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Sommario. Consideriamo un sistema di particelle interagenti a campo-medio im-
merso in un ambiente aleatorio i.i.d. e sito-dipendente. Il sistema viene fatto
evolvere come una catena di Markov a tempo continuo sullo spazio degli stati.
La dinamica dipende da pochi parametri e puo essere completamente descritta
attraverso quella del parametro d’ordine del modello. Ricaviamo la dinamica di
quest’ultimo nel limite di volume infinito e quindi ne studiamo il comportamento
per tempi lunghi. Tale dinamica limite risulta essere deterministica e, al variare
dei parametri, presenta una transizione di fase. Il nostro interesse principale e
lo studio delle fluttuazioni critiche, cioe le fluttuazioni del parametro d’ordine
attorno alla dinamica limite quando i parametri assumono i valori tali per cui si
verifica la transizione di fase. Lo scopo e I'analisi degli effetti causati dal disordi-
ne su di esse, confrontandole con le analoghe fluttuazioni per il caso omogeneo.
Trattiamo sistemi di spin e di diffusioni, ma non in totale generalita. Ci concen-
triamo su dei modelli specifici: il modello di Curie-Weiss con aggiunta di campo
aleatorio; un sistema di spin non-reversibile motivato dalla Finanza e il modello

di Kuramoto omogeneo e non.

Abstract. We consider a mean-field interacting particle system embedded in a
site-dependent and i.i.d. random environment. We make it evolve as a continu-
ous time Markov chain on its state space. The dynamics are given depending on
few parameters and they are completely described by that of the order parameter
of the model. We derive the dynamics of this last quantity, in the infinite volume
limit, and then their long time behavior is studied. The limiting dynamics of the
order parameter are deterministic and, depending on the values of the param-
eters, exhibit a phase transition. Our main interest is the study of the critical
fluctuations, that are the fluctuations of the order parameter around its limiting
dynamics when the parameters take the values for which the phase transition
occurs. We aim at analyzing the effect of the disorder in the dynamics of them,
as compared with the homogeneous case. We deal with spin-flip and interacting
diffusion systems, but we do not treat the subject in total generality, we focus
on specific models: the random Curie-Weiss model; a non-reversible spin-flip sys-
tem motivated by Finance and the homogeneous and inhomogeneous Kuramoto

models.
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Introduction

ean-field interacting particle systems are characterized by the complete ab-
M sence of geometry in the space of configurations, in the sense that each
particle interacts with all the others in the same way. The advantage of deal-
ing with this kind of models is that they usually are analytically tractable and
it is rather simple derive their macroscopic equations. Even if the hypothesis
“all-to-all” may seem too simplistic to describe physical systems, where geometry
and short-range interaction are involved, mean-field models have been recently
applied to social sciences and finance, as in [DPRSTQ9], [FB0g| , [LL07|, [BDO01],
[DPT09] and [DGGLOS].
We briefly introduce the general framework we are working in and some of its pe-
culiar features and then we will explain how our work enters within this setting.
We consider a mean-field interacting N-particle system evolving as a continuous
time Markov chain on its state space, for times belonging to a time interval [0, 7).
The dynamics are given depending on few parameters and they are completely
described by the dynamics of the order parameter of the model. By order pa-
rameter we mean a finite or infinite dimensional stochastic process, defined as an
Empirical Average of the original process, whose dynamics are Markovian too.
By Empirical Average we mean an integral of a function of the state variable with

respect to the Empirical Measure

1 N
PN = N Z 6jfstate variable -
Jj=1

We derive the dynamics of the order parameter, in the limit as NV grows to infin-
ity, in a fixed time interval [0, 7], via a Large Deviation approach. Then, the long
time behavior of the limiting dynamics is studied. Note that this is not neces-

sarily equivalent to the study of the large N behavior of the stationary measure.
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Introduction

Roughly speaking, this would consist in letting ¢ — —+oo for N fixed, and then
letting N — 4o00. In our approach we reverse the order of the limits. In certain
regimes, the two approaches stand be equivalent, as some results in [For09] show.
Our dynamic approach has the advantage that allows to deal with non-reversible
models, as we will see in Chapter 2 and Chapter 4.

In the infinite volume limit, the limiting dynamics of the order parameter are de-
terministic (driven by a system of ordinary differential equations) and, depending
on the values of the parameters of the model, exhibit a phase transition, which is
the appearance of multiple stable equilibria. When the parameters take the val-
ues such that the system has exactly one stationary solution, we say the system
to be in a subcritical regime; while, when more than one equilibrium appears, we
are in a supercritical regime.

Our main interest is the study of the fluctuations of the order parameter around
its limiting dynamics. We can capture different features of these fluctuations
depending on whether or not the time is rescaled with N. If time is not rescaled
and we consider the evolution in a time interval [0, 7], with T fixed, a Central
Limit Theorem holds true for the order parameter for all regimes; in other words,
the fluctuations of the order parameter converge to a Gaussian process, which is
the unique solution of a linear diffusion equation. Whenever time is rescaled in

such a way T goes to infinity as N does, we may observe different behaviors.

» In a supercritical regime, we expect to find a metastability-type phenomenon;
in other words, the system may spend a very long time in a neighborhood of
a set of configurations that correspond to a stable equilibrium of the limit-
ing dynamics, and then switches to a neighborhood of another equilibrium.

The waiting time for this switch is exponentially large in N.

» In a subcritical regime, the Central Limit Theorem holds uniformly in time,
as shown in [For09]. Thus, by rescaling time we simply obtain a Central

Limit Theorem for the stationary measure.

» In the critical regime, when the parameters of the system are in the bound-
ary between the subcritical and the supercritical regimes, that fluctuations
are expected to exhibit a peculiar space-time scaling (critical fluctuations),
and their limit distribution may be non Gaussian. More generally, criti-

cal fluctuations may occur whenever a stationary solution for the limiting
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Introduction

dynamics becomes linearly neutrally stable.

The main subject of this thesis is the analysis of the dynamics of the critical
fluctuations in disordered mean-field models.

We consider a mean-field model and we add a site-dependent, i.i.d. random en-
vironment, acting as an inhomogeneity in the structure of the system; we aim
at analyzing the effect of the disorder in the dynamics of critical fluctuations,
as compared with the homogeneous case. We deal with spin-flip and interacting
diffusion systems, but we do not treat the subject in total generality, we focus
on specific models: the random Curie-Weiss model (Chapter 1 and Chapter 5);
a non-reversible spin-flip system motivated by Finance (Chapter 2) and the ho-
mogeneous and inhomogeneous Kuramoto models (Chapter 3 and Chapter 4,
respectively). We are not aware of similar results concerning non-equilibrium
critical fluctuations. Static fluctuations for the random Curie-Weiss model have
been studied in [AAMFEP91].

We now give the basic ideas of how the dynamics of critical fluctuations are deter-
mined. The deterministic limiting dynamics of the order parameter is described
by a non-linear evolution operator £. The linearization of this equation around a
stationary solution gives rise to the so called linearized operator £. This operator
is also related to the normal fluctuation of the process. At the critical point this
operator has an eigenvalue with zero real part, while all other elements of the
spectrum have negative real part. The eigenspace of the eigenvalue with zero real
part is a subspace of the space where the order parameter lives. This subspace
will be called critical direction, and usually happens to have low dimension: crit-
ical phenomena concern the empirical averages corresponding to this subspace.

Thus, our analysis follow the following points.
» Locating the critical direction.
» Deciding the correct space-time scaling for the critical fluctuations. This

require an approximation of the time evolution of the order parameter that

goes beyond the normal approximation.

» Proving that the rescaled fluctuation vanish along non-critical directions.
This will be done using the method of “collapsing processes” : it was devel-

oped by Comets and Eisele in [CES8§| for a geometric long-range interacting
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spin system and was previously applied to a homogeneous mean-field spin-
flip system in [Sar07]; we extend this method to diffusion systems as well
(the details are in Chapter 3). This step requires some control on the whole

spectrum of £.

» Determining the limiting dynamics in the critical direction. It will be done
using arguments of perturbation theory for Markov processes, which has
been treated in [PSVTT], and of tightness, applied to a suitable martingale

problem.

In the case the order parameter is infinite dimensional, the spectral analysis of £
may be hard, in particular when £ is not self-adjoint in some Hilbert space. For
this reason, in the first two chapters of thesis we deal with models whose order
parameter is low dimensional. These models are disordered spin systems, where
both the spin and the environment are described by {%1}-valued variables. The
analysis of both critical and non-critical fluctuations is obtained by first diago-
nalizing a low-dimensional matrix, and then proving weak convergence of finite
dimensional processes. For these models we proceed directly to the analysis of
the disordered systems; the homogeneous case is obtained along the same lines,
and it is actually simpler.

In Chapters 3 and 4 we study a model of coupled oscillators, the Kuramoto
model. In this case the order parameter is infinite dimensional even in the ho-
mogeneous case. Both the problem of determining the critical direction and that
of describing the critical fluctuations are considerably harder. For this reason
we first discuss the homogeneous case (Chapter 3), and then the inhomogeneous
one, under some assumptions on the distribution of the disorder. The main tool
here is perturbation theory for Markov processes.

Finally, in Chapter 5, we revisit the Curie-Weiss model. The methods of per-
turbation theory presented in Chapter 3 apply to this model too, and allow to
weaken considerably the assumptions made in Chapter 1 on the distribution of
the disorder.

From a qualitatively point of view, our results indicate that when disorder is
added, spin systems and rotators belong to two different classes of universality,
which is not the case for homogeneous systems. Roughly speaking, in spin sys-

tems the fluctuations of the disorder always prevail in the critical regime: these
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fluctuations evolve in a time scale of order N'/*, while the critical slowing down
for homogeneous systems is N'/2. For rotators, the disorder does not modify the
N'/2 slowing down, and the essential features of the non-Gaussian distribution of
critical fluctuations are as in the homogeneous case. The effect of the disorder is
a sort of “deformation”: the critical direction is modified, and becomes disorder-

dependent.
In some more details, the structure of the thesis is organized in the following way:

CHAPTER 1. We consider the random field Curie-Weiss model. Given a sequence
of i.i.d., symmetric, Bernoulli random variables n, ¢ = (aj)j-vzl is a N-spin system
evolving as a Markov process on its state space {—1,+1}". The dynamics are

specified by the requirement that the rates of transition are of the form

g, — —0, at rate o5 (mig+h;) G,h>0.

We reduce this system to be finite dimensional. A three dimensional order pa-
rameter is necessary to describe the system. Being based on a Large Deviation
Principle, we compute the differential equations which drive its evolution in the
infinite particle limit (McKean-Vlasov equations) and we derive a Law of Large
Number it obeys. Depending on the parameters, we can see there exists phase
transition. Our main results consist in the infinite particle limits of the non-
critical and critical fluctuation processes. For the non-critical fluctuation process
we can provide a Central Limit Theorem and, hence, we show it converges (in the
sense of weak convergence of stochastic processes) to a Gaussian process. With
regard to the critical fluctuation process, the fluctuations are one-dimensional at
the critical point and, in the limit as N — 400, converge (in the sense of weak
convergence of stochastic processes) to a process with constant (but random)
drift given by a Gaussian variable with parameters depending on the disorder.
Differently, the homogeneous critical fluctuations exist on a longer time-scale and
they are non-Gaussian, since they converge (in the sense of weak convergence of

stochastic processes) to the unique solution of a non-linear diffusion equation.

CHAPTER 2. We consider a non-reversible spin-flip system, which is a slight

generalization of the homogeneous one in [DPRST09]. The interesting aspect of
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the latter is its financial application. It models the contagion in a network of N
firms active on a market facing credit risk.

Given a sequence of ii.d., symmetric, Bernoulli random variables 7, (o,w) =
(aj,wj)j.v:l is a 2N-spin system evolving as a non-reversible Markov process on
its state space {—1,+1}*". The dynamics are specified by the requirement that

the rates of transition are of the form

oj — —0, at rate e Boiw;s 6>0,
W — —Wg at rate e 1wk (my+hi) v, h>0.

We reduce this system to be finite dimensional. A seven dimensional order pa-
rameter is necessary to describe this system. Using Large Deviation techniques,
we compute the differential equations which drive its evolution in the infinite
volume limit (McKean-Vlasov equations) and we derive a Law of Large Number
it obeys. Depending on the parameters, we can see there exists phase transition.
We then consider the fluctuation processes. We can provide a Central Limit
Theorem for the non-critical seven-dimensional fluctuation process, but we skip
the proof of this fact since it is completely analogous to the case of the random
Curie-Weiss Model discussed in Chapter 1 and we focus on the infinite volume
limit of the critical fluctuation process, which represents our main result. As in
the previous case, the fluctuations are one-dimensional at the critical point and
converge (in the sense of weak convergence of stochastic processes) to a process
with constant (but random) drift given by a Gaussian variable with parameters
depending on the disorder. Differently, the homogeneous critical fluctuations ex-
ist on a longer time-scale and they are non-Gaussian, since they converge (in the
sense of weak convergence of stochastic processes) to the unique solution of a

non-linear diffusion equation, as proved in [Sar07].

CHAPTER 3. We consider the homogeneous Kuramoto model. It is a system of
mean-field nonlinearly coupled rotators which can be used to describe synchro-
nization phenomena (we refer to [ABPV™05| for a review of the argument).

T = (a:j);v:l is a N-diffusion system evolving as a Markov process with generator
Ly, acting on functions f : [0,27]Y — R as follows:

Lnf(@) = 53 5() + 3 | D sinlon = )| 5 (a).

— xviii —
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It may not be reduced to a finite dimensional problem. In this case, the order
parameter is the Empirical Measure, which is an infinite dimensional Markov
process. Being based on a Large Deviation Principle, we compute the differential
equations which drive its evolution in the infinite volume limit (McKean-Vlasov
equations) and we derive a Law of Large Number it obeys. Depending on the
parameters, we can see there exists phase transition. We state these results for
completeness; they are already known in literature. They can be deduced from the
analogous ones for the inhomogeneous system, studied in [DPdH95] and [dH00].
We use the model as an example by which we explain the methodology for study-
ing the critical dynamics in diffusion systems. The procedure is based on the idea
of “collapsing processes”, introduced in [CES§| and applied to point processes so
far, and on the perturbation theory for Markov processes developed in [PSVT77].
We prove that the critical fluctuations are two-dimensional at the critical point
and converge (in the sense of weak convergence of stochastic processes) to a non-
Gaussian process, which is the unique solution of a cubic stochastic differential

equation.

CHAPTER 4. We consider the random Kuramoto model. Given a sequence of
i.i.d., symmetric, Bernoulli random variables w, z = (z;)}_, is a N-diffusion
system evolving as a non-reversible Markov process with generator Ly, acting on

functions f : [0,27]Y — R as follows:

1 X o2 al 0 & 0
Inf(e) = 5 3 Gl + 3 [+ g Yo sintoe = )| (o)

j=1

Even in this case, we may not reduce the system to a finite dimensional one
and, then, the order parameter is the Empirical Measure. The results about the
McKean-Vlasov limit of the dynamics and the existence of a phase transition are
got by [DPdHO95] and [dHOOQ]. With regard to the critical fluctuations, apply-
ing the method described in Chapter 3, we see that, they are a two-dimensional
process at the critical point and converges (in the sense of weak convergence of
stochastic processes) to a non-Gaussian process, solution of a cubic stochastic
differential equation. This equation looks like the one satisfied by the critical

process of the homogeneous model.
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CHAPTER 5. We resume the random field Curie-Weiss model. We generalize the
environment, precisely we choose it distributed according to an even distribution,
and we approach the study of the critical dynamics using the method developed
in Chapter 3. To guarantee the problem can be analytically dealt with, we may
consider at most discrete, finite random fields. In this way the spectrum of the
linearized operator £ is only discrete. Our main result is that the random drift
appears even in this general case, in which the disorder is not dichotomic, but
may assume a finite number of different values. The critical fluctuations continue
to be one-dimensional at the critical point and converge (in the sense of weak
convergence of stochastic processes) to a deterministic process with constant (but
random) drift given by a Gaussian variable with parameters depending on the

environment.

We decided to devote an entire chapter to the study of the Kuramoto model
without disorder (Chapter 3), since the technique of “collapsing processes” had
not been applied to the analysis of the critical dynamics of diffusion systems
before. So, we first applied the methodology to the simplest case, which is easily
tractable since the operator £ is self-adjoint, and then we have dealt with the

inhomogeneous system.
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Chapter 1

The Random Curie-Weiss Model

n this chapter we consider the Curie-Weiss model with the addition of a ran-
dom site-dependent magnetic field, which acts as random environment. We

want to study the dynamical laws of the model, in the infinite volume limit.
We consider N sites and we associate with each of them a spin and a magnetic
field value, that we choose to be a dichotomic random variable. We start with
a Glauber-type dynamics for the N-particle system, where the spins flip from
time to time to another value with a jump intensity depending on the gradient of
the Hamiltonian felt by the particle. It is an interacting spin-flip system with a
mean-field Hamiltonian that depends on the random medium we introduced. In
this model there is no spatial geometry in the space of the configurations, since it
is subject to a mean-field interaction, meaning that each particle interacts with
all the others in the same way.
Three order parameters (magnetization field) are necessary to describe the sys-
tem. Being based on a Large Deviation Principle, we compute the differential
equations which drive their evolution in the infinite particle limit (McKean-Vlasov
equations) and we derive a Law of Large Number they obey. Depending on the
parameters, we can see there exists phase transition to ferromagnetic states with
constant magnetizations.
Our main results are the infinite particle limits of the non-critical and critical
fluctuation processes. For the non-critical fluctuation process we can provide a

Central Limit Theorem and, hence, we show it converges (in the sense of weak

—3—



Chapter 1. The Random Curie-Weiss Model

convergence of stochastic processes) to a Gaussian process. With regard to the
critical fluctuation process — besides an appropriate scaling of the space — it re-
quire a rescaling of the time in order to keep track of long time fluctuations of the
critical direction (critical slowing down). As a result, only the critical structure
survives the new scaling, and in the limit, the critical fluctuation process is a
lower dimensional process compared with the non-critical one. The fluctuations
are one-dimensional at the critical point, while they are three-dimensional for
non-critical values. In fact, we prove that, when the size of the system grows
towards infinity, two order parameters collapse, while the other converges (in the
sense of weak convergence of stochastic processes) to a process with constant (but
random) drift given by a Gaussian variable with parameters depending on the

magnetic field.

1.1 Description of the Model

Let & = {-1,+1} and n = (nj)é-vzl € ." be a sequence of independent, identi-
cally distributed, symmetric, Bernoulli random variables defined on some prob-
ability space (2, F, P). That is, P(n; = —1) = P(n; = +1) = 3, for any j. We
indicate with g their common law. Given a configuration o = (Uj)é-v:l e SN
and a realization of the magnetic field hn, h > 0, we can define the Hamiltonian
Hy(o,n) : Y — R as

B N N
Hy(o,n) = —=< Y oo, — BhY_n;o0;, (1.1)
2N k=1 =

where o, is the spin value at site j and 7; the direction of the local magnetic field
(of intensity h) associated with the same site. Let 3, positive parameter, be the
inverse of the temperature. For a fixed realization of , think of ¢ — Hy (g, n)
as a Hamiltonian in the components o; with an inhomogeneous mean-field inter-
action parametrized by the components 7;. With the expression “mean-field” we
mean the sites interact all each other in the same way.

Let us define the dynamics we consider. For given n, a(t) = (o;(t))},, with ¢
belonging to a generic time interval [0, 7], where T is fixed, describes a N-spin

system evolving as a continuous time Markov chain on .V, with infinitesimal
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Chapter 1. The Random Curie-Weiss Model

generator Ly acting on functions f : . — R as follows:

N
Lyf(g) = Y e 0t tmlve f(g), (1.2)

=1
where V7f(a) = f(c’) — f(g) and the k-th component of ¢/, which has the

meaning of a spin flip at site j, is

Ui _ oy for k # 7 '

—oy for k=7
The quantity c%(j,g) = ¢ Poi(mMy+hni) represents the jump rate of the spins;
the rate at which the transition o; — —o; occurs for some j. The mean-field

assumption allows us to suppose that the interaction depends on the value of the

magnetization
1 N
my(t) = 5 >_oj(t).
szl g

The expressions and describe a system of mean-field ferromagnetically
coupled spins, each with its own random magnetic field and subject to Glauber
dynamics. The two terms in the Hamiltonian have different effects: the first one
tends to align the spins, while the second one tends to point each of them in the

direction of its local field.

Remark 1.1.1. For every value of 7, (1.2) has a reversible stationary distribution
proportional to exp[—Hy(c,n)].

For simplicity, the initial condition ¢(0) is assumed to have product distribution
A2V with A probability measure on .#, although weaker conditions could be
dealt with. The quantity o;(¢) represents the time evolution on [0, 7] of j-th spin
value; it is the trajectory of the single j-th spin in time. The space of all these
paths is D0, T], which is the space of the right-continuous, piecewise-constant
functions from [0, 7] to .. We endow D0, T'] with the Skorohod topology, which

provides a metric and a Borel o-field (as we can see in  [EKS80]).

1.2 Limiting Dynamics

We now derive the dynamics of the process (|1.2), in the limit as N — 400, in a

fixed time interval [0, T, via a Large Deviation approach. Later, the large time

— 5 —



Chapter 1. The Random Curie-Weiss Model

behavior of the limiting dynamics will be studied. Note that this is not neces-
sarily equivalent to the study of the large N behavior of the stationary measure
exp|—Hy (g, n)]. Roughly speaking, this would consist in letting ¢ — 400 for IV
fixed, and then letting N — +o00. In our approach we reverse the order of the
limits. In certain regimes, the two approaches are equivalent, as some results in
[For09] show. Our dynamic approach has the advantage that allows to deal with

non-reversible model, as we will see in Chapter 2.

So, let (0;[0,T]), € (D[0,T])" denote a path of the system in the time interval
0, T, with T' positive and fixed. If f(o;[0,7]) is a function of the trajectory of
a single spin, we are interested in the asymptotic behavior of empirical averages
of the form

1 N

§ L 0.T) = [ fdow

where {py}n>1 is the sequence of empirical measures

1
PN = 37 22 Vosloming) -

Jj=1

Remark 1.2.1. The measure py is a joint measure of the process and the environ-

ment.

We may think of py as a random element of M (D[0,T] x.¥), the space of prob-
ability measures on D|[0, T] x . endowed with the weak convergence topology.

First, we want to determine the weak limit of py in My (D|[0,T] x.¥) as N grows
to infinity; i.e. for f € C, we look for limy_, o [ fdpn. It corresponds to a Law
of Large Number with the limit being a deterministic measure. Being an element
of My(D[0,T] x .), such a limit can be viewed as a stochastic process, which

describes the dynamics of the system in the infinite volume limit.

1.2.1 Empirical Measure and Large Deviations

Let W € My(D[0,T]) denote the law of the .”-valued process (o(t)).cjo,r] such
that the initial condition ¢(0) has distribution A and the spin signs change with
constant rate equal to 1. By W%V we mean the product of N copies of W,

which represents the law of the N-spin system whose generator is (1.2)) where we

— 6 —



Chapter 1. The Random Curie-Weiss Model

have set cQN = 1; in other words, the law of our system in absence of interaction.
Moreover, we shall write Py the law of ¢([0,7]) = (¢(t))sepo.11, the process with
infinitesimal generator (1.2) and initial distribution A®, for a given 7.

Consider @ € My(D[0,T] x .¥), if I1,Q indicates the marginal distribution of @

at time t, then we have

mi,g = /y2 oll,Q(do, dn)

and for a given path o([0,7]) € D[0,T], we define

F(Q) = / { /O ' (1 . e‘ﬁ“(”(m%m’m)) dt
_ g [U(T)mgTQ — o (0)mf, o + hn (o(T) — a(o))} }dQ. (1.3)

Remark 1.2.2. The function F(Q) is continuous and bounded.

We can obtain a representation of P]% in terms of py, as follows:
Lemma 1.2.1. For a fized realization 1,
dPy
AW ®N
where, for Q € My(D[0,T] x .¥), F(Q) is expressed by (|1.3]).

(e([0,TT)) = exp[NF(pn(a([0,T]),n)) + O(1)]

Proof. The proof is essentially an application of the analogous of the Girsanov’s
Formula in the case we work with stochastic integrals with respect to point pro-
cesses (see [Bré81] or [LSO01]). This formula clarifies the fact that an absolutely
continuous change of probability measures is described by its Radon-Nikodym
derivative in terms of the change of the intensities of the point processes in-
volved.

Let (V7 (4))72, be the multivariate Poisson process counting the jumps of o, for

j=1,...,N. If we read aj(t—)zsligl_a]( s) and m; () = lffl_mp (s

) it yields

Py

N T o
—Boj(t=)|m> .\ +hn; o .
dW®N< a([0,T])) = exp{z [/0 loge =’ ( PN (t=) Ua)d/\/'f(j)

7j=1
‘/ ( e pN‘”%nj)—l) dt]}

— 7 —



Chapter 1. The Random Curie-Weiss Model

but ¢ has no simultaneous jumps W®"-almost surely, therefore

N T —Bo; m< ;
_ eXp{Z [/0 (1 e B ](t)( pN(t)+h77J)> dt

=5 [ oo (w0~ o) + i) vz

and because / NZdpy < +oo almost surely with respect to W&V,

N T _Bos m< )
_eXp{Z [/0 (1 e B ](t)( pN(t)+h7)J)> dt

Jj=1

5 [ o) (i + ) vty + o )|

T B (1) [mZ ,
:exp{z [/ (1—6 ﬁj(t)< ”N“)Jrhm))dt
j=1L70
/6 ag g
-5 ("J(T)mpN<T> =5 (0)m,0)

+ hy; (05(T) — Oj(0)>> + 0(&)] }

and this leads us to the expression (|1.3]) for F. The last equality is due to a general
result for reversible spin-flip systems we can find in [DPdH96], Lemma 3. [

r

Definition 1.2.1. Let 2 bea PoIislﬂspace with distance d : 2" x 2" — [0, 4+00).
The function i : 2~ — [0, +0o0] is called a rate function if i # oo and i is lower semi-
continuous with compact level-sets (that is, for every k > 0, the set {z : i(z) < k}

is compact in the weak topology).

r

Definition 1.2.2. Let 2 be a Polish space with distance d : 2" x 2~ — [0, +00).
A sequence of probability measures { 2, },,>1 on 2 is said to satisfy a Large Deviation
Principle with rate function ¢ : 2~ — [0, 00| if for 0, ¢ C 2 respectively open

and closed set for the weak topology, it yields

lim inf 1 log Z,(0) > — inf i(z) (1.4a)

n—-+oo n €0

'We recall that a Polish space is a complete and separable metric space.

— 8 —
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lim sup — loggz (¢) < —inf i(x). (1.4Db)

n—+oo T Tz€EC

Lemma [1.2.1] allows us to deduce a Large Deviation Principle for py, from which
we can derive its asymptotic behavior as N — +o0.
Define

Py()i= [ n(dn)Ph(pn € ).

which is an element of M;(M;(D[0,T] x.#)) and represents the law of py under
the joint distribution of the process and the environment.
If Q € My(D[0,T] x .¥), we denote by

fdQlogd 1f Q<W®u and logdw(m) e LY(Q)

00 0therw1se

HQW @ p) = {

the relative entropy between @) and W & p.

Remark 1.2.3. Let us consider W @ i fixed. Then the relative entropy H (-|W ® )
is a nonnegative, convex function on M;(D[0,T] x .¢) and H(Q|W ® u) = 0
if and only if @ = W ® p. Besides, it is lower semi-continuous on D[0, 7] x .
endowed with the weak topology. (We refer to [DZ93], Chapter VI, Section 2,

for complete statements and proofs.)

Proposition 1.2.1. The laws {Pn}n>1 of px (under the joint distribution of the

process and the medium) obey a Large Deviation Principle with rate function
1Q) = HQIW @ 1) - F(Q). (1.5)

Proof. The key tools are Sanov’s Theorem and Varadhan’s Lemma (we refer re-
spectively to Theorem 3.2.17 in [DS89] and Theorem 2.2 in [Var84]). We give

here the statements for completeness and convenience.
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r

Theorem 1.2.1 (Sanov). Let & be a probability measure on the Polish space 2
and let P, € M{(M1(Z)) be the distribution under 2, of the random probability

n

>4,

=1

Pn (i) =

with z = (x1,...,x,) € Z . Moreover consider the relative entropy with respect
to &, H(:|2?). Then, H(-|Z) is a good, convex rate function on M;(Z") and
{ P, }n>1 satisties a Large Deviation Principle with rate function H(-|2).

r

Lemma 1.2.2 (Varadhan). Let {#,},>1 be a sequence of probability measures in
M, (Z) satisfying a Large Deviation Principle with rate functioni : & — [0, 400].
Then, for every bounded function f : & —— R which is continuous on the set
{z :i(z) < 400}, it holds

lim igofi [ explnfld?, > — inf[f(z) — i(2) (1.6a)
l;rgigopi %exp[nf]d@n < — ;relé[f(x) —i(x)]. (1.6b)

|

Denote by Ry the distribution of py under WV x u®V: in other words, if
A € B(D[0,T] x .#) is a Borelian set, then Ry(A) = (W®N x u®N)(py'(A)).
Under Ry, the pairs (0,0, T, n;) are independent, identically distributed random
variables.

Now, because of the result proved in Lemma [I.2.1] we have

Pu() = [ 1 () Ph(pn(del0, T],m) € -)

dP3
= / &N (dn) / W (dal0, T)) =25 (@0, T o asto rrme

= /d(W®N x uN) exp[NF(pn)]1ipne

— 10 —
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— [ Ru(dQ) expINF(Q)]1qe 5 (1.7)

with @ = py. The last identity (1.7) means that

dPn

Ro(Q) = e[ NF(Q)]. (1)

Since D[0,T] x .7 is a Polish space, by Sanov’s Theorem (Theorem we can
deduce that {Ry}y>1 satisfies a Large Deviation Principle with rate function
H(QIW ® ). Therefore, we can apply Varadhan’s Lemma (Lemma [1.2.2)) to
obtain an upper bound of type (1.4b). In fact, if C € M (D[0,T] x .¥) is a

closed set,

1 1
limsup — log Py (C) = limsup — log [ Ry (dQ) exp[NF(Q)|1igccy
N—+o0 N N—+o00 N

< SuplF(Q) — HQIW © 1] =  jnf 1(Q).
QeC €

where the definition of (@) is in (1.5)). The lower bound of type (1.4al) is proved
similarly.

[ |
1.2.2 McKean-Vlasov Equation

Given @ € M (D[0,T] x.¥) and n € ., we can associate with () a Markov pro-
cess on . with law P™?_ initial distribution A and time-dependent infinitesimal

generator
£19 f(o) = e " Miua N7 f (o),

acting on f: . — R.
Proposition 1.2.2. For every QQ € M;(D[0,T] x .#) such that 1(Q) < +o0,
1(Q) = H(Q|PY), (1.9)
where P¢ € M,(D[0,T] x .7) is defined by
P?(dol0,T], dn) = P"(dol0, T]) u(dn).
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Proof. First we need to verify that the following representation for F'(Q)) (defined

in (1.3)) holds

- / Q(do [0, T, dn) log ape (e[0,77).

aw

We begin by observing that, since by assumption /(@) < 400, we have also
H(QIW ® p) < +00 and so, by the entropy equality (see (6.2.14) in [DZ93]), it
follows that @ belongs to the set {Q € M(D[0,T] x .¥) : [NZdQ < 400, with
NY the process counting the jumps of o}, which implies the integrals below are

well defined. Using again the Girsanov’s Formula for Markov Chains, we get

/ dQ log dgv’Q (0]0,77) = / l /0 ' (1 _ ¢~ Bo)(f oMl Qdadn) +hn)> dt

[ olt-) ([ oM Qtdor dn) + hn) df\ff] dQ

_ / [/T (1 o Bo)([ oTQdodn) +lm)> gt

+3 / < / oTLQ(do, dy) + hn> dj\/;’] dQ

[ ey

+8 [ (t) (mfyg + ) cw;’] 1Q = F(Q)

where the last equality holds thanks to the reversibility of the system. We refer

again to [DPdH96], Lemma 3. By combining what we obtained, we can compute

dpnQ
AW

1Q) = HQIW & ) = F(Q) = [ dQlog £ — T / dQlog

= [ d@uos o = H(@IPY).

_ /dQlog =

PnQ®
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Theorem 1.2.2. Suppose that the initial distribution of the Markov process (a(t))i>o
with generator is such that the random variables (;(0))IL, are independent
and identically distributed with law X. Then the equation I(Q) = 0 admits a
unique solution Q. € My(DI[0,T] x .#), such that its marginals ¢/ = 11,Q7 €

M, () are weak solutions of the nonlinear McKean-Vliasov equation

Gr=L (te[0.7) ne )
(1.10)
@ = A
where, for all the pairs (o,n) € /2, the operator L" acts
L] (o) =V’ [6’80<mgﬁhn> qf(o)] (1.11)

and q; is defined by
a(o) = | a(@)u(dn).
Moreover, with respect to a metric d(-,-) inducing the weak topology, py — Q. in

probability with exponential rate, i.e. Pn{d(pn,Q«) > €} is exponentially small
in N, for each ¢ > 0.

Proof. We know that if the relative entropy between two measures is zero then
the two measures must be equal (see Remark . By this property, from
we have I(Q) = 0 translates into Q = P?. Let us suppose Q. is a solution
of this last equation. Then, in particular, for a given 7, ¢/ := IL,Q"7 = I, P9~
The marginals of a Markov process are solutions of the corresponding forward
equation that, in this case, leads to the fact that ¢/ is a solution of . This
differential equation, being an equation in finite dimension with locally Lipschitz
coefficients, has at most one solution in [0,7]. Since P?* is totally determined
by the flow ¢, it follows that equation ) = P? has at most one solution. The
existence of a solution derives from the fact that /() is the rate function of a
Large Deviation Principle and therefore it has to have at least one zero: indeed,
by the bound of type with O = My(D[0,T] x ), we get infgeo I(Q) = 0.
Since I is lower semi-continuous, it attains this null value and so this infimum is

actually a minimum.

It remains to prove the Law of Large Numbers for py: with respect to a metric
d(+,-) inducing the weak topology, pn Noteo, Q. in probability with exponential

rate, i.e. Py{d(pn, Q) > €} is exponentially small in N, for each £ > 0.

— 13 —
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Let Q. be the unique solution of equation @ = P and let Bg, be an arbitrary
open neighborhood of Q.. By the Large Deviation upper bound (type (1.4b))),
we have

1
lim sup — log P Bp,) < — inf I <0,
im sup 7 log v(py ¢ Bo.) < — inf 1(Q)

where the last inequality comes from the lower semi-continuity of I, the com-
pactness of its level-sets and the fact that 1(Q) > 0 for @ # Q.. Indeed,
if infoep, 1(Q) = 0, then there exists a sequence (Q,), ¢ Bg, such that
Q) 170, (). By the compactness of level-sets, the sequence (Qn)n admits
a subsequence (Qy, )n, converging to @ ¢ Bg., when ny — +o0o. Thanks to the
lower semi-continuity of I, it follows I(Q) < liminf,, 4 I(Qyn,) = 0, which
contradicts 1(Q) > 0 for @ # Q.. Thus, from the above inequality, we deduce

that there exists a positive constant A such that
Px(pn ¢ Bo.) < Ae” " ™eena. 119,

It means that, if we denote with d(-, -) any metric which induces the weak topology
on My, for every ¢ > 0, the probability Py(pny ¢ Bg.) = Pn{d(pn,Q.) > €}
converges toward zero exponentially fast with respect to N and this concludes

the proof of the Law of Large Numbers. [ |

1.2.3 Stationary Solution(s)

The equation describes the behavior of the system governed by generator
in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation. We recall that to be t-stationary solution
for ((1.10)) means to satisfy the equation L£"7¢" = 0 for every t.

First of all, we proceed to reformulate the “original” McKean-Vlasov equation

(e

(L.10) in terms of mg, mg, and m], defined as follows:

qt ? qt
1
my, =mil =5 > > n4(9), (1.12)
ces nes
(o (oa 1
mg, = my =5 Z Z oql(o) = Z oq(o) (1.13)
ces nes ces
and
o g 1
mg = mf =1 5 S angie), (114)
ces nes

— 14 —
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where ¢, and ¢/ have the meaning explained in Theorem We introduce these
expectations because the probability measure ¢, on .#? is completely determined
by them.

Lemma 1.2.3. FEquations (1.10)) can be rewritten in the following form:

m{ =0
my = —2mJ cosh(Bh) cosh(Bmf) — 2m7" sinh(Bh) sinh(Bmy)
+2 cosh(3h) sinh(Bm?) (1.15)
my" = —2m? sinh(Bh) sinh(m?) — 2m{" cosh(Bh) cosh(Bm?)
+2sinh(Sh) cosh(BmY) ,

with initial condition m{ = m?/w) =0, m§ =my, ,) and mg" =m(y .

)

Proof. By definition and Theorem we deduce
my =) 0q(0) ZZU% ZZUU

ceS cre/ ney ae/ ney

+ Z Z O_va[ —Bo( +hn)q;7<0)}

cre/ ney

- Z 3 U[eﬁa(mt i) g () —e=BemT+hn) g1 (0)}

cre/ ney
=1- —qy (U)

Z S gefotmithn 5™ N g cosh(Ba(my + hn))gi (o)

ces nes ceS nes

1\3 \

Z o N Mo — NN g cosh(Bhon) cosh(Bam? )g) (o)

UEV nes ocs nes
— Z Z o sinh(Bhon) sinh(GBom{ )q/ (o)
ces nes

=2 cosh(Bh) sinh(Bmy) — cosh(Bh) cosh(Bmy) > > o ¢ (o)

ceS nes

— sinh(Bh) sinh(8mg) 3 3" ongl (o)

ces nes

— 15 —



Chapter 1. The Random Curie-Weiss Model

=2 cosh(Bh) sinh(Bmy) — 2m{ cosh(Bh) cosh(Sm] )
— 2my " sinh(Bh) sinh(fmy) ,

where the last equality holds thanks to (1.13|) and (1.14). So the first equation
of (1.15)) is proved. Similarly, we can obtain the other ones. [ |

Remark 1.2.4. Notice that m; = 0 for every t; it is a static variable.

Regarding to Remark [1.2.4] any equilibrium solution of the system ((1.15)) is of

the form

*

mJ = ; [tanh(5(mg + h)) + tanh(B(mJ — h))] (1.16a)

1
mJ" = 5 [tanh(B(mJ + h)) — tanh(B(mJ — h))] . (1.16Db)
To discover the presence of phase transition(s) (multiple equilibria) and the sta-
bility of equilibria, it is sufficient to study equation (|1.16al), since mZ" = m?7(m?)

and hence lim m;” = mJ” when lim mj = mJ.
t——+o00

t—+00

Figure 1.1: Phase diagram

The phase diagram is qualitatively drawn in Figure There are three phases,

corresponding to 0, 1 and 2 ferromagnetic solutions respectively. The continuous

— 16 —
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separation curve is

h=h(p) = ;arccosh(\@) g el,+00), (1.17)

while the dotted one is obtained numerically and it is due to the fact that the

function .
s S [tanh(50m + )+ tanh((m — 1)
is not always concave. The two curves coincide for § € [1,3/2] and separate at
the “tricritical” point (3/2, h(3/2)).
Theorem 1.2.3. Consider the system of equations (1.16a)) and (1.16b)).

(a) If (B,h) belongs to the region 0 of Figure then the only solution is
(0, tanh(Bh)).

(b) If (B, h), with B € [1,4+00), is below the curve (1.17)), then there are three
solutions: (0,tanh(Bh)), (m., mZ"(my)) and (—m,, mI"(m,)), where m, is

the unique positive solution of (1.16al).

(¢) If we choose the parameters above the curve (1.17) and h is small enough,
in other words (3, h) belongs to the region 2 of Figure then two further

solutions arise.

Proof. We refer to [DPdH95] for the proof concerning the phase diagram of the
system and the stability of its equilibria. [ |

We are going to focus on the critical regime corresponding to the critical values
for the parameters 3 = cosh?(3h), meaning that we are on the curve (I.17)). For
these values of the parameters, the equilibrium (0, tanh(Sh)) is neutrally stable
for the linearized system. In fact, denoting by
Vi[-1,4+1] x [-1,+1] — R?
(21, 22) — (Vi(z1, 22), Va(21,22))
with
Vi(z1, xg) := —2xq cosh(Bh) cosh(fx1) — 2x9 sinh(Sh) sinh(Fz)
+ 2 cosh(Gh) sinh(Bxy)

— 17 —
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Vo(z1, xg) := —2xq sinh(Sh) sinh(fz1) — 2x4 cosh(Sh) cosh(Fz4)
+ 2sinh(Gh) cosh(Bzxy)

the vector field of the system ([1.15]), we obtain the linearized matrix evaluated

in the stationary solution is

3 — cosh?(3h)
cosh(Gh)

DV (0, tanh(Bh)) = 2
0 — cosh((h)

Its eigenvalues are \; = 2,3—;;;17}(1;%@ and Ay = —2cosh(fBh); s < 0 for every value

of B, h and instead it is easy to see that
» if 3 < cosh?(Bh), then A\; < 0 and thus (0, tanh(Sh)) is linearly stable;

» if 3 = cosh®(3h), then A\; = 0 and thus DV(0,tanh(3h)) has a neutral

direction;

» if 3 > cosh?(Bh), then A\; > 0 and thus (0, tanh(3h)) is a saddle point for

the linearized system.

1.3 Normal Fluctuations and Central Limit Theorem

Thanks to Theorem we established a Law of Large Numbers for the empir-
ical measure py: py — Q.. We are going to analyze the Normal fluctuations
around the limit @),. We are also interested in the N-asymptotic distribution of
PN — Qs

We use a weak convergence-type approach based on uniform convergence of the
infinitesimal generators. It is deeply explained in [EK86] and the result we
need can be summarized in the following theorem, whose proof can be found in
[EKS86], Chapter 4, Corollary 8.7 .

— 18 —
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r

Theorem 1.3.1. Let X,,(t) be a sequence of Markov processes with values in Z,,
and denote by £, the corresponding infinitesimal generators, defined on D(.%,).
Moreover, let £, defined on D(.Z), be the infinitesimal generator of another Markov
process X (t) with values on 2, and let € be a core for L.
Assume that for every n Z,, C 2" and each function in € is an element of D(.%,,),
when restricted to Z,,. If the condition

lim sup | Z,(f(z)) = Z(f(2))] =0 ()

n—=+00 4 25,

holds for every f € ¢ and X,,(0) converges to X (0) in distribution, then the sequence

of processes X,,(t) converges to the process X (t) in distribution.

|

Let f: . — R be a function and define px(t), the marginal distribution of py
at time ¢, by

g

We have m¥(t) = m, - For each fixed ¢, pn) is a probability on & and so,
by the considerations which led as to introduce the expectations (1.13)), (|1.14)
and ((1.12)), we can proceed similarly saying py ) is completely determined by the

%N ()
(P (t))seo.) is a three-dimensional flow. A simple consequence of Theorem [1.2.2]

triple (mﬁ (1) ™M

on mig(t)) and seeing it as a three-dimensional object. Thus

is the following convergence of flows:

(PN (8))iefo.r) — (@)teo,1) + (1.18)

where the convergence is meant in probability, with respect to the weak topology
for measure-valued processes. Since the flow of marginals contains less informa-
tion than the full measure of paths, the Law of Large Numbers in is weaker
than the one in Theorem [1.2.2] However, the corresponding fluctuation flow

(Nl/Q(PN(t) - Qt))te[o,T]

is also a finite-dimensional flow, whose limiting distribution can be explicitly

characterized.

— 19 —
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Lemma 1.3.1. Let (X;)i>0 be a continuous time Markov chain on a finite state
space S, admitting an infinitesimal generator L. Let g : S — S’ be a given
function, where S’ is a finite set. Assume that for every f: S — R, L(fog) is
a function of g(x), i.e. L(fog) = (K f)og. Then this last identity defines a linear

operator K ; moreover, g(X;) is a Markov process with infinitesimal generator K.

Proof. Obviously K is linear. Observing that

e (fog)=("f)oy, (1.19)

we can conclude. In fact, X; is a Markov process with generator L, then we have

E[(f o 9)(X)|Xo = 2] = ¢"(fog)(x)

= B[f(9(Xe))|g9(Xo) = g(z)]

K

and the last inequality holds since e is a Markov semigroup and L(f o g) =

(K f)og. Hence, g(X;) is a Markov process with infinitesimal generator K. W

Lemma 1.3.2. The stochastic process (mgN(t), m%N(t), mig(t)) is an order param-

eter for the model; it means its evolution is Markovian.

o (t)
the expression of the infinitesimal generator Iy driving its dynamics. We apply

Lemma [[.3.1]

The process {a(t)}+>0 is a continuous time Markov chain on the finite state space
N with infinitesimal generator Ly, defined by ([1.2). Consider the function

Proof. To prove that (mgN(t), m mig(t)) is a Markov process, we determine

C: N — [—1,+1]3

o Qﬂ)
9

n n
g (mPN7 mpN7 Mpy

it plays the role of g in Lemma [1.3.1} then, for every ¢ : ¥ — R, we have

Ly(¢o() = (Kng)o(

— 20 —
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and ((o) is a Markov process with generator Ky given by

ICN¢(m%N,m%N,m%£): > A, (7, k)| e Py tkh)
jkes

2 4y 2 L .
’ [¢<mZN7mZN _]N7mplg _jkN> - ¢(mZN7mpN7mP£)] ) (120)

where A, (j, k) is the set of all pairs (o;,7,), i € {1,..., N}, such that o, = j,
n; = k, with j, k € .; hence

‘ N Yy I
‘APN(j7k)’ = a [1 + km%N +ijN +]]€mp1ﬂ . (1.21)
[ |

Theorem 1.3.2. In the limit as N — 400, the three-dimensional fluctuation
process (ry(t), zn(t),yn(t)), defined by
n
rn(t) == Nl/Qm;N(t)
ry(t) = N2 (m%N(t) - mf)

. 1/2 n o
yn(t) == N / (mpN(t) - mt”) )
converges (in the sense of weak convergence of stochastic processes) to a limiting

three-dimensional Gaussian process (r(t),x(t),y(t)), which is the unique solution

of the linear stochastic differential equation

dr(t) =0
dr(t)| x(t) dB(t) (1.22)
dy(t)] =2 A1(t)dt + 2A5(t) J(0) dt + D(t) 1By ()|

where By, By are independent Standard Brownian motions, € is a Standard

Gaussian random variable, Ai(t), As(t) and %D/(t) are respectively

sinh(8h) cosh(BmY?)
cosh(h) sinh(3mY?)

(8 — 1) cosh(Bh) cosh(Bm?) — Bmg cosh(Bh) sinh(BmZ) — Bm] "sinh(Bh) cosh(BmZ) — sinh(Bh) sinh(B8mg)

(8 — 1) sinh(Bh) sinh(B8m?) — Bmg sinh(Bh) cosh(8m) —Bm] "cosh(Bh) sinh(8m) — cosh(Bh) cosh(Bm)
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7mgch(ﬂh)sh(ﬁm‘t’)fm:nsh(ﬁh)Ch(ﬂm?)«l—ch(ﬂh)ch(ﬂmf) 7m;’sh(ﬂh)ch(6m'z)fmgnch(ﬂh)sh(ﬂm‘t’) + sh(Bh)sh(BmY)

—mfsh(ﬁh)ch(ﬁmt”)—mf"ch(ﬁh)sh(ﬁmf) + sh(Bh)sh(BmY) —mfch(Bh)sh(ﬁmta)—mf"sh(Bh)ch(Bmf)ﬂl)(ﬁh)ch(ﬁmt”)

and (r(0),2(0),y(0)) has a centered Gaussian distribution with covariance matriz

1 0 0

0 1—(m‘(’/\7#))2 —m‘(’)\’“)m?ﬁﬂ) : (1.23)
o an on 2

0 =m My L= (m()°

Proof. We know that by the previous Lemma the infinitesimal generator Iy
drives the evolution of (mgN, mZ m%]g) as in ({1.20]). To use this information, we

PN

operate the following change of variables

n n
My — () = NYV2mg
My — an(t) =N i (miv(t) - m;’)
an 1/2 an o
Moey — Yn(t) =N ! (mpN(t) N mtn) '

Notice that (ry(t), xn(t),yn(t)) is obtained from (mgN(t), m%N(t), mig(t)) through

a time-dependent, linear and invertible transformation; so, let us consider its

inverse p(ry(t), zn(t), yn(t)). Then we have

v = P(ra(t), ox(t), yn(t)) —/ Kn(p(rn(s), en(s), yn(s)))

+ 0s0(rn(s), xn(s),yn(s))] ds,

where MY is a martingale and ¢(rx (t), zx(t), yn(t)) has to be seen as a function

of m%N(t), m,. and mi]g(t). Now, if we consider ¢(ry(t), zn(t),yn(t)) as a func-

%N(t
tion of ry(t), zn(t) and yn(t), then (ry(t), zn(t),yn(t)) is itself a time inhomo-

geneous Markov process, whose generator Hy; acting on functions ¢ : R® — R,



Chapter 1. The Random Curie-Weiss Model

© € C3, is given by

Hyup(r,z,y) = Kno(r,z,y) + 0pp(r, z,y) =

: =B ( <7z +m{ +kh .2 L2
= A;&JAN(%]{:)‘G (N1/2 )l90<7’75€ — Iz Y —J/le/Q>
IRE

— o(r, z, y)] — NY20m] o, (r,z,y) — NY20mg o, (r,2,y)
— N2 o, (r,2,y),

where

+ 5k

) N
An (i) = [1 k

T +jm?+jkm?"];

N1/2 N1/2 N1/2

we develop ¢ around (r, x,y) by a Taylor expansion stopped at second order and

the exponential function around 0 at first order:

(m . P 1
Hyup(r, o, y) = Z |An(J, k t+kh)<1—]Nl/2+0 Nz )

jkes

o2 . 2 2 2 4 1
: —]W%c—ka¢y+ﬁ¢xx+ﬁ<ﬂyy+kﬁ%:y+0 N

— N2 ou(x,y) — N2l o, (z, y)

N1/2
= e [ —Amg (1 - ]\€1x/2 + 0(]\711/2)) ( — 2 cosh(Bh)

+ sinh(Bh) — cosh(Gh sinh(Gh)

2r
N1/2 N1/2 N1/2

— 2m{ cosh(Bh) + 2m]" sinh(Bh

)+
)
+ e (1 + N1/2 (N1/2>> (2 cosh(fh)
)~
)-

sinh(Bh) — cosh(Gh sinh(Gh)

pl8
N1/2 N1/2 N1/2
— 2m? cosh(Bh) — 2m{" sinh(Bh) | — 2NY/? mtl

NY2[ ., Bx 1 )
+ @y 5 le s t<1—N1/2+O<N1/2>><281nh(ﬁh)

— 23 —
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2y cosh(Bh)

2r x
sinh(Sh) — N2

T N2 N1z
+ 2mg sinh(Bh) — 2my" COSh(ﬂh))

4 7 (1 + ]\%{;2 + 0<Nb2>> (2 sinh(Bh)

cosh(fBh) +

+ cosh(fGh) —

2r
N1/2

1 - Bx 1
—Bmy .
+ Pua 3 [e (1 N2 + 0<N1/2> (2 cosh(Bh)

2r T 2y
~ N2 sinh(Gh) + N2 cosh((Gh N2 sinh(Gh)
+ 2mg cosh(Bh) — 2my" sinh((Gh)
Bme Bz 1
+e (1 + N2 + O<Nl/2 ) <2 cosh(Sh)
2 % %
+ N2 sinh(8h) — N/ cosh(Bh) — N1 sinh(Bh)

1| _gme Bz 1
—Hﬁnyle pms (1 ~ N +0<N1/2> (2(:osh(ﬁh)

2r x 2
~ Nz sinh(Gh) + N2 cosh(Gh) — N1y/2 sinh(Gh)
+ 2mg cosh(Bh) — 2my" sinh(Gh)
Bme Bx 1
+e (1 + e + 0(]\71/2 ) (2 cosh(Sh)
2r 2z 2
+ Nz sinh(Bh) — N2 cosh(Bh le/2 sinh(Bh)

)
)
)
)
)
)
)
— 9m? cosh(h) — 2mZ” smh(ﬁh)ﬂ
)
)
)
)
)
)
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+ 0y leﬁmi’ (1 — ]511/‘2 + O<N11/2>> (— 2sinh(5h)

+ 2r cosh(fGh) — sinh(Gh) +

N2 cosh(5h)

N1/2 N1/2

— 2my sinh(Bh) — 2m{" cosh(Bh

)
)
+ efm? (1 + N1/2 <N1/2>) (2 sinh(3h)
) —
)

2r
+ N/ cosh(Bh) — N1/2 sinh(Bh cosh(Bh)

— 2my sinh(Bh) — 2m7" cosh(Bh 1

N1/2

+o(1)
and, recalling equations ((1.15)), it yields

= 2@, |rsinh(Bh) cosh(Sm]) — x cosh(Sh) cosh(Fmy)

— ysinh(Gh) sinh(Bm]) + Bz cosh(Fh) cosh(fm])
fra fBa?

+ N2 sinh(Bh) sinh(Smy7) — N2 cosh(Bh) sinh(Bmy)
- 1615/2 sinh(Bh) cosh(Bm7) — Bzm{ cosh(Gh) sinh(Bmy)

— Bam{" sinh(Bh) cosh(Bmy)

+ 2¢p, |7 cosh(Bh) sinh(Bm]) — x sinh(Bh) sinh(8m])

— y cosh(Bh) cosh(fm{) + B sinh(Bh) sinh(Bmy)
pra Ba?

+ Nz cosh(Bh) cosh(pmy) — N2 sinh(Bh) cosh(Bmy)
_ ]633/2 cosh(Bh) sinh(Bm7) — Bxm{ sinh(Sh) cosh(Gm])

— Bxm{" cosh(Bh) sinh(Bmy)

— 25 —
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N1/2 sinh(5h) sinh(5my)

cosh(Bh) sinh(Bmy7) —

+ 20,4 [cosh(ﬁh) cosh(fmy) +

z Y
~ N2 N3 sinh(Bh) cosh(Bmy)

— m{ cosh(Bh) sinh(Bm{) — my" sinh(Sh) cosh(ﬂmf)]

N1/2 sinh(Gh) sinh(Gm])

cosh(Bh) sinh(Smy7) —

+ 204y lcosh(ﬁh) cosh(Bm{) +

x y
~ iz N1z sinh(Bh) cosh(Bm7)

— m{ cosh(Bh) sinh(Bmy) — my" sinh(Sh) cosh(ﬁmf)]

+ 4y [sinh(ﬂh) sinh(fmy) + cosh(Bh) cosh(Bmy)

N1/2

sinh(Bh) cosh(Bmy7) — cosh(Bh) sinh(Bm7)

x Y
T N2 N2
— m{ sinh(Gh) cosh(Bmy) — my" cosh(Bh) sinh(ﬁmf)]

+o(1)

Now, as N — 400, thanks to the Central Limit Theorem for independent
identically distributed random variables, the variable r converges to 7, which is

a Standard Gaussian random variable.

N——+oo

Moreover, Hy o f (ry 2, y) =525 H, f(r, 2, ), where:
i, .0) =2, o (9= ) cosh(50)cosh() ~ s cosh(Gm) s )
G sinh(h) Cosh(ﬁm?)> — ysinh(5h) sinh (5
+ A sinh(Bh) cosh(gmg)]

+2¢y [x((8 = 1) sinh(Bh) sinh(Bmy) — Bm¢ sinh(Bh) cosh(Fm)
—0Bm{" cosh(Bh) sinh(ﬂmf)) — y cosh(Bh) cosh(Bmy)

— 26 —



Chapter 1. The Random Curie-Weiss Model

+ cosh((h) sinh(ﬂmg)}

+202 [ — m{ cosh(Sh) sinh(Gmg) — m7" sinh(5h) cosh(Smy)
+ cosh(Sh) cosh(ﬁmf)]

+2¢,, [ — m{ cosh(Bh) sinh(Gmy) — my" sinh(Bh) cosh(fmy)
+ cosh(fh) cosh(ﬁmf)]

+4pyzy [ — m{ sinh(Bh) cosh(Bmg) — m{" cosh(Bh) sinh(5my)
+ sinh(Bh) sinh(Bmy)]

The just found generator ‘H; is the infinitesimal generator of the linear diffusion
process which corresponds to the unique solution of . In view of Theorem
1.3.1] we complete the proof if we show that (ry(0),zx5(0),yn(0)) converges in
distribution to (r(0),2(0),y(0)), when N — 400, and if we can prove the
analogous condition of ().

The first statement is implied by the Central Limit Theorem for independent,

N
=1

(77]-);\’:1 are independent with common law A and p respectively and ([1.23)) is the

covariance matrix under the joint measure (A, p) of (o(0),7(0)).

identically distributed random variables: in fact, by hypothesis, (0,(0));_; and

In regard to (ED, we need to overcome the fact that the generators Hy; and H,
we are dealing with, for which we need convergence, are time-dependent. The
trick works as follows: we consider time as an additional variable. It means
we introduce another process 7(t) := ¢ (which is deterministic and therefore
clearly Markovian) and we substitute the unknown vector (r,z,y) with the new
one (r,z,y,7). In this way, Hyp(r,z,y) = Hne(r,z,y,7) and Hep(r, z,y) =
Hep(r, z,y, 7) and the problem is solved.

Moreover, for ¢ € C3 and (r,z,y,7) € [—1,+1]* x [0, T] (which plays the role of
Z,, in Theorem [1.3.1)), it is obviously true that

lim sup |HN<,0(7',x,y,7') —HQO(T,.T,y,T)’ = O?

N800 (ryym)
because the difference between the generators is of order o(1) with respect to
N. [

— 27 —



Chapter 1. The Random Curie-Weiss Model

Remark 1.3.1. The drift terms s A;(t)dt in (1.22)) marks the relevant difference
with respect to the homogeneous case. The survival of this term in the critical
regime is responsible for the dynamics of critical fluctuations, as shown in next

section.

Theorem guarantees that the distribution of (xy(t), yn(t)) is asymptotically
Gaussian for every ¢ > 0 and provides a method to compute the limiting covari-
ance matrix. Indeed, if we denote by ¥, the covariance matrix of (z(t),y(t)),

then we can verify

Proposition 1.3.1. The covariance matriz ¥; solves the linear Lyapunov equation

o 22 A0 + DD, 12

()

y(®)
row vector X'(t) := (x(t),y(t)). Thanks to (1.22)), we know these vectors have

the following stochastic differentials:

Proof. We consider the column vector X (t) := ) and its transpose, the

dX () = 2A,(t)dt + 2A,(1) X (t)dt + D(t)dB(t)
AX'(t) = 24, (t)dt + 2X'(t) A ()dt + dB'(£)D'(t),

where dB(t) is the column vector whose components are the independent, Stan-
dard Brownian motions appearing in the statement of Theorem[1.3.2] Using It0’s

Formula, we get

A(X (X)) = X(0)dX'(t) + dX ()X (t) + dX (£)dX(¢)

= X (D)[24](t)dt + 2X" (1) Ay(t)dt + dB'(t)D'(1)]
+[2A,(B)dt + 2A4,(8) X (t)dt + D(t)dB(1)| X' (t) + D(t) D' (t)dt

=2X(t)AL(t)dt + 2X () X' () Ay(¢)dt + X (¢)dB'(t) D' (t)
+ 2A,(6) X' (t)dt + 2A5(6) X () X' (t)dt + D(t)dB(t) X' (t)
+ D(t)D'(t)dt

— 28 —
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and thus, if we take the expectation, we obtain

d¥, = dE[X () X'(t)] = 2E[X (t) X' ()] A5 (t)dt + 2A5(t) E[X (1) X' ()]
+ D(t)D'(t)dt

= 25, AL (t)dt + 2A5(¢)Xdt + D(t)D'(t)dt,

since we have E[X(t)dB'(t)D'(t)] = E[D(t)dB(t)X'(t)] = 0, for the properties
of Brownian motion, and E[X (t)A](t)] = E[A:(t)X'(t)] = 0, because the vectors
X(t) and X'(t) are centered Gaussian vectors. |

In order to solve equation , it is convenient to interpret X; as a vector in
R2*? = R? @ R?, where ® denotes the tensor product. For every 2 x 2 matrix ©,
we will write vec(©) whenever we interpret it as a vector belonging to the tensor
space just introduced. We can rewrite as

d(vec(%))
dt
where we used tensor product of matrices. Equation (1.25]) is linear, so an explicit

= 2[Ax(t) @ I + I @ AL(t)]vec(X;) + vec(D(t)D'(t)), (1.25)

expression of its solutions can be given and it can be computed after having solved
(1.15). The analysis of ¥; for large ¢ can be made explicitly and it is strictly

related to the spectrum of the limiting matrix

A* : lim Ag(t) >

- t—+oo
which is the drift matrix of the linearized system of ({1.22)) in the limit of station-
arity and it is given by

B—cosh?(B(mg+h) | B—cosh?(B(mI—h) : : -
2 cosh(B(mg+h)) + 2 cosh(B(mI—h)) - Slnh(ﬁh) Slnh(ﬁm* )
A, = ,
B—cosh®(B(mZ+h)) _ B—cosh?(B(mZ—h)) -
2cosh(B(mI+h)) ~ 2cosh(B(mJ—h)) - COSh(ﬁh) COSh(ﬁm* )

once we have recalled that lim; ., .(m7, m{") = (m?,m?"), defined in (1.16a))

and (|1.16bf), and we have made the due substitutions and computations.

1.4 Critical Dynamics (3 = cosh?(3h))

We are going to consider the critical dynamics of the system, in other words the

long-time behavior of the fluctuations in the threshold case, when 3 = cosh?(3h).

— 29 —



Chapter 1. The Random Curie-Weiss Model

This condition of critical point for the parameters does not identify only the
passage from unicity and non-unicity of the stationary solution for the limiting
dynamics; but it also individuates the transition from 1 to 2 ferromagnetic solu-
tions. Referring to Figure [1.1, we will describe the behavior of the fluctuations
on the boundary between regions 0 and 1 and regions I and 2, while we do not

know what happens along the dotted separation curve between phases 0 and 2.

In the previous section we proved that in a time interval [0, 7], where T is fixed,
and in the infinite volume limit, we have Normal fluctuations for the system. In-
deed, the infinitesimal generator of the rescaled process converges to the infinites-
imal generator of a diffusion and the rescaled process itself converges weakly to
that diffusion. It means we showed a Central Limit Theorem for all the values of
(. But what does it change when we are in this critical case?

The particularity of this situation is that the Central Limit Theorem continues
to be valid but there is an eigenvalue for the covariance matrix ¥; which grows
polynomially in ¢. This fact implies that the size of the Normal fluctuations must
be further rescaled (in space and in time), because their size around the determin-
istic limit increases in time. In this case we will still obtain Normal fluctuations,

solutions of a certain stochastic differential equation to be determined.

First of all, we need to locate the critical direction in the three-dimensional space
of the order parameters. In the rest of the section, we will consider § = CoshQ(ﬁh)

and let us assume that the initial condition A is a product measure such that
mg =0, mg" = tanh(S3h)

and so
my =0, my" = tanh(Sh),

for every value of t > 0, since it is an equilibrium solution.
Under these assumptions the drift matrix, As, of the linearized system of ([1.22))

and the infinitesimal generators Ky, Hxy and H are independent of ¢. In partic-

ular, equation ([1.22)) becomes

dr(t) =0

[dx(t)]zQ %[sinh(ﬁh) T (U ”x(t) ds D l(t)]

dy(t) 0 0 —cosh(Sh) || y(t) 2(t)]
=AST =AST
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where the matrix D satisfies

(D7) (DY [m;(gh) 0 ]
1 )
2 0 cosh(Bh)

and, as before, By, By are independent Standard Brownian motions and 77 is a

Standard Gaussian random variable.

As t — +o00, the covariance matrix 3¢", solution of the Lyapunov equation

dxr
dt

becomes a diagonal matrix with an eigenvalue growing polynomially in ¢. Its

— 2 Agr E?T + 2 Zgr(Agr)/ _'_ (Dcr)(Dcr)/ ’

(right) eigenvectors tend to the (right) eigenvectors of the drift matrix AS". The
critical direction is determined by the (right) eigenvector corresponding to the
eigenvalue increasing to infinity of the covariance matrix ¥¢", which is also the
(right) eigenvector corresponding to the null eigenvalue of the matrix AS". Hence,

in our case, the critical direction is x.

Remark 1.4.1. Notice that the critical direction x does not depend explicitly on

the random environment and it is one-dimensional.

Theorem 1.4.1. Fort € [0,T), if we consider the three-dimensional critical fluc-

tuation process

rn(t) == N2t

PN (t)
In(t) = N1/4m§N(N1 g (1.26)
~ an
gn(t) = N1 (mm;(Nl/‘lt) - tanh(ﬁh)) ’

then, as N — 400, rn(t) converges to F€, a Standard Gaussian random vari-
able, yn(t) — 0 in the sense of Proposition and Ty(t) converges, in the

sense of weak convergence of stochastic processes, to a limiting Gaussian process

Z(t) = 2 sinh(Bh)t .

1.4.1 Proof of the Theorem [I.4.1]

Before approaching the proof, we try to underline the main ideas developed in it.

We make an attempt to explain what is going on.
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When we have decided the right time-rescaling, we define a sequence of stop-
ping times, allowing us to define a family of random time-interval, on which the
processes Ty (t) and gy (t) are bounded (we will see the process ry(t) is already
bounded with high probability). For ¢ fixed in one of such an interval, it happens
that the non-critical direction g, (¢) vanishes or, more precisely, collapses. Then,
we prove the probability that the stopping times exceed a given time T is very
small, so we can deduce all the considerations we made are valid in the whole
time-interval [0, T]. The last step is to verify the critical direction admits a limit
and to compute it. It will be done using an argument of tightness, applied to a

suitable martingale problem.

To have a complete picture of our setting, let us recall the characterization of
collapsing process, in the sense described by Comets and Eisele (see [CES88]) and
slightly generalized in [Sar(7].

r

Proposition 1.4.1. Let {X,,(t)},>1 be a sequence of positive semimartingales on a
probability space (0, o7, &), with

dX,(t) = S,(t)dt + fult™ ) [An(dt, dy) — A,(t, dy)dt]

R+ X%
Here, A, is a Point Process of intensity A, (t,dy)dt on R™ x %', where % is a
measurable space, and S, (t) and f,(t) are <-adapted processes, if we consider
(<)o a filtration on (2, o/ , &) generated by A,,.
Let d > 1 and C; constants independent of n and t. Suppose there exist {a, }n>1

and {0, }n>1, increasing sequences with
— ——+ — ——+ _ ——+
Pt M gl TS, sy nts

and .
E[(Xn(o)) } <Cia:?  foralln.
Furthermore, let {7, },>1 be stopping times such that fort € [0, 7,] andn > 1,
Sp(t) < —ndX,(t) + BuCo+Cs  with 6 > 0,
sup [ fu(t,y)| < Caoy

weNYEX t<Ty
Hence:
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(a) if it holds

[l An(t, dy) < Cs, (54
then, for any € > 0, there exist Cs > 0 and ng such that
sup@{ sup  Xn(t) > Cs(n?a;' V ann 1)} <eg; (x % %)
n>ng 0<t<T AT,

(b) if instead of we have

et dy) < Co(Xa(t) + 071,
then, instead of ([x x %), we get

sup,@{ sup  Xn(t) > Co(nY?a;t Vv Bun~ )}_5.

n>ng 0<t<T AT,

Now, we can start to deal with the proof.

Phase 1: The identification of the time-rescaling. We first rescale the
space by the “standard” critical factor N'/* and determine the evolution of the
rescaled magnetizations. Later, we identify the right time-rescaling that leads to

a nontrivial limit as N — +oo0.

Lemma 1.4.1. Fort € [0,T], if we consider only the space scaling

In(t) = NY4m? (1.27)
gy () = NV (m?! ) — tanh(Bh)) ,

then (rn(t),Zn(t),yn(t)) is a Markov process whose infinitesimal generator sat-

isfies:
i85 = 2 S _
+ 2y [@ Coi\lflf/fh) — g cosh(Bh) — Bz Slr}\};fﬁh)] (1.28)

1
+o0 N

where the remainders are continuous functions of (r,z,y) and they are of order

o(517z) pointwise, but not uniformly in (r,Z,7).
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Proof. We obtained from Theorem that the triple (ry(t), zn(t),yn (1)) is a
Markov process with infinitesimal generator Hy. Making the same considerations
as before (see Lemma and considering a function ¢ : R* — R, ¢ € C}, we
know that

Ha (@ (rn (1), 2n (1), gn (1)) = (Gn) (ra (8), T (1), Gn (1))

with
Gn(r,z,y) = Y |An(j, k (N1/4+kh)
jkes
B 2 2 _
: V(ﬂx N3/47y kN3/4> _¢(T7%y)]
and where

: N T
|An (4, k)| = 1 [1—1—/{:]\[1/2 N1/4 +j/<:<N1/4 +tanh(5h)>]

At least at the beginning of the standard computations we are going to per-
form, we consider the following representation for the Taylor expansions of the
exponential functions

—I—R+ and ¢ PN =1 ]51/4

+R_. (1.29)

Later on we will need more accurate estimates of R, and R_. Moreover, we

develop also 1 by a Taylor expansion stopped at second order.

—Bjkh - fr
g]\ﬂp jgy|AN j, J <1 N1/4 + ngn( —7) > [ N3/4¢x
4 1
N3/4 vy + N3/2 iz + N3/2 Vg + kN3/2 ag + o N3/2

e ﬂ [(1 _ Pz + R) ( — 2cosh(Bh) + sinh(Bh)

2r
9 N1/4 N1/2

]\31/4 cosh(Bh) + ]\?1/4 sinh(Bh) + 2 tanh((Gh) smh(ﬁh))
+ (1 + ]554 + R+> <2 cosh(Bh) + ]\?1/2 sinh(3h)
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]\3196/4 cosh(Bh) — ]\]21/4 sinh(Bh) — 2 tanh(5h) sinh(ﬁh))
1/4 -
+ 1y ]\72 Kl — ]554 + R) (2 sinh(Bh) — N1T/2 cosh(Bh)
]51/4 sinh(Bh) — ]\334 cosh(Bh) — 2 tanh(/h) cosh(ﬂh))
(1 + ]51_/4 + R+> (2 sinh(5h) + ]\?1/2 cosh(Bh)
Nij4 sinh(Bh) — N215/4 cosh(Bh) — 2 tanh(Gh) cosh(ﬁh)ﬂ

1 T 2r
+ Vzz SN2 [(1 - 534 + R_> (2 cosh(Bh) — N2 sinh(Gh)

2z
+

~77 cosh(Bh) — NQ?M sinh(Gh) — 2 tanh(3h) sinh(ﬁh))
+ (1 + ]554 + R+> <2 cosh(Gh) + ]\?1/2 sinh(Gh)
— ]\2?/4 cosh(Bh) — ]\?34 sinh(Sh) — 2 tanh(Sh) smh(ﬁh))

1
+ %55 517 Kl ]51/4 + R ) (2 cosh(fh) — ]\317;2 sinh(5h)

2y
cosh(Bh) — N

]51/4 sinh(Bh) — 2 tanh(/h) sinh(ﬁh))

sinh(5h)

+ (1 + bz + R+> (2 cosh(Bh) + ]\?1/2

N1/4
2z
- N1/4

cosh(Bh) — sinh(Bh) — 2 tanh(h) sinh(ﬁh))]

2y
N1/4

1 _
+ Yz N2 Kl — ]51/4 +R_ ) < — 2sinh(Gh) + ]\31/2 cosh(Bh)

]\?1_/4 sinh(3h) + ]\?34 cosh(Bh) + 2 tanh(5h) cosh(ﬁh))
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4 (1 4 Nﬂlﬁ + R+> (2 sinh(8h) + N21  cosh(gh)

2%
N1/4

1
+o0 N2

= 1z 2N1/4[

sinh(Bh) —

]\334 cosh(Bh) — 2 tanh(h) cosh(ﬂh))]

v cosh(Bh) + ]51/4 cosh(Sh)

N1/2 N1/4

— ffl% sinh(Bh) — ]51/4 tanh(Sh) sinh(Bh)
N‘f . cosh(ﬁh)) (R. + R_)

sinh(Bh) —

1
+ 5 <N1/2 sinh(Bh) —

* ;<cosh1(/8h) a Nzi/4 Smh(ﬁh)) (fe = R_)l

2
+¢y2N1/4l N1/4 cosh(Bh) + ﬁgi cosh(Bh) — ]51/2 sinh(3h)

__ Y
2N1/4

le/4 smh(ﬁh))( — R_)]

cosh(Bh)(Ry + R_) + ; (Nq/Q cosh(5h)

N21/2 lcosh(ﬂh) Nzi/‘l sinh(3h) — tanh(Bh) sinh(5h)

9 1
N ]63/4 sinh(8h) — ]61/2 cosh(Bh) + <N1/4>]

+ Yz

+ gy N21/2 lcosh(ﬁh) Ngi“ sinh(Bh) — tanh(Sh) sinh(Gh)

,2 1
163/4 sinh(Bh) — ]?[T/Z cosh(Bh) + 0<N1/4>1
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4 r x Bxy
+ Yay 7172 N1/2 |JVU2 Ni/a sinh(Bh) — N2

+0<N11/4>] +0<N1/2)

B sinh(3h) _[—cosh®(Bh) + 8]  Bzy
=¥z [r “Na T cosh(5h) - N4

it vanishes in the critical case

cosh(Bh) — cosh(Bh)

sinh(Bh)

N1/4

1
5
+ ;(Cogl(/;h) —y sinh(ﬁh)> (R: — R)]

<T sinh(Bh) _ cosh(ﬂh)) (R +R.)

_ Tl /6 i /8 2
+ ;2| — ycosh(Bh) + Nz cosh(Bh) — N1/4

cosh(Bh) 1 < cosh(Sh)

sinh(5h) (1.30)
—ng(lthrJ%,)Jr§ T\ (1.31)

_ xsinh(ﬁh)) (R, — R_ )1 + 0<N11/2> (1.32)

inh(3h By
= ¢z [T SH;VEM : o N:f}yzl

sinh(ﬁh)]

pz’
N1/4

prz
N1/2

cosh(Bh) —

1y 2 [ — jcosh(Bh) + sinh(ﬁh)]

1
+o0 N
which is just (1.28)). [ |

Phase 2: The process yn(t) collapses. Let us denote by {74/} y>; a family

of stopping times, defined as

= H{lEn(0)] = M or (0] = M},
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where M is a positive constant. We are interested in introducing such sequence
of stopping times because in this way the processes Zy(t) and gy(t) result to be
bounded in the time interval [0, T A 73]; rx(t) is still bounded for ¢ € [0,77]. In

fact we can prove

Lemma 1.4.2. For every € > 0 there exists M > 0 such that the process rn(t),

defined as in (1.26)), satisfies
P{lrn@t)] = M} <e
fort €0,T7].

Proof. The process ry(t) is a constant process and then, for every ¢t € [0,7],
we have ry(t) = ry(0), which is a sample average of independent, identically
distributed Bernoulli random variables multiplied by N'/2. So, by Central Limit
Theorem, for any € > 0, for every N and for a sufficiently large M

P{lry(0)] = M} <e.
|

We consider the infinitesimal generator, Jy = NY*Gy, subject to the time-
rescaling and we apply it to the particular function ¥(ry(t),Zy(t),yn(t)) =
(gn(t))?. We choose this kind of function since (gx(t))? is a sequence of positive
semimartingales on a suitable probability space (€2, .4, P) and then the following

decomposition holds:
d(gn(t))* = In(Gn () dt + dM 5

with M’}VJQ the local martingale given by

My = /0 > VY (n () A% (k. ds)

jkES
where we have defined

VOl 0] = (w(0) — k) — G (0)? (1.33)

and

A _gif e ®
A% (G, b dt) := A% (G, b dt) — NV |A( &, NV e o (if i

)dt. (1.34)

=A(j,k.t) dt

— 38 —
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The counter ‘A( gk, NY 4t)‘ is, similarly to previous cases, expressed by

, N rv(®) Fn) (Gt
A, ke, N1 = 4l1 +k]$1</2) +j ]51(/4) +Jk;<]<[v1(/4) +tanh(ﬁh)>]

and, as we can evidently see, /~\j‘v(j, k,dt) is the difference between the point
process A% (J, k, dt), defined on . x RT, and its intensity \(j, k, t) dt.

Remark 1.4.2. If we call (A;);>¢ a filtration generated by A on (€2, A, P), then
the processes Jn(yn(t))* and v(J)[@N(t))Q] are A;—adapted processes.

As a consequence of the considerations just explained, we are in the proper situ-
ation to use the result about collapsing processes and we can easily adapt Propo-

sition to our specific case. We obtain we need to prove the following

Lemma 1.4.3. Considerd > 2,8 > 0 and ky = k(N), such that ky ~—% +o0.

Fort € [0,7¥] and N > 1, there exist constants C.’s independent of N and t and

two increasing sequences {an }n>1 and {Bn}n>1 which satisfy

/ﬁ%da]_vl A2H0, 0, kivtay 222 0, kvt By 20, (1.35)
E [(in(0))*] < Cray®  for all N, (1.36)
In(Un(t)? < —knd(On(t))? + BnCo + Cs, (1.37)
sp |V (G ()7]] < Cuait (1.39
wEQ,jEﬂ,tSTﬁf/I
- 2
S [T @] AG k0 < G (GuP +y)  (139)

jkes

and such that, for every e > 0, the following estimate holds

sup P{ sup  (gn (1)) (;) Cs (n%da]_\,l Y fi]_vlﬂN)} <e. (1.40)

N=>No 0<t<TATY

Proof. We aim to prove these sequences {an}ny>1, {fn}n>1 and constants C.’s
exist and to give a characterization of them. We show that the properties (|1.35))-
(1.39) hold true. The estimate ([1.40) then follows from Proposition |1.4.1]

From (|1.26)) we get

gn(0) = NY4m2? - — tanh(Sh)).

i (0)
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(137

The random variables (o;(0),7;)/L, are independent, so a Central Limit

Theorem applies: in the limit as N — +o00,
NG (0) = NV2 (i %) — tanh(5h)

converges to a Gaussian random variable and, since mig(o) € [—1,+1], there

is convergence of all the moments. Thus,
E[N%(m;? ) — tanh(3h))*] < C,
and we obtain the following estimate for the 2d-th moments of y(0):

Bl(n(0)*] = E [NV2(m7 5) — tanh(5h))]

= N2 B[N (m " ;) — tanh(Bh))*| < ¢y N4

Thus ([1.36]) holds.

For t € [0, 73] we consider the Taylor expansions of exponential functions
defined in ([1.29)) and we give an estimate of their Lagrangian expression of

the remainders:

1 . [ BE)] A1) _ M o
Ry < QSup{e el N1/4H Niz =gyt

LT paw B B
|R_|§2sup{e 1z € _N1/470]} N2 §2N1/2'

Now, we derive the particular characterization of Jy(yn(t))?, adapting the
explicit expression of Gy(ry(t),Zn(t), yn(t)) given by (1.28) (in other
words, setting ¥ (ry(t), Zn(t),yn(t)) = (yn(t))? and taking into account

the time-rescaling). Then, we proceed to find an upper bound for this

quantity. By (1:30), (L31) and (T32),

T (n(8))? = ANV (1) [ ~ (1) cosh(8h) +

_ W] + 2N (8) [ — yn(t) cosh(Bh) (R4 + R-)

Bin(t)rn(t)

N2 cosh(Bh)

; (rN(t) M) it Sinh(ﬁh)> (R, - Rﬂ

— 40 —
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< —4NY (G (1))? cosh(Bh) +481Zx (|7 ()7 (t)] cosh(Bh)

+46(@N () |gn ()] + 2N |gn ()] | [T (8)] sinh(Bh)

+ (Irv O] +15w(0)) cosh(Bm)| (1R | + [B-)

P2 (i 4 1) 12 cosh(Bh) + sinh(Gh)]

< —4ANY4(gy(t))? cosh(Bh) 4 43M?3[cosh(Bh) + 1]
+ B2M* ("™ +1)[2 cosh(Bh) + sinh(Bh)]

= —ANY4(gn(t))? cosh(Bh) + Cy + Cs..

Hence, we have obtained the desired inequality if we choose: ky 1= N'/4,
d :=4cosh(fh) (which is a positive constant as required), Sy =1 and
Cy + C3 1= 43M?3[cosh(Bh) + 1] + B2M*(e®™ + 1)[2 cosh(Bh) + sinh(Bh)].

Now, we evaluate the supremum of the modulus of V(j)[@N(t))Q], defined
as in ((1.33]). It easily yields

4 dgn(h)
— gk N3/4

swp VG0

weQ,je.s te[0,7M]

= sup
3/2
weQ,jes te[0,m M N3/

4
<

— N5/8 (1+ M)Nil/g

< CNTE,
where we set Cy = 4(1 + M) and ay = N'/8.
Recalling the definition of V(j)[(ﬂN(s))Q] and \(j, k,t), which we can find

in (1.33) and in ([1.34)), we have

— 41 —
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NS AG kN () [(w) - j2)2 - @N(t))zr -

3/4
7,kes N

AN Nt an(@) o (gn(t)
4 j,kze:y l1+kN1/2 RN +jk<N1/4 —O—tanh(ﬁh)ﬂ
,,3] TN t)Jrkh 16 16 N ‘ 29 )
. ( . )[W+W(yN(t))2 —JWyN(t)]
N Nt an() . (gn()
=7 j,kze;sﬂ [1+kN1/2 TN +]k<N1/4 + tan h(ﬁh)ﬂ
e k) 16
‘e ( 1/4 >N3/2(yN<t>>2

+N1/4{N2/2 3 lHk n(t) fzv(t)ﬂk(@ ®) . tan h(ﬂh)ﬂ

ke N1/2 N1/4 N1/4
—Bj ZNJ’Z +kh) [ 16 32

(by the Taylor expansion of the exponential functions given by ([1.29)), and

evaluating the remainders as before)

nh(Bh)+22 '“ﬁﬁ/'lw” sinh(3h)

4 4 Agn ()] .
< t))*
- N1/4<yN( ) cosh(ﬂh)+ NEC

i D o)+ 1+ 1 (2 s

2rn()]
N1/2

nh(Sh) + |]~\71/(‘f)‘ cosh(Bh) +

s

+N1/4{4< ! +2M>l ! —|—4|gN(t>|sinh(6h)

N3/2 ° N3/4 || cosh(3h) N1/
N 43 |§N]E;3/‘17N<t)| sinh(Bh) + W cosh(Bh)

+(|R.| + |R)) <2|]?7Vf{fj)| sinh(8h) + 2|]7"ij§§)| sinh(8h)

— 42 —
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.\ W cosh(Bh) + coshz(ﬂh)ﬂ}

(by the definitions (T.26) we have that N=Y4Zx(¢), N=Y2ry(t) € [—1, +1]
and NV (1) € [-2, 42)

< 16(n(1)) [hl(ﬁh) + Beosh(Bh) + (24 B) smhwm]
ARM 1
N1/4 (1) (cosh(ﬂh)

+ 3sinh(Bh) + COSh(ﬁh))

+ N‘1/4{16(1 +2M) Ll + B cosh(Bh) + (2 + 3) sinh(Bh)

osh(Bh)
+1

3h
)<3 sinh(Bh) + cosh(Bh) + 1)1 }

22 72( .M
+ M e cosh((Gh)

= 16(gn(t))? [coshl(ﬁh) + [ cosh(Bh) + (2 + ) Sinh(ﬂh)]

1
+ N‘1/4{16(1 +2M) [cosh(ﬁh) + B cosh(Bh) + (2 + ) sinh(5h)

+ BMP(M 1) (3 sinh(0h) + cosh(5h) + coshl(ﬁh)>

(4 0 va )|

< Cs (v ()" + N7VY),

which is what we need, with C5 := 16(1 +2M) {m + G cosh(Bh) + (2 +
) sinh(5h)-+ B202(e? 1) (3sinh(5h)-+ cosh(3h) + b ) (14 iy )]

cosh( 16(14+2M)

It remains to show that the sequences we have found satisty the conditions

about the convergence to zero. But,

lim (NYHVYNYE =L = Jim NV - — d>2,
N—+400 N—+o00

— 43 —
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lim NYEN"Y4= lim N~ Y =0,
N—+oc0 N—+oc0

lim N~ Y4 =0

N—+4o00
and hence we have completed the proof, since by Proposition [I.4.1 we can

now assure ({1.40]) holds.
|

Corollary 1.4.1. We consider the same setting as in Lemma [1.1.5. For every

€ > 0 there exist constants C7 and Ny such that

sup P{ sup |yn(t)] > Cx (H}V/ma;m Y 5N1/25%2)} <e. (1.41)
N=>No 0<t<TATY

Proof. We set C7 = (Cg)'/? and we extract the square root of the inequality (x)
in the previous Lemma to obtain an equivalent set, described in ((1.41]), for which
the same property holds. [ |

Remark 1.4.3. Notice that if we insert the quantities we choose during the proof

of Lemma |1.4.3|into (1.41)), we have shown that the following inequality holds

sup P{ sup |Gy (t)] > Cr (N80 \/N_l/s)} <e. (1.42)

N2>No 0<t<TATH
The results we proved in this subparagraph show that the process yy(t) is a
collapsing process in the sense of Proposition when t € [0, A T]. The
next step is the proof of the fact that, for every ¢ > 0 and N > 1, there exists a
constant M > 0 such that it is true

P {T]]\\,/[ < T} <e.
This fact implies the process yy(t) converges to zero in probability, as N is

growing to infinity, for all ¢ € [0, T7.

Phase 3: Proof of P {7’1%/[ < T} < €. As before, we consider the infinitesimal
generator Jy = NY4Gy and we apply it to the function ¥(ry(t), Zx (1), In(t)) =
|Zn(t)|. The following decomposition holds

Ex (O] = (O] + [ TuTn(s))ds + Mo 5

t
<[ax () + [ 1T (Ex($)])lds + M g

— 44 —
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with

§V,|5\ —/ > vu |xN A% (G, k, ds)

7, ke

and where in analogy to ({1.33) we have defined

2

Vllan(@))) =

In(t) = J=37z

A% (j, k,ds) is the same as in (1.34). We recall that the expression of Gy is
given by ((1.28). We always need (and use) the usual expansions ((1.29) and the

estimates of their remainders. For t € [0, 7] we get

(0] =28 sen(w(0)| - P sunom) + S5 s )

rn(t)
N1/4

+ (R +R-) ( — Zn(t) cosh(Bh) + smh(ﬂh))

(= )= (o) s + %h)ﬂ ,

but thanks to Central Limit Theorem, for every ¢ > 0 and sufficiently large M,
P{lrx(t)] > M} < e, then

gz{(M + BM?)sinh(Bh) + 5°M* (e + 1) Loshwh)+

+ 2M sinh(5h) + Mcosh(ﬁh)] } =:Cy,

with Cy positive constant independent of N. Since the following inclusions are
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valid
Y <T)C { s {[En O IO} 2 M}
0<t<TATH
g{ up |a?N<t>|2M}u{ up |@N<t>|zM}
Ogth/\ijy OStST/\TJZ\%

c { s [Gn(t)] = M} U {IEn(0)] > Co} U [ﬂmon < Gy

0<t<TATY

N { sup ’%N(t)‘ > Cg+TCg+Clo}1

0<t<TATY

c{ s (0] irfu o) = G

0<t<TATH

U { sup Mﬁ\/’m Z 010} )

0<t<TATH
we obtain the following inequality

P <T) < P{ s [in(®) 2 M} 1 P{En(0)] > Co}

0<t<TATY

+ P{ sup M?V’m Z Cm} .

M
0<t<TATHM

We estimate the three terms of the right-hand side of the inequality.

» For any € > 0, thanks to ([1.42), we have

P{ sup |gN<t>|zM}Se,

0<t<TATY
where M = Cy (N1/84-1/16 y N=1/8),
> From ([.26) we get E[|Zy(0)[] = NV*E[jm]_ . Since at time ¢ = 0 the
spins are distributed according to a product measure, Ty (0) is a sample

average of independent, identically distributed Bernoulli random variables

multiplied by N'/4. So, we can conclude

E[|@n(0)]] < \/Var(o1(0))N~1/4

and in the limit as N — +o00, we have convergence to zero in L! and then

in probability. Therefore

P{lzn(0)] = Co} < e

— 46 —
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for any € > 0, for every N and for a sufficiently large Cy.

» We reduce to deal with E[(M7] |;‘)2]; in fact, Doob’s “maximal inequality

in LP” (case p = 2) for martingales (we refer to Chapter VII, Section 3 of

. E[(MT - )?]
[Shi96]) tells us that P{ SUPg< i< M§V,|’£\ > 010} < (c+))l2‘

We use the following Proposition about stochastic integrals with respect to

point processes (see Chapter II, Section 3 of [[W8I1]).

-

Proposition 1.4.2. Let (Q, o/, F) be a complete probability space with a
right-continuous increasing family (%, );>o of sub-o-fields of </ each containing
all &-null sets. Let X,, be a martingale of the form

Xat)= [ faltm)Raat dy)

where

Ap(dt, dy) == An(dt, dy) — An(t, dy)dt

and A, is a Point Process of intensity A, (t,dy)dt on R™ x %, with % mea-
surable space. If f, is (<#)-predictable and for every t > 0

< 00

B [, Wbl

and

E/ () PAL(E dy)dt| < oo,
[, Al <o

then

x| [, slenhiaan| = [ e
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Hence, by ((1.34)) and (1.43]), we obtain

Bl = | [ 3 [F 1m0l A ko

ke

.
<n| O NV sup [A(, k, N[ 500 gy
| Jo N3/ jkes

N5/4

[T
< E / 4 5N eﬁ(Hh)dt]
0

< 20ePMHMT = Oy (independent of N and M)

We have established that, if we choose C}y > %, then

P{ sup M§V,|E\ > 010} <e.

0<t<TATY

In summary, we proved the inequality we were looking for; in fact
P{T]]\\f gT} <3e:=c¢€.

We have just concluded the proof of the first part of the statement of Theorem
1.4.1] concerning the collapse of the process gy (t) in the limit as N — +oo and
for t € [0,T]. Now, we are going to show that in the same setting, i.e. the limit
of infinite volume and t € [0, 77, the process Zy(t) admits a limiting process and

we are going to compute it.

Phase 4: The limit of Zx(t). First, we need to prove the tightness of the
sequence {Zy(t)}n>1. This property implies the existence of convergent subse-
quences. Secondly, we will verify that all the convergent subsequences have the
same limit and hence also the sequence {Zy(t)}n>1 must converge to that limit.

We recall the definition of tightness for a family of probability measures.

— 48 —
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r

Definition 1.4.1. A sequence {#,},>1 of probability measures on 2 is tight
in 2" if for each positive ¢ there exists a compact subset .# of 2  such that
P (H)>1—¢eforalln>1.

_

In the case we are working with processes with laws on D[0, 7], we can give a
characterization of the tightness in terms of those processes (through their dis-
tributions). In fact, as we can read in [CES88], an immediate consequence of

Theorem 4.1 and Remark 1 in [Mit83] is the following tightness criterion:

A sequence of processes {Zn(t)}ny>1 with laws {Py}n>1 on D[0,T] is tight if

(a) for every € > 0 there exists M > 0 such that

supP{ sup |ZTn(t)] > M} <eg, (1.44)
N te[0,1]

(b) for every € > 0 and « > 0 there exists 6 > 0 such that

sup sup P{|Zn(t) —Zn(s)| > a} <e. (1.45)
N 0ss<t<T
t—s<

Lemma 1.4.4. The sequence {Tn(t)}n>1 is tight.

Proof. Since we have already proved that for every € > 0 the inequality P{m¥ <
T} < e is true for M sufficiently large and uniformly in N, it is enough to show

(a) and (b) for the stopped processes

{fN(t A #)}M .

We showed before the validity of the following inclusion

{ sup |fN(t)| 2 M} Q {lfN(ON Z Cg} U { sup M?\Hg\ 2 Clo},

0<t<TATY 0<t<TATY

therefore
supP{ sup Ty (t)] > M} < 2e
N

M
0<t<TATY

— 49 —



Chapter 1. The Random Curie-Weiss Model

and so we obtained the statement (a). Let us deal with (b) now. We notice that

TN (t) = Tn(s)] =

t
| InEn)du+ My

where we have denoted

2 t -
st Yo
My = _W/s D JAJG K, du)
j,kes

¢ PO
/ > j[A;’V(j, kydu) — NV A, k, NV u)le (5 +kh)du]

2
N3/ s jkes

and /LU\, is as in (|1.34)). Thus,

(vt - av(o) = ay e f | [ et

<Cg (t—s)

e |za}g{|w > T}

N,|z| N[z

and then, applying Chebyscev inequality to the last right-handside of the previous

inclusions, we get

sup  P{IM 5| = Cro} < (Cro) ™ sup  E[(My )
0<s<i<T : 0<act<T :
t—s<d t—s<6

(Cio)™2 sup 5PUM (¢t — )
0<s<t<T
t—s<d

IN

Finally, we can conclude that

sup sup P{|Zn(t) — Zn(s)| > a} <sup sup P{|/\/lj\’,t|5|| > Cho}
N 0SsSi<T N 0SsSi<T ’
t—s< —s<

S (610)72611 0= O((5>
and the proof is complete. [ |
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Lemma [I.4.4] implies that there exist convergent subsequences for the sequence
{Zn(t)}n>1- Let {Z,(t)}n>1 denote one of such a subsequences and let ¢ € C be
a function of the type ¥ (r,(t), Z,(t), Un(t)) = ¥(Z,(t)). The following decompo-

sition holds

Y1) — $(F0) = [ T @)+ M, (1.46)

where
T (Eu(0) = 205 r0) 000 50) = 53, ()7 ()i 50) |+ (1)

which, as usual, is Gy (see ) rescaled of a power n'/* and applied to the
particular function ¢ (r,(t), Z,(t), 9. (t)) = ¥(Z,(t)). The remainder oy (1) goes
to zero as n — 400, uniformly in M. If we compute the limit as n — +o0,
recalling that the process 7, (t) collapses and a Central Limit Theorem applies to
rn(t), we have:

Tub@a(t)) 25 T(E(1)
with

J(E(t)) = 2.7 sinh(Bh) ¢5
and 77 is a Standard Gaussian random variable. Then, because of , we

obtain

t
o S MY = (@) — $(E0) - [ Tw(Ew)du.
We must prove the following Lemma:

Lemma 1.4.5. Mj; is a martingale (with respect to t); in other words, for all
s,t €[0,T], s <t and for all measurable and bounded functions g(Z([0,s])) the
following identity holds:

E[Myg(([0, s]))] = E[M3g(([0, 5)))] (1.47)

Proof. 1t is sufficient to prove {Mfw}nzl is an uniformly integrable sequence of
random variables. Let us suppose we have already proved this property holds
and see that ((1.47) is satisfied.

Since /\/lfw is a martingale (with respect to t) for every n, we have that for all

s,t € [0,T], s <t and for all measurable and bounded functions ¢(z([0, s]))
E[M,, ,9(x([0, 5)))] = E[M;, ,9(3([0, 5))]

— 5] —
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and then

lim E[M,, ,9(Z([0,s]))] = lim E[M; ,g(Z([0,5]))].

n—-4o00 n—-4oo

But {Mfw }n>1 18 a sequence of uniformly integrable random variables, hence it
converges in L' (for instance, see [Shi96]). Moreover, we know the distribution

of its L'-limit, since we already know its weak-limit. Thus,

n—-+40o n—-+4o0o

E[Myg(2([0,s)] = E | lim M, ,g(%([0, S]))} = lim E[M; ,9(([0,5]))]

= lim E[M; ,9(%([0,s]))] = E

n—-4o0o

lim M;, ,g(Z([0, s]))

n—-4o00

= E[MGg(z([0, 5]))]

and the conclusion follows.

It remains to check that {M], ,},>1 is an uniformly integrable family. A suf-
ficient condition for uniform integrability is the existence of p > 1 such that
sup,, E[| M}, ,|P] < 400 (see again [Shi9]).

If we define
)] = o (0) = i ) ~ 000,
it yields
P = B [ 5 [0t 3 ks

< B5nd/AeBth) U 3 [ < —j ;4) —@b(’jn(s))rds]

jES

we expand the function ¢ around 7, (t) with the Taylor expansion stopped at first
order and with remainder R such that |R| < § sup {|¢-( )y e [~ (1), Zn(t) —
j#}}# and, moreover, we recall that ¢ € CJ, so |[¢=| < K and || < Ko;

therefore,

2
2
5/4 B(1+h - "
= 5n°/te (+)El/g [ jn3/4¢x+R1 ds]

jeS

—5) —
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[t 4 4
< 5’4t B / sup <3/2 P2 — J = YsR+ R2> ds}
0 jes n n

n3/2 n9/

[t (4 8 4
< 5p?/efUHh B / < K} + —7 K1 Ko+ — Kg) ds]
0 n
< 20T (K + K,)?

since t < T'; then Mfw is uniformly integrable. [ |

Now, the proof is easy to conclude. ./\/lfw solves the martingale problem with in-
finitesimal generator 7, admitting a unique solution, and hence we have shown all
convergent subsequences have the same limit and so the sequence itself converges
to that limit.

1.5 Conclusions

It remains to compare the behaviors of the homogeneous and inhomogeneous
system. Using the same notation as before, we briefly sketch the main results on
the Curie-Weiss model.

The stochastic process o(t) = (o;(t))%,, with ¢ belonging to a generic time
interval [0, T], where T is fixed, describes a N-spin system evolving as a Markov
process on its state space .#~. The dynamics are specified by the requirement

that the rates of transition are of the form

.

g
; — —0j at rate e Poimy |

We reduce this system to be finite dimensional. A one-dimensional order param-

. . . . o
eter is necessary to describe the system: the magnetization mj. We can recover

the study of the limiting dynamics (Theorem and Lemma [1.2.3) and of
the Normal fluctuations (Theorem [1.3.2]) as particular case of the inhomogeneous
model, setting h = 0. The McKean-Vlasov limit (N — +o00) for the dynamics

of the magnetization is given by the ordinary differential equation
my = —2m{ cosh(fmy) + 2sinh(Bm]) (1.48)



Chapter 1. The Random Curie-Weiss Model

and any equilibrium solution of this equation is of the form m? = tanh(8m?).

Depending on the parameters, we can see there exists phase transition; in fact

Theorem 1.5.1. Consider the equation (|1.48]).

» For B < 1, it has 0 as a unique equilibrium solution and it is globally
asymptotically stable, i.e. for every initial condition mg
lim m{ =0.
t——+o00
» For 8 > 1, the point 0 is still an equilibrium and, moreover, two further
equilibria arise:

mo and —m?,

where mJ is the unique positive solution of x = tanh(fBz). In this case,
the phase space [—1,+1] is bi-partitioned by the origin in two domains of

attraction. Given an initial condition mg,

mg if m§ € (0,1]
Jim mf =S —mg if mg e[,

0)
0

0 of md
Moreover, with regard to the Normal fluctuations, it remains proved the following
Theorem.

Theorem 1.5.2. [n the limit as N — 400, the fluctuation process xy(t), defined
by

converges (in the sense of weak convergence of stochastic processes) to a limit-
ing Gaussian process x(t), which is the unique solution of the linear stochastic

differential equation

dx(t) = 2[(8 — 1) cosh(Bm]) — pmy sinh(Smy )] z(t) dt+
+ 2y/cosh(Bmy) — m{ sinh(Sm7)dB(t), (1.49)

where B is a Standard Brownian motion and x(0) has a centered Gaussian dis-

tribution with covariance 1 — (mg)%.

Remark 1.5.1. We can notice that there is no constant drift in ((1.49)); drift which,
on the contrary, is present in ([1.22)). It arises because of the disorder.

— 54 —
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We focus on the critical dynamics of the system. The critical direction coincides
with the magnetization, since the order parameter is one-dimensional. We con-
struct the fluctuations in the threshold case, when = 1, and we look at their
long-time behavior. The size of the Normal fluctuations must be further rescaled
(in space and in time), because their size around the deterministic limit increases
in time. In this case we will obtain non-Normal fluctuations.

In the rest of the section, we will consider 5 = 1 and let us assume that the initial
condition A is a product measure such that m§ = 0 and so my = 0 for every value

of t > 0, since it is an equilibrium solution.

Theorem 1.5.3. Fort € [0,T], if we consider the critical fluctuation process

En(t) = NY'm? img (1.50)

then, as N — +00, Tn(t) converges, in the sense of weak convergence of stochas-
tic processes, to a limiting non-Gaussian process T(t), which is the unique solution

of the following stochastic differential equation:

di(t) — —§ #() dt + 2dB(1)

z(0) =0
where B is a standard Brownian motion.

Concluding, we point out the fact that the inhomogeneous critical fluctuation
process exists in a shorter time-scale than the homogeneous one, in fact in ([1.26)
we can amplify the time only by a factor N/, instead of the usual scale N/2,
as in ([1.50). The reason of this difference is the constant drift, appearing in
the dynamics of the Normal fluctuations. It obliges us to amplify the time by a
smaller power of N than the one “permitted” by the linearized operator driving
the diffusion equation. Besides, the limit of disordered critical fluctuations is
Gaussian, since solution of a deterministic equation with constant (but random)

drift given by a Gaussian random variable; while, it is not when there is no added

field.






Chapter 2

A Non-Reversible Model Motivated by Credit Risk in

Finance

Part of the results obtained in this chapter is due to a joint work with Elena Sartori.

e are interested in analyzing another interacting particle system embed-
ded in a site-dependent random environment, applying the techniques
explained in the previous chapter. We start considering the mean-field interact-
ing spin-flip system described in [DPRST09] and we introduce an inhomogeneity
in the model.
We consider N sites, indicated with j, and we associate with each of them a
pair of spin values (0;,w;) and a random environment 7;, that we choose to be
a dichotomic random variable. We start with a Markovian, but non-reversible

dynamics, where the rates of transition are of the form

0j — —0; at rate e Poivi B >0, (2.1)
W — —Wg at rate e Wk (b ) v, h > 0. '

Also this model has no spatial geometry in the space of the configurations, since
the interaction continues to be of the mean-field type.

Seven order parameters (magnetization field) are necessary to describe this sys-
tem. Being based on a Large Deviation Principle, we compute the differential
equations which drive their evolution in the infinite volume limit (McKean-Vlasov

equations) and we derive a Law of Large Numbers they obey. Depending on the



Chapter 2. A Non-Reversible Model Motivated by Credit Risk in Finance

parameters, we can see there exists phase transition to ferromagnetic states with
constant magnetizations.

We then consider the fluctuation processes. We can provide a Central Limit
Theorem for the non-critical seven-dimensional fluctuation process, but we skip
the proof of this fact since it is completely analogous to the case of the random
Curie-Weiss Model discussed in Chapter 1 and we focus on the infinite volume
limit of the critical fluctuation process, which represents our main result. As
in the previous case, we need an appropriate time-space rescaling to keep track
of the critical slowing down and we obtain, in the limit, that only the critical
structure survives and it is a lower dimensional process with respect to the non-
critical fluctuation process. The fluctuations are one-dimensional at the critical
point. In fact, when the size of the system grows to infinity, six order parameters
collapse, while the other converges (in the sense of weak convergence of stochastic
processes) to a deterministic process with constant (but random) drift given by

a Gaussian variable with parameters depending on the environment.

The reason why we treat this system, which is a slight generalization of the homo-
geneous one in [DPRST09|, is that the latter is interpreted in a financial contest.
In fact, it is applied to describe the propagation of financial distress in a network
of firms facing credit risk, i.e. the possibility of experiencing default. The default
may be contagious, so there might be clustering of defaults. Hence, the phe-
nomenon of a credit crisis is investigated and the losses of a financial institution,
holding a large portfolio with positions issued by firms, are quantified.

Consider N firms active on the market, linked by business relationships.

The credit state of each firm j is represented by the couple of binary variables
(0j,w;) € {—1,4+1}: o, can be viewed as its rating indicator (we mean that
0j = —1 is a bad rating class, in other words, the firm is not able to pay obliga-
tions back with higher probability; vice versa for o; = +1) and wj is its strength.
The indicator w; is more important, but it is not directly observable from the
market; so, it is reasonable to suppose that w; does not directly influence oy,
for j # k, while the interaction between w; and o; is strong. Introducing m%
as a global health indicator and recalling that the mean-field assumption allows

to suppose that the interaction depends only on the value of this quantity, the
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contagion can be schematized as follows

o
wj — oj — my — W

strength of firm j rating class of firm j global health indicator strength of firm k&

This reasoning justifies the choice of rates of transitions of the form (2.1)), with
h=0.
Our aim is to extend the study of this system in the case when the portfolio is

heterogeneous, fact which is modeled by the addition of the random field.

2.1 Description of the Model

Let & = {-1,+1} and n = (nj)é-vzl € .#" be a sequence of independent, identi-
cally distributed, symmetric, Bernoulli random variables defined on some proba-
bility space (Q, F, P). That is, P(n; = —1) = P(n; = +1) = 3, for any j. We in-
dicate by  their common law. Given a configuration (o, w) = (0;,w;)}-, € SV
and a realization of the random medium 7, we construct a 2/N-spin system evolv-
ing as a continuous time Markov chain on .V, with infinitesimal generator Ly

acting on functions f : .?Y — R as follows:

Lyf(o,w) Ze 5UJ‘“JV“f (o,w) Ze 7y (miy ;) Vi f(o,w), (2.2)
Jj=1 j=1
where V7 f(o,w) = f(¢’,w) — f(o,w) and V¥ f(o,w) = f(o,w’) — f(o,w). The

k-th component of o7, which has the meaning of a o-spin flip at site 7, is

O-k;:

j { oy for k # 5

—o for k=7

and the w-spin flip at site j is defined similarly. The quantities cjﬂvg( j,0) = e P
and CQNQ( Jyw) =e i (my+hn;) represent the jump rates of the spins; the rate at
which the transition 0; — —o; and w; — —w; occur respectively for some j.
The parameters (3, v and h are positive and such that h # g

The expression describes a system of mean-field coupled pairs of spins, each
with its own random environment. It is subject to an inhomogeneous mean-field
interaction (of intensity h) parametrized by the components 7;. As usual, with

the expression “mean-field” we mean the sites interact all each other in the same
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way and this assumption allows us to suppose that the interaction depends on

the value of the magnetization
1 N
my(t) = N Z a;(t). (2.3)
j=1

For simplicity, the initial condition (¢(0),w(0)) is assumed to have product dis-
tribution A®*V| with A probability measure on 2. The quantity (o;(t),w;(t))
represents the time evolution on [0, 7], T fixed, of j-th pair of spin values; it is
the trajectory of the single j-th pair of spin values in time. The space of all these
paths is (D[0, T])?, where D[0, T] is the space of the right-continuous, piecewise-
constant function from [0, 7] to ., endowed with the Skorohod topology, which

provides a metric and a Borel o-field (as we can see in  [EKS86]).

2.2 Non-reversibility of the system

The operator Ly given in defines an irriducible, finite-state Markov chain.
It follows the process admits a unique stationary distribution.

Simpler conditions for stationarity are the Detailed Balance Conditions. We
say that a probability measure v on {—1,+1}?" satisfies the Detailed Balance

Conditions for the generator Ly if
v(o?,w)efi¥ = v(g,w)e 7 (2.4)

and

v(o, Qj)ewj(m%%nj) = (o, g)e—Wj(m%erhm) (2.5)

for every (o,w). When these conditions hold, the system is reversible: the sta-
tionary Markov chain with infinitesimal generator Ly and marginal law v has a
distribution which is left invariant by time-reversal. In the case and
admit a solution, they usually allow to derive the stationary distribution explic-

itly. This is not the case in our model. We have in fact

Proposition 2.2.1. The Detailed Balance Conditions (2.4]), (2.5) admit no solu-

tion, except at most for a specific value of N.

Proof. By contradiction, let us assume a solution v of (2.4 and (2.5)) exists; so
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the equalities (2.4]) and (2.5]) are satisfied and we can deduce

- v(o?,w)
V7logv(a,w) = log = —2f0,w;

v(a,w)

Vilogr (o, w) = —2yw;(my + hn;),
which imply

ViV logv(a,w) = 480;w;

Ao
ViVslogv(o,w) = 0

that, being V¥V log vio,w) = VIV¥log v(o,w), can hold true for at most one

value of V. [ |

2.3 Limiting Dynamics

We now derive the dynamics of the process (2.2), in the limit as N — 400, in a
fixed time interval [0, T], via a Large Deviation approach. Later, the large time

behavior of the limiting dynamics will be studied.

So, let (0;[0,T7,w;[0,T]);Z; € (D[0,T])*" denote a path of the system in the
time interval [0, 7], with T positive and fixed. If f(o;[0,77],w;[0,77]) is a function
of the trajectory of a single pair of spins, we are interested in the asymptotic

behavior of empirical averages of the form

NZfU]OT]wJOT /fde,

7j=1

where {py}n>1 is the sequence of empirical measures

1 N
PN = Nz (0410,T),w;[0,T],m5) -

We may think of py as a random element of M;((D[0,T])? x ), the space
of probability measures on (D[0,7])? x . endowed with the weak convergence

topology.
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First, we want to determine the weak limit of py in M;((D[0,T])? x ) as N
grows to infinity; i.e. for f € C, we look for limy ., [ fdpn. It corresponds
to a Law of Large Numbers with the limit being a deterministic measure. Being
an element of M;((D[0,T])* x .#), such a limit can be viewed as a stochastic

process, which describes the dynamics of the system in the infinite volume limit.

2.3.1 Empirical Measure and Large Deviations

Let W € M;((D[0,T])?) denote the law of the .#*-valued process (o(t), w(t))sepo,r]
such that the initial condition (¢(0),w(0)) has distribution A and both spin signs
change with constant rate equal to 1. By W®" we mean the product of N
copies of W, which represents the law of the 2N-spin system whose genera-
tor is where we have set c%g = c%,g = 1; in other words, the law of
our system in absence of interaction. Moreover, we shall write P]% the law of
(e([0,71),w([0,T7)) = (a(t),w(t))icio,r], the process with infinitesimal generator
and initial distribution A®V, for a given 1.

Consider Q € M;((D[0,T])? x .#), if I1,Q indicates the marginal distribution of

() at time t, we have

my,g = /73 oll;Q(do, dw, dn).

For a given path (o([0,7]),w([0,T])) € (D[0,T])* and being N7, N the pro-

cesses counting respectively the jumps of o(-) and w(-), we define

F(Q);:/UOT@—e-ﬁU o dt+ﬁ/ ()dNT

. / ( e mntQ—i-h??)) dt +~ / mﬂtQ—i—hn) d/\/{’] dQ, (2.6)

whenever

[N+ N7 dQ < +oc,
otherwise F'(Q) = 0.

Remark 2.3.1. The function F(Q) is neither continuous nor bounded.

We can obtain a representation of P]% in terms of py, as follows:

— 62 —
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Lemma 2.3.1. For a fized realization n,

LN (00,7, ([0, T1)) = exp[N F(p(o((0. 7)), (0, 7]), )]

where, for @ € M1((D[0,T])? x #), F(Q) is expressed by ([2.6).

Proof. We apply the Girsanov’s Formula for point processes (see Lemma [1.2.1]).

Let (N7 (5))1, (Vi(5))iL, be the multivariate Poisson processes counting the

jumps of o; and w;, for j =1,..., N. If we read 0,(t—) = Jim 0;(s) (analogously
for w;) and m%N(t_) = SILIP— m%N(S), it yields
dPy
ren (@([0,T1),w((0,T])) =

N T T
= exp { Z l/ log e—ﬁffj(t—)Wj(t—)dME(j) — / (e—ﬁffj(t)wj(t) _ 1) dt
il R 0
[ oge a1 (000 ) )|
0 0

but ¢ and w have no simultaneous jumps W®¥-almost surely, therefore

~ oxp { f: [/OT (1 = emfos(Os10) gy — ﬁ/OT(—aj(t))wj(t)d/\@”(j)

J=1

(e (miwwh"j)) it [t () )|

— exp { f: [/OT (1= emos5(0) gt + g/OT o (H)w; (£))ANE()

J=1

T —Wj(t) m< t+hj T o B
w (1R Y [0 (g ) )]

and, because / (NF + NF)dpy < +oo almost surely with respect to W&V, this

leads us to the conclusion. [ |

Lemma allows us to deduce a Large Deviation Principle for py, from which

we can derive its asymptotic behavior as N — +o0.
Define

Pu()i= [ u® () Py(pn € ).
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which is an element of M;(M;((D[0,T])? x .¥)) and represents the law of py
under the joint distribution of the process and the environment.
If Q@ € M((D[0,T])* x ) we denote by

fdQlogd pif Q<Weopu and logdww) e LYQ)

+00 othervvlse

«WQW®M:{

the relative entropy between @) and W & p.

Proposition 2.3.1. The laws {Py}n>1 of pn (under the joint distribution of the

process and the medium) obey a Large Deviation Principle with rate function

Q) = H(QW e pn) - F(Q)

(mind Definitions|1.2.1 and|1.2.3).

Proof. The main problem to prove Proposition is related to the fact that
the function F defined in is neither continuous nor bounded and it does not
admit a characterization analogous to (|1.3]) (because of the non-reversibility). So,
we need some technicalities to circumvent this problem.

First, we set
—{Q e M@0, < 7): [ (N7 +N3) dQ < +o0)

and we define, for a > 0 and ) € Z,

Fo(Q) = / [/T (a —e (t)‘“(t)> dt

+/ [Bo(t) — logal] AN +/ ( W(t)(m%tQ’Lh")) dt
+ /0 P)/w<t) (m%tQ + hﬁ) o IOg CL] de] dQ <27)

Note that F; = F. Furthermore, Lemma [2.3.1| can be extended to show that

dPy
dW@N

(a([0,T7), w([0, TT)) = exp[N Fa(pn(a ([0, T1),w([0, T]),n)],  (2:8)

where W, is the law of the .#?-valued process (o (t),w(t)), which has distribution

A at time ¢t = 0 and spins flip with constant rates a. Now, we can start the proof.
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We divide it into several steps.

STEP 1: F, is lower semi-continuous on Z for 0 < a < min (e‘ﬁ,e_"’(“rh)) and

it is upper semi-continuous on I for a > max (eﬂ, 67(1+h)> .

By definition of weak topology, the map

Qr— / [/OT (a — e_ﬁg(t)”(t)) dt + /OT (a — eVW(t)(mﬁtQJrh")) dt] dQ

is continuous in @, since it is a @Q-expectation of bounded and continuous func-
tions in (D[0,T])?. Thus, we only have to deal with the term

/ [/OT[ﬁa(t)w(t) —loga] AN —i—/OT{’yw(t) (m%tQ + hn) — log a] d/\/f] Q.
(2.9)

We prove that for 0 < a < min (e_ﬁ , 6_7(1”‘)) the expression in ([2.9)) is lower
semi-continuous in ) € Z. This implies that F, is lower semi-continuous. The
case a > max (eﬁ , eV(Hh)) can be treated analogously.
For ¢ > 0, we consider the function v. : D[0,T] — R defined, for £ € D|0, T},
by

L if £(¢) jumps for some t € (0, €]

o {Ls

0 otherwise.
We define £(t) for t > T by letting {(t) = &(T). Then, if we denote by 6, the
shift operator, we have that, for ¢ € [0,T], 6,£ is an element of D[0,T] too and
it is given by 6,£(s) := &£(t + s). Let now f, g : .¥* — R be two functions and
define f.,g. : (D[0,T])> — R by

fe(0]0,T],w[0,T)) :=inf{f(c(t),w(t)) : t € (0,e)}
and similarly for g.. Then, we set
T T
Y. (o]0, T],w[0, T)) := /0 (0,0, 0,0)0-(0,0)dt + /0 0. (8,0, 0,00 (B,0)dt .

The key facts are the following two properties of T., whose demonstrations are

omitted, since rather straightforward.

» Y.(0[0,T],w[0,T]) is continuous and bounded on the set {(¢[0, T],w[0,T7]) :
NZ + N¥ < 400}
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» Suppose f,g > 0. Then, for §(,(0,77w0,11,m) € Z, Ye(0[0,T],w[0,T]) increases

to

T T
T(o[0.7),w0.7) i= [ flolt=)w(t=)dNT + [ glo(t=).w(t=)an;
as € | 0. Therefore, by Monotone Convergence, we get

/T(o[O,T],w[O,T])dQ — sup [ Y.(o[0, T, [0, T])dQ

e>0

and, in particular, the map

Qr— [ (610,710, T])dQ
is lower semi-continuous on Z.

Now, for 0 < a < min (6_5, e‘V(Hh)), the function f(o,w) = fBow — loga is non-
negative. As for the function g, that should be g(o,w) = yw (mﬂtQ + hn) —loga,
we notice it is not a function of the only variables (o, w), but rather a function of
(0,11;@Q), thus depending explicitly on ¢t and ). However, due to its boundness
and the fact that mf, is continuous in @ uniformly in ¢ and o, the argument

above applies with minor modifications leading to the conclusion of the proof.

STEP 2: Let Q € M;((D[0,T])? x .#) be such that HQ|W ® u) < +oo. Then
Q € Z. The same result applies if W, replaces W.

Since N is bounded, by the entropy equality
log/eNgd(W ® p) = sgp [/./\/ffdQ — H(Q|W @ )
(see (6.2.14) in [DZ93]), we can deduce
[ NzdQ <10g [ AFAW @ 1) + HQIW @ )

But NZ has Poisson distribution under W ® p (since it has Poisson distribution
under W), so [eN7dW < +o0. By applying the same argument to N¥ we con-
clude. This proof extends to the case a # 1.

Remark 2.3.2. Note that whenever [NZdQ = 400 (or [ N¥dQ = +00), then we
obtain H(Q|W ® p) = +o0.
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STEP 3: The function 1(Q) := H(Q|W @ u) — F(Q) is lower semi-continuous on
M1 ((D]0,T])* x 7).

We already know that the entropy H(Q|W ® u) is lower semi-continuous in the
whole space M, ((D[0,T])? x .#) (recall Remark [1.2.3)). Moreover, by definition,
F(Q) < 400 for every @ and so we have H(Q|W ®pu) = I1(Q) whenever H(Q|W &
i) = +o0. Since, by stEP 2, H(Q|W ® p) = +o0 for Q ¢ Z, we are left to prove

the following two statements:
(a) 1(Q) is lower semi-continuous in Z;
(b) if H(Q|W & p) = 400 and Q,, == @ weakly, then I(Q,) =2 +o0.

For a > 0 the following identity holds, which is a consequence of the definition
of relative entropy and of the Girsanov’s Formula for point processes (or, more

precisely, furthermore adapted to Markov Chains):

dW @ p)

HQIWa @ ) = HQIW @ 1) + [ dQlog d(W, @ pr)

= H(Q|W ® p) + 2T(1 — a) + loga/ NS+ N2) Q. (2.10)

Combining step 2 and (2.10)), we obtain that
HQ|W @ p) =400 <= H(Q|W, ® p) = 400
and hence we can deduce

[(Q) = H(QIW,®pn) — F.(Q), (2.11)

where the difference in is meant to be 400 whenever H(Q|W, ® 1) = +0o
(or, equivalently, H(Q|W ® p) = +00).
Now, we are ready to verify (a) and (b). To prove (a) it is enough to choose
a > max (65 ,e”“*h)) and use STEP 1. Moreover, for the same choice of a, the
stochastic integral in is nonpositive, so F,(Q) < 2T'a. Therefore, if H(Q|W &
u) = +oo and if Q,, — Q,

liminf 1(Q,) > l}glglof H(QuW,®p) —2Ta = +o0

n—-+o0o
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where the last equality follows from the lower semi-continuity of H (-|W, ® p) and
H(QIW, ® u) = 4+o00. Thus, (b) is proved as well.

STEP 4: The function 1(Q) has compact level-sets.

Choosing, a > max (eﬁ, eV(Hh)), we have that F,(Q) < 2Ta for every (). Then,
by (2.11]), the following inclusion remains valid

{Q:1(Q) <k} C{Q: HQIW.® p) < k+2Ta}.

Since the relative entropy has compact level-sets (see again Chapter VI, Section
21in [DZ93]), the set {Q : I(Q) < k} is contained in a compact. But, it is closed,

thanks to the lower semi-continuity of /(-), and then the proof is completed.

STEP 5: For every a > 0 there exists d > 1 such that

1
lim sup N log [ exp[6NF,(pn)|d(WEN @ u®N) < +o0. (2.12)
N—+o00

We check the statement for a = 1. The modifications for the general case (a # 1)
are straightforward. The proof consists of algebraic manipulations. The idea can
be summarized as follows. First of all, we consider the integral with respect only
to the measure WV because if § = 1, Lemma implies that exp[d N F(pn)]
is the Radon-Nikodym derivative of P]% with respect to W&V and, therefore,
its expectation is equal to 1. For § > 1, we split 0F(py) into the sum of two
terms: 6F(py) = FY(pn) + FP(py), in such a way that F® is bounded and
exp[NF®(py)] is a Radon-Nikodym derivative of a probability with respect to

WeN | Finally, we will integrate with respect to the environment. Let us start.
Using (2.6)), we obtain
N T T
SNF(py) =3 {5 / (1 - e #7040 dt 4 55 / aj@)wj(z)d/v;’(j)}
= 0 0

+) {5/T (1 _ e i <mzw<t>+h"j)> dt
0

J=1
T
v (0 (0 + ) )|
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= % { /T [5 —de © <m%N<t>+hnj> - (1 - e_ij(t) <m;N(f>+hm>>] o
— 0
+ /T [5 — e Boit)w;(t) _ (1 —0pa;(t)w; (t )} dt}
0

a T 880 (t)w; (¢ T o
+3 {/0 (1= e ) gp 4 5@/0 aj(wwj(t)d/vt(j)}

j=1

N e
+> { / ! <1 _e il (mmw*h’“')) dt

0

J=1

T g W [ .
#a (0 (0 + ) NG|
= NF®(py) + NFD(py),

where
N T T
NF(l (pn) == Z [/0 ( 6—550;‘(?5)%@)) dt + 5ﬁ/0 oj(t)wj(t)d/\/f(j)]
7j=1
N T —57w-(t)( +hn; ))
+ 1—e J PN (1) J dt
>

+ 6y /0 ! w;(t) (m?, ) + hny ) AN j)]

and

N

NFO(py) Z / lé se ¢ (myrtin) (1 —e‘”‘”"(t)(mzfv<t>+h"j)ﬂ dt

N T
+3° /0 (6 = dePra®t) — (1 — =005 | gt

We can see that exp[NF®(py)] has the same form of exp[NF(py)] (given in
Lemma [2.3.1)) after having replace 8 with 63 and that its W*®"-expectation, i.e.
[ exp[NF® (px)]dWEN | is equal to 1. Then, also the (W& @ u®N)-expectation

is equal to 1. Besides, we easily estimate
FO(py)<T [25 ) (e*B + e*’*<1+h>) — 24+ 4 e‘”“*h)} = C(3,7,0,h,T).
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Putting all together, it yields
/ SNF(pn d(W®N 2 H@N) oNC (B8 T) /BNF(I)(PN)d(W®N ® M@N)

pr— eNC(67’Y767h7T)

from which the conclusion follows.

STEP 6: it remains to show an upper and a lower bound of type ((1.4b)) and (|1.4al)
respectively. We prove them separately. The key tool is Varadhan’s Lemma in
the version given by Lemmas 4.3.4 and 4.3.6 in [DZ93]. We give here the state-

ments in the form we need for completeness and convenience.

r

Lemma 2.3.2. Consider the sequence of probability measures (Z,,)n,>1 on Z .

(a) If f + 2 — R is a lower semi-continuous function and the Large Deviation

lower bound, i.e.

hm mf —log Z,(0) > — inf i(x) O open subset of 2",

n—+4o00 M, €0

holds with i : 2~ — [0, 400], then

hmlnf—lo /expnfd@ > sup[f(z) —i(x)].

n—+oo 1 xeX

(b) Let us suppose that f : & — R is an upper semi-continuous function and
that there exists a constant § > 1 such that

1
lim sup —log/exp[énf]d@n < 400.
n

n—-+o00

If the Large Deviation upper bound, i.e.

lim sup — log Pn(€) < —inf i(x) € closed subset of 2,

n—4oco M TEC
holds with i : 2~ — [0, 00|, then
limsup—log/exp nfld?, < sup|f(x) —i(x)].

n—-+oo X
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We deal first with the Large Deviation upper bound (type (L.4b)). Take a >
max (eﬁ , eV(Hh)), so that the function F}, defined in is upper semi-continuous.
Denote by Ry the distribution of py under W&V x u®V; in other words, if A €
B((D[0,T])? x .#) is a Borelian set, then Ry(A) = (WS x u®N)(py'(A)). Un-
der Ry, the triples (0;[0,T],w;[0,T],n;) are independent, identically distributed
random variables.

Now, because of the result proved in Lemma and its extension , we

have

P () = [ 1 (dn) P (px(del0, T),dwl0,T].3) € )

dPy
AWEN

— [ 1 (dn) [ WEN (delo, T, def0, T)) - (o0, T, wl0, T pye

_ / d(W2N x p®N) exp[N Fo(pn)1pne
= /RN(dQ) exp[NF,(Q)|1(qe 3 » (2.13)

with @ = py. The last identity (2.13) means that

dPn

E(@ = exp[NF,(Q)] . (2.14)

Since (D0, T])?x.7 is a Polish space, by Sanov’s Theorem (see Theorem |1.2.1]) we
can deduce that { Ry} y>1 satisfies a Large Deviation Principle with rate function
H(Q|W,®u). Therefore, F, is upper semi-continuous and satisfies the superexpo-
nential estimate and thus we can apply Varadhan’s Lemma (Lemma
to obtain the upper bound of type (L.4D). In fact, if C' € M;((D[0,T])? x &) is
a closed set,

1 1
limsup — log Py(C) = limsup — log | Ry (dQ) exp[NFo(Q)]1{gecy

< sup[F(Q) — H(Q|W, ® p)] = — inf 1(Q),
QcC QeC
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where the definition of 1(Q) is in ([2.11)).
The Large Deviation lower bound (type (l.4a)) is proved similarly, by taking

0 < a < min (6*5,6*7(1”‘)), so that F, becomes lower semi-continuous, using
(2.14) and Varadhan’s Lemma again.
|

2.3.2 McKean-Vlasov Equation

Given Q € M ((D[0,T])? x ) and n € ., we can associate with Q a Markov
process on .2 with law P™?, initial distribution A and time-dependent infinites-

imal generator
LIf(0,w) = e 77V f(o,w) + e MG £ (5 W)

acting on f :.? — R.

Proposition 2.3.2. For every Q € M, ((D[0,T])* x .#) such that I(Q) < +oo,
1(Q) = H(Q|P?), (2.15)
where P? € My ((D[0,T])? x ) is defined by
P?(do[0,T], dw[0,T], dn) = P"?(do0, T), dw|0, T])u(dn).

Proof. First we need to verify that the following representation for F'(Q)) (defined
in (2.6 ) holds

n,Q
F(Q) = / Q(do0, T), dw[0, T), dy) log djw

We begin by observing that, since by assumption /(@) < 400, we have also
H(Q|W ® ) < 400 and so, by the proof of Proposition it follows that
@ € Z, which implies the integrals below are well defined. Using again the

([0, T),w[0,T7).

Girsanov’s Formula for Markov Chains, we get

dpPnQ
dw

/dQlog (o]0, T],w[0,T]) =

T T
_ /dQl/o (1 _6—Bo(t)w(t)) dt+/0 (1 _ e—'yw(t)(faHzQ(dcr,dw,dn)—l—hn)) o
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e / VANT — / ( / oTl,_Q(do, dw, dn) + hn) dj\f;"]

— /dQ l/T <1 . efﬁa(t)w(t)) dt + /T (1 . ef'yw(t)(f aHtQ(do‘,dw,dn)+hn)) dt

+ ﬂ/ tYdNY + 7/ (/ oll,Q(do, dw, dn) + hn) d./\ft“]

:/dQ[/T 1_ _ﬁg (t)w(t) dt+/ ( 'yu(t)(mn Q+h7])> dt
0

+5/ dJ\/'a—i-y/ m%tQ-l—hn) d/\/’tw]

= F(Q)

By combining what we obtained, we can compute

dQ

Q)= HQIW @ i)~ F(Q) = [ Qg Sy

] —/d@logdPnQ

aw

_ /dQlog Pn@® /dQl H(Q|P?).
m

Theorem 2.3.1. Let us suppose that the initial distribution of the Markov process
(a(t),w(t))i>o with generator is such that the random variables (0;(0),w;(0))
are independent and identically distributed with law X. Then the equation I(Q) =0
admits a unique solution Q, € My((D[0,T])* x .¥), such that its marginals

= IL,Q" € M(.?) are weak solutions of the nonlinear McKean-Viasov equa-

tion )
=Ll (t€0.T), ne) 016
v (2.16)
0
where, for all the triples (o,w,n) € .73, the operator L" acts
L4 (0,w) = V7 [ gl (o,w)| + ¥ [e g 0, w)] - (217)
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and q; is defined by
wlo.w) = [ al(o,w)uldn).

Moreover, with respect to a metric d(-,-) inducing the weak topology, py — Q. in
probability with exponential rate, i.e. Pn{d(pn,Q«) > €} is exponentially small
in N, for each € > 0.

Proof. We know that the relative entropy between two measures is zero then the
two measures must be equal (see Remark [1.2.3). By this property, from (2.15)
we have I(Q) = 0 translates into Q = P?. Let us suppose @, is a solution of
this last equation. Then, in particular, for a given 7, ¢/ := IL,Q" = I1,P9%. The
marginals of a Markov process are solutions of the corresponding forward equation
that, in this case, leads to the fact that ¢/ is a solution of . This differential
equation, being an equation in finite dimension with locally Lipschitz coefficients,
has at most one solution in [0,7]. Since P9 is totally determined by the flow
q/, it follows that equation Q = P? has at most one solution. The existence of a
solution derives from the fact that I(Q) is the rate function of a Large Deviation
Principle and therefore it has to have at least one zero: indeed, by the bound of
type with O = M;((D[0,T])* x ), we get infgeo I(Q) = 0. Since I is
lower semi-continuous, it attains this null value and so this infimum is actually a

minimum.

It remains to prove the Law of Large Numbers for py: with respect to a metric
d(-,-) inducing the weak topology, py N=too, Q). in probability with exponential
rate, i.e. Py{d(pn, Q) > €} is exponentially small in NV, for each £ > 0.

Let Q. be the unique solution of equation @ = P and let Bg, be an arbitrary
open neighborhood of Q.. By the Large Devition upper bound (type (1.4D))), we

have

1
lim sup — log P Bp,) < — inf I <0,
im sup - log N(pn & Bg.) < ot (@)

where the last inequality comes from the lower semi-continuity of I, the com-
pactness of its level-sets and the fact that I(Q) > 0 for @ # Q.. Indeed,
if infogp,, 1(Q) = 0, then there exists a sequence (Qn), ¢ Bg, such that
1(Qn) 27120, (). By the compactness of level-sets, the sequence (Qn)n admits
a subsequence (@, )n, converging to Q ¢ Bg,, when ny — +oo. Thanks to the

lower semi-continuity of I, it follows 1(Q) < liminf,, ., I(Q,,) = 0, which
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contradicts 1(Q) > 0 for @ # Q.. Thus, from the above inequality, we deduce

that there exists a positive constant A such that
Px(py ¢ Bo,) < Ae” " ™ese. 119,

It means that, if we denote with d(-, -) any metric which induces the weak topology
on My, for every ¢ > 0, the probability Py(pny ¢ Bg.) = Pn{d(pn,Qs) > €}
converges toward zero exponentially fast with respect to N and this concludes

the proof of the Law of Large Numbers. [ |

2.3.3 Stationary Solution(s)

The equation describes the behavior of the system governed by genera-
tor in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation and in the study of the large time dy-
namics of it (them). We recall that to be ¢-stationary solution for means
to satisfy the equation L£7¢"7 = 0 for every t.

First of all, we proceed to reformulate the “original” McKean-Vlasov equation
in terms of m7 , mg,, mg , mg, mg?, me" and mg?" defined as follows:

qt’ qt? qt qt

my = ; Z Z nq(o,w) (2.18)

oweY neS

DN | =
DO | —

my = - Z Z oq(o,w) my" = Z on g (o,w) (2.19)

oweY nes oweS neS

1 a1
mii=5 Y Ywdlow)  mii=g > ) wngl(ow) (2.20)
oweS nes oweS nes
ow 1 n oawn 1 n
M= Y Yowdew)  mi=1 Y Y owunglow). (221
oweS nes oweS nes

where ¢ has the meaning explained in Theorem and we have written m,
instead of m,,. We introduce these expectations because the probability measure

q; on .3 is completely determined by them.
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Lemma 2.3.3. FEquations (2.16) can be rewritten in the following form:

! =0

my = — 2my cosh(f) + 2my sinh(5)

my = —2m cosh(vh) cosh(ym]) — 2m;" sinh(yh) sinh(ymy)
+ 2 cosh(vh) sinh(ym7)

m7* =2m{ cosh(yh)sinh(ymg) — 2mJ* [cosh(3) 4 cosh(yh) cosh(ymy )]
+ 2my " sinh(yh) cosh(ymy) — 2m{*" sinh(yh) sinh(ymy) + 2 sinh(/3)

my" = —2m]" cosh(3) + 2m;" sinh(3)

g = — 2m¢ sinh(vh) sinh(ym?) — 2m;" cosh(yh) cosh(ymy)
+ 2 sinh(vh) cosh(ymy)

I =

=2my sinh(yh) cosh(ymy) — 2m7“ sinh(yh) sinh(ymy )
+ 2my" cosh(yh) sinh(ym{) — 2m7“" [cosh() + cosh(vh) cosh(ymy)]

with initial condition mg = m/, ,, =0, m§ =m{, ), mg = mp, ), m§* =mfy,,

Mg = M, MG = My, and mg” = mi,.

Proof. By definition (2.19) and Theorem we deduce

m?:Zaqtaw ZZU%UW ZZaﬁnqtaw

o,weS awEﬁ”nEV UwEV neys

3 2 X o {7 [ aow)] + v e g o,w)] )

awGE’nGV
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LY Y o ow) — e P o,w) + Y [ TG0, 0)] )

aweﬁﬂney

==Y Y oe g (o,w) —1—5 DD DA [e y(mg+hm) o/ (a,w)}

oweS neS oweY neYS

=0

=— > > ocosh(B) — owsinh(B)] ¢/ (0, w)

oweYS neS

=—cosh(8) Y Y ogl(o,w)+sinh(B) Y 3 wel(ow)

oweS neS oweS neS

= — 2my cosh(B) + 2my sinh(f3),

where the last equality holds thanks to (2.19) and (2.20)). So the first equation

of Lemma [2.3.3]is proved. Similarly, we can obtain all the others. [ |

Also in this case m) is a static variable, thus any equilibrium solution of the

system in Lemma [2.3.3]is of the form
sinh(ymZ) cosh(ym?)
cosh?(ymg) + sinh?(+h)

mg = tanh(()

sinh(ym?) cosh(ym?)
cosh?(ym?) 4 sinh?(vh)

m, =

(2.22)
1 + sinh?(vh)
cosh?(ymg) + sinh?(+yh)

mJ" = tanh(() tanh(~vh)

1 + sinh?(h)

“T = tanh(~vh
My anh(y >cosh2(7m§{ ) + sinh?(yh)
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own __

To discover the presence of phase transition(s) (multiple equilibria) and the sta-

bility of equilibria, it is sufficient studying the first equation of ([2.22)):
sinh(ymZ) cosh(ym?)

cosh®(ymg) + sinh®(vh) ’

mg = tanh(()

because all the remaining m, = m,(m?) and hence lim m, = m, when lim m{
t—+o00 t—+o00

= mJ. The stationary system we are dealing with is essentially one-dimensional.

lltan‘h(B)
3/2tanh(p) Y

Figure 2.1: Phase diagram for a fixed value of 3

For a fixed value of 3, the phase diagram is qualitatively drawn in Figure [2.1]
There are three phases, corresponding to 0, 1 and 2 ferromagnetic solutions re-

spectively. The continuous separation curve is

h=h(B,v) = }Yarccosh( ~ tanh(5)) v E [tanlh(ﬁ)’ —|—oo> : (2.23)

while the dotted one is obtained numerically and it is due to the fact that the

function
sinh(ymJ) cosh(ym?)

cosh?(ymg) + sinh?(vh)

mg —— tanh(f)

is not always concave. The two curves coincide for v € [m, ﬁh(ﬂ)} and

separate at the “tricritical” point (ﬁh(ﬁ), h (ﬁ, ﬁh(ﬁ)»
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Theorem 2.3.2. Consider (2.22)) and fix a value for 3.

(a) If (v, h) belongs to the region 0 of Figure then the only solution is

0 (0 o, th(B)th(yh)sh(yh) + sh(B)
. T ch(5) + ch(vh)

,th(ﬁ)th(*yh),th(fyh),O) .

(b) If (v, h), with v € [m,—i-oo), is below the curve (2.23), then there are

three solutions: m2, (m., m¥(m.), m2*(m.), m2"(m.), m<"(m.), m2"(m.))

and (—m., —m< (m.), m7%(—m.), m2"(m.), m<1(m,), m2<"(—m,)), where m,
is the unique positive solution of the first equation of (2.22]).

(c) If we choose the parameters above the curve (2.23|) and h is small enough,
in other words (7, h) belongs to the region 2 of Fz'gure then two further

solutions arise.

Proof. To deepen the analysis of stationary solution(s) and phase transition(s),
it is sufficient to study the behavior of the self-consistency relation satisfied by
m?. Looking at the first expression in (2.22)), we can write

mJ = D'g,n(m?)

o sinh(ymg ) cosh(ymZ
Fﬁ,’%h(m*) = tanh(ﬁ) coshQ(Zymg))—&-Sin(l’lYZ(’Yfi) ’

(2.24)

It follows from ([2.24)) that

» m? — 'z »(m7) is a continuous function for all the values of 3, v and h;

» lim I'g.,x(m7) = *tanh(f);

m9 —=+oo

[1 + 2sinh®(yh)] cosh?(ym?) — sinh?(vh)

> 0 f -
[cosh?(ym) + sinh?(vh)]2 e

> I 5 (m7) =7 tanh(p)
ery 3, v and h.

Since I'g, »(m7) is an odd function with respect to mZ, we have Iz, ,(0) = 0
7=0.

for all 3, v and h, so that (2.24]) always has the paramagnetic solution m{ =
Now, we investigate under what conditions ferromagnetic solutions mJ > 0 may
occur. We restrict to work in the positive half-plane.

If
tanh(/3)

——>1 2.25
cosh?(yh) 7 (2.25)

/ﬁ,'y,h(o) =7
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then there is at least one ferromagnetic solution. However, since I'g, ,(m?) is not
always concave, there may be a ferromagnetic solution even when fails. In
this case, there must be at least two ferromagnetic solutions (corresponding to
the curve m¢ —— I'g, n(m7) crossing the diagonal first from below and then from
above).

The regime defined by lies under the curve (2.23). An idea of when
two ferromagnetic solutions arise may be obtained from the Taylor expansion

of 'z 5 1 (m?) for small m7; in fact,

tanh(3) ,  stanh(B)[2cosh®(yh) — 3]
cosh?(yh) v 3 cosh®(vh)

and on the curve defined by ([2.23)) it reduces to

[

(m2)* + 0 ((m2)?)

g g 2 1 g g
Fﬁ7’Y7h<m*) =m, +7 <3’7 - tanh(ﬁ)) (m*>3 +0 ((m*)5)
from which we can see that 7 = m is a critical value. Indeed, if v > 7, then

as h increases through h(3,v) (i.e. T’ ,(0) decreases through 1) at least two

(e

7) is convex for

positive ferromagnetic solutions occur, because mZ —— ', 5(m

small mZ.

The phase diagram is analogous to the random Curie-Weiss Model one. We are
going to focus on the critical regime corresponding to the critical values for the
parameters 7 = C:zﬁ%b), meaning that we are on the curve (2.23)). In this region
of parameters, the equilibrium m?

is neutrally stable for the linearized system.

In fact, denoting by

Ve [—1,+1]° — R®
z = (@1, T2, T3, Ta, T5, T6) — (Vi(z), Valz), Va(z), Va(z), Vs(z), Vs(z))

with

Vi(z) := =2z cosh(3) + 2 x5 sinh()

Vo(z) := —2 x5 cosh(yh) cosh(yxy) — 2 x5 sinh(yh) sinh(yz)
+ 2 cosh(~h) sinh(yxy)
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Vs(z) := 2 x4 cosh(yh) sinh(vyx) — 2 23 [cosh(3) + cosh(vh) cosh(yz1)]
+ 2 x4 sinh(yh) cosh(yz;) — 2 xg sinh(yh) sinh(yx,) + 2sinh(3)

Vi(z) := —2 x4 cosh(f) + 2 x5 sinh(/)

Vs(z) := —2x9 sinh(~vh) sinh(vyx;) — 2 x5 cosh(vyh) cosh(yxy)
+ 2 sinh(yh) cosh(vyaxy)

Ve(z) := 2z sinh(~vh) cosh(yz1) — 2 x5 sinh(vh) sinh(yzq)
+ 2 x4 cosh(vh) sinh(yxy) — 2 26 [cosh(3) + cosh(vh) cosh(yxy)]

the vector field of the system in Lemma [2.3.3, we obtain the linearized matrix

evaluated in the stationary solution is DV (m?):

—ch(B) sh(B) 0 0 0 0
ﬁ —ch(yh) 0 0 0 0
9 0 0 —[ch(B) + ch(yh)] sh(yh) 0 0
0 0 0 —ch(B) sh(B) 0
0 0 0 0 —ch(vh) 0
sh(yh) + et 0 0 0 —[ch(B) + ch(yh)]
Its eigenvalues are given by
sinh(f3)
A1 = — cosh — cosh(~vh h — cosh(~vh)|? +4y——F
1 cosh(3) — cosh(yh) + | [cosh(3) — cosh(yh)]? + fycosh(fyh)
sinh ()
Ay = — cosh(3) — cosh(yh) — h(3) — cosh(vyh)]?2 + 4y——F—
9 cosh(3) — cosh(vh) [cosh(3) — cosh(vh)]? + vcosh(yh)

A3 =Ay = —2[cosh () + cosh(vh)]

A5 = — 2 cosh(vh)

A¢ = — 2 cosh(p);

— 81 —
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they all are real and it is easy to see that Ay, A3, Ay, A5, A\g < 0 for every value of

B, 7, h; instead, the value of \; depends on the parameters:

cosh?(vh)
tanh(B) ’

> if vy < then \; < 0 and thus m? is linearly stable;

» ify= C;’Zgh(ﬂ) , then \; = 0 and thus DV (m?) has a neutral direction;

cosh?(yh)
tanh(3) °’

tion which is unstable.

» if v > then A; > 0 and thus the linearized system admits a direc-

2.4 Normal Fluctuations and Central Limit Theorem

Thanks to Theorem [2.3.1| we established a Law of Large Numbers for the empir-
ical measure py: py — Q.. We are going to analyze the Normal fluctuations
around the limit @),. We are also interested in the N-asymptotic distribution of
PN — Q*-

Using a weak convergence-type approach based on uniform convergence of the
infinitesimal generators, deeply explained in [EKS86|, it is possible to provide a

dynamical interpretation of the recalled Law of Large Numbers.

Let f: #? — R be a function and define py(t), the marginal distribution of
pn at time ¢, by

1N
[ fow)don(t) = - X Flos(t),w5(0).
7=1
We have m7(t) = my . For each fixed ¢, py(t) is a probability on . and so, by
the considerations which led as to introduce the expectations (2.18]), (2.19)), (2.20)
and (2.21), we can proceed similarly saying py(t) is completely determined by
n o w ow an wn aw . .
the vector (m;N(t),m;N(t),m;N(t),m;;(t),m o0 Moty M (;)) and seeing it as

a seven-dimensional object. Thus (pn(t))tcpo,r is a seven—dlmensional flow. A

simple consequence of Theorem [2.3.1|is the following convergence of flows:

(v (8))iepo.r) — (@)tep,1) 5 (2.26)

where the convergence is meant in probability, with respect to the weak topology
for measure-valued processes. Since the flow of marginals contains less informa-
tion than the full measure of paths, the Law of Large Numbers in (2.26)) is weaker
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than the one in Theorem [2.3.1] However, the corresponding fluctuation flow

(NI/Q(PN(t) - Qt))te[o,T]

is also a finite-dimensional flow whose limiting distribution can be explicitly de-

termined.

. n g w ow an
Lemma 2.4.1. The stochastic process (m;N(t), M@ Mon): Mon)r Mont):

own . . . . .
m pN(;)) is an order parameter for the model; it means its evolution is

pn ()
Markovian.

m

me o, me e met o me Tt me o) is a
Mon)r Mon () Moty Mon(t)r Mon () Moty Mon (1)

Markov process, one must write down the expression of the infinitesimal generator

Proof. To prove that ( m

KCn whose dynamics are driven by. We apply Lemma[1.3.1}
The process {(a(t),w(t)}+>0 is a continuous time Markov chain on the finite
state space .#?" | with infinitesimal generator Ly, defined by (2.2)). Consider the

function

C: N — [—1,+1]7
(0,w) — (mpy,mg, ,ms, ,mge, mog, mog, mpy )
PN PN PN ’ ’ ’

it plays the role of ¢ in Lemma m, then, for every ¢ : .?Y — R, we have

Ly(¢o() = (Kng)o(

and ((o,w) is a Markov process with generator Ky given by

an  wn  gwn

iC n w ow —
N(b(mPNa mpNa mpN7 mpN s Mpn s Mpy, Mpy ) -

= Y A Rl

n ol 2 2 an 2 wn own 2
|9 Mpn, My lﬁ m;N,mp; ’LJN My — th—, My, Mpy — — ijk—

n an n
- d)(mpN? m;Na mpN7 mﬁ;7 Mpyn, Moy, Mpy )‘|

my, +kh
t 30 Ay (i, 5, k)le 0o AR
i,j,k€S

N’ N’

2 2
n an wn . awn ..
: [cb(mpN,mpN,m — JoyMEE — i Mpx, My — Jh—=, My~ — mk>
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n an wn ogwn
- ¢(mﬁN7 m%Na m%]\ﬂ m%ﬁ? Mpn, Mpn, Mpy )‘| ) (227>

where A, (7,7, k) is the set of all triples (04,wq,n4), d € {1,..., N}, such that
oq=1,wg =J and ny = k, with ¢, j, k € .%; hence

. N e
A,y (4,5, k)| = 5 L+kmpy +img +jm5 +ijm

Z§’+ikm5§7+jkm$£+zjkmgﬁ”] _

Theorem 2.4.1. In the limit as N — 400, the seven-dimensional fluctuation
process (ry(t), zn(t), yn(t), zn(t), un(t), vn(t), wn(t)), defined by

rn(t) == N2t

Ty (t) = N2 (m%N(t) - m;‘) uy(t) == N2 (mgn ) —my{"

yn(t) == N2 (mfN(t) - m;") vy (t) == N2 (m

ow ow own ow
Zy(t) == N2 (m;;(t) —my ) wy (t) == N2 (mpN(;) —my n) )

converges (in the sense of weak convergence of stochastic processes) to a limiting
seven-dimensional Gaussian process (r(t),z(t),y(t), z(t),u(t),v(t), w(t)), which

is the unique solution of the linear stochastic differential equation

dr(t) =0

[dz(t)] [2(t)] [dB;(t)]

dy(t) y(t) dBs(t)

328 — 9 A (1)t + 244(1) ZE?) dt + D(t) Z?’Eg o e
dv(t) v(t) dBs(t)

dw(t) (w(t)] dBg(t)

where By, By, B3, By, Bs, Bg are independent Standard Brownian motions, € is

a Standard Gaussian random variable, A;(t) and Ay(t) are respectively

0
sinh(yh) cosh(ymy)
0
0
cosh(yh) sinh(ym?)
sinh(5)
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i —ch(B)

—ym{ ch(yh)sh(ymg
—ymy "sh(vh)ch(ymy)
+vch(vh)ch(ym)

ch(vh)sh(ymg
+ym§ ch(vh)ch(ymy)
—ymy“ch(vh)sh(ymg)
+ymy "sh(yh)sh(ym{)
—'ymf“’"sh('yh)sh('ymf)

0

vsh(yh)sh(ym{)
—ymysh(yh)ch(ymy)
—'ymf"ch('yh)sh('ymf)

sh(yh)ch(ym§
+ym¢ sh(vyh)sh(ymy7)
—ym7“sh(yh)sh(ymy)
+ymy "ch(vh)ch(ymy)
L —ymy“"ch(vh)sh(ym{

sh(B) 0
—ch(yh)ch(ymg) 0
. —eh(9)
—ch(vh)ch(ym{)
0 0
—sh(yh)sh(ym) 0
0 —sh(yh)sh(ym7)

sh(vh)ch(ym{)

—ch(B)

ch(yh)sh(ym7)

0 0
—sh(vh)sh(ymy) 0
0 —sh(yh)sh(ymy)
sh(B) 0
—ch(yh)ch(ymy) 0
0 )
—ch(vh)ch(ym{)

D(t) is a suitable 6 x 6 matriz and (r(0),z(0),y(0), 2(0),u(0),v(0),w(0)) has a

centered Gaussian distribution with covariance matriz

1 0 0 0 0 0 0

_ o 2 ow _ o w w _ o ow T on P wn I own
0 L= (my ) ) T MO0 ™ O O T O M o T O ™ ow) T O M o) T O ™)
ocw _ o w _ w 2 o _ w ow W on ) wmn W own
O Ml T ™00 ™) 1= (miw) MO T MM TG ™ o T w0 ™ ooy T ™M ™)
0 m¥ —me mow me - mow 1— (m7 )2 —mTY o . _mow own
(X p) ) (A1) (X p) ) (A1) (A, ) ) (O p) Nm) () () ()
—mC on .Y on W on _ on 2 ] wn oM own
0 MO ™ () O ™ () ) ™ () 1= T ™o T ™ )
. wn L w wn . ow wn . on wn _ wn 2wy ocwn
0 ) ™ () ) ™ () ) ™ () oo ™Moo 1T MOnw) )™ ()
0 own W own I ) own N ocwn ___wn own _ own \2

0 ) ™ () 0w ™ () ) ™ () R N R R U BN

Proof. Omitted,

2.5 Critical Dynamics (v =

cosh?(vh)
tanh()

)

since it goes on analogously to the proof of Theorem [1.3.2 W

We are going to consider the critical dynamics of the system, in other words the

long-time behavior of the fluctuations in the threshold case, when ~v =

cosh?(yh)
tanh(8) *

In the previous section we told that in a time interval [0, 7], where T is fixed, and

in the infinite volume limit, we have Normal fluctuations for the system. Indeed,

the infinitesimal generator of the rescaled process converges to the infinitesimal

generator of a diffusion and the rescaled process itself converges weakly to that

diffusion. It means we can provide a Central Limit Theorem for all the values of

( and . This Central Limit Theorem continues to be valid in the critical case,

but there is an eigenvalue of the covariance matrix which grows polynomially in ¢
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and identifies the critical direction. This fact implies that the size of the Normal
fluctuations must be further rescaled (in space and in time), because their size
around the deterministic limit increases in time. In this case we will still obtain
Normal fluctuations, solutions of a certain stochastic differential equation to be

determined.

cosh?(vh)
tanh(3)

the initial condition A is a product measure such that

and let us assume that

In the rest of the section, we will consider v =

Mg =0, me =0, mow— 2nh(8)tanh(yh)sinh(yh) + sinh(B)
cosh(f3) + cosh(vh)

mg" = tanh(0) tanh(vh), my" = tanh(vyh), mg“" =0,
and so

[o— w ow
my =0, my =0, m]

_tanh(3) tanh(yh) sinh(vh) + sinh(53)
B cosh(B3) + cosh(vh) ’

my" = tanh(f) tanh(vyh), m;" = tanh(vyh), m{“" =0,

for every value of t > 0, since it is an equilibrium solution.
First of all, we need to locate the critical direction in the seven-dimensional
space of the order parameters. If we recall what we explained at the beginning of
setion [1.4] we can deduce it corresponds to the direction identified by the right
eigenvector corresponding to the null eigenvalue of the matrix DV (m?) and thus
1t 1is

T = cosh(yh)mg, + sinh(8)m?,

Remark 2.5.1. Notice that the critical direction & does not depend on the random

environment and it is one-dimensional.

Theorem 2.5.1. For t € [0,T], if we consider the seven-dimensional critical

fluctuation process

ry(t) = NVmg

Fn(t) = NV4 ( cosh(YA)mZ yuyey) + sinh(ﬁ)m;jN(Nl/4t))
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Iv(t) = N1/4<[Cosh(7h) — cosh(B)|m Y yi/apy +sh(B)m=? 1y

— [cosh(yh) — cosh(p)] tanh(/3) tanh(yh) — sinh(f) tanh(wh))

Zn(t) = NVA (mwn(N1/4t) — tanh(”yh)>

PN

iy (t) = NV (m”“} — tanh(yh)m>" + tanh(8) tanh(yh)m*”

pn (N1/4t) pn (N1/4¢) pn (N1/4¢)
[tanh(3) tanh(~h) sinh(~vh) + sinh()] )
cosh(f3) + cosh(vh)

on(t) = NV (2 cosh(/3) sinh(yh)[cosh(5) + 2 cosh(vh)]m%N(NlMt)

— 2sinh(p) sinh(yh)[cosh(B) + 2 cosh(’yh)]m‘;N(Nl/4t))

Wy (t) = N1/4< — tanh(f) sinh(yh)[cosh(3) + 2 cosh(yh)|m y1a,

+ [cosh(3) + cosh(vh)]? mp:(rjiv1/4t)) ’

then, as N — 400, rn(t) converges to F€, a Standard Gaussian random vari-
able, yn(t), Zn(t), un(t), On(t), Wn(t) — O in the sense of Proposition [1.4.1]
and Tn(t) converges, in the sense of weak convergence of stochastic processes, to

a limiting Gaussian process

T(t) = 2 ¢ sinh(B) sinh(vh)t .

2.5.1 Proof of the Theorem 2.5.1

Let us denote by {74} y>1 a family of stopping times, defined as
A= (O] 2 Mo [Gy(0] 2 0 or (0] 2 M
or |an(t)|>M or |on(t)|>M or |on(t) > M},

where M is a positive constant. We are interested in introducing such a sequence

of stopping times because in this way the processes Ty (t), yn(t), Zn(t), un(t),
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Un(t), Wy (t) result to be bounded in the time interval [0, A 74 ]; 7n(t) is still
bounded for t € [0,T7], as we proved in Lemma [1.4.2]
Lemma 2.5.1. Fort € [0,T A T3], if we consider only the space scaling

Ui
In(t) = NV4 ( cosh(yh)ym? ) + sinh(ﬁ)m:’N(tJ

yn(t) = N4 ([cosh(vh) - Cosh(ﬁ)]mig(t) + Sinh(ﬁ)mig(t)

— [cosh(yh) — cosh(p)] tanh(3) tanh(yh) — sinh(f3) tanh(vh))

Zn(t) = N4 (mwn — tanh(’yh))

pn (t)

an(t) = N (mz;, « — tanh(yh)m_ ) + tanh(8) tanh(yh)m %,
[tanh () tanh(yh) sinh(yh) + sinh()]
N cosh(3) + cosh(vh) )

on(t) = NY4 (2 cosh(3) sinh(yh)[cosh(B) + 2 cosh(vh)|m?

o (t)

— 2sinh(p) sinh(yh)[cosh(B) + 2 COSh(’Yh)]m:N(t)>

Bn(t) = N1/4( — tanh(8) sinh(yh)[cosh(8) + 2 cosh(vh)]m<,

+ [cosh(B) + cosh(yh))? mZ;(Z)) ’

then the process (ry(t),zn(t),yn(t), Z2n(t), un(t), vn(t), wn(t)) is a Markov pro-

CESS.

Proof. To prove that (ry(t),Zn(t), yn(t), zn(t), un(t), vn(t), wn (1)) is a Markov

process, one must write down the expression of the infinitesimal generator Gy
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whose dynamics are driven by. We apply Lemma [1.3.1]
The process {(a(t),w(t)}+>0 is a continuous time Markov chain on the finite
state space .#?", with infinitesimal generator Ly, defined by (2.2]). Consider the

function

(. P [—1,+1] L2, Y
(Qa g) — (mgNa m%Nv mg;\jn) — (TN(t)? iN(t)a s 7u_]N(t)) )

it plays the role of g in Lemma [1.3.1} then, for every 7 : .#?Y — R, we have

Ly(o () = (Gnth) o ¢

and ((o,w) is a Markov process with generator Gy given by

=3 I e o e, ik o) - ()

i,j,k€S
2 2 4
Z,u— N3/4 + ikN3/4th(7h), N3/4 sh(~vh)ch(B)[2ch(vh) 4 ch(5)],
2
U — ijN3/4 [Ch(7h> + Ch(ﬁ)]2> - ¢(7“7 *i'a ga 27 aa 7_)7 'U_})‘|

+>° |An(i, 5, k) |e_7j (Nl/ 4ch(fh)+ch<ﬁ)+2N1/4sh(7h)[ch(wh)fch(ﬂ)][2ch(wh)+ch(ﬁ)]+kh) .
ij,keS
_ .2 2 _ 2 2
: [¢<T7$—]Way—JkWSh(ﬁ)aZ—]kW/U—UW
4
o th(R)h(8), T+ j7sh(7)sh(B)2ch(7h) + ch()],

W 77 ’ sh(vh)th(B)[2ch(vh) + ch(B)] — ijk~7;[ch(vh) + ch(3)] )

2
N3/4

where Ay (i, j, k) is the set of all triples (o4, wq,n4), d € {1,..., N}, such that
04 =1, wqg =7j and ng =k, with 7, j, k € .%; hence
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N
|An (i, 4, k)| = 5 1 4 jktanh(yh) + ik tanh(3) tanh(~h)

_tanh(3) tanh(yh) sinh(vh) + sinh(5) gt
cosh(3) + cosh(vh) N1/2
w ny x cosh()
NV4cosh(B) + cosh(~vh)] = 7 N'/4sinh(5)[cosh(3) + cosh(vh)]
.. xsinh(yh)[cosh(5) + 2 cosh(yh)] . tanh(vyh)y — sinh(yh) tanh(5)z

ik N1/4[cosh() + cosh(yh)]? K N1/4[cosh(vh) — cosh(f)]

y — sinh(B)z L Z .
N1/4[cosh(yh) — cosh()] * jkN1/4 N

(%

T N sinh(yh) [cosh () + cosh(B)][2 cosh(h) + cosh()]

B j2N1/4 tanh(vh) sinh(3)[cosh(vh) 4 cosh(3)][2 cosh(vh) + cosh()]
cosh(~vh)v w
2N1/4 cosh(3)[cosh(vh) + cosh(3)]3

Kl

+ ik

— ijk +ijk

N1/4[cosh(yh) + cosh(5))? |
[

By standard argument on collapsing processes (see Proposition and Lemma
[1.4.3), it is easy to prove that for t € [0, TATA] the directions gin (t), Zn (t), T (),
On(t), wn(t) collapse. It means that, if we consider gy(t), for instance, then
there exist constants Ny, C, d > 2, ky := k(NN) and two increasing sequences

{an}tns>1, {Bn}n>1 satistying (1.35)—(1.39) and such that for every ¢ > 0 the

following property is true

N2>No,y 0<t<TATH

sup P{ sup |yn(t)] > C (m}\;maj_\,lm v li]_\fl/2ﬂ]1\7/2)} <e. (2.30)

The same property holds for each of the processes 2y (t), un(t), Un (), Wy (t), with
specific and adapted constants. Hence, yn(t), Zn(t), Un(t), On(t), Wy (t) — 0, as
N — +00.

The computations we should do to prove these processes converge to zero in
probability are similar to those we did in Phase 2 of Subsection to prove the
process representing the non-critical direction of the random Curie-Weiss Model
collapses. Thus, we omit this proof and we focus only on the critical direction
Tn(t), assuming all the others vanish. We apply the generator to a function
of the only critical direction, leaving all the terms coming from those processes

we know collapsing in the infinite volume limit.



Chapter 2. A Non-Reversible Model Motivated by Credit Risk in Finance

Lemma 2.5.2. For t € [0,T A 7], if we consider a function of the pair of

processes
_ n1/2,,1
r(t) = N 1j T | ) (2.31)
Ty(t) = N (cosh(vh)mgw) +Smh(5>m@v<t>)
only rescaled in space, then ([2.29)) reduces to
_ sinh(B) sinh(yh) 223 cosh((3) cosh(vh)
:2 -
Gny(r, o) [T N1/4 2 N'Y2[cosh(f3) 4 cosh(yh)]?
7373 sinh(3)[cosh(yh) — sinh(yh) tanh(yh)] (2.32)
6 N1/2[cosh(3) + cosh(yh)]? '

y2r? sinh(3) sinh(yh) 1
T N3/4[cosh(B) + cosh(’yh)P]wx N O<N1/4>

where the remainder is a continuous function of x and it is of order O(N}/4)

pointwise, but not uniformly in x.

Proof. We recall that we are leaving all the term collapsing in the limit as
N — +o00. By (2.29)), considering a function ¢ : R*> — R, ¢ € C?, we de-
duce

ot = 3 Jantiod e oo i coion)) - v(r)

ij, k€S

—j Z +kh 2 _
+e w (N1/4[Cosh(5)+cosh(7h)] ) |f/1 <T7 L= jW Slnh(ﬁ)) - 1/1(7'7 .I’)] } ’

where
|An(i, 4, k)| = ]E\; ll + kN:/Q + ik tanh(3) tanh(~h) + jk tanh(~vh)
__tanh(Q) tanh(vh) sinh(yh) + sinh(3) T
T4 cosh(f3) + cosh(vh) i [cosh(3) 4 cosh(yh)]
z cosh(f) ... Zsinh(yh)[cosh(S) + 2 cosh(vh)]

+J N1/4ginh(5)[cosh(3) + cosh(vh)] K N1/4[cosh(3) + cosh(yh)]3
(2.33)

We develop ¢ with a Taylor expansion stopped at second order.

GNU(r,T) = Z |An (3, 7, k:)|{e_ﬁij l — iNi/‘l cosh(vh)yz +

i.j, k€S

— 91 —
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N3 N3/4

2 1
+ e St (B)az + O<N3/2>1 }

+o ( Ni/g >] + e_w(Nl/ Thoom(3) Feomn(rm)] +kh) l 2 sinh(5)vz

= /4| gin e sin cos
= 2N [ h <N1/4[cosh(ﬁ) + cosh(yh)]) h(#) cosh(yh)

r YT _ .
+ ——= cosh <N1/4[cosh(ﬂ) n cosh(vh)]> sinh(/3) sinh(yh)

T ( VT ) cosh () cosh(yh)
N1/4 N14[cosh(fB) + cosh(yh)] ) [cosh(B) + cosh(vh)]

. YT . .
— sinh <N1/4[cosh(ﬁ) n cosh(’yh)]) sinh(3) sinh(yh) tanh(~vh) |z

tanh () tanh(~h) sinh(yh) 4 sinh(g3)
cosh(/3) + cosh(vh)

v )
+ cosh <N1/4[cosh(ﬁ) n cosh(vh)]) sinh®(3) cosh(vh)

+ — sinh(3) cosh?(yh)

2
N1/2

r YT . 19 .
T Ne sinh <N1/4[cosh(6) + cosh(’yh)]) sinh”(3) sinh(7h)

z smh( VI ) sinh(/3) cosh(3) cosh(yh)
- N4 NY4[cosh(3) + cosh(vh)] [cosh(3) + cosh(vh)]

'Yj .12 .
— cosh <N1/4 feosh(B) 1 cosh(vh)]) sinh® () sinh(yh) tanh(yh)

+ cosh(3) COShQ(”Vh)] Vzz + 0(]\711/2)

considering the Taylor expansions, stopped at third order, of the hyperbolic sine

and cosine functions

_ 2N1/4[ vz sinh(3) cosh(vh) v3z%  sinh(B) cosh(yh)

N4 [cosh(B) + cosh(yh)] = 6N3/4 [cosh(B) + cosh(vh)]?
r v?rz?  sinh(f)sinh(yh)
N1/2 2N [cosh(f) + cosh(vh)]?
T cosh(f3) cosh(vh) v2z%  cosh(f3) cosh(vh)
~ N1/4[cosh(B) + cosh(fyh)]  2N3/4[cosh(f) + cosh(yh)]?
7v3z% sinh(3) sinh(vh) tanh(yh)
6N3/4  [cosh(B) + cosh(yh)]?

+ sinh(3) sinh(yh) +

— 02 —
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& sinh(f)sinh(yh) tanh(yh) N 0< 1 )]w_
N1/4  [cosh(f) + cosh(yh)] N3/4 )| TF

1 1
+ O<N1/2> 7T + O<N1/2>

z  ysinh(B)[cosh(~vh) — sinh(~vh) tanh(yh)] — cosh(3) cosh(vh)

— 2N1/4
Nt/A [cosh(3) + cosh(vh)]
it vanishes in the critical case
2-3
o . v*x®  cosh() cosh(vh)
h h —
Ty (B) sinh(yh) 2N3/% [cosh(f) + cosh(vh)|?
373 sinh(B)[cosh(yh) — sinh(vh) tanh(vh)]
6N3/4 [cosh(3) + cosh(vh)]?
N v?rz®  sinh(f) sinh(yh) Vs + 0 1
2N [cosh(3) + cosh(vh)]? N1/A4
2-3
ro _ ~v*x®  cosh() cosh(yh)
=2 h h(~vh) —
Nia (6) sinh(~h) 2N1/2 [cosh(f) + cosh(vh)]?
373 sinh(B)[cosh(yh) — sinh(vh) tanh(vh)]
6N1/2 [cosh(3) + cosh(vh)]?
N v?rz?  sinh(f3) sinh(vh) s + 0 1
2N3/4 [cosh() + cosh(yh)]? N1/4
which is just (2.32) and so we have concluded. [ |

The next step is to prove, for every ¢ > 0 and N > 1, the existence of a constant
M > 0 such that

P {T]]\\? < T} <e.
This fact implies the processes yn(t), Zn(t), un(t), On(t) and Wy (t) converge to
zero in probability, as N is growing to infinity, for ¢ € [0,7] and thus it follows
that Lemma is valid for ¢ belonging to the whole time interval [0, 7).

We consider the infinitesimal generator, Jy = N'*Gy, subject to the time-
rescaling and we apply it to the particular function ¥(ry(t),Zy(t)) = |Tn(t)].

The following decomposition holds

Ex (O] = (O + [ TuTn(s))ds + M5

t
<[ax () + [ 1T (Ex ($)])lds + M g
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with

o= [ T IR b ds) + VO ()RR Gk ds) |

i,5,k€S

where we have defined

TOlan (O] = [ot) - i cosh(vh>|—\fN<t>|

N3/4
(2.34)
=)~ ~ 2 ~
V(J)HCEN(t)H = |Zn(t) ~ I smh(6)| —|Zn (1)
and
A% (i, 4, k, dt) == A% (i, j, k, dt) — N4 \A(i,j, k, N1/4t)\ e~ gt
=X (1,5,k,¢) dt
(2.35)

_ . =N (1)
AKT(Z? j> k? dt) :A(X/(Z? ja k7 dt) —N1/4’A(27 j; k; N1/4t) ‘6 " (N1/4[c°5h<ﬁ>+COSh(Wh>] +kh) dt

= (4,5, ) dt

As we can clearly see, the quantities /K'N(i, J, k,dt) are the differences between
the point processes Ay(i,7,k,dt), defined on .3 x RT, and their intensities
N (i, 7, k,t)dt.

The counter ‘A(i,j, k, N1/4t)‘ is given in analogy with (2.33), replacing the vari-
ables r and = with the stochastic processes ry(t) and Zy(t), defined in Theorem
2.5.11

We recall that the expression of Gy is given by (2.32). We consider the following

Taylor expansions stopped at second order

YN (t) ) _ YZn(t) YR

sinh <N1/4[cosh(ﬁ) +cosh(yh)] ) — NY4[cosh(B) + cosh(yh)]

() ) 1 PR () h

cosh <N1/4[Cosh(ﬁ) + cosh(vh)] * N1/2[cosh(3) + cosh(vh)]?
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where
VTN (t
o < h ; )
| Bs| < sup {COS (z):z €0 N1/4[cosh(3 —|—COSh (vh)] 1}
f’x t
6N3/4[cosh(ﬁ) + cosh(vh)]?
f)/M 3M3
< cosh
cosh(3) + cosh(yh) ) 6N3/4[cosh(3) + cosh(vh)]3
and
o < h : 07
|R.| < sup {Sm (2):z € [ NY4[cosh(3 —l—cosh (vh)] ]}
V3T3(t)
" 6N3/4[cosh(3) 4 cosh(vh)]?

M v’ M?
cosh(3) + cosh(yh)) 6N3/4[cosh(B) + cosh(vh)|?

< sinh (

For t € [0, 74/] we can estimate

Tw(lEn(B)] = ]2N1/4sgn<m<t>>{’}$ff3 sinh() sinh(h)

~ Plan(@)P  cosh(B) cosh(vh)
2N1/2 [cosh(B) + cosh(vh)]?
3|2 (t)|? sinh(3)[cosh(yh) — sinh(yh) tanh(yh)]
6N1/2 [cosh(3) + cosh(vh)]?
Vry(t)|Zy(t))>  sinh(B) sinh(yh)
2N3/4 [cosh(3) + cosh(vh)]?
+ NY4R,[sinh(3) cosh(yh) — sinh(f) sinh(vh) tanh(yh)]

14 N (1) ) |Zn(t)|  cosh(f3) cosh(vh)
+ N / R, [Nl/Q s1nh(ﬁ) SlIlh('Yh) - N1/4 [COSh(ﬁ)—I—COShIz’yh)]}}‘

and thanks to Lemma and the stopping times we have introduced,

v2M?3  cosh(3) cosh(vh)
2NV [cosh(fB) 4 cosh(vh)]?

73 M? sinh(8)[cosh(vh) + sinh(yh) tanh(yh)]

GN1/4 [cosh(B) + cosh(vh)]?

v?M?  sinh(f) sinh(vh)
2 [cosh(f3) + cosh(~vh)]?

ML ( yM ) sinh () cosh(yh)
6N1/4 cosh(f3) + cosh(vh) ) [cosh(3) + cosh(vh)]?

< Q{M sinh(3) sinh(yh) +

+

3M3
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M ( M ) sinh () sinh(yh) tanh(vh)
6N1/4 cosh(f3) + cosh(vh) [cosh(3) + cosh(vh)]?
E ( yM ) sinh(() sinh(yh)
G6N1/4 cosh(3) + cosh(vh) ) [cosh(fB) + cosh(yh)]?
S M sinh ( yM ) cosh(3) cosh(yh) }
6N1/2 cosh(3) + cosh(vh) / [cosh(B) + cosh(vh)]*

< Q{M sinh(3) sinh(yh) + g ;\4 [CO(;T(};()Q_)’_CSS:}EZ;;Z)P
3 M3 sinh(3)[cosh(vh) + sinh(yh) tanh(yh)]
6 [cosh(3) + cosh(vh)]?
v2M?  sinh(3) sinh(vh)

T [cosh(3) + cosh(vh)]?
+ cosh < yM ) y3M?  sinh(83) cosh(yh)
cosh(/3) + cosh(vh) 6 [cosh(B) + cosh(vh)]?
+ cosh ( yM > 73 M? sinh(3) sinh(yh) tanh(yh)
cosh(3) + cosh(vh) 6 [cosh () + cosh(vh)]3
+ sinh ( yM ) v*M?3  sinh(3) sinh(yh)
cosh(3) + cosh(vh) 6 [cosh(B) + cosh(yh)]?

, yM y3M*  cosh(3) cosh(vh) o
+ sinh ( (Vh)> } =Cy,

cosh((3) + cosh 6 [cosh(B) + cosh(vh)]*

with Cy positive constant independent of N. Since the following inclusions are

valid
{mv <7} C { sup  {[Zn (O] [un (@], 12w (@)1, [an (@)1, [on (0], [on (0]} 2 M}
0<t<TATH
c { N NOE M} u{ wp liw(t)] > M}u
0<t<TATY 0<t<TATY

{ sup |uN(t)|2M}U

0<t<T/\‘r

U{ sup  |Zn(2)

0<t<TATY }
U{ sup |on(t)] > M} { sup |wy(t)| > M}
0<t<TATY 0<t<TATH

| }

U{ sup |uy(t)| > M { sup  |on(H)] > M}U
0<t<TATY

0<t<TATH

sup |l >12M}u

0<t<TATH

E{ sup |y~ (t)
0<t<TATY
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u{ sup |wN<t>|2M}u{\fN<o>rzcg}u

0<t<TATY

U [{ny(o)\ < Co}nN { sup |Tn(t)| > Cy + TCs + CwH

0<t<TATY

g{ sp () } { sup |zN<t>|zM}u
0<t<TATH 0<t<TATH
>

o{ sw faozarfu{ s ] > v
0<t<TATY 0<t<TATH

u{ s |wN<t>|zM}u{\fN<o>rzcg}u

0<t<TATY

U{ sup MN|~|>C10}

0<t<T/\7'

we obtain the following inequality for the probability of the interested set

P < T} < P{ swp ()] > M} ; P{ sp [Ew(t)] > M}

0<t<TATY 0<t<TATY

—i—P{ sup |ﬂN(t)|ZM}+P{ sup |77N<t)|ZM}

0<t<TATH 0<t<TATH

" P{ swp @ (t)] > M} L P{En(0) = O}
0<t<TATM

—l—P{ sup MN|I>C’10}.

0<t<T/\’T

We estimate the seven terms of the right-hand side of the inequality.

» For any € > 0, thanks to the fact that the process yy(t) collapses we have

Pl s (0] 1) <

0<t<TATY

where we set M := C( %25104;\,1/2 \Y% /{Vl/z 1/2) see (12.30))) and analogous
relations hold for all the other processes Zy(t), un(t), UN( ), Wy (t), with
proper constants.

» From (2.31)) we get E[zn(0)] = N1/4E[cosh(’yh) ) T sinh(B)m |-

Since at time t = 0 the spins are distributed accordmg to a product measure,
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Zn(0) is a linear combination of sample average of independent, identically
distributed Bernoulli random variables multiplied by NY%. So, we can

conclude
E[|in(0)]] < [cosh('yh) Var(o1(0)) + sinh(3) Var(wl(O))] N4

and in the limit as N — +o00, we have convergence to zero in L! and then

in probability. Therefore
P{lzn(0)] = Co} <€
for any € > 0, for every N and for a sufficiently large C.

We reduce to deal with E[(MT

N[z
in LP” (case p = 2) for martingales (we refer to Chapter VII, Section 3 of

E[(MT ~)2]
[Shi96]) tells us that P{ Sup0<t<T/\7_]W MN| = Cw} < — Nl -
Hence, remembering (2 and ([2.35]), we are able to compute

(C10)?
B = 2| [1 3 { [Tl

1,5,k€S

)?]; in fact, Doob’s “maximal inequality

4 [V(j)HfN(t)H] 2/\‘”(2',]', k, t)dt}]

<FE

T 4
/ - cosh?(YR)NY sup |A(i, j, k, N'/4t)|edt
o N3/ ijkeS

+ — sinh*(B)N'* sup |A(4, 4, k, N1/4t)\e7(1+h)dt]
N3/ ijkes

<FE

T 4
/ N5/4N [C05h2(’7h)€6 + sinhQ(ﬁ)e’Y(lJrh)} dt]
0

< AT [COShZ(’yh)eﬁ + sinh2(5)67(1+h)] =:Chy,
with C; positive constant independent of N and M. We have established

that, if we choose Cig > %, then

P{ sup MN| | >010} <e.

0<t<T/\7'
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In summary, we proved the inequality we were looking for; in fact
P{T]J\‘,/I §T} <Te:=c¢€.

We have just concluded the proof of the first part of the statement of Theorem
2.5.1] concerning the collapse of the processes yy(t), Zn(t), un(t), On(t) and
Wy (t) in the limit as N — +oo and for ¢t € [0,T]. Now, we are going to show
that in the same setting, i.e. the limit of infinite volume and ¢ € [0,7], the
process Ty (t) admits a limiting process and we are going to compute it.

First, we need to prove the tightness of the sequence {Zx(t)}n>1. This property
implies the existence of convergent subsequences. Secondly, we will verify that
all the convergent subsequences have the same limit and hence also the sequence

{Zn(t)}n>1 must converge to that limit.

Lemma 2.5.3. The sequence {Tn(t)}n>1 is tight.

Proof. We must verify the conditions ((1.44)) and (1.45) hold. Since we have
already proved that for every ¢ > 0 the inequality P{r3/ < T} < € is true for
M sufficiently large and uniformly in N, it is enough to show tightness for the

stopped processes
{Ent A}

We showed before the validity of the following inclusion

N>1

{ sup \w)\zM}gﬂmonzcg}u{ sup Miv,.;zcw},

0<t<TATY 0<t<TATY

therefore

supP{ sup |Zn(t)] > M} <2

N 0<t<TATH

and so we obtained ((1.44)). Let us deal with ([1.45)) now. We notice that

ot) = an () = | [ TnlEv(u))du+ M5

Y

where we have denoted

s 2 . o . o
Mz\}f\a = _NgTz;/s > [l cosh(yh)AX (i, 4, k, du) + jsinh(B)A% (4, 7, k:,du)}

05, k€S
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and A%, A% are as in definition (2.35). Thus,

(lov)-av(e)) = o) < {| [ aulawtulan

<Cs(t—s)

M5 > o} € (M3051 > Tun)

and then, applying Chebyscev inequality to the last right-handside of the previous

inclusions, we get

sup P{]M”I ‘\ > Cho} < (Cp)™? sup E[(./\/ljvt| ‘) ]
0<s<t<T 0<s<t<T
t—s<§ t—s<§

< (Ci)™? sup 4(t—s) {Cosh2(7h)eﬁ
0<s<t<T
t—s<d
+ sinh?(B)e1H+
< (Cho)? 4[Cosh2(7h) + sinh?(3)e?HM) | § .
=Cn
Finally, we can conclude that
sup_sup P{@x(t) = Fn(s)| > a} <sup_sup  P{M3 | > ol
N 0<s<t<T N 0<s<i<T
t—s<d t—s<d
< (Cio) 20110 = O(6)
and the proof is complete. [ |

Lemma [2.5.3 implies that there exist convergent subsequences for the sequence
{Zn(t)}y>1- Let {Z,(t)}n>1 denote one of such a subsequence and let 1) € C3 be
a function of the type ¥ (r,(t),Z,(t)) = ¥(Z,(t)). The following decomposition
holds

Y(Fa(t) — (Fn / T (o (w))du + ML, (2.36)

— 100 —
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where

. ol () sin . _72(fn(t))3 cosh(3) cosh(yh)
Futn(0) =20 sinb(3)sin(o1) — TEOE OO0

3 (Z,(t))? sinh(3)[cosh(yh) — sinh(vh) tanh(yh)]

* 6 n/4[cosh(3) + cosh(yh)]?
V2 () (T, (t))? sinh () sinh(+yh) .,
* 2 n3/4[cosh(3) + cosh(vyh)]? Vi +ou(l)

which, as usual, is Gy (see (2.32)) rescaled of a power n'/* and applied to the
particular function ¢ (r,(t),Z,(t)) = ¥(Z,(t)). The remainder oy(1) goes to
zero as n — 400, uniformly in M. If we compute the limit as n — +o0o,

remembering a Central Limit Theorem applies to r,(t), we have:
Tt (Fa(t)) “=2 T(E(H))
with
TU(E(L)) = 2 sinh(8) sinh(vh) 15
and 7 is a Standard Gaussian random variable. Then, because of ([2.36)), we

obtain

t
o S MY = U(E() — $(E0) - [ Tw(Ew)du.
We must prove the following Lemma:

Lemma 2.5.4. pr is a martingale (with respect to t); in other words, for all
s,t €[0,T], s <t and for all measurable and bounded functions g(Z([0,s])) the
following identity holds:

E[Myg(2([0, s]))] = E[M3g(z([0, ]))] - (2.37)

Proof. The reasoning we explained in Lemma [1.4.5 applies in this case too, so it
is sufficient to prove {M, ,}n>1 is an uniformly integrable sequence of random
variables.

If we define

VO (6))] = w(mw it coshwm) (@)

70 0] = 0(5a) — g s0h(9) ) — 0G0
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it yields

E[( U 3 H s))]r)\"(i,j, k, s)ds

i,5,k€S

+ [T @] ¥k SW}]

<[ [ 5 {[Peon]

1,j€S

we expand the function ¢ around 7,(t) with the Taylor expansion stopped at
first order and with remainder R, R such that

1 2 4
1R < S sup {[0(2)] : 2 € [5a(0),7ult) — i cosh(yh)] | 5 cosh(ah)

— 1 _ _ 2 4
71 < gup {10l s 2 € [5a0) 50(0) - sinh(9)] | sinh(9)
and moreover, we recall that ¢ € C3, so |1)z] < K; and || < Ky; therefore,

. 2
= n5/4E[/0 { > [ 2% cosh(’yh)ngLR] e?

€S
2
e

jes

¢ 4 4
<n’*E [eﬁ/ sup ( cosh?(vh)y2 — 23—/4 cosh(vh)yzR + R2> ds

t 4 = =
+ () / sup <n3/2 Smh2(5)¢~ - 37/4 sinh(8)V; R + R2> ds]

tf 4
<n®*E [eﬁ/o <3/2K2 cosh?(vh) + %KlKQ cosh®(vh)

4
—|— K2 cosh4(7h)> ds + eI+ / (K2 sinh?(3)

3/2
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8 4
+ WKlKg sinh®(3) + EKS sinh%ﬁ))ds}

< 4T{e’6 cosh?(vh)[K; + cosh(vh) K]

+ U b2 (B)[K, + sinh(ﬁ)KQ]Q}

since t < T'; then Mj, , is uniformly integrable. |

Now, the proof is easy to complete. ./\/lfw solves the martingale problem with in-
finitesimal generator 7, admitting a unique solution, and hence we have shown all
convergent subsequences have the same limit and so the sequence itself converges
to that limit.

2.6 Conclusions

It remains to compare the behaviors of the homogeneous and inhomogeneous
system. Using the same notation as before, we briefly sketch the main results of

the homogeneous model.

The stochastic process (o(t),w(t)) = (o;(t),w;(t))),, with ¢ belonging to a
generic time interval [0, 7], where T is fixed, describes a 2N-spin system evolving
as a Markov process on its state space .. The dynamics are specified by the

requirement that the rates of transition are of the form

0j — —0; at rate e~ P B>0,

g
W — —Wg at rate e TWETN

We reduce this system to be finite dimensional. A three-dimensional order pa-
rameter is necessary to describe the system: (m%,my, m%~). The study of the
limiting dynamics (Theorem and Lemma and of the Normal fluctu-
ations (Theorem is completely developed in [DPRST09]. The McKean-

Vlasov limit (N — +400) for the dynamics of the order parameter is given by
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the the system of ordinary differential equations

my = — 2my cosh(B) + 2my sinh(53)
my = — 2m cosh(ymy) + 2 sinh(ymy) (2.38)
my” =2m{ sinh(ymy7) — 2m7* [cosh() + cosh(ym])] + 2 sinh(5) .
Note that m?“ does not appear in the first and in the second equation in ([2.38));
this means that the differential system ([2.38) is essentially two-dimensional: first

one solves the two-dimensional system (on [—1,+1]?)
(m7,my) =V(m7,my), (2.39)

with V(x,y) = (2sinh(8)y — 2 cosh(5)z, 2 sinh(yz) — 2y cosh(yz)), and then one
solves the third equation in ([2.38)), which is linear in m{“. Note also that to any
(mZ, m¥) satisfying V(mZ, m¥) = 0, there corresponds a unique

o SU(G) + mg sinh(ym?)

*  cosh(B) + cosh(ym?)

such that (mZ, m¢, m?¥) is an equilibrium of (2.38)). Moreover, if m{ — m? as
t — 400, then m{® — mJ“. Depending on the parameters, we can see there

exists phase transition; in fact

Theorem 2.6.1. Consider the equation (12.39).

» for v < m, it has (0,0) as a unique equilibrium solution and it is
globally asymptotically stable, i.e. for every initial condition (mg, mg)

Jim (. mi) = (0,0).

» For v < the equilibrium (0,0) is linearly stable. For ~y =

1 1
tanh(8) tanh(8)
the linearized system has a neutral direction, i.e. DV (0,0) has one zero

eigenvalue.

» For~y > m the point (0,0) is still an equilibrium for (2.39), but it is
a saddle point for the linearized system, i.e. DV(0,0) has two nonzero
real eigenvalues of opposite sign. Moreover, (2.39) has two linearly stable

solutions (mZ,m¥), (—m?, —mY), where mJ is the unique strictly positive

solution of the equation

xr = tanh(() tanh(vyx) ,
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and .
w _ = O
B tanh(ﬁ)m* '
» For v > m, the phase space [—1,+1]? is bi-partitioned by a smooth

curve T containing (0,0) such that [—1,4+1]*\T is the union of two disjoint
sets T, T~ that are open in the induced topology of [—1,+1]%. Moreover,
given an initial condition (mg, my),
(mZ,m?) if (m§,mg) e "
lim (m{,my) = q (=m{, —mg) if (mg,mg) € T~

t—+o0
(0,0) if (mg,my)el.

Moreover, with regard to the Normal fluctuations, it holds true the following

Theorem.

Theorem 2.6.2. In the limit as N — 00, the three-dimensional fluctuation
process (xn(t),yn(t), zn (1)), defined by

o (t) = N2 (mg ) = my)
yn(t) == N2 (i) = i)
an(t) = N2 (mii(t) - mfw) ;

converges (in the sense of weak convergence of stochastic processes) to a limiting
three-dimensional Gaussian process (x(t),y(t), z(t)), which is the unique solution

of the linear stochastic differential equation

dz(t) z(t) dB (1)
dy(t)| = 240) |y(t)| dt + D) [dBs(1)] (2.40)
dz(t) 2(t) dBs (1)

where By, B, B3 are independent Standard Brownian motions, A(t) and %Dl(t)

are respectively

— cosh(B) sinh () 0
—ym{ sinh(ym{) + ~ cosh(ymg) — cosh(ymy) 0 ,
sinh(ym¢) + ymy cosh(ymy) — ymy* sinh(ymy) 0 —cosh(3) — cosh(ymY)
—my7% sinh(8) 4 cosh(B) 0 —m? sinh(B) + m¥ cosh(B)
0 —my sinh(ym7) + cosh(ymy) my cosh(ymy) — m7% sinh(ymy)
—m7 sinh(8) + m{ cosh(8) my cosh(ym7) — m{“ sinh(ym7) —m7® sinh(8) + cosh(B) — m{ sinh(ym{) + cosh(ym7)
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and (2(0),y(0), 2(0)) has a centered Gaussian distribution with covariance matriz

o\2 ow Ty W w O npy OW
1—(m5) M= — mymy nmy — My

ow Ty W w)2 o Wy OW
m$¥ —m§my 1 —(mg) My — Mmymy

w Ty oW o Wy OW ow)2
My — mymy= my — Mmymny 1 —(mS)

Remark 2.6.1. We can notice that there is no constant drift in (2.40)); drift which,

on the contrary, is present in (2.28)). It arises because of the disorder.

We focus on the critical dynamics of the system (all the results are proved in
[Sar07]). We construct the fluctuations in the threshold case, when v = m,
and we look at their long-time behavior. The size of the Normal fluctuations
must be further rescaled (in space and in time), because their size around the
deterministic limit increases in time. In this case we will obtain non-Normal
fluctuations.

In the rest of the section, we will consider v = m and let us assume that the

initial condition A is a product measure such that

w 0w _ _ sinh(j)
0, Mo = cosh(f) + 1

and so

sinh (/)
my =0, my =0, mye = cosh(3) £ 1

for every value of t > 0, since it is an equilibrium solution.

Theorem 2.6.3. Fort € [0,T], if we consider the critical fluctuation process

~ 1/4
Ty () = NV (2 ey — tanh () o))
gn(t) == N4 (m:N(Nl/Qt + sinh(8)m* o (N1/2t)) (2.41)
_ sinh(8)
_ N4 sin

then, as N — 400, Tn(t),Zn(t) — 0 in the sense of Proposition and
gn(t) converges, in the sense of weak convergence of stochastic processes, to a

limiting non-Gaussian process §(t), which is the unique solution of the following
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stochastic differential equation:

o 2 cosh? () 5
dy(t) = _3Sinh2(ﬁ) cosh(3) T 17 y°(t) dt + 2 cosh(3) dB(t)

y(0) =0
where B is a standard Brownian motion.

Concluding, we point out the fact that the inhomogeneous critical fluctuation
process exists in a shorter time-scale than the homogeneous one; in fact when
we construct this process, see Theorem [2.5.1, we can amplify the time only by
a factor N'/4, instead of the usual scale N'/2, as in (2.41). The reason of this
difference is the constant drift, appearing in the dynamics of the Normal fluctu-
ations. It obliges us to amplify the time by a smaller power of N than the one
“permitted” by the linearized operator driving the diffusion equation. Besides,
the limit of disordered critical fluctuations is Gaussian, since solution of a deter-
ministic equation with constant (but random) drift given by a Gaussian random

variable; while, it is not when there is no added field.
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Chapter 3

The Kuramoto Model

he model under consideration is a system of nonlinearly coupled rotators sub-
T ject to an attractive interaction. It was introduced by Kuramoto ([Kur75]
and [Kur84]) to describe synchronization phenomena observable in nature.
We consider N sites and we associate with each of them a rotator on [0, 27]. We
start with a reversible Markovian dynamics for the N-particle system, where the
rotators evolve depending on the gradient of the Hamiltonian felt by the particle.
It is an interacting diffusion system with a mean-field Hamiltonian. This model
is space-independent because it is subject to a mean-field interaction, in other
words each particle interacts with all the others in the same way; thus, there is
no spatial geometry.
An infinite dimensional order parameter is necessary to describe the system. Be-
ing based on a Large Deviation Principle, we compute the differential equations
which drive its evolution in the infinite particle limit (McKean-Vlasov equations)
and we derive a Law of Large Number it obeys. Depending on the parameters,
we can see there exists phase transition. We state these results for completeness;
they are already known in literature. They can be deduced from the analogous
ones for the inhomogeneous system, studied in [DPdH95] and [dH00].
Our main result is the infinite particle limit of the critical fluctuation flow. With
regard to the critical fluctuation flow — besides an appropriate scaling of the
space — it require a rescaling of the time in order to keep track of long time

fluctuations of the critical direction (critical slowing down). As a result, only the
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critical structure survives the new scaling, and in the limit, the critical fluctua-
tion process is a lower dimensional process compared with the non-critical one.
The fluctuations are two-dimensional at the critical point, while they are infinite
dimensional for non-critical values. In fact, we prove that, when the size of the
system grows towards infinity, a two-dimensional process converges (in the sense
of weak convergence of stochastic processes) to a non-Gaussian process, while all

the others collapse.

3.1 Description of the Model

N

Given a configuration z = (z;)L, € [0,27]", we can define the Hamiltonian

Hy(z) : [0,27]Y — R as
Hy(z) = _ 0 cos(xy — x;), (3.1)

= 2N =,

where z; is the position of the rotator at site j. Let 6, positive parameter, be
the coupling strength. Think of z — Hy(x) as a mean-field Hamiltonian in the
components ;. With the expression “mean-field” we mean the sites interact all
each other in the same way.

Let us define the dynamics we consider:  z(t) = (x;(t));Z,, with ¢ belonging to a
generic time interval [0, T'], where T is fixed, describes a N-rotator system evolv-
ing as a continuous time Markov chain on [0, 27]", with infinitesimal generator

Ly acting on functions f : [0, 27]Y — R as follows:

1 X 92 f of
L 2
V@) =5 2 hw+ 2§ et -} L. @2
Consider the complex quantity
, 1M
ryetyN = N > e, (3.3)

where 0 < ry < 1 measures the phase coherence of the rotators and ¥y mea-

sures the average phase. We can reformulate the expression of the infinitesimal

generator (3.2) in terms of (3.3):
N
LNf 5 Z —|— Z {97"]\[ Sin(\IfN — I‘j) ai(&) . (34)
j=1 j=1 Lj
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The expressions (3.1)) and ([3.4)) describe a system of mean-field coupled rotators,
each with its own frequency and subject to diffusive dynamics. The interaction

tends to synchronize the rotators.

Remark 3.1.1. The system described by (3.2) has a reversible stationary distri-
bution proportional to exp[—Hy(z)].

For simplicity, the initial condition z(0) is assumed to have product distribution
AON with X probability measure on [0, 27r] with finite second moment. The quan-
tity z;(t) represents the time evolution on [0, 7| of j-th rotator; it is the trajectory
of the single j-th rotator in time. The space of all these paths is C[0, 7], which
is the space of the continuous function from [0,77] to [0, 27|, endowed with the

uniform topology.

The process z(t) = (x;(t))}L; turns out to be the system of N interacting diffu-

sions evolving according to the It6 differential equations
dz;(t) = [Orysin(Vy — x;)| dt + dB;(t), (3.5)

where {B;(t) : t > 0,7 =1,..., N} is a system of independent Standard Brown-

ian motions on [0, 27].

3.2 Limiting Dynamics

We now derive the dynamics of the process (3.2), in the limit as N — 400, in a
fixed time interval [0, 7], via a Large Deviation approach. Later, the large time

behavior of the limiting dynamics will be studied.

For completeness, we report all the statements that allow us to deduce the dy-
namics of the model in the infinite volume limit, but we omit their proofs, since
they are a particular application of a more general study on interacting diffusions
developed in [DPdH96] and [dHOOQ].

So, let (;([0, 7))L, € (C[0,T])" denote a path of the system in the time interval
0, T, with T" positive and fixed. If f(x;([0,77)) is a function of the trajectory of a
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single rotator, we are interested in the asymptotic behavior of empirical averages
of the form
1 N
~ 2 S (0,71) = [ Fdpw
j=1

where {py}n>1 is the sequence of empirical measures

1 N
PN = 57 2 Oy 01))
N &

We may think of py as a random element of M;(C[0,TY]), the space of probability
measures on C[0,T] endowed with the weak convergence topology.

First, we want to determine the weak limit of py in M;(C[0,T]) as N grows to
infinity; i.e. for f € C, we look for limy_ . [ fdpn. It corresponds to a Law of
Large Number with the limit being a deterministic measure. Being an element of
M;(C[0,T)), such a limit can be viewed as a stochastic process, which represents

the dynamics of the system in the infinite volume limit.

3.2.1 Empirical Measure and Large Deviations

Let W € M;(C[0,T]) denote the law of a standard Brownian motion starting
with initial condition \. By W®Y we mean the product of N copies of W,
which represents the law of the solution of the system (3.5) when Hy(z,w) = 0.
Moreover, we shall write Py the law of z([0,7) = (z(t)):cpo,r, the process with
infinitesimal generator and initial distribution A®V.

Consider @ € M;(C[0,T1]), if II;@ indicates the marginal distribution of @) at
time ¢, we have

r,get e = e 11,Q(dx).
[0,27]

For a given path z([0,T]) € C[0,T], we define
F(@ = [l mp{ - 5 ["ar | f Qtavio. sintu(t) ~ (1)
+ [ Qayl0.7)) cos(y(t) — (1)
~ 5 ] Q0. T)eos(y(T) — #(T)  cos(y(0) - x<0>>]} (36)

We can obtain a representation of Py in terms of py, as follows:
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Lemma 3.2.1. [t holds that

dCVlng (z([0,T1)) = exp[NF(pn(z([0,T])))]

where, for Q € My(C[0,T]), F(Q) is expressed by (3.6).

Lemma [3.2.1] allows us to deduce a Large Deviation Principle for py, from which

we can derive its asymptotic behavior as N — 4-00.
Define

Pu()i= [ Palow €).
which is an element of M;(M;(C[0,T])) and represents the law of py under the

distribution of the process.
If @ € My(C[0,T]) we denote by

[dQlog &2 if Q< W and log2& € LY(Q)
H(QIW) =

+00 otherwise

the relative entropy between () and W.

Proposition 3.2.1. The laws {Pn}n>1 of pn (under the distribution of the pro-

cess) obey a Large Deviation Principle with rate function
[(Q) == H(QIW) — F(Q)

(mind Definitions|1.2.1] and|1.2.3).

3.2.2 McKean-Vlasov Equation

Given @ € M;(C[0,T]), we can associate with @ a Markov process on [0, 27]

with law P, initial distribution \ and time-dependent infinitesimal generator

1 82 8
2 omainna -0

acting on f : [0,27] — R.

L7 f(x)

It can be proved
Proposition 3.2.2. For every Q € M;(C[0,T]) such that 1(Q) < 400, we have
[(Q) = H(Q|P?).
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Theorem 3.2.1. Suppose that the initial distribution of the Markov process (z(t))i>o
with generator is such that the random variables (x;(0))}L, are indepen-
dent and identically distributed with law \. Then the equation 1(Q) = 0 ad-
mits a unique solution Q. € My(C[0,T]), such that its marginals ¢ = 11,Q. €

M ([0,27]) are weak solutions of the nonlinear McKean-Viasov equation

o — ‘CQt (t € [OwT])

ot
(3.7)
Qo = A
where, for x € [0,2n], the operator L acts
1 @2qt 0 .
Lagy(x) = iw(x) - %{[9% sin(Wy, — 2)]q: ()}, (3.8)

with ¢:(0) = ¢(27). Moreover, with respect to a metric d(-,-) inducing the weak
topology, pn — Q. in probability with exponential rate, i.e. Py{d(pn,Qs) > €}

is exponentially small in N, for each € > 0.

Remark 3.2.1. @, is the law of a time-inhomogeneous diffusion process on [0, 27]
with generator
_10°f

10°F af
2022

L f(x) () + [0rq, sin(Py, — 2)] " (2) .

3.2.3 Stationary Solution(s)

The equation describes the behavior of the system governed by genera-
tor (3.4) in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation and in the study of the large time dy-
namics of it (them). We recall that to be t-stationary solution for means to
satisfy the equation Lq = 0 for every t.

Since the operator £ preserves evenness, we can suppose the average phase
v, = 0, without loss of generality.

Hence, every equilibrium probability distribution is the solution of

1 0% 0 .
5W(g) — %{[—Grq sinz]q(x)} =0, (3.9)

with the boundary condition ¢(0) = ¢(27) and for our model is characterized as

follows.

— 116 —



Chapter 3. The Kuramoto Model

Lemma 3.2.2. Fvery equilibrium distribution for the nonlinear Markov process

given by (3.7)) is of the form:
2w T
¢.(x) = (Z;1) - 20r, cosx {/ e oSty —i—/ e 20 Cosydy} : (3.10)
0 0

where Z, is a normalizing factor and the variable r, must satisfy the self-consistency

relation

2
Tg =Ty = / e q.(dx) . (3.11)
0

Remark 3.2.2. There is a one-to-one correspondence between equilibrium distri-

butions and solutions of the self-consistency equation (3.11)).

Remark 3.2.3. Note that r. = 0 is always a solution of (3.11]), for all the choices

of 6. In this case the stationary distribution reduces to:

@ (z) = 21 for all z € [0, 27]. (3.12)

™

Solutions with r, = 0 are called incoherent, while those with r, > 0 are called syn-
chronized. The next theorem shows that if € exceeds a threshold a synchronized

solution is always possible.

Theorem 3.2.2. Consider the equation (3.11)) and define 6. = 1. Then,
(a) if 0 < 6., the unique solution is r, = 0;
(b) if 0 > 0., at least one synchronized solution is possible.

Proof. We refer to [DPdH95] and [dHOO] for a detailed proof, concerning the

complete phase diagram of the system. [ |

3.3 Critical Dynamics (6 = 1)

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when # = 1. The size
of Normal fluctuations must be further rescaled (in space and time), because their

size around the deterministic limit increases in time. In this case we will obtain
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non-Normal fluctuations, solutions of a certain stochastic differential equation to

be determined.

First of all, we need to locate the critical direction in the infinite dimensional
space of the order parameters. In the rest of the section, we will consider 6 = 1

and let us assume that the initial condition A is a product measure such that
qo(dx) = ¢%(dx) = 1 dx
¥ 27
and so .
qu(dr) = ¢)(dr) = o de,

for every value of t > 0, since we are in stationary conditions.

We consider the linearization of the operator £, given by ({3.8), at the equilibrium
distribution ¢°(z), which is

_1%%
2022
where we have denoted (f1, f2) := [™ f1(x) fo(x)dx.

Lemma 3.3.1. The operator £, defined by (3.13)), is self-adjoint in L*(q?).

Lo(x) () + cosz{cosy d(y), ¢: (dy)) + sinx(siny ¢(y), ¢.(dy)) . (3.13)

Proof. Obviously £1is a linear and continuous operator. If we mean (f1, f2) r2(40):=
T fi(z) fa(2)q%(dw), we have to prove the following: if ¢y, ¢y € L?(¢%), then
<£¢1, ¢2>L2(q2) = <(Z§1, £¢2>L2(q9)' Thus,

(L1, 02) 12(g0) =

<1 0’1

1 2w
3 B2 (x) + cosx%/o cosy ¢1(y) dx

1 27
+sin:cf/ siny ¢1(y) d$,¢2>
21 Jo

L2(q9)

1 2m 9%y
~2Jo  Ox2

(@) () 20de) + [ conz r(x) d2de) [ conie () ()
+ /027r sinz ¢1(z) ¢°(dz) /027T sin ¢y (z) ¢° (dx)
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1 /279 0 1 2
-5/, agil(x);f($)qg(d$)+<¢1ﬂ05$%/o cos y ¢2(y) dy

1 2
+ sinz — / siny ¢2(y) dy>
2m Jo

L2(q9)

1 s a2¢2 1 2m
_ <¢172/0 pe (x) +cosx%/0 cosy ¢a(y) dy

1 27
+sinx — / siny ¢o(y) dy>
2m Jo

L2(q9)

and the proof is concluded. [ |

Lemma 3.3.2. The null space of the operator £, defined by (3.13)), is spanned by

the functions sinx and cosx.

Proof. 1f ¢(-) belongs to the null space of £, then £p = 0. Therefore, we require
that

10%p 1 g2m 0 ) 1 2 0
59,2 %) —i—cos:c%/o cosy (y) q.(dy) +Sm$§/0 siny ¢(y) ¢.(dy) = 0.
(3.14)
We solve the ordinary differential equation (3.14)). Having defined
1 2w 0 1 2 ) 0
A= o [Teosyply)ady) and Bi= - [Tsinge(y) gddy),  (3.15)
m Jo 21 Jo

the solution is ¢(z) = 2B sin x 4+ 2A cos x; this function yields a solution of (3.14)
provided that it satisfies the self-consistency relations (3.15)), but it does for every
value of A and B. |

Remark 3.3.1. In the case that 6 # 1, the unique value for which the self-
consistency relations in (3.15) are satisfied is A = B = 0, meaning that at
the critical point the kernel of the operator £ is two-dimensional, while it is a

trivial set for all the other values of the parameter 6.

Remark 3.3.2. The null space of the operator £ represents the critical direction

for our model.

Lemma 3.3.3. The spectrum of the operator £, defined by (3.13)), is described by
the set Spec(£) = {0} U{—k?, k > 2}.
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Proof. The zero eigenvalue corresponds to the eigenvectors sin x and cosz, gen-
erating the null space of the operator £. To find the rest of the spectrum means

solving the problem

¢"(z) = =Ao(x),  ¢(0) = ¢(27),

with A > 0. The set of the solutions is ¢(x) = asin(vAz) + bcos(v/Az), with
a,beR.

The boundary condition translates to b = asin(27v/A) + bcos(2mv/A) and it is
satisfied for a,b # 0 if and only if VA = k, k > 2. Finally, we have obtained
a complete set of eigenvectors; therefore the corresponding eigenvalues cover the

whole spectrum. [ |

We want to describe the action of the infinitesimal generator of the critical fluc-
tuation flow )
pn(t,dr) = NY* | py(NYV2 da) — o dx
T

on the family of functions of the form ¥({¢1, pn),- .., (dm, pn)), Where
YiR™ —R, ¢ eCRM)
and
¢;:[0,21] — R, ¢; €C([0,2n)),
for j = 1,...,m. Since we must consider fluctuations around ¢%(-), that is, we
must consider the “centered” process, we restrict our attention to functions ¢;
with )
[ o) =0, j=1.m.
Then, for this kind of functions it yields
(05, pn (1)) = N0, pn (NV?1))
fory=1,...,m.
Lemma 3.3.4. Fort e [0,T], the critical fluctuation flow
1
pnlt, dx) = NV [pN(Nl/%, O dx} (3.16)
™

is a Markov process whose infinitesimal generator Jn satisfies:

INU((D1,DN)5 - -5 (D PN)) =
= [NYV2Ly + NYA Ly + Ly + N7VAL ({61, n)s - (bms ), (317)
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where

m

L1¢(<¢17:5N>7"' ¢mapN Z £¢]7PN (318)

w

L2¢(<¢175N>7 ce ¢m>pN

Ilbnﬂs

[(sinz, pn){cos z (), pn)

— (cosz, piv) (sinx ¢(x), pn)]  (3.19)

(U7 ) = §, 32 56100 ) ) (3.20)

13 0%

Lyp({@1, PN, - - -5 (Pmy PN)) = Z . Bundy; (9 (2) (), pn) (3.21)

and the operator £ is the linear operator given by (3.13)).
Proof. Just a very long and tedious computation. [

Theorem 3.3.1. Fort € [0,T], if we consider the infinite-dimensional critical

fluctuation process

(sinz, pn (1)), (cosz, pn (1)), {{sin kz, pi (1)) bz2, {{cos kz, pn (1)) Fr>2 ,

then, as N — +oo, {(sin kx, pn(t)) bi>2, {(coskz, py(t)) }k>2 — 0 in the sense

of Proposition and ((sinx, pn(t)), (cosz,py(t))) converges, in the sense
of weak convergence of stochastic processes, to a limiting non-Gaussian process

(X (t),Y(t)), which is the unique solution of the following stochastic differential

equation:

dX(t) = —é X (1) [ X2(t) + Y2(t)] dt + \}5 dBW(t)

1

— dBY ¢t
s an()
with initial condition X (0) = Y (0) = 0 and where BY and B® are two inde-

pendent Standard Brownian motions.

4y (t) — —; Y () [X2(1) + Y2(1)] dt +
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3.3.1 Proof of the Theorem 3.3.1]

Let us denote by {74} y>1 a family of stopping times, defined as

T = 125{\(sinx,ﬁN(t)>| >M or [(cosz,pn(t))| > M

or |(sinkz,py(t))] > M for at least a value of k =2,3,...
or |{coskxz,pn(t))| > M for at least a value of k =2,3,...},

where M is a positive constant. We are interested in introducing such sequence
of stopping times because in this way the processes (sinz, py(t)), (cosx, pn(t)),
{(sinkz, pn(t)) }x>2 and {{(cos kz, py(t)) }x>2 result to be bounded in the time
interval [0, T A 73]

We consider the infinitesimal generator Jy, subject to the time-rescaling N'/2,

and we apply it to the particular function

W((sinw, px (1)), (cos z, pn (6)),{ (sin ki, v () hrza{ (cos ki, v (£)) Yrza) = [ on (]2,

where, for » > 0, we have defined the norm

+o00
IonlZ == Z m[(sin kx, pn)? + (cos kx, py)?] .
k=2
1o ()7
, A, and then the following decomposition holds:
Q,A, P d then the foll d hold

is a sequence of positive semimartingales on a suitable probability space

dllpn O = In(lpn OF) dt +dMiy 5 e s

with M, 2 the local martingale given by

N.lp.

t

Nlpnlz = N3/4/ [ 1+k‘2) [(sin kx, pn(s)) cos kz;

— (coskx, pn(s)) sinkz;||dB;(s) (3.22)

= z (Tallpn(s)I2), dBj(s)

where {Bj(t) :t > 0,7 =1,...,N} is a system of independent Standard Brow-
nian motions on [0, 27] and (V,|[pn|2); is the j-th component of the gradient

computed with respect to the processes (xj)jvzl
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As a consequence of the considerations just explained, we are in the proper sit-
uation to adapt Proposition to our specific case. Before stating the result
about collapsing processes we need to prove the following technical Lemma.
Lemma 3.3.5. Given two sequences {ay}n>2, {bn}n>2 of positive, real numbers
andr € R, r > 0, it holds

+o0

Zufn)“""“—cz (@ +5),
n=2

with C' positive constant.

Proof. Just write apb,.1 < a2 + b2 41, and observe tha is bounded from

t ntl
above and below for n > 2. [ |

Lemma 3.3.6. Considerd > 2,5 > 0 and ky = k(N), such that kn Atee, | 0.

Fort € [0, 7] and N > 1, there exist constants C.’s independent of N and t and

two increasing sequences {an}n>1 and {By}n>1 which satisfy

oyt 2 0 ktay 220, k! By 2% 0, (3.23)
E||pn(0)[2] < Cray® for all N, (3.24)
In(lpn @7 < —rndlan ()17 + BnCa + Cs, (3.25)
sup pn ()7 < (3.26)
wEQ,I€[0,27T],t§T]]\\,4
and such that, for every € > 0, the following estimate holds

sup P{ sup  |pn(®)|? > Cs (mN aN' Vv Ky aN)} <e. (3.27)

N=>No 0<t<TATH

Proof. We aim to prove these sequences {ay}n>1, {fn}n>1 and constants C.’s
exist and to give a characterization of them. We show that properties (3.23))-
(3:26) hold true. The estimate (3.27) then follows from Proposition [I.4.1]

We start noticing that a Central Limit Theorem applies to the process

(sinkx, pi(0)), since the random variables (x;(0))/-

, are independent; so,
in the limit as N — +oo, NY4(sin kz, px(0)) converges to a Gaussian
random variable and, since (sin kxj)j-vzl are bounded random variables, there

is convergence of all the moments. Thus,
E [Nd<sin k‘x,pN(O»Qd} <oV
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and the process (coskz, py(0)) obeys an analogous result. We obtain the

following estimate for the 2d-th moments of ||px (0)|/?:

E[llpn(0)I[] = £

(ZO:O (1_i_1]€2)r[<sin kz, pn(0))? + (cos kx,ﬁN(O)>2]> ]

k=2

= 1 . - 2d ~ 2d
<CE ng m[(sm kx, pn(0))* + (cos kz, pn(0)) ]1
= CONY? g:o (14'1752)T (E[(sin kx, pnoy) ]

+ E[(cos kz, PN(0)>2d])

<ON2(CfV + ) N71S, == CyN 2,

where S) is the sum of the series > ;25 a J;@)T, which is finite whenever

r> 1. Thus (3.24) holds.

For ¢t € [0,78], we derive the particular characterization of Jx(|lpn|?),

adapting the explicit expression of Jx given by (3.17]), and then we proceed
to find an upper bound for this quantity.

_ =X 1 . _ . _
Inlonlly = W{2N1/2[<Slﬂ kz, pn){(Lsinkz, pn)
k=2

+ <COS ka, ﬁN><£ cos k?l', ﬁN”
+ 2ENY4{ (sin kz, pn)[(sin z, p ) (cos z cos kz, px)
— (cosx, pn)(sinx cos kx, pn)] + (cos kx, pn)[(cos x, pn)(sin x sin kz, py)

— (sin, pn)(cos x sin kx, pn )]} + k*[(cos? kx, ¢.) + (sin® kz, q.)]
2k?
- ON/A4

(sin kx, pn)(cos kx, p) (sin kx cos kz, ﬁN>}

(by using Prosthaphaeresis formulas)

+oo 1 . . ~
=> (1+/<:2)T{ — 2K NY2[(sin kz, px)? + {cos kz, )]
k=2

+ kNY{(sin kx, pn)[(sin z, pn ) (cos(k + 1)x + cos(k — 1)z, pn)

— 124 —



Chapter 3. The Kuramoto Model

— (cosx, pn) (sin(k + 1)z — sin(k — 1)z, pn)]

+ (cos kz, py)[{cos x, pn)(cos(k — 1)x — cos(k + 1)z, pn)
— (sinz, py)(sin(k + 1)z + sin(k — 1)z, pn)]}

k? 2K?

R sinke, ) cos ke, ) sin ke cos ke, )

(by observing that N~'/4(sin kx cos kx, pn) = (sin kz cos kz, py) and hence
|(sin kx cos kx, pn)| < 1)

< :Z:M{ — 2k2N1/? ((Sin kxz, pn)? + (cos kzx,ﬁN)Q)
+ ENYAM|(sin ka, )| (|(cos(k + 1)z, pv)| + [(cos(k — 1)z, )|
+|(sin(k + L)z, pn)| + [(sin(k — 1), o))
+ |(cos k, ﬁNH(\(Sin(k + 1), pn)| + [{sin(k — 1)z, py)|
k2

+ I{eos(k — 1), )| + | (cos(h + 1), o)l +

+ 2k?|(sin kx, py)||(cos k, ﬁN>|}

(by Lemma [3.3.5))
1/2-1—00 k2 . o o
< —-2N ICXZ%W((Slnkx,pN) +<Coskx,pN>)
1/4 - K = \2 = \2
+ 4N MC{I;W(@lnkx,pm —l—(coskx,pN))
y k=1 in(k — 1)z, p)? k— 1)z, pn)°
2 1 ey (50 = D) o {eos(h = 1y p)?)
4
o (s ) + Goosz ) |

+o0 2 +oo /{32
inkzr. o 2 ~ \2
+ k§:2 A5 ((sm x, pn)° + (coskx, pn) ) + 322 0+ iy

Lo N 5
< 2NVES gy (ke )’ o+ (cos k. p)?)
k=2
HIBNVIMPOL S e o F2MP Y s Y e
= (k2 b o (LR o (L2
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< —2NY2||pn |2 4+ NYAM3C(Sy +2) 4+ Sy(2M? + 1),

where Sy is the sum of the series 3/ %, which is finite whenever
r>3.

Hence, we have obtained the desired inequality if we choose: ky = N'/2,
§ := 2 (which is positive as required), By := N4, Cy := M3C(S, + 2) and

Cg = SQ(2M2 + 1)

Now, we evaluate the supremum of the modulus of V.| pn(t)]|?, whose
components are defined in (3.22)). Since

2
<

+0o0o
b sin kx, pn(t)) cos kx; — (cos kx, py(t)) sin kx|

k; (1 +k2)’"[<

400 /{2 N _ )
< Ckz::g T e [(Sin kz, pn(t))?| cos kz;|* + (cos kz, px (t))?| sin k’xjﬂ

< 20M?8;,

it easily yields

sup Vallon ()2 = sup > [(Vm\|ﬁw(t)||%)j]2

wEQ,xE[OQﬂ,tST{\,VI wEQ,mG[O,Qﬂ],tST]]\\,/I j=1

2 1/2 —1/4
< N3/4M 2053N/* =Cy;N~/%|
where S3 is the sum of the series 3/ %, which is finite whenever

r> 3 and we set Cy 1= 20M /255, ay := N4,

It remains to show that the sequences we have found satisfy the conditions

about the convergence to zero. But,

lim (NYHYINYH™L = Jim NYV2YVi—0 — d>2,
N—+o00 N——+oo

lim NYANTY2 = lim N-Y4 =0y,
N——+4o00 N—+o00
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lim NYANY2 = 1lim N Y*=0

N—+oco N—+o00
and hence we have completed the proof, since by Proposition we can

now assure ([3.27)) holds.
|

Remark 3.3.3. Notice that if we insert the quantities we choose during the proof
of Lemma into (3.27]), we have shown that the following inequality holds

sup P{ sup [lan(®)]2 > C5 (NV2AHy N1/4)} <e. (3.28)
N=>No 0<t<TATY

The results we proved in this subparagraph show that the processes {(sin kz, py (1)) }r>2
and {(cos kz, pn(t)) }x>2 are collapsing processes in the sense of Proposition [1.4.1]
when ¢ € [0, T A 73]

We want to find the expression of the limiting operator of the infinitesimal gen-

erator Jy, as N grows to infinity. We choose

W ((sinz, pn (1)), (cos z, (1)), {(sin ke, v (£)) brza, {(cos bz, (1)) hiss ) =
= ¢({sinz, pn(t)), (cos z, pi (1))
and we apply the operator Jy. Since ker £ = span{sinz,cosz}, referring to

(3.17)-(3.21]), we obtain

In((sinz, p), (cos x, pn)) =

= NY49up(-, ) [(sinz, pn){cos® z, pn) — (cos z, py)(sin x cos z, py)]
+ NY20y0(-, ) [(cos x, pn ) {(sin® z, pr) — (sinz, ﬁN><sinxcos x, )]
+ SO0, oo 7,4%) + 30, )i, %) + S D, ) eos* i)
2]\}1/4822¢( I (sin® x, pn) + N1/4812w( ){sinz cos z, pn)
(by using Bisection formulas and the fact that the measure py is centered, in
other words that (1, pn) = 0)

N1/4

(-, )[(sinz, py){cos2x, pn) — (cosx, py)(sin 2z, pn)]
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Nl/4

T

Ot(+, ) [—(sinz, py)(sin 2z, pn) — (cosx, pn){cos 2z, pn)]

where o(1) includes the terms coming from L4, which are of order N='/4. The
operator L, is defined by (3.21]).

Now, to determine the limiting generator, we apply the first order perturbation
theory. The methodology for treating a perturbation problem has been developed
in the paper [PSV77] and extends the earlier works done in [Kur73] and [Pap77].
The idea is the following. If we look at the expression of Jx in , we see
that, in the limit as N — +o00, the operators L; and Ly can explode. Since
we have just proved that, for ¢t € [0,7 A 7], the process surviving the critical

time-space scaling lives in the kernel of the operator L, we restrict to work with
V({P1,PN)s -y (Om, Pn)) € ker Ly, the term L1 ({¢1, pN ), - - -, (Pm, pn)) Vanishes

and then we need to control the operator Ly. So, we think of N~%/* as a pertur-
bative parameter and we use a first order perturbation of v to introduce some
negligible (in the limit as N — +00) terms in the expression (3.17), which pro-
vide that the operator Ly does not diverge.

More precisely, we consider {n ({¢1, pn), - -, (Pm, PN)), & first order perturbation

of w<<¢17ﬁN>7 T <¢m7ﬁN>)7

¢N(<¢17/~)N>7 R <¢maﬁN>) = ¢(<¢1aﬁN>a R <¢mvﬁN>)
+ N7 (D1, 8-+ (Dms D)) (3:30)

and we apply the generator Jy to this function:

jN¢N(<¢17ﬁN>7 ey <¢m7ﬁN>) =

= N1/2L1¢(<¢1a ﬁN)a SRR <¢ma ﬁN>)
+ N Loy (D1, ), - - (Do PN)) + Latr ({81, A8, - - 5 (D )]
+ L3¢(<¢laﬁN>7 SRR <¢m>ﬁN>) + L2w1(<¢1vﬁN>v SR <¢m>ﬁN>) + 0<1) ) (3'31)

where o(1) includes the terms coming from Ly, Lsip; and Lyipy, which are of
order N='/4 and N~1/2.
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The first term vanishes, since ¥ ({1, pn), ..., (Pm, pn)) € ker L. To eliminate

the N4 term, we require that

L2¢(<¢17,5N>; SR <¢m7ﬁN>) + L1¢1(<¢laﬁN>v T <¢m7ﬁN>) = 07

that is
D1((P1, 8), -5 (s PN)) 7= =Ly Lot ({b1, pnv)s - -+ (P AN)) (3.32)
where formally
Loy =— /O " exp(Lit)vdt provided that v € ker L . (3.33)

If we substitute the expression we found for ¢ ({41, pn), - - - (Dm, Pn)), (3.32), in
the two terms left of (3.31]), we obtain

Lap({p1, DN ) - - -3 (D, D)) + Lathi ({@1, PN)s - - -5 (D PN)) =
= [L3 - L2L1_1L2]w<<¢1aﬁN>v BRI <¢m>ﬁN>) = va“qbl?ﬁ]\f)? SR <¢m’ ﬁN>) 3

where Jy satisfies

NLiIEOO INUN({(D1,PN)s - - (Dm, PN)) = NEY}FIOO j\ﬂﬂ(@l, PNy - (P, PN)) -

We apply the method to our case. The expression of Jn¢({sinz, py), (cosz, pn))
is described by ((3.29)). We need to compute 11, which allows us to introduce the

terms necessary to the convergence of the infinitesimal generator: Li¢; and Lo);.

By the definitions (3.32)) and (3.33)), it yields

¢1(<Sinl’,ﬁ]\[>, <COSZL’,,5N>, <Sin2$7ﬁN>7 <COS 2I7ﬁN>) =

= —Li ' Lyy({sinz, py), (cos z, pn))

- ‘éﬂfl 210 ) ((sina, i) (cos 22, i) — {cos x, fy) (sin 2, o))

— (s, ~)((sin x, pn)(sin 2z, py) + (cosz, py){cos 2x,ﬁN))}

— 129 —



Chapter 3. The Kuramoto Model

= _;{gﬁp(.’ .)((sinx,ﬁN><cos 2z, pn) — (cosx, p)(sin 2x,ﬁN>>

— O(, -)((sin x, pn)(sin 2z, py) + (cosz, py)(cos 21‘,,5N>)}. (3.34)

Thus,

jN[¢(<Sin T, ﬁN)) <COSZE7 ﬁN>)
+ N7V ((sinz, pw), (cosz, p), (sin 2z, py), (cos 2z, oy ))] =

= NYA[Lyp((sinz, i), (cos 7, )
+ Lyt ((sinz, pn), {(cos x, pn ), (sin 2z, pn ), (cos 2z, pn))]
+ L3y ((sinz, pn), (cos z, pn))
+ Loty ((sinz, pyn), {(cos x, pn ), (sin 2z, pn), (cos 2z, pn)) + o(1) .

Since L9t + L1t = 0 by construction and Lsy) = i [011% + O921)], it remains to
compute the term Lot)y.

L2¢1(<SinxvﬁN>v <COS(L’,ﬁN>, <Sin2xaﬁN>a <COSQ$aﬁN>) =

— _&13L2 [0lw(-, -)((Sin x, pn){cos 2z, py) — (cosx, py){sin 2z, ﬁN))

+ (-, )( — (sinz, pn){(sin 2z, pn) — (cos z, pn){cos 2x,ﬁN>)}

_ 1
8

+ 019 (-, -)(cos 2z, ﬁN)} ((sin x, py){cos® z, pn) — (cosz, pi ) (sinz cos z, ﬁN))
)

{{@ﬂb(-, ~)(<sinx,ﬁN><cos 2z, pn) — (cosx, py)(sin 2:c,ﬁN))

+ [0129(-, ) ({sin x, piv) (cos 2z, i) — (cosx, piv) (sin 2z, i) )

+ 01 (-, ) (sin 2z, ﬁN)} ((COS z, pn) (sin® z, p) — (sinz, o) (sinx cos z, ﬁN))
—201(+, ) [(COS T, PN) ((sin x, pn){cos z cos 2z, p) — (cos z, py)(sin x cos 2z, ,EN>)
+ (sinx,ﬁN)(<sinx,ﬁN)(cosxsin 2z, pn) — (cosx, pn)(sin z sin 2.:1:,]0“]\7})}

+ [8221p(~, )( — (sinz, py)(sin 2z, py) — (cosz, py){cos 2x,,5N>)

— 091 (-, -)(cos 2z, ﬁN)} ((cos z, pn)(sin® @, pn) — (sinz, o) (sinx cos z, ﬁN>)
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+ {8121/1(-, ~)(<sinx,ﬁN><cos 2z, pn) — (cosx, p)(sin 2:6,,51\;))
+ 091 (-, -)(sin 2z, ﬁN>] ((cos x, py){sinz cos z, py) — (sinz, pi)(cos® , ﬁN>)
— 2020+, -){(cosx,ﬁN)<<cosx,ﬁN>(sinxsin 2z, pn) — (sinz, py){cos z sin 2x,ﬁN>)

+ (sinz, py) ((sin x, pn){cosz cos 2z, py) — (cosx, py){sinz cos 2z, ﬁN)ﬂ }

(by using Prosthaphaeresis formulas)

+ 01(-, ) (cos 2z, piv) | ((sin.z, pv) (cos 2, fiv) — (cos z, p) (sin 2z, )
— 51000, ) ({sin . ) (cos 22, ) — (cos . v (sin 2z, 7))

+ 01(-, ) (sin 2z, )| ((sin z, pv) (sin 22, piv) + (cos x, piv) {cos 2z, )

— () [(sinx, pv) (cos , o) + (sinz, pw)?)|

— 5[0 ) (s e, pv{sin 2z, ) + {eosir, ) (cos 2z, )

— Oy(-, ) (cos 2z, pv) | ((sin &, i) (sin 2, i) + (cos x, pv) (cos 2z, v )
+ ;[aw(-, )({sin @, o) (cos 2z, i) — (cos x, p) {sin 2z, p))

+ O, ) (sin 22, ) | ((cos &, o) (sin 2z, ) — (sinz, px) {cos 2, pw) )

=) {eosa il + (s Plosz )

Summing up all the terms we have obtained, recalling that 1, is defined by (3.34)),
we get

Inl((sin, ), (cos v, )
T+ N ((sin, ), (cos . fi), (sin 22, ), (cos 22, )] =

_ —;{; (00186, )({sin 2, i) {cos 22, i) — {cos @, v {sin 22, iv))
+ 01p(-, ) (cos 2z, pv) | ((sin ., pv) (cos 2, fiv) — (cos z, p ) (sin 2, )

- ;[812w<', -)((Sin x, pn){cos 2z, py) — (cosx, py)(sin 2z, ﬁN>)
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+ 01(-, ) (sin 2z, i) | ((sin 2, pv) (sin 22, piv) + (cos x, piv) cos 2z, )
— 0(-, ) [(sin, px){cos x, pw)? + (sinz, )]
— 5[ ) (s e, pv{sin 2z, ) + {eosz, ) (cos 2z, )
— Dy (-, ) (cos 2, )| ({sin &, pv) (sin 2, i) + (cos z, ) (cos 2, fin) )
42 (01 ) ((sin ., v {eos 20, ) — {eosiz, ) {sin 2z, 7))
+ 0(-, ) (sin 2, pv) | ({cos &, ) (sin 2a, i) — (sina, ) (cos 22, )
— 00+, ) [({cos z, v )? + (sinz, py)*(cos ., f)] }

N ianw.’ 3+ iam/}(., Y4o(1). (3.35)

The next step is the proof of the fact that, for every ¢ > 0 and N > 1, there
exists a constant M > 0 such that it is true P {T]]\‘f < T} < €. This fact im-
plies that, as N is growing to infinity, the processes {(sinkx,pn(t))}r>2 and
{(cos kzx, pn(t)) }k>2 converge to zero in probability for all ¢ € [0, T7].

We consider the infinitesimal generator Jy, subject to the time-rescaling N'/2

and we apply it to the particular function

(st (1) (cos . (). {{sn K, i (1)) sz, {{cos k. o (1))
+ N~Y4%, ((sinx, py (1)), (cosz, py(t)), (sin 2z, pn (1)), (cos 2z, pn (1)) =
= (sinz, pn (1)) + (cos z, pn(t))* — 4]\;/4{<Sim z, pn(t))*(cos 2, pn(t))

— 2(sin z, p (t)){cos z, piv(£))(sin 2z, (1)) + (cos z, v (1))*(cos 2z, i (1)) }
=y ((sinz, oy (1), (cos z, (1)), (sin 2z, piv (1)), (cos 2z, v (1)) ,

meaning we have chosen the function ¢ to be of the form

W ((sin, p(£)), (cos z, (1)), {(sin ke, v (1)) bra, {(cos b, pv(£)) rz2) =
= (sinz, pn (1)) + (cosz, pn (1))
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The following decomposition holds

%(3)(<Sin$7 ﬁN(t»’ <COS"L‘7 /N)N(t»v <Sin 2z, ﬁN(t»? <COS 2z, ﬁN(t») =

= M@ + O ((sin, i (0)), (cos @, o (0)), (sin 2z, pv(0)), {cos 2z, i (0)))

—i—/o jN wN ((sinz, pn(s)), (cosx, pn($)), (sin 2z, pn(s)), (cos Zx,ﬁN(s)))}dS

< MY o UK (sine, i (0)), (cos x, i (0)), (sin 2, i (0)), (cos 2z, pn (0))

t
+/0 ‘jN[wﬁ)usinx,ﬁN(s)),<cosx,ﬁN(s)>,(sin2x,,5N(s)) (cos2x, pn(s ”ds
with ./\/l e a martingale given by

w(g) / Z{N3/4 sinz, py(s)) cosz; — <COS$,5N(5)>sinxj>

+ N [((smx pn(8)){cos2x, pn(s))—(cosz, py(s))(sin 2z, ﬁN(s)>) COS T
+ ((sm z, pn(s))(sin 2z, pn(s)) + (cos z, pn(s)){cos 2z, ﬁN(s)>) sin z;
+ ( — (sina, py(s))? + (cos m, ﬁN(s)>2) sin 2x;

— 2(sinx, pn(s)){cosx, pn(s)) cos 2%} }dBj(s)

- [ ST,

where {B;(t) :t > 0,5 =1,..., N} is a system of independent Standard Brow-
nian motions on [0, 27] and (VI ﬁ’))j is the j-th component of the gradient
computed with respect to the processes (xj)évzl We recall that the expression of
Jn is given by (3.35)). For t € [0, 747] we get

[T [0 ({sinz, p (1)), (cos 2, p (1)), (sin 2, piv (1), (cos 2z, v (1)))]| =

1
=3 H(sin x, pn)(cos 2z, py) [2<Sin x, pn){cos 2z, py) — {cosx, py)(sin 2x,ﬁN)}
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— (cosx, pn)(sin 2z, py [3 sinx, pn)(cos 2z, py) — 2(cos x, px)(sin 2z, ,oN>]
— 2(sinz, py ) (sin 2z, p [ sinz, pn)(sin 2z, pn) + (cosz, pn)(cos 2x,,’6N)}

)
(sinz, pn {(smx pn){(cos, pn)? + (sinx,ﬁm?’}

(cosx, pn)|(cosz, pn)?® + (sinz, py)?(cos x,ﬁN)]} +1+ 0(1)|

< S{isin e wlltcos 20, 7wl [2l(sin e, v I(cos 22, i)

0| —

+ l{cos, pw)l|sin 22, ) |

+ |<COSJ],ﬁN>||<SiIl2[L’,ﬁN>| |:3|<Sinx7ﬁN>||<COSQx7ﬁN>|

+ 2f(cos, ) | (sin 22, )

+20(sin, 7o) | (sin 20, ) | (sin . 7w) | {sin 22, )|

+ l{cos, pw)|(cos 20, 7w)|

+ l(sin, gl | (s, ) (cos ) + [(sin v, )

+ I{eos.z, ) | (eos . ) [+ (sin . ) (cos v, ) ||} + 2
<2AM*+1) = Cs,

with Cy positive constant independent on N. Since the following inclusions are
valid
{tW <T}C

g{ sup |rﬁNH%zcs<N1/2“/4VN”“} (] =

0<t<TATY

oN ()| = 09+T08+Cm}

! [{y¢§3><...>yt:0\ <a) m{ ap

0<t<TATY
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cf w1l G buflu )

0<t<TATY

=)

t=01 —

U { sup ij,wﬁ’) > 010}>

0<t<TATH

we obtain the following inequality

Piri < T} < P{ sup (D2 > (N2 N‘1/4)}

0<t<TATY

+P{‘w§3)(...)‘t20’ > Cg} +P{ sup Mﬁ\ws‘)) > 010}

0<t<TATY

We estimate the three terms of the right-hand side of the inequality.

» For any € > 0, thanks to (3.28]), we have

Pl sw w0l > vy N <

0<t<TATY

» We start noticing that a Central Limit Theorem applies to the process

(sinz, pn(0)), since the random variables (z;(0))[L, are independent; so,
in the limit as N — +oo, NY4(sinxz, px(0)) converges to a Gaussian
random variable and, since (sin :cj)j-vzl are bounded random variables, there

is convergence of all the moments. Thus,

E [Nd(sin x, pN(0)>2d} <ct

and the process (cosz, py(0)) obeys an analogous result. So, we can esti-
mate

d

1
COANL/A

— 2(sinx, pn(0)){cos z, py(0))(sin 2z, px(0))

<SiIl.l’, ﬁN(O>>2 + <COS‘T7 ﬁN(O»Q

{(sinz, px(0))*(cos 2z, i (0))
{eosa i (0)?{cos 20, ()|

< E[ (sin, 5 (0))2 + (cos , i (0))?
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— 4]\}1/4{«:05 2, ﬁN(0)>(<sin z, pn(0))% + (cos x,ﬁN(O)>2)

(s 20, () (i, O+ cos 0 |

< E[ (sinz, pn(0))? + (cos z, pn(0))?

— H{lteos 22, o) (sin z, o (0))? + {cos z, o (0))?)

+ |(sin 2z, pN(0)>|<(sin z, pn(0))* + (cos z, ﬁN(O)>2>

|

<

[\ ROV

(¢ +c®) Nz —one

and in the limit as N — +o00, we have convergence to zero in L! and then

in probability. Therefore
3
P20 <
for any € > 0, for every N and for a sufficiently large C.

» We reduce to deal with [(M';V%?))?] ; in fact, Doob’s “maximal inequal-
ity in LP” (case p = 2) for martingales (we refer to Chapter VII, Section 3
of [Shi96]) tells us that

2
(ME, o) ]

(Cho)?

Mt

NP

E
P sup >C ¢ <
0<t<TATY

Hence, we obtain

b l(M;w%‘)ﬂ N

H/ Z{N3/4 sinz, v (s)) cos x; — (cosz, p(s)) sinz;)

ton {((sm:v pn(s))(cos2x, pn(s)) — (cosz, pn(s))(sin Zx,ﬁN(s)>) COS T
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+ ((sin x, pn(s))(sin 2z, pn(s)) + (cosz, py(s)){cos 290,,5]\/(5))) sin z;
+ ( — (sinx, pn(s))? + {(cos x,ﬁN(s))z) sin 2x;

— 2(sinz, pn(s)){cosz, pn(s)) cos 295]} }dBj(S)] ]

(thanks to Itd’s isometry )

1

+ N [((Sin x, pn(s)){cos2x, pn(s)) — (cosx, pn(s))(sin 21’,,5]\/(3))) COS
+ ((sin x, pn(8))(sin 2z, pn(s)) + (cosx, pn(s)){cos 2z, ﬁN(s)>> sin z;
+ (— (sinz, pn(s))? + (cos x,ﬁN(s))2> sin 2z;
} ] ds

— 2(sinz, pn(s))(cosx, pn(s)) cos 2x;

T N
<[ YE
0

4 1\’ .
W‘I—W dS:25T:.011,

with C; independent of N and M. We have established that, if we choose
010 Z %, then

P{ sup M’ )zClo}Se.

3
0<t<TATY Nyy
In summary, we proved the inequality we were looking for; in fact,
P{T]]\\f ST} <3e:=c¢€.

We have just concluded the proof of the first part of the statement of The-
orem [3.3.1] concerning the collapse of the processes {(sinkz,py(t))}r>2 and
{{coskx, pn(t)) }x>2 in the limit as N — +oo and for ¢t € [0,7]. Now, we
are going to show that in the same setting, i.e. the limit of infinite volume and
t € [0, 7], the process ((sinz, py(t)), (cosx, pn(t))) admits a limiting process and

we are going to compute it.
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First, we need to prove the tightness of the sequence {(sin x, pn(t)), (cos z, pn(t)) } &
for ¢ € [0,T]. This property implies the existence of convergent subsequences.
Secondly, we will verify that all the convergent subsequences have the same limit
and hence also the sequence {(sinz, py(t)), (cosz, pny(t))} n>1 must converge to
that limit for ¢ € [0, T,

Lemma 3.3.7. The sequence {(sinz, py(t)), (cosx, pn(t)) }n>1 s tight.

Proof. We must verify the conditions ((1.44) and (1.45) hold. Since we have
shown already that, for every € > 0 the inequality P{ry/ < T} < € is true for
M sufficiently large and uniformly in N, it is enough to show tightness for the

stopped processes
{(sina, o (¢ A TR)), (cos 2, pv (EA TR ) bz
We consider the function 1 of the form
¥ ((sina, v (1)), (cos @, i (8)), {(sin ke, oy (6)) sz, {(cos K, i () buss) =
= (sinz, py (%)) .
The decomposition
t
(sin, (1)) = (sinz, o (0)) + [ I ({sin, i () du+ My 050

with
t 1 t X
MN,<sinx,;N(t)> = W/o Zlcosxj dB;(s),
]:

holds true and we get the following inclusion

{ up r<sinx,ﬁN<t>>rZM}g

0<t<TATY

C {J(sina, pw(0))] > M} u{ sup
0<t<TATY

t
MN’<Sinm7fva(t)>‘ Z M} ’

We estimate the probability of its right-hand side.

A Central Limit Theorem applies to the process (sinx, pn(0)), since the

N

random variables (z;(0));Z; are independent; so, in the limit as N — o0,

NY4(sinx, pn(0)) converges to a Gaussian random variable and, since (sin z;)%
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are bounded random variables, there is convergence of all the moments.
Thus,

So, we have that
EH(sinx,ﬁN(O))H < oW N-1/4

and in the limit as N — +o00, we have convergence to zero in L' and then

in probability. Therefore
P{|(sinz, px(0))| > M} < e

for any € > 0, for N > N and for a sufficiently large M.

2
t
K [ (MN,(sinx,;N(t») ‘|
<

M2

Secondly, by Doob’s inequality, it yields

P{ sup ‘M§V,<sinw,5j\,(t)>’ > M}

0<t<TATH

and

. 2 1 t N ?
E [(MN,(sin:r:,ﬁN(t») :| = ]\B/ZE[<,/() jZICOSZL'j dBj(S)> ]

1 X, T
:WE /OZ;COS .flfde SWST:CK)
j:

We have established that, if we choose M > %, then

P{ S.upM‘/\/llt (t)>‘2M}§5;

N7<Sinx7;N
0<t<TATY

hence, for N > N,

P{‘(sinx,ﬁN(0)>’ > M} + P{ sup

0<t<TATY

t
MY neiean| 2 M } < 2

and so we obtained (|1.44)). Let us deal with (1.45)) now.

Recalling the expression of ¢, given by (3.34]), we construct
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"¢<<Sin X, ﬁN(t)>7 <COS €, ﬁN(t»v {<Sin kx, ﬁN(t»}kZQ? {<COS k, ﬁN(t»}sz)
+ N’l/%l((Sin x, ﬁN(t»? <COS$7 ﬁN(t»v <Sin 2z, ﬁN(t»? <COS 2z, ﬁN(t») =

1

W[(sin , P (t))(cos 2z, pn (1))

— {cos, pn (1)) (sin 2z, pn (1))]

= (sinz, pn (t)) —

= ((sinz, oy (1)), (cos z, pn (1)), (sin 2z, py (1)), (cos 22, px (1)) -

The following decomposition holds

W ((sina, pn (1), (cos, p (1)), (sin 2z, p (¢)), (cos 2z, px (L)) =

= wj(\})(@inx?ﬁ]\f(o»v <COS I?ﬁN(O»v <Sin 2$,ﬁN(O)>, <COS 2$7ﬁN(0)>)
+ /Othwj(\})Ksin x, pn(8)), (cosx, pn(s)), (sin 2z, pn(s)), (cos 2z, pn(s)))ds

+ M

N

where 7, ng\}) is deduced by adapting the expansion (3.35)) and with ./\/lﬁv e
YN

a martingale given by

1
Nw(l) / Z{N3/4 COST;j — o (cos 2z, pn(s)) cosz;
+ (sin 2z, pn(s)) sinx; — 2(sinx, py(s)) sin 2z;

— 2(cosx, pn($)) cos ij] }dBj (s)

= /Otiv:(vx V), dBy(s).

Jj=1

where {B;(t) : t > 0,5 = 1,...,N} is a system of independent Standard

Brownian motions on [0, 27| and (wa%)), is the j-th component of the
j
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gradient computed with respect to the processes ().
We notice that

|(sinz, pn (1)) — (sinz, pn(s))] =

— ’@[(sinx,ﬁ]\[(t»(cos 2z, pn(t)) — (cosz, py(t))(sin 295,,5N(t))}
- 8]\}1/4[<sin x, pn(8)){(cos2x, pn(s)) — (cosx, pn(s)){sin 2x,ﬁN(s)>]

+ [ Twl) (sin e, v ), (cos.z, pv(w), (s 2, (),

(cos 2z, p(u)))du + M*"
Nyl

)

where we have denoted
t e (1)
M= | 3 (V0l?), dBsta).
Thus,

{[(sinz, pn (1)) — (sinz, pn(s))| = a} C

- {‘w{(smz,ﬁ]\;(t»(ms 2z, pn(t)) — (cosz, py(t))(sin 2z, py (1))

— (sinx, pn(s))(cos 2z, pn(s)) + (cosx, pn(s))(sin Qx,ﬁN(s»H

| [ Tl (sini (), (cos , (), (s 22, v (),

(cos 2z, py(u)))du

c {‘ (s . (6 (0 22, v (1)) — (cos 2, i () (i 2, i (1)

{N1/4
— (sinz, pn(s))(cos 2z, pn(s)) + (cosx, pn(s))(sin 2x,ﬁN(s)>] > a}U
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[Tt (sin e, () feos 2 v ), (sin 22, v (w),

4

A

(cos 2z, py(u)))du

>af.

We need to estimate the probability of the three sets of the right-hand side

of the previous inclusion.

» Since

7 | (sin, v (1)) (cos 2, iy (1)) — (cos @, v (t)) (sin 2z, pv (t))

1
8N1/4

- (s, (o) o2, () + (s, (o) i 20, ()]

< o ltin e, o ()] {eos 22, (1)
+(cos . (O (sin 20, (0] + [isn . pv(s) {eos 20, v(s)

+ {cos 2, pn(s))]|{sin 22, v (s))]] < f‘fN_l/g

Hence,
1 L _
P9 \syvia {(Sm , pn (t)){cos 2z, pn (1))

- <COS Z, ﬁN (t)> <SiIl 2z, ﬁN(t» o <SiIl Z, ﬁN(S)> <COS 2z, ﬁN(S»

+ (cos z, pn($))(sin 2z, ﬁN(s)ﬂ

Za}SS

for N > N and « sufficiently large.
» Adapting the expansion (3.35)), we get

/ " It (sin z, B (), {cos ., p(w)), (sin 2, fy (1)),

(cos 2z, py(u)))du| <
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llt{ _';[;(<$naaﬁN(u»<cos2x,ﬁN(u»2

— (sinz, oy (u))(sin 2z, py (u))?)
- <COS Z, ﬁN (U)> <Sin 2z, ﬁN(u» <COS 2z, ﬁN(u»

— (sine, iy () {cos @, o (u))? — (sin, ﬁN<u>>3] " o<1>} du

< /st { B(Ksin z, pn(u))|{cos 2z, py(u))?

+ |(sin, i (w)|(sin 2, px (u))?)

+ (cosz, pn (u)) | {sin 2z, pi (w)) |[(cos 2z, pn (u))]

- |{sin 2, i (W) (cos 2, v (w)? + |<sinx,,aN<u>>|3] ‘ o<1>] du}

3
§<A§+1>(t—8)§(7125,

where we have defined C}5 := M? + 1. Hence,
g

for « sufficiently large.

/ T (sinz, F(w)), {cos 2, pn(w)), (sin 2z, f (1)),

(cos 2z, py(u)))du

Za}ée

» Applying Chebyscev inequality, we obtain

2
st — st
P{ ‘ N,wg}) Z Oé} S (0% 2E [(MN7¢S>> ]

L[ 1 1
= a—QEK ; > {]\/'3/4 COSTj — o {(cos 2z, pn(s)) cosz;
j=1

T (sin2a, pn(s)) sina; — 2(sinz, v (s)) sin 2,
— 2cos z, in(s)) cos 2%} }dBj(s)ﬂ
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t Y 1 1
) 2 ~ 2 2
< Ca /S ;E[W|COS$]'| + GIN? [(cost,pN(u» | cos ;]
+ (sin 22, py (u))?| sin x| + 4(sin z, pi (u))?| sin 27,

+ 4{cos , pn (u))?| cos ijﬂ] du

<C’of2/t§N:E L0 e
- o |N¥2 0 32N?

S

1du S CI4OZ_2(57

with C4 := C(1 + 5M?). Hence,

P{ M

Ny

Za}ée

for a sufficiently large.
Finally, we can conclude that

sup sup  P{|(sinx, p(t)) — (sinz, pn(s))] > a} < 3¢
N 0§s§t§6T
t—s<

and ((1.45) follows. Choosing

d({sin, (1)) cos . o (1), {{sin k., o (6)) s, {(cos b, v (1)) izs) =

= <COS €, ﬁN(t»
we can analogously prove the tightness for the sequence {(cosz, pn(t))} n>1.

Lemma [3.3.7] implies there exist convergent subsequences for the sequence of

processes {(sinx, pn(t)), (cosx, pn(t))}n>1. Let {(sinx, p,(t)), (cosz, pn(t)) }n>1
denote one of such a subsequence and let 1) € C} be a function of the type

W ((sina, pu(t)), (cos @, pu(t)), { (sin ke, i (£)) Yrza, { (cos k, (1)) hiz2) =
= ¢({sinz, pn(t)), {cos z, pn(t)))
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Recalling the expression of ¢, given by (3.34)), we construct

B ({5, 5ult)), (c05 2, Bu(8)), L{5im k2, Fu(t)) Hess {08 K, Fu(t)) i)
+n~ 1/A‘wl((smac Pn (1)), (cosx, pn(t)), (sin 2z, p, (1)), (cos 2z, p,(t)))

= G({sin, (1)), (cos, (1))
— O lsin . (1)) e0s 20, (1)) — {cos. i (0) sin 22 1)

() {sin e, (1) (sin 22 7(0) — {cosz, (1) (cos 22, (1)
= wff)«sin x, pn(t)), (cos z, pn(t)), (sin 2z, p,(t)), (cos 2z, p,(t))) .

The following decomposition holds

U ({sin, fu(t)), (cos z, pu(t)), (sin 2z, fu(t)), {cos 2z, pu(t))) =

= Mi,wﬁf) + ¢512)<<Sin xz, ﬁn«)))v <COS x, ﬁn(o»’ <Sin 2:E, ﬁn(o»’ <COS Q‘T’ ﬁn(o»)

* /ot TP ((sin., pn(s)), (cos z, pn(s)), (sin 2, pu(s)), {cos 2z, p(s))) ds
(3.36)

where

TP ((sina, pu(1)), (cosx, pu(t)), (sin 22, u(t)), (cos 22, pu(t))) =
1 _ _ U
= 8{ [8111p (smx Pn(t))(cos 2z, p,(t)) — <cosx,pn(t)><sm2x,pn(t)))
+00) (-, ) (cos 2z, ()| ((sin 2, pu(£))(c08 22, () — (cos 7, fin(t)) (sin 2, pu (1))
— 7[81%0( ) ((sin, () (cos 22, po(t)) — (cos z, pu(t)) (sin 22, 5 (t)))
(

+01 (-, ) (sin 22, po ()] ((sin @, 5 (£)) (sin 22, 5 (1)) + (cos 2, 5 (£)) (cos 2, pu (1))
— (-, )| (sin, pu(£)) (cos x, (1)) + (sin @, 5 (t))?]

(- >+
— 5[0, ) (tsin e, (1)) (5 2, (1)) + {cosiz, ) cos2r, 7 (1)
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— 0 (-, ) {cos 2z, pn(1)) | ((sin.z, B (1)) (sin 22, pu(£))+{cos z, i (t)) (cos 22, fn (£)))
+ i[awo, ) ((sinz, pu(t)){cos 2z, pu(t)) — (cos T, pu(t))(sin 22, fn(t)))
+09 (-, ) (sin 22, P (1))] ({cos 2, i (t)) (510 22, pu(£)) — (sin 2, 5 (£)) (cO8 2, pu (1))

= 00, ) [ ({cos @, (1))’ + (sina, (1)) (cos z, pu(t))] }

+ ialllb(v )+ i3221/1(‘, )+ on(1)

which, as usual, is deduced by adapting the expansion (3.35). The remainder
on(1) goes to zero as n — +oo, uniformly in M. If we compute the limit as

n — 400, we have:

Tt ({sinx, (), (cos 2, (1)), {sin 22, 7, (1)) (cos 2. (1))
L Ty (X (1), Y (1))

with

TP (X (1), Y (1) =

= — (O )X + Y20 + B Y (10 + Y1)}

+ le (0113 (+, +) 4 D22 (-, -)] -

Then, because of (3.36)), we obtain

t n—+00 t
me?(;) T V@

once we have defined
Mo, = (X0, Y (1)) ~ 6P (X (0), Y (0)) ~ [ T9P(X(w), ¥ (w)) du.

We must prove the following Lemma:

Lemma 3.3.8. M;@) is a martingale (with respect to t); in other words, for all
s,t €10, T], s <t and for all measurable and bounded functions g(X ([0, s]), Y ([0, s]))
the following identity holds:

E[M (X ([0, 5]), Y([0, 5]))] = E[M (X ([0, 5]), ([0, 5]))] (3.37)
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Proof. The reasoning we explained in Lemma applies in this case too, so it

is sufficient to prove {Mt ¢(2)} _, lsan uniformly integrable sequence of random
,%n n-z

variables.

So, since

n

t t 1 _
= /s 2 {W(al¢('v ) cosa; — O, ) sinz)

_ 8771(81“#(" ) cosxj — 01t (+, ) sin xj) ((sin x, pn(u)){cos 2z, p,(u))
— (cos z, pp,(u))(sin 2z, ﬁn(u)))

+ 8171(8127’Z)(" ) cos xj — Oaot(+, -) sin xj> ((sin x, pp(u))(sin 2z, p, (u))
+ (cos z, pp(u)){cos 2z, ﬁn(u)>)

- 81nc91¢(-, ~)(<cos 22, pn(u))

+ (sin 2z, p,,(u)) sinx; — 2(cos x, p,,(u)) cos 295]-)

cosz; — 2(sinz, p,(u)) sin 2x;

- 8171821/1(-, )( — (sin 2z, pp(u)) cosz; — 2(sinz, p,(u)) cos 2z;

+ (cos 2z, p,(u)) sin x; + 2(cos z, p,(u)) sin 235]-)} dB;(u),

by using [td’s isometry, we get

E [(Mi’ibg)) ] / H 1 (000, cosz; — B, ) sina,)
— () cos g — Dua (Y sin ) (s, () cos 2, 7 ()
— (cos x, pr(u)) (sin 2z, pn ()
- ;(algw<-, ) cos x5 — Oyati(-, ) sin ;) ((sin x, po (u)) (i 22, p ()
+ (cos &, pn (1)) (cos 2z, pn(u))
- 81nal¢(-, ) ((cos 2z, pu(u)) cos ; — 2(sin, pn (u)) sin 21
+ (sin 22, pn(u)) sin z; — 2(cos x, pn (1)) cos 21 )

- 8182@&(-, )( — (sin 2z, pp(u)) cosx; — 2(sinz, pp(u)) cos 2z;
n
2
+ (cos 2z, py(u)) sinz; + 2(cos z, p,(u)) sin 2xj>} 1 du
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= C/stjz:E[iﬂOalw(‘a )| cos x| +0290(-, )| sinxj\f

+ (0l eosas| + Oy (, ) sin)
(fsin . pulu DMl 7] 4 (c0s ()| (sin 22, 7 (w))])
+ g (1009, Ml cosa| + [l simar )
- (|<smx )} I{5in 22, 7 ()| + | (cos 2, ()| o8 22, pn(w))])
+ 310w (Ifeos 22, ()] cos ;] + 21 (sin e, () | sin 22,
+ [{sin 22, 5 (u)) | sin 5| + 2/(cos , () || cos 22;1)

64 2\621/1( )](|(Sin 2z, pp(w))|| cos x| + 2|(sinx, p, (u))|| cos 2z;|

2
+ [(cos 2z, pp(u))|| sin x| 4+ 2|{cos z, p,,(u))|| sin 2xj|) ] du

since ¢ € CP and so |01 < ¢, || < e, |09 < c3, O] < ¢y and
|812'(m < Cs, it yields

(Cl + CQ)‘| du

1 9
<C/ l 37 Cl + 02) m {(65 + 05)2+ (C4 + 05)2] + W

< COT [(e1+ ) + (es + ¢5)* + (ca+ ¢5)* + 9(cr + 2)|

since ¢ < T'; then M:L e 1 uniformly integrable. |

Now, the proof is easy to complete. /\/l e solves the martingale problem with
infinitesimal generator J, admitting a unlque solution, and hence we have shown
all convergent subsequences have the same limit and so the sequence itself con-

verges to that limit.
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The Random Kuramoto Model

n this chapter we consider the Kuramoto model with the addition of a random
I site-dependent field, which acts as random environment.

We consider N sites and we associate with each of them a rotator on [0, 27] and
a frequency value, that we choose to be a dichotomic random variable. Although
the limiting dynamics and the critical point are known for a general distribution
of the field, the analysis of critical fluctuations involves technical issues that we
do not fully control in the general case. For this reason we restrict to the sim-
plest case of a field with two values. We start with a non-reversible Markovian
dynamics for the N-particle system, where the rotators evolve depending on the
gradient of the Hamiltonian felt by the particles. It is an interacting diffusion
system with a mean-field Hamiltonian that depends on the random medium we
introduced. In this model there is no spatial geometry in the space of the configu-
rations, since it is subject to a mean-field interaction, meaning that each particle
interacts with all the others in the same way.

An infinite dimensional order parameter is necessary to describe the system. Be-
ing based on a Large Deviation Principle, we compute the differential equations
which drive its evolution in the infinite particle limit (McKean-Vlasov equations)
and we derive a Law of Large Number it obeys. Depending on the parameters,
we can see there exists phase transition. We state these results for completeness;
they are already known in literature. The statements about the McKean-Vlasov

limit of the dynamics and the existence of a phase transition are got by [DPdH95]
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and [dHO0].

Our main result is the infinite particle limit of the critical fluctuation flow. With
regard to the critical fluctuation flow — besides an appropriate scaling of the space
— it require a rescaling of the time in order to keep track of long time fluctuations
of the critical direction (critical slowing down). As a result, only the critical struc-
ture survives the new scaling, and in the limit, the critical fluctuation process is a
lower dimensional process compared with the non-critical one. The fluctuations
are two-dimensional at the critical point. In fact, we prove that, when the size
of the system grows towards infinity, a two-dimensional process converges (in the
sense of weak convergence of stochastic processes) to a non-Gaussian process,

while all the others collapse.

4.1 Description of the Model

Let . = {=1,+1} and 5 = (1;)}_; € /" be a sequence of independent, identi-
cally distributed, symmetric, Bernoulli random variables defined on some prob-
ability space (2, F, P). That is, P(n; = —1) = P(n; = +1) = 3, for any j. We
indicate with g their common law. Given a configuration z = (z;)%, € [0, 27]"
and a realization of the random environment 7, we can define the Hamiltonian
Hy(z,n) :[0,27]Y x RY — 7 as

0 N N
Hy(z,n) = —=< Y cos(zp — z;) +w > _ x5, (4.1)
k=

B 2N 525 j=1

where z; is the position of the rotator at site j and wn;, with w > 0, can be inter-
preted as its own frequency. Let 6, positive parameter, be the coupling strength.
For a fixed realization of 7, think of x — Hy(z,7) as a Hamiltonian in the com-
ponents z; with an inhomogeneous mean-field interaction parametrized by the
components n;. With the expression “mean-field” we mean the sites interact all
each other in the same way.

Let us define the dynamics we consider. For given 1, z(t) = (x;(t))},, with ¢
belonging to a generic time interval [0, T'], where T is fixed, describes a N-rotator

system evolving as a continuous time Markov chain on [0, 27|, with infinitesimal
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generator Ly acting on functions f : [0,27]Y — R as follows:

(o) = 33 5w+ X G

1N N o N 9
=3 z:: a‘; —|—jz::1 {wnj + N ];::lsm(xk — q:j)} axfj(x) ) (4.2)

Consider the complex quantity
. 1N
TNe”L‘IfN — N Z eI , (43)

where 0 < ry < 1 measures the phase coherence of the rotators and ¥y mea-

sures the average phase. We can reformulate the expression of the infinitesimal

generator (4.2)) in terms of (4.3)):

Lyf(z) = 1 Z g ]; —|—Z{w77] + Ory sin(W y —x])}a—J(g) (4.4)

j=1
The expressions (4.1]) and (4.4]) describe a system of mean-field coupled rotators,
each with its own frequency and subject to diffusive dynamics. The two terms in
the Hamiltonian have different effects: the first one tends to synchronize the rota-

tors, while the second one tends to make each of them rotate at its own frequency.

For simplicity, the initial condition z(0) is assumed to have product distribution
AN with \ probability measure on [0, 27] with finite second moment. The quan-
tity z;(t) represents the time evolution on [0, 7] of j-th rotator; it is the trajectory
of the single j-th rotator in time. The space of all these paths is C[0,T], which
is the space of the continuous function from [0, 7] to [0, 27], endowed with the

uniform topology.

For given 7,  z(t) = (x;(t))}_, turns out to be the system of N interacting
diffusions evolving according to the It6 differential equations

d;(t) = [wn; + Orysin(Vy — x;)] dt + dB;(t), (4.5)

where {B;(t) : t > 0,7 =1,...,N} is a system of independent Standard Brown-

ian motions on [0, 27].
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4.2 Limiting Dynamics

We now derive the dynamics of the process (4.2), in the limit as N — 400, in a
fixed time interval [0, 7], via a Large Deviation approach. Later, the large time

behavior of the limiting dynamics will be studied.

For completeness, we report all the statements that allow us to deduce the dy-
namics of the model in the infinite volume limit, but we omit their proofs, since
they are a particular application of a more general study on interacting diffusions
developed in [DPdH96] and [dHOO].

So, let (z;([0, 7))L, € (C[0,T])" denote a path of the system in the time interval
[0, T, with T" positive and fixed. If f(x;([0,77])) is a function of the trajectory of a
single rotator, we are interested in the asymptotic behavior of empirical averages

of the form N
N S/ OT0) = [ i

where {py}n>1 is the sequence of empirical measures
1 N

PN 2 Oay (0.T).y)

Remark 4.2.1. The measure py is a joint measure of the process and the environ-

ment.

We may think of py as a random element of M;(C[0,T] x %), the space of
probability measures on C[0, T x . endowed with the weak convergence topology.
First, we want to determine the weak limit of py in M;(C[0,T] x .¥) when N
grows to infinity; i.e. for f € C, we look for limy_,, o, [ fdpyn. It corresponds to
a Law of Large Number with the limit being a deterministic measure. Being an
element of M;(C[0,T] x .#), such a limit can be viewed as a stochastic process,

which describes the dynamics of the system in the infinite volume limit.

4.2.1 Empirical Measure and Large Deviations

Let W € M;(C[0,T]) denote the law of a standard Brownian motion starting
with initial condition \. By W®Y we mean the product of N copies of W,
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which represents the law of the solution of the system (4.5) when Hy(z,n) = 0.
Moreover, we shall write Py the law of 2([0,7]) = (2(t))scpo7], the process with
infinitesimal generator (4.2 and initial distribution A®¥, for a given 7.

Consider Q € M(C[0,T] x .), if I1,Q indicates the marginal distribution of @

at time t, we have

W,Q . T dr.d
rm,oe’ e = e 1L, Q(dx, dn).
e [0,27] . @ )

For a given path z([0,7]) € C[0,T], we define

:/Mmmfhw{—;[&Kw+/@@Mﬂddm@®—de
+ [ QUyDo, 1, de) cos(y(t) — (1))
— ;/Q(dy[O,T], ds)[cos(y(T) — x(T)) — cos(y(0) — x(O))]} (4.6)

We can obtain a representation of P]% in terms of py, as follows:

Lemma 4.2.1. For a fized realization 1,

N (w((0,7])) = exp[NF(p (0. 7)), )]

where, for Q € My(C[0,T] x .¥7), F(Q) is expressed by (4.6]).
Lemma [£.2.T] allows us to deduce a Large Deviation Principle for py, from which

we can derive its asymptotic behavior as N — +o0.
Define

/ pEN (dn) Py (pn € -),
which is an element of Ml(Ml(C [0,T] x .¥)) and represents the law of py under

the joint distribution of the process and the environment.
If Q € M;(C[0,T] x .¥) we denote by

fdQlogd pif Q< W@p and logdw(m) e LY(Q)

H(QW @ p) ==

+00 otherwise

the relative entropy between @) and W & p.
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Proposition 4.2.1. The laws {Pn}n>1 of px (under the joint distribution of the

process and the medium) obey a Large Deviation Principle with rate function

Q) == HQW & pn) - F(Q)

(mind Definitions|1.2.1] and|1.2.3).

4.2.2 McKean-Vlasov Equation

Given @ € M;(C[0,T] x .) and n € ., we can associate with () a Markov pro-
cess on . with law P™?_ initial distribution A and time-dependent infinitesimal

generator

_ 1o
2022

(@) + fwn + Ornsin(¥rg — 2)] 2 (2).

L2 f ()
acting on f : [0,27] — R.

It can be proved

Proposition 4.2.2. For every QQ € M;(C[0,T] x .) such that I1(Q)) < 400,
1(Q) = H(Q|P?),
where PR € M, (C[0,T] x ) is defined by
P9(dz[0,T],dn) = P"?(dz[0,T])u(dn).

Theorem 4.2.1. Suppose that the initial distribution of the Markov process (z(t)):>o
with generator is such that the random variables (x;(0))L, are independent
and identically distributed with law . Then the equation I(Q) = 0 admits a
unique solution Q. € My(C[0,T] x ), such that its marginals ¢f = IL,Q" €

M ([0,27]) are weak solutions of the nonlinear McKean-Viasov equation

Yl _ pogd (L€ 0,T), ne.?)

ot
(4.7)
g = A
where, for all the pairs (x,n) € [0,27] x .7, the operator L acts
1 0%q) 0 .
i) = 2w~ D ot by sin(w, —0l@l@) . (48)

— 154 —



Chapter 4. The Random Kuramoto Model

with ¢/ (0) = ¢/ (27) and q; defined by

w(@) = [ q(@n(dn).

Moreover, with respect to a metric d(-,-) inducing the weak topology, pn — Q. in
probability with exponential rate, i.e. Py{d(pn,Q«) > €} is exponentially small
in N, for each € > 0.

Remark 4.2.2. For p-almost surely all n, Q7 is the law of a time-inhomogeneous
diffusion process on [0, 27| with generator

_10*f
2022

of

£ () (@)

() + [wn + Ory, sin(Py, — )]

4.2.3 Stationary Solution(s)

The equation describes the behavior of the system governed by genera-
tor in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation and in the study of the large time dy-
namics of it (them). We recall that to be t-stationary solution for means to
satisfy the equation L7¢" = 0 for every ¢.

Since p is symmetric and the operator L preserves evenness, we can suppose the
average phase ¥,, = 0, without loss of generality.

Hence, every equilibrium probability distribution is the solution of

1 0%g" 9, ,
3 9.2 (x) — p lwn — Orysinzlq’(z)} =0, (4.9)

with the boundary condition ¢7(0) = ¢"(27) and for our model is characterized

as follows.

Lemma 4.2.2. FEvery equilibrium distribution for the nonlinear Markov process

given by (4.7)) is of the form:

2T
¢"(x) = (ZN) 7' 2(wnz + Or, cosx) [64’“”7/ e~ 2wnetOrs cosz) 7o
0

+(1_e4wwn)/ 6—2(w7]y+9r*cosy)dy : (41())
0

where Z is a normalizing factor and the variable r, must satisfy the self-consistency

relation

=T = e ¢(dx)p(dn) . (4.11)

Tq
[0,27]x.”

*
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Remark 4.2.3. There is a one-to-one correspondence between equilibrium distri-

butions and solutions of the self-consistency equation (4.11]).

Remark 4.2.4. Note that r, = 0 is always a solution of (4.11)), for all the choices

of # and p. In this case the stationary distribution reduces to:

1
" (x) = Py for all z € [0, 27]. (4.12)

Solutions with r, = 0 are called incoherent, while those with r, > 0 are called
synchronized. The next theorem shows that if 6 exceeds a p-dependent threshold

a synchronized solution is always possible.

Theorem 4.2.2. Consider the equation (4.11)) and define 0. = 1 + 4w?. Then,
(a) if 0 < 0., the unique solution is r. = 0;
(b) if 0 > 0., at least one synchronized solution is possible.

Proof. We refer to [DPdH95] and [dHO0] for a detailed proof, concerning the

complete phase diagram of the system. [ |

4.3  Critical Dynamics (6 = 1 + 4w?)

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when 0 = 1 + 4w?.
The size of Normal fluctuations must be further rescaled (in space and time),
because their size around the deterministic limit increases in time. In this case we
will obtain non-Normal fluctuations, solutions of a certain stochastic differential

equation to be determined.

First of all, we need to locate the critical direction in the infinite dimensional space
of the order parameters. In the rest of the section, we will consider § = 1 + 4w?

and let us assume that the initial condition A is a product measure such that

1
qo(dz,dn) = ¢2(dz,dn) = 5 do p(dn)

and so .

— 156 —



Chapter 4. The Random Kuramoto Model

for every value of ¢t > 0, since we are in stationary conditions.

We consider the linearization of the operator £", given by (4.8]), at the equilibrium

distribution ¢7°(x), which is

102 0
() = 55 5 em) + o (o)

+ (14 4w?) | cos w{cos y d(y, 1), 42 (dy, dn))
+sina(siny ¢(y,n), ¢ (dy, dn))| , (4.13)

where we have denoted (f1, f2) == Jip 2nx. f1(x, 1) f2(, n)dz dn.

Remark 4.3.1. The operator £7, defined by (4.13)), is not self-adjoint with respect

to the measure ¢°.

Lemma 4.3.1. The null space of the operator £, defined by (4.13), is spanned

by the functions ay(x,n) := sinx + 2wncosx and as(x,n) := cosx — 2wnsin x.

Proof. 1f (-,+) belongs to the null space of £7 then £7p = 0. Therefore, we

require that

10%p Op

581’2 (37777) ‘HW?%(%??)
1

1+ 402 7/ <) ¢(dy, d
+ (144w )[COM% [072ﬂ]xycosyso(y <) 4. (dy, d<)
1
+Sinx—/ siny o(y,¢) ¢X(dy,ds)| =0. (4.14)

21 Jjo,2n)x.7

We solve the ordinary differential equation (4.14]). Having defined

! 0
T dy,d 415
2T /[O,Qﬂxy}COsyQO(yyg) q*< Y, g) ( a)
and 1
o 7/ ! A(dy.d 4.15b
o maﬂxysmy(ﬁ(y’@)q*( Y, §>, ( )

the solution is ¢(z, ) = 2(B—2Awn) sin x+2(A+2Bwn) cos z; this function yields
a solution of provided that it satisfies the self-consistency relations (4.15a)
and , but it does for every value of A and B. Then the two directions
which generate the kernel are ay(x,n) := sin x4 2wn cos  and ay(z,n) := cosz —

2wn sin x. [
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Remark 4.3.2. In the case that # # 1 4 4w?, the unique value for which the self-

consistency relations in (4.15a) and (4.15b]) are satisfied is A = B = 0, meaning
that at the critical point the kernel of the operator £" is two-dimensional, while

it is a trivial set for all the other values of the parameter 6.

Remark 4.3.3. The null space of the operator £7 represents the critical direction

for our model.

We want to analyze the spectrum of the operator £7, defined by (4.13). Let us
consider the linearization of the operator (4.8]) for general values of the parameter
0:

1
2

0? 0
)+ wn ()

+ 6] cos w(cos y ¢y, n), 42 (dy. dn))
+sinz(siny ¢(y,n), ¢2(dy, dn))] . (4.16)

Lio(x,m)

Its spectral properties have been investigated in [SM91], [BNS92] and [DPdH95]
for several classes of distributions of the random field. We recall some results

of these general cases, by which the description of the spectrum of operator £7

follows.
Lemma 4.3.2. The spectrum of the operator £}, defined by (4.16), is described
by the set

1

Spec(£]) = {—

6 1 k?
5 + 1 + Z\/HZ — 16w2} U {—2 + tkwn, k € Z\{—1,0,+1}} :

Proof. If we denote by F[é(x,n)] the Fourier transform of ¢(z,n) in L?(¢"°), we

have to solve
FlL4o(z,n)] = A\F[p(z,n)],

which translates into

(—k; + ikwn — /\> b(k,n) =
— Z {51(/%) // S(1,m)u(dn) + 51 (k) // (=1, mu(dy) |, (4.17)

where ¢(k, 1) == L 57 (2, n) e da.
Equation (4.17)) shows that, for a fixed value of n and for k € Z\ {—1,0,+1}, the
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numbers \ = —’“2—2 + ikwn are eigenvalues for the operator £, defined by (4.16]).
In the case k = %1 the right-hand side of (4.16]) does not vanish and the equation

has two solutions

1 6 1
Ao = —g g & VI 1607, (4.18)

2 4
|

From (4.17)), we can deduce that

if 6<1: Re AT, ReA™ <0  for all the values of w
if 1<0<6,=2: ReAt <0 if and only if § < 6, = 1 + 4w?
if 0=60,=2: Re AT = ReA™ =0 for all the values of w
if 0>60,=2: ReA™ >0 for all the values of w

and then, the inchoerent solution r, = 0 is linearly stable when 6 < 6; A 6.,
neutrally stable when 6 = 6; A 6. and unstable when 6 > 6; A 6.

We choose w such that 6. = 6, A 6., in other words the critical temperature for

the system is really #.. We assume w < %

Corollary 4.3.1. Let w < % and fiz a value of n. The spectrum of the opera-

tor £1, defined by (4.13), is described by the set Spec(L") = {0,—% -+ 2w2} U
{—% +ikwn, k€ Z\ {~1,0,+1}}.

Proof. The statement follows by Lemma setting 0 = 1 + 4w?. [

We want to describe the action of the infinitesimal generator of the critical fluc-

tuation flow
pivlts e, dn) = NV [ (N2t e dy) = - do ()
on the family of functions of the form ¥({¢1, pn), ..., (dm, pn)), Where
GiR"R, e CHR™)

and

¢; 1 [0,27] x ¥ — R, ¢; € C*([0,27] x &),

for j = 1,...,m. Since we must consider fluctuations around ¢°(-,), that is, we
must consider the “centered” process, we restrict our attention to functions ¢;
with
O .
(z, dx,dn) =0, =1,...,m.
Sy i M2 ) j
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Then, for this kind of functions it yields

<¢j7 ﬁN(t» = N1/4<¢jv pN(N1/2t>> )

forj=1,....m
Lemma 4.3.3. Fort € [0,T], the critical fluctuation flow

- 1
pn(t,dx, dn) = N4 {pN(Nl/zt, dx,dn) — Py dx pu(dn) (4.19)

is a Markov process whose infinitesimal generator Jy satisfies:

ij(<¢17ﬁN>7 seey <¢m7ﬁN>) =
= [NYV2Ly + NY4 Ly + Ly + N“VA Lo ({1, x)s - (b ), (4.20)

with

Lab((61, s (s ) ii%wm> (4.21)

Q.v

m

Lo ({@1, PN)s - - -5 (Pmy Prv)) = (144w Z [(sinz, pi){cos x ¢(x,n), pn)

*1

- <COS z, piv)(sinx ¢(z,n), pn)] (4.22)

1 & 92
Ly ({1, PN)s - - - 5 (Pmy ON)) 5 Z 8yh§y Cbh Zz 77)¢ (z,n), qg) (4.23)
j=1 J
1 & 92
L4w<<¢laﬁN>a--- <¢m>pN 5 Z ayhgy ¢h($7n)¢;(x7n)aﬁN>7 (424)
j=1 J

where by the notation ¢ we mean the derivation with respect to the variable x

and the operator £" is the linear operator given by (4.13]).
Proof. Just a very long and tedious computation. [

Theorem 4.3.1. Assume w < % For t € [0,T], if we consider the infinite-

dimensional critical fluctuation process

(on(,m), pu (1)), (aa(a, m), pn (1), {(sin ke, piv (1)) Frz2,
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{{coskx, pn (t)) fr>2, {(nsin bz, pn (1)) b2, {(ncos kz, p (1)) base,

then, as N — +o00, {(sin kz, py(t)) }r>2, {{coskx, pn(t)) }e>2, {(nsinkz, pn (1)) br>a,
{(ncoskx,py(t))}k>2 — 0 in the sense of Proposition and the process
(o (z,m), pn (1)), {aa(x,n), pn(t))) converges, in the sense of weak convergence
of stochastic processes, to a limiting non-Gaussian process (X (t),Y (t)), which is

the unique solution of the following stochastic differential equation:

X0 =~ H L X O 0 + V0] e+ W B

Y (t) = —;m Y () [XP(t) + V(1) dt + \/HQi‘“"2 dB(t)

with initial condition X (0) = Y (0) = 0 and where BY and B® are two inde-

pendent Standard Brownian motions.

4.3.1 Proof of the Theorem 4.31]

Let us denote by {74} y>1 a family of stopping times, defined as

= %gg{\(sinx,ﬁjv(tm > M or [{cosz,pn(t))| > M

or |(nsinz,pn(t))| > M or [(ncosz,pn(t))] > M

)
or |(sinkz,pn(t))| > M for at least a value of k =2,3,. ..
)

or

(
I

or |(coskx,py(t))| > M for at least a value of k =2,3,...
|(nsinkz, py(t))| > M for at least a value of k = 2,3, ...
I

or |(ncoskx,pn(t))| > for at least a value of k =2,3,...},

where M is a positive constant. We are interested in introducing such sequence
of stopping times because in this way the processes (sinx, pn(t)), (cosx, pn(t))
and (ysinz, (1)), (1cosz, fy (1)) and {(sin kz, f (£)) hesa, {{cos Kz, f(£) b
and {(nsinkz, py (1)) tis2, {(ncoskx, pn(t)) }x>2 result to be bounded in the time
interval [0, T A 73]

By standard argument on collapsing processes (see Proposition and Lemma
3.3.6)), it is easy to prove that for t € [0, TATA| the directions {{(sin kz, py(t)) }r>2,
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{{cos iz, () basa, {(sin iz, () sa and { (7 cos ha, pv(£)) e collapse. Tt
means that, if we consider the norm ||py||., defined by

+oo
- 1 . _ - . - -
o7 =D m[(sm ka, pn)*+(cos kx, pn )+ (nsin kx, pi) (1 cos k., pn)?),
k=2

where r > 0, then there exist constants Ny, C, d > 2, Ky = k(N) and two

increasing sequences {ay}ny>1, {On}n>1 satisfying (3.23)—(3.26) and such that
for every ¢ > 0 the following property is true

sup P sup |lpn@)|? > C (n%do@l v fi]’vlozN) <e. (4.25)
NZ>No 0<t<TATY

Hence, we obtain {(sin kz, pn (1)) }r>2, {{cos kz, pn (1)) ti>2, {{(nsinkz, pn (1)) br>2s
{(ncoskz, py(t)) }r>2 — 0, as N — +o0.

The computations we should do to prove these processes converge to zero in
probability are similar to those we did in Subsection to prove the process
representing the non-critical directions of the homogeneous Kuramoto Model col-
lapses. Thus, we omit this proof and we focus only on the critical directions
ap(x,n) :=sinx 4+ 2wncosx and as(z,n) = —2wnsinx + cos z, assuming all the
others vanish. We apply the generator to a function of the only critical
directions, leaving all the terms coming from those processes we know collapsing

in the infinite volume limit.

We want to find the expression of the limiting operator of the infinitesimal gen-

erator Jy, as N grows to infinity. We choose

w<(sin x, pn(t)), (cosz, pn (1)), {{sin kx, pn (1)) }r>2, {{cos kx, pn(t)) }k>2,
(nsinz, p(t)), (ncosz, pn(t)), {{nsinkx, oy (£)) bz, { (n cos ka?aﬁN(t»}kﬂ) =
= ¥({eu(z,m), pn (1)), (e2(z,m), P (1))

and we apply the operator Jy. Since ker £" = span{«;(x,n), as(z,n)}, referring

to (4.20))-(4.24]), we obtain

ij«Oél(x’ 77)7 ﬁN(t»? <042(1', 77)7 ﬁN(t») =
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= N1/4<1 + 4("}2){611/}('7 ')KSinxv ﬁN><062(SL', 77) Cos T, ﬁN>
- <COSJ}, ﬁN><a2($7 7)) sin ﬁN>] + 82¢(', ')[<COS Z, ﬁN><a1<x7 77) sinx, ﬁN>
— (sinz, pn) {1 (z,n) cosx, ,5N>]}

+ 50, ) sl ) ) + 500 ) e o) )
— 0, ) e (@ as(a, ). )

+ grOud (- Wlosw ml, o) + 2;1/4amw< Yo (@, m)1%, )

N1/4 alzw( ><a1 (.1', n)a2<x7 77)’ ﬁN>

(by using Bisection formulas and the fact that the measure py is centered, in
other words that (1, pn) = 0)

N1/4

(14 4w2){811/1(-, Jl{sinz, pn)(cos 2x — 2wn sin 2z, py)
— (cos x, pn)(sin 2z + 2wn cos 2z, pn )]
— Ot (+, +)[(sinx, piv) (sin 2z + 2wn cos 2x, P )
+ (cos z, pn)(cos 2z 4+ 2wn sin 2z, ﬁN)]}

1
+ =

4(1 + 4&)2)[81177/)(-, ) + 622¢('7 )] + 0(1) ) (426)

where o(1) includes the terms coming from L, which are of order N='/%. The
operator L, is defined by (4.24)).

Now, we apply the first order perturbation theory explained in the previous
chapter. The expression of Iy¢({aq(x,n), pn(t)), (az(x,n), pn(t))) is described
by . We need to compute 1)y, which allows us to introduce the terms
necessary to the convergence of the infinitesimal generator: Liv; and Lo, of the

expansion (3.31)).

By the definitions (3.32)) and (3.33)), it yields

¢1(<a1(x7 77)’ ﬁN(t»v <O¢2(.I, n)v ﬁN(t»? <Sin 2z, ﬁN>’
(cos 2z, pn), (nsin 2z, py), (1 cos 2z, pn)) =
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= — Ly Loy ({ou (2, m), p (1)), (aalz, ), pn (1))

= —;(1 + 4w?) L7 [81@/)(-, ) ((sin x, pn){cos 2z — 2wnsin 2z, pn)

— (cos x, pn)(sin 2z + wn cos 2z, ﬁN>)

— (-, -)((sin x, pn ) {(sin 2z + wn cos 2z, py)
+ (cosz, pn)(cos 2x — wnsin 2z, ﬁN>>}

1
= —1—6(1 + 4w2){811/)(-, ) [(cos 27 — 2wn sin 27, py ) (2w? sin x + wn cos T, py)

+ 2(sinz, px) (— (1 + 2w?) cos 2z + wnsin 2z, py)
— (sin 22 + 2wn cos 2, py ) (2w? cos & — wnsin Py )

+ 2{cos z, pn ) ((1 + 2w?) sin 2z + wn cos 2z, ﬁN)}

+ (-, 1) [ — (sin 22 4 2wn cos 2z, pn ) (2w? sin = + wn cos x, P )
+ 2(sinz, pn ) (1 4 2w?) sin 2z + wn cos 2, pn)
— (cos 2x — 2wn sin 2z, py)(2w? cos & — wnsin Py )

— 2(cos z, pn ) (—(1 + 2w?) cos 2z + wn sin 2, [OVN>} } (4.27)

Thus,

In[((on(z,n), pn(t)), (ea(z,n), pn (1))
+ N‘1/41/11(<a1(x, 77)7 ﬁN(t»? <C¥2(ZL’, 77)7 ﬁN(t»’ <SiIl 2z, ﬁN>’
(cos 2z, pn), (nsin 2z, py), (ncos2x, pn))| =

= N1/4[L2¢(<041($a 77)7 ﬁN(t»a <042((IJ, 77)7 ﬁN(t»)
+ Lﬂbl((al(zy 77)’ ﬁN(t», <052([L', 77)7 ﬁN(t)>> <Sin 2z, 5N>’
(cos 2z, pn), (nsin 2z, pn), (ncos 2z, py))]
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+ L3”¢(<041<5’57 77)7 ﬁN<t)>7 <052(l', 77)7 ﬁN<t)>>
+ L2¢1(<041(~’B7 77)a ﬁN(t»? <042(l', 77)7 ﬁN(t»? <Sin 21’, 5N>a
(cos 2z, pn), (nsin 2z, pn), (n cos 2z, pn)) + o(1)

where o(1) includes the terms coming from Ly, Lstp; and Lyibq, which are of
order N=/* and N—V/2,
Since Lot + Li1py = 0 by construction and Lstp = i(l + 4w?) [011% + Oa21)], it

remains to compute the term Lo, .

L2¢1(<051($7 77)7 ﬁN>7 <042(I, 7])7 ﬁN>7 <SiIl 2$, ﬁN>7
(cos 2z, pn), (nsin 2z, pn), (ncos 2z, pn)) =

1
= —1—6(1 - 4w2)2{8111b(~, ) [(cos 21 — 2wn sin 2z, py ) {(2w? sin x 4+ wn cos z, P
+ 2(sinz, pn) (—(1 + 2w?) cos 2z + wnsin 2, py)

— (sin 2z + 2wn cos 2z, pn ) (2w? cos & — wnsin z, p
Ui P Ui P

2
+ 2{cos z, pn) (1 4 2w?) sin 2z + wn cos 2, ﬁNﬂ

+ 20120(+, ) [(cos 27 — 2wn sin 2z, py) (2w? sin z + wn cos z, py)
+ 2(sinz, pn) (—(1 + 2w?) cos 2z + wnsin 2, py)
— (sin 22 + 2wn cos 2z, py ) {(2w? cos & — wnsin T, py)
+ 2{cos z, pn ) (1 + 2w?) sin 2z + wn cos 2, ﬁN>]~
: [ — (sin 2z + 2wn cos 2z, P ) (2w sin & + wn cos T, P )
+ 2(sinz, p ) (1 + 2w?) sin 2z + wn cos 2z, p)
— (cos 22 — 2wn sin 2z, py)(2w? cos x — wnsinz, P

—2(cos x, pn ) (—(1 + 2w?) cos 2z + wn sin 2z, ,b“N)}

+ Ot (-, ) [ — (sin 22 + 2wn cos 2z, pn ) (2w? sin & + wn cos T, P
+ 2(sinz, pn ) (1 + 2w?) sin 2z + wn cos 2, py)
— (cos 2x — 2wn sin 2z, py)(2w? cos x — wnsinz, P

— 2(cos z, p ) (—(1 + 2w?) cos 2z + wn sin 2, ﬁN>}2
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+01U(+,-) [2<2w2 sin x +wn cos z, ﬁN>(— (sin z, pn)(cos x[sin 22+ 2wn cos 2x], i)
+ (cos z, py) (sin z[sin 22 + 2wn cos 2], ,EN))
+ (cos 2x — 2wn sin 2z, py) ((sin z, pn){cos x[2w? cos & — wnsin z], py)
— (cos z, p) (sin z[2w? cos © — wn sin x], ﬁN>)
+ 2(—(1 4 2w?) cos 2z + wn sin 2z, i) ((sin z, pn)(cos® z, p)
— (cosx, pn)(sin z cos :U,ﬁN))
+ 4(sinx, pn) <<sin x, pn){cos z[(1 + 2w?) sin 2z + wn cos 2, py)
— (cos x, pn)(sin z[(1 + 2w?) sin 22 + wn cos 2z], ﬁN>)
—2(2w?cosx — wnsin, py) ((Sin x, pn){cos z[cos 2z — 2wn sin 2], py)
— (cos z, py)(sin x[cos 2x — 2wn sin 2], [)N))
+ (sin 2x + 2wn cos 2z, py) ((Sin , P ) {cos 2[2w? sin ¥ + wn cos z, py)
— (cos z, p ) (sin z[2w? sin & + wn cos ﬁN>)
4+ 2((1 4 2w?) sin 22 + wn cos 2z, ﬁN>( — (sinz, py)(sinx cosx, px)
+ (cosz, pn) (sin” xaﬁN>>
+ 4{cos x, pn) ((sin z, pn){cos z[(1 + 2w?) cos 2z — wn sin 2], px)
— (cosx, py)(sin z[(1 4 2w?) cos 2z — wn sin 2], ,5@)}

+090(-, *) [—2(2w2 sin z+wn cos z, p) ((sin x, pn ) {cos z[cos 2z — 2wn sin 2x], py )
— (cos x, py ) {(sin z[cos 2z — 2wn sin 2z, ﬁN))
— (sin 2z + 2wn cos 2x, P ) ((sin z, pn)(cos x[2w? cos z — wnsin z], py)
— (cos z, p ) (sin z[2w* cos & — wn sin 2], ﬁN>)
4+ 2((1 4 2w?) sin 22 + wn cos 22, Py ((sin x, py){cos z, pn)
— (cos x, py)(sin x cos x,ﬁN))
+ 4(sinx, pn) ((sin z, pn)(cos z[(1 + 2w?) cos 2 — wn sin 2z, P )
— (cos z, py)(sin z[(1 + 2w?) cos 2 — wn cos 2], ﬁN))
—2(2w? cosz — wnsinz, ﬁN)( — (sinz, py)(cos z[sin 2z + 2wn cos 2z|, pn)
+ (cos x, pi) (sin z[sin 2z + 2wn cos 2z, ,EN)>

+ (cos 2z + 2wn sin 2z, py) ((sin z, pn)(cos x[2w? sin z + wn cos z, py)
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— (cos z, p ) (sin z[2w? sin & + wn cos ﬁN>)
— 2(—(1 + 2w?) cos 27 + wn sin 2z, ﬁN>( — (sinx, py)(sinz cos x, py)
+ (cos z, piv) (sin* z, p))
— 4{cosx, pn) ((Sin z, pn){cos z[(1 + 2w?) sin 2z + wn cos 27|, i)
— {cos z, pn ) (sin z[(1 + 2w?) sin 22 + wn cos 2], ﬁN>)} }

(by using Prosthaphaeresis formulas and leaving all the terms we know collapsing)

1 ~ L . ~
t =7 (AP { 0, ) [~ {en (). ) ({sin 2, ) (2w sin -+ wip cos . pi)
+ (cos z, p ) (2w* cos & — wn sin ﬁN>)

- <a2(x, 7))7 ﬁN>( o <COS'T7 ﬁN><2W2 sin & + wn cos x, ﬁN>

+ (sinz, pn)(2w? cos x — wnsin z, ﬁN>)

+ (1 + 2w?) sinx + wncos z, pn) ((sin z, pn)? + {(cos x, ﬁN>2>}

+ 09t (, -) { — (as(z,m), pn) ((sin 7, pn ) (2w? cos ¥ — wnsin T, py)
— (cos z, P} (2w? sin & + wn cos ﬁN>)
— (as(x,n), ﬁN)< — (cosz, pn ) (2w? cosz — wnsinz, py)
+ (sinx, py) (2w? sin z + wn cos ,5N>)

+ (1 + 2w?) cos & — wnsinz, px) ((sin z, pn)* + (cosz, ﬁN>2)”

- —é(l + 4w2)2{81¢(-, ) [ — i(sin !E,/N)N><<041($777), pn)? + (az(z,m), ﬁN)Q)

3 — 4w? ~ . ~ 1\ ~ 12
+ 4 <041(5U777>7/)N>(<5m557/7N> + <COS'T7/)N> )
1+ 40? _ : . -
TR <smx,pN>(<smx,pN>2+<cosx,pN>2)]

+ 00 () [ — Jeos o) ({en (@ 0), o )? + {aste ), o)

+3—4w2
4

(az(z,m), pN) ((sin x, pn)* + {cos z, 5N>2)
1+ 4w?
+

(cosz, o) ((sin, i)? + (cos z, 5N>2)1 }
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by replacing

4 2
sinz = 16Tw—1[(n + 4w?) sinx + 2w(n — 1) cos 7]
2 4% 4+ 1
+ 16Tw—1[(n + 4w?) cosx — 2w(n — 1) sinz] — 16Lju4+—1al<x’ n)
and
4 2
cosx = le[(n + 4w?) cos ¥ — 2w(n — 1) sin 7]
w J—
2w o\ . 1
— m[(n +4w?)sinx + 2w(n — 1) cos x| — mog(x,n) ,

which are the expression of sin x and cos x as a linear combination of the elements
of the subspace generated by the Fourier components corresponding to k = 41, in
other words ay(z,7), as(x,n), (n+4w?) sin z+2w(n—1) cos x and (n+4w?) cos T —
2w(n —1)sinz,

E o), o) (@ (e, m), o) + (sl ), )] Onii (-, )
42)?
—4u2)3

w?)?
iy
11 +4w%)” . o
s (aa(,m), o) [ (o (2,m), v)? + (eal,m), pv)?] Dot )
where (1 — 4w?)? > 0, since we have chosen w < 1.

Proceeding as in the previous chapter, we can show which are the limiting dy-
namics of the fluctuation processes. We skip the details and we state the main

result.

Let ¢ € C? be a function of the type

W ((sina, pn (1)), (cos z, (1)), {(sin ka, v (£)) brsa, {(cos ka, pn (1)) biss,
(nsinz, pn(t)), (ncosz, pn (b)), {(nsin kz, pn (t)) brz2, {{n cos kz, ﬁN(t)>}kz2) =
= (o (,n), oy (1)), (o, m), pn(t)))

recalling the expression of ¥; given by (4.27)), we construct

(@, m), v (1)), (s, m), v (), {(sin ke, pv(£)) Frza,
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{{cos kx, pn (1)) tiza, {(nsinkx, pn (1)) br>2, {{n cos kz, ﬁN(t)>}kz2)
+ N7V ((oa (2, m), o (1)), (o2, m), o (1)), (sin 2, v (1)),
(cos 2z, pn(t)), (nsin2x, pn(t)), (ncos2z, pn(t))) =

= v({ar (@, ), pn (1)) {aa(, ), pn (1))

1+ 4w?

~ 16NUA {811p(-, ) [(COS 22 — 2wn sin 2z, pn(t))(2w? sin x + wn cos x, pn(t))

+ 2(sinz, p (t)){—(1 + 2w?) cos 22 + wnsin 2z, px (t))
— (sin 22 4 2wn cos 2z, py (1)) (2w? cosz — wnsinx, py(t))
+ 2{cos , pn (1)) {(1 + 2w?) sin 2z + wn cos 2, ﬁN(t))}

+ (-, +) [ — (sin 22 4 2wn cos 2z, py (1)) (2w? sin z + wn cos z, py (1))
+ 2(sin x, pn () (1 + 2w?) sin 2z + wn cos 2z, py (1))
— (cos 22 — 2wn sin 2z, pn (1)) (2w? cos x — wnsinz, P (t))
— 2(cos z, pn(t))(—(1 + 2w?) cos 2z + wn sin 2z, ﬁN(tM }

= ¢§3)(<a1(x7 77)’ ﬁN(t»v <O‘2(ZE7 77)7 ﬁN(t)>> <Sin 2z, 5N<t)>a
(cos 22 pw(£)), (nsin 2z, fn (£)), (7 cos 2z, (1)) .

The following decomposition holds

U ((on (1), o (1)), {aa(z, ), v (2)), (sin 2z, v (t)).
(cos 2z, py(t)), (nsin2x, pn(t)), (ncos2x, pn(t))) =

= ¥ ({a (2, ), A (0)), (s (e, m), px (0)), (sin 22, v (0)),
(cos 2z, pn(0)), (nsin 2z, py(0)), (ncos 2z, py(0)))

+ [ 60 ). ). (1), @), G 22, i (),
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(cos 2z, pn(u)), (nsin 2z, pn(u)), (ncos 2z, py(u))) du + M’ (4.28)

N w(Q) Y

where /\/l e is a martingale and

jN¢§3)(<O‘1(‘xa 7))7 ﬁN(t»? <042(J}, 7])7 ﬁN(t»v <Sin 2‘7;7 ﬁN(t»?
(cos2x, pn(t)), (nsin2x, pn(t)), (ncos2z, py (1)) =

1(1+4w?)?
8 (1 — dw?)3

El+4w ; (oa(z,m), sz(t)>[<a1(9c,77)aﬁzv(f)>2+<042(33 n), o (1)) }821&( )

“__n_

(e, m), () [{n (2, m), (D) >+ (s, ), v ()] D1, )

+ L1 4 )+ B ()] + ome(1)

L

The remainder op;(1) goes to zero as N — +oo. If we compute the limit as

N — +00, we have:

TN (o (x,m), pn (1)), (@, n), pwv (L)), (sin 22, p (L)),
(cos2x, pn(t)), (nsin2x, pn(t)), (ncos 2z, pn(t)))
R, JeP(X (1), Y (1)),

with

TP (X(),Y (1) =

1(1 + 4w?)?
8 (1 — 4w?)3

{XO[X®)?+ Y )0, ) + Y[ X (0 + Y ()] 00, ) }
T 111(1 + 4w?)[0119 (-, -) 4 Oantp (-, -)] -

Then, because of (4.28)), we obtain

M;ng) % f¢,<2>,

once we have defined

My = $3(X(0), Y (1) = 92 (X(0), Y (0)) = [ FoP(X(w), Y () du.
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4.4 Conclusions

Concluding, we point out the fact that the inhomogeneous critical fluctuation
process exists in same time-scale than the homogeneous one; in fact, if we compare
the flows and (4.19), we can see that, when we construct these fluctuations,
we are allowed to amplify the time by a factor N'/? in both cases. Besides, they
are a two-dimensional process at the critical point, converging (in the sense of
weak convergence of stochastic processes) to a non-Gaussian process, solution of
a cubic stochastic differential equation. These limiting equations have the same

form.
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Chapter 5

Back to the Random Curie-Weiss Model

n this last chapter we consider again the Curie-Weiss model. We generalize

I the environment, precisely we choose it distributed according to an even dis-
tribution with finite support.
For such systems one can find a finite dimensional order parameter, whose di-
mension equals the dimension of the support of the distribution of the random
field. Since we allow this cardinality to be arbitrary a low-dimensional analysis
as in Chapter 1 and 2 is not appropriate. Therefore, we proceed to apply the
method developed in Chapter 3.

5.1 Description of the Model

Let 9 = {—hiy,—hi_1,...,—h1,0,hq,...,hi_1,h;} be a finite subset of R, with
0<hy <---<hyand . ={-1,+1}. Let n = (n;))L, € 2" be a sequence of
independent, identically distributed random variables defined on some probability

space (2, F, P) and distributed according to an even distribution .

Remark 5.1.1. The assumption on the support of p is necessary so that the critical
dynamics can be dealt with. All the results concerning the McKean-Vlasov limit

for the system are true more in general.
Given a configuration ¢ = (0;)}., € " and a realization of the magnetic field
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n, we can define the Hamiltonian Hy(o,n) : SN x 2V — R as

N N
HN(Q7 77) = —2?[ Z 00k — 527%03‘7 (5-1)

k=1 j=1

where o; is the spin value at site j and 7; the local magnetic field associated
with the same site. Let (3, positive parameter, be the inverse of the temperature.
For a fixed realization of 7, think of ¢ — Hy(c,7n) as a Hamiltonian in the
components o; with an inhomogeneous mean-field interaction parametrized by
the components 7;. With the expression “mean-field” we mean the sites interact
all each other in the same way.

Let us define the dynamics we consider. For given n, o(t) = (0;(t))}L,, with ¢
belonging to a generic time interval [0, T], where T is fixed, describes a N-spin

system evolving as a continuous time Markov chain on .#%, with infinitesimal

generator Ly acting on functions f : . — R as follows:

N
Lyf(o) = Ze—ﬁaj(mvrnj)v}ff(g), (5.2)
j=1
where V9 f(a) = f(¢’) — f(¢) and the k-th component of ¢/, which has the
meaning of a spin flip at site j, is
j o for k # 3
—op for k=
The quantity c%,(j, o) =e P (my+n;) represents the jump rate of the spins; the
rate at which the transition 0, — —o; occurs for some j. The mean-field
assumption allows us to suppose that the interaction depends on the value of the

magnetization
1 N
mi(t) = 5 2 0;(t). (5.3)
j=1

The expressions and describe a system of mean-field ferromagnetically
coupled spins, each with its own random magnetic field and subject to Glauber
dynamics. The two terms in the Hamiltonian have different effects: the first one
tends to align the spins, while the second one tends to point each of them in the

direction of its local field.

Remark 5.1.2. For every value of 7, (5.2)) has a reversible stationary distribution
proportional to exp[—Hy(c,n)].
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For simplicity, the initial condition ¢(0) is assumed to have product distribution
AN with A probability measure on .. The quantity o;(¢) represents the time
evolution on [0, 7] of j-th spin value; it is the trajectory of the single j-th spin
in time. The space of all these paths is D0, T, which is the space of the right-
continuous, piecewise-constant functions from [0,7] to .. We endow D[0, T
with the Skorohod topology, which provides a metric and a Borel o-field (as we
can see in [EKS86]).

5.2 Limiting Dynamics

We now derive the dynamics of the process (5.2), in the limit as N — 400, in a
fixed time interval [0, 7], via a Large Deviation approach. Later, the large time

behavior of the limiting dynamics will be studied.

For completeness, we report all the statements that allow us to deduce the dy-
namics of the model in the infinite volume limit, but we omit their proofs, since
they proceed as in Chapter 1, once we have changed the distribution of the envi-

ronment.

So, let (5[0, T])IL, € (D[0,T])" denote a path of the system in the time interval
[0, 7], with T positive and fixed. If f(o;[0,77]) is a function of the trajectory of
a single spin, we are interested in the asymptotic behavior of empirical averages

of the form
N

Z (0300, 7)) = [ fdpx .

where {py}n>1 is the sequence of empirical measures

1 N
Z(SUJ[OT% :
]:1

We may think of py as a random element of M;(D[0,T] x Z), the space of
probability measures on D[0, T x 2 endowed with the weak convergence topology.
First, we want to determine the weak limit of py in M;(D]0,T] x Z) as N grows
to infinity; i.e. for f € C, we look for limy_,, o [ fdpn. It corresponds to a Law

of Large Number with the limit being a deterministic measure. Being an element
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of My(D[0,T] x 2), such a limit can be viewed as a stochastic process, which

describes the dynamics of the system in the infinite volume limit.

5.2.1 Empirical Measure and Large Deviations

Let W € My(D[0,T]) denote the law of the .”-valued process (o(t)):cjo,r] such
that the initial condition ¢(0) has distribution A and the spin signs change with
constant rate equal to 1. By W®" we mean the product of N copies of W,
which represents the law of the N-spin system whose generator is where we
have set CQN = 1; in other words, the law of our system in absence of interaction.
Moreover, we shall write Py the law of o([0,T]) = (a(t))iecpo,r), the process with
infinitesimal generator and initial distribution A*V, for a given 7.

Consider @ € My(D[0,T] x @), if I1,Q indicates the marginal distribution of @

at time t, then we have

mi,g = yX@UHtQ(dO', dn)

and for a given path o([0,7]) € D[0,T], we define

F(Q) = / { /UT <1 — eﬁa(t)(m%tQJr")) dt

- o g - a0 + 1 (o(D) - o0)] a6

We can obtain a representation of P]% in terms of py, as follows:

Lemma 5.2.1. For a fived realization n,

dﬁng (e([0,77)) = exp[NF(pn(a([0,T7),n)) + O(1)]

where, for Q € My(D[0,T] x ), F(Q) is expressed by (5.4)).

Lemma [5.2.1] allows us to deduce a Large Deviation Principle for py, from which
we can derive its asymptotic behavior as N — 4-00.
Define

Pu()i= [ 1 () Py(pn € ).
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which is an element of M;(M;(D[0,T] x Z)) and represents the law of py under
the joint distribution of the process and the environment.

If Q € M{(D[0,T] x @), we denote by

[dQ log% if Q<W®u and log d(v‘é%u) e LYQ)

+00 otherwise

H@QW @ p) :== {

the relative entropy between @) and W & p.

Proposition 5.2.1. The laws {Pn}n>1 of px (under the joint distribution of the

process and the medium) obey a Large Deviation Principle with rate function

1(Q) == H(QW & n) - F(Q).

5.2.2 McKean-Vlasov Equation

Given @ € M (D[0,T] x ) and n € &, we can associate with ) a Markov pro-
cess on . with law P™?_ initial distribution A and time-dependent infinitesimal

generator
L10f(0) = eIV f(0),

acting on f: . — R.

Proposition 5.2.2. For every Q € My(D[0,T] x Z) such that I(Q) < +o0,
[(Q) = H(Q|PY), (5.5)
where P? € My(D[0,T] x 9) is defined by
P(dol0, T}, dn) = P"(dol0, T]) u(dn).

Theorem 5.2.1. Suppose that the initial distribution of the Markov process (a(t))i>o
with generator is such that the random variables (;(0))iL, are independent
and identically distributed with law X. Then the equation 1(Q) = 0 admits a
unique solution Q. € M(D[0,T]| x 2), such that its marginals ¢ = I,Q7 €

M, (F) are weak solutions of the nonlinear McKean-Vlasov equation

(5.6)

Y — L) (te[0,T], ne 2)
@ = A
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where, for all the pairs (o,n) € ¥ X P, the operator LM acts
L1g(0) = V7 |e i) gi (o)

and q; is defined by
w(o) = [ al(o)uan)

Moreover, with respect to a metric d(-, ) inducing the weak topology, pny — Q« in
probability with exponential rate, i.e. Pn{d(pn,Q«) > €} is exponentially small
in N, for each € > 0.

5.2.3 Stationary Solution(s)

The equation describes the behavior of the system governed by genera-
tor in the infinite volume limit. We are interested in the detection of the
t-stationary solution(s) of this equation. We recall that to be t-stationary solu-
tion for means to satisfy the equation £"7¢" = 0 for every t.

Hence, every equilibrium probability distribution is the solution of
Ve [e 7 (metn) g (o) | = 0 (5.7)

and for our model is characterized as follows.
Lemma 5.2.2. Fvery equilibrium distribution for the nonlinear Markov process
given by (5.6]) is of the form:

eBor(mZ+n)

~ 2cosh (B(mg+n)’

q!(o) (5.8)

where 2 cosh (5 (m? + 1)) is a normalizing factor and the variable mJ must satisfy

the self-consistency relation
o i=ml = o q)(do)u(dn) . 5.9
mg, m, LX@ g} (do)p(dn) (5.9)

Proof. As we already said, an equilibrium probability density for (5.6) must sat-
isfy (.7, which is equivalent to

Ao mI+m () = eBotmI+mgn(_ gy (5.10)
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where m? = [y, 0q?(do)p(dn). Solving (5.10)), we obtain
o) = e
with the normalizing constant
70 = /y eP7 MmN do = 2 cosh (3 (mZ + 1))
and the proof is complete. [ |

Remark 5.2.1. There is a one-to-one correspondence between equilibrium distri-

butions and solutions of the self-consistency equation ([5.9)).

Regarding to Remark any stationary solution of the system (5.6)) is of the
form
m, = Tgu(m)
(5.11)
Dou(m?) = [ tanh(3(m +m)u(dn).

m¢ = 0 is always a solution of (b.11]), for all the choices of # and p. Whenever

the parameter [ take values such that

(dn)

e = (5.12)

I%,(0) =53
this equilibrium results to be neutrally stable for the linearized system. Moreover,

if I'; ,(0) > 1, then there is at least one ferromagnetic solution.

Remark 5.2.2. If m? = 0, the stationary distribution reduces to:

efBon

q°(0) :

= for all . 1
2 cosh (1) orall o €. (5.13)

5.3 Critical Dynamics (3 /@ ﬁ% =1)

We are going to consider the critical dynamics of the system, in other words the
long-time behavior of the fluctuations in the threshold case, when 3 / uldn) 1
2

pcosh? (Bn) —
The size of Normal fluctuations must be further rescaled (in space and time), be-

cause their size around the deterministic limit increases in time. In this case we

will still obtain Normal fluctuations, solutions of a certain stochastic differential
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equation to be determined.

First of all, we need to locate the critical direction in the infinite dimensional space

of the order parameters. In the rest of the section, we will consider (3 / Cosg?ﬁ)n) =1
17

and let us assume that the initial condition A is a product measure such that

Bon
do,dn) = ¢°(do,dn) = ———— do u(d
QO( g, 7]) q*( g, 7]) 2COSh(ﬁ7]) O',U,( 77)
and so
do.d 0(do. d e ud
q(do, dn) = ¢, (do, U)—m Uﬂ( 77)’

for every value of t > 0, since we are in stationary conditions.

For our model all the observables are of the form F(o,n) = ~v(n) + o¢(n) and
we can assume, without loss of generality, v = 0, since the term ~(n) does not
contribute to the dynamics of the system. Thus, we want to describe the action

of the infinitesimal generator of the critical fluctuation flow

Bon

on(t. dz, dn) = N4 NY4% dx. dn) — ——————
ION(v Z, 77) pN( , AT, 77) 2C08h(ﬁ77)

do pu(dn)
on the family of functions of the form ¢ ({(c¢(n), pn)), with
YvV:R—R veCR), ¢:2—R

and where we have denoted (f1, f2) := [o 4 f1(0,n) f2(0,n) do dn.

Lemma 5.3.1. Fort € [0,T], if we consider only the space scaling

Bon

5 cosh(3n) do p(dn)| , (5.14)

ot do d) = NV [pw, do, dn) —

then the critical flow py(t,do,dn) is a Markov process whose infinitesimal gener-

ator Gy satisfies:

G ((o6(n), o)) = [Lo + Ly + N-Ly] w({o(n), o)) + o(N-1Y),  (5.15)
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where

Loy ({od(n), pn)) = 2¢'(-) (sinh(Bn)d(n), o) (5.16)
Lip((o¢(n), pn)) = =2¢'() (¢£7(n), p)

Ly ((a¢(n), pnv)) = 269'(-) (o, pn){[cosh(Bn) — o sinh(8n)]é(n), on)

and the operator £" is the linear operator given by

¢(n)
2 cosh(fn)

The remainders are continuous functions of (c¢(n), pn) and they are of order

L£'¢(n) = cosh(Bn)d(n) — B p(dn) . (5.17)

o(N=Y4) pointwise, but not uniformly on (c¢(n), pn).

Proof. To prove that (c¢(n), py) is a Markov process, one must write down the

expression of the infinitesimal generator whose dynamics are driven by. We apply

Lemma [[.3.11

The process {a(t)}+>0 is a continuous time Markov chain on the finite state space
N with infinitesimal generator (5.2]). Consider the function

(: — R

g — <U¢(n)vﬁN>7

it plays the role of g in Lemma [1.3.1} then, for every ¢ : /% — R, we have

Ly(io () = (Gnth) o ¢

and ((o) is a Markov process with generator Gy given by

In((ao(n), pn)) =

N 0 (0, pn)?

‘ B{o, pn) B*(o, pn) 1
; [cosh(n;) — o sinh(8n;)] (1 TN 9 - N1/2 to (Nl/Q) .
e~ Pojng

‘ [ Nz/40]¢(773)2/1 () + N3/2¢2( )Y () +o (Niﬂﬂ
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N N
+"(+) N%,/Q { > cosh(Bn;)¢? (n;) — > oy sinh(8n;) 6% (n;)
= j=1

N N
- 6237’171\0 > o cosh(Bn;)¢? (n;) + 5(;\;172[ Zsmh Bn;)d*(n;)
j=1
A 2 2 N
+£ %’1'/? L S cosh(Bn) () — 2 gf[’lff > S0 smh(gnj)d)?(nj)}
Jj=1 j=1

1
to <N1/2>

Since py is a centered measure and we want to represent all the terms as integrals

with respect to this measure, we need to center all of them; but

([=o cosh(Bn) 4 sinh(6n)]o(n), ¢7) = 0

and

¢(n)
2 cosh(0n)

([cosh(Bn) — osinh(8n)]é(n), ¢]) = pu(dn)

hence we obtain

= 2¢,(){<5mh(577)¢(77)7 ﬁN) - <O COSh(ﬁU)Cb(??)a ﬁN>

003D cost(m)on). in) — “T22 a sin(Bm)o(n). )

= 3o | oot tan) = B cosh(Go(a). )

52% 71//)2N>2 (sinh(Bn)o(n), ﬁN>} o (Ni/‘l)

+

_|_
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2 cosh(0n)

+ (sinh(Bn)on). ) + 2T cosh(3m) (). o)

_ ﬁgf[’ii\» (o sinh(B8n)e(n), ﬁN>} to (]\/'11/4) .

_ 2w’<~>{ _ <o— [cosh(ﬁﬁ)ﬁb(m -5 Mﬁ‘(d”)] ’ N>

which is just (5.15)). [

Remark 5.3.1. The term (sinh(5n)¢(n), py) appearing in L, defined by ((5.16]), is
of order N'/* and gives rise to the random drift.

Lemma 5.3.2. The operator £", defined by (5.17)), is self-adjoint in L*(j1), where

= . _p(dn)
M= cosh(fn) "

Proof. Obviously £7is a linear and continuous operator. If we mean (f1, fa)r2(z) :=
Jo fr(n) f2(n )Coshd% , we have to prove the following: if ¢1,¢y € L*(j1), then
<£n¢17¢2>L2 <¢1,£77§Z52>L2(ﬁ). Thus,

(o, 0 = [, [cosntmntn) =5 [ A utan) antyntan

= [ feosh(Bm)6 (o (n)(an)

—-p @Mu(dn) g(ﬁ%u(dn)
= [ [eosmtnentn -5 [ B onpatan
= (p1, £72) 120
and the proof is concluded. n

Lemma 5.3.3. The opemtor L1 defined by (5.17)), is positive and its kernel is

spanned by the function cosh(,@n)
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Proof. To prove positivity we have to show that (¢(n), £7¢(n)) 2z > 0; but,

(60 20000 = | |cosntoarotn 5 [ G0t | ot

= /@¢2(n)u(dn) - ﬁ( ; (%M(dn)y

p
cosh®(Bn)

= 5 ([ comtomon

— ;/@coshZ(ﬁn)QﬁQ(n) p(dn)

g

mshz(ﬁden)) >0

by Jensen’s inequality, recalling that we are at the critical point, in other words
g / mdn)  — 1 Moreover, the equality holds true whenever cosh(8n)é(n) is
7

cosh” (8n)
constant, therefore the null space of the operator £ is generated by the functions

of the form ¢(n) = [

1
cosh(n) *

Remark 5.3.2. The critical direction for our model is then <ﬁ(ﬁn)’ ﬁN(t)>

The space L? (CO’; gld(%)) is finite dimensional and then the spectrum of the operator

£ is discrete and entirely composed by positive eigenvalues. Moreover, there

exists an orthonormal basis of eigenvectors of £7 in L2 ( () )

cosh(n)
Theorem 5.3.1. Consider {¢,,(n)}215, an orthonormal basis of eigenvectors of
£ in L* (CO’;%;Z?)), and suppose that the function Wl(ﬁn) = ¢o(n).

Fort € [0, T, if we consider the critical fluctuation process

(ogo(n), pn(t)),  {{oGm(n), o (1)) }mli

then, as N — +o0, {{cpm(n), pxn())}2E] — 0 in the sense of Proposition
and {(opo(n), py(t)) converges, in the sense of weak convergence of stochastic

processes, to a limiting Gaussian process
X(t) =27,
with 7€ a Normal random variable.
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5.4 Proof of the Theorem [5.3.1]

Let us denote by {74} y>1 a family of stopping times, defined as

T mf{uma(n),ﬁw))r >M or |(oém(n), in(0)] = M

>0
for at least a value of m =1,...,2i + 1},

where M is a positive constant. We are interested in introducing such a se-
quence of stopping times because in this way the processes (o¢o(n), py(t)) and
{odm(n), pn (1)) }2£] result to be bounded in the time interval [0, T A 7]

By standard argument on collapsing processes (see Proposition and Lemma
3.3.6)), it is easy to prove that for t € [0, TATY] the directions {(c¢, (1), pn(t)) 124

m=1

collapse. It means that, if we consider the norm ||px||, defined by

o, uw 1 o
1wy =] m(aﬁﬁm(ﬁ)apm ,
m=1

where r > 0, then there exist constants Ny, C, d > 2, Ky := k(N) and two
increasing sequences {ay}ny>1, {On}n>1 satisfying (3.23)—(3.26) and such that

for every ¢ > 0 the following is true

sup P{ sup  |pn(@)|? > C (Fa%dozj_vl v ffj_vlozN)} <e. (5.18)

N2>No 0<t<TATY

The property allows us to deduce that {{(o¢,,(n), pn(t))}oti — 0, as
N — +00. The computations we should do to prove these processes converge
to zero in probability are similar to those we did in Subsection to prove the
process representing the non-critical directions of the homogeneous Kuramoto
Model collapses. Thus, we omit this proof and we focus only on the critical

direction (opo(n), pn(t)), assuming all the others vanish.

Remark 5.4.1. 1t is possible to prove ([5.18)) since all the eigenvalues corresponding

2141
m=1

to the eigenvectors {¢,,(n) are negative.

The next step is to prove, for every ¢ > 0 and N > 1, the existence of a constant
M > 0 such that
P {T]]\\f < T} <e.
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This fact implies the processes {{c¢m (1), pn(t))}2E] converge to zero in prob-

ability, as N is growing to infinity, for ¢ belonging to the whole time interval [0, T'].

We consider the infinitesimal generator, Jy = NY*Gy, subject to the time-

rescaling and we apply it to the particular function

¥ ((a¢o(n), px (1)) = Ko do(n), pn(E))] -

The following decomposition holds

[{odo(n), v (1)) = [{odo(n), prv (0 !+/ TIn {odo(n), pn ()] ds+ My 0605w

< I{o9o(n). o (O)]+ [ 17w | (o60(n). A (Dl ds+- M g s

with

M it = [ 5 T oo, (D) A, k. ds).

je€S keD

where we have defined

Y [ (ado(n), pn(1))]] =
2

(cgo(n), pn(t)) — j]\f?’ﬂ“cosh(ﬁk)‘ — [{odo(n), pn (1)) (5.19)

and

(<a A (1))

A% (G by db) = A (. k. dt) = NV A, B, N e 7 Har. (5.20)

=g,k t) dt

As we can clearly see, the quantity /~\J"V (7, k, dt) is the difference between the point
process A% (7, k, dt), defined on . x 2 x RT, and its intensity \?(j, k, t) dt.

The counter |A(j, k, N1/4t)‘ is given by

: N L{n,pn) | .{0,pN)
1/4 ) )
‘A<j’k’N/t)‘_4ll+k N1/4 +J N1/4

—l—i ((0]7\7[171\7 /ntanh Bn)p (dn)>]
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We recall that the expression of Gy is given by (5.15)). We consider the following

Taylor expansions stopped at second order

(o.o) o.p _glorn) o, p
e N =1+B<N1/JZ>+R+ and ¢ N1t =1—5<N1/Z>+R—,
where
. (0,pn) || B0, pN)* _ BPM?  om
|R+|§sup{e :2€ 10,0 N1/ SN2 §2N1/26N/
and

—f

|R_| <sup {ez iz €

<o-aﬁN> 0 B2<0-7ﬁ]\7>2 < BZMZ
N1/4 7 IN1/2 — 9N1/2°

For t € [0, 73] we can estimate

|In {odo(n), pn(t))]] =

_ ‘2N1/4sgn (obo(n). i (8)) {<tanh<ﬂn>, ()

+ 82PN o), v (e)) - 517V

+ Ry le + (tanh(6n), pn (1)) — (o, pn (1)) — (o tanh (), pn (1))

<0 tanh(ﬁﬁ% ﬁN (t)>

+ /9 tanh%ﬁn)u(dn)} - R [N1/4 — (tanh(8n), pn () + (o, pn (1))

— (o tanh(8n), pn(t)) + /@tanhQ(ﬁn)#(dn)] }|

and thanks to the stopping times we have introduced and the Central Limit
Theorem applying to the processes of the form (¢(n), pn(t)) (i.e. for every € > 0
and sufficiently large M, P{NY*|{¢(n), pn(t))| > M} < ¢),

20M?*  (PM?* ; sm 1/4

M
N7 +2M+1)}

<2{M+28M> + B M? ("M +1) (24 3M)} =: Cs,
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with Cy positive constant independent of N. Since the following inclusions are

valid

w=rye{ aw {lon. ool Imol} > i)

0<t<TATY

g{ s ||ﬁN<t>||2ZM}U{|<a¢o<n>,ﬁN<o>>|zog}u

0<t<TATH

U sup | M: ~ | = Cw} ;
{ OStST/\T]]\»’I N7‘<‘7¢0(77)7PN>"

we obtain the following inequality for the probability of the interested set

P < T} < P{ swp (w2 > M} + P{|(o0(m), o (0))] = Co}

M
0<t<TATHM

+P{ sup

0<t<TATH

t
My oaniminl] 2 Cm} :

We estimate the three terms of the right-hand side of the inequality.

» For any € > 0, thanks to ([5.18) we have

Pl s (0l > € (s4ant ™ v o ") b <.

M
0<t<TATH

> We get E[(0go(n), pn(0))] = NYVAE [{o¢o(n), px(0))]. Since at time t = 0
the spins are distributed according to a product measure, (c¢o(n), pn(0))
is a linear combination of sample average of independent, identically dis-
tributed Bernoulli random variables multiplied by N'/4. So, we can con-

clude

E|[{cpo(n), pn(0))]] < $Var <cogﬁég)m)> N-1/A4

and in the limit as N — +o00, we have convergence to zero in L! and then

in probability. Therefore

P{l{odo(n), on(0))| = Co} < e

for any € > 0, for every N and for a sufficiently large Cy.
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» We reduce to deal with F [(MJT\H (ado(n).oN)]

inequality in LP” (case p = 2) for martingales (we refer to Chapter VII,
Section 3 of [Shi96]) tells us that

2
) }; in fact, Doob’s “maximal

{(M% (oo (n), ﬂN>|)2}

MN\<0'¢O(77) PN) \‘ = Cm} - (010)

P sup
0<t<TATY

Hence, remembering (5.19) and ([5.20]), we are able to compute

{(MJTwmo (). >|)2} -

:E/Z

jes ke

7 lloonm) ,oN<t>>ufv<j,k,t>dt]

[ [T8(2i+ 1) 1 :
<E / AQG, b, N4 [P0+ gy
Jo N5/ e {cosh(ﬁk’) }je?}i@“ U Jle }

[ (T 220 + 1) B(1+hs)

< 2(2i +1) (24 3hy) LM T = Oy

with C1; positive constant independent of N and M. We have established
that, if we choose C7¢ > %, then

P sup
0<t<TATY

t
Nogom | 010}

In summary, we proved the inequality we were looking for; in fact

P{T]]\\,4§T}§3e =€.

We have just concluded the proof of the first part of the statement of Theorem
5.3.1} concerning the collapse of the processes {{o¢,(n), pn (1)) }ot] in the limit

as N — 400 and for t € [0,7]. Now, we are going to show that in the same
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setting, i.e. the limit of infinite volume and ¢ € [0, T, the process (g¢y(n), pn (1))

admits a limiting process and we are going to compute it.

First, we need to prove the tightness of the sequence {(o¢o(n), pn(t))}y>,- This
property implies the existence of convergent subsequences. Secondly, we will
verify that all the convergent subsequences have the same limit and hence also

the sequence {(o¢o(n), pn(t))} >, must converge to that limit.
Lemma 5.4.1. The sequence {{(o¢o(n), pn(t))}n>1 @8 tight.

Proof. We must verify the conditions ((1.44) and (1.45) hold. Since we have
already proved that for every ¢ > 0 the inequality P{rd < T} < ¢ is true for
M sufficiently large and uniformly in NNV, it is enough to show tightness for the

stopped processes
{{coa(n). v (t A7)}

We showed before the validity of the following inclusion

N>1

{ sup  [(ogo(n), pn(1))] = M} S {lodo(n), pn(0))] = Co} U

0<t<TATH

U sup Mt i ~ S Ot
{Ogtg:r/\ﬁy AL ¢0(n),pN>|‘

therefore

N 0<t<TATH

supP{ sup  [{o¢o(n), pn(t))| = M} < 2
and so we obtained ((1.44)). Let us deal with ((1.45)) now. We notice that

[{odo(n), P (2)) = (oo(n), Pn(s))] =
/: I (o do(n), px())) du+ Moy |

where we have denoted

s,t _ 2 t J No /-
My oot il = T N7 / 2 WAN(J, k, du)

jes ke

and /~X§’V is as in definition ([5.20]). Thus,
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{llogo(n), pn(t)) — (oo(n), pn(s))| = a} S

C { (n),ﬁzv(u)HdU‘ ijt\ (060(1).5) |‘ = }

<Cs(t—s)

C MY osotminy| = O

and then, applying Chebyscev inequality to the last right-handside of the previous
inclusions, we get
85t ral al —2 s,t 2
Sup P{‘MN|U¢0( pN>|‘ =z 010} < (C)™" sup E {(MNU%(??) pN>|) }

0<s<t<T 0<s<t<T
t—s<6 t—s<d

< (Ch)2 s 2(2i 4 1)(2 + 3hy)eP1H) (1 — 5) (5.21)
t—s<6 =C1y

< (Ci) 20156,

Finally, we can conclude that

sup_sup P {|{odu(n). iw(®) = (o0u(n). v(s))| > a} <

= sgpogigygTP{W?vﬂ rantminyl] Z Cro}

t—s<d

and the proof is complete. [ |

Lemma implies that there exist convergent subsequences for the sequence

{{ado(n ) ( Nins1 Let {{ago(n), pn(t))},>, denote one of such a subsequence
and let v € C} be a function of the type

¥ ({00 (n), n(t)) , {(0Sm(n), () Yo} ) = ¥ ((0d0(n), u(t))) -
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The following decomposition holds

¥ ((o60(n), n(8) = ¥ ((060(m). 7 0))) =
= [ 7o (oo, e du+ My, (5:22)

where

Tt (o), p®)) = 20/ (){ " (ramb () 7 (1)
+ 8(, ()L, 7n(0)) = Blo, () tanb(B), 7 (1)} + oar (1),

which, as usual, is Gy (see (5.15)) rescaled of a power n'/4 and applied to the par-

ticular function ¥ ((060(n). 5n (1)), { (00 (n), Bu(O)F11) = @ (o), u(t)))

The remainder o0y;(1) goes to zero as n — +oo, uniformly in M. If we compute
the limit as n — +o00, remembering that a Central Limit Theorem applies to the

term (tanh(5n), p,(t)), (1, pn(t)) is zero since p, is a centered measure and the

process (o tanh(6n), p,(t)) collapse since tanh(8n) and ——— are perpendicular

osh(8n)
in L? (C(f;g‘é%)n», we have:

Tnth ((00(n), Bu(1))) "= T(X (1)),

with
TP(X (1)) =2 ¢'()
and 7 is a Standard Gaussian random variable. Then, because of ([5.22)), we

obtain

o TS MY = (X () - 0(X(0) - [ ' (X (w))du.

We must prove the following Lemma:

Lemma 5.4.2. Mé, is a martingale (with respect to t); in other words, for all
s,t € [0,T], s <t and for all measurable and bounded functions g(X ([0, s])) the
following identity holds:

E[Myg(X([0,5]))] = E[Mg(X([0,5]))]- (5.23)
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Proof. The reasoning we explained in Lemma applies in this case too, so it
is sufficient to prove {M, ,}n>1 is an uniformly integrable sequence of random

variables.
If we define

V1 ((0o(n), pu(t)))] =

- 4 2 -
=0 ({o0nt 700 ~ ey ) ~ ¥ Uronta o)
it yields
B =8| [ Py 99 1 (o), i) A7G A s)ds]

<o Tur ([ 3 [ ot ]

jeS keD ]

< NTE [ [w (<a¢o<n>,ﬁn<t>> —JR/QWQ

jes keD

—w<<a¢o<n>,ﬁn<t>>>rds]

where C; is defined by ([5.21). We expand the function 1) around (o@o(n), pn(t))

with the Taylor expansion stopped at first order and with remainder R such that

2 2
|R| < sup {’1/)//(2:” VA l<0¢07 ﬁn> ) <U¢07 ﬁn) - jn3/4 COSh(ﬁ]f)‘| } n3/2 Cosh2(ﬁk’)

and moreover, we recall that ¢ € C?, so |¢)'| < K; and |[¢"| < Ks; therefore,

2

I 2 /
§n5/4011E/0 > [_]Tﬁ/‘iwsh([ﬁc)w(.wrpb] *

j€S keD

. Tt 4 10 \)2
<ntCnk _/0 jeiﬁl?e@ [TLB/? COShQ(ﬁk) W)
. 4 / 2
_me ( )R+ R ] ds]
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_ t 4
<ML E / K?
=" H 0 jeiﬂlﬁ_@ n3/2 cosh?(Bk) "'

8
o cosh®(Bk)

K\ K, + K%] ds]
<AT Oy (K + Ks)?

since t < T'; then M, , is uniformly integrable. |

Now, the proof is easy to complete. /\/lfw, solves the martingale problem with in-
finitesimal generator 7, admitting a unique solution, and hence we have shown all
convergent subsequences have the same limit and so the sequence itself converges
to that limit.
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