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Abstract

In this thesis the Λ0
b → Λ∗+c τ−ν̄τ and Λ0

b → Λ∗+c µ−ν̄µ decays have been

investigated. In particular, the �rst measurement of the ratio R(Λ∗c) =

B(Λ0
b → Λ∗+c τ−ν̄τ)/B(Λ0

b → Λ∗+c µ−ν̄µ) has been performed using a sample

of LHC pp collision data corresponding to 2 fb−1 of integrated luminosity,

recorded by the LHCb detector in the 2012. Only the excited state Λ+
c (2625)

have been reconstructed, particularly in Λ∗+c → Λ+
c (→ pK−π+)π+π− decay

mode and only the muonic decays of τ are considered, τ− → µ−ν̄µντ .

This measurement is of great interest in order to con�rm or disprove the

discrepancies with respect to SM predictions found in analogue measurement

performed on mesonic decays. Moreover it is the �rst measurement focused

on baryonic decays.

The ratio is measured by �tting the output of the neural network distribution

of the data based on the missing mass square, the energy of the lepton

in the Λ0
b rest frame and a Fisher discriminant output build using the Λ0

b

decay vertex informations. The �t has been performed simultaneously on

transferred momentum and isolations bins. The last variable allows to select

a sample enriched of double charmed Λ0
b decays.

The R(Λc(2625)) is measured to be consistent with the Standard Model

expectation (Rexp(Λc(2625)) = 0.151± 0.014) and equal to

R(Λc(2625)) = 0.238± 0.108(stat)± 0.058(syst)

However, at the moment, it is dominated by statistical error. The run II

LHC data (at least 5 fb−1 of integrated luminosity) will allow to have a sta-

tistical error competitive with the systematic one, assuming to perform the

analysis using the same strategy.

Moreover, by using the �t result, the di�erential decay rate (1/Γ)dΓ/dq2(Λb →



Λ∗cµν̄µ), considering the unfolding of the raw spectrum for the q2 resolution

and the selection e�ciency, has been determined.

Finally, it is presented a new method to determine the b-hadron momentum

in a semileptonic decays of this one at a hadron collider. In fact, in this envi-

ronment, due to the presence of one or more neutrinos, to unknown parton-

parton collision energy and the busy hadronic environment, is not possible to

reconstruct the b-hadron momentum in the laboratory rest frame using �nal

particles. As a consequence, the decays kinematics can be solved only up to

a quadratic ambiguity. To solve this problem in this thesis is also presented a

new method, based on a multivariate regression algorithm developed exploits

the informations that can be extracted by b-hadron �ight vectors to infer its

momentum. The improved resolutions may be exploited to measure the dif-

ferential decay width dΓ(Hb → Hµν̄µ)/dq2 with high precision because of

the reduced migrations between the q2 bins.
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Introduction

It is known that the Standard Model is not the ultimate description of ele-

mentary particle dynamics, but an e�ective �eld theory valid to the energy

scale explored so far. Finding and identifying hints of New Physics in the

quark �avour dynamics still represents a great challenge at the colliders.

There are indeed already available evidences of phenomena that cannot be

described within the Standard Model, like for instance neutrino oscillations.

CP violation, required to explain the matter-antimatter asymmetry of the

Universe, has been discovered and measured in the K and B system, in ac-

cordance to the Standard Model prediction. However, it is insu�cient to

explain the magnitude of the baryon asymmetry of the Universe, and there-

fore, further sources of CP violation must exist. It is possible that this new

sources could be found in the lepton sector, or indeed in an extended gauge

sector.

In the Standard Model, the couplings of the gauge bosons to the leptons

are independent of the lepton �avour and then, the branching fractions of

e, µ and τ can di�er only by phase space and helicity-suppressed contri-

butions. The Lepton Flavor Universality is enforced in the SM by con-

struction and therefore any violation of lepton universality would be a clear

sign of physics beyond the SM. Existing hints of non universality have al-

ready been observed in Electroweak Penguin processes (B± → K±l+l−

and recently B0 → K∗0l+l−) and in the semi-tauonic B meson decays

(R(D∗) = B(B̄0 → D∗+τ−ν̄τ)/B(B̄0 → D∗+µ−ν̄µ). The semitauonic de-

cays, in particular, are sensitive to contributions from non-Standard-Model

particles that preferentially couple to the third generation of fermions. For

example Higgs-like charges scalars, could contribute to these decays together
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Introduction

with the usual Standard Model W-emission amplitude and increase the semi-

tauonic decays. The most recent HFAG combination, considering B factories

and LHCb results of R(D) and R(D*) measurements, is 3.9σ from SM ex-

pectation. Several test has been performed using the B mesons decays and

many NP scenarios have been hypothesized to explain the discrepancies with

respect to SM predictions. The study of the analogous observables in the

baryonic sector is crucial to both, con�rm or disprove the discrepancy with

the SM in completely di�erent b-hadron, and constrain the possible source

of new physics because of the di�erent spin structure compared with the

usual meson B decays. In particular, in this thesis, the Λ0
b semimuonic and

semitauonic decays which involves excited Λc particles are studied and a

measurement of the ratio R(Λ∗c) = B(Λ0
b → Λ∗+c τ−ν̄τ)/B(Λ0

b → Λ∗+c µ−ν̄µ)

is presented. The �rst angular excited Λc states form a doublet, named

Λc(2595) and Λc(2625), of well separated narrow states. Both decay in

Λcπ
+π− mode with a branching fraction of about 70%. The presence of the

two further charged tracks make their reconstruction easy in LHCb. As �rst

measurement of R in Λ0
b decays, it has been preferred to study the decay

into exited states over the fundamental one, mainly because of the smaller

contamination from the decays of other higher masses states. Moreover, with

huge statistics, the decay of excited states allows to access further kinematics

observables besides the ratio R. The measurement based on Λc ground state

semileptonic will be an interesting following measurement.

The measurement is performed using a sample of pp collision data corre-

sponding to 2 fb−1 of integrated luminosity, recorded by the LHCb detector

in the 2012. Only muonic decays of τ are considered, τ− → µ−ν̄µντ , the

Λ+
c (2595) and Λ+

c (2625) baryons are reconstructed in the Λ∗+c → Λ+
c π

+π−

decay mode, and �nally the Λ+
c is built according to its decay mode Λ+

c →
pK−π+. The Λ0

b → Λ∗+c µ−ν̄µ channel is the largest physical background to

the Λ0
b → Λ∗+c τ−ν̄τ decays and it is also the normalization channel. They

are extracted simultaneously from a �t, and the observables R is directly

determined. The Form Factors of the Λ0
b → Λ∗+c transitions have never

been measured before, so both the signal and the normalization yields are

12



extracted in bins of the transferred momentum (q2). In this way the impact

of the Form Factors knowledge on the measurement of R is much reduced,

and it is possible to extract informations about their shapes.

The study of b-hadron semileptonic decays at hadron colliders su�ers of prob-

lems in the determination of the full decay kinematics, because the presence

of the neutrinos and the large �uctuation in the parton-parton collision en-

ergy, does not allow to determine the b-hadron momentum event by event.

In the LHCb acceptance region, thanks to the large forward boost, the b-

hadrons �y on average by about 1cm. From the �ight direction and the

hypothesis of single neutrino missing, the b-hadron momentum for semilep-

tonic decays, can be reconstructed up to a two-fold ambiguity. A multivari-

ate algorithm that uses informations unrelated to the decay mode, has been

developed.
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Chapter 1

Theory of �avour violation in

semileptonic decays

1.1 The Standard Model

The Standard Model describes the elementary particles and their interac-

tions. Elementary particles are divided in two sets, fermions which have half-

integer spin, and bosons, which have integer spin. The elementary fermions

are quarks and leptons. They form the building blocks of matter. Bosons

are the force-carriers, responsible for the interactions between the fermions.

The Standard Model describes three among four fundamental interactions

existing in nature: the electromagnetic, the weak and the strong interaction.

The fourth and weakest force in nature, gravitation, is not included in the

Standard Model. The fermions can be divided in three generations of in-

creasing mass, with one pair of quarks (u,c,t,d,s,b) and one pair of leptons

(e,ve,µ,vµ,τ ,vτ ) in each of them:(
e

ve

)(
µ

vµ

)(
τ

vτ

)(
u

d

)(
c

s

)(
t

b

)
For each particle, there is an antiparticle characterized by same mass, spin

and time decay but with every other quantum number di�erent.

The electromagnetic force acts on all charged particles through the ex-

change of a (massless) photon. The weak force acts on all fermions through

the exchange of a massive W± or Z0. The strong force acts on quarks ex-

changing a gluon with another quark. Quarks are provided of a color charge

15



Chapter 1. Theory of �avour violation in semileptonic decays

which can be exchanged when interacting with other quarks.

The Standard Model is a relativistic quantum �eld theory based on the

local gauge invariance principle of the group

SU(3)color × SU(2)L × U(1)Y

Here, Y and C represent the weak hyper-charge and the color charge gener-

ators, respectively, and L refers to the left-handed projection of chirality.

Moreover, besides the invariance for gauge transformations, SM, as every

other quantum �eld theory, has to be invariant under the CPT transforma-

tion.

The charge conjugation operator C, interchanges particle and antiparticle.

The parity operator P inverts the sign of spatial coordinates and then reverses

the handedness, i.e the projection of chirality. The time-reversal operator T

interchanges all directions of motion, including spin.

CPT conservation guarantees that mass, lifetime and magnetic moment

of particle and antiparticle are equal.

In the SM the left-handed leptons and quarks are inserted as SU(2)L

doublets, and the corresponding right-handed �elds are inserted as SU(2)R

singlets (Table 1.1), which means that the right-handed particles in the SM

do not interact weakly. This description entails the parity violation of the

weak interction, as discovered in Wu experiment [1].

Table 1.1: Left-handed doublets and right-handed singlets in the SM for the �rst (top), sec-

ond (middle) and third (bottom) generations. The corresponding antiparticles are omitted for

simplicity. Note the absence of right-handed neutrinos in the SM.(
ve
e−

)
L

(
u
d

)
L

e−R uR dR(vµ
µ−

)
L

(
c
s

)
L

µ−R cR sR(
vτ
τ−

)
L

(
t
b

)
L

τ−R tR bR

In the Standard Model the weak and electromagnetic forces arise from a

SU(2)L × U(1)Y gauge symmetry of the Lagrangian which can be written

as:

LEW = L̄ γµ(i∂µ − g
′ 1

2
Y Bµ − g

1

2
~τ ~Wµ )L+ R̄ γµ(i∂µ − g

′ 1

2
Y Bµ)R (1.1)
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1.1. The Standard Model

where L denotes left-handed doublets and R the right-handed singlets of

Table 1.1, Bµ is the U(1) gauge �eld, Y is the weak hyper-charge, ~Wµ is the

three-component SU(2) gauge �eld, ~τ are the Pauli matrices, g and g′ are

the coupling constants.

The Lagrangian (1.1) does not include mass terms for bosons, fermions

and quarks. Explicit fermion and quark mass terms (mψ̄ ψ) are not permit-

ted since the left-handed and right-handed components of the fermion and

quarks �elds transform di�erently under SU(2):

L
SU(2)−−−→ L′ = e−i

~θ·~τ
2 L

R
SU(2)−−−→ R′ = R

(1.2)

Also gauge bosons mass terms are not invariant under gauge transformation

since they have the form 1
2m

2BµBµ (where B is one of the quadrivecto-

rial �elds and m the mass). To generate particle masses it is necessary to

spontaneously break the gauge symmetry. This mechanism is called Higgs

mechanism.

The fermions acquire mass through the introduction of a scalar complex

SU(2) doublet φ, the Higgs �eld, and its Hermitian conjugate [2]. These

produce gauge invariant Yukawa interaction terms when the Higgs �eld ac-

quire a vacuum expectation value ν, giving the fermions masses.

The Yukawa term for the lepton �elds is

Ll_mass =
3∑
i=1

gieē
i
L

(
φ+

φ0

)
eiR (1.3)

where eL are the three left-handed lepton doublets, eR the three right handed

leptons singlets and gie the coupling constant. After spontaneous symmetry

breaking :

φ+ = 0

φ0 =
1

2
(ν +H)

Ll_mass becomes:

Ll_mass =
3∑
i=1

gieν√
2
ēLe

i
R +

gie√
2
ēLe

i
RH (1.4)
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Chapter 1. Theory of �avour violation in semileptonic decays

Then the mass of ei is equal to

mei =
gieν√

2
(1.5)

The Yukawa term for the quarks �elds is

Lq_mass =
3∑

i,j=1

Yij q̄
i
L

(
φ0∗

−φ−

)
djR + Y

′

ij q̄
i
L

(
φ+

φ0

)
djR + h.c (1.6)

where qL are the three left-handed quark doublets, dR and uR are the three

right-handed down-type and up-type quark singlets, Yij and Y
′

ij are the 3×3

Yukawa coupling matrix and its Hermitian conjugate. After spontaneous

symmetry breaking :

φ+ = 0

φ0 =
1

2
(ν +H)

Lq_mass becomes:

Lqmass = −
3∑

i,j=1

(mu
ijū

i
LujR +md

ijd̄
i
LdjR + h.c)[1 +

1

ν
H] (1.7)

where mu
ij and m

d
ij are 3× 3 matrices de�ned as :

mu
ij = − ν√

2
Yij

md
ij = − ν√

2
Y ′ij

Physical �elds are eigenstates of the mass matrix, so mu,d
ij must be diagonal-

ized:

uphysL = UL

uLcL
tL



dphysL = DL

dLsL
bL
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1.1. The Standard Model

where UL and DL are unitary matrices. Similar relations hold for the R-

handed quarks.

These unitary matrices allow us to �nd the relation between physical

(eigenstates of mass) and non-physical (�elds with de�nite transformation

properties under gauge group) �elds.

Thus, the charged current Lagrangian term becomes:

Lcc = − g

2
√

2
(W+

µ ū Lγ
µdL + h.c) =

= − g

2
√

2
(W+

µ ū
phys
L γµULD

†
L d

phys
L + h.c) =

= − g

2
√

2
(W+

µ ū
phys
L γµVCKMd

phys
L + h.c) =

= W+
µ J

µ
cc + h.c.

(1.8)

where Jµcc is the charged current and VCKMd
phys
L = dEWL . Therefore, the weak

eigenstates are superpositions of the physical eigenstates and are related by

the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3] [4]:dEWsEW

bEW

 = VCKM

ds
b


The structure of the charged-current weak interaction therefore allows mixing

between the di�erent quark generations and is referred to as �avour changing.

VCKM is a 3× 3 unitary matrix which may be written as

VCKM = ULD
†
L =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


where each (complex) element is proportional to the amplitude for a partic-

ular weak transition. In general, a 3× 3 complex matrix has 18 independent

parameters (nine complex numbers, each with a real and imaginary part).

The unitarity of the CKM matrix reduces this to nine and a further �ve

are absorbed by relative phase changes between the quark �elds. This leaves

four independent parameters: three mixing angles and a complex phase. The
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Chapter 1. Theory of �avour violation in semileptonic decays

fact that elements of the CKM matrix may be complex allows Charge-Parity

(CP) violation to occur within the framework of the Standard Model.

One of the possible parameterizations of the CKM matrix is

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.9)

where cij = cos θij and sij = sin θij and δ is the phase responsible for all

CP-violating phenomena in the Standard Model.

It is known experimentally that s13 << s23 << s12 << 1, that s12 ≈ 0.22

and, de�ning s12 = λ, that the CKM elements are of the following order of

magnitude with respect to λ:

|V |CKM ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 (1.10)

Therefore, it is possible to rede�ne the four CKM parameters using the

Wolfenstein [5] parametrization, based on a power series of λ:

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2

s23 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣
s13e

iδ = V ∗ub = Aλ3(ρ+ iη)

with ρ and η ∼ O(1)

(1.11)

So the CKM matrix becomes:

|V |Wolfenstein = 1− λ2

2 + λ4

8 λ Aλ3(ρ̄ + iη̄ )

−λ+ Aλ5(1
2 − ρ̄ − iη̄ ) 1− λ2

2 + λ4

8 (1− 4A2) Aλ2

Aλ3(1− ρ̄ − iη̄ ) −Aλ2 + Aλ4(1
2 − ρ̄ − iη̄ ) 1 + 1

2A
2λ4


(1.12)

where

ρ̄ = ρ(1− λ2

2
) η̄ = η(1− λ2

2
) (1.13)
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1.1. The Standard Model

The unitarity of the CKM matrix imposes:∑
i

VijV
∗
ik = δjk

∑
j

VijV
∗
kj = δik (1.14)

The six vanishing combinations can be represented as triangles in the com-

plex plane.The triangles obtained by applying the unitarity condition to

neighboring columns are nearly degenerate.

According to the experimental measurements [6], the magnitude of CMK

matrix elements are:

VCKM =

 0.97434+0.00011
−0.00012 0.22506± 0.00050 0.00357± 0.00015

0.22492± 0.00050 0.97351± 0.00013 0.04111± 0.0013

0.00875+0.00032
−0.00033 0.0403± 0.013 0.99915± 0.00005


(1.15)

The transition between di�erent quark families does not take place in the

neutral currents. In fact, due to the unitarity of CKM matrix a fermion can

interact only with its antiparticle or with an identical fermion. So the SM

does not foresee Flavour-Changing Neutral Currents (FCNC) at tree-level [7].

Finally, in the Standard Model the strong interactions between quarks

and gluons, explained by quantum chromodynamics theory, arise from a

SU(3)color local gauge symmetry of the Lagrangian which can be written as:

LQCD =
∑
F

ψ̄F (iγµ∂µ − gsγµ
λC

2
AC
µ −mF )ψF −

1

4
ACµνAC

µν (1.16)

where ψF is a triplet in the SU(3) space of quarks spinors of �avour F and

mass mF , A
C
µ the massless gluon �elds with C in[1, 8], AC

µν the gluon �eld

strength tensors, λC the 8 Gell-Mann matrices generators of SU(3) group and

gs the strong coupling constant. The last one gs, depends on the transferred

momentum q2 an it is equal to:

gs =
8π2

(11− 2
3nf)log

q
ΛQCD

(1.17)

where nf is the number of �avours and ΛQCD the energy scale of strong

interactions experimentally evaluated ΛQCD '= 200MeV .
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Chapter 1. Theory of �avour violation in semileptonic decays

1.2 Test of Lepton Flavour Universality

Lepton �avour Universality (LFU) implies equality of coupling between the

gauge bosons and the three families of leptons. It implies that the branching

fractions of e, µ and τ di�er only by phase space and helicity-suppressed con-

tributions. Lepton Flavour Universality is enforced in the Standard Model

(SM) by construction and therefore, any violation would be a clear sign of

New Physics (NP).

Over the years, the LFU has been tested but has been proven to be an ac-

curate description in several systems. Recent hints of lepton non-universal

e�ects have been seen measuring the ratio of dielectron to dimuon branch-

ing ratio of b → sl+l− rare transitions and in the R(D(∗)) ≡ B(B̄0 →
D(∗)+τ−ν̄τ)/B(B̄0 → D(∗)+µ−ν̄µ) ratios.

1.2.1 R(K) and R(K0∗)

The rare decays involving b → sl+l− transitions are allowed only at loop

level due to the absence of �avour changing neural currents at tree level

in SM. Then, they are highly sensitive to virtual particle and interaction,

such Z′ boson mediating the transition from b to s quarks [8]. In particular,

by comparing decays with di�erent leptons in �nal state, it is possible to

probe NP involving the �avour universality violation among the di�erent

generations.

The ratio of

R(K) =
B(B+ → K+µ−µ+)

B(B+ → K+J/ψ(→ µ−µ+))
/

B(B+ → K+e−e+)

B(B̄0 → K+J/ψ(→ e−e+))

branching fractions is predicted to be the unity within an uncertainty of

O(10−3), but the LHCb measurement (performed to an integrated luminsity

of about 3fb−1) results to be R(K) = 0.745+0.090
−0.074 ± 0.036 , compatible with

this SM value at 2.6σ [9]. In �gure 1.1 the available measurements, which

include also the current BaBar [10] and Belle [11] results, as a function of q2

are presented.
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1.2. Test of Lepton Flavour Universality

The ratio of

R(K0∗) =
B(B+ → K∗0µ−µ+)

B(B+ → K∗0J/ψ(→ µ−µ+))
/
B(B+ → K∗0 + e−e+)

B(B̄0 → K∗0J/ψ(→ e−e+))

is update recently thank to a LHCb measurement. It results to be compatible

with the SM expectation at level of 2.2-2.3 and 2.4-2.5 standard deviations

in the low and central q2 regions respectively, as shown in �gure 1.1 The

�gure reports also the other analogue measurements done at Belle [11] and

Babar [10] .

Figure 1.1: Summary of R(K) [9] (left) and R(K0∗) [12] (right) measurements.

1.2.2 R(D∗) and R(D)

A large class of models extending the SM contain additional interaction in-

volving enhanced couplings to the third generation which would violate the

universality. Therefore, semileptonic decays of b hadrons to the third gener-

ation provide a sensitive probe for such e�ects. In particular, the B meson

decays with tau lepton in the �nal state can show NP contributions not

present in the processes with light leptons, since the tau mass can reduce the

helicity suppression of certain semileptonic decay amplitudes which are un-

observables in decays with light leptons in the �nal state [13] [14]. Therefore

many measurements of B(B̄0 → D(∗)+τ−ν̄τ) are performed. In order to sim-

plify the reconstruction e�ciencies the measurements are done normalized to

B(B̄0 → D(∗)+µ−ν̄µ). Many NP model can be tested using this decay, such
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Chapter 1. Theory of �avour violation in semileptonic decays

as the 2HDM of type II and III, the leptoquark model and Minimal Super-

symmetric Model (MSSM) [13,14]. In the 2HDM model of type II, two Higgs

doubled are expected: the �rst one couples to down quarks and charged lep-

tons, while another one gives the masses to the up quarks. In the 2HDM

model of type III both of doublets couples to up and downs quarks. The

leptoquarks model predicts new particles, the leptoquarks, which decay into

a lepton and a quark. Finally, in MSSM the fermions have a bosonic super-

partners called sfermions and the boson conversely. Many measurements of

R(D(∗)) ≡ B(B̄0 → D(∗)+τ−ν̄τ)/B(B̄0 → D(∗)+µ−ν̄µ) has been performed.

In spring 2015, this quantity has been measured from LHCb Collaboration

2.1 σ far from SM expectations [13], con�rming a discrepancy with respect of

SM prediction, already measured by Babar [15] and Belle [16]. In 2016 Belle

has published a measurement using a semileptonic tagging method, di�erent

from the previous one in which an hadronic method was utilized, obtaining

a valued compatible with the SM at 1.6σ level [17]. A further improvement

realized by Belle Collaboration performing a simultaneous measurement of

R(D∗) and the τ polarization [18], has allowed to de�ne an average value for

R(D∗) compatible with SM at 3.4σ. At the B factories have been performed

also the R(D) measurements [15] [16]. In �gure 1.2 the prospect of all R(D∗)

and of R(D) measurements and in �gure 1.3 the HFAG plot combining the

two quantities, are shown.

1.2.3 R(Λ∗
c)

This thesis presents the �rst measurement of

R(Λ∗c) =
B(Λ0

b → Λ∗cτ
−ν̄τ)

B(Λ0
b → Λ∗cµ

−ν̄µ)
(1.18)

where

• Λ∗c ≡ Λ+
c (2625),

• Λ∗+c → Λ+
c π

+π−,

• Λ+
c → pK−π+,
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1.2. Test of Lepton Flavour Universality

R(D*)
0.2 0.3 0.4

BaBar had. tag
 0.02± 0.02 ±0.33 

Belle had. tag
 0.01± 0.04 ±0.29 

LHCb
 0.03± 0.03 ±0.34 

Belle sl.tag
 0.01± 0.03 ±0.30 

Belle (hadronic tau)
 0.027± 0.035 ±0.270 

Average 
 0.008± 0.015 ±0.310 

S.Fajfer et al. (2012) 
 0.003±0.252 

HFAG
MoriondEW 2017

/dof = 0.4/ 1 (CL = 52.00 %)2χ

R(D)
0.2 0.4 0.6

BaBar had. tag

 0.04± 0.06 ±0.44 

Belle had. tag

 0.03± 0.06 ±0.38 

Average 

 0.024± 0.040 ±0.403 

FNAL/MILC (2015)

 0.011±0.299 

HPQCD (2015) 

 0.008±0.300 

HFAG
MoriondEW 2016

/dof = 0.4/ 1 (CL = 52.00 %)2χ

Figure 1.2: HFAG summary of R(D∗) (left) and R(D) (right) measurements.

R(D)
0.2 0.3 0.4 0.5 0.6

R
(D

*)

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)

LHCb, PRL115,111803(2015)

Belle, PRD94,072007(2016)

Belle, arXiv:1612.00529

Average

SM Predictions

 = 1.0 contours2χ∆

R(D)=0.300(8) HPQCD (2015)
R(D)=0.299(11) FNAL/MILC (2015)
R(D*)=0.252(3) S. Fajfer et al. (2012)

HFAG

Moriond 2017

) = 67.4%2χP(

HFAG
Moriond EW 2017

Figure 1.3: HFAG average of R(D∗) and R(D) measurements.

• and τ− → µ−ν̄µντ .

As it is described in the previous sections, there are new physics hints appear-

ing as a consequence of �avour universality violations which can be probed

using the R measurements. Several test has been performed using the B

mesons decays and many NP scenarios have been hypothesized to explain

the discrepancies with respect to SM predictions. The study of the ana-
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Chapter 1. Theory of �avour violation in semileptonic decays

logue observables in the baryonic sector allows, or not, to con�rm this dis-

crepancy with respect to the SM expectations. Moreover, the presence of

baryonic measurements gives the possibility to the theorists of inserting also

the baryon decays behaviors in their models or to develop others aimed. In

particular, in this thesis, the Λ0
b semimuonic and semitauonic decays which

involves excited Λc particles are studied. It has been preferred to choose

the excited states, and not the fundamental one to avoid the contamination

to the studied channels due to unknown excited decays. The measurement

based on Λc ground state semileptonic will be an interesting following mea-

surement.

1.3 The Theory of Baryon Semileptonic Decays b→ clνl

1.3.1 Matrix Elements

In this thesis, the Λ0
b → Λ+

c (2625)l−ν̄l decays are searched where l
− = µ−τ−.

Moreover, some presented studies involve also the Λ0
b → Λ+

c (2595)l−ν̄l. The

Feynman diagram for these decays is shown in �gure 1.4. Λ+
c (2625) and

Λ+
c (2595), are two excited state of the Λ+

c baryon, characterized respectively

by JP = 3
2

−
and JP = 1

2

−
.

The transition matrix element for the semileptonic decay of a baryon Bbq

Figure 1.4: Feynman diagram of Λ0
b → Λ∗+

c τ−ν̄τ .

into a state containing another baryon Bcq can be written as a term propor-

tional to the product of a leptonic current Lµ and of a hadronic current Hµ
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1.3. The Theory of Baryon Semileptonic Decays b→ clνl

which are mediated by a W boson:

M = −iGF√
2
VbcL

µHµ (1.19)

where:

• GF√
2

= g2

8M2
W
is the Fermi coupling constant;

• Vbc is the CKM matrix element;

• Lµ = ūlγ
µ(1− γ5)uνl is the lepton current;

• Hµ = 〈Λ∗c(p′, s′)|Jµ|Λb(p, s)〉 is the hadronic current
in which Jµ is the weak current operator which couples to the W boson:

Jµ = c̄γµ(1− γ5)b, p,p' are the momenta and s,s' the spin polarization

vector of the two baryons .

Since the two baryon interacts strongly, and in particular since the quarks

are con�ned, the hadron current will contain some term that parametrizes

the non perturbative behavior of the QCD called form factors. They depends

on initial and �nal state and they are measurable experimentally.

The hadronic matrix elements of the vector and axial current for a Λ0
b decays

to daughter Λ∗c baryion with JP = 3
2

−
and JP = 1

2

−
are respectively:

• 〈Λ
3
2−
c (p′, s′)|Vµ|Λb(p, s)〉 =

= ūα(p′, s′)

[
pα
mΛb

(F1(q
2)γµ + F2(q

2)
pµ
mΛc

+ F3(q
2)

p′µ
m

Λ
3
2−
c

) + F4gαµ

]
u(p, s)

(1.20)

〈Λ
3
2−
c (p′, s′)|Vµ|Λb(p, s)〉 =

= ūα(p′, s′)

[
pα
mΛb

(G1(q
2)γµ +G2(q

2)
pµ
mΛc

+G3(q
2)

p′µ
m

Λ
3
2−
c

) +G4gαµ

]
γ5u(p, s)

(1.21)

in which the spinor ūα(p′, s′) satis�es the conditions:

p′αū
α(p′, s′) = 0, p′αū

α(6 p′, s′)γα = 0, ūα(p′, s′) 6 p′ = m
Λ

3
2−
c

ūα(p′, s′).
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Chapter 1. Theory of �avour violation in semileptonic decays

• 〈Λ
1
2−
c (p′, s′)|Vµ|Λb(p, s)〉 =

= ūα(p′, s′)

[
F1(q

2)γµ + F2(q
2)
pµ
mΛc

+ F3(q
2)

p′µ
m

Λ
1
2−
c

]
u(p, s) (1.22)

〈Λ
1
2−
c (p′, s′)|Vµ|Λb(p, s)〉 =

= ūα(p′, s′)

[
G1(q

2)γµ +G2(q
2)
pµ
mΛc

+G3(q
2)

p′µ
m

Λ
1
2−
c

)

]
γ5u(p, s) (1.23)

where Fi and Gi are the baryons form factors.

Weak decays of hadrons involving one or more heavy quarks, mQ >> ΛQCD

have an additional symmetry in the e�ective Lagrangian, the heavy quark

symmetry [19]. This symmetry arises because one a quark becomes suf-

�ciently heavy, its mass becomes irrelevant to the non perturbative light

quarks and gluons. In this situation the heavy quarks motion will �uctuate

only slightly about the light quarks and they will behave like a stationary

sources of color �eld. The QCD Lagrangian becomes symmetric for exchange

of b with c quarks in the limit of mb → ∞ and mc → ∞, but the magni-

tude of color �eld and the heavy quark mass di�erence are unchanged. As a

consequence of the heavy quark symmetry, the previous shown form factors

resulted correlated each other, reducing the quantities which are necessary

to study to one, the Isgur-Wise function ξ(q2), and it is known the value of

the form factor when the momentum of �nal state hadron containing c is

null with respect to hadron in the initial state containing b. This con�gu-

ration is called at zero recoil and corresponds to the maximum transferred

momentum q2:

q2 = m2
W∗ = (pµ

Λ0
b
− pµΛ∗c)

2 = m2
Λ0
b

+m2
Λ∗c

(1.24)

Since the mass of b and c quarks are not in�nite, the symmetry is broken and

corrections has to be estimated in a 1/mQ expansion (Heavy Quark E�ective

Theory).

The form factor can be expressed also as a function of w, the scalar product
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1.3. The Theory of Baryon Semileptonic Decays b→ clνl

of four velocity transferred:

w = vΛ0
b
· vΛ∗c =

m2
Λ0
b

+m2
Λ∗c
− q2

2mΛ0
b
mΛ∗c

(1.25)

and therefore, by construction ξ(1) = 1. Heavy quark symmetry predicts

the relations among factors but not the kinematic dependence.

The baryon matrix elements can be rewritten [20] as

Hµ = 〈Λ∗c(v′, s′)|c̄γµ(1−γ5)b|Λb(v, s)〉 = ξ(w)ū(v′)c̄γµ(1−γ5)bu(v) (1.26)

And then,

Fi = Ci(mb,mc, w)ξ(w)

Gi = C5
i (mb,mc, w)ξ(w)

(1.27)

where Ci are evolution coe�cients and ξ(w) is the Isgur-Wise function.

1.3.2 Decay Rates

The decay rate that arises from any transition matrix elements is [21]:

dΓ =
1

2mΛ0
b

G2
F

2
|Vbc|2(

∏
f

d3pf
8π32Ef

LµνHµν(2π)4δ(4)(pΛ0
b
−
∑

pf) (1.28)

where

• f refers to the �nal state particles;

• Lµν is the leptonic tensor:

Lµν = 8[pµl p
ν
νl

+ pµνlp
ν
l − gµνpl · pνl + iεµναβplαpνlβ]

• Hµν is the hadronic tensor:

Hµν =
∑
spin

〈Λ∗c|J †ν |Λ0
b〉〈Λ∗c|Jµ|Λ0

b〉

This tensor has to have the Lorentz structure with coe�cients α,β+−,

β−+, β++, β−−,γ expressed in term of the form factors.
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Chapter 1. Theory of �avour violation in semileptonic decays

De�ning x = Elepton/mΛ0
b
and y = q2/m2

Λ0
b
, the complete expression for the

di�erential rate results:

d2Γ

dxdy
=
G2
Fm

5
Λ0
b
|Vbc|2

64π3
[αCα+β++Cβ++

+β+−Cβ+−+β−+Cβ−+
+β−−Cβ−−+γCγ]

(1.29)

where

Cα =
2

m2
Λ0
b

(
y − m2

l

m2
Λ0
b

)
,

Cβ−− =
m2
l

m2
Λ0
b

(
y − m2

l

m2
Λ0
b

)
,

Cβ−+
= Cβ+− =

m2
l

m2
Λ0
b

[
4(x− xm)− y − m2

l

m2
Λ0
b

]
,

Cβ++
=

8[x(2xm + y)− 2x2 − y/2]− m2
l

m2
Λ0
b

(
m2
l

m2
Λ0
b

−
4m2

Λ∗c

m2
Λ0
b

− 8x− 3y

)
,

Cγ = ∓2y

[
2xm − 4x+ y +

m2
l

m2
Λ0
b

(2xm + y)

]

in which xm = (m2
Λ0
b
−m2

Λ∗c
)2m2

Λ0
b
and the sign of Cγ is in according to the

lepton sign.

1.4 Λ0
b → Λ∗c Form Factors in a Quark Model

At this moment, the only form factor calculation of Λ0
b → Λ∗c which allows to

estimate the decay rate for the Λ0
b → Λ∗cτ

−ν̄τ is performed in the framework

of constituent quark model [21]. It has high hopes that this thesis persuades

to perform new lattice QCD, HQET or model quark calculations.

A constituent quark model is based on the assumption that the constituent

of the hadrons are only the constituent quarks, that is the valence quarks

surrounded by a cloud of virtual quarks and gluons. A quark model calcula-

tion estimates the baryon wave function and used it in order to compute the
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1.4. Λ0
b → Λ∗

c Form Factors in a Quark Model

matrix elements which appears in the hadronic current. The quarks interac-

tions are instantaneous and therefore it can be described by time independent

Schroedinger equation, de�ned by a potential which takes in account of the

asymptotic freedom and con�nement QCD characteristics. In particular, the

Hamiltonian according the used model used takes the form:

H =
3∑
i=1

Ki +
3∑

i<j=1

(V ij
conf +H ij

hyp) (1.30)

where

• Ki is the semi-relativistic kinetic energy of the ith quark;

Ki =
√
p2
i +m2

i

• V ij
conf is the spin independent semi harmonic oscillator con�ning poten-

tial used by Capstick and Isgur [22]

V ij
conf = Cqqq +

brij
2
− 2αCoul

3rij

where rij = |ri − rj|.

• H ij
hyp is the hyper�ne interaction assumed to have the form:

H ij
hyp =

2αhyp
2mimj

{
8π

3
Si · Sjδ3(rij) +

1

r3
ij

[
3(Si · rij)(Sj · rij)

r2
ij

− Si · Sj

]}
The �rst term is a contact term, while the second one is a tensor. The

spin orbit interaction is neglected. αCoul, αhyp, b, Cqqq and mi, listed in

table 1.2, are not fundamental but phenomenological parameters ob-

tained from a �t to the spectrum of baryon states.

The values are evaluated expanding the baryon wave function int the har-

monic oscillator basis.

In table 1.3 the form factors of Λ0
b → Λ∗cτ

−ν̄τ calculated at recoil point are

listed.

The Isgur-Wise function obtained using this model is [21]:

ξ(w) = e

[
− 3m2

σ
α2 (w−1)

]
(1.31)
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Chapter 1. Theory of �avour violation in semileptonic decays

Parameter Fitted Value

mσ (GeV ) 0.38

ms (GeV ) 0.59

mc (GeV ) 1.83

mb (GeV ) 5.17

b (GeV)2 0.17

αCoul 0.09

αhyp 0.26

Cqqq (GeV ) -1.45

Table 1.2: Hamiltonian parameters obtained from �t to the baryon states in which the baryon

wave function is built in the harmonic oscillator basis.

JP F1 F2 F3 F4 G1 G2 G3 G4

1
2

−
0.15 -0.95 0.09 - 1.01 -0.82 0.04 -

3
2

−
-1.13 0.15 0.12 -0.05 -0.87 0.15 -0.12 0.05

Table 1.3: Λ0
b → Λ∗

c form factors calculated at recoil point in the HOSR model (harmonic

oscillator semi relativistic).

It has the same functional dependence for Λ+
c (2625) and Λ+

c (2595), but

di�erent parameters, listed in table 1.4.

The Isgur Wise function may be expanded as

Parameter Value

mσ (GeV ) 0.38

α 3
2

− 0.47

α 1
2

− 0.55

Table 1.4: Parameters of the Isgur-Wise function in the model HOSR [21].

ξ(w) = 1− ρ2(w − 1) +
σ

2
(w − 1)2 + ...

where ρ2 is the slope of the form factor at not recoil point and σ2 is the

curvature. Expanding 1.31 for w = 1, it is possible to �nd the ρ2 value equal

to:

ρ2 =
3m2

σ

α2

Finally in �gure 1.5 the di�erential rates dΓ/dq2 calculated using the model

the Λ0
b → Λ∗cτ

−ν̄τ and Λ0
b → Λ∗cµ

−ν̄µ decays [21] are shown.
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1.5. Standard Model Expectation for B(Λ0
b → Λ∗

cτ
−ν̄τ )/B(Λ0

b → Λ∗
cµ

−ν̄µ)

Figure 1.5: The di�erential rates dΓ/dq2 calculated using the model the Λ0
b → Λ∗

cτ
−ν̄τ (top) and

Λ0
b → Λ∗

cµ
−ν̄µ decays (bottom) [21].

1.5 Standard Model Expectation for B(Λ0
b → Λ∗cτ

−ν̄τ)/B(Λ0
b →

Λ∗cµ
−ν̄µ)

Measurements of the Λ0
b → Λ∗c Form Factors are not available yet so the Stan-

dard Model predictions for the ratios R(Λ∗b) have to fully rely on calculations.

The only existing calculation for both Λ0
b → Λ∗cµ

−ν̄µ and Λ0
b → Λ∗cτ

−ν̄τ decay

widths are available in [21] and reported in table 1.5 for both the semirela-

tivistic (SR) and non-relativistic (NR) heavy-quark treatment considered by

the authors.

Table 1.5 reports for comparisons also the prediction obtained consider-

ing only the di�erences in the phase-space due to the large τ mass. The

corresponding Dalitz plot is shown in �gure 1.6 for illustration.

It is not easy to assign a reliable uncertainty to the estimations of R re-
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Table 1.5: (Λ0
b → Λ∗

c`
−ν̄`) decay width (in units of 1010 s−1) predictions with the quark model

in Ref. [21] with the NR and SR approximations. For completeness we report also the decay

Branching Fraction using τΛb = (1.466±0010) ps, [?], and for comparison, the existing measure-

ments. In the last rows we report the predicted R for Λc, Λc(2595) and Λc(2625) �nal states in

the quark model and considering only the di�erences in the phase space.

Λc JP Γ(NR) Γ(SR) BF(NR) BF(SR) Experiment [6]

B(Λ0
b → Λ∗cµ

−ν̄µ)

Λc 1/2+ 4.60 5.39 6.7% 7.9% 6.2+1.4
−1.3%

Λc(2595) 1/2− 0.45 0.52 0.7% 0.8% 0.79+0.40
−0.35%

Λc(2625) 3/2− 0.95 0.90 1.4% 1.3% 1.3+0.6
−0.5%

B(Λ0
b → Λ∗cτ

−ν̄τ )

Λc 1/2+ 1.90 2.09 2.8% 3.1%

Λc(2595) 1/2− 0.10 0.11 0.15% 0.16%

Λc(2625) 3/2− 0.15 0.13 0.22% 0.19%

R R (NR ) R (SR) Phase Space

Λc 1/2+ 0.41 0.39 0.273

Λc(2595) 1/2− 0.22 0.21 0.214

Λc(2625) 3/2− 0.158 0.144 0.206

ported in table 1.5. Both model approximations predict BF for the muonic

decay mode, consistent with the existing measurements, but the experimen-

tal uncertainties exceed the 20%. Just to set a reference value, the average

between the NR and SR calculations has been taken as central value and

assigned as uncertainty due to the model, the total di�erence between the

two calculation. The resulting predictions are:

R(Λc) = 0.40± 0.020

R(Λc(2595)) = 0.215± 0.010

R(Λc(2625)) = 0.151± 0.014

(1.32)

The predicted R(Λc) = 0.40 ± 0.020 is higher than the existing calculation

based on Lattice, [23] that gives R(Λc) = 0.3328 ± 0.0074 ± 0.0070. It

would be important to have further lattice calculations even for the excited

Λ∗c states.
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cτ
−ν̄τ )/B(Λ0

b → Λ∗
cµ

−ν̄µ)
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Figure 1.6: Left: Dalitz plot for the Λ0
b → Λc(2625)µ−ν̄µ (black) and Λ0

b → Λc(2625)τ−ν̄τ

(yellow). Right: similar distribution in the q2 − E` plane. The e�ect of the large masses of the
τ is clearly visible in these plots.
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Chapter 2

The LHCb Experiment

This chapter describes the LHC Beauty experiment, LHCb, which has been

designed and built to check the consistency of the Standard Model through

precision measurements of the sides and angles of the Cabibbo-Kobayashi-

Maskawa triangle, and to search for new physics in decays that are rare, or

forbidden, in the Standard Model.

2.1 The Large Hadron Collider

The LHC is a circular collider of 26.66 Km circumference colliding two proton

beams rotating in opposite directions. It is designed to collide protons onto

protons at a center of mass energy of 14 TeV at an unprecedented luminosity

of 1034cm−2s−1. In 2011 the centre of mass energy was kept at 7 TeV, whereas

in 2012 it was kept at 8 GeV.

Bunches of 1011 protons each are obtained from hydrogen gas and are

�rstly accelerated to 50 MeV with a linear accelerator called LINAC2. They

are then passed to the Proton Synchrotron Booster where their energy is

increased to 1.4 GeV. Following this, they are injected into the Proton Syn-

chrotron, accelerated to 25 GeV and transmitted to the Super Proton Syn-

chrotron (SPS). The SPS accelerates the bunches to 450 GeV and �nally

injects them clockwise and counter-clockwise into the LHC ring. A total of

about seven minutes is needed to �ll both LHC rings. When the rings are

�lled the LHC further accelerates the protons in a ramp phase.

The four main detectors at the LHC: ATLAS, CMS, ALICE and LHCb,
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are located at the four collision points. ATLAS and CMS are general purpose

detectors and ALICE is designed to analyze lead-ion collisions that may also

take place at the LHC. Figure 2.1 shows a schematic view of the SPS, the

LHC ring and the detectors.

Figure 2.1: Schematic layout of the accelerator complex at CERN

2.2 The LHCb Detector

The LHCb detector is a forward arm spectrometer centered around the LHC

beam pipe, 100 m underground.

At the interaction point, a proton-proton deep inelastic scattering occurs,

producing a highly boosted virtual gluon and breaking up the incoming pro-

tons at a primary vertex. The main production mechanism for heavy quark

production involves two initial gluons as shown in Figure 2.2. In general, at

the LHC energy the two incoming partons have dissimilar momenta which

boost the outgoing bb̄ system. As a result, in the majority of events, both

B hadrons originating from the same bb̄ pair are located in the same forward
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region, as we can note in Figure 2.3. This explains the choice of detector

geometry.

LHCb measures particles which appear within its angular acceptance of

10 mrad to 250 mrad vertically, and 10 mrad to 300 mrad horizontally [24].

A large dipole magnet, producing a �eld in the vertical direction, breaks

the symmetry between the vertical and horizontal planes. Approximately,

one third of B hadrons lie within the LHCb acceptance. In terms of pseudo-

rapidity η = ln tan(θ/2), where θ is the polar angle with respect to the beam

axis, the acceptance is 1.8 < η < 4.9.

Figure 2.2: Feynman diagram of the dominant production mechanism of heavy quarks at the

LHC.

Figure 2.3: Angular distribution of b − b̄ pairs at LHC. The axes show the polar angle θ of b

and b̄ with respect to the beam axis.

B hadrons are unstable and decay after travelling a mean path of 10 mm

in the lab frame. Around fourty other particles are also producted at the

primary vertex.

LHCb operated at luminosities of 2 (4) ×1032cm−2s−1 in 2011 (2012)

[25]. These values are not the maximum allowed by LHC but they provide
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good trigger performance and manageable detector occupancy. Running at

a lower luminosity results in lower event multiplicity, thus simplifying time-

dependent measurements and reduces the radiation damage to the detector.

The measured cross section for bb̄ events is σbb̄ = (284 ± 20 ± 49)µb at

center of mass energy of 7 TeV [24].

LHCb provides precise vertexing resolution and a precise momentum reso-

lution which entails a high proper time ([30, 50] fs) and mass resolution(σ(m) ∈
[10, 25]MeV/c2 for fully reconstructed hadronic B decays). Moreover, it is

characterized by a high trigger e�ciency for the reconstruction of B meson

decays and background suppression, and an excellent particle identi�cation.

In order to minimize the interactions of particles with inactive detector

material, which would lower the detection e�ciency and degrade the momen-

tum resolution, special care has been taken to reduce the amount of detector

material.

The LHCb detector is shown in Figure 2.4. Starting form the left side,

the VErtex LOcator [26] is built around the proton interaction region. Di-

rectly after it, a Ring Imaging CHerenkov detector, RICH-1 [27], is located.

Then, there are the dipole magnet [28],the tracking system [?] [29] composed

by stations TT, T1 and T2 and another Cherenkov detector, RICH-2 [27]

. Afterwards the electromagnetic (ECAL [30]) and hadronic (HCAL [30])

calorimeters are present and �nally there is a muon detector made of �ve

stations (M1 - M5) [31]) . The beam-pipe has a conical shape and is made

out of an aluminium-beryllium alloy.

LHCb uses a right-handed coordinate system with y pointing upwards, x

horizontal and pointing to the outside of the LHC-ring and the z-axis along

the beam. The proton-proton collisions take place around z=0, located at

the left side in the �gure.

2.3 The VeLo Detector

The Vertex Locator (VeLo) is placed around the interaction point and mea-

sures particle trajectories close to the interaction region. The high resolution
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Figure 2.4: Schematic of the LHCb detector and its subdetectors.

Figure 2.5: VeLo detector.

of the coordinate measurements of the tracks allows the reconstruction and

separation of the primary interaction vertex from secondary decay vertexes of

bottom and charmed mesons. These are essential for time dependent mea-

surements and to determine the impact parameters of the decay products

with respect to the primary vertex. These information are also relevant for

the trigger, as described in next paragraphs.
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The Velo detector consists of silicon modules, 300 µm thick, placed per-

pendicular to the beam, covering a pseudorapidity range of 1.6 <η <4.9.

Charged particles produced by proton collisions traverse the silicon and gen-

erate electron-hole pairs; these are sensed using speci�c electronics.

This system comprises a silicon vertex detector and a pile-up veto counter.

The pile-up veto counter is used in the L0-trigger to suppress events con-

taining multiple pp interactions in a single bunch-crossing, by counting the

number of primary vertex. It consists of two disks made of circular silicon

strips to measure radial coordinate.

The silicon vertex detector consists of 25 station of silicon strips. Each

station is split in an upper and lower half. This enables the retraction of the

detectors by 3.0 cm from their operation position to allow a safe injection

and acceleration of a new �ll of proton bunches in the LHC. Each upper

and lower station contains two half-disc detectors separated by 2 mm. One

disc has radial strips measuring the φ coordinate, the other disc has circular

strips measuring the radial coordinate (see �gure 2.5).

To achieve the highest possible precision, the detector must be placed as

close as possible to the interaction point. To reduce the distance and the

material between the point of interaction and sensors, hence minimizing the

outgasing phenomenon and multiple scattering, the Velo is placed in a foil

vacuum vessel. The VeLo detectors are used in the high level trigger (see

next subsections) to select b hadrons decays by detecting displaced secondary

vertices. The higher trigger levels use the full vertex detector information to

reconstruct and precisely measure a full decay chain.

The VeLo detector allows for a spatial resolution on vertexes of about 60

µm along the z axis and 10 µm along x and y. The resolution on impact

parameter, e.g the distance of closest approch between a track and the re-

constructed primary vertex, is about 20 µm for high transverse momentum

tracks. The resolution on the decay length, the distance between the inter-

action point and the secondary vertex is within the range of 200-370 µm,

depending on the decay channel.
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2.4 Tracking Detectors

The tracking detector provides e�cient reconstruction of charged tracks and

precise measurement of their momentum and direction. The latter is also

needed to reconstruct Cherenkov rings in the RICH detectors. The track-

ing detector also provides information for High level trigger (see next para-

graphs). It is composed of four tracking stations: the Trigger tracker located

between RICH-1 and the LHCb dipole magnet and T1-T3 located over 3

metres between the magnet and RICH-2.

The tracker system is schematically drawn in Figure 2.6.

(a) TT (b) T1-T3

Figure 2.6: Tracking system. a) TT b) T1-T3 stations

TT consists of four layers of silicon micro-strip detectors arranged in pairs.

Charged particles interacts with silicon atoms, creating hole-electron pairs

and a localized electric current, which follows the path of the original particle.

The �rst and the last layer have vertically-arranged readout strips, whereas

the second and the third are rotated by ±5 degrees in order to obtain a 3D

reconstruction of the tracks.

Each T1, T2, T3 station, is divided into inner and outer parts.

The inner tracker (IT) is placed close to the beam pipe, and uses silicon

microstrip detectors, the same as TT.

The outer tracker (OT) is located further from the beam pipe and is made

up of thousands of gas-�lled straw tubes. Whenever a charged particle passes

43



Chapter 2. The LHCb Experiment

through, it ionizes the gas molecules, producing electrons. The position of

the track is found by timing how long the electrons take to reach an anode

wire situated in the center of each tube.

The IT and OT are built as complementary shapes and slightly o�set in

z-position.

The momentum resolution from the tracking system is about δp
p = 0.4%

for momenta up to 200 GeV/c.

2.5 The magnet

The LHCb magnet is a dipolar magnet whose �eld is oriented along the y

direction. Therefore, charged particles are de�ected in the x-z plane in order

to determine their momentum.

The maximum intensity of the magnetic �eld is 1.1 T and has overall

bending power is
∫
Bdl = 4T . The magnet weights 1600 tonnes with an

excitation current of 2.6 MA. Acceptances in the horizontal and vertical

planes are 300 mrad and 200 mrad respectively.

2.6 RICH Detectors

The LHCb detector uses two Ring Imaging CHerenkov (RICH) detectors.

RICH-1 is placed directly downstream of the Velo and before the main track-

ing system. RICH-2 is positioned after the tracking stations and in front of

the calorimeters. The RICH detectors measure the Cherenkov angle of light

emitted when a charged particle traverses a medium with a velocity higher

than the speed of light in that medium. The RICH system is schematically

drawn in Figure 2.7. Measurements of Cherenkov angles are used, together

with momentum measurements by the main tracking system, to perform

particle identi�cation of charged tracks.

RICH detectors are based on the Cherenkov e�ect: when a charge track

traverses a medium with a velocity v higher than the speed of light in that

medium a cone of electromagnetic radiation, Cherenkov radiation, is emitted

along the trajectory. Such radiation is emitted coherently at an angle θC with
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(a) RICH1 (b) RICH2

Figure 2.7: RICHes system.

respect to the direction of the motion such as:

cos θC =
1

βn

where n is the refractive index. Particles can therefore be identi�ed when

their momentum and the opening angle of the Cherenkov radiation cone are

known.

The Ring Imaging CHerenkov (RICH) detectors of LHCb measure θC

by focusing the emitted light with spherical mirrors on a plane of photo-

detectors (hybrid photodetectors). The photons emitted along the trajectory

of the traversing particle form a ring on the photo-detector plane, with the

radius proportional to θC .

The LHCb RICH detectors have to provide identi�cation of charged parti-

cles over momentum range from 1 GeV/c up 150 GeV/c. In order to achieve

this, several radiator materials with di�erent refractive indices are used.

RICH-1 performs particle identi�cation for momentum less than 60 GeV/c,

over the full LHCb angular acceptance. There are two radiators in RICH-1.

The �rst one is a 5 cm-thick aerogel layer with a refractive index n = 1.03.
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It provides pion-kaon separation up to about 10 GeV/c. The second radiator

is a volume �lled with C4F10 gas, refractive index n = 1.0014.

The RICH-2 detector is used to perform particle identi�cation of high

momentum tracks. This requires a lower refractive index, but a longer path

length for the particles in order to manage to collect su�cient Cherenkov

light, since the number of photons emitted is proportional to Nγ = sin2 θC .

It has a reduced angular acceptance because high momentum tracks are

produced at small angles. RICH-2 contains CF4 gas providing 167 cm path

length with refractive index n = 1.0005. It provides pion-kaon separation up

to about 100 GeV/c.

To reduce the material in the LHCb acceptance, both RICH1 and RICH2

employ a combination of spherical and �at mirrors allowing the photon detec-

tor planes to be placed outside the detector acceptance. To further minimize

the material, RICH-1 spherical mirrors are made of coated carbon-�ber com-

posite material and the gas enclosure is mounted directly on the VELO exit

window.

2.7 Calorimeters

The LHCb calorimetry consists of an electromagnetic (ECAL) and a hadron

(HCAL) calorimeter. There are also two additional subsystems, the SPD

(Scintillating Pad Detection) and PS (PreShower), which allow to improve

spatial and energy resolution of electromagnetic showers. The main pur-

pose of the LHCb calorimeter system is to trigger on electrons, photons and

hadrons. It provides energy and position measurements of the particles pro-

duced in their angular acceptance, which are used in o�ine event analysis.

Furthermore, the electromagnetic calorimeter measures photons and neutral

pions in association with the hadronic calorimeter.

The LHCb calorimeters are segmented in a sequence of layers of passive

absorbing material alternated by active detection layers. An incident par-

ticle is stopped in the calorimeters by a cascade of decays and interactions

into progressively lower energy particles. These excite the molecules of active
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plates which emit ultraviolet light proportional to the energy of the imping-

ing particles. Scintillating plastics interwoven by wavelength-shifting (WLS)

�bres are used as active material. The �bers collect the light emitted in the

scintillators and transfer it to photomultiplier tubes. The passive absorption

material is di�erent for the two calorimeters: lead in ECAL and steel in

HCAL.

The pad/pre-shower detector consists of a 12 mm thick lead radiator sand-

wiched between two scintillator layers. The SPD is used to trigger charged

particles. In lead electrons radiate causing an early shower that can be de-

tected by the pre-shower(PS) layer. This is used for the identi�cation of

photons.

ECAL consists of cells partitioned in 2 mm lead and 4 mm thick scintil-

lator pads.

ECAL, in combination with SPD and PS, allows the measurement of

energy and the discrimination of electrons, photons and π0. The ECAL

energy resolution is given by

σ(E)

E
=

10%√
E
⊕ 1.5%

with E in GeV.

HCAL consists of 16 mm thick iron sheets, interspersed with 4 mm scin-

tillator region. Almost all hadrons interact with the HCAL. Muons emerge

from HCAL and are detected by the muon chambers. The ECAL energy

resolution is
σ(E)

E
=

80%√
E
⊕ 10%

with E in GeV.

2.8 Muon Chambers

Muon triggering and identi�cation are fundamental requirements of the LHCb

experiment. Muons are present in the �nal states of many CP-sensitive B

decays and in particular are crucial in the measurements with semileptonic
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decays studied in this thesis. Moreover, muon identi�cation allows to de-

termine the production �avour of neutral b hadron because a positive muon

can only result from a b decay and a negative one from a b̄ decay.

The main requirement of the muon detector is to provide high pT tracks

to the level 0 muon trigger and muon identi�cation for the high-level trigger

(HLT) and o�ine analysis. The system is composed of �ve stations (M1-M5)

of rectangular shape, covering the whole acceptance of the LHCb detector.

M1 is placed in front of the scintillating pad detector/pre-shower to avoid

that trasversal momentum be a�ected by multiple scattering due to active

material in the calorimeters. M2-M5 follow the hadron calorimeter (HCAL)

and are separated by iron �lters. The stations cover an area of 435 m2. Each

station is divided into four regions, R1 to R4, with increasing distance from

the beam axis and therefore with decreasing density of particle expected.

The granularity of the readout is higher in the horizontal plane, in order to

give an accurate measurement of the track momentum and pT . The muon

chambers are composed of two types of detectors: in the outer region there

are Multi Wire Proportional Chamber (MWPC) detectors, whereas in M1

there are triple GEM detectors because the expected particle rate exceeds

the safe MWPC ageing limit. The muon system is schematically drawn in

Figure 2.8.

Figure 2.8: Muonic system.
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Twelve GEMs are placed in the higher track density region, while the

total system comprises 1392 chambers. The MWPCs are subdivided in four

tungsten gaps 5 mm thick and �lled with a gas composed by a mixture of

Ar(50%), CO2(40%) and CF4(10%). Inside the gaps, wires with a diameter

of 30 µm are placed at a distance of 2 mm from each other.

2.9 Trigger

b-Quark hadron decays can be distinguished from other inelastic pp interac-

tions, by the presence of a secondary vertex and particles with high transverse

momentum pT . However, interesting events are a small fraction of the to-

tal sample, due to low branching fractions and limited detector acceptance.

Therefore the trigger system must be very selective and e�cient in extracting

them. The LHCb trigger is composed of two levels: L0 (Level 0) and HLT

(High Level Trigger). The �rst operates at hardware level synchronously

with the 40MHz LHC bunch crossing frequency whereas the HLT is run

asynchronously on a computer farm of about 16000 CPU cores.

The interaction producing a minimum of two reconstructible particles

within the detector acceptance, therefore visibile events, occurs at a rate of

10MHz. The L0 reduces the rate of visible interactions from 10 MHz to 1

MHz. The HLT then reduces this to 3kHz. Figure 2.9 and 2.10 show the

scheme of the LHCb trigger.

Figure 2.9: LHCb trigger scheme
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Figure 2.10: LHCb trigger rates

2.9.1 L0 trigger

B mesons regularly decay into particles with large transverse momentum pt

and energy Et. The L0 trigger makes use of information from VeLo pile-

up, Calorimeters and muon chamber to reconstruct the highest Et photon,

electron, hadron and muon.

Particles that meet the following requirements are triggered [19]:

• at least one cluster in the HCAL with Et > 2.5 GeV;

• at least one cluster in the ECAL with Et > 2.5 GeV;

• a muon candidate in the muon chambers with pt > 1.48 GeV/c or two

muons (dimuon trigger) with pµ1

t + pµ2

t > 1.3GeV/c [32]

In addition to this, to avoid reconstruction of events with a large number

of tracks and primary vertices, events with a certain number of hits in the
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SPD are rejected. In the 2011 run, the L0 global event cut was set to < 900

hits for the dimuon trigger and < 600 hits for all other triggers [32].

The pile-up system estimates the number of primary proton-proton in-

teractions in each bunch crossing. If multiple interactions are detected the

data capture is suppressed. The pile-up system, the calorimeter trigger and

the muon trigger are all connected to the Level-0 Decision Unit (DU) which

collects all the information for the �nal decision.

Typically the L0 is greater than 80% e�cient for events containing a muon

from a B-decay, ∼ 50% e�cient for events containing B decays and around

∼ 30% for events with electrons from B decays.

2.9.2 High Level Trigger

The High Level Trigger (HLT) runs only on events passing the L0 trigger.

It is divided in two steps: HLT1 and HLT2.

HLT1 reconstructs particles in the VeLo and determines the position of

the primary vertex in the event. Moreover, it seeks to con�rm the high pt

tracks identi�ed by L0, by searching for them in the tracking system. HLT1

selects events with at least one track which satis�es minimum requirements

in IP, p, pt and track quality.

HLT2 searches for secondary vertices, and applies decay length and mass

cuts to reduce the rate to the level at which the events can be written to

storage and processed o�ine. It �rst performs a complete pattern recognition

to �nd all tracks in the event, using VELO tracks as seeds. Then, a set of

di�erent selections are applied. Some of them are inclusive, aiming for generic

B decays or resonances like Jψ → µ+µ− or D∗ → Dπ and some of them

are exclusive, aiming to provide the highest possible e�ciency on speci�c B

decay channels.

2.10 From Trigger to stripping

There are several phases in the processing of event data.

The �rst step is to collect data, triggering on events of interest. This pro-
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cedure involves processing data coming from sub-systems using sophisticated

and highly optimized algorithms in the High Level Trigger. The output of

this step is written to storage in a RAW data format.

The RAW data are then used to perform event reconstruction, i.e the pro-

cess which provides physical quantities such as particle trajectories, energy

and momentum determinations, particle identi�cation and so on, starting

from detector hits.

The event reconstruction results in the generation of new data, DST,

"Data Summary Tape". Actually, reduced DST, rDST, are written, i.e only

necessary quantities, which allow the physics pre-selection algorithms to be

run at a later stage, are written. The rDST is then analyzed according to

the selection criteria, grouped in several streams. For each stream the rDST

information is used to determine the four momentum corresponding to the

measured particles, to locate primary and secondary vertices and reconstruct

composite particles such as B and D candidates. A preselection algorithm is

provided for each channel of interest (stripping line).

The events that pass the selection criteria will be fully re-reconstructed,

recreating the full information associated with an event. The output of

the stripping stage will be referred to as the (full) DST and contains more

information than the rDST.

Finally, data are further reduced by using DaV inci software package

whose output is stored in nTuples, containing all the highest-level physics

objects, and observables, which are needed to perform the �nal analysis.

2.11 Events Reconstruction

Particles trajectories, identi�cation of the vertices, and identi�cation of the

type of the particles involved are the fundamental information to perform

the �nal measurement.
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2.11.1 Tracks Reconstruction

Track reconstruction starts by connecting the hits left by charged particles

in the tracking subdetectors (VeLo, TT, IT and OT) to reconstruct their

trajectory. By taking into account the e�ects of the magnetic �eld, it is also

possible to estimate the momentum p of a particle, with charge q, through

the bending (bend radius R) in the magnetic �eld according to:

R =
p

qB

A track reconstructed in a subdetector is extrapolated in the other subde-

tectors and �nally it is possible to link the resulting track to the calorimeter.

Di�erent type of tracks are distinguished in LHCB according to the subde-

tectors crossed, as shown in Figure 2.11:

Figure 2.11: Top The magnetic �eld strength along the y-axis as function of z coordinate. Bottom

Illustrator of the di�erent type of tracks distinguished in LHCb [33].

• VELO tracks are tracks with only VELO hits. They are used in the

primary vertex reconstruction and as seeds for reconstructing long and

upstream tracks.

53



Chapter 2. The LHCb Experiment

• Upstream tracks are low momentum tracks that transversed only the

VELO and TT since they are bent out the LHCb acceptance by the

magnetic �eld.

• T tracks are formed only using hits into the T-stations. They are used

to form downstream and long tracks.

• Downstream tracks are reconstructed only in the TT and in the T-

stations. They are useful to reconstruct the decays of long lived reso-

nances that decay after the VELO.

• Long tracks require particles traversing the full tracking system. They

are reconstructed combining hits from the VELO and the T-stations,

and when possible hits from TT are added.

In our studies we considered data reconstructed using only Long tracks,

i.e. tracks which cross all the tracking detectors, thus having the most precise

momentum resolution and giving precise secondary vertices.

To reconstruct tracks, �rst of all the so-called seeds are searched, sepa-

rately for Velo and a T station. Then seeds are associated to hits in the

other tracking subsystems, to form tracks.

The magnetic �eld in the VeLo region is low enough to treat VeLo tracks

as straight lines. Aligned clusters of hits in the VeLo sensors are used to re-

construct straight track segments that will be used as VeLo seeds in the pat-

tern recognition algorithms. Moreover, particles which cross outer tracking

stations are weakly bent by magnetic �eld, and using parabolic parametriza-

tion determined by MC studies it is possible to identify tracks derived from

clusters of hits as T seeds.

Afterwards, a VeLo seed and, one by one, a hit in a T station are chosen.

So it is possible to de�ne a trajectory, and therefore other hits are looked

for in the other T stations around the track candidate trajectory, includ-

ing TT tracks. These hits are then �t by using the LHCb standard track

parametrization. If the �t quality is good (χ2/ndof < 5), the sum of hits

then is classi�ed as a Long track. Finally, the hits already associated with

tracks are removed from the list of hits on which the algorithm has to run.
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This algorithm reconstructs about 90% of Long tracks. Another 5% of Long

tracks are reconstructed by trying to match pairs of VeLo and T seeds, ex-

trapolating hits in the magnet and requiring that the resulting �t has a good

quality. It is of course possible for a physical track to be reconstructed by

more than one algorithm, resulting in two clone tracks. In that case, only

the best out of the two tracks is kept.

The momentum resolution depends on particle momentum ifself and varies

from δp
p = 0.35% for low momentum tracks to δp

p = 0.45% for track having

a momentum of the order of 100 GeV (Figure 2.12).

Figure 2.12: Momentum resolution (top) and momentum spectrum (bottom) for tracks from B

decays.

2.11.2 Particles Identi�cation

Neutral particles (π0,γ,n,K0
L) are trackless and are identi�ed solely from their

interaction in the calorimeters. Muons are identi�ed from their interaction

in the calorimeters and hits in muon chambers. Electrons are separated from

hadrons by combining their calorimetric information. Finally, RICHs allow

to separate π± and K±.

In the analysis presented in this thesis, it is essential to unambiguously

identify muons, charged pions, proton and kaons.

To determine the identity of a particle it is necessary to know its mass,
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its charge and how it interacts with matter. The energy, the momentum

and the charge of a particle can be measured with calorimeters and tracking

(previous sections). However, to recover its mass, it is needed to know its

velocity. In a particle physics experiment, it is very di�cult to determine

the velocity of a particle, since, typically, it is a large fraction of the speed

of light and time-of-�ight measurements would require sub-nanosecond time

resolution. Thus, the Cherenkov e�ect is used.

The LHCb RICH detectors measure the angle θC of the Cherenkov cone

by focusing the emitted light with a spherical mirror on the plane of photo-

detectors. Then, the photons emitted along the trajectory of traversing

particles will form a ring on photo-detector plane with the radius propor-

tional to θ. The number of Cherenkov photon detected is proportional to

sin θC
2. A ring on photo-detector is approximately elliptical with a degree

of distorsion that depends on the track position and direction.

Pattern recognition algorithms are used to reconstruct the Cherenkov

rings, and particularly they are based on maximum likelihood approach.

In the �rst iteration, this method assumes a pion hypothesis for each re-

constructed track since it is the most common particle type. A likelihood is

calculated by comparing the expected pattern of photons to the observed pat-

tern. Then, the particle hypotheses are varied one-by-one and the likelihood

is recalculated, until the observed pattern matches best with the expected

pattern. Figure 2.13 displays for both RICH detectors the observed photons

with the reconstructed rings in a typical event. The muon detector is de-

scribed in section 6.3.2. The muon system is used both in the Level-0 trigger

(2.9.1) to select muons with a high transverse momentum pT and in the of-

�ine reconstruction, i.e. through pattern recogniton algorithms, to identify

muons. In the trigger algorithm, pT muons are found by a fast and stan-

dalone track reconstruction, selecting particles which traverse all �ve muons

stations. The slope of the track between M1 and M2 is used to estimate the

momentum assuming that the particle originated from the interaction point.

In the o�ine reconstruction, the muon system is used to identify the muons

in the sample of tracks found in the tracking stations. The muon information
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Figure 2.13: A typical event in the detection planes of RICH1 (left) and RICH2 (right). The

horizontal (vertical) line separates the two detection planes in RICH1 (RICH2). Superimposed

are the reconstructed rings for tracks which extend from the VELO up to the last T station(solid)

and all other tracks(dashed).

is added using track segments from a T station that are propagated to the

muon subdetector. The muon hypothesis is con�rmed, if a χ2/ndof < 5 is

obtained after �tting hits with the standard LHCb parametrization for a µ

track.

The information is combined to provide the best achievable separation

between the charged particles type (e, µ,K, π, p). A likelihood information

for a particle hypothesis x is produced by each sub-system and added linearly

in a combined likelihood L(x). Usually it is calculated relatively to the pions

hypotesis, since pions are the most abundant species produced and detected

at LHCb. At LHCb, a way to separate particle types and to improve the

purity of the sample, is applied a cut on the logarithm of the likelihood ratio

(DLL) between di�erent hypotheses:

∆ lnLxπ = lnL(x)− lnL(π) = ln
L(x)

L(π)
(2.1)

An e�cient π−K separation is achieved by using this method. To calcu-

late the identi�cation e�ciency and mis-identi�cation probability pure sam-
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ples of pion and kaons are required. In �gure 2.14 it is possible to observe

di�erent e�ciencies for di�erent DLL cuts.

Figure 2.14: Identi�cation and misidenti�cation e�ciencies for kaons as a function of momentum.

The solid markers are for DLL> 0 and the hollow markers are for DLL> 5.

The other way to separate the particles types is by means of ProbNN

variables. They are the outputs of neural network based classi�ers that ad-

ditionally take into account other track properties such as the tracking per-

formance or the track kinematics. Apart from better performance, also o�er

the practical advantage of being de�ned as an absolute probability, as op-

posed to the log-likelihoods which always compare two competing hypothes

2.15

Figure 2.15: E�ciency of PIDµ and ProbNNµ cut calculated on MC(Λ0
b → Λcµ

−ν̄µ).
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Samples and selections

This chapter introduces the data and simulation samples used for the R(Λ∗c)

measurement.

3.1 Topology of signal and normalization decays

The R(Λ∗c) analysis presented in this thesis used a sample of proton-proton

collision data corresponding to 2fb−1 of integrated luminosity, recorded by

LHCb during 2012 at the center of mass energy of
√
s = 8 TeV. During the

data taking the polarity of LHCb magnet was �ipped several time, in order

to minimize possible systematic biases due to detector asymmetries.

The aim of this analysis is the measurement of the ratioR(Λ∗c) ≡
B(Λ0

b→Λ∗cτ
−ν̄τ )

B(Λ0
b→Λ∗cµ

−ν̄µ)

and therefore the Λ0
b → Λ∗cτ

−ν̄τ and the Λ0
b → Λ∗cµ

−ν̄µ decay modes, where

Λ∗c ≡ Λ+
c (2595, 2625), are searched.

Only muonic decays of τ are considered, τ− → µ−ν̄µντ , the Λ+
c (2595) and

Λ+
c (2625) baryons are reconstructed in the Λ∗+c → Λ+

c π
+π− decay mode, and

�nally the Λ+
c is searched according to its predominantly decay mode Λ+

c →
pK−π+. As you can see in Fig.3.1 the Λ∗+c decay can occur also through the

Λ∗+c → Σc(2455)++(→ Λ+
c π)π− or Λ∗+c → Σc(2455)0(→ Λ+

c π)π+. Charge-

conjugated decay modes are implied throughout the thesis, unless otherwise

speci�ed. The signal decays, Λ0
b → Λ∗+c τ−ν̄τ , and the normalization channel,

Λ0
b → Λ∗+c µ−ν̄µ, produce identical visible particles in the �nal states, there-

fore the relative e�ciencies of the two channels depends only on the di�ering

kinematics and the reconstruction; particles identi�cation and tracking e�-
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Figure 3.1: Dalitz plot of Λ∗+
c → Λ+

c π
+π− decay.

ciencies cancel to �rst order.

In high-energy collisions, the produced b or b̄ quarks can hadronize with dif-

ferent probabilities into the full spectrum of b-hadrons, either in their ground

or excited states, in particular, their hadronization fraction in Λ0
b about 14%.

The signal decays, Λ0
b → Λ∗+c τ−ν̄τ , and normalization channel decays, Λ0

b →
Λ∗+c µ−ν̄µ, exploit the excellent capabilities of the LHCb detector concerning

momentum, impact parameter resolution and particles identi�cation.

In Fig.3.2 the topology of the these decays is shown. The main feature of

these channels is that they decay semileptonically, and so, due the lack of

neutrino tracks, the reconstructed Λ0
b momentum doesn't point back to the

Primary Vertex (PV). Therefore, the b hadron kinematics can not be con-
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3.1. Topology of signal and normalization decays

strained, also due to unknown parton-parton collision energies. A estimation

of b hadron momentum can be obtained through approximations or multi-

variate technique approaches, as described in the following chapter. With

respect to other channels, like B̄0 → D∗+τ−ν̄τ , the advantage of our channel

is that, thanks to resonance Λ∗+c which decays hadronically, the Λ0
b vertex

can be found with a very good quality.

The lifetime of Λ0
b baryons lifetime is large enough to allow them to �y on

average about 1 cm before decaying. Also τ and Λ+
c decay displaced with

respect to Λ0
b vertex, unlike Λ+

c (2625) and Λ+
c (2595) resonances. These pe-

culiarities help us to identify the searched channel: large impact parameters

(IP) of the reconstructed tracks, displaced vertices with good qualities and

a long track associated with a candidate in the muon station.

Finally, b hadrons are identi�ed using LHCb PID system, section 2.11.2.

As the neutrinos can not be reconstructed, the Λ0
b → Λ∗cτ

−ν̄τ and Λ0
b →

Λ∗cµ
−ν̄µ decays can only be selected along with all other Λ0

b decays produc-

ing Λ∗cµ
−X̄ �nal state, where X is any combination of particles. A number of

Λ0
b decays can therefore generate a background, in particular Λ0

b → Λ∗cD
(∗)

and Λ0
b → Λ∗cD

(∗)
s . In contrast with single neutrino in Λ0

b → Λ∗cµ
−ν̄µ, the

combination of the multiple neutrinos in the Λ0
b → Λ∗cτ

−ν̄τ can have large

masses. This state can occur also in the Λ0
b decays producing Λ∗cµ

−X̄ de-

cay, and therefore an other challenge about this measurement is to separate

double charm from semitauonic decays.

(a) Λ0
b → Λ∗cτ

−ν̄τ (b) Λ0
b → Λ∗cµ

−ν̄µ

Figure 3.2: Λ0
b → Λ∗

cτ
−ν̄τ (Left) and Λ0

b → Λ∗
cµ

−ν̄µ(Right) decay topology
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3.1.1 Relevant quantities

It is useful to de�ne some relevant quantities used in the analysis. All quan-

tities are calculated in the laboratory frame, and in general, can be applied

to each particle in the decay.

• Primary vertex (PV): the point of the space where the primary pp in-

teraction is reconstructed;

• Secondary decay vertex (SV): the point in the space where the decay of

long-lived particles occurs. The displacement vector ~d, de�ned as the

spatial vector from primary to second vertex, is equal to ~d = γ~βct =

(~p/m)ct, where c is the speed of light, m the mass, ~p is momentum and

t the proper time decay of the decay particle.

• Impact Parameter (IP): given a vertex ~v, the impact parameter is the

vector formed by the nearest point of a track to ~v. The muons frOm

Λ0
b → Λ∗+c τ−ν̄τ tend to have a large impact parameter with respect to

Λ0
b decay vertex.

• DIRA: the cosine of angle between the momentum of the particle ~p and

the displacement vector, DIRA = ~p · ~d/|~p||~d|. For a fully reconstructed
particle its total momentum tends to be aligned to the displacement

vector resulting into a DIRA close to unit, di�erently for one partially

reconstructed, like semileptonic decay.

• χ2-distance: the distance between two spatial points in χ2 units.

• MIN(χ2
PV ): requires the minimum χ2 distance of a particle to PV.

MIN(χ2
PV )> 9 corresponds to require that the particle is 3σ away from

any PV.

• χ2
IP : the χ2

IP for a particle is de�ned as the di�erence in χ2 of the

primary vertex �t with and without considering the particle in the �t.

• χ2
track: the track is reconstructed by minimizing the χ2 of the �t from

the hints in the detectors. Small χ2
track ensures an agreement between

the track model and the reality.
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• χ2
vtx: it applies a χ

2 cut to the vertex of the particle.

• P(ghost): the ghost probability is a multivariate classi�er based on

kinematics variables and track reconstruction parameters as input, to

identify reconstructed tracks which not correspond to a real particle.

• ∆m: is the absolute di�erence between the measured mass and the PDG

reference value.

• DOCA,χ2
DOCA: it is the distance of closest approach in unit of χ2 be-

tween the trajectories of two particles. Particles coming from a decay

of a common mother particle are likely close to each other translating

into a small DOCA.

3.2 Central O�ine Selection

The events reconstruction and a loose preselection of candidates, named

"stripping" inside the LHCb collaboration, are centrally done in order to

reduce the datasets to manageable size. According to the signal of interest,

di�erent sets of cuts are applied and grouped in the so called, stripping lines.

The relevant stripping lines for the measurement reported in this thesis is

b2LcMuXB2DMuNuXLine, whose requirements are summarized in Table

3.1. This line allows us to identify the Λ0
b → Λcµ

−ν̄µ decays but for R(Λ∗c)

measurement it is necessary to reconstruct the Λ0
b channels which decays in

Λ+
c (2625)µ−ν̄µ �nal states, therefore, in own o�ine selection, two pions are

added to Λc vertex in order to form the Λ∗+c → Λ+
c π

+π− decay candidates.

The cuts cited in the following rows are described in sub-sec 3.1.1.

In the b2LcMuXB2DMuNuXLine to identi�ed proton, pion and kaon, it is

required a good quality of tracks (χ2
track/ndf < 5), a momentum threshold (pT

> 300 MeV/c and p>2 GeV/c) and that their vertex is displaced with respect

to PV (MIN(χ2
PV ) > 9). Similar cuts are also applied to identify a muonic

track, in particular p > 3 GeV/c,pT>800 MeV/c and MIN(χ2
PV ) > 4 is re-

quired. The P (ghost)<0.5 guarantees to identify tracks which corresponds to

real particles. Finally, to suppress mis-reconstructed backgrounds, particles
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identi�cation (PID) requirements are applied to the the p,π,K tracks through

the DLLKπ variable and to the muon through the DLLµπ. As described in

subsection 2.11.2, positively larger values of the DLLparticleπ corresponds to

an higher probability to be a that particle, and viceversa, negatively lower

values to a pion. Moreover, for a proton candidate DLLpπ−DLLKπ > 10−10

is required.

Λc candidates are then formed combining three charged particles iden-

ti�ed as a proton, pion and K.The Λc candidates are then combined with

muons to form the Λ0
b . It is required the mass of reconstructed particle is

di�erent from PDG reference value of less that 80 MeV, a cut on the sum of

transverse momentum of daughters (> 1800 MeV/c), a good quality vertex

(χ2
vtx/ndf < 6 and χ2

distance−PV > 10 and DOCA < 9) and �nally, since it is

a fully reconstructed decay the DIRA is required to be close to unit.

The Λc candidates are then combined with muons to form the Λ0
b in the

mass interval [2.5,6] GeV. A good distance of closest approach between the

trajectories of two candidates is asked (DIRA > 0.999), together require-

ments on vertex quality (χ2
vtx/ndf < 6, z(Λ±c )− z(Λ0

b)> 0 mm).

3.3 Trigger Selection

The trigger system decides whether an event is interesting for physics analysis

and in that case, all detector hits and informations are saved. Each trigger

line refers to a sequence of reconstructed and selection algorithms to trigger

an event. According the speci�c signature, an event can be acquired because

of the positive trigger decision of a trigger line of another. Selected signal

event can be classi�ed as:

• Triggered On Signal (TOS), if the signal candidate or its daughters cause
the event to be triggered;

• Triggered Independently of Signal (TIS), when a positive trigger decision
is due to tracks in the event independent of signal decay chain;
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Table 3.1: Summary of the stripping requirements

Candidate Requirement

µ±

χ2
track/ndf < 5

pT > 800 MeV/c

p > 3 GeV/c

P (ghost) < 0.5

MIN(χ2
PV ) > 4

DLLµπ > 0

K±

χ2
track/ndf < 4

pT > 300 MeV/c

p > 2 GeV/c

P (ghost) < 0.5

MIN(χ2
PV ) > 9

DLLKπ > 4

Candidate Requirement

π±

χ2
track/ndf < 4

pT > 300 MeV/c

p > 2 GeV/c

P (ghost) < 0.5

MIN(χ2
PV ) > 9

DLLKπ < 10

p±

χ2
track/ndf < 4

pT > 300 MeV/c

p > 2 GeV/c

MIN(χ2
PV ) > 9

DLLpπ > 4

DLLpπ −DLLKπ > 10−10

Candidate Requirement

Λ±c

∆m < 80 MeV∑
pT daughters > 1800 MeV/c

χ2
vtx/ndf < 6

DOCA < 9

DIRA > 0.99

χ2
distance−PV > 10

Λ0
b

M ⊂ [2.5, 6] GeV

χ2
vtx/ndf < 6

z(Λ±c )− z(Λ0
b)> 0 mm

DIRA > 0.999

• TIS & TOS simultaneously.

The LHCb trigger as described in section 2.9 consists of a L0 hardware trig-

ger, which is subdivided into Muon, Dimuon, Electron, Hadron and Photon

lines, and a software-based HLT trigger divided in HLT1 and HLT2, com-

prising selections of decay channels or classes of decay. The trigger selection

used in this analysis is:

• L0 level:
Λ0
b_L0HadronDecision_TOS or Λ0

b_L0HadronDecision_TIS

or Λ0
b_L0MuonDecision_TOS or Λ0

b_L0MuonDecision_TIS;

• HLT1 level:
Λ0
b_Hlt1TrackMuonDecision_TOS or Λ0

b_Hlt1TrackMuonDecision_TIS

or Λ0
b_Hlt1TrackAllL0Decision_TOS or Λ0

b_Hlt1TrackAllL0Decision_TIS;
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• HLT2 level:
Λ0
b_Hlt2TopoMu2BodyBBDTDecision_TOS

or Λ0
b_Hlt2TopoMu3BodyBBDTDecision_TOS

or Λ0
b_Hlt2TopoMu4BodyBBDTDecision_TOS

or Λ0
b_Hlt2SingleMuonDecision_TOS;

or Λ0
b_Hlt2CharmHadLambdaC2PiPKDecision_TOS;

The Λ0
b_Hlt2CharmHadLambdaC2PiPKDecisionLine, has been written dur-

ing 2011 data taking, and therefore, was not applicable to 2011 dataset. For

this reason, the analysis is performed only on 2012 dataset. Other lines have

not been changed during 2011 and 2012 data taking.

All Λ0
b candidates anayzed are required to ful�ll the previous trigger condi-

tions.

3.3.1 Low Level Lines

For every Λ0
b candidate in this analysis is required to pass one of Λ0

b_L0Hadron

Decision_TOS line, Λ0
b_L0HadronDecision_TIS line, Λ0

b_L0MuonDecision_

TOS line or Λ0
b_L0MuonDecision_TIS line. These lines triggers on high

transverse momentum muons (L0Muons) and on large transverse energy de-

position (L0Hadron) in the calorimeters. A relative momentum resolution

of about 20 % can be reached in the L0 muon reconstruction. In Table 3.2

are given the threshold applied in L0 level to give a positive trigger.

Table 3.2: L0 thresholds in 2011 and 2012 [34]

L0MuonDecision 1.76 GeV

L0HadronDecision 3.7 GeV

3.3.2 High Level Trigger, �rst Stage

In the �rst stage of high level trigger a partial event reconstruction and in-

clusive selection of signal are performed. The recostruction starts by track

segments in the vertex detector. High IP track segments and track segments

that can be matched with hints in the muon chambers are then extrapolated

into the main tracked. A Λ0
b candidate in this analysis, has to exceed the
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HLT1TrackMuonDecision or Hlt1TrackAllL0Decision lines (TIS,TOS). The

Hlt1TrackAllL0Decision is designed to select hadron decays which are sig-

ni�cantly displaced from a PV and for which al least one decay particle is

characterized by pT < 1.6 GeV . The HLT1TrackMuonDecision, then, ac-

cepts events with a muon candidates that have an IP > 0.1 mm with respect

to all PVs, and with a pT > 1 GeV.

3.3.3 High Level Trigger, second Stage

The second level trigger stage, HLT2, performs a full event reconstruction

for all tracks with a minimum pT of 500 MeV [34].

3.3.3.1 The HLT2 topological trigger lines

The so called topological trigger lines are designed to trigger on partially re-

constructed b-hadrons, with al least two charged particles in the �nal state

and with a displaced vertex. They are formed using a multivariate inclu-

sive selection based on two, three or four prong vertices. A Boost Decision

Tree classi�er is used. Input particles are selected by applying IP and track

quality cuts to reconstructed tracks. From these input particles two body

combinations are created and used as input to multivariate selection. Three

and four body combinations are created by incrementally adding tracks to

the two body combinations. The variable used in the BDT are: the sum of

the absolute pT of all decay tracks, the minimum momentum, the invariant

mass, the Distance Of Closest Approach (DOCA), the impact parameter

(IP) and �ight distance χ2 of the candidates, and �nally the corrected mass.

The latter is given by [35]

Mcorr =
√
M 2 + |pT,miss|2 + |pT,miss| (3.1)

where m is the invariant mass of the reconstructed n-body system and pT,miss

is the missing momentum transverse to the �ight direction of b-hadron can-

didate (see Fig.3.3).
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Figure 3.3: The de�nition of pmissT .

3.3.3.2 Hlt2SingleMuon Trigger Line

The purpose of the Line Hlt2SingleMuon is to select one identi�ed muon

combined with one or more additional tracks. Semileptonic decays can be

triggered with a detached single muon trigger without imposing a bias on the

hadronic part of the events. To reduce the amount of single muon events,

it requires that the trigger candidate itself had triggered HLT1TrackMuon

selection. Additionally a very good track quality, a reasonable high pT and

a large muon IP are requested ( see Table 3.3) . The pT is kept low not to

introduce a bias on the hadronic part of semileptonic decays.

3.3.3.3 Hlt2CharmHadLambdaC2PiPK Trigger Line

The Hlt2CharmHadLambdaC2PiPK aim is to select Λ∗+c → Λ+
c π

+π−. Λc

candidates are built without particle identi�cation information extracted

from RICHEes and, after a sizable amount of events have been �ltered by

this �rst selection, also the RICH reconstruction is triggered. The �nal can-

didates are then built according the selection shown in Table 3.4.

Applying the topological trigger appears a shift in the visible mass and

corrected mass distribution of Λ0
b → Λ∗+c τ−ν̄τ , without the same correspon-

dence for Λ0
b → Λ∗+c µ−ν̄µ. In fact, the topological triggers places a re-

quirement on the output of the MVA which gives higher output values for
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Table 3.3: Hlt2SingleMuon trigger requirements [36]

Quantity Requirement

µ pT > 1.3 GeV/c

µ χ2
track < 2

µ IP >0.5 mm

µ χ2
IP > 200

Table 3.4: Hlt2CharmHadLambdaC2PiPK trigger requirements [36]

Candidate Quantity Requirement

K±, π±
χ2
track/ndf < 3

pT > 500 MeV/c

χ2 > 9

p±

χ2
track/ndf < 3

pT > 1500 MeV/c

largest child χ2
IP > 15

M [2211,2361] MeV/c2

Λ±
c

χ2
vtx/ndf < 15

χ2
SV > 49

SV <4 mm

DIRA > 0.99985

lifetime < 0.02 ps

HLT1 TOS Hlt1track

p > 10000 MeV/c

χ2
IP > 9

PIDp > 0

h−p+h+ combination

∑
pT > 2500 MeV/c

largest child χ2
IP > 15

M [2211,2361] MeV/c2

Λ±
c

χ2
vtx/ndf < 15

χ2
SV > 49

SV <4 mm

DIRA > 0.99985

lifetime < 0.02 ps

HLT1 TOS Hlt1track

candidates with higher visible mass, corrected mass, and track traverse mo-

mentum. However, we decided to use a combination of the previous described

trigger lines to increase the statistic of our simulated samples, since using

only the Charm trigger con�guration, it decreased by half (see Table 3.4).
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3.4 Further O�ine selection

The b2LcMuXB2DMuNuXLine stripping, described in sub-sec.3.2, allows us

to identify the Λ0
b → Λcµ

−ν̄µ decays, but for R(Λ∗c) measurement it is nec-

essary to reconstruct the Λ0
b channels which decays in Λ+

c (2625)µ−ν̄µ �nal

states, therefore, two pions have been added to Λc vertex in order to form

the Λ∗+c → Λ+
c π

+π− decay candidates. To the latter a minimum transverse

momentum (π±_pT > 250 MeV/c) and to form a good Λ∗c vertex have been

required.

The loose stripping selection has to be re�ned with a group of tighter re-

quirements in order to reconstruct the Λ0
b → Λ∗+c µ−ν̄µ and Λ0

b → Λ∗+c τ−ν̄τ

decays, minimizing the backgrounds.

In particular, the Λc decay distance is required to have a χ2 >100 and a

impact parameter with respect to Λ∗c vertex < 7.4 mm, considering that this

baryon decays after about 1 cm with respect to the Λ0
b . Moreover, it is re-

quired a Λc mass in the range [2.25,2.335] GeV/c2, and characterized by a

mass within 50 MeV/c2 of the nominal mass. The sum of the transverse

momentum of Λc daughters, p,K,π has to be greater than 2100 MeV/c and

each one has to have a impact parameter χ2 with respect mother greater

than 9. To further suppress the contamination from misidenti�ed events a

ProbNNk > 0.2 and ProbNNghost < 0.6 cuts are also applied to p,K,π from

Λc (sec.2.11.2). In Figure 3.4, it is shown the Λc mass distribution after the

o�ine selection.

To reconstruct the Λ∗c , a Λc and two charged pions are �tted to a com-

mon vertex which is required to have χ2
vtx/ndf < 7. Moreover, it is required

a Λ∗c mass in the range [2.3,2.8] GeV/c2, and characterized by a mass within

400 MeV/c2 of the nominal mass. Then, a cut on π±_ProbNNe < 0.4 and

π±_ProbNNghost < 0.6, to reduce the probability to misidentify a pion with

an electron or with a non real track. The Figure 3.4 shows the distribution of

∆m = M(Λ∗c)−M(Λc), before and after the o�ine selection. It is possible

to notice two peaks which correspond respetively to Λ∗c resonances de�ned
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by a mass of 2595 MeV/c2 and 2625 MeV/c2. In this thesis, only the decays

of Λc(2625) has been considered due to statistics, but in all �ts to ∆m in

the following chapters both of resonances are considered, in order to perform

a correct evaluation of combinational background shapes.

Finally, to reconstruct a Λ0
b , Λ∗c and a muon has to form a vertex with

χ2
vtx/ndf < 16 and a mass less than 6.5 GeV/c2. A cut to decrease the muon

misidenti�cation is applied ( µ_ProbNNµ > 0.2) and the Λ0
b is required to

point to the primary vertex with a DIRA > 0.999. The fully list of require-

ments is reported in Table 3.5.

(a) (b)

Figure 3.4: (a) Λc mass distribution after the o�ine selection, (b)The distribution of ∆m =

M(Λ∗
c)−M(Λc), before(red) and after(blu) the o�ine selection.

3.5 Monte Carlo Simulations

Numerical simulations are indispensable to take into account for predicting

the complex e�ects associated to the detector response and to estimate the ef-

�ciencies. The algorithm used involve random sampling to simulate processes

and are collectively called Monte Carlo (MC) simulation. The simulation in-

volves several steps in order to describe the pp collisions, decay precesses,

detector response and data processing and selection. The PYTHIA pack-

age [37] models the pp collision environment, the outgoing quarks and gluon

collision products. Moreover it simulates the fragmentation and hadroniza-
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Table 3.5: Summary of o�ine selection requirements, h= p,K,π derived by Λc decay

Candidate Requirement

Λ±c

M ⊂ [2.25, 2.335] GeV/c2

M(Λ+
c )reco - M(Λ+

c )PDG < 50 MeV/c2

χ2
FlightDistance > 100

IP wrt Λ∗c vtx < 7.4 mm∑
pT daughters > 2100 MeV/c

h_ProbNNk > 0.2

π±_ProbNNghost < 0.6

h_ProbNNghost < 0.6

h_χ2
track/ndf < 5

h_χ2
IPwrtΛcvtx

> 9

Λ∗c

M ⊂ [2.3, 2.8] GeV/c2

M(Λ∗c) - M(Λ+
c ) < 400 MeV/c2

π±_ProbNNe < 0.4

π±_ProbNNghost < 0.6

π±_pT > 250 MeV/c

π±_MIN(χ2
PV ) > 9

χ2
vtx/ndf < 7

Λ0
b

M < 6.5 GeV/c2

µ_ProbNNµ > 0.2

χ2
vtx/ndf < 16

DIRA > 0.999

tion which produce hadrons and jets. EVTGEN package [38] simulates the

time evolution and the decay of hadrons. Afterward, GEANT4 toolkit [39]

is responsible to model the interaction of decay products with the mate-

rial. Finally, the detector response is determined from the interaction of

detector with the material and used as input for the trigger decision, track

reconstruction, central o�ine analysis and selection. In this analysis, MC

samples which reproduce Λ0
b → Λ∗cµ

−ν̄µ, Λ0
b → Λ∗cτ

−ν̄τ , Λ0
b → Λ∗cDs and

Λ0
b → Λ∗cD

(∗)
(s) decays are generated. Events corresponding to LHCb environ-

ment and detector conditions in 2012 are simulated. The samples and the

number of events generated are listed in Table 3.6.

As described in chapter 1, the form factors which allow to describe the hadron

current of Λ0
b → Λ∗cl

−ν̄l, have never been measured. In order to generate MC

samples it has been used the non relativistic quark model calculation per-

formed by Pervin et al, described in [21]. In the early stages of analysis,

we produced small size MC samples simulating all decays of Λ0
b → Λ∗cDs,
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Λ0
b → Λ∗cD

∗
s . From these productions we estimated that, after applying the

online and o�line selection the fraction of muon derived by Ds semileptonic

decays was about the 90%, that the one from tauonic decays was about

the 8% and that the residual were produced from decay of pions and kaons.

Therefore, since in this thesis, the background due to muons misidenti�cation

is studied on a wrong charge data sample, we produced double charm MC

samples decaying only as semileptonic channel. Thanks to �rst MC samples,

we studied also the Λ0
b → Λ∗cD

(∗) decays. It is expected that they occur 20

time less than Ds corresponding decays, due to Cabibbo suppression. The

most important variables used in this analysis, and described in chapter 4,

are the missing mass square, the transferred momentum and energy of muon

calculated in the Λ0
b center of mass energy. The distributions of these vari-

ables for the Λ0
b → Λ∗cD

∗
s and Λ0

b → Λ∗cD
∗ decays, resulted overlapped, so

we decided to simulate only the strange decays.

Table 3.6: number of MC generated events (magnet polarity up and down)

.

Sample Data size

Λ0
b → Λ∗

cµ
−ν̄µ 10M

Λ0
b → Λ∗

cτ
−ν̄τ 7.5M

Λ0
b → Λ∗

cDs 15M

Λ0
b → Λ∗

cDs∗ 15M

3.5.1 MC reweighting: Particle Identi�cation

The simulation of the detectors devoted to PID is non-trivial. Indeed, com-

puting the response of these detectors to a traversing particle requires mod-

eling of the kinematics of the particle, the occupancy of the detectors which

may be di�erent from event to event and sensitive to beam conditions, and

the experimental conditions such as alignments,temperature, and gas pres-

sure which may modify the response of detectors from run to run [40]. There-

fore, the distributions of the particles identi�cation variables are not simu-

lated to a su�cient precision. This leads to wrong result when measuring the

e�ciency of PID cuts on simulated data ad obviously to di�erent distribu-

tions of PID variables calculated using the MC samples compared with data.
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Because of this, a data driven method is used to optimize the selection and

calculate the e�ciencies, using a calibration data sample. These methods

make use of the fact that in a simulated sample, where the true particle ID

of a track is known and the same for all events, the distribution of the PID

response can be approximated as a function of the true particle type, the

track rapidity (η) , the track momentum (p) and the event multiplicity. The

calibrations of pions and kaons come from a sample of D∗ → D0(→ Kπ)π,

that one of protons form Λ → pπ decays and �nally the ones of muons

are derived by J/ψ → µµ. Practically, the PID e�ciency for every PID

requirement as a function of kinematic variables pseudorapidity and track

momentum is calculated. The track multiplicity is not considered since it is

know that MC does not correctly reproduce the correspondent distribution.

In �gure 3.5 it is possible to see the 2D plot for each pid cut applied in

selection.

3.5.1.1 MCTuneV2 and MCTuneV3

As said in section 2.11.2, the ProbNN variables are the output of a neural

network based on classi�ers that additionally take into account other track

properties such as the tracking performance or the track kinematics. The

training is done using MC inclusive B events and the performance depends

on the tuning, the blending of MC, used. For general purposes MCTuneV2

and MCTuneV3 are available. The main di�erence is that the ghosts in

the second one has been removed from the background of all the networks

excluding the ghost itself. In our analysis it is fundamental to have the

maximum performance for muon identi�cation, so both of tuning are tested

for ProbNNµ variables. Moreover, di�erent cuts are evaluated as a function

of µ_pT to determine the con�guration which allows to obtain higher cuts

e�ciencies as shown in Figure 3.6. It corresponds to ProbNNµ_MCTuneV3

> 0.2.

74



3.6. Combinatorial background

Track Momentum [MeV/c]
10 20 30 40 50 60 70 80 90 100

310×

P
su

ed
o 

R
ap

id
ity

1.5

2

2.5

3

3.5

4

4.5

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) µ_ProbNNµ > 0.2

Track Momentum [MeV/c]
10 20 30 40 50 60 70 80 90 100

310×

P
su

ed
o 

R
ap

id
ity

1.5

2

2.5

3

3.5

4

4.5

5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) K_ProbNNk > 0.2
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(c) p_ProbNNp > 0.2
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(d) π_ProbNNπ > 0.2 and π_ProbNNe<0.4

Figure 3.5: Calibration Histograms to reweight MC PID variables.

3.6 Combinatorial background

The contribution to combinatorial background due to Λ∗c fake has been mod-

eled using the data sideband in the ∆m (∆m = M(Λ∗c) −M(Λc)) interval

∆m ∈ [360, 380].

The background due to Λ∗c true associated with fake muon, contribution de-

rived by muon misidenti�cation, is instead modelled using a "wrong charge"

data sample of Λ∗+c µ+. Both of combinatorial background contribution are

described in detail in chapter 5.
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Figure 3.6: ProbNNµ variables as a function of µ_pT .

3.7 Multivariate isolation

One of challenge of R(Λ∗c) measurement analysis consists into distinguish

Λ0
b → Λ∗cD

(∗)
s from Λ0

b → Λ∗cτ
−ν̄τ , since the charmed hadrons, as much

as the tau, can can �y a potentially measurable distance before decaying.

The decays including Ds or D
∗
s contain always at least one additional recon-

structible particle with respect to the tauonic decay. This feature can be used

to reduce their contribution to the signal candidates. In this thesis ia new

approach, developed for the R(D∗) LHCb measurement [41], is used. It is a

multivariate algorithm aimed to determine whether a given track originates

from the same Λ0
b as the Λ0

b candidate (referred to as `associated tracks'), or

from anywhere else from the rest of the event (referred to as `unassociated

tracks'). All type of LHCb tracks are considered to maximize the number

of associated tracks. Input variables to the multivariate analysis (MVA) are

listed in Table 3.7, and include the properties of the track and the properties

of the candidate decay with the vertex re�tted to include the track that is

considered. This MVA is applied to each track in the event, and the tracks

with the highest (most associated-track like) MVA output are considered for
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further analysis. The used algorithm is the same of R(D∗) analysis and,

therefore it is trained using associated tracks taken from the D∗∗ → D∗ de-

cays in simulated B → D∗∗µν events, and unassociated tracks taken from

simulated B → D∗µν events with the signal decay excluded. In both cases,

B candidates are reconstructed in the D∗µ �nal state. The output distri-

bution for simulated B → D∗∗µν and B → D∗µν of this MVA is shown in

Figure 3.7. The isolation MVA has,then, the power to distinguish between

partially reconstructed signal decays and unrelated track. Moreover, it can

be used as a selection tool.

Two categories of tool existed before this innovative tool:

• Cone isolation: it is based around summing properties of track within

an angular cone around the considered particles;

• Vertex isolation: it is based on the proximity of the closest track to the

particle which generate the decay;

The �rst one approach has the disadvantage that it includes a large number

of tracks and it is not so sensitive to background with tracks missing, instead

The second one it is ideal to select tracks originating from the PV.

Table 3.7: Input variables for the isolation MVA

.

Track properties:

χ2
IP − PV
χ2
IP − SV
pT

cos(D∗µ, track)

Vertex properties:

χ2
flight_distance

χ2
∆(flight_distance)

3.8 E�ciency

Various e�ects contribute to the e�ciency with which a given decay can be

detected: acceptance, trigger, reconstruction and selection e�ciencies. The
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Figure 3.7: Highest isolation MVA output for any track in simulated events (magenta) B →
D∗µν and in B → D∗∗µν (red) [41]

particles in the candidate events must �rst lie within the detector accep-

tance, be triggered, reconstructed and �nally to pass the o�ine selection

requirements. Each consecutive step reduces the sample further, the overall

e�ciency ε thus be written as a product:

εTOT =
NTrigger+Offline_Selection

NStripping
· NStripping

NAcceptance
· NAcceptance

NGenerated

= εTrigger+Offline_sel|Stripping · εStripping|Acceptance · εAcceptance|Generated
(3.2)

where Ni is the number of events and εi is the e�ciency after the i reduction

of sample.

Also the e�ect of Particle Identi�cation corrections have to be included. In

the tables 3.8 and 3.9 are respectively listed the MC events number after

each selection cut and the correspondent e�ciencies. The main responsible

of a decrement in the overall e�ciency is the trigger selection. Since the

analysis is performed applying a cut on the ∆m to select only the Λc(2625)

decays, the overall e�ciencies are evaluated after applying the cut ∆m ∈
[336.45, 346.45], justi�ed in section 5.3.
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MC(Λb → Λ∗cµν) MC(Λb → Λ∗cτν) MC(Λb → Λ∗cDs) MC(Λb → Λ∗cD
∗
s )

NGenerated 10M 7.5M 15M 15M

NStrip|Acc 359672 103195 64726 19833

NTrig|Strip 900073 19745 12132 3850

NTrig+sel|Strip 44981 9985 11299 3556

Npid+∆m+Trig+Sel|Generated 24212 ± 138 5438 ± 66 3676 ± 54 1162 ± 30

Table 3.8: Number of events in the MC samples after applying selection cuts.

MC(Λb → Λ∗cµν) MC(Λb → Λ∗cτν) MC(Λb → Λ∗cDs) MC(Λb → Λ∗cD
∗
s )

εAcc 0.331 ± 0.008 0.341 ± 0.008 0.326 ± 0.008 0.318 ± 0.011

εoverallSel|Generated (2.4 ±0.01) · 10−3 (7.2 ±0.08) · 10−4 (2.45 ±0.04) · 10−4 (7.7 ±0.2) · 10−5

ε (8.01 ±0.19) · 10−4 (2.47 ±0.06) · 10−4 (7.98 ±0.23) · 10−5 (2.46 ±0.11) · 10−5

Table 3.9: E�ciencies after applying selection cuts.
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Chapter 4

Reconstruction of semileptonically

decaying beauty hadrons produced in

high energy pp collisions

In this chapter a new method to infer the momenta of b-hadrons produced

in hadron collider experiments using information from their reconstructed

�ight vectors is presented. In particular, the momentum is obtained using

multivariate regression algorithm based on the �ight information.

4.1 The b-hadron momentum in a semileptonic decay

The study of a semileptonic decay of a b-hadron, due to the presence of at

least one unreconstructible neutrino in the �nal state poses an experimental

challenge. However, in exclusive production of BB̄ meson pairs in e+e− colli-

sions at the Υ(4S) resonance, the decay kinematics of the B can be resolved

by balancing against the B̄ decay or vice versa. At an hadron collider, in-

stead, the busy hadronic environment and inclusive production mechanism

don't allow to reconstruct the b-hadron momentum in the laboratory rest

frame using �nal particles and therefore to constrain the kinematics of de-

cay. Decays with a single missing particle have an unknown 3-momentum

if an assumption is made about the mass of this particle. Two independent

constraints are provided by momentum conservation transverse to the �ight

vector. A third is provided by the assumption of the parent b-hadron mass,

though this constraint is quadratic and therefore presents two solutions, as
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illustrated in the section 4.2. However, no other information is available on

data to select the right solution between the two possibilities. The momen-

tum resolution is very good for the right solution, but, nearly random for

the other one. Several technique have been developed, during the years, to

approximate the b-hadron momentum. A possibility is to apply a statistical

correction called the k-factor, derivable using simulated samples. This factor

is the ratio between the reconstructible momentum, that is that one result-

ing momentum between the b-hadron and the lepton, and the true b-hadron,

obviously accessible only in MC events [42]. Another possibility [43], is to

consider b-hadrons that originate from decays of narrow excited b-hadron

states. If the other decay products from these decays are reconstructed,

then the mass of the excited state provides a further constraint on the kine-

matics of the child b-hadron. Further, the hadron momentum in b-hadron

the rest frame can be calculated using the b-hadron momentum direction, de-

termined from the unit vector to b-hadron decay vertex from the associated

primary vertex and assuming that the proper velocity βγ of visible part of

semileptonic decay. This method is used to perform the R(Λ∗c) measurements

illustrated in this thesis, and will be explained in next chapter in section 5.1.

Finally, in this thesis a new method is presented, based on the identi�cation

of the variables that are correlated with the b-hadron momentum, but that

are independent of the manner in which the b-hadron decays. This implies

that the method can be accurately validated with fully reconstructible decays

that have a similar topology to the signal. A regression based estimate of

the b-hadron momentum, using these variables as input, can then be used to

lift the quadratic ambiguity. The studies presented, published on Journal of

High Energy Physics [44], use the example of the LHCb experiment, but the

ideas should be applicable to any other current or future hadron collider ex-

periment and several centre-of-mass energies are therefore considered. This

new algorithm is developed and tested on B0
s → K−µ+νµ decays, and in

the last section of this chapter is shown hits application to the transferred

momentum reconstruction in Λ0
b → Λ∗+c µ−ν̄µ.
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4.2 The b-hadron momentum reconstruction

In semileptonic decays H0
b → H∗+c µ−ν̄µ the energy-momentum conservation

gives: 
√
m2
Hb

+ p2
Hb

=
√
m2
H∗c µ

− + p2
H∗c µ

− + |pν̄|

pHb
= pH∗c µ+ + pν̄

(4.1)

These are four equations with six unknown variables: piHb
and piν̄ , with

i=x,y,z. Given the good resolution on vertex reconstruction of the LHCb

detector, we can reconstruct the �ight direction determined by the primary

and secondary vertex positions. In this way, we have an useful constraint

to solve the system but a two-fold ambiguity remains, given the quadratic

constraint. To get solutions, it is useful to work in the plane de�ned by

H∗−c µ+ the and Hb momentum vectors, and use the H0
b �ight direction to

de�ne a parallel and an orthogonal axis. Thus, the previous system 4.1 can

be written as: {
|pHb
| = p

||
H∗c µ

+ p
||
ν̄

p⊥H∗c µ = −p⊥ν̄
(4.2)

with

|pν̄| 2 = p⊥2
ν̄ + p

||2
ν̄ ;

and ∣∣pH∗
cµ

∣∣ 2 = p⊥2
H∗c µ

+ p
||2
H∗c µ

By substituting the above equations into system 4.1, the H0
b momentum

can be determined with a two-fold ambiguity:

p
||
ν̄ =
−b±

√
b2 − 4ac

2a
(4.3)
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where

a = 4(p⊥2
ν̄ +m2

H∗c µ
)

b = 4p
||
H∗c µ

(2p⊥2
ν̄ −m2

miss)

c = 4p⊥2
ν̄ (p

||2
H∗c µ

+m2
Hb

)− |m2
miss|2

m2
miss = m2

Hb
−m2

H∗c µ

(4.4)

The two solution obtained from Eq.4.3, inserted in Eq.4.2, give the two

possibile values for the Hb momentum in the laboratory frame: p+
H and p−H .

4.3 Simulation of inclusive beauty production

The Pythia [37] event generator is used to simulate inclusive b-hadron pair

production in pp collisions at three centre-of-mass energies,
√
s = 7, 13,

100 TeV. Unless explicitly stated otherwise, the studies that follow are based

on the 13 TeV sample. A right-handed coordinate system is de�ned with

z along the beam axis into the detector, y vertical and x horizontal. The

magnitude of the momentum of a particle is denoted P , and the component

transverse to the z axis is de�ned as pT = P sin θ. The component of the

momentum along the z axis is denoted pz. A particle has a pseudorapidity

de�ned as η = − log (tan(θ/2)). A particle of energy E is de�ned to have

a rapidity of y = 1
2 log ((E + pz)/(E − pz)). Signal b-hadron candidates are

required to be produced within the range 2 < η < 5, which corresponds to

the approximate kinematic acceptance of the LHCb detector. Figure 4.1

shows, for each of the three centre-of-mass energies under consideration, the

P , pT and η distributions of the b-hadrons in the event sample. One of the

�rst things to notice is that the pT distribution has a smaller tail than the

momentum distribution. This is a feature that is exploited in this work.

With increasing centre-of-mass energy, the b-hadron production tends to be

at larger pseudorapidities and larger momenta, but the pT spectrum is less

strongly a�ected.

Since the main features that we try to utilize in this study are related to

the line of �ight between the b-hadron production and decay vertices, which
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Figure 4.1: Basic b-hadron kinematic distributions in our simulated event samples: (top left)

momentum, (top right) transverse momentum, (lower) pseudorapidity.

is denoted ~F , it is crucial to model the resolution in the associated vari-

ables. The x and y co-ordinates of the b-hadron decay vertices are smeared

by ±20µm according to a Gaussian distribution. In the z direction a larger

resolution of ±200µm is assumed. For the production vertices we assume

resolutions of ±13µm in x and y, and ±70µm in z. These assumptions

approximately re�ect the reported peformance of the LHCb VELO detec-

tor [26]. In all subsequent studies it is required that the smeared �ight

length is larger than 3 mm, which approximates the e�ect of typical trigger

and analysis selections of b-hadron decays by LHCb.

Exclusive decays of Bs mesons to K
−µ+νµ are simulated with a simple phase

space description, which is considered to be su�ciently accurate for the

present study. To the Bs decay products it is required that the charged

�nal state particles satisfy P > 5 GeV and 1.9 < η < 4.9. Moreover,

pT (µ) > 1 GeV and pT (K) > 0.5 GeV is requred. As a background the

decay B0
s → (K∗− → K−π0)µ+νµ, in which the π0 isn't reconstructed, has

been simulated.

4.4 Variables that are correlated to the b momentum

We attempt to identify variables that are correlated to the b-hadron mo-

mentum, but strictly restrict to those that are independent of the b-hadron

decay properties. The single most important feature that we try to exploit

is apparent in �gure 4.2 (left) which shows the distribution of pT versus η.

The (anti-)correlation between the two variables is weak, with a coe�cient
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Figure 4.2: Distribution of pT versus η in the simulated sample of b-hadrons (left) without any

simulated decay and (right) with simulated Bs → Kµν decays that are required to satisfy the

basic selection requirements as described in the text.

of around 30%, as indicated on the �gure. It is therefore possible to estimate

the momentum of the b-hadron as,

P =
pT

sin θflight
, (4.5)

where θflight is the polar angle of the �ight vector, and it can be seen in

�gure 4.1 that pT ≈ 5 GeV in our simulated samples. This approximation

should return a momentum estimate with a resolution function that resem-

bles the pT distribution in �gure 4.1. In �gure 4.3 (left) the distribution of

1/sinθflight is shown. �gure 4.3 (right) shows that this variable has a near

linear relation to the b-hadron momentum with a correlation coe�cient of

around 65%. The approximation above is degraded once it is appreciated

that the charged decay products from the b-hadron must be within the accep-

tance of the detector. �gure 4.2 (right) shows the distribution of pT versus η

for simulated Bs → Kµν m decays that satisfy the selection cuts. This has

the e�ect of suppressing the region of low pT and low η, thus increasing the

magnitude of the correlation between these two variables by around 10%.

The �ight length, |~F |, of a b-hadron of mass M and decay time t can be

directly related to the momentum according to,

P =
M |~F |
t

. (4.6)
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Figure 4.3: The left-hand �gure shows the 1/sinθflight distribution of the simulated b-hadrons

that are within the LHCb acceptance. The right-hand �gure shows the distribution of the same

variable versus the b-hadron momentum.

�gure 4.4 (left) shows the distribution of |~F |, in which our requirement of

at least 3 mm is clearly visible. �gure 4.4 (right) shows that this variable is

correlated with the momentum with a coe�cient of around 50%. We have
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Figure 4.4: The left-hand �gure (left) shows the |~F | distribution of the simulated b-hadrons

that are within the LHCb acceptance. The right-hand �gure (right) shows the distribution of

the same variable versus the b-hadron momentum.

considered the use of information from other reconstructed particles in the

event. It is obvious that in the hypothetical case of a detector with 4π an-

gular coverage and perfect e�ciency and resolution, the b-hadron pT could

be inferred from the transverse momentum balance. Considering the LHCb

detector, and the most optimistic use of all kinematic information from the

reconstructible particles, we can only achieve a correlation of around 20%
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between the missing pT and the pT of the signal b. As an alternative, we

have considered the possibility to reconstruct the b̄-hadron that is produced

in association with the signal b. Even at b(b̄)-quark level the naive pT bal-

ance between the b and b̄ is sploilt by the broad bb̄ pT spectrum. Various

combinations of reconstructing the signal b and associated b̄ at hadron or

jet level have been considered. 1 Even before considering the ine�ciency

of reconstructing the associated b̄ this approach does not seem promising.

Therefore, there are only two pieces of information related to the b-hadron

�ight vector, namely 1/ sin θflight and |~F |, which are of value in an estimator

of the b-hadron momentum.

4.5 Multivariate regression analysis

The two �ight variables described in the previous section, 1/ sin θflight and

|~F |, are considered in a multivariate regression analysis in order to infer the

momenta of the b-hadrons. A simple least squares linear regression algo-

rithm, as implemented in the sklearn package [45], is used. This algorithm

is trained on a randomly selected subset of the simulated event sample. The

independent data are used to evaluate the performance of the algorithm in es-

timating the b-hadron momentum from the values of the two �ight variables.

�gure 4.5 shows the distribution of the inferred b-hadron momentum, Pinf ,

versus the true b-hadron momentum. The correlation coe�cient is around

70%. In table 4.1, the correlation coe�cients between Ptrue and the two �ight

variables are listed for the three centre of mass energies and various selection

requirements on the simulated Bs → Kµν decays. Also listed are the cor-

relations between Ptrue and the inferred momentum that would be returned

by the regression using only 1/ sin θflight, which is denoted pθinf . It can be

seen that as expected these values are close to the corresponding correlations

with the raw �ight angle variable itself. The �nal column of table 4.1 lists

the correlations between Ptrue and Pinf . It can be seen that the combination

of the two variables in the regression algorithm increases the correlation by
1In the case of the signal b-hadron at jet level, we consider particles within a hollow cone around the b, in

order to avoid picking up the b-hadron decay products.
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around 10% compared to the more powerful angular variable alone. Hardly

any dependence on the centre-of-mass energy is seen. There is a degradation

of the correlations of up to 10% when applying the acceptance and selection

requirements on the charged decay products of the simulated Bs → Kµν

decays. The inclusion of |~F | in the two-variable version increases the cor-

relation between Pinf and Ptrue by a few percent. �gure 4.6 (left) shows

the distribution of (Pinf −Ptrue)/Ptrue and the corresponding distribution for

P theta
inf instead of Pinf . As expected the shapes of these distributions roughly

resemble the underlying b-hadron pT spectrum shown in �gure 4.1. In �g-

ure 4.6 (right) the corresponding pro�les of the mean |Pinf − Ptrue|/Ptrue are

shown as a function of η. The resolution of Pinf is around 60% and ex-

hibits some dependence on η. It is about 10�20% improved compared to

that of P θ
inf which neglects the decay length information. We further check

the robustness of the method with respect to our assumptions on the vertex

resolution. Even for variations of up to three orders of magnitude there is a

negligible e�ect on the performance.

 [GeV]trueP
0 50 100 150 200 250 300 350 400

 [
G

eV
]

in
f

P

0

50

100

150

200

250

300

350

400

 = 0.70ρ

Figure 4.5: The distribution of Pinf versus the true b-hadron momentum.

4.6 Application to q2 reconstruction in Λb → Λ∗cµν̄µ

In this section the regression algorithm is applied to the reconstruction of the

Λb → Λc(2625)µν̄µ. The inferred Λb momentum, Pinf , has been obtained

with the MC, using the least square regression algorithm as described before

for the Bs → Kµν̄µ. The parameters of the regression function have been
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Figure 4.6: The left-hand �gure shows the distribution of (Pinf − Ptrue)/Ptrue. The right-hand

�gure shows how the pro�le of |Pinf − Ptrue|/Ptrue varies with η. Both �gures include the corre-

sponding entries for P thetainf .

extracted minimizing the objective function F =
∑

events(pinf − pTrue)
2,

where the functional dependence of pinf on the �ight distance and �ight

angle is given by

Pinf = a · 1

sin θflight
+ b · |~F | (4.7)

ptrue is the per-event true momentum of the Λb and the coe�cienct a and b are

free parameteres in the minimization. The distribution of Pinf as a function

of Ptrue is shown in �gure 4.7. The momentum resolution of Pinf is about

55% and its correlation with the true momentum is about ρ = 0.60. The

reduced correlation observed compared to the Bs → Kµν̄µ, shown on �gure

4.5, is due to the selection as described before. In the Λb → Λc(2625)µν̄µ

the Pinf resolution is enough to signi�cantly improve the chance to select the

best solution between P+
λb
and P−λb, compared with a simple random choice.

We chose as best Λb momentum, the solution P
±
λb
, closet to Pinf .

From the best PΛb, the estimated q
2
reg can be easily computed. Compared

with a random choice of the two P±λb solutions, the resolution improvement

is about 15% as shown in �gure 4.8.

The q2 resolution depends on the q2 itself. In �gure4.9 the q2 resolution in

various q2 bins is reported. The improvements in the q2 resolution obtained

using q2
reg vary between 10% to more than 20%.
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4.7. Conclusion

Correlation coe�cient
√
s Cuts 1/ sin θ |F | P θinf Pinf

7 TeV None 0.63 0.50 0.61 0.69

7 TeV P, pT 0.67 0.59 0.67 0.68

7 TeV P, pT , η 0.49 0.52 0.49 0.56

13 TeV None 0.63 0.49 0.63 0.70

13 TeV P, pT 0.60 0.50 0.60 0.69

13 TeV P, pT , η 0.53 0.48 0.53 0.65

100 TeV None 0.62 0.48 0.63 0.69

100 TeV P, pT 0.59 0.50 0.60 0.69

100 TeV P, pT , η 0.53 0.48 0.54 0.65

Table 4.1: The coe�cients of correlation between the true b-hadron momentum, and the raw �ight

variables and the inferred momentum from the regression. For each centre-of-mass energy, as indicated

in the �rst column, the �rst row corresponds to only the basic �ight length and acceptance requirements

on the b-hadron. The second and third rows sequentially apply P, pT and η requirements on the charged

decay products in the simulated Bs → Kµν decays.
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Figure 4.7: Distribution of Pinf as a function of the Λb momentum. The correlation is ρ = 0.60.

4.7 Conclusion

The algorithm described here allows to improve the resolution in the deter-

mination of the decay kinematic variables for any semileptonic decays like

Hb → Hcµν̄µ or Hb → Huµν̄µ . The improved resolutions can be exploited

to measure the di�erential decay width dΓ(Hb → Hµν̄µ)/dq2 with good pre-
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Figure 4.8: Resolution of q2 obtained using the regression algorithm (blue), compared with the

one obtained using a random choice between the p+
Λb

and p−Λb (red).

cision because of the reduced migrations between the q2 bins. Unfortunately

the algorithm cannot be applied successfully to improve the kinematic of

semitauonic decays Hb → Hτν̄τ . In the section 5.8 the di�ential decay rate

dΓ(Λb → Λc(2625)µν̄µ)/dq2 is extracted using a q2 reconstruction, de�ned

in the section 5.1, that, despite the worst resolution, is suitable for both

Λb → Λ+
c (2625)µν̄µ and Λb → Λ+

c (2625)τ ν̄τ .
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Figure 4.9: Resolution q2
reg − q2

true in �ve bins of q2
true. From left to right, top to bottom:

0 < q2
true < 1 GeV 2, 1 < q2

true < 3 GeV 2, 3 < q2
true < 5 GeV 2,5 < q2

true < 7 GeV 2, 7 < q2
true <

9 GeV 2.
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Chapter 5

Signal selection

In this chapter, the strategy to isolate the signal from the Λb → Λ∗cµν decays

is presented. To separate out semitauonic Λ0
b decays followed by τ → lνν

from normalization channel Λb → Λ∗cµν, it is necessary to exploit di�erences

in the kinematics of the two processes that result from the large µ− τ mass

di�erence as well as the softer lepton energy, the presence of extra neutrinos

from the τ → τνν decay and of a further displaced decay vertex. The

kinematic distributions of Λb → Λ∗cD
(∗)
s are very similar to those of the

semitauonic decays, but it is possible to discriminate them from the others

using the handle giving by the multivariate isolation variables 3.7 and the

momentum transferred, (described in the next sections).

Moreover the techniques to estimate the combinatorial background and the

muon misidenti�cation contribution are shown.

5.1 Λ0
b Frame Reconstruction of Kinematic Variables

As seen in Chapter 3, at an hadron collider, due to the presence of one

or more neutrinos, is not possible to reconstruct the Λ0
b momentum in the

laboratory rest frame using �nal particles and therefore to constrain the

kinematics of decay. Hence, it is necessary to use an approximation. In this

thesis, the hadron momentum in the Λ0
b rest frame is calculated using the Λ0

b

momentum direction, determined from the unit vector to Λ0
b decay vertex

from the associated primary vertex and assuming that the proper velocity

βγ of visible part of semileptonic decay along z-axis is equal to Λ0
b proper
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velocity along the same axis:

(pΛ0
b
)z = (pΛ∗cµ)z

mΛ0
b

mΛ∗cµ

|pΛ0
b
| = (pΛ∗cµ)z

mΛ0
b

mΛ∗cµ

√
(1 + tan2 α)

where is α is the angle between unit vector and z axis (beam pipe) [41].

This approximation is called "boost approximation". The Λ0
b momentum

is calculated according this approximation in all studied presented in the

following sections. The �gure 5.1 shows the resolution on Λ0
b momentum and

the consequent resolutions on missing mass square (MM 2 = (pµ
Λ0
b
− pµ(Λ∗cµ))

2)

and transferred momentum (q2 = (pµ
Λ0
b
− pµ(Λ∗c))

2), quantities described in the

section 5.2.
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Figure 5.1: Momentum resolution (left), missing mass resolution (center), transferred momentum

(right) for the simulated decays Λ0
b → Λ∗

cτ
−ν̄τ (Green) and Λ0

b → Λ∗
cµ

−ν̄µ(Red). The label

iRECO described the quantities calculated using the boost approximation, iTRUE those one

which use the simulated variables.

5.2 Discriminating Variables

The kinematics of the visible particles in Λ0
b → Λ∗+c µ−X decay modes depend

on the mass and momentum of the missing particles. This allows Λ0
b →

Λ∗+c τ−ν̄τ to be distinguished from Λ0
b → Λ∗+c µ−ν̄µ, and from other sources
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of background. The presence of not reconstructible particles in the decays

suggests to evaluate the missing mass. It is de�ned as:

MM 2 = (pµ
Λ0
b
− pµ(Λ∗cµ))

2 =

= m2
Λ0
b

+m2
(Λ∗cµ) − 2(EΛ0

b
E(Λ∗cµ) − pΛ0

b
p(Λ∗cµ)cos(θ(Λ∗cµ)))

(5.1)

where pµi is the four momentum of particle i and therefore the formula can

be decomposed in energy Ei and momentum pi components.

In case of direct semileptonic decays with only a missing track due to

a neutrino, such as Λ0
b → Λ∗+c µ−ν̄µ, this variable is expected to peak to

zero. Instead, for Λ0
b → Λ∗+c τ−ν̄τ and double charmed decays, more than

one tracks are missed and the distributions of MM 2 will peak on average

to values higher than zero. This can be seen in �gure 5.2, where the MM 2

distributions for MC(Λ0
b → Λ∗+c µ−ν̄µ), MC(Λ0

b → Λ∗+c τ−ν̄τ ) and double

charm decays are plotted: in the left side of the �gure the distributions of

muonic and tauonic decays are shown. The distributions are a�ected by the

reconstruction e�ects, in fact, otherwise the muonic MM 2 would be always

equal to zero. This can be inferred by missing mass resolution distribution,

shown on �gure 5.2. Only the events for which the reconstructed particles

match the generated ones have been selected. It can be observed that the

main discriminant power of this variable is in the separation of muonic and

tauonic decay.

Morover, the muons from the b → cτν → c(µνν)ν decay chain are typ-

ically much softer than the primary muons which come directly from the

b → cµν decay, so that for Λ0
b → Λ∗cτ

−ν̄τ events the rest frame energy E∗

peaks at small values, as shown in �gure 5.3.

There are other two variables which allow us to slightly separate semi-

tauonic from semimuonic decay: the impact parameter in unit of χ2 of the

muons with respect to primary vertex (χ2
IP (µ) (see 3.1.1)) and the variable

describing the Λ0
b decaying vertex quality (χ2

vtx(Λ
0
b))(see 3.1.1)). The �rst

one should give di�erent results for signal and normalization channel since

the impact parameter of the muon derived by the semitauonic decays is ex-

pected to be greater than those form direct decays. Instead, the Λ0
b vertex,

97



Chapter 5. Signal selection

2 (MeV/c)2MM
5000− 0 5000 10000

310×0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2MM^2 (MeV/c)
5000− 0 5000 10000

310×0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 5.2: Missing mass square for the simulated decays: Λ0
b → Λ∗

cτ
−ν̄τ (Green), Λ0

b →
Λ∗
cµ

−ν̄µ(Red) and (only right) Λb → Λ∗
cD

∗
s added to Λb → Λ∗

cDs (Pink).

E* MeV
0 1000 2000 3000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E* MeV
0 1000 2000 3000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 5.3: Energy of the muon on the center of mass of Λ0
b : Λ0

b → Λ∗
cτ

−ν̄τ (Green), Λ0
b →

Λ∗
cµ

−ν̄µ(Red) and (only right) Λb → Λ∗
cD

∗
s added to Λb → Λ∗

cDs (Pink).

in the tauonic decay is formed without the muonic constraint and therefore

the vertex quality should be less accurate. The correspondent distributions

are in �gure 5.4. They provide a slight separation but they have been put

in input of a multivariate analysis, presented in section 5.5.1.

Finally, another relevant variable is the transferred momentum. It is

de�ned such as:

q2 = (pµ
Λ0
b
− pµΛ∗c)

2 =

= m2
Λ0
b

+m2
Λ∗c

+ 2(EΛ0
b
EΛ∗c − pΛ0

b
pΛ∗ccosθΛ∗c)

(5.2)
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Figure 5.4: The impact parameter in unit of chi2 of the muons with respect to primary vertex

(left) and the Λ0
b decaying vertex quality (right) : Λ0

b → Λ∗
cτ

−ν̄τ (Green), Λ0
b → Λ∗

cµ
−ν̄µ(Red)

and (only right) Λb → Λ∗
cD

∗
s added to Λb → Λ∗

cDs (Pink).

where pµi is the four momentum of particle i and therefore the formula can

be decomposed in energy Ei and momentum pi components.

The semitauonic decays, in fact, can be occur in the kinematic region re-

stricted to q2 = (pµ
Λ0
b
− pµΛ∗c)

2 > m2
τ while the Λ0

b → Λ∗+c µ−ν̄µ extends all the

way down to q2 > m2
µ ≈ 0. It can be seen in �gure 5.5. In this image also

the distribution of Λb → Λ∗cDs transferred momentum appears, and it can

be noticed that the shape is di�erent with respect to muonic and tauonic

decays, therefore discriminable from the others.

In particular, in this thesis, to take the biggest advantages of trans-

ferred momentum variable, this one has been evaluated in �ve di�erent in-

tervals, chosen basing on the kinematic properties of signal, normalization,

double charmed channels and combinatorial background. In fact, in the

�rst two bins, q2 ∈ [−10, 1](GeV/c)2 and q2 ∈ [1, 3](GeV/c)2 only semin-

uonic and combinatorial decays are expected; in third and fourth de�ned

by q2 ∈ [3, 5](GeV/c)2 and q2 ∈ [5, 7](GeV/c)2 all components should be

present, and �nally the interval q2 ∈ [7, 10](GeV/c) should be depleted in

semimuonic decays.

99



Chapter 5. Signal selection

2 (MeV/c)2q
10− 5− 0 5 10 15

610×0

0.01

0.02

0.03

0.04

0.05

0.06

2 (MeV/c)2q
10− 5− 0 5 10 15

610×0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 5.5: Momentum transferred for the simulated decays: Λ0
b → Λ∗

cτ
−ν̄τ (Green), Λ0

b →
Λ∗
cµ

−ν̄µ(Red) and (only right) Λb → Λ∗
cD

∗
s added to Λb → Λ∗

cDs (Pink).

5.3 Samples enriched using isolation

In this thesis it is used the output of the MVA isolation presented in sec-

tion 3.7, to identity one sample depleted of Λ0
b double charmed decays with

respect to those one semitauonic. In particular, the considered variable is

the Λ0
b_ISOLATION_BDT (in the following cited as ISO) which is that

one containing the highest MVA BDT outputs. In fact in every track in an

events, that is not a candidate element of the searched decay, is evaluated

and those one for which the BDT value is highest are inserted in the con-

sidered isolation variable. In other to de�ne a boundary value of the sample

depleted of Λ0
b double charmed decays, we looked for the value of the ISO

variable for which is maximized the ratio given by

f =
nMC(Λ0

b → Λ∗cτ
−ν̄τ)√

nMC(Λ0
b → Λ∗cD

∗
s) + nMC(Λ0

b → Λ∗cDs)

Table 5.1 report the ratios correspondent to several cut: the value which

maximize the ratio is ISO < 0.25 . In the following section and chapter,

all quantities are evaluated in the due identi�ed isolation bins: ISO ≤ 0.25

and ISO < 0.25.
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ISO value f

< -0.3 54.29

< -0.25 58.46

< -0.20 61.33

< -0.15 64.24

< -0.10 68.78

< -0.05 70.02

< 0 70.52

< 0.05 70.52

ISO value f

< 0.10 70.68

< 0.15 70.89

< 0.20 71.33

< 0.25 71.50

< 0.30 71.42

< 0.35 70.79

< 0.40 69.49

< 0.45 68.69

Table 5.1: f values, de�ned in 5.3, for di�erent ISO cuts.

5.4 m(Λ∗c)-m(Λ
+
c )

The ∆m = m(Λ∗c) − m(Λ+
c ) distribution of LHCb data, in the range of

[280,380] MeV/c is plotted in �gure 3.4. The data sample is identi�ed form

�nal states formed of Λ∗+c µ− reconstructed tracks which passes all steps of

the selection illustrated in chapter 3.

This variable allows to identify the presence of decays containing one of the

two resonances Λ+
c (2595) or Λ+

c (2625), correspondent respectively to the

lower and the higher ∆m peak of the distribution.

Events de�ned by ∆m out of the peaks are composed of Λ∗c fake and then

they form a component of the combinatorial background (subsection 3.17).

Therefore, a �t to the ∆m in the data allow to extract the number of com-

binatorial background event under the resonances.

Moreover, thanks to �t to ∆m distribution of a sample composed of Λ∗+c µ+

(wrong charge sample (subsection 3.17)), the muons misidenti�cation com-

ponent of background can be extracted, as explained in subsection 5.4.2.

The PDF used to �t the ∆m data distribution is built:

P (∆m) = NΛ+
c (2595)SΛ+

c (2595)(∆m) +NΛ+
c (2625)SΛ+

c (2625)(∆m) +NcombB(∆m)

(5.3)

where Ni (i= Λ+
c (2595), Λ+

c (2625), comb) are the events respectively �tted

around the expected peak for the lower and higher Λ+
c resonance and the

number of combinatorial background events. Then, SΛ+
c (2595) and SΛ+

c (2625)

are the PDF which describe the peaks events and B, the background PDF.
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Chapter 5. Signal selection

The �t components are modeled using the following PDFs:

• SΛ+
c (2595)(∆m):

SΛ+
c (2595)(∆m) = PBifurcated_Gauss + (1− f2595)PBreit_Wigner (5.4)

where

� PBifurcated_Gauss(∆m; ∆mΛ+
c (2595)_BIF ;σ) =

=


1

σL
√

2π
e

∆m−
(−∆m

Λ+
c (2625)_BIF

)2

2σ2
L ∆m < ∆mΛ+

c (2595)_BIF

1
σR
√

2π
e
−

(
(∆m−∆m

Λ+
c (2625)_BIF

)2

2σ2
R

)
∆m > ∆mΛ+

c (2595)_BIF

de�ned by ∆mΛ+
c (2595)_BIF is the mean value, widths σL and σL.

� PBreit_Wigner(∆m,∆mΛ+
c (2595)_BW ,Γ) =

1

2π

1

(∆m−∆mΛ+
c (2595)_BW )2 + (Γ/2)2

where ∆mΛ+
c (2595)_BW is the central mass and Γ is the width of the

resonances.

• SΛ+
c (2625)(∆m):

� PDouble_Gaussian(∆m; ∆mΛ+
c (2625)_DG;σ1;σ2) =

=
f2625

σ1

√
2π
e
−

(
(∆m−∆m

Λ+
c (2625)_DG

)2

2σ2
1

)
+

(1− f2625)

σ2

√
2π

e
−

(
(∆m−∆m

Λ+
c (2625)_DG

)2

2σ2
2

)

de�ned by same mean ∆mΛ+
c (2625)_DG, widths σ1 and σ2.

Λ∗+c µ−

• B(∆m):

� B(∆m) = (∆m−∆m0)peα(∆m−∆m0)

where ∆m0 is the value for which B(∆m0) = 0, p and α two

parameters.

102



5.4. m(Λ∗
c)-m(Λ

+
c )

In Figure 5.6 the plot of the �t to the ∆m distribution on the 2012 data

sample after applying selection illustrated in chapter 3 is shown in both bins

of ISO, while in table 5.2 the results for the PDF parameters are reported.

The aim of this thesis is not to study the decays containing Λ+
c (2595) in the

�nal state, but only that including the Λ+
c (2625). This choice has been taken

because of the limited statistic and the consequent few Λ+
c (2595) �tted. The

lower resonance is however �tted, in order to prevent the corrected �t of the

combinatorial background and the resulting overestimation of the last one.

Parameter Fitted Value

NΛ+
c (2625) 37039 ± 1299

∆mΛ+
c (2625)_DG 341.65 ± 0.02

σ1 1.81 ± 0.06

σ2 4.46 ± 0.46

f2625 0.64 ± 0.04

Ncomb 139502 ± 1901

α - 0.0144 ± 0.0002

p 2.12 ± 0.01

NΛ+
c (2595) 16745 ± 409

∆mΛ+
c (2595)_BW 306.51 ± 0.17

Γ 4.18 ± 0.25

σL 1.49 ± 0.14

σR 4.45 ± 0.46

f2595 10.95 ± 0.08

Parameter Fitted Value

NΛ+
c (2625) 4169 ± 290

∆mΛ+
c (2625)_DG 341.64 ± 0.08

σ1 1.99 ± 0.21

σ2 4.73 ± 1.37

f2625 0.64 ± 0.14

Ncomb 50049 ± 506

α - 0.012 ± 0.001

p 1.87 ± 0.06

NΛ+
c (2595) 2317 ± 227

∆mΛ+
c (2595)_BW 306.75 ± 0.71

Γ 4.26 ± 1.33

σL 2.75 ± 0.47

σR 10.99 ± 0.92

f2595 0.80 ± 0.07

Table 5.2: Parameters of the �t to ∆m LHCb 2012 data distribution after applying the ISO <

0.25 (left), and ISO ≥ 0.25 (right) .

5.4.1 Fake Λ∗
c Events Fit

A �t to the ∆m variable in the data allows to extract the number of com-

binatorial background events composed of Λ∗c fake under the resonances. As

described in section 5.4, this combinatorial component can be described using

the following PDF:

B(∆m) = (∆m−∆m0)peα(∆m−∆m0)

where ∆m0 is the value for which B(∆m0) = 0, p and α two parameters.

The �ts, performed in every q2 bins (section 5.2) for both the isolation bins
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Figure 5.6: Fit to distribution of ∆m LHCb 2012 data after applying ISO < 0.25 cut (left) and

ISO ≥ 0.25 cut (right). Table 5.2 shows the parameters �tted.

(section 5.3), are shown in Figures 5.7 and 5.8, while in Appendix A the

results for the PDF parameters are reported. Instead, the distributions of

these events, with respect to the variables described in the section 5.2 and

the MVA output variables illustrated in the next section, both aimed to

separate semitauonic from seminuonic Λ0
b decays, correspond to the LHCb

data distributions in the ∆m range ]360,380[ MeV/c. In fact, as it is possible

to see in Figures 5.7 and 5.8, all events characterized by a ∆m included in

this range are �tted by Λ∗c fake combinatorial background PDF. The impact

of the chosen ∆m sideband range on the discriminating variables shapes is

described in the subsection 6.3.1 .

5.4.2 Wrong charge sample: Estimation of Muon

Misidenti�cation Events

The Λ0
b events candidates constituted of a �nal state composed of a true Λ∗c

track and a muon track characterized form the same charge of the baryon,

form the so called wrong sign sample. The ∆m distribution of this sam-

ple allows to identify the peaks which correspond to candidate containing

Λ+
c (2595) or Λ+

c (2625). After the �t, the background contribution can be

removed from wrong sign sample weighting each event with its sWeight, the

technique is explained in the following subsection. Thanks to this �t we
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Figure 5.7: Fit to distribution of ∆m LHCb 2012 data after applying ISO < 0.25 in q2

bins:SΛ+
c (2595)(orange), PBifurcated_Gauss(black), PBreit_Wigner(light red), SΛ+

c (2625)(green) and

Bcomb (blue). Appendix A shows the parameters �tted.

can know the number of events formed of a true Λ∗c track composed with a

wrong charge muon which can not be signal-like but only events with a muon
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Figure 5.8: Fit to distribution of ∆m LHCb 2012 data after applying ISO ≥ 0.25 in q2

bins:SΛ+
c (2595)(orange), PBifurcated_Gauss(black), PBreit_Wigner(light red), SΛ+

c (2625)(green) and

Bcomb (blue). Appendix A shows the parameters �tted.

misidenti�ed. Since the topology of these decays and the selection applied

are the same to that searched for our signal candidate (Λ∗+c µ− �nal state),
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we can assume that the muon misidenti�cation component of background in

Λ∗+c µ− �nal state data is equal to the number of events and has the same

the kinematic distributions of the wrong sign sample.

The wrong sign sample is �tted using the same PDFs for combinatorial

background, while the events peaking to the Λ+
c (2595) and the Λ+

c (2625)

are described using a Gaussian. The �ts, performed in every q2 bins (section

5.2) for both the isolation bins (section 5.3), are shown in Figures 5.9 and

5.10, while in Appendix B the results for the PDF parameters are reported.

5.4.2.1 sPlot

The sPlot technique [46] allows to reconstruct priori unknown distributions

of some variables (control variables) independently for each of the various

species of events, inferring the knowledge available for a set of discriminating

variables. In particular, it is performed on the data sample to determine the

yields of the various sources. It can be applied when:

• The set of discriminating variables must have a good discrimination

power.

• The control variable has to be uncorrelated with the discriminating set.

This technique exploits the maximum Likelihood method using the discrim-

inating variables. The used log-Likelihood is:

L =
N∑
e=1

ln

{
Ns∑
i=1

Nifi(ye)

}
−

Ns∑
i=1

Ni (5.5)

where

• N is the total number of events considered;

• Ns is the number of species of events populating the data sample (signal

and background);

• Ni is the number of events expected on the average for the ith species;

• y represents the set of discriminating variables;
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Figure 5.9: Fit to distribution of ∆m WS distribuition after applying ISO < eq0.25 in q2

bins:SΛ+
c (2595)(light red), PGaussian(black), SΛ+

c (2625)(green) andBcomb (blue). Appendix B shows

the paramters �tted about od each bin �t.

• fi is the Probability Density Function (PDF) of the discriminating vari-

ables for the ith species;
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Figure 5.10: Fit to distribution of ∆m WS distribution after applying ISO ≥ 0.25 in q2

bins:SΛ+
c (2595)(light red), PGaussian(black), SΛ+

c (2625)(green) andBcomb (blue). Appendix B shows

the paramters �tted about od each bin �t.

• fi(ye) is the value of the pdf of y for the ith species and for the eth events.

109



Chapter 5. Signal selection

Through the maximization of the log-Likelihood all implicit free parameters

designed to tune the PDFs on data sample and the Ni yealds are determined.

It is so possible to build a weight for each event to be of the ith species, called

sWeight, that can be calculated as:

sPi(ye) =

∑Ns
j=1 Vijfj(ye)∑Ns
j=1Nkfk(ye)

(5.6)

where V is the likelihood covariance matrix between species i and j de�ned

as:

V −1
ij =

∂2(−L)

∂Ni∂Nj
=

N∑
e=1

fi(ye)fj(ye)

(
∑Ns

j=1Nkfk(ye))2
(5.7)

This technique allow to unfold the contributions of background and signal.

In this thesis, is applied to identify the combinatorial background due to

muon misidenti�cation.

5.5 Separation of Λ0
b → Λ∗cτ

−ν̄τ from Λ0
b → Λ∗cµ

−ν̄µ decays

The separation of Λ0
b → Λ∗cτ

−ν̄τ (signal channel) from Λ0
b → Λ∗cµ

−ν̄µ decays

(normalization channel) can be distinguished in two steps. Both of them are

based on multivariate methods and exploit, for the most part, the variable

described in section 5.2.

Firstly, a Fisher discriminant with Gaussian transformed input variables is

used, build to exploit the di�erent features of Λ0
b decay vertex in semitauonic

and semimuonic decays. At one second stage, the output of the previous al-

gorithm and the variables connected to the kinematic characteristics of two

considered decays are the inputs of a Multi-Layer Perceptron. This two

methods are chosen since they imply the best performance with respect to

the others tested, as it will explain in the following subsections.

The multivariate analysis are performed using the Toolkit for Multivari-

ate Analysis (TMVA) [47], an environment which allows the processing, the

evaluation and the application of a variety of di�erent machine learning algo-

rithms. They make use of training events, generally MC events, for which the

desired output is known to determine the mapping function that describes a
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decision boundary.

It can be happens that a machine learning problem has too few degrees of

freedom when a many input parameters of an algorithm try to be adjusted

with few data point. This phenomenon is called overtraining and leads to

a fake increment of classi�cation performance. Then a test in every TMVA

method is implemented to evaluate if the overtraing is occurring. After

learning, the sample is divided in two piece, training and testing sample.

The procedure to separation is recalculated on the testing events and com-

pared to the one for training. If the performance on training sample results

signi�cantly better, the chosen procedure results sensitive to statistical �uc-

tuations and the overtraining is occurring.

5.5.1 Fisher Discriminant

5.5.1.1 Fisher Discriminant Method

The Fisher Discriminant method [48] is a linear classi�er, performed in a

transformed variable space with zero linear correlations. In a linear discrim-

inant analysis an axis is found in the input variable hyperspace such that

when events are projected on the axis, signal and background events are

pushed as far as possible from each other, while events in the same class

are kept close together. The metric for determining this separation is the

covariance matrix of the variable space.

A Fisher coe�cient FK is determined for each variable K such that:

Fk =

√
NSNB

NS +NB

nvar∑
i=1

W−1
Kl (x̄S,i − x̄B,i)

where NS and NB are the number of signal and background events, x̄S,i and

x̄B,i are the variable means in the signal and background classes and WKl is

the sum of the signal and background covariance matrices.

The Fisher classi�er response for an m event is then given by;

yFisher(m) = F0 +

nvar∑
i=1

Fixi(m)
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where F0 is an o�set which set the average Fisher response across both signal

and background samples to zero.

In order to achieve the greatest separation power from the Fisher Discrim-

inant, transformations can be applied to each input variables. The Fisher

method is most e�ective when the input variables are linearly correlated

Gaussian distributions. Therefore, a transformation can be applied to each

input variable, that when applied to the signal distribution, gives a Gaussian

shaped output. The found transformation is then applied to both signal and

background distribution for each variable (Gaussianization). This optimiza-

tion is applied using the FisherG discriminant inside the TMVA toolkit.

The covariant matrix can be decomposed into the sum of the matrix which

describes the dispersion of events relative to the means of their own class

(within-class matrix) and that one concerning on the overall sample mean

(between-class matrix). The aims of a Fisher discriminant analysis is of

maximizing the between-class separation while minimizing the within-class

dispersion; therefore a measure of the discrimination power of a variable is

given by the ratio of between-class matrix and the overall covariance matrix.

This quantity is used to determine the ranking of the input variables.

5.5.1.2 Discriminant Based on Vertex Features

Using the TMVA toolkit [47] many multivariate analysis have been per-

formed to �nd the best method which allow to discriminate the Λ0
b → Λ∗cτ

−ν̄τ

signal decay from the normalization/background Λ0
b → Λ∗cµ

−ν̄µ events. The

TMVA classi�cator algorithm is trained on a signal-like MC events sam-

ple (Λ0
b → Λ∗cτ

−ν̄τ ) and on a background-like MC sample composed of

Λ0
b → Λ∗cµ

−ν̄µ events, that have to pass the selection procedure described in

chapter 3 and for which the MC match on the decays is required.

The feature which di�erentiates mainly the semimuonic decays with respect

to the semitauonic decays considered, is the �nal muon that is produced, in

the �rst case directly from a Λ0
b decay and in the second are from τ → µ

decays. It is, then, expected that the quality with which the Λ0
b decay vertex

(χ2
vtx(Λ

0
b)) will be reconstructed will be more accurate and the error (σz(Λ

0
b))
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smaller for the �rst decays respect to the second type. Moreover, for the

semitauonic decay, the muon, deriving from a secondary decays should have

a larger impact parameter with respect to PV log(χ2
IP (µ)) and should form

a larger angle (µ_cosθ) with respect to Λ0
b decay direction than one from

semimuonic. For this reason, a TMVA classi�cation analysis is build using as

input the previous cited variables. The distributions put in input to the clas-

si�cation algorithm are visible in Figure 5.11. Moreover, Figure 5.12 shows

that the chosen variables are weakly correlated each other in both channel.

Several methods are tested, as it is shown in Figure.5.13 which reproduces
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Figure 5.11: Discriminant based on vertex properties - FisherG input variables distributions

separately drawn for simulated signal Λ0
b → Λ∗

cτ
−ν̄τ decays (signal) and simulated background

events of Λ0
b → Λ∗

cµ
−ν̄µ (red). Top-left side: χ2

vtx(Λ0
b); top-right side: log(χ2

IP (µ)); bottom-left

side: σz(Λ
0
b); bottom-right side: µ_cosθ.

the power of rejection of semimuonic decays with respect to the e�ciency to

select the semitauonic one. From this �gure it is possible to deduce that the

best separation results applying a Fisher discriminant method with Gaussian

transformation of input variables. Figure 5.14 reproduces the input variable

to Fisher discriminant after Gaussianization, illustrated in 5.5.1.1. More-

over, Figure 5.12 shows that the chosen variable are weakly correlated each

other.

113



Chapter 5. Signal selection

100−

80−

60−

40−

20−

0

20

40

60

80

100

Lambda_b0_ENDVERTEX_CHI2f

mu_IPCHI2_ORIVX_log

Lambda_b0_ENDVERTEX_ZERRf

mu_CosThetaf

Lambda_b0_ENDVERTEX_CHI2f

mu_IPCHI2_ORIVX_log

Lambda_b0_ENDVERTEX_ZERRf

mu_CosThetaf

Correlation Matrix (signal)

100  29   2   5

 29 100   9   5

  2   9 100  46

  5   5  46 100

Linear correlation coefficients in %

100−

80−

60−

40−

20−

0

20

40

60

80

100

Lambda_b0_ENDVERTEX_CHI2f

mu_IPCHI2_ORIVX_log

Lambda_b0_ENDVERTEX_ZERRf

mu_CosThetaf

Lambda_b0_ENDVERTEX_CHI2f

mu_IPCHI2_ORIVX_log

Lambda_b0_ENDVERTEX_ZERRf

mu_CosThetaf

Correlation Matrix (background)

100  25

 25 100   2  -3

  2 100  46

 -3  46 100

Linear correlation coefficients in %

Figure 5.12: Discriminant based on vertex properties - Correlation matrix of the input variables,

on the top side for the simulated Λ0
b → Λ∗

cτ
−ν̄τ , in the bottom side concerning the simulated

Λ0
b → Λ∗

cµ
−ν̄µ decays.

Finally, in �gure 5.15 the result of the test to ensure that the analysis result

is not overtrained (see introduction of this section) is displayed. The Ta-

ble 5.3 reports the ranking of the input variable and the separation power,

calculated according technique illustrated in 5.5.1.1. This learning meth-

ods is applied to all simulated sample (semitauonic, semimuonic and double

114



5.5. Separation of Λ0
b → Λ∗

cτ
−ν̄τ from Λ0

b → Λ∗
cµ

−ν̄µ decays

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:

FisherG

BDTG

MLP

BDT

Fisher

Background rejection versus Signal efficiency

Figure 5.13: Discriminant based on vertex features - Λ0
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−ν̄µ (background) rejection with

respect selection e�ciency of Λ0
b → Λ∗

cτ
−ν̄τ (signal).
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Figure 5.14: Discriminant based on vertex properties - FisherG input variables distributions after

Gaussianisation separately drawn for simulated signal Λ0
b → Λ∗

cτ
−ν̄τ decays (blue) and simulated

background events of Λ0
b → Λ∗

cµ
−ν̄µ(red).Top-left side: χ

2
vtx(Λ0

b); top-right side: log(χ2
IP (µ));

bottom-left side: σz(Λ
0
b); bottom-right side: µ_cosθ.

charmed samples), to data, to sideband of data which describes the combi-

natorial background and to the wrong charge sample. The output variable

FisherG it is used as input of an arti�cial neural network which combines

vertex features of the considered decays with kinematics.
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Figure 5.15: Discriminant based on vertex properties - TMVA overtraining check for FisherG

classi�er. Signal corresponds to Λ0
b → Λ∗

cτ
−ν̄τ decays and backgorund to Λ0

b → Λ∗
cµ

−ν̄µ.

Rank Variable Separation Power

1 σz(Λ
0
b) 2.956× 10−2

2 log(χ2
IP (µ)) 1.086× 10−2

3 µ_cosθ 1.057× 10−2

4 χ2
vtx(Λ0

b) 1.269× 10−3

Table 5.3: Separation Power of the input variables of FisherG.

5.5.2 The Arti�cial Neutral Network Classi�er

5.5.2.1 Multi-Layer Perceptron

The arti�cial neural network, ANN, is a supervised learning algorithm that

learns a function. It can be described as a series of non linear functional

transformations from a set of input variables xi to a set of output variables yk

controlled by a vector ~w of adjustable parameters, the network weights [49].

They are structured in layers. Each layer consists of neurons, where a neuron

is linear o not linear function, that maps the input neuron on the output one.

The basic structure is given by three layers; input, hidden and an output

layer. The input variables xi are connected to the neurons of the input layer

f (1)(xi) and linearly mapped on the outputs of the �rst layers yi:

y
(1)
i = f (1)(xi); f (1)(xi) = αxi + β.
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The input of the of the second layer called activations aj are build forming

m linear combinations of the output of �rst layer:

aj = w
(1)
j0 +

n∑
i=1

w
(1)
ji y

(1)
i

where w
(1)
ji are the weights used to adjust the training process and the w

(1)
j0

are the biases weight used to stabilize the same process. The activations aj

are transformed using a di�erentiable, non linear activation function f (2)(aj),

(=tanh in our case) to yield the output y
(2)
j of the second layer:

y
(2)
j = f (2)(aj); f (2)(aj) = tanh(aj)

To obtain the input of the third layer, k linear combinations are built of the

outputs of the second layer to form the activations ak and the correspondent

activation function is:

ak = w
(2)
k0 +

n∑
k=1

w
(2)
kj y

(2)
j

yANN = f (2)(ak)

Hence, combining the various stages the overall network functions take the

form:

yk(~x, ~w) = f (2)(
m∑
j=1

w
(2)
ki f

(2)(
n∑
i=1

w
(1)
ji f

(1)(xi) + w
(1)
j0 ) + w

(2)
k0 )

This function can be represented in the form of a network diagram as shown

in Figure 5.16. The evaluation of the process can be interpreted as a for-

ward propagation of information through the network, therefore the ANN

are de�ned feed-forward. Moreover the ANN can be called multilayer per-

ceptron(MLP), since each stage of neural network processing resembles the

perceptron model.

The determination of the event weights occurs during the learning process.

An error function E is minimized by adjusting the vector of weights ~w:

E(x1, ..., Xn|~w) =
N∑
a=1

E(xa|~w) =
N∑
a=1

1

2
(yANN,a(xa, ~w)− ya)2
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Figure 5.16: Network diagram for the a neural network with one hidden layer. The neurons are

connected in feed forward structure [49]

.

whereEa, a = 1, ..., N is the error function of ath trained event, yANN,a(xa, ~w)

is the network response computed from the vector of input variables ~xa and

weights ~w and �nally ya is the desired output, which is either 1 for signal

and 0 for background.

Depending on the chosen of learning mechanism the optimal set of weights

is found. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [50], [51],

[52], [53], used in this thesis, optimizes the weights iteratively using via the

second derivatives of the Error function [49].

In order to determine the best ANN for a given problem, the importance Ii

of each input variable xi is determining using the weights between the input

layer and the �rst hidden layer w
(1)
ij :

Ii = x̄2
i

nh∑
j=1

(
w

(1)
ij

)2

where nh is the neuron number and x̄ the mean of input variable i.
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5.5.2.2 Discriminant Based on Kinematic Features

A second process to learn is used to identify the to �nd the best method

which allow to discriminate the Λ0
b → Λ∗cτ

−ν̄τ signal decay from the nor-

malization/background Λ0
b → Λ∗cµ

−ν̄µ events using kinematics features. The

TMVA classi�cator algorithm is trained on the signal-like MC events sam-

ple (Λ0
b → Λ∗cτ

−ν̄τ ) and on the background-like MC sample composed of

Λ0
b → Λ∗cµ

−ν̄µ events, that have to pass the selection procedure described

in chapter 3 and for which the MC match on the decays is required, as

requested for event used in vertex discriminant. The parameters used as

input, shown in Figure 5.17 are the energy of the muon in the Λ0
b center of

mass, missing mass square, described in subsection 5.2, to which is added the

output of vertex discriminator, the FigherG variable. Then, in Figure 5.18
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Figure 5.17: Discriminant based on kinematics properties - ANN input variables distributions

separately drawn for simulated signal Λ0
b → Λ∗

cτ
−ν̄τ decays (signal) and simulated background

events of Λ0
b → Λ∗

cµ
−ν̄µ (red): Energy of the muon in the Λ0

b center of mass (left), Missing Mass

square (center), FigherG (right).

are displayed the matrix correlation about Λ0
b → Λ∗cτ

−ν̄τ signal decays and

semimuonic normalization channel labeled as background. Also in this case,

many multivariate technique are tried to select that one which allows the

best rejection of Λ0
b semimuonic decays, maximizing the selection e�ciency

for that semitauonic. As shown in Figure 5.19, the more e�cient approach

result to be that takes in advantage of an arti�cial neural network. This

method gives an answer 1 for signal and 0 for normalization channel events.
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Figure 5.18: Discriminant based on kinematics properties - Correlation matrix of the variables,

on the left side for the simulated Λ0
b → Λ∗

cτ
−ν̄τ , on the right side concerning the simulated

Λ0
b → Λ∗

cµ
−ν̄µ decays: on the x axis respectively the energy of the muon in the Λ0

b center of

mass, the Missing Mass square and the FigherG.

Then, once trained it is able to provide a probability to be a signal events.

Figure 5.20 shows the result of the test to ensure that the analysis result
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Figure 5.19: Discriminant based on kinematics properties - Λ0
b → Λ∗

cµ
−ν̄µ(background) with

respect selection e�ciency of Λ0
b → Λ∗

cτ
−ν̄τ (signal).

is not overtrained (see introduction of this section). Finally in Table 5.4

are reported the ranking of the input variable and the separation power,
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Figure 5.20: Discriminant based on kinematics properties - TMVA overtraining check for ANN

classi�er. Signal corresponds to Λ0
b → Λ∗

cτ
−ν̄τ decays and backgorund to Λ0

b → Λ∗
cµ

−ν̄µ.

calculated according technique illustrated in 5.5.2.1. This learning meth-

Rank Variable Separation Power

1 MM2 3.33× 102

2 E∗ 1.50

3 FisherG 1.49× 10−2

Table 5.4: Separation Power of the input variables of ANN.

ods is applied to all simulated sample (semitauonic, semimuonic and double

charmed samples), to data, to sideband of data which describes the combi-

natorial background and to the wrong charge sample. The output variable,

MLPBNN, is then �tted to extract the R(Λ∗c) ratio, aim of this thesis. The

procedure is described in the next chapter.

5.6 Templates of The Discriminating Variables

In the �gure 5.21 and 5.22, which only di�er in the isolation cut, respectively

ISO < 0.25 and ISO ≥ 0.25, the distributions of all discriminating variables

semitauonic from semimuonic decays and of the outputs of �sher discriminant

and ANN are displayed. In each plots are superimposed the distributions of

the Λ0
b → Λ∗cτ

−ν̄τ , Λ0
b → Λ∗cµ

−ν̄µ and Λ0
b → Λ∗cD

(∗)
s simulated decays, of the
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data, of the sideband of data which describes the combinatorial background

and of the wrong charge sample. All distributions are normalized to unit, in

order to visualized the shapes di�erences. The distributions of Λ0
b → Λ∗cD

∗
s

and Λ0
b → Λ∗cDs in the next studies and in the MLPBNN �t are combined.

The change of the MLPBNN �t results due to this combination has been

taken into account in the systematical uncertainties.

5.6.1 Λ0
b → Λ∗

cτ
−ν̄τ and Λ0

b → Λ∗
cD

(∗)
s

The process of discrimination performed by means of multivariate algo-

rithms aimed to separate principally Λ0
b semitauonic decays from that one

semimuonic. To evaluate as much as this discrimination allows to obtain

separated template for Λ0
b double charmed decays with respect to that one

semitauonic, we considered the e�ciency of selecting a signal decay with

respect to the e�ciency of rejecting one charmed. As it is possible to see

in �gure 5.23, the chosen variables are useful in the separation of the two

channels since the curvature is not a line.
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Figure 5.21: Distribution of variables used to measure the R(Λ∗
c) ratio after applying the ISO <

0.25 cut. All templates are normalized to unit.
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Figure 5.22: Distribution of variables used to measure the R(Λ∗
c) ratio after applying the ISO ≥

0.25 cut. All templates are normalized to unit. 124
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Chapter 6

The Extraction of R(Λ∗c) ratio

This chapter is devoted to the extraction of the R(Λ∗c) ratio with its uncer-

tainties, by means of a �t to MLPBNN variable, already introduced in section

5.5.2.2. The �t is based on templates of Λ0
b → Λ∗+c τ−ν̄τ , Λ0

b → Λ∗+c µ−ν̄µ,

double charmed Λ0
b decays, fake Λ∗c and wrong sign components and it is im-

plemented using the HistFactory tool, which is described in the next section.

Then, an extended maximum likelihood �t is performed simultaneously on

transferred momentum and isolation bins.

As said in chapter 4, only one double charmed Λ0
b template the �t has been

inserted in the �t. It has been obtained adding the simulated distributions

of Λ0
b → Λ∗cDs and of Λ0

b → Λ∗cD
∗
s and in all chapter will be referred as

Λ0
b → Λ∗cDs template.

6.1 Extended Maximum Likelihood �ts

The likelihood is de�ned as

L(xi, ..., xN |αi, ..., αN) =
N∏
i=1

f(xi|αi, ..., αN) (6.1)

where f(xi|αi...αN) represents the probability density function of measuring

xi for a set of parameters αi...αN .

The method of maximum likelihood consists of maximizing the likelihood

with respect to the set of parameters αi...αN . In practice it is more con-

venient to work with the logarithm of the likelihood function, called the
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log-likelihood:

−lnL(xi, ..., xN |αi, ..., αN) =
N∑
k=1

f(xi|αi...αN) (6.2)

Thus the method of maximum likelihood is reduced to minimizing the pre-

vious equation.

Therefore, a maximum likelihood �t is used to determine the set of pa-

rameters which minimizes -lnL associated to a dataset. Moreover, if the

parameters αi are not independent on the number of expected events, it is

necessary to include a Poisson term in the likelihood, which becomes:

L(xi, ..., xN |αi, ..., αN) = e−N
NN

N !

N∏
i=1

f(xi|αi, ..., αN) (6.3)

where N is the expected number of events and the observed number N is

given by Poisson statistics. The likelihood �t method using equation 6.3,

which considers the statistical power of the data sample, is called Extended

Maximum Likelihood �t.

6.2 HistFactory

A �t based on templates is implemented using the HistFactory tool which is

a ROOT tool, designed to build parametrized probability density functions

based on simple histograms. The PDFs are built on a set of histograms im-

plementing the di�erent components, each one holding the number of events

in a chosen region. Separate histograms are made for the nominal number

of events and for each systematic variation; the systematic variations are

modulated by nuisance parameters constrained by Gaussians [54].

6.3 Fit Templates

For each bin of transferred momentum and isolation evaluated, about the

Λ0
b → Λ∗cτ

−ν̄τ , Λ0
b → Λ∗+c µ−ν̄µ and Λ0

b → Λ∗cDs the implemented templates
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correspond to Monte Carlo sample distributions.

The fake Λ∗c events templates, instead, as described in subsection 6.3.1, have

been taken by the shape of MLPBNN in the ∆m range [360, 380] MeV/c2,

weighted event by event using a function which consider the variations in

shape for the MLPBNN distribution evaluated in a lower and higher ∆m

interval with respect to signal region (∆m ∈ [336.45, 346.45] MeV/c2, de-

scribed in section 6.4 ), containing pure background events.

Finally the template of the wrong sign component, as explained in 6.3.2 has

been taken by a one-dimensional kernel estimation p.d.f applied to distribu-

tion of muon misidenti�ed events, whose description is in subsection 5.4.2

.

6.3.1 Fake Λ∗
c Events Templates

As shown in section 5.4, a �t to the data sample, de�ned from �nal states

formed of Λ∗+c µ− reconstructed tracks which passes all steps of the selection,

allow to identify the fake Λ∗c events distributions.

From �gure 5.6, displaying the ∆m �t in the range ∆m ∈ [280, 380] MeV/c2,

it is possible to select a region containing only combinatorial fake Λ∗c events

where ∆m > 350 MeV/c2. Another region can be found in the range ∆m ∈
[325.5, 332.5] MeV/c2, between the peaks of Λ+

c (2595) and Λ+
c (2625) events.

Then, the shapes of each one variable input of vertexes Fisher and of neutral

network about the combinatorial fake Λ∗c component can be identify using

these events, expecting that, the distributions under the Λ+
c (2625) signal

peak don't change as a function of ∆m . In particular, due to the proximity

of the peaks, is more safe to select as combinatorial fake Λ∗c region, that

one around ∆m ∈ [360, 380] MeV/c2. However, to take into account some

potential di�erence in shapes for this type of events under the signal peak, a

correction is applied. It is calculated as the ratio of MLPBNN distributions

in the range of ∆m ∈ [325.5, 332.5] MeV/c2 and of ∆m ∈ [350, 360] MeV/c2

both normalized to ∆m ∈ [260, 280] MeV/c2. The plots obtained are then

�tted using a third order Chebyshev polynomials of �rst kind, which is used

to weight event by event the MLPBNN combinatorial fake Λ∗c distributions.
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This technique is applied for each isolation and q2 bin and the results are
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Figure 6.1: Fit to the ratio of MLPBNN distributions in the range of ∆m ∈ [325.5, 332.5] MeV/c2

and of ∆m ∈ [350., 360] MeV/c2 both normalized to ∆m ∈ [360, 380] MeV/c2- ISO < 0.25

shown in �gure 6.1 and 6.2, respectively for bin ISO < 0.25 and ISO ≥ 0.25.

130



6.3. Fit Templates

MLPBNN
0 0.2 0.4 0.6 0.8 1

E
ve

nt
s 

/ (
 0

.0
2 

)

1−

0

1

2

3

4

5

6

7

(a) q2 ∈ (−10, 1)(GeV/c)2

MLPBNN
0 0.2 0.4 0.6 0.8 1

E
ve

nt
s 

/ (
 0

.0
2 

)

0

1

2

3

4

(b) q2 ∈ (1, 3)(GeV/c)2

MLPBNN
0 0.2 0.4 0.6 0.8 1

E
ve

nt
s 

/ (
 0

.0
2 

)

0

0.5

1

1.5

2

2.5

(c) q2 ∈ (3, 5)(GeV/c)2

MLPBNN
0 0.2 0.4 0.6 0.8 1

E
ve

nt
s 

/ (
 0

.0
2 

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) q2 ∈ (5, 7)(GeV/c)2

MLPBNN
0 0.2 0.4 0.6 0.8 1

E
ve

nt
s 

/ (
 0

.0
2 

)

0

0.5

1

1.5

2

2.5

(e) q2 ∈ (7, 10)(GeV/c)2

Figure 6.2: Fit to the ratio of MLPBNN distributions in the range of ∆m ∈ [325.5, 332.5] MeV/c2

and of ∆m ∈ [350., 360] MeV/c2 both normalized to ∆m ∈ [360, 380] MeV/c2 - ISO ≥ 0.25
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6.3.2 Wrong Sign Component Templates

Thanks to this �t to the wrong sign component we can know the number of

events formed of a true Λ∗c track composed with a wrong charge muon which

can not be signal-like but only events with a muon misidenti�ed. Since

the topology of these decays and the selection applied are the same to that

searched for our signal candidate (Λ∗+c µ− �nal state), we can assume that

the muon misidenti�cation component of background in Λ∗+c µ− �nal state

data is equal to the number of events and has the same the kinematic distri-

butions of the wrong sign sample. The number of these events in each q2 and

isolation bins is not enough to form a template which is not a�ected by sta-

tistical �uctuations, therefore a one-dimensional kernel estimation p.d.f [55]

is performed, using the RooKeysPdf ROOT class.

The technique allows to model the distribution of an arbitrary input dataset

as a superposition of Gaussian kernels, one for each data point, each con-

tributing 1/N to the total integral of the p.d.f. The �nal distribution is then

a continuous estimations of parental distribution.

Figure 6.3 shows, on the left column the histograms of wrong sign events and,

on the right the smoothed correspondent distribution for bin ISO < 0.25

and for each q2 bins except the �rst one. In fact, in this case all events are

concentrated to very low MLPBNN event and a smoothed distribution would

provide a distorted shape. The same e�ect is present for the distribution of

MLPBNN concerning for the ISO ≥ 0.25 bin. Figure 6.4 shows, using with

the same structure of �gure 6.3, the wrong sign distribution after applying

ISO ≥ 0.25 for the residual q2 bins.

6.4 Fit to MLPBNN Distributions

An extended maximum likelihood �t is performed simultaneously on MLPBNN

variable distribution of LHCb 2012 data, in �ve bins of transferred momen-

tum ( ] − 10, 1], ]1, 3], ]3, 5], ]5, 7], ]7, 10] (GeV/c)2) and in two isolation

bins (ISO ≥ 0.25 and ISO < 0.25). It is performed around the Λ+
c (2625)

peak, in the ∆m ∈ [336.45, 346.45] MeV/c2 range. In order to �nd the most
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Figure 6.3: MLPBNN distributions (left) and smoothed correspondent distributions (right) of

the wrong sign sample, after applying the ISO < 0.25 cut.
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Figure 6.4: MLPBNN distributions (left) and smoothed correspondent distributions (right) of

the wrong sign sample, after applying the ISO ≥ 0.25 cut.
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e�cient signal region we looked for the ∆m cut for which was maximized the

ratio given by number of Λ+
c (2625) events with respect to the square root of

themselves added to those one of background resulting in the ∆m �t of data

(not binned).

The �t is based on the templates of the components and it is implemented

using the HistFactory tool. The Λ0
b → Λ∗cτ

−ν̄τ , Λ0
b → Λ∗+c µ−ν̄µ and double

charmed components correspond to the MC distributions, shown in section

5.6, and contain the events number listed in table 6.1 and 6.2 for the two

isolation bins. The templates put in the �t to determine the fake Λ∗c and

the wrong sign components are instead described in the sections 6.3.1 and

6.3.2 respectively and the events number is reported in tables 6.3 and 6.4.

The wrong sign events number keeps into account the e�ciency of the ∆m

cut on the signal region, which is about the 90 %. The last two components,

obtained from LHCb data, are �xed in the �t.

q2 ∈ ]− 10, 1] (GeV/c)2

Nevents Value

Nµ 165±10
Nτ 7±2
NDS 34±5

q2 ∈ ]1, 3] (GeV/c)2

Nevents Value

Nµ 365±16
Nτ 6±2
NDS 114±9

q2 ∈ ]3, 5] (GeV/c)2

Nevents Value

Nµ 331±15
Nτ 50±6
NDS 466±18

q2 ∈ ]5, 7] (GeV/c)2

Nevents Value

Nµ 218±12
Nτ 117±9
NDS 248±13

q2 ∈ ]7, 10] (GeV/c)2

Nevents Value

Nµ 84±7
Nτ 75±7
NDS 66±6

Table 6.1: MC events in the simulated templates - ISO ≥ 0.25.

The isolation cut allows to select a sample depleted of semitauonic with

respect to double charmed decays. The transferred momentum division per-

mits, instead, to have a greater discriminant power between the MLPBNN

distribution of the semitauonic and double charmed Λ∗c decays and also to

reduce the dependence of semimuonic form factors which have never been
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q2 ∈ ]− 10, 1] (GeV/c)2

Nevents Value

Nµ 2169±39
Nτ 39±5
NDS 150±10

q2 ∈ ]1, 3] (GeV/c)2

Nevents Value

Nµ 4528±56
Nτ 101±8
NDS 346±15

q2 ∈ ]3, 5] (GeV/c)2

Nevents Value

Nµ 4655±57
Nτ 730±23
NDS 1404±31

q2 ∈ ]5, 7] (GeV/c)2

Nevents Value

Nµ 3201±47
Nτ 1682±34
NDS 808±24

q2 ∈ ]7, 10] (GeV/c)2

Nevents Value

Nµ 1261±30
Nτ 1079±27
NDS 233±13

Table 6.2: MC events in the simulated templates - ISO < 0.25.

q2 range (GeV/c)2 NΛ∗cfake(ISO ≥ 0.25) NΛ∗cfake(ISO < 0.25)

q2 ∈ ]− 10, 1] 3128 ± 106 781 ± 26

q2 ∈ ]1, 3] 3444 ± 139 1349 ± 55

q2 ∈ ]3, 5] 4619 ± 91 1704 ± 34

q2 ∈ ]5, 7] 4523 ± 81 1716 ± 31

q2 ∈ ]7, 10] 2537 ± 29 1099 ± 14

Table 6.3: Number of Λ∗c fake events in each isolation bins.

q2 range (GeV/c)2 NWS(ISO ≥ 0.25) NWS(ISO < 0.25)

q2 ∈ ]− 10, 1] 38 ± 12 54 ± 15

q2 ∈ ]1, 3] 14 ± 9 7 ± 10

q2 ∈ ]3, 5] 41 ± 12 22 ± 12

q2 ∈ ]5, 7] 23 ± 14 23 ± 16

q2 ∈ ]7, 10] 34 ± 16 21 ± 16

Table 6.4: Number of wrong sign events in each isolation bins.

measured. Also for the semitauonic form factor only a theoretical estimation

exists but the contribution to the overall distribution of these decays is very

low with respect to semimuonic one. In particular, the fractions of double

charmed and semitauonic decays in each isolation bins have been �xed in

the �t according to the MC samples and are listed in table 6.5. In the �t

are also �xed the fractions of semitauonic and double charmed decays with

respect to overall number of themselves, in each q2 bin in the two ISO bins.

The values are reported in table 6.6.
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6.4. Fit to MLPBNN Distributions

ISO ≥ 0.25 ISO < 0.25

Λ0
b → Λ∗cτ

−ν̄τ 0.07 0.93

Λb → Λ∗cDs 0.24 0.76

Table 6.5: Fractions of MC semitauonic and double charmed events in each isolation bins.

Λ0
b → Λ∗cτ

−ν̄τ

ISO ≥ 0.25

q2 range (GeV/c)2 g

q2 ∈ ]− 10, 1] 0.027

q2 ∈ ]1, 3] 0.023

q2 ∈ ]3, 5] 0.196

q2 ∈ ]5, 7] 0.459

q2 ∈ ]7, 10] 0.294

Λ0
b → Λ∗cτ

−ν̄τ

ISO < 0.25

q2 range (GeV/c)2 g

q2 ∈ ]− 10, 1] 0.0105

q2 ∈ ]1, 3] 0.028

q2 ∈ ]3, 5] 0.201

q2 ∈ ]5, 7] 0.463

q2 ∈ ]7, 10] 0.297

Λb → Λ∗cD
(∗)
s

ISO ≥ 0.25

q2 range (GeV/c)2 g

q2 ∈ ]− 10, 1] 0.031

q2 ∈ ]1, 3] 0.124

q2 ∈ ]3, 5] 0.504

q2 ∈ ]5, 7] 0.268

q2 ∈ ]7, 10] 0.067

Λb → Λ∗cD
(∗)
s

ISO < 0.25

q2 range (GeV/c)2 g

q2 ∈ ]− 10, 1] 0.051

q2 ∈ ]1, 3] 0.117

q2 ∈ ]3, 5] 0.477

q2 ∈ ]5, 7] 0.275

q2 ∈ ]7, 10] 0.08

Table 6.6: Fraction g of τ , and D
(∗)
s semileptonic Λ∗c decays with respect to overall number of themselves, in

each q2 bin in the two ISO bins.

Nµ(q2 ∈ ]− 10, 1] (GeV/c)2, ISO ≥ 0.25) 480 ± 50

Nµ(q2 ∈ ]1, 3] (GeV/c)2, ISO ≥ 0.25) 883 ± 66

Nµ(q2 ∈ ]3, 5] (GeV/c)2, ISO ≥ 0.25) 800 ± 71

Nµ(q2 ∈ ]5, 7] (GeV/c)2, ISO ≥ 0.25) 549 ± 63

Nµ(q2 ∈ ]7, 10] (GeV/c)2, ISO ≥ 0.25) 183± 40

Nµ(q2 ∈ ]− 10, 1] (GeV/c)2, ISO < 0.25) 5161 ± 129

Nµ(q2 ∈ ]1, 3] (GeV/c)2, ISO < 0.25) 9179 ± 160

Nµ(q2 ∈ ]3, 5] (GeV/c)2, ISO < 0.25) 8250 ± 173

Nµ(q2 ∈ ]5, 7] (GeV/c)2, ISO < 0.25) 5695 ± 160

Nµ(q2 ∈ ]7, 10] (GeV/c)2, ISO < 0.25) 2048 ± 106

Nτ 489 ± 206

NDS 1320 ± 226

Table 6.7: Fit to MLPBNN distribution, where Nτ is number of Λ0
b → Λ∗cτ

−ν̄τ decay events �tted, Nµ the

number of Λ0
b → Λ∗cµ

−ν̄µ decay events and NDS the number of double charmed decay events.

Finally, the �t results are listed in table 6.7 and in �gures 6.6, 6.5 (loga-

rithmic scale) and 6.7, 6.8, the �t projections in each transferred momentum

and isolations bins are presented.
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Figure 6.5: MLPBNN �t projection in each transferred momentum after applying the cut ISO ≥
0.25, logarithmic scale. Components: LHCb Data (black dots), Λ0

b → Λ∗
cτ

−ν̄τ (Green), Λ0
b →

Λ∗
cµ

−ν̄µ(Blue), double charmed decays (Orange), Λ∗
c fake events (Purple), Wrong sign component

(Red).
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Figure 6.6: MLPBNN �t projection in each transferred momentum after applying the cut ISO <

0.25, logarithmic scale. Components: LHCb Data (black dots), Λ0
b → Λ∗

cτ
−ν̄τ (Green), Λ0

b →
Λ∗
cµ

−ν̄µ(Blue), double charmed decays (Orange), Λ∗
c fake events (Purple), Wrong sign component

(Red).
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Figure 6.7: MLPBNN �t projection in each transferred momentum after applying the cut ISO ≥
0.25. Components: LHCb Data (black dots), Λ0

b → Λ∗
cτ

−ν̄τ (Green), Λ0
b → Λ∗

cµ
−ν̄µ(Blue),

double charmed decays (Orange), Λ∗
c fake events (Purple), Wrong sign component (Red).
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(d) q2 ∈ (5, 7)(GeV/c)2
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(e) q2 ∈ (7, 10)(GeV/c)2

Figure 6.8: MLPBNN �t projection in each transferred momentum after applying the cut ISO <

0.25. Components: LHCb Data (black dots), Λ0
b → Λ∗

cτ
−ν̄τ (Green), Λ0

b → Λ∗
cµ

−ν̄µ(Blue),

double charmed decays (Orange), Λ∗
c fake events (Purple), Wrong sign component (Red).
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6.5 Data - Monte Carlo comparisons

In order to check the agreement between the data and the MC samples,

the distributions of several variables for each MLPBNN �t component, nor-

malized to the correspondent �tted events number have been stacked and

superimposed to the LHCb 2012 data distribution. In particular, the dis-

tributions of the missing mass square, of the energy of muon in Λ0
b center

of mass frame, of the Fisher variable, transferred momentum and �nally of

transverse momentum of the muon are checked.
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Figure 6.9: Data-MC comparison of a) MM2, b) E∗, c) FisherG, d) pT (µ) and e) transferred

momentum distributions in q2 bins - ISO < 0.25. Components: LHCb Data (black dots),

Λ0
b → Λ∗

cτ
−ν̄τ (Green), Λ0

b → Λ∗
cµ

−ν̄µ(Blue), double charmed decays (Orange), Λ∗
c fake events

(Purple), Wrong sign component (Red).
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Figure 6.9: Data-MC comparison of a) MM2, b) E∗, c) FisherG, d) pT (µ) and e) transferred

momentum distributions in q2 bins - ISO < 0.25. Components: LHCb Data (black dots),

Λ0
b → Λ∗

cτ
−ν̄τ (Green), Λ0

b → Λ∗
cµ

−ν̄µ(Blue), double charmed decays (Orange), Λ∗
c fake events

(Purple), Wrong sign component (Red).
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6.6 Fit Validation

The HistFactory �tter is validated using the the so-called toy Monte Carlo

technique (toyMC). A set of pseudo-experiment (also called toys) is generated

according to the PDFs used in the �t and with in general the same statistics

of the data sample used in the measurement. Each pseudo-experiment is then

�tted with the same nominal �t used for the data. This allows to study how

sensitive the �t parameters are with respect to statistical �uctuations in the

data sample, if tools are performing correctly and if the analysis procedure

provides correct error estimates. To evaluate the goodness of �t results, it is

usual to calculate, for an ensemble of pseudo datasets, the "Pull" related to

each parameter, i.e. the distribution of the di�erence between �t (pfit) and

generation (pgen) values, normalized to the error on that parameter returned

by the �t (σfit):

pPull =
pfit − pgen

σfit
(6.4)

To minimize the statistical �uctuations a�ecting �t results, it is usual to

perfom hundreds of ToyMC. The relative uncertainty on the average �t pa-

rameters is proportional to 1√
N
, where N is the number of toys generated

and �tted.

The distribution of the pulls for a given parameter provides the information

concerning the reliability of the estimate of that parameter. The relevant

features for a pull distribution are the shape, the mean value and the pull

width. For a well behaved parameter estimation, the pull distribution is

expected to exhibit a Gaussian distribution. This might not be the case for

example if the parameter of interest is expected to take a value close to the

limits of the allowed range for that parameter. In this cases the likelihood

used is not considered a good estimator for the parameter considered. The

mean value is expected to be zero for an unbiased �t. A mean pull value

di�erent from zero indicates that the parameter considered is systematically

overestimated or underestimated. Finally, for a correct uncertainty estima-

tion in the �t, the width of the pull distribution is expected to be compatible

with 1 and a smaller (larger) value for the width indicates that the error on
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the parameter is systematically overestimated (underestimated).

A thousand of toys have been performed in order to validate the MLPBNN

�t and the distribution of the mean value, the error and of the pull for each

�t parameter are shown in �gure ??. The number of semitauonic, double

charmed or semimuonic Λ0
b decays, respectively Nτ , NDs

and Nµ(in the iso-

lation bin ISO <0.25 or ISO≥ 0.25) used to generate each toy have been

extracted from a Poissionian distribution around the correspondent nominal

�t result. The number of �tted semitauonic Λ0
b decays, Nτ results slightly

biased and the Pulls standard deviations of all parameters assume the values

around 0.7.

The exercise is repeated for Nτ equal to zero, the twice and the triple of

the number of nominal �t result. Each one of these toys is further repeated

for half and twice of NDs
nominal �tted events. Form Figure 6.11, that shows

the Nτ mean value resulting from toys as a function of generated events, it

is possible to notice that also increasing the Nτ the bias doesn't increase.

However, increasing the number of double charmed pseudo events also Nτ

rises, and therefore an amount of NDs
is confused with semitauonic decays.

Finally a 500 toys have been performed tripling all �t component, also the

Λ∗c fake and wrong sign events. This exercise simulates the condition of Run

II LHCb data taking, which will terminate at the end of 2018 and for which

the purpose is to collect at least 5 fb−1 of data. The results are shown in

Figure 6.12. Therefore, using all Run II statistics and the same selection

applied in this thesis it will be possible to observe the semitauonic Λ0
b decays

with an error of 20%.

The number of �tted semitauonic Λ0
b decays, Nτ results biased and the

Pulls standard deviations of all parameters assume the values around 0.7

in the most of the toys. We have performed many toys con�gurations but

in all cases the pull errors remain wrong. It happens also when only one

component is generated and �tted. For this reason we can conclude that

the origin of overestimated error is intrinsic to the �t. We have chosen

to preform a conservative errors estimation and we haven't propagated the
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(a)

(b)

(c)

Figure 6.10: Nτ (a), NDs (b) and Nµ ((c-g): ISO < 0.25, (h-l): ISO ≥ 0.25) mean value,

error and pull distributions for toys results generated from Poissonian distribution around the

correspondent nominal �t result.

inferred correction to the �t results. Moreover, as you can see in �gure 6.10,

the mean of the pull about the semitauonic �t component results equal to
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(d)

(e)

(f)

Figure 6.10: Nτ (a), NDs (b) and Nµ ((c-g): ISO < 0.25, (h-l): ISO ≥ 0.25) mean value,

error and pull distributions for toys results generated from Poissonian distribution around the

correspondent nominal �t result.

0.29. The �gure 6.13 shows the variation of the toys mean of �tted tau

decays with respect to generated one as a function of number of double
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charmed generated decays. In particular, 500 toys have been performed

generating 511 semitauonic events (nominal �t results without statistical

(g)

(h)

(i)

Figure 6.10: Nτ (a), NDs (b) and Nµ ((c-g): ISO < 0.25, (h-l): ISO ≥ 0.25) mean value,

error and pull distributions for toys results generated from Poissonian distribution around the

correspondent nominal �t result.
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(j)

(k)

(l)

Figure 6.10: Nτ (a), NDs (b) and Nµ ((c-g): ISO < 0.25, (h-l): ISO ≥ 0.25) mean value,

error and pull distributions for toys results generated from Poissonian distribution around the

correspondent nominal �t result.

�uctuations) and 0, 612, 1225 (nominal �t without statistical �uctuations) or

2450 double charmed decays. From the interpolation of the points obtained,
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Figure 6.11: Number of �tted semitauonic Λ0
b decays as a function of generated one for di�erent

amount of generated double charmed events: nominal �tted number (green dots), the half (red

dots) and the twice (blue dots).

we can quantify the number of double charmed decays that are exchanged

for semitauonic one from the �t. The functional dependence is

∆τ = N〈τ〉 toys −Nτ generated = −25.753 + 0.068NDs generated (6.5)

and substituting the numbers of nominal �t we obtained a correction for the

number of semitauonic decays �tted equal to 64. This number is consistent

with the bias obtained in our toys. The correction is therefore applied to the

�t results.

6.7 Systematic Uncertainties

The MLPBNN �t uses several assumptions and is a�ected by some limita-

tions. Here the impact of these e�ects is evaluated, and a corresponding sys-

tematic uncertainty is assigned to the measurement RRAW (Λ∗c) = N(Λ0
b →

Λ∗+c τ−ν̄τ)/N(Λ0
b → Λ∗+c µ−ν̄µ). The sources of systematic uncertainties are

expected to be uncorrelated. For this reason the single contributions are

evaluated separately and the overall systematic error on the physics param-

eters of interest is obtained by means of sum in quadrature of the single
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(a)

(b)

Figure 6.12: Nτ (a) and NDs(b) mean value, error and pull distributions for toys results generated

from Poissionian distribution tripling (expectation run II data taking) the correspondent nominal

�t result .

e�ects. In the Table 6.8, all systematic uncertainties, singularly described in

the next sections, are listed.
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Figure 6.13: Variation of the toys mean of �tted semitauonic decays with respect to generated

one as a function of number of double charmed generated decays.

Source of uncertainty RRAW (Λ∗
c) relative uncertainty

MC statistics 0.179

PID corrections 0.046

Λ∗
c fake yields 0.057

Wrong-sign yields 0.064

Wrong-sign shape 0.078

double charmed composition 0.112

nSPD correction 0.021

Form Factor model 0.022

Quadratic sum 0.247

Table 6.8: Systematic uncertainties on RRAW (Λ∗
c)

6.7.1 Systematic uncertainties due to MC Statistics

In this thesis we account for �nite template statistics by use of the the

Beeston-Barlow [56] �lite� method for the total �t PDF. To separate out the

e�ect of template statistics in the total �t uncertainty from the statistical

uncertainty in the data, we run the �t procedure with and without use of

the Beeston-Barlow method. The quadrature di�erence is separated from

the total �t uncertainty as the systematic uncertainty due to �nite template

statistics. In this way the reported statistical uncertainty refers only to the
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statistics of the data and not the simulation.

6.7.2 Systematic uncertainty due to Particle Identi�cation correction

Particle Identi�cation is implemented in the �t templates by weighting each

candidate by a PID e�ciency as a function of its momentum and pseudo-

rapidity. These e�ciencies are determined using high-statistics control sam-

ples with the PIDCalib package. To determine this systematic contribute

to the RRAW (Λ∗c) a �t has been performed using MC template without PID

weight.

6.7.3 Systematic uncertainties due to the description of the combinatorial

Λ∗
c fake background

In the nominal �t the number of Λ∗c fake events for each q
2 bin are �xed to

the values listed in Table 6.3. To evalutate the systematic uncertainties on

the RRAW (Λ∗c) due to Λ∗c fake background, a �t is performed changing one by

one the �xed combinatorial contribution of ±1 deviation standard. For each

q2, the RRAW (Λ∗c) result which is mainly discrepant respect to nominal value

between those one obtained adding or subtracting events for an amount of

1σ, is taken into account. The quadrature sum of the ten more discrepant

result corresponds to value quoted in Table 6.8.

6.7.4 Systematic uncertainties due to the description of the wrong sign com-

ponent

In the nominal �t the WS component is �xed for each q2 to the values listed

in Table 6.4. To evaluate the systematic uncertainties on the RRAW (Λ∗c) due

to this choice, a �t is performed changing one by one the �xed WS contri-

bution of ±1 deviation standard. For each q2, the RRAW (Λ∗c) results which

is mainly discrepant respect to nominal value between those one obtained

adding or subtracting events for an amount of 1σ, is taken into account.

The quadrature sum of the ten more discrepant result corresponds to value

quoted in Table 6.8.

In the nominal �t, the shapes concerning the WS component are derived
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from the RooKeys created using the WS MLPBNN distributions for each q2

bins. The technique allows to model the distribution of an arbitrary input

dataset as a superposition of Gaussian kernels, one for each data point, each

contributing 1/N to the total integral of the p.d.f. The Gaussian width used

to extract nominal shapes is equal to 1.5. To evaluate the systematic uncer-

tainties on the RRAW (Λ∗c) a �t using WS shapes obtained from a superiposed

of Gaussian Kernels characterized by a width equal to 2 has been performed.

In Table 6.8, the discrepancy with respect to nominal �t is listed.

6.7.5 Systematic uncertainties due to di�erent Ds and D∗
s shapes

As described in the Chapter 4, due to low size of available Monte Carlo sam-

ple, the analysis is performed considering only one double charmed Λ0
b decays

template obtained adding the contribution of the MC( Λ0
b → Λ∗cDs) and of

Λ0
b → Λ∗cD

∗
s . To evaluate the systematic uncertainties on the RRAW (Λ∗c) a

�t using only Ds and another using only D∗s are performed. That one which

is resulted more discrepant with respect to nominal �t is quoted as double

charmed shape systematical error and it is listed in Table 6.8.

6.7.6 nSPDHits correction

A systematic uncertainty arises from the incorrect description between data

and Monte Carlo of nSPD (Scintillator Pad Detector) hits. The total number

of hits in the SPD is used to provide a fast estimation of the charged track

multiplicity in the event. All MC templates are therefore re-weighted keeping

into account the Data-MC ratio for each sample, in each q2 and isolation

bins. The distributions have been �tted using second order polynomials.

The discrepancy with respect to nominal �t is listed in Table 6.8.

6.7.7 Systematic uncertainties due to form factors model

The Λc → Λ∗c form factors a�ect the shapes of semitauonic templates. In sec-

tion 6.8 the unfolded di�erential decay rate for Λb → Λ∗cµν̄µ is extracted.The

distribution di�ers from the model used to generate the signal events, as can

be seen in Fig.6.19. The templates are reweighed to properly account for
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the observed di�erence. To see the impact of a shape modi�cation about

the semitauonic decays, assuming the same variation that for the semimunic

one, we have corrected the semitauonic templates keeping into account the

Data-MC ratio for each q2 bins as a function of q2. The discrepancy with

respect to nominal �t is listed in Table 6.8.

6.7.8 Systematic uncertainties due to trigger

The systematics due to the trigger requirements are evaluated repeating the

analysis using di�erent subsets of trigger lines (L0 Level). For the TOS sam-

ple the measured R(Λ∗c) ratio results equal to R(Λ∗c)TOS = 0.123 ± 0.106,

while about the TIS trigger con�guration we have obtained R(Λ∗c)TIS =

0.372±0.227. The two measurements are consistent within 1σ and are char-

acterized by big statistical errors. Therefore, we have decided to not consider

this contribution in the systematical error, since already incorporated in the

statistical uncertainty.

6.7.9 Measurement of R(Λ∗
c) ratio

In the previous section the systematic uncertainties have been described as

a function of RRAW (Λ∗c). After having discorporated from the statistical

uncertainty, the contribute due to the Monte Carlo available statistics, the

following raw ratio has been obtained:

RRAW (Λ∗c) = 0.0128± 0.0058(stat)± 0.0031(syst) (6.6)

The ratio R(Λ∗c), can be then calculated as:

R(Λ∗c) = RRAW (Λ∗c)
εµ
ετ

1

B(τ− → µ−ν̄µντ)
(6.7)

Therefore, it results equal to

R(Λ∗c) = 0.238± 0.108(stat)± 0.058(syst) (6.8)

It is the �rst measurement of the R(Λ+
c (2625)) and also the �rst measurement

which evaluates this kind of ratio using the baryons. The result, obtained
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using the data collected from LHCb during 2012, is dominated by statisti-

cal error. However, as shown with toys studies in section 6.6, assuming to

perform the measurement with same selection, triggers and �t technique on

the full run II LHCb data (expected at least 5 fb−1 of data), the statistical

error will be competitive with the systematic one. The result obtained is

consistent with the Standard Model expectation, calculated on the basis of

Pervin model et al., [21]:

R(Λc(2625)) = 0.151± 0.014 (6.9)

This calculation is described in Chapter 1.

6.8 Di�erential rate (1/Γ)dΓ/dq2(Λb → Λ∗cµν̄µ)

The numbers of Λb → Λ∗cµν̄µ extracted in bins of q2 in the previous section,

are used to determine the di�erential decay width dΓ/dq2. In this section

the unfolding of the raw spectrum for the q2 resolution and the selection

e�ciency are described. The resolution on the q2 obtained with the boost-

approximation that we have used so far, is worst than the possible resolution

we get using the two-fold solutions described in Chapter 3. Nevertheless it

is enough to obtain an unfolded spectrum in 5 bins of q2.

In general the unfolding can be viewed simply as the inverse of the folding

of a distribution accounting for a �nite resolution. Given a distribution of

true q2
true,j, the smeared distribution of reconstructed q2

reco,i is given by

q2
reco,i =

∑
j

Mi,jq
2
true,j (6.10)

where the response matrix Mi,j parametrizes the resolution e�ects: it gives

the probability that an event in the unsmeared bin j, is reconstructed in the

bin i. If we have the reconstructed data q2
reco,i, principle we can obtain q2

true,j

through a simple inversion of the matrix Mi,j. Unfortunately this approach

in most of the cases does not work because of the statistical �uctuations

associated with the determination of Mi,j, that tends to ampli�ed by the

matrix inversion with unsatisfactory results.
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There are various regularization methods that are used to overcome this

problem. One that is widely used is the so called Singular Value Decom-

position (SVD) [57]. This algorithm is implemented in ROOT in the class

TSVDUnfold. The needed input are the migration matrix that connects the

true value of q2
true to the reconstructed q

2
reco, and the e�ective rank parameter

k, that gives the number of terms in the decomposition that are signi�cant.

This parameter has to be tuned according to the problem considered, usually

reasonable results are obtained with k closes to half the numbers of bins.

The migration matrix (Mi,j) is graphically shown in Fig.6.14. for both a

�ne binning and for the binning actually used to extract the signal yields.
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Figure 6.14: The migration matrix with a �ne binning (left) and with the actual binning used

in the analysis.

The tuning of k has been done with Monte Carlo. We divided the MC in

two equal size samples, one used to extract Mi,j, and the other to perform

the unfolding applying SVD. The value of k that allows to reproduce the

true distribution is found to be k = 2. In Fig.6.15 and 6.16 we show, as

an example, the results on the MC for k = 2 and 3. The ratio between the

unfolded distribution and the expected one clearly shows a reduced bias in

the k = 2 case. The residual bias will be added in the systematics for the

157



Chapter 6. The Extraction of R(Λ∗
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spectrum measurement.
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Figure 6.15: The q2 spectrum for MC Λ∗
cµν̄µ: (red) distribution of the reconstructed q2, (green)

distribution of the true q2, (black dots) unfolded distribution. Here k = 2 is considered. The

ratio between unfolded and true spectrum, is reported on the right.
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Figure 6.16: The q2 spectrum for MC Λ∗
cµν̄µ: (red) distribution of the reconstructed q2, (green)

distribution of the true q2, (black points) unfolded distribution. Here k = 3 is considered. The

ratio between unfolded and true spectrum, is reported on the right.

6.8.1 The unfolded spectrum

The Nµ for ISO < 0.25 and ISO ≥ 0.25 in each of the q2 bins are summed

together and the uncertainty propagated accounting for the small correlation
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6.8. Di�erential rate (1/Γ)dΓ/dq2(Λb → Λ∗
cµν̄µ)

between the two bin in isolation. The distribution of the raw Nµ from the

default �t are reported in �gure 6.17 (red histogram). The �rst bin, 0 <

q2
reco < 1 GeV includes all the Λ∗cµν̄µ reconstructed in the wide range −10 <

q2
reco < 1 GeV . In �gure 6.17 it is also reported the unfolded distribution of

the raw Nµ.
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Figure 6.17: The q2 spectrum for data Λ∗
cµν̄µ as obtained from the �t (red) and after the

unfolding (black).

The unfolded spectrum has to be corrected for the signal e�ciency in each

q2
true bin. The e�ciency of the preselection as a function of the generated q

2
true

is reported in Fig.6.18. The e�ciency fall down at higher q2, which is the

region of zero-recoil: where the Λ∗c is produced with small relative velocity in

the Λb rest frame. As consequence at high q
2
true, the two pions emitted from

the Λ∗c decays have softer transverse momentum and are reconstructed with

reduced e�ciency. The e�ciency of the trigger and signal selection, corrected

for the PID and tracking, is shown in Fig.6.18. The selection e�ciency is

only slightly increasing with the q2
true.

The e�ciency corrected di�erential spectrum dΓ(Λ∗cµν̄µ)/dq2, normalized

to the total rate, is reported in table 6.9, together with the systematics un-

certainties. It is shown in �gure 6.19. The source of systematic uncertainties

considered are the same reported in the previous section. The systematics

associated with the unfolding procedure is given by the relative di�erence
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Figure 6.18: Left: e�ciency for the Λ∗
cµν̄µ signal preselection as a function of q2

true. Right:

e�ciency of the signal selection, relative to the preselected events.

between the unfolded distribution with k = 1, and the true one. The sta-

tistical correlation coe�cients for the unfolded vector, is reported in table

6.10.
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Figure 6.19: E�ciency corrected, di�erential dΓ/dq2 spectrum for Λ∗
cµν̄µ decays, normalized

to the total rate. On the same plot we reported also the spectrum predicted by the Pervin

model [21]. Here we reported only the statistical uncertainties.
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6.8. Di�erential rate (1/Γ)dΓ/dq2(Λb → Λ∗
cµν̄µ)

Nµ,1 Nµ,2 Nµ,3 Nµ,4 Nµ,5

(1/Γ)dΓ/dq2 0.2912 0.3059 0.2415 0.1296 0.0318

σstat 0.0043 0.0076 0.0064 0.0051 0.0017

Systematics (%)

MC statistics 0.05 0.01 0.04 0.06 0.07

PID corrections 0.09 0.04 0.05 0.14 0.20

Λ∗c fake yields 1.6 0.5 1.2 1.9 2.2

Wrong-sign yields 0.03 0.01 0.02 0.04 0.05

Wrong-sign shape 0.15 0.04 0.10 0.20 0.25

double charmed composition 0.04 0.01 0.03 0.04 0.05

nSPD correction 0.29 0.17 0.14 0.58 0.88

Unfolding 2.1 1.0 0.9 2.2 3.2

Total Systematics 2.7 1.1 1.5 3.0 4.0

Table 6.9: Di�erential rate normalized to the total rate.

Nµ, 1 Nµ, 2 Nµ, 3 Nµ, 4 Nµ, 5

Nµ, 1 1 0.946 0.467 0.008 -0139

Nµ, 2 1 0.721 0.308 0.157

Nµ, 3 1 0.873 0.780

Nµ, 4 1 0.985

Nµ, 5 1

Table 6.10: Correlations between the q2 bins considered.
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Chapter 7

Conclusion

This thesis reports the �rst measurement of the ratio

R(Λ+
c (2625)) =

B(Λ0
b → Λ+

c (2625)τ−ν̄τ)

B(Λ0
b → Λ+

c (2625)µ−ν̄µ)

where Λ+
c (2625)→ Λ+

c (→ pK−π+)π+π− and τ− → µ−ν̄µντ .

It is of great interest since there are new physics hints appearing as a con-

sequence of �avour universality violation which can be probed using the R

measurements. Several tests have been performed using the B mesons decays

and many NP scenarios have been hypothesized to explain the found discrep-

ancies with respect to SM predictions. The study of the analogue observables

in the baryonic sector, characterized by di�erent quarks and spin composi-

tion, is of great importance in order to con�rm or disprove this highlighted

discrepancy and to constrain the possible source.

The measurement presented in this thesis has been performed on proton-

proton collision data at center-of-mass energies of 8 TeV collected by the

LHCb detector during 2012, corresponding to an integrated luminosity of 2

fb−1. The ratio is found to be

R(Λ∗c) = 0.238± 0.108(stat)± 0.058(syst)

It is only 2 sigma from zero, and it is consistent with the SM expectation

based on the Pervin et al. model: Rexp(Λc(2625)) = 0.151 ± 0.014. The

statistical error dominates, but as shown in toys presented in chapter 6,

assuming the same selection e�ciency, and using the same �t strategy, with
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Chapter 7. Conclusion

the full data set available at the end of Run-II, it is expected a statistical

error on R of 0.05, of the same order systematics uncertainties.

In this thesis a new approach has been implemented: the signal yields are

extracted by �tting the output of a Neural Network built with the lepton

energy, the missing mass square and the output of a Fisher discriminant

that uses the Λ0
b vertex information. In order to increase the separation

of the signal from the various source of backgrounds, the �t is performed

simultaneously in �ve bins of q2, and two bins in the isolation variable.

The Λb → Λ∗cµν̄µ yields extracted in bins of q2 from the �t to the neural

network, are used to determine the di�erential decay rate, (1/Γ)dΓ/dq2(Λb →
Λ∗cµν̄µ), considering the unfolding of the raw spectrum for the q2 resolution

and the selection e�ciency. The shape appears di�erent with respect the one

extracted using the Pervin et al model [21]. A measurement of the Isgur-Wise

slope may be done �tting this distribution.

Finally in chapter 3 of this thesis a new approach to estimate the mo-

mentum the b-hadron momentum in a semileptonic decays of this one at

a hadron collider has been presented. In fact, in this environment, due to

the presence of one or more neutrinos, to unknown parton-parton collision

energy and the busy hadronic environment, is not possible to reconstruct the

b-hadron momentum in the laboratory rest frame using �nal particles. As

a consequence, the decays kinematics can be solved only up to a quadratic

ambiguity. The method is based on a multivariate regression algorithm de-

veloped exploiting the informations that can be extracted by b-hadron �ight

vectors to infer its momentum and it is applied to the q2 reconstruction in

Λb → Λ∗cµν̄µ. The algorithm described allows to improve the resolution in

the determination of the decay kinematic variables for any semileptonic de-

cays like Hb → Hcµν̄µ or Hb → Huµν̄µ. The improved resolutions may be

exploited to measure the di�erential decay width dΓ(Hb → Hµν̄µ)/dq2 with

good precision because of the reduced migrations between the q2 bins.
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Appendix A

Parameters of the �t to ∆m LHCb

2012 data distributions in q2 bins

Parameter Fitted Value

N
Λ+
c (2625)

6175 ± 231

∆m
Λ+
c (2625)_DG 341.72 ± 0.05

σ1 1.86 ± 0.06

σ2 5.99 ± 0.61

f2625 0.66 ± 0.04

Ncomb 25098 ± 351

α -0.008 ± 0.002

p 2.08 ± 0.11

N
Λ+
c (2595)

2183 ± 143

σL 3.05 ± 0.23

σR 11.00 ± 1.17

f2595 4.02 ± 0.87

Parameter Fitted Value

N
Λ+
c (2625)

680 ± 62

∆m
Λ+
c (2625)_DG 341.97 ± 0.23

σ1 2.32 ± 0.47

σ2 4.19 ± 1.13

f2625 0.54 ± 0.28

Ncomb 6324 ± 116

α -0.0049 ± 0.0005

p 1.83 ± 0.03

N
Λ+
c (2595)

294 ± 45

σL 3.23 ± 0.45

σR 4.19 ± 1.13

f2595 0.99 ± 0.61

Table A.1: q2 ∈ ]− 10, 1] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying

the Λ0
b_ISO_BDT < 0.25 (left), and Λ0

b_ISO_BDT ≥ 0.25 (right).
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Appendix A. Parameters of the �t to ∆m LHCb 2012 data distributions in q2 bins

Parameter Fitted Value

N
Λ+
c (2625)

10421 ± 211

∆m
Λ+
c (2625)_DG 341.7 ± 0.03

σ1 1.87 ± 0.05

σ2 4.99 ± 0.18

f2625 0.66 ± 0.03

Ncomb 26532 ± 321

α -0.162 ± 0.003

p 2.49 ± 0.16

N
Λ+
c (2595)

5253 ± 168

σL 2.99 ± 0.14

σR 12.00 ± 0.24

f2595 0.68 ± 0.03

Parameter Fitted Value

N
Λ+
c (2625)

1028 ± 103

∆m
Λ+
c (2625)_DG 341.68 ± 0.15

σ1 2.15 ± 0.19

σ2 5.99 ± 0.64

f2625 0.81 ± 0.15

Ncomb 10256 ± 172

α -0.014 ± 0.002

p 2.04 ± 0.11

N
Λ+
c (2595)

392 ± 61

σL 2.57 ± 0.36

σR 5.81 ± 1.07

f2595 0.99 ± 0.63

Table A.2: q2 ∈ ]1, 3] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

Λ0
b_ISO_BDT < 0.25 (left), and Λ0

b_ISO_BDT ≥ 0.25 (right) .

Parameter Fitted Value

N
Λ+
c (2625)

9406 ± 205

∆m
Λ+
c (2625)_DG 341.67 ±0.04
σ1 1.72 ± 0.14

σ2 3.38 ± 0.39

f2625 0.51 ±0.11
Ncomb 34598 ± 386

α -0.018 ± 0.002

p 2.32 ± 0.09

N
Λ+
c (2595)

4656 ± 216

σL 1.76 ± 0.22

σR 10.99 ± 0.49

f2595 0.75 ±0.04

Parameter Fitted Value

N
Λ+
c (2625)

1137 ± 118

∆m
Λ+
c (2625)_DG 341.40 ± 0.14

σ1 2.21 ± 0.19

σ2 5.96 ± 2.61

f2625 0.82 ± 0.16

Ncomb 12970 ± 198

α -0.013 ± 0.002

p 1.96 ± 0.11

N
Λ+
c (2595)

543 ± 74

σL 3.37 ± 0.51

σR 9.99 ±0.86
f2595 0.79 ± 0.14

Table A.3: q2 ∈ ]3, 5] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

Λ0
b_ISO_BDT < 0.25 (left), and Λ0

b_ISO_BDT ≥ 0.25 (right) .

Parameter Fitted Value

PN
Λ+
c (2625)

6618±168
∆m

Λ+
c (2625)_DG 341.69 ± 0.04

σ1 3.04 ± 0.26

σ2 1.31 ± 0.17

f2625 0.67 ± 0.09

Ncomb 33910 ± 299

α -0.017 ± 0.001

p 2.23 ± 0.91

N
Λ+
c (2595)

3825 ± 182

σL 1.57 ±0.28
σR 11.00 ± 0.43

f2595 0.76 ± 0.05

Parameter Fitted Value

N
Λ+
c (2625)

738± 80

∆m
Λ+
c (2625)_DG 341.78 ±0.19
σ1 1.67 ± 0.93

σ2 2.83 ± 1.24

f2625 0.36 ± 0.66

Ncomb 12913 ± 171

α 0.015 ±0.002
p 2.04 ± 0.10

N
Λ+
c (2595)

519 ± 78

σL 2.99 ± 0.54

σR 9.99 ± 1.80

f2595 0.80 ± 0.14

Table A.4: q2 ∈ ]5, 7] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

Λ0
b_ISO_BDT < 0.25 (left), and Λ0

b_ISO_BDT ≥ 0.25 (right) .
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Parameter Fitted Value

N
Λ+
c (2625)

2380 ± 99

∆m
Λ+
c (2625)_DG 341.43 ±0.07
σ1 1.02 ± 0.23

σ2 2.67 ± 0.22

f2625 0.24 ± 0.06

Ncomb 18302 ± 214

α -0.023 ±0.002
p 2.206 ± 0.098

N
Λ+
c (2595)

1919 ± 123

σL 2.97 ± 0.39

σR 11.00 ± 3.83

f2595 0.46 ± 0.08

Parameter Fitted Value

N
Λ+
c (2625)

380 ± 109

∆m
Λ+
c (2625)_DG 341.57 ± 0.25

σ1 1.72 ± 0.27

σ2 5.99 ± 3.99

f2625 0.76 ± 0.31

Ncomb 8150±246
α -0.018 ±0.002
p 1.76 ±0.11

N
Λ+
c (2595)

222 ± 143

σL 2.52 ± 0.86

σR 6.44 ± 6.24

f2595 0.71 ± 0.85

Table A.5: q2 ∈ ]7, 10] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

Λ0
b_ISO_BDT < 0.25 (left), and Λ0

b_ISO_BDT ≥ 0.25 (right) .

167





Appendix B

Parameters of the �t to ∆m wrong sign

sample distributions in q2 bins

Parameter Fitted Value

N
Λ+
c (2625)

60 ± 17

Ncomb 14748 ± 43

α -0.007 ± 0.005

p 1.96 ± 0.28

N
Λ+
c (2595)

2 ± 15

Parameter Fitted Value

N
Λ+
c (2625)

42 ± 13

Ncomb 771 ± 31

α -0.0005 ± 0.006

p 1.61 ± 0.35

N
Λ+
c (2595)

18 ± 7

Table B.1: q2 ∈ ]− 10, 1] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying

the ISO < 0.25 (left), and ISO ≥ 0.25 (right).

Parameter Fitted Value

N
Λ+
c (2625)

8 ± 11

Ncomb 77 ± 30

α -0.016 ± 0.007

p 2.49 ± 0.45

N
Λ+
c (2595)

0 ± 15

Parameter Fitted Value

N
Λ+
c (2625)

17 ± 10

Ncomb 584 ± 27

α -0.006 ± 0.007

p 1.61 ± 0.36

N
Λ+
c (2595)

10 ± 7

Table B.2: q2 ∈ ]1, 3] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

ISO < 0.25 (left), and ISO ≥ 0.25 (right) .

Parameter Fitted Value

N
Λ+
c (2625)

24 ± 13

Ncomb 93 ± 33

α -0.009 ± 0.006

p 1.91 ± 0.32

N
Λ+
c (2595)

0 ± 5

Parameter Fitted Value

N
Λ+
c (2625)

246 ± 13

Ncomb 835 ± 32

α 0.001 ± 0.006

p 1.41 ± 0.31

N
Λ+
c (2595)

15 ± 8

Table B.3: q2 ∈ ]3, 5] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

ISO < 0.25 (left), and ISO ≥ 0.25 (right .
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Parameter Fitted Value

N
Λ+
c (2625)

26 ± 13

Ncomb 1095 ± 36

α 0.002 ± 0.005

p 1.31 ± 0.25

N
Λ+
c (2595)

3 ± 8

Parameter Fitted Value

N
Λ+
c (2625)

26 ± 15

Ncomb 1440 ± 42

α 0.005 ± 0.005

p 1.80 ± 0.28

N
Λ+
c (2595)

15 ± 10

Table B.4: q2 ∈ ]5, 7] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

ISO < 0.25 (left), and ISO ≥ 0.25 (right) .

Parameter Fitted Value

N
Λ+
c (2625)

23 ± 13

Ncomb 974 ± 35

α -0.023 ± 0.005

p 2.19 ± 0.29

N
Λ+
c (2595)

3 ± 8

Parameter Fitted Value

N
Λ+
c (2625)

38± 17

Ncomb 1795 ± 47

α -0.015 ± 0.003

p 1.83 ± 0.20

N
Λ+
c (2595)

6 ± 12

Table B.5: q2 ∈ ]7, 10] (GeV/c)2 - Parameters of the �t to ∆m LHCb 2012 data distribution after applying the

ISO < 0.25 (left), and ISO ≥ 0.25 (right) .
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