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ABSTRACT 

Breast cancer (BC) is the most common cancer among women worldwide, and it ranks as 

the second leading cause of female cancer-related death. To improve the clinical outcome 

and survival of BC patients, early diagnosis, tailored treatment and monitoring of response 

are critical factors. In the last decades, several studies have reported that circulating tumour 

cells (CTCs) could meet all these criteria. CTCs in the peripheral blood of metastatic cancer 

patients are associated with overall survival and treatment outcomes. A hallmark of many 

cancers is an altered glucose metabolism, which leads to the acidification of the tumour 

microenvironment. Our aim was to evaluate a method for detecting CTCs that exploits the 

abnormal metabolic behaviour of cancer cells in patients with metastatic breast cancer 

(MBC). This assay exploits a droplet microfluidic technology, which allows to 

compartmentalize single-cell into a droplet and detect metabolically active cells by pH 

measurements of the extracellular space.  

Using breast cancer cell lines with different metastatic potential and normal blood cells, we 

established a functional cut-off, i.e.: the pH value, for discriminating CTCs from white 

blood cells in clinical samples. We assessed the potential of enumerating metabolically 

active CTCs in a cohort of MBCs and healthy donor volunteers and we compared our 

method to the gold standard CellSearch®. The number of detected metabolically active 

CTCs was significantly higher than metabolically active cells in healthy donors. 

Interestingly, our method was able to predict both overall and progression free survival 

similarly to what observed with the CellSearch, although the concordance among the two 

methods was not high. However, the comparison with the golden standard for CTC 

enumeration suggested that the two methods recognize partially overlapping populations, 

suggesting the combined use of both methods to better predict the patient outcome.  
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RIASSUNTO 

Il cancro alla mammella (BC) è il tumore più comune tra le donne in tutto il mondo e si 

classifica come la seconda causa di decessi causati da cancro tra le donne. Per migliorare 

l'esito clinico e aumentare il tasso di sopravvivenza dei pazienti con BC, la diagnosi 

precoce, il trattamento terapeutico personalizzato e il monitoraggio della risposta alla 

terapia sono fattori critici. Negli ultimi decenni, diversi studi hanno evidenziato che le 

cellule tumorali circolanti (CTC) possono soddisfare questi criteri. La presenza di (CTC) 

nel sangue periferico di pazienti metastatici è associata con la sopravvivenza e la risposta 

al trattamento terapeutico. Una caratteristica distintiva di molti tumori è l’alterato 

metabolismo del glucosio, che causa l’acidificazione del microambiente tumorale. Il nostro 

obiettivo è stato quello di valutare un metodo per rilevare le CTC che sfrutta il metabolismo 

alterato delle cellule tumorali in pazienti con carcinoma mammario metastatico (MBC). 

Questo metodo sfrutta una tecnologia di microfluidica, che consente di 

compartimentalizzare una singola cellula in una goccia e rilevare le cellule ipermetaboliche 

mediante misure di pH dello spazio extracellulare. 

Usando linee cellulari di carcinoma mammario con diverso potenziale metastatico e cellule 

del sangue normali, abbiamo stabilito una soglia funzionale, ovvero un valore di pH, per 

discriminare le CTC dalle cellule normali del sangue in campioni diagnostici. Abbiamo 

valutato la potenzialità di contare CTC metabolicamente attive in una coorte di MBC e 

donatori sani e abbiamo confrontato il nostro metodo con il CellSearch come metodo di 

riferimento.  

Il numero di CTC metabolicamente attive è risultato essere significativamente più alto 

rispetto alle cellule metabolicamente attive rilevate nella coorte di donatori sani. È 

interessante notare che il nostro metodo è stato in grado di prevedere la sopravvivenza 

libera da malattia e da progressione in modo analogo a quanto osservato con il CellSearch, 

nonostante la concordanza tra i due metodi non fosse alta. Tuttavia, il confronto con la 

tecnologia di riferimento per la conta delle CTC ha suggerito che i due metodi riconoscono 

una popolazione di CTC parzialmente sovrapposta, suggerendo l’uso combinato dei due 

metodi per migliorare la predizione dell’andamento della malattia.  
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1. INTRODUCTION 

1.1 Cancer 

Cancer includes a complex and heterogeneous group of diseases that originate from cells 

characterized by uncontrolled proliferation and loss of homeostasis. The process of 

transformation of a cell from a normal to a malignant state arises from the sequential 

accumulation of genetic aberrations that leads to the acquisition of a spectrum of 

phenotypes: enhanced cellular proliferation, evasion of growth suppression and cell death 

signals, induction of angiogenesis, and, ultimately, activation of programmes which lead to 

tissue invasion and metastasis1,2. Further, to fulfil the bioenergetic and biosynthetic 

demands of continuous cell growth and survival, deregulated proliferation is accompanied 

by the adjustments of energy metabolism. However, the essence of neoplastic disease is not 

only a fact of deregulated proliferation. Indeed, tumours gives origin to complex new 

tissues, in which are present also stromal cells, that communicate and cooperate with one 

another, and immune cells with a downregulated and, in some cases, promoting tumour 

activity3.  

1.1.1 Cancer: future directions 

Cancer is one of the leading causes of death throughout the world. As reported from the 

most recent World Health Organization report, cancers accounted for 8.8 million deaths 

and 14.1 million new cancer cases in 2012. The global cancer burden is expected to rise 

rapidly in the next years, estimating 21 million patients with cancer and 13 million deaths 

per year by 2030, because of the growth and aging of the population, as well as an 

increasing exposure to established factors risk such as smoking, overweight and changes in 

dietary behaviours and lifestyle4. Lung cancer is the most common cause of cancer-related 

death among males in countries of all incomes, and has overcome breast cancer as the 

leading cause of cancer death in women in developed regions; however, breast cancer is 

still the leading cause of cancer death among females in less developed countries5. Over 

the past few decades, advancements in the field of prevention, early diagnosis, risk 

stratification and therapeutic strategies have led to significant improvements in the survival 

of patients affected by cancer. Despite these great achievements, the metastatic spread of 

cancer to distant sites remains incurable, representing the main cause of cancer-related 

death in about 90% of cases. The investment and efforts on cancer research are 

unequivocally growing as reflected, for example, from the nearly quadrupled occurrence 
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of the term ‘cancer’ in the title of medical journal articles in the last ten years4. To achieve 

a better outcome of patients, there is the need to gain insight into tumour biology, assess 

more effective diagnostic strategies along with the implementation of new therapy 

strategies and monitoring of treatment response. Finally, the collaboration and involvement 

of basic and clinical research and stakeholder will be fundamental to design effective, 

focused and successful clinical trials to take research from the “bench-to-bedside”.  

 

1.2 Liquid biopsy 

1.2.1 Conventional cancer management 

Tissue biopsies represent the standard of care in cancer diagnosis and clinical management. 

In cancer patients, biopsy allows to histologically define the disease and, more recently, 

has been exploited to assess the molecular profile of tumours; treatment strategies are 

defined accordingly to the evaluation of the tissue6. However, recent advances in next-

generation sequencing technologies and bioinformatic tools have highlighted the 

limitations of looking at this single snap-shot provided by tissue biopsy. First, 

comprehensive characterization of various tumour portions taken from different regions of 

the primary tumours and its metastases showed that intratumour heterogeneity can occur 

across different regions of the same tumour (spatial heterogeneity)7 and, as tissue biopsy 

only reflect a single point in time of a single site, it is likely to underestimate the complex 

genetic profile of a patient. The molecular heterogeneity of an individual tumour can also 

vary over time (temporal heterogeneity), and consequently future change in the therapeutic 

strategy based on historical biopsy information can result in suboptimal therapy selection8. 

Taking multiple biopsy to monitor patient’s primary tumour and metastases would seem an 

obvious, but not feasible, approach to face such heterogeneity. Indeed, this procedure is 

painful for the patient, clinically often not possible due to a high risk of procedural 

complications (bleeding, nerve injury or disease spreading), surgically not feasible as the 

tumour lesions are located at remote and not accessible sites, subject to failure in obtaining 

enough material of good quality for downstream molecular analysis, and expensive. The 

detection and management of disease relies also on serum biomarkers such as CEA and CA 

15-3 for breast cancer, that, however, often lack specificity and sensitivity9. In clinical 

practice the use of these biomarkers is often coupled with imaging technologies such as 

computed tomography (CT), positron emission tomography (PET)/CT and magnetic 

resonance imaging (MRI). However, conventional imaging approaches have limited 
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resolution both in terms of space and time: they can reliably inform about an effective 

disease regression only after several weeks of treatment, subsequently delaying the chance 

of an earlier discontinuation of unnecessary, toxic or ineffective therapy 10,11. In addition, 

conventional imaging, even if more sensitive and specific than serum biomarkers, exposes 

patients to ionizing radiation 12. Consequently, there is a need for a proxy measurement that 

encompasses all the considered limitations, enabling a fast, minimally invasive, and cost-

efficient early diagnosis, monitoring of disease status and response to treatment. In the last 

decades, several evidences have reported that “liquid biopsy” could meet all these criteria.  

 

1.2.2 Definition of liquid biopsy 

Liquid biopsy is a broad term that refers to the analysis of tumour-derived material obtained 

through the sampling of biological fluids of cancer patients. Although peripheral blood is 

the main source for liquid biopsy testing, other body fluids such as urine, saliva, pleural 

effusions and cerebrospinal fluid (CSF) can be used to identify circulating tumour cells 

(CTCs), circulating tumour DNA (ctDNA), or tumour-derived extracellular vesicles 

(exosome)13. Liquid biopsy has several advantages compared to conventional tissue biopsy. 

This new approach is minimally invasive as body fluids can be sampled easily, avoiding 

the complication of needle procedure, and repeatable over time. Moreover, as the rapid 

turnover of cancer cells is assumed to result in the constant release of tumour-derived 

material into the circulation, a liquid biopsy can in principle provide the same genetic 

information as a tissue biopsy, providing an alternative sample source when the 

conventional tumour sampling is difficult to obtain, and might offer a wider and more 

comprehensive view of heterogeneous cancer cells (Figure 1).   

 

Figure 1. Clinical applications of CTC and ctDNA as liquid biopsy (adapted from 14).  
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1.2.3 CTC: a background 

Metastasis is the main cause of cancer related death in patients diagnosed with invasive 

cancer. Cancer cells that escape from the primary tumour and/or metastatic lesions, enter 

into the bloodstream, and contribute to forming distant metastases are referred to as CTCs 

15. 

Despite it has been reported that only a minority of CTCs will give metastasis, they 

represent an intermediate step of the metastatic process and their detailed characterization 

is a precious source to better understand the biology of blood-borne metastasis16. CTCs can 

be isolated from the peripheral blood of patients either as single cells or cluster of cells and 

their enumeration has been associated with treatment outcome and overall survival 17. CTCs 

are rare events, even in patients with metastatic cancers, posing a great challenge in their 

isolation and detection. However, the presence of CTCs has been reported in most of 

epithelial cancers such as breast, lung, colorectal, pancreas, prostate and colon13.  

 

1.2.4 CTC and metastases 

Metastasis is a complex and stochastic multi-step process that occurs through the 

acquisition of several phenotypes by cancer cells. Metastatic cells must invade and move 

from the primary tumour site; enter and survive in the circulation; arrest and extravasate at 

a secondary site; and finally proliferate to form secondary tumour colonies. This process 

can be accomplished through lymphatic and blood vessels. CTCs are believed to have a 

role in the hematogenous spread of cancer 16. 

The metastatic cascade begins when a tumour cell acquires the hallmarks of motility and 

invasiveness, which confer cells the ability to separate and move away from the primary 

tumour mass, migrate through the surrounding tissue and then enter the bloodstream. While 

some CTCs might enter the blood passively, others might derive from actively invading 

cells that have acquired the properties of motility and invasiveness. The principal 

hypothesis on processes describing the intravasation of tumour cells includes the epithelial-

to-mesenchymal transition (EMT) 18. This is a concept that roots into embryogenesis as a 

normal evolutionary and reversible process essential for embryonic development and in 

wound healing 19. Such a concept has been extended to cancer, whereby epithelial tumour 

cells are supposed to lose their cell polarity and cell–cell adhesion, enabling cells with a 

spindle-like mesenchymal phenotype and invasive and migratory properties. The activation 

of EMT is orchestrated by the activation of several embryonic transcription factors like 
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Snail, ZEB1 or Twist and paracrine signalling like TGF-beta, WNT, platelet-derived 

growth factors, or interleukin-6 19. In cancer cells undergoing EMT epithelial markers such 

as EpCAM and E-cadherin are downregulated and keratin expression is altered, while 

increased expression of mesenchymal markers like Vimentin, Fibronectin and N-cadherin 

is observed. In alternative to the EMT model, it has been suggested that cancer cells can 

detach from the primary tumours as cluster of 2 up to 50 cells. Clustered cells have a less 

likelihood to undergo anoikis, while they can be trapped into narrow blood vessels, thus 

supporting extravasation. The detection of CTCs cluster has been described for several 

cancers (e.g.: lung, prostate, melanoma and breast) and their enumeration associated with 

poor prognosis 20,21.  Moreover, they showed a survival advantage and an increased 

metastatic potential compared to single CTC 20. 

Although it has been estimated that millions of tumour cells are released from the primary 

tumours, most of CTCs die in the circulation. Indeed, once in the bloodstream, CTCs have 

to face several natural barriers. First obstacle is shear stress forces exerted by blood. 

Second, CTCs must escape anoikis, an apoptosis programme that would be normally 

triggered by the loss of cell-matrix interaction. Third, CTCs have to evade the immune 

system activity. Finally, these rare cells can eventually leave the blood circulation and 

extravasate 18.  

Extravasation starts when a single CTC or cluster of CTCs slowdown in small capillaries, 

attach to the endothelium, and finally undergo transendothelial migration. In most cases, 

the dispersed cancer cells enter a state of clinical dormancy, that is cells stop division events 

and, as soon as there are favourable signals and conditions, they start proliferation again. 

The occurrence of dormancy is mainly attributed to the EMT process, as such transition 

confers to cell motile and invasive properties but does not favour growth. Indeed, the 

reverse process of EMT, named the mesenchymal-to-epithelial transition (MET), allows a 

cell to acquire its initial epithelial phenotype and growth once settled in distant organs 18. 

1.2.5 Detecting and characterizing CTCs 

It is clear that CTCs can be considered as a fluid surrogate of cancer, as they can provide a 

wealth of information about the progression of disease 22. Thus, it is not surprising that in 

the last decade this field of research had a boost in the development of technologies aimed 

at their detection and characterization. Although they were first described nearly 150 years 

ago 23, the first reports regarding methods for their isolation date back only to 1960s 24,25. 

Research in the field had a boost when Racila et al. presented a highly sensitive 
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immunomagnetic method to enrich and detect CTCs in the late 1990s 26, demonstrating 

also that CTCs are present at early stage of the disease and correlates with disease 

progression.  

A key limitation in the detection and isolation of CTCs is their low concentration in 

circulation compared to other normal blood cells, which poses daunting technical and 

analytical challenges. Indeed, it is has been estimated that 1 to 10 CTCs can be present in 

a background of 10⁶-10⁷ white blood cells (WBCs) in patients with metastatic cancer and 

this prevalence can decrease among different types of tumours or when considering early-

stage cancers 13. Several technologies have been proposed to isolate CTCs, usually applying 

the principle of “enrichment” and “detection”.  

 

1.2.5.1 Enrichment strategies  

The enrichment stage (i.e.: capturing CTCs among the surrounding normal blood cells) 

allows to increase CTCs concentration by several log of units (positive selection) and/or 

depleting surrounding normal blood cells (negative selection). To date, CTC detection 

platforms have been developed exploiting several properties of CTCs, which include 

targeting of biological features (i.e.: expression of specific tumour cell surface marker) or 

physical characteristics (size, density, deformability or electric charges). Several CTC 

enrichment platforms relies on the combination of both physical and biological features 

(Table 1). 
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Table 1. Table summarizing few of the existing platforms and strategies for CTC enrichment.  

1.2.5.1.1 Protein expression-based technologies 

The most successful and widely used approach for isolating CTCs is based on the affinity 

of a specific biomarkers expressed on the cell surface of CTCs to a corresponding antibody. 

Enrichment 

strategy 

Selection 

criteria 

Technology Key features References 

     
Immunoaffinity-

positive enrichment 

    

 EpCAM CellSearch® FDA approved  27–29 

 EpCAM MagSweeper® High purity; allows 

downstream molecular analysis 

30–32 

 EpCAM NanoVelcro Allows enumeration and 

molecular analysis at single cell 

level; isolated cells remain 

viable  

33 

 EpCAM GILUPI 

CellCollector™ 

In vivo capture; can process 

large volume of blood;  

34,35 

 Antibody 

Cocktail 

AdnaTest® Captured CTCs must be lysed 

and tested for expression of 

cancer-associated tumour 

markers by RT-PCR 

36,37 

 Various 

antibodies   

MACS Positive or negative 

enrichment; uses magnetic 

nanoparticles conjugated with 

antibodies 

38 

Immunoaffinity-

negative 

enrichment 

    

 CD45  EasySep® 

system 

Simple and high-throughput 39 

 Density, 

Antibody 

Cocktail 

 

RosetteSep® integrates density-based 

gradient centrifugation with 

immunoaffinity-based 

enrichment to deplete WBC 

40 

 MACS Various 

antibodies   

 38 

Physical-based 

technologies 

    

 Size, 

deformability 

VyCAP Microsieve with defined pore of 

5 µm 

41 

  ISET® Track-etched membrane with 8 

µm-diameter and cylindrical 

pores 

42 

 Density Ficoll-Paque® Low cost and easy to use  43 

  OncoQuick® Low purity 43 

 Electrical 

signatures  

ApoStream® Captures viable cells 44 

  DEParray™ Requires pre-enrichment, 

allows recovery of single and 

viable cells through DEP cages 

45,46 

Microfluidic based 

platform 

    

 EpCAM CTC-Chip High recovery rate 47 

 Size Parsortix™  Releases viable cells 48 

 Size 

deformability 

Vortex Captures viable CTC, does not 

require blood lysis 

49,50 
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This CTC enrichment strategy is usually carried out by using magnetic beads coated with 

antibodies specific for a tumour antigen and the antigen-antibody complex is subsequently 

isolated by a magnetic field. Epithelial markers are usually expressed on cancer cells of 

epithelial origin, while are absent on the mesenchymal leukocytes and therefore they have 

been widely applied to discriminate cancer cells from normal blood cells.  

The cell surface marker that has been most frequently used for positive CTCs selection is 

EpCAM. Among the EpCAM-based immunomagnetic enrichment methods, CellSearch® 

(Menarini, Bologna) is the only FDA-approved platform for in vitro diagnostic use in 

patients with metastatic breast, colorectal or prostate cancer and, notably, is still considered 

the gold standard among the CTC detection methods 51. In this system CTCs are defined as 

nucleated cells positive for cytokeratins (CK) staining and negative for the common 

leukocyte antigen CD45. A threshold of ≥5 CTCs in a 7.5ml of blood for metastatic breast 

and prostate cancers, and of ≥3 CTC for colorectal cancer has been proven to be associated 

with decreased progression-free and overall survival 52.  

Other examples of innovative EpCAM-based technologies are the MagSweeper® 

(Illumina, San Diego, CA), which isolates CTCs by using antibody-coated magnetic beads 

and a magnetic rod, and the “NanoVelcro” CTC chip, a nanostructured substrate with 

silicon nanowires which allows high recovery and release of captured CTCs 30–32.   

Another issue limiting the sensitivity of CTC detection is the sample blood volume that has 

to be processed ex vivo 53. An interesting commercially available in vivo capture device has 

been introduced by GILUPI Gmbh (CellCollector®). This device consists of a guidewire 

covalently functionalized with anti-EpCAM antibodies, which is positioned directly in the 

arm vein of cancer patients and trapped CTCs are detected and evaluated by 

immunocytochemistry. Recently, Gorges T.M. et al have also demonstrated the feasibility 

of downstream molecular analysis of these captured CTCs 34.  

However, cancer cells might undergo EMT with a subsequent downregulation of epithelial 

markers (e.g.: EpCAM) thus, targeting such surface marker, might result in an 

underestimation of the total CTCs and subsequent false-negative findings. In addition, 

increasing evidence highlighted also the importance of stem cell marker in CTCs. A 

response to such a need has been the introduction of expanded antigen repertoire to capture 

CTCs by including mesenchymal markers (e.g.: N-Cadherin and Vimentin), stem cell 

markers (e.g.: CD133 or CD44) and cancer- or organ-specific markers (e.g.: HER2, PSA 

or EGFR). The AdnaTest (Adnagen AG) is an example of commercially available assay, 

which enables a broader capturing approach by using cocktail of antibodies (e.g.: EpCAM, 
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HER2, MUC1) bound to magnetic beads and specific for cancer type. A limitation of this 

test is that captured CTCs must be lysed to be tested for expression of various cancer-

associated tumour markers using RT-PCR, limiting the possibility to perform other 

downstream analysis such as single-cell NGS.  

Positive enrichment strategies can attain high recovery and purity rates, but their 

performance depends on both the degree of expression and specificity of target antigen, as 

well as on the binding quality of the associated antibody and the labelling process.  

Negative enrichment technologies circumvent some of the pitfalls of positive selection. 

This strategy uses an indirect method to detect CTCs by targeting and depleting unwanted 

background cells, such as leukocytes, red blood cells and platelets. This approach is often 

preferred because, without labelling CTCs, it does not introduce biases to the sample 

according to the used selection marker 54. A downside of the negative selection is the lower 

purities achieved compared to positive enrichment. However, depletion methods offers the 

possibility to obtain unlabelled CTCs that can be further employed in further analysis 22.  

The most widely used marker for WBC depletion is CD45. Examples of negative selection 

are the EasySep® system (STEMCELL Technologies, Vancouver, Canada), which 

depletes unwanted cells using magnetic nanoparticles and tetrameric antibody complexes 

against CD45 and the RosetteSep® (STEMCELL Technologies), a mixture of antibodies 

that crosslink CD45-expressing leukocytes to red blood cells in whole blood, forming cells 

rosette complexes. 

In addition, many systems involved in the positive enrichment are able to work for the 

negative counterpart by applying different antibodies, for example replacing anti-EpCAM 

with anti-CD45 (e.g.: MACS®, MagSweeper®).  

 

1.2.5.1.2 Physical-based technologies 

Another approach for CTC enrichment is to target them by physical properties (size, 

density, deformability and electric charge) that are supposed to be unrepresented in the 

normal cell populations. These strategies are commonly referred to as “label-free” method 

and have recently gained great attention from the field.  The main advantage is that captured 

CTCs are not tagged with an antibody, which can be useful in downstream processing.  

Size-based CTC enrichment technologies have been developed on the observation that 

CTCs have generally larger morphology respect to WBCs55. Downsides of this approach 

are a low sensitivity and specificity as the existence of smaller CTCs has been demonstrated 
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48,56. Filtration enables enrichment of CTCs exploiting cell size. Examples of such approach 

are VyCAP or ISET® (RARECELLS US) 41,42.  

Density gradient centrifugation is a conventional method for separating blood component 

based on a cell specific coefficient of sedimentation. Ficoll-Paque® (GE Healthcare Life 

Sciences) and OncoQuick® (Grenier BioOne) are the most widely used system, which 

allows to separate CTCs from erythrocytes and granulocyte. These methods are reliable 

and inexpensive but suffer the disadvantages of non-specific loss of target cells, due to the 

presence of CTC with density comparable to WBC, and insufficient purity for most of the 

downstream analysis 43.   

Dielectrophoresis (DEP) relies on the distinct electrical fingerprints of different cells, 

which depend on the cell morphology and membrane surface area.  A non-uniform electric 

field applied by an array of electrodes causes a differential movement of the cells depending 

on their dielectric properties. ApoStream® (ApoCell) is a commercial system for CTC 

enrichment, which employs this strategy to effectively isolate CTC from clinical samples 

44,57. While this strategy recognizes cells based on their dielectric properties, DEP can also 

be applied as a technique to finely manipulate and move single-cells detected with other 

methods. In this context, the DEPArray system (Silicon Biosystems) deposits single cells 

in DEP cages generated with electric field and is able to gentle recover in a tube single and 

viable cells for subsequent characterization 58. 

 

1.2.5.1.3 Microfluidic Methods for CTC Capture 

Microfluidics offer the possibility to precisely control small volumes of fluids (down to a 

picoliter), by using device with channel dimensions of ten to hundreds micrometers, and to 

simultaneously handle multiple samples in multiple bioreactors (Whitesides, 2006). Soft-

lithography and polydymethylsiloxane (PDMS) have become the most widely represented 

methods for fabricating microfluidic devices for biological application as PDMS is flexible, 

allowing easy and rapid fabrication of devices with various architecture; transparent, 

providing excellent live cell imaging conditions and permeable to oxygen, essential for cell 

survival 59,60. In summary, microfluidics present several essential advantages including 

reduced sample volume and reagent consumption, fast processing and low cost, 

highlighting its clear potential to be applied in several biological areas, such as cancer 

research. 
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Over the last two decades, microfluidic technologies for isolating CTCs have attracted great 

interest because of their ability to isolate CTCs exploiting various physical and biological 

features61 and combine isolation and detection methods in a single device. 

In 2007, Nagrath et al. have described the first microfluidic platform for CTC detection, 

that consists of EpCAM-functionalized microposts for capturing CTCs from whole blood 

with high sensitivity and purity 47. The CTC-Chip has undergone several improvements 

like the development of geometrically enhanced microstructures aimed at increasing the 

degree of purity of CTC while maintaining a high recovery efficiency 62.  

Other promising platforms are the Parsortix™ system (Angle), consisting of a disposable 

cassette with a stair-like architecture that retains into the system only larger CTCs, or the 

Vortex HT chip, a device with rectangular reservoir in which laminar fluid microvortices 

are generated at high flow rates to quickly and passively enrich CTCs at high purity from 

a large volume of blood and concentrate these cells in a small volume 48.  

1.2.5.2 CTC detection method  

Detection of CTCs (i.e.: verification of identity of captured cells) is commonly performed 

either morphologically by immunostaining and microscopy or at the molecular level by 

PCR-based method63. 

1.2.5.2.1 Direct imaging 

A widely used method to verify the nature of captured cells is achieved through staining of 

cells with tumour-specific antibodies followed by high resolution imaging. While CTC 

staining allows a valuable enumeration of CTCs, this approach is limited by the number of 

antibodies that can be employed for visualising cells of interest. Further, despite enrichment 

strategies lower the number of cells to be analysed, imaging is time-consuming and needs 

a laborious operator-dependent scoring. To overcome these issues, several technologies 

have integrated automated high-resolution fluorescence imaging into their workflow. An 

example is the open-source software ACCEPT coupled with CellSearch® 64,65. The HD-

SCA assay (EpicScience, San Diego), in combination with a custom-made software, allows 

to screen monolayer of millions of nucleated cells plated on customized glass slides. 

Advantages of this platform are the unbiased selection of CTCs, as no pre-enrichment step 

is required, and the possibility to perform molecular characterization at the single-cell 

levels66. However, a drawback is that cells need to undergo a step of cell fixation and thus 

no viable CTCs can be recovered for further analyses 22.    
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1.2.5.2.2 Functional assay  

Functional assay takes advantage of viable cells properties for enrichment and detection of 

CTCs 54. In principle, detecting viable cells in the peripheral blood of patients would be 

highly desirable, as only functional cells can contribute to the process of metastasis. The 

Epithelial ImmunoSPOT Assay (EPISPOT) is an enzymatic assay which capture CTCs 

exploiting the secretion, shedding or active release of tumour-associated proteins from 

different cancer cells put in culture for 24-48 hours; for example, CK-19 and MUC1 can 

be exploited in the case of breast cancer, or PSA for prostate cancer sample 67,68. Vita-

Assay™ (Vitatex, New York) is another functional assay based on the ability of tumour 

cells to invade a collagen matrix in vitro, and it has been tested in breast, ovary, prostate, 

pancreas, colorectum, and lung cancer 69.  

An interesting approach is the study of ex vivo isolated CTCs is their transplantation into 

immunodeficient mice to obtain CTCs derived xenograft (CDX) 70–72. This has been 

achieved with CTCs obtained from patients with luminal breast cancer 73. Similarly, 

Hodgkinson et al obtained a CDX model by using CTCs from patients both from 

chemosensitve and chemorefractory small cell lung cancer which mirrored the response to 

therapy and had a comparable genomic profile of the donor patients 71. Establishing 

permanent cell lines from CTCs has also been explored, even if with scarce result. To date, 

only one cell line has been obtained and characterized using CTCs from one patient with 

colon cancer 74. 

1.2.5.2.3 Molecular characterization 

The recent prevailing aim in CTC characterization is the analysis of their genomic content, 

as they can provide clinically valuable information about the mutational status of the 

tumour. Before performing any other downstream analysis such as mutational analysis of 

therapeutic target genes, copy number variation analysis or exploration of new druggable 

mutation, DNA-based technology might require whole genome amplification (WGA) to 

increase the amount of copy numbers to be analysed. However, this process might introduce 

bias derived from DNA amplification leading to false positive results and thus comparative 

studies between CTCs and normal cells are highly suggested.. For instance, coupling 

CellSearch and DEParray, single CTCs and WBC were obtained from metastatic breast 

cancer patients and after amplification with WGA, the mutational status of PI3KCA were 

assessed demonstrating the feasibility of the approach to detect hotspot mutations and the 

heterogeneity among CTCs 75. Further, mutations in KRAS, which can impede the EGFR-
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targeted therapy efficacy in colorectal cancers, revealed the heterogenous presence of 

KRAS mutations76. 

RNA-based technologies are very promising. Gene expression analysis are widely 

performed by using fluorescent in situ hybridization (FISH)77, real-time PCR, microarray 

mRNA sequencing. Recently, also transcriptome analysis has been successfully applied on 

isolated CTCs. Asingle-cell RNA-sequencing profile of isolated CTCs from prostate cancer 

patients have displayed the activation of a non-canonical Wnt signalling pathway in patient 

who progressed under treatment with an AR inhibitor, respect to untreated patients78. 

Recently, Kalinich et al demonstrated the feasibility of applying RNA-based digital PCR 

in the assessment of a panel of genes in CTCs derived from hepatocellular carcinoma 

(HCC) 79.  

Overall, the field of detection and characterization of CTCs have increased enormously and 

the approaches to characterize them are very numerous. However, at present, there is no 

perfect technique as each of them presents limitations. Therefore, several groups of 

research have started to explore the combination of methods based on different properties, 

aimed at finding the perfect combination to obtain a pure and functional CTC population 

22.  

1.2.6 Requirements for developing a CTCs platform for clinical application 

The characterization of CTCs holds the appeal and the potential to improve cancer 

diagnosis and prognosis as well as to enable a more sensitive real-time monitoring of the 

disease for guiding treatment decision of individual patients. Therefore, it is not surprising 

that a plethora of promising and innovative methods have been developed in recent years 

to capture, enumerate and characterize them. As described in the previous section, several 

strategies for CTC detection have been proposed. This long list highlights the lack of a 

consensus about the most appropriate method for detecting these rare cells as well as a clear 

definition of their phenotype or the identification of a perfect marker for their selection. 

These requirements have led to the definition of a standard set of performance criteria, such 

as capture efficiency, purity enrichment and throughput, aimed at evaluating and comparing 

all the different technologies (Table 2). Of note, all these measurements to estimate CTC 

platform sensitivity are assessed by spiking cells from cancer cell lines into healthy donor 

blood sample (i.e.: adding a known number of tumour cells derived from commercially 

available cell lines into blood samples). However, cancer cell lines do not outline the actual 

physical and biological heterogeneity of CTCs like size, protein expression or stiffness, but 
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tend to be more homogeneous and more physically different from leukocytes than patient 

CTCs. Therefore, on one side, spiking assay might overestimate the real device 

performance, but, on the other side, patient samples cannot be directly used for a preclinical 

validation of the device as the real number of CTCs in a clinical sample is always unknown 

54. Since there is a lack of a reference method to enumerate CTC, direct comparison 

between techniques on clinical samples could be more valuable and CellSearch is often 

used as the reference technique 80,81. Moreover, the increasing interest beyond the simple 

enumeration of CTCs has resulted in the development of technologies that enables 

obtaining samples suitable for molecular downstream analysis of CTCs. Genomic and 

transcriptomic downstream analyses might require cell viability, although not always, but 

they do need high purity because contaminating DNA or RNA from WBCs can alter results. 

Thus, two additional performance metrics have been introduced: i) cell viability, the 

percentage of capture tumour cells that are still alive after enrichment, and ii) release 

efficiency, the percentage of captured target cells that can be recovered from the device. 

Despite the great potential of applying CTCs as biomarker in cancer, such approach is still 

not widely adopted in the routine clinical care as only a few of these technologies report 

the stringent clinical validation required before their introduction into the clinical 

management of cancer. Before any technology could be used in medical decision making 

in a specific context of use, demonstration of analytic validity, clinical validity, and, most 

importantly, clinical utility is required. Analytical validation begins with the discovery of 

the biomarker to be developed and the implementation of a robust assay that provides 

reproducible results across several testing laboratories and systems. This step includes the 

definition of easy-to-use workflows spanning from the pre-analytical phases (e.g.: 

specimen collection and transport) to the data analysis and interpretation of results 51,82. 

After demonstration of analytic validity, the clinical validity can be explored. Firstly, the 

context of use has to be defined (i.e., diagnostic, prognostic, predictive, or surrogate of 

efficacy of response). Then, the value of the test to predict specific clinical outcome has to 

be assessed. Finally, the clinical utility has to be performed, that is provide the 

demonstration of the capacity of the test to impact on the outcome of the patients51.  
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PERFORMANCE METRICS DESCRIPTION DEFINITION 

CAPTURE EFFICIENCY  

(OR RECOVERY RATE)  

 

The ability of the device to capture 

cancer cell lines from spike blood 

samples 

(𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑒𝑙𝑙𝑠) 𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝐷

(𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑒𝑙𝑙𝑠) 𝑆𝑃𝐼𝐾𝐸𝐷
 

PURITY Capacity of the system to 

specifically capture tumour cells 

within a background of 

contaminating cells (usually 

WBC) before and after running the 

sample into the device   

(𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑒𝑙𝑙𝑠) 𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝐷

(𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑒𝑙𝑙𝑠 + 𝑊𝐵𝐶𝑠) 𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝐷
 

ENRICHMENT Factor of enhancement of the 

target cells respect to the 

background at the output of a 

system respect to the input 

(𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑒𝑙𝑙𝑠) 𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝐷

(𝑊𝐵𝐶) 𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝐷

(𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑒𝑙𝑙𝑠) 𝐴𝐶𝑇𝑈𝐴𝐿

(𝑊𝐵𝐶) 𝐼𝑁

 

or 

𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

×
(𝑊𝐵𝐶) 𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝐷

(𝑊𝐵𝐶) 𝐼𝑁
 

THROUGHPUT  Described how quickly a device 

can process a sample 

𝑛° 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑/

𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒
 

or 
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒
 

Table 2. Metrics for measuring the performance of CTC enrichment platforms. 

1.2.6.1 Clinical validity of CTC 

The value of CTCs detected by CellSearch® as a prognostic factor of clinical outcome have 

been extensively reported in metastatic and localized carcinomas in a series of prospective 

clinical trials. In 2004, the pioneering work from Cristofanilli et al. demonstrated that CTC 

count detected by CellSearch® was an independent prognostic factor for progression-free 

survival (PFS) and overall survival (OS) in metastatic breast cancer 27. The established cut-

off of  ≥5 CTC/7.5 ml of blood to discriminate between patients with good or poor 

prognosis in metastatic breast cancer has been further validated in several studies 28,29,83. 

Beyond breast cancer, a number of CTCs higher than a specific cut-off levels and its 

correlation with poor prognosis have been validated also for metastatic prostate (≥5 

CTC/7.5 ml) and colorectal cancer ( ≥3 CTC/7.5 ml) 52,84,85. Interestingly, at the follow-up 

after the beginning of a new therapy, several studies have shown that a decrease of level of 

CTC count enabled prediction of treatment efficacy 28,86. The prognostic utility of CTCs 

has been explored also in NSCLC (cut-off level of 5 CTC/7.5 ml of blood) and SCLC (≥50 

CTC/7.5), in which the number of CTC is the ever most abundant described until now 21,87. 

Also, for metastatic lung cancer, CTCs showed their potential as a pharmacodynamic 

biomarker, beyond its use as prognostic marker. Moreover, CTCs have been detected 

before and after surgery of several non-metastatic cancers such as breast 88 and colorectal 

89,90. In locally advanced breast patients, monitored for CTCs before and after neoadjuvant 
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treatment, Riethhdorf et al. showed that detection of CTCs before therapy is an independent 

prognostic factor of impaired clinical outcome 91. 

 

1.2.6.2 Clinical utility of CTCs 

Although the presence of CTCs has an undoubted prognostic value, the clinical utility of 

CTCs remains controversial. This means that there is the need to design prospective, 

randomized multicentre clinical trials to demonstrate that CTCs evaluation can impacts on 

patient outcomes.  

CTCs might be a marker of treatment response. In this regard, the SWOG S0500 

(NCT00382018) clinical trial was designed to determine whether MBC patient switching 

to another treatment, in case of high CTC number after the first cycle of therapy, could 

benefit patients in terms of OS. The results showed that this early change of therapy did not 

improve either PFS or OS 92. The authors claimed that the lack of improvement is probably 

due to a general chemoresistance of the studied population and that there would be the need 

of more effective therapeutic agents at the time of progression, rather than persisting with 

further lines of standard chemotherapy. 

CTCs have the potential to provide also insight into the presence of marker for treatment 

sensitivity. For example, the presence of the splice variants androgen-receptor splice 

variant 7 (ARV7) can be used as a biomarker for resistance to enzalutamide and abiraterone 

therapy in prostate cancer patients. Recently, the presence of ARV7 in CTCs have been 

detected in patients with metastatic prostate cancer. The positivity for ARV7 predicted 

resistance to therapy, along with a shorter PFS and OS compared to ARV7 negative 

patients93.  

 

1.3 Cancer metabolism 

Metabolism is a general term used to describe a group of biochemical reactions that happen 

within a living organism to sustain life. Metabolism can be divided in two types of 

reactions: catabolism, which refers to the breakdown of complex molecules into smaller 

molecules to extract energy and produce ATP, and anabolism, which describes the 

consumption of energy to catalyse the production of complex macromolecules needed for 

cell survival and proliferation 94. To satisfy the demands of uncontrolled proliferation, 

cancer cells require large amount of nutrient uptake and metabolism to meet both catabolic 

(ATP-producing) and anabolic (biomass-synthetizing) demands. Consequently, during 



22 

 

cancer progression, tumour cells must rewire the regulatory and functional properties of 

their metabolic networks 94. As cancer cells often retain a metabolic network similar to that 

present in their corresponding normal proliferating cells, the metabolic requirements are 

met by a combination of changes in the use of metabolic enzyme isoforms, which alter the 

uptake of nutrients such as glucose, increasing the excretion of waste products, such as 

lactate, and channelling of nutrients to biomass-generating pathways. Further, also 

mutations in oncogenes or tumour suppressor or metabolic enzymes genes and 

environmental conditions (hypoxia and inflammation) have been shown to have a role in 

cancer-related metabolic changes 95–97. For these reasons, the concept of altered metabolism 

gained the status of a cancer hallmarks rather than only an indirect response to cell 

proliferation and survival signals 3. 

 

1.3.1 Discovery of Otto Warburg 

During the 1920s, Otto Warburg observed that tumours have an increased glucose uptake 

compared to surrounding tissue, and glucose is fermented to lactate even when oxygen is 

not limiting, hence the term ‘aerobic glycolysis’ or ‘Warburg effect’ 98. This discovery led 

Warburg to hypothesize that the oxidative phosphorylation (OXPHOS) is impaired or 

damaged in cancer cells. However, this theory was largely contradicted by several studies 

showing that mitochondrial function was not diminished in most cancer cells, whereas 

higher rates of aerobic glycolysis in tumours have been repeatedly verified 99. Only in 1980s 

the Warburg effect rekindled attention on cancer metabolism, with the introduction into 

clinic of 2-(18F)-fluoro-2-deoxyD-glucose positron emission tomography (18F-FDG-PET). 

This imaging technique, by using an analog of glucose, allows to image tumour by 

displaying areas in the body where there is a higher uptake of glucose 100. For many cancer 

types, 18F-FDG-PET coupled to CT has  more than 90% sensitivity and specificity for the 

detection of primary and metastatic lesions 99. Moreover, 18F-FDG-PET is widely used in 

clinic for staging and restaging of cancer and several clinical studies focused on its 

usefulness to monitor the metabolic response to therapy (e.g.:breast and lung cancer) 101. 

To date, the Warburg effect is still the most cited example concerning the occurrence of 

altered metabolism in tumours.  
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1.3.2 Glucose metabolism 

Glucose is a major cellular energy resource and its metabolism allows cells to harness 

energy into the form of ATP. Once inside a cell, glycolysis occurs and glucose is converted 

into pyruvate with a net gain of two molecules of ATP and 2 molecules of NADH 99. In the 

presence of oxygen (aerobic conditions), pyruvate is then transported in the mitochondria 

where it is oxidized to CO2 and H2O through the tricarboxylic acid (TCA) cycle and 

oxidative phosphorylation (OXPHOS), with a net yield of 32-34 molecules of ATP per 

molecule of glucose oxidized. When oxygen is limiting (anaerobic conditions), pyruvate 

undergoes fermentation and it is converted to lactate by lactate dehydrogenase (LDH) 

generating only 2 ATPs per molecule of glucose.  

A main obstacle about understanding the propensity of cancer cells to rely on aerobic 

glycolysis is because aerobic glycolysis is a less efficient process over OXPHOS in terms 

of ATP production. An explanation is that glycolytic intermediates function as branching 

points between glycolysis and other pathways for macromolecule biosynthesis like 

nucleotide, lipids and protein. Thus, enhanced glycolysis supports the rapid growth of 

highly proliferating cells, providing the needed precursor for biosynthesis of 

macromolecules. Another explanation is that OXPHOS, even if producing higher number 

of ATPs, is a much slower process than lactate production from glucose, thus cannot 

counterbalance the needs of proliferating cells. It has been demonstrated that these two 

reactions can synthetize comparable amount of ATP in a given time 102. Moreover, the 

transformation of pyruvate to lactate by LDH generate NAD+, a reducing agent important 

for glycolysis. Despite how Warburg effect can benefit cancer is still a matter of debate 103, 

it is fairly clear that it might contribute to meet both bioenergetic and biosynthetic needs. 

 

1.3.2.1 Regulation of glucose metabolism  

Many glycolytic enzymes have been shown to be upregulated during tumorigenesis. For 

instance, the increased glucose uptake in cancer cells is associated with the upregulation of 

GLUTs. Among the 14 different isoforms currently described, GLUT1, GLUT2 and 

GLUT3 are found to be overexpressed in a variety of cancers 104 and GLUT1 expression in 

primary tumours has been correlated to poor prognosis 105. Cancer cells usually promotes 

the irreversible step of phosphorylation and trapping of glucose inside the cells by the 

overexpression of HK2, in addition to HK1106. Moreover, the isoforms of LDH, especially 
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the isoform LDHA, is overexpressed in tumour cells, especially for its ability to recycle 

NAD+ through lactate production. 

The conversion of F6P to F1,6BP is regulated by PFK1, which activity is allosterically 

tightly regulated. Fructose-2,6-biphosphate (F2,6BP), generated by 6-phosphofructo-2- 

kinase/fructose-2,6-bisphosphatases (PFK2/FBPases), is an allosteric activator of PFK1 

and counteract the allosteric inhibition exerted by ATP 107. Another allosterically-activated 

enzyme is PKM2, which regulates the third committed step of glycolysis, by the action of 

F1,6BP and serine.  

The key in renewing the interest on the Warburg effect derived from the discovery that 

mutation on the most prevalent proto-oncogene and tumour suppressor involved in cancer 

progression also drive reprogramming of metabolism. Regarding glucose metabolism, 

mutation in TP53, phosphatidylinositol 3-kinase (PI3K) signaling, Ras and Myc have been 

reported.  

The tumour suppressor gene TP53 is mutated in most about 50% of all cancers. P53 is a 

transcription factor that can induce cell cycle arrest, senescence or apoptosis in response to 

cellular stress. p53 is involved in several step of glycolysis. For example, it limits glucose 

uptake by downregulating the expression of GLUT1 and GLUT4108 or dampening the 

expression of HK2109. Another level of regulation by p53 is a direct activation of TP53-

induced glycolysis and apoptosis regulator (TIGAR), which inhibits PFK1 to divert G6P 

into the oxidative pentose phosphate pathway, thus boosting the production of NADPH and 

overall reduction of reactive oxygen species110. In addition to inhibition of glucose transport 

inside the cell, p53 inhibits also the secretion of lactate by inhibiting the expression of 

monocarboxylate acid transporter 1 (MCT1)111. 

The PI3K/AKT/mTOR axis is a highly conserved pathway employed by cancer cells to 

respond to growth factor signals and among the most frequently deregulated in human 

cancers. Mutations that enhance this pathway occur by aberrant activation in growth factor 

receptors, loss of function of the tumour suppressor PTEN, acquisition of activating 

mutation in PIK3CA and amplification of the downstream effector AKT112. Activation of 

PI3K/AKT/mTOR pathway results in the upregulation of glucose transporters, like GLUT1 

via AKT, therefore enabling increased uptake of glucose. In addition, AKT enhance the 

retaining of glucose by HK2- phosphorylating activity, and stimulate the activity of PFK1 

103. An interest aspect of Akt derive from the fact that, whether is the mechanism of its 

activation, is sufficient to drive glycolysis and lactate production 113,114. 
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The myc family of genes (c-myc, L-myc, s-myc, and N-myc) encodes transcription factors 

that mainly target the expression of genes involved in growth and cell cycle entry and is 

frequently found amplified in tumours. Similar to other oncogenic transcription factors, c-

Myc promotes aerobic glycolysis targeting many genes encoding glycolytic enzymes such 

as GLUT1 and LDHA 96.  

The RAS oncogene has been widely characterized for its high transforming potential. The 

RAS family of genes, including KRAS, HRAS and NRAS, has a high rate of mutation in 

cancer, with KRAS being the most prevalent but still an undruggable target. RAS belong 

to a family of GTPase protein responsible for the transduction of extracellular signals from 

receptor tyrosine kinases to downstream effectors115. Activating mutations in RAS genes 

result in the constitutive GTP binding, and consequently the constitutive activation of 

several downstream effectors which promotes several malignant phenotype like 

proliferation, suppression of apoptosis and metabolic reprogramming among other 116. Ras 

family act upstream of PI3K/AKT/mTOR pathway which in turn regulate the aerobic 

glycolysis. The main effects of Ras is that promotes the accumulation of the hypoxia 

inducible transcription factor HIF-1α, considered one of the master regulators of glycolysis, 

and the expression of several glucose transporter 117–120. RAS regulates glycolysis also by 

increasing the activity of MYC and such interaction is an example of a cooperative 

mechanism between oncogenes to regulate metabolism121. 

 

1.3.3 Tumour cell metabolism and extracellular acidosis 

Deregulated pH is a common feature of the solid tumour microenvironment, regardless the 

tissue of origin or the genetic background. In general, cancer cells display a decreased 

extracellular pH (pHe) (as low as 6.0 versus ∼ 7.3-7.4 in normal cells), and an increased 

alkaline intracellular pH (pHi) (from 7.12 to 7.7 versus ∼7 in normal cells) 122,123. A 

combination of low perfusion of tumour mass, regional hypoxia and enhanced rates of 

glucose metabolism are commonly considered to contribute to the extracellular 

acidification 124.  

 

1.3.3.1 Metabolic source of acidity in tumours 

The phenomenon of extracellular acidosis during cancer progression is mainly associated 

with hypoxia due to its impact on energy metabolism 99,122. The poor vascularization leads 

to an insufficient O2 supply that results in a switch to a glycolytic O2-independent 
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production of energy with a formation of high amount of lactate and protons. At the 

molecular level, hypoxia triggers the stabilization of hypoxia-inducible factor 1 α (HIF1- 

α) a master regulator of the Warburg Effect. For instance, HIF1- α directly regulates 

glycolysis by inducing the expression of glucose transporters (GLUT1 and GLUT3), thus 

enhancing the efficacy of glucose uptake and glycolytic enzyme like HK2 and PFK2 125. 

Of note, HIF1-α induces also the expression of pH-regulators like monocarboxylate 

transporter 4 (MCT4) and carbonic anhydrase 9 (CAIX) (see next section for more details). 

Overall, HIF-1 is a transcription factor which enhance the transcription of more than 60 

genes that, beyond metabolism, regulates also angiogenesis and apoptosis. As reported 

previously, many other important oncogenes and tumour suppressor reinforce the 

acquisition of such a metabolic shift. Regardless the mechanism that guide to an 

upregulated glycolysis, this process results in the production of two molecules of pyruvate 

and two protons (H+) and pyruvate is further converted to acid lactic by LDH. Lactate can 

be secreted from the cell by a class of protein called monocarboxylate transporters (MCTs) 

which co-transport one molecule of lactate and one proton H+ 99. Thus, the effect of lactate 

transport is the removal of one proton from the cell, which can acidify the extracellular 

space. Despite both in vivo and in vitro there is a good association between glucose uptake, 

as assessed by 18F-FDG, and acidification, as measured by using pH-sensitive probes or 

Magnetic Resonance Imaging 126,127, glycolysis is not the only acid producing source in 

tumours. Indeed, models of LDH-A- and glycolysis-deficient tumours still results in 

extracellular acidification 128,129. Another mechanism of proton production can be attributed 

to CO2, the end-product of most human metabolic pathway. CO2 is hydrated with H2O into 

one molecule of HCO3- and one H+ by carbonic anhydrases (CA), contributing to acid 

production. However, the growth of the tumour mass occurs with a disorganized 

vasculature that impede both a good perfusion and inefficient clearance of the locally 

produced CO2 and H+ that normally would be buffered into the bloodstream 124,130.  

 

1.3.3.2 pH regulation in tumours 

Regardless the sources, excessively produced H+ must be removed from the cells. H+ are 

the smallest and reactive species present in living organism and their concentration, thus 

the resulting pH, might affect protein structure and enzyme activity and consequently 

disrupt any cellular processes (metabolism, protein synthesis, proliferation and apoptosis). 

To avoid such perturbation in pH homeostasis, cancer cells employ various net acid 
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extrusion mechanism such as the sodium–hydrogen (Na+/H+ ) exchanger, in particular the 

isoform NHE-1, the vacuolar-type H+-ATPase (V-ATPase), the monocarboxylate 

transporters (MCTs), and the carbonic anhydrase (CA)131. 

Among the several NHE described, the most relevant isoform in the contest of pH-

regulation and cancer development is NHE1, a transmembrane protein, ubiquitously 

expressed, which mediate an active acid extrusion by exchanging extracellular Na+ for 

intracellular protons 131. Its expression is often localized to the edge of invading cells and 

its depletion causes drastic loss of tumorigenicity, underlying the importance of pH 

regulating system in cancer progression 132.  

MCTs are part of a family of plasma membrane transporter proteins, known also as SLC16 

solute carrier family 133. Four isoforms of this family (MCT1-4) catalyse the proton-linked 

transmembrane transport of monocarboxylates such as L-lactate, pyruvate and ketone 

bodies 134. Marked overexpression of MCT1 and/or MCT4 is a hallmark of several cancer 

types and increased levels of these transporters are associated with poor outcome. For 

instance, upregulation of MCT1 and MCT4 have been detected in lung, breast and 

colorectal cancer 125,135. 

V-ATPase is a member of the ATPases family, which couple ATP synthesis or hydrolysis 

with the extrusion of an ions across the membrane. V-ATPases are expressed on the plasma 

membrane of human cancer cells and involved in the H+ pumping. They contribute to 

tumour invasion and growth, and several report claim their involvement in multidrug 

resistance phenotype in cancer cells 136. V-ATPases are found overexpressed in several 

cancer types such as breast, NSCLC and glioblastoma.  

Carbonic anhydrases are a family of enzyme responsible of the reversible hydration of CO2 

to HCO3- and H+. This family comprises 16 members and the isoform CAIX has emerged 

as one of the most relevant. CAIX expression is mainly induced by hypoxia through the 

fine regulation of HIF1-α. Depletion of CAIX resulted in intracellular acidosis and reduced 

tumour growth 137,138. In addition, CAIX expression has been widely correlated with poor 

outcome in several human cancers 136.  

 

1.3.3.3 Pathogenic effect of tumour acidosis 

This reversed pH gradient across the plasma membrane occurs early in carcinogenesis 132 

and increases with the progression of cancer by promoting proliferation, resistance to 

apoptosis, metabolic reprogramming, migration, invasion and anchorage-independent 
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growth 124,130,139. Thus, the extracellular acidification feature is not only a mere 

consequence of tumour metabolism, but it is important for cancer cells to gain selective 

advantages and a more aggressive phenotype 123. In this regard, concentration of ions 

follows a gradient from tumour into adjacent normal tissue, enabling tissue remodelling at 

the tumour and stroma interface. Indeed, the extracellular acidification promotes the 

expression of cathepsins and metalloproteinases, which in turn drives the degradation of 

the extracellular matrix 139, and induces the release of pro-angiogenic factors (VEGF and 

IL-8), that triggers the formation of new blood vessel favouring tumour cell dissemination 

140,141. Normal cells are usually sensitive to acidosis induced death, while cancer cells have 

adapted to this adverse condition by developing mechanism of resistance to various 

cytotoxic factors. The extracellular acidification of cancer cells has been also associated 

with a mechanism of chemoresistance (“ion” trapping) as the entry of a drug into a cell 

depends on both concentrations and pH. There is a group of drugs which behave as weak 

bases (e.g.: doxorubicin) that in an acidic microenvironment are protonated. The resulting 

charged form has a strongly reduced membrane permeability and subsequently the cellular 

uptake is decreased. Conversely, drugs that behave like weak bases, cross the plasma 

membrane and accumulate into acidic organelles (lysosomes, endosomes, secretory 

vesicles) 142. Finally, tumour acidosis and also secretion of lactate are believed to exert an 

immunosuppressive effect by inducing anergy in T-cells 143.  
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2. AIM OF THE STUDY 

CTCs are cancer cells disseminated into the blood from primary or metastatic sites 15. 

Evaluation of CTCs isolated from the peripheral blood has demonstrated clinical validity 

as a prognostic and predictive tool based on enumeration, but has failed to demonstrate its 

clinical utility 17.  

To date, CellSearch® platform is the only FDA-approved platform for CTC detection and 

enriches epithelial cells targeting EpCAM-positive cells. Using only EpCAM to isolate 

CTCs is considered one of the major limitations of this technology as EpCAM can be 

downregulated during the EMT process and, consequently, CellSearch® might fail in the 

identification of a subpopulation of cells. Hence, there is a need to develop alternative 

and/or complementary platforms for the characterization of CTCs to exploit their 

diagnostic, prognostic and biological roles. 

Deregulated metabolism has been recently listed as a hallmark of cancer 3. Most cancer 

cells have an increased glucose uptake and lactate production, which is released into the 

extracellular space causing the acidification of the tumour microenvironment. Even if such 

metabolic alterations are well known, they have never been used to detect CTCs.  

Our group has recently developed a method to detect cells with an altered metabolism, 

based on the differential extracellular acidification rate between normal and cancer cells. 

This assay exploits a droplet microfluidic technology, which allows to compartmentalize 

single-cell into a droplet and detect hypermetabolic cells by pH measurements of the 

extracellular space.  

On these grounds, the aim of this study was to evaluate the single-cell metabolism-based 

method for detecting CTCs in a clinical setting. In more details, a reproducible 

methodology to process blood samples from cancer patients was established and validated. 

Then, the clinical performance of the metabolism-based assay was investigated by a 

comparison with the CellSearch, as the gold standard for CTC enumeration in MBC. 

Finally, the presence of neoplastic cells among the detected hypermetabolic cells was 

evaluated.  
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3. MATERIAL AND METHODS 

3.1 Microfluidic platform 

3.1.1 Device fabrication 

In this work, one microfluidic device was employed for droplet generation and/or droplet 

fluorescence data acquisition, and a second one for fluorescence activated sorting of 

droplets. Each device was made of PDMS bonded to glass surface using soft lithography 

techniques  59. Twenty-five µm thick layer of SU8‐2025 were spun on silicon wafer, baked, 

exposed through transparency mask, baked again and developed according to manufacturer 

instructions (MicroChem corp., MA, USA). Sylgard 184 (PDMS) prepolymer and 

crosslinking agent (Dow Corning) were mixed at a mass ratio of 10:1 (w/w); a mixture was 

poured onto a master, degassed and cured at 65°C for at least 2h. The replica was detached 

from master and reservoirs were bored using a blunt hypodermic needle. A PDMS replica 

was washed in ethanol and blow dried with nitrogen. A clean glass slide and a clean PDMS 

replica were treated with oxygen plasma and bonded. The emulsification device was 

silanized with 5% (Tridecafluoro‐1,1,2,2‐Tetrahydrooctyl)‐1‐Trichlorosilane (Sigma‐

Aldrich) in FC‐40 (3M) perfluoro silane, fluorinated oil, which was introduced into 

microfluidic channels (enough to completely wet whole microfluidic network) and then the 

device was kept at 95°C for at least 30 min. The sorting device was instead silanized with 

two silanization agents - [perfluoro silane] and 1% of 11-bromo-undecyl-dimethyl-

chlorosilane in cyclohexane [Br silane] for 10 min. Perfluoro silane] was injected in oil 

waste outlet at 150µL/h, and simultaneously [Br silane] was injected into the water outlet 

at 500 µL/h. Afterwards whole network was flushed with filtered HFE7500 and nitrogen, 

last two steps were repeated 3 times. Finally, device was kept at 95°C for at least 30 min. 

Finally, device was kept at 95°C for at least 30 min. Subsequently, the electrodes were 

casted by melting 51In/32.5Bi/16.5Sn low temperature solder into the corresponding 

microfluidic channels. While the solder was still liquid, short pieces of electrical wires were 

introduced to serve as electrical connection. 

3.1.2 Optical setup  

The optical setup for measuring droplet fluorescence (Figure 3D) consisted of an Olympus 

IX70 inverted fluorescence microscope. A 25mW, 405 nm laser beam was expanded (2x) 

and focused down with a cylindrical lens crossing orthogonally the microfluidic channel. 

Fluorescence signal emitted from droplets was captured by a 40x objective (Olympus 
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LUCPlanFLN, 40x/0.60), split with dichroic filter (DLP555, Semrock) and detected 

through bandpass filters (579/34; 630/38, 494/20 and 435/20) by Photo Multiplier Tubes 

(PMTs) (H957-15, Hamamatsu). Signal went through a transimpedance amplifier with 

1V/uA gain and detected by the acquisition system (National Instruments cRIO-9024, 

analog input module NI9223) with a 10 μsec scan rate.  

3.1.3 Design of microfluidic devices 

The design of the emulsification and data acquisition microfluidic device is reported in 

Figure 2.   

The emulsification device contained: i) two inlets, one for cell suspension (also referred to 

as aqueous phase) and the other one for carrier oil phase (or continuous phase); ii) one 

outlet for droplet collection; iii) a 20 μm wide flow-focusing junction  and iv) passive filters 

at the inlets to prevent channels from clogging. 

Figure 2. Schematic overview of the microfluidic device employed for droplet generation and data 

fluorescence acquisition. 

3.1.4 Droplet generation and encapsulation of cells  

The emulsification device was used to generate droplets. This device has a flow-focusing 

junction, where the aqueous phase (cell suspension) and carrier oil stream meet, and droplet 

generation occurs (forming a water-in-oil emulsion). To stabilize droplets against 

coalescence, 1% (w/w) 8-fluorosurfactant (RAN biotechnologies) was dissolved in HFE-

7500 (3M) Novec (Fluorochem Ltd., UK) fluorinated carrier oil.  

Cell suspension was loaded into a low-binding tip (Standt) connected to a 2.5 ml syringe 

via Polytetrafluoroethylene (PTFE) tube (0.56 mm × 1.07 mm internal/external diameter; 

Fisher Bioblock) and pre-filled with HFE-7500 (3M) Novec (Fluorochem Ltd., UK) 

fluorinated oil to fulfil dead volumes and pumped into the microfluidic device at 300 μl/h. 

The carrier oil phase was loaded into another syringe (Hamilton) and pumped in at 600 

μl/h. These streams meet at the 20 μm wide flow-focusing junction, where the droplet 
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generation occurs as the cell suspension stream broke up into 15 pl droplets. The resulting 

emulsion flowed off-chip through PTFE tubing (0.56 mm × 1.07 mm internal/external 

diameter; Fisher Bioblock) connected to the outlet of the device and collected into 1.5 ml 

vial placed on an ice-cold rack (IsoTherm System, Eppendorf). The vial containing droplets 

was incubated for the desired incubation time at 37°C in a humidified incubator with 5% 

CO2. After incubation, droplets were immediately cooled by replacing the vial on the ice-

cold rack and reinjected into the required microfluidic device for subsequent analysis. 

3.1.5 Droplet screening  

Droplets were reinjected into the emulsion device through PTFE tubing (0.56 mm × 1.07 

mm internal/external diameter; Fisher Bioblock) connected to a 2.5 ml syringe (Hamilton) 

previously filled with HFE7500 oil at a flow rate of 100 μl/h. Droplets were spaced out at 

the flow focusing-junction by the injection of carrier oil at a flow rate of 200 μl/h. When 

the system had stabilized, the fluorescence of each flowing droplets was acquired by the 

optical set up as above described. 

3.1.6 Data fluorescence acquisition and control system 

To record droplet fluorescence intensities and trigger the camera to capture images of 

droplet with predefined fluorescence intensities and the electrodes, a National Instruments 

FPGA data acquisition card (cRIO-9024, analog input module NI9223) driven by a 

LabVIEW custom software were used. The data acquisition system had a 10 μsec scan rate. 

The signal output voltage of each droplet is recorded and processed in real time by a Field 

Programmable Gate Array  (FPGA) card and select droplets with a fluorescence intensity 

over a set threshold and size (a parameter determined by the residence time of the droplet 

in the laser spot and used to exclude from the analysis droplets that coalesced or are too 

small). These features are used in selecting whether the droplets should be capture by 

pictures or sorted. When PMT voltage exceeds a defined threshold and the droplet size falls 

in the expected range, the camera is triggered. In the case of sorting, a high-voltage train of 

pulses, consisting in a square wave of 30 Hz and 1 kV peak-to-peak amplitude, was applied 

to the electrodes. A user interface allows the operator to interact with the instrument and 

tune various parameters such as the fluorescence threshold for droplet imaging and sorting 

and activation of filters for droplet size. Data are transferred from the FPGA to the CPU 

providing a record of images and raw tracks for each run. A written-in-house LabVIEW 

software allows the operator to access to the picture gallery, verify simultaneously the 
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content of the droplet and the raw track, and a trained operator classifies the events 

according to the defined criteria.  

Liquids were pumped into the microfluidic device by using neMESYS (Cetoni) low-

pressure syringe pump and gastight syringes (Hamilton). These were connected to the 

microfluidic device using syringe connector luer lock and PTFE tubing with an internal 

diameter of 0.56 mm and an external diameter of 1.07 mm (Fisher Bioblock Scientific). 

3.2 pH-assay for extracellular acidification measurements 

The pH-sensitive fluorescent dye SNARF-5F (Invitrogen) was used to measure the pH of 

each droplet. SNARF-5F respond to pH variation undergoing a wavelength shift in the 

emission spectra (Figure 3E). Such pH-dependent shifts allow the ratio of the fluorescence 

intensities from the dye at two emission wavelengths (580nm and 630nm) to be used for 

quantitative determination of pH. For each droplet the ratio of emitted fluorescence 

intensities at 580 and 630 nm (580/630 ratio) of SNARF-5F is calculated in real time. As 

the pH is more acidic, SNARF-5F fluorescence increases at 580 nm while decreases at 

630nm (Figure 3E). As a result, when the pH inside a droplet decreases below pH 7.4, an 

increase in the 580/630 ratio over 1 is observed. To calibrate the system, Joklik’s EMEM 

medium titrated at different pH (7.4, 7, 6.5, 6, 5.5 and 5) was added with 4 µM SNARF-

5F, emulsified and droplets screened for fluorescence. The 580/630nm ratio were 

calculated for each pH and plotted against the respective pH, which allowed constructing a 

calibration curve (Figure 4B).  

3.3 Cell lines  

The breast cancer cell lines MDA-MB-231 and MCF7, were obtained from the American 

Type Culture Collection and cultured in DMEM medium (Sigma) supplemented with 10% 

FBS. The ovarian cancer cell lines IGROV-1 and OC316 were grown in complete RPMI 

1640 medium (Sigma) supplemented with 10% FBS, 10 mm Hepes (Gibco) and 1% Na-

pyruvate (Sigma). All cell lines were grown in a humidified atmosphere at 37 °C and 5% 

CO2. All cell lines were validated for short tandem repeat profiling. 

3.4 Study design 

A pilot study trial was conducted to compare the metabolism-based assay and the 

CellSearch® system for CTC enumeration. A total of 31 patients with progressive and 

measurable MBC, at the start of a new systemic therapy, without limits to number and kind 
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of previous therapies (hormone therapy, chemotherapy, targeted therapy) were included. 

All patients had an Eastern Cooperative Oncology Group performance status (ECOG PS) 

score ≤ 2.  

Before starting a new therapy, patient underwent baseline blood drawn for CTC evaluation 

and standard clinical studies. Another blood sample was collected after 3-4 weeks the start 

of the therapy (follow-up). Revaluation of disease status were conducted depending on the 

type of treatment the patient received and the schedule of the therapy. Standard Response 

Evaluation Criteria In Solid Tumours (RECIST) criteria were used to determine patients’ 

responses to treatment. The study was conducted at the IRCCS-CRO Aviano-National 

Cancer Institute and approved by our Institutional Review Board. Informed and written 

consent was obtained from all patients and healthy donors before their enrolment, and their 

clinicopathological information was recorded.   

 

3.5 CTC detection by the metabolism-based assay 

Blood samples were drawn into K2-EDTA Vacutainer tubes (Beckton Dickinson) and 

maintained at room temperature. For each sample, 2.5 ml of blood were analysed within 2 

hours after collection. Red blood cells (RBC) were lysed with a 1X FACS lysing solution 

(BD PharmLyse) and centrifuged at 200g for 5 min. Thereafter, the nucleated fraction was 

depleted of CD45-positive WBCs and residual RBCs using CD45 and Glycophorin A 

microbeads (Miltenyi Biotec), respectively, and LD separation columns in a MACS MIDI 

separator (Miltenyi Biotec), according to the manufacturer’s instructions. The unlabelled 

cells were recovered, centrifuged at 300g for 10 min and stained with anti-CD45 (BD 

Horizon Brilliant™ Violet 480, dilution 1:100) and anti-EpCAM (BD Horizon Brilliant™ 

Violet 421, dilution 1:100) for 25 min at room temperature. After washing the sample with 

PBS-BSA 0.5%, cells were resuspended in 50 μl of the unbuffered Joklik’s modified 

EMEM culture medium (Sigma) containing 2mM EDTA, 0.1% BSA, 15% Optiprep and 

4mM of the fluorescent pH indicator SNARF-5F (Thermo Fisher Scientific). Then, cells 

were single-cell encapsulated in monodispersed droplets using the droplet microfluidic 

platform as described in the microfluidc platform section. The emulsion was collected and 

incubated at 37ᵒ C for 30 min and then reinjected into the microfluidic channel for 

fluorescent reading of pH, CD45 and EpCAM expression, and the acquisition of bright-

field imaging of each positive event. Positive events were defined as droplet containing a 
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CD45-, EpCAM+ or –, and Acid+ cell. The number of CTCs was then normalized to 7.5mL 

to be comparable to that observed with the CellSearch. 

 

3.6 CTC detection by CellSearch 

CTC isolation and enumeration were performed using the CellSearch® system. Blood 

samples were drawn into 10 mL CellSave Preservative Tubes (Menarini), which contains 

a proprietary fixing preservative, and maintained at room temperature. Blood samples were 

sent to the IRCCS-Istituto Oncologico Veneto (IOV) and processed within 96 h after 

collection by trained personnel. For each sample, 7.5 ml of blood were transferred into a 

specific 15 ml conical tube, mixed with 6.5 ml of CellSearch dilution buffer and centrifuged 

at 800g for 10 min without brake. The tube was loaded into the CellTracks AutoPrep 

system, a semiautomated instrument used for the preparation of the sample with the 

CellSearch Epithelial Cell Kit. In brief, the instrument aspirates the plasma and adds 

ferrofluid particles coated with anti-EpCAM antibodies and a capture enhancement 

reagent. After incubation and magnetic separation, unbounded cells are removed. 

Ferrofluid-labelled cells are re-suspended in a buffer, permeabilized and stained with 

phycoerythrin-conjugated antibodies directed against cytokeratin (CK) 8, 18 and 19 to 

specifically identify epithelial cells, an antibody allophycocyanin-conjugated against CD45 

to identify remaining WBC and the nuclear dye 4,6-diamidino-2-phenylindole (DAPI) to 

label the cell nucleus. To quantify the fraction of apoptotic CTCs, anti-M30 monoclonal 

antibody marked in FITC was integrated in the assay for recognizing a neoepitope in 

cytokeratin 18 (CK18) that becomes available at a caspase cleavage event during apoptosis 

and is not detectable in viable epithelial cells. The sample is then washed and automatically 

transferred to a cartridge, which sits in a magnetic field (Magnest®) and allows cells to 

migrate to the analytical glass surface. The cartridge is scanned for each individual 

fluorochrome by using a semiautomated fluorescent microscope, named CellTracks 

Analyzer II. The software selects and presents all captured images that contain objects 

fitting the predefined criteria and a trained operator classifies the events according to the 

CellSearch® CTC definition. According to the guidelines of the CellSearch® method, a 

cell is classified as CTC when is positive for the phycoerythrin-cytokeratin and DAPI 

staining and negative for allophycocyanin-CD45 staining. CTCs must have a size of at least 

4 μm, a round to oval morphology and a nucleus surrounded by cytoplasm for 50% of its 
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surface. All evaluations were performed without knowledge of the clinical status of the 

patients.  

3.7 DNA extraction, purification and quantification 

DNA extraction from CTC was performed using the automated Maxwell 16 Instrument 

with the Maxwell® RSC ccfDNA Plasma Kit (Promega), following the manufacturer’s 

instructions. DNA was quantified by using QuantiFluor® dsDNA System (Promega), 

according to the manufacturer’s protocol. 

3.8 DNA mutation detection 

DNA extracted from sorted cells was analysed for the hot spot drug resistance point 

mutations of ESR1 (Y537N, Y537S, D538G, L536R) using droplet digital PCR. ddPCR 

was performed using a Droplet Digital PCR XQ200 system (Bio-Rad Laboratories).  

Briefly, about 5ng of DNA was added to a 20μL PCR mixture containing 10μL ddPCR 

Supermix for probes (No dUTP; Bio-Rad Laboratories), 900nM target–specific PCR 

primers, 250nM mutant–specific (FAM) and wild-Type-specific (HEX) probes. 20μL PCR 

mixture and 70μL Droplet generation oil for Probes (Bio-Rad Laboratories) were mixed 

and droplet generation was carried out according to the manufacturer’s manual. The droplet 

emulsion was thermally cycled in the following conditions: 95 °C for 4 min (1 cycle), 94 

°C for 30s (ramp rate 75%) and 58° C for 1 min (40 cycles), and infinite hold at 4°C. Prior 

to sample testing, thermal gradient experiments were performed to determine the optimal 

amplification conditions. Samples were analysed as technical duplicates and positive WT 

controls were used in all assays performed, in order to verify assay performance and 

facilitate the analysis of fluorescence values. Droplet fluorescence data and quantification 

of template abundance were analysed with the QuantaSoft software (Bio-Rad 

Laboratories). 

3.9 Statistical analysis  

Data were analysed using GraphPad Prism 6 (version 2.6). Patient and clinical 

characteristics were presented as frequency and percentage, median and range, mean and 

standard deviation (SD), as appropriate. Comparison of median between groups were 

performed by Mann-Whitney test and groups were compared using the Wilcoxon rank test. 

PFS and OS (time elapsed from enrolment to disease progression and death from any cause, 

respectively) were determined by Kaplan–Meier plots, with data being censored at last 

follow-up if progression or death had not occurred. Gehan-Breslow-Wilcoxon test were 
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used to compare the survival curves by CTC detection groups. p < 0.05 was considered 

significant.  
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4. RESULTS 

4.1 Working principle and validation of the detection platform 

4.1.1 Description of the platform for pH measurement 

Encapsulation of cells into droplets is an effective analytical tool as metabolites released 

from cells remain trapped in the picoliter (pL) droplets. Thus, secreted molecules quickly 

reach detectable concentration because of the small droplet volume, enabling sensitive 

measurement on single cells that are typically not feasible via bulk cellular measurement 

144–146.  

A feature of cancer cells is their altered metabolism, typically associated with an increased 

glucose consumption, which in turn involves a high production and secretion of proton H+. 

The increasing concentration of H+ leads to the acidification of the extracellular 

microenvironment, and this correspond to a measurable decrease in the pH value.  

To investigate the potential utility of enumerating CTCs with an altered metabolism in 

clinical samples from cancer patients, our group developed a droplet microfluidic-based 

assay for the pH measurement at single-cell level 147. Figure 3 outlines the overall strategy. 

Briefly, cells to be tested for the extracellular acidification level were encapsulated into 15 

pL droplets together with a ratiometric pH sensitive dye (SNARF-5F) for pH readout 

(Figure 3A). During in-drop incubation, because of the cellular metabolic activity, each cell 

released a certain quantity of H+ altering the pH of the droplet-containing cells environment 

(Figure 3B). Droplets were then reinjected into the device and screened for fluorescence 

pH measurement by the optical setup (Figure 3C-E). As pH is lowered, SNARF-5F 

undergoes a wavelength shift in the emission spectra, allowing to determine the exact pH 

of the droplet by comparing the fluorescence peaks at two wavelengths (ratio 580/630 nm) 

(Figure 3E). As the optical setup has comprehensively four fluorescence channels, two 

more fluorophores can also be detected simultaneously with SNARF-5F. In this work they 

were exploited to identify EpCAM and CD45 expression. Finally, the content of each 

droplet with a fluorescence signal over an operator-dependent threshold could be imaged, 

thus providing an additional verification of the content (Figure 3D) and quantified. 
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Figure 3. Schematic overview of the droplet microfluidic single-cell assay for determination of the 

extracellular pH. A) Single cells were encapsulated into picoliter droplets together with an 

extracellular pH-sensitive dye (SNARF-5F); B) During in-drop incubation, single cell secreted a 

certain quantity of proton H+ which leads to a decrease of the pH value (i.e.: acidification of the 

droplet environment) C) The water-in-oil emulsion was reinjected into a second microfluidic device 

and droplets screened for fluorescence by the optical setup. D) Schematic overview of the optical 

set-up: laser light (405 nm) was emitted from the laser, shaped into a laser line through cylindrical 

lens and transmitted through a dichroic mirror to the microscope. Fluorescence signals emitted from 

droplets were captured by a 40x objective, split with dichroic filters, and then reflected by dichroic 

filter to photomultipliers (PMT) (solid line represents dichroic filters; DLP = dichroic long pass; 

SP = short pass). Insertions: a) representative image of an in-drop cell with the corresponding 

fluorescence spectrum from which a decrease of fluorescence intensity at 630nm (green line) and 

an increase in 580nm (red line) can be observed, as expected from an acidic droplet; b) empty 

droplet showing no change in the pH, i.e. in the ratio of SNARF-5F fluorescent intensity at 580 and 

630nm; E) Fluorescence emission spectra of SNARF-5F showing the spectral pH-dependent shift 

at 580nm and 630nm.  
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The droplet microfluidic device used for droplet generation and droplet fluorescence data 

acquisition is schematically illustrated in Figure 2. The microfluidic device was made of 

PDMS bonded to glass surface using standard protocols 59. In this set up, two 

microchannels intersect to form a flow-focusing junction where the two immiscible fluid 

(i.e. the aqueous cell suspension and the oil added with surfactant) meet generating 

monodispersed droplets along with the encapsulation of cells. As previously demonstrated 

148, this occurs as the liquids flow into channel at a rate in which the shear force at the fluid 

interface is sufficiently large to cause the oil phase to break up the aqueous, i.e.: the cell 

suspension, into discrete droplets. Droplets are thermodynamically metastable then a 

surfactant is added to the oil for their stabilization. The use of fluorinated oil has a good 

solubility for oxygen and biocompatibility, as previously shown 144. 

 

4.1.4 SNARF-5F allows to discriminate population of droplets with different pH 

The ratiometric pH indicator SNARF-5F allows pH measurement and it has been 

previously used to detect pH both in vitro and in vivo 126,149.  

To obtain a calibration curve to convert the 580/630 nm ratio value into pH, an unbuffered 

culture medium, Joklik’s modified EMEM, was titrated at various pH between 7.4 and 5, 

emulsified, and then analysed by the optical setup. Once the PMTs gain were set to have a 

ratio 580/630 nm equal to ratio 1 for the neutral pH of 7.4 as a reference, the fluorescence 

signals of droplets containing medium at decreasing pH were recorded (this setting was 

used as well for other experiments described in this work). As shown in Figure 4A, there 

is an inverse correlation between 580/630nm ratio and the value of pH. The mean average 

of fluorescent ratio intensities was plotted in function of known pH value and a sigmoidal 

fitting performed to obtain a calibration curve (Figure 4B). The system was calibrated 

periodically. Finally, the ability of the system to discriminate the presence of different 

population of acidic droplets was further confirmed by mixing droplet generated separately 

and containing medium at different pH. As shown in Figure 4C, the system was able to 

clearly distinguish each population of droplets. 
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Figure 4. Calibration of SNARF-5F. A) Representative dot plots showing the decreasing SNARF-

5F 580/630nm ratio mean fluoresce intensity of droplets containing buffers at increasing pH; B) 

Calibration curve of SNARF-5F. Ratio of 580 and 630 nm SNARF-5F fluoresce intensity was 

plotted for each respective pH and a sigmoidal fit was performed to obtain the represented 

calibration curve. C) Droplets generated with buffer at known pH value were mixed and then the 

data fluorescence recorded.  

4.1.5 Decreasing the rate of false positive events 

Our previous work reported that few false positive droplets could be imaged. These false 

positive events corresponded to acidic droplet containing material like cell debris, which 

also could impair the step of emulsion by clogging the junction, or empty droplets. Since 

the described method had to be applied for CTC detection, which are commonly rare 

events, it was desirable to decrease at maximum the occurrence of the aforesaid false 

positive events. 

Figure 5. Rate of false positive events recorded on 200000 empty droplets generated with oil HFE-

7500 added with increasing concentration of A) a home-made surfactant and B) a commercially 

available one.  
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First, to prevent clogging of the junction, passive filters have been incorporated upstream 

of the nozzle. Then, the effect of increasing the concentration of a home-made synthetized 

surfactant were explored. Figure 5A reports representative dot plots which highlight that 

an increase in surfactant concentration from 0.5% to 1% corresponded to an increase of 

false positive from 0.023% to 0.075%. Considering that this phenomenon was stochastic 

and varied from batch to batch, a commercially available surfactant was finally tested. As 

shown in Figure 5B, the number of false positive events significantly decreased to 0.001%.  

4.1.5 Determination of the droplet volume size for pH measurement in patient samples 

The size of droplets is determined by the ratio of the volumetric rates of liquid flow, which 

are tightly controlled by using a low-pressure syringe pump, gastight syringes and PFTE 

tubes connected to the device. To determine the optimal size of droplet to distinguish WBCs 

from CTCs in patient samples, a determination of ratio as a function of droplet size was 

performed for both MDA-MB-231 and WBCs. Table 3 summarises the flow rates 

employed, and the corresponding droplet volumes obtained. Since the proton release of the 

investigated cells is assumed to be constant, the resulting pH, that is the concentration of 

H+, is dependent from the volume where they are detect. As expected, the mean ratio 

fluorescence intensities of both MDA-MB-231 and WBC decreased as droplet volume 

increased, confirming that the ratiometric nature of SNARF-5F as a dye that shifts its 

wavelength upon the concentration of protons can be exploited also in the system employed 

in this study for pH measurements (Figure 6). Since droplets of smaller volumes allowed 

both a good separation between cancer cells and WBCs within a wide range of pH values 

and allowed the generation of monodispersed droplets, the flow rate of 600μl/h and 300μl/h 

for oil and cell suspension, respectively, was adopted for this study.  

Oil phase 
(ml/h) 

Cell suspension 

(ml/h) 
Volume (pl) 

0,7 0,3 13 

0,6 0,3 15 

0,4 0,3 18 

0,25 0,3 25 

2,5 0,5 42* 

1,5 0,5 63* 

0,7 0,1 78* 

* Commercially available microfluidic chips (with a different architecture respect to that normally employed in this work) 

were used to obtain this droplet volume. 

 

Table 3. Table summarizing the volumetric flow rates for both oil and cell suspension phase and 

the correspond droplet volumes obtained. 
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Figure 6. This graph reports the mean±S.D. fluorescence of 580/630 nm ratio in function of varying 

droplet volume size for MDA-MB-231 cell lines (violet line) and WBCs (green line).  

In accordance with previous studies 144,145, the process of encapsulating cells is random and 

follows a Poisson distribution curve. As a result, most droplets are empty of cells and the 

droplet occupancy (i.e. the number of cells inside a droplet) can be adjusted by varying the 

cell suspension concentration. In this study, the generation of 15 pL droplets using a cell 

density of 1x106 cells/ml, which is much higher than that expected after the processing of 

blood sample for CTC detection, resulted in an encapsulation efficiency of approximatively 

2% cell-containing droplets, 94% of which contained a single cell. Further, since empty 

droplets account for at least the 98% of total droplets and they are expected to contain only 

the unbuffered medium at the neutral pH of 7.4, such population was used as an internal 

reference to set the analysis of pH measurements.  

4.1.6 Effects of room temperature on the extracellular acidification level 

To assess whether the room temperature could introduce bias on pH measurements, that 

have to be clearly avoided in the light to apply this method for rare cells detection in clinical 

samples from cancer patients, MDA-MB-231 and WBC in-drop cells were screened after 

10 min of incubation, with or without a temperature control system, at several time point. 

Overall, after incubation, the effects of temperature were assessed every 10 min over a 

period of 40 min, which approximately corresponds to the time required for the acquisition 

of a clinical sample. 

The rise of the mean ratio of MDA-MD-231 and WBCs respect to that recorded 

immediately after incubation, highlighted that protons were released over time when the 

sample was left at room temperature (Figure 7A and B, left panels). In particular, such 

effect was more evident for the breast cancer cells, suggesting again that cancer cells have 

a higher proton release rate respect to that observed for WBCs. To lower the cellular 

metabolic activity, refrigerated solutions and a cooling system which permits to maintain 



44 

 

the sample at a constant temperature of 4°C were employed during the step of generation 

and collection of the emulsion, immediately after the incubation, and during reinjection. 

This resulted in an unchanged value of pH compared to that recorded immediately after 

incubation (Figure 7A and B, right panels). Overall, these results highlighted the need to 

adopt the described temperature control strategy.  

 

Figure 7. Evaluation of the room temperature effects on the single-cell metabolism-based assay. 

Both MDA-MB-231 and WBCs were emulsified with (A) or without (B) a temperature control 

approach. After 10 min of incubation, each emulsion was aliquoted in 5 samples and left at room 

temperature or on ice for 0, 10, 20, 30 or 40 min. The graph reports the mean average ± S.D. 

fluorescence intensities of 580/630nm ratio measured each time point of incubation. 

4.1.4 Glucose effect on the extracellular acidification rate 

It has been widely described that the presence of glucose in solution enhances cellular 

metabolism in glycolytic cancer cells, in contrast to what observed in normal or non-

metastatic cancer cells. Thus, to further confirm that the extracellular acidification observed 

was a consequence of an altered metabolism, MDA-MB-231 and WBC were emulsified in 

the presence of increasing concentrations of glucose (0mM, 5mM and 10mM). As 
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expected, the breast cancer cells showed a decreased pH after incubation, which was even 

more evident with the increase of glucose concentration. On the other side, a significant 

drop in the acidification of droplets containing WBC was observed only at 5mM of glucose, 

whereas no significant changes were monitored with increasing concentrations (Figure 8).  
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Figure 8. Extracellular acidification measured for MDA-MB-231 and WBCs in function of 

increasing concentration of glucose (0-5-10 mM) measured both after 10 and 30 min of incubation 

at 37°C.  

The extracellular acidification of two ovarian cancer cell lines, namely OC316 and IGROV-

1, which are described as cells with a high and low glycolytic phenotype, respectively, were 

assessed. In accordance with the previous finding that OC316 has a higher level of 

extracellular acidification rate respect to IGROV1150, as detected by the Seahorse flux 

analyser, our method recorded lower mean value of pH for the OC316 respect to IGROV-

1 (Figure 9). Thus, our method was able to discriminate among cells with distinct feature 

of glucose consumption. 
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Figure 9. The extracellular acidification level detected for the highly glycolytic OC316 was 

significantly lower than the low glycolytic IGROV1. Each box plot represents the median, lower 

and upper quartiles (25th and 75th percentile) and whiskers represent the lower 10th and upper 90th 

percentile. Statistical significance was calculated by comparing ovarian cancer cell lines by Mann-

Whitney test (**** p<0.0001).  
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4.1.1 Identification of a threshold of pH to discriminate CTC from WBC in clinical 

samples 

To identify a threshold of extracellular acidification (i.e.: pH) able to better discriminate 

between hypermetabolic cells and WBC, the extracellular acidification of MDA-MB-231 

and MCF7, which have a high and low metastatic potential, respectively, and WBCs were 

assessed by using the single-cell metabolic based assay. As shown in Figure 10A and B, 

both cancer cell lines had a significantly higher acidification rate respect to that detected in 

WBCs and, interestingly, MDA-MB-231 reached lower level of pH respect to MCF7, as 

previously described 147. 

Figure 10. Measurement of extracellular acidification. A) Representative histogram reporting the 

acidification of cell-containing droplets for both breast cancer cell lines (MDA-MB-231 and MCF7) 

and WBCs obtained from healthy donor’s sample. B) Comparison of extracellular acidification 

between breast cancer cell lines (MCF7 and MDA-MB-231) and WBCs. Each box plot represents 

the median, lower and upper quartiles (25th and 75th percentile) and whiskers represent the lower 

10th and upper 90th percentile. Statistical significance was calculated comparing cell lines and 

WBCs by Mann-Whitney test. C) ROC curves obtained comparing the extracellular acidification 

of MDA-MB-231 and MCF7 breast cancer cell lines against WBC. 
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The threshold to distinguish hypermetabolic cells from WBC in patient’s samples was set 

using ROC curve analysis of cancer cell lines (MDA-MB-231 and MCF7) and WBC 

(Figure 9C). The area under the curve revealed that the acidification measurement had an 

accuracy of 0.96 and 0.95 in discriminating MDA-MB-231 and MCF7, respectively, from 

WBC. A cut-off value of pH<6.4 were defined to ensure a specificity of 99.9% for both 

cancer cell lines; with the selected cut-off, the assay resulted in a sensitivity of 45% for the 

highly metastatic MDA-MB-231 and 22% for the low-metastatic MCF7. 

Overall, the different behaviour of cancer cells and WBCs and the demonstrated ability of 

our method to report on the different explored conditions supported the previously 

described functional assay 147 to distinguish hypermetabolic cancer cells from WBCs by 

measuring their extracellular acidification. Thus, a clinical trial was designed to assess the 

potential of enumerating CTCs in blood samples from cancer patients.   

4.2 Comparison of CTC detection rate with the metabolism-based and the 

CellSearch  

4.2.1 Patient’s characteristics  

Between March and October 2017, 31 consecutive patients with MBC were recruited at the 

IRCCS-Centro di Riferimento Oncologico of Aviano, regardless of the number and type of 

previous treatment line(s). CTC enumeration was assessed before the beginning of a new 

line of treatment and after an average of 3.4±0.5 weeks following the first cycle of therapy. 

Patient demographics and tumour characteristics at the time of enrolment are summarized 

in Table 4.  

The median age was 56. Primary tumour receptor status for ER and/or PR (detected by 

IHC) and HER2 overexpression (evaluated by IHC and FISH) were positive in 21 (68%) 

and 3 (10%) out of 31 patients, respectively, while 8 (26%) out of 31 cases were triple-

negative (ER-, PR- and HER2-negative). Among the 31 patients recruited, 11 (35.5%) were 

starting their first line of therapy for metastatic disease, 28 (90%) received chemotherapy 

(alone or in combination with other treatments), 2 (6,5%) received hormone-therapy and 1 

(3.2%) patient was in the control group of an experimental therapy and received placebo. 

Overall, at the end of the study disease progression was observed in 23 out of 31 cases, 6 

out of them died. All patients had a minimal follow-up time of 9 month (median 15 months) 

for survival after the baseline collection of the blood sample. The results of the first imaging 

revaluation after the CTC enumeration documented a partial response in 13 patients out of 
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31 patients (42%). The average time between the baseline and the first follow-up imaging 

study among these 13 patients was 21±7.1 weeks.  

 N % 

All patients 31 100.0 

Age at baseline   

Median 56 

Range 39-78 

ER- and PR-receptor status   

ER+ or PR+ 21 68.0 

ER- and PR- 10 32.0 

Her2/neu status   

Positive 3 10.0 

Negative 28 90.0 

Triple negative 8 26.0 

Sites of metastasis   

Bone 23 74.0 

Lung 14 45.0 

Brain 2 6.0 

Liver 14 45.0 

Nodes 19 61.0 

Number of metastasis   

1 9 29.0 

2 or more 22 71.0 

Therapy   

First line 11 35.5 

Second line or subsequent 19 61.3 

Not available 1 3.2 

Type of therapy   

Chemotherapy 20 64.5 

Chemotherapy and targeted therapy 8 25.8 

Hormone-therapy 2 6.5 

Palliative 1 3.2 

 

Table 4. Patient and tumour characteristics. 

 

4.2.2 Baseline CTC enumeration  

The metabolism-based method was used to enumerate metabolically active CTCs in 

peripheral blood (PB) of 31 MBC patients and 26 healthy donor (HD) volunteers. Positive 

events were defined as droplet-containing cell with a pH below 6.4, negative for CD45 and 

positive or negative for EpCAM expression.  
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In the cohort of HDs, CTC-like events were detected only in 2 (7.6%) out of 26 HDs with an average 

of 0 ± 1 CTC/7.5 ml of blood (median 0, range 0-5) (Table 5). 

   Metabolism-based assay  

ID   CTC CTC E+ 

1 HD  0 0 

2 HD  0 0 

3 HD  0 0 

4 HD  5 0 

5 HD  0 0 

6 HD  0 0 

7 HD  0 0 

8 HD  0 0 

9 HD  0 0 

10 HD  0 0 

11 HD  0 0 

12 HD  0 0 

13 HD  0 0 

14 HD  0 0 

15 HD  4 4 

16 HD  0 0 

17 HD  0 0 

18 HD  0 0 

20 HD  0 0 

21 HD  0 0 

22 HD  0 0 

23 HD  0 0 

24 HD  0 0 

25 HD  0 0 

26 HD  0 0 

     

 N  26 26 

 Mean  0 ± 1 0 ± 1 

 Median  0 0 

 Range  0-5 0-4 

 

Table 5. Prevalence of CTCs in the cohort of healthy donor (HD) volunteers. CTC = total 

circulating tumour cell; CTC E+ = circulating tumour cells positive for EpCAM expression). 

Thirty-one MBC enrolled in the study and 27 out of 31 were evaluable for baseline (T0) 

CTC count with the single-cell metabolism-based method, while 4 had to be excluded from 

prevalence analysis, since the baseline blood draw has been missed for organizational 

and/or technical failure (Figure 11). Overall, the numbers of CTCs were higher in PB 

samples of MBC patients than CTC-like cells in HD samples (p=0.001, Mann-Whitney U-

test) (Figure 12). In more detail, 12 out of 27 patients (44.4%) had at least 1 detectable 

CTC/7.5 ml of PB; the average number of detected CTC was 218±1022 (median 0, range 

0-5319). Among these CTC-positive patients, 6 cases (22.2%) presented a subpopulation 
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of CTCs defined as both acid- and EpCAM-positive with an average CTC count of 19 ± 53 

in 7.5 ml of PB (median 0, range 0-200) (Table 6). 

 

Figure 11. CONSORT diagram describing the study design, patient’s enrolment and data exclusion 

reasons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Criteria for patient’s eligibility 

• Metastatic breast cancer patients 

• Regardless previous line(s) of therapy 

• Before starting a systemic therapy 

• Informed consent provided 

Assessed for eligibility 

•  N = 31 

CellSearch  

Not available for blood draw = 2 

Blood tests performed: 29 

•  

  

Metabolism assay 

• Blood tests performed: 31 

 

  

Baseline CTC enumeration 

Excluded (n= 7) 

Incorrect timing = 4 

Insufficient blood 

volume= 1 

Clotted blood = 2   

CellSearch  

• Dropped-out of the study= 1 

• Lost to follow-up= 2 

• Not available for blood draw= 3 

• Blood tests performed: 25 

  

Metabolism assay 

• Dropped-out of the study= 1 

• Lost to follow-up= 3 

• Blood tests performed= 27 

 

  

Follow-up CTC enumeration 

CellSearch  

• Baseline evaluable samples = 22 

• Follow-up evaluable sample = 22 

 

Metabolism assay 

• Baseline evaluable samples = 27 

• Follow-up evaluable sample = 26   

 

Analysis 

Excluded (n=4) 

Incorrect timing and 

technical reason = 4 

Excluded (n=3) 

Clotted blood = 1  

Insufficient blood 

volume= 1  

Technical reason = 1 

 

 

 

Not available for 

blood drawn = 3 

Excluded (n=1) 

Technical reasons = 1 
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  Metabolism-based assay  CellSearch 

  T0  T1  T0  T1 

ID Histology CTC CTC 

E+ 

 CTC CTC 

E+ 

 CTC CTC 

M30+ 

 CTC CTC 

M30+ 

1 ER+/PR+/HER2- n.a. n.a.  61 0  n.a. n.a.  0 0 

2 ER+/PR-/HER2- n.a. n.a.  121 0  n.a. n.a.  0 0 

3 ER+/PR+/HER2- n.a. n.a.  48 0  n.a. n.a.  1 0 

4 ER-/PR-/HER2- n.a. n.a.  n.a. n.a.  n.a. n.a.  0 0 

5 ER-/PR-/HER2- 0 0  0 0  0 0  0 0 

6 ER-/PR-/HER2- 375 200  280 160  379 25  127 7 

7 ER-/PR-/HER2- 5319 194  243 18  2022 0  288 0 

8 ER-/PR-/HER2- 14 14  0 0  21 0  0 0 

9 ER-/PR-/HER2- 0 0  6 6  n.a. n.a.  n.a. n.a. 

10 ER-/PR-/HER2- 55 0  n.a. n.a.  0 0  n.a. n.a. 

11 ER+/PR-/HER2- 13 9  4 4  244 0  30 1 

12 ER+/PR+/HER2- 6 0  n.a. n.a.  n.a. n.a.  - - 

13 ER+/PR-/HER2- 0 0  4 4  2 0  0 0 

14 ER+/PR+/HER2- 0 0  38 22  31 0  0 0 

15 ER-/PR-/HER2+ 0 0  0 0  n.a. n.a.  2 0 

16 ER+/PR+/HER2- 22 17  5 0  1 0  1 0 

17 ER+/PR-/HER2- 0 0  3 0  4 0  10 0 

18 ER-/PR-/HER2- 0 0  0 0  1 1  - - 

19 ER+/PR+/HER2- 0 0  0 0  2 0  1 0 

20 ER+/PR+/HER2- 0 0  133 122  0 0  0 0 

21 ER-/PR-/HER2+ 0 0  0 0  0 0  0 0 

22 ER+/PR-/HER2- 67 67  4 0  3 0  - - 

23 ER+/PR+/HER2- 0 0  n.a. n.a.  67 0  - - 

24 ER+/PR+/HER2- 0 0  3 0  2 0  0 0 

25 ER+/PR+/HER2- 0 0  0 0  32 0  3 0 

26 ER-/PR+/HER2- 3 0  0 0  n.a. n.a.  n.a. n.a. 

27 ER+/PR+/HER2+ 5 0  0 0  n.a. n.a.  n.a. n.a. 

28 ER+/PR+/HER2- 6 0  4 0  16 0  0 0 

29 ER+/PR-/HER2- 0 0  0 0  2 0  2 0 

30 ER+/PR+/HER2- 9 0  0 0  4 1  10 0 

31 ER+/PR+/HER2- 0 0  n.a. n.a.  0 0  - - 

             

 N 27 27  26 26  22 22  22 22 

 Mean ± S.D. 218±1022 19±53  37±75 13±38  129±433 1±5  22±65 0±1 

 Median 0 0  4 0  3 0  1 0 

 Range 0-5319 0-200  0-280 0-160  0-2022 0-25  0-288 0-7 

 

Table 6. Prevalence of CTCs: comparison between the single-cell metabolism-based method and 

the CellSearch. The table reports patient data and CTC count of each patient at baseline (T0) and 

follow-up (T1), along with the corresponding prevalence of EpCAM positive (CTC E+)  and 

apoptotic CTCs (CTC M30+) as detected with the metabolism-based method and CellSearch test, 

respectively. (n.a = not available data; see Figure 3 for details). 
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Figure 12. CTC count of healthy donor (HD) and MBC patients at baseline (T0) and follow-up 

(T1) performed with the metabolism-based assay (M). Overall, 26 healthy donors (HD) and 27 and 

26 out of 31 enrolled patients were included for CTC enumeration at T0 and T1, respectively. The 

graph reports both the total CTC count (Acid-positive (pH<6.4) droplets containing CD45 negative 

and EpCAM-positive or negative cells and the prevalence of the subpopulation of EpCAM-positive 

(E+) CTCs. Horizontal bars represent the average CTC count. Statistical significance was evaluated 

by Mann-Whitney test (* p-value ≤ 0.05; *** p-value ≤ 0.001; **** p-value ≤ 0.0001). 

Next, to assess the question whether the variation in the number of CTCs is also reflected 

in the clinical outcome, ROC curves were plotted to determine a cut-off level of CTCs to 

discriminate between MBC and HD (Figure 13); the area under the curve was 0.697 with 

95% CI from 0.584 to 0.794 (p-value = 0.01377). Giving the nature of this pilot study and 

the comparative aim with the CellSearch, previously reported as a strong and independent 

predictor of survival with the threshold of  ≥5 CTC 27,151, a cut-off value of ≥4 CTC was 

established to have 96% specificity with the metabolism-based method (Table 7). 

Stratifying the MBC patient’s cohort for the threshold of ≥4 CTCs, 11 out 27 (40.7%) were 

categorized as CTC-positive.  

Figure 13. ROC curve for CTC count to discriminate patients from healthy donors and table 

summarizing the results of AUC analysis. 
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Cutoff Sensitivity 95% CI Specificity 95% CI 

> 1.500 0,4444 0,2548 to 0,6467 0,9231 0,7487 to 0,9905 

> 3.500 0,4074 0,2239 to 0,6120 0,9231 0,7487 to 0,9905 

> 4.500 0,4074 0,2239 to 0,6120 0,9615 0,8036 to 0,9990 

> 5.500 0,3704 0,1940 to 0,5763 1,0000 0,8677 to 1,000 

> 7.500 0,2963 0,1375 to 0,5018 1,0000 0,8677 to 1,000 

> 11.00 0,2593 0,1111 to 0,4629 1,0000 0,8677 to 1,000 

> 13.50 0,2222 0,08622 to 0,4226 1,0000 0,8677 to 1,000 

> 18.00 0,1852 0,06300 to 0,3808 1,0000 0,8677 to 1,000 

> 38.50 0,1481 0,0419 to 0,3373 1,0000 0,8677 to 1,000 

> 61.00 0,1111 0,0235 to 0,2916 1,0000 0,8677 to 1,000 

> 221.0 0,0741 0,0091 to 0,2429 1,0000 0,8677 to 1,000 

> 2847 0,0370 0,0009 to 0,1897 1,0000 0,8677 to 1,000 

 

Table 7. Table summarizing the value of sensitivity and specificity calculated for each cut-off value 

along with their 95% confidence interval (CI) resulted from the comparison among HD and MBC 

patients. The cut-off with 96% specificity (highlighted in yellow) was chosen to discriminate 

between HD and MBC patients. 

For a direct methods comparison, 29 out of 31 of the above described patients were 

available for CTC enumeration with the CellSearch platform. Thus, the same day that the 

blood draw for the single-cell based-method was retrieved, an additional sample for 

CellSearch analysis was collected. For the CellSearch method, data were not evaluable 

from 7 samples at T0, because of technical reasons such as insufficient blood volume or 

clotted blood (Figure 11). Overall, CTC count with CellSearch was available for 22 

patients. In MBC the CellSearch assay identifies a high-risk patients group according to a 

cut-off value of > 5 CTCs/7.5 ml PB 27,151. When the cohort was stratified according to this 

criterion, 5 or more CTCs were found in 8 out of 22 (36%) patients (Table 6). As previously 

described, the M30 antibody, used in conjunction with the standard CellSearch kit, is a 

valuable tool to identify apoptotic CTC in MBC152. Since in this study we employed a 

method that aims to detect metabolically active and thus viable CTC, for comparative 

purpose, the M30 apoptosis marker was added to the CellSearch. Among the 17 patients 

which resulted positive for at least 1 CTC, 3 (17.6 %) were positive for the presence of at 

least one M30-positive CTC with an average CTC count of 1±5 (median 0, range 0-25). 

Instead, only 1 out of the 8 patients with a CTC number ≥5 CTC was positive with 25 M30-

positive CTCs over a total of 379 CTCs (Table 6).  
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4.2.3 Follow-up CTC enumeration 

At follow-up (T1), after a median of 3 weeks from the collection of the baseline time point, 

a total of 26 patients out of 31 were included in the analysis with the metabolism-based 

assay. Among the 31 recruited patients, 1 dropped-off the study, 3 were lost to follow-up, 

and 1 had to be excluded for technical reason (Figure 11). 

Fifteen out of 26 patients (57,7%) presented at least 1 CTC in 7.5 ml of PB, while 13 out 

26 (50%) were positive for the presence of 4 or more CTCs. In comparison to what 

observed at T0, the average number of CTCs decreased from 218±1022 to 37±75 (median 

4, range 0-280) (Table 6 and Figure 12). Furthermore, the number of CTC-positive patients 

presenting an EpCAM positive subpopulation remained almost unchanged, accounting for 

7 cases out of 26 (26,9%), with an average CTC count of 13±39 (median 0, range 0-160) 

(Table 6 and Figure 12). 

From the comparison of the CTC levels between T0 and T1, the CTC level fell in 10 cases 

and increased in 6, while 7 patients remained CTC-negative before and after chemotherapy 

(0 at both T0 and T1). The CTC enumeration between T0 and T1 was not statistically 

different (p=0.2465, Wilcoxon test). 

For the parallel CellSearch analysis, 25 out 31 recruited patients were available for CTC 

enumeration with the CellSearch test. Three samples had to be excluded from analysis since 

the patients dropped-out of the study or because of technical reasons such as insufficient 

blood volume or clotted blood samples (Figure 11). Overall, CTC count with CellSearch 

was available for 22 patients at T1.  

When considering the cut-off value of ≥5 CTC/7.5ml of PB, the number of CTC positive 

patients decreased to 5 out 22 (23%) and the average CTC number decreased from 129±433 

to 22±66 (median 1, range 0-288) compared to what detected at T0 (Table 6).  

Patients presenting apoptotic CTCs were detectable also at T1. In more detail, 2 (9,1%) out 

of 22 samples were positive for the presence of at least one M30+ positive CTC, with an 

average count that decreased to 0±1 CTC (median 0, range 0-7), respect to that at T0.  

In this cohort, 17 patients had matched blood samples between T0 and T1 and 2 (11,8%) 

cases had an increase and 10 (58,8%) a decrease in CTC levels, while there were 5 (29,4%) 

cases with unchanged CTC numbers. The CTC enumeration between T0 and T1 was 

statistically different (p=0.0146, Wilcoxon test) (Figure 14). 
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Figure 14. CTC enumeration of MBC patients at baseline (T0) and follow-up (T1) performed with 

the CellSearch (CS). Overall, 22 out of 31 enrolled patients were evaluable for CTC enumeration 

at T0 and T1, respectively. Horizontal bars represent the mean average CTC count. Statistical 

significance was evaluated by Wilcoxon test (* p-value ≤ 0.05). 

4.2.4 Comparison of CTC levels obtained by using the metabolic based assay and 

CellSearch 

Among all recruited patients (n=31), a total of 22 and 21 cases had matched blood samples 

between the metabolism-based method and the CellSearch analysis at both T0 and T1.  

As shown in Figure 15A and B, the average CTC count was higher when evaluated with 

the metabolism-based assay compared to the CellSearch system at both time points. 

However, the CTC enumeration between the two methods was not statistically different 

both at T0 (Wilcoxon test, p=0.410) and T1 (Wilcoxon test, p=0.175). Moreover, the direct 

comparison of matched blood samples revealed weak or absence of correlation among 

paired samples at T0 and T1, respectively (T0: Spearman r =0.39; T1: Spearman r = 0.04) 

(Figure 14 C e D). 
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Figure 15. Direct method comparison of CTC enumeration with the metabolism-based method (M) 

and the CellSearch (CS) system at baseline (T0) (A and C) and follow-up (T1) (B and D). Only 

complete data sets that include results from both the metabolism-based method and the CellSearch 

were plotted. Overall, 22 and 21 cases had matched blood sample at T0 and T1, respectively. 

Statistical significance was evaluated by Wilcoxon test.  

Using the cut-off values of ≥5 and ≥4 CTCs for the CellSearch and the metabolism-based 

assay, respectively, the overall positive concordance was 68.2%, at T0, and 52.4% at T1. 

Applying these cut-offs, the number of patients scoring negative for the CellSearch assay 

while positive for the metabolism-based method were 4 out of 14 (28.6%), at T0, and 8 out 

16 (50%), at follow-up.  

Finally, as demonstrated by the low k-Cohen coefficient (Table 8), comparison between 

the two methods revealed to be low.   
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Method  CellSearch   

Metabolism-method  <5 ≥5  Tot 

T0 a      

<4  10 3  13 

≥4  4 5  9 

Tot  14 8  22 

T1 b      

<4  8 2  10 

≥4  8 3  11 

Tot  16 5  21 

 

a Kappa = 0.330 (fair agreement); SE of kappa = 0.205; 95% CI from -0.071 to 0.732; Number of observed 

agreements: 15 (68.2% of the observations);  
b Kappa = 0.180 (poor agreement); SE of kappa = 0.218; 95% CI from -0.282 to 0.423; Number of observed 

agreements: 11 (52.4 % of the observations). 

 
Table 8. Concordance of CTC status between CellSearch and metabolism-based assay at baseline 

(T0) and follow-up (T1). To define a patient as CTC-positive, the threshold of ≥5 and ≥4 CTCs/7.5 

ml of PB was used for CellSearch and metabolism-based assay, respectively. 

 

As shown in Table 6, comparing patients who presented apoptotic CTCs at T0 with the 

CellSearch, 2 out of 3 patients had a positive CTC count with the metabolism-based assay, 

while the other one was negative. Interestingly, among the 19 patients defined as negative 

for apoptotic CTCs by CellSearch, 7 (36%) were instead positive for the presence of CTCs 

with both methods. At T1, 2 out of 2 patients positive for the presence of apoptotic CTC 

were also positive for the metabolism-based assay, while among the 19 patients negative 

for M30 marker, 8 (42%) were positive for the metabolism-based assay and 4 out of these 

patients were scored positive also by the CellSearch for the presence of CTCs. Overall, 

these results suggested that the presence of apoptotic cells in this cohort of patients was 

low. 

 

4.2.4 Survival analysis of the metabolism-based method and the CellSearch system 

To evaluate the presence of CTCs as a predictor of overall (OS) and progression free (PFS) 

survival, patients were stratified into those with ≥4 CTCs, for the metabolism-based 

method, and with ≥5 CTCs for the CellSearch. In Figure 16 and 17, Kaplan-Meier curves 

for the different CTC cut-off values at both T0 and T1 time points are shown. 

Among the 31 patients enrolled, the presence of 4 or more CTCs showed to be associated 

with a worse OS with the metabolism-based method (p=0.0030 and p=0.0059), and similar 
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results were obtained by stratifying the patient’s cohort by the cut-off value of ≥5 CTC with 

the CellSearch system (p= 0.0148 at T0, p= 0.0245 at T1) (Figure 16).   

CTC-positive patients showed a significant shorter median PFS respect to CTC-negative 

patients (127 days vs 287; p=0.0017) at T0, and, as well, at T1 (140 vs 360 days, p= 0.0065) 

(Figure 17), as assessed by the metabolism-based method.  

For the CellSearch analysis, patients with an unfavourable number of CTC (≥5 CTC/7.5 

ml of PB) had a significantly shorter median PFS both at T0 (131 and 262 days, p=0.0206) 

and at T1 (119 days vs 264 days, p= 0.00346). 
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Figure 16. Kaplan-Meier plot estimating OS of MBC at T0 (A and C) and at T1 (B and D) by 

single-cell-metabolism assay (M) and for the CellSearch test (B and D). For this analysis, patients 

were stratified using a cut-off value of <4 or ≥ 4 CTCs (A and B) or <5 or ≥5 CTCs (C and D) for 

the metabolism-based (M) and CellSearch (CS) method, respectively. 
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Figure 17. Kaplan-Meier plot estimating PFS of MBC at T0 (A and C) and at T1 (B and D) by 

single-cell-metabolism assay (M) and CellSearch (C). For this analysis, patients were stratified 

using a cut-off value of <4 or ≥ 4 CTCs for the metabolism-based assay methods and <5 or ≥ 5 

CTCs for the CellSearch.  

 

4.3 Mutational analysis of CTCs positive using the metabolism-based method 

In order to give a proof-of-concept that CTCs are present in the group of cells with high 

extracellular acidification level, a sorting device previously described by Mazutis et al. was 

employed 145. This device allows to harvest the content of desired droplets by a 

dielectrophoretic pulse. First, capture efficiency of fluorescently labelled cells was 

evaluated. Thus, 50000 pre-stained cells were emulsified, and 1000 cell-containing droplets 

were sorted out. The average recovery efficiency was 77±16%.  

Then, 5 MBC hormone refractory patients were analysed. Droplets containing cells that 

exhibited a pH below 6.4 were sorted out of the device. The presence of the most common 

hotspot mutations in ESR1 (Y537N, D538G, L536R) was assessed by ddPCR. From the 

analysis of DNA obtained from hypermetabolic cells, ESR1 was found mutated in 3 out 5 

patients. In particular, one patient showed the presence for both Y537N and L536R 

mutations, one was positive for the Y537N and D538G hotspots and the last presented 

mutant DNA copies only for the hotspot Y537N (Figure 18). The other two patients were 
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found positive for PI3KCA E545K and H1047R, thus confirming that CTCs were present 

in the harvested pool of cells. 

 

Figure 18. 2-dimensional dot-plots showing the results of ddPCR of four representative patients 

in which mutated DNA was detected. In Y-axis: intensity of FAM dye tagging mutated DNA 

(Mut channel); in X-axis: intensity of HEX dye tagging wild type DNA (WT channel). Grey 

droplets are empty, green droplets contain wild type DNA, and blue droplets contain mutated 

DNA. 
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5. DISCUSSION 

Despite the great advances in the early diagnosis and treatment, BCs ranks among the 

leading cause of cancer-related death in women worldwide and its metastatic spread still 

represents the main cause of cancer-related death. Thus, there is a clear clinical need of 

effective biomarkers able to detect cancer at early stage, stratify the patient population 

which most likely will benefit from a specific therapy, monitor the treatment response, 

quantify the minimal residual disease and assess the emergence of therapy resistance13. 

CTCs are considered as a surrogate of cancer in blood and have gained attention as one of 

the most promising approaches to face the aforesaid needs in the clinical management of 

cancer as detection of CTCs is a non-invasive tool that could provide real-time information 

on the evolving biology of both primary tumour and metastatic sites 14,93,153–155. 

The only currently FDA-approved technology for CTCs in MBC is the CellSearch® 

platform that typically processes fixed blood samples and detect CTC relying on the 

expression of EpCAM on their surface. This technology has widely demonstrated the 

prognostic and predictive value of evaluating the number 10,29,83,156, and/or variation in the 

level, 10,28,157 of CTCs in patients with early and metastatic BC. However, CTCs has failed 

to reach the clinical routine because of a lack of demonstration of their clinical utility.  

The common use of EpCAM to enrich CTCs from blood is considered one of the major 

limitations of the CellSearch® and other EpCAM-based technology, as EpCAM might be 

downregulated by CTCs due to the EMT process, thus leading to an underestimation of 

CTCs 51. Several studies have indeed demonstrated the presence of EpCAM-negative CTC 

in blood from cancer patients of several types, including MBC, and their association with 

a worst prognosis 46,77. Thus, waiting for the results of other ongoing interventional trial 

based on CTC enumeration to guide therapy decision (e.g.: French CirCé01 trial and STIC 

CTC trials)83, it is not surprisingly that the field of CTC research has switched to the 

characterization of CTC by testing other technologies, which exploit other cancer features, 

with the hope to find more of these rare cancer cells and, obviously, the highly desired  

clinical benefit 51.  

Reprogramming of metabolism is a recognized hallmark of cancer and it is commonly 

associated to an increased glucose uptake and consumption. As a direct consequence of 

metabolic alterations, many cancers exhibit abnormal lactate release coupled with a proton 

H+, which leads to the acidification of the tumour microenvironment. Indeed, it is well 

established that tumour tissue has an acidic pH which has a recognized role in cancer 
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invasion and metastasis 158. Interestingly, this phenomenon occurs early in carcinogenesis, 

and it is important for cancer cells to gain selective advantages and a more metastatic 

phenotype 158. Even if such metabolic alterations are well-known, to best of our knowledge, 

they have never been used to detect CTCs. 

To address the question whether putative CTCs with an altered metabolism can be detected 

in blood sample of cancer patients, our group developed a single-cell metabolism-based 

assay based on the differential extracellular acidification level between normal and cancer 

cells. This assay exploits a droplet microfluidic technology, which allows to 

compartmentalize single-cell into a droplet and detect hypermetabolic cells by pH 

measurements of the extracellular space 147. To avoid a lack of resolution and bias on the 

resulting detected pH, we used an unbuffered cell culture medium, to allow an accurate 

measurement of proton release, and a ratiometric pH-sensitive dye (SNARF-5F) for pH 

readout. 

Our droplet-based microfluidic approach is typically used for the encapsulation of cells, as 

it allows to maintain cell growth and proliferation properties, and the screen for secreted 

molecules, as they are retained inside the droplet 144,145,159,160. Using cancer cell lines with 

different metastatic potential and normal blood cells, we demonstrated that the differential 

proton release rate can be detected in-drop exploiting a pH-sensitive dye. This is supported 

by several observations.  

The system was able to discriminate among different population of acidic droplets and we 

were able to measure variation in the extracellular acidification both in time and under the 

stimulation of increasing concentration of glucose, which typically boost the acidification 

rate of cancer cells. Moreover, comparing two breast cancer cell lines, MDA-MB-231 and 

MCF7, we found that the highly metastatic MDA-MB-231 reached lower pH values 

compared to the low metastatic MCF7, and that both had a higher acidification rate 

compared to WBC. Similarly, we found consistency between the previously described 

metabolic feature of OC316 and IGROV-1 ovarian cancer cells lines. Indeed, the pH 

measurements, as detected with our system, showed concordant result with that reported 

with the proton flux analyzer SeahorseFX, finding that the high glycolytic OC316 had a 

higher rate of acidification respect to the low glycolytic IGROV-1150. Finally, as the pH 

correspond to the concentration of proton H+ and, thus, depends from the volume on which 

such measurement is performed, when testing the pH of cancer cells encapsulated in droplet 

of increasing size, we could observe, as expected, that cells reach less acidic pH values.  
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With the aim of applying this metabolism-based method in a clinical setting, we first 

investigated on several technical issues to have a firmly established method to process 

blood sample from cancer patients. First, we investigated on the effect of room temperature, 

finding that a temperature control system is mandatory to inhibit the release of proton over 

the time of analysis of clinical samples, which could otherwise introduce biases on single-

cell pH measurements. Secondly, we set up the best condition for encapsulating single-cell. 

We have chosen a volume droplet size which allowed us to discriminate cancer cells from 

WBC after a time of incubation considered reasonable for future application in a diagnostic 

setting.  

Finally, using the breast cancer cell lines MDA-MB-231 and MCF7, we established a 

functional cut-off value, i.e.: the pH value, for discriminating CTC from WBC in clinical 

sample. Given the exploratory nature of this study, we choose a cut-off value of pH<6.4, 

which favors specificity respect to sensitivity as detected from the ROC curves plotted 

between breast cancer cell lines and WBC. Using this functional cut-off of pH, the single-

cell metabolism-based method showed that up to 45% and 22% of MDA-MB-231 and 

MCF7, respectively, could be detected. This partial selection may have been due to the 

heterogeneity of the cancer cell line population, a feature widely reported in literature, and 

that could not be appreciated from bulk measurement as those performed from system like 

the SeahorseFX. This suggest that our microfluidic platform can represent an alternative 

for the direct measurement of proton release at single cell level, giving the possibility to 

distinguish heterogeneous acidifying CTCs. However, these sensitivities are in line with 

that obtained by other works reporting data using viable cells in spike-in experiments and 

it cannot be excluded that at least a part of the cell is not able to reach higher pH value 

because of the death program induced by anoikis or because of handling procedure. Finally, 

using this cut-off value of pH to discriminate between normal blood cells and CTCs, among 

26 HD volunteers we found only a negligible background of positive events (range 0-5) 

and only in 2 (7.6%) out of 26 HD. 

Despite many of the promising technologies introduced over the last decade demonstrated 

a higher rate of CTCs detection respect to CellSearch, often they do not address the question 

whether the identified subpopulation of CTCs has a clinical relevance 51. Further, lacking 

for a solid system able to really quantify the concentration of CTC, at least the difference 

between the identified CTC and those detected with the CellSearch® system should be 

provided but, instead, is often missing 51. Thus, having the method firmly established, we 

designed a pilot clinical study to investigate on the potential of enumerating CTCs in blood 
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samples from MBCs and we compared our method to the CellSearch®, as it represents the 

gold standard system for CTC count in the peripheral blood of MBC patients 10. 

In this study, the presence of CTCs as detected by the metabolism-based method in a cohort 

of 31 MBC patients resulted to be significantly higher than that observed in the HD 

volunteers and moreover it showed a broad range in the number of detected CTCs (range 

0-5319 at T0 and 0-280 at T1). The number of CTCs identified by our method was on 

average higher than that obtained with the CellSearch both at T0 and T1 although this 

difference was not statistically significant. Thus, it should be validated in a larger cohort of 

patients.  

Our data indicated a low agreement among the two methods, that was more evident at the 

follow-up time point. These results suggest that the two techniques could detect partially 

overlapping different populations of CTCs that can be complementary in predicting the 

progression of the disease. Interestingly, we observed that our system was a predictor of 

both OS and PFS compared to that observed with the CellSearch system.  

From the analysis performed with CellSearch regarding the expression of M30 as an 

apoptotic marker, we could observe a low presence of apoptotic CTCs, suggesting that 

CTCs detected in this cohort of MBC are mainly viable, at least in regard to EpCAM- and 

CK-positive cells. As previously demonstrated, non-apoptotic CTCs have a highly 

metastatic potential and the fact that there was a correspondence between the patient 

negative for the expression of M30 and the presence of metabolically active CTCs, lead us 

to speculate that CTCs as detected by our method are indeed viable CTC.  

Recently, interesting findings have been reported in support of the hypothesis that 

metabolic alterations, in particular the elevated glucose uptake, is a feasible tool to identify 

hypermetabolic CTCs in the PB of metastatic cancer patients 161–165. For instance, Tang et 

al evaluated the presence of metabolically active tumour cells in pleural effusion and in a 

limited number of PB of NSCLC by using 2-NBDG and confirmed their neoplastic nature 

via single-cell sequencing. These evidences were recently strengthened by our group in a 

separate study, which assessed the mutational status of hypermetabolic CTCs enriched for 

their elevated 2-NBDG uptake and sorted by FACS. In more details, 30 metastatic NSCLC 

patients were screened for the presence of hypermetabolic CTCs and the mutational 

analysis of sorted cells were assessed for EGFR and KRAS mutations, showing both a 

positive concordance and the detection of new mutations in comparison with the primary 

tumour analysis162. Another recent study reports that, using a multiple RNA in situ 

hybridization technique, CTC positive for glucose metabolic genes were detectable in 35 
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out of 54 prostate cancer patients and the increase of this population of this glucose positive 

CTC was associated with advanced tumour stage and metastasis, performing better as a 

biomarker of metastasis compared to EMT marker. Other microfluidic platform have been 

described for the screening of single cell uptake of glucose, or exploiting the release of by-

product of metabolism such as lactate160 or ROS166. However, these studies report data 

mainly on cancer cell line or on a limited number of blood samples from cancer patients.  

Further, we used ddPCR to confirm that the sorted fraction contained cells originating from 

the tumour and we observed the presence of characteristic hotspot resistance point 

mutations in ESR1 and PI3KCA, as previously reported in MBC patients 75. This suggested 

that CTCs are indeed present in the group of hypermetabolic cells and further molecular 

analysis are ongoing to better characterize other samples. An interesting perspective would 

be to screen the mutational status of other genes implicated in the reprogramming of 

metabolism at the single cell level, along with a characterization of the expression of 

glycolytic enzyme typically deregulated in cancer. 

In conclusion, in this work we successful implemented the analytical procedures of a 

prototype device that permitted to quantify CTCs based on their deregulated metabolism. 

This is an innovative functional method, because the comparison with the golden standard 

for CTC enumeration suggested that our device recognize partially overlapping population 

of CTCs.  

Furthermore, the pilot study conducted in a cohort of 31 MBC patients demonstrated the 

association of the number of metabolically active cells with patients’ outcome, strongly 

supporting the clinical validity of our device and offers a strong rationale to design a 

broader clinical study, especially devoted to confirm and validate these data, with particular 

regard to establish a cut-off value of worst prognosis for high burden of hypermetabolic 

cells. 

Between the several therapeutic strategies, the reprogramming of tumour metabolism is 

one of the most promising and in this perspective, we think that our test might be used in 

the future to follow-up patients undergoing these therapies. 
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