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Sommario

Per studiare il comportamento dei neuroni vengono utilizzate sonde multicanale
in cui ciascun elettrodo misura la sovrapposizione di treni di spike generati dai
neuroni circostanti. Un primo passo necessario è quello di individuare e separare
i segnali provenienti da diverse sorgenti associando ciascuno spike al neurone
che lo ha generato. A questo scopo sono stati sviluppati molti algoritmi di spike
sorting (classificazione di spike) che si basano su differenti principi, ma nessun
metodo è, finora, stato riconosciuto come migliore degli altri.

Questa tesi affronta il problema della classificazione di segnali impulsivi nel
contesto Neurofisiologico presentando un nuovo algoritmo di spike sorting de-
nominato Multi-Channel Inversion for Spike Classification (MCI4SC). Il nuovo
metodo sfrutta l’informazione proveniente da più canali (legata alla posizione
dei neuroni) e fa un uso distintivo della matrice di mixing associata al canale
di misura. In particolare, invertendo più matrici derivate da quella di mixing,
il metodo è in grado di gestire la sfavorevole ma tipica situazione in cui sono
presenti più neuroni registrati che sensori, sotto la ragionevole ipotesi che il
numero di neuroni contemporaneamente attivi sia minore od uguale al numero
di sensori. Un’altra caratteristica distintiva dell’algoritmo MCI4SC e della sua
implementazione è l’uso della Trasformata Wavelet Packet. Questo strumento è
stato impiegato per stimare il rapporto tra le ampiezze degli spike nei differenti
canali, dando cos̀ı luogo a una stima delle componenti della matrice di mixing
che risulta consistente anche nel caso di basso rapporto segnale rumore.

L’algoritmo MCI4SC è stato applicato a dati sperimentali impostando man-
ualmente le soglie. Buoni risultati di classificazione sono stati ottenuti sia nel
caso di Purkinje Cells con spikes di differenti ampiezze e forme d’onda, sia nel
caso di neuroni nel lobo antennale della Locusta con segnale molto rumoroso.
Nel confronto con un algoritmo basato sul metodo Markov Chain Monte Carlo,
l’algoritmo MCI4SC presenta una efficienza almeno comparabile con un più
basso tempo computazionale, oltre alla importante capacità di risolvere spike
sovrapposti. Ciò rende il nuovo algoritmo, presentato in questa tesi, uno stru-
mento affidabile e competitivo nel contesto dello spike sorting.

Parole chiave: classificazione di spike, registrazione multicanale, rapporto di
ampiezza, wavelet.
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Abstract

In order to study the neural behavior, scientists employ multichannel probes
where each electrode records a mixture of spike trains from surrounding neurons.
A first necessary step is the individuation and the separation of signal from
different sources, associating each detected spike to the neuron of origin. Many
spike sorting algorithms based on different principles have been developed for
this purpose, but there is still no consensus on which is the best method.

This thesis addresses the issue of impulsive signal classification in the Neuro-
physiological framework presenting a novel spike sorting algorithm named Multi-
Channel Inversion for Spike Classification (MCI4SC). The new method exploits
multichannel information related to neuron positions, and makes a distinctive
use of the mixing matrix associated to the measurement channel. In particular,
inverting many matrices derived by the mixing one, the method is able to handle
the disadvantageous, but typical, situation where there are more recorded neu-
rons than recording sensors, under the reasonable hypothesis that the number
of simultaneously firing neurons is lower than or equal to the number of sensors.
Another distinguishing feature of MCI4SC algorithm and its implementation is
the use of the Wavelet Packet Transform. This tool has been used to estimate
the ratio between spike amplitudes in different channels, thus leading to a con-
sistent estimation of the mixing matrix components even in case of low signal
to noise ratio.

The MCI4SC algorithm has been applied on experimental data with human
supervision on the threshold setting. Good spike sorting results have been ob-
tained for bursting Purkinje Cells with varying waveform and amplitude spikes,
as well as for noisy neurons in Locust antennal lobe. Compared with an algo-
rithm based on the Markov Chain Monte Carlo, the MCI4SC algorithm has at
least comparable efficiency with a much lower computational time, in addition
to the important capability of overlapping spike resolution. This makes the new
algorithm presented in this thesis a reliable and competitive tool in the spike
sorting context.

Keywords: spike sorting, multichannel recording, amplitude ratio, wavelet.
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Introduction

This thesis has been developed in the context of neural signal processing, where
the initial step toward the study of neural behavior is the individuation and the
separation of signals from different neurons. Neurons typically communicate
one with the others by firing brief voltage spikes. These electrical pulses, and
in particular their timing, are the precious information that neurophysiologists
aim to decode in order to study the nervous system.

The extracellular measurement of electrical spikes is carried out by placing an
electrode in close proximity to active neurons and by simultaneously recording
several spike trains. Due to improvements in implantable hardware technology,
multiple electrodes on the same probe are nowadays feasible and multichannel
recordings have become a standard tool in the neurophysiological context.

As each extracellular electrode records a mixture of spike trains generated
from surrounding neurons, a crucial step is to separate the single neural traces
to determine when each neuron fired. In other words, it is necessary to identify
all spike events and to assign each of them to the neuron that has produced it.
In the last decades a lot of spike sorting algorithms have been developed for this
purpose, but there is still no consensus on which is the best method.

The purpose of this thesis is to develop a new spike sorting algorithm that
has been named Multi-Channel Inversion for Spike Classification (MCI4SC). The
new algorithm exploits multichannel information related to neuron positions in
order to assign each spike to its own neuron of origin. The most attractive feature
of MCI4SC is its capability to resolve overlapping spikes. This challenging aspect
is often unattended by the most part of spike sorting algorithms, as well as the
problem of neurons that fire spikes with amplitude and waveform variations. As
shown in Chapter 4, the application of MCI4SC on experimental data confirms
its efficiency potentialities even in case of overlapping spikes and spike variations.
This makes MCI4SC a reliable and competitive tool in the spike sorting context.

The main idea of this algorithm is to separate original neural signals inverting
the mixing matrix associated to the measurement channel between neurons and
sensors. The number of recorded neurons is typically greater than the number
of recording sensors, thus leading to a rectangular mixing matrix and preventing
a straightforward solution. Nevertheless, thanks to the sparsity and to the finite
duration of neural spikes, under the reasonable hypothesis that the number of
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2 Introduction

simultaneously firing neurons is lower than or equal to the number of sensors,
MCI4SC is able to handle this unfavorable situation reaching good spike sorting
results.

Summarizing, the developed algorithm consists of two subsequent phases:
first, the learning phase estimates the mixing matrix and the neural waveform
templates; then, the classification phase associates the neuron of origin and
the arrival time to each detected spike. To reach this last purpose, MCI4SC
algorithm inverts many matrices derived by the mixing one. Since each inverted
matrix is associated to a reduced measurement channel made by a number of
neurons equal to the number of sensors, the original signals separation can be
reached.

Besides the original use of matrices associated to reduced measurement chan-
nels, another distinguishing feature of MCI4SC algorithm and its implementa-
tion is the use of the Wavelet Packet Transform. This tool has been used in the
learning phase to estimate the ratio between spike amplitudes in different chan-
nels, thus leading to a consistent estimation of the mixing matrix components
even in case of low signal to noise ratio.

The thesis outline is the following:

Chapter 1 — The spike sorting problem in Neurophysiology — in-
troduces the reader to the context of spike sorting problem. Purposes and diffi-
culties are described in this first chapter, as well as the neural signal features.

Chapter 2 — Spike sorting methods — presents a brief review of spike
sorting algorithms pointing out the respective assumptions, worthiness and
weakness. In particular, this chapter considers the basic spike sorting methods,
the methods based on Wavelet Transformations, those that exploit multichannel
information, and those that aim to resolve overlapping spikes.

Chapter 3 — Multi-Channel Inversion for Spike Classification —

describes the new method, named MCI4SC, to sort neural spikes recorded by
multichannel probes. As well as explaining the main ideas and the algorithm
details, this chapter also illustrates the linear mixing model adopted for the
measurements, the necessary assumptions, and the preliminary steps. Finally,
qualitative comparisons with other two similar approaches are illustrated.

Chapter 4 — Analysis of experimental data and Results — reports
the application of this new spike sorting algorithm on experimental data from a
Purkinje Cells recording. The main results are compared with those of another
algorithm, based on the Markov Chain Monte Carlo, that has been applied on
the same data set. The two algorithms results almost comparable in efficiency,
but MCI4SC takes much lower computational time, and it is able to resolve
total overlapping spikes.
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Appendix A — Wavelet Analysis — gives a brief introduction to the
Wavelet Analysis whose properties result very useful in the context of neural
spike recordings, and thus have been exploited by MCI4SC algorithm.

Appendix B — Locust data analyzed by MCI4SC algorithm — illus-
trates the details of the MCI4SC application on a different set of experimental
data from the Locust antennal lobe.





Chapter 1

The spike sorting problem in

Neurophysiology

Neurophysiology is the part of physiology that studies the nervous system func-
tion in order to understand neural signal codification and relationships between
stimulus and response. A lot of studies in this field have produced advances
in our knowledge of how nervous systems code sensory and motor information.
Still much work, however, remains to be done to explain complex mechanisms
of neural behavior.

Neurons typically communicate one with the others by firing brief voltage
spikes (named action potentials). These electrical pulses, and in particular
their timing, are the precious information that neurophysiologists aim to de-
code. Since brain processes are the result of a large neural populations activity,
the study of single neurons in isolation gives an extremely poor vision of the
whole system: therefore scientists require to observe the interaction of a large
number of entities [13] [10].

The extracellular measurement of electrical spikes is carried out by placing an
electrode in close proximity to active neurons and simultaneously recording sev-
eral spike trains from as many sources as possible. Obtaining such “multi-unit”
recording is easier and cheaper than performing more “single-unit” recordings
with as many probes as observed neurons. On the contrary, due to improvements
in implantable hardware technology, multiple electrodes on the same probe are
nowadays feasible and multichannel multi-unit recordings have become a stan-
dard tool in the neurophysiological context [39][40].

As each extracellular electrode of the probe records a mixture of spike trains
generated from surrounding neurons, the first crucial step is to separate the
single neural traces to determine when each neuron fired. Switching the per-
spective, it is necessary to identify all spike events and to assign each recorded
spike to the neuron that has produced it. This kind of analysis generally goes
by the name of spike sorting (see Figure 1.1).

Because the accuracy of spike sorting critically affects the accuracy of all
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6 The spike sorting problem in Neurophysiology
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Figure 1.1: In the top left corner a probe with 4 electrodes records the activity generated by
surrounding neurons A, B, C (no scale). On the right side, a simulated multichannel multi-unit
recording where each channel presents a mixture of the three neural traces. The spike sorting
algorithm detects spikes and assigns them to their neurons specifying the arrival times. As a
result, the procedure gives an estimation of the original single-unit spike trains (on the bottom
left corner).

subsequent analyses on neuron interactions and response codification, developing
a good classification algorithm is a very important target in the study of nervous
system function. In the last decades, this challenging problem has attracted the
attention of scientists beyond the field of neurophysiology; a lot of algorithms
have been developed in order to achieve the classification of neural pulses from
a multi-neural activity recordings, but there is still no consensus on which is the
best method.

1.1 The signal in neural recordings

To better understand potentialities and limits of spike sorting algorithms, this
section describes some important neuron peculiarities that allow, in principle,
to differentiate spikes of one neuron from those of other neurons. Spike sorting
methods that have been developed until now, exploit one or more of these aspects
making the due ideal assumptions.
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Spike Waveform — The recorded waveform provides, in principle, a means
to classify spikes as belonging to the same neuron or not: in general, spikes from
the same neuron look similar and spikes from different neurons look different
(see Figure 1.2).
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Figure 1.2: Some examples of spike waveforms recorded in the locust (Schistocerca ameri-

cana) antennal lobe: spikes (a) and (b) are from the same neuron and look similar; spike (c)
is from another neuron and appears different. Solid lines are for raw data and dotted lines are
for estimated spikes. The vertical scale is voltage in arbitrary units.

Actually, neurons belonging to a certain population generate spikes with
almost identical waveforms. Nevertheless, due to the anisotropic properties of
the extracellular medium, waveforms from distinct neurons differ at the electrode
location where they are recorded [38]. To exploit this aspect, many spike sorting
methods (see for example [67]) take advantage of the ideal assumption that each
neuron has its own characteristic waveform even if, in practice, different neurons
may present indistinguishable spike shapes. To differentiate such ambiguous
neurons, it is necessary to jointly exploit other peculiarities described in the
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following paragraphs.

Moreover, the assumption that the neuron waveform remains unchanged in
time is an idealization which usually fits well the actual situation, but it is not
always true; for example, bursting neurons generate spikes that may change
their shape over the course of the burst. Despite that, many algorithms that
classify spikes by waveforms, assume that the spike shapes are relatively stable
during the recording time.

Spike Amplitude and Neuron Position — The amplitude of recorded
waveform decreases inversely with the square of the distance between the neuron
and the electrode [65]. Therefore, neurons that fires with mostly similar spike
amplitude but have different distances from the sensor, will be recorded with
consequently scaled waveforms. For this reason, early spike sorting algorithms
(see for example [28]) widely exploited the spike amplitude as a distinctive fea-
ture assuming it constant through subsequent firings from the same neuron (on
condition that the probe position remains steady during the recording time).
Although the constant amplitude assumption is true for many neurons, spike
amplitude may actually be a decreasing function of the time between two con-
secutive spikes and some methods take in account even this variability.

The introduction of multi-electrodes probes made available further interest-
ing point of views: since electrodes are in a different position, they may measure
the same spike with different amplitudes, different delay times, and even different
waveforms. On the other hand, neuron position strongly affect the appearing
of these differences through the sensors and since neuron are necessarily lo-
cated in distinct places this provide useful information for spike discrimination.
Nevertheless, it is worth noticing that delay times and waveforms on different
electrodes can be fairly similar when sensors are quite close to each others (as in
some commonly used probes), while different spike amplitudes are usually still
representative of distinct neuron position (see Figure 1.3). In particular, ratios
of spike amplitude from several sensors have an interesting property, i.e. they
remain relatively constant with changes in spike amplitude and spike shape. In
fact these spike changes, that often occur for example during a burst firing, are
proportionally the same on all channels under the condition that the probe po-
sition remains steady. Another aspect to point out is the capability, in principle,
to distinguish the spike source without any ambiguity: under the idealization
that neurons are point sources in a homogeneous medium, ratios of spike am-
plitude from at least 4 electrodes not located in a plane are unique for each
neuron and allow to locate it in the tri-dimensional space. Nevertheless, if the
electrodes are less than four and/or are in a planar — or even worst linear —
configuration, amplitude ratios cannot univocally determine the neuron position
and some sources may possibly result indistinguishable from the spike-amplitude
ratios point of view. This problem arises not only when less than four electrodes
are available but also when the neuron signal is too weak and it is recorded just
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Figure 1.3: Some examples of spikes recorded by 4 sensors in the locust (Schistocerca amer-

icana) antennal lobe: the same spike is seen by more sensors with different amplitudes related
to the distance between neuron and sensor (solid lines for recorded measures and dotted lines
for estimated spikes). Spikes (a) and (b) are from the same neuron and show similar amplitude
trend along the four channels. Spike (c) is from another neuron: it has a similar waveform
but it can be distinguished by its different amplitude pattern. The vertical scale is voltage in
arbitrary units.

by the nearest sensors.

Inter-Spike Interval Distribution — Additional information for spike clas-
sification comes from arrival times and the intervals between them. In fact, the
Inter-Spike Interval (ISI) distribution of a single neuron has a trend that reflect
the biophysical properties of the neuron itself. The most characteristic property
is the refractory period: once a neuron has fired, it needs a recharging period
before being able to fire the next spike. The duration of this period depends on
neuron typology (for example the refractory period for neocortical cells is about
1 ÷ 2ms [52]). The refractory period is clearly highlighted in an ISI histogram
that starts at zero and stays at zero for a finite time (see Figure 1.4). The pres-
ence or not of a clear refractory period in the ISI histogram indicates if involved
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Figure 1.4: Two examples of Inter-Spike Interval histogram. In (a) the ISI histogram of a
spike train from a projection neuron in the locust (Schistocerca americana) antennal lobe (20
seconds, 176 spikes). In (b) the multi-modal ISI histogram of a spike train from a Purkinje cell
in young rat cerebellar slices (58 seconds 644 spikes). The bin width in the horizontal axis is
7.5 ms and 3 ms, respectively. The vertical axis represents the spike count in a bin.

spikes are generated by only one or more neurons. This information can be used
either to carry out the spike sorting procedure in combination with others kind
of distinctive information [32], or as a final reliability check for spike sorting
results. More sophisticated methods take into account, not only the refractory
period, but the whole — opportunely modeled — ISI distribution [26].

The above aspects (spike waveform, spike-amplitude ratios from several elec-
trodes and ISI distribution) are conceptually independent and provide comple-
mentary information to potentially differentiate one neuron from the others. In
order to achieve the best spike sorting result it is wise — although complex — to
exploit all these features at the same time because, in general, they are unable
to univocally discriminate the source on their own: for example, neurons whose
recorded spike waveforms are similar, can be distinguished by different spike
amplitude ratios from several sensors and, vice versa, neurons whose recorded
spike amplitude ratios are similar, can be distinguished by different waveforms.

1.2 Difficulties concerning spike sorting in neurophys-

iology

This section illustrates some technical and physiological issues that make the
spike sorting problem non-trivial. As it is pointed out in the following chapter,
developed methods deal more or less successfully with these aspects.
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Unknown Number of Involved Neurons — Typically the recorded spikes
come from an a priori unknown number of different neurons. It is necessary to
infer even this information by data themselves, paying attention to neuron that
may rarely fire, and avoiding to consider two distinct neurons as the same one
or a single neuron as two.

Noise in the recorded data — Recorded neural spikes are embedded in
noise due both to recording hardware and to activity of distant neurons (back-
ground noise). The signal to noise ratio, that varies depending on fired spike
amplitude and neuron distance, can be low for some neurons in certain condi-
tions. In particular, this happens in in-vivo recordings where a lot of surrounding
neurons give rise to background activity. Moreover, the background noise, due
to its nature, may have spectral density similar to that of the spikes under anal-
ysis, can be correlated to the spiking of foreground neurons and hence can also
be non-stationary.

Electrode drifts during the recording — During the recording time, ex-
perimental condition may evolve and the probe may move in the tissue. This
implies changes in neurons-electrodes relative positions, and hence changes in
spike waveforms and amplitude ratios between channels. Nevertheless, if the
drift is quite slow, it is possible to consider time interval where conditions re-
main stationary.

Bursting Neurons generate spikes varying in amplitude and shape —

Bursting neurons are those neurons that repeatedly fires burst or fast sequence
of spikes. Bursts can have a variable number of firings (a burst of two spikes is
called a doublet, of three spikes is called a triplet, of four a quadruplet, etc.) and
each burst is followed by a period of quiescence before the next occurs. Bursts
can be visually identified in single-unit recordings, but it is difficult to distin-
guish them from random events when small bursts, like doublets or triplets, are
embedded in spike trains or when recordings contain spikes from many neurons.
Bursts can also be identified with the help of ISI histograms: short ISIs oc-
cur more frequently when are induced by burst dynamics, thus creating a first
high peak in the corresponding multi-modal ISI histogram. The main prob-
lem concerning bursting neuron is that, as mentioned in the previous section,
their spikes can vary in both shape and amplitude (see Figure 1.5). Therefore,
the spike sorting procedure must be careful that spikes generated by a single
bursting neuron are not classified as coming from more separate neurons.

Presence of Overlapping Spikes — In the spike sorting context, overlap-
ping spikes are one of the main issue to deal with. They occur when two or more
neurons fire simultaneously — or one after another within a very short delay
— producing a superposition of voltage with different characteristic from time



12 The spike sorting problem in Neurophysiology

0 0.1 0.2 0.3

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [ms]

V
ol

ta
ge

 [A
rb

itr
ar

y 
U

ni
ts

]

(a)

0 0.01 0.02 0.03 0.04

−1.5

−1

−0.5

0

0.5

1

Time [ms]

V
ol

ta
ge

 [A
rb

itr
ar

y 
U

ni
ts

]
(b)

Figure 1.5: Two examples of burst from Purkinje cells in young rat cerebellar slices. In (a)
a burst with 8 spikes and in (b) a triplet. Notice that, in both cases, spike amplitude and
waveform vary along the burst. The vertical scale is voltage in arbitrary units.

to time. The number of different superpositions is very large and theoretically
infinite: it depends not only on the large number of combinations with more
than 2 involved neurons, but also on variations in the overlap phase. Amplitude
and waveform of the overlapping spike are more or less distorted with respect to
the original spike, according to the percentage of spike superposition (see Figure
1.6). Therefore, ordinary spike sorting methods, based only on waveform or am-
plitude recognition, are prevented from efficiently resolving overlapping spikes,
unless the superposition is little. It should be remarked, however, the relevance
of dealing accurately with overlapping spikes, since they may give important
information about the correlation of neural activity; on the other hand, errors
in their classification give biased results in the reconstruction of original spike
trains.
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Figure 1.6: Two examples of overlapping spikes recorded in the locust (Schistocerca ameri-

cana) antennal lobe. Solid lines for raw data; dashed and dotted lines for the two estimated
spike waveforms. In (a) a total superposition of two spikes: notice that the resulting wave-
form and the peak amplitude are different from both the original ones, and the overlapping
spike looks like the firing of a third neuron. In (b) a partial superposition: notice that double
peaks are still visible and almost with their original amplitude, but the two spike waveform
are distorted. The vertical scale is voltage in arbitrary units.





Chapter 2

Spike sorting methods

As already seen, a spike sorting algorithm takes one or more voltage traces
containing spikes from several neurons and attempts to produce, for each source
present in raw data, a collections of times corresponding to respective events.
There are some ideal requirement that these algorithms should satisfy. Generally
speaking they should be:

• Highly efficient in spike classification even in case of overlapping spikes,
bursting neurons, and nearly silent neurons (correctly identifying the num-
ber of active neurons).

• Robust to non-stationary conditions, like drifting of the electrodes, varia-
tions of neural properties, noise variability, and in general all the violations
of explicit and implicit assumptions on which the algorithm is based.

• Unsupervised or at least with a hybrid approach where most of the process
is carried out automatically and the human operator is required only for
supervision or validation. The completely manual approach, as well as sub-
jective and unreproducible, is even slow and inapplicable when the number
of electrodes in the recording system and the number of recorded neurons
are too large (also for the human inability to visualize the high-dimensional
cluster space). Nevertheless, given the complexity of the problem and our
current knowledge, a totally unsupervised approach is nowadays not much
reliable.

• Scalable with electrode numbers, and independent of different probe ge-
ometries. Current acquisition system allow the simultaneous recording
from few or hundreds of channels in different configurations: there should
be algorithms that are able to operate in these various situations.

• Real-time algorithms with low computational complexity, in order to use
multiple spike trains as inputs to neural prosthetic devices or brain-machine
interfaces. Real-time spike sorting could also lead to real-time data anal-
ysis, and to real-time changes during experiments.

15
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Many spike sorting algorithms have been developed until now, from early
manual pattern recognition to more automated methods, but meeting the above
mentioned ideal requirements is still an open problem. This chapter presents a
brief review of spike sorting algorithms pointing out the respective assumptions,
worthiness and weakness, without any pretension to be exhaustive in the pres-
ence of a so large variety of proposed methods. For more detailed reviews about
spike sorting methods and their comparisons see [2][76][72][48][10].

As it will be shown in the following, the various approaches differ in the
criteria for identifying single neurons, in assumptions about noise statistics and
signal characteristics. Besides differences in their implementations, the majority
of spike sorting algorithms have some main steps in common: the event detection
in raw data, the extraction of distinctive features from each spike and the feature
clustering that groups spikes from the same neuron. It is interesting to give some
more details about those steps, schematically represented in Figure 2.1.

Spike Detection — Extracellular spike recordings are inevitably corrupted
by noise and that makes necessary an efficient spike detection to individuate and
isolate events. A simple and widely used technique is the amplitude thresholding
of sampled voltage, but its performance degradate rapidly with low signal to
noise ratio. Other detection methods have been investigated: for example, the
power detection method applies a threshold on the sum of squared samples over
a window of fixed length [40][4], the matched filter detection considers instead
the inner product with a certain spike template [4][26], while other detection
methods are based on Haar Transformation [77], Continuous Wavelet Transform
[56] or the point-wise product of Wavelet Transform coefficients of multiple scales
[43]. In each case, the threshold value is set by a trade-off between the maximum
number of detected spikes and the minimum number of false positive.

Feature Extraction — This is a key step in which a few distinctive charac-
teristics (or features) are selected from each spike. Those features can be related
to spike waveform and/or to neuron position. For example some simple choices
are the peak amplitude, the spike width, the peak-to-peak amplitude, or the
signal energy. More elaborated choices are the first principal components, some
selected wavelet coefficients or amplitude ratios in multi-channels recordings. As
a limit case, features may be directly represented by recorded samples in their
original high dimensional space [32]. The crucial point is that extracted features
have to maintain and eventually exalt information that allow to classify events:
ideally, they get rid of noise and best represent differences among spikes from
different neurons.

In early methods, because of limited computational resources and manual
intervention, the purpose was to choose the minimal set of features that yielded
the best discrimination [73][29]. In fact, the dimensionality reduction of the
object to sort — going from a space of dimension equal to the number of data
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Figure 2.1: Spikes are detected in a simulated multi-unit recording; for each detected spikes,
some distinctive features are extracted and clustered in order to assign each spike to a certain
group or neuron.

points per spike, to a lower dimensional space of a few features — saves com-
putational time and it is necessary for some clustering algorithms that can not
handle too many inputs in a reasonable time, or that need a manual classification
through a visual representation on bi- or tri-dimensional plots. Nevertheless, in
general, there are better possibilities to distinguish spike form different neurons
when more features are used.

Feature Clustering — In principle, similar features correspond to the same
neuron and, consequently, features extracted by all spikes in a data set ideally
create as many separate groups as many involved neurons. Spike sorting can
then be performed through clustering algorithms that isolate each group of fea-
tures. A straightforward solution is the manual clustering where the human
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operator identify polygons that frame and separate clusters in bi-dimensional
projections of the spike features (see for examples [66] [46]). This method is
obviously very time-consuming, subjective — especially when clusters overlap
— and limited by the bi-dimensional visualization of the cluster cutting space
[40].

Many unsupervised clustering methods have been developed. Among them,
K-means is one of the simpler, faster and thus widely used algorithm (see for
example [41] [42] [70] [74]). Given an a priori fixed number of clusters (i.e. given
the number of involved neurons), this algorithm iteratively assigns each point
to the cluster whose center (or centroid) is the nearest — according to a certain
metric — and re-calculate the cluster centroids until they are stable [31]. As
a drawback, the result significantly depends on the selection of initial cluster
centers.

Other, more refined, solutions have been proposed, based for example on
Bayesian classification, or on Expectation Maximization procedures. The Bayes-
ian classification proposed in [47], models spikes as the sum of an average wave-
form plus white noise. Under the assumption of Gaussian noise, it is possible
to define quantitatively the probability that a certain number of spike models
describe the spikes in the observed signal. The final spike models may then be
chosen as that with the highest probability, given the data. In [69], an iterative
Expectation-Maximization procedure estimates the maximum likelihood model
parameters (mean and covariance matrix) for each cluster, as well as mixing
parameters describing the relative frequency of the different clusters. These last
two approaches presume a Gaussian distribution of the clusters, assuming that
the spike variability is determined just by additive and Gaussian stationary back-
ground noise. Although this assumption may be plausible in many recordings,
there are several technical and physiological issues that can make it unreason-
able, giving rise to elongated non-Gaussian clusters [33] that are erroneously
split in more groups. As already seen, some issues are, for example, electrode
drifts during the recording, variation in the spike shape due to bursting, pres-
ence of overlapping spikes, non-stationary background noise, correlations among
spikes and background noise, and misalignments in the spike detection.

One approach to avoid the assumption of Gaussian distributions is the hier-
archical clustering algorithm proposed in [32] that uses spike time information
to determine cluster boundaries: it first classifies the events into an exceedingly
large number of clusters and then merges these clusters according to both spike
shape similarities as well as the statistics of ISI distributions (such as imposed
by the refractory period). Another solution to the problem of non-Gaussian
clusters are the algorithms based on nearest neighbour interactions: without as-
suming any particular distribution of the data, they group together contiguous
set of points when the local density is larger than a certain value. For example,
the super-paramagnetic clustering is a stochastic algorithm of this kind [8]; it
was initially developed in the context of statistical mechanics and it has been
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subsequently introduced in the neural spike framework by [64].

Finally, an important distinction in spike sorting algorithms must be pointed
out: some methods perform an unique clustering phase that classifies all spikes
under analysis; whereas some other methods perform first a partial clustering
— in order to identify characteristic features and/or representative waveform of
involved neurons — and then, in a second phase, they reach the final and com-
plete classification of all spikes — scanning all events one by one and determine
which cluster best describes them. The method presented in this thesis adopts
this second approach, which can be find also in [77] [68] [67] [74].

2.1 Basic Spike Sorting Methods

This section introduces classical and widely used approaches to spike sorting.
Those methods have been firstly and mainly thought for recordings with one
single channel and they are straightforwardly extended to the multichannel sit-
uation.

Amplitude and Window Discriminator — The first and simpler spike
sorting method, born when data acquisition and analysis systems where still
analog, is the Amplitude Discriminator: each detected event is associated to its
own peak amplitude and classification is done grouping similar values of this
parameter. For example [28] considers histograms of spike amplitude, and then
classifies spikes on the base of different peaks in the histograms. Obviously,
the underlying assumption is that each neuron generated spikes with different
amplitudes that do not change over time. The main difficult arises when spikes
from different neurons have nearly equal amplitudes.

A natural improvement, applicable when spikes with the same peak ampli-
tude have instead different waveforms, is the Window Discriminator: classifica-
tion is based on spikes crossing one or several windows, i.e. according to whether
spike amplitude is above or below some reference levels at particular instants
(see, for example [14][73][71]). In addition to spike amplitude other parameters
may be considered: for example, in case of biphasic spike shape, the time be-
tween two peaks and the time from the first peak to the next zero crossing have
been used [55].

In general, those simple techniques are fast and can be implemented on-line.
For this reason their approach is still employed in commercial acquisition systems
although the significant degradation of their performances when signal to noise
ratio is low or when spikes overlap. One more disadvantage is that windows
discriminators require an user to manually set or readjust the reference windows
and this do not allow to work with more than few channels simultaneously.
Finally they may miss sparsely firing neurons and obviously they make mistakes
when neurons fire spikes with different amplitudes.
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Template Matching — Another way to separate spikes corresponding to
different neurons is the Template Matching. First of all, this method individ-
uates a set of template waveforms, i.e. a set of characteristic spike shapes —
one for each neuron — that may be recorded spikes or averages of spikes. Then,
each recorded spike is compared — through a similarity or dissimilarity measure
— with all template waveforms, and it is assigned to the corresponding neuron.
This method was first presented in [35] where the user selects the templates
by means of a visual inspection, and the spikes are sorted using a mean square
distance metric. Many variations of Template Matching technique have been
presented. For example, in [6] a fixed template is used to scan data to find
events similar to the template both in shape and amplitude; in [1] the cross-
correlation technique finds events of different amplitude with shapes similar to
the template; in [21] both amplitude and similarity are used for detection of
events.

In earlier and simpler methods a human operator has to manually choose a
small set of spikes that would serve as templates, with consequent problems of
biases and ill-defined selection criteria [35] [6]. Spike template can also be chosen
automatically: for example, in [77] it is described a template learning phase
where two features are extracted from each events and then clustered in order
to determine an averaged waveform for each recorded neuron; in [70] templates
are constructed automatically by combining principle component analysis and
K-means clustering; in a more sophisticated approach, templates are modeled
in the high-dimensional space of the sampled waveform as continuous piece-wise
linear functions plus white noise with Gaussian distributed amplitudes [47].

Also the classification phase presents many variations: the algorithm in [27]
employs the nonparametric nearest neighbor technique using the Euclidean met-
ric to calculate the distance to the template, so assuming a spherical cluster
around the template; the Bayesian approach of [47] takes instead into account
the variation around the mean spike shape to give more accurate decision bound-
aries; in [4] data are passed through a whitening filter before matching filtering
and there is a comparison between squared euclidean distance and city block
distance; the method proposed in [18] uses the Levenberg-Marquardt algorithm
to estimate the variances of each cluster based on distribution shape, and a
weighted Euclidean metric to refine the classification results.

Unlike the Window Discriminator, the Template Matching strategy has the
advantage to consider the whole spike waveform and not only some of its points.
In general, the technique is quite simple to be nowadays implemented on-line,
and there are even some attempt to improve its speed: for example [70] curtails
the matching process when the distance between the template and waveform ex-
ceeds some threshold. Nevertheless, Template Matching methods, being strictly
related to the spike waveform, assume a stationary spike shape and fail when
neuron spikes change their waveforms (in case of bursting neurons or electrode
drift) and when distinct neurons has similar spike shape. Moreover, classifica-
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tion errors arise when spikes highly overlap; there are anyway some variations, as
will be shown in the following, that attempt to resolve the overlapping problem.

Principal Components Analysis — The Principal Component Analysis
(PCA) finds an orthogonal linear transformation that transforms the data to a
new coordinate system such that the first coordinate (called the first Principal
Component) accounts for as much as possible of the variability in the data, and
each succeeding component accounts for as much as possible of the remaining
variability. In the spike sorting context, one of the most used method for au-
tomatically choosing features is to take the first 2 or 3 Principal Components
usually containing more than 80% of the energy of the signal and capturing the
directions of largest variation in the data. Some examples about application of
this methods are in [37] [36] [2] [34].

Methods based on Principal Component Analysis, as Template Matching
methods, found their classification power on spike waveform discrimination as-
suming a stationary spike shape. As a consequence, errors arise when neuron
spikes change their waveforms (in case of bursting neurons or electrode drift),
when distinct neurons has similar spike shape, and when spikes highly overlap.
Considering Principal Components means essentially summarizing all waveform
information in few parameters with maximum variance. As each compression
procedure they may loose information, therefore it is not surprising that a study,
comparing spike sorting methods, found the Principal Components not as accu-
rate as Template Matching, although faster [76]. The same study found also that
Principal Components yield more accurate classification than other features.
Nevertheless, Principal Component Analysis selects the directions of maximum
variance of the data, which are not necessarily the directions of best waveform
separation. In other words, it may well be that the information for separating
the features clusters is in some lower Principal Components that are disregarded.

2.2 Methods based on Wavelet Transformations

Since neural spikes are functions well localized both in time and frequency,
Wavelet Analysis should provide a good signal representation for them: i.e. the
spike energy should be concentrated in few Wavelet coefficients, thus resulting
in a separation of the signal from the noise (spreads in more coefficients). See,
as an example, the Wavelet Packet decomposition of a neural spike in Figure
2.2. Moreover, Wavelet Transformations supplies almost uncorrelated noise co-
efficients, variable time-frequency resolution, and have low computational com-
plexity. In particular, the Wavelet Packet (WP) Transformation, that allows a
more adaptable time-frequency resolution, is a very promising approach and it
has been employed in the new spike sorting algorithm, introduced in Chapter 3.
This section presents, for the sake of completeness, some other recent algorithms
based on Wavelet Analysis.
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Figure 2.2: In subfigure (a), 64 samples of a neural spike recorded in the locust (Schistocerca

americana) antennal lobe. The vertical scale is voltage in arbitrary units. In subfigure (b),
the corresponding Wavelet Packet Transformation, in absolute value, over a complete tree of
depth 4, Symlet of order 5 as mother wavelet. Notice that the signal energy is concentrated in
few of the 64 Wavelet Packet coefficients.

The pioneer paper [79] describes a method based on a shift-invariant Wavelet
Transformation and a particular “magnitude” and “phase” representation of the
transformed signals. The magnitude vector is obtained by simply sorting the
values of the Wavelet coefficients vector in increasing order. The phase vector
is obtained by indicating the position that each component of the magnitude
vector had prior to sorting. The main advantage of this representation is that it
is phase (shift) invariant: a transient signal and all of its time-shifted versions
have identical magnitudes. The phase-corrected approximation of templates is
then compared with each recorded spike.

The method presented in [46] is based on a visual selection of m Discrete
Wavelet coefficients with large standard deviation, large average, and a bimodal
o multimodal distribution of the detected spikes population. According to the
authors, these coefficients should exhibit the greatest potential to differentiate
spikes. Then clusters are manually delimited in bi-dimensional projections plots
of selected Wavelet coefficients.

In [41], using the Local Discriminant Bases with a Shannon’s mutual infor-
mation maximization, authors select 9 Wavelet Packets, tested for many different
spike waveforms on different electrodes in different experiments, that are able to
enhance differences between two spikes and best separate them. According to
the authors, these wavelet packets appear universal for recording of this kind.
The spike classification is carried out clustering Wavelet coefficients in the 9-
dimensional space.

The method in [64] combines Wavelet Transform with Superparamagnetic
clustering. Primarily, from each spike, the first 10 Wavelet coefficients with the
largest deviation from normality are chosen as distinctive features then Super-
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paramgnetic clustering, based on simulated interactions between each data point
and its nearest neighbors, classifies the spikes according to the selected set of
Wavelet coefficients.

The method described in [45] is based on the Discriminant Pursuit algorithm.
It extracts a reduced set of features from the Wavelet Packet decomposition on
the series of residual difference vectors. According to the authors, these features
turn out to be an efficient representation that can be subsequently analyzed
with statistical classifiers.

In [60] it is presented a method for features extraction based on a com-
bination of Principal Component Analysis and Continuous Wavelet Transform
that aims to compensate faults of the two approaches in the capture of spike
structure. First, it finds a representative waveform for each cluster in the Prin-
cipal Component space, averaging spike waveforms in a small neighborhood of
each cluster center. Then, it applies the Wavelet Transform to all representative
waveforms and searches for the scale and translation parameters that maximizes
distance between representative waveforms in the first and second halves of the
spike time window. Finally, for all spikes, it evaluates the Wavelet Transforma-
tion value for the two found parameter sets thus extracting features.

All previous methods in this section have been conceived for single-electrode
recordings and their use of the Wavelet Analysis tool has been in order to ef-
ficiently describe the spike waveform: essentially, they aim to capture those
aspects of the waveform structure that best allow to differentiate spike shapes.
Therefore, all these algorithms do the same a priori assumptions of methods
based on Matched Filter and Principal Component Analysis: in particular they
need stationary different waveforms associated to different neurons. As a conse-
quence they have, in general, difficulties to resolve overlapping spikes when the
superposition is complete.

The new method proposed in this thesis exploits the advantages of Wave-
let Analysis in a different way from methods previously described. The idea
is to code amplitude information rather than waveform information, and thus
Wavelet Packet Transform is used to fairly estimate amplitude ratios between
waveforms recorded by several sensors.

2.3 Multichannel Methods

In the development of spike sorting algorithms, the most significant progress
is been the evolution of recording techniques that introduced multiple elec-
trodes. Many problems encountered with single-electrode recordings vanish
with multiple-electrode recordings: the result is an increasing of the discrim-
inant power and a dramatic improvement of spike sorting outcomes, as shown
in [53], with two electrodes (stereotrode), and in [30] [39] [40], with four elec-
trodes (tetrode). In fact, having multiple recordings of the same event from
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distinct positions allows additional information to be used for more accurate
spike sorting; for example, spikes from distinct neurons may appear similar, in
amplitude and shape, when recorded by a particular sensor, but they differ on
recordings by sensors in different physical locations. Even the new algorithm
proposed in this thesis, exploits and combines information from more channels.
As a reference, this section describes some other methods using potentiality of
multichannel recordings with different approaches.

Waveform features — Many spike sorting techniques have been developed
for single electrode and then extended to multiple electrodes. For example, in
case of algorithms that cluster spike waveform features, a natural extension is
done extracting features separately from each recorded channel and combin-
ing them — eventually weighted according to different signal to noise ratio in
different channels — to form the inputs for the clustering algorithm.

According to this line, the authors of paper [64], anticipate the general-
ization of their single-electrode method to tetrode recordings: they will select
Wavelet coefficients, with the largest deviation from normality, not only from
one channel but also from adjacent channels, and will group them by means of
the Superparamagnetic clustering in a larger dimension space.

Principal Components methods can also be performed on multiple-electrode
recordings to obtain features for clustering: for example [40] considers the first
3 Principal Components for each channel obtaining a 12-dimensional feature
vector for each spike.

Intensity features — Nevertheless, when electrodes are closely spaced as in
some commonly used tetrodes, the discriminant power of multi-channel record-
ings lives mostly in the different amplifications of the same recorded waveforms.
This justifies the development of spike sorting algorithms that exploit multi-
channel amplitude features, rather than waveform features, in order to classify
spikes. Actually, this kind of algorithms take account of information about
neuron position, but they do it in a roundabout way.

The study in [39], that compares the performance of tetrodes with the best
electrode pair and best single electrode, considers for each waveform the peak-
to-peak amplitude (i.e., maximum-to-minimum amplitude), the integral of the
spike waveform, as well as the spike width (defined as the time difference from
peak negativity to peak positivity), and the first 2 Principal Components. This
study founds that bi-dimensional projections plots of peak-to-peak amplitude
(i.e., maximum-to-minimum amplitude) provided the greatest resolving power
for the tetrode and the stereotrode data, while the principal components gave
the best separation in the single-electrode data.

Even the method in [66] associates, to each spike, the 4 peak amplitudes in
the tetrode channels and visualize them in 6 bi-dimensional projections. It also
suppresses noise common to each of the 4 electrodes by means of the Hadamard
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transformation, that perform a scaling and a rotation in the 4-dimensional space
giving less elongated clusters and allowing to reveal the differential part of the
signal.

With the idea to consider a measure of the spike intensity more robust than
the noisy peak amplitude, the method in [42] computes, for each spike, 4 power
measures of the waveforms on the tetrode channels and classify events using the
K-means algorithm on this 4-dimensional power space. The mean power values
of each cluster are then used to compute the neuron location with respect to the
tetrode position.

Concatenation — There is also another idea to approach the spike-sorting
problem with multiple-electrode recordings: the two methods described in [32]
and [26] concatenate the separate waveforms of various channels in an unique
vector considered, in its entirety, as a single waveform for sorting purposes; the
algorithm in [67] links instead together the Fourier Transforms of the voltage
waveforms from each electrodes and sorts concatenated spectra.

Neuron position and measurement channel — Some other techniques
conceived for multiple electrodes, take more directly into consideration the neu-
ron position with respect to the sensors and/or the measurement channel be-
tween neurons and sensors. This approach, unlike those based on waveform and
amplitude features, allows in principle to classify bursting cells with varying
waveform and amplitude.

For example the algorithm in [17] computes, from tetrode recordings, the
spatial position of neural spike activity and exploit its physical meaning to dis-
criminate the spike sources. This algorithm, with the due assumptions on signal
propagation through the extracellular medium, considers a system of equations
that is function of the 4 positive peak amplitudes on tetrode channels. The
solution of this system, using the Newton’s iterative method, returns back the
three spatial coordinates of the neuronal sources with respect to the tetrode
tips. These approximations of spatial locations are grouped in clusters by the
Self-Organizing Map algorithm [44], whose clustering performances are not de-
pendent on the algorithm initialization. According to the authors, this spike
sorting method performs better than the ones using tetrode peak amplitudes
and it is roughly equivalent with the ones using amplitude ratios.

Another approach, that takes rather into account the measurement channel
between neurons and sensors, is the one in [68], where the sorting is done ex-
ploiting properties of the surrounding tissue and the resulting differences in how
signals are measured on different sensors. The first step of this method classifies
spikes in stereotrode data using ratios of transfer functions between the same
neuron and two electrodes about 2mm apart. The sensors are distant enough
to give rise to a perceptible frequency dependence in the transfer function ratio.
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The multiple-electrode spike sorting problem can also be seen in the frame-
work of Blind Source Separation (BSS), where the aim is to separate n in-
dependent signals that have been linearly mixed onto m channels, with poor
information about the source signals or the mixing process [15] [20]. One of the
classical method to successfully solve this problem, is the Independent Compo-
nent Analysis (ICA) that is been applied also in the context of neural signals
[11]. The idea behind ICA is to find the matrix that transforms the m recorded
mixtures into n statistically independent signals that correspond to the source
signals. This matrix corresponds to the inverse of the measurement channel, and
its estimation is done without any attempt to directly identify the source posi-
tions. Nevertheless, besides the assumption that the sources are mixed linearly,
the ICA technique has other two important limitations: it demands that the
source signals are independent, and the number of observations (or electrodes)
is at least equal to the number of recorded sources.

The method proposed in [74] tries to overcome the last limitation on the
number of electrodes and sources, combining the ICA technique and the K-
means clustering. It relaxes the limitation with the assumption that no more
thanm neurons fire simultaneously in a segment window, wherem is the number
of electrodes. The idea is to apply the ICA to subsets of events that presumably
are generated by one neuron or a little fraction of those recorded in the entire
data set. The subsets of events are created through the K-means clustering on
maximum and minimum spike amplitudes. Since it is more reliably to create
a number of cluster larger than the expected number of neurons, the method
implements also an aggregation step where the ICA decomposition of each subset
is compared in order to merge clusters that contain spike from the same neuron.

Another sophisticated method in the framework of Blind Source Separa-
tion, that attempts to deal with the case of correlated signal sources in the
presence of strong correlated noise, is the spike-sorting technique initially pro-
posed in [57] and detailed in [59]. It performs an undecimated (or Stationary)
Discrete Wavelet Packet Transform of the multichannel spike waveforms, and
select a characteristic Wavelet Packet subtree for each spike by searching for
tree nodes having the spatial covariance matrix of their coefficient with largest
subset of maximum singular values. The technique relies on separating sources
with highest spatial energy distribution in each frequency subband spanned by
the corresponding wavelet basis: the eigenvector coefficients, corresponding to
the largest eigenvalue, would yield the spatial diversity of the communication
channel as a basis for discrimination.

Also the method proposed in this thesis have been conceived for multiple
electrodes and, like other methods in the framework of blind source separation,
it takes into account the measurement channel between neurons and sensors.
The approach, however, is different from ICA, since the new method directly
estimates the components of the mixing matrix (i.e. the matrix that describes
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how neural signals combine in the recorded channels).

2.4 Methods for the resolution of overlapping spikes

One of the most challenging open problems in the spike sorting context is the
one of overlapping spikes that occur when two or more neurons fire very close in
time: an efficient spike sorting algorithm must be able to determine how many
and which neurons have contributed to the superposition.

The majority of the developed procedures do not explicitly deal with such
kind of events: they assume to treat only single spikes (i.e. non-overlapping
spikes) and limit their application to data set where the superposition rarely
occurs. Although these aforementioned methods may correctly classify super-
imposed spikes if they are sufficiently separated in time, their performance de-
grades severely when the spikes fire simultaneously, giving rise to a completely
different shape (see Figure 1.6(a)). Some of these approaches can individuate
overlapping spikes, thus having some gauge of their frequency and potentially
keeping them outside the sorting process: for example, spike with multiple close
peaks or outlier points far from clusters center may be labeled as overlapping
spikes.

Nevertheless, there are some techniques that directly deal with overlapping
spikes. This section describes some approaches that attempt to recover spike
superpositions.

Comparison among all linear combinations — The most standard solu-
tion is to evaluate the distance between each recorded waveform and all possible
linear combinations of the previously identified templates with all possible de-
lays — multiple of the sampling time — in a certain range. Metrics used with
this intent are, for example, the Euclidean distance in [63] [4], and the city block
distance in [9]. When the minimal distance among all combinations is below the
acceptance threshold, then the templates corresponding to that combination are
considered as the constituent of the overlapping spikes.

Under Gaussian noise assumption, another approach for recover overlaps is
the one described in [3] that selects, among all possible combinations of spike
models with all relative timings of their peaks, the combination with the maxi-
mum likelihood. A similar approach is been exploited also in [62], [78] and, from
the spectra point of view, in [67].

The drawback of these procedures is that they are computationally expensive
when the number of recorded neurons is large and moreover when they consider
overlapping spikes with contributions from more than two neurons.

Waveform subtraction methods — Another simple approach to decom-
pose overlaps is to subtract spikes from the recorded waveform once they have
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been classified, in the hope that this will improve the classification of remain-
ing spikes. This approach requires templates of the spikes. It gives reasonable
results when spikes are separated well enough so that at least one can be ac-
curately classified, but fails when spikes are closer. Another problem with this
approach is that the subtraction can introduce noise or spurious spike-like shape
if the spike model or the occurrence time are not accurately estimated.

Under the assumption of stationary and Gaussian noise, a sophisticated ap-
proach has been proposed in [47]. It uses k-dimensional search trees to quickly
find the possible combinations of spike waveform that could account for a given
recorded spike. For each detected event, the method selects a region around
the first peak, fits this region with a spike model and subtracts the model from
the recorded samples thus removing the contribution of its waveform tail. The
method continues by fitting the residual waveform (i.e. the raw data minus the
model) until other peaks are found. The algorithm returns for each event a list
of all plausible spike combinations along with their associated probability.

Neural Network — Another solution for the overlapping spike problem can
be found in [16], where neural networks have been used. A serious drawback,
however, is that the network must be trained using labeled spikes; thus the
learned decision boundaries are as accurate as the initial labeling. ling. Like
the subtraction methods, these method can only identify overlaps that have
separated peaks.

Wavelet Packet decomposition — An alternative tool to resolve superpo-
sition is the Wavelet Packet decomposition, as long as the constituent spikes of
the superposition are separated in the time-frequency plane.

In [41] it is shown that by using the same Wavelet Packet coefficients that
are employed for single spike classification, a number of overlapping spikes can
also be classified, if multiple peaks can be detected.

A more sophisticated approach for multichannel recordings is given in [58][59];
it exploits, in addition to the Wavelet Packet decomposition, also the eigende-
composition of the sample covariance matrix of the transformed observation
matrix.

Multichannel approaches for overlapping spike resolutions — Surely,
having multiple recording of the same spike gives additional information use-
ful to decompose spike superpositions. An example of multichannel solution
to the overlapping problem is the ICA. As shown in the previous section, the
method introduced in [74] tries to overcome the ICA limitation on the number
of electrodes and sources using K-means clustering. Under the assumption that
the number of simultaneously firing neurons is lower or equal to the number
of sensors, the method attempts to separate the original spike trains thus re-
solving overlaps. The method plans, first of all, a division of spikes between
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those in “stable condition” and those in “unstable condition”; this two set of
spikes are then considered one after the other. In the stable condition, spike
waveforms show isotropic Gaussian variability, and their density in the feature
clustering space is large enough that they can be sorted, by K-means, in many
initial clusters that presumably contain spikes generated by a single neuron; af-
terwords, through ICA, clusters are aggregated and identified. In the unstable
condition, there are instead a small number of spikes with irregular waveforms
that are sorted as well (they can be generated by neurons that show waveform
variability or they can be overlapping spikes); although they cannot be sorted
in clusters containing only one single-neuronal activity, the authors assume that
each cluster contains a combination of few similar single neuronal activities, thus
allowing the ICA application and the overlapping resolution.

An alternative multichannel approach is shown in [19]. First, it classifies the
recorded spikes by means of any existing spike-sorting algorithm; such initial
clustering does not concern about misclassified overlapping spikes under the
assumption that their number is much smaller than that of non-overlapping
spikes. Then, the method estimates the matrix that describes the linear mixing
of single neural activities into the multichannel recordings: coefficients of each
column are represented by normalized average amplitudes of the multichannel
waveforms in each cluster. The estimated mixing matrix allows to calculate a
set of projection matrices that eliminate, from the measured data, one neuron
activity at the time. Running a second spike sorting on each projection, and
combining the results of the two spike sortings, the method can resolve all spike
superposition involving two neurons.

Like the last two methods ([74] and [19]), the algorithm presented in this thesis
aims to resolve overlapping spikes exploiting multichannel recording. Section
3.5 highlights differences of the new algorithm with respect to these other two
approaches.





Chapter 3

Multi-Channel Inversion for

Spike Classification

This thesis proposes a new method, named Multi-Channel Inversion for Spike
Classification (MCI4SC), to sort neural spikes recorded by multichannel probes.
As well as explaining the main ideas and the algorithm details, this chapter also
illustrates the linear mixing model adopted for recorded measurements, the nec-
essary assumptions, and the preliminary steps. The application to experimental
data is shown in the next chapter.

3.1 Assumptions and model for recordings

The MCI4SC algorithm, as it is presented in this thesis, works on multichan-
nel recordings from electrodes that are close enough to guarantee the following
assumptions:

1) the neural signal is recorded simultaneously in each channel, i.e.
the signal arrives with the same delay on each sensor;

2) each channel records the same spike waveform, i.e. signal distortions
among sensors are negligible.

For many of the available data sets the assumptions hold. For example,
the widely used tetrode from the Center for Neural Communication Technology
of the University of Michigan (also known as Michigan probe), has a diagonal
length equal to 50µm [30]. Electrical neural signals traveling in the extracellular
medium, usually sampled with a frequency of order 104Hz, are recorded by this
probe with a negligible delay among electrodes, so that spikes can be considered
aligned in time on the different synchronized channels (thus satisfying the first
assumption). Sensors proximity, like that of Michigan probe, bounding the
relative group velocity dispersion, allows as well to assume similar transmission
channels between a certain neuron and each sensor, so that all electrodes provide

31



32 Multi-Channel Inversion for Spike Classification

the same waveform images, with different amplification (second assumption is
satisfied, too).

Under this hypothesis on closely spaced electrodes, and reasonably assuming
that the medium between neurons is linear so that signals in each mea-
surement sum linearly, an m-channel recording of n neurons (m Q n) can be
simply represented as a linear mixing model (see Figure 3.1):

x(k) = As(k), k ∈ Z, (3.1)

where the column vector x(k) = [x1(k), . . . , xm(k)]′ denotes the noise-free mul-
tichannel recording, the matrix

A =







a11 · · · a1n
...

. . .
...

am1 · · · amn






(3.2)

is the m by n mixing matrix that describes the measurement channel between
neurons and sensors, and s(k) = [s1(k), . . . , sn(k)]

′ denotes the snapshot of
single neuronal activities. To be more precise, each signal sj(k) is the delayed
and distorted version of the original source signal with equal delay and distortion
on all sensors.

s1[k] a11
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Figure 3.1: An illustration of the linear mixing model that represents the recording of
n neural signals with m electrodes. The n unknown sources are linearly mixed to form m
observed mixtures; sj(k) indicates the sampled activity of the j-th neuron as successions of
spikes, xi(k), ηi(k), and yi(k) indicates respectively the noise-free observation, the additive
noise, and the noisy data recorded on the i-th sensor.
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Considering a finite set of samples (k ∈ [1, 2, . . . ,K]), the model in Eq. (3.1)
can also be expressed in matrix form as:

X = AS, (3.3)

where Xm×K = [x(1), . . . x(K)] is the noise-free multichannel recording, and
Sn×K = [s(1), . . . s(K)] is the sampled neural activity.

Since the interest is just in spikes occurrences, and not in reconstruction of
the source model and its emitted waveform, the measurement model of Eq. (3.1)
and the MCI4SC algorithm do not require absence of delays and distortions in-
troduced by the transmission channels between neurons and sensors, provided
that, for every neuron, delay and distortion are the same in all electrodes. Given
that each channel is affected by the same distortion rate, the mixing matrix com-
ponents aij are constant in frequency. Nevertheless, in some recordings — due
to the large distance between sensors, high anisotropy and inhomogeneity of the
extracellular space, or no validity of the point source approximation — distor-
tion and delays can even be different from one sensor to another with respect to
the same source. When these differences are significant, the measurement model
and the MCI4SC algorithm can be opportunely extended by introducing proper
traces realignment in correspondence to each spike and frequency-dependent
mixing matrix components.

In the present work, another assumption is that the mixing matrix compo-
nents aij are, not only constant in frequency, but also constant in time, and
the measurement channel described by Eq. (3.1) is stationary. This aspect is
guaranteed if the probe holds steady with respect to neurons during all

recording time. During the measurement, however, electrodes may drift to a
new position as the neural tissue settles in response to pressure from advance-
ment of probe. If the change is slow, the MCI4SC algorithm can be reapplied on
contiguous segment of data where the measurement channel can be considered
stationary.

Equation (3.1) describes a noise-free model, but, since recordings are cor-
rupted by noise, they are better describe as follows (see Figure 3.1):

y(k) = x(k) + η(k) = As(k) + η(k), k ∈ Z, (3.4)

where y(k) = [y1(k), . . . , ym(k)]′ is the noisy multichannel recording, and η(k) =
[η1(k), . . . , ηm(k)]′ is the additive noise in the measurement channel. Considering
a finite set of samples (k ∈ [1, 2, . . . ,K]), recordings can also be described in the
following matrix form:

Y = X +H = AS +H, (3.5)

where Y m×K = [y(1), . . . y(K)] is the noisy multichannel recording, and Hm×K

equal to [η(1), . . . η(K)] is the additive noise in the measurement channel.
As with many other spike sorting algorithms, MCI4SC makes the following

assumptions on the noise present in the recorded data:
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- the noise sums linearly with the signal;

- the noise is statistically independent of the signal;

- the noise is white, Gaussian, and stationary; if not white, the mea-
surement can be whitened.

- the noise is zero-mean; if not, the estimated mean is subtracted from
data to obtain a zero-mean noise.

These assumption are quite well satisfied by that part of the noise coming
from recording hardware. The neural signal, however, is corrupted also by en-
vironmental noise due to surrounding neurons that perturb the extracellular
medium at each firing. This background noise can be statistically dependent
of the signal, and thus not white Gaussian nor stationary. In those recording
where the environmental noise is predominant and these assumption are vio-
lated, the MCI4SC algorithm capability to well estimate the mixing matrix may
degradate, as well as the sorting result.

Finally, MCI4SC algorithm requires the following assumption regarding the
neural activity:

- Each neuron has a different relative position with respect to elec-

trodes; this assumption is certainly guaranteed when the neural signal is
recorded by at least four electrodes that are not located in a plane. In
the unlikely event that two neurons are at the same relative distance from
sensors, they are indistinguishable from the MCI4SC point of view, unless
the spike shape can be used to discriminate different neurons.

- Each neuron fires a finite set of spike waveforms; under the hy-
pothesis that all neurons are in distinguishable positions, neurons that fire
spikes with different waveforms can be handled by MCI4SC algorithm if
these waveforms are in a finite number. In case of a possible ambiguity
in neuron positions with respect to electrodes, a human intervention is
required to evaluate whether spikes with different waveforms come from
an unique neuron or more.

- Each neuron fires more than one time; since, like other algorithms in
this framework, also the MCI4SC algorithm needs to cluster spikes from
the same neuron, it requires therefore a minimum number of recurrences
for each neuron, and for each of its spike shape.

- No more than m neurons fire simultaneously, wherem is the number
of employed sensors. If a larger number of neurons fire at the same time,
the MCI4SC algorithm itself is unable to correctly decompose the overlap.
The probability to have superposition of more than m neurons depend
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obviously on the firing frequency, but these occurrences are as rarer as m
is larger.

3.2 Main ideas behind the MCI4SC algorithm

The MCI4SC algorithm has two distinct phases: i) the learning phase estimates
the number n of neurons contributing to a particular recording, their waveform
templates, and the mixing matrix A that represents the measurement channel
between neurons and sensors; ii) the classification phase, inverting matrices
derived by A, analyzes each detected event with the aim of associating the spikes
with the corresponding firing neurons and determining the times of occurrence,
even in case of overlapping of up to m spikes.

The whole algorithm is centered on the mixing matrix A. It is worth notic-
ing that each of the n columns Aj = [a1j . . . amj ]

′, j = 1, . . . , n is related to
one particular neuron. To be more precise the m column components are the
coefficients that multiply the same neural signal sj in each of the m recorded
traces:







x1(k)
...

xm(k)






=

n
∑

j=1













a1j
...

amj






sj(k)






=

n
∑

j=1

Ajsj(k). (3.6)

Learning phase — A crucial point is that the sparsity and the finite duration
of neural spikes allow to isolate intervals [Ki, . . . ,Kf ] in which the data contain
the signal coming from just one neuron h, while other neural signals are equal
to zero (sj(k) = 0, ∀j 6= h, k ∈ [Ki, . . . ,Kf ]):







x1(k)
...

xm(k)






=







a1h
...

amh






sh(k) = Ahsh(k), if k ∈ [Ki . . . ,Kf ]. (3.7)

It is worth noticing that this condition is specific to the neural recordings frame-
work, and it does not apply to other relevant contexts.

When in a free-noise segment of data there is only one neural signal sh, it is
possible to calculate m−1 ratios of the m mixing matrix components belonging
to the same column h, as ratios of spike amplitude, or more in general as ratios
of spike samples:

aih
arh

=
aih · sh(k)
arh · sh(k)

=
xi(k)

xr(k)
, ∀k ∈ [Ki . . . ,Kf ] and k|sh(k) 6= 0, (3.8)

where r ∈ Z denotes the reference channel (1 ≤ r ≤ m), and i is equal to
1, . . . ,m with i 6= r; when i = r the ratio is equal to 1 by definition. Notice
that the ratios in Eq. (3.8) can be calculated without directly considering the
effective waveform sh because, due to assumptions in Section 3.1, it appears
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equal in all channels. Moreover, spike-sample ratios xi(k)/xr(k) are invariant
with respect to spike waveform variations typical of bursting neurons, as well as
they are invariant to amplitude changes from spike to spike.

Component ratios calculated in Eq. (3.8), allow to construct a mixing matrix
Ã, that is a particular normalization of the original mixing matrix A, where each
column is rescaled according to a different and arbitrary multiplicative factor:

Ãm×n =







a11/ar1 a12/ar2 · · · a1n/arn
...

...
...

am1/ar1 am2/ar2 · · · amn/arn






. (3.9)

The introduction of these n freedom degrees in the mixing matrix, is like con-
sidering a linear mixing model whit an arbitrary scaling of each neural signal:

x(k) =
n

∑

j=1













a1j/arj
...

amj/arj






arj · sj(k)






= Ãs̃(k), (3.10)

where s̃(k) = [ar1s1(k), . . . , arnsn(k)]
′ = diag(ar1, . . . , arn) · s(k) is the scaled

neural signal; and S̃n×K = [s̃(1), . . . s̃(K)] is the corresponding scaled signal in
the matrix form, when a finite time interval (k ∈ [1, 2, . . . ,K]) is consided. The
only lost information, with this column rescaling, is the actual spike amplitude
at the source, that it is not strictly required to classify spikes, since a neuron
can emit spikes with different amplitudes from time to time. Therefore, this
arbitrary normalization of mixing matrix columns does not affect the subsequent
spike sorting analysis based on mixing matrix Ã instead of A. On the other hand,
disregarding actual spike amplitudes, the methods is robust to gain calibration
errors of sensors; moreover, it does not care about the attenuation coefficient
of the medium where signal is propagating, nor the exact mutual electrodes
position.

In the analysis of experimental data, it must be considered the noisy record-
ing model Y = X + H, and hence ratios of mixing matrix components are
not calculated, but estimated from the data samples yi[k]. To obtain a more
accurate estimation it is appropriate to consider, for each neuron, a sufficient
number of not-overlapping spikes, and to consider, through average operations,
more samples for each spike.

In conclusion, the learning phase of MCI4SC, consists in:

A1. Selection of data segments with spikes generated by the activity of a single
neuron (called single spikes in the following).

A2. For each single spike, estimation of spike-amplitude ratios between different
channels.

A3. Single spikes sorting that associate each single spike to the neuron of origin.
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A4. For each neuron, estimation of the corresponding normalized mixing matrix
column, and of the corresponding characteristic waveform templates.

An important step, in the above mentioned procedure, is the sorting of single
spikes. Notice that the m− 1 ratios of Eq. (3.8), used to estimate each column
of the mixing matrix Ã, can also be used as distinctive features to cluster single
spikes: they are ratios of spike amplitudes in different channels, and they are
related to the characteristic neuron positions, as already said in Section 1.1.

It is also worth underlining that, in the learning phase, just single spikes are
clustered, thus carrying out a partial sorting. Only with the subsequent clas-
sification phase, and the overlaps resolution, the complete sorting of all spikes
is achieved. This division in two phases (learning and classification) allows to
initially considering a subset of spikes that can be correctly classified even with-
out knowledge about the measurement channel, and that it is easier to handle
when it is by itself. In fact, single spikes naturally create well defined clusters,
while overlapping spikes, coming from a huge number of possible combinations,
in general tend to create scattered and confusing clouds of features that disturbs
the single spike clustering (see Figure 3.2).
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Figure 3.2: Tri-dimensional plot of three spike-amplitude ratios from tetrode recording in the
locust (Schistocerca americana) antennal lobe. In (a), spike-amplitude ratios of all detected
spikes in the recordings (990 spikes). In (b), spike-amplitude ratios of that part of detected
spikes considered as single spikes (745 spikes).

Classification phase — When recordings are done with as many sensors
as recorded neurons (m = n), the respective mixing matrix is square and its
inversion is straightforward, if there are no ill-conditioning problems. In this
favorable case, once the mixing matrix Ã is been estimated, it is possible to
separate original source signals (S̃ = Ã−1X = Ã−1ÃS̃), and automatically re-
solve spike superpositions finding spike occurrences in each reconstructed neural
trace.
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Nevertheless, with the current state of technology, the number of recorded
neuron is larger than the number of sensors that can be used (n > m), thus
the mixing matrix has more columns than rows, and the inverse matrix is not
defined. Some other methods attempts to overcome the limitation of having
less sensors than neurons and a rectangular mixing matrix. For example, the
algorithm in [74] uses the ICA on subset of spikes generated by a fraction of
the total recorded neurons, while the algorithm in [19] eliminates one neuronal
activity at the time, by means of projection matrices, thus resolving overlapping
of at most two spikes. Anyway, both these two methods avoid to directly invert
the measurement channel, as instead MCI4SC algorithm does.

A generalization of the inverse matrix, that may be defined even in case of
rectangular matrices, is the Moore-Penrose pseudoinverse. The pseudoinverse
of a real m-by-n matrix A, is defined as the unique n-by-m matrix A† satisfying
the following four conditions: i) AA†A = A; ii) A†AA† = A†; iii) (AA†)′ =
AA†; iv) (A†A)′ = A†A.1 See [5] and [7] for a more detailed discussion on
generalized inverses theory. The pseudoinverse is successfully applied to solve
overdetermined systems of linear equations (n < m), since it provides the least
square solution. When n > m, however, the problem is undetermined, and the
reconstruction of the n original signals S̃, once they have been mapped by a
linear transformation matrix Ãm×n with rank lower than n, cannot be achieved
applying Ã† to the measurements X = ÃS̃: each original signal still appears in
more than one row of Ã†X, thus remaining mixed to the others. (see Figure
3.4).

Fortunately, even in this case, the not simultaneous activation of all neurons,
allows some alternative solutions. Since, typically, in the segment of data around
each detected spike there is only a part of all neural signals present in the whole
recordings, it is possible to slightly modify the recording model in Eq. (3.3),
disregarding some mixing matrix columns associated to neurons actually inactive
in each time interval. In order to select, from time to time, the necessary mixing
matrix columns, thus considering as present or absent the corresponding neuron
activities, it is convenient to introduce a new matrix Cn×n = diag(c1, . . . , cn),
with

cj =

{

0 if neuron j is selected
1 if neuron j is unselected

, j = 1, . . . , n, (3.11)

where ν =
∑n

j=1 cj ≤ n is the total number of selected neurons. In each data
segment, if C selects at least all the active neurons, the free-noise recording

1A computationally simple and accurate way to get the pseudoinverse is by using the sin-
gular value decomposition: if A = UΣV ′ is the singular value decomposition of A, then its
pseudoinverse is A† = V Σ†U ′; where the pseudoinverse of the diagonal matrix Σ, is obtained
by taking the reciprocal of each non-zero element on the diagonal, and leaving the zeros in
place. In numerical computation, only elements larger than some small tolerance are taken to
be nonzero, and the others are replaced by zeros. If A has full row rank, then AA′ is invertible
and an explicit formula for the Moore-Penrose pseudoinverse is: A† = A′(AA′)−1.
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model already introduced, X = ÃS̃, is exactly equivalent to the following model:

X = ÃCS̃. (3.12)

On the other hand, the two previous models are no more equivalent when at
least one neuron contributing to the data segment X is excluded by the matrix
C.

The key point is that by calculating the Moore-Penrose pseudoinverse of the
m-by-n matrix ÃC, instead of the matrix Ã, only the ν selected columns of Ã
are involved: this is equivalent to inverting the mixing matrix that represents
the measurement channel between the same m sensors and only ν neurons.
When the number ν of selected columns is lower or equal to m, the problem
is no more underdetermined, and if the selected columns include all neurons
effectively present in the segment of data (as already said, they must be no
more than m), the original traces are separated by simply applying (ÃC)† to
the measurements X. In the following, they have been considered only matrices
C ∈ C with ν exactly equal to m, thus keeping the rank of matrix ÃC as larger
as possible and at most equal to m:

C = {C ∈ R
n×n|C = diag(c1, . . . , cn), with cj = 0, 1 and

∑n
j=1 cj = m}. (3.13)

To give an intuitive idea of how the pseudoinverses Ã† and (ÃC)† work, it
is useful to consider the example of the simulated free-noise recording in Figure
3.3, where the two neurons NC and ND are active in the same time interval; in
the following Figures 3.4, 3.5, and 3.6, there are 3 attempts to disentangle the
NC and ND neural signals, by applying different Moore-Penrose pseudoinverses
to the simulated recording.

The Figure 3.3 shows a time interval where 2 of the 8 neurons are active.
The mixing matrix Ã mixes the 8 neural traces in 4 free-noise measurements.

The Figure 3.4 shows that the pseudoinverse Ã†, applied to the simulated
measurements of Figure 3.3, is unable to separate and reconstruct the two orig-
inal signals. The two waveforms are rather spread on more than one trace, thus
remaining mixed together.

The Figure 3.5 shows, instead, that the pseudoinverse (ÃC)†, with C select-
ing both the two active neurons NC and ND, is able to separate and reconstruct
the two original signals.

Finally, the Figure 3.6 shows that the pseudoinverse (ÃC)† is unable to
unmix the two original signals, when the matrix C does not select all the active
neurons.

It seems that to disentangle original source it is necessary to know which
neurons are effectively active in each segment of data under analysis; of course,
this it is not known a priori, since it is actually the purpose of the whole pro-
cedure. Fortunately, there is another crucial point to exploit: the fact that the
matrix C has selected, or not, all the active neurons is directly reflected in the
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Figure 3.3: Example of a simulated free-noise recording with the superposition of two neural
signals. On the left, the n = 8 neural signals S̃ generated by neurons NA, . . . , NH in a time
interval where only neurons NC and ND are active; these 8 neural signals are mixed by the
normalized mixing matrix Ã4×8 thus giving rise to the m = 4 signals on the right, corresponding
to the measurements X = ÃS̃ of 4 electrodes. Each column of the mixing matrix describes
how the the corresponding neural signal is weighted in the observed measurement. The vertical
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Figure 3.4: A bad attempt to disentangle the two neural signal in the simulated free-noise
recording of Figure 3.3, by means of the Moore-Penrose pseudoinverses Ã†. On the left, the
m = 4 measurements X = ÃS̃ of the simulated free-noise recording. On the right, the 8
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Figure 3.5: A good attempt to disentangle the two neural signal in the simulated free-noise
recording of Figure 3.3, by means of the Moore-Penrose pseudoinverses (ÃCACDG)†, where
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recording; the pseudoinverse (ÃCACDG)†; the 8 signals obtained applying the pseudoinverse
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Figure 3.6: A bad attempt to disentangle the two neural signal in the simulated free-noise
recording of Figure 3.3, by means of the Moore-Penrose pseudoinverses (ÃCADEG)†, where the
matrix CACDG selects the 4 mixing matrix columns associated to neurons NA, ND, NE and
NG. From left to right: the m = 4 measurements X = ÃS̃ of the simulated free-noise recording;
the pseudoinverse (ÃCACDG)†; the 8 signals obtained applying the pseudoinverse(ÃCADEG)†

to the measurements X. In this case, since the columns selected by C do not include all those
associated to active neurons, the two original neural signal are not correctly separated. The
vertical scale is voltage in arbitrary units.
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row of (ÃC)†X, and in the spike waveforms they show. This is because, in the
context of neural recordings, each source recurrently fires one, or a set of, char-
acteristic waveform(s) that have been estimated in the previous learning phase.
Therefore, when the matrix C picks out all the effectively active neurons, and
original signals are correctly separated in the rows of (ÃC)†X, as a consequence,
the neural templates can be recognize in correspondence of the respective active
neurons, while null signals appear in correspondence of inactive neurons. On
the other hand, when, in at least one row of (ÃC)†X, there is a spike that not
correspond to any templates of the associated neuron, this means that one or
more active neurons have been excluded by the matrix C.

For example, in Figure 3.5, it is possible to recognize that the original signal
reconstruction is done selecting a neuron combination that contains all the two
active neurons: in fact, traces NC and ND show the characteristic waveforms
fired by neurons NC and ND respectively; the other two involved traces, NA and
NG, show a null signal. On the other hand, the original signal reconstruction
in 3.6, is surely done selecting a neuron combination that excludes some of the
active neurons, since there is not correspondence between obtained and expected
waveforms: the spike in trace ND has not the characteristic shape of neuron ND,
nor the spike in trace NA has the characteristic shape of neuron NA.

The idea of MCI4SC algorithm is to individuate the combination of active
neurons that better explains measured data in terms of compatibility with the
respective single neural waveforms. Obviously, in the analysis of experimental
data, the presence of additive noise in the recordings Y = X + H, and the
possibly ill-conditioning of some matrices ÃC, never allow to exactly find in the
rows of (ÃC)†Y the expected templates and null signals.

The proposed method, thus tests all the m-combinations of n neurons — by
means of the all matrices C ∈ C — searching for the one that gives the minimum
distance between the actual measurements Y and the simulated measurements
ÃŜC , where ŜC is an hypothetical estimation of the original neural signal S̃.
Hopefully, the matrix Ĉ that gives the minimum distance is the one that better
describes the measurement channel; Ĉ shows as well, in the row of (ÃĈ)†Y ,
which are the active neurons and the arrival times of the respective spikes.

Figure 3.7 shows a segment of experimental data Y and two examples of
simulated measurements ÃŜC , one for a matrix C that selects all active neurons
(top), and the other for a matrix C that does not select all active neurons
(bottom). Notice that, in the first case, the original neural signals are correctly
separated in the rows of (ÃC)†Y , and the simulated measurement ÃŜC is more
similar to the actual measurement Y than in the second case.

In conclusion, the classification phase consists in examining every segment
of data around each detected spikes, with the following procedure:

B1. Computation of the pseudoinverse (ÃC)† for each C ∈ C.

B2. Estimation of the hypothetical signal ŜC from the rows of (ÃC)†Y , for each



44 Multi-Channel Inversion for Spike Classification

C
h.

 1

Y

C
h.

 2
C

h.
 3

20 40 60 80100

C
h.

 4

Samples

N
A

(AC
ACEG

)+ Y~

N
B

N
C

N
D

N
E

N
F

N
G

20 40 60 80100

N
H

Samples

N
A

SC^

N
B

N
C

N
D

N
E

N
F

N
G

20 40 60 80100

N
H

Samples

C
h.

 1

ASC~ ^

C
h.

 2
C

h.
 3

20 40 60 80100

C
h.

 4

Samples

C
h.

 1

Y

C
h.

 2
C

h.
 3

20 40 60 80100

C
h.

 4

Samples

N
A

(AC
DFGH

)+ Y~

N
B

N
C

N
D

N
E

N
F

N
G

20 40 60 80100

N
H

Samples

N
A

SC^

N
B

N
C

N
D

N
E

N
F

N
G

20 40 60 80100

N
H

Samples

C
h.

 1

ASC~ ^

C
h.

 2
C

h.
 3

20 40 60 80100

C
h.

 4

Samples

Figure 3.7: A segment of experimental data Y from a tetrode recording in the locust (Schis-

tocerca americana) antennal lobe, and two examples of simulated measurements ÃŜC . On the
top, from left to right: the data segment Y ; the unmixed signals (ÃCACEG)†Y , where the
matrix CACEG selects both the effectively active neurons A and C; the corresponding ŜC , i.e.
the hypothetical estimation of the original neural signal S̃; the simulated measurement ÃŜC ,
that are qualitatively near to the actual measurement Y . On the bottom, from left to right:
the same data segment Y ; the unmixed signals (ÃCBDFH)†Y , where the matrix CBDFH does
not select the two effectively active neurons; the corresponding ŜC , i.e. the hypothetical esti-
mation of the original neural signal S̃; the simulated measurement ÃŜC that are qualitatively
far from the actual measurement Y . The vertical scale is voltage in arbitrary units.
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C ∈ C.

B3. Selection of the matrix Ĉ ∈ C that minimizes the distance ||Σ−1(Y −
ÃŜC)||F between measured data Y and the hypothetical signal ŜC re-mixed
by the recording matrix Ã:

Ĉ = arg min
C∈C

||Σ−1(Y − ÃŜC)||F . (3.14)

The norm || · ||F is the Frobenius norm, and the m by m matrix Σ−1

normalizes different noise levels in the channels.

B4. The neurons whose spikes were detected in the rows of (ÃĈ)†Y , in step
B2, are assigned to the segment of data under analysis, together with the
respective arrival times, estimated as well in step B2. If no one spike is
been detected in the rows of (ÃĈ)†Y , the data segment is not classified,
and have to be possibly analyzed with other procedures (it usually contains
anomalies or spike superpositions with ill-conditioning problems).

It is interesting to notice that, in the ideal case where there are as many elec-
trodes as recorded neurons, there is an unique inverse matrix Ã−1 that applied
to the whole recording allows to solve the inverse problem and to reconstruct the
neural traces. On the contrary, the method here illustrated, in order to separate
original signals, uses more matrices (ÃC)†, with C equal to a different Ĉ from
time to time, each one solving the inverse problem in a delimited time interval
where, in turn, some neurons are silent.

3.3 Learning Phase

This section illustrates more in details the first of the two phases of the MCI4SC
algorithm. The analysis here described can be performed on a segment of the
whole recording, on condition that the segment contains a minimum number of
single spikes for each involved neuron, thus providing a reliable description of the
measurement channel. Whenever some conditions change during the recording
(e.g. the electrode positions with respect to recorded neurons) the learning phase
has to be applied again on another segment that better describes the data.

A0 - Preliminary steps: filtering, spike detection, and analysis win-

dows — To apply the MCI4SC algorithm, it is necessary to perform some
preliminary steps illustrated in this paragraph.

First of all, data must be filtered with a band pass filter, typically between
300Hz and some kHz, in order to delete the slow component of the raw data,
and to diminish the noisy appearance of the spike shapes.

It is also necessary to detect, in the noisy data, all events to put under
analysis. The search for spikes must be performed on each electrode channel,



46 Multi-Channel Inversion for Spike Classification

since spikes are larger in some channel than in others. Any detection algorithm
can be useful for the purpose, depending on its efficiency. In this thesis, in
order to show the MCI4SC algorithm performances, the spike detection has
been simply performed with an amplitude threshold on the samples recorded in
each channel.

Finally, a suitable window must be cut around each detected spike to entirely
contain the transient signal (or at least the most part of it). Since the learning
phase uses the Wavelet Packet Transformation, it is convenient, at this stage,
that the number K of datapoints in the analysis windows is fixed and equal to
a power of 2. To choose which particular power of 2 will be used, it is necessary
to exploit information about the possible spike duration and remember that this
first phase aims to treat single spikes: thus, the window must be long enough to
wholly contain one non overlapping spike (or at least the most part of it), but at
the same time it must be not so long to contain part of adjacent spikes. On the
other hand, the classification phase treats also with overlapping spikes that have
highly variable durations — typically larger than single spikes — depending
on the number of involved spikes and their respective delays. Therefore, in
this second phase it is more appropriate to use analysis windows with different
and adaptable lengths. The spike position inside the window analysis is not a
crucial point for MCI4SC algorithm, since this parameter does not significantly
affect the amplitude ratios estimation. The spike alignment, however, becomes
important in waveform templates estimation, when the collection of single spike
from the same neuron is averaged. Moreover, a rough alignment is anyway
necessary in the learning phase, to guarantee that the most part of the single
spike is inside the analysis window.

A1 - Single spikes versus overlapping spikes — As already said in Sec-
tion 3.2, the components of the mixing matrix Ã can be estimated as ratios of
spike amplitude between different channels, under the condition that spikes are
generated by a single neuron; thus, it is fundamental to distinguish between
single and overlapping spikes. It is worth noticing that at this step it is not
important to understand how many and which neurons are contributing to an
overlapping spike, but only if the spike is single or not. Depending on the type of
method used in step A3 to sort events, this distinction can be done contextually
to the single spike sorting itself. For example, in the common case of feature
clustering, the features far from clusters centers are easily overlaps; to obtain
a more accurate clustering, however, it is convenient a preliminary distinction
that discards all the spikes that surely are overlaps and usually create scattered
clouds of points (as shown in figure 3.2).

A first consideration is that all the events with time length larger than the
maximum single spike duration can be safely considered as overlapping spikes.
Secondly, single and overlapping spikes can also be distinguished looking at the
spike waveforms in each channel. According to the assumption 2) in Section
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3.1, a single spike is recorded with the same spike waveform by each electrode,
while an overlapping spike gives rise, in general, to a different mixture in every
sensor, according to different neural signal amplifications in the channels.

To check for the presence of the same waveform in all channel, the most
intuitive solution is to evaluate the cross-correlations, as a measure of similarity,
among the recorded signals y1, . . . , ym. The channel that records the largest
waveform is considered as the reference channel r, and m cross-correlation are
calculated with respect to it. In particular, since the neural signal is recorded
simultaneously in each channel according to the assumption 1) in Section 3.1, it
suffices to evaluate the cross-correlation with zero-lag:

zr,i =

∑K
k=1 yr(k)yi(k)

√

∑K
k=1 y

2
r (k) ·

∑K
k=1 y

2
i (k)

i = 1, . . . ,m, (3.15)

where K is the number of samples in the analysis windows, and zr,r = 1 by
normalization. Figure 3.8 shows two examples of single and overlapping spikes,
with the respective cross-correlation values between the reference channel and
the others.

It is worth noticing that, when two identical signals are embedded in noise,
the cross-correlation depends on their signal to noise ratios (as the signal to
noise ratios decrease, two different waveforms become more similar, and two
similar waveform become more different); therefore, it is necessary to set an
appropriate threshold T r,icross that takes into account this parameter. In summary,
one spike is considered an overlap when at least one of its cross-correlations zr,i,

for i = 1, . . . ,m, i 6= r, is under the corresponding threshold T r,icross.

This approach, based on the same/different shape in the channels, does not
attempt to exactly classify every spike as single or overlapping; it rather carries
out just an approximate discrimination, that may often fail when neural signals
are too weak. Nevertheless, this is not a critical issue, since this discriminating
procedure can be efficiently completed contextually to the following spike clus-
tering in step A3. Here, at this step, the aim is simply to discard all spikes that
are obviously not single spikes.

A2 - Estimation of spike-amplitude ratios, based on Wavelet Coeffi-

cients — This paragraph describes a wavelet-based method to well estimate
the amplitude ratios of the same impulsive signal recorded by m sensors dif-
ferently located. In the following, these ratios will be simply named amplitude
ratios.

In those segments of data that contain single spikes — and thus have, ac-
cording to the assumption made, the same spike shape w(k) recorded by all
sensors — the amplitude ratios of the spike waveforms in different channel are
well defined and meaningful parameters. As already said, on the one hand, these
amplitude ratios correspond to ratios of column coefficients of the mixing matrix
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Figure 3.8: A single and an overlapping spike from a tetrode recording in the locust (Schis-

tocerca americana) antennal lobe, and the respective cross-correlations with zero lag. Thicker
lines for the reference channel. The vertical scale is voltage in arbitrary units. In (a) a single
spike that shows similar waveforms in each channel: large values of cross-correlation between
the signal in the second channel (reference channel) and the signals in other channels. In (b) an
overlapping spike, superposition of two, that shows different waveforms in different channels:
small values of cross-correlation between the signal in the forth channel (reference channel)
and the signals in other channels.

that describes the multi-dimensional channel between neurons and sensors (see
Eq. (3.8)). On the other hand, they provide also useful information to cluster
single spikes. They are, in fact, strictly related to the neuron position, that is
one of the peculiarities used to distinguish the spike source. This process of
amplitude ratios estimation can be, therefore, considered as a feature extraction
step — typical of many spike sorting algorithms — where a distinctive parameter
of the source is extracted, from each spike.

The amplitude ratios as distinguishing features have already been — directly
or indirectly — exploited by other spike classification methods that estimate
them by considering maximum sample ratios or power ratios. The method
proposed here exploits, instead, the Wavelet Transformations, and its capability



3.3 Learning Phase 49

to concentrate a transient signal in few large coefficients, thus less affected by the
white noise. In particular, rather than the Wavelet Transformation, the Wavelet
Packet (WP) Transformation has been preferred, since it is more versatile in
terms of time-frequency resolution. Concisely, in the method proposed here,
the amplitude ratio is estimated by dividing two significant WP coefficients, as
will be better detailed in the following paragraphs. For a brief introduction to
Wavelet Transformations see Appendix A.

Assuming that each of the m channels records the same spike waveform w(k)
with a different amplitude αi (that is yi(k) = αiw(k) + ηi(k), i = 1, . . . ,m),
the following procedure estimates m ratios Ri/r = αi/αr between the spike
amplitude in the channel i and the spike amplitude in the channel r, taken as
reference among the others.

First of all, the method performs the Discrete WP Transformation, as-
sociated to a complete binary tree of depth L, of each recorded spike yi(k),
k ∈ [1, . . . ,K] with K power of 2 (see Figure 3.9). The calculation is initialized

l = 0

l = 1

l = 2

L = l = 3

d1
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= yi
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Figure 3.9: A complete binary tree of depth L = 3. The root (node p = 1) is associated to
the K samples of the original signal yi. In each decomposition level l there are 2l nodes, each
one associated with K/2l coefficients. The WP coefficients associated just to the open nodes
p = 8, . . . , 15, are the Wavelet Packet Transformation related to this binary tree.

by considering the recorded samples yi(k) as coefficients of the root node p = 1
at the decomposition level l = 0 (i.e. d1

yi
(k) = yi(k)). The WP coefficients

{d2p
yi (t)}t and {d2p+1

yi (t)}t, respectively associated to nodes 2p and 2p+ 1 at de-
composition level l + 1, are efficiently computed from the coefficients {dpyi(t)}t,
of the parent node p at the level l = blog2 pc, through the following recursive



50 Multi-Channel Inversion for Spike Classification

relations:

d2p
yi

(t) =
∑

k∈Z

g0(2t− k)dpyi
(k),

d2p+1
yi

(t) =
∑

k∈Z

g1(2t− k)dpyi
(k), (3.16)

where t = 1, . . . ,K/2l+1, and g0, g1 are two quadrature mirror filters related to
the chosen mother wavelet.

What is usually named WP Transformation is made by the collection of
all coefficients in the open nodes of an admissible binary tree. When the tree
is complete, the open nodes are all at the same depth (see circled nodes in
Figure 3.9), and the related WP Transformation has a uniform time-frequency
resolution. The internal nodes contain redundant information with respect to
the open nodes; nevertheless, they decompose the signal with different time-
frequency resolutions according to their own level. In order to exploit a larger
range of time-frequency resolutions and different signal decompositions, the am-
plitude ratio estimation takes into account also the WP coefficients associated
to internal nodes. It is worth noticing that the computational time does not
increase as a consequence of this choice, since the internal nodes coefficients are
necessary to calculate the open node coefficients. The symbol WL

yi
precisely in-

dicates the collection of all (L+1)K WP coefficients associated to each open and
internal node of the Wavelet tree, from the root (corresponding to the original
samples) to the open nodes at the last decomposition level L:

WL
yi

=
{

dpyi
(t), p = 1, . . . , 2L+1 − 1, t = 1, . . . ,K/2l+1, with l = blog2 pc

}

.

(3.17)

As already said, the WP decomposition concentrates in few large coefficients
the whole energy of those signals that, like the neural spikes, are well localized
both in time and in frequency (while the white noise remains spread on all the
time-frequency plane). Therefore, the WP coefficient in WL

yi
with maximum

absolute value typically represents a good percentage of the whole signal yi, and
its position (p, t) indicates that portion of the time-frequency plane where the
signal to noise ratio is largest. Among all m recorded channels, the one which
has the largest WP coefficients has presumably the largest spike amplitude, and
it is taken as the reference channel r, so that:

max({|dpyr
(t)| ∈ WL

yr
}) ≥ max({|dpyi

(t)| ∈ WL
yi
}), ∀i = 1, . . . ,m. (3.18)

Since usually the noise standard deviation is comparable in the m channels, yr
is presumably the recorded spike with the best signal to noise ratio; thus, its
maximum WP coefficient in WL

yr
better individuates the time-frequency tile that

contains alone the most part of the signal and where the respective coefficients,
in other recorded channel, are less affected by hight level of noise. This tile
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position is indicated by the two values pr and tr, that are its node and its
coefficient number, respectively:

pr, tr = arg max
p,n

({|dpyr
(t)| ∈ WL

yr
}). (3.19)

Finally we point out that, thanks to the linearity of the Wavelet Transfor-
mations, the amplitude ratios between scaled signals is preserved in the ratio of
correspondent coefficients. Therefore, the desired estimation R̂i/r can be simply
given by the ratio between the maximum WP coefficient in the yr decomposition,
and the correspondent coefficient in the yi decomposition:

R̂i/r = d
pr
yi (tr)/d

pr
yr(tr), i = 1, . . . ,m. (3.20)

The amplitude ratio estimation R̂r/r is equal to 1 by construction; the other
m− 1 ratios are lower than 1, thus introducing a normalization with respect to
the maximum recorded amplitude, that takes place in a different channel from
neuron to neuron. This normalization corresponds to normalize the mixing
matrix column in (3.9) by means of the maximum coefficient of the column
itself, arj = max({a1j , . . . , amj}).

In Figure 3.10, the whole estimation procedure is summarized: on the top the
recorded spikes y1 and y2, where the first is taken as reference signal; under each
spike the respective WP coefficients at the decomposition level 1 up to L = 4.
The procedure picks out the maximum WP coefficient of the y1 decomposition,
and the corresponding one in the y2 decomposition. The ratio between these
two coefficients gives the amplitude ratio estimation R̂2/1.

To give an idea of the benefits introduced by the WP-based method, a com-
parison with other estimators of amplitude ratios has been performed. The
considered methods are:

- The estimator based on ratios between peak samples (it exploits the
samples with maximum signal to noise ratio in the time domain).

The reference channel r is the one with the maximum samples in ab-
solute value, so that maxk({|yr(k)|}) ≥ maxk({|yi(k)|}), ∀i = 1, . . . ,m;
kr = arg maxk({|yr(k)|}) is the position of the maximum sample in the
analysis window, and the samples ratio yi(kr)/yr(kr) is the amplitude ra-
tio estimation. For example, the method in [17], exploits the peak positive
amplitudes of the recorded spikes, in order to calculate approximate posi-
tions of the spike sources around the tetrode; by clustering these spatial
locations, the method obtains spike sorting results comparable to those
obtained sorting ratios of peak positive amplitudes.

- The estimation based on ratios between powers (it involves the whole
signal rather than a single sample or a single WP coefficient).
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Figure 3.10: Amplitude ratio estimation between two spikes recorded in the locust (Schisto-

cerca americana) antennal lobe. On the top, the two recorded spikes y1 and y2, each made by
64 samples (the vertical scale is voltage in arbitrary units). The first spike, that is larger, is
taken as reference signal. Under each spike the respective WP coefficients, in absolute value,
at the decomposition level 1 up to L = 4. The WP transformation is performed with the 5th
order Symlet as mother wavelet. The procedure pick out the maximum WP coefficient of the
y1 decomposition, and the corresponding one in the y2 decomposition. The ratio between these
two coefficients, both circled in the figure, gives the amplitude ratio estimation R̂1/2.
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The reference channel r is the one with the maximum power, so that
∑

k y
2
r (k) ≥ ∑

k y
2
i (k), ∀i = 1, . . . ,m, and the powers ratio is estimated

by
√

∑

k y
2
i (k)/

∑

k y
2
r (k). For example, in order to estimate the mixing

matrix coefficients, the method in [19] averages in time the absolute values
of the samples in each channel and normalized them; this is comparable to
an estimation based on powers ratios. Also the approach in [42], in order
to estimate the 3 spatial coordinates of source position, exploits a weighted
average of the amplitudes near the spike peak, that is proportional to spike
power.

To compare the 3 methods (respectively based on maximum WP coefficient,
maximum sample, and spike power) a spike template w(k), estimated from a
neural recording, has been used. In the simulation two channels have been
considered: in the first channel the multiplicative factor of the spike template
has been fixed to 1, and in the second channel the multiplicative factor has been
varied between 0 and 1 (0 ≤ α2 ≤ 1 = α1). Gaussian noise with zero mean and
the same standard deviation ση1 = ση2 = ση, has been added to both channels.
Figure 3.11 shows an example of two simulated measurements y1 = α1w+η1 and
y2 = α2w + η2, with amplitude ratio α2/α1 = 0.5 and ση = 0.7, that represents
a situation easily found in neural recordings. The amplitude ratio has been
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Figure 3.11: Two simulated measurements y1 = α1w+η1 and y2 = α2w+η2 respectively on
the top and on the bottom (solid lines). The vertical scale is voltage in arbitrary units. The
dashed lines refer to the waveform w(k) estimated from a neural recording in the the locust
(Schistocerca americana) antennal lobe. Taking the first channel as reference, the amplitude
ratio α2/α1 is equal to 0.5. The noise in both channels is Gaussian with mean zero and
standard deviation ση equal to 0.7.

estimated 10000 times, with the 3 estimators, for each considered value of the
ratio α2/α1 and for each considered value of the standard deviation ση.

It is worth noticing that the comparison has been performed to show the
differences among the techniques on a qualitative basis only, using a specific
example. Results may change when varying the template shape w or the analysis
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window length. The WP-based estimator performance depends in particular on
the percentage of spike power captured by the maximum WP coefficient (for
example, at the level of decomposition 4 using the 5th order Symlet as mother
wavelet, the maximum WP coefficient of the template waveform w in Figure
3.11 captures the 39% of the whole power). The performance of the sample-
based estimator depend as well on the percentage of spike amplitude captured
by the maximum sample, and this percentage changes with the spike shift or
the sampling period. The performance of the power-based estimator depends
instead on the percentage of signal power in the analysis window with respect to
the noise power, and this percentage changes with the length of analysis window.

Figure 3.12 shows the means of the 3 estimators, plus/minus 3 times their
standard deviations, with the noise standard deviation ση fixed to 0.7, and with
the amplitude ratio α2/α1 varying from 0 to 1. The WP-based estimator is
compared with the sample-based estimator in (a), and with the power-based
estimator in (b). Notice that the mean of the WP-based estimator is superim-
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Figure 3.12: Means of the 3 estimators, plus/minus 3 times their standard deviations, with
the noise standard deviation ση fixed to 0.7, and varying the amplitude ratio α2/α1 from 0 to
1. The WP-based estimator (solid lines) is compared with the sample-based estimator (dashed
lines) in (a), and with the power-based estimator (dashed lines) in (b). The WP transformation
is performed with the 5th order Symlet as mother wavelet, and decomposition level L = 4. For
each considered value of the ratio α2/α1, 10000 trials have been done.

posed to the first quadrant bisector that represents the ideal estimator. On the
contrary, the sample-based estimator is not consistent: the distance between its
mean and the true value increases with the ratio α1/α2, due to the presence of
noise. Moreover, the dispersion of the sample-based estimator is greater than
the others. The power-based estimator has the advantage of a lower dispersion,
due to the fact that it considers the signal in its entirety, and not in a single
time instant or in a delimited time-frequency tile. But, even the power-based
estimator, is not consistent: in particular, for low value of the ratio α2/α1, it is
limited by the noise power.
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When amplitude ratios are clustered as distinctive features of the spike
source, a low estimator dispersion is important, since it gives rise to more con-
centrated, and thus separated, clusters. On the other hand, consistency is even
more important, since it allows to better estimate the mixing matrix Ã, on which
depends the whole spike sorting procedure and its results.

Figure 3.13 shows the empirical distributions of the 3 estimators when am-
plitude ratio α2/α1 is equal to 0.5, and noise standard deviation ση is equal
to 0.7. Also this figure highlights that the sample-based estimator, in (a), and
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Figure 3.13: Empirical distributions of the 3 estimators when amplitude ratio α2/α1 is equal
to 0.5, and noise standard deviation ση is equal to 0.7. In (a), the empirical distribution of the
sampled-based estimator, in (b) the empirical distribution of the power-based estimator, and
in (c) the empirical distribution of the WP-based estimator.

the power-based estimator, in (b), are not consistent, while the WP-based esti-
mator, in (c), has a distribution practically centered on the true value. At the
same time, the figures show the large dispersion of the sampled-based estima-
tor, the low dispersion of the power based-estimator, and the dispersion of the
WP-based estimator in-between.

Figure 3.14 shows instead the means of the 3 estimators, plus/minus 3 times
their standard deviations, when the amplitude ratio α2/α1 is fixed to 0.5, and
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the noise standard deviation ση, equal in both channels, varies from 0.1 to 2. In
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Figure 3.14: Means of the 3 estimators, plus/minus 3 times their standard deviations, with
the amplitude ratio α2/α1 fixed to 0.5, and the noise standard deviation ση varying from 0.1 to
2. The WP-based estimator (solid lines) is compared with the sample-based estimator (dashed
lines) in (a), and with the power-based estimator (dashed lines) in (b). The WP transformation
is performed with the 5th order Symlet as mother wavelet, and decomposition level L = 4. For
each considered value of the noise standard deviation ση, 10000 trials have been done.

this figure, the same comments about dispersion are valid. As for consistency,
even the WP-based estimator moves away from the true value, but less than the
other two estimators.

In conclusion, the comparison shows that the dispersion of the WP-based
estimator is a compromise between the other two dispersions, and, above all,
the WP-based estimator has the unquestionable advantage to give, in mean, an
estimation closer to the true value. This happens thanks to the Wavelet ability
to exalt the signal with respect to the noise, thus allowing a good estimation
even when the signal to noise ratio is very low.

Clearly, the amplitude ratio estimation can likewise be applied to overlap-
ping spikes, even though, in this case, the obtained values loose the meaning of
amplitude ratio between two signals.

A3 - Single spike Sorting — In the previous step A2, a vector Re =
[R̂e1/r, . . . , R̂

e
m/r]

′ of m components normalized to 1, is been derived from each
event e classified as non-overlapping spike. Clustering these vectors Re in n
cluster Clust1, . . . , Clustn, i.e. grouping those vectors that are similar, and as-
sociating one neuron to each cluster, means as well to relate every single spike
e ∈ Clustj to the neuron j that has generated it.

Many clustering algorithms, more or less complex, are available to this aim.
Any of them can be used in this step, according to its efficiency, robustness,
or independence of human supervision. In this thesis, in order to show per-
formances of MCI4SC algorithm, the clustering step has been performed using
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the simple K-means algorithm. In this work, the clustering algorithm is oppor-
tunely initialized by a human operator that provides the number of clusters; as
an alternative, more sophisticated algorithms may use a cost function to set this
number.

To give an example of clustering, Figure 3.15 shows the results obtained by
applying the K-means algorithm to all points in Figure 3.2b. Eight clusters, cor-
responding to as many neurons, are well separated by K-means, thus displaying
that amplitude ratios can be good features to cluster and sort single spikes.
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Figure 3.15: Plots of amplitude ratios clusters that group each spike previously classified
as single spike. In (a), a tri-dimensional plot of the first 3 amplitude ratios. In (b), a tri-
dimensional plot of the last 3 amplitude ratios. 745 single spikes from a tetrode recording in
the locust (Schistocerca americana) antennal lobe are grouped in 8 clusters.

A human supervisor can test the accuracy of the clustering procedure by
looking at superimposed spikes waveforms, cluster by cluster, and checking the
homogeneity of each cluster.

In the case where amplitude ratios, rather than other features, are grouped,
the main problem is the presence of clusters made of spikes with different wave-
forms. In that instance, it is necessary to distinguish if they are single neurons
that fire different waveforms (e.g. bursting neurons), or if they correspond to
more neurons in a similar position with respect to the electrodes. Therefore, the
ambiguity of such clusters that contain different waveforms, can generate two
kind of errors: i) a single neuron that fires different waveforms can be considered
as two or more neurons; ii) two, or more, neurons, with different waveforms and
similar amplitude ratios can be considered as just one neuron.

To solve this kind of ambiguity, human intervention is particularly effective.
A supervisor can evaluate the kind of electrode configuration (linear, planar, or
not planar), if the number of electrodes that measure the spikes is lower than
four, and the presence of burst with changing waveform in the data. From this
kind of considerations, he can establish the nature of ambiguous clusters, and
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separate the various representative templates.

Obviously, in the unlikely case where two neurons fire a very similar waveform
and are almost at the same relative distance from electrodes, they form an unique
homogeneous cluster, and they result indistinguishable from the MCI4SC point
of view. Such a situation can only be handled exploiting the information related
to the Inter-Spike Interval distribution.

The case of recording in the locust (Schistocerca americana) antennal lobe,
whose cluster are shown in Figure 3.15, has no ambiguous cluster: each group of
spike mainly contains only one waveform (see Figure 3.16), and it is, therefore,
unequivocally associated to a single neuron.
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Figure 3.16: Superimposed spike waveforms, as they are clustered in Figure 3.15: each
cluster mainly exhibits a unique waveform. Spikes are from a tetrode recording in the locust
(Schistocerca americana) antennal lobe. The vertical scale is voltage in arbitrary units.

A4 - Waveforms and mixing matrix estimation — From each cluster
Clustj , j = 1, . . . , n, identified in the previous step A3, it is possible to estimate
the respective column Âj of the mixing matrix Ã, and the respective spike
waveform template ŵj(k), k ∈ [1, . . . ,K], both characterizing the associated
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neuron. The two estimates are simply obtained by averaging the amplitude
ratio vectors and the spike waveforms, among all single spikes in each cluster:

Âj =
∑

e∈Clustj

1

Nj
Re; (3.21)

ŵj(k) =
∑

e∈Clustj

1

Nj
yerj (k), k ∈ [1, . . . ,K], (3.22)

where Nj is the number of events e collected in the cluster Clustj . Notice
that, since each cluster collects vectors with similar amplitude ratio, all spikes
in the same cluster typically have the same reference channel rj (different from
neuron to neuron). The reference channel is the one where the spike is recorded
with the largest amplitude and the largest signal to noise ratio, thus granting a
better estimation of the mean spike waveform ŵj(k). Notice also that template
estimation is more accurate, when spikes are realigned before averaging.

Inevitably, into each cluster, there are also overlapping spikes erroneously
identified as single spikes. Since it is crucial, for the subsequent spike classifica-
tion, to well estimate the mixing matrix and the spike templates, it is convenient
to exclude, from the average, the spikes having waveform too different from the
mean one, or amplitude ratios too distant from the cluster centroid (i.e. all those
spikes that probably are overlapping spikes). In fact, the learning phase does
not attempt to classify the greatest number of spikes, it just aims to collect clean
representatives of every spike type. Therefore better estimates can be achieved
by excluding those spikes that are very likely overlapping spikes.

Even in this case, a human supervisor can test the quality of the outliers
removal by looking at superimposed spikes.

Figure 3.17 shows the cluster of Figure 3.15, once they have been cleaned.

Figure 3.18 shows the superimposed spike waveform for each cleaned cluster,
the mixing matrix components as they have been estimated, and, on the bottom,
the corresponding estimated waveforms. The set of the estimated columns, arbi-
trarily ordered and rounded to nearest hundredths, gives rise to the normalized
mixing matrix estimation:

Â =









1 0.52 0.72 0.42 0.35 0.35 0.29 0.64
0.42 1 1 1 0.44 0.53 0.22 0.29
0.23 0.39 0.69 0.69 1 1 0.40 0.36
0.32 0.35 0.49 0.38 0.88 0.52 1 1









. (3.23)

In the case of an ambiguous cluster, where more than a spike waveform is
recognizable in the same group of spikes, it is necessary to estimate all the Q
templates ŵqj (k), q = 1 . . . , Q, whose shapes are visible in the cluster Clustj .

All these templates are associated to the same mixing matrix column Âj , either
when the cluster represents one single neuron that fires different waveforms,
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Figure 3.17: Plots of the amplitude ratios clusters of Figure 3.15, once they have been
cleaned. In (a), a tri-dimensional plot of the first 3 amplitude ratios. In (b), a tri-dimensional
plot of the last 3 amplitude ratios. 448 spikes in total are represented.

or when it represents more distinct neurons at the same relative distance from
electrodes. In practice, it is necessary to perform a further clustering step on a
smaller set of events that belong to the ambiguous cluster. This further classi-
fying step, based on spike waveform rather than on spike-amplitude ratios, can
be done more or less automatically, through any of the spike sorting algorithm
already developed or through human intervention.

3.4 Classification Phase

This section illustrates in details the second of the two phases of the MCI4SC
algorithm. In the classification phase all spikes are analyzed, one by one, trying
to resolve the possible superposition.

B1 - Pseudoinversion of the mixing matrices ÂC, for each C ∈ C —

As already said in Section 3.2, when the number of sensors m is smaller
than the number of neurons n, the original neural signals that contribute to
a recorded data segment Y = ÃS̃ + H, can be estimated through the Moore-
Penrose pseudoinverse of a particular mixing matrix ÃC. The estimation is
correct on condition that the mixing matrix ÃC, that describes a measurement
channel with a number of neurons equal to the number of sensors, includes
all active neurons, that are no more than m. Since it is not known a priori
which neurons are effectively active, the idea of MCI4SC algorithm is to test
all the matrices C ∈ C (see Eq. (3.13)), representing all the m-combinations of
n neurons, in order to determine which one explains the measured data better
than the others. The number of combinations to examine in C, where m neurons
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Figure 3.18: Superimposed spike waveforms for each cleaned cluster in Figure 3.17, and the
mixing matrix components as they have been estimated. On the bottom, the corresponding
templates, estimated from the respective reference channel. Spikes are from a tetrode recording
in the locust (Schistocerca americana) antennal lobe. The vertical scale is voltage in arbitrary
units.

are possibly active, and the other m− n are silent, is:

(

n

m

)

=
n!

(n−m)!m!
. (3.24)

Let the mixing matrix Â be estimated as in A4. In this first step, the
MCI4SC algorithm calculates the Moore-Penrose Pseudoinverse (ÂC)† for each
C ∈ C, and applies it to the data segment Y under analysis, thus obtaining a
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neural signal reconstruction for each neuron combination in C:

V C = [vC(1), . . . , vC(K)] = (ÂC)†Y, (3.25)

where V C is a n by K matrix. In an equivalent form, it can be written as:

vC(k) = [vC1 (k), . . . , vCn (k)]′ = (ÂC)†y(k), k ∈ [1, . . . ,K], (3.26)

where each row vCj (k), j = 1, . . . , n of the matrix V C is the neural signal recon-
struction corresponding to neuron j.

As an example, consider the tetrode recording from the locust (Schistocerca
americana) antennal lobe where 8 neurons have already been individuated (see
Figure 3.18); in this case, the number of neuron combinations to examine is
(

8
4

)

= 70. Figure 3.19 shows a data segment of this recording, where two spikes
from neurons NA and NF are slightly superimposed. Figure 3.20 shows the
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Figure 3.19: A data segment recorded by a tetrode in the locust (Schistocerca
americana) antennal lobe. Two spikes from neurons NA and NF are slightly
superimposed. The vertical scale is voltage in arbitrary units.

application of the pseudoinverse (ÂC)† to the measured data segment of Figure
3.19, for three of the 70 possible 4-combinations of different neurons. The crucial
point is whether the neurons selected by C include, or not, all effectively active
neurons. For example, the combination considered in Figure 3.20(top) includes
both neuron NA and neuron NF : as a consequence, the respective traces show
the spike waveforms correspondent to those of the two neurons. On the contrary,
the other two combinations in Figure 3.20(bottom) exclude one or both the
active neurons: in those case at least one trace exhibits a spike waveform that
does not match to the respective neural template in Figure 3.18(bottom).

Notice that, when the number µ of active neurons is not equal to m (µ < m),
the m-combinations that contain all µ active neurons are more than one: they
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Figure 3.20: Application of the pseudoinverse (ÂC)† to the measured data seg-
ment Y of Figure 3.19, for three of the 70 possible 4-combinations of different
neurons. Top: the two active neurons NA and NF are both included in the
considered combination; bottom: one or both the active neurons are excluded
by the considered combination. The vertical scale is voltage in arbitrary units.
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are exactly
(

n−µ
m−µ

)

= (n−µ)!
(n−m)!(m−µ)! . For example, in the data segment of Figure

3.19, only µ = 2 neurons are active, and thus there are
(

6
2

)

= 15 4-combinations
that include both neuron NA and neuron NF . Nevertheless, all these correct
combinations are not equivalent from the numerical point of view, since they
can be more or less ill-conditioned.

When a matrix is ill-conditioned, small changes in its components or in the
recording (due to round-off errors, estimation error, or measurement errors) give
rise to large perturbations in the solution of the inverse problem. A measure of
the solution sensitivity to errors, is the condition number of the mixing matrix,
that, using the 2-norm, is defined as the ratio of the largest singular value to
the smallest: values near 1 indicate a well-conditioned matrix, and values much
greater than 1 indicate an ill-conditioned matrix.

Figure 3.21 shows the result of considering a neuron combination, that like
the one in Figure 3.20(top), includes both the two active neurons NA and NF ,
but with a higher condition number of the mixing matrix ÂC. Notice that in
this case where the condition number is higher, the two original neural templates
are not recognizable in the row of V C .

According to which neurons the matrix C selects or not, some columns rather
than others contribute to the mixing matrix ÂC, and the condition number
changes as well. Therefore, some overlap can be better resolved than other,
depending on the set of neurons that generated them. In particular, the more
similar (or nearly linear dependent) are the columns associated with the involved
neurons, the higher is the condition number, and the more difficult is to recover
the original signals. This reflects the difficulty to separate signals coming from
neurons with similar relative distances from sensors. Once again, it is worth
underlining the importance of electrode configuration: to guarantee low condi-
tion numbers that better solve the inverse problem, electrodes must be as evenly
separated as possible in all three dimensions.

One more comment about the condition number concerns the mixing matrix
normalization. Once that the relative distances between neurons and electrodes
are given, i.e. amplitude ratios are given, the condition number depends also
from the mixing matrix normalization that has been used. Calculating the am-
plitude ratios with respect to the largest spike, as described in step A2, the
MCI4SC algorithm normalizes each column so that its maximum value is 1.
From the theoretical point of view, this column normalization correspond to
rescale the neural signal at the source, and no effects are introduced in the sig-
nal reconstruction: dividing a column for a certain factor, the correspondent
row in the pseudoinverse is multiplied by the same factor and the correspon-
dent estimated neural signal is accordingly scaled. From the numerical point
of view, however, the neural signal is not exactly scaled, and the perturbations
vary with the effective value of matrix components. In particular, when the
condition number is large, the matrix inversion can introduce large errors. It
is worth noticing that the used normalization leading to mixing matrix compo-
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Figure 3.21: Application of the pseudoinverse (ÂCAEFH)† to the measured data
segment Y of Figure 3.19. The neuron combinations includes both the two active
neurons NA and NF , but the condition number of the mixing matrix ÂCAEFH
is higher than the one of ÂCABFH considered in the top of Figure 3.20: the
values are ∼ 81.5 and ∼ 6.0 in the two respective cases. The vertical scale is
voltage in arbitrary units.

nents between 0 and 1, keeps the condition number in a small range around its
minimum.

B2 - Estimation of the hypothetical signals ŜC , for each C ∈ C — The
MCI4SC algorithm works assuming that each combination of active neurons,
represented by C ∈ C, correctly describes the segment of measured data under
analysis. Therefore, it expects to find, in the m traces vCj (k) associated to the
selected neurons, either noise or the spike waveform template of neuron j (the
other n−m traces are zero by construction).

In this step B2, the MCI4SC algorithm determines, for each C ∈ C, and for
each presumable active neuron j, the time shift kCj and the amplification BC

j of

the neural spikes in the corresponding j-th row of the matrix V C . To evaluate
both these two parameters, the algorithm calculates the cross-correlation be-
tween vCj (k) and the correspondent template ŵj(k), for each neuron j selected



66 Multi-Channel Inversion for Spike Classification

by the matrix C:

zjv,w(k) =











∑K
f=k+1 v

C
j (f − k)ŵj(f), 0 ≤ k ≤ K − 1

∑K−k
f=1 vCj (f − k)ŵj(f), −K + 1 ≤ k < 0

, (3.27)

where the templates ŵj(k) are those estimated in step A4. The time shift and
the spike amplification are estimated as follows:

kCj = arg max
k

({zjv,w(k), k ∈ [−K + 1, . . . ,K − 1]}), (3.28)

and

BC
j =

zjv,w(kCj )
∑

k ŵ
2
j (k)

. (3.29)

If the amplification BC
j is under a certain threshold TBj , the algorithm assumes

that only noise is present in the j-th row of V C and the corresponding neuron
is inactive, like those that are not selected by matrix C.

Once that kCj and BC
j have been estimated for each presumed active neuron,

also the hypothetical neural signal ŝC(k) = [ŝC1 (k) . . . ŝCn (k)]′ is given:

ŝCj (k) =

{

0 if neuron j is inactive
BC
j ŵj(k − kCj ) if neuron j is active

, j = 1, . . . , n. (3.30)

The hypothetical signal ŜC = [ŝC(1), . . . , ŝC(K)] represents the combination of
neural signals that best explains the reconstruction V C , under the assumption
that only neurons selected by C can be active; ŜC is no more than a set of
consistent neural templates opportunely scaled and translated, where scales and
translations are amplitudes and arrival times of the expected neural spikes in the
rows of V C = (ÂC)†Y . Obviously, only when C includes all active neurons and
ÂC is well conditioned, the rows of V C exhibit the right waveform templates, and
the parameters kCj and BC

j really represent the time shift and the amplification
of the template ŵj .

Figure 3.22 shows the hypothetical signals ŜC , superimposed to the traces
V C , in the 4 different cases of Figures 3.20 and 3.21, related to 4 different
matrices C: in correspondence of neurons that are considered active, ŜC shows
the respective waveform templates, opportunely shifted and amplified. Notice
that in (a), where the matrix C includes all the two effectively active neurons
NA and NF , the hypothetical signal follows well the trend of traces in V C . This
does not happens in (b), where, even if the matrix C includes both the two
active neurons, the matrix ÂC is not well-conditioned. Even in (c) and (d), the
hypothetical signal ŜC disagrees with the traces in V C since one or both the
active neurons are excluded by C.

The situation is slightly more complicated if an ambiguous cluster Clustj
is individuated in the learning phase, and its mixing matrix column Âj is thus
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Figure 3.22: The hypothetical signals ŜC (thick lines), superimposed to the
traces V C (thin lines), in the 4 different cases considered in Figures 3.20 and
3.21, related to 4 different matrices C.
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associated to Q waveform templates ŵqj (k), q = 1 . . . , Q. In that case it is

necessary to calculate the cross-correlation between the row vCj (k) and each of
the Q templates, estimating for each one the time shift, the amplification, and a
different ŜC that must be kept as well in consideration together with the others.

B3 - Selection of the minimum distance between hypothetical and

original measurements — In this step, all the hypothetical signals ŜC ,
that have been estimated for each C ∈ C (and for each possible waveform of
ambiguous clusters), are re-mixed with the matrix Â, thus obtaining an equal
number of hypothetical measurements Ŷ C = ÂŜC .

Figure 3.23 shows the hypothetical measurements Ŷ C , corresponding to the
4 hypothetical signals ŜC in Figure 3.22, related to 4 different matrices C.
Notice that the hypothetical measurement in (a) is very similar to the original
measurement in Figure 3.19, since it corresponds to a matrix C that includes
all the two effectively active neurons NA and NF , and the corresponding matrix
ÂC is well-conditioned; while the other hypothetical measurements in (b), (c),
and (d), highly disagree with the original measurement.

All the hypothetical measurements Ŷ C , for each C ∈ C, are thus compared
with the original measurement Y , by means of the Frobenius distance:

dF (Y, Ŷ C) = ||Σ−1(Y − Ŷ C)||F = ||Σ−1(Y − ÂŜC)||F , (3.31)

where ||A||F =
√

∑

i

∑

j a
2
ij is the Frobenius norm, and the diagonal matrix

Σ−1 = diag(σ−1
η1 , . . . , σ

−1
ηm

) normalizes the noise standard deviations of different
sensors, so that they become comparable. For example the Frobenius distances
in the 4 cases of Figure 3.23 are respectively: ∼ 14.5, ∼ 50.6, ∼ 106.0, and
∼ 61.8.

Among all the combinations of neurons C ∈ C, the one that minimizes this
distance between hypothetical and original measurements is chosen, as the one
that best explains the observed measurements, both in terms of active neurons,
and in terms of conditioning:

Ĉ = arg min
C∈C

||Σ−1(Y − Ŷ C)||F . (3.32)

For example, the Frobenius distance between the hypothetical measurement
in 3.23a and the original measurements in 3.19 is the minimum among all the
70 hypothetical measurements obtained for each C ∈ C.

B4 - Spike Classification — This step concludes the classification of the

spike in the data segment under analysis. The hypothetical signal ŜĈ is con-
sidered as the neural signal estimation, and it indicates which neurons, among
those selected by Ĉ, are active and contribute to the observed data segment.
The spike arrival times, defined as the time of the maximum positive peak, are
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Figure 3.23: The hypothetical measurements Ŷ C = ÂŜC , corresponding to the
4 hypothetical signals ŜC in Figure 3.22, related to 4 different matrices C.
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related to kĈj , known by step B2. Nevertheless, spikes that are too near the
borders of the data segment, are not taken into account in the classification
results.

For example, in the case of the measurement in Figure 3.19, the minimum
distance is obtained with the matrix Ĉ that selects neurons NA, NB, NF , and

NH . The corresponding hypothetical signal ŜĈ , shown in Figure 3.22a, considers
inactive the two neurons NB, and NH , thus concluding that neurons NA and
NF are contributing to the segment of data. Considering the arrival time as the
sample where the neural spike is maximum, the two arrival times are respectively
at samples 23872, and 23905. Since the two spikes are almost inside the window
analysis, they are both included in the classification results.

If no one spike has been detected in the rows of V Ĉ = (ÃĈ)†Y — or if it is
detected but it is too near the borders — the data segment is not classified, and
have to be possibly analyzed with other procedures. This may be due to different
reasons, such as some anomalies in the recording, or spike superpositions with
ill-conditioning problems, or small contributions from neurons not modeled in
step A4 because further and weaker than the foreground neurons.

Figures 3.24 and 3.25 show some other examples of overlapping spikes from
the tetrode recording in the locust (Schistocerca americana) antennal lobe, that
have been successfully resolved by MCI4SC algorithm. The first example shows a
superposition of two spikes fired by neurons ND and NH ; since the superposition
is total, only one peak is visible in the recording. The second example shows
a superposition of 3 spikes generated by neurons NA, ND, and NG. Obviously,
the classification phase of the MCI4SC algorithm is able to classifies single spike
as well.

If there is an ambiguous cluster, the minimization (3.32) includes all its
spike waveforms and the algorithm automatically selects the template that best
explains the measured data. This works under the assumption that no more than
a waveform from the same ambiguous cluster is present in the same segment; this
is typically satisfied when the different waveforms come from the same neuron
that cannot fire within a little period of time, while it is not guaranteed when the
different waveforms come from different neurons at the same relative distances
from electrodes.

3.5 Comparison with similar approaches

As already said, the MCI4SC algorithm has an approach similar to that of
the two algorithms in [74] and [19], that likewise attempt to resolve overlapping
spikes using multichannel recording (see Section 2.4). All these 3 methods adopt
the linear mixing model of Eq. (3.1), but they handle it in different ways.

For example, the algorithm in [74] does not directly estimate the mixing
matrix A: using ICA, it obtains the mixing matrix estimation as a consequence
of source signals separation. ICA is usually adopted to solve the classical Blind
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Figure 3.24: Classification of an overlap given by the total superposition of 2
spikes from neuron ND and NH . On the left, the data segment from the tetrode
recording in the locust (Schistocerca americana) antennal lobe; on the right,

the reconstructed signal V Ĉ and the hypothetical signal ŜĈ , where Ĉ represents
the neuron combination ND, NE , NG, and NH , that minimizes the Frobenius
distance ||Y − ÂŜC ||F . The vertical scale is voltage in arbitrary units.

Source Separation (BSS) problem of the “cocktail party”, where speech signals
must be separated from a recording of people talking simultaneously in a room.
ICA is usually applied under the assumption that source signals are independent,
and the number of sensors m is equal to the number of sources n.

On one hand, neural traces from close neurons are not exactly independent,
on the other hand, their recordings satisfy an additional condition that cannot
be exploited in the “cocktail party” context: activities from different sources are
not always present at the same time due to the sparsity and finite duration of
neural spikes. Since it is possible to isolate, and recognize, data segments that
contain a signal coming from just one neuron, the mixing matrix columns can be
directly estimated, within a multiplicative factor, even if there are less sensors
than neurons (m < n), and source signals are dependent.

MCI4SC algorithm and the one described in [19] take advantage of this
neural recording characteristic, and directly estimate the mixing matrix after
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Figure 3.25: Classification of an overlap given by the superposition of 3 spikes
from neuron NA, ND, and NG. On the left, the data segment from the tetrode
recording in the locust (Schistocerca americana) antennal lobe; on the right,

the reconstructed signal V Ĉ and the hypothetical signal ŜĈ , where Ĉ represents
the neuron combination NA, ND, NF , and NG, that minimizes the Frobenius
distance ||Y − ÂŜC ||F . The vertical scale is voltage in arbitrary units.

an initial clustering. Anyway, they do it in a different way: the method in
[19] estimates the mixing matrix columns averaging all the waveforms in each
cluster and then averaging in time and normalizing the absolute values in each
channel (the method is somehow comparable to the estimation based on power
ratios); while MCI4SC averages ratios of Wavelet Packet coefficients obtaining
an estimation more reliable in case of low signal to noise ratio. The method
in [19] differs from MCI4SC algorithm even because it does not care about the
effect of overlapping spikes on the mixing matrix estimation: it assumes that
their number is much smaller than that of single spikes, although this is not
verified in some kind of recordings.

Like MCI4SC, also the algorithm described in [74] separately processes sin-
gle spikes in a first phase, but — in the second phase — it differently treats
overlapping spikes. To be more precise, it clusters spikes with irregular wave-
forms (overlapping spikes or spikes by neurons that show waveform variability)
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assuming that those generated by the the same subset of neurons exhibit simi-
lar features and tend to group together. Nevertheless, the shape of overlapping
spikes strongly varies with the overlap phase, and, when the superposition is
almost complete, the clustering of waveform/amplitude features does not nec-
essarily groups events on the base of similar sources. On the contrary, MCI4SC
algorithm, even if it deals less naturally than [74] with waveform variability,
analyzes overlapping spikes one by one, without requiring their clustering.

All these 3 mentioned algorithms have to cope with the limitation of having
less sensors than sources, yielding therefore a rectangular mixing matrix. To
overcome this limitation, the algorithm in [74], uses the ICA on subset of spikes
generated by a fraction of the total recorded neurons, thus resolving superpo-
sitions when the number of involved neurons is lower or equal to the number
of sensors. The algorithm in [19] calculates, from the estimated mixing matrix,
a set of projection matrices that in turn eliminate one neuron activity from
the measured data: running a secondary spike sorting on each projection, the
method can resolve all spike superposition involving two neurons (the complex-
ity of the algorithm grows enormously to solve overlapping of more than two
neurons). The method in [19] employs, as MCI4SC, the estimation of the mixing
matrix, but, differently from MCI4SC, it does not exploit its inversion. Instead,
under the assumption that less than m neurons are active at a time, MCI4SC
algorithm inverts the matrix representing a reduced measurement channel, and
is able to solve superpositions when the number of involved neurons is lower or
equal to the number of sensors, as the method in [74] does.

Comparing, instead, MCI4SC algorithm with those spike sorting methods
that computes the spatial position of neural spike activity, it is worth noticing
that MCI4SC algorithm does not take explicitly into account the neuron posi-
tions, although it considers the amplitude ratio information associated to the
relative distances between sources and electrodes. Therefore, MCI4SC algorithm
does not even require to know the attenuation coefficient of the medium where
signal is propagating, nor the exact mutual electrodes position, whereas such
knowledge is required by those multichannel methods that exploit the spatial
position of neural sources like the one in [17].

The last comparison is with those methods that explicitly deal with over-
lapping spikes by comparing each recorded waveform with all combinations of
neural templates and all possible delays. MCI4SC algorithm has as well to try
many combinations of neurons, but just those made of m neurons. In such
a way, it can also resolve superposition of 2, 3, . . . ,m − 1 sources. Moreover,
since MCI4SC makes use of combinations of neurons rather than combinations
of templates, it does not require to try all the delays among waveforms, since
the mixing matrix inversion allows to decompose superposition with every delay
among spikes.





Chapter 4

Analysis of experimental data

and Results

This chapter reports the application of the MCI4SC algorithm on a set of exper-
imental data. The main results are compared with those of the Markov Chain
Monte Carlo (MCMC) algorithm, that is presented in [26] and it is briefly de-
scribed in the following. For the analyzed recording, MCI4SC has at least com-
parable efficiency with a much lower computational time, in addition to the
important capability of overlapping spike resolution.

4.1 Evaluation of spike sorting algorithms

In order to evaluate the performances of a spike sorting algorithm, there are
essentially two kind of data to use: i) simulated data, that unavoidably make
assumptions on signal and noise characteristics, but assure the knowledge of
the correct solution (i.e. the information of which spike correspond to which
neuron); ii) or the experimental data that account for more realistic conditions,
but the correct classification of their spikes is unknown. In the last case spike
sorting results are usually compared with manual classification or better, when
it is available, with simultaneous single-unit measurements.

A qualitative evaluation of spike sorting results on experimental data can
also be given by the Inter-Spike Interval (ISI) distributions of classified spikes:
if an ISI histogram clearly shows a refractory period, then their spikes are rea-
sonably considered as coming from the same neuron. This, however, does not
give any estimation of missed events, and a long collection period is required to
be confident that spikes are indeed from a single neuron.

In the case of single spike classification, another qualitative evaluation is
done by means of human inspection: when all spikes associated to the same
neuron show the same trend, the sorting is reasonably assumed as correct.

Unfortunately, not so many simulated or experimental data are publicly
available, and that limits the possibility to compare different algorithms. Chris-

75
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tophe Pouzat and Matthieu Delescluse kindly share two set of experimental data
on the website: www.biomedicale.univ-paris5.fr/SpikeOMatic/Data.html.

The first of the two data set is the tetrode recording from the locust (Schis-
tocerca americana) antennal lobe, already shown and partially analyzed by
MCI4SC algorithm in Chapter 3. The analysis details and the conclusive re-
sults are reported in Appendix B.

The following section illustrates the application of the MCI4SC algorithm
on the second data set: the recording, by a linear probe, of Purkinje cells in a
young rat cerebellar slice. This data set comes with a cell attached recording
performed simultaneously on one of the Purkinje cells. Comparing the spike
detected on this single-unit measurement with those associated by MCI4SC
algorithm to the same cell, it is possible to quantitatively evaluate the spike
sorting efficiency. The performances can be compared with those of the MCMC
algorithm that, in [26], analyzes the same data set.

4.2 Purkinje cell data analyzed by MCI4SC algo-

rithm

This section analyzes a multi-unit recording in a young rat (P12) cerebellar
slice. The recording was performed positioning the probe along the Purkinje cells
layer, in the presence of 40µM DHPG (an agonist of metabotropic glutamatergic
receptors) in order to make the Purkinje cells fire strong bursts.

The measurement is done using 4 of the 16 electrodes of a silicon probe
provided by the Center for Neural Communication Technology of the University
of Michigan. The 4 sensors are linearly placed on the probe 50µm apart. The
data were acquired at 15 kHz using a 16 bit A/D card. More details about the
experimental procedure and the recording hardware can be found in [26].

The 58 seconds of data analyzed in this section are shown in Figure 4.1
(first four traces), together with a simultaneous single-unit recording of one of
the recorded Purkinje cells (last trace). The single-unit recording comes from a
patch-clamp pipette and serves as a reference signal to evaluate the spike-sorting
performance.

Although the Purkinje cells activity has been recorded with an excellent
signal-to-noise ratio, the analysis of this data set is very challenging: in these
pharmacological conditions Purkinje cells fire burst of spikes with dramatically
decreasing amplitudes and slightly different waveforms (see the triplet in the
second channel of Figure 4.2).

Notice also that a spike recorded by a given sensor can be seen on its im-
mediate neighboring sensors (50µm apart) with reduced amplitudes, but never
by further sensors. This is consistent with the exponential decay of the sig-
nal. Since the spikes are recorded by less then four sensors the neurons are
not unequivocally distinguishable on the basis of the source position (or ampli-
tude ratios). Anyway, even if MCI4SC potentialities are not fully exploited, the
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Figure 4.1: 58 seconds of a recording in the Purkinje cells layer of a young rat cerebellar slice;
the data were acquired at 15 kHz and filtered between 300 Hz and 5000 Hz. The first 4 traces
are the multi-unit recording from 4 sensors linearly placed in the silicon probe (amplified 2000
times). The last trace is the single-unit recording (amplified 1000 times). Voltage in vertical
scale.
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Figure 4.2: A segment of data from the Purkinje cells recording that is shown in Figure 4.1
(4 channels + reference channel). Notice the decreasing spike amplitudes in the short burst
(triplet) of the second channel. Notice also that a spike recorded by a given sensor can be seen
on its immediate neighboring sensors with reduced amplitudes, but never by further sensors.
The reference neuron is primarily recorded by the third sensor. The vertical scale is voltage in
arbitrary units.
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obtained results are satisfactory.
Finally notice in Figure 4.2 that the reference neuron is primarily recorded

by the third sensor. Another neuron is visible primarily in the third sensor, and
its largest spikes are comparable in amplitude with the smallest spikes generated
by the reference neuron at the end of each burst (see Figure 4.3).
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Figure 4.3: A segment of data from the Purkinje cells recording that is shown in Figure
4.1 (3rd channel + reference channel). Notice that the spikes in the reference channel are in
correspondence with some of the spikes in the third channel. The remaining spikes in the third
channel are generated by a different neuron. Its spikes are comparable in amplitude with the
smallest spikes generated by the reference neuron at the end of each burst.

It is reasonable to assume that the measurement noise is Gaussian with
practically zero mean. Figure 4.4 shows the normally distributed noise samples
from data segments without spikes.
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Figure 4.4: Histograms of the noise samples in data segments between one spike and another,
in the four channel of the Purkinje cells recording that is shown in Figure 4.1. The distribution
is fitted with a Gaussian approximately centered in zero.

On the other hand, it is worth noticing that the measurement noise is colored.
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The MCI4SC algorithm requires the noise whiteness to exploit the capability of
the Wavelet Transforms to separate the signal from the noise. The requirement,
however, can be relaxed when the signal to noise ratio is high, or when the noise
spectral support is spread with respect to the signal spectral support. This is
the case of the Purkinje Cells recording under analysis.

A0 - Preliminary steps: filtering, spike detection, and analysis win-

dows — First of all, the raw data, both the multi-unit and the single-unit
recording, have been band-pass filtered between 300 and 5 kHz.

Secondly, the spike detection has been performed by an amplitude thresh-
olding on the recorded samples. A different threshold T id has been applied in
each channel i (i = 1, . . . , 4) according to the respective level of additive noise
ηi: the threshold T id has been set as multiple of the standard deviation σηi in
the channel i. For a Gaussian distributed noise, the standard deviation σηi can
be estimated with the following formula based on the median:

σ̂ηi = median (|yi|) /0.6745. (4.1)

where yi are the data recorded in the i-th channel. The standard deviation of the
recorded data σyi , including both noise and spikes, could be much more higher
than the true noise standard deviation σηi , especially when there are many large
spikes. As shown in [64], the estimate of Eq.(4.1) diminishes the interference
of the spikes, under the reasonable assumption that spikes amount to a small
fraction of all samples.

A detection has occurred when a sample crosses, in absolute value, the
threshold T id in at least one channel. Two samples over the threshold and distant
no more than TSP , have been considered as belonging to the same spike, even
if they exceed the threshold in distinct channels. In fact, since spikes oscillate
around zero (especially in case of overlapping spikes), the samples over threshold
can also be not contiguous. The check on the distance between samples over
the thresholds T id, by means of another threshold TSP , allows to group distant
samples of the same spike. In the following, kF and kL denote the first and the
last sample over the detection threshold, thus defining the “detection window”
for each detected spike.

In order to compare the results with those of the MCMC algorithm presented
in [26], the thresholds T id and TSP have been set so that the number of detected
spikes is equal to 2739. The threshold values that have been used are T id =
13.93 · σ̂ηi (i.e. ∼ 0.39, ∼ 0.32, ∼ 0.35, and ∼ 0.31 respectively in the 4 channels)
and TSP = 1.3ms (equal to 20 sampling times). In general, the choice of
the thresholds must be done looking at the spikes in the recorded data. The
thresholds T id are chosen according to the number and amplitude of spikes to
sort. Once T id have been set, the threshold TSP is chosen so that samples of the
same spikes are, on average, grouped together.
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The same thresholds T id and TSP have been used for the learning phase and
for the classification phase, but in principle they may be different. The whole
recording and all the 2739 detected spikes have been considered for the learning
phase.

Finally a window is cut around each detected spike for further analysis. Since
the learning phase uses the Wavelet Packet Transform to estimate amplitude
ratios, it is convenient to use windows, named “learning windows”, made of
K = 26 = 64 samples (∼ 4.3ms). Notice that the maximum duration of detected
spikes is about 60 samples, and thus the selected window length can entirely
contain each single spike. All spikes have been aligned to their center of mass at
sample 28. Usually, this rough alignment is sufficient for the purpose; otherwise,
especially in case of low sampling, spike shapes can be oversampled, before the
alignment, using interpolated waveforms.

In the classification phase, analysis windows with variable length have been
adopted: they started TSP = 1.3ms (20 sampling times) before the first sample
over the detection threshold, and they ended TSP = 1.3ms (20 sampling times)
after the last sample over the detection threshold. In the following, kB and kE
denote the samples where the “classification window” begins and ends for each
detected spike (kB = kF − 20 and kE = kL + 20).

A1 - Single spikes versus overlapping spikes — First of all, 162 spikes
with a detection window larger than Tlong = 25 samples (i.e. kL − kF + 1 ≥
25), have been considered as overlapping spikes. The threshold Tlong is chosen
evaluating how many samples of the recorded spike waveforms are over the
thresholds T id.

Other 1773 spikes have been classified as overlapping spikes by checking the
normalized cross-correlation zr,i with zero-lag between the reference channel r
and the others 3 channels (see Eq. 3.15). At this stage, the reference channel r
for a certain spike, is the one with the maximum sample in absolute value. The
spike has been considered as an overlap when at least one of its cross-correlations
zr,i, for i = 1, . . . ,m, i 6= r, is under the corresponding threshold T r,icross.

Consider the case in which the same signal w is recorded, with different
amplitude, in the reference channel r and in the generic channel i (i.e. yr =
αrw+ ηr and yi = αiw+ ηi). Assuming that the additive noise in each channel
is independent from the signal w, and it is Gaussian with zero mean (i.e. ηi ∼
N (0, σηi) and ηr ∼ N (0, σηr)), the normalized cross-correlation between yr and
yi can be approximate, on average, as:

zr,i =

√

(
∑K

k=1 y
2
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ηr
)(
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2
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√
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2
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,

(4.2)
where K is the number of samples, and cov(ηr, ηi) is the covariance between ηr
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and ηi. The noise covariance is estimated from data segments without spikes:

cov


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η4


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
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



· 10−3. (4.3)

The standard deviation of the normalized cross-correlation zr,i can be as well
approximated as:

σzr,i =

√

√

√
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σ2
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ηr
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2
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. (4.4)

In Eq. (4.2) and (4.4), the quantities
∑

k y
2
r (k)−Kσηr

2 and
∑

k y
2
i (k)−Kσηi

2,
that approximate

∑

k w
2(k), are set equal to zero when they become negative.

Concluding, the threshold for the cross-correlation zr,i is the set equal to:

T r,icross = zr,i − 3σzr,i . (4.5)

Figure 4.5 represents spike-amplitude ratios of all detected spikes in (a),
and spike-amplitude ratios of non overlapping spikes in (b). Notice that not all
overlapping spikes have been excluded, but this first classification is sufficient
to allow a right automatic clusterings in the following.
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Figure 4.5: Tri-dimensional plot of three spike-amplitude ratios (the 1st, the 2nd, and the
4th) from the Purkinje cells recording. In (a), the spike-amplitude ratios of 2739 detected
spikes. In (b), the spike-amplitude ratios of the 804 spikes not classified as overlapping spikes.

A2 - Estimation of spike-amplitude ratios — Following the procedure
described in Section 3.3, the amplitude ratios of the 804 non overlapping spikes
have been estimated as ratios of Wavelet Packet coefficients.
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The Discrete Wavelet Packet Transform has been performed on the previ-
ously selected windows of K = 64 samples. To deal with the border distortion
problem, the analysis windows has been extended according to the periodization
mode.

The Wavelet theory suggests, in general, to use spike-shaped mother wavelets
but there is not a more precise indication. Many different mother wavelets have
been used for neural spike sorting: for example the 4th order Daubechies in [46],
3rd order Coiflet in [41], and the Haar in [64]. The mother wavelet used here
to test MCI4SC algorithm is the 5th order Symlet, an orthogonal wavelet with
compact support. The 5th order is a trade-off solution between frequency and
time-resolution: larger orders ensure a better frequency-resolution, but imply a
worse time-resolution and request larger analysis windows.

The WP Transformation has been performed at the decomposition level
L = 4, that is, using periodization extension mode, the maximum level satisfying
the necessary condition K/2(L−1) < DFL/2, with window length K = 64, and
decomposition filter length DFL = 10 (twice the wavelet mother order).

Figure 4.6 shows in (a) the 5th order Symlet, in (b), the associated scaling
function, in (c) and (d) the decomposition low-pass filter g0 and the decompo-
sition high-pass filter g1 associated to the 5th order Symlet.

A3 - Single spike Sorting — Using K-means algorithm the amplitude ra-
tios of non-overlapping spikes have been clustered in 6 groups associated to an
equal number of neurons (see Figure 4.7). The clustering algorithm has been
opportunely initialized with a human intervention that provides the number of
clusters and their approximate centroids.

Figure 4.8 shows the superimposed spike waveforms, cluster by cluster, as
they are grouped in Figure 4.7. Notice the presence of different waveforms in
the clusters. Human intervention is required to establish if different waveforms
in the same cluster belong to only one bursting neuron or to more neurons at the
same relative distances from the sensors. Since in this recording, that has been
performed with electrodes in linear configuration, the spikes are measured just
by 2 or 3 electrodes, their amplitude ratios does not unambiguously identify
the neuron positions. Nevertheless, it is known a priori that these recorded
neurons fire burst of spikes. Therefore it is reasonable to consider each cluster
as generated by a unique neuron. For example, notice that the second cluster
clearly exhibits 3 different spike waveforms, and remember that this recording
contains a bursting neuron that fires triplets in the second channel (see Figure
4.2).

The MCI4SC algorithm naturally handles neurons that fire the same spike
waveform with different amplitudes, but its complexity increases handling neu-
rons that fire different spike waveforms. Since in this case the spike waveforms
of the bursts change mostly in amplitude and slightly in shape, it is possible to
treat those of the same cluster/neuron as the same waveform differently scaled,
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Figure 4.6: In (a) the 5th order Symlet. In (b) the associated scaling function. In (c) and
(d) the decomposition low-pass filter g0 and the decomposition high-pass filter g1 associated
to the 5th order Symlet.

still obtaining good results. This simplifies the spike sorting procedure and
allows to save computational time. A more accurate (but time-expensive) anal-
ysis can be performed separately modeling all the spike shapes visible in each
cluster/neuron.

A4 - Waveforms and mixing matrix estimation — To well estimate the
spike templates and the mixing matrix, it is convenient to ‘clean’ the clusters
found in the previous step by excluding overlapping spikes erroneously classified
as single spikes. The cleaning operation has been performed in two step: i) first,
outlier points with amplitude ratios too distant from cluster centroids have been
removed; ii) then, spikes with shapes too different from the average waveform
have been removed.

A well-known distance measure, often used to detect outliers, is the Maha-
lanobis distance which takes into account the correlations of the data set and
does not depend on the scale of measurements.

Consider the cluster Clustj , j = 1, . . . , 6, that collects Nj events e associated
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Figure 4.7: The amplitude ratios of the 804 non overlapping spikes from the Purkinje cells
recording are grouped in 6 clusters. In (a), a tri-dimensional plot of the 1st, the 2nd, and
the 4th spike-amplitude ratio. In (b), a tri-dimensional plot of the 1st, the 3rd, and the 4th
spike-amplitude ratio. The numbers of spikes collected by the clusters from 1 to 6 are 303, 95,
87, 231, 53, and 35 respectively.

to an equal number of multivariate amplitude ratio vectors Re. The cluster
centroid Rj is usually estimated as the arithmetic mean of its sample, and
the cluster covariance matrix Sj is usually estimated as the sample covariance
matrix. The Mahalanobis distance between the vector Re, e ∈ Clustj , and the
centroid Rj of its cluster is defined as:

DM (Re, Rj) =
√

(Re −Rj)′(Sj)−1(Re −Rj). (4.6)

The outliers typically exhibit Mahalanobis distances from their cluster cen-
troids that are much greater than the Mahalanobis distances of the remaining
points in the same cluster. Therefore, in the analysis of the Purkinje cells record-
ing, the spikes e ∈ Clustj with distance DM (Re, Rj) greater than the threshold

T jMahal have been excluded by their cluster Clustj . The threshold T jMahal has
been set to the mean distance from the Clustj centroid:

T jMahal =
∑

e∈Clustj

1

Nj
DM (Re, Rj), j = 1, . . . , 6. (4.7)

Figure 4.9 shows the clusters of Figure 4.7 after this first cleaning step.

The second cleaning step calculates, first of all, an average waveform yj(k)
for each cluster Clustj , j = 1, . . . , 6. The average considers the waveforms of
the events e survived from the first cleaning step, as they have been recorded
in the reference channel rj (the channel with the largest spike amplitude). The



4.2 Purkinje cell data analyzed by MCI4SC algorithm 85

−1

0

1

Clust1: N
A

C
ha

nn
el

 1

−1

0

1

C
ha

nn
el

 2

−1

0

1

C
ha

nn
el

 3

−1

0

1

C
ha

nn
el

 4

20 40 60

−1

0

1

R
ef

Clust2: N
B

20 40 60

Clust3: N
C

20 40 60

Clust4: N
D

20 40 60

Clust5: N
E

20 40 60

Clust6: N
F

20 40 60

Figure 4.8: Superimposed spike waveforms from the Purkinje cells recording, as they are
clustered in Figure 4.7. Notice the presence of different waveforms into the clusters. Since
recorded neurons fire burst of spikes, each cluster has been considered as generated by a
unique neuron. The vertical scale is voltage in arbitrary units.

cleaning operation comes to an end evaluating the maximum cross-correlations
between the spike waveforms and the average waveforms yj(k) of the respective
cluster Clustj . If the maximum cross-correlation is under a certain threshold

T jw, the spike has been excluded by the cleaned cluster. Moreover, exploiting
the information about the maximum cross-correlation lag, all spikes have been
realigned to the average waveform.

In the analysis of the Purkinje cells recording, the thresholds T jw, with j =
1, . . . , 6, have been set to 0.97, 0.80, 0.97, 0.97, 0.97, and 0.90 respectively.
Notice that the second and the sixth thresholds are lower than the others. This
allows to save the slightly different waveforms of the bursting neuron NB and
NE , without separately modeling them. Figure 4.10 shows the superimposed
spike waveforms for each cluster after the cleaning procedure. The numbers
of spikes in the cleaned clusters associated to neurons NA, . . . , NF are 143, 70,
71, 185, 35, and 29 respectively. The percentages of removed events are 53%,
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Figure 4.9: The amplitude ratios clusters of Figure 4.7 after the first cleaning step that
has removed points too distant from the respective cluster centroid. 642 spikes in total are
represented. In (a), a tri-dimensional plot of the 1st, the 2nd, and the 4th spike-amplitude
ratio. In (b), a tri-dimensional plot of the 1st, the 3rd, and the 4th spike-amplitude ratio.

26%, 18%, 20%, 34%, 17%, respectively. Notice that the reference neuron of the
single-unit recording corresponds to the neuron ND.

Finally, the learning phase has been concluded by averaging the spike wave-
forms and the amplitude ratio vectors among all single spikes in each cleaned
cluster of Figure 4.10. The estimated waveform templates ŵ1, . . . , ŵ6 are on the
bottom of Figure 4.10, and the estimated mixing matrix Â (rounded to nearest
hundredths) is the following:

Â =









1 0.13 0.46 0.01 −0.02 0.01
0.13 1 1 0.04 0.00 0.04
0.02 0.10 0.10 1 1 0.39
0.01 0.02 0.04 0.20 0.43 1









. (4.8)

The two cleaning steps have been carried out automatically with the exception
of the threshold setting. The human supervision is used to set the thresholds
T jMahal and T jw so that the cleaning result is visually good (see waveform super-
position in Figure 4.10). In particular, it is necessary to reach a compromise
between an accurate cleaning of the clusters and the numbers of spikes saved in
each cluster (the greater is the number the better will be the related estimates).

According to desired accuracy in the neuron models, other methods can
be used to clean the clusters, from the manual selection of single spikes to
completely unsupervised techniques.

B1 - Pseudoinversion of the mixing matrices ÂC, for each C ∈ C —

For this Purkinje cells recording, since 6 neurons have been measured by 4
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Figure 4.10: Superimposed spike waveforms of the clusters in Figure 4.9 after that they have
been cleaned. The Figure shows also the estimated mixing matrix components in correspon-
dence of Channel 1–4 and, on the bottom, the estimated waveform templates. Notice that the
reference neuron of the single-unit recording named ’Ref’ corresponds to the neuron ND. The
vertical scale is voltage in arbitrary units.

sensors, the number of neuron combinations in C is
(

6
4

)

= 15. Therefore, in

this first step of the classification phase, 15 pseudoinverses (ÂC)† have been
calculated. Â is the estimated mixing matrix in Eq. (4.8), and C is a 6 by 6
diagonal matrix with 4 components equal to 1 in correspondence to the selected
neurons in each of the 15 possible combinations.

According to which neurons the matrix C has selected or not, some columns
of Â rather than others contribute to the mixing matrix ÂC, and the condition
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Combination of neurons Condition Number

selected by C of the matrix ÂC

NA NB NC ND ∼ 127.5
NA NB NC NE ∼ 131.8
NA NB NC NF ∼ 264.7
NA NB ND NE ∼ 9.7
NA NB ND NF ∼ 1.9
NA NB NE NF ∼ 2.4
NA NC ND NE ∼ 9.7
NA NC ND NF ∼ 2.0
NA NC NE NF ∼ 2.4
NA ND NE NF ∼ 55.2
NB NC ND NE ∼ 10.1
NB NC ND NF ∼ 6.8
NB NC NE NF ∼ 6.9
NB ND NE NF ∼ 91.3
NC ND NE NF ∼ 248.2

Table 4.1: For each one of the 15 possible 4-combinations of 6 neurons selected by the matrix
C, the respective condition number of the matrix ÂC has been shown.

number changes as well. The Table 4.1 shows the respective condition numbers
of the matrix ÂC, for each one of the 15 possible 4-combinations of 6 neurons
selected by the matrix C.

Notice that the combinations with the largest condition numbers are those
that contain at the same time the neurons NA-NB-NC , or the neurons ND-
NE-NF . These two subsets of neurons are mostly visible in the same channels
(NA, NB, NC are mostly visible only in the first two channels; ND, NE , NF

are mostly visible only in the last two channels), and that makes their columns
very “similar” (see the matrix in Eq. (4.8)). As a consequence, it will be more
difficult to correctly classify the spikes made by the superposition of NA, NB,
and NC , or ND, NE , and NF . This kind of limitation is not related to the
method itself, but to the reciprocal positions between sensors and neurons.

B2 - Estimation of the hypothetical signals ŜC , for each C ∈ C — In
this step, the 2739 detected spikes have been scanned, one by one, in their own
classification window y(k), k ∈ [kB, . . . , kE ]. The classification window has been
cut around the detected spike as described in A0, and has adaptive length.

For each spike, and for each combination C ∈ C, the hypothetical signal re-
construction vC(k) = [vC1 (k), . . . , vC6 (k)]′ has been calculated as (ÂC)†y(k). In
correspondence to the two neurons that have not been selected by C, the rows
vCj (k) are null by construction. Instead, for the other 4 neurons that the ma-
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trix C has selected, the cross-correlations zjv,w(k) — between the reconstruction
rows vCj (k) and the templates ŵj(k) — have been evaluated (see Eq. 3.27) to

determine the hypothetical signals ŜC associated to the neuron combination C.

To be more precise, the hypothetical signal ŜC is a collection of waveform
templates ŵj(k), opportunely amplified and translated (see Eq. 3.30). The
template amplification BC

j and the template translation kCj are related to the

maximum of the cross-correlation zjv,w(k) as described by Eq. (3.28) and (3.29).
But, only if the amplification BC

j is larger than the respective threshold T jB,
the correspondent waveform template ŵj has been accepted to contribute to the
hypothetical signal ŜC . Otherwise, when the amplification BC

j is too small, a
null signal is been associated to the neuron j, as in the case of the two neurons
not selected by C.

For each cluster j, the amplification threshold T jB has been set to the mini-
mum amplification among those of spikes in the cleaned cluster Clustj of Figure
4.10. The correspondent values were: ∼ 0.76, ∼ 0.35, ∼ 0.81, ∼ 0.71, ∼ 0.92,
and ∼ 0.70, for j = 1, . . . , 6 respectively. Notice the low value of T 2

B that allows
to accept a small spike amplification for the neuron NB that fires spikes much
smaller than the waveform template ŵ2 (see Figure 4.10)

The thresholds T jB are very important for a correct classification. On the
one hand, if they are too small, many little oscillations in the data (due to
noise or anomalies) can be erroneously considered as neural spikes; on the other
hand, if they are too large, they prevent some neural spikes to be considered
because replaced by a null signal. The T jB setting is a very delicate matter
especially when different neurons fire spikes with very similar shape that are
recorded by few sensors. In this unlucky case, exploiting information about the
possible amplification range is useful to avoid ambiguity and distinguish different
sources. Whereas, in the case of unambiguous recordings, the choice of T jB is
less determining and constraining.

In the case of the Purkinje cells recording under analysis, the reference neu-
ron ND fires spikes that are similar in shape to those of neuron NE , and both
of the two neurons are recorded only in the third and in the fourth channel.
Unfortunately, the smallest spikes of neuron ND have, in the third channel, an
amplitude comparable to the greatest of neuron NE . The adopted thresholds
T 4
B avoids this ambiguity since it is large enough to disregard spikes from neuron
NE , even though it disregards also a percentage of small spikes from neuron ND.
Despite this lack in the classification of small spikes from the reference neuron,
good classification results have been obtained.

B3 - Selection of the minimum distance between hypothetical and

original measurements — For each detected spikes, the 15 hypothetical
signals ŜC , one for each C ∈ C, have been re-mixed with the matrix Â, thus
obtaining an equal number of hypothetical measurements Ŷ C = ÂŜC .

All these hypothetical measurements Ŷ C have been compared with the orig-
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inal measurement Y , by means of the Frobenius distance:

dF (Y, Ŷ C) = ||Σ−1(Y − Ŷ C)||F = ||Σ−1(Y − ÂŜC)||F , (4.9)

where the diagonal matrix Σ−1 = diag(σ−1
η1 , . . . , σ

−1
η4 ) normalizes the noise stan-

dard deviations of different sensors, so that they become comparable.
Among the 15 combinations of neurons C ∈ C, the one that minimizes this

distance between hypothetical and original measurements has been chosen, as
the one that best explains the observed measurements, both in terms of active
neurons, and in terms of conditioning:

Ĉ = arg min
C∈C

||Σ−1(Y − Ŷ C)||F . (4.10)

B4 - Spike Classification — The sorting procedure has been concluded asso-
ciating to each detected spikes a list of neurons {Nj′ , Nj′′ , . . .} ⊂ {NA, . . . , NF },
and a list of corresponding arrival times {kMAX

j′ , kMAX
j′′ , . . .} defined as the sam-

ples where the maximum positive peaks occur.
For each detected spike, the matrix Ĉ, selected in the previous step, indi-

viduated the hypothetical signals ŜĈ that better explains the observed data

segment. The neurons considered active in ŜĈ have been included in the neuron
list, but only if their spikes were in central positions inside the analysis windows
of the classification phase. For each neuron j the corresponding spike arrival

time kMAX
j can be calculated through kĈj , that has been found in step B2:

kMAX
j = kB + kĈj − 1 + arg max

k
(ŵj(k)), (4.11)

where kB is the first sample of the classification windows, and ŵj(k) is the spike
waveform of neuron j.

To be more precise, the spikes have been considered in a central position
inside the analysis windows when the maximum positive peak or the minimum
negative peak were inside the detection window extended by 3 samples on the
left and on the right, i.e. only if the spikes satisfied the following condition:

kF − 3 ≤ kMAX ≤ kL + 3 or kF − 3 ≤ kmin ≤ kL + 3, (4.12)

where kF and kL were the first and the last samples over the detection threshold,
and kMAX, kmin were the maximum positive and the minimum negative peak
position respectively.

Thanks to this condition, the spikes that contributed to the data segment
under analysis with a little portion of the whole spike waveform (the tail or the
header) were not taken into consideration, since they were not properly part
of the detected spike. Moreover, this condition guaranteed to consider each
spike once, and not twice: in other words, each spike has been considered in one
analysis window and not in the previous/subsequent window TSP = 20 sampling
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times apart (notice that the estimated waveform had at most the maximum and
the minimum peaks 11 samples apart, that is less than TSP − 3 · 2).

If no one neuron has been considered active by ŜĈ , or if no one spike of
active neurons has satisfied the condition in (4.12), the data segment under
analysis has not been classified. As already said, this may be due to different
reasons, such as some anomalies in the recording, or spike superpositions with
ill-conditioning problems, or small contributions from neurons not modeled in
step A4 because further and weaker than the foreground neurons.

Figure 4.11 and 4.12 show two examples of overlapping spikes, from the
Purkinje Cells recording, that have been successfully classified by MCI4SC al-
gorithm. The first example is a superposition of two spikes fired by neurons
NE and NF . The second example is a superposition of 3 spikes generated by
neurons NB, NC , and ND.

Classification results — Among the 2739 detected spikes, 2407 have been
classified as single spikes, 205 as superposition of 2 spikes, 11 as superposition
of 3 spikes, and the remaining 116 have not been classified. The total number
of sorted spikes is, therefore, 2850.

About the spikes considered as superpositions, the arrival time distance be-
tween two overlapping spikes varies as shown in the histogram of Figure 4.13
Notice that 33 overlapping spikes have arrival times distance < 5 sampling time
(∼ 0.33ms). It is very difficult to correctly classify these spikes with algorithms
that do not explicitly consider the overlapping spike problem.

Figure 4.14 shows, for each sorted neuron, the ISI histograms in semi-log
scale, and the respective number of associated spikes. Notice that the ISI his-
tograms show refractory periods of at least 3ms (45 sampling time).

The code was written in MATLAB programming language and run on 1.73
GHz Pentium PC running Microsoft Windows XP. The Analysis of 58 seconds
Purkinje Cell recording (with 2739 detected spikes) takes, on this system, about
5 seconds for the preliminary step A0, about 24 seconds for the learning phase,
and about 105 seconds for the classification phase (134 seconds in total).

The computational time linearly increases with the number of detected
spikes, but heavily increases with the number n of neuron to sort. In fact,
increasing n, the number of sensors m being equal, the possible number of m-
combinations grows according to Eq. (3.24). At the same time, a larger number
of sensors able to record the same group of spikes, heavily reduces the combina-
tion number.

Reference Channel — First of all, to match the reference waveforms with
those in the extracellular measurements, the single-unit recording has been up-
turned, so that positive values were negative and vice versa. Moreover, the
single-unit recording has been realigned with the extracellular recording through
a shift of 5 sampling times toward the time origin.
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The same detection procedure described in step A0 for the extracellular
recording is applied to the single-unit recording: a detection has occurred when
a sample crosses, in absolute value, the threshold T refd ; two samples over the
threshold and distant no more than TSP , have been considered as belonging
to the same spike. In order to compare the results with those of the MCMC
algorithm presented in [26], the thresholds T refd and TSP have been set so that

the number of detected spikes is equal to 766. In particular, T refd has been set
to 0.832, and TSP has been set to 1.3ms (20 sampling times).

Not all the 766 spikes that have been detected in the reference channel have
also been recorded/detected in the third sensor of the extracellular recording.
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Figure 4.11: Classification of an overlap given by the superposition of 2 spikes from neurons
NE and NF . On the left, the data segment from the Purkinje Cells recordings: the extracellular
multi-unit recordings (Y ) and the single-unit recording. On the right, the reconstructed signal

V Ĉ (thin lines), and the hypothetical signal ŜĈ (thick line). The matrix Ĉ represents the
neuron combination NA, NB , NE , and NF that minimizes the Frobenius distance ||Σ−1(Y −
ÂŜC)||F . The horizontal lines in the recorded data plots represent the detection threshold
±T i

d, i = 1, . . . , 4. The sample kB is the first sample of the classification window. The vertical
lines, kF and kL, delimit the detection window. Both the two spikes have been included in
the classification result because the maximum positive peak or the minimum negative peak are
inside the detection window and satisfy the condition (4.12). The vertical scale is voltage in
arbitrary units.
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Figure 4.12: Classification of an overlap given by the superposition of 3 spikes from neu-
rons NB , NC and ND. On the left, the data segment from the Purkinje Cells recordings:
the extracellular multi-unit recordings (Y ) and the single-unit recording. On the right, the

reconstructed signal V Ĉ (thin lines), and the hypothetical signal ŜĈ (thick line). The matrix
Ĉ represents the neuron combination NB , NC , ND, and NF that minimizes the Frobenius
distance ||Σ−1(Y − ÂŜC)||F . The horizontal lines in the recorded data plots represent the
detection threshold ±T i

d, i = 1, . . . , 4. The sample kB is the first sample of the classification
window. The vertical lines, kF and kL, delimit the detection window. All the 3 spikes have
been included in the classification result because the maximum positive peak and the minimum
negative peak are inside the detection window and satisfy the condition (4.12). The vertical
scale is voltage in arbitrary units.

See, for example, that the last of the 3 detected spikes in Figure 4.15 is over the
detection threshold T refd in the reference channel, but it does not overcome the
detection threshold T 3

d in the third channel.

As already seen in Figure 4.10, the reference neuron corresponds to the
neuron ND. The MCI4SC algorithm has assigned 644 spikes to the neuron ND.
Among these spikes, 636 correspond to as many spikes detected in the reference
channel. The correspondence is been accepted when the arrival time of the
ND spike is distant at most 3 samples (∼ 0.2ms) from the arrival time of the
reference spikes. The others 8 spikes assigned to ND are False Alarm.

Figure 4.16 show, as an example, the classification results of spikes detected
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Figure 4.13: Histogram of the arrival time distance between two overlapping spikes. Bin
width: 5 samples.
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number of associated spikes. Notice a refractory period of at least 3 ms. The ISI is in seconds.
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Figure 4.15: A segment of data from the Purkinje cells recording (3rd channel + reference
channel). The horizontal lines represent the detection thresholds ±T 3

d and T ref
d . The vertical

lines, kF and kL, delimit the detection windows in the extracellular recording. Three spikes
have been detected in the reference channel (3 circles indicates their arrival times). Notice
that the last of the 3 spikes has not been detected in the third channel. The vertical scale is
voltage in arbitrary units.

in the data segment of Figure 4.3.

4.3 Comparison with MCMC Algorithm

This section compares the results obtained by the MCI4SC algorithm, with
those obtained by the MCMC algorithm described in [26], when both have been
applied on the same data set (the Purkinje Cells recording). Before comparing
results, the MCMC algorithm is described in its essential features.

The MCMC algorithm — The method developed by Delescluse and Pouzat,
is built on a data generation model that takes into account both the firing statis-
tics and the spike amplitude dynamics. To perform spike-sorting, this algorithm
makes statistical inference on the parameters of the data generation model using
a Markov Chain Monte Carlo (MCMC) approach, under the assumption that
the measured spike amplitudes are corrupted by a Gaussian white noise which
sums linearly with the spikes and is statistically independent of them.

To account for the empirical ISI density of the Purkinje Cells in DHPG, the
method resorts to a Hidden Markov Model (HMM) with 3 log-Normal states.
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Figure 4.16: Spike sorting results on a segment of data from the Purkinje cells recording
(3rd channel + reference channel). On the top, circles indicates the arrival times of spikes
classified as coming from neuron ND; on the bottom, circles indicates the arrival times of
spikes detected in the reference channel. Crosses indicates the arrival times of spikes classified
as coming from neuron NE . The horizontal lines represent the detection thresholds ±T 3

d and
±T ref

d respectively. Notice that some spikes do not overcome the thresholds and have not been
detected. The vertical scale is voltage in arbitrary units.

In general, the sequence of ISIs produced by a given neuron can be seen as the
observable output of a hidden sequence of states of this neuron (“hidden” in the
sense that the state in which the neuron is, is not directly observable from the
data). The 3 states of the model are related to 3 modes in the ISI distribution,
and each event is fired so that its ISI is generated by one of the 3 possible
probability densities according to the state in which the neuron is.

The 3 modes in the ISI distribution are respectively associated to bursty
firing (first mode at high frequency with short ISI), tonic firing (second mode at
intermediate frequency with intermediate ISI) and pauses between them (third
mode at low frequency with long ISI). These 3 modes reflect the the Purkinje
Cells activity in DHPG that typically evolves from a tonic firing to a bursty
firing separated by intervals of several hundreds of ms. The ISI density of each
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state is been modeled as a log-Normal density:

f(isi) =
1

isi
√

2πσ2
· e

− 1
2

(

log( isi
s )

σ

)2

, (4.13)

where s is a scale parameter (in seconds), and σ is a shape parameter (dimen-
sionless). Therefore, 6 parameters are necessary to describe the 3 log-Normal
densities.

Beyond these 6 parameters, other 6 parameters are necessary to describe
the transition matrix between the 3 states: after the generation of each event,
a transition from the current state to any other (including itself) is performed
stochastically. In conclusion, 12 parameters specify the ISI distribution for each
neuron.

Events are described not only by their occurrence time, but also by their
peak amplitude measured on the 4 channels. The spike amplitude, that depends
on elapsed time from the previous spike, has been modeled by an exponential
relaxation:

A(isi) = P (1 − δe−λ isi), (4.14)

where isi is the ISI, λ is the inverse of the relaxation time constant (measured
in seconds−1), P is the 4-dimension vector of the maximal possible amplitude
with the same modulation on the 4 channels, and δ is the dimensionless maximal
modulation. Adding these other 6 quantities, the total number of parameters
per neuron amounts to 18.

As it is explained in [26], the statistical inference on the model parameters
relies on the construction of a Markov chain whose space S is the product of
two spaces: the space of the model parameters defined in the data generation
model, and the space of spike train configurations that specifies a neuron of
origin and a neuron state for each spike. Therefore, a state of the Markov chain
in this space is determined by two vectors: the vector θ of model parameters (a
(18·K)-dimensional vector where K is the number of recorded neurons), and the
vector C of the configuration, specifying a neuron of origin and a neuron state
for each spike (a (2 ·N)-dimensional vector, where N is the number of detected
spikes being analyzed). The construction of this Markov chain is done in such a
way that it samples the space S from the posterior density πpost(θ, C|Y ) of the
model parameters and configurations, given the recorded data Y : at each step
t of the algorithm a new state [θ(t), C(t)] of the Markov chain is generated from
the state at step t− 1, [θ(t−1), C(t−1)].

Once the simulated Markov chain has reached equilibrium — i.e. the chain is
sampling from its stationary distribution which is the desired posterior density
— the values of the parameters and the neurons of origin can be estimated,
as well as errors on these estimates. This is done by averaging the value of a
given parameter i over the performed algorithm steps, discarding the first steps
necessary to reach equilibrium.
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The excellent performance of this method relies on its ability to take into
account the information provided by the occurrence time of the spikes, as well
as their amplitude dynamics. It is moreover built on a proper probability model
for data generation which, in that case, implies that convergence proofs of the
algorithm do exist. This MCMC based approach provides, as well, meaningful
confidence intervals on the model parameters and on the neuron of origin.

Nevertheless, the sorting of each detected spike, is not independently per-
formed, since it is related to the time elapsed from the previous spikes. This
means that an error in the spike detection or classification has consequence on
the classification of subsequent spikes.

The MCMC algorithm can be easily adapted to different discharge models, or
different numbers of states, but it needs a priori assumptions on them (possibly
done on the base of single-unit recordings).

The method, as it is described in [26], is not fully automatic since it requires
the user to choose the number of active neurons in the data, by individually
scanning models with different numbers of neurons. The authors are working
on a way to reliably compare models with different numbers of neurons, thus
making automatic this initialization.

Comparison of results — It is worth noticing that the comparison between
the two algorithms, MCI4SC and MCMC, cannot be straightforward, since the
spike detection, both in the extracellular and in the single-unit recordings, has
been performed in two different way.

As it is been described in the previous section (step A0), the spike detection
implemented to evaluate the MCI4SC algorithm has been performed by thresh-
olding the raw data, and considering two samples over the threshold, distant no
more than TSP , as belonging to the same spike.

The spike detection implemented to evaluate the MCMC algorithm has been
differently performed. As described in [26], a first set of large events were de-
tected as local maxima with a peak value exceeding a preset high threshold (5
times the standard deviation of the whole trace). These detected events were
normalized (peak amplitude, at 1, temporal average, at 0) to give a “spike tem-
plate”. Each trace was then filtered with this template (by convolution with the
template in reversed time order). Finally, events were detected on the filtered
trace as local maxima whose peak value exceeded a preset threshold (a mul-
tiple of the standard deviation of the filtered trace). To simplify calculations
and reduce the complexity of the algorithm, the peak amplitudes were “noise
whitened”.

In particular, notice that the MCMC algorithm does not consider spike su-
perposition. Each detected peak is treated as a single spike, and two peaks
detected onto different channels within less than 5 samples have been consid-
ered as only one spike [61] [25]. Therefore, when 2739 spikes have been detected,
2739 spikes have been classified as well by the MCMC algorithm. On the con-
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trary the MCI4SC algorithm, analyzing 2739 detected spikes, attributed to their
neurons of origin a different number of spikes (2850). Moreover, MCI4SC is able,
in principle, to correctly classify overlapping spikes even in case of total superpo-
sition of more waveforms (up to the number of sensors), while MCMC algorithm
assumes the presence of a single spike, and risks to introduce error in the ISI
and in the classification of subsequent spikes.

The analysis results of MCMC algorithm (on 2739 detected spikes) were
obtained after a 1000 MC steps with the Replica Exchange Method. All pa-
rameters had reached their equilibrium value after roughly 500 MC steps, and
the average value of each model parameter has been computed using the last
200 MC steps. This required about 33 minutes on a 3GHz PC (Pentium IV)
running Linux (codes were written in C). On the other hand, the MCI4SC algo-
rithm requires about 134 seconds to analyze an equal number of detected spikes
belonging to the same recording (considering 6 active neurons as MCMC has
done). It is worth noticing, however, that the indicated time is valid once that
all thresholds have been set. To obtain the best results, MCI4SC requires the
human supervision during the preliminary step and the learning phase, in order
to assure a proper threshold setting.

MCMC algorithm detected 766 spikes in the single-unit recording, using
the same detection procedure used for the multichannel recording. At the end
of the spike sorting procedure, it assigned 637 spikes to the reference neuron.
Among these spikes, 629 correspond to as many spikes detected in the reference
channel, and the others 8 spikes assigned to the reference neuron are False
Alarms. For comparison remember that MCI4SC algorithm has assigned to the
reference neuron 644 spikes; among these, 636 are considered as True Alarms,
and the others 8 as False Alarms. The classification results provided by the two
algorithms are more or less comparable, even though a fair comparison should
be done adopting the same detection procedure.

Notice that not all the 766 spikes that have been detected in the reference
channel are effectively recorded/detected in the multichannel recording (see Fig-
ure 4.15). Among the 766 reference events detected on the single-unit recording,
only 641 are detected on the third channel by the MCMC detection procedure,
thus leading to an efficiency equal to 629/641 = 98.1%. Nevertheless, the num-
ber of reference spikes detected in the third channel is not fully significant be-
cause it obviously depends on the detection procedure, and on the way that the
coincidences third/reference channel are defined.

As a final consideration on the sorting results, notice that the neurons NB

and NF produce triplets of spikes of very different amplitudes, that are clearly
visible in the recorded data (see for example Figure 4.2).

In the case of neuron NF , both the two algorithms correctly classify its
detected spikes. Nevertheless, only the first one or the first two spikes of each
triplet are effectively detected.

The case of neuron NB is more challenging, since the third spike of the triplet
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has often been detected and it has, in the second channel, amplitude comparable
to those of spikes fired by neuron NC .

A total of 100 triplets fired by neuron NB are present in the second channel.
The third spike of each burst has often been detected by MCMC algorithm,
but it has been wrongly attributed to neuron NC , instead of being attributed
to neuron NB like the first two spikes of the burst. This misclassification is
essentially due to the fact that the model of spike waveform dynamics is not
sufficiently supported by data from unit NB. With the adopted model, the
third spikes in bursts are more likely to come from unit NC , whose events are
of similar amplitude.

On the other hand, MCI4SC algorithm has detected all the three spikes
in 60 cases, while in 40 cases only the first two spikes have been detected:
a total of 60 · 3 + 40 · 2 = 260 spikes generated by NB have been detected.
Among the 60 triplets completely detected, in 58 cases all the three spikes have
been attributed to NB, and in the 2 remaining cases the third spikes have been
wrongly attributed to NC (notice that, in this recording, MCI4SC is able to
correctly classify small spikes that experimentalists usually do not take into
account). Among the 40 detected doublet, in 39 cases the two spikes have been
attributed toNB, e in 1 case the second spike has been wrongly attributed toNC .
Summarizing, 257 spikes (over the 260 detected) have been correctly attributed
to NB (98.8%); 8 spikes (over the 265 attributed to NB) do not belong to the
typical triplet of NB, and must be considered as False Alarm (3%).

Figure 4.17 shows, as an example, the classification results in a data segment
(the first 700 samples are the same of Figure 4.2). In the second channel, there
is a triplet from neuron NB correctly classified, and, in the fourth channel,
there is a doublet from neuron NF . It is worth noticing that many existing
methods, based on waveform or amplitude features, wrongly assign the 3 spikes
of the triplet to 3 different neurons, and a supervisor has to subsequently group
together these spikes.

In conclusion, the two algorithms, MCMC and MCI4SC, both obtain good
results with two completely different approaches that exploit different neural
features. The first is based on firing statistics and spike amplitude dynam-
ics; the second is based on amplitude ratios and spike waveforms. Since the
two algorithms use complementary information, in principle, they can both ob-
tain better results somehow integrating the other approach. In other words,
a more complex algorithm that conjugates these two methods, simultaneously
exploiting both the temporal information (MCMC) and the information related
to neuron position (MCI4SC), can provide even better results, although more
computational expensive.
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Figure 4.17: Spike sorting results on a segment of data from the Purkinje cells recording
(4 channels + reference channel). Symbols are in correspondence of arrival times of classified
spikes (in the channel where the spike is more visible). The horizontal lines represent the
detection thresholds ±T 1

d , ±T 2
d , ±T 3

d , ±T 4
d , and ±T ref

d . In the second channel, there is a
triplet from neuron NB correctly classified, and, in the fourth channel, there is a doublet from
neuron NF . The vertical scale is voltage in arbitrary units.





Conclusions

In this thesis a new method, named MCI4SC, for the neural spike classification
in multichannel recording is presented. In this context more extracellular elec-
trodes simultaneously record a mixture of spike trains generated by surrounding
neurons. The purpose is to separate the single neural traces in order to deter-
mine when each neuron fired. In other words, the request is to assign all the
detected spikes to the neurons of origin, specifying the arrival times.

Many spike sorting algorithms, more or less efficient, have been developed
until now: from early manual pattern recognition to more automated methods.
The new spike sorting algorithm presented in this thesis, is unique in its use of
the mixing matrix associated to the measurement channel. In particular, it is
able to handle the disadvantageous, but typical, situation where there are more
recorded neurons than recording sensors (under the reasonable hypothesis that
the number of simultaneously firing neurons is lower than or equal to the number
of sensors). In synthesis, this new algorithm inverts many mixing matrices
associated to as many reduced measurement channel, individuating the one that
best explains the recorded data. The reduced measurement channel involves only
a number of neurons that is equal to the number of sensors, thus allowing the
original signals separation.

The most attractive feature of MCI4SC is its capability to resolve overlap-
ping spikes. This challenging aspect is often unattended by the most part of
spike sorting algorithms, although it is extremely important for a correct spike
classification, especially when the firing rate is high and superpositions are fre-
quent.

Another challenging aspect, in the spike sorting framework, is that of burst-
ing neurons. Many developed algorithms are unable to correctly classify such
neurons, since they usually exhibit changing in the spike amplitudes and in the
spike waveforms. On the one hand, MCI4SC naturally deals with amplitude
variability, that does not affect the amplitude ratios and the correspondent mix-
ing matrix. On the other hand, MCI4SC less naturally deals with waveform
variability. Even if some passages, like mixing matrix estimation and inversion,
are independent from the spike shape, nevertheless step B2 requires the knowl-
edge of neural waveforms. Until, however, the different waveforms of a bursting
neuron are in a finite number and detectable, the algorithm is able to reach a
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good classification even though it has a higher computational complexity. More-
over, if the different waveforms of a burst are similar enough, as in the case of
the Purkinje Cells recording, they can be grouped together thus keeping low the
computational time.

The application of MCI4SC on experimental data has confirmed its efficiency
potentialities in spike classification. Good spike sorting results have been ob-
tained for bursting Purkinje Cells, as well as for noisy neurons in Locust antennal
lobe, even in case of total overlapping spikes. MCI4SC has also been compared
with the MCMC algorithm described in [26], showing that MCI4SC efficiency is
at least comparable with a much lower computational time.

Moreover, the amplitude ratio estimation by means of the Wavelet Packet
Transform is another distinguishing feature of the new algorithm and its im-
plementation. The Wavelet properties provide a consistent estimation of the
amplitude ratios between channels even in case of low signal to noise ratio,
where others estimator typically fail. This leads, in general, to a more reliable
mixing matrix estimation.

Speaking about some other ideal requirements for the spike sorting algo-
rithms, it is worth noticing that the nearly silent neurons, i.e. neurons that
rarely fires, are not properly handled by MCI4SC algorithm. In fact, it requires
a minimum number of single spikes to individuate and model each neuron. Any-
way, it is reasonable to suppose that spike from a nearly silent neuron will be
moved in the set of non classified spikes, that can be subsequently analyzed with
other procedures.

About robustness to non stationary conditions, it is known that during the
recording time, the electrodes may drift in the neural tissue. This results in
a gradual change in the spike amplitudes and waveforms. If the drift is quite
slow, it is possible to reestimate the mixing matrix and the spike template
in every contiguous time interval where condition can be assumed stationary.
Another assumption that can be violated during the course of the recording is
the constant level of background noise. Some threshold values, that are related
to it, have to be adaptively reset.

Although unsupervised algorithms are obviously preferable, given the com-
plexity of the spike sorting problem, the best results are obtained with human
supervision on quasi-automatic algorithms. MCI4SC obtains better results with
manual intervention in order to set thresholds and to validate the single spike
sorting of the learning phase.

Scalability is another interesting property for spike sorting algorithm. In
principle, MCI4SC has not limitations on the number of sensors and recorded
neuron. Nevertheless when the number of recorded neuron is much bigger than
the number of sensors, MCI4SC may present computational challenges in light
of the large number of neuron combinations to consider. In general, if the data
analysis is limited to a small number of foreground neurons, it may be easy to
keep low the computational time, possibly allowing the real-time operation.
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Moreover, it is worth noticing that MCI4SC is independent from sensor ge-
ometry, even though it has better performances with non-planar configurations,
that allow to univocally locate the neuron position. Planar or linear configura-
tion, however, do not prevent the application of MCI4SC to the data: at most,
they may possibly introduce some ambiguities in the neuron differentiation.

For the sake of completeness, two final remarks have to be done. Although
this thesis focuses specifically on spike classification of neural signals, MCI4SC is
applicable to other contexts where sparse impulsive signals are recorded by mul-
tiple sensors, and the measurements are well describe by linear mixing models
with additive noise.

As a second remark, it is worth noticing that the new algorithm essentially
exploits the information related to the neuron position and the spike waveform.
In principle, however, better spike sorting results can be obtained exploiting all
the features that potentially differentiate one neuron from the others. Therefore,
MCI4SC improvements are expected somehow including temporal information
related to the Inter-Spike Interval.





Appendix A

Wavelet Analysis

In the framework of signal processing, mathematical transformations are applied
to recorded samples in order to obtain information that are not readily available
in the raw data. The Wavelet Transforms, for example, allow to enhance time-
frequency structures otherwise hidden in the time domain. This appendix gives a
brief introduction to the versatile mathematical tools of Wavelet Analysis whose
properties result very useful in the context of neural spike recordings. See [75],
[12], and [51] for a more detailed discussion on Wavelet Transformations and
their properties.

A.1 The Continuous Wavelet Transform

While the well-known Fourier Transform decomposes a signal as a sum of sinu-
soids {eiωt}ω∈R, the Wavelet Transform decomposes a signal as a sum of wavelet
functions {ψs,τ (t)}s,τ∈R. Contrary to the sinusoids, that are well localized in fre-
quency but have infinite duration, the wavelets are well localized both in time
and in frequency (they are oscillating functions with practically finite duration).
As a consequence, the main feature of Wavelet Analysis is that it allows to lo-
calize in time the spectral components. For this reason the Wavelet Transform
results particularly suitable for transient signals analysis.

To be more precise, the Continuous Wavelet Transform (CWT) decomposes
a signal x(t) ∈ L2(R) into the following basis of functions:

ψs,τ (t) =
1

√

|s|
ψ

(

t− τ

s

)

s, τ ∈ R, s 6= 0, (A.1)

that is built translating and scaling the mother wavelet ψ(t). The translation
parameter τ , that shifts ψ(t) in time, allows to examine different segment of the
signal; the scale parameter s, that dilates and compresses ψ(t), allows to examine
different frequency range with different time-frequency resolutions. Thanks to
the factor 1/

√

|s|, all the basis functions have the same energy, when varying
the scale s.
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The continuous wavelet transform of a square-integrable signal x(t) ∈ L2(R)
is expressed by the following integral:

CWTψx (s, τ) =

∫ +∞

−∞

x(t)ψ∗
s,τ (t) dt ≡< x(t), ψs,τ (t) >, (A.2)

where < ·, · > is the scalar product in L2(R).
It is possible to exactly reconstruct the original signal x(t) from its wave-

let transform CWTψx (s, τ), if the mother wavelet ψ(t) satisfies the following
admissibility condition:

∫ ∞

0
|Ψ(ω)|2/ω dω <∞. (A.3)

A.2 Discrete Wavelet Transform and Multiresolution

Analysis

The CWT is useful because it allows analytical evaluations, but its signal rep-
resentation is very redundant. It is rather possible to consider the CWT on
a discrete set of the parameters s and τ without redundancy and loss of in-
formation. In particular, the Discrete Wavelet Transform (DWT) is defined
discretizing s and τ on a dyadic grid (s = 2l, τ = k2l with l, k ∈ Z) and, when
the chosen mother wavelet is orthogonal, the DWT is non redundant, as well as
complete.

An efficient algorithm to calculate the DWT has been implemented when
Mallat and Mayer discovered a fundamental relation between the Discrete Wave-
let Analysis and the Multi-Resolution Analysis (MRA) [49] [50] [54]. In few
words, the MRA provides a systematic method to construct particular func-
tions named scaling functions, and from those the correspondent wavelets. In
fact, scaling functions and wavelets can be expressed, in the frequency domain,
as product of low pass and high pass FIR filters. As a consequence, the Discrete
Wavelet Transform can be fast and efficiently calculated by means of a FIR filter
bank, avoiding to directly calculate the mother wavelet.

To give some more details, the MRA is equivalent to constructing a hierarchy
of signal approximations that live in a sequence of nested linear vector subspaces
like the following:

. . . ⊂ Vl+1 ⊂ Vl ⊂ Vl−1 ⊂ . . . ⊂ L2(R) l ∈ Z, (A.4)

where each subspace is associated to the scale s = 2l, and has to satisfy suitable
properties [51]. In particular, MRA is dyadic if x(t) ∈ Vl =⇒ x(2t) ∈ Vl−1. It
is worth noticing that, in one direction, these successive subsets approximate
the signal with greater and greater precision (i.e. liml→−∞ Vl = L2(R)) while,
in the other direction, they approach the null function, carrying less and less
information (i.e. liml→+∞ Vl = {0}).
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The MRA also defines the scaling function φ(t) as a function orthogonal to
its discrete translations φ(t− k), thus producing the following orthogonal basis
for each subspace Vl:

{φl,k(t)}k∈Z = {2−l/2φ(2−lt− k)}k∈Z l ∈ Z. (A.5)

As already said, the scaling function φ(t) can be calculated in the frequency
domain as the product of low-pass FIR filters:

Φ(ω) =
+∞
∏

k=1

H0

( ω

2k

)

, (A.6)

where H0(ω) is the Fourier Transform of a Quadrature Mirror Filter (QMF)
h0(n).

From the low-pass filter h0, the corresponding high-pass FIR filter h1 is
constructed by reversing and multiplying by (−1)k the coefficients of h0:

h1(k) = (−1)kh0(−k − 1). (A.7)

Notice that, by construction, the QMFs h0 and h1 are half-band filters that
satisfy the power complementarity condition |H0(ω)|2 + |H1(ω)|2 = 1.

The corresponding mother wavelet ψ(t) is obtained from the scaling function
φ(t) and the high pass filter h1, as described by the following product in the
frequency domain:

Ψ(ω) = H1

(ω

2

)

Φ
(ω

2

)

. (A.8)

Coming back to the vectorial linear spaces, let Wl+1 be the orthogonal com-
plement of Vl+1 in Vl:

Vl = Vl+1 ⊕Wl+1. (A.9)

It is possible to demonstrate that, with minor conditions on H0(ω) [24], the
wavelet ψ obtained by Eq. (A.8), creates an orthogonal basis for Wl, through
scaling and translations:

{ψl,k(t)}k∈Z = {2−l/2ψ(2−lt− k)}k∈Z l ∈ Z. (A.10)

Recursively using Eq. (A.9), a generic vectorial space V0 can be defined as
the orthogonal sum of an approximation space VL at the level L ≥ 1, and every
detail space WL, WL−1, . . ., W1 from the level L to 1:

V0 = VL ⊕WL ⊕WL−1 . . .⊕W1. (A.11)

An orthogonal basis for V0 is thus provided by the scaling functions {φl,k(t)} at
the level l = L, and by the wavelets {ψl,k(t)} at the level l = L,L− 1, . . . , 1.

Let {al,k}k∈Z be the orthogonal projection on Vl of a certain signal x, with
respect to the basis {φl,k(t)}k∈Z:

{al,k}k∈Z = {< x, φl,k >}k∈Z; (A.12)
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and let {dl,k}k∈Z be the orthogonal projection on Wl of the signal x with respect
to the basis {ψl,k(t)}k∈Z:

{dl,k}k∈Z = {< x,ψl,k >}k∈Z. (A.13)

The coefficients {al,k}k∈Z and {dl,k}k∈Z are named approximation and detail
coefficients, respectively. Notice that the coefficients {dl+1,k} represent the ad-
ditional detail required to pass from the resolution level l + 1 to l. In other
words {dl+1,k} is the difference between the two approximations {al,k} ∈ Vl and
{al+1,k} ∈ Vl+1 of the signal x (see Figure A.1).

Figure A.1: The subset Wl+1 is the orthogonal complement of Vl+1 in Vl. As an example,
in (a) and (c), two approximations {al+1,k} and {al,k} of a certain signal x at the level l + 1
and l respectively. In (b), the detail {dl+1,k} of the signal x at the resolution level l + 1, that
added to (a) gives (c).

In conclusion, it is possible to decompose any signal x(t) ∈ V0 as a unique
linear combination of scaling functions and wavelets, by means of its approxi-
mation coefficients {aL,k}k∈Z at the last level of decomposition L and its detail
coefficients {dL,k}k∈Z, . . . , {d1,k}k∈Z from level L to 1. This complete set of
approximation and detail coefficients represents the DWT:

{

WL
}

=
{

{aL(k)}k∈Z , {dL(k)}k∈Z , ..., {d1(k)}k∈Z
}

. (A.14)

As a general remark, approximation coefficients have low frequency contents,
while detail coefficients contain higher spectral components as the detail level l
decreases.

The Multiresolution theory plays a crucial rôle in the implementation of the
DWT as it provides a fast algorithm (analogous to the Fast Fourier Transform)
that avoids unnecessary calculations of mother wavelets and scaling functions.
Such decomposition algorithm — known as Mallat’s algorithm — is based on
a classical two channel subband coder implemented by the QMF bank, and its
computational complexity is O(K), where K is the number of signal samples.
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In particular, at each decomposition level l + 1, approximation and detail
coefficients ({al+1} and {dl+1}) are obtained by the approximation coefficients
of the previous level ({al}):

al+1(t) =
∑

k∈Z

g0(2t− k)al(k) (A.15)

dl+1(t) =
∑

k∈Z

g1(2t− k)al(k), (A.16)

where g0 = h0(−k) and g1 = h1(−k) are two QMFs related to h0 and h1.
Usually, the recursive MRA of the signal x(t) is initialized identifying the set of
samples {xk}k∈Z as the approximation coefficients {a0, k} in the space V0.

A useful representation of signal decompositions over basis functions is the
partition of the time-frequency plane induced by the basis functions themselves.
Roughly speaking, any basis function can be identified by a tile in the time-
frequency plane where the most of its energy is localized. For instance, the
DWT is represented by constant area tiles with vertical height that increases
as the frequency increases (see Figure A.2a). This time-frequency subdivision
makes the DWT suitable for the analysis of slow signals in presence of fast noise
fluctuations.

A.3 The Wavelet Packet Transform

The Wavelet analysis is not suitable for all signals, because the characteris-
tic logarithmic frequency resolution is no more efficient when signals have high
frequency spectral contents (e.g. bandpass signals). On the contrary, the Wave-
let Packet (WP) Transform provides a more flexible division of the frequency
domain; in particular, it allows “fine” frequency resolution also in the high
frequency bands. In fact, the Wavelet Packets are localized in time like the
Wavelets but, at the same time, they may have many oscillations to ensure
higher frequency resolutions.

The idea of Coifmann, Meyer and Wickerhauser [22] [23] was to extend the
subdivision of the approximation subspaces (Vl = Vl+1⊕Wl+1) also to the detail
subspaces, so that even Wl is divided in two orthogonal subspaces. This detail
subdivision can be iterated at any level of the analysis, when it is opportune.

Since the detail subdivision may be done or not, the WP Transform is not
unique. Each different WP Transform can be represented by an admissible
binary tree, where open nodes (the leaves) identify the respective partition of
the time-frequency plane. A binary tree is admissible when its nodes have either
0 or 2 branches.

The vectorial subspaces associated to the open nodes of an admissible binary
tree are mutually orthogonal and their union is equal to the original space V0,
identified with the root of the tree. Therefore, the union of the Wavelet Packet
bases of all the leaves in an admissible binary tree provides an orthogonal basis
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for V0. Figure A.2 shows four examples of admissible binary trees with the
associated partition of the time-frequency plane into tiles.

(a) (b)

(c) (d)

Figure A.2: Example of four admissible binary trees and the corresponding time-frequency
tiles related to the open nodes. In particular, (a) shows the Dyadic binary tree associated to
the DWT, and (d) shows a complete binary tree.

The WP coefficients {d2p
l+1(t)}t and {d2p+1

l+1 (t)}t, respectively associated to
nodes 2p and 2p + 1 at the decomposition level l + 1, are efficiently computed
from the coefficients {dpl (t)}t, of the parent node p at the level l = blog2 pc by
the following recursive relations:

d2p
l+1(t) =

∑

k∈Z

g0(2t− k)dpl (k)

d2p+1
l+1 (t) =

∑

k∈Z

g1(2t− k)dpl (k), (A.17)

where g0 and g1 are the two QMFs related to h0, h1, φ, and ψ. The compu-
tational complexity of the algorithm is O(K log2K) where K is the number of
signal samples.

Figure A.3 shows an example of a WP Transform associated to a binary tree
of depth 4. It is worth noticing that narrow time-frequency tiles are associated
to innermost leaves and the outermost leaves correspond to broad tiles.
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Figure A.3: An admissible binary tree of depth 4 and the corresponding WP Transform of
the signal s(t) plotted on the top. The coefficient absolute values are represented by tiles of
the time-frequency plane using a gray-scale palette.





Appendix B

Locust data analyzed by

MCI4SC algorithm

This appendix illustrates the application of MCI4SC on a tetrode recording from
the locust (Schistocerca americana) antennal lobe. Some intermediate results
have already been shown, as examples, in Chapter 3, and this appendix reports
the analysis details and the conclusive results. No quantitative evaluation can
be done on the analysis of this data set, since the true classification is unknown
and no simultaneous reference recording is available.

The measurement is done using one of the 4 tetrodes on a silicon probe from
the Center for Neural Communication Technology of the University of Michigan
[30]. The probe has two shanks with 2 tetrodes each, and a tetrode is made
by 4 electrodes in a diamond-shaped configuration. The width of each shank
is about 80µm, the diagonal length of each tetrode is 50µm. The probe has
been gently pushed into the antennal lobe (the first olfactory relay of the insect,
whose diameter is approximately 400µm), so that the lowest two tetrodes are
roughly 50 − 100µm below the surface. The data were acquired at 15 kHz.

The 20 seconds of data analyzed in this section are shown in Figure B.1.
Contrary to the Purkinje Cells recording analyzed in Chapter 4, in this data
set there are not bursting neurons with dramatically decreasing amplitudes, but
the signal to noise ratio is worse.

It is reasonable to assume that the measurement noise is Gaussian with
practically zero mean. Figure B.2 shows the normally distributed noise samples
from data segments without spikes. Also in this case the colored noise does
not prevent to reach good spike sorting results. The noise covariance is been
estimated from data segments without spikes:

cov


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




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. (B.1)
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Figure B.1: 20 seconds of a tetrode in vivo recording from the locust (Schistocerca americana)
antennal lobe; the data were acquired at 15 kHz and filtered between 300 Hz and 5000 Hz.
The vertical scale is voltage in arbitrary units.

A0 - Preliminary steps: filtering, spike detection, and analysis win-

dows — First of all, the raw data has been band-pass filtered between 300
and 5 kHz.

Secondly, spikes have been detected when a sample crosses, in absolute value,
the threshold T id in at least one channel i. The threshold T id has been set as
multiple of the standard deviation σηi , estimated in each channel i according to
Eq. (4.1). In particular, it has been set to T id = 6 · σ̂ηi (i.e. ∼ 3.12, ∼ 3.77,
∼ 4.39, and ∼ 4.12 respectively in the 4 channels). Two samples over the
threshold and distant no more than TSP = 2ms (30 sampling times), have been
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Figure B.2: Histograms of the noise samples in data segments between one spike and another,
in the four channel of the recording that is shown in Figure B.1. The distribution is fitted with
a Gaussian approximately centered in zero.
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considered as belonging to the same spike.
With these threshold setting, used both in the learning phase and in the

classification phase, 990 spikes have been detected. All these detected spikes
have been considered in the learning phase.

Finally a learning window of K = 26 = 64 samples (∼ 4.3ms) is been cut
around each detected spike for further analysis. Notice that since the duration
of detected spikes is about 70 samples, the learning window contains the most
part of each single spike. All spikes have been aligned to their center of mass at
sample 28.

In the classification phase, analysis windows with variable length have been
adopted: they started TSP = 2ms (30 sampling times) before the first sample
over the detection threshold, and they ended TSP = 2ms (30 sampling times)
after the last sample over the detection threshold.

A1 - Single spikes versus overlapping spikes — First of all, 77 spikes
with a detection window length larger than or equal to Tlong = 35 samples have
been considered as overlapping spikes.

Other 168 spikes have been classified as overlapping spikes checking the
normalized cross-correlation zr,i with zero-lag between the reference channel r
and the others 3 channels (see Eq. (3.15)). At this stage, the reference channel r
for a certain spike, is the one with the maximum sample in absolute value. The
spike has been considered as an overlap when at least one of its cross-correlations
zr,i, for i = 1, . . . ,m, i 6= r, is under the corresponding threshold:

T r,icrosszr,i − σzr,i , (B.2)

where zr,i is defined as in Eq. (4.2), and σzr,i is defined as in Eq. (4.4). This
threshold his higher and thus more restrictive than the threshold in Eq. (4.5),
that has been used in the analysis of the Purkinje Cells recordings where the
signal to noise ratio was better.

Figure 3.2a shows the spike-amplitude ratios of all the 990 detected spikes,
and Figure 3.2b shows the spike-amplitude ratios of the 745 spikes not classified
as overlapping spikes.

A2 - Estimation of spike amplitude ratios — The amplitude ratios have
been estimated as ratios of Wavelet Packet coefficients, following the procedure
described in Section 3.3.

The Discrete Wavelet Packet Transform has been performed on the previ-
ously selected windows of K = 64 samples, using the 5th order Symlet as mother
wavelet, and the periodization extension mode. The maximum decomposition
level that has been considered was L = 4.

A3 - Single spike Sorting — Using K-means algorithm the amplitude ra-
tios of non-overlapping spikes have been clustered in 8 groups associated to an



118 Locust data analyzed by MCI4SC algorithm

equal number of neurons (see Figure 3.15). The clustering algorithm has been
opportunely initialized with a human intervention that provides the number of
clusters and their approximate centroids.

The numbers of spikes collected by the clusters from 1 to 8 are 90, 46, 65,
125, 44, 68, 166, and 141 respectively.

Figure 3.16 shows the superimposed spike waveforms, cluster by cluster, as
they are grouped in Figure 3.15. Since each cluster exhibits mainly a unique
waveform, it is unequivocally associated to a single neuron.

A4 - Waveforms and mixing matrix estimation — To well estimate the
spike templates and the mixing matrix, the clusters found in the previous step
have been cleaned by excluding overlapping spikes erroneously classified as single
spikes. The cleaning operation has been performed in two step, as explained in
Chapter 4: i) first, outlier points with amplitude ratios too distant from cluster
centroids have been removed; ii) then, spikes with shapes too different from the
average waveform have been removed.

For each cluster Clustj , the first cleaning step removed all spikes with Ma-

halanobis distance from the cluster centroid greater than the threshold T jMahal,

where the threshold T jMahal has been set to the mean distance from the centroid
(see Eq. (4.7)).

The second cleaning step evaluates the maximum cross-correlations between
each spike waveforms and the average waveforms yj(k) of the respective cluster

Clustj . If the maximum cross-correlation is under a certain threshold T jw, the
spike have been excluded by the cleaned cluster. Moreover, exploiting the infor-
mation about the maximum cross-correlation lag, all spikes have been realigned
to the average waveform. In the analysis of the Locust recording, the thresholds
T jw, with j = 1, . . . , 8, have been set to 0.90.

Figure 3.17 shows the amplitude ratio clusters of Figure 3.15 after the two
cleaning steps. The numbers of spikes in the cleaned clusters associated to
neurons NA, . . . , NH are 68, 21, 55, 75, 31, 42, 86, and 70 respectively (448
spikes in total). The percentages of removed events are 24%, 54%, 15%, 40%,
30%, 38%, 48%, and 50% respectively.

Figure 3.18 shows the superimposed spike waveforms of the cleaned clusters
in Figure 3.17. The Figure shows also the estimated mixing matrix components
(rounded to nearest hundredths) and, on the bottom, the estimated waveform
templates ŵ1, . . . , ŵ8. They are obtained by respectively averaging the am-
plitude ratio vectors and the spike waveforms among all single spikes in each
cleaned cluster. In this case the templates have been averaged on a window of
80 samples in order to entirely contain the waveform evolution.

The thresholds T jMahal and T jw have been set with human supervision in order
to reach a good cleaning result and thus a good single spike classification. Since
all spikes associated to the same neuron show in Figure 3.18 the same trend, the
sorting is reasonably assumed as correct.
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B1 - Pseudoinversion of the mixing matrices ÂC, for each C ∈ C —

For this tetrode recording, since 8 neurons have been measured by 4 sensors,
the number of neuron combinations in C is

(

8
4

)

= 70. Therefore, in this first step

of the classification phase, 70 pseudoinverses (ÂC)† have been calculated. Â is
the estimated mixing matrix in Eq. (3.23), and C is a 8 by 8 diagonal matrix
with 4 components equal to 1 in correspondence to the selected neurons in each
of the 70 possible combinations.

According to which neurons the matrix C has selected or not, some columns
of Â rather than others contribute to the mixing matrix ÂC, and the condition
number changes as well between ∼ 5.04 and ∼ 4289 (49 neuron combinations
have the condition number lower than 50).

The combinations with the largest condition numbers are those that contain
at the same time neurons mostly visible in the same channel, like for example
NB, NC , ND mostly visible in the second channel, or NE , NF mostly visible in
the third channel, or NG, NH mostly visible in the fourth channel.

B2 - Estimation of the hypothetical signals ŜC , for each C ∈ C — In
this step, the 990 detected spikes have been scanned, one by one, in their own
classification window.

For each spike, and for each combination C ∈ C, the hypothetical signals ŜC

has been estimated as explained in section 3.4.

For each cluster j, the amplification threshold T jB have been set to the mini-
mum amplification among those of spikes in the cleaned cluster Clustj of Figure
3.18. The correspondent values were: ∼ 0.92, ∼ 0.86, ∼ 0.90, ∼ 0.75, ∼ 0.88,
∼ 0.88, ∼ 0.85, and ∼ 0.77, for j = 1, . . . , 8 respectively.

B3 - Selection of the minimum distance between hypothetical and

original measurements — Among the 70 combinations of neurons C ∈ C,
the one that minimizes the Frobenius distance between hypothetical and origi-
nal measurements has been chosen, as the one that best explains the observed
measurements, both in terms of active neurons, and in terms of conditioning
(see Eq. (3.32)).

B4 - Spike Classification — The sorting procedure has been concluded
associating to each detected spikes a list of neurons and a list of corresponding
arrival times defined as the samples where the maximum positive peaks occur.

The neurons considered active have been included in the neuron list only if
the maximum positive peak or the minimum negative peak of their spikes were
inside the detection window extended by 3 samples on the left and on the right.
This guarantees that each spike has been considered in one analysis window and
not in the previous/subsequent window TSP = 30 sampling times apart (notice
that the estimated waveform had at most the maximum and the minimum peaks
15 samples apart, that is less than TSP − 3 · 2).
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If no one neuron has been considered active, or if no one spike of active
neuron was in a central position inside the analysis windows, the data segment
under analysis has not been classified.

Figures 3.24 and 3.25 show two examples of overlapping spikes from the
tetrode recording in the locust (Schistocerca americana) antennal lobe, that
have been successfully resolved by MCI4SC algorithm (they are respectively
superpositions of 2 and 3 spikes).

Classification results — Among the 990 detected spikes, 816 have been
classified as single spikes, 110 as superposition of 2 spikes, 16 as superposition
of 3 spikes, 1 as superposition of 4 spikes, and the remaining 47 have not been
classified. The total number of classified spikes is, therefore, 1088.

Figure B.3 shows, for each sorted neuron, the ISI histograms, in linear scale,
and the respective number of associated spikes. For a qualitative evaluation,
notice that the ISI histograms show refractory periods of about 20ms (300
sampling time). The percentages of spikes from each neuron NA, . . . , NH with
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Figure B.3: ISI histogram of the 8 sorted neurons and the respective number of associated
spikes. Notice a refractory period of about 20 ms that correspond to the first bin.

ISI smaller than 20ms are ∼ 3.3%, ∼ 1.9%, ∼ 0%, ∼ 0.1%, ∼ 2.2%, ∼ 1.3%,
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∼ 6.3%, and ∼ 2.4% respectively. Since they are all less than 10% the spike
sorting is commonly considered as acceptable. Nevertheless, some collection
of spikes are not so large to be confident that spikes are indeed from a single
neuron.

The code was written in MATLAB programming language and run on 1.73
GHz Pentium PC running Microsoft Windows XP. Once that all thresholds
have been set, the analysis of 20 seconds from the tetrode recording takes, on
this system, about 1.6 seconds for the preliminary step A0, about 8.4 seconds
for the learning phase, and about 175 seconds for the classification phase (185
seconds in total).

Figure B.4 shows an example of spike classification in a segment of data.
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Figure B.4: Spike sorting results on a segment of data from the locust (Schistocerca amer-

icana) antennal lobe recording. Symbols are in correspondence of arrival times of classified
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Tra coloro poi che più direttamente hanno contribuito alla realizzazione di
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stata dedicata allo studio di algoritmi per la rivelazione delle onde gravitazionali
presso i Laboratori Nazionali di Legnaro dell’Istituto Nazionale di Fisica Nucle-
are. Relativamente a questa parte del dottorato, desidero ringraziare in modo
particolare il Dott. Antonello Ortolan per tutto il lavoro svolto insieme, per i
suoi incoraggiamenti e la sua comprensione. Ringrazio i Laboratori Nazionali di
Legnaro e in primo luogo il Prof. Massimo Cerdonio, direttore dell’esperimento
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