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Ai miei genitori





Ich sage euch: man muß noch Chaos in sich haben, um einen tanzenden

Stern gebären zu können.1

Friedrich Wilhelm Nietzsche,
Also sprach Zarathustra

1I tell you: one must have chaos within oneself, to give birth to a dancing star
Bisogna avere un caos dentro di sé per partorire una stella danzante.





Abstract

In the first part of the work we analyze the problem of optimal control of
a vehicle along a preassigned trajectory. The vehicle system is studied and
simplified in order to obtain a computationally tractable model, which still
presents the main characteristics of the real vehicle. The control algorithm,
based on MPC techniques, is then explained and its effectiveness is proved
through simulation results. The “minimum lap time problem” is afterward
considered, which can be considered as an evolution of the trajectory tracking
problem; its analysis is presented and is followed by the developed solution,
based on pseudospectral methods.

In the second part of the thesis the problem of control of underactuated
mechanical systems is discussed. The nonholonomic system classically called
“rolling disk” is considered as test case; it is a wheel with punctiform contact
surface that can roll on the plane without sliding laterally. Differently from
the literature we consider the torque as the unique control input signal. This
system is modeled through the Lagrangian formalism and then the control
strategy, based on backstepping and receding horizon techniques, is shown
and proved to be effective.

Keywords: Nonlinear optimal control, constrained optimization, trajec-
tory tracking, receding Horizon, pseudospectral methods, underactuated sys-
tems, non-holonomic constraints.





Sommario

Nella prima parte del lavoro viene analizzato il problema del controllo
ottimo di un veicolo lungo una traiettoria preassegnata. Il sistema in ques-
tione viene pertanto analizzato e modellizzato in maniera da renderlo com-
putazionalmente trattabile pur garantendo la buona approssimazione del sis-
tema reale. Successivamente viene presentato l’algoritmo di controllo ottimo
sviluppato, basato su tecniche di model predictive control e viene dimostrata
attraverso le prove sperimentali l’efficacia della strategia. Viene poi consid-
erata l’estensione al caso in cui il controllo non sia solo di traiettoria, ma
che vi sia presente anche un vincolo temporale, passando pertanto alla for-
mulazione del problema del “minimum lap time”, alla cui analisi segue la
risoluzione attraverso l’applicazione di metodi pseudospettrali.

Nella seconda parte della tesi viene invece affrontato il problema del con-
trollo di sistemi meccanici sottoattuati. Come esempio di sistema apparte-
nente a tale classe viene considerato il caso del “rolling disk”, ben noto in
letteratura, che consiste in un disco che può muoversi nel piano e che è
soggetto a un vincolo anolonomo di non scivolamento laterale. A differenza
di quanto considerato classicamente in letteratura, viene aggiunto un ulte-
riore vincolo sul controllo; l’unico ingresso ammissibile al sistema sarà la
coppia motrice alla ruota, mentre verrà tralasciata la possibilità di avere un
angolo di sterzo come ingresso. In tale maniera la sottoattuazione del sistema
diventa maggiore. Dopo aver modellizzato il disco utilizzando l’approccio la-
grangiano, verrà sviluppato l’algoritmo di controllo, basato su backstepping
and receding horizon tecniques.

Parole chiave: Controllo ottimo non lineare, ottimizzazione vincolata, in-
seguimento di traiettoria, metodi pseudospettrali, sistemi sottoattuati, vin-
coli anolonomi.
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Introduction

Motivations of the work

This thesis work is about the application of optimal control techniques to
mechanical systems, in order to achieve a path following.

In the first part of the work the problem of controlling a ground vehi-
cle along a preassigned trajectory is addressed. This work, completed in
collaboration with MSC.Software, is motivated by practical needs.

In the manufacturing field the competition on a global market requires to
minimize the research and development cost for new products. Its develop-
ment process can be divided in preliminary research and design, prototype
creation, prototype test and revision. This process usually requires the pro-
duction of a big number of intermediate pieces, that are a great source of
time and money consumption. Some tools have been created to speed up
and improve this process through the use of computers; this development
technique goes under the name of “Virtual Prototype Development” (VPD).

In ground vehicle designing, the basic idea is to build a mathematical
model (the virtual prototype) that captures significant aspects of the phys-
ical dynamics, allowing various performance analysis and aiding in design
tradeoffs. Indeed with such a model, it can be possible to set and run an in-
definite number of inexpensive and quick experiments (when compared with
real ones) to improve safety and maneuverability of the design. A mathemat-
ical model is also useful to predict how a design variation or a new component
might affect the stability and performance of the vehicle.

Beside this class of experiments, which can be classified as “statical tests”,
there are some others that should be performed to analyze the dynamical be-
havior of the vehicle, such to follow a path of prescribed geometry following
a velocity specification. Open loop simulations are sufficient for and com-
monly used in handling analysis of automobiles, while are not suitable for
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high demanding maneuvers. These trials are commonly performed by a real
driver on a physical prototype, with consequent waste of money and time,
and with the major drawback of the lack of test repeatability.

To properly simulate these complex maneuvers, feedback should be em-
ployed as part of a virtual rider to provide the steering and throttle/brake
inputs necessary to accomplish the task. The development of such a driver,
which is in fact an interesting application of control algorithms, is the main
aim of this work.

The control scheme is based on Model Predictive Control techniques
(MPC). Model Predictive Control is widely adopted in industry as an ef-
fective means to deal with large multivariable constrained control problems.
The main idea of MPC is to choose the control action by solving on line an
optimal control problem. This aims at minimizing a performance criterion
over a future horizon.

The choice of a receding horizon strategy was suggested by observing the
human driving activity. While driving, people know, through their sight, a
portion of the track ahead and use this information to judge how to act,
how much to steer the vehicle in order to properly accomplish the desired
maneuver. Moreover, consciously or not, the judgment is hardly based on
the mental model of the dynamics of the vehicle. The more “accurate” it
is, the best the maneuver is performed. So people do not look on the road
just below them, as a causal strategy would do. Therefore, appealing to a
noncausal control law appears to be the natural choice for the problem and
that was confirmed during the experiments made.

In previous works, (see [22]) the control action is computed using desired
speed and curvature at current time. Therefore, it is based only on the
information related to the vehicle current position on the path and that is
why its applicability is restricted to a certain set of possible maneuvers, there
working nicely.

As part of the control scheme development, there is the requirement of ob-
taining a feasible trajectory on the plane and a velocity profile to be followed.
To address this problem, firstly solved through the use of the proper tool of
MSC.ADAMS, the simulation environment, the “minimum lap time” prob-
lem has been studied and solved through the use of pseudospectral methods,
which has given some brilliant preliminary results.

The second part of the work is about controlling a class of underactu-
ated mechanical systems to develop a general control scheme that exploits
symmetries and other common characteristics.
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Underactuated systems are mechanical control systems with fewer con-
trols than the number of configuration variables. Control of underactuated
systems is currently an active field of research due to their broad applica-
tions in Robotics, Aerospace Vehicles, and Marine Vehicles. The examples
of underactuated systems include flexible-link robots, mobile robots, walking
robots, robots on mobile platforms, cars, locomotive systems, snake-type and
swimming robots, acrobatic robots, aircraft, spacecraft, helicopters, satel-
lites, surface vessels, and underwater vehicles. Based on recent surveys, con-
trol of general underactuated systems is a major open problem ([35] and
[36]).

Almost all real-life mechanical systems possess kinetic symmetry proper-
ties, i.e. their kinetic energy does not depend on a subset of configuration
variables called external variables. In this work, we exploit such symme-
try properties as a means of reducing the complexity of control design for
underactuated systems.

We provide as example the rolling disk system, which is well known and
studied in literature. Differently from the previous work we consider only a
single control input for the systems and states the problem of path following.

Main contributions

As regards the study of nonlinear control systems, the contributions are
twofold. First, we develop a strategy that combines longitudinal and lateral
control for vehicle guidance, which is more similar to human driving than
the previous ones, which decouple the two dynamics. Second, we provide
a preliminary characterization of the optimal solution for the minimum lap
time problem, that takes in account the vehicle dynamics and not only its
steady-state behavior.

As regards the control of underactuated systems, we provide a new setting
for the “rolling disk” problem and develop a control scheme for trajectory
tracking purpose, that allows the system to follow a preassigned path with
bounded error. This control strategy can be easily applied to a wider class
of systems, that present planar symmetries and nonholonomic constraints.
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Thesis outline

In Chapter 1 we introduce the mathematical model of the vehicle that will
be used in the next chapters for control purpose. The main hypotheses made
to obtain a computationally tractable model with a good representation of
the physical system are discussed.

In Chapter 2 we provide a new strategy to solve the trajectory tracking
problem. We start providing a general definition of the problem addressed
and the solution here developed. The experimental results are then presented.

Chapter 3 is a review of pseudospectral methods for the numerical solu-
tion of differential equations and their application to the solution of control
problems. The application of these methods to the solution to the “minimum
lap time” problem is then presented.

In Chapter 4 the problem of controlling a rolling disk along a trajectory
on the plane is addressed; this system has been chosen to represent a more
general system, in the class of underactuated mechanical systems that present
symmetries on the plane. The model is derived using a Lagrangian approach.

In Chapter 5 the developed control strategy is detailed and the results of
its application are presented, along with future improvements.



Chapter 1

Vehicle Models

The first step to solve the control problem previously stated is to find a
mathematical model that presents the main characteristics of the real vehicle,
while being computationally tractable. Next sections are dedicated to explain
the developed model and its salient points.

1.1 Vehicle Analysis

A ground vehicle typically consists of the main body (chassis, cabin, engine,
transmission) linked to four wheels via the suspension system. Except from
translation and yawing motion during travel, the suspended body performs
pitching, rolling and vertical translation motions. The vehicle interacts with
the environment through tire friction forces, which allow the vehicle to ac-
celerate, decelerate and steer, as well as aerodynamic drag and lift forces
generated due to relative motion of the body and the atmosphere. Steering
of the vehicle is generated typically by the two front wheels, although it is
not unusual for steering to be generated by the rear or all four wheels. The
power is transmitted from the engine to the wheels through the transmission
system.

To control the vehicle the driver acts typically on:

• Steering angle;

• Throttle;

• Brakes;
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• Gear;

• Clutch.

These parameters will be the ones considered as control inputs in the control
algorithm later described.

1.2 Coordinate System

y

Y

X

ψ

x

Figure 1.1: Coordinate system.

It is necessary to fix a reference frame in order to describe the system.
We consider the frame Σ1 = (X, Y ) attached to the vehicle, further called
body frame, which origin is situated on the contact point of the rear wheel,
and which orientation is consistent with the Society of Automative Engineers
(SAE) convention1.

To analyze the vehicle motion, it is necessary to consider a second refer-
ence frame Σ2 = (x, y), inertial and oriented coherently to the first one and
z axis pointing down; in this way clockwise rotation are positive. This frame
will be called world frame.

1SAE convention fixes a frame with the x axis in the direction of motion, the z axis
pointing downward and the y one accordingly oriented.
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Vehicle position can be unambiguously2 determined by the triple (x, y, ψ),
where x and y are the planar coordinates of the rear wheel contact point,
while ψ is the yaw angle, that is the angle between the world frame x axis
and the body frame x axis, which represents the vehicle direction. These
coordinates can be then chosen as generalized coordinates for system position
description.

From the previous quantities, we can straightforwardly obtain the gener-

alized velocity
(

ẋ, ẏ, ψ̇
)

.

Calling VT e V⊥ the longitudinal and lateral vehicle velocities, that are
the velocities along the X and Y axes of Σ1, the following equivalence fits:

[

ẋ
ẏ

]

=

[

cosψ − sinψ
sinψ cosψ

] [

VT
V⊥

]

, Rψ

[

VT
V⊥

]

Rψ is a rotational matrix, which is always invertible, therefore the triple
(VT , V⊥, ψ) is a generalized velocities set equivalent to the first one.

1.2.1 Motion Equation

To obtain a mathematical handleable model for the vehicle, some assump-
tions should be made. In the following list the main ones are summarized:

• We consider no rear wheel steering. For further simplification we can
assume equal steering angles for the front left and front right wheels.

• We assume that the center of gravity (C.G.) is located on the longitu-
dinal vehicle axis. The longitudinal position of the C.G. is a parameter
of our model. The static vertical load though is equally distributed to
the left and right wheels.

• The rolling motion of the suspended mass is neglected. In addition we
assume that friction forces and velocities appearing on wheels of the
same axle are identical. Taking into consideration all the assumptions
above, the model is now equivalent to a 2-wheel vehicle, classically
called Bicycle Model or 1-Track Model, as in figure 1.2, with one front
and one rear wheel on the longitudinal x body axis of the vehicle. The
friction forces of each wheel of the half-car model is equal to the sum
of friction forces of the wheels of the same axle.

2This happens because we neglect roll and pitch dynamics,thanks to the non deformable
suspensions hypothesis.
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• The mass of the wheels is neglected. The vehicle is modelled as a single
rigid body. However, equations to describe the rotation of each wheel
are necessary in order to compute the angular speed of each wheel.
This allows the computation of the relative velocity of each wheel with
the ground and thus the friction forces generated by each tire by use
of a tire friction model.

• The aligning moment of the tires is neglected for simplicity as it is
common in the literature [[40]], [[11]], [[10]] for trajectory following and
optimization applications.

• Aerodynamic lift is neglected.

• Engine, transmission and brakes dynamics are neglected.

• We assume that the longitudinal control of the vehicle is given by two
independent torques on each wheel. However, the controls in a real car
are one acceleration pedal and one brake pedal. Thus the input torques
of each wheel are coupled. On the other hand, several race driving
techniques, such as “hand-brake cornering” and “left foot braking” allow
some independence on the longitudinal control of each wheel.

Motion equation can be obtained through the Lagrangian approach3; the
resultant model is:





v̇T
v̇⊥
ψ̈



 =M−1 {τ − C}

where:

• M is the mass matrix:

M =





m 0 0
0 m mb
0 mb mb2 + Izz





• τ is the generalized forces vector:

τ =





F f
⊤
cos δ − F f

⊥
sin δ + F r

⊤
− FA

F f
⊤
sin δ + F f

⊥
cos δ + F r

⊥

p(F f
⊤
sin δ + F f

⊥
cos δ)





3for further details see appenxix A.
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p

2d

Fxrr

Fxlr

Fyrr

Fylr

VT

V_|_

ψ

δ

α

Fxlf

Fylf

Fyrf

Fxrf

δ

FTfF_|_f

FTr

F_|_r

p

m

V_|_

VT

Figure 1.2: (a) 2 Track Model, (b) Bicycle Model.
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• C is the Coriolis vector:

C =





−mv⊥ψ̇ −mbψ̇2

mv⊤ψ̇

mbv⊤ψ̇





• m is the vehicle mass;

• p is the wheelbase, that is the distance between the front and the rear
contact point;

• b is the distance between the rear contact point and the center of mass;

• Izz is the vehicle inertia with respect to the vertical axis;

• F r
⊤
and F f

⊤
are the longitudinal forces:

F r
⊤
= f(αr, κr, Nr)

F f
⊤
= f(αf , κf , Nf )

• F r
⊥
and F f

⊥
are the lateral forces4:

F r
⊥
= f(αr, κr, Nr)

F f
⊥
= f(αf , κf , Nf )

• Nr and Nf are the normal forces;

• FA is the aerodynamic drag, given by FA = 1
2
ρCDAv

2
T , where ρ is the

air density, CD is the drag coefficient and A is the drag area.

1.3 Tire Model

The forces and torques developed by the pneumatic tire affect the vehicle
in a variety of ways. The tires support the vehicle weight, and any other
vertical forces developed (for example due to aerodynamic effects or road
banking). The interaction between the tires and the road supply the tractive,
braking and cornering forces for maneuvering. The tires also supply the
forces used for controlling and stabilizing the vehicle and for resisting external
disturbances from road and wind.

4Longitudinal and lateral forces are generated by the interaction of the pneumatic tires
with the road.
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Figure 1.3: Tire model.

These forces are generated as consequence of a wheel sliding, according
to the model developed by H.B. Pacejka in [14] and [32]. When the vehicle is
moving forward, the slip has two components, that can be defined as follow:

• αr and αf are the lateral slip;

αr = atan(v⊥
v⊤
)

αf = atan(v⊥+pψ̇
v⊤

)− δ

• κr and κf are the longitudinal slip;

κr =
−θ̇rRr−v⊤

v⊤

κf =
−θ̇fRf−v⊤ cos δ−v⊥ sin δ

v⊤ cos δ+v⊥ sin δ

where:

κ : tire longitudinal slip [%];

α : tire slip angle [rad];

vT :vehicle longitudinal velocity [m/s];
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v⊥ : vehicle lateral velocity [m/s];

ωi = θ̇i, i = R,F : tire angular velocity [rad/s];

Ri, i = R,F : wheel radius [m];

δ : steering angle [rad];

ψ̇ : vehicle yaw rate [rad/s];

p : vehicle wheelbase [m].

Longitudinal and lateral forces can be obtained, knowing the slip values,
using the following equations, which are known as Pacejka Magic For-

mula :

Fx = D1 sin (C1 arctan (B1κ
′ − E1 (B1κ

′ − arctan (B1κ
′)))) + Sv1 (1.1)

Fy = D2 sin (C2 arctan (B2α
′ − E2 (B2α

′ − arctan (B2α
′)))) + Sv2 (1.2)

The coefficients Bi, Ci, Di, Ei, Shi, Svi determine the curve shape and are
experimentally determined through measurement on the real tire. The slip
there used are given by: κ′ = κ + Sh1 , α′ = α + Sh2 and X ′ = α + Sh3.
See [14] and [32] for further details.

Figure 1.4 shows the forces as a function of the tire slip. The relation
between slip and generated force is clearly non-linear; the force presents a
peak for a particular value κM of the longitudinal slip (or similarly for a value
αM of the lateral slip angle) and then it decreases. We should take in account
of this trend in the design of the control law for the system, because exceeding
the peak values determines a reduction of the generated force while increasing
the wheel angular velocity (for longitudinal force) or the steering angle (for
lateral one); in this case increasing the engine speed(i.e. accelerating) leads
to a reduction of the tractive force, while increasing the steering command
decreases the curvature value of the trajectory.

1.3.1 Combined Pacejka Formula

The Fx and Fy values previously computed can be reached only if the vehicle
is in pure accelerating maneuver or in pure cornering one, when only one
component of the wheel sliding is present. Most of the time both the longi-
tudinal slip ratio and the lateral slip angle are non-zero; it is then necessary
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Figure 1.4: Relation between slip and generated forces.
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to further investigate what happens when both the tractive and cornering
forces are developed.

The previous model can be enriched through the tractive ellipse idea (See
figure 1.4).

The highest longitudinal and lateral forces that can be separately com-
puted through the Pacejka Magic Formula determines the ellipse length and
width. Chosen a point on the ellipse contour, its distance from the origin
represents the overall force that can be generated by the tire, while its pro-
jections on the axes are the greatest longitudinal and lateral forces. Their
expressions can be obtained from the previous ones (i.e. 1.1 1.2), introducing
opportune scaling factors Gx e Gy :

Fx = Fx0Gxα (α, κ, Fz)

Fy = Fy0Gyκ (α, κ, γ, Fz) + SV y

The analytical expression of the functions Gx e Gy can be found in [29].

1.3.2 Linear Approximation

For small values of longitudinal and lateral slip, the function determined
above can be approximated with a linear one, with a direct dependence of
the force from the slip value. The static slip coefficient that realizes this
function is calculated as the slope of the function graph at the origin. This
approximation, that will be extensively used in the following chapter, will be
as much accurate as the control will be able to maintain the vehicle in the
region with small slip values.

The expression of the forces in this hypothesis will then be:

• Longitudinal forces:

F r
T = Kr

κκrNr;

F f
T = Kf

κκfNf ;

• Lateral forces:

F r
⊥
= −Kr

ααrNr

F f
⊥
= −Kf

ααfNf
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1.4 Steady-State Handling Characteristics

The key step to understand the vehicle directional behavior is to analyze the
vehicle steady-state characteristics. The SAE definition of steady state is:

“Steady-state exists when periodic (or constant) vehicle responses to pe-
riodic (or constant) control and/or disturbances inputs do not change over
an arbitrary long time. The motion responses in steady-state are referred to
as steady-state responses”.

Generally steady-state is said to be an equilibrium condition. In some
physical terms, assuming a vehicle in an equilibrium condition in vy and ω
means that the vehicle is negotiating a turn with constant radius and with
a constant sideslip angle β, since vy can be different from zero.

We neglect longitudinal slip in the following section, because only the
vehicle cornering behavior is here considered.

Motion equation will then be:







mv̇x = mvyω + T − Ff sin δ
mv̇y = −mvxω + Fr + Ff cos δ
Izω̇ = aFf cos δ − bFr

We define β = arctan( vy
vx
) and v =

√

(v2
x + v2

y), that leads to the following

relation:
{

vx = v cos β
vy = v sin β

We can then rewrite motion equation as a function of ξ̄ = [v, β, ω]′ obtaining:











v̇ = T cosβ
m

+ Fr sinβ
m

+
Ff sin (β−δ)

m

β̇ =
Fr cosβ+Ff cos (β−δ)−T sinβ

mv
− ω

ω̇ =
aFf cos δ−bFr

Iz

As a second hypothesis we consider v = constant⇒ v̇ ≡ 0. We can then
obtain an explicit form for T :

T = −
Fr sin β + Ffsin(β − δ)

cos β

The reduced system has x = [β ω]′ as the state vector and u = δ as the
control input, and the equation of motion becomes:
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{

β̇ =
Fr+Ff cos δ

mv cosβ
− ω

ω̇ =
aFf cos δ−bFr

Iz

We want to study the system equilibria as a function of lateral acceleration
a⊥ = vω. Due to the second hypothesis made (i.e. v = constant), it is
equivalent to analyze the vehicle behavior varying ω.

The constraint ω − ω̄ = 0 is then considered.

After fixing a value for ω, it is possible to obtain the expression of the
rear wheel force as a function of the front one:

ω̇ = 0⇒ Fr =
a

b
Ff cos δ

There is only one equation left:

β̇ =
(a+ b)Ff cos δ
mbv cos β

− ω = f̃(β, δ)

And the equilibria analysis corresponds to find the solutions (βe, δe) that
satisfy f̃(β, δ) = 0.

Linear Steady-State Handling Characteristics

Firstly we consider the linearization of the model around the operating con-
dition vy = 0, ω = 0 and δ = 0; the linearized model is

[

ω̇

β̇

]

= A

[

ω
β

]

+Bδ

where:

A =

[

a11 a12
a21 a22

]

B =

[

b1
b2

]

The path curvature ρ corresponding to a given equilibrium condition (in
ω and vy) is

σ =
1

R
=
ω

V
≃

ω

vx
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Inserting this expression in the motion equation above and introducing
the stability factor K or the understeer gradient Kus

K = m
p2

(

b
Kf
− p−b

Kr

)

Kus =
mg
p

(

b
Kf
− p−b

Kr

)

= Kgp

we obtain an expression for path curvature as a function of vehicle pa-
rameters:

ρ = 1
p

1
1+KV 2 δ

At low speed, the curvature value is ρ = δ/p and coincides with the kinematic
condition. The term 1+KV 2 appears as a corrective factor of the kinematic
relation versus longitudinal speed. The relationship between steering angles,
turning radius and lateral acceleration can be recast as follows:

δ = p
R
+Kus

ωV
g

Depending on the sign of Kus the vehicle can be defined:

neutral whenKus = 0. In this case the steering angle δ required to negotiate
a given curve is independent from speed. For a two wheel neutral steer
vehicle, when it is accelerated in a constant radius turn, the driver
should maintain the same steering wheel command. The neutral steer
behavior can be also expressed with respect to lateral external force
disturbances. When a neutral steer car moving along a straight path
is subjected to a side force acting on the center of gravity, the vehicle
follows a straight path as in figure 1.5. Equal slip angles αrand αr are
developed at the front and rear tyres.

understeer when Kus > 0. In this case the curvature radius tends to de-
crease as the speed tends to increase and the driver should increase the
steering wheel angle in order to maintain the same turning radius.When
a side force acts on the center of gravity of an understeer vehicle orig-
inally moving on a straight path, a yaw motion is initiated and the
vehicle turns away from the side force, as shown in figure 1.5. For an
understeer vehicle, a characteristic speed V̄ can be defined. It is equal
to the speed at which the steer angle required to negotiate a turn is
twice of the one required by a neutral steer vehicle. The characteristic
speed is

V̄ =
√

gp
Kus

=
√

1
K
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Figure 1.5: Directional responses of neutral steer, under and over steer vehicle
to a lateral force disturbance F.
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In this case the front sideslip angle αf is greater than the rear one αr.

oversteer when Kus < 0. In this case the steering angle required for ne-
gotiating a turn decreases as the longitudinal speed increases. For the
oversteer vehicle a critical speed can be defined as

V̄ =
√

gp
−Kus

=
√

1
−K

This critical speed represents the speed above which an oversteer vehicle
has a directional instability. When a side force acts at the center of
gravity of an oversteer vehicle which is moving along a rectilinear path,
a yaw motion tends to turn the vehicle into the side force. In this case
the rear tire sideslip angle αr becomes greater than the front one αf .

Nonlinear Steady-State Handling Characteristics

The characteristics previously pointed out hold until the linearized model is
valid, i.e. for small turning radius or for low lateral acceleration. In this
case, linearized tyre lateral forces can be assumed proportional to the tire
sideslip angles αr and αf . At medium and high lateral accelerations, this
assumption is not valid and these forces cannot be linearly modeled. In this
case the nonlinear relationship between the sideslip angles and the lateral
forces, modeled by the Magic Formula, is taken into account.

The model, when the steering angle is zero, has three equilibrium points.
The stable one is vx = V , vy = 0, ω = 0 which corresponds to the longitu-
dinal uniform motion with constant speed. The two additional equilibrium
points are unstable. Increasing the front steering angle, the stable equilib-
rium point tends to an unstable equilibrium point. For a certain value of
the front steering angle, the stable equilibrium point coincides with the un-
stable one. This is the so-called saddle-node bifurcation. Hence, for front
steering angles greater than the critical value (δ = 0.0285[rad]), the vehicle
has only an unstable equilibrium point and is intrinsically unstable. Plots of
the yaw rate steady-state and lateral values versus steering angle are shown
in figures 1.6 and 1.7.

In the previous section, the definitions of neutral steer, understeer and
oversteer vehicle were given for a vehicle with linearized tires. Now, the
under-over steering concept is not related with the car but with the specific
equilibrium condition. In other words, the same vehicle can be underteered
or oversteered depending on the longitudinal speed and the steering angle.
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Figure 1.6: Relation between steering angle and lateral speed.

Figure 1.7: Relation between steering angle and yaw rate ω.
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According to [26], the vehicle behavior can be defined as neutral when it
satisfies the following relation

d

dx

(

δ −
p

R

)

= 0

where x is the parameter which control the considered manoeuvre. In fact,
a vehicle can be considered neutral if the variation of δ required for the
considered manoeuvre is equal to the required variation of the term p/R (also
called Ackermann angle). Similarly, a vehicle can be defined understeering if
such derivative has positive sign, oversteering otherwise.





Chapter 2

Optimal Controller

Following a given trajectory in the plane and a speed profile is the control
objective of this work.

In order to control the vehicle, we can use only the steering couple and
the accelerator/brake subsystem as input (clutch and gearshift effects will
be neglected by now). The first one acts on the lateral dynamics, while the
other two on the longitudinal dynamics, allowing speed changes.

Most of the classical solutions decouple the problem of controlling the ve-
hicle in two separate sub-problems; the first one is about trajectory tracking,
while the other is about speed profile tracking.

On the other side our control strategy is about coupling the two dynamics
in order to obtain a driver behavior more similar to the human one. As every
driver knows, human driving strategy is unique and use both the inputs to
obtain the result. On the next sections there will be the description of our
control strategy.

2.1 Lateral Control

One of the objective of this work is to make the vehicle following a preas-
signed trajectory on the plane. This problem is classically classified as “path
following problem”. The common characteristic of this class of problems is
the presence of a trajectory given as a sequence of points in the plane without
any time dependence (this is the difference from tracking problems, where
the time dependence is explicit).
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2.1.1 Path Following

Lateral control has to follow the preassigned trajectory in robust manner
and real-time. The implemented strategy is based on the choice, at each
step, of a “connecting contour” that allows the vehicle to reach the reference
trajectory.

Figure 2.1: Vehicle distances from reference.

In figure 2.1 γ is the reference trajectory defined in an inertial frame
Σ1 = (X, Y ). This trajectory is a function of the curved abscissa s:

γ = {X(s), Y (s), s ∈ [s0, s1] ⊆ R} .

Let γ be a continuous function, differentiable and with continuous first deriva-
tive: γ ∈ C1(R2).

Let Σ2 = (x, y) be a frame attached on the vehicle (body frame). In this
frame we can locally represent the curve γ as a function dependent from only
the first coordinate x and the time: y = γ(x, t), with x ∈ [0, D], being D the
distance (which is a project parameter) where theoretically the contour is
connected to the reference path. This connection will be found imposing the
equality of the first derivative of the trajectory and the connecting contour
at y(D).

2.1.2 Connecting Contour Computation

The connecting contour has to be a feasible trajectory for the vehicle, so it
has to satisfy some boundary conditions. Constraints are imposed at the
initial condition (x = 0) and the final condition x = D and can be expressed
as:
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[

γc(0, t)
∂γc
∂t
(0, t)

]

=

[

0
0

]

, (2.1)

[

γc(D, t)
∂γc
∂t
(D, t)

]

=

[

γ(D, t)
∂γ
∂t
(D, t)

]

. (2.2)

Equation 2.1 is equivalent to impose that the connecting contour starts
exactly in the origin of the body frame and it’s tangent to the x1 axis, while
equation 2.2 states that the connecting contour connects to the curve at
distance D, both curve having the same derivative in x = D. In this way the
connection is granted to be smooth.

The class of polynomial functions has be chosen to represent the con-
necting contour; this class has the global curvature minimization property.
Equations 2.1 and 2.2 define 4 independent constraints, so a cubic curve will
suffice:

γc(x, t) = a3(t)x
3 + a2(t)x

2 + a1(t)x+ a0.

The parameters ai are found with a straightforward calculation; equa-
tion 2.1 states that a0 = 0 and a1 = 0, while the others parameters are found
solving the following system:

[

D2 D3

2D 3D2

] [

a2

a3

]

=

[

γ(D, t)
∂γ
∂t
(D, t)

]

. (2.3)

2.2 Longitudinal Control

One of the fundamental objective of the controller is to follow a preassigned
velocity profile. To obtain this result we can only act on throttle and brake
commands. The gearshift can be considered apart, because its only purpose
is to allow the engine to work in the right regimen.

The implemented algorithm determines the right vehicle acceleration in
order to follow the speed profile at each step; we then have to determine the
vehicle inputs, that are related to this value in a non-linear manner through
the engine.
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Figure 2.2: Example of relation between the engine speed, the maximum
traction couple TM and the maximum braking couple Tm.

Acceleration Couple to Throttle/Brake Conversion

The engine model is characterized by two parameters TM and Tm, which
values depend on its speed, that are the maximum traction couple and the
maximum braking couple; in figure 2.2 there is an example of the relation
between these quantities and the engine revolution speed.

Let T be the required engine couple (which is directly related to the whole
vehicle acceleration); if its value is between TM and Tm the engine will be
able to give sufficient traction to the vehicle, then the right throttle value is
the percentage of the required couple respect to the maximum value.

throttle =
T − Tm (rpm)

TM (rpm)− Tm (rpm)
× 100 if Tm (rpm) ≤ T ≤ TM (rpm) .

If the required couple is greater than the maximum value, then it is

1The x axis of Σ2 is coincident to the forward velocity direction of the vehicle, in the
non-slipping hypothesis.
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saturated and the maximum throttle value is applied. When the couple is
lower than the minimum value Tm it is necessary to act on the braking system
to ensure the velocity profile following.

The vehicle is also characterized by a further quantity TB, which repre-
sents the maximum value of the braking couple. This value is supposed to be
constant with respect to the engine and vehicle speeds. The braking couple
applied is then:

brake =
T − Tm (rpm)

Tdist
× 100 if TB ≤ T ≤ Tm (rpm) ,

while when the required couple is smaller, it will be saturated and the
maximum braking couple will be applied.

In the end the whole conversion scheme is:

[

throttle
brake

]

=















































































[

100
0

]

if T ≥ TM (rpm) ;

[

T−Tm(rpm)
TM (rpm)−Tm(rpm) × 100

0

]

if Tm (rpm) ≤ T < TM (rpm) ;

[

0
T−Tm(rpm)

Tdist
× 100

]

if TB ≤ T < Tm (rpm) ;

[

0
100

]

if T < TB.

2.3 The Controller

The developed controller is based on Model Predictive Control (MPC). This
control algorithm solves a finite horizon optimization problem in line. A
receding horizon approach is used to find the solution, which can be summa-
rized as:

• an open loop control problem is solved at t = k for the current state
vector x(k);

• the first step of the optimal sequence computed is applied to the system;
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• the procedure is iterated at t = k + 1 for x(k + 1).

This solution is then converted in a closed loop strategy taking in account
the current value of the state vector (or an estimated one, obtained through
an observer, if it’s not directly measurable).

Let us consider the following system:

{

x(l + 1) = f (x(l), u(l))
x(k) = xk

.

MPC control for (x, k) is obtained solving an optimization problem:

PN(x) : V o
N(x) = min

U∈UN
VN(x, U),

where:
U = {u(k), u(k + 1), . . . , u(k +N − 1)}

VN(x, U) =
k+N−1
∑

l=k

L(x(l), u(l)) + F (x(k +N))

and UN is the set of input U that satisfy the constraints in [k, k +N − 1]

u(l) ∈ U l = k, . . . , k +N − 1)

x(l) ∈ X l = k, . . . , k +N)

as well as the final state constraint:

x(k +N) ∈ Ws

where U ⊂ R
m is a closed and compact set, X ⊂ R

n is a closed and convex
set and W is chosen in order to assure stability.

In this case the cost function is time-invariant, therefore we can consider,
without loss of generality, k = 0 in the open loop problem formulation;
applying standard resolution methods we can obtain the input sequence that
minimizes the chosen cost index. This sequence can be written as:

U o
N = {u(0), u(1), . . . , u(N − 1)}

We apply only the first element of the sequence above:

u = uox(0) (2.4)
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At the following step the finite horizon optimal solution is recalculated,
taking in account the new state values; this procedure is then iterated in
order to generate the control.

The combined control here studied let us transform the two separate
problems of path and speed following in a motion planning problem.

2.3.1 Model Linearization

The first step in the developed control strategy requires to generate a tra-
jectory for state and input vectors, in order to follow speed and curvature
reference.

A simplified vehicle model is used in this step in order to easily calculate
the trajectory. This model is a non-holonomic one2 (we impose that lateral
velocity is identically zero).

Starting from the required forward speed V and the curvature σ pre-
viously calculated3, the trajectory is obtained solving an inverse dynamic
problem, whose solution is:































vT = V
V⊥ ≡ 0

φ̇ = σV
ωr = −

V
Rr

ωf = −
V
Rf

δ = arctan(σp)

.

This trajectory in general is not a feasible one, because it’s generated
from a simpler model, but it is a good approximation.

The whole model is then linearized around this reference trajectory, ob-
taining a linear model for the error:

ẋ = f(x, u, t)⇒ ˙̃x = A(t)x̃+B(t)ũ

where
x̃ = x− xref
ũ = u− uref
A =

[

∂f
∂x

]∣

∣

x=xref
u=uref

B =
[

∂f
∂u

]∣

∣

x=xref
u=uref

2See chapter 4 for further details on non-holonomic systems.
3See section 2.1.
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2.3.2 Optimal Control

In the previous step a linear error model is derived. The control objective
is to set at zero that error, which represents how far the real system is from
the desired trajectory previously generated.

To do that a regulation problem is stated and solved applying optimal
control techniques. As the error model is linear, the problem belongs to the
well known LQR class of problems, once a quadratic cost function is chosen.

The problem is then stated as:

minu∈U J =
∫ tf
t0

1
2

[

x̃T (t)Q(t)x̃(t) + ũTR(t)ũ
]

dt+ 1
2
x̃T (tf )Qf (tf )x̃(tf )

where Q and Qf are diagonal and positive semi-definite matrix, while R is
diagonal and positive definite. These matrices represent how internal states
and control inputs are weighted in the total cost, so changing them has the
consequence of changing how each component influences the solution.

In the absence of control constraints it has been shown4 that the requested
solution ũ∗ is a linear, time-variant state feedback:

ũ∗ = K(t)x̃(t)

where
K(t) = −R−1BT (t)P (t)

and P (t) is the solution of the Riccati matrix differential equation:

{

−Ṗ (t) = P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) +Q(t)
P (tf ) = Qf

.

The optimal solution here obtained should then be added to the feed-forward
action uref previously calculated to obtain the real control input signal,
which is then recalculated at each simulation step.

2.4 Controller Implementation

In order to implement the algorithm described above, it’s necessary to intro-
duce some changes to deal with our simulation tools constraints, mostly due
to numerical approximations. See appendix B for further details.

4See [8] for further details.



2.5. Simulation Results 31
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.

Figure 2.3: Control scheme.

2.5 Simulation Results

In the following section we present the results of our simulations, obtained for
various guidance configuration. This choice allows to underline our controller
characteristics.

2.5.1 Vehicle Characteristics

All the simulation tests are obtained using the standard virtual prototype
vehicle included in MSC.Adams 12.0, the dynamic simulator. This vehicle
has the following technical characteristics:

• the engine is 5000 cc; it can provide 485 Nm couple while operating at
5500 rpm;

• the braking system can supply a maximum couple of 696 Nm for front
wheels and 416 Nm for rear wheels;

• maximum steering angle is 720 degrees in both verses;

• the chassis has good aerodynamic properties.
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These characteristics put this vehicle between a common car and an
high performance one. In order to evaluate our controller performances, we
have compared its test response with smartdriver pilot (SD), a MSC.Adams
toolkit, which implements a non interagent lateral and longitudinal control.

2.5.2 Straight Path

When a new vehicle model is developed, one of the standard test, used to
verify it’s reliability and performance, is the acceleration/braking check on
a straight path. In this way only the longitudinal dynamics of the vehicle is
excited: there are several speed changes that require the use of accelerator
and brake, while the path curvature is constantly zero.

The reference speed profile is shown in figure 2.4; in its first part there
is a change of speed from 28[m/s] to 50[m/s] in almost 300 meters, then
the speed is abruptly lowered to 20[m/s] in less than 150 meters, and then
it’s taken constant for other 100 meters; after that there is an another speed
reduction to 10[m/s] in 100 meters, and then in the last part of the curve
the velocity is constant.

In figure 2.5 there are plotted the results of this simulation. Magenta lines
are for the reference values, blue lines are for the old controller, represented by
the smartdriver toolkit and red lines are for our controller (further indicated
with “new controller” term).

The controller is able to follow the velocity profile more accurately than
the commercial toolkit, especially when there is a reference speed change;
here our controller presents an error which is an order of magnitude smaller
than the old one.

The drawback is the increased noise in the steering control signal when a
change of speed occurs; this is due to the coupling of longitudinal and lateral
control actions. The requested steering angles are very small though, so the
vehicle dynamics is not substantially influenced by that, as it can be noticed
in figure 2.6, where the steering angle and the vehicle lateral acceleration are
compared.

2.5.3 Chicane

Another fundamental trial to test the algorithm performances is following a
single path at different speed. We have chosen a chicane, which is composed
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Figure 2.4: Straight test: speed reference.

BA

DC

Figure 2.5: Straight test: speed and steering angle.
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Figure 2.6: Straight test: lateral acceleration.

Figure 2.7: Chicane test: path reference.
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by two 90 degrees curves with a straight path in between. Here both the
longitudinal and lateral control is required to follow properly the assigned
path. To check the controller behavior and it’s limit 3 different speed values
are chosen:

• standard guidance (15[m/s] which corresponds to 54[km/h])

• guidance near the limit of model validity(25[m/s] which corresponds
to 90[km/h])

• guidance beyond the limit (30[m/s] which corresponds to 108[km/h])

Low Speed Chicane

When the requested speed is low the hypotheses of model validity are satisfied
and the controller gives good results as expected. It’s ability in following the
reference trajectory is higher than the old controller one, as you can see in
figure 2.8. The steering angle control signal is quite nervous, but it’s vibration
barely influence the vehicle dynamics, as it can be seen in figure 2.9d) where
lateral velocity is displaced.

B

DC

A

Figure 2.8: Low speed chicane test: speed and steering angle.
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Medium Speed Chicane

The second trial is done with a constant reference speed at 90[km/h]. As it
can be noticed in figure 2.10 the control objective is reached in a satisfactory
manner. This is because the system lies in the range of validity of the model
used to control it (see figure 2.11).

A critical part in the control algorithm is the choice of state and control
weights in the cost functional. A very accurate analysis is then required to
obtain an effective controller.

The problem here faced is about a reference speed and curvature trajec-
tory pursuit; for this reason we have decided to tune the weight parameter
of longitudinal velocity and yaw rate in the state matrix Q, while setting to
zero the others5. In the matrix R the weight parameter of the steering angle
is chosen quite big, to avoid as much as possible control signal vibrations,
while the one of the throttle/brake couple is set to a small value, to let the
controller change easily their values. In figure 2.12 the difference between a
well-tuned optimal controller and a randomly tuned one is depicted.

High Speed Chicane

The last trial is done to test the controller limits. An high speed is se-
lected,which leads the vehicle slip angles to assume values out of the range of
validity of the controller. In this case the controller can’t control the vehicle
in a satisfactory way.

2.5.4 Mixed Path Test

The global controller behavior can be tested in a course composed by straight
tracks and differently shaped bends. This course require intense longitudi-
nal and lateral control, so it’s useful to highlight the consequences of their
coupling.

As you can see in figure 2.15, where the course, the speed profile and the
steering angle are shown, the controller here developed globally overcomes
the old one performances.

5To avoid numerical instability these parameters are actually set to a very small value
though.
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Figure 2.9: Low speed chicane test: lateral acceleration.

B

DC

A

Figure 2.10: Medium speed chicane test: speed and steering angle.
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A

DC

B

Figure 2.11: Medium speed chicane test: wheels slip angles.

Controllore mal tarato

Controllore tarato

Riferimento

Figure 2.12: Medium speed chicane test: Differences between a well tuned
controller and a worse tuned one.
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Controllore tarato

Controllore tarato meglio

Figure 2.13: Medium speed chicane test: Differences between two differently
tuned controllers.

B

DC

A

Figure 2.14: High speed chicane test: wheels slip angles.
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2.5.5 Path with Vertical Dynamics

An other interesting trial, to check control ability and robustness of the
algorithm, is on a course with an uneven surface, in order to see how the
control system reacts when a non-modeled vertical dynamics is excited.

The chosen course is shown in figure 2.16. It is composed by:

an initial 160[m] long straight path, with a 1.2[m] height ramp after
60[m];

a left bend with a curvature radius of 100[m];

another straight segment 160[m] long, with banking in the first part
(the lateral inclination is 10 left and 20 right);

a right bend with a curvature radius of 50[m]; at the end of the bend
the pavement is uneven, presenting a periodic height change, of period
10[m] and amplitude 10[cm];

a straight stretch 100[m] long, where the uneven periodic path lasts
for 40[m]; after that there is a change on period and amplitude of the
surface oscillations, that become of period2[m] and amplitude 6[cm]

a left bend with a 40[m] radius of curvature; in the middle of the bend
there is a ramp with a height of 1.5[m].

The vertical profile of the road is shown in figure 2.17, while the velocity
profile is depicted in figure 2.18; both of them are graphed in function of the
curved abscissa.

In following figures there are the results of the simulation; you can notice
how the controller does a good job as long as the lateral velocity and wheels
slip angles are sufficiently small, but isn’t able to adequately answer to abrupt
changes of simulation conditions, that move the system far from the model
validity range.

After 400[m] there is a sharp braking action, that excites the vehicle
pitch dynamics, which moves most of the vehicle weight on the front axle;
this is potentially a great instability cause, because the vehicle enters the
subsequent bend with an unloaded rear axle, which implies that the wheels
can’t generate a great longitudinal force and tend to slide sideways.

In figure 2.19 the steering input signal (c) and the vehicle longitudinal
speed (a) are depicted. It is interesting to notice how the steering command
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A

D

B

C

Figure 2.15: Mixed path test: forward speed and steering angle.

Figure 2.16: Road used for the trial.
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Figure 2.17: Vertical road profile.

Figure 2.18: Velocity reference profile.
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B

DC

A

Figure 2.19: Steering angle and forward speed signals.

is non-zero while the car is flying after the ramp (see figure 2.20 b and
d), even if it is not useful; this is because the controller doesn’t have any
vertical dynamics model inside that can handle this situation. Nevertheless
the connecting contour strategy is sufficiently robust to deal with jumps and
uneven surfaces, as long as the preview distance is wide enough6.

In figure 2.20 the steering angle applied as control and the consequent
vehicle velocity, relative to the part of the track where the jump happens
and the one with banking, are shown. You can easily notice how the stress
produced by the road is directly transmitted to the vehicle yaw angle, and
how the controller tends to compensate each solicitation; also the vehicle
speed is affected by the road stress, so the controller compensates also these
variations 7.

6Choosing a preview distance D is equivalent to generate a control that leads the
vehicle to be on the reference trajectory before the end of that interval. If D is too small,
an abrupt change of the vehicle position or yaw angle, due to the pavement roughness,
will generate a wide control action, which could easily conduct to wheels saturation, with
consequent vehicle control loss. On the other side a value too big let the vehicle stay far
from the requested path.

7These speed variations are mostly due to the vehicle pitch dynamics. The speed sensor
is indeed attached to the vehicle chassis, therefore a pitch angle different from zero affects
the longitudinal velocity measure.
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C D

BA

Figure 2.20: Steering angle and forward speed signals in presence of uneven
pavement.

2.6 Further Developments

The control here developed aims to follow a preassigned reference trajectory
for forward speed and path curvature. Through the analysis of its behavior
in several trials it can be seen how the controller here developed reaches the
control objective in a more effective way than the previous one. There are
some improvement that can be made to increase its effectiveness though.

Currently an optimization problem is solved at each simulation step, and
its solution is applied for a single step. This approach causes a lot of compu-
tational work, which can be reduced, obtaining a faster and computationally
cheaper algorithm, by making the number of steps where the optimal control
is applied dependent on the execution conditions; if the vehicle after a step
is still close to the initial condition then the optimal control recalculated will
be very similar to the one already found, so the smartest choice is continuing
to apply the old one as long as the system conditions aren’t changed sub-
stantially, when the control needs to be recalculated. In this way the control
could deal with “calm” situation, for example a straight path with a constant
velocity profile, where the control is recalculated once in a while, and with
more demanding ones, for example a sharp bend or an abrupt speed change,
where the control needs to be calculated more often to obtain satisfactory
performances.
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The controller gives excellent results when the system is in the range
of validity of the hypotheses made for its synthesis, while its performance
rapidly decays when the tires slip angles and the vehicle lateral velocity grow
too quickly and the model goes beyond its limits. To improve its ability
of handling these situation two main changes should be implemented. The
first one is about the internal vehicle model used; switching from the bicycle
model to a two-track would allow the system to take in account the vehicle
pitch and roll dynamics, which can’t be neglected when the vehicle is subject
to abrupt direction changes or sharp speed variations.

The second change that could improve the controller performances is the
enrichment of the model used to generate the reference trajectories for state
and input variables, because the non-holonomy requirement is not a so good
approximation of vehicle condition in high demanding manoeuver, when the
its lateral sliding can’t be neglected.

In the vehicle prototyping process it is required not only to verify the
vehicle behavior in extreme guidance conditions, but also its response while
driving in normal conditions, to study its handling and maneuverability. A
model for the human driver is therefore essential.

In particular a real driver can only rely upon their visual feedback, which
gives them the vehicle position with respect to the road and its forward
speed, and other data that can be derived from the other senses, which
are generically called proprioception. Data harvest and analysis are not
immediate, but are subjected to physical transmission delays. Furthermore
the control action is not continuously generated, but it’s calculated only when
it is needed.

The controller can be easily modified to simulate the human driver,
adding suitable delay blocks, tuned on the human frequencies, and modi-
fying the control calculation frequency moving from a fixed scheme to one in
which its activation is tied to road conditions, as explained above. Tuning
those parameters allows the controller to represent different driver categories,
from the inexperienced one to the professional driver.





Chapter 3

Pseudospectral Methods

In the previous chapter a control problem for a mechanical system has been
stated and solved through application of optimization techniques. The theo-
retical solution has then been implemented to obtain a real solution and the
problems encountered during this shift are summarized in appendix B.

One fundamental aspect in optimal control solving is the choice of the
method that effectively calculates the optimal solution. In the next sections
a brief review of these methods is presented, followed by an introduction to
the Pseudospectral Methods, that have been proved to be a great tool for
the numerical solution of optimization problems. Some examples of their
application are finally presented. The first one is a simple modellization of
a wheeled robot moving in a plane with obstacles, while the second one is
about the time minimization for a vehicle maneuver.

3.1 Review of Solution Methods

The analytical solution of a state and control constrained nonlinear optimal
control problem requires a big effort to be found. The main difficulty arises
in seeking a closed-form solution to the Hamilton-Jacobi equations, or in
solving the canonical Hamiltonian equations resulting from an application of
the Minimum Principle.

Over past decades, many computational methods have been developed
for solving nonlinear optimal control problems. For instance, in [5] and [6],
various numerical methods such as neighboring extremal methods, gradient
methods and quasi-linearization methods are discussed in detail, along with
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extensive numerical results. In [9], the feasibility and convergence of a mod-
ified Euler discretization method is proved, while a unified approach based
on a piecewise constant approximation of the control is proposed in [23].

Numerical methods for solving nonlinear optimal control problems are
classically divided in two categories: direct methods and indirect methods
(see [1] for further details).

Many numerical methods developed in the past were based on finding so-
lutions to satisfy a set of necessary optimality conditions resulting from Pon-
tryagin’s Maximum Principle. These methods are collectively called indirect
methods. There are many successful implementations of indirect methods in-
cluding launch vehicle trajectory design and low-thrust orbit transfer. These
methods, although presenting some nice properties, suffer from many draw-
backs. The boundary value problem resulting from the necessary conditions
is extremely sensitive to initial guesses. In addition, these necessary condi-
tions must be explicitly derived, which is not straightforward for complicated
problems and requires a thorough knowledge of optimal control theory (see [1]
for more details).

To overcome this difficulty, an alternative approach based on discrete
approximations has been developed. The essential idea of this method is
to discretize the optimal control problem and solve the resulting large-scale
finite-dimensional optimization problem. These types of methods are known
as direct methods. At a first sight these methods seem to be simpler and
easier to be applied, but they present a wide range of deeply theoretical
issues that lie at the intersection of approximation theory, control theory
and optimization. Regardless, a wide variety of industrial-strength optimal
control problems have been solved by this approach.

Theoretical questions regarding the existence of a solution and conver-
gence of the approximations are still open for a wide range of these methods.
Indeed, while the theory for Eulerian methods is well established and proved
(see for example [13] and [33]) corresponding results for higher-order meth-
ods are not only absent, but often counterintuitive. For example, Hager [27]
has shown that a “convergent” Runge-Kutta method does not converge to
the continuous optimal solution despite the fact that it satisfies the standard
conditions in the Butcher tableau. On the other hand, Betts [2] shows that a
nonconvergent Runge-Kutta method converges for optimal control problems.
Thus, it is not surprising that even for Eulerian methods, significant restric-
tions and assumptions are necessary for proofs of convergence, particularly
for state-constrained problems. While Eulerian methods are widely studied
and useful for a theoretical understanding of discrete approximations, they
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are not suitable for solving industrial strength problems; one of the main
reasons for their limitation is that they generate a much larger-scale opti-
mization problem than a higher order scheme like a Runge-Kutta method.

Another group of discretization methods is the direct pseudospectral (PS)
methods. PS methods were largely developed in the 1970s for solving par-
tial differential equations arising in fluid dynamics [7], and quickly became
“one of the big three technologies for the numerical solution of PDEs” [41].
During the last decade PS methods were introduced for solving optimal con-
trol problems(see for example [15] and [16]; one of the main reasons of their
success is that they demonstrably offer an exponential convergence rate for
the approximation of analytic functions while providing Eulerian-like sim-
plicity [41]. Thus, for a given error bound, PS methods generate a signifi-
cantly smaller scale optimization problem when compared to other methods
on problems with highly smooth solutions.

3.2 Pseudospectral Methods

In this section we’ll give a brief introduction on Pseudospectral methods and
their properties; for further details see [24] and [38].

Numerical solution of a optimal control problem requires the approxi-
mation of three types of mathematical objects: the integration in the cost
function, the differential equation of the control system, and the state-control
constraints.

In PS methods, the continuous functions are approximated at a set of
carefully selected quadrature nodes. These nodes and the chosen interpolat-
ing polynomials are the object that distinguish one method from the others.
Typically, quadrature nodes are Gauss points, Gauss-Radau points or Gauss-
Lobatto points and are determined by the corresponding orthogonal polyno-
mial basis used for the approximation. Legendre and Chebyshev polynomials
are commonly used.

Integration is approximated by quadrature rules, which provide the best
numerical integration result. Gauss quadrature integration, for example,
achieves zero error for any polynomial integrand of degree less than or equal
to 2N+1 with just N nodes. Because a PS method enforces the system at
the selected nodes, the state-control constraints can be discretized straight-
forwardly.

The continuous optimal control problem is then discretized into a se-
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quence of finite dimensional optimization problems that are solved by spec-
tral algorithms. One fundamental property ensured by these methods is the
commutation between discretization and dualization. This property is enun-
ciated as the Covector Mapping Theorem illustrated in figure 3.1 (see [25]
for the proof of the theorem). In this Figure, the continuous optimal control

Figure 3.1: Covector Mapping Theorem.

problem is denoted as Problem B and the discretized finite dimensional op-
timization problem is denoted as Problem BN . Associated with the original
problem, a set of necessary conditions (Problem Bλ) can be obtained from an
application of Pontryagin’s Minimum Principle. The discretized optimization
problem also admits a set of necessary conditions called Karush-Kuhn-Tucker
(KKT) conditions (Problem BλN). The theorem states that an optimal can-
didate solution for the discretized problem (BN) must automatically satisfy
the discretized necessary conditions (BλN).

Its practical advantage is that nonlinear optimal control problems can be
solved efficiently and accurately without developing the necessary conditions.
On the other hand, the optimality of the solution can be checked by using
the numerical approximations of the covectors obtained from the theorem.
Since these solutions can presently be obtained in a matter of seconds, it
appears that the Pseudospectral methods can be used for optimal feedback
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control in the context of a nonlinear model framework.

In the rest of the chapter, the Legendre Pseudospectral Method is applied
to solve the problems presented. This method is based on interpolating
functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes.

It has been proved that the interpolating polynomial of any smooth func-
tion C∞ at Legendre-Gauss-Lobatto nodes converges in L2 sense at the so-
called spectral rate, i.e., faster than any polynomial rate [41].

3.2.1 Toy Problem

As example of application of PS methods the problem of a wheeled robot that
can move in an horizontal plane with box constraints is presented. The ob-
jective is to move the robot from one point to another avoiding the obstacles
in the plane, that are randomly positioned.

This problem has many applications in both civilian and military fields;
just to cite some examples of real application we mention RoboCup Rescue
world competition (see [37]), in which a wheeled robot is programmed to
reach an objective position moving through an enviroment with several ob-
stacles, and where the final goal is to build an autonomous agent for search
and rescue the hostile enviroment; another example is DARPA Grand Chal-
lenge (see [12]), an international competition where an autonomous vehicle
is set up to run while avoiding the obstacles along the path.

Mathematical formulation of the problem

The model provided is a non-holonomic car (no sliding on the surface is
allowed); the velocity and the steering angle are the controls, while the states
are the position of the origin of the body frame (which is positioned in the
center of the rear axle of the car,with the x axis pointing along the direction
of motion) and the yaw angle, which is the angle between the x axis of the
reference frame and the body frame.

The objective choose for this problem is the minimization of the time
needed to reach the end point position.

The problem formulation is scaled, so the robot starts in (0, 0) and ends in
(1, 1); we suppose that the obstacles are randomly disposed in the plane but
the position of every one is known. The optimality problem is the following:
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minimize J [x(t), u(t), t] = tf

subject to

ẋ(t) = v(t) cosψ(t)
ẏ(t) = v(t) sinψ(t)

ψ̇(t) = v(t) tanψ(t)
p

(t0, x0, y0, ψ0) = (0, 0, 0, 0)
(xf , yf ) = (1, 1)

u = [v, ψ]′ ∈ U = {(v, ψ) | 0 ≤ v ≤ vmax}
x in X

Where X is the region represented in figure 3.2.

Figure 3.2: Admissible region.

To avoid the obstacles in the plane xy we have to take in account the
shape of the car, so for each obstacle and for every time we have to verify
that each point of the car is far enough from the center of the obstacle:

∀ (xo, yo, ro) min d ((xo, yo), (xcar, ycar)) ≥ ro

In Figure 3.3 that distance is represented by the line D2

In order not to complicated the problem we can consider simply the worst
case, so instead of consider all the points of the car shape we just consider
the distance from the obstacle center and the origin of the body frame, then
subtract to it the maximum distance from that point to the car shape, to
guarantee that all the point of the car shape are more far than the radius to
the center point of the obstacle; in practice we can simply artificially augment
the obstacle radius to ro +Dmax.
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Figure 3.3: Obstacle Avoidance.

To simplify further the problem formulation we’ll ignore the physical di-
mensions of the car and we’ll consider the robot as a mass point. For this
simplified model the admissible region X is:

X =











(x, y, ψ) ∈ R
2 × S

1 | ∀ O = ((xo, yo), ro)

√

(x− xo)
2 + (y − yo)

2 ≥ ro ∧ 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1











To speed up the computation we can substitute the condition on the
distance between the car and the center of each obstacle with (x− xo)

2 +
(y − yo)

2 ≥ ro
2 which is equivalent to the square condition; in this way we also

avoid problems for (x, y) = (0, 0) in which the derivative of the Hamiltonian
with the first version of the constraint is not bounded and so the Minimum
Principle cannot be applied.

Derivation of necessary conditions

The problem formulated presents path constrained, so to obtain the neces-
sary first order conditions always valid we have not to consider simply the
Hamiltonian, but the Lagrangian of the Hamiltonian, also called augmented
Hamiltonian, as explained in [6] and [28]:
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H̄ [x(),y(), λ(), µ, ν, t] =

λxv cosψ + λyv sinψ + λψ
v tan δ
p

+ µvv + µxx+

+µyy
∑NUM_OBS

k=1 µk
[(

(x− xo)
2 + (y − yo)

2)− ro
2
]

.

The necessary conditions for the problem are:

• State Equation

ẋ = ∂H̄
∂λ

= f (x,u, t) =





v cos δ
v sin δ
v tan δ
p





• Adjoint Equation

−λ̇ = ∂H̄
∂x

=





µx +
∑NUM_OBS

k=1 2µk(x− xo)

µy +
∑NUM_OBS

k=1 2µk(y − yo)
−λx sinψ + λy cosψ





KKT

µx







≤ 0 if x = 0
= 0 if 0 < x < 1
≥ 0 if x = 1

µy







≤ 0 if y = 0
= 0 if 0 < y < 1
≥ 0 if y = 1

µi

{

≤ 0 if
(

(x− xo)
2 + (y − yo)

2) = ro
2

= 0 if
(

(x− xo)
2 + (y − yo)

2) > ro
2

When the constraints are not active the conditions on λ are computationally verifiable

and became:

{

λx = 0
λy = 0
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• Boundary Conditions
(t0, x0, y0, ψ0) = (0, 0, 0, 0)

(xf , yf ) = (1, 1)

• Transversality Condition
λψf = 0

• Hamiltonian Value Condition
λxfvfcosψf + λyfvfsinψf = −1

• Hamiltonian Evolution Equation

Ḣ = ∂H
∂t

= 0⇒ H = constant

• HMC

∂H̄
∂u

= 0⇒

{

∂H̄
∂v

= −λxv sinψ + λyv cosψ + λψ
v tan δ
p

= 0
∂H̄
∂ψ

=
λψv
pcos δ2

= 0

µv







≤ 0 if v = 0
= 0 if 0 < v < Vmax KKT
≥ 0 if x = Vmax

The computationally verifiable conditions are boxed.

Simulation Results

The numerical solution of the problem is here presented. The results have
been obtained through the use of DIDO, a tomlab tool that implements
the Legendre Pseudospectal Method (see [39] for further details about the
program and its characteristics).

Each simulation has been made applying a bootstrapping procedure, run-
ning DIDO with a few nodes to obtain a better guess and then re-running
the program to obtain the results; this is done to speed up the procedure.

As said before the problem formulation is about a scaled problem, so all
the parameters are properly chosen (if the length unit is meter, the velocity is
meter/second and so on). The following table summarize those parameters.

wheelbase axle length obstacles

0.1 0.04
xcenter ycenter radius
0.5 0.5 0.1
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The optimal solution computed by DIDO is shown in figure 3.4

The optimal cost computed by DIDO is:

J∗ = 0.143
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Figure 3.4: Optimal results for the original problem: (a) Optimal Con-
trol,(b) Optimal State Trajectory, (c) Optimal Costate Trajectory,(d) Hamil-
tonian.

Demonstration of computational optimality via Bellman’s Princi-
ple

In order to prove Bellman’s Principle of Optimality we start DIDO simulation
from a point lying in the optimal state trajectory.
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
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









x0 = 0.186;
y0 = 0.247;
ψ0 = 0.929;
t0 = 0.031;

J = 0.143 = J∗

As expected in this way we obtain the same value for the cost function
and the same trajectory for states and controls.
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Figure 3.5: Demonstration of Bellman’s optimality principle.

Here we choose a point not lying in the optimal trajectory:















x0 = 0.600;
y0 = 0.200;
ψ0 = 0.331;
t0 = 0.063;

For this initial condition the optimal cost is

J = 0.153

which is higher than the original optimal cost J∗ as expected.

In Figure 3.6 the space state with the optimal state trajectory is shown.
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3.3 Minimum Lap Time

In this section the problem of minimum time maneuvering of a vehicle is
analyzed as a problem in optimal control.

The system dynamics is derived in chapter 1. In order to formulate an
optimal control problem, it is necessary to define the cost function to be
optimized and specify all state/control constraints and boundary conditions.

Here we present preliminary optimization results, for two different paths:
a straight path and a 90[deg] corner, that the vehicle has to negotiate in
minimum time. The constraint in each case is on the position of the vehicle
center of mass.

The cost function for the minimum travel time problem is given by:

J =

∫ tf

0

dt = tf

The state constraint for both the path considered are shown in figure 3.7
and can be mathematically described as follows:

• Straight Path (a)

120 ≤ 20y − 13x ≤ 120

• Curved Path (b)

8 ≤
√

x2 + y2 ≤ 10 when x ≥ 0 and y ≥ 0

In the curved path we have added two straight segments of 5[m] each
before and after the turn so that the car enters the corner after traveling
straight and exits the corner in a posture that will lead to straight travel
again. The road boundaries of these straight segments are not included in
the state constraint. However, the boundary conditions, take into account
the width of the road as well.

The initial and final position of the car is within the width of the road,
while the longitudinal velocities at the initial and final time and the final
time tf are left free. These conditions guarantee that the vehicle is in the
proper direction before and after the corner.

The control inputs are the steering angle δ and the accelerating/braking
torques τR and τF of each axle. The control constraints are
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(a) (b)

Figure 3.7: Path Constraints.

−0.7 ≤ δ ≤ 0.7 [rad]
−1000 ≤ τi ≤ 1000 [Nm], i = R,F

The constraints on the steering angle is due to physical limitation of the
steering mechanism while the one on the accelerating/braking torques reflects
the limited power that may be provided by the engine and braking systems.

The optimal necessary condition that are computationally verifiable are:

• Adjoint Equation

λ̇x =
∂H
∂x

= 0⇒ λx = constant

λ̇x =
∂H
∂x

= 0⇒ λx = constant
• Hamiltonian Value Condition
H[tf ] = −1

• Hamiltonian Evolution Equation

Ḣ = ∂H
∂t

= 0⇒ H = constant
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Straight Path

In this first case we consider a straight line as given path and (xf , yf , ψf ) as
final condition. The choice of this path is made because the analytical solu-
tion can be easily computed, therefore a prompt verification of the optimality
the solution obtained through the use of PS methods is possible.

In figure 3.9 we can see the optimal condition for the first 2 adjoint
variables λx and λy and the evolution of the Hamiltonian. Those values
can be considered as constants, the vibrations are due to the low accuracy of
DIDO in determining the dual variables. The control presents the bang-bang
behavior predicted.

Curved Path

In this second test we consider a curved path of constant radius, preceded
and followed by a straight line for numerical stability purpose. The results
can not be straightforwardly derived analytically as before, but still some
consideration can be made. In particular we can observe how the predicted
trajectory is tangent to the inner curb of the road in the middle of the path,
while the torque input is switching from braking to full acceleration, showing
a well known behavior observed in very trained professional drivers.

3.4 Conclusions

Properties of Pseudospectral methods have been investigated and their effec-
tiveness has been proved through their application to the numerical solution
of two optimization problem for mechanical systems.

In particular we formulated the problem of trajectory optimization for
ground wheeled vehicles as a optimal control problem, in accordance to the
current trends in the literature. The problem objective is taking advantage
of the full acceleration capacity of the vehicle, minimizing time of travel. The
preliminary optimization results indicate that the framework here developed
is a good choice to study the problem, not only for simple maneuvers, but
also for more complex ones. As side effect the solution of time minimization
problem contains the trajectory that has to be followed in order to achieve
the results, trajectory that can be used, along with the longitudinal velocity
profile, as reference for the optimal vehicle controller previously discussed
(see chapter 2).
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Therefore numerical optimization schemes provide a powerful tool for off-
line analysis of vehicle dynamics, limit operation and trajectory optimization.
It allows the study of several vehicle parameters in limit operation which
would be extremely difficult using straightforward simulation.
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Chapter 4

Rolling Disk

In the following chapters we address the problem of controlling a disk, rolling
on a horizontal plane, using only the throttle as control input. We want the
disk to follow an assigned path in the plane. The problem is made hard
by the high order of underactuation and by the instability of the system.
Our controller is based upon an internal manifold and a receding horizon
technique. The system tracks a lean angle trajectory by using a backstepping
control technique. The lean angle reference trajectory is generated at each
instant through a receding horizon algorithm and it is such that, if followed,
the system tracks the assigned path with a bounded error.

4.1 Introduction

The control of a rolling disk by throttle only represents a case study for a large
class of mechanical systems. It is a high-order underactuated system [31] sub-
ject to nonholonomic constraints (pure rolling and no transversal slip). It is
also a system with symmetry with respect to the horizontal plane coordi-
nates, in fact its Lagrangian and constraints are invariant with respect to
rotations and translations in the plane. Finally it has an unstable internal
dynamics (the lean or side inclination angle dynamics).

A mechanical system is called “underactuated” when it presents fewer
control inputs than the number of configuration variables. This property is
due to various reasons, that can be divided in four main groups:

• dynamics of the system (e.g. spacecraft and underwater vehicles);
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• design choices, for reduction of the cost or some practical purposes (e.g.
satellites with two thrusters);

• actuator failure (e.g. in a surface vessel or aircraft);

• artificial imposition, to create complex low-order nonlinear systems for
the purpose of gaining insight in control of high-order underactuated
systems (e.g. the Beam-and-Ball system and the rolling disk).

Almost all mechanical systems possess kinetic symmetry properties. It
means that their kinetic energy does not depend on a subset of configura-
tion variables called external variables. Such symmetry properties can be
exploited as a means of reducing the complexity of control design.

Many underactuated mechanical systems are subject to nonholonomic
constraints. In classical mechanics, a linear constraints is a function F (q)q̇ =
0, where q denotes the generalized coordinates vector, and is called non-
integrable if it can not be written as the time-derivative of some function
of the generalized coordinates, i.e. f(q) = 0, and thus can not be solved
by integration. Nonholonomic constraints are non-integrable ones, and are
therefore an essential part of the system dynamics.

Nonholonomic constraints most commonly arise in mechanical systems
where constraints are imposed on the motion, for example, underactuated
vehicles and underactuated robot manipulators. In addition to classical for-
mulations, nonholonomic constraints can arise in other ways. If the motion
of a mechanical system exhibits certain symmetry properties, there exist
conserved quantities. If these conserved quantities, for example the angular
momentum, are non-integrable, this may be interpreted as a nonholonomic
constraint. It should be noted that, in classical mechanics, conserved quan-
tities are not regarded as constraints on a system. In the control community,
however, it has been commonly accepted to regard these conserved quantities
as constraints that are imposed on the system. Examples of such systems
include multi-body spacecraft and underactuated symmetric rigid spacecraft.
Nonholonomic constraints also arise as a result of imposing design constraints
on the allowable motions of the mechanical system. Examples of such systems
include the case of kinematically redundant manipulators and underactuated
manipulators. An introduction to nonholonomic control systems is given by
Murray et al. in [30].

The control of those systems is currently an active field of research due
to their broad applications and is a major open problem. It can be shown
that, in general, first-order nonholonomic systems can not be stabilized by
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any smooth time-invariant static state-feedback [4].

To our knowledge, the problem of controlling a rolling disk by throttle
only has never been investigated so far. Control of a rolling disk has been
studied only in the case of two control inputs, throttle and tilt moments, by
Frangos and Yavin [20], [17]. They studied the path controllability of the
disk and found a control action to track a given trajectory in the horizontal
plane. In our work we use a receding horizon technique in order to track a
desired path in the plane with a bounded error. At each instant we find a
feasible trajectory for the disk which originates from the current position and
merges to the path at the time horizon. We call this trajectory “connecting
contour”, see [18], [19]. Hence we use an internal manifold based control
technique, inspired by Getz and Hedrick [22], [21], to find an equilibrium lean
angle trajectory to track, in order to follow the connecting contour without
the disk falling down.

4.2 Dynamical Model

The model we consider is a falling rolling disk subject to nonholonomic con-
straints. The disk, represented in figure 4.1, can roll in the horizontal plane
without slipping and is subject to gravity acceleration. The configuration
space for the disk is Q = R

2 × S3 and is parameterized by the generalized
coordinates q = (x, y, φ, ϑ, ψ), where (x, y) represent the position of the disk
in the inertial frame, while φ, ϑ and ψ represent the angle between the plane
of the disk and the vertical axis, the “self-rotation” angle of the disk and the
heading or yaw angle of the disk, respectively. The inertial frame is oriented
according to the usual convention adopted in the automotive and aerospace
fields, i.e. the x-axis is directed along the positive direction of motion of
the vehicle (ψ=0), the z-axis points downward and the y-axis follows. The
dynamics of the system can be written using a Lagrangian formalism. The
Lagrangian for the unconstrained system is

L = 1
2
m[(ẋ− ψ̇R sinφ cosψ −Rφ̇ cosφ sinψ)2+

+(ẏ −Rψ̇ sinφ sinψ +Rφ̇ cosφ cosψ)2]+

+1
2
mR2φ̇2 sin2 φ+ 1

2
J(φ̇2 + ψ̇2 cos2 φ)+

+1
2
I(ϑ̇+ ψ̇ sinφ)2 −mgR cosφ

(4.1)

where
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• m is the mass of the disk;

• I is the moment of inertia about the axis perpendicular to the plane of
the disk;

• J is the moment of inertia about an axis in the plane of the disk;

• R is the disk radius.
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(x, y)

! 

"

Figure 4.1: View of the rolling disk with the configuration variables.

The following constraints are imposed in order to avoid the wheel to slip
laterally and longitudinally:

ẋ = −Rϑ̇ cosψ

ẏ = −Rϑ̇ sinψ
(4.2)

The set of generalized coordinates can be divided into m constrained co-
ordinates and n − m unconstrained, q = (s, r), where m is the number of
constraints, see [3]. In our model we have s = (x, y) and r = (φ, ψ, ϑ).
Now the “constrained” Lagrangian Lc is constructed by substituting the con-
straints (4.2) in (4.1), and the equation of motion can be written in terms of
Lc in the following way:

d

dt

∂Lc
∂ṙα

−
∂Lc
∂rα

+ Aaα
∂Lc
∂sα

=
∂L

∂sb
Bb
αβ ṙ

β (4.3)

where
A(r, s)[ṙ ṡ]T = 0
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is the velocity constraint and

Bb
αβ =

∂Abα
∂ṙβ

−
∂Abβ
∂ṙα

+ Aaα
∂Abβ
∂sa

− Abβ
∂Abα
∂sa

.

The dynamics of the unconstrained coordinates is thus obtained in terms
of the constrained and unconstrained coordinates:

M(s, r)r̈ + C(s, r, ṙ) +G(s, r) = T. (4.4)

This general form can be simplified in our model thanks to the symmetry of
the system. For the rolling disk, in fact, the following holds:

L(s, r), A(s, r) are both independent from s.

Taking this fact into account, after straightforward calculations, we obtain
the dynamics of the unconstrained coordinates in the form:

M(r)r̈ + C(r, ṙ) +G(r) = T, (4.5)

where

M(r) =





mR2 + J 0 0
0 (mR2 + I)s2

φ + Jc2φ (mR
2 + I)sφ

0 (mR2 + I)sφ (mR2 + I)





C(r, ṙ) =





−(mR2 + I)cφψ̇ϑ̇− (mR2 + I − J)sφcφψ̇
2

Icφψ̇ϑ̇+ 2(mR2 + I − J)sφcφψ̇ϕ̇

(2mR2 + I)cφψ̇ϕ̇





G(r) =





−mgR sinφ
0
0





and the torque vector

T =





0
0
τ



 .

See [3] for more details on the calculations of the dynamics.
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The system has only one control input with three unconstrained variables,
so it is an underactuated reduced system of order two [31].

If the disk starts from the vertical position (φ = 0) with no lean and
yaw velocity (φ̇ = 0 and ψ̇ = 0), the three scalar equations defined by (4.5)
are completely decoupled and the control input drives only the ϑ̇ dynamics.
Hence only a velocity regulation along the initial direction is possible, while
the lateral dynamics are not controllable. The problem is thus well posed
when we work far from the condition (φ, φ̇, ψ̇) = (0, 0, 0).

The lean angle dynamics is not driven directly by τ ; instead it is coupled
with the dynamics of ψ and ϑ by the centrifugal acceleration term ψ̇ϑ̇. Thus
it can be seen as the zero dynamics of the system (w.r.t. the output ψ̇ϑ̇).
Being such dynamics unstable, the system is non-minimum phase.

For control purpose, we rewrite the system dynamics in state space form.
Since the dynamics is invariant w.r.t. the yaw angle ψ and the self-rotation
angle ϑ, they can be neglected and the state space vector results:

x = [x1 x2 x3 x4]
T = [φ φ̇ ψ̇ ϑ̇]T .

Multiplying both sides of 4.5 by M(s, r)−1 (the matrix of mass M(s, r) is
certainly nonsingular for φ ∈(-π/2, π/2)) it follows:

ẋ1 = x2

ẋ2 = fφ1(x1) + fφ2(x1)x3x4 + fφ3(x1)x3
2;

ẋ3 = fψ1(x1)x2x4 + fψ2(x1)x2x3 + fψ3(x1)τ ;
ẋ4 = fϑ1(x1)x2x4 + fϑ2(x1)x2x3 + fϑ3(x1)τ.

(4.6)

with

fφ1(x1) = mgR sin x1;

fφ2(x1) =
mR2+I
mR2+J

cosx1;

fφ3(x1) =
mR2+I−J
mR2+J

sin x1 cosx1;
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fψ1(x1) = −
I

J cosx1
;

fψ2(x1) = −
I sinx1

J cosx1
+ 2 sinx1

cosx1
;

fψ3(x1) = −
sinx1

J cos2 x1
;

fϑ1(x1) =
I sinx1

J cosx1
;

fϑ2(x1) =
I sin2 x1

J cosx1
− 2

cosx1
+ I cosx1

mR2+I
;

fϑ3(x1) =
(mR2+I) sin2 x1+J cos2 x1

mR2+I)J cos2 x1
.





Chapter 5

Rolling Disk: Control Strategy

and Results

In this chapter we present the developed control strategy and the simulation
results.

5.1 Lean angle control design

In this section we present a control strategy to track a preassigned “lean
angle” trajectory. The leaning control is based on a backstepping control
technique, see [34]. In order to apply it, the system has to be in the so called
strict feedback form, that is

ż1 = f11(z1)z1 + f12(z1)z2

ż2 = f21(z1, z2)z1 + f22(z1, z2)z2 + f23(z1, z2)z3

...
żn = fn1(z1, ..., zn)z1 + ...+ fnn(z1, ..., zn)zn+

+g(z1, ..., zn)u.

(5.1)

Even if the dynamics of the disk is not in such form, it can be reduced to
(5.1) by way of an approximation on the lean angle dynamics and a change
of coordinates. First of all let us ignore, for control design purpose only, the
term fφ3(x1)x3

2 of the lean angle dynamics, then let us define the new set of
coordinates

ζ1 = φ;

ζ2 = φ̇;

ζ3 = ψ̇ϑ̇;

ζ4 = ϑ̇.



74 5. Rolling Disk: Control Strategy and Results

The new system dynamics becomes

ζ̇1 = ζ2;

ζ̇2 = fφ1(ζ1) + fφ2(ζ1)ζ3;

ζ̇3 = fψϑ1(ζ1)ζ2ζ
2
4 + fψϑ2(ζ1)

ζ23
ζ24
ζ2+

+fψϑ3(ζ1)ζ2ζ3 + fψϑ4(ζ1)τ ;

ζ̇4 = fϑ1(ζ1)ζ2ζ4 + fϑ2(ζ1)ζ2
ζ3
ζ4
+ fϑ3(ζ)τ.

(5.2)

with

fψϑ1(ζ1) = −
I

J cos ζ1
;

fψϑ2(ζ1) =
I sin2 ζ1
J cos ζ1

− 2
cos ζ1

+ I
mR2+I

cos ζ1;

fψϑ3(ζ1) =
2 sin ζ1
cos ζ1

;

fψϑ4(ζ) =
[(mR2+I) sin2 ζ1+J cos2 ζ1]ζ3/ζ4

(mR2+I)J cos2 ζ1
+

− (mR2+I)ζ4 sin ζ1
(mR2+I)J cos2 ζ1

.

The subsystem given by the first three equations is in the form (5.1). As
the velocity of the path following is not a concern, the dynamics of ζ4=ϑ̇
can be ignored. Observe that if ζ3 remains bounded the only case ζ4 could
diverge is when ψ̇ goes to zero. But this can happen only when also φ and φ̇
go to zero, which violates the assumption of working far from the condition
(φ, φ̇, ψ̇) = (0, 0, 0).

Now we choose ζ3 as the virtual control input to follow the lean angle
reference. Using dynamic inversion for the lean angle dynamics we have:

ζ3 =
1

fφ2(ζ1)
(−fφ1(ζ1)− kφ(ζ1 − φref )+

−kφ̇(ζ2 − φ̇ref ) + φ̈ref ).
(5.3)

At this point we can make ζ3 follow ζ3, so we obtain the following throttle
control:

τ = 1
fψϑ4(ζ1)

(

fζ3(ζ)− kζ(ζ3 − ζ3) + ζ̇3

)

(5.4)
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where

fζ3(ζ) = fψϑ1(ζ1)ζ2ζ
2
4 + fψϑ2(ζ1)

ζ23
ζ24
ζ2+

+fψϑ3(ζ1)ζ2ζ3;

and
ζ̇3 =

mR2+J
(mR2+I) cos ζ1

(−mgRζ2 cos ζ1
mR2+J

− kφ(ζ2 − φ̇ref )+

−kφ̇(ζ̇2 − φ̈ref )) + φ
(3)
ref+

+ (mR2+J)ζ2 sin ζ1
(mR2+I) cos2 ζ1

(−mgR sin ζ1
mR2+J

+

−kφ(ζ1 − φref )− kφ̇(ζ2 − φ̇ref ) + φ̈ref ).

The resulting closed-loop system is:

ζ̇1 = ζ2;

ζ̇2 = −kφ(ζ1 − φref )− kφ̇(ζ2 − φ̇ref ) + φ̈ref+

+fφ2(ζ1)ζ̃3;

ζ̇3 = −kζ(ζ3 − ζ3) + ζ̇3

(5.5)

where
ζ̃3 = ζ3 − ζ3.

From the last equation ζ3 converges to ζ3, that is ζ̃3 goes to zero. Since
the (ζ1, ζ2) subsystem is a zero-GAS (Globally Asymptotically Stable) linear
system, it is ISS (Input to State Stable) [34], hence ζ1 converges to the desired
value.

The term fψϑ4(ζ1) in (5.4) becomes zero when ζ1=φ and ζ3=ψ̇ go to zero,
thus making our control singular. If this happens, then ζ2=φ̇ also has to be
zero. However in section 2 we showed that the condition (φ, φ̇, ψ̇) = (0, 0, 0)
is in somehow pathological in that it makes the system uncontrollable. Nev-
ertheless the singularity is avoided under the assumption that the system
works far from that condition.

5.2 Receding horizon control

Our objective is to follow a trajectory in the plane that is close, in some sense,
to a desired path. Since we handle a control only, we will not be concerned
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if the velocity of the path is followed. The lean angle control we designed in
the previous section allows to track a lean angle trajectory, but it does not
ensure tracking an exact path in the plane. The dynamics of the disk (hence
the lean angle dynamics) is, in fact, invariant with respect to x, y and ψ,
hence the same lean trajectory could correspond to the same path rotated
or translated in the plane. Moreover, in dependence of the rotation velocity
ϑ̇, the same lean angle trajectory could correspond to different trajectories
of ψ̇ and hence to different curvatures of the path. In fact the dynamics of φ

φ̈ = fφ1(φ) + fφ2(φ)ψ̇ϑ̇+ fφ3(φ)ψ̇
2 (5.6)

is invariant with respect to every ψ̇ and θ̇ such that

fφ2(φ)ψ̇ϑ̇+ fφ3(φ)ψ̇
2 = a(φ(t)), (5.7)

with a (φ(t)) satisfying (5.6). Since

ψ̇ = −σ(s(t))Rϑ̇(t), (5.8)

where

s(t) =
∫ t

0
Rϑ̇(τ)dτ,

then different possible paths are compatible with (5.7), (5.8). Our idea is to
use a predictive control strategy to converge to the exact path in the manifold
of the paths compatible with the same lean angle trajectory. We generate a
trajectory in the plane which is feasible for the disk, starting from the current
position and orientation and merging to the path at look ahead distance D,
figure 5.1. Then we find a φ trajectory that, if followed, makes the disk stay
close to the generated path and, at this point, we use the previous closed-loop
control action.

The control strategy can be summarized as follows:

1. at time t the contour and its first p derivatives are computed at look-
ahead distance D;

2. a feasible trajectory which connects at look-ahead distance D to the
path is generated. We call it the trajectory connecting contour;

3. the angular velocity trajectory ψ̇c(t) associated to the connecting con-
tour is computed, assuming knowledge of the velocity of the disk along
the path;
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Figure 5.1: Connecting contour.

4. an equilibrium lean angle trajectory compatible with ψ̇c(t) (and with
the velocity of the disk) is generated;

5. the lean angle control action of section 5.1 is applied to track the equi-
librium φ trajectory;

6. the previous steps are repeated recursively.

So far we can see that this strategy is predictive and closed loop, but we need
to specify how to make it causal, since we suppose to know the velocity of
the disk in the future (and that velocity depends on the control action which
is what we want to compute). Observe, however, that the actual trajectory
of the disk is not any single connecting contour but, rather, the envelope of
the connecting contours.

Assume that, in the moving frame attached to the disk, the path can be
represented locally as:

y = γ(x, t) x ∈ [0, D]. (5.9)

The connecting contour should satisfy two conditions: it should be feasible
for the system and it should satisfy some optimality criterion. The simplest
criterion is to design a trajectory which intersects the path with the proper
derivatives. Therefore the connecting contour γc(x, t) must satisfy the fol-
lowing boundary conditions:
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[

γc(0, t)
∂γc
∂x
(0, t)

]

=

[

0
0

]











γc(D, t)
∂γc
∂x
(D, t)
...

∂(p)γc
∂x

(D, t)











=











γ(D, t)
∂γ
∂x
(D, t)
...

∂(p)γ
∂x

(D, t)











(5.10)

Among all possible connecting contours, we chose polynomials (which
have the advantage of minimizing the overall curvature) and set p = 2 for
the simulations. If we now suppose to know the velocity of the disk along
the connecting contour ϑ̇c(t), we can compute the angular velocity ψ̇c(t)
associated to the path as:

ψ̇c = −σc(s(t))Rϑ̇c(t). (5.11)

Having determined the value of ψ̇c(t), we seek a bounded lean angle trajectory
compatible with ψ̇c(t) and ϑ̇c(t). This trajectory is a time varying equilibrium
for the lean angle dynamics and is obtained by imposing:

0 = 1
mR2+J

(mgR sinφc + (mR2 + I)ψ̇cϑ̇c cosφc+

+(mR2 + I − J)ψ̇2
c )

(5.12)

At this point, observe that the receding horizon algorithm involving the con-
trol action is applied only at the first time step. Since the lean angle control
action is not predictive we only need the value of φ̇c(t) at the current time,
which we call t. This implies that we need the value of ϑ̇c(t) at t only. Hence
we can use its current value ϑ̇

(

t
)

. This means we suppose to follow the path
at the current velocity, at least in the first time interval. In the lean angle
control we would also need the value of φ̇c

(

t
)

, φ̈c
(

t
)

and φ
(3)
c

(

t
)

. Since in
the control design we made an approximation on the φ dynamics and we
are not interested in an exact tracking, we can neglect the last two feed-
forward terms. On the contrary φ̇c

(

t
)

can be computed by considering the
approximated value of φc

(

t
)

φc
(

t
)

= − arctan

(

(mR2+I)ψ̇c(t)ϑ̇c(t)
mgR

)

(5.13)

as:

φ̇c
(

t
)

= −
mgR(mR2+I)(ψ̈c(t)ϑ̇c(t)+ψ̇c(t)ϑ̈c(t))

(mgR)2+((mR2+I)ψ̇c(t)ϑ̇c(t))
2 (5.14)

where ϑ̈c
(

t
)

is known and

ψ̈c
(

t
)

= ∂σc
∂s
|s=s(t)R

2ϑ̇2
c

(

t
)

− σc
(

s
(

t
))

Rϑ̈c
(

t
)

.
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5.3 Simulation results

In this section we show the simulations results of the controlled disk following
a circle, a parabolic path and a chicane. The disk parameters used in the
simulations are:

• m = 10[Kg];

• R = .3[m];

• I = .4[Kg ·m2];

• J = .2[Kg ·m2];

• g = 9.8[m/s2].

Figure 5.2 shows the disk tracking a circle path. The disk starts from
the condition x(0) = .5[m], y(0) = 2.1[m], φ(0) = 70[deg], φ̇(0) = 0[deg/s],
ψ(0) = 45[deg], ψ̇(0) = 25[deg/s], ϑ̇(0) = 10π/R[rad/sec], recovers to the
right inclination and converges to the circle. In figure 5.2 (a) the resulting
path in the ground plane is shown. Figure 5.2 (b) shows the lean angle
trajectory, compared with the equilibrium trajectory, and its derivative. In
figure 5.2(c) the yaw trajectory and its derivative are shown and finally the
control input and the rotation velocity are depicted in figure 5.2(c).

Figure 5.3 shows the same graphs in the case of a parabolic path. The
initial condition is set to x(0) = .5[m], y(0) = 2.1[m], φ(0) = 55[deg], φ̇(0) =
0[deg/s], ψ(0) = −20[deg], ψ̇(0) = 25[deg/s], ϑ̇(0) = 10π/R[rad/sec].

Finally figure 5.4 represents the path following of a chicane. In this case
figure 5.4 (a) is a 3D image representing the position and orientation of the
disk.

5.4 Conclusions and future work

The problem of controlling a rolling disk has been studied. The disk is made
to follow an assigned path in the plane using throttle only. We used a reced-
ing horizon control strategy to generate, at each instant, a feasible trajectory
in the plane starting from the current position of the disk and merging to
the path at a look-ahead distance. A bounded equilibrium lean trajectory,
compatible with this trajectory, is computed and tracked by means of a back-
stepping control strategy. The objective of this work was not only to solve
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Figure 5.2: Following of a circular path.

the specific problem, but also to introduce a general control technique for
controlling a large class of both nonminimum phase and high order underac-
tuated systems.
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Figure 5.3: Following of a parabolic path.
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Figure 5.4: Following of a chicane.



Perspectives

In the first part of the dissertation we studied the problem of controlling
a ground vehicle along a preassigned trajectory. We developed an effective
closed loop control scheme based on Model Predictive Control techniques.

Through the analysis of its behavior in several trials it can be seen how
the controller here developed reaches the control objective in a more effective
way than the previous one. The controller gives excellent results when the
system lays in the admissible set, while its performance rapidly decays when
the tires slip angles and the vehicle lateral velocity grow too quickly and the
model goes beyond its limits. To improve its performances an enrichment of
the vehicle model is required; switching from the bicycle model to a two-track
would allow the system to take in account the vehicle pitch and roll dynamics,
which can’t be neglected when the vehicle is subject to abrupt direction
changes or sharp speed variations. This improvement would be useful to
simulate a rally driver.In fact rally driving technique is quite different from
the common driving and even from other types of car racing, such as F1
racing driving. Rally drivers drive through corners inducing drifting, that is
driving at high slip vehicle angles α. In such situations drivers manage to
balance the oversteering vehicle by steering the front wheels to the opposite
direction of the corner (applying “opposite lock”). Such a technique could be
reproduced by a control algorithm that includes roll and pitch dynamics and
able to handle high slip angle values.

Another direction of investigation is in the area of the time scheduling of
the optimal control. Currently an optimization problem is solved at each sim-
ulation step, and its solution is applied for a single step. This approach causes
a lot of computational work, which can be reduced, obtaining a faster and
computationally cheaper algorithm, by making the number of steps where
the optimal control is applied dependent on the execution conditions; if the
vehicle after a step is still close to the initial condition then the optimal con-
trol recalculated will be very similar to the one already found, so the smartest
choice is continuing to apply the old one as long as the system conditions
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aren’t changed substantially, when the control needs to be recalculated. In
this way the control could deal with “calm” situation, for example a straight
path with a constant velocity profile, where the control is recalculated once
in a while, and with more demanding ones, for example a sharp bend or an
abrupt speed change, where the control needs to be calculated more often to
obtain satisfactory performances.

In the vehicle prototyping process it is required not only to verify the
vehicle behavior in extreme guidance conditions, but also its response while
driving in normal conditions, to study its handling and maneuverability. A
model for the human driver is therefore essential. In particular a real driver
can only rely upon their visual feedback, which gives them the vehicle po-
sition with respect to the road and its forward speed, and other data that
can be derived from the other senses, which are generically called proprio-
ception. Data harvest and analysis are not immediate, but are subjected to
physical transmission delays. Furthermore the control action is not contin-
uously generated, but it’s calculated only when it is needed. The controller
can be easily modified to simulate the human driver, adding suitable delay
blocks, tuned on the human frequencies, and modifying the control calcula-
tion frequency moving from a fixed scheme to one in which its activation is
tied to road conditions, as explained above. Tuning those parameters allows
the controller to represent different driver categories, from the inexperienced
one to the professional driver.

We have also introduced pseudospectral methods and their application
to the numerical solution of optimal control problem for mechanical systems;
their properties have been investigated and their effectiveness proved. In
particular we formulated the problem of trajectory optimization for ground
wheeled vehicles as a optimal control problem, in accordance to the current
trends in the literature. The preliminary optimization results indicate that
the framework here developed is a good choice to study the problem, not
only for simple maneuvers, but also for more complex ones. As side effect
the solution of time minimization problem contains the trajectory that has to
be followed in order to achieve the results, trajectory that can be used, along
with the longitudinal velocity profile, as reference for the optimal vehicle
controller previously developed.

In the second part of the thesis we studied the control of a class of sys-
tems called underactuated, to develop a general control scheme that exploits
symmetries and other common characteristics.

Underactuated systems are mechanical systems with fewer controls than
the number of configuration variables. We provided as example the rolling
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disk system. The disk is made to follow an assigned path in the plane us-
ing throttle only. We used a receding horizon control strategy to generate,
at each instant, a feasible trajectory in the plane starting from the current
position of the disk and merging to the path at a look-ahead distance. A
bounded equilibrium lean trajectory, compatible with this trajectory, is com-
puted and it is tracked by means of a beckstepping control strategy. This
control technique is for controlling a large class of both nonminimum phase
and high order underactuated systems. Future directions of research include
studying the convergence of the method and improve the control technique
to achieve a zero tracking error instead of a bounded one.





Appendix A

One Track Model: Motion

Equation

In this chapter it is explained the method that has been used to obtain the
motion equation and subsequently the state variable model.

A.1 Lagrangian Motion Equation

A system dynamic description can be obtained through the lagrangian for-
malism.

The Lagrangan L is defined as:

L(q, q̇) = T (q, q̇)− V (q)

where T is the kinetic energy, V is the potential energy, q is the generalized
coordinates vector. The equations of motion are obtained by

d

dt

∂L

∂q̇i
−
∂L

∂qi
= τi

where τi is the generalized force conjugated to the generalized velocity q̇i.
The kinetic energy of the i-th rigid body can be written as

Tp(q, q̇) =
1

2
mpvp(q)

2 +
1

2
ωp(q)

T Ipωp(q)

where ωp(q) is the body angular velocity given by RT
p (q)Ṙp(q).
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Using a coordinate frame for the euclidian space R
3 with the z-axis point-

ing down, the potential energy of the p-th rigid body due to gravity can be
expressed by

Vp(q) = −mpgzp(q)

Computing the Euler-Lagrange’s equations

d

dt

∂L

∂q̇i
−
∂L

∂qi
= τi

it can be noticed that motion equations assumes the following structure

M(q)q̈ + C(q, q̇) +G(q) = τ

and it turns out that

M(q)ij =
∑

p

mp(
∂xp
∂qi

∂xp
∂qj

+
∂yp
∂qi

∂yp
∂qj

+
∂zp
∂qi

∂zp
∂qj

) + ωip(q)
T Ipω

j
p(q)

where ωip(q) = RT
p (q)

∂Rp(q)

∂qi
1.

Ci(q, q̇) is the Coriolis vector and it results to be

Ci(q, q̇) =
∑

j,k

Γijk(q) · q̇j q̇k

where Γijk is made of

Γijk =
1

2
(
∂Mij(q)

∂qk
+
∂Mik(q)

∂qj
−
∂Mkj(q)

∂qi
)

For multi-body systems it results:

Γijk =
∑

p

mp(
∂xp
∂qi

∂2xp
∂qi∂qk

+
∂yp
∂qi

∂2yp
∂qi∂qk

+
∂zp
∂qi

∂2zp
∂qi∂qk

)

+
1

2
ωip(q)

T Ip(
∂ωjp(q)

∂qk
+
∂ωkp(q)

∂qj
)

1Given ω = (ωx, ωy, ωz)
T , ω̂ indicates the linear operator associated to the product,

that is ω̂ =





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0




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+
1

2
ωjp(q)

T Ip(
∂ωip(q)

∂qk
−
∂ωkp(q)

∂qi
)

+
1

2
ωkp(q)

T Ip(
∂ωip(q)

∂qj
−
∂ωjp(q)

∂qi
)

Finally, the potential forces vector G can be obtained from

Gi(q) =
∑

p

mp
∂zp
∂qi

A.2 The Model

The model is a single rigid body that can move on the plane. It is described
by this set of generalized coordinates:

• ψ is the yaw angle;

• x is the abscissa of the rear wheel contact point;

• y is the ordinate of the rear wheel contact point.

The steering axis is considered vertical with respect to ground, the wheel
are thin, in order to consider the contact surface as a point. The z axis of the
inertial frame (or world frame) is pointing downward;in this way clockwise
rotation are positive.The rotation matrix R which describes the rigid body
orientation can be written as 2

R = Rz(ψ) =





cψ −sψ 0
sψ cψ 0
0 0 1





The Lagrangian of the system can be written as

L =
1

2
m(ẋ2

CM + ẏ2
CM) +

1

2
ωT Iω +mgh

where:

• m is the vehicle mass;

2In the rest of the chapter the following notation will be used, for the sake of brevity:
cψ := cos(ψ), sψ := sin(ψ), etc. . . .
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• xCM is the center of mass abscissa;

• yCM is the center of mass ordinate;

• ω is the body angular velocity of the rigid body ( ω̂ = RT Ṙ );

• h is the center of mass height;

• p is the vehicle wheelbase (i.e. the distance between the front and the
rear wheel contact point);

• b is the distance between the projection on the ground of the center of
mass and the rear wheel contact point;

• g is the gravity acceleration.

It is straightforward to compute the position of the center of mass:






xCM = x+ bcψ
yCM = y + bsψ
zCM = −h

The angular velocity ω in the body frame is, as previously noticed, equal
to

ω̂ = RT Ṙ = RT ∂R
∂x
ẋ+RT ∂R

∂y
ẏ +RT ∂R

∂ψ
ψ̇ =

= ω̂xẋ+ ω̂yẏ + ω̂ψψ̇

From R defitinition it follows that

ω̂ψ = RT ∂R
∂ψ

= RT
x (ϕ)R

T
z (ψ)

∂Rz(ψ)
∂ψ

Rx(ϕ) =





0 −1 0
1 0 0
0 0 0





consequently

ωx =





0
0
0



 ωy =





0
0
0



 ωψ =





0
0
1





In the following table the derivatives of xCM , yCM and the components of
the angular velocity ω are shown

d
dx

d
dy

d
dψ

xCM 1 0 −bsψ − hsϕcψ
yCM 0 1 bcψ − hsϕsψ
zCM 0 0 0

ω





0
0
0









0
0
0









0
0
1





(A.1)
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The mass matrix M(q) can be computed using the data in table (A.1), ob-
taining:





m 0 −mbsψ
0 m mbcψ

−mbsψ mbcψ mb
2 + Izz





In the same way Coriolis forces vector C and potential forces vector G
can be computed

C(q, q̇) =





−mbcψψ̇
2

−mbsψψ̇
2

0



 (A.2)

G(q) =





0
0
0



 (A.3)

The potential forces vector G is identically zero for this system, therefore
it will be neglected in the rest of the chapter.

A.2.1 Change of coordinates

Analyzing the obtained model structure it can be noticed that the equa-
tions don’t depend on x, y, ẋ, ẏ variables; the system state vector q can be
rearranged as q = (r, s)T where r := (x, y)T and s := (ψ)T obtaining the
following form for the motion equations

(

M11(s) M12(s)
M21(s) M22(s)

)(

r̈
s̈

)

+

(

C1(s, ṡ)
C2(s, ṡ)

)

=

(

τ1
τ2

)

(A.4)

Analyzing the system dynamics it terms of x,y is not so natural,it is
therefore convenient to make a coordinate change, in order to decouple the
lateral and longitudinal system dynamics.

We will substitute the acceleration (ẍ, ÿ) with a := (a⊤, a⊥), the longitu-
dinal and lateral accelerations. For this purpose, note that

(

ẍ
ÿ

)

= R(ψ)

(

a⊤
a⊥

)

where the rotation matrix R(ψ) is equal to

(

cψ −sψ
sψ cψ

)
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Applying the following transformation the new motion equation can be ob-
tained

(

RTM11(s)R RTM12(s)
M21(s)R M22(s)

)(

a
s̈

)

+

(

RTC1(s, ṡ)
C2(s, ṡ)

)

=

(

RT τ1
τ2

)

(A.5)

Doing the computations in our special case, the mass matrix M and the Cori-
olis’ term C change into these new terms

M̃(q) =





m 0 0
0 m mb
0 mb mb2 + Izz





and

C̃(q, q̇) =





−mbψ̇2

0
0



 (A.6)

To obtain a differential equation system it is then necessary to relate the ac-
celerations a⊤ and a⊥ to the lateral and longitudinal velocities v⊤ and v⊥.

Differentiating and reordering the velocity equations

ẋ = v⊤cψ − v⊥sψ
ẏ = v⊤sψ + v⊥cψ

we obtain
a⊤ = v̇⊤ − v⊥ψ̇

a⊥ = v̇⊥ + v⊤ψ̇

Therefore the mass matrix for the model results M̂(q) = M̃(q), the Coriolis’ force
term is

Ĉ(q, q̇) =





−mv⊥ψ̇ −mbψ̇
2

mv⊤ψ̇

mbv⊤ψ̇



 (A.7)

A.2.2 The Whole Model

To obtain a complete model, the forces generated by the wheels interaction with
the ground should be considered; they can be found through the use of a model,
for example the Paceijka “magic formula”, in the hypotheses of knowledge of the
normal forces at the wheel contact point.First of all the drift angle of each wheel
is founded, that are given by

αf = arctan(v⊥+pψ̇
v⊤

)− δ

αr = arctan(v⊥v⊤ )
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where δ is the steering angle. The longitudinal slip is given by

κf =
−θ̇fRf−v⊤

v⊤

κr = −θ̇rRr−v⊤ cos δ−v⊥ sin δ
v⊤ cos δ+v⊥ sin δ

in which the simple wheel dynamics is

If θ̈f = RfF
f
⊤
(κf , αf , F

f
n ) + uf

Irθ̈r = RrF
r
⊤
(κr, αr, F

r
n) + ur

where θf and θr are the wheels angle position3, If and Ir represent the wheel
inertia with respect to their rotational axis, rf and rr are the wheels radius, u

f

and ur are the input couple applied to each wheel (generated by the engine and the

braking system) and finally F f
⊤
and F r

⊤
are the longitudinal wheels forces which

are a function of the drift angle α, of the longitudinal slip κ and the normal force
Fn. Considering also the lateral forces generated at the wheels the whole model is
obtained:

M̂(q)





v̇⊤
v̇⊥
ψ̈



 + Ĉ(q, q̇) + Ĝ(q) =







F f
⊤
cδ − F

f
⊥
sδ + F r

⊤
− FA

F f
⊤
sδ + F f

⊥
cδ + F r

⊥

p(F f
⊤
sδ + F f

⊥
cδ)






(A.8)

and the term FA is the aerodynamic drag, given by FA = 1
2ρCDAv

2
T , where ρ

is the air density, CD is the drag coefficient and A is the drag area.

3When the vehicle is moving forward the wheels angular velocity θ̇f and θ̇r are negative.





Appendix B

Optimal Controller Matlab

Implementation

The main topic of this chapter is the coding of the optimal control algorithm
developed for vehicle guidance.

For development purpose we have used MATLAB 6.5TM, the MathWorks com-
puting environment, and the SimulinkTM toolbox. MSC.ADAMS 12.0TM, devel-
oped by MSC.Software, was instead used to simulate the vehicle dynamics.

B.1 MSC.ADAMS 12.0

MSC.ADAMS is a motion simulation environment for analyzing the complex be-
havior of mechanical assemblies. It allows the user to easily develop and test vir-
tual prototypes and optimize designs for performance, safety, and comfort, without
having to build and test numerous physical prototypes, as well as to analyze the
characteristics and behaviors of individual parts of the system.

Next to the core package (Adams/View, Adams/Solver, and Adams/PostProces-
sor), used to build a solid model of the mechanical system from scratch checks the
model and then runs simultaneous equations for kinematic, static, quasi-static, and
dynamic simulations, there are a range of modules tailored specifically the auto-
motive industry. For this work the package ADAMS/Car and ADAMS/Controls
have been extensively used.

The control system, developed using MathWorks Matlab and Simulink toolbox,
can interact with the simulator through a proper interface, which is represented by
the block “ADAMS 12.0” in the general scheme shown in Figure B.1, which outputs
are the vehicle sensors measures, while the inputs are the actuators commands.
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xADAMS controllore    
   ottimo

steering

throttle, brake, gear, clutch

Figure B.1: Reference scheme.

B.2 The Controller

The controller implementation is here detailed.

In the following sections the details of the various parts are explained, in order
to show how the requested control action is generated.

B.2.1 Trajectory Generation

The first step is the calculation of state and input references. Every time the
control needs to be recalculated, it’s necessary to generate the reference trajectory
for each state and input variable, to allow the vehicle path following.

First of all a speed and curvature reference is calculated in [t0; t0 + Tprw], where
t0 is the current time and Tprw is the chosen preview time, that is the preview
horizon.

The function reference_profiles is delegated to calculate the proper acceleration
and speed profile starting from the current vehicle position.

Curvature reference is calculated as explained in section 2.1. It’s not possible
to directly apply what is there described though, as the solution of the equation 2.3
requires the knowledge of the function γc (x, t) and it’s derivatives around x = D.
That knowledge is beyond this control purpose, as a human driver is not able to
know exactly these quantities.
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Figure B.2: Centerline distances.

To get round of this drawback, we assume that we can know the distance from
the reference path at the points with abscissa D, D − 0.5m and D + 0.5m. These
distances are the values γc (D), γc (D − 0.5), γc (D + 0.5) and are denoted with L0,
L1 and L2 respectively.

The first and second derivatives are then approximated as normalized differ-
ences:

γ̇c (x) ≃
γc (x+ ∆)− γc (x−∆)

2∆

γ̈c (x) ≃
γ̇c (x+ ∆)− γ̇c (x−∆)

2∆
≃
γc (x+ 2∆) + γc (x− 2∆)− 2γc (x)

(2∆)2
.

We impose ∆ = 0.5[m] in the first equation and ∆ = 0.25m in the second one,
obtaining the following approximations of γc and its derivatives in x = D:

γc (D, t) ≃ L0 (t)

γ̇c (D, t) ≃ L2 (t)− L1 (t)

γ̈c (D, t) ≃ L2(t)+L1(t)−2L0(t)
0.52

. (B.1)

In this way we can express the constraint in 2.1.2 as:

[

γc (0, t)
∂γc
∂x (0, t)

]

=

[

0
0

]

(B.2)

[

γc (D, t)
∂γc
∂x (D, t)

]

=

[

γ (D, t)
∂γ
∂x (D, t)

]

=

[

L0

L2 − L1

]

(B.3)
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The connecting contour will be a cubic polynomial of equation:

γc (x, t) = α3 (t)x3 + α2 (t)x2 + α1 (t)x+ α0

From (B.2) it follows that α0 = 0 e α1 = 0. α2 and α3 are then found solving
the following linear system:

[

D2 D3

2D 3D2

] [

α2

α3

]

=

[

γ (D, t)
∂γ
∂x (D, t)

]

=

[

L0

L2 − L1

]

(B.4)

which gives the searched solution:
[

α2

α3

]

=
1

D4

[

3D2 −D3

−2D D2

] [

L0

L2 − L1

]

=

[

3L0
D2 −

L2−L1
D

−2L0
D3 + L2−L1

D2

]

(B.5)

In this way we can now compute σ(s) and switch to the time dependence
knowing the vehicle speed. This step is computed by the function traject.s (see
figure B.4 for more details).

After obtaining V (t) and σ(t), we can generate the state and input references,
as seen in section 2.3.1; beware that here the used model is the non-holonomic one,
simpler than the one actually used for control purpose.

The wheels couple reference is generated separately from the rest; to obtain a
reasonable value it is indeed necessary to consider the forces involved in the motion.
This quantity is calculated taking into account the system velocity (from which the
drag resistant force depends) and the vehicle inertia. The function traject.mdl is
devoted to this task; it is called from the Matlab function opt_control.m whenever
it is necessary (see figure B.3 ).

B.2.2 Model Linearization

As seen in 2.3, next algorithm step is the model linearization around the trajectory
previously generated.

In the vehicle the braking couple is applied to all the wheels while the throttle
is applied only to the rear wheels1 It is then necessary to develop two different
models to take in account the vehicle behavior while accelerating or braking. It is
also mandatory to model the transition from one model to the other, in order to
guarantee a global convenient system representation and control.

The wheels dynamics is modeled as:

If θ̈f = rfF
f
⊤
(κf , αf , F

f
n ) + uf

Irθ̈r = rrF
r
⊤
(κr, αr, F

r
n) + ur

1We made the hypotheses that the vehicle has rear-wheel drive.
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Acc _ref
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V_ref
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   di Drag

2

Torque

Coppia 

Coppia di drag

Raggio ruota
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x
x

x

+

+

R

u k

Forza

Figure B.3: Reference couple calculation.

In these differential equations uf and ur are the input signals applied to the front
and the rear axle respectively. These quantities assume different values in the two
cases; let τ be the total couple applied to the vehicle, then for the acceleration
model we have:

{

ur = τ ;
uf = 0;

while for the braking case the input signals are:

{

ur = (1− a)τ ;
uf = aτ ;

where a is the bias, that represents how the braking couple is split between
front and rear axle (to be more precise it is the part of the whole signal that is
applied to the front axle) and it is a braking system characteristic (it means that
it is not modifiable once chosen the vehicle model). The model we use for testing
purpose presents a = 0.6.

The implemented controller should have both models coded inside, choosing the
right one to use while running. So at each time t0 when the control is recalculated
the linearization around the reference trajectory for both the models, obtaining
two linearized state models for the error as seen in section 2.3.1.
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B.2.3 Optimal Control Calculation

After obtaining the linear model for the error, we can calculate the optimal control
ũ∗ as seen in 2.3.2. At each step a LQR problem is solved for both the models,
obtaining a time-variant feedback matrix for each of them, which represents the
matrix error gain to control the system. This operation is done by the function
optimal.c (see figure B.4 for further details).

B.2.4 Control Application

We have then to determine the current control action, starting from the control cal-
culated above for all the time horizon. This is done by the function opt_feedback.m,
that calculates the whole control action, as a combination of the feedforward signal
and the state feedback. This is generated for both the accelerating and braking
models.

As seen before, it is essential to provide a switching mechanism between the
two models, to avoid numerical problems and infeasibility. The switch block (see
figure B.4) is the one deputed to this operation; at each step it controls the vehicle
state and chooses the input signal properly.

In this way the controller output is the right value of steering angle and couple
applied to the wheels.

The main part of the controller is a Simulink scheme. This was a forced choice,
because this toolbox is the only one that allows Matlab and ADAMS co-simulation.

B.3 Simulator Input Signals

ADAMS dynamic simulator requires as input signals the angle of the steering wheel
and the accelerator, brake, clutch and gearshift commands. It is therefore necessary
to provide a mechanism that generates these signals starting from wheels couple
and steering, which are the controller outputs.

The steering angle is simply calculated with a suitable gain coefficient, which
depends on the vehicle characteristics:

steering = Ksteerδ
∗

where δ is the steering angle determined by the controller.

This gain depends on steering-suspension subsystem geometry and can be cal-
culated through ADAMS simulator with a standard suspension analysis. Steering
angle is linearly changed and wheel response is then analyzed. In figure B.5 the
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Figure B.4: Optimal Controller.
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Figure B.5: ADAMS suspension analysis.

tested subsystem, the steering control input (steering_displacements.angle) and
front wheels response angle δF

2 the (toe.angle) are shown.

Generally the relation between these quantities is non-linear. Nonetheless we
can well approximate it with a linear one, restricting the wheels angle range to
[

−π
4 ; π4

]

, which anyway represents common tires range of action.

It is then necessary to add a further block to obtain the right simulator input
command; it would be simply a saturation block that restricts the angle in the
physical range above founded.

Longitudinal control is more complex, because it requires to generate suitable
signals for throttle, brake, gear and clutch starting from the couple. This transfor-
mation will be the topic of the following sections.

2Right and left front wheels have different angles, due to steering mechanism. Here we
consider the mean of these two values to have a suitable value for the bicycle model used.
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B.3.1 Gearshift Mechanism

Any commercial vehicle is provided with a gearbox, which allows the engine to
work in the proper range of speed, varying the transmission ratio between the
engine and the tractive axle. This mechanism is directly controlled by the driver,
so the controller has to provide a valid gear change function. The vehicle has also
a mechanism called clutch, that allows gear changes decoupling engine shaft and
axle shaft, that has to be taken in account.

A gear change is composed of the following sequence:

• clutch disengagement;

• accelerator in stand-by, to avoid engine out of revolution speed;

• new gear engagement;

• clutch engagement, to give traction to the vehicle;

• accelerator in action, to restart control action.

These operations must be synchronized, to obtain a smooth change.

Let Tc be the interval time when the controller acts on the clutch; this value
represents the time needed by the driver to complete the gear change. In order to
guarantee a smooth transition, the clutch signal is modulated with a raised-cosine
profile. Let Tclrise and Tclfall be the rising and the falling time of the signal in
figure B.6; the clutch command equation is:

clutch =























































1
2

[

1 + cos
(

π + πt
Tclrise

)]

if 0 ≤ t < Tclrise

1 if Tclrise ≤ t < Tc − Tclfall

1
2

[

1 + cos

(

π
“

t−Tc+Tclfall

”

Tclfall

)]

if Tc − Tclfall ≤ t < Tc

0 otherwise

(B.6)

While the clutch is disengaged the engine is unloaded, so it can be easily reach
a high revolution speed if accelerated. To avoid that, the accelerator signal should
be disabled synchronously to the clutch one; to do that this signal is multiplied by



104 B. Optimal Controller Matlab Implementation

Figure B.6: Gear change:clutch and accelerator inhibition signals.
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the following inhibition signal:

throttle =























































































1 if 0 ≤ t < ∆T1

1− 1
2

[

1 + cos
(

π + π(t−∆T1)
Tthrise

)]

if ∆T1 ≤ t < Tthrise + ∆T1

0 if Tthrise + ∆T1 ≤ t
< Tc − Tclfall + ∆T2

1− 1
2

[

1 + cos

(

π
“

t−Tc+Tclfall−∆T2

”

Tclfall

)]

if Tc − Tclfall + ∆T2 ≤ t

< Tc − Tclfall + ∆T2 + Tthfall

1 otherwise
(B.7)

where ∆T1 is the delay between the clutch disengagement and the accelerator
inhibition and ∆T2 is the delay between the clutch engagement and the accelerator
restoration.

The gear shift upward or downward, is triggered by the exceeding of a thresholds
. Let GU the engine speed that triggers the gear shift upwards, and GD the one
that imposes to shift downward. When the engine exceeds the upper threshold
GU , the gear change starts. Since the engine has a certain inertia and the pilot
is still giving gas for a certain period of time, the engine speed will be over the
threshold for a while. Moreover any fluctuations could cause additional crossing of
the threshold GU during the gear change maneuver. We need, therefore, to inhibit
the starting of a new procedure till the previous one is still on way. For this reason
we add a monostable circuit, which generates a signal Tc, which inhibits any other
change due to fluctuations in engine rpm. The structure of circuit is quit simple:
an integrator is starting at t = 0 when the changing gear procedure starts, and
continues to integrate up to a threshold. Acting on the threshold, the duration of
the inhibition signal can be adjusted; in particular, we can obtain ∆t = Tc, using
f (t) =

∫

dt as integral function and set the threshold to Tc: thus we get a signal
duration ∆t = Tc.

In figure B.7 the gear-shift controller is depicted. Its structure is symmetric on
the upwards and downwards shift. The inputs are the number of engine revolutions,
the time Tc, the lowest and highest gear admissible. In addition, the controller
knows the upper and lower thresholds GU and GD. When the engine speed exceeds
the threshold GU then the gear shift upward takes place,

The block “Soglia_ sup_ RPM” gives the starting signal if the two following
conditions are simultaneously verified:
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Figure B.7: Gearshift controller.

• the engine speed is higher than threshold GU

• the current gear is not the highest admissible;

The block “segnali cambio up” takes as input the time Tc and the starting signal,
which also starts the monostable circuit, preventing other gear shift commands due
to fluctuations of engine revolutions speed

Let t0 be the moment when the change shift starts. In this moment the monos-
table circuit is activated and the raised-cosine clutch signal is generated as ex-
plained in (B.6). With a delay ∆T1 the throttle signal inhibition is generated
(B.7), stops the accelerating action on the engine.

At t0 +Tc/2 the new gear is mounted. In this moment the clutch is disengaged,
and the accelerator is completely released : there is no torque applied to the
transmission shaft. Afterwards, according to the profiles set (B.6) and (B.7),
friction is engaged again and the accelerator is re-habilitated. In figure B.8 the
Simulink scheme is presented.

B.3.2 RPM Controller

During the gear change, when the clutch is disengaged, engine revolutions depends
only by its inertia and the throttle command. Stepping on the gas while the
engine is unloaded quickly increases its revolution speed; leaving the engine without
accelerating command has a consequence the reduction of the speed, due to engine
inertia.

To avoid discrepancies between engine revolution speed and transmission shaft
speed during the engagement action, the RPM controller has been inserted. It acts
on throttle signal while the clutch is disengaged and allows the engine speed to



B.3. Simulator Input Signals 107

Figure B.8: Clutch and throttle inhibitor signal generator.

be as close as possible to the transmission shaft speed (see figure B.9 for further
details).
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Figure B.9: RPM control signals.
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Figure B.10: Gearshift without RPM controller.

Figure B.11: RPM controller Simulink scheme.
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