
UNIVERSITÀ DI PADOVA FACOLTÀ DI INGEGNERIA

Dipartimento di Ingegneria dell’Informazione

Scuola di Dottorato di Ricerca in Ingegneria dell’Informazione

Indirizzo: Ingegneria Informatica ed Elettronica Industriali

XX Ciclo

Software and Control Architectures

for Autonomous and

Racing Vehicles

Dottorando: LUCA BURELLI

Supervisore: Prof. RUGGERO FREZZA

Direttore della Scuola: Prof. MATTEO BERTOCCO

Padova, 31 Luglio 2008

Ai miei genitori.

“But remember, the brick walls are there for a reason.

The brick walls are not there to keep us out. The brick

walls are there to give us a chance to show how badly we

want something. Because the brick walls are there to stop

the people who don’t want it badly enough. They’re there to

stop the other people.”1

– prof. Randy Pausch, Last Lecture at CMU

1Ricordate, i muri sono lı̀ per un motivo. I muri non sono fatti per tenerci lontani. I

muri sono fatti per darci la possibilità di capire quanto veramente vogliamo qualcosa:

i muri servono per fermare le persone che non la vogliono abbastanza. Servono per

fermare gli altri.

Sommario

Questo lavoro presenta i risultati ottenuti in alcuni progetti di ricerca

che sono stati avviati all’Università di Padova nel campo dei sistemi di

controllo per veicoli, e in particolare delle loro architetture software.

Inizialmente verrà illustrata una raccolta di algoritmi che sono at-

tualmente allo stato dell’arte per i vari sistemi che compongono un veicolo

autonomo, e saranno messe in luce le possibili scelte architetturali per

lo sviluppo del software di controllo di un dispositivo di tale complessità.

Per meglio comprendere le scelte che sono state fatte durante questi pro-

getti, sarà inoltre necessario approfondire alcuni dettagli tecnici; essi si

riveleranno molto interessanti per capire il lavoro che al giorno d’oggi

viene dato per scontato da chi non sia uno sviluppatore di middleware.

All’altro estremo dello spettro delle possibili applicazioni dell’elet-

tronica nei veicoli, sarà presentato un dispositivo per la registrazione

ed elaborazione dati per veicoli da gara. Lo sviluppo di questo oggetto

compatto ha coinvolto scelte in diversi campi dell’ingegneria, dalla mec-

canica all’elettronica all’informatica. Nonostante possa sembrare un’ap-

plicazione completamente differente, dalla discussione emergeranno al-

cuni punti di contatto tra i progetti presentati.

L’attività a monte di questi progetti copre svariate problematiche di

ricerca applicata nel campo delle tecnologie dell’informazione. Grazie

a questo lavoro sarà possibile trasportare sui veicoli reali gli algoritmi

innovativi sviluppati per l’ambiente automotive presso l’Università di

Padova, in modo tale da poterli confrontare con tutte le non idealità ine-

vitabilmente trascurate dalle simulazioni.

Abstract

This work presents the achievements that have been obtained in a

number of ongoing research projects, at the University of Padova, in the

field of automotive software and control architectures.

An overview of current state-of-the-art algorithms for the various el-

ements of an autonomous vehicle will be given, along with a discussion

at the current software options available for designing such a complex

device. To fully understand the choices that have been made during the

development, it will be necessary to show also a number of technical

implementation details; these provide interesting insight into the back-

ground work which is nowadays considered as given by anybody who is

not a middleware developer.

On the other end of the automotive electronics spectrum, a data log-

ger and co-processor for racing vehicles will be presented. This compact

device required interdisciplinary design decisions in both the mechani-

cal, electronics and software engineering fields. Despite being a radically

different application, a few key convergence points will emerge from the

discussion.

The activity behind these projects covers several issues of applied re-

search within the information technology tradition, and paves the way

for the experimentation on live devices, with all their not-really-ideal

behaviors, of advanced algorithms in the automotive fields at the Uni-

versity of Padova.

i

Contents

1 Introduction 1

1.1 Structure of the Thesis . 2

I Algorithms for Autonomous Vehicles 3

2 Introduction 5

2.1 Kalman Filtering background 6

2.2 The bicycle model . 8

3 Control systems 11

3.1 Position and attitude . 12

3.1.1 Notation and reference systems 13

3.1.2 Ryu-Gerdes algorithm 16

3.1.3 Qi-Moore algorithm 18

3.2 Horizon detection . 20

3.2.1 Canny Edge Detection 21

3.2.2 Hough Transform . 22

3.2.3 Pitch, Roll Estimation 23

3.3 Maximum tire force . 24

3.4 Path planner . 25

3.5 Vehicle Controller . 28

3.5.1 Endpoint selection for the connecting contour 29

3.5.2 Connecting contour generation 29

3.5.3 Control values . 30

3.5.4 Steer and throttle calculation 31

4 World sensing and behaviors 33

4.1 Stereo vision . 33

4.1.1 Bayesian MAP . 34

4.1.2 Stereo IPM . 34

4.2 LIDAR . 35

ii CONTENTS

4.3 Local map and Global map 37

4.4 Decision system . 38

II Software Architectures 41

5 Introduction 43

5.1 Design decisions . 44

5.1.1 Size . 44

5.1.2 Operating systems 44

5.1.3 Real time . 45

5.2 Middlewares . 47

5.2.1 History . 47

5.2.2 Categories and examples 48

5.2.3 Practical middlewares 51

6 The Ice Middleware, Applied 55

6.1 Introduction to Ice . 55

6.1.1 Terminology . 55

6.1.2 Slice (Specification Language for Ice) 61

6.1.3 Language Mappings 62

6.1.4 The Ice Protocol . 62

6.1.5 Architectural Benefits of Ice 63

6.1.6 A Comparison with CORBA 65

6.1.7 Ice Services . 69

6.2 Vehicle architecture . 71

6.2.1 Hardware . 71

6.2.2 Ice extensions . 77

6.3 Cell implementation . 80

6.3.1 Sensor acquisitions 82

6.3.2 Control systems . 82

6.3.3 World sensing . 84

6.3.4 Reasoning . 87

6.4 GUI . 88

6.5 Safety system . 90

6.5.1 Fault categorization 90

6.5.2 Tolerable errors . 92

6.5.3 Recoverable errors 92

6.5.4 Critical errors . 94

6.6 Conclusions . 94

CONTENTS iii

7 A Real-Time Data Acquisition System for Racing Vehicles 97

7.1 Introduction . 97

7.1.1 Features . 98

7.1.2 Project development 100

7.2 Electronics . 101

7.2.1 Connector board . 103

7.2.2 Host board . 103

7.3 Software overview . 105

7.3.1 Naming and conventions 105

7.3.2 Data storage format 109

7.4 Software organization . 112

7.4.1 The kernel module 112

7.4.2 The user-space application 114

7.5 Real-time implementation 115

7.5.1 Interrupts on the ColdFire 115

7.5.2 Interrupt scheduling 116

7.5.3 Interprocess communication 118

7.6 Conclusions . 120

8 Conclusions 123

A Data Acquisition System Schematics 125

Bibliography 131

iv CONTENTS

1

Chapter 1

Introduction

Automotive electronics has seen an explosive evolution. Functions

that were handled by stand-alone systems only a few years ago are now

part of a complex networked system of great intricacy and pronounced

internal reciprocal effects. Engine control, vehicle safety, driving assis-

tance, multimedia features—what was once considered a luxury option

is now standard issue in every vehicle class. Nowadays, in a car these

functions are handled by more than a dozen dedicated micro-controllers,

and electronic components account for up to 25 % of the overall vehicle

production cost.

The use of electronic components combined with mechanical, elec-

trical, or hydraulic systems offers numerous benefits in areas such as

reliability, cost, weight and space. Advances in electronics design and

integration has pushed toward the migration from mechanical and hy-

draulic servo systems to systems commanded by “smart” computational

units, at lower and lower costs. This also means, however, that vehicle

(and passenger) safety is now even more in the hands of the software

developer. From the choice of algorithms, to their implementation, and

finally to the overall interconnection of these parts, everything must be

both error-free and error-resilient.

Advances in computing power and electronics have also lowered the

entry barrier for researchers: algorithms that were once impractical on

dedicated hardware are now evaluated in real-time by commodity per-

sonal computers. New research efforts in the field of autonomous vehicle

control have been encouraged by the recent DARPA Grand Challenge

initiative.

In 2005 the University of Padova joined this trend by starting an

2 1. Introduction

autonomous vehicle project, with the aim of studying vehicle control al-

gorithms and the underlying software architectures. This project has

been successful, developing a complete software structure and a suite of

algorithm implementations for autonomous vehicles.

Continuing the research in the field of automotive electronics and

software systems, a number of other applications have been studied; in

this Thesis, a complete real-time data logger/processor solution will be

described in detail.

1.1 Structure of the Thesis

This work is divided in two parts.

Part I will deal with the algorithmic areas of the current research,

presenting the algorithms that have been employed in the Autonomous

Vehicle project at the University of Padova. Chapter 2 will serve as an

introduction to this field. The following two chapters will explain the

various algorithms in detail, Chapter 3 focusing more on the control sys-

tems and Chapter 4 on the algorithms used for world sensing and for

high-level reasoning.

Part II deals with the software aspects of some of the implementa-

tions that have been completed for this research. Again, after an in-

troduction, in Chapter 5, that will provide some background on the dis-

cussed topics, Chapter 6 will detail what has been used as the backbone

of the Autonomous Vehicle project, and how that has been extended and

customized to this specific application. Chapter 7 will provide another

example of software-hardware interaction, specifically, a real-time data

acquisition and processor project.

3

Part I

Algorithms for Autonomous

Vehicles

5

Chapter 2

Introduction

When focusing the attention to the leading application of the design

of an autonomous vehicle, it can be easily understood and will be stated

clearly in next chapter, that the starting point for the unmanned system

to behave properly is to sense the environment around. In other terms,

the intelligence of the system has to be provided as a first issue with the

capability not only of sensing its own state, but also of understanding

that of the surroundings.

Ideally, this can be done simply by instrumenting the system with a

wide variety of sensors, according to the application needs and the en-

visaged interactions between the system and the world it is interfacing.

This aspect, though, raises issues of two kinds:

• in the first instance, sensors can be affected by electronic or mea-

surement noise, errors, drift in time, and many other problems re-

lated to the communication of the measured quantity (e.g.: lossy

communication link, data packet drop, or desynchronization be-

tween the transmitter and the receiver);

• secondly, but often more importantly, it may happen that the spe-

cific variable is not a measurable quantity, be it for difficulty in

retrieving its measure within the constraints imposed by the diag-

nostics structure or for the the lack of the diagnostics device itself.

Remarkably, the solution to both these issues can be obtained by resort-

ing to the same methodology, namely the estimate of the required vari-

able supported by the knowledge provided by the available data. The

6 2. Introduction

rationale behind the concept is to implement a predictor corrector proce-

dure, where a specific quantity value is first estimated by prior knowl-

edge on the system and the environment, and then updated by using the

data gathered from available measurements. The commonly agreed ref-

erence for this family of algorithms is the popular Kalman filter, whose

details are briefly recalled in the following section.

2.1 Kalman Filtering background

The Kalman filter [1] consists in a set of equations that provide the

estimation of the state of a stochastic linear process. In particular, the

Kalman filter is the optimal linear estimator, having the following prop-

erties:

• it is a data processing algorithm, combining measurement data and

a priori estimates in order to minimize the statistical error;

• it includes all available knowledge on the process and the measure-

ments;

• it is recursive, not requiring the knowledge of all the past each time

a new sample is acquired;

• it refers to gaussian noise, which is an overall good approximation

of measurement and process noises.

The process of interest can be described in state space form as

x(t+ 1) = Fx(t) +Gu(t) + w(t)

z(t) = Hx(t) + v(t),

being x and z respectively the process state and the output measure-

ment, (F,G,H) the system matrices, and be the system affected by both

process measurement w and measurement noise v. Moreover, the noise

variables are considered as zero mean, independent (one on the other),

and gaussian, with

w ∈ N (0, Q), Q = E
[
wwT

]

v ∈ N (0, R), R = E
[
vvT

]
.

2.1. Kalman Filtering background 7

Be the a priori and a posteriori estimates of x(t+1) respectively x̂−(t+

1) e x̂+(t + 1), the correspondent errors with respect to the real value of

the state x(t+ 1) can be introduced as

e−(t+ 1) = x(t+ 1)− x̂−(t+ 1)

e+(t+ 1) = x(t+ 1)− x̂+(t+ 1).

The rationale behind the procedure is the minimization of the a posteri-

ori prediction error variance

P+(t+ 1) = E
[
x̂+(t+ 1)x̂+(t+ 1)T

]
,

by defining the a posteriori estimate x̂+(t+ 1) as a linear combination of

the a priori estimate x̂−(t+1) and the innovation given by the difference

between the measurement and its expected value z(t + 1) − Hx̂−(t + 1),

that is

x̂+(t+ 1) = x̂−(t+ 1) +K(t+ 1) [z(t+ 1)−Hx̂−(t+ 1)] ,

where the weighting matrix K(t+ 1) assumes the name of Kalman gain.

After some calculations, the error variance P+(t+1) results (omitting

all time dependence to simplify the notation)

P+(·) = P−(·)−K(·)HP−(·)−P−(·)HTK(·)T+K(·)HP−(·)HTK(·)T+K(·)RK(·)T ,

whose minimization with respect to K(t + 1) leads to the following ex-

pression for the Kalman gain

K(t+ 1) = P−(t+ 1)HT
(
HP−(t+ 1)HT +R

)
−1
.

It is worth noticing that when R ≈ 0 it follows that K ≈ H−1 implying

x̂+(t + 1) ≈ z(t + 1) (measurements are trustworthy); conversely, when

P−(t+1) ≈ 0 it follows that K ≈ 0 and x̂+(t+1) ≈ x̂−(t+1) (measurements

are not trustworthy).

8 2. Introduction

The algorithm implements a two step procedure:

1. prediction phase:

(a) the a priori estimate is computed:

x̂−(t+ 1) = F x̂(t) +Gu(t);

(b) the a priori prediction error variance is computed:

P−(t+ 1) = FP−(t)F T +Q;

2. correction phase:

(a) the Kalman gain is computed from P−(t+ 1):

K(t+ 1) = P−(t+ 1)HT
(
HP−(t+ 1)HT +R

)
−1
.

(b) the a posteriori estimate is obtained as a linear combination:

x̂+(t+ 1) = x̂−(t+ 1) +K(t+ 1) [z(t+ 1)−Hx̂−(t+ 1)] ,

(c) the error variance is updated:

P+(t+ 1) = (I −K(t+ 1)H)P−(t+ 1).

2.2 The bicycle model

In the following discussion, we will make use of the bicycle model,

depicted in Figure 2.1. This is a widely-used approximation (see [2]) for

the cinematic motion of a car-like vehicle, which makes the assumptions

that

1. when turning, the slip angles on the inside and outside wheels are

approximately the same;

2. the effect of the vehicle roll is negligible.

These constraints hold well for most typical driving situations, notably

excluding rally driving conditions (high speed, high slip angle).

2.2. The bicycle model 9

(a) Side view (b) Top view

Figure 2.1: The bicycle model

Given these assumptions, it is thus possible to collapses left and right

tires into one, reducing the car to a bicycle. Furthermore, assumption 2

guarantees the stability in the lateral dynamics, reducing the dynamics

only on the forward axis of the vehicle.

This model has the nice property of being differentially flat: once the

evolution of the state variables over time is known, it is possible to invert

the dynamic equations and recover the originating control inputs. This

is quite useful because, given a (feasible) trajectory, the control inputs

for such a model can be readily calculated.

10 2. Introduction

11

Chapter 3

Control systems

When in the Eighties the microcomputer era advanced, it started to

revolutionize not only the way of designing already existing or new prod-

ucts, but also the technology content of the products themselves, suggest-

ing the possibility of introducing intelligence in systems, for example in

the form of advanced control algorithms.

In the automotive, this new perspective have been supported by al-

ways more stringent constraints over the car system efficiency, from the

energetic and environmental point of view (oil consumption and pollu-

tion reduction), from the mere performance (in terms of speed, acceler-

ation, . . .), and from the comfort (smoothness in the drive, support in

emergency or critical situations).

These issues in recent times have been transferred to what is called

drive-by-wire1, meaning the possibility of replacing the traditional me-

chanical or hydraulic links between the vehicle commanding drives and

the parts that physically execute these commands, with an intelligent

system that retrieves all the command inputs and acts onto the local

devices to produce the desired effect. The main advantage and ratio-

nale behind the idea is that in doing so the several independent devices

operating in the vehicle and determining its behavior (brakes, engine,

steer. . .) can act in a coordinated way so as to reach a behavior regime

unreachable by the collection of isolated actions: In practical terms, this

translates in enhanced drive security, better performance, and overall

car system optimization.

1More informations and pointers on http://en.wikipedia.org/Drive_by_wire.

12 3. Control systems

The main ingredients for a drive-by-wire systems are:

• a set of sensors, to gather information from the environment and

the system itself, and measuring a wide range of quantities, from

the speed and the acceleration of the vehicle to the temperature or

the presence of rain;

• a microprocessor, representing the intelligence of the system;

• a set of actuators.

The drive-by-wire paradigm has been introduced in this context to

draw the focus to what have been identified with the intelligence of the

system, meaning the control algorithms supervising and determining

the vehicle behavior according to the external conditions and distur-

bances (e.g. road and weather conditions). And indeed, the attention

of engineers and academicians from the control and system community

is increasingly addressing applications related to the automotive field.

Just to give an example, recently the IEEE Control Systems Magazine,

which is traditionally careful on technological as well as scientific state

of the art issues in control, has published a special issue on control tech-

niques and methodologies applied to motorcycle design [3].

Pushing just a little forward the imagination along these tracks, it is

not distant to set the basis for research programmes for the autonomous

vehicle, such as the DARPA Grand Challenge: In this case, a crucial role

is played by the sensors to “view” everything, from the road conditions,

to the planned trajectory, the the vehicle conditions. In the remainder

of the part, several algorithms will be presented, all devoted to infer the

conditions in which the vehicle is acting. The reference to the leading ex-

ample of the autonomous vehicle allows to discuss these aspects, without

loss of generality.

3.1 Position and attitude

The main positioning system used in several autonomous car projects

is the now-ubiquitous GPS/IMU combination [4] [5] [6].

The GPS (Global Positioning System) is a positioning system based

on satellite data. The system is based on the measurement of the time

of flight of a radio signal traveling from the satellite to the receiver at

3.1. Position and attitude 13

the unknown location: from at least four2 of these measurements and

the knowledge on the exact position of the satellite sources, geometric

methods such as the trilateration or the triangulation procedures allow

to determine the unknown location.

The IMU (Inertial Measurement Unit) uses a combination of accelerom-

eters and gyroscopes in order to detect the current rate of acceleration

and changes in rotational attributes, including pitch, roll and yaw. This

information is then integrated by a processing unit so as to produce an

estimate of the IMU current position and velocity.

It is very well known that these two technologies complement each

other: GPS measures are stable, but the update rate is low and further-

more subject to outages; the data acquired from inertial sensors, on the

other hand, is continuously available at a high rate, but has fundamen-

tal long-term drift issues. Thus, the combination of the two can provide

a very good absolute, high-speed estimate of the current position. It is

in fact the main method used for navigation purposes in aircrafts, where

INS systems complement the GPS measurements and provide dead reck-

oning 3 when the GPS signal is not available. These tactical-grade de-

vices are not suitable for all applications, though, because of their high

costs (up to tens of thousands of Euros) [7].

3.1.1 Notation and reference systems

The Cartesian coordinate frame of reference used by the GPS is called

Earth-Centered, Earth-Fixed (ECEF). ECEF uses 3-D XY Z coordinates

(in meters) to describe the location of a GPS user or satellite. The term

“Earth-Centered” comes from the fact that the origin of the axis (0,0,0)

is located at the mass center of gravity (determined through years of

tracking satellite trajectories). The term “Earth-Fixed” implies that the

axes are fixed with respect to the earth (that is, they rotate with the

Earth).

This reference system is not very useful, however, since most taskS

require location of a point on (or close to) the surface of the Earth. For de-

2Counter-inuitively, four signals are needed for triangulation. This is because in

addition to the X, Y and Z coordinates, the unknown delta between the receiver clock

and the GPS constellation’s must be estimated.
3Dead reckoning is a procedure that estimates one’s current position based upon

a previously determined position, called fix, and advancing that position based upon

known speed, elapsed time, and course.

14 3. Control systems

scribing that, the old Longitude, Latitude and Altitude (LLA) reference

is much better suited. This representation relies on a “simple” ellissoid

representation of the Earth’s much more complex shape.

For global applications, the geodetic reference (datum) used for GPS

is the World Geodetic System 1984 (WGS84) [8]. This ellipsoid has its

origin coincident with the ECEF origin. The X-axis crosses the Green-

wich meridian (where longitude λ = 0 degrees) and the XY plane co-

incides with the equatorial plane (latitude ϕ = 0 degrees). Altitude is

described as the perpendicular distance above the ellipsoid surface.

Note that there are two definitions of latitude: the usual meaning is

more precisely referred to by the term geodetic latitude, and takes into

account the flattening parameter of the ellipsoid describing the Earth.

Geocentric latitude (indicated with ϕ′), instead, considers the Earth as a

perfect sphere and measures angles from that assumption.

Finally, latitude and longitude are useful to rotate the ECEF frame

to “local” coordinates, so that the measurement axes are pointing East,

North and Up (ENU). This is also sometimes known as the Local Tan-

gent Plane (LTP) reference.

Converting between coordinate systems The parameters specified

by WGS84 for the ellipsoid are the following:

a = 6378137 b = a(1− f) = 6356752.31424518 f = 298.257223563

To obtain LLA coordinates from their ECEF representation, first com-

pute longitude as

λ = arctan
Y

X
(3.1)

Geodetic latitude is then expressed by

ϕ = arctan
Z + (a2 − b2)(sin θ)3

p− (a2 − b2)(cos θ)3
(3.2)

where the auxiliary values p and θ are defined as

p =
√
X2 + Y 2 and θ = arctan

Za

pb

3.1. Position and attitude 15

(a) Top (b) Side

Figure 3.1: Vehicle reference axes. Roll, pitch and jaw angles are shown

w.r.t. the road as (φ, θ,Ψ).

while geocentric latitude is simply obtained by

ϕ′ = arctan
Z

p
. (3.3)

Finally, to convert from ECEF coordinates to ENU, only a simple ro-

tation RECEF
ENU is required:



x

y

z




ENU

= RECEF
ENU



X

Y

Z




ECEF

(3.4)

where

RECEF
ENU =




− sinλ cos λ 0

− sinϕ′ cos λ − sinϕ′ sinλ cosϕ′

cosϕ′ cosλ cosϕ′ sin λ sinϕ′




In the following talk, vectors and measurements relative to the ECEF

reference frame will be denoted with the superscript e (as in ve
x), while

items referring to the body frame will have the superscript b (as in vb
x);

some specific axes will be referred to similarly.

Figure 3.1 shows the bicycle model with the relevant vectors that will

be used in the discussion below.

16 3. Control systems

For the GPS/INS integration, several possible algorithms have been

investigated; in particular, the Ryu-Gerdes [9] and Qi-Moore [10] algo-

rithms have been reviewed.

3.1.2 Ryu-Gerdes algorithm

The algorithm Ryu and Gerdes proposed in [9] uses a bicycle model

for the vehicle, with an IMU and two GPS antennas as the inputs to

the model. This configuration is devised to obtain absolute velocity and

attitude measurements, so that drift errors on IMU sensors can be esti-

mated and removed from the measurements, to achieve better accuracy.

The yaw angle Ψ , for example, is measured directly from the orienta-

tion of the vector connecting the reconstructed position of the two GPS

antennas, relative to the ENU x-y plane, and can be modeled with a

simple additive noise:

ΨGPS
m = Ψ + noise

The IMU measurements, on the other hand, are of the yaw rate Ψ̇ , and

incur significant but relatively stable bias Ψ̇ IMU
bias :

Ψ̇ IMU
m = Ψ̇ + Ψ̇ IMU

bias + noise

This makes it easy to derive a first-order linear model for combining

both measurements:

[
Ψ̇

Ψ̇bias

]
=

[
0 −1

0 0

] [
Ψ

Ψbias

]
+

[
1

0

]
Ψ̇ IMU

m + noise (3.5)

When GPS attitude measurements are available, the estimate is up-

dated with:

ΨGPS
m =

[
1 0

] [Ψ

Ψbias

]
+ noise (3.6)

A Kalman filter can be constructed from (3.5) and (3.6), that can be

used to obtain the estimated vehicle yaw angle.

The GPS can also provide velocity information, so another Kalman

filter can be devised to filter the data coming from IMU linear accelerom-

eters and estimate biases. In fact, the measured acceleration is related

3.1. Position and attitude 17

to the velocity at the point where the sensor is placed by

ab
x ,m = v̇IMU

x − Ψ̇ · vIMU
y + ab

x ,bias + noise

ab
y ,m = v̇IMU

y + Ψ̇ · vIMU
x + ab

y ,bias + noise
(3.7)

where

ab
x ,m , a

b
x ,bias longitudinal accelerometer measurement and bias

vIMU
x longitudinal velocity at sensor position

ab
y ,m , a

b
y ,bias lateral accelerometer measurement and bias

vIMU
y lateral velocity at sensor position

(3.8)

These velocities can be derived from one of the GPS antenna’s mea-

surements, but first sideslip angle (βCG) must be computed by measuring

the angle between the GPS velocity vector vGPS
m and the estimated vehi-

cle yaw Ψ . The GPS velocities, referred to the vehicle frame, can then be

expressed as

vb
x ,m =

∥∥vGPS
m

∥∥ cosβCG

vb
y ,m =

∥∥vGPS
m

∥∥ sin βCG

(3.9)

Now, if the GPS antenna providing velocity measurements and IMU

are placed exactly one above the other, the velocities seen by the sensor

are simply

vGPS
x ,m = vIMU

x ,m + noise

vGPS
y ,m = vIMU

y ,m + noise
(3.10)

Using (3.10), the final Kalman filter for analyzing the linear accelerom-

eter biases can thus be written as




v̇IMU
x

ȧb
x ,bias

v̇IMU
y

ȧb
y ,bias


 =




0 −1 r 0

0 0 0 0

−r 0 0 −1

0 0 0 0







vIMU
x

ab
x ,bias

vIMU
y

ab
y ,bias


 +




1 0

0 0

0 1

0 0




[
ab
x ,m

ab
y ,m

]
+ noise (3.11)

The state vector can be updated by the GPS measurements, when avail-

18 3. Control systems

able, by

[
vGPS
x ,m

vGPS
y ,m

]
=

[
1 0 0 0

0 0 1 0

]



vIMU
x

ab
x ,bias

vIMU
y

ab
y ,bias


 + noise (3.12)

If the road is not flat, but has significative roll and/or bank grades, a

more complex solution must be adopted.

Three different Kalman filters are described: one for yaw angle, one

for lateral velocities, and one for roll and pitch angles. Yaw is computed

from the GPS heading information (integrated with the relevant angu-

lar acceleration by the IMU), while roll and pitch angles are computed

from the differential position of the two GPS antennas, and also from

the current horizontal and vertical velocity components.

3.1.3 Qi-Moore algorithm

The Qi-Moore algorithm [10], instead, uses a Direct Kalman Filter to

deal with model nonlinearities, resulting in a low-order linear filter that

has very good performance. This filter estimates the current position,

speed and current linear/angular accelerometer offsets.

Skew-symmetric matrices indicated with Ω are matrices of the form

Ω =




0 −ωz −ωy

ωz 0 −ωx

−ωy ωx 0




which is the form used to simplify notation when dealing with angular

velocities, hiding cross products.

The current IMU accelerometer measurement ab
m can be expressed

in the ECEF frame as ae
m = Re

ba
b
m . The current angular velocity, Ωb

e , is

the skew symmetric matrix associated with ωb
e = ωb

e,m −Rb
eω

e
ie: from the

actual measurement ωb
e,m, the always present Earth angular velocity ωe

ie

must be removed.

The continuous time dynamical system equations are of the form




ṗe

v̇e

Ṙe
b


 =




ve

Re
ba

b − 2Ωe
iev

e + ge(pe)

Re
bΩ

b
eb


 (3.13)

3.1. Position and attitude 19

where Re
b is the rotation matrix from ECEF (e-frame) to body frame

(b-frame), ge(pe) is the gravity vector (which depends on the current po-

sition pe),

Once the system (3.13) is solved, the vehicle attitude is represented

by the matrix Re
b, and can be decomposed in the three independent yaw,

pitch and roll rotations.

The article then derives a discrete time representation of the model

shown in (3.13), noting that the attitude can be obtained by directly in-

tegrating part of the discretized model (3.13), while using the estimates

of pe and ve obtained from a position-only Direct Kalman Filter.

The resulting state space is ξ =
[
pe′ b ṗe′ ḃ ∆ae′ ∆ȧe′

]′
, where b

and ḃ are the GPS clock range bias and drift, and ∆ae′ and ∆ȧe′ are the

acceleration bias and drift, expressed in the ECEF reference frame via

the relations

∆ae(t+ 1) = Rb
e (t+ 1)∆ab(t+ 1)

∆ȧe(t+ 1) = Rb
e (t)∆Ωb

eb(t)
(
ab

m(t+ 1) + ∆ab(t+ 1)
) (3.14)

The matrices A, B, and C in the obtained DKF are not fixed, because

they take into account the presence or absence of GPS measurements for

the current step. If the sample time of the GPS is ∆T which is N times

the sample time δT of the INS, the following structure is defined:

A(t) =

[
A11 A12(t)

0 A22(t)

]

B =




04×3

I3×3δT

04×3




20 3. Control systems

where

A11 =

[
I4×4 I4×4δT

04×4 I4×4

]

A12(t) =




04×3 04×3

I3×3∆T I3×3∆T
2

01×3 01×3


 when t = kN , 08×6 otherwise

A22(t) =

[
c1I3×3 03×3

03×3 c2I3×3

]
when t = kN , 06×6 otherwise

C(t) =
[
I8×8 08×6

]
when t = kN , 08×14 otherwise

In this formulation, c1 and c2 are the forgetting factors for the accelerom-

eter bias and drift estimates (so 0 < c1, c2 ≤ 1).

A reduced-order DKF can be obtained by removing GPS clock range

bias and drift from the estimation state vector. The resulting error in the

estimation is small, especially considering that “smart GPS” antennas

do already employ GPS clock rate estimation and take this factor into

account to provide better location estimates.

The implemented algorithm

Details on the implemented algorithm, which merges both of these

ideas, are given in Section 6.3.2.

3.2 Horizon detection

Detecting the horizon from the camera images provides an absolute

reference measurement for the vehicle roll angle. This result can be

obtained through a procedure [11] that begins from the acquisition of a

video stream from a camera, to proceed with a series of post-processing

steps, namely:

1. edge detection: edges characterize object boundaries whose detec-

tion represents a canonical problem in image processing.

2. Hough transform: the Hough transform in its original formulation

is intended for the recognition of rectilinear segments in an image,

and in its later formulation the procedure has been extended to

3.2. Horizon detection 21

Figure 3.2: Procedure for the horizon estimation.

the recognition of any curve and is based on the validation of a

recognition hypothesis;

3. Roll and Pitch estimation and integration.

The flowchart of the procedure is given in Figure 3.2, while some

details over the mentioned algorithms are now in order and given in the

following.

3.2.1 Canny Edge Detection

The benefit of the application of edge detection to an image of in-

terest is that it significantly reduces the amount of data and filters out

application-specific useless information, while preserving an important

set of structural properties (interesting features) in an image. Edges in

images are areas characterized by strong intensity contrasts, meaning a

jump in the image intensity function detected between adjacent pixels.

The leading criteria in the derivation of the Canny algorithm are:

• good detection: low probability of not marking real edge points, and

falsely marking non-edge points;

22 3. Control systems

• good localization: the detected edge should be close to the center of

the true edge;

• edge detection uniqueness: only one response to a single edge, ob-

tained by explicit elimination of multiple responses.

In this sense, the Canny edge detection algorithm [12] is known to

many as the optimal edge detector. In general, the application of the

Canny edge detector is preceded by the image convolution with a gaus-

sian filter, producing a slightly more blurred image but not affected by

a single noisy pixel, in order to gain in noise reduction. Then, the main

part of the algorithm is the directional edge detection, obtained by re-

sorting to an oriented Gaussian filter.

3.2.2 Hough Transform

The Hough transform, originally patented by P.V. Hough in 1962 and

later much generalized and improved [13] [14], is used in this context to

filter out all edges that do not represent straight lines. The algorithm

consider sets of points belonging to the edges detected in an image, and

deduces the geometric parameters of the straight lines that better fit the

chosen points. For computational reasons, the polar representation of

lines is used,

l(σ,ρ) = {(x, y)|ρ = x cosσ + y sin σ} , (3.15)

being ρ the distance between the frame origin and the line, and σ its

orientation (angle) with respect to the horizontal. Using this represen-

tation, the range of parameters is limited4, since

0 ≤ σ < π and −
√

2

2

(
h

2
+
w

2

)
≤ ρ ≤ +

√
2

2

(
h

2
+
w

2

)
,

(h, w) being the frame dimension.

The coordinates of each point of edge segments (x, y) serve as con-

stants in Eq. 3.15, while searching for the pair (ρ, σ). These (ρ, σ) ap-

pears as sinusoids in the Hough parameter space, defining in this way

a point-to-curve map between the cartesian image space and the Hough

parameter space, that is the Hough transformation H(ρ, σ) for straight

4In contrast with the more common line representation y = mx + q, where the an-

gular coefficient varies to infinity in correspondence to vertical lines.

3.2. Horizon detection 23

lines. In the Hough parameter space points that belong to straight lines

yield curves which intersect at a common (ρ, σ) point.

The accumulated values defined by:

Hρ

(σ) =
∑

ρ

H(ρ, σ)

Hσ
(ρ) =

∑

σ

H(ρ, σ),

can also be computed.

In the application to horizon detection, ρ and σ are the y-offset in the

image and the horizon angle.

3.2.3 Pitch, Roll Estimation

The measurements of roll and pitch (respectively φ and θ) and their

variations (respectively ∆φ and ∆θ) can be obtained by resorting to the

difference of the norm of the accumulated Hough transforms (respec-

tively Hρ

(σ) and Hσ
(ρ)). In other words, Hρ

(σ) and Hσ
(ρ) can be compared

from one frame to the next, and by minimizing the Euclidean distance

between each of the cumulated transforms at time t and at time t + 1 it

is possible to calculate ∆ρ and ∆σ, which are directly related to, respec-

tively, roll and pitch variations.

Finally, for each parameter, a simple random-walk Kalman filter is

used to update the estimate of the “real” value. The state of the model to

be estimated consist in pitch and pitch variation and in roll and roll vari-

ation, taking into account the fact that pitch and roll are independent.

Therefore, the whole system is basically formed by two independent sub-

systems:

[
φ(t+ 1)

∆φ(t+ 1)

]
= F

[
φ(t)

∆φ(t)

]
+ w(t) =

[
1 1

0 1

] [
φ(t)

∆φ(t)

]
+ w(t)

[
φ̃(t)

∆̃φ(t)

]
= H

[
φ̃(t)

∆̃φ(t)

]
+ v(t) =

[
1 0

0 1

][
φ̃(t)

∆̃φ(t)

]
+ v(t),

where φ̃ and ∆̃φ are the measurements of roll and roll variation, and

24 3. Control systems

equivalently

[
θ(t+ 1)

∆θ(t+ 1)

]
= F

[
θ(t)

∆θ(t)

]
+ w(t) =

[
1 1

0 1

] [
θ(t)

∆θ(t)

]
+ w(t)

[
φ̃(t)

∆̃φ(t)

]
= H

[
φ̃(t)

∆̃φ(t)

]
+ v(t) =

[
1 0

0 1

][
φ̃(t)

∆̃φ(t)

]
+ v(t).

3.3 Maximum tire force

The interaction between road and tires is extremely complex, and an

accurate description is impractical but in a very few corner cases (car

races being one of these, where all the data about the tires, the road and

the environment is known).

Unfortunately, an estimate of the maximum force tires can sustain

while keeping contact with the terrain is essential to avoid maneuvers

that can cause wheel slippage, and eventually the complete loss of con-

trol: The forces exerted on the tire as well as those impressed by the

tire onto the ground are the origin of all vehicle behaviors, ranging from

braking to steering, from accelerating to sideslipping. In general, from

the representation point of view, these forces can be decomposed into

longitudinal and lateral forces.

From the Seventies, to estimate these forces the Pacejka method [15]

has been proposed: in his technique, some “magic formulas” are intro-

duced that allow obtaining the longitudinal and lateral forces, starting

from a set of parameters describing the road surface, the tire type, the

normal forces acting onto the ground, and the angular and longitudinal

slip of the tire.

The Pacejka method provides a set of curves (like the ones in Fig-

ure 3.3(b)) describing the interaction of the tire with the road surface:

In particular, three curves are obtained related to longitudinal (forward)

force Fx, lateral (sideways) force Fy (see Figure 3.3(a)), and aligning mo-

ment Mz (the torque felt at the steering wheel during a driving manoeu-

ver). The independent variables are the slip ratio Sr, defined as the ra-

tio between the wheel spin velocity and the ground velocity, and the slip

angle Sa, that is the angle between the wheel heading and the actual

vehicle velocity.

These curves can be described through a set of parameters, namely

3.4. Path planner 25

(a) Tire forces

decomposition

(b) A sample set of Paceijka curves

Figure 3.3: The Paceijka Tire-Road model.

the peak value of the curve D, a shape factor C determining the shape

of the peak, shifting values Sh and Sv related to manufacture features of

the tire. They all are presented in the following form, with y being Fx,

Fy, or Mz, and u being Sa or Sr according to the quantity y of interest5:

y = D sin(C arctan(Bu− E(Bu− arctan(Bu)))) + Sv;

the undefined parameters B, E, as well as C, D, Sh, and Sv, are func-

tions depending on the load Fz and a set of road descriptors and their

formulations differ if considering the Fx, Fy, or Mz equation.

A workable algorithm to calculate the slip coefficients, using least

squares estimation, was presented in [16] and was used in this project.

3.4 Path planner

Path planning is a canonical problem in mobile robot applications in

order to navigate an autonomous unit in the environment and avoid ob-

stacles, be they fixed (structured environment) or mobile (other similar

robots, people, automatic devices).

5In particular, lateral force and aligning moment depend on the slip angle, while the

longitudinal force is related to the slip ratio.

26 3. Control systems

In automotive applications and in the framework of autonomous vehi-

cle design, the information about current vehicle position, nearby obsta-

cles, and overall goal is used to generate a possible path for the vehicle

to follow. Also, the path planner should output safe speed clues for the

vehicle controller, since it can take into account a wider span of informa-

tion. In other words, the problem can be stated as: given a representa-

tion of the environment (map), and a set of aim-points to be reached, find

a path suitable for the specific vehicle and provide a feasible trajectory to

be followed.

The practical solution to the problem proceeds through the following

steps:

• extraction from the input map of the information useful for the path

planning operation;

• given the map, planning of a suitable path from the starting point

to the final destination;

• given the path, provide for every point along the trajectory feasible

speed profile.

For the path planning problem, many approaches have been investi-

gated, that can be classified at various level between exact and heuristic

algorithms. The first type of approach tends to formally demonstrate (or

not) the existence and find (if there is one) the exact solution to the path

planning problem but at the same time tends to have high complexity.

Conversely, heuristic procedures simplify the problem and the context of

its definition (for example approximating the shapes of involved objects)

and in some case may fail to find a solution although there is one. Other

solutions try to find intermediate solutions capturing advantages from

both worlds, and to do so are often organized into two (or more) step

procedures.

All these methodologies make use of a further wide variety of tech-

niques, from Voronoi diagrams [17], to potential fields [18] [19], to Free-

man chains [20]. In particular, two methods are of interest in this frame-

work, namely the potential fields approach and the Delayed D* algo-

rithm.

The potential fields approach [18] describes the domain where the

subject of interest in a similar fashion as the potential field generated

3.4. Path planner 27

by an electric charge: according to the other charges moving in the area,

the field can exert repulsive or attractive forces, which are simply the

negative or positive gradient of the potential field. If thinking of the

path planning problem as an obstacle avoidance problem in the first in-

stance, it appears clear how the potential field approach allows a global

representation of the space and the obstacles within. In this way, a first

coarse planning can be produced (at global level) as a trajectory pass-

ing through minimum potential valleys whose boundaries are generated

by the presence of obstacles and reproduce their shapes. The definition

of this first-guess path is computationally simplified by choosing piece-

wise linear trajectories and a node-edge tree representation. The global

planner finds the shortest collision-free path or the more convenient ac-

cording to a heuristic cost function whose contributing terms are asso-

ciated to the costs of nodes and edges composing the chosen path. As a

second step, a local planner intervenes that modifies at local level the

global path by adjusting path length and smoothness of motion while

preserving the collision-free feature. This operation is performed within

the neighborhood of the initial estimate. Interestingly, the tree formu-

lation of the path allows the definition of forward tree (going from the

starting point towards the final destination) and backward tree (going in

the opposite direction), and the definition of states along the trajectory

that are forward reachable. A possible end-to-end path (connecting start

to finish) of feasible configurations (for the moving object attitude and

orientation) is composed of forward reachable states.

The Delayed D* algorithm [21] employs a description of the path in

terms of arcs, which allows an easy formulation of the path cost as the

sum of the cost of the arcs encountered from the initial to the final po-

sition. It often happens that the initial path envisaged for achieving

the goal position has to be corrected, so that a replanning operation is

required. This procedure is usually carried out in an heuristic way be-

cause of computational convenience. The D* algorithms basically em-

ploy a smart strategy to perform the replanning, obtained by focusing

the search for the path update on a restricted set of states whose con-

tribution could be relevant for the determination of the new path. This

is obtained by identifying two classes of states to be considered: those

whose arc associated cost decreases, which appear as good candidate to

be included in the path planning (lowering the total path cost), and those

whose arc associated cost increases, which conversely need to be poten-

28 3. Control systems

tially excluded from current path solution. Iterating this procedure at

any change in arc cost completes the path replanning and consequently

the path definition.

3.5 Vehicle Controller

The task of calculating the controls that keep a vehicle on a given

path is widely studied in literature [2] [22] [23]. The approach presented

here is based on the work in [22].

Before trying to generate the actual controls, an important thing to

note is that the vehicle may be completely off the requested path (which

is often the case, when delays in processing or localization errors are

considered). Thus it is initially necessary to develop a feasible trajectory,

or connecting contour, between the current position and orientation and

a suitable point on the requested trajectory.

Another important factor that has had pivotal importance in the choice

of the control model is that the environment in which the vehicle is go-

ing to move is very much unstructured and subject to rapid variations

(for example, due to reconstruction errors); this means that the calcu-

lated reference trajectory may change abruptly. Therefore, the driving

strategy employed must be very conservative and slow.

It is thus possible to use the bicycle model presented in Section 2.2,

which well describes the vehicle’s cinematic response when the wheel’s

slip angle is low, and is very effective at slow speeds.6

Having introduced this assumption makes it possible to separately

consider the lateral and forward dynamics of the vehicle, as if the two

were not influencing each other. Another way to put this is that we

decouple the steering capacity of the vehicle from its forward speed and

vice-versa, leading to two separate controllers for the steering angle and

the thrust control.

6Determining the actual value of this limit is not a trivial task, but the vehicle was

never planned to resort to high speed, high slip angles driving, such as rally drivers do.

In fact, the wheel slip is computed on the fly so that the controller will be alerted when

the vehicle is driving close to the safety envelope.

3.5. Vehicle Controller 29

3.5.1 Endpoint selection for the connecting contour

While theoretically the vehicle orientation may be completely unre-

lated to the requested path, it is safe to assume that at least a point of

the requested trajectory falls in the forward half-plane of the vehicle. (If

that wasn’t the case, since path planning is executed often and always

creates a path starting from the current vehicle position, it would mean

that an external perturbation—like a slippage—unexpectedly modified

the vehicle position, and the path planner has not yet decided on a dif-

ferent path to follow. In any case a new, forward-facing path is going to

be generated soon.)

The algorithm translates the path in body coordinates, so that the

vehicle is considered to be at the origin of the plane, looking towards

the increasing x axis. It then looks for an endpoint that matches the

following conditions:

• has index greater or equal than that of the closest one to the vehi-

cle’s current position;

• has the highest x-coordinate which is less than L, where L is a

value which increases with speed;

• the x-coordinates of the points between the closest one and the se-

lected endpoint define an increasing function.

This last property ensures that, in the case of an “⊃”-shaped path, the

vehicle always connects with the path without cutting the path.

3.5.2 Connecting contour generation

The selection of a connecting path has a fundamental implication in

the definition of the steering control strategy, since these are directly

derived from the bicycle model inversion properties. For this work, poly-

nomial functions have been selected due to their regularity (they are C∞)

and simple, understood mechanics.

To calculate the coefficients, it is necessary to place a number of con-

ditions on the polynomial function P (x):

1. have value 0 at the axis origin (starting vehicle position);

2. have tangent 0 at the axis origin (starting vehicle orientation);

3. pass by the chosen endpoint (end condition);

30 3. Control systems

4. at the endpoint, have the same tangent the path has (straight con-

nection at endpoint);

5. at the origin, have the same curvature the vehicle currently has

(starting steer continuity).

This set of constraints translates in a minimum satisfying polynomial

P (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 of grade 4, whose parameters can be

easily obtained by applying the above conditions. In particular, the first

two require the zeroing of a0 and a1, since

P (0) = 0 ⇒ a0 + a1x+ a2x
2 + a3x

3 + a4x
4|x=0 = 0 ⇒ a0 = 0

(3.16)

P ′(0) = 0 ⇒ a1 + 2a2x+ 3a3x
2 + 4a4x

3|x=0 = 0 ⇒ a1 = 0 (3.17)

The remaining three conditions become

P (xr) = yr ⇒ a0 + a1x+ a2x
2 + a3x

3 + a4x
4|x=xr

= yr (3.18)

P ′(xr) = mr ⇒ a1 + 2a2x+ 3a3x
2 + 4a4x

3|xr
= mr (3.19)

P ′′(0) = c ⇒ 2a2 + 6a3x+ 12a4x
2|x=0 = c ⇒ a2 = c/2 (3.20)

where xr, yr, mr are the coordinates and the angular coefficient of the

path at the endpoint, and c is the current vehicle path curvature.

3.5.3 Control values

The motion of a vehicle described by the bicycle model on a plane is

bound by the following equations:





ẋ = u1 cosψ

ẏ = u1 sinψ

ψ̇ = u1 tan δ
l

(3.21)

where the input u1 represents the forward speed and the second input

δ is the wheel steering angle.

So, once x(t) and y(t) are known, u1(t) is easily expressed as

u1(t) =
√
ẋ(t)2 + ẏ(t)2

while δ(t) is instead obtained by the ratio of the first two equations in

3.5. Vehicle Controller 31

(3.21):
ẏ(t)
ẋ(t)

= tan(ψ(t))

ψ(t) = arctan(ẏ(t)
ẋ(t)

)
(3.22)

and finally expressing δ from the second one as

δ(t) = arctan(
lψ̇(t)

u1
) (3.23)

3.5.4 Steer and throttle calculation

The actual steer and brake/throttle controls must be derived from the

connecting function obtained above. Since the control cycle is executed

at high speed (20 Hz), only a single value needs to be calculated for each

step: the resulting vehicle movement will be considered when choosing

the controls at the next iteration, and the actual path will be an “enve-

lope” of all the instantaneous control commands.

The steer value is directly obtainable by calculating the path curva-

ture at the next update cycle; indeed, condition (3.20) already implies

that the curvature at t = 0 is the current one.

To calculate the speed controls, a number of safety conditions must

be taken into account:

• At a given point, the maximum speed is inversely related to the

path curvature. The exact value is calculated by knowing the phys-

ical properties of the vehicle (mass, inertia, etc. . .), and the current

estimation of the maximum tire force, computed in Section 3.3.

• The maximum speed is reduced linearly at a safe rate, so that the

vehicle will stop at the end of the path. This has been done be-

cause if the controller for any reason does not get any updates from

the path planner, the last path received is considered the only safe

driving possibility.

• Finally, as an additional safety measure, the actual point that is

considered for velocity calculation is not the current position p0, but

the position pa the car would reach if doing an emergency brake

manuever starting from the current point and the current steer

angle. This effectively penalizes trajectories that, while being close

to the requested path, have the potential to drive the vehicle away

from it.

32 3. Control systems

Once the actual position for which the velocity needs to be computed

is known, the closest point pp on the path is calculated. The velocity can

then be obtained as a function of the current distance d of pa from pp:

v =




vp d < 1

vp

(
1
2

+ 1
2
cos

(
d−1
εp−1

π
))

d > 1
(3.24)

where vp is the “speed limit” calculated above for pp, and εp is the distance

of the closest obstacle from that point, as returned by the path planner.

This has the effect of creating a central zone, around the reference tra-

jectory, where the speed is unrestricted. When the vehicle moves away

from it, the speed is linearly reduced down to zero.

These values, appropriately scaled, can be used to generate com-

mands for the vehicle’s mechanical controls.

33

Chapter 4

World sensing and behaviors

One evidently basic sub-system that is central to the design of the

autonomous vehicle is the sensing system: the design has to provide the

vehicle with “eyes” to see the world around, so as to provide data for all

intelligent activities, from obstacle avoidance, to motion planning and

navigation, that have already been explained in the previous Sections.

Of course all these activities are based on the derivation of a map of

the world around starting from observations (in the actual sense) of the

environment.

In more detail, the current map of the surroundings is obtained via

temporal integration of preprocessed data coming from several sources,

namely:

• a stereo, long range, fixed camera pair;

• a shorter range, stereo camera pair mounted on a pan-tilt platform;

• a LIDAR sensor mounted above the vehicle and looking slightly

down, at the road ahead.

A high-level, rule based fuzzy logic decision system monitors the overall

behavior of the system and sends the appropriate requests to the path

planner.

4.1 Stereo vision

For this project, two different algorithms have been implemented for

extracting obstacle information from stereo cameras: using the classic

34 4. World sensing and behaviors

Bayesian MAP approach on the disparity map, and the one Bertozzi,

Broggi and Fascioli proposed in [24].

4.1.1 Bayesian MAP

The first approach tries to exploit the parallax effect, so that one can

reconstruct an objects depth by observing where it appears in the two

images. To be effectively used, the two images need to be distortion-

rectified and warped so that the projected images appear to be coming

from ideal pinhole cameras looking along parallel lines. Experiments

have been made with both local methods (looking for patterns in one im-

age and trying to match these on the other), and global methods (looking

for the sequence of disparity changes that best matches the image corre-

spondences). In a set of real-world tests, local methods performed better,

since they do make less hypothesis on the environment but just consider

the actual image patterns.

4.1.2 Stereo IPM

The approach used by Bertozzi et al., instead, is designed for obstacle

detection on roads or similar flat terrains. In fact, the algorithm works

on the hypothesis that the cameras are looking at a mostly flat surface,

of known orientation, which constitutes a sort of a priori information

(scene model). Loosely speaking, all elements that significantly stand

out of the normality of the flat road surface are considered as obstacles.

Based on this rationale, the algorithm proceeds by computing an In-

verse Perspective Mapping on each of the cameras, to remove perspective

effects, and the result is a kind of warped image where it looks as if the

image was taken with a camera perpendicular to the surface. Objects

that have different height, however, do appear distorted differently in

the two cameras, due to their unique view angle. By analyzing the dif-

ference between the two IPM images, it is possible to obtain object shape

and height information. For example, in Figure 4.1 the presence of an

ideal obstacle is deduced by observing the triangular traces left by the

obstacle walls in the image obtained as the difference between the cam-

era pair views. Processing these data allows determining position and

shape of the obstacle.

4.2. LIDAR 35

(a) World scene and cameras (b) Inverse Perspective

Mapping steps

Figure 4.1: Inverse Perspective Mapping. An ideal obstacle is seen from

different point of view from a camera pair (left image). From the dif-

ference between the images it is possible to infer the obstacle features

(right image).

Of course, the detection of a real obstacle poses further problems re-

garding both the not regular shape of the shapes in the difference image

and the presence of noise in the source images, which can bring in the

need for additional filtering procedures.

The downside of this algorithm is that it depends a lot on knowing

the surface orientation precisely; as a matter of fact, a wrong IPM trans-

formation would result in all the terrain being classified as obstacle. To

improve error resiliency from the reconstructed vehicle attitude, a num-

ber of iterations of the algorithm are performed, while refining at each

step the vehicles pitch angle.

4.2 LIDAR

The LIDAR (Light Detection and Ranging or Laser Imaging Detec-

tion and Ranging) is a well established technique used to determine

the distance of an object by means of a laser impulse of known wave-

length. The sensor generates high-speed depth readouts by sweeping a

laser beam on a linear path and measuring the delay and intensity of

the reflected light.

There are many motivations for using active optical sensors for per-

36 4. World sensing and behaviors

ception. Precision as well as reliability are often the cited reasons. More-

over, a significant amount of research has been conducted in LIDAR ob-

stacle avoidance as the technology has become more affordable. How-

ever, the application of LIDAR to terrain characterization has only re-

cently been suggested.

Henriksen and Krotkov, in their paper [25], suggest that there are

three primary terrain hazards detectable with laser, and compare the

relative detection rates between LIDAR and vision:

• Positive elevation hazards, also known as “steps”, indicate an abrupt

rise in the level of terrain. This class of hazards includes boulders,

natural perforations in the landscape and broken rock surfaces.

Both laser and vision perform equally well in detecting step haz-

ards.

• Negative elevation hazards, also called “ditches”, represent abrupt

downgrades in the landscape such as craters and cliffs. Laser range

finding presents a drastic improvement over vision-based methods

in detecting negative hazards due to difficulties in identifying dis-

tances through vision.

• The last class of terrain hazard is known as the “belly” hazards.

These represent areas of terrain, such as dunes, that are continu-

ous but not traversable due to the clearance physics of the vehicle,

and are equally likely to be detected by LIDAR and vision methods.

Roberts [26] proposes a basic, fixed-mount laser range finder, placed

on the front of vehicles to detect immediate obstacles and terrain haz-

ards. The sensor is able to gather terrain information only if the vehicle

is moving, but the setup is very popular due to its ease of construction

and use.

In the framework of the autonomous vehicle, a series of sweeps is

made at different times, exploiting the car movement to provide a mesh

of points on the road ahead. This point collection is filtered by a sur-

face extraction algorithm tuned to find “passable terrain”, by checking

a number of conditions on the first and second-order derivatives on the

mesh segments. To further reduce noise from this data, the estimated

surface parameters are integrated by a Kalman filter. By differencing

the expected surface from the actual point mesh and grouping outliers,

obstacles can be classified depending on the height (positive or negative),

4.3. Local map and Global map 37

size, or shape, and the area ahead of the vehicle is segmented in “pass-

able”, “unpassable” and “unknown”.

4.3 Local map and Global map

Obstacle maps come from different sensors, and each sensor is dif-

ferent in range, resolution and covered area. In the case of the pan-tilt

cameras, the covered area is not even fixed w.r.t. the vehicle. To further

complicate things, sensors have different update rates, and the process-

ing delay is also not constant. All this information must however be

fused into a common map to be used by the planning algorithms.

To create a common representation, each of the sensors is required to

generate a grid map with the shape of a trapezoid; however, the number

of cells, the overall size and position of the grid are parameters that

are associated with the sensor and current measure. For each cell, the

sensor must output if that small area has been measured, and if so the

probability that an obstacle is present at that location.

A local map is generated by keeping track of all the measurements

by timestamp; once two measurements for the same time are present,

the grids are intersected and then merged together using a weight map

based on the sensor’s characteristics (e.g. the LIDAR measurements

have always the same uncertainty, while stereo vision resolution inher-

ently worsens with distance).

This local map is updated in real-time with the car sensors current

knowledge of the surroundings, and thus may miss, for example obsta-

cles that went “out of scope” from all of the sensors, but still are relevant

for the planner. For this reason, a higher-level description of the obsta-

cles is obtained by extracting features (blobs) from the maps, analyzing

the boundaries of these blobs and describing them in terms of an ellipse

or a simplified polygon. These objects are then kept in a global map of all

the possible obstacles, where each of them is tracked and updated inde-

pendently (to improve accuracy) via Kalman filtering of its parameters

from one observation to the next.

38 4. World sensing and behaviors

Figure 4.2: The fuzzy-logic decision system structure.

4.4 Decision system

The highest-level control scheme is based on a fuzzy-logic [27] system

similar to ARTIFACT, the one developed for the Artisti Veneti Robocup

team [28]. The most useful theorical abstraction here is that of a switch-

ing system [29], where the system evolves under the supervision of a

controller, but it may instantaneously switch to a different control set at

any time. Its functional diagram is shown in Figure 4.2.

This system is based upon four basic kinds of objects:

• Conditions are a floating point quantity in the range [0, 1] that de-

scribes how probably true this particular condition is. A standard

number of conditions are derived from vehicle-measurable quanti-

ties (e.g. CloseToObstacle, OnPath, . . .), while custom ones can be

easily defined by composing basic conditions with the normal fuzzy

logic operators.

• Actions are the outputs of the fuzzy-logic system, and define the

overall behaviour of the autonomous vehicle (such as ReachNextPoint,

or EmergencyStop). Each defined action is associated to a (possibly

complex) condition result; at each evaluation, the one that is asso-

ciated with the highest condition value is selected for execution.

4.4. Decision system 39

• Rules are the actual description of the link between an Action and

its Condition. They specify a threshold value under which the Ac-

tion is never taken.

• Contexts are useful to store fuzzy logic “state”. Using Contexts,

rules can be grouped in sets which can selectively enabled or dis-

abled (again, depending on a condition). This is used, for example,

to switch the controller from normal to emergency behaviour.

The Brain is the entity that evaluates all the conditions in the ac-

tive contexts, and activates the most likely action. It can be however

interrupted by the Ruler, which checks if any threshold has been met,

or by the Context Switcher, which keeps track of the active contexts. If

a new set of rules needs to be evaluated, after the updates the Brain is

executed again.

Most fault conditions are also handled by the fuzzy logic system by

employing contexts appropriately. If an unhandled software exception

escapes from the cell-specific code, it is caught, serialized by the middle-

ware, and sent to the master server. In this way the decision system is

able to react and take the appropriate corrective action, depending on

the error and the erratic cells duties. For more discussion on this topic,

see Section 6.5.

40 4. World sensing and behaviors

41

Part II

Software Architectures

43

Chapter 5

Introduction

Advances in electronics design and integration has pushed toward

the migration from mechanical and hydraulic servo systems to systems

commanded by computational units at lower and lower costs, paving the

pathway to the definition of the drive-by-wire paradigm and inspiring

even more ambitious research challenges over the unmanned vehicle

idea.

The increasing number of software-controlled functions and their in-

terconnection, however, pose significant challenges in all the phases of a

vehicle’s lifecycle:

• From the early stages of the design phase, the addition of elec-

tronics and software calls for careful planning of the interactions,

and generally the use of algorithms which are more complex than

standard “analog” control techniques.

• Before and during development, recent advances in computer capa-

bilities have made software simulation of these complex systems

a given, since this greatly reduces final development costs, and also

provides early detection of design errors.

• The demands made on testing methods during the implementa-

tion phase have become more stringent as well. Hardware-in-the-

loop simulators and laboratory vehicle setups have become perma-

nent fixtures in the development departments of many companies,

especially in the early phases of development, when such installa-

tions serve to augment road testing.

44 5. Introduction

• While most of the outside environment can be abstracted and simu-

lated, a number of possible design errors or unexpected side-effects

become apparent only during the live testing of the developed ve-

hicle. To achieve the ultimate performance, final calibration and

refinements of the control strategies can only be based on actual,

sensor-recorded data.

Part I addressed some of the most recent algorithms that have been

presented in the field of autonomous vehicles. The following chapters

will instead provide some practical examples of architectures that can

fulfill automotive software requirements.

5.1 Design decisions

When designing mixed electronic/software systems, depending on the

task at hand, a number of different choices needs to be made. There is

never a clear cut distinction between the options, however, but they serve

as a general guidelines during the very first design decisions.

5.1.1 Size

One of the first issues a system developer has to make clear is the

overall “size” of the problem. Some tasks may be solvable by using a sim-

ple, standalone CPU; some may benefit from cooperation with other pro-

cessing equipment; some may require high computational power more

akin to a server PC. This basic design decision is often a given, due to

other constraints such as space, cost or reliability, but has nevertheless

profound impacts on the overall system choices.

5.1.2 Operating systems

When dealing with a programmable processing unit, there are a num-

ber of basic operations that almost every programming paradigm re-

quires. Issues such as timing/delays, resource allocation, multiprocess-

ing are well understood and usually handled by an operating system (or

OS). These provide a consistent API and robust, proven implementations

of common interfaces (such as networking stacks), allowing developers

to forget about some of the most low-level details and focus more on the

5.1. Design decisions 45

specific task at hand. This additionally allows higher code portability

and generally forces better coding practices, such as privilege separa-

tion.

Traditionally, for smaller and specialized tasks OSes have been con-

sidered overkill and resource-hungry; however, ever-increasing silicon

capabilities, along with specialized, low-footprint OSes, make this con-

straint less and less relevant.

While most OSes essentially provide the same set of basic primi-

tives, they vary in platform support and the number of available fla-

vors is huge. From commonplace operating systems such as Windows

or Linux, to their more compact, but similar sibilings (Windows CE and

uClinux) to low-footprint OSes (TinyOS) or hard real-time centric (Vx-

Works, QNX, . . .), the choice is usually dictated by the platform (Win-

dows, for example runs only on Intel x86 hardware), hardware compat-

ibility or extensibility (an area where Linux shines, thanks to its Open

Source licensing model), or real-time support. This last term needs to be

defined precisely.

5.1.3 Real time

Generally speaking, a real-time system specification contains explicit

timing conditions, usually externally measurable, that have to be met

in order for the system to be useful. The most common example is the

response of a control system, measured as the delay between inputs and

outputs, which usually has to be time-bounded.

Real-time systems can be divided into three types, depending on the

meaning given to the phrase “real-time” itself:

• Hard real-time

The most taxing are hard real-time systems, where failure to meet

a deadline can result in complete system failure. These systems

cannot tolerate any variation of the requested timings. The classic

(and most dramatic) example for this type of system is a nuclear

reactor control system, where due to the inherent instability of the

process, a single missed deadline could lead to catastrophic loss of

control.

• Firm real-time

Sometimes the system will gracefully accept “some” misses, up to

46 5. Introduction

a certain number, percentage, or continuous time. Consider, for an

example, the case of a VoIP phone application: since the network

does have unknown (and potentially unlimited) latency, a short

buffer can be implemented to overcome these conditions; once this

is depleted, the system “fails” by cutting the sound—but this is a

transient error from which the system can autonomously recover.

Such systems are sometimes called firm real-time.

• Soft real-time

Finally, often the phrase “real time” is mistakenly used when refer-

ring to systems that need to operate “very fast”, but which have no

strict timing requirements. These systems (more precisely called

soft real-time) do not fail completely when a deadline is missed, but

only suffer a reduced performance. This is the case, for example,

of a text input terminal, where the delay between the actual key-

press and the letter appearing on the screen should be as small as

possible, but the system can tolerate arbitrary delays without any

failure.

Most operating systems do have provisions for, at least, supporting

soft real-time requests. Usually, however, OSes do not offer any guar-

antee of maintaining the user-requested deadline, and the reasons are

twofold. Firstly, guaranteeing boundary fulfillment is extremely diffi-

cult, because this ultimately means analyzing each and every internal

execution path in the OS, making sure that no one exceeds the speci-

fied timing constraints. Also, a lot of general-purpose operating system

schedulers are tuned to achieve maximum throughput and general user-

side responsiveness, which usually conflicts with the hard boundaries

required by real-time constraints.

There are, however, extensions to standard operating systems that

provide them with a real-time layer. These extensions usually work by

introducing a micro-kernel between the original OS kernel and the un-

derlying hardware, so that the OS becomes an “idle task”, and gets CPU

time only when no real-time processes are active. In Linux the de facto

standard is Xenomai, while on Windows there are a number of competi-

tors.

5.2. Middlewares 47

5.2 Middlewares

At an even higher abstraction level, there is often the need of hav-

ing different objects cooperate in solving the task at hand. Sometimes

they are just different software entities (processes, threads, etc) on a sin-

gle computing device; or they might be applications running on similar

computers, networked together; or even completely different electronic

devices (such as an FPGA offloading some complex algorithm from the

CPU).

5.2.1 History

These distributed computing ideas race back to the Cold War of the

1960s, when the U.S. government began to focus on computer science re-

search as a means toward the latest and most secure communications

technology which they would need in the event of war. Communications

networks were essential for the military and needed to be able to with-

stand attack so that chains of command would not be broken.

One researcher, Paul Baran, developed the idea of a distributed com-

munications network in which messages would be sent through a net-

work of switching nodes until they reached their destination. The nodes

would be computers (instead of the telephone switches used at the time),

so that they would be intelligent enough to decide the best route for

sending each message. Many nodes and connections would create re-

dundancy so that messages could arrive through many different paths,

and the messages would be broken up into blocks of uniform length to

make transmissions simpler and more efficient. This idea of message

block switching, or later packet switching, was his most important inno-

vation and was the basis for the design of networks that would become

the Internet.

The first node for the ARPAnet (the first network Baran developed

with these ideas) was installed in UCLA in 1969 and the other three,

at the Stanford Research Institute, UC Santa Barbara and Utah, were

connected by the end of that year. Since then much work has been poured

on protocol research, and later when that was estabilished, on the very

base of distributed computing: the middleware.

The term itself is cited first in a NATO Software Engineering pa-

per in 1968; however, the meaning then was still related to a single

48 5. Introduction

execution environment. Later, it was associated mainly with relational

databases for many practitioners in the business world through the early

1990s, but by the mid-1990s this was no longer the case [30, 31]. Con-

cepts similar to today’s middleware previously went under the names of

“network operating systems”, “distributed operating systems” and “dis-

tributed computing environments”.

Cronus was the major first distributed object middleware system, and

Clouds and Eden were contemporaries. RPC was first developed circa

1982, by Birrell and Nelson. Early RPC systems that achieved wide

use include those by Sun in its Open Network Computing (ONC) and in

Apollos Network Computing System (NCS). The Open Software Founda-

tions Distributed Computing Environment (DCE) [32] included an RPC

that was an adaptation of Apollos that was provided by Hewlett Packard

(which acquired Apollo). Quality Objects (QuO) was the first middleware

framework to provide general-purpose and extensible quality of service

for distributed objects.

Interoperability issues with all these different technologies pushed

for a common agreed standard. The OMG (Object Management Group)

has been established in 1989 with just 8 members, and has since grown

to be presently the largest industry consortium of any kind. The orga-

nization charter was to “provide a common architectural framework for

object-oriented applications based on widely available interface specifi-

cations”. Version 1.0 of the standard, named CORBA (from the initials

of Common Object Request Broker Architecture), was introduced and

adopted in December 1990, but it was still incomplete in many areas.1

Version 2.0, released in 1994, was the first one to be feature-complete

and ready for interoperability.

In 1998, TAO was the first major CORBA implementation to provide

(if it was supported also by the host operating system) hard real-time

performance directly in the ORB.

5.2.2 Categories and examples

One of the easiest, and yet quite appropriate, ways to define a modern

middleware is “Middleware is the slash in the term client/server”. Mid-

dleware frameworks are designed to mask some of the kinds of hetero-

1For example, the standard did not mention a way to describe the object features in

a common language. This was going to be later standardized as IDL.

5.2. Middlewares 49

geneity that programmers of distributed systems must deal with. They

always mask heterogeneity of networks and hardware. Most middle-

ware frameworks also mask heterogeneity of operating systems or pro-

gramming languages, or both. Open standards (without a reference im-

plementation) such as CORBA also mask heterogeneity among vendor

implementations of the same middleware standard. Finally, program-

ming abstractions offered by middleware can provide transparency with

respect to distribution in one or more of the following dimensions: loca-

tion, concurrency, replication, failures, and mobility.

Middlewares can be classified in terms of the environment abstrac-

tions that they provide to the programmer.

Distributed Relational Databases

Distributed relational databases are the most widely deployed kind

of middleware today. Its Structured Query Language (SQL) allows pro-

grammers to manipulate sets of entities (a database) in an English-like

language yet with intuitive semantics and rigorous mathematical foun-

dations based on set theory and predicate calculus. Distributed rela-

tional databases also offer the abstraction of a transaction. Distributed

relational database products typically offer heterogeneity across pro-

gramming languages, but most do not offer much, if any, heterogeneity

across vendor implementations.

Linda is a framework offering a distributed entity abstraction called

Tuple Space (TS). Lindas API provides associative access to TS, but with-

out any relational semantics. Linda offers spatial decoupling by allow-

ing depositing and withdrawing processes to be unaware of each others

identities. It offers temporal decoupling by allowing them to have non-

overlapping lifetimes.

Jini is a Java framework for intelligent devices, especially in the

home. Jini is built on top of JavaSpaces, which is very closely related

to Linda’s TS.

Remote Procedure Call

Remote procedure call (RPC) middleware extends the procedure call

interface familiar to virtually all programmers to offer the abstraction of

being able to invoke a procedure whose body is across a network. RPC

50 5. Introduction

systems are usually synchronous, and thus offer no potential for paral-

lelism without using multiple threads, and they typically have limited

exception handling facilities.

Message-Oriented Middleware

Message-Oriented Middleware (MOM) provides the abstraction of a

message queue that can be accessed across a network. It is a general-

ization of a well-known operating system construct: the mailbox. It is

very flexible in how it can be configured with the topology of programs

that deposit and withdraw messages from a given queue. Many MOM

products offer queues with persistence, replication, or real-time perfor-

mance. MOM offers the same kind of spatial and temporal decoupling

that Linda does.

Distributed Object Middleware

Distributed object middleware provides the abstraction of an object

that is remote yet whose methods can be invoked just like those of an

object in the same address space as the caller. Distributed objects make

all the software engineering benefits of object-oriented techniques (en-

capsulation, inheritance, and polymorphism) available to the distributed

application developer.

CORBA is a standard for distributed object computing, and is con-

sidered by most experts to be the most advanced kind of middleware

commercially available and the most faithful to classical object oriented

programming principles. Its standards are publicly available.

DCOM is a distributed object technology from Microsoft that evolved

from its Object Linking and Embedding (OLE) and Component Object

Model (COM). DCOM’s distributed object abstraction is augmented by

other Microsoft technologies, including Microsoft Transaction Server and

Active Directory. DCOM provides heterogeneity across language but not

across operating system or tool vendor. COM+ is the next-generation

DCOM that greatly simplifies the programming of DCOM. SOAP is a

distributed object framework from Microsoft that is based on XML and

HyperText Transfer Protocols (HTTP). Its specification is public, and it

provides heterogeneity across both language and vendor. Microsoft’s dis-

tributed object framework .NET also has heterogeneity across language

5.2. Middlewares 51

and vendor among its stated goals.

Java has a facility called Remote Method Invocation (RMI) that is

similar to the distributed object abstraction of CORBA and DCOM. RMI

provides heterogeneity across operating system and Java vendor, but not

across language. However, supporting only Java allows closer integra-

tion with some of its features, which can ease programming and provide

greater functionality.

5.2.3 Practical middlewares

As can be seen from the previous introduction, the categories of mid-

dleware are blurred in the marketplace in a number of ways. Starting in

the late 1990s, many products began to offer APIs for multiple abstrac-

tions, for example distributed objects and message queues. They often

use RPC or MOM as an underlying transport while adding management

and control facilities. Relational database vendors have been breaking

the relational model and the strict separation of data and code by many

extensions, including RPC-like stored procedures. To complicate matters

further, Java is being used to program these stored procedures. Addition-

ally, some MOM products offer transactions over multiple operations on

a message queue. Finally, distributed object systems typically offer event

services or channels which are similar to MOM in term of architecture,

namely topology and data flow.

TAO

We initially experimented with the Open Source CORBA implemen-

tation called TAO. TAO provides one of the most complete implemen-

tations of the CORBA standard, including real-time support (where the

underlying host OS supports it). A set of C++ wrapper objects and APIs

simplify handling the different parts of the standard.

Still, however, the complexities that are hidden in this specification

are almost unmanageable. Due to the huge size of the steering commit-

tee, the CORBA standard specifies multiple, overlapping ways to provide

the same services. Some details in the memory management are quite

arcane and require careful handling of even the most basic requests. For

this reason, experiments with this implementation were abandoned.

52 5. Introduction

ICE

ICE2 (Internet Communications Engine) is a middleware developed

by ZeroC and released under both Open Source and commercial licenses.

The team that designed this middleware has been part of the CORBA

steering committee, before abandoning it for the above reasons. A com-

plete description of the features and benefits of this architecture is given

in Section 6.1; in particular, the differences with CORBA will be ana-

lyzed in Section 6.1.6.

RTCF

Another middleware that has been studied is RTCF (Real-Time Com-

putational Framework) from SES3. This is an advanced, hard real-time

middleware that was specifically engineered from the ground up to meet

the stringent needs of large, distributed simulations even considering

hardware-in-the-loop.

This middleware is based on the Distributed Object Model, specifi-

cally, its basic abstraction is the data point, through which the various

entities that are active for the simulation cooperate using a publish/sub-

scribe model. The underlying transport is fully decoupled from the code,

allowing the same binary code to receive simulation results from a lo-

cal simulation process, a remote networked PC, an FPGA add-on card or

even some other forms of communication such as replicated memory or

InfiniBand. Thanks to advanced real-time components, the same binary

code can also be ported to a real-time environment without any modifi-

cation or rebuild process.

Since this middleware is geared to simulations and other distributed

computations, the data types that are supported by these protocols are

limited to the basic integer and real numbers, strings, and array or ma-

trices of these types. All published (numeric) data points must clearly

define their own engineering unit, so implicit conversion is performed by

RTCF when the same data is required in another unit, eliminating pos-

sible errors. It even supports dynamic, user defined data point filtering,

so that values are modified before being published (this is very useful for

simulating failures or to test error resilency).

2Available from http://www.zeroc.com.
3Website for contact information: http://www.spenceengr.com.

5.2. Middlewares 53

Synchronization is achieved in RTCF by the use of data FIFOs, as

well as distributed mutex and semaphore abstractions.

The support for different hardware platforms is very wide, but on

the PC it currently relies on Microsoft Windows to be the host operating

system. Real-world applications of this technology are within the Har-

ris high-end broadcast products4, as well as several aviation and space

projects5.

4Details available on http://www.broadcast.harris.com.
5Details are covered by NDA agreements. A list of participating companies and

agencies can be found at http://www.spenceengr.com/resources.html.

54 5. Introduction

55

Chapter 6

The Ice Middleware, Applied

6.1 Introduction to Ice

Ice is an object-oriented middleware platform. Ice applications are

suitable for use in heterogeneous environments: client and server can

be written in different programming languages, can run on different op-

erating systems and machine architectures, and can communicate using

a variety of networking technologies. The source code for these applica-

tions is portable regardless of the deployment environment.

6.1.1 Terminology

Clients and Servers

The terms client and server are not firm designations for particular

parts of an application; rather, they denote roles that are taken by parts

of an application for the duration of a request:

• Clients are active entities. They issue requests for service to servers.

• Servers are passive entities. They provide services in response to

client requests.

Frequently, servers are not “pure” servers, in the sense that they

never issue requests and only respond to requests. Instead, servers of-

ten act as a server on behalf of some client but, in turn, act as a client to

another server in order to satisfy their clients request.

56 6. The Ice Middleware, Applied

Similarly, clients often are not “pure” clients, in the sense that they

only request service from an object. Instead, clients are frequently client–

server hybrids. For example, a client might start a long-running opera-

tion on a server; as part of starting the operation, the client can provide

a callback object to the server that is used by the server to notify the

client when the operation is complete. In that case, the client acts as a

client when it starts the operation, and as a server when it is notified

that the operation is complete.

Such role reversal is common in many systems, so, frequently, client–

server systems could be more accurately described as peer-to-peer sys-

tems.

Objects

An object is a conceptual entity, or abstraction. An object can be char-

acterized by the following points:

• An Ice object is an entity in the local or a remote address space that

can respond to client requests.

• A single object can be instantiated in a single server or, redun-

dantly, in multiple servers. If an object has multiple simultaneous

instantiations, it is still a single object.

• Each object has one or more interfaces, or facets. An interface is

a collection of named operations that are supported by an object.

Clients issue requests by invoking operations.

• An operation may have parameters as well as a return value. Pa-

rameters and return values have a specific type. Parameters are

named and have a direction: in-parameters are initialized by the

client and passed to the server; out-parameters are initialized by

the server and passed to the client. (The return value is simply a

special out-parameter.)

• If an object has more than one interface, clients can select among

the facets of an object to choose the interface they want to work

with.

6.1. Introduction to Ice 57

• Each Ice object has a unique object identity. An objects identity is

an identifying value that distinguishes the object from all other ob-

jects. The Ice object model assumes that object identities are glob-

ally unique, that is, no two objects within an Ice communication

domain can have the same object identity.

Proxies

For a client to be able to contact an Ice object, the client must hold a

proxy for the Ice object.1

A proxy is an artifact that is local to the clients address space; it

represents the (possibly remote) Ice object for the client. A proxy acts

as the local ambassador for an Ice object: when the client invokes an

operation on the proxy, the Ice run time:

1. Locates the Ice object

2. Activates the Ice object’s server if it is not running

3. Activates the Ice object within the server

4. Transmits any in-parameters to the Ice object

5. Waits for the operation to complete

6. Returns any out-parameters and the return value to the client (or

throws an exception in case of an error)

A proxy encapsulates all the necessary information for this sequence

of steps to take place. In particular, a proxy contains addressing infor-

mation (to contact the correct server for the remote object), an object

identity (to identify which particular object in the server is the target)

and an optional facet identifier, that determines which particular facet

of an object the proxy refers to.

Proxies can be direct or indirect. A direct proxy embeds an object’s

identity, together with the address at which its server runs and protocol-

specific information, so that the addressing information in the proxy is

directly used to contact the server; the identity of the object is sent to

the server with each request made by the client.

1A proxy is the equivalent of a CORBA object reference. We use “proxy” instead

of “reference” to avoid confusion: “reference” already has too many other meanings in

various programming languages.

58 6. The Ice Middleware, Applied

Conversely, an indirect proxy may only provide an object’s identity (op-

tionally with an object adapter identifier), but no addressing informa-

tion. To determine the correct server, the client-side run time passes

the proxy information to a location service. In turn, the location service

uses the object identity or the object adapter identifier as the key in a

lookup table that contains the address of the server and returns the cur-

rent server address to the client, which now knows how to contact the

server and will dispatch the request as usual. The process of resolving

the actual address from a proxy is called binding.

The entire process is similar to the mapping from Internet domain

names to IP address by the Domain Name Service (DNS): when a domain

name is used to look up a web page, the host name is first resolved to an

IP address behind the scenes and, once the correct IP address is known,

the IP address is used to connect to the server. With Ice, the mapping is

from an object identity or object adapter identifier to a protocoladdress

pair, but otherwise very similar. The client-side run time knows how to

contact the location service via configuration (just as web browsers know

which DNS to use via configuration).

The main advantage of indirect binding is that it allows to change the

object’s physical location without invalidating existing proxies that are

held by clients. In other words, direct proxies avoid the extra lookup to

locate the server, but no longer work if a server is moved to a different

machine. On the other hand, indirect proxies continue to work even if

the object moves to a different server.

Servants

An Ice object is a conceptual entity that has a type, identity, and ad-

dressing information. However, client requests ultimately must end up

with a concrete server-side processing entity that can provide the behav-

ior for an operation invocation. To put this differently, a client request

must ultimately end up executing code inside the server, with that code

written in a specific programming language and executing on a specific

processor.

The server-side artifact that provides behavior for operation invoca-

tions is known as a servant. A servant provides substance for (or in-

carnates) one or more Ice objects. In practice, a servant is simply an

instance of a class that is written by the server developer and that is

6.1. Introduction to Ice 59

registered with the server-side run time as the servant for one or more

Ice objects. Methods on the class correspond to the operations on the Ice

object’s interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several

Ice objects simultaneously. If the former, the identity of the Ice object

incarnated by the servant is implicit in the servant. If the latter, the

servant is provided the identity of the Ice object with each request, so it

can decide which object to incarnate for the duration of the request.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its

best to deliver a request to the correct destination and, depending on

the exact circumstances, may retry a failed request. Ice guarantees that

it will either deliver the request, or, if it cannot deliver the request, in-

form the client with an appropriate exception; under no circumstances

is a request delivered twice, that is, retries are attempted only if it is

known that a previous attempt definitely failed.2 At-most-once seman-

tics are important because they guarantee that operations that are not

idempotent3 can be used safely.

Removing the protocol overhead for at-most-once semantics, we can

build distributed systems that are more robust in the presence of net-

work failures. However, realistic systems require non-idempotent oper-

ations, so at-most-once semantics are a necessity, even though they make

the system less robust in the presence of network failures. Ice permits

you to mark individual operations as idempotent. For such operations,

the Ice run time uses a more aggressive error recovery mechanism than

for non-idempotent operations.

Server-side and Client-side method calls

By default, the request dispatch model used by Ice is a synchronous

remote procedure call: an operation invocation looks, to the client, like

2One exception to this rule are datagram invocations over UDP transports. For

these, duplicated UDP packets can lead to a violation of at-most-once semantics.
3An idempotent operation is an operation that has the same effect if executed once or

more times. For example, x = 1 is an idempotent operation: if we execute the operation

twice, the end result is the same as if we had executed it once. On the other hand, x++

is not idempotent: if we execute the operation twice, the end result is not the same as

if we had executed it once.

60 6. The Ice Middleware, Applied

a local procedure call—that is, the client thread is suspended for the

duration of the call and resumes when the call completes (and all its

results are available).

Ice also supports asynchronous method invocation (AMI): clients can

invoke operations asynchronously, that is, the client uses a proxy as

usual to invoke an operation but, in addition to passing the normal pa-

rameters, also passes a callback object and the client invocation returns

immediately. Once the operation completes, the client-side run time in-

vokes a method on the callback object passed initially, passing the re-

sults of the operation to the callback object (or, in case of failure, passing

exception information).

The server cannot distinguish an asynchronous invocation from a

synchronous one—either way, the server simply sees that a client has

invoked an operation on an object.

Asynchronous method dispatch (AMD) is the server-side equivalent

of AMI. For synchronous dispatch (the default), the server-side run time

up-calls into the application code in the server in response to an opera-

tion invocation. While the operation is executing (or sleeping, for exam-

ple, because it is waiting for data), a thread of execution is tied up in the

server; that thread is released only when the operation completes.

With asynchronous method dispatch, the server-side application code

is informed of the arrival of an operation invocation. However, instead

of being forced to process the request immediately, the server-side ap-

plication can choose to delay processing of the request and, in doing so,

releases the execution thread for the request. The server-side applica-

tion code is now free to do whatever it likes. Eventually, once the results

of the operation are available, the server-side application code makes an

API call to inform the server-side Ice run time that a request that was

dispatched previously is now complete; at that point, the results of the

operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server of-

fers operations that block clients for an extended period of time, or to

complete an operation (so that the results of the operation are returned

to the client) but to keep the execution thread of the operation beyond

the duration of the operation invocation, to perform cleanup or write up-

dates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to

the client, that is, the client cannot tell whether a server chose to process

6.1. Introduction to Ice 61

a request synchronously or asynchronously.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time

exceptions are pre-defined by the Ice run time and cover common error

conditions, such as connection failure, connection timeout, or resource

allocation failure. Run-time exceptions are presented to the application

as proper C++, Java, or C# exceptions and so integrate neatly with the

native exception handling capabilities of these languages.

User Exceptions

User exceptions are used to indicate application-specific error condi-

tions to clients. User exceptions can carry an arbitrary amount of com-

plex data and can be arranged into inheritance hierarchies, which makes

it easy for clients to handle categories of errors generically, by catching

an exception that is further up the inheritance hierarchy. Like run-time

exceptions, user exceptions map to native exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are

name–value pairs, such as Ice.Default.Protocol=tcp. Properties are

typically stored in text files and parsed by the Ice run time to configure

various options, such as the thread pool size, the level of tracing, and

various other configuration parameters.

6.1.2 Slice (Specification Language for Ice)

Each Ice object has an interface with a number of operations. In-

terfaces, operations, and the types of data that are exchanged between

client and server are defined using the Slice language. Slice allows you to

define the client-server contract in a way that is independent of a specific

programming language, such as C++, Java, or C#. The Slice definitions

are compiled by a compiler into an API for a specific programming lan-

guage, that is, the part of the API that is specific to the interfaces and

types you have defined consists of generated code.

62 6. The Ice Middleware, Applied

6.1.3 Language Mappings

The rules that govern how each Slice construct is translated into a

specific programming language are known as language mappings. For

example, for the C++ mapping, a Slice sequence appears as an STL vec-

tor, whereas, for the Java mapping, a Slice sequence appears as a Java

array. All Slice constructs are translated in the most straightforward

way to the idioms of the chosen language. So, most of the time, in or-

der to determine what the API for a specific Slice construct looks like,

only the Slice definition and knowledge of the language mapping rules

is needed. The rules are simple and regular enough to make it unneces-

sary to read the generated code to figure out how to use the generated

API.

Currently, Ice provides language mappings for C++, Java, C#, Visual

Basic .NET, Python, and, for the client side, PHP and Ruby; however, we

have extensively used only the C++ and Java mappings.

6.1.4 The Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as

an underlying transport.4 The Ice protocol defines:

• a number of message types, such as request and reply message

types,

• a protocol state machine that determines in what sequence differ-

ent message types are exchanged by client and server, together

with the associated connection establishment and tear-down se-

mantics for TCP/IP,

• encoding rules that determine how each type of data is represented

on the wire,

• a header for each message type that contains details such as the

message type, the message size, and the protocol and encoding ver-

sion in use.

The Ice protocol is suitable for building highly-efficient event for-

warding mechanisms because it permits forwarding of a message with-

out knowledge of the details of the information inside a message. This

4Ice also allows you to use SSL as a transport, so all communication between client

and server are encrypted.

6.1. Introduction to Ice 63

means that messaging switches need not do any unmarshaling and re-

marshaling of messagesthey can forward a message by simply treating

it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server

wants to send a message to a callback object provided by the client, the

callback can be made over the connection that was originally created by

the client. This feature is especially important when the client is behind

a firewall that permits outgoing connections, but not incoming connec-

tions.

6.1.5 Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application de-

velopers:

• Object-oriented semantics

Ice fully preserves the object-oriented paradigm “across the wire”.

All operation invocations use late binding, so the implementation

of an operation is chosen depending on the actual run-time (not

static) type of an object.

• Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invoca-

tion and dispatch, as well as publish/subscribe messaging via IceS-

torm. This allows you to choose a communication model according

to the needs of your application instead of having to shoe-horn the

application to fit a single model.

• Support for multiple interfaces

With facets, objects can provide multiple, unrelated interfaces while

retaining a single object identity across these interfaces. This pro-

vides great flexibility, allowing for example to introduce new fea-

tures in an application while remaining compatible with older, al-

ready deployed clients.

• Machine, OS and language independence

Clients and servers need not be aware of the current machine ar-

chitecture: issues such as byte ordering and padding are hidden

from application code. Moreover, the Ice APIs are fully portable, so

the same source code compiles and runs under both Windows and

64 6. The Ice Middleware, Applied

Unix/Linux—clients and servers can even be developed in differ-

ent programming languages (currently C++, Java, C#, and, for the

client side, PHP).

• Implementation independence

Clients are unaware of how servers implement their objects. This

means that the implementation of a server can be changed after

clients are defined, for example, to use a different persistence mech-

anism or even a different programming language. The Slice defini-

tion used by both client and server establishes the interface con-

tract between them and is the only thing they need to agree on.

• Threading support

The Ice run time is fully threaded and APIs are thread-safe. No

effort (beyond synchronizing access to shared data) is required on

part of the application developer to develop high-performance, mul-

tithreaded clients and servers.

• Transport independence

Ice currently offers both TCP/IP and UDP as transport protocols.

Neither client nor server code are aware of the underlying trans-

port. (The desired transport can be chosen by a configuration pa-

rameter.)

• Location and server transparency

The Ice run time takes care of locating objects and managing the

underlying transport mechanism, such as opening and closing con-

nections. Interactions between client and server appear connection-

less. Via IceGrid, you can arrange for servers to be started on de-

mand if they are not running at the time a client invokes an op-

eration. Servers can be migrated to different physical addresses

without breaking proxies held by clients, and clients are completely

unaware how object implementations are distributed over server

processes.

• Source code availability

The source code for Ice is available. While it is not necessary to

have access to the source code to use the platform, it allows you

to see how things are implemented or port the code to a new op-

erating system. Overall, Ice provides a state-of-the art develop-

ment and deployment environment for distributed computing that

6.1. Introduction to Ice 65

is more complete than any other platform we are aware of.

6.1.6 A Comparison with CORBA

Obviously, Ice uses many ideas that can be found in CORBA and ear-

lier distributed computing platforms, such as DCE [32]. In some areas,

Ice is remarkably close to CORBA whereas, in others, the differences are

profound and have far reaching architectural implications.

Differences in the Object Model

The Ice object model, even though superficially the same, differs in a

number of important points from the CORBA object model.

Type System An Ice object, like a CORBA object, has exactly one most

derived main interface. However, an Ice object can provide other inter-

faces as facets. It is important to notice that all facets of an Ice object

share the same object identity, that is, the client sees a single object with

multiple interfaces instead of several objects, each with a different in-

terface. Facets provide great architectural flexibility. In particular, they

offer an approach to the versioning problem: it is easy to extend func-

tionality in a server without breaking existing, already deployed clients

by simply adding a new facet to an already existing object.

Proxy Semantics Ice proxies (the equivalent of CORBA object refer-

ences) are not opaque. Clients can always create a proxy without sup-

port from any other system component, as long as they know the type

and identity of the object. (For indirect binding, it is not necessary to be

aware of the transport address of the object.)

Allowing clients to create proxies on demand has a number of advan-

tages:

• Clients can create proxies without the need to consult an external

look-up service, such as the CORBA naming service. In effect, the

object identity and the object’s name are considered to be one and

the same. This eliminates the problems that can arise from having

the contents of the naming service go out of sync with reality, and

reduces the number of system components that must be functional

for clients and servers to work correctly.

66 6. The Ice Middleware, Applied

• Clients can easily bootstrap themselves by creating proxies to the

initial objects they need. This eliminates the need for a separate

bootstrap service.

• There is no need for different encodings of stringified proxies. A sin-

gle, uniform representation is sufficient, and that representation is

readable to humans. This avoids the complexities introduced by

CORBA’s three different object reference encodings (IOR, corbaloc,

and corbaname).

Experience over many years with CORBA has shown that, pragmati-

cally, opacity of object references is problematic: not only does it require

more complex APIs and run-time support, it also gets in the way of build-

ing realistic systems. For that reason, mechanisms such as corbaloc and

corbaname were added, as well as the (ill-defined) is_equivalent and

hash operations for reference comparison. All of these mechanisms com-

promise the opacity of object references, but other parts of the CORBA

platform still try to maintain the illusion of opaque references. As a re-

sult, the developer gets the worst of both worlds: references are neither

fully opaque nor fully transparent—the resulting confusion and com-

plexity are considerable.

Object Identity The Ice object model assumes that object identities

are universally unique (but without imposing this requirement on the

application developer). The main advantage of universally unique object

identities is that they permit you to migrate servers and to combine the

objects in multiple separate servers into a single server without concerns

about name collisions: if each Ice object has a unique identity, it is im-

possible for that identity to clash with the identity of another object in a

different domain.

The Ice object model also uses strong object identity: it is possible to

determine whether two proxies denote the same object as a local, client-

side operation. (With CORBA, you must invoke operations on the remote

objects to get reliable identity comparison.) Local identity comparison is

far more efficient and crucial for some application domains, such as a

distributed transaction service.

6.1. Introduction to Ice 67

Differences in Platform Support

CORBA, depending on which specification you choose to read, pro-

vides many of the services provided by Ice. For example, CORBA sup-

ports asynchronous method invocation and, with the component model,

a form of multiple interfaces. However, the problem is that it is typi-

cally impossible to find these features in a single implementation, since

too many CORBA specifications are either optional or not widely imple-

mented.

Other features of Ice that do not have direct CORBA equivalents:

• Asynchronous Method Dispatch (AMD)

The CORBA APIs do not provide any mechanism to suspend pro-

cessing of an operation in the server, freeing the thread of control,

and resuming processing of the operation later.

• Security

While there are many pages of specifications relating to security,

most of them remain unimplemented to date. In particular, CORBA

to date offers no practical solution that allows CORBA to coexist

with firewalls.

• Protocol Features

The Ice protocol offers bidirectional support, which is a fundamen-

tal requirement for allowing callbacks through firewalls.5 In addi-

tion, Ice allows you to use UDP as well as TCP, so event distribution

on reliable (local) networks can be made extremely efficient and

light-weight. CORBA provides no support for UDP as a transport.

Another important feature of the Ice protocol is that all messages

and data are fully encapsulated on the wire. This allows Ice to im-

plement services such as IceStorm extremely efficiently because, to

forward data, no unmarshaling and remarshaling is necessary. En-

capsulation is also important for the deployment of protocol bridges,

for services such as persistent data storage, because the bridge does

not need to be configured with type-specific information.

• Language Mappings

CORBA does not specify a language mapping for many “new” pro-

gramming languages, such as C#, Visual Basic or PHP.

5At one point, CORBA specified a bidirectional protocol, but the specification was

technically flawed and never actually implemented.

68 6. The Ice Middleware, Applied

Differences in Complexity

CORBA is known as a platform that is large and complex. This is

mostly a result of the way CORBA has been standardized: decisions

have been reached by consensus and majority vote. In practice, this

means that, when a new technology is being standardized, the only way

to reach agreement is to accommodate the pet features of all interested

parties. The result are specifications that are large, complex, and bur-

dened with redundant or useless features. In turn, all this complexity

leads to implementations that are large and inefficient. The complexity

of the specifications is reflected in the complexity of the CORBA APIs:

applications are thus frequently plagued with latent bugs that do not

show up until after deployment.

CORBA’s object model adds further to CORBA’s complexity. For ex-

ample, opaque object references force the specification of a naming ser-

vice because clients must have some way to access object references. In

turn, this requires the developer to learn yet another API, and to config-

ure and deploy yet another service when, as with the Ice object model,

no naming service is necessary in the first place.

One of the most infamous areas of complexity in CORBA is the C++

mapping. The CORBA C++ API is rather arcane; in particular, the mem-

ory management issues of this mapping are very well known. For exam-

ple, objects that are received as input parameters to a CORBA server-

side method call may or may not need to be deleted inside the method,

depending on a number of conditions which the developer always has to

consider. Yet, the code required to implement this C++ mapping is nei-

ther particularly small nor efficient, leading to binaries that are larger

and require more memory at run time than they should.

In contrast to CORBA, Ice is first and foremost a simple platform.

The designers of Ice took great care to pick a feature set that is both

sufficient and minimal: you can do everything you want, and you can

do it with the smallest and simplest possible API. This simplicity makes

it easy to learn and understand the platform, and leads to shorter de-

velopment time. At the same time, however, Ice does not compromise

on features: with Ice, you can achieve everything you can achieve with

CORBA and do so with less effort, less code, and less complexity. This

has been probably the most compelling advantage of Ice over any other

middleware platform: things are simple—so simple, in fact, that it is

6.1. Introduction to Ice 69

possible to start developing distributed applications after only a few days

exposure to Ice.

6.1.7 Ice Services

The Ice core provides a sophisticated client/server platform for dis-

tributed application development. However, realistic applications usu-

ally require more than just a remoting capability: typically, you also

need a way to start servers on demand, distribute proxies to clients, dis-

tribute asynchronous events, configure your application, and so on.

Ice already provides a number of services that cover these and other

features. The services are implemented as Ice servers to which your ap-

plication acts as a client. None of the services use Ice-internal features

that are hidden from application developers—however, having these ser-

vices available as part of the platform allows to focus on application de-

velopment instead of having to build a lot of repetitive infrastructure

first. Moreover, building and debugging such services is not a trivial ef-

fort, so it is useful to use what is already available, instead of reinventing

your own wheel.

The following is a survey of the provided ICE services which were

used in the autonomous vehicle project.

IceGrid

IceGrid is an implementation of an Ice location service that resolves

the symbolic information in an indirect proxy to a protocol–address pair

for indirect binding. A location service is only the beginning of IceGrid’s

capabilities:

• IceGrid allows you to register servers for automatic start-up: in-

stead of requiring a server to be running at the time a client issues

a request, IceGrid starts servers on demand, when the first client

request arrives.

• IceGrid provides tools that make it easy to configure complex ap-

plications containing several servers.

• IceGrid provides a simple query service that allows clients to obtain

proxies for objects they are interested in.

70 6. The Ice Middleware, Applied

IceBox

IceBox is a simple application server that can orchestrate the starting

and stopping of a number of application components. Application com-

ponents can be deployed as a dynamic library instead of as a process.

This reduces overall system load, for example, by allowing you to run

several application components in a single Java virtual machine instead

of having multiple processes, each with its own virtual machine.

IceStorm

IceStorm is a publish–subscribe service that decouples clients and

servers. Fundamentally, IceStorm acts as a distribution switch for events.

Publishers send events to the service, which, in turn, passes the events

to subscribers. In this way, a single event published by a publisher can

be sent to multiple subscribers. Events are categorized by topic, and sub-

scribers specify the topics they are interested in. Only events that match

a subscriber’s topic are sent to that subscriber. The service permits se-

lection of a number of quality-of-service criteria to allow applications

to choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute informa-

tion to large numbers of application components.6 IceStorm decouples

the publishers of information from subscribers and takes care of the re-

distribution of the published events.

6A typical example is a stock ticker application with a large number of subscribers.

6.2. Vehicle architecture 71

Figure 6.1: The autonomous vehicle

6.2 Vehicle architecture

The following section will briefly describe the environment that has

been created for the autonomous vehicle project [33].

6.2.1 Hardware

The car used in this project, visible in Figure 6.2.1, is an automatic

transmission 1990 Range Rover. This car has been augmented with sev-

eral mechanical and electronic equipment to make drive-by-wire possi-

ble.

Onboard sensors The vehicle is equipped with a number of different

sensors that provide knowledge about its surroundings:

GPS A NovAtel OEM4G-2 7 GPS device, whose antenna is visible in Fig-

ure 6.2(a), provides the system with absolute, but relatively slow

(10 Hz) and inaccurate (20 m RMS), positioning.

IMU The box visible in Figure 6.2(b) contains the X-Sens MT9-B 8 iner-

tial measurement unit, which returns at 100 Hz raw 3-dimensional

7See http://www.novatel.com/products/oem4g2.htm for device information.
8Documentation is available on http://www.xsens.com.

72 6. The Ice Middleware, Applied

(a) GPS antenna (b) IMU

(c) Short range cameras (d) Long range cameras

(e) LIDAR scanner

Figure 6.2: The autonomous vehicle: onboard sensors

6.2. Vehicle architecture 73

linear acceleration, angular (gyro) velocity, and Earth magnetic

field readings.

Short-range vision Two AVT Marlin F-131B 9 FireWire cameras are

mounted on a pan&tilt stand at the center of the rooftop. Their

short baseline makes them useful to recover good range data for

close objects (covering 2–10 m from the focal point). Protection from

atmospheric elements is given by the transparent plastic sphere

visible in Figure 6.2(c).

Long-range vision Two similar (but fixed) cameras have been placed

at the front edges of the vehicle roof, as can be seen in Figure 6.2(d),

giving them a much wider baseline (1.7 m) and thus making them

capable of perceiving object depth up to 50 m.

LIDAR Figure 6.2(e) shows the SICK LMS-211 10 LIDAR device mounted

on the roof, facing slightly downwards. Together with the forward

movement of the vehicle, this is used to provide a mesh of points

describing the road surface.

Motors and power electronics Three AC electric motors have been

added, acting respectively on the steering wheel and the brake and throt-

tle pedals.11 Each of these three motors is connected, on the power elec-

tronics board visible in Figure 6.3(d), to a Danaher Motion SR200 12 AC

servo drive unit, which feeds the power signals to the motor and inter-

nally handles the position control loop.

The reference position for these drive units, in turn, comes from a

step-direction input. Since a personal computer would not be able to

generate these signals at the required speed, an additional position con-

troller has been added, which translates commands, received from an

RS485 serial port with the MODBUS protocol, into high-speed step and

direction signals. Thanks to this controller’s extensibility, it has been

possible to augment the firmware for this device, to allow the reference

point to be moved while the controller was still generating signals (the

original firmware only allowed the reference to be changed while the sys-

9Detailed documentation available on http://www.alliedvisiontec.com.
10Technical documentation available from http://www.sick.com.
11More advanced, but intrusive modifications were avoided because Italian law re-

quires to have a human driver and complete and unimpeded driving capabilities, if the

car is to be run along standard traffic.
12See http://www.danahermotion.com for technical documents.

74 6. The Ice Middleware, Applied

(a) Visible, from left to right: the safety device (orange),

the power electronics board (mounted upright), the con-

trol PC, the two stacked vision PCs, and the UPS power

supply.

(b) UPS batteries detail

(c) Safety device detail (d) Power electronics detail

Figure 6.3: Trunk electronics.

6.2. Vehicle architecture 75

tem was idle—this introduced unacceptable response lag in the system).

The electric power for the whole system comes from a SOCOMEC

MODULYS 13 large UPS device, which is capable of generating 220 V AC

power and providing up to 1000 W of sustained power output. All of this

energy is stored in four dedicated 24 V batteries, shown in Figure 6.3(b),

which together can provide up to 2 kWh energy. Harnessing the power of

the vehicle engine to charge these batteries proved impractical, since the

modifications to the vehicle would have been significant, so the batteries

are recharged by connecting the vehicle to the mains power.

Figure 6.3(a) shows the electronics housed in the trunk of the car.

Low-level control A custom board, shown in Figure 6.3(c), has been

developed [34] to provide all the low-level interfaces and special pro-

cessing that were necessary to allow complete software control of the

autonomous vehicle. This device features a PIC microcontroller, which

appears as an additional slave on the RS485 bus, and is capable of:

• Handling several high-power output lines

For example, once the autonomous system is engaged, the key and

ignition signals are controlled by this device, providing automatic

start and stop of the vehicle engine.

• Performing online, continuous system safety check

The embedded microcontroller uses some digital IO lines to check

the status of all the onboard PCs, so that if something happens

and breaks the system, an emergency shut-down procedure will be

executed (more on this in Section 6.5).

• Reading high-speed signals from ABS encoders

To provide odometry and dead-reckoning information, the vehicle’s

stock ABS encoders have been used. A dedicated electronic circuit

was designed to convert the analog signal coming from the sensors

into a digital signal, which is monitored by the device. The result-

ing revolution count, one for each wheel, is then periodically polled

by the high-level software via the serial interface.

High-level control The vehicle software environment has been orga-

nized around three 64 bit server-class PCs which have been mounted in

13Documentation available on http://www.socomecgroup.com.

76 6. The Ice Middleware, Applied

Figure 6.4: The passenger-side controls.

a custom rack on the back of the car. Due to the heavy computational

requirements of machine vision, two have been exclusively reserved to

image processing (each one connecting to a pair of FireWire cameras),

while the remaining one handles all the remaining coordination, control,

and planning tasks. All of them are networked together with a Gigabit

Ethernet switch.

The control PC interfaces with the LIDAR using a dedicated onboard

high-speed (1000 kbps) serial card; this card also provides a low-speed

RS485 line going to the power electronics and safety device. It is also

connected (see Figure 6.4) to a USB driving wheel and pedals, arranged

on the passenger side of the vehicle (which has been used to subjectively

test drive-by-wire performance), and to a 17” LCD display mounted on

the dashboard that can be used to monitor the system’s behavior.

The computers are running a customized version of Gentoo Linux, a

standard Linux 2.6.18 kernel (with no special real-time additions), and

the Ice middleware: each has its own IceBox service daemon (to spawn

and monitor server processes), while the control PC also hosts the Ice-

Grid daemon (which keeps track of what services are available where,

and replies to location queries) and the IceStorm daemon (so that events

are propagated to all the entities who asked to be notified).

6.2. Vehicle architecture 77

6.2.2 Ice extensions

The middleware structure used by ICE is not adequate for directly

implementing the various control mechanisms and building blocks for

a whole vehicle infrastructure. A further layer of elements has been

introduced to simplify interfacing with the middleware and give a better

structure to the whole system.

Cells

Borrowing a term from the natural sciences, we defined the system

as a collection of individual cells. A cell is an abstraction of the system’s

“building block”, meaning that, in this context, a cell has these charac-

teristics:

• Has autonomous lifespan

Cells are viewed by the system as a single entity that can be started

or stopped individually. From the ICE point of view, they are con-

sidered as servers.

• Requires inputs or provides outputs

For their correct operation, most cells need to work in cooperation

with adjacent ones. For this reason, the boundary of each cell de-

fines a number of connections between adjacent cells, detailing the

required inputs and the provided outputs for the current cell. These

are what Ice calls services.

• Adds functionality to the system

Each cell has some specific duties they oversee, but may not directly

need the rest of the system to function correctly (apart from the in-

puts and outputs), that is, cells internally have the implementation

for the duties they are appointed to. The whole control system is a

result of the interconnections between active cells.

Sensor interfacing and decoding, trajectory planner, output actuators

are all examples of cells.

78 6. The Ice Middleware, Applied

Tasks

Cells abstract the core part of the algorithmic implementation. How-

ever, a number of practical implementation issues must be still covered

before the cell can perform work and fully integrate with the other ones.

A task is a special cell implementation that adds a number of very useful

software tools to the cell developer:

• Multithreading

While cells define only the implementation of their interface meth-

ods, tasks go one step further providing an internal execution thread.

This can be used to offload some computation from the service call

points, or provide proactive behavior, perhaps in response to exter-

nal stimuli.

• Logging

An additional layer has been implemented so that all Ice server

calls are logged. Each task stores its own timestamped list of calls,

along with its serialized representation (thus containing all input

and return values), which is periodically flushed to disk for later

retrieval or analysis.

• Communication

Tasks automatically register their services to the network coordi-

nator and the Pilot.

• Alarms and exception handling

Tasks are monitored in their execution. When an exception escapes

from the implementation of one of the task’s methods (either be-

cause it was deliberately raised, or because it was not expected or

handled) the task generic code traps this unexpected condition and

sends an alert to the Pilot.

Decision system

A special task has been created to act as the decision system of the

whole vehicle. As will be later explained, the Pilot is responsible for

generating a target reference for the vehicle to reach. However, the Pilot

task is unique among its peers, since it is also ultimately responsible for

handling emergency conditions, so all unexpected events are relayed to

this cell for processing.

6.2. Vehicle architecture 79

Slice types

A set of predefined types have been implemented in Slice language to

provide common grounds for data exchanging between servers, for items

such as byte, integer, double and string vectors, and for time values. In

the same language, the interface for a few key servers has been declared.

Enhancements to Ice services

A number of customizations have been made to the stock Ice services

and core code. For example, the serialization code has been augmented

with an “online logging” capability: all of the Ice remote method invo-

cations are intercepted in the client library, timestamped and sent to

the relevant IceBox daemon. This data is then possibly logged to disk

for later retrieval, or immediately sent via the network to the GUI for

real-time data flow inspection. This is also heavily customizable, as de-

pending on the current configuration, filters can be added to limit band-

width, so that the logging/reporting is limited to a specific remote ser-

vant, method call, or operational result. Thanks to Ice’s implementation,

it is also easy to discard the I/O parameters and store a more compact

representation with only the method called and the timestamp. This

function is proving itself invaluable in debugging multi-cell problems.

The IceBox daemon has also been extended. Ice’s stock service is

used to start and stop services on demand; for maximum vehicle safety,

we added a runtime periodic check for each server which is started by

IceBox: each task in the system periodically has to invoke an alive()

operation on the IceBox service, otherwise, the error is reported to the

Pilot cell.

80 6. The Ice Middleware, Applied

6.3 Cell implementation

The complete vehicle control system is shown in Figure 6.5. Each of

the boxes in the figure is a cell, and most of them are tasks too (i.e. have

their own processing). A detailed description of the implementation of

all these cells will be provided in the following sections.

It is interesting to note that there are at least three different control

loops (depicted using different shades of gray in the figure). Since the

vehicle speeds involved in this project are very low, the system can be

considered quasi-static and thus require only “soft real-time” semantics

for these feedbacks. However, priorities have been modified in the Linux

implementation so that three groups of tasks are obtained:

• High priority

The innermost, highest priority loop involves the IMU (2) and odom-

etry (3) sources, which are used by the position integrator (4) to

provide fast pose updates to the vehicle controller (7), which in turn

adjusts the vehicle controls. This whole loop takes less than 40 ms

(25 Hz) to update, and it was found to be more than adequate for

the vehicle frequency response.

• Normal priority

A more complex control loop considers the availability of GPS po-

sition updates (1) or horizon estimation values (9) for the position

integrator. The latter estimates the vehicle bank angles from the

images acquired by the long-range stereo camera pair. These infor-

mations are updated several times per second.

At around the same rate, the tire model (5) provides maximum for-

ward and lateral forces to the path planner (6), which may replan

the route if the security conditions are not satisfied anymore.

• Low priority

Finally, all the other cells are scheduled. Most of the remaining

ones deal with the problem of updating the map of the surround-

ings (11), given the current readings from the onboard sensors.

Both long- and short-range cameras feed their video streams to two

obstacle detectors (8), while the laser ranging sensor sends linear

depth scans to the road profile integrator (10).

6.3. Cell implementation 81

G
P

S
/I
M

U
/O

D
O

in
te

g
ra

ti
o
n

H
o
ri
z
o
n

e
s
ti
m

a
ti
o
n

T
ir
e
-r

o
a
d

m
o
d
e
l
(*

)
L
o
n
g
 r

a
n
g
e

s
te

re
o
 c

a
m

e
ra

s

S
h
o
rt

 r
a
n
g
e

s
te

re
o
 c

a
m

e
ra

s

P
a
th

p
la

n
n
e
r

(*
)

C
o
n
tr

o
lle

r
(*

)

S
te

re
o

o
b
s
ta

c
le

 d
e
te

c
ti
o
n

L
o
c
a
l
m

a
p

G
lo

b
a
l
m

a
p
 (

*)

C
a
r

c
o
n
tr

o
l

s
y
s
te

m

F
u
z
z
y
 l
o
g
ic

d
e
c
is

io
n

s
y
s
te

m
G

P
S

IM
U

L
ID

A
R

R
o
a
d
 p

ro
fi
le

a
n
a
ly

s
is

 (
*)

O
d
o
m

e
tr

y

Figure 6.5: Control system structure. Darker shades of gray represent

different control loops, while slanted boxes are physical system I/Os,

such as sensors or actuators. To simplify the diagram, the cells that

use the current computed position, velocity or attitude information are

marked with (*).

82 6. The Ice Middleware, Applied

6.3.1 Sensor acquisitions

1. GPS

The GPS device, connected to one of the control PC’s serial ports,

periodically outputs NMEA standard messages. The GPS cell parses

this data and forwards it by calling the updateGPS() function in the

position integrator (4).

2. IMU

Another serial port receives from the IMU sensor, at 100 Hz, the

raw readings of all its internal sensors. This data is transformed

according to a calibration matrix and forwarded to the position in-

tegrator (4) by calling the updateIMU() function.

3. Odometry

By querying the safety device via the RS485 link, this cell pe-

riodically retrieves the angle each wheel moved from the last up-

date; since the source uses the ABS wheel-locking sensors, the mea-

sure has quite good accuracy (there are 100 steps per revolution).

This information is sent to the position integrator (4) and tire-road

model (5) by calling the updateOdometry() function.

6.3.2 Control systems

4. Position and attitude

The position integrator cell is responsible for reconstructing the

absolute vehicle position and attitude. Currently it implements

a custom solution, that merges both algorithms presented in Sec-

tion 3.1 while introducing useful changes.

The current angular position is estimated by the Gerdes filter;

these values are then used to compute the Qi-Moore rotation ma-

trix (which in the original model was derived directly from the in-

tegration of the angular accelerations). The resulting model thus

improves accuracy and noise rejection. Furthermore, roll and pitch

angles are also corrected by the horizon computed by the video

cameras, while yaw angle drift is minimized by using the Earth

magnetic field measured through the 3D magnetometer, which is

much more reliable than the GPS measurements when the vehicle

is steady or moving slowly. Current position, when wheel slippage

is low, is also tracked by using odometry data obtained from the

vehicle’s ABS sensors.

6.3. Cell implementation 83

5. Maximum tire force

The implemented tire-road model is based on a simplified ver-

sion of the Pacejika Magic Formula, approximated by three linear

segments. Wheel slip is calculated comparing the current veloc-

ity vector with the actual measurement of the odometer sensor for

each wheel, taking into account the geometry of the vehicle.

Vehicle attitude and accelerations are used to calculate the cur-

rent lateral, longitudinal, and normal components of the road/tire

interaction force. Using these computed values, a Kalman filter

has been implemented to estimate the most relevant Paceijka coef-

ficients, which are then used to compute the current maximum tire

forces. Finally, this information is sent to the vehicle controller (7)

and the Pilot (12).

6. Path planner

All the algorithms mentioned in Section 3.4 ultimately resulted

in high computational requests; for this reason, a simpler but still

effective strategy has been implemented instead.

The current obstacle map surrounding the vehicle, and up to a

certain distance, is retrieved from the global map. The obstacle

boundaries are then enlarged with an ellipse whose size, aspect ra-

tio, and major axis direction is obtained as a function of the current

vehicle speed and direction. A series of splines starting from the car

and ending on different points in a circle in the rough direction of

the goal is then generated, and the algorithm chooses the one that,

while avoiding obstacles, either is the longest or gets closest to the

goal, depending on a high-level decision from the Pilot (12). From

that curve, the maximum driving speed is then computed, based on

the distance from the obstacles and the radius of the instantaneous

osculating circle.

7. Vehicle controller

The implemented algorithms (presented in Section 3.5) calculate

instantaneous steer and speed values appropriate to keep the ve-

hicle on the requested path. However, while the steer signal can

be directly applied, the actual vehicle controls for the speed are in-

direct, being the throttle and brake pedals. This requires another

controller layer.

The speed regulator consists of two PI controllers, one for the

84 6. The Ice Middleware, Applied

brake and one for the throttle. This architecture has been chosen

because its output dynamics are the closest to the actual commands

given by a human driver. Also, thanks to the inherent lowpass fil-

ter response of the PI controllers, this helps to reduce jerky actua-

tor positioning and thus provides smooth, bumpless vehicle move-

ments, safeguarding the delicate onboard electronics.

Since the car has an automatic transmission, if both the throttle

and the brake are not applied, the car moves ahead at a slow pace

of about 2 m/s. When the requested speed is over this threshold,

the PI controller on the throttle is enough to reach the required

equilibrium point. However, in the other case, the speed has to be

controlled by actions on the brake pedal.

The PI controllers have been implemented with the usual in-

tegral saturation prevention methods, and parameters have been

tuned to provide the quickest stable response compatible with the

actuators.

6.3.3 World sensing

8. Stereo vision

The autonomous vehicle is equipped with two stereo camera pairs.

The two long-range cameras are mounted at a fixed, wide baseline

(160 cm), at the front edges of the roof (see Figure 6.2(d)), while the

two short-range cameras have a 40 cm baseline and are mounted

on a pan&tilt stand placed at the roof center.

Each of these pairs is connected to a different, dedicated PC, on

which a stereo vision algorithm has been implemented. Thanks to

the FireWire bus, both cameras are inherently synchronized so the

two images can be compared without timing errors. The stereo cell

implements the algorithms shown in Section 4.1. Figure 8 shows

an actual example of the IPM algorithm running on the long-range

cameras.

This standard algorithm has been enhanced to make it more ro-

bust to rough terrain. This has been achieved by generating mul-

tiple “image-local” planes, at various grades, and testing for each

combination if and where the resulting IPM matched. As an op-

timization, only planes that could result in passable terrain are

tested (since the rest is classified as obstacle anyways).

6.3. Cell implementation 85

(a) Left image with grid (b) Right image with grid

(c) Left IPM image (d) Right IPM image

(e) Resulting disparity map. The build-

ing edge appears clearly at the bottom of

the image.

Figure 6.6: A sample image obtained using the Stereo Inverse Perspec-

tive Mapping algorithm

86 6. The Ice Middleware, Applied

Figure 6.7: Example of the horizon estimation procedure.

The short-range cameras have the added flexibility that they can

be directed toward an “interesting” area around the vehicle. This

has been controlled by providing the decision system (12) with ac-

tions to, for example, slightly turn the cameras in the current steer-

ing direction: this gives better localization and obstacle mapping,

especially while performing tight turns.

The resulting obstacle map is then sent to the mapping cell (11)

for integration.

9. Horizon detection

The horizon detection algorithm, described in Section 3.2, has

been implemented in a cell on the PC connected to the long-range

stereo camera pair. An example of the output of the horizon detec-

tion algorithm is shown in Figure 6.7.

10. LIDAR

This cell is responsible for acquiring data from the LIDAR sen-

sor, and internally creating local obstacle maps. The implemented

algorithm works by adding the 3D points obtained by each scan in

a cloud map. This is processed to find out an actual terrain surface,

and obstacles are obtained by grouping outliers. These maps are

then sent to the mapping cell (11).

6.3. Cell implementation 87

6.3.4 Reasoning

11. Local and Global Map

This cell receives local obstacle maps from all the active sensors

on the vehicle, and as explained in Section 4.3 combines them by

calculating a geo-referenced composite map.

To avoid filling the system memory with unnecessary informa-

tion, a multiresolution map storage approach is used. The world

map is divided in squares roughly 50 m on the side, and only the

nine squares around the car are kept with full obstacle detail. The

squares that lie farther from the car are reduced to a simpler de-

scription (a graph showing connectivity between the square edges),

while the obstacle information is stored to a database on disk. A

fixed size cache further limits memory usage moving the most un-

used data to disk when full.

12. Decision system

The algoritms introduced in Section 4.4 have been implemented

in a cell in the vehicle’s main PC. Conditions and rules are parsed

and instantiated from script files at runtime; it is possible to change

the vehicle behavior quite easily, since the scripts are written like

the following example:

Context CarEngineOn { CarActive, 0.4 }
{
Rule betterSlowDown {
!RoadClear | CloseToObstacle -> SlowDown, 0.2 }

Rule goAhead {
RoadClear -> NextPoint, 0.2 }

}
Context CarStopped { !CarMoving, 0.4 }
{
Rule pathCompleted {
NoMorePoints -> ShtudownEngine , 0.2 }

}
Rule PowerOnCar {
!CarActive && !pathCompleted -> TurnEngineOn, 0.1 }

In Section 6.5, the Pilot’s role in the overall system safety will be

discussed. One of the additional tasks is to react quickly at the oc-

currence of an error or exception in the system. This is handled by

serializing the exception at the process level and sending this infor-

mation via normal Ice calls to the Pilot. This, in turn, updates some

internal conditions that will cause (via the Ruler) the activation of

rules in the fuzzy logic system.

88 6. The Ice Middleware, Applied

6.4 GUI

The vehicle can be monitored from a graphic interface, shown in Fig-

ure 6.8. This application has been written in Java for maximum porta-

bility (using the Java Ice wrapper libraries). The interface is based upon

the NetBeans structure, which already provides windows and layout

code, so that a user can drag and resize each screen object almost freely.

All of the cells have their own widget showing their parameters in

the most easy way, along with an “engineering” view that shows either

the current numeric values, or a trend graph.

This interface allows also to query the Ice runtime and display the

current system status. As described in Section 6.2.2, all Ice messages are

recorded by the runtime system, and when the GUI is connected, the cur-

rent message flow can be inspected to provide debugging insights as well

as more advanced status information. This data can also be replayed

later by loading a saved file, for filtering or step-by-step debugging.

6.4. GUI 89

Figure 6.8: The vehicle control GUI, showing the status of multiple ar-

chitectural elements (speed, local map, current attitude, LIDAR scan).

90 6. The Ice Middleware, Applied

Figure 6.9: Vehicle fault classifications

6.5 Safety system

The autonomous vehicle is a complex device, and failures are almost

unavoidable. For this reason, a complete system requires the devel-

opment of strategies that allow to quickly identify and react to non-

standard conditions. A complex, multiple-level safety system has been

developed for this autonomous vehicle. Error conditions are classified

on the basis of their severity, and the Pilot cell (12) cooperates with the

low-level control board (previously shown in Figure 6.3(c)) in solving the

issues.

6.5.1 Fault categorization

In a way resembling the classification presented in [35], it is possible

to describe the system status by dividing it in four categories, according

to the malfunction the system is observing:

Green is the normal system state; every subsystem is operational and

no failures have been observed. The complete system resources can

be used to reach the current objective.

Yellow is reached when one of the non-critical subsystems has indi-

cated a recoverable failure; the system goes temporarily to a paused

6.5. Safety system 91

state and tries to recover the lost functionality: if the fault is re-

moved successfully, the system returns to Green state. However,

if it can’t be fixed, the system gracefully shuts down and moves to

Black state.

Red is reached when a critical subsystem failed, and the overall system

safety cannot be guaranteed: an emergency action is taken, and

the system is immediately shut down and put in Black state.

Black means the system is not active anymore and has shut down, and

it can be recovered only by manual intervention.

Using the categories outlined above, faults can be divided in three

groups:

Tolerable faults do not change system status. These faults typically

are in some way “expected” in advance, and thus can be handled

gracefully in the user code.

Recoverable faults hinder the functionality of the system, but have

still been planned for and have a recovery action associated with

them. The system, however, is required to enter the Yellow state to

try to recover the lost functionality.

Critical faults have a direct impact on the core control system and thus

could bypass the normal error handling mechanisms, or render

them ineffective. These kinds of errors are of course non-recoverable

and bring the system to the Red state.

Figure 6.9 shows the transition diagram resulting from this descrip-

tion. It is useful to note that the transitions involving the Green and

Yellow states can be managed automatically by the system. Instead, the

ones taking to the Red system state (i.e., critical errors) do require a ded-

icated external device to assist in emergency response. Additionally, this

device must be fail-safe: should there be other errors or malfunctions in

this device, whatever the cause, the system response shall be safe. To

satisfy this stringent requirement the device itself must be very simple;

for example, the sheer number of failure points in a computer system

makes it too complex to meet the fail-safe requirement.

92 6. The Ice Middleware, Applied

Figure 6.10: General exception handling. Uncaught exceptions are seri-

alized and sent via Ice to the Pilot for review.

6.5.2 Tolerable errors

By far, the most probable errors the system must be able to deal with

are the tolerable ones, that is, software faults in the cells. These faults

are often caused by an unexpected condition or a programming error;

some of these can even be anticipated and will be handled inside the pro-

cess (for example, by retrying a command over a noisy serial line). Apart

from—possibly—a slight performance degradation, there is no other ef-

fect on the system status.

6.5.3 Recoverable errors

Sometimes it may happen that an external sensor starts behaving

erratically, or its communication channel goes out of sync. A total re-

set could then be required to restore full functionality; if the Pilot de-

termines that this is required, it sends a special command to the power

electronics board that effectively removes and then restores power to the

device.

On the software side, some unexpected exception might not be caught

by the cell-specific code. To overcome this problem, an extra security

level has been embedded in the generic Ice cell code (see Figure 6.10). If

an exception escapes from the implementation code for a cell (or a task),

6.5. Safety system 93

it is propagated all the way up to the main program stack, where it is

caught, serialized, and sent via normal Ice means to the error handler

in the master server. In this way the Pilot is able to react and take the

appropriate corrective action, depending on the erratic cell’s duties.

If the error is more serious and cannot be handled by the program-

ming code, the operating system might decide to abruptly terminate the

process hosting the cell. This is, however, immediately recognized by the

IceBox host monitor (which is its parent process), who will try to restart

the offending executable. Any other cells that were using the restarted

cell’s services will transiently experience a “Service unavailable”-type er-

ror, so that they are also informed of the malfunction.

It may even happen that the communication between network hosts

is lost. The server, then, cannot know if the hosts on the network are

working or not. To overcome this problem, an external form of hand-

shaking is required. For this reason, each host monitor routinely sends

a heartbeat signal (via the PC’s parallel port) to the low-level control

board. This data is processed by the microcontroller and is periodically

checked by the Pilot, so that if some host hangs for any reason, in a very

short time the system notices the failure. The server may then ask the

board to power cycle the failed host.

Another safety constraint is checked by the Pilot cell: it keeps double-

checking the controls that are given to the car, evaluating the dynamic

physical constraints to verify that these controls keep the vehicle inside

its safety margins (e.g., to avoid vehicle roll over if too much steering at

high speed is requested, or to reduce speed on uneven terrain). If the

system is approaching a boundary, the Pilot tells the car’s controller to

reduce the vehicle speed and plan a more careful route.

All of these faults share the same trait: they temporarily reduce the

functionality of the system. To avoid security risks, the Pilot goes into

“standby” mode, stopping the car if it is moving. It then starts a recovery

procedure: if the recovery goes well, the car resumes operations; other-

wise, after a set number of retries, the system gives up, shuts down and

waits for manual intervention.

94 6. The Ice Middleware, Applied

6.5.4 Critical errors

Finally, there are failures that can’t be managed by the system itself

because the failure disables vital elements of the car’s onboard control

system.

One of these cases is that of the master server itself not responding.

In this condition the the low-level control device must act autonomously

and bring the car to a halt from potentially any condition, without higher-

level intervention. This required a slight customization to the firmware

used by the motor drives, so that if a special digital input line is raised,

then the drive suspends whatever action it was doing, and starts an user-

defined movement. In our case, the throttle is quickly released and the

brake is slowly applied, while the steering is kept constant. While these

actions might not seem the most appropriate at first, it is important to

remark that these are to be used in real emergency situation, when the

car is potentially in motion and a major system problem happens.

The worst case scenario is that of the drives or motor systems failing

themselves. In this case no onboard electronics can act on the car con-

trol devices, and the only solution is to cut power to the engine. The mi-

crocontroller thus, upon receiving a failure status back from the drives,

immediately shuts the engine off, bringing the car to a halt.

We have mentioned previously that the low-level electronics itself

must be fail-safe. This has been assured in the firmware side by using a

watchdog, so that if a software error is triggered, and the microcontroller

stops responding to the master server, the board is immediately reset.

Also, when the board is reset—or loses power—the engine relay’s exci-

tation is removed and the car stops immediately. This way, even in case

of very complex or deeply located failures, a minimal safety response is

ensured.

6.6 Conclusions

A software architecture for controlling autonomous vehicles has been

proposed. By using a middleware solution, developers and system inte-

grators can focus on the actual tasks instead of “reinventing the wheel”

each time. This also allows to write cross-platform code more easily, and

the fact that the overall vehicle status system, written in Java, has no

troubles working in Linux or Windows and actively collaborating with

6.6. Conclusions 95

C++ code on remote machines is testament to Ice’s power and flexibility.

Building from the presented structure, more advanced algorithms

can be tested on the field, eventually helping in reaching the goal of

autonomous and safe vehicle navigation.

96 6. The Ice Middleware, Applied

97

Chapter 7

A Real-Time Data Acquisition

System for Racing Vehicles

7.1 Introduction

In an automotive environment, like in many complex systems, cur-

rent generation technology allows an unprecedented availability of data

of very different kinds. Engine performance, vehicle safety, current sys-

tem status are all routinely measured through a number of onboard sen-

sors. Under the hood, the engine control unit (ECU) and other subsystem

controllers make use of these values to constantly monitor performance

and calculate corrections using proven algorithms.

In a racing context this behaviour is taken to the extreme, since the

emphasis is on the highest possible performance. Onboard sensors moni-

tor practically every possible engine parameter, the current attitude and

general vehicle status; even chassis deformations are monitored to de-

tect possible ringing effects.

The impressive quantity of sensors results in a sheer number of dif-

ferent interfaces required: some of the sensors simply change their phys-

ical properties (such as strain gauges, used for mechanical stress mea-

surement, whose resistance depends on the material deformation), some

only use digital signals to flag non-standard conditions (like security

thermostats), others are so advanced they send digital messages over

a CAN bus1 (like the ECU), or a serial port (like the GPS).

1A Controller Area Network bus) is a multicast serial type bus standard used to

connect several electronic control units. Developed within the automotive industry, it is

98 A Real-Time DAQ System for Racing Vehicles

All this data is collected in real-time, and at very high frequencies,

for the above purposes; however, historically most of it has been dis-

carded immediately because of the storage size that would be required

for a meaningful data log. Data logging equipment used to be very spe-

cialized and used only when required. However, the recent advances in

both storage technology (with the advent of cheap, huge Flash memory

devices) and computing power permit ever-increasing complexity in the

data storage and analysis algorithms.

The aim for this project was to develop a custom data acquisition

board capable of recording time correlated data from several sources, to

aid the development and testing of different engine profiles. However,

this has to be considered a base platform on which development of more

complex onboard algorithms can take place, and that would ultimately

provide real-time feedback to the ECU, to achieve ever-increasing per-

formance levels.

7.1.1 Features

It is necessary to develop a system capable of synchronously acquir-

ing data in real-time from analog voltage, digital, CAN and GPS sources,

time-stamp and store it on the onboard memory for later retrieval. Fur-

thermore, it should be small in size, use little power, and be easy to use

and integrate with a standard Ethernet computer network, which is the

de facto standard for data exchange in the racing pit.

Moreover, because of the noisy vehicle environment, it would be fa-

vorable to provide some sort of pre-processing of the incoming data,

per channel, with a running average or another customized FIR filter.

To this aim, analysis algorithms processing the data flow in real-time

should be designed and integrated on board.

Another peculiar constraint is that, in addition to specifying the log-

ging rate for periodic channels, non-periodic inputs (such as CAN or GPS

messages) should be stored only when they actually occur. This has

subtle practical implications, since most data storage file formats are

heavily optimized considering only periodic data sources, which in some

conditions do not provide enough flexibility.2

widely used also in the embedded world because of its noise immunity characteristics.

For more info, see http://en.wikipedia.org/wiki/Controller_Area_Network.
2Consider, for example the case of a lap-split signal (activated each time the vehicle

7.1. Introduction 99

Some other features that have been considered for the data acquisi-

tion system:

• data logging should start and end at configurable times, possibly

depending on the current values of the configured inputs; some

“pre-trigger” data should also be stored, so that it would be pos-

sible to see data before the actual start event happens;

• the storage unit is the session, which is further subdivided in laps

by the lap split event. If no input is associated with this event, it

defaults to a fixed time duration;

• the data retrieved from the device should be compatible with the

most common engineering software packages;

• additionally, outputs may be configured to send digital signals or

CAN packets with current channel data when certain events occur;

• all the settings for the device should be stored in human-editable

text files, and it should be easy to upload these configurations to

the actual device.

The designed system, whose details are described in the remainder

of the Chapter, meets these specifications, providing:

• 2 CAN 2.0A/B ports with hardware selectable bus termination

• 1 Ethernet 10/100 Mbps network port

• 1 RS-232 serial port (with no hardware flow control); RS-232, TTL

(0–5 V) or LVTTL (0–3.3 V) voltage levels

• 1 RS-485/RS-422 serial port, half/full duplex, up to 1 Mbps, pro-

grammable transmit/receive phase

• 14 differential analog inputs, with two reference voltages (one com-

mon to inputs 0–7 and one to inputs 8–13). Characteristics:

– Input voltage: 0–5 V over the appropriate reference

– ADC resolution: 16 bit (±76µV)

– Sampling frequency: 1 kHz on all channels

– Sampling synchronization error: less than 50µs

crosses the finish line). The user of these systems is then forced to choose either a very

fast polling rate (so that the exact time of the event is recorded) or a very slow one (to

conserve memory).

100 A Real-Time DAQ System for Racing Vehicles

CAN

GPS

Analog

Inputs

Digital

Channels

RTC

Temperature

A/D

conversion

and f i l ter

ColdFire CPU

on Fire Engine

Ethernet

Compact

Flash

Insulation /

High current

drivers

Optional

terminat ion

RS485

line driver

Insulation

SPI

GPIO

CAN

UART

I2C

ETH

Mem

 Mating board

 Connector board

Power

supply

Power

supply

control

Figure 7.1: HW block diagram of the developed device

– Hardware selectable analog 1st order low-pass filter, 117 Hz

cutoff frequency

• 6 digital I/O lines with fast capture/PWM capability

• Internal temperature sensor with 0.1 C accuracy

7.1.2 Project development

There are not so many microcontrollers or CPUs capable of support-

ing all the different peripherals required by the project; finding one with

enough processing power and 2 onboard high-speed CAN buses was es-

pecially difficult, since devices with CAN buses are usually used in vehi-

cle environments as communication nodes and do not require high com-

putational power. Also, the company requirement for a short develop-

ment time meant it was not feasible to design the whole device from the

ground up. It was thus decided to acquire a COTS3 CPU board, while

keeping in mind the small size requirement.

We eventually opted for the Freescale ColdFire4 MCF5485 CPU, a

200 MHz core with MMU, FPU, Cache, and DDR SDRAM controller,

3Consumer Off-The-Shelf, meaning “readily available in retail channels”.
4See http://en.wikipedia.org/wiki/Freescale_ColdFire for an introduction to

the family and more relevant links.

7.2. Electronics 101

Figure 7.2: A macro detail of the mated Hirose high-density connectors.

along with Ethernet, CAN, SPI, UART, I2C and static memory controller

peripherals. The CPU board, called Fire Engine, was developed by Logic

Product Development but marketed by Freescale itself, even in volume

shipping. The board implements all the necessary core functions (volt-

age regulation, clocking, RAM, NOR flash for boot and code, and also a

slot for CompactFlash devices) on a somewhat compact SOM-ETX foot-

print, which is roughly 9.5×11.5 cm. All the peripherals exported by the

core are routed to 4 high-density connectors on the back of the board

(higlighted in Figure 7.2).

A mating board has been designed and implemented, to add an addi-

tional CompactFlash module and all the analog processing and conver-

sion required.

7.2 Electronics

The device, when mounted in its container box, was designed to be

rugged and resist to high temperatures. For this reason, a sturdy box

has been custom-made by carving an aluminum block. Two circular

holes have been etched on one of the small sides, so that two military

connectors could carry out the required I/O lines. The cover for this

box has been again etched from a block of aluminium, with the inter-

nal side having a few protruding vertical columns, intended to dissipate

heat from the active elements (mostly the CPU and a CPLD device on

the Fire Engine).

This mechanical design resulted in two PCBs, mounted together as a

wide “L”, the wider one providing support for the Fire Engine (see Fig-

ure 7.3). The block diagram for the developed device is shown in Fig-

102 A Real-Time DAQ System for Racing Vehicles

Figure 7.3: The assembled device, showing the Fire Engine CPU board

and the board with the Deutsch connectors and the power supply.

Figure 7.4: The analog electronics and CompactFlash slot on the host

board. The black mating elements with the connector board are visible

on top.

7.2. Electronics 103

ure 7.1, while complete schematics for both boards are available in Ap-

pendix A.

7.2.1 Connector board

The smaller PCB board, mounted vertically, has been designed to

route all I/O signals from the two round, military-grade Deutsch AS con-

nectors to two long thru-hole connectors that match the ones on the host

board.

The 5 V power supply has also been implemented on this board, so

that EMI noise coming from the unfiltered power line is reduced as much

as possible. The power supply is directly connected to the vehicle battery;

to avoid excessive draining, the converter is powered up when the “igni-

tion” contact is closed. However, once the power is applied to the board, a

pull-up resistor keeps the device powered until a software-decided shut-

down. This prevents loss of power or ringing on the ignition signal to

interfere with the device.

Analog signal ground and power supply are also decoupled from the

digital ones (they connected together only in the power supply), to reduce

crosstalk and digital interference in the analog conversions.

7.2.2 Host board

The host board, visible in Figure 7.4, features on its back side the

4 high-density Hirose connectors that connect the Fire Engine to the

outside world. These connectors are also structural in that, along with a

few screw mounting holes, they physically hold the Fire Engine together

with the host board. On this PCB all the electronics designed for this

project is implemented:

• The analog channels are first passed through a low-pass filter, to

reduce aliasing noise. They are then connected to 2 A/D converters,

which are controlled by the CPU via the SPI interface. Each input

is protected with reverse polarity diodes, to avoid damaging the

board.

• GPIO lines used as digital inputs are insulated using MOS transis-

tors; the same is done to provide high-current output drivers.

104 A Real-Time DAQ System for Racing Vehicles

• One of the serial interfaces is converted to differential RS485 line

levels, for remote connection to a GPS; standard RS232 levels have

been tested to be too sensitive to the environment’s EMI noise. An-

other serial port is RS232, used for local debugging.

• The two CAN buses have their own line driver/insulation, and an

optional termination resistor.

• An external Ethernet line transformer has been added, as required

by the Fire Engine.

• Another CompactFlash connector is provided. This is needed be-

cause the ColdFire CPU in the Fire Engine is placed right under

the original CF card slot, and when a card was inserted, it was

impossible to provide the required heat dissipation.

7.3. Software overview 105

7.3 Software overview

Due to the requirements of running on a ColdFire platform, and being

easily interfaced to a complex field network, Linux was the first choice

as for the operating system. An appropriate hard real-time subsystem

had to be added, however, to allow time-critical tasks (data logging) to

be executed. At the time, the more commonplace real-time extensions to

the Linux kernel were not yet ported to the ColdFire family of proces-

sors; however, a very restricted subset of the features provided by these

extensions was required. For this reason, it was decided to implement a

custom RT subsystem.

The custom software solution is divided in two cooperating parts,

a kernel-space module that includes all the real-time data acquisition,

handling and hardware-related functions, and an user-space application

that takes care of storage and initial configuration.

Data is acquired in the kernel module, inside a real-time interrupt,

then analyzed and filtered in a lower priority task. Finally, the data that

needs to be stored is piped via a real-time FIFO (that appears to the user

space as a device file) to the application, for writing to disk or sending

via the network. The user space application also parses the configuration

files at boot and sets the kernel module appropriately.

7.3.1 Naming and conventions

The following subsections define the terms that will be used in this

discrussion. We begin with the term channel, which can be used in a

number of different contexts, as outlined below:

hardware channels are the physical I/O lines that are implemented on

the board.

input channels are the currently configured logical data sources, which

do not always match exactly with the physical channels. For ex-

ample, CAN input channels extract data from a specified message

received from one of the CAN hardware network interfaces.

logging channels configure which channels are stored to disk while the

logging system is active, and at which rate.

output channels define which data is sent to the physical output chan-

nels (CAN or digital outputs).

106 A Real-Time DAQ System for Racing Vehicles

Listing 7.1: Input channel structure
typedef struct {

ChannelType type;
ChanModStatus changed;
DataType datatype;
int value;
union {

AnalogChData analog;
DigitalChData digital;
GPSChData gps;
CANChData can;
ConstChData constant;
EventChData event;
InternalChData internal;

};
} InputChannel;

Channel types

Internally, channels can have many different types, each with its own

qualifying attributes:

analog channels are sampled via the onboard ADCs. Their qualifying

attribute is the hardware analog input number.

digital channels are logic signals that are connected to the digital I/Os.

Their qualifying attributes are the hardware digital IO number and

a minimum pulse duration (for hysteresis purposes).

GPS channels are acquired from the GPS device via the serial link.

Their qualifying attributes are the NMEA message and field num-

bers.

CAN channels are extracted from messages received via the CAN inter-

face. A single message can contain more than one channel, there-

fore, hardware input number, message ID, and offset (in bytes) in-

side the message must be specified.

constant channels are used for custom events. Their qualifying at-

tribute is the constant value they have.

event channels are boolean channels whose value depends on the cur-

rent state of the respective event. Their qualifying attribute is the

associated event ID.

7.3. Software overview 107

Listing 7.2: Output channel definition
typedef struct {

uint8_t input_channel;
ChannelType type;
union {

DigitalChData digital;
CANChData can;

};
} OutputChannel;

A number of different data types are used: each channel can be mapped

to an 8 bit, 16 bit or 32 bit field. In addition, for comparison purposes, it

is necessary to know if the data is stored in 2’s complement (signed) or

as unsigned values.

Each input channel, as seen in Listing 7.1, is parameterized by its

channel type, its data type, and all the extra qualifiers needed for its

channel type.

Output channels are less complex, since they depend on a specific

input channel for the data type description, and only digital and CAN

outputs are supported. As seen in Listing 7.2, they only require the input

channel number, output channel type, and relevant extra qualifiers for

their channel.

Events

An event is a particular condition that, when verified, results in a re-

action of the system. Session start and lap split are examples of these

events. They are primarily described by means of a Trigger structure.

An event may be specified as level-sensitive (fired each time its associ-

ated trigger is true or false) or edge-sensitive (fired only once when the

trigger condition changes from false to true, or the other way around).

The many allowed conditions are listed in Listing 7.3, and fall in the

following categories:

periodic triggers are triggered at regular time intervals, irrespective of

any channel value or event state.

event triggers use other triggers as event sources. They can be pro-

grammed to perform basic logic operations (AND, OR, XOR) on

these values, and thus can be used to create more complex actions.

108 A Real-Time DAQ System for Racing Vehicles

Listing 7.3: Trigger definitions
typedef enum {

compDisabled , // disabled, never happens
compPeriodic , // periodic trigger, period val1
compEvent, // use event# val1 as trigger
compEventAnd , // trigger on both event# val1 and val2
compEventOr, // trigger on any of event# val1 or val2
compEventXor , // trigger on either event# val1 or val2
compChanged, // x(t) != x(t-1)
compUpdated, // x(t) has been updated
compSignGreaterThan, // signed, x(t) > val1
compSignLessThan, // signed, x(t) < val1
compSignRange , // signed, val1 < x(t) < val2
compUnsignChanged, // x(t) != x(t-1), val2=tolerance
compUnsignGreaterThan, // unsigned, x(t) > val1
compUnsignLessThan, // unsigned, x(t) < val1
compUnsignRange , // unsigned, val1 < x(t) < val2
compGreaterThanChan_SS, // sgnd x(t) > sgnd ch# val1
compGreaterThanChan_SU, // sgnd x(t) > unsgnd ch# val1
compGreaterThanChan_US, // unsgnd x(t) > sgnd ch# val1
compGreaterThanChan_UU, // unsgnd x(t) > unsgnd ch# val1
compLessThanChan_SS, // sgnd x(t) < sgnd ch# val1
compLessThanChan_SU, // sgnd x(t) < unsgnd ch# val1
compLessThanChan_US, // unsgnd x(t) < sgnd ch# val1
compLessThanChan_UU, // unsgnd x(t) < unsgnd ch# val1
NUM_COMPARE_TYPES

} PACKED ComparisonType;

changed triggers are sensitive to a change in the value of the associated

channel.

updated triggers are sensitive to when a single channel has been up-

dated (not necessarily with a new value).

comparison triggers use integer functions to compare the associated

channel. It is possible to select the compare function (less than,

greater than, in range), and use a second channel instead of a fixed

value for comparison.

To implement these different conditions in the fastest way, a function

lookup table has been used. This results in an explosion in the number of

actual comparison types, since all the comparison attributes (including

the signedness of the values used), must be factored in the type enumer-

ation.

7.3. Software overview 109

Figure 7.5: Data storage layout (a single packet).

Delta from previous timestamp (δ)
}

Header

Periodic channel data

...

}
Data for all elapsed

periodic channels,

ordered by number

Extra channel count (k)

Extra ch. # Extra ch. data

...

} k couples, with channel

number and associated

data

7.3.2 Data storage format

Logged data is stored in a compact format that requires knowledge

of the associated channel logging configuration to be read. This for-

mat, shown in Figure 7.5, does not have headers explaining the con-

tents of each data point, but instead exploits the implicit time ordering

one would expect items to be stored by the logger. Should there be non-

periodic channels, such as events or incoming messages, they are marked

in a recognizable way. Each time step for which the logger wants to out-

put data, the following algorithm is used:

• Store the time delta δ, measured in ticks, from the previous stored

block’s timestamp.5.

• If there are input channels that are configured for periodic logging,

and the period matches with the current time T , store only the

actual channel data, in ascending order of channel number.

• Store the number of non-periodic channels k that are to be logged

for this time interval. If there are none, store 0 and end the packet.

• For each non-periodic channel that has to be logged, store its chan-

nel # and subsequently its current value.

This algorithm has an interesting property. In the case where all

channels are periodic, the resulting channel sequence is also periodic.

5As an optimization, if there are periodic channels at maximum system frequency,

then this can be omitted as it will necessarily be always ‘1’.

110 A Real-Time DAQ System for Racing Vehicles

Its period can be readily calculated as the least common multiple of the

channel periods (or conversely, the greatest common divisor of the chan-

nel frequencies). This is extremely useful in the case of data corruption:

by using this property one can predict when a new periodic cycle will

start, and thus recover the stream from that point on. These instants

are called synchronization points.

For example, suppose we have three logging channels, channel 1 stor-

ing 16 bit data at 500 Hz, channel 2 storing 8 bit data at 200 Hz, and

channel 3 storing 32 bit data but being activated at random times (in

this example, at T = 7 ms and T = 15 ms). For these conditions, the syn-

chronization period is 10 ms, and the actual output would be as shown

in figure Figure 7.6.

The recording starts at time T = 0 with all the periodic channels; no

periodic channel logging occurs for T = 1 so the next data is stored only

for T = 2 and T = 4, where channel 1 is logged. At T = 5 channel 2 is

expected, so δ is now 1. Note that at T = 7 ms there were no expected

periodic channels, but channel 3 had to be stored (e.g. a message has

arrived from the CAN bus), so k immediately followed δ. At T = 15,

instead, both periodic and non-periodic channels had to be stored.

From this example you can also see how the channel period is given

by the synchronization points. If the recording started at T = 10 instead

of T = 0, nothing would change apart from the initial δ.

The overhead imposed by this data structure, even if in this specific

example looks important, is in fact limited. Usually, the bulk of the

recorded data are channels which are logged periodically at the highest

possible frequency, while non-periodic channels have comparatively long

mean periods.6

6Think about the lap split signal example given before.

7.3. Software overview 111

Figure 7.6: Data storage example. The logging settings that produced

this output are discussed in the text. Packets marked with (*) are also

synchronization points.

0 7 8 15 16 23 24 31

0 (δ) ch #1 ch #2

0 (k)

}
T = 0 ms (*)

2 (δ) ch #1 0 (k)
}
T = 2 ms

2 (δ) ch #1 0 (k)
}
T = 4 ms

1 (δ) ch #2 0 (k)
}
T = 5 ms

1 (δ) ch #1 0 (k)
}
T = 6 ms

1 (δ) 1 (k) 3 (#) ch #3

ch #3

}
T = 7 ms

1 (δ) ch #1 0 (k)
}
T = 8 ms

2 (δ) ch #1 ch #2

0 (k)

}
T = 10 ms (*)

2 (δ) ch #1 0 (k)
}
T = 12 ms

2 (δ) ch #1 0 (k)
}
T = 14 ms

1 (δ) ch #2 1 (k) 3 (#)

ch #3

}
T = 15 ms

1 (δ) ch #1 0 (k)
}
T = 16 ms

2 (δ) ch #1 0 (k)
}
T = 18 ms

2 (δ) ch #1 ch #2

0 (k)

}
T = 20 ms (*)

...

112 A Real-Time DAQ System for Racing Vehicles

7.4 Software organization

At power up, the CPU starts executing code from the 2 MB NOR flash

that is used for booting. A basic bootloader7 stored there takes care of

loading and starting the Linux kernel from the same memory. The ker-

nel has been programmed to use the second NOR flash chip (16 MB in

size) by splitting it in two JFFS2 partitions: the bigger one (15 MB) is

read-only and holds the root file system with the application code, and

the rest stores the current setup data and basic system logfiles. The

recorded data is instead stored in the 2 GB onboard CompactFlash card.

A simple, SysV-like boot process sets up a small ram-disk for /var

and /tmp, and loads the required network daemons:

dhcpcd waits for a network connection, and auto-configures the IP ad-

dress via DHCP if such a server is present.

betaftpd and smbd handle Samba (Windows networking) and FTP ser-

vices, that allow easy access to the configuration and data folders.

boas provides an HTTP Web interface with CGI support, which is used

as the device’s status and debug interface.

rsyncd is used to sync the root partition, for firmware update purposes.

syslogd provides storage for the kernel and system log.

Finally, the real-time kernel module and the corresponding control

application are loaded and run.

7.4.1 The kernel module

The code in the kernel module is divided between several files and

subdirectories:

base/ contains the general logic for the kernel module,

sampler/ implements the hard real-time logic for acquiring analog and

digital inputs,

7The default Freescale bootloader is dBUG, but we opted for the LogicLoader soft-

ware from LogicPD. All these bootloaders are freely available from their producers.

7.4. Software organization 113

can/ implements the CAN device driver to acquire messages from the

bus,

gps/ implements the GPS driver, parsing NMEA sequences coming from

the serial line,

dsp/ handles the optional digital signal processing of the received data.

Each sampling tick, the following actions are handled by the code

inside the module:

• Regardless of the current logging settings, all high speed, real-time

hardware input channels (analog, digital and CAN) are sampled for

their current value. Low speed data from the GPS is also acquired

and processed shortly after.

• Digital signal processing performs all configured activity (moving

average, FIR or custom digital filters) on the current values of all

the input channels.

• For each of the configured inputs, their value is compared to the

associated hardware channel, and flags are updated accordingly.

• All of the configured triggers’ conditions are evaluated, updating

their “active/idle” flag.

• Based on the current value of some triggers, the systems performs

special actions, such as start/stop logging, etc.

• The logging subsystem scans all active channels, logs each one ac-

cording to their configured schedule, and continuously stores the

resulting data in a ring buffer.

• Finally, configured output channels are evaluated, and the appro-

priate action is taken if their associated event is active.

114 A Real-Time DAQ System for Racing Vehicles

7.4.2 The user-space application

The user space application loads the current settings from the on-

board Flash memory. These settings are stored in hand-editable text

files, as follows:

inputs.conf describes currently configured input channels and their at-

tributes (visible in Listing 7.1).

events.conf declares conditions for the pre-defined actions (start/stop

session, lap, etc) as well as custom ones obtained by logic composi-

tion. See Listing 7.3 for the complete list.

logs.conf defines logging frequencies (or matching events) for the con-

figured input channels.

outputs.conf configures output channels, specifying contents, activa-

tion condition, and their attributes (visible in Listing 7.2).

These files are used by both the real-time application and the PC-

side data converter; additionally, the latter also uses resample.conf,

which describes how to resample the non-periodic channels when the

output format supports only periodic streams.8 (This feature can also

be effective to downsample high-frequency, periodic channels so that the

resulting data is smaller and easier to process.)

After setting the parameters in the kernel module, the application

locks in a read() function call, waiting for data and commands from the

kernel module. Once a new session is started by activating its trigger,

the logging system starts sending data down the pipe, and the user space

application stores this data, along with a copy of the above configuration

files, in a session-numbered directory.

The actual recorded data is stored in a number of files, one per lap,

and is compressed with the Open Source library zlib to optimize the

storage space.9

8WinTAX, one of the most famous visualization and engineering software used in

racing environments, has this constraint on its data files.
9Most redundancy is eliminated already at the lowest level of compression, reducing

file size by at least 30 %.

7.5. Real-time implementation 115

7.5 Real-time implementation

The following section will detail some of the real-time implementa-

tion issues encountered while developing this system, and how these

have been solved.

7.5.1 Interrupts on the ColdFire

The 5485 has a very flexible interrupt controller, much like the ones

in the the M68000 family, where a 3-bit encoded interrupt priority level

is sent from the interrupt controller to the core, providing 7 levels of

interrupt requests. Level 7 represents the highest priority interrupt

level, while level 1 is the lowest priority (0 being absence of interrupts).

The processor samples for active interrupt requests once per instruction

by comparing the encoded priority level against a 3-bit interrupt mask

value (I) contained in the machine’s status register (SR). If the priority

level is greater than the SR[I] field at the sample point, the processor

suspends normal instruction execution and initiates interrupt exception

processing. Level 7 interrupts are treated as non-maskable within the

processor, while levels 1-6 may thus be masked depending on the value

of the SR[I] field.

During the interrupt exception processing, the CPU enters supervi-

sor mode, and then fetches an 8-bit vector from the interrupt controller.

The fetched data provides an index into the exception vector table that

contains 256 addresses, each pointing to the beginning of a specific ex-

ception service routine. Most of these are reserved for processor and

MMU events and have fixed priorities; however, 63 are associated with

internal peripherals, and each of these has a unique interrupt control

register to define the software-assigned levels and priorities within the

level.

The peripheral set includes two “slice timers”, used to provide short-

term periodic interrupts. Each timer consists of a 32-bit counter, with

no prescaler, that counts count down from a prescribed value. When

they reach zero and expire/interrupt, they are automatically reloaded,

starting a new cycle.

116 A Real-Time DAQ System for Racing Vehicles

7.5.2 Interrupt scheduling

By programming the interrupt controller appropriately, it is possible

to tweak interrupt priorities so that real time tasks have fixed latencies.

The standard implementation of Linux on the ColdFire platform does

not change the default values of the peripheral interrupt priorities, as

all interrupts are usually considered maskable and treated equally by

the standard Linux kernel; in particular, this applies to the slice timer

0, which was used to provide the usual 100 Hz system tick.

Using the same strategy for our periodic timer, initially we tried as-

sociating a stock Linux ISR to the second slice timer. By monitoring

the output waveforms with a scope, however, as expected the jitter re-

sults were very poor (especially when the system was not idle). This was

clearly due to the fact that while the Linux kernel was executing in a

non-preemptible zone, the sampling interrupt had to wait until comple-

tion of the critical section before being serviced.

The ideal solution was to raise the priority of the second slice timer up

to that of a non-maskable interrupt. However, that means the CPU may

handle the interrupt even while “all” interrupts have been masked by

the Linux kernel. It is thus imperative not to interfere with the kernel

operations, while in this ISR: if any part of the kernel is called from

here, there is a chance for deadlock or data corruption. Extra care must

be taken, since there are subtle and non-obvious interactions, as will be

described in the following paragraphs.

With this change, the resulting jitter has been almost completely

cleared; the small remaining jitter on the sampling clock is mostly due

to the underlying base clock and the inevitable PLL jitter.

This real-time code needs to be as quick as possible to minimize the

impact on the system performance. Also, as stated above, being called

outside of the kernel context makes it impossible to use any of the func-

tions provided by the Linux kernel. For these reasons, this ISR only

takes care of channel sampling, which is the most sensitive real-time

task; data is then placed in a buffer to be later retrieved and analyzed

by a lower priority, soft real-time task, which runs synchronized with the

Linux kernel. This has been implemented by generating (via the Coldfire

interrupt controller) a simulated interrupt request for an unused inter-

rupt source, and assigning higher priority than all other interrupts (but

still not NMI). Using standard Linux kernel methods, the bulk process-

7.5. Real-time implementation 117

ing routine is associated with this interrupt; as such, it will be handled

just after the NMI has completed (if interrupts were enabled), or at the

end of the current critical section (when the interrupts are re-enabled).

The original system tick interrupt source has been disabled to reduce

the interrupt contention on the CPU. This interrupt is instead sched-

uled by the real time ISR, exploiting the fact that the low-speed tick is

an integer fraction of the sampling frequency. This way, it is also guar-

anteed that the Linux kernel scheduling will be done immediately after

the real-time and soft real-time data processing occurs, so that the user-

space application will have priority over the other Linux tasks.

Linux ISR handler

The interrupt handling functions of the Linux kernel are designed to

allow multiple devices to share a single IRQ. To make this possible, each

interrupt is handled by the same Linux-provided ISR stub, which checks

the internal interrupt tables and calls the associated list of ISRs. The

stub also does other minor things, like incrementing the interrupt count

table that is visible in /proc/interrupts.

This behaviour has to be avoided as the stub was not designed to be

reentrant. For this reason, a custom form of the request_irq() function,

called request_hard_irq(), was implemented. This function substitutes

the Linux low level handler with its own very small one, which just calls

the requested ISR and then executes the “return from interrupt” assem-

bly instruction. This double jump is still needed to allow a standard

C function (with its compiler-added preamble/epilog code) to be called

without modifications in interrupt context.

MMU

Linux in its unmodified form uses the MMU for security and memory

management purposes, and the MMU inside the Coldfire chip is fully

supported.

Accesses from the CPU are mapped from virtual addresses to physi-

cal ones using a hardware page table of fixed size, which has only room

to store the most used entries. When an address is requested which is

outside the currently programmed page table entries, a page fault ex-

ception is thrown and the standard Linux page fault handler is called.

118 A Real-Time DAQ System for Racing Vehicles

This handler searches a much bigger page pool (on standard machines,

for example, handles also the case where a page has been swapped out to

slower storage) to find out the physical position of this page, overwrites

the least recently used entry in the page table with this information, and

resumes the application.

Unfortunately, all of this is very sensitive to reentrancy. At the time

the real-time ISR is called, the Linux kernel might be busy altering page

table structures, and so a walk of these tables could have unpredictable

results. For this reason, both the code and the data which is used by

the processor inside the real time ISR has been placed in a fixed-address

SRAM area, which is directly accessed by the ColdFire CPU bypassing

the MMU and its possible issues.

7.5.3 Interprocess communication

The current data samples, taken by the real-time task, are stored in

a double buffer which is later fetched from the soft real-time task. Ide-

ally there would never be a reason for more than one buffer, but delays

introduced by the Linux kernel’s critical sections may cause the bulk pro-

cessing task to not terminate before another real-time ISR is executed.

Overflow of this buffer is also monitored for completeness, but this has

never happened.

The real-time FIFO that handles communication between the real-

time task and user space (actually, the kernel-space implementation of

the read() system call), is more interesting.

This buffer cache is used at runtime to continuously store data, even

while the user-space application is not serviced for some time, but conve-

niently doubles as a “pre-trigger buffer”: once the system is configured,

data is always appended to the buffer even if logging is not yet active, so

that after an initial ramp the whole cache is always full (or nearly full).

This makes it easy to store data even before the actual “start data log-

ging” event triggers. However, due to the peculiar format used in data

storage, the data stream can’t be started from any of these measured

samples, but only where the timestamp is an exact multiple of the cyclic

interval. Data must thus be discarded up to a synchronization point, in

bigger blocks than it was previously stored.

This FIFO is implemented by a single linked list of DataBlockNodes,

each holding a fixed amount of data, statically allocated at module load

7.5. Real-time implementation 119

time. Each of the data blocks stored by the real-time task begins with

a BufHeader, which records the real-time timestamp, the length in bytes

of the whole data block, the current system flags and a simple checksum

value. Both the kernel and the user-space program check consistency in

these fields for maximum security.

Adding data blocks to the buffer cache

During the execution of the real-time task, when the logger submits

a data block for addition, it is split in DataBlockNodes and stored by the

following algorithm:

1. If the system is in the pre-trigger mode and the read block is stale

(older than the maximum required age), or the queue is full, the

block is discarded advancing the read pointer to the next block

header, freeing a number of nodes.

2. If the system is running, and the queue is full, this means that

some of the data that had to be stored is going to be overwritten.

The read pointer is advanced to the next block header that is also

a synchronization point.10

3. At this stage the write pointer has room for at least one node. The

current one is filled with data and marked as full.

4. If the data that had to be stored didn’t fit in this node, repeat from

1 with the remaining data.

The rationale behind step 2 above is that, in this case, it is impor-

tant for the lower levels to detect the “skip”, and also make useful use of

the following information (since an undetected jump in the data stream

would confuse the decoding state machine). You can use buffer headers

to compare subsequent timestamps and detect a skip. But once the skip

is found, since the information in the queue is already in the storage

format, the periodic data stream is lost—the only way to obtain useful

information is by starting again from a synchronization block. Further-

more, since the queue was full, discarding a large block of data reduces

the chances for many little consecutive skips, something that would hap-

pen if the buffer was slowly consumed.

10Recall the discussion in Section 7.3.2.

120 A Real-Time DAQ System for Racing Vehicles

Figure 7.7: Channels acquired during a test at the Mugello circuit.

Reading from the buffer cache

If the system is idle, or the cache is empty, the reader process sus-

pends in a wait queue, to be awaken by the soft real-time task when a

block has been written in the FIFO.

While reading buffers from the cache, however, the real-time tasks

could be activated and write data to the FIFO again (and thus could

move the read pointer, overwriting the same data that was going to be

read). The read pointer must always refer to the beginning of a header,

because otherwise the update algorithm above would not fetch correct

information. But it is not feasible to disable interrupts for the whole

length of the read() function call, because that could cause data blocks

to be skipped at soft real-time level. Thus, the interrupts are disabled

while one data block is copied, and allowed to run again at the end of

each block.

The check for correct timestamp sequencing is done in the user space

program: if there is a gap in the received stream’s timestamps, the pro-

gram forcibly closes the current file and starts a new one, forcing reader

state machines to restart from a synchronization point.

7.6 Conclusions

The device has been tested twice during practice sessions of the Ducati

Corse team at the Mugello International Circuit. After being mounted

on the Ducati GP7 bike, and having passed basic “survival” tests, we

7.6. Conclusions 121

Figure 7.8: The WinTAX software displaying lap data recorded at the

Mugello circuit. The upper half of the window shows some of the time-

correlated signals recorded; the peak speed point (highlighted, close to

170”) is also located on the GPS point display in the bottom half of the

window.

122 A Real-Time DAQ System for Racing Vehicles

have succesfully recorded several sessions’ worth of data, making use of

all the hardware channels. The analog recording performance was bet-

ter than the current data logger used by the team, and the capability of

recording non-periodic data sparingly was a nice plus.

Figure 7.5.3 shows an actual snapshot of WinTAX, the software used

by the team for their engineering analysis, displaying a number of chan-

nels acquired by the presented device. The lower half of the window

shows a GPS point cloud that highlights the shape of the famous Mugello

circuit. At the highlighted instant (close to 170 ”) the bike was at its max-

imum speed for the lap, at the end of the runway.

We also tested CAN communication with the ECU, by sending pro-

cessed data (the current GPS coordinates, translated to metric units) to

the ECU via a special CAN packets. The device acknowledged, and the

data could be successfully read via the ECU’s control software.

As originally stated, this platform thus enables much more complex

algorithms to be tested on the field: CPU usage barely reached 20 % dur-

ing all of our tests, and the ColdFire platform is ready for heavy through-

put, DSP-like algorithms, since it has dedicated DSP instructions such

as MAC (Multiply and ACcumulate) and a floating-point unit.

One of the biggest open issues is having real-time, accurate bike at-

titude information. New algorithms, merging GPS and inertial sensors,

could increase the overall knowledge of the ECU enabling unprecedented

levels of performance to be obtained.

123

Chapter 8

Conclusions

This work presented a combination of different aspects of the soft-

ware and the architectures used for developing such systems, without

the ambition of being exhaustive but with the aim of giving the flavor of

the complexity and the interaction of the underlying structures, method-

ologies, and procedures. Architectural and methodological issues in the

designs have been presented together with a deepening insight into the

technological and development aspects of the implementation of the al-

gorithms and design of custom, application specific boards.

The four vehicle lifecycle phases introduced in the introduction to

Chapter 5 (design, development, simulation and testing) already have

available commercial software architectures. Many different middle-

ware solutions provide very useful, specialized abstractions which re-

duce development time and costs, while allowing greater flexibility, and

ultimately resulting in higher overall design robustness.

Little has been done, however, in the way of creating a single, com-

mon platform for these tasks, so that by integrating these steps together,

deeper insight in the workings of automotive electronics could be achieved,

enabling ever increasing performance returns.

124 8. Conclusions

125

Appendix A

Data Acquisition System

Schematics

126 A. Data Acquisition System Schematics

127

128 A. Data Acquisition System Schematics

129

130 A. Data Acquisition System Schematics

131

Bibliography

[1] R. E. Kalman, “A new approach to linear filtering and prediction

problems,” Transactions of the ASME–Journal of Basic Engineer-

ing, vol. 82, no. Series D, pp. 35–45, 1960.

[2] W. F. Milliken and D. L. Milliken, Race Car Vehicle Dynamics. War-

rendale, PA, USA: Society of Automotive Engineers, Inc., 1995.

[3] J. D. P. Z. Berman, “Advances in motorcycle design and control,”

IEEE Control Systems Magazine - special issue, vol. 26, no. 5, pp.

510–517, 1998.

[4] Z. Berman and J. D. Powell, “The role of dead reckoning and iner-

tial sensors in future general aviation navigation,” in IEEE Position

Location and Navigation Symposium, 1998, pp. 510–517.

[5] R. Da, G. Dedes, and K. Shubert, “Design and analysis of a high-

accuracy airborne gps/ins system,” in Int. Technical Meeting of the

Satellite Division of the Institute of Navigation (ION GPS-96), 1996,

pp. 955–964.

[6] D. Gebre-Egziabher, R. C. Hayward, and J. D. Powell, “A low-cost

gps/inertial attitude heading reference system (ahrs) for general

aviation application,” in IEEE Position Location and Navigation

Symposium, 1998, pp. 518–525.

[7] D. Gebre-Egziabher, J. D. Powell, and P. Enge, “Design and perfor-

mance analysis of a low-cost aided dead reckoning navigation sys-

tem,” Gyroscopy and Navigation, 2001.

[8] NIMA, “World geodetic system 1984, its definition and relation-

ships with local geodetic systems,” Department of Defense, Tech.

Rep. TR8350.2, Third Edition, 1997.

132 BIBLIOGRAPHY

[9] J. Ryu and J. C. Gerdes, “Intergrating inertial sensors with gps for

vehicle dynamics control,” Journal of Dynamic Systems, Measure-

ment and Control, June 2004.

[10] H. Qi and J. B. Moore, “Direct kalman filtering approach for gp-

s/ins integration,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 38, no. 2, April 2002.

[11] F. Nori and R. Frezza, “Accurate reconstruction of the path followed

by a motorcycle from the on-board camera images,” in IEEE Intelli-

gent Vehicles Symposium, 2003.

[12] J. Canny, “A computational approach to edge detection,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, 1986.

[13] R. O. Duda and P. E. Hart, “Use of the hough transform to detect

lines and curves in pictures,” Artificial Intelligence center, Tech.

Rep. 36, 1971.

[14] D. H. Ballard, “Generalizing the hough transform to detect arbi-

trary shapes,” in Readings in computer vision. Morgan Kaufmann,

1987, pp. 714–725.

[15] H. B. Pacejka, Tyre and Vehicle Dynamics. Oxford: Butterworth-

Heinemann, 2002.

[16] C.-S. Liu and H. Peng, “Road friction coefficient estimation for vehi-

cle path prediction,” Vehicle System Dynamics, vol. 25, no. 413-425,

1996.

[17] J. S. B. Mitchell and C. H. Papadimitriou, “The weighted region

problem: finding shortest paths through a weighted planar subdi-

vision,” Journal of the ACM, vol. 38, no. 18-73, January 1991.

[18] H. Haddad, M. Khatib, S. Lacroix, and R. Chatila, “Reactive naviga-

tion in outdoor environments using potential fields,” in IEEE Con-

ference on Robotics and Automation, vol. 2, no. 1232-1237, 1998.

[19] Y. K. Hwang and N. Ahuja, “A potential field approach to path plan-

ning,” IEEE Transactions on Robotics and Automation, vol. 1, no.

23-32, 1992.

BIBLIOGRAPHY 133

[20] H. Freeman, “Computer processing of line-drawing images,” Com-

puting Surveys, vol. 6, no. 57-97, March 1974.

[21] D. Ferguson and A. Stentz, “The delayed d* algorithm for efficient

path replanning,” in IEEE Conference on Robotics and Automation,

no. 2045-2050, 2005.

[22] R. Frezza, G. Picci, and S. Soatto, “A lagrangian formulation of non-

holonomic path following,” in IEEE Conference on Vision and Con-

trol, 1998.

[23] M. Pasquotti, Tecniche di Model Predictive Control per la guida di

un’auto. DEI-University of Padova, 2004.

[24] M. Bertozzi, A. Broggi, and A. Fascioli, “Stereo inverse perspective

mapping: Theory and applications,” Image and Vision Computing

Journal, vol. 16, no. 585-590, 1998.

[25] L. Henriksen and E. Krotkov, “Natural terrain hazard detection

with a laser rangefinder,” in Proceedings of IEEE International Con-

ference on Robotics and Automation, 1997.

[26] J. Roberts and P. Corke., “Obstacle detection for a mining vehicle us-

ing a 2-d laser,” in Proceedings of Australian Conference on Robotics

and Automation, 2000.

[27] “Fuzzy logic toolbox,” Matlab Reference guides, 2002.

[28] A. D’Angelo, E. Menegatti, and E. Pagello, “How a cooperative be-

haviour can emerge from a robot team,” Proceedings of DARS’04,

2004.

[29] M. S. Branicky, “Analysis of continuous switching system: Theory

and examples,” Proceedings of the American Control Conference,

1994.

[30] P. A. Bernstein, “Middleware. an architecture for distributed sys-

tem services,” DEC Cambridge Research Lab, Tech. Rep., 1993.

[31] A. Campbell, G. Coulson, and M. Kounavis, “Managing complex-

ity: Middleware explained.” IT Professional, pp. 22–28, September

1999.

[32] The Open Group, “Dce 1.1: Remote procedure call,” The Open

Group, MA, Tech. Rep., 1997.

[33] L. Burelli, “An integrated control system architecture for au-

tonomous vehicles,” in IASTED Intelligent Systems and Control

(ISC), 2007.

[34] A. Tellatin, Sistema hardware e software di supervisione di un vei-

colo autonomo. DEI-University of Padova, 2005.

[35] L. Luo, “Fault manifestation model for predicting anomalous sys-

tem behavior,” in International Conference on Dependable Systems

and Networks (DSN), Bethesda, MD, 2002.

Acknowledgements

Compiling a list of people that deserve being mentioned here is ar-

guably the most overwhelming task I faced during this Thesis. I could

go on and on writing about the people that helped me in one way or the

other during all these years. Thanks, guys, for making this choice so

difficult!

Above all, I would like to thank my advisor, prof. Ruggero Frezza,

and his “twin” in spirit, prof. Alessandro Beghi, for having given me so

many research projects which were also a lot of fun to work on. They put

unquestioned faith in me and all the other lab students, and have given

me unique opportunities to broaden my horizon with their knowledge

and help. On this topic, Angelo Cenedese rightly deserves an honorable

mention, for all the insights he tirelessly (at all times, really) shared

with me while I was busy writing my articles or this Thesis.

However, I could not have done half of what I did without the help of

my lab-mates. My biggest thanks go to my pal Andrea; a lot of things

that we accomplished together would have been simply out of my reach

without him. We shared lots of long hours in the lab, but had also lots

of fun. I would like to also thank all the students who enrolled in the

“Controllo dei Processi 2005” course for having done their fair share (and

often more than that) to participate in the autonomous vehicle project.

Thanks also go to all my fellow Ph.D. students in the office at the 3rd

floor, and especially to Maura, Paolo and Ruggero: we began this adven-

ture together, and we are finishing together (well, except for Paolo. . . I

guess there must always be one ahead of the pack!). I am sorry because

we didn’t share as much as I would have liked to: you guys are really a

pleasure to stay with, and I hope we will keep in touch in the future. I

will always remember my California trip in summer 2006; 7 people there

from the same office. . . so many adventures!

Back to being serious for a minute because I want to say thanks to all

the people I had the pleasure to work with during these years, starting

with San Mateo: Mark Spence, Bob and all the guys at SES, for being

so helpful and supportive. I would also like to thank the guys in Ducati

Corse: Marco Amorosa, Roberto Canè, Luca Gasbarro, Riccardo Sancas-

sani and Filippo Tosi, for all their support in our work, including the

astounding opportunity to go and work with them at the Mugello circuit.

Finally, among the guys that are working with me now in M31 there

are some of the best friends I have made at the University (Al, Andrea,

Arrigo, Enrico, Fabio), and I am proud to be both their friend and col-

league. But my last thanks are for those that silently, and perhaps un-

knowingly, helped me continuosly during all these years: my friends in

Friuli (Alex, Daniele, Davide, Federica, Tiziana. . .) and Veneto (Alberto,

Ale, Andrea, Francesca, Stefano, Vincenzo. . .). My tirelessly supportive

parents, to whom this Thesis is dedicated. Oh, and in case I forgot, you

that are reading this.

My heartfelt thanks go to all of you, wonderful people, for having

shared with me this intense period of my life.

