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Abstract

This Thesis consists of five chapters.

The Thesis is dedicated to the investigation of the oscillation properties of

half–linear second order and higher order differential equations.

Chapter 1 includes a short history of the problem, the statement of the

problems and the main results. In this chapter, we present some well-known

auxiliary facts and necessary notation on half–linear second order differential

equations and weighted Hardy inequalities.

In Chapter 2, we consider weighted Hardy inequalities on the set of smooth

functions with compact support. We obtain new results, which generalize the

known results concerning this theme.

In Chapter 3, we investigate the problems of disfocality and disconjugacy

of half–linear second order differential equations. We obtain new sufficient

conditions and necessary conditions of disfocality and disconjugacy on a given

interval. Also, we consider the behavior of some of the solutions on a given

interval.

In Chapter 4, we apply the results of Chapter 3 in order to obtain sufficient

conditions and necessary conditions of nonoscillation of half–linear second or-

der differential equations with nonnegative coefficients. We also obtain new

oscillation and nonoscillation conditions of half–linear differential equations by

applying the known results of the theory of weighted Hardy type inequalities.

Also, Chapter 4 includes the proofs of general statements establishing the link

between results of weighted Hardy type inequalities and results ensuring oscil-

lation and nonoscillation of the solutions of half–linear second order differential

equation with nonnegative coefficients. We also obtain new results on conju-

gacy and oscillation in the case, in which the second coefficient changes sing,
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by applying the variational method.

In Chapter 5, we investigate the problem of oscillation and nonoscillation

of the solutions of two term linear and half–linear equations of higher order

with nonnegative coefficients. It seems that our results concerning general

conditions on the coefficients for nonoscillatory solutions of half– linear equa-

tions of higher order and for oscillatory and nonoscillatory solutions for linear

equations of higher order are new. We establish necessary and sufficient condi-

tions of strong oscillation and strong nonoscillation of the solutions for linear

equations.



Riassunto

Questa Tesi consiste di cinque capitoli.

La Tesi è dedicata allo studio delle proprietà di oscillazione di equazioni

differenziali semi–lineari del secondo ordine e di ordine superiore.

Il Capitolo 1 contiene una breve storia del problema, la formulazione dei

problemi e i risultati principali. In questo capitolo, presentiamo alcuni risultati

ausiliari noti e alcune notazioni necessarie relative a equazioni differenziali

semi–lineari del secondo ordine e disuguaglianze di Hardy con peso.

Nel Capitolo 2, consideriamo disuguaglianze di Hardy con peso nell’insieme

delle funzioni lisce a supporto compatto. Otteniamo risultati nuovi, che ge-

neralizzano risultati noti riguardanti questo tema.

Nel Capitolo 3, studiamo i problemi di disfocalità e disconiugazione per

equazioni differenziali semi–lineari del secondo ordine. Otteniamo nuove con-

dizioni necessarie e sufficienti di disfocalità e disconiugazione su un intervallo

assegnato. Inoltre, consideriamo il comportamento di alcune soluzioni su un

intervallo assegnato.

Nel Capitolo 4, applichiamo i risultati del Capitolo 3 al fine di ottenere

condizioni necessarie e sufficienti di non–oscillazione di equazioni differenziali

semi–lineari del secondo ordine con coefficienti non–negativi. Otteniamo an-

che nuove condizioni di oscillazione e non–oscillazione per equazioni differen-

ziali semi–lineari applicando risultati noti di teoria delle disuguaglianze di tipo

Hardy con peso. Inoltre, il Capitolo 4 include le dimostrazioni di affermazioni

generali che stabiliscono il collegamento tra disuguaglianze di tipo Hardy con

peso e risultati che assicurano l’oscillazione e la non–oscillazione per le soluzioni

di equazioni semi–lineari del secondo ordine con coefficienti non–negativi. Ot-

teniamo anche risultati nuovi sulla coniugazione e l’oscillazione nel caso in cui
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il secondo coefficiente cambi di segno, applicando il metodo variazionale.

Nel Capitolo 5, studiamo il problema di oscillazione e non–oscillazione

per soluzioni di equazioni lineari e semi–lineari a due termini di ordine supe-

riore con coefficienti non–negativi. Pensiamo che i nostri risultati riguardanti

condizioni generali sui coefficienti per soluzioni non–oscillatorie di equazioni

semi–lineari del secondo ordine e per soluzioni oscillatorie e non–oscillatorie

di equazioni lineari di ordine superiore siano nuovi. Stabiliamo condizioni ne-

cessarie e sufficienti per l’oscillazione forte e per la non–oscillazione forte per

soluzioni di equazioni lineari.
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Chapter 1

Introduction

1.1 Preliminaries.

This Thesis is dedicated to the investigation of oscillation properties of the

following half–linear second order differential equation

(
ρ(t)|y′(t)|p−2y′(t)

)′
+ v(t)|y(t)|p−2y(t) = 0, p > 1. (HL)

When p = 2 the equation (HL) becomes the linear Sturm – Liouville equa-

tion

(ρ(t)y′(t))
′
+ v(t)y(t) = 0. (SL)

The investigation of the oscillation properties of the equation (SL) started

in the work by Sturm [50]. The investigation has been developing till the

present time. The oscillation properties of nonlinear differential equations

were investigated at the beginning of the last century. In particular, we refer

to the papers [22], [24], [52] and to the book [48]. Many results in this area

have been achieved in the first half of the last century. Since the results have

been applied in various directions of the qualitative theory of second order

differential equations the interest into the subject has increased. For example,

in the spectral theory of differential operators [44].

The investigation of the properties of equation (HL) started with the work

by Bihari [3] and [4], Elbert [20] and Mirzov [37]. They are generally considered

”pioneers” of the qualitative theory (HL).
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4 INTRODUCTION

In the last thirty years, the qualitative theory (HL) has attracted many

investigators. At the end of the last century, the similarity of the properties

of the solutions of the equations (HL) and (SL) have been established. In

particular, Sturm’s Comparison and Separation Theorems for the equation

(HL) hold. But there exist many differences between the properties of the

solutions of the equations (HL) and (SL). Indeed, the set of the solutions of

the equation (HL) is not a linear space.

The results of investigations and methods for the equation (HL) up to year

2005 are exposed in the book by Došlý and Řehák [11]. Došlý is one of the

leading experts in the oscillation theory of the equation (HL).

The interest into the theory is two fold. On the one hand, the theory can be

considered as a generalization of the linear theory. On the other hand, it can be

considered as a one–dimensional version of a partial differential equation with

the p–Laplacian. The p–Laplacian has many applications in physics, biology

and in chemistry and also in non–Newtonian fluid theory and in some models

in glaceology [10].

Among the many methods to analyze the oscillation properties of the equa-

tion (HL), we mention two basic methods [16], [17], [11]. The former is the

”Riccati technique”, starting with the theory of the linear equation (SL). And

the latter is the variational method.

In the ”Riccati technique” the problem of nonoscillation or oscillation of

the equation (HL) (for example at t = ∞) becomes the problem of existence

or non–existence of the solutions of the Riccati type equation

w′ + v(t) + (p− 1)ρ1−p′(t)|w|p′−1 = 0, p′ =
p

p− 1
, p > 1 (R)

in some neighborhood of point t = ∞. In this case one uses the different

methods of investigating the existence of the solutions of nonlinear differential

equations and in particular different approaches in asymptotic analysis. The

main results in the qualitative theory of the equation (HL) have been obtained

by the application of the ”Riccati technique”.

In the variational method, the oscillation properties of the equation (HL)
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are related to the validity or not validity of the following inequality

b∫
a

[ρ(t)|f ′(t)|p − v(t)|f(t)|p]dt > 0, (F )

when f in the space W 1
◦

p(a, b).

The variational method is used relatively little compared to the ”Riccati

technique”, although in the oscillation theory of the linear equation (SL) it

plays an important role (see [25]). By applying the variational method, one

employ different inequalities, such as the Wirtinger inequality (see [11]).

In the Thesis, we consider the following problems:

– focality and disfocality of the equation (HL) on a given interval;

– conjugacy and disconjugacy of the equation (HL) on a given closed or

open interval;

– oscillation and nonoscillation of the equation (HL) on a given interval

with a singularity at the endpoint;

– oscillation and nonosillation of two term linear and half–linear equations

of higher order.

Our aim is to develop the variational method to study the equation (HL)

by applying results of the theory of weighted Hardy type inequalities in terms

of the coefficients of the equation (HL). We have obtained the following new

results.

1. Firstly, we have obtained new results in the theory of weighted Hardy

type inequalities on the set of smooth functions with compact support (Chapter

2). Such results improve the results given in the book of Kufner and Opic [43].

2. Sufficient conditions and necessary conditions of disfocality of the equa-

tion (HL) with nonnegative coefficients on the given semi–interval (Chapter 3,

Section 3.1).

These results have been obtained by the application of results in the theory

of weighted Hardy type inequalities. However, the author is not aware of results

of such type in the theory of equations (HL) and (SL).

3. Sufficient conditions and necessary conditions of disfocality of the equa-

tion (HL) with nonnegative coefficients on the given interval both with regular

and singular points at the endpoint. Also if the equation (HL) is disfocal on the
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given interval, we show how to find a nontrivial solution (Chapter 3, Section

3.2).

These results have been obtained by the application of weighted Hardy

type inequalities, which we show in Chapter 2.

4. Sufficient conditions and necessary conditions of nonoscillation for the

equation (HL) with nonnegative coefficients (Chapter 4, Section 4.1–4.2).

Here (in Section 4.1), sufficient conditions and necessary conditions of

nonoscillation of the equation (HL) have been obtained by the applications

of the results of Chapter 3. Here, we also show some properties of the solu-

tions. These sufficient conditions have been known before by another method.

In Section 4.2, we obtain sufficient conditions of oscillation and nonoscillation

for the solutions of the equation (HL) on the basis of the known results in the

weighted Hardy type inequalities. In the same Section, we indicate a general

approach of applying the results on weighted Hardy type inequalities in the

analysis of oscillation and nonoscillation of the solutions of the equation (HL).

5. The criteria of disconjugacy on the given interval of the equation (HL)

without sing condition on the the coefficient v (Chapter 4, Section 4.3).

These results are directly obtained by variational methods. On the basis

of such results we have the following new results.

6. Sufficient conditions of oscillation for the equation (HL) without sing

condition on the coefficient v (Chapter 4, Section 4.3).

Such sufficient conditions are more general than the previously known re-

sults in such direction. They are new for the case when the coefficient v ≥ 0.

7. Sufficient conditions of nonoscillation of two term half–linear differential

equation of higher order (Chapter 5, Section 5.2).

Half–linear differential equations of higher order have already been inves-

tigated [11, p. 464]. And to the best of our knowledge, our thesis is one of the

first results on nonoscillation of two term half–linear differential equations of

higher order.

8. Sufficient conditions of oscillation and nonoscillation of two term half–

linear differential equations of higher order with nonnegative conditions (Chap-

ter 5, Section 5.2 and Section 5.3).

These results generalize the known results, which are given in the mono-
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graph [25] by Glazman. Here, we have obtained such results and more general

conditions. In particular, we generalize the known results by considering one

of the coefficients as a power function.

9. Necessary and sufficient conditions of strong oscillation and strong

nonoscillation of two term half–linear differential equations of higher order

with nonnegative conditions, which find application in the spectral theory of

linear differential operators (Chapter 5, Section 5.4).

These results generalize the known related results, when the coefficient of

the derivative is constant [25] or when one of the coefficients is a spectral

function (see [29], [23] and [15]).

Part of the obtained results have been published in the papers [30], [41]

and [42].

We notice that the results of 7–8 have been obtained by the variational

method and by applying the latest results in the theory of weighted Hardy

inequalities [31] and Hardy type inequalities [49].

We notice that other methods of analysis of some spectral properties of

the second order differential operators have been derived again with help of

the Hardy inequalities as stated in the paper of Drabek and Kufner [18] and

Otelbaev [44], and that the method of investigating differential operators of

higher order have been started in the paper of Apyshev and Otelbaev [1].
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1.2 Half–linear second order differential equa-

tions. Main notions and propositions.

In this section we present basic properties of the solutions of half–linear second

order differential equation. We will keep the terminology of the book of O.

Došlý and P. Řehák [11].

On the interval I = (a, b), −∞ ≤ a < b ≤ +∞ we consider the following

second order differential equation:(
ρ(t)|y′(t)|p−2y′(t)

)′
+ v(t)|y(t)|p−2y(t) = 0, t ∈ I, (1.1)

where 1 < p < ∞, ρ and v are continuous functions on I. Moreover, ρ(t) > 0

for any t ∈ I.

We recall that the terminology half–linear differential equation reflects the

fact that the solution space of (1.1) is homogeneous, but not additive.

When p = 2 the equation (1.1) becomes the linear Sturm – Liouville equa-

tion

(ρ(t)y′(t))
′
+ v(t)y(t) = 0. (1.2)

Definition 1.1. A function y : I → R is said to be a solution of (1.1), if y(t)

is continuously differentiable together with ρ(t)|y′(t)|p−2y′(t) and satisfies the

equation (1.1) on I.

We note that the function y(t) ≡ 0 is a solution of the equation (1.1).

We say that a solution y(·) of (1.1) is nontrivial if there exists at least one

point t0 ∈ I such that y(t0) 6= 0. If so, the continuity of y(t) ensures that

(t0 − δ, t0 + δ) ⊂ I and y(t) 6= 0, for all t ∈ (t0 − δ, t0 + δ).

Definition 1.2. A point t0 ∈ I is called zero of the solution y(t), if y(t0) = 0.

Definition 1.3. A nontrivial solution of the equation (1.1) is called oscillatory

at t = b or at t = a, if it has an infinite number of zeros converging to b or to

a, respectively. Otherwise y is called nonoscillatory, i.e. if there exists c ∈ I

and the solution has not zeros on the interval (c, b) or (a, c), respectively.

Definition 1.4. The equation (1.1) is called oscillatory or nonoscillatory at

t = b or at t = a, if all of its nontrivial solutions are oscillatory or nonoscil-

latory at t = b or at t = a, respectively.
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Let I0 be an interval contained in I. To investigate the oscillation properties

of (1.1), it is proper to use notions such as conjugacy and disconjugacy of the

equation (1.1) on the interval I0.

Definition 1.5. The points t1, t2 ∈ I are called conjugate points with respect

to the equation (1.1), if there exists a nontrivial solution y(t) of the equation

(1.1) such that y(t1) = y(t2) = 0.

Definition 1.6. The equation (1.1) is called an equation of disconjugate points

on the interval I0, if all of it any nontrivial solutions have no more than one

zero on I0. Otherwise it is called an equation of conjugate points on the interval

I0.

Further, by the terminology of [11], we will understand, that the equation

(1.1) is disconjugate on the interval I0, if it is an equation of disconjugate

points on the interval I0. The equation (1.1) is conjugate on the interval I0, if

it is an equation of conjugate points on the interval I0.

One of the fundamental result in the qualitative theory of half–linear equa-

tions in the form (1.1) is a theorem called ”Roundabout theorem”. The ter-

minology Roundabout theorem (or Reid type Roundabout theorem) is due

to Reid [47] (it concerns the linear case), and it is motivated by the fact the

proof of this theorem consists of the ”roundabout” proof of several equivalent

statements.

Theorem 1.7. [11, Theorem 1.2.2] Let [α, β] ⊂ I. The following statements

are equivalent:

(i) The equation (1.1) is disconjugate on the interval [α, β].

(ii) There exists a solution of the equation (1.1) having no zero in the interval

[α, β].

(iii) There exists a solution w of the generalized Riccati equation

w′ + v(t) + (p− 1)ρ1−p′(t)|w(t)|p′ = 0

defined on the whole interval [α, β], where p′ = p
p−1

.

(iv) The functional

F (f) =

β∫
α

(ρ(t)|f ′|p − v(t)|f |p) dt > 0
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for any nontrivial 0 6= f ∈ W 1
◦

p(α, β), where W 1
◦

p(α, β) is the Sobolev space.

Recall that the Sobolev space W 1
◦

p(α, β) consists of absolutely continuous

functions f on the interval [α, β] such that f ′ ∈ Lp(α, β) and f(α) = f(β) = 0,

with the norm ||f ||W 1
p

=

(
β∫
α

[|f ′|p + |f |p] dt

) 1
p

or with the equivalent norm

||f ||W 1
p

=

(
β∫
α

|f ′|p dt

) 1
p

. Lp(α, β) is the space of measurable and finite al-

most everywhere functions g on (α, β) for which the following norm ||g||p =(
β∫
α

|g|p dt

) 1
p

is finite.

The qualitative theory of the half - linear oscillation equations as (1.1) is

similar to that of the oscillation theory of Sturm–Liouville linear equations

as (1.2), and the Sturmian theory extends verbatim to (1.1). The interlacing

property of zeros of linearly independent solutions of linear equations is one of

the most characteristic properties, which among others justifies the definition

of oscillation/ nonoscillation of the equation. The next Sturm type separation

theorem claims that this property extends to (1.1) (see [11, Theorem 1.2.3 and

Lemma 1.2.2]).

Theorem 1.8. Two nontrivial solutions of (1.1) which are not proportional

cannot have a common zero. If t1 < t2 are two consecutive zeros of a nontriv-

ial solution y of (1.1), then any other solution of this equation which is not

proportional to y has exactly one zero on (t1, t2).

The next statement is an extension of well–known Sturm comparison the-

orem to (1.1).

Theorem 1.9. Let R and V be functions of (a, b) to R satisfying the same

assumptions of the functions ρ and v, respectively. Let t1 < t2 be consecutive

zeros of a nontrivial solution y of (1.1) and suppose that

V (t) ≥ v(t), ρ(t) ≥ R(t) > 0 (1.3)

for t ∈ [t1, t2]. Then any solution of the equation(
R(t)|x′(t)|p−2x′(t)

)′
+ V (t)|x(t)|p−2x(t) = 0 (1.4)

has a zero in (t1, t2) or it is a multiple of the solution y. The last possibility is

excluded if one of the inequalities in (1.3) is strict on a set of positive measure.
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By Theorem 1.7 and Theorem 1.9, we obtain the following theorem (see

[11]).

Theorem 1.10. The equation (1.1) is oscillatory or nonoscillatory at t = b

if and only if there exists at least a nontrivial oscillatory or nonoscillatory

solution of (1.1) at t = b, respectively. The same statement hold by replaying

b with a.

By Theorem 1.7, Theorem 1.9 and Theorem 1.10, we obtain a relation

between the notions of oscillatory equation and conjugate equation, nonoscil-

latory equation and disconjugate equation.

Theorem 1.11. (i) The equation (1.1) is oscillatory at t = b or at t = a if

and only if for any T ∈ I the equation (1.1) is conjugate on [T, b) or on (a, T ],

respectively.

(ii) The equation (1.1) is nonoscillatory at t = b or at t = a if and only if

there exists T ∈ I such that the equation (1.1) is disconjugate on [T, b) or on

(a, T ], respectively.

A crucial role in the analysis of the oscillation properties of (1.1) is played

by the Roundabout theorem (Theorem 1.7), which provides two important

methods: the ”Riccati technique” and a variational principle. A method is

based on the equivalence of (i) and (iii) is called the ”Riccati technique”.

The main results in the qualitative theory of the equation (1.1) are obtained

by the application of the ”Riccati technique”. As an immediate consequence

of the equivalence of (i) and (iv) of the Roundabout theorem, we have the

following statement which may be widely used in the proofs of oscillation and

nonoscillation criteria. When using such method, we say that we are employing

a variational method. We present the main statements following from the

equivalence of (i) and (iv) in Section 2.2 of Chapter 2, where we consider a

class of admissible functions alternative to W 1
◦

p in the Roundabout theorem.

Let v(t) > 0 for all t ∈ I in the equation (1.1). Then the equation

(v1−p′(t)|u′(t)|p′−2u′(t))′ + ρ1−p′(t)|u(t)|p′−2u(t) = 0 (1.5)

is called the reciprocal equation relative to (1.1), where p′ = p
p−1

. The termi-

nology ”reciprocal equation” is motivated by the linear equation (1.2). The
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reciprocal equation to (1.5) is again the equation (1.1).

It is easy to prove the following theorem (see [11, p. 22]).

Theorem 1.12. Let 1 < p < ∞. Let ρ(t) > 0 and v(t) > 0 for all t ∈ I. Then

the equation (1.1) is oscillatory or nonoscillatory if and only if the reciprocal

equation is oscillatory or nonoscillatory, respectively.

Such as result will be referred to as the reciprocity principle.

Now we introduce the following notions (see [11, p. 193]) relative to the

equation (1.1), which we consider bellow.

Definition 1.13. A point β is said to be the first right focal point of a point

α ∈ I, with α < β with respect to thequation (1.1), if there exists a nontrivial

solution y of the equation (1.1) such that y′(α) = 0 = y(β) and y(t) 6= 0 for

all t ∈ [α, β).

Definition 1.14. A point α is said to be the first left focal point of a point

β ∈ I, with α < β with respect to the equation (1.1), if there exists a nontrivial

solution y of the equation (1.1) such that y′(β) = 0 = y(α) and y(t) 6= 0 for

all t ∈ (α, β].

Definition 1.15. The equation (1.1) is said to be the right disfocal on the

interval [α, β) ⊂ I, if there does not exists a right focal point of the point α

with respect to the equation (1.1) in the interval [α, β).

The equation (1.1) is said to be the left disfocal on the interval (α, β] ⊂ I, if

there does not exists a left focal point of the point α with respect to the equation

(1.1) in the interval (α, β].

Let (α, β) ⊂ I. Suppose that

W 1
p,r(α, β) = {f ∈ W 1

p (α, β) : f(β) = 0},

W 1
p,l(α, β) = {f ∈ W 1

p (α, β) : f(α) = 0}.

By Theorem 5.8.3, Theorem 5.8.5 and Remark 5.8.1 of [11], we obtain the

following variational method for the right/left disfocal points on the interval

(α, β).



INTRODUCTION 13

Theorem 1.16. Let a < α < β < b. The equation (1.1) is the right disfocal

on the interval [α, β) if and only if

F (f) =

β∫
α

[ρ(t)|f ′(t)|p − v(t)|f(t)|p] dt ≥ 0 (1.6)

for all f ∈ W 1
p,r(α, β).

Theorem 1.17. Let a < α < β < b. The equation (1.1) is the left disfocal on

the interval (α, β] if and only if

F (f) =

β∫
α

[ρ(t)|f ′(t)|p − v(t)|f(t)|p] dt ≥ 0 (1.7)

for all f ∈ W 1
p,l(α, β).
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1.3 Hardy’s inequality.

In the literature many authors including G.H. Hardy, J.E. Littlewood and

G. Pólya [27] consider the continuous Hardy inequality: if p > 1 and if f is

a nonnegative p integrable function on (0,∞), then f is integrable over the

interval (0, x) for all x > 0 and

∞∫
0

1

x

x∫
0

f(t) dt

p

dx <

(
p

p− 1

)p
∞∫

0

fp(x) dx. (1.8)

The constant
(

p
p−1

)p

in the inequality (1.8) is sharp in the sense that it

can not be replaced by any smaller number.

The inequality (1.8) has been generalized and applied in analysis and in the

theory of differential equations. Some of these developments, generalizations

and applications have been described and discussed in the books [27], [43],

[32], [19] and [31].

Below we have just selected a few facts from this development.

In 1928 G.H. Hardy [28] proved the estimate for some integral operators,

from which the first ”weighted” modification of the inequality (1.8) appeared,

namely the inequality

∞∫
0

1

x

x∫
0

f(t) dt

p

xε dx <

(
p

p− ε− 1

)p
∞∫

0

fp(x)xε dx, (1.9)

valid with p > 1 and ε < p − 1, for all measurable nonnegative functions f

(see [27], Theorem 330), where the constant
(

p
p−ε−1

)p

is the best possible. We

also mention the following dual inequality, which can be derived from (1.9):

∞∫
0

1

x

∞∫
x

f(t) dt

p

xε dx <

(
p

ε + 1− p

)p
∞∫

0

fp(x)xε dx. (1.10)

It holds with p > 1 and ε > p− 1, for all measurable non–negative functions f

and the constant
(

p
ε+1−p

)p

is the best possible (see again [27], Theorem 330).

During the last decades the inequality (1.9) has been developed to the form b∫
a

 x∫
a

f(t) dt

q

u(x) dx


1
q

≤ C

 b∫
a

fp(x)v(x) dx


1
p

(1.11)
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with

– a, b real number satisfying −∞ ≤ a < b ≤ ∞,

– u, v everywhere positive measurable weight functions in (a, b),

– p, q real parameters, satisfying 0 < q ≤ ∞ and 1 ≤ p ≤ ∞.

This is sometimes called the modern form of the continuous Hardy inequal-

ity.

A systematic investigation of Hardy inequality, which started in the late

fifties and early sixties of the last century, was connected with the name of

P.R. Beesack. Beesack, in his paper [2] from 1961, connected the validity of the

corresponding inequality (1.8) (with a = 0, b = ∞, p = q) with the existence

of a (positive) solution y of the nonlinear ordinary differential equation

d

dx

(
v(x)

(
dy

dx
(x)

)p−1
)

+ u(x)yp−1(x) = 0, (1.12)

which is in fact the Euler–Lagrange equation for the functional

J(y) =

∞∫
0

[(y′(x)))pv(x)− yp(x)u(x)] dx,

although Beesack’s approach was not the variational one. His approach was

extended to a class of the inequalities containing the Hardy inequality as a

special case (see [43]).

The problem of finding necessary and sufficient conditions for (1.11) to hold,

again for (a, b) = (0,∞) and p = q, was investigated in 1969 by Talenti [51] and

1969 by Tomaselli [53], who also followed Beesack’s approach via differential

equations and have shown that the solvability of the equation (1.12) is not

only sufficient but in a certain sense even necessary for (1.11) to hold. In our

opinion the Tomaselli paper [53] plays a fundamental role in the development

of the Hardy inequality, since it combines almost all relevant information for

the case p = q.

In 1969 Talenti [51] and Tomaselli [53] obtained that a necessary and suf-

ficient condition for the estimate

b∫
0

 x∫
0

f(t) dt

p

u(x) dx ≤ C

b∫
0

fp(x)v(x) dx (1.13)
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with f ≥ 0, 0 < b ≤ ∞ and 1 < p < ∞ reads as follows

B = sup
r∈(0,b)

 b∫
r

u(x) dx

 r∫
0

v1−p′(x) dx

p−1

< ∞. (1.14)

Moreover, B ≤ C ≤ pp

(p−1)p−1 B.

One can we write condition (1.14) with b = ∞ in the following modified

form

A = sup
r>0

 ∞∫
r

u(x) dx

 1
p
 r∫

0

v1−p′(x) dx

 1
p′

< ∞, (1.15)

which is frequently called the Muckenhoupt condition after Muckenhoupt [38]

gave a nice and easy direct proof of this result and extended it even to the

case with the more general inequality ∞∫
0

 x∫
0

f(t)dt

p

dµ


1
p

≤ C

 ∞∫
0

fp(x) dν

 1
p

, (1.16)

f ≥ 0, with some Borel measures µ and ν in 1972. In this case, a necessary

and sufficient condition for (1.16) to hold with a constant C independent of f

reads as follows

A = sup
r>0

[µ(r,∞)]
1
p

 r∫
0

(
dν̃

dx

)1−p′

dx

 1
p′

< ∞, (1.17)

where ν̃ denotes the absolutely continuous part of ν. For the special mea-

sures dµ(t) = u(t) dt, dν(t) = v(t) dt the condition (1.17) reduces to (1.15).

Moreover, the best (=least) constant C in (1.16) satisfies

A ≤ C ≤ p
1
p (p′)

1
p′ A

for 1 < p < ∞ and C = A for p = 1 (and p′ = ∞).

He also proved that the best constant C in (1.13) satisfies

B∗ ≤ C ≤
(

p

p− 1

)p

B∗.

The main content of the research described above can be formulated as

follows.
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Theorem 1.18. (Talenti–Tomaselli–Muckenhoupt). Let 1 < p < ∞.

The inequality (1.11) in case p = q:

b∫
a

 x∫
a

f(t) dt

p

u(x) dx ≤ C

b∫
a

fp(x)v(x) dx (1.18)

holds for all measurable functions f(x) ≥ 0 on (a, b) if and only if

ATTM = sup
z∈(a,b)

b∫
z

u(x) dx

 z∫
a

v1−p′(x) dx

p−1

< ∞.

Moreover, the best constant C in (1.18) satisfies

ATTM ≤ C ≤ p

(
p

p− 1

)p−1

ATTM .

There is also a corresponding result for the dual inequality.

Theorem 1.19. Let 1 < p < ∞. The inequality

b∫
a

 b∫
x

f(t) dt

p

u(x) dx ≤ C∗

b∫
a

fp(x)v(x) dx (1.19)

holds for all measurable functions f(x) ≥ 0 on (a, b) if and only if

A∗
TTM = sup

z∈(a,b)

 b∫
z

v1−p′(x) dx

p−1 z∫
a

u(x) dx < ∞.

Moreover, the best constant C∗ in (1.19) satisfies

A∗
TTM ≤ C∗ ≤ p

(
p

p− 1

)p−1

A∗
TTM .

Besides (1.14), Tomaselli derived in [53] also some other (equivalent) con-

ditions for the validity of the Hardy inequality (1.13). This result for the

inequality (1.18) formulated as follows.

Theorem 1.20. (Tomasseli). Let 1 < p < ∞. The inequality (1.18) holds

for all measurable functions f(x) ≥ 0 on (a, b) if and only if

BT = sup
z∈(a,b)

 z∫
a

v1−p′(x) dx

−1 z∫
a

u(x)

 x∫
a

v1−p′(t) dt

p

dx < ∞.

Moreover, the best constant C in (1.18) satisfies

BT ≤ C ≤
(

p

p− 1

)p

BT .
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As usual, the results for the dual inequality (1.19) can be obtained by the

results for the inequality (1.18), taking into account that the inequality (1.19)

is equivalent to the inequality

b∫
a

v1−p′(x)

 x∫
a

g(t) dt

p′

dx ≤ C

b∫
a

u1−p′(x)gp′(x) dx, g ≥ 0,

where the best constant is equivalent to the best constant in (1.19).

Theorem 1.21. Let 1 < p < ∞. The inequality (1.19) holds for all measurable

functions f(x) ≥ 0 on (a, b) if and only if

B∗
T = sup

z∈(a,b)

 z∫
a

u(x) dx

−1 z∫
a

v1−p′(t)

 t∫
a

u(x) dx

p′

dt < ∞.

Moreover, the best constant C∗ in (1.19) satisfies

B∗
T ≤ C∗ ≤ pp′B∗

T .

Next, we will prove the following theorem which we apply later.

Theorem 1.22. Let 1 < p < ∞. The inequality (1.19) holds for all measurable

functions f(x) ≥ 0 on (a, b) if and only if

B∗ = sup
z∈(a,b)

 b∫
z

v1−p′(x) dx

−1 b∫
z

u(t)

 b∫
t

v1−p′(x) dx

p

dt < ∞.

Moreover, the best constant C∗ in (1.19) satisfies

B∗ ≤ C∗ ≤
(

p

p− 1

)p

B∗. (1.20)

Proof of Theorem 1.22. In (1.19) we substitute the variables τ = e−t,

s = e−x and denote by α = e−b, β = e−a. Then we obtain

β∫
α

 s∫
α

f̃(τ) dτ

p

ũ(s) ds ≤ C∗

β∫
α

f̃p(s)ṽ(s) ds, (1.21)

where f̃(τ) = f(− ln τ)
τ

, ũ(s) = u(− ln s)
s

and ṽ(s) = sp−1v(− ln s).

Then by Theorem 1.20 and inequality (1.21), the inequality (1.19) holds if

and only if
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B̃T = sup
α<y<β

 y∫
α

ṽ1−p′(τ) dτ

−1 y∫
α

ũ(s)

 s∫
α

ṽ1−p′(τ) dτ

p

ds < ∞. (1.22)

For the best constant we have the following estimate

B̃T ≤ C∗ ≤
(

p

p− 1

)p

B̃T . (1.23)

Now, by substituting − ln τ = x, − ln s = t in the integrals of (1.22), and by

taking ln y = z, we obtain B̃T = B. Then (1.20) follows by (1.23).

Thus the proof of Theorem 1.22 is complete.

Just recently, several different (but equivalent) scales of the conditions have

been derived, mainly for the case 1 < p ≤ q < ∞. They can be found in the

papers [26], [33]. Let us mention here only one of these results, which is due

to A. Wedesting (see her PhD Thesis [54] or [33, Theorem 1]).

Theorem 1.23. Let 1 < s < p < ∞. The inequality (1.18) holds for all

measurable functions f(x) ≥ 0 on (a, b) if and only if

AW (s) = sup
z∈(a,b)

 z∫
a

v1−p′(t) dt

s−1 b∫
z

u(x)

 x∫
α

v1−p′(t) dt

p−s

dx < ∞.

Moreover, if C is the best possible constant in (1.18), then

sup
1<s<p

pp(s− 1)

pp(s− 1) + (p− s)p
AW (s) ≤ C ≤ inf

1<s<p

(
p− 1

p− s

)p−1

AW (s).

By Theorem 329 of [27] we obtain the following theorem.

Theorem 1.24. If p > 1 and r > 0. Then

∞∫
0

1

xpr

 1

Γ(r)

x∫
0

(x− t)r−1f(t) dt

p

dx <

 Γ
(
1− 1

p

)
Γ
(
r + 1− 1

p

)


p ∞∫
0

fp(x) dx

(1.24)

for all measurable functions f(x) ≥ 0 (f 6= 0) on (0,∞).

Moreover, the constant

{
Γ(1− 1

p)
Γ(r+1− 1

p)

}p

is the best constant in (1.24).

Theorem 1.25. If p > 1 and r > 0. Then
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∞∫
0

 1

Γ(r)

∞∫
x

(t− x)r−1f(t) dt

p

dx <

 Γ
(

1
p

)
Γ
(
r + 1

p

)


p ∞∫
0

(xrf(x))p dx (1.25)

for all measurable functions f(x) ≥ 0 (f 6= 0) on (0,∞).

Moreover, the constant

{
Γ( 1

p)
Γ(r+ 1

p)

}p

is the best constant in (1.25).

Here Γ(t) =
∞∫
0

st−1e−sds is the gamma function.

By the results of [49] we have the following theorem.

Theorem 1.26. Let 1 < p < ∞ and n ≥ 1. Then the inequality

b∫
a

 x∫
a

(x− t)n−1f(t) dt

p

u(x) dx ≤ C

b∫
a

v(x)fp(x) dx (1.26)

holds for all measurable functions f(x) ≥ 0 on (a, b) if and only if

Bn = max{B1,n, B2,n} < ∞.

Moreover, the best constant C in (1.26) satisfies

Bn ≤ C ≤ βBn

with a constant β ≥ 1 depending only of p and n ≥ 1, where

B1,n = sup
z∈(a,b)

b∫
z

u(t) dt

 z∫
a

(z − s)p′(n−1)v1−p′(s) ds

p−1

,

B2,n = sup
z∈(a,b)

b∫
z

(t− z)p(n−1)u(t) dt

 z∫
a

v1−p′(s) ds

p−1

.

Theorem 1.27. Let 1 < p < ∞ and n ≥ 1. Then the inequality

b∫
a

 b∫
x

(t− x)n−1f(t) dt

p

u(x) dx ≤ C∗

b∫
a

v(x)fp(x) dx (1.27)

holds for all measurable functions f(x) ≥ 0 on (a, b) if and only if

B∗
n = max{B∗

1,n, B∗
2,n} < ∞.

Moreover, the best constant C∗ in (1.27) satisfies

B∗
n ≤ C∗ ≤ β∗B∗

n
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with a constant β∗ ≥ 1 dependent only of p and n ≥ 1, where

B∗
1,n = sup

z∈(a,b)

z∫
a

u(t) dt

 b∫
z

(s− z)p′(n−1)v1−p′(s) ds

p−1

,

B∗
2,n = sup

z∈(a,b)

z∫
a

(z − t)p(n−1)u(t) dt

 b∫
z

v1−p′(s) ds

p−1

.
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Chapter 2

Hardy differential inequality for

a set of smooth functions with

compact support

2.1 The closure of function set with compact

support in the weighted Sobolev space.

Let I = (a, b), −∞ ≤ a < b ≤ ∞. Let 1 < p < ∞ and 1
p

+ 1
p′

= 1. Let ρ be a

positive and continuous function on I.

Let Lp,ρ ≡ Lp,ρ(I) be the space of almost everywhere finite measurable

functions f on I, for which the following norm

||f ||p,ρ =

 b∫
a

ρ(t)|f(t)|pdt


1
p

is finite.

We denote by W 1
p,ρ ≡ W 1

p (ρ, I) the set of locally absolutely continuous

functions f on I with finite norm

||f ||W 1
p,ρ

= ||f ′||p,ρ + |f(t0)|, (2.1)

where t0 ∈ I is a some fixed point.

23
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Let AC
◦

p (I) = {f ∈ W 1
p,ρ : such f compact, suppf ⊂ I}. Let ACp,l(I)

and ACp,r(I) be the set of functions from W 1
p,ρ which vanish in at least a left

neighborhood of a or a right neighborhood of b, respectively.

We denote by W 1
◦

p(ρ, I), W 1
p,l(ρ, I) and W 1

p,r(ρ, I) the closures of AC
◦

p (I),

ACp,l(I) and ACp,r(I) in the space W 1
p,ρ, respectively.

Further we need to understand the relation between the spaces W 1
◦

p(ρ, I),

W 1
p,l(ρ, I), W 1

p,r(ρ, I) and W 1
p (ρ, I) depending on the integral behavior of the

function ρ1−p′ at the end points of the interval I. Such relations can be found

in the literature (see e.g. [39], [40]). However, for the sake of competency, we

present such results in a form which is suitable for our purpose.

Theorem 2.1. Let 1 < p < ∞. Then

(i) if ρ1−p′ ∈ L1(I), then for any function f ∈ W 1
p (ρ, I) the limits lim

t→a+
f(t) ≡

f(a), lim
t→b−

f(t) ≡ f(b) exist and

W 1
◦

p(ρ, I) = {f ∈ W 1
p (ρ, I) : f(a) = f(b) = 0},

W 1
p,l(ρ, I) = {f ∈ W 1

p (ρ, I) : f(a) = 0},

W 1
p,r(ρ, I) = {f ∈ W 1

p (ρ, I) : f(b) = 0};

(ii) if ρ1−p′ ∈ L1(a, c) and ρ1−p′ /∈ L1(c, b), c ∈ I, then for any function

f ∈ W 1
p (ρ, I) the limit lim

t→a+
f(t) ≡ f(a) exists and

W 1
◦

p(ρ, I) = W 1
p,l(ρ, I) = {f ∈ W 1

p (ρ, I) : f(a) = 0},

W 1
p,r(ρ, I) = W 1

p (ρ, I);

(iii) if ρ1−p′ /∈ L1(a, c) and ρ1−p′ ∈ L1(c, b), c ∈ I, then for any function

f ∈ W 1
p (ρ, I) the limit lim

t→b−
f(t) ≡ f(b) exists and

W 1
◦

p(ρ, I) = W 1
p,r(ρ, I) = {f ∈ W 1

p (ρ, I) : f(b) = 0},

W 1
p,l(ρ, I) = W 1

p (ρ, I);

(iv) if ρ1−p′ /∈ L1(a, c) and ρ1−p′ /∈ L1(c, b), c ∈ I, then

W 1
◦

p(ρ, I) = W 1
p,l(ρ, I) = W 1

p,r(ρ, I) = W 1
p (ρ, I).
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Proof of Theorem 2.1. Part (i). Let ρ1−p′ ∈ L1(I). Then ρ1−p′ ∈

L1(a, t0). By the Hölder’s inequality we obtain

t0∫
a

|f ′(t)| dt ≤

 t0∫
a

ρ1−p′


1
p′
 b∫

a

ρ|f ′(t)|p dt


1
p

< ∞,

for all f ∈ W 1
p (ρ, I).

Therefore the integral
t0∫
a

f ′(t) dt exists. By the Newton-Liebnitz formula

for absolutely continuous functions the limit

f(a) ≡ lim
t→a+

f(t) = f(t0)− lim
t→a+

t0∫
t

f ′(s)ds = f(c)−
t0∫

a

f ′(s)ds

exists.

The proof of existence of the limit lim
t→b−

f(t) ≡ f(b) is similar.

Let f ∈ W 1
p,l(ρ, I). Then there exists a sequence {fn} ⊂ ACp,l(I) such that

||f − fn||W 1
p,ρ
→ 0 if n →∞. If a < t < t0 < b, then

|f(t)− fn(t)| ≤
t0∫

t

|f ′(s)− f ′n(s)| ds + |f(t0)− fn(t0)|.

Then applying Hölder’s inequality we obtain:

sup
a<t<t0

|f(t)− fn(t)| ≤

 t0∫
a

ρ1−p′(s) ds


1
p′
 t0∫

t

ρ(s)|f ′(s)− f ′n(s)|p ds


1
p

+

|f(t0)− fn(t0)| ≤ max

1,

 t0∫
a

ρ1−p′(s)ds


1
p′
 ||f − fn||W 1

p,ρ
.

Hence, lim
n→∞

sup
a<t<t0

|f(t) − fn(t)| = 0. Therefore lim
t→a+

f(t) ≡ f(a) = 0.

Indeed, lim
t→a+

fn(t) = 0.

The proof of equality f(b) = 0 for any function f ∈ W 1
p,r(ρ, I) is similar.

Since W 1
◦

p(ρ, I) ⊂ W 1
p,l(ρ, I)

⋂
W 1

p,r(ρ, I), then for any f ∈ W 1
◦

p(ρ, I) we have

f(a) = f(b) = 0.

Therefore,

W 1
p,l(ρ, I) ⊂ {f ∈ W 1

p (ρ, I) : f(a) = 0},

W 1
p,r(ρ, I) ⊂ {f ∈ W 1

p (ρ, I) : f(b) = 0},
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W 1
◦

p(ρ, I) ⊂ {f ∈ W 1
p (ρ, I) : f(a) = f(b) = 0}.

We now prove the inverse inclusion. Let f ∈ W 1
p (ρ, I), f(a) = 0. Let

a < α < t0. Then by Hölder’s inequality we obtain

|f(α)| ≤
α∫

a

|f ′(s)| ds ≤

 α∫
a

ρ1−p′ ds

 1
p′
 α∫

a

ρ|f ′(s)|p ds

 1
p

.

Hence,

|f(α)|

 α∫
a

ρ1−p′ ds

− 1
p′

≤

 α∫
a

ρ|f ′(s)|p ds

 1
p

. (2.2)

Let the point α∗ = α∗(α, a) ∈ (a, α) be such that

α∫
α∗

ρ1−p′ ds =

α∗∫
a

ρ1−p′ ds. (2.3)

Next we introduce the function

fα(t) =


0, a < t < α∗

f(α)

(
t∫

α∗
ρ1−p′ ds

)(
α∫

α∗
ρ1−p′ ds

)−1

, α∗ ≤ t ≤ α

f(t), α < t < b.

(2.4)

Clearly, that fα ∈ ACp,l(I). By (2.2), we have

||f − fα||W 1
p,ρ

= b∫
a

ρ|f ′ − f ′α|p ds


1
p

+ |f(t0)− fα(t0)| =

 α∫
a

ρ|f ′ − f ′α|p ds

 1
p

≤

 α∫
a

ρ|f ′|p ds

 1
p

+

 α∫
a

ρ|f ′α|p ds

 1
p

=

 α∫
a

ρ|f ′|p ds

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′ ds

−1 α∫
α∗

ρρp(1−p′) ds

 1
p

=

 α∫
a

ρ|f ′|p ds

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′ ds

− 1
p′

=
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 α∫
a

ρ|f ′|p ds

 1
p

+ 2
1
p′ |f(α)|

 α∫
a

ρ1−p′ ds

− 1
p′

≤

(
1 + 2

1
p′
) α∫

a

ρ|f ′|pds

 1
p

.

Hence, it follows that ||f − fα||W 1
p,ρ

→ 0 if α → 0. Consequently, f ∈

W 1
p,l(ρ, I) and thus W 1

p,l(ρ, I) = {f ∈ W 1
p (ρ, I) : f(a) = 0}.

If β ∈ (t0, b), we introduce the following function fβ ∈ ACp,r(I)

fβ(t) =


f(t), a < t < β

f(β)

(
β∗∫
t

ρ1−p′ ds

)(
β∗∫
β

ρ1−p′ ds

)−1

, β ≤ t ≤ β∗

0, β∗ < t < b,

(2.5)

where β∗ = β∗(β, b) ∈ (β, b) is such that

β∗∫
β

ρ1−p′ ds =

b∫
β∗

ρ1−p′ ds. (2.6)

As indicated above we check that ||f −fβ||W 1
p,ρ
→ 0 if β → b, which in turn

implies that f ∈ W 1
p,r(ρ, I). Hence, W 1

p,r(ρ, I) = {f ∈ W 1
p (ρ, I) : f(b) = 0}.

Now we introduce the function fα,β ∈ AC
◦

p (I) by setting

fα,β(t) =



0, a < t < α∗

f(α)

(
t∫

α∗
ρ1−p′ ds

)(
α∫

α∗
ρ1−p′ ds

)−1

, α∗ ≤ t ≤ α

f(t), α < t < β

f(β)

(
β∗∫
t

ρ1−p′ ds

)(
β∗∫
β

ρ1−p′ ds

)−1

, β ≤ t ≤ β∗

0, β∗ < t < b,

(2.7)

where α, α∗, β and β∗ are chosen as above. Simple computations show that

||f − fα,β||W 1
p,ρ
≤
(
1 + 2

1
p′
) α∫

a

ρ|f ′|p dt

 1
p

+
(
1 + 2

1
p′
) b∫

β

ρ|f ′|pdt


1
p

.

(2.8)
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Hence, ||f−fα,β||W 1
p,ρ
→ 0, if α → a and β → b. In other words f ∈ W 1

◦

p(ρ, I)

and W 1
◦

p(ρ, I) = {f ∈ W 1
p (ρ, I) : f(a) = f(b) = 0}.

The proof of Part (i) is complete.

Part (ii). Let ρ1−p′ ∈ L1(a, t0) and ρ1−p′ /∈ L1(t0, b). As in the proof of

part (i), the condition ρ1−p′ ∈ L1(a, t0) implies that for any f ∈ W 1
p (ρ, I) there

exists f(a) and f(a) = 0 for any f ∈ W 1
p,l(ρ, I), and that W 1

p,l(ρ, I) = {f ∈

W 1
p (ρ, I) : f(a) = 0}.

Since W 1
◦

p(ρ, I) ⊂ W 1
p,l(ρ, I), then W 1

◦

p(ρ, I) ⊂ {f ∈ W 1
p (ρ, I) : f(a) = 0}.

We now prove the converse inclusion. Let f ∈ W 1
p (ρ, I) and f(a) = 0. We

denote by fα,β ∈ AC
◦

p (I) the function defined in (2.7), where a < α < t0,

t0 < β < b and where α∗ = α∗(a, α) ∈ (a, α) has been defined in (2.3). Here

we define the point β∗ following way. By the condition ρ1−p′ /∈ L1(t0, b) it

follows that
b∫

β

ρ1−p′ ds = ∞. Therefore for each β ∈ (t0, b) there exists a point

β∗ = β∗(β, b) ∈ (β, b) such that

|f(β)|

 β∗∫
β

ρ1−p′ ds

− 1
p′

≤

 b∫
β

ρ(t)|f ′(t)|p dt


1
p

. (2.9)

Then by estimating as above we obtain (2.8). Hence, it follows that ||f −

fα,β||W 1
p,ρ
→ 0 if α → a and β → b. Consequently, f ∈ W 1

◦

p(ρ, I) and W 1
◦

p(ρ, I) =

W 1
p,l(ρ, I) = {f ∈ W 1

p (ρ, I) : f(a) = 0}.

We now prove the equality W 1
p,r(ρ, I) = W 1

p (ρ, I). It is suffices to show

that W 1
p,r(ρ, I) ⊃ W 1

p (ρ, I). Let f ∈ W 1
p (ρ, I). Let β ∈ (t0, b). Let the point

β∗ ∈ (β, b) be chosen as in the condition (2.9). We denote by fβ the function

defined by the relation (2.5).

Obviously, fβ ∈ ACp,r(I). Then by taking into account that f(t0) = fβ(t0)

and (2.9) we have

||f − fβ||W 1
p,ρ

= b∫
a

ρ(t)|f ′(t)− f ′β(t)|pdt


1
p

+ |f(t0)− fβ(t0)| =
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 b∫
a

ρ(t)|f ′(t)− f ′β(t)|pdt


1
p

=

 b∫
β

ρ(t)|f ′(t)− f ′β(t)|pdt


1
p

≤

 b∫
β

ρ(t)|f ′(t)|pdt


1
p

+ |f(β)|

 β∗∫
β

ρ1−p′dt

−1 β∗∫
β

ρρp(1−p′)dt


1
p

=

 b∫
β

ρ(t)|f ′(t)|pdt


1
p

+ |f(β)|

 β∗∫
β

ρ1−p′dt

− 1
p

=

2

 b∫
β

ρ(t)|f ′(t)|pdt


1
p

.

Therefore, ||f − fβ||W 1
p,ρ

→ 0, if β → b. Hence, f ∈ W 1
p (ρ, I) and

W 1
p,r(ρ, I) = W 1

p (ρ, I).

The proof of Part (ii) is complete.

Part (iii). Let ρ1−p′ /∈ L1(a, t0) and ρ1−p′ ∈ L1(t0, b). The proof of part (i)

implies that for any f ∈ W 1
p (ρ, I) the limit f(β) exists and thus W 1

p,r(ρ, I) =

{f ∈ W 1
p (ρ, I) : f(b) = 0}.

Therefore, W 1
◦

p(ρ, I) ⊂ {f ∈ W 1
p (ρ, I) : f(b) = 0}. To prove the converse

inclusion, we consider the function fα,β ∈ AC
◦

p (I), which is defined by (2.7),

where β∗ is defined as in (2.6) and the point α∗ ∈ (a, α) is defined as follows.

Since ρ1−p′ /∈ L1(a, t0), then
α∫
a

ρ1−p′ ds = ∞ for any α ∈ (a, t0).

We choose the point α∗ = α∗(a, α) ∈ (a, α) such that

|f(α)|

 α∫
α∗

ρ1−p′ ds

− 1
p′

≤

 α∫
a

ρ(t)|f ′(t)|p dt

 1
p

. (2.10)

Then according to (2.2), (2.6), (2.10) and f(t0) = fα,β(t0), we obtain

||f − fα,β||W 1
p,ρ

=

 b∫
a

ρ(t)|f ′(t)− f ′α,β(t)|p dt


1
p

+ |f(t0)− fα,β(t0)| =

 α∫
a

ρ(t)|f ′(t)− f ′α,β(t)|p dt +

β∫
α

ρ(t)|f ′(t)− f ′α,β(t)|p dt+
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b∫
β

ρ(t)|f ′(t)− f ′α,β(t)|p dt


1
p

≤

 α∫
a

ρ(t)|f ′(t)− f ′α,β(t)|p dt

 1
p

+

 b∫
β

ρ(t)|f ′(t)− f ′α,β(t)|p dt


1
p

≤

 α∫
a

ρ(t)|f ′(t)|pdt

 1
p

+

 α∫
a

ρ(t)|f ′α,β(t)|pdt

 1
p

+

 b∫
β

ρ(t)|f ′(t)|pdt


1
p

+

 b∫
β

ρ(t)|f ′α,β(t)|pdt


1
p

=

 α∫
a

ρ(t)|f ′(t)|p dt

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′ dt

−1 α∫
α∗

ρρp(1−p′) dt

 1
p

+

 b∫
β

ρ(t)|f ′(t)|pdt


1
p

+ |f(β)|

 β∗∫
β

ρ1−p′dt

−1 β∗∫
β

ρρp(1−p′)dt


1
p

=

 α∫
a

ρ(t)|f ′(t)|p dt

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′ dt

− 1
p′

+

 b∫
β

ρ(t)|f ′(t)|pdt


1
p

+ |f(β)|

 β∗∫
β

ρ1−p′dt

− 1
p′

=

 α∫
a

ρ(t)|f ′(t)|p dt

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′ dt

− 1
p′

+

 b∫
β

ρ(t)|f ′(t)|pdt


1
p

+ 2
1
p′ |f(β)|

 b∫
β

ρ1−p′dt

− 1
p′

≤

2

 α∫
a

ρ(t)|f ′(t)|p dt

 1
p

+
(
1 + 2

1
p′
) b∫

β

ρ(t)|f ′(t)|p dt


1
p

. (2.11)

Therefore, ||f − fα,β||W 1
p,ρ

→ 0, if α → a, β → b. Hence, f ∈ W 1
◦

p(ρ, I).

Hence, W 1
◦

p(ρ, I) = {f ∈ W 1
p (ρ, I) : f(b) = 0} = W 1

p,r(ρ, I).

We now prove equality W 1
p,l(ρ, I) = W 1

p (ρ, I). It is suffices to show the in-

clusion W 1
p,l(ρ, I) ⊃ W 1

p (ρ, I). In other words, to show that from f ∈ W 1
p (ρ, I)

it follows that f ∈ W 1
p,l(ρ, I). Let f ∈ W 1

p (ρ, I). We consider the function

fα ∈ ACp,r(I) defined by formula (2.4), where the point α∗ ∈ (a, α) is defined
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by the condition (2.10). Then

||f − fα||W 1
p,ρ

= b∫
a

ρ(t)|f ′(t)− f ′α(t)|pdt


1
p

+ |f(t0)− fα(t0)| =

 α∫
a

ρ(t)|f ′(t)− f ′α(t)|pdt +

b∫
α

ρ(t)|f ′(t)− f ′α(t)|pdt


1
p

=

 α∫
a

ρ(t)|f ′(t)− f ′α(t)|pdt

 1
p

≤

 α∫
a

ρ(t)|f ′(t)|pdt

 1
p

+

 α∫
a

ρ(t)|f ′α(t)|pdt

 1
p

=

 α∫
a

ρ(t)|f ′(t)|pdt

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′dt

−1 α∫
α∗

ρρp(1−p′)dt

 1
p

=

 α∫
a

ρ(t)|f ′(t)|pdt

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′dt

− 1
p′

≤

2

 α∫
a

ρ(t)|f ′(t)|pdt

 1
p

.

Therefore, ||f − fα||W 1
p,ρ
→ 0, if α → a. Consequently, f ∈ W 1

p,l(ρ, I).

The proof of Part (iii) is complete.

Part (iv). Let ρ1−p′ /∈ L1(a, t0) and ρ1−p′ /∈ L1(t0, b). Since W 1
◦

p(ρ, I) ⊂

W 1
p,l(ρ, I) and W 1

◦

p(ρ, I) ⊂ W 1
p,r(ρ, I). It is suffices to show that W 1

◦

p(ρ, I) =

W 1
p (ρ, I), that is W 1

◦

p(ρ, I) ⊃ W 1
p (ρ, I). Let f ∈ W 1

p (ρ, I).

We consider the function fα,β ∈ AC
◦

p (I) defined by (2.7), where β∗ and α∗

are defined by the conditions (2.9) and (2.10), respectively.

Then on the basis of (2.9), (2.10) and (2.11) we obtain

||f − fα,β||W 1
p,ρ
≤ α∫
a

ρ(t)|f ′(t)|p dt

 1
p

+ |f(α)|

 α∫
α∗

ρ1−p′ dt

− 1
p′

+
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 α∫
a

ρ(t)|f ′(t)|pdt

 1
p

+ |f(β)|

 β∗∫
β

ρ1−p′dt

− 1
p′

≤

2

 α∫
a

ρ(t)|f ′(t)|p dt

 1
p

+ 2

 b∫
β

ρ(t)|f ′(t)|p dt


1
p

.

Therefore, ||f − fα,β||W 1
p,ρ
→ 0, if α → a, β → b. Consequently, W 1

◦

p(ρ, I) ⊃

W 1
p (ρ, I).

Thus the proof of Theorem 2.1 is complete.

We now introduce some examples.

Let a = 0, b = +∞ and thus I = R+. Let ρ(t) = tγ, γ ∈ R. If γ ≤ p − 1,

then γ(1 − p′) + 1 ≥ 0 and thus ρ1−p′(t) ≡ tγ(1−p′) ∈ L1(0, 1) and ρ1−p′(t) ≡

tγ(1−p′) /∈ L1(1,∞). In other words the assumptions of part (ii) of Theorem

2.1 hold. Hence,

W 1
◦

p(t
γ, R+) = W 1

p,l(t
γ, R+) = {f ∈ W 1

p (tγ, R+) : lim
t→0+

f(t) ≡ f(0) = 0},

(2.12)

W 1
p,r(t

γ, R+) = W 1
p (tγ, R+). (2.13)

If γ > p − 1, then γ(1− p′) + 1 < 0 and thus ρ1−p′(t) ≡ tγ(1−p′) /∈ L1(0, 1)

and ρ1−p′(t) ≡ tγ(1−p′) ∈ L1(1,∞). It means that the assumptions of part (iii)

of Theorem 2.1 hold. Hence,

W 1
◦

p(t
γ, R+) = W 1

p,r(t
γ, R+) = {f ∈ W 1

p (tγ, R+) : lim
t→∞

f(t) ≡ f(∞) = 0},

(2.14)

W 1
p,l(t

γ, R+) = W 1
p (tγ, R+). (2.15)

Therefore, the following propositions hold.

Proposition 2.2. Let 1 < p < ∞. If γ ≤ p− 1, then (2.12) and (2.13) hold.

If γ < p− 1, then (2.14) and (2.15) hold.

Assume that

ρ0(t) =

 tγ, 0 < t ≤ 1

tµ, 1 ≤ t < ∞,
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where γ ∈ R, µ ∈ R.

By the above calculation it follows that if γ ≤ p − 1 and µ > p − 1, then

ρ1−p′

0 ∈ L1(R+). If γ ≤ p − 1 and µ ≤ p − 1, then ρ1−p′

0 ∈ L1(0, 1) and

ρ1−p′

0 /∈ L1(1,∞). If γ > p − 1 and µ > p − 1, then ρ1−p′

0 /∈ L1(0, 1) and

ρ1−p′

0 ∈ L1(1,∞). If γ > p − 1 and µ ≤ p − 1, then ρ1−p′

0 /∈ L1(0, 1) and

ρ1−p′

0 /∈ L1(1,∞).

Then Theorem 2.1 implies that

Proposition 2.3. Let 1 < p < ∞. Then

(i) if γ ≤ p− 1 and µ > p− 1, then for any f ∈ W 1
p (ρ0, R+) the limits f(0)

and f(∞) exist and

W 1
◦

p(ρ0, R+) = {f ∈ W 1
p (ρ0, R+) : f(0) = f(∞) = 0},

W 1
p,l(ρ0, R+) = {f ∈ W 1

p (ρ0, R+) : f(0) = 0},

W 1
p,r(ρ0, R+) = {f ∈ W 1

p (ρ0, R+) : f(∞) = 0};

(ii) if γ ≤ p− 1 and µ ≤ p− 1, then for any f ∈ W 1
p (ρ0, R+) the limit f(0)

exists and

W 1
◦

p(ρ0, R+) = W 1
p,l(ρ0, R+) = {f ∈ W 1

p (ρ0, R+) : f(0) = 0},

W 1
p,r(ρ0, R+) = W 1

p (ρ0, R+);

(iii) if γ > p − 1 and µ > p − 1, then for any f ∈ W 1
p (ρ0, R+) the limit

f(∞) exists and

W 1
◦

p(ρ0, R+) = W 1
p,r(ρ0, R+) = {f ∈ W 1

p (ρ0, R+) : f(∞) = 0},

W 1
p,l(ρ0, R+) = W 1

p (ρ0, R+);

(iv) if γ > p− 1 and µ ≤ p− 1, then

W 1
◦

p(ρ0, R+) = W 1
p,l(ρ0, R+) = W 1

p,r(ρ0, R+) = W 1
p (ρ0, R+).

Remark 2.4. The statement of Theorem 2.1. remains valid if it is assumed

that the nonnegative function ρ is measurable and almost everywhere finite on

I. The function ρ1−p′ is locally summable on I.
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2.2 The main results

In the set W 1
◦

p(ρ, I) we consider the following inequality

b∫
a

v(t)|f(t)|p dt ≤ C

b∫
a

ρ(t)|f ′(t)|p dt, (2.16)

where 1 < p < ∞, v is a nonnegative function on I, and ρ is a positive

continuous function on I. Moreover, v 6= 0 on I. The inequality (2.16) is a

Hardy inequality in differential form.

Remark 2.5. The assumption of the continuity of the functions v and ρ is

connected with this fact that the results of the inequality (2.16) will apply fur-

ther when these functions are continuous. However, the results we obtain below

hold when the functions v and ρ are nonnegative and measurable on I and the

functions vp, ρp and ρ−p′ are locally summable on I.

The inequality (2.16) in the set W 1
◦

p(ρ, I) has been considered in the work

of [27, § 8], [43, § 1.2, § 4.6]. Only in [27, § 8] the two-sided estimates of the

best constant C > 0 in (2.16) has been obtained.

Here, we obtain the more general results that include the results of the

papers indicated above, and we give a more precise two-sided estimate of the

best constant C > 0 in (2.16), than in [27, § 8].

Assume that

A1(a, b, x) =

 x∫
a

ρ1−p′ ds

p−1 b∫
x

v dt,

A∗
1(a, b, x) =

 b∫
x

ρ1−p′ ds

p−1 x∫
a

v dt,

A2(a, b, x) =

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(t)

 t∫
a

ρ1−p′ ds

p

dt,

A∗
2(a, b, x) =

 b∫
x

ρ1−p′ ds

−1 b∫
x

v(t)

 b∫
t

ρ1−p′ds

p

dt,

Ai(a, b) = sup
a<x<b

Ai(a, b, x),
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A∗
i (a, b) = sup

a<x<b
A∗

i (a, b, x), i = 1, 2.

We consider the inequality (2.16) depending on the integral behavior of the

function ρ1−p′ at the end points of I.

Later, we find convenient to denote by J0(a, b) the best constant C > 0 in

(2.16).

Let

b∫
a

ρ1−p′(s) ds < ∞. (2.17)

Definition 2.6. The point ci ∈ I, i = 1, 2 is called a middle point for (Ai, A
∗
i )

if Ai(a, ci) = A∗
i (ci, b) ≡ Tci

(a, b) < ∞, i = 1, 2.

Theorem 2.7. Let 1 < p < ∞. Let (2.17) hold. Then inequality (2.16) holds

on the set W 1
◦

p(ρ, I) if and only if exists a middle point ci ∈ I for (Ai, A
∗
i ) for

at least one i = 1, 2. At the same time for the best constant J0(a, b) in (2.16)

the following estimate holds

max{Tc1(a, b), Tc2(a, b)} ≤ J0(a, b) ≤

min

{
p

(
p

p− 1

)p−1

Tc1(a, b),

(
p

p− 1

)p

Tc2(a, b)

}
. (2.18)

Theorem 2.7 extends the different estimates of J0(a, b) given in [27, § 8].

For example, in the assumption A1(a, a) = A∗
1(b, b) = 0 of Theorem 8.8 [27]

the following inequality has been proved

1

2
A ≤ J0(a, b) ≤ p

(
p

p− 1

)p−1

A,

where A = inf
a<c<b

max{A1(a, c), A∗
1(c, b)}. In these assumptions, it is easy to

prove that A = Tc1(a, b).

We consider the following case

c∫
a

ρ1−p′(s)ds < ∞,

b∫
c

ρ1−p′(s)ds = ∞, c ∈ I. (2.19)

Theorem 2.8. Let 1 < p < ∞. Let (2.19) hold. Then the inequality (2.16)

holds on the set W 1
◦

p(ρ, I) if and only if Ai(a, b) < ∞ for at least one i = 1, 2.
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At the same time for the best constant J0(a, b) in (2.16) the following estimate

holds

max{A1(a, b), A2(a, b)} ≤ J0(a, b) ≤

min

{
p

(
p

p− 1

)p−1

A1(a, b),

(
p

p− 1

)p

A2(a, b)

}
. (2.20)

Now let

c∫
a

ρ1−p′(s)ds = ∞,

b∫
c

ρ1−p′(s)ds < ∞, c ∈ I. (2.21)

Theorem 2.9. Let 1 < p < ∞. Let (2.21) hold. Then inequality (2.16) holds

on the set W 1
◦

p(ρ, I) if and only if A∗
i (a, b) < ∞ for at least one i = 1, 2. At the

same time the following estimate

max{A∗
1(a, b), A∗

2(a, b)} ≤ J0(a, b) ≤

min

{
p

(
p

p− 1

)p−1

A∗
1(a, b),

(
p

p− 1

)p

A∗
2(a, b)

}
(2.22)

holds for the best constant J0(a, b) in (2.16).

Finally, let

c∫
a

ρ1−p′(s)ds = ∞,

b∫
c

ρ1−p′(s)ds = ∞, c ∈ I. (2.23)

Theorem 2.10. Let 1 < p < ∞. Let (2.23) hold. Then inequality (2.16) does

not hold on the set W 1
◦

p(ρ, I). Namely J0(a, b) = ∞.
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2.3 Proof of the main results

In the proof of Theorem 2.7, we employ the following statement.

Lemma 2.11. Let 1 < p < ∞. Let (2.17) hold. Then a middle point for

(Ai, A
∗
i ), i = 1, 2 exists if and only if

lim
x→a

sup Ai(a, c, x) < ∞, lim
x→b

sup A∗
i (c, b, x) < ∞, i = 1, 2, (2.24)

for all c ∈ I.

Proof of Lemma 2.11. Let a middle point ci ∈ I exists for (Ai, A
∗
i ),

i = 1, 2. Then by the definition of middle point ci, we have

Ai(a, ci) = A∗
i (ci, b) < ∞, i = 1, 2.

If c ≥ c1 then by the condition (2.17), we obtain

lim
x→a

sup A1(a, c, x) =

lim
t→a

sup
a<x<t

 x∫
a

ρ1−p′ ds

p−1 c∫
x

v dt ≤

sup
a<x<c1

 x∫
a

ρ1−p′ ds

p−1 c1∫
x

v dt + lim
t→a

sup
a<x<t

 x∫
a

ρ1−p′ ds

p−1 c∫
c1

v dt =

A1(a, c1) + lim
t→a

 t∫
a

ρ1−p′ ds

p−1 c∫
c1

v dt =

A1(a, c1) < ∞,

lim
x→b

sup A∗
1(c, b, x) =

lim
t→b

sup
t<x<b

 b∫
x

ρ1−p′ ds

p−1 x∫
c

v dt ≤

sup
c1<x<b

 b∫
x

ρ1−p′ ds

p−1 x∫
c1

v dt

= A∗
1(c1, b) < ∞.
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Similarly, we obtain

lim
x→a

sup A1(a, c, x) ≤ A1(a, c1) < ∞,

lim
x→b

sup A∗
1(c, b, x) = lim

t→b
sup

t<x<b

 b∫
x

ρ1−p′ ds

p−1 x∫
c

v dt ≤

A∗
1(c1, b) + lim

t→a

 b∫
t

ρ1−p′ ds

p−1 c1∫
c

v dt =

A∗
1(c1, b) < ∞

in case c < c1.

In the cases A2 and A∗
2, we have

lim
x→a

sup A2(a, c, x) =

lim
t→a

sup
a<x<t

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(t)

 t∫
a

ρ1−p′ ds

p

dt ≤

sup
a<x<c1

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(t)

 t∫
a

ρ1−p′ ds

p

dt =

A2(a, c2) < ∞

for all c ∈ I.

Similarly,

lim
x→b

sup A2(c, b, x) ≤ A2(c2, b) < ∞.

Conversely, let (2.24) hold. Then there exists ti ∈ (a, c) and t∗i ∈ (c, b),

i = 1, 2 such that

sup
a<x<ti

Ai(a, c, x) < ∞, sup
t∗i <x<b

A∗
i (c, b, x) < ∞, i = 1, 2. (2.25)

Then

Ai(a, c) = sup
a<x<c

Ai(a, c, x) ≤ sup
a<x<ti

Ai(a, c, x) + sup
ti<x<c

Ai(a, c, x),

A∗
i (c, b) = sup

c<x<b
A∗

i (c, b, x) ≤ sup
t∗i <x<b

A∗
i (c, b, x) + sup

c<x<t∗i

A∗
i (c, b, x).
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Hence, by (2.25) we have Ai(a, c) < ∞ and A∗
i (c, b) < ∞ for any c ∈ I. By

the condition (2.17) and by continuity of the function v on I, we have

sup
t1<x<c

A1(a, c, x) ≤

 c∫
a

ρ1−p′ ds

p−1 c∫
t1

v dt

 < ∞,

sup
t2<x<c

A2(a, c, x) ≤

 t2∫
a

ρ1−p′ ds

−1 c∫
a

v(t)

 t∫
a

ρ1−p′ ds

p

dt < ∞.

Similarly, we have sup
c<x<t∗i

A∗
i (c, b, x) < ∞, i = 1, 2.

Now we show that

lim
t→b

Ai(a, t) > lim
t→b

A∗
i (t, b), i = 1, 2. (2.26)

Indeed, if

lim
t→b

Ai(a, t) ≤ lim
t→b

A∗
i (t, b) < ∞, (2.27)

then

lim
t→b

A1(a, t) =

lim
t→b

sup
a<x<t

 x∫
a

ρ1−p′ ds

p−1 t∫
x

v dτ =

sup
a<x<b

 x∫
a

ρ1−p′ ds

p−1 b∫
x

v dτ < ∞,

∞ > lim
t→b

A2(a, t) =

lim
t→b

sup
a<x<t

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(τ)

 τ∫
a

ρ1−p′ ds

p

dτ =

sup
a<x<b

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(τ)

 τ∫
a

ρ1−p′ ds

p

dτ ≥

sup
c<x<b

 x∫
a

ρ1−p′ ds

−1 x∫
c

v(τ)

 τ∫
a

ρ1−p′ ds

p

dτ ≥

 c∫
a

ρ1−p′ ds

p b∫
a

ρ1−p′ ds

−1 b∫
c

v(τ) dτ, c ∈ I,
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and thus
b∫

c

v(τ) dτ < ∞, for all c ∈ I.

Then by (2.17), we have

lim
t→b

A∗
1(t, b) =

lim
t→b

sup
t<x<b

 b∫
x

ρ1−p′ ds

p−1 x∫
t

v dτ ≤

lim
t→b

 b∫
t

ρ1−p′ ds

p−1 b∫
t

v dτ = 0,

lim
t→b

A∗
2(t, b) =

lim
t→b

sup
t<x<b

 b∫
x

ρ1−p′ ds

−1 b∫
x

v(τ)

 b∫
τ

ρ1−p′ ds

p

dτ ≤

lim
t→b

 b∫
t

ρ1−p′ ds

p−1 b∫
t

v(τ) dτ = 0.

Hence, (2.27) implies that lim
t→b

Ai(a, t) = 0.

The functions Ai(a, t), i = 1, 2 are nonnegative, nondecreasing and contin-

uous by t ∈ I. Therefore,

lim
t→b

Ai(a, t) = Ai(a, b) = 0, i = 1, 2.

Then  x∫
a

ρ1−p′ ds

p−1 b∫
x

v dt = 0, ∀ x ∈ I, (2.28)

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(t)

 t∫
a

ρ1−p′ ds

p

dt = 0, ∀ x ∈ I. (2.29)

Since the function ρ is a positive and continuous on I, the equalities (2.28)

and (2.29) hold if and only if v(t) ≡ 0 on I, which is a contradiction to the

condition imposed on the function v. Such a contradiction shows that (2.26)

holds.
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Now we show that

lim
t→a

A∗
i (t, b) > lim

t→a
Ai(a, t), i = 1, 2. (2.30)

As indicated above, we assume that

lim
t→a

A∗
i (t, b) ≤ lim

t→a
Ai(a, t) < ∞, i = 1, 2. (2.31)

Then

∞ > lim
t→a

A∗
i (t, b) =

lim
t→a

sup
t<x<b

 b∫
x

ρ1−p′ ds

p−1 x∫
t

v dτ =

sup
a<x<b

 b∫
x

ρ1−p′ ds

p−1 x∫
a

v dτ,

∞ > lim
t→a

A∗
2(t, b) =

lim
t→a

sup
t<x<b

 b∫
x

ρ1−p′ ds

−1 b∫
x

v(τ)

 b∫
τ

ρ1−p′ ds

p

dτ =

sup
a<x<b

 b∫
x

ρ1−p′ ds

−1 b∫
x

v(τ)

 b∫
τ

ρ1−p′ ds

p

dτ ≥

sup
a<x<c

 b∫
x

ρ1−p′ ds

−1 c∫
x

v(τ)

 b∫
τ

ρ1−p′ ds

p

dτ ≥

 b∫
c

ρ1−p′ ds

p b∫
a

ρ1−p′ ds

−1 c∫
a

v(τ) dτ, c ∈ I.

Hence,
c∫

a

v(τ) dτ < ∞, for all c ∈ I,

then by applying (2.17), we obtain

lim
t→a

A1(a, t) =

lim
t→a

sup
a<x<t

 x∫
a

ρ1−p′ ds

p−1 t∫
x

v dτ ≤
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lim
t→a

 t∫
a

ρ1−p′ ds

p−1 t∫
a

v dτ = 0,

lim
t→a

A2(a, t) =

lim
t→a

sup
a<x<t

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(τ)

 τ∫
a

ρ1−p′ ds

p

dτ ≤

lim
t→a

 t∫
a

ρ1−p′ ds

p−1 t∫
a

v(τ) dτ = 0.

Then by (2.31) it follows that

lim
t→a

A∗
i (t, b) = A∗

i (a, b) = 0, i = 1, 2.

Consequently,

 b∫
x

ρ1−p′ ds

p−1 x∫
a

v dτ = 0, for all x ∈ I,

 b∫
x

ρ1−p′ ds

−1 b∫
x

v(τ)

 b∫
τ

ρ1−p′ ds

p

dτ = 0, for all x ∈ I,

which may be by continuity and positivity of the function ρ on I, when v(τ) ≡ 0

on I. But, this is a contradiction with our assumption on v. Thus, (2.30)

follows.

By continuity and monotonicity of Ai(a, t), A∗
i (t, b) in the variable t ∈ I,

the inequalities (2.26) and (2.30) imply the existence of the points ci ∈ I such

that Ai(a, ci) = A∗
i (ci, b), i = 1, 2.

Thus the proof of Lemma 2.11 is complete.

Proof of Theorem 2.7. Let the inequality (2.16) hold for the best con-

stant C = J0(a, b). Let a < c− < c+ < b.

We assume that

f0(t) =



(
c−∫
a

ρ1−p′ ds

)−1
t∫

a

ρ1−p′ ds, a < t < c−

1, c− ≤ t ≤ c+(
b∫

c+
ρ1−p′ ds

)−1 b∫
t

ρ1−p′ ds, c+ < t < b.

(2.32)
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The function f0 is locally absolutely continuous on I and

b∫
a

ρ(s)|f ′0(s)|pds =

c−∫
a

ρ(s)|f ′0(s)|pds +

c+∫
c−

ρ(s)|f ′0(s)|pds +

b∫
c+

ρ(s)|f ′0(s)|pds =

 c−∫
a

ρ1−p′ ds

−p
c−∫
a

ρρp(1−p′) ds +

 b∫
c+

ρ1−p′ ds

−p b∫
c+

ρρp(1−p′) ds =

 c−∫
a

ρ1−p′ ds

1−p

+

 b∫
c+

ρ1−p′ ds

1−p

< ∞. (2.33)

Therefore, f0 ∈ W 1
p (ρ, I) and lim

t→a+
f0(t) ≡ f0(a) = 0, lim

t→b−
f0(t) ≡ f0(b) = 0

by construction. Hence, by the condition (2.17) based on Theorem 2.1 f0 ∈

W 1
◦

p(ρ, I). By substituting f0 in (2.16), we have

J0(a, b) ≥

b∫
a

v(t)|f0(t)|pdt

b∫
a

ρ(t)|f ′0(t)|pdt

. (2.34)

By simple computations, we have

b∫
a

v(t)|f0(t)|pdt =

c−∫
a

v(t)|f0(t)|pdt +

c+∫
c−

v(t)|f0(t)|pdt +

b∫
c+

v(t)|f0(t)|pdt =

 c−∫
a

ρ1−p′ ds

−p
c−∫
a

v(t)

 t∫
a

ρ1−p′ ds

p

dt +

c+∫
c−

v(t)dt +

 b∫
c+

ρ1−p′ ds

−p b∫
c+

v(t)

 b∫
t

ρ1−p′ ds

p

dt. (2.35)

By applying (2.33), (2.34) and (2.35), we obtain the following two inequal-

ities

J0(a, b) ≥
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c−∫
a

ρ1−p′ ds

)−p
c−∫
a

v(t)

(
t∫

a

ρ1−p′ ds

)p

dt(
c−∫
a

ρ1−p′ ds

)1−p

+

(
b∫

c+
ρ1−p′ ds

)1−p
+

(
b∫

c+
ρ1−p′ ds

)−p b∫
c+

v(t)

(
b∫
t

ρ1−p′ ds

)p

dt(
c−∫
a

ρ1−p′ ds

)1−p

+

(
b∫

c+
ρ1−p′ ds

)1−p
, (2.36)

J0(a, b) ≥
c∫

c−
v(t)dt +

c+∫
c

v(t)dt(
c−∫
a

ρ1−p′ ds

)1−p

+

(
b∫

c+
ρ1−p′ ds

)1−p
, c ∈ (c−, c+). (2.37)

By multiplying terms of the fraction in the right hand sides of (2.36) and

(2.37) by

(
c−∫
a

ρ1−p′ ds

)p−1

, we have

J0(a, b) ≥

≥

(
c−∫
a

ρ1−p′ ds

)−1
c−∫
a

v(t)

(
t∫

a

ρ1−p′ ds

)p

dt

1 +

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)1−p
+

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)−p b∫
c+

v(t)

(
b∫
t

ρ1−p′ ds

)p

dt

1 +

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)1−p
,(2.38)

J0(a, b) ≥ (
c−∫
a

ρ1−p′ ds

)p−1
c∫

c−
v(t)dt +

(
c−∫
a

ρ1−p′ ds

)p−1
c+∫
c

v(t)dt

1 +

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)1−p
.(2.39)

Since, the left hand sides of (2.38) and (2.39) do not depend on c− ∈ (a, c),

then we can take the limit as c− → a and obtain
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J0(a, b) ≥

lim
x→a

sup

(
x∫
a

ρ1−p′ ds

)−1 x∫
a

v(t)

(
t∫

a

ρ1−p′ ds

)p

dt

1 + lim
c−→a

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)1−p
+

lim
c−→a

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)−p b∫
c+

v(t)

(
b∫
t

ρ1−p′ ds

)p

dt

1 + lim
c−→a

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)1−p
=

lim
x→a

sup

 x∫
a

ρ1−p′ ds

−1 x∫
a

v(t)

 t∫
a

ρ1−p′ ds

p

dt =

lim
x→a

sup A2(a, c, x), (2.40)

J0(a, b) ≥

lim
x→a

sup

(
x∫
a

ρ1−p′ ds

)p−1 c∫
x

v(t)dt + lim
c−→a

(
c−∫
a

ρ1−p′ ds

)p−1
c+∫
c

v(t)dt

1 + lim
c−→a

(
c−∫
a

ρ1−p′ ds

)p−1(
b∫

c+
ρ1−p′ ds

)1−p
=

lim
x→a

sup

 x∫
a

ρ1−p′ ds

p−1 c∫
x

v(t) dt =

lim
x→a

sup A1(a, c, x). (2.41)

Now, by multiplying both terms of the fractions in the right hand sides of

(2.36) and (2.37) by

(
b∫

c+
ρ1−p′ ds

)p−1

and by taking the limit as c+ → b, we

obtain

J0(a, b) ≥

lim
c+→b

(
b∫

c+
ρ1−p′ ds

)p−1
(

c−∫
a

ρ1−p′ ds

)−p
c−∫
a

v(t)

(
t∫

a

ρ1−p′ ds

)p

dt

lim
c+→b

(
b∫

c+
ρ1−p′ ds

)p−1
(

c−∫
a

ρ1−p′ ds

)1−p

+ 1

+
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lim
x→b

sup

(
b∫

x

ρ1−p′ ds

)−1 b∫
x

v(t)

(
b∫
t

ρ1−p′ ds

)p

dt

lim
c+→b

(
b∫

c+
ρ1−p′ ds

)p−1
(

c−∫
a

ρ1−p′ ds

)1−p

+ 1

=

lim
x→b

sup

 b∫
x

ρ1−p′ ds

−1 b∫
x

v(t)

 b∫
t

ρ1−p′ ds

p

dt =

lim
x→b

sup A∗
2(c, b, x), (2.42)

J0(a, b) ≥

lim
c+→b

(
b∫

c+
ρ1−p′ ds

)p−1 c∫
c−

v(t)dt + lim
x→b

sup

(
b∫

x

ρ1−p′ ds

)p−1 x∫
c

v(t)dt

lim
c+→b

(
b∫

c+
ρ1−p′ ds

)p−1
(

c−∫
a

ρ1−p′ ds

)1−p

+ 1

=

lim
x→b

sup

 b∫
x

ρ1−p′ ds

p−1 x∫
c

v(t) dt =

lim
x→b

sup A∗
1(c, b, x). (2.43)

By applying (2.40), (2.41), (2.42) and (2.43), it follows that (2.24) holds.

Then by Lemma 2.11, there exist middle points ci ∈ I for (Ai, A
∗
i ), i = 1, 2.

Consequently, by Definition 2.6 we have Ai(a, ci) = A∗
i (ci, b) ≡ Tci

(a, b) < ∞,

i = 1, 2.

Since Ai(a, ci, x), A∗
i (ci, b, x) are continuous in x on (a, ci] and [ci, b), respec-

tively, and Ai(a, ci) ≥ lim
x→a

sup Ai(a, ci, x), A∗
i (ci, b) ≥ lim

x→b
sup A∗

i (ci, b, x), then

there exist points c−i , c+
i : a < c−i ≤ ci, ci ≤ c+

i < b that Ai(a, ci) = Ai(a, ci, c
−
i ),

A∗
i (ci, b) = A∗

i (ci, b, c
+
i ) and that c−1 6= c1, c+

i 6= c1.

Let c− = c−2 , c+ = c+
2 in (2.36), and c = c1, c− = c−1 , c+ = c+

2 in (2.37).

Then, the inequalities (2.36) and (2.37) imply that:

J0(a, b) ≥ (
c−2∫
a

ρ1−p′ ds

)−p
c−2∫
a

v(t)

(
t∫

a

ρ1−p′ ds

)p

dt(
c−2∫
a

ρ1−p′ ds

)1−p

+

(
b∫

c+2

ρ1−p′ ds

)1−p
+
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b∫

c+2

ρ1−p′ ds

)−p
b∫

c+2

v(t)

(
b∫
t

ρ1−p′ ds

)p

dt

(
c−2∫
a

ρ1−p′ ds

)1−p

+

(
b∫

c+2

ρ1−p′ ds

)1−p
=

(
c−2∫
a

ρ1−p′ ds

)−1
c−2∫
a

v(t)

(
t∫

a

ρ1−p′ ds

)p

dt

(
b∫

c+2

ρ1−p′ ds

)p−1

(
b∫

c+2

ρ1−p′ ds

)p−1

+

(
c−2∫
a

ρ1−p′ ds

)p−1 +

(
b∫

c+2

ρ1−p′ ds

)−1
b∫

c+2

v(t)

(
b∫
t

ρ1−p′ ds

)p

dt

(
c−2∫
a

ρ1−p′ ds

)p−1

(
b∫

c+2

ρ1−p′ ds

)p−1

+

(
c−2∫
a

ρ1−p′ ds

)p−1 =

A2(a, c2, c
−
2 )

(
b∫

c+2

ρ1−p′ ds

)p−1

+ A∗
2(c2, b, c

+
2 )

(
c−2∫
a

ρ1−p′ ds

)p−1

(
b∫

c+2

ρ1−p′ ds

)p−1

+

(
c−2∫
a

ρ1−p′ ds

)p−1 =

A2(a, c2)

(
b∫

c+2

ρ1−p′ ds

)p−1

+ A∗
2(c2, b)

(
c−2∫
a

ρ1−p′ ds

)p−1

(
b∫

c+2

ρ1−p′ ds

)p−1

+

(
c−2∫
a

ρ1−p′ ds

)p−1 =

Tc2(a, b)

(
b∫

c+2

ρ1−p′ ds

)p−1

+

(
c−2∫
a

ρ1−p′ ds

)p−1

(
b∫

c+2

ρ1−p′ ds

)p−1

+

(
c−2∫
a

ρ1−p′ ds

)p−1 = Tc2(a, b) (2.44)

and that

J0(a, b) ≥
c1∫

c−1

v(t)dt +
c+1∫
c1

v(t)dt

(
c−1∫
a

ρ1−p′ ds

)1−p

+

(
b∫

c+1

ρ1−p′ ds

)1−p
=
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(
c−1∫
a

ρ1−p′ ds

)p−1
c1∫

c−1

v(t)dt

(
b∫

c+1

ρ1−p′ ds

)p−1

(
b∫

c+1

ρ1−p′ ds

)p−1

+

(
c−1∫
a

ρ1−p′ ds

)p−1 +

(
b∫

c+1

ρ1−p′ ds

)p−1
c+1∫
c1

v(t)dt

(
c−1∫
a

ρ1−p′ ds

)p−1

(
b∫

c+1

ρ1−p′ ds

)p−1

+

(
c−1∫
a

ρ1−p′ ds

)p−1 =

A1(a, c1, c
−
1 )

(
b∫

c+1

ρ1−p′ ds

)p−1

+ A∗
1(c1, b, c

+
1 )

(
c−1∫
a

ρ1−p′ ds

)p−1

(
b∫

c+1

ρ1−p′ ds

)p−1

+

(
c−1∫
a

ρ1−p′ ds

)p−1 =

A1(a, c1)

(
b∫

c+1

ρ1−p′ ds

)p−1

+ A∗
1(c1, b)

(
c−1∫
a

ρ1−p′ ds

)p−1

(
b∫

c+1

ρ1−p′ ds

)p−1

+

(
c−1∫
a

ρ1−p′ ds

)p−1 =

Tc1(a, b)

(
b∫

c+1

ρ1−p′ ds

)p−1

+

(
c−1∫
a

ρ1−p′ ds

)p−1

(
b∫

c+1

ρ1−p′ ds

)p−1

+

(
c−1∫
a

ρ1−p′ ds

)p−1 = Tc1(a, b), (2.45)

respectively.

The inequalities (2.44) and (2.45) imply the left hand side of the estimate

(2.18).

Sufficiency. Assume that there exists middle point ci ∈ I for (Ai, A
∗
i ),

i = 1, 2. Then Ai(a, ci) = A∗
i (ci, b) = Tci

(a, b) < ∞, i = 1, 2. By the condition

(2.17) we have f(a) = f(b) = 0 for f ∈ W 1
◦

p(ρ, I), and thus the function

f ∈ W 1
◦

p(ρ, I) can be written in the form

f(x) =

x∫
a

f ′(s) ds, x ∈ (a, ci), f(x) = −
b∫

x

f ′(s) ds, x ∈ (ci, b).

in the intervals (a, ci) and (ci, b), respectively.

Then
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b∫
a

v(t)|f(t)|pdt =

ci∫
a

v(t)|f(t)|pdt +

b∫
ci

v(t)|f(t)|pdt =

ci∫
a

v(t)

∣∣∣∣∣∣
t∫

a

f ′(s)ds

∣∣∣∣∣∣
p

dt +

b∫
ci

v(t)

∣∣∣∣∣∣
b∫

t

f ′(s)ds

∣∣∣∣∣∣
p

dt. (2.46)

According to Theorems 1.18–1.20 and Theorem 1.22, we obtain

ci∫
a

v(t)

∣∣∣∣∣∣
t∫

a

f ′(s)ds

∣∣∣∣∣∣
p

dt ≤ γiAi(a, ci)

ci∫
a

ρ(s)|f ′(s)|p ds, i = 1, 2,

b∫
ci

v(t)

∣∣∣∣∣∣
b∫

t

f ′(s)ds

∣∣∣∣∣∣
p

dt ≤ γiA
∗
i (ci, b)

b∫
ci

ρ(s)|f ′(s)|p ds, i = 1, 2,

where γ1 = p
(

p
p−1

)p−1

, γ2 =
(

p
p−1

)p

. By applying (2.46), we obtain

b∫
a

v(t)|f(t)|pdt ≤

γiAi(a, ci)

ci∫
a

ρ(s)|f ′(s)|p ds + γiA
∗
i (a, ci)

b∫
ci

ρ(s)|f ′(s)|p ds =

γiTci
(a, b)

 ci∫
a

ρ(s)|f ′(s)|p ds +

b∫
ci

ρ(s)|f ′(s)|p ds

 =

γiTci
(a, b)

b∫
a

ρ(s)|f ′(s)|p ds.

Namely, the inequality (2.16) holds. Then by (2.18) the following estimate

J0(a, b) ≤ min{γ1Tc1(a, b), γ2Tc2(a, b)},

holds for the best constant C = J0(a, b) in (2.16).

Thus the proof of Theorem 2.7 is complete.

Proof of the Theorem 2.8. The condition (2.19) holds, by the as-

sumptions of Theorem 2.8. Then by the part (ii) of Theorem 2.1 we have
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W 1
◦

p(ρ, I) = {f ∈ W 1
p (ρ, I) : f(a) = 0}. Consequently, the equalities f ′ =

g, f(x) =
x∫
a

g(s)ds define one-to-one mapping between spaces W 1
◦

p(ρ, I) and

Lp,ρ(I). Then the inequality (2.16) on the set W 1
◦

p(ρ, I) is equivalent to the

following inequality

b∫
a

v(t)

∣∣∣∣∣∣
t∫

a

g(s)ds

∣∣∣∣∣∣
p

dt ≤ C

b∫
a

ρ(s) |g(s)|p ds, g ∈ Lp,ρ(I). (2.47)

In addition, the best constant in (2.16) and in (2.47) coincide. By Theorems

1.18–1.20 the inequality (2.47) holds if and only if Ai(a, b) < ∞ for at least

one i = 1, 2 and the estimate (2.20) holds for the best constant C = J0(a, b).

Thus the proof of Theorem 2.8 is complete.

Proof of Theorem 2.9. The condition (2.21) holds, by the assumptions

of Theorem 2.9. Then by the part (iii) of Theorem 2.1 we have W 1
◦

p(ρ, I) = {f ∈

W 1
p (ρ, I) : f(b) = 0}. Consequently, the equality f ′ = g, f(x) = −

b∫
x

g(s)ds

define one-to-one mapping between the spaces W 1
◦

p(ρ, I) and Lp,ρ(I). Then the

inequality (2.16) on the set W 1
◦

p(ρ, I) is equivalent to the following inequality

b∫
a

v(t)

∣∣∣∣∣∣
b∫

t

g(s)ds

∣∣∣∣∣∣
p

dt ≤ C

b∫
a

ρ(s) |g(s)|p ds, g ∈ Lp,ρ(I), (2.48)

with the best constant C = J0(a, b). Then by Theorem 1.19 and Theorem 1.22

the inequality (2.48) holds if and only if A∗
i (a, b) < ∞ for at least one i = 1, 2

and the estimate (2.22) holds for the best constant J0(a, b).

Thus the proof of Theorem 2.9 is complete.

Proof of Theorem 2.10 The condition (2.23) holds, by the assumptions

of Theorem 2.10. Then by the part (iv) of Theorem 2.1. we have W 1
◦

p(ρ, I) =

W 1
p (ρ, I). For the function f(x) ≡ 1 ∈ W 1

p (ρ, I) the inequality (2.16) does not

hold. Hence, J0(a, b) = ∞.

Thus the proof of Theorem 2.10 is complete.



Chapter 3

Disfocal and disconjugate

half–linear second order

differential equations on a given

interval

Notions such as disfocal and disconjugate equations play a very important role

in the qualitative theory of differential equations (see e.g., [45], [21], [5], [7],

[36], [8], [9], [46]).

In theory of linear and half–linear second order differential equations disfo-

cality and disconjugacy properties on a given interval with regular and singular

endpoints have been investigated comparatively less than nonoscillatory prop-

erties of these equations. The Riccati technique and the Lyapunov, La Vallee–

Poussin and Opial equations are often used to find disfocality and disconjugacy

properties on a given interval (see e.g., [11, Chapter 5]).

In this Section, by using the results on the weighted Hardy inequalities we

get necessary and sufficient conditions for half–linear second order differential

equation to be disfocal and disconjugate on a given interval. In Section 3.1 we

investigate disfocality properties. The main results on disconjugacy properties

are in Section 3.2. The corresponding proofs are in Section 3.3.

51
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3.1 Disfocality.

Let I = (a, b), −∞ ≤ a < b ≤ +∞. Let 1 < p < ∞ and 1
p

+ 1
p′

= 1. Let v ≥ 0

and ρ > 0 be continuous functions on I. Moreover, v 6= 0 on I.

On I, we consider the half–linear second order differential equation(
ρ(t)|y′(t)|p−2y′(t)

)′
+ v(t)|y(t)|p−2y(t) = 0. (3.1)

Let a ≤ α < β < b. According to Definitions 1.13 and 1.14, we consider

the problem of the existence of a left focal point of the point β on the interval

(α, β) with respect to the equation (3.1) and the left disfocality property on

the interval (α, β).

If a < α < β ≤ b, we consider the existence of a right focal point of the

point α on the interval (α, β) with respect to the equation (3.1) and the right

disfocality property on the interval (α, β).

Theorem 3.1. Let 1 < p < ∞. Let a ≤ α < β < b. Then the validity of the

condition

max{A1(α, β), A2(α, β)} ≤ 1 (3.2)

is necessary and the validity of one of the conditions

A1(α, β) ≤ 1

p

(
p− 1

p

)p−1

, A2(α, β) ≤
(

p− 1

p

)p

(3.3)

is sufficient for the equation (3.1) to be left disfocal on the interval (α, β].

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. If the condition

max{A1(α, β), A2(α, β)} > 1 (3.4)

holds, then there exists a left focal point of the point β with respect to the

equation (3.1) on the interval (α, β).

Theorem 3.3. Let 1 < p < ∞. Let a < α < β ≤ b. Then the validity of the

condition

max{A∗
1(α, β), A∗

2(α, β)} ≤ 1 (3.5)

is necessary and the validity of one of the conditions

A∗
1(α, β) ≤ 1

p

(
p− 1

p

)p−1

, A∗
2(α, β) ≤

(
p− 1

p

)p

(3.6)

is sufficient for the equation (3.1) to be left disfocal on the interval [α, β).
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Corollary 3.4. Let the assumptions of Theorem 3.3 hold. If the condition

max{A∗
1(α, β), A∗

2(α, β)} > 1 (3.7)

holds, then there exists a right focal point of the point α with respect to the

equation (3.1) on the interval (α, β).

The values Ai(α, β) and A∗
i (α, β), i = 1, 2, are defined in Section 2.2 of

Chapter 2.

For the proof of Theorem 3.1 we need the following statement.

Lemma 3.5. Let the assumptions of Theorem 3.1 hold. Then the equation

(3.1) is left disfocal on the interval (α, β] if and only if

β∫
α

v(x)|f(x)|p dx ≤
β∫

α

ρ(x)|f ′(x)|p dx, for all f ∈ W 1
p,l(ρ, (α, β)). (3.8)

Proof of Lemma 3.5. First, we start with the case a < α < β < b. In

this case the norm of the space W 1
p,l(α, β) is equivalent to the norm

||f ||W 1
p

=

 β∫
α

|f ′(t)|p dt


1
p

.

The norm of the space W 1
p,l(ρ, (α, β)) is equivalent to the norm

||f ||W 1
p (ρ,I) =

 β∫
α

ρ(t)|f ′(t)|p dt


1
p

.

Since ρ > 0 and it is continuous on I, then

0 < m = min
α<t<β

ρ(t) ≤ max
α<t<β

ρ(t) = M < ∞.

Therefore,

m

β∫
α

|f ′(x)|p dx ≤
β∫

α

ρ(x)|f ′(x)|p dx ≤ M

β∫
α

|f ′(x)|p dx.

Hence, the spaces W 1
p,l(α, β) and W 1

p,l(ρ, (α, β)) coincide and have equiva-

lent norms. Then on the basis of Theorem 2.8 the equation (3.1) is left disfocal

on the interval (α, β] if and only if

β∫
α

(ρ(t)|f ′(t)|p − v(t)|f(t)|p) dt ≥ 0, for all f ∈ W 1
p,r(ρ, (α, β)),
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a condition which is equivalent to (3.8). Indeed, the integral
β∫
α

ρ(t)|f ′(t)|p dt is

finite for all f ∈ W 1
p,r(ρ, (α, β)).

Now, let a = α < β < b. Assume that the inequality (3.8) holds if α = a,

but the equation (3.1) is not left disfocal on (a, β), or in other words that there

exists a left focal point γ ∈ (a, β) of the point β. Then by Theorem 2.8 there

exists α1 ∈ (a, γ) and f̃ ∈ W 1
p,l(α1, β), such that

β∫
α1

v(t)|f̃(t)|p dt >

β∫
α1

ρ(t)|f̃ ′(t)|p dt.

Since f̃(α1) = 0, then we can extend the function f̃ take zero on the semi–

interval (a, α1] and obtain an extension f̃0 on (α, β), such that f̃0 ∈ W 1
p,l(ρ, (a, β))

and
β∫

a

v(t)|f̃0(t)|p dt >

β∫
a

ρ(t)|f̃ ′0(t)|p dt,

in contradiction with the validity of (3.8). Hence, the equation (3.1) is left

disfocal on (a, β].

Let the equation (3.1) be left disfocal on (a, β]. Assume that the inequality

(3.8) does not hold for α = a. Then there exists a function f̂ ∈ W 1
p,l(ρ, (a, β))

such that
β∫

a

v(t)|f̂(t)|p dt >

β∫
a

ρ(t)|f̂ ′(t)|p dt. (3.9)

Since f̂ ∈ W 1
p,l(ρ, (a, β)) there exists a sequence {f̂n} ∈ ACp,l(a, β) such

that ||f̂ − f̂n||W 1
p (ρ,(a,β)) → 0 for n → ∞. Since each function f̂n ∈ ACp,l(a, β)

equals zero in a suitable right neighborhood of the point a, then (3.8) holds

for f̂n. In other words we have

β∫
a

ρ(t)|f̂ ′n(t)|p dt ≥
β∫

a

v(t)|f̂n(t)|p dt. (3.10)

Hence, the sequence {f̂n} is fundamental in the complete space Lp,v(a, β).

Therefore, by taking the limit as n →∞ in (3.10) we have

β∫
a

ρ(t)|f̂ ′(t)|p dt ≥
β∫

a

v(t)|f̂(t)|p dt,
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in contradiction with (3.9), and thus (3.8) holds.

Thus the proof of Lemma 3.5 is complete.

Let

Jl(α, β) = sup
0 6=g∈Lp,ρ(α,β)

β∫
α

v(t)

∣∣∣∣ t∫
α

g(s) ds

∣∣∣∣p dt

β∫
α

ρ(t) |g(t)|p dt

. (3.11)

Lemma 3.6. Let the assumptions of Theorem 3.1 hold. Then the equation

(3.1) is left disfocal on the interval (α, β] if and only if Jl(α, β) ≤ 1.

Proof of Lemma 3.6. Let the equation (3.1) be left disfocal on (α, β].

Then by Lemma 3.5 the inequality (3.8) holds. Then W 1
p,l(ρ, (α, β)) 6= W 1

p (ρ, (α, β)).

By the proof of Theorem 1.21 it follows that the inequality (3.8) does not hold

on the set W 1
p (ρ, (α, β)). Hence, by Theorem 2.1 we have

W 1
p,l(ρ, (α, β)) = {f ∈ W 1

p (ρ, (α, β)) : f(α) = 0}. (3.12)

The map of Lp,ρ(α, β) to W 1
p,l(ρ, (α, β)) which takes g ∈ Lp,ρ(α, β) to the

function f define by f(t) =
t∫

α

g(s)ds for all t ∈ (α, β) is a one–to–one corre-

spondence.

Therefore, the inequality (3.8) is equivalent to

β∫
α

v(t)

∣∣∣∣∣∣
t∫

α

g(s) ds

∣∣∣∣∣∣
p

dt ≤
β∫

α

ρ(t) |g(t)|p dt, g ∈ Lp,ρ(α, β). (3.13)

Consequently, by (3.11) and (3.13), we have Jl(α, β) ≤ 1.

Now, let Jl(α, β) ≤ 1. Since Jl(α, β) is the best constant in the inequality

of the type (3.13), then by Theorem 1.18 we obtain A1(α, β) ≤ 1. Hence,
β∫
α

ρ1−p′(s) ds < ∞. Then by Theorem 2.1 we have (3.12). Moreover, by

Jl(α, β) ≤ 1 and by (3.11) and by the equivalence of (3.12) and (3.8) it follows

that (3.13) holds. Hence, by Lemma 3.5 the equation (3.1) is left disfocal on

(α, β].

Thus the proof of Lemma 3.6 is complete.

Proof of Theorem 3.1. Let the equation (3.1) be left disfocal on (α, β].

Then by Lemma 3.6, we have Jl(α, β) ≤ 1. By definition, Jl(α, β) is the best

constant in the inequality

β∫
α

v(t)

∣∣∣∣∣∣
t∫

α

g(s) ds

∣∣∣∣∣∣
p

dt ≤ Jl(α, β)

β∫
α

ρ(t) |g(t)|p dt, g ∈ Lp,ρ(α, β). (3.14)
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Then by Theorem 1.18 and Theorem 1.20 we obtain

A1(α, β) ≤ Jl(α, β) ≤ p

(
p

p− 1

)p−1

A1(α, β), (3.15)

A2(α, β) ≤ Jl(α, β) ≤
(

p

p− 1

)p

A2(α, β). (3.16)

Since Jl(α, β) ≤ 1, then we obtain (3.2).

Let one of the conditions (3.3) holds. Then by (3.15) and (3.16) it follows

that Jl(α, β) ≤ 1. Therefore, by Lemma 3.6 the equation (3.1) is left disfocal

on (α, β].

Thus the proof of Theorem 3.1 is complete.

Proof of Corollary 3.2. Let (3.4) hold. Then by (3.15) and by (3.16) it

follows that Jl(α, β) > 1.

The following two cases Jl(α, β) = ∞ and 1 < Jl(α, β) < ∞ are possible.

In the first case from the definition of Jl(α, β), we have that for any N > 0

there exists gN ∈ Lp,ρ(α, β) such that

β∫
α

v(t)

∣∣∣∣∣∣
t∫

α

gN(s) ds

∣∣∣∣∣∣
p

dt > N

β∫
α

ρ(t) |gN(t)|p dt.

In particular, for N = 1 there exists g1 ∈ Lp,ρ(α, β) such that

β∫
α

v(t)

∣∣∣∣∣∣
t∫

α

g1(s) ds

∣∣∣∣∣∣
p

dt >

β∫
α

ρ(t) |g1(t)|p dt. (3.17)

Assume that f1(t) =
t∫

α

g1(s) ds. Then f1(α) = 0 and f ′1(t) = g1(t) ∈

Lp,ρ(α, β). Hence, f1 ∈ W 1
p,l(ρ, (α, β)) and

β∫
α

v(t)|f1(t)|p dt >

β∫
α

ρ(t)|f ′1(t)|p dt, (3.18)

i.e., (3.8) does not holds. Then by Lemma 3.5 there exists a left focal point of

the point β with respect to the equation (3.1).

Since Jl(α, β) is the best constant in the inequality (3.14), in the second

case, there exists g1 ∈ Lp,ρ(α, β) such that (3.17) holds. Consequently, (3.18)

holds. This gives the existence of the left focal point of the point β with respect

to (3.1).
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Thus the proof of Corollary 3.2 is complete.

In the same way, on the basis of Lemma 3.7 and Lemma 3.8 we can prove

Theorem 3.3 and Corollary 3.4. The proofs of Lemma 3.7 and Lemma 3.8 are

similar to the proofs of Lemma 3.5 and Lemma 3.6, respectively.

Lemma 3.7. Let the assumptions of Theorem 3.3 hold. Then the equation

(3.1) is right disfocal on the interval [α, β) if and only if

β∫
α

v(x)|f(x)|p dx ≤
β∫

α

ρ(x)|f ′(x)|p dx, for all f ∈ W 1
p,r(ρ, (α, β)).

Lemma 3.8. Let the assumptions of Theorem 3.3 hold. Then the equation

(3.1) is right disfocal on the interval [α, β) if and only if Jr(α, β) ≤ 1, where

Jr(α, β) = sup
0 6=g∈Lp,ρ(α,β)

β∫
α

v(t)

∣∣∣∣∣ β∫
t

g(s) ds

∣∣∣∣∣
p

dt

β∫
α

ρ(t) |g(t)|p dt

.



58 DISFOCAL AND DISCONJUGATE HALF–LINEAR EQUATIONS

3.2 Disconjugacy. Main results.

In this Section, we investigate the problem of the disconjugacy of the half–

linear second order differential equation (3.1) on a given interval (α, β) ⊆ I.

By assuming the same conditions on the coefficients of the equation (3.1) as

in Section 3.1, we write the following remark.

Remark 3.9. If the continuous function v changes sing, then we set that

v+(t) = max{0, v(t)} and we consider the equation

(
ρ(t)|y′(t)|p−2y′(t)

)′
+ v+(t)|y(t)|p−2y(t) = 0 (3.19)

instead of the equation (3.1). Then on the basis of the Sturm comparison

Theorem (Theorem 1.9), the disconjugacy on (α, β) of the equation (3.19)

follows by the diconjugacy on (α, β) of the equation (3.1). Therefore, without

loss of generality we will assume that v ≥ 0 and ρ > 0 are continuous functions

on I and that v 6= 0 on I as in Section 3.1.

Let a ≤ α < β ≤ b. We consider the problem of the disconjugacy on (α, β)

depending on the integral behavior of the function ρ1−p′ on (α, β).

Let
β∫

α

ρ1−p′(t) dt < ∞. (3.20)

Theorem 3.10. Assume that 1 < p < ∞ and that (3.20) hold. If the equation

(3.1) is disconjugate on (α, β), then there exists a middle point ci ∈ (α, β)

for (Ai(α, β), A∗
i (α, β)) and Ai(α, ci) = A∗

i (ci, β) ≡ Tci
(α, β) ≤ 1, i = 1, 2.

Conversely, if there exists a middle point ci ∈ (α, β) for (Ai(α, β), A∗
i (α, β))

and Tci
(α, β) < γi for at least one i = 1, 2, where γ1 = 1

p

(
p−1

p

)p−1

, γ2 =(
p−1

p

)p

, then the equation (3.1) is disconjugate on (α, β).

Corollary 3.11. Let the assumptions of Theorem 3.10 hold. Let there exist a

middle point ci0 ∈ (α, β) for (Ai0(α, β), A∗
i0
(α, β)), 1 ≤ i0 ≤ 2. If Tci0

(α, β) <

γi0, then the equation (3.1) is left disfocal on (α, ci0 ] and right disfocal on

[ci0 , β). Moreover, any solution satisfying the condition y′(ci0) = 0, y(ci0) 6= 0

is not identically equal to zero on (α, β).
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By the Roundabout theorem (Theorem 1.7) the disconjugacy on (α, β) of

the equation (3.1) is equivalent to the existence of a solution of (3.1) which is

not identically zero on (α, β). The last statement in Corollary 3.11 shows how

to find such a solution.

Corollary 3.12. Let the asumptions of Corollary 3.11 hold. If Tci0
> 1, then

all solutions of the equation (3.1) satisfying the condition y′(ci0) = 0, y(ci0) 6= 0

has at least one zero on each of the intervals (α, ci0) and (ci0 , β). Therefore,

the equation (3.1) is conjugate on (α, β).

The assumptions of Corollary 3.12 imply the existence of a solution that

has at least two zeros on a given interval.

Corollary 3.13. Let the assumptions of Theorem 3.10 hold. If at least one

of the limits lim
x→a

sup Ai(α, c, x) and lim
x→β

A∗
i (c, β, x), c ∈ (α, β), is infinite, then

the equation (3.1) is conjugate on (α, β).

Now, we consider the case

c∫
α

ρ1−p′(s) ds < ∞,

β∫
c

ρ1−p′(s) ds = ∞, c ∈ (α, β). (3.21)

We note that the second condition in (3.21) holds if and only if β = b.

Theorem 3.14. Let 1 < p < ∞. Let (3.21) hold. Then the condition

max{A1(α, β), A2(α, β)} ≤ 1 (3.22)

is necessary and the validity of one of the conditions

A1(α, β) <
1

p

(
p− 1

p

)p−1

, A2(α, β) <

(
p− 1

p

)p

(3.23)

is sufficient for the equation (3.1) to be disconjugate on (α, β).

We now introduce the following definition.

Definition 3.15. The equation (3.1) is said to be left or right disfocal on all

the interval (α, β), if for any c ∈ (α, β) it is left or right disfocal on (α, c] or

on [c, β), respectively.

The next theorem defines more exactly the assumption of Theorem 3.14.
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Theorem 3.16. Let the assumptions of Theorem 3.14 hold. Then the condi-

tion (3.22) is necessary and the validity of one of the conditions of (3.23) is

sufficient for the equation (3.1) to be left disfocal on all the interval (α, β).

By Theorem 3.16 we can deduce the following corollary.

Corollary 3.17. Let (3.21) hold. Then for any c ∈ (α, β) the condition (3.22)

is necessary and the validity of at least one of the conditions of (3.23) is suffi-

cient for the solutions of the equation (3.1) with the initial condition y(c) = 0,

y′(c) 6= 0 to be strictly monotone on [c, β).

Let
c∫

α

ρ1−p′(s) ds = ∞,

β∫
c

ρ1−p′(s) ds < ∞, c ∈ (α, β). (3.24)

We note that the first condition in (3.24) holds if and only if α = a.

Theorem 3.18. Let 1 < p < ∞. Let (3.24) hold. Then the condition

max{A∗
1(α, β), A∗

2(α, β)} ≤ 1 (3.25)

is necessary and the validity of one of the conditions

A∗
1(α, β) <

1

p

(
p− 1

p

)p−1

, A∗
2(α, β) <

(
p− 1

p

)p

(3.26)

is sufficient for the equation (3.1) to be disconjugate on (α, β).

Theorem 3.19. Let the assumptions of Theorem 3.18 hold. Then the condi-

tion (3.25) is necessary and the validity of one of the conditions of (3.26) is

sufficient for the equation (3.1) to be right disfocal on all the interval (α, β).

By Theorem 3.19 we can deduce the following corollary.

Corollary 3.20. Let (3.24) hold. Then for any c ∈ (α, β) the condition (3.25)

is necessary and the validity of at least one of the conditions of (3.26) is suffi-

cient for the solutions of the equation (3.1) with the initial condition y(c) = 0,

y′(c) 6= 0 to be strictly monotone on (α, c].

At last we consider the case when

c∫
α

ρ1−p′(s) ds = ∞,

β∫
c

ρ1−p′(s) ds = ∞, c ∈ (α, β). (3.27)

In this case we have α = a, β = b.
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Theorem 3.21. Let 1 < p < ∞. Let (3.27) hold. Then the equation (3.1) is

conjugate on (α, β) = (a, b). Moreover, for any c ∈ (a, b) the solution of the

equation (3.1) with the initial condition y′(c) = 0, y(c) 6= 0 has at least one

zero on each of the intervals (a, c) and (c, b).

Consider the equation (3.1) with the parameter λ ∈ R:

(ρ(t)|y′(t)|p−2y′(t))′ + λv(t)|y(t)|p−2y(t) = 0. (3.28)

The set of values λ ∈ R for which the equation (3.28) is disconjugate on

I = (a, b) is called the disconjugacy domain of the equation (3.28). In [11,

Lemma 5.3.1] it has been shown that if the equation (3.28) is disconjugate for

all λ ∈ R, then v(t) ≡ 0. But if v(t) 6= 0, then there exists λ0 ∈ R such that

for λ < λ0 the equation (3.28) is diconjugate on I. If so, λ0 is said to be the

disconjugacy constant. For λ > λ0 the equation (3.28) has conjugacy points

on I.

By Theorem 3.10, Theorem 3.14, Theorem 3.16 and Theorem 3.18, we have

the following theorems, respectively.

Theorem 3.22. Let 1 < p < ∞. Let (3.20) hold. Then the equation (3.28) is

disconjugate on I for

λ <
[
min{γ−1

1 Tc1(a, b), γ−1
2 Tc2(a, b)}

]−1

and the equation (3.28) has conjugacy points on I for

λ > [max{Tc1(a, b), Tc2(a, b)}]−1 .

Recall that γ1 = 1
p

(
p−1

p

)p−1

, γ2 =
(

p−1
p

)p

and that ci is a middle point of

(Ai(α, β), A∗
i (α, β)), i = 1, 2.

Theorem 3.23. Let 1 < p < ∞. Let (3.21) hold. Then the equation (3.28) is

disconjugate on I for

λ <
[
min{γ−1

1 A1(a, b), γ−1
2 A2(a, b)}

]−1

and the equation (3.28) has conjugacy points on I for

λ > [max{A1(a, b), A2(a, b)}]−1 .
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Theorem 3.24. Let 1 < p < ∞. Let (3.24) hold. Then the equation (3.28) is

disconjugate on I for

λ <
[
min{γ−1

1 A∗
1(a, b), γ−1

2 A∗
2(a, b)}

]−1

and the equation (3.28) has conjugacy points on I for

λ > [max{A∗
1(a, b), A∗

2(a, b)}]−1 .

Theorem 3.25. Let 1 < p < ∞. Let (3.27) hold. Then the equation (3.28)

has conjugacy points on I for all λ > 0.

In these theorems there is a gap between the domains of conjugacy and

disconjugacy that means that the disconjugacy constants of the equation (3.28)

are not defined. Since ρ and v are arbitrary functions, the problem to define

the disconjugacy constants of an equation of the type of (3.28) is difficult even

in our case in which ρ > 0 and v ≥ 0. However, when ρ and v are some power

functions the disconjugacy constants can be defined.

Let a = 0 and b = ∞, i.e., I = (0,∞). On I, we consider the Euler type

half–linear equation

(tµ|y′(t)|p−2y′(t))′ + λtγ|y(t)|p−2y(t) = 0. (3.29)

We denote by (µ, γ) the points of the plane R2 and we assume that Ω =

{(µ, γ) : µ ∈ R \ {p− 1}, γ = µ− p}.

Theorem 3.26. Let 1 < p < ∞. If (µ, γ) ∈ Ω and µ < p − 1 or µ > p − 1,

then the constant

λ0 =

(
|p− µ− 1|

p

)p

is the disconjugacy constant of the equation (3.29) on I = (0,∞). Moreover,

for λ = λ0 the equation (3.29) is disconjugate on I.

If (µ, γ) /∈ Ω, then the equation (3.29) is disconjugate on I for all λ ≤ 0 and

the equation (3.29) has conjugacy points on I, i.e., λ0 = 0 is the disconjugacy

constant of the eqiuation (3.29) on I for all λ > 0 .

Corollary 3.27. Let 1 < p < ∞. Let γ = µ − p and µ 6= p − 1. Then the

equation (3.29) is nonoscillatory if and only if

λ ≤ λ0 =

(
|p− µ− 1|

p

)p

.

We note that our Corollary 3.27 is Theorem 1.4.4 of [11].
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3.3 Disconjugacy. Proofs of the main results.

Lemma 3.28. Let 1 < p < ∞. Let a ≤ α < β ≤ b. The equation (3.1) is

disconjugate on (α, β) if and only if

β∫
α

v(t)|f(t)|p dt <

β∫
α

ρ(s)|f ′(s)|p ds, for all f ∈ AC
◦

p (α, β). (3.30)

Proof of Lemma 3.28. For a < α < β < b the validity of Lemma

3.28 follows by the Roundabout theorem (Theorem 1.7). Indeed, in this case

W 1
◦

p(α, β) = W 1
◦

p(ρ, (α, β)) and AC
◦

p (α, β) is dense in W 1
◦

p(ρ, (α, β)). Hence, it

suffices to consider ones of the following cases a = α < β < b, a < α < β = b

and a = α < β = b. We prove the last case when a = α < β = b. The other

cases can be proved similarly.

Thus, we assume that

b∫
a

v(t)|f(t)|p dt <

b∫
a

ρ(s)|f ′(s)|p ds, for all f ∈ AC
◦

p (α, β). (3.31)

If the equation (3.1) is conjugate on I, i.e., if it has conjugacy points t1 ∈ I,

t2 ∈ I, t1 < t2, then there exists α ∈ (a, t1), β ∈ (t2, b) such that the equation

(3.1) is conjugate on (α, β). Then there exists f̃ ∈ AC
◦

p (I) such that

β∫
α

v(t)|f̃(t)|p dt ≥
β∫

α

ρ(s)|f̃ ′(s)|p ds, (3.32)

in contradiction with (3.30). Hence, we have the disconjugacy of the equation

(3.1) on I.

Conversely, we assume that the equation (3.1) is disconjugate on I, but

that (3.31) does not hold. That means that there exists f̂ ∈ AC
◦

p (I) such that

b∫
a

v(t)|f̂(t)|p dt ≥
b∫

a

ρ(s)|f̂ ′(s)|p ds. (3.33)

By the definition of AC
◦

p (I), the membership of f̂ in AC
◦

p (I) implies that

suppf̂ ⊂ I. In other words there exist α, β ∈ I, α < β with suppf ⊆ [α, β].

Then the inequality (3.33) has the form (3.32) in contradiction with (3.30).

Hence, (3.30) follows.



64 DISFOCAL AND DISCONJUGATE HALF–LINEAR EQUATIONS

Thus the proof of Lemma 3.28 is complete.

Let a ≤ α < β ≤ b. Assume that

J0(α, β) = sup
0 6=f∈W 1

◦
p(ρ,(α,β))

β∫
α

v(t)|f(t)|p dt

β∫
α

ρ(t)|f ′(t)|p dt

.

Lemma 3.29. Let 1 < p < ∞. Let a ≤ α < β ≤ b. The condition J0(α, β) ≤ 1

is necessary and the condition J0(α, β) < 1 is sufficient for the equation (3.1)

to be disconjugate on (α, β).

Proof of Lemma 3.29. Let the equation (3.1) be disconjugate on (α, β).

Then by Lemma 3.28 it follows that (3.30) holds. In view of the density of

AC
◦

p (I) in W 1
◦

p(ρ, (α, β)), implies that

1 ≥ sup
0 6=f∈AC

◦
p (I)

β∫
α

v(t)|f(t)|p dt

β∫
α

ρ(t)|f ′(t)|p dt

=

sup
0 6=f∈W 1

◦
p(ρ,(α,β))

β∫
α

v(t)|f(t)|p dt

β∫
α

ρ(t)|f ′(t)|p dt

= J0(α, β)

Conversely, let J0(α, β) < 1. Then by the definition J0(α, β) we have

β∫
α

v(t)|f(t)|p dt ≤ J0(α, β)

β∫
α

ρ(t)|f ′(t)|p dt, ∀ f ∈ W 1
◦

p(ρ, (α, β)),

and thus (3.30) holds. Hence, by Lemma 3.28 the equation (3.1) is conjugate

on (α, β).

Thus the proof of Lemma 3.29 is complete.

Remark 3.30. If the functional F does not have an extremal function f0 in

AC
◦

p (α, β) such that

β∫
α

v(t)|f0(t)|p dt = J0(α, β)

β∫
α

ρ(t)|f ′0(t)|p dt,

then the condition J0(α, β) ≤ 1 is necessary and sufficient for the equation

(3.1) to be disconjugate on (α, β).
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Proof of Theorem 3.10. Let the equation (3.1) be disconjugate on (α, β).

Then by Lemma 3.29 we have J0(α, β) ≤ 1. The finite value J0(α, β) is by

definition the best constant in the inequality

β∫
α

v(t)|f(t)|p dt ≤ J0(α, β)

β∫
α

ρ(t)|f ′(t)|p dt, for all f ∈ W 1
◦

p(ρ, (α, β)).

Then by Theorem 1.18 there exists a middle point ci ∈ (α, β) for (Ai(α, β), A∗
i (α, β)),

i = 1, 2, and the following estimate

max{Tc1(α, β), Tc2(α, β)} ≤ J0(α, β) ≤

min

{
p

(
p

p− 1

)p−1

Tc1(α, β),

(
p

p− 1

)p

Tc2(α, β)

}
(3.34)

holds, where Tci
(α, β) = Ai(α, ci) = A∗

i (ci, β).

Then by the left estimate in (3.34) and by J0(α, β) ≤ 1, we get Tci
(α, β) ≤

1, i = 1, 2.

Conversely, if at least one of the conditions

Tc1(α, β) <
1

p

(
p− 1

p

)p−1

, Tc2(α, β) <

(
p− 1

p

)p

,

holds, then

min

{
p

(
p

p− 1

)p−1

Tc1(α, β),

(
p

p− 1

)p

Tc2(α, β)

}
< 1.

Therefore, by the right estimate in (3.34), we have J0(α, β) < 1 and thus

Lemma 3.29 implies the disconjugacy of the equation (3.1) on (α, β).

Thus the proof of Theorem 3.10 is complete.

Proof of Corollary 3.11. By the condition Tc0(α, β) < γ0 we have

Ai0(α, c0) < γi0 and A∗
i0
(c0, β) < γi0 . Then by Theorem 3.1 and Theorem

3.2 the equation (3.1) is left disfocal on (α, c0] and right disfocal on [c0, β),

respectively. Then a solution of the equation (3.1) with the initial condition

y′(c0) = 0, y(c0) 6= 0 does not have zeros in (α, c0] and [c0, β), i.e., it does not

turn to zero in (α, β).

Thus the proof of Corollary 3.11 is complete.

Proof of Corollary 3.12. If Tci0
(α, β) > 1, 1 ≤ i0 ≤ 2, then Ai0(α, ci0) >

1 and A∗
i0
(ci0 , β) > 1. Then

max{A1(α, ci0), A2(α, ci0)} > 1, max{A∗
1(ci0 , β), A∗

2(ci0 , β)} > 1.
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Moreover, according to Corollary 3.2 and Corollary 3.4 a solution of the equa-

tion (3.1) with the initial condition y′(ci0) = 0, y(ci0) 6= 0 has at least one zero

in each of the intervals (α, ci0), (ci0 , β), respectively. Hence, the equation (3.1)

is conjugate on (α, β).

Thus the proof of Corollary 3.12 is complete.

Proof of Corollary 3.13. If one of the limits from the condition of

Corollary 3.13 is infinite, then by Lemma 2.11 there does not exist a middle

point for (Ai(α, β), A∗
i (α, β)). Then by Theorem 2.7 there can not exist a

constant C > 0 such that the inequality

β∫
α

v(t)|f(t)|p dt ≤ C

β∫
α

ρ(t)|f ′(t)|p dt,

holds for all f in W 1
◦

p(ρ, I) or in AC
◦

p (α, β). Then for C = 1 there exists

f1 ∈ AC
◦

p (α, β) such that

β∫
α

v(t)|f(t)|p dt >

β∫
α

ρ(t)|f ′(t)|p dt.

Then Lemma 3.28 implies the conjugacy of the equation (3.1) on (α, β).

Thus the proof of Corollary 3.13 is complete.

Proof of Theorem 3.14. Let the equation (3.1) be disconjugate on (α, β).

Then by Lemma 3.29, we have J0(α, β) ≤ 1. Since by the assumptions of

Theorem 3.14 it follows that (3.21) holds, then we obtain

max{A1(α, β), A2(α, β)} ≤ J0(α, β) ≤

min

{
p

(
p

p− 1

)p−1

A1(α, β),

(
p

p− 1

)p

A2(α, β)

}
, (3.35)

by Theorem 2.8. By the left estimate (3.35) and by J0(α, β) ≤ 1, we have

(3.22).

Conversely, if one of the conditions of (3.23) hold, then

min

{
p

(
p

p− 1

)p−1

A1(α, β),

(
p

p− 1

)p

A2(α, β)

}
< 1.

Hence, by the right estimate in (3.35) we have J0(α, β) < 1. Therefore, by

Lemma 3.29 the equation (3.1) is disconjugate on (α, β).

Thus the proof of Theorem 3.14 is complete.
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Proof of Theorem 3.16. Let the equation (3.1) be left disfocal on all

the interval (α, β). Then according to Definition 3.15, for any c ∈ (α, β) the

equation (3.1) is left disfocal on (α, c]. Therefore, by Theorem 3.1, we obtain

Ai(α, c) ≤ 1, i = 1, 2. Since the expression Ai(α, c) does not decrease in

c ∈ (α, β), then we can take the limit as c tends to β and obtain lim
c→β

Ai(α, c) =

Ai(α, β) ≤ 1, i = 1, 2. Such a limiting relation is equivalent to the condition

(3.22).

Let at least one of the conditions of (3.23) hold. Since Ai(α, c) ≤ Ai(α, β)

for any c ∈ (α, β), then it follows at least one of the conditions

A1(α, c) <
1

p

(
p− 1

p

)p−1

, A2(α, c) <

(
p− 1

p

)p

, for all c ∈ (α, β),

respectively. Then by Theorem 3.1, the equation (3.1) is left disfocal on (α, c]

for all c ∈ (α, β). Thus by Definition 3.15 the equation (3.1) is left disfocal on

all the interval (α, β).

Thus the proof of Theorem 3.16 is complete.

Proof of Corollary 3.17. Let (3.21) hold. Assume that c ∈ (α, β) a

solution of the equation (3.1) with initial condition y(c) = 0, y′(c) 6= 0 is

strictly monotone on [c, β). Then, for even solution of (3.1) we have y′(t) 6= 0

for all t ∈ [c, β). Then a solution y1(t) of the equation (3.1) with initial

condition c1 ∈ (α, β), y′1(c1) = 0, y1(c1) 6= 0 does not have zeros in (α, c1).

Indeed, if a zero c ∈ (α, c1) of y1 exists, then the nontriviality of the solution

y1(t) (y1(c1) 6= 0) would imply that y1(c) = 0, y′1(c) 6= 0. However, by the

assumed strictly monotonicity of y1 on [c, β) for such solution we would have

y′(c1) 6= 0. The obtained contradiction gives that the equation (3.1) is left

disfocal on all the interval (α, β). Then by Theorem 3.16 we have that (3.22)

holds.

Conversely, let (3.23) hold. Then by Theorem 3.21 the equation (3.1) is

left disfocal on all the interval (α, β). Then for any c1 ∈ (α, β) the solution

y1(t) of the equation (3.1) with initial condition y′1(c1) = 0, y1(c1) 6= 0 does

not have zeros in the interval (α, c1). Hence, for any c ∈ (α, β) the solution

y(t) of the equation (3.1) with initial condition y(c) = 0, y′(c) 6= 0 satisfies the

condition y′(t) 6= 0 for all t ∈ [c, β).

Thus the proof of Corollary 3.17 is complete



68 DISFOCAL AND DISCONJUGATE HALF–LINEAR EQUATIONS

Theorem 3.18, Theorem 3.19 and Corollary 3.20 can be proved in the same

way as Theorem 3.14, Theorem 3.16 and Corollary 3.17, respectively.

Proof of Theorem 3.21. Let (3.27) hold. Then on the basis of Theorem

2.10 the inequality (2.16) does not hold on the set W 1
◦

p(ρ, I). That means that

J0(a, b) = ∞. Therefore, there exists a nontrivial function f̃ ∈ AC
◦

p (I) such

that
b∫

a

v(t)|f̃(t)|p dt >

b∫
a

ρ(t)|f̃ ′(t)|p dt.

To prove the existence of such a nontrivial function we take a < α < α + h <

β − h < β < b, h > 0 and then we consider the function f̃0 of (2.32) when we

replace a by α, c− by α + h, c+ by β − h, b by β. Suppose that f̃α,β(t) = f̃0(t)

for all α ≤ t ≤ β and f̃α,β(t) = 0 for all t ∈ I \ (α, β). Then f̃α,β ∈ AC
◦

p (I)

and in view of (2.32), (2.35), (3.27) if α → a and β → b, then we have
b∫

a

ρ(t)|f̃ ′α,β(t)|p dt → 0. Moreover, by the inequality |f̃α,β| ≥ |f̃0| in I, we

deduce that
b∫

a

v(t)|f̃α,β(t)|p dt ≥
b∫

a

v(t)|f̃0(t)|p dt > 0. Hence, when α and β

are close enough to a and b, respectively, we obtain that

b∫
a

v(t)|f̃α,β(t)|p dt >

b∫
a

ρ(t)|f̃ ′α,β(t)|p dt.

Therefore, by Lemma 3.28 it follows that the equation (3.1) is conjugate

on I. By the condition (3.27) we have A1(a, c) = ∞ and A∗
1(c, b) = ∞ for

any c ∈ I. Then by Theorem 3.1 and Theorem 3.3 the equation (3.1) has

a left focal point of the point c on (a, c] and a right focal point of the point

c on [c, b). Thus, a solution of the equation (3.1) with the initial condition

y′(c) = 0, y(c) 6= 0 has at least one zero on each of the intervals (a, c) and

(c, b).

Thus the proof of Theorem 3.21 is complete.

Theorem 3.22, Theorem 3.23, Theorem 3.24 and Theorem 3.25 directly

follow from Theorem 3.10, Theorem 3.14, Theorem 3.18 and Theorem 3.21,

respectively. For example, we can prove Theorem 3.24. By Theorem 3.18 the

equation (3.28) is disconjugate on I, if at least one of the two conditions

λA∗
1(a, b) <

1

p

(
p− 1

p

)p−1

, λA∗
2(a, b) <

(
p− 1

p

)p

, (3.36)
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holds. If

λ < max

{
1

p

(
p− 1

p

)p−1

(A∗
1(a, b))−1 ,

(
p− 1

p

)p

(A∗
2(a, b))−1

}
,

then at least one of the conditions in (3.36) holds. Such inequalities are equiv-

alent to the conditions of disconjugacy in Theorem 3.24.

If λA∗
i (a, b) > 1, i = 1, 2, then Theorem 3.18 implies that the necessary

condition of disconjugacy for (3.28) on I does not hold. Hence, the equation

(3.28) is conjugate on I, i.e., for all values

λ > [max{A∗
1(a, b), A∗

2(a, b)}]−1

the equation (3.28) has conjugacy points on I.

Thus the proof of Theorem 3.24 is complete.

Proof of Theorem 3.26. Let (µ, γ) ∈ Ω and µ < p − 1. In this case

for c ∈ (0,∞) we have
∞∫
c

tµ(1−p′) dt = ∞,
c∫
0

tµ(1−p′) dt < ∞. In other words

the condition (3.21) holds at α = 0, β = ∞ for the function ρ(t) = tµ . Then

Theorem 2.1 implies that W 1
◦

p(t
µ, R+) = W 1

p,l(t
µ, R+). Then by (1.9), we obtain

J0(R+) = sup
0 6=f∈W 1

◦
p(tµ,R+)

λ
∞∫
0

tγ|f(t)|p dt

∞∫
0

tµ|f ′(t)|p dt

=

λ sup
0 6=f∈W 1

p,l(t
µ,R+)

∞∫
0

tγ|f(t)|p dt

∞∫
0

tµ|f ′(t)|p dt

=

λ sup
0 6=g∈Lp(tµ,R+)

∞∫
0

tγ
∣∣∣∣ t∫
0

g(s) ds

∣∣∣∣p dt

∞∫
0

tµ|g(t)|p dt

=

λ sup
0 6=g∈Lp(tµ,R+)

∞∫
0

(
1
t

t∫
0

g(s) ds

)p

tµ dt

∞∫
0

tµgp(t) dt

=

λ

(
p

p− µ− 1

)p

. (3.37)

Moreover, (1.9) for λ > 0 implies that

λ

∞∫
0

tγ|f(t)|p dt < λ

(
p

p− µ− 1

)p
∞∫

0

tµ|f ′(t)|p dt, f ∈ W 1
◦

p(t
µ, R+) (3.38)
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Then on the basis of Lemma 3.29 and Remark 3.30 the equation (3.29) is

disconjugate on R+ if and only if

λ ≤ λ0 =

(
p− µ− 1

p

)p

.

If µ > p − 1, then the condition (3.24) holds for the function ρ(t) = tµ

and Theorem 2.1 implies that W 1
◦

p(t
µ, R+) = W 1

p,r(t
µ, R+). Now, by exploiting

(1.10), we obtain

J0(R+) = λ

(
p

µ + 1− p

)p

and

λ

∞∫
0

tγ|f(t)|p dt < λ

(
p

µ + 1− p

)p
∞∫

0

tµ|f ′(t)|p dt, f ∈ W 1
◦

p(t
µ, R+) (3.39)

for all λ > 0.

Consequently, according to Lemma 3.29 and Remark 3.30 the equation

(3.29) is disconjugate on R+ if and only if

λ ≤ λ0 =

(
µ + 1− p

p

)p

.

Now, let (µ, γ) /∈ Ω. We consider the three cases

(1) µ = p− 1;

(2) µ < p− 1, γ 6= µ− p;

(3) µ > p− 1, γ 6= µ− p.

In the case µ = p− 1 the condition (3.27) holds for the function ρ(t) = tµ

and Theorem 3.25 implies that the equation (3.29) has conjugacy points in R+

for all λ > 0.

In the case µ < p − 1, γ 6= µ − p the condition (3.21) holds for the func-

tion ρ(t) = tµ and simple computation imply that A1(0,∞) = ∞. Then by

Theorem 3.23 the equation (3.29) has conjugacy points in I for all λ > 0 .

In the last case µ > p − 1, γ 6= µ − p the condition (3.24) holds for the

function ρ(t) = tµ and simple computations imply that A∗
1(0,∞) = ∞. Then

by Theorem 3.24 the equation (3.29) has conjugacy points in R+ for all λ > 0.

For λ ≤ 0, we have

F (f) =

∞∫
0

(tµ|f ′(t)|p − λtγ|f(t)|p dt > 0, for all f ∈ AC
◦

p (R+).
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Therefore, on the basis of the Roundabout theorem (Theorem 1.7) the

equation (3.29) is disconjugate on any closed interval in R+. Hence, it is

disconjugate in R+.

Thus the proof of Theorem 3.26 is complete.

To prove Corollary 3.27 we note that if λ ≤ λ0, then by Theorem 3.26 the

equation (3.29) is disconjugate in R+, and if the equation (3.29) is nonoscil-

latory for t = ∞, then there exists t0 > 0 such that the equation (3.29) is

disconjugate on [t0,∞). However, the inequalities (3.37), (3.38) hold for all

functions f ∈ W 1
◦

p(t
µ, [t0,∞)) equal to zero on (0, t0]. Thus, by Lemma 3.29 we

have λ ≤ λ0.

Thus the proof of Theorem 3.26 is complete.
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Chapter 4

The oscillation properties of

half–linear second order

differential equations

In this Chapter, we investigate the oscillation properties of the equation (3.1).

This Chapter consists of three Sections. In the first and the second Sections

we assume that the coefficients of the equation (3.1) do not change sing. In

the first Section we establish sufficient conditions and necessary conditions of

nonoscillation for the equation (3.1) by exploiting the results of Chapter 3. In

the same Section we show existence of solutions which do not vanish in a given

interval.

Note that the obtained necessary conditions of nonoscillation of the first

Section have obtained before by other methods.

The results of Chapter 3, which we employed in the first Section of the

present Chapter have been obtained by the variational method as by using

the results on weighted Hardy inequalities. Therefore in the second Section

we introduce a general method to use the results on Hardy inequalities in the

theory of oscillation and nonoscillation for the equation (3.1). On the basis of

one of the results on Hardy inequalities, we establish sufficient conditions of

oscillation and nonoscillation in new terms. It is our opinion that one can not

obtain such results as a consequence of other known results.

In the third Section we assume that ρ is a positive function and that v is a

73
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function with arbitrary sing. Primarily, we establish our results by using the

variational principle and obtain a conjugacy result for the equation (3.1) on

a given interval. Accordingly, we obtain different conditions for oscillation of

the equation (3.1), which generalize known results in such a case.
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4.1 The criteria of oscillation and nonoscilla-

tion for half–linear second order differen-

tial equations with nonnegative coefficients

We consider the equation (3.1):

(ρ(t)|y′(t)|p−2y′(t))′ + v(t)|y(t)|p−2y(t) = 0 (4.1)

on I = (a, b), −∞ ≤ a < b ≤ ∞, 1 < p < ∞.

We suppose that ρ is a positive continuous function and that v is a nonneg-

ative continuous function on I (Cf. Remark 3.9). Moreover, we assume that v

is not identically 0 in I.

Let
b∫

c

ρ1−p′(s)ds < ∞, c ∈ I. (4.2)

Let α ∈ I. Then by continuity of the functions ρ1−p′ and v on [α, c], we have

lim
x→α

Ai(α, c, x) = 0, i = 1, 2. Therefore, if lim
x→b

sup A∗(c, b, x) < ∞, i = 1, 2, then

Lemma 2.11 implies that there exists a middle point ci for (Ai(α, b), A∗
i (α, b)),

i.e. Ai(α, ci) = A∗
i (ci, b), i = 1, 2.

Theorem 4.1. Let (4.2) hold.

(i) The equation (4.1) is nonoscillatory at t = b, then

lim
c→b

A∗
i (c, b) ≤ 1, i = 1, 2. (4.3)

If at least one of the following conditions

lim
c→b

A∗
i (c, b) < γi, i = 1, 2

holds, i.e. if

lim
c→b

sup
c<x<b

 b∫
x

ρ1−p′(s)ds

p−1 x∫
c

v(t)dt <
1

p

(
p− 1

p

)p−1

, (4.4)

lim
c→b

sup
c<x<b

 b∫
x

ρ1−p′(s)ds

−1 b∫
x

v(t)

 b∫
t

ρ1−p′(s)ds

p

dt <

(
p− 1

p

)p

, (4.5)
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then the equation (4.1) is nonoscillatory at t = b.

(ii) If

lim
c→b

A∗
1(c, b) < γ1,

then for any point z ∈ (c0, b) there exist αz ∈ (α, z) such that a solution of the

equation (4.1) with initial condition y′(z) = 0, y(z) 6= 0 is not identically zero

in the interval (αz, b), where c0 = max{c1, c∗}, c∗ = inf{c ∈ I, A∗
1(c, b) < γ1}.

(iii) If at least one of the two conditions

lim
c→b

A∗
1(c, b) > 1, lim

c→b
A∗

2(c, b) > 1 (4.6)

holds, then the equation (4.1) is oscillatory at t = b.

Proof of Theorem 4.1. Part (i). Let the equation (4.1) be nonoscillatory

at t = b. Then by Theorem 1.11 (4.1) is disconjugate on (T, b) at some

T ∈ I. Hence, by Theorem 3.10 there exists a middle point Ti ∈ (T, b) for

(Ai(T, b), A∗
i (T, b)) and A∗

i (Ti, b) ≤ 1. Since Ai(c, b) is nonincreasing in the

variable c ∈ I, then (4.3) holds.

Let one of the conditions (4.4) or (4.5) hold. Then there exists di ∈ I such

that A∗
i (c, b) < γi at c > di. Now if α ∈ (a, di) then we can take that a middle

point ci for (Ai(α, β), A∗
i (α, β)) and we have ci > di. Then by Theorem 3.10

the equation (4.1) is disconjugate on (α, b). Hence, (4.1) is nonoscillatory at

t = b.

Part (ii). If (4.4) exists, then for every z ≥ c0 by the continuity and

monotonicity of A1(α, z) in the variable α, there exists αz ∈ (α, z) such that

A1(αz, z) = A∗
1(z, b) < γ1. Then by Corollary 3.11 a solution of the equation

(4.1) with initial condition y′(z) = 0, y(z) 6= 0 is not identically zero on the

interval (αz, b).

Part (iii). Let one of the conditions (4.6) hold. Suppose that lim
c→b

A∗
i0
(c, b) >

1, 1 ≤ i0 ≤ 2 holds. If lim
x→b

sup A∗
i0
(c, b, x) = ∞, then by Corollary 3.13 the

equation (4.1) is conjugate on the interval (α, b) for all α ∈ I. Therefore, by

Theorem 1.11 the equation (4.1) is oscillatory.

If lim
x→b

sup A∗
i0
(c, b, x) < ∞, then by Lemma 2.11, for any α ∈ I there

exists a middle point ci0 ∈ (α, b) for (Ai0(α, b), A∗
i0
(α, b)) and Ai0(α, ci0) =

A∗
i0
(ci0 , b) ≡ Tc0(α, b). Since Ai0(c, b) does not increase in c ∈ I, then (4.6)
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implies that Ai0(ci0 , b) ≡ Tc0(α, b) > 1. Thus, by Corollary 3.12 the equation

(4.1) is conjugate on (α, b) for all α ∈ I. Hence, by Theorem 1.11 the equation

(4.1) is oscillatory.

Thus the proof of Theorem 4.1 is complete.

Now we consider the following case

b∫
c

ρ1−p′(s)ds = ∞, c ∈ I. (4.7)

Theorem 4.2. Let (4.7) hold.

(i) The equation (4.1) is nonoscillatory at t = b, then

lim
c→b

Ai(c, b) ≤ 1, i = 1, 2. (4.8)

If at least one of the two following conditions

lim
c→b

A1(c, b) < γ1, lim
c→b

A2(c, b) < γ2,

holds, i.e. if

lim
c→b

sup
c<x<b

 x∫
c

ρ1−p′(s)ds

p−1 b∫
x

v(t)dt <
1

p

(
p− 1

p

)p−1

, (4.9)

lim
c→b

sup
c<x<b

 x∫
c

ρ1−p′(s)ds

−1 x∫
c

v(t)

 t∫
c

ρ1−p′(s)ds

p

dt <

(
p− 1

p

)p

, (4.10)

then the equation (4.1) is nonoscillatory at t = b.

(ii) If at least one of the conditions (4.9) or (4.10) holds, i. e. if

lim
c→b

Ai0(c, b) < γi0 , 1 ≤ i0 ≤ 2,

then for any z ∈ (c0, b) a solution of the equation (4.1) with initial condi-

tion y(z) = 0, y′(z) 6= 0 is strictly monotone on [z, b), where c0 = inf{c ∈

I, Ai0(c, b) < γi0}.

(iii) If at least one of the following conditions

lim
c→b

Ai(c, b) > 1, i = 1, 2 (4.11)

holds, then the equation (4.1) is oscillatory at t = b.
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Proof of Theorem 4.2. Part (i). Let the equation (4.1) be nonoscillatory

at t = b. Then by Theorem 1.11 the equation (4.1) is disconjugate on the

interval (T, b) at some T ∈ I. Hence, Theorem 3.14 implies that Ai(T, b) ≤ 1,

i = 1, 2 and thus we obtain (4.8). Let at least one of the conditions (4.9) or

(4.10) hold, i. e. lim
c→b

Ai0(c, b) < γi0 , 1 ≤ i0 ≤ 2, then Ai0(c, b) < γi0 for any

c ∈ (c0, b). Hence, Theorem 3.14 implies that the equation (4.1) is disconjugate

on (c, b), which means that (4.1) is nonoscillatory at t = b.

Part (ii). If at least one of the conditions (4.9) or (4.10) hold, then the

equation (4.1) is disconjugate on (c, b) for any c ∈ (c0, b). Hence, Corollary

3.17 implies that for all z ∈ (c0, b) a solution of the equation (4.1) with initial

condition y(z) = 0, y′(z) 6= 0 is strictly monotone on [z, b).

Part (iii). If at least one of the conditions (4.11) hold, i. e. if lim
c→b

Ai0(c, b) >

1, 1 ≤ i0 ≤ 2, then there exists c ∈ (T, b) with Ai0(c, b) > 1. Hence, Theorem

3.14 implies that the equation (4.1) is conjugate on the interval (c, b) for all c ∈

(T, b). Therefore, Theorem 1.11 implies that the equation (4.11) is oscillotory

at t = b.

Thus the proof of Theorem 4.2 is complete.

The following two theorems can be proved similarly. Such theorems estab-

lish oscillation and nonoscillation of the equation (4.1) at t = a.

Theorem 4.3. Let
c∫

a

ρ1−p′(s)ds < ∞, c ∈ I.

(i) The equation (4.1) is nonoscillatory at t = a, then

lim
c→a

Ai(a, c) ≤ 1, i = 1, 2.

If at least one of the following conditions

lim
c→a

Ai(a, c) < γi, i = 1, 2

holds, then the equation (4.1) is nonoscillatory at t = a.

(ii) If

lim
c→a

A1(a, c) < γ1,

then for any z ∈ (a, c0) there exists βz ∈ (z, b) such that a solution of the

equation (4.1) with initial conditions y′(z) = 0, y(z) 6= 0 is not identically zero
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in the interval (a, βz), where c0 = min{c1, c∗}, c∗ = sup{c ∈ I, A1(a, c) < γ1}

and c1 is a middle point for (A1(a, β), A∗
1(a, β)), β ∈ I.

(iii) If at least one of the following conditions

lim
c→a

Ai(a, c) > 1, i = 1, 2,

holds, then the equation (4.1) is oscillatory at t = a.

Theorem 4.4. Let
c∫

a

ρ1−p′(s)ds = ∞, c ∈ I.

(i) The equation (4.1) is nonoscillatory at t = a, then

lim
c→a

A∗
i (a, c) ≤ 1, i = 1, 2.

If at least one of the two conditions

lim
c→a

A∗
i (a, c) < γi, i = 1, 2

holds, then the equation (4.1) is nonoscillatory at t = a.

(ii) If

lim
c→a

A∗
i0
(a, c) < γi0 , 1 ≤ i0 ≤ 2,

then for any z ∈ (a, c0) a solution of the equation (4.1) with initial condi-

tion y(z) = 0, y′(z) 6= 0 is strictly monotone on (a, z], where c0 = sup{c ∈

I, Ai0(a, c) < γi0}.

(iii) If at least one of the following conditions

lim
c→a

A∗
i (a, c) > 1, i = 1, 2,

holds, then the equation (4.1) is oscillatory at t = a.

Remark 4.5. The criteria of nonoscillation (4.4) and (4.5) under the as-

sumption (4.2) and the criteria of oscillation (4.6), and also the criteria of

nonoscillation (4.9) or (4.10) under the assumption (4.7), and the criteria

of oscillation (4.11) are known. They have been obtained earlier by differ-

ent methods. The corresponding analysis can be found in [11, Chapter 3]. In

Theorem 4.1 and Theorem 4.2 we establish necessary conditions of nonoscilla-

tion for the equation (4.1) and the corresponding behavior of the solutions by
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another method. Such conditions are more general than sufficient conditions

for the equation (4.1) and have been obtained in Chapter 3, by the variational

principle and by using the results on weighted Hardy inequalities.
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4.2 Applications of weighted Hardy inequali-

ties to oscillation theory of half–linear dif-

ferential equations

In this section we obtain new sufficient conditions of oscillation and nonoscil-

lation for the equation (4.1) by exploiting Theorem 1.23 on weighted Hardy

inequalities. We assume that the coefficients of (4.1) satisfy the conditions of

Section 4.1.

Let a ≤ α < β ≤ b. By Theorem 1.23, we have

sup
1<s<p

pp(s− 1)

pp(s− 1) + (p− s)p
AW (s, α, β) ≤

Jl(α, β) ≤ inf
1<s<p

(
p− 1

p− s

)p−1

AW (s, α, β), (4.12)

where

AW (s, α, β) = sup
α<x<β

 x∫
α

ρ1−p′(t)dt

s−1 b∫
x

v(τ)

 τ∫
α

ρ1−p′(t)dt

p−s

dτ.

Let
b∫

c

ρ1−p′(t)dt = ∞, c ∈ I. (4.13)

By (4.12), we have

Theorem 4.6. Assume that the condition (4.13) hold. If there exists s ∈ (1, p)

such that

lim
c→b

sup
c<x<b

 x∫
c

ρ1−p′(t)dt

s−1 b∫
x

v(τ)

 τ∫
c

ρ1−p′(t)dt

p−s

dτ <

(
p− s

p− 1

)p−1

,

(4.14)

then the equation (4.1) is nonoscillatory at t = b.

However, if there exists s ∈ (1, p) such that

lim
c→b

sup
c<x<b

 x∫
c

ρ1−p′(t)dt

s−1 b∫
x

v(τ)

 τ∫
c

ρ1−p′(t)dt

p−s

dτ > 1 +

(
1− s

p

)p

s− 1
,

(4.15)

then the equation (4.1) is oscillatory at t = b.
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Proof of Theorem 4.6. Indeed, if for some τ ∈ (1, p) the inequality (4.14)

holds, then there exists c ∈ (a, b) such that AW (τ, c, b) <
(

p−τ
p−1

)p−1

. Hence,

inf
1<s<p

(
p−1
p−s

)p−1

AW (s, c, b) < 1 and Jl(c, b) < 1 by (4.12). Since Jl(c, b) =

J0(c, b) and we obtain that J0(c, b) < 1 by (4.12). Then by Lemma 3.29 the

equation (4.1) is disconjugate on (c, b), which means that the equation (4.1) is

nonoscillatory at t = b.

If there exists τ ∈ (1, p) such that the condition (4.15) holds. Since

AW (τ, c, b) is nonincreasing with respect to c ∈ (a, b), we obtain that AW (τ, c, b) >

1 +
(1− τ

p)
p

τ−1
for all c ∈ (a, b), and it follows that

sup
1<s<p

pp(s− 1)

pp(s− 1) + (p− s)p
AW (s, c, b) > 1

for all c ∈ (a, b). Hence, (4.12) and (4.13) imply that J0(c, b) > 1 for all

c ∈ (a, b). Then Lemma 3.29 implies that the equation (4.1) is conjugate on

(c, b) for all c ∈ (a, b). Thus, Theorem 1.11 implies that the equation (4.1) is

oscillatory at t = b.

Thus the proof of Theorem 4.6 is complete.

When (4.13) holds, Theorem 2.1 implies that W 1
p,L(ρ, Ic) = W 1

◦

p(ρ, Ic), where

Ic = (c, b) and thus we have J0(Ic) = Jl(Ic).

By the efforts of many mathematicians, numerous estimates for Jl(Ic) of

the following form

kpAp(ρ, v, c, b) ≤ Jl(Ic) ≤ KpAp(ρ, v, c, b), (4.16)

where the positive constants kp and Kp depend only on p, and where Ap(ρ, v, c, b)

does not increase with respect to c ∈ I have been obtained.

Theorem 4.7. Assume that the condition (4.13) hold. If the inequality (4.16)

holds for Jl(Ic), then the condition

lim
c→b−

Ap(ρ, v, c, b) ≤ 1

kp

is necessary and the condition

lim
c→b−

Ap(ρ, v, c, b) <
1

Kp

is sufficient for the equation (4.1) to be nonoscillatory at t = b.
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Proof of Theorem 4.7. If the equation (4.1) is nonoscillatory at t = b,

then Theorem 1.11 implies that there exists c ∈ I such that the equation

(4.1) is conjugate on Ic. Then Lemma 3.29 implies that J0(Ic) = J0(c, b) ≤ 1.

Since J0(Ic) = Jl(Ic), (4.13) and (4.16) imply that kpAp(ρ, v, c, b) ≤ 1. Hence,

lim
c→b−

Ap(ρ, v, c, b) ≤ 1
kp

.

Conversely, let lim
c→b−

Ap(ρ, v, c, b) < 1
Kp

. Then there exists c ∈ I such that

Ap(ρ, v, c, b) < 1
Kp

, i.e., KpAp(ρ, v, c, b) < 1. Therefore, (4.16) implies that

J0(Ic) satisfies J0(Ic) < 1 by (4.13) and the equation (4.1) is disconjugate on

Ic by Lemma 3.29, which means that the equation (4.1) is nonoscillatory at

t = b.

Thus the proof of Theorem 4.7 is complete.

Theorem 4.8. Assume that the condition (4.13) hold. If the inequality (4.16)

holds for Jl(Ic), then the condition lim
c→b−

Ap(ρ, v, c, b) ≥ 1
Kp

is necessary and

the condition lim
c→b−

Ap(ρ, v, c, b) > 1
kp

is sufficient for the equation (4.1) to be

oscillatory at t = b.

Proof of Theorem 4.8. Let the equation (4.1) be oscillatory at t = b.

By Theorem 1.11, for any c ∈ I the equation (4.1) is conjugate on Ic. Then by

Lemma 3.29 we have J0(Ic) ≥ 1. Since J0(Ic) = Jl(Ic), the condition (4.13) and

Theorem 2.1 imply that Jl(Ic) ≥ 1. Hence, we have that KpAp(ρ, v, c, b) ≥ 1

for all c ∈ I by (4.16). Therefore, lim
c→b−

Ap(ρ, v, c, b) ≥ 1
Kp

.

Conversely, let lim
c→b−

Ap(ρ, v, c, b) > 1
kp

. Since Ap(ρ, v, c, b) is nonincreasing

with respect to c ∈ I we have that Ap(ρ, v, c, b) > 1
kp

for all c ∈ I. Hence,

(4.16) implies that Jl(Ic) > 1 for all c ∈ I. By (4.13) and Theorem 2.1 we

obtain J0(Ic) > 1 for all c ∈ I. Then by Lemma 3.29 the equation (4.1) is

conjugate on (c, b) for all c ∈ I. Therefore, by Theorem 1.11 the equation (4.1)

is oscillatory at t = b.

Thus the proof of Theorem 4.7 is complete.

We now consider the case

b∫
c

v(t)dt = ∞ and

b∫
c

ρ1−p′(t)dt < ∞.

We assume that ρ > 0 and v > 0 and we analyze the equation

(v1−p′(t)|y′(t)|p′−2y′(t))′ + ρ1−p′(t)|y(t)|p′−2y(t) = 0



84 THE OSCILLATION PROPERTIES

of Theorem 4.6–4.8 by exploiting the reciprocity principle (see Chapter 1).

We obtain conditions of oscillation and nonoscillation for the equation (4.1) at

t = b.

In the previous theorems, there are sufficiently large gaps between the

conditions for oscillation and nonoscillation. To obtain sharper conditions, we

need to know the precise values of coefficients kp and Kp. The above mentioned

gap would be zero, if kp = Kp. If Ap(ρ, v, c, b) does not depend on c ∈ I, then

nonoscillation (oscillation) of the equation (4.1) at t = b is equivalent to its

disconjugacy (conjugacy) on some interal (c, b). For example, for the equation

(tα|y′(t)|p−2y′(t))′ + γt−(p−α)|y(t)|p−2y(t) = 0, γ > 0, t > 0

at α 6= p − 1 the condition γ ≤
(
|p−α−1|

p

)p

is necessary and sufficient for

disconjigacy on some interval (c,∞), with c > 0 and the equation (4.1) is

oscillatory at t = ∞. The condition γ >
(
|p−α−1|

p

)p

is necessary and sufficient

for conjigacy on some interval (c,∞) and the equation (4.1) is oscillatory at

t = ∞ (see Chapter 3).

Finally we would like to note that some spectral properties of the differential

operators related to the equation (4.1) have been derived, again with the help

of Hardy–type inequalities in the paper of Drabek and Kufner [18].
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4.3 Conjugacy and oscillation of half–linear sec-

ond order differential equation with sing–

variable potential

We consider the equation (4.1)

(ρ(t)|y′(t)|p−2y′(t))′ + v(t)|y(t)|p−2y(t) = 0 (4.17)

on I = (a, b), −∞ ≤ a < b ≤ ∞, 1 < p < ∞.

Here, in contrast to our previous work we do not make any assumption on

the sing of v. Hence, we just assume that ρ and v are continuous functions.

Moreover, we require that ρ is a positive function on I.

We now introduce the following notation. Let a ≤ α < β ≤ b.

Φ−(α, c) = inf
α<z<c

 c∫
z

ρ1−p′ds

1−p

−

 c∫
z

ρ1−p′ds

−p c∫
z

v(t)

 t∫
z

ρ1−p′ds

p

dt

 ,

Φ+(d, β) = inf
d<z<β

 z∫
d

ρ1−p′ds

1−p

−

 z∫
d

ρ1−p′ds

−p z∫
d

v(t)

 z∫
t

ρ1−p′ds

p

dt

 ,

ϕ−(α, c) = inf
α<z<c

 c∫
z

ρ1−p′ds

1−p

+

c∫
z

v−(t)dt

 ,

ϕ+(d, β) = inf
d<z<β

 z∫
d

ρ1−p′ds

1−p

+

z∫
d

v+(t)dt

 ,

where α < c < d < β, v±(t) = max{0, ±v(t)}.

Theorem 4.9. Let a ≤ α < β ≤ b. If there exist points c, d such that

α < c < d < β and that

d∫
c

v(t)dt > Φ−(α, c) + Φ+(d, β), (4.18)

then the equation (4.17) is conjugate on (α, β).

Corollary 4.10. Let a ≤ α < β ≤ b. If there exist points c, d such that

α < c < d < β and that

d∫
c

v(t)dt > ϕ−(α, c) + ϕ+(d, β), (4.19)
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then the equation (4.17) has conjugate points on (α, β).

Proof of Theorem 4.9. Let α < c < d < β. Let (4.18) hold. Then by

definition of infimum there exist a point z−(α, c) = z− and a point z+(d, β) =

z+ such that the following inequality holds

d∫
c

v(t)dt ≥

 c∫
z−

ρ1−p′ds

1−p

−

 c∫
z−

ρ1−p′ds

−p c∫
z−

v(t)

 t∫
z−

ρ1−p′ds

p

dt +

 z+∫
d

ρ1−p′ds

1−p

−

 z+∫
d

ρ1−p′ds

−p
z+∫
d

v(t)

 z+∫
t

ρ1−p′ds

p

dt

or  c∫
z−

ρ1−p′ds

−p c∫
z−

v(t)

 t∫
z−

ρ1−p′ds

p

dt+

d∫
c

v(t)dt +

 z+∫
d

ρ1−p′ds

−p
z+∫
d

v(t)

 z+∫
t

ρ1−p′ds

p

dt ≥

 c∫
z−

ρ1−p′ds

1−p

+

 z+∫
d

ρ1−p′ds

1−p

. (4.20)

We denote by f0 the function defined by

f0(t) =



0, a < t < z−(
c∫

z−
ρ1−p′ ds

)−1 t∫
z−

ρ1−p′ ds, z− ≤ t ≤ c

1, c < t < d(
z+∫
d

ρ1−p′ ds

)−1
z+∫
t

ρ1−p′ ds, d ≤ t ≤ z+

0, z+ < t < β,
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Obviously, f0 ∈ AC
◦

p (α, β). We now compute the integrals
β∫
α

ρ(t)|f ′0(t)|pdt

and
β∫
α

v(t)|f0(t)|pdt.

β∫
α

ρ(t)|f ′0(t)|pdt =

c∫
z−

ρ(t)|f ′0(t)|pdt +

d∫
c

ρ(t)|f ′0(t)|pdt +

z+∫
d

ρ(t)|f ′0(t)|pdt =

 c∫
z−

ρ1−p′ds

−p c∫
z−

ρ(t)ρp(1−p′)(t)dt +

 z+∫
d

ρ1−p′ds

−p
z+∫
d

ρ(t)ρp(1−p′)(t)dt =

 c∫
z−

ρ1−p′ds

1−p

+

 z+∫
d

ρ1−p′ds

1−p

, (4.21)

β∫
α

v(t)|f0(t)|pdt =

c∫
z−

v(t)|f0(t)|pdt +

d∫
c

v(t)|f0(t)|pdt +

z+∫
d

v(t)|f0(t)|pdt =

 c∫
z−

ρ1−p′ds

−p c∫
z−

v(t)

 t∫
z−

ρ1−p′ds

p

dt +

d∫
c

v(t)dt +

 z+∫
d

ρ1−p′ds

−p
z+∫
d

v(t)

 z+∫
t

ρ1−p′ds

p

dt. (4.22)

The inequality (4.20) and the equalities (4.21) and (4.22) imply that

β∫
α

v(t)|f0(t)|pdt ≥
β∫

α

ρ(t)|f ′0(t)|pdt.

Thus by Lemma 3.28 the equation (4.17) has conjugate points on (α, β).

Thus the proof of Theorem 4.9 is complete.
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Proof of Corollary 4.10. For any z ∈ (α, c), we have c∫
z

ρ1−p′ds

1−p

+

c∫
z

v−(t)dt ≥

 c∫
z

ρ1−p′ds

1−p

+

 c∫
z

ρ1−p′ds

−p c∫
z

v−(t)

 t∫
z

ρ1−p′ds

p

dt ≥

 c∫
z

ρ1−p′ds

1−p

−

 c∫
z

ρ1−p′ds

−p c∫
z

v+(t)

 t∫
z

ρ1−p′ds

p

dt +

 c∫
z

ρ1−p′ds

−p c∫
z

v−(t)

 t∫
z

ρ1−p′ds

p

dt =

 c∫
z

ρ1−p′ds

1−p

−

 c∫
z

ρ1−p′ds

−p c∫
z

(v+(t)− v−(t))

 c∫
t

ρ1−p′ds

p

dt =

 c∫
z

ρ1−p′ds

1−p

−

 c∫
z

ρ1−p′ds

−p c∫
z

v(t)

 c∫
t

ρ1−p′ds

p

dt.

Hence, ϕ−(α, c) ≥ Φ−(α, c). Similarly, ϕ+(α, c) ≥ Φ+(α, c). Then by (4.19)

(4.18) follows. By Theorem 4.9 the equation (4.17) is conjugate on (α, β).

Thus the proof of Corollary 4.10 is complete.

Theorem 4.11. Let
b∫

d

ρ1−p′(s)ds < ∞. Let the limiting relation

lim
y→b

y∫
d

v(t)

 y∫
t

ρ1−p′(s)ds

p

dt =

b∫
d

v(t)

 b∫
t

ρ1−p′(s)ds

p

dt. (4.23)

hold. If for any c ∈ I

lim
d→b

sup


 b∫

d

ρ1−p′ds

p−1 d∫
c

v(t)dt +

 b∫
d

ρ1−p′ds

−1 b∫
d

v(t)

 b∫
t

ρ1−p′ds

p

dt

 > 1,

(4.24)

then the equation (4.17) is oscillatory at t = b.
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Proof of Theorem 4.11. Let c ∈ I. By definition lim sup there exists a

sequence {dk}∞k=1 ⊂ (c, b) such that k ≥ k0

F (dk, b) ≡

 b∫
dk

ρ1−p′ds

p−1 dk∫
c

v(t)dt+

 b∫
dk

ρ1−p′ds

−1 b∫
dk

v(t)

 b∫
t

ρ1−p′ds

p

dt > 1. (4.25)

We take k0 such that for α ∈ (a, c) the inequality b∫
dk

ρ1−p′ds

p−1 dk∫
c

v(t)dt+

 b∫
dk

ρ1−p′ds

−1 b∫
dk

v(t)

 b∫
t

ρ1−p′ds

p

dt >

1 +

 b∫
dk

ρ1−p′ds

p−1

Φ−(α, c)

holds for k ≥ k0. Indeed, lim
d→b

b∫
d

ρ1−p′ds = 0.

Hence,

dk∫
c

v(t)dt >

 b∫
dk

ρ1−p′ds

p−1

−

 b∫
dk

ρ1−p′ds

−p b∫
dk

v(t)

 b∫
dk

ρ1−p′ds

p

dt +

Φ−(α, c). (4.26)

By (4.26) and by the condition
b∫

dk

ρ1−p′(s)ds < ∞ and by (4.23), we obtain

dk∫
c

v(t)dt > Φ−(α, c) + Φ+(dk, b), k ≥ k0.

By the arbitrariness of c ∈ I and α ∈ (a, c) Theorem 4.9 implies that the

equation (4.17) has conjugate points on (α, b) for all α ∈ I. Thus by Theorem

1.11 the equation (4.17) is oscillatory at t = b.

Thus the proof of Theorem 4.11 is complete.

Now we consider the following case

b∫
d

ρ1−p′(s)ds = ∞, d ∈ I. (4.27)
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We assume that

lim
d→b

d∫
c

v(t)dt =

b∫
c

v(t)dt, c ∈ I. (4.28)

Theorem 4.12. Let (4.27) hold. Let the limiting (4.23) and (4.28) exist finite.

If

lim
α→b

sup
b>c>α

 c∫
α

ρ1−p′ds

p−1 b∫
c

v(t)dt +

 c∫
α

ρ1−p′ds

−1 c∫
α

v(t)

 t∫
α

ρ1−p′ds

p

dt

 > 1,

(4.29)

then the equation (4.17) is oscillatory at t = b.

Proof of Theorem 4.12. The inequality (4.29) implies that there exists

α0 ∈ I and c ∈ (α, b) for each α > α0 such that c∫
α

ρ1−p′ds

p−1 b∫
c

v(t)dt +

 c∫
α

ρ1−p′ds

−1 c∫
α

v(t)

 t∫
α

ρ1−p′ds

p

dt > 1.

Hence,

b∫
c

v(t)dt >

 c∫
α

ρ1−p′ds

1−p

−

 c∫
α

ρ1−p′ds

−p c∫
α

v(t)

 t∫
α

ρ1−p′ds

p

dt

(4.30)

The existence of the limiting (4.28) implies that there exists d ∈ (c, b) such

that

d∫
c

v(t)dt >

 c∫
α

ρ1−p′ds

1−p

−

 c∫
α

ρ1−p′ds

−p c∫
α

v(t)

 t∫
α

ρ1−p′ds

p

dt ≥ Φ−(α, c).

(4.31)

By (4.27) and by the finiteness of the limiting (4.23), we obtain

lim
y→b

 y∫
d

ρ1−p′ds

1−p

−

 y∫
d

ρ1−p′ds

−p y∫
d

v(t)

 y∫
t

ρ1−p′ds

p

dt

 = 0.

Hence, Φ+(d, b) ≤ 0. Then the inequality (4.31) implies that there exist α <

c < d < b such that
d∫
c

v(t)dt > Φ−(α, c) + Φ+(d, b) for any α ≥ α0. By

Theorem 4.9 thus means that the equation (4.17) is conjugate on (α, b) for any

α ∈ (α0, b). Hence, Theorem 1.11 implies that the equation (4.17) is oscillatory

at t = b.
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Thus the proof of Theorem 4.12 is complete.

Similarly, we have the following two theorems. Such theorems establish the

oscillation of the equation (4.17) at t = a.

Theorem 4.13. Assume that there exists c ∈ I such that

c∫
a

ρ1−p′(s)ds < ∞

and that there

lim
y→a

c∫
y

v(t)

 t∫
y

ρ1−p′ds

p

dt =

c∫
a

v(t)

 t∫
a

ρ1−p′ds

p

dt < ∞. (4.32)

If

lim
c→a

sup

 c∫
a

ρ1−p′ds

 d∫
c

v(t)dt +

 c∫
a

ρ1−p′ds

−1 c∫
a

v(t)

 t∫
a

ρ1−p′ds

p

dt

 > 1,

for all d ∈ I, then the equation (4.17) is oscillatory at t = a.

Theorem 4.14. Assume that there exists c ∈ I such that

c∫
a

ρ1−p′(s)ds = ∞

and that there (4.32) holds and that

lim
c→a

d∫
c

v(t)dt =

d∫
a

v(t)dt < ∞.

If

lim
β→a

sup
a<d<β


 β∫

d

ρ1−p′ds

p−1
d∫

a

v(t)dt +

 β∫
d

ρ1−p′ds

−1 β∫
d

v(t)

 β∫
t

ρ1−p′ds

p

dt

 > 1,

then the equation (4.17) is oscillatory at t = a.

By Theorem 4.11 and Theorem 4.12, we obtain the following corollary,

which includes the results of both Theorem 4.1 and Theorem 4.2 concerning

the oscillation of the equation (4.7).
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Corollary 4.15. Let
b∫

d

ρ1−p′(s)ds < ∞.

If v(t) ≥ 0 for t in a left neighborhood of b and if the condition (4.24) holds,

then the equation (4.17) is oscillatory t = b.

Corollary 4.16. Let
b∫

d

ρ1−p′(s)ds = ∞.

If v(t) ≥ 0 for t in a left neighborhood of b and if the condition (4.29) holds,

then the equation (4.17) is oscillatory t = b.

Remark 4.17. In the monograph [11], Theorem 3.1.4 and Theorem 3.1.6 have

been proved under the assumptions of Corollary 4.15. Indeed, in Theorem 3.1.4

and Theorem 3.1.6, the oscillation of the equation (4.17) at t = b = ∞ has

been proved under the assumptions

lim
x→∞

sup

 ∞∫
x

ρ1−p′ds

p−1 x∫
c

v(t)dt > 1, (4.33)

and

lim
x→∞

sup

 ∞∫
x

ρ1−p′ds

−1 ∞∫
x

v(t)

 ∞∫
t

ρ1−p′ds

p

dt > 1, (4.34)

respectively.

Obviously, the assumptions (4.33) and (4.34) with v(t) ≥ 0 for t > 0 large

enough imply the validity of (4.24) at b = ∞. Otherwise, we can not expect

that (4.24) holds at b = ∞.

Therefore, the statements of Corollary 4.15 includes the statements of The-

orem 3.1.4 and of Theorem 3.1.6 of [11].

Remark 4.18. In the monograph [11], Theorem 3.1.2 and Theorem 3.1.7 have

been proved under the assumptions of Theorem 4.12 at b = ∞. Indeed, in

Theorem 3.1.2 and Theorem 3.1.7 the oscillation of the equation (4.17) at

t = b = ∞ has been proved under the assumptions

lim
x→∞

sup

 x∫
c

ρ1−p′ds

p−1 ∞∫
x

v(t)dt > 1,
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c

ρ1−p′ds

−1 x∫
c

v(t)

 t∫
c

ρ1−p′ds

p

dt ≥ 0 (4.35)

for x > 0 large enough and

lim
x→∞

sup

 x∫
c

ρ1−p′ds

−1 x∫
c

v(t)

 t∫
c

ρ1−p′ds

p

dt > 1,

 x∫
c

ρ1−p′ds

p−1 ∞∫
x

v(t)dt ≥ 0 (4.36)

for t > 0 large enough, respectively.

Obviously, the conditions (4.35) and (4.36) imply the validity of the condi-

tion (4.29) of Theorem 4.12. Thus the statement of Theorem 4.12 generalizes

the statement of Theorem 3.1.2 and Theorem 3.1.7 of [11].



94 THE OSCILLATION PROPERTIES



Chapter 5

Oscillation and nonoscillation of

two term linear and half - linear

equations of higher order

5.1 Introduction

Let I = [0,∞), n > 1. Let 1 < p < ∞. We consider the following higher order

differential equation

(−1)n(ρ(t)|y(n)(t)|p−2y(n)(t))(n) − v(t)|y(t)|p−2y(t) = 0 (5.1)

on I, where v is a nonnegative (v 6= 0) continuous function and ρ is a positive

continuous function on I. When the principle of reciprocity is used for the

linear equation (p = 2), we assume that the functions v and ρ are positive and

continuous on I.

A function y : I → R is said to be a solution of the equation (5.1), if

y(t) and ρ(t)|y(n)(t)|p−2y(n)(t) are n-times continuously differentiable and y(t)

satisfies the equation (5.1) on I.

Following the linear case [25], the equation (5.1) is called oscillatory at

infinity if for any T ≥ 0 there exist points t1 > t2 > T and a nonzero solution

y(·) of the equation (5.1) such that y(i)(tk) = 0, i = 0, 1, ..., n − 1, k = 1, 2.

Otherwise the equation (5.1) is called nonoscillatory.

95
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If p = 2, then the equation (5.1) becomes a higher order linear equation

(−1)(n)(ρ(t)y(n)(t))(n) − v(t)y(t) = 0. (5.2)

The variational method to investigate the oscillatory properties of higher

order linear equations and their relations to spectral characteristics of the

corresponding differential operators have been well presented in the monograph

[25]. Another method is the transition from a higher order linear equation to

a Hamilton in system of equations [7]. However, to obtain the conditions of

oscillation or nonoscillation of a higher order linear equation by this method,

we need to find the principal solutions of a Hamilton in system (see e.g [13],

[12]), which is not an easy task.

However, the general method of the investigation of the oscillatory prop-

erties for the equation (5.1) has not been developed yet. In the monograph

[11, p. 464] by O. Došlý, one of the leading experts in the oscillation theory of

half–linear differential equations, and his colleagues, the oscillation theory of

half–linear equations of higher order is compared with ”terra incognita”.

The main aim of this Chapter is to establish the conditions of oscillation

and nonoscillation of the equations (5.1) and (5.2) in terms of their coefficients

by applying the latest results in the theory of weighted Hardy type inequalities.

Let IT = [T,∞), T ≥ 0. Let 1 < p < ∞. Suppose that Lp,ρ ≡ Lp(ρ, IT )

is the space of measurable and finite almost everywhere functions f , for which

the following norm

‖f‖p,ρ =

 ∞∫
T

ρ(t)|f(t)|pdt

 1
p

is finite.

We shall consider the weighted Hardy inequalities (see, Chapter 1) ∞∫
T

v(t)

∣∣∣∣∣∣
t∫

T

f(s)ds

∣∣∣∣∣∣
p

dt


1
p

≤ C

 ∞∫
T

ρ(t)|f(t)|pdt

 1
p

, f ∈ Lp,ρ, (5.3)

and  ∞∫
T

v(t)

∣∣∣∣∣∣
∞∫
t

f(s)ds

∣∣∣∣∣∣
p

dt


1
p

≤ C

 ∞∫
T

ρ(t)|f(t)|pdt

 1
p

, f ∈ Lp,ρ, (5.4)

where C > 0 does not dependent of f .
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Let

Jl(T ) ≡ Jl(ρ, v; T ) = sup
0 6=f∈Lp,ρ

∞∫
T

v(t)

∣∣∣∣ t∫
T

f(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|f(t)|pdt

,

Jr(T ) ≡ Jr(ρ, v; T ) = sup
0 6=f∈Lp,ρ

∞∫
T

v(t)

∣∣∣∣∞∫
t

f(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|f(t)|pdt

.

The criteria for Jl(T ) and Jr(T ) to be finite, which is equivalent to the

validity of the inequalities (5.3) and (5.4), is given in Theorem 5.1 and Theorem

5.2 (see Theorems 1.18–1.22).

Theorem 5.1. Let 1 < p < ∞. Then Jl(T ) ≡ Jl(ρ, v; T ) < ∞ if and only if

A1(T ) < ∞ or A2(T ) < ∞, where

A1(T ) ≡ A1(ρ, v; T ) = sup
x>T

∞∫
x

v(t)dt

 x∫
T

ρ1−p′(s)ds

p−1

,

A2(T ) ≡ A2(ρ, v; T ) = sup
x>T

 x∫
T

ρ1−p′(s)ds

−1 x∫
T

v(t)

 t∫
T

ρ1−p′(s)ds

p

dt.

Moreover, Jl(T ) can be estimated from above and from below, i.e.,

A1(T ) ≤ Jl(T ) ≤ p

(
p

p− 1

)p−1

A1(T ), (5.5)

A2(T ) ≤ Jl(T ) ≤
(

p

p− 1

)p

A2(T ). (5.6)

Theorem 5.2. Let 1 < p < ∞. Then Jr(T ) ≡ Jr(ρ, v; T ) < ∞ if and only if

A∗
1(T ) < ∞ or A∗

2(T ) < ∞, where

A1(T )∗ ≡ A∗
1(ρ, v; T ) = sup

x>T

x∫
T

v(t)dt

 ∞∫
x

ρ1−p′(s)ds

p−1

,

A∗
2(T ) ≡ A∗

2(ρ, v; T ) = sup
x>T

 ∞∫
x

ρ1−p′(s)ds

−1 ∞∫
x

v(t)

 ∞∫
t

ρ1−p′(s)ds

p

dt.

Moreover, Jr(T ) can be estimated from above and from below, i.e.,

A∗
1(T ) ≤ Jr(T ) ≤ p

(
p

p− 1

)p−1

A∗
1(T ), (5.7)
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A∗
2(T ) ≤ Jr(T ) ≤

(
p

p− 1

)p

A∗
2(T ). (5.8)

In [35] it is shown that the constant p
(

p
p−1

)p−1

in (5.5) is the best possible.

Next, we consider the following expression

Jn
p,l(T ) ≡ Jn

p,l(ρ, v; T ) = sup
0 6=f∈Lp,ρ

∞∫
T

∣∣∣∣ t∫
T

(t− s)n−1f(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|f(t)|pdt

.

Jn
p,r(T ) ≡ Jn

p,r(ρ, v; T ) = sup
0 6=f∈Lp,ρ

∞∫
T

∣∣∣∣∞∫
t

(s− t)n−1f(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|f(t)|pdt

.

By Theorem 1.26 and Theorem 1.27 we have:

Theorem 5.3. Let 1 < p < ∞. Then

Jn
p,l(T ) ≡ Jn

p,l(ρ, v; T ) < ∞

if and only if Bn
p,1(T ) < ∞ and Bn

p,2(T ) < ∞, where

Bn
p,1(T ) ≡ Bn

p,1(ρ, v; T ) = sup
x>T

∞∫
x

v(t)dt

 x∫
T

(x− s)p(n−1)ρ−1(s)ds

p−1

,

Bn
p,2(T ) ≡ Bn

p,2(ρ, v; T ) = sup
x>T

∞∫
x

v(t)(t− x)p(n−1)dt

 x∫
T

ρ−1(s)ds

p−1

.

Moreover, there exists a constant β ≥ 1 independent of ρ, v and T such

that

Bn
p (T ) ≤ Jn(T ) ≤ βBn

p (T ), (5.9)

where Bn
p (T ) = max{Bn

p,1(T ), Bn
p,2(T )}.

Theorem 5.4. Let 1 < p < ∞. Then

Jn
p,r(T ) ≡ Jn

p,r(ρ, v; T ) < ∞

if and only if B∗,n
p,1 (T ) < ∞ and B∗,n

p,2 (T ) < ∞, where

B∗,n
p,1 (T ) ≡ B∗,n

p,1 (ρ, v; T ) = sup
x>T

x∫
T

v(t)dt

 ∞∫
x

(x− s)p(n−1)ρ−1(s)ds

p−1

,
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B∗,n
p,2 (T ) ≡ B∗,n

p,2 (ρ, v; T ) = sup
x>T

x∫
T

v(t)(t− x)p(n−1)dt

 ∞∫
x

ρ−1(s)ds

p−1

.

Moreover, there exists a constant β∗ ≥ 1 independent of ρ, v and T such

that

B∗,n
p (T ) ≤ Jn(T ) ≤ β∗B∗,n

p (T ), (5.10)

where B∗,n
p (T ) = max{B∗,n

p,1 (T ), B∗,n
p,2 (T )}.

Assume that ACn−1
p (ρ, IT ) is the set of all functions f that have absolutely

continuous n− 1 order derivatives on [T,N ] for any N > T and f (n) ∈ Lp. Let

ACn−1
p,L (ρ, IT ) = {f ∈ ACn−1

p (ρ, IT ) : f (i)(T ) = 0, i = 0, 1, ..., n− 1}.

Suppose that A0Cn−1
p (ρ, IT ) is the set of all functions from ACn−1

p,L (ρ, IT )

that are equal to zero in a neighborhood of infinity. The function f from

ACn−1
p,L (ρ, IT ) is called nontrivial if ‖f (n)‖p 6= 0. If so, we write that f 6= 0.

By applying the variational method for higher order linear equations [25]

we have:

Theorem 5.5. The equation (5.1)

(i) is nonoscillatory if and only if there exists T ≥ 0 such that

∞∫
T

(ρ(t)|f (n)(t)|2 − v(t)|f(t)|2)dt > 0 (5.11)

for every nontrivial f ∈ A0Cn−1
2 (ρ, IT );

(ii) is oscillatory if and only if for every T ≥ 0 there exists a nontrivial

function f̃ ∈ A0Cn−1
2 (ρ, IT ) such that

∞∫
T

(ρ(t)|f̃ (n)(t)|2 − v(t)|f̃(t)|2)dt ≤ 0. (5.12)

Theorem 9.4.4 of [11] implies the validity of the following statement.

Theorem 5.6. Let 1 < p < ∞. If there exists T ≥ 0 such that

∞∫
T

(ρ(t)|f (n)(t)|p − v(t)|f(t)|p)dt > 0 (5.13)

for all nontrivial f ∈ A0Cn−1
p (ρ, IT ), then the equation (5.1) is nonoscillatory.
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Suppose that W n
p ≡ W n

p (ρ, IT ) is the set of functions f that have n order

generalized derivatives on IT and for which the norm

‖f‖W n
p

= ‖f (n)‖p +
n−1∑
i=0

|f (i)(T )| (5.14)

is finite.

It is obvious that A0Cn−1
p (ρ, IT ) ⊂ ACn−1

p,L (ρ, IT ) ⊂ W n
p (ρ, IT ). We de-

note by W n
◦

p ≡ W n
◦

p(ρ, IT ) and W n
p,L ≡ W n

p,L(ρ, IT ) the closures of the sets

A0Cn−1
p (ρ, IT ) and ACn−1

p,L (ρ, IT ) with respect to the norm (5.14), respectively.

Since ρ(t) > 0 for t ≥ 0, we have that

f (i)(T ) = 0, i = 0, 1, ..., n− 1 (5.15)

for any f ∈ W n
p,L(ρ, IT ).
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5.2 Nonoscillation of two term linear and half

- linear equations of higher order

In this section we consider nonoscillation of the equations (5.1) and (5.2).

Assume that there exists T > 0 such that

∞∫
x

v(t)(t− T )p(n−1)dt < ∞. (5.16)

Theorem 5.7. Let 1 < p < ∞. Assume that v is a nonnegative continuous

function and that ρ is a positive continuous function on I and that (5.16) hold.

If one of the following conditions

lim
T→∞

sup
x>T

 x∫
T

ρ1−p′(s)ds

p−1 ∞∫
x

v(t)(t− T )p(n−1)dt <

1

p− 1

[
(n− 1)!(p− 1)

p

]p

(5.17)

or

lim
T→∞

sup
x>T

 x∫
T

ρ1−p′(s)ds

−1 x∫
T

v(t)(t− T )p(n−1)×

 t∫
T

ρ1−p′(s)ds

p

dt <

[
(n− 1)!(p− 1)

p

]p

(5.18)

holds, then the equation (5.1) is nonoscillatory.

In the case p = 2 Theorem 5.7 implies nonoscillation of the equation (5.2).

Theorem 5.8. Assume that v is a non-negative and ρ is a positive continuous

functions on I and that (5.16) holds with p = 2. If one of the following

conditions

lim
T→∞

sup
x>T

x∫
T

ρ−1(s)ds

∞∫
x

v(t)(t− T )2(n−1)dt <

[
(n− 1)!

2

]2

or

lim
T→∞

sup
x>T

 x∫
T

ρ−1(s)ds

−1 x∫
T

v(t)(t−T )2(n−1)

 t∫
T

ρ−1(s)ds

2

dt <

[
(n− 1)!

2

]2

holds, then the equation (5.2) is nonoscillatory.



102 OSCILLATION AND NONOSCILLATION

Proof of Theorem 5.7. If we show that one of conditions (5.17) or (5.18)

hold, it follows that there exists T ≥ 0 such that

Fp,0(T ) ≡ Fp,0(ρ, v; T ) =

sup
0 6=f∈A0Cn−1

p (ρ,IT )

∞∫
T

v(t)|f(t)|pdt

∞∫
T

ρ(t)|f (n)(t)|pdt

=

sup
0 6=f∈W n

◦
p

∞∫
T

v(t)|f(t)|pdt

∞∫
T

ρ(t)|f (n)(t)|pdt

< 1, (5.19)

then Theorem 5.6 implies that the equation (5.1) is nonoscillatory.

We define

Fp,L(T ) ≡ Fp,L(ρ, v; T ) = sup
0 6=f∈W n

p,L

∞∫
T

v(t)|f(t)|pdt

∞∫
T

ρ(t)|f (n)(t)|pdt

. (5.20)

Since W n
◦

p ⊂ W n
p,L, then

Fp,0(T ) ≤ Fp,L(T ). (5.21)

By (5.15) the mapping

f (n) = g, f(t) =
1

(n− 1)!

t∫
T

(t− s)n−1g(s)ds (5.22)

gives one-to-one correspondence of W n
p,L and Lp. Therefore, by replacing f ∈

W n
p,L with g ∈ Lp, we have

Fp,L(T ) =
1

[(n− 1)!]p
sup

0 6=g∈Lp

∞∫
T

v(t)

∣∣∣∣ t∫
T

(t− s)n−1g(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|g(t)|pdt

≤

1

[(n− 1)!]p
sup

0 6=g∈Lp

∞∫
T

v(t)(t− T )p(n−1)

∣∣∣∣ t∫
T

g(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|g(t)|pdt

=

J(ρ, ṽ; T )

[(n− 1)!]p
, (5.23)
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where ṽ = v(t)(t− T )p(n−1).

Thus, by the estimates (5.5) and (5.6) of Theorem 5.1, we obtain

J(ρ, ṽ; T )

[(n− 1)!]p
≤ (p− 1)

[
(n− 1)!(p− 1)

p

]−p

×

sup
x>T

∞∫
x

v(t)(t− T )p(n−1)dt

 x∫
T

ρ1−p′(s)ds

p−1

(5.24)

and

J(ρ, ṽ; T )

[(n− 1)!]p
≤
[
(n− 1)!(p− 1)

p

]−p

×

sup
x>T

 x∫
T

ρ1−p′(s)ds

−1

×

x∫
T

v(t)(t− T )p(n−1)

 t∫
T

ρ1−p′(s)ds

p

dt. (5.25)

If either (5.17) or (5.18) is satisfied, then there exists T ≥ 0 such that the

left–hand side of (5.24) or (5.25) becomes less than one, respectively. By the

assumptions of Theorem 5.7 there exists T ≥ 0 such that

J(ρ, ṽ; T )

[(n− 1)!]p
< 1.

Then (5.19) follows from (5.23) and (5.21).

Thus the proof of Theorem 5.7 is complete.

We consider the equation

(−1)n(|y(n)|p−2y(n))(n) − γ

tnp
|y|p−2y = 0, (5.26)

where γ ∈ R.

By the proof of Theorem 5.7 follows that if

γFp,L(0) =
γ

[(n− 1)!]p
sup

0 6=g∈Lp

∞∫
0

∣∣∣∣ 1
tn

t∫
0

(t− s)n−1g(s)ds

∣∣∣∣p dt

∞∫
0

|g(t)|pdt

< 1,

then the equation (5.26) is nonoscillatory.

By Theorem 1.24 we have

γFp,L(0) = γ

 Γ(1− 1
p
)

Γ
(
n + 1− 1

p

)
p

< 1. (5.27)
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Here Γ(t) =
∞∫
0

st−1e−sds is a gamma–function. By using the reduction formula

Γ(q + 1) = qΓ(q), q > 0, we have

Γ

(
n + 1− 1

p

)
=

n∏
k=1

(
k − 1

p

)
Γ

(
1− 1

p

)
.

Taking into account (5.27), we obtain that the equation (5.26) is nonoscil-

latory if

γ <
n∏

k=1

(
k − 1

p

)p

= p−np

n∏
k=1

(kp− 1)p. (5.28)

We notice that the condition (5.28) has been obtained in Theorem 9.4.5 of

[11] by another way.

Assume that there exists T > 0 such that

∞∫
T

ρ1−p′(s)(s− T )p′(n−1)ds < ∞. (5.29)

Theorem 5.9. Let 1 < p < ∞. Let (5.29) hold. Assume that v is a non-

negative continuous function and ρ is a positive continuous function on I. If

one of the following conditions

lim
T→∞

sup
x>T

 ∞∫
x

ρ1−p′(s)(s− T )p′(n−1)ds

p−1 x∫
T

v(t)dt <

1

p− 1

[
(n− 1)!(p− 1)

p

]p

(5.30)

or

lim sup

 ∞∫
x

ρ1−p′(s)(s− T )p′(n−1)ds

−1

×

∞∫
x

v(t)

 ∞∫
t

ρ1−p′(s)(s− T )p′ds

p

dt <

[
(n− 1)!(p− 1)

p

]p

(5.31)

holds, then the equation (5.1) is nonoscillatory at t = ∞.

In the case p = 2 Theorem 5.9 implies nonoscillation of the equation (5.2).

Theorem 5.10. Let (5.29) hold with p = 2. Assume that v is a non-negative

continuous function and that ρ is a positive continuous function on I. Then,
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if one of the following conditions

lim
T→∞

sup
x>T

 ∞∫
x

ρ−1(s)(s− T )2(n−1)ds

 x∫
T

v(t)dt <

[(n− 1)!]2

4

or

lim sup

 ∞∫
x

ρ−1(s)(s− T )2(n−1)ds

−1 ∞∫
x

v(t)×

 ∞∫
t

ρ−1(s)(s− T )p′ds

2

dt <
[(n− 1)!]2

4

holds, then the equation (5.2) is nonoscillatory at t = ∞.

Proof of Theorem 5.9. We define

Fp,R(T ) ≡ Fp,R(ρ, v; T ) = sup
0 6=f∈W n

p,R(ρ,IT )

∞∫
T

v(t)|f(t)|pdt

∞∫
T

ρ(t)|f (n)(t)|pdt

. (5.32)

Since W n
◦

p(ρ, IT ) ⊂ W n
p,R(ρ, IT ), then

Fp,0(T ) ≤ Fp,R(T ). (5.33)

Here, instead of (5.22), the mapping

f (n) = g, f(t) =
(−1)n

(n− 1)!

∞∫
t

(s− t)n−1g(s)ds

gives one-to-one correspondence of W n
p,R(ρ, IT ) and Lp(ρ, IT ). Therefore, by

replacing f ∈ W n
p,R(ρ, IT ) with g ∈ Lp(ρ, IT ), we have

Fp,R(T ) =

1

[(n− 1)!]p
sup

0 6=g∈Lp,ρ

∞∫
T

v(t)

∣∣∣∣∞∫
t

(s− t)n−1g(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|g(t)|pdt

≤

1

[(n− 1)!]p
sup

0 6=g∈Lp,ρ

∞∫
T

v(t)

∣∣∣∣∞∫
t

(s− T )(n−1)g(s)ds

∣∣∣∣p dt

∞∫
T

ρ(t)|g(t)|pdt

=
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1

[(n− 1)!]p
sup

0 6=ϕ∈Lp,eρ

∞∫
T

v(t)

∣∣∣∣∞∫
t

ϕ(s)ds

∣∣∣∣p dt

∞∫
T

ρ̃(t)|ϕ(t)|pdt

=

JR(ρ̃, v; T )

[(n− 1)!]p
, (5.34)

where ϕ(s) = (s− T )n−1g(s) and where ρ̃ = ρ(t)(t− T )−p(n−1).

Thus, by the estimates (5.7) and (5.8) of Theorem 5.2, we have

JR(ρ̃, v; T )

[(n− 1)!]p
≤

(p− 1)

[
(n− 1)!(p− 1)

p

]−p

×

sup
x>T

x∫
T

v(t)dt

 ∞∫
x

ρ1−p′(s)(s− T )p′(n−1)ds

p−1

(5.35)

and

JR(ρ̃, v; T )

[(n− 1)!]p
≤[

(n− 1)!(p− 1)

p

]−p

×

sup
x>T

 ∞∫
x

ρ1−p′(s)(s− T )p′(n−1)ds

−1 ∞∫
x

v(t)×

 ∞∫
t

ρ1−p′(s)(s− T )p′(n−1)ds

p

dt. (5.36)

If either (5.30) or (5.31) is satisfied, then there exists T ≥ 0 such that the

left–hand side of (5.35) or (5.36) becomes less than one, respectively. Therefore

in any case there exists T ≥ 0 such that

JR(ρ̃, v; T )

[(n− 1)!]p
< 1.

The inequalities (5.33) and (5.34) imply the validity of the inequality (5.19).

Thus the proof of Theorem 5.9 is complete.

Next we consider the equation

(−1)n(tpn|y(n)|p−2y(n))(n) − γ|y|p−2y = 0, (5.37)

where the function ρ(t) = tpn satisfies the condition (5.29).
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By the proof of Theorem 5.9, it follows that, if

γFp,R(0) =
γ

[(n− 1)!]p
sup

0 6=g∈Lp

∞∫
0

∣∣∣∣ t∫
0

(t− s)n−1g(s)ds

∣∣∣∣p dt

∞∫
0

|tng(t)|pdt

< 1,

then the equation (5.37) is nonoscillatory.

By Theorem 1.25 we have

γFp,R(0) = λ

 Γ
(

1
p

)
Γ
(
n + 1

p

)


p

< 1. (5.38)

Since Γ
(
n + 1

p

)
=

n−1∏
k=0

(
k + 1

p

)
Γ
(

1
p

)
, then (5.38) implies that the equation

(5.37) is nonoscillatory, if γ <
n−1∏
k=0

(
k + 1

p

)
= p−np

n−1∏
k=0

(pk + 1)p.
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5.3 Oscillation of linear equations of higher or-

der

Now, we consider the problem of oscillation for the equation (5.2).

By Theorem 5.8, it is easy to prove that if both the integrals

∞∫
T

ρ−1(s)ds

and
∞∫

T

v(t)(t− T )2(n−1)dt

are finite, then the equation (5.2) is nonoscillatory.

Therefore, we are interested into the case when at least one of these integrals

is infinite.

We start with the case

∞∫
T

ρ−1(s)ds = ∞. (5.39)

Theorem 5.11. Let (5.39) hold. If either one of the inequalities

lim
T→∞

sup
x>T

x∫
T

ρ−1(s)ds

∞∫
x

v(t)(t− x)2(n−1)dt > [(n− 1)!]2

or

lim
T→∞

sup
x>T

x∫
T

ρ−1(s)(x− s)2(n−1)ds

∞∫
x

v(t)dt > [(n− 1)!]2

holds, then the equation (5.2) is oscillatory.

Proof of Theorem 5.11. If we show that

F2,0(T ) > 1 (5.40)

for any T ≥ 0, then the equation (5.2) is oscillatory.

Indeed, (5.40) implies that for every T ≥ 0 there exists a nontrivial function

f̃ ∈ A0Cn−1
p (ρ, IT ) such that the inequality (5.12) holds. Consequently, by

Theorem 5.5 the equation (5.2) is oscillatory.
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According to the results of [34] the condition (5.39) implies that W n
◦

2 = W n
2,L.

Then

F2,0(T ) = F2,L(T ) (5.41)

and (5.22) implies that

F2,0(T ) =

sup
0 6=f∈W n

2,L

∞∫
T

v(t)|f(t)|2dt

∞∫
T

ρ(t)|f (n)(t)|2dt

=

1

[(n− 1)!]2
sup

0 6=g∈L2

∞∫
T

v(t)

∣∣∣∣ t∫
T

(t− s)n−1g(s)ds

∣∣∣∣2 dt

∞∫
T

ρ(t)|g(t)|2dt

=

Jn(T )

[(n− 1)!]2
. (5.42)

The estimate (5.9) of Theorem 5.3 implies that

B(T )

[(n− 1)!]2
≤ F2,0(T ) ≤ β

B(T )

[(n− 1)!]2
. (5.43)

The left–hand side of the inequality (5.43) and the assumptions of Theo-

rem 5.11 imply that the inequality (5.40) holds. Thus, the equation (5.2) is

oscillatory.

Thus the proof of Theorem 5.11 is complete.

Now, we apply Theorem 5.11 to the equation

(−1)n
(
t−αy(n)(t)

)(n) − v(t)y(t) = 0. (5.44)

Let k = lim
T→∞

sup
x>T

x∫
T

sα(x− s)2(n−1)ds
∞∫
x

v(t)dt and γ > 1.

Then

sup
x>T

x∫
T

sα(x− s)2(n−1)ds

∞∫
x

v(t)dt ≥

γT∫
T

sα(γT − s)2(n−1)ds

∞∫
γT

v(t)dt =

1

γ2n−1+α

γ∫
1

sα(γ − s)2(n−1)ds(γT )2n−1+α

∞∫
γT

v(t)dt.



110 OSCILLATION AND NONOSCILLATION

If

sup
γ>1

1

γ2n−1+α

γ∫
1

sα(γ − s)2(n−1)ds×

lim
x→∞

x2n−1+α

∞∫
x

v(t)dt > [(n− 1)!]2, (5.45)

then k > [(n− 1)!]2 and by Theorem 5.11 the equation (5.44) is oscillatory.

In [14] the exact values of the oscillation constants of the equation (5.44)

are obtained for the different values α ∈ R. We collect the main oscillation

conditions which had been proved in Proposition 2.2 of [14]. If we compare

the conditions (5.45) and the conditions of Proposition 2.2 for α ≥ 0, that we

can see that the conditions (5.45) are better than the conditions of Proposition

2.2. For example, when n = 2 and α = 0, we have that

sup
γ>1

1

γ3

γ∫
1

(γ − s)2ds =
1

3
sup
γ>1

(
1− 1

γ

)3

=
1

3
.

Therefore, (5.45) implies that the equation y(IV )(t) = v(t)y(t) is oscillatory if

lim
x→∞

x3
∞∫
x

v(t)dt > 3. The analogous condition of Proposition 2.2 has the form

lim
x→∞

x3
∞∫
x

v(t)dt > 12.

We assume that the functions v and ρ are positive and continuous on I.

Then by the principle of reciprocity [13] the equation (5.2) and the reciprocal

equation

(−1)n(v−1(t)y(n))(n) − ρ−1(t)y = 0 (5.46)

are simultaneously oscillatory or nonoscillatory. Applying the principle of reci-

procity in the case
∞∫

T

v(t)dt = ∞, (5.47)

we obtain the following theorem.

Theorem 5.12. Let (5.47) hold. Assume that v and ρ are positive continuous

functions on I. Then, if one of the following inequalities

lim
T→∞

sup
x>T

x∫
T

v(t)dt

∞∫
x

ρ−1(s)(s− x)2(n−1)ds > [(n− 1)!]2
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or

lim
T→∞

sup
x>T

x∫
T

v(t)(x− t)2(n−1)dt

∞∫
x

ρ−1(s)ds > [(n− 1)!]2

holds, then the equation (5.2) is oscillatory.

Indeed, if the assumptions of Theorem 5.12 is satisfied, then by Theorem

5.11 the equation (5.46) is oscillatory. Therefore, the equation (5.2) is also

oscillatory.

Now we apply the statement of Theorem 5.12 to the equation (5.44) when

the condition (5.47) holds and α > 2n− 1. Then

∞∫
x

ρ−1(s)(s− x)2(n−1)ds =

∞∫
x

s−α(s− x)2(n−1)ds =

x2n−α−1

∞∫
1

t−α(t− 1)2(n−1)dt,

where s = xt.

Integrating by the parts we have

∞∫
1

t−α(t− 1)2(n−1)dt =
(2n− 1)!

2n−1∏
k=1

(α− k)

.

Therefore

∞∫
x

ρ−1(s)(s− x)2(n−1)ds = x2n−α−1 (2n− 1)!
2n−1∏
k=1

(α− k)

and by Theorem 5.12 the equation (5.44) is oscillatory if one of the following

conditions

lim
T→∞

sup
x>T

x2n−α−1

x∫
T

v(t)dt >

[(n− 1)!]2
2n−1∏
k=1

(α− k)

(2n− 1)!
(5.48)

or

lim
T→∞

sup
x>T

x1−α

x∫
T

v(t)(x− t)2(n−1)dt > (α− 1)[(n− 1)!]2

holds.
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We now show that if the inequality

lim
x→∞

x2n−α−1

x∫
1

v(t)dt >

[(n− 1)!]2
2n−1∏
k=1

(α− k)

(2n− 1)!
(5.49)

holds, then also the inequality (5.48) holds.

Let d = lim
T→∞

sup
x>T

x2n−α−1
x∫

T

v(t)dt. If d = ∞, then for any N > 0 there

exists TN > 0 such that

x2n−α−1

x∫
TN

v(t)dt > N

for all x > TN .

Then by α > 2n−1, we have lim
x→∞

x2n−α−1
x∫

TN

v(t)dt = lim
x→∞

x2n−α−1
x∫
1

v(t)dt >

N . By arbitrariness of N > 0, we obtain lim
x→∞

x2n−α−1
x∫
1

v(t)dt = ∞, i.e. the

limiting relation (5.49) implies (5.48).

Let now d < ∞. Then for any ε > 0 there exists Tε > 0 such that

x2n−α−1

x∫
Tε

v(t)dt ≤ d + ε

for all x > Tε.

Then

lim
x→∞

x2n−α−1

x∫
1

v(t)dt ≤ d.

Hence, the limiting relation (5.49) implies (5.48). Thus, the equation (5.44)

is oscillatory with the condition (5.49). Now we compare the obtained results

with results known in the literature for the equation (5.44). Let α = 2n. Then

the condition (5.49) has the following form

lim
x→∞

1

x

x∫
1

v(t)dt > [(n− 1)!]2.

By Proposition 2.2 and Theorem 3.1 of [14] at m = n − 1, α = 2n, we

obtain

lim
x→∞

1

x

x∫
1

v(t)dt > 4[(n− 1)!]2
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and

lim
x→∞

1

x

x∫
1

v(t)dt >
1

12
[(n− 1)!]2,

respectively.

Hence, Theorem 5.12 is proved under general assumptions. The application

of Theorem 5.12 to an equation of the form (5.44) gives better results if we

take ρ in the form ρ(t) = tα. Moreover, in Theorem 3.1 of [14] we also need to

consider the conditions at m = 0, 1, ..., n− 1.
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5.4 Strong oscillation and spectral properties

of linear equations of higher order

We now turn to the equation (5.2) with parameter λ > 0 in the following form.

(−1)n(ρ(t)y(n))(n) − λv(t)y = 0. (5.50)

If the equation (5.50) is oscillatory or nonoscillatory for any λ > 0, then

the equation (5.50) is called strongly oscillatory or strongly nonoscillatory,

respectively.

Theorem 5.13. Assume that v and ρ are positive and continuous functions

on I. If the condition (5.39) is satisfied, then the equation (5.50)

(i) is strongly nonoscillatory if and only if

lim
x→∞

x∫
0

ρ−1(s)ds

∞∫
x

v(t)(t− x)2(n−1)dt = 0 (5.51)

and

lim
x→∞

x∫
0

ρ−1(s)(x− s)2(n−1)ds

∞∫
x

v(t)dt = 0; (5.52)

(ii) is strongly oscillatory if and only if at least one of the following condi-

tions

lim
x→∞

sup

x∫
0

ρ−1(s)ds

∞∫
x

v(t)(t− x)2(n−1)dt = ∞ (5.53)

or

lim
x→∞

sup

x∫
0

ρ−1(s)(x− s)2(n−1)ds

∞∫
x

v(t)dt = ∞. (5.54)

holds.

Proof of Theorem 5.13. Let the equation (5.50) be nonoscillatory for any

λ > 0. Then by the criterion of nonoscillation (5.11) of Theorem 5.5 for every

λ > 0 there exists Tλ ≥ 0 such that λF2,0(Tλ) ≤ 1. Then lim
λ→∞

F2,0(Tλ) = 0.

However, if the equation (5.50) is nonoscillatory for λ = λ0 > 0, then by (5.11)

it is nonoscillatory for any 0 < λ ≤ λ0. Therefore, Tλ does not decrease.

Hence,

lim
T→∞

F2,0(T ) = 0. (5.55)
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Thus, by the left–hand side of the inequality (5.43) and by (5.55) it follows

that lim
T→∞

B(T ) = 0, where B(T ) = max{B1(T ), B2(T )} and

B1(T ) = sup
x>T

∞∫
x

v(t)dt

x∫
T

(x− s)2(n−1)ρ−1(s)ds,

B2(T ) = sup
x>T

∞∫
x

v(t)(t− x)2(n−1)dt

x∫
T

ρ−1(s)ds.

Then for any ε > 0 there exists T 1
ε > 0 such that for every x ≥ T 1

ε we have

x∫
T 1

ε

ρ−1(s)ds

∞∫
x

v(t)(t− x)2(n−1)dt ≤ ε

2

and there exists Tε ≥ T 1
ε such that for every x ≥ Tε we have

T 1
ε∫

0

ρ−1(s)ds

∞∫
x

v(t)(t− x)2(n−1)dt ≤ ε

2
.

Indeed, lim
x→∞

∞∫
x

v(t)(t− x)2(n−1)dt = 0.

Therefore, for every x ≥ Tε we have

x∫
0

ρ−1(s)ds

∞∫
x

v(t)(t− x)2(n−1)dt ≤ ε,

which means that the equality (5.51) is satisfied. The equality (5.52) can be

proved similarly.

Now, we shall prove that if the equalities (5.51) and (5.52) hold, then the

equation (5.50) is strongly nonoscillatory.

Since the equalities (5.51) and (5.52) hold, then lim
T→∞

B(T ) = 0. Therefore,

the right–hand side of the inequality (5.43) follows by the equality (5.55).

Hence, for every λ > 0 there exists Tλ ≥ 0 such that λF2,0(Tλ) < 1. Then the

equation (5.50) is strongly nonoscillatory. Thus, statement (i) is proved.

We now prove statement (ii). Let the equation (5.50) be strongly oscilla-

tory. By Theorem 5.5 we have that λF2,0(T ) ≥ 1 for every λ > 0 and for every

T ≥ 0. Therefore, F2,0(T ) ≥ sup
λ>0

1
λ

= ∞ for every T ≥ 0.

Thus, from the right–hand side of the inequality (5.43), it follows that

B(T ) = ∞ for every T ≥ 0, so at least B1(T ) = ∞ or B2(T ) = ∞. This

means that the equality (5.53) or (5.54) holds.
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Suppose that for every T ≥ 0 one of the conditions (5.53) or (5.54) holds.

Then either B1(T ) = ∞ or B2(T ) = ∞. Therefore, B(T ) = ∞ for any T ≥ 0.

Then, the left–hand side of the inequality (5.43) implies that F2,0(T ) = ∞ for

any T ≥ 0. Consequently, λF2,0(T ) > 1 for any λ > 0 and T ≥ 0, which by

(5.12) means the oscillation of the equation (5.50) for λ > 0.

Thus the proof of Theorem 5.13 is complete.

Corollary 5.14. Let T ≥ 0. If the conditions (5.39) and

∞∫
T

v(t)(t− T )2(n−1)dt = ∞

are satisfied, then the equation (5.2) is strongly oscillatory.

As an example let us consider the equation

(−1)n
(
tαy(n)(t)

)(n) − λv(t)y(t) = 0, n > 1, (5.56)

where α ∈ R and v is a non–negative continuous function on I. For α < 1 the

conditions (5.39) for the equation (5.56) is valid.

Since

x∫
0

s−α(x− s)2(n−1)ds = x2n−1−α

1∫
0

s−α(1− s)2(n−1)ds,

then the conditions (5.52) and (5.54) for the equation (5.56) are equivalent to

the conditions

lim
x→∞

x2n−1−α

∞∫
x

v(t)dt = 0 (5.57)

and

lim
x→∞

sup x2n−1−α

∞∫
x

v(t)dt = ∞, (5.58)

respectively.

By applying the L’Hospital rule 2(n− 1) times, it is easy to see that from

(5.57) follows the condition (5.51)

lim
x→∞

x1−α

∞∫
x

v(t)(t− x)2(n−1)dt = 0

for the equation (5.56).
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Thus, by Theorem 5.13 the equation (5.56) is strongly nonoscillatory if and

only if (5.57) holds. Moreover, it is strongly oscillatory if and only if (5.58)

holds. This yields the validity of Theorems 15 and 16 of the monograph [25]

for α = 0.

The proof of the following theorem is based on the principle of reciprocity.

Theorem 5.15. Assume that v and ρ are positive and continuous functions

on I. Let (5.47) hold. Then the equation (5.50)

(i) is strongly nonoscillatory if and only if

lim
x→∞

x∫
0

v(t)dt

∞∫
x

ρ−1(s)(s− x)2(n−1)ds = 0 (5.59)

and

lim
x→∞

x∫
0

v(t)(x− t)2(n−1)dt

∞∫
x

ρ−1(s)ds = 0; (5.60)

(ii) is strongly oscillatory if and only if one of the following conditions

lim
x→∞

sup

x∫
0

v(t)dt

∞∫
x

ρ−1(s)(s− x)2(n−1)ds = ∞ (5.61)

or

lim
x→∞

sup

x∫
0

v(t)(x− t)2(n−1)dt

∞∫
x

ρ−1(s)ds = ∞ (5.62)

holds.

Corollary 5.16. Let T ≥ 0. If the conditions (5.47) and

∞∫
T

ρ−1(t)(t− T )2(n−1)dt = ∞

are satisfied, then the equation (5.2) is strongly oscillatory.

Now we apply Theorem 5.15 to the equation (5.56), when (5.47) holds and

α > 2n− 1, as in Section 5.3. By (5.48), we have

∞∫
x

ρ−1(s)(s− x)2(n−1)ds =

∞∫
x

s−α(s− x)2(n−1) = x2n+α−1 (2n− 1)!
2n−1∏
k=1

(α− k)

.

Therefore the conditions (5.59) and (5.61) of Theorem 5.15 have the fol-

lowing form
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lim
x→∞

x2n−α−1

x∫
1

v(t)dt = 0 (5.63)

and

lim
x→∞

sup x2n−α−1

x∫
1

v(t)dt = ∞, (5.64)

respectively.

By applying the L’Hospital rule 2(n − 1) times, it is easy to see that the

condition (5.60) holds if and only if the condition (5.63) holds. Thus, the

equation (5.56) is strongly nonoscillatory with the condition (5.47) and α >

2n − 1 if and only if the condition (5.63) holds; and the equation (5.56) is

strongly oscillatory if and only if the condition (5.64) holds.

Now we consider the following equation

(−1)n(ρ(t)y(n)(t))(n) − λt−βy(t) = 0. (5.65)

Let at first β > 2n− 1. Then the conditions (5.51) and (5.53) of Theorem

5.13 have the following form

lim
x→∞

x2n−β−1

x∫
1

ρ−1(s)ds = 0 (5.66)

and

lim
x→∞

sup x2n−β−1

x∫
1

ρ−1(s)ds = ∞, (5.67)

respectively.

Moreover, (5.66) implies that (5.52) holds for v(t) = tβ. Thus, the equation

(5.65) is strongly nonoscillatory with β > 2n − 1 if and only if the condition

(5.66) holds; and the equation (5.65) is strongly oscillatory if and only if the

condition (5.67) holds.

Now let β < 1. Then we apply Theorem 5.15 to the equation (5.65) and

we obtain that the equation (5.65) is strongly nonoscillatory with β < 1 if and

only if the condition

lim
x→∞

x2n−β−1

∞∫
x

ρ−1(t)dt = 0, (5.68)
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holds. Thus the equation (5.65) is strongly oscillatory if and only if the con-

dition

lim
x→∞

sup x2n−β−1

∞∫
x

ρ−1(t)dt = ∞, (5.69)

holds.

Next we deal with spectral properties of the differential expression

l(y) = (−1)n 1

v(t)
(ρ(t)y(n))(n),

where v and ρ are continuous functions and ρ(t) > 0, v(t) > 0 for t ∈ [T,∞).

The maximal differential operator Lmax generated by the differential ex-

pression l (i.e. Lmax(y) = l(y)) is the operator with domain

D(Lmax) = {y : [T,∞) → R,

yi ∈ AC[T,∞), i = 0, 1, ...n− 1, and ly ∈ L2(T,∞)}.

The minimal operator Lmin is defined as the adjoint operator to the maxi-

mal operator, i.e. Lmin ≡ (Lmax)
∗. The domain of every self–adjoint extension

L of the minimal operator Lmin satisfies the inclusions

D(Lmin) ⊂ D(L) ⊂ D(Lmax).

It is known that all self–adjoint extensions of the minimal operator have

the same essential spectrum, see [25], [39].

Next we focus our attention to the following spectral properties of the

operator L.

Definition 5.17. The operator L is said to have the BD property if every

self–adjoint extension of Lmin has bounded below and discrete spectrum.

The link between oscillatory and spectral properties of the operator L is

shown in the following statement.

Proposition 5.18. The operator L has the BD property if and only if the

equation L(y) = λy is strongly nonoscillatory.

By Theorem 5.13 and Theorem 5.15, we have the following theorem.
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Theorem 5.19. Assume that v and ρ are positive and continuous functions

on I.

(i) If the condition (5.39) holds, then the operator L has the BD property

if and only if both (5.51) and (5.52) hold.

(ii) If the condition (5.47) holds, then the operator L has the BD property

if and only if both (5.59) and (5.60) hold.

We now consider the differential operators

L̃(y) = (−1)n 1

v(t)
(tαy(n))(n),

L̂(y) = (−1)ntβ(ρ(t)y(n))(n).

By applying the previous oscillation and nonoscillation criteria at t0 to the

equations (5.56) and (5.65), we obtain the following necessary and sufficient

condition for the BD property of L̃ and L̂ to hold, respectively.

Proposition 5.20. (i) If α < 1 and the condition (5.39) holds, then the

operator L̃ has the BD property if and only if (5.57) holds.

(ii) If α > 2n− 1 and the condition (5.47) holds, then the operator L̃ has

the BD property if and only if (5.63) holds.

Proposition 5.21. (i) If β < 1 and the condition (5.47) holds, then the

operator L̂ has the BD property if and only if (5.68) holds.

(ii) If β > 2n − 1 and the condition (5.39) holds, then the operator L̂ has

the BD property if and only if (5.66) holds.

We note, that the statement (ii) of Proposition 5.21 is new with respect

to the results of Theorem 3 in [15]. Indeed, the authors of [15] assume that
∞∫
T

ρ−1(s)ds < ∞.
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Dos127 [17] O. Došlý, Qualitative theory of half–linear second order differential equa-

tion, Math. Bohem 127 (2002), pp. 181–185.

DrKu18 [18] P. Drabek and A. Kufner, Hardy inequality and properties of the quasi-

linear Sturm-Liouville problem, Rend. Lincei Mat. Appl. 18 (2007), pp.

125–138.

EdEv04 [19] D. E. Edmunds and W.D. Evans, Hardy Operators, Function Spaces and

Embeddings, Springer–Verlag, Berlin, 2004.

Elb30 [20] A. Elbert, A half–linear second order differential equations, Colloq. Math.

Soc., Janos Bolyai, 30(1979), pp. 158–180.

El81 [21] U. Elias, Nessesary conditions and sufficient conditions for disfocality and

disconjugacy of a differential equation, Pacific J. of mathematics, 81(2),

1979.



BIBLIOGRAPHY 123

EmGas [22] Emden R. Gaskugeln, Anwendungen der mechanischen Warmen theorie

auf Kosmologie and metheorologische Probleme, Leipzig, 1907.

Fieg [23] F. Fiegler, Oscillation criteria for a class of 2n–order ordinary differential

equations, Math. Nachr. 131 (1987), pp. 205–218.

Fow91 [24] R. H. Fowler, The solutions of Emden’s and similar differential solutions,

Mothly Notices Roy. Astronom. Soc. 91 (1930), pp. 63–91.

Glaz [25] I. M. Glazman, Direct methods of qualitative analysis of singular differtial

operators, Jerusalim, 1965.

GKPW29 [26] A. Gogatishvili, A. Kufner, L.–E. Persson and A. Wedestig, An equivalece

theorem for integral conditions related to Hardy’s inequality, Real Anal.

Exchage 29(2003/04), pp. 867–880.

HaLP2 [27] G. H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, 2–nd ed., Cam-

brige University Press, 1952.

Har57 [28] G. H. Hardy, Note on some points in the integral calculus. LXIV. Further

inequalities between integrals, Messenger of Math. 57(1927), pp.12–16.

HiLe [29] D. B. Hinton and R. T. Lewis, Singular differential operators with spectra

discrete and bounded below, Proc. Roy. Soc., Edinburgh, 84A(1979) pp.

117–134.

KuOi2 [30] S.Y. Kudabayeva and R. Oinarov, The criteria of disconjugate of half–

linear second order differential equations, Math. J., Kazakhstan, T.10,

No. 2 (36), 2010, pp. 56-67. (in Russian).

KuMP07 [31] A. Kufner, L. Malegranda and L.–E. Persson, The Hardy inequality.

About its history and some related results, Pilsen, 2007.

KuPe03 [32] A. Kufner and L.–E. Person, Weighted Inequalities of Hardy type, Word

Scientific Publishing Co., Singapore/ New Jersey/ London/ Hong Kong,

2003.

KuPW64 [33] A. Kufner, L.–E. Persson and A. Wedestig, A study of some constans

characterizing the weighted Hardy inequality, Banach Center Publ. 64,

Orlicz Centenary Volume, Polish Acad. Sci., Warsaw 2004, pp. 135–146.



124 BIBLIOGRAPHY

Liz239 [34] P. I. Lizorkin, On closer of the set of infinitely differentiable function with

compact support in the weighted space W l
p,φ, DAN USSR, 239(4) (1978)

(in Russian).

Man24 [35] V. M. Manakov, On the best constant in weighted inequalities for Rie-

mann - Liouville integrals, Bull. London Math. Soc., 24 (1992).

MiHa88 [36] A. B. Mingarelli and S. G. Halvorsen, Non–oscillation domains of dif-

ferential equations with two parameters, Lecture Notes in Mathematics,

Spinger–Verlag Berlin Heidelberg, 1988.

Mir53 [37] J. D. Mirzov, On some analogs of Sturm’s and Kneser’s theorems for

nonlinear systems, J. Math. Anal. Appl. 53(1976), pp. 418–425.

Muck44 [38] B. Muckenhoupt, Hardy’s inequalities with weights, Studia Math.

44(1972), pp. 31–38.

MyOt88 [39] K. T. Mynbaev and M. Otelbayev, Weghted function spaces and the spec-

trum of differential operators, Nauka, Moscow, 1988 (in Russian).

Oin303 [40] R. Oinarov, About density of the functions of compact support on

weighted spaces and weighted inequalities, Dokl. Akad. Nauk SSSR 303

(1988), pp. 559–563; English transl. in Sovet Math. Dokl. 38 (1989), pp.

575–579.

OiRa42 [41] R. Oinarov and S.Y. Rakhimova, Weighted Hardy inequalities and

their application to oscillation theory of half-linear differential equation,

Eurasian Math. J., Kazakhstan, V.1, No. 42 (2010), pp. 110–124.

OiRa49 [42] R. Oinarov and S.Y. Rakhimova, Oscillation and nonoscillation of two

terms linear and half-linear equations of higher order, E. J. Qualitative

Theory of Diff. Equ., Hungary, No. 49 (2010), pp. 1-15.

OpKu219 [43] B. Opic and A. Kufner, Hardy–type Inequalities. Pitman Research Notes

in Mathimatics 219, Longman Scientific and Technical, Harlow, 1990.

Otel [44] M. Otelbayev, Estimates of the spectrum of the Sturm –Liouville operator,

Gylym, Alma-Ata, 1990 (in Russian).



BIBLIOGRAPHY 125

Pan23 [45] S. Panigrahi, Criteria for disfocality and disconjugacy for third order dif-

ferential equations, E. J. Qualitative Theory of Diff. Equ., 23 (2009), pp.

1–17.
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