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Abstract

English: In  recent  years,  there  has  been  a  surge of  interest  –  and progress  –  in  the  cognitive 

neuroscience of numerical cognition. Yet despite that progress, we still know comparatively little 

about the fundamental structure of numerical cognition; the subject is a fertile source of compelling 

research  questions.  The  answers  to  those  questions  also  have  far-reaching  social  implications. 

Recent research suggests that the incidence of extreme disorders of numerical skills (dyscalculia) 

among students may be as high as 6%; if that proportion is consistent in later life, 40 million people 

might be affected in Europe alone.

Recent  evidence  suggests  that  both  animals  and  pre-linguistic  infants  are  sensitive  to 

number.  Coupled with the observation that  this  sensitivity shares features in common with that 

displayed by normal adults, these studies establish a role for evolution in the development of a 

functioning number sense. Chapters 3 through 5 describe a project that explores this connection by 

“evolving” quantity-sensitive agents in simulated ecosystem; the goal was to discover what kinds of 

number representations might emerge from a selective pressure to forage effectively. Agents of this 

sort are notoriously difficult to analyse – so difficult that some researchers have claimed they are 

simply unsuited to classical interpretation (this is the subject of chapter 3). Chapter 4 is devoted to a 

novel analytical method that rebuts these claims by “discovering” recognisable representations in a 

model (of categorical perception tasks) that had previously been thought to eliminate them. Chapter 

5 applies the method to quantity-sensitive foraging agents, and reveals a novel format for number 

representation  – a single unit  accumulator  code – that  is  nevertheless  well-supported by recent 

neurophysiological data.

Chapter 6 shifts the focus away from number knowledge itself, and toward the decision-
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process that might use it. This project describes a novel model-building method that is driven solely 

by the  intuition  that  neural  information  processing  will  be formally  optimal  (or  near  optimal). 

Applied to the problem of making categorical responses to noisy stimuli (most popular theories of 

number representation are noisy), this method captures both the behaviour that has been observed in 

humans and other primates, and its apparent, neural implementation.

Chapters 7 through 9 all consider the processing of very large numbers, or long digit strings. 

The role of digit-level vs. whole-number content in these strings is still quite controversial; chapter 

7 reports an experiment that uses a novel prime – the “thousands” string ('000') – to dissociate the 

two. The prime appears to mediate the subjects' sensitivity to both types of content, so confirms that 

they are sensitive to both types. The results also appear to dissociate two empirical phenomena – the 

Size and Distance effects – that are both thought to be associated with interference at the level of 

number representations. That common cause makes it difficult to explain how the two effects could 

diverge; just one of the four popular theories of number representation appears to allow it.

Chapter  8  explores  multi-digit  number  comparison  from  a  computational  perspective, 

presenting a model-space (for models trained to solve number comparison problems for numbers in 

the range 1-999), defined by systematic variation of the representation configurations and hidden 

layer sizes that define particular models. By performing some standard statistical analyses on the 

behaviour of the models ion this space, the chapter reveals a specific representation configuration 

(decomposed representations with the single unit accumulator code) that can reliably drive effective 

models.

Finally, chapter 9 reports the results of two more experiments, which establish constraints on 

the perceptual processing of long digit strings. Both experiments use masking to prevent subjects 

from using saccades to process visually presented digit strings. With this restriction in place, the 

first  experiment  establishes  that  subjects  can  enumerate  at  most  6  or  7  digits,  and  the  second 

suggests that they can identify up to 3 or 4.
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Italiano:  Negli  ultimi anni c'è stato un forte interesse - ed un corrispondente progresso -  nelle 

neuroscienze  cognitive  della  cognizione  numerica.  Malgrado  numerosi  e  rilevanti  progressi  in 

questi  ambiti,  sappiamo  ancora  molto  poco  dei  processi  cognitivi  sottostanti  l’elaborazione 

numerica.  Studi  recenti  suggeriscono  come  l'incidenza  di  discalculia  fra  gli  studenti  possa 

raggiungere  il  6%;  nel  caso  questa  percentuale  si  riproponesse  anche  in  età  adulta,  ciò 

significherebbe che solo in Europa ci  potrebbero essere 40 milioni  di persone discalculiche.  Lo 

studio  dei  processi  cognitivi  sottostanti  l’elaborazione  numerica  non  è  dunque  solo  fonte  di 

interessanti quesiti, ma può anche fornire delle risposte che hanno importanti implicazioni sociali. 

Lavori recenti  suggeriscono come alcuni animali  (ad es. scimmie ma anche salamandre)  

siano in grado di differenziare diverse numerosità. Dal momento che queste capacità condividono 

alcune caratteristiche con i processi che caratterizzano gli adulti normali, questi studi stabiliscono 

un ruolo per l'evoluzione nello sviluppo di un “senso del numero”. I capitoli dal 3 al 5 descrivono 

un progetto che esplora questo collegamento tramite esseri “quantità-sensibili” che si sviluppano in 

un ecosistema  simulato;  lo  scopo era  scoprire  che  tipi  di  rappresentazioni  numeriche  potessero 

emergere in seguito ad una pressione selettiva per procacciarsi del cibo efficacemente. Gli agenti di 

questo tipo sono notoriamente difficili da analizzare, tanto che alcuni ricercatori hanno affermato 

che questi sono semplicemente inadeguati per una interpretazione classica (questo argomento sarà 

trattato  nel  capitolo  3).  Il  capitolo  4  descrive  un  nuovo  metodo  analitico  che  rifiuta  queste 

affermazioni,  “scoprendo”  rappresentazioni  riconoscibili  anche  in  un  modello  (compiti  di 

percezione  categorica),  che in precedenza si  pensava li  eliminasse.  Il  capitolo 5 applica  questo 

metodo agli agenti quantità-sensibili, e suggerisce la presenza di un nuovo tipo di rappresentazione 

numerica  –  un  “single  unit  accumulator  code”  –  che  è  oltretutto  ben  supportato  da  dati 

neurofisiologici recenti. 

Il capitolo 6 sposta l’attenzione dalla rappresentazione delle quantità numeriche ai processi 

decisionali che di queste possono avvalersi. Viene descritto un nuovo metodo per costruire modelli 
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computazionali.  Si  ipotizza  che  la  semplice  l’elaborazione  delle  informazioni  neurali  potrebbe 

essere costituire il miglior modello formale possibile. Quando applicato per risolvere il problema di 

fornire delle risposte categoriche a degli stimoli “noisy”, questo metodo produce dei modelli che 

può riprodurre sia il comportamento di soggetti primati (RT e gli errori contro la forza di segnale) e 

la sua implementazione neurale. 

I capitoli dal 7 al 9 considerano l'elaborazione di numeri molto grandi, o lunghe stringhe di 

numeri. Il ruolo del rapporto fra contenuto a livello di cifra e contenuto a livello dell’intera stringa 

numerica è poco chiaro; il capitolo 7 presenta un esperimento che usa un nuovo tipo di “prime” e 

cioè la stringa "delle migliaia" ("000") – per dissociare i due contenuti. Il prime sembra mediare la 

sensibilità dei partecipanti ad entrambi i tipi di contenuto. I risultati appaiono dissociare anche due 

fenomeni  empirici  –  gli  effetti  “Grandezza”  e  “Distanza”  –  che  si  pensa  siano  associati  con 

l'interferenza  al  livello  delle  rappresentazioni  numeriche.  Proprio  questa  associazione  fra 

“Grandezza” e “Distanza” rende difficile spiegare come i due effetti possano differire; solamente 

una  fra  le  quattro  maggiori  teorie  sulla  rappresentazione  numerica  contempla  infatti  questa 

possibilità. 

Il capitolo 8 esplora il confronto di numeri a più cifre da una prospettiva computazionale, 

presentando un gruppo di modelli (addestrati a risolvere compiti di confronto numerico per numeri 

nella  gamma  1-999),  caratterizzato  dalla  variazione  sistematica  dei  parametri  dei  modelli. 

Eseguendo delle analisi statistiche sul comportamento dei modelli nel spazio, il capitolo evidenzia 

un  gruppo  piccolo  di  modelli  –  ed  una  specifica  configurazione  di  rappresentazione 

(rappresentazioni scomposte con il single unit accumulator code).

Infine,  il  capitolo  9  riporta  i  risultati  di  due  ulteriori  esperimenti,  miranti  a  stabilire 

caratteristiche e limiti dell'elaborazione percettiva di stringhe numeriche. Entrambi gli esperimenti 

utilizzano  il  paradigma di  masking  per  evitare  che  i  partecipanti  facciano  ricorso a  movimenti 

oculari  finalizzati  ad  un  processamento  più  efficiente  delle  stringhe  numeriche.  I  risultati 
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differiscono in base al compito proposto. Il primo esperimento mostra come sia possibile enumerare 

6 o 7 cifre, mentre il secondo suggerisce invece che il massimo numero di cifre identificabili sia di 

3 o 4. 



vi



vii

Acknowledgements

I wish to thank my supervisor, Marco Zorzi, both for giving me this opportunity and for helping me 

to  take  it.  My thanks  also to  Klaus  Willmes  von Hinckeldey  and Stanislas  Dehaene,  for  their 

supervision,  support  and advice during my periods of study abroad.  I  also wish to thank Brian 

Butterworth, without whom I might never have known what I was missing.

I wish to thank Ivilin Stoianov, both for the technical advice and for the random conversation, and 

Peter Kramer, for putting up with raised voices.

Finally, I wish to thank Alice, for keeping me sane – but not too sane.



viii



ix

Contents

I
Introduction and Background 

Chapter 1: Introduction................................................................................. 2

1.1 Overview of the Thesis............................................................... 4

Chapter 2: Background................................................................................. 5

2.1 Core Empirical Phenomena........................................................ 5

2.2 Mental Number Lines................................................................. 11

2.2.1 The Format Debate........................................................................... 12

2.2.1 The Structure Debate........................................................................ 18

2.3 Computational Models of Numerical Cognition......................... 21

II
On the Processing of Small Numbers

Chapter 3: Dynamicism and Cognitive Science........................................... 30

3.1 The Limits of Convention........................................................... 30

3.2 Dynamicism - The Third Contender........................................... 32

3.2.1 Structuralism and Connectionism.................................................... 33

3.2.2 Dynamicism Defined....................................................................... 34

3.2.3 Benefits and Costs............................................................................ 35

3.3 Toward a Compatibilist Dynamicism......................................... 36



x

Chapter 4: Dynamicism and Categorical Perception.................................... 38

4.1 Model Design.............................................................................. 38

4.2 Behavioural Analysis.................................................................. 41

4.3 Conventional Network Analyses................................................ 42

4.3.1 Principal Components Analysis (PCA)............................................ 43

4.3.2 Multi-Perturbation Shapley Value Analysis (MSA)........................ 47

4.4 The Behaviour Manipulation Method (BMM)........................... 52

4.4.1 The BMM in Practice....................................................................... 53

4.4.2 Results.............................................................................................. 53

4.5 Comparing the BMM to PCA and MSA..................................... 55

Chapter 5: Dynamicism and Number Comparison....................................... 58

5.1 Model Design.............................................................................. 58

5.2 Behavioural Analysis.................................................................. 61

5.3 Extending the BMM................................................................... 64

5.4 Results......................................................................................... 67

5.5 Interim Discussion...................................................................... 70

Chapter 6: Evolving Optimal Decisions....................................................... 75

6.1 Normative Formal Theories and Cognition................................ 75

6.2 Method........................................................................................ 80

6.3 Results......................................................................................... 85

6.4 Interim Discussion...................................................................... 88

III
On the Processing of Large Numbers

Chapter 7: Priming the Holistic Content of Multi-Digit Numbers............... 94



xi

7.1 Method........................................................................................ 95

7.1.1 Subjects............................................................................................ 95

7.1.2 Design.............................................................................................. 95

7.1.3 Procedure.......................................................................................... 95

7.1.4 Visual Presentation Conditions........................................................ 96

7.1.5 Data Preparation............................................................................... 97

7.2 Results......................................................................................... 97

7.3 Interim Discussion...................................................................... 100

Chapter 8: A Model-Space for Three-Digit Number Comparison............... 103

8.1 Method........................................................................................ 103

8.1.1 Model Architecture.......................................................................... 103

8.1.2 Learning........................................................................................... 105

8.1.3 Representation Configurations......................................................... 107

8.1.4 Behavioural Data.............................................................................. 109

8.1.5 Procedure.......................................................................................... 110

8.2 Results......................................................................................... 111

8.3 Interim Discussion...................................................................... 115

Chapter 9: Digit String Processing with Single Fixations............................ 119

9.1 Enumerating Digits..................................................................... 121

9.1.1 Method............................................................................................. 121

9.1.1.1 Subjects................................................................................ 121

9.1.1.2 Design.................................................................................. 121

9.1.1.3 Procedure............................................................................. 122

9.1.1.4 Data Preparation................................................................... 124

9.1.2 Results.............................................................................................. 124



xii

9.1.2.1 How Many Digits Can Subjects See?.................................. 126

9.1.2.2 Subitizing vs. Enumeration?................................................ 128

9.2 Identifying Digits........................................................................ 129

9.2.1 Method............................................................................................. 130

9.2.1.1 Subjects................................................................................ 130

9.2.1.2 Design, Stimuli, and Procedure............................................ 130

9.2.2 Results.............................................................................................. 131

9.2.2.1 How Many Digits can Subjects Identify?............................ 132

9.3 Interim Discussion...................................................................... 135

IV
Summary, Discussion and Conclusions

Chapter 10: Summary, Discussion and Conclusions...................................... 138

10.1 Summary..................................................................................... 138

10.2 General Discussion..................................................................... 139

10.3 Conclusions................................................................................. 142

References....................................................................................................... 144



xiii

Like all men of the Library, I have travelled in my youth. I have journeyed in 

search of a book, perhaps the catalogue of catalogues...  There are official 

searchers, inquisitors. I have seen them in the performance of their function: 

they always arrive extremely tired from their journeys... sometimes they pick 

up  the  nearest  volume  and  leaf  through  it,  looking  for  infamous  words. 

Obviously, no one expects to discover anything.

A blasphemous sect suggested that the searches should cease and that 

all  men  should  juggle  letters  and  symbols  until  they  constructed,  by  an 

improbable  gift  of  chance,  these  canonical  books.  The  authorities  were 

obliged to issue severe orders. The sect disappeared, but in my childhood I 

have seen old men who, for long periods of time, would hide in the latrines 

with some metal disks in a forbidden dice cup, and feebly mimic the divine 

disorder. 

Jorge Luis Borges (translated by James Irby), La biblioteca de Babel
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Chapter 1

Introduction

Mathematics governs almost every aspect of our lives. From the first ring of the alarm clock (at 

0730) to the book that we read before bed (page 74, chapter 3), our days are invaded by numbers. In 

industrialised societies such as the UK, numeracy – the ability to apply mathematical  tools and 

concepts in practice (e.g. Cockroft, 1986) – is a key predictor of socio-economic status, even when 

literacy levels are taken into account (Bynner & Parsons, 1997). And throughout the modern world, 

"those who lack either [the] confidence or [the] skills to employ basic arithmetic, statistics, and 

geometry lead their economic lives at the mercy of others" (Steen, 1990). 

Recent research suggests that between 3% and 6% of children lack precisely those skills 

(Shalev, Auerbach, Manor, & Gross-Tsur, 2000). If that proportion is consistent in later life, more 

than 40 million people might be affected in Europe alone1. And there are good reasons to suspect 

that it is consistent; despite significant progress, extreme disorders of numerical skills (dyscalculia) 

still lack the recognition in education that reading disorders (dyslexia) now enjoy. In the UK for 

example, dyscalculia has only been officially recognised since 2001 (DfES, 2001).

One reason for this is that dyscalculia can be interpreted as an expression of a more general 

learning disorder that also explains dyslexia. The case in favour stems from the strong co-morbidity 

of dyscalculic and dyslexic symptoms; these are thought to be roughly as widespread as each other 

in  the  general  population  (Butterworth,  2005),  but  students  with  poor  numeracy  appear  to  be 

disproportionately affected by problems with literacy. Since the trend cuts across both linguistic and 

orthographic boundaries (e.g. Lewis, Hitch, & Walker, 1994; Ostad, 1998; Gross-Tur, Manor, & 

1 Based on United Nations population estimates, available at http://esa.un.org/unpp.
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Shalev, 1996), it seems natural to explain it by citing a common cause. And if that explanation is 

right, both kinds of symptoms should be susceptible to similar remediation; by researching dyslexia, 

we might hope to remediate dyscalculia as well. This same logic can also begin to explain why the 

neuroscience  of numeracy has attracted  rather  less attention  than its  counterpart  for literacy.  A 

common cause for their respective disorders implies a common cognitive architecture for numerical 

and linguistic skills – so research on the latter should also be expected to illuminate the former. 

Recently, the logic that elides language and number has begun to be rejected. Support for 

that rejection starts with a series of studies conducted by Henschen during the 1920's, demonstrating 

that  (despite  their  apparent  connection)  disorders  of  language  and  numerical  skills  can  occur 

independently.  Consistent  with  that  result,  more  recent  studies  with  neurological  patients  have 

identified both disorders of numerical skills with preserved language (e.g. patient CG: Cipolotti, 

Butterworth, & Denes, 1991) and disorders of language with preserved numerical skills (e.g. patient 

IH: Cappelletti, Butterworth, & Kopelman, 2001; Cappelletti, Kopelman, & Butterworth, 2002) – a 

classic  double  dissociation.  At  the  same  time,  neuroimaging  data  have  begun  to  establish  a 

convincing association between numerical processing and the horizontal segment of the bilateral 

intra-parietal sulcus (e.g. Dehaene, Piazza, Pinel, & Cohen, 2003; Simon, Mangin, Cohen, Bihan, & 

Dehaene, 2002) – some distance away from the more classical language areas. Indeed, one study 

(Pesenti,  Thioux,  Seron,  &  De  Volder,  2000)  has  found  that  activity  in  Broca's  area  can  be 

depressed during numerical tasks, suggesting an apparent opposition between language and number 

processing.

This evidence leaves a lot of questions unanswered. For example, it is perfectly possible to 

promote the distinction between numerical and linguistic skills, while still claiming that the latter 

play a pivotal  role in the development  of the former (e.g.  Mix, Huttenlocher,  & Levine,  2002; 

Carey,  2004). And for all the evidence of difference,  linguistic and numerical skills still  clearly 

recruit at least some of the same neural architecture. Nevertheless, the increasing separation of the 
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numerical  and  linguistic  domains  presents  an  opportunity  for  research  that  illuminates  a 

fundamental cognitive concept (i.e. of number), with potentially far-reaching social implications. 

This thesis is inspired by that opportunity.

1.1 Overview of the Thesis

The next chapter (chapter 2) presents a summary of the empirical and computational background to 

this thesis. The chapter's goal is to depict a context for the novel work that follows, to motivate that 

work, and to establish a terminology that the subsequent chapters can employ. 

Chapters 3 to 5 all address the format of semantic number knowledge, building through a 

series  of  stages  toward a  novel  theory of  that  format.  The proposal  depends on extensive  new 

methodology,  which is introduced in chapter  3.  Chapter  4 develops and deploys  the method in 

practice, reporting a model of categorical perception. Chapter 5 extends that work and applies it to 

numerical cognition, reporting a novel model of number comparison, and proposing a novel format 

for the representations that drive it. 

Chapter  6  shifts  the focus  away from number  knowledge to  the decision processes  that 

employ it, introducing a model that interprets noisy representations (of which number knowledge 

may be  an  example)  with  categorical  decisions.  This  work illustrates  how that  process  can  be 

captured with extremely minimal assumptions.

Chapters 7 to 9 all consider problems associated with the processing of larger, multi-digit 

numbers. Chapter 7 presents an experiment that dissociates subjects' sensitivities to these numbers' 

integrated values from their sensitivity to the numbers' single-digit components. Chapter 8 presents 

a  model-space  for  multi-digit  number  comparison,  which  yields  a  preferred  representation  of 

semantic number knowledge, and a group of models that capture the relevant empirical phenomena. 

And Chapter 9 reports an experiment that captures some basic constraints on the perceptual process 

that subjects use to manipulate very large numbers (i.e. very long digit strings).
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Chapter 2

Background

In this chapter, I first describe the empirical phenomena that drive the current work (section 2.1), 

before supplying an account of the popular theories of number representation (section 2.2), and of 

the debates that they inspire. Section 2.3 describes the way in which computational modelling has 

been  used  in  the  past  to  capture  the  cognitive  processes  underlying  basic  numerical  skills. 

Throughout  this  chapter,  and  those  that  follow,  empirical  phenomena  are  associated  with 

Capitalised names, and theories of number representation are given italicised names.

2.1 Core Empirical Phenomena

Theories of numerical cognition are driven by a relatively small – though still growing – set of 

empirical phenomena. Rather than attempting a complete review of the field, this section considers 

only those that are relevant to the chapters that follow.

First identified in 1967 (Moyer & Landauer, 1967), the Number Size and Distance effects 

(Figure 1) are perhaps the most robust and familiar of this set. The Number Size effect refers to a 

characteristic  trend  of  increasing  errors  and  reaction  times  as  the  numerical  magnitudes  of 

compared numbers increase; for example, the number comparison “2 vs. 3” appears easier to solve 

than the comparison “8 vs.  9”.  A distinct  but related phenomenon – the Problem Size effect  – 

describes the observation that simple arithmetic tasks (such as additions) seem more difficult  to 

solve when their operands are numerically larger (i.e. the sum ”5+6” takes longer to solve than the 

sum “4+5”: Ashcraft, 1992; Groen & Parkam, 1972; Zbrodoff & Logan, 2005). The Distance effect 
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refers to a complementary trend of increasing errors and reaction times as the numerical distance 

between processed numbers increases; the comparison problem, “4 vs. 5” appears a more difficult 

judgement than “4 vs. 6” (Moyer & Landauer, 1967). Most popular theories of numerical cognition 

explain these effects  as a result  of  interference at  the level of semantic  number representations 

(Zorzi, Stoianov & Umiltà, 2005) – the focus of the next section. 

Figure 1: Mean reaction times (ms) of subjects engaged in a single-digit number comparison task. 

The left-hand graph illustrates the trend toward increasing RT with the minimum of the compared 

numbers (the Size effect). The sharp decrease for pairs with a minimum of '8' is a characteristic 

'edge effect'  (e.g.  Zorzi,  Stoianov, & Umiltà  2005), which arises because pairs  that  include the 

maximum number in the range ('9' in this case) are easier for subjects to compare. The right-hand 

graph illustrates the trend toward decreasing RT with increasing numerical distance between the 

compared numbers (the Distance effect).

A third phenomenon, which emerges in experiments with multi-digit numbers (considered in 

chapters 7-9), is best understood as a divergence from the Size and Distance effects. Consider the 

number pairs “55, 31” (pair A) and “55, 29” (pair B). The minimum of the numbers in pair A ('31') 

is  numerically larger than the minimum of the numbers in pair B ('29'), so the Size effects tells us 

that the former pair should be more difficult to process (e.g. compare) than the latter pair. The same 

prediction  follows from the Distance effect,  since the numbers  in  pair  B are more numerically 
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distant than those in pair A. Early experiments with two-digit numbers appeared to confirm that 

prediction (e.g. Dahaene, Dupour, & Mehler, 1990), but more recent work – in particular by Nürk 

and colleagues (e.g. Nürk, Weger, & Willmes, 2001) – has begun to undermine it. 

Minimum of the Number Pair

816141211
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n 
RT

 (m
s)

800

700

600

500

Figure  2:  Reaction  times  in  a  two-digit  number  comparison  experiment,  plotted  against  the 

minimum of the two numbers that participants had to compare. There is a visible Size effect, since 

reaction times are longer toward the right of the graph than they are on the left, but there is also a 

significant  “wobble” that seems to straddle the decade boundaries;  this  pattern is evidence of a 

Congruence  effect.  These  data  were  derived  from  experiments  conducted  at  the  university  of 

Trieste, and supplied by Simone Gazzellini; for a published reference, see Gazzellini & Laudanna, 

2005.

The difference stems from a characteristic “wobble” in the trends that the Size and Distance 

effects  describe when subjects  must  process multi-digit  numbers (see Figure 2).  Pairs  A and B 

include two tens digits and two units digits each; rather than integrating these digits, it might be 

perfectly valid to compare them by performing two separate comparisons at the single-digit level. In 

pair A, both comparisons ('5-3' and '5-1') favour the the first number ('55'), while in pair B, the 

number with the larger tens digit ('55') also has the smaller units digit. If participants employ this 
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“decomposed” strategy,  we might  expect  the incompatibility between these two comparisons to 

carry a cost (pair A should be compared more quickly than pair B) – precisely the cost that Nürk, 

Weger and Willmes (2001) report. Costs of this sort have been observed in tasks involving both 

two-digit numbers (a unit-decade Compatibility effect: Nürk, Weger, & Willmes, 2001) and three-

digit numbers (both decade-hundred and unit-hundred effects: Korvorst, & Damian, 2007). We will 

revisit this phenomenon several times in the material that follows. For convenience, I will use the 

shorthand – Congruence effects – to refer to all of the variants of this kind of interference, and 

apply the terms 'congruent' and 'incongruent' to distinguish between number pairs of type A and B 

respectively.

The Number Size, Distance, and Congruence effects comprise the empirical backbone of 

this thesis, but three other phenomena will also be relevant in the material that follows. The first is 

the numerical variant of the well-known semantic priming effect. First demonstrated by Meyer and 

Schvaneveldt (1971) – who showed that words such as DOCTOR were read more quickly when 

preceded by semantically related words like NURSE – these effects are now a familiar feature of 

research on language and memory (see Neely, 1991, for a review). Several studies have confirmed 

that semantic priming can also be observed with numbers (Den Heyer & Briand, 1986; Koechlin, 

Naccache, Block, & Dehaene, 1999; Reynvoet & Brysbaert, 1999; Reynvoet, Brysbaert,  & Fias, 

2002). This work shows that numerical priming effects are inversely proportionate to the numerical 

distance  between  the  prime  and  the  target,  additive  to  the  effect  of  repetition  priming  and 

symmetrical with respect to the priming direction (Figure 3: Reynovet, Brysbaert, & Fias, 2002). 

That last property – symmetry – has a theoretical significance, which the next section describes.
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Figure 3: Re-printed from Reynvoet, Brysbaert, & Fias, 2002. Mean reaction times (ms) for number 

naming tasks in which the target number (T) was preceded by a prime. The primes invoke slower 

responses when they are numerically close to the target, and the effect is directionally symmetrical.

The  second  relevant phenomenon  was  first  reported  by  Dehaene,  Dupoux,  and  Mehler 

(1990),  and  confirmed  by Dehaene,  Bossini,  and  Giraux (1993)  a  few years  later.  In  a  parity 

judgement task – requiring odd / even judgements for a series of visually presented Arabic digits – 

Dehaene and colleagues discovered that participants were significantly faster when responding to 

smaller  numbers (1-4) with the left  hand, and to larger  numbers  (6-9) with the right  hand (see 

Figure  4).  The  authors  called  the  effect  a  Spatial-Numeric  Association  of  Response  Codes 

(SNARC), and – remembering that numerical magnitude is irrelevant to parity judgement tasks – 

interpreted it as evidence for the automatic activation of a mental number line with left-to-right 

orientation.  This interpretation is supported by recent neuropsychological data (Zorzi,  Priftis,  & 

Umiltà,  2002),  but the effect  may not  be specific  number;  SNARC-like effects  have also been 

observed with non-numeric stimuli like letters, days of the week and months of the year (Gevers, 

Reynvoet, & Fias, 2003;  Gevers, Reynvoet, & Fias, 2004). The SNARC effect will be relevant in 

chapter 7.
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Figure 4: RT for right-sided responses minus RT for left-sided responses in a parity judgement task. 

Regardless of mathematical training, small numbers elicit faster responses with the left hand, while 

large numbers elicit faster responses with the right hand (re-printed from Fias & Fischer, 2005).

Reflecting the focus of this thesis, the phenomena discussed so far can all be interpreted as 

products of interference at the level number representations. The final phenomenon that deserves 

some mention  is  pitched at  a  rather  different  level;  the  process  that  people  use  to  build  those 

representations in the first place.  Though the distinction is still contentious (e.g. Balakrishnan & 

Ashby,  1991,  1992;  Piazza,  Mechelli,  Butterworth,  &  Price,  2002),  a  great  deal  of  evidence 

suggests that the enumeration of small vs. large sets might implicate at least two different cognitive 

processes (e.g. Atkinson, Campbell,  & Francis,  1976; Akin & Chase,  1978; Mandler & Shebo, 

1982;  Simon & Vaishnavi,  1996;  Simon,  Peterson,  Patel,  & Sathian,  1998;  Trick  & Pylyshyn, 

1994). Like the other phenomena in this section, reaction times provide perhaps the best illustration 

of this distinction; in set enumeration tasks, the relationship between subjects' reaction times and the 

number of elements presented is significantly different for small sets (1-3 elements) vs. large sets 

(more than 4 elements;  see Figure 5). The process employed for small  sets is commonly called 

subitizing, while larger sets implicate either  counting (a slow, sequential process that reveals the 

exact  number  of  elements  in  a  display)  or  estimation (a  faster,  approximate  detection  of  large 
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numerosities). This distinction is relevant to the discussion of computational models in section 2.3, 

and also to the results described in chapter 9.

Figure 5: Prototypical reaction times in set enumeration tasks – re-printed from Peterson & Simon, 

2000. For sets of 1-3, the relationship between response times and set size is significantly different 

to that observed in larger sets.

2.2 Mental Number Lines

Contemporary theories of cognitive quantity processing overwhelmingly refer to an intermediate, 

analogical form of representation: the Mental Number Line (MNL; e.g. Zorzi, Stoianov, & Umiltà 

2005). There are four popular theories of MNL format – the  noisy MNL  (Figure 6a; Gallistel & 

Gelman, 1992, 2000), the  compressed MNL (Figure 6b; Dehaene & Changeux, 1993; Dehaene, 

2003),  the  barcode (Figure 6c; e.g.  McCloskey & Lindemann,  1992;  Verguts,  Fias,  & Stevens, 

2005), and the numerosity code (Figure 6d; Zorzi & Butterworth, 1999; Zorzi, Stoianov, & Umiltà, 

2005; Zorzi, Stoianov, Becker, Umiltà, & Butterworth, under revision). 
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(c) Barcode representation (d) Numerosity code

(a) Linear code with scalar variability (b) Linear code with scalar variability

(c) Barcode representation (d) Numerosity code

(a) Linear code with scalar variability (b) Linear code with scalar variability

Figure 6: Four popular proposals for the format of semantic number representations. (a) The linear 

number  line  with scalar  variability  (Gallistel  & Gelman,  1992, 2000);  the  noisy MNL.  (b)  The 

compressed number line with fixed variability (Dehaene & Changeux, 1993); the compressed MNL. 

(c) The “barcode” (or shifting bar) representation (Verguts, Fias, & Stevens, 2005); the barcode. (d) 

The cardinal accumulator representation (Zorzi & Butterworth, 1999, Zorzi et al., under revision); 

the numerosity code.

2.2.1 The Format Debate

Though independent  evidence  for  the  existence  of  the  MNL has  begun to  emerge  (e.g. 

Nieder, Freedman, & Miller 2002; Nieder & Miller, 2003, 2004; Zorzi, Priftis, & Umiltà, 2002), its 

original  inspiration  was  supplied  by  the  Size  and  Distance  effects,  mentioned  previously.  For 

example,  the  noisy  MNL employs  the  magnitude-specific  tuning  of  Gaussian-shaped  neural 

receptive fields to represent particular numbers; the field centres are arranged in order of increasing 

numerosity (tracking the number system's ordinal structure), and their variance also increases for 

larger numbers. This format defines a scheme of noisy representations, with particular neurons that 
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“prefer” magnitude X, but which are also partially activated by magnitudes X+1 and X-1, and less 

so by X+2 and X-2, and so on. That noise implies a potential for interference, which carries a cost 

in  terms  of  accuracy  and  reaction  times.  The  interference  is  more  significant  between  the 

representations of numerically close numbers than those of numerically distant numbers, which can 

explain the Distance effect. And the pattern of increasing variance makes the interference between 

the  representations  of  larger  numbers  more  significant  than  it  is  for  representations  of  smaller 

numbers – this can account for Size effects.

The second theory of MNL format – the compressed MNL – employs a very similar logic to 

capture Size and Distance effects, replacing increased field width (or variance) for larger numbers 

with decreased separation between field centres. After implementing both the  noisy MNL and the 

compressed MNL to simulate the animal data of  Brannon, Wusthoff, Gallistel, and Gibon (2001), 

Dehaene (2001) concluded that both formats define such similar same metrics of number similarity 

that  most of their behavioural  predictions should be identical.  The implication is that  these two 

theories can only be separated by evidence of a more directly neurophysiological sort.  

One example of this kind of evidence stems from an elegant series of experiments conducted 

by Nieder and colleagues (e.g. Nieder, Freedman, & Miller 2002; Nieder & Miller 2003, 2004). 

Working with monkeys, they recorded from single cells in the primate homologue of the parietal 

cortex during a task requiring judgements of the number of dots in visually presented sets. Their 

analysis  revealed  magnitude-dependent  responses  in  apparently  number-sensitive  neurons  – 

yielding results that are distinctly reminiscent of the compressed MNL (see Figure 7).
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Figure 7: Evidence for logarithmic coding of number in the monkey brain – this figure is re-printed 

from Dehaene, 2003. (a) The anatomical location in primate prefrontal cortex from where Nieder 

and Miller recorded number neurons. In their experiments, monkeys were presented with a first set 

of dots, which they were then asked to discriminate from a second set of dots. (b) The percentage of 

trials on which they responded ‘same’ is plotted as a function of the second number (abscissa) for 

different values of the first number, which ranged from 2–6 during behavioural testing (colour of 

plot). Performance decreased smoothly with the distance between the two numbers (i.e. the peak 

occurs when the two numbers are the same). This distance effect assumed a Gaussian shape when 

plotted on a logarithmic scale. (c) So did the tuning curves of individual number neurons (shown for 

1–5).

At about the same time, Dahaene and colleagues began to employ an emerging combination 

of  functional  Magnetic  Resonance  imaging  (fMRi)  and  Repetition  Suppression  (RS)  to  make 

analogous measurements in humans (Naccache & Dehaene, 2001; Piazza, Izard,  Pinel, Le Bihan, & 

Dehaene, 2004). RS is a possible neural correlate of priming phenomena – a characteristic pattern 
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of diminished responses in neurons when the stimuli that activate them are repeated (e.g. Miller & 

Desimone, 1991; Squire, Ojemann, Miezin, Petersen, Videen, & Raichle, 1992; Schacter, Alpert, 

Savage, Rauch, & Albert, 1996; Schacter & Buckner, 1998). Piazza and colleagues (2004), exposed 

passive participants to a series of dot fields of varying numerosity; as expected, the RS phenomenon 

diminished the response of number-sensitive voxels when the numerosities of successive stimuli 

were identical. By tracking the recovery of that response when the fields' numerosities changed, 

these researchers were able to derive approximate, numerosity-specific tuning profiles that appear 

to  confirm  the  presence  (and  habituation)  of  a  compressed  MNL representation  (Dehaene  & 

Changeux, 1993).

Though certainly suggestive,  these results are also far from conclusive.  The mechanisms 

underlying RS are still largely unknown (Naccache & Dehaene, 2001), so cannot support strong 

conclusions, and there remain concerns that apparently number-selective neurons (and voxels) may 

be confounded by the other features of a stimulus (for example, Piazza and colleagues, 2004, report 

a small mediating effect of item shape – circles vs. triangles – on the number-sensitive voxels that 

drive their results). The same suspicion of confounds also lingers over the work reported by Nieder 

and colleagues;  in this case, that  doubt is amplified by the extensive training required for their 

primate  participants  (if  the  representations  are  learned,  their  general  significance  may  be 

undermined).  Further,  without  neural  stimulation  and  lesion  data,  the  causal  roles  that  these 

representations play cannot be confirmed. And finally, even in the absence of these doubts, these 

results cannot prove a negative; in deference to parsimony, we might prefer a theory of number 

representation that employs exactly one format – but there are good reasons to allow for more.

The possibility that different individuals might recruit different representations in numerical 

tasks is supported by research reported by Siegler and Opfer (2003), who tested children and adults 

in number line tasks. Given a series visually presented lines of 25cm length, and told the numerosity 

ranges that those lines represented (0-100, or 0-1,000), their  participants had to mark particular 
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numbers  on each line (a number-to-position task).  By analysing the pattern of responses,  these 

researchers inferred that different participants were representing the numerosity range differently; 

some appeared to employ the noisy MNL, while others seemed to use the compressed MNL – and 

there was also a general trend toward a more linear representation with increasing age.

That linearity is important because neither of the two MNLs discussed so far can explain it – 

both employ a directionally asymmetrical pattern of interference (to capture the Size effect), so both 

imply the over-representation of the lower (left hand) end of the number line. This inconsistency 

cannot  be  dismissed  as  an  artifact  of  strategy  because  one  other  phenomenon  –  directionally 

symmetrical priming (described in the previous section) – further confirms its significance. Like the 

line positioning strategies of adults,  these priming effects  are thought to emerge at the level of 

semantic representations – and like those strategies, it appears that these phenomena imply access to 

a directionally symmetrical MNL format.

In response, Verguts, Fias and Stevens (2005) have proposed a return to the rather older 

barcode format  (e.g.  McCloskey & Lindemann, 1992; see  Figure 6c) – a Mental  Number Line 

employing  Gaussian  receptive  fields  with  constant  variance  and  constant  logical  separation, 

projected in a linear space. In this format, the overlap (and interference) between the representations 

of '7' and '6' is the same as that between '7' and '8', just as the priming effect suggests. But the shift 

to symmetry also carries a cost – trading an account of the Size effect for an account of symmetrical 

priming effects. 

The authors fill  that  gap by reverting to the older notion (e.g. Ashcraft,  1992) that Size 

effects  are  an  artefact  of  the  skewed  frequency  with  which  numbers  are  encountered  during 

learning; subjects are faster when manipulating smaller numbers because these are more familiar. 

The implied distinction between the mechanisms underlying the Size and Distance effects can also 

be  useful,  particularly  when  we  observe  data  that  suggests  a  dissociation  between  them.  For 

example, some reports suggest that the Size effect does not emerge in number naming tasks (at least 
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for numbers up to 20: Butterworth,  Zorzi,  Girelli,  & Jonckheere,  2001; Reynvoet,  Brysbaert,  & 

Fias,  2002),  or  in  parity  judgement  tasks  (Dehaene,  Bossini,  & Giraux,  1993;  Fias,  Brysbaert, 

Geypens, & d'Ydewalle, 1996; Reynvoet, Caessens, & Brysbaert, 2002) – though both presumably 

demand access to the MNL. Chapter 7 reports some further evidence along these lines.

In practice though, frequency-based accounts of the Size effect can be difficult to justify 

because they demand a very extreme skew in favour of smaller numbers – far greater than can be 

found in,  for  example,  the  standard  textbooks  that  are  used  to  teach  mathematics  (Ashcraft  & 

Christy, 1995). Nor can Size effects be explained solely as a task-specific phenomenon, since they 

are also found in non-verbal counting tasks (Whalen, Gallistel, & Gelman, 1999). And though the 

evidence that dissociates the Size and Distance effects cannot be dismissed, it is also predominately 

negative – depending on the absence of Size effects in circumstances where the Distance effect is 

observed (e.g. Verguts & De Moor, 2005) – so also somewhat equivocal. 

There is one final theory of MNL format that captures the barcode's directional symmetry 

without sacrificing an account of the Size effect.  Unlike the three formats discussed so far, the 

numerosity code (Zorzi & Butterworth 1999;  Zorzi et al., under revision) describes an MNL that 

captures  the  number  system's  cardinal  structure;  the  representation  of  '1'  is  a  subset  of  the 

representation of '2', both are subsets of the representation of '3', and so on (see Figure 6d). As the 

magnitudes of numbers increase, so the proportion of their representations that is not shared with 

other  numbers  decreases  (logarithmically)  –  this  pattern  can  explain  the  Size  effect  (Zorzi, 

Stoianov, & Umiltà, 2005; Zorzi et al., under revision). But the format is also symmetrical – the 

absolute  logical  difference  between  the  representations  of  numerically  adjacent  numbers  is 

presumed to  be constant  – so should also be able  to  capture symmetrical  priming.  Aside from 

capturing many of the same phenomena as the other MNL formats (Zorzi et al., under revision), this 

code  is  useful  because  increments  in  the  magnitude  of  representations  directly  correspond  to 

increments in the numerosity of their referents; that property should be useful in other numerical 
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tasks like enumeration (Zorzi, Stoianov, & Umiltà, 2005).

All of these formats – and perhaps others as well – may play some role in the processes 

underlying basic numerical skills. Despite that space, the debate that surrounds MNL formats is still 

largely a fight for supremacy – and unlikely to be resolved in the near future. To date, the only 

concrete  proposals  that  relate  multiple  formats  together  stem  from  the  detailed  structures  of 

particular computational models of numerical  processes; these are discussed in the next section. 

These computational contributions are just some among many that might be made to this debate – 

chapters 5 and 8 report two more.

2.2.2 The Structure Debate

For all their differences, the MNL formats discussed so far all share a common limitation; 

unlike symbols, a purely analogical representation cannot be  systematic, in the sense defined by 

Chomsky (1959). Without that systematicity, a finite pool of resources implies a finite capacity for 

representations – a limit that sits uneasily with the open-ended nature of the number system itself. 

This  apparent  contradiction  raises  a  question;  how might  larger  numbers  be represented  in  the 

brain? 

Congruence effects (mentioned in section 2.1) offer one clue to the answer, suggesting that 

the single-digit components of multi-digit numbers can play a cognitive role that is independent of 

the role of their integrated values. The implication is that humans can deploy several MNLs at a 

time – one for each of the digits in a multi-digit string. Decomposed, or componential MNLs can be 

considered a replacement of the traditional, holistic view (e.g. Verguts & DeMoor, 2005), or offered 

as  part  of  a  hybrid account  in  which  both  the  components  of  a  multi-digit  number  and  their 

integrated values are assumed to play some explicit role (e.g. Nürk et al., 2001; Figure 8 illustrates 

all three options). This latter option implies the activation of three distinct representations when 

subjects process a two-digit number – one for the number itself and one for each of the number’s 
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two  digits.  Hybrid accounts  are  attractive  because  they  offer  an  intuitive  way to  explain  both 

apparently  holistic phenomena  (the  Size  and  Distance  effects)  and  apparently  componential 

phenomena (Congruence effects) – yet though both types have been reported,  hybrid accounts are 

still rather controversial.

1 7

1 19 9
…

1 ?

Tens Units

All

Decomposed

Holistic
Hybrid

1 7

1 19 9
…

1 ?

Tens Units

All

Decomposed

Holistic
Hybrid

Figure 8: Three proposals for the structure of the Mental Number Line. The Holistic MNL implies a 

line  that  tracks  numbers'  integrated  values  (the  question  mark  indicates  enduring  uncertainty 

concerning  the  upper  bound  on  holistic  number  representation),  while  the  Decomposed  MNL 

implies  discrete  representations  for  each  digit  in  a  multi-digit  number.  The  Hybrid  proposals 

assumes  that  both holistic  and decomposed  representations  play some role.  For  the  purpose  of 

illustration, the numbers themselves are represented with the numerosity code.

One critical source of doubt stems from the equivocal nature of the data in this area. For 

example,  Verguts  and  DeMoor  (2005)  compare  subjects'  performance  in  a  two-digit  number 

comparison task with same-tens pairs vs. pairs in which the tens distance was exactly '1'. From the 

absence of a Distance effect in the latter case, they argue that subjects are only representing the 

numbers' components. Though plausible, this result appears to contradict that reported by Dehaene, 

Dupoux and Mehler (1990), who argue for a holistic view from the presence of a Distance effect 

that appears to cut seamlessly across decade-boundaries. And even if we assume that inconsistency 

away – perhaps as an artefact of misinterpretation – there remains a rather bigger problem to solve. 

Verguts and DeMoor's data imply that, in different-decade pairs, the units digits of each number 

play no significant role in the participants' reaction times, while the Congruence effects discovered 
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in other two-digit number comparison experiments (Nürk et al., 2001) imply interference between 

the tens-digit and units-digit comparisons. If trailing digits can be ignored when they are irrelevant 

to a particular problem, it seems difficult to explain how that interference can emerge.

The  second  source  of  doubt  is  the  natural  confound  between  a  multi-digit  number's 

components and its integrated value. It is far from clear that results of the form just discussed – 

regardless of their direction – can tell us anything conclusive; a different-tens Distance effect (e.g. 

Dehaene, Dupoux, & Mehler, 1990) could simply indicate a residual dependence on unit distance, 

while the interpretation of its absence (Verguts & DeMoor, 2005) will always be susceptible to 

criticism. When Nürk and colleagues (2001) reported their Congruence effects they attempted to 

resolve this issue by regressing the participants' reaction times against a wide variety of predictors, 

tracking both the numbers' integrated values and the values of their components. The best predictor 

was the logarithmic numerical  distance between those integrated values,  suggesting a particular 

sensitivity to the numbers'  integrated content.  But the unique contribution of this predictor was 

small, or only about 1% over and above that captured by the numbers' single digits. The data favour 

a hybrid interpretation, but cannot support very strong conclusions.

One  way  to  explain  this  rather  equivocal  picture  is  to  suggest  that  multi-digit  number 

processing experiments are tracking a moving target; like MNL formats, MNL structures might be 

deployed in a context-sensitive manner.  Recent work by Ganor-Stern,  Tzelgov, and Ellenbogen 

(2007) supports this view with a series of experiments on the Size Congruence Effect (SiCE). The 

SiCE is found in physical size judgements tasks with numerical stimuli – participants are slower to 

make them when the physically smaller number is also the numerically larger number in a pair (or 

vice versa). In a series of experiments with two-digit number stimuli, these authors reported that the 

SiCE is mediated by the numerical magnitudes of the numbers' single-digit components (including 

their  unit-decade compatibility),  but not by the numbers'  integrated values. By contrast,  both of 

these  factors  appeared  to  be  independently  significant  in  their  number  comparison  task.  The 
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implication is that holistic representations of multi-digit numbers are not deployed automatically, 

but that people can deploy them when they are relevant to a task. Chapters 7 and 8 report work that 

can contribute to this debate.

2.3 Computational Models of Numerical Cognition

Questions concerning the role of computational methods in the study of cognition are as much a 

focus of this thesis as numerical cognition itself; they will recur throughout the chapters that follow. 

This section provides a summary of past answers – a brief account of the way that computational 

modelling has been employed in the study of numerical cognition in the past. Reflecting the focus 

of this thesis, the material that follows is primarily concerned with the ways in which computational 

methods have been used to clarify debate on the structure of semantic number knowledge.

The  earliest  Connectionist  models  of  numerical  processes  were  all  designed  to  capture 

simple arithmetic operations like addition and multiplication. Zorzi, Stoianov, and Umiltà (2005) 

divide these models into two groups: learning models, in which a set of associations is built by an 

algorithm that requires repeated exposure to a set of training problems, and performance models, in 

which the parameters that drive the required mapping are defined directly by the models' designers. 

Two of the earliest models of arithmetic – the network proposed by Viscuso, Anderson, and Spoehr 

(1989), and MATHNET, designed by McCloskey and Lindemann (1992) – are learning models. 

Both represent complete arithmetic facts (e.g. 4 * 5 = 20) as activation patterns on a set of network 

units,  and  each  uses  a  (different)  learning  algorithm  to  to  build  an  association  between  the 

components of those facts ('4 * 5' and '= 20'). After learning, both models can complete partial facts 

(e.g.  complete  “4 * 5” with  “= 20”)  after  undergoing some number  of  processing cycles;  that 

number is naturally interpretable as a reaction time, which can then be compared to empirical data.

Of the two, MATHNET is probably the stronger model; it uses a more effective learning 

algorithm (similar  to  that  used  by  Ackley,  Hinton,  and  Sejnowski,  1985)  than  its  counterpart 
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(Viscuso and colleagues' model could only learn about 70% of single-digit multiplication facts), can 

be  lesioned  to  reproduce  some  of  the  problems  with  arithmetic  that  brain-damaged  patients 

experience  (Lories,  Aubrun,  &  Seron,  1994),  and  displays  a  strong  Problem  Size  effect  (the 

correlation between fact retrieval time and the sum of a problem's operands was 0.69). Further, 

MATHNET makes  comparatively few assumptions  about  the representations  of  problems;  both 

models  use a linear  barcode-like scheme to represent numbers, but Viscuso and colleagues also 

employed  units  that  were  dedicated  to  the  numbers'  names.  MATHNET also  provides  a  good 

illustration of the limits of the  barcode representation, since its account of Problem Size effects 

depends entirely on a training regime that makes problems with small operands much more frequent 

than problems with large operands (McCloskey & Lindemann, 1992). 

As mentioned previously, the barcode is the only popular theory of MNL format that should 

require this kind of frequency manipulation – but recent results, reported by Zorzi and colleagues 

(under  revision),  suggest  that  the  practical  picture  may  be  more  complex.  Working  with 

MATHNET-like learning models of simple arithmetic – but without fact frequency manipulation – 

these authors report reliable Problem Size effects when arithmetic problems were represented with 

the numerosity code, but not when the same problems were represented with the compressed MNL. 

Both of these representations imply greater interference with greater numerical magnitude, but only 

one appears to be able to put that pattern to work in practice. This result is confusing because, in 

other  models,  logarithmic  magnitude  representations  like  the  compressed  MNL  do  seem to  be 

effective. For example, there are two well-known performance models of arithmetic that employ 

this kind of code (Campbell, 1995; Whalen, 1997) – and both exhibit robust Problem Size effects.

However,  these  results  cannot  tell  us  anything  very  conclusive  about  the  empirical 

implications  of  particular  representations,  because  the  connection  depends  on  both the 

representations  employed  and the  host  of  other  parameters  that  make  these  models  work.  In 

performance models, those other parameters (like the weights of connections between input and 
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output layers) are usually selected to provide best fit to the data; that process can make number 

representations largely incidental to generation of robust Size effects. This point is evident in the 

work of Verguts and Fias (2004), who present a performance model of multiplication that employs 

a topographic memory of facts (i.e. knowledge of the fact '7 x 7 = 49' is stored closer to that of '7 x 

8 = 56' than to '3 x 4 = 12'). The memory's structure promotes spreading activation among related 

facts, and the resulting interference can account for the Problem Size effect (as well as some others, 

like the Tie and Fives effects, that will not concern us here) without making any assumptions at all 

about the format of number representations. Performance models are attractive because they are 

flexible – but in the context of the format debate, that flexibility can also be a weakness. Armed 

with hand-coded (if arguably plausible) structures, the empirical behaviour of these models can be 

difficult to connect to the properties of the representations that drive them.

The same criticism applies to performance models of single digit number comparison, in 

which the problem is a number pair (e.g. '6 vs. 7') and the answer a decision between them (e.g. '7 is 

larger').  One example of this kind of model is Grossberg and Repin's Spatial  Number Network 

(SpaN; 2003), which produces robust Number Size effects with a representation similar to the noisy 

MNL. But the evidence of Dehaene and Changeux's (1993) learning model of the same process (this 

time with the  compressed MNL) is not so easily dismissed. Like the SpaN, this model produces 

robust  Number  Size and Distance  effects  –  but  unlike  the SpaN, this  model  employs  Hebbian 

learning  (modulated  by  a  reward  signal),  without  fact  frequency  manipulation,  to  connect  its 

representations to task responses. That result was also confirmed by Zorzi and colleagues' (under 

revision)  own learning model  of number  comparison;  Size effects  in  simple  arithmetic  may be 

elusive, but Size effects in number comparison seem to be well-captured by the properties of the 

compressed MNL.

To some extent, the distinction might reflect the difference between these two phenomena; 

both imply increasing response times with increasing numerical magnitudes, but each emerges in a 
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different functional context. But at least in terms of its apparent connection with the properties of 

other MNL formats, the Number Size effect does seem to “play the same game” as the Problem 

Size  effect.  For  example,  when  learning  models  use  linear  analogue  representations  like  the 

barcode, Number Size effects (like Problem Size effects) will only emerge when the training set is 

skewed in favour of small numbers (Zorzi, Stoianov, & Umiltà, 2005). And the  numerosity code 

appears to explain Number Size effects in exactly the same way as it explains Problem Size effects 

– as a product of the decreasing discriminability of number representations as their  magnitudes 

increase (Zorzi et al., under revision). In other words, there is an inconsistency here that has yet to 

be resolved.

The numerosity code's linear symmetry has also been shown to support symmetrical priming 

(Zorzi, Stoianov, Priftis, & Umiltà, 2003) in a learning model that performs transcoding – mapping 

from semantic number representations to symbols (e.g. Arabic digits) and vice versa. After training, 

the model  could activate  the appropriate  semantic  code given only the corresponding symbolic 

code. To capture numerical priming, the authors tested transcoding for numbers 4-9, with primes 

ranging from n-3 to n+3 (following the approach of Reynvoet, Brysbaert, & Fias, 2002); particular 

trials involved pre-activating the model's semantic field with the relevant prime, before clamping 

the target  to its  symbolic  field.  Like most  of Zorzi  and colleagues'  other models,  this  system's 

response times were defined as the number of processing cycles required to reach a steady state. 

And as  predicted,  those response times are  symmetrically  mediated  by the numerical  distances 

between targets and primes. Like Problem and Number Size effects, these priming effects can also 

be captured by careful hand-coding, even when the representations that drive a model seem unequal 

to the task. For example, Grossberg and Repin's SpaN (2003) produces symmetrical priming effects 

with an asymmetrical representation similar to the noisy MNL, but that symmetry owes rather more 

to the model's detailed structure – specifically, to the progressive deactivation of the number line 

after numerical stimuli are removed – than it does to the representations employed.
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Two of these models – Grossberg and Repin's SpaN (2003) and Dehaene and Changeux's 

(1993) number comparison model – also include  hand-coded accounts of the process that builds 

number representations from lower-level perceptual information. The details of each account are 

different  –  Dehaene  and Changeux favour  an  associative  system,  while  Grossberg and Repin's 

approach employs a serial accumulation of sequences of items – but each also shares one important 

feature in common. In both cases, the output of the pre-processing stage (which is mapped directly 

onto also the authors' favoured number representations) is a linear magnitude representation similar 

to the numerosity code (see Figure 9; these codes are also similar to the older “thermometer” system 

proposed by Meck and Church, 1986).  The same connection is also evident in Verguts and Fias' 

(2004)  model,  which  employs  Hebbian  learning  to  associate  both  approximate  numerosity 

(represented with the  numerosity code) and symbols (a localist  representation) with numerosity-

detectors (structured according to the barcode). The central conclusion of this work is that symbolic 

input representations can “tune” number-sensitive neurons, reducing the variance in their responses.

From the discussion so far, it should be clear that this kind of representation is, if anything, 

more  powerful  than  any of  the  popular  alternatives;  these  models  can  therefore  be  accused  of 

inserting an unnecessary stage into the process. Moreover, neither of these models has much to say 

about  the distinction  between subitizing  and more  general  numerosity  estimation;  Dehaene and 

Changeux's (1993) model is limited to small set sizes, and Grossberg and Repin's (2003) model 

assumes that  all  sets  are perceived in serial  order,  regardless of the number  of items  that  they 

contain. And the only Connectionist model that does capture the distinction – proposed by Ahmad, 

Casey,  and  Bale  (2002)  –  also  employs  a  thermometer-like  representation  (as  input  to  a  one-

dimensional self-organising map; Kohonen, 1995), so further underlines the ubiquity of this kind of 

“accumulating”  code.  In  other  words,  the  connection  between  a  computational  model  and  the 

theories  it  supports  can  be  complex;  even  apparently  non-critical  features  can  be  theoretically 

significant.
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Figure  9:  Illustrating  the  prevalence  of  accumulator-like  codes  in  computational  models  of 

numerical cognition; these models actually encode a preference for either the compressed MNL (top 

left),  the  barcode (bottom left) or the  noisy MNL (right),  but all  three also use an accumulator, 

similar to the  numerosity code; the relevant features of each model are highlighted in the figure. 

Each of the these three diagrams are re-printed from the authors' own published papers, which are 

also referenced above.

The format debate (section 2.2.1) is clearly quite well-captured by these models' results – 

broadly, they confirm that particular MNL formats really do have the empirical implications that 

their authors predict. But the structure debate is largely absent from the history that these models 
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compose, which reflects the comparatively minor role that multi-digit numbers have played in the 

field so far. Chapter 8 begins to redress that balance, with a suite of models of multi-digit number 

comparison. 

These  models  also  demonstrate  how  the  properties  naturally  associated  with  particular 

representations can be reproduced by learning with skewed training sets, or with carefully hand-

coded architectures. That flexibility is important because, in some cases at least, pure associative 

memory seems unequal to the task of modelling particular cognitive skills. For example, simple 

arithmetic  is  generally  agreed  to  involve  “...some  mixture  of  fact  retrieval  from memory  and 

procedures for transforming the problem if the memory search fails.” (Zorzi et al., under revision, 

page 9, my emphasis; see also Cambell & Xue, 2001; Groen & Parkman, 1972; LeFevre, Sadesky, 

& Bisanz, 1996), and  none of the learning models discussed so far even attempt to capture that 

latter, procedural component.

But though the cognitive scope of associative learning may be limited, these models still 

make an important contribution. Indeed, from the perspective of the format debate, (unstructured) 

associative learning may be the most effective of the model-building approaches discussed so far – 

because  it  cuts  through  the  levels  of  indirection  that  can  dissociate  the  logical  properties  of 

particular representations from their practical, empirical consequences. Chapters 3, 4 and 5 propose, 

develop, and apply a new methodology that can reproduce – and perhaps even surpass – that kind of 

directness.
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Chapter 3

Dynamicism and Cognitive Science

This chapter begins with a discussion of the assumptions that constrain conventional modelling 

methodology (3.1), and suggests that they might be circumvented by a Dynamicist approach, which 

is introduced in section 3.2. These sections define the context that drives the new models described 

in chapters 4 and 5. 

3.1 The Limits of Convention

In  the  last  chapter,  we  saw that  Connectionist  models  of  numerical  cognition  tend  to  employ 

representation-level  interference,  structured  learning,  or  hand-coded  architectures  (or  some 

combination of the three) to capture empirical phenomena. All of these options have a plausible role 

to play, and each can be well-justified – perhaps even necessary – in the right circumstances. But in 

the particular context of the format debate, computational models can make a clearer contribution 

when they are transparent;  assumptions that obscure a representation's influence can also weaken 

the evidence that it can supply.  That logic motivates a preference for unstructured learning over 

both  structured  learning  and  extensive  hand-coding  –  but  Connectionist  learning  is  far  from 

assumption-free.

Like  any  other  Connectionist  architecture,  associative  memories  depend  on  a  host  of 

architectural  assumptions  to  make  them  work.  In  some  cases  at  least,  those  assumptions  are 

certainly  not biologically  plausible.  Supervised  learning  systems,  like  error  backpropagation 

networks (Rumelhart & McClelland, 1986), depend on unit-specific error signals that are hard to 
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justify from what we know of neurophysiology (e.g. Crick, 1989). But often, even  unsupervised 

learning is only just barely justifiable. For example, the mean field Boltzmann machine (Ackley, 

Hinton,  &  Sejnowski,  1985;  also  used  by  Zorzi  et  al.,  under  revision)  employs  only  locally 

available  information  (pre-  and  post-synaptic  firing  rates),  but  requires  symmetrical  network 

connectivity (the weight of the connections from units A to unit B is the same as the weight of the 

connection from unit B to unit A), and a carefully structured two-stage learning regime (more on 

this  in  chapter  8);  neither  of  these  two  features  makes  much  biological  sense.  Connectionist 

learning models can be biologically plausible – but more often than not, that plausibility is available 

only because of how much we don't know about the relevant neurophysiology.

Indeed, even the training regimes that drive “unstructured” learning assume a great deal of 

structure – in particular, that number processing problems are experienced in a neat, serial order. 

Though two of the models described in section 2.3 (Dehaene & Changeux, 1993; Grossberg & 

Repin,  2003)  make  some  attempt  to  capture  lower  level  perceptual  processes  in  numerical 

cognition, none comes close to a properly closed sensor-motor loop. In the context of the format 

debate,  it  makes  sense  for  models  to  avoid  too  much  architectural  complexity,  so  a  focus  on 

functional modules can be justified as fitting a model's scope to the problem that it is designed to 

address. But the modularity assumption is itself open to criticism (Brooks, 1991; Harvey, 1996). 

Module interfaces can have a profound impact on model behaviour, so model-designers will usually 

demand great control over them – but it is precisely that control that must be surrendered if the 

modules  of  today  are  ever  to  be  integrated  into  the  embodied,  behaving  whole  of  tomorrow 

(Brooks, 1991). In other words, the modularity assumption may actually amplify the problem of 

behavioural integration; by assuming away that complexity, modular models may also mislead.

Finally, conventional models of numerical skills tend to ignore – and can actually obscure – 

questions concerning the origin of those skills.  Hand-designed models  certainly do not  address 

them, since they can only capture those skills  in their  “mature” form.  Learning models can be 
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interpreted as attempts to capture both the skill under study and its acquisition – but there are good 

reasons to suspect that at least some basic numerical skills are not learned at all. In recent years, a 

wealth of evidence has emerged which suggests that pre-linguistic infants (Feigenson, Carey,  & 

Hauser, 2002) and some animals – from apes (Biro & Matsuzawa, 2001) and monkeys (Nieder, 

Freedman,  & Miller,  2002) to pigeons (Brannon, Wurstoff,  & Gallistel,  2001) and salamanders 

(Uller,  Jaeger,  Guidry,  & Martin, 2003)  –  are  sensitive  to quantity.  Though learning is  clearly 

involved in the development of an adult human's number sense, this evidence supports the theory 

that  some  rudiments  of  that  sense  –  an  “evolutionary  start-up  kit”  (Butterworth,  1999)  –  are 

genetically  determined.  This  evidence  is  also  particularly  relevant  to  the  MNL format  debate, 

because instances of the phenomena that drive it have also been observed in animals (see Gallistel 

& Gelman, 1992 for a review, and more recently, Brannon & Terrance, 2003; Cantlon & Brannon, 

2006; Jordan & Brannon 2006a, 2006b). Since these phenomena are thought to emerge at the level 

of the MNL, the implication is that this genetic contribution might include that MNL. And at least 

as currently employed, computational cognitive modelling methods offer us no principled way to 

explore that phylogenetic contribution.

Taken together, these three themes – architectural assumptions, behavioural integration, and 

the role of evolution – motivate an openness to methods that go beyond conventional Connectionist 

learning. The next section describes a framework that can address all three.

3.2 Dynamicism – The Third Contender

Dynamicism (Van Gelder, 1995, 1998, 1999) is an umbrella term, intended to capture what has 

been variously been described as Evolutionary Robotics (Harvey,  Husbands, & Cliff,  1996), the 

Embodied  Cognition  approach  (Clark,  1999),  the  Adaptive  Behaviour  approach  to  cognition 

(Bakker, 2001), and the Dynamical Systems perspective on cognition (Beer, 2000). First described 

as  such  by  Eliasmith  (1996),  Dynamicism  is  the  “third  contender”  only  in  the  sense  that 
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“Structuralism” (e.g. Cooper & Shallice,  2006) is the first,  and Connectionism (e.g. Feldman & 

Ballard, 1982) is the second. Eliasmith himself was not convinced by this distinction – and the 

discussion that follows will further undermine it – but it does provide a useful way to understand 

what  Dynamicism  is  and  how  it  might  (and  might  not)  be  related  to  its  more  conventional 

counterparts. 

3.2.1 Structuralism and Connectionism

Structuralism is a relatively new term for a rather older idea – employing the Computer 

Metaphor (see Crowther-Hyke, 1999, for a good definition) to drive cognitive models and theory. 

Terms  such  as  “classical  cognitive  science”,  and  “Good  Old-Fashioned  Artificial  Intelligence” 

(GOFAI) capture the same essential perspective, casting cognition as a product of the information-

processing  structure  of  the  brain.  Structuralism  articulates  the  intuition  that  the  logic  of  that 

structure should somehow correspond to the logic of the behaviour that it drives – for example, that 

goal-directed behaviour implies the explicit representation of goals by the cognitive system (e.g. 

Cooper  & Shallice,  2000).  This  is  a  powerful  idea  because  it  implies  that  there  should  be  an 

intelligible neural counterpart to our more familiar concept of “knowledge”; cognitive neuroscience 

can then be construed as the search for a way to “translate” the folk psychology (e.g. Stitch & 

Ravenscroft, 1994) that we naturally employ into the more verifiable and quantifiable language of 

neurons and neural behaviour.

Connectionism was first introduced as a potentially very different approach, associated with 

a suite of practical benefits – principally “brain-like” architecture (networks of simple processing 

units and weighted connections between them), fault tolerance and “natural” learning (Aleksander, 

1989;  Feldmand  &  Ballard,  1982;  Honavar  &  Uhr,  1989;  McClelland  &  Rumelhart,  1986; 

McCleod, Plunkett, & Rolls, 1998; Seidenberg & McClelland, 1989; Sejnowski & Rosengerg, 1987 

–  but  also  see  Berkeley,  1997).  Conventional,  symbolic  architectures  can  also  be  designed  to 
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capture these benefits (Fodor & Pylyshyn, 1988); Connectionism is valuable more for the elegance 

with which it supplies them, than for their presence in itself. And the benefits were also thought to 

be balanced by a cost – an apparent resistance to computational interpretation. At the time, that 

resistance inspired some very extreme interpretations; some researchers claimed that Connectionism 

had made older,  more  Structuralist  concepts  (like representations)  irrelevant  (Ramsey,  Stich,  & 

Garon, 1991), while others dismissed the new approach as “mere implementation” (e.g. Fodor & 

Pylyshyn, 1988). The emergence of Dynamicism has inspired almost exactly the same debate.

3.2.2 Dynamicism Defined

Dynamicists claim that cognitive agents are best understood as dynamical systems, and that 

cognition emerges from the close-coupled interaction between an agent and its environment. At a 

formal level, a dynamical system is simply a mathematical object that describes how the state of a 

system evolves through time – or more specifically, a triple <T, S, F>, where T is an ordered time 

series, S is a state space, and F is a function that describes the evolution of subsequent states from 

current  states  (Beer,  2000). Thus  defined,  even  desktop  computers  will  support  a  dynamical 

description. Dynamicism – like Connectionism (Fodor & Pylyshyn, 1988, Bechtel & Abrahamsen, 

1991) – is at least potentially consistent with even the most stringent Structuralist intuitions (e.g. 

Crutchfield, 1998). So – like Connectionism – the value of the Dynamicist approach stems more 

from a difference  in  emphasis  than a difference  in  principle  (Beer,  2000);  where Structuralism 

emphasises  the  information-processing  structure  of  the  brain  (e.g.  Johnson-Laird,  1988),  and 

Connectionism emphasises  fault  tolerance  and natural  learning  (e.g.  Rumerlhart  & McClelland, 

1986),  Dynamicism emphasises  the  interactive,  spatially  and  temporally  situated  nature  of  the 

whole, behaving agent (e.g. Port & Van Gelder, 1995).

Though  perhaps  rather  abstract  in  itself,  that  distinction  underlies  some  very  concrete 

differences in practice.  The first difference flows directly from a focus on the whole,  behaving 
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agent; unlike their more modular counterparts, Dynamicist cognitive models almost always include 

agents,  with  bodies,  and  the  environment  that  they inhabit  (e.g.,  Beer,  1996;  Blumberg,  1995; 

Harvey, Husbands, Cliff, Thompson, & Jakobi, 1996; Seth, 1998). That trend naturally alters the 

focus  of  Dynamicist  models  –  the  second  difference  –  away  from  the  information-processing 

structures that might explain cognitive behaviour and toward the behaviour itself. 

A focus on whole agents also raises some rather significant technical challenges. The third 

(and for our purposes, final) difference that sets Dynamicism apart can be understood as a response 

to  these  challenges  –  a  preference  for  design  by  behaviour-based  selection  (using  genetic 

algorithms: see Goldberg, 1989, for a review).  Often, neural networks – or systems of equations 

inspired by the Hodgkin-Huxley description of neurons (Hodgkin & Huxley, 1952) – are the foci of 

Dynamicist model-building methods, both because they are thought to yield “brain-like” models, 

and because small changes to particular network parameters (the driving force of behaviour-based 

search) tend to invoke small  changes in global network behaviour.  Models of this sort are also 

naturally  comparable  to  their  Connectionist  counterparts;  I  focus  exclusively  on  these  in  the 

chapters  that  follow.  But  other  alternatives  –  for  example  the  classical  equations  for  simple 

oscillators like pendulums (which can naturally express the dynamics of ballistic limb movements: 

e.g., Feldman, 1966) – can work just as well.

3.2.3 Benefits and Costs

Dynamicist models emphasise all three of the themes identified in section 3.1. A focus on 

the whole, behaving agent may make for tough, model-building challenges, but it also ensures that 

successful Dynamicist models will seamlessly integrate the cognitive process being studied with 

their  more  “natural”  behavioural  context.  And  though  certainly  pragmatic,  the  preference  for 

behaviour-based selection can also be justified as encouraging an “assumption-light” approach to 

model-building  –  free  of  some  of  the  architectural  constraints  that  more  conventional  design 
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methods impose (e.g., Harvey, 1996; Beer, 2000). By focusing on an agent's interaction with its 

environment, this approach can release designers from the need to, for example, specify an internal 

modular  architecture  –  replacing  that  designer-driven  constrain  with  the  opportunity  for  more 

problem-driven emergence.  To the extent that  these “minimal” (e.g.  Nowack, 2004) models are 

successful (a judgement that remains contentious: e.g., Cooper & Shallice, 2006), there are good 

reasons  to  prefer  them to  their  more  constrained  counterparts.  Finally,  if  given  the  right  task, 

behaviour-based selection is also a promising model of evolution, so Dynamicist models can be 

used to explore the role of phylogeny in cognitive development. 

However, like Connectionism, Dynamicism appears to undermine some of our most basic, 

Structuralist intuitions. With minimal architectural constraints, behaviour-based selection permits 

the recruitment of a very broad range of chaotic dynamics in the generation of cognitive behaviour. 

And  though  nothing  in  the  logic  of  this  approach  forbids  the  emergence  of  recognisable 

computational structure, that structure simply does not seem to emerge from this chaos (Beer, 2000, 

2003).  Just  as  it  did  for  Connectionism,  this  apparent  inconsistency  has  inspired  a  range  of 

interpretations, from extreme Eliminativism (e.g. Harvey, 1996), to outright dismissal (e.g. Lewin, 

1992, page 164). The only obvious compromise in unsatisfying at best – to assert, without much 

justification, that representations (and other classical structure) will emerge when (or if) Dynamicist 

models  capture  sufficiently  “cognitive”  behaviour.  Clearly,  another  rather  more  practical 

compromise is needed.

3.3 Toward a Compatibilist Dynamicism

The apparent connection between the debates that Connectionism and Dynamicism have inspired is 

important because the former appears to have been resolved. On closer inspection, Connectionist 

models  have  turned  out  to  be  entirely  consistent  with  our  more  classical  intuitions  –  just  as 

predicted  by  Bechtel  and  Abrahamsen  (1991),  with  a  position  that  they  called  Compatibilism. 
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Compatibilism articulates  the familiar  intuition  that  apparently  antagonistic  approaches  may,  in 

practice, turn out to be completely compatible. In principle, Dynamicism is certainly susceptible to 

Compatibilist  interpretation (Crutchfield,  1998) – though in practice,  the features that  drive this 

interpretation  (like  recognisable  representations)  simply  do  not  seem to  emerge  in  Dynamicist 

cognitive models (Beer 2000; Beer 2003). But appearances can be deceiving. My contention is that 

classically recognisable structure can be discovered in Dynamicist cognitive models, once we know 

how to look for it.

The key to that contribution is a novel method for analysing Dynamicist models, founded on 

Marr's  (1982)  distinction  between  different  levels  of  description,  and  on  Smolensky's  (1987) 

concept of Approximationism. The former emphasises the notion that a single system can support 

multiple (apparently distinct)  accounts,  while the latter  articulates the intuition that Structuralist 

accounts of cognition can be useful, and approximately correct, without necessarily capturing every 

detail of the underlying causal process. The implication is that we can search for – and discover – 

classical  structure in dynamical systems, while accepting that the implied “computational story” 

will be at best a good approximation to the underlying “causal story”. Critically, I will also propose 

a metric that quantifies the correspondence between these two levels of description – the extent to 

which a Dynamicist model justifies a Structuralist interpretation.

The next two chapters chart a practical route toward a Compatibilist Dynamicism. Chapter 4 

is a practical illustration of the discussion so far, illustrating the Dynamicist approach, its benefits, 

and costs – as well as their possible resolution – with a model of categorical perception. Chapter 5 

applies the same approach to the problem of number comparison, and makes a novel contribution to 

the format debate.
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Chapter 4

Dynamicism and Categorical Perception

In the last chapter, we saw that Dynamicism offers three important benefits in cognitive models: 

elegant behavioural integration, minimal model architectures, and a transparent way to capture the 

impact of phylogeny. On the other hand, Dynamicist models have tended to appear to eliminate 

features like cognitive representations. This chapter develops and applies a method – the Behaviour 

Manipulation  Method  (BMM)  –  that  can  discover  classically  recognisable  representations  in 

Dynamicist models.

One early example of the Dynamicist approach was a model designed to address categorical 

perception – an agent's ability to assign sensed objects to discrete categories (Beer, 1996).  This 

domain is the closest thing that Dynamicism has to a standard environment, and is therefore a good 

medium  for  the  introduction  of  new  methodology.  For  pragmatic  reasons,  the  current 

implementation of this system is not an attempt at precise replication – the goal was simply to 

generate agents that can perform this familiar task. But the differences between this version and its 

precursors are of secondary importance to the analyses that follow.

4.1 Model Design

The environment is a 2-dimensional square plane, with sides measuring 100 units. Positions on this 

plane are denoted with the notation <X, Y>. The agent is a circle of radius 5, which begins each run 

at the centre of the plane's lower boundary (i.e. with centre <50, 0>). Agents are exposed to series 

of trials in which shapes (squares or circles) “fall” from the square's upper boundary toward its 

lower boundary; the trial ends when a shape touches either the agent or the x-axis. The agents' goal 
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is to categorise the shapes that fall toward them, catching (i.e. touching) circles, while avoiding 

squares.

Shapes fall with a speed of 0.5 units per time step, and occur with a range of possible radii 

(3-6). Squares are specified relative to the circumcircle defined by their radii, and also occur with 

random  rotation.  Together,  these  two  sources  of  variation  (size  and  rotation)  complicate  the 

relationship between apparent shape width and actual shape type – a confound identified by Beer 

(2003). Each shape starts with a random X position, but their centres will always fall within two 10-

unit bands, one on each side of the agent's starting position (i.e. at the start of each trial,  shape 

centres  have  a  Y value  of  100,  and  X values  in  the  ranges  20 to  30,  or  70 to  80);  this  latter 

restriction was intended to eliminate  shapes that  fall  from directly above the agent,  since these 

special cases have previously been shown to raise particular problems in the past (Beer, 2003).

Agents  are  rate  coded,  continuous-time  dynamic  recurrent  neural  networks,  updated 

synchronously in time steps. The activity u of unit i at time step t is calculated using equation 1:

u it  = ui t−11/i∑j=1

N

w ji u jt−1 (1)

where  wji is the weight of the connection from unit  j to unit  i,  σ() is the sigmoid function 

(bounded in  the  range  0-1)  and  refers  to  a  unit-specific  time  constant  (higher  time  constants 

indicate a lower dependence on incoming activity).

The agents' visual systems are analogous to a laser range-finder. Seven rays project upwards 

from the centre of each agent, spanning a 60° angle – adjacent rays subtend an angle of 10°, and 

each ray has a length of 110 units. If a ray intersects with a shape, activity is passed to its associated 

sensor unit; the value passed is inversely proportionate to the distance to that intersection. Agents 

can move in only one dimension, along the x-axis – at each update, the change in an agent's position 

is proportionate to the difference between the activity values of two effector units, with a maximum 

speed of 5 units per update. To improve the similarity between our agents and those analysed in 
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previous work, we also restrict the agents' hidden layers to include exactly 7 hidden units (as in 

Beer, 2003). With the exception of the sensor units, which are always fixed by properties of the 

“world”,  so  receive  no  incoming  connections,  the  agents'  neural  networks  are  universally 

connected;  every  unit  is  directly  connected  to  every  other,  and  to  itself.  Figure  10  presents  a 

schematic  of  the  agents'  network  architectures  (left),  and  an  illustration  of  an  agent  in  its 

environment (right).

Environment
Hidden Layer

Effector UnitsMove Left

Move Right

Sensors 
(1 per ray)

         

Figure  10:  (Left)  Schematic  network  structure  for  agents  designed  to  solve  a  visual  object 

classification problem. The agent has 7 sensor units, 7 hidden units, and two effector units. The 

sensor units' activities are always fixed by the agent's environment, but the hidden and effector units 

all  receive  direct  input  from  every  other  unit,  and  from  themselves.  (Right)  An  agent  in  its 

environment. Shapes fall from the environment's upper boundary toward its lower boundary – their 

centres always fall within one of the two, shaded areas. The agent's task is to touch falling circles, 

and to avoid falling squares; they can move in only one dimension, along the environment's lower 

boundary.

The agents in this system, which were initially specified at random, were designed with a 

Microbial  genetic  algorithm (Harvey,  2001). During each iteration,  two “parents” are randomly 

selected from the population and compared.  The weaker of the two parents is replaced by their 

“child”, which is defined by mixing the parents' weight vectors and time constants (each parent 
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contributes a parameter with 50% probability),  and applying a mutation.  The mutation operator 

usually  implements  a  small,  random change  (±  0.01)  to  a  randomly  selected  weight,  but  will 

sometimes (p = 1%) increment or decrement a unit's time constant instead.

An agent's fitness score is the sum of the absolute distances between that agent and each of a 

set of 100 shapes at the end of each of 100 trials; each set is composed of 50 pairs of shapes, 

identical  in  every respect  but  for  their  type.  Distances  to  circles  (which  should be caught)  are 

counted negatively, and distances to squares (which should be avoided) are counted positively; the 

fitness f of individual i is calculated as in equation 2:

f i = ∣∑s=1

N

∣x i
s−x s∣−∑c=1

N

∣x i
c− xc∣∣ (2)

where s indicates squares, c indicates circles, xT is the x-axis position of a particular shape 

(of type T) at the end of a trial, and x i
T is the x-axis position of agent i at the end of the same trial. 

Sets of shapes were generated randomly for each competition, but two prospective parents were 

always  compared  against  the  same  set.  Evolutionary  runs  were  ended  once  an  agent  in  the 

population had achieved 100% accuracy on any shape set.

The best agents in this system achieve good performance after about a 5 million iterations of 

the microbial algorithm. The material that follows will focus on one agent, which achieved 100% 

accuracy on one shape set, and retained good performance (>98%) when tested against 100 other 

randomly generated sets.

4.2 Behavioural Analysis

Figure 11 graphs the absolute lateral distance between the agent's centre and the shape centres in 

trials of different type; the data illustrate that the agent does in fact catch circles, while successfully 

avoiding squares. There is also an apparent similarity in the paths during the early stages of both 
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trial types; an active scanning strategy (at least superficially similar to that identified by Beer, 2003) 

that gives way to genuine divergence only after the ~90th time step. Intuitively, this pattern suggests 

a perceptual process, which drives a categorisation “choice” that defines subsequent behaviour. The 

material that follows offers three analyses designed to explain it.

Movement in Response to Circles
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Movement in Response to Squares
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Figure 11: Absolute lateral distances between the agent and shape-centres in a random selection of 

100 shapes (squares and circles). Each series refers to a single trial. (Left)  Behaviour in response to 

circles. (Right) Behaviour in response to squares.

4.3 Conventional Network Analyses

At least one – very detailed – analysis of this type of agent already exists (Beer, 2003). Throughout 

the material that follows, it will be important to remember the restricted scope of this chapter, which 

is not intended either to repeat, or replace, an analysis of that kind. The current focus rests solely on 

the issue of representation – on the extent to which classically recognisable representations can be 

identified in Dynamicist models. From this perspective, the most relevant conclusion of that earlier 

work is: 
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“Whatever  “meaning”  this  interneuronal  activity  has  lies  in  the  way it  shapes  the 

agent's ongoing behavior, and in the way it influences the sensitivity of that behavior to 

subsequent  sensory  perturbations,  not  in  coding  particular  features  of  the  falling  

objects”. Beer, 2003, p. 238 (my emphasis)

In other words, the analysis  uncovers nothing in these agents that appears to “stand for” 

properties of the agent's environment – nothing that represents in the classically expected manner. 

This  conclusion  is  all  the  more  interesting  because,  in  the  author's  own  words,  categorical 

perception is a “representation-heavy” task (Beer, 1996): a task that might naturally be expected to 

require access to cognitive representations. In the sections that follow, we will attempt to discover 

representations  of  precisely this  sort;  internal  states  that  can be  interpreted  as  instantiating  the 

agent's knowledge of shape type.

To understand the motivation – and contribution – of the analysis that I will propose, it will 

be  useful  to  be  able  to  compare  its  results  to  those  obtained  by  more  conventional  means.  A 

complete review of prior art is beyond the scope of this thesis; for the purpose of illustration, I 

consider just two examples from the field.

4.3.1 Principal Components Analysis (PCA)

One  of  the  most  popular  tools  for  neural  network  analysis,  PCA  is  a  technique  for 

expressing high dimensional data sets as lower dimensional data sets, while preserving the data's 

underlying variance. Neural network state-spaces have at least as many dimensions as they have 

units – usually far too many to comprehend directly.  PCA can reduce that apparent complexity, 

exposing the fundamental dimensions of a network's state trajectory. 

The mathematics underlying PCA are well-described elsewhere (e.g. Gonzalez & Richard, 

1992; Oja, 1989; Rao, 1964); I will provide only a brief summary. My version of this method, based 
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on that used by Elman (1991), begins by recording step-by-step hidden unit activities as the agent 

attempts to categorise  falling shapes.  These series compose an [N x T] matrix,  where N is  the 

number of hidden units (7 in this case), and T is the total number of time steps required to complete 

the 100 trials2. From this “activity matrix”, we can calculate a covariance matrix; the dimensions 

that PCA identifies are eigenvectors of this matrix, and their eigenvalues correspond to the variance 

that each accounts for.

Three principal components account for 88% of the variance in hidden unit activities; Figure 

12 illustrates the way these components change throughout each trial. The features of interest here 

are differences between these components in trials of different type – because a sensitivity to shape 

type is a precondition (i.e. necessary, though not sufficient) for the representation of shape type. 
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Figure 12: The agent's  hidden unit  state  trajectory,  projected onto three Principal  Components, 

during shape categorisation trials involving circles (left) and squares (right).

Moving  a  bit  beyond  Elman's  method,  we  can  quantify  these  differences  statistically  – 

comparing the values of each component (and of the x-axis distances from Figure 11) at each time 

2 This number can vary from trial to trial, because trials can end before a shape touches the x-axis – when they are 
“caught” by an agent – and because shape size can vary.
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step in trials of different type. Remember that the shape set includes 50 squares and 50 circles, and 

every square is paired with an equivalent circle, identical in every respect but for its type. At each 

time step, there are therefore 50 values for each component in square-trials, paired with 50 values 

for each circle-trial. None of the samples deviates significantly from a normal distribution, so we 

can use t-tests for paired samples to quantify the differences at each time step. Figure 13 displays 

the T-values (where p < 0.001) derived from these tests; these series represent the extent to which 

each  principal  component,  and  also  the  agent's  lateral  distance  from  the  shapes,  is  different 

depending on the categorisation decision that the agent is required to make.

Figure 13: T-statistics (p < 0.001) for tests of shape-sensitive deviation.  The red circle marks a 

possible “decision point”; the point beyond which the agent's shape-sensitive behavioural deviation 

is consistently significant.

The  proposed  decision  point  is  visible  in  Figure  13  as  the  final  period  of  behavioural 
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similarity  before  consistent behavioural  deviation  is  observed.  Further,  one  of  the  principal 

components (component 3) displays a very extreme pattern of shape-sensitive deviation during that 

period; this pattern reflects a stark reduction in the variance of component 3 at that time, which 

implies  significant  uniformity across trials  involving the same shape type.  The temptation is to 

conclude that this agent does make a decision, and that component 3 conveys its “knowledge” of 

shape type. 

However, that temptation should probably be resisted. Though intuitive, this computational 

interpretation is also rather circular;  we have decided that there is a decision point, then “found” 

that point in the data and used it to drive our interpretation. That kind of logic can clearly lead 

observers to see structure that simply is not there – precisely the kind of mistake that we want to 

avoid. Following conventional logic, we can use linear regression to associate that deviation with 

deviations in particular components. Employing the x-axis deviations (t-values) as the dependent 

variable, and the component deviations (t-values) as separate independent variables, we have three 

regression analyses with series that each contain 50 values; the results emphasise components 1 (p < 

0.001,  R2 = 0.33) and 2 (p < 0.001, R2 = 0.32), while marginally dismissing component 3 (p = 

0.054, R2 = 0.02). However, shape-sensitive behavioural deviation is evident very early in each trial 

– and certainly before our proposed decision point – so it is far from clear that these associations 

can justify claims that any of these components convey classically recognisable representations. In 

other  words,  this  conventional  analysis  seems  perfectly  consistent  with  the  claim  that 

representations need play no part at all in the agent's behaviour.

Even ignoring these problems – and accepting our initial intuition despite them – significant 

obstacles remain.  Consider the values in Table 1, which indicate the correlations between hidden 

unit activities and the extracted components. How can we “reverse” the extraction – for example, of 

factor 3 – to view the supposed representation in its original form? Six of the seven hidden units are 

significantly  correlated  with  factor  3;  must  we  inspect  all  six  of  these  units  to  observe  our 
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representations? If so, the analysis has done little to reduce the agent's apparent complexity. Should 

we define some minimum correlation below which we can ignore particular units? Though perhaps 

appropriate  in  some  circumstances  (such  as  the  analysis  of  fMRi  data:  e.g.  Friston,  Worsley, 

Frackowiak,  Mazziotta,  & Evans, 1994),  this  approach  seems  a  poor  compromise  when better 

options are available.

As we will see, better options are available. The next section considers an alternative that 

addresses a general concern which lurks behind many of the more specific issues raised so far – 

correlations and covariance offer at best a limited view of their object's underlying causal structure. 

To begin to garner evidence of this more causal sort, lesion studies are required.

Hidden

Unit

Principal Components
1 2 3

 Unit 1 .699** .279** -.041**
 Unit 2 .070** -.313** -.876**
 Unit 3 .984** -.120** -.003**
 Unit 4 .410** .608** .401**
 Unit 5 .108** .196** .966**
 Unit 6 .128** .957** -.119**
 Unit 7 -.015** -.639** .195**

**p < 0.001, *p < 0.05

Table 1: Correlations between hidden unit series and the three principal components. 

4.3.2 Multi-Perturbation Shapley Value Analysis (MSA)

Just as neurological disorders can illuminate the functional structure of normal brains (e.g. 

Shallice, 1988), so lesion analyses can clarify the functional architecture of neural networks. There 

are almost as many specific methods for lesion analysis as there are researchers to use them. In this 

section, we will focus on one of the method's more systematic variants, called Multi-perturbation 

Shapley value Analysis (MSA). MSA was originally inspired by the economics of share-dividend 
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calculation (Keinan,  Sandbank, Hilgetag,  Meilijson, & Ruppin,  2004a),  and its  results  associate 

each of a network's hidden units with a Contribution Value (CV) or causal significance, relative to 

some defined measure of behavioural performance. That CV is essentially a Shapley value.

The Shapley value (Shapley, 1953) is a familiar concept in game-theory, and describes an 

approach for calculating the fair allocation of gains obtained through the cooperation of groups of 

actors – allowing for the possibility that some actors may make a greater contribution than others. 

In formal terms, this situation can be described as a  coalitional game, defined by a pair (N,  v), 

where  N = {1, ...., n} is the set of all  players and  v is a is a real number associating a worth, or 

payoff,  with  the game;  the goal  is  to  calculate  a  payoff  profile,  associating  each player  with a 

specific  proportion  of  that  total  payoff.  Shapley's  approach started  by measuring  the  marginal  

importance of  each actor  i  relative  to each subgroup of actors (S,  where  S ⊂ N)  – this  is  the 

difference between the payoff  for group (S  ∪ i) minus  the payoff  for group  S alone.  Actor  i's 

Shapley value is then simply its average marginal importance for all permutations of S. As applied 

to  the  analysis  of  neural  networks,  this  formulation  requires  access  to  the  performance  scores 

associated with every subgroup of the networks' units. That “full information” approach may be 

prohibitive for large networks – and the MSA method's authors do offer a reduced, or “predicted” 

approach to reduce that load (Keinan et al., 2004a, Keinan, Hilgetag, Meilijson, & Ruppin, 2004b) - 

but the current agent is quite small, so perfectly susceptible to this kind of exhaustive analysis. The 

agent has 7 hidden units, so there are 27 = 128 subgroups in all (one of those groups includes all of 

the agent's hidden units), so the analysis requires that we conduct 128 performance tests in all. Each 

performance test  is  defined by a “Lesion Configuration”,  which specifies  the units  that  will  be 

removed for that test. 

Following Keinan and colleagues' own preference (e.g. Keinan et al., 2004a), the current 

work also employs “Informational Lesions”, rather than the more traditional “Biological Lesions” 

to implement each Lesion Configuration. Biological lesions are so-called because they mimic the 
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probable impact of neural lesions, effectively removing units either by setting the weights of their 

outgoing connections to zero (e.g. Joanisse & Seidenberg, 1999), or by adding random noise to their 

activity values (e.g. Plaut & Shallice, 1993). As the name suggests, informational lesions are merely 

intended to remove a unit's information, and work by fixing its activity to an average value. There 

are  numerous  reasons  for  this  choice  (see  Aharanov,  Segev,  Meilijson,  & Ruppin, 2003 for  a 

discussion), but the central intuition behind it is that functional analyses can be misleading if their 

objects  – the networks under study – are too far removed from their  “natural” state (e.g. Seth, 

2008). The different roles of biological and informational lesions can also be illustrated with the 

simple example of bias units.

Bias units, a common feature of neural networks, have activity values that are always close 

to '1' regardless of a network's other dynamics. Often explicitly specified, bias units can also (and 

often do) emerge through learning, or simulated evolution. When applied to bias units, biological 

lesions can have a profound effect on a network's state trajectory, since the lesion drastically alters a 

consistent feature of the network's default state.  By contrast,  informational lesions will have no 

effect  whatsoever  when  applied  to  these  units.  The  preference  for  informational  lesions  can 

therefore  be  interpreted  as  expressing  a  position  on  what  constitutes  a  “good”  explanation  of 

network function – bias units are of minimal interest in those explanations.

In practice,  the  MSA method  starts  with  a  baseline  performance  test  (with  no  lesions), 

during which the  activity values of every hidden unit at every time step are collected; these data 

define the average values that informational lesions employ, as well as a performance standard (a 

categorisation accuracy rate) for the analysis that follows. We then repeat the same series of trials 

(with the same shapes in the same order), while applying the informational lesions defined by each 

of the Lesion Configurations (one per performance test). Lesion Configurations can be thought of as 

binary lists with one cell for each of the agent's hidden units; if the value in a unit's cell is '1', a 

lesion is applied, whereas a '0' indicates that the unit is allowed to vary freely. The results associate 
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performance scores with each Lesion Configuration – and by implication with every subgroup of 

network  units;  Figure  14  displays  normalised  Contribution  (Shapley)  values  for  each  unit  as 

calculated by Keinan and colleagues' own Matlab implementation of the process.3
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Figure 14: Normalised Contribution Values of each of the agent's 7 hidden units; higher values 

indicate units that appear to play a more significant role in the agent's classification performance.

Of the seven units,  two (units  1 and 2) appear  relatively insignificant;  we can probably 

ignore those in our search for representations. Note that, though largely causally insignificant, unit 2 

did  display  a  strong  correlation  with  the  most  intuitive  source  for  representations  (principle 

component 3) that was observed with PCA – a good illustration that correlations and covariance 

really are an imperfect metric of causal significance. The five other units all do seem to play some 

role, and two of them (units 5 and 6) may justify particular attention. To interpret these results, we 

need to inspect the unit activity series themselves; Figure 15 displays the average series for each of 

those 5 units during trials involving circles and squares respectively.

3 Available on request; see http://www.cns.tau.ac.il/msa/
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Figure 15: Average activities of 5 units that are causally significant to the agent's categorisation 

performance. (Left) Trials involving circles. (Right) Trials involving squares.

The visual similarity between Figures 15 and 12 is unsurprising – three of these hidden units 

are extremely highly correlated with the three factors that  we previously extracted.  Can we see 

representations  in  this  Figure  15?  There  are  certainly  some  sensitivities,  some  units  whose 

characteristic activity series differ for different shape types. But – as before – it is not clear that we 

should interpret that sensitivity as a representation. Any interpretation that we do make will depend 

on simple “eye-balling”, so will certainly be susceptible to criticism. 

This dependence on eye-balling raises a further problem; at least 5 of the agent's 7 units 

seem to demand some scrutiny. The MSA method's original motivation stemmed from the intuition 

that, usually, task-specific functional significance will be localised to small subsets of units (Keinan 

et al., 2004a; Keinan et al., 2004b). If this prediction is satisfied, MSA may be useful – but there is 

no guarantee that it will be. Larger networks, with more complex behaviour, might yield results that 

are simply too complex to be useful.

Like PCA, the results of MSA simply do not go far enough to answer the questions with 

which  we are  concerned.  The  shift  to  causal  evidence  is  an  improvement  over  PCA, but  both 
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methods still depend on a subjective eye-balling process, which raises both logical and practical 

concerns. These problems highlight the need for a method that addresses interpretation directly.

4.4 The Behaviour Manipulation Method (BMM)

Consider a hypothetical agent, designed to solve our categorical perception problem, which  does 

represent shape type in the classically accepted manner (i.e. with internal states that stand for either 

squares  or  circles).  Since  the  agent  is  simulated,  we have  great  freedom to  constrain  its  state 

trajectory;  if  we know what  those representations  are,  we should be able  to force the agent to 

“perceive” squares as circles, and vice versa. And when subject to that forced perception, the agent 

should behave as if squares really are circles, and circles really are squares. 

The Behaviour Manipulation Method (BMM) is a practical extension of this example's logic 

– an analysis based on targeted lesions, which shares some features in common with MSA. Like 

MSA, the BMM employs integer vectors to define the lesions, but the meaning that those vectors 

convey is rather different. In deference to that difference, these lists are called “Candidates” (rather 

than  Lesion  Configurations)  in  the  material  that  follows.  In  the  language  of  the  hypothetical 

example, Candidates can be construed as hypotheses concerning the best way to control an agent's 

perception  of  its  environment;  better  Candidates  permit  ever-more  effective  and  predictable 

mediation of the agent's behaviour.

The current implementation of this method borrows from the concept of the informational 

lesion, described previously,  which involves fixing a unit  to its average activity.  Extending this 

concept, we can define a “Partial Informational Lesion”, which involves fixing a unit to its average 

activity  in specific circumstances. Where the informational lesion is designed to remove a unit's 

information, the partial informational lesion offers a positive hypothesis concerning the meaning of 

that unit's activity – that average activity values convey representations of the circumstances that 

define them. This choice is a useful starting point because it reduces the complexity of unit activity 
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series, and because it accords with the way in which, in practice, researchers manage the apparently 

random variation in neural spike train data (e.g. Tomko & Crapper, 1974).

4.4.1 The BMM in Practice

Like MSA, the BMM begins with a series of “natural” trials, which provides both a baseline 

for the agent's categorisation performance (the number of correct categorisations: 100% in this case) 

and a record of its hidden units' activity values throughout each trial. From these latter data, we can 

calculate two average activities for each unit – one for trials involving circles and one for trials 

involving squares (these averages group every time step in each trial type together). As with MSA, 

we then repeat the same series of categorisation trials  (employing the same shapes in the same 

order) while lesioning the agent's hidden units; each new experiment is defined by a Candidate, 

which specifies the lesions that should be performed.

Like Lesion Configurations, our Candidates associate each of the agent's hidden units with 

either a '0' or a '1'. In the former case, the unit is allowed to vary freely, whereas in the latter, a 

Partial Informational Lesion is applied. To assess the quality of each Candidate, we attempt to use 

them to reverse the way the agent responds to shape types; in trials involving squares, lesioned units 

are fixed to their average activities for trials involving circles, whereas in trials involving circles, 

lesioned  units  are  fixed  to  their  average  for  trials  involving  squares.  “Good”  Candidates  will 

encourage  the  agent  to  catch  squares  and avoid  circles.  The best  Candidates  should  encourage 

incorrect categorisations of most, or all, of the shapes. As with MSA, the current version of the 

BMM implements  an  exhaustive  search  of  the  agent's  Candidate-space,  testing  each  of  the  27 

Candidates.

4.4.2 Results

Startlingly,  the results of this analysis  yield several Candidates that permit very accurate 
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manipulation of the agent's categorisation choices. One Candidate yields a perfect result – a 100% 

categorisation error rate. At least in this case, the implication is that some of the agent's hidden units 

really can be interpreted as conveying a classically recognisable “knowledge” of shape type. The 

results  also  define  a  concrete  role  for  particular  hidden  units,  which  appear  to  convey 

representations through their average activity values. Figure 16 displays the best Candidate that was 

found: a distributed solution that implicates units 1 and 3 through 7. Each of these units displays 

deviations in their average activities depending on the shapes involved in particular trials; these 

deviations can be used to “fool” the agent into confusing squares for circles and vice versa. 

Figure 16: Average shape-type dependent deviation in hidden unit activity values. The bars indicate 

positive and negative shape-dependent deviations from each unit's average activity across all trials 

(i.e. including both circles and squares). Unit averages for trials involving particular shape types 

(circles vs. squares) are appended to each bar. This deviation can be recruited to reverse the way the 

agent categorises shapes – the implication is that this deviation stands for (or represents) the agent's 

knowledge of shape type.
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4.5 Comparing the BMM to PCA and MSA

Like PCA and MSA, the BMM can be interpreted as a kind of filter, directing attention to those 

features of a network's dynamics that drive the behaviour of interest.  In section 4.3, we saw that 

there is no guarantee that these “analytical filters” will provide results that are both sufficiently well 

justified to be useful, and sufficiently simple to be interpretable. Though the BMM also implicates 

many hidden units, its results are much more interpretable; each unit is associated only with a pair 

of values (averages) – and we know that these values have played a definite, causal role. 

Even on its own, that knowledge is useful. Figures 12, 13 and 15 all graph mean values of 

the series under study, but the choice is pragmatic (designed to clarify the presentation); nothing in 

the logic of either PCA or MSA can demonstrate that these mean values are causally significant in 

themselves. The temptation to make strong claims after eye-balling average series is another good 

example of the circularity that  we are trying to avoid.  This conflation is all  the more tempting 

because it is largely accepted in the analysis of, for example, neural spike train data (e.g. Roitman, 

Brannon, & Platt 2007). Just as minimum correlation thresholds are acceptable in the analysis of 

fMRi data, so this conflation is acceptable when no better methodological options are available. But 

as  the  BMM  illustrates,  computational  models  permit  far  more  invasive  analyses  than  their 

biological referents. Since we can verify the causal significance of unit averages directly, it seems 

reasonable to require that we should.

Another encouraging feature of these results is that, though different in scope, they appear to 

be largely consistent with those derived from MSA. The best representational theory that the BMM 

identifies includes units 3-7, precisely those units to which the MSA assigned high Contribution 

Values. If Partial Informational Lesions are applied only to these units, a 96% categorisation error 

rate can be achieved; the natural influence of the dynamics of these five units appears to be well 

captured by their average behaviour in trials of different type. This consistency also clarifies the 

different contributions that each method makes. MSA allows us to rank hidden units by their causal 
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significance, and that information is absent in the results of the BMM (at least as currently defined). 

On the other hand, the BMM supplies a justifiable interpretation of the meaning that those units 

convey – in this case by standing for the agent's knowledge of shape types – while MSA leaves this 

to the observer. Yet despite this overall consistency, the BMM does seem to disagree with MSA in 

the way it characterises hidden units 1 and 2. 

Unit  1  has  a  negative  Contribution  Value,  implying  that  informational  lesions  actually 

improved the agent's performance when applied to this unit,  but Unit 1 is also part of the best 

Candidate that we found (displayed in Figure 16). The implication is that the effect of our Partial 

Informational Lesion is very close to that of the more conventional informational lesion. The shape-

dependent averages for all units are numerically quite close, but they are closest for unit 1; in this 

case,  the  partial  informational  lesions'  probable  primary  role  is  to  remove  the  unit's  variance, 

helping the agent to act on its knowledge of shape type (encoded by units 3-7). 

In the case of Unit 2, a positive Contribution Value does not yield a positive role in our best 

Candidate. The implication here is that unit 2 helps the agent not by encoding its knowledge of 

shape  type,  but  by  helping  to  guide  the  shape-following  and  avoidance  behaviour  that  this 

knowledge informs. Note that if the agent's control of movement depended mostly on its hidden 

units, performance would fall apart when a PIL is applied to them – but the Candidate that includes 

all hidden units displayed fairly accurate behaviour (88% reversed accuracy). The implication is 

that the control of movement behaviour is largely carried out by the agent's direct sensor-to-effector 

connectivity. This is not surprising, because given knowledge of the target shape's type, catching / 

avoiding behaviour can be expressed by a linear mapping from the sensor units. Nevertheless, a 

freely varying unit 2 is clearly critical to the perfect performance that this agent achieves.

In its current form, the results that the BMM provides also lack a temporal dimension, which 

both MSA and PCA include. This is quite deliberate; by associating static values (unit averages) 

with  static  referents  (shape  types),  we  have  traded  this  temporal  information  for  improved, 



57

interpretative  clarity.  The  cost  of  this  trade is  a  dissociation  between the agent's  categorisation 

performance and its actual behaviour (i.e. the pattern of lateral distances between the agent and each 

shape throughout each trial) – the best discovered Candidate allows a rather better manipulation of 

the former than the latter. In Structuralist terms, the BMM captures the agent's knowledge of shape 

type, but not its natural decision process – we will return to this criticism in the next chapter.

In this canonically sceptical domain, the precise form of the discovered representations is 

rather less significant than the fact that we find “good” results at all. The system considered here is 

rather more convincing as a spur for the “mental gymnastics” (Beer, 1996) required to develop good 

analyses  than  as  a  source  of  convincing  cognitive  theory.  And  it  has  played  that  former  role 

successfully.  Armed with the BMM we can turn our attention  to other,  more overtly cognitive 

domains.
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Chapter 5

Dynamicism and Number Comparison

Turning back to the original focus of the thesis, this chapter presents a Dynamicist model of number 

comparison.  The  model  is  founded  on  the  common  intuition  that  this  capacity  emerges  from 

selective pressure to forage effectively (e.g. Gallistel & Gelman, 2000); effective foragers will tend 

to  “go for more”  (Uller  et  al., 2003)  food,  implying  an ability  to  judge relative  quantity.  This 

chapter implements that logic by “evolving” quantity-sensitive foragers.

5.1 Model Design

The environment is a simplified “berry world”; a 2D toroidal grid, composed of 100x100 square 

cells, where each cell can contain up to 9 berries. Food is initially randomly distributed throughout 

the environment, with a uniform probability that a given cell will take any of the possible food 

values (0-9). As food is “eaten”, it can be replaced by random “growth” in other cells. Growth rates 

are adjusted to maintain the total quantity of available food at no less than 80% of its original value.

The ecosystem includes a fixed population of 200 agents, which traverse their environment 

by moving between adjacent cells. The agents are recurrent, asymmetrically connected, rate-coded 

neural networks; the activation value u of the unit i at time t is calculated using equation 3:

u it = ∑j=1

N

w ji u j t−11−m ui t−1m (3)

where  wji is the weight of the connection from unit  j to unit  i,  σ() is the sigmoid function 

(bounded in the range 0-1) and m is a fixed momentum term with a value of 0.5. This momentum 

term replaces the unit-specific time constants used in chapter 4, and is equivalent to fixing all of 
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those constants to '2'; higher values of m give greater weight to each unit's previous activity value 

(and less weight to its inputs) in the calculation of its current activity value. In this case, sensors and 

effectors can only mediate each other through hidden units  (Figure 17).

… …… ……… ………… ……
Own Cell 3-Cell “Look-Ahead”

……Environment
Hidden Layer

Effector Units

EatTurn Right

Turn Left

Move

Figure 17: Schematic structure of the quantity comparison agents' neural network architectures. The 

sensor layer is composed of four cells, each with nine units. The hidden layer is initialised at ten 

units, but agents in the final population invariably have between 23 and 26 hidden units

The agents’ sensors are always clamped according to the food values of the cells within their 

“field of view” (see Figure 18) – agents are sensitive to the cell that they currently occupy and to 

the  three  cells  directly  ahead.  Each  sensor  field  represents  a  corresponding  food  value  with  a 

“Random Position Code”; this  was used by Verguts and Fias (2004),  among others,  to capture 

quantity information without employing  any of the popular representational strategies (see Figure 

19). By using this code, we are also restricting the problem that agents must solve, assuming away 

the perceptual cues, such as element size (Miller & Baker, 1968) and density (Durgin, 1995), that 

mediate numerosity judgements in humans.  These simplifications are important,  but permissible 

given the current, methodological focus.

Effector units are interpreted to define the agent's behaviour during each update; agents can 

turn left or right, move forward, or eat. Each action is associated with a unit, and is executed if its 
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unit's activity is supra-threshold (here, above 0.5). When two inconsistent actions – turning left and 

turning right, or eating and moving – are attempted at the same time, neither occurs.  

Figure 18: An agent in its environment. (A) The agent – a black triangle – is facing right and can 

sense food (grey circles) in its right and left-most sensor fields. (B) The same agent, after making a 

single turn to the left. It can now sense only one cell containing food.

5 = OR OR OR…5 = OR OR OR…

Figure 19: The Random Position Code, similar  to that  employed by Verguts, Fias, and Stevens 

(2005). To represent the quantity N, the code requires that exactly N (randomly selected) sensor 

units be active. The code is illustrated for N = 5.

.

The  ecosystem  proceeds  by  iterative  update  –  each  update  allows  every  agent  the 

opportunity to sense its environment and act. Agents are updated in a random order, which is re-

calculated  at  the  beginning  of  each  time  step.  As  in  chapter  4,  the  “evolutionary”  process  is 

implemented with a Microbial genetic algorithm. The crossover and mutation operators are also 

identical  to  those  used  in  that  chapter,  with  the  exception  that  the  current  version  includes  a 
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dynamic  hidden layer  that  can grow and shrink in  size;  additions  to and subtractions  from the 

hidden layer  replace the mutation of time-constants  in that  model  (p = 1%). The fitness of the 

agents in this system is simply the rate at which they collect food, defined as the amount of food 

collected since their “birth”, calculated by equation 4:

Fitness i =
Food i

Age i
(4)

 where the age of individual i is the number of time steps since its creation. The goal is to 

promote the emergence of agents that forage for food in a quantity-sensitive manner – choosing to 

move into cells that contain the most food by comparing the quantities of food that they can see. 

The best signal that this behaviour has begun to emerge is high food collection  efficiency (food 

collected  per  moves  made  in  the  environment),  which  rises  toward  5  after  about  10  million 

iterations  (~50,000 generations).  The  evolution  was repeated  three  times,  and  all  three  yielded 

populations that achieved similar distributions of food collection efficiency after a similar number 

of iterations; the results that this chapter reports are based on the first of those populations.

5.2 Behavioural Analysis

To capture the agents' quantity-comparison performance, we can remove them from their “natural” 

environment and placed them into a 3x3 “mini-world” (Figure 20). Two cells, the top left and top 

right of the world, contain food of varying quantity. In its initial position at the centre of the world, 

the agent can “see” both of these food quantities, though it can also turn without constraint once 

each trial begins. Food selection occurs when the agent moves onto one or other of the filled cells – 

the only cells onto which it is allowed to move. A correct choice is defined as the selection of the 

larger of the two food values; this is analogous to method used by Uller and colleagues (2003) to 

capture quantity comparison performance in salamanders4. Every agent in the population was tested 

4 One important difference is that Uller et al. (2003) exclude trials in which their salamanders 
fail to choose one option after a maximum length of time – in our method, these “misses” 
(failure to choose after 100 iterations) are treated as incorrect choices.
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using  this  methodology,  with  50  repetitions  of  every  combination  of  food  quantities  (1-9,  72 

combinations in all), for a total of 3,600 trials per agent. The results are displayed in Figure 20.

A few of the agents perform extremely badly, indicating that the evolved foraging solutions 

are brittle in the face of “evolutionary” change. This brittleness may also reflect a more general 

mutation  bias  against  specialised  structures  (Watson  &  Pollack,  2001).  The  main  bulk  of  the 

population distribution is also apparently bimodal; agents in the left-most cluster perform at roughly 

chance levels, whereas agents in the right-most cluster perform significantly above chance – only 

this latter group appear to discriminate quantity. 

.

Food 1 Food 2

Accuracy Rate

Figure 20: (Left) The schematic structure of the comparison experiment. The agent (represented by 

a black triangle) is placed in the centre of the mini-world, facing “up”. (Right)  A histogram of the 

population performance in the quantity comparison experiment

The  persistence  of  non-discriminating  agents  reflects  the  fact  that  high  rates  of  food 

collection can be achieved by sacrificing decision quality in favour of decision speed. A visual 

inspection of the performance scores for these agents indicates strong asymmetry in their behaviour; 
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many simply “choose” the right-hand square regardless of the food quantities presented5. Using the 

results  displayed  in  Figure  20,  I  selected  the  most  accurate  agent  and  recorded  its  empirical 

performance in more detail. The results are displayed in Figure 21. As the minimum of the two 

quantities to be compared increases (Figure 21, left), there is an increase in discrimination error (p < 

0.001, R2 = 0.34, β = 0.59); this is an instance of the Size effect. As the numerical distance between 

the quantities increases (Figure 21, centre), there is a corresponding decrease in discrimination error 

(p < 0.001, R2 = 0.55, β = –0.75); this is an example of the Distance effect. Strikingly, this agent 

also displays a Distance effect for reaction times (p < 0.001, R2 = 0.30, β = – 0.56), just as humans 

do in analogous tasks. Reaction times are defined as the number of time steps from the start of each 

comparison trial until the agent chooses one of the two food values (Figure 21, right). 

Figure 21: Accuracy scores are rates of correct choices. (a) Mean accuracy vs. minimum quantity of 

food  (Min)  in  a  given  trial.  (b)  Mean  accuracy  vs.  numerical  distance  (Split)  between  food 

quantities. (c) Mean “reaction time” vs. numerical distance between quantities; this latter value is 

the average number of processing iterations required before the agent makes a defined “choice”

Though non-discriminating foragers can persist by sacrificing decision accuracy for decision 

speed, this agent is capable of reversing that trade-off, sacrificing decision speed in order to more 

5 Though lateral asymmetry is a consistent feature of the behaviour of agents evolved in this 
system, its direction is not consistent – some runs yield agents that prefer left-sided food.
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reliably “go for more”. Since Size and Distance effects drive the classical debate on the structure of 

quantity representation (i.e. the format debate), a representational account of this agent's behaviour 

– which seems to display those effects – should be able to make a relevant contribution.

5.3 Extending the BMM

Though the logic of the last chapter (the initial application of the BMM) is equally applicable here, 

the current  agent  raises some practical  issues that  demand some extensions.  The best  quantity-

discriminator in our evolved population has 25 hidden units – much more than the 7 considered 

before.  In the previous case,  the results  were derived from an exhaustive search of the agent's 

Candidate-space, with 27 lesion experiments in all. For much larger spaces of the sort we now face, 

this  approach  will  be  prohibitively  time-consuming.  The  space  is  further  enlarged  because  the 

number  comparison  problem  is  rather  richer  –  at  least  in  terms  of  the  potential  for  different 

representational strategies – than the categorical perception problem. Specifically,  there are now 

multiple “meanings” that we might attribute to each hidden unit, which could represent either of the 

two quantities independently,  or the difference between them. Table 2 displays the list of lesion 

types – or proposed unit “tuning functions” – that are considered. There are five values in all, so the 

corresponding Candidate-space contains 525 items.

Lesion Identifier
0 No lesion
1 Unit average codes for right-hand food value
2 Unit average codes for left-hand food value
3 Unit average codes for relative difference
4 Unit average codes for absolute difference

Table 2: Receptive fields considered in the BMM-driven analysis of the quantity-comparison agent.

To search this space, we can use precisely the same approach as that employed to design the 
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agents themselves – a Microbial genetic algorithm (Harvey, 2001). When designing the agents, the 

search optimised a population of neural networks, while in this case, we employed the search to 

optimise a population of Candidates. These Candidates are structurally identical to those employed 

in the last section, but different in that their cells can contain integers in the range 0-4 (rather than 

0-1). The other important difference is that, where the agent was evolved to be an effective forager, 

the Candidates are evolved to manipulate that agent effectively.

To achieve this goal, we must first record the agent's comparison performance scores for 

every individual combination of food values (72 in all); the test includes 10 repetitions of each 

combination, and recorded the number of times that correct choices were made in each case. The 

result is a vector of performance scores (length = 72), associating each food combination with a 

score in the range 0-10. A similar list was also generated during the testing of each Candidate; in 

these  tests,  agents  were  always  placed  in  an  empty  mini-world,  and  the  goal  was  to  discover 

Candidates  that  encouraged  the  agent  to  behave  as  if  it  could  “see”  particular  food  value 

combinations. 

Following the logic of chapter 4, we can measure the correspondence between this invoked 

perception  and  natural  perception  by  comparing  the  agent's  behaviour  in  each  case;  good 

Candidates should encourage choices that correspond to those made under natural conditions. The 

fitness of each Candidate is defined as the sum of the absolute item-by-item differences between the 

baseline scores and lesioned scores; the goal of the search was to find a Lesion List that minimised 

this “fitness”. The calculation of fitness is described below in equation 5:

F i = ∑j=1

N

∣P j
u − P j

l ∣ (5)

where P j
u is  the  performance  score  (the  number  of  times  a  correct  choice  was  made) 

achieved by the agent for food value combination  j, P j
l is the performance score achieved when 

partial informational lesions are used to simulate the presence of food value combination j, but no 
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food is actually present, and N is the number of performance scores in each list (72).

After running the lesion-search (~4 million iterations) and identifying the best discovered 

solution, one further step was required. As mentioned in chapter 4, simulated evolution can yield 

bias units – units whose activity remains very close to '1' regardless of any environmental input. On 

closer inspection, five of the agent's units appeared to behave in this way, and two were part of the 

best Candidate that was discovered. Since bias units do not vary, neither informational nor partial 

informational lesions should have any impact at all on the agent's behaviour; Candidate cells that 

correspond  to  bias  units  will  therefore  operate  much  like  “junk”  DNA  in  the  genome,  since 

particular values in those cells should have no effect on the solution's overall fitness. That proposal 

was confirmed by pruning and then re-testing the solution – since no fitness costs were incurred, 

these units play no part in the results that follow.

Unlike  in  the  previous  chapter,  the  best  discovered  Candidate  does  not  permit  perfect 

manipulation of that agent's choice behaviour. Nevertheless, the results are encouraging; to assess 

their  quality,  we  can  employ  the  standard  method  of  linear  regression.  The  mark  of  a  good 

Candidate is its ability to reproduce “natural” comparison choices when no food is actually present 

– the dependent variable for the regression is therefore the series of “natural” performance scores 

that  we derived earlier.  This series is an integer vector,  with 72 cells  (one for each food value 

combination), each containing integers in the range 0-10; a score of '10' indicates that the agent 

always  chooses  the  larger  of  the two values  when faced with  that  particular  combination.  The 

independent variable is the list of performance scores achieved when our best discovered Candidate 

is used to lesion the agent, and no food is actually present. In this case, a correct choice is made 

when the agent moves onto the square that would have been correct if the food that we have tried to 

simulate were actually present in the mini-world. By measuring the correspondence between these 

two series, we are measuring the extent to which the best, discovered Candidate has allowed us to 

manipulate the agent's categorisation choices.
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5.4 Results

By linear regression, the relationship between the agent's baseline performance and that obtained 

using the best Candidate, is very strong: p < 0.001, R2 = 0.59. In other words, the best discovered 

Candidate yields performance scores that are significantly related to the baseline scores, and which 

account for 59% of the variation in those scores (Figure 22). The theory itself – the best account 

that we have found of the agent's representational strategy – is graphed in Figure 23.

Is  59% enough? Issues of this  sort  will  always  depend on debate.  One argument  in the 

result's favour stems from the logic of Spieler and Balota (1997), who argued that a model's item-

level predictive power should be judged relative to that of the environmental features that drive the 

behaviour of interest. In this case, the relevant features are the food values themselves, their mean 

and numerical distance. When these features are regressed (as independent variables) against the 

agent's performance scores (the dependent variable), an R2 value of 0.74 is achieved (p < 0.001). 

That figure of '0.74' is the real target for the Candidates, which are designed solely to capture the 

agent's representations of those quantities. The best Candidate captures ~80% of the influence of the 

food values themselves on the agent's choice behaviour, so cannot be lightly dismissed.

The precise form of the agent's proposed representations is also clear; the average activities 

of almost all of the network's critical units appear to accumulate – positively or negatively,  and 

proportionately – as the magnitudes of their referents increase. Since this linear accumulation is 

evident at the level of single units in the distributed code, I refer to it as a single unit accumulator  

code in the material that follows. Neurophysiological studies have just begun to tackle the issue of 

the neuronal correlates of number representations using single cell recording in behaving monkeys. 

Nieder and colleagues (Nieder, Freedman, & Miller, 2002) have described “number neurons” in the 

monkey brain with tuning functions that fit  the logarithmic coding of Dehaene and Changeux’s 

(1993) “numerosity detectors”.  This finding would seem to be at  odds with the type of coding 

employed by our agent. 
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Figure 22: Agreement between performance scores in unlesioned vs. lesioned conditions for the 

best,  identified theory of the agent's representations; error bars are standard errors of the values 

(mean averages) at each point. Perfect agreement would yield a perfectly straight diagonal line, of 

the form 'y = x'.
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Figure  23:  Classically  recognisable  representations,  emerging  from  in  a  Dynamicist  model  of 

quantity comparison. (A) Representation of food on the agent's right, (B) Representation of food on 

the agent's left, (C) Representation of the difference between presented food values. Each point in 

each of these series corresponds to the average activity value of the specified unit in the specified 

circumstances.
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Figure 24: From Roitman, Brannon, & Platt, 2007; 4 examples of neurons' responses recorded in 

the macaque LIP during a task in which the numerosities of visually presented sets were compared 

to a fixed standard. In each case, the neurons' spike rates are monotonically related to the number of 

elements in those sets.

However, a different type of “number neurons” with tuning properties that are startlingly 

similar to those employed by our agent has been recently discovered by Roitman, Brannon and Platt 

(2007) in the lateral intraparietal cortex of monkeys engaged in a numerosity comparison task. After 

averaging the spike rates recorded over a few hundred milliseconds from single, number-sensitive 

neurons – a process analogous to the current use of circumstance-dependent unit averages – the 
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authors showed that these neurons encode the total number of elements within their receptive fields 

in a graded fashion (see Figure 24). I was not aware of this work while implementing the model that 

this chapter reports – nevertheless, these data provide a huge boost to the confidence that we can 

attach to it.  Moreover, the same neural coding strategy (a graded sensitivity to an increase of a 

particular feature dimension) has been shown to apply to other sensory domains (e.g., the frequency 

of  vibrotactile  stimulation;  Romo  &  Salinas,  2003);  that  result  further  underlines  this 

representational strategy's biological plausibility, and also raises the possibility that its scope might 

extend beyond numerical cognition.

This  foraging  agent  is  the  first  example  of  a  quantity-comparison  model  that  encodes 

numbers  with linear  single-unit  accumulators,  though the  format  is  broadly consistent  with  the 

accumulator system proposed by Meck and Church (1983), as well as with the coding of Dehaene 

and  Changeux’s  (1993)  “summation  clusters”  (which  precede  numerosity  detectors)  and  the 

numerosity code proposed by Zorzi and colleagues (Zorzi & Butterworth, 1999; Zorzi et al., under 

revision).  I  refer  to  this  novel  format  as  the  single  unit  accumulator  code in  the  material  that 

follows.

5.5 Interim Discussion

We began with some criticisms of Connectionist learning (chapter 3), which motivated the original 

introduction of Dynamicism. Like Connectionism, Dynamicism carries an apparent, intuitive cost 

that balances its demonstrable practical benefits; the Behaviour Manipulation Method is inspired by 

the  recognition  that  dynamical  approaches  to  cognitive  science  must  find  a  place  for  classical 

structure before most cognitive scientists will accept them. Nothing in the logic of Dynamicism 

forbids Compatibilist interpretation, but in practice, Dynamicist models have not been thought to 

support it. The first goal of this work – addressed in chapter 4 – was to demonstrate that (and how) 

Compatibilist interpretations can be made in even the most canonically skeptical circumstances. 
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Two conventional analytical methods – PCA and MSA – fall short of achieving that goal. 

Each  of  these  methods  can  act  as  a  filter,  guiding  the  focus  of  our  attention,  but  there  is  no 

guarantee that either will  filter  the data into a neatly interpretable form. And even more neatly 

interpretable cases will still depend on a subjective “eye-balling” of the results, offering little in the 

way of formal  justification for the classically-minded observer.  By contrast,  the BMM offers a 

formal,  scalable,  statistically  justifiable  route  toward  the  identification  of  causally  significant, 

classically recognisable representations. It should be noted that our criticisms of PCA also apply to 

Multi-Dimensional Scaling (MDS) methods, which have gained some currency in recent years (e.g. 

Botvinick & Plaut, 2004).

The second goal was to illustrate that, armed with the BMM, Dynamicist researchers can 

begin to “play the same game” as their  more  conventional  counterparts.  Using the structure of 

behaviour-based selection as an analogy for natural evolution,  this chapter applied the BMM to 

“evolved” quantity-sensitive foraging agents, which display characteristic Size and Distance effects 

when forced to compare two quantities. This environment demanded two important extensions to 

the BMM – a shift toward the use of search (and away from exhaustive testing), and the definition 

of a statistical metric for the (probably imperfect) quality of the BMM's results.

The  first  extension  was  motivated  by  the  size  (25  hidden  units)  of  the  agent  that  we 

considered,  which makes exhaustive search of the Candidate-space impractical.  This is a useful 

extension  because  it  makes  the  BMM more  scalable,  but  the  current  form of  that  extension  is 

largely pragmatic and does carry a cost; we can never be sure that the best identified theory is also 

the best available theory.  Different approaches to searching an agent's representation space may 

provide better justified results.

Critically though, there is no way to guarantee that the BMM's results will be optimal in a 

formal  sense;  their  scope will  always  be restricted by the “representational  primitives” that  we 

choose to consider. This point highlights an important opportunity for further extending the BMM; 
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average unit activities are just one among many primitives that we might reasonably employ. Given 

the climate of skepticism that Dynamicist models must face, our choice made a justifiable trade of 

explanatory  power  for  interpretative  clarity  –  but  nothing  in  the  BMM's  logic  precludes  the 

consideration of different primitives, such as time-period dependent means, average rates of change, 

or even centroid time series. These extensions are attractive because they add a temporal dimension 

to the results that the BMM might yield – a critical first step on the path to capturing not just an 

agent's knowledge, but its decision process as a whole.

Yet  despite  these  restrictions,  the  results  are  encouraging;  the  BMM  achieved  perfect 

manipulation of an agent's categorical perception performance, and reasonable manipulation of an 

agent's quantity comparison performance. Even accepting the logic that inspired this approach, the 

former result is surprising; cognitive theories rarely aim to capture every detail of the performance 

under study. Like the first extension to the BMM, the second – defining a statistical metric for the 

“quality” of its results – will therefore probably be key to its scalable application. The form of this 

extension is useful both for its application-independence, and because it lets us compare the effect 

of an agent's putative representations to the effect of the referents themselves. 

Though novel in detail,  the best,  discovered theory of the agent's  representations is also 

broadly consistent with some other theories that postulate a linear relationship between (external) 

numerosity and activation of the (internal)  quantity code (e.g.,  Gallistel & Gelman, 1992, 2005; 

Meck & Church 1983; Zorzi & Butterworth, 1999), and not with others that represent numerical 

quantity as a position on a logarithmic analogue continuum (Dehaene, 2003). In other words, the 

agent does at least appear to “play the same game” as its more conventional counterparts, achieving 

our second goal. But playing the game is just a first step – Dynamicists should also strive to win it. 

With this goal in mind, the most valuable source of supporting evidence is the single-cell recording 

work reported by Roitman, Brannon and Platt (2007), which seems to provide a clear confirmation 

that the foraging agent's MNL format might also occur in biological agents.
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On the other hand, one possible remaining concern is that our foraging agents are really no 

more “minimal” than their modular counterparts – that the precise form of our results owes more to 

the details of the artificial ecosystem than it does to a more general connection with the pressure to 

forage  effectively.  This  kind  of  connection  is  probably  unavoidable  –  indeed,  its  biological 

relevance is also assumed in the way that researchers employ the statistics of real sensory stimuli to 

decode the tuning functions of biological  neurons  (e.g.,  Atick,  1992; Barlow, 2001; Simoncelli, 

2003) – but is presence does suggest a direction for future research. Specifically, these results could 

usefully be confirmed by reproducing the same selective pressure in a different ecosystem (e.g. with 

different  movement  dynamics,  sensor  representations  and  /  or  food  types,  but  with  the  same 

essential selective pressure).

More broadly, this Dynamicist approach offers three advantages over its more conventional 

rivals – the promise of effective cognitive-behavioural integration, the problem-driven emergence 

of both empirical phenomena (e.g. Size and Distance effects) and representational strategies at the 

same time, and the opportunity to explore the role of phylogeny in cognitive development. These 

advantages  could  be  achieved  in  different  ways,  but  in  practice,  classically  modular  modeling 

approaches do not encourage them.

Alongside  those  general  advantages,  Dynamicism  also  appears  to  carry  an  important, 

general cost; behaviour-based selection is a reasonable model of evolution, but a very poor model of 

learning.  Criticisms of conventional  Connectionist  learning (such as the reliance on implausible 

architectures: e.g. O’Reilly, 1998) may be justifiable, but without an alternative account of the role 

of synaptic  plasticity,  Dynamicism will  struggle to effectively capture a great deal of cognitive 

behaviour. Biologically implausible design methods can yield biologically plausible structures – but 

the acquisition of cognitive skills is often at least as important a focus of interest as the structures 

underlying “mature” skills. Attempts to integrate synaptic plasticity within a Dynamicist framework 

are beginning to be made (e.g. Phattanasri, Chiel, & Beer, submitted); results of this sort will be 
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critical to the future of the Dynamicist project.

Dynamicist  are  right  to  require  that  empirical  evidence  should  drive  the  role  that 

Structuralist  concepts  of  representation  play in  cognitive  theory.  But  in  itself,  this  argument  is 

incomplete; it does not tell us how to satisfy that test – to claim with confidence that representations 

really do emerge. As well as making a novel contribution to the format debate, this section of the 

thesis  has  proposed  a  logic  which  addresses  that  problem directly;  theories  involving  classical 

representations are useful, and approximately correct, if they allow us to manipulate behaviour in 

predictable  ways.  The result  is  a Compatibilist  compromise between Structuralist  intuition,  and 

Eliminativist doubt. Armed with this method, Dynamicism can move a step further along the path 

that  Connectionism  has  taken,  from  peripheral,  contentious  novelty  to  accepted,  fundamental 

methodology.
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Chapter 6

Evolving Optimal Decision Processes

In the last chapter, I mentioned that the current variant of the BMM captures representations, but 

not  the  decision  process  that  employs  them.  This  chapter  introduces  a  distinct  but  related 

framework which addresses the latter directly – inspired by the assumption that (biological) neural 

information processing strategies will be close to optimal for any given task.

6.1 Normative Formal Theories and Cognition

Sometimes, the best way to understand a process is by comparing it to an independent standard. 

Normative analyses  can provide that  standard,  describing optimal  or near-optimal  strategies  for 

solving problems of cognitive interest.  Studies of vision,  in particular,  have benefited from this 

perspective, decoding the relevant neural systems with ideal observer theories (e.g. Geisler, 1989, 

2003;  Najemnik  & Geisler,  2005).  More  recently,  the  approach  has  been  fruitfully  applied  to 

perceptual decisions, where attention has focussed on three dimensions of variation; the strength of 

sensory “evidence” that subjects  are given (e.g. Kim & Shadlen,  1999; Gold & Shadlen, 2000, 

2001,  2003),  the  probabilistic  distribution  of  correct  choices  in  the  past  (e.g.  Ciaramitaro  & 

Glimcher, 2001; Platt & Glimcher, 1998), and the reward associated with alternative choices (e.g. 

Platt & Glimcher, 1998). Responses to variation in all three of these dimensions are susceptible to 

normative analyses.

One  task  in  particular  provides  an  elegant  example  of  the  mutual  interaction  between 

normative analyses and empirical data. The simplest variant of this task engages subjects in a series 

of two-alternative forced-choice motion detection problems, driven by fields of moving dots. In 
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each case, a specific proportion of the dots move together, in the same direction (e.g. left or right); 

the subjects' goal is to identify that direction, and respond accordingly. The most popular, normative 

analysis of this task employs a Bayesian formalism – a directed, bounded, stochastic random walk – 

that describes the incremental accumulation of noisy evidence in favour of one or another choice 

(Shadlen, Hanks, Churchland, Kiani, & Yang, 2006). This model is a special case of the much more 

general  Diffusion-to-bound  framework  (Ratcliff,  2001;  Shadlen  et  al.,  2006),  which  was  first 

employed to describe the behaviour of gases (i.e. Brownian motion) but is now much more familiar 

for  its  applications  in  finance  –  in  particular  to  the  pricing  of  options  and  other  derivatives. 

Diffusion models have also been widely applied in cognitive science (Ratcliff 1978, 2001; Ratcliff 

& McKoon, 2008; Ratcliff & Rouder, 1998; Wagenmakers, van der Maas, & Grasman, 2007). The 

framework's general aim is to describe the behaviour of dynamical systems that are mediated both 

by a sequence of inputs and by random noise; in concert with the systems' current state, those two 

factors define their state in the next instant. Given certain other parameters, like the state's possible 

range of change from one instant to the next (its volatility), the framework can define probability 

distributions for these systems' behaviour in time.

Figure  25:  Schematic  structure  of  a  Diffusion-to-bound  system,  with  two  decision  boundaries. 

Weaker signals yield slower drift away from the system's initial state (Z). Weaker signals also make 

noise more significant in that drift, so raise the probability that the wrong decision boundary might 

be reached. This figure is re-printed from Ratcliff & McKoon, 2008.
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The simplest variant of the system is illustrated in Figure 25 – a single variable that can 

change in only one dimension. Imagine that this variable is subject to random noise, and receives a 

simple,  binary  signal  (a  sequence  of  1's  and  0's);  when  the  system  receives  a  '1',  its  state  is 

incremented, while a '0' implies a decrement of the same magnitude. Given a completely balanced 

sequence (e.g. alternating 1's and 0's), this system's behaviour will be largely determined by its 

noise, but sequences that contain mostly 1's (or mostly 0's) should push the system into definite 

positive (or negative) pattern of incremental accumulation. As the sequence's bias in favour of one 

or another value increases, so the rate of that accumulation should increase. If we place boundaries 

on the accumulation, at equal distances above and below the system's initial state, those different 

rates of accumulation will  translate  to different “reaction times”;  the system will  reach one (or 

other) decision boundary more quickly when the signal that it receives is stronger. And when the 

signal is weak, noise-driven drift may allow the system to reach the “wrong” boundary, or to make 

an incorrect response. Given the right parameters, this framework can therefore capture both error 

rates and reaction times, relating both to the coherence of a sequential input signal..

With  very  few  free  parameters,  this  model  can  provide  a  very  good  fit  to  subjects' 

behavioural data (reaction times and error rates) in the motion-detection task (e.g. Shadlen et al., 

2006). However, perhaps its most interesting predictions are pitched at the level of the neurons that 

drive that behaviour. To collect those neural responses, Shadlen and colleagues recorded data from 

single neurons in the monkey brain, while these monkeys performed the motion discrimination task. 

Their particular variant of the task employed eye movements as responses, and the authors recorded 

data from the primate homologue of the pre-frontal and lateral intra-parietal cortices (PFC and LIP 

respectively), previously associated with the preparation of eye movements toward particular parts 

of the visual field (e.g.  PFC: Wilson, Scalaidhe,  & Goldman-Rakic, 1993; Funahashi, Bruce, & 

Goldman-Rakic 1993; LIP: Gnadt & Mays, 1995; Colby, Duhamenl, & Goldberg, 1996). What they 

found was striking – neurons that seem to implement the normative model directly, with spike rate 
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as the accumulating variable (see Figure 26). And like the random walk model,  the rate of that 

accumulation reflects the strength of the available sensory evidence.

This mechanism offers a potentially very general insight into the way that neural systems 

categorise incremental evidence from noisy sources. Three of the four most popular accounts of 

number representation – all except Zorzi and colleagues'  numerosity code – include some concept 

of noise. Remembering that the BMM, described in chapters 3-5, tracks average unit activity values, 

noise is also implied in the single-unit accumulator code proposed previously. Indeed, as Figure 26 

shows, this kind of accumulation is consistent with a monotonic relationship between these neurons' 

average spike rates and signal strength – precisely the relationship that the single unit accumulator  

code defines. In other words, there are good reasons to suspect that this same accumulation process 

might be employed in at least some numerical processing tasks (Dehaene, 2007). 

Several  computational  models  of  this  motion  discrimination  task  have  already  been 

proposed.  One  comparatively  early  example,  by  Gold  and  Shadlen  (2000),  demonstrated  that 

populations  of  spiking  neurons  could  be  effectively  pooled  to  drive  the  proper  accumulation. 

Another, more simplified model (Usher & McClelland, 2001) explored the possibility of extending 

the  mechanism  to  capture  N-alternative  (rather  than  2-alternative)  forced-choice  tasks.  More 

recently,  Wong and Wang (2006) analysed an extremely minimal  version of the mechanism in 

detail, and proposed a mechanism that might mediate the accumulation's decision boundary. In the 

terminology of chapter 2, all of these examples are performance models – hand-coded to capture the 

the neural responses that have been observed. This chapter takes a rather different approach, which 

can begin to predict – rather than just reflect – those responses.
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Figure 26: Lateral  Intra-Parietal responses to motion stimuli,  by signal strength; re-printed from 

Roitman & Shadlen, 2002. (A) Average response from 54 LIP neurons, grouped by motion strength 

and choice as indicated by colour and line type. On the left, responses are aligned to the onset of 

stimulus motion. Response averages in this portion of the graph are drawn to the median RT for 

each motion strength and exclude any activity within 100 ms of eye movement initiation. On the 

right, responses are aligned to initiation of the eye movement response. Response averages in this 

portion of the graph show the build-up and decline in activity at the end of the decision process, 

excluding any activity within 200 ms of motion onset. The average firing rate was also smoothed 

using a 60 ms running mean. Arrows indicate the 40ms epochs used to compare spike rate as a 

function of motion strength in the next panels. (B) Effect of motion strength on the firing rates of 

the same 54 neurons in the epochs corresponding to arrows a and b above.  When motion was 

toward  the  RF (solid  line;  epoch a),  the  spike  rate  increased  linearly  as  a  function  of  motion 

strength. When motion was away from the RF (dashed line; epoch b), the spike rate decreased as a 

function of motion strength. (C) Effect of motion strength on firing rate at the end of the decision 

process. Response averages were obtained from 54 neurons in the 40 ms epochs corresponding to 

arrows c and d. The large response preceding eye movements to the RF (solid line, filled circles; 

arrow c) did not depend on the strength of motion. Responses preceding eye movements away from 

the RF were more attenuated with stronger motion stimuli (dashed line; arrow d).

The key to that reversal is a “minimal” model-building method, in the sense described by 
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Nowak (2004) – a method that, as far as possible, can minimise the architectural assumptions that 

model-designers must usually make. Rather than using a model to capture fixed intuitions about the 

neural implementation of this task, this chapter asks – and attempts to answer – a simple question; 

what neural architecture might be needed to express its optimal (or near optimal) implementation? 

To answer that question, I propose a variant of the Dynamicist approach described previously: a 

method that searches the problem's strategy-space to discover effective model architectures.

6.2 Method

The method  starts  with the  definition  of  the  task.  Following the  logic  of  prior  work  (Gold  & 

Shadlen, 2000; Usher & McClelland,  2001; Wong & Wang, 2006), the visual stimuli  (fields of 

moving dots)  are expressed by the responses they are  thought to  invoke in  populations  of MT 

movement-sensitive neurons. These responses are encoded as two series of values drawn from two 

Poisson distributions; coherent motion in a particular direction implies an elevated mean value for 

the corresponding distribution.  When no stimuli  are  present,  the mean value that  defines  these 

distributions  is  '15'.  When  stimuli  are  presented,  the  mean  values  for  the  distribution  that 

corresponds to the actual direction of motion are drawn from the range '80-100', while the mean 

value for the other distribution is always set to '80'. All values drawn from these representations are 

then divided by '100' before being passed to the network. Taking these series as inputs, our models 

must  “decide”  which  series  has  the  higher  mean  value  – categorising  the  implied  direction  of 

coherent  movement.  Note  that,  as  currently  defined,  these  sensor  representations  are  loosely 

analogous to the noisy MNL; like the latter, the former imply that the variance associated with larger 

numbers  is  larger  than  that  associated  with  smaller  numbers.  Cast  in  that  light,  the  motion 

discrimination  problem  is  itself  analogous  to  number  comparison  against  a  fixed  numerical 

standard.

The logic of the approach should be applicable to a large range of architectures, but the 
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current  work  employs  rate  coded,  universally  and  asymmetrically  connected  neural  networks, 

updated synchronously in time steps. The activity value u of unit i at time step t is calculated using 

equation 6 (below) – this is the same approach as used in chapter 5: 

u it = ∑j=1

N

w ji u it−11−m u it−1m (6)

where  wji is the weight of the connection from unit  j to unit  i,  σ() is the sigmoid function 

(bounded in the range 0-1) and  m is a fixed momentum term with a value of 0.5. The network's 

categorisation choices are represented on two effector units, and each network may (or may not) 

include a variable number of hidden units (see Figure 27 for a schematic).

…

Hidden Layer
(0 or more units)

Effector Units

Sensor Units

…

Hidden Layer
(0 or more units)

Effector Units

Sensor Units

Figure 27: (Left) Schematic structure of the networks designed to solve a motion discrimination 

problem. With the exception of the sensor units, whose activity is fixed by the input signal, all of 

the networks' units are directly connected to every other, and to themselves. The size of the hidden 

layer can also change. (Right) An illustration of the Poisson distributions from which sensor unit 

values are drawn. During the pre-stimulus phase (top), both of the units' distributions have the same 

mean (15). During the stimulus phase (bottom), the units' distributions have different mean values; 

the network's job is to “select” the unit with the higher mean value.

The model-building method is  familiar  from chapters  3-5: a microbial  genetic algorithm 

(Harvey, 2001). Seeking to avoid any unnecessary assumptions, the current version of this method 
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has a slightly greater scope than that used previously. As before, the process starts with a population 

of (200) randomly specified neural networks – but in this case, that randomness includes both the 

networks' weights and their effector functions. For each of the two possible choices, the target range 

of effector unit activity values is defined by three real numbers in the range 0-1 – the first two 

values specify a centre point and the second a radius. Taken together, these values define a circular 

area in the effectors' (2-dimensional) state space; a choice is considered to have been made when 

the effectors' state enters one or other of these areas. The weights are initialised as in chapters 4 and 

5 – random real numbers in the range 0-1. And in deference to a preference for simpler network 

architectures over more complex solutions, all of the models are initialised with no hidden units.  

The algorithm proceeds by iterations. During each iteration, two networks are selected at 

random and used  to  create  a  “child”  individual,  defined  by  a  combination  of  two operators  – 

crossover and mutation. The crossover operator is a simple mixing of the parents (weight matrices 

and effector functions) that define the two “parents”; each parent supplies a given parameter value 

with a probability of 50%. The mutation operator implements a small, random change to the child's 

structure – usually an increment or decrement (with equal probability) of '0.01' to either a randomly 

selected weight or to one of the values that define the network's effector function. Less frequently (p 

= 0.01), the mutation operator can also add or remove hidden units, changing the network's total 

size. This process is also biased in favour of smaller networks, with removals being twice as likely 

as additions. Once created, the child network replaces the “weaker” of its two parents; after many 

repetitions, the effect is to propagate features of “fit” networks throughout the population, at the 

expense of features of “unfit” networks.

Fitness  tests  are  conducted  by  exposing  particular  networks  to  a  series  of  motion 

categorisation problems. Each trial starts with a pre-stimulus phase, which has a fixed length of 20 

iterations, during which no stimulus is present; for each iteration in this phase, sensor unit values 

are drawn from a Poisson distribution with a mean value of '15' (scaled to 0.15). The networks' goal 
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during this phase is to return their effector units' activity values to a “resting” state (both units have 

the activity value 0.15 ± <0.1). If they fail, the current trial ends – is counted as a “miss” – and the 

next trial begins. The stimulus phase lasts for 100 iterations. During each iteration of this phase, 

sensor unit activity values are drawn from two different Poisson distributions; the mean value for 

the  standard sensor unit  (representing the direction that  does not have coherent  motion)  is  '80' 

(scaled to 0.8), while the mean value for the coherent motion unit (representing coherent movement 

in a given direction) varies, from trial to trial, in the range 80-100 (0.8-1.0). Stimuli continue to be 

presented  throughout  the  stimulus  phase,  regardless  of  whether  or  not  the  network  makes  a 

response; this approach makes it possible to define a powerful metric for the definition of fitness, 

discussed below.

In their mathematical treatment of this process, Shadlen and colleagues (2006) suggested 

that neural accumulation emerges in the pursuit of ever-greater reward rates; better solutions forge 

an effective compromise between response latency and response accuracy. It is possible to use that 

metric directly in the current system, defining fitness as the ratio of correct responses to the average 

response time – but  this  metric  is  rather too discrete  to be useful.  As the search proceeds,  the 

architectures  of the models  in  the population  will  tend to  converge;  that  convergence naturally 

emphasises the mutation operator as the population's major source of variation, and each mutation 

implements a small random change. The result is that, often, pairs of randomly selected networks 

will be very similar indeed – sometimes so similar that they will make the same series of choices 

with the same response latency. To manage this possibility, we need a metric that identify when one 

network is closer to better behaviour, than another.

The approach used here is to replace reward rate with a metric pitched at the level of effector 

units, whose activity values are recorded throughout each trial. During the pre-stimulus phase, the 

networks' goal is to return their effector units to the resting state – we can check that by identifying 

the  minimum  distance d 0 between  the  effector  state  and  the  resting  state's  centre  (0.15,  0.15). 
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During the stimulus phase, the networks' goal is to approach the target state as quickly as possible; 

that behaviour can be measured by summing the distances D1 between the effectors' state and the 

target state throughout the stimulus phase. By this definition, fitter networks will minimise both d 0

and D1 – but one further feature is required. Since the networks' effector functions can be changed, 

it is possible to achieve very small distances by making both target states identical. To prevent this 

from happening, we have to reward networks that use very different target states (i.e. with a larger 

distance d C between their states' centres), and penalise them when those states overlap. This latter 

quantity is calculated as the length d b of the vector between the points on states' boundaries that 

intersect with the line that connects their centres. If the direction of that vector is the same as that of 

the vector between the two centres, the states do not overlap, and d b is set to '0'. Figures 28 and 29 

illustrate how these variables are extracted, and Equation 7 specifies how they are combined in the 

definition of fitness.

Effector 1

Effector 2

Pre-Stimulus
(min. distance) Stimulus (sum distances)

IterationsPre-Stimulus 
Target Centres

Stimulus 
Target Centres

Stimulus 
Distance

Pre-Stimulus
Distance

d0 D1

Effector 1

Effector 2

Pre-Stimulus
(min. distance) Stimulus (sum distances)

IterationsPre-Stimulus 
Target Centres

Stimulus 
Target Centres

Stimulus 
Distance

Pre-Stimulus
Distance

d0 D1

Figure 28: Illustrating the calculation of two distances – d 0 and D1 – in a motion discrimination 

trial. d 0 is the minimum distance between each effector's activity values and the pre-stimulus target 

centres  during  the  pre-stimulus  phase. D1 is  the  sum  of  the  average  distances  between  each 

effector's  activity  (at  every iteration)  during  the stimulus  phase.  The  distances  are  Euclidean  – 

calculated after projecting the effector activity series (and target areas) onto a 2-dimensional space.
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Figure 29: Illustrating the calculation of the effector functions' fitness variables. d c is the distance 

between the centres of each target, while d b is the distance along the same line, between the targets' 

closest boundaries. When the two vectors run in opposite directions, the targets overlap (right) – 

otherwise (left), the targets do not overlap and d b = 0.

f = {i=1

N  d c

d i
0 d i

11d b}  (7)

where d i
0 is the minimum distance between the network's effector  units and the “fixation 

target” during the pre-stimulus phase of trial  i, d i
1 is the average distance between those units and 

the centre of the correct response region during the stimulus phase of the same trial (i) – dividing 

the sum Di
1 by the number of iterations in the stimulus phase (100), and N is the number of trials 

that  compose a fitness test.  The resultant  measure –  f  – captures not just  the network's  rate of 

reward, but also how close its responses were to an optimal balance between speed and accuracy.

6.3 Results

The system requires about 400,000 iterations of the microbial algorithm to produce populations of 

networks  in  which the best  individuals  have low error  rates  (< 5%).  After  that  time,  the most 

accurate network in these populations reliably exhibits a good fit to the empirical data reported by 

Shadlen and colleagues (1999, 2001) – both at the level of RTs and error rates (Figure 30), and in 
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terms of the correspondence between model dynamics and neurophysiological data (Figure 31). The 

learning was repeated five times,  to ensure that  its  results are robust.  All  five attempts yielded 

models with equivalent behaviour; the data presented below were all drawn from the best network 

in the first of these populations, which has two hidden units.

This network is extremely robust to variations in the sensor stimuli that it receives. Though 

the standard distribution (indicating zero coherent movement in the corresponding direction) during 

learning was defined by a mean value of '80', the network is perfectly able to compare stimuli to 

different baselines, with mean values in the range 30-90. 

Choose Right

Choose Left

Strong StrongWeak
Motion RightMotion Left

Strong StrongWeak
Motion RightMotion Left

Choose Right

Choose Left

Strong StrongWeak
Motion RightMotion Left

Strong StrongWeak
Motion RightMotion Left  

Figure 30: (Left) Choice behaviour as a function of signal strength. The network's responses are 

reliably  accurate  when  the  signal  is  strong  (in  either  direction),  but  are  more  probabilistically 

symmetrical for weaker signals – like monkeys and humans in analogous tasks. (Right) Network 

reaction times by signal strength. Easier categorisation problems – with stronger signals (in both 

directions) are categorised more quickly than harder categorisation problems (with weaker signals). 

The pattern  is  similar  to  that  observed in  visual  motion  discrimination  with both primates  and 

humans.
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Figure  31:  Mean  activity  values  of  both 

effector (A and B) and hidden (C and D) units 

during  categorisation  trials  with  4  sample 

signal  strengths.  (E)  Euclidean  distance 

between the effectors' state and the target state.
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Further, this model also captures the empirical distinction that separates reaction times for 

correct responses from those for incorrect responses (given the same stimulus strengths). Restricting 

the analysis to only those signal strengths that included both correct and incorrect responses, we can 

capture this by performing a t-test for paired samples (correct vs. incorrect RTs by signal strength) 

on  the  remaining  values.  The  results  confirm  that  the  incorrect  responses  are  slightly,  but 

significantly, faster than correct responses  (mean RTs (iterations): 40.2 (incorrect), 47.45 (correct); 

t(16) = 2.252, p (2-tailed) = 0.039).

Finally, it should be noted that the model's continuous operation makes its initial state at the 

beginning of a trial  a function of its history – so potentially different at different times. This is 

important because it allows the network to respond differently,  at different times, to exactly the 

same stimulus (i.e. exactly the same series of sensor values, presented in the same order). That 

flexibility is a consistent feature of the relevant empirical data (Shadlen & Gold, 2001), and has also 

been emphasised by previous models of this process (Shadlen & Gold 2001).

6.4 Interim Discussion

Driven solely by the intuition that neural systems implement near-optimal strategies, this model-

building  methodology  can  predict  both  the  empirical  behaviour  of  biological  agents,  and  the 

dynamics of the neurons that drive it. But the method does not guarantee optimality – and for some, 

that weakness can be critical. For example,  Norris and McQueen (in press), are prepared to reject 

Connectionism  completely in order to ensure that their model (Shortlist B) of continuous speech 

recognition will be optimal; that switch is thought to be necessary because “it might be possible to 

build an interactive-activation  network that computed the same Bayesian functions as Shortlist B, 

but it is also possible to build networks that compute other functions” (page 11, Norris & McQueen, 

in press). If even  possible sub-optimality is grounds for rejecting an approach, then the method 

described in this chapter will be difficult to defend.
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However, the pursuit of optimality is not necessarily the same as the pursuit of cognitive 

relevance.  The  optimality  assumption  is  useful  as  much  for  the  way  it  highlights  sub-optimal 

performance as for its more positive, predictive success. Indeed, the primate neural strategies that 

the current model captures are almost certainly not optimal, because the formal theory that best 

describes them – the Diffusion-to-bound framework – is  appropriate  only when each evidential 

“event”  is  conditionally  independent  (Shadlen  et  al., 2006);  the  stimuli  that  drive  the  motion-

detection problem will almost certainly violate that assumption. In other words, though the model 

described in this chapter does depart from an optimal strategy, but it does so in much the same way 

as the neural system that it is designed to capture. 

A  second  example  of  this  kind  of  connection  stems  from the  model's  RTs,  which  are 

significantly faster for incorrect responses than for correct responses. That distinction is also visible 

in the relevant empirical data (e.g. Palmer, Huk, & Shadlen, 2005; Roitman & Shadlen, 2002), but 

at least as conventionally defined, the Diffusion-to-Bound framework predicts that these latencies 

should be the same (Shadlen et al., 2006). Given the right parameters,  Ratcliff,  Van Zandt, and 

McKoon (1999) have demonstrated that diffusion models  can capture this distinction; the current 

work demonstrates that these conditions can emerge without any explicit effort on the part of the 

designer. In some respects at least, the current method seems a powerful way to capture not just the 

optimality of the neural decision process, but also its apparent deviations from that optimal model. 

One other possibly sub-optimal feature of the model is its size. Despite a strong selective 

preference for small  networks, the best,  discovered models  reliably contain at  least  two hidden 

units.  However,  Wong and Wang's  (2006)  minimal  treatment  of  this  problem suggests  that  no 

hidden units should be necessary to capture Diffusion-to-Bound dynamics. Like the current model, 

primates appear to employ rather more neurons than they should need to implement the decision 

process;Kim & Shadlen's  early  data  (1999)  emphasised  this  difference  by  showing  that  single 

neurons could actually be better at discriminating sensory evidence than neural populations. In this 
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context, the model has another theoretical significance.

When a  population  of  neurons  all  have  similar  response  properties,  it  seems  natural  to 

interpret them as components of a population code (e.g. Kim & Shadlen, 1999), which averages 

those  responses  to  define  behaviour.  The  current  model  illustrates  that  this  assumption  can  be 

misleading; though both hidden units appear to accumulate evidence in much the same way (see 

Figure 31), they do not appear to play the same, causal role in the model's behaviour. While the 

model's  ability  to  respond  is  almost  completely  undermined  when  informational  lesions  (as 

described in chapter 4) are applied to the hidden unit 1, the removal of the hidden unit 2 preserves 

the model's basic strategy (i.e. accumulation of incremental evidence), but reduces its power; after 

the lesion has been applied, the same rates of accumulation are only observed with much stronger 

signals,  and weaker  signals  cannot  be  classified  at  all.  The  two units  “look” very  similar,  but 

actually “do” quite different things – and the same might be true of neurons in the brain.

All of these deviations from optimality are probably best explained as local maxima in the 

models'  fitness  space;  once  encountered,  these  maxima  capture  the  search,  and  prevent  the 

discovery of more globally optimal structures. The same logic might also begin to explain why 

naturally evolved neural systems might often be nearly – but not perfectly – optimal. By accepting a 

model-building method that does not guarantee optimality, we may be able to begin to capture, and 

explain, that difference.

Perhaps more valuable still, this kind of method might eventually be employed to discover 

the normative formal theories that can drive further research – because the search considers both the 

strategy-space  and  its  implementation-space  at  the  same  time.  Since  these  two  levels  are  not 

independent, constraints on one level of the search will also infect the other. Recently,  Lengyel, 

Kwag, Paulsen, and Dayan (2006) have proposed a formal theory of memory storage and retrieval, 

which  is  pitched  at  the  level  of  spike  co-ordination  in  attractor  neural  networks;  the  current 

implementation of this method could never discover a solution of that sort because, by using a rate-
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coded  neural  network  architecture,  we  have  constrained  the  search  to  rate-based  solutions. 

Nevertheless, the same logic – searching a model-space, and directing that search with a high-level 

metric that captures behavioural optimality – could be equally applied to more biologically detailed 

architectures like spiking neural networks. That extra detail would give the system some freedom to 

employ either spike coordination, or spike rate, or both, in the pursuit of optimal (or near optimal) 

behaviour.
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III

On the Processing of

Multi-Digit Numbers
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Chapter 7

Priming the Holistic Content of Multi-Digit Numbers

In chapter 2, I mentioned that attempts to resolve the structure debate are hampered by the natural 

confound  that  exists  between  a  multi-digit  number's  integrated  value  and  its  single-digit 

components. This section presents an attempt to dissociate these two. The intuition behind it is that 

subjects can be cued to give preferential weight toward either the single-digit components, or the 

integrated values, of the numbers that they must process. In particular, it seems likely that very 

large numbers – or very long digit strings – will encourage a much greater focus on the numbers' 

single-digit  components  at  the expense of  their  integrated  values.  The  approach centres  on the 

“thousands” string ('000') – perhaps the most common signal that viewed numbers are very large – 

employed as a prime in a three-digit number comparison task. Appended to both of the numbers in 

particular trials, this string was intended to encourage the desired shift in the subjects' processing 

strategies. Any evidence of this kind of shift should support the hybrid theory of multi-digit number 

representation.

Prior work using identical number stimuli (but without the “thousands” string: Korvorst & 

Damian, 2007) has confirmed the emergence of three empirical phenomena in a similar number 

comparison task: the Number Size effect, the Distance effect and the (tens-hundreds) Congruence 

effect. In the material that follows, I use these effects as metrics for the influence that the numbers' 

holistic and componential  content exerts. To the extent  that  the thousands string encourages an 

emphasis on componential over holistic processing, we should expect the addition of the thousands 

string  to  diminish  the  Number  Size  and Distance  effects,  while  enhancing  the  strength  of  the 

Congruence effect.
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7.1 Method

7.1.1 Subjects

Seventeen naïve subjects participated; 3 men and 14 women. The youngest subject was 21 

years old, and the oldest subject was 34 years old. The mean age was 24 years. All but one of the 

subjects were right-handed, and all reported normal or corrected to normal vision.

7.1.2 Design

As mentioned previously,  this experiment employed stimuli borrowed from Korvorst and 

Damian (2007). In their original form, these stimuli provide for a largely balanced manipulation of 

the  Size  and  Distance  associated  with  both  the  operands  themselves  and  their  single  digit 

components.  This  experiment  focussed  on  the  further  manipulation  of  the  thousands  string, 

appended (or not) to both of the numbers in particular number comparison trials. Following the 

logic  of  Lorch  and  Myers  (1990),  I  use  linear  regression  to  capture  the  mediation  that  three 

predictors – two for the holistic content and one for the componential content – exerted on each 

subject's reaction times. The prediction was that the thousands string would cause a characteristic 

deviation toward zero (diminished strength) in the slopes associated with the holistic predictors (the 

minimum  of  and  numerical  distance  between  the  logarithms  of  the  compared  numbers),  but 

increased  deviation  (i.e.  more  negative  values)  in  the  slopes  associated  with  the  componential 

predictor. This latter predictor was calculated by subtracting the tens digit of the smaller operand 

from the tens digit of the larger operand; negative values indicate incongruent pairs, while positive 

values indicate congruent pairs.

7.1.3 Procedure

Each  subject  was  exposed  to  two  blocks  of  trials,  with  each  trial  containing  a  pair  of 

numbers that they had to compare. In each case, the first block included only the original three-digit 
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stimuli,  while  the  second  block  included  only  those  pairs  in  which  the  thousands  string  was 

appended to  both  numbers.  This  arrangement  was  designed to  underline  the  irrelevance of  the 

thousands string to the task in the second block. There were 320 number pairs in all; each was 

presented once both with and without the thousands string, for a total of 640 trials. Allowing for 

breaks  between  blocks,  and  for  an  initial  series  of  12  practice  trials,  the  experiment  lasted 

approximately 30 mins.

The beginning of each trial was signalled by the appearance of a point (a “full stop” symbol) 

in the centre of an otherwise blank image. After 500ms, this was replaced by a number pair, which 

remained on the screen for a maximum of 2,000m. Trials  could be terminated early if subjects 

pressed one of two response keys  – the “up” and “down” arrows on a standard keyboard – to 

indicate their comparison decision (the larger of the two numbers). Subjects were instructed to be 

accurate rather than fast, but we recorded both types of data throughout the experiment.

7.1.4 Visual Presentation Conditions

The experiment took place in a quiet, brightly lit room, with a Pentium III PC, a standard 

keyboard and a 15 inch colour screen. Subjects sat with their eyes approximately 50cm from the 

screen, but no chin rest was used. With the exception of the error feedback – a black exclamation 

mark on a red background – all stimuli were presented as white characters (rgb = 63,63,63) on a 

black background (rgb = 0,0,0). The numbers that composed each operand pair were presented in 

horizontal  orientation,  in  Times  New Roman  font,  with  a  font  size  of  30.  Operand pairs  were 

presented centrally, with vertical orientation (displaced 10 pixels above and below the centre-line) – 

the “tens” digit of each number was always defined as its centre, regardless of the presence of any 

trailing digit strings (i.e. the thousands string was always in the right visual field: see Figure 32).
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Figure 32: Two examples of 3-digit number comparison problems. (Left) An example from block 1, 

using the three-digit operands in their original form. (Right) An example from block 2 that uses the 

same 3-digit operands, but appends a trailing string of zeros to each number. 

7.1.5 Data Preparation

The results are derived after excluding first all trials in which reaction times were less than 

200ms (thought to indicate anticipation), then practice trials (3.1%), error trials (2.4%), trials in 

which the hundreds-digits of the two operands were equal (15.7%: in these cases, the tens-digit 

comparison is relevant to the task, which complicates the interpretation of Congruence effects), and 

– following the recursive method of Van Selst and Jolicoeur (1994) – trials in which each subjects' 

reaction  times  were more  than  three  standard deviations  from the subjects'  means  (8 iterations 

required, excluding a further 4.8%). 

7.2 Results

Linear  regressions  were  computed  on  the  data  of  individual  subjects  to  obtain  regression 

coefficients  for  each  predictor.  Using  one-tailed,  one-sample  t-tests  (df  =  15  in  all  cases),  we 

confirmed that, for each predictor, the means of the subjects' standardised regression coefficients (β-

values) were significantly different from zero in both blocks (positive for the Size predictor, and 

negative  for  the Distance  and Congruence predictors).  Consistent  with prior  work (Korvorst  & 
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Damian, 2007) the data display significant Size effects, Distance effects, and Congruence effects in 

both blocks of the experiment (see Table 3).  Using 3-digit vs. 6-digit groups as a binary predictor, I 

also confirmed that there was no main effect associated with the “thousands” manipulation (t(15) = 

-0.72, p (2-tailed) = 0.481). 

     Block Test Value = 0
t  df  Sig. (1-tailed)  

Mean Beta 

Ln (Size) 1 7.636 15 <.001 .22200
2 5.825 15 <.001 .14088

Ln (Distance) 1 -17.813 15 <.001 -.33575
2 -17.481 15 <.001 -.34869

Congruence
1 -2.850 15 .006 -.05200

2 -4.858 15 <.001 -.08844

Table 3: Main effects in both blocks. The t-tests are driven by samples of standardised regression 

coefficients, computed for each subject by regressing reaction times against each of the specified 

predictors.

To assess  the  interaction  between this  latter  manipulation  and the  main  effects,  we can 

conducted a series of t-tests for paired samples (df = 15 in all cases). Each subject supplies a pair of 

values (standardised regression coefficients) for each predictor – the first for trials with the original 

three-digit stimuli, and the second for trials that included the “thousands” string. As predicted, the 

Size effect was significantly diminished (mean R2 block 1: 0.062; mean β block 1: 0.222; mean R2 

block 1: 0.029; mean β block 2: 0.141; t = 2.168, p (1-tailed) = 0.024), while the Congruence effect 

was actually enhanced (mean R2 block 1: 0.008; mean β block 1: -0.052; mean R2 block 1: 0.013; 

mean β block 2: -0.088; t = 1.907, p (1-tailed) = 0.038). In some respects at least, the “thousands” 

string seemed to encourage the predicted dissociation between the subjects' sensitivity to holistic vs. 

componential content (see Figure 33). 
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Figure 33: Mean reaction times as a function of Number Size (left  panel),  Numerical  Distance 

(middle panel) and Congruence (right panel). The ranges of each predictor are divided into two 

groups (small vs. large) for the purpose of illustration, but were considered in their entirety when 

employed as predictors in linear regression analyses.

However, there was no significant deviation in the Distance effect (mean R2 block 1: 0.103; 

mean β block 1: -0.336; mean R2 block 2: 0.110; mean β block 2: -0.349; t = 0.596, p(1-tailed) = 

0.721) – indeed, if anything, this effect displays a (non-significant) trend toward enhancement. The 

key to understanding why stems from a recognition that Congruence effects, which the thousands 

manipulation appears to amplify,  are essentially a kind of digit-level Distance effect (calculated 

here  as  the  tens  unit  of  the  larger  operand  minus  the  tens  unit  of  the  smaller  operand).  That 

connection raises the possibility that other digit-level enhancements might confound the observed 

mediation of Distance effects. To test the suspicion, I ran multiple, hierarchical regression analyses 

(by subject), inserting logarithmic Distance only after linear Distance had already been considered. 

As discussed in chapter 2, this latter predictor is much more susceptible to digit-level confounds 

than  the  former  since,  by  definition,  the  numerical  distance  between  two  numbers  is  a  linear 

function of the distances between the numbers' single digits (100 * hundreds-distance + 10 * tens-

distance + units-distance). If digit-level enhancement is significant, we might expect the subjects' 

sensitivities  to  this  linear  predictor  to  be  enhanced  –  and since  this  linear  distance  is  strongly 

correlated with our logarithmic predictor (Pearson r = 0.894, p (2-tailed) < 0.001), that enhanced 
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sensitivity could certainly mask any diminished effects of the sort we are trying to discover.

The results  of  this  hierarchical  analysis  associate  each subject  with  a  β-value for  linear 

distance, and a unique contribution (R2) that logarithmic distance makes when linear distance has 

already been accounted for. Consistent with the intuition that digit-level enhancement can confound 

linear Distance, the subjects' sensitivities to the linear Distance predictor are enhanced in block 2 

(mean R2 block 1: 0.089; mean R2 block 2: 0.121; mean β-value for block 1 = -0.293, mean β-value 

for block 2 = -0.341, t(15) = 3.254, p(1-tailed) = 0.003). And by observing the R2 change associated 

with  logarithmic  Distance  in  both  blocks,  we  can  confirm  that  the  unique  contribution  of 

logarithmic distance is significantly reduced in block 2 (mean R2 change block 1: 0.037; mean R2 

change block 2: 0.014; t(15) = 2.039, p(1-tailed) = 0.030). 

7.3 Interim Discussion

Consistent  with  prior  work  (Korvorst  & Damian  2007),  these  results  suggest  that  the  subjects' 

reaction times were significantly mediated by both the Size and the Distance associated with each 

number pair, as well as by their Congruence. The variance explained by the Size and (corrected) 

Distance predictors was significantly reduced by the addition of a thousands string, which also 

appeared to increase the strength of Congruence effects. In other words, the prime appears to have 

been both successful and selective. Since the emphasis of one kind of content over another implies a 

sensitivity to the each independently of the other, this result supports a hybrid theory of multi-digit 

number processing.

Though still comparatively new, examples of this kind of top-down modulation has been 

observed before  in  number  processing  tasks.  For  example,  Bächthold,  Baumüller,  and  Brugger 

(1998) found that the subjects' spatial response biases (SNARC effects, as mentioned in chapter 2) 

for the numbers 1-11 could be mediated depending on the way they were told to conceive them. 

When the numbers were construed as measurements on a ruler, a conventional (small-left, large-
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right) bias was observed, but when the numbers were construed as  hours on an analogue clock, the 

bias was reversed.  These spatial  biases have also been shown to depend on culturally acquired 

habits  like  reading or  scanning direction  (Zebian,  2005),  as  well  as by learned finger-counting 

methods (Di Luca, Granà, Semenza,  Seron, & Pesenti,  2006). Similarly,  it has been shown that 

subjects' sensitivities to the holistic content of multi-digit numbers may be task-dependent; Ganor-

Stern, Tzelgov, and Ellenbogen (2007) report that subjects' RTs are significantly mediated by that 

holistic magnitude in a number comparison task, but not in a physical size judgement task with the 

same numerical stimuli. Finally, recent data reported by Bonato, Fabbri, Umiltà, and Zorzi (2007) 

suggest that, in a number comparison task with fractions, the strategies that subjects use can be 

mediated by the type of fraction that they are given as a reference (i.e. a fixed standard against 

which to compare other fractions). Like the current work, that result implies a role for top-down 

effects that can operate within a single number processing task.

At  the  same  time,  the  results  appear  to  establish  a  dissociation  between  the  Size  and 

Distance effects; only the former appear to be significantly mediated by the thousands string. I have 

suggested that this may be because Distance effects are confounded by enhancement at the level of 

single  digits,  but  since  there  is  no  evidence  of  corresponding  confounds  on  Size  effects,  the 

dissociation between Size and Distance still needs to be explained. There are prior examples of this 

kind of dissociation. Verguts and Van Opstal (2005) report that subjects RTs were mediated by both 

effects in a number comparison task, but only by Distance effects in a same / different judgement 

task with the same numerical stimuli. And Verguts and De Moor (2005) report a dissociation even 

within  a  single  number  comparison  task,  suggesting  that  both  Distance  and  Size  effects  are 

significant when subjects compare two-digit numbers with the same tens digit, but that only Size 

effects are significant in pairs with different tens digits.  Contrary to the latter study, the current 

results appear to confirm that there is a Distance effect for holistic magnitude that is independent of 

digit-level  confounds;  the  change  in  the  F  statistic  associated  with  the  addition  of  logarithmic 
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distance after linear distance has been taken into account is significant for all but three subjects in 

block  1.  Nevertheless,  the  results  do  support  those  authors'  preferred  theory  of  number 

representation.

All  but one of the popular accounts of number representation (the  compressed MNL, the 

noisy MNL, and the numerosity code) associate both Size and Distance effects with interference at 

the level of number representations – so none can explain the dissociation that these data define. 

The fourth theory – the barcode – construes Size effects as a processing cost (specific to number 

comparison tasks) that emerges because small numbers are experienced more frequently than large 

numbers  during  learning.  Since  the  effect  emerges  from  the  process  that  maps  number 

representations  to task responses,  it  makes  sense that  it  should be dominated  by the integrated 

values of the numbers that must be compared. And since this theory construes Size and Distance 

effects as emerging from different causal sources, it can also allow for dissociations between them.

Finally,  it  should be noted that  the cueing effect  which drives these results  may not be 

specific to the thousands string; from the current work, we cannot rule out the possibility that the 

same deviations  might  be observed with strings of random symbols.  Given the results  of prior 

experiments in which number-specific effects were observed even when the magnitudes of number 

stimuli  were irrelevant  to the task (e.g. the SNARC effect  in parity judgement  tasks:  Dehaene, 

Bossini, & Giraux, 1993; Distance effects in same / different judgement tasks: Verguts & Opstal, 

2005;  magnitude  priming  effects  in  number  naming:  Reynvoet,  Brybaert,  &  Fias,  2002;  and 

numerical  flanker  tasks:  Nürk,  Bauer,  Krummenacher,  Heller,  &  Willmes,  2005),  a  number-

processing interpretation of the string's effect seems both natural and credible. Nevertheless, these 

effects' specificity could usefully be confirmed by repeating the experiment with a non-numerical 

prime. Critically though, the results' value is largely independent of the outcome of that work; the 

confirmation  that  subjects  can  preferentially  process  different  parts  of  a  multi-digit  number's 

semantics is important regardless of the nature of the cues that drive it.
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Chapter 8

A Model-Space for Three-Digit Number Comparison

Chapter 8 provides a clear demonstration of the way in which empirical data can interact with both 

the format debate and the structure debate at the same time. This chapter explores that interaction 

from a more computational  perspective,  reporting a structured comparison of models  driven by 

different representation configurations. The method extends an approach previously employed by 

Zorzi and colleagues (under revision); in that previous work, the goal was to compare the different 

theories of MNL format that were mentioned previously (see Figure 6), and the authors restricted 

their analysis to operations involving small numbers. The scope of the current work is expanded in 

both respects. This chapter considers both MNL formats and MNL structures, and – since MNL 

structures are only an issue when the numbers involved are large – reports results derived from 

models  trained  to  compare  operands  in  the range 0-999.  To my knowledge,  these are  the first 

examples of models that can compare such a large range of numbers.

8.1 Method

8.1.1 Model Architecture

The initial assumption – commonly accepted in the literature (Zorzi, Stoianov, & Umiltà, 

2005) – is that number comparison can be effectively modelled by structures that learn associations 

between pairs  of numbers  and comparison decisions (e.g.  which number is  larger).  Learning in 

these  structures  proceeds  by  associating  successive  operand  pairs  (e.g.  4  vs.  7)  with  desired 

responses (e.g. “7 is larger”); if successful, a model will extract and encode appropriate rules from 
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its  training  set.  In  the  current  work,  number  comparison  is  modelled  using  the  Mean  Field 

Boltzmann Machine (mfBM) architecture (e.g. Ackley, Hinton, & Sejnowski, 1985), a recurrent, 

rate  coded,  symmetrically connected neural  network in  which every unit  is  linked by weighted 

connections to every other unit. This is a pragmatic choice, because mfBM’s learn by associating 

input  patterns  with  point  attractors  (steady states);  given  an  input  pattern  (number  comparison 

problem), the number of processing iterations required for the network to reach a steady state is 

naturally interpretable as an analogy to reaction times (Zorzi & Butterworth, 1999). But theoretical 

justification is also available because the mfBM architecture uses a local,  biologically plausible 

learning rule (Ackley, Hinton, & Sejnowski, 1985), and has been the basis of successful cognitive 

models in the past (e.g. Zorzi, Stoianov, & Umiltà, 2005; Zorzi et al., under revision).

The architecture of an mfBM is illustrated in Figure 34. A subset of the network’s units are 

defined as input units, whose activity is fixed to represent those numbers that must be compared. 

Choices concerning the way in which those inputs are fixed correspond to theories of the way in 

which  compared  numbers  are  represented.  The  network’s  “decision”  is  implemented  on  two 

decision  units  (one  for  each  operand).  A correct  response  is  made  when,  once  the  mfBM has 

achieved a steady state, the unit corresponding to the larger operand has supra-threshold activity, 

and its counterpart has sub-threshold activity - a threshold of '0.5' is used for all models. Finally, the 

mfBMs can also include a small group of “hidden” units; the current work considers models with 0, 

20,  or  40 hidden units.  The activity  u of  unit  i at  time  t is  calculated  exactly  as  in  chapter  5 

(equation 8):

u it = ∑j=1

N

w ji u j t−11−m ui t−1m (8)

where  wji is the weight of the connection from unit  j to unit  i,  σ() is the sigmoid function 

(bounded in the range 0-1) and m is a fixed momentum term with a value of 0.5. 
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Figure  34:  Schematic  structure  of  the  Boltzmann  machines  that  were  trained  to  solve  number 

comparison problems with numbers in the range 0-999. With the exception of the input units, whose 

activity  is  always  fixed  according  to  a  given  representation,  all  of  the  units  are  directly  and 

symmetrically connected to every other unit.

8.1.2 Learning

The conventional mfBM learning rule (Ackley, Hinton, & Sejnowski, 1985) is a two-stage 

process. In the first stage, both input and decision units are clamped to values defined by example 

input and desired decision patterns. Activity from these units is then allowed to propagate freely 

throughout the network’s hidden units, until these also reach a steady state (i.e. maximum change 

for  any unit  between two iterations  <  0.001).  The  network's  input  and  decision  units  are  then 

unclamped and the process repeated. At the end of both the clamped and unclamped phases, the 

correlations associated with each pair of network units are collected and recorded. The learning rule 

works by minimising the difference between these two sets of correlations, usually computed over 

the whole training set. Specifically, the update for the weight w between units i and j is calculated 

using equation 9.

w ij = x i
+ x j

+  − x i
- x j

-  (9)

where w ij is the update for the weight of the connection projecting from unit i to j, x i
+ is the 

Input Layer (15 versions)

…….

Hidden Layer
(0, 20, or 40 units)

Decision Units

Input Layer (15 versions)

…….

Hidden Layer
(0, 20, or 40 units)

Decision Units
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activity of unit i during the unclamped phase, x i
- is the activity of unit i during the clamped phase, 

and  is  a  constant  that  defines  the  learning  rate  (smaller  values  yield  slower,  more  accurate, 

learning).

The models in this chapter are trained to solve number comparison problems for all numbers 

in the range 0-999. Pairs of identical numbers (e.g. “7 vs. 7”) are not considered, leaving a total set 

of 999,000 valid pairs. In deference to the colossal size of this set, these models use an augmented 

version of the conventional learning rule. Where the original method collected statistics from a 

batch of training problems, the current variant calculates and applies weight updates after every 

single  problem that  is  presented  during  training.  Further,  the  current  method  employs  a  semi-

supervised version of the conventional BM learning – allowing the decision units to vary freely, but 

keeping the input units fixed during the unclamped phase. In a few previous applications of the 

mfBM, it was desirable for the model to learn a bidirectional association – allowing either inputs or 

outputs to drive pattern completion. By enforcing this restriction, we have also restricted the model 

to learning a  unidirectional association (from inputs to outputs, but not vice versa) – sacrificing 

some (in this case, irrelevant) power for faster results.

Thirdly, since single-digit comparison problems represent less than 0.01% of this set (and 

two-digit problems account for less than 1%), we have to manipulate the frequency with which 

particular  problems  are  encountered  so  that  single-digit,  two-digit  and  three-digit  operands  are 

equally  frequent.  This  is  necessary because,  without  that  manipulation,  these problems may be 

extremely rare in the models' training – so subject to implausibly high error rates in their trained 

performance.  Finally,  a system is implemented that skews the selection of number pairs toward 

those that have been error-prone in the past.  Each operand pair  is associated with an integer (a 

“tracker”), which is incremented whenever the network offers an incorrect response to that pair, and 

decremented after correct responses. As the value of a number's tracker increases, so too does the 

probability that it will feature in subsequent trials; the first increment raises selection probability to 
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100 times its basic value, the second to 200 times times that value, and so on. Taken together, these 

four extensions make it possible to train every model configuration to a reasonable standard in a 

reasonable time. In the current work, that standard was taken to imply accuracy rates of 90% or 

more when tested against the number pairs in our data sets; for each model, that accuracy was tested 

after  every  3,000  learning  problems,  and  the  learning  process  was  stopped  once  the  required 

accuracy had been achieved.

Though effective, this learning regime also allows for a great deal of stochastic variation 

into the model-building process. Every number pair for numbers in the range 0-999 can be selected 

for  learning,  but  in  practice,  the  learning  for  particular  models  tends  to  be  dominated  by  a 

comparatively  small  subset  (the  first  few hundred  pairs  on which  the  particular  network  made 

errors). The training sets associated with different networks will share some pairs in common – as 

mentioned above, single-digit and two-digit pairs are always over-represented – but there will also 

be significant differences between those sets. To try to ensure that our conclusions are robust to this 

variation,  we  consider  9  versions  of  model  driven  by  each  representation  configuration;  3 

repetitions for models with each of 0, 20, and 40 hidden units.

8.1.3 Representation Configurations

This chapter considers each of the four MNL formats discussed previously (chapter 2) – the 

numerosity code, the compressed MNL, the noisy MNL, and the barcode – plus a fifth – the single-

unit accumulator code – that was identified in chapter 5. Rather than trying to match this code's 

original form too closely,  the current version is an idealised variant of that form – illustrated in 

Figure 35 – in which all units accumulate activity at the same rate, with increasing number. The 

same figure also illustrates a new, continuous variant of the  numerosity code, which replaces the 

code's  original structure because the latter  implies  the addition of an extra input unit  for every 

represented number (on a holistic MNL). Models with 999 input units per operand were attempted – 
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and can be made to work well – but take an extremely long time to train; this change permits the use 

of a recognisable numerosity code in far fewer input units, so ensures that all of the codes can be 

represented on the same number of units.

Figure 35: Two MNL formats, expressed as activity values on 30 number-sensitive units. (Left) The 

single unit accumulator code, in which the activity of all units accumulates linearly with increasing 

number.  (Right)  A  continuous  variant  of  the  numerosity  code,  in  which  activity  accumulates 

linearly across the units with increasing number. Both formats are illustrated for numbers 1-10, but 

both also allow much larger ranges to be expressed on the same number of units, by reducing the 

logical distance between the representations of numerically adjacent numbers.

For each MNL format, three global structures are also considered – again, as discussed in 

chapter 2. Holistic structures imply that a single MNL is used to represent the entire sequence of 

possible  operands  –  in  this  case,  0-999.  Componential  structures  imply  a  representation  that 

includes one MNL for every operand digit; the number ‘999’ requires three MNLs, for a total of six 

to represent a comparison problem. Hybrid structures use both holistic and componential number 

lines – in other words, a hybrid representation of the problem ‘999 vs. 998’ implies a total of eight 

MNLs.  Five  MNL  formats  and  three  MNL  structures  correspond  to  15  representation 
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configurations.

8.1.4 Behavioural Data

Alongside the models themselves, the current work also employs three data sets, from three 

similar behavioural experiments in which human subjects performed number comparison tasks. The 

first data set, derived from experiments conducted by Butterworth and colleagues (2001), refers to 

comparison  with  operands  1-9  (data  set  1).  The  second  set  was  derived  from  Gazzelini  and 

Laudanna's (2005) study, and refers to operands 0-99 (data set 2). The third data set, collected by 

Korvorst and Damian (2007), refers exclusively to three-digit operands (data set 3); this set was also 

used to define the experiment in chapter 7. Data set 1 contains 72 items, data set 2 contains 380 

items,  and data  set  3  contains  320 items,  for  total  of  772 number  comparison  problems,  each 

associated with a mean empirical reaction time.

In  the  current  context,  the  most  important  features  of  these  data  are  the  empirical 

phenomena that they display. In particular, this chapter's analyses will focus on the Number Size 

and Distance effects, as well as the Congruence effects that appear in data sets 2 (a unit-decade 

effect) and 3 (a decade-hundred effect). Each of these effects can be captured by relating reaction 

times (both empirical  and model-driven) to particular predictors with linear regression analyses. 

Size effects can be captured by regressing RTs against the minimum of the two compared numbers, 

and Distance with a regression against the absolute numerical difference between them. Congruence 

predictors are calculated by subtracting the relevant distractor digit of the smaller number from the 

corresponding digit of the larger number; in the case of units-tens congruence, the relevant digits 

are the units, while for tens-hundreds congruence, the relevant digits are the tens. In both cases, a 

negative result indicates an incongruent pair – a pair in which the smaller number contains larger 

distractor digits.  As applied to the subjects' reaction times, the results of the relevant regression 

analyses confirm that all three effects are present in the data (see Table 4). 
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The exception to this rule is data set 2, which does not yield a significant Distance effect. 

That  absence  stems  from the  details  of  the  number  pairs  in  this  set,  which  were  selected  to 

emphasise Congruence effects (Gazzelini & Laudanna, 2005). The numerical distances between the 

numbers in each of this sets pairs are always either '2' or '6'; mean RTs are longer for the former 

distance  (638.5  ms,  SE  =  3.52)  than  they  are  for  the  latter  (633.2  ms,  SE  =  4.81),  but  the 

distributions are too variable to allow for a significant dissociation.

Predictors
Data Set 1

R2 p b β
Size 0.160 <0.001 7.897 0.415

Distance 0.419 <0.001 -12.446 -0.653

Predictors
Data Set 2

R2 p b β
Size 0.217 <0.001 0.979 0.466

Distance 0.002 0.435 -1.157 -0.040
Cong. (U-T) 0.109 <0.001 -4.298 -0.330

Predictors
Data Set 3

R2 p b β
Size 0.340 <0.001 0.195 0.583

Distance 0.545 <0.001 -0.216 -0.739
Cong. (T-H) 0.097 <0.001 -4.349 -0.312

Table 4: Linear regression analyses relating subjects' reaction times to predictors for Size, Distance 

and Congruence effects.

8.1.5 Procedure

The models were all created using Microsoft Visual C++, on an IBM-compatible desktop 

PC.  The  data  that  this  chapter  reports  are  drawn  from  a  sample  of  models,  covering  the  15 
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representation configurations, each constructed with 0, 20, or 40 hidden units. Each specific model 

configuration was reproduced 3 times, for a total of 135 models in all. After training, these models 

are associated with 135 tables, containing the models' error rates and reaction times for the number 

pairs in the three data sets. All of the trained models exhibit error rates of less than 10% when tested 

against the problems in our data sets, indicating good learning performance.  I also attempted to 

produce very large models, with up to 100 hidden units, but those attempts were abandoned in the 

face of extremely slow training times.

This work is more concerned with the model-space itself than with particular points in that 

space. In the material that follows, I repeat the analyses employed to generate Table 1 for each of 

the 135 models, generating regression results that indicate the extent to which each model captures 

the  Size,  Distance  and  Congruence  effects  described  previously.  The  results  yield  a  series  of 

standardised regression coefficients (β values) associating each model with each predictor for each 

data  set.  Those  values  are  normally  distributed,  so  can  themselves  be  analysed  with  standard 

statistics (e.g. Lorch & Myers, 1990); that meta-analysis is the focus of the current work.

Following the logic of Spieler and Balota (1995), I also consider the β-values derived from 

regression analyses that relate model RTs directly to subjects' RTs in each of the three data sets. 

Each of the three data sets was derived from similar experiments, but no deliberate attempt was 

made to match them – to guard against artefacts  of variation between these sets,  β-values were 

derived for each set separately.  The result is that each model yields several β-values; three for Size 

effects (because Size effects are present in all three data sets), two for Distance effects (which are 

present in data sets 1 and 3), two for Congruence effects (one for each of the sets that include multi-

digit numbers) and three for empirical RTs – for a total of 10 β-values per model.

8.2 Results

Effective models of multi-digit number comparison must display Size effects, Distance effects, and 
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Congruence effects; these are a natural initial focus for the analysis. In practice though, two of these 

three – the Size and Distance effects – seem to be rather too common to be useful. Grouping the the 

models by MNL format and MNL structure, we can use single sample, one-tailed t-tests to assess 

the significance of both effects in each group. Distance effects are significant in every one of these 

(15) groups (see Table 5), while Size effects are significant in all but two of the groups (see Table 

5).  Both  of  the  exceptions  are  associated  with  the  barcode format,  reflecting  the  absence  of 

magnitude-dependent compression in this code (mentioned in chapter 2). As mentioned previously, 

the models' training regime did include skewed frequency in favour of smaller numbers, but in most 

cases, that skew does not seem sufficient to produce the desired effect. Since that skew operates 

between rather than within orders of magnitude, we should expect Size effects to disappear even in 

the most apparently effective barcode configuration (i.e. with 20 hidden units, and a decomposed 

structure)  when the  analysis  is  restricted  to  data  set  1  (single-digit  numbers).  The current  data 

include just three models that are relevant to this prediction, just one of which appears to produce a 

significant  Size  effect  in  this  case  –  but  though  intriguing,  this  exception  also  illustrates  the 

variability that our stochastic learning method can inject into the data, so supports the intuition that 

robust conclusions can only be attached to groups of models in this case.

Since both effects are associated with almost every representation configuration, neither can 

be  used  to  justify  a  preference  for  one  configuration  over  another.  However,  the  Congruence 

predictor is much more selective. Just one of the 15 groups is associated with significant effects – 

the combination of decomposed MNLs with the single unit accumulator code (see Table 5). 
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MNL Format/Structure

Distance Size Congruence

t df p Mean t df p Mean t df p Mean

Numerosity 
Code

Holistic -7.557 17 .000 -.45794 3.176 26 .002 .21593 1.486 17 .922 .02089
Comp -6.209 17 .000 -.31589 2.316 26 .015 .09670 .198 17 .576 .00767
Hybrid -5.004 17 .000 -.23778 2.232 26 .017 .10496 -.817 17 .213 -.02422

Compressed
MNL

Holistic -1.892 17 .018 -.20728 4.865 26 .000 .33196 .706 17 .755 .00828
Comp -3.979 17 .001 -.25322 4.189 26 .000 .17544 1.959 17 .967 .09561
Hybrid -5.659 17 .000 -.34144 2.752 26 .006 .16681 -1.302 17 .105 -.02178

Noisy
MNL

Holistic -5.337 17 .000 -.32567 3.724 26 .000 .19030 1.878 17 .961 .02717
Comp -6.117 17 .000 -.31444 3.338 26 .002 .15785 .286 17 .611 .00733
Hybrid -5.502 17 .000 -.28672 3.256 26 .002 .15685 -.786 17 .222 -.01672

Barcode Holistic -2.641 17 .005 -.22822 .719 26 .240 .04685 -.300 17 .384 -.00483
Comp -4.387 17 .000 -.31472 5.513 26 .000 .18941 1.524 17 .927 .06650
Hybrid -4.803 17 .000 -.24700 1.522 26 .070 .07567 2.415 17 .987 .04494

Single Unit 
Accumulator 
Code

Holistic -9.319 17 .000 -.52750 4.113 26 .000 .20111 .938 17 .812 .01261
Comp -7.238 17 .000 -.29450 2.184 26 .019 .10767 -2.851 17 .006 -.08972
Hybrid -5.395 17 .000 -.26828 3.815 26 .000 .13933 .314 17 .622 .01078

Table 5: One-sample,  one-tailed t-tests (vs. zero) for  β-values derived by regressing model RTs 

against  each of the three predictors;  highlighted cells indicate significant effects (p < 0.05). All 

representation configurations are associated with models that produce significant Distance effects. 

All  but  two appear  to  yield  significant  Size  effects.  But  only one  representation  configuration 

appears  to  encourage  significant  Congruence  effects.  “Comp”  refers  to  the  decomposed  MNL 

structure.

The same conclusion can also be reach in a different way,  with a univariate analysis  of 

variance (ANOVA) that tracks the mediating effects of MNL format (3 levels), MNL structure (5 

levels)  and hidden layer  complexity  (3 levels)  on the  β-values  associated  with the Congruence 

predictor. This analysis reveals exactly one significant effect – the two-way interaction between 

MNL format and MNL structure (F(8,360) = 2.867, p = 0.003). And by visual inspection, we can 

see that this interaction favours exactly the same representation configuration (see Figure 36). This 

conclusion is robust to analyses that consider β-values averaged over the different data sets (i.e. one 

value per model rather than two values – one for data set 2 and one for data set 3), and different 

versions of the same model (i.e. one value per model configuration, rather than three – one for each 

version of the same model).
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Figure 36: A significant interaction between MNL format and MNL structure in the model-space; 

regression coefficients are captured by regressing model RTs against the Congruence predictor, and 

more  negative  values  indicate  stronger  Congruence  effects.  In  this  respect,  the  most  effective 

representation  configuration  is  the  combination  of  single  unit  accumulators and  decomposed 

MNLs.

From Table 5, we can see that the same group of models also reliably yield both Size effects 

(t(26) = 2.184, p = 0.019, mean β-value = 0.108) and Distance effects (t(17) = -7.238, p < 0.001, 

mean  β-value = -0.296). And perhaps unsurprisingly,  the RTs of models  in this group are also 

significantly related to the relevant empirical RTs; in this case, we can use the β-values derived by 

regressing RTs from each of the models in this group directly against empirical RTs (t(26) = 4.760, 

p = <0.001, mean β-value = 0.157, mean R2 value = 0.054). Taken together, these results make the 

case  that  combination  of  the  single  unit  accumulator  code and  decomposed MNLs  can  drive 

effective models of multi-digit number comparison.
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8.3 Interim Discussion

Computational cognitive models are usually reported in one of two ways. When dependent on a 

complex set of parameters, the description tends to focus on the best parameter values, masking the 

process that was used to select them (e.g. Grossberg & Repin, 2003). Parameter-space exploration is 

sometimes reported, but tends to demand extremely minimal models, with very few free parameters 

(e.g. Wong & Wang, 2006). This chapter has attempted to chart a compromise between these two 

extremes, reporting a space of reasonably complex models, along with statistics that capture some 

of the properties of that space. With the identification of a significant interaction between MNL 

format and structure, the analysis supports the intuition expressed in chapter 7, that the format and 

structure debates might not be quite as distinct as previously thought. It also directs our attention to 

a particular representation configuration – a combination of the single unit accumulator code and 

decomposed MNL structures, that seems to capture the relevant empirical phenomena. This result is 

particularly  interesting  because  the code  itself  is  novel  –  discovered  in  the  “evolved”  foraging 

agents described in chapter 5. At the time of writing, I have no convincing explanation for why this 

single unit accumulator code should be so much more effective than its counterparts; that question 

remains to be solved. But the result is intriguing because it seems quite robust to variations in the 

detailed structure of the models that it defines.

Alongside the result  itself,  the importance of a  comparatively  weak phenomenon in this 

analysis has a theoretical significance. Following the logic proposed by Spieler and Balota (1995), 

we might be tempted to emphasise the item-by-item correspondence between model and empirical 

RTs  at  the  expense  of  other  features  in  our  analyses.  But  when,  as  now,  comparatively  weak 

phenomena are important, the current data confirm that this kind of analysis can be misleading. 

Since the variance of empirical RTs is dominated by Size and Distance effects (see Table 4), strong 

relationships between model and empirical RTs can mask non-significant Congruence effects; this 

is confirmed by an analysis of the group of models that use holistic MNLs with the  single-unit  
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accumulator code;  though this is the “best” representation configuration as measured by average R2 

(0.133), these models display no significant Congruence effects. (see table 5; the mean R2 for this 

group vs. the Congruence predictor is 0.003). 

Nevertheless, if  possible,  we would like to find model configurations that yield both the 

desired empirical effects and strong item-level correspondence to empirical data; only the former 

can be claimed in the current case. Some models do satisfy the latter claim in some data sets – for 

example, one model (employing the single unit accumulator code, holistic MNLs, and 20 hidden 

units) accounts for 60.0% and 49.2% of the empirical variance in data sets 1 and 3 respectively – 

but none can satisfy both. By visual inspection, the problem appears to be that the Size and Distance 

effects (particularly the latter) capture rather more of the variance in empirical RTs than they do in 

the models' RTs; to attempt to learn why, it may be necessary to investigate each model's detailed 

architectures directly,  or to consider other dimensions of variation in an expanded model-space. 

However minimum standards for variance explained are difficult to define in this task because that 

level of analysis is completely absent from the only prior report of comparable work (Grossberg & 

Repin, 2003).

Consistent with the discussion in chapter 2, the analysis also confirmed that all combinations 

of MNL structures and format can support Distance effects, and that most can support Size effects. 

In the context of the structure debate, this result is useful because it tells us that decomposed MNLs 

can drive effects that are usually associated with holistic representation – confirming the intuition 

that  hybrid representations might be unnecessary. However, of these two holistic effects, only the 

latter (Distance effects) are convincingly driven by the representations themselves – because even 

without  magnitude-dependent  compression,  some  models  that  employed  the  barcode do  still 

produce  Size  effects.  That  result  reflects  the  problem frequency manipulation  that  the  training 

regime encodes; problems in which the maximum number has 1, 2, or 3 digits respectively were all 

equally frequent. As mentioned previously, attempts to train these models without  any frequency 
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manipulation were largely unsuccessful (because they resulted in models with disproportionately 

high error rates on single-digit and two-digit comparison problems). If we accept that association is 

at all reasonable as a strategy for modelling this task, the experience of this work suggests that, 

contrary to the doubts expressed in chapter 2, the problem frequency manipulation required by the 

barcode must be plausible as well.

For all the complexity of the process that was used to discover it, the models that use our 

best, discovered representation configuration are also actually quite simple – and certainly simpler 

than Grossberg and Repin's (2003) Extended ESpaN. The Extended SpaN employs both temporally 

structured inputs and a topographically organised store of number knowledge, while current model 

assumes only that particular digits are distinguished at the level of semantic number representations, 

and leaves the rest to the process of learning.

Further, these results reflect  a very significant level of generalisation; though the precise 

sequence of problems encountered during learning is different for each model, none views more 

than 10% of the 999,000 number comparison problems that they can, in fact, solve. Without that 

level  of  generalisation,  it  would  be  difficult  to  claim any great  cognitive  plausibility  for  these 

models.  In  normal  life,  people  simply  do  not  see  very  many  multi-digit  numbers,  and  those 

experienced at school are necessarily a tiny proportion of the range of possible number comparison 

problems – but normal adults can reliably compare them all. The current models are limited in a 

way that their referents are not, because their performance will not generalise to numbers with more 

than  three  digits  –  but  the  generalisation  to  very  large  numbers  almost  certainly  implies  a 

significant, perceptual component that is beyond the current scope. The next chapter considers this 

latter problem directly.

This work has raised some questions that remain to be answered. Though the model-space 

approach yields rather richer results than any single model, it also poses some significant, technical 

challenges. In deference to the enormous number of models in this space, this chapter has been 
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rather more  descriptive than  explanatory. Why,  for example,  is the combination of decomposed 

MNLs and the  single unit accumulator code so effective? What differentiates it  from the much 

more familiar  numerosity code  (both codes imply a similar metric of number similarity,  so both 

might be expected to yield similar results)? Another question hangs over the roles of the hidden 

units in this space; since multi-digit number comparison can clearly be performed without any of 

these units, it may be unsurprising that they play no significant role in the mediation of Congruence 

effects. Nevertheless, there are some hints that these units can play a role – with 20 hidden units, 

one  barcode-based model did appear to show significant Size effects in data set 1. Given a fixed 

preference for a particular representation configuration, the details of this role might be clarified in 

future work. 

To some extent, these questions are a natural consequence of these models' complexity – 

precisely the reason that much simpler models are so often preferred. As we saw in chapters 4 and 

5, even comparatively small  neural network architectures can be difficult  to analyse effectively; 

with 135 models,  that  difficulty  is  naturally increased.  On the other  hand, it  seems sensible  to 

assume that,  when single  models  are  reported,  their  designers have gone through an analogous 

process to find the “best” parameters for it.  By reporting the  process as well as the result,  this 

chapter can make at least some conclusions that could simply not be made with a single model. 

Nevertheless,  the explanatory cost  of this  approach – the problem of analysing  large spaces  of 

complex computational models – can and should be addressed in future work.
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Chapter 9

Digit String Processing with Single Fixations

In chapter 2, I mentioned that theories of numerical cognition – and the computational models that 

encode them – tend to minimise the role of lower-level perception in number processing tasks. 

MNL-based accounts of, for example,  the Distance effect,  depend on mutual interference at the 

level  of  complete  number  representations,  so  can  often  ignore  the  question  of  how  those 

representations are derived from lower-level perception. That same agnosticism is also evident in 

the field's canonical computational models, almost all of which involve some kind “clamping”, or 

fixing of the relevant input units to their designers' preferred representations (Zorzi, Stoianov, & 

Umiltà, 2005). And even when lower level processes are taken into account, their presence is not 

usually critical to the results that justify these models' behaviour; as we saw in chapter 8, learning 

models that  employ the  compressed MNL  are perfectly capable of producing Size and Distance 

effects  without  any  of  the  perceptual  pre-processing  that  characterised  the  code's original 

implementation (Dehaene & Changeux, 1993). To a large extent, this bias reflects the intuition that 

visually presented numbers (even multi-digit numbers) are perceived in a largely parallel manner 

(e.g.  McClelland  &  Rumelhart,  1981);  to  the  extent  that  this  is  true,  it  seems  reasonable  to 

dissociate perception from representation in theories of number processing. But ever-longer digit 

strings must eventually outstrip the brain's ability to process  digits in parallel, implying a shift to 

some sort of incremental, or sequential, strategy. At present, we know next to nothing about the 

structure of that sequence.

To begin to understand it, we need to establish some of the fundamental constraints on the 

way that people perceive numerical stimuli. The most natural way to do this is by borrowing from 
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the tools and techniques that have emerged from over fifty years of research in reading. With the 

possible exception of the “thousands” string, discussed in chapter 7, digit strings do not support the 

kind of high-level semantics more commonly associated with words and sentences – so the best 

analogy to digit strings is probably a string of random letters. This chapter reports two experiments 

that apply paradigms developed for random letter strings to digit string perception. Specifically, the 

experiments were designed to answer two questions:

 How many digits can participants see with single fixations?

 How many digits can participants identify with single fixations?

Each  of  these  questions  addresses  a  fundamental  stage  in  the  processing  of  multi-digit 

numbers,  and  both  are  equally  important.  Digit  identification  plays  an  obvious  role,  but  exact 

enumeration supplies the information needed to assign relative positions to each digit – and those 

positions define each digit's syntactic role. 

In the terms used in prior work with letter strings, the first question addresses the  visual  

span for digit strings (defined for letter strings as the number of letters that can be seen with a single 

fixation and without the help of any contextual or linguistic cues; e.g. O'Reagan, 1990). If  digit 

strings are processed in the same way as letter strings (as has recently been suggested by Tydgat 

and Grainger, in press), then the visual span for digit strings should be about 10 digits (5 to the left 

and right of fixation if accuracies of at least 90% are required; O’Regan, Lévy-Schoen, & Jacobs, 

1983). But because digit strings are so much less familiar as foci of reading than letter strings, we 

expected  that  the  visual  span  for  digits  would  be  a  somewhat  smaller.  The  second  question 

addresses what might be called the perceptual span for digit strings (defined for letter strings as the 

number of letters that can be identified in a single fixation; Rayner, 1998) – but in this case, the 

results of prior work are less clearly comparable to our current digit strings because, when letter 
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strings form words  and sentences (and even pronounceable non-words), they allow for rich top-

down processing that can play no part in the processing of digit strings. In other words, we expected 

the perceptual span for digits to be very much smaller than the 18 or so characters (3-4 to the left, 

and 15-15 to the right of fixation; Rayner & Fisher, 1987; Underwood & McConkie, 1985) that 

subjects appear to be able to grasp with single fixations during reading.

9.1 Enumerating Digits

The structure of this experiment – a backward-masking paradigm – is analogous to the Reicher-

Wheeler method (Reicher, 1969; Wheeler, 1970). In this case, the stimuli are briefly presented digit 

strings  (with  horizontal  orientation),  with  subjects  engaged  in  a  forced-choice,  two-alternative 

verification of each string’s length. All stimuli were presented in Arabic notation, and digit strings 

were always composed of identical digits.

9.1.1 Method

9.1.1.1 Subjects

Sixteen naïve subjects participated; 7 men and 9 women. The youngest subject was 23 years 

old, and the oldest subject was 34 years old. The mean age was 25 years and 6 months. All but one 

of the subjects were right-handed, and all reported normal or corrected to normal vision.

9.1.1.2 Design

String length, string digit and answer digit were all manipulated; the range was the same in 

each case (2-8), leading to a 7x7x7 design. The exclusion of digit '0' reflects prior results suggesting 

that the concept of zero may emerge rather later in children than other, more concrete numerical 

concepts  (Bialystock  &  Codd,  2000;  Wellman  & Miller,  1986),  so  might  implicate  different, 

cognitive  processes.  Digits  '1'  and '9'  were  excluded to  minimise  the combinatorial  size  of  the 
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experiment, and to keep the variance of string digits to the same range as the variance of the string 

lengths;  single  digits  are  not  relevant  to  our  current  question,  and  we expected  8  digits  to  be 

sufficient to reveal the limits of the subjects' visual span. For each string stimulus digit and length, 

the matching probe occurred six times as often as any other single non-matching probe – ensuring 

that the probability of a matching trial was 0.5. We repeated each non-matching stimulus condition 

five times, leading to a total number of 2,940 trials6. 

9.1.1.3 Procedure

The experiment took place in a quiet, brightly lit room, with a Pentium III PC, a standard 

keyboard and a 15 inch colour screen. Subjects sat with their eyes approximately 50cm from the 

screen, but no chin rest was used.

The  experiment  was  organised  into  10  blocks,  each  lasting  approximately  10  minutes; 

allowing for breaks between blocks, each experiment lasted approximately 2hrs; subjects completed 

12 practice trials prior to beginning the first block, repeating them until they felt ready to proceed. 

The beginning of a new trial  was signalled by the appearance of a dot in the centre of a blank 

image.  This  image  was  replaced  by  the  “string  stimulus”  –  a  string  of  identical  digits  with 

horizontal orientation – after 1,000ms. The string stimulus was presented for 200ms, before being 

replaced by a string of eight hash marks. After a further 200ms, the probe stimulus – a single digit – 

was presented. The probe stimulus was removed when subjects pressed one of the two response 

keys, or after 2,000ms if no response was made.

Subjects had to decide if the probe stimulus was a valid report of the number of digits in the 

string stimulus, responding with the “up arrow” (right index finger) for matching trials, and the 

“down” arrow (left index finger) for non-matching trials. Feedback, in the form of a red image with 

a black exclamation mark at its centre, was provided whenever subjects either failed to respond 

6 Six matching trials and six non-matching trials per combination of string length and string 
digit = 12 trials; 7 lengths and 7 digits = 49 combinations and 588 trials. 5 repetitions = 
2,940 trials.
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(misses) or responded incorrectly (errors). A schematic of the trial structure is displayed in Figure 

37. Subjects were instructed to be accurate first,  but also to try to be quick; we collected both 

reaction times and accuracy data.

Figure 37: Schematic structure of Experiment 1 (judgement of digit string length). The example 

represents a non-matching trial; the matching probe in this case would be ‘4’.

With the exception of the error feedback – a black exclamation mark on a red background – 

all stimuli were presented as white characters (rgb = 63,63,63) on a black background (rgb = 0,0,0). 

All characters were presented in the Times New Roman font, with font sizes were as follows: 50 for 

the initial fixation cross, 60 for the mask, and 30 for the answer stimulus. 

The string stimuli fonts were subject to random variation in the range 15-50, ensuring that 

apparent string width was not a reliable cue to actual string length; the shortest string length (two 

digits) in the largest font size was wider than the longest string length (eight digits) in the smallest 

font size. The horizontal position of the strings was also manipulated, with random adjustments of 7 

pixels to the left and right of centre. The approximate visual angles of the string stimulus digits 

were in the range 0.8˚ (for the shortest strings in the smallest font size) to 10.1˚ (for the longest 

strings in the largest font size).
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9.1.1.4 Data Preparation

Accuracy data are reported after excluding all “miss” trials (0.04%); analyses of variance are 

conducted after applying an arcsin transform  ( x = 2*arcsin(√y) ) to remove significant deviations 

from a normal distribution (skewness / standard error of skewness < 2 for all subjects). Reaction 

time data are reported after excluding first trials with responses faster than 200ms (0.01%: thought 

to indicate anticipations), then all trials in which the subjects failed to respond correctly (11.7%), 

and then, on a subject-by-subject basis (following the recursive method of Van Selst and Jolicoeur, 

1994), all trials in which the reaction times were more than three standard deviations from the mean 

(10 iterations required, excluding a further 4.5%).

9.1.2 Results

The questions place a greater emphasis  on accuracy than on reaction time data,  but this 

chapter  reports  significant  effects  for  both  data  types.  Accuracy  rates  were  significantly  and 

negatively correlated with reaction times (r = -0.101, p < 0.001), implying that there was no speed-

accuracy  trade-off  (15  of  the  16  subjects  display  the  same  correlation,  while  in  the  other,  no 

significant correlation was observed). 

The data were analysed with a repeated-measures ANOVA using string length, string digit, 

and  probe digit as within-subjects factors. Each factor had two levels; “small” (values 2-4) and 

“large” (values 6-8); the complete set of results is reported in Table 6. Two of the three factors 

appeared  to  significantly  influence  the  subjects'  responses;  short  strings  were  associated  with 

significantly faster and more accurate responses than long strings (mean RT = 540.0ms for short 

strings vs. 599.5ms for long strings; F(1,15) = 34.295, MSE = 2054.049, p < 0.001; mean error rate 

= 4.1% for short strings vs. 17.8% for long strings;  F(1,15) = 119.683, MSE = 0.021, p < 0.001), 

and the same pattern was also observed for small vs. large probe digits (mean RT = 545.3 ms for 

short strings vs. 592.9 ms for long strings; F(1,15) = 59.076, MSE = 407.320, p < 0.001; mean error 
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rate = 4.1% for short strings vs. 17.9% for long strings;  F(1,15) = 141.598, MSE = 0.021, p < 

0.001).  The  interaction  between  between string  length  and probe  stimulus  magnitude  was  also 

significant (RT: F(1,15) = 5.477, MSE = 901.085, p = 0.034; Errors: F(1,15) = 290.399, MSE = 

0.023, p < 0001; see Figure 38), indicating, as expected, that subjects found trials significantly more 

difficult  when probe digits  were numerically  large (> 5) and the string stimuli  were long (> 5 

digits).

One other effect, revealed by secondary analysis, also deserve some mention; a numerical 

Stroop effect (e.g. Henik & Tzelgov, 1982; Foltz, Poltrock, & Potts, 1984; Girelli, Lucangeli, & 

Butterworth, 2000) caused, in this case, by the task-irrelevant digits that composed string stimuli. 

To find it, we compared matching trials (from the whole data set)  in which the string digit was 

either identical,  or numerically adjacent, to the string length (e.g. string stimulus: “4444”, probe 

stimulus “4” vs. string stimulus “3333”, answer stimulus “4”). These conditions should emphasise 

Stroop-like  facilitation  and  interference  respectively;  with  this  restriction  in  place,  a  second 

ANOVA with numerical  distance (2 levels)  as the sole factor confirms that a numerical  Stroop 

effect does significantly mediate both error rates and reaction times (Mean error rate for valid trials 

= 10.4% vs. 32.0% for invalid trials, F(1,15) = 96.499, MSE = 0.026, p < 0.001; Mean RT for valid 

trials = 559.0 ms vs. 583.7 ms for invalid trials, F(1,15) = 8.914, MSE = 547.815, p < 0.001). The 

emergence of this effect implies that, though the subjects' sensitivities to the digits in string stimuli 

did not significantly mediate their overall performance, those digits were nevertheless processed 

semantically.
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Behaviour Source df Error df MSE F Sig.

Accuracy

dig 1 15 .011 .808 .383
len 1 15 0.21 119.683 .000
pro 1 15 0.21 141.598 .000
dig * len 1 15 .006 1.104 .310
dig * pro 1 15 .008 .046 .834
len * pro 1 15 .023 290.399 .000
dig * len * pro 1 15 .007 .333 .572

RT

dig 1 15 64.108 2.801 .115
len 1 15 2054.049 34.295 .000
pro 1 15 407.320 59.076 .000
dig * len 1 15 87.530 3.135 .097
dig * pro 1 15 118.656 .103 .752
len * pro 1 15 901.085 5.477 .034
dig * len * pro 1 15 66.350 .727 .407

Table 6: Repeated-measures ANOVA results,  tracking the mediation of subjects' accuracies and 

reaction times by string length (len), probe digit (pro), and string digit (dig).

Figure 38: Interaction between string stimulus length and probe stimulus magnitude in judgements 

of the number of digits in a string.

9.1.2.1 How Many Digits Can Subjects See?

For each string stimulus length, the accuracy scores of subjects performing at chance levels 

should approximate a binomial distribution with a mean of 0.5 (the probability that a given trial is 
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matching). Using binomial tests, we established that the error rates of every subject on every string 

length were significantly below that chance level (accurate responses > errors and p < 0.001 for all 

subjects and all string lengths). With single fixations, subjects seem to be sensitive to the presence 

of (at least) eight digits.

However,  on  closer  inspection,  this  result  is  revealed  to  be  somewhat  over-optimistic, 

because it conflates exact perception with more general estimation; simply because subjects can tell 

you that a particular string does not have 2 digits, it does not follow that they know it has 8 digits. 

To establish a more credible limit, we need to restrict the analysis to a sub-set of the trials for which 

this kind of general estimation cannot be effective – to trials in which the probe stimuli were either 

identical or numerically adjacent to string stimulus lengths. To guard against response biases – for 

example  the  possibility  that  subjects  make  either  “matching”  or  “non-matching”  responses 

preferentially when they are unsure, we consider matching and non-matching trials separately in the 

analysis that follows.

The  restriction  to  matching  trials  only  appears  to  have  no  significant  impact  on  our 

fundamental  conclusions;  all  subjects  achieve  above-chance  levels  of performance  on all  string 

lengths. However, the subjects are clearly subject to a bias in favour of “matching” responses when 

they are unsure; when only non-matching trials are considered (for which the numerical distance 

between  probe  stimulus  magnitude  and  string  length  is  exactly  '1'),  their  performance  clearly 

suffers.  When  considered  as  a  group,  they  retain  their  above-chance  performance  on  strings 

containing 6 digits (binomial test, mean = 0.5, Error rate = 43%, N = 1099, 2-tailed p < 0.001), and 

also – if only marginally – on strings containing 7 digits (binomial test, mean = 0.5, Error rate = 

47%, N = 1099, 2-tailed p = 0.046). But for non-matching trials  with strings of 8 digits,  these 

subjects display significantly below-chance levels of performance (binomial test, mean = 0.5, Error 

rate = 78%, N = 549, 2-tailed p < 0.001).

If a subject's response bias can deflect their performance to below-chance levels in some 
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circumstances,  it  makes  sense  not  to  trust  their  above-chance  performance  in  others.  For  non-

matching trials in which the numerical distance between probe digit and string length is exactly '1', 

no  subjects  fit  that  criterion  for  strings  of  6  digits  (and  6  subjects  retain  their  above-chance 

performance in this case), 5 subjects exhibit below-chance performance for strings of 7 digits (and 3 

retain their above-chance performance levels), and 14 display below-chance performance for strings 

of 8 digits (the other two display no significant deviation from chance). In other words, while we 

can be reasonably confident that the subjects could exactly perceive 6 digits, and that at least some 

could perceive 7, most could probably not perceive strings of 8 digits with any precision.

9.1.2.2 Subitizing vs. Enumeration?

Though the distinction is still contentious (e.g. Balakrhisnan & Ashby, 1991, 1992; Piazza, 

Mechelli,  Butterworth, & Price 2002), a great deal of evidence suggests that the enumeration of 

small vs. large sets might implicate two different cognitive processes (e.g. Atkinson, Campbell, & 

Francis, 1976; Akin & Chase, 1978; Mandler & Shebo, 1982; Trick & Pylyshyn, 1994; Simon & 

Vaishnavi, 1996; Simon, Peterson, Patel,  & Sathian, 1998). The subjects’ ability to judge string 

length  appears  to  exceed  the  subitizing  range  (usually  thought  to  be  3  or  4  items),  but  their 

performance is still consistent with that distinction. 

To capture these discontinuities, we ran hierarchical cluster analyses of the mean error rates 

and reaction times associated with each subject for each string stimulus length. Both analyses used 

values  that  were  standardised  by  subject  (transformed  in  the  range  0-1),  then  clustered  with 

intervals defined by squared Euclidean distance. The results confirm a clear distinction between 

subjects’ performance on short strings (2-4 digits) versus long strings (6-8 digits); strings of length 

5 are the last to be assigned (see Figure 39). 
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Figure 39: Dendrograms indicating the clusters to which string lengths were assigned. (Top) Error 

rates, (Bottom) Reaction times. In both cases, string lengths 2-4 are grouped together first, the string 

lengths 6-8. String length 5 is the last to be assigned, reflecting the intuition that some subjects 

appear to subitize strings of this length, while others appear to employ more general estimation to 

enumerate the digits in these strings.

9.2 Identifying Digits

The second experiment is similar to the first, but the goal in this case is to discover how many digits 

subjects can identify with single fixations. The approach is again analogous to that used by Reicher 

(1969) and Wheeler (1970); a forced choice, two-alternative verification of backward-masked items 

at different positions in strings of varying length.



130

9.2.1 Method

9.2.1.1 Subjects

Sixteen naïve subjects participated; 9 men and 7 women. The youngest subject was 22 years 

old, and the oldest subject was 45 years old. The mean age was 27 years. All but one of the subjects 

were right-handed, and all reported normal or corrected to normal vision.

9.2.1.2 Design, Stimuli, and Procedure

The structure of this experiment was very similar to that described previously, but in this 

case, the subjects’ task was to decide if the probe stimulus had occurred in the string stimulus (now 

a string of different digits). String stimulus length was manipulated, and lengths in the range 3-6 

were considered; strings were defined by selecting digits at random from the range 1-9, without 

repetition.  Each string length occurred with equal probability,  and matching probe stimuli  were 

drawn from each string position at random, but also with equal probability. The probability of a 

matching trial was set to 0.5. As in the previous experiment, both reaction times and accuracy data 

were recorded, with subjects instructed to prefer accuracy over speed. Subjects were exposed to 750 

trials,  organised into 3 blocks,  with a practice  block of 12 trials.  Allowing for breaks between 

blocks, the experiment lasted approximately 30min.

Visual presentation conditions were identical to those used in the previous experiment, with 

the exception that the widest and narrowest viewing angles of string stimuli were changed in line 

with the smaller range of string lengths under consideration. The shortest string length was ‘3’, 

corresponding  to  a  minimum  viewing  angle  of  ~1.4˚,  and  the  longest  string  length  was  ‘6’, 

corresponding to a maximum viewing angle of ~9.4˚.

The data were also prepared as before; accuracy data exclude only “missed” trials (0.2%), 

and are subjected to an arcsin transform (skewness / standard error of skewness < 2 for all subjects). 

Reaction time data exclude all inaccurate trials (18.5%), and following the recursive method used 
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previously (Van Selst & Jolicoeur, 1994), all trials more than 3 standard deviation from the mean (6 

iterations, excluding a further 2.6%).

9.2.2 Results

No significant speed-accuracy trade-off was observed; accuracy rates were significantly and 

negatively correlated to reaction times (r = -0.103, p < 0.001; this group-wide result is also reflected 

at the level of particular subjects, 14 of whom display the same negative correlation, and none of 

whom display a positive correlation). We considered two factors in the analysis: string length and 

string position. The first of these two corresponds to a factor used in Experiment 1 – but in this 

case, string lengths 3-4 and 5-6 were grouped together. String position refers to the side (left half vs. 

right  half)  in  which  matching  probe  stimuli  appeared  in  the  string  stimulus  (this  analysis  is 

restricted to matching trials  only)   In strings of odd length (3 and 5),  the middle position was 

excluded.

A repeated measures ANOVA, confirms that both accuracy and reaction time data were 

significantly  mediated  by string length  (see Table  7  for  the  complete  set  of  results).  For  short 

strings, the mean error rate is 13.8%, and the mean response latency is 745.0 ms, while for long 

strings, the mean error rate is 29.5% and the mean response latency is 788.6 ms; as expected, longer 

strings make for more difficult trials. The string position factor also exerts a main effect on both sets 

of data; digits in the left of the strings (mean error rate = 17.7%, mean RT = 704.8 ms) appear to be 

significantly easier to identify than digits on the right side of the strings (mean error rate = 26.7%, 

mean RT = 788.6 ms).  For reaction times only,  we also observed an interaction between string 

position and string length; right-sided digits appear more difficult to identify in longer strings (mean 

RT = 762.7 ms) than they are in shorter strings (mean RT = 705.5). 

The significance of string length here is consistent with the results of the first experiment; if 

subjects find it harder to enumerate the digits in longer strings, they should also find it harder to 
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identify  the  digits  in  those  longer  strings.  The  significance  of  the  “string  position”  factor  is 

consistent  with  the  other  Reicher-Wheeler  type  experiments  on  letter-string  perception  (e.g. 

Wheeler, 1970; Tydgat & Grainger, in press), with centrally presented strings. This effect might be 

an artefact of that central presentation, but the leading figures in a multi-digit string contribute the 

most  to  the  number’s  magnitude,  so  it  seems  natural  that  subjects  should  process  these  digits 

preferentially.

Dependent Source df Error df MSE F Sig.

Accuracy
pos 1 15 .050 60.054 .003
len 1 15 .056 12.101 <.001
pos * len 1 15 .039 2.520 .133

RT
pos 1 15 1408.948 12.712 .003
len 1 15 2061.873 12.168 .003
pos * len 1 15 759.196 9.587 .007

Table 7: Repeated-measures ANOVA results, tracking the effect of digit position (pos) and string 

length (len) on the subjects' accuracy rates and reaction times.

9.2.2.1 How Many Digits Can Subjects Identify?

As in the previous experiment, the probability that a given trial is matching, is 0.5. For each 

position of each string stimulus length, each subject’s performance was compared to a binomial 

distribution with a mean of 0.5. The result was a tally, by subject and string length, of the string 

positions for which each subject was able to identify digits at levels that were significantly above 

chance.  The maximum number  of  digits  that  subjects  were able  to  identify  corresponds to  the 

maximum number of positions in which above-chance levels of performance were achieved. These 

maxima are overwhelmingly in the range 3-4 (see Figure 40); only one subject was able to identify 

5 digits, and no subjects could identify six digits.
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Figure 40: A histogram illustrating the maximum range of above-chance digit identification,  by 

subject.  The  results  are  based  on  binomial  tests,  comparing  each  subjects’  accuracy  data  to  a 

binomial distribution with a mean of 0.5

The subjects’ performance tends to be degraded on strings that exceed their maximum range 

of  identification;  all  but  one  of  the  subjects  achieve  their  best  performance  by  successfully 

identifying digits at every position in strings of 3 or 4 digits. One feature that makes longer strings 

more  difficult  is  lateral  masking  –  typically  invoked  (e.g.  Grainger  & Holcombe,  in  press)  to 

explain the emergence of the classical W-shaped performance curve (see Figure 41) in Reicher-

Wheeler  experiments  with  centrally  presented  strings  (e.g. Hammond  & Green,  1982,  Lefton, 

Fisher, & Kuhn, 1978; Mason, 1982; Stevens & Grainger, 2003). To try to capture the significance 

of  lateral  masking  in  degrading  the  subjects’  performance,  we  can  conduct  a  further  analysis 

designed to exclude it.
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Figure 41: Subjects’ accuracy by string position and string length; offset positions are expressed in 

terms of the number of digits from the string centre (strings of even length require half-digit dis-

tances).

The W-shape emerges because lateral masking has a reduced effect on leading and trailing 

digits, as well as digits at fixation (in this case, in central positions). To capture the role that string 

length plays independently of this masking, the analysis was restricted to those string positions that 

were least affected – to the positions that permitted the best performance for each string length. In 

order of increasing string length, these were positions 2, 2, 3 and 3 (i.e. central positions for strings 

of odd length, and just left of centre for strings of even length). We can then perform a repeated 

measures ANOVA tracking the impact of string length (2 levels) on the subjects’ performance in 

these  restricted  cases.  The  results  suggest  that  string  length  does  not  significantly  mediate  the 

subjects’ performance when lateral masking is excluded. The implication is that – in this case at 
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least – lateral masking is the principal source of degraded performance on longer digit strings.

9.3 Interim Discussion

The results suggest that,  with single fixations, subjects can see up to 6 or 7 digits,  but reliably 

identify only 3 or 4. From Experiment 1, the visual span for digits appears to be rather smaller than 

that for letters – this result seems inconsistent with the assertion that letters and numbers implicate 

the same “alphanumeric” perceptual  processing architecture (Tydgat  & Grainger,  in press).  The 

difference may be a function of familiarity; if letter and digit detectors can be adapted to processing 

dense strings (at least relative to other symbols; Tydgat & Grainger, in press), then that adaptation 

may be dependent on the subjects' experience of reading (which might favour letters over digits). 

The results of Experiment 2 are consistent with those of Tydgat and Grainger (in press); with strings 

of 5 digits, they observed a “W-shaped” position function for accuracies that is very similar to that 

displayed in Figure 41. My explanation for the effect – based on lateral masking (or crowding) – is 

also  consistent  with  their  interpretation.  Indeed,  since  all  but  one  subject  achieved  their  best 

performance by identifying digits at every position in strings of at most 4 digits, it seems reasonable 

to suggest that this masking is a key limiting factor on their perceptual span for digits.

Alongside the main results, it is also clear that there are discontinuities in subjects’ digit 

enumeration performance (Experiment 1), consistent with claims that the enumeration of small vs. 

large sets implicates two different processes. Further, the range in which subitizing occurs is similar 

to the range in which subjects can identify digits (Experiment 2), consistent with the intuition that 

the subitizing range is connected to subjects’ capacity for opening “object files” (e.g. Carey 1998) – 

that, with single fixations, subjects can identify precisely as many items as they can subitize. The 

current work lacks the within-subject data that would be required to claim strong conclusions of this 

sort – but this weakness could be rectified in future work.

Though clearly rather removed from natural number processing, the tasks employed here 
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have nevertheless provided a critical foundation for the work that must be done to understand how 

very large numbers are perceived; to interpret saccadic strategies in more natural number processing 

tasks, one must first identify the constraints that (visual) perception imposes on them. These data 

suggest that the most efficient saccadic strategy for digit strings processing is to divide them into 

discrete “chunks” (of 3 or 4 digits) that  can then be processed in parallel  – but this conclusion 

assumes that above-chance recognition performance is sufficient for everyday number processing 

tasks. Observed deviations from that strategy can therefore tell us something about the – probably 

rather more stringent, and possibly task-dependent – level of perceptual confidence that subjects 

actually require.

Following the logic of prior work on reading, a natural next step might be to assess the 

interaction between the constraints observed here and the details of the problem that subjects must 

solve.  From  the  current  results,  we  can  be  reasonably  sure  that  at  least  some  digits  in  both 

experiments were processed semantically; numerical Stroop effects emerged in Experiment 1, while 

a W-shaped position function emerged in Experiment 2 (consistent with that observed for letter and 

digit strings by Tydgat and Grainger, in press, but not with that observed for strings containing 

other symbols). However, the current tasks did not force the subjects to process digit strings as 

integrated numbers; the latter goal might be achieve by asking them to identify what digit played a 

specified syntactic role (e.g. tens digit, hundreds digit, and so on) in visually presented digit strings. 

Another approach to confirming these constraints' generality would be to use a paradigm that gives 

subjects more freedom to move their eyes, perhaps by employing the  moving window  technique 

(McConkie & Rayner, 1975; Reder, 1973) to selectively control the visual information available to 

subjects  while  they manipulate  long digit  strings.  For  digit  string  reading  tasks,  the  prediction 

would  be  that  subjects  need  only  be  able  to  see  3  or  4  digits  clearly  during  each  fixation  to 

recognise the numbers that these strings represent.
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IV

Summary, Discussion

and Conclusions
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Chapter 10

Summary, Discussion and Conclusions

10.1 Summary

We began with a series of chapters that introduced (chapter 3), developed (chapter 4) and applied 

(chapter 5) a Dynamicist model-building method to the problem of number comparison. From the 

perspective of numerical cognition, the key result was the discovery of a novel format for semantic 

number  knowledge – the  single-unit  accumulator  code – in  agents  that  had been “evolved” to 

forage effectively (chapter 5). But the work also makes the much more general point that, perhaps 

contrary  to  expectations,  Dynamicism  can be  employed  to  create  models  that  interact  with 

conventional debates on the structure of cognitive representation. Chapter 6 shifted the focus away 

from representations and toward the processes that employ them – describing another novel model-

building method which employs the assumption that neural information processing will be optimal 

or near optimal for any specific task. Like chapter 5, chapter 6 made a methodological contribution 

by  demonstrating  its  method's  utility.  And  like  chapter  5,  chapter  6  also  provided  results  of 

scientific interest – yielding a model that captures both reaction time and accuracy data, as well as 

the neural dynamics that primates seem to employ.

Chapters 7 to 9 all considered problems associated with the processing of larger, multi-digit 

numbers. Chapter 7 presented an experiment that dissociates subjects' sensitivities to these numbers' 

integrated values from their sensitivity to the numbers' single-digit components – and also revealed 

an apparent dissociation between the Size and Distance effects, which is not consistent with the 

predictions of three of the four popular theories of MNL format (the compressed MNL, the noisy 

MNL,  and  the numerosity  code all  imply  that  both  effects  stem from the  same causal  source: 
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representation-level  interference).  Chapter  8  presented  a  model-space  for  multi-digit  number 

comparison,  which  confirmed  that  model  quality  is  mediated  by the  interaction  between  MNL 

formats and MNL structures, so implies an interaction between the format and structure debates. 

The  analysis  also  confirmed  the  plausibility  of  the  single  unit  accumulator  code;  the  best, 

discovered models employed this format with a  decomposed structure. Finally, chapter 9 reported 

two experiments designed to capture some constraints on the perceptual processing of very large 

numbers. The results imply that, with single fixations, human subjects are sensitive to the presence 

of up to eight digits, can exactly enumerate up to 6 or 7, but reliably identify only 3 or 4.

10.2 General Discussion

This thesis has reported two kinds of work; computational models in chapters 4-6 and 8, and more 

direct, empirical experiments in chapters 7 and 9. The comparison between these two groups can be 

instructive. As compared to the computational work, the key advantage of the experiments is their 

concreteness – though their interpretation can be criticised, the data that these chapters report is 

much harder  to  dismiss.  That  concreteness  is  much more  difficult  for computational  models  to 

achieve because of the sense that they are simply too arbitrary to be trusted – because there may be 

infinitely many distinct ways to implement the same, cognitive behaviour. 

To a large extent, that distinction can explain the overwhelming preference for experiments 

over  computational  models  in  cognitive  science.  Since  our  knowledge  of  the  neurophysiology 

underlying cognition is still too coarse to verify the details of most computational cognitive models, 

the preference reflects a sense that these models might be rather premature. To some extent, that 

doubt can – and should – be addressed by empirical experiments; chapters 7 and 9 reflect that need 

by contributing new data to that can inform our knowledge of numerical cognition. But the criticism 

also implies a rather limited stance on the role that computational models can play in cognitive 

science – specifically, that they must implement their designers' favoured cognitive theories. None 
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of the models that this thesis reports were designed to play that role.

The clearest connection between the computational projects in this thesis is their dual focus. 

Each addresses a problem of relevance  to numerical  cognition,  but each also introduces  a new 

methodology for model-building. And though different in detail, all of these methods embodies the 

common intuition that model-building can – and should – answer empirical questions. Cast in that 

light, the computational models that this thesis reports are just as concrete – just as “experimental” 

–  as  the  experiments  themselves;  the difference  is  simply that  the  different  kinds  of  work ask 

different kinds of question.

In  chapter  5,  the  question  is:  what  number  representations  might  selective  evolution 

encourage in simple organisms? The model-building method attempts to answer it by “evolving” 

simple  organisms  in  an  artificial  ecosystem,  with  an  ecologically  plausible  definition  of 

evolutionary fitness. The result's utility demonstrates that this kind of question can be answered – or 

at least that sensible answers can be proposed – by computational means. And by taking as many 

constraints  as  possible  away  from the  designer's  explicit  control,  the  Dynamicist  method  also 

minimises the contingent, arbitrary content of the answers that it can provide.

The same logic – motivating a preference for “minimal” methodology – is also employed by 

chapter 6. In this case, the question is: what neural network architecture implements an optimal (or 

near-optimal) information processing strategy for making decisions under sensory uncertainty? As 

in chapter 5, the results are more believable because so few of the models' parameters are explicitly 

defined. But in this case, much more explicit justifications are also available, because the search-

based approach directly  reflects  the popular  assumption  that  the  models'  referent  (the relevant, 

biological architecture) is at least close to optimal, and because the dynamics of that referent have 

already been so well-reported.  From the latter,  we could confirm that the resulting models  did 

actually reflect  the biology that  they were intended to capture.  And though the model-building 

method does not (cannot) guarantee optimality,  its deviations from optimality also appear to be 
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reflected in the biology it was intended to capture.

Chapter 8 was designed to answer the question: what combinations of MNL format  and 

structure can drive effective, associative models of multi-digit number comparison? The approach 

in this case is not so much minimal as it is combinatorial – but the results are no less empirical for 

that  distinction.  Like chapters 5 and 6, chapter 8 takes the focus of its question away from the 

designer, and like those two previous chapters, this method's utility is confirmed by the relevance of 

the results that it supplies – results that are particularly interesting because they favour the novel 

MNL format (the single unit accumulator code) that was discovered in chapter 5. The question that 

this chapter asks has a limited scope, because its results might not be robust to different learning 

systems, and because associative memory may simply be the wrong approach for modelling multi-

digit number comparison. But within its restricted scope, the answers that this chapter supplies have 

a definite, empirical character.

In all of the computational chapters, this empirical content carries an analytical cost. That 

cost  is  most  explicit  in  chapters  4  and 5,  which introduced extensive,  novel  methodology (the 

BMM) that was specifically designed to address it. The analysis in chapter 6 is simplified because 

the models  that  result  are less structurally complex – but they still  illustrate  the same essential 

problem; when the structural specification of a model is automated, rather than explicitly designer-

driven, there is no guarantee that we will understand how the finished result actually works. Chapter 

8 illustrates a different kind of cost, because its models are all designed by a much more familiar, 

much more constrained method. But the results' complexity – the sheer number of models that they 

include – makes a detailed analysis quite difficult to complete.

That limitation – and the work required to address it – can justify a preference for the more 

restricted  role  that  computational  models  are more commonly employed  to  play.  When models 

explicitly encode their designers' preferred cognitive theories, their implementation implies prior 

knowledge of their functional architecture. That prior knowledge ensures that the results are at least 
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usually clear, even if their scope might be restricted. This thesis has been motivated by the belief 

that computational models can, and should, play a much richer role in cognitive science. Chapters 

3-5, 6, and 8 have proposed three routes toward that goal. Each approach can be criticised, but each 

also  yield  conclusions  of  cognitive  interest  –  conclusions  that  could  not  be  made  by  more 

conventional work. The  thesis of this thesis is that  this benefit outweighs any of the associated 

costs.

10.3 Conclusions

Brains are fundamentally machines, so any even remotely believable account of cognition must be 

expressed at the level of causal / functional architecture. Computational models are the most natural 

way to express cognitive theory at that level of detail,  but since our knowledge of the relevant 

neurophysiology is still too coarse to verify most of those models directly,  they can often seem 

rather  premature.  Both  the  minimal  and  combinatorial  approaches  to  model-building  can  be 

construed as attempts to find a way to begin to trust the models that we design – by making their 

unverified content the focus of structured, empirical investigation. And in that respect, this work 

appears to be successful. Like the more directly empirical experiments that this thesis reports, the 

interpretation of the computational work can clearly be criticised – but the data itself, the emergence 

of  this model  architecture,  or  that  model  behaviour,  under  those  circumstances,  is  much  more 

concrete.

The model-building methods that this thesis reports are also valuable because they have the 

capacity to surprise – to produce unexpected answers to questions of cognitive interest. Chapter 3 

illustrated that, despite over 50 years of research, many of the field's most basic foundations are still 

extremely contentious. In some cases at least, our natural – and even informed – intuitions about 

how cognition works are both difficult to ignore and quite probably misleading. To the extent that 

computational methods can exceed our expectations, they are also released from the constraints 
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those expectations impose.

Perhaps the biggest surprise of the experience that this thesis reports is that very few people 

– very few of my own colleagues, or of the other academics in the field – appear to believe that a 

complete, causal-level understanding of cognition can ever be achieved. But I do believe it – more 

strongly now than ever before. Whatever else may be required, it seems clear that computational 

methods must  play some role in achieving that goal.  The methodological  content  of this thesis 

reflects a sense that many of the obstacles in the path toward it stem from a poverty of perspective – 

that if the problems seem too difficult to solve, it is only because we are approaching them in the 

wrong way. This thesis has proposed several new computational methods, one or more of which 

may bring us closer to that hypothetically “right” approach. Only time – and further work – can tell 

us how successful they can be.
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