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Sommario

La prima parte di questo lavoro di tesi e’ dedicata alla decodifica analogica e presenta la

progettazione di un’interfaccia di I/O per un decodificatore iterattivo completamente ana-

logico per un codice convoluzionale concatenato in serie e di un decoder analogico per

Trellis Coded Modulation (TCM) per la correzione degli errori in memorie Flash multi-

livello. Il decodificatore iterattivo rappresenta un grosso passo avanti nell’evoluzione dei

decodificatori analogici in quanto e’ possibile riconfigurarne sia la lunghezza di blocco

che il rate del codice. Per di piu’, con un’efficienza di 2.1nJ/bit, migliora fino a 50 volte

le prestazioni in termini di efficienza dei decodificatori digitali con la stessa lunghezza

di blocco. Le potenziali prestazioni e le limitazioni dell’approccio analogico per un de-

codificatore per TCM sono state investigate considerando due diversi decodificatori, uno

a 4 stati ed uno ad 8 stati, entrambi sviluppati in un processoCMOS standard con una

lunghezza di canale di 0.18µm.

Nella seconda parte della tesi viene presentato il design diun transciver per una ra-

dio ad impulsi a banda larga (UWB-IR), con particolare enfasi sulla progettazione del

trasmettitore. Il trasmettitore utilizza una nuova combinazione di mixer e amplificatore

di potenza per generare un impulso gaussiano con una larghezza di banda di 1.25GHz

ed una frequenza centrale di 7.875GHz. Il nuovo circuito, inoltre, include un trasfor-

matore monolitico in modo tale da generare una tensione di uscita di 3.2Vpp, necessaria

per garantire la distanza di connessione richiesta di almeno 10 metri. Il trasformatore e’

stato progettato in modo da massimizzare l’efficienza in termini di potenza e, allo stesso

tempo, realizzare un filtro ladder del quarto ordine al fine diridurre le emissioni fuori

banda del trasmettitore stesso. Confrontando l’efficienzadi questo design con trasmettori

per UWB-IR allo stato dell’arte si e’ visto come la soluzioneda noi proposta porti ad un

miglioramento dell’efficienza del trasmettitore di un fattore pari a 10.





Abstract

The first part of this work concerns analog decoding. It presents the design of the I/O

interface for a fully analog iterative decoder for a serially concatenated convolutional

code and of a fully analog Trellis Coded Modulation (TCM) decoder for error correction

in multi-level (ML) flash memories. The iterative decoder represents a significant step

ahead in the evolution of analog decoders due to its reconfigurability in both block length

and code rate. Moreover, with an efficiency of 2.1nJ/bit, it outperforms digital decoders

with the same block length of a factor up to 50. The potential performance and limitations

of the analog approach for a TCM decoder have been investigated considering a 4-state

and an 8-state decoder, both developed in a 0.18µm standard CMOS process.

In the second part of the thesis, the design of a low-power transceiver chipset for

ultra wideband impulse radio (UWB-IR) is presented, with particular emphasis on the

transmitter design. In particular, the transmitter uses a novel combined mixer and power

amplifier to generate a Gaussian pulse with 1.25GHz bandwithand center frequency of

7.875GHz. The combined MRX-PA includes a monolithic transformer to reach a maxi-

mum output voltage swing of 3.2Vpp, necessary to ensure the required link distance of 10

meters. The transformer has been designed in order to maximize the power efficiency and

at the same time to realize a fourth-order ladder filter, so asto reduce the transmitter out-

of band emissions. The efficiency of this design has been compared with state-of-the-art

UWB-IR transmitters, showing how the proposed solution leads to an improvement in the

transmitter efficiency of a factor of almost 10.





Introduction

The density and speed of integrated circuit computing elements has increased roughly

exponentially for a period of several decades, following a trend described by Moore’s

Law. While it is generally accepted that this exponential improvement trend will end, it

is unclear exactly how dense and fast integrated circuits will get by the time this point is

reached. Working devices have been demonstrated that were fabricated with a MOSFET

transistor channel length of 6.3 nanometers using conventional semiconductor materials,

and devices have been built that used carbon nanotubes as MOSFET gates, giving a chan-

nel length of approximately one nanometer.

The density and computing power of integrated circuits are limited primarily by power

dissipation concerns. Even if several techniques have beendeveloped to reduce it, how-

ever, if current trends continue, ”Energy costs, now about 10% of the average IT budget,

could rise to 50% ... by 2010” [1].

In this thesis, we cope with the problem of reducing power consumption in two dif-

ferent key application fields: the design of decoders for both Turbo codes and multilevel

Flash memories error correcting codes and the realization of low-power transceivers for

ultra-wideband (UWB) impulse radio (IR).

Turbo codes, first proposed by Berroux and Glavieux in 1993 [2], have become ex-

tremely popular in the last few years till the point to be adopted as standard codes for

a wide range of telecommunication applications, such as 3G/UMTS cellular phones [3]

and satellite digital video broadcasting [4]. At the same time, Flash memory market

growth has been explosive in the past decade, driven by cellular phones and other types of

electronic portable equipment, such as palm top, portable PC, mp3 audio player, digital

camera and so on. Thus, reducing the decoders power consumption for such applications

is already crucial and will become more and more decisive in the next few years.

UWB-IR have become an active research area with proliferation of portable electron-

ics, as it promises unprecedent data rates for short-range commercial radios, combined

with precise locationing and high energy efficiency. These benefits stem from the use of

wide bandwidths and impulse signaling, implying high channel capacity and precise time

resolution [5]. A critical specification for energy efficient short-range radio is, of course,

the energy per bit, that is the energy spent to transmit and receive a single information bit.



viii Introduction

This thesis consists of two parts: in the first we address the decoding problem, while

in the second the design of a chipset for UWB-IR is presented.

The pioneering work of Loeliger’s [6] and Hagenauer’s [7] groups led to the first

successful implementations of analog iterative decoders [8–10] in BiCMOS technology,

and demonstrated the potential advantages of this approachwith respect to the digital

one both in terms of decoding speed and power efficiency. However, the limitations of

the analog implementation, due to the fully parallel decoding process, have soon become

clear. The only way to make the analog decoder circuitry complexity independent on

the codeword length is to reduce the fully parallelism of data processing by introducing

the concept of sliding window decoding [11, 12]. Following this decoding strategy, an

hybridanalog decoder for Turbo codes has been designed, which combines the advantages

offered by the analog approach in terms of power consumptiontogether with those typical

of the digital implementations, such as a reduced area occupation and a greater versatility.

Using the sliding window decoding approach, the decoder interface circuitry becomes

the bottleneck in terms of power consumption ad area occupation, as we will see in Chap-

ter 1. In fact, in order to store the channel data and to exchange information during the

iterative decoding process, two large power hungry analog memories are needed.

Thus, as a significant effort in the design of complex analog decoder is spent in the

realization of the interface circuitry, analog decoders could be successfully used in all

those applications where a memory is already implemented, such as within stand-alone

Flash memory chips. Following this consideration, a novel TCM analog decoder for next

generation multilevel Flash memories has been designed, with encouraging performance

both in terms of area occupation and power consumption with respect to state-of-the-art

digital decoders.

In Chapter 1, the architecture and main features of an iterative fully analog decoder

for a serially concatenated convolutional code, which implements the sliding window

concept are presented. In particular, the specifications for the decoder input interface

circuitry, which consists of an analog memory, a voltage to probability converter and a

digital to analog converter, are drawn and its design and optimization are then analyzed

in details.

Chapter 2, after a brief introduction to multilevel Flash memories, analyzes the advan-

tages and drawbacks of commonly used error correction codesin order to derive a novel

ECC scheme based on Trellis Coded Modulation.

In Chapter 3, the complete design of an analog decoder for theTCM ECC proposed



ix

in Chapter 2 is presented. In particular, the potential performance and limitations of

the analog approach are investigated considering a 4-stateand an 8-state analog TCM de-

coder, both designed for an effective storage density of 3 information bits/cell. Transistor-

level simulations of the overall decoders, including the circuit interface between the Flash

memory cells and the decoder core, show how the proposed approach can achieve a de-

coding speed comparable with the state-of-the-art linear block codes occupying a small

area, with almost no loss in terms of BER with respect to the ideal decoding algorithm.

In order not to lengthen the thesis too much, some basic concepts of coding theory

are introduced in the Appendix A. The idea is to give the reader only the background

information necessary to understand the projects described in this work. Thus, particular

emphases is placed on the analog decoding approach for Trellis Coded Modulation and

Turbo codes. Interested readers can refer to the bibliography for a more detailed discus-

sion on coding theory.

The second part of the thesis is devoted to the design of a low-power transceiver

chipset for UWB-IR.

Chapter 4 briefly introduces UWB signalling systems together with some legal aspects

due to the Federal Communications Commission restriction on the transmitted power

spectral density. Then the system analysis of our chipset for UWB-IR sensor networks is

carried out in order to draw the specifications for both receiver and transmitter. For this

purpose, a behavioral model of the receiver implemented in UMC 0.13-µm RFCMOS

process has been developed, which also allowed to successfully test a synchronization

algorithm.

The design of the transmitter is then presented in details inChapter 5, where the

comparison with state-of-the-art UWB-IR transmitters shows how the proposed solution

leads to an improvement in the transmitter efficiency of a factor of almost 10.
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1
Input Interface for Analog Decoders

Although analog decoders demonstrated large improvementsin terms of power consump-

tion, chip area and throughput with respect to their digitalcounterparts [8,9,13,14], they

are still far from being used in realistic applications due mainly to the fact that their cir-

cuitry complexity increases linearly with the codeword length. The only possible solution

to this limitation is to reduce the fully parallelism of dataprocessing by introducing the

concept of sliding window decoding [11,12].

In this chapter, the architecture and main features of an iterative fully analog decoder

for a serially concatenated convolutional code, which implements the sliding window

concept, are presented. In particular, the specifications for the decoder input interface

circuitry, which consists of an analog memory, a voltage to probability converter and a

digital to analog converter, are drawn and then its design and optimization are analyzed

in details.

1.1 Hybrid Turbo Decoder

The input interface circuitry whose design will be described in Sec.1.2.3, is part of an

hybrid Turbo decoder which combines the advantages of the analog approach, by imple-

menting a fully analog decoding core, together with some features typical of the digital

implementations, such as the iterative use of the same computational hardware unit and

an increased flexibility both in terms of code rate and frame length.

1.1.1 Serially Concatenated Code Structure

The hybrid Turbo decoder is designed to decode in the analog domain a novel serially

concatenated convolutional code recently proposed in literature for satellite applications
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Figure 1.1: Block diagram of the serially constituent code scheme

[15] due to its high performance, simplicity and versatility.

The code block diagram is depicted in Fig.1.1. It consists ofthe concatenation of two

identical rate-1/2 4-state systematic recursive convolutional codes with generator polyno-

mials:

G(D) =
[

D2+1,D2+D+1
]

(1.1)

The two encoders scheme, together with a code trellis section, are shown in Fig.1.2.

A way to increase any code rate is offered by “puncturization”. A punctured code

is a higher rate code formed by discarding or puncturing specific codeword symbols of

the output of a low-rate code. Given the original low-rate code, the resulting punctured

code depends on the pattern of codeword symbols being discarded. This pattern is called

the perforation pattern of the punctured code and it can be conveniently defined by a

perforation matrixP with elements

pi, j =







0 if symboli of the branchj is punctured

1 if symboli of the branchj is retained

In our case, the outer code is punctured to rate 2/3 through the puncturing matrix

Po =

(

1 1 1 1

1 1 0 0

)

(1.2)

while the inner code systematic bits and parity bits are punctured separately through punc-

turersPs andPp, as described in detail in [15]. By changing the perforationpatter of the

two puncturersPs andPp in a rate-compatible fashion, the overall code rate can be varied

between 1/3 and (virtually) 1.

Let’s defineK, N andL the information block size, the interleaver size and the code-

word size respectively. The binary information data, collected in a vectoru of length
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Figure 1.2: Constituent encoder scheme of the SCCC Turbo code

K, is first encoded by the outer encoder, then punctured by the fixed puncturerPo and

interleaved before being forwarded to the inner encoder.

The output of the inner encoder is then punctured by the puncturersPs andPp, so as to

generate the two output streamscs andcp. These vectors are finally multiplexed to form

theL-bit codeword sequencec.

The coded sequencec is sent to the channel as the signal sequencex obtained at the

output of a binary pulse-amplitude modulation PAM or, equivalently, a BPSK modulator.

The relationship between the modulated signal and the codedbits is:

xk =
√

ES(2ck−1) (1.3)

having denoted byES the signal energy. The channel is assumed an additive white Gaus-

sian noise (AWGN) channel with two-sided noise power spectral densityN0/2.

Since the rate of the outer code punctured throughPo is 2/3, the interleaver length is

given byN = 3K/2. We assume the interleaver length to be a multiple of a base interleaver

sizeN′, which, as described in [15], is fixed to 300 bit. Thus, for larger interleaver lengths,

4 multiples ofN′ are considered, that is interleaver size of 300, 600, 1200 and 2400 bits.

The corresponding information block sizes can be deduced as:

K =
2
3

N−2 =
2
3

M ·N′−2 (1.4)

whereM = 1,2,3,4 and the two termination bits, added to reset the encoder memory to

the original state, are also taken into account.

The codeword lengthL can be calculated by recalling that two parity bitsck,1 andck,2

are generated for each information bituk which, together with the two termination bits,

gives:

L = M · (N′+2) (1.5)

which leads toL = 604,1208,2416,4832 for the 4 interleaver sizes considered.

The channel date-rate is fixed at 100Mb/s.



4 1. Input Interface for Analog Decoders

p (y y y )ch

u c1 c2

k k k Inner
SISO

Outer
SISO

P0

P0

-1p(y )k inner˜

p(y )k outer˜π

π
-1

Figure 1.3: SCCC Turbo code decoding scheme

1.1.2 Analog Decoding Procedure

The fully parallel analog Turbo decoding procedure is illustrated in Fig.1.3.

The two SISO modules, each corresponding to one of the two encoders reported

in Fig.1.2, perform the decoding by exchanging extrinsicsoft-information. Thesesoft-

informationcan be regarded as an index of the confidence level reached by the a pos-

teriori estimate of the original information bitsuk. It is worth to highlight that the two

SISO units, the inner and the outer SISO, which correspond tothe inner and outer encoder

respectively, work on input data streams with different length and typology.

The inner SISO soft-inputs are:

• the channel output symbolsys
k transition probabilitiespch(ys

k) = p(ys
k|xs

k) with s=

u,c1,c2;

• the additional information onuk andc1 given by the outer SISO as extrinsic proba-

bility p̃(yk)outer.

The outer SISO receives from the inner one the bitsuk andc1 extrinsic information

p̃(yk)inner and produces two outputs:

• ana posterioriûk estimate of the user bitsuk;

• new extrinsic information on theuk andc1 symbols which constitute the input for

the inner SISO.

1.1.3 Hybrid Decoding Procedure

A fully-parallel analog implementation of the decoding algorithm described in Sec.1.1.2

would require two SISO modules with length 2400 and 1600 respectively, so as to handle

the maximum codeword input length of 4800 bits. This would lead to a prohibitively large

chip area.
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To reduce the decoder complexity, a non fully-parallel approach is adopted. The basic

idea is to implement only one single SISO unit, which is used to decode both the outer and

the inner code. In addition, the SISO unit implements only a window of the overall code

trellis of N′ trellis sections. Thus, for larger block lengths the moduleis reused several

times to decode each of the constituent codes.

The choice of the window dimension is a tradeoff between circuit complexity and

speed. IncreasingN′ increases the circuit complexity but, at the same time, allows higher

decoding parallelism. As the time required by the SISO to converge to stable values

is roughly independent of the block size, as proved by simulations, the decoding speed

increases linearly with the size of the window. As a good tradeoff between circuit speed

and complexity, we fixedN′ = 300 trellis sections, which corresponds to the shortest

codeword considered with lengthL = 604 bits.

To explain the hybrid decoding process, an interleaver sizeof 2400 bits, corresponding

to 8 subblocks of minimum lengthN′ = 300, is assumed. The decoding procedure can be

summarized in the following few steps:

1. the decoder loads the channel information relative to theintere frame onto an analog

input memory;

2. during the first half iteration, the SISO unit works asinnerSISO. For each subblock

of N′ = 300 bits the SISO is fed with the corresponding channel transition proba-

bilities pch(ys
k) and the extrinsic information generated by the “outerSISO” during

the previous half iteration on the inner code input bits ˜p(yk)outer. At its output it

generates the extrinsic information ˜p(yk)inner on the 300 input bits which are then

stored following the natural order in the first row of an extrinsic memory. This pro-

cess is repeated 8 times, one for each subblock, until all the8 rows of the extrinsic

memory are loaded with the corresponding extrinsic values.

3. during the second half iteration, the SISO unit works asouter SISO. Thus, for

each subblock, it is fed with the extrinsic information ˜p(yk)inner on the outer code

output bits, properly deinterleaved and punctured, generated during the previous

half iteration by the “inner SISO” and with the extrinsic information on the outer

code input bits stored in the extrinsic memory. At its outputthe SISO unit generates

the a posteriori probabilities of the user bits on which decisions on the transmitted

symbols are taken. The SISO also computes the extrinsic information p̃(yk)outer on

the outer code output bits which will be stored, properly interleaved and punctured,
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Figure 1.4: Analog decoder block diagram

in the extrinsic analog memory. This process is repeated foreach subblock until the

extrinsic values for the entire block are stored in the memory.

4. Step 2 and 3 are repeated as many times as the maximum iterations numberNt = 10.

At the last iteration, decisions on the transmitted bits aretaken.

1.1.4 Analog Decoder Architecture

A block diagram of the analog decoder implementing the hybrid decoding algorithm de-

scribed in Sec.1.1.3 is shown in Fig.1.4. As already pointedout, it consists of a single

SISO unit, which has to match both the inner and the outer code.

More in details, the SISO analog network has been designed following the approach

described by Loeliger in [6] and successfully adopted in several analog decoder prototypes

[8, 13, 14, 16]. It consists of several sum-product cells which operate on two current

input vectorsIx andIy representing the probability distributionsp(x) andp(y) of discrete

random variables and yield one output current vectorIz, according to (A.53). Thus, each

component of the output vector is the sum of products of inputvectors component pairs.

As already pointed out, the iterative nature of the proposeddecoder requires the SISO

to match both the outer and the inner code. Since the trellis length is different in the two

cases, as it consists of 200 sections for the outer code whichbecome 300 for the inner

code, an appropriate combination of switches is added to thebasic scheme as reported
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Figure 1.5: SISO simplified diagram with switch betweeninner andouterconfiguration

in Fig.1.5 in order to move the SISO termination in the properposition when the shorter

length is needed.

Furthermore, to allow the exchange of the extrinsic information during the iterative

decoding process, few multiplexers and an analog extrinsicmemory are added. This

memory must be able to store up to 2400 couples of soft values,corresponding to the

extrinsic probabilities ˜p(0) and p̃(1). The extrinsic memory is organized as a bank of 8

rows, that is the maximum subblocks number, and 300 columns,which correspond to the

subblock length.

The input memory is needed to store the channel information during the entire decod-

ing process. Its sizing, design and optimization will be described in Sec.1.2.3.

1.1.5 CMOS Technology

The hybrid analog decoder has been designed in the UMC 0.18-µm CMOS process. The

key features of this technology are:

• minimum channel length: 0.18-µm;

• dual supply voltage: 1.8V and 3.3V;
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• P-substrate;

• single poly, six metal layers (1P6M);

• Twin-Well to realize nMOS with isolated substrate;

• high performance mixed-mode signal capabilities;

• radio frequency MOS transistors.

In order to optimize the decoder power consumption, we used only devices working

at the lower supply voltage, that isVdd = 1.8V.

1.2 Input Interface Circuitry

The input interface, whose block diagram is shown in Fig.1.6, has to store a frame of

channel output symbolsyk on the input analog memory and then to convert each of them

into a pairs of currents representing the corresponding channel transition probabilities

pch(yk) = p(yk|xk). In order to ease the testing phase, the channel output is fedto the

memory in a 7-bit digital representation and it is convertedto a differential voltage by a

digital-to-analog converter.

1.2.1 Specifications

The input interface specifications have been drawn in order to guarantee the proper func-

tioning of the overall analog decoder and also to make the whole system performance

competitive with respect to the corresponding digital implementations. In particular, the

memory write and access time together with its accuracy havebeen set so as to ensure a

correct decoding process, while the specifications regarding the power consumption and

area occupation are deduced from performance comparison with digital decoders.

Write and access time As the channel data rate is equal to 100Mb/s, the demodulator

output is sampled at a frequency of 100MHz, which leads to a maximum memory write

time of 10ns. The access time specification can be set by recalling that every decoding

iteration lasts for 300ns and that, to speed up the decoding process, the correct channel

transition probabilities values must be available at the SISO input in the shortest time.

Thus, a reasonable value for the access time would be in the range of 10÷30ns, that is at

least one order of magnitude smaller than the decoding time.
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Figure 1.6: Input interface block diagram

Precision The accuracy specification has been drawn from the precisionrequirements

for fixed point implementations of iterative decoders for concatenated codes with inter-

leaver [17]. In particular, given the total number of bitsnb used for the log-likelihood ratio

LLR numeric representation, where the LLR for the binary alphabet{0,1} is defined as:

λk = log
p(yk|ck = 1)

p(yk|ck = 0)
(1.6)

the required number of bits of precision depends onnb. For realistic applications, two

cases have been considered, that isnb = 5 andnb = 4, leading to the following design

hints:

• for nb = 4, the best choice is (4,1) using one bit of precision and three for the

dynamic. It yields performance less than 0.1dB worse than the ideal ones for low

Eb/N0;

• for nb = 5, the best choice is (5,2) using two bits of precision and three for the

dynamic. It yields performance almost identical to the ideal one.
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Power consumption One of the key element to judge the performance of the hybrid

decoder is definitely its efficiency, that is measured in terms of energy per decoded bit.

This latter is defined as:

Energy/dec=
Power consumption

Input bit rate×Code rate
=

Power consumption
Out put bit rate

(1.7)

In the UMTS Turbo decoder presented in [14], the energy per decoded bit has a minimum

value of 12.6nJ/bit, that is 10 times smaller than the equivalent digital implementations.

In order to further improve this efficiency, our target is to reach for the hybrid decoder

an energy per decoded bit of 2nJ/bit. This leads, according to (1.7), to a maximum power

consumption for the overall analog decoder of 60mW.

As the extrinsic memory and the SISO power consumption has been estimated around

6.5mW and 13mW respectively, and 10mW should be enough for digital control unit, this

leaves a power budget of 30mW for the input memory.

Area occupation Another important element in evaluating the goodness of thehybrid

solution we propose, is the area occupation. As already stressed out, one of the main lim-

itations of analog decoder is represented by the fact that their chip size increases linearly

with the codeword length. The hybrid decoder has been introduced to overtake this very

limitation.

Due to the large number of memory locations required for the analog memory, this

block could be the most demanding in terms of area occupation, especially if we decide

to use a capacitor as storage element.

As the die area for the analog decoder implementation is fixedat 5mm× 10mm and

the room required for I/O pads and ESD protections as also to be taken into account, we

assume the area available for the decoder circuitry to be equal to 4mm× 9mm. It is

reasonable to allocate for the input memory up to a quarter ofthis area.

1.2.2 Voltage-to-Probability Converter

The interface between the memory array and the decoder core has the task to compute

the channel conditional probabilitiespch(yk) = p(yk|xk) = p(yk|ck) required by the SISO.

These probabilities are defined as:

p(yk|xk = x j) =
1√

2πσn
exp(−(yk−x j)

2

2σ2
n

) (1.8)
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Figure 1.7: Voltage to probability converter for a binary alphabet

whereσ2
n is AWGN channel noise variance,yk is the channel output,xk is the transmitted

signal and{x j |0≤ j ≤ 1} denotes the set of all possible signal amplitudes. In our case,

as we use a binary alphabet{0,1} with a BPSK modulation{−a,+a}, the (1.8) can be

implemented by a simple differential pair, as described in [18]. A simplified schematic of

the voltage to probability converter is shown in Fig.1.7.

The differential pair output currents are proportional to the conditional probabilities

according to:

ID1 = IN
p[yk|xk = −a]

p[yk|xk = −a]+ p[yk|xk = +a]

ID2 = IN
p[yk|xk = +a]

p[yk|xk = −a]+ p[yk|xk = +a]

(1.9)

This follows from the fact that, if the nMOS transistor are working under weak inver-

sion, their drain currents are equal to:

I0 =
IN

1+exp(−2αVch
nUT

)

I1 =
IN

1+exp(2αVch
nUT

)

(1.10)

whereVch is the voltage received from the channel,α is the amplifier gain andnUT is the
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Figure 1.8: Voltage to probability schematic

temperature equivalent voltage. The two conditional probabilities (1.9) can be written as:

IN · p[yk|xk = −a]

p[yk|xk = −a]+ p[yk|xk = +a]
= IN · e

− (Vch+a)2

2σ2
n

e
− (Vch+a)2

2σ2
n +e

− (Vch−a)2

2σ2
n

= IN · 1

1+e
− (Vch−a)2−(Vch+a)2

2σ2
n

= IN · 1

1+e
2a·Vch
2σ2

n

IN · p[yk|xk = +a]

p[yk|xk = −a]+ p[yk|xk = +a]
= IN · 1

1+e
− 2a·Vch

2σ2
n

(1.11)

Thus, if the gainα is set equal to:

α =
nUTa

σ2
n

(1.12)

it is immediate to deduce the (1.9) from (1.11).

Implementation The voltage to probability converter V-to-P has been implemented by

means of a pMOS differential pair, as shown in Fig.1.8, wherethe two nMOS transistors

constitute the SISO module input stage.
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The two output currentsI0 andI1, proportional to the conditional probabilities accord-

ing to (1.9), are given by:

I0 =
Ib

1+e

(

Vin
npUT

)

I1 =
Ib

1+e

(

− Vin
npUT

)

(1.13)

The module bias currentIb has been set equal to the bias current of the sum-product

cells of the SISO unit, that isIb = 1µA. In this way, we have no loss of performance due

to the fact that the sum of the input currents of the sum-product module is less than its

bias current.

As the voltage to probability conversion relies on the exponential voltage to current

characteristic of the input pair pMOSs, they have to be sizedso as to work under weak

inversion for currents up to 1µA, that is the maximum current flowing through one pMOS.

In order to define the transistors dimensions, precision issues must also be carefully

considered. The precision requirement for the voltage to probability module can be de-

duced by considering the equivalence between the log-likelyhood ratio defined by equa-

tion (1.6) and the normalized conditional probabilities. For example, let’s consider the

probability represented by the V-to-P currentI0. In terms of log-likelyhood ratio, this can

be written as:

p[yk|ck = 0]

p[yk|ck = 0]+ p[yk|ck = 1]
=

e
− y2

k
2σ2

n

e
− y2

k
2σ2

n +e
− (yk−1)2

2σ2
n

=
1

1+e

[

− (yk−1)2

2σ2
n

+
y2
k

2σ2
n

]

=
1

1+e
2yk−1

2σ2
n

=
1

1+eλk

(1.14)

By comparing this last expression with equation (1.13), we have:

λk =
Vin

npUT
(1.15)

From the precision requirements for the numeric representation of the log-likelyhood

ratio λk in the digital domain reported in Sec.1.2.1, we can derive the accuracy required
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for Vin. In particular, if we chose to represent the LLR withnb = 4 bits, the best results

are obtained with (4,1). The use of 1 bit for the precision leads to:

Vin

npUT
= 1/21 = 0.5 (1.16)

in the analog domain, while the 3 bits for the dynamic become:

Vin

npUT
= 23 = 8 (1.17)

np is a technology dependent paramiter, which has been estimated for the UMC 0.18-µm

process through simulations, givingnp = 1.56 for pMOS transistors andnn = 1.31 for

nMOS. This leads to a precision requirement forVin of 20mV with a dynamic range of

±162mV = 324mVpp.

As the input interface contains three main blocks, the DAC, the input memory and

the voltage to probability converter, the error introducedby each of these blocks can be

defined as:

g̃(x) = g(x) · (1+ ε) (1.18)

whereg(x) describes the ideal input-output relation for each block and ε represents the

error introduced by the block non-idealities. We assume theerror statistic of each block to

be a second order Gaussian distribution, that is the error can be fully described by means

of its standard deviationσε and its meanmε.

As the input memory contains the memory cells plus several additional buffers, we

divided the error introduced by this block between these twocomponents. Thus the over-

all input chain contains four sources of errorεDAC,εBUF,εOTA,εV2P, each described by a

Gaussian distribution. Even if it is a simplification, we assume the four error sources to

be independent.

The sum of independent Gaussian variables is still a Gaussian variable whose mean

and standard deviation are given by:

mεt =
4

∑
i=1

mεi

σεt =

√

√

√

√

4

∑
i=1

σεi

(1.19)

If we assume the contribution of each block to be equal, equation (1.19) leads to

mεt = 4mε andσεt = 2σε. Thus, in order to fullfill the precision requirement given by
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Parameter AVth Co

Unit [mV ·µm] [mV]

nMOS 4.787 0.5328

pMOS 4.6899 0.1894

Table 1.1: Matching parameters

V-to-P

Mp
20
0.4

Mn
4

0.3

Mb
2
4

Table 1.2: Voltage to probability transistor size inµm/µm

(1.16), we needmεt ±3σεt ≤±20mV. This equation can be satisfied if we impose 4mε +

3 ·σε ≤ 20mV which, for each input interface block, becomes:

mε +3σε ≤
20
4

mV = 5mV (1.20)

For the voltage to probability module, equation (1.20) imposes some constraints on

the pMOS transistors dimensions. In particular, as the standard deviation of the threshold

voltage error can be modeled by equation:

σ(∆Vth) =
AVth√
W ·L

+Co (1.21)

whereAVT andCo are technology dependent parameters whose values for the UMC 0.18-

µm CMOS process are given in Table 1.1, the pMOS width and length have to be chosen

so as to keepσ(∆Vth)≤ 1.8mV. At the same time, the transistor dimensions have to ensure

they work in their exponential region for currents up to 1µA.

The transistors size for the voltage to probability converter are reported in Table 1.2,

where the dimensions of the SISO input stage nMOS are given too.

With this choice,σ(∆Vth) ≃ 1.85mV.

1.2.3 Input Memory

The input memory is needed to store the channel output symbols yk during the entire de-

coding process. In order to maximaze the decoder throughput, the input memory consists
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of two identical banks, so that one can be loaded with the channel information while the

other is fed to the decoder.

As the maximum codeword length to be handled by the decoder isequal toL = 4832,

each memory bank consists of 4832 pseudo-differential memory cells. Thus, the overall

memory counts 4832×2 memory locations organized in 604 columns and 8 rows. When

the minimum codeword is selected, just the first memory row isused, while the whole

memory is needed with codewords of maximum length.

In order to meet the need for low power consumption and high density, we chose an

architecture based on switched-capacitor circuits to implement the input memory [19], as

shown in the simplified memory scheme of Fig.1.9. The main advantage of this switched-

capacitor based solution with respect to conventional buffered sample-and-hold circuit

topology is that it requires only one active element per column, instead of one per capac-

itor, with a significant power saving.

During write operation, the input signal path is fed to 8 buffers, one for each row,

in order to cope with the large parasitic capacitance of the long interconnections. The

control signalsWa,Wb,Ra andRb, with Wa = Wb andRa = Rb, select which bank is being

loaded, the other one being fed to the decoder core.

The memory is read one row at a time by the SISO while working inthe inner mode

by placing the capacitors in feedback configuration across the corresponding OTAs. The

writing operation is sequential, so one capacitor couple isaccessed per clock cycle.

Memory cell Each memory cell is pseudo-differential and consists of tworeplicas of

the same basic structure formed by five switches, a capacitorand an operational transcon-

ductance amplifier, as described in [20]. A single OTA is usedfor all the cells belonging

to the same memory column and is shared between both memory banks A and B. Thus,

considering the pseudo-differential nature of the memory,a total amount of 604×2 OTA

are needed. A simplified schematic of the memory cell is shownin Fig.1.10. The top

plate of the sampling capacitor can be shorted to the memory input or output by means of

the two switchesSw andSr , while the bottom plate is connected to the reference voltage

Vre f or to the OTA input by the two switchesSwa andSra respectively. The additional

switchSreset serves to configure the operational amplifier as a voltage follower in order

to force the input and output node to the bias voltageVb ≃Vre f between two consecutive

read phases.

The operation of the circuit can be described by dividing thedata acquisition process
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Figure 1.10: Memory cell structure

into write and read cycles. While a memory bank is being written, the data previously

stored in the other one are fed to the decoder core. A simplified timing diagram for the

memory read and write phase is shown in Fig.1.11, where T indicates the nominal clock

period of 10ns.

During the write phase, switchesSw andSwa are closed, whileSr , Sra andSreset are

open, as the OTA is busy reading the data stored in the other memory bank. The input

voltageVin applied to the memory input is sampled and the voltageVin −Vb is stored

across the capacitorCS. During the read phase, switchesSr , Sra are closed whileSw, Swa

andSreset are open, placing the OTA in feedback configuration. Due to the amplifier high

gain, the voltage at nodeX, Vx is held constant at a value almost equal toVb. Thus no

charge can be injected into the capacitorCS leadingVout = Vin.

Switched-capacitors circuits suffer from charge injection errors. The bottom-plate

sampling principle [21], can greatly help to reduce this error source. This means to adopt

the switching sequenceSwa → Sw → Sra → Sr . However, using this switching sequence,

the circuit precision can be further increased by:

• increasing the sampling capacitanceCS value. This, however, reduces the sampling

bandwidth proportionally;

• making the chargeQwa injected by switchSwa equal to−Qra, where−Qra is the

charge injected bySra. This is only possible if both switchesSwa andSra are of the

same type, nMOS or pMOS;

• minimizing bothQwa andQra. Therefore, the area of both switchesSwa andSra
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Figure 1.11: Read and write phase timing diagram

should be as small as possible. However, decreasing the width of the switches

reduces the sampling frequency bandwidth accordingly.

Another source of error in the proposed circuit is due to the OTA non-idealities. In

particular, the OTA finite gain causes the voltage at nodeX to differ from Vb while the

finite input capacitanceCin at the same node determines a charge sharing phenomena

betweenCin andCS during the read phase. The circuit analysis gives:

Vout =
Vin

1+ 1
Av

(

1+ Cin
CS

) ≃Vin

[

1− 1
Av

(

1+
Cin

CS

)]

= Vin

[

1− 1
Avβ

]

(1.22)

whereβ = CS/(Cin +CS) indicates the feedback factor.

Moreover, as each memory cell has to be read several times, that is once per Turbo

iteration, before being overwritten by a new channel information value, each read opera-
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tion adds a data-dependent error on the value stored in the memory cell, whose magnitude

is given by:

ε = −Vin

Av

(

1+
Cin

CS

)

= − Vin

Avβ
(1.23)

As a results, in order to keep the error on the output voltageVout within acceptable bounds,

we need to carefully design the OTA so as to ensure an high low frequency gainAv. The

input capacitanceCin should also be minimized, even if the speed is not critical, so as to

ensure a high feedback factorβ.

The circuit speed during the write phase depends on the time constant:

τwrite = (Ron,w +Ron,wa)CS (1.24)

whereRon,w andRon,wa are the on-resistance of switchesSw andSwa respectively. Thus,

the write time increases linearly with the sampling capacitanceCS and the switches on-

resistance.

During the read phase, the circuit analysis leads to:

τread =
CLCin +CinCS+CSCL

GmCS
=

1
β

CL +(1−β)CS

Gm
(1.25)

whereGm is the amplifier transconductance. The read time decreases with the amplifier

transconductance while its relation with the feedback factor depends on the capacitance

values. IfCL is dominant with respect toCS, an increase of the feedback factorβ leads to

a reduction of the read timeτread.

The slewing behavior of the circuit has also to be taken into account when designing

the OTA. Upon entering the amplification mode, the circuit may experience a large step

at the inverting input. As the input capacitanceCin is usually small, the voltage at the

output node and at nodeX does not change immediately, but at the beginning of the read

phaseVx =−Vin. This can force the amplifier into a slewing condition. The slewing factor

depends on the chosen amplifier topology. However, for a common source amplifier it is

approximately equal toIB/CL, whereIB is the common source bias current.

OTA design As already pointed out, the OTA has to be carefully designed so as to

satisfy the input memory precision and speed requirements.First of all, as we need a high

low frequency gain to keep the error on the read voltage within acceptable bounds, we

decided to use a regulated cascode topology. The schematic of the OTA is depicted in

Fig.1.12. The amplifier voltage gainAv is given by:
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Figure 1.12: OTA schematic

Av = gm1Rout (1.26)

wheregm1 is transistorM1 transconductance and the output resistanceRout is given by:

Rout = [(gm2rds2rds1)gm3rds3]//(gm6rds6rds4) (1.27)

while for the unit gain frequency we have:

ωu = gm1Cout (1.28)

as we assume the dominant pole to be at the output node. The relationship between

the closed loop bandwidthωCL = gmβ
CL+(1−β)CS

and the feedback factorβ = CS/(Cin +CS)

depends on the values of the load capacitanceCL and the input capacitanceCin. This latter

is given by the sum of the long interconnection parasitic capacitance, which has been

estimated around 30fF, and the gate capacitanceCg1 of M1. Due to the tight precision

requirements,M1 will not be vary small, thus the contribute given byCg1 can not be

neglected. We assumeCin = Cw +Cg1 = 60fF. The contribution of the wire parasitic

capacitance can be neglect in the evaluation ofCL, which is given by the input capacitance

of the voltage to probability module, leading toCL = 50fF.
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Figure 1.13: Countour lines forωCL(β,gm)

The contour lines forωCL as a function ofβ andgm are shown in Fig.1.13. The spec-

ification for the read time ofτread = 10ns given in Sec.1.2.1 leads toωCL = 600Mrad/s.

As the contour lines do not vary linearly withβ andgm, the optimal region for each curve

is the central one. Moving towards the sides, a small save in terms of area requires a large

increase in power consumption and vice versa.

β as a function ofCS is plotted in Fig.1.14 while the contour lines forωCL as a function

of CS andgm are shown in Fig.1.15.

Thus, in order to optimize our design, the feedback factorβ has to vary between 0.3

and 0.7, which leads to a sampling capacitanceCS between 40fF and 150fF.

The choice of the sampling capacitanceCS depends also on other factors, such as:

• the write time specification;

• the OTA precision requirements;

• the charge injection phenomena;
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Figure 1.14: β as a function ofCS

• the leakage currents;

• the area occupation, as the memory will count up to 4832×2 capacitors.

In particular, for what it concerns the accuracy requirements, from (1.20) and (1.23)

and recalling that the maximum input voltage is equal to 162mV and that each memory

location is read up to 10 times, we can derive the open loop gain specification for the OTA

as:

Avβ ≥ 10·162·10−3

1.8 ·10−3 (1.29)

which leads to an open loop gain of at least 60dB.

As we used the bottom-sampling switching sequence, the error induced by charge

injection is minimized and thus does not influence the choiceof the sampling capacitance

value.

The leakage current may be a non neglectable source of error,due to the long hold

time, especially for the first data written in the memory.
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In order to estimate this error, we considered the worst casehold time of 48µs+48µs,

where the first 48µs are the time it takes to store a maximum length codeword intothe

input memory, while the additional 48µs are the time required to decode it.

Worst case simulations at a temperature of 80oC with a minimum size switch give a

leakage current of≃ 0.34pA, which leads to a voltage loss of less than 1mV for a sampling

capacitance of 40fF. Moreover, as the data are stored in differential form and the leakage

current is almost independent from the input voltage, the error induced by the leakage is

mainly a commom mode error, as will be proved by overall memory simulations. As the

memory has to allocate 4832×2 capacitors, the area occupation is the most critical factor

in the choice of the sampling capacitance valueCS. The memory is organized in 8 rows,

each containing 1208 capacitors, and it has to be fitted into amaximum area of 9mm×
200µm. Thus, the area available for each memory cell, which includes the sampling

capacitor, the five switches and the additional room for the wiring, can be estimated in∼
7.5µm×25µm. As the capacitance per unit area for the UMC 0.18-µm CMOS technology

is 1fF/µm2, we can consider a maximum capacitance value around 75fF.
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Switches

Sw
0.86
0.18

Swa
0.28
0.18

Sr
0.24
0.18

Sra
0.24
0.18

Sreset
0.24
0.18

Table 1.3: Switches size inµm/µm

OTA

M1
10
1

M2
5

0.25

M3
2

0.18

M4
10
2

M5
0.5
2

M6
6

0.18

Table 1.4: OTA transistor size inµm/µm

Following these considerations, the final value for the sampling capacitanceCS has

been set to 37.8fF, which corresponds to an area of∼ 6µm×6µm.

The switchesSw andSwa have thus been sized so as to satisfy the write time specifica-

tions. Recalling that the on resistance of a MOS transistor is given by:

Ron =
1

µCox
W
L (VDD −Vth−Vin)

(1.30)

and that the write specification requires aτwrite ≤ 1.5ns, minimum size transistors can not

be used. The memory cell switches dimensions are reported inTable 1.3. All switches

are implemented with nMOS transistors.

Once the capacitor sampling value has been set, the OTA design follows straight-

forward. Its transistors size are reported in Table 1.4, while in Fig.1.16 the frequency

response of the OTA in typical conditions is shown. We can seehow the OTA exhibits an

open loop frequency gainAvβ ≃ 76dB with a unit gain frequencyfu ≃ 100MHz, which

corresponds toωu ≃ 630Mrad/s. The OTA bias currentIB has been set to 10µA while the

cascode bias voltageVcp = 600mV.

The corner analysis gives as worst result an open loop frequency gainAvβ ≃ 64.5dB,

an unit gain frequencyfu ≃ 89.8MHz with a phase margin of 75.5 deg, which is still well

within specifications.

Input buffer To drive the long interconnection parasitic capacitance, abuffer employ-

ing a cascode amplifier in unit feedback configuration has been inserted for each memory

row at the DAC output, as depicted in Fig.1.9. The wiring capacitance has been estimated

by means of the well-known formula:

Cw = (CaW+2Cf +2Cc)L (1.31)
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Figure 1.16: OTA frequency responce

where W and L are the interconnection wire width and length respectively,Ca is thearea

capacitancebetween the metal wire and the substrate,Cf the fringing capacitanceand

Cc thecoupling capacitancewith adjacent metal lines. Substituting the UMC technology

paramiter into (1.31), we obtainCw = 850fF. The capacitance due to the memory cell

switches,Csw = 1.5pF, has also to be taken into account.

The wire resistance is equal toRw = 1kΩ.

Due to the large parasitic capacitance and resistance, we decide to split the mem-

ory into two symmetrical parts and to use a pair of buffers to drive the cells of each

memory row. Thus, each buffer has to be sized so as to drive a capacitance of(Cw +

Csw)/2 ≃ 1.2pF with a time constant given byτ = Rw(Cw +Csw)/8 = 0.3ns instead of

τ = Rw(Cw +Csw)/2 = 1.175ns, where a distributed RC network has been used to model

the interconnection wire [22].

The buffer specifications can be easily deduced from the input memory ones given in

Sec.1.2.1. In particular, a settling timets≤ 9ns is required in order to meet the write time

specification while a low frequency gainAv ≥ 50dB meets the precision requirements.

The schematic of the cascode amplifier is shown in Fig.1.17, while its transistors size

are reported in Table 1.5.
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Vinp Vinn

Vcp

Vcn

M2

Figure 1.17: Input buffer schematic

The low frequency gain is given by:

Av = gm1Rout (1.32)

where

Rout = (gm4rds4rds2)//(gm7rds7rds6) (1.33)

Due to the large load capacitance, we expect the dominant pole to be at the output node.

Thus the unit gain frequency can be written as:

ωu = 2gm1/(Cw+Csw) (1.34)

The buffer bias currentIB has been set toIB = 260µA while Vcp = 600mV andVcn = 1.2V

are the pMOS and nMOS cascode voltage references respectively. As the pMOS of the

input differential pair are biased so as to work between strong and moderate inversion in
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Buffer

M1
272
0.25

M3
40

0.18

M5
20

0.25

M7
4
1

Mb
260
2

Table 1.5: Buffer transistor size inµm/µm

Figure 1.18: Input memory buffer frequency responce

order to pump up the amplifier gain, the input offset voltage can be calculated by:

VOS=

√

√

√

√

√n2
pU

2
T





(

∆W
L

W
L

)2

+

(

∆IB
IB

)2


+∆V2
th (1.35)

where∆IB
IB

can be deduced from the empiric formula:

σ∆Ids(%) = Cnt(WL)−0.5x (1.36)

whereCnt andx are constant deduced by devices measurements. In our case,Cnt ≃ 1.6503

and x ≃ 0.8592, which givesσ∆IB = 0.9%. Recalling the UMC technology matching

paramiters reported in Table 1.1, this leads toVOS≃ 0.85mV, well within the required

value.
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8 32 4 2

VOUTPVOUTN

VCM

RDPRDN

IBDAC

VC

T6 T6 B1B1 B0B0

Figure 1.19: Simplified DAC schematic

The buffer frequency responce in typical conditions is shown in Fig.1.18. The buffer

exhibits a low frequency gainAv = 58dB with a unit gain frequency offu = 200MHz.

Corner analysis gives a worst case gainAv = 56.8dB with a unit gain frequency of

fu = 199MHz and a phase margin of 78.3deg.

1.2.4 DAC

The DAC has to convert the digital representation of the channel output into the differen-

tial voltage that is fed to the input analog memory. We estimated a 7-bit resolution, cor-

responding to aVLSB= 2.5mV, to be high enough to meet the precision requirements of

(1.20). To ensure the DAC accuracy, we used for the 3 most significant bits a thermometer-

code representation. The DAC is implemented using the differential switched-current ar-

chitecture reported in Fig.1.19. The two resistorsRDN andRDP convert the output current

to a differential voltage according to:

VOUTP−VOUTN = (RDP+RDN) ·
(

N
64

− 127
128

)

· IBDAC

= 2 · IBDAC·RD ·
(

N
64

− 127
128

) (1.37)
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Figure 1.20: DAC transient output waveforms

whereIBDAC indicates the DAC reference current and we assume the two resistors to be

equal, that isRDN = RDP = RD.

The DAC reference current has been chosen equal toIBDAC= 102.25µA so as to satisfy

the write time specification, considering a load capacitance CLDAC ≃ 7pF. According to

(1.37), this leads toRD = 50Ω and to an overall DAC current consumption of:

ITOT = 7 ·4 · IBDAC+2 · IBDAC+ IBDAC+
IBDAC

2
+

IBDAC

4
= 3.246mA (1.38)

where the first term is due to the thermometer-code most significant bits while the others

are due to the last four significant bits.

The DAC performance have been estimated by means of MonteCarlo simulations con-

sidering both process and mismatch variations. The DAC has been fed with a sequence

of input words switching between the maximum and minimum channel signal amplitude,

which corresponds toVin = +162mV andVin =−162mV respectively. An example of the

corresponding transient DAC output waveform is shown in Fig.1.20.

The results of 500 MonteCarlo iterations are shown in Fig.1.21, Fig.1.22 and Fig.1.23,

where the differential voltage has been sampled at the farest memory cell input after

a settling time of 9ns, thus considering also the error due tothe input buffers. The

maximum error mean is equal tomεDAC + mεBUF ≃ 0.3mV with a standard deviation of
√

σ2
εDAC

+σ2
εBUF ≃ 2.2mV, thus well within the required precision.

The DAC layout has been drawn following the scheme proposed in [23], so as to
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Figure 1.21: Pre-layout simulations error on 600 random codewords

Figure 1.22: Post-layout simulations error on 600 random codewords
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Figure 1.23: Post-layout simulations error on 600 random codewords

ensure an high accuracy.

1.3 Simulations Results

The performace of the decoder interface have been evaluatedby simulating the memory

read and write phase separately, the overall precision being calculated as:

mεt = mεr +mεw

σεt =
√

σ2
εr +σ2

εw

(1.39)

whereεr andεw are the errors introduced by the read and write process respectively.

1.3.1 Read Phase Simulations

In order to evaluate the input memory performance during theread phase, extensive Mon-

teCarlo simulations with 500 iterations and considering both process and mismatch vari-

ations have been performed. As the error depends on the inputvoltageVin being read

(1.23) but also on the data read by means of the OTA during the previous read cycleVinpre,

we have considered two different cases:
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(a)Vin = 162mV andVinpre = −162mV;

(b) Vin = −162mV andVinpre = 162mV.

In both cases, the memory cell has been read up to 10 times and the corresponding output

voltageVout, together with the two voltage to probability converter drain currentsI0 and

I1, has been sampled after 10ns and 30ns from the beginning of each read phase.

As 3 bits of dynamic are required for the log-likelyhood ratio representation, the range

of all possible values forI0/I1 can be deduced rewriting (1.6) as:

λk = log
I0
I1

= [−2(3−1),2(3−1)−1] ≃ [−4,4] (1.40)

from which we obtain:
I0
I1

= [e−4,e4] =

[

1
54

,54

]

(1.41)

Thus, when the differential input voltageVin = 162mV, I0/I1 ≥ 54 while whenVin =

−162mV,I1/I0 ≥ 54. The 1 bit of precision requires:

σ I0
I1

≤ e0.5 = 1.65 (1.42)

The MonteCarlo simulations results are summarized in Table1.6 for case (a) and in

Table 1.7 for case (b). In both cases, two voltage referencesVbx = 300mV andVby =

700mV are considered for the nMOS of the SISO input stage. Thecommon mode output

voltage error is also reported, where the nominal common mode value is set to 900mV.

As an example, the transient output waveform correspondingto case (a) are shown in

Fig.1.24, while the MonteCarlo results for the tenth reading withVin = −162mV,Vinpre =

−162mV andVbx = 300mV are shown in Fig.1.25.

As expected, the error on the differential output voltage worsen with the number of

reading to the point of not meeting the precision requirements. However, even if the

simulated conditions represent the worst case for the error, when the input voltageVin =

±162mV we are far from the most critical situation for the SISOdecoding process, that

is represented by the equalprobability condition of two symbols.
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R1,10nsVbx R1,10nsVby R1,30nsVbx R1,30nsVby R10,10nsVbx R10,10nsVby R10,30nsVbx R10,30nsVby

mεr [mV] −0.202 −2.066 0.209 −0.709 5.709 −5.582 6.321 −4.292

σεr [mV] 3.266 3.406 3.269 3.393 4.588 5.092 4.621 5.083

mI1
I0

2.107 17.417 63.394 60 2.616 22.278 71.667 55.098

σ I1
I0

0.329 3.569 7.568 7.357 0.480 4.469 9.849 8.95

mεrcm [mV] 45.92 44.206 25.686 5.927

σεrcm [mV] 6.229 6.216 12.43 12.213

Table 1.6: Vin = 162mV andVinpre = −162mV

R1,10nsVbx R1,10nsVby R1,30nsVbx R1,30nsVby R10,10nsVbx R10,10nsVby R10,30nsVbx R10,30nsVby

mεr [mV] 0.169 −1.71 0.565 −0.353 4.22 −5.049 4.828 −3.755

σεr [mV] 3.273 3.437 3.275 3.4133 4.477 5.159 4.516 5.132

mI1
I0

2.085 17.05 64.07 60.627 2.615 22.285 72.716 55.981

σ I1
I0

0.331 3.571 7.579 7.408 0.482 4.679 9.729 9.204

mεrcm [mV] 26.52 24.187 11.424 6.661

σεrcm [mV] 6.229 6.216 16.251 9.010

Table 1.7: Vin = −162mV andVinpre = 162mV
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R1,10nsVbx R1,10nsVby R1,30nsVbx R1,30nsVby R10,10nsVbx R10,10nsVby R10,30nsVbx R10,30nsVby

mεr [mV] 0.959 0.063 0.973 0.064 1.833 0.192 1.904 0.195

σεr [mV] 3.257 3.340 3.267 3.393 4.261 4.854 4.285 4.948

mI1
I0

0.997 1.002 0.981 1.003 0.962 1.002 0.812 1.004

σ I1
I0

0.014 0.085 0.997 0.105 0.022 0.120 0.089 0.138

mεrcm [mV] 26.52 24.187 25.599 5.865

σεrcm [mV] 6.229 6.216 12.238 12.081

Table 1.8: Vin = 0mV andVinpre = 162mV
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Figure 1.24: Memory transient output waveforms

It is thus useful to analyze the input memory error whenVin = 0V. From the results

reported in Table 1.8 withVinpre = 162mV, we see how in this case the error mean is

reduced with respect to both case (a) and (c) as expected from(1.23), while its standard

deviation is comparable with the one obtained withVin = ±162mV.

However, we will see how the error introduced by the memory cell during the read

phase is dominant with respect to the one introduced by the memory write process, leading

to the fact that the obtained resultsare good enough to meet the overall input interface

specifications, as we will see in Sec.1.4.

It is important to notice how the voltage to probability output currentsI0 andI1 require

a longer time to settle with respect to the memory output voltageVout when the full dy-

namic is required. In fact, after a read time of 30ns, they exhibit the desired dynamic but

with a large distribution, due to process variations. However, this has a negligible impact

on the overall decoder performance as a read time of 40ns brings the standard deviation

value back within the required limits given by (1.42).

The error on the common mode voltage is well within the required bounds, as a max-

imum error of±50mV can be tolerated [24].
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Figure 1.25: MonteCarlo simulation results withVin = −162mV andVinpre = −162mV

1.3.2 Write Phase Simulations

The performance of the input interface during the write phase have been evaluated by

means of MonteCarlo simulations, considering both mismatch and process variations.

The DAC has been fed with 600 7-bit random codewords, which has been given a time

of 9ns to be stored into the farest memory cells from the DAC output, that are the first

and last cell of the eighth memory row. For each codeword, 100instances have been

simulated.

The MonteCarlo simulations results reported in Fig.1.26 show a maximum error mean

mεw = 523µV with a standard deviationσεw = 2.221mV. Thus, considering the worst case

error during read phase and the one introduced by the voltageto probability converter,

from equation (1.39) we obtain:

mεt = 6.321+0.523= 6.884mV

σεt =
√

52+22+1.852 ≃ 5.7mV
(1.43)

where no systematic offset has been considered for the voltage to probability module. The

results obtained are in line with the precision specifications.

The corresponding transient waveforms are shown in Fig.1.27, together with the DAC

input value.
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Figure 1.26: MonteCarlo write phase transient simulation results

Figure 1.27: MonteCarlo DAC output waveforms
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Figure 1.28: Pre-layout simulations error on 600 random codewords

Figure 1.29: Post-layout simulations error on 600 random codewords
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Post-layout simulations show how the influence of parasiticon the precision perfor-

mance is negligible. In Fig.1.28 and Fig.1.29 the error at the DAC and buffer output on

600 random codewords is reported for pre- and post-layout simulations, respectively.

1.3.3 Power Consumption

As the input memory consists of 604· 2 OTAs, two for each memory column, and 8· 4
buffers, four for each memory row, the total power consumption can be easily computed

as:

Pmemory= 604·2 ·POTA+8 ·4 ·Pbu f f er

= (604·2 · IB OTA+8 ·4 · IB BUFFER)VDD

= (604·2 ·10.5µA +8 ·4 ·260µA)1.8V

≃ 38mW

This result slightly exceeds the power consumption specification given in Sec.1.2.1, lead-

ing to an overall decoder power consumption of≃ 70mW. According to (1.7), this trans-

lates into an energy per decoded bit of 2.1nJ, which is very close to the original target of

2nJ/bit.

1.4 Conclusions

The input interface for an hybrid analog decoder has been designed in the UMC 0.18-

µm CMOS process. Simulations results show how the interface performance meet the

required specifications, both in terms of precision and speed. The overall circuitry area

occupation is≃ 36mm2 with a power consumption of≃ 40mW.

The interface is part of a fully analog iterative decoder fora serially concatenated con-

volutional code, reconfigurable in both block length and code rate. The decoder exhibits

an efficiency of 2.1nJ/bit which outperforms digital decoders with the same block length,

that is around 5000, of a factor up to 50 [25]. The chip, whose layout is shown in Fig.1.30,

has been fabricated in UMC 0.18-µm CMOS process and is now under test.

The solution of an hybrid decoder implemented with an analogcore and memory

seems a promising strategy to tackle the limits of traditional analog implementations. In

fact, this structure shows the advantages of the analog approach without its drawbacks,

which are mainly due to the linear dependence between code block length and decoder

dimensions.
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Figure 1.30: Hybrid analog decoder layout





2
Analog Decoding for Data Storage

Applications

The demand of high density, high throughput solid-state nonvolatile memories has been

constantly increasing in the past decade, due to tendency toconvert and store images,

videos and music in digital format. The core of all nonvolatile semiconductors memory

devices is a matrix of single memory cells, which maintain their state even without supply

voltage. In order to reach higher memory density, continualefforts to reduce the single

cell area have been made, scaling the process lithography. In addition to shrinkage of

the feature size, the memory density can be increased by storing more information bits

within a single cell. However this rises new reliability issues, to couple with multilevel

cells memories resort to use on-chip error correction code (ECC).

In this chapter, after a brief overview of flash memories technology, the advantages

and drawbacks of commonly used ECC, such as linear block codes, are analyzed. Thus

a new ECC scheme for multilevel flash memories, based on trellis coded modulation

strategy, is proposed.

2.1 Flash Memories

The core of a flash memory consists of an array of memory cells placed on a word-line/bit-

line grid. Although in the past different types of flash architectures have been proposed,

today two of them can be considered as a standard: the common ground NOR flash that,

due to its fast random read access time, is attractive for applications such as program-code

storage and the NAND flash, optimized for high density data storage.
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Figure 2.1: Flash cell cross section

2.1.1 Floating Gate Transistor

The flash cell of both memory types is basically the floating-gate MOS transistor shown

in Fig.2.1, that is a transistor with a gate completely surrounded by dielectrics, the floating

gate, and electrically governed by a capacitive coupled control gate [26]. Applying a high

voltage between the source and the gate-drain terminals of the floating-gate MOS, causes

electrons to be injected in the floating gate which, being electrically isolated, acts as a

storing electrode for the device.

The charge injected onto the floating gate effectively shifts the I-V curves of the tran-

sistor, as shown in Fig.2.2, thus allowing modulation of theapparent threshold voltageVT

seen from the control gate. Usually the neutral (or positively charged) state is associated

with the logic state “1” while the negatively charged state,corresponding to electrons

stored in the floating gate, is associated with the logical “0”.

2.1.2 NOR and NAND Flash

NOR and NAND flash memories [27] use the same basic cell memorydescribed in

Sec.2.1.1 but differ in the way the cells are arranged in an array, leading to different

characteristics both in terms of memory density and flexibility.

In the NOR architecture, the cells are arranged in a matrix through rows and columns

in a NOR-like structure, as shown in Fig.2.3. Flash cells sharing the same gate constitute

awordline, while those sharing the same drain contact constitute thebitline. In this array

organization, every cell contains also a source contact. All the cells sources are connected

to a common source electrode, which is usually connected to the ground.

The data stored in a NOR cell can be determined by measuring the threshold voltage

of the floating gate MOS transistor. The best and fastest way to do it is by reading the
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Figure 2.2: I-V curves of a floating-gate MOS without (curve A) and with (curve B)

electrons stored in the floating gate
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Figure 2.3: NOR flash array
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Figure 2.4: NAND flash array

current driven by the selected cell at a fixed gate voltage andthen comparing it with the

current of a reference cell.

In order to write or to erase a flash cell, that is to force electrons above or across the

dielectrics energy barrier so as to inject them onto the floating gate or to remove them

from it, two physical mechanisms are used, which exploit twodifferent physical effects:

• the channel hot electronmechanism, where electrons gain enough energy to pass

the oxide-silicon barrier thanks to the electric field in thetransistor channel between

source and drain;

• theFowler-Nordhein electron tunnelingmechanism, where a quantum-mechanical

tunnel is induced across a thin tunneling oxide between the silicon surface and the

floating gate by applying a strong electric field.
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A NOR flash memory cell is programmed by channel hot electron injection in the floating

gate at the drain side and it is erased by means of the Fowler-Nordhein electron tunneling

through the tunnel oxide from the floating gate to the siliconsurface.

Using the NOR architecture, cells can be accessed directly,thus leading to fast random

read access time. At the same time, the programming times areslow due to the need for

precise control of the thresholds.

These properties make this style of flash memory attractive for applications such as

program-code storage. Other applications, such as video oraudio file storage, do not

need fast random access, but are better served by large storage density, fast erasure and

programming, and fast serial access.

These requirements are more readily provided by the NAND architecture, where the

basic module consists of 16 or 32 floating-gate transistors connected in series, as shown

in Fig.2.4. This chain is connected to the bit line and to the source line by means of two

select transistors. By eliminating all contacts between word lines, the resulting cell size

is approximately 40% smaller than the NOR cell.

To read a NAND cell, all the other memory cells connected in series with the se-

lected one have to be activated by applying a gate voltage higher than the maximum

programmable threshold voltage. The word line of the selected cell is biased at a fixed

voltage, so as to conduct only if in the neutral or logic “1” equivalent state.

The programming and erasing of NAND flash are both performed using the Fowler-

Nordhein electron tunneling mechanism, which reduces the current requirements com-

pared to the channel hot electron one, thus allowing for the programming of many mod-

ules in parallel while keeping power consumption under control.

2.1.3 Multilevel Flash Cell

The most efficient way to scale the actual cell size for any given technology is offered by

the multilevel concept [28–32].

The multilevel idea is based on the ability to precisely control the amount of charge

injected in the floating gate, so that the threshold voltage of each cell can be programmed

to any ofq = 2m levels, withm> 1, each corresponding to a different logical state.

A single cell programmed using the multilevel approach is thus capable of storingm

bits, reducing considerably the cost-per-bit.

The threshold distributions of a 1-bit and a 2-bit memory cell are shown in Fig.2.5

[33]. With the multilevel approach, all the programmed threshold voltage levels must be
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(b) 4-level memory cell

Figure 2.5: Conceptual representation of bilevel and multilevel threshold voltage distri-

butions

allocated within a predetermined voltage window. This window is enlarged with respect

to the case of conventional bilevel memories to provide moreroom for the stored levels.

However, in practice, this increase can not be very high, so as to limit charge transfer

through the gate oxide during program/erase operation and prevent excessive voltages

across the oxide during storage time.

This leads to a reduced spacing between adjacent programmedvoltage levels, which

makes the reliability of multilevel memories more and more critical as the number of

bits/cell increases.

2.1.4 Reliability Issues

Reliability issues are particularly critical for flash memories as data retention must be

guaranteed after ten years of storage at room temperature and at least 105 read, program
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and erase cycles.

Several failure mechanisms can affect flash memory reliability, even if they can be

traced back to three main effects: read disturb, program distrub and data retention degra-

dation [34].

Read Disturb Read disturb affects the cell under reading and a number of unselected

cells, that is the cells placed in the same wordline of the cell being read in a NOR flash

memory and the cells belonging to the same wordline and the ones connected in series

with the selected one in a NAND-type memory.

Due to the high voltages applied to the gate of these unselected cells, a so called soft-

programming mechanism can take place, giving rise to an undesired threshold voltage

shift, especially for cells programmed to low level.

Read disturb becomes more critical after program/erase cycling, due to the oxide

degradation caused by the high electric fields applied during write and erase operations.

A secondary failure mechanism that takes place in NAND-typeflash during read op-

eration is related to the dependency of the reading current on the so calledBackground

Pattern. The current driven by the cell being read can vary considerably with the threshold

voltage levels programmed in the cells connected in series with the selected one.

Program Disturb Program disturb leads to an undesired threshold voltage shift due to

soft programming in the unselected cells that experience the high voltages applied to write

the memory cells. In order not to seriously affect the memoryreliability, the programming

voltages must be carefully chosen.

Program disturb in NAND-type arrays are also due to the capacitive coupling of ad-

jacent cells floating gates. Several different programmingsequences and algorithms have

been studied to limit this effect, which results particularly detrimental in multilevel mem-

ories.

Data Retention Data retention degradation, due to leakage of electrons from the float-

ing gate through the surrounding oxide, depends on the amount of charge stored and hence

on the threshold voltage shift of programmed levels. It worsens in the presence of oxides

degraded due to program/erase cycling.

All the reliability issues described above become more critical in the case of multilevel

flash memories as compared to the bilevel ones, due to the reduced spacing between
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adjacent programmed levels and to the higher threshold shift of the highest programmed

states.

In particular, the enhanced cell threshold voltage range worsens the extrinsic charge

loss, because this phenomena strongly depends on tunnel oxide retention electric field.

Moreover, program disturbs are made more severe by the longer programming time nec-

essary for multilevel programming.

2.2 Error Correcting Codes for Multilevel Flash Memo-

ries

As already pointed out in Sec.2.1.4, in multilevel flash memories issues such as disturbs

and data retention become more and more critical due to the reduced space between ad-

jacent programmed threshold voltage levels. As a consequence, multilevel memories are

increasing relaying on error correction code techniques toensure adequate reliability, in

particular in all those applications where a large number ofprogram/erase cycles are re-

quired. This is especially true for memories capable of storing more than two bits per

cells, such as the 16-level NAND flash presented in [35].

As far as the error correction capability requirement has been moderate, that is for

1 or 2 bit/cell memory, linear block codes, such as Hamming orBCH codes, have been

the ideal choice as they combine good performance and relative design simplicity [36].

Nonetheless, their complexity is deemed to increase significantly with the number of

bits/cell, since a larger correction capability will be required in order to keep memory

reliability the same.

The BCH decoder for 2 bit/cell NAND Flash presented in [36] exhibits a correction

capability up to 5 errors with a letency time increasing fromthe 60µs required to detect

a single error to the 250µs needed to correct 5 errors. Once the error condition has been

detected by syndromes calculation, the Berlekamp-Massey algorithm [37, 38] is used to

compute the errors locator polynomial. Then, the error positions are found by a Chien

machine, exploiting polynomial roots search inGF(215). Since this operation is the most

time-consuming, parallelism should be exploited. However, the complexity and area over-

head of Chien finite-state machine grow dramatically as the parallelism increases. Since

single error is more likely to happen than multiple errors in2 bit/cells, two different Chien

cores are implemented: a simplified Chien core finds single-error position while another

one manages 2 to 5 errors cases.
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However, it is worth to notice that the correction of a single-bit error, which is gener-

ally sufficient for bilevel flash, is not satisfactory for multilevel memories, where an error

can in principle affect all the bits stored in a faulty cell. Codes that process all the bits be-

longing to the same cell as a symbol and are therefore capableof detecting and correcting

symbol errors rather than bit errors could be more appropriate, even though at the cost of

larger area of the decoding circuitry and increased access time penalty.

The key requirements of an ECC for a flash memory are a reduced area overhead,

including that coming from the storage of parity information, minimum impact on access

time and data transfer rate and a limited power consumption increase due to the coding

and decoding circuitry. Moreover, any error correspondingto the failure of a single cell,

which involves up tom bits in multilevel memories, must be corrected.

The last requirement can be fulfilled in a multilevel flash by using nonbinary codes,

which are based on arbitrary finite alphabets with more than two symbols [39]. The same

way as the content of a bilevel cell is associated to a binary digit, the content of aq-level

cell, with q > 2, can be associated to aq-ary symbol. In such a way, a single-cell error

corresponds to a single-symbol error that can be handled easily using aq-ary code. Many

of the error correcting schemes used for bilevel memories can be fitted to multilevel ones

by replacing binary codes with nonbinary codes.

2.3 q-ary Hamming Codes

As a simple case study, we consider aq-ary Hamming Code, withq > 2. The concepts

described in Appendix Sec.A.2.2 for binary Hamming code, that is with q = 2, can be

easily extended to the case ofq-ary Hamming codes. In particular, for any integerr ≥
2, q-ary Hamming codes have block lengthn = (qr − 1)/(q− 1) and data lengthk =

(qr −1)/(q−1)− r. The Hamming bound is given by (A.5), wheret indicates the error

correction capability in terms of symbols.

The parity check matrixH over the Galois fieldGF(2m) can be constructed by choos-

ing, as columns, all the nonzeror-uples of elements fromGF(2m) in such a way that all

the columns ofH are linearly independent from one another. In this way we canconstruct

a single-symbol ECC.

To implement this kind of code for nonbinary symbols there are two possible ap-

proaches. In the first approach, sum and multiplication operations overGF(2m) are im-

plemented, so that encoder e decoder circuits are directly obtained from the nonbinary
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parity check matrixH. In the second, the nonbinary parity check matrixH is transformed

into a binary form and standard binary operations are then implemented.

2.3.1 Analog Decoding

Linear block codes can be efficiently decoded in the analog domain by means of the

Gallager algorithm [40], proposed by Galleger in 1962 to decode binary Low Density

Parity Check (LDPC) codes.

The implementation of a CMOS analog decoder for binary Hamming code has already

been demonstrate in [41], with encouraging results with respect to the digital counterpart,

both in terms of area occupation and power consumption.

The basic building blocks of such a decoder are thesoft-gatesdescribed in Appendix

Sec.A.4.2. By choosing a different alphabet rather than thebinary one{0,1} for X, Y

and Z, we can easily realize in the analog domain sum and multiplication operations

overGF(2m), from which the implementation of analog decoders for nonbinary codes is

straightforward.

As an example, let’s consider the shortened Hamming code(36,32) overGF(4) pre-

sented in [42], whose parity-check matrixH is given by:

H =
[

PT |I
]

(2.1)

where the nonsystematic partPT is the 4 by 32 matrix:

PT
(36,32) =













00011100000001111111110000111111

01100100111110000011231111000011

10101011001230012301001123112300

11010023231002310010002311231123













(2.2)

The correspondence between binary andGF(4) notation is given in Table.2.1.

The analog decoder complexity for such a code can be easily estimated from matrix

PT as each row ofPT corresponds to a check node, implemented in the analog domain

by asoft-XOR, while the number of the decoderequal-gatesis given by the information

data symbols, each one represented by a matrixPT column. Thesoft-XORandequal-gate

inputs are given by all non zeros elements of the corresponding matrix row or column.

As the Hamming code(36,32) is defined overGF(4), thesoft-XORandequal-gateop-

erations, which implement the sum and multiplication operations module 4 described in

Table 2.2, have also to be carried out overGF(4).
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GF(4) ↔ binary notation

0↔ 00

1↔ 01

2↔ 10

3↔ 11

Table 2.1: GF(4) ↔ binary notation

+ 0 1 2 3 × 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 0 3 2 1 0 1 2 3

2 2 3 0 1 2 0 2 3 1

3 3 2 1 0 3 0 3 1 2

Table 2.2: Sum and multiplication overGF(4)

The equation (A.56) forsoft-XORgates overGF(4) can be written as:












pz(0)

pz(1)

pz(2)

pz(3)













=













px(0)py(0)+ px(1)py(1)+ px(2)py(2)+ px(3)py(3)

px(0)py(1)+ px(1)py(0)+ px(2)py(3)+ px(3)py(2)

px(0)py(2)+ px(1)py(3)+ px(2)py(0)+ px(3)py(1)

px(0)py(3)+ px(1)py(2)+ px(2)py(1)+ px(3)py(0)













(2.3)

while for GF(4) equal-gatesequations (A.57) becomes:












pz(0)

pz(1)

pz(2)

pz(3)













=













px(0)py(0)

px(1)py(1)

px(2)py(2)

px(3)py(3)













(2.4)

The relative circuit implementations are shown in Fig.2.6 and Fig.2.7 respectively.

The analog decoder core consists of two 18-inputssoft-XORfor the first two rows of

the matrixPT , one 20-inputssoft-XORfor the third row and one 22-inputssoft-XORfor

the fourth row. As anN-inputs soft-gate can be translated intoN−1 2-inputs soft-gates

and each check node must be replied as many times as its input variables number, the

decoder will consist of

2 ·18· (18−1)+20· (20−1)+22· (22−1)= 1454
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Iz,2 Iz,3Iz,0

Figure 2.6: 4-arysoft-XORcircuit implementation

2-inputssoft-XOR.

In the same way, theequal-gatesnumber can be estimated by considering that each

column of matrixPT corresponds to anequal-gatewhose inputs number is given by the

column non zero elements. This leads to 18 3-inputs and 14 4-inputsequal-gates, thus

giving a total amount of

18· (3−1)+14· (4−1) = 78

2-inputsequal-gates. The decoding circuitry requires a total count of 1532 2-inputssoft-

gates, which is slighter greater than the equivalent gates count given for a digital decoder

in [42].

The soft decoder performance have been estimated by means ofa C++ behavioral

model of the decoder. In the model, the sum-product operations of the MAP decoder

are ideal, with probabilities represented by double precision numbers and no source of

distortion, offset or noise is taken into account. In Fig.2.8 the analog decoder performance

after a finite number of iterationsNt = 6, that is the diamond curve, are compared with
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Figure 2.7: 4-aryequal gatecircuit implementation

those of a hard decoding algorithm, represented by the square curve. The soft decoding

algorithm shows a code gain of 4dB with respect to the uncodedchannel (circle curve) at

BER= 10−3, which reduces to 2dB for the hard one. Thus the soft decodingalgorithm,

which is suitable to be implemented in the analog domain, offers a good advantage in

terms of performance with respect to the digital or hard decision one, which can justify the

slighter gates count increase required for the analog decoding circuitry implementation.

2.4 Convolutional Punctured Codes

As all the reliability issues described in Sec.2.1.4 becomemore serious for multilevel

memories due to the reduced spacing between adjacent threshold voltage levels, codes

with a higher correcting capability as theq-ary Hamming presented in Sec.2.3 may be

required to ensure memory reliability.

Convolutional codes described in Appendix Sec.A.2.3 show large free distance, which

translates into good error correcting capability, and, dueto their trellis structure, can be
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Figure 2.8: BER curves for Hamming(36,32) code overGF(4)

naturally decoded in the analog domain, with advantages with respect to digital decoder

implementation both in terms of area occupation and power consumption [8,9,43].

As one key requirement for multilevel memories ECC is a limited area overhead due

both to parity bits and encoder/decoder circuitry, high-rate codes have in any case to be

preferred. A way to obtain a high-rate convolutional code starting from a low-rate one is

by “puncturing”, as already described in Sec.1.1.1.

In general, a punctured rateb/n code can be constructed from a low-rate 1/n code,

which is described byn generator polynomialsGi, i + 1,2, · · · ,n. The complexity of

decoding such a code is reduced to that of decoding the 1/n code. If we further impose a

condition on then generator polynomials so that only two of them at most differ, then the

punctured code may also be regarded as having been generatedfrom a rate 1/2 code and

this can further reduce the complexity of decoding to that ofdecoding the corresponding

rate 1/2 code [44–46].

2.4.1 Analog Decoder Implementation

The performance of high-rate punctured convolutional codes depend on the original low-

rate code and on the perforation patter. In order to evaluateif they are suitable to be used
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Figure 2.9: Convolutional code trellis section

as ECC for multilevel memories, we consider the rate 15/16 8-state tail-baiting trellis code

whose generator polynomials are given by:

G(D) =
[

D3 +D+1,D3+D2+D+1
]

(2.5)

with punturation matrix [47]:

P =

(

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 0 0 1 0 0 1 1 1

)

(2.6)

The corresponding trellis without puncturing is shown in Fig.2.9.

Thusk user bits generate 2k coded bits that are then punctured so as to obtain an-bit

codeword, wheren = 16/15k. If we use the convolutional code as ECC for multilevel

flash memory cells withq = 4 levels, that is with 2-bit/cell, then coded bits are grouped

2 by 2 and saved inton/2 memory cells.

If we analyze the structure of the perforation matrixP, we can see as the bits corre-

sponding to the two first columns are written in the same memory cell. This is equivalent

to say that the threshold voltage level programmed in the cell corresponds to the branch

metric of the trellis section obtained by merging two consecutive trellis sections, as shown

in Fig.2.10. Otherwise, if a column contains no zero, the information saved in the corre-

sponding memory cell is relative to the branch metric of a single trellis section.
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Figure 2.10: Merge of two consecutive trellis sections according to theBa scheme

The perforation matrix can thus be written as:

P′ =

(

0 0

1 1

∣

∣

∣

∣

∣

0 0

1 1

∣

∣

∣

∣

∣

0 0

1 1

∣

∣

∣

∣

∣

0 1

1 0

∣

∣

∣

∣

∣

1

1

∣

∣

∣

∣

∣

1 1

0 0

∣

∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

∣

0 0

1 1

∣

∣

∣

∣

∣

)

(2.7)

where column 9 and 10 have been swept. The branch metric of each section is given by

the threshold voltage level of the corresponding memory cell.

Convolutional codes can be efficiently decoded by means of the BCJR algorithm de-

scribed in Sec.A.3.5. The analog implementation of this decoding algorithm is based on

Sum-Product modules, which implement the (A.55) equation.A block diagram of the

analog decoder implementation is shown in Fig.2.11. In particular, the B and C chains

that implement the forward and backward recursion of the BCJR algorithm will consist of

5 different B and C cells types, corresponding to the 4 possible merging schemes of two

consecutive trellis sections due to puncturization plus the case without puncturing. The

same applies to blocks D, which compute the probability of each user alphabet symbols.

In particular, cell Ba corresponds to the perforation matrix section
∣

∣

∣

∣

∣

0 0

1 1

∣

∣

∣

∣

∣

which will be indicated as|×1×1|. In the same way, cell Bb relates to section|×11×|,
Bc to |1×1×|, Bd to |1××1| and B to|11|. The structure of C cells are specular to those

of the corresponding B cells while D cells calculate the userbits probabilities of each
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Figure 2.11: Convolutional code SISO block diagram

trellis section combining the information given by the forward and backward recursions.

As an example, the trellis of cell Ba and Da are reported in Fig..2.12.

2.4.2 Performance Analysis

The performance of the decoding algorithm have been estimated through a C++ behav-

ioral model of the decoder. To consider a realistic scenario, the analog decoder has been

design to work on information data fieldsM = 256 bits wide, as in the 2 bit/cell NOR

memory described in [48], that uses as ECC a BCH(274,256,2). The code is termi-

nated, that is the 256 user bits plus 3 termination bits are coded by means of the rate 1/2

convolutional code described in Sec.2.4 and then puncturedwith the pattern given by the

perforation matrix

PTot =

(

P′ 1

1
P′ P′ P′ P′ P′ 1

1
P′ P′ P′ P′ P′ 1

1
P′ P′ P′ P′ P′ 1

1
P′
)

(2.8)

whereP′ is defined by equation (2.7). Thus the resulting code rate isR = 256/280.

The punctured convolutional code performance are reportedin Fig.2.13, together with

that of the Hamming code(36,32) over GF(4) presented in Sec.2.3. The trellis code

performance with and without puncturing are compared in Fig.2.14.

The punctured code shows a loss of 5dB with respect to the non-punctured version at
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Figure 2.12: Trellis sections according to the merging scheme|×1×1|

BER=10−3, which makes high-rate punctured convolutional codes poorECC for multi-

level memories.

2.5 Trellis Coded Modulation for Multilevel Flash Mem-

ories

Neither linear block codes nor convolutional punctured codes seem the right choice when

dialing with memory cells with a storage capability equal orgreater than 3 bits/cell. The

former, because their complexity is deemed to increase whena higher error correction

capability is required, as shown by the state-of-the-art BCH decoder demonstrated in [36],

where both the BCH decoder area and latency time increase with the error correction

capability; the latter due to their trade off between code performance and rate.
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Figure 2.13: BER of rate 15/16 punctured (diamonds) convolutional code, soft-decoded

(stars) and hard-decoded (crosses) Hamming(36,32) overGF(4)
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lutional code
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Figure 2.15: Analogy between memory cell threshold voltage distributions and signal

constellations

2.5.1 Multilevel Flash Memories as Signal Constellations

Trellis Coded Modulation (TCM) is a well-known technique for improving band-limited

communication systems combining trellis codes (i.e. convolutional codes) and modula-

tion, as described in Appendix Sec.A.2.5.

The concept of signal modulation can be easily extended to a flash memory by con-

sidering the analogy between signal constellations and threshold voltage levels (or charge

distributions) positions within one or more memory cells asshown in Fig.2.15. In fact, in

the case of memory cells, the symbol space is a one- or multi-dimensional discrete grid

of (approximately) equally spaced voltage levels.
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The noise deteriorating the transmitted signal is due to Gaussian white noise and in-

tersymbol interference in the case of transmission channels, while it can be attributed to

process variations and all the disturb effects described inSec.2.1.4 in the case of flash

memory cells. Nevertheless, in both cases the noise effect can be described by means of

a triangular or Gaussian distribution.

As a result, a multilevel flash memory cell can be modeled as anAmplitude Shift

Keying (ASK) modulation channel plus a white additive Gaussian noise (AWGN), thus

allowing the use of TCM to either increase memory reliability or to enable higher effective

storage capacity [49].

2.5.2 TCM for Multilevel Flash Memories

The effectiveness of TCM-based solutions for multilevel flash memories in terms of error

correcting performance, coding redundancy, silicon cost and operation latency, has been

successfully demonstrated in [50].

As TCM requires soft decoding algorithms, analog decoders could offer advantages

with respect to digital implementations, both in terms of area occupation and power con-

sumption, as already proved for Trellis and Turbo codes analog decoders [8,9,13,14].

In order to study the feasibility and complexity of the analog approach for a TCM de-

coder, the case where the effective capacity of a given ML flash memory is to be increased

from m to m+1 information bits/cell is considered. To maintain the samelevel of relia-

bility despite the decrease of spacing between adjacent voltage levels, the use a relatively

low-rate TCM code is here proposed, based on the following strategy: the number of bits

stored in a cell is increased fromm to m+2, with the additional bit (w.r.t.m+1) used as a

parity bit. Thus a rate(m+1)/(m+2) TCM code is implemented as, for realistic values

of m, is powerful and relatively simple to decode with respect tohigher rate block codes.

More specifically, as flash memory cells with up to 16 levels are by now the present

technology [35], we consider a case wherem= 2, thus aiming at an effective memory

capacity of 3 information bits/cell, achieved through the use of 4-bit, that is 16-level,

multilevel cells protected by a rate 3/4 TCM code. To model the behavior of the multilevel

memory cell, the following simplifying (but not unrealistic) assumptions are made:

(i) the q threshold voltage values that can be programmed in a memory cell are equally

spaced and bounded between fixed minimum and maximum voltageVTMIN and

VTMAX;
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Figure 2.16: TCM encoder block diagram

(ii) the readout threshold voltage has a Gaussian distribution with standard deviationσn

centered around the nominal programmed value.

To improve memory reliability by means of a TCM code, there are different possibilities,

depending on the constituent trellis code [50,51]. The use of a rate 1/2 convolutional code

allows to keep the decoder complexity low. Thus, depending on the modulation scheme

chosen, three main different scenarios can be considered:

(a) one-dimensional 16-ASK modulation;

(b) bi-dimensional 12-ASK modulation;

(c) bi-dimensional 16-ASK modulation.

Case (a) and (c) are designed for a multilevel memory cell with q= 16 levels and distance

∆ between two adjacent threshold voltages, while case (b) refers to a multilevel memory

cell with q = 12 levels and thus with distance between two adjacent threshold voltages

∆′ = 4/3∆. It can be proved [51–53] that the minimum distance between two codewords

that differ only in the uncoded bits decreases from 4· ∆ in case (a) to 8/3 ·
√

2 ·∆ in case

(b) down to 2·
√

2 ·∆ in case (c).
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Figure 2.17: Cell mapping

Solution (b) can be discarded since it shows a lower codeworddistance with respect

to (a) with the same storage density of 3 information bits/cell. As the increased storage

capacity of (c) comes at the price of a reduced error correction capability and also of a

more complex decoder architecture with respect to (a), the more promising solution seems

the latter one, which refers to a rate 3/4 TCM with one-dimensional 16-ASK modulation

designed for a 4 bits/cell multilevel memory.

The encoding process can be better understood with the help of Fig.2.16, where a

block diagram of the full TCM encoder is shown.

An M-bit information data field is divided inton-bit wide sub-fields (n= 3 in Fig.2.16);

k bits of the sub-field (k = 1 in Fig.2.16) are fed to a convolutional encoder, that generates

ak+1-bit codeword. Then−k uncoded bits and thek+1-bit codeword are fed to a mod-

ulator that maps them on a threshold voltage level that is then programmed in a multilevel

cell.

In Fig.2.16, bitsa1,k,a2,k,a3,k indicate then = 3-bit uncoded information bits, while

bits b1,k,b2,k,b3,k,b4,k represent the(n+ 1) = 4-bit codeword. The codewords mapping

into memory cell threshold voltage levels, together with the multilevel cells threshold

voltage distributions, is shown in Fig.2.17.

The 16 threshold voltages are partitioned into 4 subsetsS0,S1,S2,S3, each consisting
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Figure 2.18: 4-state TCM trellis state diagram

of 4 threshold voltages with minimum intra-set distanceδ = 4 ·∆. The two convolutional

encoders output bitsb3,k andb4,k select one subset out of 4, while the two uncoded bits

b1,k andb2,k select one of the 4 voltages within the chosen subset.

In order to analyze in depth the design trade-offs peculiar to the analog approach, the

performance and limitations of two different fully analog TCM decoders, a 4-state and

an 8-state one, are compared. In both cases, the constituentconvolutional code has been

chosen in accordance with [51] so as to maximize the asymptotic coding gain.

The generator polynomials for the 4-state trellis code are given by:

G(D) =
[

D2 +1,D
]

(2.9)

Its corresponding trellis state diagram is shown in Fig.2.18. It is worth to notice how each

branch of the trellis diagram is actually constituted by 4 parallel branches which differ for

the uncoded bitsb1,k andb2,k.

The generator polynomials for the 8-state code, whose trellis state diagram is shown

in Fig.2.19, are given by:

G(D) =
[

D3+D+1,D2] (2.10)

This choice leads to an asymptotic coding gain of 3.5dB for the 4-state code, which be-

comes 3.9dB for the 8-state one.

2.5.3 Analog Decoding Algorithm

If implemented in the digital domain, the core blocks of a TCMdecoder are a demod-

ulator, which computes the branch metrics for the Viterbi decoder based on the log-

likelyhood of the threshold voltage levels read from the memory array, and a soft-Viterbi

decoder matched to the convolutional code.
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Figure 2.19: 8-state TCM trellis state diagram

In the analog approach, the Viterbi decoder is replaced by a soft-input soft-output

(SISO) module implementing the BCJR decoding algorithm with a current mode circuit

[6]. In addition, also the demodulator is realized by means of a fully analog circuit.

A simplified block diagram of the decoder core is reported in Fig.2.20. The BCJR

decoding algorithm implemented by the decoder core computes, for each cell (i.e., for

each trellis section), the most probable subsetSi,k of threshold voltage levels, while the

demodulator finds the most probable level within each subsetSi,k.

The SISO is designed following the Sum-Product approach described in [6] and al-

ready successfully used in several analog decoder prototypes, such as [14]. In particular,

B and C chains implement the forward and backward recursion of the BCJR algorithm;

blocks D compute the probability of the trellis coded input bit a3,k; blocks E compute the

probability of each subsetSi,k; blocks F1 and F2 realize the demodulation computing the

probability of bitsa1,k anda2,k.

The decoder inputs are the conditional probabilitiesp(VR
Tk|Si,k), that is the probabil-

ities of the threshold voltageVR
Tk read from memory cellk, given that the programmed

level belongs to the subsetSi,k, with i = 0,1,2,3, while the demodulator inputs are the

conditional probabilitiesp(a1,k|Si,k) andp(a2,k|Si,k).

p(VR
Tk|Si,k) correspond to the branch metrics required by the MAP decoderand are
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Figure 2.20: Block diagram of the analog decoder core

calculated from the threshold voltage conditional probabilities p(VR
Tk|VTk( j)). These lat-

ter ones are the probabilities ofVR
Tk given theVTk( j) programmed voltage level, with

j = 0,1,2, · · · ,15, and are computed by the voltage to probability module described in

Sec.3.2.

Recalling the mapping scheme already shown in Fig.2.17, theconditional probabilities

p(VR
Tk|Si,k) are given by:

p(VR
Tk|S0,k) = p(VR

Tk|VTk(0))+ p(VR
Tk|VTk(4))+ p(VR

Tk|VTk(8))+ p(VR
Tk|VTk(12))

p(VR
Tk|S1,k) = p(VR

Tk|VTk(1))+ p(VR
Tk|VTk(5))+ p(VR

Tk|VTk(9))+ p(VR
Tk|VTk(13))

p(VR
Tk|S2,k) = p(VR

Tk|VTk(2))+ p(VR
Tk|VTk(6))+ p(VR

Tk|VTk(10))+ p(VR
Tk|VTk(14))

p(VR
Tk|S3,k) = p(VR

Tk|VTk(3))+ p(VR
Tk|VTk(7))+ p(VR

Tk|VTk(11))+ p(VR
Tk|VTk(15))

where the programmed voltage levelVTk( j) corresponds to the distributionD j of thek-th

memory cell.
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In the same way, conditional probabilitiesp(a1,k|Si,k) and p(a2,k|Si,k) can be calcu-

lated by:

p(a1,k = 0|S0,k) = p(VR
Tk|VTk(0))+ p(VR

Tk|VTk(4))

p(a1,k = 0|S1,k) = p(VR
Tk|VTk(1))+ p(VR

Tk|VTk(5))

p(a1,k = 0|S2,k) = p(VR
Tk|VTk(2))+ p(VR

Tk|VTk(6))

p(a1,k = 0|S3,k) = p(VR
Tk|VTk(3))+ p(VR

Tk|VTk(7))

p(a1,k = 1|S0,k) = p(VR
Tk|VTk(8))+ p(VR

Tk|VTk(12))

p(a1,k = 1|S1,k) = p(VR
Tk|VTk(9))+ p(VR

Tk|VTk(13))

p(a1,k = 1|S2,k) = p(VR
Tk|VTk(10))+ p(VR

Tk|VTk(14))

p(a1,k = 1|S3,k) = p(VR
Tk|VTk(11))+ p(VR

Tk|VTk(15))

and:

p(a2,k = 0|S0,k) = p(VR
Tk|VTk(0))+ p(VR

Tk|VTk(8))

p(a2,k = 0|S1,k) = p(VR
Tk|VTk(1))+ p(VR

Tk|VTk(9))

p(a2,k = 0|S2,k) = p(VR
Tk|VTk(2))+ p(VR

Tk|VTk(10))

p(a2,k = 0|S3,k) = p(VR
Tk|VTk(3))+ p(VR

Tk|VTk(11))

p(a2,k = 1|S0,k) = p(VR
Tk|VTk(4))+ p(VR

Tk|VTk(12))

p(a2,k = 1|S1,k) = p(VR
Tk|VTk(5))+ p(VR

Tk|VTk(13))

p(a2,k = 1|S2,k) = p(VR
Tk|VTk(6))+ p(VR

Tk|VTk(14))

p(a2,k = 1|S3,k) = p(VR
Tk|VTk(7))+ p(VR

Tk|VTk(15))

B and C modules The B and C modules compute the forward and backward recursion

of the BCJR algorithm, taking as inputs the trellis branch metrics.

The forward recursion can be described by:

Bk(0) = Bk−1(0) · p(VR
Tk|S0,k)+Bk−1(1) · p(VR

Tk|S2,k)

Bk(1) = Bk−1(2) · p(VR
Tk|S1,k)+Bk−1(3) · p(VR

Tk|S3,k)

Bk(2) = Bk−1(0) · p(VR
Tk|S2,k)+Bk−1(1) · p(VR

Tk|S0,k)

Bk(3) = Bk−1(2) · p(VR
Tk|S3,k)+Bk−1(3) · p(VR

Tk|S1,k)
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Figure 2.21: B module

for the 4-state code, and by:

Bk(0) = Bk−1(0) · p(VR
Tk|S0,k)+Bk−1(1) · p(VR

Tk|S2,k)

Bk(1) = Bk−1(2) · p(VR
Tk|S1,k)+Bk−1(3) · p(VR

Tk|S3,k)

Bk(2) = Bk−1(4) · p(VR
Tk|S2,k)+Bk−1(5) · p(VR

Tk|S0,k)

Bk(3) = Bk−1(6) · p(VR
Tk|S3,k)+Bk−1(7) · p(VR

Tk|S1,k)

Bk(4) = Bk−1(0) · p(VR
Tk|S2,k)+Bk−1(1) · p(VR

Tk|S0,k)

Bk(5) = Bk−1(2) · p(VR
Tk|S3,k)+Bk−1(3) · p(VR

Tk|S1,k)

Bk(6) = Bk−1(4) · p(VR
Tk|S0,k)+Bk−1(5) · p(VR

Tk|S2,k)

Bk(7) = Bk−1(6) · p(VR
Tk|S1,k)+Bk−1(7) · p(VR

Tk|S3,k)

for the 8-state one. The relative trellises are shown in Fig.2.21

The backward recursion is computed according to the trellises of Fig.2.22, that are

specular to the B cells ones. Thus, for the 4-state code we have:

Ck−1(0) = Ck(0) · p(VR
Tk|S0,k)+Ck(2) · p(VR

Tk|S2,k)

Ck−1(1) = Ck(0) · p(VR
Tk|S2,k)+Ck(2) · p(VR

Tk|S0,k)

Ck−1(2) = Ck(1) · p(VR
Tk|S1,k)+Ck(3) · p(VR

Tk|S3,k)

Ck−1(3) = Ck(1) · p(VR
Tk|S3,k)+Ck(3) · p(VR

Tk|S1,k)
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Figure 2.22: C module

which become:

Ck−1(0) = Ck(0) · p(VR
Tk|S0,k)+Ck(4) · p(VR

Tk|S2,k)

Ck−1(1) = Ck(0) · p(VR
Tk|S2,k)+Ck(4) · p(VR

Tk|S0,k)

Ck−1(2) = Ck(1) · p(VR
Tk|S1,k)+Ck(5) · p(VR

Tk|S3,k)

Ck−1(3) = Ck(1) · p(VR
Tk|S3,k)+Ck(5) · p(VR

Tk|S1,k)

Ck−1(4) = Ck(2) · p(VR
Tk|S2,k)+Ck(6) · p(VR

Tk|S0,k)

Ck−1(5) = Ck(2) · p(VR
Tk|S0,k)+Ck(6) · p(VR

Tk|S2,k)

Ck−1(6) = Ck(3) · p(VR
Tk|S3,k)+Ck(7) · p(VR

Tk|S1,k)

Ck−1(7) = Ck(3) · p(VR
Tk|S1,k)+Ck(7) · p(VR

Tk|S3,k)

for the 8-state one.

D module The D modules, whose trellises are shown in Fig.2.23, compute the a posteri-

ori probabilities for the convolutional encoder input bita3,k, implementing the equations:

p(a3,k = 0) = Bk(0) ·Ck(0)+Bk(1) ·Ck(1)

p(a3,k = 1) = Bk(2) ·Ck(2)+Bk(3) ·Ck(3)

for the 4-state code, and:

p(a3,k = 0) = Bk(0) ·Ck(0)+Bk(1) ·Ck(1)+Bk(2) ·Ck(2)+Bk(3) ·Ck(3)

p(a3,k = 1) = Bk(4) ·Ck(4)+Bk(5) ·Ck(5)+Bk(6) ·Ck(6)+Bk(7) ·Ck(7)

for the 8-state one.
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Figure 2.24: E module

E module The E modules recompute the branch metric after the forward-backward re-

cursions, according to the trellises of Fig.2.24 and the following equations:

φk(0) = Bk−1(0) ·Ck(0)+Bk−1(1) ·Ck(2)

φk(1) = Bk−1(2) ·Ck(1)+Bk−1(3) ·Ck(3)

φk(2) = Bk−1(0) ·Ck(2)+Bk−1(1) ·Ck(0)

φk(3) = Bk−1(2) ·Ck(3)+Bk−1(3) ·Ck(1)

for the 4-state case, which become:

φk(0) = Bk−1(0) ·Ck(0)+Bk−1(1) ·Ck(4)+Bk−1(4) ·Ck(6)+Bk−1(5) ·Ck(2)

φk(1) = Bk−1(2) ·Ck(1)+Bk−1(3) ·Ck(5)+Bk−1(6) ·Ck(7)+Bk−1(7) ·Ck(3)

φk(2) = Bk−1(0) ·Ck(4)+Bk−1(1) ·Ck(0)+Bk−1(4) ·Ck(2)+Bk−1(5) ·Ck(6)

φk(3) = Bk−1(2) ·Ck(5)+Bk−1(3) ·Ck(1)+Bk−1(6) ·Ck(3)+Bk−1(7) ·Ck(7)

for the 8-state decoder.
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Figure 2.25: F1 and F2 module

F1 and F2 modules The F1 and F2 modules, which exhibit the same trellis depicted in

Fig.2.25, compute the a-posteriori probabilities for the uncoded bitsa1,k anda2,k.

The equations for both modules are the same for both the 4-state and the 8-state de-

coder. In particular, for F1 modules we have:

p(a1,k = 0) =p(a1,k = 0|S0,k) ·φk(0)+ p(a1,k = 0|S1,k) ·φk(1)+

p(a1,k = 0|S2,k) ·φk(2)+ p(a1,k = 0|S3,k) ·φk(3)

p(a1,k = 1) =p(a1,k = 1|S0,k) ·φk(0)+ p(a1,k = 1|S1,k) ·φk(1)+

p(a1,k = 1|S2,k) ·φk(2)+ p(a1,k = 1|S3,k) ·φk(3)

while the equations for F2 modules are given by:

p(a2,k = 0) =p(a2,k = 0|S0,k) ·φk(0)+ p(a2,k = 0|S1,k) ·φk(1)+

p(a2,k = 0|S2,k) ·φk(2)+ p(a2,k = 0|S3,k) ·φk(3)

p(a2,k = 1) =p(a2,k = 1|S0,k) ·φk(0)+ p(a2,k = 1|S1,k) ·φk(1)+

p(a2,k = 1|S2,k) ·φk(2)+ p(a2,k = 1|S3,k) ·φk(3)

2.5.4 Performance Analysis

The error correction capabilities of the analog algorithm described above have been es-

timated through a C++ behavioral model of the decoder. The analog decoder taken into

account is the 8-state one, design to work on information data fieldsM = 192 bits wide.
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Figure 2.26: BER vs SNR with analog TCM and soft Viterbi decoder

After encoding, the 256 bit codewords are stored in 64 memorycells withq = 16 levels.

To avoid long connections in the transistor-level implementation, the code is terminated.

Thus the 192 bits data field is divided into 189 information bits and 3 termination bits.

The C++ analog decoder model assumes the availability at itsinputs of the trellis code

branch metrics computed by the voltage to probability circuit. The sum-product opera-

tions of the MAP decoder are ideal, with probabilities represented by double-precision

numbers. No source of distortion, offset or noise due to transistor non-idealities is taken

into account.

To compare the analog approach performance with that of a digital implementation

based on the Soft-Output Viterbi Algorithm (SOVA) [54], a C++ behavioral model of

the digital decoder has also been developed. For a fair comparison with the ideal model

of the analog TCM, quantization effects have not been taken into account, so that the

input branch metrics and the internal path metrics are represented by double-precision

numbers. A survivor depthD = 64 has been chosen and the code is terminated, as for the

analog one. The resulting BER vs SNR performance obtained bysimulation is reported

in Fig.2.26 (circles) together with the analog TCM curve (diamonds), where the SNR is

calculated as the ratio of the signal power to the threshold voltage distribution variance
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σn:

SNR=
q

∑
j=1

V2
T ( j)/σn (2.11)

The analog TCM outperforms its SOVA counterpart by roughly 1dB at BER=10−5. This

result is not surprising as the SOVA is a suboptimum decodingalgorithm since it mini-

mizes the whole codeword error probability instead of the single symbol error probability,

as done by the MAP algorithm [55].

Based on the analog decoder prototypes reported in the literature [14], the effect of

transistor non-idealities, such as mismatch, noise and distortion, will be of the order of a

few tenths of a dB with respect to the performance predicted by the ideal model. Thus, the

analog implementation of TCM decoders is an interesting candidate to tackle the problem

of the enhanced ECC requirements of multilevel flash memories.





3
CMOS Analog TCM Decoders: Design

and Performance Analysis

In this chapter, the design and optimization of the fully analog TCM decoder, whose

structure has been described in the previous chapter, is presented. In particular, the design

trade-offs peculiar to the analog approach are analyzed in depth by comparing the perfor-

mance and limitations of the 4-state and the 8-state analog decoder, so as to draw some

design guidelines for future works.

Both decoders have been designed in the UMC 0.18-µm CMOS process, whose main

features have been described in Sec.1.1.5.

3.1 Cells Design

3.1.1 Preliminary Considerations

As already pointed out in Sec.2.5.4, both TCM codes are designed to work on a data field

of M = 192 bits. After encoding, the 256 bit codewords are stored in64 memory cells with

q= 16 levels, that is with a storage capability of 4 bits/cell. As both codes are terminated,

the 192 bits wide data field is divided into 190 information bits and 2 termination bits for

the 4-state code, which become 189 and 3 respectively for the8-state one.

The decoder core shown in Fig.2.20 counts 64 identical sections, each constituted by

all the 6 different cell types already presented in Sec.2.5.3.

At transistor level, all cells B-F are a variation of the well-known current mode Gilbert

multiplier [56]. As an example, the schematic diagram of cell B for the 8-state trellis code

is shown in Fig.3.1 with the relative trellis section. In particular, the 8 input currentsIy,lmn

and 8 output currentsIz,rst represent the trellis state probability distributionsp(y) and
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Figure 3.1: B cell schematic for the 8-state analog decoder

p(z), while the 4 input currentsIx,i j are the trellis branch metrics probability distributions

p(x). The output distributionp(z) is evaluated, in the form of a current vector, according

to (A.53). The schematics for cell C, D, E, F1 and F2 can be easily drawn from the

corresponding trellis presented in Sec.2.5.3.

The structure common to all the cells consists of a number of diode-connected nMOS

transistors operating under weak-inversion, which provide that the input currentsIx,i j and

Iy,lmn are made available to the cell core, an equal number of weak inversion nMOS which

compute the products between all possible input valuesIx,i j , Iy,lmn and pMOS current mir-

rors in strong inversion, used to feed the other cells the output currentsIz,rst. Every cell

also contains a nMOS current source, whose function is to re-normalize the output cur-

rents to the bias currentIb according to:

Ix,i j ;y,lmn =
I ′x,i j · Iy,lmn

Iy
=

Iy,lmn

Iy
· Ix,i j

Ix
· Ib (3.1)

with i, j, l ,m,n, r,s, t ∈ {0,1}. Ix andIy indicate the sum of allIx,i j andIy,lmn input currents

respectively.

The output currents re-normalization is necessary becauseof the cell trellis, where not

all the possible branches between the input and the output states are present, leading to

the fact that some currents products items are discarded. Without re-normalization, when



3.1. Cells Design 79

Cell Nx Ny Nz Nu Nt Nc Ntot

B 4 4 4 3 46 64 2944

C 4 4 4 3 46 64 2944

D 4 4 2 1 34 64 2176

E 4 4 4 2 42 64 2688

F1 8 4 2 1 58 64 3712

F2 8 4 2 1 58 64 3712

Table 3.1: 4-state decoder transistors count

Cell Nx Ny Nz Nu Nt Nc Ntot

B 4 8 8 3 82 64 5248

C 4 8 8 3 82 64 5248

D 8 8 2 1 94 64 6016

E 8 8 4 2 102 64 6528

F1 8 4 2 1 58 64 3712

F2 8 4 2 1 58 64 3712

Table 3.2: 8-state decoder transistors count

more cells are connected in sequence as shown in Fig.2.20, the total current reduces along

the chain, due to the fact that the output currentIz of every cell is less than the total input

oneIx or Iy. This would translate into a decoder performance degradation.

As all the cells show the same structure, the transistor count for each one can be

calculated by equation:

Nt = 1+2Nx +Ny +NxNy +Nz+1+NzNu (3.2)

whereNx andNy are the length of the two input vectors,Nz the length of the output vector,

Nu indicates the number of blocks which use the cell output currents, andNt andNc are

the transistors amount for each cell and the total cells number respectively. The total

transistors count for the 4-state decoder core is reported in Table 3.1, while in Table 3.2

the data for 8-state one are shown.

As it was expected, the total transistors count almost double for the 8-state decoder

with respect to the 4-state one, as it adds up to 30.464 for theformer while it is equal to

18.176 for the latter one.
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3.1.2 Weak Inversion Devices

The sum-product cell performance, given the nMOS transistors channel lengthL, depend

mainly on the block bias current densityIb/W, whereW is the weak inversion nMOS

channel width, as extensively studied in [43, 57]. Increasing Ib/W improves transistors

speed but moves the devices progressively out of the pure exponential (weak inversion)

region, thus negatively affecting the decoder static accuracy; on the other hand, a faster

device settling time translates into a faster transient towards the asymptotic BER of the

analog decoder. Transistors sizing has also opposite effects on devices matching, that is

on the decoder static accuracy, and on parasitic capacitances, that is on the decoder speed.

As a consequence, the minimum device size in the sum-productcells was set based on

accuracy considerations and then the cell bias current was chosen in order to satisfy the

decoding time specifications.

Even if systems following thebio-inspireddesign stile [58] seem to be more robust

against devices mismatch with respect to the conventional analog ones, nevertheless sub-

threshold devices show an exponential relation between thethreshold voltage error and

the drain current [59–61] due to the exponential dependenceof the drain current on the

voltage overdriveVGS−VTh. The standard deviation of the threshold voltage error can be

modeled by equation (1.21), with the technology dependent parametersAVT andCo values

still given in Table 1.1.

The choice of the transistors lengthL has to take into account short-channel effects,

which in principle do not seem the major source of performance loss in analog decoder

[62], but whose impact is deemed to increase for large decoders.

These considerations lead to setL = 0.6µm, that is roughly 3·Lmin, andW = 0.8µm

in order to keep the sum-product cells nMOS transistors arearoughly 10 times larger

than the device minimum area (i.e., 0.24×0.18µm2). The goodness of this choice will be

proved by means of extensive MonteCarlo simulations, whichwill be discussed in section

3.1.7.

3.1.3 Bias Current

Once the transistors dimensions are fixed, we need to chose the bias current so as to fullfill

the decoder settling time specifications and to guarantee that the nMOS will work in their

exponential region.

To set a reasonable value for the decoding time, we considered the state-of-the-art
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Figure 3.2: Current-voltage characteristic for aL = 0.6µmW = 0.8µm nMOS transistor

BCH decoder demonstrated in [36], even if it is designed to work on 2 bit/cell memory.

This decoder has a correction capability up to 5 errors with amaximum latency time of

250µs for a data field of 2048 16-bit words. As the analog decoders work on a data field

of 190 or 189 information bits, a 2048x16 bit data field is decoded in 173 steps for the

4-state TCM and in 174 steps for the 8-state one, thus leavinga maximum decoding time

of 1.4µs for each step in order to guarantee the same latency time of [36].

The current-voltage characteristic for a nMOS transistor with L = 0.6µm andW =

0.8µm is shown in Fig.3.2. In order to keep the devices work under true exponential

region, the bias current should be in the range of 10−10A, but settlingIb = 10−10A would

result in a decoding latency too long for our specifications.

If the devices are working under strong inversion, this introduces a performance degra-

dation, as described in [62], especially if some products items are discarded and the total

input current is less than the normalization currentIb. It is true that even if the bias cur-

rentIb is quite large, some transistors work in the moderate or weakinversion region if the

corresponding probabilities are small. However, in these cases, the decisions are clear and

the largest probability are nearly unchanged so that we can neglect the error introduced by

those devices working under strong inversion. The most critical situation occurs when no

probability is dominant. In this case all the transistors work in the strong inversion region

if Ib is large enough. As a result, the value ofIb should be chosen so that to avoid all

the nMOS to work under moderate or strong inversion when all the inputs currents have

nearly the same value.
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Following these considerations, a current in the range ofµA seems a reasonable choice

for the cell biasing.

As already pointed out, the bias currentIb also determines the decoder performance

in terms of decoding speed. In order to settle the optimum value forIb, the decoding time

has been evaluated for different bias currents by means of transistor-level simulations.

The inputs of the decoder are generated using a C++ program that implements the

following steps:

1. generates random binary 190- or 189-bits wide user words;

2. adds the termination bits;

3. encodes the data;

4. maps them on 64 memory cells threshold voltages;

5. simulates a discrete Gaussian channel (AWGN);

6. calculates the conditional probabilitiesp(VR
T |Si), p(a1|Si) and p(a2|Si) from the

threshold voltageVR
T read from each memory cell;

7. makes demodulation and detection;

8. saves the decoded words.

The BER as a function of the cell bias currentIb has been simulated at three different

SNR, that is 26, 27 and 28dB. As a point of the BER vs SNR curve isconsidered reliable

when a minimum number of 100 erroneous bit is detected, the number of words to be

simulated for each SNR has been calculated as 100/(BER· 192), where BER indicates

the expected BER and the words are considered 192-bits wide because they include the

termination bits. Thus, in order to obtain a reliable BER value, 100 words have been

simulated at SNR=26dB, which become 1.000 at SNR=27dB and 11.500 at SNR=28dB.

In the BER simulations, the decoder is feed with a current vector that represents the

calculated conditional probabilitiesp(VR
Tk|Si,k), p(a1,k|Si,k) andp(a2,k|Si,k) values and is

given a maximum time of 2µs to settle. The soft outputs are sampled at subsequent time

instants, so as to evaluate the BER as a function of the decoding time. The resulting

BER curves for the 8-state analog decoder are shown in Fig.3.3 for three different biasing

currentIb = 2,4 and8µA.
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Figure 3.3: BER as a function of the decoding time

At low SNR, where most of the cells have inputs with almost equal probability, the

decoding speed is not affected by the cell bias current value, while it improves consider-

ably with Ib at high SNR, when some of the probabilities can be very small.If an error

has to be corrected at high SNR, the corresponding cells require a much longer time to

commute, because some of the weak inversion nMOS are almost switched off. Increasing

the bias current, the nMOS come out of the off region more quickly, thus speeding up the

cells settling time.

With Ib = 8µA we can see that, after a settling time of 1.4µs at SNR=28dB, the decoder

BER is equal to 2.1 ·10−4, which compared with the the ideal C++ model BER of 4.5 ·
10−5, seems a good result.

Following these considerations, we chooseIb = 8µA for the 8-state decoder.

A similar analysis, performed for the 4-state decoder, has lead to set a bias current of

Ib = 2µA for the 4-state sum-product cells.

3.1.4 Bias Transistor

As the cell input currents are re-normalized at the cell biascurrent value at each decoding

step, the bias current of each cell does not need to be repliedwith a high precision. As a
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consequence, the sizing of the nMOS bias transistor is not particularly critical.

However, it is worth to notice how its drain voltage is subjected to strong variations,

as all theMx,i j transistors operate under weak inversion. In fact, it is this very variation of

the drain voltage that makes the re-normalization possible. Recalling the low of a MOS

working under weak inversion:

ID = ID0eβ(VG−VS−VT0) (3.3)

whereID0 andβ are technology dependent constant, if we assume that all theMx,i j and

M′
x,i j transistors are working in the exponential region, we can write:

∑ I ′x,i j = ∑ ID0 ·exp(α(VG,i j −V ′
S))

= ∑ ID0 ·exp(α(VG,i j −VS+VS−V ′
S))

= ∑ Ix,i j ·exp(α ·∆VS)

with ∆VS=V ′
S−VS. Thus every input current is multiplied by a factoreβ∆VS, so as to make

∑ I ′x,i j = Ib.

As the input current sum decreases with respect toIb, the multiplying factor increases,

lowering the bias transistor drain voltage. As a consequence, the bias nMOS has to be

able to work properly withVDS lower that the bias voltageVbx.

3.1.5 pMOS Current Mirrors

The precision of the pMOS current mirrors has a direct impacton the output probabilities

accuracy. Thus, they have to be sized following all the design considerations that apply to

standard current mirrors. In particular, since the maximumcurrent flowing into the mirror

is equal to the cell bias currentIb, the maximum voltage across the current mirror is given

by:

|VGS,max| = |Vth,p|+ |Ve f f(Ib)| = |Vth,p|+
√

2Ib
kp

W
L

(3.4)

3.1.6 Bias Voltages

As already pointed out, the bias voltageVbx determines the maximum drain to source

voltageVDS for the nMOS current source and also the minimum value given the M′
x,i j

transistors∆VS. Vbx has thus to be chosen so as to keep the nMOS current source working

under strong inversion.
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4-states

Mp
0.5
1

Mn
0.8
0.6

Mb
4

0.4

8-states

Mp
2
1

Mn
0.8
0.6

Mb
16
0.4

Table 3.3: Transistor size inµm/µm

Cell mε σε

B 2.259e−3 3.457e−3

D 1.511e−5 5.676e−3

E 2.464e−5 4.832e−3

F1 1.018e−4 6.073e−3

Table 3.4: Error statistic for the 4-state decoder cells

In the same way, the bias voltageVby determines theVDS range for theM′
x,i j transistors.

As both the sum currentsIx and Iy are unknown, we can choseVby so as to optimize a

“medium” case, when theM′
x,i j transistors drain voltage is equal toVby. This leads to:

Vby≃
VDD −|VGS,mMAX −Vbx

2
(3.5)

3.1.7 Single Cell Characterization

Following the previous considerations, we set the bias voltagesVbx = 300mV andVby =

700mV. The transistor dimensions for both the 4-state and 8-state decoder, are reported in

Table 3.3.

The goodness of this choice has been estimated by characterizing the output errorε of

each of the 6 cells types, whereε is defined by:

f̃ (x,y) = f (x,y) · (1+ ε) (3.6)

As the errorε depends on the cell input values, for each cell 100.000 different input

vectors have been simulated. The corresponding error statistic is given in Table 3.4, where

mε indicates the mean error andσε its standard deviation. As cell C exhibits the same

structure as cell B, and cell F1 the same as cell F2, their error statistics have not been

simulated.

The effect of mismatch and process variations on the cell error has also been estimated
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Cell mε σε

B 5.5045e−5 9.691e−3

D 2.672e−5 1.021e−2

E 1.062e−5 8.823e−3

F1 9.26e−5 9.22e−3

Table 3.5: Error statistic for the 8-state decoder cells

Cell mmε σmε mσε σσε maxσσε min σσε

B 1.715e−3 5.897e−3 1.847e−2 2.825e−2 1.165e−1 4.053e−7

D 1.035e−3 6.612e−3 6.721e−3 2.13e−2 1.654e−1 5.145e−7

E 1.035e−3 5.132e−3 1.774e−2 3.075e−2 1.397e−1 7.361e−7

F1 8.18e−3 5.05e−3 9.803e−4 8.022e−3 1.193e−1 1.341e−6

Table 3.6: Error statistic with MonteCarlo simulations for the 4-state decoder cells

by MonteCarlo simulations: for each cell type 100 instanceshave been simulated, each

one with 1.000 different input vectors. The results are reported in Table 3.6.

As the mean valuemσε of all the standard deviationsσε calculated on each circuit

instance is comparable or even smaller than the standard deviationσσε , this indicates that

the output error depends on the particular input configurations.

This is due to the fact that some transistors work in the moderate or strong inversion

region if the corresponding probabilities are large. However, in these cases, the decisions

are clear and the error introduced does not affect the decoder performance. As the output

error depends on the input configurations, this indicates that we can not use a second order

statistic to describe the random variableε.

3.2 Voltage to Probability Cell

The interface between the memory array and the decoder core has the task to compute the

branch metrics required by the MAP decoderp(VR
Tk|Si,k) and the uncoded bits conditional

probabilitiesp(a1,k|Si,k) and p(a2,k|Si,k), defined in Sec.2.5.3, from the actual threshold

voltageVR
Tk programmed in the addressed cell, wherek indicates the cell index. Recalling

that the branch metrics can be written as:

p(VR
T |Si) = ∑

j∈Si

p(VR
T |VT( j)) (3.7)
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Figure 3.4: Analog circuit for conditional probabilities generation

the voltage to probability module has to calculate the conditional probabilitiesp(VR
T |VT( j)).

These probabilities are defined as:

p(VR
T |VT = VT( j)) =

1√
2πσn

exp(−(VR
T −VT( j))2

2σ2
n

) (3.8)

whereσ2
n is AWGN channel noise variance,VR

T is the threshold voltage read from the

memory cell,VT is the threshold voltage programmed in the cell andVT( j), j = 0÷(q−1)

are all the possible cell voltage levels, that correspond totheA alphabet symbols.

As already pointed out in Sec.2.5.3, we considered a reference memory cell with

q = 16 threshold voltage levels equally spaced between fixed minimum and maximum

valueVTMIN = 0V andVTMAX = 5.6V, and a channel noise standard deviationσn varying

between 80 and 300 mV.

In the case of a binary alphabet like{−1,+1}, the (3.8) can be implemented by a

simple differential pair, as described in Sec.1.2.2.

The same concept can be easily extended to the case of non binary alphabet, as proved

by Frey in [63], by replacing the differential pair with the circuit shown in Fig.3.4.

In this case the output currentsI j are proportional to the conditional probabilities

p(VR
T |VT( j) according to:

p(VR
T |VT = VT( j)) = IN

p(VR
T |VT = VT( j))

∑i∈A p(VR
T |VT = VT(i))

(3.9)

where the alphabetA = {0÷15}.

If we assume that all the nMOS transistors are working in the exponential region, we

can derive the expression of each output currentI j as a function of the gate voltagesVj ,

j ∈ A , as:

I j =
IN

∑i∈A exp(Vi−Vj
nUT

)
, j ∈ A (3.10)
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Figure 3.5: Conceptual schematic for approximated conditional probabilities generation

wheren is a technology dependent parameter. Its value for the UMC process has been

estimated for nMOS and pMOS by means of transistor simulations, which gavenn = 1.31

andnp = 1.57.

It can be proved [63] that, in order to obtain the output currents I j , the programmed

threshold voltage level read from the memory cell has to be amplified by a different factor

for each of the alphabet symbols so as to obtain the gate voltages:

Vj = VR
T · nUTVT( j)

σ2 − nUT(VT( j))2

2σ2 (3.11)

As nUT ≃ 34mV andσ = 80÷300mV, it is easy to see how this results in a gate voltages

range which is not compatible with our technology.

3.2.1 Approximated Normalization

An output currentI j proportional to the conditional probabilityp(VR
T |VT( j)) can be ob-

tained [57] with the circuit shown in Fig.3.5, which consists of 16 differential pairs whose

nMOS are biased in weak inversion so that their input voltage- output current relation is

an hyperbolic tangent. The differential pairs input voltagesVd j are given by:

Vd j = α ·
[

VR
T −VT( j)+VT( j −1)

2

]

(3.12)

where the scaling factorα is equal to:

α =
nUT∆

σ2
n

(3.13)

∆ indicates the distance between adjacent threshold voltagelevels, which in our case is

equal to 400mV.
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As an example, let’s consider the output currentI ′1 = I1/0− I2/1 which corresponds to

the conditional probabilityp(VR
T |VT = VT(1)). According to (3.9),I1 can be written as:

I1 = IN
p(VR

T |VT = VT(1))

∑i∈A p(VR
T |VT = VT(i))

(3.14)

Let’s define

p[VR
T |VT = VT(0)] = p[VR

T |0]

p[VR
T |VT = VT(1)] = p[VR

T |1]

p[VR
T |VT = VT(2)] = p[VR

T |2]

whereVT(0),VT(1) andVT(2) correspond to the programmed threshold voltage levels 0V,

400mV and 800mV respectively. The circuit of Fig.3.5, generates the currentI ′1 which,

according to (1.9), is given by:

I ′1 = IN
p[VR

T |1]

p[VR
T |0]+ p[VR

T |1]
+ IN

p[VR
T |2]

p[VR
T |1]+ p[VR

T |2]
(3.15)

The (3.15) can be written as:

I ′1 = IN
p[VR

T |1]
2− p[VR

T |0] · p[VR
T |2]

p[VR
T |1]

2
+ p[VR

T |1] · p[VR
T |2]+ p[VR

T |0] · p[VR
T |1]+ p[VR

T |0] · p[VR
T |2]

(3.16)

The factorp[VR
T |0] · p[VR

T |2] can be discarded as it is much smaller than all the other

ones, as it is related to two non adjacent voltage levels. Thus (3.16) becomes:

I ′1 = IN
p[VR

T |1]

p[VR
T |1]+ p[VR

T |2]+ p[VR
T |0]

(3.17)

which shows how the calculated conditional probability is an approximation of the ideal

one. However, we will see in Sec.3.2.2 how this approximation is good enough for our

purposes.

The expression for the input differential pair voltageVd j given by equation (3.12) can

be deduced by recalling that:

ID j =
IN

1+exp(
−αVdj
nUT

)
(3.18)

which, in order to satisfy equation (3.15), must be equal to:

ID j =
IN

1+exp(
−(VR

T −VT( j−1))
2
+(VR

T −VT( j))2

2σ2
n

)
(3.19)
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By comparing (3.18) to (3.19), we obtain the expression forVd j :

Vd j =
nUT(VT( j)−VT( j −1))

σ2
n

[VR
T − (VT( j)+VT( j −1))

2
] (3.20)

which is equal to (3.12) if we note that(VT( j)−VT( j −1)) = ∆.

3.2.2 Voltage to Probability Module Design

The voltage to probability module, which schematic is shownin Fig.3.6, receives as in-

puts the differential voltagesVd j calculated according to (3.12) and produces as outputs

the currentsI j , which are proportional to the conditional probabilitiesp(VR
T |VT( j)). In

particular, the 16I j currents are given by:

I0 = I0/1

I1 = I1/0− I2/1

I2 = I2/3− I1/2

I3 = I3/2− I4/3

I4 = I4/5− I3/4

I5 = I5/4− I6/5

I6 = I6/7− I5/6

I7 = I7/6− I8/7

I8 = I8/9− I7/8

I9 = I9/8− I10/9

I10 = I10/11− I9/10

I11 = I11/10− I12/11

I12 = I12/13− I11/12

I13 = I13/12− I14/13

I14 = I14/15− I13/14

I15 = I15/14

(3.21)

whereIi/ j indicates the output current of the differential pair, which compares the thresh-

old voltage levelsi and j, that is larger when the threshold voltage level read from the

memory cell is equal toVT(i).
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4-states

Mp
0.5
2

Mc1
2
1

Mc2
2

0.5

Mn
40
0.4

Mb
2
4

8-states

Mp
6
2

Mc1
10
1

Mc2
10
0.5

Mn
200
0.4

Mb
10
4

Table 3.7: Transistor size inµm/µm

It is worth to notice how, with the scheme described above, each differential pair

output current is used just once. This is important because it avoids the introduction of

more current mirrors in the V2P cell, thus increasing the cell current consumption.

The design of the voltage to probability cell follows the same considerations as for

the decoder core cells B-F. In particular, we first impose thesame current consumption

for both voltage to probability and decoder core cells, which means a bias current of

IN = Ib/15 for each differential pair of the voltage to probability module. However, we

saw how this choice had a negative impact on the overall decoder performance due to two

different reasons:

• the voltage to probability settling time became the dominant factor in determining

the decoding time, thus slowing down the overall decoder speed;

• the decoder precision was heavily affected by the the fact that the sumIx of the

input currentsIx j was 15 times lower than the decoder cell bias currentIb.

As the settling time of cells with the same current densityIb/W is faster for those cell

which have a higher bias currentIb, we decided to setIN = Ib.

As the approximate normalization relies on the hyperbolic tangent voltage to current

characteristics of the differential pair nMOS, they have been sized so as to work always

under weak inversion. This guarantees a more precise input probabilities to the decoder

core.

In order to improve the cell accuracy, a cascode current mirror instead of a simple

one has been used in all the differential pairs where no current subtraction is performed,

as opposite to the nodes where the currents are subtracted, which exhibit a relatively low

impedance.

The transistor size for both 4-state and 8-state decoder voltage to probability module

are reported in Table 3.7.
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Figure 3.7: Conditional probabilities calculated with the approximated normalization

method and ideal at SNR=24dB and SNR=30dB

As already stressed out in Sec.3.2.1, this method calculates an approximated normal-

ization of the conditional probabilities, whose precisionincreases with SNR.

In Fig.3.7, the ideal conditional probabilities are compared with those calculated with

the approximated normalization at two different input SNR of 24dB and 30dB respec-

tively, while in Fig.3.8 the corresponding probability error is reported.

At SNR=24dB the error introduced by the approximated normalization is less than

0.06. If we consider that at this SNR the noise standard deviation σn = 0.555·∆ = 222mV,

with an error equal to 2σn on the read threshold voltage, we move to the adjacent voltage

level, which from Fig.3.7 corresponds to a probability error grater than 0.6.

The maximum probability error as a function of the input SNR is shown in Fig.3.9,

where we can see how it decreases at high SNR. For SNR grater than 30dB, the error

remains around 0.01. This effect is due to the fact that the differential pair input voltages

Vd j are saturated to a maximum peak to peak value of 600mV.

The effect of mismatch and process variations on the voltageto probability error has

been estimated by means of MonteCarlo simulations. 100 cellinstances have been simu-

lated, each one with 1.000 different input vectors. The results are reported in Table 3.8.
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Figure 3.8: Conditional probabilities error at SNR=24dB and SNR=30dB
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Figure 3.9: Conditional probability error
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mmε σmε mσε σσε maxσσε min σσε

1.218e−2 2.248e−1 5.802e−2 2.397e−2 8.739e−2 7.287e−7

Table 3.8: Output currents error statistic for V2P

3.3 Decoder Optimization: the Reset

In order to make the decoding of a new frame independent from the elaboration results

of the previous one, we decided to reset the cells to an uniform state probability before

starting the decoding of a new word.

The reset has also the advantage to speed up the decoding time, as demonstrated by

Fig.3.10, where the output currents transient with and without reset is shown.

We can see that if the decoding of a new frame starts from a reset state, we can avoid

a lot of spurious commutations in the decoder output currents.

The uniform state probability is obtained by forcing the output currents of cells B and

C to be all equal toIb/8. This is done by adding pass-transistors to the output current

mirrors, so as to short the gate voltage of all the pMOS and thus forcing all the currents

flowing through the output transistors to be equal.

At the same time, cell B, C, F1 and F2 inputs are reset to the uniform state probability,

so as to generate output currents all equal toIb/8. Thus cell B and C inputs are set to:

p(VR
Tk|S0,k) = p(VR

Tk|S3,k) = 0.5

p(VR
Tk|S1,k) = p(VR

Tk|S2,k) = 0

while cell F1 and F2 inputs reset configurations are given by:

p(a1,k = 1|S0,k) = p(a1,k = 0|S3,k) = 0.5

p(a1,k = 1|S1,k) = p(a1,k = 1|S2,k) = p(a1,k = 1|S3,k) = 0

p(a1,k = 0|S0,k) = p(a1,k = 0|S1,k) = p(a1,k = 0|S2,k) = 0

and:

p(a2,k = 1|S3,k) = p(a2,k = 0|S0,k) = 0.5

p(a2,k = 1|S0,k) = p(a2,k = 1|S1,k) = p(a1,k = 1|S2,k) = 0

p(a2,k = 0|S1,k) = p(a2,k = 0|S2,k) = p(a1,k = 0|S3,k) = 0

respectively.
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(a) Without reset

(b) With reset

Figure 3.10: Output probabilities transient with and without reset

The decoding time for the 8-state decoder with and without reset has been simulated

at SNR=27dB and SNR=28dB, showing how the reset speeds up thedecoding latency

especially at high SNR. This is due to the fact that at high SNRthe decisions are more

clear, which means that after a frame has been decoded the transistors are either switched

off or completely on. If a nMOS has to commute for the next frame from the switched

off state, this requires a long time. During this time, the information coming from the

other cells in the chain can be more updated and cause the celloutputs to have spurious

commutations.

If the decoding of each codeword starts from an uniform stateprobability, these spu-

rious commutations can be avoided, thus improving the decoding speed.
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Figure 3.11: BER vs SNR for a memory cell withq = 8 without ECC (circle), a memory

cell with q = 16 and 4-state TCM C++ model (diamonds) and with TCM analog decoder

(squares)

3.4 Overall Decoder Performance

The performance of both 4-state and 8-state decoder have been estimated by means of

transistor-level simulations. In each simulation, the threshold voltage levels stored in 64

memory cells are read and applied to an AWGN channel. Then theconditional probabili-

ties are calculated and the corresponding 4 input currentsIx are fed to the decoders, which

are given a timeTD = 1.3µs to settle. The soft output of the decoders is then sliced and

used to estimate the BER and the decoders are reset to uniformstate probability in a time

TR = 100ns, thus giving an overall decoding time of 1.4µs.

The BER vs SNR curves for the 4-states and 8-states analog decoder are reported in

Fig.3.11 and Fig.3.12 respectively. These curves are compared with the benchmark ob-

tained with a C++ behavioral model of the decoders. In the model, the sum-product op-

erations of the MAP decoder are ideal, with probabilities represented by double precision

numbers and no source of distortion, offset or noise is takeninto account. In both cases

the simulations results show a performance loss of 0.5dB with respect to the benchmark

at a BER=10−4, in line with the results already found for all-analog Turbodecoders [14].
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Figure 3.12: BER vs SNR for a memory cell withq = 8 without ECC (circle), a memory

cell with q = 16 and 8-state TCM C++ model (diamonds) and with TCM analog decoder

(squares)

Each point of the BER vs SNR curves is considered reliable when a minimum number

of 100 erroneous bit is detected. As the number of frames to besimulated increases at

lower BER, it was not possible to simulate the decoders behavior at SNR greater than

28.5dB, due to the excessive computational load of transistor-level simulations. For both

decoders, the BER at SNR=28.5dB was estimated with a reducednumber of 50 errors.

The effect of transistor mismatch has been estimated for the4-state decoder by means

of transistor-level MonteCarlo simulations at BER=10−3, which corresponds to a SNR =

27dB. In this case, the BER has been estimated with a reduced number of 50 errors, due to

the long computational time required. The simulations results with 100 MonteCarlo iter-

ations reported in Fig.3.13 show for the BER a mean valuem= 2.67·10−3 with standard

deviationσ = 1.54·10−4, which corresponds to a loss between 0.4 and 0.6 dB with re-

spect to the BER benchmark of 9.07·10−4. The deviation with respect to the typical case

is of 0.1dB, in accordance with the simulation and experimental data reported in [14].

The decoder core estimated area occupation is 0.32mm2 for the 4-state one with a

power consumption of 4mW at 1.8V supply, which become 0.55mm2 and 16.5mW re-
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Figure 3.13: 4-state decoder MonteCarlo simulations at SNR=27dB

spectively for the 8-state decoder.

The area occupation for the interface circuitry, that is thevoltage to probability mod-

ules, has been estimated in 4.8mm2 for the 8-state decoder, with a power consumption of

13.8mW, which reduce to 1.25mm2 and 3.4mW for the 4-state one respectively.

3.5 Conclusions

The simulation results reported in this work suggest that a full analog implementation of

a TCM decoder for multilevel flash memories can achieve a decoding speed comparable

with the state-of-the-art linear block codes occupying a small area, with a BER close to

that of the ideal decoding algorithm.

It is worth to notice how the most area and power consuming circuitry is not the one

implementing the decoder core, but that used to realize the interface between the memory

array and the decoder core itself. This can be traced back to the complexity of dealing

with memory cells with 16 levels.

Transistor-level MonteCarlo simulations show how the analog decoder is robust with

respect to transistors mismatch. However, as the performance loss in terms of BER of the

4-state decoder with respect to the 8-state one is only 0.5dBwhile the power consumption

increases by over a factor of 2, our work demonstrates how theanalog approach is all the
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more a competitive solution for ECC in multilevel flash memories as far as the decoder

states number is kept low.



4
UWB-IR Transceiver Chipset for Sensor

Network Applications

The change in FCC regulations that allows unlicensed communication using pulsed ultra-

wideband (UWB) signalling has given new momentum to the research in this field, which

has roots that can be traced back to the original Marconi spark gap radio. UWB signaling

has many attributes that make it attractive for a wide range of applications, from ultra-

low-power RFID tags and wireless sensors to streaming wireless multimedia and wireless

USB at data rate greater than 1Gb/s.

This chapter introduces UWB signaling and regulations, with more details on wireless

sensor networks applications, to present a transceiver chipset for UWB Impulse Radio.

The specifications, architecture and implementation of a UWB-IR non-coherent receiver

are then outlined and a synchronization algorithm is proposed and successfully tested,

while the transmitter design will be discussed in details inChap.5.

4.1 UWB Definition

In February 2002, the FCC approved the use of the 3.1-10.6GHzband for UWB commu-

nication [64,65], giving birth to a new technology for wireless communication.

The noise emissions limit for digital electronics above 960MHz is set by the FCC at

a constant -41.3dBm/MHz [66]. For example, personal computers are allowed to radi-

ate noise below this level at any frequency above 960MHz. Theoriginal intent of UWB

communication was to transmit data within the emissions limits already placed on per-

sonal computers. However, due to interference concerns from UWB radiators to other

existing wireless services the FCC placed “conservative” requirements on UWB emis-

sions. These limits are shown in Fig.4.1 and reported in Table 4.1. Instead of a constant
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Figure 4.1: FCC emissions limit for indoor (dashed) and outdoor (solid) UWB communi-

cation

-41.3dBm/MHz above 960MHz, a deep notch is placed around GPSand PCS services be-

cause these receivers have higher sensitivities. GPS operates at 1.2 and 1.6GHz and PCS

at 1.9GHz. There are also stricter requirements on outdoor or handheld UWB devices

than indoor UWB devices.

UWB signaling has been used in the military since 1960’s for both communication

and radar. The UWB pulses used in radar applications were low-frequency, high power

and generated with non-linear devices and transmission lines that can not be integrated

in a high volume process. Some of this technologies for low-frequency pulse generation

are still actively researched today [67], even if UWB low-power applications are gaining

more and more popularity within the international researchcommunity.

UWB has several advantages over traditional narrowband architectures. From a chan-

nel prospective, the wide bandwidth can offer excellent robustness to multi-path fad-

ing [68]. Additionally, the narrow pulses in time offer the ability to perform precise

locating combined with communication. UWB has the potential for spatial capacity that

is orders of magnitude above other popular wireless standards such as 802.11a, 802.11b

and Bluetooth [69,70].

The main limitations of UWB communication is the presence ofstrong, in-band inter-

ference that can easily saturate the UWB receiver front-end. The overlap between UWB
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Frequency Range Indoor Limit Outdoor Limit

[MHz] [dBm/MHz] [dBm/MHz]

Below 960 FCC 15.209

960−1610 −75.3 −75.3

1610−1990 −53.3 −63.3

1990−3100 −51.3 −61.3

3100−10600 −41.3 −41.3

Above 10600 −51.3 −61.3

Table 4.1: FCC Mask Limits

and existing services is a major concern in both the transmitter and receiver design, since

UWB transmitters will also raise the noise floor seen by narrowband victim receivers.

4.2 UWB Sensor Networks

Wireless sensor networks consist of tens to thousands of distributed low complexity nodes

that have limitations both on process power and memory, and severe restriction on power

consumption. By the very nature of the application, traffic in sensor networks is often

bursty with long periods of no activity. For event detectionoperations, a device may

remain idle for long periods, sending only ”heart-beat” information, then suddenly be

required to send significant amounts of data when an event occurs. For devices involved in

continuous monitoring, the flow of traffic will be more stable. However, efficient multiple

access, reliability and battery life are still major concerns.

Impulse-Radio-based UWB technology proprieties make it well suited to sensor net-

works applications. In particular, as already outlined, UWB-IR systems have potentially

low complexity and low cost [71] with respect to classical narrow-band radio [72–74] or

multi-band OFDM UWB [75,76]. Moreover, they exhibit noise-like signals, are resistant

to severe multipath and jamming and have a very good time domain resolution, allowing

for location and tracking applications.

The low complexity and low cost of impulse radio UWB systems arise from the es-

sentially baseband nature of the signal transmission. Unlike conventional radio systems,

UWB transmitters produce very short time domain pulses thatare able to propagate with-

out the need of an additional radio frequency (RF) mixing stage [77]. At the receiver side,

the non-coherent energy detection approach may be adopted [78]. Non-coherent com-
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munication does not require precise phase control, which allows both the transmitter and

the receiver architecture to be simplified, particularly the high frequency circuits that can

consume the majority of power in a wireless transceiver. A non-coherent energy detection

scheme can further reduce hardware complexity while providing resilience to multi-path

fading without the cost of high frequency Rake-base techniques [79]. Non-coherent so-

lutions suffer from a reduced robustness with respect to narrow-band interferers, which

can easily cause the receiver front-end to saturate. The IEEE 802.15.4a standard [80] has

recognized the advantages offered by non-coherent communication and includes support

for it.

The aim of our project is to realize a UWB-IR transceiver chipset for low-data rate

wireless sensor netwoks. In particular, our target is a transmission data rate of 100kb/s

over a link distanced of at least 10 metres. As non-coherent communication advantages in

terms of power consumption are significant especially for short distance links, we decided

to use it for our system.

4.3 UWB Signal Choice

According to FCC standard, UWB signals must have a minimum continuous signal band-

width of 500MHz, a spectral mask of -41.3dBm/MHz within the 3.1-10.6GHz bandwidth

and a peak power limit that can not be exceeded. Thus, the three major design choices for

UWB signals are bandwidth, modulation and pulse type.

4.3.1 Bandwidth

Although the IEEE 802.15.4a standard physical layer for UWB-IR [81] can operate in

several bands of 500MHz or 1.5GHz from 3.1GHz to 10.6GHz, we prefer to limit the

pulse bandwidth from 7.25GHz to 8.5GHz. The advantage is twofold: first the system

exploits only that subset of the UWB band that is allowed for transmission in USA, Eu-

rope and Japan [82]; secondly, the signal is concentrated inthe upper part of the UWB

spectrum, maximizing the frequency separation from WLAN interferes around 2.4GHz

and 5GHz.

Thus, our system will operate in a single bandB of 1.25GHz instead of bands of

500MHz, in order to maximize the transmitted power.
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4.3.2 Modulation

Although information can be encoded in a UWB signal in a variety of methods, only

some modulation schemes are suitable for non-coherent energy detection. Among these,

the most popular modulation schemes developed up to date forUWB are pulse-position

modulation (PPM) [83], pulse-amplitude modulation (PAM) [84], on-off keying modula-

tion (OOK) [85] and binary phase-shift keying modulation (BFSK).

PPM PPM is based on the principle of encoding information with two or more positions

in time, referred to the nominal pulse position, as shown in Fig.4.2. A pulse transmitted

at the nominal position represents a 0 and a pulse transmitted after the nominal position

represents a 1. The drawing shows a two-position modulation, where one bit is encoded

in one pulse. Additional positions can be used to provide more bits per symbol.

The time delay between positions is typically a fraction of ananosecond, while the

time between nominal positions is typically much longer to avoid interference between

pulses.
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PAM and OOK PAM is based on the principle of encoding information with the am-

plitude of the pulses, as shown in Fig.4.3. The drawing showsa two-level modulation,

respectively, for zero and lower amplitude, where one bit isencoded in one pulse. When

the binary 0 is associated with the zero amplitude pulse, as shown in Fig.4.3.a, we speak

of OOK.

As with pulse position, with PAM more amplitude levels can beused to encode more

than one bit per symbol.

BFSK In frequency-shift keying (FSK) the digital information isencoded through dis-

crete frequency changes of a carrier wave. The simplest FSK is binary FSK (BFSK).

BFSK literally implies using a couple of discrete frequencies to transmit binary informa-

tion. With this scheme, the 1 is called the mark frequency andthe 0 is called the space

frequency. The time domain of an FSK modulated carrier is illustrated in Fig.4.4.

BPSK In binary phase-shift keying modulation, information is encoded with the polar-

ity of the pulse, as shown in Fig.4.5. The polarity of the pulses is switched to encode a 0 or

a 1. In this case, only one bit per impulse can be encoded because there are only two po-

larities available to choose among. Although BPSK modulation stand alone is not suited

to non-coherent energy detection, nevertheless BPSK scrambling in addition to PPM is

used to eliminate PPM spectrum tone lines.

The choice of the PPM scheme leads to a reduced receiver complexity with respect
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to the other modulation schemes but, on the other side, PPM spectrum exhibits tone lines

10log10(PRF/1MHz) above the BPSK spectrum while keeping all other factors, in par-

ticular the total pulse energy and the pulse repetition frequencyPRF, equal [86]. This

results in a PPM transmitter having to lower its power by thisfactor relative to a BPSK

transmitter in order to meet the FCC mask. Therefore, high-order PPM or BPSK scram-

bling in addition to PPM is used to eliminate these tones and thus the need to reduce

power [87]. Because BPSK decouples the scrambling problem from the modulation, it is

typically preferred over high-order PPM, which adds complexity to the receiver hardware.

The advantage of PPM over BFSK consists in the removal of the two additional filters,

centered at the mark and space frequency respectively, required for BFSK non-coherent

detection. Indeed, while PAM or OOK needs the comparison with a reference threshold

in order to extract the encoded information, with 2-PPM the bit value can be deduced

by simply comparing the energy received in two time slots centered at the nominal and

shifted time position respectively.

4.3.3 Pulse Shape Analysis

There are several pulse shapes found in literature for UWB communication, ranging from

spectral inefficient [68, 88–90] to precisely controlled frequency tolerance [91, 92]. The

performance in terms of BER has been analyzed for a range of pulse shapes and modu-

lation techniques [93–95]. However, we consider three metrics to quantify a pulse shape,

that are: spectral efficiency, out-of-band emissions and time-bandwidth product.

Spectral Efficiency The spectral efficiency of a pulse quantifies how well the pulse

spectrum utilizes the available bandwidth. The system performances in terms of BER de-

pends only on the received pulse energy [96] and not on its actual shape. Therefore, given

an average power limit and a -10dB channel bandwidth in the receiver, the transmitter

must fill the channel spectrum as tightly as possible. The spectral efficiency of a pulse is

the loss incurred from incomplete filling of the -10dB channel bandwidth calculated by

ηch =
Ech

PFCC ·B−10dB
(4.1)

whereEch is the pulse energy within the -10dB channel bandwidth,PFCC is the maximum

average power spectral density in W/MHz andB−10dB is the -10dB bandwidth in MHz.
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Out-of-Band Emissions The out-of-band emissions metric of a pulse is the ratio of the

energy outside the -10dB channel to the energy within the -10dB channel. This metric is

used to analyze the adjacent channel interference and it is calculated by

ηout = (Etot −Ech)/Ech (4.2)

whereEtot is the total pulse energy given by

Etot =

Z +∞

−∞
p2(t)dt (4.3)

Time-Bandwidth Product The time-bandwidth product is a figure of merit which in-

dicates the localization of a pulse both in time and frequency. The lower this number, the

more localized a pulse is in both time and frequency, which generally produces the best

combination of performance in both time and frequency domains. The time-bandwidth

product is calculated by

TBw = Dp ·dp (4.4)

where

D2
p =

1
2πE

Z +∞

−∞
ω2|F(ω)|2dω (4.5)

and

d2
p =

1
E

Z +∞

−∞
t2| f (t)|2dt (4.6)

F(ω) is the Fourier transform of the time domain pulsef (t) andE is the pulse energy

calculated by

E =

Z +∞

−∞
| f (t)|2dt =

1
2π

Z +∞

−∞
|F(ω)|2dω (4.7)

We consider five different time domain pulses:sinc, square, 2nd order filtered, root-raised

cosine[97, 98] andGaussianpulse. Their performance metrics are reported in Table 4.2.

The 2nd order filteredpulse is a square pulse filtered by a 2nd order low-pass filter.

The sinc and root-raised cosinepulses have the highest spectral efficiencies but re-

quire the most complex transmitters to be generated. Thesquarepulse is the simplest to

generate but it results in the highest out-of-band emissions. TheGaussianpulse has the

lowest time-bandwidth product, that is why it is typically preferred and the most common

pulse shape found in the literature. The 2nd order filteredpulse performs similarly to the

Gaussianpulse, but it requires area and power consuming filters to be generated.
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Spectral Out-of-Band Time-BW

Efficiency Emissions Product

Sinc 100%(0dB) 0% (−∞dB) ∞
Square 60.0% (−2.2dB) 12.8% (−8.9dB) ∞

2nd order filtered 59.2% (−2.3dB) 2.8% (−15.6dB) 0.55

Root-raised cosine 84.6% (−0.7dB) 0.4% (−23.8dB) 0.85

Gaussian 56.5% (−2.5dB) 3.3% (−14.9dB) 0.50

Table 4.2: Comparison of different pulse shapes

Following these considerations, we chose the Gaussian pulse shape for our applica-

tion. However, as this pulse is a relatively complex pulse shape to generate with circuits,

we will see in Chap.5 how a good approximation with almost thesame performance can

be obtained with a very simple circuit.

4.3.4 Channel Model

A fundamental aspect to be taken into account in the design ofour transceiver is the

channel model. The equation for the path loss of a UWB signal is given by [99,100]:

L(d) = L0+10· γ · log10(d/d0)+S (4.8)

where

L0 = 10· γ · log10(
4πd0 fc

c
) (4.9)

Usually the reference distanced0 is chosen as 1m.fc is the signal central frequency,c the

light speed in m/sec andSrepresents the shadowing factor of the channel, which is a zero-

mean Gaussian random variable which indicates the deviation of L(d) from its nominal

value. Finally,γ represents the severity of the path loss. For line-of-sight, γ is measured

to be 2 but can grow as large as 3.34 for non-line-of-sight measurements.

The system level paramiters for our project are summarized in Table 4.3.

4.4 CMOS Technology

Both receiver and transmitter are designed in the UMC 0.13-µm Mixed-Mode and RFC-

MOS process. The key features of this technology are:
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Modulation 2-PPM

Pulse bandwidth 7.25−8.5GHz

Pulse shape Gaussian

Data rate 100kb/s

Link distance d ≥ 10m

Table 4.3: System level parameters

• minimum channel length: 0.13-µm;

• dual supply voltage: 1.2V and 3.3V;

• P-substrate;

• single poly, eight metal layers (1P8M);

• Twin-Well and Triple Well;

• Metal Metal capacitors;

• high performance mixed-mode signal capabilities;

• radio frequency MOS transistors.

4.5 Receiver

As already outlined in Sec.4.2, the non-coherent energy-detection approach [101] in the

receiver may be preferred because it allows to avoid the integration of both a template

pulse generator [102, 103] and a quadrature frequency synthesizer [104]. In such a non-

coherent case, the received energy has to be estimated, performing a windowed integration

on the received signal squared. The block diagram of a non-coherent receiver is reported

in Fig.4.6. It consists of a low-noise amplifier (LNA), a variable-gain amplifier (VGA) to

accommodate variations of the received signal strength andan energy detector, composed

of a squarer and a windowed integrator. For each received bit, the integral of the received

signal squared is computed separately over the time windowsTint1 and Tint2 so that a

comparator allows to decide whether more energy is allocated in the first or in the second

window.
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Figure 4.6: Receiver block diagram

The receiver has been designed in UMC 0.13-µm technology by Andrea Gerosa and

Marco D’Aguanno and it is now under test.

The main features of each block are summarized hereafter.

LNA and VGA The LNA is an inductively degenerated common-source amplifier with

a resonant load. It exploits fully differential conversionwith embedded impedance match-

ing by means of a monolithic integrated transformer.

The VGA has been designed with two stacked stages that exploit the same bias current,

in order to minimize its power consumption. It also has resonant loads with capacitor

tuning to adjust the tank center frequency.

The LNA and VGA parameters are reported in Table 4.4.

Energy detector The energy detector squarer exploits the quadratic non-linearity of

MOS devices working under strong inversion region, as described in [105], to obtain

an output current proportional to the squared input voltage. The integrator, realized by

means of a transimpedance amplifier, integrates the squaredsignal over a capacitor. Two

capacitors are used to estimate the received energy in two consecutive time slots.

The overall energy detector main parameters are reported inTable 4.5.
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Parameter Value

LNA gain 14dB

LNA noise figure 5dB

LNA iIP3 -10dBm

LNA bias current 500µA

LNA + VGA gain 15÷30dB

LNA + VGA noise figure 5.2dB

LNA + VGA iIP3 -10dBm

LNA + VGA bias current 1mA

LNA + VGA area 800µm×500µm

Table 4.4: LNA + VGA parameters

Parameter Value

Energy detector conversion gain8.5mA/V2

Current consumption 1.4mA

Table 4.5: Energy detector parameters

4.5.1 Behavioral Model

In order to evaluate the performance of the receiver at system level so as to derive the

transmitter specifications, a behavioral model of the wholereceiver has been realized us-

ing Matlab. The block diagram of the model is shown in Fig.4.7. SignalVRX is generated

modulating an ideal Gaussian pulse at a given energy with a random bitstream and adding

the thermal noise at the antenna. The blocks in the first row ofFig.4.7 model the two

gain stages. The circuit noise due to the LNA and the VGA is added to signalVRX as a

white Gaussian noise, whose power depends on the amplifyingstages noise figure that

has been estimated by means of transistor-level simulations. A third-order non linearity is

also accounted for, modeling the LNA transfer function witha third-order power series,

extrapolating coefficientb3 from the input-referred intercept pointiIP3. Finally, three bi-

quadratic filters, whose pass-band corresponds to the pulsebandwidth, model the inherent

frequency selectivity of the LNA input matching network andof the resonant loads in the

LNA and VGA.

The squarer is modeled using a power series to account for itsnon linear relationship
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Figure 4.7: Matlab receiver equivalent model

between the input voltage and the output current. The power series is given by

Iout =
N

∑
i=0

ai ·V i
in (4.10)

where theai coefficients have been extracted from transistor-level simulations. In partic-

ular, a classical two-tone test with input signal components spaced by 100MHz, namely

at 8GHz and 8.1GHz, has been performed. The magnitude of the different harmonic

components allows to estimate the coefficientsai values which are reported in Table 4.6.

Similarly, the integrator model mimics its transistor-level frequency responce.

The circuit noise due to the squarer and to the integrator hasbeen estimated with

transistor-level simulations as well, and it is added as an equivalent noise source at the

integrator output.

The integration results at the end of the two integrating phasesΦ1 andΦ2 of Fig.4.6

are sampled and held before being compared to decide which ofthe two windows contains

more energy. It is worth to notice that the integrator outputvoltage is clipped at 500mV,

in order to account for limited output swing of the real circuit.

4.5.2 BER and Sensitivity

In order to quantify the receiver performance, the uncoded BER is estimated as a function

of the input power at the antenna, as reported in Fig.4.8. As shown, the minimum input

power for which a BER lower than 10−3 is estimated, is≃−95dBm. The receiver perfor-

mance are summarized in Table 4.7, where a process gainGp = 5dB has been accounted
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Parameter Value

Data rate 100kb/s

Pulses per bit 10

LNA + VGA gain 6dB - 28dB

LNA + VGA noise figure 5.2dB

LNA + VGA iIP3 -10dBm

a1,a2,a4 1.6 ·10−4, 8.83·10−3, −0.15

ADC 233dBΩ
ω1 3Hz

ω2 1.9GHz

Energy detector noise power 5.11·10−6V2

Table 4.6: Parameters of the receiver behavioral model

for, deriving from the transmission of 10 pulses per bit and the use of aby majoritydeci-

sion rule, as described in details in Sec.5.1.

Although the expected link margin of 6.8dB would allow a linkdistance greater than

10m, as low-data rate transmissions are peak power limited,we will see in Sec.5.1 how

we need to reduce the average transmitted power to -17.7dBm in order to be compliant

with the FCC limits. This leads to a link margin of≃ 2 dB.

4.6 Synchronization Algorithm

In order to maintain the low complexity nature of the receiver, we decided to use a syn-

chronization algorithm based on the energy collection strategy to synchronize the receiver

and the transmitter clocks before demodulation, as the one described in [106]. The algo-

rithm is based on a preamble which contains 4 repetition of aNc = 31 bits Gold code

sent at the maximum repetition frequencyPRFsyn= 1/(2 ·Tint), followed by an inverted

Gold code sequence used to indicate the end of the synchronization phase. The structure

of each data packet is reported in Fig.4.9. During the synchronization phase, the analog

front end just integrates and then compares the energy received in consecutive time slots

of duration equal toTint . The data generated is then parallelized into two data streams

sent to two identical correlators banks, as shown in Fig.4.10. The 31 correlators of each

bank correlate the received data with shifted version of the31 bit Gold code to account
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Parameter Value

Throughput(Rb) 100 kb/s

Pulses per bit(Nb) 10

Bandwidth(B) 1.25GHz

FCC Limit (PFCC) -41.3dBm/MHz

Maximum TX Power(Pmax= PFCC+10log10(B/1MHz) -10.33dBm

Gaussian pulse spectral efficiency(E) -2.5dB

Average TX Power(PT = Pmax+E) -12.83dBm

Path Loss @1m(L1) 50.37dB

Path Loss @10m(L2) 20dB

RX Power(PR = PT −L1−L2) -83.2dBm

Process Gain(Gp = 10log10(
√

Nb)) 5dB

Average noise power(N = −174+10log10(RbNb)) -114dBm

RX noise figure(Nf ) 12dB

Total noise power(PN = N+Nf ) -102dBm

Minimum Eb/N0 for 10−3 BER (S) 17dB

Link marginM = PR+G−PN −S 6.8dB

Table 4.7: Parameters of the receiver behavioral model

for all the possible time differences between transmitter and receiver. Synchronization is

declared if any, but only one, of the accumulator exceeds a programmed threshold.

The drawback of a such a simplicity is that the synchronization time resolution is equal

to the integration window durationTint itself. In fact, different synchronization strategies

have been developed to achieve higher synchronization timeresolution, but at the price of

an increased receiver complexity [107] or of a long locking time [108].

In most cases, synchronization is declared such as the pulseto be detected lies com-

pletely within a single integration window, as sketched in Fig.4.11.a. However, it may

happen that the receiver is synchronized in a way such that a fraction of the pulse falls

outside the correct integration window, as shown in Fig.4.11.b. The latter event impairs

the detection capability of the receiver, because part of the signal energy is not accounted

for in the integration result. Due to the mentioned finite time resolution of the algorithm,

the only way to preserve the receiver performance is to make the probability of this event

negligible, using a window durationTint sufficiently larger than the pulse duration. This
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the model parameters given in Table 4.6
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has also the advantage of reducing the clock frequency of thecorrelators, as synchroniza-

tion data stream is sent at a frequency equal to 2·PRFsyn = 1/Tint . On the other hand,

a large integration window would worsen the receiver performance in terms of sensitiv-

ity, as shown in Fig.4.12 where the receiver BER is simulatedfor different Tint values.

In fact, larger integration windows reduce the SNR for the same signal power at the an-

tenna [109], due to both a larger noise energy and to the finiteoutput resistance of the

integrator. Following these considerations we singled outTint = 15ns as a good design

compromise.

The performance of the synchronization algorithm in terms of probability of detection

Pd, that is the probability that synchronization is declared when the input and the Gold

code are aligned, is reported in Fig.4.13. Such a probability is always larger than 0.9 that

is generally considered a reasonable benchmark [110]. The probability of false acquisition
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Figure 4.12: Simulated BER as a function of the input signal power at the antenna with

Tint = 5ns (star),Tint = 10ns (circle),Tint = 15ns (square) andTint = 30ns (diamond)

Pf a, that is the probability that synchronization is declared when the input and the Gold

code are misaligned, is always less than 10−7.

Fig.4.14 compares the BER in case of perfect synchronization (as in Fig.4.8) with the

one obtained including the synchronization phase, assuming a payload size equal to 1024

bits. Almost no power loss can be observed at the sensitivity; however the BER curve

shows a floor at 10−4.

The floor is caused by the residual probability of the event illustrated in Fig.4.11.b. In

particular, whenever the integration window misalignmentis such that the received pulse

is split across the two PPM windows, the noise influence on thedemodulation result

dominates regardless the signal power. This generates a BERfloor above that input signal

power for which this misalignment becomes the most relevanterror source. A way to

avoid this eventuality, is to insert a time slotTint = 15ns between the two PPM windows,

as shown in Fig.4.11.c. As a consequence, the BER curve does not exhibit any floor, as

reported in Fig.4.14.
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5
Transmitter

This chapter presents the design of the transmitter for the UWB-IR low-data rate wireless

sensor network described in Chap.4. In particular, the transmitter specifications are de-

rived first; then, a possible architecture for the overall system is presented to focus on the

design of a novel energy efficient Gaussian pulse generator.

5.1 Specifications

As already outlined in Sec.4.1, the FCC limits the output power in the 3.1-to-10.6GHz

band in two ways [64,65]:

1. Theaveragepower spectral density must be less or equal to -41.3dBm. This cor-

responds to a theoretical maximum total power of -10.3dBm for a 1.25GHz band-

width signal. In practice, this number is reduced by 2−4dB due to pulse generation

constraints.

2. Thepeakpower may not exceed 0dBm at the UWB signal center frequencyfc
in a 50MHz resolution bandwidth (RBW). Since most spectrum analyzers are not

equipped with a 50MHz IF filter, the peak power measurement istypically per-

formed at a lower RBW and the limit is conservatively set to be

Ppk ≤ 0dBm+20log10(RBW/50MHz)

Communication distance in a non-coherent energy-detecting UWB system is maxi-

mized when the SNR seen at the receiver during the integration window is maximized.

This occurs when the transmitter generates maximum total output power under the reg-

ulatory limits. Since sensor networks typically communicate at low data rates, large

amplitude pulses transmitted at the data rate are required to maximize power, and thus
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Figure 5.1: Maximum single pulse amplitude allowed by the FCC average power spectral

mask as a function of the PRF

communication distance, under FCC spectral masks. The voltage amplitudeVmax for sin-

gle pulses transmitted at a data rate equal to PRF are reported in Fig.5.1. We can see

as a peak-to-peak voltage swing of 17.8Vpp would be required to maximally satisfy FCC

average power spectral mask at a PRF of 100kHz.

On the other hand, while high data rate pulsed-UWB transmitters are typically av-

erage power limited, low data rate transmitters are typically peak power limited [111],

as shown in Fig.5.2 where the peak power corresponding to thetransmission of a single

pulse as a function of the pulse amplitudeVmax together with the FCC limit is reported.

For the peak power estimation a spectrum analyzer resolution bandwidth of 3MHz has

been considered.

The peak power as a function of the pulse voltage amplitude for a data rate transmis-

sion of 100kb/s is reported in Fig.5.3. We can see how a maximum peak-to-peak voltage

swing of 9Vpp, corresponding to aVmax= 4.5V is allowed to be compliant with the FCC

mask limit. However, this is still impractical for deep-submicron CMOS technologies,

where supply voltages are of the order of 1V.
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Figure 5.4: Maximum output voltage as a function of the pulses number per bit

An alternative approach to generate large swing pulses while maximizing total power

under FCC masks is to reduce output voltage swings and increase the PRF, that is equiv-

alent to transmit multiple pulses per bit. As the transmitter is to be implemented in the

UMC 0.13-µm CMOS process described in Sec.4.4 with a maximum supply voltage of

1.2V, and monolithic transformer with transformer ratio greater than 3 show poor per-

formance, we fixed as a reasonable limit for the maximum output swing≃ 3V. Then we

calculated the link distance as a function of the number of pulses per transmitted bit with

the receiver parameters reported in Sec.4.5.2.

The maximum output voltage depends not only on technology limits but also on the

FCC average power mask, as during the synchronization phasepulses are transmitted at a

maximumPRFsyn= 1/(2·Tint) and the average power is measured on a data packet basis,

according to [64]. Increasing the output swing leads to a reduction of the pulse repetition

frequency during synchronization phasePRFsyn, thus protracting the time required to syn-

chronize transmitter and receiver. This has a negative impact on the energy per bit of the

overall system, as during the synchronization phase the receiver is always switched on.

As pulses with a smaller amplitude can be more efficiently generated than large volt-

age swing ones, we decided to transmit more pulses per bit instead of a single pulse with
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plitude given by Fig.5.4

a larger amplitude. We can see from Fig.5.4 and Fig.5.5 that by transmittingNb = 10

pulses per bit with a pulse output swing ofVmax= 1.6V, that is 3.2Vpp, we can reach a

link distance of 12.4m, which corresponds to a link margin of≃ 2dB.

However, due to FCC peak power limits, the pulse repetition frequency during syn-

chronizationPRFsyn must be reduced to 1/(2 ·3 ·Tint) = 11.1MHz instead of 33.3MHz.

This has no impact on the BER performance but it slightly increases the receiver hardware

complexity as two banks of 6 correlators each, instead of 2, have to be implemented.

The estimated energy per pulse, that is the energy spent to transmit a single pulse,

is shown in Fig.5.6, together with the energy per bit of the overall system, including the

amount of power spent during the synchronization phase. In particular, for a transmission

of 10 pulses per bit, the estimated energy per bit is 3.2nJ. This shows better performance

than the result reported in [106], where an energy/bit of 2.5nJ over a link distance of

3m is declared, without including the energy spent to synchronize the receiver and the

transmitter.

Following these considerations, we can derive the transmitter specifications, which

are summarized in Table 5.1.
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Parameter Value

Throughput(Rb) 100 kb/s

Pulses per bit(Nb) 10

Bandwidth(B) 1.25GHz

Carrier frequency( fc) 7.875GHz

Maximum output voltage(Vmax) 1.6V

Energy per pulse(Ep) ≤ 120pJ/pulse

Table 5.1: Main transmitter parameters
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5.2 Architecture

The transmitter block diagram is shown in Fig.5.7. It consists of a digital controlled oscil-

lator (DCO) which generates the carrier frequencyfc = 7.875GHz and a frequency divider

by 16, which generates the control signalVRF for the combined mixer and power ampli-

fier (MXR-PA). The MXR-PA receives at its input the differential carrier frequency signal

VLO and the pulse control signalVRF and produces at its output a Gaussian pulse with

central frequencyfc = 7.875GHz and bandwidthB = 1.25GHz. The carrier frequency

fc accuracy is controlled by means of a phase-aligned frequency-locked loop (PA-FLL).

The control signalVRF is further divided by 8 and compared with an external reference

clock at 61.5MHz by means of an early-late detector. A binarysearch algorithm is then

implemented to adjust the carrier frequencyfc. However, it is worth to notice how a non-

coherent signaling scheme does not require precise frequency tuning. Thus, the control

system proposed reaches the required accuracy with a relative implementation simplicity.

To exploit the low duty cycle nature of UWB-IR systems, the transmitter is activated at

each pulse transmission by means of an external control signal. As we transmit a number

of 10 pulses per bit, the pulses are sent at a repetition frequency of 1MHz, that is 10 times

the nominal data rate of 100kb/s.

As the frequency accuracy requirement can be relaxed in non-coherent energy detect-

ing systems, the VCO is implemented by means of a three-stagering oscillator in order

to ensure a fast start-up. However, its design is still at thepreliminary stage, as the one of

PA-FLL loop, and will not be discussed further. In the next section, we will thus describe
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in details the design of the Gaussian pulse generator.

5.3 Gaussian Pulse Generator

The variety of Gaussian pulse generators present in literature is very wide, ranging from

all-digital CMOS pulse generators [112–114] to Gilbert cell BiCMOS based solutions

[111]. However, the former reach a maximum output swing which is of the order of

hundreds of millivolts, while the latter usually require discrete low-pass filters to meet the

FCC mask requirements. We will see how a Gaussian pulse can beefficiently generated by

the circuit shown in Fig.5.8 that simultaneously permformsup-conversion to the central

frequencyfc = 7.875GHz and mixing.

The basic idea is to generate a Gaussian pulse by multiplyinga triangular shape pulse

and the differential local oscillator output signal. In order to generate the required peak-

to-peak output swing of 3.2Vpp and perform the differential to single ended conversion, a

monolithic transformer with transformer ratior = 2 is used.

The nMOS transistor M0 of Fig.5.8 is driven by a triangular pulseVTR while transis-

tors M1, M2, M3 and M4 act as switches driven by the local oscillator output signalsVLO+

andVLO−. To have an idea of the design parameters values, we can consider the small sig-

nal analysis model of our circuit, even if the triangular pulse driving the bias transistor is

a large signal. If we assumeVLO+ andVLO− to be square waves, the conversion gain is
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given by
2
π
·gm0 ·

RL

r2 (5.1)

whereRL = 50Ω is the antenna resistance andr the transformer ratio. If the local oscillator

output waves are not square but sinusoidal, the pMOS and nMOSswitches will be on

simultaneously for a certain amount of time, giving rise to aconversion gain loss.

The triangular pulseVTR has a slope of 1.2V/ns as it has to rise from 0V toVdd = 1.2V

in 1ns. However, the accuracy requirements for theVTRgeneration are very relaxed, as the

output signal spectrum does not show any significant variation due to imprecise triangular

pulse generation. As a consequence,VTR can be easily generated from the square control

signalVRF by means of a cascade of two inverters.

It is worth to notice how the proposed circuit does not need any bias current, thus

greatly improving the overall system efficiency.

However, in order to reduce the gain loss, we need to keep the switches resistance

quite low. In particular, if we assume a minimum drain-source voltage of≃ 200mV for

M0, so as to keep it always working in saturation, as the maximum transformer primary

coil current is equal to

Imax≃
r ·Vmax

RL
= 64mA

the switches resistance as to be in the order of few Ohms. Thisleads to very large nMOS

and pMOS transistors with a gate capacitance of the order of pFs. In order to drive such

a capacitance, we use an inductor as feedback network for theswitches buffers, so as to

resonate the gate capacitance, as shown in Fig.5.9. The buffers are realized by means of

an inverter. In order to avoid DC power consumption, both buffers are activated by means

of a switch in series with the inverters nMOS transistors.



130 5. Transmitter

MXR-PA

M0 32
0.12 14

M1 32
0.12 14

M3 32
0.12 28

Table 5.2: MXR-PA transistor size in

µm/µm

Buffer

MN
4.8
0.12 24

MP
1.8
0.12 24

Passive Elem.

Cswitch 1.2pF

Lswitch 340pH

Table 5.3: Passive elements values and

buffer transistor size inµm/µm
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Figure 5.10: Transformer equivalent models

The transistor size for the Gaussian pulse generator are reported in Table 5.3, while

those for the buffers together with the switches gate capacitance and the feedback inductor

values are reported in Table 5.3. The third column of both tables indicates how many

transistors are connected in parallel.

5.3.1 Transformer Design

As already outlined, a transformer with transformer ratior = 2 is needed in order to

generate the required transmitter output power. We decidedto implement it by means

of an on-chip monolithic transformer, created by magnetically coupling two inductors.
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As the transformer is used to achieve output matching in our power amplifier, it will be

necessary to resonate some of the transformer inductance tominimize the loss [115].

A capacitor is also necessary at the primary side of the transformer to adjust its input

reactance to the desired value for the driving transistors.This can be done using a parallel

capacitor on the primary and another capacitor in series with the secondary, as shown in

Fig.5.10, where a simplified transformer model is reported,together with the series and

parallel tuning capacitanceCs andCp. In the model,k indicates the coupling factor,n the

turn ratio between primary and secondary coils,RL the load resistance andRp andRs the

primary and secondary inductor series resistances.Rp andRs can be calculated from the

inductors quality factorsQp andQs as:

Rp =
ωLp

Qp
Rs =

ωLs

Qs
(5.2)

The two transformer inductors, combined with two capacitors, can be used not only

to achieve output matching but also to obtain a fourth-orderbandpass ladder filter, so as

to reduce the power amplifier out-of-band emissions. Thus, the four reactive elements

values will be chosen so as to ensure a good efficiency and at the same time a filtering

effect.

Given a load resistance of 50Ω, we want to determine the capacitors and inductors

values that allow to maximize the transformer efficiencyη. This is defined as the ratio

of the power delivered to the loadPload to the total power delivered into PORT1 of the

network, that isPtotal = Pdiss+Pload. It can be shown that the transmitter efficiencyη is

equal to

η =
Pload

Pdiss+Pload

=
RL/n2

RL
n2 +

ωLp
Qs

+
ωLp
Qp

·
(

RL/n2+ωLp/Qs
kωLp

)2

(5.3)

where we assumeLs ≃ n2Lp and we use forCs the value given by

Cs =
1

ω2Ls
(5.4)

as it allows to cancel one of the terms at the denominator of (5.3). By differentiating

equation (5.3), we can obtain the optimum value ofLp resulting in the highest possibleη,

which is:

ωLp =
RL

n2
√

1
Q2

s
+

Qp
Qs

·k2
(5.5)
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Figure 5.11: Lp optimum values as a function of the coupling coefficientk

In Fig.5.11 the optimum value ofLp as a function of the coupling coefficientk with

transformer ratior = n · k = 2 andQp = 10 for different values ofQs is reported, while

the optimum values forLs andCs are shown in Fig.5.12 and Fig.5.13 respectively. The

corresponding transformer efficiency is shown in Fig.5.14.If we assumeQp = Qs = 10,

as on-chip inductors with quality factor of the order of 10 can be realized without too

much effort,, with components values

Lp = 98pH

Ls = 2.45nH

Cs = 166.7fF

(5.6)

we can reach a theoretical efficiency of≃ 65%. With these reactive elements values, we

will see how we can also create a fourth-order bandpass ladder filter, as the one shown

in Fig.5.15, where the input source is represented with a current generator with infinite

output resistance.

The values for the two capacitorsC1 andC2, together with those for the two inductors

L1 andL2, can be derived for different types of filters from the valuestabulated for low-

pass ladder filters [116] applying a low-pass to band-pass transformation. By means of



5.3. Gaussian Pulse Generator 133

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Couplying coefficient k

Ls
 [n

H
]

Q
s
=50

Q
s
=20

Q
s
=15

Q
s
=10

Q
s
=8

Q
s
=5

Figure 5.12: Ls optimum values as a function of the coupling coefficientk
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Figure 5.14: Transformer efficiency as a function of the coupling coefficient k

the transformer equivalent model of Fig.5.10, we can derivethe primary and secondary

coils values as:

Lp = L1

Ls =
n2 ·k2 ·L2

1−k2

(5.7)

while the capacitors value are given by

Cp = C1

Cs =
C2

n2 ·k2

(5.8)

C2

C1 L1

L2

VOUTIIN

Figure 5.15: Forth-order bandpass ladder filter
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We consider seven different filters types, that is a Butterworth filter and six different

Chebyshev filters with in-band ripple ranging from 0.1dB to 3dB. They correspond to

filter type 1 up to 7 respectively. Figures 5.16, 5.17 and 5.18showLp, Cp andCs values

for filter Q factors ranging from 1 to 6, whereQ is defined as

Q =
1
∆

=
ωc

ω2−ω1
(5.9)

where∆ is the filter fractional bandwidth andωc the central frequency, which in our case

is equal to

ωc = 2π fc =
√

ω2ω1 (5.10)

We can see how aQ factor grater than 2 requires a primary inductance smaller than

100pH, which is hardly implemented on-chip. Thus, we chose for our designQ = 2.

The secondary inductor value has to simultaneously satisfytwo equations:Ls = n2Lp

in order to ensure the required transformer ratio, and equation (5.7) so as to obtain the

desired ladder filter. The corresponding values for the secondary inductor are plotted in

Fig.5.19.a for the first condition and in Fig.5.19.b for the second one. By recalling the

optimum components values to maximize the transformer efficiency given by (5.6), we
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Lp[pH] Ls[nH] Cp[pF] Cs[ f F] k

98 2.45 4.25 167 0.4

Table 5.4: Transformer parameters

Figure 5.20: Transformer layout

can see that a fourth order bandpass filter of type 4, which corresponds to a Chebyshev

filter with in-band ripple of 0.5dB, can be implemented with the reactive element values

reported in Table 5.4.

Implementation The transformer has been implemented using concentricallywound

planar spirals [117], as shown in Fig.5.20, where the actualtransformer layout is reported.

Using this configuration, the common periphery between the two windings is limited to

just a single turn. Therefore, mutual coupling between adjacent conductors contributes

mainly to the self-inductance of each winding and not to the mutual inductance between

the windings. As a result, the concentric spiral transformer has less mutual inductance

and more self-inductance than the interwound configuration, giving it a lowerk-factor.

However, this does not represent a limitation in our case, aswe need a coupling coefficient

k = 0.4.

The electrical lumped model of the transformer has been derived from the physical
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layout by means of electromagnetic simulations. These havebeen performed with the

software MomentumTM from Agilent Technologies. In particular, first the primaryand

secondary inductor models have been derived separately. Then, a transformer compact

model, as the one described in [118], has been derived.

To model the primary inductor, the two-PI model [119] reported in Fig.5.21 has been

used. In this model,L0 is the inductance,R0 the resistance of the metal strip,L1 andR1

model the surface layer inductance and resistance. They areevenly split into two parts

and the coupling coefficientkm cross couples the two parts in order to properly capture the

inductive coupling among metal lines.Cox is the oxide capacitance,Csub andRsub are the

substrate capacitance and resistance whileCs is the edge-to-edge feedthrough capacitance.

In addition, we useCs andRsc to model the line-to-line coupling capacitance and direct

turn-to-turn electric coupling through the dielectric materials and the conductive substrate

respectively.

The equivalent inductance, resistance and quality factor for the EM-simulation and

the lumped model, whose parameters are reported in Table 5.5, are shown in Fig.5.22.

L0[pH] R0[mΩ] L1[nH] R1[Ω] km

97.79 479 2.81 856.4 0.177

Cox[ f F] Rsub[Ω] Csub[ f F] Rsc[Ω] Cs[ f F] Cc[ f F]

4.53 540.03 40.21 9.40 0.4 0

Table 5.5: Primary inductor lumped model parameters
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Figure 5.22: Primary equivalent inductance, resistance and quality factor from the EM-

simulation (solid) an the lumped model (dashed)

The secondary inductor can be better modeled by means of the PI-model described

in [120] and reported in Fig.5.23. In this case, the skin effect is modeled by means of

resistorRskin and inductorLskin whose coupling coefficient withL0 is given byKskin. An

additional branch constituted byLed andRed takes into account the magnetic coupling

between the coil and the substrate. The equivalent inductance, resistance and quality

factor for the EM-simulation and the lumped model with the parameters reported in Table

5.6, are shown in Fig.5.24.

L0[nH] R0[mΩ] Lskin[ f H] Rskin[Ω] kskin

2.46 11.95 446.2 3.66 0.9

Cox[ f F] Rsub[Ω] Csub[ f F] Cs[ f F] Led[pH] Red[Ω] ked

17.08 220.76 90 12.29 83.26 14.04 0

Table 5.6: Secondary inductor lumped model parameters

Finally, the overall transformer lumped model is derived from the two inductors mod-

els by adding a capacitorCa connected between primary and secondary to model the
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Figure 5.23: Transformer secondary coil lumped model

Figure 5.24: Secondary equivalent inductance, resistance and qualityfactor from the EM-

simulation (solid) an the lumped model (dashed)
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Figure 5.25: Transformer equivalent inductance, resistance and quality factor from the

EM-simulation (solid) an the lumped model (dashed)

Ca[ f F] k

3.4 0.403

Table 5.7: Transformer lumped model parameters

interwinding capacitance, as described in [118].

The simulations result for the transformer model are shown in Fig.5.25, while its

additional parameters values are reported in Table 5.7.

5.3.2 Simulation Results

The Gaussian pulse generator has been simulated in typical conditions. Its output transient

waveform is reported in Fig.5.26, while the corresponding spectrum is shown in Fig.5.27.

We can see how it reaches a maximum output power of -46dBm/MHz, according to spec-

ification, and it meets the FCC out-of-band masks limits without the need of external

filtering. The estimated energy/pulse is≃ 120pJ/pulse, thus in line with the transmitter

specifications reported in Table 5.1. This result is in line with the most efficient transmit-

ters for UWB-IR, as the one reported in [114], where 113pJ/pulse are declared at a data



5.3. Gaussian Pulse Generator 143

Figure 5.26: Transient output waveform

Figure 5.27: Output spectrum
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Specification [114] [112] [113] This work

Data rate 100kb/s 1Mb/s 10Mb/s 100kb/s

Bandwidth 500MHz 500MHz 500MHz 1.25GHz

Center frequency 3.5GHz 10GHz 4.05GHz 7.875GHz

Energy/pulse 113pJ 87.5pJ 43pJ 124pJ

Efficiency 0.02 0.014 0.03 0.14

Table 5.8: Performance summary of UWB-IR transmitters

rate of 100kb/s. However, a more fair comparison can be carried out by considering the

transmitter efficiencyηT defined as

ηT =
load energy/pulse

energy/pulse
(5.11)

where the load energy/pulse indicates the energy per pulse transferred to the load. In

[114], with a maximum output swing of 710mVpp, a central frequencyfc = 3.5GHz and

a bandwidthB = 500MHz, we have a transmitter efficiencyηT = 2.16pJ/113pJ≃ 0.02.

Our transmitter reaches an efficiency ofηT = 17.5pJ/120pJ≃ 0.15, thus outperforming

the result reported in [114] by a factor of almost 10.

The performance comparison with state of the art transmitters are reported in Table

5.8, where the ring oscillator power consumption has also taken into account, leading to

an estimated energy/pulse of 124pJ/pulse.

Although the energy consumed by the frequency dividers plusthe early-late detector

circuit has not been taken into account, results reported inTable 5.8 show how the pro-

posed solution outperforms the state of the art transmitterefficiency by a factor of almost

10.

5.4 Conclusions and Future Work

A novel energy efficient transmitter for UWB-IR has been proposed, which uses an orig-

inal combined mixer and power amplifier to generate a Gaussian pulse with 1.25GHz

bandwith and center frequency of 7.875GHz. The combined MRX-PA includes a mono-

lithic transformer to reach the maximum output voltage swing required to ensure a link

distance of 10 meters with the non-coherent energy detectorreceiver described in Chap.4.

The transformer has been designed so as to maximize the powerefficiency and at the
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same time to realize a fourth-order ladder filter, in order toreduce the transmitter out-of

band emissions.





Conclusions

The first part of this work, devoted to analog decoding, reports the design of the input in-

terface for an iterative fully analog decoder for a SCCC and of two analog TCM decoders

for multi-level Flash memories, all realized in submicron CMOS technologies.

Both projects exhibit the advantages already demonstratedby the analog decoders

with respect to their digital counterparts, that is a reduced area occupation, a lower power

consumption and an higher throughput. In fact, the SCCC hybrid decoder reaches an

efficiency of 2.1nJ/bit which outperforms digital decoderswith the same block length,

that is around 5000, of a factor up to 50 [25], while the full analog implementations of

TCM decoders presented in Chapter 3 can achieve a decoding speed comparable with the

state-of-the-art linear block codes occupying a smaller area, with a BER close to that of

the ideal decoding algorithm.

At the same time, some traditional limitations of the analogimplementations, due

mainly to the fact that their circuitry complexity increases linearly with the codeword

length, are overcame as the hybrid SCCC decoder is reconfigurable in both block length

and code rate.

However, it is worth to notice how the most area and power consuming circuitry for

both analog decoder projects is not the one implementing thedecoder core intself, but

the so-called I/O interface circuitry. This consists of an analog memory and a voltage

to probability converter for the SCCC decoder, while it reduces only to the voltage to

probability converter for the TCM decoders. Even if the design of an analog memory can

be avoided in this latter case, as the data to be processed arealready stored in the Flash

memory array, the complexity of the interface between the memory array and the decoder

core itself increases with respect to the binary case as we deal with memory cells with

16 levels. As a consequence, it is mandatory to optimize the interface design in terms of

area, power and speed in order not to spoil the overall systemperformance.

Moreover, as the performance loss in terms of BER of the 4-state TCM decoder with

respect to the 8-state one is only 0.5dB while the power consumption increases by over a

factor of 2, our work demonstrates how the analog approach isall the more a competitive

solution for ECC as far as the decoder states number is kept low.

The second part of this thesis is focused on the design of a transceiver for low data
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rate UWB-IR. The transceiver is first analyzed at system level in order to draw the speci-

fications for both receiver and transmitter so as to guarantee a link distance of at least 10

meters.

At the receiver side, the non-coherent energy detection approach has been adopted

[78], as it does not require precise phase control, which allows both the transmitter and

the receiver architecture to be simplified.

The transmitter uses a novel combined mixer and power amplifier to generate a Gaus-

sian pulse with 1.25GHz bandwith and center frequency of 7.875GHz. The combined

MRX-PA includes a monolithic transformer to reach a maximumoutput voltage swing of

3.2Vpp, necessary to ensure the required link distance. The transformer has been designed

in order to maximize the power efficiency and at the same time to realize a fourth-order

ladder filter, so as to reduce the transmitter out-of band emissions.

The efficiency of our design has been compared with state-of-the-art UWB-IR trans-

mitters, showing how the proposed solution leads to an improvement in the transmitter

efficiency of a factor of almost 10.

A synchronization algorithm has also been proposed and successfully tested, showing

how the transceiver chipset is a promising candidate for a low-power UWB-IR.



A
Fundamentals of Error Correcting

Coding

This appendix, after a brief introduction about general communication/storage systems,

presents some basic error correcting codes, with a particular emphases on Trellis Coded

Modulation and Turbo codes. The decoding issue is then tackled, to concentrate on all

those aspects peculiar to the analog decoding.

A.1 The Shannon Limit

The most intuitive way to represent a data communication or storage system is shown in

Fig.A.1. This is the famousFigure 1of most books on error correcting coding theory. An

information source emits a sequence of binary digits (bits), called the uncoded sequence

u. This sequence is transformed into the coded sequencex by an encoder and transmitted

over a communication channel or a storage medium. During thetransmission, the coded

sequencex is corrupted by a noise vectorn, where we assume that the noise is of addi-

tive nature and that no inter-symbol interference is present. Thus a noisy sequencey is

received at the input of the decoder, whose task is to estimate the most probably sent data

sequencêu usingy.

Digital
source

Encoder Channel Decoder
Digital
receiver

u x y û

noise
n

Figure A.1: SISO simplified diagram with switch betweeninner andouterconfiguration
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In his 1984 pioneering work [121], Shannon showed that everycommunication chan-

nel has a maximum rate for reliable data transmission, whichhe called the channel ca-

pacityC, measured in bits per second. He demonstrated that it is always possible to send

information at a rateR lower thanC through a channel with an error probability as small

as desired by properly encoding the information source. This statement on controlled

error probability is not true for rates aboveC.

The capacity of an ideal band-limited channel corrupted by an additive white Gaussian

noise (AWGN) is given by the famous formula:

C = Blog2

(

1+
S
N

)

(A.1)

whereC is the capacity in bits per second, B is the channel bandwidthin Hertz andS/N

is the signal-to-noise power ratio at the receiver.

However, until the advent of complex Turbo codes [2, 122], practical error control

schemes have been far away from this theoretical limit. In fact, Shannon’s theorem sets

a limit on the maximum transmission rate over a channel, but it is silent about the way

to reach it. After Turbo codes, an even higher rate has been reached using very large

low-density parity-check codes [123], which were originally invented by Gallager [124].

A.2 Types of Codes

Most of the codes that are common use today can be distinguishbetween two main types,

block codesandconvolutional codes. The output of a block encoder is strictly block ori-

ented and it is generated by combinatorial operations, whereas the convolutional encoders

create data streams of possibly infinite length. Additionally, the output of a convolutional

encoder is created by a finite-state machine, that is the encoder incorporates memory that

tracks the history of the incoming data bits.

A.2.1 Block Codes

A block code is defined as an algebraic mapping from the vectorspaceGF(q)k over the

Galois fieldGF(q) into the vector spaceGF(q)n, with n > k [39]. If this mapping from

one vector space to another is linear, we speak oflinear codes.

In block coding, the incoming data stream is segmented into blocks of lengthk and

then mapped inton-symbol long codewords. If we assume the information is in the form
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of a sequence of symbols belonging to a given alphabet ofqsymbols (ifq= 2, the symbols

are named bits), than we speak of a(n,k) q-ary block code. Thus, a(n,k) q-ary block code

is a set ofqk codewords corresponding to theqk possible data blocks.

A linear block codeis entirely described by its generator matrixG. A codeword is

built using the relation

x = u ·G (A.2)

where both the codewordx and the user wordu are assumed to be row vectors. Thus

linear codes transform the all-zero input vector into the all-zero codeword. Equivalently,

every codewordx has always to satisfy the equation

H ·xT = 0T (A.3)

whereH is the parity-check matrix, that can be derived from the generator matrixG such

asGHT = 0.

The code rateof a block code is defined as the ratio between the number of bits

carrying information and the total codeword length. Thus, if the generator matrix is a full

rankk×n matrix, the code rate is given by

R=
k
n

(A.4)

TheHamming distancebetween two codewords is the number of positions in which

they differ. The minimum distancedmin of a code is the Hamming distance of the pair of

codewords with the smallest Hamming distance [39]. A code with a minimum distance

dmin can correct up tot = ⌊(dmin−1)/2⌋ errors. Ifdmin is even, the code can simultane-

ously correctt = (dmin−2)/2 errors and detectdmin/2 errors.

To ensure a minimum distance equal or greater than 2t + 1 in any(n,k) q-ary block

code, the following condition must be satisfied:

n−k≥ logq

{

t

∑
i=0

[(

n

i

)

(q−1)i

]}

(A.5)

which is know as Hamming bound.

A.2.2 Hamming Codes

Hamming codes are a whole class of linear block codes that cancorrect single errors. If

we consider a binary alphabet, that isq = 2, Hamming codes of lengthn = 2r −1 with
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r ≥ 2 are defined to have a parity-check matrixH whose columns consist of all non-zero

binary vectors of lengthr, each used once.

A Hamming code is thus an= 2r −1, k= 2r −1− r, d = 3 block code. The Hamming

code as it was first defined is the(7,4,3) Hamming code, whose parity-check matrix is

given by [125]:

H =







0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1






(A.6)

Any code consisting of rows that are created using linear combinations and column

permutations of the original matrixH is said to beequivalent.

A.2.3 Convolutional Codes

Unlike block codes, convolutional codes work on data streams of possibly infinite length.

An encoder for a convolutional code can be seen as a finite-state machine, that is a sequen-

tial logic circuit, with a memory of orderm. The generator matrixG of a convolutional

code has a general form given by:

G(D) =













G11(D) G12(D) · · · G1n(D)

G21(D) G22(D) · · · G2n(D)
...

...
. . .

...

Gk1(D) Gk2(D) · · · Gkn(D)













(A.7)

Each elementGi j (D) represents a transfer function of a linear discrete-time system of

orderm:

Gi j (D) =
ai j ,mDm+ai j ,m−1Dm−1 + · · ·+ai j ,0

bi j ,mDm+bi j ,m−1Dm−1 + · · ·+bi j ,0
(A.8)

whereD indicates the unit delay element.

The block diagram of a simple convolutional code with generator polynomials

G(D) =
[

D2+1,D2+D+1
]

(A.9)

is shown in Fig.A.2.

The rate of a convolutional code is still given by the ratio ofthe generator matrix

dimensions. Thus, the convolutional code of Fig.A.2 has a code rateR= 1/2.

If the uncoded datau is part of the codeword, we speak ofsystematiccode. Given

the generator matrix of a convolutional code, it is always possible to build its systematic
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Figure A.2: 4-state rate 1/2 binary convolutional encoder
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Figure A.3: Systematic version of code of Fig.A.2

version as

G(D) =















1 G12(D)
G11(D) · · · G1n(D)

G11(D)

1 G22(D)
G21(D) · · · G2n(D)

G21(D)
...

...
. . .

...

1 Gk2(D)
Gk1(D) · · · Gkn(D)

Gk1(D)















(A.10)

The systematic version of the code of Fig.A.2 is reported in Fig.A.3. Its generator

matrix is given by:

G(D) =

[

1,
D2+D+1

D2+1

]

(A.11)

The systematic version of a convolutional code is also called recursiveand exhibits

the same performance of the original code.

The definition of the Hamming distance given in Sec.A.2.1 cannot be applied to

convolutional codes, as they work on codewords of possibly infinite length. Instead, for

convolutional code, we speak ofminimum Euclidean distance df ree of a code, referring to

the same concept [126].
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Figure A.4: 4-state transition diagram of code of Fig.A.2
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Figure A.5: 4-state trellis diagram of code of Fig.A.2

A.2.4 Convolutional Codes Trellis Diagram

Since a convolutional encoder is a finite-state machine, it may be completely defined by

a finite state-transition diagram, such as the 4-state diagram shown in Fig.A.4 for the

encoder of Fig.A.2. The nodes in the transition diagram are the states of the finite-state

machine and the branches represent the possible transitions between states. Each branch

is labeled by the user bitsu which cause the transition as well as by the corresponding

output codewordx.

If we index the state-transition diagram by both the states and the time indexr, Fig.A.4

expands into thetrellis diagramof Fig.A.5. This is a two dimensional representation

of the operation of the encoder, capturing all possible state transitions starting from an

originating state that is usually state 0. If the finite-state machine is driven back into

the original state at a certain timer = L, as shown in Fig.A.6 withL = 8, we speak of

terminatedcodes. To force the encoder back to the original state, the last m branches,

wherem is the number of memory elements, are predetermined and no information is
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Figure A.6: 4-state terminated trellis diagram of code of Fig.A.2
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Figure A.7: Trellis section of code of Fig.A.2

transmitted in those time units. This results in a rate loss of

mk
n(n+m)

. In order to avoid this rate loss,tail baiting codes have been proposed in 1986 [127]. The

trellis of a tail baiting code is formed by connecting the outgoing states of the last trellis

section to the incoming states of the first trellis sections.Such a tail baiting code forms a

closed ring structure with no need for termination bits. A valid codeword is then defined

by a path starting in any state at a certain point, i.e. non necessary the zero state, and

terminating in the same state after one turn.

Since the size of the trellis transition diagram explodes for long user data sequences, a

complete description of a convolutional code can also be given by a single section of the

trellis diagram. The trellis section for the code of Fig.A.2is shown in Fig.A.7.

A.2.5 Trellis Coded Modulation

‘

The use of an error correcting scheme with rateR= k/n to increase the reliability of

binary transmission or storage systems, reduces the spectral efficiency from its maximum

value µ = 1 bit/sec/Hz toµ = R < 1 bps/Hz. This leads to a faster signalling rate or

to a larger bandwidth if the aim is to guarantee the same rate of the uncoded system.
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Figure A.8: Signal constellations

Equivalently, the bit rate has to be reduced by a factor of 1/Bso as to keep the transmission

symbol rate or bandwidth constant, whereB is the channel bandwidth.

To increase the data rate without increasing the bandwidth,Ungerboeck [51] and Imai

and Hirakawa [128] used an expanded signal set, such as 2m-ary PSK or QAM digital

modulation, and then applied an error correcting code to increase the Euclidean distance

between codewords.

Several signal constellations used in digital communication systems are shown in

Fig.A.8. From the viewpoint of digital signal processing, modulation is mapping, that

is the process of assigning am-dimensional binary vectorb to a signal point(x(b),y(b))

in the constellation. Using 2m-ary modulation instead of the binary one has the advantage

that the number of bits per symbol is increased by a factor ofm, thus increasing the spec-

tral efficiency of the system. On the other hand, the requiredaverage energy of the signal

increases, as in the QAM case, or the distance between modulation symbols decreases,

as with PSK modulation. In practice, transmitted power or storage level is limited to a

maximum value. This implies that the signal points become closer to each other. As a

result, an error correcting code is needed to reduce the increased error probability and to
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Figure A.9: Trellis section of code of Fig.A.2

improve the system reliability.

The basic idea of TCM is thus to expand the signal constellation in order to obtain the

redundancy needed for error correction coding and then to design a trellis code to increase

the minimum Euclidean distance between codewords. In fact,theasymptotic code gain

of a TCM scheme is given by:

G = 10log10

(

d2
f ree

d2
unc

)

(A.12)

whered2
unc indicates the minimum squared Euclidean distance between uncoded signal

sequences.

The design of a TCM, which is the joint design of a trellis codeand a modulation

scheme, is performed using amapping by set partitioning, as proposed by Ungerboeck
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Figure A.10: TCM encoder

in [51]. A basic trellis structure, associated with the state transitions of a finite-state

machine, is selected and signal subsets mapped to trellis branches. Uncoded signals are

assigned to parallel branches so as to increase system spectral efficiency.

Thus, a 2m-ary modulation signal setS is partitionedin m levels. For 1≤ i ≤ m, at the

i-th partition level, the signal set is divided into two subsetsSi(0) andSi(1), such that the

intra-set distance, δi , is maximized. A label bitbi ∈ {0,1} is associated with the subset

choice,Si(bi), at thei-th partition level. This partition process results in alabelling of

the signal points. Each signal point in the set has a uniquem-bit labelb1b2 · · ·bm and is

denoted bys(b1,b2, · · · ,bm). With this Ungerboeck partitioning of a 2m-ary modulation

signal constellation, the intra-set distances are in nondecreasing orderδ2
1 ≤ δ2

2 ≤ ·· · ≤
δ2

m. This strategy corresponds to a natural labelling forM-PSK modulations, i.e., binary

representations of integers, whose value increases clockwise (or counter-wise). Fig.A.9

shows a natural mapping of bits to signals for the case of a 8-PSK modulation, with

δ2
1 = 0.586,δ2

2 = 2 andδ2
3 = 4. Ungerboeck regarded the encoder“simply as a finite-state

machine with a given number of states and specified state transitions”. He gave a set of

pragmatic rules to map signal subsets and points to branchesin a trellis. These rules can

be summarized as follows:

1. all subsets should occur in the trellis with equal frequency and with a fair amount

of regularity and symmetry;

2. state transitions that begin or end in the same state should be assigned to subsets
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Figure A.11: Parallel concatenated convolutional code block diagram

separated by the largest Euclidean distance;

3. parallel transitions are assigned to signal points separated by the largest Euclidean

distance, that is the highest partition levels.

The general structure of a TCM encoder is shown in Fig.A.10. In the general case of

a rate(m−1)/m TCM system, the trellis structure is inherited from ak/(k+1) convolu-

tional encoder. The uncoded bits introduce parallel branches in the trellis.

A.2.6 Turbo Codes

In 1993, Berroux [2] presented his first article on Turbo codes, which has turned the view

of coding theory upside down. This new coding scheme, whose performance are very

close to the Shannon limit [129], consists of two or more convolutional codes connected

in series or in parallel by a bit-interleaving structureπ.

In particular,Parallel Concatenated Convolutional Codes PCCCconsist of two con-

volutional encoders working in parallel, as shown in Fig.A.11. The first encoder receives

a copy of the user datau while the second encoder is fed with a scrambled version of the

same user data obtained by means of aninterleaverπ.

In the Serial Concatenated Convolutional Codes SCCCscheme [130], the two en-

coder are connected in series, as depicted in Fig.A.12. The first encoder (Outer) trans-

forms the user datau into a temporary codeword, whose bits are permuted by the inter-

leaver and then fed to the second encoder (Inner). A puncturercan be inserted between

the two encoders to delete some parity bits so as to increase the code rate.
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uk
Encoder 1 p Encoder 2

uk c2kc1k

Figure A.12: Serial concatenated convolutional code block diagram

A.3 Decoding

Basically, the decoding is a decision-making process. Based on the observed data vector

û, the decoder tries to figure out which information bit or information vector has been

generated by the information source.

The so calledhard decisionalgorithms have been widely used in the past, due to their

straightforward implementation in the digital domain. In fact, the Viterbi algorithm has

been the standard decoding algorithm for most convolutional codes for over a decade.

With the advent of Turbo codes,soft decisionalgorithms have become popular, be-

cause they allow the implementation of an iterative decoding process, necessary to the

Turbo code decoding.

A.3.1 Viterbi Algorithm

In 1967, Viterbi [131] introduced a new algorithm for decoding convolutional codes. It

works on the trellis diagram of the code and itdecidewhat codeword have themaximum-

likelihood(or theminimum-distance) from the received string.

If we consider a trellis diagram of a convolutional code, as the one shown in Fig.A.5,

we can associate to each possible pathx the log-likelihoodfunction

logL(y|x) = logP(y|x) =
n−1

∑
i=0

logP(yi |xi) (A.13)

wherey is the received string.

We observe that if themax-log-likelihoodpath includes the statesk at time unitk, then

the firstk branches of that path constitute themax-log-likelihoodpath of the partial trellis

from time 0 to timek.

Therefore it suffices at timek to determine and retain for each possible statesk only the

biggest path from the unique state at time 0 to that state. This path is called the “survivor”.

The time-k+1 survivors may be determined from the time-k survivors by the follow-

ing recursive “add-compare-select” rules:
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1. for each branch from a state at timek to a state at timek+1, add the metric of that

branch to the metric of the time-k survivor to get a candidate path metric at time

k+1;

2. for each state at timek+1, compare all the candidate path metrics arriving at that

state and select the path corresponding to the largest as thesurvivor. Store the new

survivor path.

At the end of the trellis, there is a unique state, whose survivor is the max-log-

likelihoodpath for the received stringy.

This regular recursive structure is attractive for software or hardware implementation

because it requires only some memory to store the metrics andthe temporary paths.

The Viterbi algorithm can be applied to decode the most likely TCM sequence as well,

provided that the branch metric generator is modified to include parallel branches. The

selection of the winning branch and surviving uncoded bits should be changed as well.

The survivor path (or trace-back) memory should include the(m−1−k) uncoded bits, as

opposed to just one bit for rate-1/n binary convolutional codes.

However, for practical considerations, it was suggested in[132] that 2m-ary modu-

lation signal constellations be partitioned in such a way that the cosets at the top two

partition levels are associated with the output of a rate 1/2convolutional encoder. This

mapping leads to apragmatic TCM system. With respect to the general encoder structure

shown in Fig.A.10, the value ofk = 1 is fixed. As a result, the trellis structure of a prag-

matic TCM remains the same, as opposed to the first TCM proposed by Ungerboeck, for

all values ofm> 2. The difference is that the number of parallel branchesm−2 increases

with the number of bits per symbol. This suggests a two-stagedecoding method in which,

at the first stage, the parallel branches in the trellis “collapse” into a single branch and a

conventional off-the-shelf Viterbi decoder can be used to estimate the coded bits associ-

ated with the two top partition levels. In a second decoding stage, based on the estimated

coded bits and the positions of the received symbols, the uncoded bits are estimated.

A.3.2 MAP Decision Rule

Recalling the general communication system of Fig.A.1, if the data transmission is as-

sumed to be over a time-invariant, memory-less and feedback-less channel, we can define
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Figure A.13: (7,4,2) code tanner graph

the conditional probability

PY|X(y|x) = ∏
i

PY|X(yi |xi) (A.14)

This conditional probability, called thea posteriori probabilityAPP, represents the prob-

ability of receiving at the decoder input the noisy codewordy given the sent user data

x.

Given the received symbols sequencey, a Maximum a Posteriori Probabilityalgo-

rithm finds the user data sequencexMAP that maximizes (A.14), which means:

PY|X(y|xMAP) = max
x∈X

PY|X(y|x) (A.15)

An algorithm implementing the MAP decision rule is theSum-Productalgorithm [133].

A.3.3 Sum-Product Algorithm

The Sum-Product algorithm can be better described with the help of an example. Let’s

consider a simple binary block code(7,4,2) with parity-check matrix:

H =







1 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 0 0 1 1






(A.16)

Each row of the parity-check matrix corresponds to a parity equation. Thus, from the

parity-check matrix (A.16), we can derive the parity check equations:

x1⊕x2⊕x3 = 0

x1⊕x4⊕x5 = 0

x1⊕x6⊕x7 = 0

(A.17)
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Figure A.14: Example of weights propagation through a function node

which have to be simultaneously satisfied from any valid codeword.

This code can also be described by means of its Tanner graph [134] reported in

Fig.A.13, where the black circles calledvariable nodesrepresent the codeword symbols

xi , with i = 1,2, · · · ,7, and the so-calledfunction nodes⊕ indicate the parity relations

(A.17).

After receiving a codewordy, we assign a weight to each possible alphabet symbol

ak, whereak ∈ {0,1} for a binary code:

wk(ak) = P(yk|xk = ak) (A.18)

Thus, the weight of a codeword can be calculated as:

w(x) = ∏
k

wk(xk) = P(y|x) (A.19)

For each alphabet symbolak, the sum of the weights of all those codewords that present

the valueak in correspondence of the variablexk, given by:

∑
x∈X:xk=ak

wk(xk)w(x) (A.20)

is proportional to the APP value (A.14) according to:

P(xk = ak|y) ∝ ∑
x∈X:xk=ak

P(y|x) (A.21)

The most probable sent codeword is chosen as the one that maximizes the APP.

The weights associated with each variable node can be seen asmessages that prop-

agate thought the graph. The messages passing can be scheduled so as to make the cal-

culation of the maximum APP simple and automatic. The first step consists in assigning

to the graph leaf nodes, that are the variable nodes connected to just one function node,
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Figure A.15: Example of weights propagation through a variable node

the weights corresponding to all the possible variable nodes values. These weights are

then passed on to the closest function node. Each function nodes receives the leaf nodes

weights as inputs and calculates the output weights according to the the XOR gate func-

tion. In the example if Fig.A.14, the two function node inputs are






(w5(0),w5(1)) = (1,3)

(w4(0),w4(1)) = (2,5)

while its output is given by:






w(0) = w4(0) ·w5(0)+w4(1) ·w5(1) = 2+15= 17

w(1) = w4(0) ·w5(1)+w4(1) ·w5(0) = 5+6 = 11
⇒ (17,11)

Thus the variable nodex1 receives the three weights coming from the three neighbor

function nodes. The local weight of the nodex1 is then propagated towards each of

the function nodes after being multiplied by the sum of all the weights of the incoming

branches but the one towards which it is propagated, as described in Fig.A.15. This

sum-product process is repeated until reaching the leaf nodes. At the end we obtain a

pair of weights (one incoming and one outgoing) for each graph edge. The total weight

associated with each edge, that is the weight of the corresponding node, is given by the

sum of these two weights. Thus, if we chose for each node the grater weight among all

the ones obtained for all the possible alphabet symbols, we have a MAP decision.

Thus the Sum-Product algorithm computations, as describedby Gallager for decoding

of LDCP codes [124], can be summarized in the following steps:

initialization : each variable nodexk is initialized with the conditional probabilities

P(yk|xk) = λyk|xk = λ(0)
xk , ∀k = 1, · · · ,q where q indicates the alphabet symbols

number



A.3. Decoding 17

Decoder 2
apr

in

ext

out

Decoder 1
apr

in

ext

Figure A.16: Iterative decoding scheme

nth iteration, function-to-variable nodes: for each variable nodexk, we compute the

⊕ of all the messages coming from the neighbor variable nodes but xk, that is∀r :

hr,k = 1:

λ(n)
⊕r→xk

=
M

∀c:hr,c=1,c6=k

λ(n−1)
xc→⊕r

(A.22)

nth iteration, variable-to-function nodes: for each function node⊕k, we need to com-

pute the values of all the variable nodes connected to the function node, that is

∀c : hk,c = 1:

λ(n)
xc→⊕k

= λyk|xk⊙





K

∀r:hr,c=1,r 6=k

λ(n)
⊕r→xc



 (A.23)

where⊙ corresponds to the logical functionEXOR.

final decision: after a fixed iteration numberN, the sent codeword symbols are computed

according to:

λx̂k = λyk|xk⊙





K

∀r:hr,c=1

λ(N)
⊕r→xc



 (A.24)

A.3.4 Iterative Decoding

As the Sum-Product algorithm complexity increases linearly with the code states number,

it can not be used for Turbo code decoding. Indeed, due to the interleaver presence, the

Turbo codes states number is very high and besides difficult to compute.

Concatenated codes can be efficiently decoded by means of a suboptimum algorithm,

whose complexity is almost independent on the interleaver length. This algorithm, called

iterative, shows performance close to the Shannon limit [135, 136], even if its effective-

ness has not been analytically proved yet.

The iterative decoding scheme is reported in Fig.A.16. The Turbo decoder uses two

MAP decoders, one for each constituent code. Each MAP decoder has two inputs, the
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channel output and ana priori probability generated by the other decoder, and generates

at its output anextrinsic information, that is the information on the received symbols

known the constituent code. This extrinsic information constitutes the a priori probability

for the other decoder, as it is not correlated with the knowledge of its own constituent

code.

The decoding algorithm As already pointed out, each decoder has to take a MAP de-

cision on the bases of two inputs, the channel information and the extrinsic probabilities

generated by the other decoder. Thus, the decoder has to compute for all the possible

codewords the corresponding APP and then chose among them the user word̂u with the

maximum APP, that is:

ûk = max
i

[APP(k, i)] (A.25)

wherek is the symbol under analysis index,i represents every possible alphabet symbol

value andAPP(k, i) is defined by:

APP(k, i)
.
= p(r1, r2)|uk = 1) = ∑

u:uk=i
p(r1|c1(u))p(r2)|c2(u))pa(u) (A.26)

p(r1|c1(u)) =
N1

∏
j=1

p(r1 j |c1 j(u)) (A.27)

p(r2|c2(u)) =
N2

∏
m=1

p(r2m|c2m(u)) (A.28)

pa(u) =
K

∏
l=1

pa(ul) (A.29)

whereu is the transmitted codeword,r1 andr2 indicate the received codewords relative

to the two codes,c1(·) andc2(·) are the ideal decoding functions of the two constituent

codes,pa(·) represents the a priori probability andK, N1 andN2 are the symbols number

of the user word and of the two codes codeword respectively.

According to Berroux [2], equations (A.28) and (A.29) can beexpressed as function

of the single codeword symbols instead of the whole codewordu. As a consequence, we

can write equation (A.27) as a product of functions defined onthe single symbol as well,

that is:

APP(k, i) = P̃1k(i) · P̃2k(i) · pa(i) (A.30)

whereP̃1k(i) andP̃2k(i) solve an opportunely derived non-linear system [2]. For thesake

of brevity, only the solutions are reported hereafter:
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P̃1k(i) = ∑
u:uk=i

p(r1|c1(u))∏
l 6=k

P̃2l (ul)pa(ul) (A.31)

P̃2k(i) = ∑
u:uk=i

p(r2|c2(u))∏
l 6=k

P̃1l (ul)pa(ul) (A.32)

that can be computed as:

P̃(0)
1k (i) = 1,k = 1, · · · ,K

... (A.33)

P̃(m)
1k (i) = ∑

u:uk=i
p(r1|c1(u))∏

l 6=k

P̃2l (ul )pa(ul),k = 1, · · · ,K

P̃(m)
2k (i) = ∑

u:uk=i
p(r2|c2(u))∏

l 6=k

P̃1l (ul )pa(ul),k = 1, · · · ,K

Log-Likelihood Ratio Algorithm If the symbol alphabet is binary, it can be convenient

to use an additive version of the decoding algorithm previously described, especially in

digital implementations where multiplications are expensive to implement. The additive

version of the iterative decoding algorithm works on the so calledLog-Likelihood Ratio,

LLR, which are defined as:

Lk(APP)
.
= log

∑u:uk=0 p(r1|c1(u))p(r2|c2(u))pa(u)

∑u:uk=1 p(r1|c1(u))p(r2|c2(u))pa(u)

Lk
.
= log

p(rk|0)

p(rk|1)

L1 j
.
= log

p(r1 j |0)

p(r1 j |1)
, j = 1, · · · ,N1

L2m
.
= log

p(r2m|0)

p(r2m|1)
,m= 1, · · · ,N2 (A.34)

La
.
= log

pa(0)

pa(1)

π1l
.
= log

P̃1l (0)

P̃1l (1)

π2m
.
= log

P̃2m(0)

P̃2m(1)

After some computations, for which we refer to the literature [137], we obtain the desired

formula:

Lk(APP) = π1k +π2k +La (A.35)
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Figure A.18: An edge of the trellis section

whereπ1k andπ2k can be calculated with an iterative process, as described by(A.3.4).

It is worth to notice how, using the additive version of the iterative algorithm, only one

value has to be propagated as opposite to the two required by its multiplicative version.

A.3.5 Soft-Input Soft-Output Algorithm

The iterative decoding algorithm, as is it stated in Sec.A.3.4, can not be efficiently used

for Turbo codes decoding because it requires two MAP decoders, whose complexity and

memory grows linearly with the decoding latency.

In order to overtake this limit, a novel version of the iterative algorithm, calledSoft-

Input Soft-Output, SISOhas been introduced [138]. The SISO algorithm uses more mod-

ules, one for each constituent code, with real orsoft input and output values.

An example of a SISO module is reported in Fig.A.17. Both its two inputs,P(c; I)

andP(u; I) and two outputs,P(c;O) andP(u;O), represent probability distributions.

To illustrate the decoding algorithm, first presented by Bahl, Cocke, Jelinek and Raviv

in 1974 [139], whence the name BCJR, we consider a code trellis section, as the one

shown in Fig.A.18. Every trellis section is characterized by:

• a set ofN statesS = {s1, · · · ,sN}. The state of the trellis at timek is Sk = s, with
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s∈ S ;

• a set ofN ·NI edges obtained by the Cartesian product

E = S ×U = {e1, · · · ,eN·NI}

which represent all possible transitions between trellis states.

Indeed, the following functions are associated to each edgee∈ E :

• the original statesS(e) (the projection ofeontoS );

• the final statesE(e);

• the input symbolu(e) (the projection ofeontoU);

• the output symbolc(e).

In the case of systematic encoders the pair(sS(e),c(e)) also identifies the edge since

u(e) is uniquely determined byc(e). In the following, we consider only the case in which

the pair(sS(e),u(e)) uniquely identifies the final statesE(e); this assumption is always

verified, as it is equivalent to say that, given the initial trellis state, there is a one-to-one

correspondence between input sequences and state sequences, a property required for the

code to be uniquely decodable.

We also indicate withP(c; I) andP(u; I) the code and the input a priori distribution

respectively, whileP(u;O) is the user data a posteriori distribution.

If k indicates the discrete index(k∈ {1, · · · ,n}), the BCJR algorithm can be divided

into two steps:

• at timek, the SISO output probability distributions are computed according to

P̃k(c;O) = H̃c ∑
e:c(e)=c

Ak−1[s
S(e)]Pk[u(e); I ]Pk[c(e); I ]Bk[s

E(e)] (A.36)

P̃k(u;O) = H̃u ∑
e:u(e)=u

Ak−1[s
S(e)]Pk[u(e); I ]Pk[c(e); I ]Bk[s

E(e)] (A.37)

• the quantitiesAk(·) andAk(·) are obtained through the so-calledforward andback-

ward recursions, respectively, as:

Ak(s) = ∑
e:sS(e)=s

Ak−1[s
S(e)]Pk[u(e); I ]Pk[c(e); I ] ,k = 1, · · · ,n−1 (A.38)

Bk(s) = ∑
e:sS(e)=s

Bk+1[s
S(e)]Pk+1[u(e); I ]Pk+1[c(e); I ] ,k = n−1, · · · ,1 (A.39)
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with initial conditions

A0(s) =







1 if s= S0

0 otherwise
(A.40)

Bn(s) =







1 if s= S0

0 otherwise
(A.41)

The two quantities̃Hc andH̃u are normalization constants defined as:

H̃c : ∑
c

P̃k(c;O) = 1 (A.42)

H̃u : ∑
u

P̃k(u;O) = 1 (A.43)

Pk[c(e); I ] in (A.36) andPk[u(e); I ] in (A.37) are constant with respect to the corre-

spondent sum terms. Thus, defining

Pk(c;O)
.
= Hc

P̃k(c;O)

Pk(c; I)
, Hc : ∑

u
Pk(c;O) = 1 (A.44)

Pk(u;O)
.
= Hu

P̃k(u;O)

Pk(u; I)
, Hu : ∑

u
Pk(u;O) = 1 (A.45)

it can be easily verified that

Pk(c;O) = HcH̃c ∑
e:c(e)=c

Ak−1[s
S(e)]Pk[c(e); I ]Bk[s

E(e)]

Pk(u;O) = HuH̃u ∑
e:u(e)=u

Ak−1[s
S(e)]Pk[c(e); I ]Bk[s

E(e)]
(A.46)

In literature,Pk(c;O) andPk(u;O) are calledextrinsic information, as they represent the

added value by the SISO module to thea priori distributionsPk(c; I) andPk(u; I).

It is worth to notice how the implementation of the two equations (A.46) requires less

hardware resources than that of (A.3.4), that is the reason way we used the SISO decoding

algorithm for our decoder implementation.

As for the MAP algorithm, an additive version of the SISO algorithm can be easily
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derived by considering the logarithm of all the quantities previously defined, that is:

π(c : I)
.
= log[Pk(c : I)]

π(u : I)
.
= log[Pk(u : I)]

π(c : O)
.
= log[Pk(c : O)]

π(u : O)
.
= log[Pk(u : O)]

αk(s)
.
= log[Ak(s)]

βk(s)
.
= log[Bk(s)]

(A.47)

The forward and backward recursions can be written as:

αk(s) = log

[

∑
e:sε(e)=s

exp{αk−1[s
S(e)]πk[u(e); I ]πk[c(e); I ]}

]

(A.48)

βk(s) = log

[

∑
e:sε(e)=s

exp{βk+1[s
S(e)]πk+1[u(e); I ]πk+1[c(e); I ]}

]

(A.49)

wherek∈ {1, · · · ,n−1} for both equations. The initial conditions are given by:

α0(s) =







0 if s= S0

−∞ otherwise
(A.50)

βn(s) =







0 if s= S0

−∞ otherwise
(A.51)

The algorithm computation can be further simplified considering the approximation

log

[

L

∑
i

exp(ai)

]

≃ max
i=1,··· ,L

ai (A.52)

which leads to good results for medium to high signal-to-noise power ratio. Using this

simplification we can avoid to compute exponential and logarithm functions, which are

quite complex to implement in the digital domain.

However, in the analog domain the implementation of the non additive SISO algorithm

is straightforward.

A.4 Analog Decoding

In 1998, Hagenauer [140] showed how analog networks could beefficiently used to de-

code binary Turbo codes. The main attractiveness of the proposed solution was the possi-

bility to get rid of the iteration cycles presented in all theTurbo codes decoding schemes.
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f(x,y,z)

p (x )X 1

p (x )X m

p (z )Z 1

p (z )Z k

p (y )Y 1 p (y )Y n

Figure A.19: Analog decoders building block

Moreover, he highlighted how there is a simple and straightforward correspondence be-

tween the Sum-Product modules and simple analog circuits.

In his work [6], Loeliger proposed an implementation of sucha decoder by means

of analog VLSI based on Sum-Product module realized with simple analog transistor

circuits. In particular, he showed how the whole family of Sum-Product modules can

be obtained with small variations of the same basic analog circuit. Thus, the decoder

becomes an asynchronous analog network that, after a certain time evolution, settles to-

wards a state that corresponds to the decoded information data. The iterative cycles of the

decoding algorithm are then substituted by the continuous time feedbacks of the analog

circuit.

Furthermore, analog decoders proved to be robust against all analog circuits non-

idealities and able to overcome the performance of their digital counterparts by a factor

up to 100 in terms of decoding speed and power consumption.

A.4.1 Sum-Product Module

The building blocks of an analog decoder are the Sum-Productmodules. A generic Sum-

Product module, as the one shown in Fig.A.19, computes the output probability distribu-

tion PZ, with Z
.
= {z1, · · · ,zk}, from the two input probability distributionsPX andPY,

with X
.
= {x1, · · · ,xm} andY

.
= {y1, · · · ,yn}, according to

pZ(z) = γ ∑
x∈X

∑
y∈Y

pX(x)pY(y) f (x,y,z) ∀z∈ Z (A.53)

where f is a function fromX ×Y ×Z into {0,1} and whereγ is an appropriate scale

factor that does not depend onz.

When implemented with analog circuits, a probability distribution pX is represented

by means of a current vector(Ix1, · · · , Ixk) such as

∑
i

Ixi = Ix ≥ 0 (A.54)
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Iy,1

Im,1I1,1

Iy,n

I1,n Im,n

Ix,1 Ix,m

Vref

Vref

Figure A.20: Basic circuit for Sum-Product module implementation

On the other hand, every current vector(I1, · · · , In) with non-negative and all non-zero

elements, can be seen as a probability distributionpY with alphabetY
.
= {y1, · · · ,yn},

whose values are equal topY(yi)
.
= Ii/(I1 + · · · In). The analog building block proposed

by Loeliger and shown in Fig.A.20 is derived from the well-known Gilbert multiplier,

from the name of the person who proposed it for the first time in1968 [56]. Even if

implemented with bipolar transistors in its original version, the Gilbert multiplier can

also be realized in CMOS technology by means of MOS transistors working in their

exponential or weak inversion region.

The Gilbert cell behavior is described by the following input-output equation:

Iz,i, j = Iz ·
Ix,i
Ix

· Iy, j
Iy

(A.55)

where Ix
.
= ∑i Ix,i, Iy

.
= ∑ j Iy, j and Ix

.
= ∑i ∑ j Iz,i, j = Ix. Thus the Sum-Product module

computes the products of the two probability mass functionspX(i)
.
= Ix,i/Ix andpY( j)

.
=

Iy, j/Iy.

A.4.2 Soft-gates

The different computational modules needed for analog decoding can be easily obtained

from the basic Sum-Product cell by an adequate choice of the{0,1} valued functionf .

In particular, if the functionf is defined asf (x,y,z) = 1 if and only if z= x⊕y with

⊕ denoting the standard module-2 addition andf (x,y,z) = 0 otherwise, the Sum-Product

module becomes asoft-XORgate. If pX andpY are the distributions of two independent
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Iy p y( =0)

Iz p z( =0)

Ix p x( =0)

Iy p y( =1)

Iz p z( =1)

Ix p x( =1)

0

1

0

1
0

0

1

1

X Y Z

Figure A.21: Soft-XORtrellis and circuit implementation

binary random variablesX andY, respectively, then the distribution ofX⊕Y, pZ, is given

by:
[

pz(0)

pz(1)

]

=

[

px(0)py(0)+ px(1)py(1)

px(0)py(1)+ px(1)py(0)

]

(A.56)

The corresponding circuit implementation, together with the trellis diagram, is re-

ported in Fig.A.21.

It is worth to highlight the biunique correspondence between the{0,1} valued func-

tion f and its trellis diagram, which uniquely defines the Sum-Product module.

If the function f is equal to 1 if and only ifx = y = z and f (x,y,z) = 0 otherwise, the

Sum-Product module realizes anequal gate. The output probability distribution can be

computed as:
[

pz(0)

pz(1)

]

= γ

[

px(0)py(0)

px(1)py(1)

]

(A.57)

whereγ is a scale factor to satisfypZ(0)+ pZ(1) = 1.

Both soft gates can be obtained from a generic Sum-Product module, as the one shown

in Fig.A.22, by a proper configuration of theinterconnections. The paths without a corre-

sponding branch in the trellis are connected together to adummytransistor (not shown in

the figure). The two bias voltages and the cell bias current are chosen so as to allow the

transistors to work under their weak inversion region.
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Figure A.22: Transistor network implementation of a general Sum-Product module
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