∥∥∥
1

M

M∑

j=1

xj(1)−
M∑

j=1

[
A

(k−1)
(1)

]
ij
xj(1)− 1

M

k−1∑

s=1

M∑

j=1

γj(s)d
j(s)+

+
k−2∑

s=1

M∑

j=1

[
A

(k−1)
(s+1)

]
ij
γj(s)d

j(s) + γi(k − 1)di(k − 1)

∥∥∥∥∥∥
ℓ2

≤

≤
M∑

j=1

‖xj(1)‖ℓ2
∥∥∥∥
1

M
−
[
A

(k−1)
(1)

]
ij

∥∥∥∥
ℓ2

+

+
k−2∑

s=1

M∑

j=1

‖γj(s)‖ℓ2
∥∥∥∥
1

M
−
[
A

(k−1)
(s+1)

]
ij

∥∥∥∥
ℓ2

‖dj(s)‖ℓ2+

+
1

M

M∑

j=1

‖γj(k − 1)‖ℓ2‖dj(k − 1)‖ℓ2 + ‖γi(k − 1)‖ℓ2‖di(k − 1)‖ℓ2 ≤

≤
M∑

j=1

‖xj(1)‖ℓ2b(k − 1, 1) + L
M∑

j=1

k−2∑

s=1

γj(s)b(k − 1, s+ 1)+

+ L


 1

M

M∑

j=1

γj(k − 1) + γi(k − 1)


 , (3.17)

where the last inequality follows from the bounded sub-gradient Assumption 2 and defining

the quantity

b(k, s)
def
= max

i,j

∣∣∣∣
[
A

(k)
(s)

]
ij
− 1

M

∣∣∣∣ for all k ≥ s .

Immediately we note that the last term in the right hand side (rhs) of Equation (3.17)

goes to zero as k goes to infinity, since by assumption limk→∞ γj(k), for all j. From the proof

of Proposition 3 we have that for almost all the sequences {A(k)}k≥1

b(k, s) ≤ Cβk−s for all k ≥ s , (3.18)

where C > 0 and 0 < β < 1 (with C in general depending of the considered sequence).

Therefore for almost all the sequences also the first term in the rhs of (3.17) goes to zero

increasing k. Finally, we if (3.18) holds, Lemma 2 applies and limk→+∞
∑k−2

s=1 γj(s)b(k −
1, s+ 1) = 0 for all j. Thus, for almost all the sequences, for all i we have that

0 ≤ lim
k→+∞

‖y(k)− xi(k)‖ℓ2 ≤ 0 ,
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proving the desired result.
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3.D Derivation of Equation (3.10)

In this appendix we derive Equation (3.10). To this end, let us consider the following

lemma, that is a generalization of Lemma 5 in [20].

Lemma 3 (Basic Iterate Relation). Let xi(k) be generated according to (3.14) for all i ∈ {1, . . . ,M},
k ≥ 1 and y(k) be generated according to (3.15) for all k ≥ 1. Let also {gi(k)}k≥1 be a sequence of

sub-gradient of fi(·) computed in y(k), for all i ∈ {1, . . . ,M}, then for any x ∈ R
N and k ≥ 1 we

have

‖y(k + 1)− x‖2ℓ2 ≤ ‖y(k)− x‖2ℓ2+

+
2

M

M∑

j=1

γj(k)
[(
‖dj(k)‖ℓ2 + ‖gj(k)‖ℓ2

)
‖y(k)− xj(k)‖ℓ2

]
+

− 2

M

M∑

j=1

γj(k) [fj(y(k))− fj(x)] +
1

M2

M∑

j=1

γ2j (k)‖dj(k)‖2ℓ2 .

Proof. It follows straightforwardly from the same rationale of Lemma 5 in [20]. Considering

Equation (3.15), we can write, for any x ∈ R
N and all k ≥ 1

‖y(k + 1)− x‖2ℓ2 =

∥∥∥∥∥∥
y(k)− 1

M

M∑

j=1

γj(k)d
j(k)− x

∥∥∥∥∥∥

2

ℓ2

,

implying that

‖y(k + 1)− x‖2ℓ2 ≤ ‖y(k)− x‖ − 2

M

M∑

j=1

γj(k)
{
dj(k)

}T
(y(k)− x)+

+
1

M2

M∑

j=1

γ2j (k)‖dj(k)‖2ℓ2 . (3.19)

Considering the term
{
dj(k)

}T
(y(k)− x), for any j, we have

{
dj(k)

}T
(y(k)− x) =

{
dj(k)

}T
(y(k)− xj(k)) +

{
dj(k)

}T
(xj(k)− x) ≥

≥ −‖dj(k)‖ℓ2‖y(k)− xj(k)‖ℓ2 +
{
dj(k)

}T
(xj(k)− x) .

Since dj(k) is a sub-gradient of fj at x
j(k), we also have for any j and any x ∈ R

N ,

{
dj(k)

}T
(xj(k)− x) ≥ fj(x

j(k))− fj(x) .

Moreover, by using a sub-gradient gj(k) of fj at y(k), we obtain for any j and any x ∈ R
N ,

fj(x
j(k))− fj(x) = fj(x

j(k))− fj(y(k)) + fj(y(k))− fj(x) ≥

≥ {gj(k)}T (xj(k)− y(k)) + fj(y(k))− fj(x) ≥

≥ −‖gj(k)‖ℓ2‖xj(k)− y(k)‖ℓ2 + fj(y(k))− fj(x) .
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By combining the preceding three relations, it follows that for any j and any x ∈ R
N ,

{
dj(k)

}T
(y(k)− x) ≥ −

(
‖dj(k)‖ℓ2 + ‖gj(k)‖ℓ2

)
‖y(k)− xj(k)‖ℓ2+

+ fj(y(k))− fj(x) ,

and since γj(k) ≥ 0, for all j, it also holds the following

γj(k)
{
dj(k)

}T
(y(k)− x) ≥ −γj(k)

(
‖dj(k)‖ℓ2 + ‖gj(k)‖ℓ2

)
‖y(k)− xj(k)‖ℓ2+

+ γj(k) [fj(y(k))− fj(x)] .

Summing this relation over all j, we obtain

M∑

j=1

γj(k)
{
dj(k)

}T
(y(k)− x) ≥

≥ −
M∑

j=1

γj(k)
(
‖dj(k)‖ℓ2 + ‖gj(k)‖ℓ2

)
‖y(k)− xj(k)‖ℓ2 +

M∑

j=1

γj(k) [fj(y(k))− fj(x)] .

By combining the preceding inequality with Equation (3.19) we finally obtain the desired

result, i.e., for all x ∈ R
N and all k ≥ 1

‖y(k + 1)− x‖2ℓ2 ≤ ‖y(k)− x‖2ℓ2+

+
2

M

M∑

j=1

γj(k)
[(
‖dj(k)‖ℓ2 + ‖gj(k)‖ℓ2

)
‖y(k)− xj(k)‖ℓ2

]
+

− 2

M

M∑

j=1

γj(k) [fj(y(k))− fj(x)] +
1

M2

M∑

j=1

γ2j (k)‖dj(k)‖2ℓ2 .

To carry on our rationale, we also need the following result, that can be proved using

Lemma 2 in the Appendix 3.C.

Proposition 5. Under Assumption 1 and decreasing step-size rule (see Section 3.4), let xi(k) be

generated according to Equation (3.14) for all i ∈ {1, . . . ,M}, k ≥ 1 and y(k) be generated ac-

cording to Equation (3.15) for all k ≥ 1. Let us also define a sequence {γmax(s)}s≥1 such that

γmax(s)
def
= maxi γi(s) for each s ≥ 1. Then

+∞∑

k=1

γmax(k)‖y(k)− xi(k)‖ℓ2 <∞ a. s. , for all i .
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Proof. First of all we note that: 1) since {γi(k)}k≥1 satisfies limk→∞ γi(k) = 0 for all i, also

limk→∞ γmax(k) = 0, and 2) since {γi(k)}k≥1 satisfies
∑∞

k=1 γ
2
i (k) < ∞ for all i in the

limited set {1, . . . ,M}, also ∑∞
k=1 γ

2
max(k) < ∞. In fact, we have that

∑∞
k=1 γ

2
max(k) ≤

∑∞
k=1

∑M
i=1 γ

2
i (k) ≤

∑M
i=1

∑∞
k=1 γ

2
i (k) <∞.

Now, from Equation (3.17) in the Appendix 3.C and using γi(s) ≤ γmax(s) for all i, we

have that

‖y(k)− xi(k)‖ℓ2 ≤
M∑

j=1

‖xj(1)‖ℓ2b(k − 1, 1) + LM
k−2∑

s=1

γmax(s)b(k − 1, s+ 1) + 2Lγmax(k − 1) ,

that, with C1
def
= max

{∑M
j=1 ‖xj(1)‖ℓ2 ,ML

}
and γmax(0)

def
= 1, can be rewritten as

‖y(k)− xi(k)‖ℓ2 ≤ C1

k−2∑

s=0

γmax(s)b(k − 1, s+ 1) + 2Lγmax(k − 1) ,

multiply at both sides for γmax(k) we have

γmax(k)‖y(k)− xi(k)‖ℓ2 ≤ C1

k−2∑

s=0

γmax(k)γmax(s)b(k − 1, s+ 1) + 2Lγmax(k)γmax(k − 1) .

Recalling Proposition 3 we have that for almost all the sequences {A(k)}k≥1, b(k, s) ≤
C2β

k−s for all k ≥ s, where C2 > 0 and 0 < β < 1 (with C2 in general depending of

the considered sequence). Calling C the product C1C2, we have for almost all the sequences

γmax(k)‖y(k)− xi(k)‖ℓ2 ≤C
k−2∑

s=0

γmax(k)γmax(s)β
k−s−2 + 2Lγmax(k)γmax(k − 1) .

Noting that γmax(k)γmax(s) ≤ γ2max(k) + γmax(s)
2 and 2γmax(k)γmax(k − 1) ≤ γ2max(k) +

γ2max(k − 1), we obtain for almost all the sequences

γmax(k)‖y(k)− xi(k)‖ℓ2 ≤Cγ2max(k)
k−2∑

s=0

βk−s−2 + C
k−2∑

s=0

γ2max(s)β
k−s−2 + Lγ2max(k)+

+Lγ2max(k − 1) ≤

≤Cγmax(k)
2

1− β
+ C

k−2∑

s=0

γ2max(s)β
k−s−2 + Lγ2max(k) + Lγ2max(k − 1) ,

and summing this last inequality over all the k

+∞∑

k=1

γmax(k)‖y(k)− xi(k)‖ℓ2 ≤ C

1− β

+∞∑

k=1

γ2max(k) + C
+∞∑

k=1

k−2∑

s=0

γ2max(s)β
k−s−2 + L

+∞∑

k=1

γ2max(k)+

+ L
+∞∑

k=1

γ2max(k − 1) a. s. . (3.20)
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The desired result follows straightforwardly since: 1) the first, third and fourth term at

the right hand side of Equation (3.20) are summable as stated at the beginning of the proof,

and 2) the second term of Equation (3.20) is summable because Lemma 2 in the Appendix

3.C applies.

Now we have all the tools to derive Equation (3.10). Applying iteratively Lemma 3 we

have

‖y(k + 1)− x‖2ℓ2 ≤ ‖y(1)− x‖2ℓ2 +
2

M

k∑

s=1

M∑

j=1

γj(s)
[(
‖dj(s)‖ℓ2 + ‖gj(s)‖ℓ2

)
‖y(s)− xj(s)‖ℓ2

]
+

− 2

M

k∑

s=1

M∑

j=1

γj(s) [fj(y(s))− fj(x)] +
1

M2

k∑

s=1

M∑

j=1

γ2j (s)‖dj(s)‖2ℓ2 .

and then we can write

k∑

s=1

M∑

j=1

γj(s) [fj(y(s))− fj(x)] ≤
M

2
‖y(1)− x‖2ℓ2+

+
k∑

s=1

M∑

j=1

γj(s)
[(
‖dj(s)‖ℓ2 + ‖gj(s)‖ℓ2

)
‖y(s)− xj(s)‖ℓ2

]
+

1

2M

k∑

s=1

M∑

j=1

γ2j (s)‖dj(s)‖2ℓ2 ≤

≤ M

2
‖y(1)− x‖2ℓ2 + 2L

k∑

s=1

M∑

j=1

γj(s)‖y(s)− xj(s)‖ℓ2 +
L2

2M

k∑

s=1

M∑

j=1

γ2j (s) ,

where the last inequality follows from the bounded sub-gradient Assumption 2. Using the

sequence {γmax(s)}s≥1 defined in the Proposition 5 of above and rearranging some terms,

we obtain

k∑

s=1

M∑

j=1

γj(s) [fj(y(s))− fj(x)] ≤
M

2
‖y(1)− x‖2ℓ2 + 2L

M∑

j=1

k∑

s=1

γmax(s)‖y(s)− xj(s)‖ℓ2+

+
L2

2M

M∑

j=1

k∑

s=1

γ2max(s) .

For k that goes to infinity,
∑k

s=1 γ
2
max(s) < ∞ as note in the proof of Proposition 5, whilst

∑k
s=1 γmax(s)‖y(s) − xj(s)‖ℓ2 < ∞ for the Proposition 5 itself. M

2 ‖y(1) − x‖2ℓ2 is a constant

term, therefore Equation (3.10) follows.
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3.E Derivation of the Utility Function in Equation (3.12)

In this appendix we briefly review the mathematical steps of the analysis carried on

in [83], under the assumptions done in Section 3.5 andwith the formalism introduced therein.

The overall objective of this appendix is to formally derive Equation (3.12).

For a given time t̄ and node i ∈ N we define the processBi(t̄, t) ⊆ N as the set containing

all the nodes j such that, if a message is given to them at time t̄− t, it can reach user i in two

hops by time t̄. For each node pair (i, j), j 6= i, j, i ∈ N , we define also sij(t̄) as

sij(t̄)
def
= inf

t≥0
{t : j ∈ Bi(t̄, t)} .

t̄ − sij(t̄) indicates the minimum amount of time required to transfer information from

node j to node i at time t̄ through file sharing. If we assume that the inter-meeting pro-

cess time between the node pair (i, j) is exponentially distributed with parameter λij (i.e.,

Poisson meeting process) we have that in the case of two-hops protocol also sij(t̄) is expo-

nentially distributed with parameter λij .

Let then Y SP
i (t̄) be, at time t̄, the elapsed time since user i downloaded content directly

from the SP, i.e., Y SP
i (t̄) = t̄ − tSPi (t̄). Note that the random variable Y SP

i (t̄) for all i ∈ N is

exponentially distributed with parameter xi, this because the SP transfers updates directly

to node i with rate xi and in stationary conditions the forward process and the backward

one have the same statistic, see e.g., [95].

Lemma 1 of [83] states that

Yi(t̄) = min
j∈N

{
sij(t̄) + Y SP

j (t̄− sij(t̄))
}
, (3.21)

therefore, in our case, Yi(t̄) is the minimum overM independent random variables. One

of this random variables is exponentially distributed with parameter xi (i.e., sij(t̄)+Y
SP
j (t̄−

sij(t̄)) with j = i) and takes in account the directed updates of i from the SP. The remaining

M − 1 random variables are sum of two independent exponential random variables: one

distributed with parameter λij and the second with parameter xj . Each of these M − 1

variables models the update of i in two hops from the PS through a given relay node j 6= i.

For the independence of sij and Y
SP
j , and assuming in general λij 6= xj , we have that

psij+Y SP
j

(y) = λijxj

[
e−λijy − e−xjy

xj − λij

]
y > 0 ,

whence

P
[
sij + Y SP

j > y
]
=
xje

−λijy − λije
−xjy

xj − λij
,
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therefore

P [Yi > y] =


 ∏

j∈Ni

xje
−λijy − λije

−xjy

xj − λij


 e−xiy ,

where Ni
def
= {j : j 6= i, λij > 0}. In the case of utility u(Yi) = χ {Yi ≤ τ}we have that

fi(x) = Ex [ui(Yi)] = P [Yi ≤ τ ] = 1−


 ∏

j∈Ni

xje
−λijτ − λije

−xjτ

xj − λij


 e−xiτ ,

thus

f(x) =

M∑

i=1

fi(x) =M −
M∑

i=1


 ∏

j∈Ni

xje
−λijτ − λije

−xjτ

xj − λij


 e−xiτ .

From Equation (3.12) is straightforward to compute the components of the gradient vec-

tor we need to implement the distributed sub-gradient method, for all i:

∂fi(x)

∂xi
= τ


 ∏

j∈Ni

xje
−λijτ − λije

−xjτ

xj − λij


 e−xiτ ,

and, for z 6= i

∂fi(x)

∂xz
=




∏

j ∈ Ni

j 6= z

xje
−λijτ − λije

−xjτ

xj − λij



e−xiτ · λiz

{
e−λizτ + [τ(λiz − xz)− 1] e−xzτ

}

(xz − λiz)2
.
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