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Abstract

Hierarchical structures are pervasive in computer science because they are a fundamental
means for modeling many aspects of reality and for representing and managing a wide cor-
pus of data and digital resources. One of the most important hierarchical structures is the tree,
which has been widely studied, analyzed and adopted in several contexts and scientific fields
over time. Our work takes into major consideration the role and impact of the tree in computer
science and investigates its applications starting from the following pivotal question: “Is the
tree always the most advantageous choice for modeling, representing and managing hierar-
chies?” Our aim is to analyze the nature and use of hierarchical structures and determine the
most suitable way of employing them in different contexts of interests.

We concentrate our work mainly on the scientific field of Digital Libraries. Digital Libraries
are the compound and complex systems which manage digital resources from our cultural
heritage belonging to different cultural organizations such as libraries, archives and museums
and which provide advanced services over these digital resources. In particular, we point out
a focal use case within this scientific field based on the modeling, representation, management
and exchange of archival resources in a distributed environment. We take into consideration the
hierarchical inner structure of archives by considering the solutions proposed in the literature
for modeling, representing, managing and sharing the archival resources. Archives are usually
modeled by means of a tree structure; furthermore, the standard de facto for digital encoding
of digital cultural resources described and represented by means of metadata is the eXtensible
Markup Language (XML) that supports a tree representation. The problem often affecting
this approach is that the model used to represent the hierarchies is bounded by the specific
technology of choice adopted for its instantiation e.g. the XML. In the archival context the
tree structure is commonly instantiated by means of a unique XML file which mixes up the
hierarchical structure elements with the content elements, without a clear distinction between
the two; it is then not straightforward to determine how to access and exchange a specific
subset of data without navigating the whole hierarchy or without losing meaningful hierarchical
relationships.

To address the problems exemplified in the previous scenario we propose the NEsted SeT
for Object hieRarchies (NESTOR) Framework which is composed of two main components:
the NESTOR Model and the NESTOR Prototype.

The NESTOR Model is the core of the NESTOR Framework because it defines the set data
models on which every component of the framework relies. It defines two set data models that
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we have called the “Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INS-M)”.
We formally define these two set data models by showing how we can model and represent
hierarchies throughout collections of nested sets. We show how these models add some features
with respect to the tree while maintaining its full expressive power. We formally prove several
properties of these models and show the correspondences with the tree. Furthermore, we define
four distance measures for the the NS-M and the INS-M and we prove them to be metric spaces.

The NESTOR Model is presented from a formal point-of-view and then envisioned in a
practical application context defined by the NESTOR Prototype. In order to describe the pro-
totype we rely on the archive use case, and propose an application for modeling, representing,
managing and sharing of archival resources. The expressive power of the archive modeled by
means of a tree and the set data models are compared. We analyze the advantages and dis-
advantages of our approach when data management and exchange in distributed environments
have to be faced. We provide a concrete implementation of the described models in the con-
text of the informative system called SIAR (Sistema Informativo Archivistico Regionale) that
we designed and developed for the management of the archival resources of the Italian Veneto
Region. Furthermore, we show how the NESTOR Framework can be used in conjunction with
well-established and widely-used Digital Libraries technological advances.



Sommario

Le strutture gerarchiche sono largamente utilizzate in informatica in quanto mezzi fondamentali
per modellare molti aspetti della realtà e per rappresentare nonché gestire una grande varietà
di dati e risorse digitali. Una delle strutture gerarchiche più rilevanti è l’albero, una struttura
ampiamente studiata, analizzata e adottata in diversi contesti scientifici.

Questo lavoro tiene in grande considerazione il ruolo e l’impatto della struttura ad albero
in informatica e ne studia le applicazioni a partire dalla seguente domanda: “La struttura ad
albero è sempre il modo più vantaggioso per modellare, rappresentare e gestire le gerarchie?”
A tal proposito ci si propone di analizzare la natura e l’uso delle strutture gerarchiche e di
determinare il modo più adeguato per impiegarle nei diversi contesti considerati. Il lavoro si
focalizza principalmente sul campo scientifico delle biblioteche digitali, ossia su quei sistemi
composti e complessi che gestiscono risorse digitali culturali, provenienti da organizzazioni
differenti quali biblioteche, archivi e musei e che definiscono servizi avanzati su tali risorse.

In particolare, il caso d’uso principale su cui è basato questo lavoro è la modellazione, la
rappresentazione, la gestione e la condivisione delle risorse di tipo archivistico in ambiente dis-
tribuito. Si considera quindi la struttura gerarchica degli archivi tenendo presente le soluzioni
per modellare, rappresentare, gestire e condividere le risorse archivistiche allo stato dell’arte.
Gli archivi sono solitamente modellati mediante una struttura ad albero; inoltre, lo standard
di fatto per la codifica delle risorse culturali digitali descritte e rappresentate per mezzo di
metadati è l’eXtensible Markup Language (XML) che supporta la rappresentazione ad albero.

Nel contesto archivistico la struttura ad albero è comunemente istanziata mediante un unico
file XML che, per come è definito e comunemente utilizzato, mischia elementi strutturali e di
contenuto senza permettere una chiara distinzione tra di loro. Di fatto, non è facilmente defini-
bile l’accesso e lo scambio di sottoinsiemi di dati e risorse senza costringere alla navigazione di
tutta la gerarchia o senza perdere le significative relazioni gerarchiche tra le varie componenti.

Per affrontare i problemi esemplificati nel precedente scenario si propone il NEsted SeT for
Object hieRarchies (NESTOR) Framework composto da due componenti principali: Il NESTOR
Model e il NESTOR Prototype.

Il NESTOR Model è il nucleo del framework perché definisce i modelli ad insiemi su cui
ogni componente del framework si basa. Il NESTOR Model definisce due modelli dati basati
su insiemi annidati: il “Nested Set Model (NS-M)” e l’“Inverse Nested Set Model (INS-M)”.
Questi modelli sono definiti formalmente mostrando come sia possibile modellare e rappre-
sentare gerarchie mediante collezioni di insiemi annidati. Si dimostra come questi modelli ag-
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giungano alcune caratteristiche rispetto alla struttura ad albero, mantenendone il potere espres-
sivo. Si dimostrano formalmente diverse proprietà dei modelli ad insiemi e si mostrano le
corrispondenze con la struttura ad albero. Si definiscono inoltre quattro misure di distanza per
il NS-M e l’INS-M dimostrando come questi possano essere definiti come spazi metrici.

Il NESTOR Model è presentato da un punto di vista formale e successivamente adottato in
un concreto contesto applicativo definito dal NESTOR Prototype. Per descrivere il NESTOR
Prototype ci si basa sul caso d’uso degli archivi, proponendo un’applicazione per modellare,
rappresentare, gestire e scambiare le risorse archivistiche. Il potere espressivo degli archivi
modellati mediante l’albero e modellati mediante i modelli dati ad insiemi sono confrontati. Si
analizzano i vantaggi e gli svantaggi dell’approccio presentato quando deve essere affrontata
la gestione e lo scambio delle risorse in ambiente distribuito. Si fornisce un’implementazione
concreta dei modelli descritti nel contesto del sistema informativo chiamato SIAR (Sistema
Informativo Archivistico Regionale), progettato e sviluppato per la gestione delle risorse
archivistiche della Regione del Veneto. Inoltre, si mostra come il NESTOR Framework possa
essere usato congiuntamente alle tecnologie definite e ampiamente utilizzate nel contesto
delle biblioteche digitali per superare i problemi evidenziati dalle soluzioni allo stato dell’arte.
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Chapter 1

Outline

The thesis is organized as follows:

Chapter 2: Introduction to Information and Data Structures. In this chapter we
analyze the nature and use of hierarchical information and data structures in order to settle a
common basis to envision suitable ways of employing them in different applicative environ-
ments. We describe different kinds of hierarchy pointing out the multifaceted nature of this
concept. Furthermore, we analyze the use of the concept of hierarchy also from a historical
point-of-view in order to highlight its complex and compound nature. Afterwards, we analyze
the tree structure within several applicative environments in which it is employed.

Chapter 3: Overview of the Work. In this chapter we present the motivations of this
work. We introduce the NESTOR Framework composed by the NESTOR Model and the
NESTOR Prototype detailing the main innovations brought about by these components.

Chapter 4: Mathematical Background. In this chapter we present the mathematical
concepts on which the NESTOR Framework relies. First-of-all, we describe the basics of set-
theory focusing on the concepts of family of sets and ordered sets. Then we detail the aspects
of graph theory which are useful for this work; in particular, we analyze the tree, its extensions
and its metric properties.

Chapter 5: Digital Libraries. In this chapter we present the context in which this work
is carried on. We present the main characteristics of Digital Libraries, in particular highlight-
ing the aspects related to interoperability. We describe our main use case which is based of
the archives; we detail the nature of archives and archival resources pointing out their char-
acteristics and peculiarities. Lastly, we analyze several standard digital library technologies
focusing on the Dublin Core Metadata Initiative, the Encoded Archival Description (EAD), the
Open Archive Initiative - Protocol for Metadata Harvesting (OAI-PMH) and the Open Archive
Initiative - Object Re-use and Exchange (OAI-ORE).



2 Chapter 1. Outline

Chapter 6: The NESTOR Model. In this chapter we present the NESTOR Model giving
the formal definitions of the two set data models called Nested Set Model (NS-M) and Inverse
Nested Set Model (INS-M) on which it is based. Afterwards, we present the set-theoretical
properties of the set data models and the formal relationships between them and the tree. We
define two extensions of the set data models and lastly, we define and prove their metric prop-
erties.

Chapter 7: The NESTOR Prototype and its Implementation in the SIAR Sys-
tem. In this chapter we present the NESTOR Prototype which provides an instantiation of
the NESTOR Model. We describe how archives and archival resources can be modeled and
represented by means of the NESTOR Model and we point out two possible applications. The
first application is the state-of-the-art for representing, managing, accessing and exchanging
archival resources and the second is a solution which relies on the newly defined set-based ap-
proach. We compare these two applications pointing out advantages and disadvantages of both
the presented solutions. Lastly, we describe the Sistema Informativo Archivistico Regionale
(SIAR) which is a digital archive system designed and developed on the basis on the NESTOR
Model and which employs the proposed set-based application.

Chapter 8: Conclusions. In this chapter we draw some conclusions and discuss future
research directions.



Chapter 2

Introduction to Information and
Data Structures

The aim of this chapter is to analyze the nature and use of hierarchical information and data
structures in order to settle on a common basis to envision suitable ways of employing them in
different contexts of interests. We analyze the use of hierarchies and hierarchical organizations
in several scientific and non-scientific fields; in particular, we focus on the tree structure which
represents the most important hierarchical structure in mathematics and computer science.

2.1 Hierarchy

What is meant by hierarchy? The term hierarchy is polysemous indeed, it can be defined [Hanks,
1979] as “a system of persons or things arranged in a graded order”, as “a body of persons
in holy orders organized into graded ranks”, as “the collective body of those so organized”, as
“a series of ordered groupings within a system, such as the arrangement of plants and animals
into classes, orders, families, etc.”, and as “government by an organized priesthood”.

Hierarchical structures are part of our common experience, in the physical as well as in
the living and social worlds. Analyzing hierarchical structures in several environments we can
see that it is difficult to attempt a unique and comprehensive definition. There are distinct
levels in nature between the infinitely small – e.g. atoms or elementary particles – and the
infinitely large – e.g galaxies and universe; there is a hierarchy of living entities, from cells
to organs, organisms, species, populations and ecosystems; many social organizations like
firms or administrative services display pyramidal layouts defining unequal degrees in power or
competence between the levels; differences in size, wealth and power establish a hierarchical
order between cities in a region or between countries in the world; various distinctive attributes
define hierarchies of social status among groups or individuals in many societies. What we
observe or think is never limited to a single scale of facts, it is not made up of an amorphous
distribution of elements belonging to a single scale, but it is instead “organized into more or
less distinct levels that define a variety of scales in space and time and can in some cases be
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(a) Matryoshka (b) Chinese Boxes

Figure 2.1: Two inclusion hierarchies.

ordered according to these scales” [Pumain, 2006].
Hierarchical organizations are very frequent in natural and social systems that we observe;

this can be explained by considering different hypotheses, which constitute a common ground
for analyzing this complex concept. We may point out that hierarchies are our way of per-
ceiving and understanding our environment; thus, the concept of hierarchy can be considered
as an abstraction to model reality. We can also associate different meanings to the concept of
hierarchy: when applied to a social organization, it relates to a pyramidal configuration, en-
tailing a top-down or a bottom-up circulation of control and information. When applied to an
open system, the elements are grouped into subsystems, according to a nested or inclusion re-
lationship, or through a regular differentiation among the subsystems classified by size. In this
section we explore the concept of hierarchy under different points-of-view in order to unravel
its importance in several scientific and non-scientific fields.

2.1.1 Hierarchical Organizations

In order to conduct a systematic analysis of hierarchical organizations we analyze the different
types of hierarchy that we may encounter in different application environments. We take into
account the considerations and results of the analysis conducted in [Lane, 2006], where four
main different kinds of “hierarchy” have been defined.

Order hierarchy: this is associated to be equivalent to an ordering induced by the values of
a variable defined on some set of elements. An order hierarchy does not refer to relationships
and interactions between the entities that comprise the hierarchy, much less give any role to
hierarchy in conditioning entity relationships and interaction structures. Order is essential to
hierarchy, but order alone is not what makes hierarchy important for complex systems, nor is
hierarchy the source of the order in complex systems.

Inclusion hierarchy: this is associated with a recursive organization of entities. A popular
way to see an inclusion hierarchy is through the “chinese box” – or matryoshka – metaphor
(Figure 2.1): “[. . .] hierarchy means a set of Chinese boxes of a particular kind. A set of
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(a) Elementary Particles (b) Atoms (c) Molecules

Figure 2.2: Elementary Particles – Atoms – Molecules

Chinese boxes usually consists of a box enclosing a second box, which in turn, encloses a third
– the recursion continuing as long as the patience of the craftsman holds out. The Chinese
boxes called hierarchies are variants of that pattern. Opening any given box in a hierarchy
discloses not just one new box within, but a whole small set of boxes; and opening any one
of these component boxes discloses a new set in turn” [Simon, 1962]. This kind of hierarchy
can be seen as a special case of order hierarchy, where the ordering variable is the number of
boxes one opens before arriving at the particular box of interest. However, it is more than this;
it makes an ontological claim [Lane, 2006]. The boxes are seen as entities which contain other
entities; this is a way to represent reality – at least the part of reality contained in an inclusion
hierarchy – that follows a top down procedure. In this kind of hierarchy the entities at the lower
levels are somehow constituent parts of the higher ones.

Control hierarchy: This is probably the most commonly used sense of hierarchy, particu-
larly in reference to social organizations, and has to do with “who gives orders to whom”. In
this context, hierarchy refers to a control system in which every entity has an assigned rank and
usually all power is concentrated in the entity at the top. In this sense a church, a political party
or army can be organized as a control hierarchy.

Level hierarchy: This describes a particular kind of ontological organization, in which
entities are posited to exist at different “levels”. Each level is characterized by a particular
spatio-temporal scale for its associated entities and for the processes through which the entities
at this level interact with one another: the higher the level, the more extended the associated
spatio-temporal scale [Lane, 2006]. Entities at a given level may, through their interactions,
construct and maintain entities at higher levels, and higher-level entities may be, at least in
part, composed of lower-level entities: these are often described by the term upward causation.
Through upward causation a level hierarchy may compose an inclusion hierarchy; this is the
case where higher entities are exclusively composed by lower entities. Level hierarchies are
also formed by downward causation: incorporation into a higher-level entity can change the



6 Chapter 2. Introduction to Information and Data Structures

properties and interaction modalities of lower-level entities1. However, even if in a level hier-
archy the entities may be included into higher-level entities, they need not be: they are always
regarded as autonomous entities.

We can point out several examples of order hierarchy in the field of mathematics; a mean-
ingful example is represented by a sequence: an ordered list of objects (or events). An example
of inclusion hierarchy is biological where we find: cells, tissues, organs and living organisms.
Examples of control hierarchies can be the church or the army. As we have said the level hier-
archies can be inclusion hierarchies when the higher entities are exclusively composed of the
lower ones, such as: elementary particles – atoms – molecules (Figure 2.2) or cells – organs
– individuals – species. A case in which a level hierarchy cannot be seen strictly speaking as
an inclusion hierarchy is the case of organizational hierarchies such as: individuals – working
groups or departments – firms – national economies.

(a) (b) (c)

(d) (e)

Figure 2.3: (a) Linear hierarchy. (b) Non-overlapping branching hierarchy (c) Overlapping hierarchy.
(d) Not a hierarchy. (e) Shallow hierarchy. [Bateson and Hinde, 1976]

In Figure 2.3 we can see several graphs through which usually hierarchies are represented.
In this representation the elements are depicted by black dots, and the relation between them
by arrows. In Figure 2.3a we can see an example of what is called a linear hierarchy, that can
be used to represent an order hierarchy. The model of a linear hierarchy can be associated to
the concept of chain or sequence.

In Figure 2.3b we can see the representation of a hierarchy that has a tree structure where
we have a top element which is superior to all the other elements in the hierarchy and at the

1An unusual point-of-view about upward and downward causations is given by the discussion between science
and faith. Indeed, “materialist scientists posit that there is no source of causality other than material interaction in
this world” [Goswami, 2008], and this is known as upward causation. Instead, “all spiritual traditions agree that
there is another causal power in the world. That causal power is what is called God” [Goswami, 2008], this is
known as downward causation.
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same time every element can have at most one one direct superior element. In the following
sections we will analyze in detail the tree which is our main focus.

In Figure 2.3c we find a kind of hierarchy which can be seen as an extension of the tree
hierarchy. Indeed, we still have a top element but we can find elements which have more than
one direct superior element. In mathematics this hierarchy is called a join-semilattice [Davey
and Priestley, 2002].

In Figure 2.3d we can see a tree that is often called a shallow hierarchy because there is
an element ruling over many sub-elements, but all the sub-elements are of equal status to each
other. Lastly, in Figure 2.3e we can see a bunch of elements in a circular dependency and for
this reason this is not defined as a hierarchy.

2.1.2 A Historical Viewpoint

The analysis of the concept of hierarchy in different application environments showed how this
concept is extensive and hard to define. It is interesting to analyze the meaning of the concept
of hierarchy from a historical point-of-view. The concept of hierarchy is hard to enclose within
well-defined boundaries; “hierarchy” is polysemous and is a deep and powerful concept that,
even from a historical point-of-view, has to be studied within a specific context of interest.

The use of word hierarchy dates back a considerable time. It seems to have been coined
by Pseudo-Dionysius the Areopagite (6th century AD) [Heil, 1991]. It is composed by hieròs
which means “sacred” and archı́a from àrchein which means “rule”. The first clear mean-
ing arises from this etymology, since hierarchy at that time was “the governance of things
sacred” [Verdier, 2006].

This meaning is strictly supported by the classical conception of the metaphysical order
of the universe: “The Great Chain of Being” (Figure 2.4) in which all beings from the most
basic up to the very highest and most perfect being are hierarchically linked to form one inter-
connected whole. The philosophical formulation of this notion is attributed to Plato even if its
beginning is often associated with Aristotle2, although it was never formulated until Plotinus’s
idea of universe. The universe is to be explained as a hierarchy of realities, a great chain of
being, in which the higher reality is the cause of and gives existence to whatever is immedi-
ately below it; this process Plotinus calls emanation, an “overflowing” from a higher to a lower
level. In this process there is a gradual diminution, so that every existent is slightly inferior to
its cause.

This meaning of the word “hierarchy” persisted over time and it is emphasized as a theolog-
ical term; in this context it is used to the “subordination that exists between the different chorus
of angels. There are nine choruses of blessed spirits divided into three hierarchies” [Furetière,
1690]. The concept of hierarchy then enters the register of the description of the ecclesiastic
state, and more generally that of society overall. The “deistic” view of the concept of hier-

2Aristotles “Great Chain of Being”, “the Scala Naturae”, or also referred to as the “Ladder of Life” was an early
precursor of evolution theory, claiming that species can be ordered from the lowest to the highest, putting minerals
and plants at the low end and humans on the highest end of the scale.
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Figure 2.4: 1579 drawing of the Great Chain of Being from Didacus Valades, Rhetorica Christiana.

archy remained the predominant meaning until the “Enclyclopèdie” produced by Diderot and
d’Alambert where hierarchy appears as an essentially human construction: “[. . .] in civil soci-
ety there are different orders (ranks) of citizens rising one above the other, and the general and
particular administration of things is distributed in portions to different men or classes of men,
from the sovereign who rules everyone down to the mere subject who obeys” [Verdier, 2006].

This definition of hierarchy opened up a new way of seeing the concept of hierarchy widen-
ing its application; indeed, the notion of hierarchy widened from the side of principle to the
side of applications. A very meaningful example is the use of the concept of hierarchy in nat-
ural sciences, as for instance in Linnaeus and the taxonomy of organisms. In the taxonomy of
Linnaeus there are three kingdoms divided into classes, which in turn are divided into orders,
genera, and species, with an additional rank lower than species. The taxonomy of Linnaeus is
an example where the very concept of hierarchy is practically adopted even though the word of
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“hierarchy” is not formally used. Another example came from Georges-Louis Leclerc, Comte
de Buffon who wrote about the imperceptible evolution of one being into another and theorized
that life had originated in a single center, and had spread outwards. These are not the only in-
stances that can be called upon. Indeed, it is clear that these descriptions of nature served as
models – or even metaphors – for numerous descriptions of society. In 1835 the “Dictionnaire”
of the “Académie Française” extended the concept of hierarchy by relating the definition per-
taining to the angels and the clergy to other sorts of power, authority, and rank subordinated
one to another: political hierarchy, hierarchy of power, military hierarchy, etc.

From the above set of examples we can see that the concept of hierarchy is polysemous;
there are several variations of the concept and the ways it has been used throughout history.
From a historical point-of-view, it is possible to attempt to define of four main variations of the
use of concept of hierarchy [Verdier, 2006] which are the:

1. Range of the concept.

2. Continuity and discontinuity of the concept.

3. Status given to the concept.

4. Nature of the concept.

The first point is that of the range of the concept: in some instances “hierarchy” can explain
the whole universe, as with Milton who refers to “the scale of nature set from centre to circum-
ference” [Milton, 1674]; indeed, in Paradise Lost [Milton, 1674] the inter-relationship of the
spheres is seen as a relationship of “alimental” dependency in which the coarser elements en-
able the purer elements to exist. Or it can explain society as a whole, as with Durkheim: “It is
because human groups fit one into the other [. . .] that groups of objects are set out in the same
order. Their regularly decreasing extension as we pass from genus to species, from species
to variety, arises from the likewise decreasing extension presented in social divisions as one
moves away from the widest and most ancient towards the most recent and derived. If all
things are conceived as a single system, it is because society is conceived in the same manner.
It is [. . .] the single whole to which all else is referred. Thus logical hierarchy is merely another
aspect of social hierarchy and unity of knowledge is nothing other than the very unity of the
community, extended to the universe” [Durkheim and Mass, 1902]. Conversely the range of
the concept can be limited to a specific object as with Marx who uses it solely to describe the
military system: the workers, “simple soldiers of industry are placed under the supervision of
a complete hierarchy of officers and commanders” [Marx and Engels, 1948].

The second point is the contrast between continuity and discontinuity. From this point-
of-view the contribution of the article “Group Psychology and the Analysis of the Ego” by S.
Freud is fairly relevant; he compared the two hierarchies of the Church and the army. In the
former case we have Christ who loves all men, and men who must love one another in order
to love Christ: the two levels are essentially different [Verdier, 2006]. In the latter case, there
is a descending relationship from one level to the next which ensures “transfer of the libidinal
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bond of fatherhood, without this bond changing in nature”. The main difference between these
two hierarchies is that in the Church all men are equal before Christ, since we have equal rights
to his love; instead in the army hierarchy is made up of a hierarchy of successive formations.
Thus, Freud presented two examples of essentially different hierarchies and established the
foundations of the differentiation among hierarchies; in addition in this case we can find a
change of the scale of observation by shifting from a family principle (fatherhood) to a social
construction by hierarchy. Another important point is that in this context hierarchy is not an
assumption but a product.

The third point to be made regards the status given to the concept. The concept of hier-
archy can be used with different connotations; a meaningful example is “La Démocratie en
Amérique” by Tocqueville published in France in 1835: the word hierarchy is used here in
three ways, two negatives and one quite positive [Verdier, 2006]. The first concerns the social
hierarchy of the aristocracy, the second the administrative hierarchy which “produces perverse
centralizing effects” and the third concerns the natural social hierarchy which arises from the
activities of the individuals and which in Tocqueville’s opinion is necessary for civilization.

The final point concerns the nature of hierarchy which means the place given to hierarchy
in reasoned thought. There are two opponents in this case: one which proposes the idea of a
hierarchy which already exists and which has to be discovered as in the case of social Darwin-
ism and the other in which hierarchies are elaborated by researchers of a given area as in the
case of the definition given in the Enclyclopèdie.

2.2 Trees

The concept of hierarchy is complex and multifaceted and as common sense suggest it is
straightforwardly associated to the concept of tree. A tree is a particular kind of hierarchy
which respects some specific conditions. In Figure 2.3 we have seen several trees: Figure 2.3a,
2.3b and 2.3e.

Following the informal definition of hierarchy that we introduced in Section 2.1.1, we can
say that a tree is a linear hierarchy or a non-overlapping branching hierarchy. Thus, a hierarchy
is a tree if there are no loops (like in Figure 2.3f) or circuits (like in Figure 2.3d) and every
element is not bossed by more than one element (like in Figure 2.3c and 2.3g). The tree is the
most diffuse way to model a hierarchy and it is widely adopted in many disciplines ranging
from biology to computer science and humanities.

In Figure 2.5 we can see one of the most famous trees in history and probably one of the
first examples of representation of a hierarchy by means of this model. Figure 2.5 reproduces
the only tree in the “Origin of Species” of Charles Darwin; it appears in the fourth chapter,
“Natural Selection” in the section “Divergence of character”. Darwin did not call it a tree when
the image is first introduced: “Now let us see how this principle of great benefit derived from
divergence of character, combined with the principles of natural selection and of extinction,
will tend to act. The accompanying diagram will aid us in understanding this rather perplexing
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Figure 2.5: Divergence of character (Origin of Species, Charles Darwin).

subject . . .”. The word “tree” appears only at the end of the chapter, and “surrounded by signs of
hesitation, possibly because of the religious echoes associated with the Tree of Life” [Moretti,
2005]; however, Darwin wrote:“The affinities of all the beings of the same class have sometimes
been represented by a great tree. I believe this simile largely speaks the truth” [Darwin, 1859].

The idea of the evolutionary tree had been in Darwin’s mind for a long time; indeed, in
Figure 2.6 we can see a famous tree representation taken from Darwin’s notebook and dated
1837. Twenty-two years later, in the correspondence between Darwin and Murray (1859) we
can find another hint about the novelty of the tree representation; indeed, Darwin wrote: “[. . .
it is] an odd looking affair, but is indispensable” [Burkhardt and Smith, 2001].

An evolutionary tree constitutes a morphological diagram in which history is systemati-
cally correlated with form; for evolutionary thought morphology and history are truly the two
dimensions of the same tree: “where the vertical axes charts, from the bottom up, the regular
passage of time, while the horizontal one follows the formal diversification that will eventually
lead to well-marked varieties, or to entirely new species” [Moretti, 2005].

From a single common origin, to an immense variety of solutions: it is this incessant
growing-apart of life forms that the branches of a morphological tree capture with such intuitive
force: “A tree can be viewed as a simplified description of a matrix of distances” [Cavalli-
Sforza et al., 1994]. [Cavalli-Sforza et al., 1994] leads us to see another use of the tree in a
different field of studies: linguistics. In Figure 2.7 we can see a “Linguistic tree” [Cavalli-
Sforza, 1997] where its mirror-like alignment of genetic groups and linguistic families drifting
away from each other makes clear that “a tree is a way of sketching how far a certain language
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Figure 2.6: Tree of Life: the first-known sketch by Charles Darwin of an evolutionary tree describing
the relationships among groups of organisms. (Syndics of Cambridge University Library).

has moved from another one, or from their common point of origin” [Moretti, 2005]. This
vision suggests the idea of metrics associated with a tree; somehow establishing “how far” a
language moves from another one indicates the presence of a distance measure, which is a very
important concept as we will see.

The tree was born as a mere representation of a particular kind of hierarchy and has evolved
becoming an indispensable structure to model reality. Furthermore, the tree structure has been
formalized and several properties have been pointed out helping cross-field scientists to model
and then find a solution to their scientific issues. A relevant example is the phylogenetic tree
which originates directly from the evolutionary tree in Figure 2.5. That is a tree which repre-
sents the divergence of a trait over time, or the distance of the trait in question from the moment
of its initial observation to that of its final observation after a certain lapse of time. To explain
this observation in a clearer way and to introduce some basic terminology and concepts about
trees we present a basic method for defining a phylogenetic tree which follows a meaningful
example originally presented in [Piazza, 2005].

So let us suppose we want to build a phylogenetic tree of a gene, and this gene is the
sequence of DNA made up of five elements: AATTC. The gene evolves over time – that is
it changes. To represent this change in the form of a tree, we have to define both a point of
departure – called the “root” of the tree – and a line that joins the root to a point representing the
moment at which the first change happens, which we can imagine as altering the third element
from T to G – i.e. from AATTC to AAGTC. From now on the two genes AATTC and AAGTC
coexist, and their coexistence is represented by a bifurcation of the tree – this point is called a
“node” of the tree. Every successive episode of diversification can be represented analogously
by a node at which a bifurcation originates, and the tree becomes a sequence of bifurcations, at
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Figure 2.7: Linguistic tree (image originally published in [Cavalli-Sforza, 1997]).

the end of which we have as many genes that have been generated from the original in the root
of the tree. The elements at the extremities of the tree are technically called leaves. In [Piazza,
2005] the author pointed out that in a real tree of life we do not have only bifurcations but
trifurcations, quadrifurcations and so on and so forth.

The definition and the use of trees to model such aspects of reality allow us to use this
structure to define problems and seek solutions. In the phylogenetic context, as an example, a
well-known problem is to infer an evolutionary tree from a set of measurements; this particular
problem crops up in various fields, such as biology, paleography, and archeology [Buneman,
1971]. For examples, amino-acid sequences of the same protein extracted from different or-
ganisms can be determined, and from the dissimilarities between these sequences one can at-
tempt to construct a phylogenetic tree of these organisms [Buneman, 1971]. A similar situation
occurs when one has a set of manuscripts all directly or indirectly copied from a common orig-
inal manuscript: “One seeks to reconstruct a family tree or stemma of these documents from
errors” [Buneman, 1971]. A frequent starting point in the solution of such a problem is the
measurement of a dissimilarity coefficient between the vertices of the tree. We can see that in
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the treatment of such a problem we move from a pure graphical representation of a hierarchy –
e.g. the evolutionary tree of Figure 2.6 – to a mathematical treatment of the tree where we can
define properties between the nodes and try to use them to define and solve problems.

2.2.1 Phylogenetics and Graph Theory: A Step Towards Formalization

Since Darwin, a deep ongoing problem in biology has been to determine the history of the
evolution of species that has brought us to our current state. We have seen that the tree is
considered an essential structure for this purpose and it has been adopted and exploited in many
fields other than biology. The great utility of the tree lies in the possibility to mathematically
formalize it, define properties over it and then exploit this structure to model reality, formally
define problems and look for solutions. In this section we introduce some basic concepts that
lead us to a mathematical view of the tree giving us a hint about how its mathematical properties
can be helpful for solving problems. Throughout this still rather informal treatment we consider
phylogenetics as an aid to help explain some tree related concepts.

It is natural when we think about these concepts to draw a graph so we can model the reality
we are considering. A graph is a mathematical structure that consists of some elements called
vertices, some pairs of which are deemed to be “joined” or “adjacent” [Gowers et al., 2008].
It is customary to represent the vertices by points in a plane and to join adjacent points by a
line – e.g. Figure 2.3. The line is referred to as an edge. For example, the rail network of a
country can be represented as a graph: the vertices are the stations, and every edge between two
vertices represents a rail track from two stations. Another example is provided by the Internet:
every computer is a vertex and an edge represents a direct link between two computers. Many
questions in graph theory take the form of asking what some structural property of a graph can
tell us about its other properties. A classical example is trying to find a graph with n vertices
that does not contain a triangle – i.e. a set of three vertices mutually joined; in this case a
classical problem is: How many edges can the graph have? This question arises in several
application and optimization problems such as the Travel Salesman Problem.

vr
root

v1

v2

leaves

path from       
to

vr
v2

Figure 2.8: A rooted tree [Gowers et al., 2008].

When we think of a phylogenetic tree we can draw a graph where the set of vertices – call
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it V – are species and an edge from species v1 to species v2 indicates that v2 evolved directly
from v1. To explain some mathematical issues we consider a simple special case represented
in Figure 2.8. In this graph we can distinguish the root that we indicate with vr; this tree is then
called rooted tree because we can point out this particular node. Notice that, because there are
no cycles, there is exactly one path in the tree from vr to each vertex v. We say that v1 6 v2 if
the path from vr to v2 contains v1 (see Figure 2.8).

A classical problem in phylogenetics is to determine which trees with a given set of leaves
X (current species) and a given root vertex vr (a hypothesized ancestral species) are consistent
with experimental information and theoretical assumptions about the mechanism of evolution.
Such a tree is called rooted phylogenetic X-tree [Gowers et al., 2008]. One can always add extra
intermediate species, so typically one imposes the additional restriction that the phylogenetic
trees be as simple as possible.

Suppose that we are interested in a certain characteristic, number of teeth, for example. We
can use it to define a function f from X, the set of current species, to the nonnegative integers:
given a species x in X, we let f (x) be the number of teeth of members of x. In general a
character is a function from X to a set C of possible values of a particular characteristic – e.g.
having or not a particular gene, the number of vertebrae, the presence or absence of a particular
enzyme, etc. [Gowers et al., 2008]. It is characters such as these that are measured by biologists
in current species.

Another example that points out the importance of defining mathematical properties within
the tree is represented by the concept of distance related to evolutionary steps; in our formula-
tion of tree, we have treated the edges alike when in fact some may represent longer or shorter
evolutionary steps. Suppose that we have a function w that assigns a positive number to each
edge. Since there is a unique shortest path between any two vertices in the tree, w induces
a distance function dw on the vertices. This distance measure can be used to determine the
dissimilarity coefficient that we introduced in the previous section; this distance in literature is
called additive tree metric. The mathematical treatment of the tree conducted us to the defini-
tion of this widely-used property that in phylogenetic trees is used to try to describe the relations
between contemporary species; e.g. the distance between two species can be determined by
the number of different sequences for some protein or for the DNA.

The definition of distance or additive tree metric has been useful also in several other fields
such as cognitive psychology [Abdi, 1990]. In cognitive psychology the additive tree metric
has been used to study the so-called typicality effect. This term is used by psychologists to
express that some members of a natural category are more representative of that category than
are some of the other members. The classical example [Abdi, 1990] is that for the category
“bird”, “canary” better represents the category than “ penguin”. As such, class elements are
not equivalent and are often more or less representative of their category. Clearly, the standard
representation of a tree where edge length – i.e. a metric imposed on the tree – is not considered
forces objects to be equivalent. The possibility of defining an additive tree metric on a tree
allows the psychologists to adopt this model and to exploit its mathematical properties to solve
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a particular problem. Indeed, in [Tversky, 1977], the tree representation is considered more
than a simple tool; it has been shown that an additive tree distance is a particular case of a more
general model of similarity that allows for stimulus similarity to be measured in terms of both
common and distinctive features. In [Sattath and Tversky, 1977] we can see that similarity
data can be represented as a tree with a super-imposed additive metric; some empirical and
theoretical advantages of tree representation are illustrated where one of the most interesting
outcomes is the definition of a computer algorithm for the construction of additive similarity
trees.

Lastly, we point out that the mathematical properties of trees were first exploited in the field
of chemistry to study the chemical problems of isomers [Cayley, 1891] by successfully using
“recursion formulas for counting the number of trees having a finite number of vertices, where
the number of branches at a vertex was not limited” [Otter, 1947]. This problem was further
studied by [Henze and Blair, 1931] who developed a recursion formula for counting the number
of trees having the same finite number of vertices; this was the first solution to a problem of
isomers in chemistry. Afterwards, in 1937, G. Pólya developed a powerful method for treating
the symmetries of certain types of geometrical configurations under a given permutation group.
He implicitly exploited the recursion formulas by Henze and Blair, and Cayley “solving several
problems connected with chemistry”3 [Otter, 1947].

From these examples we can see that the mathematical treatment of trees allows us to define
automatic procedures – i.e. algorithms – to construct and manipulate trees.

2.2.2 The Tree Data Model

The tree in computer science has a great and fundamental impact; its mathematical definition
and its properties are the starting points for the definition of the tree data model and of important
and widely-used algorithms developed over it. In [Knuth, 1997] Knuth said that: “[trees] are
the most important nonlinear structures that arise in computer science”. In this section we
describe the tree in the context of computer science and define further terms and concepts
related to them, and we provide some examples of algorithms that operate on them.

In computer science when we talk of a tree – if not explicitly stated – we refer to a rooted
tree adopting the terminology and the – informal – definition given in Section 2.2.1 when
we described phylogenetic trees. We have seen that a tree is a graph with several conditions
imposed over it; the vertices of a tree in computer science are called nodes. This differentiation
helps us to distinguish when we are talking of a general graph and when we are dealing with a
tree.

We consider a tree an abstract data type that stores elements hierarchically [Goodrich and
Tamassia, 2001]. With the exception of the top node – i.e. the root – each node in a tree has a
parent node and zero or more children elements. Thus, a tree T is considered as a set of nodes
storing elements in a parent-child relationship. The most diffuse definition of tree in computer

3The original paper by Pólya is in German [Pólya, 1937]; we refer to the citations by Richard Otter in [Otter,
1947].
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science is recursive: we defined a tree in terms of trees; there are also non-recursive definitions,
but a recursive one seems to be more appropriate because of the very recursive nature of the
tree. Indeed, in [Knuth, 1997] a tree is formally defined as a finite set T of one or more nodes
such that:

1. there is one specially designed node called the root of the tree, root(T); and

2. the remaining nodes (excluding the root) are partitioned into m ≥ 0 disjoint sets T1, . . . ,Tm,
and each of these sets in turn is a tree. The trees T1, . . . ,Tm are called subtrees of the
root.

Level 0

Level 1

Level 2

Level 3

vr

va vb

vc vd ve

vf

Figure 2.9: The levels of the nodes of a tree.

It follows from this definition that every node of a tree is the root of one subtree contained
in the whole tree. The number of subtrees of a node is called degree of that node. The level
of a node with respect to T is defined recursively: The level of root(T) is zero, and the
level of any other node is higher than that node’s level with respect to the subtree of root(T)
containing it. The concepts are illustrated in Figure 2.9, which shows a tree T with seven
nodes. The root of the tree is the node labeled vr, and it has two subtrees T1 = {va} and
T2 = {vb, vc, vd, ve, v f }; the tree T2 has the node vb as its root. Node vb is at level 1 with respect
to the whole tree, and it has three subtrees T3 = {vc}, T4 = {vd, v f }, and T5 = {ve}: therefore vc

has degree 3. The leaves are the nodes va, vc, v f , ve. We can say that the root vr is the parent
of both nodes va and vb and vice versa that va and vb are children of vr; the node vr is not the
parent of the nodes vc, vd, ve, and v f but it is an ancestor of these ones, vice versa these nodes
are descendants of vr. We can see that the standard terms adopted for tree structures is taken
from the terminology used in the context of family trees; for this reason we can also talk about
sibling nodes – i.e. two or more nodes which have the same parent node.

Optionally, we can assign a left-to-right order to the children of any node. For instance, the
order of the children of vb in Figure 2.9 is vc the leftmost, then vd, then ve. This left-to-right
ordering can be extended to order all the nodes in a tree. va and vb are siblings and as vb is to
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the right of va then all the descendants of vb are to the right of va [Aho and Ullman, 1992]. So,
when the order between relative subtrees of a node is taken into account, we talk of ordered
trees. The very nature of computer representation defines an implicit ordering for any tree, so
in most cases ordered trees are of greatest interest to computer scientists [Knuth, 1997].

In this context it is important to highlight another kind of tree which is the labeled tree [Aho
and Ullman, 1992]. A labeled tree is a tree in which a label or value is associated with each
node of the tree. We can think of the label as the information associated with a given node.
The label can be something simple, such as an integer, or complex, such as the text of an entire
document. We can change the label of a node, but we cannot change the name of a node. If the
name of a node is not important, we can represent a node by its label. However, the label does
not always provide a unique name for a node, since several nodes may have the same label.

vr

va vb

vc vd

−

×

y

x 3

name

label

Figure 2.10: Expression tree for the arithmetic expression: y × (x − 3).

Thus, we can draw a node with both its label and its name as in Figure 2.10. The tree in
Figure 2.10 is an expression tree which represents an arithmetic expression where the leaves
are associated with variables and constants and the other nodes with the operators: inside the
circles representing the nodes we put the label and at the right of the circle we put the name of
the node.

2.2.3 The Tree Abstract Data Type

The tree abstract data type stores elements at positions, which, as with positions in a list, are
defined relative to neighboring positions. The positions in a tree are its nodes, and neighboring
positions satisfy the parent-child relationships that define a valid tree [Goodrich and Tamassia,
2001]. Therefore, it is possible to use the terms “node” and “position” interchangeably for
trees.

The algorithms for performing computations on a tree are defined on the basis of several
tree abstract data type basic methods. These methods can be divided into three main groups:
accessors, query and generic methods. We present a significant subset of these methods with a
clear understanding that this list is extensible.
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The accessor methods return and accept positions, such as the following:

root(T) returns the root of the tree T .

parent(v) returns the parent of node v.

children(v) returns the list of the children of node v.

In the same way we can define methods that return the list of ancestors or descendants as
well as the list of all the siblings of a node. The query methods allow us to verify the state of a
node:

isInternal(v) tests whether node v is a branching node.

isLeaf(v) tests whether node v is a leaf.

isRoot(v) tests whether node v is the root.

There are a number of methods a tree should probably support that are not necessarily
related to its tree structure [Goodrich and Tamassia, 2001]. Such generic methods for a tree
include the following:

size(T) returns the number of nodes in the tree T .

swapElements(v,w) swaps the elements stored at position v and w.

replaceElement(v,e) replaces with e and returns the element stored at position v.

It is possible to extend this list of methods, for instance with some update methods or other
access methods. We can see that these extensible lists of methods defined on a tree allow us
to formally define algorithms and to study their running time. For instance, typical algorithms
that we can define on trees are the traversal algorithms. A traversal of a tree T is a systematic
way of accessing or visiting, all the nodes of T . The traversal schemes are divided into inorder
(symmetric), preoreder and postorder traversal. In an inorder the tree is traversed starting
form the left subtree, passing from the root and lastly visiting the right subtree. In a preorder
traversal of a tree T , the root of T is visited first and then the subtrees rooted at its children
are traversed recursively. If the tree is ordered, then the subtrees are traversed according to
the order of the children. The specific action associated with the visit of a node v depends
on the application of the traversal, and could involve anything from incrementing a counter to
performing some complex computation for v. The preorder traversal algorithm is useful for
producing a linear ordering of the nodes of a tree where parents must always come before their
children in the ordering. Such ordering has several applications; for instance if we have a tree
associated with a book chapter – see Figure 2.11 – preorder traversal allows us to examine the
entire chapter sequentially, from beginning to end.

The postorder traversal can be seen as the inverse of the preorder, because it recursively
traverses the subtrees rooted at the children of the root first, and then visits the root. The
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Figure 2.11: Preorder traversal of an ordered tree representing the structure of a book chapter [Knuth,
1997].

postorder traversal method is useful for solving problems where we wish to compute some
property for each node v in a tree, but computing that property for v requires that we have
already computed the same property for v’s children. For instance, it can be used to visit the
expression tree in Figure 2.10 to solve the expression the tree represents.

As a last example of a problem related to trees that can be addressed in an algorithmic
way is the relevant problem of finding the lowest common ancestor between two nodes in a
tree. The least common ancestor of two nodes vi and v j in a tree T is the node vk that is an
ancestor of both vi and v j and that has the higher level in T . The lowest common ancestor
problem has been studied intensively both “because it is inherently beautiful and because fast
algorithms for the lowest common ancestor problem can be used to solve other algorithmic
problems” [Bender et al., 2005]. The problem of finding the lowest common ancestor has
several concrete applications, for instance in phylogenetic trees where we may have to find the
relationships between species and their lowest common ancestor. The lowest common ancestor
problem was defined in [Aho et al., 1973], and a trivial way to solve it consists in finding the
first intersection of the paths from vi and v j to the root of the tree4. However, much more
efficient algorithms have been defined for instance in [Harel and Tarjan, 1984] where we can
find the first algorithm that optimally finds the lowest common ancestor.

In Figure 2.12 we can see a graphical representation of the algorithm to find the lowest
common ancestor vk of the two nodes vi and v j. The path from vi to vr is colored in red and the
one from v j to vr in blue; we can see that the intersection between these two paths is the path
from vk to vr. In this path vk has the higher associated level so it is the lowest common ancestor
of vi and v j.

4The computational time required for this algorithm is O(h) where h is the height of the tree [Bender et al.,
2005] – i.e. the length of the longest path from a leaf to the root.
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Figure 2.12: The graphical representation of the algorithm for finding the lowest common ancestor vk

of the two nodes vi and v j.

We have just presented several examples of how the mathematical definition of the tree
model allows us to systematically treat the hierarchies modeled by means of it. In particular, a
formal treatment of the tree data model allows us to:

• Model the reality of interest – e.g. evolutionary trees and phylogenetic trees.

• Define new data models that extend or restrict the tree data model and that better suit the
reality of interest we need to model – e.g. rooted trees, ordered trees and labeled trees.

• Define and prove properties of the data model – e.g. additive tree metric.

• Design and develop algorithms on the data model – e.g. preoreder traversal, postorder
traversal and the lowest common ancestor.

2.2.4 Graphical Representations

Trees can be drawn in many ways; when we think of a tree we usually draw it as a collection
of dots and lines connecting them as we have done in the previous sections. In Figure 2.13 we
can see three alternative representations of the same tree based on a collection of circles and
lines; the main difference between these representations is the position of the root. As Knuth
wrote in [Knuth, 1997]: “It is not a frivolous joke to worry about how tree structures are drawn
in diagrams, since there are many occasions in which we want to say that one node is above
or higher than another node, or to refer to the rightmost element, etc. Certain algorithms for
dealing with tree structures have become known as top down methods, as opposed to bottom
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up. Such terminology leads to confusion unless we adhere to a uniform convention for drawing
trees.”
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(a) (b) (c)

Figure 2.13: Alternative representation of the same tree by means of dots and lines.

Observing the computer literature we can see that the adopted convention is to draw the
root at the top of the tree – e.g. Figure 2.13a. In this way we can talk about shallow and deep
levels of a node and we can consistently adopt all the terminology derived from family trees:
parent, children, ancestors, etc.

In [Knuth, 1997] alternative ways to graphically represent a tree have been proposed; these
representations bear no resemblance with the ones we have considered till now. In Figure 2.14
we can see three alternative graphical representations of the tree in Figure 2.13a.

v1
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v5 v6 v7 v8

(v1(v2(v5)(v6))(v3)(v4(v7)(v8)))

v1

v2

v3

v4

v5

v6

v7

v8

(a) (b) (c)

Figure 2.14: Alternative graphical representation of the tree [Knuth, 1997]: (a) nested sets; (b) nested
parentheses; (c) indentation.

Figure 2.14a represents an instance of the general idea on nested sets: “A collection of
sets in which any pair of sets is either disjoint or one contains the other” [Knuth, 1997]. This
collection of sets represents the structure of the tree mapping every node into a set; the parent-
child relationships between the nodes are retained by the inclusion order between the sets. In
a tree all the nodes are descendants of the root, in the nested sets all the sets are subsets of the
set mapped from the root of the tree.

Figure 2.14b represents a linear nested sets view; indeed, the parentheses can be seen as
a set containing other sets. It can be regarded as an algebraic formula involving parentheses.
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The parent-child relationships are retained by the nesting inside the parentheses; the principle
is exactly the same exploited in the nested sets representation. The representation of the tree in
Figure 2.14c works in the same way exploiting the idea of indentation: The longest and highest
bar contains all the other shorter bars at lower levels; this idea is then applied recursively. The
idea of nested sets has been exploited also to define other representations such as the nested
intervals, where the sets are represented by intervals with one nested inside the other [Celko,
2000].

Knuth pointed out that: “The number of different representation methods in itself is ample
evidence for the importance of tree structures in every day life as well as in computer program-
ming” [Knuth, 1997].
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Chapter 3

Overview of the Work

In this chapter we present the motivations of the work. Afterwards, we give a preliminary
description of the NESTOR Framework composed by the NESTOR Model and the NESTOR
Prototype and we detail the main innovations brought about by these components.

3.1 Research Question

We have analyzed the relevance of the concept of hierarchy in many scientific and non-scientific
fields highlighting the fundamental role of the tree as the foremost way to represent, model and
handle a hierarchy. The role of the tree has gained more and more importance over time thanks
to its mathematical formalization based on graph theory which has allowed us to point out
many relevant properties, and to define a data model and an abstract data type exploited to
model the reality of interest and to design fundamental algorithms in computer science.

From a graphical representation of a hierarchy as we presented the tree – e.g. Figure 2.3b –
we moved to a more formal mathematical definition and augmented the possibilities of its use
in theoretical and applicative environments. The strong bond between tree and graph theory is
underlined even by the usual graphical representation of the tree: a collection of vertices and
edges as well as a graph is represented. Indeed, a tree is formally defined as a graph where
some conditions of the vertices and edges are respected.

In Figure 2.14 we have seen different graphical representations of the tree. Intuitively, we
can see that there is no clear linkage between these representations and graph theory. Instead
of vertices and edges there are sets, parentheses and bars (or intervals). The most important
representation is the nested sets one, the idea of which is then exploited and adapted to the
other representations.

Our main research question is:

Are they just graphical representations? Or could we formally define new
data models based on these intuitive ideas pointing out new properties?

As Knuth suggested, the number of different representations of the tree indicate the great
impact of this model in computer science and not only. The representation is just the first
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step towards a data model that can be adopted to model reality, define properties and design
algorithms to solve problems. The idea underlining this work is to take into account the nested
sets representation and formalize it in order to design a new data model which can be used as
an alternative to the tree. The tree data model has taken great advantage from graph theory, on
the one hand exploiting its concepts and properties to deal with hierarchies; on the other hand,
the study of trees has given several insights into graph theoretical problems and has helped to
address them. Following this pattern the nested sets representation can be related to set theory
and thus a set-based data model to deal with hierarchies can be designed and developed in this
mathematical field opening up new research possibilities.

As we have seen with the tree the first step is to go from the nested sets representation to a
mathematical formalization of a set-based data model. By means of this formalization we can
then study the properties of the model and thus put these in relation with the properties and
characteristics of the tree model. Once we have pointed out these fundamental characteristics
we can model the reality of interest throughout a data model alternative to the tree and study
its characteristics in a concrete environment.

After these fundamental steps we have to verify if the expressive power of the newly defined
set-based data model can be compared to that of the tree data model. Furthermore, we analyze
if there are any aspects of the reality of interest that we can model by means of the set data
model that we could not model with a tree.

3.2 Contributions of the Work

This work focuses on hierarchical structures and in particular on the tree representation of
information. We analyzed the role of hierarchies and trees from a theoretical point-of-view in
a way that allows us to relate theoretical concepts to practical issues that arise in the context of
Digital Libraries and in particular of the archives and digital archives.

In this work we develop the NEsted SeTs for Object hieRarchies (NESTOR) Framework,
which envisions an innovative way to represent, manage, access and exchange hierarchies; the
Framework is composed by two main components: the NESTOR Model and the NESTOR
Prototype.

The NESTOR Model is the heart of the Framework; it is based on two set data models
called Nested Set Model (NS-M) and Inverse Nested Set Model (INS-M) which are based on
an organization of nested sets. The foundational idea underlying these set data models is that
an opportune set organization can maintain all the features of a tree with the addition of some
new relevant functionalities. We define these functionalities in terms of the flexibility of the
model, the rapid selection and isolation of easily specified subsets of data and the extraction
of only those data necessary for satisfying specific needs. We can use these set data models to
represent hierarchical structures by disclosing a variety of properties which can be related to
the properties of the tree and which are also peculiar of these models. The representation of
hierarchies by one of these models lays the ground for an environment leading to new ways of
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modeling and consequently accessing, managing and querying hierarchical data.

The NESTOR Prototype gives an instantiation of the model allowing the application of
the formal concepts defined in the NESTOR Model. The prototype is presented by the use
case of the archives describing how a hierarchy can be modeled by means of the NESTOR
Model and specifically how the archival records can be represented through it. In particular,
we face the problem of access and exchange of hierarchically organized resources in distributed
environment and discuss the relationships between the NESTOR Prototype and Digital Library
technologies such as the Dublin Core metadata, the Encoded Archival Description (EAD) , the
Open Archive Initiative - Protocol for Metadata Harvesting (OAI-PMH) and the Open Archive
Initiative - Object Re-use and Exchange (OAI-ORE).

3.2.1 The NESTOR Model

The NESTOR Model is the core of the NESTOR Framework because it defines the set data
models on which every component of the framework relies. In Figure 3.1 we can see a graphical
representation of the principal components composing the NESTOR Model. In the upper part
we have the set data models – i.e. the Nested Set Model (NS-M) and the Inverse Nested Set
Model (INS-M). The second component represents the properties of the set data models such
as: the mapping functions to go from the NS-M to the INS-M and vice versa, the meaning
of the union or intersection of two sets and the definition of distance measures. The latter
component represents the relationships between the set data models and the tree data model;
this component contains the functions for mapping a tree into one of the two models and it
compares the properties of the tree with the properties of the set data models.

Figure 3.1: The main components of the NESTOR Model.
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Figure 3.2: (a) A tree. (b) Euler-Venn Diagram of a NS-M

It is worthwhile for describing the state of the art and the contributions of the work to give a
brief and intuitive presentation of the ideas underlying the NESTOR Model. The most intuitive
way to understand how these models work is to relate them to the tree; thus, we informally
present the two data models by means of examples of mapping between them and a sample
tree. The first model we introduce is the Nested Set Model. An organization of sets in the
NS-M is a collection of sets in which any pair of sets is either disjoint or one contains the other.
In Figure 3.2b we can see how a sample tree is mapped into an organization of nested sets
based on the NS-M.

From Figure 3.2b we can see that each node of the tree is mapped into a set, where child
nodes become proper subsets of the set created from the parent node. Every set is subset of
at least of one set; the set corresponding to the tree root is the only set without any supersets
and every set in the hierarchy is subset of the root set. The external nodes are sets with no
subsets. The tree structure is maintained thanks to the nested organization and the relationships
between the sets are expressed by the set inclusion order. Even the disjunction between two
sets brings information; indeed, the disjunction of two sets means that these belong to two
different branches of the same tree.

The second data model is the Inverse Nested Set Model; in Figure 3.3 we can see how a
sample tree is mapped into an organization of nested sets based on the INS-M. We can say that
a tree is mapped into the INS-M transforming each node into a set, where each parent node
becomes a subset of the sets created from its children. The set created from the tree’s root is
the only set with no subsets and the root set is a proper subset of all the sets in the hierarchy.
The leaves are the sets with no supersets and they are sets containing all the sets created from
the nodes composing tree path from a leaf to the root. An important aspect of INS-M is that
the intersection of every couple of sets obtained from two nodes is always a set representing a
node in the tree. The intersection of all the sets in the INS-M is the set mapped from the root
of the tree.

We can see that the intuitive idea on which the NS-M is based comes from the graphical
representation of a tree proposed in [Knuth, 1997] to show different ways of representing a tree
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Figure 3.3: (a) A tree. (b) Euler-Venn Diagram of an INS-M

– see Section 2.2.4 – but in [Knuth, 1997] there was no definition of a nested set model. This
idea was then exploited in [Celko, 2000] to explain an alternative way to solve recursive queries
over trees in Structured Query Language (SQL) language. The nested sets representation was
used to describe an integer intervals encoding of the nodes of a tree; this encoding allows us
to query hierarchical data stored in a relational database by exploiting the arithmetic properties
of the encoding, avoiding relational joins of the tables and thus avoiding recursion1. Although
Nested Sets is an elegant technique and certainly appealed to many database developers, it has
two fundamental disadvantages [Na and Lee, 2006]: the encoding is volatile and many nodes
have to be relabeled whenever a new node is inserted and querying ranges are asymmetric from
performance perspective. It is an easy matter to answer if a point falls inside some interval, but
it is hard to index a set of intervals that contain a given point. For Nested Sets this translates
into a difficulty answering queries about nodes ancestors. This idea has been further developed
in the field of databases producing several other hierarchical encodings trying to overcome
these issues; for instance, the generalization of the nested sets encoding to the nested intervals
one proposed by Tropashko in [Tropashko, 2005] and to encoding schemes that use more so-
phisticated numbering systems which represent an evolution of both the nested sets view and
the classical Dewey encodings [Alkhatib and Scholl, 2009; O’Neil et al., 2004; Tatarinov et al.,
2002; Xu et al., 2009].

On the other hand, the idea of the INS-M does not find any reference in the scientific
literature. Now we can point out the outcomes of the research activities concerning the set data
models composing the NESTOR Model:

• We give formal definitions based on the set theory for NS-M and the INS-M; they are
both defined as collections of sets in which we impose several conditions defining their
structures.

1The encoding based on integer intervals is often referred to Celko’s nested sets. Celko did not claim to be
the inventor of this method but just the person that circulated it; indeed, Kamfonas in [Kamfonas, 1992] proposed
the same idea to solve recursion in relational databases. The main difference between the two presentations is that
Kamfonas did not present the nested sets, but he explained the encoding by using the preorder traversal algorithm
on a tree.
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• We formally define and prove the properties of the models; we define the meaning of set
operations on the two set data models determining the result of these operations – e.g. we
define which is the outcome of the union of two sets in the NS-M or of the intersection
of two sets in the INS-M.

• We define a bijection between the NS-M and the INS-M establishing the mapping func-
tions to go from one model to the other.

• We define a bijection between both NS-M and INS-M and the tree model. This definition
allows us to establish a formal connection between the tree and the set data models and
vice versa. We define a formal correlation between the properties defined in the set data
models and in the tree model.

• We define a distance measure between the sets in the NS-M and the INS-M called “NS-
M graphical distance” and “INS-M graphical distance”; we formally prove the bijection
between these distances and the widely-used “graphical distance” on trees [Buneman,
1974; Harary, 1969].

• We define three distance measures between the collection of sets defined in the NS-M
or in the INS-M: Jaccard’s distance, the structural distance and the NESTOR distance.
Jaccard’s distance defines a distance measure between the content of two collections of
sets, without taking into account the structure of the collections; it is an extension to col-
lections of sets of the classical Jaccard’s distance [Jaccard, 1901] defined between sets.
On the other hand, the structural distance measures the distance between two collections
of sets considering only the inclusion order between the sets in the collections. Lastly,
the NESTOR distance is a linear combination of these two distances which allows us to
weigh the content and the structure components. The three distance measures are proved
to be proper metrics – i.e. we proved identity, antisymmetry, non-negativity and the
triangle inequality.

• We formally prove the NS-M and the INS-M to be metric spaces.

The formal definition of the set data models and their properties prove that the nested sets
idea is not just an alternative graphical representation of the tree but a proper data model that
can be exploited to represent and manage hierarchies. We prove that the expressive power of
the set data models and the tree are formally comparable and that the set data models allow
us to explicitly represent aspects of the reality that are problematic to catch with the tree. For
instance, we can represent a hierarchical organization by means of the sets and then we can
represent the objects belonging to the sets and formally establish relations between them. The
major concern of the tree model is on the hierarchical structure defined between the entities
represented by means of it; the set data models allow us to do the same by means of collections
of sets and at the same time to add a further expression dimension represented by the elements
belonging to the sets.
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Figure 3.4: The main components of the NESTOR Prototype.

This aspect has a relevant outcome that is a formal separation between the structural and
the content aspects of the entities represented within the models. We can deal only with the
hierarchical structure of the reality considering the inclusion order between the sets; on the
other hand, we can deal only with the content aspects by considering the elements belonging
to the sets. These characteristics are highlighted by the definition of two dedicated distance
measures, one based on content and the other based on structure. Furthermore, the definition
of the NESTOR distance also gives us the possibility of considering both content and structure
at the same time. The concrete outcomes outlined by the NESTOR Prototype emphasize the
importance of this distinction.

3.2.2 The NESTOR Prototype

The NESTOR Prototype gives an instantiation of the model allowing the application of the for-
mal concepts defined in the NESTOR Model; in Figure 3.4 we can see the main components
of the NESTOR Prototype and its implementation in the SIAR system. The first component
details how the entities and the information objects we are considering are represented through
the NESTOR Model; the second describes the possible instantiations of the model in a con-
crete environment and the third examines the relationships between the instantiations and the
technologies of choice.

The prototype is presented by the use case of the archives describing how a hierarchy can
be modeled by means of the NESTOR Model and specifically how the archival records can be
represented through it. The NESTOR Prototype takes into account the dimensions of interop-
erability in Digital Libraries [Gradmann, 2007], showing how the adoption of the NESTOR
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Model. In particular, we face the problem of access and exchange of hierarchically organized
resources in a distributed environment and discuss the relationships between the NESTOR Pro-
totype and Digital Library technologies. In particular, we analyze the role of EAD, showing
how its drawbacks can be overcome by an effective instantiation of the NESTOR Model based
on the exploitation of the native functionalities of OAI-PMH and the Dublin Core.

The outcomes of the research activities concerning the NESTOR Prototype are:

• We describe how it is possible to model an archive and its resources by means of the
NS-M and the INS-M and show that these models let us express some aspects of the
reality that are not captured by the tree model.

• We define an instantiation of the NESTOR Model which relies on standard Digital Li-
brary technologies such as OAI-PMH and the Dublin Core.

• We design a mapping between the archival description encoded in the standard format
EAD and the combination OAI-PMH and Dublin Core based on the structure defined by
the NS-M or the INS-M. We show how this mapping permits us to overcome some well-
known issues of the EAD format and at the same time to address interoperability aspects
of the archives: variable granularity access and exchange of the archival resources and
cross-language access to the archival metadata.

• We show how the NESTOR Model can be used in conjunction with the OAI-ORE data
model in order to represent and manage the aggregation of archival resources – i.e.
defining and dealing with the relationships between archival metadata and full-content
digital objects.

• We design and develop an archival information system based on the NESTOR Model
for the modeling and managing of archival resources; we show how this choice allows
us to separate the management of structural and content aspects of the archives. This
archival information system takes into account all the aspects of management and cura-
tion of archival resources from the format and the encoding of archival metadata to their
exchange in a distributed environment. We take care of the users developing different
user interfaces and conducting user studies.



Chapter 4

Mathematical Background

In this chapter we present the mathematical concepts we are going to exploit in the rest of
the work. First-of-all we present the basics of set-theory. In the second part of the chapter
we describe the main concepts of graph theory; in particular, we focus on the mathematical
definition and properties of the tree.

4.1 Set Theory

4.1.1 A Historical Glance

Among all mathematical disciplines, set theory occupies a special place because it plays two
different roles at the same time: on the one hand, it is an area of mathematics devoted to
the study of abstract sets and their properties; on the other, it provides mathematics with its
foundation.

Set theory began with the work of Cantor that from 1874 to 1884 published a series of
works constituting the origin of the field. Among all the meaningful results presented by
Cantor, we focus on three main concepts that strongly influenced the history of set theory:
countable and uncountable infinite sets, ordinals, and well-ordered sets.

The first concept was introduced by Cantor in 1874 when he proved a fundamental result
showing that infinite sets can be of different sizes – i.e. he proved that there are more real
numbers than algebraic ones. What does it means that there are more real numbers than natural
ones, when they are both infinite? Cantor defined two sets, say A and B, to have the same size,
or cardinality, if there is a bijection between them: that is, if there is a one-to-one correspon-
dence between the elements of A and the elements of B. If there is no bijection between these
two sets, but there is a bijection between A and a subset of B, then A is of a smaller cardinality
than B. Following this reasoning Cantor proved the existence of countable and uncountable
infinite sets showing that - as an example – the set of naturals (N) is a countable infinite and
the set of reals (R) is an uncountable infinite.

The second and the third concepts are: ordinals and well-ordered set. Both of them settled
the ground for a fundamental development in set theory: the Zermelo-Fraenkel Set Theory.
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We can describe the ordinals by using the natural numbers to count a collection of objects, we
assign a number to each object, starting with 1, continuing with 2,3, etc. and stopping when we
have counted each object exactly once. When this process is over we have obtained a number
n, the last number in the sequence that tells us how many objects there are in the collection. We
have also defined an ordering on the objects that we were counting, namely the order in which
we count them. In the first case we think about a set in terms of size; then if we have a set X
in a one-to-one correspondence with {1, 2, . . . , n}, we conclude that X has cardinality n. But
we can also take note of the natural ordering on the set {1, 2, . . . , n}, in which case we observe
that our one-to-one correspondence provides us with an ordering on X too. If we adopt the first
point-of-view we are regarding n as a cardinal, and if we adopt the second we are regarding it
as an ordinal.

In set theory, one likes to regard all the objects as sets; if we consider an ordinal n, it is
identified with the set of all its predecessors [Gowers et al., 2008]; for instance, the ordinal
n is identified with the set {1, 2, . . . , n}. Each ordinal is a well-ordered set, which means that
every non-empty subset of it has a least element. Cantor defined the well-ordered principle: the
assertion that every set can be well-ordered; this principle led to some paradoxes outlined by
Burali-Forti and Russell [Potter, 2004] that put at risk further developments of the set theory.

The Russell paradox starts from the intuitive notion that every property determines a set –
i.e. the set of those objects that have that property. If we consider the property of being an
ordinal number, we determine the set of all ordinals. We can see that a set like that cannot
exist since it would be well-ordered and would therefore correspond to an ordinal greater than
all ordinals, which is an absurd. Similarly, the property of being a set that is not an element of
itself cannot determine a set because if A is such a set, then A is an element of A if and only
if A is not an element of A, which is impossible. The lesson contained in Russell’s paradox is
that it is not enough to define a set via a property to prove its existence.

So, the problem was: what is a set? The task for set-theorists was to determine the prop-
erties which defined a set; the idea that followed was to establish a set of axioms, and take
care to check that all the theorems follow logically from the axioms. Zermelo in 1908 tried to
capture this idea of set in a short list of basic principles later improved by Fraenkel, Skolem
and Von Neumann, becoming what is now known as the Zermelo-Fraenkel Set Theory with the
Axiom of Choice or ZFC. By means of the ZFC, Zermelo gave a proof of the well-ordering
principle [Moore, 1982]. The basic idea behind the axioms of ZFC is that there is a “universe
of all sets” that we would like to understand, and the axioms give us the tools we need to build
sets out of other sets. The ZFC axioms are: Extensionality, Power Set, Infinity, Replacement,
Union, Regularity, and Choice; a complete and detailed treatment of the ZFC can be found
in [Jech, 2003]. The axioms of ZFC are “generally accepted as a correct formalization of
those principles that mathematicians apply when dealing with sets” [Jech, 2003].

ZFC has been fundamental in the twentieth century to prove some important results as com-
plements to Cantor’s work: the proof of the consistency of continuum hypothesis1 by [Gödel,

1The continuum hypothesis was proposed by Cantor in 1877: There is no infinite set with a cardinal number be-
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1940] and the independence of the continuum hypothesis by Coen [Cohen, 1963] which estab-
lished the impossibility to prove the hypothesis [Gowers et al., 2008]. Furthermore, “experi-
ence has shown that practically all notions used in contemporary mathematics can be defined,
and their mathematical properties derived, in this axiomatic system” [Hrbacek and Jech, 1999].
In this sense the ZFC serves as a satisfactory foundation for the other branches of mathematics.

The ZFC set theory is a very powerful and quite complex axiomatic system and in our work
we are going to exploit only some of its axioms from which we derived some useful definitions
and theorems.

4.1.2 Sets, Properties and Operations

Many sentences of mathematics can be rewritten in set-theoretic terms and often there are
circumstances where it becomes extremely convenient. For examples, one of the great advances
in mathematics was the use of Cartesian coordinates to translate geometry into algebra and
the way this was done was to define geometrical objects as sets of points, where points were
themselves defined as pairs or triples of numbers [Gowers et al., 2008].

A second circumstance where it is usually hard to do without sets is when one is defining
new mathematical objects. Very often such an object is a set together with a mathematical
structure imposed on it, which takes the form of certain relationships among the elements of
the set [Davey and Priestley, 2002].

Broadly speaking a set is a collection of objects, and in mathematical discourse these ob-
jects are mathematical ones such as numbers, points in space, or even other sets. In a broader
sense, a set is a collection of distinguishable objects, called its elements; the assumptions un-
derlying classical set theory is spelt out by [Kamke, 1950]: “By a set we are to understand,
according to G. Cantor, a collection into a whole, of definite, well-distinguished objects (called
the elements) of our perception or of our thought [. . . ]. For a set, the order of succession of its
elements shall not matter [. . . ]; furthermore, the same element shall not be allowed to appear
more than once.”.

If an object a is an element of A we write a ∈ A, otherwise we write a < A. There are
three common ways to denote a specific set. One is to list its elements inside curly brackets.
For instance, we can define a set A containing the elements a, r, c by writing A = {a, r, c}. If
no further specifications are provided, we refer to the basic definition of set where elements
are not ordered and they cannot appear more than once. We indicate the elements belonging to
a set with lower cases, i.e. A = {a, c, f , b} means that the set A is composed by the elements
a, b, c, f (we can see that the order between the letters has no meaning). Occasionally, we may
indicate the elements belonging to a set, say X as x1, x2, . . . , xn; even in this case if it is not
clearly stated, the elements are not considered to be ordered in the set X.

The majority of sets considered by mathematicians are too large for this to be feasible [Gow-
ers et al., 2008] – indeed they are often infinite – so a second way to denote sets is to use

tween that of the “small” infinite set of integers ℵ0 and the “large” infinite set of real numbers c (the “continuum”).
Symbolically, the continuum hypothesis is that ℵ1 = c [Jech, 2003].
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dots to imply a list that is to long to write down: for instance, A = {1, 2, 3, . . . , 100} and
A = {1, 2, 3, . . .}.

A third way, that is the most important [Gowers et al., 2008], is to define a set via a property:
for instance, we can define the set A of even integers as A = {x : x is prime ∧ x > 10}. The
colon in this notation is read “such that”; in this instance, we read the definition of set A as:
“The set of x such that x is a prime and x is greater than 10.” It is also possible to use the
vertical bar “|” in place of the colon: A = {x | x is prime ∧ x > 10}}.

We adopt a special notation for frequently encountered sets such as ∅ denotes the empty set,
that is, the set containing no elements, N which denotes the set of natural numbers, Z which
denotes the set of integers, and R which denotes the set of real numbers.

It is important to highlight that all the set-theoretic properties can be stated in terms of
membership with the help of logical means: identity, logical connectives and quantifiers. An
obvious fact about identity is: A = B then B = A, that means A is identical to B then B is
identical to A. Two sets are identical if they contain the same elements, written A = B. Logical
connectives can be used to construct more complicated properties from simpler ones; they are
expressions like “not” (¬), “and” (∧), “or” (∨), “then” (⇒), “if and only if” (⇔). Quantifiers
like “there exists” (∃) “there exists and it is unique” ∃!, and “for all” (∀) provide additional
logical means. Let us see an example of property that involves some of these logical means:
∀X ∈ Y,∃Z | Z ∈ X ∧ Z ∈ Y that is read “for all X belonging to Y , there exists Z such that Z
belongs to X and Z belongs to Y”.

The definition of the fundamental set-theoretical operations (i.e. union, intersection and
difference) are based on the elements belonging to the sets. Indeed, let A and B be two sets,
then:

Union. A ∪ B = {x : x ∈ A ∨ x ∈ B}

Intersection. A ∩ B = {x : x ∈ A ∧ x ∈ B}

Difference. A \ B = {x : x ∈ A ∧ x < B}

Symmetric Difference. A4B = (A \ B) ∪ (B \ A)

The symmetric difference between two sets A and B can also be defined as the union of A
and B minus their intersection and it is written A4B = (A ∪ B) \ (A ∩ B). Two sets A and B are
disjoint if they have no elements in common – i.e. A ∩ B = ∅.

As we have said all the set-theoretical properties can be stated by means of membership
properties and logical means but with more complicated definitions and theorems it is practical
to give names to some widely-used properties. If all the elements of a set A are contained in a
set B, that is, if a ∈ A implies a ∈ B, then we write A ⊆ B and say that A is a subset of B.

Subset. A ⊆ B = {a : a ∈ A⇒ a ∈ B}

A set A is a proper subset of B, written A ⊂ B, if A ⊆ B but A , B.
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4.1.3 Relations and Functions

In this section we see how various mathematical concepts like relations and functions can be
expressed by means of sets. We begin by introducing the concept of ordered pair. If a and b
are elements then the unordered pair {a, b} is the set whose elements are exactly a and b. The
order plays no role and thus, {a, b} = {b, a}. In many applications we need to indicate which
element in a pair comes first and thus, we have to define an order between the elements of
the pair. We indicate with (a, b) an ordered pair where a is the first coordinate and b is the
second coordinate. An ordered pair has to be a set and it can be defined in such a way that
(a, b) = (a

′

, b
′

) if and only if a = a
′

and b = b
′

. With ordered pairs at our disposal we can
define ordered triples (a, b, c) = ((a, b), c) and ordered quadruples (a, b, c, d) = ((a, b, c), d) and
so on and so forth.

From ordered pairs it follows the central concept of binary relation. A binary relation is
determined by specifying all the ordered pairs of objects in that relation.

Definition 4.1.
A set R is a binary relation if all elements of R are ordered pairs, i.e. let A and B be two sets,
if for any r ∈ R there exists a ∈ A and b ∈ B such that r = (a, b).

Example 4.1. Let us consider the relation R2 = {r : ∃a, b ∈ Z | r = (a, b) ∧ b \ a ∈ Z} meaning
that R2 is a relation composed by all those ordered pairs r = (a, b) such that b \ a is an integer.
The elements of R2 are the ordered pairs: (1, 1), (1, 2), (1, 3), (1, 4), . . . , (2, 2), (2, 4), (2, 6), . . . ,
(3, 3), (3, 6), (3, 9), . . . , and so on and so forth.

It is customary to write aRb in the place of (a, b) ∈ R; so, a is in relation R with b if aRb
holds. Let us consider the relation aRb, we call domain of the relation the set of all a which are
in relation R with some b and it is denoted with dom(R). The set of all b such that, for some a,
a is in relation R with b is called the range of the relation and it is indicated with ran(R). We
can say that dom(R) is the set of all the first coordinates of R and ran(R) is the set of all the
second coordinates of R.

Definition 4.2.
Let A be a set and R a relation, then we define R[A] to be the image of A under R where
R[A] = {b : b ∈ ran(R) ∧ ∃a ∈ A | aRb}.

The image of A under R is the set of all b from the range of R related in R to some element
of A.

Example 4.2. Let us consider the relation R2 of Example 4.1: R2 = {r : ∃a, b ∈ Z | r =

(a, b) ∧ b \ a ∈ Z}. Then, let us consider the set A = {3, 8, 9, 12} and B = {2}.
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Definition 4.3.
Let R and S be binary relations. The composition of R and S is the relation:

T = S ◦ R = {aTc | ∃b for which aRb ∧ bS c}.

So (a, c) ∈ S ◦ R means that for some b, aRb and bS c. To find objects related to a in S ◦ R,
we first find objects b related to a in R, and then objects related to those b in S . Please note that
R is performed first and S second but notation S ◦ R is customary [Hrbacek and Jech, 1999].

A very important relation is the cartesian product between two sets. The set of all ordered
pairs whose first coordinate is from A and whose second coordinate is from B is called the
Cartesian product of A and B and denoted by A × B.

Definition 4.4.
Let A and B be sets, then the Cartesian product is defined to be:

A × B = {(a, b) | a ∈ A ∧ b ∈ B)}.

Thus A×B is a relation in which every element of A is related to every element of B. Notice
that A × B ×C = {(a, b, c) | a ∈ A ∧ b ∈ B ∧ c ∈ C}.

The concept of relation is strictly related to the concept of function; indeed, a function is a
procedure assigning to any object a from the domain of the function a unique object b in the
range, namely, to the value of the function at a.

Definition 4.5.
A binary relation F is called a function (or mapping) if aFb1 and aFb2 imply b1 = b2 for any
a, b1 and b2. In other words, a binary relation F is a function if and only if for every a from
dom(F) there is exactly one b such that aFb. This unique b is called the value of F at a and is
denoted by F(a).

In the rest of the work a function is not necessarily indicated with caps – e.g. F – but also
with small caps – e.g. f – and Greek letters – e.g. ϕ or φ. If F is a function with dom(F) = A
and ran(F) ⊆ B, it is customary to write F : A → B. The range of the function can be denoted
{F(a) | a ∈ A} or {Fa}a∈A. It is worthwhile for the rest of the work to point out some important
definitions related to the concept of function.
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Definition 4.6.
Let F be a function and A, B and C be sets such that C ⊆ A.

F is a function on A if dom(F) = A. (4.1)

F is a function into B if ran(F) ⊆ B. (4.2)

F is a function onto B if ran(F) = B. (4.3)

The restriction of the function F to C is the function F|C = {(a, b) ∈ F | a ∈ C}. (4.4)

The last important definition about functions regards the concepts of injective, surjective
and bijective functions.

Definition 4.7.
Let A and B be two sets and F : A→ B a function, then:

Injection. F is an injective function if: ∀a1, a2 ∈ A,∃b1, b2 ∈ B, b1 , b2 | b1 = F(a1)∧F(a2) =

b2.

Surjection. F is a surjective function if: ∀b ∈ B,∃a ∈ A | F(a) = b.

Bijection. F is a bijective function if it is both injective and surjective.

A consequence of the definition of injective function is that if F : A → B is injective
and there exists a1, a2 ∈ A such that F(a1) = b and F(a2) = b then implies that a1 = a2.

If F : A → B is a surjective function then ran(F) = B; if it is a bijective function, then
dom(F) = A and ran(F) = B: each element of A corresponds to a unique element of B and
vice versa.

4.1.4 Collections and Families of Sets

The concept of collection of sets or system of sets derives from the Axiom of Union of the
ZFC:

For any set C there exists a set U such that x ∈ U if and only if x ∈ A for some
A ∈ C.

U is called the union of C and it is indicated with
⋃

C; we say that C is a collection of sets
when we want to stress the fact that the elements of C are sets – we use the notation C to
indicate a collection of sets. We denote a collection of sets C by means of the same ways for
denoting the sets: list its elements – e.g. C = {A,D, E,T } where A,D, E,T are sets – and via a
property – e.g. C = {A ⊂ N | |A| < 3}.

We can extend the concepts described for sets also to collection of sets. If C is a collection
of sets, then x is an element of the union ofC if and only if for at least one element A ofC, x is an
element of A: x ∈

⋃
C ⇔ ∃A ∈ C | x ∈ A. The notation can vary:

⋃
C or

⋃
A∈C A. The specular
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definition and notation is adopted for the intersection; x is an element of the intersection of C
if and only if for every set A in C, x is an element of A: x ∈

⋂
C ⇔ ∀A ∈ C, x ∈ A. It is

worthwhile to point out the differences between the cardinalities of a set and of a collection of
sets; we call |A| the cardinality of a set A and it is the number of elements belonging to A. We
call |C| the cardinality of a collection of sets C and it is the number of sets belonging to C; the
total number of elements belonging to the collection C is |

⋃
C|.

An important collection of sets is derived from the Axiom of Power Set of the ZFC:

For any set A there exists a set P such that X ∈ P if and only if X ⊆ A.

Since P is uniquely determined, we call the set of all the subsets of A the power set of A
and indicate it by P(A). For instance, P(∅) = {∅}, and P(a) = {∅, {a}}; so, |P(A)| = 2|A|.

A fundamental concept for the rest of the work is the one of family of sets or alternatively
called indexed collection of sets. Please note that the terms family of sets and family of subsets
are used as synonyms in the literature.

Definition 4.8.
Let A be a set, I a non-empty set and C a collection of sets of A. Then a bijective function
A : I → C is a family of sets of A. We call I the index set and we say that the collection C is
indexed by I.

It is possible to use the extended notation {Ai}i∈I to indicate the familyA; it is also possible
to indicate a family of sets of A as: 〈Ai | i ∈ I〉. The notation Ai ∈ {Ai}i∈I means that ∃ i ∈
I | A(i) = Ai. In the rest of the work to indicate a family of sets we will use the shorthand
notation AI which means that we are considering the collection of sets A indexed by the set
I; as we can see the shorthand notation stresses the fact that a family is an indexed collection.
Given that the all the work that follows is based on the concepts of collection and family of sets
it is worthwhile to summarize the notation that will be used:

Collection of sets. We indicate a collection of sets as C.

Family of sets. We indicate a family of sets as AI to say that the collection A is indexed by
the index set I.

The concepts defined for collection of sets are straightforwardly extended to the families of
sets. For instance,

⋃
AI indicates the union of all the sets in the family AI – please note that

the notation
⋃

i∈I Ai is also extensively used.
As we have done with the most used properties of sets, it is practical to give names to some

widely-used families of sets.
A frequently used concept is the one of subfamily: We indicate withAJ the subfamily of

AI defined as its restriction to J ⊆ I and we say thatAJ ⊆ AI . Another useful concept is the
concept of linearly ordered family or chain.
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Figure 4.1: (a) A topped and linearly ordered family. (b) A topped but not linearly ordered family. (c)
A non-topped family.

Definition 4.9.
Let AI be a family. If ∀A j, Ak ∈ AI , A j ⊆ Ak ∨ Ak ⊆ A j then AI is defined to be a linearly
ordered family.

It is also useful to introduce the concept of non-comparability between two sets [Davey and
Priestley, 2002].

Definition 4.10.
Let AI be a family of sets and A j, Ak ∈ AI be two sets. If A j * Ak ∧ Ak * A j then A j and Ak

are defined to be incomparable or non-comparable, denoted with A j||Ak.

In the following we will frequently use the concept of topped family of sets.

Definition 4.11.
LetAI be a family. We defineAI to be a topped family if ∃Ak ∈ AI | ∀A j ∈ AI , A j ⊆ Ak.

From this definition it follows a proposition showing that every linearly ordered family
must be topped.

Proposition 4.1. Let AI be a linearly ordered family. Then, AI is a topped family.

Proof:
We prove this proposition by induction on the cardinality ofAI .

Base: |AI | = 1. In this case the familyAI = {A1} is composed by one set thus, it is linearly
ordered and topped.

Hypothesis: |AI | = n. We assume that AI = {A1, . . . , An} is linearly ordered and topped,
and without any loss of generality we assume that A1 is the common superset (top set) of all
the sets in the family.
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Inductive Step: |AI | = n + 1. We know that AI = {A1, . . . , An} is linearly ordered and
topped by A1. Ab absurdo suppose that AI ∪ An+1 is linearly ordered but not topped; this
means that An+1 * A1 ∧ A1 * An+1 ⇒ AI ∪ An+1 is not linearly ordered. �

In Figure 4.1 we can see three families of sets, where the first is both a linearly ordered
family and a topped family, the second is topped but not linearly ordered and the third is a
non-topped family, where we can see that there is no common set containing all the sets in
the family. The following definitions point out two main concepts that we are going to exploit
extensively in this work which are the collection of proper subsets/supersets and the collection
of direct subsets/supersets.

Definition 4.12.
Let AI be a family and A j ∈ AI be a set. We define S+(A j) = {Ak ∈ AI | Ak ⊂ A j} to be the
collection of proper subsets of A j in the familyAI .
We define the collection of proper supersets of A j in the family A as S−(A j) = {Ak ∈

AI | A j ⊂ Ak}.

Please note that S+(A j) is a collection of subsets related to the family of sets A, if there
is any risk of ambiguity we add a subscript to the notation to highlight this fact: S+

A
(A j). We

shall do the same for the collection of supersets: S−
A

(A j).

If we consider the collection of subsets of A j ∈ AI , that is S−(A j), we take into account the
definition of family A : I → C, then we can say that S−(A j) is a subset of the ran(A) defined
as the collection of all the sets inAI which are also proper subsets of A j ∈ AI . The meaning is
symmetric for the collection of supersets. It is worthwhile for the rest of the work to introduce
the definition of collection of direct super/sub-sets as a restriction of the collection of proper
super/sub-sets.

Definition 4.13.
Let AI be a family and A j ∈ AI be a set. We define D+(A j) = {Ak ∈ AI | (Ak ⊂ A j) ∧ (@At ∈

AI | Ak ⊂ At ⊂ A j)} to be the collection of direct subsets of A j in the familyAI .
We define the collection of direct supersets of A j in the family AI as D−(A j) = {Ak ∈

AI | (A j ⊂ Ak) ∧ (@At ∈ AI | A j ⊂ At ⊂ Ak)}.

The following example explains the meaning of proper collection of subsets/supersets and
it shows how we can use the general notion of union of a collection of sets.

Example 4.3. LetAI be a family and let A1, A2, A3, A4, A5, A6 ∈ AI where A1 = {a, b, c, d, e, f ,
g, h, i}, A2 = {b, d}, A3 = {c}, A4 = {e}, A5 = { f , g}, and A6 = {h, i}. In Figure 4.2 we can see a
graphical representation by means of Euler-Venn diagrams of this family.
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Figure 4.2: The familyAI (see Figure 4.1b) and a several collections of sets defined in Example 4.3.

From Definition 4.12, it follows that: S−(A1) = ∅, S+(A1) = {A2, A3, A4, A5, A6}, S−(A2) =

{A1}, S+(A2) = {A3, A4, A5}, and so on and so forth.

Moreover
⋃
S−(A1) = ∅,

⋃
S+(A1)) = {a, b, c, d, e, f , g, h, i},

⋃
S−(A2) = {a}, S+(A2) =

{b, c, d, e, f , g}, and so on and so forth.

From Definition 4.13 follows that: D−(A1) = ∅, D+(A1) = {A2, A3}, D−(A2) = {A1},
D+(A2) = {A3, A4} (as we can see in Figure 4.2), and so on and so forth.

An important concept is the order-isomorphism between two families.

Definition 4.14.
Let AI and BJ be two families, and ϕ : AI → BJ be a bijective function. We define AI and
BJ to be order-isomorphic if: ∀Ak, At ∈ AI , Ak ⊂ At ⇔ ϕ(Ak) ⊂ ϕ(At).

The function ϕ faithfully mirrors the inclusion order structure of the familyAI in the family
BJ and it is necessarily bijective. A related concept is order-embedding that constitutes a
notion strictly weaker than the concept of an order-isomorphism.
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A1
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ϕ1(A1) = B1

ϕ1(A3) = B3ϕ1(A2) = B2

B4 B5

ϕ1

ϕ2

ϕ2(A3) = B3ϕ2(A2) = B2

ϕ2(A1) = B1

Figure 4.3: An example of order-isomorphism (ϕ1) and an example of order-embedding (ϕ2).

Definition 4.15.
Let AI and BJ be two families, and ϕ : AI → BJ be an injective function. We define ϕ to be
an order-embedding if: ∀Ak, At ∈ AI , Ak ⊂ At ⇔ ϕ(Ak) ⊂ ϕ(At).

In this case we say that the family BJ is an embedding of the family AI . An order-
isomorphism is also an order-embedding but the vice versa is not necessarily true; the concepts
are related as well as the concepts of injection and bijection: a bijective function is also injective
but the vice versa is not necessarily true. It is important to appreciate the difference between the
notion of order-embedding and order-isomorphism; in Figure 4.3, ϕ2 is an order-embedding but
not an order-isomorphism, instead ϕ1 is both an order-embedding and an order-isomorphism.
In this context we take into account only the order inclusion between sets without considering
the elements that they contain, for this reason we do not draw any elements in the sets.

4.1.5 Ordered Sets

Order is not a property intrinsic to a single object. It concerns comparison between pairs of
objects. This section focuses on the concept of ordered set, which is a set equipped with a
special type of binary relation.

Definition 4.16.
Let A be a set. An order (or partial order) on A is a binary relation ≤ on A such that,
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Figure 4.4: Two Hasse diagrams representing two posets.

∀x, y, z ∈ A:

x ≤ x (4.5)

x ≤ y ∧ y ≤ x⇒ x = y (4.6)

x ≤ y ∧ y ≤ z⇒ x ≤ z (4.7)

A set A equipped with an order relation ≤ is said to be an ordered set (or partially ordered
set); we use the shorthand name poset. When it is necessary to point out the order relation we
write 〈A,≤〉. An order relation ≤ on a set A gives rise to the relation < of strict inequality: x < y
in A if and only if x ≤ y and x , y. It is possible to restate the conditions 4.5–4.7 above in
terms of <, and so to regard < as the fundamental relation [Davey and Priestley, 2002]. In the
previous Section we have showed the use of the symbol || which indicates non-comparability
between two sets in a collection; we can extend the use of || to the elements of a poset – i.e. we
write x || y if x 
 y ∧ y 
 x.

We can express the structure of the items using the so called Hasse diagrams [Davey and
Priestley, 2002]. In order to define an Hasse diagram, we need to define the concept of covering
relation between the items belonging to a set.

Definition 4.17.
Let A be an ordered set and let x, y ∈ A, we say that y is covered by x, y � x if and only if
y < x ∧ @k ∈ A | j < k < x.

Now we can define a Hasse diagram for an ordered set following the construction defined
in [Davey and Priestley, 2002].

Definition 4.18.
Let A be an ordered set, we define with H(A) its Hasse diagram.

A Hasse diagram represents an ordered set by a configuration of circles and interconnecting
lines indicating the covering relations. The construction of a Hasse diagram goes as follows:

1. To each set i ∈ A associate a point p(i) of the Euclidean plane R2 depicted by a small
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circle.

2. For each covering pair j � i in A take a line segment l(i, j) joining the circle p(i) to p( j).

3. Carry out (1) and (2) in such a way that

(a) if ( j � i) then p( j) is lower than p(i).

(b) For all k ∈ A, k , {i, j}, p(k) does not intersect l(i, j) if k , i ∧ k , j.

It is easy to tell form a diagram whether one element of an ordered set is less than another:
x < y if and only if there is a sequence of connected line segments moving upwards [Davey and
Priestley, 2002] from x to y.

Example 4.4. Let us consider a poset 〈A, <〉 = {a, b, c, d, e, f , g} where a < b < c < d, e < f <
g, c < g, and b < f . We can see the Hasse diagram of this poset in Figure 4.4a. From this
diagram it is easy to tell that a < g and that e||a.

Let us consider the poset represented in Figure 4.4b. In this case we can see that a||c and
b||d. Thanks to the Hasse diagram it is quite straightforward to see if two elements are non-
comparable.

The diagrammatic approach to finite ordered sets is made fully legitimate by Proposition
4.3 which follows from Lemma 4.2 [Davey and Priestley, 2002]. The following lemma relies
on Definition 4.22.

Lemma 4.2. Let P and Q be finite ordered sets and let ϕ : P→ Q be a bijective function. Then
the following are equivalent:

ϕ is an order-isomorphism. (4.8)

x < y in P if and only if ϕ(x) < ϕ(y) in Q. (4.9)

x � y in P if and only if ϕ(x) � ϕ(y) in Q. (4.10)

Proof:
The proof of this Lemma can be found at page 13 of [Davey and Priestley, 2002].�

Proposition 4.3. Two finite ordered sets P and Q are order-isomorphic if and only if they can
be drawn with identical Hasse diagrams.

Proof:
The proof of this Lemma can be found at page 14 of [Davey and Priestley, 2002].�

The concept of ordered set is straightforwardly extended to the concept of ordered family
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of sets; the following definition can be seen as the ordered version of Definition 4.8.

Definition 4.19.
Let A be a set, 〈I, <〉 a non-empty poset and C a collection of subsets of A. Then a bijective
function A : 〈I, <〉 −→ C is a partially ordered family of subsets of A indicated with the
following notation: {Ai}i∈〈I,<〉.

As well as for non-ordered families, the notation {Ai}i∈〈I,<〉 is quite cumbersome and in the
following we will adopt the shorthand notation to indicate a partially-ordered family: A〈I,<〉.

From Definition 4.19 we understand that I and C are order-isomorphic and thus that A is
an order-isomorphism such that j < k in I if and only if A( j) < A(k) in C. This means that
∀ j, k ∈ 〈I, <〉 | j < k ⇒ ∃!{A j, Ak} ∈ A〈I,<〉 | A j < Ak. It is worthwhile to notice that A j < Ak is
not an inclusion order between the sets.

4.1.6 Metrics and Sets

There are many contexts in mathematics where one would like to say that two mathematical
objects are close, and understand precisely what that means. For instance, if the two objects are
the points (x1, x2) and (y1, y2) in a plane, then the task is quite straightforward: the Euclidean
distance between them is:

√
(y1 − x1)2 + (y2 − x2)2, by the Pythagorean theorem, and it makes

sense to say that the points are close if this distance is small. An important question is which are
the properties that a definition of distance must have. A metric space is an abstract notion that
results from thinking about this question. To this purpose, let X be a set of “points”. Suppose
that, given any two of these points x and y say, we have a way of assigning a real number
d(x, y) that we wish to regard as the distance between them, the following definition points out
the properties that d has to respect to be a proper metric.

Definition 4.20.
Let X be a set, and d ∈ R a distance defined on a pair of elements (x, y) from X. Then, we
define the distance d to be a proper metric if, for any three elements x, y, z ∈ X, the following
properties are respected:

Identity. d(x, x) = 0.

Non-Negativity. d(x, y) ≥ 0.

Symmetry. d(x, y) = d(y, x).

Triangle Inequality. d(x, y) + d(y, z) ≥ d(x, z).

The first property is the identity notion: the distance between a point and itself must be
equal to zero. The second says that the distance between two points is always positive, except
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when the two points are the same, when it is zero (identity). The third property says that
the distance is a symmetric notion: the distance between x and y is the same as the distance
between y and x. The last is called triangle inequality: if you imagine x, y and z composing a
triangle, it says that the length of any side never exceeds the sum of the lengths of the other two
sides.

Then, a distance d defined on a pair of points (x, y) from a set X is called a proper metric if
it respects these four properties. In that case, the pair (X, d) is a metric space.

The distance functions of metric spaces represent a way of quantifying the closeness of
objects in a given domain – they establish how similar two objects are by defining a so-called
similarity measure [Zezula et al., 2006]. A popular distance measure between sets is the Jac-
card’s coefficient [Jaccard, 1901] which defines the similarity between two sets.

Definition 4.21.
Let A and B be two sets, then the Jaccard’s coefficient is defined to be:

J(A, B) =
|A ∩ B|
|A ∪ B|

(4.11)

and the Jaccard’s distance to be:

dJ(A, B) = 1 − J(A, B). (4.12)

The distance measure is simply based on the ratio between the cardinalities of intersection
and union of the compared sets. The Jaccard’s distance (dJ) is a proper metric, satisfying:
identity (dJ(A, A) = 0), non-negativity (dJ(A, B) ≥ 0), symmetry (dJ(A, B) = dJ(B, A)) and
triangle inequality (dJ(A, B) + dJ(B,C) ≥ dJ(A,C)). The first three properties are trivially
true [Clarkson, 2006], instead triangle inequality has been proved in [Lipkus, 1999; Spath,
1980].

Example 4.5. Let us consider three sets A3 = {c}, A4 = {e, f , g}, and A5 = { f , g} – please see
Figure 4.1b for a graphical representation of these sets. It is trivial [Spath, 1980] that:

0 ≤ J(A, B) =
|A ∩ B|
|A ∪ B|

≤ 1 (4.13)

For instance,

J(A3, A4) =
|∅|

|{c, e, f , g}|
=

0
4

= 0

and

J(A4, A5) =
|{ f , g}|
|{e, f , g}|

=
2
3

= 0.66

From these examples we can say that the sets A3 and A4 are completely dissimilar – i.e.they
are disjoint sets and their Jaccard’s distance is 1 – and that the sets A4 and A5 are quite similar
because their Jaccard’s distance is 0.34 = 1 − 0.66.



4.2. Graph Theory 49

4.2 Graph Theory

4.2.1 A Historical Glance

Graph theory may be said to have its beginning in 1736 when Euler considered the (general case
of the) Königsberg bridge problem. The East Prussian city of Königsberg (now Kaliningrad)
occupies both banks of the River Pregel and an island, Kneiphof, which lies in the river at
a point where it branches into two parts. There were seven bridges that spanned the various
sections of the river, and the problem posed was this: could a person devise a path through
Königsberg so that one could cross each of the seven bridges only once and return home? Long
thought to be impossible, the first mathematical demonstration of this was presented by Euler
to the members of the Petersburg Academy on August 26, 1735, and written up the following
year under the title “Solutio Problematis ad Geometriam Situs Pertinentis” (The solution to a
problem relating to the geometry of position) [Euler, 1736] cited by [Alexanderson, 2006].

“The origins of graph theory are humble, even frivolous. Whereas many branches of math-
ematics were motivated by fundamental problems of calculation, motion, and measurement,
the problems which led to the development of graph theory were often little more than puz-
zles, designed to test the ingenuity rather than to stimulate the imagination. But despite the
apparent triviality of such puzzles, they captured the interest of mathematicians, with the result
that graph theory has become a subject rich in theoretical results of a surprising variety and
depth” [Biggs et al., 1986].

It took 200 years before the first book on graph theory was written. This was “Theorie
der endlichen und unendlichen Graphen” (Teubner, Leipzig, 1936) by König in 1936. Since
then graph theory has developed into an extensive and popular branch of mathematics, which
has been applied to many problems in mathematics, computer science, and other scientific and
not-so-scientific areas [Biggs et al., 1986].

4.2.2 Graphs

A graph is a pair G = (V, E) of sets such that E ⊆ V × V; thus, the elements of E are 2-
element subsets of V . The elements of V = {v1, v2, . . . , vn} are called vertices of the graph G,
the elements of E = {e1, e2, . . . , em} are called edges of the graph G. The vertex set of a graph
G is referred to as V(G), its edge set as E(G).

An edge can be indicated as an unordered pair e = {vi, v j} that means that e joins the vertices
vi and v j; we indicate this vertex with the shorthand notation ei, j. The two vertices incident with
an edge are its ends, and en edge joins its ends. The set of all the edges at a vertex v is denoted
by E(v). The degree of a vertex v is the number |E(v)| of edges at v.

Two vertices vi, v j of G are adjacent, if evi,v j is an edge of G. If all the vertices of G are
pairwise adjacent, then G is complete.

As well as we have done in set theory, it is worthwhile to focus on the concept of isomor-
phism between graphs.
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Figure 4.5: Two isomorphic graphs: G(V, E) and G
′
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Definition 4.22.
Let G = (V, E) and G

′

= (V
′

, E
′

) be two graphs. We define G and G
′

to be isomorphic if there
exists a bijective function ϕ : V → V

′

| ei, j ∈ E ⇔ eϕ(i),ϕ( j) ∈ E
′

.

In other words, we can relabel the vertices of G to be the vertices of G
′

, maintaining the
corresponding edges in G and G

′

. In the next example we can see two isomorphic graphs.

Example 4.6. Let G = (V, E) be an undirected graph where V = {1, 2, 3, 4, 5} and E = {e1,2, e1,3,

e1,4, e2,3, e2,4, e3,5}. Let G
′

= (V
′

, E
′

) be an undirected graph where V
′

= {a, v, c,w, t} and
E = {ea,c, ea,w, ea,t, ec,w, ec,t, ew,v}. In Figure 4.5 we can see a graphical representation of G and
G
′

. The function ϕ from V to V
′

given by ϕ(1) = a, ϕ(2) = c, ϕ(3) = w, ϕ(4) = t, ϕ(5) = v is the
required bijective function.

4.2.3 Undirected and Directed Graphs

We consider two kinds of graphs: directed and undirected. In an undirected graph G = (V, E),
the edge set E consists of unordered pairs of vertices. We say that two vertices vi, v j ∈ V are
connected if exists an edge ei, j ∈ E that connect vi and v j; in an undirected graph the edge has
no direction, vi and v j are not ordered and thus, ei, j = e j,i.

Given an undirected graph G = (V, E), its directed version is the graph G
′

= (V, E
′

), where
ei, j ∈ E

′

if and only if ei, j ∈ E. That is, each undirected edge ei, j is replaced by the two directed
edges ei, j and e j,i. If it is not differently specified when we talk of a graph, we refer to a directed
graph where an edge ei, j is denoted by its initial vertex i and its final vertex j.

A path is any sequence of edges where the final vertex of one is the initial vertex of the
next one. In [Cormen et al., 2001] a path of length k from a vertex i to a vertex j in a graph
G = (V, E) is defined as a sequence 〈v0, v1, . . . , vk〉 of vertices such that i = v0, j = vn, and
ei−1,i ∈ E for i = 1, 2, . . . , k.
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Definition 4.23.
A path is a non-empty graph P = (V, E) with V = {v0, v1, v2, . . . , vk} and E = {e0,1, e1,2, e2,3, . . . ,

ek−1,k}, where all the vi are distinct.

The vertices v0 and vk are linked by P and are called its ends. The vertices v1, . . . , vk−1 are
the inner vertices of P. The number of edges of a path is its length, and the path of length k is
denoted by Pk.

We often refer to a path by the natural sequence of its vertices, writing, say, P = v0v1v2 . . . vk

and calling P a path from v0 to vk (as well as between v0 and vk). Sometimes it is useful to
indicate such a path as: v0Pvk [Diestel, 2006].

An elementary path is a path that does not use the same vertex more than once and a simple
path is a path which does not use the same edge more than once.

Example 4.7. Let us consider the graph G(V, E) of Figure 4.5. We can point out a path P =

(VP, EP) where VP = {1, 2, 3, 4, 5} and EP = {e1,4, e4,2, e2,3, e3,5}. As we can see the path P is a
simple and elementary path with length 4 (P4) and |VP| = 5.

If in a graph there is a path viPv j we say that v j is reachable from vi via P. An important
concept is that of a circuit or cycle, which is a path where the initial and the final vertex
are the same; a loop is a circuit comprising only one node. Formally, if we consider a path
P = (V, E) where V = {v0, v1, . . . , vk−1}, E = {e0,1, . . . , ek−2,k−1} with k ≥ 3, then the graph
C = (V, E ∪ {ek,0}) is called a circuit. A graph without circuits or loops is called an acyclic
graph.

A graph is said to be connected if there exists a path from every couple of vertices in V and
complete if there exists a path of length 1 for every couple of vertices in the graph.

Lastly, from the concept of path we can point out a very important property often called the
graphical distance between two vertices.

Definition 4.24.
Let G = (V, E) be a graph and vi, v j ∈ V be two vertices. The graphical distance dG(vi, v j) in
G is the length of the shortest path from vi to v j in G.

Example 4.8. Let us consider the graph G = (V, E) of Figure 4.5 and the path P = (VP, EP)
from 1 to 5. In the Example 4.7, we considered a path of length 4, but the shortest path
P = (VP, EP) from 1 to 5 is VP = {1, 3, 5} and EP = {e1,3, e3,5} where P2. Thus, the graphical
distance dG(1, 5) = 2.
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4.2.4 Trees

One of the most important concept in graph theory, and one which appears often in areas
superficially unrelated to graphs, is that of a tree. An acyclic graph is called a forest and a
connected forest is called a tree; thus, a forest is a graph whose components are trees.

The definition of tree can be stated in different ways as it is described in [Christophides,
1975] where a tree is a connected graph without a circuit or a graph in which every pair of
vertices is connected with one and only one elementary path.

Definition 4.25.
Let T = (V, E) be a connected graph where |V | = n and |E| = (n − 1), then T is a tree.

When we consider a tree T = (V, E) we call V the set of nodes instead of the set of ver-
tices as we do with “generic” graph. The following proposition points out a set of equivalent
assertions about trees.

Proposition 4.4. Let T = (V, E) be a graph, then the following assertions are equivalent:

• T is a tree.

• Any two nodes of T are linked by a unique path in T ;

• T is minimally connected, i.e. T is connected but for every ei, j ∈ E,T = (V, E \ {ei, j}) is
disconnected.

• T is maximally acyclic, i.e. T contains no cycle but for every vi, v j ∈ V such that @ei, j ∈ E
then T = (V, E ∪ {ei, j}) is a cyclic graph and thus it is not a tree.

Proof:
The proof of this well-known proposition can be found at page 14 of [Diestel, 2006].�

Rooted Trees

Often it is convenient to consider one node of a tree as special; such a node is then called the
root of a tree. A tree T = (V, E) with a fixed root vr ∈ V is a rooted tree. Let us consider a
path P = (VP, EP) from the root vr ∈ V to a node vk ∈ V such that VP ⊂ V and EP ⊂ E, then
for every vi, v j ∈ VP writing vi ≺ v j defines a partial order on V: the tree-order associated with
T and vr. We shall think of this ordering as expressing “depth”: if vi ≺ v j we say that vi lies
below v j in T . The nodes at distance k ∈ N from vr have depth k and form the kth level of T .

If it is not further specified when we talk of a tree we refer to a rooted tree. In a rooted tree
there is the explicit concept of hierarchical relation between the nodes of the tree; indeed, if v j

is said to lie below the node vi, it means that vi is hierarchically superior to vi. In an rooted tree
the edges are ordered pairs such as ei, j = (vi, v j) ∈ E means that vi is linked to v j by this edge
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and that vi is higher than v j (or that v j is deeper than vi). If there exists ei, j ∈ E then it meaning
that we can go downward from vi to v j and upward from v j to vi. In this case we define vi to be
the parent node of v j and vice versa, v j to be a child node of vi. In a tree a node has at most
one parent but can have no, one or more children. From the notion of path we can point out
that a node vk is said to be an ancestor of a node v j if there exists a path from vk to v j; on the
other hand, v j is said to be a descendant of vk. Please note that every node is both an ancestor
and a descendant of itself.

In this context it is convenient to talk about inbound edges and outbound edges of a node.

Definition 4.26.
Let T = (V, E) be a rooted tree and vi ∈ V be a node of the tree, then we define its:

Inbound set to be E−(vi) = {v j ∈ V | e j,i ∈ E}.

Outbound set to be E+(vi) = {v j ∈ V | ei, j ∈ E}.

Inbound degree to be |E−(vi)|.

Outbound degree to be |E+(vi)|.

In the definition above there is no risk of ambiguity and thus, we omitted the subscripts in
the notation regarding the inbound/outbound sets; otherwise, for example, we shall indicate the
inbound set of the node vi ∈ V in the tree T = (V, E) as E−V (vi). Let us consider the rooted tree
T = (V, E); the inbound set E−(vi) is the set of all the nodes that are higher than vi ∈ V and
linked to it by an edge in E. The outbound set E+(vi) is the set of all the nodes that are deeper
than vi ∈ V and linked to it by an edge in E. The correspondent degrees are the cardinalities of
these sets.

The inbound and outbound degrees are well-suited to define the properties of the nodes of
the rooted trees. Indeed, vr ∈ V is defined to be the root of T = (V, E) then |E−(vr)| = 0 and
∀vi ∈ V \ {vr}, |E−(vi)| = 1. The set of all external nodes or leaves is Vext = {vi ∈ V | |E+(vi)| =
0} and the set of all the internal nodes is Vint = {vi ∈ V | |E+(vi)| > 0}.

Furthermore, we define two additional sets of nodes that are very useful in the rest of the
work. We define with Γ+(vi) the set of all the descendants of vi in V (including vi itself); vice
versa Γ−(vi) is the set of all the ancestors of vi in V (including vi itself). Let us consider a
rooted tree T = (V, E), then for all v j ∈ Γ+(vi) it exists a path P = (V

′

, E
′

) from vi to v j in T ,
where |E

′

| > 0. Vice versa, for all v j ∈ Γ−(vi) it exists a path P = (V
′

, E
′

) from v j to vi in T ,
where |E

′

| > 0.

Let us consider a couple of recurrent cases: let vr ∈ V be the root of a tree T = (V, E)
then Γ−(vr) = {vr} and Γ+(vr) = V . Furthermore, let vi an external node of T = (V, E), then
Γ+(vi) = {vi}.

The following example shows how these concept are applied to a sample tree.
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Figure 4.6: A sample tree T (V, E).

Example 4.9. Let T (V, E) be a tree where V = {vr, va, vb, vc, vd, ve, v f , vg} and E = {er,a, er,b, ea,c,

ea,d, eb,e, eb, f , eb,g}. In Figure 4.6 we can see a graphical representation of this tree.

For instance, the path P = (VP, EP) from vr to ve has VP = {vr, vb, ve} and EP = {er,b, eb,e},
thus it has length is 2. The set E+(va) = {vc, vd}, E−(va) = {vr}, E−(vr) = {∅} and E+(ve) = {∅}.
The inbound degree of the node vr is |E+(vr)| = 0 instead |E+(va)| = 1. The outbound degree
of va is |E+(va)| = 2 instead |E+(ve)| = 0.

Vext = {vc, vd, ve, v f , vg} and Vint = {vr, va, vb}. Finally, the set of all the descendants of va is
Γ+(va) = {va, vc, vd} and the set of all its ancestors is Γ−(va) = {va, vr}, please note that the node
va is included in both of these sets.

From this example we can see that we can define a subtree rooted at va induced by the
descendants of va in V . The subtree rooted in va in Figure 4.6 contains the nodes va, vc and vd.

Furthermore, by means of this newly described notation, we can formally define the im-
portant concept of lowest common ancestor that we introduced in Section 2.2.3. The lowest
common ancestor of nodes v j and vk in a tree is the ancestor of v j and vk that is located farthest
from the root [Bender et al., 2005].

Definition 4.27.
Let T (V, E) be a tree and v j, vk ∈ V be two vertices. Then we define vt to be the lowest common
ancestor of v j and vk (lca(v j, vk) = vt) if:

vt ∈ Γ−(v j) ∩ Γ−(vk), and (4.14)

@vw ∈ V,w , t | (vw ∈ Γ−(v j) ∩ Γ−(vk)) ∧ (vw ∈ Γ+(vt)) (4.15)

The first condition imposes that vt = lca(v j, vk) must be a common ancestor of v j and vk;
the second condition says that cannot exist a vertex that is not vt which is nearer than vt to both
v j and vk.
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Ordered Trees

An ordered tree is a rooted tree in which the children of each node are ordered; that is, if a
node has k children, then there is a first child, a second child and so on and so forth. When
we consider ordered trees we take into account also the horizontal dimension of the hierarchy
and thus the relationships between the sibling nodes. A special case of ordered tree is the
binary tree that is a tree that contains no nodes or that is composed by three disjoint sets
of nodes: a root node, a binary tree called its left subtree, and a binary tree called its right
subtree [Cormen et al., 2001].

We use the following notation to indicate an ordered tree: T = (〈V, <〉, E) where V is the
poset of vertices. 〈V, <〉 defines a partial order between the vertices of an ordered tree and
from the common definition of ordered tree, only the order between siblings is important for
practical purposes.

4.2.5 The Metric Properties of Trees

The distance between two nodes is a fundamental concept for trees; we can define the distance
between two nodes belonging to the same tree or the distance between two trees. In the former
case we talk about how many edges we have to cross to reach a node from another one. In the
latter case we are defining a similarity measure where the more two trees are distant, the more
they differ one from the other [Zezula et al., 2006].

Let T = (V, E) be a tree, then the distance between two vertices vi and v j in V can be seen
as the number of edges that we need to cross to go from vi to v j; this is the graphical distance
(dG) between two nodes. If we consider the same tree T where each edge is associated with a
length 1, then the pair (T, dG) is a metric space [Buneman, 1974; Gowers et al., 2008]. The
notion of graphical distance is important in graph theory and in tree algorithms; furthermore,
many metric properties of tree are defined using the concept of graphical distance.

A meaningful example is the four-point condition where by checking the possible config-
urations of paths which can connect four nodes x, y, z, t ∈ V in a tree T = (V, E), it has been
proven [Buneman, 1974] that the graphical distance must satisfy:

dG(x, y) + dG(z, t) ≤ max{dG(x, z) + dG(y, t), dG(x, t) + dG(y, z)} (4.16)

The four-point condition is stronger than the triangle inequality and is equivalent to say that
of the three sums dG(x, y) + dG(z, t), dG(x, z) + dG(y, t), and dG(x, t) + dG(y, z) two are equal and
not less than the third. The four-points condition is also sufficient condition to a graph to be a
tree as pointed out by the following lemma:

Lemma 4.5. A graph is a tree if and only if it is connected, contains no triangles, and has
graphical distance satisfying the four-point condition.
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Figure 4.7: The intervals associated with the internal nodes of a rooted ordered tree.

Proof:
The proof of this lemma can be found in [Buneman, 1974].

The notion of distance can be applied also between two trees to establish how close or
distant they are. Often these distance measures are called similarity or dissimilarity measures.

A widely-used distance measure between trees is the tree edit distance [Apostolico and
Galil, 1997; Sankoff and Kruskal, 1983]. The tree edit distance defines a distance between two
tree structures as the minimum cost needed to convert a tree to another tree using a predefined
set of edit operations: insertion, deletion and relabeling of a node; indeed, the problem of
computing the distance between two trees is associated to labeled trees. An extensive survey
about the algorithms to compute the tree edit distance is [Bille, 2005]. Since XML documents
are typically modeled as rooted labeled trees [Zezula et al., 2006], the tree edit distance can
also be used to measure the structural dissimilarity of XML documents [Cobena et al., 2002;
Guha et al., 2002].

Another meaningful structural distance between trees is the Parseval metric [Abney et al.,
1991] extended by Gallé in [Gallé, 2010]. This distance is based on the concept of “brackets of
tree” which is a set of intervals that permits us to reconstruct the tree from a set of values. Let
us consider the rooted ordered tree in Figure 4.7 to understand how these intervals are defined.
Every external node – i.e. vc, vd, ve, vg, and vh – is associated with an integer and every internal



4.2. Graph Theory 57

node – i.e. vr, va, vb and v f – is associated with an interval defined by the smaller integer and
the bigger integer of the external nodes it comprises; so the interval set associated with a tree
is composed by the intervals associated to the internal nodes. For instance, the internal node
vr is the root and thus, it comprises all the external nodes in the tree and its interval is defined
by the smaller integer – i.e. 1 – which is associated to vc and the bigger – i.e. 5 – which is
associated to vh. Following this procedure the interval set is X = {[1, 5], [1, 2], [3, 5], [4, 5]}. As
we can see |X| = |Vint| = 4. The structure of a tree can be fully recovered by its interval set
(alternatively called bracket set) [Abney et al., 1991; Wojcik et al., 1993].

The structural distance between two trees is computed comparing the interval set associated
to each tree. So, let us assume that a rooted ordered tree TX = (VX , EX) is associated to the
interval set X and that the rooted ordered tree TY = (VY , EY ) is associated to the interval set Y .
In [Gallé, 2010] the following assignment function is defined:

fa : X → Y ∪ {∅}.

This function is required to be injective, this means that every interval in Y has at most one
corresponding interval in X 2; please note that ran( fa) ⊆ Y . The role of the empty set in the
image is to permit to assign brackets from X which otherwise would not be assigned. If for any
x ∈ X, fa(x) = ∅ we refer to this as a null-assignment. The structural distance between two
trees is defined as follows [Gallé, 2010]:

dS (X,Y) =
∑
x∈X

d(x, fa(x)) + |Y \ ran( f )| (4.17)

This gives a penalty of a maximal distance for every interval of Y to which no interval of
X was assigned. This is the symmetric part of assigning ∅ to an interval of X. This distance is
proved to be a proper metric in [Gallé, 2010].

2Please note that an injective function preserves distinctness: it never maps distinct elements of its domain to
the same element of its co domain.
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Chapter 5

Digital Libraries

In this chapter we present the main characteristics of Digital Libraries with a particular attention
to the archives that represent the foremost use case analyzed in this work. Furthermore, we
describe the standard digital library technologies we exploit in this work.

5.1 Overview on Digital Libraries

The term “Digital Libraries” corresponds to a very complex notion with several diverse aspects
and it cannot be captured by a simple definition [Candela et al., 2007b]. Indeed, the term “dig-
ital libraries” is used to refer to systems that are very heterogeneous in scope and provide very
different functionalities [Candela et al., 2007a]. These systems span from digital object and
metadata repositories, reference-linking systems, archives, and content administration systems,
to complex systems that integrate advanced services. Furthermore, digital libraries represent
the meeting point of many disciplines and research fields – i.e. data management, information
retrieval, library and information sciences, document and information systems, the Web, infor-
mation visualization, artificial intelligence, human-computer interaction, and others [Ioannidis,
2005].

Thus, providing a unique definition of “digital libraries” is quite problematic and every
attempt with this aim has led to an application-oriented definition; indeed many tentative defi-
nitions are “influenced by the primary discipline of their proposer(s)” [Candela et al., 2007b].
Indeed, in [Ioannidis, 2005] digital libraries are envisioned as “citizen-oriented” systems: “dig-
ital libraries should enable any citizen to access all human knowledge, any time and anywhere,
in a friendly, multi modal, efficient and effective way, by overcoming barriers of distance, lan-
guage, and culture and by using multiple Internet-connected devices.” Likewise, in [Soergel,
2002] a research framework on digital libraries has been proposed starting from “three very
different perspectives that different people in the community have on digital libraries, i.e., as
tools to serve research, scholarship, and education, as a means for accessing information,
and as providing services primarily to individual users”. On the other hand, in [Belkin, 1999]
we can find a narrower view of digital libraries intended as an: “[. . .] institution in charge of
providing at least the functionality of a traditional library in the context of distributed and net-
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worked collections of information objects”. In [Borgman, 1999] there is a distinction between
at least two competing visions of the expression “digital library”: “Researchers view digital
libraries as content collected on behalf of user communities, while practicing librarians view
digital libraries as institutions or services.” The vision proposed by the “DELOS Network
of Excellence on Digital Libraries”1 catches in a proper way the difficulties in defining the
boundaries of digital libraries stating that: “digital library [is] a tool at the centre of intellec-
tual activity having no logical, conceptual, physical, temporal, or personal borders or barriers
on information.”

Despite this multifaceted view of digital libraries there are several accepted conceptions
that are shared by the researchers of the area:

• User-centric systems: Digital libraries are a new type of information infrastructures that
should be user-centered, able to support content management tasks together with tasks
devoted to communication and cooperation. That is they should be information infras-
tructures that become common vehicles with which every user can access, discuss, eval-
uate, and enhance information of all forms. Although they are still places where infor-
mation resources can be stored and made available to end users, the current design and
development efforts are moving in the direction of transforming them into infrastructures
able to support the user in different information centric activities.

• Dynamic interactions: The vision of digital libraries has evolved from static storage and
retrieval of information to dynamic forms of facilitation of communication, collaboration
and other forms of interaction among scientists, researchers or the general public.

• Large capabilities: Digital libraries evolve from handling mostly centrally located tex-
tual documents to synthesizing distributed multimedia document collections, sensor data,
mobile information, and pervasive computing services.

Digital libraries have contributed to supporting the creation of innovative applications and
services to access, share and search our cultural heritage. In this context, another key feature
we have to consider to understand the world of digital libraries is that they have to take into
account several distributed and heterogeneous information sources with different community
background and different information objects ranging from full content of digital objects to
the metadata describing them. These objects can be exchanged between distributed systems
or they can be aggregated and accessed by users with distinct information needs and living in
different countries. Indeed, one of the most important contributions of digital libraries is to
make available collections of digital resources from different cultural institutions such as li-
braries, archives and museums, to make them accessible in different languages and to provide

1DELOS: Network of Excellence on Digital Libraries was co-funded by the European Union. DELOS run for
ten years (3 years as a working group, 3 years as a Thematic Network and 4 years as a Network of Excellence) and
it has given a substantial contribution to the establishment in Europe of a research community on digital libraries.
Now there is the “DELOS Association” that is a not-for-profit organization whose main aim is to continue as much
as possible the DELOS activities. http://www.delos.info/
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advanced services over them. We have to consider that the above mentioned institutions are
different from several point-of-views: their internal organization has different peculiarities, the
resources they collect and manage have different structure and nature, these resources are de-
scribed with different means and for different purposes, their users have different information
needs and require different methods to access the resources. Thus, digital libraries are het-
erogeneous systems with peculiarities and functionalities that range from data representation
to data exchange and data management. Furthermore, digital libraries are meaningful parts
of a global information network which includes scientific repositories, curated databases and
commercial providers. All these aspects need to be taken into account and balanced to support
final users with effective and interoperable information systems. A fundamental role of digi-
tal libraries therefore is to provide data models, protocols, applications and services to handle
all these cultural resources preserving their characteristics and addressing the issues related to
their differences.

Digital libraries can be defined and shaped also by analyzing the issues they have to ad-
dress; in particular, two important aspects that digital libraries have to study are: heterogeneity
– which we have just described – and interoperability. These two concepts are closely-related
and their interrelation can be pointed out particularly by analyzing interoperability as a com-
plex and multiform concept, which can be defined - as by the “ISO/IEC 2382-01, Information
Technology Vocabulary, Fundamental Terms” - as follows: “The capability to communicate,
execute programs, or transfer data among various functional units in a manner that requires
the user to have little or no knowledge of the unique characteristics of those units”. When the
concept of interoperability is considered in the context of digital libraries it takes on different
dimensions as shown by the European Commission Working Group on digital library Inter-
operability [Gradmann, 2007] which identified six dimensions that can be distinguished and
taken into account:

Interoperating entities. These can be assumed to be the traditional cultural heritage institu-
tions, such as libraries, museums, archives, and other institutions in charge of preserva-
tion of artifacts or that offer digital services.

Information objects. The entities that actually need to be processed in interoperability sce-
narios. Choices range from the full content of digital information objects to the metadata
describing them.

Functional perspective. This may simply be the exchange and/or propagation of digital con-
tent. Other functional goals are aggregating digital objects into a common content layer.

Multilingualism. Linguistic interoperability can be thought of in two different ways: as mul-
tilingual user interfaces to digital library systems or as dynamic multilingual techniques
for exploring the digital library systems object space.

User perspective. Interoperability concepts of a digital library system manager differ substan-
tially from those of a content consuming end user.
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Interoperability technology. Enabling different kinds of interoperability constitutes a major
dimension and several technologies designed in the context of digital libraries.

These dimensions are particularly well-suited for understanding the compound world of
digital libraries. The first point, “Interoperating entities” takes into account the nature of the
institutions that are constituent parts of a digital library. Libraries, archives and museums have
different organizations, traditions and internal policies; the resources produced and preserved
by them reflect their very nature and thus they are quite different in structure and content. Fur-
thermore, resources coming from different cultural environments have to be treated in different
ways in terms of their access, management, preservation, and the modalities offered to the user
for the fruition of the contents.

The second point “information objects” lets us understand the range of resources that digital
libraries have to deal with. Full content digital information objects range from full text to
multimedia objects that have to be related to the metadata describing them. Metadata – literally
“data about data” – are fundamental resources in digital libraries that are used to described
digital and traditional resources, and as an aid to managing, accessing, and retrieving them.
Metadata are semi-structured data which describe the characteristics of a resource. They share
many similar characteristics with the cataloging that takes place in libraries, museums and
archives.

The third point “functional perspective” underlines the fact that digital libraries have to
share their resources in a distributed environment and give access to them. On the other hand,
the aggregation of resources in a common content layer is another key aspect of digital li-
braries. Digital libraries operate in an open and multilingual environment and the fourth point
“multilingualism” highlights the importance of this aspect.

The fifth point “User perspective” is particularly relevant. Digital libraries have to take
care of the all information life cycle that begins with a user request; thus, a prime goal of
digital libraries is to design and develop languages and interfaces well-suited to the user in-
teraction. Often languages developed in other fields – e.g. databases – are relatively narrow
and cannot capture the full range of requests made to digital libraries [Ioannidis et al., 2005].
Thus, it is important to develop languages which are expressive enough for users to pose their
most sophisticated needs succinctly. Digital libraries have to also take into account interaction
paradigms providing personalized interactions which consider the “diversity of backgrounds,
needs, and preferences” [Ioannidis et al., 2005] of the users.

The sixth point “interoperability technologies” is another key aspect that must be taken into
account when we consider digital libraries. A common goal in the design and development of
digital libraries is to build systems which rely as much as possible on existing building blocks,
thus maximizing the exploitation of Web and Internet standards. When we deal with digital
libraries we have to consider different technologies such as the metadata schema adopted to
describe the resources, the encoding of the metadata schema, the data management system, the
protocols to exchange metadata in distributed environments and, the means to relate metadata
and full content digital object in a consistent way.
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These are the main aspects that we take into account when we talk about digital libraries.
As we have underlined before the world of digital libraries is very vast and complex, thus these
aspects should be considered just as a meaningful point-of-view on this world. Several other
facets of digital libraries can be taken into account depending on which research aspect we
are aiming to investigate. For instance, digital libraries are also concerned with information
and process quality aspects [Fuhr et al., 2007], information integration and derivation which
is concerned with putting the information in the form most useful to the user [Ioannidis et al.,
2005], and information enrichment which involves annotations [Agosti et al., 2005, 2007a;
Agosti and Ferro, 2007; Ferro, 2009; Ferro and Silvello, 2010], provenance [Buneman and
Tan, 2007; Castelli et al., 2010; Moreau et al., 2008], lineage [Simmhan et al., 2005] and
citation [Altman and King, 2007; Buneman, 2006; Buneman and Silvello, 2010; Lawrence
et al., 1999].

5.2 Archives

The context represented by the digital libraries is multifaceted and comprises many realities of
interest. In this work we consider digital libraries but in particular, we focus on a specific and
meaningful reality treated by them: the archives. We take archives into account because they
are quite complex entities, organization and structure of which as well as the problems that
have to be addressed at a digital level are well-suited for our research purposes.

Archives differ from libraries in the nature of the materials held. Libraries collect individual
published books and serials, or bounded sets of individual items. The books and journals held
by libraries are not unique, since multiple copies exist and any given copy will generally prove
as satisfactory as any other copy. The material in archives and manuscript libraries are “the
unique records of corporate bodies and the papers of individuals and families” [Pitti and Duff,
2001].

Moreover, an archive is not simply constituted by a series of objects that have been accu-
mulated and filed with the passing of time. Instead, it represents the trace of the activities of a
physical or juridical person in the course of their business which is preserved because of their
continued value. Archives have to keep the context in which their records2 have been created
and the network of relationships between them in order to preserve their informative content
and provide understandable and useful information over time.

Archival description is defined in [Pearce-Moses, 2005] as “the process of analyzing, or-
ganizing, and recording details about the formal elements of a record or collection of records,
to facilitate the work’s identification, management, and understanding”; archival descriptions
have to reflect the peculiarities of the archive, retain all the informative power of a record,
and keep trace of the provenance and original order in which resources have been collected and
filed by archival institutions [Gilliland-Swetland, 2000]. This is emphasized by the central con-

2In [MacNeil et al., 2001] a record is defined as: “Any document made or received and set aside in the course
of a practical activity”.
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cept of fonds3, which should be viewed primarily as an “intellectual construct”, the conceptual
“whole” that reflects an organic process in which a records creator produces or accumulates
series of records [Cook, 1993]. In this context, provenance becomes a fundamental principle
of archives often referred to as “respect des fonds” which dictates that resources of different
origins be kept separate to preserve their context [Duranti, 1998; Gilliland-Swetland, 2000].

[Duranti, 1998] highlights that maintaining provenance leads archivists to evaluate records
on the basis of the importance of the creator’s mandate and functions, and fosters the use of a
hierarchical method. The hierarchical structure of the archive expresses the relationships and
dependency links between the records of the archive by using what is called the archival bond
defined as “the interrelationships between a record and other records resulting from the same
activity” [Pearce-Moses, 2005]. Archival bonds, and thus relations, are constitutive parts of
an archival record: if a record is taken out from its context and has lost its relations, its infor-
mative power would also be considerably affected. Therefore, archival descriptions need to be
able to express and maintain such structure and relationships in order to preserve the context
of a record. These aspects are highlighted if we consider the definition of “archival descrip-
tion” given by the glossary of the International Standard for Archival Description (General)
(ISAD(G)) [International Council on Archives, 1999b] drawn up by the International Coun-
cil on Archives (ICA) 4 for the development of archival information systems: “an accurate
representation of a unit of description and its component parts, if any, by capturing, analyz-
ing, organizing and recording information that serves to identify, manage, locate and explain
archival materials and the context and records systems which produced it.”

The definition underlines that archives are complex entities; indeed, they are made up of a
collection of entities and relations which link them to each other. It is precisely the nature of
these links – i.e. archival bonds – which distinguishes archives from other objects in the realm
of cultural heritage – e.g. books – which in general are perceived as individual, repeatable and
unrelated entities [Vitali, 2010]. Archives are in fact made up of series which in turn can be
organized in sub-series which are formed of archival units – e.g. files, registers, and so on –
which have a homogeneous nature and can in turn be divided into subunits containing items
such as letters, reports, contracts, testaments, photographs, drawings, etc.

Following this structure and according to ISAD(G), archival description proceeds from
general to specific as a consequence of the provenance principle and has to show, for every unit
of description, its relationships and links with other units and to the general fonds. Therefore,
archival descriptions produced according to the ISAD(G) standard take the form of a tree which
represents the relationships between more general and more specific archive units going from
the root to the leaves of the tree. In Figure 5.1 we can see the ISAD(G) hierarchical model
as it is represented in [International Council on Archives, 1999b]; any number of intermediate
levels are possible between any shown in the model.

Entities are in a vertical relationships of subordination with the entity they belong to; the

3The term fonds is not a commonly used English word but it is derived from the French [Hayworth, 1993] and
in the archival context it is used both for the singular and plural form of the noun.

4http://www.ica.org/
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Figure 5.1: Hierarchical organization of the archives and of the archival descriptions according to
ISAD(G) [International Council on Archives, 1999b].

hierarchical representation is further complicated by the fact that the entities which belong to
the same father have a “horizontal-type” relationship – they need to be represented according
to a significant sequence which reflects the position that they have in the logical and/or in the
material order of the archive; thus, the hierarchical organization of archives can be defined as a
“level hierarchy” according to the classification of hierarchies we presented in Section 2.1.1.

We have highlighted that the informational power of an archival record is given by the
record itself plus its context determined by the set of relationships that it establishes with
the other records in the archive. However, a similarly fundamental role in archival descrip-
tions is played by other type of contexts, which in a certain sense are external to the archives
themselves. Generally-speaking archives are the outcome of the practical activities of certain
subjects such as corporate bodies, families or persons. These entities are called the creators
of the archive and they are a constituent part of its context; the archival descriptions have to
maintain the relationships also with these entities that in turn are described by means of other
descriptive standards. These descriptions are called archival authority records associated with
the creation and maintenance of archives. The ICA developed a descriptive standard for the
redaction of these descriptions which is the International Standard Archival Authority Records
(Corporate Bodies, Persons, Families) or ISAAR(CPF) [International Council on Archives,
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Figure 5.2: A graphical representation of the relationships between the archival descriptions.

1999a]. ISAAR(CPF) specifies that the archival authority records may be used to:

• describe a corporate body, person, or family as units within an archival descriptive sys-
tem.

• Control the creation and use of access points in archival descriptions; the name of the
creator of the unit of description is one of the most important of such access points.

• Document relationships between different record creators and between those entities and
the records created by them and/or other resources about or by them.

Each archive therefore should be related with one or more creators who presided over its
accumulation and their history, functions, activities, etc. should be described. Furthermore,
when archives held by archival institutions are described in the same information system, these
institutions also have to be described to help users locate the archives described [Vitali, 2010];
the ICA developed a standard for the description of archival institutions called International
Standard for Describing Institutions with Archival Holdings (ISDIAH) [International Coun-
cil on Archives – Committee of Best Practices and Standards (CBPS), 2008]. Other entities
can be added to these such as the description of the finding aid5 existing for a certain fonds,
bibliographic references, other information resources, etc. with the outcome of creating rela-
tively complex systems. In Figure 5.2 we can see a graphical representation of the components
composing an archive and its descriptions.

5A finding aid is an essential access tool for conveying information about the arrangement and content of
archives. Such finding aids often contain far more information about a collection than can be captured in a summary
catalog record; they are generally created in the course of processing a collection and usually reflect the hierarchical
arrangement of the materials [Ruth, 2001].
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5.3 Digital Library Technologies

The role of the technology of choice is fundamental in the context of digital libraries. We
have seen that technologies are one of the key aspects of digital library interoperability dimen-
sions [Gradmann, 2007]. Digital libraries rely on standard technological building blocks that
must be taken into account when dealing with them. The first technological building block is
constituted by the metadata schema adopted to describe the resources managed by a digital
library; we consider two main metadata schema: the Dublin Core (DC)6 metadata initiative
which is the standard in the library context and provides simple standards to facilitate the find-
ing, sharing and management of information, and the Encoded Archival Description (EAD)7

which is the standard metadata format in the archival context. While the syntax is not strictly
part of the metadata schema, the data will be unusable, unless the encoding scheme understands
the semantics of the metadata schema. The encoding allows the metadata to be processed by
a computer program. Important schemes that we have to take into account include XML8 and
Resource Description Framework (RDF) 9.

The second technological building block is constituted by the Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH) 10 which is the standard de-facto for metadata
exchange in distributed environments.

The third technological building block we take into account is the Open Archives Initiative
- Object Reuse and Exchange (OAI-ORE) 11 which provides a model for handling compound
digital objects and their aggregations on the Web. Archives and museums should adopt these
technological means to exploit the services offered by the digital libraries and to promote a
deeper integration between the resources coming from different cultural environments.

Dublin Core Metadata Initiative

The Dublin Core Metadata Initiative (DCMI) is an international effort designed to foster con-
sensus across disciplines for the discovery-oriented description of diverse resources in an elec-
tronic environment. The DCMI has, in part and to this end, defined the Dublin Core Element
Set (DCES) which is intended to support cross-discipline resource discovery. The DCES is
a vocabulary of fifteen properties for use in resource description: Title, Creator, Subject, De-
scriptions, Publisher, Contributor, Date, Type, Format, Identifier, Source, Language, Relation,
Coverage, and Rights. These elements make up the “simple Dublin Core” which has been
formally endorsed in the following standards: ISO Standard 15836:2009 of February 2009,
ANSI/NISO Standard Z39.85-2007 of May 200712, and IETF RFC 5013 of August 200713.

6http://www.dublincore.org/
7http://www.loc.gov/ead/
8http://www.w3.org/XML/
9http://www.w3.org/RDF/

10http://www.openarchives.org/pmh/
11http://www.openarchives.org/ore/
12http://www.niso.org/standards/z39-85-2007/
13http://www.ietf.org/rfc/rfc5013.txt
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The Dublin core intended to facilitate the description and discovery of electronic resources and
since its first developments it pursues five main objectives [Weibel, 1997]: Simplicity, semantic
interoperability, international consensus, flexibility and modularity.

As a core set of concepts, the DCES is not intended to satisfy every possible declarative
need in every discipline; indeed, when it comes to metadata it is almost impossible to define a
format which can be adopted in different application environments. Every application context
has it own peculiarities and characteristics that need to be caught by a metadata; in such con-
texts we need to be able to specify new properties of a metadata format or a totally new schema.
To this purpose the DCMI developed the Dublin Core Application Profiles (DCAP). A DCAP
defines metadata records which meet specific application needs while providing semantic in-
teroperability with other applications on the basis of globally defined vocabularies and models.
A DCAP is a document (or set of documents) that specifies and describes the metadata used in
a particular application. DCAP are very useful because they permit us to define new metadata
format based on the principles that guided the development of the simple Dublin Core and thus
enhancing the interoperability and flexibility aspects.

As a general statement we can say that the Dublin Core metadata format – comprising the
possibility of designing and develop a DCAP – is tiny, easy-to-move, shareable and remarkably
suitable for a distributed environment. These characteristics have made the Dublin Core one of
the most diffuse and recognized metadata standards embraced by many realities.

Encoded Archival Description

The EAD is a standardized electronic representation of archival description which makes it
possible to provide union access to detailed archival descriptions and resources in reposito-
ries distributed throughout the world. The development of the EAD started from a project of
the University of California, Berkeley in 1993 which had the following important goal: “in-
vestigate the desirability and feasibility of developing a non proprietary encoding standard
for machine-readable finding aids such as inventories, registers, indexes, and other documents
created by archives, libraries, museums, and manuscript repositories to support the use of their
holdings”14.

The development of EAD continued over time and brought the first release of EAD Doc-
ument Type Definition (DTD) by the Library of Congress in conjunction with the Society of
American Archivists in 1998. Currently, EAD is in its second version released in 2002 and
the entire suite of DTD and entity reference files are re engineered to meet the needs of XML
and related technologies. Since the first release, EAD has been conceived in order to meet five
main requirements, which are the ability to:

1. Present extensive and interrelated descriptive information found in archival finding aids.

2. Preserve the hierarchical relationships existing between levels of archival description.

14http://www.loc.gov/ead/eaddev.html
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3. Represent descriptive information that is inherited by one hierarchical level from another.

4. Move within a hierarchical informational structure.

5. Support element-specific indexing and retrieval.

EAD rapidly became a standard for encoding archival descriptions; firstly, because it is
based on an internationally recognized standard for markup language: XML. Secondly, be-
cause “for the first time archivists have been offered a data structure standard that accom-
modates a hierarchical structure for the presentation of a variety of descriptions” [Haworth,
2001]. Lastly, EAD enables archivists to be standard compliant and software independent.

In order to meet the expected requirements EAD reflects and emphasizes the hierarchical
nature of ISAD(G) [Pitti, 1999]. EAD fully enables the expression of multiple description
levels central to most archival descriptions and reflects hierarchy levels present in the resources
being described. EAD cannot be considered a one-to-one ISAD(G) implementation, although
it does respect ISAD(G) principles and is useful for representing archival hierarchical structure.
EAD is composed of three high-level components: <eadheader>, <frontmatter>, and
<archdesc>.

The <eadheader> contains metadata about the archive descriptions and includes infor-
mation about them such as title, author, and date of creation. The <frontmatter> sup-
plies publishing information and is an optional element, while the <archdesc> contains the
archival description itself and constitutes the core of EAD. The <archdesc> may include
many high-level sub-elements, most of which are repeatable. The most important element is
the <did> or descriptive identification which describes the collection as a whole. The <did>
element is composed of numerous sub-elements that are intended for brief, clearly designated
statements of information and they are available at every level of description. Finally, the
<archdesc> contains an element that facilitates a detailed analysis of the components of a
fonds, the <dsc> or description subordinate components. The <dsc> contains a repeatable
recursive element, called <c> or component. A component may be an easily recognizable
archival entity such as series, subseries or items. Components not only are nested under the
<archdesc> element, they are also usually nested inside one another. Components usually
are indicated with <cN> tag, where N ∈ {01, 02, . . . , 12}.

EAD reflects the archival structure and holds relations between entities in an archive. In ad-
dition, EAD encourages archivists to use collective and multilevel description, and because of
its flexible structure and broad applicability, it has been embraced by many repositories [Kies-
ling, 2001].

On the other hand, EAD allows for several degrees of freedom in tagging practice, which
may turn out to be problematic in the automatic processing of EAD files, since it is difficult to
know in advance how an institution will use the hierarchical elements. The EAD permissive
data model may undermine the very interoperability it is intended to foster. Indeed, it has been
underlined that only EAD files meeting stringent best practice guidelines are shareable and
searchable [Prom et al., 2007]. Moreover, there is also a second relevant problem related to the
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EAD Structure
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Figure 5.3: How an archive represented as a tree is mapped into an EAD XML file.

level of material that is being described. Unfortunately, the EAD schema rarely requires a stan-
dardized description of the level of the materials being described, since the <level> attribute
is required only in the <archdesc> tag, while it is optional in <cN> components and in very
few EAD files this possibility is used, as pointed out by [Prom, 2002]. As a consequence, the
level of description of the lower components in the hierarchy needs to be inferred by navigating
the upper components, maybe up to the <archdesc>, where the presence of the <level>
attribute is mandatory. Therefore, access to individual items might be difficult without taking
into consideration the whole hierarchy.

We highlight this fact in Figure 5.3 where we present the structure of an EAD file. In this
example we can see the top-level components <eadheader> and <archdesc> and the hi-
erarchical part represented by the <dsc> component; the <level> attribute is specified only
in the <archdesc> component. Therefore, the archival levels described by the components
of the <dsc> can be inferred only by navigating the whole hierarchy.

Moreover, sharing and searching archival description might be made difficult by the typical
size of EAD files with a very deep hierarchical structure. Indeed, each EAD file is a hierar-
chical description of a whole collection of items rather than the description of an individual
item [Shreeves et al., 2003]. On the other hand, users are often interested in the information
described at the item level, which is typically buried very deeply in the hierarchy and might be
difficult to reach.
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Open Archive Initiative Protocol for Metadata Harvesting

The mission of the Open Archive Initiative (OAI)15 has been to develop and promote inter-
operability standards that facilitate the efficient dissemination of digital library content. The
Open Archive Initiative Protocol for Metadata Harvesting (OAI-PMH)16 is a protocol which
is a de-facto standard for the exchange of metadata between digital libraries in a distributed
environment. OAI-PMH is designed to be open from an architectural point-of-view and a
low-barrier mechanism for repository interoperability. It is non-intrusive, flexible, lightweight
and easy to integrate into existing systems; these characteristics encouraged the adoption of
OAI-PMH in almost all the applications and systems dealing with the exchange of metadata.

OAI-PMH is both application- and platform-independent; it is based on Web standards
such as HyperText Transfer Protocol (HTTP) and XML and on two main components – Data
Provider and Service Provider. Data Providers are repositories that export records in response
to requests from a software service called harvester. On the other hand, Service Providers
are those services that harvest records form Data Providers and provide services built on top
of aggregated harvested metadata. OAI-PMH does not define the services to be offered by
a service provider; that definition is left to the implementers of the Service Provider. The
Service Provider harvests the metadata from the Data Providers – i.e. repositories – exploit-
ing six OAI-PMH verbs based on HTTP requests: identify which is used to request a
description of a Data Provider, ListMetadataFormat which lists the metadata formats
supported by the Data Provider, ListSets which lists the sets defined by the data provider,
ListIdentifiers which lists the unique identifiers associated with the metadata exposed
by the Data Provider, ListRecords which lists all the metadata exposed by a Data Provider,
and GetRecord which requests a specific metadata to a Data Provider. A Data Provider an-
swers OAI-PMH requests with XML-encoded metadata records instance documents; the basic
functioning of OAI-PMH is graphically represented in Figure 5.4. OAI-PMH does not im-
pose any metadata format and thus the Data Providers are free to choose their own format or
formats; although repositories are strongly encouraged to expose richer, possibly community-
specific metadata formats, there is no requirement to do so. On the other hand, [Van de Sompel
et al., 2002a] states that “repository implementers should consider exporting the Dublin Core
the first and most important step toward OAI-PMH interoperability. The addition of facilities
to export other formats may then be added at a later date”. For this reason it is a common
understanding that Dublin core is the minimum requirement for OAI-PMH, but the linkage
between Dublin Core and OAI-PMH has been over-emphasized at the expense of the utility
of OAI-PMH for dissemination of richer, and perhaps more useful, structured data. Currently,
Dublin Core is not a requirement for the protocol but a recommendation.

The protocol defines two kinds of harvesting procedures: incremental and selective har-
vesting. Incremental harvesting permits users to query a Data Provider and ask it to return just
the new, changed or deleted records from a certain date or between two dates. Selective har-

15http://www.openarchives.org/
16http://www.openarchives.org/pmh/
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Figure 5.4: Basic functioning of OAI-PMH.

vesting is based on the concept of OAI-set, which enables logical data partitioning by defining
groups of records. Selective harvesting is the procedure that permits the harvesting only of
metadata owned by a specified OAI-Set. [Van de Sompel et al., 2003] states that in OAI-PMH
a set is defined by three components: setSpec which is a mandatory and unique identifier
for the set within the repository, setName which is a mandatory short human-readable string
naming the set, and setDesc which may hold community-specific XML-encoded data about
the set.

OAI set organization may be flat or hierarchical, where hierarchy is expressed in setSpec
field by the use of a colon [:] separated list indicating the path from the root of the set hierarchy
to the respective node. For example if we define an OAI-Set the setSpec of which is “A”,
its sub-set “B” would have “A:B” as setSpec. In this case “B” is a proper sub-set of “A”:
B ⊂ A. Harvesting from a set which has sub-sets will cause the repository to return metadata in
the specified set and recursively to return metadata from all the sub-sets. In our example, if we
harvest set A, we also obtain the items in sub-set B [Van de Sompel et al., 2002b]. In Figure 5.5
we can see a hierarchical organization of OAI-Sets representing a library classification divided
by subject.

It is worthwhile for the rest of the work to underline that a metadata encoded in XML is
exchanged by OAI-PMH as an OAI record. An OAI record is metadata expressed in a single
format and it is returned in an XML-encoded byte stream in response to an OAI-PMH request
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for metadata from an item. Such a record is composed of three main parts: header, meta-
data and about. The header part contains the basic information needed by OAI-PMH for its
functioning which are the unique identifier identifying the item in the repository, the
datestamp indicating the date and time of creation, update or deletion of the item in the
repository, setspec specification which is a repeatable field reporting the sets at which the
item belongs, and an optional status attribute with a value of deleted indicates the with-
drawal of availability of the specified metadata format for the item. The attribute setSpec in
the header of the record is particularly important because it permits us to infer to which sets a
specific record belongs; this information is exploited by selective harvesting to retrieve all the
records belonging to specific sets. Indeed, when a repository defines a set organization it must
include set membership information in the headers of items returned to the harvester requests.

The metadata part of the record is pretty clear and it contains the metadata – expressed
in whichever format – describing the corresponding item in the repository. The about part
contains optional information about the provenance of the item and right statements if any.

Open Archive Initiative - Object Re-use and Exchange

The OAI-ORE defines a machine-readable and standard mechanism for defining aggregations
of resources on the Web. By means of OAI-ORE we can identify a bunch of resources related to
each other as a single entity enabling the access and exchange of them at an aggregation level of
granularity. These aggregations are referred to by the OAI as “compound objects”. Compound
units are aggregations of distinct information units that, when combined, form a logical whole.
Some examples [Van de Sompel and Lagoze, 2007] of these are a digitized book that is an
aggregation of chapters, where each chapter is an aggregation of scanned pages, and a scholarly
publication that is an aggregation of text and supporting materials such as datasets, software
tools, and video recordings of an experiment. The OAI-ORE aims to “develop mechanisms
for representing and referencing compound information units in a machine-readable manner
that is independent of both the actual content of the information unit and nature of the re-using
application” [Van de Sompel and Lagoze, 2007]. Since its first development in 2006 the goals
of OAI-ORE are to:

• Facilitate discovery of compound objects.
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• Reference (link to) compound objects (and parts thereof).

• Obtain a variety of disseminations of compound objects.

• Aggregate and disaggregate compound objects.

• Enable processing by automated agents.

OAI-ORE represents an evolution of the OAI mission: from a repository-centric focus and
a conceptualization of content as stored in repositories (i.e. OAI-PMH), which has character-
ized most digital library work, to a resource-centric focus in which machines act as service
points to content independent of location [Lagoze et al., 2008a]. OAI-ORE heavily relies on
the Web architecture and in particular exploits several concepts taken from the Semantic Web.

The OAI-ORE data model is based on three main kinds of resources: Aggregation, Aggre-
gated Resources and Resource Map. Each resource in the OAI-ORE data model is identified
by a Uniform Resource Identifier (URI) ; the OAI-ORE specification [Lagoze et al., 2008b]
uses URI-A to denote the URI of an Aggregation, URI-AR for an Aggregated Resource and
URI-RM for a Resource Map. An Aggregation is defined as a resource representing a logical
collection of other resources. An Aggregation is a logical construct and thus it has no rep-
resentation; it is described by a Resource Map which can be seen as a materialization of the
Aggregation. A Resource Map must describe a single Aggregation and must enumerate the
constituent Aggregated Resources; a resource is an “Aggregated Resource” into an Aggrega-
tion only if it is asserted in a Resource Map.

The OAI-ORE data model can be represented throughout an RDF graph17. An RDF graph
is defined by a set of triples (s, p, o) expressing the relationship defined by a predicate p be-
tween a subject s and an object o; each value in a triple is represented by a URI and URI are
also used to name the relationships between s and o. Every URI referencing an Aggregation,
an Aggregated Resource or a Resource Map can be used as s or o in a triple of the RDF graph
representing the OAI-ORE model. Furthermore, OAI-ORE defines an extensible controlled vo-
cabulary that associates each predicate with a URI. A Resource Map describes an Aggregation
through a set of RDF triples; on the left-hand side of Figure 5.6 we can see the set of triples
constituting two Resource Maps (rm1 and rm2) and materializing two Aggregations (a1 and
a2). This triple states that the Resource Map rmi identified by urmi describes the Aggregation
ai identified by uai. Furthermore, a Resource Map must express minimal metadata properties
indicating the authority defining the Resource Map, its last timestamp and, optionally, right
information about the use of the Resource Map. OAI-ORE comes with another two important
features: Proxy and Nested Aggregations. A Proxy is a resource that indicates an Aggregated
Resource in the context of a specific Aggregation; a Proxy is associated with an Aggregated
Resource via an assertion in a Resource Map describing the Aggregation that is the context of
the Proxy [Lagoze et al., 2008b]. Proxies allow us to define relationships between Aggregated

17http://www.w3.org/RDF/
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Resources; for instance, if an Aggregation contains the chapters of a book as independent Ag-
gregated Resources, via Proxies we can define a precedence order between the chapters. In
Figure 5.6 we can see two proxies p1 and p2 defining an order of precedence between the
Aggregated Resources ar1 and ar2 in the context of Aggregation A1.

The Nested Aggregations feature enables the definion of Aggregations of Aggregations;
this is consistent in the OAI-ORE data model because an Aggregation is a Resource which can
also be seen as an Aggregated Resource of another Aggregation. In Figure 5.6 we show two
nested Aggregations a1 and a2.

Although OAI-ORE is a relatively young specification, it has been becoming a standard
reference in the context of digital libraries and its use is widespread in many systems and
applications that deal with aggregations of digital objects. As with OAI-PMH, the use of OAI-
ORE has been firstly adopted for the management, access, and curation of scholarly publica-
tions [Cheung et al., 2008; Mikeal et al., 2009] and now it is spreading into other digital library
related fields such as the management and representation of scientific data [Brooking et al.,
2009; Pepe et al., 2010].
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Chapter 6

The NESTOR Model

In this chapter we define the NESTOR model which represents the central component of the
NESTOR Framework and thus one of the main contributions of this work.

Figure 6.1: The main components of the NESTOR Model.

In Figure 6.1 we can see the main parts of the NESTOR Model which represents also the
skeleton of the organization of this chapter.

First-of-all we define the NS-M and the INS-M. In the second part we present the set-
theoretical properties of both the NS-M and the INS-M and the functions to go from a model to
the other and vice versa. In the third part we define the formal relationships between both the
set data models and the tree, how to go from the NS-M and the INS-M to a tree, and how the
properties of the tree are defined in the set data models. We show that all the characteristics of
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Figure 6.2: A sample Nested Set Family represented by means of an Euler-Venn diagram.

the tree are retained by the set data models. We define two extensions of the set data models that
allow us to compare these models with the extensions of the tree – i.e. ordered trees. Moreover,
we define a further extension of the set data models that does not find a correspondent one in
the tree – i.e. the set data models defined as families of partially ordered sets which allow us to
define and handle the structure of the elements belonging to the sets.

Lastly, we define and prove the metric properties of the set data models comparing them
with the metrics defined for the tree.

6.1 The Set Data Models

The NESTOR Model defines two set data models that allow us to represent and manage hier-
archical structures. These set data models – i.e. Nested Set Model (NS-M) and Inverse Nested
Set Model (INS-M) – are independent one from the other and, at the same time, they are re-
lated by formally defined functions that permit us to go from a model to the other [Agosti et al.,
2010b, 2009a; Ferro and Silvello, 2009b; Silvello, 2008].

Definition 6.1.
Let A be a set and letAI be a family of sets. ThenAI is a Nested Set Family if:

A ∈ AI , (6.1)

∅ < AI , (6.2)

∀Ah, Ak ∈ AI , h , k | Ah ∩ Ak , ∅ ⇒ Ah ⊂ Ak ∨ Ak ⊂ Ah. (6.3)

Thus, we define a Nested Set Family (NS-F) as a family of sets where three conditions must
hold. The first condition (6.1) states that set A which contains all the sets in the family must



6.1. The Set Data Models 79

belong to the NS-F. The second condition states that the empty-set does not belong to the NS-F
and the last condition (6.3) states that the intersection of every couple of distinct sets in the
NS-F is not the empty-set only if one set is a proper subset of the other one [Anderson and
Hall, 1963; Halmos, 1960].

The NS-F are represented by means of Eulero-Venn diagrams as we can see in Figure 6.2
which represents a sample NS-F composed by five nested sets: AI = {A1, A2, A3, A4, A5}. We
can see that A1 is the common superset of all the sets inAI and thus Condition 6.1 is respected,
there is no empty set in the family (Condition 6.2) and all the sets are either disjoints or one a
proper subset of the other which is required by Condition 6.3.

In the same way we can define the Inverse Nested Set Model (INS-M):

Definition 6.2.
Let A be a set and letAI be a family. ThenAI is an Inverse Nested Set Family if:

∅ < AI , (6.4)

∀AJ ⊆ AI ⇒
⋂
j∈J

A j ∈ AI . (6.5)

∀AJ ⊆ AI

⇒ ∃Ak ∈ AJ | ∀Ah ∈ AJ , Ah ⊆ Ak

⇒ ∀Ah, Ag ∈ AJ , Ah ⊆ Ag ∨ Ag ⊆ Ah.

(6.6)

Thus, we define an Inverse Nested Set Family (INS-F) as a family where three conditions
must hold. The first condition (6.4) states that the empty-set does not belong to the INS-F. The
second condition (6.5) states that the intersection of every subfamily of the INS-F belongs to
the INS-F itself. Condition 6.6 states that every subfamily of a INS-F can be a topped family
only if it is linearly ordered.

Unlike the NS-M, the representation of the INS-M by means of the Euler-Venn diagrams is
not very expressive and can be confusing for the reader [Agosti et al., 2009a] – see Figure 6.3a.
We can represent in a straightforward way the INS-M by means of the “DocBall representa-
tion” [Crestani et al., 2004] – see Figure 6.3b. The DocBall representation is used in [Crestani
et al., 2004] to depict the structural components of the documents and can be considered as the
representation of a tree structure. We exploit the DocBall ability to show the structure of an
object and to represent the “inclusion order of one or more elements in another one” [Vegas
et al., 2007]. The DocBall is composed of a set of circular sectors arranged in concentric rings
as shown in Figure 6.3b. In a DocBall each ring represents a level of the hierarchy with the
center (level 0) representing the root. In a ring, the circular sectors represent the nodes in the
corresponding level. We use the DocBall to represent the INS-M, thus for us each circular
sector corresponds to a set.

In Figure 6.3b we can see a DocBall representing the same INS-M represented by an Euler-
Venn diagram in Figure 6.3a. The set A1 which is subset of all the other sets in the INS-M is
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Figure 6.3: A sample Inverse Nested Set Family represented by means of an Euler-venn diagram and a
DocBall.

represented by the inner ring at level 0 of the DocBall; at level 1 we find the direct supersets of
A1 which are A2 and A3; both these sets are represented as circular sectors comprising the inner
circle representing A1. With this representation a subset is presented in a ring within the set
including it. Indeed, we can see that set A1 is included by all the other sets. If the intersection
of two or more sets is empty then these sets have no common circular sector in the inner rings
of the DocBall. For instance, we can see that the circular sectors A2 and A5 have in common
only A1, indeed A2 ∩ A5 = A1; instead, A4 and A5 have in common the sectors A3 and A1, thus
A4 ∩ A5 = {A3, A1}.

So, we represent the INS-F by means of the DocBall1 as we can see in Figure 6.3 which
represents a sample INS-FAI composed by five sets. As we can see there is no empty set in the
family thus Condition 6.4 is respected; the intersection of every two sets is a set in the family
(Condition 6.5) and there is not a set which is a common superset of all the other sets, thus the
family is not topped, then also Condition 6.6 is respected.

6.2 Properties of the Set Data Models

In this section we present the basic set-theoretical properties of the two set data models: NS-
M and INS-M. First-of-all we present the properties of the NS-M and then we symmetrically
present the properties of the INS-M. Most of the set-theoretic properties of the set data models
are straightforwardly derived from the very definition of the models or from the set-theory
basics.

1The graphical representation based on the DocBall exploited an idea that was conceived to represent the hier-
archical structure of a Web page [Vegas et al., 2003] but it does not have any relations with the model underlying
it.
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6.2.1 Properties of Nested Set Model

The following proposition describes the fundamental properties of the NS-M showing how the
sets in a NS-F behave under the three main set-theoretical operations: union, intersection and
difference.

Proposition 6.1. Let AI be a NS-F, A ∈ AI be the set such that ∀A j ∈ AI , A j ⊆ A and X be a
set. Then ∀A j, Ak ∈ AI , j , k:

• Union:

(A j ⊂ Ak)⇒ (A j ∪ Ak = Ak) (6.7)

(A j * Ak) ∧ (Ak * A j)⇒ A j ∪ Ak = X ⊆ A (6.8)

• Intersection:

(A j ⊂ Ak)⇒ (A j ∩ Ak = A j) (6.9)

(A j * Ak) ∧ (Ak * A j)⇒ A j ∩ Ak = ∅ < AI (6.10)

• Difference:

Ak ⊂ A j ⇒ A j \ Ak = X ⊂ A (6.11)

(A j * Ak) ∧ (Ak * A j)⇒ (A j \ Ak = A j) ∧ (Ak \ A j = Ak) (6.12)

Proof:
Properties 6.7, 6.9 and 6.12 are straightforwardly derived from set-theory and they do not need
to be proved. Property 6.10 comes straightforwardly from condition 6.3 of Definition 6.1.

Property 6.8: Ab absurdo suppose that A j ∪ A j = X * A⇒ ∃a ∈ X | a < A⇒ a ∈ A j ∨ a ∈
Ak ⇒ A j * A ∨ Ak * A.

Property 6.11: Ab absurdo suppose that A j \ Ak = X * A ⇒ ∃a ∈ X | a < A ⇒ a ∈ A j ⇒

A j * A. �

We present a couple of examples to illustrate these properties.

Example 6.1. Let AI = {Ar, Ak, A j} be a NS-F, where Ar = {a, b, c, d, e}, A j = {c, d, e} and
Ak = {e}; the NS-F is represented in Figure 6.4 (a).

In this example Ak ⊂ A j. Then, A j ∪ Ak = {c, d, e} = A j, A j ∩ Ak = {e} = Ak and
X = A j \ Ak = {c, d}, we can see that X < AI but X ⊂ Ar.

Example 6.2. Let AI = {Ar, Ak, A j} be a NS-F, where Ar = {a, b, c, d, e}, A j = {c, d} and
Ak = {e}; the NS-F is represented in Figure 6.4 (b).

In this example Ak * A j ∧ A j * Ak. Then, A j ∪ Ak = {c, d, e} = X < AI but X ⊂ Ar,
A j ∩ Ak = ∅ < AI and A j \ Ak = {c, d} = A j.
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Figure 6.4: The graphical representation through an Euler-Venn diagrams of the NS-F used in Example
6.1 (a) and Example 6.2 (b).

The properties 6.8 and 6.11 require a further explanation for what is concerned with the set
X; it is not formally specified whether or not this set belongs to the NS-F. In order to understand
the role of this set, we need the following corollary.

Corollary 6.2. LetAI be a NS-F, A j, Ak, At ∈ AI , j , k , t be three sets, where A j * Ak∧Ak *

A j. If:

A j ∪ Ak = At ⇒ D
−(A j) = D−(Ak) = At (6.13)

Proof:
Ab absurdo suppose that (A j, Ak, At ∈ AI) ∧ (A j ∪ Ak = At) ⇒ D−(A j) , D−(Ak) , At. This
means thatD−(A j) = Ag ∈ AI and thatD−(Ak) = A f ∈ AI , g , f , t ⇒ A j ⊂ Ag ⊂ At ∧ Ak ⊂

A f ⊂ At. A j ∪ Ak = At ⇒ At ⊂ (Ag ∪ Ak) ⇒ (Ak * At) ∨ (Ag * At). At the same time
A j ∪ Ak = At ⇒ At ⊂ (A j ∪ A f ) ⇒ (A j * At) ∨ (A f * At). This leads to the conclusion that
At < AI ∨ A j ∪ Ak , At. �

Corollary 6.2 is important because it allows the existence of partitioned sets in a NS-F.
Indeed, if A j ∪ Ak = At, the sets A j and Ak form a partition of the set At in the family AI . We
can also say that the elements of Ak and A j cover the set At. A direct consequence is that if
the union of two sets in a NS-F is a set belonging to the family itself, then this set is the direct
superset of these two sets; otherwise the set generated from the union does not belong to the
family.

Example 6.3. In Figure 6.5 we can see a graphical representation of the case proved in the
Corollary 6.2. Furthermore, this corollary explains the role of the set X in Proposition 6.1
and by means of Property 6.13 we can explain Property 6.11 of Proposition 6.1: Ak ⊂ A j ⇒

A j \ Ak = X ⊂ A. We can say that X ∈ AI if D−(X) = D−(Ak) = A j meaning that the set X
in the NS-F AI only if A j is a set partitioned by Ak and X itself. If we consider the NS-F in
Figure 6.5 (a) we can see that Ak ∪ A j , At; indeed, At = {a, b, c} and Ak ∪ A j = {b, c} < AI . In
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Figure 6.5: (a) The set At is not partitioned by A j and Ak. (b) The set At is partitioned by A j and Ak.

Figure 6.5 (b) the set At is partitioned and At = {a, b, c} = A j ∪ Ak ∈ AI .

We have to consider also the symmetric difference between two sets; in a NS-F the meaning
of this operation can be inferred from the properties described by Proposition 6.1 which are
used to prove the following proposition.

Proposition 6.3. Let AI be a NS-F, At ∈ AI | ∀Aw ∈ AI , Aw ⊆ At be a set in the family and X
be a set. Then ∀A j, Ak ∈ AI , j , k:

A j4Ak = X ⊂ At (6.14)

Proof:
We have to prove two cases; in the first case: A j ⊂ Ak. In the second case: (A j * Ak) ∧ (Ak *

A j).
Let us prove the first case. From properties 6.7, 6.9 and 6.11 of Proposition 6.1 we know

that A j4Ak = (A j ∪ Ak) \ (A j ∩ Ak) = Ak \ A j = X ⊂ A.
Now, let us prove the second case. From properties 6.8, 6.10 and 6.12 of Proposition 6.1

we know that A j4Ak = (A j ∪ Ak) \ (A j ∩ Ak) = X \ ∅ = X ⊂ A. �

6.2.2 Properties of Inverse Nested Set Model

The following proposition describes the fundamental properties of the INS-M showing how the
sets in an INS-F behave under the three main set-theoretical operations: union, intersection and
difference.

Proposition 6.4. LetAI be a INS-F and let X be a set. Then ∀A j, Ak ∈ AI , j , k:

• union:

(A j ⊂ Ak)⇒ (A j ∪ Ak = Ak) (6.15)

(A j * Ak) ∧ (Ak * A j)⇒ A j ∪ Ak = X < AI (6.16)
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• intersection:

(A j ⊂ Ak)⇒ (A j ∩ Ak = A j) (6.17)

(A j * Ak) ∧ (Ak * A j)⇒ ∃At ∈ AI | A j ∩ Ak = At (6.18)

• difference

Ak ⊂ A j ⇒ A j \ Ak = X < AI (6.19)

(A j * Ak) ∧ (Ak * A j)⇒ A j \ Ak = Ak \ A j = X < AI (6.20)

Proof:
Properties 6.15 and 6.17 are straightforwardly derived from set-theory and they do not need to
be proved. Property 6.18 comes straightforwardly from condition 6.5 of Definition 6.2.

Property 6.16: Ab absurdo suppose that A j * Ak ∧ Ak * A j ⇒ A j ∪ Ak = X ∈ AI . This
means that ∃BT = {A j, Ak, X} ⊂ AI such that it is topped but not linearly ordered.

Property 6.19: Ab absurdo suppose that Ak ⊂ A j ⇒ A j \ Ak = X ∈ AI . This means that
X ∩ A j = ∅ ⇒ ∃BT = {A j, X} ⊂ AI |

⋂
BT < AI .

Property 6.20 can be proved following exactly the same steps of the proof of property 6.19.�

In this case the role of the set X has been already explained in the proof of the proposition.
We can see that in an INS-F we cannot find partitioned sets because they violate the condition
6.5 of Definition 6.2: let AI be an INS-F, A j ∈ AI be a set and suppose that A j is partitioned
by the sets Y and Z, then X ∩ Z = ∅ < AI thus, the intersection of two sets in the family does
not belong to the family itself.

Example 6.4. Let AI = {Ar, Ak, A j} be a INS-F, where Ar = {a, b}, A j = {a, b, c, d} and Ak =

{a, b, c, d, e}; the INS-F is represented in Figure 6.6 (a).
In this example A j ⊂ Ak. Then, A j ∪ Ak = {a, b, c, d, e} = Ak, A j ∩ Ak = {a, b, c, d} = A j

and X = Ak \ A j = {e} < AI .

Example 6.5. Let AI = {Ar, Ak, A j} be a INS-F, where Ar = {a, b}, A j = {a, b, c, d} and Ak =

{a, b, e}; the INS-F is represented in Figure 6.6 (b).
In this example Ak * A j ∧ A j * Ak. Then, A j ∪ Ak = {a, b, c, d, e} = X < AI , A j ∩ Ak =

{a, b} = Ar ∈ AI and A j \ Ak = {c, d} < AI .

Proposition 6.5. LetAI be a INS-F and Y be a set. Then ∀A j, Ak ∈ AI , j , k:

A j4Ak = Y < AI (6.21)

Proof:
We have to consider two cases; in the first case: A j ⊂ Ak. In the second case: A j * Ak ∧ Ak *

A j.
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Figure 6.6: (a) A linearly ordered INS-F (b) An INS-F.

Let us prove the first case. From properties 6.15, 6.17 and 6.19 of Proposition 6.4 we know
that A j4Ak = (A j ∪ Ak) \ (A j ∩ Ak) = Ak \ A j = X < AI .

Let us prove the second case. From properties 6.16, 6.18 and 6.20 of Proposition 6.4 we
know that A j4Ak = (A j ∪ Ak) \ (A j ∩ Ak) = X \ At where X < AI ∧ At ∈ AI . Then we define
Y = X \ At. Ab absurdo suppose that Y ∈ AI ⇒ At ∩ Y = ∅ ⇒ AI is not a INS-F. �

6.3 Mapping Between the Set Data Models

We have defined the two set data models as families of sets that have to respect a bunch of
conditions; in the following we present two functions ζ and ξ which allow us to map a family
of sets into another family and we will show how these functions permit us to go back and forth
from a NS-F to a INS-F and vice versa. Please note that in the following definitions we widely
exploit the concept of collection of supersets (Definition 4.12, Section 4.1.4, Chapter 4).

Definition 6.3.
Let AI and BJ be two families of sets. We define ζ : AI → BJ to be a function such that for
all Ak ∈ AI there exists Bk ∈ BJ such that:

Bk =
⋃

At∈{Ak∪S−(Ak)}

(At \
⋃
S+(At)) (6.22)

For every set Ak ∈ AI , the ζ function takes into account all its supersets – i.e. Ak ∪

S−(Ak); for each one of these supersets (call them At) the ζ function retains all the elements
that exclusively belong to At – i.e. the elements which are in At and do not belong to any other



86 Chapter 6. The NESTOR Model

subset of At – i.e. At \
⋃
S+(At). Then, the set Bk = ζ(Ak) contains the union of all the elements

of all the considered At.

Definition 6.4.
Let AI and BJ be two families of sets. We define ξ : AI → BJ to be a function such that for
all Ak ∈ AI there exists Bk ∈ BJ such that:

Bk =
⋃

(Ak ∪ S
−(Ak)) \

⋃
S+(Ak) (6.23)

The ξ function maps every set Ak ∈ AI into another set, call it Bk ∈ BJ . Bk is defined by the
union of all the elements belonging to Ak and to its supersets minus all the elements belonging
to the subsets of Ak itself.

It is important to appreciate the difference between these two functions. In ζ a set Ak is
mapped in a set Bk by taking the set Ak minus all the elements in its subsets; then this operation
is repeated for each superset of Ak and the elements returned by these operations are contained
by the set Bk.

In ξ a set Ak is mapped in a set Bk by taking the set Ak together with all its supersets and
then subtracting all the elements belonging to the subsets of Ak.

The next theorem proves that if we apply the above defined function ζ to a NS-F we obtain
an INS-F as output.

Theorem 6.6. LetAI be a NS-F then ζ(AI) = BJ is an INS-F.

Proof:
To prove that ζ(AI) = BJ is an INS-F we have to verify if it satisfies the three conditions of
Definition 6.2.
Condition (6.4). We know that ∅ < Ai thus ∀Ak ∈ Ai, Ak , ∅ ⇒ ∀At ∈ {Ak} ∪ S

−(Ak), At , ∅

and from the definition of NS-F we know that |At| > |
⋃
S+(At)| ⇒ At \

⋃
S+(At) , ∅. Then

∀Bk ∈ BJ , Bk , ∅ ⇒ ∅ < BJ .
Condition (6.5). We have to prove that the intersection of every two sets Bi, B j ∈ BJ is a set
belonging to BJ . Please note that by definition of NS-F ∃A ∈ AI | ∀Ak ∈ AI , Ak ⊆ A, then we
can state that ∀Ak ∈ AI:

(a)
⋃
S+(Ak) ⊆

⋃
S+(A).

(b)
⋃
S−(A) = ∅.

(c) A ∈ AI , B ∈ BJ | ζ(A) = A \
⋃
S+(A) = B⇒ ∀Ak ∈ AI , Ak ⊆ A⇒ ∀Bk ∈ BJ , B ⊆ Bk.

Then, we know that ∀Ai, A j ∈ AI:

(d) Ai ∩ A j , ∅ ⇒ Ai ⊂ A j ∨ A j ⊂ Ai by Property 6.3 of Definition 6.1.

(e) Bi = ζ(Ai) =
⋃

At∈{Ai∪S−(Ai)}(At \
⋃
S−(At)).
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(f) B j = ζ(A j) =
⋃

At∈{A j∪S−(A j)}(At \
⋃
S−(At)).

Now, we can show that:

1. If Ai ⊂ A j ⇒ (S−(A j) ⊂ S−(Ai)) ∧ (S+(Ai) ⊂ S+(A j)). Then ζ(A j) ⊂ ζ(Ai) = B j ⊂ Bi ⇒

B j ∩ Bi = B j ∈ BJ .

2. If A j ⊂ Ai ⇒ (S−(Ai) ⊂ S−(A j)) ∧ (S+(A j) ⊂ S+(Ai)). Then ζ(Ai) ⊂ ζ(A j) = Bi ⊂ B j ⇒

Bi ∩ B j = Bi ∈ BJ .

3. If A j ∩ Ai = ∅ ⇒ (A j * Ai) ∧ (Ai * A j). We know that A j ⊂ A ∧ Ai ⊂ A ⇒ ζ(A) ⊂
ζ(Ai) ∧ ζ(A) ⊂ ζ(A j).
We know that ∃ Ak ∈ AI |

⋃
S−(A j) ∩

⋃
S−(Ai) ⊆ Ak ⊆ A and that

⋃
S+(A j) ∩⋃

S+(Ai) = ∅.
Then ∀Ai, A j ∈ AI | Ai ∩ A j = ∅, ∃ Ak ∈ AI | A j ⊂ Ak ∧ Ai ⊂ Ak ⇒ ∃ Bk ∈ BJ | Bk ⊂

Bi ∧ Bk ⊂ B j ⇒ ∀Bi, B j ∈ BJ ,∃ Bk ∈ BJ | Bi ∩ B j = Bk ∈ BJ .

Condition (6.6). Let ζ(AI) = BJ and let us consider a Ck ⊆ BJ; ab absurdo suppose that Ck is
topped but not linearly ordered thus ∃Ci,C j,Ch ∈ Ck | (Ci ∩C j , ∅) ∧ (Ci ∪C j ⊆ Ch) ∧ (Ci *

C j)∧(C j * Ci). We know that ζ(Ai) = Ci, ζ(A j) = C j and ζ(Ah) = Ch; if Ci * C j∧C j * Ci then
A j * Ai ∧ Ai * A j. At the same time Ci ⊆ Ch ∧C j ⊆ Ch ⇒ Ah ⊆ Ai ∧ Ah ⊆ A j ⇒ Ai ∩ A j = Ah.
ThenAI is not a NS-F. �

Let us see an example showing how the ζ function can be applied to the sample NS-F
showed in Figure 6.2.

Example 6.6. LetAI be a NS-F and letAI = {A1, A2, A3, A4, A5}where A1 = {a, b, c, d, e, f , g},
A2 = {b, g}, A3 = {c, d, e}, A4 = {d} and A5 = {e}. Then ζ(AI) = BJ = {B1, B2, B3, B4, B5},
where:

ζ(A1) = B1 =
⋃

At∈{A1∪S−(A1)}(At \
⋃
S+(At)) = A1 \

⋃
{A2, A3, A4, A5} = {a, b, c, d, e, f , g} \

{b, c, d, e, g} = {a, f }.
ζ(A2) = B2 =

⋃
At∈{A2∪S−(A2)}(At \

⋃
S+(At)) = (A2 \ {∅}) ∪ (A1 \

⋃
{A2, A3, A4, A5}) =

{b, g} ∪ {a, f } = {a, f , b, g}.
ζ(A3) = B3 =

⋃
At∈{A3∪S−(A3)}(At \

⋃
S+(At)) = (A3 \ {A4, A5}) ∪ (A1 \

⋃
{A2, A3, A4, A5}) =

{c} ∪ {a, f } = {c, a, f }.
ζ(A4) = B4 =

⋃
At∈{A4∪S−(A4)}(At \

⋃
S+(At)) = (A4 \ {∅}) ∪ (A3 \ {A4, A5}) ∪ (A1 \⋃

{A2, A3, A4, A5}) = {d} ∪ {c} ∪ {a, f } = {d, c, a, f }.
ζ(A5) = B5 =

⋃
At∈{A5∪S−(A5)}(At \

⋃
S+(At)) = (A5 \ {∅}) ∪ (A3 \ {A4, A5}) ∪ (A1 \⋃

{A2, A3, A4, A5}) = {e} ∪ {c} ∪ {a, f } = {e, c, a, f }.
In Figure 6.7 we can see a graphical representation of the NS-F mapped into a INS-F

throughout the ζ function.

Now, let us see how the ξ function allows us to map an INS-F into a NS-F.
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Figure 6.7: From the NS-F to the INS-f through the ζ function.

Theorem 6.7. LetAI be a INS-F then ξ(AI) = BJ is a NS-F.

Proof:
To show that ξ(AI) = BJ is a NS-F, we have to prove the three conditions stated in Definition
6.1:

Condition (6.1): ∅ < BJ . We know that ∅ < AI ⇒ Ak , ∅,∀Ak ∈ AI and that
⋃
S+
A

(Ak) ⊆
(Ak ∪

⋃
S−(Ak)) by Definition 4.12. Thus Bk , ∅,∀Bk ∈ BJ .

Condition (6.2): B < BJ . We know that ∃ Ak ∈ AI | ∀A j ∈ AI , Ak ⊆ A j. ((
⋃

(Ak ∪ S
−(Ak)) =⋃

AI) ∧ (
⋃
S+(Ak) = ∅)) ⇒ Bk =

⋃
(Ak ∪

⋃
S−(Ak)) \ S+(Ak) =

⋃
AI ⇒ ∃Bk ∈

B | ∀B j ∈ BJ , B j ⊆ Bk.

Condition (6.3): ∀Bi, B j ∈ BJ , Bi ∩ B j , ∅ ⇒ Bi ⊂ B j ∨ B j ⊂ Bi.

We consider Ai, A j ∈ AI | Ai ⊂ A j.
ξ(Ai) = Bi =

⋃
(Ai ∪ S

−(Ai)) \
⋃
S+(Ai).

ξ(A j) = B j =
⋃

(A j ∪ S
−(A j)) \

⋃
S+(A j).

Ai ⊂ A j ⇒
⋃
S−(A j) ⊂

⋃
S−(Ai) ∧

⋃
S+(Ai) ⊂

⋃
S+(A j) ⇒

⋃
(A j ∪ S

−(A j)) ⊂⋃
(Ai ∪ S

−(Ai)) ⇒ ∀i, j ∈ I, B j ⊂ Bi | Ai ⊂ A j. Ab absurdo suppose that ∃Bi, B j ∈

BJ | (Bi ∩ B j , ∅) ∧ (Bi * B j) ∧ (B j * Bi) ⇒ ∃Bk ∈ B | Bk ⊂ Bi ∧ Bk ⊂ B j ⇒ ∃Ak ∈

A | (Ai ⊂ Ak) ∧ (A j ⊂ Ak) ∧ (Ai * A j) ∧ (A j * Ai) but this means that ∃ CW ⊆ AI | CW

is a topped INS-F and at the same time it is not a linearly ordered family (∀Ct,Cz ∈ CW .
Ct ⊂ Cz ∨Cz ⊂ Ct). �

Example 6.7. Let AI be a INS-F and let AI = {A1, A2, A3, A4, A5} where A1 = {a, f }, A2 =

{a, b, f , g}, A3 = {c, a, f }, A4 = {d, c, a, f } and A5 = {e, c, a, f }. We can see a graphical repre-
sentation of this INS-F in the left part of the Figure 6.8.

If we consider the subfamily CK ⊂ AI where CK = {A1, A3, A4}, we can see that CK is a
INS-F topped by the set A4 and it is a linearly ordered family; this can be verified for all the
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Figure 6.8: From the INS-F to the NS-F through the ξ function.

possible subfamilies ofAI , thus ξ(AI) = BJ where BJ is a NS-F. So, if we apply the ξ function
we obtain the following result:

ξ(A1) = B1 =
⋃

(A1∪SA−(A1)) \
⋃
S+(A1) =

⋃
{A1, A2, A3, A4, A5} \ ∅ = {a, b, c, d, e, f , g}.

ξ(A2) = B2 =
⋃

(A2 ∪ S
−
A

(A2)) \
⋃
S+(A2) =

⋃
{A2} \ A1 = {a, f , b, g} \ {a, f } = {b, g}.

ξ(A3) = B3 =
⋃

(A3 ∪ S
−
A

(A3)) \
⋃
S+(A3) =

⋃
{A3, A4, A5} \ A1 = {c, a, f , d, e} \ {a, f } =

{c, d, e}.
ξ(A4) = B4 =

⋃
(A4 ∪ S

−
A

(A4)) \
⋃
S+(A4) = A4 \

⋃
{A3, A1} = {d, c, a, f } \ {c, a, f } = {d}.

ξ(A5) = B5 =
⋃

(A5 ∪ S
−
A

(A5)) \
⋃

(A5) = A5 \
⋃
{A3, A1} = {e, c, a, f } \ {c, a, f } = {e}.

As it is shown in the right part of Figure 6.8 BJ = {B1, B2, B3, B4, B5} is a NS-F.

6.4 The Relationships Between the Set Data Models and
the Tree Data Model

It is interesting to understand if and how we can map a tree into a family of sets defined by
the set data models and vice versa. This feature is particularly important because it allows
the interoperability between these data models; indeed, in a particular environment we can
represent hierarchies by means of the set data models but this choice does not preclude possible
relationships with other environments where the tree is adopted. Furthermore, we can use the
set data models and the tree in the same context without any conflicts.

This section provides formal definitions of the mapping of a tree into a NS-F and vice versa
as well as the mapping between a tree and a INS-F and vice versa. Furthermore, these mappings
are fundamental to put in relation the operations performed in trees with their correspondents
in the set data models. We show that none of the features of the tree is lost in the mapping to
one of the set data models as well as that the tree expressive power is preserved.

6.4.1 The Nested Sets Model and the Tree Data Model

First-of-all let us see how we can map a tree into a NS-F. The following theorem formally
defines and proves the intuitive mapping between a tree and a NS-F presented in the Section
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Figure 6.9: A tree T = (V, E) and a NS-FVV mapped from it.

3.2.1. It proves that a tree can be mapped into a NS-F by creating a set for each node and by
defining the inclusion order between the newly created sets using the information brought by
the edges connecting the nodes of the tree. For instance, let T = (V, E) be a tree; if we consider
an edge e j,k ∈ E, then we have to create two sets A j and Ak which correspond to the nodes
v j, vk ∈ V such that Ak ⊂ A j; indeed, from e j,k we know that v j is the parent of vk and then the
set A j must be the superset of Ak.

Theorem 6.8. Let T = (V, E) be a tree and let VV be a family where the set of nodes V is its
index set of the family and ∀vi ∈ V , Vvi = Γ+(vi). ThenVV is a Nested Set Family.

Proof:
Let vr ∈ V be the root of the tree then Vvr = Γ+(vr) = V and thus V ∈ {Vvi}vi∈V (condition 6.1,
Definition 6.1). By definition of descendant set of a node, ∀vi ∈ V , |Vvi | = |Γ

+(vi)| ≥ 1 and so
∅ < VV (condition 6.2, Definition 6.1).

Now, we prove condition 6.3 of Definition 6.1. Let vh, vk ∈ V , h , k such that Vvh ∩ Vvk =

Γ+(vh) ∩ Γ+(vk) , ∅, ab absurdo suppose that Γ+(vh) * Γ+(vk) ∧ Γ+(vk) * Γ+(vk). This means
that the descendants of vh share at least a node with the descendants of vk but they do not
belong to the same subtree. This means that ∃ vz ∈ V | d−V (vz) = 2 but then T = (V, E) is not a
tree. �

This theorem shows us that if we map a tree into a family of sets following the described
rules, we obtain a NS-F.

Example 6.8. Let T = (V, E) be a tree where V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11} and
E = {e1,2, e1,5, e2,3, e2,4, e5,6, e5,9, e6,7, e6,8, e9,10, e9,11}, thus Γ+(v1) = {v1, v2, v3, v4, v5, v6, v7, v8,

v9, v10, v11}, Γ+(v2) = {v2, v3, v4}, Γ+(v3) = {v3}, Γ+(v4) = {v4}, Γ+(v5) = {v5, v6, v7, v8, v9, v10, v11},
Γ+(v6) = {v6, v7, v8}, Γ+(v7) = {v7}, Γ+(v8) = {v8}, Γ+(v9) = {v9, v10, v11}, Γ+(v10) = {v10}, and
Γ+(v11) = {v11}.
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Let VV be a family, where V = {Vv1 ,Vv2 ,Vv3 ,Vv4 ,Vv5 ,Vv6 ,Vv7 ,Vv8 ,Vv9 ,Vv10 ,Vv11}, Vv1 =

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}, Vv2 = {v2, v3, v4}, Vv3 = {v3}, and Vv4 = {v4}, Vv5 =

{v5, v6, v7, v8, v9, v10, v11}, Vv6 = {v6, v7, v8}, Vv7 = {v7}, Vv8 = {v8}, Vv9 = {v9, v10, v11}, Vv10 =

{v10}, and Vv11 = {v11}. Then, from Theorem 6.8 it follows thatVV is a NS-F.
The tree T = (V, E) and the familyVV mapped from it are represented in Figure 6.9.

The following theorem shows that a NS-F can be mapped into a tree by creating a node
from every set in the NS-F. Two sets A j and Ak in the NS-F corresponds to two nodes v j and vk

in the tree and the edge e j,k between them is created if and only if A j is the direct superset of
Ak.

Theorem 6.9. Let VV be a NS-F, V be a set of nodes and E be a set of edges where ∀v j ∈

V,∃!Vv j ∈ VV ∧ ∀e j,k ∈ E,∃! Vv j , Ak ∈ VV | Ak ⊂ Vv j . Then T = (V, E) is a tree.

Proof:
We have to prove that ∃!vr ∈ V | |E−(vr)| = 0∧∀v j ∈ V, j , r, |E−(v j)| = 1. Ab absurdo suppose
that ∃vr, vk ∈ V | (|E−(vr)| = 0∧|E−(vk)| = 0)∨∃v j ∈ V | |E−(v j)| > 1. If ∃vr, vk ∈ V | |E−(vr)| =
0 ∧ |E−(vk)| = 0 it means that both vr and vk have no ancestors⇒ ∃Vvr ,Vvk ∈ VV | S

−(Vvr ) =

0 ∧ S−(Vvk ) = 0 but by the definition of NS-F we know that by definition there exists a set Vvw

such that every Vv j ∈ VV is a subset of the set Vvw (i.e. Vvw is the common superset of all the
sets in a NS-F) and we also know that Vvw ∈ VV then @Vv j ∈ VV | Vv j , A ∧ S−(Vv j) = 0.

If ∃v j ∈ V | |E−(v j)| > 1 this means that ∃vk, vt ∈ V such that they are both parents of
v j ⇒ ∃Vvk ,Vvt ∈ VV | Vv j ⊂ Vvk∧Vv j ⊂ Vvt ⇒ (Vvt∩Vvk = Vv j)∧(Vvt * Vvk∨Vvk * Vvt )⇒VV

is not a NS-F. �

We have formally defined the relationships between a tree with the NS-M; we know that a
tree can be mapped into a NS-F where every node of the tree is mapped into a set of the family.
Now, we can compare the properties of the set data models with the correspondent ones in
the tree. First-of-all we present a proposition describing the relationships between the NS-F
properties and the tree ones.

Proposition 6.10. Let T = (V, E) be a tree,VV be a NS-F, Vv j ,Vvk ,Vvt ∈ VV , j , k , t be three
sets and v j, vk, vt ∈ V, j , k , t be the three correspondent nodes. If:

Vv j ∪ Vvk = Vvt ⇒ {v j, vk} ∈ E+(vt) (6.24)

Vv j ∪ Vvk = Vvk ⇒ vk ∈ Γ−(v j) (6.25)

Vv j ∩ Vvk = Vv j ⇒ v j ∈ Γ+(vk) (6.26)

Vv j ∩ Vvk = ∅ ⇒ v j < Γ+(vk) ∧ v j < Γ−(vk) (6.27)

Vv j \ Vvk = Vvt ⇒ {vk, vt} ∈ E+(v j) (6.28)

Vv j \ Vvk = Vv j ⇒ v j < Γ+(vk) ∧ v j < Γ−(vk) (6.29)
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Proof:
Property 6.24: Ab absurdo suppose that Vv j ∪ Vvk = Vvt ⇒ {v j, vk} < E+(vt) ⇒ @et, j, et,k ∈

E ⇒ Vv j * Vvt ∧ Vvk * Vvt ⇒ Vv j ∪ Vvk = X < VV .

Property 6.25: Ab absurdo suppose that Vv j ∪ Vvk = Vvk ⇒ vk < Γ−(v j) ⇒ Vv j * Vvk ⇒

Vv j ∪ Vvk , Vvk .

Property 6.26: Ab absurdo suppose that Vv j ∩ Vvk = Vv j ⇒ v j ∈ Γ+(vk) ⇒ Vv j * Vvk ⇒

Vv j ∩ Vvk , Vv j .

Property 6.27: Ab absurdo suppose that Vv j ∩ Vvk = ∅ ⇒ v j ∈ Γ+(vk) ∨ v j ∈ Γ−(vk). If
v j ∈ Γ+(vk)⇒ Vv j ⊂ Vvk ⇒ Vv j ∩ Vvk , ∅. If v j ∈ Γ−(vk)⇒ Vvk ⊂ Vv j = Vvk , ∅.

Property 6.28: Ab absurdo suppose that Vv j \ Vvk = Vvt ⇒ {vk, vt} < E+(v j) ⇒ Vvk *

Vv j ∧ Vvt * Vv j ⇒ Vv j \ Vvk = X < VV

Property 6.29: Ab absurdo suppose that Vv j \ Vvk = Vv j ⇒ v j ∈ Γ+(vk) ∨ v j ∈ Γ−(vk). If
v j ∈ Γ+(vk)⇒ Vv j ⊂ Vvk ⇒ Vv j \ Vvk = X < V. �

Property 6.24 states that if the union of two sets Vv j ,Vvk in a NS-F VV returns a third
different set Vvt ∈ VV then, the correspondent nodes v j and vk in the tree must have the node
vt – which corresponds to the set Vvt – as their parent node. This property is a consequence
of Corollary 6.2; we can state the same for Property 6.28, indeed if Vv j \ Vvk = Vvt ∈ VV ⇒

Vvk ∪ Vvt = Vv j then v j is the parent node of vk and vt.

Property 6.25 describes the particular case in which the union of two sets Vv j ,Vvk in VV

returns Vvk ; it means that in the tree the node vk is the parent of v j. Property 6.26 states
that if the intersection between two sets Vv j ,Vvk in VV is, for instance, Vv j itself, it means
that the correspondent node v j ∈ V is a descendant of vk. Property 6.27 states that if the
intersection between Vv j ,Vvk is empty then the correspondent nodes v j and vk belong to two
different branches of the tree; we can establish if two nodes are in an ancestor-descendant
relationship just by checking if the intersection of their correspondent sets in the NS-M is
empty. Lastly, Property 6.29 produces the same result of Property 6.27; indeed, Vv j \ Vvk =

Vv j ⇒ Vv j ∩ Vvk = ∅.

Now, we take into account how some widely-known tree properties are mapped in the NS-
M.

Proposition 6.11. Let T = (V, E) be a tree, vi ∈ V be a node, and VV be a NS-F, then the
following properties hold:

∃!vr ∈ V | |E−(vr)| = 0⇒ ∃!Vvr ∈ V | S−(Vvr ) = 0. (6.30)

∀v j ∈ E+(vi)⇒ ∃Vv j ∈ D
+(Vvi). (6.31)

∀v j ∈ E−(vi)⇒ ∃Vv j ∈ D
−(Vvi). (6.32)

∀v j ∈ Γ+(vi)⇒ ∃Vv j ∈ S
+(Vvi) ∪ Vvi . (6.33)

∀v j ∈ Γ−(vi)⇒ ∃Vv j ∈ S
−(Vvi) ∪ Vvi . (6.34)
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Proof:
Property 6.30. By condition 6.1 of Definition 6.1, ∃!Vv j ∈ VV | ∀Vvk ∈ VV , k , j,Vvk ⊂ Vv j ⇒

S−(Vv j) = 0.

Property 6.31. By Theorem 6.8 we know that ∀vi ∈ V,∃Vvi ∈ VV = Γ+(Vvi) and that
E+(vi) ⊆ Γ+(vi). Then if ∃v j ∈ E+(vi) ⇒ v j ∈ Γ+(vi) ⇒ Vv j ∈ VV . This means that @vk ∈

V, k , i | vk ∈ E+(v j)⇒ Vv j ∈ D
+(V j).

Property 6.32. Ab absurdo suppose that ∃v j ∈ E−(vi) | Vv j < D
−(Vvi); this means that

∃e j,i ∈ E | ∀Vk ∈ V, k , j,@ek,i ∈ E. Furthermore, we know that v j ∈ Γ−(vi) ⇒ ∃Vv j ∈ VV if
@Vv j ∈ D

−(Vvi)⇒ ∃Vvk ∈ VV | Vvi ⊂ Vvk ⊂ Vv j ⇒ ∃ek,i ∈ E ⇒ v j < E−(vi).

Property 6.33. Ab absurdo suppose that ∃v j ∈ Γ+(vi) | ∃Vv j < S
+(Vvi) ∪ Vvi ⇒ Vv j * Vvi .

If Vv j * Vvi it does not exist a path P = (VP, EP) from vi to v j in T , so viPv j = ∅ ⇒ v j < Γ+(vi).

Property 6.34. Ab absurdo suppose that ∃v j ∈ Γ−(vi) | ∃Vv j < S
−(Vvi)∪Vvi ⇒ Vvi * Vv j . If

Vvi * Vv j it does not exist a path P = (VP, EP) from v j to vi in T , so v jPvi = ∅ ⇒ v j < Γ−(vi). �

This proposition proves several properties of a NS-F relating them to the properties of a
tree. Property 6.30 shows that there exists a unique set that has no supersets and that if the NS-
F is mapped into a tree, this set corresponds to the root. Property 6.31 shows that determining
the collection of direct subsets of a set in a NS-F corresponds to the operation of determining all
the children of the corresponding node in a tree. We proved (Property 6.32) that the collection
of direct supersets of a set corresponds to the parent of the corresponding node in a tree. In
the same way (Property 6.32 and Property 6.33) we showed that the union of the collection of
proper subsets (supersets) of a set with the set itself corresponds to the set of all the descendants
(ancestors) of the corresponding node.

An important operation performed in the tree data structure is to determine the lowest
common ancestor (lca) of two nodes – please refer to Section 4.2.4. In the following we define
the concept of lowest common ancestor in the NS-M.

Definition 6.5.
LetAI be a NS-F, A j, Ak ∈ AI be two sets. Then, At ∈ AI is defined to be the lowest common
ancestor of A j and Ak inAI , say At = lcaA(A j, Ak), if:

At ∈ (S−(A j) ∩ S−(Ak)), and (6.35)

@ Aw ∈ ((S−(A j) ∪ A j) ∩ (S−(Ak) ∪ Ak)) | |S+(Aw)| < |S+(At)|. (6.36)

The lca in the NS-M is defined symmetrically to the lca in the tree data model. Indeed, in a
tree the lca between two nodes is determined by the common ancestor between them with the
maximum depth in the tree; the concept is specular in the NS-M where the lca between two
sets, say A j and Ak, is its common superset (Condition 6.35), say At, that has no subset which is
also a superset of both A j and Ak (Condition 6.36). We can also say that At is the lcaA(A j, Ak)
if At is the common superset with the smaller cardinality among all their common supersets.
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The following preposition shows how the concept of lca between two sets in a NS-M is
related to the lca between two nodes in a tree.

Proposition 6.12. Let T = (V, E) be a tree, v j, vk, vt ∈ V be three nodes, VV be a NS-F, and
Vv j ,Vvk ,Vvt ∈ VV be three sets. Then,

vt = lcaV (v j, vk)⇔ Vvt = lcaV(Vv j ,Vvk )

Proof:
Let C = (S−(Vv j) ∪ Vv j) ∩ (S−(Vvk ) ∪ Vvk ) be a collection of sets.

Let us prove (⇒). Ab absurdo suppose that vt = lcaV (v j, vk) but Vvt , lcaV(Vv j ,Vvk ). This
means that ∃Vvw ∈ C | |S

+(Vvw)| < |S+(Vvt )| ⇒ ∃vw ∈ Γ−(v j) ∩ Γ−(vk) | |Γ+(vw)| < |Γ+(vk)| ⇒
vt , lcaV (v j, vk).

Let us prove (⇐). Ab absurdo suppose that Vvt = lcaV(Vv j ,Vvk ) but vt , lcaV (v j, vk). This
means that ∀vl ∈ V,∃vw ∈ Γ−(v j) ∩ Γ−(vk),w , t | |Γ+(vw)| < |Γ+(vl)| ⇒ ∀Vvl ∈ VV ,∃Vvw ∈

C, vw , vl | |S
+(Vvw)| < |S+(Vvl)| ⇒ Vvt , lcaV(Vv j ,Vvk ). �

This proposition shows that if we map a tree into a correspondent NS-F also the nodes of
the tree are mapped into sets in the family and thus the lca between two nodes is mapped into
the lca between the correspondent sets. Furthermore, we can see that the lca between two sets
in the NS-M can be determined by taking the sets with minimum cardinality in the intersection
between their collections of supersets.

Example 6.9. Let T = (V, E) be the tree represented in Figure 6.10, and let VV the NS-F
mapped from T . If we consider the nodes v7 and v11, the lcaV (v7, v11) = v5 because the path
v7Pv1 intersected with the path v11Pv1 returns two nodes: v1 and v5; v1 is the root and by
definition its depth is 0, instead v5 has depth 1 thus, it is the lowest common ancestor of v7 and
v11.

We consider the sets Vv7 and Vv11 in VV ; then, S−(Vv7) ∪ Vv7 = {Vv6 ,Vv5 ,Vv1 ,Vv7} and
S−(Vv11) ∪ Vv11 = {Vv6 ,Vv5 ,Vv1 ,Vv11} thus, their intersection is the collection C = {Vv5 ,Vv1}.

Then, we can see that S+(Vv5) = {Vv6 ,Vv7 ,Vv8} and so: |S+(Vv5)| = 3; instead S+(Vv1) =

{Vv5 ,Vv6 ,Vv7 ,Vv8} and so: |S+(Vv1)| = 4. |S+(Vv5)| < |S+(Vv1)|, then lcaV(Vv7 ,Vv11) = Vv5 .
Figure 6.10 shows all the steps to determine the lca in T and inVV .

6.4.2 The Inverse Nested Sets Model and the Tree Data Model

Now, we can define the correspondent theorems for the INS-M which show how a tree can be
mapped into a INS-F and vice versa. The following theorem formalizes the intuitive explana-
tion about the mapping of a tree into a INS-F that we have given in Section 3.2.1. Basically,
every couple of nodes v j and vk is mapped into a couple of sets A j and Ak. If there exists an
edge between v j and vk, say e j,k then the the set A j created from v j is defined as a subset of the



6.4. The Relationships Between the Set Data Models and the Tree Data Model 95

 

v1

v2

v3 v4

v5

v6

v7 v8

v9

v10 v11

Vv2

Vv3 Vv4

Vv5
Vv6

Vv7 Vv8

Vv9

Vv10 Vv11

T = (V,E) VV

Vv6

Vv7

Vv5
Vv5

Vv9

Vv11

Vv1

Vv1

Vv1

S−(Vv11) ∪ Vv11

v1

v5

v9

v11

v1

v6

v7

v5

v7Pv1 v11Pv1

v1

v5

v7Pv1 ∩ v11Pv1

Vv5

Vv1

(S−(Vv7) ∪ Vv7) ∩ (S−(Vv11) ∪ Vv11)

lcaV (v7, v11) lcaV(Vv7 , Vv11)

S−(Vv7) ∪ Vv7

0

1

2

3

depth

0

1

2

3

depth

0

1

depth

Figure 6.10: The lowest common ancestor in the tree T = (V, E) and in the NS-FVV mapped from it.

set Ak created from vk. The mapping between a tree and an INS-F reverses the idea described
for the mapping of a tree into a NS-F; if a node is parent of another node in a tree, this is
mapped into a set which is a subset of the set created from its child node.

Theorem 6.13. Let T = (V, E) be a tree and letVV be a family where the set of nodes V is its
index set of the family and ∀vi ∈ V , Vvi = Γ−(vi). ThenVV is an Inverse Nested Set family.

Proof:
By definition of the set of the ancestors of a node, ∀vi ∈ V , |Vvi | = |Γ

−(vi)| ≥ 1 and so ∅ < VV

(Condition 6.4 of Definition 6.2).
Let VW be a subfamily of VV ⇒ W ⊆ V . We prove condition 6.5 by induction on the

cardinality of W. |W | = 1 is the base case and it means that every subfamily VW ⊆ VV is
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Figure 6.11: A tree T = (V, E) and a INS-FVV mapped from it.

composed only by one set Vv1 whose intersection is the set itself and belongs to the familyVV

by definition.

For |W | = n − 1 we assume that ∃ vn−1 ∈ V |
⋂

v j∈W Vv j = Vvn−1 ∈ VV ; equivalently we can
say that ∃ vn−1 ∈ V |

⋂
v j∈W Γ−(v j) = Γ−(vn−1), thus, Γ−(vn−1) is a set of nodes that is composed

of common ancestors of the n − 1 considered nodes.

For |W | = n, we have to show that ∃ vt ∈ V | ∀ vn ∈ W, Vvn−1 ∩ Vvn = Vvt ∈ VV . This is
equivalent to show that ∃ vt ∈ V | ∀ vn ∈ W, Γ−(vn−1) ∩ Γ−(vn) = Γ−(vt).

Ab absurdo suppose that ∃ vn ∈ W | ∀ vt ∈ V, Γ−(vn−1)∩Γ−(vn) , Γ−(vt). This would mean
that vn has no ancestors in W and, consequently, in V; at the same time, this would mean that
vn is an ancestor of no node in W and, consequently, in V . But this means that V is the set of
nodes of a forest and not of a tree.

Now, we have to prove condition 6.6. Let VW be a subfamily of VV . Ab absurdo suppose
that ∃Vvk ∈ VW | ∀Vvh ∈ VW ,Vvh ⊆ Vvk ⇒ ∃Vvh ,Vvg ∈ VW | Vvh * Vvg ∧ Vvg * VVh . This
means thatVW is a topped but not linearly ordered family.

This means we can find Vvg ,Vvh ,Vvk ∈ VW | ((Vvh ∩ Vvk , ∅) ∧ (Vvh ∪ Vvk ⊂ Vvg) ∧ (Vvh *

Vvk ) ∧ (Vvk * Vvh)) ⇒ ∃vh, vk, vg ∈ V | ((Γ−(vh) ∩ Γ−(vk) , ∅) ∧ (Γ−(vh) ∪ Γ−(vk ⊆ Γ−(vg)) ∧
(Γ−(vh) * Γ−(vk)) ∧ (Γ−(vk) ⊆ Γ−(vh))). This means that there are two paths from the root of T
to vg, one thought vh and a distinct one thought vk, thus |E−(vg)| = 2 and so T is not a tree. �

Example 6.10. Let T = (V, E) be a tree where V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11} and
E = {e1,2, e1,5, e2,3, e2,4, e5,6, e5,9, e6,7, e6,8, e9,10, e9,11}, thus Γ+(v1) = {v1, v2, v3, v4, v5, v6, v7, v8,

v9, v10, v11}, Γ+(v2) = {v2, v3, v4}, Γ+(v3) = {v3}, Γ+(v4) = {v4}, Γ+(v5) = {v5, v6, v7, v8, v9, v10,

v11}, Γ+(v6) = {v6, v7, v8}, Γ+(v7) = {v7}, Γ+(v8) = {v8}, Γ+(v9) = {v9, v10, v11}, Γ+(v10) = {v10},
and Γ+(v11) = {v11}.
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Let VV be a family, where V = {Vv1 ,Vv2 ,Vv3 ,Vv4 ,Vv5 ,Vv6 ,Vv7 ,Vv8 ,Vv9 ,Vv10 ,Vv11}, Vv1 =

{v1}, Vv2 = {v1, v2}, Vv3 = {v1, v2, v3}, and Vv4 = {v1, v2, v4}, Vv5 = {v1, v5}, Vv6 = {v1, v5, v6},
Vv7 = {v1, v5, v6, v7}, Vv8 = {v1, v5, v6, v8}, Vv9 = {v1, v5, v9}, Vv10 = {v1, v5, v9, v10}, and Vv11 =

{v1, v5, v9, v11}. Then, from Theorem 6.8 it follows thatVV is a INS-F.

The tree T = V, E and the familyVV mapped from it are represented in Figure 6.11.

Example 6.11. Let T = (V, E) be a tree where V = {v0, v1, v2, v3} and E = {e0,1, e0,2, e2,3}, thus
Γ−(v0) = {v0}, Γ−(v1) = {v0, v1}, Γ−(v2) = {v0, v2} and Γ−(v3) = {v0, v2, v3}. LetVV be a family
where Vv0 = {v0}, Vv1 = {v0, v1}, Vv2 = {v1, v2} and Vv3 = {v0, v2, v3}.Then, from Theorem 6.13
it follows thatVV is a INS-F.

Now we can see how an INS-M is mapped into a tree; the following theorem shows that if
we map every couple of sets A j and Ak in an INS-F into a couple of nodes v j and vk in a set of
nodes V such that there exists an edge e j,k in a set of edges E if and only if A j is a direct subset
of Ak then the graph defined by the nodes in V connected by the edges in E is a tree.

Theorem 6.14. Let VV be a INS-F, V be a set of nodes and E be a set of edges where ∀v j ∈

V,∃!Vv j ∈ VV ∧ ∀e j,k ∈ E,∃!Vv j ,Vvk ∈ VV | Vv j ⊂ Vvk . Then T = (V, E) is a tree.

Proof:
We have to prove that (∃! vr ∈ V | |E−(vr)| = 0) ∧ (∀v j ∈ V, j , r, |E−(v j)| = 1). Ab absurdo
suppose that ∃vr, vk ∈ V | (|E−V (vr)| = 0 ∧ |E−V (vk) = 0)| ∨ ∃v j ∈ V | |E−V (v j)| > 1.

If ∃vr, vk ∈ V | |E−(vr)| = 0 ∧ |E−(vk)| = 0 ⇒ ∃Vv j ,Vvk ∈ VV | Vv j ∩ Vvk = ∅ but ∅ < VV

thenVV is not an INS-F.

If ∃v j ∈ V | |E−V (v j)| > 1⇒ ∃Vv j ,Vvk ,Vvt ∈ VV | (Vvk ⊂ Vv j)∧(Vvt ⊂ Vv j)∧(Vvk∩Vvt = ∅)⇒
∃VW ⊆ VV whereVW = {Vv j ,Vvk ,Vvt } andVW is topped by Vv j but it is not a linearly-ordered
family – i.e. Vvk ∩ Vvt = ∅ – thus,VV is not a INS-F. �

The following proposition reflects for an INS-F the Proposition 6.10 we presented for a
NS-F. From this proposition we see which set-theoretic operations defined in the INS-M find a
correspondent property in the tree.

Proposition 6.15. Let T = (V, E) be a tree, VV be a INS-F, Vv j ,Vvk ,Vvt ∈ VV , j , k , t be
three sets inVV and v j, vk, vt ∈ V, j , k , t be the three correspondent nodes in T . Then:

Vv j ∪ Vvk = Vvk ⇒ vk ∈ Γ+(v j) (6.37)

Vv j ∩ Vvk = Vv j ⇒ v j ∈ Γ−(vk) (6.38)

Vv j ∩ Vvk = Vvt ⇒ vt ∈ Γ−(vk) ∩ Γ−(v j) (6.39)

Proof:
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Property 6.37. Ab absurdo suppose that Vv j ∪ Vvk = Vvk ⇒ vk < Γ+(v j) ⇒ Vv j * Vvk ⇒

Vv j ∪ Vvk , Vvk .

Property 6.38. Ab absurdo suppose that Vv j ∩ Vvk = Vv j ⇒ v j < Γ−(vk) ⇒ Vv j * Vvk ⇒

Vv j ∩ Vvk , Vv j .

Property 6.39. Ab absurdo suppose that Vv j ∩ Vvk = Vvt ⇒ vt < Γ−(vk) ∩ Γ−(v j) ⇒ Vvt *

Vv j ∧ Vvt * Vvk ⇒ Vvt < S
−(Vv j) ∧ Vvt < S

−(Vvk )⇒ Vv j ∩ Vvk , Vvt ∨ Vv j ∩ Vvk = Vvt < VV . �

Property 6.37 shows that if the union of two sets Vv j ,Vvk ∈ VV returns Vv j it means that
v j ∈ V is a descendant of vk ∈ V; this property is a direct consequence of the definition of
INS-F. Property 6.38 shows that if the intersection of two sets Vv j ,Vvk ∈ VV returns Vv j , it
means that v j ∈ V is an ancestor of vk ∈ V . Property 6.39 points out an interesting result: if the
intersection of two sets Vv j ,Vvk ∈ VV returns a third set Vvt ∈ VV , then this set corresponds to
a common ancestor vt of the nodes v j and vk; we will prove in Proposition 6.17 that vt is the
lowest common ancestor.

The following proposition shows that the important properties of the trees have a corre-
spondent property in INS-M.

Proposition 6.16. Let T = (V, E) a tree, vi ∈ V a node, andVV be a INS-F, then:

∃! vr ∈ V | |E−V (vr)| = 0⇒ ∃!Vvr ∈ V | |S+(Vvr )| = 0. (6.40)

∀v j ∈ E+(vi)⇒ ∃Vv j ∈ D
−(Vvi). (6.41)

∀v j ∈ E−(vi)⇒ ∃Vv j ∈ D
+(Vvi). (6.42)

∀v j ∈ Γ+(vi)⇒ ∃Vv j ∈ S
−(Vvi) ∪ Vvi . (6.43)

∀v j ∈ Γ−(vi)⇒ ∃Vv j ∈ S
+(Vvi) ∪ Vvi . (6.44)

Proof:
Property 6.40. We prove this property by induction on the cardinality of V . |V | = 1 is the base
case. VV is composed by one set Vv1 then |S+(Vv1)| = 0.

For |V | = n we assume that ∃!V1 ∈ {Vvi}vi∈V | S
+(Vv1) = 0.

For |V | = n + 1 we have to show that ∃!V j ∈ {Vvi}vi∈V | |S
+(Vv j)| = 0. We know that

|S+(Vv1)| = 0. Ab absurdo suppose that |S+(Vvn+1)| = 0⇒ Vv1 ∩Vvn+1 = ∅ but ∅ < {Vvi}vi∈V then
condition 6.5 of Definition 6.2 is violated⇒ {Vvi}vi∈V is not an INS-F.

Property 6.41. Ab absurdo suppose that ∃v j ∈ E+(vi) ⇒ Vv j < D
+(Vvi) ⇒ (Vv j * Vvi) ∨

(∃Vvk ∈ VV , k , j | Vv j ⊂ Vvk ⊂ Vvi)⇒ @ei, j ∈ E ⇒ v j ∈ E+(vi).
Property 6.42. Ab absurdo suppose that ∃v j ∈ E−(vi) ⇒ Vv j < D

−(Vvi) ⇒ (Vvi * Vv j) ∨
(∃Vvk ∈ VV , k , j | Vvi ⊂ Vvk ⊂ Vv j)⇒ @e j,i ∈ E ⇒ v j ∈ E−(vi).

Property 6.43. Ab absurdo suppose that ∃v j ∈ Γ+(vi) ⇒ Vv j < S
−(Vvi) ∪ Vvi ⇒ Vvi * Vv j .

If Vvi * Vv j then it does not exist a path P = (VP, EP) from vi to v j in T , so viPv j = ∅ ⇒ v j <

Γ+(vi).
Property 6.44. Ab absurdo suppose that ∃v j ∈ Γ−(vi) ⇒ Vv j < S

+
V

(Vvi) ∪ Vvi ⇒ Vv j * Vvi .
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If Vv j * Vvi then it does not exist a path P = (VP, EP) from v j to vi in T , so v jPvi = ∅ ⇒ v j <

Γ−(vi). �

This proposition shows how the basic tree properties can be mapped in the INS-M as well as
we did with the NS-M. Property 6.40 shows that there exists a unique set that has no subsets and
that if the INS-F is mapped into a tree, this set corresponds to the root. Property 6.41 shows that
determining the collection of direct supersets of a set in an INS-F corresponds to the operation
of determining all the children of the corresponding node in a tree. We proved (Property 6.42)
that the collection of direct subsets of a set corresponds to the parent of the corresponding node
in a tree. In the same way (Property 6.42 and Property 6.43) we showed that the union of the
collection of proper subsets (supersets) of a set with the set itself corresponds to the set of all
the ancestors (descendants) of the corresponding node.

If we consider Proposition 6.11 we can see that there is a straightforward relationship be-
tween a tree and a NS-M; for instance, the children of a node in a tree correspond to the subsets
of the set mapped from that node in the NS-M. The INS-M reverses this logic; indeed, the
children of a node correspond to the supersets of the set mapped from that node in the INS-M.
This characteristic can be exploited to provide alternative ways to perform operations on hier-
archies coming up with different solutions. We can see a meaningful example considering how
to determine the lowest common ancestor in the INS-M.

Definition 6.6.
LetAI be an INS-M, and A j, Ak, At ∈ AI be three sets. If At = A j ∩ Ak, then lcaA(A j, Ak) = At

is defined to be the lowest common ancestor between A j and Ak.

The relationship between the lca in a tree and in an INS-F can be easily determined by
exploiting the properties described in Proposition 6.16.

Proposition 6.17. Let T = (V, E) be a tree, v j, vk, vt ∈ V be three nodes, VV be a INS-F and
Vv j ,Vvk ,Vvt ∈ VV be three sets. Then:

vt = lcaV (v j, vk)⇔ Vvt = lcaV(Vv j ,Vvk ). (6.45)

Proof:
From Definition 6.6 we know that: lcaV(Vv j ,Vvk ) = A j ∩ Ak.

Let us prove (⇒). Ab absurdo suppose that vt = lcaV (v j, vk) ⇒ Vvt , Vv j ∩ Vvk ⇒ Vvt *

Vv j ∧ Vvt * Vv j ⇒ Vv j < S
+
V

(Vvt ) ∧ Vv j < S
+
V

(Vvk )⇒ vt < Γ−(v j) ∧ vk < Γ−(vk).

Let us prove (⇐). Ab absurdo suppose that Vvt = Vv j ∩ Vvk ⇒ vt , lcaV (v j, vk) ⇒ (vt <

Γ−(v j) ∩ Γ−(vk)) ∨ (∃vw ∈ V,w , t | (vw ∈ Γ−(v j) ∩ Γ−(vk)) ∨ (vw ∈ Γ+(vt))).

vt < Γ−(v j) ∩ Γ−(vk)⇒ vt < Γ−(v j) ∩ Γ−(vk)⇒ Vvt < (S+(Vv j) ∪ Vv j) ∩ (S+(Vvk ∪ Vvk ))⇒
Vvt < S

−(Vv j) ∧ Vvt < S
−(Vvk )⇒ Vv j ∩ Vvk , Vvt .
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∃vw ∈ V,w , t | (vw ∈ Γ−(v j) ∩ Γ−(vk)) ∨ (vw ∈ Γ+(vt)) ⇒ vt ∈ Γ−(vw) ⇒ Vvt ⊂ Vvw ⇒

Vvw ∈ S
−(Vvt )⇒ (Vvw ⊆ Vv j ∩ Vvk ) ∧ (Vvt ⊆ Vv j ∩ Vvk )⇒ Vv j ∩ Vvk = Vvw . �

This proposition shows that if we map a tree into a correspondent INS-F also the nodes of
the tree are mapped into sets in the family and thus the lca between two nodes is mapped into
the lca between the correspondent sets. Furthermore, we can see that the lca between two sets
in the INS-M can be determined by the intersection of the considered sets.

Example 6.12. Let T = (V, E) be a tree and letVV a INS-F mapped from T . If we consider the
nodes v7 and v11 the lcaV (v7, v11) = v5 because the path v7Pv1 intersected with the path v11Pv1

returns two nodes: v1 and v5; v1 is the root and by definition its depth is 0, instead v5 has depth
1 thus, it is the lowest common ancestor between v7 and v11; as we have seen in Figure 6.10 of
Example 6.9.

We consider the sets Vv7 and Vv11 inVV represented in Figure 6.11; we can see that Vv1 is a
common subset of both Vv7 and Vv11 as well as Vv5 . But Vv1 ⊂ Vv5 . Furthermore, Vv7∩Vv11 = Vv5

which correspond to the node v5 ∈ V of the tree.

From this example we can see the correspondence between
lcaV (v7, v11) in T and lcaV(Vv7 ,Vv11) inVV .

6.5 Partially Ordered Sets and Families

We have presented two set data models which are defined by means of a bunch of constraints
imposed on a family of sets. We have seen that by means of these set data models we can
represent the tree by means of collections of nested sets. Our major focus has been the inclusion
order between the sets; now, we have to analyze the possibility to represent the order between
the subsets of a set and the relationships between the elements belonging to these sets.

The models we defined permit us to represent and determine the relationships between the
elements and the set or sets containing them. For instance, we can say that n elements belong
to a set A2 which is subset of another set A1 containing other m elements not contained in A2.
Thanks to the defined data models we know that n elements in A2 elements are related to the m
elements in A1 by a hierarchical dependence; for instance, the n objects may be specializations
of the m elements. On the other hand, when we consider the set A1 we take into account m + n
elements, because A1 contains also the n elements in A2.

The models we presented so far permits us to represent the vertical dimension of a hierar-
chy by defining an inclusion order between the sets belonging to a family. By means of this
logical construct we can determine the relationships between sets at different levels or perform
operations with the sets; for instance, we can determine the lowest common ancestor (lca) of
two or more sets. On the other hand, we have to take into consideration also the horizontal
dimension of a hierarchy.

Indeed, a hierarchy always defines a hierarchical order between the elements it contains but
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A1 A1

A2 A2A3 A3

(a) (b)

Figure 6.12: Two NS-families.

it may define also an order between the elements that lie at the same level of the hierarchy. For
instance, a tree defines hierarchical relationships between its nodes – i.e. rooted tree, but often
it defines also an order between the children of a node – i.e ordered tree.

If we need to represent the correspondent of an ordered tree in the NESTOR Model we
have to take into account the order between the subsets of a set. In order to achieve this goal
it is necessary to exploit the concept of partially ordered set (poset) – please refer to Section
4.1.5 for a description of this concept.

We use the notion of poset to define an order between the direct subsets of a set in a NS-F
and an INS-F. In order to represent an ordered tree, we need to allow the possibility to define
an order between the sets exploiting the concept of partially ordered family of subsets (see
Section 4.1.5). LetAI be a NS-F where I is its index set; I is a “non-ordered” set which means
that we do not consider the order between the elements in it. As a consequence the sets in
AI are not ordered too; this means that the two NS-F represented in Figure 6.12 are the same
family. Indeed, the set A1 has two proper subsets A2 and A3, so A1 = {A2, A3} = {A3, A2}.

If we consider an index poset 〈I, <〉 then A〈I,<〉 results to be a partially ordered NS-F
(poNSF-F) where the order between the common subsets of a set has to be taken into account. If
the two NS-F in Figure 6.12 are indexed by 〈I, <〉 then they are different one to the other indeed,
A1 = (A2, A3) , (A3, A2); this consideration comes straightforwardly from the definition of
poset. In this case we say that A1 is non-comparable with A2 and A3 (A1||A2 and A1||A3). The
partially ordered INS-F (poINS-M) is defined exactly in the same way.

All the definitions and theorems proved for NS-F and INS-F can be extended by the use
of partially ordered families without any changes in their formulation; we present the two
following propositions straightforwardly derived from the definition of NS-F (Definition 6.1,
Section 6.1) and INS-F (Definition 6.2, Section 6.1) and the definition of partially ordered
family (Definition 4.19, Section 4.1.5).

The following two propositions show us that if the set of the nodes of a tree is defined by
means of a poset that establishes a linear order between the nodes then this order is preserved
also between the sets mapped from these nodes.

Proposition 6.18. Let T = (〈V, <〉, E) be an ordered tree, {v j, vk, vt} ∈ V be three nodes, where



102 Chapter 6. The NESTOR Model

{v j, vk} ∈ E+(vt) | v j < vk andV〈V,<〉 be a poNS-F, then:

∃{Vv j ,Vvk ,Vvt } ∈ V〈V,<〉 | ({Vv j ,Vvk } ∈ D
+(Vvt )) ∧ (Vv j < Vvk ).

Proof:
The fact that ∃{Vv j ,Vvk ,Vvt } ∈ V〈V,<〉 is a direct consequence of Theorem 6.8. Ab absurdo
suppose that ∃{Vv j ,Vvk ,Vvt } ∈ V〈V,<〉 | ({Vv j ,Vvk } ∈ D

+(Vvt )) ∧ (Vv j ≮ Vvk ) ⇒ ∃{v j, vk} ∈

E+(vt) | (v j ≮ vk). Indeed, the order between sibling nodes in T is retained by the node set of T
is the poset 〈V, <〉.�

Proposition 6.19. Let T (〈V, <〉, E) be an ordered tree, {v j, vk, vt} ∈ V be three nodes, where
v j, vk ∈ E+(vt) | v j < vk andV〈V,<〉 be a poINS-F, then:

∃{Vv j ,Vvk ,Vvt } ∈ V〈V,<〉 | ({Vv j ,Vvk } ∈ D
−(Vvt )) ∧ (Vv j < Vvk ).

Proof:
The fact that ∃{Vv j ,Vvk ,Vvt } ∈ V〈V,<〉 is a direct consequence of Theorem 6.13. Ab absurdo
suppose that ∃{Vv j ,Vvk ,Vvt } ∈ V〈V,<〉 | ({Vv j ,Vvk } ∈ D

−(Vvt )) ∧ (Vv j ≮ Vvk ) ⇒ ∃{v j, vk} ∈

E+(vt) | (v j ≮ vk). Indeed, the order between sibling nodes in T is retained by the node set of T
is the poset 〈V, <〉.�

The concept of poset can be exploited also to define the relationships between the items
belonging to the sets in the nested sets models. We can extend the definitions of NS-F and
INS-F by using posets instead of sets; in this case we talk of Nested Posets Family (NP-F) and
Inverse Nested Posets Family (INP-F). From the definition of poset we can see that we do
not need to re-define any concepts antecedently defined for NS-F and INS-F; NP-F and INP-F
add a new layer at the NESTOR Model allowing us to define a structure over the elements
belonging to the sets.

We can represent a NP-F by means of an Euler-Venn diagram in which the elements be-
longing to the sets are represented by means of an Hasse diagram; when no relation is drawn
between the elements it means that we are talking about a NS-F. The same idea is applied to
the DocBall representation for the INP-F and the INS-F. The following examples show the
representations of a NP-F and of an INP-F and their correspondents NS-F and INS-F.

Example 6.13. LetAI be a NP-F and 〈A1, <〉, 〈A2, <〉, 〈A3, <〉, 〈A4, <〉 ∈ AI . A1 = {a, b, c, d, e, f ,
g, h} where b < a, d < a, c < a, e < b, f < b, e < d, h < d, f < c, h < c, g < e, g < f and
g < h. A2 = {b, f , e, g} then A2 ⊂ A1 and it inherits the order relation from A1 as well as
A3 = {b, f } and A4 = {g, h}. The four ordered sets are represented in Figure 6.13 throughout
Hasse diagrams; in the part b of this Figure we can see the family NP-F and the correspondent
NS-F that does not take into account the order between the items.
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Figure 6.13: (a) Four partially ordered sets. (b) A NP-F composed of the four presented ordered sets
and its correspondent NS-F

It is easy to tell from a Hasse diagram whether one element of an ordered set is less than
another: b < a if and only if there is a sequence of connected line segments moving upwards
from b to a. Thus, for example, in the ordered set A1 in Figure 6.13 g < a and c || d. The same
representation can be adopted for the INP-F as it is showed in the following example.

Example 6.14. LetAI be a INP-F and 〈A1, <〉, 〈A2, <〉, 〈A3, <〉, 〈A4, <〉 ∈ AI . A1 = {a, d}where
d < a, A2 = {a, b, d, f } where b < a, d < a, f < b, A3 = {a, b, d, f , e, g} where b < a, d < a, e <
b, f < b, e < d, g < e, g < f , and A4 = {a, d, c, h}, where d < a, c < a, h < d, h < c.

We can see that from the INP-F in the figure above the elements c and f and h and g are
incomparable (c || f and h || g). In the example 6.13 the set A1 contains all the elements of
the family – this is a direct consequence of condition 6.1 of Definition 6.1 (A ∈ AI) – thus
we know all the order relationships between the elements from a A1; instead, in the second
example (Example 6.14) we have to consider the whole family of subsets to understand the
order between all the elements in the family because, in an INS-F as well as in an INP-F, there
is not a set containing all of them.
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Figure 6.14: (a) Four partially ordered sets. (b) An INP-F composed by the four presented ordered sets
and its correspondent INS-F

6.6 On the Metric Properties of the Set Data Models

In this section we define proper metrics for the set data models defined in the NESTOR Model.
We have related the set data models to the tree defining the connections between these models.
In this section we show how the metrics defined in the tree can be adapted and adopted by the
set data models establishing a relation between them.

Firstly, we define the graphical distance for the NS-M and the INS-M which gives us the
measure of how much dissimilar are two sets within a family of sets. Furthermore, we de-
fine the relationships between the graphical distance defined on the set data models and the
correspondent distance in the tree.

Afterwards, we give broader definitions of distance which allow us to compare different
families of sets. Two or more families of subsets can be “similar” from the “element” point-
of-view and from the structural point-of-view. From the element point-of-view two families are
identical if they contain the same elements. On the other hand, the structural part regards the
inclusion order between the sets in each family; we can say that two families are identical from
the structural point-of-view if there exists an order-isomorphism between them. This means
that two families are identical if there exists an order-isomorphism between them and they
contain the same elements.
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We define a proper metric based on the Jaccard’s distance to compare two families of sets
on an element basis and a proper metric to compare families on a structural basis. In the end we
present a linear combination of this two metrics that allows us to define a third proper metric
which weights the element and the structural components: the NESTOR distance.

6.6.1 Graphical Distance

In graph theory and thus in the tree, one of the most used metric is the graphical distance
(Definition 4.24 in Section 4.2.3). The graphical distance in a graph has been proved to be
a proper metric; we define the graphical distance between two sets in the NS-M and in the
INS-M. Afterwards, we prove that if we consider a NS-FAI (or an INS-F) mapped into a tree
T = (V, E), the graphical distance between two sets {A j, Ak} ∈ AI is the same that the graphical
distance between the nodes {v j, vk} ∈ V mapped from A j and Ak. In other words we show the
equivalence between the graphical distance defined on trees and the graphical distance defined
on the set data models.

Definition 6.7.
Let AI be a NS-F, {A j, Ak, At} ∈ AI and, At = lca(A j, Ak). Then we define the graphical
distance of A j from Ak inAI to be:

dAG (A j, Ak) = |S−(A j)| + |S−(Ak)| − 2|S−(At)| (6.46)

Now, we can introduce a corollary of Proposition 6.11 that proves the correspondence
between the tree graphical distance (dT

G) and the NS-M graphical distance (dAG ).

Corollary 6.20. Let T = (V, E) be a tree, {v j, vk} ∈ V be two nodes, VV be a NS-F and
{V j,Vk} ∈ VV be two sets. Let dT

G(v j, vk) be the graphical distance in the tree between v j and
vk and dVG (Vv j ,Vvk ) be the graphical distance in the NS-F between Vv j and Vvk . Then:

dT
G(v j, vk) = dVG (Vv j ,Vvk ) (6.47)

Proof:
Let us consider vt ∈ V = lca(v j, vk); furthermore, let l j,k be the length of the path from v j to vk

in T , l j,t be the length of the path from v j to vt in T , and lt,k be the length of the path from vt to
vk in T .

Then dV
G(v j, vk) = l j,k = l j,t +lk,t = |Γ−(v j)|−|Γ−(vt)|+ |Γ−(vk)|−|Γ−(vt)| = |Γ−(v j)|+ |Γ−(vk)|−

2|Γ−(vt)|.
We know that in NS-M ∀vw ∈ V,∃Vvw ∈ VV | |Γ

−(vt)| = |S−(Aw) ∪ Aw|. Then, dV
G(v j, vk) =

|Γ−(v j)| + |Γ−(vk)| − 2|Γ−(vt)| = |S−(A j) ∪ A j| + |S
−(Ak) ∪ Ak| − 2|S−(At) ∪ At| = |S

−(A j)| + 1 +

|S−(A j)| + 1 − 2(|S−(At)| + 1) = |S−(A j)| + |S−(A j)| − 2|S−(At)| = dVG (Vv j ,Vvk ). �

Symmetrically, we present the definition of graphical distance between sets in the INS-M.
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Definition 6.8.
Let AI be a INS-F, {A j, Ak, At} ∈ AI and, At = lca(A j, Ak). Then we define the graphical
distance of A j from Ak inAI to be:

dAG (A j, Ak) = |S+(A j)| + |S+(Ak)| − 2|S+(At)| (6.48)

Now, we can introduce a corollary to Proposition 6.16 that proves the correspondence be-
tween the tree graphical distance and the graphical distance between two sets in the INS-M.

Corollary 6.21. Let T = (V, E) be a tree, {v j, vk} ∈ V be two nodes, VV be a INS-F and
{V j,Vk} ∈ VV be two sets. Let dT

G(v j, vk) be the distance in the tree between v j and vk and
dVG (Vv j ,Vvk ) be the distance in the INS-F between Vv j and Vvk . Then:

dT
G(v j, vk) = dVG (Vv j ,Vvk ) (6.49)

Proof:
Let us consider vt ∈ V = lca(v j, vk); furthermore, let l j,k be the length of the path from v j to vk

in T , l j,t be the length of the path from v j to vt in T , and lt,k be the length of the path from vt to
vk in T .

Then dV
G(v j, vk) = l j,k = l j,t +lk,t = |Γ−(v j)|−|Γ−(vt)|+ |Γ−(vk)|−|Γ−(vt)| = |Γ−(v j)|+ |Γ−(vk)|−

2|Γ−(vt)|.
We know that in the INS-M ∀vw ∈ V,∃Vvw ∈ VV | |Γ

−(vt)| = |S+(Aw) ∪ Aw|. Then,
dV

G(v j, vk) = |Γ−(v j)| + |Γ−(vk)| − 2|Γ−(vt)| = |S+(A j) ∪ A j| + |S
+(Ak) ∪ Ak| − 2|S+(At) ∪ At| =

|S+(A j)|+ 1 + |S+(A j)|+ 1− 2(|S+(At)|+ 1) = |S+(A j)|+ |S+(A j)| − 2|S+(At)| = dVG (Vv j ,Vvk ). �

6.6.2 Jaccard’s Distance

We can define a similarity measure between two families of sets based on elements and from
this measure we can determine the distance between them. We adopt the Jaccard’s coeffi-
cient [Jaccard, 1901] defining the similarity between two sets. Let A and B be two sets, then
the Jaccard’s coefficient is J(A, B) =

|A∩B|
|A∪B| and the Jaccard’s distance is dJ(A, B) = 1 − J(A, B);

please see Definition 4.21 of Section 4.1.6.

Definition 6.9.
LetAI and BI be two families of sets, then their Jaccard’s distance is defined to be:

dJ(A,B) = 1 −
|
⋃
AI ∩

⋃
BI |

|
⋃
AI ∪

⋃
BI |

(6.50)

We define two families to be disjoint if their Jaccard’s distance is equal to one.
In order to obtain the Jaccard’s distance between two families AI and BJ we have to cal-

culate the intersection of all the elements inAI with all the elements in BJ; this operation can
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be accomplished straightforwardly in the NS-M. Indeed, let AI and BJ be two NS-F, then by
the definition of NS-F we know that ∃A ∈ AI | A =

⋃
AI and ∃B ∈ BJ | B =

⋃
BJ . So, the

Jaccard’s distance betweenAI and BJ in the NS-M is defined to be:

dJ(A,B) = dJ(A, B) (6.51)

On the other hand, in an INS-F does not exist a set that contains all the elements of the family.
Let AI and BJ be two INS-F such that |AI | > n ∈ N and |BJ | > m ∈ N. Let {A1, . . . An} ∈ AI

be a collection of sets inAI such that ∀A j ∈ AI , j ∈ [1, n]⇒ S−(A j) = 0 and {B1, . . . Bm} ∈ BJ

be a collection of sets in BJ such that ∀Bk ∈ BJ , k ∈ [1,m] ⇒ S−(Bk) = 0, then
⋃
AI =⋃

{A1, . . . , An} and
⋃
BJ =

⋃
{B1, . . . , Bm}. So, we can say that:

dJ(A,B) = dJ(∪AI ,∪BJ) = dJ(∪{A1, . . . , An},∪{B1, . . . , Bm}) (6.52)

Alternatively, from the definition of INS-M we know that ∃A j ∈ AI | ∀Ak ∈ AI , k , j ⇒
A j ⊂ Ak that is the common subset of the family. If we apply function ξ defined in Definition
6.4 to A j (let Bk be the common subset of all the sets in BJ) we obtain a set containing all
the elements in the familyAI (respectively, ξ(Bk) is the set containing all the elements in BJ),
then:

dJ(A,B) = dJ(ξ(A j), ξ(Bk)) (6.53)

We reduced the Jaccard’s distance between two families of sets to the distance between
two sets containing all the elements in the families – both NS-F and INS-F; in this way all the
results proved for the Jaccard’s distance between sets – please refer to Section 4.1.6 – are still
valid when it is applied to families of sets. The Jaccard’s distance is the same for two ordered
or not-ordered families of sets; the order between the subsets does not change the measure of
distance because it is based only on the element values and not on the structure of the families.

6.6.3 Structural Distance

In order to define the structural distance between two families of sets we need to take into
account partially-ordered families of (ordered or not ordered) sets; i.e. poNS-F and poINS-F.
First-of-all, we present the structural distance for a couple of poNS-F and then we shall extend
it to the poINS-F. We define the structural distance measure to capture the structural similarity
between two families of sets ignoring the element values. The structural distance can be seen
as the counterpart of the Jaccard’s distance. Indeed, the Jaccard’s distance takes into account
only the elements belonging to the families and not their organization into the nested sets;
conversely, the structural distance takes into account only the relationships between the nested
sets and not the elements belonging to them.

In order to define the structural distance between families we base our metric on the Parse-
val metric [Abney et al., 1991] and on the work on tree distance presented by Gallé in [Gallé,
2010]. These metrics are based on the concept of “brackets of tree” which is a set of inter-
vals that permits us to reconstruct the tree from a set of values – please refer to Section 4.2.5



108 Chapter 6. The NESTOR Model

1 2 3 4 5 6 7 8 9 10

A1

A2 A3

A4 A5

Figure 6.15: The integer encoding of a poNS-M.

for a detailed description of these distance measures. The definition of the structural distance
measure starts from the definition of a set of integer intervals for each family of sets. We can
choose between many hierarchical encodings proposed in the relational database literature for
solving recursive queries in an algebraic way [Christophides et al., 2004; Härder et al., 2007;
Tropashko, 2005; Xu et al., 2009]; anyway, the choice of the encoding is orthogonal to the met-
ric, thus for sake of simplicity we pick up the basic integer encoding adopted by Celko [Celko,
2000]. The encoding of the families is the main difference between the definition of struc-
tural distance of two poNS-F and two poINS-F; indeed, as we will see, it is not possible to
straightforwardly apply the integer encoding used for poNS-F to a poINS-F.

Accordingly to [Celko, 2000] a poNS-F can be encoded by a sequence of integer intervals
assigned to each set. We recall the integer interval encoding by means of the following example.

Example 6.15. Let A〈I,<〉 be a poNS-F where A〈I,<〉 = {A1, A2, A3, A4, A5} such that A2 ⊂

A1, A3 ⊂ A1, A4 ⊂ A2 and A5 ⊂ A2. We can see a graphical representation of this family in
Figure 6.15, where each set is assigned to an integer interval [a, b] where a, b ∈ N. Each interval
identifies in a unique way a set within the family; the integer values are assigned proceeding
left to right starting from 1.

We can see that A1 = [1, 10], A2 = [2, 7], A3 = [8, 9], A4 = [3, 4] and A5 = [5, 6].

Following this encoding we can see that each set is assigned to an interval [a, b] where a, b ∈
N ∧ a < b. For each po-familyA〈I,<〉 we define a poset 〈WA, <〉 where each element is an inte-
ger interval encoding a set inAI . In the example above WA = ([1, 10], [2, 7], [8, 9], [3, 4], [5, 6]).
We need WA to be unique for A〈I,<〉 and for this reason the encoded family must be partially
ordered; otherwise, the interval associated with each set can change with the relative position of
the subsets. We call wi the ith element of WA where wi = [ai, bi]2; then, for each wi,w j ∈ WA,

2Please note that if there is any risk of ambiguity we shall use the full notation comprising the apexes which
indicate the family we are taking into account: wAi = [aAi , b

A
i ].
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wi < w j if and only if ai < a j. In order to define the structural distance we take into account
the sets inA〈I,<〉 which do not have any subsets thus every A j ∈ A〈I,<〉 | S

+(A j) = 0; if we map
this family into a tree, the sets we are considering correspond to the external nodes of the tree.
If we consider these sets from the encoding point-of-view, they are associated with an interval,
say w j = [a j, b j], such that b j − a j = 1; we call this interval the 1-interval.

w1 = [1, 10]

w2 = [2, 7]

A1 A2 A3 A4 A5

WA

A�I<�

w1 = [1, 10]

w2 = [2, 7]

w3 = [8, 9]

w4 = [3, 4]

w5 = [5, 6]

A3 A4 A5

WA

A�J,<�

WA

w3 = [8, 9]

w4 = [3, 4]

w5 = [5, 6]

g : A�I,<� →WA g|A�J,<� : A�J,<� →WA

Figure 6.16: The function g mapping the sets of the familyA〈I,<〉 (Example 6.15) to the integer intervals
encoding them and its restriction to the subfamilyA〈J,<〉.

Formally, we define a bijective function g : A〈I,<〉 → WA where A〈I,<〉 is a NS-F and
WA a poset containing intervals defined by the integer encoding [Celko, 2000]. WA is ordered
then wi < w j < wk ⇒ ai < a j < ak. We define A〈J,<〉 to be a subfamily (poNS-F) of A〈I,<〉
(A〈J,<〉 ⊂ A〈I,<〉) such that Ak ∈ A〈J,<〉 if and only if Ak ∈ A〈I,<〉 and S+(Ak) = 0. Then, we
define with g|A〈J,<〉 the restriction of g to A〈J,<〉 that associates the sets without any subsets in
A〈I,<〉 to an interval in WA. Let us call WA the range of g|A〈J,<〉 where WA ⊂ WA and wi ∈ WA
if and only if wi ∈ WA and bi − ai = 1.

In Figure 6.16 we can see a graphical representation of the function g and its restriction
to A〈J,<〉 in the case of Example 6.15. We call WA the 1-interval poset of A〈I,<〉. The poset
WA characterizes the structure of the family A〈I,<〉, indeed from WA we can calculate the
cardinality ofA〈I,<〉 and infer the relationships between the sets. The 1-interval poset contains
enough information to calculate the structural distance between two families of subsets.

In order to be able to compare the 1-intervals of two poNS-F A〈I,<〉 and D〈K,<〉 with 1-
interval posets respectively WA and WD, we suppose an assignment function f : WA →

WD ∪ {w0} where w0 = [0, 0]; please note that the interval [0, 0] cannot be assigned to any set
by the integer encoding [Celko, 2000]. The assignment function f is required to be injective,
except possibly for [0, 0]. The role of [0, 0] in the image of f is to permit us to assign intervals
from WA which otherwise would not be assigned.

We can define several different assignment functions; for sake of simplicity we define f
such that it assigns an element wAi ∈ WA to an element wDx ∈ WD if and only if aAi =
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w0 = [0, 0]
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A2
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A3

=
[7,8]

w
A4

=
[9,10]

WD ∪ {w0}

WA

wD2 = [5, 6]

wD3 = [7, 8]

wD4 = [10, 11]

f : WA →WD ∪ {w0}

WD

R(f)

df = 1

df = 0

df = 0

df = 0

Figure 6.17: Two poNS-F encoded by integer intervals and an assigning function f .

aDx ∧ bAi = bDx , otherwise wAi is assigned to w0 = [0, 0] (call it null assignment).
We define the binary assignment function d f associated with the assignment function f

as:

d f (wi, f (wi)) =

 1 if f (wi) = {w0} = [0, 0]
0 otherwise.

(6.54)

Let R( f ) denotes the range of the assignment function f : WA → WD ∪ {w0}; i.e. R( f ) is
a set containing the elements of WD matched by an element in the domain WA of the function
f . Note that R( f ) may be the whole of WD ∪ {w0} or a proper subset of WD ∪ {w0} [Copson,
1968]. Let us consider an example.

Example 6.16. LetA〈I,<〉 andD〈K,<〉 be two poNS-F such thatA〈I,<〉 = {A1, A2, A3, A4, A5, A6}

andD〈K,<〉 = {D1,D2,D3,D4,D5,D6}. In Figure 6.17 we represent these poNS-F by means of
Eulero-Venn diagrams which show the relationships between the sets.

In this figure we also show the integer intervals assigned to the sets and the assigning
function f presented above.

Now, we can define the structural distance between two poNS-F.

Definition 6.10.
Let A〈I,<〉 and D〈K,<〉 be two poNS-F, WA and WD be the associated 1-interval posets, f :
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WA → WD∪{w0} be the assignment function, R( f ) be the range of the assigning function, and
d f (wi, f (wi)) be the binary assignment function. Then,

dS (A,D) =

∑
wAi ∈WA

d f (wAi , f (wAi )) + |WD \ R( f )|

|WA| + |WD|
(6.55)

is defined to be the structural distance between two poNS-F.

The equation 6.55 gives a penalty of a maximal distance for every integer interval in WD
to which no interval in WA is assigned.

Example 6.17. If we consider Example 6.16 the structural distance betweenA〈I,<〉 andD〈K,<〉
is

dS (A,D) =

∑
wAi ∈WA

d f (wAi , f (wAi )) + |WD \ R( f )|

|WA| + |WD|
=

1 + 1
8

= 0.25

It is important to prove that the defined structural distance is a proper metric for the
partially-ordered families of nested sets; thus, we have to prove four main properties of the
distance: identity, non-negativity, symmetry and the triangle inequality. We introduce a propo-
sition and a corollary with some intermediate results that will be useful when proving that the
structural distance is a proper metric.

Proposition 6.22. LetA〈I,<〉 andD〈J,<〉 be two poNS-F, and dS (A,D) be the structural distance
between them. Then,

dS (A,D) =

∑
wAi ∈WA

d f (wAi , f (wAi )) + |WD \ R( f )|

|WA| + |WD|
=
|WA| + |WD| − 2|WA ∩WD|

|WA| + |WD|
(6.56)

Proof:
Let us consider the meaning of

∑
wAi ∈WA

d f (wAi , f (wAi )); this sum adds a unit for each wAi ∈
WA | f (wAi ) , wDi ∈ WD. This means that if there are no common elements between WA and
WD ⇒ WA ∩WD = ∅ then

∑
wAi ∈WA

d f (wAi , f (wAi )) = |WA|. Otherwise, we have to subtract
the intersection and then in the general case

∑
wAi ∈WA

d f (wAi , f (wAi )) = |WA| − |WA ∩WD|.
|WD \ R( f )| adds a unit for every element of WD that is not matched by an element of WA

thus |WD \R( f )| = |WD|− |WA∩WD|. The reader may notice that the element w0 it is not taken
into account in this last equation; it is important to underline that w0 < WD ⇒ w0 < WD\R( f ),
thus when we consider the cardinality of WD \ R( f ), the element w0 is not taken into account.

So,
∑

wAi ∈WA
d f (wAi , f (wAi )) + |WD \ R( f )| = |WA| + |WD| − 2|WA ∩WD|. �

The following corollary defines the upper and lower bounds of the members of the struc-
tural distance and it is a direct consequence of Proposition 6.22.
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Corollary 6.23. Let A〈I,<〉 and D〈J,<〉 be two poNS-F, WA and WD be their associated 1-
interval posets and f : WA → WD ∪ {w0} be the assignment function, and d f the associated
binary assignment function. Then:

0 ≤
∑

wAi ∈WA

d f (wAi , f (wAi ) ≤ |WA| (6.57)

0 ≤ |WD \ R( f )| ≤ |WD| (6.58)

Proof:
The prove of these two properties can be trivially derived from the proof of the Proposition
6.22.�

Lemma 6.24. Let A〈I,<〉 and D〈J,<〉 be two poNS-F. Then, the structural distance dS (A,D) is
a proper metric.

Proof:
LetA〈I,<〉, D〈J,<〉 and O〈K,<〉 be three poNS-F, WA, WD and WO be their associated 1-interval
posets and f : WA → WO ∪ {w0}, g : WD → WO ∪ {w0} and h : WA → WD ∪ {w0} be the
assignment functions associated respectively with the binary assignment functions d f , dg and
dh.

Let

dS (A,O) =

∑
wAi ∈WA

d f (wAi , f (wAi )) + |WO \ R( f )|

|WA| + |WO|
,

dS (D,O) =

∑
wDi ∈WD

dg(wDi , g(wDi )) + |WO \ R(g)|

|WD| + |WO|
, and

dS (A,D) =

∑
wAi ∈WA

dh(wAi , h(wAi )) + |WD \ R(h)|

|WA| + |WD|

be the structural distances between A〈I,<〉 and O〈K,<〉, D〈J,<〉 and O〈K,<〉 and A〈I,<〉 and D〈J,<〉
respectively.

In order to prove that dS is a proper metric we have to show:

Identity: dS (A,A) = 0

Non-negativity: dS (A,D) ≥ 0

Symmetry: dS (A,D) = dS (D,A)

Triangle Inequality: dS (A,O) + dS (D,O) ≥ dS (A,D)

Let us prove identity and non-negativity altogether. We know that |WA| > 0 and |WD| > 0 then
if

∑
wAi ∈WA

dh(wAi , h(wAi )) + |WD \ R(h)| = 0⇒ ∀ wAi ∈ WA,∃wDj ∈ WD | wAi = wDj ⇒ R(h) =

WD ⇒ WA = WD ⇒ D = A ⇒ dS (A,A) = dS (D,D) = 0 (identity).
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IfA , D ⇒ ∃wAi ∈ WA | h(wAi ) = {w0} = [0, 0]⇒
∑

wAi ∈WA
dh(wAi , h(wAi ))+|WD\R(h)| >

0. From Corollary 6.23 we know that |WD \ R(h)| > 0 then
∑

wAi ∈WA
dh(wAi ,h(wAi ))+|WD\R(h)|

|WA |+|WD |
> 0

(non-negativity).

In order to prove symmetry let us define the distance betweenD andA as

dS (D,A) =

∑
wDj ∈WD

dl(wDj , l(w
D
j )) + |WA \ R(l)|

|WD| + |WA|
where l : WD → WA ∪ {w0} is the usual assignment function and dl its binary assignment

function.

dS (A,D) = dS (D,A)⇒

∑
wAi ∈WA

dh(wAi , h(wAi )) + |WD \ R(h)|

|WA| + |WD|
=

∑
wDj ∈WD

dl(wDj , l(w
D
j )) + |WA \ R(l)|

|WD| + |WA|

∀ wAi ∈ WA | dh(wAi , h(wAi )) = 1 ⇒ @wDj ∈ WD | wDj = wAi ⇒ ∃ wDj ∈ WD | wDj <
R(h)⇒ @ wAi ∈ WA | h(wAi ) = wDj ⇒ @ wDj | l(w

D
j ) = wAi ⇒ ∃ wAi ∈ WA | wAi ∈ (WA \ R(l)).

∀wAi ∈ WA | h(wAi ) = w0 ⇒ wAi ∈ (WA \ R(l)).
This means that for every unit added to

∑
wAi ∈WA

dh(wAi , h(wAi )) there is a correspondent
element belonging to WA\R(l), thus

∑
wAi ∈WA

dh(eAi , h(eAi )) = |WA\R(l)|. Symmetrically, |WD\
R(h)| =

∑
wDj ∈WD

dl(wDj , l(w
D
j )), for the same reasons. So dS (A,D) = dS (D,A) (symmetry).

Now, we have to prove the triangle inequality: dS (A,O)+dS (D,O) ≥ dS (A,D). We know
that the maximum distance between two families is equal to 1; so, if we considerA andD their
maximal structural distance is dS (A,D) = 1⇒ WA ∩WD = ∅. Then, if

dS (A,O) + dS (D,O) ≥ 1

is proved to be true, the same inequality is true for any value of dS (A,D) < 1. We prove the
triangle inequality by induction on the cardinality of WO. Please note that we have maximized
the distance betweenA andD so: WA ∩WD ∩WO = ∅.

Base |WO| = 1. We point out two base cases:

Base Case 1. |WA ∩ WO| = 0 ∧ |WD ∩ WO| = 0 ⇒ dS (A,O) = 1 ∧ dS (D,O) = 1 ⇒
dS (A,O) + dS (D,O) = 2 > 1.

Base Case 2. |WA∩WO| = 1∨ |WD∩WO| = 1. If d(A,O) = 1 then d(D,O) = 0 or vice versa.

Inductive hypothesis: the triangle inequality is verified for |WO| = n.

dS (A,O) + dS (D,O) ≥ 1⇒
|WA| + |WO| − 2|WA ∩WO|

|WA| + |WO|
+
|WD| + |WO| − 2|WD ∩WO|

|WD| + |WO|
> 1

(6.59)
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In order to make the notation of the proof more readable we do the following substitutions:
|WA| = a, |WD| = d, |WO| = o, |WA ∩WO| = α and |WD ∩WO| = β. Then, we can rewrite
equation 6.59 as:

a + o − 2α
a + o

+
d + o − 2β

d + o
> 1 (6.60)

Then we can do other two substitutions: x = a + o − 2α and y = d + o − 2β and rewrite
equation 6.60 as it follows obtaining a result that will be used to prove the inductive step:

x
a + o

+
y

d + o
> 1⇒ ay + oy + xd + xo > ad + ao + o2 + od (6.61)

Another useful result comes out from the following equation:

a + o − 2α
a + o

+
d + o − 2β

d + o
> 1⇒(d + o)(a + o − 2α) + (a + o)(d + o − 2β) > (a + o)(d + o)

⇒ d(−2α + a) + o(−2α + a) + o(o + d) − 2β(a + o) > 0

⇒ −2α + a + o − 2β
(a + o
d + o

)
⇒ a + o > 2α + 2β

(a + o
d + o

)
(6.62)

Inductive step: |WO| = n + 1. We know that the triangle inequality is verified for |WO| = n,
so we add an element wOn+1 to WO. We have now to prove two possible cases:

A. wOn+1 ∈ WO ∩WA ⇒ wOn+1 < WO ∩WD ∨ wOn+1 ∈ WO ∩WD ⇒ wOn+1 < WO ∩WA.

B. wOn+1 < WO ∩WA ∧ wOn+1 < WD ∩WD.

Let us prove the case A for wOn+1 ∈ WO ∩WA (the proof for wOn+1 ∈ WD ∩WO is symmetric
to this one).

Starting from the triangle inequality with substituted notation we know that for |WO| = n
the following equation is true: x

a+o +
y

d+o > 1. For wOn+1 ∈ WO ∩WA this equation becomes:

x
a + o + 1

+
y + 1

d + o + 1
> 1

because the dS (A,O) diminishes of a little quantity determined by the augmentation of the
dimension of o in the denominator. x does not augment because we add an element to WO but
it is matched by an element in WA so it does not count in the numerator of the fraction defining
the structural distance. On the other hand, the newly added element is not matched in WD
because wOn+1 < WO ∩WD by definition. This means that the numerator y is augmented of a
unit in the n + 1 step. The denominator of the second member behaves like the denominator in
the first member of the equation.

Then:
x

a + o + 1
+

y + 1
d + o + 1

> 1⇒
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xd + xo + x + ay + a + oy + o + y + 1 > ad + ao + od + o2 + a + o + d + o + 1

From the inductive hypothesis we know that for |WO| = n the equation ay + oy + xd + xo >
ad + ao + o2 + od is verified. Then, we know that this inequality is true also for the n + 1 case
because in this step we did not modify the dimensions of o and y but we rewrite the triangle
inequality by adding a unit to the denominators and to the numerator of the second member of
the inequality. So, it remains to prove that:

x + a + o + y + 1 ≥ 2o + d + 1 + a⇒ x + y ≥ o + d (6.63)

If x + y ≥ o + d is true for |WO| = n then it is also true for |WO| = n + 1. So, x + y ≥ o + d ⇒
a + o ≥ 2α + 2β. By the inductive hypothesis we know that a + o > 2α + 2β

(
a+o
d+o

)
; so, if a ≥ d

the case is verified.

Now, we have to prove the case in which a < d; to prove this part we take another approach.
In order to simplify the notation we call the structural distance between two families in the step
n: dn(D,O) and the correspondent one at the step n + 1: dn+1(D,O). Then we have to prove
that:

dn+1(A,O) + dn+1(D,O) ≥ 1.

We can rewrite this inequality in the following way:

dn(A,O) −
dn(A,O)

|WA| + |WO| + 1
+ dn(D,O) +

1
|WD| + |WO| + 1

≥ 1

The sum of the two distances is greater than one in the n step, so to become < 1 in the
n + 1, the minus term dn(A,O)

|WA |+|WO |+1 must diminish at a bigger rate that the growing rate of the
plus term 1

|WD |+|WO |+1 ≥ 1. By the initial conditions we know that dn(A,O) < 1, |WD| > |WA|
and than |WO| >= 3. If we set all the values to their allowed minimum we have: |WA| = 2 (WA
must have an element in common with WO and the distance between A and O must be < 1),
|WD| = 3 (because it must be bigger than WA). We cannot set these values to be smaller than
these values. Then, if the inequality is verified for these values, it must be true also for bigger
allowed values. Vice versa, we set dn(A,O) to the maximum allowed value that is 3/5 = 0.6.
Then we can consider an integer variable k ∈ [1,m] with m ∈ N. We obtain the following
functions:

b1(k) =
dn(A,O)

|WA| + |WO| + k
=

0.6
5 + k

and

b2(k) =
k

|WD| + |WO| + k
=

k
6 + k
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where k grows when the cardinality of WO grows and every new element added to WO
belongs also to WA because of the initial conditions. We can see that b2(k) − b1(k) < 0 for no
k > 1.

Then, for k ≥ 1 where k ∈ N, b2(k) − b1(k) is never a negative quantity. Augmenting the
cardinality of the sets and the distance betweenA and O the b2(k) − b1(k) becomes closer and
closer to zero but it does not change its sign. Thus:

1
|WD| + |WO| + 1

−
dn(A,O)

|WA| + |WO| + 1
> 0

The proof of the case in which wOn+1 ∈ WO ∩WD is proved straightforwardly following this
proof.

Now, we have prove the case B. in which: wOn+1 < WO ∩WA ∧ wOn+1 < WD ∩WD. We have
to prove that dn+1(A,O) + dn+1(D,O) ≥ 1 and under the conditions of this case we can rewrite
it as:

dn(A,O) +
1

|WA| + |WO| + 1
+ dn(D,O) +

1
|WD| + |WO| + 1

≥ 1

We can see that both the members in the left part of the equation are augmented by a
positive quantity, then the triangle inequality is always verified. �

We have defined the structural distance between to poNS-F and we have shown that this
measure is a proper metric. In order to adopt this metric with poINS-F we have to define a
new encoding for the sets in a poINS-F. Basically, we have to define the interval poset WA
for A{I,<} when it is a poINS-F. In this case, we cannot exploit well-known node labeling
techniques defined for trees like we have done for the NS-M, because the INS-M reverses the
logic of the tree making those node labeling techniques inapplicable to the poINS-F. A naive
approach is mapping the poINS-F into their corresponding poNS-F and calculate the structural
distance between them. This approach gives the measure of the distance between two poINS-F
passing through their representation in the NS-M. On the other hand, our aim is to define the
NS-M and the INS-M as two interrelated but independent set data models. To accomplish this
goal we define a proper encoding for the sets in a poINS-F exploiting the encoding presented
in [Vegas et al., 2007] to identify a circular section in a DocBall. It is important to remember
that, as we have pointed out in the beginning of this section, the choice of a particular encoding
is orthogonal to the definition of the metric.

We can encode a set A j of an poINS-FA〈I,<〉 using its DocBall representation as guideline
(as we have done with the Eulero-Venn diagrams for the poNS-F) by means of a triple of values
t j = 〈l j, α j, β j〉 where l j ∈ [1, n], n ∈ N is the level of A j in the DocBall, α j ∈ [0, 360] is the
starting angle of the section representing A j in the DocBall and β j ∈ [0, 360] is the ending
angle of the section representing A j in the DocBall. The poINS-F A〈I,<〉 is associated with a
poset 〈TA, <〉 = {t1, . . . , t|A|} that we call the triple encoding poset of A〈I,<〉. Let us consider
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A1 A2

A3

A4

A5A6

α1 = 0

α3 = 0

α2 = 0

α4 = 90

α5 = 180

α6 = 180

β1 = 360

β2 = 180

β3 = 90

β4 = 180

β5 = 360

β6 = 360

t1 = �l1, α1, β1� = �1, 0, 360�

t2 = �l2, α2, β2� = �2, 0, 180�

t4 = �l4, α4, β4� = �3, 90, 180�

t5 = �l5, α5, β5� = �2, 180, 360�

t6 = �l6, α6, β6� = �3, 180, 360�

t3 = �l3, α3, β3� = �3, 0, 90�

TA = {t1, t2, t3, t4, t5, t6}

Figure 6.18: A poINS-F represented by means of a DocBall and the definition of the encoding of each
set in the poINS-F.

two triples {t1, t2} ∈ 〈TA,<〉, then we say that t1 < t2 if and only if l1 = l2 ∧ β1 ≤ α2; two triples
({t3, t4} ∈ 〈TA, <〉) such that l3 , l4 are defined to be incomparable (t3||t4).

In Figure 6.18 we can see how 〈TA, <〉 is defined; every set is represented in the DocBall
as a section and each section has a starting angle α and an ending angle β. These angles do not
suffice to uniquely identify a section, thus we consider also the level of the sections; the inner
circle has level 1 and so on and so forth.

In order to calculate the structural distance between two poINS-F A〈I,<〉 and D〈J,<〉 we
lever on their associated triple encoding posets, respectively 〈TA, <〉 and 〈TD, <〉. As we have
done for the NS-M, we define an assignment function f : 〈TA, <〉 → 〈TD, <〉 ∪ {t0} where
t0 = 〈0, 0, 0〉. Please note that the triple 〈0, 0, 0〉 cannot be assigned to any set by the defined
encoding. This function is required to be injective, except possibly for t0 = 〈0, 0, 0〉. The role of
〈0, 0, 0〉 in the image of f is to permit us to assign intervals from 〈TA, <〉which otherwise would
not be assigned. Then, the assignment function f is defined as follows: every tAk ∈ 〈TA, <〉
is mapped into an element tDh ∈ 〈TD, <〉 ∪ t0 such that f (tAk ) = tDh ∈ 〈TD, <〉 if tAk = tDh or
f (tAk ) = t0 ∈ 〈TD, <〉 otherwise.

Now, we can define the binary assignment function d f for the INS-M as:
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d f (ti, f (ti)) =

 1 if f (ti) = {t0} = 〈0, 0, 0〉
0 otherwise.

(6.64)

So, the binary assignment function is defined in the same way for the NS-M and the INS-
M, thus the only difference between the two is the encoding of the sets. In NS-M we compare
1-interval posets encoding the families; in INS-M we compare posets containing triples. Thus,
the structural distance dS between two poINS-F is:

Definition 6.11.
Let A〈I,<〉 and D〈K,<〉 be two poINS-F, TA and TD be the associated triple encoding posets,
f : TA → TD ∪ {t0} be the assignment function, R( f ) be the range of the assigning function,
and d f (ti, t(wi)) be the binary assigning function. Then,

dS (A,D) =

∑
tAi ∈TA

d f (tAi , f (tAi )) + |TD \ R( f )|

|TA| + |TD|
(6.65)

is defined to be the structural distance between two poINS-F.

This definition is totally equivalent to the structural distance between two poNS-F defined
in Definition 6.10; thus, all the results we proved for the distance between poNS-F are still
valid also for the structural distance between poINS-F. Let us see and example describing the
encoding of two poINS-F, the assignment functions and the distance between the families.

Example 6.18. LetA〈I,<〉 andD〈J,<〉 be two poINS-F such thatA〈I,<〉 = {A1, A2, A3, A4, A5, A6, A7}

andD〈J,<〉 = {D1,D2,D3,D4,D5,D6,D7}. We can see a graphical representation of these fam-
ilies in Figure 6.19.

Let TA = {tA1 , t
A
2 , t

A
3 , t

A
4 , t

A
5 , t

A
6 , t

A
7 } be the encoding poset of 〈TA, <〉 such that tA1 =

〈1, 0, 360〉, tA2 = 〈2, 0, 180〉, tA3 = 〈2, 180, 360〉, tA4 = 〈3, 0, 90〉, tA5 = 〈3, 90, 180〉, tA6 =

〈3, 180, 270〉 and tA7 = 〈3, 270, 360〉.

Let TD = {tD1 , t
D
2 , t
D
3 , t
D
4 , t
D
5 , t
D
6 , t
D
7 } be the encoding poset of 〈TD, <〉 such that tD1 =

〈1, 0, 360〉, tD2 = 〈2, 0, 180〉, tD3 = 〈2, 180, 360〉, tD4 = 〈3, 0, 180〉, tD5 = 〈3, 180, 240〉, tD6 =

〈3, 240, 300〉 and tD7 = 〈3, 300, 360〉.

Let f : 〈TA, <〉 → 〈TD, <〉 ∪ {t0} be the assignment function and d f the binary assignment
function; in Figure 6.19 we can see a graphical representation of this function. The binary
assignment function assigns a one value (d f ) to the null assignment and a zero value to the
elements in TA which have a correspondent element in 〈TD, <〉.

Then:

dS (A,D) =

∑
tAi ∈TA

d f (tAi , f (tAi )) + |TD \ R( f )|

|TA| + |TD|
=

4 + 4
14

= 0.5714
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Figure 6.19: The DocBall representation of the two poINS-F described in Example 6.18 and the graph-
ical representation of the assignment function used to compute the structural distance be-
tween these two families.

6.6.4 The NESTOR Distance

We have defined the graphical distance that is used to compute the distance between two sets
– either in the NS-M or in the INS-M – and two other distance measures which are used
to calculate the distance between two families. The first is the Jaccard’s distance which is
used to define a distance based on the elements belonging to the families and the second is
the structural distance which defines the distance only on a structural basis. We may need to
calculate a distance between two families of sets which takes into account both these measures;
we define the so called “NESTOR distance” (dN) as the parametrized linear combination of the
Jaccard’s distance and the structural distance. We define this distance for the NS-M and the
INS-M; as we have seen the only difference between the two – from the distance point-of-view



120 Chapter 6. The NESTOR Model

– is the encoding of the sets which influences the structural distance.

Definition 6.12.
Let A〈I,<〉 and D〈J,<〉 be two partially ordered families of sets – i.e. poNS-M or poINS-M,
dJ(A,D) be the Jaccard’s distance and dS (A,D) be the structural distance between them.
Then, the NESTOR distance is defined to be:

dN(A,D) = α dJ(A,D) + (1 − α) dS (A,D) (6.66)

where 0 ≤ α ≤ 1.

As we have seen in Section 4.1.6, the measure of distance is associated with a measure of
similarity. From the NESTOR distance it is immediate to determine a coefficient of similarity
between two families of sets.

Definition 6.13.
Let A〈I,<〉 and D〈J,<〉 be two partially ordered families of sets – i.e. poNS-M or poINS-M,
dN(A,D) be the NESTOR distance between them. Then, the NESTOR coefficient of similar-
ity is:

N(A,D) = 1 − dN(A,D). (6.67)

Now, we have to prove that the NESTOR distance is a proper metric for the set data models:
NS-M and INS-M.

Lemma 6.25. Let A〈I,<〉, D〈J,<〉 and O〈K,<〉 be three partially ordered families of sets. Let
dN(A,D), dN(A,O) and dN(D,O) be the NESTOR distances between the families. Then, dN

is a proper metric.

Proof:
Since dJ and dS are proper metrics and dN is a parametrized linear combination of them,
identity, non-negativity and symmetry are trivially true for dN . The triangle inequality holds
for dJ and dS , then:

dN(A,O) + dN(D,O) ≥ dN(A,D) ⇒ α dJ(A,O) + (1 − α) dS (A,O) + α dJ(D,O) + (1 −
α) dS (D,O) ≥ α dJ(A,D) + (1−α) dS (A,D)⇒ α (dJ(A,O) + dJ(D,O)) + (1−α)(dS (A,O) +

dS (D,O)) ≥ α dJ(A,D) + (1 − α)(dS (A,D)).

We know that: dJ(A,O)+dJ(D,O) ≥ α dJ(A,D)⇒ α (dJ(A,O)+dJ(D,O)) ≥ α dJ(A,D),
and that dS (A,O)+dS (D,O) ≥ dS (A,D)⇒ (1−α)(dS (A,O)+dS (D,O)) ≥ (1−α)(dS (A,D)).
�



6.6. On the Metric Properties of the Set Data Models 121

Since dN is a proper metric for the NS-M and the INS-M we can present these models as
metric spaces.

Theorem 6.26. Let NSM = {A1,A2, . . . ,An} be a collection of poNS-F and dN be the
NESTOR distance. Then, (NSM, dN) where dN : NSM×NSM→ R, is a metric space.

Proof:
In order to show that (NSM, dN) is a metric space, it suffices to show that dN is a proper
metric for the domain of objects under consideration. The collection NSM is composed by
poNS-F and Lemma 6.25 shows that dN is a proper metric for partially ordered families of
sets.�

Exactly in the same way we can define the INS-M as a metric space.

Theorem 6.27. Let INSM = {A1,A2, . . . ,An} be a collection of poINS-F and dN be the
NESTOR distance. Then, (INSM, dN) where dN : INSM × INSM → R, is a metric
space.

Proof:
In order to show that (INSM, dN) is a metric space, it suffices to show that dN is a proper
metric for the domain of objects under consideration. The collection INSM is composed by
poINS-F and Lemma 6.25 shows that dN is a proper metric for partially ordered families of
sets.�

Since the Jaccard’s distance and the structural distance have been defined for the NS-M
and the INS-M and they have been proved to be proper metrics, they can be adopted to define
metric spaces based on them. We choice to adopt the NESTOR distance because it comprises
both the Jaccard and the structural distances.
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Chapter 7

The NESTOR Prototype and its
Implementation in the SIAR
System

In this chapter we present the NESTOR Prototype which describes a set-based application of
the NESTOR Model. In Figure 7.1 we can see the main components composing the prototype
and its implementation in the SIAR system.

Figure 7.1: The main components of the NESTOR Prototype and its implementation in the SIAR Sys-
tem.

Initially we describe how an archive is modeled by means of the set data models presented
in Chapter 6 and then, we present the requirements we have to fulfill in order to meet the
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interoperability dimensions of Digital Libraries we described in Chapter 5.

Afterwards, we present two possible applications of the NESTOR Model. The first one is
an XML tree-based application which relies on the standard encoding for archival descriptions:
the Encoded Archival Description (EAD). The second is a set-based application which relies
on the joint use of OAI-PMH and Dublin Core. We present advantages and disadvantages of
these applications focusing on the requirements we have to fulfill.

These applications allow us to point out the relationships with the Digital Libraries tech-
nologies – see Section 5.3 – emphasizing how the NESTOR Framework exploits existing and
widely-adopted standard technologies. This aspect highlights the characteristics of flexibility
and adaptability of the framework in concrete application environments.

Lastly, we present an archival information system implementing the NESTOR Prototype:
the SIAR (Sistema Informativo Archivistico Regionale) [Agosti et al., 2008, 2007b,c; Ferro
and Silvello, 2008a, 2009a]. The SIAR is an information system designed and developed in
the context of the Italian Veneto Region that requires the creation, management, access and
exchange of archival metadata in a distributed environment.

7.1 How to Model an Archive

In order to model an archive we have to take into account its main characteristics which are: its
structure and the objects it manages and preserves. As we have seen in Chapter 5, an archive
is a complex organization composed by several parts. The foremost component regards the
descriptive part of an archive which is conceptually modeled by the ISAD(G) standard; this
standard defines the hierarchical organization of archival descriptions and how to model the
relationships between them.

We can point out two main aspects that we have to consider when modeling an archive:
hierarchy and context. The first aspect means that we have to be able to represent and maintain
the hierarchical structure of an archive and its descriptions; the second aspect means that we
have to retain the relationships between the archival descriptions and to exploit them to recon-
struct the context of a document in relationships with its creation and preservation environment.
In order to express hierarchy and context we need to dispose of a model which allows us to
represent the structure of an archive. Furthermore, we need to represent also the content of an
archive which is described and managed by means of archival descriptions – that in a digital
environment are represented by archival metadata.

As we have seen in Chapter 5, the structure of an archive is usually represented by means
of a tree where each node represents an archival division – e.g. a fonds, a sub-fonds, a series1 –
and the edges connecting the nodes represent the relationships between the divisions. These re-
lationships constitute the hierarchical structure of the archive. Let us consider the next example
where a sample archive is modeled by means of a tree.

1Please note that the terms fonds and sub-fonds are used both for the singular and plural form of the noun – see
Section 5.2. The term series is used both for indicating one series and many distinct series.
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Figure 7.2: (a) An archive represented by means of a tree. (b) An archive and its documents represented
by a tree.

Example 7.1. Let us consider an archive composed by six divisions: a fonds, two sub-fonds
and three series. The fonds is divided into two sub-fonds such that the first has no sub-divisions
and the second contains the three series. The fonds contains three documents, both the sub-
fonds contain two documents and each series contains two documents. Every document is
described by an archival description.

Following the ISAD(G) principles we have to represent this archive as a level hierarchy –
please see Chapter 2 – where the fonds belongs to the higher level, the sub-fonds to the next
lower level and so on for the series. In the archival practice this archive is represented by means
of a tree, as we can see in Figure 7.2a.

As we can see in Figure 7.2a, the tree does not allow us to represent the documents belong-
ing to each division. If we want to represent the documents we need to extend the tree model
with some additional nodes attached to each node representing an archival division. These
nodes have a different meaning respect to the nodes representing a division of an archive; they
are contained by the node representing an archival division – e.g. the node representing the
fonds contains three documents and in turn it is divided into two sub-fonds – but they have to
be distinguishable from the nodes representing other archival subdivisions. With the represen-
tation in Figure 7.2b, the sub-fonds and the documents contained by the fonds are at the same
hierarchical level and they seem to have the same meaning. In order to enhance the differences
between these nodes, we drew dotted edges for the nodes representing a document and not an
archival division.

From this example we can see that the tree model is adequate to represent the structure
of an archive because it properly represents the hierarchical relationships between the archival
divisions; on the other hand, in a tree it is not straightforward to represent the documents
belonging to each archival division. We can say that the tree can represent the structural aspects
of an archive but it needs to be somehow extended in order to represent also the content – i.e.
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Figure 7.3: An archive modeled by means of the NS-M.

the archival resources.

One of the main features of the NESTOR Model is the possibility to express both the
hierarchical structure by means of the nested sets and the content by means of the elements
belonging to the sets. By means of the NESTOR Model, the archival divisions are represented
as nested sets and the hierarchical relationships are retained by their inclusion order. On the
other hand, the archival resources are represented as elements belonging to the sets. Let us see
an example where the same archive considered in the Example 7.1 is modeled by means of the
NS-M.

Example 7.2. Let us consider the archive presented in the Example 7.1 and in Figure 7.3 we
can see that archive represented by a NS-F where each set corresponds to an archival division.
From this representation we can see that the division “fonds” is divided into two sub-divisions
represented by the two subsets on the set “fonds”, and so on and so forth for the series.

At the same time, the documents belonging to each division are represented by means
of elements belonging to the sets with a clear distinction between the structural and content
components.

The NS-M allows us to straightforwardly represent an archive; from the Theorem 6.8 pre-
sented in Chapter 6, we know that a tree can be mapped into a NS-F and thus we know that its
expressive power is preserved by the NS-M. In this case we can see that the NS-M allows us to
define a further level of expressiveness respect to the tree.

In the NESTOR Model we can go from the NS-M to the INS-M and the two models have
the same expressive power; indeed, we can model an archive by means of the INS-M as well as
we have done with the NS-M. Figure 7.4 shows an archive modeled by an INS-F represented
throughout a DocBall. Each circular section of the DocBall represents a set and the archival
documents are represented by the elements contained in each section.

The set data models are well-suited for the archival practice; indeed, the idea of “set” shapes
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Figure 7.4: An archive modeled by means of the INS-M.

the concept of archival division which is a “container” comprising distinct elements that have
some properties in common. If we think to the Chinese boxes metaphor (see Section 2.1.1),
a hierarchy is composed by a sequence of boxes contained one into the others; if we look to
an archive from the physical point-of-view, we can see that it resembles the Chinese boxes
structure: There are boxes, folders, sheets, etc. one contained inside the others. The concept of
nested sets is closer to this view of the reality than the concept of tree and the archivists have
the possibility to choose the set data model – i.e. NS-M or INS-M – that best fits their way of
describing the archives.

7.2 Analysis of the Requirements

We have seen how archives can be modeled by means of the NESTOR Model highlighting
some advantages of this approach. The goal of the NESTOR Prototype is to offer a concrete
instantiation of the data models described so far; such an instantiation has to meet several
requirements which are strictly related to the world of Digital Libraries [Agosti and Ferro,
2010]. The list of requirements that has to be fulfilled is derived from an analysis of the
dimensions of interoperability of Digital Libraries and from the user studies we have conducted
with archivists in the context of the design and development of the NESTOR Prototype.

7.2.1 Information Objects

We have to settle the objects described by the model and what we want to do with them. We
have to take into account the nature of an archive and the objects corresponding to the archival
resources in the digital environment. First-of-all, in a digital environment from the archival
point-of-view, we have to deal with two kinds of digital objects: descriptive metadata and full
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content digital objects. Descriptive metadata are the foremost resources managed by digital
archives because often the archival resources are not available in digital form, but they are
described and represented by metadata; sometimes archival resources are metadata themselves.
In recent times the availability of full content archival digital objects has been growing and thus
they have to be modeled as well as the descriptive metadata.

In the context under examination we assume the set of digital resources (we write only
“resources” when there is no need to specify their digital nature) as conceptually divided into
metadata and digital objects. A metadata is a resource that describes an object that may or may
not have a digital form; we indicate with M = {m1, . . . ,mk, . . . ,mt} the set of metadata and
with mk ∈ M a metadata mk belonging to M. If an object described by a metadata has a digital
form, we call it a digital object that can have different representations such as a text file, an
audio or video file or a photograph; it is not mandatory for a digital object to be described by
a metadata. We indicate with DO = {do1, . . . , dok, . . . , dos} the set of digital objects and with
R = M ∪ DO = {r1, . . . , rk, . . . , rt+s} the set of resources given by the union of the metadata set
and the digital object set2.

For what is concerned with metadata, in the archival context we have to be able to handle
different metadata formats in order to deal with different informative needs. Indeed, differ-
ent archives may use different metadata formats to describe their resources or within the same
archive there may be the necessity to describe different resources by means of different meta-
data formats [Prom et al., 2007].

An important requirement is the possibility to update the archival metadata, change the for-
mat of the metadata or add new metadata formats without interfering with the archival structure.
Vice versa, it is very important to be able to change the structure of an archive – e.g. add an
archival division, join together or divide two or more archival divisions – without requiring
any changes in the metadata. The clear distinction between content and structure is a key
requirement that the NESTOR Prototype has to meet.

When we consider also full-content digital objects, we have to be able to relate every digital
object with the archival division at which it belongs as well as it is mandatory to do with
descriptive metadata. Furthermore, it is necessary to dispose of a mechanism to define and
exploit the relationship between a digital object and the metadata describing it. We have to
consider the necessity to deal with aggregations of resources which are composed both by
metadata and digital objects. We can see that in this context we can have a descriptive metadata
related to a non-digital archival resource, a descriptive metadata related to an archival digital
object, and a descriptive metadata describing an aggregation of resources.

7.2.2 Functional Perspective

From the functional perspective point-of-view we take into account several fundamental as-
pects that the NESTOR Prototype has to fulfill: access, exchange, manipulation, and querying
of the archival resources – i.e. descriptive metadata and full-content digital objects. First-of-all

2Please note that the intersection between the set M of metadata and the set DO of digital object is empty.
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we consider these aspects from the metadata point-of-view and then, we extend the require-
ments to enclose also the digital objects.

Access: The archival descriptions have to be accessible from multiple entry points and at the
same time they have to disclose their relationships allowing the user to consult contextual
information.

Exchange: The archival descriptions have to be shareable in a distributed environment with
a variable granularity and have to provide a mechanism for reconstructing the hierarchy
when necessary.

Manipulate and Query: The users must have a means at their disposal for manipulating both
the archival structure and the archival descriptions, and for defining and performing
queries.

The access requirement states that we have to be able to consult an archive starting from
the required description without having to navigate the whole archival hierarchy from a unique
entry point to find the information of interest. At the same time from each description we have
to be able to reconstruct its relationships with the other elements of the archive – i.e. preserving
and exploiting the archival bonds.

The exchange requirement states that we have to be able to exchange archival descriptions
with different degrees of coarseness and belonging to whatever level of the archival hierarchy
without having to exchange the whole archive. Furthermore, a mechanism needs to be avail-
able for reconstructing the archival relationships of an exchanged description whenever it is
necessary. In the current state of development of Digital Libraries an important technologi-
cal requirement is compliance with OAI-PMH. Through the fulfillment of this requirement
we can address the “functional perspective” and the “interoperability technology” aspects of
interoperability.

When we consider also full-content digital objects, we have to add a further aspect to this
vision; indeed, when we consider the set R of resources we have to deal with resources that can
be seen as “atoms” or “aggregations”. We have to be able to access and exchange with variable
granularity both atoms and aggregations of archival resources retaining both the relationships
with the archival structure and between the objects. In this context, we rely on the concept of
handle, which is defined as a unique identifier of both metadata and digital objects [Agosti and
Ferro, 2007; Ferro and Silvello, 2010]. We assume that every archival resource is identified by
a unique handle.

Definition 7.1.
Let H be a set of handles and R a set of resources such that |H| = |R|, where h ∈ H is a
generic handle. We define a bijective function η : H → R, which maps a handle to the resource
identified by it: ∀ri ∈ R,∃!hi ∈ H | η(hi) = ri ⇒ η−1(ri) = hi.
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In order to manage, access and exchange archival resources and aggregations we have to
be able to:

• assign a handle to each component we think should be accessed and exchanged in an
independent way;

• retain the context and the structure of resources;

• define a machine-readable and standard mechanism for defining and treating aggrega-
tions of resources.

These aspects are central also from the user perspective which is focused on the manip-
ulation and querying of the archives. When we need to manipulate and query an archive we
have to be able to express constraints on the structure and on the content of an archive; to do
so we need to have a well-defined mechanism that allows us to express our needs in a standard
way. The manipulation operations that must be available to the users are the possibility to up-
date, insert and delete an archival resource, an archival division or a whole part of an archive.
The mechanism by means of which a user queries an archive must be independent from the
particular technology of choice – e.g. the metadata format encoding the archival descriptions.

7.2.3 Multilingualism

Language techniques allowing cross-language access to the resources have to be straightfor-
wardly applicable to the archival descriptions.

There is a huge need to provide cross-language access to information; this is due to the
diversity and multilinguistic environment in which Digital Libraries are operating – e.g. in the
European Union there are 23 official languages spoken in 27 member states3. Cross-language
access to information leads to problems of both semantic and syntactic interoperability [Lever-
good et al., 2008]. It is necessary to address two “metadata-related challanges” that usually are
faced by involving the specification of the language of the metadata fields [Levergood et al.,
2008]: false friends and term ambiguity. Another important issue is “name resolution” which
regards the necessity to disambiguate between words that are proper names that do not require
a translation or nouns that has to be translated for multilingual purposes. For instance, the term
”Bush” can be seen as the surname of a President of the United States or as a noun indicating
a shrub. On the other hand, we may have the necessity to translate some proper names; for
instance, the proper name“Kepler” has to be translated as “Keplero” in Italian.

To address these issues we can point out three main solutions usually employed in the
context of Digital Libraries:

1. Translation: A query formulated in the user language is automatically translated in the
other languages supported and then submitted to the system. This solution is not free
from the false friends, name resolution and term ambiguity issues.

3http://ec.europa.eu/education/languages/languages-of-europe/
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2. Enrichment of Metadata: This is understood as making the intended meaning of infor-
mation resources explicit and machine-processable, thus allowing machines and humans
to better identify and access the resources. The language would be thus provided in the
metadata itself.

3. Association to a Class: This is the association of terms to a fairly broad class in a li-
brary classification system such as the Dewey Decimal Classification. This is a common
solution for the term ambiguity problem. More advanced language techniques such as
semantic annotation and tagging may be also taken into account and related to this solu-
tion.

The specification of the language of metadata field permits us to fully exploit metadata for
cross-language purposes. If metadata do not come with or cannot be enriched with the language
of the field, it is useful to rely on the association to a class technique. This technique relies on
the use of the subject field of metadata; it is not always possible to determining the subject of
a metadata or of a term. This is particularly true for archival metadata where determine the
subject can be very difficult. In order to apply this technique to archival descriptions we have
to be able to access and manipulate each description as a single independent entity; while this
requirement is quite straightforward for libraries, it is not in the archival environment where all
the descriptions are related to each other in a hierarchical structure.

7.3 An Application based on an XML Tree

EAD is the standard to encode archival descriptions and it is widely adopted to represent and
manage the archives in a digital environment. As we have seen in Chapter 5, it is quite straight-
forward to instantiate an archive modeled by means of a tree into an EAD file. But, if we model
an archive by means of the NESTOR Model the possibility to instantiate it by means of EAD
is not precluded either.

In Figure 7.5 we can see how the archive of Example 7.1 modeled by means of the NS-F
represented in Figure 7.3 can be mapped into an EAD file. The order inclusion between the sets
defining the hierarchical relationships between the archival divisions is retained in the EAD by
means of nested tags in the XML file. The elements representing the archival descriptions
are encoded by a sub portion of XML nested inside each tag representing the corresponding
archival division. Basically, this instantiation of the NESTOR Model represents the state-of-
the-art in the representation and managing of archives in a digital environment. Figure 7.5
represents the mapping of a NS-F into a tree encoded by means of a unique XML file.

The main feature of this instantiation of the model is that both the structural and the content
elements are represented by means of XML elements (i.e. tags). The EAD metadata allows
us to encode the description part defined by means of the data models and thus it is a proper
means for representing an archive. On the other hand, EAD imposes a unique metadata format
to encode the archival descriptions – i.e. the EAD itself. In this context we cannot change the
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<eadheader> 
    [...]
<eadheader>
<archdesc level=”fonds”>
    [...]

<did> [...] </did> 
       <dsc label="Fonds">

    [...]

    <c01 label="Sub-fonds"> 
[...]

    </c01>
           <c01 label="Sub-fonds">

        [...]

         <c02 label="Series">
         [...]
     </c02>

                  <c02 label="Series">
         [...]

                  </c02>
                   <c02 label="Series">

         [...]
                    </c02>

           </c01>
         </dsc>
</archdesc>

Fonds

Sub-Fonds
Sub-Fonds

Series Series Series

Nested Set Model Encoded Archival Description

Figure 7.5: A sample archive represented throughout the NSM and mapped into an EAD file.

metadata format or add a further descriptive metadata; an archival resources can be described
only by means of EAD and every description is embedded in the archival structure. This means
that content and structure are interlinked in the same XML file and they cannot be handled
separately. In this context it is impossible to update, insert or delete a descriptive metadata
without interfering also with the structure of the archive. Thus, the first requirement regarding
archival metadata is not respected.

This problem is emphasized when we consider the “functional perspective”. The access
requirement states that we have to be able to access the archival descriptions – i.e. descriptive
metadata – at different degrees of coarseness. EAD is encoded as a unique XML file which
mixes structural and content information while the entry point to access the information is the
root of the XML file. From the root we have to navigate the hierarchy to access the information
of interest. In order to overcome this issue we can define some superstructures to the EAD;
for instance, we can settle some predefined entry points by the use of XPointers4 pointing
to specific elements of the XML or by using predefined paths driving the user through the
hierarchical structure. These solutions are palliatives because they are not general solutions
but they can only adequately match a specific reality with limited needs. Furthermore, for each
instantiation of the EAD, we have to know in advance how the XML elements are used; this
is not a problem in general because we can make use of the EAD schema, but to do so each
instantiation of EAD has to meet stringent best practice guidelines [Prom et al., 2007] otherwise
the use of tags may be inconsistent, leading to wrong interpretations of the information as has

4http://www.w3.org/TR/xptr-framework/
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happened in practice [Kim, 2004].
The exchange requirement states that we have to be able to exchange archival descriptions

in a distributed environment. The same issues affecting EAD for the access requirement can
be found here for metadata exchange; indeed, the encoding of all the archival descriptions as
a unique XML file forces us to exchange the archive as a whole. We cannot share a specific
piece of information – e.g. the descriptions of the documents belonging to a specific “series”
– without extracting it from the XML file and losing in this way the structural information
retained thanks to the nested tags in the XML itself.

This issue is emphasized when we take into account the digital objects. As we have seen
an EAD file encode both the structure of an archive and the descriptive metadata describing
the archival resources; if some descriptive metadata describe digital objects belonging to the
archive itself, we need to handle not only the metadata but also the relationships with the digital
objects.

Let us consider the archive we described in the Example 7.1 modeled by means of a NS-F.
Let us call A1 the set representing the archival division “fonds”, A2 the set representing the first
“sub-fonds”, and A3 the set representing the first “series”.

Then, we assume that A1 contains a digital object such that A1 = {do1}, A2 contains k ∈ N
digital objects such that A2 = {do2, . . . dok+1} and A3 other k digital objects such that A3 =

{dok+2, . . . do2k+2}.
Every digital object can be associated with a metadata describing it or at least with the

metadata describing the archival division at which it belongs. In context of the EAD instan-
tiation a single EAD metadata describes not only the digital objects but also the structure of
the archive retaining the relationships between the digital objects themselves; thus it is to re-
late each digital object with the component of EAD describing it. Only maintaining all these
relationships we can reconstruct the full informative power of an archival resource. In Figure
7.6 we represent the sample archive we are taking into account; we highlight the three archival
divisions under examination associated with the digital objects. We can see that the component
“fonds” describes one digital object, instead, for instance, “sub-fonds” describes a bunch of
digital objects.

This problem has also been recently tackled by two projects funded by the European Com-
mission: Europeana5 and APEnet6. In the context of these projects the solution showed in
Figure 7.7 has been proposed [Sugimoto and van Dongen, 2009]; [Sugimoto and van Dongen,
2009] takes into account two scenarios: in the first one a component of EAD describes only one
digital object, in the second one a single component describes a bunch of digital objects. In the
first scenario a Uniform Resource Locator (URL) to the digital object do1 is embedded into an
element of the EAD component describing it. This approach in not flexible because if the URL
of do1 changes the content of the metadata must also be updated; furthermore, the relationships
between digital objects cannot be automatically determined, instead they must be inferred by
browsing the EAD metadata structure. The second scenario also has to address the problem

5http://www.Europeana.eu/portal/
6http://apenet.net/
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<eadheader> 
    [...]
<eadheader>
<archdesc level=”fonds”>
    [...]

<did> [...] </did> 
       <dsc label="Fonds">

    [...]

    <c01 label="Sub-fonds"> 
[...]

    </c01>
           <c01 label="Sub-fonds">

        [...]

         <c02 label="Series">
         [...]
     </c02>

                  <c02 label="Series">
         [...]

                  </c02>
                   <c02 label="Series">

         [...]
                    </c02>

           </c01>
         </dsc>
</archdesc>

description of

description of

description of

do1

do2, . . . , dok+1

dok+2, . . . , do2k+2

Figure 7.6: An EAD file associated with a bunch of digital objects.

that only one URL can be specified for each descriptive component of EAD; so, a Metadata
Encoding and Transmission Standard (METS) 7 metadata format is used to connect the EAD
descriptive component to the digital objects [Sugimoto and van Dongen, 2009]. Basically, the
METS metadata acts as an in-between component relating each digital object with the EAD
component describing it.

With this solution the relationships between the metadata and the digital objects as well as
the relationships between the digital objects are defined in a cumbersome way that can lead to
inconsistencies. For instance, in order to reconstruct the context of a digital object exchanged
in a distributed environment a potential user must follow the URL from the digital object to the
METS file, activate the URI to the EAD metadata and then browse the EAD tree to find out
the component describing the digital object. The components of the metadata are not directly
and independently identifiable, accessible and exchangeable and the digital objects are not
related one to another in a way that permits us to automatically infer the relationships between
themselves and between them and their descriptions.

Lastly, we analyze the possibility of using language techniques with the archival metadata.
The first language technique (e.g. “translation”) can be straightforwardly applied; furthermore,
when we consider the translation of an EAD file we have the advantage to dispose of a big file
with many contextual information which can be used to disambiguate the terms. On the other

7http://www.loc.gov/standards/mets/
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<eadheader> 
    [...]
<eadheader>
<archdesc level=”fonds”>
    [...]

<did> [...] </did> 
       <dsc label="Fonds">

    [...]

    <c01 label="Sub-fonds"> 
[...]

    </c01>
           <c01 label="Sub-fonds">

        [...]

         <c02 label="Series">
         [...]
     </c02>

                  <c02 label="Series">
         [...]

                  </c02>
                   <c02 label="Series">

         [...]
                    </c02>

           </c01>
         </dsc>
</archdesc>
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Scenario 1: One single document for a single descriptive unit 
in the EAD file. E.g. Fonds associated only with 

<eadheader> 
    [...]
<eadheader>
<archdesc level=”fonds”>
    [...]

<did> [...] </did> 
       <dsc label="Fonds">

    [...]

    <c01 label="Sub-fonds"> 
[...]

    </c01>
           <c01 label="Sub-fonds">

        [...]

         <c02 label="Series">
         [...]
     </c02>

                  <c02 label="Series">
         [...]

                  </c02>
                   <c02 label="Series">

         [...]
                    </c02>

           </c01>
         </dsc>
</archdesc>

Scenario 2: A bunch of documents for a single descriptive unit in 
the EAD file. E.g. Series containing k do.
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[...]

URL
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Figure 7.7: How to link the EAD file with the described digital objects.

hand, the “enrichment of metadata” technique requires the metadata to be machine-readable
in order to be automatically processed and enriched. The very flexibility of EAD leading
to a not always consistent use of structure and content elements precludes the possibility of
adopting this technique with many EAD files. Finally, we know that a single EAD metadata
is used to describe an entire archive, thus in a unique metadata we can find very different
subjects. With this organization it is very difficult to disambiguate the terms or to identify the
subject of metadata; with the EAD metadata the “association to a class” technique is essentially
unworkable.

Another important point is the relationships with the standard Digital Library technologies:
OAI-PMH, the Dublin Core Framework and OAI-ORE. As we have seen, OAI-PMH can be
used only to exchange the whole archive as a monolithic unit and thus, many of the useful
functionalities of the protocol cannot be straightforwardly exploited. In order to overcome
this problem different solutions have been pointed out proposing different mappings of EAD
into a collection of Dublin Core metadata that can be exchanged and accessed with a variable
granularity [Bountouri and Manolis, 2009; Prom, 2003; Prom and Habing, 2002]. The main
problem of these solutions is that the Dublin Core metadata cannot retain the archival structure
by themselves but they have to be related by means of several links to the EAD structure and
thus, they are not independent from the original EAD file. The same problem arises when we
want to use EAD with OAI-ORE, thus preventing a full adoption of this technology.

As we have seen several requirements are not meet by the instantiation of the NESTOR
Model by means of EAD; on the other hand, we can overcome some issues by pointing out
some ad-hoc solutions that have to be defined on a case-by-case basis.



136 Chapter 7. The NESTOR Prototype and its Implementation in the SIAR System

7.4 A Set-Based Application

In this section we describe an instantiation of the NESTOR Model based on the conjunction
between standard Digital Libraries technologies: OAI-PMH and the Dublin Core. This appli-
cation allows us to overcome the issues we presented in the previous section and to present
a general solution to deal with hierarchies in the context of Digital Libraries. Indeed, we see
that by exploiting the formal basis we defined and the very native features of existing Digital
Library building blocks, we can enhance the flexibility, adaptability and scalability of the set
data models pointing out general methodologies to meet the presented requirements.

The first requirement that a set-based application has to satisfy is the capacity to represent
the archival structure and the archival resources. Firstly, we present the application considering
only archival metadata and showing how it meets the requirements exploiting standard tech-
nologies such as OAI-PMH and Dublin Core [Ferro and Silvello, 2008b, 2009b]; afterwards,
we describe how this very instantiation of the model can be adopted to deal also with digital
objects exploiting another Digital Library standard technology which is OAI-ORE.

7.4.1 A Flexible Representation of Archival Descriptions

In OAI-PMH it is possible to define an OAI-Set organization based on the NS-M or INS-M.
This means that we can treat the OAI-Sets as a Nested Set Family (NS-F) or as an Inverse
Nested Set Family (INS-F). The inclusion order between the OAI-Sets is given by their identi-
fiers which are <setspec> values. In the following we describe how it is possible to create a
Nested Set family of OAI-Sets and afterward how the same thing can be done with an Inverse
Nested Set family. In order to have a detailed description of the OAI-PMH functioning please
refer to Section 5.3.

Let FI be a NS-F where I be the index set composed by the <setspec> values such that
i ∈ I =

{
s0 : s1 : . . . : s j

}
means that ∃ F j ∈ FI | F j ⊂ . . . ⊂ F1 ⊂ F0. Every F j ∈ FI is an OAI-

Set uniquely identified by a <setspec> value in I. The <setspec> values for the Fk ∈ FI

are settled in such a way to maintain the inclusion order between the sets. If an Fk has no su-
perset its setspec value is composed only by a single value (<setspec>sk</setspec>).
Instead if a set Fh has supersets, e.g. Fa and Fb where Fb ⊂ Fa, its setspec value must
be the combination of the name of its supersets and itself separated by the colon [:] (e.g.
<setspec>sa : sb : sh</setspec>). Furthermore, let OAI = {oai0, . . . , oain} be a set
of OAI records, then each oaii ∈ F j must contain the setspec of F j in its header.

Let us consider the sample archive represented by the NS-F in Figure 7.3. As we can see
in Figure 7.8, each set composing this nested set structure is mapped into an OAI-Set with a
proper setSpec; the set called “fonds” is mapped into an OAI-Set with < setspec > 0001
< /setspec >. This set has two subsets that are mapped into two OAI-Sets: < setspec >
0001 : 0002 < /setspec > and < setspec > 0001 : 0003 < /setspec > and so on for the
other sets. We can see that the hierarchical relationships and thus the inclusion order between
the sets is maintained by the identifiers of the OAI-Sets which are defined as materialized
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Fonds

Sub-Fonds
Sub-Fonds

Series Series Series

<setspec>0001</setspec>
<setname>Fonds</setname>

<setspec>0001:0001</setspec>
<setname>Sub-FondsA</setname>

<setspec>0001:0002</setspec>
<setname>Sub-FondsB</setname>

<setspec>0001:0002:0001</setspec>
<setname>SeriesA</setname>

<setspec>0001:0002:0002</setspec>
<setname>SeriesB</setname>

<setspec>0001:0002:0003</setspec>
<setname>SeriesC</setname>

<record>
<header>
   <identifier>idDocA</identifier>
   <datestamp>2010-09-18</datestamp>
   <setSpec>0001</setSpec>
</header>
<metadata>
    [...]
</metadata>
</record>

Nested Set Model OAISet + OAI Records

<record>
<header>
   <identifier>idDocB</identifier>
   <datestamp>2011-01-18</datestamp>
   <setSpec>0001:0001</setSpec>
</header>
<metadata>
    [...]
</metadata>
</record>

[...]

O
A

ISets
O

A
I R

ecords

Figure 7.8: A sample archive represented throughout the NS-M and mapped into OAI-Sets and OAI
Records.

paths from the root to the identified set. Each single archival description is mapped into a
metadata belonging to an OAI-Set; the membership information is added to the header of these
metadata that are seen as OAI-records. In this way each archival description can be encoded
by a single metadata without any constraints on its format; indeed, an OAI-Set can contain
different kinds of metadata formats. With this model we do not impose any conditions on
the archival descriptions, thus allowing the possibility of changing the metadata, updating the
information or adding a new metadata format without affecting the structure of the archive
and without changing the data model. We choose the Dublin Core as minimum metadata
requirement and this choice is lead by widespread use of this metadata in Digital Libraries and
the possibility of defining Dublin Core Application Profiles which allow us to make it domain-
specific; indeed, Dublin Core Application Profiles allow the definition of Dublin Core metadata
formats well-suited for the reality we intend to represent.

An important aspect that has to be highlighted is that this instantiation maintains also the
horizontal dimension of the archival hierarchy – i.e. the order between the subsets of a set.
Indeed, Knuth stated in [Knuth, 1997]: “The very nature of computer representation defines an
implicit ordering for any tree” – please refer to Section 2.2.2 – and in the same way the very
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nature of computer representation defines an implicit ordering between the OAI-Sets. In Figure
7.8 we can see that we can talk of the first sub-fonds of the fonds (we named it Sub-fondsA)
or of the second series a sub-fonds. This is possible because the OAI setspecs define the
inclusion order between the OAI-Sets but also a partial order between the OAI-Sets which are
common subsets of another OAI-Set. Thus, the NS-F FI is actually a partially-ordered NS-F
(poNS-F) because the index set of setspecs is a partially ordered set: 〈I, <〉.

In the same way we can apply the INS-M to OAI-PMH; Let GJ be an Inverse Nested Set
family where J be the set of the <setspec> values such that j ∈ J = {s0 : s1 : . . . : sk}means
that ∃ Gk ∈ GJ = Gk ⊂ . . . ⊂ G1 ⊂ G0. In GJ differently that in FI the following case
may happen: Let {Gi,Gk,Gw} ∈ GJ then it is possible that Gw ⊂ Gi and Gw ⊂ Gk but either
Gi * Gk and Gk * Gi. If we consider GJ composed only of Gi,Gk and Gw, the identifier of
Gi is <setspec>si</setspec> and the identifier of Gk is <setspec>sk</setspec>.
Instead, the identifier of Gw must be <setspec>si : sw</setspec> and <setspec>sk :
sw</setspec> at the same time; this means that in GJ there are two distinct OAI-Sets, one
identified by <setspec>si : sw</setspec> and the other identified by <setspec>sk :
sw</setspec>. This is due to the fact that the intersection between OAI-Sets in OAI-PMH
is not defined set-theoretically [Van de Sompel et al., 2003]; indeed, the only way to get an
intersection of two OAI-Sets is enumerating the records. This means that we can know if
an OAI record belongs to two or more sets just by seeing whether there are two or more
<setspec> entries in the header of the record. In this case the records belonging to Gw

will contain two <setspec> entries in their header: <setspec>si : sw</setspec> and
<setspec>sk : sw</setspec>; note that only the <setspec> value is duplicated and
not the records themselves.

Let us consider the sample archive represented by the NS-F in Figure 7.4. In Figure 7.9 we
can see how the INS-F is mapped into a collection of OAI-Sets and OAI Records. We obtain
four sets from the common subset – i.e. the fonds of the sample archive – with four different
identifiers: “0004:0001”, “0001:0001:0001”, “0002:0001:0001” and “0003:0001:0001”. In
the same way are defined the sets mapped from the children of the root. The sets related to
the series are identified by “0001”, “0002” and “0003”. We can see that the OAI Records
belonging to the “fonds” have four setspecs in the header because the fonds in the INS-M
representation is the common subset of four other sets and thus, it has four different associated
OAI-Sets.

These instantiations of the set data models have two main main relevant features which
are also important aspects defining the flexibility and adaptability of the NESTOR Model:
they clearly divide the structural elements (i.e. the sets) from the content elements (i.e. the
archival descriptions) and they do not bind the archival descriptions to a unique, fixed and
predefined metadata format. These differences have a major impact in the fulfillment of the
other presented requirements.
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<setspec>0001</setspec>
<setname>SeriesA</setname>

<setspec>0002</setspec>
<setname>SeriesB</setname>

<setspec>0001:0001</setspec>
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<record>
<header>
    <identifier>idDocM<identifier>
    <datestamp>2009-04-18<datestamp>
    <setSpec>0004:0001</setSpec>
    <setSpec>0001:0001:0001</setSpec>
    <setSpec>0002:0001:0001</setSpec>
    <setSpec>0003:0001:0001</setSpec>
</header>
<metadata>
    [...]
</metadata>
</record>
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<setspec>0003</setspec>
<setname>SeriesC</setname>

<setspec>0003:0001</setspec>
<setname>Sub-fondsA</setname>

<setspec>0004</setspec>
<setname>Sub-fondsB</setname>

<setspec>0004:0001</setspec>
<setname>Fonds</setname>

<setspec>0003:0001:0001</setspec>
<setname>Fonds</setname>

[...]

<record>
<header>
    <identifier>idDocA<identifier>
    <datestamp>2009-04-18<datestamp>
    <setSpec>0001</setSpec>
</header>
<metadata>
    [...]
</metadata>
</record>

[...]

<setspec>0002:0001:0001</setspec>
<setname>Fonds</setname>

<setspec>0001:0001:0001</setspec>
<setname>Fonds</setname>

Figure 7.9: A sample archive represented throughout the INS-M and mapped into OAI-Sets and OAI
Records.

7.4.2 Access, Exchange and Manipulate an Archive Through Sets

By means of the set-based application we have just described we dispose of a variable granular-
ity access to the structure and to the content of an archive. Indeed, each OAI-Set is individually
accessible as well as each single metadata. From an OAI-Set we can easily reconstruct the
relationships with the other OAI-Sets by exploiting the setspec; from a metadata we can
reconstruct the relationships with the other metadata thanks to the membership information
contained in their header.

Throughout the OAI-Sets and Dublin Core metadata – that we know can be replaced by
other metadata formats or by an extension provided by means of a Dublin Core Application
Profile – approach we can easily use OAI-PMH to exchange a single set or a single metadata,
thus allowing a variable granularity exchange. Furthermore, from the identifier of an OAI-Set
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we can reconstruct the hierarchy through the ancestors to the root. By means of OAI-PMH
it is possible to exchange a specific part of the archive while at the same time maintaining
the relationships with the other parts of it. The NS-M fosters the reconstruction of the lower
levels of a hierarchy; thus, with the couple NS-M and OAI-PMH applied to the archive, if a
harvester asks for an OAI-Set representing for instance a sub-fonds it recursively obtains all
the OAI-subsets and items in the subtree rooted in the selected sub-fonds.

When we consider the INS-M the point-of-view and the functionalities are somehow re-
versed; indeed, if a harvester asks for an OAI-Set representing for instance an archival series,
it recursively obtains all the OAI subsets and records in the path from the archival series to the
principal fonds that is the root of the archival hierarchy. The choice between a NS-M or INS-M
should be made on the basis of the application context. For instance, often the information
required by a user is stored in the external nodes of the archival tree [Shreeves et al., 2003]. If
we model the archival tree by means of the INS-M, when a harvester requires an external node
of the tree it will receive all the archival information contained in the nodes up to the root of
the archive. This means that a Service Provider can offer a potential user the required informa-
tion stored in the external node and also all the information stored in its ancestor nodes. This
information is very useful for inferring the context of an archival metadata which is contained
in the required external node; indeed, the ancestor nodes represent and contain the information
related to the series, sub-fonds and fonds in which the archival metadata are classified.

The INS-M fosters the reconstruction of the upper levels of a hierarchy which in the
archival case often contain contextual information which permit the relationships of the archival
documents to be inferred with the other documents in the archive and with the production and
preservation environment. We can see how the possibility of going from one set data model
to the other by means of the defined mapping functions is very useful in the archival context;
we can address the user requirements in the most effective way without being bound to the
properties of a single model of choice. Furthermore, this application of the NESTOR Model
allows us to adopt standard Digital Library technologies exploiting their native functionalities
for innovative purposes without any changes in their basic functioning.

Lastly, we can see that this application is particularly well-suited for use in conjunction
with the presented language techniques [Agosti et al., 2010a]. Indeed, the representation of an
archive as an organization of sets and Dublin Core metadata makes it easier to determine the
subject of each single metadata and thus to apply the “association to a class” solution; in the
same way the metadata enrichment can be adopted because the Dublin Core metadata are well-
suited to automatic processing. In this way the solutions proposed to enable cross-language
access to digital contents can be applied also with the archival metadata, thus opening up these
valuable resources to a significant service offered by the Digital Library technology.

7.4.3 Hierarchical Aggregations of Digital Resources

The NESTOR Model allows us to represent hierarchies of resources exploiting the flexibil-
ity and the adaptability of the set data models. We have seen that these models have been
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proved to enable a variable granularity access and exchange of hierarchically structured meta-
data retaining their context and relationships. They can be straightforwardly applied to OAI-
PMH extending the features of this widely-adopted protocol without any changes in its internal
functioning [Ferro and Silvello, 2008b]. Now, we show how we can deal with hierarchical
structured resources considering both metadata and digital objects. OAI-ORE has been proven
to be a well-suited solution for identifying, accessing and exchanging aggregations of digital
resources and it is a standard Digital Library technology [Doerr et al., 2010; VV. AA., 2010].

We have described the OAI-ORE Data Model in Section 5.3 but in order to show how
the NESTOR Prototype makes use of OAI-ORE, we introduce a formal and more compact
representation of its entities.

We indicate with UA ⊆ H = {ua1, . . . , uak, . . . , uaw} the set of URI-A identifying the
Aggregations and with ηA : UA→ R the restriction of η8 (η|A) to UA; the image of ηA is the set
of Aggregations A ⊂ R = {a1, . . . , ak, . . . , aw}. In the same way, we indicate with URM ⊆ H
the set of URI-RM identifying the Resource Maps and we define ηRM : URM → R to be the
restriction η|RM where RM ⊂ R is the set of Resource Maps. Finally, we indicate with UAR ⊆ H
the set of URI-AR identifying the Aggregated Resources. We define ηAR : UAR → R to be
the restriction η|AR where AR ⊂ R is the set of Aggregated Resources. Every rmi ∈ RM must
describe one and only one a j ∈ A, but a j may be described by more than one Resource Map;
thus, we indicate with ϕRMA : RM → A a surjective function which maps every Resource Map
to the Aggregation it materializes. Every ari ∈ AR may be aggregated by more than one a j ∈ A.

We indicate with UP ⊆ H = {up1, . . . , upk, . . . , upz} the set of URI-P identifying the
Proxies. We define ηP : UP→ R to be the restriction η|P where P ⊂ R is the set of Proxies. We
indicate with ϕPAR : P → AR a function which maps a Proxy to the Aggregated Resource for
which it is a proxy and with ϕPA : P → A a function which maps a Proxy to the Aggregation
in which it is a proxy.

The Nested Aggregations feature enables the definion of Aggregations of Aggregations;
this is consistent in the OAI-ORE data model because an Aggregation is a Resource which
can also be seen as an Aggregated Resource of another Aggregation. Thanks to this feature, a
partial order exists between Aggregations, call it ≺a; more formally: for all {ai, a j} ∈ A we say
that ai ≺a a j if and only if the Aggregation ai is aggregated by a j. Now we can formally define
the concept of OAI-ORE Model.

Definition 7.2.
Let E = {A,R, AR, P,UA,UR,UAR,UP} be the collection of OAI-ORE entity sets and Φ =

{ηA, ηRM, ηAR, ηP, ϕRMA, ϕPAR, ϕPA} be the set of OAI-ORE functions. We define ORE = 〈E,Φ〉

to be an OAI-ORE Model.

From the definition of the OAI-ORE Model we can define a formal relation between it and
the NESTOR Model; in order to define a mapping between a family of sets FI defined in the

8The function η is defined in Definition 7.1.
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NESTOR Model and an OAI-ORE Model ORE = 〈E,Φ〉 we have to take into account the two
main entities in the NESTOR MODEL which are: sets and the resources belonging to them.

The basic idea is that every set F j ∈ FI becomes an aggregation a j ∈ A and consequently,
every resource rt ∈ R belonging F j becomes an aggregated resource art ∈ AR aggregated by
a j.

Theorem 7.1. Let FI be a family of sets and ORE = 〈E,Φ〉 an OAI-ORE model. Let γ : FI →

A be a bijective function such that ∀F j ∈ FI ,∃!a j ∈ A | γ(F j) = a j ⇒ γ−1(a j) = F j.

Then ∀F j, Fk ∈ FI | F j ⊆ Fk ⇒ ∃!a j, ak ∈ A | a j ≺a ak.

Proof. We know that every element belonging to F j ∈ FI is a resource rt ∈ R, thus if
γ(F j) = a j ∈ A, rt is represented as art aggregated by a j. Ab absurdo suppose that ∃F j, Fk ∈

{Fi}i∈I | F j ⊆ Fk ⇒ γ(F j) = a j ⊀a γ(Fk) = ak. This means that art ∈ AR exists such that art is
aggregated by a j but not by ak and this implies that ∃rt ∈ R | rt ∈ F j ∧ rt < Fk ⇒ F j * Fk. �

From Theorem 7.1 - valid for both a NS-F and a INS-F - we can see that every set in a family
FI is mapped into an Aggregation in the OAI-ORE model; the inclusion order between the sets
is maintained by the partial order defined between the nested Aggregations of OAI-ORE. Then,
by the means of the function ϕRMA a Resource Map is associated with each Aggregation. Every
resource belonging to a set F j ∈ FI is mapped into an Aggregated Resources belonging to the
Aggregation mapped from F j. Thus, we can map a NS-F or a INS-F into a correspondent
OAI-ORE model making it possible to identify, access and exchange a hierarchy of resources
as an aggregation on the Web.

From Figure 7.10 we can see how the NS-F representing the archive described in Example
7.2 is straightforwardly mapped into an OAI-ORE model exploiting the defined functions;
in order to enhance the differences between metadata and digital objects we represent these
elements with different shapes in the NS-F – i.e. a square for the metadata and a circle for
the digital objects. We can see how every set is mapped into an Aggregation and every digital
resource, represented as an item belonging to the sets, is mapped into an Aggregated Resource.
For space reasons in this figure we do not report all the Aggregated Resources belonging to the
Aggregations. In this figure we call “A1, . . . A5” the sets of the NS-F representing the archive,
in order to create a direct association between them and the aggregation in OAI-ORE.

The OAI-ORE model permits us to define a further semantic layer over the Aggregated
Resources; indeed, in the NS-F both digital objects and metadata are items belonging to the
sets but in the OAI-ORE model we can define different kinds of relationships between the
Aggregated Resources using the Proxies. For instance, in Figure 7.10 we represented two
Proxies p1 and p2 related by the relationships “xyz:isMetadataOf”; thus, throughout p1

and p2 we can say that the Aggregated Resource ar1 is the metadata describing the digital
object ar2. In Figure 7.10 ar1 is metadata m1 in the NS-F and ar2 is the digital object do1.

By means of the set data models defined by the NESTOR Model we can associate a handle
to each resource in the archival hierarchy and thus access and exchange every metadata or
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Figure 7.10: How it is possible to map archival resources into an OAI-ORE Model.

digital object with a variable granularity. At the same time, the archive is represented as an
aggregation and its structure is preserved by the inclusion dependencies in the NESTOR Model
and by a partial order between aggregations in the OAI-ORE Model. In order to relate metadata
with the digital objects they describe, we do not have to use different metadata (e.g. METS) or
to modify the metadata embedding a hard-coded URL in the digital objects; all the relationships
are expressed throughout RDF triples defined in the Resource Maps without implying any
modification of the digital object content. Furthermore, the NESTOR Model and OAI-ORE
allow us to define new logical organizations without any duplication of the digital objects and
to manage them.

The set-based application we presented provides a general solution for managing, accessing
and exchanging hierarchies of digital resources with a variable granularity while retaining their
context and relationships.
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7.5 SIAR: A User-Centric Digital Archive System

The SIAR (Sistema Informativo Archivistico Regionale) is a project supported by the Italian
Veneto Region which aim is to design and develop a Digital Archive System. The main goal
of the SIAR is to develop a system for managing and sharing archive metadata in a distributed
environment. Archives are geographically distributed across the Veneto Region and thus the
archival resources they preserves are preserved in several local archives; the SIAR objective is
to develop an information system able to create, manage, access, share and provide advanced
services on archival metadata [Agosti et al., 2007c].

The design and development of the SIAR system rely on the NESTOR Framework; indeed,
the NESTOR Model is adopted to model and represent the archives and the archival resources,
and the set-based application envisioned in the NESTOR Prototype which provides a concrete
instantiation for a Digital Archive System. We can say that the SIAR system is the last building
block of the NESTOR Framework representing a kind of “NESTOR Prototype in action”.

The description of the SIAR system allows us to give a deep insight of a possible con-
crete implementation of the NESTOR Prototype. Furthermore, it permits us to take users into
account; indeed, all the design and development phases of the SIAR system have been charac-
terized by a continuous feedback between computer scientists developing the system and the
archivists that are interested to use it. The continuous feedback with the users allows us to add
a further level of analysis of the NESTOR Framework; in fact, the users have been involved in
both components of the framework: the Model and the Prototype.

We have considered the software engineering practice in order to point out six main phases
that characterize the development of the SIAR system. In Figure 7.11 we can see the collab-
oration between computer scientists and archivists in the center of the six main phases that
brought to the realization of the SIAR system. At the same time, it represents also the contin-
uous feedback with the users in each one of the six phases:

Ideation: we have defined the goals of the project and the direction that it has to follow.
This phase defines also the way in which the project is carried on – e.g. how archivists
and computer scientists have to work together or who are the users of the system. In
this phase the very nature of the archives and archival descriptions has been taken into
account and we have analyzed the state of the art of digital archives.

Analysis of Requirements: in this phase we have defined the minimum set of requirements
that the SIAR system has to fulfill in order to meet the archivists and general user needs.

Design: in this phase we have set the content and functional configuration parameters of the
SIAR system defining the resources that are exploited by the system and specifying as-
pects of the system functionality perceived by the end-users. Together with the users
we have designed the metadata schemas – i.e. Dublin Core Application Profiles – to
describe the archival resources and that have to be managed by the SIAR system.

Data Model: in this phase we have defined the NESTOR Model. We have discussed with the
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Figure 7.11: The six main phases carried out within the SIAR system.

archivists the functionalities and the possibilities of these set data models defining an
innovative methodology to model the archives and the archival descriptions.

Development: in this phase we have instantiated the NESTOR Model adopting standard Dig-
ital Libraries technologies well-suited to meet the archival requirements.

Laboratory interaction: in this phase the SIAR system has been tested and its functionalities
are tried by the archival users. Their suggestions and critiques are taken into account to
understand which requirements are satisfied by the SIAR system and where it needs to
be revised.

The ideation and the analysis of the requirements have been deeply analyzed in this chap-
ter where we pointed out how the set-based instantiation of the NESTOR Model meets the
requirements that also the SIAR system has to accomplish.

The design phase has been crucial to maintain the system aligned with respect to the infor-
mation and functional needs of its end-users. The main purpose of the design phase is to set the
content and functional configuration parameters of the SIAR system. The former parameters
define the resources that are exploited by the system, like repositories of content, ontologies,
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classification schemas and authority files. The latter parameters specify aspects of the sys-
tem functionality perceived by the end-users like, for example, the result set format, the query
language, the user profile formats, the document model [Candela et al., 2007a].

The work between computer scientists and archivists has been fundamental to define a
trade-off between the technological possibilities and constraints, and the archival necessities.
A consistent part of the work focused on the definition of the metadata formats for archival
descriptions and for production and preservation subjects – i.e. authority files. So, in the SIAR
system together with the archivists we designed an extensible metadata format for the archival
description which relies on the Italian catalog of archival resources [Vitali, 2010] developed in
the context of the Catalog of Archival Resources within the National Archival Portal9. This
choice allows us to use different kinds of metadata formats and at the same time to export the
SIAR metadata towards the National Archival Portal. In this way we set the ground for the use
of a well-defined and wide adopted metadata format that at the same time can encompass most
of all the necessities of the archivists.

In the rest of the work we dedicate further attention to the last three phases; indeed, we
analyze the architecture of the SIAR system and then, we present the details of the implemen-
tation of the data model based on the set-based instantiation of the NESTOR Model. Lastly,
we report the results of the user study we conducted on the SIAR system that points out the
advantages of the NESTOR Framework as well as some issues that we have to address for what
is concerned with the user functionalities and graphical interfaces.

7.5.1 The Architecture of the SIAR

The architecture designed for the SIAR system is divided into three basic layers: the data
exchange infrastructure [Agosti et al., 2007b; Ferro and Silvello, 2008a], the metadata man-
agement layer [Ferro and Silvello, 2009a; Silvello, 2008] and the user interfaces layer; we can
see a graphical representation of the SIAR architecture in Figure 7.12.

The transportation layer is based on the OAI-PMH protocol permitting the metadata ex-
change between the local archives spread across the territory. In the SIAR system, the Veneto
Region is the Service Provider which provides advanced services such as data and public ac-
cess to the harvested descriptive metadata and the archive keepers act as Data Providers because
they supply descriptive metadata. Local archives maintain the control over their archives and
maintain the property of their documents; on the other hand the Veneto Region constitutes a
central repository where the user community can consult all the archives of the territory. When
we consider the authority files the transport layer acts in the opposite way. Indeed, the Veneto
Region assumes the role of the authority control composing the authority archive and sharing
the authority files with the local archives. The authority files are access points either for the
descriptive metadata harvested by the Service Provider of the Veneto Region and for the de-
scriptive metadata retained by the local archives. Local archives act as Service Providers when

9The National Archival Portal is a project developed by the Directorate General of the Ministry of Cultural
Assets and Activities. http://www.archivi.beniculturali.it/
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Figure 7.12: The Architecture of the SIAR System.

they harvests the authority files from the Veneto Region that in this case acts as a Data Provider.
This approach permits us to concentrate the resources required to produce the authority files in
the Veneto Region without replicating the effort in the local archives.

The metadata management layer is the central component of the system architecture. By
means of this level it is possible to manage, preserve, retrieve and share full expressive archival
metadata. It is composed by the database, the data logic and the application logic. The data
logic is realized by a component called datastore, whereas the application logic is composed
by the service manager and the Web component manager. We defined four main entities in
the SIAR system: metadata, set, user and group; the main function of the database and the
datastore is to create, read and update the various instances of these entities. Furthermore, they
supply the data to the application logic. The service manager realizes the various services of the
SIAR system such as the representation of metadata, the reconstruction of the set organizations
and the OAI-PMH data and service providers. The Web component manager implements those
methods that enable the interaction of the services with the Web services by exploiting the
SIAR. Currently we have designed a Web service that realizes a user interface interacting with
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the SIAR. The main role of this layer is to define the set organizations maintaining the archival
hierarchies by following the rules defined in the NESTOR Model. Another function of the data
management layer is to provide a mechanism that enables the local organizations to describe
their archives natively as an organization of nested sets and Dublin Core metadata.

The third level of the SIAR architecture is the presentation layer constituted by the user
interfaces. The system presents two main interfaces: the first is a general-purpose interface
dedicated to a generic user-type such as archivists, historical researchers, public administrations
or private organizations that will use the advanced services available in the SIAR; the second
is dedicated to specialized users who can use this interface to describe an archive as well as to
add, remove or update archival metadata.

To this purpose, the SIAR system defines two user roles: archival users and general users.
The former one can create, modify and delete the metadata, instead the second one can only
consult the metadata in the system. The archival part of the user interface provides the users
with several forms where it is possible to insert and modify the archival metadata. These forms
are shaped on the basis of the metadata schemas that have been designed. Together with the
archivists we defined some visual aids to help the user in the insertion of the archival descrip-
tions – e.g. instructions about how to compile the fields of the forms, a graphical representation
of the inserted archives where it is possible to add archival divisions to the archival hierarchy or
to add descriptions to a specific division. The insertion of new archival descriptions is guided
by the system; for instance, if the root of the archive is a “fonds” the children of this node must
be “sub-fonds” or a “series” but it cannot be another “fonds”. We developed several controlled
vocabularies to guide the users in the description process.

7.5.2 The Metadata Management Layer

The SIAR metadata management layer is the central component of the SIAR System. Through-
out this level it is possible to manage, preserve, retrieve and share full expressive archival
metadata.

In Fig. 7.13 we can see a sketch of the 3-layers architecture with a zoom on the metadata
management level composed by: the database, the data logic and the application logic. The data
logic is realized by a component called datastore, instead the application logic is composed by
the service manager and the Web component manager.

We can clearly see the four main entities of the SIAR: metadata, set, user and group; the
main function of the database and the datastore is to create, read and update the various in-
stances of these entities. Furthermore, they supply the data to the application logic. The service
manager realizes the various services of the SIAR such as the representation of metadata, the
reconstruction of the set organization and the OAI-PMH data and service providers. The Web
component manager implements those methods that permit the interaction of the services with
the Web services exploiting the SIAR. Currently we have designed a Web service that realizes
a user interface interacting with the SIAR; in Figure 7.13 it is represented as the presentation
logic. In Figure 7.14 we can see a screenshot of the user interface of the SIAR system; in
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Figure 7.13: Composition of the SIAR metadata management layer

this screenshot we show the graphical interface through which a user can consult the archival
descriptions in the SIAR system.

The second component presented in the Fig. 7.13 is the logger. The logger keeps track of
all the activities of the system at all the levels; indeed, it is the only component transversal to
the whole metadata management layer. The logger registers all the accesses of the users and all
the operations done by the system such as the creation of metadata, sets, users or groups, the
access and any update of the entities or the exceptions risen and handled by the system.

The Database Conceptual Schema

The conceptual design of the database reflects the world that the SIAR represents. In Fig. 7.15
we can see the conceptual schema of the database.

The conceptual schema is composed of four main entities: metadata, set, user and group.
The metadata entity is defined by five attributes: id, this is the unique identifier of a metadata;
the identifier is assigned automatically by the system, calculating an hash function of the meta-
data content. body containing the metadata content encoded in XML; the body is defined in the
database as a native XML data type. Every metadata format encoded in XML can be stored in
the database and the schema attribute reports the metadata format; throughout this attribute we
are able to individuate the metadata format and to parse the XML file in a correct way. Created
which is the attribute storing the time stamp in which the metadata was created in the database
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Figure 7.14: The SIAR user interface: a screenshot of the interface for the consultation of the archival
descriptions.

and updated which stores the time stamp in which a metadata could have been updated.

The recursive relationship called annotate indicates if a metadata annotates (annotator, the
metadata is the annotator of other metadata) some other metadata or if it is annotated (annota-
tion) by other metadata. Thanks to this relationship we can have notes on metadata expressed
as metadata themselves, we can retain the metadata history preserving all the versions of meta-
data that have been modified and we can retain information about the original repository of
the metadata if they have been harvested by means of the OAI-PMH protocol. A metadata can
annotate many other metadata, for instance in the history case an old metadata is the annotator
of its updated version and the repository case where the metadata describing a repository is
the annotator of all the metadata coming from that repository. Furthermore, annotate recursive
relationship is useful to represents nested metadata. Metadata are the most important entities
in the SIAR system and they establish relationships with all the other entities. The author re-
lationship specifies that a metadata must be created by a user also if it has been harvested via
OAI-PMH protocol. The belong relationship indicates that a metadata can belong to a specific
set or to many sets defined in the system; a metadata can also belong to no set at all. The
access relationship indicates that each metadata must have at least one group with read or write
permissions on it (e.g. a metadata has to be read at least by the group to which the creator user
belongs) and can have many groups with permissions on it.
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Figure 7.15: SIAR Conceptual Database Schema

The set entity is defined by three attributes: id which is the unique identifier of a set, name
which is a mandatory attribute indicating the name of the set and an optional attribute called
description which can contain a free text description of the set. There is a recursive relationship
called contain which indicates if a set is contained (it is a subset) by other sets or if it contains
(it is a superset) other sets or both.

The user entity is defined by six attributes: id which is the unique identifier of a user that
can be seen as the username to access the system, password the password chosen by the user
to access the system, fullname contains the full name of the registered user, email is the e-mail
address of the user, country and lang indicate the origin of the user and are useful for setting
up multilingual services. The group entity is defined by an id and a description of the group.
The group and the user entities are related by the contain relationships that establish to which
groups a user belongs.

The Data Logic Component

The data logic component of the metadata management layer is constituted by the SIAR data-
store that defines all the methods that the application logic may call on the data logic of the
SIAR system. The SIAR datastore is independent from any particular DBMS and is composed
of several components called Data Access Objects (DAOs). The DAOs are used to abstract and
encapsulate all access to the database; the DAO manages the connection with the database to
obtain and store data. Essentially, the DAOs act as adapters between the components and the
database. In Fig. 7.13 we can see that the data logic is composed by five DAOs: the metadata
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Figure 7.16: DLS Data Logic: The SIAR Datastore

DAO, the set DAO, the user DAO, the group DAO and the logger DAO. Every single DAO
defines all of the methods that have to be provided for managing the corresponding entity in
the database.

In Fig. 7.16 we can see the methods defined in the five DAOs of the SIAR datastore. For
instance the Metadata DAO implements methods for creating or reading metadata, for adding
a metadata to a set, for listing all the metadata belonging to a set, for adding read and write
group permission or for reading all the set to which a specific metadata belongs. In the same
way Set DAO implements methods for creating a set and adding and reading metadata from the
sets. Furthermore, Set DAO defines several methods for obtaining the hierarchy of supersets of
a set or the list of subsets.

The Application Logic

The application logic is constituted by two components: the service manager and the Web
component manager. The service manager defines all the functionalities provided by the SIAR
system; instead the Web components manager defines all the methods that provide support for
the Web services implementation and elaborate external requests.

In Fig. 7.17 we can see how the service manager is composed: there is a service for each
DAO in the datastore and an OAI-PMH service that implements the protocol functionalities.
For instance the user management service provides the authentication service that permits the
users authentication or the reset password service that allows a user to change his password.

The OAI-PMH service realizes the data and service provider features exploiting the other
SIAR services. The data provider component of this service answers the requests of external
service providers; for instance it creates lists of metadata encoded in XML files or returns
the set organization of the system formatted as an OAI-PMH response. The service provider
component enables the harvesting of metadata from other repositories and their storage in the
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Figure 7.17: DLS Application Logic: The SIAR Service Manager

SIAR. In the same way external services can also be developed and added to the SIAR.

7.5.3 Laboratory Interaction

The laboratory interaction has been crucial to the development of the SIAR system because it
has allowed us to verify if the archival requirements have been satisfied. The laboratory was
conducted by a so-called “SIAR focus group” composed by:

• Archivists who work on proper metadata formats for archival descriptions.

• Computer scientists who work on the data model and system design and development.

Together archivists and computer scientists shaped the functionalities and the interactions
with the SIAR system. In the user study conducted the users that used the SIAR system were
asked to insert some archival descriptions about an archive in which they are working and also
the metadata regarding the production and preservation subjects. Each step of the laboratory
was characterized by a continuous feedback with the users.

The archival users were able to insert all their archival descriptions highlighting some rele-
vant aspects related to the description policies that the SIAR project has to provide. The users
have easily inserted several archival divisions exploiting the graphical aids provided by the user
interface. They pointed out that the use of controlled vocabularies to help the insertion of the
description is useful but at the same time it can be problematic. Sometimes archival descrip-
tions have to go beyond the standard archival practice in order to describe some aspects of the
archival reality that do not fit a standard model. For instance, there could be the necessity to
create a sub-fonds as child of a series and the system should allow this possibility. Another im-
portant observation has regarded the definition of the authority files and their relationships with
the descriptions; the users pointed out that the possibility to dispose of a manual mechanism to
define the authority lists would be very useful to the archivists.

An important aspect highlighted by the users is the possibility to use different metadata
formats to describe an archive and its related resources in the SIAR System. Indeed, in the
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system we can find some metadata automatically imported from local archives and some meta-
data manually inserted by the archivists. These metadata are encoded by means of different
metadata formats; indeed, the metadata which were imported automatically are encoded by
simple Dublin Core and in some native formats adopted by the local systems, and the manu-
ally inserted metadata are encoded by means of the Dublin Core Application Profiles metadata
defined in the context of the SIAR project. These aspects are transparent to the users; in fact,
the user studies highlighted that the users did not have any problem in querying and consulting
metadata encoded in different ways. The NESTOR Model has foremost impact in this aspect
because it is not bound to specific technologies.

Currently, the SIAR system implements a user interface to describe an archive following
a top-down descriptive procedure; this means that the description activity starts from the most
general unit – e.g. a fonds – and proceeds all the way down through series and archival units.
The users underlined the necessity to dispose of a bottom-up description mechanism allowing
them to describe an archive starting from the lower units and then proceeding all the way up
to the general fonds. Despite this important observation, the system currently offers several
possibilities to manipulate the structure of the archive in a flexible way and without interfering
with the archival metadata. Indeed, the users exploited the possibility to add newly defined
archival divisions at any level of the archival hierarchy. For instance, it is possible to add a
sub-fonds comprising several series even if this sub-fonds was not originally conceived in the
first description of the archive.

The laboratory interaction with the users is a fundamental aspect that has to be taken into
account in the context of Digital Libraries. The user studies we conducted in order to design,
develop and test the SIAR system gave us useful insights not only for what is concerned with
the user interfaces and the usability of the system, but also for what is concerned with the
NESTOR Model. Furthermore, the laboratory interaction has been a fundamental step that
allowed us to define the order of priorities for the future activities that have to be carried on in
the research concerning the NESTOR Framework.



Chapter 8

Conclusions and Future Work

In this final chapter we summarize the main contributions of this work and discuss some future
research directions.

8.1 Conclusions

In this work the NEsted SeTs for Object hieRarchies (NESTOR) Framework has been pre-
sented. This framework represents an effort lavished on two main complementary directions:
the Model and the Prototype. The main aim was to define a new information and data model
to deal with hierarchical organizations of resources; we levered on the wide field of Digital
Libraries with a particular focus on the archives which retain meaningful resources modeled in
a hierarchical way.

Particular attention was given to the tree model which is widely used in mathematics and in
computer science and which represents the principal solution for modeling archival resources.
We analyzed the use of the tree for this purpose and evaluated several technological solutions to
represent, manage, access, exchange, manipulate and query hierarchically organized data and
in particular archival resources, pointing out the advantages and issues of these approaches.

In the context of the NESTOR Framework we defined two set data models to represent
hierarchically organized resources. These models are: the Nested Sets Model (NS-M) and the
Inverse Nested Sets Model (INS-M). The foundational idea on which these models rely was
given by the alternative graphical representations of the tree that in the literature are presented
as aids to explain problems and algorithms related to the tree data structure. In particular, we
focused on nested sets graphical representation of hierarchies, envisioning the possibility of
defining set-based data models on its basis. To accomplish this goal, we formally defined the
NS-M and the INS-M on a set-theoretical basis; this is the first difference with the tree which
is instead defined on a graph-theoretical basis. Furthermore, we established the relationships
between the NS-M and the INS-M, thus defining them as independent but complementary
models.

The relationships between the set data models and the tree were mathematically defined
by exploiting the bridges existing between set and graph theory. These formal definitions
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allowed us to establish a common environment to deal with hierarchies where we can choose
the most appropriate model between tree, NS-M and INS-M to represent the hierarchical reality
of interest.

This formal basis allowed us also to define the relationships between the tree and the set
data models properties and operations; in the NESTOR Model we can exploit the established
formal relations to adopt the algorithms and the solutions defined for the trees and vice versa.

In this context the proved connections between the metric properties of the tree and of the
set data models are meaningful results. Indeed, we formally defined and proved four proper
distance measures for the NS-M and the INS-M. First-of-all, we defined the graphical distance
and we proved the correspondence of the graphical distance between nodes in a tree and the
graphical distance between sets in a family of sets defined within NS-M or INS-M.

The graphical distance is a measure that can be used within the same tree or family of sets
but it does not give us a measure of similarity between two trees or between two families of sets.
In order to accomplish this purpose we defined a content-based and a structure-based distance
measure. The former is based on an extension to families of sets of Jaccard’s coefficient. The
latter is based on the joint use of the integer encodings defined to algebraically solve recursive
queries in relational databases and the mathematical basic concepts exploited by bioinformatics
to define algorithms to discover structures and patterns in biology. We proved these distances
to be proper metrics for the NS-M and the INS-M and we provided a measure of similarity be-
tween two families of sets defined on a content-basis and on a structural-basis. Furthermore, we
defined the NESTOR distance as a parametrized linear combination of the other two distances
which allows us to weight the contribution of the content and the structural component.

These distance measures allowed us to point out a feature of the NESTOR Model that is
the clear distinction between content and structural components. This feature gives us a further
level of flexibility and expressiveness in dealing with hierarchies.

These results show us that the NESTOR Framework sets a common ground for dealing with
hierarchies and that it is open to existing models, solutions and technologies; it exploits and en-
hances the state of the art in the fields of Digital Library and Database Systems, thus providing
a further level of expressiveness and a theoretical common ground that can be exploited for the
definition of innovative systems, functionalities and services. We exploited this formal basis to
build a set-based application – i.e. the NESTOR Prototype – to deal with archival resources.

In the context of the NESTOR Prototype we showed how the NESTOR Model is an ap-
propriate means for modeling an archive and its resources. We pointed out the expressive
possibilities offered by the set data models that allow us to represent aspects of the reality
which are not straightforwardly representable by means of the tree; for instance, the possibility
for modeling both the archival structure by means of the nested sets and the archival resources
by means of the elements belonging to them.

The NESTOR Prototype establishes a direct link between the NESTOR Model and standard
Digital Library technologies such as: OAI-PMH, Dublin Core and OAI-ORE. We envisioned
an application which meets the requirements defined by the dimensions of interoperability for
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Digital Libraries which have to be respected also by a digital archive system; it is based on the
joint use of the NESTOR Model and several Digital Library technologies. The advances of this
set-based application are: the capacity of retaining the archival foundational characteristics,
the ability of providing variable granularity access and exchange of archival resources – both
metadata and full-content digital objects – and the possibility of manipulating and querying the
archives and the archival resources.

This application found a concrete implementation in a Digital Archive System which is the
Sistema Informativo Archivistico Regionale (SIAR). We presented this system, highlighting the
peculiar aspects of the NESTOR Model and Prototype that have been exploited in the design
and development phases. An outcome of the SIAR system is the possibility to exploit the ad-
vances of the NESTOR Framework together with the state-of-the-art models and technologies
designed to deal with hierarchical structures and Digital Library resources. The flexibility of
the NESTOR Framework is shown also by the possibility of adopting different metadata for-
mats at the same time and within the same system, the capacity of manipulating the archival
structure without interfering with the archival resources and vice versa, and the possibility of
exploiting Digital Library technologies and services without any changes in their basic func-
tioning.

The SIAR system and thus the NESTOR Framework represent a step forward with respect
to the solutions proposed in the literature for dealing with archives. In particular, because they
point out general solutions for dealing with archival resources where usually the solutions are
provided on a case-by-case basis such as we showed happens when we consider an EAD-based
application. Lastly, we showed how the SIAR system was designed and developed from a user-
centric point-of-view, following the current trends envisioned by the Digital Library research
community.

8.2 Directions for Future Work

The NESTOR Framework builds a solid base for future developments alongside its two main
components: The Model and the Prototype.

We propose to enhance the NESTOR Model pursuing three new possible usages: its inte-
gration with other formal models defined in the context of Digital Libraries, its extension to
envision new modeling possibilities, and its application in scientific fields other than the Digital
Libraries. In particular, we envision the following paths for further research:

Modeling Annotations: In [Agosti and Ferro, 2007] a formal model for annotation was pro-
posed; it defines digital annotations as independent information objects that can be or-
ganized in a hierarchical way. We envision the possibility of integrating this formal
model with the NESTOR Model in order to provide a common formal basis for dealing
with annotations in the context of Digital Libraries. This formal basis will then be ex-
ploited by the NESTOR Prototype to extend the proposed set-based application with the
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possibility of accessing and exchanging digital annotations by means of OAI-PMH and
implementing this extension in the SIAR system.

Extension of the Set Data Models: we propose to analyze further extensions of the NS-M
and the INS-M in order to envision the possibility of modeling a wider spectrum of hier-
archies. We want to analyze the possibility of relaxing some conditions in the definition
of the NS-M and the INS-M. In a preliminary analysis we have seen that the INS-M can
be extended to be an intersection structure [Davey and Priestley, 2002]. From this idea
we can define extensions to model hierarchies that usually are represented by means of
lattices.

XML Clustering: XML clustering widely exploits models and measures defined for the tree,
such as tree edit distance and structural similarity measures. We propose to apply the
NESTOR Model and the formally defined distance measures to this field in order to
evaluate the impact of our proposed set-based approach.

We propose to further exploit the NESTOR Prototype envisioning the following further
steps:

Digital Objects: As a consequence of the greater availability of digital objects in the archival
domain we propose to extend the SIAR system with a concrete implementation of the
aspects regarding the integration of the NESTOR Model within the OAI-ORE data model
that we presented in Chapter 7.

Data Citation: We propose to define an automatic citation system for archival resources mod-
eled by means of the NESTOR Model, evaluating the possibility to extend and improve
the rule-based citation system [Buneman and Silvello, 2010] that we designed and de-
veloped for EAD-based applications.

A further research direction regards the possibility of defining a set of operations to ma-
nipulate and query the data represented by the NESTOR Model. At present, we envision an
algebra which allows us to manipulate and query the structure and the content of the collection
of sets defined within the NESTOR Model without flatting out the hierarchical relationships.
The main directions we want to pursue are:

• To define an extensible set of predicates that allows us to impose constraints on the
structure of the collections of sets and on the elements belonging to the sets.

• To define a mechanism to identify the elements on the basis of their values, the sets on
the basis of the elements they contain and on the basis of the relationships they have with
the other sets of the collection.

• To define the operators to manipulate and query the sets and their elements.
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Pólya, G. (1937). Kombinatorische Anzahlbestimmungen fr Gruppen, Graphen und chemis-
che Verbindungen. Acta Mathematica, 68:145–254.

Potter, M. (2004). Set Theory and Its Philosophy. Oxford University Press, Oxford, Oxford-
shire, UK.



168 Bibliography

Prom, C. J. (2002). Does EAD Play Well with Other Metadata Standards? Searching and
Retrieving EAD Using the OAI Protocols. Journal of Archival Organization, 1(3):51–72.

Prom, C. J. (2003). Reengineering Archival Access Through the OAI Protocols. Library Hi
Tech, 21(2):199–209.

Prom, C. J. and Habing, T. G. (2002). Using the Open Archives Initiative Protocols with
EAD. In Marchionini, G. and Hersch, W., editors, Proc. 2nd ACM/IEEE Joint Conference on
Digital Libraries, (JCDL 2002), pages 171–180. ACM Press, New York, USA.

Prom, C. J., Rishel, C. A., Schwartz, S. W., and Fox, K. J. (2007). A Unified Platform
for Archival Description and Access. In Rasmussen, E. M., Larson, R. R., Toms, E., and
Sugimoto, S., editors, Proc. 7th ACM/IEEE Joint Conference on Digital Libraries, (JCDL
2007), pages 157–166. ACM Press, New York, USA.

Pumain, D. (2006). Introduction. In Pumain, D., editor, Hierarchy in Natural and Social
Sciences, volume 3, pages 1–12. Springer, Berlin Heidelberg, Germany.

Ruth, J. E. (2001). The Development and Structure of the Encoded Archival Description Doc-
ument Type Definition. In Pitti, D. and Duff, W. M., editors, Encoded Archival Description
on the Internet, pages 27–59. The Haworth Press, Inc.

Sankoff, D. and Kruskal, J. B. (1983). Time Wraps, String Edits, and Macromolecules.
Addison-Wesley, Reading, Massachusetts, USA.

Sattath, S. and Tversky, A. (1977). Additive Similarity Trees. Psychometrika, 42:319–345.

Shreeves, S. L., Kaczmarek, J. S., and Cole, T. W. (2003). Harvesting Cultural Heritage
Metadata Using the OAI Protocol. Library Hi Tech, 21(2):159–169.

Silvello, G. (2008). Building a Distributed Digital Library System Enhancing the Role of
Metadata. In BCS-IRSG Symposium: Future Directions in Information Access, pages 46–53.
Published as part of the eWiC Series.

Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A Survey of Data Provenance in e-Science.
SIGMOD Record, 34:31–36.

Simon, H. A. (1962). The Architecture of Complexity. In Proceedings of the American
Philosophical Society, volume 106, pages 467–482. American Philosophical Society.

Soergel, D. A. (2002). A Framework for Digital Library Research. D-Lib Magazine, 8(12).

Spath, H. (1980). Cluster Analysis Algorithms for Data Reduction and Classification of Ob-
jects. Chichester: Ellis Horwood, West Sussex, England, UK.

Sugimoto, G. and van Dongen, W. (August 2009). Archival Digital Object Ingestion into
Europeana (ESE-EAD Harmonization). Technical report, Europeana v1.0.



Bibliography 169

Tatarinov, I., Viglas, S., Beyer, K. S., Shanmugasundaram, J., Shekita, E. J., and Zhang,
C. (2002). Storing and Querying Ordered XML Using a Relational Database System. In
[Franklin et al., 2002], pages 204–215.

Tropashko, V. (2005). Nested Intervals Tree Encoding in SQL. SIGMOD Record, 34(2):47–
52.

Tversky, A. (1977). Features of Similarity. Psychological Review, 84(4):327–352.

Van de Sompel, H. and Lagoze, C. (2007). Interoperability for the Discovery, Use, and Re-
Use of Units of Scholarly Communication. CTWatch Quarterly, 3(3).

Van de Sompel, H., Lagoze, C., Nelson, M., and Warner, S. (2002a). Guidelines for Reposi-
tory Implementers. Technical report, Open Archive Initiative.

Van de Sompel, H., Lagoze, C., Nelson, M., and Warner, S. (2002b). Implementation Guide-
lines for the Open Archive Initiative Protocol for Metadata Harvesting - Guidelines for Har-
vester Implementers. Technical report, Open Archive Initiative, p. 6.

Van de Sompel, H., Lagoze, C., Nelson, M., and Warner, S. (2003). The Open Archives Ini-
tiative Protocol for Metadata Harvesting (2nd ed.). Technical report, Open Archive Initiative,
p. 24.

Vegas, J., Crestani, F., and de la Fuente, P. (2007). Context Representation for Web Search
Results. Journal of Information Science, 33(1):77–94.

Vegas, J., de la Fuente, P., and Crestani, F. (2003). WebDocBall: A Graphical Visualization
Tool for Web Search Results. In Sebastiani, F., editor, Advances in Information Retrieval,
25th European Conference on IR Research, ECIR 2003, volume 2633 of Lecture Notes in
Computer Science, pages 351–362. Springer-Verlag, Heidelberg, Germany.

Verdier, N. (2006). Hierarchy: A Short History of a Word in Western Thought. In Pumain,
D., editor, Hierarchy in Natural and Social Sciences, volume 3, pages 13–37. Springer, Berlin
Heidelberg, Germany.

Vitali, S. (2010). Archival Information Systems in Italy and the National Archival Portal. In
[Agosti et al., 2010c], pages 5–11.

VV. AA. (Version 5.2, 30/7/2010). Definition of the Europeana Data Model Elements. Tech-
nical Report of Europeana v1.0 in cooperation with EuropeanaConnect., Europeana v1.0.

Weibel, S. (1997). The Dublin Core: A Simple Content Description Model for Electronic Re-
sources. Bulletin of the American Society for Information Science and Technology, 24(1):9–
11.



170 Bibliography

Weikum, G., König, A. C., and Deßloch, S., editors (2004). Proceedings of the ACM SIGMOD
International Conference on Management of Data, (SIGMOD 2004). ACM Press, New York,
USA.

Wojcik, R. H., Harrison, P., and Bremer, J. (1993). Using Bracketed Parses to Evaluate a
Grammar Checking Application. In Proceedings of the 31st annual meeting on Association
for Computational Linguistics, ACL ’93, pages 38–45, Morristown, NJ, USA. Association
for Computational Linguistics.

Xu, L., Ling, T. W., Wu, H., and Bao, Z. (2009). DDE: From Dewey to a Fully Dynamic
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