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Head of doctoral school Supervisor

Gianguido Dall’Agata Stefano Rigolin



Abstract

This thesis deals with Composite Higgs (CH) models, dark matter and neutrino masses. In CH

models, the Higgs is a pseudo-Goldstone boson of a high-energy strong dynamics. We construct

CP-even and CP-odd bosonic effective chiral Lagrangian for a generic symmetric coset G/H.

Assuming that the only sources of custodial symmetry are the ones present in the SM, we study the

projection of this Lagrangian into the low-energy SM chiral Lagrangian. This is applied in three

particular scenarios: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-

preserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2)×U(1)) model, which intrinsically

breaks custodial symmetry.

We furthermore consider an extension of the Standard Model involving two new scalar particles

around the TeV scale: a singlet neutral scalar φ, to be eventually identified as the Dark Matter

candidate, plus a doubly charged SU(2)L singlet scalar, S++, that can be the source for the non-

vanishing neutrino masses and mixings. Assuming an unbroken Z2 symmetry in the scalar sector,

under which only the additional neutral scalar φ is odd, we write the most general (renormalizable)

scalar potential. This model may be regarded as a possible extension of the conventional Higgs

portal Dark Matter scenario which in addition accounts for neutrino masses and mixings. This

framework cannot completely explain the observed positron excess. However a softening of the

discrepancy observed in conventional Higgs portal framework can be obtained, especially when

the scale of new physics responsible, for generating neutrino masses and lepton number violating

processes, is around 2 TeV.



Riassunto

Questa tesi si occupa di studiare modelli di Higgs Composto (HC), materia oscura e masse dei

neutrini. In modelli di tipo HC, lo scalare di Higgs è uno pseudo-bosone di Goldstone associato che

origina dalla rottura di una simmetria forte ad alta energia. Nella tesi costruiamo la Lagrangiana

chirale bosonica effettiva, per un generico coset simmetrico G/H, derivando esplicitamente tutti

gli operatori (sia CP-even che CP-odd) che appaiono fino a quattro derivate. Supponendo che

l’uniche fonte di rottura di simmetria custodial siano quelle già presente nel Modello Standard

(MS), studiamo la proiezione di questa Lagrangiana sulla Lagrangiana chirale di bassa energia

del MS. Particolareggiamo questo studio considerando tre scenari particolari: il modello originale

di Georgi-Kaplan SU(5)/SO(5), il modello minimale con simmetria custodial, SO(5)/SO(4), ed

il modello minimale senza simmetria custodial, SU(3)/(SU(2)× U(1)).

Nella tesi consideriamo inoltre unestensione del MS che coinvolge due nuove particelle scalari con

massa alla scala TeV: un singoletto scalare neutro φ, che sarà poi identificato come candidato

di materia oscura e un singoletto di SU(2)L scalare con carica q = 2, S++, che può essere la

fonte per le masse e del mixing dei neutrini. Supponendo l’esistenza di una simmetria Z2 nel

settore scalare, sotto la quale solo φ è dispari, scriviamo il potenziale scalare (rinormalizzabile)

più generale possibile. Il modello si può vedere come una possible estensione dei modelli con

Higgs Portal in cui si tiene anche conto del meccanismo con cui generare le masse e i mixings

dei neutrini. Il modello da noi studiato, pur predice un eccesso di positroni, non tale tuttavia da

poter spiegare l’eccesso di positroni sperimentalmente osservato. Pur tuttavia si possono ottenere

dei limiti meno stringenti rispetto ai normali modelli di Higgs Portal, in particolare se la scala

della nuova fisica, responsabile della generazione delle masse dei neutrini e dei processi che violano

il numero leptonico, è intorno ai 2 TeV.
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Chapter 1

Introduction

There is no denying that the Standard Model of particle physics is one of the most successful

scientific theories ever. It has been able not only to explain a wide range of phenomena with a

relatively simple and elegant theoretical formulation, but also to make several predictions that

have been systematically confirmed.

The last of them was the discovery of a neutral, CP-even scalar particle at the Large Hadron

Collider (LHC), announced on July 4th, 2012, with data so far showing no deviations from the

SM Higgs boson hypothesis. And yet, maybe as astonishing as its success is its inability to give an

explanation to a considerable amount of problems, of both theoretical and experimental nature,

such as the lightness of the recently discovered scalar state (“Higgs particle”, for brevity), the

existence of dark matter or the masses of neutrinos. This thesis deals deal with these questions,

studying some proposals that offer solutions to them.

The so-called hierarchy problem is related to the mass of the Higgs particle. If it interacts with

physics at some scale Λ then it is generically expected that loops of SM particles will induce a

quadratically divergent Higgs mass ∼ Λ. Even if the SM doesn’t include a description of gravity,

(which is another of the reasons why we know it’s not the final theory of Nature), it is expected

that gravitational effects become relevant at the Planck scale, MP ∼ 1019 GeV. The SM cannot

explain the disparity between the observed Higgs mass, mH ∼ 125 GeV and the value we would

generically expect it should have, once gravitational effects are included.

Connected to the hierarchy problem is the mistery of the origin of the electroweak symmetry

breaking (EWSB), since both arise from the Higgs potential. The spontaneous breaking of the

electroweak (EW) symmetry is implemented in the SM through the Higgs mechanism, so that the

Higgs field has a potential which leads it to develop a vacuum expectation value (VEV) (which

1



Chapter 1 Introduction

is proportional to its mass) that is not invariant under EW transformations. However, the SM

provides no explanation of where the potential and its parameters come from.

Maybe one of the most bitter issues with the SM is that it can only account for around the 5%

of the content of the Universe. Indeed, from observations of the cosmic microwave background

(CMB) it is now known that the energy budget of the Universe is divided in 68.3% dark energy,

26.8% dark matter and 4.9% ordinary matter, which is formed by the particles described by the

SM.

First hypothesized in 1933 by Zwicky, the existence of non-baryonic dark matter is today widely

accepted by the community. It is able to explain very diverse phenomena at several orders of

magnitude, including the original problem of galactic clusters (where there is a mismatch between

their observed orbital velocity of galaxy clusters and the one expected by the amount of light

emitted by them) or large structure formation in the Universe. An alternative paradigm is the

Modified Newtonian Dynamics (MOND), but the dark matter hypothesis is the only scenario

that so far can explain observations such as the Bullet Cluster, of which gravitational lensing

observations are considered the best evidence for the existence of dark matter.

Another set of evidence which the SM is not able to account for is the oscillation of neutrinos.

Since the Super Kamiokande collaboration observed the oscillation of atmospheric neutrinos it is

an established fact that neutrinos must be massive. However, in the Standard Model the neutrinos

are massless, and therefore some beyond standard model (BSM) physics is needed. It remains

unknown whether the nature of neutrinos is Dirac or Majorana, since oscillation experiments are

not able to tell us anything about it. Therefore, further observations (such as neutrinoless double

beta decay experiments) are needed in order to determine the nature of neutrino masses.

These three problems have been a big motivation for the proposal of beyond Standard Model

(BSM) models. With respect to the hierarchy problem some of the best known solutions are

Supersymmetry (SUSY) and models with extra dimensions. The lack of any experimental signal

confirming these models has renovated the interest on Composite Higgs models (CH), on which

this thesis will focus. In these scenarios the Higgs field is supposed to be a Goldstone boson (GB)

associated to a global breaking of symmetry. It’s a solution to the hierarchy problem inspired

by low-energy QCD, where the pions are GBs of the spontaneously broken chiral symmetry,

so that their masses are protected by a shift symmetry and, despite being scalars, they are

much lighter than the first vector resonance (mπ ∼ 135 MeV ≪ mρ ∼ 770 MeV). Any given

CH model is characterized by the symmetry breaking pattern, where some global group G is

spontaneously broken to a subgroup H; the assumption is that the Higgs scalar and would-be

GBs are Goldstone bosons belonging in the coset G/H, just as the pions are Goldstones belonging

in the SU(2)L × SU(2)R/SU(2)V coset.

2



Chapter 1 Introduction

A lot of theoretical effort is going also in trying to understand exactly how the dark matter

is composed of. Through numerical simulations we have at the moment reasonable knowledge

about how dark matter organizes itself, for example in and around galaxies, but despite all the

observational information we have gathered, very little is known about its fundamental nature.

One of the most popular proposals (and with which the second part of this thesis will deal) are

models where the DM consists of weakly interacting massive particles (WIMPs), where thanks

to the so-called “WIMP” miracle a DM candidate interacting with cross-sections of the order of

the weak interaction and masses around the 100 GeV lead to the observed relic abundance of

dark matter. These models have been particularly attractive in the last decades because SUSY

models can provide several WIMP candidates.

Finally, there are several proposals for the origin of neutrino masses, such as the see-saw mech-

anism, where the masses arise from tree-level diagrams. Another interesting solution is the

possibility of the lightness of the neutrinos being due to a loop suppression, where the exchange

of new TeV scalar particles allows for the neutrino masses to appear not at tree but at loop

level. An appealing feature of these models is that one can expect that these particles could be

produced at colliders like the LHC, therefore making them potentially testable in the foreseeable

future.

The first part of this thesis deals with a solution for the hierarchy problem of the Higgs scalar,

while the second part will propose the existence of two new scalar particles in order to solve the

dark matter and neutrino masses problem. It should be noted that not only these two approaches

are independent, but apparently contradictory, since a priori the two new scalar states could

potentially have a hierarchy problem of their own. This is symptomatic of the current state of

affairs in particle physics, where physicists have come up with a myriad of solutions to a series

of diverse problems, and still no experimental signal has been able to discriminate among them.

Of course it’s reasonable that the most popular frame of BSM until the recent years, SUSY, is

precisely one that could potentially explain more than one issue at the same time, giving a cohesive

theory of what physics beyond the EW scale looks like. Still, the lack of new experimental signs

(in the LHC, in dark matter detection, in double-beta decay experiments...) is maybe shifting the

perspective to a more bottom-up approach, using tools such as effective Lagrangians, considering

the SM as an effective field theory, or more restrictive models, trying to expand the spectrum of

particles of the SM as little as possible.

This thesis, based on the works [2] and [3], is structured as follows. Chapter 2 presents the

SM Lagrangian, explains the hierarchy problem and shows the characteristics of CH models.

Chapter3 considers the chiral formulation of the SM Lagrangian, and Chapter 4 introduces a

formalism to write the effective bosonic Lagrangian of generic CH models. Chapter 5 applies this

3



Chapter 1 Introduction

construction to the SU(5)/SO(5) Georgi-Kaplan model and studies its Goldstone boson potential,

while Chapter 6 illustrates the effective Lagrangian for the SO(5)/SO(4) and SU(3)/(SU(2) ×
U(1)) CH models. The second part of the thesis deals with a model with an extended scalar

sector, with Chapter 7 presenting an extension of the SM by a singlet scalar, identified with a

dark matter candidate, and doubly charged scalar that provides loop-level masses to neutrinos.

The dark matter relic abundance is computed and predictions for direct and indirect detection

experiments are presented.

4



Chapter 2

The Standard Model and the

hierarchy problem

2.1 The Standard Model

The Standard Model (SM) is a model which describes the interactions of all known elementary

particles and their interactions, explaining almost all experimental data of particle physics. It is

a quantum field theory based on the local symmetries SU(3)c, which describes the strong forces,

and SU(2)L × U(1)Y , which accounts for the electric and weak ones. The SM can be described

in a compact and elegant form through the lagrangian

LSM =− 1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
GaµνG

aµν+

+iQ̄L /DQL + iŪR /DUR + iD̄R /DDR + iL̄ /DLL + iĒR /DER+

+DµΦ
†DµΦ+

µ2

2
Φ†Φ− λ

4

(
Φ†Φ

)2
+

+
[
Q̄LΦYDDR + Q̄LΦ̃YUUR + L̄LΦYEER + h.c.

]
+

+
g2s

16π2
θGaµνG̃

aµν

(2.1)

The gauge bosons mediating the SU(3)c×SU(2)L×U(1)Y interactions of the SM are, respectively,

the 8 gluon fields, Gaµν , plus the 4 electroweak (EW) bosons, W a
µν and Bµν . Their kinetic terms

are given by the first line of 2.1, with any given field F iµν strength being written as

F iµν = ∂µA
i
ν − ∂νA

i
µ − igi[Aiµ, A

i
ν ] (2.2)

5



2.1. The Standard Model

where gi corresponds {gs, g, g′}, the strong and electroweak coupling strengths. The last term of

the lagrangian is a θ-term, which gives a non-negligible contribution to the neutron electric dipole

moment, which allow to infer a limit of θ ≪ 10−9. The fact that this is so small is known as

the strong CP problem. The matter content is described by fermionic fields of spin 1/2, divided

in quarks (particles which participate in strong interactions) and leptons (which only interact

through the EW force). According to their transformations under the gauge group, the quarks

are described by QL ∈ (3, 2)1/6, UR ∈ (3, 1)2/3 and DR ∈ (3, 1)−1/3, while the leptons transform

as LL ∈ (1, 2)−1/2 and ER ∈ (2, 1)−1, where the numbers in brakets indicate the transformation

properties under SU(3)c × SU(2)L while the subscript corresponds to their U(1)Y hypercharge.

These fermions come in what are known as generations or families, meaning that there are actually

3 identical copies of each of them differing only in their mass. The covariant derivative of any

fermions Ψ is given by

DµΨ = ∂µΨ+
∑

i

igiA
iΨ (2.3)

Three of the four EW bosons are massive, as opposed to the fourth one being a massless photon

and to the eight gluons. This is implemented in the SM via the Higgs mechanism, which describes

a spontaneous breaking of the SU(2)L × U(1)Y group into the electromagnetic U(1)em. The key

ingredient of this setup is the Higgs scalar field, Φ ∈ (1, 2)1/2, described by

Φ =

(
Φ+

Φ0

)
=

1√
2

(
iφ1 + φ2

φ0 − iφ3

)
(2.4)

with its covariant derivative given by

DµΦ ≡
(
∂µ +

i

2
g′Bµ +

i

2
gτiW

i
µ

)
Φ (2.5)

where τi are the Pauli matrices. The boundness from below of the Higgs potential, V (Φ) =

−µ
2

2
Φ†Φ+

λ

4

(
Φ†Φ

)2
, recquires that λ ≤ 0. If µ2 < 0, Φ = 0 is the only minimum of the potential,

and therefore the vacuum is symmetric under the EW gauge group, SU(2)L × U(1)Y , which

remains unbroken. However, if µ2 > 0, then potential is minimized for |Φ| =
√
µ2/λ ≡ v/

√
2, so

that the true vacuum is no invariant under the electroweak group, which is thus spontaneously

broken to the electromagnetic gauge group, U(1)em. v ≃ 246 GeV is known as the EW scale, since

it’s the characteristic scale of the electroweak interactions, being the vacuum expectation value

of the Higgs scalar: every EW observable with mass dimensions must be proportional to some

power of v. In particular, the W± gauge bosons get a tree-level mass of mW = g v/2 after the

EWSB and the Z boson a mass of mZ =
√
g2 + g′2 v/2, with the Higgs mass being mH = λv2/2,

6



2.2. Hierarchy problem

The excitations around the U(1)em invariant vacuum can be described parametrizing the Higgs

field using the matrix

U = eiπ
a(x)τa/v (2.6)

so that

Φ(x) =
v + h(x)√

2
U(x)

(
0

1

)
(2.7)

The excitation h(x) corresponds to the physical Higgs scalar and the πa(x) fields correspond to the

would-be Goldstone bosons associated with the symmetry breaking. The latter ones supply the

massive EW gauge bosons with their longitudinal modes, a process usually described as the GBs

being “eaten” by the vector bosons. The properties (production and decay rates) of the neutral,

CP-even scalar particle observed by the CMS and ATLAS collaborations in the LHC [4, 5] so far

don’t show deviations from the predictions of the SM Higgs mechanism just presented [6], so that

the h(x) excitation can be identified with this new state.

2.2 Hierarchy problem

The biggest problem of the Standard Model related to the Higgs sector is the fact that the

EW scale, or equivalently the Higgs mass, is very sensitive to quantum corrections. This issue,

known as the hierarchy or naturalness problem, arises from mh getting quadratically divergent

corrections via loops of SM particles.

The renormalized Higgs mass at a scale µ is defined as

m2
h(µ) = m2

h(µ0) + δm2
h (2.8)

where µ0 is a reference renormalization scale. If we consider the SM as an effective field theory

valid up to a scale Λ, then loops of SM loops induce a correction given by

δm2
h ∼ 1

v2
(
4m2

t − 2m2
W −m2

Z −m2
h

)
Λ2 (2.9)

Λ is the scale at which the SM stops being valid and new physics need to be considered; if there

are no non-trivial effects, in general this means that the Higgs mass is sensitive to the highest

scale that couples to SM fields. Therefore, if the Higgs field is coupled to quantum gravity in

some way, then this scale could be identified with the Planck scale, Λ =MP ∼ 1019 GeV. In this

case, there is a very precise cancellation between the mass parameter m2
h(µ) and the bare mass

7



2.2. Hierarchy problem

m2
h(µ0) is required. Setting m

2
h(µ0 = v) ≡ m2

h ∼ 125 GeV

δm2
h

m2
h

≃
(

Λ

500 GeV

)2

≃ 1032 (2.10)

Thus, a tuning of 1 in 1032 is needed to get a mass of the Higgs particle at the observed value,

m2
h ∼ (125 GeV)2. If this cancellation does not occurr, mh would generically be expected to be

of the order of MP . Even if there were new states coupled to the Higgs at energies above the EW

scale there is in general no reason to expect their loop contributions to δm2
h to have any type of

cancellation. This fine-tuning is said not to be natural in the sense defined by ’t Hooft in [7]: at

some scale E a parameter is allowed to be small if setting it to zero increases the symmetry of

the system. In that case, parameter is said to be “technically natural”. This is the case in the

SM with fermion masses, since in the limit of massless fermions the SM lagrangian is invariant

under chiral symmetry Similarly, the mass of the gauge bosons is protected by gauge symmetry,

receiving a contribution to their mass of order ∼ log Λ instead of ∼ Λ.

However, the SM lagrangian with µ2 = 0 doesn’t present any additional symmetry , and thus a

small Higgs mass (compared to Λ) is not natural in the previous sense. The possibility of the

existence of a new symmetry which would make a Higgs mass of the order of the weak scale

has been a strong theoretical motivation behind many of the proposed BSM scenarios of the

past decades. For example: supersymmetry (SUSY models), gauge symmetry (extra-dimensions

models) or shift symmetry (Composite Higgs). Each of these scenarios is such that for µ = 0

the lagrangian shows the correspondent additional symmetry. If the scale of the new physics

responsible for the extra symmetry is around 1 TeV, i.e., the new states associated to it have a

mass Λ ∼ 1 TeV, then the tuning problem in 2.10 is fundamentally solved. This is the reason why

it has been generally expected for the past decades that new physics should be seen around this

scales, being this reasoning a very strong motivation both from the theoretical and experimental

side.

Supersymmetric models are one of the most common BSM scenarios, and low-energy SUSY is

one the most popular solution to the hierarchy problem. These weakly coupled theories are based

on the existence of a symmetry which relates particles of different spins, so that every boson

from the SM must be accompanied by a new fermionic particle, and viceversa. In particular, the

superpartner of the Higgs scalar is the so-called Higgsino, which is a spin 1/2 particle. In the

limit of exact supersymmetry the mass of the Higgs and the higgsino must be similar, but since

the latter is protected by chiral symmetry because of its fermionic nature, mh becomes protected

by this symmetry and it’s smallness is therefore natural. Since SUSY must be broken because no

superpartner has been so far observed, the Higgs mass will be of the order of the breaking scale,

8



2.3. Composite Higgs models

ΛSUSY , but any quadratic divergence above it would be cancelled, and therefore ΛSUSY ∼ 1 TeV

is an attractive scenario. However, despite offering solutions to additional problems of the SM

such as having a Dark Matter candidate or featuring the unification of gauge couplings, the

current search for superparticles tends to put constringent constraints on the parameter space.

There is nonetheless a big theoretical effort to evade these bounds by constructing non-minimal

models which however lose some of the original appeal of the supersymmetric scenarios.

The CH models are based on the assumption that the Higgs scalar is the Goldstone boson of

some symmetry breaking, and therefore is protected by a shift symmetry. This is the approach

in which this thesis will put its focus and consequently more detail will be given in the following

sections. The main idea is to mimic the mechanism that in QCD allows the pions to be light

scalar particles, with masses of around 100 MeV, without having a hierarchy problem. In fact, in

the original technicolor models [8, 9] that proposed these ideas there was a strong dynamics which

ruled the EWSB and there was no Higgs scalar altogether. However, strong phenomenological

bounds and the existence of a light scalar eventually lead to expand the technicolor models into

the CH ones.

Finally, it is worth mentioning the relaxion mechanism which was proposed by [10] around 2 years

ago. The hypothesis is that instead of a new symmetry, what explains the smallness of the EW

scale with respect to the Planck scale is a dynamical mechanism. The model essentially consists

in the mass of the Higgs undergoes a process of “cosmological relaxation” through the history of

the universe from MP .

2.3 Composite Higgs models

With Composite Higgs we refer to a broad set of models where the Higgs particle is the Goldstone

boson of some global symmetry breaking. For example, models inspired by QCD which assume

the existence of a strong dynamics that forms composite states, among which is the Higgs scalar,

as well as potentially new BSM states. Physics beyond the composite typical scale interact

directly with the constituents of these composite states, just as in the case of pions and gluons,

and thus the mass of the Higgs does not get a contribution from arbitrarily high scales.

In particular, the precise mechanism through which the pions are much lighter than the ρ meson

and the rest of QCD resonances is their Goldstone boson nature. The QCD lagrangian has

an approximate SU(2)L × SU(2)R chiral lagrangian which is spontaneously broken by a quark-

antiquark condensate in the QCD vacuum to SU(2)V . The three pions {π±, π0} are identified

with the Goldstone bosons of this symmetry breaking. Similarly, Composite Higgs models assume

9



2.3. Composite Higgs models

the existence of a global symmetry G which is spontaneously broken by some strong dynamics at

a scale Λs to a subgroup H. The Higgs scalar is identified as one of the n = dimG/H Goldstone

bosons associated to this breaking.

The QCD pions are not massless, and are therefore called pseudo-Goldstone bosons, because

the chiral symmetry is not exact and is explicitly broken, for example by quark masses and the

electromagnetic interactions. Quark masses, which mix left and right quarks, give pions a mass

of m2
π ∼ m2

q , whereas QED interactions, which differentiates between charged and neutral pions,

split their masses an amount proportional to αEM. In the same way, the Higgs particle is massive,

and therefore sources that explicitly break the G symmetry will be required, such as for example

the SM gauge interactions or the Yukawa couplings with SM fermions.

There are two approaches when constructing a CH models. On the one hand, it is possible to

try to formulate the equivalent of the QCD interactions, looking for a precise strong dynamics

which is confining mechanism so that the proposed fundamental constituents form condensates

which lead to a suitable pattern of global symmetry breaking. This approach has clear difficulties

because of the intrinsically strong coupling nature of the dynamics. The first works along these

lines [11–16] propose the existence of some “ultracolour” interactions, and studied the formation

of a condensate at a scale ΛUC . The idea of studying a possible UV theory of the global symmetry

breaking was recovered in [17] where a 5D formulation serves as the weakly interacting dual theory

of the strong dynamics. These works were the ones to revive the interest on the Composite Higgs

ideas and in the possibility of some strong dynamics being behind the EWSB.

On the other hand there is the option to follow an effective approach similar to the study through

the chiral lagrangian of pion interactions, in which the pattern of symmetry breaking fixes all the

low-energy dynamics and the knowledge of the precise quark and gluon interactions is not needed.

This method is the most widely spread in the context of CH models, with each model specified

by their specific G/H coset characterizing the global symmetry breaking. The first coset to be

proposed was SU(5)/SO(5) in [16], where in addition to the Higgs scalar and the 3 longitudinal

SM Goldstones there are other 10 Golstone scalars. In more recent years a lot of attention has

been given to the so-called Minimal Composite Higgs Model, with coset SO(5)/SO(4), which is

the symmetry breaking pattern associated to the 5D theory proposed in [17].

This last effective approach is studied in this thesis, and unless explicitly said, we will refer to

Composite Higgs models to this kind of constructions.
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2.3. Composite Higgs models

2.3.1 Construction of a Composite Higgs model

A CH model is fundamentally characterized by the G → H breaking pattern, and there are a

series of conditions that this groups must fulfill in order to reproduce the observed properties of

the Higgs scalar and the EWSB.

1. The number of Goldstone bosons produced in the breaking is n = dimG/H. Among these,

1 of them is to be identified with the Higgs scalar and other 3 with the SM GB’s, so that a

first requirement is n ≥ 4.

2. Since 3 of GB’s are to be the longitudinal modes of the EW gauge bosons, the Goldstones

must transform non- trivially under GSM = SU(2)L × U(1)Y , so that GSM ⊂ G (the strong

sector should not break explicitly the SM gauge group, so that the condition GSM ∩ G 6= 0

is not enough).

3. The unbroken group H should accomodate a SU(2)L × SU(2)R group which functions as

a custodial symmetry in the way described in section 3.2.1. Even if this is not strictly

necessary from the EWSB point of view, the strong experimental constraints in the value

of ρ makes this an important phenomenological bound.

4. There must be some source of explicit breaking of G so that the Goldstones can develop

a potential in order to trigger the EWSB. This breaking must be additional to the one

granted by the gauging of GSM: the parameters g and g′ cannot give a negative mass to the

GBs[18], and therefore the Higgs scalar cannot have a non-zero VEV.

5. The scale up to which the effective description is valid, Λs (that can be interpreted as either

the scale at which the interaction becomes strong or as the mass of the first resonance), the

GB scale f and the EW scale v, which is determined dinamically, must have a hierarchy.

In particular, [19] requires 4πf ≥ Λs. The relation between v and f is usually expressed

through the ratio

ξ ≡ v2

f2
∈ [0, 1] (2.11)

which is phenomenologically important because it parametrizes the transition from the

strong dynamics being decoupled from the SM and the EW being linearly realized (ξ →
0,f → ∞) or the other limit case in which the G → H symmetry breaking scale coincides

with the EW one, which corresponds with the technicolor scenario (ξ → 1,f → v).

Potentially interesting simple cosets are SU(N)/SO(N), SO(N)/SO(N−1) and SU(N)/SU(N−
1) × U(1). The requirement of n = dimG/H ≥ 4 implies that the minimum N respectively for
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2.3. Composite Higgs models

each case is 3, 5 and 3, i.e. the cosets SU(3)/SO(3), SO(5)/SO(4) and SU(3)/SU(2) × U(1),

with 5, 4 and 4 GB’s respectively.

The coset SU(3)/SO(3) is clearly not a possible candidate since SO(3) is smaller than the

necessary SU(2) × U(1) gauge subgroup. The next possible coset of this category would be

SU(4)/SO(4), but the Goldstones in this case belong to the (3,3) representation of SU(2)L ×
SU(2)R, and therefore there is no Higgs doublet among them. In conclusion, the smallest posi-

ble coset of this type is SU(5)/SO(5), which has 14 Goldstones bosons transforming under

SU(2)L × SU(2)R as 14 = (3,3)+ (2,2)+ (1,1).

The breaking pattern SO(5)/SO(4) is minimal in the sense that the only corresponding GBs

transform as a doublet plus additionally having an H group which can itsel function as a custodial

symmetry, since SO(4) ≃ SU(2)L × SU(2)R. The problem with the otherwise also minimal

SU(3)/(SU(2)×U(1)) is that it lacks a custodial group in the preserved subgroup and therefore

it will violate ρ = 1 at tree level, and thus having strong experimental constraints.

Of course the list of possible cosets is extremerly large, and there have been intense work studying

the different advantages of each of them. For example, the SO(6)/SO(5) breaking pattern has,

in addition to an SU(2)L doublet, a SM singlet scalar which has been identified in [20] as a DM

candidate, while the SO(6)/SO(4) × SO(2) can have additional phenomenological implications

because it presents two doublets as GBs.

Part of the work of this thesis consists in studying the low-energy effects of these CH models. In

particular, in Chapter 4 we will establish a systematic way to construct an effective field theory

which captures the dynamics of Goldstone and gauge bosons.
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Chapter 3

Chiral lagrangian for the Standard

Model

Composite Higgs models, as any theory trying to explain the EWSB, follow a top-down approach,

making predictions such as the existence of new particles. Thus, one way to test these models

is to observe the production of these new states in colliders. However, the fact that no new

particle has so far been observed in the LHC has made a bottom-up aproach an attractive way

to study the existence of new physics (NP). Deviations from the SM can be studied in a model-

independent using Effective Field Theories (EFTs), a tool that allows to study physical effects

at a given energy scale (in our case, the EW scale, v = 246 GeV) without needing to know the

UV behaviour of the putative NP. These low-energy effects are parametrized by an expansion

operators composed of SM field invariant under Lorentz and gauge symmetries.

Two different kind of EFTs can be built depending on the assumed nature of the Higgs particle:

linear and non-linear (or chiral) EFTs. In the first case the Higgs belongs in an SU(2)L doublet

and the EW symmetry is linearly realized, as it’s the case in the SM. This construction, often

called the SM Effective Field Theory (SMFET) is useful when the possible NP is suppossed to

be a weakly coupled theory and the Higgs remains an elementary particle, such as in SUSY. A

chiral EFT, on the contrary, is suitable when the Higgs sector is expected to arise from a strongly

interacting theory, for example in CH scenarios. In this case the EW is non-linearly realized and

the Higgs scalar is not assumed to belong in a weak doublet. The chiral lagrangian will be used in

the following chapters, when the high-energy lagrangians describing CH models will be projected

into the HEFT.

In this chapter we briefly introduce the SMEFT and then focus in the chiral lagrangian of the

SM, which will be useful for us when in subsequent chapters we study the low-energy effects
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of CH models. We first present the original non-linear Appelquist-Longhitano-Feruglio (ALF)

lagrangian, where the Higgs was suppossed to be either non-existing or very heavy (both reason-

able assumptions in the 1980s), and then expand it to include the effects of a light lagrangian, a

construction usually called Higgs Effective Field Theory (HEFT). In both cases we will deal only

with the bosonic sector of the effective lagrangians. We will also present the custodial symmetry,

an important phenomenological constraint for BSM models.

3.1 The linear Lagrangian (SMEFT)

If the Higgs scalar is considered to belong in a doublet Φ, as in the SM, then an effective lagrangian

can be written using the doublet structure as the basic building block. In this case, the EW

symmetry is said to be linearly realized. All possible operators invariant operators are written

in an expansion corresponding to their canonical mass dimension: so that the lagrangian has

dimension 4, operators with dimension higher than 4 are suppressed by powers of 1/Λ, where Λ is

the energy up to which the EFT is supposed to be valid. Thus, the leading-order lagrangian (d =

4) corresponds with the SM lagrangian and NP effects come with a 1/Λ supressions. Assuming

lepton and baryion number conservation, both accidental symmetries of the SM, the SMEFT

lagrangian can be written as

Llinear = LSM +∆Llinear , (3.1)

where LSM was defined in 2.1 and

∆Llinear =
∑

i

ci
Λ2

Od=6
i +

∑

i

ci
Λ4

Od=8
i + . . . , (3.2)

with ci being order one parameters and Od
i denoting a complete basis of operators of dimension

d. The d = 6 complete basis was first derived in [21], while [22] corrected some inaccuracies and

proposed a different basis that is widespread nowadays. Assuming baryon number conservation

there are 59 operators. A different basis which is useful for our purposes is the so-called Hagiwara-

Isihara-Szalpski-Zeppenfeld (HISZ) basis [23, 24], since it refers only the bosonic sector. As an

example, the d = 6 CP violating bosonic basis is given by

Q
ϕB̃

= B∗
µνB

µνΦ†Φ

Q
ϕW̃

= Φ†W∗
µνW

µνΦ

Q
ϕB̃W

= B∗
µνΦ

†WµνΦ ,

(3.3)
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3.2. The chiral lagrangian for the SM

3.2 The chiral lagrangian for the SM

The lagrangian for the Standard Model can be written in an alternative way to the one presented

in the previous chapter. Let us parametrize the degrees of freedom of the Higgs field as

M =
1√
2

(
φ0✶+ i~τ · ~φ

)
=

1√
2

(
φ0 + iφ3 iφ1 + φ2

iφ1 − φ2 φ0 − iφ3

)
≡
(
Φ̃ Φ

)
(3.4)

The matrix M satisfies
1

2
Tr
(
M†M

)
= Φ†Φ =

1

2

(
φ20 +

~φ · ~φ
)

(3.5)

so that the Higgs potential can be written as

V (M) =
µ2

4
Tr
(
M†M

)
− λ

8
Tr
(
M†M

)2
(3.6)

The field M transforms as a bi-doublet of SU(2)L×SU(2)R (that is, in the
(
1
2 ,

1
2

)
representation),

and the potential 3.6 is indeed invariant under this symmetry, or similarly under O(4), if we

consider the vector ~ϕ ≡
(
φ0, ~φ

)
, since SU(2)L×SU(2)R ≃ O(4). The global SU(2)L is gauged and

identified with the weak group, while the hyperchage group is associated to the U(1)Y ⊂ SU(2)R

generated by τ3.

The Higgs lagrangian with the bi-doublet matrix M reads as

LM =
1

2
Tr
(
(DµM)†DµM

)
− µ2

4
Tr
(
M†M

)
− λ

8
Tr
(
M†M

)2
+

+
[
Q̄LMYQQR + L̄LYLMLR + h.c

] (3.7)

where

DµM(x) = ∂µM(x) +
ig

2
W a
µ (x)τaM(x)− ig′

2
Bµ(x)M(x)τ3 (3.8)

and

YQ ≡
(

YD 0

0 YU

)
YL ≡

(
0 0

0 YE

)
(3.9)

QR ≡
(

UR

DR

)
LR ≡

(
0

ER

)
(3.10)

3.2.1 Custodial symmetry

Notice that in the limit where g′ = 0, YD = YU and YE = 0, the lagrangian 3.7 is symmetric

under SU(2)L × SU(2)R.
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Potential 3.6 has a minimum in

〈Tr
(
M†M

)
〉

2
= 〈Φ†Φ〉 = µ2

λ
≡ v2

2
(3.11)

at which the electroweak symmetry is spontaneously broken. Setting the alignment ~ϕmin = (v,~0),

it is seen that the vacuum is not invariant under the whole O(4) ≃ SU(2)L × SU(2)R, but

only under O(3) ≃ SU(2)L+R transformations. That the conserved group is the diagonal group

SU(2)L+R is seen by expressing the vacuum as

〈M〉 = 1√
2

(
v 0

0 v

)
(3.12)

Since M transforms as

M → LMR† (3.13)

〈M〉 is only invariant if L = R. This is known as the SU(2)c custodial symmetry of the Standard

Model, and its importance is due to the fact that it ensures that the relation

ρ ≡ m2
W

m2
Z cos2 θ

= 1 (3.14)

is exact at tree level. Let us consider first the case in which g′ = 0. In this limit there is no

massless photon in the spectrum and the Z particle coincides with the W 3 boson. A priori, the

masses of the charged W± and of W 3 need not be equal; however,the existence of an additional

global unbroken symmetry SU(2)L+R under which the weak currents as well as the weak bosons

transform as a triple enforces the equality mW± = mW 3 . Therefore in this limit ρ = 1. If g′ 6= 0,

then the relation that holds at tree-level is indeed 3.14.

However, this relationship is broken at loop levels by terms proportional to g′ and (YD −YU ),

so that

ρ = 1 +∆ρ (3.15)

where ∆ρ ∼ 10−3 [25] accounts for custodially breaking radiative contributions. For example,

loops of Higgs particles induce a term of the form

∆ρ =
−11GFm

2
Z sin2 θW

24
√
2π2

log

(
m2
h

m2
Z

)
(3.16)

so that, as expected, in the limit g′ → 0 (sin2 θW → 0), ∆ρ = 0.

It can be shown that in any theory of EW symmetry breaking where the vacuum is symmetric

under U(1)em as well as under an SU(2)c under which the generators of SU(2)L transform as a
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triplet, the mass matrix of the electroweak bosons in the basis (W 1
µ ,W

2
µ ,W

3
µ , Bµ) has the form

M2 ∝




g2

g2

g2 −gg′

−gg′ g′2




(3.17)

and thus ρ = 1 at tree level, as in the SM.

3.2.2 Construction of the Appelquist-Longhitano-Feruglio basis

The existence of a light Higgs scalar was seen to be a problem since the early stages of the

construction of the SM [9]. An attractive solution then for the hierarchy problem was to consider

that the Higgs particle was either very heavy or simply non-existing, with the EWSB triggered by

some strong dynamics. In this section we will follow [26–29] and construct an effective lagrangian

for this non-linear scenario, which is usually called the chiral lagrangian. This name is due to

the chiral lagrangian for pions of low-energy QCD, which is based on the spontaneous breaking

of the chiral group SU(2)L × SU(2)R.

In order to capture the essence of the formulation we will focus in the bosonic sector of the EFT,

describing the longitudinal and transversal modes of EW gauge bosons. The inclusion of fermions

would essentially amount to the addition of a larger number of operators.

Since m2
h ≡ m2

φ = 1
2µ

2 = 1
2λv

2, the limit mh → ∞ is equivalent to having λ → ∞ while keeping

v finite. In this case, the potential develops an infinite positive curvature at its minimum,

MM† =
φ0(x) + ~φ2(x)

2
= v2 (3.18)

Thus, the φ0(x) and ~φ(x) fields are bound to lie in a three-dimensional hypersphere of radius v.

Defining U ≡ M/v, the lowest order bosonic lagrangian describing the GBs is now given by

L0 =
v2

4
Tr
(
DµU

†DµU
)

(3.19)

where

DµU(x) ≡ ∂µU(x) +
ig

2
W a
µ (x)τaU− ig′

2
Bµ(x)Uτ3 (3.20)

As with the SMEFT, this lagrangian is given by a tower of operators, which are now constructed

using the U matrix and the EW gauge boson fields as the building blocks. However, in the chiral

case the expansion is not given by the canonical mass dimension of operators, but it is instead
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an expansion in derivatives (or momenta). We will construct a set of operators that allow us to

write the bosonic chiral lagrangian of the SM up to four derivatives, the ALF basis [26–29]. It is

instructive to show the construction of the basis with some detail, since a parallel procedure will

be follow in the next chapter when the effective lagrangian for generic CH models is built.

The invariant operators must be constructed by taking the traces of local operators which trans-

form covariantly under SU(2)L×U(1)Y . We can choose in particular to build the operators from

a set of objects O(x) which are SU(2)L covariants and U(1)Y singlets,

O(x) → O′(x) = LML† (3.21)

with

L = eiǫ
a(x)τa/2 ∈ SU(2)L (3.22)

Thus, for any given O(x), Tr (O(x)) is an SU(2)L × U(1)Y invariant. We introduce the adjoint

representation operator Dµ,

DµO(x) ≡ ∂µO(x) + ig [Wµ(x), O(x)] (3.23)

where Wµ(x) ≡ W a
µ (x)τa/2. We introduce the pseudo-scalar and chiral fields T and Vµ trans-

forming in the adjoint of SU(2)L defined as

T(x) ≡U(x)τ3U
†(x), T(x) → LT(x)L†

V(x) ≡ (DµU(x)) ,U†(x) V(x) → LVµ(x)L
†

(3.24)

We define as G the set of objects transforming covariantly, as O(x), obtained by taking covariant

derivatives of T, V, Wµν and Bµν , where

Wµν ≡∂µWν − ∂νWµ + ig [Wµ,Wν ] ,

Bµν ≡BµνT = (∂µBν − ∂νBµ)T
(3.25)

so that

G = {T,Vµ,Wµν ,Bµν ;DσT,DσV,DσWµν ,DσBµν ; . . .Dα · · · DσT,Dα · · · DσVµ,

,Dα · · · DσWµν ,DσBµν}
(3.26)

Any invariant operator can be constructed from traces of sequences of elements of G. It can be

shown that indeed Dµ behaves as a derivative,

Dµ (O1(x)O2(x)) = DµO1(x)O2(x) +O1(x)DµO2(x) (3.27)
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It should be noted that it is not needed to include in G the operator K̃µ ≡ U (DµU)† since the

unitarity of U ensures that

K̃µ = U (DµU)† = −Vµ (3.28)

One can prove that all the elements of G are traceless quite straightforwardly. First of all, we

prove that T , Vµ and Wµν are traceless:

Tr (T) = Tr
(
Uτ3U

†
)
= 0

Tr (Vµ) = Tr
(
(∂µU)U†

)
+ igTr (Wµ)−

ig′

2
Bµ(x)Tr (τ3) = 0

Tr (Wµν) = ∂µTr (Wν)− ∂νTr (Wµ) + igTr ([Wµ,Wν ]) = 0

(3.29)

On top of that, the covariant derivative Dµ of any traceless element O ∈ G is traceless:

Tr (DµO) = ∂µTr (O) + igTr ([Wµ, O]) = 0 (3.30)

Thus, the successive derivatives of T, Vµ and Wµν , which form G have null trace. Being SU(2)

covariants and traceless, all the elements O ∈ G can be decomposed as a linear (complex) com-

bination of the Pauli matrices,

O = Oaτa (3.31)

The Kronecker delta δij and the Levi-Civita symbol ǫijk are the only SU(2) invariant tensors

thus, the product of any number of σ matrices, being invariants, must be expressable as linear

combinations of products of these objects. In conclusion, the traces of products of these matrices

can be decomposed in traces of the product of only two and three τa matrices, since Tr (τiτj) = 2δij

and Tr (τiτjτk) = 2iǫijk. Furthermore,the trace of three τ matrices appears only once, at most,

in each product. These are particularities of SU(2), and when in the following chapter we follow

a similar procedure to write the effective lagrangians invariant under different groups these kind

of reductions might no be possible.

We can then restrict ourselves to traces of products of only 2 or 3 elements in G. In order to

build all the operators, we follow the next steps: first, we make a list of all structures of the type

Tr(
∏
iOI) up to a certain dimension; then, from these we form a basis of independent terms;

finally, build all the invariant terms for the lagrangian employing also Bµν ≡ ∂µBν − ∂νBν .

In general, the operators constructed in this way will not be independent. However, a complete

set of independent operators can be found by using the antisymmetry of the field-strenghts Wµν

and Bµν , integration by parts and the identities

[Dµ,Dν ]O(x) = ig [Wµν , O(x)] ; ∀O(x) (3.32)
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3.2. The chiral lagrangian for the SM

Vµν ≡ DµVν −DνVµ = igWµν −
ig′

2
BµνT+ [Vµ,Vν ] (3.33)

The fundamental fields of the theory, U,Wµ and Bµ, transform under discrete CP transforma-

tions as
CP U (~x, t)P−1C−1 =η τ2U (−~x, t) τ2

CP Wµ (~x, t)P
−1C−1 =τ2W

µ (−~x, t) τ2
CP Bµ (~x, t)P

−1C−1 =η′Bµ (−~x, t)

(3.34)

with η = ±1 and η′ = ±1. In order to set η′ we see how Vµ transforms under CP:

(DµU)′ =∂µU
′ + igW′

µU
′ − ig′

2
B′
µU

′τ3 =

=ητ2∂µU (−~x, t) τ2 + igητ2Wµ (−~x, t)U (−~x, t) + ig′

2
η′Bµ (−~x, t) τ3 =⇒

=⇒ V′
µ =τ2 (∂µU (−~x, t))U† (−~x, t) + igτ2Wµ (−~x, t) τ2 +

ig′

2
η′Bµ (−~x, t) τ3

(3.35)

Therefore, if we set η′ = −1 then Vµ transforms in a well-defined manner under CP, i.e.

CP T (~x, t)P−1C−1 = −τ2T (−~x, t) τ2
CP Vµ (~x, t)P

−1C−1 =τ2V
µ (−~x, t) τ2

(3.36)

Instead of considering operators O which are SU(2)L covariants and U(1)Y invariants we could

have chosen to use SU(2)L invariants and U(1)Y covariants,

Ō(x) → Ō′(x) = eiǫ0(x)τ3/2Ō(x)e−iǫ0(x)τ3/2 (3.37)

Defining Iµ ≡ U†DµU then the set of SU(2)L × U(1)Y invariants would be written by taking

traces of elements from the set

H =
{
τ3, Iµ, D̄σIµ, . . . , D̄α · · · D̄σIµ

}
(3.38)

where the covariant derivative D̄µ is defined as

D̄µŌ(x) = ∂µŌ(x) +
ig′

2
Bµ(x)

[
τ3, Ō(x)

]
(3.39)

Due to the unitarity ofU, we have thatUIµU
† = Vµ. Furthermore, UŌU† ∈ G, since transforms

like O,

UŌU† → L
(
UŌU†

)
L† (3.40)
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3.2. The chiral lagrangian for the SM

Since the following identity holds

U
(
D̄µŌ

)
U† = Dµ

(
UŌU†

)
−
[
Vµ,UŌU†

]
(3.41)

it’s clear that invariants of the type Tr
(
Ō
)
can be expressed as traces of objects O ∈ G by

insertions of UU† = 1. Therefore, the complete set of SU(2)L × U(1)Y operators can be con-

structed as was done in the first place, with using SU(2)L covariant and U(1)Y invariant building

blocks, without loss of generality. Invariants written in terms of determinants of products of op-

erators need not be considered, since using the Cayley-Hamilton theorem any operator involving

determinants can be written in terms of operators constructed by taking the traces of covariant

objects.

In conclusion, In order to write the structures from which build the list of operators there are

some things to be noted. First, one can avoid using DµT, since

DµT = [Vµ,T] (3.42)

Additionally, notice that T2 = 1. Finally, even if the commutator of elements in G will be

considered, one can get rid of the anticommutators, since only products of up to 3 elements are

considered, and

Tr (O{O1, O2}) = O1
1O

j
2δijTr (O) = 0 (3.43)

Thus in general we will always include the antysimmetric combination whenever the product of

3 operators appears:

Tr (O1O2O3) =
1

2
Tr ([O1, O2]O3) +

1

2
Tr ({O1, O2}O3) =

1

2
Tr ([O1, O2]O3) (3.44)

The list of independent structures, organized by the number of derivatives D, is shown in

Eq. (3.45), where (Wµν → Bµν) indicates all possible structures built by replacing Wµν by

Bµν . In order to construct the list of operators one takes products the structures listed in 3.45.

The operators can be classified according to their CP character (even or odd) and how they re-

late to custodial symmetry. In particular, the name ”custodial preserving“ will be given to those

operators that either respect custodial symmetry or vanish in the limit g′ = 0 - in other words,

operators that break custodial symmetry in the same way that the Standar Model does. The

rest of operators, which even in the limit g′ = 0 violate custodial symmetry, are referred to as

”custodial breaking“, since they represent BSM custodial breaking effects.

An easy way to identify to which class an operator belong is identifying the presence of the

T operator: if it appears as part of Bµν , accompanying the field Bµν the operator is custodial
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3.2. The chiral lagrangian for the SM

D = 1 Tr (TVµ)

D = 2 Tr (TDµVν) Tr (VµVν)

Tr (TWµν) Tr (T[Vµ,Vν ]) (Wµν → Bµν)

D = 3 Tr (TDµDνVρ)

Tr (VµDνVρ) Tr ([T,Vµ]DνVρ)

Tr (VµDνVρ) Tr ([T,Vµ]Wνρ) (Wµν → Bµν)

Tr (VµWνρ) Tr (VµVνVρ)

D = 4 Tr (TDµDνDρVρ)

Tr (VµDνDρVσ) Tr (WµνWρσ) (Wµν → Bµν)

Tr (VµDνWρσ) Tr ([T,Wµν ]DρVσ)

Tr ((DµVν) (DρVσ)) Tr ([Vµ,Vν ]DρVσ)

Tr (DµVνWρσ) Tr ([Vµ,Vν ]Wρσ)

(3.45)

preserving (since τ3 can be identified as the generator of U(1)Y ⊂ SU(2)L), and custodial violating

otherwise. The vector field Vµ is a singlet under SU(2)R, and therefore its insertions do not break

SU(2)L × SU(2)R.

The complete independent basis of CP even bosonic operators up to four derivatives reads as

follows, with the definitions X∗
µν ≡ ǫµνρσX

ρσ for X = {B,W}:

CP-even perators with two derivatives

Custodial preserving Custodial breaking

OC = −v
2

4
Tr(VµVµ) OT =

v2

4
Tr(TVµ)Tr(TVµ)

(3.46)

CP-even operators with four derivatives

Custodial preserving Custodial breaking

OB = −1

4
BµνB

µν O7 = g2(Tr(TWµν))
2

OW = −1

2
Tr(WµνW

µν) O8 = igTr(TWµν)Tr(T[Vµ,Vν ])

O1 = gg′BµνTr(TWµν) O9 = gTr(TVµ)Tr(VνW∗
µν)

O2 = ig′BµνTr(T[Vµ,Vν ]) O10 = Tr(TDµV
µ)Tr(TDνV

ν)

O3 = igTr(Wµν [V
µ,Vν ]) O11 = Tr([T,Vν ]DµV

µ)Tr(TVν)

O4 = (Tr(VµV
µ))2 O12 = Tr(VµV

µ)(Tr(TVν))
2

O5 = Tr((DµV
µ)2) O13 = Tr(VµVν)Tr(TVµ)Tr(TVν)

O6 = (Tr(VµVν))
2 O14 = (Tr(TVµ)Tr(TVν))

2 .

(3.47)
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3.2. The chiral lagrangian for the SM

The low-energy electroweak chiral CP-even bosonic Lagrangian up to four derivatives is given by

Llow = L
p2

low + L
p4

low , (3.48)

where L
p2

low and L
p4

low contain two and and four-derivative operators,

L
p2

low =OC + cTOT ,

L
p4

low =OB +OW +
14∑

i=1

ciOi

(3.49)

It is important to notice how cT parametrizes the explicit breaking of custodial symmetry at

leading order given by the operator OT . The fact that it contributes to the ρ parameter is due

to it contributing to the Z mass but not to mW , so that

ρ =
m2
W

m2
Z cos2 θ

=
1

1− 2ct
≃ 1 + 2cT (3.50)

The experimental constraints on ∆ρ lead to a value of cT ∼ 10−3 could lead one to choose to

have OT appear at NLO. Furthermore, it is an example of the strong constraint that ρ ≃ 1 puts

on generic models of EWSB, imposing an approximate symmetry that in the SM happens to be

an accidental one.

The CP-odd counterpart reads as follows:

CP-odd operators with two derivatives

Custodial preserving Custodial breaking

− R2D = i
v2

4
Tr (TDµV

µ) (3.51)

CP-odd operators with four derivatives

Custodial preserving Custodial breaking

RBB∗ = −g
′2

4
B∗
µνB

µν R2 = gTr (WµνVµ) Tr (TVν)

RWW ∗ = −g
2

2
Tr(W∗

µνW
µν) R3 = 2 g2Tr

(
TW∗

µν

)
Tr (TWµν)

R1 = 2g g′B∗
µνTr (TWµν) R4 = iTr (VµDνVν) Tr (TVµ)

R5 = iTr (TDµVµ) Tr (V
ν Vν)

R6 = iTr (TDµVµ) (Tr (TVν))2

(3.52)
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3.3. The chiral lagrangian with a light Higgs (HEFT)

The low-energy electroweak chiral Lagrangian describing the CP-odd bosonic lagrangian up to

four derivatives, can instead be written as:

Llow,✟✟CP = L
p2

low,✟✟CP
+ L

p4

low,✟✟CP
, (3.53)

where L
p2

low,✟✟CP
and L

p4

low,✟✟CP
contain two and four-derivative operators, respectively,

L
p2

low,✟✟CP
= c2DR2D ,

L
p4

low,✟✟CP
=RBB∗ + RWW ∗ +

6∑

i=1

ciRi ,
(3.54)

3.3 The chiral lagrangian with a light Higgs (HEFT)

The ALF basis describes a situation in which the Higgs scalar either doesn’t exist or its mass

is so big that it can be decoupled from the theory. However, since 2012 the existence of a light

scalar of a mass of 125 GeV has been established, and therefore must be included in an effective

lagrangian describing the SM. Its effects can be studied by expanding the ALF basis by adding

a gauge singlet scalar h. This approach is useful since it allows for a description of not only the

Higgs scalar, which is embedded in an SU(2)L doublet, but also of other BSM scenarios. This

construction is known in the literature as the Higgs Effective Field Theory (HEFT) [30–33]

The effects of the singlet scalar h are encoded in generic functions F(h),

Fi(h) = 1 + 2ai
h

v
+ bi

h2

v2
+ . . . (3.55)

which in particular do not depend on derivatives of h. The modification with respect to the ALF

basis is twofold: on the one hand, new operators which depend on derivatives of h can appear;

on the other hand, every term of the lagrangian appears as the product of one operator and a

generic function Fa. Their a priori infinite expansion in powers of h encode the fact that in this

approach this Higgs-like particle is treated in the same way as the SM Goldstone bosons, πa,

which appear in the exponential matrix U.

CP-even perators with two derivatives

Custodial preserving Custodial breaking

PC = −v
2

4
Tr(VµVµ) PT =

v2

4
Tr(TVµ)Tr(TVµ)

(3.56)
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3.3. The chiral lagrangian with a light Higgs (HEFT)

CP-even perators with four derivatives

Custodial preserving Custodial breaking

PB = −1

4
BµνB

µν P12 = g2(Tr(TWµν))
2

PW = −1

2
Tr(WµνW

µν) P13 = igTr(TWµν)Tr(T[Vµ,Vν ])

P1 = gg′BµνTr(TWµν) P14 = gǫµνρλTr(TVµ)Tr(VνWρλ)

P2 = ig′BµνTr(T[Vµ,Vν ]) P15 = Tr(TDµV
µ)Tr(TDνV

ν)

P3 = igTr(Wµν [V
µ,Vν ]) P16 = Tr([T,Vν ]DµV

µ)Tr(TVν)

P4 = ig′BµνTr(TVµ)∂ν(h/v) P17 = igTr(TWµν)Tr(TVµ)∂ν(h/v)

P5 = igTr(WµνV
µ)∂ν(h/v) P18 = Tr(T[Vµ,Vν ])Tr(TVµ)∂ν(h/v)

P6 = (Tr(VµV
µ))2 P19 = Tr(TDµV

µ)Tr(TVν)∂
ν(h/v)

P7 = Tr(VµV
µ)∂ν∂

ν(h/v) P21 = (Tr(TVµ))
2∂ν(h/v)∂

ν(h/v)

P8 = Tr(VµVν)∂
µ(h/v)∂ν(h/v) P22 = Tr(TVµ)Tr(TVν)∂

µ(h/v)∂ν(h/v)

P9 = Tr((DµV
µ)2) P23 = Tr(VµV

µ)(Tr(TVν))
2

P10 = Tr(VνDµV
µ)∂ν(h/v) P24 = Tr(VµVν)Tr(TVµ)Tr(TVν)

P11 = (Tr(VµVν))
2 P25 = (Tr(TVµ))

2∂ν∂
ν(h/v)

P20 = Tr(VµV
µ)∂ν(h/v)∂

ν(h/v) P26 = (Tr(TVµ)Tr(TVν))
2 .

(3.57)

To fully encompass the h sector, this list should be extended by a set of four pure-h operators:

Operators with two derivatives

PH =
1

2
(∂µh)

2 . (3.58)

Operators with four derivatives

P�H =
1

v2
(∂µ∂

µh)2 , P∆H =
1

v3
(∂µh)

2�h ,

PDH =
1

v4
((∂µh)(∂

µh))2 .

(3.59)

In summary, the low-energy electroweak chiral Lagrangian describing the CP-even gauge-Goldstone

and the gauge-scalar interactions can thus be written as

Llow = L
p2

low + L
p4

low , (3.60)
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3.3. The chiral lagrangian with a light Higgs (HEFT)

where L
p2

low and L
p4

low contain two and and four-derivative operators,

L
p2

low =PCFC(h) + cTPTFT (h) + PHFH(h) ,

L
p4

low =PBFB(h) + PWFW (h) +

26∑

i=1

ci PiFi(h)+

+ c�HP�HF�H(h) + c∆HP∆HF∆H(h) + cDHPDHFDH(h) ,

(3.61)

CP-odd operators with two derivatives

Custodial preserving Custodial breaking

− S2D = i
v2

4
Tr (TDµV

µ) (3.62)

CP-odd operators with four derivatives

Custodial preserving Custodial breaking

SBB∗ = −g
′2

4
B∗
µνB

µν S4 = gTr (WµνVµ) Tr (TVν)

SWW ∗ = −g
2

2
Tr(W∗

µνW
µν) S5 = iTr (VµVν) Tr (TVµ) ∂ν(h/v)

S6 = iTr (VµVµ) Tr (TVν) ∂ν(h/v)

S1 = 2g g′B∗
µνTr (TWµν) S7 = gTr (T [Wµν ,Vµ]) ∂ν(h/v)

S2 = 2 i g′B∗
µν Tr (TVµ) ∂ν(h/v) S8 = 2 g2Tr

(
TW∗

µν

)
Tr (TWµν)

S3 = 2 i gTr
(
W∗

µν Vµ

)
∂ν(h/v) S9 = 2 i gTr

(
W∗

µν T
)
Tr (TVµ) ∂ν(h/v)

S10 = iTr (VµDνVν) Tr (TVµ)

S11 = iTr (TDµVµ) Tr (V
ν Vν)

S12 = iTr ([Vµ,T]DνVν) ∂µ(h/v)

S13 = iTr (TDµVµ) ∂
ν∂ν(h/v)

S14 = iTr (TDµVµ) ∂
ν(h/v) ∂ν(h/v)

S15 = iTr (TVµ) (Tr (TVν))2 ∂µ(h/v)

S16 = iTr (TDµVµ) (Tr (TVν))2

(3.63)

The low-energy electroweak chiral Lagrangian describing the CP-odd gauge, gauge-Goldstone and

the gauge-Higgs interactions can instead be written as:

Llow,✟✟CP = L
p2

low,✟✟CP
+ L

p4

low,✟✟CP
, (3.64)
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3.3. The chiral lagrangian with a light Higgs (HEFT)

where L
p2

low,✟✟CP
and L

p4

low,✟✟CP
contain two and four-derivative operators, respectively,

L
p2

low,✟✟CP
= d2DS2DE2D(h) ,

L
p4

low,✟✟CP
=SBB∗EBB∗(h) + SWW ∗EWW ∗(h) +

16∑

i=1

di SiEi(h) ,
(3.65)

with E(h) being generic Higgs functions as defined in 3.55

3.3.1 Matching the linear and non-linear lagrangians

In order to connect the linear and chiral lagrangian one uses the relation 2.7, which connects the

doublet Φ with the matrix U and the higgs Scalar h(x). For example, the kinetic term of the SM

Higgs doublet results in

(DµΦ) (DµΦ)
† =

1

2
(∂µh)

2 − v2

4

(
1 +

h

v

)2

Tr (VµV
µ) = PH +

(
1 +

h

v

)2

PC (3.66)

Thus, L
p2

low in 3.65 can reproduce the SM prediction with the particular choices of FC(h) = 1,

cT = 0 and FH(h) = (1 + h/v)2; using the parametrization from 3.55, this in particular means

aC = bC = 0 and aH = bH = 1, disregarding higher order terms in h/v. This dependence

in the structure (1 + h/v)2 is characteristic of the SM lagrangian and it’s a signature of Higgs

the belonging in an SU(2)L doublet. Therefore, BSM extensions in which the EW symmetry is

linearly realized will be charaterized by functions Fi(h) of powers of (1 + h/v).
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Chapter 4

The effective lagrangian for a G/H
coset

4.1 Effective chiral Lagrangian for symmetric cosets

The goal of this chapter is to present a method for writing the high-energy effective Lagrangian for

any given Composite Higgs model. As explained in section 2.3, a CH setup can be characterized

by a global group G which is broken down to a subgroupH by some unspecified strong dynamics at

a scale Λs. In addition to the requirements listed in subsection 2.3.1, the group G will be assumed

to be symmetric, which essentially means that there is a parity-like transformation under which

the unbroken generators remain invariant while the broken generators change sign. All realistic

models, not only of Composite Higgs but also in QCD, show such a transformation.

This work will deal with up to four derivative purely bosonic operators, both even and odd under

CP transformations, following respectively [34] and [2]. An application of this construction to the

Georgi-Kaplan SU(5)/SO(5) will be shown in Chapter 5, whereas the application to the Minimal

Composite Higgs Model SO(5)/SO(4) and the explicitly custodial breaking SU(3)/SU(2)×U(1)

model will be studied in Chapter 6.

4.1.1 Non-linear realisations of the G/H symmetry breaking

The Goldstone theorem shows that a global symmetry breaking G → H leads to the existence of

n = dim(G/H) massless bosons, known as Goldstone bosons. Denoting by Ta (a = 1 . . . , dim(H))

the unbroken generators (i.e., the generators of H), and Xâ (â = 1 . . . , dim(G/H)) the broken
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4.1. Effective chiral Lagrangian for symmetric cosets

generators (i.e., generators of the coset G/H), the Goldstone bosons are described by the field

Ξ(x) = Ξâ(x)Xâ . (4.1)

The so-called Callan-Coleman-Weiss-Zumino (CCWZ) construction proves (as it’s shown in Ap-

pendix A) that the Goldstone bosons associated to the global symmetry breaking G → H, can be

parametrized by the matrix field

Ω(x) ≡ eiΞ(x)/2f , (4.2)

which, as is shown in said Appendix, transforms under global g ∈ G transformations as

Ω(x) → gΩ(x) h−1(Ξ, g) , (4.3)

where h(Ξ, g) ∈ H.

Formally, a coset G/H is said symmetric if it admits an automorphism R so that

g ∈ G → R(g) ≡ gR ,

R :




Ta → +Ta

Xâ → −Xâ

(4.4)

The fact that H is closed, that the structure constants of any compact group are completely

antisymmetric and that the coset G/H is symmetric imply that the generators satisfy the following

conditions:

[T, T ] ∝ T , [T, X] ∝ X , [X, X] ∝ T , (4.5)

As already pointed out in Ref. [35], it can be shown that in the presence of such an automorphism

the non-linear field transformations of Ω(x) can also be recast as:

Ω(x) → hΩ(x) g−1
R . (4.6)

From Eqs. (4.3) and (4.6), it is thus possible to define for all symmetric cosets a “squared”

non-linear field Σ(x):

Σ(x) ≡ Ω(x)2 , (4.7)

transforming under G as,

Σ(x) → gΣ(x) g−1
R , (4.8)
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4.1. Effective chiral Lagrangian for symmetric cosets

showing explicitly that the transformation on Ξ(x) is a realisation of G, and that it is linear when

restricted to H. Notice that the GB field matrix Σ(x) transforms under the grading R as:

Σ(x) → Σ(x)−1 . (4.9)

It is then a matter of taste, in a symmetric coset framework, to use Ω(x) or Σ(x) for describing

the GBs degrees of freedom and the interactions between the GB fields and the gauge/matter

fields. The Ω-representation to derive H-covariant quantities entering the model Lagrangian has

been used in several examples. However, when discussing QCD or EW chiral Lagrangians, the

Σ-representation has been more often adopted. To make a straightforward comparison with Llow

introduced in Chapter 3, the Σ-representation will be kept in the following.

One can introduce the vector chiral field1:

Ṽµ = (∂µΣ)Σ−1 , Ṽµ → g Ṽµ g
−1 , (4.10)

transforming in the adjoint of G.

In a realistic context, however, gauge interactions should be introduced, and to assign quantum

numbers it is convenient to formally gauge the full group G. In the symmetric coset case, it is

possible to define both the G gauge fields S̃µ, and the graded siblings S̃R
µ ≡ R(S̃µ), transforming

under G, respectively, as:

S̃µ → g S̃µ g
−1 − i

gS
g(∂µ g

−1) , S̃R
µ → gR S̃R

µ g−1
R − i

gS
gR(∂µ g

−1
R ) , (4.11)

with gS denoting the associated gauge coupling constant. The (gauged) version of the chiral

vector field Ṽµ can then be defined as:

Ṽµ = (DµΣ)Σ−1 , (4.12)

with the covariant derivative of the non-linear field Σ(x) being,

DµΣ = ∂µΣ+ i gS(S̃µΣ−ΣS̃R
µ ) . (4.13)

The following three G-covariant objects can thus be used as building blocks for the (gauged)

effective chiral Lagrangian:

Ṽµ , S̃µν and ΣS̃R
µν Σ

−1 . (4.14)

1In order to avoid confusion we will denote with “∼” gauge bosons and chiral fields embedded in G.
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4.1. Effective chiral Lagrangian for symmetric cosets

The introduction of the graded vector chiral field ṼR
µ does not add any further independent

structure, as indeed

ṼR
µ ≡ R(Ṽµ) = (DµΣ)−1Σ with ΣṼR

µ Σ−1 = −Ṽµ . (4.15)

Under the hypothesis of absence of any custodial symmetry breaking source besides the SM ones,

any operator containing the high-energy sibling of the scalar chiral field T(x),

T̃ ≡ ΣQYΣ
−1 (4.16)

with QY being the embedding in G of the hypercharge generator, should not enter in the basis,

except in one specific case, discussed later on, where the presence of two T̃ gives rise to a custodial

preserving operator.

4.1.2 Basis of independent operators

It is now possible to derive the most general operator basis describing the interactions of the G
gauge fields and of the GBs of a non-linear realisation of the symmetric coset G/H. We assume

that the only sources of custodial symmetry breaking are those present in the SM. Performing

an expansion in momenta and considering CP even operators with at most four derivatives, one

obtains the following nine independent operators:

2-momenta CP-even operator

Tr
(
ṼµṼ

µ
)
. (4.17)

This operator describes the kinetic terms for the GBs and, once the gauge symmetry is

broken, results in masses for those GBs associated to the broken generators.

4-momenta CP-even operators with explicit gauge field strength S̃µν

Tr
(
S̃µνS̃

µν
)
, Tr

(
ΣS̃Rµν Σ

−1 S̃µν
)
, Tr

(
S̃µν

[
Ṽµ, Ṽν

])
. (4.18)

The first operator describes the kinetic terms for the gauge bosons S̃µ. The other two

contain gauge-GB and pure-gauge interactions.

4-momenta CP-even operators without explicit gauge field strength S̃µν

Tr
(
Ṽµ Ṽ

µ
)
Tr
(
Ṽν Ṽ

ν
)
, Tr

(
Ṽµ Ṽν

)
Tr
(
Ṽµ Ṽν

)
,

Tr
(
(DµṼ

µ)2
)
, Tr

(
Ṽµ Ṽ

µṼν Ṽ
ν
)
, Tr

(
Ṽµ ṼνṼ

µ Ṽν
)
,

(4.19)
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where the adjoint covariant derivative acting on Ṽµ is defined as

DµṼ
µ = ∂µṼ

µ + i gS

[
S̃µ, Ṽ

µ
]
.

Of course there are a priori many other structures which can be built, but an independent set

such as the one listed in Eqs. (4.17)–(4.22) can be found, in a similar fashion as in section 3.2,

by integration by parts as well as using the identities

[Dµ,Dν ]O(x) = igS

[
S̃µν ,O(x)

]
,

Ṽµν ≡ DµṼν −DνṼµ = igSS̃µν − igSΣS̃R
µνΣ

−1 + [Ṽµ, Ṽν ]
(4.20)

As in the case of the ALF basis, operators involving determinants are not considered since, using

to the Cayley-Hamilton theorem, they can be re-expressed purely in terms of operators built from

traces of fields. A particular case is the operator Tr((DµṼ
µ)Ṽν Ṽ

ν), which is not included in the

set of independent operators since it is not invariant under the grading automorphism.

It is worth noticing that in specific G/H realisations, some of the operators listed may not be

independent. For example the operators with traces of four Ṽµ appearing in the second line of

Eq. (4.22) are redundant in the case G = SU(2)L×SU(2)R and H = SU(2)V , as they decompose

in products of traces of two Ṽµ. It may not be true in models with larger group G, as it depends
on the specific algebra relations of the generators.

Finally, some caution should be also used when fermions are introduced. In this case all operators

containing DµṼ
µ can be traded, via equations of motion, by operators containing fermions and

a careful analysis should be performed to avoid the presence of redundant terms.

The CP-odd independent structures can be found following the same procedure:

4-momenta CP-odd operators with gauge field strength S̃µν

Tr
(
S̃∗
µνS̃

µν
)
, Tr

(
S̃∗
µν ΣS̃µν,RΣ−1

)
, (4.21)

where S̃∗
µν ≡ ǫµνρσS̃

ρσ. The first operator resembles the usual θ term operator for QCD.

The other contains gauge-GB and pure-gauge interactions.

4-momenta CP-odd operators without gauge field strength S̃µν

ǫµνρσTr
(
T̃
[
Ṽµ , Ṽν

])
Tr
(
T̃
[
Ṽρ , Ṽσ

])
, ǫµνρσTr

(
Ṽµ ṼνṼρ Ṽσ

)
, (4.22)

Other operators with traces of two Ṽ’s are clearly vanishing due to antisymmetry.
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4.1. Effective chiral Lagrangian for symmetric cosets

The operators listed in Eqs. (4.21)–(4.22) represent the set of independent CP–odd structures

that can be introduced in a generic symmetric coset. The operator appearing on the left side of

Eq. (4.22) seems a priori custodial symmetry breaking, since it involves the T̃ operator. How-

ever, as will be seen in the following chapters, its low-energy projection is custodially preserv-

ing due to the SU(2)L algebra. This operator gives a low-energy contribution to the operator

ǫµνρσTr (TVµVν) Tr (TVρ) ∂σh, which can be expressed as a clearly custodial preserving one:

ǫµνρσTr (TVµVν) Tr (TVρ) ∂σh =
2

3
Tr (VµVνVρ) ∂σh (4.23)

As can be seen, the appearance of T(x) precisely in that combination implies that the operator

is custodial breaking. It will be shown that indeed the inclusion of the high-energy operator

involving two T̃ is necessary in order to produce the whole basis of low-energy operators.

Other operators could be easily introduced, apparently giving rise to new independent structures,

most notably:

Tr
(
S̃∗
µν

[
Ṽµ, Ṽν

])
, ǫµνρσTr

(
(DµṼν) (DρṼσ)

)
, ǫµνρσTr

(
(DµṼν) Ṽρ Ṽσ

)
,

However, making use of the Bianchi identity for the gauge field S̃µν ,

ǫµνρDµS̃νρ = 0 (4.24)

as well of integration by parts and the identities from 4.20, it is possible to show that all these

operators do not introduce any independent structure besides the one listed in Eqs. (4.21)–(4.22).

It is also worth noticing that in specific G/H realizations, some of the operators listed may not

be independent. For example the operator with traces of four Ṽµ appearing on the right hand

side of Eq. (4.22) is redundant in all the considered CH models even if it was not the case for its

CP-even counterpart.

4.1.3 General EW effective Lagrangian for a symmetric G/H coset

The list of operators in Eqs. (4.17)–(4.22) is valid on general grounds when formally gauging the

full group G. Nevertheless, in most realisations of CH models only the SM gauge group is gauged.

Consequently, in the generic gauge field S̃µ, only the EW components should be retained. While

no new operator structures appear in the sector made out exclusively of Ṽµ fields (see Eqs. (4.17)

and (4.22)), all operators where the gauge field strength appears explicitly, such as those in
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4.1. Effective chiral Lagrangian for symmetric cosets

Eq. (4.18), should be “doubled” by substituting S̃µ either with W̃µ or B̃µ, defined by

W̃µ ≡W a
µ Q

a
L and B̃µ ≡ BµQY , (4.25)

where QaL and QY denote the embedding in G of the SU(2)L ×U(1)Y generators. It follows that

a larger number of invariants can be written in this case. The EW high-energy chiral Lagrangian

describing up to four-derivative bosonic interactions is given by

Lhigh ≡ LCP + L
✟✟CP (4.26)

where LCP and L
✟✟CP are the CP-even and CP-odd high-energy Lagrangians respectively. The

former contains in total thirteen operators:

LCP = L
p2

CP + L
p4

CP , (4.27)

where

L
p2

CP = ÃC , (4.28)

L
p4

CP = ÃB + ÃW + c̃BΣÃBΣ + c̃WΣÃWΣ +

8∑

i=1

c̃i Ãi , (4.29)

with

ÃC = −f
2

4
Tr
(
ṼµṼ

µ
)
, Ã3 = i gTr

(
W̃µν

[
Ṽµ, Ṽν

])
,

ÃB = −1

4
Tr
(
B̃µνB̃

µν
)
, Ã4 = Tr

(
Ṽµ Ṽ

µ
)
Tr
(
Ṽµ Ṽ

µ
)
,

ÃW = −1

4
Tr
(
W̃µνW̃

µν
)
, Ã5 = Tr

(
Ṽµ Ṽν

)
Tr
(
Ṽµ Ṽν

)
,

ÃBΣ = g′2Tr
(
ΣB̃µνΣ

−1B̃µν
)
, Ã6 = Tr

(
(DµṼ

µ)2
)
,

ÃWΣ = g2Tr
(
ΣW̃µνΣ

−1W̃µν
)
, Ã7 = Tr

(
Ṽµ Ṽ

µṼν Ṽ
ν
)
,

Ã1 = g g′Tr
(
ΣB̃µνΣ

−1W̃µν
)
, Ã8 = Tr

(
Ṽµ ṼνṼ

µ Ṽν
)
,

Ã2 = i g′Tr
(
B̃µν

[
Ṽµ, Ṽν

])
,

(4.30)

On the other hand, the CP-odd EW high-energy chiral Lagrangian describing bosonic interactions,

up to four derivatives, contains in total six operators:

L
✟✟CP = d̃WW ∗B̃WW ∗ + d̃BΣ∗B̃BΣ∗ + d̃WΣ∗B̃WΣ∗ + d̃1 B̃1 + d̃2 B̃2 + d̃3 B̃3 , (4.31)
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4.1. Effective chiral Lagrangian for symmetric cosets

with

B̃WW ∗ = −g
2

4
Tr
(
W̃∗

µνW̃
µν
)

B̃1 = g g′Tr
(
W̃∗

µνΣB̃µνΣ−1
)

B̃BΣ∗ = g′2Tr
(
B̃∗
µνΣB̃µνΣ−1

)
B̃2 = ǫµνρσTr

(
T̃
[
Ṽµ , Ṽν

])
Tr
(
T̃
[
Ṽρ , Ṽσ

])

B̃WΣ∗ = g2Tr
(
W̃∗

µνΣW̃µνΣ−1
)

B̃3 = ǫµνρσTr
(
Ṽµ ṼνṼρ Ṽσ

)
.

(4.32)

with the EW covariant derivative in Eq. (4.32) defined as

DµṼ
µ = ∂µṼ

µ + i g
[
W̃µ, Ṽ

µ
]
+ i g′

[
B̃µ, Ṽ

µ
]
. (4.33)

The coefficients c̃i and d̃i are expected to be all of the same order of magnitude, according to

the effective field theory approach2. NDA [19, 36] applies and indicates that the four-derivative

operator coefficients are expected to be of order f2/Λ2
s & 1/(4π)2.

Notice that the first operator listed in Eq. (4.32), B̃WW ∗ , is a topological structure, analogous

to the QCD θ–term. Even if this coupling is usually not considered in the SM context, it is

included here in the basis for sake of completeness as it could give rise to non-vanishing effects

when considering the incorporation of fermions. On the other side, a similar term for the U(1)Y

is identically vanishing.

It is remarkable that, aside from kinetic terms and θ-terms, Lhigh contains only fifteen inde-

pendent operators (ten CP-preserving and five CP-violating), and thus at most ten arbitrary

coefficients c̃i and five d̃i to be determined. They will govern the projection of Lhigh into Llow

(in addition to the parameter(s) of the explicit breaking of the global symmetry). It is also worth

to note that the gauging of the SM symmetry breaks explicitly the custodial and the grading

symmetries. As a result, custodial and/or grading symmetry breaking operators can arise once

quantum corrections induced by SM interactions are considered. But this is beyond the scope of

this thesis.

In the case G = SU(2)L×SU(2)R andH = SU(2)V , the Lagrangian Lhigh reduces to the custodial

preserving sector of the ALF basis, with the three GBs described by the non-linear realisation

of the EWSB mechanism corresponding to the longitudinal degrees of freedom of the SM gauge

bosons. In this case, dim(G/H) = 3 and the h field cannot arise as a GB of the spontaneous G
symmetry breaking. CH models are, instead, built upon cosets with dim(G/H) ≥ 4, the minimal

ones being for example SO(5)/SO(4) and SU(3)/(SU(2) × U(1)) for the intrinsically custodial

preserving and custodial breaking setups, respectively. The four GBs resulting from the non-

linear symmetry breaking mechanism will then correspond to the three would-be SM GBs and

2The coefficients of the operators ÃC , ÃB and ÃW are taken equal to 1, which leads to canonical kinetic terms.
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4.1. Effective chiral Lagrangian for symmetric cosets

the Higgs particle. In non-minimal models, such as the SU(5)/SO(5) Georgi-Kaplan model,

additional GBs appear in the symmetry breaking sector. Either they are light degrees of freedom

and then provide interesting candidates for dark matter (see for instance Ref. [20, 37]) or for other

exotic particles, or they should become heavy enough through some “ad hoc” global symmetry

breaking effect associated to the strong interacting sector [15], leaving a negligible impact on

low-energy physics.
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Chapter 5

The low-energy projection and

potential for SU(5)/SO(5)

In this Chapter we will study the Georgi-Kaplan SU(5)/SO(5) model, which was the first Com-

posite Higgs model proposal, analyzed in detail in Ref. [16]. The first part will be devoted to

applying the Sigma Decomposition procedure to this particular case, writing the high-energy

effective bosonic lagrangian and matching it to the low-energy chiral lagrangian of the HEFT,

assuming that the only light Goldstone boson associated to the breaking is the Higgs scalar.

As opposed to the MCHM scenario, which uses the SO(5)/SO(4) coset, the Goldstone spectrum

of the Georgi-Kaplan is non-minimal in the sense that, in addition to the 3 would-be SM GBs

and the Higgs scalar, there are 10 additional potentially light Goldstones. Therefore, the second

part of the chapter will be dedicated to showing that there is a region of the parameter space in

which the Higgs scalar is indeed the only light Goldstone boson, proving right the assumption

previously done.

5.0.1 Spontaneous SU(5)/SO(5) symmetry breaking setup

The spontaneous global breaking of SU(5) → SO(5) can be seen as the result of a scalar field

belonging in the symmetric representation acquiring a vev ∆0, for example because of a strong

dynamics causing some fermions to form a condensate, as it’s the case in QCD and the quark-

antiquark condensate. Following Ref. [16], this vacuum is in all generality assumed to be a real,

symmetric and orthogonal 5× 5 matrix, so that

∆0 = ∆†
0 = ∆T

0 = ∆−1
0 (5.1)
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Chapter 5 The low-energy projection and potential for SU(5)/SO(5)

A convenient choice, which facilitates the identification of the SU(2)L×U(1)Y quantum numbers

in the SU(5) embedding, is given by

∆0 =




0 iσ2 0

−iσ2 0 0

0 0 1


 . (5.2)

It is then possible to describe the massless excitations around the vacuum with a symmetric field

∆(x), obtained “rotating” the vacuum by means of the GB non-linear field Ω(x):

∆(x) = Ω(x)∆0Ω(x)
T , ∆(x) → g∆(x) gT . (5.3)

The field ∆(x) describes all fourteen GBs stemming from the SU(5)/SO(5) breaking. Its transfor-

mation properties under SU(5), i.e. in the symmetric representation, follow from the invariance

of the vacuum under SO(5). Using the following relations between the vacuum ∆0 and the broken

and unbroken generators,

∆0 Ta∆0 = −T Ta , ∆0Xâ∆0 = XT
â , (5.4)

and because of the relations in Eq. (5.1), the excitations around the vacuum can be rewritten in

terms of the GB field Σ(x):

∆(x) = Ω(x)2∆0 ≡ Σ(x)∆0 . (5.5)

The vector chiral field Ṽµ is then related to the vacuum excitations,

Ṽµ(x) ≡ (DµΣ(x))Σ†(x) = (Dµ∆(x))∆∗(x) , (5.6)

from which it follows that the GB kinetic term can be written as:

Tr ((Dµ∆)(Dµ∆)∗) = Tr
(
(DµΣ)(DµΣ)†

)
= −Tr

(
ṼµṼ

µ
)
. (5.7)

Considering the fourteen GBs arising from the SU(5)/SO(5) breaking and described by Ω(x) (or

Σ(x)), the three would-be SM GBs X (x) and the scalar singlet field ϕ(x) can be split from the

other d.o.f. denoted collectively by K(x), by decomposing Ω(x) as [16]:

Ω(x) = e
i
ϕ(x)
2f

X (x)
e
i
K(x)
2f . (5.8)

As will be shown in section 5.3, there is a region of the parameter space of the potential in which

the GBs described by K(x) are much heavier, so that at energies below f the fields Ω(x) and
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Σ(x) can be approximated by:

Ω(x) ≈ e
i
ϕ(x)
2f

X (x)
, Σ(x) ≈ e

i
ϕ(x)
f

X (x)
. (5.9)

Furthermore, the explicit breaking of the global high-energy symmetry is assumed to induce a

potential for the singlet field ϕ(x), which eventually acquires dynamically a non-vanishing vev,

ϕ(x)

f
≡ h(x) + 〈ϕ〉

f
=

(
h(x) + 〈ϕ〉

v

)√
ξ , (5.10)

where h(x) refers to the physical Higgs (denoted often simply as h in what follows).

Denoting by X the broken generator along which the EW symmetry breaking occurs,

X =
1

2




0 0 e1

0 0 e2

eT1 eT2 0


 with e1 =

(
1

0

)
, e2 =

(
0

1

)
, (5.11)

the SU(5) embedding of the SM GB fields can be parametrised as

X (x) =
√
2




U

U

1


X




U†

U†

1


 =

1√
2




0 0 U(x)e1

0 0 U(x)e2

(U(x)e1)
† (U(x)e2)

† 0


 ,

(5.12)

with U(x) defined in Eq. (2.6). In the unitary gauge, X =
√
2X. Given the peculiar structure of

the matrix X, the Σ field can be written uniquely in terms of linear and quadratic powers of X
because X 3 = X :

Σ ≃ ✶+ i sin

(
ϕ

f

)
X +

(
cos

(
ϕ

f

)
− 1

)
X 2 . (5.13)

The last ingredient needed to fully specify the setup is the embedding of the SM fields in G. Given

the choice of vacuum, the SU(2)L × U(1)Y generators can be expressed as

QaL =
1

2




σa

σa

0


 , QY =

1

2




−✶2
✶2

0


 , (5.14)

where in these expressions σa denote the Pauli matrices and the normalisation of the generators

is Tr(QaQa) = 1.

39



5.1. The low-energy effective EW chiral Lagrangian

5.1 The low-energy effective EW chiral Lagrangian

One can now substitute the explicit expression for Σ, Ṽµ, W̃µ and B̃µ in the operators of the

high-energy basis in Eq. (4.32) and obtain Llow for the Georgi-Kaplan model as a function of the

SM would-be GBs, the light scalar singlet field ϕ(x) and the SM gauge fields.

5.1.1 The CP-even low-energy projection

For SU(5)/SO(5), the low-energy projection of the custodial preserving CP-even two-derivative

operator reads[38]

ÃC ≡ −f
2

4
Tr(ṼµṼ

µ) =
4

ξ
sin2

[
ϕ

2f

]
PC + PH , (5.15)

with PC and PH being the operators in Llow defined in Eqs. (3.62) and (3.58), respectively.

Having assumed the absence of any sources of custodial breaking besides the SM ones, no other

two-derivative operators arise in the low-energy effective chiral Lagrangian.

Besides giving rise to the (correctly normalised) h kinetic term described by PH , the operator ÃC

intervenes also in the definition of the SM gauge boson masses. To provide a consistent definition

for the SM W mass m2
W ≡ g2v2/4, it is necessary to impose that

ξ ≡ v2

f2
= 4 sin2

〈ϕ〉
2f

, (5.16)

providing a strict and model-dependent relation between the EW scale v, the vev of the scalar

field ϕ and the NP scale f . Note that in the ξ ≪ 1 limit the usual SM result 〈ϕ〉 = v is recovered.

Using Eq. (5.16), the functional dependence on ϕ/f can be nicely translated in terms of the

physical h excitation and the EW scale v, and the following expressions will be useful later on:

sin

(
ϕ

2f

)
= sin

(
arcsin

(
v

2f

)
+

h

2f

)
=

v

2f
cos

(
h

2f

)
+

√
1− v2

4f2
sin

(
h

2f

)
,

cos

(
ϕ

2f

)
= cos

(
arcsin

(
v

2f

)
+

h

2f

)
=

√
1− v2

4f2
cos

(
h

2f

)
− v

2f
sin

(
h

2f

)
.

(5.17)

The low-energy projection of the four-derivative effective operators of Eq. (4.32) is given in

Eq. (5.18). while the remaining two high-energy operators are not independent when focusing

only on the light GBs remaining at low-energies: The fact that Ã7 and Ã8 do not give indepen-

dent contributions as they are linear combinations of other high-energy operators (Eq. (5.19)) is

connected with the peculiar structure of the G/H breaking and has to be inferred case by case.
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ÃB =PB ,
ÃW =PW ,

ÃBΣ =− 4 g′2 cos2
[
ϕ

2f

]
PB ,

ÃWΣ =− 4 g2 cos2
[
ϕ

2f

]
PW ,

Ã1 = sin2
[
ϕ

2f

]
P1 ,

Ã2 = sin2
[
ϕ

2f

]
P2 +

√
ξ sin

[
ϕ

f

]
P4 ,

Ã3 =2 sin2
[
ϕ

2f

]
P3 − 2

√
ξ sin

[
ϕ

f

]
P5 ,

Ã4 =4 ξ2PDH + 16 sin4
[
ϕ

2f

]
P6 − 16 ξ sin2

[
ϕ

2f

]
P20 ,

Ã5 =4 ξ2PDH − 16 ξ sin2
[
ϕ

2f

]
P8 + 16 sin4

[
ϕ

2f

]
P11 ,

Ã6 = − 2 ξ P�H − 1

2
sin2

[
ϕ

f

]
P6 + 4 ξ cos2

[
ϕ

2f

]
P8 + 4 sin2

[
ϕ

2f

]
P9+

− 2
√
ξ sin

[
ϕ

f

]
(P7 − 2P10) ,

(5.18)

Ã7 =
1

4

(
Ã4 + Ã5

)
, Ã8 =

1

2
Ã5 . (5.19)

This specific example is similar to the ALF case, where it can be proven that traces of four Vµ

can be expressed as products of traces of two Vµ. In resume, Llow for the SU(5)/SO(5) scenario

considered here depends on only eight independent operators, besides the kinetic terms for gauge

bosons and GB fields.

5.1.2 The CP-odd low-energy projection

Following the same procedure for the CP-odd operators, the low-energy projection of the four

derivative operators of Eq. (4.32)is given in Eq. (5.20). The Higgs-independent part of the op-

erator B̃BΣ∗ can be safely neglected at low-energy being equivalent to a total derivative and

vanishing. On the other side, the Higgs-independent part of the operators B̃WW ∗ and B̃WΣ∗

does not vanish as it provides CP-odd non-perturbative contributions. The last operator in the

list, B̃3 automatically vanishes in SU(5)/SO(5) model due to the specific properties of the coset

generators.
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B̃WW ∗ =SWW ∗ ,

B̃BΣ∗ = − 4SBB∗ + 4 sin2
[
ϕ

2f

]
SBB∗ ,

B̃WΣ∗ = − 4SWW ∗ + 4 sin2
[
ϕ

2f

]
SWW ∗ ,

B̃1 =
1

2
sin2

[
ϕ

2f

]
S1 ,

B̃2 =4 sin4
[
ϕ

2f

]
(SBB∗ − SWW ∗) + 2

√
ξ cos

[
ϕ

2f

]
sin3

[
ϕ

2f

]
(S2 + 2S3) ,

B̃3 =0 .

(5.20)

Consequently at low-energy only four independent CP-odd perturbative couplings are relevant:

the Higgs-dependent parts contained in B̃BΣ∗ , B̃WΣ∗ , B̃1 and B̃2.

5.2 Matching the high- and the low-energy Lagrangians

The remnant of the GB nature of the Higgs field can be tracked down to the trigonometric

functions that enter into the low-energy EW chiral Lagrangian for the specific CH models: indeed,

one given gauge vertex can involve an arbitrary number of h legs, with a suppression in terms

of powers of the GB scale f . The explicit dependence on the h field is easily recovered using

Eq. (5.10) in combination with trigonometric function properties. In the general Llow basis,

the dependence on the h field is encoded into the generic functions Fi(h) in Eq. (3.65) and

into some operators which contain derivatives of h. The matching between the low-energy EW

chiral Lagrangian of the specific CH models and the general Llow basis in Eq. (3.64) allows to

identify the products ciFi(h) in terms of the high-energy parameters. The existence of peculiar

correlations between the low-energy chiral effective operators could indeed provide very valuable

information when trying to unveil the nature of the EWSB mechanism [33, 39, 40].

For the specific case of the SU(5)/SO(5) and the terms in its two-derivative Lagrangian it results

FC(h) =
4

ξ
sin2

[
ϕ

2f

]
, FH(h) = 1 , (5.21)

for the custodial preserving sector, while

cTFT (h) = 0 (5.22)

for the custodial breaking term, as expected from a model which was formulated with an embed-

ded custodial symmetry. The expressions for the products ciFi(h) and di Ei(h), corresponding
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5.2. Matching the high- and the low-energy Lagrangians

ciFi(h) SU(5)/SO(5) ciFi(h) SU(5)/SO(5)

FC(h) 4
ξ sin

2 ϕ
2f c4F4(h) c̃2

√
ξ sin ϕ

f

FH(h) 1 c5F5(h) −2c̃3
√
ξ sin ϕ

f

FB(h) 21− 4g′2c̃BΣ cos2 ϕ
2f c6F6(h) 16c̃4 sin

4 ϕ
2f − 1

2
c̃6 sin

2 ϕ
f

FW (h) 1− 4g2c̃WΣ cos2 ϕ
2f c7F7(h) −2c̃6

√
ξ sin ϕ

f

c�HF�H(h) −2c̃6ξ c8F8(h) −16c̃5ξ sin
2 ϕ
2f + 4c̃6ξ cos

2 ϕ
2f

c∆HF∆H(h) − c9F9(h) 4c̃6 sin
2 ϕ
2f

cDHFDH(h) 4 (c̃4 + c̃5) ξ
2 c10F10(h) 4c̃6

√
ξ sin ϕ

f

c1F1(h) c̃1 sin
2 ϕ
2f c11F11(h) 16c̃5 sin

4 ϕ
2f

c2F2(h) c̃2 sin
2 ϕ
2f c20F20(h) −16c̃4ξ sin

2 ϕ
2f

c3F3(h) 2c̃3 sin
2 ϕ
2f

Table 5.1: Expressions for the products ci Fi(h) for the CP-even operators of the SU(5)/SO(5)
model. As expected, no custodial breaking operator gets any contribution.

respectively for the CP-even and CP-odd four-derivative Lagrangians, are reported in Tab. 5.1

and Tab. 5.2.

diEi(h) SU(5)/SO(5)

EBB∗(h) 4 d̃BΣ∗ sin2 ϕ

2f
+ 4 d̃2 sin

4 ϕ

2f

EWW∗(h) d̃WW∗ − 4 d̃WΣ∗ cos2 ϕ

2f
− 4 d̃2 sin

4 ϕ

2f

d1E1(h)
d̃1
2

sin2 ϕ

2f

d2E2(h) 2 d̃2
√
ξ cos ϕ

2f
sin3 ϕ

2f

d3E3(h) 4 d̃2
√
ξ cos ϕ

2f
sin3 ϕ

2f

Table 5.2: Expressions for the products ci Fi(h) for the CP-odd operators of the SU(5)/SO(5)
model.

Some relevant conclusions can be inferred from these results:

i) The CP-odd high-energy lagrangian Lhigh,✟✟CP generates all the custodial preserving opera-

tors entering in the low-energy one, Llow,✟✟CP. The same holds for the CP-even lagrangian
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5.2. Matching the high- and the low-energy Lagrangians

Lhigh except for the pure-h operators from Eq. 3.58 and Eq. (3.59).P∆H , FH(h), F�H and

FDH be originated due to the GB nature of the ϕ field in that model, which forbids cou-

plings with an odd number of Goldstone bosons, plus the fact that the departure from a

pure Goldstone boson nature is through its vev 〈ϕ〉 6= 0, and not from any source containing

derivatives

ii) All low-energy operators, both CP-even and CP-odd, not appearing in Tab. 5.1 or Tab. 5.2

describe effects of non-Standard Model tree-level custodial symmetry breaking, and there-

fore are not generated by the low-energy SU(5)/SO(5) lagrangian, which has an unbroken

SO(4) custodial group.

iii) The choice of a given CH scenario constrains the arbitrary Fi(h) and Ei(h) functions to

specific trigonometric functions of h and v. Furthermore, the sixteen low-energy generic

parameters ci of the CP-even low-energy lagrangian are described by eight high-energy

parameters c̃i.

5.2.1 The small ξ limit

It is particularly interesting to consider the f ≫ v, or equivalently ξ ≪ 1, limit. In fact in this

limit the non-linear CH model should overlap with the case in which the EWSB is linearly realised

and the Lagrangian written in terms of the Higgs as an SU(2)L doublet. For example, taking the

operators in Eq. (5.20) for the SU(5)/SO(5) setup and expanding them in Taylor series in 1/f

as defined in Eq. (5.10), one concludes that at first order in ξ,

B̃BΣ∗ ≈ ξ (1 + h/v)2SBB∗ − 4SBB∗

B̃WΣ∗ ≈ ξ (1 + h/v)2SWW ∗ − 4SWW ∗

B̃1 ≈
1

8
ξ (1 + h/v)2S1

B̃2 ≈ 0

(5.23)

with B̃2 giving contribution only at order O(ξ2). This procedure can be repeated with all the

terms appearing in Table 5.2, resulting in This should be compared with the effective d = 6

CP-odd Lagrangian in Eq. 3.3.There is one-to-one correspondence between these two classes of

operators: Q
ϕB̃

↔ B̃BΣ∗ , Q
ϕW̃

↔ B̃WΣ∗ and Q
ϕB̃W

↔ B̃1. Conversely, B̃2 contributes at low-

energy to S2 and S3, but only at ξ2, i.e. its linear sibling1 should have d = 8: indeed, by using

1This is in contrast with Eq. (A.1) in Ref. [33], where two d = 6 linear operators have been indicated as siblings
of S2 and S3. Those operators do contain the interactions of S2 and S3, but they are not the lowest dimensional
ones.
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5.3. Goldstone boson potential

diEi(h) SU(5)/SO(5)

EBB∗(h) c̃BΣ∗ ξ

(
1 +

h

v

)2

+O(ξ2)

EWW∗(h) c̃WW∗ + c̃WΣ∗

(
−4 + ξ

(
1 +

h

v

)2
)

+O(ξ2)

d1E1(h)
c̃1
8

ξ

(
1 +

h

v

)2

+O(ξ2)

d2E2(h) O(ξ2)

d3E3(h) O(ξ2)

Table 5.3: Expressions for the products ci Fi(h) for SU(5)/SO(5) in the ξ ≪ 1 limit.

integration by parts and the Bianchi identities, it is straightforward to verify that the interactions

of S2 and S3 are described at the lowest order in the linear expansion by the operators

B∗
µν

(
Φ†

↔

DµΦ
)
Dν
(
Φ†Φ

)
,

(
Φ†

↔

DµW∗
µνΦ

)
Dν
(
Φ†Φ

)
(5.24)

with DµΦ ≡
(
∂µ +

i
2g

′Bµ +
i
2gσiW

i
µ

)
Φ and Φ†

↔

DµΦ ≡ Φ†DµΦ−DµΦ
†Φ.

The products ciFi(h) corresponding to custodial-breaking operators are suppressed by ξ2 and

therefore they are also described in the linear expansion by d = 8 operators. However, a complete

comparison is not possible in this case, as no d = 8 basis has been defined yet, to our knowledge.

5.3 Goldstone boson potential

The way the Σ(x) matrix has been parametrized in the SU(5)/SO(5) model assumes, as has been

stated, that the 10 GBs which are not to be identified with the 3 SM would-be GBs nor with the

Higgs scalar are heavy enough and therefore are integrated out. The purpose of this section is

to show a particular realization of this model, with an additional U(1)A subgroup is gauged, in

which there is a region of the parameter space where the Higgs scalar is the only light Goldstone

boson and all the rest are heavy. Additionally, we show that the Higgs field is the only GB that

gets a VEV, so that the EWSB can be triggered.

The gauging of the SM group will break explicitly the global symmetry and therefore generate a

potential for the NG bosons, which will then become massive. However, the vacuum will be still

SM invariant, since it was proved in [18] that vectors transforming in the unbroken group cannot

lead to a potential in which one of the NG bosons develops a VEV, like we would need the Higgs

scalar to do.
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5.3. Goldstone boson potential

Then, in order to allow the possibility of having a non-zero VEV for the Higgs, the authors in

Ref. [16] gauge a new U(1)A group which is embedded in the global group G (contrary to the SM

group SU(2)L×U(1)Y , which is embedded in H). This gauging also breaks explicitly SU(5), but

now it doesn’t transform in the unbroken, so the vacuum can be SM-breaking.

Following Georgi and Kaplan, we represent the 14 GB in terms of the unbroken subgroup SO(4) ≃
SU(2)L × SU(2)R. In particular, 14 = (3, 3)⊗ (2, 2)⊗ (1, 1). Thus,

(3, 3) → π =

√
1

2

πab(x)

f

(
σaτb

0

)
(5.25)

where τa represents the Pauli matrices in 2x2 block structure. For the (2, 2), which we identify

with the d.o.f’s of the Higgs doublet, Φ, we have the field

(2, 2) → Φ ≡ ϕ(x)

f
X (x) (5.26)

with X (x) defined in Eq. 5.12.In the unitary gauge, with only physical degrees of freedom, we

have Φ =
√
2ϕfX. Finally, the singlet has the following form:

(1, 1) → η =

√
1

10

η(x)

f

(
I4

−4

)
(5.27)

Thus, the matrix Ω(x) 5.8 is given by

Ω(x) = eiΦ/2e
i
K(x)
2f (5.28)

where K(x) = π + η. To second order in the GB momenta, the lagrangian is given by:

L =
1

4
f2Tr (Dµ∆) (Dµ∆)∗ − V (∆) (5.29)

with ∆(x) = Σ(x)∆0.

The potential V (∆) is generated because of the gauging of SM group as well as the extra U(1)A;

these gauge interactions break explicitly the global SU(5), so a potential is generated at the

loop level. We use the spurion technique in order to determine the potential. We promote the

generators Q to transform formally in the adjoint of SU(5), and define the vector Aµ appearing

in the covariant derivative

Dµ∆ = ∂µ∆− iAµ∆− i∆ATµ (5.30)
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5.3. Goldstone boson potential

in terms of the the spurions Gi:

Aµ = GaαM
αW a

µ +GY αM
αBµ +GAαM

αZ ′
µ ≡ GLaW

a
µ +GYBµ +GAZ

′
µ (5.31)

where α is an index indicating the adjoint representation of SU(5), Mα are matrices in that

representation and W a
µ , Bµ and Z ′

µ are the gauge vector bosons corresponding to SU(2)L, U(1)Y

and U(1)A respectively. Using the spurions Gi we can write non-derivative terms which formally

preserve the global group. Once we determine the relevant operators, we set the spurions to their

“spurion VEV’s”,

GLa → gQLa GY → g′QY GA → gAQA (5.32)

which are precisely the generators of the gauge groups defined as:

SU(2)L → QLa =
1

2




σa

σa

0


 (5.33)

U(1)Y → QY =
1

2




I2

−I2

0


 (5.34)

U(1)A → QA =

√
1

20

(
I4

−4

)
(5.35)

Notice that QLa and QY are unbroken generators, while QA is a broken one.

Thus, the leading order contributions to the potential are:

V (∆) ≡ VL + VY + VA

VL ≡ kf4Tr(GLa∆)(GaL∆)∗ → kf4g2Tr(QLa∆)(QaL∆)∗

VY ≡ kf4Tr(GY∆)(GY∆)∗ → kf4g′2Tr(QY∆)(QY∆)∗

VA ≡ kf4Tr(GA∆)(GA∆)∗ → kf4g2ATr(QA∆)(QA∆)∗

(5.36)

The reason for this structure (in particular, the reason that there are no operators with only one

spurion and that they don’t mix) is that we impose the symmetries that appear in the lagrangian

with only covariant derivatives. Apart from the SU(5) global symmetry, we have three accidental

symmetries: the SU(2) under which the index a behaves like a triplet and two accidental Z2

which allow to flip independently GY,A → −GY,A.
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5.3. Goldstone boson potential

In order to express the lagrangian in terms of the matrix Σ(x) we recall 5.4 , so that Σ∆0 = ∆0Σ
T .

Thus,

Tr [(QLa∆)(QaL∆)∗] = −Tr
[
QLaΣQ

a
LΣ

†
]

Tr [(QY∆)(QY∆)∗] = −Tr
[
QY ΣQY Σ

†
]

Tr [(QA∆)(QA∆)∗] = Tr
[
QAΣQAΣ

†
]

(5.37)

where we also have taken into account that the generators are hermitian. Finally,

V (Σ) = kf4
(
−g2Tr

[
QLaΣQ

a
LΣ

†
]
− g′2Tr

[
QY ΣQY Σ

†
]
+ g2ATr

[
QAΣQAΣ

†
])

(5.38)

An alternative method is to use the Coleman-Weinberg formula for the 1-loop correctian for a

scalar potential due to gauge boson loops. The largest correction from the Coleman-Weinberg

potential is given in terms of the mass matrix of the gauge bosons M2
V (∆) ([41]), which can be

read from the kinetic term in the lagrangian,

V (∆) = kf2Tr[M2
V (∆)] (5.39)

From the lagrangian (5.29) and the covariant derivative (5.31) (where we are not using anymore

spurions, but the real values of the generators), we see that the mass term for the i gauge boson

is given by

(M2
V )i = f2g2i

(
Qi∆+∆QTi

) (
Q∗
i∆

∗ +∆∗Q†
i

)
= f2g2i (Qi∆Q

∗
i∆

∗ + I+ h.c.) (5.40)

Therefore, up to a constant, we find that

V (∆) = kf4
∑

i

Tr [(Qi∆)(Qi∆)∗] (5.41)

which is exactly the expression we had found using the spurion technique.

Vafa and Witten’s result [18] tells us that only the GB’s getting contributions from VA can get a

VEV; in particular, the Goldstones that get a correction to its mass, allowing it to be negative.

To see what scalars can get a VEV VA we try to express it in terms of commutators of QA and

the GB’s matrices:

Tr
[
QAΣQAΣ

†
]

= Tr
[
Q2
AΣ

†Σ
]
+Tr

[
QAΣ

† [QA,Σ]
]

= 1 + Tr
[
QAΣ

† [QA,Σ]
]
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5.3. Goldstone boson potential

where we have used the normalization condition Tr(XaXb) = δab for the broken generators. We

expand now the commutator in the last expression, getting

[QA,Σ] = eiΦ/2e
i
K(x)
f

[
QA, e

iΦ/2
]
+
[
QA, e

iΦ/2
]
e
i
K(x)
f eiΦ/2 (5.42)

We have used the fact that QA commutes with all Goldstones matrices except with the Higgs:

[QA,π] = [QA,η] = 0 , [QA,Φ] =

√
5

2
Φ. Thus,

VA = kf4g2A

(
1 + Tr

(
QAe

−iΦ/2[QA, e
iΦ/2]

)
+Tr

(
QAΣ

†[QA, e
iΦ/2]e

i
K(x)
f eiΦ/2

))
(5.43)

We see then that only the Higgs will get a contribution to its quadratic term in the potential

from U(1)A, since the terms in VA involving the other Goldstones need the insertion of ϕ scalars,

as it’s clear from the last piece of the previous equation. In other words: the GB’s that can get

a VEV are those represented by broken operators which don’t commute with QA (the Higgs, in

this case). The minimization of the potential will give us the Σ matrix which rotate our original,

SM-preserving, fake vacuum ∆0 to the real vacuum of the theory. We will compute the potential

to second order in the extra 10 GB and to all orders in the Higgs; we can do this last thing due

to the properties of matrix X. In particular, since X3 = X,

eiΦ/2 = I+ i

√
1− cos

ϕ

f
X +

(√
1 + cos

(
ϕ

f

)
− 1

)
X2 (5.44)

The form of the potential is not very informative, but we will show how indeed ϕ is the only

Goldstone to get a non-zero VEV. For this, we compute the masses and see if any of them can

be negative. We define

µi ≡
d2V

dψ2
i |ψa=ψb=...=0

(5.45)

where by ψ2
i we mean the mass eigenstates, which will be combinations of Goldstones. We expect

a massless state, which is “eaten” by the Z ′ gauge boson. The interesting fact is that the only

µ2 that depends on the coupling gA is the one of the Higgs; all the rest only depend on g and g′,

and this will lead to the fact that the only one that can take a negative value is µ2ϕ.

µ2a = µ2b = µ2c = µ2d = µ2e = µ2f = kf2
(
2g′2 + 4g2

)
(5.46)

µ2g = µ2h = µ2j = 4kf2g2 (5.47)

µ2eaten = 0 (5.48)

49



5.3. Goldstone boson potential

µ2ϕ =
kf2

2
(g′ + 3g2 − 5g2A) (5.49)

Therefore, the Higgs can develop a VEV if, for gA 6= 1,

c0 ≡
3g2 + g′2

5g2A
< 1 (5.50)

Since the contribution to the Higgs potential of gA has a different sign to that of the SM bosons,

only when the coupling force U(1)A is strong enough in comparison to SU(2) × U(1)Y can the

potential change and give a VEV to the Higgs. We also see clearly that for gA = 0 there is no

EW-symmetry breaking.

To second order in the all the GB’s but the Higgs, the potential VA (5.43) becomes

VA =
kf2g2A
64

{
10Y 2

1

[
2 cos

(
ϕ

f

)
− cos

(
2ϕ

f

)
− 1

]
− Y 2

2

[
cos

(
2ϕ

f

)
− 1

]
+ 40 cos

(
2ϕ

f

)}

where Ψ1,2 are polynomials quadratic in πa,b and η,

Y 2
1 ≡ (π1 − π6)

2 + (π5 + π7)
2 + (π2 + π9)

2 (5.51)

Y 2
2 ≡ 5η2 + 2

√
5η(π3 + π4 − π8) + (π3 + π4 − π8)

2 (5.52)

We confirm explicitly what we had proven before: the only Goldstone that gets a non-vanishing

contribution from g2A to µi is the Higgs: all the rest of GB’s have always at least a ϕ2 term, as

we can see if we expand VA around ϕ = 0:

VA ≃ kf2g2A
64

{
3

2f2
Y 2
1 ϕ

2 +
2

f2
Y 2
2 ϕ

2 − 80

f2
ϕ2

}
(5.53)

From the Coleman-Weinberg framework we understand that the coefficient in the potential to a

generic term g2Aψi...ψn is equal to the coefficient of the diagram in which the Goldstones ψi...ψn

contribute to the mass of the Z ′ boson. We see then that the fact that [QA,ϕ] 6= 0 implies

that only the Higgs is allowed to have a vertex like ϕϕZ ′Z ′, while the rest of Goldstone need at

least the insertion of two Higgs scalars, ηηϕϕZ ′Z ′. To have a more explicit expression, we set

πab = η = 0, getting the following potential for the Higgs scalar:

V (ϕ) = −1

4
f4k

(
−5g2A cos2

(
ϕ

f

)
+ 2

(
g′2 + 3g2

)
cos

(
ϕ

f

))
(5.54)

The condition that must be fulfilled is:

dV (ϕ)

dϕ
=

1

2
f3k

(
g′2 + 3g2 − 5g2A cos

(〈ϕ〉
f

))
sin

(〈ϕ〉
f

)
= 0 (5.55)

50



5.3. Goldstone boson potential
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Figure 5.1: Mass spectrum of the Goldstone bosons

We have a maximum at 0 and a minimum at

c0 ≡ cos

(〈ϕ〉
f

)
=

3g2 + g′2

5g2A
(5.56)

That they are maximum and minimum respectively can be checked from the second derivative

of the potential:
d2V (ϕ)

dϕ2
=

5g2Af
2k

2

(
c0 cos

(〈ϕ〉
f

)
− cos

(〈2ϕ〉
f

))
(5.57)

so that 



d2V (ϕ)

dϕ2
|0

=
5g2Af

2k

2
(c0 − 1) < 0 =⇒ c0 < 1

d2V (ϕ)

dϕ2
|c0

= m2
ϕ =

5g2Af
2k

2

(
1− c20

)
> 0 =⇒ c0 < 1

(5.58)

At c0 = both points collapse to an inflexion point.It’s important that one must impose the

condition gA 6= 0 to find the non-zero solution, so the situation where gA is not gauged must be

directly studied by setting gA = 0 in the potential (which gives 〈ϕ〉 = 0, as expected), not in c0.

To get numerical expressions we impose the model to reproduce the mass of the W :

m2
W =

g2f2

2
(1− c0) (5.59)
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5.3. Goldstone boson potential

Thus, the only parameter in the model is gA, or c0. We find now the masses of the rest of

Goldstones; the analytical expressions are complicated and not particularly enlightening, so we

plot them in the following graph. We plot the GB masses in Fig. 5.1, giving the observed values

to m2
W , g and g′. We get the same GB masses as in Ref. [16]. The Higgs mass cannot go below

200 GeV for any value of c0, so this model is ruled out. However, the original motivation of

this computation was to justify the hypothesis done in the previos section in order to write the

effective lagrangian of the SU(5)/SO(5): that it is possible that out of the fourteen GBs the

Higgs scalar is the only one to get a VEV, and that it can be considered much lighter than all

the rest, which get a mass of order f .
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Chapter 6

The low-energy projection

SO(5)/SO(4) for SU(3)/SU(2)XU(1)

In this Chapter we will write the high-energy effective bosonic Lagrangians for the MCHM model

SO(5)/SO(4) as well as the custodial breaking model SU(3)/(SU(2) × U(1)), and then study

the corresponding projections into the low-energy effective lagrangian in a similar fashion as was

done in the previous chapter for the Georgi-Kaplan model. The projection of the MCHM will be

shown to be similar to that of the SU(5)/SO(5) case. Since this coset corresponds to the most

studied CH setup in the recent years, we will compare the basis here constructed with the one

proposed in the literature, checking that indeed the predictions for the low-energy lagrangian are

identical.

6.1 The minimal SO(5)/SO(4) composite Higgs model

Most of the recent literature in CH models deals with the minimal SO(5)/SO(4) [17] setup. The

features that make this model appealing are its custodial symmetry approximate conservation

and its minimality in terms of number of GBs that arise from the global symmetry breaking: only

four to be associated with the SM would-be GBs and the Higgs field.

6.1.1 Spontaneous SO(5)/SO(4) symmetry breaking setup

Just as in section 5.0.1, the spontaneous SO(5)/SO(4) symmetry breaking can be obtained giving

a vev to a scalar field either in a fundamental or in the symmetric adjoint representation. Many

53



6.1. The minimal SO(5)/SO(4) composite Higgs model

studies of MCHM, as in [17], choose the vacuum in the fundamental representation. In order

to keep the argument as similar as was done for the SU(5)/SO(5), the vacuum is here taken in

the symmetric representation. Similarly, the vacuum can be taken in all generality to be a real,

symmetric and orthogonal 5× 5 matrix satisfying Eq. (5.1), and a convenient choice is to set

∆0 =

(
✶4 0

0 −1

)
. (6.1)

As in the previous case, it is then possible to describe the massless excitations around the vacuum

with a symmetric field ∆(x) obtained “rotating” the vacuum with the GB non-linear field Ω(x):

Eq. (5.3) also holds here, with g being now a transformation of SO(5). ∆(x) transforms in the

adjoint of SO(5), as a consequence of the invariance of the vacuum under SO(4), and describes

only four GBs.

The relations between the vacuum ∆0 and the broken and unbroken generators presented in

Eq. (5.4) are valid also for this model, and because of the relations in Eq. (5.1) the excitations

around the vacuum can be reparametrised in the Σ-representation as in Eq. (5.5), where now

Ω(x) and Σ(x) are given by

Ω(x) = e
i
ϕ(x)
2f

X (x)
, Σ(x) = e

i
ϕ(x)
f

X (x)
. (6.2)

The SO(5)/SO(4) generators can be written in a compact form as

(Xâ)ij =
i√
2
(δi5δjâ − δj5δiâ) , â = 1, . . . , 4 , (6.3)

and denoting the broken generator along which the EW symmetry breaking occurs as X4̂,

X4̂ =
i√
2




0 0 0

0 0 −e2
0 eT2 0


 , (6.4)

the GB non-linear field reads

X (x) = − i√
2
Tr (Uσâ)Xâ , â = 1, . . . , 4 , (6.5)

where σâ ≡ {σ1, σ2, σ3, i✶2} and which reduces to X =
√
2X4̂ in the unitary gauge. Alike to

the case of the Georgi-Kaplan model, the field Σ takes the simple form in terms of linear and

quadratic powers of X shown in Eq. (5.13). Finally, with this convention the embedding of the
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6.2. The SU(3)/(SU(2) × U(1)) composite Higgs model

SU(2)L × U(1)Y generators in SO(5) reads

Q1
L =

1

2




−iσ1
iσ1

0


 , Q2

L =
1

2




iσ3

−iσ3
0


 ,

Q3
L =

1

2




σ2

σ2

0


 , QY =

1

2




σ2

−σ2
0


 .

(6.6)

6.1.2 The low-energy effective EW chiral Lagrangian

Having chosen the explicit realisation of the SO(5)/SO(4) symmetry breaking mechanism and

the representation of the embedding of the SM group charges into SO(5), the substitution of

the explicit expressions for Σ, Ṽµ, W̃µ and B̃µ into the operators of the high-energy basis in

Eq. (4.32) produces Llow for the minimal SO(5)/SO(4) CH model, as a function of the SM

would-be GBs and the light scalar resonance ϕ.

The low-energy projection of the SO(5)/SO(4) Lagrangian turns out to be exactly the same as

that for the SU(5)/SO(5) model. This result depends on the strict connection between SO(5)

and SU(5), as indeed the GB matrix fields of the two theories are linked by a unitary global

transformation, once decoupling the extra GBs arising in the SU(5) → SO(5) breaking. Moreover,

the gauging of the SM symmetry represents an explicit breaking of the global symmetries and

it produces the effect of washing out the differences between the two preserved subgroups, once

focusing only on the SM particle spectrum. This also suggests that any model with the minimal

number of GBs that can be arranged in a doublet of SU(2)L and approximate custodial symmetry

will yield the same low-energy effective chiral Lagrangian regardless of the specific ultraviolet

completion.

6.2 The SU(3)/(SU(2) × U(1)) composite Higgs model

As a final example, the SU(3)/(SU(2) × U(1)) CH model is now considered. As only four GBs

arise from the breaking of the global symmetry, also this model is minimal. However, contrary

to the previously discussed CH models, the preserved subgroup H does not contain the custodial

SO(4) term and therefore no (approximate) custodial symmetry is embeddable in this model.

This feature disfavours phenomenologically the SU(3)/(SU(2) × U(1)) CH model as large tree-

level contributions to the T parameter occur. Nevertheless, the study of its low-energy projection
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is instructive in order to discuss the custodial breaking operators of the effective Lagrangian Llow

in Eq. (3.64). Indeed, although in the initial high-energy SU(3)/(SU(2) × U(1)) Lagrangian no

extra sources of custodial breaking (besides the SM ones) are introduced, these operators appear

at tree-level in the low-energy effective Lagrangian.

6.2.1 Spontaneous SU(3)/(SU(2) × U(1)) symmetry breaking setup

An appropriate choice for the vacuum that breaks SU(3) → SU(2)×U(1) is given by the following

hermitian and orthogonal matrix:

∆0 =

(
✶2 0

0 −1

)
, (6.7)

that satisfies the relations in Eq. (5.1). As in the previous cases, it is then possible to describe

the massless excitations around the vacuum with a unitary field ∆(x) obtained “rotating” the

vacuum with the GB non-linear field Ω(x):

∆(x) = Ω(x)∆0Ω(x)
† , ∆(x) → g∆(x) g† . (6.8)

As the vacuum is invariant under SU(2)× U(1) transformations, ∆(x) belongs to the adjoint of

SU(3). Being dim(SU(3)/(SU(2) × U(1))) = 4, the field ∆(x) describes the dynamics of only

four GBs, which will be then identified with the longitudinal components of the SM gauge bosons

and the physical Higgs particle. Using the following relations between the vacuum ∆0 and the

broken and unbroken generators,

∆0 Ta∆0 = Ta , ∆0Xâ∆0 = −Xâ , (6.9)

and because of the relations in Eq. (5.1), the excitations around the vacuum can be arranged in

the Σ-representation as in Eq. (5.5) with Ω and Σ given as in Eq. (6.2). Choosing the following

direction of EW symmetry breaking,

X =
1√
2

(
0 e2

eT2 0

)
, (6.10)

it is possible to write the SU(3) embedding of the SM GB fields as

X (x) =
√
2

(
U(x)

1

)
X

(
U(x)†

1

)
=

(
0 U(x)e2

(U(x)e2)
† 0

)
, (6.11)
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6.2. The SU(3)/(SU(2) × U(1)) composite Higgs model

reducing to X =
√
2X in the unitary gauge. As for the two models previously analysed, the GB

field matrix Σ can be expressed in terms of X as in Eq. (5.13). Finally the SU(3)-embedding of

the SU(2)L × U(1)Y generators are given by

QaL =
1

2

(
σa

0

)
, QY =

1

6

(
✶2

−2

)
, (6.12)

with Tr(QaLQ
a
L) = 1 and Tr(QYQY ) = 1/6.

6.2.2 The low-energy effective CP-even EW chiral Lagrangian

By substituting the explicit expressions for Σ, Ṽµ, W̃µ and B̃µ into the operators of the high-

energy basis in Eq. (4.32), Llow is obtained for the SU(3)/(SU(2) × U(1)) model as a function

of the SM would-be GBs and the light physical Higgs ϕ.

6.2.2.1 The two-derivative low-energy projection

The low-energy projection of this CH model, where the custodial symmetry is not approximately

conserved, underlines some peculiarities that can be already seen in the resulting expression for

the dimension-two operator ÃC :

ÃC = −f
2

4
Tr(ṼµṼ

µ) = PH +
4

ξ
sin2

[
ϕ

2f

]
PC +

2

ξ
sin4

[
ϕ

2f

]
PT . (6.13)

It projects at low-energy not only into the h and GBs kinetic terms as expected, but also into

the two-derivative custodial violating operator PT in Eq. (3.62).

Alike to the situation for the models previously studied, ÃC contains the term that describes the

masses of the gauge bosons once the EW symmetry is broken. Requiring consistency with the

definition of the W -mass, the link given in Eq. (5.16) among the EW scale v, the Higgs VEV 〈ϕ〉
and the strong dynamic scale f also follows here.
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6.2.2.2 The four-derivative low-energy projection

The low-energy projection of the four-derivative operators listed in Eq. (4.32) results in the

following decomposition for the SU(3)/(SU(2)× U(1)) model:

ÃB =
2

3
PB ,

ÃW =PW ,

ÃBΣ =− g′2

6

(
1 + 3 cos

[
2ϕ

f

])
PB ,

ÃWΣ =− 2 g2 cos

[
ϕ

f

]
PW + sin4

[
ϕ

2f

]
P12 ,

Ã1 =
1

4
sin2

[
ϕ

f

]
P1 ,

Ã2 =
1

4
sin2

[
ϕ

f

]
P2 +

√
ξ

2
sin

[
2ϕ

f

]
P4 ,

Ã3 =
1

2
sin2

[
ϕ

f

]
P3 − 2

√
ξ sin

[
ϕ

f

]
P5 + 2 sin4

[
ϕ

2f

]
P13 + 2

√
ξ sin

[
ϕ

f

]
sin2

[
ϕ

2f

]
P17 ,

Ã4 =4 ξ2 PDH + 16 sin4
[
ϕ

2f

]
P6 − 16 ξ sin2

[
ϕ

2f

]
P20 + 8 ξ sin4

[
ϕ

2f

]
P21+

− 16 sin6
[
ϕ

2f

]
P23 + 4 sin8

[
ϕ

2f

]
P26 ,

Ã5 =4 ξ2 PDH − 16 ξ sin2
[
ϕ

2f

]
P8 + 16 sin4

[
ϕ

2f

]
P11 + 8 ξ sin4

[
ϕ

2f

]
P22+

− 16 sin6
[
ϕ

2f

]
P24 + 4 sin8

[
ϕ

2f

]
P26 , (6.14)

Ã6 =− 2 ξ P�h −
1

2
sin2

[
ϕ

f

]
P6 − 2

√
ξ sin

[
ϕ

f

]
(P7 − 2P10) + 4ξ cos2

[
ϕ

2f

]
P8+

+ 4 sin2
[
ϕ

2f

]
P9 − 2 sin4

[
ϕ

2f

]
(P15 − 2P16)− 2ξ

(
1 + 2 cos

[
ϕ

f

])
sin2

[
ϕ

2f

]
P22+

+ 2
√
ξ sin

[
ϕ

f

]
sin2

[
ϕ

2f

]
(P18 − 2P19 + P25) + sin2

[
ϕ

f

]
sin2

[
ϕ

2f

]
P23+

− 4 sin6
[
ϕ

2f

]
P24 + 2 sin8

[
ϕ

2f

]
P26 ,

Ã7 =2 ξ2 PDH + 8 sin4
[
ϕ

2f

]
P6 − 4ξ sin2

[
ϕ

2f

]
P8 − 2

√
ξ sin

[
ϕ

f

]
sin2

[
ϕ

2f

]
P18+

− 4ξ sin2
[
ϕ

2f

]
P20 − 2ξ cos

[
ϕ

f

]
sin2

[
ϕ

2f

]
P21 + 2ξ sin2

[
ϕ

2f

]
P22−

− 2

(
3− cos

[
ϕ

f

])
sin4

[
ϕ

2f

]
P23 + sin2

[
ϕ

f

]
sin2

[
ϕ

2f

]
P24 + 2 sin

[
ϕ

2f

]8
P26
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The remaining operator in the list in Eq. (4.32) is not independent in this case, as it can be

expressed as the combination

Ã8 =
1

2
Ã4 + Ã5 − 2Ã7 , (6.15)

which in summary implies that the low-energy physical consequences of this model depend on

nine arbitrary coefficients.

6.2.2.3 The low-energy effective CP-odd EW chiral Lagrangian

The low-energy Lagrangian Llow,✟✟CP is obtained by substituting the explicit expressions for Σ(x),

Ṽµ, W̃µ and B̃µ in the operators of the high-energy basis in Eq. (4.32). The low-energy projection

of the four-derivative operators listed in Eq. (4.32) results in the following decomposition for the

SU(3)/(SU(2)× U(1)) model1:

B̃WW ∗ =
1

2
SWW ∗ ,

B̃BΣ∗ = − 1

6

(
1 + 3 cos

[
2ϕ

f

])
SBB∗ ,

B̃WΣ∗ = − 2 cos

[
ϕ

f

]
SWW ∗ +

1

2
sin4

[
ϕ

2f

]
S8 ,

B̃1 =
1

8
sin2

[
ϕ

f

]
S1 ,

B̃2 =
1

4
sin4

[
ϕ

f

]
(SBB∗ − SWW ∗) +

1

4

√
ξ cos

[
ϕ

f

]
sin3

[
ϕ

f

]
(S2 + 2S3) ,

B̃3 =0 .

(6.16)

Notice, in particular, the presence of the custodial violating operator S8 in the decomposition

of the B̃WΣ∗ operator, that corresponds to a tree-level source of custodial symmetry breaking.

Notice however that it does not contribute to the T parameter and therefore no constraint can

be put on its coefficient.

6.3 Matching the high- and the low-energy Lagrangians

Following the same procedure as in Section 5.2 for the Georgi-Kaplan model, we match the low-

energy lagrangian of the SO(5)/SO(4) and SU(3)/(SU(2)×U(1)) models with the general Llow

basis.

1This projection is consistent with the one in Ref. [34] in Eq. (6.8), where a typo is present on the first two

operators: the correct values are ÃB = PB/6, and ÃW = PW /2.
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6.3.1 The SO(5)/SO(4) model

As it was shown in section 6.1.2, the low-energy projection of the MCHM lagrangian is exactly

the same as the one for the Georgi-Kaplan model in the situation where 10 of the GB’s associated

to the SU(5)/SO(5) are heavy and only the Higgs scalar is light. Therefore, the expressions for

the ciF(h) and dIE(h) products for the SO(5)/SO(4) model are those reported in Tab. 5.1 and

Tab. 5.2. Thus, all the comments done in regards with those tables in Section 5.2 apply to the

matching of the MCHM model as well.

6.3.2 The SU(3)/(SU(2) × U(1)) model

The FC(h) and FH(h) functions of the two-derivative low-energy chiral Lagrangian Eq. (3.65)

stemming from the high-energy SU(3)/(SU(2)× U(1)) model turn out to be

FC(h) =
4

ξ
sin2

[
ϕ

2f

]
, FH(h) = 1 , (6.17)

for the custodial preserving sector, and thus equal to that for SU(5)/SO(5) and SO(5)/SO(4)

in Eq. (5.21). This suggests that they are universal for composite models in which the Higgs is

embedded as a SU(2)L doublet. For the custodial breaking sector, instead, it results

cTFT (h) =
2

ξ
sin4

[
ϕ

2f

]
, (6.18)

and in this case the coefficient cT is not a free parameter, but is fixed by the high-energy operator

ÃC . In consequence, the experimental bounds on the T parameter [42] translate into strong

constraints on the parameter ξ and on the strong dynamics scale f :

αem∆T =
ξ

4
=⇒ ξ . 0.014 , f & 2 TeV . (6.19)

For the terms in the four-derivative Lagrangian, the expressions for the products ciFi(h) corre-
sponding to custodial invariant operators are reported in Tab. 6.1 (third column), while those

corresponding to custodial-breaking ones are collected in Tab. 6.2.

Contrary to the case of the two models previously analysed, all custodial preserving and all cus-

todial breaking operators entering the low-energy Lagrangian Llow in Eq. (3.65) are generated

from the high-energy one for the SU(3)/(SU(2) × U(1)) CH model, with the exception of the

operator P∆H in Eq. (3.59) and FH(h), F�H and FDH . On the other side, also in this case the

a priori many arbitrary combinations ciFi(h) can be written in terms of the small set of nine
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ciFi(h) SU(3)/SU(2)× U(1) ciFi(h) SU(3)/SU(2)× U(1)

FC(h) 4
ξ sin

2 ϕ
2f c4F4(h)

c̃2
2

√
ξ sin 2ϕ

f

FH(h) 1 c5F5(h) −2c̃3
√
ξ sin ϕ

f 2c̃6ξ sin
2 ϕ
2f

(
1 + 2 cos ϕf

)

FB(h) 1− g′2 c̃BΣ
6

(
1 + 3 cos 2ϕ

f

)
c6F6(h) 8(2c̃4 + c̃7) sin

4 ϕ
2f − 1

2
c̃6 sin

2 ϕ
f

FW (h) 1− 2g2c̃WΣ cos ϕf c7F7(h) −2c̃6
√
ξ sin ϕ

f

c�HF�H(h) −2c̃6ξ c8F8(h) −4(4c̃5 + c̃7)ξ sin
2 ϕ
2f + 4c̃6ξ cos

2 ϕ
2f

c∆HF∆H(h) − c9F9(h) 4c̃6 sin
2 ϕ
2f

cDHFDH(h) 2 (2c̃4 + 2c̃5 + c̃7) ξ
2 c10F10(h) 4c̃6

√
ξ sin ϕ

f

c1F1(h)
c̃1
4 sin2 ϕf c11F11(h) 16c̃5 sin

4 ϕ
2f

c2F2(h)
c̃2
4 sin2 ϕf c20F20(h) −4(4c̃4 + c̃7)ξ sin

2 ϕ
2f

c3F3(h)
c̃3
2 sin2 ϕf

Table 6.1: Expressions for the products ci Fi(h) for the CP-even, custodial preserving operators

of the SU(3)/(SU(2)× U(1)) CH model.

high-energy parameters c̃i.

In summary, a quite universal pattern is suggested by our results as to the form of the ciFi(h)
functions, at least for the custodial preserving sector. Tab. 6.1 encompasses the main results

and allows a direct comparison of the low-energy impact of the models considered (as well as of

the BSM physics expected from linear realisations of EWSB). Not only FC(h) coincides exactly
for all three chiral models considered, see Eqs. (5.21) and (6.17), but the ciFi(h) functions for

all four-derivative chiral operators do as well, except for the couplings which involve gauge field-

strengths for which the intrinsically custodial-invariant groups and SU(3)/(SU(2)× U(1)) differ

simply by a rescaling of the scale f and multiplicative factors, see Tab. 6.1.

The functions, appearing in the low-energy basis in each of the CH models considered, encode the

dependence on the h field: they turn out to be trigonometric due to the GB nature of the Higgs

field in these setups. In the general Llow,✟✟CP basis, this dependence is encoded into the generic

functions Fi(h) in Eq. (3.65) and into some operators which contain derivatives of h. It is then

possible to identify the products ciFi(h) in terms of the high-energy parameters, by comparing
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ciFi(h) SU(3)/(SU(2)× U(1)) ciFi(h) SU(3)/(SU(2)× U(1))

cTFT (h) 2
ξ sin

4 ϕ
2f c21F21(h) 8c̃4ξ sin

4 ϕ
2f − 2c̃7ξ cos

ϕ
f sin2 ϕ

2f

c12F12(h) c̃WΣ sin4 ϕ
2f c22F22(h) 8c̃5ξ sin

4 ϕ
2f + 2ξc̃7 sin

2 ϕ
2f − 2c̃6ξ sin

2 ϕ
2f

(
1 + 2 cos ϕf

)

c13F13(h) 2c̃3 sin
4 ϕ
2f c23F23(h) −16c̃4 sin

6 ϕ
2f + c̃6 sin

2 ϕ
2f sin

2 ϕ
f +

2c̃7 sin
4 ϕ
2f

(
cos ϕf − 3

)
c15F15(h) −2c̃6 sin

4 ϕ
2f

c16F16(h) 4c̃6 sin
4 ϕ
2f c24F24(h) −4(4c̃5 + c̃6) sin

6 ϕ
2f + c̃7 sin

2 ϕ
2f sin

2 ϕ
f

c17F17(h) 2c̃3
√
ξ sin2 ϕ

2f sin
ϕ
f c25F25(h) 2c̃6

√
ξ sin2 ϕ

2f sin
ϕ
f

c18F18(h) 2(c̃6 − c̃7)
√
ξ sin2 ϕ

2f sin
ϕ
f c26F26(h) 2(2(c̃4 + c̃5) + c̃6 + c̃7) sin

8 ϕ
2f

c19F19(h) −4c̃6
√
ξ sin2 ϕ

2f sin
ϕ
f

Table 6.2: Expressions for the products ci Fi(h) for the CP-even custodial symmetry breaking

operators of SU(3)/(SU(2) × U(1) CH model. No analogous contributions are present for the

SU(5)/SO(5) and SO(5)/SO(4) model.

the low-energy EW chiral Lagrangian of the specific CH models and the general Llow,✟✟CP. This

is useful to point out specific correlations between couplings that could help investigating the

nature of the EWSB mechanism [33, 39, 40].

Table 6.3 reports the expression of the products ciFi(h) for the three distinct CH setups consid-

ered before, only for the operators of the low-energy basis that indeed receive contributions.

diEi(h) SU(3)/(SU(2)× U(1))

EBB∗(h) 4 d̃BΣ∗ sin2 ϕ

2f
cos2 ϕ

2f
+ 4 d̃2 sin

4 ϕ

2f
cos4 ϕ

2f

EWW∗(h) d̃WW∗

2
− 2d̃WΣ∗(1 + 2 cos2 ϕ

2f
)− 4 d̃2 sin

4 ϕ

2f
cos4 ϕ

2f

d1E1(h)
d̃1
2

sin2 ϕ

2f
cos2 ϕ

2f

d2E2(h) 2 d̃2
√
ξ cos3 ϕ

2f
sin3 ϕ

2f

(
2 cos2 ϕ

2f
− 1
)

d3E3(h) 4 d̃2
√
ξ cos3 ϕ

2f
sin3 ϕ

2f

(
2 cos2 ϕ

2f
− 1
)

d8E8(h)
d̃WΣ∗

2
sin4 ϕ

2f

Table 6.3: Expressions for the products di Ei(h) for the CP-odd SU(3)/(SU(2)×U(1) operators.
Notice that d8E8(h) corresponds to a custodial breaking operator.
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From Tab. 6.3 it can be inferred that, besides the custodial preserving operators, only one cus-

todial breaking operator of the low-energy basis, S8, receives contributions from the projection.

As for the previous CH models, the interactions described by S2 and S3 turn out to be corre-

lated. Again, notice that the arbitrary functions Fi(h) of the generic low-energy effective chiral

Lagrangian become now a constrained set, as a consequence of having chosen a specific CH model.

6.4 Comparison with other basis

A remarkable difference between the high-energy basis in the CP-even and CP-odd cases is that

in the latter there is an operator, namely B̃2, which requires the introduction of the custodially

breaking operator T̃, even if in a particular combination so that the low-energy projection is

custodially preserving. Notice that, without the inclusion of this operator, the CP-odd low-

energy projections of SU(5)/SO(5) and SO(5)/SO(4) do not get contributions to the operators

S2 or S3. This would be suspicious, since in the CP-even case all possible custodially preserving

operators get contributions in the decomposition. The definite proof that B̃2, and thus T̃, are

needed came from comparing our results with those of [43]; using the CCWZ formalism, briefly

presented in Appendix A, the CP-odd basis is given by

O−−,1 = ǫµνρσTr ([dµ, dν ]L[dρ, dσ]L − [dµ, dν ]R[dρ, dσ]R)

O−−,2 = iǫµνρσTr
(
(ELµν − ERµν)[dρ, dσ]

)

O−+ = 4ǫµνρσTr (∇µdν∇ρdσ)

The decomposition of the CCWZ CP-odd basis in terms of the low-energy chiral lagrangian is

the following:

O−−,1 =
1

2

(
9 cos

(
ϕ

2f

)
− cos

(
3ϕ

2f

))
(SBB∗ − SWW∗)−

3

2

√
ξ sin3

(
ϕ

2f

)(
S2
2

+ S3

)

O−−,2 =
1

8

(
34 cos

(
ϕ

2f

)
− 2 cos

(
3ϕ

2f

))
(SBB∗ − SWW∗)−

3

4

√
ξ sin3

(
ϕ

2f

)(
S2
2

+ S3

)

O−+ = −2 sin2
(
ϕ

2f

)(
SBB∗ + SWW∗ +

1

4
S1

)

In order to check this non-trivial decomposition we do the following consistency: consider the

operator

O−
6 = iǫµνρσTr

(
(fLµν − fRµν)[dρ, dσ]

)
(6.20)

63



6.5. Conclusions

The decomposition is

O−
6 = −1

2
sin

(
ϕ

2f

)
sin

(
ϕ

f

)
(SBB∗ − SWW∗) +

3

4

√
ξ sin3

(
ϕ

2f

)(
S2
2

+ S3

)

Taking into account Eµν = f+µν − i[dµ, dν ], we find that O−
6 = O−−,2 −O−−,1. Let’s check this:
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)(
S2
2

+ S3

)
= O−

6

Therefore, it is clear that indeed the CCWZ operators give contribution to the S2 and S3 oper-

ators. This was key to discover that the custodially breaking high-energy building block T̃ was

necessary.

6.5 Conclusions

In this first part of the thesis we have presented a systematic way of constructing the effective

chiral lagrangian for a generic CH model, characterized by a coset G/H, analyzing the bosonic

operators with at most four derivatives: seven independent operators (apart from the kinetic term)

in the CP-even case and four in the CP-odd one. Restricting the gauge group to SU(2)L×U(1)Y

and considering the gauging of the hypercharge as the only source of custodial symmetry breaking,

the CP-even basis amounts to ten operators, with the CP-odd one having six, including the

topological term, a result that is independent of the specific choice of G or of the representation

of SU(2)L to which the Higgs particle belongs to, as long as it is a Goldstone boson.

This procedure was then particularized in Chapters 5 and 6 to the SU(5)/SO(5), SO(5)/SO(4)

and SU(3)/(SU(2)×U(1)) cosets. The specific algebra of each model leads to relationships among

some operators, such as in the SU(5)/SO(5) CP-even case, where the independent number of

operators is reduced to nine. It was also pointed out that, in the case that the only light GBs

in the Georgi-Kaplan is the Higgs scalar, its low-energy projection coincides with the one of

SO(5)/SO(4), since in this case the preserved subgroups in the two models turn out to be

isomorphic. It was shown in Chapter 5 that indeed, in the particular realization of the original

Georgi-Kaplan model, where an additional U(1)A group is gauged, there is a part of the parameter

space where indeed the Higgs scalar is much lighter than all the rest of the Goldstones.
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Chapter 7

Higgs portal dark matter and

neutrino mass and mixing with a

doubly charged scalar

In this chapter we shall focus on a particularly economical loop model of Majorana neutrino mass

and mixing [44], in which the low energy effective theory involves just one extra new particle: a

doubly charged EW singlet scalar S (denoting both S++ and its antiparticle S−−). It is already

known that such a model can lead to an interesting complementarity between low energy charged

lepton flavour violation processes, and high energy collider physics, depending on whether the

doubly charged scalar S appears as a virtual or real particle [45]. However such a model cannot

account for DM, since the doubly charged scalar S decays promptly into either pairs of like-sign

charged leptons orW bosons. Here we shall extend the model slightly by introducing an additional

neutral scalar φ and assume an unbroken Z2 symmetry in the scalar sector, under which only the

additional neutral scalar φ is odd, which then becomes a stable DM candidate. The model may

be regarded as an extension of the so-called Higgs portal scenario [46], in the presence of a doubly

charged scalar which accounts for neutrino mass and mixing. The resulting framework presented

here, involving both S and φ, then merges two apparently unrelated features: the existence of a

new physics sector at the TeV scale, providing naturally small neutrino masses, and the existence

of a good DM candidate.
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7.1. Dark matter

7.1 Dark matter

Astronomers have long known that galaxies and clusters would fly apart unless they were held

together by the gravitational pull of much more material than we actually see. The strength of

the case built up gradually. The argument that clusters of galaxies would be unbound without

dark matter dates back to Zwicky (1937) and others in the 1930s. Kahn and Woltjer (1959)

pointed out that the motion of Andromeda towards us implied that there must be dark matter in

our Local Group of galaxies. But the dynamical evidence for massive halos (or coronae) around

individual galaxies firmed up rather later (e.g. Roberts and Rots 1973, Rubin, Thonnard and

Ford 1978).

The amount of dark matter, and how it is distributed, is now far better established than it was

when those papers were written. The immense advances in delineated dark matter in clusters

and in individual galaxies are manifest in the programme for this meeting. The rapid current

progress stems from the con- fluence of several new kinds of data within the same few-year interval:

optical surveys of large areas and high redshifts, CMB fluctuation measurements, sharp X-ray

images, and so forth. The progress has not been solely observational. Over the last 20 years,

a compelling theoretical perspective for the emergence of cosmic structure has been developed.

The expanding universe is unstable to the growth of structure, in the sense that regions that start

off very slightly overdense have their expansion slowed by their excess gravity, and evolve into

conspicuous density contrasts. According to this cold dark matter (CDM) model, the present-

day structure of galaxies and clusters is moulded by the gravitational aggregation of nonbaryonic

matter, which is an essential ingredient of the early universe (Pagels and Primack 1982, Peebles

1982, Blumenthal et al. 1984, Davis et al. 1985). These models have been firmed up by vastly

improved simulations, rendered possible by burgeoning computer power. And astronomers can

now compare these virtual universes with the real one, not just at the present era but (by observing

very distant objects) can probe back towards the formative stages when the first galaxies emerged.

7.1.1 Case for WIMPs

All these observations require new fundamental particle physics, since no particle with the required

properties to be DM has been detected so far. Weakly Interacting Massive Particles (WIMPs

) form a particularly interesting generic class of new-particle candidates because they naturally

provide about the inferred amount of this nonbaryonic dark matter, a result dubbed the WIMP

miracle. WIMPs would be produced thermally in the early Universe. Because they interact only

weakly, their annihilation rate would become insignifi- cant as the Universe expands, thus freezing

out a relic abundance of the particles. The expected WIMP density would be the same as that
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7.2. Neutrino masses

of the nonbaryonic dark matter if the WIMP velocity-averaged annihilation cross section is 1 pb,

so that the WIMP mass is 100 GeV, which roughly coincides with the EW scale.

Whatever physics solves the hierarchy problem associated with this symmetry breaking gives rise

to additional particles. If an appropriate (often independently motivated) discrete symmetry

exists, the lightest such particle is stable. This particle is then weakly interacting, massive, and

stable it is a WIMP. Thus, particle theorists are almost justified in saying that the problem of

electroweak symmetry breaking predicts the existence of WIMP dark matter. Although the argu-

ment for WIMP dark matter is generic, supersymmetry dominates the discussion as a particularly

well-motivated model. They may be produced and detected (indirectly) at accelerators such as

the Large Hadron Collider. Relic WIMPs may be detected indirectly when they clump in massive

astrophysical objects, increasing their annihilation rate enough that their annihilation products

may be detectable- Many potential indirect signals are ambiguous, with alternate astrophysical

explanations. Some potential indirect signals, however, would be compelling. Annihilation in the

Sun or Earth would produce higher-energy neutrinos than any other known process. These neu-

trinos could be observed in neutrino telescopes such as IceCube or ANTARES. Either FERMI or

ground-based air Cerenkov telescopes may detect distinctive gamma-ray features from the galac-

tic center or from sub-halos. Relic WIMPs may also be detected directly when they scatter off

nuclei in terrestrial detectors.

This chapter will introduce a scalar singlet WIMP in the context of the so-called Higgs portal

scenario, where the only direct coupling of the dark matter particle is through SM singlet operator

|HH†|.

7.2 Neutrino masses

The existence of neutrinos was first proposed by Pauli in 1930, a desperate remedy in order to

solve the missing energy problem in beta decays. The Super-Kamiokande experiment in 1998

showed that neutrinos oscillate, and therefore have mass. It observed a deficit of muon neutrinos

produced when cosmic rays impact the atmosphere. The oscillation hypothesis implied that some

of these muon neutrinos where oscillating into undetected tau neutrinos. However,neutrinos are

always left-handed in the SM, unlike quarks and charged leptons, and are therefore predicted to be

massless. If right-handed neutrinos were to be added to the Standard Model, then neutrinos could

have a Dirac mass, and the theory would also predict the existence of antineutrinos. Another

possibility is that neutrinos are their own antiparticle, so that they would have a Majorana mass

term.
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7.3. The effective model with a doubly charged scalar

Explaining the BSM origin of neutrino masses has attracted lots of theoretical efforts. A pop-

ular solution is the see-saw mechanism [47, 48], which introduces heavy Majorana right-handed

neutrinos. This thesis will focus on loop neutrino mass models, where loops of additional heavy

states induce a small mas to neutrinos. They often characterised by additional Higgs doublets

and singlets. These extra scalar states can in principle be detected indirectly, via low energy

high precision experiments due to their contribution to charged lepton flavour violation (LFV)

or neutrinoless double beta decay (0νββ), providing a test of the underlying theory of neutrino

mass. For example, in the original Zee-Babu model [49–51], involving one singly and one doubly

charged extra scalar singlet, neutrino masses arise via a two-loop diagram. The loop model of

Ma [52] involves an inert Higgs doublet, odd under a discrete symmetry, which does not develop

a vacuum expectation value (VEV) but has Yukawa couplings to some of the leptons (involving

right-handed neutrinos) and in turn couples to another Higgs doublet which gets a VEV, allow-

ing neutrino mass via a one-loop diagram. The inert Higgs doublet is a Dark Matter candidate,

hence the name Scotogenic [52]. More recently a Cocktail of the Zee-Babu and Ma models has

been proposed [53, 54] involving an extra inert Higgs doublet and a doubly charged Higgs singlet

but no right-handed neutrinos, where neutrino masses arise due to a three-loop diagram involv-

ing also W-bosons. In summary, although such loop models do provide a natural explanation

for the smallness of neutrino mass and are phenomenologically rich, having predictions for LFV

as well new Higgs discovery at the LHC [55, 56], they do involve rather many new particles

and parameters and are rather computationally complicated, as compared for example to seesaw

models.

7.3 The effective model with a doubly charged scalar

In this section we review the effective Lagrangian model presented in [44], in which the SM is

extended by adding one new scalar particle: a complex SU(2)L singlet, hypercharge Y = 2 (hence

electric charge Q = 2) state S++ and its antiparticle S−−, both doubly charged and denoted in

the following as S and S† respectively.

The doubly charged scalar field S has an effective coupling to the SM W± bosons as well as to

same-sign right-handed charged SM leptons, giving rise to a rich phenomenology. In addition to

contributing to flavour violating leptonic processes, to leptonic dipole moments and to leptonic

radiative decays, the scalar S allows a 2-loop diagram which is responsible for providing all mass

(and mixings) to neutrinos. It is shown in [44] that the lowest mass dimension at which the vertex

SWW can be realised is by effective operators of dimension d = 7. The relevant operator, in the
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7.3. The effective model with a doubly charged scalar

Figure 7.1: Effective vertex that connects the doubly charged singlet scalar to two WW-bosons.

Figure 7.2: Two-loop diagram for the neutrino mass in the effective model.

unitary gauge, for the generation of neutrino masses is:

LSWW = −g
2ξv4

4Λ3
(SWµWµ + h.c.) (7.1)

being ξ an order O(1) dimensionless parameter and Λ the new physics scale above which the

effective theory breaks. The coupling of S to same-sign RH leptons is given by

LSll = fab S
† l̄aPLl

c
b + h.c. (7.2)

with fab dimensionless parameters. There are strong experimental constraints on the fab param-

eter space, basically due to the flavour violating couplings of the charged scalar S with leptons,

the strongest bound proceeding from µ → eγ and µ → 3e. A detailed analysis of these bounds

can be found in [44, 45, 56].

The simultaneous presence of the SWW and Sll vertices generate a 2-loop contribution to the

neutrino masses, that schematically can be written as

M2−loop
ν = 2 ξ fab(1 + δab)

mambm
2
S

Λ3
Ĩ(mW ,mS , µ) (7.3)

where mS is the S particle mass, mi is the mass of the li lepton, δab is the Kronecker delta

and Ĩ(mW ,mS , µ) is the two loop integral calculated in [44]. Apart from the usual contribution

to 0νββ due to massive neutrinos in presence of a lepton number violating interaction, this
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7.3. The effective model with a doubly charged scalar

Figure 7.3: The non-standard contribution to 0νββ.

model also produce an additional non-standard contribution to it, since the doubly charged

scalar S can couple both to W−W− and e−e−. Taking into account the newest GERDA results

of T 0νββ
1/2 (Ge) > 2.1 · 1025 at 90% C.L., [57], one obtains

ξfee
M2
SΛ

3
<

4.0 · 10−3

TeV5 . (7.4)

In general it is not an easy task to fulfil all the flavour/dipole bounds and obtain a realistic

description for neutrino masses and mixing compatible with the 0νββ decay bounds. In [44] a

detailed analysis has been performed that highlighted the presence of three typical regions where

this may happen, hereafter denoted as “Benchmark Scenarios”:

1. Benchmark Scenario A: fee ≃ 0 and feτ ≃ 0. In this region the additional contribution to

the 0νββ essentially vanishes. A normal hierarchy between the neutrino masses with the

lightest one around 5 meV is obtained;

2. Benchmark Scenario B: fee ≃ 0 and feµ ≃ −(f∗µτ/f
∗
µµ)feτ . In this region one still has a

vanishing additional contribution to the 0νββ and a normal ordered neutrino masses with

the lightest one around 5 meV. However the constraint relating feµ and feτ makes this

scenario more predictive (falsifiable) in what concerns lepton flavour violation;

3. Benchmark Scenario C: feµ ≃ −(f∗µτ/f
∗
µµ)feτ . In this region one can assume large values

for the fee coupling. However not to enter in conflict with the GERDA limit on 0νββ of

Eq. (7.4) one has to push the cutoff scale Λ to several TeV, not a desirable thing from the

collider phenomenology point of view.

For the analysis presented in the following sections we will use the best fit benchmark point for

each of the three scenarios reported by [44]:
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7.4. Higgs portal DM with a doubly charged scalar

1. Benchmark Point A: mS = 164.5 GeV, Λ = 905.9 GeV , ξ = 5.02;

2. Benchmark Point B: mS = 364.6 GeV, Λ = 2505.1 GeV, ξ = 6.38;

3. Benchmark Point C: mS = 626.0 GeV, Λ = 5094.7 GeV, ξ = 3.39.

7.4 Higgs portal DM with a doubly charged scalar

In order to account for DM, we now introduce a further particle into the scheme of the previous

section, namely an electrically neutral real scalar φ. An unbroken Z2 symmetry is assumed,

under which the field φ is odd, while all the other particles are even. The motivation of such a

setup is twofold: firstly, as already discussed, the presence of an extra doubly charged scalar can

provide an economical mechanism for triggering light neutrino masses and mixing [44, 45, 51, 53].

Secondly, the new neutral scalar can account for DM. Possible UV completions of this model could

be pursued along the lines of [51, 53]. Here we shall not try to construct an ultraviolet complete

model, but continue to consider the effective theory below the cut-off Λ, where the theory has a

rather minimal particle content, with the goal of understanding DM in this extended model. In

particular, we shall discuss how the presence of an extended scalar sector can potentially modify

the limits and the predictions obtained in the standard DM Higgs portal scenario [46]. In this

section we study the DM signatures of the effective Lagrangian model described in the previous

section.

The most general (renormalizable) scalar potential for the model at hand is given by

V = µ2|H†H|+ λ|H†H|2 + 1

2
µ2φφ

2 +
1

4
λφφ

4 + µ2SS
†S + λS(S

†S)2 +

+
1

2
λφHφ

2 |H†H|+ λSH(S
†S) |H†H|+ 1

2
λφSφ

2 (S†S) (7.5)

where H is the usual SM Higgs doublet, S the doubly charged scalar and φ the additional neutral

scalar, odd under the unbroken Z2 symmetry, that will play eventually the role of stable DM.

In addition to the SM Higgs sector parameters, µ and λ, compatibly with the assumption of an

unbroken Z2 symmetry, one can introduce seven additional dimensionless parameters: a quadratic

and a quartic self–interacting couplings, respectively for the neutral and charged exotic scalars,

plus three parameters associated to the quartic mixings between all the neutral and charged

scalars. We assume that the ElectroWeak Symmetry Breaking (EWSB) is associated exclusively

to the Higgs sector, i.e. µ2 < 0 is assumed while µ2φ, µ
2
S > 0 are considered. The masses of the
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7.4. Higgs portal DM with a doubly charged scalar

exotic scalars, then, read

m2
φ ≡ µ2φ +

1

2
λφHv

2 , m2
S ≡ µ2S +

1

2
λSHv

2 (7.6)

It is interesting to compare the predictions of this model with the ones of the minimal Higgs portal

DM, which is described by the potential of Eq. (7.5) once the doubly charged scalar is decoupled

from the theory, i.e. mS ≫ mH ,mφ or by setting λφS = 0 = λSH
1. The phenomenology of

such a minimal Higgs portal DM model has been extensively studied in [46, 58–81]. Here we are

interested in how the presence of the doubly charged scalar can affect Higgs portal DM.

7.4.1 Relic abundance

In order to obtain the DM relic abundance one has to solve the following Boltzman equation:

dY

dT
=

√
πg∗(T )

45
MP 〈σv〉

(
Y (T )2 − Yeq(T )

2
)

(7.7)

where Y (T ) is the DM abundance, Yeq(T ) is the equilibrium thermal abundance, g∗ is the effec-

tive number of degrees of freedom, MP is the Planck mass and 〈σv〉 is the thermally averaged

annihilation cross section, which must include all relevant annihilation processes:

〈σv〉 =
∫ ∞

4m2
φ

s
√
s− 4m2

φK1(
√
s/T )σvrel

16Tm4
φK

2
2 (mφ/T )

ds (7.8)

where K1 and K2 are modified Bessel functions of the second kind. The present DM abundance,

Y (T0), is obtained by integrating Eq. (7.7) down to the today temperature T0. Then, the DM

relic density is

ΩDMh
2 = 2.74× 108

mφ

GeV
Y (T0) . (7.9)

We computed these quantities using the publicly available version of micrOMEGAs [82, 83].

In Fig. 7.4 we plot the allowed parameter space in the (mφ,λφH) plane for which the DM relic

abundance coincides with the observed value, ΩDMh
2 = 0.1198 [1]. The four plots correspond to

four different values of mS = 250, 500, 750, 1000 GeV, respectively. In each plot of Fig. 7.4, the

full black curve represents the Higgs portal case (i.e. λφS = 0 = λSH). Then, for each plot the

dashed, dot–dashed, dotted and dot–dot–dashed curve are obtained for representative choices of

1Notice, however, that the decoupling limit is only approximately reached by setting one of the tree level
parameters, for example λφS , to zero, while keeping the other two finite. In fact in this case one can generate a
one–loop contribution to λφS through the λφH and λSH vertices. We will come back later on this point.
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Figure 7.4: Allowed parameter space, in the (mφ,λφH) plane, for which the DM relic abundance
reproduces the observed value, ΩDMh

2 = 0.1198 [1]. The four plots correspond to four different
values of mS = 250, 500, 750, 1000 GeV, respectively. In each plot several choices for λφS are

shown.

λφS , which value is shown in the legenda. There is no significative dependence from the choosen

value of λSH , which has been conventionally taken λSH = 1.2

When the DM particle, φ, is lighter than the doubly charged scalar, S, the process φφ→ SS† is

not efficient, and the relic abundance results as in the pure Higgs portal case, i.e. via the pair φφ

annihilating into an off-shell Higgs scalar mediating the processes φφ → W+W−, ZZ,HH, tt̄ or

at tree level into a pair of Higgs scalars. We’ll refer collectively to these processes as φφ→ SM .

The same happens when mφ ≫ mS . However, in the intermediate region, mφ ≈ mS , the process

φφ → SS† becomes efficient and, accordingly, λφH needs to be suppressed, depending on the

chosen value for λφS , in order to reproduce the correct amount of DM relic density. In particular,

2On the one hand, since the φφ annihilation occurs almost at rest, mS > mH in all the considered scenarios,
the H → SS† decay is not relevant. On the other hand, the contributions coming from SS† → H are suppressed
by a loop factor.
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7.4. Higgs portal DM with a doubly charged scalar

for large enough λφS and for specific values of the mφ mass all the relic abundance can be

produced exclusively via the coupling λφS , with λφH approaching zero. This is why the dot–

dot–dashed (brown) curve exists only in the “small” and “large” mφ region. For such values of

λφS , in the intermediate mφ range, DM is overproduced, and the set of parameter chosen is not

allowed. This fact can be clearly seen in the mS = 750 GeV (lower-left) plot: for λφS = 0.6 and

850 . mφ . 1150 GeV one can never reproduce the correct amount of DM density.

A comment is in order regarding the possibility of setting λφH=0. In the framework at hand,

λφH can receive loop contributions, through diagrams involving λφS and λHS couplings. It can

be shown that, for a temperature T > mφ/20, 〈σv〉 (and therefore λφH) doesn’t have an impact

on Y (T ), since for those temperatures the DM abundance is equal to the equilibrium abundance,

Y (T ) = Yeq(T ). When T ∼ mφ/20, the DM particle freezes-out, and the relic abundance depends

indeed on 〈σv〉. As a conclusion, the typical energies in which the loop is relevant is when

p2 ∼ (mφ/20)
2. Setting the renormalization scale at 2mS , at one loop one obtains:

λrenφH ≃ λφH +
1

16π2
λφSλSH log

mφ

40mS
(7.10)

As typically the loop contribution is few 10−3, one cannot extrapolate the tree level analysis to

values of λφH below few 10−3. In plotting our results we always work with λφH ≥ 0.005.

All these comments are clearly summarised in Fig. 7.5 where the parameter space which yields

the correct relic abundance, in the (λφS ,λHφ) plane, is shown for mS = 500 GeV. The light-red

region summarises the region, allowed by relic density data, for the relevant couplings of our DM

model. Inside the filled region for definiteness we have also shown few dashed lines for various

mφ values. For mφ ≤ mS one typically spans the lower–left region of the parameter space, while

for mφ ≥ mS one spans the upper and the right part of the filled area. In particular, we clearly

see the existence of a critical value: λcritφS = 0.357 for this specific mS case. For λφS ≤ λcritφS it

is always possible to find values for λφH and λφS in order to satisfy the relic abundance bound,

independently of the mφ mass. In fact one always cross all different colours dashed lines. For

λφS ≥ λcritφS , only for specific ranges of mφ one can find a solution.

It should be noted that the annihilation of two DM particles, φ, moving at non-relativistic ve-

locities could be enhanced due to the Sommerfeld effect [84, 85]. In our case, this effect can

only be medidated by a t-channel Higgs exchange. However, it was shown in [86] that such an

enhancement is relevant only for mφ > 2 TeV, which is outside the range of masses considered in

the present analysis.
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Figure 7.5: Allowed parameter space in the (λφS ,λHφ) plane for mS = 500 GeV and mφ ∈
(500, 1500)GeV. The value for mφ = 250 GeV is shown in order to illustrate the fact that, for

mφ below mS , the coupling λφS has no impact.

7.4.2 Direct detection

Direct detection experiments can significantly constrain the allowed parameter space for DM

models. Experiments like LUX [87] and XENON [88, 89] can detect the DM particle scattering

with the nucleons of the detector material, which in the both cases is Xenon. In our model,

as well as in the pure Higgs portal case, this interaction mainly occurs via exchange of a Higgs

scalar. The spin-independent cross-section is given by

σSI =
f2Nµ

2m2
N

4πm4
Hm

2
φ

λ2φH (7.11)

with mN the nucleon mass, µ = mφmN/(mφ + mN ) the DM-nucleon reduced mass and fN ∼
0.3± 0.03 the hadron matrix element [80]. In Fig. 7.6 we show the limits in the plane (λφH , mφ)

from the current constraints of LUX (dashed black line) and the predicted sensitivity of XENON

1T (dot dashed black line). Both the pure Higgs portal and our model can escape the LUX limit.

However, while the Higgs portal scenario will be for sure inside the XENON 1T sensitivity region,

our model can for all considered values of mS , ranging from 250 GeV and 1000 GeV, escape the

direct detection (even taking into account the uncertainty of O(10%) in the determination of fN ).

As explicitly shown in Figs. 7.4 and 7.5, the presence of the new coupling λφS can allow values

75



7.4. Higgs portal DM with a doubly charged scalar

!"" #"" $"" !""" #"""

"%""!

"%"!"

"%!""

!

!!

!
!
!

mS=250 GeV

mS=500 GeV

mS=750 GeV

mS=1000 GeV

!"##$ %&'()*

+,-

-./0/ 12

Figure 7.6: Allowed parameter space in the (λHφ, mφ) plane for four different mS values
(mS = 250, 500, 750, 1000 GeV). Dashed and dot–dashed black lines represent the exclusion limits

from direct detection by LUX and (the prediction for) XENON 1T, respectively.

for λφH below XENON 1T sensitivity. This feature is almost independent from the chosen mφ

and mS values, in the ≈ 1 TeV region.

7.4.3 Indirect detection

The DM particles in the galaxy can annihilate and yield several indirect signatures, such as

positrons, antiprotons and photons. The detection of these cosmic rays is one of the most

promising ways to identify DM existence [90–94]. We will focus here in particular in the observed

spectrum of positrons and antiprotons. The production rate of these particles at a position ~x

with an energy E is usually expressed as [95]

Qa(~x,E) =
1

2
〈σv〉

(
ρ(~x)

mφ

)2

fa(E) (7.12)

where σv is defined in Eq. (7.8), ρ(~x) is the DM density and fa(E) = dNa/dE is the energy

distribution of the species a produced in a single annihilation event.
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7.4. Higgs portal DM with a doubly charged scalar

The region of diffusion of cosmic rays is represented by a disk of thickness 2L ≃ (2− 30) kpc and

radius R ≃ 20 kpc. The galactic disk is modelled as an infinitely thin disk lying in the middle with

half-width h = 100 pc and radius R. The charged particles, generated from DM annihilation,

propagate in a turbulent regime through the strong galactic magnetic field and are deflected by

its irregularities. Monte Carlo simulations show that this motion can be described by an energy

dependent diffusion term K(E). On top of that, these particles can lose their energy via inverse

Compton scattering on interstellar medium, through Coulomb scattering or adiabatically. This

energy loss rate is denoted by b(E). Furthermore these particles can be wiped away by galactic

convection, with a velocity VC ≃ (5 − 15) km/s [93]. Finally, one has also to account for the

annihilation rate Γann induced by the interaction of the charged particles with ordinary matter in

the galactic disk. Taking into account all these effects, the equation that describes the evolution

of the energy distribution of charged particles reads:

∂

∂z
(VCψa)−∇ · (K(E)∇ψa)−

∂

∂E
(b(E)ψa)− 2hδ(z)Γannψa = Qa(~x,E) (7.13)

where z is the height in cylindrical coordinates adapted to the disk diffusion model, ψa = dn/dE

is the number density of particles per unit volume and energy. We use the default settings of

micrOMEGAS [95] to numerically evaluate the propagation of positrons and antiprotons that

originate from DM annihilation.

7.4.3.1 Positrons

The energy spectrum of positrons originated from DM annihilation is obtained by solving the

diffusion-loss equation keeping only the two dominant contributions: space diffusion and energy

losses,

−∇ · (K(E)∇ψe+)−
∂

∂E
(b(E)ψe+) = Qe+(x, E) (7.14)

In addition to the e+ flux from the DM decay, there exists a secondary positron flux from in-

teractions between cosmic rays and nuclei in the interstellar medium. This positron background

Φbg
e+

can be well approximated as [96, 97]

Φbg
e+
(E) =

4.5 · 10−4E0.7

1 + 650E2.3 + 1500E4.2
[GeV−1m−2s−1sr−1] (7.15)

In order to have a better understanding of the φφ annihilation rates we plot the relevant branching

ratios in Fig. 7.7 using the micrOMEGAs tool.

77



7.4. Higgs portal DM with a doubly charged scalar

BR( W
+

W
-)

200 400 600 800

0.01

0.05

0.10

0.50

1

m (GeV)

H

S=0.1773

S=0.15

S=0.1

BR( ZZ)

200 400 600 800

0.01

0.05

0.10

0.50

1

m (GeV)

S=0.1773

S=0.15

S=0.1

200 400 600 800

0.01

0.05

0.10

0.50

1

m (GeV)

B
R
(

H
H
)

S=0.1773

S=0.15

S=0.1

200 400 600 800

0.01

0.05

0.10

0.50

1

m (GeV)

B
R
(

tT
)

S=0.1773

S=0.15

S=0.1

!"" #"" $"" %"" &"" '"" (""
")"*

")"%

")*"

")%"

*

!!(+,-)

!
"
(!
!
"
!
+
+
!
-
-
)

!"!="#$%%&

!"!="#$'

!#!="#$

Figure 7.7: Branching ratios for φφ to annihilate into various states versus the DM mass with
mS = 250 GeV. The value of λφH is fixed so that the relic density matches the observed value.
In each plot several choices for λφS are shown. The black curves correspond to the pure Higgs

portal predictions.

In the left column of Fig. 7.8 we show the positron flux as function of the positron energy, for

the three benchmark points mentioned in Section 7.3. In each of the three left plots, the dashed

(orange) line represents the expected background of Eq. (7.15), while the dot–dashed (black) line
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Figure 7.8: Predicted positron (left column plots) and antiproton (right column plots) fluxes
for the chosen benchmark points A,B and C respectively.

is the prediction for the Higgs portal case. The (blue and red) continuous lines represent our

model expectations for two different choices of parameters, reported in each plot legenda, which

give the correct relic abundance.
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7.4. Higgs portal DM with a doubly charged scalar

The Higgs portal prediction is always at least two orders of magnitude below the astrophysi-

cal positron background. For the set of parameters defining Benchmark Point A, the expected

positron flux almost coincides with the Higgs portal scenario one. This is due to the fact that

for such values of mφ and mS , the φφ → SS† channel is still suppressed compared to the usual

φφ → SM one. Morever, for this Benchmark Point the S coupling to electrons and positrons

fee ≈ 0. For Benchmark Point B (middle left plot) the φφ→ SS† channel becomes more effective

compared to the φφ → SM one, suppressed by the large mφ mass. Still one has fee ≈ 0, the

dominant S decays being in WW and eτ (see [44]). This result in a positron flux two or three

times higher than in the Higgs Portal scenario. Finally, for Benchmark Point C (lower left plot)

the φφ → SS† channel becomes dominant. Moreover, in this case one has sizeable fee, letting

S mostly decays in positrons. In this region of the parameter space, our model positron flux is

one order if magnitude higher compared with the standard Higgs Portal scenario, even if still one

order below the expected background.

7.4.3.2 Antiprotons

The propagation of antiprotons originated from DM annihilation, neglecting the energy loss term,

can be described as [98]

−Kp̄∇2ψp̄ + VC
∂

∂z
ψp̄ + 2hδ(z)Γannψp̄ = Qp̄(x, E) (7.16)

The astrophysical antiproton background Φbgp̄ can be written as

Φbgp̄ =
0.9E−0.9

14 + 30E−1.85 + 0.08E2.3
[GeV−1m−2s−1sr−1] (7.17)

The plots on the right column of Fig. 7.8 show that, as in the positron case, the antiproton flux

predicted in the Higgs portal scenario (dot–dashed black line) is roughly two orders of magnitude

below the astrophysical background (dashed orange curve).

The doubly charged particle has a largest branching fraction to W s in Benchmark Point A than

in the rest of cases [44]. Thus, even if in this region of parameter space the φφ → SM process

still dominates, the flux of antiprotons for E ≤ 200 GeV is higher than the one predicted in the

Higgs Portal case. However, for Benchamrk Points B and C, where the S scalar decays mostly to

leptons (eτ and ee, respectively), the increasing relevance of the φφ → SS† process makes the p̄

flux smaller than the corresponding Higgs Portal case for the same mφ mass (compare the black

and red lines in middle and bottom left plots of Fig. 7.8, respectively for mφ = 450 GeV and

mφ = 750 GeV).
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In our model one can obtain a larger flux by increasing the φ mass. For example for Benchmark

Point C (bottom left plot in Fig. 7.8), one can obtain a rather larger contribution to the antiproton

flux selecting mφ = 1000 GeV, but still one order of magnitude smaller than the expected p̄

background.

7.4.3.3 Photons

The possibility of indirect detection via photons deserves a comment. The continuum spectrum

of photons isn’t expected to change significantly from the Higgs portal scenario, analogously to

the positrons and antiprotons case. Therefore, most of the analysis done in [80] would apply as

well to our model. Moreover, also the gamma rays excess in the continuum spectrum from the

Galactic Centre, claimed by Fermi-LAT, cannot be explained in the Higgs portal scenario [80].

Since the relevant region points at a mass of around 50 GeV, the introduction of an heavy doubly

charged S scalar would not significanlty change this conclusion.

A more interesting phenomenological aspect would be the production of monochromatic gamma-

ray lines and their observation/exclusion by Fermi-LAT experiment. Since the DM candidate

is neutral, the production of a monochromatic gamma-ray line must be loop-mediated. The

φφ → γγ annihilation process mediated by a doubly charged S loop has been studied in [99],

trying to explain the 130 GeV gamma-ray line [100]. In order to reach the observed sensitivity the

author of [99] has to enhance the φφ→ γγ cross section by considering S embedded in a multiplet

of an additional SU(N) strong symmetry. This leads to an NC dependence of the amplitude. For

λΦS ∼ O(1) and mS ∼ 250 GeV one needs NC ∼ 9 to reach the ovserved rate. In our scenario

we don’t have a similar enhancement.

7.5 Conclusions

In this second part of the thesis we have considered an extension of the Standard Model involving

two new scalar particles around the TeV scale: a singlet neutral scalar φ, that plays the role

of the Dark Matter candidate plus a doubly charged SU(2)L singlet scalar, S++, that is the

source for the non-vanishing neutrino masses and mixings. In this framework, besides being able

to explain naturally the smallness of neutrino masses with the new physics at the TeV scale, it

could be possible to identify DM scenarios which extend the conventional Higgs portal one. We

have studied the allowed parameter space for our model, compatible with the present DM relic

density. Moreover we have identified possible signatures from direct and indirect DM detection

experiments. In general our results indicate that it would is possible, within our framework, to
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evade XENON 1T exclusion limits for a significant region of the parameter space. However, we

also show that, even if the positron and antiproton flux, originating from DM annihilation, is

higher than the standard Higgs portal one, it is still about an order of magnitude lower then the

observed background.

In conclusion, our model may be regarded as an extension of the minimal Higgs portal DM

scenario with a doubly charged scalar which can account for neutrino mass and mixing. The

presence of the doubly charged scalar S introduces a new portal coupling of the DM particle φ to

S, namely λφS , in addition to the usual Higgs portal coupling of φ to the Higgs doublet H, λHφ.

The new portal coupling λφS becomes important when mφ exceeds mS , since then it allows the

DM particle to annihilate into pairs of doubly charged scalars, as an alternative to the usual DM

annihilation into Higgs pairs. This in turn reduces the coupling λHφ, consistent with the desired

relic density, making DM harder to detect by direct detection experiments.
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Chapter 8

Conclusions

In this thesis we have dealt with three of the main problems our current understanding of particle

physics is facing: the hierarchy problem, the existence of dark matter and the origin of neutrino

masses. We have approached the first problem using the Composite Higgs model hypothesis,

while for the last two a model with an extended scalar sector was proposed.

The first part of this thesis followed the work [2], constructing the chiral lagrangian for the SM,

where the Higgs scalar does no longer need to necessarily belong in a doublet, behaving like a

Goldstone boson. This is particularly suitable for CH models for example, where the Higgs particle

is a GB associated to some global symmetry breaking pattern G → H. With the EFT approach in

mind, we wrote the effective bosonic lagrangian of a generic G/H coset, determining both the CP-

even and CP-odd basis (which was determined in the work [2]) when the EW group SU(2)L ×
U(1)Y is gauged and no additional sources of custodial breaking are considered. Then this

lagrangian was particularized for three specific CH scenarios: the Georgi-Kaplan SU(5)/SO(5)

model, the Minimal Composite Higgs Model SO(5)/SO(4) and SU(3)/(SU(2) × U(1). Since

this last one is explicitly custodially breaking, it is useful in order to check that, in absence of

custodially breaking terms in the high-energy lagrangian, the fact that it doesn’t have a preserved

SO(4) is enough and low-energy custodially breaking operators are indeed induced. The results

also confirm the powers of ξ predicted in Ref. [33] as weights for each operator of the low-energy

effective chiral Lagrangian, allowing an immediate comparison with linear expansions for an

elementary Higgs. One can point out that the differences stem from the h dependence: functions

of sin [(〈ϕ〉+ h)/2f ] for the CH models and powers of (v + h) /2 for the linear realisation. When

ξ ≪ 1, the trigonometric dependence on h reduces exactly to the linear one, as sin2(ϕ/f) =

ξ(1 + h/v)2 + O(ξ2), neglecting the higher order terms in ξ. This result suggests that the use

of the linear expansion to construct CH model Lagrangians can be justified in this limit. On
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the other hand, if ξ is not so small, the deviations from the linear structure (1 + h/v) could

be significant and therefore comparing observables with different Higgs legs could disentangle

an elementary from a composite Higgs scenario. It was shown in Chapter 5 that indeed, in the

particular realization of the original Georgi-Kaplan model, where an additional U(1)A group is

gauged, there is a part of the parameter space where indeed the Higgs scalar is much lighter than

all the rest of the Goldstones.

In the second part we considered an extension of the Standard Model, presented in the work [3],

involving two new scalar particles around the TeV scale: a singlet neutral scalar φ, identified as

the Dark Matter candidate, plus a doubly charged SU(2)L singlet scalar, S++. The latter one

interacts with same sign right-handed SM leptons as well as with the W+ bosons (through an

effective operator), so that neutrinos receive a 2-loop masses. Thus, the model may be regarded

as a possible extension of the conventional Higgs portal Dark Matter scenario which also accounts

for neutrino mass and mixing. Assuming an unbroken Z2 symmetry in the scalar sector, under

which only the additional neutral scalar φ is odd, we wrote the most general (renormalizable)

scalar potential, and from it compute the DM relic abundance, the direct detection rates and

the fluxes of positrons and protons. In this framework, besides being able to explain naturally

the smallness of neutrino masses with the new physics at the TeV scale, it would be possible

to identify DM scenarios which extend the conventional Higgs portal one. We have studied the

allowed parameter space for our model, compatible with the present DM relic density. Moreover

we have identified possible signatures from direct and indirect DM detection experiments. In

general our results indicate that it would is possible, within our framework, to evade XENON 1T

exclusion limits for a significant region of the parameter space. However, we also show that, even

if the positron and antiproton flux, originating from DM annihilation, is higher than the standard

Higgs portal one, it is still about an order of magnitude lower then the observed background. Our

model may be regarded as an extension of the minimal Higgs portal DM scenario with a doubly

charged scalar which can account for neutrino mass and mixing. The presence of the doubly

charged scalar S introduces a new portal coupling of the DM particle φ to S, namely λφS , in

addition to the usual Higgs portal coupling of φ to the Higgs doublet H, λHφ. The new portal

coupling λφS becomes important when mφ exceeds mS , since then it allows the DM particle to

annihilate into pairs of doubly charged scalars, as an alternative to the usual DM annihilation

into Higgs pairs. This in turn reduces the coupling λHφ, consistent with the desired relic density,

making DM harder to detect by direct detection experiments.

One could think of possible models where both scenarios here considered could converge. There

are CH models such as SO(6)/SO(5) in which an additional singlet scalar can be identified as the

dark matter particle, for example. In any instance, this shows that not only more experimental

observations are required, but that we also need to find scenarios that are at the same time
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economical in terms of the new parameters and particles added and able to solve more than one

of the problems the SM is facing. This interplay between the construction of new models and

expectancy of experimental signatures, characteristic in general of the scientific method, is maybe

particularly emphasized in this period of particle physics.
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Appendix A

CCWZ construction. Non-linear

realization of symmetries

A.1 The CCWZ construction

The Callan-Coleman-Wess-Zumino (CCWZ) formalism [35, 101] is a construction that allow to

understand some properties of spontaneously broken theories without having the knowledge of

the underlying x mechanisms behind them0. It can be used to write general low-energy effective

Lagrangians of theories characterized by a generic G → H breaking pattern. This means that the

theory, either weakly or strongly coupled, is invariant under linearly realized transformations of

the compact Lie group G, with the vacuum state invariant only under a subgroup H ⊂ G.

We denote by Ta (with a = 1, . . . , dim(H)) the generators of H and by Xâ the generators of the

coset G/H, in a way such that (Ta, Xâ) form an orthonormal basis of G. A generic element g ∈ G
can be decomposed a

g = eiAâX
â

eiVaT
a

(A.1)

The Goldstone boson degrees of freedom can be parametrized by the unitary matrix

Ω(x) ≡ eiΞ(x)/2f , (A.2)

where Ξ(x) ≡ ΞâX
â. It is interesting to study how the GB field Ξ(x) transforms under a generic

transformation g ∈ G.

we obtain

gΩ(x) = eiAâX
â

eiVaT
a

eiΞâX
â/2f ≡ eiΞ

′
â
X â/2feiV

′
a(ξ)T

a ≡ Ω′(x) h (g,Ξ) (A.3)
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where h ∈ H. Therefore, the GB matrix Ω transforms under general G transformations as

Ω(x) → gΩ(x) h−1 (Ξ, g) (A.4)

Thus, the Goldstone field Ξ actually transforms non-linearly under G,

Ξ′
â = Ξâ + 2fAâ + . . . (A.5)

where the dots stand for higher order terms in Ξâ or the parameters Aâ, Vâ. This transformation

assigns one Ξ′(x) field to each g element of G, which we can denote by Ξg(x). We find then

that this transformation on the Goldstone bosons provides a representation of the whole group

G, since it respects the multiplication rule:

Ξ(g1g2) = (Ξg2)g1 (A.6)

This is the reason why it’s said that this is a non-linear representation of G, as opposed to the

usual linear group representations where the transformation rule is simply given by a constant

matrix acting on the field variables. It is also because of this that the spontaneously broken group

is said to be “non-linearly” realized rather than broken.

It is also worth noticing that if the transformation is restricted to H, then A.4 reads

Ω(x) → hΩ(x)h−1 (A.7)

In other words, the preserved subgroup H acts linearly on the Goldstone bosons.

A.2 The high-energy effective chiral Lagrangian

The CCWZ method for constructing the the effective lagrangian describing the dynamics of

the Goldstone bosons implies using objects transform under the adjoint representation of the

unbroken subgroup H, as opposed to the Sigma Decomposition procedure described in Chapter

4, where the building blocks are covariants under the whole group G. H covariant objects can be

easily built from the fields defined in Chapter 4 using the Ω matrix:

sµν ≡ Ω−1 S̃µν Ω , vµ ≡ Ω−1 ṼµΩ = Ω−1DµΩ− ΩDµΩ
−1 ,

sRµν ≡ Ω S̃R
µν Ω

−1 , vRµ ≡ Ω ṼR
µ Ω−1 = ΩDµΩ

−1 − Ω−1DµΩ .
(A.8)
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It is useful to define the object

Ω−1DµΩ ≡ vµ
2

+ i pµ =
vâµ
2
Xâ + i paµ Ta , (A.9)

with vµ and pµ transforming under H as:

vµ → h vµ h
−1 , pµ → h (pµ − i∂µ) h

−1 . (A.10)

Thus, vµ transforms homogenously under H and pµ behaves as a connection, so that it can be

used to construct covariant derivatives:

∇µvν = Dµvν + i[pµ, vν ] . (A.11)

Since vRµ = −vµ, the building blocks required to construct the effective Lagrangian are {vµ, sµν , sRµν}.
With them it is then possible to write a basis of operators equivalent to the one writte in Chapter

4.

A.3 The CCWZ construction for the SO(5)/SO(4) model

In Refs. [38, 102] an SO(5)/SO(4) model built using the CCWZ construction is presented. The

only particularity that must be taken into account in order to be able to compare the basis they

present with our results is that the SM gauge group is contained in an SO(4)′ subgroup which is

rotated an angle θ from the unbroken H = SO(4) group. This misalignment is parametrized by

a rotation matrix Rθ, so that the matrix from which the building blocks for the lagrangian are

built is

U = ΩR†
θ , (A.12)

Using U instead of Ω one can follow the same steps as in A.2, defining the object

− i U−1DµU ≡ dµ + eµ = dâµXâ + eaµ Ta , (A.13)

where we are following the notation used in Refs. [38, 102]. Under SO(4) transformations,

dµ → h dµ h−1 , eµ → h (eµ − i ∂µ) h
−1 . (A.14)

As before, an extended covariant derivative of dµ can be built using the the object eµ,

∇µdν = Dµdν + i [eµ, dν ] , (A.15)
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as well as a field strength,

eµν ≡ ∂µeν − ∂νeµ + i [eµ, eν ] , (A.16)

The covariant derivative Dµdν is defined using the gauge fields Fµ associated to the gauged

SO(4)′ ⊂ SO(5):

Dµdν = ∂µdν + i gS Fµ dν . (A.17)

The field strength corresponding to this gauge group corresponds to the rotated S̃µν field, i.e.

Fµν = RθS̃µνR
†
θ. From this we can define a field fµν transforming as a H covariant, as well as its

corresponding graded field,

fµν = Ω−1 FµνΩ , fµν → h fµν h
−1 ,

fRµν = ΩFR
µνΩ

−1 , fRµν → h fRµν h
−1 ,

(A.18)

It is useful to express fµν in terms of its broken and unbroken components, defined respectively

as

f+µν =
fµν + fRµν

2
, f−µν =

fµν − fRµν
2

. (A.19)

so that

fµν = f+µν,aT
a + f−µν,âX

â (A.20)

The preserved field strength f+µν is related to the field eµν by the identity

eµν = f+µν − i [dµ, dν ] , (A.21)

so that the operators of the effective lagrangian can be written either using the set of building

blocks {f+µν , f−µν , dµ} or {eµν , f−µ ν, dµ}. Since SO(4) is isomorphic to SU(2)L × SU(2)R, every

object built so far can be expressed via their left and right components. This is useful since the

SM gauging induces a breaking of this group, so that left and right transforming objects can

receive different contributions. It is useful to define the following fields:

f+µν = fLµν + fRµν , f̂+µν = fLµν − fRµν ,

eµν = eLµν + eRµν , êµν = eLµν − eRµν ,
(A.22)

so that, in particular, the following identities hold

eLµν = fLµν − i [dµ, dν ]L , eRµν = fRµν − i [dµ, dν ]R . (A.23)
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Defining the structures

L
2 = Tr[fLµνf

µν
L ] , R

2 = Tr[fRµνf
µν
R ]

LDL = iTr
(
fLµν [dµ, dν ]L

)
, RDR = iTr

(
fRµν [dµ, dν ]R

)

D
2

L
= Tr ([dµ, dν ]L [dµ, dν ]L) , D

2

R
= Tr ([dµ, dν ]R [dµ, dν ]R)

B
2 = Tr[f−µνf

µν
− ] ,

(A.24)

a CP-even basis in these formulation is given by [34]

L(2) =
f2

4
Tr (dµd

µ) = L
2 + R

2 + B
2 ,

Ok = Tr[fµνf
µν ] = ,

O1 = Tr (dµd
µ) Tr (dνd

ν) ,

O2 = Tr (dµdν) Tr (d
µdν) ,

O+
4 = (LDL + RDR) ,

O−
4 = (LDL − RDR) ,

O+
5 = B

2 ,

O−
5 = L

2 − R
2 ,

(A.25)

whereas a CP-odd basis is given by [43]

O−−,1 = ǫµνρσTr ([dµ, dν ]L[dρ, dσ]L − [dµ, dν ]R[dρ, dσ]R) ,

O−−,2 = iǫµνρσTr
(
(eLµν − eRµν)[dρ, dσ]

)
,

O−+ = ǫµνρσTr
(
f−µνf

−
ρσ

)
. (A.26)
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