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Sommario. Consideriamo un sistema di particelle interagenti a campo-medio im-
merso in un ambiente aleatorio i.i.d. e sito-dipendente. Il sistema viene fatto
evolvere come una catena di Markov a tempo continuo sullo spazio degli stati.
La dinamica dipende da pochi parametri e può essere completamente descritta
attraverso quella del parametro d’ordine del modello. Ricaviamo la dinamica di
quest’ultimo nel limite di volume infinito e quindi ne studiamo il comportamento
per tempi lunghi. Tale dinamica limite risulta essere deterministica e, al variare
dei parametri, presenta una transizione di fase. Il nostro interesse principale è
lo studio delle fluttuazioni critiche, cioè le fluttuazioni del parametro d’ordine
attorno alla dinamica limite quando i parametri assumono i valori tali per cui si
verifica la transizione di fase. Lo scopo è l’analisi degli effetti causati dal disordi-
ne su di esse, confrontandole con le analoghe fluttuazioni per il caso omogeneo.
Trattiamo sistemi di spin e di diffusioni, ma non in totale generalità. Ci concen-
triamo su dei modelli specifici: il modello di Curie-Weiss con aggiunta di campo
aleatorio; un sistema di spin non-reversibile motivato dalla Finanza e il modello
di Kuramoto omogeneo e non.

Abstract. We consider a mean-field interacting particle system embedded in a
site-dependent and i.i.d. random environment. We make it evolve as a continu-
ous time Markov chain on its state space. The dynamics are given depending on
few parameters and they are completely described by that of the order parameter
of the model. We derive the dynamics of this last quantity, in the infinite volume
limit, and then their long time behavior is studied. The limiting dynamics of the
order parameter are deterministic and, depending on the values of the param-
eters, exhibit a phase transition. Our main interest is the study of the critical
fluctuations, that are the fluctuations of the order parameter around its limiting
dynamics when the parameters take the values for which the phase transition
occurs. We aim at analyzing the effect of the disorder in the dynamics of them,
as compared with the homogeneous case. We deal with spin-flip and interacting
diffusion systems, but we do not treat the subject in total generality, we focus
on specific models: the random Curie-Weiss model; a non-reversible spin-flip sys-
tem motivated by Finance and the homogeneous and inhomogeneous Kuramoto
models.
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Introduction

Mean-field interacting particle systems are characterized by the complete ab-
sence of geometry in the space of configurations, in the sense that each

particle interacts with all the others in the same way. The advantage of deal-
ing with this kind of models is that they usually are analytically tractable and
it is rather simple derive their macroscopic equations. Even if the hypothesis
“all-to-all” may seem too simplistic to describe physical systems, where geometry
and short-range interaction are involved, mean-field models have been recently
applied to social sciences and finance, as in [DPRST09], [FB08] , [LL07], [BD01],
[DPT09] and [DGGL08].
We briefly introduce the general framework we are working in and some of its pe-
culiar features and then we will explain how our work enters within this setting.
We consider a mean-field interacting N -particle system evolving as a continuous
time Markov chain on its state space, for times belonging to a time interval [0, T ].
The dynamics are given depending on few parameters and they are completely
described by the dynamics of the order parameter of the model. By order pa-
rameter we mean a finite or infinite dimensional stochastic process, defined as an
Empirical Average of the original process, whose dynamics are Markovian too.
By Empirical Average we mean an integral of a function of the state variable with
respect to the Empirical Measure

ρN := 1
N

N∑
j=1

δj−state variable .

We derive the dynamics of the order parameter, in the limit as N grows to infin-
ity, in a fixed time interval [0, T ], via a Large Deviation approach. Then, the long
time behavior of the limiting dynamics is studied. Note that this is not neces-
sarily equivalent to the study of the large N behavior of the stationary measure.
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Introduction

Roughly speaking, this would consist in letting t −→ +∞ for N fixed, and then
letting N −→ +∞. In our approach we reverse the order of the limits. In certain
regimes, the two approaches stand be equivalent, as some results in [For09] show.
Our dynamic approach has the advantage that allows to deal with non-reversible
models, as we will see in Chapter 2 and Chapter 4.
In the infinite volume limit, the limiting dynamics of the order parameter are de-
terministic (driven by a system of ordinary differential equations) and, depending
on the values of the parameters of the model, exhibit a phase transition, which is
the appearance of multiple stable equilibria. When the parameters take the val-
ues such that the system has exactly one stationary solution, we say the system
to be in a subcritical regime; while, when more than one equilibrium appears, we
are in a supercritical regime.
Our main interest is the study of the fluctuations of the order parameter around
its limiting dynamics. We can capture different features of these fluctuations
depending on whether or not the time is rescaled with N . If time is not rescaled
and we consider the evolution in a time interval [0, T ], with T fixed, a Central
Limit Theorem holds true for the order parameter for all regimes; in other words,
the fluctuations of the order parameter converge to a Gaussian process, which is
the unique solution of a linear diffusion equation. Whenever time is rescaled in
such a way T goes to infinity as N does, we may observe different behaviors.

� In a supercritical regime, we expect to find a metastability-type phenomenon;
in other words, the system may spend a very long time in a neighborhood of
a set of configurations that correspond to a stable equilibrium of the limit-
ing dynamics, and then switches to a neighborhood of another equilibrium.
The waiting time for this switch is exponentially large in N .

� In a subcritical regime, the Central Limit Theorem holds uniformly in time,
as shown in [For09]. Thus, by rescaling time we simply obtain a Central
Limit Theorem for the stationary measure.

� In the critical regime, when the parameters of the system are in the bound-
ary between the subcritical and the supercritical regimes, that fluctuations
are expected to exhibit a peculiar space-time scaling (critical fluctuations),
and their limit distribution may be non Gaussian. More generally, criti-
cal fluctuations may occur whenever a stationary solution for the limiting
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Introduction

dynamics becomes linearly neutrally stable.

The main subject of this thesis is the analysis of the dynamics of the critical
fluctuations in disordered mean-field models.
We consider a mean-field model and we add a site-dependent, i.i.d. random en-
vironment, acting as an inhomogeneity in the structure of the system; we aim
at analyzing the effect of the disorder in the dynamics of critical fluctuations,
as compared with the homogeneous case. We deal with spin-flip and interacting
diffusion systems, but we do not treat the subject in total generality, we focus
on specific models: the random Curie-Weiss model (Chapter 1 and Chapter 5);
a non-reversible spin-flip system motivated by Finance (Chapter 2) and the ho-
mogeneous and inhomogeneous Kuramoto models (Chapter 3 and Chapter 4,
respectively). We are not aware of similar results concerning non-equilibrium
critical fluctuations. Static fluctuations for the random Curie-Weiss model have
been studied in [AdMFP91].

We now give the basic ideas of how the dynamics of critical fluctuations are deter-
mined. The deterministic limiting dynamics of the order parameter is described
by a non-linear evolution operator L. The linearization of this equation around a
stationary solution gives rise to the so called linearized operator L. This operator
is also related to the normal fluctuation of the process. At the critical point this
operator has an eigenvalue with zero real part, while all other elements of the
spectrum have negative real part. The eigenspace of the eigenvalue with zero real
part is a subspace of the space where the order parameter lives. This subspace
will be called critical direction, and usually happens to have low dimension: crit-
ical phenomena concern the empirical averages corresponding to this subspace.
Thus, our analysis follow the following points.

� Locating the critical direction.

� Deciding the correct space-time scaling for the critical fluctuations. This
require an approximation of the time evolution of the order parameter that
goes beyond the normal approximation.

� Proving that the rescaled fluctuation vanish along non-critical directions.
This will be done using the method of “collapsing processes” : it was devel-
oped by Comets and Eisele in [CE88] for a geometric long-range interacting
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spin system and was previously applied to a homogeneous mean-field spin-
flip system in [Sar07]; we extend this method to diffusion systems as well
(the details are in Chapter 3). This step requires some control on the whole
spectrum of L.

� Determining the limiting dynamics in the critical direction. It will be done
using arguments of perturbation theory for Markov processes, which has
been treated in [PSV77], and of tightness, applied to a suitable martingale
problem.

In the case the order parameter is infinite dimensional, the spectral analysis of L

may be hard, in particular when L is not self-adjoint in some Hilbert space. For
this reason, in the first two chapters of thesis we deal with models whose order
parameter is low dimensional. These models are disordered spin systems, where
both the spin and the environment are described by {±1}-valued variables. The
analysis of both critical and non-critical fluctuations is obtained by first diago-
nalizing a low-dimensional matrix, and then proving weak convergence of finite
dimensional processes. For these models we proceed directly to the analysis of
the disordered systems; the homogeneous case is obtained along the same lines,
and it is actually simpler.
In Chapters 3 and 4 we study a model of coupled oscillators, the Kuramoto
model. In this case the order parameter is infinite dimensional even in the ho-
mogeneous case. Both the problem of determining the critical direction and that
of describing the critical fluctuations are considerably harder. For this reason
we first discuss the homogeneous case (Chapter 3), and then the inhomogeneous
one, under some assumptions on the distribution of the disorder. The main tool
here is perturbation theory for Markov processes.
Finally, in Chapter 5, we revisit the Curie-Weiss model. The methods of per-
turbation theory presented in Chapter 3 apply to this model too, and allow to
weaken considerably the assumptions made in Chapter 1 on the distribution of
the disorder.
From a qualitatively point of view, our results indicate that when disorder is
added, spin systems and rotators belong to two different classes of universality,
which is not the case for homogeneous systems. Roughly speaking, in spin sys-
tems the fluctuations of the disorder always prevail in the critical regime: these
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fluctuations evolve in a time scale of order N1/4, while the critical slowing down
for homogeneous systems is N1/2. For rotators, the disorder does not modify the
N1/2 slowing down, and the essential features of the non-Gaussian distribution of
critical fluctuations are as in the homogeneous case. The effect of the disorder is
a sort of “deformation”: the critical direction is modified, and becomes disorder-
dependent.

In some more details, the structure of the thesis is organized in the following way:

Chapter 1. We consider the random field Curie-Weiss model. Given a sequence
of i.i.d., symmetric, Bernoulli random variables η, σ = (σj)Nj=1 is a N -spin system
evolving as a Markov process on its state space {−1,+1}N . The dynamics are
specified by the requirement that the rates of transition are of the form

σj −→ −σj at rate e−βσj(m
σ

N+hηj) β, h > 0 .

We reduce this system to be finite dimensional. A three dimensional order pa-
rameter is necessary to describe the system. Being based on a Large Deviation
Principle, we compute the differential equations which drive its evolution in the
infinite particle limit (McKean-Vlasov equations) and we derive a Law of Large
Number it obeys. Depending on the parameters, we can see there exists phase
transition. Our main results consist in the infinite particle limits of the non-
critical and critical fluctuation processes. For the non-critical fluctuation process
we can provide a Central Limit Theorem and, hence, we show it converges (in the
sense of weak convergence of stochastic processes) to a Gaussian process. With
regard to the critical fluctuation process, the fluctuations are one-dimensional at
the critical point and, in the limit as N −→ +∞, converge (in the sense of weak
convergence of stochastic processes) to a process with constant (but random)
drift given by a Gaussian variable with parameters depending on the disorder.
Differently, the homogeneous critical fluctuations exist on a longer time-scale and
they are non-Gaussian, since they converge (in the sense of weak convergence of
stochastic processes) to the unique solution of a non-linear diffusion equation.

Chapter 2. We consider a non-reversible spin-flip system, which is a slight
generalization of the homogeneous one in [DPRST09]. The interesting aspect of
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the latter is its financial application. It models the contagion in a network of N
firms active on a market facing credit risk.
Given a sequence of i.i.d., symmetric, Bernoulli random variables η, (σ, ω) =
(σj, ωj)Nj=1 is a 2N -spin system evolving as a non-reversible Markov process on
its state space {−1,+1}2N . The dynamics are specified by the requirement that
the rates of transition are of the form

σj −→ −σj at rate e−βσjωj β > 0 ,
ωk −→ −ωk at rate e−γωk(m

σ

N+hηk) γ, h > 0 .

We reduce this system to be finite dimensional. A seven dimensional order pa-
rameter is necessary to describe this system. Using Large Deviation techniques,
we compute the differential equations which drive its evolution in the infinite
volume limit (McKean-Vlasov equations) and we derive a Law of Large Number
it obeys. Depending on the parameters, we can see there exists phase transition.
We then consider the fluctuation processes. We can provide a Central Limit
Theorem for the non-critical seven-dimensional fluctuation process, but we skip
the proof of this fact since it is completely analogous to the case of the random
Curie-Weiss Model discussed in Chapter 1 and we focus on the infinite volume
limit of the critical fluctuation process, which represents our main result. As in
the previous case, the fluctuations are one-dimensional at the critical point and
converge (in the sense of weak convergence of stochastic processes) to a process
with constant (but random) drift given by a Gaussian variable with parameters
depending on the disorder. Differently, the homogeneous critical fluctuations ex-
ist on a longer time-scale and they are non-Gaussian, since they converge (in the
sense of weak convergence of stochastic processes) to the unique solution of a
non-linear diffusion equation, as proved in [Sar07].

Chapter 3. We consider the homogeneous Kuramoto model. It is a system of
mean-field nonlinearly coupled rotators which can be used to describe synchro-
nization phenomena (we refer to [ABPV+05] for a review of the argument).
x = (xj)Nj=1 is a N -diffusion system evolving as a Markov process with generator
LN , acting on functions f : [0, 2π]N −→ R as follows:

LNf(x) = 1
2

N∑
j=1

∂2f

∂x2
j

(x) +
N∑
j=1

[
θ

N

N∑
k=1

sin(xk − xj)
]
∂f

∂xj
(x) .
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It may not be reduced to a finite dimensional problem. In this case, the order
parameter is the Empirical Measure, which is an infinite dimensional Markov
process. Being based on a Large Deviation Principle, we compute the differential
equations which drive its evolution in the infinite volume limit (McKean-Vlasov
equations) and we derive a Law of Large Number it obeys. Depending on the
parameters, we can see there exists phase transition. We state these results for
completeness; they are already known in literature. They can be deduced from the
analogous ones for the inhomogeneous system, studied in [DPdH95] and [dH00].
We use the model as an example by which we explain the methodology for study-
ing the critical dynamics in diffusion systems. The procedure is based on the idea
of “collapsing processes”, introduced in [CE88] and applied to point processes so
far, and on the perturbation theory for Markov processes developed in [PSV77].
We prove that the critical fluctuations are two-dimensional at the critical point
and converge (in the sense of weak convergence of stochastic processes) to a non-
Gaussian process, which is the unique solution of a cubic stochastic differential
equation.

Chapter 4. We consider the random Kuramoto model. Given a sequence of
i.i.d., symmetric, Bernoulli random variables ω, x = (xj)Nj=1 is a N -diffusion
system evolving as a non-reversible Markov process with generator LN , acting on
functions f : [0, 2π]N −→ R as follows:

LNf(x) = 1
2

N∑
j=1

∂2f

∂x2
j

(x) +
N∑
j=1

[
ωj + θ

N

N∑
k=1

sin(xk − xj)
]
∂f

∂xj
(x) .

Even in this case, we may not reduce the system to a finite dimensional one
and, then, the order parameter is the Empirical Measure. The results about the
McKean-Vlasov limit of the dynamics and the existence of a phase transition are
got by [DPdH95] and [dH00]. With regard to the critical fluctuations, apply-
ing the method described in Chapter 3, we see that, they are a two-dimensional
process at the critical point and converges (in the sense of weak convergence of
stochastic processes) to a non-Gaussian process, solution of a cubic stochastic
differential equation. This equation looks like the one satisfied by the critical
process of the homogeneous model.
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Chapter 5. We resume the random field Curie-Weiss model. We generalize the
environment, precisely we choose it distributed according to an even distribution,
and we approach the study of the critical dynamics using the method developed
in Chapter 3. To guarantee the problem can be analytically dealt with, we may
consider at most discrete, finite random fields. In this way the spectrum of the
linearized operator L is only discrete. Our main result is that the random drift
appears even in this general case, in which the disorder is not dichotomic, but
may assume a finite number of different values. The critical fluctuations continue
to be one-dimensional at the critical point and converge (in the sense of weak
convergence of stochastic processes) to a deterministic process with constant (but
random) drift given by a Gaussian variable with parameters depending on the
environment.

We decided to devote an entire chapter to the study of the Kuramoto model
without disorder (Chapter 3), since the technique of “collapsing processes” had
not been applied to the analysis of the critical dynamics of diffusion systems
before. So, we first applied the methodology to the simplest case, which is easily
tractable since the operator L is self-adjoint, and then we have dealt with the
inhomogeneous system.

— xx —
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Spin-Flip Systems
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Chapter 1

The Random Curie-Weiss Model

In this chapter we consider the Curie-Weiss model with the addition of a ran-
dom site-dependent magnetic field, which acts as random environment. We

want to study the dynamical laws of the model, in the infinite volume limit.
We consider N sites and we associate with each of them a spin and a magnetic
field value, that we choose to be a dichotomic random variable. We start with
a Glauber-type dynamics for the N -particle system, where the spins flip from
time to time to another value with a jump intensity depending on the gradient of
the Hamiltonian felt by the particle. It is an interacting spin-flip system with a
mean-field Hamiltonian that depends on the random medium we introduced. In
this model there is no spatial geometry in the space of the configurations, since it
is subject to a mean-field interaction, meaning that each particle interacts with
all the others in the same way.
Three order parameters (magnetization field) are necessary to describe the sys-
tem. Being based on a Large Deviation Principle, we compute the differential
equations which drive their evolution in the infinite particle limit (McKean-Vlasov
equations) and we derive a Law of Large Number they obey. Depending on the
parameters, we can see there exists phase transition to ferromagnetic states with
constant magnetizations.
Our main results are the infinite particle limits of the non-critical and critical
fluctuation processes. For the non-critical fluctuation process we can provide a
Central Limit Theorem and, hence, we show it converges (in the sense of weak
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Chapter 1. The Random Curie-Weiss Model

convergence of stochastic processes) to a Gaussian process. With regard to the
critical fluctuation process – besides an appropriate scaling of the space – it re-
quire a rescaling of the time in order to keep track of long time fluctuations of the
critical direction (critical slowing down). As a result, only the critical structure
survives the new scaling, and in the limit, the critical fluctuation process is a
lower dimensional process compared with the non-critical one. The fluctuations
are one-dimensional at the critical point, while they are three-dimensional for
non-critical values. In fact, we prove that, when the size of the system grows
towards infinity, two order parameters collapse, while the other converges (in the
sense of weak convergence of stochastic processes) to a process with constant (but
random) drift given by a Gaussian variable with parameters depending on the
magnetic field.

1.1 Description of the Model

Let S = {−1,+1} and η = (ηj)Nj=1 ∈ S N be a sequence of independent, identi-
cally distributed, symmetric, Bernoulli random variables defined on some prob-
ability space (Ω,F , P ). That is, P (ηj = −1) = P (ηj = +1) = 1

2 , for any j. We
indicate with µ their common law. Given a configuration σ = (σj)Nj=1 ∈ S N

and a realization of the magnetic field hη, h > 0, we can define the Hamiltonian
HN(σ, η) : S 2N −→ R as

HN(σ, η) = − β

2N

N∑
j,k=1

σjσk − βh
N∑
j=1

ηjσj , (1.1)

where σj is the spin value at site j and ηj the direction of the local magnetic field
(of intensity h) associated with the same site. Let β, positive parameter, be the
inverse of the temperature. For a fixed realization of η, think of σ −→ HN(σ, η)
as a Hamiltonian in the components σj with an inhomogeneous mean-field inter-
action parametrized by the components ηj. With the expression “mean-field” we
mean the sites interact all each other in the same way.
Let us define the dynamics we consider. For given η, σ(t) = (σj(t))Nj=1, with t
belonging to a generic time interval [0, T ], where T is fixed, describes a N -spin
system evolving as a continuous time Markov chain on S N , with infinitesimal
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Chapter 1. The Random Curie-Weiss Model

generator LN acting on functions f : S N −→ R as follows:

LNf(σ) =
N∑
j=1

e−βσj(m
σ

N+hηj)∇σ
j f(σ), (1.2)

where ∇σ
j f(σ) = f(σj) − f(σ) and the k-th component of σj, which has the

meaning of a spin flip at site j, is

σjk =

 σk for k 6= j

−σk for k = j
.

The quantity c
η

N(j, σ) = e−βσj(m
σ

N+hηj) represents the jump rate of the spins;
the rate at which the transition σj −→ −σj occurs for some j. The mean-field
assumption allows us to suppose that the interaction depends on the value of the
magnetization

m
σ
N(t) = 1

N

N∑
j=1

σj(t).

The expressions (1.1) and (1.2) describe a system of mean-field ferromagnetically
coupled spins, each with its own random magnetic field and subject to Glauber
dynamics. The two terms in the Hamiltonian have different effects: the first one
tends to align the spins, while the second one tends to point each of them in the
direction of its local field.

Remark 1.1.1. For every value of η, (1.2) has a reversible stationary distribution
proportional to exp[−HN(σ, η)].

For simplicity, the initial condition σ(0) is assumed to have product distribution
λ⊗N , with λ probability measure on S , although weaker conditions could be
dealt with. The quantity σj(t) represents the time evolution on [0, T ] of j-th spin
value; it is the trajectory of the single j-th spin in time. The space of all these
paths is D[0, T ], which is the space of the right-continuous, piecewise-constant
functions from [0, T ] to S . We endow D[0, T ] with the Skorohod topology, which
provides a metric and a Borel σ-field (as we can see in [EK86]).

1.2 Limiting Dynamics

We now derive the dynamics of the process (1.2), in the limit as N −→ +∞, in a
fixed time interval [0, T ], via a Large Deviation approach. Later, the large time
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Chapter 1. The Random Curie-Weiss Model

behavior of the limiting dynamics will be studied. Note that this is not neces-
sarily equivalent to the study of the large N behavior of the stationary measure
exp[−HN(σ, η)]. Roughly speaking, this would consist in letting t −→ +∞ for N
fixed, and then letting N −→ +∞. In our approach we reverse the order of the
limits. In certain regimes, the two approaches are equivalent, as some results in
[For09] show. Our dynamic approach has the advantage that allows to deal with
non-reversible model, as we will see in Chapter 2.

So, let (σj[0, T ])Nj=1 ∈ (D[0, T ])N denote a path of the system in the time interval
[0, T ], with T positive and fixed. If f(σj[0, T ]) is a function of the trajectory of
a single spin, we are interested in the asymptotic behavior of empirical averages
of the form

1
N

N∑
j=1

f(σj[0, T ]) =:
∫
fdρN ,

where {ρN}N≥1 is the sequence of empirical measures

ρN := 1
N

N∑
j=1

δ(σj [0,T ],ηj) .

Remark 1.2.1. The measure ρN is a joint measure of the process and the environ-
ment.

We may think of ρN as a random element ofM1(D[0, T ]×S ), the space of prob-
ability measures on D[0, T ]×S endowed with the weak convergence topology.
First, we want to determine the weak limit of ρN inM1(D[0, T ]×S ) as N grows
to infinity; i.e. for f ∈ Cb we look for limN→+∞

∫
fdρN . It corresponds to a Law

of Large Number with the limit being a deterministic measure. Being an element
of M1(D[0, T ] ×S ), such a limit can be viewed as a stochastic process, which
describes the dynamics of the system in the infinite volume limit.

1.2.1 Empirical Measure and Large Deviations

Let W ∈ M1(D[0, T ]) denote the law of the S -valued process (σ(t))t∈[0,T ] such
that the initial condition σ(0) has distribution λ and the spin signs change with
constant rate equal to 1. By W⊗N we mean the product of N copies of W ,
which represents the law of the N -spin system whose generator is (1.2) where we
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Chapter 1. The Random Curie-Weiss Model

have set cηN ≡ 1; in other words, the law of our system in absence of interaction.
Moreover, we shall write P η

N the law of σ([0, T ]) = (σ(t))t∈[0,T ], the process with
infinitesimal generator (1.2) and initial distribution λ⊗N , for a given η.

Consider Q ∈M1(D[0, T ]×S ), if ΠtQ indicates the marginal distribution of Q
at time t, then we have

mσ
ΠtQ :=

∫
S 2
σΠtQ(dσ, dη)

and for a given path σ([0, T ]) ∈ D[0, T ], we define

F (Q) :=
∫ { ∫ T

0

(
1− e−βσ(t)(mσΠtQ+hη)

)
dt

− β

2
[
σ(T )mσ

ΠTQ − σ(0)mσ
Π0Q + hη (σ(T )− σ(0))

] }
dQ . (1.3)

Remark 1.2.2. The function F (Q) is continuous and bounded.

We can obtain a representation of P η

N in terms of ρN , as follows:

Lemma 1.2.1. For a fixed realization η,

dP
η

N

dW⊗N (σ([0, T ])) = exp[NF (ρN(σ([0, T ]), η)) +O(1)]

where, for Q ∈M1(D[0, T ]×S ), F (Q) is expressed by (1.3).

Proof. The proof is essentially an application of the analogous of the Girsanov’s
Formula in the case we work with stochastic integrals with respect to point pro-
cesses (see [Bré81] or [LS01]). This formula clarifies the fact that an absolutely
continuous change of probability measures is described by its Radon-Nikodym
derivative in terms of the change of the intensities of the point processes in-
volved.
Let (N σ

t (j))Nj=1 be the multivariate Poisson process counting the jumps of σj, for
j = 1, . . . , N . If we read σj(t−) = lim

s→t−
σj(s) and mσ

ρN (t−) = lim
s→t−

m
σ
ρN (s), it yields

dP
η

N

dW⊗N (σ([0, T ])) = exp
{

N∑
j=1

[ ∫ T

0
log e−βσj(t−)

(
m
σ

ρN (t−)+hηj
)
dN σ

t (j)

−
∫ T

0

(
e
−βσj(t)

(
m
σ

ρN (t)+hηj
)
− 1

)
dt

]}
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Chapter 1. The Random Curie-Weiss Model

but σ has no simultaneous jumps W⊗N–almost surely, therefore

= exp
{

N∑
j=1

[ ∫ T

0

(
1− e−βσj(t)

(
m
σ

ρN (t)+hηj
))

dt

− β
∫ T

0
(−σj(t))

((
m
σ
ρN (t) −

2
N
σj(t)

)
+ hηj

)
dN σ

t (j)
]}

and because
∫
N σ
T dρN < +∞ almost surely with respect to W⊗N ,

= exp
{

N∑
j=1

[ ∫ T

0

(
1− e−βσj(t)

(
m
σ

ρN (t)+hηj
))

dt

+ β
∫ T

0
σj(t)

(
m
σ
ρN (t) + hηj

)
dN σ

t (j) +O

(
1
N

)]}

= exp
{

N∑
j=1

[ ∫ T

0

(
1− e−βσj(t)

(
m
σ

ρN (t)+hηj
))

dt

− β

2

(
σj(T )mσ

ρN (T ) − σj(0)mσ
ρN (0)

+ hηj (σj(T )− σj(0))
)

+O

(
1
N

)]}
and this leads us to the expression (1.3) for F . The last equality is due to a general
result for reversible spin-flip systems we can find in [DPdH96], Lemma 3. �

p

Definition 1.2.1. Let X be a Polish1 space with distance d : X ×X −→ [0,+∞).
The function i : X −→ [0,+∞] is called a rate function if i 6=∞ and i is lower semi-
continuous with compact level-sets (that is, for every k > 0, the set {x : i(x) ≤ k}
is compact in the weak topology).

y

p

Definition 1.2.2. Let X be a Polish space with distance d : X ×X −→ [0,+∞).
A sequence of probability measures {Pn}n≥1 on X is said to satisfy a Large Deviation
Principle with rate function i : X −→ [0,+∞] if for O,C ⊆ X respectively open
and closed set for the weak topology, it yields

lim inf
n→+∞

1
n

log Pn(O) ≥ − inf
x∈O

i(x) (1.4a)

1We recall that a Polish space is a complete and separable metric space.
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lim sup
n→+∞

1
n

log Pn(C ) ≤ − inf
x∈C

i(x) . (1.4b)

y

Lemma 1.2.1 allows us to deduce a Large Deviation Principle for ρN , from which
we can derive its asymptotic behavior as N −→ +∞.
Define

PN(·) :=
∫
µ⊗N(dη)P η

N(ρN ∈ ·) ,

which is an element ofM1(M1(D[0, T ]×S )) and represents the law of ρN under
the joint distribution of the process and the environment.
If Q ∈M1(D[0, T ]×S ), we denote by

H(Q|W ⊗ µ) :=


∫
dQ log dQ

d(W⊗µ) if Q� W ⊗ µ and log dQ
d(W⊗µ) ∈ L

1(Q)
+∞ otherwise

the relative entropy between Q and W ⊗ µ.

Remark 1.2.3. Let us considerW⊗µ fixed. Then the relative entropy H(·|W⊗µ)
is a nonnegative, convex function on M1(D[0, T ] × S ) and H(Q|W ⊗ µ) = 0
if and only if Q = W ⊗ µ. Besides, it is lower semi-continuous on D[0, T ] ×S

endowed with the weak topology. (We refer to [DZ93], Chapter VI, Section 2,
for complete statements and proofs.)

Proposition 1.2.1. The laws {PN}N≥1 of ρN (under the joint distribution of the
process and the medium) obey a Large Deviation Principle with rate function

I(Q) := H(Q|W ⊗ µ)− F (Q) . (1.5)

Proof. The key tools are Sanov’s Theorem and Varadhan’s Lemma (we refer re-
spectively to Theorem 3.2.17 in [DS89] and Theorem 2.2 in [Var84]). We give
here the statements for completeness and convenience.
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p

Theorem 1.2.1 (Sanov). Let P be a probability measure on the Polish space X

and let P̃n ∈M1(M1(X )) be the distribution under Pn of the random probability

ρn(x) = 1
n

n∑
j=1

δxj

with x = (x1, . . . , xn) ∈ X n. Moreover consider the relative entropy with respect
to P, H(·|P). Then, H(·|P) is a good, convex rate function on M1(X ) and
{P̃n}n≥1 satisfies a Large Deviation Principle with rate function H(·|P).

y

p

Lemma 1.2.2 (Varadhan). Let {Pn}n≥1 be a sequence of probability measures in
M1(X ) satisfying a Large Deviation Principle with rate function i : X −→ [0,+∞].
Then, for every bounded function f : X −→ R which is continuous on the set
{x : i(x) < +∞}, it holds

lim inf
n→+∞

1
n

∫
O

exp[nf ]dPn ≥ − inf
x∈O

[f(x)− i(x)] (1.6a)

lim sup
n→+∞

1
n

∫
C

exp[nf ]dPn ≤ − inf
x∈C

[f(x)− i(x)] . (1.6b)

y

Denote by RN the distribution of ρN under W⊗N × µ⊗N ; in other words, if
A ∈ B(D[0, T ] × S ) is a Borelian set, then RN(A) = (W⊗N × µ⊗N)(ρ−1

N (A)).
Under RN , the pairs (σj[0, T ], ηj) are independent, identically distributed random
variables.
Now, because of the result proved in Lemma 1.2.1, we have

PN(·) =
∫
µ⊗N(dη)P η

N(ρN(dσ[0, T ], η) ∈ ·)

=
∫
µ⊗N(dη)

∫
W⊗N(dσ[0, T ]) dP

η

N

dW⊗N (σ[0, T ])1{ρN (dσ[0,T ],η)∈ ·}

=
∫
d(W⊗N × µ⊗N) exp[NF (ρN)]1{ρN∈ ·}
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=
∫
RN(dQ) exp[NF (Q)]1{Q∈ ·} , (1.7)

with Q = ρN . The last identity (1.7) means that

dPN
dRN

(Q) = exp[NF (Q)] . (1.8)

Since D[0, T ]×S is a Polish space, by Sanov’s Theorem (Theorem 1.2.1) we can
deduce that {RN}N≥1 satisfies a Large Deviation Principle with rate function
H(Q|W ⊗ µ). Therefore, we can apply Varadhan’s Lemma (Lemma 1.2.2) to
obtain an upper bound of type (1.4b). In fact, if C ∈ M1(D[0, T ] × S ) is a
closed set,

lim sup
N→+∞

1
N

logPN(C) = lim sup
N→+∞

1
N

log
∫
RN(dQ) exp[NF (Q)]1{Q∈C}

≤ sup
Q∈C

[F (Q)−H(Q|W ⊗ µ)] = − inf
Q∈C

I(Q) ,

where the definition of I(Q) is in (1.5). The lower bound of type (1.4a) is proved
similarly.

�

1.2.2 McKean-Vlasov Equation

Given Q ∈M1(D[0, T ]×S ) and η ∈ S , we can associate with Q a Markov pro-
cess on S with law P η,Q, initial distribution λ and time-dependent infinitesimal
generator

Lη,Qt f(σ) = e−βσ(mσΠtQ+hη)∇σf(σ) ,

acting on f : S −→ R.

Proposition 1.2.2. For every Q ∈M1(D[0, T ]×S ) such that I(Q) < +∞,

I(Q) = H(Q|PQ) , (1.9)

where PQ ∈M1(D[0, T ]×S ) is defined by

PQ(dσ[0, T ], dη) = P η,Q(dσ[0, T ])µ(dη).
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Proof. First we need to verify that the following representation for F (Q) (defined
in (1.3)) holds

F (Q) =
∫
Q(dσ[0, T ], dη) log dP

η,Q

dW
(σ[0, T ]) .

We begin by observing that, since by assumption I(Q) < +∞, we have also
H(Q|W ⊗ µ) < +∞ and so, by the entropy equality (see (6.2.14) in [DZ93]), it
follows that Q belongs to the set {Q ∈M1(D[0, T ]×S ) :

∫
N σ
T dQ < +∞, with

N σ
t the process counting the jumps of σ}, which implies the integrals below are

well defined. Using again the Girsanov’s Formula for Markov Chains, we get
∫
dQ log dP

η,Q

dW
(σ[0, T ]) =

∫ [ ∫ T

0

(
1− e−βσ(t)(

∫
σΠtQ(dσ,dη)+hη)

)
dt

− β
∫ T

0
σ(t−)

(∫
σΠt−Q(dσ, dη) + hη

)
dN σ

t

]
dQ

=
∫ [ ∫ T

0

(
1− e−βσ(t)(

∫
σΠtQ(dσ,dη)+hη)

)
dt

+ β
∫ T

0
σ(t)

(∫
σΠtQ(dσ, dη) + hη

)
dN σ

t

]
dQ

=
∫ [ ∫ T

0

(
1− e−βσ(t)(mσΠtQ+hη)

)
dt

+ β
∫ T

0
σ(t)

(
mσ

ΠtQ + hη
)
dN σ

t

]
dQ = F (Q)

where the last equality holds thanks to the reversibility of the system. We refer
again to [DPdH96], Lemma 3. By combining what we obtained, we can compute

I(Q) = H(Q|W ⊗ µ)− F (Q) =
∫
dQ log dQ

d(W ⊗ µ) −
∫
dQ log dP

η,Q

dW

=
∫
dQ log dQ

d(P η,Q ⊗ µ) =
∫
dQ log dQ

dPQ
= H(Q|PQ) .

�
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Theorem 1.2.2. Suppose that the initial distribution of the Markov process (σ(t))t≥0

with generator (1.2) is such that the random variables (σj(0))Nj=1 are independent
and identically distributed with law λ. Then the equation I(Q) = 0 admits a
unique solution Q∗ ∈ M1(D[0, T ] × S ), such that its marginals qηt = ΠtQ

η
∗ ∈

M1(S ) are weak solutions of the nonlinear McKean-Vlasov equation
∂qηt
∂t

= Lηqηt (t ∈ [0, T ], η ∈ S )
qη0 = λ

(1.10)

where, for all the pairs (σ, η) ∈ S 2, the operator Lη acts

Lηqηt (σ) = ∇σ

[
e
−βσ

(
mσqt+hη

)
qηt (σ)

]
(1.11)

and qt is defined by
qt(σ) =

∫
S
qηt (σ)µ(dη).

Moreover, with respect to a metric d(·, ·) inducing the weak topology, ρN −→ Q∗ in
probability with exponential rate, i.e. PN{d(ρN , Q∗) > ε} is exponentially small
in N , for each ε > 0.

Proof. We know that if the relative entropy between two measures is zero then
the two measures must be equal (see Remark 1.2.3). By this property, from (1.9)
we have I(Q) = 0 translates into Q = PQ. Let us suppose Q∗ is a solution
of this last equation. Then, in particular, for a given η, qηt := ΠtQ

η
∗ = ΠtP

Qη∗ .
The marginals of a Markov process are solutions of the corresponding forward
equation that, in this case, leads to the fact that qηt is a solution of (1.10). This
differential equation, being an equation in finite dimension with locally Lipschitz
coefficients, has at most one solution in [0, T ]. Since PQη∗ is totally determined
by the flow qηt , it follows that equation Q = PQ has at most one solution. The
existence of a solution derives from the fact that I(Q) is the rate function of a
Large Deviation Principle and therefore it has to have at least one zero: indeed,
by the bound of type (1.4a) with O =M1(D[0, T ]×S ), we get infQ∈O I(Q) = 0.
Since I is lower semi-continuous, it attains this null value and so this infimum is
actually a minimum.

It remains to prove the Law of Large Numbers for ρN : with respect to a metric
d(·, ·) inducing the weak topology, ρN N→+∞−−−−→ Q∗ in probability with exponential
rate, i.e. PN{d(ρN , Q∗) > ε} is exponentially small in N , for each ε > 0.
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Let Q∗ be the unique solution of equation Q = PQ and let BQ∗ be an arbitrary
open neighborhood of Q∗. By the Large Deviation upper bound (type (1.4b)),
we have

lim sup
N→+∞

1
N

logPN(ρN /∈ BQ∗) ≤ − inf
Q/∈BQ∗

I(Q) < 0 ,

where the last inequality comes from the lower semi-continuity of I, the com-
pactness of its level-sets and the fact that I(Q) > 0 for Q 6= Q∗. Indeed,
if infQ/∈BQ∗ I(Q) = 0, then there exists a sequence (Qn)n /∈ BQ∗ such that
I(Qn) n→+∞−−−−→ 0. By the compactness of level-sets, the sequence (Qn)n admits
a subsequence (Qnk)nk converging to Q /∈ BQ∗ , when nk −→ +∞. Thanks to the
lower semi-continuity of I, it follows I(Q) ≤ lim infnk−→+∞ I(Qnk) = 0, which
contradicts I(Q) > 0 for Q 6= Q∗. Thus, from the above inequality, we deduce
that there exists a positive constant A such that

PN(ρN /∈ BQ∗) ≤ Ae
−N infQ/∈BQ∗ I(Q)

.

It means that, if we denote with d(·, ·) any metric which induces the weak topology
on M1, for every ε > 0, the probability PN(ρN /∈ BQ∗) = PN{d(ρN , Q∗) ≥ ε}
converges toward zero exponentially fast with respect to N and this concludes
the proof of the Law of Large Numbers. �

1.2.3 Stationary Solution(s)

The equation (1.10) describes the behavior of the system governed by generator
(1.2) in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation. We recall that to be t-stationary solution
for (1.10) means to satisfy the equation Lηqη = 0 for every t.
First of all, we proceed to reformulate the “original” McKean-Vlasov equation
(1.10) in terms of mση

qt , mσ
qt and mη

qt defined as follows:

mη
qt := mη

t = 1
2
∑
σ∈S

∑
η∈S

η qηt (σ) , (1.12)

mσ
qt := mσ

t = 1
2
∑
σ∈S

∑
η∈S

σ qηt (σ) =
∑
σ∈S

σ qt(σ) (1.13)

and

mση
qt := mση

t = 1
2
∑
σ∈S

∑
η∈S

ση qηt (σ) , (1.14)
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where qt and qηt have the meaning explained in Theorem 1.2.2. We introduce these
expectations because the probability measure qt on S 2 is completely determined
by them.

Lemma 1.2.3. Equations (1.10) can be rewritten in the following form:

ṁη
t = 0

ṁσ
t = −2mσ

t cosh(βh) cosh(βmσ
t )− 2mση

t sinh(βh) sinh(βmσ
t )

+2 cosh(βh) sinh(βmσ
t )

ṁση
t = −2mσ

t sinh(βh) sinh(βmσ
t )− 2mση

t cosh(βh) cosh(βmσ
t )

+2 sinh(βh) cosh(βmσ
t ) ,

(1.15)

with initial condition mη
0 = mη

(λ,µ) = 0, mσ
0 = mσ

(λ,µ) and m
ση
0 = mση

(λ,µ).

Proof. By definition (1.13) and Theorem 1.2.2 we deduce

ṁσ
t =

∑
σ∈S

σ q̇t(σ) = 1
2
∑
σ∈S

∑
η∈S

σ q̇ηt (σ) = 1
2
∑
σ∈S

∑
η∈S

σLηqηt (σ)

=1
2
∑
σ∈S

∑
η∈S

σ∇σ
[
e−βσ(mσt +hη)qηt (σ)

]

=1
2
∑
σ∈S

∑
η∈S

σ
[
eβσ(mσt +hη) qηt (−σ)︸ ︷︷ ︸

=1−qηt (σ)

−e−βσ(mσt +hη)qηt (σ)
]

=1
2
∑
σ∈S

∑
η∈S

σeβσ(mσt +hη) −
∑
σ∈S

∑
η∈S

σ cosh(βσ(mσ
t + hη))qηt (σ)

=1
2
∑
σ∈S

σeβσm
σ
t

∑
η∈S

eβhση −
∑
σ∈S

∑
η∈S

σ cosh(βhση) cosh(βσmσ
t )q

η
t (σ)

−
∑
σ∈S

∑
η∈S

σ sinh(βhση) sinh(βσmσ
t )q

η
t (σ)

=2 cosh(βh) sinh(βmσ
t )− cosh(βh) cosh(βmσ

t )
∑
σ∈S

∑
η∈S

σ qηt (σ)

− sinh(βh) sinh(βmσ
t )
∑
σ∈S

∑
η∈S

ση qηt (σ)
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=2 cosh(βh) sinh(βmσ
t )− 2mσ

t cosh(βh) cosh(βmσ
t )

− 2mση
t sinh(βh) sinh(βmσ

t ) ,

where the last equality holds thanks to (1.13) and (1.14). So the first equation
of (1.15) is proved. Similarly, we can obtain the other ones. �

Remark 1.2.4. Notice that mη
t ≡ 0 for every t; it is a static variable.

Regarding to Remark 1.2.4, any equilibrium solution of the system (1.15) is of
the form

mσ
∗ = 1

2 [tanh(β(mσ
∗ + h)) + tanh(β(mσ

∗ − h))] (1.16a)

mση
∗ = 1

2 [tanh(β(mσ
∗ + h))− tanh(β(mσ

∗ − h))] . (1.16b)

To discover the presence of phase transition(s) (multiple equilibria) and the sta-
bility of equilibria, it is sufficient to study equation (1.16a), since mση

∗ = mση
∗ (mσ

∗ )
and hence lim

t→+∞
mση
t = mση

∗ when lim
t→+∞

mσ
t = mσ

∗ .

!

h

0

2

1

1

"⁄#

Figure 1.1: Phase diagram

The phase diagram is qualitatively drawn in Figure 1.1. There are three phases,
corresponding to 0, 1 and 2 ferromagnetic solutions respectively. The continuous
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separation curve is

h = h(β) = 1
β

arccosh(
√
β) β ∈ [1,+∞) , (1.17)

while the dotted one is obtained numerically and it is due to the fact that the
function

mσ
∗ 7−→

1
2 [tanh(β(mσ

∗ + h)) + tanh(β(mσ
∗ − h))]

is not always concave. The two curves coincide for β ∈ [1, 3/2] and separate at
the “tricritical” point (3/2, h(3/2)).

Theorem 1.2.3. Consider the system of equations (1.16a) and (1.16b).

(a) If (β, h) belongs to the region 0 of Figure 1.1, then the only solution is
(0, tanh(βh)).

(b) If (β, h), with β ∈ [1,+∞), is below the curve (1.17), then there are three
solutions: (0, tanh(βh)), (m∗,mση

∗ (m∗)) and (−m∗,mση
∗ (m∗)), where m∗ is

the unique positive solution of (1.16a).

(c) If we choose the parameters above the curve (1.17) and h is small enough,
in other words (β, h) belongs to the region 2 of Figure 1.1, then two further
solutions arise.

Proof. We refer to [DPdH95] for the proof concerning the phase diagram of the
system and the stability of its equilibria. �

We are going to focus on the critical regime corresponding to the critical values
for the parameters β = cosh2(βh), meaning that we are on the curve (1.17). For
these values of the parameters, the equilibrium (0, tanh(βh)) is neutrally stable
for the linearized system. In fact, denoting by

V : [−1,+1]× [−1,+1] −→ R2

(x1, x2) 7−→ (V1(x1, x2), V2(x1, x2)) ,

with

V1(x1, x2) := −2x1 cosh(βh) cosh(βx1)− 2x2 sinh(βh) sinh(βx1)

+ 2 cosh(βh) sinh(βx1)
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V2(x1, x2) := −2x1 sinh(βh) sinh(βx1)− 2x2 cosh(βh) cosh(βx1)

+ 2 sinh(βh) cosh(βx1) ,

the vector field of the system (1.15), we obtain the linearized matrix evaluated
in the stationary solution is

DV (0, tanh(βh)) = 2


β − cosh2(βh)

cosh(βh) 0

0 − cosh(βh)

 .

Its eigenvalues are λ1 = 2β−cosh2(βh)
cosh(βh) and λ2 = −2 cosh(βh); λ2 < 0 for every value

of β, h and instead it is easy to see that

� if β < cosh2(βh), then λ1 < 0 and thus (0, tanh(βh)) is linearly stable;

� if β = cosh2(βh), then λ1 = 0 and thus DV (0, tanh(βh)) has a neutral
direction;

� if β > cosh2(βh), then λ1 > 0 and thus (0, tanh(βh)) is a saddle point for
the linearized system.

1.3 Normal Fluctuations and Central Limit Theorem

Thanks to Theorem 1.2.2 we established a Law of Large Numbers for the empir-
ical measure ρN : ρN −→ Q∗. We are going to analyze the Normal fluctuations
around the limit Q∗. We are also interested in the N -asymptotic distribution of
ρN −Q∗.
We use a weak convergence-type approach based on uniform convergence of the
infinitesimal generators. It is deeply explained in [EK86] and the result we
need can be summarized in the following theorem, whose proof can be found in
[EK86], Chapter 4, Corollary 8.7 .
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p

Theorem 1.3.1. Let Xn(t) be a sequence of Markov processes with values in Xn

and denote by Ln the corresponding infinitesimal generators, defined on D(Ln).
Moreover, let L , defined on D(L ), be the infinitesimal generator of another Markov
process X(t) with values on X , and let C be a core for L .
Assume that for every n Xn ⊂X and each function in C is an element of D(Ln),
when restricted to Xn. If the condition

lim
n→+∞

sup
x∈Xn

|Ln(f(x))−L (f(x))| = 0 (?)

holds for every f ∈ C andXn(0) converges toX(0) in distribution, then the sequence
of processes Xn(t) converges to the process X(t) in distribution.

y

Let f : S −→ R be a function and define ρN(t), the marginal distribution of ρN
at time t, by ∫

f(σ) dρN(t) = 1
N

N∑
j=1

f(σj(t)).

We have mσ
N(t) = m

σ
ρN (t). For each fixed t, ρN(t) is a probability on S and so,

by the considerations which led as to introduce the expectations (1.13), (1.14)
and (1.12), we can proceed similarly saying ρN(t) is completely determined by the
triple (mη

ρN (t),m
σ
ρN (t),m

σ η

ρN (t)) and seeing it as a three-dimensional object. Thus
(ρN(t))t∈[0,T ] is a three-dimensional flow. A simple consequence of Theorem 1.2.2
is the following convergence of flows:

(ρN(t))t∈[0,T ] −→ (qt)t∈[0,T ] , (1.18)

where the convergence is meant in probability, with respect to the weak topology
for measure-valued processes. Since the flow of marginals contains less informa-
tion than the full measure of paths, the Law of Large Numbers in (1.18) is weaker
than the one in Theorem 1.2.2. However, the corresponding fluctuation flow

(N1/2(ρN(t)− qt))t∈[0,T ]

is also a finite-dimensional flow, whose limiting distribution can be explicitly
characterized.
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Lemma 1.3.1. Let (Xt)t≥0 be a continuous time Markov chain on a finite state
space S, admitting an infinitesimal generator L. Let g : S −→ S ′ be a given
function, where S ′ is a finite set. Assume that for every f : S −→ R, L(f ◦ g) is
a function of g(x), i.e. L(f ◦g) = (Kf)◦g. Then this last identity defines a linear
operator K; moreover, g(Xt) is a Markov process with infinitesimal generator K.

Proof. Obviously K is linear. Observing that

etL(f ◦ g) = (etKf) ◦ g , (1.19)

we can conclude. In fact, Xt is a Markov process with generator L, then we have

E[(f ◦ g)(Xt)|X0 = x] = etL(f ◦ g)(x)

(1.19)= etKf(g(x))

= E[f(g(Xt))|g(X0) = g(x)]

and the last inequality holds since etK is a Markov semigroup and L(f ◦ g) =
(Kf) ◦ g. Hence, g(Xt) is a Markov process with infinitesimal generator K. �

Lemma 1.3.2. The stochastic process (mη

ρN (t),m
σ
ρN (t),m

σ η

ρN (t)) is an order param-
eter for the model; it means its evolution is Markovian.

Proof. To prove that (mη

ρN (t),m
σ
ρN (t),m

σ η

ρN (t)) is a Markov process, we determine
the expression of the infinitesimal generator KN driving its dynamics. We apply
Lemma 1.3.1.
The process {σ(t)}t≥0 is a continuous time Markov chain on the finite state space
S N , with infinitesimal generator LN , defined by (1.2). Consider the function

ζ : S N −→ [−1,+1]3

σ 7−→ (mη
ρN ,m

σ
ρN
,m

σ η
ρN ) ,

it plays the role of g in Lemma 1.3.1; then, for every φ : S N −→ R, we have

LN(φ ◦ ζ) = (KNφ) ◦ ζ
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and ζ(σ) is a Markov process with generator KN given by

KNφ(mη
ρN ,m

σ
ρN
,m

σ η
ρN ) =

∑
j,k∈S

|AρN (j, k)| e−βj(m
σ
ρN

+kh) ·

·
[
φ

(
m
η
ρN ,m

σ
ρN
− j 2

N
,m

σ η
ρN − jk

2
N

)
− φ(mη

ρN ,m
σ
ρN
,m

σ η
ρN )

]
, (1.20)

where AρN (j, k) is the set of all pairs (σi, ηi), i ∈ {1, . . . , N}, such that σi = j,
ηi = k, with j, k ∈ S ; hence

|AρN (j, k)| = N

4
[
1 + km

η
ρN + jmσ

ρN
+ jkm

σ η
ρN

]
. (1.21)

�

Theorem 1.3.2. In the limit as N −→ +∞, the three-dimensional fluctuation
process (rN(t), xN(t), yN(t)), defined by

rN(t) := N1/2m
η

ρN (t)

xN(t) := N1/2
(
m
σ
ρN (t) −m

σ
t

)
yN(t) := N1/2

(
m
σ η

ρN (t) −m
ση
t

)
,

converges (in the sense of weak convergence of stochastic processes) to a limiting
three-dimensional Gaussian process (r(t), x(t), y(t)), which is the unique solution
of the linear stochastic differential equation

dr(t) = 0dx(t)
dy(t)

 = 2 H A1(t)dt+ 2A2(t)
x(t)
y(t)

 dt+D(t)
dB1(t)
dB2(t)

 , (1.22)

where B1, B2 are independent Standard Brownian motions, H is a Standard
Gaussian random variable, A1(t), A2(t) and D(t)D′(t)

2 are respectively
sinh(βh) cosh(βmσ

t )

cosh(βh) sinh(βmσ
t )

 ,

(β − 1) cosh(βh) cosh(βmσt)−βmσt cosh(βh) sinh(βmσt)−βm
ση
t sinh(βh) cosh(βmσt) − sinh(βh) sinh(βmσt)

(β − 1) sinh(βh) sinh(βmσt)−βmσt sinh(βh) cosh(βmσt)−βm
ση
t cosh(βh) sinh(βmσt) − cosh(βh) cosh(βmσt)

,
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[
−mσtch(βh)sh(βmσt)−m

ση
t

sh(βh)ch(βmσt)+ch(βh)ch(βmσt) −m
σ
tsh(βh)ch(βmσt)−m

ση
t

ch(βh)sh(βmσt) + sh(βh)sh(βmσt)

−mσtsh(βh)ch(βmσt)−m
ση
t

ch(βh)sh(βmσt) + sh(βh)sh(βmσt) −m
σ
tch(βh)sh(βmσt)−m

ση
t

sh(βh)ch(βmσt)+ch(βh)ch(βmσt)

]

and (r(0), x(0), y(0)) has a centered Gaussian distribution with covariance matrix



1 0 0

0 1− (mσ
(λ,µ))2 −mσ

(λ,µ)m
ση
(λ,µ)

0 −mσ
(λ,µ)m

ση
(λ,µ) 1− (mση

(λ,µ))2


. (1.23)

Proof. We know that by the previous Lemma the infinitesimal generator KN
drives the evolution of (mη

ρN ,m
σ
ρN
,m

σ η
ρN ) as in (1.20). To use this information, we

operate the following change of variables

m
η

ρN (t) −→ rN(t) = N1/2m
η

ρN (t)

m
σ
ρN (t) −→ xN(t) = N1/2

(
m
σ
ρN (t) −m

σ
t

)
m
σ η

ρN (t) −→ yN(t) = N1/2
(
m
σ η

ρN (t) −m
ση
t

)
.

Notice that (rN(t), xN(t), yN(t)) is obtained from (mη

ρN (t),m
σ
ρN (t),m

σ η

ρN (t)) through
a time-dependent, linear and invertible transformation; so, let us consider its
inverse ϕ(rN(t), xN(t), yN(t)). Then we have

Mt
N,ϕ = ϕ(rN(t), xN(t), yN(t))−

∫ t

0
[KN(ϕ(rN(s), xN(s), yN(s)))

+ ∂sϕ(rN(s), xN(s), yN(s))] ds ,

whereMt
N,ϕ is a martingale and ϕ(rN(t), xN(t), yN(t)) has to be seen as a function

of mη

ρN (t), m
σ
ρN (t) and m

σ η

ρN (t). Now, if we consider ϕ(rN(t), xN(t), yN(t)) as a func-
tion of rN(t), xN(t) and yN(t), then (rN(t), xN(t), yN(t)) is itself a time inhomo-
geneous Markov process, whose generator HN,t acting on functions ϕ : R3 −→ R,

— 22 —



Chapter 1. The Random Curie-Weiss Model

ϕ ∈ C3
b , is given by

HN,tϕ(r, x, y) = KNϕ(r, x, y) + ∂tϕ(r, x, y) =

=
∑
j,k∈S

|AN(j, k)|e−βj
(

x

N1/2 +mσt +kh
)[
ϕ

(
r, x− j 2

N1/2 , y − jk
2

N1/2

)

− ϕ(r, x, y)
]
−N1/2 ṁη

t ϕr(r, x, y)−N1/2 ṁσ
t ϕx(r, x, y)

−N1/2 ṁση
t ϕy(r, x, y) ,

where

|AN(j, k)| = N

4

[
1 + k

r

N1/2 + j
x

N1/2 + jk
y

N1/2 + jmσ
t + jkmση

t

]
;

we develop ϕ around (r, x, y) by a Taylor expansion stopped at second order and
the exponential function around 0 at first order:

HN,tϕ(r, x, y) =
∑
j,k∈S

|AN(j, k)| e−βj(mσt +kh)
(

1− j βx

N1/2 + o

(
1

N1/2

))
·

·
[
− j 2

N1/2ϕx − jk
2

N1/2ϕy + 2
N
ϕxx + 2

N
ϕyy + k

4
N
ϕxy + o

(
1
N

)]
−N1/2 ṁσ

t ϕx(x, y)−N1/2 ṁση
t ϕy(x, y)

= ϕx
N1/2

2

[
e−βm

σ
t

(
1− βx

N1/2 + o

(
1

N1/2

))(
− 2 cosh(βh)

+ 2r
N1/2 sinh(βh)− 2x

N1/2 cosh(βh) + 2y
N1/2 sinh(βh)

− 2mσ
t cosh(βh) + 2mση

t sinh(βh)
)

+ eβm
σ
t

(
1 + βx

N1/2 + o

(
1

N1/2

))(
2 cosh(βh)

+ 2r
N1/2 sinh(βh)− 2x

N1/2 cosh(βh)− 2y
N1/2 sinh(βh)

− 2mσ
t cosh(βh)− 2mση

t sinh(βh)
)
− 2N1/2 ṁσ

t

]

+ ϕy
N1/2

2

[
e−βm

σ
t

(
1− βx

N1/2 + o

(
1

N1/2

))(
2 sinh(βh)
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− 2r
N1/2 cosh(βh) + 2x

N1/2 sinh(βh)− 2y
N1/2 cosh(βh)

+ 2mσ
t sinh(βh)− 2mση

t cosh(βh)
)

+ eβm
σ
t

(
1 + βx

N1/2 + o

(
1

N1/2

))(
2 sinh(βh)

+ 2r
N1/2 cosh(βh)− 2x

N1/2 sinh(βh)− 2y
N1/2 cosh(βh)

− 2mσ
t sinh(βh)− 2mση

t cosh(βh)
)
− 2N1/2 ṁση

t

]

+ ϕxx
1
2

[
e−βm

σ
t

(
1− βx

N1/2 + o

(
1

N1/2

))(
2 cosh(βh)

− 2r
N1/2 sinh(βh) + 2x

N1/2 cosh(βh)− 2y
N1/2 sinh(βh)

+ 2mσ
t cosh(βh)− 2mση

t sinh(βh)
)

+ eβm
σ
t

(
1 + βx

N1/2 + o

(
1

N1/2

))(
2 cosh(βh)

+ 2r
N1/2 sinh(βh)− 2x

N1/2 cosh(βh)− 2y
N1/2 sinh(βh)

− 2mσ
t cosh(βh)− 2mση

t sinh(βh)
)]

+ ϕyy
1
2

[
e−βm

σ
t

(
1− βx

N1/2 + o

(
1

N1/2

))(
2 cosh(βh)

− 2r
N1/2 sinh(βh) + 2x

N1/2 cosh(βh)− 2y
N1/2 sinh(βh)

+ 2mσ
t cosh(βh)− 2mση

t sinh(βh)
)

+ eβm
σ
t

(
1 + βx

N1/2 + o

(
1

N1/2

))(
2 cosh(βh)

+ 2r
N1/2 sinh(βh)− 2x

N1/2 cosh(βh)− 2y
N1/2 sinh(βh)

− 2mσ
t cosh(βh)− 2mση

t sinh(βh)
)]
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+ ϕxy

[
e−βm

σ
t

(
1− βx

N1/2 + o

(
1

N1/2

))(
− 2 sinh(βh)

+ 2r
N1/2 cosh(βh)− 2x

N1/2 sinh(βh) + 2y
N1/2 cosh(βh)

− 2mσ
t sinh(βh)− 2mση

t cosh(βh)
)

+ eβm
σ
t

(
1 + βx

N1/2 + o

(
1

N1/2

))(
2 sinh(βh)

+ 2r
N1/2 cosh(βh)− 2x

N1/2 sinh(βh)− 2y
N1/2 cosh(βh)

− 2mσ
t sinh(βh)− 2mση

t cosh(βh)
)]

+ o(1)

and, recalling equations (1.15), it yields

= 2ϕx
[
r sinh(βh) cosh(βmσ

t )− x cosh(βh) cosh(βmσ
t )

− y sinh(βh) sinh(βmσ
t ) + βx cosh(βh) cosh(βmσ

t )

+ βrx

N1/2 sinh(βh) sinh(βmσ
t )−

βx2

N1/2 cosh(βh) sinh(βmσ
t )

− βxy

N1/2 sinh(βh) cosh(βmσ
t )− βxmσ

t cosh(βh) sinh(βmσ
t )

− βxmση
t sinh(βh) cosh(βmσ

t )
]

+ 2ϕy
[
r cosh(βh) sinh(βmσ

t )− x sinh(βh) sinh(βmσ
t )

− y cosh(βh) cosh(βmσ
t ) + βx sinh(βh) sinh(βmσ

t )

+ βrx

N1/2 cosh(βh) cosh(βmσ
t )−

βx2

N1/2 sinh(βh) cosh(βmσ
t )

− βxy

N1/2 cosh(βh) sinh(βmσ
t )− βxmσ

t sinh(βh) cosh(βmσ
t )

− βxmση
t cosh(βh) sinh(βmσ

t )
]
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+ 2ϕxx
[

cosh(βh) cosh(βmσ
t ) + r

N1/2 sinh(βh) sinh(βmσ
t )

− x

N1/2 cosh(βh) sinh(βmσ
t )−

y

N1/2 sinh(βh) cosh(βmσ
t )

−mσ
t cosh(βh) sinh(βmσ

t )−m
ση
t sinh(βh) cosh(βmσ

t )
]

+ 2ϕyy
[

cosh(βh) cosh(βmσ
t ) + r

N1/2 sinh(βh) sinh(βmσ
t )

− x

N1/2 cosh(βh) sinh(βmσ
t )−

y

N1/2 sinh(βh) cosh(βmσ
t )

−mσ
t cosh(βh) sinh(βmσ

t )−m
ση
t sinh(βh) cosh(βmσ

t )
]

+ 4ϕxy
[

sinh(βh) sinh(βmσ
t ) + r

N1/2 cosh(βh) cosh(βmσ
t )

− x

N1/2 sinh(βh) cosh(βmσ
t )−

y

N1/2 cosh(βh) sinh(βmσ
t )

−mσ
t sinh(βh) cosh(βmσ

t )−m
ση
t cosh(βh) sinh(βmσ

t )
]

+ o(1)

Now, as N −→ +∞, thanks to the Central Limit Theorem for independent
identically distributed random variables, the variable r converges to H , which is
a Standard Gaussian random variable.
Moreover, HN,tf(r, x, y) N→+∞−−−−→ Htf(r, x, y), where:

Htϕ(r, x, y) = 2ϕx
[
x

(
(β − 1) cosh(βh) cosh(βmσ

t )− βmσ
t cosh(βh) sinh(βmσ

t )

−βmση
t sinh(βh) cosh(βmσ

t )
)
− y sinh(βh) sinh(βmσ

t )

+H sinh(βh) cosh(βmσ
t )
]

+2ϕy
[
x
(
(β − 1) sinh(βh) sinh(βmσ

t )− βmσ
t sinh(βh) cosh(βmσ

t )

−βmση
t cosh(βh) sinh(βmσ

t )
)
− y cosh(βh) cosh(βmσ

t )
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+H cosh(βh) sinh(βmσ
t )
]

+2ϕxx
[
−mσ

t cosh(βh) sinh(βmσ
t )−m

ση
t sinh(βh) cosh(βmσ

t )

+ cosh(βh) cosh(βmσ
t )
]

+2ϕyy
[
−mσ

t cosh(βh) sinh(βmσ
t )−m

ση
t sinh(βh) cosh(βmσ

t )

+ cosh(βh) cosh(βmσ
t )
]

+4ϕxy
[
−mσ

t sinh(βh) cosh(βmσ
t )−m

ση
t cosh(βh) sinh(βmσ

t )

+ sinh(βh) sinh(βmσ
t )
]

The just found generator Ht is the infinitesimal generator of the linear diffusion
process which corresponds to the unique solution of (1.22). In view of Theorem
1.3.1, we complete the proof if we show that (rN(0), xN(0), yN(0)) converges in
distribution to (r(0), x(0), y(0)), when N −→ +∞, and if we can prove the
analogous condition of (?).
The first statement is implied by the Central Limit Theorem for independent,
identically distributed random variables: in fact, by hypothesis, (σj(0))Nj=1 and
(ηj)Nj=1 are independent with common law λ and µ respectively and (1.23) is the
covariance matrix under the joint measure (λ, µ) of (σ(0), η(0)).
In regard to (?), we need to overcome the fact that the generators HN,t and Ht,
we are dealing with, for which we need convergence, are time-dependent. The
trick works as follows: we consider time as an additional variable. It means
we introduce another process τ(t) := t (which is deterministic and therefore
clearly Markovian) and we substitute the unknown vector (r, x, y) with the new
one (r, x, y, τ). In this way, HN,tϕ(r, x, y) = HNϕ(r, x, y, τ) and Htϕ(r, x, y) =
Hϕ(r, x, y, τ) and the problem is solved.
Moreover, for ϕ ∈ C3

b and (r, x, y, τ) ∈ [−1,+1]3 × [0, T ] (which plays the role of
Xn in Theorem 1.3.1), it is obviously true that

lim
N→+∞

sup
(r,x,y,τ)

|HNϕ(r, x, y, τ)−Hϕ(r, x, y, τ)| = 0 ,

because the difference between the generators is of order o(1) with respect to
N . �
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Remark 1.3.1. The drift terms H A1(t)dt in (1.22) marks the relevant difference
with respect to the homogeneous case. The survival of this term in the critical
regime is responsible for the dynamics of critical fluctuations, as shown in next
section.

Theorem 1.3.2 guarantees that the distribution of (xN(t), yN(t)) is asymptotically
Gaussian for every t > 0 and provides a method to compute the limiting covari-
ance matrix. Indeed, if we denote by Σt the covariance matrix of (x(t), y(t)),
then we can verify

Proposition 1.3.1. The covariance matrix Σt solves the linear Lyapunov equation

dΣt

dt
= 2A2(t)Σt + 2ΣtA

′
2(t) +D(t)D′(t) . (1.24)

Proof. We consider the column vector X(t) :=
x(t)
y(t)

 and its transpose, the

row vector X ′(t) := (x(t), y(t)). Thanks to (1.22), we know these vectors have
the following stochastic differentials:

dX(t) = 2A1(t)dt+ 2A2(t)X(t)dt+D(t)dB(t)
dX ′(t) = 2A′1(t)dt+ 2X ′(t)A′2(t)dt+ dB′(t)D′(t) ,

where dB(t) is the column vector whose components are the independent, Stan-
dard Brownian motions appearing in the statement of Theorem 1.3.2. Using Itô’s
Formula, we get

d(X(t)X ′(t)) = X(t)dX ′(t) + dX(t)X ′(t) + dX(t)dX ′(t)

= X(t)[2A′1(t)dt+ 2X ′(t)A′2(t)dt+ dB′(t)D′(t)]

+ [2A1(t)dt+ 2A2(t)X(t)dt+D(t)dB(t)]X ′(t) +D(t)D′(t)dt

= 2X(t)A′1(t)dt+ 2X(t)X ′(t)A′2(t)dt+X(t)dB′(t)D′(t)

+ 2A1(t)X ′(t)dt+ 2A2(t)X(t)X ′(t)dt+D(t)dB(t)X ′(t)

+D(t)D′(t)dt
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and thus, if we take the expectation, we obtain

dΣt = dE[X(t)X ′(t)] = 2E[X(t)X ′(t)]A′2(t)dt+ 2A2(t)E[X(t)X ′(t)]

+D(t)D′(t)dt

= 2ΣtA
′
2(t)dt+ 2A2(t)Σtdt+D(t)D′(t)dt ,

since we have E[X(t)dB′(t)D′(t)] = E[D(t)dB(t)X ′(t)] = 0, for the properties
of Brownian motion, and E[X(t)A′1(t)] = E[A1(t)X ′(t)] = 0, because the vectors
X(t) and X ′(t) are centered Gaussian vectors. �

In order to solve equation (1.24), it is convenient to interpret Σt as a vector in
R2×2 = R2 ⊗ R2, where ⊗ denotes the tensor product. For every 2× 2 matrix Θ,
we will write vec(Θ) whenever we interpret it as a vector belonging to the tensor
space just introduced. We can rewrite (1.24) as

d(vec(Σt))
dt

= 2[A2(t)⊗ I + I ⊗ A′2(t)]vec(Σt) + vec(D(t)D′(t)) , (1.25)

where we used tensor product of matrices. Equation (1.25) is linear, so an explicit
expression of its solutions can be given and it can be computed after having solved
(1.15). The analysis of Σt for large t can be made explicitly and it is strictly
related to the spectrum of the limiting matrix

A∗ := lim
t→+∞

A2(t) ,

which is the drift matrix of the linearized system of (1.22) in the limit of station-
arity and it is given by

A∗ =


β−cosh2(β(mσ∗+h))
2 cosh(β(mσ∗+h))

+ β−cosh2(β(mσ∗−h))
2 cosh(β(mσ∗−h))

− sinh(βh) sinh(βmσ
∗ )

β−cosh2(β(mσ∗+h))
2 cosh(β(mσ∗+h))

− β−cosh2(β(mσ∗−h))
2 cosh(β(mσ∗−h))

− cosh(βh) cosh(βmσ
∗ )

 ,
once we have recalled that limt→+∞(mσ

t ,m
ση
t ) = (mσ

∗ ,m
ση
∗ ), defined in (1.16a)

and (1.16b), and we have made the due substitutions and computations.

1.4 Critical Dynamics (β = cosh2(βh))

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when β = cosh2(βh).
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This condition of critical point for the parameters does not identify only the
passage from unicity and non-unicity of the stationary solution for the limiting
dynamics; but it also individuates the transition from 1 to 2 ferromagnetic solu-
tions. Referring to Figure 1.1, we will describe the behavior of the fluctuations
on the boundary between regions 0 and 1 and regions 1 and 2, while we do not
know what happens along the dotted separation curve between phases 0 and 2.

In the previous section we proved that in a time interval [0, T ], where T is fixed,
and in the infinite volume limit, we have Normal fluctuations for the system. In-
deed, the infinitesimal generator of the rescaled process converges to the infinites-
imal generator of a diffusion and the rescaled process itself converges weakly to
that diffusion. It means we showed a Central Limit Theorem for all the values of
β. But what does it change when we are in this critical case?
The particularity of this situation is that the Central Limit Theorem continues
to be valid but there is an eigenvalue for the covariance matrix Σt which grows
polynomially in t. This fact implies that the size of the Normal fluctuations must
be further rescaled (in space and in time), because their size around the determin-
istic limit increases in time. In this case we will still obtain Normal fluctuations,
solutions of a certain stochastic differential equation to be determined.

First of all, we need to locate the critical direction in the three-dimensional space
of the order parameters. In the rest of the section, we will consider β = cosh2(βh)
and let us assume that the initial condition λ is a product measure such that

mσ
0 = 0, mση

0 = tanh(βh)

and so
mσ
t = 0, mση

t = tanh(βh),

for every value of t ≥ 0, since it is an equilibrium solution.
Under these assumptions the drift matrix, A2, of the linearized system of (1.22)
and the infinitesimal generators KN , HN and H are independent of t. In partic-
ular, equation (1.22) becomes

dr(t) = 0dx(t)
dy(t)

= 2 H

sinh(βh)
0


︸ ︷︷ ︸

:=Acr1

dt+ 2
0 0
0 − cosh(βh)


︸ ︷︷ ︸

:=Acr2

x(t)
y(t)

dt+Dcr

dB1(t)
dB2(t)

 ,
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where the matrix Dcr satisfies

(Dcr)(Dcr)′
2 =

 1
cosh(βh) 0

0 1
cosh(βh)

 ,
and, as before, B1, B2 are independent Standard Brownian motions and H is a
Standard Gaussian random variable.

As t −→ +∞, the covariance matrix Σcr
t , solution of the Lyapunov equation

dΣcr
t

dt
= 2Acr2 Σcr

t + 2 Σcr
t (Acr2 )′ + (Dcr)(Dcr)′ ,

becomes a diagonal matrix with an eigenvalue growing polynomially in t. Its
(right) eigenvectors tend to the (right) eigenvectors of the drift matrix Acr2 . The
critical direction is determined by the (right) eigenvector corresponding to the
eigenvalue increasing to infinity of the covariance matrix Σcr

t , which is also the
(right) eigenvector corresponding to the null eigenvalue of the matrix Acr2 . Hence,
in our case, the critical direction is x.

Remark 1.4.1. Notice that the critical direction x does not depend explicitly on
the random environment and it is one-dimensional.

Theorem 1.4.1. For t ∈ [0, T ], if we consider the three-dimensional critical fluc-
tuation process

rN(t) := N1/2m
η

ρN (t)

x̃N(t) := N1/4m
σ

ρN (N1/4t) (1.26)

ỹN(t) := N1/4
(
m
σ η

ρN (N1/4t) − tanh(βh)
)
,

then, as N −→ +∞, rN(t) converges to H , a Standard Gaussian random vari-
able, ỹN(t) −→ 0 in the sense of Proposition 1.4.1 and x̃N(t) converges, in the
sense of weak convergence of stochastic processes, to a limiting Gaussian process

x̃(t) = 2 H sinh(βh)t .

1.4.1 Proof of the Theorem 1.4.1

Before approaching the proof, we try to underline the main ideas developed in it.
We make an attempt to explain what is going on.

— 31 —



Chapter 1. The Random Curie-Weiss Model

When we have decided the right time-rescaling, we define a sequence of stop-
ping times, allowing us to define a family of random time-interval, on which the
processes x̃N(t) and ỹN(t) are bounded (we will see the process rN(t) is already
bounded with high probability). For t fixed in one of such an interval, it happens
that the non-critical direction ỹN(t) vanishes or, more precisely, collapses. Then,
we prove the probability that the stopping times exceed a given time T is very
small, so we can deduce all the considerations we made are valid in the whole
time-interval [0, T ]. The last step is to verify the critical direction admits a limit
and to compute it. It will be done using an argument of tightness, applied to a
suitable martingale problem.

To have a complete picture of our setting, let us recall the characterization of
collapsing process, in the sense described by Comets and Eisele (see [CE88]) and
slightly generalized in [Sar07].

p

Proposition 1.4.1. Let {Xn(t)}n≥1 be a sequence of positive semimartingales on a
probability space (Ω,A ,P), with

dXn(t) = Sn(t)dt+
∫

R+×Y
fn(t−, y)[Λn(dt, dy)− An(t, dy)dt]

Here, Λn is a Point Process of intensity An(t, dy)dt on R+ × Y , where Y is a
measurable space, and Sn(t) and fn(t) are At-adapted processes, if we consider
(At)t≥0 a filtration on (Ω,A ,P) generated by Λn.
Let d > 1 and Ci constants independent of n and t. Suppose there exist {αn}n≥1

and {βn}n≥1, increasing sequences with

n1/dα−1
n

n→+∞−−−−→ 0, n−1αn
n→+∞−−−−→ 0, n−1βn

n→+∞−−−−→ 0

and
E
[(
Xn(0)

)d]
≤ C1α

−d
n for all n .

Furthermore, let {τn}n≥1 be stopping times such that for t ∈ [0, τn] and n ≥ 1,

Sn(t) ≤ −nδXn(t) + βnC2 + C3 with δ > 0,

sup
ω∈Ω,y∈Y ,t≤τn

|fn(t, y)| ≤ C4α
−1
n .

Hence:
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(a) if it holds ∫
Y

(fn(t, y))2An(t, dy) ≤ C5 , (??)

then, for any ε > 0, there exist C6 > 0 and n0 such that

sup
n≥n0

P

{
sup

0≤t≤T∧τn
Xn(t) > C6(n1/dα−1

n ∨ αnn−1)
}
≤ ε ; (? ? ?)

(b) if instead of (??) we have∫
Y

(fn(t, y))2An(t, dy) ≤ C5(Xn(t) + n−1) ,

then, instead of (? ? ?), we get

sup
n≥n0

P

{
sup

0≤t≤T∧τn
Xn(t) > C6(n1/dα−1

n ∨ βnn−1)
}
≤ ε .

y

Now, we can start to deal with the proof.

Phase 1: The identification of the time-rescaling. We first rescale the
space by the “standard” critical factor N1/4 and determine the evolution of the
rescaled magnetizations. Later, we identify the right time-rescaling that leads to
a nontrivial limit as N −→ +∞.

Lemma 1.4.1. For t ∈ [0, T ], if we consider only the space scaling

rN(t) = N1/2m
η

ρN (t)

x̄N(t) = N1/4m
σ
ρN (t) (1.27)

ȳN(t) = N1/4
(
m
σ η

ρN (t) − tanh(βh)
)
,

then (rN(t), x̄N(t), ȳN(t)) is a Markov process whose infinitesimal generator sat-
isfies:

GNψ(r, x̄, ȳ) = 2ψx̄
[
r
sinh(βh)
N1/4 − β x̄ ȳ sinh(βh)

N1/4

]

+ 2ψȳ
[
β r x̄

cosh(βh)
N1/2 − ȳ cosh(βh)− βx̄ 2 sinh(βh)

N1/4

]

+ o

(
1

N1/4

)
,

(1.28)

where the remainders are continuous functions of (r, x̄, ȳ) and they are of order
o( 1

N1/4 ) pointwise, but not uniformly in (r, x̄, ȳ).
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Proof. We obtained from Theorem 1.3.2 that the triple (rN(t), xN(t), yN(t)) is a
Markov process with infinitesimal generatorHN . Making the same considerations
as before (see Lemma 1.3.2) and considering a function ψ : R3 −→ R, ψ ∈ C3

b , we
know that

HN(ψ(rN(t), x̄N(t), ȳN(t))) = (GNψ)(rN(t), x̄N(t), ȳN(t)) ,

with

GNψ(r, x̄, ȳ) =
∑
j,k∈S

|AN(j, k)| e−βj
(

x̄

N1/4 +kh
)
·

·
[
ψ

(
r, x̄− j 2

N3/4 , ȳ − jk
2

N3/4

)
− ψ(r, x̄, ȳ)

]

and where

|AN(j, k)| = N

4

[
1 + k

r

N1/2 + j
x̄

N1/4 + jk

(
ȳ

N1/4 + tanh(βh)
)]

.

At least at the beginning of the standard computations we are going to per-
form, we consider the following representation for the Taylor expansions of the
exponential functions

e
β x̄

N1/4 = 1 + βx̄

N1/4 +R+ and e
−β x̄

N1/4 = 1− βx̄

N1/4 +R− . (1.29)

Later on we will need more accurate estimates of R+ and R−. Moreover, we
develop also ψ by a Taylor expansion stopped at second order.

GNψ(r, x̄, ȳ)=
∑
j,k∈S

|AN(j, k)| e−βjkh
(

1− j βx̄

N1/4 +Rsgn(−j)

)[
− j 2

N3/4ψx̄

− jk 2
N3/4ψȳ + 2

N3/2ψx̄x̄ + 2
N3/2ψȳȳ + k

4
N3/2ψx̄ȳ + o

(
1

N3/2

)]

= ψx̄
N1/4

2

[(
1− βx̄

N1/4 +R−

)(
− 2 cosh(βh) + 2r

N1/2 sinh(βh)

− 2x̄
N1/4 cosh(βh) + 2ȳ

N1/4 sinh(βh) + 2 tanh(βh) sinh(βh)
)

+
(

1 + βx̄

N1/4 +R+

)(
2 cosh(βh) + 2r

N1/2 sinh(βh)
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− 2x̄
N1/4 cosh(βh)− 2ȳ

N1/4 sinh(βh)− 2 tanh(βh) sinh(βh)
)

+ ψȳ
N1/4

2

[(
1− βx̄

N1/4 +R−

)(
2 sinh(βh)− 2r

N1/2 cosh(βh)

+ 2x̄
N1/4 sinh(βh)− 2ȳ

N1/4 cosh(βh)− 2 tanh(βh) cosh(βh)
)

+
(

1 + βx̄

N1/4 +R+

)(
2 sinh(βh) + 2r

N1/2 cosh(βh)

− 2x̄
N1/4 sinh(βh)− 2ȳ

N1/4 cosh(βh)− 2 tanh(βh) cosh(βh)
)]

+ ψx̄x̄
1

2N1/2

[(
1− βx̄

N1/4 +R−

)(
2 cosh(βh)− 2r

N1/2 sinh(βh)

+ 2x̄
N1/4 cosh(βh)− 2ȳ

N1/4 sinh(βh)− 2 tanh(βh) sinh(βh)
)

+
(

1 + βx̄

N1/4 +R+

)(
2 cosh(βh) + 2r

N1/2 sinh(βh)

− 2x̄
N1/4 cosh(βh)− 2ȳ

N1/4 sinh(βh)− 2 tanh(βh) sinh(βh)
)

+ ψȳȳ
1

2N1/2

[(
1− βx̄

N1/4 +R−

)(
2 cosh(βh)− 2r

N1/2 sinh(βh)

+ 2x̄
N1/4 cosh(βh)− 2ȳ

N1/4 sinh(βh)− 2 tanh(βh) sinh(βh)
)

+
(

1 + βx̄

N1/4 +R+

)(
2 cosh(βh) + 2r

N1/2 sinh(βh)

− 2x̄
N1/4 cosh(βh)− 2ȳ

N1/4 sinh(βh)− 2 tanh(βh) sinh(βh)
)]

+ ψx̄ȳ
1

N1/2

[(
1− βx̄

N1/4 +R−

)(
− 2 sinh(βh) + 2r

N1/2 cosh(βh)

− 2x̄
N1/4 sinh(βh) + 2ȳ

N1/4 cosh(βh) + 2 tanh(βh) cosh(βh)
)
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+
(

1 + βx̄

N1/4 +R+

)(
2 sinh(βh) + 2r

N1/2 cosh(βh)

− 2x̄
N1/4 sinh(βh)− 2ȳ

N1/4 cosh(βh)− 2 tanh(βh) cosh(βh)
)]

+ o

(
1

N1/2

)

= ψx̄ 2N1/4
[

r

N1/2 sinh(βh)− x̄

N1/4 cosh(βh) + βx̄

N1/4 cosh(βh)

− βx̄ȳ

N1/2 sinh(βh)− βx̄

N1/4 tanh(βh) sinh(βh)

+ 1
2

(
r

N1/2 sinh(βh)− x̄

N1/4 cosh(βh)
)

(R+ +R−)

+ 1
2

(
1

cosh(βh) −
ȳ

N1/4 sinh(βh)
)

(R+ −R−)
]

+ ψȳ 2N1/4
[
− ȳ

N1/4 cosh(βh) + βrx̄

N3/4 cosh(βh)− βx̄2

N1/2 sinh(βh)

− ȳ

2N1/4 cosh(βh)(R+ +R−) + 1
2

(
r

N1/2 cosh(βh)

− x̄

N1/4 sinh(βh)
)

(R+ −R−)
]

+ ψx̄x̄
2

N1/2

[
cosh(βh)− ȳ

N1/4 sinh(βh)− tanh(βh) sinh(βh)

+ βrx̄

N3/4 sinh(βh)− βx̄2

N1/2 cosh(βh) + o

(
1

N1/4

)]

+ ψȳȳ
2

N1/2

[
cosh(βh)− ȳ

N1/4 sinh(βh)− tanh(βh) sinh(βh)

+ βrx̄

N3/4 sinh(βh)− βx̄2

N1/2 cosh(βh) + o

(
1

N1/4

)]
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+ ψx̄ȳ
4

N1/2

[
r

N1/2 cosh(βh)− x̄

N1/4 sinh(βh)− βx̄ȳ

N1/2 cosh(βh)

+ o

(
1

N1/4

)]
+ o

(
1

N1/2

)

= ψx̄ 2
[
r

sinh(βh)
N1/4 + x̄

[− cosh2(βh) + β]
cosh(βh)︸ ︷︷ ︸

it vanishes in the critical case

− βx̄ȳ
N1/4 sinh(βh)

+ 1
2

(
r

sinh(βh)
N1/4 − x̄ cosh(βh)

)
(R+ +R−)

+ 1
2

(
N1/4

cosh(βh) − ȳ sinh(βh)
)

(R+ −R−)
]

+ ψȳ 2
[
− ȳ cosh(βh) + βrx̄

N1/2 cosh(βh)− βx̄2

N1/4 sinh(βh) (1.30)

− ȳ cosh(βh)
2 (R+ +R−) + 1

2

(
r

cosh(βh)
N1/4 (1.31)

− x̄ sinh(βh)
)

(R+ −R−)
]

+ o

(
1

N1/2

)
(1.32)

= ψx̄ 2
[
r

sinh(βh)
N1/4 − βx̄ȳ

N1/4 sinh(βh)
]

+ ψȳ 2
[
− ȳ cosh(βh) + βrx̄

N1/2 cosh(βh)− βx̄2

N1/4 sinh(βh)
]

+ o

(
1

N1/4

)

which is just (1.28). �

Phase 2: The process ỹN(t) collapses. Let us denote by {τMN }N≥1 a family
of stopping times, defined as

τMN := inf
t≥0
{|x̃N(t)| ≥M or |ỹN(t)| ≥M} ,
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where M is a positive constant. We are interested in introducing such sequence
of stopping times because in this way the processes x̃N(t) and ỹN(t) result to be
bounded in the time interval [0, T ∧ τMN ]; rN(t) is still bounded for t ∈ [0, T ]. In
fact we can prove

Lemma 1.4.2. For every ε > 0 there exists M > 0 such that the process rN(t),
defined as in (1.26), satisfies

P {|rN(t)| ≥M} ≤ ε

for t ∈ [0, T ].

Proof. The process rN(t) is a constant process and then, for every t ∈ [0, T ],
we have rN(t) ≡ rN(0), which is a sample average of independent, identically
distributed Bernoulli random variables multiplied by N1/2. So, by Central Limit
Theorem, for any ε > 0, for every N and for a sufficiently large M

P{|rN(0)| ≥M} ≤ ε .

�

We consider the infinitesimal generator, JN = N1/4GN , subject to the time-
rescaling and we apply it to the particular function ψ(rN(t), x̃N(t), ỹN(t)) =
(ỹN(t))2. We choose this kind of function since (ỹN(t))2 is a sequence of positive
semimartingales on a suitable probability space (Ω,A, P ) and then the following
decomposition holds:

d(ỹN(t))2 = JN(ỹN(t))2 dt+ dMt
N,ỹ2 ,

withMt
N,ỹ2

the local martingale given by

Mt
N,ỹ2 =

∫ t

0

∑
j,k∈S

∇(j)[(ỹN(s))2] Λ̃σ
N(j, k, ds) ,

where we have defined

∇(j)[(ỹN(t))2] :=
(
ỹN(t)− jk 2

N3/4

)2
− (ỹN(t))2 (1.33)

and

Λ̃σ
N(j, k, dt) := Λσ

N(j, k, dt)−N1/4
∣∣∣A(j, k,N1/4t)

∣∣∣ e−βj
(
x̃N (t)
N1/4 +kh

)
dt︸ ︷︷ ︸

:=λ(j,k,t) dt

. (1.34)
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The counter
∣∣∣A(j, k,N1/4t)

∣∣∣ is, similarly to previous cases, expressed by

∣∣∣A(j, k,N1/4t)
∣∣∣ = N

4

[
1 + k

rN(t)
N1/2 + j

x̃N(t)
N1/4 + jk

(
ỹN(t)
N1/4 + tanh(βh)

)]

and, as we can evidently see, Λ̃σ
N(j, k, dt) is the difference between the point

process Λσ
N(j, k, dt), defined on S 2 × R+, and its intensity λ(j, k, t) dt.

Remark 1.4.2. If we call (At)t≥0 a filtration generated by Λσ
N on (Ω,A, P ), then

the processes JN(ỹN(t))2 and ∇(j)[(ỹN(t))2] are At−adapted processes.

As a consequence of the considerations just explained, we are in the proper situ-
ation to use the result about collapsing processes and we can easily adapt Propo-
sition 1.4.1 to our specific case. We obtain we need to prove the following

Lemma 1.4.3. Consider d > 2, δ > 0 and κN := κ(N), such that κN N→+∞−−−−→ +∞.
For t ∈ [0, τMN ] and N ≥ 1, there exist constants C·’s independent of N and t and
two increasing sequences {αN}N≥1 and {βN}N≥1 which satisfy

κ
1/d
N α−1

N
N→+∞−−−−→ 0, κ−1

N αN
N→+∞−−−−→ 0, κ−1

N βN
N→+∞−−−−→ 0 , (1.35)

E
[
(ỹN(0))2d

]
≤ C1 α

−2d
N for all N , (1.36)

JN(ỹN(t))2 ≤ −κNδ(ỹN(t))2 + βNC2 + C3 , (1.37)

sup
ω∈Ω,j∈S ,t≤τMN

∣∣∣∣∇(j)[(ỹN(t))2]
∣∣∣∣ ≤ C4 α

−1
N , (1.38)

∑
j,k∈S

[
∇(j)[(ỹN(t))2]

]2
λ(j, k, t) ≤ C5

(
(ỹN(t))2 + κ−1

N

)
(1.39)

and such that, for every ε > 0, the following estimate holds

sup
N≥N0

P

 sup
0≤t≤T∧τMN

(ỹN(t))2 (∗)
> C6

(
κ

1/d
N α−1

N ∨ κ−1
N βN

) ≤ ε . (1.40)

Proof. We aim to prove these sequences {αN}N≥1, {βN}N≥1 and constants C·’s
exist and to give a characterization of them. We show that the properties (1.35)-
(1.39) hold true. The estimate (1.40) then follows from Proposition 1.4.1.

(1.36) From (1.26) we get

ỹN(0) = N1/4(mσ η

ρN (0) − tanh(βh)) .
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The random variables (σj(0), ηj)Nj=1 are independent, so a Central Limit
Theorem applies: in the limit as N −→ +∞,

N1/4ỹN(0) = N1/2(mσ η

ρN (0) − tanh(βh))

converges to a Gaussian random variable and, sincemσ η

ρN (0) ∈ [−1,+1], there
is convergence of all the moments. Thus,

E
[
Nd(mσ η

ρN (0) − tanh(βh))2d
]
≤ C1

and we obtain the following estimate for the 2d-th moments of ỹN(0):

E[(ỹN(0))2d] = E
[
Nd/2(mσ η

ρN (0) − tanh(βh))2d
]

= N−d/2E
[
Nd(mσ η

ρN (0) − tanh(βh))2d
]
≤ C1N

−d/4 .

Thus (1.36) holds.

(1.37) For t ∈ [0, τMN ] we consider the Taylor expansions of exponential functions
defined in (1.29) and we give an estimate of their Lagrangian expression of
the remainders:

|R+| ≤
1
2 sup

{
ez : z ∈

[
0, β x̃(t)
N1/4

]}
β2 x̃(t)2

N1/2 ≤ β2M2

2N1/2 e
βM

N1/4

|R−| ≤
1
2 sup

{
ez : z ∈

[
− β x̃(t)

N1/4 , 0
]}
β2 x̃(t)2

N1/2 ≤ β2M2

2N1/2 .

Now, we derive the particular characterization of JN(ỹN(t))2, adapting the
explicit expression of GNψ(rN(t), x̃N(t), ỹN(t)) given by (1.28) (in other
words, setting ψ(rN(t), x̃N(t), ỹN(t)) = (ỹN(t))2 and taking into account
the time-rescaling). Then, we proceed to find an upper bound for this
quantity. By (1.30), (1.31) and (1.32),

JN(ỹN(t))2 = 4N1/4ỹN(t)
[
− ỹN(t) cosh(βh) + β x̃N(t)rN(t)

N1/2 cosh(βh)

− β(x̃N(t))2

N1/4

]
+ 2N1/4ỹN(t)

[
− ỹN(t) cosh(βh)(R+ +R−)

+
(
rN(t) cosh(βh)

N1/4 − x̃N(t) sinh(βh)
)

(R+ −R−)
]
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≤ −4N1/4(ỹN(t))2 cosh(βh)+4β|x̃N(t)||ỹN(t)||rN(t)| cosh(βh)

+ 4β(x̃N(t))2|ỹN(t)|+ 2N1/4|ỹN(t)|
[
|x̃N(t)| sinh(βh)

+
(
|rN(t)|+ |ỹN(t)|

)
cosh(βh)

]
(|R+|+ |R−|)

≤ −4N1/4(ỹN(t))2 cosh(βh) + 4βM3 cosh(βh) + 4βM3

+ β2M4

N1/4

(
e
βM

N1/4 + 1
)
[2 cosh(βh) + sinh(βh)]

≤ −4N1/4(ỹN(t))2 cosh(βh) + 4βM3[cosh(βh) + 1]

+ β2M4(eβM + 1)[2 cosh(βh) + sinh(βh)]

= −4N1/4(ỹN(t))2 cosh(βh) + C2 + C3 .

Hence, we have obtained the desired inequality if we choose: κN := N1/4,
δ := 4 cosh(βh) (which is a positive constant as required), βN ≡ 1 and
C2 + C3 := 4βM3[cosh(βh) + 1] + β2M4(eβM + 1)[2 cosh(βh) + sinh(βh)].

(1.38) Now, we evaluate the supremum of the modulus of ∇(j)[(ỹN(t))2], defined
as in (1.33). It easily yields

sup
ω∈Ω,j∈S ,t∈[0,τMN ]

∣∣∣∣∇(j)[(ỹN(t))2]
∣∣∣∣ = sup

ω∈Ω,j∈S ,t∈[0,τMN ]

∣∣∣∣∣ 4
N3/2 − jk

4ỹN(t)
N3/4

∣∣∣∣∣

≤ 4
N5/8 (1 +M)N−1/8

≤ C4N
−1/8 ,

where we set C4 = 4(1 +M) and αN = N1/8.

(1.39) Recalling the definition of ∇(j)[(ỹN(s))2] and λ(j, k, t), which we can find
in (1.33) and in (1.34), we have
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N1/4 ∑
j,k∈S

|A(j, k,N1/4t)|e−βj
(
x̃N (t)
N1/4 +kh

)[(
ỹN(t)− j 2

N3/4

)2

− (ỹN(t))2
]2

=

= N

4

5/4 ∑
j,k∈S

[
1 + k

rN(t)
N1/2 + j

x̃N(t)
N1/4 + jk

(
ỹN(t)
N1/4 + tanh(βh)

)]
·

· e
−βj
(
x̃N (t)
N1/4 +kh

)[
16
N3 + 16

N3/2 (ỹN(t))2 − j 32
N9/4 ỹN(t)

]

≤ N

4

5/4 ∑
j,k∈S

[
1 + k

rN(t)
N1/2 + j

x̃N(t)
N1/4 + jk

(
ỹN(t)
N1/4 + tanh(βh)

)]
·

· e
−βj
(
x̃N (t)
N1/4 +kh

)
16
N3/2 (ỹN(t))2

+N−1/4
{
N3/2

4
∑
j,k∈S

[
1 + k

rN(t)
N1/2 + j

x̃N(t)
N1/4 + jk

(
ỹN(t)
N1/4 + tanh(βh)

)]
·

· e
−βj
(
x̃N (t)
N1/4 +kh

)(
16
N3 + 32

N9/4M

)}

(by the Taylor expansion of the exponential functions given by (1.29), and
evaluating the remainders as before)

≤ 4
N1/4 (ỹN(t))2

[
4

cosh(βh)+
4|ỹN(t)|
N1/4 sinh(βh)+4β |x̃N(t)||rN(t)|

N3/4 sinh(βh)

+ 4β(x̃N(t))2

N1/2 cosh(βh) + (|R+|+ |R−|)
(

2|ỹN(t)|
N1/4 sinh(βh)

+ 2|rN(t)|
N1/2 sinh(βh) + 2|x̃N(t)|

N1/4 cosh(βh) + 2
cosh(βh)

)]

+N−1/4
{

4
(

1
N3/2 + 2M

N3/4

)[
4

cosh(βh) + 4|ỹN(t)|
N1/4 sinh(βh)

+ 4β |x̃N(t)||rN(t)|
N3/4 sinh(βh) + 4β(x̃N(t))2

N1/2 cosh(βh)

+ (|R+|+ |R−|)
(

2|ỹN(t)|
N1/4 sinh(βh) + 2|rN(t)|

N1/2 sinh(βh)
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+ 2|x̃N(t)|
N1/4 cosh(βh) + 2

cosh(βh)

)]}

(by the definitions (1.26) we have that N−1/4x̃N(t), N−1/2rN(t) ∈ [−1,+1]
and N−1/4ỹN(t) ∈ [−2,+2])

≤ 16(ỹN(t))2
[

1
cosh(βh) + β cosh(βh) + (2 + β) sinh(βh)

]

+ 4β2M4

N1/4 (eβM + 1)
(

1
cosh(βh) + 3 sinh(βh) + cosh(βh)

)

+N−1/4
{

16(1 + 2M)
[

1
cosh(βh) + β cosh(βh) + (2 + β) sinh(βh)

+ β2M2(eβM + 1)
(

3 sinh(βh) + cosh(βh) + 1
cosh(βh)

)]}

= 16(ỹN(t))2
[

1
cosh(βh) + β cosh(βh) + (2 + β) sinh(βh)

]

+N−1/4
{

16(1 + 2M)
[

1
cosh(βh) + β cosh(βh) + (2 + β) sinh(βh)

+ β2M2(eβM + 1)
(

3 sinh(βh) + cosh(βh) + 1
cosh(βh)

)
·

·
(

1 + 4M2

16(1 + 2M)

)]}

≤ C5 ((ỹN(t))2 +N−1/4) ,

which is what we need, with C5 := 16(1 + 2M)
[

1
cosh(βh) + β cosh(βh) + (2 +

β) sinh(βh)+β2M2(eβM+1)
(
3 sinh(βh)+cosh(βh)+ 1

cosh(βh)

)(
1+ 4M2

16(1+2M)

)]
(1.35) It remains to show that the sequences we have found satisfy the conditions

about the convergence to zero. But,

lim
N→+∞

(N1/4)1/d(N1/8)−1 = lim
N→+∞

N1/4d−1/8 = 0 ⇐⇒ d > 2 ,
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lim
N→+∞

N1/8N−1/4 = lim
N→+∞

N−1/8 = 0 ,

lim
N→+∞

N−1/4 = 0

and hence we have completed the proof, since by Proposition 1.4.1 we can
now assure (1.40) holds.

�

Corollary 1.4.1. We consider the same setting as in Lemma 1.4.3. For every
ε > 0 there exist constants C7 and N0 such that

sup
N≥N0

P

 sup
0≤t≤T∧τMN

|ỹN(t)| > C7
(
κ

1/2d
N α

−1/2
N ∨ κ−1/2

N β
1/2
N

) ≤ ε . (1.41)

Proof. We set C7 = (C6)1/2 and we extract the square root of the inequality (∗)
in the previous Lemma to obtain an equivalent set, described in (1.41), for which
the same property holds. �

Remark 1.4.3. Notice that if we insert the quantities we choose during the proof
of Lemma 1.4.3 into (1.41), we have shown that the following inequality holds

sup
N≥N0

P

 sup
0≤t≤T∧τMN

|ỹN(t)| > C7
(
N1/8d−1/16 ∨N−1/8

) ≤ ε . (1.42)

The results we proved in this subparagraph show that the process ỹN(t) is a
collapsing process in the sense of Proposition 1.4.1, when t ∈ [0, T ∧ τMN ]. The
next step is the proof of the fact that, for every ε > 0 and N ≥ 1, there exists a
constant M > 0 such that it is true

P
{
τMN ≤ T

}
≤ ε .

This fact implies the process ỹN(t) converges to zero in probability, as N is
growing to infinity, for all t ∈ [0, T ].

Phase 3: Proof of P
{
τM

N ≤ T
}
≤ ε. As before, we consider the infinitesimal

generator JN = N1/4GN and we apply it to the function ψ(rN(t), x̃N(t), ỹN(t)) =
|x̃N(t)|. The following decomposition holds

|x̃N(t)| = |x̃N(0)|+
∫ t

0
JN(|x̃N(s)|)ds+Mt

N,|x̃|

≤ |x̃N(0)|+
∫ t

0
|JN(|x̃N(s)|)|ds+Mt

N,|x̃| ,

— 44 —



Chapter 1. The Random Curie-Weiss Model

with

Mt
N,|x̃| =

∫ t

0

∑
j,k∈S

∇(j)[|x̃N(s)|]Λ̃σ
N(j, k, ds)

and where in analogy to (1.33) we have defined

∇(j)[|x̃N(t)|] :=
∣∣∣∣∣x̃N(t)− j 2

N3/4

∣∣∣∣∣− |x̃N(t)| . (1.43)

Λ̃σ
N(j, k, ds) is the same as in (1.34). We recall that the expression of GN is

given by (1.28). We always need (and use) the usual expansions (1.29) and the
estimates of their remainders. For t ∈ [0, τMN ] we get

|JN(|x̃N(t)|)| =
∣∣∣∣∣2N1/4sgn(x̃N(t))

[
− βx̃N(t)ỹN(t)

N1/4 sinh(βh) + rN(t)
N1/4 sinh(βh)

+ (R+ +R−)
(
− x̃N(t) cosh(βh) + rN(t)

N1/4 sinh(βh)
)

+ (R+ −R−)
(
− ỹN(t) sinh(βh) + N1/4

cosh(βh)

)]∣∣∣∣∣ ,

but thanks to Central Limit Theorem, for every ε > 0 and sufficiently large M ,
P{|rN(t)| ≥M} ≤ ε, then

≤2
{

(M + βM2) sinh(βh) + β2M2(eβM + 1)
[

1
cosh(βh)+

+ 2M sinh(βh) +M cosh(βh)
]}

=: C8 ,

with C8 positive constant independent of N . Since the following inclusions are
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valid

{τMN ≤ T} ⊆
{

sup
0≤t≤T∧τMN

{|x̃N(t)|, |ỹN(t)|} ≥M

}

⊆
{

sup
0≤t≤T∧τMN

|x̃N(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|ỹN(t)| ≥M

}

⊆
{

sup
0≤t≤T∧τMN

|ỹN(t)| ≥M

}
∪ {|x̃N(0)| ≥ C9} ∪

[
{|x̃N(0)| ≤ C9}∩

∩
{

sup
0≤t≤T∧τMN

|x̃N(t)| ≥ C9 + TC8 + C10

}]

⊆
{

sup
0≤t≤T∧τMN

|ỹN(t)| ≥M

}
∪ {|x̃N(0)| ≥ C9}∪

∪
{

sup
0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
,

we obtain the following inequality

P{τMN ≤ T} ≤ P

{
sup

0≤t≤T∧τMN

|ỹN(t)| ≥M

}
+ P{|x̃N(0)| ≥ C9}

+ P

{
sup

0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
.

We estimate the three terms of the right-hand side of the inequality.

� For any ε > 0, thanks to (1.42), we have

P

{
sup

0≤t≤T∧τMN

|ỹN(t)| ≥M

}
≤ ε ,

where M := C7
(
N1/8d−1/16 ∨N−1/8

)
.

� From (1.26) we get E[|x̃N(0)|] = N1/4E[|mσ
ρN (0)|]. Since at time t = 0 the

spins are distributed according to a product measure, x̃N(0) is a sample
average of independent, identically distributed Bernoulli random variables
multiplied by N1/4. So, we can conclude

E[|x̃N(0)|] ≤
√

Var(σ1(0))N−1/4

and in the limit as N −→ +∞, we have convergence to zero in L1 and then
in probability. Therefore

P{|x̃N(0)| ≥ C9} ≤ ε
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for any ε > 0, for every N and for a sufficiently large C9.

� We reduce to deal with E[(MT
N,|x̃|)

2]; in fact, Doob’s “maximal inequality
in Lp” (case p = 2) for martingales (we refer to Chapter VII, Section 3 of

[Shi96]) tells us that P
{

sup0≤t≤T∧τMN
Mt

N,|x̃| ≥ C10
}
≤

E[(MT

N,|̃x|
)2]

(C10)2 .
We use the following Proposition about stochastic integrals with respect to
point processes (see Chapter II, Section 3 of [IW81]).

p

Proposition 1.4.2. Let (Ω,A ,P) be a complete probability space with a
right-continuous increasing family (At)t≥0 of sub-σ-fields of A each containing
all P-null sets. Let Xn be a martingale of the form

Xn(t) =
∫

R+×Y
fn(t, y)Λ̃n(dt, dy) ,

where

Λ̃n(dt, dy) := Λn(dt, dy)− An(t, dy)dt

and Λn is a Point Process of intensity An(t, dy)dt on R+ × Y , with Y mea-
surable space. If fn is (At)-predictable and for every t > 0

E

[ ∫
R+×Y

|fn(t, y)|An(t, dy)dt
]
<∞

and

E

[ ∫
R+×Y

|fn(t, y)|2An(t, dy)dt
]
<∞ ,

then

X2
n(t) =

[ ∫
R+×Y

fn(t, y)Λ̃n(dt, dy)
]2

=
∫

R+×Y
f 2
n(t, y)An(t, dy)dt .

y
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Hence, by (1.34) and (1.43), we obtain

E[(MT
N,|x̃|)

2] = E

[ ∫ T

0

∑
j,k∈S

[
∇(j)[|x̃N(t)|]

]2
λ(j, k, t)dt

]

≤ E

[ ∫ T

0

16
N3/2 N

1/4 sup
j,k∈S

|A(j, k,N1/4t)|eβ(1+h)dt

]

≤ E

[ ∫ T

0

4
N5/4 5N eβ(1+h)dt

]

≤ 20eβ(1+h)T =: C11 (independent of N and M)

We have established that, if we choose C10 ≥
√

C11
ε
, then

P

{
sup

0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
≤ ε .

In summary, we proved the inequality we were looking for; in fact

P
{
τMN ≤ T

}
≤ 3ε := ε .

We have just concluded the proof of the first part of the statement of Theorem
1.4.1, concerning the collapse of the process ỹN(t) in the limit as N −→ +∞ and
for t ∈ [0, T ]. Now, we are going to show that in the same setting, i.e. the limit
of infinite volume and t ∈ [0, T ], the process x̃N(t) admits a limiting process and
we are going to compute it.

Phase 4: The limit of x̃N(t). First, we need to prove the tightness of the
sequence {x̃N(t)}N≥1. This property implies the existence of convergent subse-
quences. Secondly, we will verify that all the convergent subsequences have the
same limit and hence also the sequence {x̃N(t)}N≥1 must converge to that limit.
We recall the definition of tightness for a family of probability measures.
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p

Definition 1.4.1. A sequence {Pn}n≥1 of probability measures on X is tight
in X if for each positive ε there exists a compact subset K of X such that
Pn(K ) ≥ 1− ε for all n ≥ 1.

y

In the case we are working with processes with laws on D[0, T ], we can give a
characterization of the tightness in terms of those processes (through their dis-
tributions). In fact, as we can read in [CE88], an immediate consequence of
Theorem 4.1 and Remark 1 in [Mit83] is the following tightness criterion:

A sequence of processes {x̃N(t)}N≥1 with laws {PN}N≥1 on D[0, T ] is tight if

(a) for every ε > 0 there exists M > 0 such that

sup
N
P

{
sup
t∈[0,T ]

|x̃N(t)| ≥M

}
≤ ε , (1.44)

(b) for every ε > 0 and α > 0 there exists δ > 0 such that

sup
N

sup
0≤s≤t≤T
t−s≤δ

P{|x̃N(t)− x̃N(s)| ≥ α} ≤ ε . (1.45)

Lemma 1.4.4. The sequence {x̃N(t)}N≥1 is tight.

Proof. Since we have already proved that for every ε > 0 the inequality P{τMN ≤
T} ≤ ε is true for M sufficiently large and uniformly in N , it is enough to show
(a) and (b) for the stopped processes

{
x̃N(t ∧ τMN )

}
N≥1

.

We showed before the validity of the following inclusion{
sup

0≤t≤T∧τMN

|x̃N(t)| ≥M

}
⊆ {|x̃N(0)| ≥ C9} ∪

{
sup

0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
,

therefore
sup
N
P

{
sup

0≤t≤T∧τMN

|x̃N(t)| ≥M

}
≤ 2ε
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and so we obtained the statement (a). Let us deal with (b) now. We notice that

|x̃N(t)− x̃N(s)| =
∣∣∣∣∣
∫ t

s
JN(x̃N(u))du+Ms,t

N,|x̃|

∣∣∣∣∣ ,
where we have denoted

Ms,t

N,|x̃| = −
2

N3/4

∫ t

s

∑
j,k∈S

j Λ̃σ
N(j, k, du)

= − 2
N3/4

∫ t

s

∑
j,k∈S

j

[
Λσ
N(j, k, du)−N1/4|A(j, k,N1/4u)|e−βj

(
x̃N (u)
N1/4 +kh

)
du

]

and Λ̃σ
N is as in (1.34). Thus,

{|x̃N(t)− x̃N(s)| ≥ α}⊆
{ ∣∣∣∣∣
∫ t

s
JN |x̃N(u)|du

∣∣∣∣∣︸ ︷︷ ︸
≤C8(t−s)

+|Ms,t

N,|x̃|| ≥ α

}
⊆{|Ms,t

N,|x̃|| ≥ C10}

and then, applying Chebyscev inequality to the last right-handside of the previous
inclusions, we get

sup
0≤s≤t≤T
t−s≤δ

P{|Ms,t

N,|x̃|| ≥ C10} ≤ (C10)−2 sup
0≤s≤t≤T
t−s≤δ

E[(Ms,t

N,|x̃|)
2]

≤ (C10)−2 sup
0≤s≤t≤T
t−s≤δ

5eβ(1+h)(t− s)

≤ (C10)−2 5eβ(1+h)︸ ︷︷ ︸
:=C11

δ =: (C10)−2C11 δ .

Finally, we can conclude that

sup
N

sup
0≤s≤t≤T
t−s≤δ

P{|x̃N(t)− x̃N(s)| ≥ α} ≤ sup
N

sup
0≤s≤t≤T
t−s≤δ

P{|Ms,t

N,|x̃|| ≥ C10}

≤ (C10)−2C11 δ = O(δ)

and the proof is complete. �
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Lemma 1.4.4 implies that there exist convergent subsequences for the sequence
{x̃N(t)}N≥1. Let {x̃n(t)}n≥1 denote one of such a subsequences and let ψ ∈ C3

b be
a function of the type ψ(rn(t), x̃n(t), ỹn(t)) = ψ(x̃n(t)). The following decompo-
sition holds

ψ(x̃n(t))− ψ(x̃n(0)) =
∫ t

0
Jnψ(x̃n(u))du+Mt

n,ψ , (1.46)

where

Jnψ(x̃n(t)) = 2ψx̃
[
rn(t) sinh(βh)− βx̃n(t)ỹn(t) sinh(βh)

]
+ oM(1)

which, as usual, is GN (see (1.28)) rescaled of a power n1/4 and applied to the
particular function ψ(rn(t), x̃n(t), ỹn(t)) = ψ(x̃n(t)). The remainder oM(1) goes
to zero as n −→ +∞, uniformly in M . If we compute the limit as n −→ +∞,
recalling that the process ỹn(t) collapses and a Central Limit Theorem applies to
rn(t), we have:

Jnψ(x̃n(t)) n→+∞−−−−→
w

Jψ(x̃(t)) ,

with
Jψ(x̃(t)) = 2 H sinh(βh)ψx̃

and H is a Standard Gaussian random variable. Then, because of (1.46), we
obtain

Mt
n,ψ

n→+∞−−−−→
w

Mt
ψ := ψ(x̃(t))− ψ(x̃(0))−

∫ t

0
Jψ(x̃(u))du .

We must prove the following Lemma:

Lemma 1.4.5. M t
ψ is a martingale (with respect to t); in other words, for all

s, t ∈ [0, T ], s ≤ t and for all measurable and bounded functions g(x̃([0, s])) the
following identity holds:

E[Mt
ψg(x̃([0, s]))] = E[Ms

ψg(x̃([0, s]))] . (1.47)

Proof. It is sufficient to prove {Mt
n,ψ}n≥1 is an uniformly integrable sequence of

random variables. Let us suppose we have already proved this property holds
and see that (1.47) is satisfied.
Since Mt

n,ψ is a martingale (with respect to t) for every n, we have that for all
s, t ∈ [0, T ], s ≤ t and for all measurable and bounded functions g(x̃([0, s]))

E[Mt
n,ψg(x̃([0, s]))] = E[Ms

n,ψg(x̃([0, s]))]
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and then

lim
n→+∞

E[Mt
n,ψg(x̃([0, s]))] = lim

n→+∞
E[Ms

n,ψg(x̃([0, s]))] .

But {Mt
n,ψ}n≥1 is a sequence of uniformly integrable random variables, hence it

converges in L1 (for instance, see [Shi96]). Moreover, we know the distribution
of its L1-limit, since we already know its weak-limit. Thus,

E[Mt
ψg(x̃([0, s]))] = E

[
lim

n→+∞
Mt

n,ψg(x̃([0, s]))
]

= lim
n→+∞

E[Mt
n,ψg(x̃([0, s]))]

= lim
n→+∞

E[Ms
n,ψg(x̃([0, s]))] = E

[
lim

n→+∞
Ms

n,ψg(x̃([0, s]))
]

= E[Ms
ψg(x̃([0, s]))]

and the conclusion follows.
It remains to check that {Mt

n,ψ}n≥1 is an uniformly integrable family. A suf-
ficient condition for uniform integrability is the existence of p > 1 such that
supnE[|Mt

n,ψ|p] < +∞ (see again [Shi96]).
If we define

∇(j)[ψ(xn(t))] := ψ

(
x̃n(t)− j

2
n3/4

)
− ψ(x̃n(t)) ,

it yields

E[(Mt
n,ψ)2] = E

[ ∫ t

0

∑
j,k∈S

[
∇(j)[ψ(xn(s))]

]2
λ(j, k, s)ds

]

≤ 5n5/4eβ(1+h)E

[ ∫ t

0

∑
j∈S

[
ψ

(
x̃n(s)− j

2
n3/4

)
− ψ(x̃n(s))

]2

ds

]

we expand the function ψ around x̃n(t) with the Taylor expansion stopped at first
order and with remainder R such that |R| ≤ 1

2 sup
{
|ψx̃x̃(y)| : y ∈

[
x̃n(t), x̃n(t)−

j 2
n3/4

]}
4

n3/2 and, moreover, we recall that ψ ∈ C3
b , so |ψx̃| ≤ K1 and |ψx̃x̃| ≤ K2;

therefore,

= 5n5/4eβ(1+h)E

[ ∫ t

0

∑
j∈S

[
− j 2

n3/4 ψx̃ +R

]2

ds

]
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≤ 5n5/4eβ(1+h)E

[ ∫ t

0
sup
j∈S

(
4
n3/2 ψ

2
x̃ − j

4
n3/4 ψx̃R +R2

)
ds

]

≤ 5n5/4eβ(1+h)E

[ ∫ t

0

(
4
n3/2 K

2
1 + 8

n9/4 K1K2 + 4
n3 K

2
2

)
ds

]

≤ 20Teβ(1+h)(K1 +K2)2

since t < T ; thenMt
n,ψ is uniformly integrable. �

Now, the proof is easy to conclude. Mt
n,ψ solves the martingale problem with in-

finitesimal generator J , admitting a unique solution, and hence we have shown all
convergent subsequences have the same limit and so the sequence itself converges
to that limit.

1.5 Conclusions

It remains to compare the behaviors of the homogeneous and inhomogeneous
system. Using the same notation as before, we briefly sketch the main results on
the Curie-Weiss model.

The stochastic process σ(t) = (σj(t))Nj=1, with t belonging to a generic time
interval [0, T ], where T is fixed, describes a N -spin system evolving as a Markov
process on its state space S N . The dynamics are specified by the requirement
that the rates of transition are of the form

σj −→ −σj at rate e−βσjm
σ

N .

We reduce this system to be finite dimensional. A one-dimensional order param-
eter is necessary to describe the system: the magnetization mσ

N . We can recover
the study of the limiting dynamics (Theorem 1.2.2 and Lemma 1.2.3) and of
the Normal fluctuations (Theorem 1.3.2) as particular case of the inhomogeneous
model, setting h = 0. The McKean-Vlasov limit (N −→ +∞) for the dynamics
of the magnetization is given by the ordinary differential equation

ṁσ
t = −2mσ

t cosh(βmσ
t ) + 2 sinh(βmσ

t ) (1.48)
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and any equilibrium solution of this equation is of the form mσ
∗ = tanh(βmσ

∗ ).
Depending on the parameters, we can see there exists phase transition; in fact

Theorem 1.5.1. Consider the equation (1.48).

� For β ≤ 1, it has 0 as a unique equilibrium solution and it is globally
asymptotically stable, i.e. for every initial condition mσ

0

lim
t→+∞

mσ
t = 0 .

� For β > 1, the point 0 is still an equilibrium and, moreover, two further
equilibria arise:

mσ
∗ and −mσ

∗ ,

where mσ
∗ is the unique positive solution of x = tanh(βx). In this case,

the phase space [−1,+1] is bi-partitioned by the origin in two domains of
attraction. Given an initial condition mσ

0 ,

lim
t→+∞

mσ
t =


mσ
∗ if mσ

0 ∈ (0, 1]
−mσ

∗ if mσ
0 ∈ [−1, 0)

0 if mσ
0 = 0 .

Moreover, with regard to the Normal fluctuations, it remains proved the following
Theorem.

Theorem 1.5.2. In the limit as N −→ +∞, the fluctuation process xN(t), defined
by

xN(t) := N1/2
(
m
σ
ρN (t) −m

σ
t

)
,

converges (in the sense of weak convergence of stochastic processes) to a limit-
ing Gaussian process x(t), which is the unique solution of the linear stochastic
differential equation

dx(t) = 2[(β − 1) cosh(βmσ
t )− βmσ

t sinh(βmσ
t )]x(t) dt+

+ 2
√

cosh(βmσ
t )−mσ

t sinh(βmσ
t ) dB(t) , (1.49)

where B is a Standard Brownian motion and x(0) has a centered Gaussian dis-
tribution with covariance 1− (mσ

λ)2.

Remark 1.5.1. We can notice that there is no constant drift in (1.49); drift which,
on the contrary, is present in (1.22). It arises because of the disorder.
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We focus on the critical dynamics of the system. The critical direction coincides
with the magnetization, since the order parameter is one-dimensional. We con-
struct the fluctuations in the threshold case, when β = 1, and we look at their
long-time behavior. The size of the Normal fluctuations must be further rescaled
(in space and in time), because their size around the deterministic limit increases
in time. In this case we will obtain non-Normal fluctuations.
In the rest of the section, we will consider β = 1 and let us assume that the initial
condition λ is a product measure such that mσ

0 = 0 and so mσ
t = 0 for every value

of t ≥ 0, since it is an equilibrium solution.

Theorem 1.5.3. For t ∈ [0, T ], if we consider the critical fluctuation process

x̃N(t) := N1/4m
σ

ρN (N1/2t) , (1.50)

then, as N −→ +∞, x̃N(t) converges, in the sense of weak convergence of stochas-
tic processes, to a limiting non-Gaussian process x̃(t), which is the unique solution
of the following stochastic differential equation:

dx̃(t) = −2
3 x̃

3(t) dt+ 2 dB(t)

x̃(0) = 0

where B is a standard Brownian motion.

Concluding, we point out the fact that the inhomogeneous critical fluctuation
process exists in a shorter time-scale than the homogeneous one, in fact in (1.26)
we can amplify the time only by a factor N1/4, instead of the usual scale N1/2,
as in (1.50). The reason of this difference is the constant drift, appearing in
the dynamics of the Normal fluctuations. It obliges us to amplify the time by a
smaller power of N than the one “permitted” by the linearized operator driving
the diffusion equation. Besides, the limit of disordered critical fluctuations is
Gaussian, since solution of a deterministic equation with constant (but random)
drift given by a Gaussian random variable; while, it is not when there is no added
field.
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Chapter 2

A Non-Reversible Model Motivated by Credit Risk in
Finance

Part of the results obtained in this chapter is due to a joint work with Elena Sartori.

We are interested in analyzing another interacting particle system embed-
ded in a site-dependent random environment, applying the techniques

explained in the previous chapter. We start considering the mean-field interact-
ing spin-flip system described in [DPRST09] and we introduce an inhomogeneity
in the model.
We consider N sites, indicated with j, and we associate with each of them a
pair of spin values (σj, ωj) and a random environment ηj, that we choose to be
a dichotomic random variable. We start with a Markovian, but non-reversible
dynamics, where the rates of transition are of the form

σj −→ −σj at rate e−βσjωj β > 0,
ωk −→ −ωk at rate e−γωk(m

σ

N+hηk) γ, h > 0.
(2.1)

Also this model has no spatial geometry in the space of the configurations, since
the interaction continues to be of the mean-field type.
Seven order parameters (magnetization field) are necessary to describe this sys-
tem. Being based on a Large Deviation Principle, we compute the differential
equations which drive their evolution in the infinite volume limit (McKean-Vlasov
equations) and we derive a Law of Large Numbers they obey. Depending on the
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parameters, we can see there exists phase transition to ferromagnetic states with
constant magnetizations.
We then consider the fluctuation processes. We can provide a Central Limit
Theorem for the non-critical seven-dimensional fluctuation process, but we skip
the proof of this fact since it is completely analogous to the case of the random
Curie-Weiss Model discussed in Chapter 1 and we focus on the infinite volume
limit of the critical fluctuation process, which represents our main result. As
in the previous case, we need an appropriate time-space rescaling to keep track
of the critical slowing down and we obtain, in the limit, that only the critical
structure survives and it is a lower dimensional process with respect to the non-
critical fluctuation process. The fluctuations are one-dimensional at the critical
point. In fact, when the size of the system grows to infinity, six order parameters
collapse, while the other converges (in the sense of weak convergence of stochastic
processes) to a deterministic process with constant (but random) drift given by
a Gaussian variable with parameters depending on the environment.

The reason why we treat this system, which is a slight generalization of the homo-
geneous one in [DPRST09], is that the latter is interpreted in a financial contest.
In fact, it is applied to describe the propagation of financial distress in a network
of firms facing credit risk, i.e. the possibility of experiencing default. The default
may be contagious, so there might be clustering of defaults. Hence, the phe-
nomenon of a credit crisis is investigated and the losses of a financial institution,
holding a large portfolio with positions issued by firms, are quantified.
Consider N firms active on the market, linked by business relationships.
The credit state of each firm j is represented by the couple of binary variables
(σj, ωj) ∈ {−1,+1}: σj can be viewed as its rating indicator (we mean that
σj = −1 is a bad rating class, in other words, the firm is not able to pay obliga-
tions back with higher probability; vice versa for σj = +1) and ωj is its strength.
The indicator ωj is more important, but it is not directly observable from the
market; so, it is reasonable to suppose that ωj does not directly influence σk
for j 6= k, while the interaction between ωj and σj is strong. Introducing mσ

N

as a global health indicator and recalling that the mean-field assumption allows
to suppose that the interaction depends only on the value of this quantity, the
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contagion can be schematized as follows

ωj −→ σj −→ m
σ
N −→ ωk .

strength of firm j rating class of firm j global health indicator strength of firm k

This reasoning justifies the choice of rates of transitions of the form (2.1), with
h = 0.
Our aim is to extend the study of this system in the case when the portfolio is
heterogeneous, fact which is modeled by the addition of the random field.

2.1 Description of the Model

Let S = {−1,+1} and η = (ηj)Nj=1 ∈ S N be a sequence of independent, identi-
cally distributed, symmetric, Bernoulli random variables defined on some proba-
bility space (Ω,F , P ). That is, P (ηj = −1) = P (ηj = +1) = 1

2 , for any j. We in-
dicate by µ their common law. Given a configuration (σ, ω) = (σj, ωj)Nj=1 ∈ S 2N

and a realization of the random medium η, we construct a 2N -spin system evolv-
ing as a continuous time Markov chain on S 2N , with infinitesimal generator LN
acting on functions f : S 2N −→ R as follows:

LNf(σ, ω) =
N∑
j=1

e−βσjωj∇σ
j f(σ, ω) +

N∑
j=1

e−γωj(m
σ

N+hηj)∇ω
j f(σ, ω), (2.2)

where ∇σ
j f(σ, ω) = f(σj, ω)− f(σ, ω) and ∇ω

j f(σ, ω) = f(σ, ωj) − f(σ, ω). The
k-th component of σj, which has the meaning of a σ-spin flip at site j, is

σjk =

 σk for k 6= j

−σk for k = j

and the ω-spin flip at site j is defined similarly. The quantities cη, σN (j, σ) = e−βσjωj

and cη, ωN (j, ω) = e−γωj(m
σ

N+hηj) represent the jump rates of the spins; the rate at
which the transition σj −→ −σj and ωj −→ −ωj occur respectively for some j.
The parameters β, γ and h are positive and such that h 6= β

γ
.

The expression (2.2) describes a system of mean-field coupled pairs of spins, each
with its own random environment. It is subject to an inhomogeneous mean-field
interaction (of intensity h) parametrized by the components ηj. As usual, with
the expression “mean-field” we mean the sites interact all each other in the same
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way and this assumption allows us to suppose that the interaction depends on
the value of the magnetization

m
σ
N(t) = 1

N

N∑
j=1

σj(t). (2.3)

For simplicity, the initial condition (σ(0), ω(0)) is assumed to have product dis-
tribution λ⊗N , with λ probability measure on S 2. The quantity (σj(t), ωj(t))
represents the time evolution on [0, T ], T fixed, of j-th pair of spin values; it is
the trajectory of the single j-th pair of spin values in time. The space of all these
paths is (D[0, T ])2, where D[0, T ] is the space of the right-continuous, piecewise-
constant function from [0, T ] to S , endowed with the Skorohod topology, which
provides a metric and a Borel σ-field (as we can see in [EK86]).

2.2 Non-reversibility of the system

The operator LN given in (2.2) defines an irriducible, finite-state Markov chain.
It follows the process admits a unique stationary distribution.
Simpler conditions for stationarity are the Detailed Balance Conditions. We
say that a probability measure ν on {−1,+1}2N satisfies the Detailed Balance
Conditions for the generator LN if

ν(σj, ω)eβσjωj = ν(σ, ω)e−βσjωj (2.4)

and
ν(σ, ωj)eγωj(m

σ

N+hηj) = ν(σ, ω)e−γωj(m
σ

N+hηj) (2.5)

for every (σ, ω). When these conditions hold, the system is reversible: the sta-
tionary Markov chain with infinitesimal generator LN and marginal law ν has a
distribution which is left invariant by time-reversal. In the case (2.4) and (2.5)
admit a solution, they usually allow to derive the stationary distribution explic-
itly. This is not the case in our model. We have in fact

Proposition 2.2.1. The Detailed Balance Conditions (2.4), (2.5) admit no solu-
tion, except at most for a specific value of N .

Proof. By contradiction, let us assume a solution ν of (2.4) and (2.5) exists; so
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the equalities (2.4) and (2.5) are satisfied and we can deduce

∇σ
j log ν(σ, ω) = log ν(σ

j, ω)
ν(σ, ω) = −2βσjωj

∇ω
j log ν(σ, ω) = −2γωj(mσ

N + hηj) ,

which imply

∇ω
j∇σ

j log ν(σ, ω) = 4βσjωj

∇σ
j∇ω

j log ν(σ, ω) = 4γσjωj
N

that, being ∇ω
j∇σ

j log ν(σ, ω) ≡ ∇σ
j∇ω

j log ν(σ, ω), can hold true for at most one
value of N . �

2.3 Limiting Dynamics

We now derive the dynamics of the process (2.2), in the limit as N −→ +∞, in a
fixed time interval [0, T ], via a Large Deviation approach. Later, the large time
behavior of the limiting dynamics will be studied.

So, let (σj[0, T ], ωj[0, T ])Nj=1 ∈ (D[0, T ])2N denote a path of the system in the
time interval [0, T ], with T positive and fixed. If f(σj[0, T ], ωj[0, T ]) is a function
of the trajectory of a single pair of spins, we are interested in the asymptotic
behavior of empirical averages of the form

1
N

N∑
j=1

f(σj[0, T ], ωj[0, T ]) =:
∫
fdρN ,

where {ρN}N≥1 is the sequence of empirical measures

ρN := 1
N

N∑
j=1

δ(σj [0,T ],ωj [0,T ],ηj) .

We may think of ρN as a random element of M1((D[0, T ])2 × S ), the space
of probability measures on (D[0, T ])2 ×S endowed with the weak convergence
topology.
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First, we want to determine the weak limit of ρN in M1((D[0, T ])2 ×S ) as N
grows to infinity; i.e. for f ∈ Cb we look for limN→+∞

∫
fdρN . It corresponds

to a Law of Large Numbers with the limit being a deterministic measure. Being
an element of M1((D[0, T ])2 × S ), such a limit can be viewed as a stochastic
process, which describes the dynamics of the system in the infinite volume limit.

2.3.1 Empirical Measure and Large Deviations

LetW ∈M1((D[0, T ])2) denote the law of the S 2-valued process (σ(t), ω(t))t∈[0,T ]

such that the initial condition (σ(0), ω(0)) has distribution λ and both spin signs
change with constant rate equal to 1. By W⊗N we mean the product of N
copies of W , which represents the law of the 2N -spin system whose genera-
tor is (2.2) where we have set cη, σN = c

η, ω

N ≡ 1; in other words, the law of
our system in absence of interaction. Moreover, we shall write P η

N the law of
(σ([0, T ]), ω([0, T ])) = (σ(t), ω(t))t∈[0,T ], the process with infinitesimal generator
(2.2) and initial distribution λ⊗N , for a given η.

Consider Q ∈M1((D[0, T ])2 ×S ), if ΠtQ indicates the marginal distribution of
Q at time t, we have

mσ
ΠtQ :=

∫
S 3
σΠtQ(dσ, dω, dη).

For a given path (σ([0, T ]), ω([0, T ])) ∈ (D[0, T ])2 and being N σ
t , N ω

t the pro-
cesses counting respectively the jumps of σ(·) and ω(·), we define

F (Q) :=
∫ [ ∫ T

0

(
1− e−βσ(t)ω(t)

)
dt+ β

∫ T

0
σ(t)ω(t)dN σ

t

+
∫ T

0

(
1− e−γω(t)(mσΠtQ+hη)

)
dt+ γ

∫ T

0
ω(t)

(
mσ

ΠtQ + hη
)
dN σ

t

]
dQ , (2.6)

whenever ∫
(N σ

T +N ω
T ) dQ < +∞,

otherwise F (Q) ≡ 0.

Remark 2.3.1. The function F (Q) is neither continuous nor bounded.

We can obtain a representation of P η

N in terms of ρN , as follows:
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Lemma 2.3.1. For a fixed realization η,

dP
η

N

dW⊗N (σ([0, T ]), ω([0, T ])) = exp[NF (ρN(σ([0, T ]), ω([0, T ]), η))]

where, for Q ∈M1((D[0, T ])2 ×S ), F (Q) is expressed by (2.6).

Proof. We apply the Girsanov’s Formula for point processes (see Lemma 1.2.1).
Let (N σ

t (j))Nj=1, (N ω
t (j))Nj=1 be the multivariate Poisson processes counting the

jumps of σj and ωj, for j = 1, . . . , N . If we read σj(t−) = lim
s→t−

σj(s) (analogously
for ωj) and mσ

ρN (t−) = lim
s→t−

m
σ
ρN (s), it yields

dP
η

N

dW⊗N (σ([0, T ]), ω([0, T ])) =

= exp
{

N∑
j=1

[ ∫ T

0
log e−βσj(t−)ωj(t−)dN σ

t (j)−
∫ T

0

(
e−βσj(t)ωj(t) − 1

)
dt

+
∫ T

0
log e−γωj(t−)

(
m
σ

ρN (t−)+hηj
)
dN ω

t (j)−
∫ T

0

(
e
−γωj(t)

(
m
σ

ρN (t)+hηj
)
− 1

)
dt

]}

but σ and ω have no simultaneous jumps W⊗N–almost surely, therefore

= exp
{

N∑
j=1

[ ∫ T

0

(
1− e−βσj(t)ωj(t)

)
dt− β

∫ T

0
(−σj(t))ωj(t)dN σ

t (j)

+
∫ T

0

(
1− e−γωj(t)

(
m
σ

ρN (t)+hηj
))

dt− γ
∫ T

0
(−ωj(t))

(
m
σ
ρN (t) + hηj

)
dN ω

t (j)
]}

= exp
{

N∑
j=1

[ ∫ T

0

(
1− e−βσj(t)ωj(t)

)
dt+ β

∫ T

0
σj(t)ωj(t))dN σ

t (j)

+
∫ T

0

(
1− e−γωj(t)

(
m
σ

ρN (t)+hηj
))

dt+ γ
∫ T

0
ωj(t)

(
m
σ
ρN (t) + hηj

)
dN ω

t (j)
]}

and, because
∫ (
N σ
T +N ω

T

)
dρN < +∞ almost surely with respect to W⊗N , this

leads us to the conclusion. �

Lemma 2.3.1 allows us to deduce a Large Deviation Principle for ρN , from which
we can derive its asymptotic behavior as N −→ +∞.
Define

PN(·) :=
∫
µ⊗N(dη)P η

N(ρN ∈ ·) ,
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which is an element of M1(M1((D[0, T ])2 × S )) and represents the law of ρN
under the joint distribution of the process and the environment.
If Q ∈M1((D[0, T ])2 ×S ) we denote by

H(Q|W ⊗ µ) :=


∫
dQ log dQ

d(W⊗µ) if Q� W ⊗ µ and log dQ
d(W⊗µ) ∈ L

1(Q)
+∞ otherwise

the relative entropy between Q and W ⊗ µ.

Proposition 2.3.1. The laws {PN}N≥1 of ρN (under the joint distribution of the
process and the medium) obey a Large Deviation Principle with rate function

I(Q) := H(Q|W ⊗ µ)− F (Q)

(mind Definitions 1.2.1 and 1.2.2).

Proof. The main problem to prove Proposition 2.3.1 is related to the fact that
the function F defined in (2.6) is neither continuous nor bounded and it does not
admit a characterization analogous to (1.3) (because of the non-reversibility). So,
we need some technicalities to circumvent this problem.
First, we set

I :=
{
Q ∈M1((D[0, T ])2 ×S ) :

∫
(N σ

T +N ω
T ) dQ < +∞

}
and we define, for a > 0 and Q ∈ I,

Fa(Q) :=
∫ [ ∫ T

0

(
a− e−βσ(t)ω(t)

)
dt

+
∫ T

0
[βσ(t)ω(t)− log a] dN σ

t +
∫ T

0

(
a− e−γω(t)(mσΠtQ+hη)

)
dt

+
∫ T

0

[
γω(t)

(
mσ

ΠtQ + hη
)
− log a

]
dN ω

t

]
dQ. (2.7)

Note that F1 = F . Furthermore, Lemma 2.3.1 can be extended to show that

dP
η

N

dW⊗N
a

(σ([0, T ]), ω([0, T ])) = exp[NFa(ρN(σ([0, T ]), ω([0, T ]), η))] , (2.8)

where Wa is the law of the S 2-valued process (σ(t), ω(t)), which has distribution
λ at time t = 0 and spins flip with constant rates a. Now, we can start the proof.

— 64 —



Chapter 2. A Non-Reversible Model Motivated by Credit Risk in Finance

We divide it into several steps.

STEP 1: Fa is lower semi-continuous on I for 0 < a ≤ min
(
e−β, e−γ(1+h)

)
and

it is upper semi-continuous on I for a ≥ max
(
eβ, eγ(1+h)

)
.

By definition of weak topology, the map

Q 7−→
∫ [∫ T

0

(
a− e−βσ(t)ω(t)

)
dt+

∫ T

0

(
a− e−γω(t)(mσΠtQ+hη)

)
dt

]
dQ

is continuous in Q, since it is a Q-expectation of bounded and continuous func-
tions in (D[0, T ])2. Thus, we only have to deal with the term

∫ [∫ T

0
[βσ(t)ω(t)− log a] dN σ

t +
∫ T

0

[
γω(t)

(
mσ

ΠtQ + hη
)
− log a

]
dN ω

t

]
dQ.

(2.9)
We prove that for 0 < a ≤ min

(
e−β, e−γ(1+h)

)
the expression in (2.9) is lower

semi-continuous in Q ∈ I. This implies that Fa is lower semi-continuous. The
case a ≥ max

(
eβ, eγ(1+h)

)
can be treated analogously.

For ε > 0, we consider the function υε : D[0, T ] −→ R defined, for ξ ∈ D[0, T ],
by

υε(ξ) :=


1
ε
if ξ(t) jumps for some t ∈ (0, ε]

0 otherwise .

We define ξ(t) for t > T by letting ξ(t) ≡ ξ(T ). Then, if we denote by θt the
shift operator, we have that, for t ∈ [0, T ], θtξ is an element of D[0, T ] too and
it is given by θtξ(s) := ξ(t + s). Let now f, g : S 2 −→ R be two functions and
define fε, gε : (D[0, T ])2 −→ R by

fε(σ[0, T ], ω[0, T ]) := inf{f(σ(t), ω(t)) : t ∈ (0, ε)}

and similarly for gε. Then, we set

Υε(σ[0, T ], ω[0, T ]) :=
∫ T

0
fε(θtσ, θtω)υε(θtσ)dt+

∫ T

0
gε(θtσ, θtω)υε(θtω)dt .

The key facts are the following two properties of Υε, whose demonstrations are
omitted, since rather straightforward.

� Υε(σ[0, T ], ω[0, T ]) is continuous and bounded on the set {(σ[0, T ], ω[0, T ]) :
N σ
T +N ω

T < +∞}.
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� Suppose f, g ≥ 0. Then, for δ(σ[0,T ],ω[0,T ],η) ∈ I, Υε(σ[0, T ], ω[0, T ]) increases
to

Υ(σ[0, T ], ω[0, T ]) :=
∫ T

0
f(σ(t−), ω(t−))dN σ

t +
∫ T

0
g(σ(t−), ω(t−))dN ω

t

as ε ↓ 0. Therefore, by Monotone Convergence, we get∫
Υ(σ[0, T ], ω[0, T ])dQ = sup

ε>0

∫
Υε(σ[0, T ], ω[0, T ])dQ

and, in particular, the map

Q 7−→
∫

Υ(σ[0, T ], ω[0, T ])dQ

is lower semi-continuous on I.

Now, for 0 < a ≤ min
(
e−β, e−γ(1+h)

)
, the function f(σ, ω) = βσω − log a is non-

negative. As for the function g, that should be g(σ, ω) = γω
(
mσ

ΠtQ + hη
)
− log a,

we notice it is not a function of the only variables (σ, ω), but rather a function of
(σ,ΠtQ), thus depending explicitly on t and Q. However, due to its boundness
and the fact that mσ

ΠtQ is continuous in Q uniformly in t and σ, the argument
above applies with minor modifications leading to the conclusion of the proof.

STEP 2: Let Q ∈ M1((D[0, T ])2 ×S ) be such that H(Q|W ⊗ µ) < +∞. Then
Q ∈ I. The same result applies if Wa replaces W .

Since N σ
T is bounded, by the entropy equality

log
∫
eN

σ
T d(W ⊗ µ) = sup

Q

[∫
N σ
T dQ−H(Q|W ⊗ µ)

]
(see (6.2.14) in [DZ93]), we can deduce∫

N σ
T dQ ≤ log

∫
eN

σ
T d(W ⊗ µ) +H(Q|W ⊗ µ)

But N σ
T has Poisson distribution under W ⊗ µ (since it has Poisson distribution

under W ), so
∫
eN

σ
T dW < +∞. By applying the same argument to N ω

T we con-
clude. This proof extends to the case a 6= 1.

Remark 2.3.2. Note that whenever
∫
N σ
T dQ = +∞ (or

∫
N ω
T dQ = +∞), then we

obtain H(Q|W ⊗ µ) = +∞.
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STEP 3: The function I(Q) := H(Q|W ⊗µ)−F (Q) is lower semi-continuous on
M1((D[0, T ])2 ×S ).

We already know that the entropy H(Q|W ⊗ µ) is lower semi-continuous in the
whole spaceM1((D[0, T ])2×S ) (recall Remark 1.2.3). Moreover, by definition,
F (Q) < +∞ for every Q and so we have H(Q|W⊗µ) = I(Q) whenever H(Q|W⊗
µ) = +∞. Since, by STEP 2, H(Q|W ⊗ µ) = +∞ for Q /∈ I, we are left to prove
the following two statements:

(a) I(Q) is lower semi-continuous in I;

(b) if H(Q|W ⊗ µ) = +∞ and Qn
n→+∞−−−−→ Q weakly, then I(Qn) n→+∞−−−−→ +∞.

For a > 0 the following identity holds, which is a consequence of the definition
of relative entropy and of the Girsanov’s Formula for point processes (or, more
precisely, furthermore adapted to Markov Chains):

H(Q|Wa ⊗ µ) = H(Q|W ⊗ µ) +
∫
dQ log d(W ⊗ µ)

d(Wa ⊗ µ)

= H(Q|W ⊗ µ) + 2T (1− a) + log a
∫

(N σ
T +N ω

T ) dQ . (2.10)

Combining STEP 2 and (2.10), we obtain that

H(Q|W ⊗ µ) = +∞⇐⇒ H(Q|Wa ⊗ µ) = +∞

and hence we can deduce

I(Q) = H(Q|Wa ⊗ µ)− Fa(Q) , (2.11)

where the difference in (2.11) is meant to be +∞ whenever H(Q|Wa⊗µ) = +∞
(or, equivalently, H(Q|W ⊗ µ) = +∞).
Now, we are ready to verify (a) and (b). To prove (a) it is enough to choose
a ≥ max

(
eβ, eγ(1+h)

)
and use STEP 1. Moreover, for the same choice of a, the

stochastic integral in (2.7) is nonpositive, so Fa(Q) ≤ 2Ta. Therefore, ifH(Q|W⊗
µ) = +∞ and if Qn −→ Q,

lim inf
n→+∞

I(Qn) ≥ lim inf
n→+∞

H(Qn|Wa ⊗ µ)− 2Ta = +∞
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where the last equality follows from the lower semi-continuity of H(·|Wa⊗µ) and
H(Q|Wa ⊗ µ) = +∞. Thus, (b) is proved as well.

STEP 4: The function I(Q) has compact level-sets.

Choosing, a ≥ max
(
eβ, eγ(1+h)

)
, we have that Fa(Q) ≤ 2Ta for every Q. Then,

by (2.11), the following inclusion remains valid

{Q : I(Q) ≤ k} ⊆ {Q : H(Q|Wa ⊗ µ) ≤ k + 2Ta}.

Since the relative entropy has compact level-sets (see again Chapter VI, Section
2 in [DZ93]), the set {Q : I(Q) ≤ k} is contained in a compact. But, it is closed,
thanks to the lower semi-continuity of I(·), and then the proof is completed.

STEP 5: For every a > 0 there exists δ > 1 such that

lim sup
N→+∞

1
N

log
∫

exp[δNFa(ρN)]d(W⊗N
a ⊗ µ⊗N) < +∞ . (2.12)

We check the statement for a = 1. The modifications for the general case (a 6= 1)
are straightforward. The proof consists of algebraic manipulations. The idea can
be summarized as follows. First of all, we consider the integral with respect only
to the measure W⊗N , because if δ = 1, Lemma 2.3.1 implies that exp[δNF (ρN)]
is the Radon-Nikodym derivative of P η

N with respect to W⊗N and, therefore,
its expectation is equal to 1. For δ > 1, we split δF (ρN) into the sum of two
terms: δF (ρN) = F (1)(ρN) + F (2)(ρN), in such a way that F (2) is bounded and
exp[NF (1)(ρN)] is a Radon-Nikodym derivative of a probability with respect to
W⊗N . Finally, we will integrate with respect to the environment. Let us start.
Using (2.6), we obtain

δNF (ρN) =
N∑
j=1

{
δ
∫ T

0

(
1− e−βσj(t)ωj(t)

)
dt+ δβ

∫ T

0
σj(t)ωj(t)dN σ

t (j)
}

+
N∑
j=1

{
δ
∫ T

0

(
1− e−γωj(t)

(
m
σ

ρN (t)+hηj
))

dt

+ δγ
∫ T

0
ωj(t)

(
m
σ
ρN (t) + hηj

)
dN ω

t (j)
}
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=
N∑
j=1

{∫ T

0

[
δ − δe

−γωj(t)
(
m
σ

ρN (t)+hηj
)
−
(

1− e−δγωj(t)
(
m
σ

ρN (t)+hηj
))]

dt

+
∫ T

0

[
δ − δe−βσj(t)ωj(t) −

(
1− e−δβσj(t)ωj(t)

)]
dt

}

+
N∑
j=1

{∫ T

0

(
1− e−δβσj(t)ωj(t)

)
dt+ δβ

∫ T

0
σj(t)ωj(t)dN σ

t (j)
}

+
N∑
j=1

{∫ T

0

(
1− e−δγωj(t)

(
m
σ

ρN (t)+hηj
))

dt

+ δγ
∫ T

0
ωj(t)

(
m
σ
ρN (t) + hηj

)
dN ω

t (j)
}

= NF (2)(ρN) +NF (1)(ρN) ,

where

NF (1)(ρN) :=
N∑
j=1

[ ∫ T

0

(
1− e−δβσj(t)ωj(t)

)
dt+ δβ

∫ T

0
σj(t)ωj(t)dN σ

t (j)
]

+
N∑
j=1

[ ∫ T

0

(
1− e−δγωj(t)

(
m
σ

ρN (t)+hηj
))

dt

+ δγ
∫ T

0
ωj(t)

(
m
σ
ρN (t) + hηj

)
dN ω

t (j)
]

and

NF (2)(ρN) :=
N∑
j=1

∫ T

0

[
δ − δe

−γωj(t)
(
m
σ

ρN (t)+hηj
)
−
(

1− e−δγωj(t)
(
m
σ

ρN (t)+hηj
))]

dt

+
N∑
j=1

∫ T

0

[
δ − δe−βσj(t)ωj(t) −

(
1− e−δβσj(t)ωj(t)

)]
dt .

We can see that exp[NF (1)(ρN)] has the same form of exp[NF (ρN)] (given in
Lemma 2.3.1) after having replace β with δβ and that its W⊗N–expectation, i.e.∫

exp[NF (1)(ρN)]dW⊗N , is equal to 1. Then, also the (W⊗N ⊗µ⊗N)–expectation
is equal to 1. Besides, we easily estimate

F (2)(ρN) ≤ T
[
2δ − δ

(
e−β + e−γ(1+h)

)
− 2 + eδβ + eδγ(1+h)

]
:= C(β, γ, δ, h, T ) .
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Putting all together, it yields∫
eδNF (ρN )d(W⊗N ⊗ µ⊗N) ≤ eNC(β,γ,δ,h,T )

∫
eNF

(1)(ρN )d(W⊗N ⊗ µ⊗N)

= eNC(β,γ,δ,h,T )

from which the conclusion follows.

STEP 6: it remains to show an upper and a lower bound of type (1.4b) and (1.4a)
respectively. We prove them separately. The key tool is Varadhan’s Lemma in
the version given by Lemmas 4.3.4 and 4.3.6 in [DZ93]. We give here the state-
ments in the form we need for completeness and convenience.

p

Lemma 2.3.2. Consider the sequence of probability measures (Pn)n≥1 on X .

(a) If f : X −→ R is a lower semi-continuous function and the Large Deviation
lower bound, i.e.

lim inf
n→+∞

1
n

log Pn(O) ≥ − inf
x∈O

i(x) O open subset of X ,

holds with i : X −→ [0,+∞], then

lim inf
n→+∞

1
n

log
∫

exp[nf ]dPn ≥ sup
x∈X

[f(x)− i(x)] .

(b) Let us suppose that f : X −→ R is an upper semi-continuous function and
that there exists a constant δ > 1 such that

lim sup
n→+∞

1
n

log
∫

exp[δnf ]dPn ≤ +∞ .

If the Large Deviation upper bound, i.e.

lim sup
n→+∞

1
n

log Pn(C ) ≤ − inf
x∈C

i(x) C closed subset of X ,

holds with i : X −→ [0,+∞], then

lim sup
n→+∞

1
n

log
∫

exp[nf ]dPn ≤ sup
x∈X

[f(x)− i(x)] .

y
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We deal first with the Large Deviation upper bound (type (1.4b)). Take a ≥
max

(
eβ, eγ(1+h)

)
, so that the function Fa defined in (2.7) is upper semi-continuous.

Denote by RN the distribution of ρN under W⊗N
a × µ⊗N ; in other words, if A ∈

B((D[0, T ])2 ×S ) is a Borelian set, then RN(A) = (W⊗N
a × µ⊗N)(ρ−1

N (A)). Un-
der RN , the triples (σj[0, T ], ωj[0, T ], ηj) are independent, identically distributed
random variables.
Now, because of the result proved in Lemma 2.3.1 and its extension (2.8), we
have

PN(·) =
∫
µ⊗N(dη)P η

N(ρN(dσ[0, T ], dω[0, T ], η) ∈ ·)

=
∫
µ⊗N(dη)

∫
W⊗N
a (dσ[0, T ], dω[0, T ]) dP

η

N

dW⊗N
a

(σ[0, T ], ω[0, T ])1{ρN∈ ·}

=
∫
d(W⊗N

a × µ⊗N) exp[NFa(ρN)]1{ρN∈ ·}

=
∫
RN(dQ) exp[NFa(Q)]1{Q∈ ·} , (2.13)

with Q = ρN . The last identity (2.13) means that

dPN
dRN

(Q) = exp[NFa(Q)] . (2.14)

Since (D[0, T ])2×S is a Polish space, by Sanov’s Theorem (see Theorem 1.2.1) we
can deduce that {RN}N≥1 satisfies a Large Deviation Principle with rate function
H(Q|Wa⊗µ). Therefore, Fa is upper semi-continuous and satisfies the superexpo-
nential estimate (2.12) and thus we can apply Varadhan’s Lemma (Lemma 2.3.2)
to obtain the upper bound of type (1.4b). In fact, if C ∈M1((D[0, T ])2 ×S ) is
a closed set,

lim sup
N→+∞

1
N

logPN(C) = lim sup
N→+∞

1
N

log
∫
RN(dQ) exp[NFa(Q)]1{Q∈C}

≤ sup
Q∈C

[F (Q)−H(Q|Wa ⊗ µ)] = − inf
Q∈C

I(Q) ,
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where the definition of I(Q) is in (2.11).
The Large Deviation lower bound (type (1.4a)) is proved similarly, by taking
0 < a ≤ min

(
e−β, e−γ(1+h)

)
, so that Fa becomes lower semi-continuous, using

(2.14) and Varadhan’s Lemma again.
�

2.3.2 McKean-Vlasov Equation

Given Q ∈ M1((D[0, T ])2 ×S ) and η ∈ S , we can associate with Q a Markov
process on S 2 with law P η,Q, initial distribution λ and time-dependent infinites-
imal generator

Lη,Qt f(σ, ω) = e−βσω∇σf(σ, ω) + e−γω(mσΠtQ+hη)∇ωf(σ, ω) ,

acting on f : S 2 −→ R.

Proposition 2.3.2. For every Q ∈M1((D[0, T ])2 ×S ) such that I(Q) < +∞,

I(Q) = H(Q|PQ) , (2.15)

where PQ ∈M1((D[0, T ])2 ×S ) is defined by

PQ(dσ[0, T ], dω[0, T ], dη) = P η,Q(dσ[0, T ], dω[0, T ])µ(dη).

Proof. First we need to verify that the following representation for F (Q) (defined
in (2.6) ) holds

F (Q) =
∫
Q(dσ[0, T ], dω[0, T ], dη) log dP

η,Q

dW
(σ[0, T ], ω[0, T ]) .

We begin by observing that, since by assumption I(Q) < +∞, we have also
H(Q|W ⊗ µ) < +∞ and so, by the proof of Proposition 2.3.1, it follows that
Q ∈ I, which implies the integrals below are well defined. Using again the
Girsanov’s Formula for Markov Chains, we get
∫
dQ log dP

η,Q

dW
(σ[0, T ], ω[0, T ]) =

=
∫
dQ

[ ∫ T

0

(
1− e−βσ(t)ω(t)

)
dt+

∫ T

0

(
1− e−γω(t)(

∫
σΠtQ(dσ,dω,dη)+hη)

)
dt
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− β
∫ T

0
σ(t−)ω(t−)dN σ

t − γ
∫ T

0
ω(t−)

(∫
σΠt−Q(dσ, dω, dη) + hη

)
dN ω

t

]

=
∫
dQ

[ ∫ T

0

(
1− e−βσ(t)ω(t)

)
dt+

∫ T

0

(
1− e−γω(t)(

∫
σΠtQ(dσ,dω,dη)+hη)

)
dt

+ β
∫ T

0
σ(t)ω(t)dN σ

t + γ
∫ T

0
ω(t)

(∫
σΠtQ(dσ, dω, dη) + hη

)
dN ω

t

]

=
∫
dQ

[ ∫ T

0

(
1− e−βσ(t)ω(t)

)
dt+

∫ T

0

(
1− e−γω(t)(mσΠtQ+hη)

)
dt

+ β
∫ T

0
σ(t)ω(t)dN σ

t + γ
∫ T

0
ω(t)

(
mσ

ΠtQ + hη
)
dN ω

t

]

= F (Q)

By combining what we obtained, we can compute

I(Q) = H(Q|W ⊗ µ)− F (Q) =
∫
dQ log dQ

d(W ⊗ µ) −
∫
dQ log dP

η,Q

dW

=
∫
dQ log dQ

d(P η,Q ⊗ µ) =
∫
dQ log dQ

dPQ
= H(Q|PQ) .

�

Theorem 2.3.1. Let us suppose that the initial distribution of the Markov process
(σ(t), ω(t))t≥0 with generator (2.2) is such that the random variables (σj(0), ωj(0))Nj=1

are independent and identically distributed with law λ. Then the equation I(Q) = 0
admits a unique solution Q∗ ∈ M1((D[0, T ])2 × S ), such that its marginals
qηt = ΠtQ

η
∗ ∈M1(S 2) are weak solutions of the nonlinear McKean-Vlasov equa-

tion 
∂qηt
∂t

= Lηqηt (t ∈ [0, T ], η ∈ S )
qη0 = λ

(2.16)

where, for all the triples (σ, ω, η) ∈ S 3, the operator Lη acts

Lηqηt (σ, ω) = ∇σ
[
e−βσωqηt (σ, ω)

]
+∇ω

[
e−γω(mσqt+hη)qηt (σ, ω)

]
(2.17)
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and qt is defined by
qt(σ, ω) =

∫
S
qηt (σ, ω)µ(dη).

Moreover, with respect to a metric d(·, ·) inducing the weak topology, ρN −→ Q∗ in
probability with exponential rate, i.e. PN{d(ρN , Q∗) > ε} is exponentially small
in N , for each ε > 0.

Proof. We know that the relative entropy between two measures is zero then the
two measures must be equal (see Remark 1.2.3). By this property, from (2.15)
we have I(Q) = 0 translates into Q = PQ. Let us suppose Q∗ is a solution of
this last equation. Then, in particular, for a given η, qηt := ΠtQ

η
∗ = ΠtP

Qη∗ . The
marginals of a Markov process are solutions of the corresponding forward equation
that, in this case, leads to the fact that qηt is a solution of (2.16). This differential
equation, being an equation in finite dimension with locally Lipschitz coefficients,
has at most one solution in [0, T ]. Since PQη∗ is totally determined by the flow
qηt , it follows that equation Q = PQ has at most one solution. The existence of a
solution derives from the fact that I(Q) is the rate function of a Large Deviation
Principle and therefore it has to have at least one zero: indeed, by the bound of
type (1.4a) with O = M1((D[0, T ])2 ×S ), we get infQ∈O I(Q) = 0. Since I is
lower semi-continuous, it attains this null value and so this infimum is actually a
minimum.

It remains to prove the Law of Large Numbers for ρN : with respect to a metric
d(·, ·) inducing the weak topology, ρN N→+∞−−−−→ Q∗ in probability with exponential
rate, i.e. PN{d(ρN , Q∗) > ε} is exponentially small in N , for each ε > 0.
Let Q∗ be the unique solution of equation Q = PQ and let BQ∗ be an arbitrary
open neighborhood of Q∗. By the Large Devition upper bound (type (1.4b)), we
have

lim sup
N→+∞

1
N

logPN(ρN /∈ BQ∗) ≤ − inf
Q/∈BQ∗

I(Q) < 0 ,

where the last inequality comes from the lower semi-continuity of I, the com-
pactness of its level-sets and the fact that I(Q) > 0 for Q 6= Q∗. Indeed,
if infQ/∈BQ∗ I(Q) = 0, then there exists a sequence (Qn)n /∈ BQ∗ such that
I(Qn) n→+∞−−−−→ 0. By the compactness of level-sets, the sequence (Qn)n admits
a subsequence (Qnk)nk converging to Q /∈ BQ∗ , when nk −→ +∞. Thanks to the
lower semi-continuity of I, it follows I(Q) ≤ lim infnk−→+∞ I(Qnk) = 0, which
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contradicts I(Q) > 0 for Q 6= Q∗. Thus, from the above inequality, we deduce
that there exists a positive constant A such that

PN(ρN /∈ BQ∗) ≤ Ae
−N infQ/∈BQ∗ I(Q)

.

It means that, if we denote with d(·, ·) any metric which induces the weak topology
on M1, for every ε > 0, the probability PN(ρN /∈ BQ∗) = PN{d(ρN , Q∗) ≥ ε}
converges toward zero exponentially fast with respect to N and this concludes
the proof of the Law of Large Numbers. �

2.3.3 Stationary Solution(s)

The equation (2.16) describes the behavior of the system governed by genera-
tor (2.2) in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation and in the study of the large time dy-
namics of it (them). We recall that to be t-stationary solution for (2.16) means
to satisfy the equation Lηqη = 0 for every t.
First of all, we proceed to reformulate the “original” McKean-Vlasov equation
(2.16) in terms of mη

qt , mσ
qt , mω

qt , mσω
qt , mση

qt , mωη
qt and mσωη

qt defined as follows:

mη
t := 1

2
∑

σ,ω∈S

∑
η∈S

η qηt (σ, ω) (2.18)

mσ
t := 1

2
∑

σ,ω∈S

∑
η∈S

σ qηt (σ, ω) mση
t := 1

2
∑

σ,ω∈S

∑
η∈S

ση qηt (σ, ω) (2.19)

mω
t := 1

2
∑

σ,ω∈S

∑
η∈S

ω qηt (σ, ω) mωη
t := 1

2
∑

σ,ω∈S

∑
η∈S

ωη qηt (σ, ω) (2.20)

mσω
t := 1

2
∑

σ,ω∈S

∑
η∈S

σω qηt (σ, ω) mσωη
t := 1

2
∑

σ,ω∈S

∑
η∈S

σωη qηt (σ, ω) , (2.21)

where qηt has the meaning explained in Theorem 2.3.1 and we have written m·t

instead of m·qt . We introduce these expectations because the probability measure
qt on S 3 is completely determined by them.
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Lemma 2.3.3. Equations (2.16) can be rewritten in the following form:

ṁη
t =0

ṁσ
t =− 2mσ

t cosh(β) + 2mω
t sinh(β)

ṁω
t =− 2mω

t cosh(γh) cosh(γmσ
t )− 2mωη

t sinh(γh) sinh(γmσ
t )

+ 2 cosh(γh) sinh(γmσ
t )

ṁσω
t =2mσ

t cosh(γh) sinh(γmσ
t )− 2mσω

t [cosh(β) + cosh(γh) cosh(γmσ
t )]

+ 2mση
t sinh(γh) cosh(γmσ

t )− 2mσωη
t sinh(γh) sinh(γmσ

t ) + 2 sinh(β)

ṁση
t =− 2mση

t cosh(β) + 2mωη
t sinh(β)

ṁωη
t =− 2mω

t sinh(γh) sinh(γmσ
t )− 2mωη

t cosh(γh) cosh(γmσ
t )

+ 2 sinh(γh) cosh(γmσ
t )

ṁσωη
t =2mσ

t sinh(γh) cosh(γmσ
t )− 2mσω

t sinh(γh) sinh(γmσ
t )

+ 2mση
t cosh(γh) sinh(γmσ

t )− 2mσωη
t [cosh(β) + cosh(γh) cosh(γmσ

t )]

with initial condition mη
0 = mη

(λ,µ) = 0, mσ
0 = mσ

(λ,µ), mω
0 = mω

(λ,µ), mσω
0 = mσω

(λ,µ),
mση

0 = mση
(λ,µ), m

ωη
0 = mωη

(λ,µ) and m
σωη
0 = mσωη

(λ,µ).

Proof. By definition (2.19) and Theorem 2.3.1 we deduce

ṁσ
t =

∑
σ,ω∈S

σ q̇t(σ, ω) = 1
2
∑

σ,ω∈S

∑
η∈S

σ q̇ηt (σ, ω) = 1
2
∑

σ,ω∈S

∑
η∈S

σLηqηt (σ, ω)

=1
2
∑

σ,ω∈S

∑
η∈S

σ
{
∇σ

[
e−βσωqηt (σ, ω)

]
+∇ω

[
e−γω(mσt +hη)qηt (σ, ω)

]}
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=1
2
∑

σ,ω∈S

∑
η∈S

σ
{
eβσωqηt (−σ, ω)− e−βσωqηt (σ, ω) +∇ω

[
e−γω(mσt +hη)qηt (σ, ω)

]}

=−
∑

σ,ω∈S

∑
η∈S

σe−βσωqηt (σ, ω) + 1
2
∑

σ,ω∈S

∑
η∈S

σ∇ω
[
e−γω(mσt +hη)qηt (σ, ω)

]
︸ ︷︷ ︸

=0

=−
∑

σ,ω∈S

∑
η∈S

σ [cosh(β)− σω sinh(β)] qηt (σ, ω)

=− cosh(β)
∑

σ,ω∈S

∑
η∈S

σ qηt (σ, ω) + sinh(β)
∑

σ,ω∈S

∑
η∈S

ω qηt (σ, ω)

=− 2mσ
t cosh(β) + 2mω

t sinh(β) ,

where the last equality holds thanks to (2.19) and (2.20). So the first equation
of Lemma 2.3.3 is proved. Similarly, we can obtain all the others. �

Also in this case mη
t is a static variable, thus any equilibrium solution of the

system in Lemma 2.3.3 is of the form

mσ
∗ = tanh(β) sinh(γmσ

∗ ) cosh(γmσ
∗ )

cosh2(γmσ
∗ ) + sinh2(γh)

mω
∗ = sinh(γmσ

∗ ) cosh(γmσ
∗ )

cosh2(γmσ
∗ ) + sinh2(γh)

mσω
∗ = . . .

(2.22)

mση
∗ = tanh(β) tanh(γh) 1 + sinh2(γh)

cosh2(γmσ
∗ ) + sinh2(γh)

mωη
∗ = tanh(γh) 1 + sinh2(γh)

cosh2(γmσ
∗ ) + sinh2(γh)
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mσωη
∗ = . . .

To discover the presence of phase transition(s) (multiple equilibria) and the sta-
bility of equilibria, it is sufficient studying the first equation of (2.22):

mσ
∗ = tanh(β) sinh(γmσ

∗ ) cosh(γmσ
∗ )

cosh2(γmσ
∗ ) + sinh2(γh)

,

because all the remaining m·∗ = m·∗(mσ
∗ ) and hence lim

t→+∞
m·t = m·∗ when lim

t→+∞
mσ
t

= mσ
∗ . The stationary system we are dealing with is essentially one-dimensional.

!

h

0

2

1

1/tanh(")

3/2tanh(")

Figure 2.1: Phase diagram for a fixed value of β

For a fixed value of β, the phase diagram is qualitatively drawn in Figure 2.1.
There are three phases, corresponding to 0, 1 and 2 ferromagnetic solutions re-
spectively. The continuous separation curve is

h = h(β, γ) = 1
γ

arccosh(
√
γ tanh(β)) γ ∈

[
1

tanh(β) ,+∞
)
, (2.23)

while the dotted one is obtained numerically and it is due to the fact that the
function

mσ
∗ 7−→ tanh(β) sinh(γmσ

∗ ) cosh(γmσ
∗ )

cosh2(γmσ
∗ ) + sinh2(γh)

is not always concave. The two curves coincide for γ ∈
[

1
tanh(β) ,

3
2 tanh(β)

]
and

separate at the “tricritical” point
(

3
2 tanh(β) , h

(
β, 3

2 tanh(β)

))
.
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Theorem 2.3.2. Consider (2.22) and fix a value for β.

(a) If (γ, h) belongs to the region 0 of Figure 2.1, then the only solution is

m0
∗ :=

(
0, 0, th(β)th(γh)sh(γh) + sh(β)

ch(β) + ch(γh) , th(β)th(γh), th(γh), 0
)
.

(b) If (γ, h), with γ ∈ [ 1
tanh(β) ,+∞), is below the curve (2.23), then there are

three solutions: m0
∗, (m∗,mω

∗ (m∗),mσω
∗ (m∗),mση

∗ (m∗),mωη
∗ (m∗),mσωη

∗ (m∗))
and (−m∗,−mω

∗ (m∗),mσω
∗ (−m∗),mση

∗ (m∗),mωη
∗ (m∗),mσωη

∗ (−m∗)), wherem∗
is the unique positive solution of the first equation of (2.22).

(c) If we choose the parameters above the curve (2.23) and h is small enough,
in other words (γ, h) belongs to the region 2 of Figure 2.1, then two further
solutions arise.

Proof. To deepen the analysis of stationary solution(s) and phase transition(s),
it is sufficient to study the behavior of the self-consistency relation satisfied by
mσ
∗ . Looking at the first expression in (2.22), we can write

mσ
∗ = Γβ,γ,h(mσ

∗ )
Γβ,γ,h(mσ

∗ ) = tanh(β) sinh(γmσ∗ ) cosh(γmσ∗ )
cosh2(γmσ∗ )+sinh2(γh) .

(2.24)

It follows from (2.24) that

� mσ
∗ 7−→ Γβ,γ,h(mσ

∗ ) is a continuous function for all the values of β, γ and h;

� lim
mσ∗→±∞

Γβ,γ,h(mσ
∗ ) = ± tanh(β);

� Γ′β,γ,h(mσ
∗ ) = γ tanh(β) [1 + 2 sinh2(γh)] cosh2(γmσ

∗ )− sinh2(γh)
[cosh2(γmσ

∗ ) + sinh2(γh)]2
> 0 for ev-

ery β, γ and h.

Since Γβ,γ,h(mσ
∗ ) is an odd function with respect to mσ

∗ , we have Γβ,γ,h(0) = 0
for all β, γ and h, so that (2.24) always has the paramagnetic solution mσ

∗ = 0.
Now, we investigate under what conditions ferromagnetic solutions mσ

∗ > 0 may
occur. We restrict to work in the positive half-plane.
If

Γ′β,γ,h(0) = γ
tanh(β)

cosh2(γh)
> 1 , (2.25)
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then there is at least one ferromagnetic solution. However, since Γβ,γ,h(mσ
∗ ) is not

always concave, there may be a ferromagnetic solution even when (2.25) fails. In
this case, there must be at least two ferromagnetic solutions (corresponding to
the curve mσ

∗ 7−→ Γβ,γ,h(mσ
∗ ) crossing the diagonal first from below and then from

above).
The regime defined by (2.25) lies under the curve (2.23). An idea of when
two ferromagnetic solutions arise may be obtained from the Taylor expansion
of Γβ,γ,h(mσ

∗ ) for small mσ
∗ ; in fact,

Γβ,γ,h(mσ
∗ ) = γ

tanh(β)
cosh2(γh)

mσ
∗ + γ3 tanh(β)[2 cosh2(γh)− 3]

3 cosh4(γh)
(mσ
∗ )3 +O

(
(mσ
∗ )5
)

and on the curve defined by (2.23) it reduces to

Γβ,γ,h(mσ
∗ ) = mσ

∗ + γ

(
2
3γ −

1
tanh(β)

)
(mσ
∗ )3 +O

(
(mσ
∗ )5
)

from which we can see that γ = 3
2 tanh(β) is a critical value. Indeed, if γ > γ, then

as h increases through h(β, γ) (i.e. Γ′β,γ,h(0) decreases through 1) at least two
positive ferromagnetic solutions occur, because mσ

∗ 7−→ Γβ,γ,h(mσ
∗ ) is convex for

small mσ
∗ .

�

The phase diagram is analogous to the random Curie-Weiss Model one. We are
going to focus on the critical regime corresponding to the critical values for the
parameters γ = cosh2(γh)

tanh(β) , meaning that we are on the curve (2.23). In this region
of parameters, the equilibrium m0

∗ is neutrally stable for the linearized system.
In fact, denoting by

V : [−1,+1]6 −→ R6

x := (x1, x2, x3, x4, x5, x6) 7−→ (V1(x), V2(x), V3(x), V4(x), V5(x), V6(x))

with

V1(x) := −2x1 cosh(β) + 2 x2 sinh(β)

V2(x) := −2x2 cosh(γh) cosh(γx1)− 2x5 sinh(γh) sinh(γx1)

+ 2 cosh(γh) sinh(γx1)
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V3(x) := 2 x1 cosh(γh) sinh(γx1)− 2x3 [cosh(β) + cosh(γh) cosh(γx1)]

+ 2x4 sinh(γh) cosh(γx1)− 2x6 sinh(γh) sinh(γx1) + 2 sinh(β)

V4(x) := −2x4 cosh(β) + 2 x5 sinh(β)

V5(x) := −2x2 sinh(γh) sinh(γx1)− 2x5 cosh(γh) cosh(γx1)

+ 2 sinh(γh) cosh(γx1)

V6(x) := 2 x1 sinh(γh) cosh(γx1)− 2x3 sinh(γh) sinh(γx1)

+ 2x4 cosh(γh) sinh(γx1)− 2x6 [cosh(β) + cosh(γh) cosh(γx1)]

the vector field of the system in Lemma 2.3.3, we obtain the linearized matrix
evaluated in the stationary solution is DV (m0

∗):

2



−ch(β) sh(β) 0 0 0 0
γ

ch(γh) −ch(γh) 0 0 0 0
0 0 −[ch(β) + ch(γh)] sh(γh) 0 0
0 0 0 −ch(β) sh(β) 0
0 0 0 0 −ch(γh) 0

sh(γh) + γ
th(β)th(γh)

ch(β)+ch(γh) 0 0 0 0 −[ch(β) + ch(γh)]

 .

Its eigenvalues are given by

λ1 =− cosh(β)− cosh(γh) +

√√√√[cosh(β)− cosh(γh)]2 + 4γ sinh(β)
cosh(γh)

λ2 =− cosh(β)− cosh(γh)−

√√√√[cosh(β)− cosh(γh)]2 + 4γ sinh(β)
cosh(γh)

λ3 =λ4 = −2[cosh(β) + cosh(γh)]

λ5 =− 2 cosh(γh)

λ6 =− 2 cosh(β);
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they all are real and it is easy to see that λ2, λ3, λ4, λ5, λ6 < 0 for every value of
β, γ, h; instead, the value of λ1 depends on the parameters:

� if γ < cosh2(γh)
tanh(β) , then λ1 < 0 and thus m0

∗ is linearly stable;

� if γ = cosh2(γh)
tanh(β) , then λ1 = 0 and thus DV (m0

∗) has a neutral direction;

� if γ > cosh2(γh)
tanh(β) , then λ1 > 0 and thus the linearized system admits a direc-

tion which is unstable.

2.4 Normal Fluctuations and Central Limit Theorem

Thanks to Theorem 2.3.1 we established a Law of Large Numbers for the empir-
ical measure ρN : ρN −→ Q∗. We are going to analyze the Normal fluctuations
around the limit Q∗. We are also interested in the N -asymptotic distribution of
ρN −Q∗.
Using a weak convergence-type approach based on uniform convergence of the
infinitesimal generators, deeply explained in [EK86], it is possible to provide a
dynamical interpretation of the recalled Law of Large Numbers.

Let f : S 2 −→ R be a function and define ρN(t), the marginal distribution of
ρN at time t, by ∫

f(σ, ω) dρN(t) = 1
N

N∑
j=1

f(σj(t), ωj(t)).

We havemσ
N(t) = m

σ
ρN (t). For each fixed t, ρN(t) is a probability on S 2 and so, by

the considerations which led as to introduce the expectations (2.18), (2.19), (2.20)
and (2.21), we can proceed similarly saying ρN(t) is completely determined by
the vector (mη

ρN (t),m
σ
ρN (t),m

ω
ρN (t),m

σ ω
ρN (t),m

σ η

ρN (t),m
ω η

ρN (t),m
σ ω η

ρN (t)) and seeing it as
a seven-dimensional object. Thus (ρN(t))t∈[0,T ] is a seven-dimensional flow. A
simple consequence of Theorem 2.3.1 is the following convergence of flows:

(ρN(t))t∈[0,T ] −→ (qt)t∈[0,T ] , (2.26)

where the convergence is meant in probability, with respect to the weak topology
for measure-valued processes. Since the flow of marginals contains less informa-
tion than the full measure of paths, the Law of Large Numbers in (2.26) is weaker

— 82 —



Chapter 2. A Non-Reversible Model Motivated by Credit Risk in Finance

than the one in Theorem 2.3.1. However, the corresponding fluctuation flow

(N1/2(ρN(t)− qt))t∈[0,T ]

is also a finite-dimensional flow whose limiting distribution can be explicitly de-
termined.

Lemma 2.4.1. The stochastic process (mη

ρN (t), m
σ
ρN (t), m

ω
ρN (t), m

σ ω
ρN (t), m

σ η

ρN (t),
m
ω η

ρN (t), m
σ ω η

ρN (t)) is an order parameter for the model; it means its evolution is
Markovian.

Proof. To prove that (mη

ρN (t), m
σ
ρN (t), m

ω
ρN (t), m

σ ω
ρN (t), m

σ η

ρN (t), m
ω η

ρN (t), m
σ ω η

ρN (t)) is a
Markov process, one must write down the expression of the infinitesimal generator
KN whose dynamics are driven by. We apply Lemma 1.3.1.
The process {(σ(t), ω(t)}t≥0 is a continuous time Markov chain on the finite
state space S 2N , with infinitesimal generator LN , defined by (2.2). Consider the
function

ζ : S 2N −→ [−1,+1]7

(σ, ω) 7−→ (mη
ρN ,m

σ
ρN
,mω

ρN
,mσ ω

ρN
,m

σ η
ρN ,m

ω η
ρN ,m

σ ω η
ρN ) ,

it plays the role of g in Lemma 1.3.1; then, for every φ : S 2N −→ R, we have

LN(φ ◦ ζ) = (KNφ) ◦ ζ

and ζ(σ, ω) is a Markov process with generator KN given by

KNφ(mη
ρN ,m

σ
ρN
,mω

ρN
,mσ ω

ρN
,m

σ η
ρN ,m

ω η
ρN ,m

σ ω η
ρN ) =

=
∑

i,j,k∈S

|AρN (i, j, k)|e−βij·

·
[
φ

(
m
η
ρN ,m

σ
ρN
− i 2

N
,mω

ρN
,mσ ω

ρN
− ij 2

N
,m

σ η
ρN − ik

2
N
,m

ω η
ρN ,m

σ ω η
ρN − ijk 2

N

)

− φ(mη
ρN ,m

σ
ρN
,mω

ρN
,mσ ω

ρN
,m

σ η
ρN ,m

ω η
ρN ,m

σ ω η
ρN )

]
+

∑
i,j,k∈S

|AρN (i, j, k)|e−γj(m
σ
ρN

+kh)·

·
[
φ

(
m
η
ρN ,m

σ
ρN
,mω

ρN
− j 2

N
,mσ ω

ρN
− ij 2

N
,m

σ η
ρN ,m

ω η
ρN − jk

2
N
,m

σ ω η
ρN − ijk 2

N

)

— 83 —



Chapter 2. A Non-Reversible Model Motivated by Credit Risk in Finance

− φ(mη
ρN ,m

σ
ρN
,mω

ρN
,mσ ω

ρN
,m

σ η
ρN ,m

ω η
ρN ,m

σ ω η
ρN )

]
, (2.27)

where AρN (i, j, k) is the set of all triples (σd, ωd, ηd), d ∈ {1, . . . , N}, such that
σd = i, ωd = j and ηd = k, with i, j, k ∈ S ; hence

|AρN (i, j, k)| = N

8

[
1+kmη

ρN+imσ
ρN

+jmω
ρN

+ijmσ ω
ρN

+ikmσ η
ρN+jkmω η

ρN +ijkmσ ω η
ρN

]
.

�

Theorem 2.4.1. In the limit as N −→ +∞, the seven-dimensional fluctuation
process (rN(t), xN(t), yN(t), zN(t), uN(t), vN(t), wN(t)), defined by

rN(t) := N1/2m
η

ρN (t)

xN(t) := N1/2
(
m
σ
ρN (t) −m

σ
t

)
uN(t) := N1/2

(
m
σ η

ρN (t) −m
ση
t

)
yN(t) := N1/2

(
m
ω
ρN (t) −m

ω
t

)
vN(t) := N1/2

(
m
ω η

ρN (t) −m
ωη
t

)
zN(t) := N1/2

(
m
σ ω
ρN (t) −m

σω
t

)
wN(t) := N1/2

(
m
σ ω η

ρN (t) −m
σωη
t

)
,

converges (in the sense of weak convergence of stochastic processes) to a limiting
seven-dimensional Gaussian process (r(t), x(t), y(t), z(t), u(t), v(t), w(t)), which
is the unique solution of the linear stochastic differential equation

dr(t) = 0

dx(t)
dy(t)
dz(t)
du(t)
dv(t)
dw(t)


= 2 H A1(t)dt+ 2A2(t)



x(t)
y(t)
z(t)
u(t)
v(t)
w(t)


dt+D(t)



dB1(t)
dB2(t)
dB3(t)
dB4(t)
dB5(t)
dB6(t)


,

(2.28)

where B1, B2, B3, B4, B5, B6 are independent Standard Brownian motions, H is
a Standard Gaussian random variable, A1(t) and A2(t) are respectively

0
sinh(γh) cosh(γmσ

t )
0
0

cosh(γh) sinh(γmσ
t )

sinh(β)


,
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−ch(β) sh(β) 0 0 0 0

−γmωt ch(γh)sh(γmσt )
−γmωη

t
sh(γh)ch(γmσt )

+γch(γh)ch(γmσt )
−ch(γh)ch(γmσt ) 0 0 −sh(γh)sh(γmσt ) 0

ch(γh)sh(γmσt )
+γmσt ch(γh)ch(γmσt )
−γmσωt ch(γh)sh(γmσt )
+γmση

t
sh(γh)sh(γmσt )

−γmσωη
t

sh(γh)sh(γmσt )

0 −ch(β)
−ch(γh)ch(γmσt )

sh(γh)ch(γmσt ) 0 −sh(γh)sh(γmσt )

0 0 0 −ch(β) sh(β) 0

γsh(γh)sh(γmσt )
−γmωt sh(γh)ch(γmσt )
−γmωη

t
ch(γh)sh(γmσt )

−sh(γh)sh(γmσt ) 0 0 −ch(γh)ch(γmσt ) 0

sh(γh)ch(γmσt )
+γmσt sh(γh)sh(γmσt )
−γmσωt sh(γh)sh(γmσt )
+γmση

t
ch(γh)ch(γmσt )

−γmσωη
t

ch(γh)sh(γmσt )

0 −sh(γh)sh(γmσt ) ch(γh)sh(γmσt ) 0 −ch(β)
−ch(γh)ch(γmσt )



,

D(t) is a suitable 6 × 6 matrix and (r(0), x(0), y(0), z(0), u(0), v(0), w(0)) has a
centered Gaussian distribution with covariance matrix

1 0 0 0 0 0 0

0 1− (mσ(λ,µ))
2 mσω(λ,µ) −m

σ
(λ,µ)m

ω
(λ,µ) mω(λ,µ) −m

σ
(λ,µ)m

σω
(λ,µ) −m

σ
(λ,µ)m

ση

(λ,µ) −m
σ
(λ,µ)m

ωη

(λ,µ) −m
σ
(λ,µ)m

σωη

(λ,µ)

0 mσω(λ,µ) −m
σ
(λ,µ)m

ω
(λ,µ) 1− (mω(λ,µ))

2 mσ(λ,µ) −m
ω
(λ,µ)m

σω
(λ,µ) −m

ω
(λ,µ)m

ση

(λ,µ) −m
ω
(λ,µ)m

ωη

(λ,µ) −m
ω
(λ,µ)m

σωη

(λ,µ)

0 mω(λ,µ) −m
σ
(λ,µ)m

σω
(λ,µ) mσ(λ,µ) −m

ω
(λ,µ)m

σω
(λ,µ) 1− (mσω(λ,µ))

2 −mσω(λ,µ)m
ση

(λ,µ) −m
σω
(λ,µ)m

ωη

(λ,µ) −m
σω
(λ,µ)m

σωη

(λ,µ)

0 −mσ(λ,µ)m
ση

(λ,µ) −mω(λ,µ)m
ση

(λ,µ) −mσω(λ,µ)m
ση

(λ,µ) 1− (mση(λ,µ))
2 −mση(λ,µ)m

ωη

(λ,µ) −m
ση

(λ,µ)m
σωη

(λ,µ)

0 −mσ(λ,µ)m
ωη

(λ,µ) −mω(λ,µ)m
ωη

(λ,µ) −mσω(λ,µ)m
ωη

(λ,µ) −mση(λ,µ)m
ωη

(λ,µ) 1− (mωη(λ,µ))
2 −mωη(λ,µ)m

σωη

(λ,µ)

0 −mσ(λ,µ)m
σωη

(λ,µ) −mω(λ,µ)m
σωη

(λ,µ) −mσω(λ,µ)m
σωη

(λ,µ) −mση(λ,µ)m
σωη

(λ,µ) −m
ωη

(λ,µ)m
σωη

(λ,µ) 1− (mσωη(λ,µ))
2


.

Proof. Omitted, since it goes on analogously to the proof of Theorem 1.3.2. �

2.5 Critical Dynamics (γ = cosh2(γh)
tanh(β) )

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when γ = cosh2(γh)

tanh(β) .
In the previous section we told that in a time interval [0, T ], where T is fixed, and
in the infinite volume limit, we have Normal fluctuations for the system. Indeed,
the infinitesimal generator of the rescaled process converges to the infinitesimal
generator of a diffusion and the rescaled process itself converges weakly to that
diffusion. It means we can provide a Central Limit Theorem for all the values of
β and γ. This Central Limit Theorem continues to be valid in the critical case,
but there is an eigenvalue of the covariance matrix which grows polynomially in t
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and identifies the critical direction. This fact implies that the size of the Normal
fluctuations must be further rescaled (in space and in time), because their size
around the deterministic limit increases in time. In this case we will still obtain
Normal fluctuations, solutions of a certain stochastic differential equation to be
determined.

In the rest of the section, we will consider γ = cosh2(γh)
tanh(β) and let us assume that

the initial condition λ is a product measure such that

mσ
0 = 0, mω

0 = 0, mσω
0 = tanh(β) tanh(γh) sinh(γh) + sinh(β)

cosh(β) + cosh(γh) ,

mση
0 = tanh(β) tanh(γh), mωη

0 = tanh(γh), mσωη
0 = 0,

and so

mσ
t = 0, mω

t = 0, mσω
t = tanh(β) tanh(γh) sinh(γh) + sinh(β)

cosh(β) + cosh(γh) ,

mση
t = tanh(β) tanh(γh), mωη

t = tanh(γh), mσωη
t = 0,

for every value of t ≥ 0, since it is an equilibrium solution.
First of all, we need to locate the critical direction in the seven-dimensional
space of the order parameters. If we recall what we explained at the beginning of
setion 1.4, we can deduce it corresponds to the direction identified by the right
eigenvector corresponding to the null eigenvalue of the matrix DV (m0

∗) and thus
it is

x̃ = cosh(γh)mσ
ρN

+ sinh(β)mω
ρN

Remark 2.5.1. Notice that the critical direction x̃ does not depend on the random
environment and it is one-dimensional.

Theorem 2.5.1. For t ∈ [0, T ], if we consider the seven-dimensional critical
fluctuation process

rN(t) = N1/2m
η

ρN (t)

x̃N(t) = N1/4
(

cosh(γh)mσ

ρN (N1/4t) + sinh(β)mω

ρN (N1/4t)

)
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ỹN(t) = N1/4
(
[cosh(γh)− cosh(β)]mσ η

ρN (N1/4t) + sinh(β)mω η

ρN (N1/4t)

− [cosh(γh)− cosh(β)] tanh(β) tanh(γh)− sinh(β) tanh(γh)
)

z̃N(t) = N1/4
(
m
ω η

ρN (N1/4t) − tanh(γh)
)

ũN(t) = N1/4
(
m
σ ω

ρN (N1/4t) − tanh(γh)mσ η

ρN (N1/4t) + tanh(β) tanh(γh)mω η

ρN (N1/4t)

− [tanh(β) tanh(γh) sinh(γh) + sinh(β)]
cosh(β) + cosh(γh)

)

ṽN(t) = N1/4
(
2 cosh(β) sinh(γh)[cosh(β) + 2 cosh(γh)]mσ

ρN (N1/4t)

− 2 sinh(β) sinh(γh)[cosh(β) + 2 cosh(γh)]mω

ρN (N1/4t)

)

w̃N(t) = N1/4
(
− tanh(β) sinh(γh)[cosh(β) + 2 cosh(γh)]mω

ρN (N1/4t)

+ [cosh(β) + cosh(γh)]2mσ ω η

ρN (N1/4t)

)
,

then, as N −→ +∞, rN(t) converges to H , a Standard Gaussian random vari-
able, ỹN(t), z̃N(t), ũN(t), ṽN(t), w̃N(t) −→ 0 in the sense of Proposition 1.4.1
and x̃N(t) converges, in the sense of weak convergence of stochastic processes, to
a limiting Gaussian process

x̃(t) = 2 H sinh(β) sinh(γh)t .

2.5.1 Proof of the Theorem 2.5.1

Let us denote by {τMN }N≥1 a family of stopping times, defined as

τMN := inf
t≥0
{|x̃N(t)| ≥M or |ỹN(t)| ≥M or |z̃N(t)| ≥M

or |ũN(t)| ≥M or |ṽN(t)| ≥M or |w̃N(t)| ≥M} ,

whereM is a positive constant. We are interested in introducing such a sequence
of stopping times because in this way the processes x̃N(t), ỹN(t), z̃N(t), ũN(t),
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ṽN(t), w̃N(t) result to be bounded in the time interval [0, T ∧ τMN ]; rN(t) is still
bounded for t ∈ [0, T ], as we proved in Lemma 1.4.2.

Lemma 2.5.1. For t ∈ [0, T ∧ τMN ], if we consider only the space scaling

rN(t) = N1/2m
η

ρN (t)

x̄N(t) = N1/4
(

cosh(γh)mσ
ρN (t) + sinh(β)mω

ρN (t)

)

ȳN(t) = N1/4
(
[cosh(γh)− cosh(β)]mσ η

ρN (t) + sinh(β)mω η

ρN (t)

− [cosh(γh)− cosh(β)] tanh(β) tanh(γh)− sinh(β) tanh(γh)
)

z̄N(t) = N1/4
(
m
ω η

ρN (t) − tanh(γh)
)

ūN(t) = N1/4
(
m
σ ω
ρN (t) − tanh(γh)mσ η

ρN (t) + tanh(β) tanh(γh)mω η

ρN (t)

− [tanh(β) tanh(γh) sinh(γh) + sinh(β)]
cosh(β) + cosh(γh)

)

v̄N(t) = N1/4
(
2 cosh(β) sinh(γh)[cosh(β) + 2 cosh(γh)]mσ

ρN (t)

− 2 sinh(β) sinh(γh)[cosh(β) + 2 cosh(γh)]mω
ρN (t)

)

w̄N(t) = N1/4
(
− tanh(β) sinh(γh)[cosh(β) + 2 cosh(γh)]mω

ρN (t)

+ [cosh(β) + cosh(γh)]2mσ ω η

ρN (t)

)
,

then the process (rN(t), x̄N(t), ȳN(t), z̄N(t), ūN(t), v̄N(t), w̄N(t)) is a Markov pro-
cess.

Proof. To prove that (rN(t), x̄N(t), ȳN(t), z̄N(t), ūN(t), v̄N(t), w̄N(t)) is a Markov
process, one must write down the expression of the infinitesimal generator GN
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whose dynamics are driven by. We apply Lemma 1.3.1.
The process {(σ(t), ω(t)}t≥0 is a continuous time Markov chain on the finite
state space S 2N , with infinitesimal generator LN , defined by (2.2). Consider the
function

ζ : S 2N ζ1−−→ [−1,+1]7 ζ2−−→ R7

(σ, ω) 7−→ (mη
ρN ,m

σ
ρN
, . . . ,m

σ ω η
ρN ) 7−→ (rN(t), x̄N(t), . . . , w̄N(t)) ,

it plays the role of g in Lemma 1.3.1; then, for every ψ : S 2N −→ R, we have

LN(ψ ◦ ζ) = (GNψ) ◦ ζ

and ζ(σ, ω) is a Markov process with generator GN given by

GNψ(r, x̄, ȳ, z̄, ū, v̄, w̄) =

=
∑

i,j,k∈S

|AN(i, j, k)|e−βij
[
ψ

(
r, x̄− i 2

N3/4 ch(γh), ȳ − ik 2
N3/4 [ch(γh)− ch(β)],

z̄, ū− ij 2
N3/4 + ik

2
N3/4 th(γh), v̄ − i 4

N3/4 sh(γh)ch(β)[2ch(γh) + ch(β)],

w̄ − ijk 2
N3/4 [ch(γh) + ch(β)]2

)
− ψ(r, x̄, ȳ, z̄, ū, v̄, w̄)

]

+
∑

i,j,k∈S

|AN(i, j, k)|e−γj
(

x̄

N1/4ch(γh)+ch(β)
+ v̄

2N1/4sh(γh)[ch(γh)+ch(β)][2ch(γh)+ch(β)]
+kh

)
·

·
[
ψ

(
r, x̄− j 2

N3/4 , ȳ − jk
2

N3/4 sh(β), z̄ − jk 2
N3/4 , ū− ij

2
N3/4

− jk 2
N3/4 th(γh)th(β), v̄ + j

4
N3/4 sh(γh)sh(β)[2ch(γh) + ch(β)],

w̄ + j
2

N3/4 sh(γh)th(β)[2ch(γh) + ch(β)]− ijk 2
N3/4 [ch(γh) + ch(β)]2

)

− ψ(r, x̄, ȳ, z̄, ū, v̄, w̄)
]
, (2.29)

where AN(i, j, k) is the set of all triples (σd, ωd, ηd), d ∈ {1, . . . , N}, such that
σd = i, ωd = j and ηd = k, with i, j, k ∈ S ; hence
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|AN(i, j, k)| = N

8

[
1 + jk tanh(γh) + ik tanh(β) tanh(γh)

+ ij
tanh(β) tanh(γh) sinh(γh) + sinh(β)

cosh(β) + cosh(γh) + k
r

N1/2

+ i
x̄

N1/4[cosh(β) + cosh(γh)] + j
x̄ cosh(β)

N1/4 sinh(β)[cosh(β) + cosh(γh)]

+ ijk
x̄ sinh(γh)[cosh(β) + 2 cosh(γh)]

N1/4[cosh(β) + cosh(γh)]3 + ij
tanh(γh)ȳ − sinh(γh) tanh(β)z̄
N1/4[cosh(γh)− cosh(β)]

+ ik
ȳ − sinh(β)z̄

N1/4[cosh(γh)− cosh(β)] + jk
z̄

N1/4 + ij
ū

N1/4

+ i
v̄

2N1/4 sinh(γh)[cosh(γh) + cosh(β)][2 cosh(γh) + cosh(β)]

− j v̄

2N1/4 tanh(γh) sinh(β)[cosh(γh) + cosh(β)][2 cosh(γh) + cosh(β)]

− ijk cosh(γh)v̄
2N1/4 cosh(β)[cosh(γh) + cosh(β)]3 + ijk

w̄

N1/4[cosh(γh) + cosh(β)]2

]
.

�

By standard argument on collapsing processes (see Proposition 1.4.1 and Lemma
1.4.3), it is easy to prove that for t ∈ [0, T ∧τMN ] the directions ỹN(t), z̃N(t), ũN(t),
ṽN(t), w̃N(t) collapse. It means that, if we consider ỹN(t), for instance, then
there exist constants N0,y, C, d > 2, κN := κ(N) and two increasing sequences
{αN}N≥1, {βN}N≥1 satisfying (1.35)–(1.39) and such that for every ε > 0 the
following property is true

sup
N≥N0,y

P

 sup
0≤t≤T∧τMN

|ỹN(t)| > C
(
κ

1/2d
N α

−1/2
N ∨ κ−1/2

N β
1/2
N

) ≤ ε . (2.30)

The same property holds for each of the processes z̃N(t), ũN(t), ṽN(t), w̃N(t), with
specific and adapted constants. Hence, ỹN(t), z̃N(t), ũN(t), ṽN(t), w̃N(t) −→ 0, as
N −→ +∞.
The computations we should do to prove these processes converge to zero in
probability are similar to those we did in Phase 2 of Subsection 1.4.1 to prove the
process representing the non-critical direction of the random Curie-Weiss Model
collapses. Thus, we omit this proof and we focus only on the critical direction
x̃N(t), assuming all the others vanish. We apply the generator (2.29) to a function
of the only critical direction, leaving all the terms coming from those processes
we know collapsing in the infinite volume limit.
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Lemma 2.5.2. For t ∈ [0, T ∧ τMN ], if we consider a function of the pair of
processes

rN(t) = N1/2m
η

ρN (t)

x̄N(t) = N1/4
(

cosh(γh)mσ
ρN (t) + sinh(β)mω

ρN (t)

) (2.31)

only rescaled in space, then (2.29) reduces to

GNψ(r, x̄) =2
[
r

sinh(β) sinh(γh)
N1/4 − γ2x̄3

2
cosh(β) cosh(γh)

N1/2[cosh(β) + cosh(γh)]3

+ γ3x̄3

6
sinh(β)[cosh(γh)− sinh(γh) tanh(γh)]

N1/2[cosh(β) + cosh(γh)]3 (2.32)

+ γ2rx̄2

2
sinh(β) sinh(γh)

N3/4[cosh(β) + cosh(γh)]2

]
ψx̄ + o

(
1

N1/4

)

where the remainder is a continuous function of x̄ and it is of order o( 1
N1/4 )

pointwise, but not uniformly in x̄.

Proof. We recall that we are leaving all the term collapsing in the limit as
N −→ +∞. By (2.29), considering a function ψ : R2 −→ R, ψ ∈ C3

b , we de-
duce

GNψ(r, x̄) =
∑

i,j,k∈S

|AN(i, j, k)|
{
e−βij

[
ψ

(
r, x̄− i 2

N3/4 cosh(γh)
)
− ψ(r, x̄)

]

+ e
−γj
(

x̄

N1/4[cosh(β)+cosh(γh)]
+kh

)[
ψ

(
r, x̄− j 2

N3/4 sinh(β)
)
− ψ(r, x̄)

]}
,

where

|AN(i, j, k)| = N

8

[
1 + k

r

N1/2 + ik tanh(β) tanh(γh) + jk tanh(γh)

+ ij
tanh(β) tanh(γh) sinh(γh) + sinh(β)

cosh(β) + cosh(γh) + i
x̄

N1/4[cosh(β) + cosh(γh)]

+ j
x̄ cosh(β)

N1/4 sinh(β)[cosh(β) + cosh(γh)] + ijk
x̄ sinh(γh)[cosh(β) + 2 cosh(γh)]

N1/4[cosh(β) + cosh(γh)]3

]
.

(2.33)

We develop ψ with a Taylor expansion stopped at second order.

GNψ(r, x̄) =
∑

i,j,k∈S

|AN(i, j, k)|
{
e−βij

[
− i 2

N3/4 cosh(γh)ψx̄ + 2
N3/2 cosh2(γh)ψx̄x̄
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+ o

(
1

N3/2

)]
+ e

−γj
(

x̄

N1/4[cosh(β)+cosh(γh)]
+kh

)[
− j 2

N3/4 sinh(β)ψx̄

+ 2
N3/2 sinh2(β)ψx̄x̄ + o

(
1

N3/2

)]}

= 2N1/4
[

sinh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
sinh(β) cosh(γh)

+ r

N1/2 cosh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
sinh(β) sinh(γh)

− x̄

N1/4 cosh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]

− sinh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
sinh(β) sinh(γh) tanh(γh)

]
ψx̄

+ 2
N1/2

[
− sinh(β) cosh2(γh)tanh(β) tanh(γh) sinh(γh) + sinh(β)

cosh(β) + cosh(γh)

+ cosh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
sinh2(β) cosh(γh)

+ r

N1/2 sinh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
sinh2(β) sinh(γh)

− x̄

N1/4 sinh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
sinh(β) cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]

− cosh
(

γx̄

N1/4[cosh(β) + cosh(γh)]

)
sinh2(β) sinh(γh) tanh(γh)

+ cosh(β) cosh2(γh)
]
ψx̄x̄ + o

(
1

N1/2

)

considering the Taylor expansions, stopped at third order, of the hyperbolic sine
and cosine functions

= 2N1/4
[
γx̄

N1/4
sinh(β) cosh(γh)

[cosh(β) + cosh(γh)] + γ3x̄3

6N3/4
sinh(β) cosh(γh)

[cosh(β) + cosh(γh)]3

+ r

N1/2 sinh(β) sinh(γh) + γ2rx̄2

2N
sinh(β) sinh(γh)

[cosh(β) + cosh(γh)]2

− x̄

N1/4
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)] −
γ2x̄3

2N3/4
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]3

− γ3x̄3

6N3/4
sinh(β) sinh(γh) tanh(γh)

[cosh(β) + cosh(γh)]3
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− γx̄

N1/4
sinh(β) sinh(γh) tanh(γh)

[cosh(β) + cosh(γh)] + o

(
1

N3/4

)]
ψx̄

+O

(
1

N1/2

)
ψx̄x̄ + o

(
1

N1/2

)

= 2N1/4
[

x̄

N1/4
γ sinh(β)[cosh(γh)− sinh(γh) tanh(γh)]− cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]︸ ︷︷ ︸
it vanishes in the critical case

+ r

N1/2 sinh(β) sinh(γh)− γ2x̄3

2N3/4
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]3

+ γ3x̄3

6N3/4
sinh(β)[cosh(γh)− sinh(γh) tanh(γh)]

[cosh(β) + cosh(γh)]3

+ γ2rx̄2

2N
sinh(β) sinh(γh)

[cosh(β) + cosh(γh)]2

]
ψx̄ + o

(
1

N1/4

)

= 2
[

r

N1/4 sinh(β) sinh(γh)− γ2x̄3

2N1/2
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]3

+ γ3x̄3

6N1/2
sinh(β)[cosh(γh)− sinh(γh) tanh(γh)]

[cosh(β) + cosh(γh)]3

+ γ2rx̄2

2N3/4
sinh(β) sinh(γh)

[cosh(β) + cosh(γh)]2

]
ψx̄ + o

(
1

N1/4

)
which is just (2.32) and so we have concluded. �

The next step is to prove, for every ε > 0 and N ≥ 1, the existence of a constant
M > 0 such that

P
{
τMN ≤ T

}
≤ ε .

This fact implies the processes ỹN(t), z̃N(t), ũN(t), ṽN(t) and w̃N(t) converge to
zero in probability, as N is growing to infinity, for t ∈ [0, T ] and thus it follows
that Lemma 2.5.2 is valid for t belonging to the whole time interval [0, T ].

We consider the infinitesimal generator, JN = N1/4GN , subject to the time-
rescaling and we apply it to the particular function ψ(rN(t), x̃N(t)) = |x̃N(t)|.
The following decomposition holds

|x̃N(t)| = |x̃N(0)|+
∫ t

0
JN(|x̃N(s)|)ds+Mt

N,|x̃|

≤ |x̃N(0)|+
∫ t

0
|JN(|x̃N(s)|)|ds+Mt

N,|x̃| ,
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with

Mt
N,|x̃| =

∫ t

0

∑
i,j,k∈S

{
∇(i)[|x̃N(s)|]Λ̃σ

N(i, j, k, ds) +∇(j)[|x̃N(s)|]Λ̃ω
N(i, j, k, ds)

}
,

where we have defined

∇(i)[|x̃N(t)|] :=
∣∣∣∣∣x̃N(t)− i 2

N3/4 cosh(γh)
∣∣∣∣∣− |x̃N(t)|

(2.34)

∇(j)[|x̃N(t)|] :=
∣∣∣∣∣x̃N(t)− j 2

N3/4 sinh(β)
∣∣∣∣∣− |x̃N(t)|

and

Λ̃σ
N(i, j, k, dt) := Λσ

N(i, j, k, dt)−N1/4
∣∣∣A(i, j, k,N1/4t)

∣∣∣ e−βijdt︸ ︷︷ ︸
:=λσ(i,j,k,t) dt

(2.35)

Λ̃ω
N(i, j, k, dt) :=Λω

N(i, j, k, dt)−N1/4
∣∣∣A(i, j, k,N1/4t)

∣∣∣e−γj
(

x̃N (t)
N1/4[cosh(β)+cosh(γh)]

+kh
)
dt︸ ︷︷ ︸

:=λω(i,j,k,t)dt

As we can clearly see, the quantities Λ̃·N(i, j, k, dt) are the differences between
the point processes Λ·N(i, j, k, dt), defined on S 3 × R+, and their intensities
λ·(i, j, k, t) dt.
The counter

∣∣∣A(i, j, k,N1/4t)
∣∣∣ is given in analogy with (2.33), replacing the vari-

ables r and x̄ with the stochastic processes rN(t) and x̃N(t), defined in Theorem
2.5.1.
We recall that the expression of GN is given by (2.32). We consider the following
Taylor expansions stopped at second order

sinh
(

γx̃N(t)
N1/4[cosh(β) + cosh(γh)]

)
= γx̃N(t)
N1/4[cosh(β) + cosh(γh)] +Rs

cosh
(

γx̃N(t)
N1/4[cosh(β) + cosh(γh)]

)
= 1 + γ2x̃ 2

N(t)
N1/2[cosh(β) + cosh(γh)]2 +Rc ,
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where

|Rs| ≤ sup
{

cosh(z) : z ∈
[
0, γx̃N(t)
N1/4[cosh(β) + cosh(γh)]

]}
·

· γ3x̃ 3
N(t)

6N3/4[cosh(β) + cosh(γh)]3

≤ cosh
(

γM

cosh(β) + cosh(γh)

)
γ3M3

6N3/4[cosh(β) + cosh(γh)]3

and

|Rc| ≤ sup
{

sinh(z) : z ∈
[
0, γx̃N(t)
N1/4[cosh(β) + cosh(γh)]

]}
·

· γ3x̃3
N(t)

6N3/4[cosh(β) + cosh(γh)]3

≤ sinh
(

γM

cosh(β) + cosh(γh)

)
γ3M3

6N3/4[cosh(β) + cosh(γh)]3 .

For t ∈ [0, τMN ] we can estimate

|JN(|x̃N(t)|)| =
∣∣∣∣∣2N1/4sgn(x̃N(t))

{
rN(t)
N1/4 sinh(β) sinh(γh)

− γ2|x̃N(t)|3
2N1/2

cosh(β) cosh(γh)
[cosh(β) + cosh(γh)]3

+ γ3|x̃N(t)|3
6N1/2

sinh(β)[cosh(γh)− sinh(γh) tanh(γh)]
[cosh(β) + cosh(γh)]3

+ γ2rN(t)|x̃N(t)|2
2N3/4

sinh(β) sinh(γh)
[cosh(β) + cosh(γh)]2

+N1/4Rs[sinh(β) cosh(γh)− sinh(β) sinh(γh) tanh(γh)]

+N1/4Rc

[
rN(t)
N1/2 sinh(β) sinh(γh)− |x̃N(t)|

N1/4
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]

]}∣∣∣∣∣
and thanks to Lemma 1.4.2 and the stopping times we have introduced,

≤ 2
{
M sinh(β) sinh(γh) + γ2M3

2N1/4
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]3

+ γ3M3

6N1/4
sinh(β)[cosh(γh) + sinh(γh) tanh(γh)]

[cosh(β) + cosh(γh)]3

+ γ2M2

2
sinh(β) sinh(γh)

[cosh(β) + cosh(γh)]2

+ γ3M3

6N1/4 cosh
(

γM

cosh(β) + cosh(γh)

)
sinh(β) cosh(γh)

[cosh(β) + cosh(γh)]3
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+ γ3M3

6N1/4 cosh
(

γM

cosh(β) + cosh(γh)

)
sinh(β) sinh(γh) tanh(γh)

[cosh(β) + cosh(γh)]3

+ γ3M3

6N1/4 sinh
(

γM

cosh(β) + cosh(γh)

)
sinh(β) sinh(γh)

[cosh(β) + cosh(γh)]3

+ γ3M4

6N1/2 sinh
(

γM

cosh(β) + cosh(γh)

)
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]4

}

≤ 2
{
M sinh(β) sinh(γh) + γ2M3

2
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]3

+ γ3M3

6
sinh(β)[cosh(γh) + sinh(γh) tanh(γh)]

[cosh(β) + cosh(γh)]3

+ γ2M2

2
sinh(β) sinh(γh)

[cosh(β) + cosh(γh)]2

+ cosh
(

γM

cosh(β) + cosh(γh)

)
γ3M3

6
sinh(β) cosh(γh)

[cosh(β) + cosh(γh)]3

+ cosh
(

γM

cosh(β) + cosh(γh)

)
γ3M3

6
sinh(β) sinh(γh) tanh(γh)

[cosh(β) + cosh(γh)]3

+ sinh
(

γM

cosh(β) + cosh(γh)

)
γ3M3

6
sinh(β) sinh(γh)

[cosh(β) + cosh(γh)]3

+ sinh
(

γM

cosh(β) + cosh(γh)

)
γ3M4

6
cosh(β) cosh(γh)

[cosh(β) + cosh(γh)]4

}
:= C8 ,

with C8 positive constant independent of N . Since the following inclusions are
valid

{τMN ≤ T} ⊆
{

sup
0≤t≤T∧τMN

{|x̃N(t)|, |ỹN(t)|, |z̃N(t)|, |ũN(t)|, |ṽN(t)|, |w̃N(t)|} ≥M

}

⊆
{

sup
0≤t≤T∧τMN

|x̃N(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|ỹN(t)| ≥M

}
∪

∪
{

sup
0≤t≤T∧τMN

|z̃N(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|ũN(t)| ≥M

}
∪

∪
{

sup
0≤t≤T∧τMN

|ṽN(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|w̃N(t)| ≥M

}

⊆
{

sup
0≤t≤T∧τMN

|ỹN(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|z̃N(t)| ≥M

}
∪

∪
{

sup
0≤t≤T∧τMN

|ũN(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|ṽN(t)| ≥M

}
∪
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∪
{

sup
0≤t≤T∧τMN

|w̃N(t)| ≥M

}
∪ {|x̃N(0)| ≥ C9}∪

∪
[
{|x̃N(0)| ≤ C9} ∩

{
sup

0≤t≤T∧τMN

|x̃N(t)| ≥ C9 + TC8 + C10

}]

⊆
{

sup
0≤t≤T∧τMN

|ỹN(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|z̃N(t)| ≥M

}
∪

∪
{

sup
0≤t≤T∧τMN

|ũN(t)| ≥M

}
∪
{

sup
0≤t≤T∧τMN

|ṽN(t)| ≥M

}
∪

∪
{

sup
0≤t≤T∧τMN

|w̃N(t)| ≥M

}
∪ {|x̃N(0)| ≥ C9}∪

∪
{

sup
0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
,

we obtain the following inequality for the probability of the interested set

P{τMN ≤ T} ≤ P

{
sup

0≤t≤T∧τMN

|ỹN(t)| ≥M

}
+ P

{
sup

0≤t≤T∧τMN

|z̃N(t)| ≥M

}

+ P

{
sup

0≤t≤T∧τMN

|ũN(t)| ≥M

}
+ P

{
sup

0≤t≤T∧τMN

|ṽN(t)| ≥M

}

+ P

{
sup

0≤t≤T∧τMN

|w̃N(t)| ≥M

}
+ P{|x̃N(0)| ≥ C9}

+ P

{
sup

0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
.

We estimate the seven terms of the right-hand side of the inequality.

� For any ε > 0, thanks to the fact that the process ỹN(t) collapses we have

P

{
sup

0≤t≤T∧τMN

|ỹN(t)| ≥M

}
≤ ε ,

where we set M := C
(
κ

1/2d
N α

−1/2
N ∨ κ−1/2

N β
1/2
N

)
(see (2.30)) and analogous

relations hold for all the other processes z̃N(t), ũN(t), ṽN(t), w̃N(t), with
proper constants.

� From (2.31) we get E[x̃N(0)] = N1/4E
[
cosh(γh)mσ

ρN (0) + sinh(β)mω
ρN (0)

]
.

Since at time t = 0 the spins are distributed according to a product measure,
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x̃N(0) is a linear combination of sample average of independent, identically
distributed Bernoulli random variables multiplied by N1/4. So, we can
conclude

E[|x̃N(0)|] ≤
[
cosh(γh)

√
Var(σ1(0)) + sinh(β)

√
Var(ω1(0))

]
N−1/4

and in the limit as N −→ +∞, we have convergence to zero in L1 and then
in probability. Therefore

P{|x̃N(0)| ≥ C9} ≤ ε

for any ε > 0, for every N and for a sufficiently large C9.

� We reduce to deal with E[(MT
N,|x̃|)

2]; in fact, Doob’s “maximal inequality
in Lp” (case p = 2) for martingales (we refer to Chapter VII, Section 3 of

[Shi96]) tells us that P
{

sup0≤t≤T∧τMN
Mt

N,|x̃| ≥ C10
}
≤

E[(MT

N,|̃x|
)2]

(C10)2 .
Hence, remembering (2.34) and (2.35), we are able to compute

E[(MT
N,|x̃|)

2] = E

[ ∫ T

0

∑
i,j,k∈S

{[
∇(i)[|x̃N(t)|]

]2
λσ(i, j, k, t)dt

+
[
∇(j)[|x̃N(t)|]

]2
λω(i, j, k, t)dt

}]

≤ E

[ ∫ T

0

4
N3/2 cosh2(γh)N1/4 sup

i,j,k∈S
|A(i, j, k,N1/4t)|eβdt

+ 4
N3/2 sinh2(β)N1/4 sup

i,j,k∈S
|A(i, j, k,N1/4t)|eγ(1+h)dt

]

≤ E

[ ∫ T

0

4
N5/4N

[
cosh2(γh)eβ + sinh2(β)eγ(1+h)

]
dt

]

≤ 4T
[
cosh2(γh)eβ + sinh2(β)eγ(1+h)

]
=: C11 ,

with C11 positive constant independent of N and M . We have established
that, if we choose C10 ≥

√
C11
ε
, then

P

{
sup

0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
≤ ε .
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In summary, we proved the inequality we were looking for; in fact

P
{
τMN ≤ T

}
≤ 7ε := ε .

We have just concluded the proof of the first part of the statement of Theorem
2.5.1, concerning the collapse of the processes ỹN(t), z̃N(t), ũN(t), ṽN(t) and
w̃N(t) in the limit as N −→ +∞ and for t ∈ [0, T ]. Now, we are going to show
that in the same setting, i.e. the limit of infinite volume and t ∈ [0, T ], the
process x̃N(t) admits a limiting process and we are going to compute it.
First, we need to prove the tightness of the sequence {x̃N(t)}N≥1. This property
implies the existence of convergent subsequences. Secondly, we will verify that
all the convergent subsequences have the same limit and hence also the sequence
{x̃N(t)}N≥1 must converge to that limit.

Lemma 2.5.3. The sequence {x̃N(t)}N≥1 is tight.

Proof. We must verify the conditions (1.44) and (1.45) hold. Since we have
already proved that for every ε > 0 the inequality P{τMN ≤ T} ≤ ε is true for
M sufficiently large and uniformly in N , it is enough to show tightness for the
stopped processes {

x̃N(t ∧ τMN )
}
N≥1

.

We showed before the validity of the following inclusion{
sup

0≤t≤T∧τMN

|x̃N(t)| ≥M

}
⊆ {|x̃N(0)| ≥ C9} ∪

{
sup

0≤t≤T∧τMN

Mt
N,|x̃| ≥ C10

}
,

therefore
sup
N
P

{
sup

0≤t≤T∧τMN

|x̃N(t)| ≥M

}
≤ 2ε

and so we obtained (1.44). Let us deal with (1.45) now. We notice that

|x̃N(t)− x̃N(s)| =
∣∣∣∣∣
∫ t

s
JN(x̃N(u))du+Ms,t

N,|x̃|

∣∣∣∣∣ ,
where we have denoted

Ms,t

N,|x̃| = −
2

N3/4

∫ t

s

∑
i,j,k∈S

[
i cosh(γh)Λ̃σ

N(i, j, k, du) + j sinh(β)Λ̃ω
N(i, j, k, du)

]
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and Λ̃σ
N , Λ̃ω

N are as in definition (2.35). Thus,

{|x̃N(t)−x̃N(s)| ≥ α} ⊆
{ ∣∣∣∣∣
∫ t

s
JN |x̃N(u)|du

∣∣∣∣∣︸ ︷︷ ︸
≤C8(t−s)

+|Ms,t

N,|x̃|| ≥ α

}
⊆ {|Ms,t

N,|x̃|| ≥ C10}

and then, applying Chebyscev inequality to the last right-handside of the previous
inclusions, we get

sup
0≤s≤t≤T
t−s≤δ

P{|Ms,t

N,|x̃|| ≥ C10} ≤ (C10)−2 sup
0≤s≤t≤T
t−s≤δ

E[(Ms,t

N,|x̃|)
2]

≤ (C10)−2 sup
0≤s≤t≤T
t−s≤δ

4(t− s)
[
cosh2(γh)eβ

+ sinh2(β)eγ(1+h)
]

≤ (C10)−2 4
[
cosh2(γh)eβ + sinh2(β)eγ(1+h)

]
︸ ︷︷ ︸

:=C11

δ .

Finally, we can conclude that

sup
N

sup
0≤s≤t≤T
t−s≤δ

P{|x̃N(t)− x̃N(s)| ≥ α} ≤ sup
N

sup
0≤s≤t≤T
t−s≤δ

P{|Ms,t

N,|x̃|| ≥ C10}

≤ (C10)−2C11 δ = O(δ)

and the proof is complete. �

Lemma 2.5.3 implies that there exist convergent subsequences for the sequence
{x̃N(t)}N≥1. Let {x̃n(t)}n≥1 denote one of such a subsequence and let ψ ∈ C3

b be
a function of the type ψ(rn(t), x̃n(t)) = ψ(x̃n(t)). The following decomposition
holds

ψ(x̃n(t))− ψ(x̃n(0)) =
∫ t

0
Jnψ(x̃n(u))du+Mt

n,ψ , (2.36)
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where

Jnψ(x̃n(t)) =2
[
rn(t) sinh(β) sinh(γh)− γ2(x̃n(t))3

2
cosh(β) cosh(γh)

n1/4[cosh(β) + cosh(γh)]3

+ γ3(x̃n(t))3

6
sinh(β)[cosh(γh)− sinh(γh) tanh(γh)]

n1/4[cosh(β) + cosh(γh)]3

+ γ2rn(t)(x̃n(t))2

2
sinh(β) sinh(γh)

n3/4[cosh(β) + cosh(γh)]2

]
ψx̃ + oM(1)

which, as usual, is GN (see (2.32)) rescaled of a power n1/4 and applied to the
particular function ψ(rn(t), x̃n(t)) = ψ(x̃n(t)). The remainder oM(1) goes to
zero as n −→ +∞, uniformly in M . If we compute the limit as n −→ +∞,
remembering a Central Limit Theorem applies to rn(t), we have:

Jnψ(x̃n(t)) n→+∞−−−−→
w

Jψ(x̃(t)) ,

with
Jψ(x̃(t)) = 2 H sinh(β) sinh(γh) ψx̃

and H is a Standard Gaussian random variable. Then, because of (2.36), we
obtain

Mt
n,ψ

n→+∞−−−−→
w

Mt
ψ := ψ(x̃(t))− ψ(x̃(0))−

∫ t

0
Jψ(x̃(u))du .

We must prove the following Lemma:

Lemma 2.5.4. M t
ψ is a martingale (with respect to t); in other words, for all

s, t ∈ [0, T ], s ≤ t and for all measurable and bounded functions g(x̃([0, s])) the
following identity holds:

E[Mt
ψg(x̃([0, s]))] = E[Ms

ψg(x̃([0, s]))] . (2.37)

Proof. The reasoning we explained in Lemma 1.4.5 applies in this case too, so it
is sufficient to prove {Mt

n,ψ}n≥1 is an uniformly integrable sequence of random
variables.
If we define

∇(i)[ψ(x̃n(t))] := ψ

(
x̃n(t)− i

2
n3/4 cosh(γh)

)
− ψ(x̃n(t))

∇(j)[ψ(x̃n(t))] := ψ

(
x̃n(t)− j

2
n3/4 sinh(β)

)
− ψ(x̃n(t)) ,
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it yields

E[(Mt
n,ψ)2] = E

[ ∫ t

0

∑
i,j,k∈S

{[
∇(i)[ψ(x̃n(s))]

]2
λσ(i, j, k, s)ds

+
[
∇(j)[ψ(x̃n(s))]

]2
λω(i, j, k, s)ds

}]

≤ n5/4E

[ ∫ t

0

∑
i,j∈S

{[
∇(i)[ψ(x̃n(s))]

]2
eβ

+
[
∇(j)[ψ(x̃n(s))]

]2
eγ(1+h)

}
ds

]

we expand the function ψ around x̃n(t) with the Taylor expansion stopped at
first order and with remainder R, R such that

|R| ≤ 1
2 sup

{
|ψx̃x̃(z)| : z ∈

[
x̃n(t), x̃n(t)− i

2
n3/4 cosh(γh)

]} 4
n3/2 cosh2(γh)

|R| ≤ 1
2 sup

{
|ψx̃x̃(z)| : z ∈

[
x̃n(t), x̃n(t)− j

2
n3/4 sinh(β)

]} 4
n3/2 sinh2(β)

and moreover, we recall that ψ ∈ C3
b , so |ψx̃| ≤ K1 and |ψx̃x̃| ≤ K2; therefore,

= n5/4E

[ ∫ t

0

{∑
i∈S

[
− i 2

n3/4 cosh(γh)ψx̃ +R

]2

eβ

+
∑
j∈S

[
− j 2

n3/4 sinh(β)ψx̃ +R

]2

eγ(1+h)
}
ds

]

≤ n5/4E

[
eβ
∫ t

0
sup
i∈S

(
4
n3/2 cosh2(γh)ψ2

x̃ − i
4
n3/4 cosh(γh)ψx̃R +R2

)
ds

+ eγ(1+h)
∫ t

0
sup
j∈S

(
4
n3/2 sinh2(β)ψ2

x̃ −
4
n3/4 sinh(β)ψx̃R +R

2
)
ds

]

≤ n5/4E

[
eβ
∫ t

0

(
4
n3/2K

2
1 cosh2(γh) + 8

n9/4K1K2 cosh3(γh)

+ 4
n3K

2
2 cosh4(γh)

)
ds+ eγ(1+h)

∫ t

0

(
4
n3/2K

2
1 sinh2(β)
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+ 8
n9/4K1K2 sinh3(β) + 4

n3K
2
2 sinh4(β)

)
ds

]

≤ 4T
{
eβ cosh2(γh)[K1 + cosh(γh)K2]2

+ eγ(1+h) sinh2(β)[K1 + sinh(β)K2]2
}

since t < T ; thenMt
n,ψ is uniformly integrable. �

Now, the proof is easy to complete. Mt
n,ψ solves the martingale problem with in-

finitesimal generator J , admitting a unique solution, and hence we have shown all
convergent subsequences have the same limit and so the sequence itself converges
to that limit.

2.6 Conclusions

It remains to compare the behaviors of the homogeneous and inhomogeneous
system. Using the same notation as before, we briefly sketch the main results of
the homogeneous model.

The stochastic process (σ(t), ω(t)) = (σj(t), ωj(t))Nj=1, with t belonging to a
generic time interval [0, T ], where T is fixed, describes a 2N -spin system evolving
as a Markov process on its state space S 2N . The dynamics are specified by the
requirement that the rates of transition are of the form

σj −→ −σj at rate e−βσjωj β > 0 ,
ωk −→ −ωk at rate e−γωkm

σ

N .

We reduce this system to be finite dimensional. A three-dimensional order pa-
rameter is necessary to describe the system: (mσ

N ,m
ω
N ,m

σ ω
N ). The study of the

limiting dynamics (Theorem 2.3.1 and Lemma 2.3.3) and of the Normal fluctu-
ations (Theorem 2.4.1) is completely developed in [DPRST09]. The McKean-
Vlasov limit (N −→ +∞) for the dynamics of the order parameter is given by
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the the system of ordinary differential equations

ṁσ
t =− 2mσ

t cosh(β) + 2mω
t sinh(β)

ṁω
t =− 2mω

t cosh(γmσ
t ) + 2 sinh(γmσ

t ) (2.38)

ṁσω
t = 2mσ

t sinh(γmσ
t )− 2mσω

t [cosh(β) + cosh(γmσ
t )] + 2 sinh(β) .

Note that mσω
t does not appear in the first and in the second equation in (2.38);

this means that the differential system (2.38) is essentially two-dimensional: first
one solves the two-dimensional system (on [−1,+1]2)

(mσ
t ,m

ω
t ) = V (mσ

t ,m
ω
t ) , (2.39)

with V (x, y) = (2 sinh(β)y − 2 cosh(β)x, 2 sinh(γx)− 2y cosh(γx)), and then one
solves the third equation in (2.38), which is linear in mσω

t . Note also that to any
(mσ
∗ ,m

ω
∗ ) satisfying V (mσ

∗ ,m
ω
∗ ) = 0, there corresponds a unique

mσω
∗ = sinh(β) +mσ

∗ sinh(γmσ
∗ )

cosh(β) + cosh(γmσ
∗ )

such that (mσ
∗ ,m

ω
∗ ,m

σω
∗ ) is an equilibrium of (2.38). Moreover, if mσ

t −→ mσ
∗ as

t −→ +∞, then mσω
t −→ mσω

∗ . Depending on the parameters, we can see there
exists phase transition; in fact

Theorem 2.6.1. Consider the equation (2.39).

� For γ ≤ 1
tanh(β) , it has (0, 0) as a unique equilibrium solution and it is

globally asymptotically stable, i.e. for every initial condition (mσ
0 ,m

ω
0 )

lim
t→+∞

(mσ
t ,m

ω
t ) = (0, 0) .

� For γ < 1
tanh(β) the equilibrium (0, 0) is linearly stable. For γ = 1

tanh(β)

the linearized system has a neutral direction, i.e. DV (0, 0) has one zero
eigenvalue.

� For γ > 1
tanh(β) the point (0, 0) is still an equilibrium for (2.39), but it is

a saddle point for the linearized system, i.e. DV (0, 0) has two nonzero
real eigenvalues of opposite sign. Moreover, (2.39) has two linearly stable
solutions (mσ

∗ ,m
ω
∗ ), (−mσ

∗ ,−mω
∗ ), where mσ

∗ is the unique strictly positive
solution of the equation

x = tanh(β) tanh(γx) ,
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and
mω
∗ = 1

tanh(β)m
σ
∗ .

� For γ > 1
tanh(β) , the phase space [−1,+1]2 is bi-partitioned by a smooth

curve Γ containing (0, 0) such that [−1,+1]2 \Γ is the union of two disjoint
sets Γ+, Γ− that are open in the induced topology of [−1,+1]2. Moreover,
given an initial condition (mσ

0 ,m
ω
0 ),

lim
t→+∞

(mσ
t ,m

ω
t ) =


(mσ
∗ ,m

ω
∗ ) if (mσ

0 ,m
ω
0 ) ∈ Γ+

(−mσ
∗ ,−mω

∗ ) if (mσ
0 ,m

ω
0 ) ∈ Γ−

(0, 0) if (mσ
0 ,m

ω
0 ) ∈ Γ .

Moreover, with regard to the Normal fluctuations, it holds true the following
Theorem.

Theorem 2.6.2. In the limit as N −→ +∞, the three-dimensional fluctuation
process (xN(t), yN(t), zN(t)), defined by

xN(t) := N1/2
(
m
σ
ρN (t) −m

σ
t

)
yN(t) := N1/2

(
m
ω
ρN (t) −m

ω
t

)
zN(t) := N1/2

(
m
σ ω
ρN (t) −m

σω
t

)
,

converges (in the sense of weak convergence of stochastic processes) to a limiting
three-dimensional Gaussian process (x(t), y(t), z(t)), which is the unique solution
of the linear stochastic differential equation

dx(t)
dy(t)
dz(t)

 = 2A(t)


x(t)
y(t)
z(t)

 dt+D(t)


dB1(t)
dB2(t)
dB3(t)

 , (2.40)

where B1, B2, B3 are independent Standard Brownian motions, A(t) and D(t)D′(t)
2

are respectively
− cosh(β) sinh(β) 0

−γmωt sinh(γmσt ) + γ cosh(γmσt ) − cosh(γmσt ) 0

sinh(γmσt ) + γmσt cosh(γmσt )− γmσωt sinh(γmσt ) 0 − cosh(β)− cosh(γmσt )

 ,

−mσωt sinh(β) + cosh(β) 0 −mσt sinh(β) +mωt cosh(β)

0 −mωt sinh(γmσt ) + cosh(γmσt ) mσt cosh(γmσt )−mσωt sinh(γmσt )

−mσt sinh(β) +mωt cosh(β) mσt cosh(γmσt )−mσωt sinh(γmσt ) −mσωt sinh(β) + cosh(β)−mωt sinh(γmσt ) + cosh(γmσt )
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and (x(0), y(0), z(0)) has a centered Gaussian distribution with covariance matrix


1− (mσ
λ)2 mσω

λ −mσ
λm

ω
λ mω

λ −mσ
λm

σω
λ

mσω
λ −mσ

λm
ω
λ 1− (mω

λ)2 mσ
λ −mω

λm
σω
λ

mω
λ −mσ

λm
σω
λ mσ

λ −mω
λm

σω
λ 1− (mσω

λ )2


.

Remark 2.6.1. We can notice that there is no constant drift in (2.40); drift which,
on the contrary, is present in (2.28). It arises because of the disorder.

We focus on the critical dynamics of the system (all the results are proved in
[Sar07]). We construct the fluctuations in the threshold case, when γ = 1

tanh(β) ,
and we look at their long-time behavior. The size of the Normal fluctuations
must be further rescaled (in space and in time), because their size around the
deterministic limit increases in time. In this case we will obtain non-Normal
fluctuations.
In the rest of the section, we will consider γ = 1

tanh(β) and let us assume that the
initial condition λ is a product measure such that

mσ
0 = 0, mω

0 = 0, mσω
0 = sinh(β)

cosh(β) + 1

and so
mσ
t = 0, mω

t = 0, mσω
t = sinh(β)

cosh(β) + 1 ,

for every value of t ≥ 0, since it is an equilibrium solution.

Theorem 2.6.3. For t ∈ [0, T ], if we consider the critical fluctuation process

x̃N(t) := N1/4
(
m
σ

ρN (N1/2t) − tanh(β)mω

ρN (N1/2t)

)
ỹN(t) := N1/4

(
m
σ

ρN (N1/2t) + sinh(β)mω

ρN (N1/2t)

)
(2.41)

z̃N(t) := N1/4
(
m
σω

ρN (N1/2t) −
sinh(β)

cosh(β) + 1

)
,

then, as N −→ +∞, x̃N(t), z̃N(t) −→ 0 in the sense of Proposition 1.4.1 and
ỹN(t) converges, in the sense of weak convergence of stochastic processes, to a
limiting non-Gaussian process ỹ(t), which is the unique solution of the following
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stochastic differential equation:
dỹ(t) = − 2 cosh3(β)

3 sinh2(β)[cosh(β) + 1]3
ỹ3(t) dt+ 2 cosh(β) dB(t)

ỹ(0) = 0

where B is a standard Brownian motion.

Concluding, we point out the fact that the inhomogeneous critical fluctuation
process exists in a shorter time-scale than the homogeneous one; in fact when
we construct this process, see Theorem 2.5.1, we can amplify the time only by
a factor N1/4, instead of the usual scale N1/2, as in (2.41). The reason of this
difference is the constant drift, appearing in the dynamics of the Normal fluctu-
ations. It obliges us to amplify the time by a smaller power of N than the one
“permitted” by the linearized operator driving the diffusion equation. Besides,
the limit of disordered critical fluctuations is Gaussian, since solution of a deter-
ministic equation with constant (but random) drift given by a Gaussian random
variable; while, it is not when there is no added field.
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Chapter 3

The Kuramoto Model

The model under consideration is a system of nonlinearly coupled rotators sub-
ject to an attractive interaction. It was introduced by Kuramoto ([Kur75]

and [Kur84]) to describe synchronization phenomena observable in nature.
We consider N sites and we associate with each of them a rotator on [0, 2π]. We
start with a reversible Markovian dynamics for the N -particle system, where the
rotators evolve depending on the gradient of the Hamiltonian felt by the particle.
It is an interacting diffusion system with a mean-field Hamiltonian. This model
is space-independent because it is subject to a mean-field interaction, in other
words each particle interacts with all the others in the same way; thus, there is
no spatial geometry.
An infinite dimensional order parameter is necessary to describe the system. Be-
ing based on a Large Deviation Principle, we compute the differential equations
which drive its evolution in the infinite particle limit (McKean-Vlasov equations)
and we derive a Law of Large Number it obeys. Depending on the parameters,
we can see there exists phase transition. We state these results for completeness;
they are already known in literature. They can be deduced from the analogous
ones for the inhomogeneous system, studied in [DPdH95] and [dH00].
Our main result is the infinite particle limit of the critical fluctuation flow. With
regard to the critical fluctuation flow – besides an appropriate scaling of the
space – it require a rescaling of the time in order to keep track of long time
fluctuations of the critical direction (critical slowing down). As a result, only the
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critical structure survives the new scaling, and in the limit, the critical fluctua-
tion process is a lower dimensional process compared with the non-critical one.
The fluctuations are two-dimensional at the critical point, while they are infinite
dimensional for non-critical values. In fact, we prove that, when the size of the
system grows towards infinity, a two-dimensional process converges (in the sense
of weak convergence of stochastic processes) to a non-Gaussian process, while all
the others collapse.

3.1 Description of the Model

Given a configuration x = (xj)Nj=1 ∈ [0, 2π]N , we can define the Hamiltonian
HN(x) : [0, 2π]N −→ R as

HN(x) = − θ

2N

N∑
j,k=1

cos(xk − xj) , (3.1)

where xj is the position of the rotator at site j. Let θ, positive parameter, be
the coupling strength. Think of x −→ HN(x) as a mean-field Hamiltonian in the
components xj. With the expression “mean-field” we mean the sites interact all
each other in the same way.
Let us define the dynamics we consider: x(t) = (xj(t))Nj=1, with t belonging to a
generic time interval [0, T ], where T is fixed, describes a N -rotator system evolv-
ing as a continuous time Markov chain on [0, 2π]N , with infinitesimal generator
LN acting on functions f : [0, 2π]N −→ R as follows:

LNf(x) = 1
2

N∑
j=1

∂2f

∂x2
j

(x) +
N∑
j=1

{
θ

N

N∑
k=1

sin(xk − xj)
}
∂f

∂xj
(x) . (3.2)

Consider the complex quantity

rNe
iΨN = 1

N

N∑
j=1

eixj , (3.3)

where 0 ≤ rN ≤ 1 measures the phase coherence of the rotators and ΨN mea-
sures the average phase. We can reformulate the expression of the infinitesimal
generator (3.2) in terms of (3.3):

LNf(x) = 1
2

N∑
j=1

∂2f

∂x2
j

(x) +
N∑
j=1
{θrN sin(ΨN − xj)}

∂f

∂xj
(x) . (3.4)
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The expressions (3.1) and (3.4) describe a system of mean-field coupled rotators,
each with its own frequency and subject to diffusive dynamics. The interaction
tends to synchronize the rotators.

Remark 3.1.1. The system described by (3.2) has a reversible stationary distri-
bution proportional to exp[−HN(x)].

For simplicity, the initial condition x(0) is assumed to have product distribution
λ⊗N , with λ probability measure on [0, 2π] with finite second moment. The quan-
tity xj(t) represents the time evolution on [0, T ] of j-th rotator; it is the trajectory
of the single j-th rotator in time. The space of all these paths is C[0, T ], which
is the space of the continuous function from [0, T ] to [0, 2π], endowed with the
uniform topology.

The process x(t) = (xj(t))Nj=1 turns out to be the system of N interacting diffu-
sions evolving according to the Itô differential equations

dxj(t) = [θrN sin(ΨN − xj)] dt+ dBj(t) , (3.5)

where {Bj(t) : t > 0, j = 1, . . . , N} is a system of independent Standard Brown-
ian motions on [0, 2π].

3.2 Limiting Dynamics

We now derive the dynamics of the process (3.2), in the limit as N −→ +∞, in a
fixed time interval [0, T ], via a Large Deviation approach. Later, the large time
behavior of the limiting dynamics will be studied.

For completeness, we report all the statements that allow us to deduce the dy-
namics of the model in the infinite volume limit, but we omit their proofs, since
they are a particular application of a more general study on interacting diffusions
developed in [DPdH96] and [dH00].

So, let (xj([0, T ]))Nj=1 ∈ (C[0, T ])N denote a path of the system in the time interval
[0, T ], with T positive and fixed. If f(xj([0, T ])) is a function of the trajectory of a
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single rotator, we are interested in the asymptotic behavior of empirical averages
of the form

1
N

N∑
j=1

f(xj([0, T ])) =:
∫
fdρN ,

where {ρN}N≥1 is the sequence of empirical measures

ρN := 1
N

N∑
j=1

δ(xj([0,T ])) .

We may think of ρN as a random element ofM1(C[0, T ]), the space of probability
measures on C[0, T ] endowed with the weak convergence topology.
First, we want to determine the weak limit of ρN inM1(C[0, T ]) as N grows to
infinity; i.e. for f ∈ Cb we look for limN→+∞

∫
fdρN . It corresponds to a Law of

Large Number with the limit being a deterministic measure. Being an element of
M1(C[0, T ]), such a limit can be viewed as a stochastic process, which represents
the dynamics of the system in the infinite volume limit.

3.2.1 Empirical Measure and Large Deviations

Let W ∈ M1(C[0, T ]) denote the law of a standard Brownian motion starting
with initial condition λ. By W⊗N we mean the product of N copies of W ,
which represents the law of the solution of the system (3.5) when HN(x, ω) ≡ 0.
Moreover, we shall write PN the law of x([0, T ]) = (x(t))t∈[0,T ], the process with
infinitesimal generator (3.2) and initial distribution λ⊗N .

Consider Q ∈ M1(C[0, T ]), if ΠtQ indicates the marginal distribution of Q at
time t, we have

rΠtQe
iΨΠtQ :=

∫
[0,2π]

eix ΠtQ(dx).

For a given path x([0, T ]) ∈ C[0, T ], we define

F (Q) =
∫
Q(dx[0, T ])

{
− 1

2

∫ T

0
dt

[(∫
Q(dy[0, T ]) sin(y(t)− x(t))

)2

+
∫
Q(dy[0, T ]) cos(y(t)− x(t))

]
− 1

2

∫
Q(dy[0, T ])[cos(y(T )− x(T ))− cos(y(0)− x(0))]

}
(3.6)

We can obtain a representation of PN in terms of ρN , as follows:

— 114 —



Chapter 3. The Kuramoto Model

Lemma 3.2.1. It holds that
dPN
dW⊗N (x([0, T ])) = exp[NF (ρN(x([0, T ])))]

where, for Q ∈M1(C[0, T ]), F (Q) is expressed by (3.6).

Lemma 3.2.1 allows us to deduce a Large Deviation Principle for ρN , from which
we can derive its asymptotic behavior as N −→ +∞.
Define

PN(·) :=
∫
PN(ρN ∈ ·) ,

which is an element ofM1(M1(C[0, T ])) and represents the law of ρN under the
distribution of the process.
If Q ∈M1(C[0, T ]) we denote by

H(Q|W ) :=


∫
dQ log dQ

dW
if Q� W and log dQ

dW
∈ L1(Q)

+∞ otherwise

the relative entropy between Q and W .

Proposition 3.2.1. The laws {PN}N≥1 of ρN (under the distribution of the pro-
cess) obey a Large Deviation Principle with rate function

I(Q) := H(Q|W )− F (Q)

(mind Definitions 1.2.1 and 1.2.2).

3.2.2 McKean-Vlasov Equation

Given Q ∈ M1(C[0, T ]), we can associate with Q a Markov process on [0, 2π]
with law PQ, initial distribution λ and time-dependent infinitesimal generator

LQt f(x) = 1
2
∂2f

∂x2 (x) + [θrΠtQ sin(ΨΠtQ − x)]
∂f

∂x
(x) ,

acting on f : [0, 2π] −→ R.
It can be proved

Proposition 3.2.2. For every Q ∈M1(C[0, T ]) such that I(Q) < +∞, we have

I(Q) = H(Q|PQ) .
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Theorem 3.2.1. Suppose that the initial distribution of the Markov process (x(t))t≥0

with generator (3.4) is such that the random variables (xj(0))Nj=1 are indepen-
dent and identically distributed with law λ. Then the equation I(Q) = 0 ad-
mits a unique solution Q∗ ∈ M1(C[0, T ]), such that its marginals qt = ΠtQ∗ ∈
M1([0, 2π]) are weak solutions of the nonlinear McKean-Vlasov equation

∂qt
∂t

= Lqt (t ∈ [0, T ])

q0 = λ

(3.7)

where, for x ∈ [0, 2π], the operator L acts

Lqt(x) = 1
2
∂2qt
∂x2 (x)− ∂

∂x
{[θrqt sin(Ψqt − x)]qt(x)} , (3.8)

with qt(0) = qt(2π). Moreover, with respect to a metric d(·, ·) inducing the weak
topology, ρN −→ Q∗ in probability with exponential rate, i.e. PN{d(ρN , Q∗) > ε}
is exponentially small in N , for each ε > 0.

Remark 3.2.1. Q∗ is the law of a time-inhomogeneous diffusion process on [0, 2π]
with generator

Lqtt f(x) = 1
2
∂2f

∂x2 (x) + [θrqt sin(Ψqt − x)]
∂f

∂x
(x) .

3.2.3 Stationary Solution(s)

The equation (3.7) describes the behavior of the system governed by genera-
tor (3.4) in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation and in the study of the large time dy-
namics of it (them). We recall that to be t-stationary solution for (3.7) means to
satisfy the equation Lq = 0 for every t.
Since the operator L preserves evenness, we can suppose the average phase
Ψqt ≡ 0, without loss of generality.
Hence, every equilibrium probability distribution is the solution of

1
2
∂2q

∂x2 (x)− ∂

∂x
{[−θrq sin x]q(x)} = 0 , (3.9)

with the boundary condition q(0) = q(2π) and for our model is characterized as
follows.
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Lemma 3.2.2. Every equilibrium distribution for the nonlinear Markov process
given by (3.7) is of the form:

q∗(x) = (Z−1
∗ ) · 2θr∗ cosx

[∫ 2π

0
e−2θr∗ cosxdx+

∫ x

0
e−2θr∗ cos ydy

]
, (3.10)

where Z∗ is a normalizing factor and the variable r∗ must satisfy the self-consistency
relation

rq∗ := r∗ =
∫ 2π

0
eix q∗(dx) . (3.11)

Remark 3.2.2. There is a one-to-one correspondence between equilibrium distri-
butions and solutions of the self-consistency equation (3.11).

Remark 3.2.3. Note that r∗ ≡ 0 is always a solution of (3.11), for all the choices
of θ. In this case the stationary distribution reduces to:

q0
∗(x) := 1

2π for all x ∈ [0, 2π]. (3.12)

Solutions with r∗ = 0 are called incoherent, while those with r∗ > 0 are called syn-
chronized. The next theorem shows that if θ exceeds a threshold a synchronized
solution is always possible.

Theorem 3.2.2. Consider the equation (3.11) and define θc = 1. Then,

(a) if θ ≤ θc, the unique solution is r∗ = 0;

(b) if θ > θc, at least one synchronized solution is possible.

Proof. We refer to [DPdH95] and [dH00] for a detailed proof, concerning the
complete phase diagram of the system. �

3.3 Critical Dynamics (θ = 1)

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when θ = 1. The size
of Normal fluctuations must be further rescaled (in space and time), because their
size around the deterministic limit increases in time. In this case we will obtain
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non-Normal fluctuations, solutions of a certain stochastic differential equation to
be determined.

First of all, we need to locate the critical direction in the infinite dimensional
space of the order parameters. In the rest of the section, we will consider θ = 1
and let us assume that the initial condition λ is a product measure such that

q0(dx) = q0
∗(dx) = 1

2π dx

and so
qt(dx) = q0

∗(dx) = 1
2π dx ,

for every value of t ≥ 0, since we are in stationary conditions.

We consider the linearization of the operator L, given by (3.8), at the equilibrium
distribution q0

∗(x), which is

Lφ(x) = 1
2
∂2φ

∂x2 (x) + cos x〈cos y φ(y), q0
∗(dy)〉+ sin x〈sin y φ(y), q0

∗(dy)〉 , (3.13)

where we have denoted 〈f1, f2〉 :=
∫ 2π
0 f1(x)f2(x)dx.

Lemma 3.3.1. The operator L, defined by (3.13), is self-adjoint in L2(q0
∗).

Proof. Obviously L is a linear and continuous operator. If we mean 〈f1, f2〉L2(q0∗) :=∫ 2π
0 f1(x)f2(x)q0

∗(dx), we have to prove the following: if φ1, φ2 ∈ L2(q0
∗), then

〈Lφ1, φ2〉L2(q0∗) = 〈φ1,Lφ2〉L2(q0∗). Thus,

〈Lφ1, φ2〉L2(q0∗) =

=
〈

1
2
∂2φ1

∂x2 (x) + cos x 1
2π

∫ 2π

0
cos y φ1(y) dx

+ sin x 1
2π

∫ 2π

0
sin y φ1(y) dx, φ2

〉
L2(q0∗)

= 1
2

∫ 2π

0

∂2φ1

∂x2 (x)φ2(x) q0
∗(dx) +

∫ 2π

0
cosxφ1(x) q0

∗(dx)
∫ 2π

0
cosxφ2(x) q0

∗(dx)

+
∫ 2π

0
sin xφ1(x) q0

∗(dx)
∫ 2π

0
sin xφ2(x) q0

∗(dx)
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= −1
2

∫ 2π

0

∂φ1

∂x
(x) ∂φ2

∂x
(x) q0

∗(dx) +
〈
φ1, cosx 1

2π

∫ 2π

0
cos y φ2(y) dy

+ sin x 1
2π

∫ 2π

0
sin y φ2(y) dy

〉
L2(q0∗)

=
〈
φ1,

1
2

∫ 2π

0

∂2φ2

∂x2 (x) + cos x 1
2π

∫ 2π

0
cos y φ2(y) dy

+ sin x 1
2π

∫ 2π

0
sin y φ2(y) dy

〉
L2(q0∗)

and the proof is concluded. �

Lemma 3.3.2. The null space of the operator L, defined by (3.13), is spanned by
the functions sin x and cosx.

Proof. If ϕ(·) belongs to the null space of L, then Lϕ = 0. Therefore, we require
that

1
2
∂2ϕ

∂x2 (x) + cos x 1
2π

∫ 2π

0
cos y ϕ(y) q0

∗(dy) + sin x 1
2π

∫ 2π

0
sin y ϕ(y) q0

∗(dy) = 0 .
(3.14)

We solve the ordinary differential equation (3.14). Having defined

A := 1
2π

∫ 2π

0
cos y ϕ(y) q0

∗(dy) and B := 1
2π

∫ 2π

0
sin y ϕ(y) q0

∗(dy) , (3.15)

the solution is ϕ(x) = 2B sin x+2A cosx; this function yields a solution of (3.14)
provided that it satisfies the self-consistency relations (3.15), but it does for every
value of A and B. �

Remark 3.3.1. In the case that θ 6= 1, the unique value for which the self-
consistency relations in (3.15) are satisfied is A = B = 0, meaning that at
the critical point the kernel of the operator L is two-dimensional, while it is a
trivial set for all the other values of the parameter θ.

Remark 3.3.2. The null space of the operator L represents the critical direction
for our model.

Lemma 3.3.3. The spectrum of the operator L, defined by (3.13), is described by
the set Spec(L) = {0} ∪ {−k2, k ≥ 2}.

— 119 —



Chapter 3. The Kuramoto Model

Proof. The zero eigenvalue corresponds to the eigenvectors sin x and cosx, gen-
erating the null space of the operator L. To find the rest of the spectrum means
solving the problem

φ′′(x) = −λφ(x), φ(0) = φ(2π),

with λ > 0. The set of the solutions is φ(x) = a sin(
√
λx) + b cos(

√
λx), with

a, b ∈ R.
The boundary condition translates to b = a sin(2π

√
λ) + b cos(2π

√
λ) and it is

satisfied for a, b 6= 0 if and only if
√
λ = k, k ≥ 2. Finally, we have obtained

a complete set of eigenvectors; therefore the corresponding eigenvalues cover the
whole spectrum. �

We want to describe the action of the infinitesimal generator of the critical fluc-
tuation flow

ρ̃N(t, dx) = N1/4
[
ρN(N1/2t, dx)− 1

2π dx
]

on the family of functions of the form ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉), where

ψ : Rm −→ R, ψ ∈ C3
b (Rm)

and
φj : [0, 2π] −→ R, φj ∈ C2([0, 2π]) ,

for j = 1, . . . ,m. Since we must consider fluctuations around q0
∗(·), that is, we

must consider the “centered” process, we restrict our attention to functions φj
with ∫ 2π

0
φj(x)q0

∗(dx) = 0, j = 1, . . . ,m .

Then, for this kind of functions it yields

〈φj, ρ̃N(t)〉 = N1/4〈φj, ρN(N1/2t)〉 ,

for j = 1, . . . ,m.

Lemma 3.3.4. For t ∈ [0, T ], the critical fluctuation flow

ρ̃N(t, dx) = N1/4
[
ρN(N1/2t, dx)− 1

2π dx
]

(3.16)

is a Markov process whose infinitesimal generator JN satisfies:

JNψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) =

=
[
N1/2L1 +N1/4L2 + L3 +N−1/4L4

]
ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉), (3.17)
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where

L1ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) =
m∑
j=1

∂ψ

∂yj
〈Lφj, ρ̃N〉 (3.18)

L2ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) =
m∑
j=1

∂ψ

∂yj
[〈sin x, ρ̃N〉〈cosxφ′j(x), ρ̃N〉

− 〈cosx, ρ̃N〉〈sin xφ′j(x), ρ̃N〉] (3.19)

L3ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = 1
2

m∑
h,j=1

∂2ψ

∂yh∂yj
〈φ′h(x)φ′j(x), q0

∗〉 (3.20)

L4ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = 1
2

m∑
h,j=1

∂2ψ

∂yh∂yj
〈φ′h(x)φ′j(x), ρ̃N〉 (3.21)

and the operator L is the linear operator given by (3.13).

Proof. Just a very long and tedious computation. �

Theorem 3.3.1. For t ∈ [0, T ], if we consider the infinite-dimensional critical
fluctuation process

〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2 ,

then, as N −→ +∞, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2 −→ 0 in the sense
of Proposition 1.4.1 and (〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉) converges, in the sense
of weak convergence of stochastic processes, to a limiting non-Gaussian process
(X(t), Y (t)), which is the unique solution of the following stochastic differential
equation: 

dX(t) = −1
8 X(t) [X2(t) + Y 2(t)] dt+ 1√

2
dB(1)(t)

dY (t) = −1
8 Y (t) [X2(t) + Y 2(t)] dt+ 1√

2
dB(2)(t)

with initial condition X(0) = Y (0) = 0 and where B(1) and B(2) are two inde-
pendent Standard Brownian motions.
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3.3.1 Proof of the Theorem 3.3.1

Let us denote by {τMN }N≥1 a family of stopping times, defined as

τMN := inf
t≥0
{|〈sin x, ρ̃N(t)〉| ≥M or |〈cosx, ρ̃N(t)〉| ≥M

or |〈sin kx, ρ̃N(t)〉| ≥M for at least a value of k = 2, 3, . . .

or |〈cos kx, ρ̃N(t)〉| ≥M for at least a value of k = 2, 3, . . . },

where M is a positive constant. We are interested in introducing such sequence
of stopping times because in this way the processes 〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉,
{〈sin kx, ρ̃N(t)〉}k≥2 and {〈cos kx, ρ̃N(t)〉}k≥2 result to be bounded in the time
interval [0, T ∧ τMN ].
We consider the infinitesimal generator JN , subject to the time-rescaling N1/2,
and we apply it to the particular function

ψ
(
〈sin x, ρ̃N(t)〉,〈cosx, ρ̃N(t)〉,{〈sin kx, ρ̃N(t)〉}k≥2,{〈cos kx, ρ̃N(t)〉}k≥2

)
=‖ρ̃N(t)‖2r,

where, for r > 0, we have defined the norm

‖ρ̃N‖2r :=
+∞∑
k=2

1
(1 + k2)r [〈sin kx, ρ̃N〉

2 + 〈cos kx, ρ̃N〉2] .

‖ρ̃N(t)‖2r is a sequence of positive semimartingales on a suitable probability space
(Ω,A, P ) and then the following decomposition holds:

d‖ρ̃N(t)‖2r = JN(‖ρ̃N(t)‖2r) dt+ dMt
N,‖ρ̃N‖2r

,

withMt
N,‖ρ̃N‖2r

the local martingale given by

Mt
N,‖ρ̃N‖2r

= 2
N3/4

∫ t

0

N∑
j=1

[ +∞∑
k=2

n

(1 + k2)r [〈sin kx, ρ̃N(s)〉 cos kxj

− 〈cos kx, ρ̃N(s)〉 sin kxj]
]
dBj(s) (3.22)

:=
∫ t

0

N∑
j=1

(
∇x‖ρ̃N(s)‖2r

)
j
dBj(s) ,

where {Bj(t) : t > 0, j = 1, . . . , N} is a system of independent Standard Brow-
nian motions on [0, 2π] and (∇x‖ρ̃N‖2r)j is the j-th component of the gradient
computed with respect to the processes (xj)Nj=1.
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As a consequence of the considerations just explained, we are in the proper sit-
uation to adapt Proposition 1.4.1 to our specific case. Before stating the result
about collapsing processes we need to prove the following technical Lemma.

Lemma 3.3.5. Given two sequences {an}n≥2, {bn}n≥2 of positive, real numbers
and r ∈ R, r > 0, it holds

+∞∑
n=2

n

(1 + n2)r anbn+1 ≤ C
+∞∑
n=2

n2

(1 + n2)r (a
2
n + b2n) ,

with C positive constant.

Proof. Just write anbn+1 ≤ a2
n + b2n+1, and observe that n+1

n
is bounded from

above and below for n ≥ 2. �

Lemma 3.3.6. Consider d > 2, δ > 0 and κN := κ(N), such that κN N→+∞−−−−→ +∞.
For t ∈ [0, τMN ] and N ≥ 1, there exist constants C·’s independent of N and t and
two increasing sequences {αN}N≥1 and {βN}N≥1 which satisfy

κ
1/d
N α−1

N
N→+∞−−−−→ 0, κ−1

N αN
N→+∞−−−−→ 0, κ−1

N βN
N→+∞−−−−→ 0 , (3.23)

E
[
‖ρ̃N(0)‖2dr

]
≤ C1 α

−2d
N for all N , (3.24)

JN(‖ρ̃N(t)‖2r) ≤ −κNδ‖ρ̃N(t)‖2r + βNC2 + C3 , (3.25)

sup
ω∈Ω,x∈[0,2π],t≤τMN

∣∣∣∇x‖ρ̃N(t)‖2r
∣∣∣ ≤ C4 α

−1
N , (3.26)

and such that, for every ε > 0, the following estimate holds

sup
N≥N0

P

 sup
0≤t≤T∧τMN

‖ρ̃N(t)‖2r > C5
(
κ

1/d
N α−1

N ∨ κ−1
N αN

) ≤ ε . (3.27)

Proof. We aim to prove these sequences {αN}N≥1, {βN}N≥1 and constants C·’s
exist and to give a characterization of them. We show that properties (3.23)-
(3.26) hold true. The estimate (3.27) then follows from Proposition 1.4.1.

(3.24) We start noticing that a Central Limit Theorem applies to the process
〈sin kx, ρN(0)〉, since the random variables (xj(0))Nj=1 are independent; so,
in the limit as N −→ +∞, N1/4〈sin kx, ρ̃N(0)〉 converges to a Gaussian
random variable and, since (sin kxj)Nj=1 are bounded random variables, there
is convergence of all the moments. Thus,

E
[
Nd〈sin kx, ρN(0)〉2d

]
≤ C

(1)
1
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and the process 〈cos kx, ρN(0)〉 obeys an analogous result. We obtain the
following estimate for the 2d-th moments of ‖ρ̃N(0)‖2dr :

E[‖ρ̃N(0)‖2dr ] = E

(+∞∑
k=2

1
(1 + k2)r [〈sin kx, ρ̃N(0)〉2 + 〈cos kx, ρ̃N(0)〉2]

)d

≤ CE

[+∞∑
k=2

1
(1 + k2)r [〈sin kx, ρ̃N(0)〉2d + 〈cos kx, ρ̃N(0)〉2d]

]

= CNd/2
+∞∑
k=2

1
(1 + k2)r

(
E[〈sin kx, ρN(0)〉2d]

+ E[〈cos kx, ρN(0)〉2d]
)

≤ CNd/2
(
C

(1)
1 + C

(2)
1

)
N−dS1 := C1N

−d/2 ,

where S1 is the sum of the series ∑+∞
k=2

1
(1+k2)r , which is finite whenever

r > 1
2 . Thus (3.24) holds.

(3.25) For t ∈ [0, τMN ], we derive the particular characterization of JN(‖ρ̃N‖2r),
adapting the explicit expression of JN given by (3.17), and then we proceed
to find an upper bound for this quantity.

JN‖ρ̃N‖2r =
+∞∑
k=2

1
(1 + k2)r

{
2N1/2[〈sin kx, ρ̃N〉〈L sin kx, ρ̃N〉

+ 〈cos kx, ρ̃N〉〈L cos kx, ρ̃N〉]

+ 2kN1/4{〈sin kx, ρ̃N〉[〈sin x, ρ̃N〉〈cosx cos kx, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x cos kx, ρ̃N〉] + 〈cos kx, ρ̃N〉[〈cosx, ρ̃N〉〈sin x sin kx, ρ̃N〉

− 〈sin x, ρ̃N〉〈cosx sin kx, ρ̃N〉]}+ k2[〈cos2 kx, q∗〉+ 〈sin2 kx, q∗〉]

− 2k2

N1/4 〈sin kx, ρ̃N〉〈cos kx, ρ̃N〉〈sin kx cos kx, ρ̃N〉
}

(by using Prosthaphaeresis formulas)

=
+∞∑
k=2

1
(1 + k2)r

{
− 2k2N1/2[〈sin kx, ρ̃N〉2 + 〈cos kx, ρ̃N〉2]

+ kN1/4{〈sin kx, ρ̃N〉[〈sin x, ρ̃N〉〈cos(k + 1)x+ cos(k − 1)x, ρ̃N〉
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− 〈cosx, ρ̃N〉〈sin(k + 1)x− sin(k − 1)x, ρ̃N〉]

+ 〈cos kx, ρ̃N〉[〈cosx, ρ̃N〉〈cos(k − 1)x− cos(k + 1)x, ρ̃N〉

− 〈sin x, ρ̃N〉〈sin(k + 1)x+ sin(k − 1)x, ρ̃N〉]}

+ k2

2 −
2k2

N1/4 〈sin kx, ρ̃N〉〈cos kx, ρ̃N〉〈sin kx cos kx, ρ̃N〉
}

(by observing that N−1/4〈sin kx cos kx, ρ̃N〉 = 〈sin kx cos kx, ρN〉 and hence
|〈sin kx cos kx, ρN〉| ≤ 1)

≤
+∞∑
k=2

1
(1 + k2)r

{
− 2k2N1/2

(
〈sin kx, ρ̃N〉2 + 〈cos kx, ρ̃N〉2

)
+ kN1/4M

[
|〈sin kx, ρ̃N〉|

(
|〈cos(k + 1)x, ρ̃N〉|+ |〈cos(k − 1)x, ρ̃N〉|

+ |〈sin(k + 1)x, ρ̃N〉|+ |〈sin(k − 1)x, ρ̃N〉|
)

+ |〈cos kx, ρ̃N〉|
(
|〈sin(k + 1)x, ρ̃N〉|+ |〈sin(k − 1)x, ρ̃N〉|

+ |〈cos(k − 1)x, ρ̃N〉|+ |〈cos(k + 1), ρ̃N〉|
)]

+ k2

2
+ 2k2|〈sin kx, ρ̃N〉||〈cos kx, ρ̃N〉|

}
(by Lemma 3.3.5)

≤ −2N1/2
+∞∑
k=2

k2

(1 + k2)r
(
〈sin kx, ρ̃N〉2 + 〈cos kx, ρ̃N〉2

)

+ 4N1/4MC

{ +∞∑
k=2

k2

(1 + k2)r
(
〈sin kx, ρ̃N〉2 + 〈cos kx, ρ̃N〉2

)

+
+∞∑
k=3

(k − 1)2

[1 + (k − 1)2]r
(
〈sin(k − 1)x, ρ̃N〉2 + 〈cos(k − 1)x, ρ̃N〉2

)

+ 4
5r
(
〈sin x, ρ̃N〉2 + 〈cosx, ρ̃N〉2

)}

+
+∞∑
k=2

k2

(1 + k2)r
(
〈sin kx, ρ̃N〉2 + 〈cos kx, ρ̃N〉2

)
+

+∞∑
k=2

k2

(1 + k2)r

≤ −2N1/2
+∞∑
k=2

1
(1 + k2)r

(
〈sin kx, ρ̃N〉2 + 〈cos kx, ρ̃N〉2

)

+ 16N1/4M3C

{ +∞∑
k=2

k2

(1 + k2)r + 2
5r

}
+ 2M2

+∞∑
k=2

k2

(1 + k2)r +
+∞∑
k=2

k2

(1 + k2)r
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≤ −2N1/2‖ρ̃N‖2r +N1/4M3C(S2 + 2) + S2(2M2 + 1) ,

where S2 is the sum of the series ∑+∞
k=2

k2

(1+k2)r , which is finite whenever
r > 3

2 .
Hence, we have obtained the desired inequality if we choose: κN := N1/2,
δ := 2 (which is positive as required), βN := N1/4, C2 := M3C(S2 + 2) and
C3 := S2(2M2 + 1).

(3.26) Now, we evaluate the supremum of the modulus of ∇x‖ρ̃N(t)‖2r, whose
components are defined in (3.22). Since
[+∞∑
k=2

k

(1 + k2)r [〈sin kx, ρ̃N(t)〉 cos kxj − 〈cos kx, ρ̃N(t)〉 sin kxj]
]2

≤

≤ C
+∞∑
k=2

k2

(1 + k2)2r

[
〈sin kx, ρ̃N(t)〉2| cos kxj|2 + 〈cos kx, ρ̃N(t)〉2| sin kxj|2

]

≤ 2CM2S3 ,

it easily yields

sup
ω∈Ω,x∈[0,2π],t≤τMN

∣∣∣∇x‖ρ̃N(t)‖2r
∣∣∣ = sup

ω∈Ω,x∈[0,2π],t≤τMN

√√√√√ N∑
j=1

[
(∇x‖ρ̃N(t)‖2r)j

]2

≤ 2
N3/4M

√
2CS3N

1/2 = C4N
−1/4 ,

where S3 is the sum of the series ∑+∞
k=2

k2

(1+k2)2r , which is finite whenever
r > 3

4 and we set C4 := 2CM
√

2S3, αN := N1/4.

(3.23) It remains to show that the sequences we have found satisfy the conditions
about the convergence to zero. But,

lim
N→+∞

(N1/2)1/d(N1/4)−1 = lim
N→+∞

N1/2d−1/4 = 0 ⇐⇒ d > 2,

lim
N→+∞

N1/4N−1/2 = lim
N→+∞

N−1/4 = 0,
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lim
N→+∞

N1/4N−1/2 = lim
N→+∞

N−1/4 = 0

and hence we have completed the proof, since by Proposition 1.4.1 we can
now assure (3.27) holds.

�

Remark 3.3.3. Notice that if we insert the quantities we choose during the proof
of Lemma 3.3.6 into (3.27), we have shown that the following inequality holds

sup
N≥N0

P

 sup
0≤t≤T∧τMN

‖ρ̃N(t)‖2r > C5
(
N1/2d−1/4 ∨N−1/4

) ≤ ε . (3.28)

The results we proved in this subparagraph show that the processes {〈sin kx, ρ̃N(t)〉}k≥2

and {〈cos kx, ρ̃N(t)〉}k≥2 are collapsing processes in the sense of Proposition 1.4.1,
when t ∈ [0, T ∧ τMN ].

We want to find the expression of the limiting operator of the infinitesimal gen-
erator JN , as N grows to infinity. We choose

ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2

)
=

= ψ(〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉)

and we apply the operator JN . Since ker L = span{sin x, cosx}, referring to
(3.17)-(3.21), we obtain

JNψ(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉) =

= N1/4∂1ψ(·, ·)[〈sin x, ρ̃N〉〈cos2 x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin x cosx, ρ̃N〉]

+N1/4∂2ψ(·, ·)[〈cosx, ρ̃N〉〈sin2 x, ρ̃N〉 − 〈sin x, ρ̃N〉〈sin x cosx, ρ̃N〉]

+ 1
2∂11ψ(·, ·)〈cos2 x, q0

∗〉+
1
2∂22ψ(·, ·)〈sin2 x, q0

∗〉+
1

2N1/4∂11ψ(·, ·)〈cos2 x, ρ̃N〉

+ 1
2N1/4∂22ψ(·, ·)〈sin2 x, ρ̃N〉+

1
N1/4∂12ψ(·, ·)〈sin x cosx, ρ̃N〉

(by using Bisection formulas and the fact that the measure ρ̃N is centered, in
other words that 〈1, ρ̃N〉 = 0)

= N1/4

2 ∂1ψ(·, ·)[〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉]
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+ N1/4

2 ∂2ψ(·, ·)[−〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉]

+ 1
4∂11ψ(·, ·) + 1

4∂22ψ(·, ·) + o(1) (3.29)

where o(1) includes the terms coming from L4ψ, which are of order N−1/4. The
operator L4 is defined by (3.21).

Now, to determine the limiting generator, we apply the first order perturbation
theory. The methodology for treating a perturbation problem has been developed
in the paper [PSV77] and extends the earlier works done in [Kur73] and [Pap77].
The idea is the following. If we look at the expression of JN in (3.17), we see
that, in the limit as N −→ +∞, the operators L1 and L2 can explode. Since
we have just proved that, for t ∈ [0, T ∧ τMN ], the process surviving the critical
time-space scaling lives in the kernel of the operator L1, we restrict to work with
ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) ∈ kerL1, the term L1ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) vanishes
and then we need to control the operator L2. So, we think of N−1/4 as a pertur-
bative parameter and we use a first order perturbation of ψ to introduce some
negligible (in the limit as N −→ +∞) terms in the expression (3.17), which pro-
vide that the operator L2 does not diverge.
More precisely, we consider ψN(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉), a first order perturbation
of ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉),

ψN(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉)

+N−1/4ψ1(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) (3.30)

and we apply the generator JN to this function:

JNψN(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) =

= N1/2L1ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉)

+N1/4[L2ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) + L1ψ1(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉)]

+ L3ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) + L2ψ1(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) + o(1) , (3.31)

where o(1) includes the terms coming from L4ψ, L3ψ1 and L4ψ1, which are of
order N−1/4 and N−1/2.
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The first term vanishes, since ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) ∈ kerL1. To eliminate
the N1/4 term, we require that

L2ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) + L1ψ1(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = 0 ,

that is

ψ1(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) := −L−1
1 L2ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) , (3.32)

where formally

L−1
1 ν = −

∫ +∞

0
exp(L1t) ν dt provided that ν ∈ kerL1 . (3.33)

If we substitute the expression we found for ψ1(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉), (3.32), in
the two terms left of (3.31), we obtain

L3ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) + L2ψ1(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) =

= [L3 − L2L
−1
1 L2]ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) := J̃Nψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) ,

where J̃N satisfies

lim
N→+∞

JNψN(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = lim
N→+∞

J̃Nψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) .

We apply the method to our case. The expression of JNψ(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉)
is described by (3.29). We need to compute ψ1, which allows us to introduce the
terms necessary to the convergence of the infinitesimal generator: L1ψ1 and L2ψ1.
By the definitions (3.32) and (3.33), it yields

ψ1(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉, 〈sin 2x, ρ̃N〉, 〈cos 2x, ρ̃N〉) =

= −L−1
1 L2ψ(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉)

= −1
2L
−1
1

[
∂1ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
− ∂2ψ(·, ·)

(
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)]
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= −1
8
[
∂1ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
− ∂2ψ(·, ·)

(
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)]
. (3.34)

Thus,

JN [ψ(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉)

+N−1/4ψ1(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉, 〈sin 2x, ρ̃N〉, 〈cos 2x, ρ̃N〉)] =

= N1/4[L2ψ(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉)

+ L1ψ1(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉, 〈sin 2x, ρ̃N〉, 〈cos 2x, ρ̃N〉)]

+ L3ψ(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉)

+ L2ψ1(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉, 〈sin 2x, ρ̃N〉, 〈cos 2x, ρ̃N〉) + o(1) .

Since L2ψ + L1ψ1 = 0 by construction and L3ψ = 1
4 [∂11ψ + ∂22ψ], it remains to

compute the term L2ψ1.

L2ψ1(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉, 〈sin 2x, ρ̃N〉, 〈cos 2x, ρ̃N〉) =

= −1
8L2

[
∂1ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂2ψ(·, ·)

(
− 〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)]

= −1
8

{[
∂11ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂1ψ(·, ·)〈cos 2x, ρ̃N〉

](
〈sin x, ρ̃N〉〈cos2 x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin x cosx, ρ̃N〉

)
+
[
∂12ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂1ψ(·, ·)〈sin 2x, ρ̃N〉

](
〈cosx, ρ̃N〉〈sin2 x, ρ̃N〉 − 〈sin x, ρ̃N〉〈sin x cosx, ρ̃N〉

)
−2∂1ψ(·, ·)

[
〈cosx, ρ̃N〉

(
〈sin x, ρ̃N〉〈cosx cos 2x, ρ̃N〉−〈cosx, ρ̃N〉〈sin x cos 2x, ρ̃N〉

)
+ 〈sin x, ρ̃N〉

(
〈sin x, ρ̃N〉〈cosx sin 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin x sin 2x, ρ̃N〉

)]
+
[
∂22ψ(·, ·)

(
− 〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)
− ∂2ψ(·, ·)〈cos 2x, ρ̃N〉

](
〈cosx, ρ̃N〉〈sin2 x, ρ̃N〉 − 〈sin x, ρ̃N〉〈sin x cosx, ρ̃N〉

)
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+
[
∂12ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂2ψ(·, ·)〈sin 2x, ρ̃N〉

](
〈cosx, ρ̃N〉〈sin x cosx, ρ̃N〉 − 〈sin x, ρ̃N〉〈cos2 x, ρ̃N〉

)
−2∂2ψ(·, ·)

[
〈cosx, ρ̃N〉

(
〈cosx, ρ̃N〉〈sin x sin 2x, ρ̃N〉−〈sin x, ρ̃N〉〈cosx sin 2x, ρ̃N〉

)
+ 〈sin x, ρ̃N〉

(
〈sin x, ρ̃N〉〈cosx cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin x cos 2x, ρ̃N〉

)]}

(by using Prosthaphaeresis formulas)

= −1
8

{
1
2
[
∂11ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂1ψ(·, ·)〈cos 2x, ρ̃N〉

](
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
− 1

2
[
∂12ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂1ψ(·, ·)〈sin 2x, ρ̃N〉

](
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)
− ∂1ψ(·, ·)

[
〈sin x, ρ̃N〉〈cosx, ρ̃N〉2 + 〈sin x, ρ̃N〉3

]
− 1

2
[
∂22ψ(·, ·)

(
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)
− ∂2ψ(·, ·)〈cos 2x, ρ̃N〉

](
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)
+ 1

2
[
∂12ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂2ψ(·, ·)〈sin 2x, ρ̃N〉

](
〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉 − 〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉

)
− ∂2ψ(·, ·)

[
〈cosx, ρ̃N〉3 + 〈sin x, ρ̃N〉2〈cosx, ρ̃N〉

]}
.

Summing up all the terms we have obtained, recalling that ψ1 is defined by (3.34),
we get

JN [ψ(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉)

+N−1/4ψ1(〈sin x, ρ̃N〉, 〈cosx, ρ̃N〉, 〈sin 2x, ρ̃N〉, 〈cos 2x, ρ̃N〉)] =

= −1
8

{
1
2
[
∂11ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂1ψ(·, ·)〈cos 2x, ρ̃N〉

](
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
− 1

2
[
∂12ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
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+ ∂1ψ(·, ·)〈sin 2x, ρ̃N〉
](
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)
− ∂1ψ(·, ·)

[
〈sin x, ρ̃N〉〈cosx, ρ̃N〉2 + 〈sin x, ρ̃N〉3

]
− 1

2
[
∂22ψ(·, ·)

(
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)
− ∂2ψ(·, ·)〈cos 2x, ρ̃N〉

](
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

)
+ 1

2
[
∂12ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

)
+ ∂2ψ(·, ·)〈sin 2x, ρ̃N〉

](
〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉 − 〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉

)
− ∂2ψ(·, ·)

[
(〈cosx, ρ̃N〉3 + 〈sin x, ρ̃N〉2〈cosx, ρ̃N〉

]}

+ 1
4∂11ψ(·, ·) + 1

4∂22ψ(·, ·) + o(1) . (3.35)

The next step is the proof of the fact that, for every ε > 0 and N ≥ 1, there
exists a constant M > 0 such that it is true P

{
τMN ≤ T

}
≤ ε . This fact im-

plies that, as N is growing to infinity, the processes {〈sin kx, ρ̃N(t)〉}k≥2 and
{〈cos kx, ρ̃N(t)〉}k≥2 converge to zero in probability for all t ∈ [0, T ].

We consider the infinitesimal generator JN , subject to the time-rescaling N1/2

and we apply it to the particular function

ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2

)
+N−1/4ψ1(〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉, 〈cos 2x, ρ̃N(t)〉) =

= 〈sin x, ρ̃N(t)〉2 + 〈cosx, ρ̃N(t)〉2 − 1
4N1/4

{
〈sin x, ρ̃N(t)〉2〈cos 2x, ρ̃N(t)〉

− 2〈sin x, ρ̃N(t)〉〈cosx, ρ̃N(t)〉〈sin 2x, ρ̃N(t)〉+ 〈cosx, ρ̃N(t)〉2〈cos 2x, ρ̃N(t)〉
}

:= ψ
(3)
N (〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉, 〈cos 2x, ρ̃N(t)〉) ,

meaning we have chosen the function ψ to be of the form

ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2

)
=

= 〈sin x, ρ̃N(t)〉2 + 〈cosx, ρ̃N(t)〉2 .
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The following decomposition holds

ψ
(3)
N (〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉, 〈cos 2x, ρ̃N(t)〉) =

=Mt

N,ψ
(3)
N

+ ψ
(3)
N (〈sin x, ρ̃N(0)〉, 〈cosx, ρ̃N(0)〉, 〈sin 2x, ρ̃N(0)〉, 〈cos 2x, ρ̃N(0)〉)

+
∫ t

0
JN

[
ψ

(3)
N (〈sin x, ρ̃N(s)〉, 〈cosx, ρ̃N(s)〉, 〈sin 2x, ρ̃N(s)〉, 〈cos 2x, ρ̃N(s)〉)

]
ds

≤Mt

N,ψ
(3)
N

+ ψ
(3)
N (〈sin x, ρ̃N(0)〉, 〈cosx, ρ̃N(0)〉, 〈sin 2x, ρ̃N(0)〉, 〈cos 2x, ρ̃N(0)〉)

+
∫ t

0

∣∣∣JN[ψ(3)
N (〈sin x, ρ̃N(s)〉, 〈cosx, ρ̃N(s)〉, 〈sin 2x, ρ̃N(s)〉, 〈cos 2x, ρ̃N(s)〉)

]∣∣∣ ds,
withMt

N,ψ
(3)
N

a martingale given by

Mt

N,ψ
(3)
N

=
∫ t

0

N∑
j=1

{
2

N3/4

(
〈sin x, ρ̃N(s)〉 cosxj − 〈cosx, ρ̃N(s)〉 sin xj

)
+ 1

2N

[(
〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉−〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉

)
cosxj

+
(
〈sin x, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉+ 〈cosx, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉

)
sin xj

+
(
− 〈sin x, ρ̃N(s)〉2 + 〈cosx, ρ̃N(s)〉2

)
sin 2xj

− 2〈sin x, ρ̃N(s)〉〈cosx, ρ̃N(s)〉 cos 2xj
]}
dBj(s)

:=
∫ t

0

N∑
j=1

(∇xψ
(3)
N )j dBj(s) ,

where {Bj(t) : t > 0, j = 1, . . . , N} is a system of independent Standard Brow-
nian motions on [0, 2π] and

(
∇xψ

(3)
N

)
j
is the j-th component of the gradient

computed with respect to the processes (xj)Nj=1. We recall that the expression of
JN is given by (3.35). For t ∈ [0, τMN ] we get∣∣∣JN [ψ(3)

N (〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉, 〈cos 2x, ρ̃N(t)〉)
]∣∣∣ =

= 1
8

∣∣∣∣∣
{
〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉

[
2〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

]
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− 〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉
[
3〈sin x, ρ̃N〉〈cos 2x, ρ̃N〉 − 2〈cosx, ρ̃N〉〈sin 2x, ρ̃N〉

]
− 2〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉

[
〈sin x, ρ̃N〉〈sin 2x, ρ̃N〉+ 〈cosx, ρ̃N〉〈cos 2x, ρ̃N〉

]
− 〈sin x, ρ̃N〉

[
〈sin x, ρ̃N〉〈cosx, ρ̃N〉2 + 〈sin x, ρ̃N〉3

]
−〈cosx, ρ̃N〉

[
〈cosx, ρ̃N〉3 + 〈sin x, ρ̃N〉2〈cosx, ρ̃N〉

]}
+ 1 + o(1)

∣∣∣∣∣

≤ 1
8

{
|〈sin x, ρ̃N〉||〈cos 2x, ρ̃N〉|

[
2|〈sin x, ρ̃N〉||〈cos 2x, ρ̃N〉|

+ |〈cosx, ρ̃N〉||〈sin 2x, ρ̃N〉|
]

+ |〈cosx, ρ̃N〉||〈sin 2x, ρ̃N〉|
[
3|〈sin x, ρ̃N〉||〈cos 2x, ρ̃N〉|

+ 2|〈cosx, ρ̃N〉||〈sin 2x, ρ̃N〉|
]

+ 2|〈sin x, ρ̃N〉||〈sin 2x, ρ̃N〉|
[
|〈sin x, ρ̃N〉||〈sin 2x, ρ̃N〉|

+ |〈cosx, ρ̃N〉||〈cos 2x, ρ̃N〉|
]

+ |〈sin x, ρ̃N〉|
[
|〈sin x, ρ̃N〉|〈cosx, ρ̃N〉2 + |〈sin x, ρ̃N〉|3

]
+ |〈cosx, ρ̃N〉|

[
|〈cosx, ρ̃N〉|3 + 〈sin x, ρ̃N〉2|〈cosx, ρ̃N〉|

]}
+ 2

≤ 2(M4 + 1) =: C8 ,

with C8 positive constant independent on N . Since the following inclusions are
valid

{τMN ≤ T} ⊆

⊆
{

sup
0≤t≤T∧τMN

‖ρ̃N‖2r ≥ C5(N1/2d−1/4 ∨N−1/4)
}
∪
{∣∣∣ψ(3)

N (. . . )
∣∣∣
t=0

∣∣∣ ≥ C9
}

∪

{∣∣∣ψ(3)
N (. . . )

∣∣∣
t=0

∣∣∣ ≤ C9
}
∩

 sup
0≤t≤T∧τMN

∣∣∣ψ(3)
N (. . . )

∣∣∣
t

∣∣∣ ≥ C9 + TC8 + C10
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⊆
{

sup
0≤t≤T∧τMN

‖ρ̃N‖2r ≥ C5(N1/2d−1/4 ∨N−1/4)
}
∪
{∣∣∣ψ(3)

N (. . . )
∣∣∣
t=0

∣∣∣ ≥ C9
}

∪
{

sup
0≤t≤T∧τMN

Mt

N,ψ
(3)
N

≥ C10

}
,

we obtain the following inequality

P{τMN ≤ T} ≤ P

{
sup

0≤t≤T∧τMN

‖ρ̃N(t)‖2r ≥ C5(N1/2d−1/4 ∨N−1/4)
}

+ P
{∣∣∣ψ(3)

N (. . . )
∣∣∣
t=0

∣∣∣ ≥ C9
}

+ P

{
sup

0≤t≤T∧τMN

Mt

N,ψ
(3)
N

≥ C10

}

We estimate the three terms of the right-hand side of the inequality.

� For any ε > 0, thanks to (3.28), we have

P

{
sup

0≤t≤T∧τMN

‖ρ̃N(t)‖2r ≥ C5(N1/2d−1/4 ∨N−1/4)
}
≤ ε .

� We start noticing that a Central Limit Theorem applies to the process
〈sin x, ρN(0)〉, since the random variables (xj(0))Nj=1 are independent; so,
in the limit as N −→ +∞, N1/4〈sin x, ρ̃N(0)〉 converges to a Gaussian
random variable and, since (sin xj)Nj=1 are bounded random variables, there
is convergence of all the moments. Thus,

E
[
Nd〈sin x, ρN(0)〉2d

]
≤ C

(1)

and the process 〈cosx, ρN(0)〉 obeys an analogous result. So, we can esti-
mate

E

[∣∣∣∣∣〈sin x, ρ̃N(0)〉2 + 〈cosx, ρ̃N(0)〉2 − 1
4N1/4

{
〈sin x, ρ̃N(0)〉2〈cos 2x, ρ̃N(0)〉

− 2〈sin x, ρ̃N(0)〉〈cosx, ρ̃N(0)〉〈sin 2x, ρ̃N(0)〉

+ 〈cosx, ρ̃N(0)〉2〈cos 2x, ρ̃N(0)〉
}∣∣∣∣∣
]

≤ E

[∣∣∣∣∣〈sin x, ρ̃N(0)〉2 + 〈cosx, ρ̃N(0)〉2
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− 1
4N1/4

{
〈cos 2x, ρ̃N(0)〉

(
〈sin x, ρ̃N(0)〉2 + 〈cosx, ρ̃N(0)〉2

)
+ 〈sin 2x, ρ̃N(0)〉

(
〈sin x, ρ̃N(0)〉2 + 〈cosx, ρ̃N(0)〉2

)∣∣∣∣∣
]

≤ E

[∣∣∣∣∣〈sin x, ρ̃N(0)〉2 + 〈cosx, ρ̃N(0)〉2

− 1
4
{
|〈cos 2x, ρN(0)〉|

(
〈sin x, ρ̃N(0)〉2 + 〈cosx, ρ̃N(0)〉2

)
+ |〈sin 2x, ρN(0)〉|

(
〈sin x, ρ̃N(0)〉2 + 〈cosx, ρ̃N(0)〉2

)∣∣∣∣∣
]

≤ 3
2

(
C

(1) + C
(2)
)
N−1/2 = CN−1/2

and in the limit as N −→ +∞, we have convergence to zero in L1 and then
in probability. Therefore

P
{∣∣∣ψ(3)

N (. . . )
∣∣∣
t=0

∣∣∣ ≥ C9
}
≤ ε

for any ε > 0, for every N and for a sufficiently large C9.

� We reduce to deal with E
[(
Mt

N,ψ
(3)
N

)2
]
; in fact, Doob’s “maximal inequal-

ity in Lp” (case p = 2) for martingales (we refer to Chapter VII, Section 3
of [Shi96]) tells us that

P

 sup
0≤t≤T∧τMN

∣∣∣∣Mt

N,ψ
(3)
N

∣∣∣∣ ≥ C10

 ≤
E

[(
MT

N,ψ
(3)
N

)2
]

(C10)2 .

Hence, we obtain

E

[(
MT

N,ψ
(3)
N

)2
]

=

= E

[[ ∫ T

0

N∑
j=1

{
2

N3/4

(
〈sin x, ρ̃N(s)〉 cosxj − 〈cosx, ρ̃N(s)〉 sin xj

)
+ 1

2N

[(
〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉 − 〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉

)
cosxj
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+
(
〈sin x, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉+ 〈cosx, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉

)
sin xj

+
(
− 〈sin x, ρ̃N(s)〉2 + 〈cosx, ρ̃N(s)〉2

)
sin 2xj

− 2〈sin x, ρ̃N(s)〉〈cosx, ρ̃N(s)〉 cos 2xj
]}
dBj(s)

]2]

(thanks to Itô’s isometry )

=
∫ T

0

N∑
j=1

E

[{
2

N3/4

(
〈sin x, ρ̃N(s)〉 cosxj − 〈cosx, ρ̃N(s)〉 sin xj

)
+ 1

2N

[(
〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉 − 〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉

)
cosxj

+
(
〈sin x, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉+ 〈cosx, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉

)
sin xj

+
(
− 〈sin x, ρ̃N(s)〉2 + 〈cosx, ρ̃N(s)〉2

)
sin 2xj

− 2〈sin x, ρ̃N(s)〉〈cosx, ρ̃N(s)〉 cos 2xj
]}2]

ds

≤
∫ T

0

N∑
j=1

E

( 4
N1/2 + 1

N1/2

)2
 ds = 25T =: C11 ,

with C11 independent of N and M . We have established that, if we choose
C10 ≥

√
C11
ε
, then

P

{
sup

0≤t≤T∧τMN

Mt

N,ψ
(3)
N

≥ C10

}
≤ ε .

In summary, we proved the inequality we were looking for; in fact,

P
{
τMN ≤ T

}
≤ 3ε := ε .

We have just concluded the proof of the first part of the statement of The-
orem 3.3.1, concerning the collapse of the processes {〈sin kx, ρ̃N(t)〉}k≥2 and
{〈cos kx, ρ̃N(t)〉}k≥2 in the limit as N −→ +∞ and for t ∈ [0, T ]. Now, we
are going to show that in the same setting, i.e. the limit of infinite volume and
t ∈ [0, T ], the process (〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉) admits a limiting process and
we are going to compute it.

— 137 —



Chapter 3. The Kuramoto Model

First, we need to prove the tightness of the sequence {〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉}N≥1,
for t ∈ [0, T ]. This property implies the existence of convergent subsequences.
Secondly, we will verify that all the convergent subsequences have the same limit
and hence also the sequence {〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉}N≥1 must converge to
that limit for t ∈ [0, T ].

Lemma 3.3.7. The sequence {〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉}N≥1 is tight.

Proof. We must verify the conditions (1.44) and (1.45) hold. Since we have
shown already that, for every ε > 0 the inequality P{τMN ≤ T} ≤ ε is true for
M sufficiently large and uniformly in N , it is enough to show tightness for the
stopped processes

{〈sin x, ρ̃N(t ∧ τMN )〉, 〈cosx, ρ̃N(t ∧ τMN )〉}N≥1.

We consider the function ψ of the form

ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2

)
=

= 〈sin x, ρ̃N(t)〉 .

(1.44) The decomposition

〈sin x, ρ̃N(t)〉 = 〈sin x, ρ̃N(0)〉+
∫ t

0
JN(〈sin x, ρ̃N(u)〉) du+Mt

N,〈sinx,ρ̃N (t)〉 ,

with
Mt

N,〈sinx,ρ̃N (t)〉 := 1
N3/4

∫ t

0

N∑
j=1

cosxj dBj(s) ,

holds true and we get the following inclusion{
sup

0≤t≤T∧τMN

|〈sin x, ρ̃N(t)〉| ≥M

}
⊆

⊆ {|〈sin x, ρ̃N(0)〉| ≥M} ∪
{

sup
0≤t≤T∧τMN

∣∣∣Mt
N,〈sinx,ρ̃N (t)〉

∣∣∣ ≥M

}
.

We estimate the probability of its right-hand side.
A Central Limit Theorem applies to the process 〈sin x, ρN(0)〉, since the
random variables (xj(0))Nj=1 are independent; so, in the limit as N −→ +∞,
N1/4〈sin x, ρ̃N(0)〉 converges to a Gaussian random variable and, since (sin xj)Nj=1
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are bounded random variables, there is convergence of all the moments.
Thus,

E
[
Nd〈sin x, ρN(0)〉2d

]
≤ C

(1)
.

So, we have that
E
[∣∣∣〈sin x, ρ̃N(0)〉

∣∣∣] ≤ C
(1)
N−1/4

and in the limit as N −→ +∞, we have convergence to zero in L1 and then
in probability. Therefore

P
{∣∣∣〈sin x, ρ̃N(0)〉

∣∣∣ ≥M
}
≤ ε

for any ε > 0, for N ≥ N and for a sufficiently large M .
Secondly, by Doob’s inequality, it yields

P

{
sup

0≤t≤T∧τMN

∣∣∣Mt
N,〈sinx,ρ̃N (t)〉

∣∣∣ ≥M

}
≤
E

[(
Mt

N,〈sinx,ρ̃N (t)〉

)2]
M2

and

E
[(
Mt

N,〈sinx,ρ̃N (t)〉

)2
]

= 1
N3/2E

[( ∫ t

0

N∑
j=1

cosxj dBj(s)
)2]

= 1
N3/2E

[ ∫ t

0

N∑
j=1

cos2 xj ds

]
≤ T

N3/2 ≤ T =: C15 .

We have established that, if we choose M ≥
√

C15
ε
, then

P

{
sup

0≤t≤T∧τMN

∣∣∣Mt
N,〈sinx,ρ̃N (t)〉

∣∣∣ ≥M

}
≤ ε ;

hence, for N ≥ N ,

P
{∣∣∣〈sin x, ρ̃N(0)〉

∣∣∣ ≥M
}

+ P

{
sup

0≤t≤T∧τMN

∣∣∣Mt
N,〈sinx,ρ̃N (t)〉

∣∣∣ ≥M

}
≤ 2ε

and so we obtained (1.44). Let us deal with (1.45) now.

(1.45) Recalling the expression of ψ1 given by (3.34), we construct
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ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2

)
+N−1/4ψ1(〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉, 〈cos 2x, ρ̃N(t)〉) =

= 〈sin x, ρ̃N(t)〉 − 1
8N1/4 [〈sin x, ρ̃N(t)〉〈cos 2x, ρ̃N(t)〉

− 〈cosx, ρ̃N(t)〉〈sin 2x, ρ̃N(t)〉]

:= ψ
(1)
N (〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉, 〈cos 2x, ρ̃N(t)〉) .

The following decomposition holds

ψ
(1)
N (〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉, 〈cos 2x, ρ̃N(t)〉) =

= ψ
(1)
N (〈sin x, ρ̃N(0)〉, 〈cosx, ρ̃N(0)〉, 〈sin 2x, ρ̃N(0)〉, 〈cos 2x, ρ̃N(0)〉)

+
∫ t

0
JNψ(1)

N (〈sin x, ρ̃N(s)〉, 〈cosx, ρ̃N(s)〉, 〈sin 2x, ρ̃N(s)〉, 〈cos 2x, ρ̃N(s)〉)ds

+Mt

N,ψ
(1)
N

where JNψ(1)
N is deduced by adapting the expansion (3.35) and withMt

N,ψ
(1)
N

a martingale given by

Mt

N,ψ
(1)
N

=
∫ t

0

N∑
j=1

{
1

N3/4 cosxj −
1

8N

[
〈cos 2x, ρ̃N(s)〉 cosxj

+ 〈sin 2x, ρ̃N(s)〉 sin xj − 2〈sin x, ρ̃N(s)〉 sin 2xj

− 2〈cosx, ρ̃N(s)〉 cos 2xj
]}
dBj(s)

:=
∫ t

0

N∑
j=1

(
∇xψ

(1)
N

)
j
dBj(s) ,

where {Bj(t) : t > 0, j = 1, . . . , N} is a system of independent Standard
Brownian motions on [0, 2π] and

(
∇xψ

(1)
N

)
j
is the j-th component of the
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gradient computed with respect to the processes (xj)Nj=1.
We notice that

|〈sin x, ρ̃N(t)〉 − 〈sin x, ρ̃N(s)〉| =

=
∣∣∣∣∣ 1
8N1/4

[
〈sin x, ρ̃N(t)〉〈cos 2x, ρ̃N(t)〉 − 〈cosx, ρ̃N(t)〉〈sin 2x, ρ̃N(t)〉

]
− 1

8N1/4

[
〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉 − 〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉

]
+
∫ t

s
JNψ(1)

N (〈sin x, ρ̃N(u)〉, 〈cosx, ρ̃N(u)〉, 〈sin 2x, ρ̃N(u)〉,

〈cos 2x, ρ̃N(u)〉)du+Ms,t

N,ψ
(1)
N

∣∣∣∣∣ ,

where we have denoted

Ms,t

N,ψ
(1)
N

=
∫ t

s

N∑
j=1

(
∇xψ

(1)
N

)
j
dBj(u) .

Thus,

{|〈sin x, ρ̃N(t)〉 − 〈sin x, ρ̃N(s)〉| ≥ α} ⊆

⊆
{∣∣∣∣∣ 1

8N1/4

[
〈sin x, ρ̃N(t)〉〈cos 2x, ρ̃N(t)〉 − 〈cosx, ρ̃N(t)〉〈sin 2x, ρ̃N(t)〉

− 〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉+ 〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉
]∣∣∣∣∣

+
∣∣∣∣∣
∫ t

s
JNψ(1)

N (〈sin x, ρ̃N(u)〉, 〈cosx, ρ̃N(u)〉, 〈sin 2x, ρ̃N(u)〉,

〈cos 2x, ρ̃N(u)〉)du
∣∣∣∣∣+

∣∣∣∣Ms,t

N,ψ
(1)
N

∣∣∣∣ ≥ α

}

⊆
{∣∣∣∣∣ 1

8N1/4

[
〈sin x, ρ̃N(t)〉〈cos 2x, ρ̃N(t)〉 − 〈cosx, ρ̃N(t)〉〈sin 2x, ρ̃N(t)〉

− 〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉+ 〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉
]∣∣∣∣∣ ≥ α

}
∪
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∪
{∣∣∣∣∣
∫ t

s
JNψ(1)

N (〈sin x, ρ̃N(u)〉, 〈cosx, ρ̃N(u)〉, 〈sin 2x, ρ̃N(u)〉,

〈cos 2x, ρ̃N(u)〉)du
∣∣∣∣∣ ≥ α

}
∪
{ ∣∣∣∣Ms,t

N,ψ
(1)
N

∣∣∣∣ ≥ α

}
.

We need to estimate the probability of the three sets of the right-hand side
of the previous inclusion.

� Since∣∣∣∣∣ 1
8N1/4

[
〈sin x, ρ̃N(t)〉〈cos 2x, ρ̃N(t)〉 − 〈cosx, ρ̃N(t)〉〈sin 2x, ρ̃N(t)〉

− 〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉+ 〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉
]∣∣∣∣∣

≤ 1
8N1/4

[
|〈sin x, ρ̃N(t)〉||〈cos 2x, ρ̃N(t)〉|

+ |〈cosx, ρ̃N(t)〉||〈sin 2x, ρ̃N(t)〉|+ |〈sin x, ρ̃N(s)〉||〈cos 2x, ρ̃N(s)〉|

+ |〈cosx, ρ̃N(s)〉||〈sin 2x, ρ̃N(s)〉|
]
≤ M2

2 N−1/4.

Hence,

P

{∣∣∣∣∣ 1
8N1/4

[
〈sin x, ρ̃N(t)〉〈cos 2x, ρ̃N(t)〉

− 〈cosx, ρ̃N(t)〉〈sin 2x, ρ̃N(t)〉 − 〈sin x, ρ̃N(s)〉〈cos 2x, ρ̃N(s)〉

+ 〈cosx, ρ̃N(s)〉〈sin 2x, ρ̃N(s)〉
]∣∣∣∣∣ ≥ α

}
≤ ε

for N ≥ N and α sufficiently large.

� Adapting the expansion (3.35), we get
∣∣∣∣∣
∫ t

s
JNψ(1)

N (〈sin x, ρ̃N(u)〉, 〈cosx, ρ̃N(u)〉, 〈sin 2x, ρ̃N(u)〉,

〈cos 2x, ρ̃N(u)〉)du
∣∣∣∣∣ ≤
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≤
∣∣∣∣∣
∫ t

s

{
− 1

8

[
1
2
(
〈sin x, ρ̃N(u)〉〈cos 2x, ρ̃N(u)〉2

− 〈sin x, ρ̃N(u)〉〈sin 2x, ρ̃N(u)〉2
)

− 〈cosx, ρ̃N(u)〉〈sin 2x, ρ̃N(u)〉〈cos 2x, ρ̃N(u)〉

− 〈sin x, ρ̃N(u)〉〈cosx, ρ̃N(u)〉2 − 〈sin x, ρ̃N(u)〉3
]

+ o(1)
}
du

∣∣∣∣∣

≤
∫ t

s

{
1
8

[
1
2
(
|〈sin x, ρ̃N(u)〉|〈cos 2x, ρ̃N(u)〉2

+ |〈sin x, ρ̃N(u)〉|〈sin 2x, ρ̃N(u)〉2
)

+ 〈cosx, ρ̃N(u)〉||〈sin 2x, ρ̃N(u)〉||〈cos 2x, ρ̃N(u)〉|

+ |〈sin x, ρ̃N(u)〉|〈cosx, ρ̃N(u)〉2 + |〈sin x, ρ̃N(u)〉|3
]

+ o(1)
]
du

}

≤
(
M3

2 + 1
)

(t− s) ≤ C12δ ,

where we have defined C12 := M3 + 1. Hence,

P

{∣∣∣∣∣
∫ t

s
JNψ(1)

N (〈sin x, ρ̃N(u)〉, 〈cosx, ρ̃N(u)〉, 〈sin 2x, ρ̃N(u)〉,

〈cos 2x, ρ̃N(u)〉)du
∣∣∣∣∣ ≥ α

}
≤ ε

for α sufficiently large.

� Applying Chebyscev inequality, we obtain

P

{ ∣∣∣∣Ms,t

N,ψ
(1)
N

∣∣∣∣ ≥ α

}
≤ α−2E

[(
Ms,t

N,ψ
(1)
N

)2
]

= α−2E

[( ∫ t

0

N∑
j=1

{
1

N3/4 cosxj −
1

8N

[
〈cos 2x, ρ̃N(s)〉 cosxj

+ 〈sin 2x, ρ̃N(s)〉 sin xj − 2〈sin x, ρ̃N(s)〉 sin 2xj

− 2〈cosx, ρ̃N(s)〉 cos 2xj
]}
dBj(s)

)2]
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≤ Cα−2
∫ t

s

N∑
j=1

E

[
1

N3/2 | cosxj|2 + 1
64N2

[
〈cos 2x, ρ̃N(u)〉2| cosxj|2

+ 〈sin 2x, ρ̃N(u)〉2| sin xj|2 + 4〈sin x, ρ̃N(u)〉2| sin 2xj|2

+ 4〈cosx, ρ̃N(u)〉2| cos 2xj|2
]]
du

≤ Cα−2
∫ t

s

N∑
j=1

E

[
1

N3/2 + 5
32N2M

2
]
du ≤ C14α

−2δ ,

with C14 := C(1 + 5M2). Hence,

P

{ ∣∣∣∣Ms,t

N,ψ
(1)
N

∣∣∣∣ ≥ α

}
≤ ε

for α sufficiently large.

Finally, we can conclude that

sup
N

sup
0≤s≤t≤T
t−s≤δ

P{|〈sin x, ρ̃N(t)〉 − 〈sin x, ρ̃N(s)〉| ≥ α} ≤ 3ε

and (1.45) follows. Choosing

ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2

)
=

= 〈cosx, ρ̃N(t)〉

we can analogously prove the tightness for the sequence {〈cosx, ρ̃N(t)〉}N≥1.

�

Lemma 3.3.7 implies there exist convergent subsequences for the sequence of
processes {〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉}N≥1. Let {〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉}n≥1

denote one of such a subsequence and let ψ ∈ C3
b be a function of the type

ψ
(
〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉, {〈sin kx, ρ̃n(t)〉}k≥2, {〈cos kx, ρ̃n(t)〉}k≥2

)
=

= ψ(〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉) .
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Recalling the expression of ψ1 given by (3.34), we construct

ψ
(
〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉, {〈sin kx, ρ̃n(t)〉}k≥2, {〈cos kx, ρ̃n(t)〉}k≥2

)
+ n−1/4ψ1(〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉, 〈sin 2x, ρ̃n(t)〉, 〈cos 2x, ρ̃n(t)〉)

= ψ(〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉)

− 1
8n1/4∂1ψ(·, ·)[〈sin x, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉 − 〈cosx, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉]

− 1
8n1/4∂2ψ(·, ·)[−〈sin x, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉 − 〈cosx, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉]

:= ψ(2)
n (〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉, 〈sin 2x, ρ̃n(t)〉, 〈cos 2x, ρ̃n(t)〉) .

The following decomposition holds

ψ(2)
n (〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉, 〈sin 2x, ρ̃n(t)〉, 〈cos 2x, ρ̃n(t)〉) =

=Mt

n,ψ
(2)
n

+ ψ(2)
n (〈sin x, ρ̃n(0)〉, 〈cosx, ρ̃n(0)〉, 〈sin 2x, ρ̃n(0)〉, 〈cos 2x, ρ̃n(0)〉)

+
∫ t

0
Jnψ(2)

n (〈sin x, ρ̃n(s)〉, 〈cosx, ρ̃n(s)〉, 〈sin 2x, ρ̃n(s)〉, 〈cos 2x, ρ̃n(s)〉) ds

(3.36)

where

Jnψ(2)
n (〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉, 〈sin 2x, ρ̃n(t)〉, 〈cos 2x, ρ̃n(t)〉) =

= −1
8

{
1
2
[
∂11ψ(·, ·)

(
〈sin x, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉 − 〈cosx, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉

)
+∂1ψ(·, ·)〈cos 2x, ρ̃n(t)〉

](
〈sin x, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉−〈cosx, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉

)
− 1

2
[
∂12ψ(·, ·)

(
〈sin x, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉 − 〈cosx, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉

)
+∂1ψ(·, ·)〈sin 2x, ρ̃n(t)〉

](
〈sin x, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉+〈cosx, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉

)
− ∂1ψ(·, ·)

[
〈sin x, ρ̃n(t)〉〈cosx, ρ̃n(t)〉2 + 〈sin x, ρ̃n(t)〉3

]
− 1

2
[
∂22ψ(·, ·)

(
〈sin x, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉+ 〈cosx, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉

)
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−∂2ψ(·, ·)〈cos 2x, ρ̃n(t)〉
](
〈sin x, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉+〈cosx, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉

)
+ 1

2
[
∂12ψ(·, ·)

(
〈sin x, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉 − 〈cosx, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉

)
+∂2ψ(·, ·)〈sin 2x, ρ̃n(t)〉

](
〈cosx, ρ̃n(t)〉〈sin 2x, ρ̃n(t)〉−〈sin x, ρ̃n(t)〉〈cos 2x, ρ̃n(t)〉

)
− ∂2ψ(·, ·)

[
(〈cosx, ρ̃n(t)〉3 + 〈sin x, ρ̃n(t)〉2〈cosx, ρ̃n(t)〉

]}

+ 1
4∂11ψ(·, ·) + 1

4∂22ψ(·, ·) + oM(1)

which, as usual, is deduced by adapting the expansion (3.35). The remainder
oM(1) goes to zero as n −→ +∞, uniformly in M . If we compute the limit as
n −→ +∞, we have:

Jnψ(2)
n (〈sin x, ρ̃n(t)〉, 〈cosx, ρ̃n(t)〉, 〈sin 2x, ρ̃n(t)〉, 〈cos 2x, ρ̃n(t)〉)

n→+∞−−−−→
w

Jψ(2)(X(t), Y (t)) ,

with

Jψ(2)(X(t), Y (t)) =

= −1
8
{
∂1ψ(·, ·)X(t)[X2(t) + Y 2(t)] + ∂2ψ(·, ·)Y (t)[X2(t) + Y 2(t)]

}
+ 1

4 [∂11ψ(·, ·) + ∂22ψ(·, ·)] .

Then, because of (3.36), we obtain

Mt

n,ψ
(2)
n

n→+∞−−−−→
w

Mt
ψ(2) ,

once we have defined

Mt
ψ(2) := ψ(2)(X(t), Y (t))− ψ(2)(X(0), Y (0))−

∫ t

0
Jψ(2)(X(u), Y (u)) du .

We must prove the following Lemma:

Lemma 3.3.8. Mt

ψ
(2)
n

is a martingale (with respect to t); in other words, for all
s, t ∈ [0, T ], s ≤ t and for all measurable and bounded functions g(X([0, s]), Y ([0, s]))
the following identity holds:

E[Mt

ψ
(2)
n
g(X([0, s]), Y ([0, s]))] = E[Ms

ψ
(2)
n
g(X([0, s]), Y ([0, s]))] . (3.37)
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Proof. The reasoning we explained in Lemma 1.4.5 applies in this case too, so it
is sufficient to prove

{
Mt

n,ψ
(2)
n

}
n≥1

is an uniformly integrable sequence of random
variables.
So, since

Ms,t

n,ψ
(2)
n

=
∫ t

s

n∑
j=1

{
1
n3/4

(
∂1ψ(·, ·) cosxj − ∂2ψ(·, ·) sin xj

)
− 1

8n
(
∂11ψ(·, ·) cosxj − ∂12ψ(·, ·) sin xj

)(
〈sin x, ρ̃n(u)〉〈cos 2x, ρ̃n(u)〉

− 〈cosx, ρ̃n(u)〉〈sin 2x, ρ̃n(u)〉
)

+ 1
8n
(
∂12ψ(·, ·) cosxj − ∂22ψ(·, ·) sin xj

)(
〈sin x, ρ̃n(u)〉〈sin 2x, ρ̃n(u)〉

+ 〈cosx, ρ̃n(u)〉〈cos 2x, ρ̃n(u)〉
)

− 1
8n∂1ψ(·, ·)

(
〈cos 2x, ρ̃n(u)〉 cosxj − 2〈sin x, ρ̃n(u)〉 sin 2xj

+ 〈sin 2x, ρ̃n(u)〉 sin xj − 2〈cosx, ρ̃n(u)〉 cos 2xj
)

− 1
8n∂2ψ(·, ·)

(
− 〈sin 2x, ρ̃n(u)〉 cosxj − 2〈sin x, ρ̃n(u)〉 cos 2xj

+ 〈cos 2x, ρ̃n(u)〉 sin xj + 2〈cosx, ρ̃n(u)〉 sin 2xj
)}

dBj(u) ,

by using Itô’s isometry, we get

E

[(
Ms,t

n,ψ
(2)
n

)2
]

=
∫ t

s

n∑
j=1

E

[{
1
n3/4

(
∂1ψ(·, ·) cosxj − ∂2ψ(·, ·) sin xj

)
− 1

8n
(
∂11ψ(·, ·) cosxj − ∂12ψ(·, ·) sin xj

)(
〈sin x, ρ̃n(u)〉〈cos 2x, ρ̃n(u)〉

− 〈cosx, ρ̃n(u)〉〈sin 2x, ρ̃n(u)〉
)

+ 1
8n
(
∂12ψ(·, ·) cosxj − ∂22ψ(·, ·) sin xj

)(
〈sin x, ρ̃n(u)〉〈sin 2x, ρ̃n(u)〉

+ 〈cosx, ρ̃n(u)〉〈cos 2x, ρ̃n(u)〉
)

− 1
8n∂1ψ(·, ·)

(
〈cos 2x, ρ̃n(u)〉 cosxj − 2〈sin x, ρ̃n(u)〉 sin 2xj

+ 〈sin 2x, ρ̃n(u)〉 sin xj − 2〈cosx, ρ̃n(u)〉 cos 2xj
)

− 1
8n∂2ψ(·, ·)

(
− 〈sin 2x, ρ̃n(u)〉 cosxj − 2〈sin x, ρ̃n(u)〉 cos 2xj

+ 〈cos 2x, ρ̃n(u)〉 sin xj + 2〈cosx, ρ̃n(u)〉 sin 2xj
)}2]

du
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≤ C
∫ t

s

n∑
j=1

E

[
1
n3/2

(
|∂1ψ(·, ·)|| cosxj|+ |∂2ψ(·, ·)|| sin xj|

)2

+ 1
64n2

(
|∂11ψ(·, ·)|| cosxj|+ |∂12ψ(·, ·)|| sin xj|

)2
·

·
(
|〈sin x, ρ̃n(u)〉||〈cos 2x, ρ̃n(u)〉|+ |〈cosx, ρ̃n(u)〉||〈sin 2x, ρ̃n(u)〉|

)2

+ 1
64n2

(
|∂12ψ(·, ·)|| cosxj|+ |∂22ψ(·, ·)|| sin xj|

)2
·

·
(
|〈sin x, ρ̃n(u)〉||〈sin 2x, ρ̃n(u)〉|+ |〈cosx, ρ̃n(u)〉||〈cos 2x, ρ̃n(u)〉|

)2

+ 1
64n2 |∂1ψ(·, ·)|

(
|〈cos 2x, ρ̃n(u)〉|| cosxj|+ 2|〈sin x, ρ̃n(u)〉|| sin 2xj|

+ |〈sin 2x, ρ̃n(u)〉|| sin xj|+ 2|〈cosx, ρ̃n(u)〉|| cos 2xj|
)2

+ 1
64n2 |∂2ψ(·, ·)|

(
|〈sin 2x, ρ̃n(u)〉|| cosxj|+ 2|〈sin x, ρ̃n(u)〉|| cos 2xj|

+ |〈cos 2x, ρ̃n(u)〉|| sin xj|+ 2|〈cosx, ρ̃n(u)〉|| sin 2xj|
)2
]
du

since ψ ∈ C3
b and so |∂1ψ| ≤ c1, |∂2ψ| ≤ c2, |∂11ψ| ≤ c3, |∂22ψ| ≤ c4 and

|∂12ψ| ≤ c5, it yields

≤C
∫ t

s

n∑
j=1

E

[
1
n3/2 (c1 + c2)2+ 1

16n
[
(c3 + c5)2+ (c4 + c5)2

]
+ 9

16n3/2 (c1 + c2)
]
du

≤ CT
[
(c1 + c2)2 + (c3 + c5)2 + (c4 + c5)2 + 9(c1 + c2)

]

since t < T ; thenMt

n,ψ
(2)
n

is uniformly integrable. �

Now, the proof is easy to complete. Mt

n,ψ
(2)
n

solves the martingale problem with
infinitesimal generator J , admitting a unique solution, and hence we have shown
all convergent subsequences have the same limit and so the sequence itself con-
verges to that limit.
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The Random Kuramoto Model

In this chapter we consider the Kuramoto model with the addition of a random
site-dependent field, which acts as random environment.

We consider N sites and we associate with each of them a rotator on [0, 2π] and
a frequency value, that we choose to be a dichotomic random variable. Although
the limiting dynamics and the critical point are known for a general distribution
of the field, the analysis of critical fluctuations involves technical issues that we
do not fully control in the general case. For this reason we restrict to the sim-
plest case of a field with two values. We start with a non-reversible Markovian
dynamics for the N -particle system, where the rotators evolve depending on the
gradient of the Hamiltonian felt by the particles. It is an interacting diffusion
system with a mean-field Hamiltonian that depends on the random medium we
introduced. In this model there is no spatial geometry in the space of the configu-
rations, since it is subject to a mean-field interaction, meaning that each particle
interacts with all the others in the same way.
An infinite dimensional order parameter is necessary to describe the system. Be-
ing based on a Large Deviation Principle, we compute the differential equations
which drive its evolution in the infinite particle limit (McKean-Vlasov equations)
and we derive a Law of Large Number it obeys. Depending on the parameters,
we can see there exists phase transition. We state these results for completeness;
they are already known in literature. The statements about the McKean-Vlasov
limit of the dynamics and the existence of a phase transition are got by [DPdH95]
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and [dH00].
Our main result is the infinite particle limit of the critical fluctuation flow. With
regard to the critical fluctuation flow – besides an appropriate scaling of the space
– it require a rescaling of the time in order to keep track of long time fluctuations
of the critical direction (critical slowing down). As a result, only the critical struc-
ture survives the new scaling, and in the limit, the critical fluctuation process is a
lower dimensional process compared with the non-critical one. The fluctuations
are two-dimensional at the critical point. In fact, we prove that, when the size
of the system grows towards infinity, a two-dimensional process converges (in the
sense of weak convergence of stochastic processes) to a non-Gaussian process,
while all the others collapse.

4.1 Description of the Model

Let S = {−1,+1} and η = (ηj)Nj=1 ∈ S N be a sequence of independent, identi-
cally distributed, symmetric, Bernoulli random variables defined on some prob-
ability space (Ω,F , P ). That is, P (ηj = −1) = P (ηj = +1) = 1

2 , for any j. We
indicate with µ their common law. Given a configuration x = (xj)Nj=1 ∈ [0, 2π]N

and a realization of the random environment η, we can define the Hamiltonian
HN(x, η) : [0, 2π]N × RN −→ S as

HN(x, η) = − θ

2N

N∑
j,k=1

cos(xk − xj) + ω
N∑
j=1

ηjxj , (4.1)

where xj is the position of the rotator at site j and ωηj, with ω > 0, can be inter-
preted as its own frequency. Let θ, positive parameter, be the coupling strength.
For a fixed realization of η, think of x −→ HN(x, η) as a Hamiltonian in the com-
ponents xj with an inhomogeneous mean-field interaction parametrized by the
components ηj. With the expression “mean-field” we mean the sites interact all
each other in the same way.
Let us define the dynamics we consider. For given η, x(t) = (xj(t))Nj=1, with t
belonging to a generic time interval [0, T ], where T is fixed, describes a N -rotator
system evolving as a continuous time Markov chain on [0, 2π]N , with infinitesimal
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generator LN acting on functions f : [0, 2π]N −→ R as follows:

LNf(x) = 1
2

N∑
j=1

∂2f

∂x2
j

(x) +
N∑
j=1

∂HN

∂xj
(x, η)

= 1
2

N∑
j=1

∂2f

∂x2
j

(x) +
N∑
j=1

{
ωηj + θ

N

N∑
k=1

sin(xk − xj)
}
∂f

∂xj
(x) . (4.2)

Consider the complex quantity

rNe
iΨN = 1

N

N∑
j=1

eixj , (4.3)

where 0 ≤ rN ≤ 1 measures the phase coherence of the rotators and ΨN mea-
sures the average phase. We can reformulate the expression of the infinitesimal
generator (4.2) in terms of (4.3):

LNf(x) = 1
2

N∑
j=1

∂2f

∂x2
j

(x) +
N∑
j=1
{ωηj + θrN sin(ΨN − xj)}

∂f

∂xj
(x) . (4.4)

The expressions (4.1) and (4.4) describe a system of mean-field coupled rotators,
each with its own frequency and subject to diffusive dynamics. The two terms in
the Hamiltonian have different effects: the first one tends to synchronize the rota-
tors, while the second one tends to make each of them rotate at its own frequency.

For simplicity, the initial condition x(0) is assumed to have product distribution
λ⊗N , with λ probability measure on [0, 2π] with finite second moment. The quan-
tity xj(t) represents the time evolution on [0, T ] of j-th rotator; it is the trajectory
of the single j-th rotator in time. The space of all these paths is C[0, T ], which
is the space of the continuous function from [0, T ] to [0, 2π], endowed with the
uniform topology.

For given η, x(t) = (xj(t))Nj=1 turns out to be the system of N interacting
diffusions evolving according to the Itô differential equations

dxj(t) = [ωηj + θrN sin(ΨN − xj)] dt+ dBj(t) , (4.5)

where {Bj(t) : t > 0, j = 1, . . . , N} is a system of independent Standard Brown-
ian motions on [0, 2π].
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4.2 Limiting Dynamics

We now derive the dynamics of the process (4.2), in the limit as N −→ +∞, in a
fixed time interval [0, T ], via a Large Deviation approach. Later, the large time
behavior of the limiting dynamics will be studied.

For completeness, we report all the statements that allow us to deduce the dy-
namics of the model in the infinite volume limit, but we omit their proofs, since
they are a particular application of a more general study on interacting diffusions
developed in [DPdH96] and [dH00].

So, let (xj([0, T ]))Nj=1 ∈ (C[0, T ])N denote a path of the system in the time interval
[0, T ], with T positive and fixed. If f(xj([0, T ])) is a function of the trajectory of a
single rotator, we are interested in the asymptotic behavior of empirical averages
of the form

1
N

N∑
j=1

f(xj([0, T ])) =:
∫
fdρN ,

where {ρN}N≥1 is the sequence of empirical measures

ρN := 1
N

N∑
j=1

δ(xj([0,T ]),ηj) .

Remark 4.2.1. The measure ρN is a joint measure of the process and the environ-
ment.

We may think of ρN as a random element of M1(C[0, T ] × S ), the space of
probability measures on C[0, T ]×S endowed with the weak convergence topology.
First, we want to determine the weak limit of ρN in M1(C[0, T ] ×S ) when N
grows to infinity; i.e. for f ∈ Cb we look for limN→+∞

∫
fdρN . It corresponds to

a Law of Large Number with the limit being a deterministic measure. Being an
element ofM1(C[0, T ]×S ), such a limit can be viewed as a stochastic process,
which describes the dynamics of the system in the infinite volume limit.

4.2.1 Empirical Measure and Large Deviations

Let W ∈ M1(C[0, T ]) denote the law of a standard Brownian motion starting
with initial condition λ. By W⊗N we mean the product of N copies of W ,
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which represents the law of the solution of the system (4.5) when HN(x, η) ≡ 0.
Moreover, we shall write P η

N the law of x([0, T ]) = (x(t))t∈[0,T ], the process with
infinitesimal generator (4.2) and initial distribution λ⊗N , for a given η.

Consider Q ∈ M1(C[0, T ]×S ), if ΠtQ indicates the marginal distribution of Q
at time t, we have

rΠtQe
iΨΠtQ :=

∫
[0,2π]×S

eix ΠtQ(dx, dη).

For a given path x([0, T ]) ∈ C[0, T ], we define

F (Q) =
∫
Q(dx[0, T ], dη)

{
− 1

2

∫ T

0
dt

[(
ω +

∫
Q(dy[0, T ], dς) sin(y(t)− x(t))

)2

+
∫
Q(dy[0, T ], dς) cos(y(t)− x(t))

]
− 1

2

∫
Q(dy[0, T ], dς)[cos(y(T )− x(T ))− cos(y(0)− x(0))]

}
(4.6)

We can obtain a representation of P η

N in terms of ρN , as follows:

Lemma 4.2.1. For a fixed realization η,

dP
η

N

dW⊗N (x([0, T ])) = exp[NF (ρN(x([0, T ]), η))]

where, for Q ∈M1(C[0, T ]×S ), F (Q) is expressed by (4.6).

Lemma 4.2.1 allows us to deduce a Large Deviation Principle for ρN , from which
we can derive its asymptotic behavior as N −→ +∞.
Define

PN(·) :=
∫
µ⊗N(dη)P ω

N(ρN ∈ ·) ,

which is an element ofM1(M1(C[0, T ]×S )) and represents the law of ρN under
the joint distribution of the process and the environment.
If Q ∈M1(C[0, T ]×S ) we denote by

H(Q|W ⊗ µ) :=


∫
dQ log dQ

d(W⊗µ) if Q� W ⊗ µ and log dQ
d(W⊗µ) ∈ L

1(Q)

+∞ otherwise

the relative entropy between Q and W ⊗ µ.
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Proposition 4.2.1. The laws {PN}N≥1 of ρN (under the joint distribution of the
process and the medium) obey a Large Deviation Principle with rate function

I(Q) := H(Q|W ⊗ µ)− F (Q)

(mind Definitions 1.2.1 and 1.2.2).

4.2.2 McKean-Vlasov Equation

Given Q ∈M1(C[0, T ]×S ) and η ∈ S , we can associate with Q a Markov pro-
cess on S with law P η,Q, initial distribution λ and time-dependent infinitesimal
generator

Lη,Qt f(x) = 1
2
∂2f

∂x2 (x) + [ωη + θrΠtQ sin(ΨΠtQ − x)]
∂f

∂x
(x) ,

acting on f : [0, 2π] −→ R.
It can be proved

Proposition 4.2.2. For every Q ∈M1(C[0, T ]×S ) such that I(Q) < +∞,

I(Q) = H(Q|PQ) ,

where PQ ∈M1(C[0, T ]×S ) is defined by

PQ(dx[0, T ], dη) = P η,Q(dx[0, T ])µ(dη).

Theorem 4.2.1. Suppose that the initial distribution of the Markov process (x(t))t≥0

with generator (4.4) is such that the random variables (xj(0))Nj=1 are independent
and identically distributed with law λ. Then the equation I(Q) = 0 admits a
unique solution Q∗ ∈ M1(C[0, T ] × S ), such that its marginals qηt = ΠtQ

η
∗ ∈

M1([0, 2π]) are weak solutions of the nonlinear McKean-Vlasov equation
∂qηt
∂t

= Lηqηt (t ∈ [0, T ], η ∈ S )

qη0 = λ

(4.7)

where, for all the pairs (x, η) ∈ [0, 2π]×S , the operator Lη acts

Lηqηt (x) = 1
2
∂2qηt
∂x2 (x)− ∂

∂x
{[ωη + θrqt sin(Ψqt − x)]q

η
t (x)} , (4.8)
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with qηt (0) = qηt (2π) and qt defined by

qt(x) =
∫

S
qηt (x)µ(dη).

Moreover, with respect to a metric d(·, ·) inducing the weak topology, ρN −→ Q∗ in
probability with exponential rate, i.e. PN{d(ρN , Q∗) > ε} is exponentially small
in N , for each ε > 0.

Remark 4.2.2. For µ-almost surely all η, Qη
∗ is the law of a time-inhomogeneous

diffusion process on [0, 2π] with generator

Lη,qtt f(x) = 1
2
∂2f

∂x2 (x) + [ωη + θrqt sin(Ψqt − x)]
∂f

∂x
(x) .

4.2.3 Stationary Solution(s)

The equation (4.7) describes the behavior of the system governed by genera-
tor (4.4) in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation and in the study of the large time dy-
namics of it (them). We recall that to be t-stationary solution for (4.7) means to
satisfy the equation Lηqη = 0 for every t.
Since µ is symmetric and the operator Lη preserves evenness, we can suppose the
average phase Ψqt ≡ 0, without loss of generality.
Hence, every equilibrium probability distribution is the solution of

1
2
∂2qη

∂x2 (x)− ∂

∂x
{[ωη − θrq sin x]qη(x)} = 0 , (4.9)

with the boundary condition qη(0) = qη(2π) and for our model is characterized
as follows.

Lemma 4.2.2. Every equilibrium distribution for the nonlinear Markov process
given by (4.7) is of the form:

qη∗(x) = (Zη
∗ )−1 · 2(ωηx+ θr∗ cosx)

[
e4πωη

∫ 2π

0
e−2(ωηx+θr∗ cosx)dx

+(1− e4πωη)
∫ x

0
e−2(ωηy+θr∗ cos y)dy

]
, (4.10)

where Zη
∗ is a normalizing factor and the variable r∗ must satisfy the self-consistency

relation
rq∗ := r∗ =

∫
[0,2π]×S

eix qη∗(dx)µ(dη) . (4.11)
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Remark 4.2.3. There is a one-to-one correspondence between equilibrium distri-
butions and solutions of the self-consistency equation (4.11).

Remark 4.2.4. Note that r∗ ≡ 0 is always a solution of (4.11), for all the choices
of θ and µ. In this case the stationary distribution reduces to:

qη,0∗ (x) := 1
2π for all x ∈ [0, 2π]. (4.12)

Solutions with r∗ = 0 are called incoherent, while those with r∗ > 0 are called
synchronized. The next theorem shows that if θ exceeds a µ-dependent threshold
a synchronized solution is always possible.

Theorem 4.2.2. Consider the equation (4.11) and define θc = 1 + 4ω2. Then,

(a) if θ ≤ θc, the unique solution is r∗ = 0;

(b) if θ > θc, at least one synchronized solution is possible.

Proof. We refer to [DPdH95] and [dH00] for a detailed proof, concerning the
complete phase diagram of the system. �

4.3 Critical Dynamics (θ = 1 + 4ω2)

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when θ = 1 + 4ω2.
The size of Normal fluctuations must be further rescaled (in space and time),
because their size around the deterministic limit increases in time. In this case we
will obtain non-Normal fluctuations, solutions of a certain stochastic differential
equation to be determined.

First of all, we need to locate the critical direction in the infinite dimensional space
of the order parameters. In the rest of the section, we will consider θ = 1 + 4ω2

and let us assume that the initial condition λ is a product measure such that

q0(dx, dη) = q0
∗(dx, dη) = 1

2π dxµ(dη)

and so
qt(dx, dη) = q0

∗(dx, dη) = 1
2π dxµ(dη) ,
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for every value of t ≥ 0, since we are in stationary conditions.

We consider the linearization of the operator Lη, given by (4.8), at the equilibrium
distribution qη,0∗ (x), which is

Lηφ(x, η) = 1
2
∂2φ

∂x2 (x, η) + ωη
∂φ

∂x
(x, η)

+ (1 + 4ω2)
[
cosx〈cos y φ(y, η), q0

∗(dy, dη)〉

+ sin x〈sin y φ(y, η), q0
∗(dy, dη)〉

]
, (4.13)

where we have denoted 〈f1, f2〉 :=
∫
[0,2π]×S f1(x, η)f2(x, η)dx dη.

Remark 4.3.1. The operator Lη, defined by (4.13), is not self-adjoint with respect
to the measure qη,0∗ .

Lemma 4.3.1. The null space of the operator Lη, defined by (4.13), is spanned
by the functions α1(x, η) := sin x+ 2ωη cosx and α2(x, η) := cos x− 2ωη sin x.

Proof. If ϕ(·, ·) belongs to the null space of Lη, then Lηϕ = 0. Therefore, we
require that

1
2
∂2ϕ

∂x2 (x, η) + ωη
∂ϕ

∂x
(x, η)

+ (1 + 4ω2)
[

cosx 1
2π

∫
[0,2π]×S

cos y ϕ(y, ς) q0
∗(dy, dς)

+ sin x 1
2π

∫
[0,2π]×S

sin y ϕ(y, ς) q0
∗(dy, dς)

]
= 0 . (4.14)

We solve the ordinary differential equation (4.14). Having defined

A := 1
2π

∫
[0,2π]×S

cos y ϕ(y, ς) q0
∗(dy, dς) (4.15a)

and
B := 1

2π

∫
[0,2π]×S

sin y ϕ(y, ς) q0
∗(dy, dς) , (4.15b)

the solution is ϕ(x, η) = 2(B−2Aωη) sin x+2(A+2Bωη) cosx; this function yields
a solution of (4.14) provided that it satisfies the self-consistency relations (4.15a)
and (4.15b), but it does for every value of A and B. Then the two directions
which generate the kernel are α1(x, η) := sin x+2ωη cosx and α2(x, η) := cos x−
2ωη sin x. �
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Remark 4.3.2. In the case that θ 6= 1 + 4ω2, the unique value for which the self-
consistency relations in (4.15a) and (4.15b) are satisfied is A = B = 0, meaning
that at the critical point the kernel of the operator Lη is two-dimensional, while
it is a trivial set for all the other values of the parameter θ.

Remark 4.3.3. The null space of the operator Lη represents the critical direction
for our model.

We want to analyze the spectrum of the operator Lη, defined by (4.13). Let us
consider the linearization of the operator (4.8) for general values of the parameter
θ:

Lη
θφ(x, η) = 1

2
∂2φ

∂x2 (x, η) + ωη
∂φ

∂x
(x, η)

+ θ
[
cosx〈cos y φ(y, η), q0

∗(dy, dη)〉

+ sin x〈sin y φ(y, η), q0
∗(dy, dη)〉

]
. (4.16)

Its spectral properties have been investigated in [SM91], [BNS92] and [DPdH95]
for several classes of distributions of the random field. We recall some results
of these general cases, by which the description of the spectrum of operator Lη

follows.

Lemma 4.3.2. The spectrum of the operator Lη
θ , defined by (4.16), is described

by the set

Spec(Lη
θ) =

{
−1

2 + θ

4 ±
1
4
√
θ2 − 16ω2

}
∪
{
−k

2

2 + ikωη, k ∈ Z \ {−1, 0,+1}
}
.

Proof. If we denote by F [φ(x, η)] the Fourier transform of φ(x, η) in L2(qη,0∗ ), we
have to solve

F [Lη
θφ(x, η)] = λF [φ(x, η)] ,

which translates into(
−k

2

2 + ikωη − λ
)
φ̂(k, η) =

= θ

2

[
δ1(k)

∫
S
φ̂(1, η)µ(dη) + δ−1(k)

∫
S
φ̂(−1, η)µ(dη)

]
, (4.17)

where φ̂(k, η) := 1
2π
∫ 2π
0 φ(x, η) e−ikx dx.

Equation (4.17) shows that, for a fixed value of η and for k ∈ Z\{−1, 0,+1}, the
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numbers λ = −k2

2 + ikωη are eigenvalues for the operator Lη
θ , defined by (4.16).

In the case k = ±1 the right-hand side of (4.16) does not vanish and the equation
has two solutions

λ± = −1
2 + θ

4 ±
1
4
√
θ2 − 16ω2 . (4.18)

�

From (4.17), we can deduce that

if θ ≤ 1 : <e λ+,<e λ− < 0 for all the values of ω
if 1 < θ < θ1 = 2 : <e λ+ < 0 if and only if θ < θc = 1 + 4ω2

if θ = θ1 = 2 : <e λ+ = <e λ− = 0 for all the values of ω
if θ > θ1 = 2 : <e λ+ > 0 for all the values of ω

and then, the inchoerent solution r∗ ≡ 0 is linearly stable when θ < θ1 ∧ θc,
neutrally stable when θ = θ1 ∧ θc and unstable when θ > θ1 ∧ θc.

We choose ω such that θc = θ1 ∧ θc, in other words the critical temperature for
the system is really θc. We assume ω < 1

2 .

Corollary 4.3.1. Let ω < 1
2 and fix a value of η. The spectrum of the opera-

tor Lη, defined by (4.13), is described by the set Spec(Lη) =
{
0,−1

2 + 2ω2
}
∪{

−k2

2 + ikωη, k ∈ Z \ {−1, 0,+1}
}
.

Proof. The statement follows by Lemma 4.3.2 setting θ = 1 + 4ω2. �

We want to describe the action of the infinitesimal generator of the critical fluc-
tuation flow

ρ̃N(t, dx, dη) = N1/4
[
ρN(N1/2t, dx, dη)− 1

2π dxµ(dη)
]

on the family of functions of the form ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉), where

ψ : Rm −→ R, ψ ∈ C3
b (Rm)

and
φj : [0, 2π]×S −→ R, φj ∈ C2([0, 2π]×S ) ,

for j = 1, . . . ,m. Since we must consider fluctuations around q0
∗(·, ·), that is, we

must consider the “centered” process, we restrict our attention to functions φj
with ∫

[0,2π]×S
φj(x, η)q0

∗(dx, dη) = 0, j = 1, . . . ,m .
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Then, for this kind of functions it yields

〈φj, ρ̃N(t)〉 = N1/4〈φj, ρN(N1/2t)〉 ,

for j = 1, . . . ,m.

Lemma 4.3.3. For t ∈ [0, T ], the critical fluctuation flow

ρ̃N(t, dx, dη) = N1/4
[
ρN(N1/2t, dx, dη)− 1

2π dxµ(dη)
]

(4.19)

is a Markov process whose infinitesimal generator JN satisfies:

JNψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) =

=
[
N1/2L1 +N1/4L2 + L3 +N−1/4L4

]
ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉), (4.20)

with

L1ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) =
m∑
j=1

∂ψ

∂yj
〈Lηφj, ρ̃N〉 (4.21)

L2ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = (1 + 4ω2)
m∑
j=1

∂ψ

∂yj
[〈sin x, ρ̃N〉〈cosxφ′j(x, η), ρ̃N〉

− 〈cosx, ρ̃N〉〈sin xφ′j(x, η), ρ̃N〉] (4.22)

L3ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = 1
2

m∑
h,j=1

∂2ψ

∂yh∂yj
〈φ′h(x, η)φ′j(x, η), q0

∗〉 (4.23)

L4ψ(〈φ1, ρ̃N〉, . . . , 〈φm, ρ̃N〉) = 1
2

m∑
h,j=1

∂2ψ

∂yh∂yj
〈φ′h(x, η)φ′j(x, η), ρ̃N〉 , (4.24)

where by the notation φ′ we mean the derivation with respect to the variable x
and the operator Lη is the linear operator given by (4.13).

Proof. Just a very long and tedious computation. �

Theorem 4.3.1. Assume ω < 1
2 . For t ∈ [0, T ], if we consider the infinite-

dimensional critical fluctuation process

〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2,
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{〈cos kx, ρ̃N(t)〉}k≥2, {〈η sin kx, ρ̃N(t)〉}k≥2, {〈η cos kx, ρ̃N(t)〉}k≥2,

then, as N −→ +∞, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2, {〈η sin kx, ρ̃N(t)〉}k≥2,
{〈η cos kx, ρ̃N(t)〉}k≥2 −→ 0 in the sense of Proposition 1.4.1 and the process
(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉) converges, in the sense of weak convergence
of stochastic processes, to a limiting non-Gaussian process (X(t), Y (t)), which is
the unique solution of the following stochastic differential equation:



dX(t) = −1
8

(1 + 4ω2)2

(1− 4ω2)3 X(t) [X2(t) + Y 2(t)] dt+
√

1 + 4ω2

2 dB(1)(t)

dY (t) = −1
8

(1 + 4ω2)2

(1− 4ω2)3 Y (t) [X2(t) + Y 2(t)] dt+
√

1 + 4ω2

2 dB(2)(t)

with initial condition X(0) = Y (0) = 0 and where B(1) and B(2) are two inde-
pendent Standard Brownian motions.

4.3.1 Proof of the Theorem 4.3.1

Let us denote by {τMN }N≥1 a family of stopping times, defined as

τMN := inf
t≥0
{|〈sin x, ρ̃N(t)〉| ≥M or |〈cosx, ρ̃N(t)〉| ≥M

or |〈η sin x, ρ̃N(t)〉| ≥M or |〈η cosx, ρ̃N(t)〉| ≥M

or |〈sin kx, ρ̃N(t)〉| ≥M for at least a value of k = 2, 3, . . .

or |〈cos kx, ρ̃N(t)〉| ≥M for at least a value of k = 2, 3, . . .

or |〈η sin kx, ρ̃N(t)〉| ≥M for at least a value of k = 2, 3, . . .

or |〈η cos kx, ρ̃N(t)〉| ≥M for at least a value of k = 2, 3, . . . } ,

where M is a positive constant. We are interested in introducing such sequence
of stopping times because in this way the processes 〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉
and 〈η sin x, ρ̃N(t)〉, 〈η cosx, ρ̃N(t)〉 and {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2

and {〈η sin kx, ρ̃N(t)〉}k≥2, {〈η cos kx, ρ̃N(t)〉}k≥2 result to be bounded in the time
interval [0, T ∧ τMN ].

By standard argument on collapsing processes (see Proposition 1.4.1 and Lemma
3.3.6), it is easy to prove that for t ∈ [0, T∧τMN ] the directions {〈sin kx, ρ̃N(t)〉}k≥2,
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{〈cos kx, ρ̃N(t)〉}k≥2, {〈η sin kx, ρ̃N(t)〉}k≥2 and {〈η cos kx, ρ̃N(t)〉}k≥2 collapse. It
means that, if we consider the norm ‖ρ̃N‖r, defined by

‖ρ̃N‖2r :=
+∞∑
k=2

1
(1 + k2)r [〈sin kx, ρ̃N〉

2+〈cos kx, ρ̃N〉2+〈η sin kx, ρ̃N〉2+〈η cos kx, ρ̃N〉2],

where r > 0, then there exist constants N0, C, d > 2, κN := κ(N) and two
increasing sequences {αN}N≥1, {βN}N≥1 satisfying (3.23)–(3.26) and such that
for every ε > 0 the following property is true

sup
N≥N0

P

 sup
0≤t≤T∧τMN

‖ρ̃N(t)‖2r > C
(
κ

1/d
N α−1

N ∨ κ−1
N αN

) ≤ ε . (4.25)

Hence, we obtain {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2, {〈η sin kx, ρ̃N(t)〉}k≥2,
{〈η cos kx, ρ̃N(t)〉}k≥2 −→ 0, as N −→ +∞.
The computations we should do to prove these processes converge to zero in
probability are similar to those we did in Subsection 3.3.1 to prove the process
representing the non-critical directions of the homogeneous Kuramoto Model col-
lapses. Thus, we omit this proof and we focus only on the critical directions
α1(x, η) := sin x+ 2ωη cosx and α2(x, η) := −2ωη sin x+ cos x, assuming all the
others vanish. We apply the generator (4.20) to a function of the only critical
directions, leaving all the terms coming from those processes we know collapsing
in the infinite volume limit.

We want to find the expression of the limiting operator of the infinitesimal gen-
erator JN , as N grows to infinity. We choose

ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2,

〈η sin x, ρ̃N(t)〉, 〈η cosx, ρ̃N(t)〉, {〈η sin kx, ρ̃N(t)〉}k≥2, {〈η cos kx, ρ̃N(t)〉}k≥2
)

=

= ψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉)

and we apply the operator JN . Since ker Lη = span{α1(x, η), α2(x, η)}, referring
to (4.20)-(4.24), we obtain

JNψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉) =
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= N1/4(1 + 4ω2)
{
∂1ψ(·, ·)[〈sin x, ρ̃N〉〈α2(x, η) cosx, ρ̃N〉

− 〈cosx, ρ̃N〉〈α2(x, η) sin x, ρ̃N〉] + ∂2ψ(·, ·)[〈cosx, ρ̃N〉〈α1(x, η) sin x, ρ̃N〉

− 〈sin x, ρ̃N〉〈α1(x, η) cosx, ρ̃N〉]
}

+ 1
2∂11ψ(·, ·)〈[α2(x, η)]2, q0

∗〉+
1
2∂22ψ(·, ·)〈[α1(x, η)]2, q0

∗〉

− ∂12ψ(·, ·)〈α1(x, η)α2(x, η), q0
∗〉

+ 1
2N1/4∂11ψ(·, ·)〈[α2(x, η)]2, ρ̃N〉+

1
2N1/4∂22ψ(·, ·)〈[α1(x, η)]2, ρ̃N〉

− 1
N1/4∂12ψ(·, ·)〈α1(x, η)α2(x, η), ρ̃N〉

(by using Bisection formulas and the fact that the measure ρ̃N is centered, in
other words that 〈1, ρ̃N〉 = 0)

= N1/4

2 (1 + 4ω2)
{
∂1ψ(·, ·)[〈sin x, ρ̃N〉〈cos 2x− 2ωη sin 2x, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin 2x+ 2ωη cos 2x, ρ̃N〉]

− ∂2ψ(·, ·)[〈sin x, ρ̃N〉〈sin 2x+ 2ωη cos 2x, ρ̃N〉

+ 〈cosx, ρ̃N〉〈cos 2x+ 2ωη sin 2x, ρ̃N〉]
}

+ 1
4(1 + 4ω2)[∂11ψ(·, ·) + ∂22ψ(·, ·)] + o(1) , (4.26)

where o(1) includes the terms coming from L4ψ, which are of order N−1/4. The
operator L4 is defined by (4.24).

Now, we apply the first order perturbation theory explained in the previous
chapter. The expression of JNψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉) is described
by (4.26). We need to compute ψ1, which allows us to introduce the terms
necessary to the convergence of the infinitesimal generator: L1ψ1 and L2ψ1 of the
expansion (3.31).
By the definitions (3.32) and (3.33), it yields

ψ1(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N〉,

〈cos 2x, ρ̃N〉, 〈η sin 2x, ρ̃N〉, 〈η cos 2x, ρ̃N〉) =
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= −L−1
1 L2ψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉)

= −1
2(1 + 4ω2)L−1

1

[
∂1ψ(·, ·)

(
〈sin x, ρ̃N〉〈cos 2x− 2ωη sin 2x, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin 2x+ ωη cos 2x, ρ̃N〉
)

− ∂2ψ(·, ·)
(
〈sin x, ρ̃N〉〈sin 2x+ ωη cos 2x, ρ̃N〉

+ 〈cosx, ρ̃N〉〈cos 2x− ωη sin 2x, ρ̃N〉
)]

= − 1
16(1 + 4ω2)

{
∂1ψ(·, ·)

[
〈cos 2x− 2ωη sin 2x, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉

+ 2〈sin x, ρ̃N〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉

− 〈sin 2x+ 2ωη cos 2x, ρ̃N〉〈2ω2 cosx− ωη sin xρ̃N〉

+ 2〈cosx, ρ̃N〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉
]

+ ∂2ψ(·, ·)
[
− 〈sin 2x+ 2ωη cos 2x, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉

+ 2〈sin x, ρ̃N〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉

− 〈cos 2x− 2ωη sin 2x, ρ̃N〉〈2ω2 cosx− ωη sin xρ̃N〉

− 2〈cosx, ρ̃N〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉
]}
. (4.27)

Thus,

JN [ψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉)

+N−1/4ψ1(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N〉,

〈cos 2x, ρ̃N〉, 〈η sin 2x, ρ̃N〉, 〈η cos 2x, ρ̃N〉)] =

= N1/4[L2ψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉)

+ L1ψ1(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N〉,

〈cos 2x, ρ̃N〉, 〈η sin 2x, ρ̃N〉, 〈η cos 2x, ρ̃N〉)]
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+ L3ψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉)

+ L2ψ1(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N〉,

〈cos 2x, ρ̃N〉, 〈η sin 2x, ρ̃N〉, 〈η cos 2x, ρ̃N〉) + o(1) ,

where o(1) includes the terms coming from L4ψ, L3ψ1 and L4ψ1, which are of
order N−1/4 and N−1/2.
Since L2ψ + L1ψ1 = 0 by construction and L3ψ = 1

4(1 + 4ω2) [∂11ψ + ∂22ψ], it
remains to compute the term L2ψ1.

L2ψ1(〈α1(x, η), ρ̃N〉, 〈α2(x, η), ρ̃N〉, 〈sin 2x, ρ̃N〉,

〈cos 2x, ρ̃N〉, 〈η sin 2x, ρ̃N〉, 〈η cos 2x, ρ̃N〉) =

= − 1
16(1 + 4ω2)2

{
∂11ψ(·, ·)

[
〈cos 2x− 2ωη sin 2x, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉

+ 2〈sin x, ρ̃N〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉

− 〈sin 2x+ 2ωη cos 2x, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉

+ 2〈cosx, ρ̃N〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉
]2

+ 2∂12ψ(·, ·)
[
〈cos 2x− 2ωη sin 2x, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉

+ 2〈sin x, ρ̃N〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉

− 〈sin 2x+ 2ωη cos 2x, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉

+ 2〈cosx, ρ̃N〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉
]
·

·
[
− 〈sin 2x+ 2ωη cos 2x, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉

+ 2〈sin x, ρ̃N〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉

− 〈cos 2x− 2ωη sin 2x, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉

− 2〈cosx, ρ̃N〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉
]

+ ∂22ψ(·, ·)
[
− 〈sin 2x+ 2ωη cos 2x, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉

+ 2〈sin x, ρ̃N〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉

− 〈cos 2x− 2ωη sin 2x, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉

− 2〈cosx, ρ̃N〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉
]2
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+∂1ψ(·, ·)
[
2〈2ω2 sin x+ωη cosx, ρ̃N〉

(
−〈sin x, ρ̃N〉〈cosx[sin 2x+2ωη cos 2x], ρ̃N〉

+ 〈cosx, ρ̃N〉〈sin x[sin 2x+ 2ωη cos 2x], ρ̃N〉
)

+ 〈cos 2x− 2ωη sin 2x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[2ω2 cosx− ωη sin x], ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[2ω2 cosx− ωη sin x], ρ̃N〉
)

+ 2〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cos2 x, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x cosx, ρ̃N〉
)

+ 4〈sin x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[(1 + 2ω2) sin 2x+ ωη cos 2x], ρ̃N〉
)

− 2〈2ω2 cosx− ωη sin x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[cos 2x− 2ωη sin 2x], ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[cos 2x− 2ωη sin 2x], ρ̃N〉
)

+ 〈sin 2x+ 2ωη cos 2x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[2ω2 sin x+ ωη cosx, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[2ω2 sin x+ ωη cosx, ρ̃N〉
)

+ 2〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉
(
− 〈sin x, ρ̃N〉〈sin x cosx, ρ̃N〉

+ 〈cosx, ρ̃N〉〈sin2 x, ρ̃N〉
)

+ 4〈cosx, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[(1 + 2ω2) cos 2x− ωη sin 2x], ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[(1 + 2ω2) cos 2x− ωη sin 2x], ρ̃N〉
)]

+∂2ψ(·, ·)
[
−2〈2ω2 sin x+ωη cosx, ρ̃N〉

(
〈sin x, ρ̃N〉〈cosx[cos 2x−2ωη sin 2x], ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[cos 2x− 2ωη sin 2x], ρ̃N〉
)

− 〈sin 2x+ 2ωη cos 2x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[2ω2 cosx− ωη sin x], ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[2ω2 cosx− ωη sin x], ρ̃N〉
)

+ 2〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cos2 x, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x cosx, ρ̃N〉
)

+ 4〈sin x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[(1 + 2ω2) cos 2x− ωη sin 2x, ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[(1 + 2ω2) cos 2x− ωη cos 2x], ρ̃N〉
)

− 2〈2ω2 cosx− ωη sin x, ρ̃N〉
(
− 〈sin x, ρ̃N〉〈cosx[sin 2x+ 2ωη cos 2x], ρ̃N〉

+ 〈cosx, ρ̃N〉〈sin x[sin 2x+ 2ωη cos 2x], ρ̃N〉
)

+ 〈cos 2x+ 2ωη sin 2x, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[2ω2 sin x+ ωη cosx, ρ̃N〉
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− 〈cosx, ρ̃N〉〈sin x[2ω2 sin x+ ωη cosx, ρ̃N〉
)

− 2〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N〉
(
− 〈sin x, ρ̃N〉〈sin x cosx, ρ̃N〉

+ 〈cosx, ρ̃N〉〈sin2 x, ρ̃N〉
)

− 4〈cosx, ρ̃N〉
(
〈sin x, ρ̃N〉〈cosx[(1 + 2ω2) sin 2x+ ωη cos 2x], ρ̃N〉

− 〈cosx, ρ̃N〉〈sin x[(1 + 2ω2) sin 2x+ ωη cos 2x], ρ̃N〉
)]}

(by using Prosthaphaeresis formulas and leaving all the terms we know collapsing)

“ = ”− 1
16(1+4ω2)2

{
∂1ψ(·, ·)

[
−〈α1(x, η), ρ̃N〉

(
〈sin x, ρ̃N〉〈2ω2 sin x+ωη cosx, ρ̃N〉

+ 〈cosx, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉
)

− 〈α2(x, η), ρ̃N〉
(
− 〈cosx, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉

+ 〈sin x, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉
)

+ 〈(1 + 2ω2) sin x+ ωη cosx, ρ̃N〉
(
〈sin x, ρ̃N〉2 + 〈cosx, ρ̃N〉2

)]

+ ∂2ψ(·, ·)
[
− 〈α1(x, η), ρ̃N〉

(
〈sin x, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉

− 〈cosx, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉
)

− 〈α2(x, η), ρ̃N〉
(
− 〈cosx, ρ̃N〉〈2ω2 cosx− ωη sin x, ρ̃N〉

+ 〈sin x, ρ̃N〉〈2ω2 sin x+ ωη cosx, ρ̃N〉
)

+ 〈(1 + 2ω2) cosx− ωη sin x, ρ̃N〉
(
〈sin x, ρ̃N〉2 + 〈cosx, ρ̃N〉2

)]}

= −1
8(1 + 4ω2)2

{
∂1ψ(·, ·)

[
− 1

4〈sin x, ρ̃N〉
(
〈α1(x, η), ρ̃N〉2 + 〈α2(x, η), ρ̃N〉2

)
+ 3− 4ω2

4 〈α1(x, η), ρ̃N〉
(
〈sin x, ρ̃N〉2 + 〈cosx, ρ̃N〉2

)
+ 1 + 4ω2

2 〈sin x, ρ̃N〉
(
〈sin x, ρ̃N〉2 + 〈cosx, ρ̃N〉2

)]

+ ∂2ψ(·, ·)
[
− 1

4〈cosx, ρ̃N〉
(
〈α1(x, η), ρ̃N〉2 + 〈α2(x, η), ρ̃N〉2

)
+ 3− 4ω2

4 〈α2(x, η), ρ̃N〉
(
〈sin x, ρ̃N〉2 + 〈cosx, ρ̃N〉2

)
+ 1 + 4ω2

2 〈cosx, ρ̃N〉
(
〈sin x, ρ̃N〉2 + 〈cosx, ρ̃N〉2

)]}
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by replacing

sin x = 4ω2

16ω4 − 1[(η + 4ω2) sin x+ 2ω(η − 1) cosx]

+ 2ω
16ω4 − 1[(η + 4ω2) cosx− 2ω(η − 1) sin x]− 4ω2 + 1

16ω4 − 1α1(x, η)

and

cosx = 4ω2

16ω4 − 1[(η + 4ω2) cosx− 2ω(η − 1) sin x]

− 2ω
16ω4 − 1[(η + 4ω2) sin x+ 2ω(η − 1) cosx]− 1

4ω2 − 1α2(x, η) ,

which are the expression of sin x and cosx as a linear combination of the elements
of the subspace generated by the Fourier components corresponding to k = ±1, in
other words α1(x, η), α2(x, η), (η+4ω2) sin x+2ω(η−1) cosx and (η+4ω2) cosx−
2ω(η − 1) sin x,

= −1
8

(1 + 4ω2)2

(1− 4ω2)3 〈α1(x, η), ρ̃N〉
[
〈α1(x, η), ρ̃N〉2 + 〈α2(x, η), ρ̃N〉2

]
∂1ψ(·, ·)

− 1
8

(1 + 4ω2)2

(1− 4ω2)3 〈α2(x, η), ρ̃N〉
[
〈α1(x, η), ρ̃N〉2 + 〈α2(x, η), ρ̃N〉2

]
∂2ψ(·, ·) ,

where (1− 4ω2)3 > 0, since we have chosen ω < 1
2 .

Proceeding as in the previous chapter, we can show which are the limiting dy-
namics of the fluctuation processes. We skip the details and we state the main
result.

Let ψ ∈ C3
b be a function of the type

ψ
(
〈sin x, ρ̃N(t)〉, 〈cosx, ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2, {〈cos kx, ρ̃N(t)〉}k≥2,

〈η sin x, ρ̃N(t)〉, 〈η cosx, ρ̃N(t)〉, {〈η sin kx, ρ̃N(t)〉}k≥2, {〈η cos kx, ρ̃N(t)〉}k≥2
)

=

= ψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉)

recalling the expression of ψ1 given by (4.27), we construct

ψ
(
〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, {〈sin kx, ρ̃N(t)〉}k≥2,
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{〈cos kx, ρ̃N(t)〉}k≥2, {〈η sin kx, ρ̃N(t)〉}k≥2, {〈η cos kx, ρ̃N(t)〉}k≥2
)

+N−1/4ψ1(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉,

〈cos 2x, ρ̃N(t)〉, 〈η sin 2x, ρ̃N(t)〉, 〈η cos 2x, ρ̃N(t)〉) =

= ψ(〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉)

− 1 + 4ω2

16N1/4

{
∂1ψ(·, ·)

[
〈cos 2x− 2ωη sin 2x, ρ̃N(t)〉〈2ω2 sin x+ ωη cosx, ρ̃N(t)〉

+ 2〈sin x, ρ̃N(t)〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N(t)〉

− 〈sin 2x+ 2ωη cos 2x, ρ̃N(t)〉〈2ω2 cosx− ωη sin x, ρ̃N(t)〉

+ 2〈cosx, ρ̃N(t)〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N(t)〉
]

+ ∂2ψ(·, ·)
[
− 〈sin 2x+ 2ωη cos 2x, ρ̃N(t)〉〈2ω2 sin x+ ωη cosx, ρ̃N(t)〉

+ 2〈sin x, ρ̃N(t)〉〈(1 + 2ω2) sin 2x+ ωη cos 2x, ρ̃N(t)〉

− 〈cos 2x− 2ωη sin 2x, ρ̃N(t)〉〈2ω2 cosx− ωη sin x, ρ̃N(t)〉

− 2〈cosx, ρ̃N(t)〉〈−(1 + 2ω2) cos 2x+ ωη sin 2x, ρ̃N(t)〉
]}

:= ψ
(2)
N (〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉,

〈cos 2x, ρ̃N(t)〉, 〈η sin 2x, ρ̃N(t)〉, 〈η cos 2x, ρ̃N(t)〉) .

The following decomposition holds

ψ
(2)
N (〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉,

〈cos 2x, ρ̃N(t)〉, 〈η sin 2x, ρ̃N(t)〉, 〈η cos 2x, ρ̃N(t)〉) =

= ψ
(2)
N (〈α1(x, η), ρ̃N(0)〉, 〈α2(x, η), ρ̃N(0)〉, 〈sin 2x, ρ̃N(0)〉,

〈cos 2x, ρ̃N(0)〉, 〈η sin 2x, ρ̃N(0)〉, 〈η cos 2x, ρ̃N(0)〉)

+
∫ t

0
JNψ(2)

N (〈α1(x, η), ρ̃N(u)〉, 〈α2(x, η), ρ̃N(u)〉, 〈sin 2x, ρ̃N(u)〉,

— 169 —



Chapter 4. The Random Kuramoto Model

〈cos 2x, ρ̃N(u)〉, 〈η sin 2x, ρ̃N(u)〉, 〈η cos 2x, ρ̃N(u)〉) du+Mt

N,ψ
(2)
N

, (4.28)

whereMt

N,ψ
(2)
N

is a martingale and

JNψ(2)
N (〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉,

〈cos 2x, ρ̃N(t)〉, 〈η sin 2x, ρ̃N(t)〉, 〈η cos 2x, ρ̃N(t)〉)“ = ”

“ = ”−1
8

(1 + 4ω2)2

(1− 4ω2)3 〈α1(x, η), ρ̃N(t)〉
[
〈α1(x, η), ρ̃N(t)〉2+〈α2(x, η), ρ̃N(t)〉2

]
∂1ψ(·, ·)

− 1
8

(1 + 4ω2)2

(1− 4ω2)3 〈α2(x, η), ρ̃N(t)〉
[
〈α1(x, η), ρ̃N(t)〉2+〈α2(x, η), ρ̃N(t)〉2

]
∂2ψ(·, ·)

+ 1
4(1 + 4ω2)[∂11ψ(·, ·) + ∂22ψ(·, ·)] + oM(1) .

The remainder oM(1) goes to zero as N −→ +∞. If we compute the limit as
N −→ +∞, we have:

JNψ(2)
N (〈α1(x, η), ρ̃N(t)〉, 〈α2(x, η), ρ̃N(t)〉, 〈sin 2x, ρ̃N(t)〉,

〈cos 2x, ρ̃N(t)〉, 〈η sin 2x, ρ̃N(t)〉, 〈η cos 2x, ρ̃N(t)〉)
N→+∞−−−−→

w
Jψ(2)(X(t), Y (t)) ,

with

Jψ(2)(X(t), Y (t)) =

= −1
8

(1 + 4ω2)2

(1− 4ω2)3

{
X(t)

[
X(t)2 + Y (t)2]∂1ψ(·, ·) + Y (t)

[
X(t)2 + Y (t)2

]
∂2ψ(·, ·)

}
+ 1

4(1 + 4ω2)[∂11ψ(·, ·) + ∂22ψ(·, ·)] .

Then, because of (4.28), we obtain

Mt

n,ψ
(2)
n

n→+∞−−−−→
w

Mt
ψ(2) ,

once we have defined

Mt
ψ(2) := ψ(2)(X(t), Y (t))− ψ(2)(X(0), Y (0))−

∫ t

0
Jψ(2)(X(u), Y (u)) du .
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4.4 Conclusions

Concluding, we point out the fact that the inhomogeneous critical fluctuation
process exists in same time-scale than the homogeneous one; in fact, if we compare
the flows (3.16) and (4.19), we can see that, when we construct these fluctuations,
we are allowed to amplify the time by a factor N1/2 in both cases. Besides, they
are a two-dimensional process at the critical point, converging (in the sense of
weak convergence of stochastic processes) to a non-Gaussian process, solution of
a cubic stochastic differential equation. These limiting equations have the same
form.
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Chapter 5

Back to the Random Curie-Weiss Model

In this last chapter we consider again the Curie-Weiss model. We generalize
the environment, precisely we choose it distributed according to an even dis-

tribution with finite support.
For such systems one can find a finite dimensional order parameter, whose di-
mension equals the dimension of the support of the distribution of the random
field. Since we allow this cardinality to be arbitrary a low-dimensional analysis
as in Chapter 1 and 2 is not appropriate. Therefore, we proceed to apply the
method developed in Chapter 3.

5.1 Description of the Model

Let D := {−hi,−hi−1, . . . ,−h1, 0, h1, . . . , hi−1, hi} be a finite subset of R, with
0 < h1 < · · · < hi, and S = {−1,+1}. Let η = (ηj)Nj=1 ∈ DN be a sequence of
independent, identically distributed random variables defined on some probability
space (Ω,F , P ) and distributed according to an even distribution µ.

Remark 5.1.1. The assumption on the support of µ is necessary so that the critical
dynamics can be dealt with. All the results concerning the McKean-Vlasov limit
for the system are true more in general.

Given a configuration σ = (σj)Nj=1 ∈ S N and a realization of the magnetic field
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η, we can define the Hamiltonian HN(σ, η) : S N ×DN −→ R as

HN(σ, η) = − β

2N

N∑
j,k=1

σjσk − β
N∑
j=1

ηjσj , (5.1)

where σj is the spin value at site j and ηj the local magnetic field associated
with the same site. Let β, positive parameter, be the inverse of the temperature.
For a fixed realization of η, think of σ −→ HN(σ, η) as a Hamiltonian in the
components σj with an inhomogeneous mean-field interaction parametrized by
the components ηj. With the expression “mean-field” we mean the sites interact
all each other in the same way.
Let us define the dynamics we consider. For given η, σ(t) = (σj(t))Nj=1, with t
belonging to a generic time interval [0, T ], where T is fixed, describes a N -spin
system evolving as a continuous time Markov chain on S N , with infinitesimal
generator LN acting on functions f : S N −→ R as follows:

LNf(σ) =
N∑
j=1

e−βσj(m
σ

N+ηj)∇σ
j f(σ), (5.2)

where ∇σ
j f(σ) = f(σj) − f(σ) and the k-th component of σj, which has the

meaning of a spin flip at site j, is

σjk =

 σk for k 6= j

−σk for k = j
.

The quantity cηN(j, σ) = e−βσj(m
σ

N+ηj) represents the jump rate of the spins; the
rate at which the transition σj −→ −σj occurs for some j. The mean-field
assumption allows us to suppose that the interaction depends on the value of the
magnetization

m
σ
N(t) = 1

N

N∑
j=1

σj(t). (5.3)

The expressions (5.1) and (5.2) describe a system of mean-field ferromagnetically
coupled spins, each with its own random magnetic field and subject to Glauber
dynamics. The two terms in the Hamiltonian have different effects: the first one
tends to align the spins, while the second one tends to point each of them in the
direction of its local field.

Remark 5.1.2. For every value of η, (5.2) has a reversible stationary distribution
proportional to exp[−HN(σ, η)].
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For simplicity, the initial condition σ(0) is assumed to have product distribution
λ⊗N , with λ probability measure on S . The quantity σj(t) represents the time
evolution on [0, T ] of j-th spin value; it is the trajectory of the single j-th spin
in time. The space of all these paths is D[0, T ], which is the space of the right-
continuous, piecewise-constant functions from [0, T ] to S . We endow D[0, T ]
with the Skorohod topology, which provides a metric and a Borel σ-field (as we
can see in [EK86]).

5.2 Limiting Dynamics

We now derive the dynamics of the process (5.2), in the limit as N −→ +∞, in a
fixed time interval [0, T ], via a Large Deviation approach. Later, the large time
behavior of the limiting dynamics will be studied.

For completeness, we report all the statements that allow us to deduce the dy-
namics of the model in the infinite volume limit, but we omit their proofs, since
they proceed as in Chapter 1, once we have changed the distribution of the envi-
ronment.

So, let (σj[0, T ])Nj=1 ∈ (D[0, T ])N denote a path of the system in the time interval
[0, T ], with T positive and fixed. If f(σj[0, T ]) is a function of the trajectory of
a single spin, we are interested in the asymptotic behavior of empirical averages
of the form

1
N

N∑
j=1

f(σj[0, T ]) =:
∫
fdρN ,

where {ρN}N≥1 is the sequence of empirical measures

ρN := 1
N

N∑
j=1

δ(σj [0,T ],ηj) .

We may think of ρN as a random element of M1(D[0, T ] × D), the space of
probability measures onD[0, T ]×D endowed with the weak convergence topology.
First, we want to determine the weak limit of ρN inM1(D[0, T ]×D) as N grows
to infinity; i.e. for f ∈ Cb we look for limN→+∞

∫
fdρN . It corresponds to a Law

of Large Number with the limit being a deterministic measure. Being an element
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of M1(D[0, T ] × D), such a limit can be viewed as a stochastic process, which
describes the dynamics of the system in the infinite volume limit.

5.2.1 Empirical Measure and Large Deviations

Let W ∈ M1(D[0, T ]) denote the law of the S -valued process (σ(t))t∈[0,T ] such
that the initial condition σ(0) has distribution λ and the spin signs change with
constant rate equal to 1. By W⊗N we mean the product of N copies of W ,
which represents the law of the N -spin system whose generator is (5.2) where we
have set cηN ≡ 1; in other words, the law of our system in absence of interaction.
Moreover, we shall write P η

N the law of σ([0, T ]) = (σ(t))t∈[0,T ], the process with
infinitesimal generator (5.2) and initial distribution λ⊗N , for a given η.

Consider Q ∈ M1(D[0, T ]×D), if ΠtQ indicates the marginal distribution of Q
at time t, then we have

mσ
ΠtQ :=

∫
S×D

σΠtQ(dσ, dη)

and for a given path σ([0, T ]) ∈ D[0, T ], we define

F (Q) :=
∫ { ∫ T

0

(
1− e−βσ(t)(mσΠtQ+η)

)
dt

− β

2
[
σ(T )mσ

ΠTQ − σ(0)mσ
Π0Q + η (σ(T )− σ(0))

] }
dQ . (5.4)

We can obtain a representation of P η

N in terms of ρN , as follows:

Lemma 5.2.1. For a fixed realization η,

dP
η

N

dW⊗N (σ([0, T ])) = exp[NF (ρN(σ([0, T ]), η)) +O(1)]

where, for Q ∈M1(D[0, T ]×D), F (Q) is expressed by (5.4).

Lemma 5.2.1 allows us to deduce a Large Deviation Principle for ρN , from which
we can derive its asymptotic behavior as N −→ +∞.
Define

PN(·) :=
∫
µ⊗N(dη)P η

N(ρN ∈ ·) ,
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which is an element ofM1(M1(D[0, T ]×D)) and represents the law of ρN under
the joint distribution of the process and the environment.
If Q ∈M1(D[0, T ]×D), we denote by

H(Q|W ⊗ µ) :=


∫
dQ log dQ

d(W⊗µ) if Q� W ⊗ µ and log dQ
d(W⊗µ) ∈ L

1(Q)
+∞ otherwise

the relative entropy between Q and W ⊗ µ.

Proposition 5.2.1. The laws {PN}N≥1 of ρN (under the joint distribution of the
process and the medium) obey a Large Deviation Principle with rate function

I(Q) := H(Q|W ⊗ µ)− F (Q) .

5.2.2 McKean-Vlasov Equation

Given Q ∈M1(D[0, T ]×D) and η ∈ D , we can associate with Q a Markov pro-
cess on S with law P η,Q, initial distribution λ and time-dependent infinitesimal
generator

Lη,Qt f(σ) = e−βσ(mσΠtQ+η)∇σf(σ) ,

acting on f : S −→ R.

Proposition 5.2.2. For every Q ∈M1(D[0, T ]×D) such that I(Q) < +∞,

I(Q) = H(Q|PQ) , (5.5)

where PQ ∈M1(D[0, T ]×D) is defined by

PQ(dσ[0, T ], dη) = P η,Q(dσ[0, T ])µ(dη).

Theorem 5.2.1. Suppose that the initial distribution of the Markov process (σ(t))t≥0

with generator (5.2) is such that the random variables (σj(0))Nj=1 are independent
and identically distributed with law λ. Then the equation I(Q) = 0 admits a
unique solution Q∗ ∈ M1(D[0, T ] × D), such that its marginals qηt = ΠtQ

η
∗ ∈

M1(S ) are weak solutions of the nonlinear McKean-Vlasov equation
∂qηt
∂t

= Lηqηt (t ∈ [0, T ], η ∈ D)
qη0 = λ

(5.6)
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where, for all the pairs (σ, η) ∈ S ×D , the operator Lη acts

Lηqηt (σ) = ∇σ
[
e−βσ(mσqt+η)qηt (σ)

]
and qt is defined by

qt(σ) =
∫

D
qηt (σ)µ(dη).

Moreover, with respect to a metric d(·, ·) inducing the weak topology, ρN −→ Q∗ in
probability with exponential rate, i.e. PN{d(ρN , Q∗) > ε} is exponentially small
in N , for each ε > 0.

5.2.3 Stationary Solution(s)

The equation (5.6) describes the behavior of the system governed by genera-
tor (5.2) in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation. We recall that to be t-stationary solu-
tion for (5.6) means to satisfy the equation Lηqη = 0 for every t.

Hence, every equilibrium probability distribution is the solution of

∇σ
[
e−βσ(mσqt+η)qηt (σ)

]
= 0 (5.7)

and for our model is characterized as follows.

Lemma 5.2.2. Every equilibrium distribution for the nonlinear Markov process
given by (5.6) is of the form:

qη∗(σ) = eβσ(mσ∗+η)

2 cosh (β (mσ
∗ + η)) , (5.8)

where 2 cosh (β (mσ
∗ + η)) is a normalizing factor and the variable mσ

∗ must satisfy
the self-consistency relation

mσ
q∗ := mσ

∗ =
∫

S×D
σ qη∗(dσ)µ(dη) . (5.9)

Proof. As we already said, an equilibrium probability density for (5.6) must sat-
isfy (5.7), which is equivalent to

e−βσ(mσ∗+η)qη∗(σ) = eβσ(mσ∗+η)qη∗(−σ) , (5.10)
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where mσ
∗ =

∫
S×D σq

η
∗(dσ)µ(dη). Solving (5.10), we obtain

qη∗(σ) = eβσ(mσ∗+η) ,

with the normalizing constant

Zη
∗ =

∫
S
eβσ(mσ∗+η)dσ = 2 cosh (β (mσ

∗ + η))

and the proof is complete. �

Remark 5.2.1. There is a one-to-one correspondence between equilibrium distri-
butions and solutions of the self-consistency equation (5.9).

Regarding to Remark 5.2.1, any stationary solution of the system (5.6) is of the
form

mσ
∗ = Γβ,µ(mσ

∗ )

Γβ,µ(mσ
∗ ) =

∫
D

tanh(β(mσ
∗ + η))µ(dη) .

(5.11)

mσ
∗ ≡ 0 is always a solution of (5.11), for all the choices of β and µ. Whenever

the parameter β take values such that

Γ′β,µ(0) = β
∫

D

µ(dη)
cosh2(βη)

= 1 , (5.12)

this equilibrium results to be neutrally stable for the linearized system. Moreover,
if Γ′β,µ(0) > 1, then there is at least one ferromagnetic solution.

Remark 5.2.2. If mσ
∗ ≡ 0, the stationary distribution reduces to:

qη,0∗ (σ) := eβση

2 cosh(βη) for all σ ∈ S . (5.13)

5.3 Critical Dynamics (β
∫
D

µ(dη)
cosh2(βη) = 1)

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when β

∫
D

µ(dη)
cosh2(βη) =1.

The size of Normal fluctuations must be further rescaled (in space and time), be-
cause their size around the deterministic limit increases in time. In this case we
will still obtain Normal fluctuations, solutions of a certain stochastic differential
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equation to be determined.

First of all, we need to locate the critical direction in the infinite dimensional space
of the order parameters. In the rest of the section, we will consider β

∫
D

µ(dη)
cosh2(βη) =1

and let us assume that the initial condition λ is a product measure such that

q0(dσ, dη) = q0
∗(dσ, dη) = eβση

2 cosh(βη) dσ µ(dη)

and so

qt(dσ, dη) = q0
∗(dσ, dη) = eβση

2 cosh(βη) dσ µ(dη) ,

for every value of t ≥ 0, since we are in stationary conditions.

For our model all the observables are of the form F (σ, η) = γ(η) + σφ(η) and
we can assume, without loss of generality, γ ≡ 0, since the term γ(η) does not
contribute to the dynamics of the system. Thus, we want to describe the action
of the infinitesimal generator of the critical fluctuation flow

ρ̃N(t, dx, dη) = N1/4
[
ρN(N1/4t, dx, dη)− eβση

2 cosh(βη) dσ µ(dη)
]

on the family of functions of the form ψ(〈σφ(η), ρ̃N〉), with

ψ : R −→ R, ψ ∈ C3
b (R), φ : D −→ R

and where we have denoted 〈f1, f2〉 :=
∫
S×D f1(σ, η)f2(σ, η) dσ dη.

Lemma 5.3.1. For t ∈ [0, T ], if we consider only the space scaling

ρ̄N(t, dσ, dη) = N1/4
[
ρN(t, dσ, dη)− eβση

2 cosh(βη) dσ µ(dη)
]
, (5.14)

then the critical flow ρ̄N(t, dσ, dη) is a Markov process whose infinitesimal gener-
ator GN satisfies:

GNψ(〈σφ(η), ρ̄N〉) =
[
L0 + L1 +N−1/4L2

]
ψ(〈σφ(η), ρ̄N〉) + o(N−1/4), (5.15)
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where

L0ψ(〈σφ(η), ρ̃N〉) = 2ψ′(·) 〈sinh(βη)φ(η), ρ̄N〉 (5.16)

L1ψ(〈σφ(η), ρ̃N〉) = −2ψ′(·) 〈σLηφ(η), ρ̄N〉

L2ψ(〈σφ(η), ρ̃N〉) = 2β ψ′(·) 〈σ, ρ̄N〉〈[cosh(βη)− σ sinh(βη)]φ(η), ρ̄N〉

and the operator Lη is the linear operator given by

Lηφ(η) = cosh(βη)φ(η)− β
∫

D

φ(η)
cosh(βη)µ(dη) . (5.17)

The remainders are continuous functions of 〈σφ(η), ρ̄N〉 and they are of order
o(N−1/4) pointwise, but not uniformly on 〈σφ(η), ρ̄N〉.

Proof. To prove that 〈σφ(η), ρ̄N〉 is a Markov process, one must write down the
expression of the infinitesimal generator whose dynamics are driven by. We apply
Lemma 1.3.1.
The process {σ(t)}t≥0 is a continuous time Markov chain on the finite state space
S N , with infinitesimal generator (5.2). Consider the function

ζ : S −→ R
σ 7−→ 〈σφ(η), ρ̄N〉 ,

it plays the role of g in Lemma 1.3.1; then, for every ψ : S N −→ R, we have

LN(ψ ◦ ζ) = (GNψ) ◦ ζ

and ζ(σ) is a Markov process with generator GN given by

GNψ(〈σφ(η), ρ̄N〉) =

=
N∑
j=1

[cosh(βηj)− σj sinh(βηj)]︸ ︷︷ ︸
=e−βσjηj

(
1− β〈σ, ρ̄N〉

N1/4 σj + β2〈σ, ρ̄N〉2

N1/2 + o
( 1
N1/2

))
·

·
[
− 2
N3/4σjφ(ηj)ψ′(·) + 2

N3/2φ
2(ηj)ψ′′(·) + o

( 1
N3/2

)]
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= ψ′(·) 2
N3/4

{
−

N∑
j=1

σj cosh(βηj)φ(ηj) +
N∑
j=1

sinh(βηj)φ(ηj)

+ β〈σ, ρ̄N〉
N1/4

N∑
j=1

cosh(βηj)φ(ηj)−
β〈σ, ρ̄N〉
N1/4

N∑
j=1

σj sinh(βηj)φ(ηj)

− β2〈σ, ρ̄N〉2

N1/2

N∑
j=1

σj cosh(βηj)φ(ηj) + β2〈σ, ρ̄N〉2

N1/2

N∑
j=1

sinh(βηj)φ(ηj)
}

+ ψ′′(·) 2
N3/2

{
N∑
j=1

cosh(βηj)φ2(ηj)−
N∑
j=1

σj sinh(βηj)φ2(ηj)

− β〈σ, ρ̄N〉
N1/4

N∑
j=1

σj cosh(βηj)φ2(ηj) + β〈σ, ρ̄N〉
N1/4

N∑
j=1

sinh(βηj)φ2(ηj)

+ β2〈σ, ρ̄N〉2

N1/2

N∑
j=1

cosh(βηj)φ2(ηj)−
β2〈σ, ρ̄N〉2

N1/2

N∑
j=1

σj sinh(βηj)φ2(ηj)
}

+o
( 1
N1/2

)

Since ρ̄N is a centered measure and we want to represent all the terms as integrals
with respect to this measure, we need to center all of them; but

〈[−σ cosh(βη) + sinh(βη)]φ(η), q0
∗〉 = 0

and
〈[cosh(βη)− σ sinh(βη)]φ(η), q0

∗〉 =
∫

D

φ(η)
cosh(βη)µ(dη) ,

hence we obtain

= 2ψ′(·)
{
〈sinh(βη)φ(η), ρ̄N〉 − 〈σ cosh(βη)φ(η), ρ̄N〉

+ β〈σ, ρ̄N〉
N1/4 〈cosh(βη)φ(η), ρ̄N〉 −

β〈σ, ρ̄N〉
N1/4 〈σ sinh(βη)φ(η), ρ̄N〉

− β〈σ, ρ̄N〉
∫

D

φ(η)
cosh(βη)µ(dη)− β2〈σ, ρ̄N〉2

N1/2 〈σ cosh(βη)φ(η), ρ̄N〉

+ β2〈σ, ρ̄N〉2

N1/2 〈sinh(βη)φ(η), ρ̄N〉
}

+ o
( 1
N1/4

)
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= 2ψ′(·)
{
−
〈
σ

[
cosh(βη)φ(η)− β

∫
D

φ(η)
cosh(βη)µ(dη)

]
, ρ̄N

〉

+ 〈sinh(βη)φ(η), ρ̄N〉+
β〈σ, ρ̄N〉
N1/4 〈cosh(βη)φ(η), ρ̄N〉

− β〈σ, ρ̄N〉
N1/4 〈σ sinh(βη)φ(η), ρ̄N〉

}
+ o

( 1
N1/4

)
.

which is just (5.15). �

Remark 5.3.1. The term 〈sinh(βη)φ(η), ρ̄N〉 appearing in L0, defined by (5.16), is
of order N1/4 and gives rise to the random drift.

Lemma 5.3.2. The operator Lη, defined by (5.17), is self-adjoint in L2(µ̄), where
µ̄ := µ(dη)

cosh(βη) .

Proof. Obviously Lη is a linear and continuous operator. If we mean 〈f1, f2〉L2(µ̄) :=∫
D f1(η)f2(η) µ(dη)

cosh(βη) , we have to prove the following: if φ1, φ2 ∈ L2(µ̄), then
〈Lηφ1, φ2〉L2(µ̄) = 〈φ1,L

ηφ2〉L2(µ̄). Thus,

〈Lηφ1, φ2〉L2(µ̄) =
∫

D

[
cosh(βη)φ1(η)− β

∫
D

φ1(η)
cosh(βη)µ(dη)

]
φ2(η)µ̄(dη)

=
∫

D
[cosh(βη)φ2(η)]φ1(η)µ̄(dη)

− β
∫

D

φ1(η)
cosh(βη)µ(dη)

∫
D

φ2(η)
cosh(βη)µ(dη)

=
∫

D

[
cosh(βη)φ2(η)− β

∫
D

φ2(η)
cosh(βη)µ(dη)

]
φ1(η)µ̄(dη)

= 〈φ1,L
ηφ2〉L2(µ̄)

and the proof is concluded. �

Lemma 5.3.3. The operator Lη, defined by (5.17), is positive and its kernel is
spanned by the function 1

cosh(βη) .
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Proof. To prove positivity we have to show that 〈φ(η),Lηφ(η)〉L2(µ̄) ≥ 0; but,

〈φ(η),Lηφ(η)〉L2(µ̄) =
∫

D

[
cosh(βη)φ(η)− β

∫
D

φ(η)
cosh(βη)µ(dη)

]
φ(η)µ̄(dη)

=
∫

D
φ2(η)µ(dη)− β

(∫
D

φ(η)
cosh(βη)µ(dη)

)2

= 1
β

∫
D

cosh2(βη)φ2(η) β

cosh2(βη)
µ(dη)

− 1
β

(∫
D

cosh(βη)φ(η) β

cosh2(βη)
µ(dη)

)2

≥ 0

by Jensen’s inequality, recalling that we are at the critical point, in other words
β
∫

D

µ(dη)
cosh2(βη) = 1. Moreover, the equality holds true whenever cosh(βη)φ(η) is

constant, therefore the null space of the operator Lη is generated by the functions
of the form φ(η) = 1

cosh(βη) . �

Remark 5.3.2. The critical direction for our model is then
〈

σ
cosh(βη) , ρ̃N(t)

〉
.

The space L2
(

µ(dη)
cosh(βη)

)
is finite dimensional and then the spectrum of the operator

Lη is discrete and entirely composed by positive eigenvalues. Moreover, there
exists an orthonormal basis of eigenvectors of Lη in L2

(
µ(dη)

cosh(βη)

)
.

Theorem 5.3.1. Consider {φm(η)}2i+1
m=0, an orthonormal basis of eigenvectors of

Lη in L2
(

µ(dη)
cosh(βη)

)
, and suppose that the function 1

cosh(βη) = φ0(η).
For t ∈ [0, T ], if we consider the critical fluctuation process

〈σφ0(η), ρ̃N(t)〉 , {〈σφm(η), ρ̃N(t)〉}2i+1
m=1

then, as N −→ +∞, {〈σφm(η), ρ̃N(t)〉}2i+1
m=1 −→ 0 in the sense of Proposition

1.4.1 and 〈σφ0(η), ρ̃N(t)〉 converges, in the sense of weak convergence of stochastic
processes, to a limiting Gaussian process

X(t) = 2H t ,

with H a Normal random variable.
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5.4 Proof of the Theorem 5.3.1

Let us denote by {τMN }N≥1 a family of stopping times, defined as

τMN := inf
t≥0

{
|〈σφ0(η), ρ̃N(t)〉| ≥M or |〈σφm(η), ρ̃N(t)〉| ≥M

for at least a value of m = 1, . . . , 2i+ 1
}
,

where M is a positive constant. We are interested in introducing such a se-
quence of stopping times because in this way the processes 〈σφ0(η), ρ̃N(t)〉 and
{〈σφm(η), ρ̃N(t)〉}2i+1

m=1 result to be bounded in the time interval [0, T ∧ τMN ].

By standard argument on collapsing processes (see Proposition 1.4.1 and Lemma
3.3.6), it is easy to prove that for t ∈ [0, T∧τMN ] the directions {〈σφm(η), ρ̃N(t)〉}2i+1

m=1

collapse. It means that, if we consider the norm ‖ρ̃N‖r, defined by

‖ρ̃N‖2r :=
2i+1∑
m=1

1
(1 +m2)r 〈σφm(η), ρ̃N〉2 ,

where r > 0, then there exist constants N0, C, d > 2, κN := κ(N) and two
increasing sequences {αN}N≥1, {βN}N≥1 satisfying (3.23)–(3.26) and such that
for every ε > 0 the following is true

sup
N≥N0

P

 sup
0≤t≤T∧τMN

‖ρ̃N(t)‖2r > C
(
κ

1/d
N α−1

N ∨ κ−1
N αN

) ≤ ε . (5.18)

The property (5.18) allows us to deduce that {〈σφm(η), ρ̃N(t)〉}2i+1
m=1 −→ 0, as

N −→ +∞. The computations we should do to prove these processes converge
to zero in probability are similar to those we did in Subsection 3.3.1 to prove the
process representing the non-critical directions of the homogeneous Kuramoto
Model collapses. Thus, we omit this proof and we focus only on the critical
direction 〈σφ0(η), ρ̃N(t)〉, assuming all the others vanish.

Remark 5.4.1. It is possible to prove (5.18) since all the eigenvalues corresponding
to the eigenvectors {φm(η)}2i+1

m=1 are negative.

The next step is to prove, for every ε > 0 and N ≥ 1, the existence of a constant
M > 0 such that

P
{
τMN ≤ T

}
≤ ε .

— 187 —



Chapter 5. Back to the Random Curie-Weiss Model

This fact implies the processes {〈σφm(η), ρ̃N(t)〉}2i+1
m=1 converge to zero in prob-

ability, as N is growing to infinity, for t belonging to the whole time interval [0, T ].

We consider the infinitesimal generator, JN = N1/4GN , subject to the time-
rescaling and we apply it to the particular function

ψ (〈σφ0(η), ρ̃N(t)〉) = |〈σφ0(η), ρ̃N(t)〉| .

The following decomposition holds

|〈σφ0(η), ρ̃N(t)〉|= |〈σφ0(η), ρ̃N(0)〉|+
∫ t

0
JN |〈σφ0(η), ρ̃N(s)〉| ds+Mt

N,|〈σφ0(η),ρ̃N 〉|

≤|〈σφ0(η), ρ̃N(0)〉|+
∫ t

0
|JN |〈σφ0(η), ρ̃N(s)〉|| ds+Mt

N,|〈σφ0(η),ρ̃N 〉| ,

with

Mt
N,|〈σφ0(η),ρ̃N 〉| =

∫ t

0

∑
j∈S ,k∈D

∇(j) [|〈σφ0(η), ρ̃N(s)〉|] Λ̃σ
N(j, k, ds) ,

where we have defined

∇(j) [|〈σφ0(η), ρ̃N(t)〉|] =

=
∣∣∣∣∣〈σφ0(η), ρ̃N(t)〉 − j 2

N3/4 cosh(βk)

∣∣∣∣∣− |〈σφ0(η), ρ̃N(t)〉| (5.19)

and

Λ̃σ
N(j, k, dt) := Λσ

N(j, k, dt)−N1/4
∣∣∣A(j, k,N1/4t)

∣∣∣ e−βj
(
〈σ,ρ̃N (t)〉
N1/4 +k

)
dt︸ ︷︷ ︸

:=λσ(j,k,t) dt

. (5.20)

As we can clearly see, the quantity Λ̃σ
N(j, k, dt) is the difference between the point

process Λσ
N(j, k, dt), defined on S ×D × R+, and its intensity λσ(j, k, t) dt.

The counter
∣∣∣A(j, k,N1/4t)

∣∣∣ is given by

∣∣∣A(j, k,N1/4t)
∣∣∣ = N

4

[
1 + 1

k

〈η, ρ̃N〉
N1/4 + j

〈σ, ρ̃N〉
N1/4

+ j

k

(
〈ση, ρ̃N〉
N1/4 −

∫
D
η tanh(βη)µ(dη)

)]
.
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We recall that the expression of GN is given by (5.15). We consider the following
Taylor expansions stopped at second order

e
β
〈σ,ρ̃N 〉
N1/4 = 1 + β

〈σ, ρ̃N〉
N1/4 +R+ and e

−β 〈σ,ρ̃N 〉
N1/4 = 1− β 〈σ, ρ̃N〉

N1/4 +R− ,

where

|R+| ≤ sup
{
ez : z ∈

[
0, β 〈σ, ρ̃N〉

N1/4

]}
β2〈σ, ρ̃N〉2

2N1/2 ≤ β2M2

2N1/2 e
βM

N1/4

and

|R−| ≤ sup
{
ez : z ∈

[
−β 〈σ, ρ̃N〉

N1/4 , 0
]}

β2〈σ, ρ̃N〉2

2N1/2 ≤ β2M2

2N1/2 .

For t ∈ [0, τMN ] we can estimate

|JN |〈σφ0(η), ρ̃N(t)〉|| =

=
∣∣∣∣∣2N1/4sgn (〈σφ0(η), ρ̃N(t)〉)

{
〈tanh(βη), ρ̃N(t)〉

+ β
〈σ, ρ̃N(t)〉
N1/4 〈coth(βη), ρ̃N(t)〉 − β 〈σ, ρ̃N(t)〉

N1/4 〈σ tanh(βη), ρ̃N(t)〉

+R+

[
N1/4 + 〈tanh(βη), ρ̃N(t)〉 − 〈σ, ρ̃N(t)〉 − 〈σ tanh(βη), ρ̃N(t)〉

+
∫

D
tanh2(βη)µ(dη)

]
−R−

[
N1/4 − 〈tanh(βη), ρ̃N(t)〉+ 〈σ, ρ̃N(t)〉

− 〈σ tanh(βη), ρ̃N(t)〉+
∫

D
tanh2(βη)µ(dη)

]}∣∣∣∣∣
and thanks to the stopping times we have introduced and the Central Limit
Theorem applying to the processes of the form 〈φ(η), ρ̃N(t)〉 (i.e. for every ε > 0
and sufficiently large M , P{N1/4|〈φ(η), ρ̃N(t)〉| ≥M} ≤ ε),

≤ 2
{
M + 2βM2

N1/4 + β2M2

2N1/2

(
e

βM

N1/4 + 1
)(

N1/4 + M

N1/4 + 2M + 1
)}

≤ 2
{
M + 2βM2 + β2M2

(
eβM + 1

)
(2 + 3M)

}
=: C8 ,
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with C8 positive constant independent of N . Since the following inclusions are
valid

{τMN ≤ T} ⊆
{

sup
0≤t≤T∧τMN

{
|〈σφ0(η), ρ̃N(t)〉| , ‖ρ̃N(t)‖2r

}
≥M

}

⊆
{

sup
0≤t≤T∧τMN

‖ρ̃N(t)‖2r ≥M

}
∪ {|〈σφ0(η), ρ̃N(0)〉| ≥ C9}∪

∪
{

sup
0≤t≤T∧τMN

∣∣∣M t
N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10

}
,

we obtain the following inequality for the probability of the interested set

P{τMN ≤ T} ≤ P

{
sup

0≤t≤T∧τMN

‖ρ̃N(t)‖2r ≥M

}
+ P {|〈σφ0(η), ρ̃N(0)〉| ≥ C9}

+ P

{
sup

0≤t≤T∧τMN

∣∣∣M t
N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10

}
.

We estimate the three terms of the right-hand side of the inequality.

� For any ε > 0, thanks to (5.18) we have

P

{
sup

0≤t≤T∧τMN

‖ρ̃N(t)‖2r ≥ C
(
κ

1/2d
N α

−1/2
N ∨ κ−1/2

N β
1/2
N

)}
≤ ε .

� We get E [〈σφ0(η), ρ̃N(0)〉] = N1/4E [〈σφ0(η), ρN(0)〉]. Since at time t = 0
the spins are distributed according to a product measure, 〈σφ0(η), ρ̃N(0)〉
is a linear combination of sample average of independent, identically dis-
tributed Bernoulli random variables multiplied by N1/4. So, we can con-
clude

E [|〈σφ0(η), ρ̃N(0)〉|] ≤

√√√√Var
(

σ1(0)
cosh(βη1)

)
N−1/4

and in the limit as N −→ +∞, we have convergence to zero in L1 and then
in probability. Therefore

P {|〈σφ0(η), ρ̃N(0)〉| ≥ C9} ≤ ε

for any ε > 0, for every N and for a sufficiently large C9.
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� We reduce to deal with E
[(
MT

N,|〈σφ0(η),ρ̃N 〉|

)2
]
; in fact, Doob’s “maximal

inequality in Lp” (case p = 2) for martingales (we refer to Chapter VII,
Section 3 of [Shi96]) tells us that

P

 sup
0≤t≤T∧τMN

∣∣∣Mt
N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10

 ≤
E
[(
MT

N,|〈σφ0(η),ρ̃N 〉|

)2
]

(C10)2 .

Hence, remembering (5.19) and (5.20), we are able to compute

E
[(
MT

N,|〈σφ0(η),ρ̃N 〉|

)2
]

=

= E

∫ T

0

∑
j∈S ,k∈D

[
∇(j) [|〈σφ0(η), ρ̃N(t)〉|]

]2
λσ(j, k, t)dt



≤ E

[∫ T

0

8(2i+ 1)
N5/4 sup

k∈D

{
1

cosh(βk)

}
sup

j∈S ,k∈D

{
|A(j, k,N1/4t)|eβ(1+k)

}
dt

]

≤ E

[∫ T

0

2(2i+ 1)
N1/4 (2 + 3hi) eβ(1+hi)dt

]

≤ 2(2i+ 1) (2 + 3hi) eβ(1+hi) T =: C11 ,

with C11 positive constant independent of N and M . We have established
that, if we choose C10 ≥

√
C11
ε
, then

P

 sup
0≤t≤T∧τMN

∣∣∣Mt
N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10

 ≤ ε .

In summary, we proved the inequality we were looking for; in fact

P
{
τMN ≤ T

}
≤ 3ε := ε .

We have just concluded the proof of the first part of the statement of Theorem
5.3.1, concerning the collapse of the processes {〈σφm(η), ρ̃N(t)〉}2i+1

m=1 in the limit
as N −→ +∞ and for t ∈ [0, T ]. Now, we are going to show that in the same
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setting, i.e. the limit of infinite volume and t ∈ [0, T ], the process 〈σφ0(η), ρ̃N(t)〉
admits a limiting process and we are going to compute it.

First, we need to prove the tightness of the sequence {〈σφ0(η), ρ̃N(t)〉}N≥1. This
property implies the existence of convergent subsequences. Secondly, we will
verify that all the convergent subsequences have the same limit and hence also
the sequence {〈σφ0(η), ρ̃N(t)〉}N≥1 must converge to that limit.

Lemma 5.4.1. The sequence {〈σφ0(η), ρ̃N(t)〉}N≥1 is tight.

Proof. We must verify the conditions (1.44) and (1.45) hold. Since we have
already proved that for every ε > 0 the inequality P{τMN ≤ T} ≤ ε is true for
M sufficiently large and uniformly in N , it is enough to show tightness for the
stopped processes {〈

σφ0(η), ρ̃N(t ∧ τMN )
〉}

N≥1
.

We showed before the validity of the following inclusion sup
0≤t≤T∧τMN

|〈σφ0(η), ρ̃N(t)〉| ≥M

 ⊆ {|〈σφ0(η), ρ̃N(0)〉| ≥ C9}∪

∪

 sup
0≤t≤T∧τMN

∣∣∣Mt
N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10

 ,
therefore

sup
N
P

 sup
0≤t≤T∧τMN

|〈σφ0(η), ρ̃N(t)〉| ≥M

 ≤ 2ε

and so we obtained (1.44). Let us deal with (1.45) now. We notice that

|〈σφ0(η), ρ̃N(t)〉 − 〈σφ0(η), ρ̃N(s)〉| =

=
∣∣∣∣∫ t

s
JN (〈σφ0(η), ρ̃N(u)〉) du+Ms,t

N,|〈σφ0(η),ρ̃N 〉|

∣∣∣∣ ,
where we have denoted

Ms,t

N,|〈σφ0(η),ρ̃N 〉|
= − 2

N3/4

∫ t

s

∑
j∈S ,k∈D

j

cosh(βk) Λ̃σ
N(j, k, du)

and Λ̃σ
N is as in definition (5.20). Thus,
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{|〈σφ0(η), ρ̃N(t)〉 − 〈σφ0(η), ρ̃N(s)〉| ≥ α} ⊆

⊆
{ ∣∣∣∣∫ t

s
JN |〈σφ0(η), ρ̃N(u)〉| du

∣∣∣∣︸ ︷︷ ︸
≤C8(t−s)

+
∣∣∣Ms,t

N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ α

}

⊆
{∣∣∣Ms,t

N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10
}

and then, applying Chebyscev inequality to the last right-handside of the previous
inclusions, we get

sup
0≤s≤t≤T
t−s≤δ

P
{∣∣∣Ms,t

N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10
}
≤ (C10)−2 sup

0≤s≤t≤T
t−s≤δ

E
[(
Ms,t

N,|〈σφ0(η),ρ̃N 〉|

)2
]

≤ (C10)−2 sup
0≤s≤t≤T
t−s≤δ

2(2i+ 1)(2 + 3hi)eβ(1+hi)︸ ︷︷ ︸
:=C11

(t− s) (5.21)

≤ (C10)−2C11 δ .

Finally, we can conclude that

sup
N

sup
0≤s≤t≤T
t−s≤δ

P {|〈σφ0(η), ρ̃N(t)〉 − 〈σφ0(η), ρ̃N(s)〉| ≥ α} ≤

≤ sup
N

sup
0≤s≤t≤T
t−s≤δ

P
{∣∣∣Ms,t

N,|〈σφ0(η),ρ̃N 〉|

∣∣∣ ≥ C10
}

≤ (C10)−2C11 δ = O(δ)

and the proof is complete. �

Lemma 5.4.1 implies that there exist convergent subsequences for the sequence
{〈σφ0(η), ρ̃N(t)〉}N≥1. Let {〈σφ0(η), ρ̃n(t)〉}n≥1 denote one of such a subsequence
and let ψ ∈ C3

b be a function of the type

ψ
(
〈σφ0(η), ρ̃n(t)〉 , {〈σφm(η), ρ̃n(t)〉}2i+1

m=1

)
= ψ (〈σφ0(η), ρ̃n(t)〉) .
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The following decomposition holds

ψ (〈σφ0(η), ρ̃n(t)〉)− ψ (〈σφ0(η), ρ̃n(0)〉) =

=
∫ t

0
Jnψ (〈σφ0(η), ρ̃n(u)〉) du+Mt

n,ψ , (5.22)

where

Jnψ (〈σφ0(η), ρ̃n(t)〉) = 2ψ′(·)
{
n1/4〈tanh(βη), ρ̃n(t)〉

+ β〈σ, ρ̃n(t)〉〈1, ρ̃n(t)〉 − β〈σ, ρ̃n(t)〉〈σ tanh(βη), ρ̃n(t)〉
}

+ oM(1),

which, as usual, is GN (see (5.15)) rescaled of a power n1/4 and applied to the par-
ticular function ψ

(
〈σφ0(η), ρ̃n(t)〉 , {〈σφm(η), ρ̃n(t)〉}2i+1

m=1

)
= ψ (〈σφ0(η), ρ̃n(t)〉).

The remainder oM(1) goes to zero as n −→ +∞, uniformly in M . If we compute
the limit as n −→ +∞, remembering that a Central Limit Theorem applies to the
term 〈tanh(βη), ρ̃n(t)〉, 〈1, ρ̃n(t)〉 is zero since ρ̃n is a centered measure and the
process 〈σ tanh(βη), ρ̃n(t)〉 collapse since tanh(βη) and 1

cosh(βη) are perpendicular
in L2

(
µ(dη)

cosh(βη)

)
, we have:

Jnψ (〈σφ0(η), ρ̃n(t)〉) n→+∞−−−−→
w

Jψ(X(t)) ,

with
Jψ(X(t)) = 2 H ψ′(·)

and H is a Standard Gaussian random variable. Then, because of (5.22), we
obtain

Mt
n,ψ

n→+∞−−−−→
w

Mt
ψ := ψ(X(t))− ψ(X(0))−

∫ t

0
Jψ(X(u))du .

We must prove the following Lemma:

Lemma 5.4.2. M t
ψ is a martingale (with respect to t); in other words, for all

s, t ∈ [0, T ], s ≤ t and for all measurable and bounded functions g(X([0, s])) the
following identity holds:

E[Mt
ψg(X([0, s]))] = E[Ms

ψg(X([0, s]))] . (5.23)
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Proof. The reasoning we explained in Lemma 1.4.5 applies in this case too, so it
is sufficient to prove {Mt

n,ψ}n≥1 is an uniformly integrable sequence of random
variables.
If we define

∇(j) [ψ (〈σφ0(η), ρ̃n(t)〉)] :=

:= ψ

(
〈σφ0(η), ρ̃n(t)〉 − j

2
n3/4 cosh(βk)

)
− ψ (〈σφ0(η), ρ̃n(t)〉) ,

it yields

E[(Mt
n,ψ)2] = E

∫ t

0

∑
j∈S ,k∈D

[
∇(j) [ψ (〈σφ0(η), ρ̃n(t)〉)]

]2
λσ(j, k, s)ds



≤ n5/4C11E

∫ t

0

∑
j∈S ,k∈D

[
∇(j) [ψ (〈σφ0(η), ρ̃n(t)〉)]

]2
ds



≤ n5/4C11E

∫ t

0

∑
j∈S ,k∈D

[
ψ

(
〈σφ0(η), ρ̃n(t)〉 − j

2
n3/4 cosh(βk)

)

− ψ (〈σφ0(η), ρ̃n(t)〉)
]2

ds

]

where C11 is defined by (5.21). We expand the function ψ around 〈σφ0(η), ρ̃n(t)〉
with the Taylor expansion stopped at first order and with remainder R such that

|R| ≤ sup
{
|ψ′′(z)| : z ∈

[
〈σφ0, ρ̃n〉 , 〈σφ0, ρ̃n〉 − j

2
n3/4 cosh(βk)

]}
2

n3/2 cosh2(βk)

and moreover, we recall that ψ ∈ C3
b , so |ψ′| ≤ K1 and |ψ′′| ≤ K2; therefore,

≤ n5/4C11E

∫ t

0

∑
j∈S ,k∈D

[
−j 2

n3/4 cosh(βk)ψ
′(·) +R

]2

ds



≤ n5/4C11E

[∫ t

0
sup

j∈S ,k∈D

[
4

n3/2 cosh2(βk)
(ψ′(·))2

−j 4
n3/4 cosh(βk)ψ

′(·)R +R2
]
ds

]
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≤ n5/4C11E

[∫ t

0
sup

j∈S ,k∈D

[
4

n3/2 cosh2(βk)
K2

1

+ 8
n9/4 cosh3(βk)

K1K2 +K2
2

]
ds

]

≤ 4T C11 (K1 +K2)2

since t < T ; thenMt
n,ψ is uniformly integrable. �

Now, the proof is easy to complete. Mt
n,ψ solves the martingale problem with in-

finitesimal generator J , admitting a unique solution, and hence we have shown all
convergent subsequences have the same limit and so the sequence itself converges
to that limit.
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