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Abstract: A rigorous approach to Statistical Physics issues often produces inter-

esting mathematical questions. This Ph.D. thesis is composed of two different parts.

One does not intersect the other, but both research topics lie at the interface between

Probability Theory and Statistical Mechanics.

• In the first part we deal with reconstruction of a tree-indexed Markov chain on

Galton-Watson trees, improving previous bound by Mossel and Peres, both for

symmetric and strongly asymmetric chains. Moreover, we give some numeri-

cal estimates to compare our bound with those of other authors. We provide a

sufficient condition of the form Q(d)c(M) < 1 for the

non-reconstructability of tree-indexed q-state Markov chains obtained by broad-

casting a signal from the root with a given transition matrix M . Here c(M) is a

constant depending on the transition matrix M andQ(d) is the expected num-

ber of offspring on the Galton-Watson tree. This result is equivalent to proving

the extremality of the free boundary condition Gibbs measure within the cor-

responding Gibbs-simplex. When considering the Potts model case we take

this point of view too. Our theorem holds for possibly non-reversible M . In

the case of the symmetric Ising model the method produces the correct recon-

struction threshold, in the case of the (strongly) asymmetric Ising model where

the Kesten-Stigum bound is known to be not sharp the method provides im-

proved numerical bounds.

• In the second part of the thesis we give sharp estimates for time uniform prop-

agation of chaos in some specials mean field spin-flip models exhibiting phase

transition. The first model is the dynamical Curie-Weiss model, that can be

considered as the most basic mean field model. The second example is a

model proposed recently in the context of credit risk in Finance; it describes

the time evolution of finantial indicators for a network of interacting firms. Al-

though we have chosen to deal with two specific models, the method we use

appear to be rather general, and should work for other classes of models. A

substantial limitation of our results is that they are limited to the subcritical

case or, in Statistical Mechanical terms, to the high temperature regime.
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Sommario: Un approccio rigoroso a questioni di Fisica Statistica spesso produce

interessanti problemi matematici. Questa tesi di dottorato è composta da due parti.

La prima non interseca la seconda, ma entrambe stanno sul confine tra Teoria della

Probabilità e Meccanica Statistica.

• La prima parte tratta il problema della ricostruzione per catene di Markov su

alberi di tipo Galton-Watson. Miglioriamo i risultati precedentemente ottenuti

da Mossel e Peres, sia per catene simmetriche che fortemente asimmetriche.

Dimostriamo una condizione sufficiente della forma Q(d)c(M) < 1 per la non

ricostruzione di catene di Markov a q-stati sull’albero. Qui c(M) è una costante

che dipende dalla matrice di transizione M e Q(d) è la media del numero di

figli per vertice nell’albero di Galton-Watson. Questo risultato è equivalente

alla purezza della misura libera di Gibbs. Quando consideriamo il caso del

modello di Potts assumiamo anche questo punto di vista. Il teorema è valido

anche per catene non reversibili. Nel caso del modello di Ising il nostro risul-

tato produce la correta soglia di ricostruzione, nel caso di catene (fortemente)

asimmetriche dove si sa che il bound di Kesten-Stigum non è esatto il metodo

usato dà risultati numerici migliori.

• Nella seconda parte diamo delle stime uniformi nel tempo per la propagazione

del caos in alcuni modelli di spin con interazione a campo medio che presen-

tano transizione di fase. Il primo è il modello dinamico di Curie-Weiss, che può

essere considerato come il più semplice esempio di sistema con interazione a

campo medio. Il secondo è un modello recentemente impiegato per spiegare

i meccanismi del rischio di credito; esso descrive l’evoluzione temporale di

indicatori finaziari per un gruppo di aziende interagenti quotate sul mercato.

Anche se abbiamo trattato modelli specifici, crediamo che il metodo funzioni

piuttosto in generale e che sia applicabile anche ad altre classi di modelli. Una

limitazione sostanziale dei nostri risultati è che valgono solo nel caso sotto-

critico, che corrisponde, nel linguaggio della Meccanica Statistica, al regime di

alta temperatura.
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Part I

On the Purity of the free boundary

condition Potts measure on

Galton-Watson trees
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Introduction to Part I

This first part of the thesis focuses on the purity transition for the Potts model on

random and deterministic trees.

Interacting stochastic processes on trees and lattices often differ in a fundamen-

tal way: where a lattice model has a single transition point (a critical value for a

parameter of the model) the corresponding model on a tree might possess multi-

ple transition points. Such phenomena happen more generally for non-amenable

graphs (where surface terms are no smaller than volume terms), trees being major

examples [9]. A main example of an interacting model is the usual ferromagnetic

Ising model [1]. Here the interesting property which gives rise to a new transition

is the purity (sometimes called extremality) of the free boundary condition Gibbs

measure.

On a tree the open boundary state will still be extremal in a temperature interval

strictly below the ferromagnetic transition temperature. It ceases to be extremal at

even lower temperatures.

Ferromagnetic order on a tree is characterized by the fact that a plus-boundary

condition at the leaves of a finite tree of depth N persists to have influence to the ori-

gin when N tends to infinity. For the tree it now happens in a range of temperatures,

that even though an all plus-boundary condition will be felt at the origin, a typical

boundary condition chosen from the free boundary condition measure itself will not

be felt at the origin for a range of temperatures below the ferromagnetic transition.

The latter implies the extremality of the free boundary condition state.

In the following we write θ = tanhβ where β is the inverse temperature of the
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Introduction to Part I

Ising (or Potts) model and denote by d the number of children on a regular rooted

tree. Then the ferromagnetic transition temperature is given by dθ = 1, and the tran-

sition temperature where the free boundary condition state ceases to be extremal is

given by dθ2 = 1.

A proof of the latter fact is contained in [5]. A beautiful alternate proof of the ex-

tremality for dθ2 ≤ 1 for regular trees was given by Ioffe [6]. The method used therin

was elegant but very much dependent on the two-valuedness of the Ising spin vari-

able. This was exploited for the control of conditional probabilities in terms of pro-

jections to products of spins. Some care is necessesary to treat the marginal case

where equality holds in the condition. Indeed, one needs to control quadratic terms

in a recursion; this is difficult for a general tree where the degrees are not fixed. A

second paper [7] proves an analogue of the condition for general trees with arbitrary

degrees leaves this case open. Finally, for a general tree which does not possess any

symmetries, [14] give a sharp criterion for extremality in terms of capacities. It re-

mains an open problem to determine the extremal measures and the weights in the

extreme decomposition of the open boundary condition state for dθ2 > 1.

Let us remark that the problem of extremality of the open boundary condition

state is equivalent to the so-called Reconstruction Problem: an issue about noisy

information flow on trees.

Reconstruction is a topic where people coming from Probability, Statistical Me-

chanics, Biology and Computer Science can give contributions: recently it have been

of interest in spin glasses [15] and computational biology [13]. The Reconstruction

Problem can be stated as follow: we send a signal (a plus or a minus) from the ori-

gin to the boundary, making a prescribed error (that is related to the temperature of

the Ising model) at every edge of the tree. In this way one obtains a Markov chain

indexed by the tree. The reconstruction problem on a tree is called to be solvable, if

the measure, obtained on the boundary at distance N by sending an initial +, keeps

a finite variational distance to the measure obtained by sending a −, as n tends to

infinity.

Nonsolvability of reconstruction is equivalent to the extremality of the open bound-

ary condition state [12, 10]. This is to say that there can be no transport of informa-

tion along the tree between root and boundary, for typical signals. This equivalence

makes clear what purity transition is about.
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Introduction to Part I

In the present part we aim at an explicit sufficient condition ensuring the ex-

tremality of the free b.c. state for the Potts model, generalizing the Ising condition

dθ2 ≤ 1. We consider the free boundary condition Gibbs measure of the Potts model

on a random tree. We provide an explicit temperature interval below the ferromag-

netic transition temperature for which this measure is extremal, improving older

bounds of Mossel and Peres [11].

Consider an infinite random tree, without leaves, rooted at 0. Call di the number

of children at each vertex i and let be Q their distribution. The same and indepen-

dent at each vertex. The symbol Q stands also for the mean.

In this situation our main result, formulated for a random tree, is the following. Write

P = {(pi )i=1,...,q , pi ≥ 0 ∀i ,
q∑

i=1
pi = 1} (1)

for the simplex of Potts probability vectors.

Theorem 0.0.1 The free boundary condition Gibbs measure P is extremal, for Q-a.e.

tree T when the condition Q(d0) 2θ
q−(q−2)θ c̄(β, q) < 1 is satisfied. Here,

c̄(β, q) := sup
p∈P

∑q
i=1(qpi −1)log(1+ (e2β−1)pi )∑q

i=1(qpi −1)log qpi
. (2)

Let us comment briefly. It is known that on a regular tree of degree d , there is

reconstruction beyond the Kesten-Stigum bound (d
(

2θ
q−(q−2)θ

)2 > 1) proven to be

sharp, for every degree d , only when q = 2 and for d sufficiently large and q = 3

[21]. Our bound for non-reconstruction improves the one which has been previ-

ously given in [11] and it holds for every number of offspring. We recover the bound

in [11] from our when we use the estimate c̄(β, q) ≤ θ. This estimate we see indeed

numerically. Moreover, numerically c̄(β, q) seems to decrease monotonically in q at

fixed β.

In literature, there are other thresholds and important works: in particular those

of Sly [21] and Montanari-Mezard [15] along with the conjecture for deterministic

trees therein. The conjecture states that the Kesten-Stigum bound is sharp only

when q ≤ 4. The paper by Sly partially proves this conjecture; he proves that the

Kesten-Stigum bound is sharp also when q = 3 with the degree d large enough and
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Introduction to Part I

that it can not be sharp for q > 5. Thus, when d is small the problem of finding a rig-

orous sharp bound is still open for every q ≥ 3. In this case (d small) our bounds

seem to the best rigorous thresholds as of today as pointed out also in [22]. We

don’t think they can be sharp, however, they differ only few percent form the Kesten-

Stigum bound when q ≤ 4, and from the numerically determined thresholds of Mon-

tanari and Mezard for q > 5. We are going to describe these aspects in more details

in the conclusions.

This thesis, where we present two different proof of Theorem 0.0.1, is organized

as follows.

The first chapter is introductory to the the problem. We review the Ising Model

on a regular deterministic tree (i.e. the degree of a vertex is fixed) and its ferro-

magnetic phase transition; then we pass to define purity transition describing also

its equivalence to the solvability/non-solvability transition for the Reconstruction

Problem, for a +/− signal sent from the root to the boundary of the tree. This prob-

lem is equivalent to the extremality of the free boundary Gibbs measure for the Ising

model. Here we give also a proof for the threshold of purity transition in the Ising

model case; this is a simplification of that due to Peres and Pemantle[14].

In the second chapter we switch to the purity transition for the Potts model where

the possible signal sent from the origin can assume q values (i.e. 1,2, . . . , q) instead

of only two (+ or −) as in the former case. We give the first proof of our main result

(i.e. Theorem 0.0.1) stated for Galton-Watson trees. A second alternative proof is

given in the third chapter. This second proof is more general and it can be applied

beyond the Potts model and, as an application, we treat the case of an asymmetric

binary channels. For strongly asymmetric channels the bound we derive, improves

the known threshold for this model [11]. When the asymmetry is small there exists a

tight bound [8] that, until the present, we are not able to recover with our method.

The last chapter is for comments and comparison with thresholds for purity tran-

sition obtained by others authors. We propose also some conjectures.

The results of this part of the thesis are in:

- M. Formentin, C. Külske, On the Purity of the free boundary condition Potts

measure on random trees, to be published in Stochastic Processes and their

Applications (2009), available at arXiv:0810.0677, (2008);
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- M. Formentin, C. Külske, A symmetric entropy bound on the non-reconstruction

regime of Markov chains on Galton-Watson trees, preprint, available at arXiv:0903.2962,

(2009).
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Chapter 1

Ising model on trees: purity and

reconstruction

1.1 Introduction

This is an introductory chapter. We review the purity/non-purity phase transition

and its equivalence with the non-solvability/solvability transition in the Reconstruc-

tion Problem on regular trees [9, 11]. We describe this equivalence to make intuitive

the meaning of purity transition: to say that the Free Gibbs Measure is pure is to say

that there is no transport of information along the tree, form the boundary to the

root.

In this chapter we deal mainly with the Ising model on regular trees for which we

prove a bound for the purity transition. The proof is a simplification of [14]. The

same method provides a proof of the ferromagnetic transition too.

1.2 Purity for the Ising model and reconstruction for bi-

nary channels

In the next, the situation is as follows: we have a tree T , where we have chosen a spe-

cial point, the root, that we denote by 0 (see Figure 1.1). Recall that a graph is a set

of the vertices called V , connected with edges, G , and that a tree is a graph without
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1.2. Purity for the Ising model and reconstruction for binary channels
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Figure 1.1: A tree rooted at 0.

loop. Thus, on a tree there is a unique chain of edges γ from one vertex v to another

vertex ω. This induces a natural notion of distance as the number of edges in γ. We

write ω > v if ω has a greater distance than v from the root. The set of vertices at

distance N from the root is the level N of the tree. We indicates with T N the sub-tree

with just N levels and with ∂T N the level N : i.e. the boundary of the sub-tree. More-

over, T N
v is the sub-tree of T N rooted at v .

The Ising model is obtained by putting at every vertex v of T N a random variable

η(v) ∈ {+1,−1} (also called spin), and assigning to every configuration η ∈ {+1,−1}#(V )

the probability:

P
β

β
= 1

Z

∏
v→ω,ω>v

eβη(v)η(w) (1.1)

where Z is a normalization factor.

The product runs over all the vertices; v → ω, ω > v means all the couples (v,ω)

where v is at distance one from ω and ω is a child of v meaning that it has a greater

distance to the origin. We can look at the parameter β as the strength of the inter-

actions between vertices at distance one. Coming the Ising model from Physics, β is

often interpreted as the inverse of the temperature.

In (1.1) no boundary condition is specified, thus this is called the free Gibbs measure.

20



Chapter 1. Ising model on trees: purity and reconstruction

When dealing with the ferromagnetic transition we are interested in PN ,+
β

, where

+ means that we set to +1 all the spins in ∂T N . More precisely, we are interested in

the limit:

lim
N→∞

P
N ,+
β

(
η(0) =+1

)
. (1.2)

We want to know if (1.2) is greater than 1
2 for a certain range of the parameter β.

Or, in other words, if for some values of β the plus-boundary condition persists to

have influence at the root even when its distance from the root grows and N tends

to infinity. In this chapter we deal with regular tree of degree d . To us, the degree

of a vertex is the number of its children and a tree will be said to be regular if all the

vertices have the same degree.

For a regular tree where the degree d is the same for every vertex one has the follow-

ing:

Theorem 1.2.1 The inequality

lim
N→∞

P
N ,+
β

(
η(0) =+1

)> 1

2
, (1.3)

holds only if dθ > 1, where θ = tanhβ.

For a proof see [1, 14] or later in this chapter.

So, ferromagnetic order on a tree is characterized by the fact that a plus-boundary

condition at the leaves of a finite tree of depth N persists to have influence to the ori-

gin when N tends to infinity. From an heuristics point of view we can say that, if β

is sufficiently large, there is a transport of information from the boundary of the tree

to the origin even when N goes to infinity. Actually, there is a way to make precise

this information theoretic interpretation of the Ising model: i.e. to show that non-

solvabilty of the reconstruction problem is equivalent to the extremality of the free

Gibbs measure.

The Reconstruction Problem on symmetric binary channels can be stated as fol-

lows. We send a signal from the root to the boundary, making a prescribed error at

every edge of the tree. In this way one obtains a Markov chain indexed by the tree.

That is, on the tree T we construct the following Markov process [11, 12]: to each

edge e we associate a random variable X (e) with
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1.2. Purity for the Ising model and reconstruction for binary channels

P(X (e) = 1) = ε= 1−P(X (e) =−1). (1.4)

All the variables X (e) are independent. The value of the spin η(v) at the vertex v will

be:

η(v) = η(0)
∏
e∈γ

X (e), (1.5)

where γ is the unique path going from the root 0 to the vertex v . While the initial

value of η(0) is chosen at random uniformly.

Suppose you know the values of the spins at distance N from the origin of the tree.

What can you say about the spin at the root of the tree? Which is the probability

of guessing the original value of the spin at 0 knowing that the configuration at the

boundary ∂T N is ξ, when N goes to infinity? These questions define the Reconstruc-

tion Problem. More formally

Definition 1.2.2 The Reconstruction Problem is said to be solvable when

lim
N→∞

1

2

∑
ξ∈η

∂T N

∣∣PM (∂T N = ξ|η(0) = 1)−PM (∂T N = ξ|η(0) =−1)
∣∣> 0. (1.6)

To us, the quantity of interest is1

∆N (T,ε) = E(∣∣PM (η(0) = 1|∂T N = ξ)−PM (η(0) =−1|∂T N = ξ)
∣∣) . (1.7)

Lemma 1.2.3 The Reconstruction Problem is solvable only if

lim
N→∞

∆N (T,ε) > 0. (1.8)

Proof: Because of the symmetry of the model PM (η(0) = 1) = PM (η(0) = −1) = 1
2

and moreover, the Bayes’ formula gives:

PM (∂T N = ξ|η(0) = 1) = PM (η(0) = 1|∂T N = ξ)

PM (η(0) = 1)
PM (∂T N = ξ). (1.9)

Substituting in (1.6) the result follows. 2

1Here M stands for Markov. This is the probability coming from the Markov process constructed

before. For N finite this is different from the Gibbs measure on the tree (see few lines below). In the

sequel we often drop the index M .
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Chapter 1. Ising model on trees: purity and reconstruction

∆N (T,ε), intuitively, can be regarded as the difference between the probabilities

of a correct and incorrect reconstruction knowing the configuration at the boundary

of the tree. One wants to investigate if there exists a critical value εc such that:

lim
N→∞

∆N (T,ε) = 0 if ε≥ εc . (1.10)

For ε≥ εc the problem is non-solvable and solvable otherwise.

Now, it happens that if you choose

ε

1−ε = exp(−2β). (1.11)

on an infinite tree, the law of the Markov process defined before is the limit of the

Gibbs measure

PN
β (η) = 1

Z

∏
v→ω,ω>v

eβη(v)η(ω), (1.12)

as the size of the tree grows to infinity. Then, limN→∞∆N (T,ε) = 0 means that

lim
N→∞

E
∣∣∣PβN (η(0) = 1|∂T N = ξ)−PβN (η(0) =−1|∂T N = ξ)

∣∣∣= 0. (1.13)

Equation (1.13) is equivalent to the definition of purity for the limiting Gibbs

measure. In this way one states that non-solvability of reconstruction is equivalent

to the purity of the free Gibbs measure [10, 12], which is to say that there can be no

transport of information along the tree between root and boundary, for typical sig-

nals.

In the sequel we write PN ,ξ
β

(·) for PN
β

(η(0) = ·|∂T N = ξ) and P
N ,ξ
β,v (·) when we are

considering the sub-tree of T N rooted at v . Some times we drop the dependence

from β and N when it is clear.

Remark: Notice that here PN ,ξ
β

(·) is a random variable with respect to the free

Gibbs measure on the boundary condition ∂T N = ξ.

Let us say here that (1.13) is equivalent to

lim
N→∞

P

(
ξ :

∣∣∣∣PN ,ξ
β

(i )− 1

2

∣∣∣∣> ε)= 0, (1.14)
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1.3. Proof of Theorem 1.2.4

for i = +,−, and all ε > 0. We will use often this characterization later. The proof of

the equivalence is immediate using that |PN ,ξ
β

(+)−PN ,ξ
β

(−)| is always positive but in

P
N ,ξ
β

(+) =PN ,ξ
β

(−) = 1
2 .

For a regular tree of degree d , it holds the following theorem [1, 5, 6, 14].

Theorem 1.2.4 The limiting Gibbs measure on a regular tree of degree d is pure, i.e.

lim
N→∞

E
∣∣∣PN ,ξ

β
(η(0) =+)−PN ,ξ

β
(η(0) =−)

∣∣∣= 0 (1.15)

if dθ2 < 1 and θ = tanh(β).

The Theorem is true with equality too: that is the Kesten-Stigum bound is sharp

for q = 2. Here we give this version to have a proof with all the main ideas, but sim-

pler. A proof of the latter fact is contained in [5]. A beautiful alternative proof of

the extremality for dθ2 < 1 for regular trees was given by Ioffe [6]. The method used

there in was elegant, but very much dependent on the nature of the Ising model’s

spin variable: i.e. on the fact that it can assume only two values. The proof we give

could be generalized to the Potts model [17] to obtain the same bound of [11]. This

is a simplified version of [14].

1.3 Proof of Theorem 1.2.4

The method of the proof is by controlling the recursions from the outside to the in-

side of a tree of the log-likelihood ratios:

X N
v := log

(
PN

v (η(v) =+)

PN
v (η(v) =−)

)
. (1.16)

We have to prove that:

lim
N→∞

E(|X N
0 |) = 0, (1.17)

because this condition is equivalent to (1.15). Following [14] we prove (1.17) with the

help of another quantity. We define:

QN ,+
v (X N

v ) =
∫

X N
v dQN ,+

v (ξ) (1.18)
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Chapter 1. Ising model on trees: purity and reconstruction

where QN ,+
v is the shorthand for the probability for the boundary configuration ξ of

T N knowing that η(v) =+1:

QN ,+
v (ξ) =PN

β

(
η : η∂T N

v =ξ|η(v) =+1
)

. (1.19)

In the same way one defines:

QN ,−
v (ξ) =PN

β

(
η : η∂T N

v =ξ|η(v) =−1
)

. (1.20)

We need the following Lemmas [11]:

Lemma 1.3.1 For X N
v one has the iteration:

X N
v = ∑

ω:v→ω

g (X N
w ), (1.21)

with

g (x) = log

[
cosh

( x
2

)+θ sinh
( x

2

)
cosh

( x
2

)−θ sinh
( x

2

)] . (1.22)

Proof: To derive (1.21) write:

P
N ,ξ
v (ηv ) = Z−1

v

∏
v →ω,ω> v

∂T N
v = ξ

exp
(
βη(v)η(ω)

)
(1.23)

for the probability of the state ηv with boundary condition fixed equal to ξ and ηv

is the restriction of η to the sub-tree T N
v . Writing dv for te degree of the vertex v , we
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1.3. Proof of Theorem 1.2.4

obtain:

P
N ,ξ
v

(
η(v) =+)= Z−1

v

∑
ηv :η(v)=+

exp(βη(ω))
∏

ω→y,y>ω
exp

(
βη(y)η(ω)

)

= Z−1
v

∑
ηv :η(v)=+

(
exp(βη(ω1))

∏
ω1→y,y>ωi

exp
(
βη(y)η(ω1)

))× . . .

×
(

exp(βη(ωdv ))
∏

ωdv →y,y>ωdv

exp
(
βη(y)η(ωdv )

))

= Z−1
v

∑
ηω1 ,...,ηωdv

(
exp(βη(ω1))

∏
ω1→y,y>ω1

exp
(
βη(y)η(ω1)

))× . . .

×
(

exp(βη(ωdv ))
∏

ωdv →y,y>ωdv

exp
(
βη(y)η(ωdv )

))

= Z−1
v

dv∏
i=1

(∑
ηωi

exp(βη(ωi ))
∏

ωi→y,y>ωi

exp
(
βη(y)η(ωi )

))

= Z−1
v

dv∏
i=1

(∑
ηωi

exp(βη(ωi ))Zωi exp
(
βη(ωi )

)
P

N ,ξ
ω

(
ηωi

))

= Z−1
v

dv∏
i=1

∑
j=+,−

 ∑
ηωi :η(ωi )= j

Zωi exp(β j )PN ,ξ
ω

(
ηωi

)

= Z−1
v

dv∏
i=1

Zωi

∑
j=+,−

exp(β j )PN ,ξ
ω

(
ηωi = j

)
. (1.24)

In the same way:

P
N ,ξ
v

(
η(v) =−)= Z−1

v

dv∏
i=1

Zωi

∑
j=+,−

exp(−β j )PN ,ξ
ω

(
η(ωi ) = j

)
. (1.25)
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Chapter 1. Ising model on trees: purity and reconstruction

Take the ratio

P
N ,ξ
v

(
η(v) =+)

P
N ,ξ
v

(
η(v) =−) = dv∏

i=1

∑
j=+,− exp(β j )PN ,ξ

ω

(
η(ωi ) = j

)
∑

j=+,− exp(−β j )PN ,ξ
ω

(
η(ωi ) = j

)

=
dv∏

i=1

exp(β)exp
(
X N
ωi

)+exp(−β)

exp(−β)exp
(
X N
ωi

)+exp(β)
=

dv∏
i=1

exp(β)exp

(
X N
ωi
2

)
+exp(−β)exp

(
−X N

ωi
2

)
exp(−β)exp

(
X N
ωi
2

)
+exp(β)exp

(
−X N

ωi
2

) ,

(1.26)

and remember that exp(x) = cosh(x)+ sinh(x) and exp(−x) = cosh(x)− sinh(x) to

write:

P
N ,ξ
v

(
η(v) =+)

P
N ,ξ
v

(
η(v) =−) = cosh

(
X N
ωi
2

)(
eβ+e−β)+ sinh

(
X N
ωi
2

)(
eβ−e−β)

cosh

(
X N
ωi
2

)(
eβ+e−β)− sinh

(
X N
ωi
2

)(
eβ−e−β) . (1.27)

Notice that eβ−e−β
eβ+e−β = tanh(β) and take the log in both sides of (1.27) to get the conclu-

sion. 2

Lemma 1.3.2 The projection of QN ,+
v (ξ) onto the boundary condition of T N

ω is

1+θ
2

QN ,+
ω + 1−θ

2
QN ,−
ω . (1.28)

Proof: To prove the lemma we have to show that

QN ,+
v =

dv∏
i=1

(
1+θ

2
QN ,+
ωi

+ 1−θ
2

QN ,−
ωi

)
. (1.29)
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PN
v

(
∂T N

v = ξ|η(v) =+)= PN
v

(
∂T N

v = ξ,η(v) =+)
PN

v
(
η(v) =+)

= Z−1
v

∏dv
i=1 Zωi

∑
j=+,− exp(β j )PN

ω

(
∂T N

ω = ξ,η(ωi ) =+)
Z−1

v
∏dv

i=1 Zωi

∑
j=+,− exp(β j )PN

ω

(
η(ωi ) =+)

=
dv∏

i=1

(
exp(β)PN

ω

(
∂T N

ω = ξ,η(ωi ) =+)(
exp(−β)+exp(+β)

)
PN
ω

(
η(ωi ) =+) + exp(−β)PN

ω

(
∂T N

ω = ξ,η(ωi ) =−)(
exp(−β)+exp(β)

)
PN
ω

(
η(ωi ) =−))

=
dv∏

i=1

(
1+θ

2
QN ,+
ωi

+ 1−θ
2

QN ,−
ωi

)
, (1.30)

where θ = tanh(β). 2

Lemma 1.3.3 For every function f odd,∫
f
(
X N

v

)
dQN ,+

v (ξ) =
∫

f
(|X N

v |) tanh

( |X N
v |

2

)
dPβN (∂T N

v ξ). (1.31)

Moreover, for the symmetry of the model with respect to the change of +1 with −1, one

has : ∫
f
(
X N

v

)
dQN ,+

v (ξ) =−
∫

f
(
X N

v

)
dQN ,−

v (ξ). (1.32)

Proof: To prove (1.32) notice that

QN ,+
v +QN ,−

v =PN
v

(
∂T N

v = ξ) (1.33)

and because of symmetry ∫
f
(
X N

v (ξ)
)
PN

v

(
∂T N

v = ξ)= 0. (1.34)

For (1.31) we have to compute the Radon-Nykodin derivative

dQN ,+
v (ξ)

dPN
v

(
∂T N

v = ξ) = PN
v

(
∂T N

v = ξ,η(v) =+)
PN

v
(
η(v) =+)

PN
v

(
∂T N

v = ξ) =
P

N ,ξ
v

(
η(v) =+)

PN
v

(
η(v) =+) = 2

P
N ,ξ
v

(
η(v) =+)

P
N ,ξ
v

(
η(v) =+)+PN ,ξ

v
(
η(v) =−) = 2

exp
(
X N

v

)
1+exp

(
X N

v
) . (1.35)
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Moreover,

exp(x)

1+exp(x)
= exp(x/2)

exp(−x/2)+exp(x/2)

= 1

2

sinh(x/2)+cosh(x/2)

cosh(x/2)
= 1

2
(1+ tanh(x/2)) (1.36)

and we conclude:
dQN ,+

v (ξ)

dPN
v

(
∂T N

v = ξ) = 1+ tanh

(
X N

v

2

)
. (1.37)

Thus ∫
f
(
X N

v (ξ)
)

dQN ,+
v (ξ) =

∫
f
(
X N

v (ξ)
)

tanh

(
X N

v

2

)
dPN

v

(
∂T N

v = ξ) . (1.38)

The integrand is even and we can take the absolute value of X N
v (ξ). 2

Notice that for Lemma 1.3.3 to prove (1.17) one could prove that

lim
N→∞

QN ,+
0 (X N

0 ) = 0 (1.39)

as we do in following, using the Banach-Cacciopoli’s fixed point lemma. We use first

Lemma 1.3.1 and Lemma 1.3.2 to compute:

QN ,+
v (X N

v ) =QN ,+
v

( ∑
ω:v→ω

g (X N
ω )

)

= ∑
ω:v→ω

(
1+θ

2
QN ,+
ω + 1−θ

2
QN ,−
ω

)
g (X N

ω )

= θ ∑
ω:v→ω

QN ,+
ω g (X N

ω ). (1.40)

Suppose you are on a regular tree of degree d . In this case, because of the symmetry,

we can say that QN ,+
ω gω(X N

ω ) are all equal even if rooted on different ω. So

QN ,+
v (X N

v ) = dθQN ,+
ω g (X N

ω ). (1.41)
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Now we take the Taylor expansion of g (x). The function g (x) is odd and concave for

x > 0 thus, this for the Lemma 1.3.1 implies

QN ,+
ω (g (X N

ω )) <QN ,+
ω (θX N

ω ) (1.42)

and so

QN ,+
v (X N

v ) < dθ2QN ,+
ω (X N

ω ). (1.43)

Thus, if dθ2 < 1 the Banach-Cacciopoli’s fixed point lemma can be applied and

the iteration of (1.43) goes to zero when N → 0. This concludes the proof.

1.4 Proof of Theorem 1.2.1

At this point, the proof of the theorem is quite simple. Consider

X N ,+
v := log

PN ,+
β,v

(
η(0) =+)

P
N ,+
β,v

(
η(0) =−)

 . (1.44)

We have to show that X N ,+
0 goes to zero only if dθ ≤ 1.

The boundary condition is fixed, thus (1.44) is no more a random variable and to

control iteration of numbers is much more simpler.

Lemma 1.3.1 holds also in this case,

X N ,+
v = ∑

ω:v→ω

g
(
X N ,+
ω

)
(1.45)

and the addendums of the sum on the right hand side are all equal due to symmetry

of the tree. We have:

X N ,+
v = d g

(
X N ,+
ω

)
. (1.46)

The function g is concave with g (0) = 0 and the supremum of the first derivative

is g ′(0) = θ. This implies that (3.35) has a unique fixed point only when dθ ≤ 1.

Moreover when dθ ≤ 1, (3.35) is a contraction (see fig. 1.2, and 1.3). This proves the

theorem.
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Figure 1.2: For dθ ≤ 1 there is a unique attractive stable point.
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Figure 1.3: There are three fixed points when dθ > 1.
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Chapter 2

Purity transition on Galton-Watson trees (I):

the Potts model

2.1 Introduction

In this chapter we give the first version of the proof of Theorem 0.0.1. We consider

the free boundary condition Gibbs measure of the Potts model on a random tree.

We provide an explicit temperature interval below the ferromagnetic transition tem-

perature for which this measure is extremal, improving older bounds of Mossel and

Peres. In information theoretic language extremality of the Gibbs measure corre-

sponds to non-reconstructability for symmetric q-ary channels. We assume this

point of view in the next chapter. The bounds for the corresponding threshold value

of the inverse temperature are optimal for the Ising model and appear to be close to

the Kesten-Stigum bounds on d-ary trees up to a factor of 0.0150 in the case q = 3

and 0.0365 for q = 4, independently of d . See the discussion in the last chapter for

details.

Our proof uses an iteration of random boundary entropies from the outside of

the tree to the inside, along with a symmetrization argument.
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2.2. The Potts model on trees

2.2 The Potts model on trees

We denote by T N a finite tree rooted at 0 of depth N . Then the free b.c. Potts mea-

sure on T N is the probability distribution PN that assigns to a configuration ηT N =
(η(v))v∈T N ∈ {1,2, . . . , q}T N

the probability weights

P
β

N = 1

Z

∏
v→ω

e2βδ(η(v),η(ω)) . (2.1)

Here δ(·,·) is the Kronecker’s delta. The sum is over all edges (v, w) of the tree T N and

Z is the partition function that makes the r.h.s. a probability measure.

The free b.c. Potts measure on an infinite tree T is by definition the weak limit

P = limN↑∞PT N when T N is an exhaustion of T . P is identical to what is called the

symmetric chain on q-symbols in the context of the reconstruction problems in [12].

This chain has one parameter, namely the probability to change the symbol that is

transmitted to any of the q − 1 others, which is given by 1
e2β+q−1

. Actually,the ex-

tremality for this model

(i.e. limN→∞E|PβN (η(0) = i )−PβN (η(0) = j )| = 0, ∀ i , j = 1, . . . , q) is equivalent to the

solvability of the Reconstruction Problem with a q-ary symmetric channel where,

the probability of changing the signal passing from v to ω is

M(η(v) = i ,η(ω) = i ) = 1− (q −1)l , (2.2)

M(η(v) = i ,η(ω) = j ) = l (2.3)

with l = 1
e2β+q−1

.

2.3 A criterion for extremality on random trees

Consider a random tree T with vertices i and number of children at the site i given

by di . We choose di to be independent random variables with the same distribution

Q. We use the symbol Q also to describe the expected value. As is well known these

appear as local approximations of random graphs which has newly emphasized their

interest [16]. Our results however are already interesting in the case of regular trees

where every vertex i has precisely d children.
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Chapter 2. Purity transition on Galton-Watson trees (I): the Potts model

Our main result, formulated for a random tree, is the following. Write

P = {(pi )i=1,...,q , pi ≥ 0 ∀i ,
q∑

i=1
pi = 1}

for the simplex of Potts probability vectors.

Theorem 2.3.1 The free boundary condition Gibbs measure P is extremal, for Q-a.e.

tree T when the condition Q(d0) 2θ
q−(q−2)θ c̄(β, q) < 1 is satisfied. Here,

c̄(β, q) := sup
p∈P

∑q
i=1(qpi −1)log(1+ (e2β−1)pi )∑q

i=1(qpi −1)log qpi
. (2.4)

Remark : It appears that the supremum over P is achieved at the symmetric point
1
q (1,1, . . . ,1) only in the Ising model q = 2. This implies the sharpness of the bound

in the Ising case, see also the discussion at the end of the thesis.

Recall that Mossel and Peres proved for d-ary trees the bound

Theorem 2.3.2 Consider a tree T with degree d. For

d
2θ2

q − (q −2)θ
< 1, (2.5)

with θ = tanhβ, the free boundary condition Gibbs measure is extremal.

The same type of result holds for random trees:

Theorem 2.3.3 ForQ(d0) 2θ2

q−(q−2)θ < 1, the free boundary condition Gibbs measure PT

is extremal, for Q-a.e. tree T .

We recover it from our bounds when we use the estimate c̄(β, q) ≤ θ. This estimate

we see indeed numerically. Moreover, numerically c̄(β, q) seems to decrease mono-

tonically in q at fixed β.

Note also the bounds of Martinelli et al. [20] (see Theorem 9.3., Theorem 9.3.’

Theorem 9.3”) who give a nice criterion for non-reconstruction involving a Dobrushin

constant of the corresponding Markov specification which however give worse esti-

mates in the Potts model.
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Let us put this result in perspective. For the purpose of the discussion we spe-

cialize to the case of the regular tree with d children. Denote by PN ,k the measures

on T N obtained by putting the boundary condition k to all Potts-spins at the outer

boundary, and denote by Pk the corresponding limiting measures on T .

Absence of ferromagnetic order (uniqueness of the Gibbs measure) can be de-

tected by the fact that the distribution of the spin η0 at the origin under the infinite

volume measure Pk is the equidistribution, independently of the boundary condi-

tion k. This condition is easy to obtain by considering a simple one-dimensional

recursion of numbers (instead of measures). For more details see Section 3.13. Ab-

sence of ferromagnetic order in particular implies purity of the free b.c. state. In the

language of the reconstruction problem this means non-solvability and as such the

condition is mentioned as Proposition 4 in [12].

Let us compare with opposite results: It is known as the so-called Kesten-Stigum

bound [3] that dλ2(θ, q)2 > 1 implies reconstructability (i.e. non-extremality of the

free boundary condition measure). Here λ2(θ, q) is the second eigenvalue of the

transition matrix that produces the free b.c. Potts model by broadcasting from the

origin to the boundary; it is decreasing in q at fixed θ, and increasing in θ at fixed

q . This is intuitively clear: the bigger the number of states q and the smaller the in-

verse temperature, the easier it is to forget about the information put at the bound-

ary. Moreover it is proved as Theorem 2 in [12] that when one fixes d and a value of

dλ2(θ, q) ≡ λ > 1, for q large enough the reconstruction problem is solvable for the

corresponding value of θ.

Now, our method of proof is based on controlling recursions for the probability

distributions at roots of subtrees from the outside to the inside of a tree. These are

recursions on log-likelihood ratios of Potts probability vectors for the root of sub-

trees, and these ratios are random w.r.t. the boundary condition (which is chosen

according to the free b.c. condition measure).

Understanding recursions for probability distributions (needed to investigate the

purity of the free b.c. state) is much less straightforward than controlling recursions

for real numbers (needed for investigating the existence of ferromagnetic order). We

prove convergence to a Dirac-distribution by controlling the boundary relative en-

tropy, generalizing from the approach of [14] for the Ising model. Novelties appear

for the Potts model, a key point being proper symmetrization to bring out the con-

stant (4.4), beginning with Lemma 2.4.2.
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2.4 Proof of Theorem 2.3.1

To show the triviality of a measureµ on the tail sigma-algebra it suffices to show that,

for any fixed cylinder event A we have

lim
N↑∞

µ
∣∣µ(A|TN )−µ(A)

∣∣= 0, (2.6)

where TN is the sigma-algebra created by the spins that have at least distance N to

the origin (see [4] Proposition 7.9).

We denote by T N the tree rooted at 0 of depth N . The notation T N
v indicates

the sub-tree of T N rooted at v obtained from “looking to the outside" on the tree

T N . We denote byPN ,ξ
v the correponding Potts-Gibbs measure on T N

v with boundary

condition on ∂T N
v given by ξ = (ξi )i∈∂T N

v
. We denote by PN

v the correponding Potts-

Gibbs measure on T N
v with free boundary conditions, as in (6.33).

We are going to show that the distribution of the probabilities to see a value s at

the origin, obtained by putting a boundary condition ξ at distance N that is chosen

according to the free measure P itself, converges to the equidistribution in probabil-

ity. This reads

lim
N↑∞

P
(
ξ :

∣∣∣PN ,ξ(η(0) = s)− 1

q

∣∣∣≥ ε)→ 0. (2.7)

This then implies (2.6).

Sometimes we write

πN
v =

(
PN ,ξ(η(v) = s)

)
s=1,...,q

(2.8)

To achieve (3.48) it is more convenient to look at the probability distribution for

the spin at the root v obtained with the boundary condition ξ in terms of the “log-

likelihood ratios" defined by

X j
k (v ;ξ) := log

P
N ,ξ
v (η(v) = j )

P
N ,ξ
v (η(v) = k)

, (2.9)

where 1 ≤ j 6= k ≤ q . Ultimately we are interested to show the convergence of these

quantities at v = 0 to zero, for all pairs j ,k, in P-probability, as the depth N of the

tree tends to infinity.
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We denote the measure at the boundary at distance N from the root on the tree

emerging from v , which is obtained by conditioning the spin in the site v to take the

value to be j , by

QN , j
v (ξ) :=PN

v (η : η|∂T N
v
= ξ|η(v) = j ). (2.10)

Definition 2.4.1 Denote the relative entropy of the boundary measures between the

states obtained by conditioning the spin at v to be 1 respectively 2, by

m(N )
v = S(QN ,2

v |QN ,1
v ) =

∫
QN ,2

v (dξ) log
QN ,2

v (ξ)

QN ,1
v (ξ)

. (2.11)

Here and in the sequel denote by w the children of v , indicated by the symbol

v → w .

Lemma 2.4.2 The boundary relative entropy can be written as an expected value w.r.t.

the open boundary condition Gibbs measure P in the form

S(QN ,2
v |QN ,1

v ) = 1

q −1

∫
P(dξ)

q∑
i=1

ϕ
(
qPN ,ξ

v (η(v) = i )
)

, (2.12)

with ϕ(x) = (x −1)log x.

Proof: In the first step we express the relative entropy as an expected value

S(QN ,2
v |QN ,1

v ) = q
∫
P(dξ)g

(
P

N ,ξ
v (η(v) = 2),PN ,ξ

v (η(v) = 1)
)
, (2.13)

with

g (p2, p1) = p2 log
p2

p1
. (2.14)

To see this, we use that

dQN ,2
v

dPN
v

(ξ) = qPN ,ξ
v (η(v) = 2), (2.15)

by the definition of the conditional probability and the fact that the marginal of P at

any site is the equidistribution.

In the next step we use the invariance ofPunder permutation of the Potts-indices

to write
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S(QN ,2
v |QN ,1

v ) = q
∫
P(dξ)(Rg )

(
P

N ,ξ
v (η(v) = 1),PN ,ξ

v (η(v) = 2), . . . ,PN ,ξ
v (η(v) = q)

)
,

(2.16)

where R is the symmetrization operator acting on functions f (p1, . . . , pq ) of Potts-

probability vectors by

(R f )(p1, p1, . . . , pq ) = 1

q !

∑
π

f (pπ(1), pπ(2), . . . , pπ(q)), (2.17)

where π runs over the permutations of {1, . . . , q}.

One verifies that

(Rg )(p1, p1, . . . , pq ) = 1

q(q −1)

q∑
i=1

(qpi −1)log qpi , (2.18)

which proves the lemma. 2

2.4.1 Recursions for the boundary entropy for subtrees

Proposition 2.4.3 The boundary relative entropy m(N )
v at the site v obeys the follow-

ing linear recursive inequalities in terms of the values at the children w, given by

m(N )
v ≤ 2θ

q −θ(q −2)
c̄(β, q)

∑
w :v→w

m(N )
w . (2.19)

Remark: Noting that Q
N , j
v (ξ)

QN ,k
v (ξ)

= X j
k (v ;ξ) we may write

m(N )
v =

∫
QN ,2

v (dξ)X 2
1 (v ;ξ). (2.20)

Remark: Suppose that we are considering a spherically symmetric tree. This

means that the number of offspring depends only on the generation, e.g. dv = d|v |
where |v | is the distance of v to the origin (that is the length of the unique path from

the origin to v). Then m(N )
v = m(N )

|v | and so

m(N )
k ≤ 2θ

q −θ(q −2)
c̄(β, q)dk m(N )

k+1. (2.21)

So limN↑∞ m(N )
0 = 0 is implied by

∑∞
k=1 log(cdk ) =−∞ with c = 2θ

q−θ(q−2) c̄(β, q).
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Proof of Theorem 1.1 Taking expectation w.r.t. the random graph we note that

Em(N )
v = Em(N )

|v | . Now, using Wald’s inequality we have

Em(N )
k ≤ 2θ

q −θ(q −2)
c̄(β, q)Ed0E(m(N )

k+1). (2.22)

From this follows that limN↑∞Em(N )
0 = 0 using the uniform boundedness in N , Em(N )

N−1 ≤
CE(d0). This can be seen from Lemma 2.4.4 a few lines below. 2

To prove Proposition 2.4.3 at first a recursion for the log-likelihood ratios X j
k (v ;ξ)

has to be derived, for fixed finite tree of depth N from the outside to the inside. This

iteration is standard, but we include its derivation for the convenience of the reader.

The proof is quite similar to that for the Ising model. In the following we omit the

dependence on the fixed boundary condition ξ in the notation.

Lemma 2.4.4 For all indices 1 ≤ j ,k ≤ q we have

X j
k (v) = ∑

ω:v→w
log

∑
i 6=k, j exp[X i

k (w)]+1+exp(2β)exp[X j
k (w)]∑

i 6=k, j exp[X i
k (w)]+exp(2β)+exp[X j

k (w)]
. (2.23)

Proof: Note that the Potts-measure PN ,ξ
v is proportional to the weight

W (η) = ∏
x→y,x≥v

exp[2βδη(x),η(y)], (2.24)

where the product is taken over the neighboring vertices coming after v looking from

the root of the tree. The normalization factor will be Z−1
v .

We want to rewrite X j
k (v) as a function of X j

k (w) where w are the children of v . The

key observation is that

W (ηv ) = ∏
w :v→w

W (ηw )exp[2βδη(v),η(w)], (2.25)

where we have written ηv for the restriction of η to the sub-tree T N
v . Now,

P
N ,ξ
v (η(v) = j ) = Z−1

v

∏
w :v→w

∑
ηw

W (ηw )exp[2βδ j ,η(w)]

= Z−1
v

∏
w :v→w

Zw

q∑
i=1

Z−1
w exp[2βδ j ,i ]

∑
ηw :η(w)=i

W (ηw )

= Z−1
v

∏
w :v→w

Zw

q∑
i=1

exp[2βδ j ,i ]PN ,ξ
w (η(w) = i ). (2.26)
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The same computation can be done for PN ,ξ
v (η(v) = k) to obtain:

P
N ,ξ
v (η(v) = k) = Z−1

v

∏
w :v→w

Zw

q∑
i=1

exp[2βδk,i ]PN ,ξ
w (η(w) = i ). (2.27)

Now consider the ratio and then divide everything by PN ,ξ
w (η(w) = k):

P
N ,ξ
v (η(v) = j )

P
N ,ξ
v (η(v) = k)

= ∏
w :v→w

∑q
i=1 exp[2βδ j ,i ]PN ,ξ

w (η(w) = i )∑q
i=1 exp[2βδk,i ]PN ,ξ

w (η(w) = i )
=

= ∏
w :v→w

∑
i 6=k, j

P
N ,ξ
w (η(w)=i )

P
N ,ξ
w (η(w)=k)

+1+exp(2β)P
N ,ξ
w (η(w)= j )

P
N ,ξ
w (η(w)=k)∑

i 6=k, j
P

N ,ξ
w (η(w)=i )

P
N ,ξ
w (η(w)=k)

+exp(2β)+ P
N ,ξ
w (η(w)= j )

P
N ,ξ
w (η(w)=k)

, (2.28)

which proves the result. 2

2.4.2 Controlling the recursion relation for the boundary entropy

Lemma 2.4.5

X j
i (v) = ∑

ω:v→w

[
u

(
P

N ,ξ
v (η(v) = j )

)
−u

(
P

N ,ξ
v (η(v) = i )

)]
, (2.29)

where

u(p1) = log(1+p1(e2β−1)). (2.30)

Proof: Remember the recursion given in Lemma 2.4.4. Now re-express the X ’s

by the p-variables and use the fact that they form a probability vector. 2

Using this we may derive the following equality on the iteration of the boundary

entropy.

Lemma 2.4.6

QN ,2
v X 2

1 (v) = 2θ

q − (q −2)θ

∑
ω:v→ω

QN ,2
ω

[
u

(
P

N ,ξ
ω (η(ω) = 2)

)
−u

(
P

N ,ξ
ω (η(ω) = 1)

)]
. (2.31)

Proof: As the second piece of information next to Lemma 2.4.5 which is needed

to understand the iteration for the boundary relative entropy m(N )
v we must see how
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2.4. Proof of Theorem 2.3.1

the boundary measure QN , j
v (dξ), obtained by conditioning at v , relates to the bound-

ary measures obtained by conditioning at the children, denoted by w .

For the Potts model we have

QN , j
v = ∏

v→ω

[
exp(2β)

(q −1)+exp(2β)
QN , j
ω + 1

(q −1)+exp(2β)

∑
i 6= j

QN ,i
ω

]

= ∏
v→ω

[
1+θ

q − (q −2)θ
QN , j
ω + 1−θ

q − (q −2)θ

∑
i 6= j

QN ,i
ω

]
. (2.32)

Let us make this computation explicit.

QN , j
v (ξ) =PN

v

(
η : η|∂T N

v
= ξ|η(v) = j

)
=
P

(
η : η|∂T N

v
= ξ,η(v) = j

)
PN

v

= Z−1
v

∏
ω:v→ω Zω

∑q
i=1 exp(2βδi , j )PN ,ξ

w
(
η(ω) = i

)
Z−1

v
∏
ω:v→ω Zω

∑q
i=1 exp(2βδi , j )PN

ω

(
η(ω) = i

)
= ∏
ω:v→ω

∑q
i=1 exp(2βδi , j )PN ,ξ

ω

(
η(ω) = i

)
(q −1)PN

ω

(
η(ω) = i

)+exp(2β)PN
ω

(
η(ω) = i

)

= ∏
ω:v→ω

q∑
i=1

exp
(
2βδi , j

)
(q −1)+exp

(
2β

)PN
ω

(
η : η|∂T N

ω
= ξ|η(ω) = i

)

= ∏
ω:v→ω

[
exp(2β)

(q −1)+exp(2β)
QN , j
ω (ξ)+ 1

(q −1)+exp(2β)

∑
i 6= j

QN ,i
ω (ξ)

]
. (2.33)

Thus, from (3.43), to control the iteration we must look at the terms

[
1+θ

q − (q −2)θ
QN ,2
ω + 1−θ

q − (q −2)θ
QN ,1
ω + 1−θ

q − (q −2)θ

∑
i≥3

QN ,i
ω

]
[

u
(
P

N ,ξ
ω (η(ω) = 2)

)
−u

(
P

N ,ξ
ω (η(ω) = 1)

)]
.

(2.34)

We first note that, by symmetry under the measure QN ,i
ω , for i = 3, . . . , q , the corre-

sponding terms in the sum vanish. Now we use the permutation symmetry of the

Potts indices to see the proof. 2
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Next we use the following representation.

Lemma 2.4.7

QN ,2
v X 2

1 (v) = 2θ

q − (q −2)θ

∑
ω:v→ω

∫
P(dξ)h

(
P

N ,ξ
ω (η(ω) = 2),PN ,ξ

ω (η(ω) = 1)
)
, (2.35)

with

h(p2, p1) = qp2(u(p2)−u(p1)). (2.36)

Proof: This follows as in the Proof of Lemma 2.4.2 by plugging in the Radon-

Nikodym derivative of QN ,2
w w.r.t. the open b.c. measure.

2

With these preparations we can now finish the proof of the main proposition.

Proof of Proposition 2.4.3: Recalling the definition of the symmetrization oper-

ator (2.17) we obtain

QN ,2
v X 2

1 (v) = 2θ

q − (q −2)θ

∑
w :v→w

∫
P(dξ)(Rh)

(
P

N ,ξ
w (η(w) = 1), . . . ,PN ,ξ

w (η(w) = q)
)
,

(2.37)

where

(Rh)(p1, . . . , pq ) = 1

q −1

q∑
i=1

(qpi −1)u(pi ). (2.38)

From here follows that

QN ,2
v X 2

1 (v) = 2θ

q − (q −2)θ

∑
ω:v→ω

∫
P(dξ)H

(
P

N ,ξ
ω (η(ω) = 1), . . . ,PN ,ξ

ω (η(ω) = q)
)
, (2.39)

where

H(p1, . . . , pq ) = 1

q −1

q∑
i=1

(qpi −1)ũ(pi ), (2.40)

with

ũ(p1) = log
1+p1(e2β−1)

1+ 1
q (e2β−1)

. (2.41)
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2.5. The ferromagnetic ordering

From (2.39) we have the linear recursion relation

mN (v) =QN ,2
v X 2

1 (v)

≤ 2θ

q − (q −2)θ
c̄(β, q)

∑
ω:v→ω

∫
P(dξ)Rg

(
P

N ,ξ
ω (η(w) = 1), . . . ,PN ,ξ

w (η(ω) = q)
)

≤ 2θ

q − (q −2)θ
c̄(β, q)

∑
ω:v→w

mN (ω) (2.42)

and from here the result of the proposition follows. 2

2.5 The ferromagnetic ordering

Let us discuss the threshold value for the ferromagnetic ordering (where the infinite

volume states with uniform boundary conditions cease to be different).

Observe that for a boundary condition ξ that is all q we have that X j
k (v) = 0 for all

1 ≤ i , j ≤ q −1, and further that X q
i (v) = X q

1 (v) for all i = 1, . . . , q −1. So the iteration

runs on the one-dimensional quantity X q
1 (v) and reads

X q
1 (v) = ∑

ω:v→w
log

q −1+exp(2β)exp[X q
1 (w)]

q −2+exp(2β)+exp[X q
1 (w)]

=:
∑

ω:v→w
ψ(X q

1 (w)).

(2.43)

For a regular tree with d children we have

X q
1 (k) = dψ(X q

1 (k +1)). (2.44)

We have to distinguish now the cases of q = 2 and q ≥ 3. For q = 2 we see by

computation of the second derivative that the function ψ is concave. This means

that the critical value β for which a positive solution X ceases to exist is given by

1 = dψ′(0).

The derivative at X = 0 (which we state now for general q) reads

∂

∂X
ψ(X )

∣∣
X=0=

e2β−1

e2β+q −1
= 2θ

q − (q −2)θ
. (2.45)
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Chapter 2. Purity transition on Galton-Watson trees (I): the Potts model

Hence, the critical value in the Ising case is given by d tanhβ = 1, for a regular tree

where every vertex has d children.

We note that this quantity equals λ2, the second eigenvalue of the transition ma-

trix associated to the model.

Let us now turn to the Potts model with q ≥ 3. A computation shows thatψ"(0) >
0 for β> 0 and q ≥ 3, and hence the function ψ is not concave. This reflects the fact

that the transition at the critical point where a positive solution ceases is a first order

transition, where the nonzero solution is bounded away from zero.

For a regular tree with d children we can derive the transition value β(q,d) as

follows: We must have 1 = dψ′(X ∗), meaning that the function ψ touches the line

X with the same slope. This equation translates into 1
d = ax

q−1+ax − x
q−2+a+x in the

variables a = e2β, x = exp[X ∗]. The fixed point equation itself reads x
1
d = q−1+ax

q−2+a+x .

From these two equations the critical values can be derived numerically for any

d , q . We note moreover that, for the special case of a binary tree d = 2, the fixed point

equation is cubic in the variable y := x
1
2 . The fixed point equation is equivalent to

y(q − 2+ a + y2)− ((q − 1)+ ay2) = 0. We already know one root, it is y = 1, so we

can produce a quadratic equation by polynomial division. Writing y = 1+u we get

the solutions u = 1
2 (−3+a−√

5−2a +a2 −4q) and u = 1
2 (−3+a+√

5−2a +a2 −4q).

The solution ceases to exist when the argument of the squareroot becomes negative

which results in a critical value a = 1+2
√

q −1, or β(d = 2, q) = 1
2 log(1+2

√
q −1).

We note the numerical values β(d = 2, q = 3) = 0.671227, β(d = 2, q = 4) = 0.748034.

The same type of reasoning can be used for d = 3 where the fixed point equation

requires the solution of a fourth order equation in z = x
1
3 , which can be reduced to a

third order equation dividing out the root z = 1.
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Chapter 3

Purity transition on Galton-Watson trees (II):

entropy is Lyapunov

3.1 Introduction

In this chapter we give an alternative proof for the purity threshold for the Potts

model. Actually, here, the set up is more general, the proof turn out to be simpler

and the result of the previous chapter is obtained as a special case. The method pre-

sented here permits to treat asymmetric channels too, with very good bounds for

strongly asymmetric chains.

We look to the problem from the point of view of Markov chains indexed by the tree.

We give a criterion of the form Q(d0)c(M) < 1 for the non-reconstructability of tree-

indexed q-state Markov chains obtained by broadcasting a signal from the root with

a given transition matrix M . Here c(M) is an explicit constant defined in terms of

a q −1-dimensional variational problem over symmetric entropies, and Q(d0) is the

expected number of offspring on the Galton-Watson tree.

Our theorem holds for possibly non-reversible M and its proof is based on a gen-

eral “Recursion Formula” for expectations of a symmetrized relative entropy func-

tion, which invites their use as a Lyapunov function. In the case of the Potts model,

the present theorem reproduces earlier results, with a simplified proof.
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3.2. Purity transition for q-state Markov chain on trees

3.2 Purity transition for q-state Markov chain on trees

As usual, we consider an infinite rooted tree T having no leaves. For v,ω ∈ T we write

v →ω, ifω is the child of v , and we denote by |v | the distance of a vertex v to the root.

We write T N for the subtree of all vertices with distance ≤ N to the root.

To each vertex v there is associated a (spin-) variable η(v) taking values in a finite

space which, without loss of generality, will be denoted by {1,2, . . . , q}. Our model

will be defined in terms of the stochastic matrix with non-zero entries

M = (M(v,ω))1≤v,ω≤q . (3.1)

By the Perron-Frobenius theorem there is a unique single-site measureα= (α( j )) j=1,...,q

which is invariant under the application of the transition matrix M , meaning that∑q
i=1α(i )M(i , j ) =α( j ).

The object our study is the corresponding tree-indexed Markov chain in equilib-

rium. This is the probability distribution P on {1, . . . , q}T whose restrictions PT N to

the state spaces of finite trees {1, . . . , q}T N
are given by

PT N (ηT N ) =α(η(0))
∏
v,ω:

v→ω

M(η(v),η(ω)) . (3.2)

The notion equilibrium refers to the fact that all single-site marginals are given by

the invariant measure α.

Now, our present aim is to provide a general criterion, depending on the model

only in a local (finite-dimensional) way, which implies the extremality of P, and

which works also in regimes of non-uniqueness.

To formulate our result we need the following notation.

We write for the simplex of length-q probability vectors

P = {(p(i ))i=1,...,q , p(i ) ≥ 0 ∀i ,
q∑

i=1
p(i ) = 1} (3.3)

and we denote the relative entropy between probability vectors p,α ∈ P by S(p|α) =∑q
i=1 p(i ) log p(i )

α(i ) . We introduce the symmetrized entropy between p and α and write

L(p) = S(p|α)+S(α|p) = (p −α) log
d p

dα
. (3.4)

While the symmetrized entropy is not a metric (since the triangle inequality fails) it

serves us as a “distance” to the invariant measure α.
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Let us define the constant, depending solely on the transition matrix M , in terms

of the following supremum over probability vectors

c(M) = sup
p∈P

L(pM rev)

L(p)
, (3.5)

where M rev(i , j ) = α( j )M( j ,i )
α(i ) is the transition matrix of the reversed chain. Note that

numerator and denominator vanish when we take for p the invariant distribution

α. Consider a Galton-Watson tree with i.i.d. offspring distribution concentrated on

{1,2, . . . } and denote the corresponding expected number of offspring by Q(d0).

Here is our main result.

Theorem 3.2.1 IfQ(d0)c(M) < 1 then the tree-indexed Markov chainP on the Galton-

Watson tree T is extremal for Q-almost every tree T . Equivalently, in information

theoretic language, there is no reconstruction.

Remark : The computation of the constant c(M) for a given transition matrix M

is a simple numerical task. Note that fast mixing of the Markov chain corresponds to

small c(M). See the next chapter for numerical estimates of c(M) in the Potts model

case.

3.3 Applications: two special models

Here we give two applications of the general Theorem 3.2.1, computing the constant

c(M) for two special models; namely the Potts model and asymmetric binary chan-

nels. For the Potts case we recover the threshold of the previous chapter, while for

asymmetric binary channels we see that the entropy method permits to improve the

bound appearing in [11].

3.3.1 Potts model

The Potts model with q states at inverse temperature β is defined by the transition

matrix

Mβ =
1

e2β+q −1


e2β 1 1 . . . 1

1 e2β 1 . . . 1

1 1 e2β . . . 1

. . .

. (3.6)
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This Markov chain is reversible for the equidistribution. In the case q = 2, the Ising

model, one computes c(Mβ) = (tanhβ)2 which yields the correct reconstruction thresh-

old.

Theorem 3.2.1 is a generalization of the main result given in our paper [18] for

the specific case of the Potts model. To see this connection we rewrite

c(Mβ) = e2β−1

e2β+q −1
c̄(β, q) (3.7)

and note that the main theorem of the previous chapter was formulated in terms of

the quantity

c̄(β, q) = sup
p∈P

∑q
i=1(qpi −1)log(1+ (e2β−1)pi )∑q

i=1(qpi −1)log qpi
. (3.8)

In fact, since for the Potts model

M rev(i , j ) = Mβ( j , i ) = Mβ(i , j ) (3.9)

and

pM rev(i ) =
(
e2β−1

)
p(i )+1

e2β+q −1
(3.10)

we have

L
(
pM rev)= q∑

i=1

(
pM rev(i )−α(i )

)
log qpM rev(i )

=
q∑

i=1

( (e2β−1)p(i )+1

e2β+q −1
− 1

q

)
log q

(e2β−1)p(i )+1

e2β+q −1

= e2β−1

e2β+q −1

q∑
i=1

(
p(i )− 1

q

)
log(1+ (e2β−1)p(i )). (3.11)

Now, dividing by the entropy L(p) we recover the constant c̄(β, q).

3.3.2 Asymmetric binary channels

Consider the following transition matrix for a Markov chain on a tree:
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M =
(

1−δ1 δ1

1−δ2 δ2

)
with d1,δ2 ∈ (0,1). (3.12)

The chain is not symmetric when 1−δ1 6= δ2.

We write

πN
v =πN ,ξ

v =
(
PN ,ξ(η(v) = s)

)
s=1,...,q

. (3.13)

Call (α(+),α(−)) the invariant distribution then to prove non reconstruction one has

to show that:

lim
N↑∞

P
(
ξ :

∣∣∣πN ,ξ(s)−α(s)
∣∣∣≥ ε)→ 0, (3.14)

for s =+,−, for all ε> 0. This is the same of

lim
N→∞

E
(∣∣∣α(+)πN ,ξ(−)−α(−)πN ,ξ(+)

∣∣∣)= 0, (3.15)

that is equivalent to non solvability. Infact

Lemma 3.3.1

lim
N→∞

1

2

∑
ξ∈η

∂T N

∣∣P(∂T N = ξ|η(0) = 1)−P(∂T N = ξ|η(0) =−1)
∣∣= 0 (3.16)

if and only if

lim
N→∞

E
(∣∣∣α(+)πN ,ξ(−)−α(−)πN ,ξ(+)

∣∣∣)= 0. (3.17)

Proof: Notice that

P(∂T N = ξ|η(0) = ·) = πN ,ξ(·)
α(·) P(ξ ∈ ∂T N ), (3.18)

and substitute in the formula for the total variation distance to obtain:

1

2

∑
ξ∈η

∂T N

∣∣P(∂T N = ξ|η(0) = 1)−P(∂T N = ξ|η(0) =−1)
∣∣

= 1

2α(+)α(−)
E
(∣∣∣α(+)πN ,ξ(−)−α(−)πN ,ξ(+)

∣∣∣) . (3.19)

2

Let us focus on regular trees. Mossel and Peres in [11] prove the following:
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3.3. Applications: two special models

Theorem 3.3.2 On a regular tree of degree d the Reconstruction Problem defined by

the matrix M (6.33) is unsolvable when

d
(δ2 −δ1)2

min{δ1 +δ2,2−δ1 −δ2}
≤ 1. (3.20)

It is known that there is reconstruction when d(δ2 −δ1)2 > 1, that, being λ2 =
δ2 −δ1 is the Kesten–Stigum bound . When δ1 +δ2 = 1, the matrix M is symmetric

and the Kesten–Stigum bound is sharp. Recently, Borgs, Chayes, Mossel and Roch in

[8], have shown with an elegant proof that the Kesten–Stigum threshold is tight for

roughly symmetric binary channels; i.e. when |1− (δ1 +δ2)| < δ, for some δ small.

Even if the threshold we give is very near to Kesten–Stigum bound when the chain

has a small asymmetry, by now, we are not able to recover this sharp estimate with

our method. However, the entropy method of Theorem 3.2.1 improve (3.20) for the

values of δ1 and δ2 giving a strongly asymmetric chain.

A computation gives:

α(+) = 1−δ2

1− (δ2 −δ1)
, α(−) = δ1

1− (δ2 −δ1)
, (3.21)

and

L(p) =
(

p − 1−δ2

1− (δ2 −δ1)

)
log

(
p

1−p

δ1

1−δ2

)
, (3.22)

L(pM rev) = (δ2 −δ1)

(
p − 1−δ2

1− (δ2 −δ1)

)
log

(
(1−δ2)+p(δ2 −δ1)

δ2 −p(δ2 −δ1)

δ1

1−δ2

)
. (3.23)

Thus:

c(M) = sup
p

(δ2 −δ1) log
(

(1−δ2)+p(δ2−δ1)
δ2−p(δ2−δ1)

δ1
1−δ2

)
log

(
p

1−p
δ1

1−δ2

) . (3.24)

It is quite simple to compute numerically the constant c(M); the numerical outputs

and the comparisons with (3.20) and the Kesten-Stigum bound are in tables 3.1 and

3.2. For the couples of values of (δ1.δ2) we checked the Kesten-Stigum upper bound

on the non-reconstruction thresholds for asymmetric chains are very near to ours.

More than those coming from [11] when they are not equal.
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δ1 = 0.3 KS FK MP

Kesten-Stigum Formentin-Külske Mossel-Peres

δ2 = 0.1 0.04 0.0579 0.1

δ2 = 0.2 0.01 0.0125 0.02

δ2 = 0.4 0.01 0.0107 0.143

δ2 = 0.5 0.04 0.0413 0.05

δ2 = 0.6 0.09 0.0907 0.1

δ2 = 0.7 0.16 0.16 0.16

δ2 = 0.8 0.25 0.2525 0.28

δ2 = 0.9 0.36 0.3787 0.45

Table 3.1: For δ1 = 0.3, the Kesten-Stigum upper bound on the non-reconstruction

thresholds for asymmetric chains are very near to ours. More than those coming

from [11] when they are not equal.

3.4 Proof of Theorem 3.2.1: entropy is Lyapunov

We denote by T N the tree rooted at 0 of depth N . The notation T N
v indicates the

sub-tree of T N rooted at v obtained from “looking to the outside" on the tree T N .

We denote by PN
v the measure on T N

v with free boundary conditions, or, equivalently

the Markov chain obtained from broadcasting on the subtree with the root v with the

same transition kernel, starting in α. We denote by PN ,ξ
v the correponding measure

on T N
v with boundary condition on ∂T N

v given by ξ = (ξi )i∈∂T N
v

. Obviously it is ob-

tained by conditioning the free boundary condition measure PN ,ξ
v to take the value ξ

on the boundary.

To control a recursion for these quantities along the tree we find it useful to make

explicit the following notion.

Definition 3.4.1 We call a real-valued function L on P a linear stochastic Lyapunov

function with center p∗ if there is a constant c such that

• L (p) ≥ 0 ∀p ∈ P with equality if and only if p = p∗;

• EL (πN
v ) ≤ c

∑
ω:v 7→ωEL (πN

ω ).
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3.4. Proof of Theorem 3.2.1: entropy is Lyapunov

δ1 = 0.7 KS FK MP

Kesten-Stigum Formentin-Külske Mossel-Peres

δ2 = 0.1 0.36 0.3787 0.45

δ2 = 0.2 0.25 0.2525 0.28

δ2 = 0.3 0.16 0.16 0.16

δ2 = 0.4 0.09 0.0907 0.1

δ2 = 0.5 0.04 0.0413 0.05

δ2 = 0.6 0.01 0.0107 0.0143

δ2 = 0.8 0.01 0.0125 0.02

δ2 = 0.9 0.04 0.0579 0.1

Table 3.2: For δ1 = 0.7, the Kesten-Stigum upper bound on the non-reconstruction

thresholds for asymmetric chains together with ours and those coming from [11].

Proposition 3.4.2 Consider a tree-indexed Markov chain P, with transition kernel

M(i , j ) and invariant measure α(i ).

Then the function

L(p) = S(p|α)+S(α|p) = (p −α) log
d p

dα
(3.25)

is a linear stochastic Lyapunov function with center α w.r.t. the measure P for the

constant (3.5).

Proposition 3.4.2 immediately follows from the following invariance property of

the recursion which is the main result of our paper.

Proposition 3.4.3 Recursion Formula for expected symmetrized entropy.∫
P(dξ)L(πN ,ξ

v ) = ∑
ω:v→ω

∫
P(dξ)L(πN ,ξ

ω M rev). (3.26)

Warning: Pointwise, that is for fixed boundary condition, things fail and one has

L(πN ,ξ
v ) 6= ∑

ω:v→ω

L(πN ,ξ
ω M rev) (3.27)

54
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in general. In this sense the proposition should be seen as an invariance property

which limits the possible behavior of the recursion.

Proof of Proposition 3.4.3. We need the measure on boundary configurations at

distance N from the root on the tree emerging from v which is obtained by condi-

tioning the spin in the site v to take the value to be j , namely

QN , j
v (ξ) :=PN

v (η : η|∂T N
v
= ξ|η(v) = j ). (3.28)

Then the double expected value w.r.t. to the a priori measure α between bound-

ary relative entropies can be written as an expected value w.r.t. P over boundary

conditions w.r.t. to the open b.c. measure of the symmetrized entropy between the

distributions at v and α in the following form.

Lemma 3.4.4∫
P(dξ) L(πN ,ξ

v )︸ ︷︷ ︸
symmetric entropy at v

=
∫
α(d x1)

∫
α(d x2)S(QN ,x2

v |QN ,x1
v )︸ ︷︷ ︸

boundary entropy

. (3.29)

Proof of Lemma 3.4.4: In the first step we express the relative entropy as an

expected value

S(QN ,x2
v |QN ,x1

v ) =
∫
P(dξ)

dπN
v

dα
(x2)

(
log

dπN
v

dα
(x2)− log

dπN
v

dα
(x1)

)
. (3.30)

Here we have used that, with obvious notations,

dQN ,x2
v

dPN
v

(ξ) = Pv (η(v) = x2,ξ)

Pv (η(v) = x2)Pv (ξ)
= dπN

v

dα
(x2). (3.31)

Further we have used that

log
dQN ,x2

v

dQN ,x1
v

= log
dπN

v

dα
(x2)− log

dπN
v

dα
(x1), (3.32)
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3.4. Proof of Theorem 3.2.1: entropy is Lyapunov

for x1, x2 ∈ {1, . . . , q}. This gives∫
α(d x1)

∫
α(d x2)S(QN ,x2

v |QN ,x1
v )

=
∫
P(dξ)

∫
α(d x2)

dπN
v

dα
(x2) log

dπN
v

dα
(x2)

−
∫
P(dξ)

∫
α(d x1)

∫
α(d x2)

dπN
v

dα
(x2)︸ ︷︷ ︸

1

log
dπN

v

dα
(x1)

=
∫
P(dξ)S(πN ,ξ

v |α)+
∫
P(dξ)S(α|πN ,ξ

v ) (3.33)

and finishes the proof of Lemma 3.4.4. 2

Let us continue with the proof of the Recursion Formula. We need two more

ingredients formulated in the next two lemmas. The first gives the recursion of the

probability vectors πN
v in terms of the values πN

ω of their children w , which is valid

for any fixed choice of the boundary condition ξ.

Lemma 3.4.5 Deterministic recursion.

πN
v ( j ) =

α( j )
∏

w :v→ω

∑
i

M( j ,i )
α(i ) π

N
ω (i )∑

k α(k)
∏
ω:v→ω

∑
i

M(k,i )
α(i ) π

N
ω (i )

, (3.34)

or, equivalently: for all pairs of values j ,k we have

log
dπN

v

dα
( j )− log

dπN
v

dα
(k) = ∑

ω:v→ω

log

∑
i

M( j ,i )
α(i ) π

N
ω (i )∑

i
M(k,i )
α(i ) π

N
ω (i )

. (3.35)

Proof: We have:

PN
v

(
η(v) = j ,∂T N

v = ξ)= ∑
ηv :η(v)= j

α( j )
∏

x≥v :x→y
M

(
η(x),η(y)

)
, (3.36)

where it is understood that η(v) = ξ(v) if v ∈ ∂T N . Thus, with the same notation:

P
N ,ξ
v

(
η(v) = j

)= Z−1
v α( j )

∑
ηv :η(v)= j

∏
x≥v :x→y

M
(
η(x),η(y)

)
, (3.37)
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Chapter 3. Purity transition on Galton-Watson trees (II): entropy is Lyapunov

with

Z−1
v =

q∑
k=1

α(k)PN
v

(
η(v) = k,∂T N

v = ξ) . (3.38)

We want to rewrite πN
v as a function of πN

ω where ω are the children of v . The key

observation is that:

PN
v

(
η(v) = j ,∂T N

v = ξ)=α( j )
∏

ω:v→ω

q∑
i=1

M( j , i )

α(i )
PN
ω

(
η(ω) = i ,∂T N

ω = ξ) . (3.39)

Once you have this the proof is simple. In fact:

πN
v ( j ) = Z−1

v PN
v

(
η(v) = j ,∂T N

v = ξ)

= Z−1
v α( j )

∏
ω:v→ω

Zω
q∑

i=1

M( j , i )

α(i )
Z−1
ω PN

ω

(
η(ω) = i ,∂T N

ω = ξ)︸ ︷︷ ︸
=πN

ω (i )

, (3.40)

and

Z−1
v =

q∑
k=1

α(k)
∏

ω:v→ω

Zω
q∑

i=1

M(k, i )

α(i )
πN
ω (i ). (3.41)
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3.4. Proof of Theorem 3.2.1: entropy is Lyapunov

To derive (3.39) write:

PN
v

(
η(v) = j ,∂T N = ξ)= ∑

ηv :η(v)= j
α( j )

∏
x≥v :x→y

M
(
η(x),η(y)

)

=α( j )
∑

ηv :η(v)= j

∏
ω:v→ω

M
(

j ,η(ω)
) ∏

x≥ω:x→y
M

(
η(x),η(y)

)
︸ ︷︷ ︸

:= f (ηω)

=α( j )
∑

ηω1 ,...,ωdv

f (ηω1 )× . . .× f (ηωdv
)

=α( j )

(∑
ηω1

f (ηω1 )

)
× . . .×

 ∑
ηωdv

f (ηωdv
)



=α( j )
∏

ω:v→ω

(∑
ηω

f (ηω)

)
=α( j )

∏
ω:v→ω

q∑
i=1

∑
ηω:η(ω)=i

f (ηω)

=α( j )
∏

ω:v→ω

q∑
i=1

M( j , i )

α(i )

∑
ηω:η(ω)=i

α(i )
∏

x≥ω:x→y
M

(
η(x),η(y)

)
︸ ︷︷ ︸

=PN
ω (η(ω)=i ,∂T N

v =ξ)

. (3.42)

2

We also need to take into account the forward propagation of the distribution

of boundary conditions from the parents to the children, formulated in the next

lemma.

Lemma 3.4.6 Propagation of the boundary measure.

QN , j
v = ∏

ω:v→ω

∑
i

M( j , i )QN ,i
ω . (3.43)
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Proof: This statement follows from the previous lemma. By definition:

QN , j
v (ξ) = PN

v

(
η(v) = j ,∂T N

v = ξ)
PN

v
(
η(v) = j

)

=
α( j )

∏
ω:v→ω

∑q
i=1

M( j ,i )
α(i ) P

N
ω

(
η(ω) = i ,∂T N

ω = ξ)
α( j )

= ∏
ω:v→ω

q∑
i=1

M( j , i )QN ,i
ω . (3.44)

2

Now we are ready to head for the Recursion Formula.

We use (3.32) and the second form of the statement of the deterministic recursion

Lemma 3.4.5 to write the boundary entropy in the form

S(QN , j
v |QN ,k

v ) =QN , j
v

∑
w :v→w

log

∑
i

M( j ,i )
α(i ) π

N
w (i )∑

i
M(k,i )
α(i ) π

N
w (i )

. (3.45)

Next, substituting the Propagation-of-the-boundary-measure-Lemma 3.4.6 and
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3.4. Proof of Theorem 3.2.1: entropy is Lyapunov

(3.31) we write

S(QN , j
v |QN ,k

v ) =QN , j
v

∑
ω:v→ω

log

∑
i

M( j ,i )
α(i ) π

N
ω (i )∑

i
M(k,i )
α(i ) π

N
ω (i )

= ∑
ω:v→ω

∑
l

M( j , l )QN ,l
ω log

∑
i

M( j ,i )
α(i ) π

N
ω (i )∑

i
M(k,i )
α(i ) π

N
ω (i )

= ∑
ω:v→ω

∫
dP(ξ)

∑
l

M( j , l )
πN
ω (l )

α(l )
log

∑
i

M( j ,i )
α(i ) π

N
ω (i )∑

i

M(k, i )

α(i )
πN
ω (i )︸ ︷︷ ︸

πN
ω Mrev(k)
α(k)

= ∑
ω:v→ω

∫
dP(ξ)

πN
ω M rev( j )

α( j )
log

πN
ω M rev( j )
α( j )

πN
ω M rev(k)
α(k)

, (3.46)

using in the last step the definition of the reversed Markov chain. Finally applying

the sum
∑

j ,k α( j )α(k) · · · to both sides of (3.46) we get the Recursion Formula. To

see this, note that the l.h.s. of (3.46) together with this sum becomes the r.h.s. of the

equation in Lemma 3.4.4. For the r.h.s. of (3.46) we note that

∑
j ,k
α( j )α(k)

πN
ω M rev( j )

α( j )
log

πN
ω M rev( j )
α( j )

πN
ω M rev(k)
α(k)

= L(πN
ω M rev). (3.47)

This finishes the proof of the Recursion Formula Proposition 3.4.3. 2

Finally, Theorem 3.2.1 follows from Proposition 3.4.2 with the aid of the Wald

equality with respect to the expectation over Galton-Watson trees since the contrac-

tion of the recursion and the Lyapunov function properties yield

lim
N↑∞

P
(
ξ :

∣∣∣πN ,ξ(s)−α(s)
∣∣∣≥ ε)→ 0, (3.48)

for all s, for all ε> 0, and this implies the extremality of the measure P. This ends the

proof of Theorem 3.2.1. 2
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Chapter 4

Conclusions

4.1 Introduction

In this last chapter we comment on the result. We give some numerical estimates for

our bound along with some conjectures. A comparison with other rigorous bound

[11, 21], but also with thresholds coming from algorithms [15, 22] is made for differ-

ent values of q . For example, for q = 3 and d small this comparison shows our bound

is very good: the best as of today [22].

4.2 Conjectures and comparisons

In this part of the thesis we have proven that the Free Gibbs Measure on a Galtson-

Watson tree is pure when

Q(d0)
2θ

q − (q −2)θ
c̄(β, q) < 1 (4.1)

where

c̄(β, q) := sup
p∈P

∑q
i=1(qpi −1)log(1+ (e2β−1)pi )∑q

i=1(qpi −1)log qpi
. (4.2)

Let us comment on the constant appearing, and provide the following conjec-

ture. Define

ĉ(β, q) := sup
p∈P,p2=···=pq

H(p1, . . . , pq )

Rg (p1, . . . , pq )
. (4.3)
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4.2. Conjectures and comparisons

Conjecture 4.2.1 We believe that ĉ(β, q) = c̄(β, q).

Figure 4.1: Numerical outputs of c̄ for different values of q .

We checked this numerically for small values of q . If the previous conjecture is

true, the two properties of c̄(β, q), namely, monotonicity in q and the bound θ (see

figure 4.1) carry over. These two properties are seen as follows.

Lemma 4.2.2

c̄(β, q) = sup
x∈Dq

ϕ̄(q, lq )(x), (4.4)

with the function

ϕ̄(q, lq )(x) =
log

(
1+lq x

1−lq (q−1)x

)
log

(
1+qx

1−q(q−1)x

) , (4.5)

with parameter λq = e2β−1
1+ 1

q (e2β−1)
on the range Dq =

[
− 1

q , 1
q(q−1)

]
with D(q−1) ⊃ Dq .

Remark: Notice that
lq

q =λ2.
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Proof: Change to new coordinates on the simplex of probability vectors (p1, . . . , pq )

given by

xi = pi − 1

q
for i = 1, . . . , q −1, (4.6)

take x = xi for i = 1, . . . , q −1 and use Conjecture 4.2.1 2

Lemma 4.2.3 For all q ≥ 3 we have that

ĉ(β, q) < ĉ(β, q −1) ≤ l2

2
= θ. (4.7)

Proof: We use that
∂ϕ̄(q, lq )(x)

∂q
< 0, (4.8)

for x ∈ Dq . This gives

ϕ̄(q, lq )(x) < ϕ̄(q −1, lq−1)(x) < ϕ̄(2, l2)(x), x ∈ Dq . (4.9)

2

Remark: Conjecture 4.2.1 (if true) makes it very simple to compute ĉ(β, q) nu-

merically, for every q . The problem of finding the sup would remain one dimen-

sional even when q grows.

Next, what about the sharpness of the constant? Could it be possible that The-

orem 2.3.1 in fact holds with the sharp value e2β−1
q−1+e2β replacing the constant c̄(β, q)?

In our approach such a conjecture would be based on looking at the Hessian of the

function

∂xi ,x jϕlq ,q (x1, . . . , xq−1)
∣∣

xk=0 ∀k= 4λ21i= j +2λ21i 6= j . (4.10)

Indeed, heuristically it should suffice to look at the quadratic approximation around

the equidistribution. This results in the rigorous lower bound c̄(β, q) ≥ lq

q = e2β−1
q−1+e2β =

λ2 which we recognize as the Kesten-Stigum bound. For the Ising model we have

equality, which is not true for q = 3.

Let us compare with the recent literature. In their paper [15] Montanari and

Mezard make the conjecture that the Kesten-Stigum bound is sharp for q ≤ 4, or

more precisely:
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Conjecture 4.2.4 (Mézard and Montanari 2006) Consider the Potts model with q sym-

bols on a d-ary tree and letλ2 = e2β−1
e2β+q−1

= 2θ
q−(q−2)θ , with θ = tanh(β), then if q ≤ 4 and

d < dmax , there is reconstruction if and only if dλ2
2 > 1.

This conjecture is based on extensive numerical simulations of the random recur-

sion. Moreover, the restriction on d comes from the limitation on the values of d

they can treat numerically and they actually think that dmax =+∞.

Let us compare our bound with this conjecture. First, how close are the Kesten-

Stigum bounds and our constants? We obtain numerically c̄(β, q) = e2β−1
q−1+e2β (1+ε(q))

with ε(3) = 0.0150 and ε(4) = 0.0365. If we specialize to a binary tree, and take advan-

tage of the possible temperature dependence of εwe obtainβc := sup{β,2 2θ
3−θ c̄(β,3) <

1} = 1.0434 for q = 3 and βc := sup{β,2 2θ
4−2θ c̄(β,4) < 1} = 1.1555 in the case q = 4.

After completion of the first draft of our work [18] Sly’s preprint [21] appeared

where he proves the following.

Theorem 4.2.5 (Sly 2008) When q ≤ 3, and d > dmi n , then Kesten-Stigum bound is

sharp, while the Kesten-Stigum bound is never sharp when q ≥ 5.

His method uses large degrees to justify quadratic expansions by means of Cen-

tral Limit Theorem (CLT) approximation and makes no statements for small degrees

where our estimates apply. So, he proves conjecture 6.33 partially; the case q = 4 is

critical along his line of reasoning and the condition d > dmi n is needed to prove a

concentration result via CLT.

Just the line of the Sly’s proof. He considers the iteration of the following quantity

xN := E
(

X +(N )− 1

q

)
(4.11)

where in our notation

X +(N ) :=P(
η(0) = 1|∂T N = η1(N )

)
. (4.12)

This is a random variable with respect to the boundary configuration conditioned

at the origin of the tree: the notation η1(N ) means a random configuration on ∂T N

64



Chapter 4. Conclusions

chosen among the configuration on the tree with η(0) = 1.

Then, he proves that xN ≥ 0 and that the condition

lim
N→+∞

xN = 0, (4.13)

is equivalent to non-reconstruction.

For xN small he has the following recursion (formula (1.1) on pag.6 of [21]):

xN+1 = kλ2
2xN + (1+o(1))

k(k −1)

2

q(q −4)

q −1
λ4

2x2
N . (4.14)

From this equation one can see why q = 4 is a critical case. When q ≤ 3, the sec-

ond term in (4.14) is negative and if, moreover, xN is sufficiently small when dλ2 ≤ 1,

then limN→∞ xN = 0. The CLT is necessary to show that this concentration holds; the

limitation on the number of children (d > dmi n) he can treat comes by this reason

(see the explanation subsequent to formula (1.1) on pag.6 of [21]).

So, his proof has two steps: first he shows that the expected distance form the uncon-

ditional distribution is below some small constant, and then, that below this small

constant that distance goes to zero when N grows. The first step makes the analysis

possible only the case of large degree trees.

Thus, for q ≤ 4 and d small, the problem of finding a sharp bound is still open.

Moreover no sharp bound is known when q ≥ 5.

In view of these considerations and results it is natural for us to conjecture that

the Kesten-Stigum bound holds Q-a.s. for small q , or more precisely:

Conjecture 4.2.6 For q ≤ 4 there is Q a.s. reconstruction if and only if

Q(d0)

(
2θ

q − (q −2)θ

)2

> 1. (4.15)

Let us compare our threshold with others bounds in literature for q = 3 and d

small. The Kesten-Stigmun bound says that for a tree of degree d , when dλ2
2 > 1

reconstruction holds. In table 4.1 we report some of them to compare. As usual, d

represent the number of children at each vertex of a regular tree, and Q(d) its mean

when we are considering a random tree.

In the following pictures we illustrate the situation arising from table 4.1:
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q=3 KS MP FK BM

Kesten-Stigum Mossel-Peres Formentin-Külske Bhatnagar-Maneva

d = 2 0.7071... 2
3 = 0.6̄ 0.7018... 0.69

d = 3 0.5773... 0.5302... 0.5731... 0.555

Q(d) = 2.5 0.6324... 0.5873... 0.6278... 0.61

Table 4.1: The Kesten-Stigum upper bound on the non-reconstruction threshold and

the values of λ2 up to which non-reconstruction has be shown for q = 3 in the ferro-

magnetic regime. The table is taken from [22].

non-rec.←−−−−−−
λMP

2

↓ non-rec.←−−−−−−
λB M

2

↓ non-rec.←−−−−−−
λF K

2

↓
λ2

↓ rec.−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→λ

non-rec.←−−−−−−
βc

MP

↓ non-rec.←−−−−−−
βc

B M

↓ non-rec.←−−−−−−
βc

F K

↓
βc

K S

↓ rec.−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→β

What can we say about large values of q ≥ 5? Montanari and Mezard [15] find

in all the finitely many test-cases of q ≥ 5 and d which they treat by simulations

that the Kesten-Stigum bound is not sharp. Let us therefore conclude by making a

comparison of our and their values in Tables 4.2 and 4.3 in the case q = 5, showing

closeness of our bounds with the simulation values also here.

q=5 εr βr =−0.5log
(

εr
(q−1)(1−εr )

)
λr = 1− q

q−1εr

d = 2 0.2348 1.2838 0.7065

d = 3 0.33881 1.0285 0.5765

d = 4 0.4008 0.8942 0.499

d = 7 0.4986 0.6955 0.37675

d = 15 0.5955 0.4998 0.255625

Table 4.2: Simulation results for the reconstruction thresholds by Mezard and Mon-

tanari [15]
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q=5 βc λc

d = 2 1.2425 0.6875

d = 3 0.98535 0.5526

d = 4 0.8520 0.473457

d = 7 0.65465 0.35095

d = 15 0.4640 0.2342

Table 4.3: Numerical thresholds coming from our bound of Theorem 2.3.1

Finally, as an application of our second method (entropy is Lyapunov) we de-

rive a threshold for non reconstruction in asymmetric channels, that even not tight

when the asymmetry is small [8] improves the known bounds for strongly asymmet-

ric channels [11], see tables below. In every case we checked they very near to the

Kesten–Stigum bound, that is the threshold for reconstruction.

δ1 = 0.3 KS FK MP

Kesten-Stigum Formentin-Külske Mossel-Peres

δ2 = 0.1 0.04 0.0579 0.1

δ2 = 0.2 0.01 0.0125 0.02

δ2 = 0.4 0.01 0.0107 0.0143

δ2 = 0.5 0.04 0.0413 0.05

δ2 = 0.6 0.09 0.0907 0.1

δ2 = 0.7 0.16 0.16 0.16

δ2 = 0.8 0.25 0.2525 0.28

δ2 = 0.9 0.36 0.3787 0.45

Table 4.4: For δ1 = 0.3, the Kesten-Stigum upper bound on the non-reconstruction

thresholds for asymmetric chains are very near to ours. More than those coming

from [11] when they are not equal.
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δ1 = 0.7 KS FK MP

Kesten-Stigum Formentin-Külske Mossel-Peres

δ2 = 0.1 0.36 0.3787 0.45

δ2 = 0.2 0.25 0.2525 0.28

δ2 = 0.3 0.16 0.16 0.16

δ2 = 0.4 0.09 0.0907 0.1

δ2 = 0.5 0.04 0.0413 0.05

δ2 = 0.6 0.01 0.0107 0.0143

δ2 = 0.8 0.01 0.0125 0.02

δ2 = 0.9 0.04 0.0579 0.1

Table 4.5: For δ1 = 0.7, the Kesten-Stigum upper bound on the non-reconstruction

thresholds for asymmetric chains together with ours and those coming from [11].

68



Part II

Uniform propagation of chaos and

fluctuation theorems in some spin-flip

models
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Introduction to Part II

In this part we deal with uniform propagation of chaos in some spin-flip models.

Propagation of chaos is a very well known phenomenon in stochastic processes

with mean field interaction. The aim of this part of the thesis is to provide sharp

estimate on propagation of chaos for some special models. No attempt of reaching

some generality will be made, although we believe our methods should apply well

beyond the cases considered here.

Somewhat in contrast with our aim of dealing with special models, here we set

up a general language to give an overview of the results proved in later sections. By

mean field stochastic process we mean a family x(N ) = (x(N )(t ))t≥0 with the following

features:

• x(N )(t ) = (x(N )
1 (t ), x(N )

2 (t ), . . . , x(N )
N (t )) is a Markov process with N real-valued

components;

• Consider the empirical measure

ρN (t ) := 1

N

N∑
k=1

δx(N )
k (t ), (4.16)

which is a random probability onR. Then (ρN (t ))t≥0 is a measure-valued Markov

process.

Although this is by no means a standard definition of mean field model, it captures

the basic features of the specific models we will consider.

Suppose we are given a model as above, and assume that the law of x(N )(0) is a

product measure with marginal λ, where λ is a fixed probability on R. We say that

propagation of chaos holds, if

71



Introduction to Part II

• for every t > 0, ρN (t ) converges in probability, as N ↑ ∞, to a deterministic

measure ρ(t );

• let i1, i2, . . . , im be fixed indices, and T > 0; then the stochastic process(
x(N )

i1
(t ), x(N )

i2
(t ), . . . , x(N )

im
(t )

)
t∈[0,T ]

(4.17)

converges in law, as N ↑ ∞, to a process (ξ1(t ), . . . ,ξm(t ))t∈[0,T ] with indepen-

dent and identically distributed components; moreover ξ1(t ) has law ρ(t ).

We then say that a fluctuation theorem holds if, for every h : R→ R continuous and

bounded and T > 0, the fluctuation process(p
N

[∫
hdρN (t )−

∫
hdρ(t )

])
t∈[0,T ]

(4.18)

converges weakly to a Gaussian process.

Mean field models, that are often given as dependent on various parameters, may

exhibit several types of phase transitions. In this thesis we only consider phase tran-

sitions that can be described in terms of the large time behavior of the limiting dis-

tribution ρ(t ), that we have introduced above in defining propagation of chaos. We

will say that the mean field model is subcritical if ρ(t ) converges, as t → +∞, to a

probability ρ(∞) that does not depend on the choice of the initial distribution λ.

Otherwise, we say the process is supercritical. The examples treated in this thesis

are subcritical for certain values of the parameters, and supercritical for others, and

therefore we say they exhibit phase transition.

The main object of this part of the thesis is the analysis of the time uniformity in

propagation of chaos and fluctuation theorems. More precisely:

• is the convergence (in law) of (x(N )
i1

(t ), x(N )
i2

(t ), . . . , x(N )
im

(t )) to (ξ1(t ), . . . ,ξm(t ))

uniform in t?

• Is the convergence of the fluctuations
(p

N
[∫

hdρN (t )−∫
hdρ(t )

])
toward their

Gaussian limit uniform in t?

Although it is reasonable to expect that such uniformity holds for subcritical models,

only few results in this direction can be found in the literature, concerning interact-

ing diffusions [23, 26].
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In this thesis we study time uniformity for two specific models, which exhibit

phase transition. The first model is the dynamical Curie-Weiss model, than can be

considered as the most basic mean field model. The second example is a model,

proposed recently in [24], in the context of credit risk in finance; it describes the time

evolution of finantial indicators for a network of interacting firms. The ferromagnetic-

type interaction is used to describe the effects of business relationships between

firms; it should be noted that, in applications to social sciences, the mean field as-

sumptions may be reasonable in many circumstances. From the more mathematical

point of view the model is not reversible, and an explicit expression for its invariant

measure is not known. The following considerations further motivate the study of

time uniformity in limit theorems.

• Many key financial quantities are based on normal approximations of empiri-

cal means (see e.g. [25, 24]), that are obtained as a combination of law of large

numbers and central limit theorems. In real financial applications N is given,

and it is of the order of few hundreds. Uniform limit theorems rule out the pos-

sibility that normal approximations deteriorate in time, becoming unreliable

for large times.

• Uniform propagation of chaos and fluctuation theorem provide the law of large

numbers and the central limit theorem for the empirical means with respect to

the invariant measure of the system, which is not known. Thus, results about

the statics of the system can be derived by the dynamics.

Although we have chosen to deal with two specific models, the method we use

appear to be rather general, and should be usable for other classes of models. A

substantial limitation of our results is that they are limited to the subcritical case or,

in statistical mechanical terms, to the high temperature regime. In the supercriti-

cal case, when the limiting flow ρ(t ) has multiple limit points as t → +∞, the dy-

namics for large but finite N may have a metastable behavior. This means that the

empirical measure ρN (t ) may fluctuate between different limit points, on a large,

N -dependent, time scale. Thus, a uniform propagation of chaos as in the definition

given above is not possible. Nevertheless, we believe uniform limit theorem could

be state also in the supercritical case, concerning for instance the distance between

ρN and the set of attractors for the evolution of ρ(t ). This interesting problem is not
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treated in this thesis.

The plan of this part is as follows. In the first chapter we introduce the Curie-

Weiss model and prove that in the subcritical regime uniform propagation of chaos

holds. In the proof are introduced the basic techniques we use also in the sequel.

The method used for the Curie-Weiss model works also for the non-reversible

model proposed in [24] to model credit risk in finance. The second chapter is ded-

icated to this spin-flip system. After having reviewed quickly the model and its fi-

nancial meaning we show that uniform propagation of chaos property holds also in

this case. In Chapters 3 we prove uniform fluctuation theorem for the Curie-Weiss

model.
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Chapter 5

Propagation of chaos for the Curie-Weiss mean

field model

5.1 Introduction

The Curie-Weiss model can be considered as the simplest mean-field model ex-

hibiting a phase transition. In this chapter we prove that the uniform propagation

of chaos property holds when the McKean-Vlasov equation for the system has an

unique stable equilibrium. Remember that the Mckean-Vlasov equation describes

the time evolution of the weak limit of the empirical average η̄ (see below) of the

spins when N grows to infinity.

The key point in the proof is that, in the subcritical regime, the L2 distance between

the empirical average and its weak limit remains uniformly small in time. The latter

fact implies uniform propagation of chaos.
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5.2. The Curie-Weiss model and uniform propagation of chaos

5.2 The Curie-Weiss model and uniform propagation

of chaos

Let η= (η1, . . . ,ηN ) be the N -spin system defined to be the Markov chain with gener-

ator acting on functions f : {−1,1}N →R, given by:

LN f (η) =
N∑

i=1
cω

(
i ,η

)∇ηi f (η) (5.1)

where

cω
(
i ,η

)= exp
(−βηi (η̄+ω)

)
with η̄= 1

N

N∑
i=1

ηi (5.2)

and

∇ηi f (η) = f (ηi )− f (η). (5.3)

Here ηi = (η1, . . . ,−ηi , . . . ,ηN ) if η= (η1, . . . ,ηi , . . . ,ηN ): ηi is the state obtained fron η

by flipping the i -th spin ηi .

This N -spin system is known as the Curie-Weiss model with external magnetic

field h =βω.

Let us introduce here some notations we use in the sequel. Sometimes we write

ηi (t ) when we want to make explicit the time dependence of the spin values. More-

over, we indicate with Et (·) andPt (·) the probabilities and means computed at time t .

Consider the process η̄ = 1
N

∑N
i=1ηi . It is markovian with a deterministic weak

limit, that we call mt .

Proposition 5.2.1 Assume that ηi (0) for i = 1, . . . , N is an i.i.d. sequence of random

variables with E0(ηi ) = m(0). The process mt ∈ [−1,1] satisfying the ordinary differen-

tial equation:

d

d t
mt = 2sinh

(
β(mt +ω)

)−2mt cosh
(
β(mt +ω)

)
. (5.4)

is the weak limit of η̄.
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Chapter 5. Propagation of chaos for the Curie-Weiss mean field model

From now on we refer to (5.4) as the McKean-Vlasov equation.

Proof of Proposition 5.2.1: We use the following theorem [32]:

Theorem 5.2.2 Let YN (t ) a sequence of Markov processes with values in YN and in-

finitesimal generator LN , defined on D(LN ). Moreover, let L on D(L) be the infinitesi-

mal generator of another Markov process Y (t ) with values in Y ⊇ YN . Call C a core

for L and suppose that every function in C is an element of D(LN ) when restricted to

YN .

If the condition

lim
N→∞

sup
α∈YN

|LN f (α)−L f (α)| = 0 (5.5)

holds for every f ∈ C and YN (0) converges in distribution to Y (0), then the sequence

YN (t ) converges to Y (t ) in distribution.

The Weak Law of Large Numbers assure that m(0) is the weak limit of η̄ once

E0(ηi ) = m(0).

Then, to find the limit generator L, write

LN f (η̄) =
N∑

i=1
e−βηi (η̄+ω)∇ηi f (η̄) =

N∑
i=1

e−βηi (η̄+ω)
(

f

(
η̄− 2ηi

N

)
− f (η̄)

)

=
N∑

i=1

[
sinh(β(η̄+ω))−ηi cosh(β(η̄+ω))

](
f

(
η̄− 2ηi

N

)
− f (η̄)

)

= N

2
(1+ η̄)

[
sinh(β(η̄+ω))−cosh(β(η̄+ω))

](
f

(
η̄− 2

N

)
− f (η̄)

)
+ N

2
(1− η̄)

[
sinh(β(η̄+ω))+cosh(β(η̄+ω))

](
f

(
η̄+ 2

N

)
− f (η̄)

)
. (5.6)

This implies that the process mN
t = η̄(t ) is Markovian with generator HN given by

HN f (m) = N

2
(1+m)

[
sinh(β(m +ω))−cosh(β(m +ω))

](
f

(
m − 2

N

)
− f (m)

)
+ N

2
(1−m)

[
sinh(β(m +ω))+cosh(β(m +ω))

](
f

(
m + 2

N

)
− f (m)

)
(5.7)
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Now, for f ∈C = C 1-functions with compact support,

HN f (m) = H f (m)+O

(
1

N

)
,

where

H f (m) = (
2sinh

(
β(m +ω)

)−2m cosh
(
β(m +ω)

)) ∂

∂x
f (m)

and O
( 1

N

)
goes to zero uniformly in m. Moreover H is the generator of a process with

the deterministic evolution (5.4). Thus, by Theorem 5.2.2, the conclusion follows.

2

The number and the stability of the equilibrium points of (5.4) depend on the

values of β and ω.

- When β< 1 it has only one linearly stable equilibrium for every values of ω.

- If β> 1 there esists a curve

ω(β) =
√
β−1

β
− 1

β
arctan

(√
β−1

β

)
(5.8)

such that if |ω| <ω(β) there are three fixed points: two stable and one instable.

For |ω| = ω(β) two of these points coincide; while, for |ω| > ω(β), there is an

unique linearly stable equilibrium. Remember that in dimension 1 uniqueness

together with linear stability means global attractivity.

From now on we restrict ourselves to the region of parameters where (5.4) has

only one stable solution. In view of the Proposition 5.2.1 it is natural to compare the

Curie-Weiss model with the N -spin system σ= (σ1, . . . ,σN ) with generator:

GN f (σ) =
N∑

i=1
aω (i , t )∇σi f (σ), (5.9)

where,

aω (i , t ) = exp
(−βσi (mt +ω)

)
. (5.10)

Remark: If σi (0), i = 1, . . . , N , are independent random variables, they remains

independent for every t > 0.
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Chapter 5. Propagation of chaos for the Curie-Weiss mean field model

Remark: If E0(σ1) = (m0), then Et (σ1) = mt . Actually, Et (σ1) obeys to the follow-

ing homogeneous linear differential equation:

d

d t
Et [σ1] = Et [GN (σ1)] = Et [−2σ1aω(1, t )

]

= Et [
2sinh

(
β(mt +ω)

)−2σ1 cosh
(
β(mt +ω)

)]
= 2sinh

(
β(mt +ω)

)−2Et (σ1)cosh
(
β(mt +ω)

)
. (5.11)

Thus,
d

d t
Et (σ1) = 2sinh

(
β(mt +ω)

)−2Et (σ1)cosh
(
β(mt +ω)

)
. (5.12)

If mt is a solution of (5.4) is a solution of (5.12), too. Uniqueness implies Et (σ1) = mt

when E0(σ1) = m0.

Now we are ready for the statement of the main theorem of this chapter. Let us

introduce the following notation. For any quantity g (N ) ∈R+, we write:

g (N ) ≤O

(
1

Nα

)
, (5.13)

with α> 0, if there exists a constant C > 0 such that g (N ) ≤ C
Nα .

Theorem 5.2.3 In the region of the parameters (β,ω) where the McKean-Vlasov equa-

tion has an unique stable fixed point there exists a probability space where both the

processes with generators (5.1) and (5.9) can be realized. Moreover, if

P0 (
ηi 6=σi

)≤O

(√
1

N

)
, E0 [

(η̄−m0)2]≤O

(√
1

N

)
(5.14)

then

sup
t∈[0,∞)

Pt (
ηi 6=σi

)≤O

(√
1

N

)
. (5.15)

In order words, we show that in the region of the parameters (β,ω) where (5.4) has

an unique linearly stable equilibrium it is possible to obtain for Pt (η j 6= σ j ) a time
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5.2. The Curie-Weiss model and uniform propagation of chaos

uniform upper bound: i.e. the bound depends on N , but not on t . It means that the

systems are close for every t . When it happens we say that there is uniform propaga-

tion of chaos.

Remark: Clearly condition (5.14) is satisfied if {ηi (0) : i = 1, . . . N } are i.i.d., and

we set, for i = 1, . . . , N , σi (0) = ηi (0).

In order to prove the theorem, we put the two processes defined before in the

same probability space via Basic Coupling (see few lines below) and then we try to

estimate the quantity Pt (η j 6=σ j ) using the Gronwall’s Lemma that we state here for

completeness.

Lemma 5.2.4 Let F (t ) be a differentiable function in [0,+∞), such that:

d

d t
F (t ) ≤ a(t )+b(t )F (t ), (5.16)

then

F (t ) ≤ exp

(∫ t

0
b(r )dr

)[∫ t

0
a(r )exp

(
−

∫ r

0
b(u)du

)
dr +F (0)

]
. (5.17)

Remark: If a(t ) = a and b(t ) = b, formula (5.17) reads

F (t ) ≤ a

b
ebt − a

b
+F (0)ebt . (5.18)

Actually, we will use this simplified form of the Gronwall’s lemma.

Proof of Lemma 5.2.4: Equation (5.16) is equivalent to(
d

d t
F (t )−b(t )F (t )

)
exp

(
−

∫ t

0
b(r )dr

)
≤ a(t )exp

(
−

∫ t

0
b(r )dr

)
(5.19)

that’s the same of

d

d t

[
F (t )exp

(
−

∫ t

0
b(r )dr

)]
≤ a(t )exp

(
−

∫ t

0
b(r )dr

)
. (5.20)

Integrating, the conclusion follows. 2
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As we said, the other technique we use is “coupling”. Coupling is a powerful

method to compare two stochastic processes by realizing them in the same prob-

ability space without changing their marginals. In this section we use a kind of cou-

pling for spin systems called Basic Coupling as described in [27]. This coupling for

η and σ has the aim of making them flip together with the largest possible rate, but

each process has to flip at the correct rate to maintain its marginal unchanged. In

[27] the Basic Coupling is unformally described in the following way:

- if ηi (t ) 6= σi (t ) the processes flip the spin at i independently with their own

rates;

- while, when ηi (t ) = σi (t ) they flip together with the largest possible rate ac-

cording with the requirement of keeping the rate of each single process un-

changed.

The best way to write the generator of the coupled process is probably the fol-

lowing, because in this way it is clear which is the rate of each possible transition:

Ω f (η,σ) =
N∑

i=1,ηi 6=σi

aω (i , t )∇σi f (η,σ)+
N∑

i=1,ηi 6=σi

cω
(
i ,η

)∇ηi f (η,σ)+

+ ∑
i :σi=ηi

min
{

aω (i , t ) ,cω
(
i ,η

)}(
f
(
σi ,ηi

)
− f

(
σ,η

))

+ ∑
i :σi=ηi

(
aω (i , t )−min

{
aω (i , t ) ,cω

(
i ,η

)})∇σi f (η,σ)

+ ∑
i :σi=ηi

(
cω

(
i ,η

)−min
{

aω (i , t ) ,cω
(
i ,η

)})∇ηi f (η,σ)

=
N∑

i=1
aω (i , t )∇σi f (η,σ)+

N∑
i=1

cω
(
i ,η

)∇ηi f (η,σ)

+ ∑
i :σi=ηi

min
{

aω (i , t ) ,cω
(
i ,η

)}(
f
(
σi ,ηi

)
− f

(
σi ,η

)
− f

(
σ,ηi

)
+ f

(
σ,η

))
. (5.21)
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5.3 Proof of Theorem 5.2.3

The first step is to compute the derivative d
d tP

t (η j 6=σ j ). Notice that

Pt (η j 6=σ j ) = 1

4
Et

[(
η j −σ j

)2
]

, (5.22)

so [27]
d

d t
Pt (

η j 6=σ j
)= d

d t

{
1

4
Et

[(
η j −σ j

)2
]}

= 1

4
Et

[
Ω

(
η j −σ j

)2
]

. (5.23)

Now, with f = (
η j −σ j

)2, we have:

∇σi f =∇ηi f = 4σiηiδi j (5.24)

and

f
(
σi ,ηi

)
− f

(
σi ,η

)
− f

(
σ,ηi

)
+ f

(
σ,η

)= 8ηiσiδi j (5.25)

where δi j is the Kronecker’s delta.

Replacing in the expression of the generator,Ω, of the coupling we get:

d

d t
Pt (

η j 6=σ j
)= 1

4
Et

[
4
(
cω

(
j ,η

)+aω
(

j , t
))
σ jη j −8min

{
cω

(
j ,η

)
, aω

(
j , t

)}
χ(σ j=η j )

]
=

= Et
[
−(

cω
(

j ,η
)+aω

(
j , t

))
χ(σ j 6=η j )+

+ (
cω

(
j ,η

)+aω
(

j , t
))
χ(σ j=η j )−2min

{
cω

(
j ,η

)
, aω

(
j , t

)}
χ(σ j=η j )

]
=

=−Et
[(

cω
(

j ,η
)+aω

(
j , t

))
χ(σ j 6=η j )

]
+Et

[
|cω (

j ,η
)−aω

(
j , t

) |χ(σ j=η j )

]
. (5.26)

The quantity
(
cω

(
j ,η

)+aω
(

j , t
))

is bounded from below by a costant M > 0 and we

can write:

d

d t
Pt (

η j 6=σ j
)≤−MPt (

η j 6=σ j
)+Et [|exp

(−βσ j (mt +ω)
)−exp

(−βσ j (η̄+ω)
) |] .

(5.27)
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Chapter 5. Propagation of chaos for the Curie-Weiss mean field model

At this point, we observe that

|exp
(−βσ j (mt +ω)

)−exp
(−βσ j (η̄+ω)

) | ≤ D|(η̄−mt
) | (5.28)

with D > 0; in fact

|exp
(−βσ j (mt +ω)

)−exp
(−βσ j (η̄+ω)

) | = (5.29)

exp
(−βσ j (mt +ω)

) |1−exp(−βσ j (η̄−mt ))| ≤ D|η̄−mt | (5.30)

because |1−exp(−βx)| ≤ B |x|, for some B finite and positive, on every compact sub-

set of R. Moreover, |(−σ j (η̄−mt )
) | ≤ 2.

Finally, we have:

d

d t
Pt (

η j 6=σ j
)≤−MPt (

η j 6=σ j
)+DEt [|η̄−mt |

]≤

≤−MPt (
η j 6=σ j

)+D

√
Et

[(
η̄−mt

)2
]

. (5.31)

Now we need to find an upper bound for Et
[(
η̄−mt

)2
]

. If Et
[(
η̄−mt

)2
]
≤ O

( 1
Nα

)
∀ t ∈ [0,∞) with α > 0 we can obtain a time uniform bound for Pt

(
η j 6=σ j

)
. Infact,

using (5.18) we would have:

Pt (
η j 6=σ j

)≤− D

M Nα/2
exp(−M t )+ D

M Nα/2
+P0 (

η j 6=σ j
)

exp(−M t ) . (5.32)

Actually, we have α= 1.

Lemma 5.3.1 In the region of parameters (β,ω), where (5.4) has an unique stable

fixed point, the inequality

E0
[(
η−m0

)2
]
≤O

(
1

N

)
(5.33)

implies,

sup
t∈[0,+∞)

Et
[(
η−mt

)2
]
≤O

(
1

N

)
. (5.34)
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Proof: We try again with the Gronwall’s Lemma.

d

d t
Et

[(
η̄−mt

)2
]
= Et

[
LN

(
η̄−mt

)2
]
+Et

[
∂

∂t

(
η̄−mt

)2
]

. (5.35)

With f = (η̄−mt )2, we get:

∇ηi f = (η̄− 2ηi

N
−mt )2 − (η̄−mt )2 =− 4

N
ηi (η̄−mt )+ 4

N 2
(5.36)

and

d

d t
Et

[(
η̄−mt

)2
]
= Et

{
− 4

N

N∑
i=1

cω
(
i ,η

)
ηi

(
η̄−mt

)+ N∑
i=1

cω
(
i ,η

) 4

N 2

}

−2

(
d

d t
mt

)
Et (

η̄−mt
)

. (5.37)

Now, we notice that cω
(
i ,η

) = −ηi sinh
(
β(η̄+ω)

)+ cosh
(
β(η̄+ω)

)
. Remember also

that d
d t mt = 2sinh

(
β(mt +ω)

)− 2mt cosh
(
β(mt +ω)

)
and substituting it in the last

equation for the derivative of the mean, it yields:

d

d t
Et

[(
η̄−mt

)2
]
= [−4sinh

(
β(mt +ω)

)+4mt cosh
(
β(mt +ω)

)]
Et (

η̄−mt
)+

+Et

{
N∑

i=1
− 4

N

[−ηi sinh
(
β(η̄+ω)

)+cosh
(
β(η̄+ω)

)]
ηi

(
η̄−mt

)+ N∑
i=1

cω
(
i ,η

) 4

N 2

}
≤

≤ Et {
4
[
sinh

(
β(η̄+ω)

)− η̄cosh
(
β(η̄+ω)

)−
−sinh

(
β(mt +ω)

)+mt cosh
(
β(mt +ω)

)](
η̄−mt

)}+4exp
(
β
) 1

N
. (5.38)

If we set ϕω
β

(x) = 4sinh
(
β(x +ω)

)−4x cosh
(
β(x +ω)

)
we can write:

d

d t
Et

[(
η̄−mt

)2
]
≤ Et

{[
ϕωβ

(
η̄
)−ϕωβ (mt )

](
η̄−mt

)}+4exp
(
β
) 1

N
. (5.39)
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Chapter 5. Propagation of chaos for the Curie-Weiss mean field model

5.3.1 Caseω= 0

The simplest case is when ω= 0. In fact, if β< 1 the derivative of ϕ0
β

(x) with respect

to x is always negative and because of this, the following inequality holds:

ϕ0
β

(
η̄
)−ϕ0

β
(mt )

η̄−mt
≤−K , (5.40)

where −K = maxx∈[−1,1]
∂ϕ0

β

∂x (x) < 0.

It implies that,

d

d t
Et

[(
η̄−mt

)2
]
≤−KEt

[(
η̄−mt

)2
]
+4exp

(
β
) 1

N
. (5.41)

Now we can apply the Gronwall’s Lemma to obtain:

Et
[(
η̄−mt

)2
]
≤−4exp

(
β
)

K N
exp(−K t )+ 4exp

(
β
)

K N
+E0

[(
η̄−m0

)2
]

(5.42)

In this way, we have obtained an uniform upper bound for Et
[(
η̄−mt

)2
]

:

sup
t∈[0,∞)

Et
[(
η̄−mt

)2
]
≤O

(
1

N

)
. (5.43)

5.3.2 Caseω 6= 0

If ω 6= 0 the derivative of ϕω
β

(x) fails to be negative at some points x ∈ [−1,1]. How-

ever, if |ω| >ω(β), the McKean-Vlasov equation

d

d t
mt = 2sinh

(
β(mt +ω)

)−2mt cosh
(
β(mt +ω)

)= 1

2
ϕωβ (mt ) (5.44)

has an unique, globally attractive, linearly stable fixed point that we call m∗(ω). The

equilibrium point is the unique solution of the equation

ϕωβ (m∗(ω)) = 0 (5.45)

which is equivalent to

m∗(ω) = tanh[β(m∗(ω)+ω)]. (5.46)
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To fix the idea we can think of ω> 0; in this case 0 < m∗(ω) < 1.

We compute:

∂

∂x
ϕωβ(x) = (β−1)cosh(β(x +ω))−βx sinh(β(x +ω)) =

= cosh(β(x +ω))[β−1−βx tanh(βx +h)] (5.47)

so,

∂

∂x
ϕωβ(m∗(ω)) = cosh(β(m∗(ω)+ω))[β−1−β(m∗(ω))2] < 0, (5.48)

and it remains strictly negative in a neighbourhood V of m∗(ω) of the form V =
[m∗(ω) − ξ,1], ξ > 0, because of the continuity of the derivative of ϕω

β
(x) and be-

cause βx tanh(βx + h) is an increasing function of x in [m∗(ω),1]. We recall that

to be globally attractive, since we are in 1-dimension, means that ϕω
β

(x) < 0 when

x ∈ (m∗(ω),1] and ϕω
β

(x) > 0 for x ∈ [−1,m∗(ω)). So, one can choose ξ such that

maxx∈V ϕ
ω
β

(x) ≤ inf[−1,1]\V ϕ
ω
β

(x) and that ∂
∂xϕ

ω
β

(m∗(ω)−ξ) is still negative.

With this choice of ξ, if mt ∈V , we have:

ϕω
β

(
η̄
)−ϕω

β
(mt )

η̄−mt
≤−K if mt ∈V. (5.49)

Here −K = supmt∈V ,η̄∈[−1,1]

ϕω
β(η̄)−ϕωβ (mt )

η̄−mt
< 0.

In fact, if η̄ and mt belong both to V the inequality holds because here the derivative

is strictly negative, while if η̄ ∉V the differenceϕω
β

(
η̄
)−ϕω

β
(mt ) is positive and η̄−mt

is negative.

The equilibrium m∗(ω) is globally attractive, so mt belongs to V for t ≥ T for some

T finite and we can estimate Et
[(
η̄−mt

)2
]

fot t ≥ T . The same computation used to

derive (5.43), now gives, for t = T + s, s ≥ 0,

d

d t
Et

[(
η̄−mt

)2
]
= d

d s
Es+T

[(
η̄−ms+T

)2
]
≤

≤−KEs+T
[(
η̄−ms+T

)2
]
+ 4exp(β)

N
. (5.50)
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Chapter 5. Propagation of chaos for the Curie-Weiss mean field model

And, by the Gronwall’s Lemma:

Et
[(
η̄−mt

)2
]
≤O

(
1

N

)
+ET

[(
η̄−mT

)2
]

(5.51)

With the same technique one can see that for 0 ≤ t ≤ T

d

d t
Et

[(
η̄−mt

)2
]
≤CEt

[(
η̄−mt

)2
]
+ 4exp(β)

N
, (5.52)

where C = maxx∈[−1,1]
∂
∂xϕ

ω
β

(x) > 0. Hence, we have:

Et
[(
η̄−mt

)2
]
≤ 4exp(β)

C N

[
exp(C t )−1

]+E0
[(
η̄−m0

)2
]

, (5.53)

that, with the right initial conditions (see (5.43)) implies

ET
[(
η̄−mT

)2
]
≤O

(
1

N

)
. (5.54)

So, using again the Gronwall’s Lemma, we obtain:

sup
t∈[0,∞)

Et
[(
η̄−mt

)2
]
≤O

(
1

N

)
. (5.55)

also when ω> 0.

The same steps bring to the same results also when ω < 0. We conclude that a

time uniform upper bound for Et
[(
η̄−mt

)2
]

holds for every ω when |ω| >ω(β) (see

(5.43) and (5.55)).

2

Turning back to the proof of the main theorem, in (5.39) we were left with:

d

d t
Pt (

η j 6=σ j
)≤−MPt (

η j 6=σ j
)+D

√
Et

[(
η̄−mt

)2
]

(5.56)

Now, we know that Et
[(
η̄−mt

)2
]
≤ O

( 1
N

)
whatever ω is if β< 1, and under the con-

dition (??) if β≥ 1. Here we have uniform propagation of chaos. In fact

d

d t
Pt (

η j 6=σ j
)≤−MPt (

η j 6=σ j
)+O

(√
1

N

)
. (5.57)
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5.3. Proof of Theorem 5.2.3

Using again the Gronwall’s Lemma we have:

Pt (
η j 6=σ j

)≤O

(√
1

N

)
, ∀t ∈ [0,∞) . (5.58)

Notice that the inequality holds with the right initial conditions. The quantity η,

σ, m0 have to be near at the beginning in order to have E0
[(
η̄−m0

)2
]
≤ O

( 1
N

)
and

P0
(
η j 6=σ j

)≤O
(√

1
N

)
. This concludes the proof of Theorem 5.2.3.
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Chapter 6

Propagation of chaos in a model for large

portfolio losses

6.1 Introduction

In this chapter we consider uniform propagation of chaos for a mean-field interact-

ing particle system modeling the propagation of financial distress among a network

of firms linked by financial relationships [24]. The model depends on two real pos-

itive parameters and it exhibits a phase transition. We show that in the uniqueness

regime (i.e. the associated McKean-Vlasov equations have an unique stable solu-

tion) uniform propagation of chaos holds. The argument used for the Curie-Weiss

model can be adapted to this case, even though the model is non reversible and a

one dimensional parameter is not sufficient anymore.

6.2 Description of the model

We briefly describe the model appearing in [24]. Consider N sites that we look at

as a network of firms linked by some financial relationship; for instance, they could

belong to the same sector of the market. The model in [24] is applied to describe

the propagation of financial distress (or default) in a network of firms, and the re-

lated credit risk of a financial institution that, for example, lent money to the firms.

Because of the relationships between the firms of the portfolio, default may be con-
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6.2. Description of the model

tagious and there might be clustering of default.

The financial state of each firm is represented by a couple of spin variables (σi ,ωi ) ∈
{−1,+1}2. The first one , σi , could be interpreted as a rating indicator, and a negative

value means that there is a higher probability of not being able to pay back obliga-

tions. The second spin variable, ωi , amplifies or reduces the effect of changes at the

level of theσi indicators; it represents how a firm is able to face a crises and a positive

value could be interpreted as a positive reaction to financial distress. The variableωi

is a more fundamental indicator than σi and in [24] it is supposed to be not directly

observable from the market; one could think of ωi as a liquidity indicator. The suc-

cess in reacting to a crisis depends also on the global situation of the market that in

[24] is represented by the empirical avarage σ̄= 1
N

∑N
i=1σi .

The dynamics of the contagion can be schematized as follows:

ωi → σi → σ̄ → ωi

health of the firm rating indicator situation of the market health of the firm

The system flips with rates:

ωi → −ωi at rate exp(−γωi σ̄)

σi → −σi at rate exp(−βσiωi )

Thus, the system evolves in time according to the following infinitesimal gener-

ator:

LN f (σ,ω) =
N∑

i=1
exp(−βσiωi )∇σi f (σ,ω)+

N∑
i=1

exp(−γωi σ̄)∇ωi f (σ,ω). (6.1)

Notice that the rate of the transition ωi → −ωi depends on the empirical average

σ̄= 1
N

∑N
i=1σi meaning that the situation of the network influences the variable ωi ,

so, the financial distress somewhere in the network may increase the default proba-

bility of the partners. In the same way the flip σi →−σi depends on the value of ωi .

Let us switch to the Mckean-Vlasov equations for the system just described. On

the compact interval [0,T ] when N goes to infinity the time evolution of σ̄ becomes

deterministic [24]. More precisely define the quantities:

ω̄= 1

N

N∑
i=1

ωi , σ̄= 1

N

N∑
i=1

σi , and σω= 1

N

N∑
i=1

σiωi . (6.2)
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Chapter 6. Propagation of chaos in a model for large portfolio losses

The evolution of this triplet is markovian and their weak limit when N goes to infin-

ity has a deterministic dynamics. Let’s call mω
t , mω

t and ωσ
t this limit, the following

differential equations are satisfied (McKean-Vlasov equations):
d

d t mσ
t = 2sinh(β)mω

t −2cosh(β)mσ
t ;

d
d t mω

t = 2sinh
(
γmσ

t

)−2cosh
(
βmσ

t

)
mω

t ;
d

d t mωσ
t = 2sinh(β)+2mσ

t sinh(γmσ
t )−2

(
cosh(β)−cosh(γmσ

t )
)

.

(6.3)

To prove this, like in the previous chapter, we use Theorem 5.2.2. A long but straight-

forward computation yields (see [24] for details)

LN f (σ̄,ω̄,ωσ) = N

4

∑
j ,k∈{−1,1}

[ j (σ̄+kω̄+ j kωσ+1]

×
{

e−β j k
[

f

(
σ̄− 2

N
j ,ω̄,ωσ− 2

N
j k

)
)− f (σ̄,ω̄,ωσ)

]
+e−γσ̄k

[
f

(
σ̄,ω̄− 2

N
k,ωσ− 2

N
j k

)
)− f (σ̄, σ̄,ωσ)

]}
. (6.4)

This implies that the process (σ̄(t ),ω̄(t ),ωσ(t )) is markovian with generator

KN f (ξ,η,θ) = N

4

∑
j ,k∈{−1,1}

[ j (ξ+kη+ j kθ+1]

×
{

e−β j k
[

f

(
ξ− 2

N
j ,η,θ− 2

N
j k

)
)− f (ξ,η,θ)

]
+e−γξk

[
f

(
ξ,η− 2

N
k,θ− 2

N
j k

)
)− f (ξ,η,θ)

]}
. (6.5)

Since, for functions f of class C 1 with compact support,

KN f (ξ,η,θ) = K f (ξ,η,θ)+O

(
1

N

)
uniformly in (ξ,η,θ), with

K f (ξ,η,θ) = 2
(
sinh(γξ)−ηcosh(γξ)

) ∂

∂x
f (ξ,η,θ)+2

(
ηsinh(β)−ξcosh(β)

) ∂

∂y
f (ξ,η,θ)

+2
(
sinh(β)−θcosh(β)+ξsinh(γξ)−θcosh(γξ)

) ∂
∂z

f (ξ,η,θ) (6.6)

as in Proposition 5.2.1 we conclude that the process (σ̄(t ),ω̄(t ),ωσ(t )) converges

weakly to a solution of (6.3)
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6.3. Uniform propagation of chaos

The numbers and the stability properties of solutions of (6.3) depends on the pa-

rameters γ and β. Note that mσω
t does not appears in the first and in the second

equation, so system (6.3) is essentially two-dimensional. Moreover, the equilibria

mσω
t are completely determined by those of mσ

t . So we reduce to the study of equi-

libria and relative stability for the first two equations. The situation is the following

[24]:

- If γ≤ 1
tanh(β) , then (6.3) has (0,0) as unique equilibrium solution, which is glob-

ally asymptotically stable, i.e. for every initial condition (mσ
0 ,mω

0 ), we have:

lim
t→∞(mσ

t ,mω
t ) = (0,0). (6.7)

When γ< 1
tanh(β) , the equilibrium is also linearly stable.

- For γ> 1
tanh(β) , the point (0,0) is still an equilibrium but it is unstable. Two new

equilibria (mσ∗ ,mω∗ ) and (−mσ∗ ,−mω∗ ) arise. They are lineraly stable with open

basin of attraction Γ+ and Γ−. Moreover, Γ+∪Γ− = [−1,1]2 \Γ, where Γ is an

invariant curve for (6.3) containing (0,0).

From now on, we limit our study to the case γ< 1
tanh(β) .

6.3 Uniform propagation of chaos

As in the previous chapter, looking for a uniform propagation of chaos property, it’s

natural to compare the system with generator LN with the following one where the

dynamics of each spin is independent and mσ
t appears in place of σ̄ in the transition

rates.

The spin variables are (xi , yi ) ∈ {−1,+1}2 and the infinitesimal generator is given by:

GN f (x, y) =
N∑

i=1
exp

(−βxi yi
)∇x

i f (x, y)+
N∑

i=1
exp

(−γyi mσ
t

)∇y
i f (x, y). (6.8)

We prove the following

Theorem 6.3.1 When γ < 1
tanh(β) there exists a probability space where both the sys-

tems with infinitesimal generators (6.1) and (6.8) can be realized. Moreover, if

P0 (σi 6= xi ) ≤O

(√
1p
N

)
and P0 (

ωi 6= yi
)≤O

(√
1p
N

)
, (6.9)
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and

E0
[(
σ̄−mσ

0

)2
]
≤O

(
1

N

)
, E0

[(
ω̄−mω

0

)2
]
≤O

(
1

N

)
, (6.10)

then

Pt (σi 6= xi )+Pt (
ωi 6= yi

)≤O

(
1p
N

)
. (6.11)

Remark: Clearly conditions (6.9) and (6.10) ares satisfied if {(σi (0),ωi (0) : i =
1, . . . N } are i.i.d., and we set, for i = 1, . . . , N , σi (0) = xi (0), ωi (0) = yi (0).

The strategy of the proof is the same as in the the Curie-Weiss model’s case. We

use a coupling to realize the two systems in the same probability space, then we

use twice the Gronwall’s Lemma to bound the distance between the systems with a

decreasing function of N , independent of t .

6.4 Proof of Theorem 6.3.1

The first step is to construct a suitable coupling to make the systems living in the

same probability space. We use Basic Coupling. Infinitesimal generators (6.1) and

(6.8) are composed by two pieces corresponding to gradients with respect to differ-

ent variables. We couple the dynamics of the spin σi with xi and that of ωi with yi .

The coupling and the infinitesimal generator will be

Ω f (σ,ω, x, y) =Ω1 f (σ,ω, x, y)+Ω2 f (σ,ω, x, y) (6.12)

where

Ω1 f (σ,ω, x, y) =
N∑

i=1
exp(−βσiωi )∇σi f (σ,ω, x, y)+

N∑
i=1

exp(−βxi yi )∇x
i f (σ,ω, x, y)

+
N∑

i=1
min

{
exp(−βσiωi ),exp(−βxi yi )

}(
f (σi ,ω, xi , y)− f (σi ,ω, x, y)

− f (σ,ω, xi , y)+ f (σ,ω, x, y)
)

, (6.13)
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and

Ω2 f (σ,ω, x, y) =
N∑

i=1
exp(−γωi σ̄)∇ωi f (σ,ω, x, y)+

N∑
i=1

exp(−γyi mσ
t )∇y

i f (σ,ω, x, y)

+
N∑

i=1
min

{
exp(−γωi σ̄),exp(−γyi mσ

t )
}(

f (σ,ωi , x, y i )− f (σ,ωi , x, y)

− f (σ,ω, y i , x)+ f (σ,ω, y, x)
)

. (6.14)

We want to give an uniform bound for the probability

Pt (xi 6=σi )+Pt (
ωi 6= yi

)
. (6.15)

To do this, following the method used for the Curie-Weiss model, we consider func-

tions analogous to (5.22) counting sites where spins are different. In the present case,

to make computations simpler, we write them in the form :

f1(σ, x) = 1

2N

N∑
i=1

(1−σi xi ) (6.16)

and

f2(ω, y) = 1

2N

N∑
i=1

(1−ωi yi ). (6.17)

Notice thatPt (xi 6=σi ) = Et
[

f1(σ, x)
]

and thatPt
(
ωi 6= yi

)= Et
[

f2(ω, y)
]
. Thus, to

prove Theorem 6.3.1 it is sufficient to show a uniform bound for Et
[

f1(σ, x)+λ f2(ω, y)
]
,

where the constant λ is positive and has to be suitably chosen.

The second step is to use the Gronwall’s Lemma. So we have to compute:

d

d t
Et [

f
(
σ,ω, x, y

)]= Et [
Ω f

(
σ,ω, x, y

)]
, (6.18)

with f
(
σ,ω, x, y

)= f1 (σ, x)+λ f2
(
ω, y

)
. We have:

Ω f
(
σ,ω, x, y

)=Ω1 f1 (σ, x)+λΩ2 f2
(
ω, y

)
. (6.19)

We split this computation in two pieces. ForΩ1 f1 (σ, x) we have

∇σi f1 (σ, x) = 1

2N

N∑
j
∇σi (1−σ j x j ) = 1

N
σi xi ; (6.20)
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∇x
i f1 (σ, x) = 1

N
σi xi ; (6.21)

f1(σi , xi )− f1(σi , x)− f1(σ, xi )+ f1(σ, x) =− 2

N
σi xi . (6.22)

We obtain:

Ω1 f1(σ, x) =
N∑

i=1
exp(−βσiωi )

1

N
σi xi +

N∑
i=1

exp(−βxi yi )
1

N
σi xi

−2
N∑

i=1,σi=xi

min
{
exp(−βσiωi ),exp(−βxi yi )

} 1

N
σi xi

=
N∑

i=1,σi 6=xi

(
exp(−βσiωi )+exp(−βxi yi )

)(−1

N

)

+ 1

N

N∑
i=1,σi=xi

(
exp(−βσiωi )+exp(−βxi yi )

)−2min
{
exp(−βσiωi ),exp(−βxi yi )

}

=− 2

N

N∑
i=1,σi 6=xi

cosh(β)+ 2

N

N∑
i=1,σi=xi

sinh(β)|ωi − yi |

≤ −2cosh(β) f1(σ, x)+2sinh(β) f2(ω, y). (6.23)

In the same way, forΩ2 f2(ω, y) we obtain

Ω2 f2(ω, y) =− ∑
i=1,ωi 6=yi

1

N

(
exp(−γωi σ̄)+exp(−γyi mσ

t )
)

+ 1

N

∑
i=1,ωi=yi

|exp(−γωi σ̄)−exp(−γyi mσ
t )|

≤ −2exp(−γ) f2(ω, y)+K
∑

i=1,ωi=yi

1

N
|σ̄−mσ

t |

≤ −2exp(−γ) f2(ω, y)+ K

N

N∑
i=1

|σ̄−mσ
t |. (6.24)
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Taking the mean it reads:

d

d t
Et (

f1(σ, x)+λ f2(ω, y)
)= Et [

Ω
(

f1(σ, x)+λ f2(ω, y)
)]

= Et [
Ω1

(
f1(σ, x)

)+λΩ2
(

f2(ω, y)
)]

= Et

[
−2cosh(β) f1(σ, x)−2λ

(
exp(−γ)− sinh(β)

λ

)
f2(ω, y)+ K

N

N∑
i=1

|σ̄−mσ
t |

]
(6.25)

Notice that for λ large enough, there exists a positive constant C such that

2cosh(β) >C (6.26)

and

2

(
exp(−γ)− sinh(β)

λ

)
>C , (6.27)

thus, the following inequality holds:

d

d t
Et (

f1(σ, x)+λ f2(ω, y)
)≤−CEt (

f1(σ, x)+λ f2(ω, y)
)+Et

(
K

N

N∑
i=1

|σ̄−mσ
t |

)
. (6.28)

Looking at (6.28) we see that to prove uniform propagation of chaos we have to

estimate Et
((
σ̄−mσ

t

)2
)
; if Et

((
σ̄−mσ

t

)2
)
≤O

( 1
N

)
, ∀t ∈ [0,∞) we can conclude using

(5.18). It turns out to be simpler to find a bound for Et
((
σ̄−mσ

t

)2 + (
ω̄−mω

t

)2
)
.

Lemma 6.4.1 In the region of parameters (γ,β) where γ< 1
tanh(β) the conditions

E0
[(
σ̄−mσ

0

)2
]
≤O

(
1

N

)
, (6.29)

E0
[(
ω̄−mω

0

)2
]
≤O

(
1

N

)
, (6.30)

imply

Et
[(
σ̄−mσ

t

)2 + (
ω̄−mω

t

)2
]
≤O

(
1

N

)
. (6.31)
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Proof: To use the Gronwall’s Lemma we compute the derivative:

d

d t
Et

[(
σ̄−mσ

t

)2
]
+ d

d t
Et

[(
ω̄−mω

t

)2
]

. (6.32)

The first summand in the left hand side of (6.32) is

d

d t
Et

[(
σ̄−mσ

t

)2
]
= Et

[
LN

(
σ̄−mσ

t

)2
]
+Et

[
∂

∂t

(
σ̄−mσ

t

)2
]

= Et

[
N∑

i=1
exp

(−βσiωi
)((

σ̄− 2

N
σi −mσ

t

)2

− (
σ̄−mσ

t

)2
)]

−
(

d

d t
mσ

t

)
Et (

σ−mσ
t

)

= Et

[
N∑

i=1
exp

(−βσiωi
)( 4

N 2
− 4

N
σi

(
σ̄−mσ

t

))]−
(

d

d t
mσ

t

)
Et (

σ−mσ
t

)

= Et

[
N∑

i=1

(
(σiωi )sinh(β)+cosh(β)

)( 4

N 2
− 4

N
σi

(
σ̄−mσ

t

))]−
(

d

d t
mσ

t

)
Et (

σ−mσ
t

)

=O

(
1

N

)
+Et [(

4ω̄sinh(β)−4σ̄cosh(β)
)(
σ−mσ

t

)]−(
d

d t
mσ

t

)
Et (

σ−mσ
t

)
. (6.33)

The same computation for the second piece gives:

d

d t
Et

[(
ω̄−mω

t

)2
]

=O

(
1

N

)
+Et [(

4sinh(γσ̄)−4ω̄cosh(γσ̄)
)(
ω̄−mω

t

)]−(
d

d t
mω

t

)
Et (

ω−mω
t

)
. (6.34)

Now putting (6.33) and (6.34) together and using (6.3) we obtain:

d

d t
Et

[(
σ̄−mσ

t

)2
]
+ d

d t
Et

[(
ω̄−mω

t

)2
]

=O

(
1

N

)
+Et [(

4sinh(β)
(
ω̄−mω

t

)−4cosh(β)
(
σ̄−mσ

t

))(
σ̄−mσ

t

)
+(

4sinh(γσ̄)−4ω̄cosh(γσ̄)−4sinh(γmσ
t )+4mω

t cosh(γmσ
t )

)(
ω̄−mω

t

)]
. (6.35)
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At this point we use the same line of reasoning of the previous chapter when we

was dealing with the Curie-Weiss model in a magnetic field. Since (0,0) is a glob-

ally attractive equilibrium when γ≤ 1
tanh(β) , for t large, let’s say t > T , (mσ

t ,mω
t ) ∈ V ,

where V is a neighborhood of (0,0). Thus, it is sufficient to prove that (6.31) holds

true for (mσ
t ,mω

t ) ∈ V . Moreover, (6.31) holds when t ≤ T ; the computations are the

same as in the proof of Theorem 5.2.3 to obtain (5.55) and we skip the details here.

To begin with, we consider the case with mω
t = mσ

t = 0. In this limit case the right

hand side of (6.35) becomes:

(
4sinh(β)ω̄−4cosh(β)σ̄

)
σ̄+ (

4sinh(γσ̄)−4ω̄cosh(γσ̄)
)
ω̄

≤ 4sinh(β)ω̄σ̄−4cosh(β)σ̄2 +4sinh(γσ̄)ω̄−4ω̄2. (6.36)

In the region of the parameters where γ < 1
tanh(β) the McKean-Vlasov equations

for the system have an unique, globally, asymptotically stable solution that is also

linearly stable (see [24]). The last expression in (6.36) is the driving term for
d

d t

((
mσ

t

)2 + (
mω

t

)2
)

and the results for the McKean-Vlasov equations imply that (6.36)

is always negative but in (0,0). Moreover, (ω̄, σ̄) ∈ [−1,1]2 and the Taylor’s expansion

of (6.36) in (0,0) is a negative quadratic form. Thus, there exist a positive constant,

let’s say A, such that

4sinh(β)ω̄σ̄−4cosh(β)σ̄2 +4sinh(γσ̄)ω̄−4ω̄2 ≤−A
(
σ̄2 + ω̄2) . (6.37)

Because of continuity this holds also for (6.35) when
(
mω

t ,mσ
t

)
is in a neighborhood

of (0,0) and it happens when t is large enough. This is the same as the Curie-Weiss

model in presence of a magnetic field, thus the same line of reasoning leads to the

desired result. 2

In view of this last Lemma, (6.28) becomes:

d

d t
Et (

f1(σ, x)+λ f2(ω, y)
)≤−CEt (

f1(σ, x)+λ f2(ω, y)
)+O

(√
1

N

)
, (6.38)

and the Gronwall’s Lemma can be applied, concluding the proof of Theorem 6.3.1.
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Chapter 7

Uniform fluctuation theorem for the

Curie-Weiss Model

7.1 Uniform fluctuation theorem

In this chapter we deal with uniformity in time of the fluctuation theorem for the

Curie-Weiss model in the subcritical regime: i.e. β< 1.

We resume the Curie-Weiss model. Recall that, if η = (η1, . . . ,ηN ) is a configura-

tion of the N spins, the Curie-Weiss model is the spin-flip system with generator:

LN f (η) =
N∑

i=1
exp(−βηi η̄)∇ηi f (η). (7.1)

Throughout this chapter we assume that ηi (0), 1 = 1, . . . , N are i.i.d. random variables

with E0
(
η1(0)

)= 0. The object of interest is

X N (t ) = 1p
N

N∑
i=1

ηi =
p

N η̄, (7.2)

that sometimes we refer to as the empirical fluctuation process1. The dynamics of

1Usually the fluctuation has the form

X N (t ) =
p

N (η̄−mt ).

Our assumption on the initial condition (ηi (0), i = 1, . . . , N i.i.d. with E0
(
η1(0)

) = 0) implies mt = 0,

∀t ≥ 0. In this way, the fluctuation process has the form (7.2). Actually, the arguments we use depend
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7.1. Uniform fluctuation theorem

X N (t ) are markovian with infinitesimal generator given by:

LN f (x) = c(x,+)∇+ f (x)+ c(x,−)∇− f (x), (7.3)

where:

c(x,+) = N

2

(
1− xp

N

)
e

(β xp
N

)
, (7.4)

c(x,−) = N

2

(
1+ xp

N

)
e

(−β xp
N

)
, (7.5)

and

∇+ f (x) = f

(
x + 2p

N

)
− f (x) , (7.6)

∇− f (x) = f

(
x − 2p

N

)
− f (x) . (7.7)

Moreover, the empirical fluctuations have a weak limit that is an Ornstein-Ulembeck

type diffusion equation. See few lines below for a proof. Here, we call x(t ) the limit

process of X N (t ); the diffusion equation is:

d x(t ) = −2(1−β)xd t +dW (t ) (7.8)

x(0) ∼ N (0,1)

where W (t ) is a standard Brownian motion.

We are ready to state the main result of this chapter:

Theorem 7.1.1 In the subcritical regime, i.e. β< 1, if h is a continuous bounded func-

tion, then, when
∣∣E0

[
h(X N )

]−E0 [h(x)]
∣∣≤O

( 1
Nγ

)
, with γ> 0,

lim
N→+∞

sup
t∈[0,+∞)

∣∣Et [
h(X N )

]−Et [h(x)]
∣∣= 0. (7.9)

Before starting with the proof we try to explain its strategy.

Step 1: We consider the process Y N , with Y N (0) = X N (0) and infinitesimal gen-

erator L̄N obtained from LN by linearizing the transition rates:

L̄N f (y) = d(y,+)∇+ f (y)+d(y,−)∇− f (y), (7.10)

on this hypothesis only on one point. See Remark after Proposition 7.2.7. We believe the proof can be

generalized to E0
(
η1(0)

)= m0, m0 ∈ [−1,1].
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where

d(y,+) = N

2

(
1− (1−β)

yp
N

)
χ{y<pN }, (7.11)

and

d(y,−) = N

2

(
1+ (1−β)

yp
N

)
χ{y>pN }, (7.12)

are the linearization of c(x,+) and c(x,−) around x = 0. We prove the following:

Proposition 7.1.2 In the same hypothesis of Theorem 7.1.1,

lim
N→∞

sup
t∈[0,+∞)

∣∣Et [
h(Y N )

]−Et [h(x)]
∣∣= 0. (7.13)

This first step is the difficult one.

Step 2: In the second part of the proof we prove:

Proposition 7.1.3 In the same hypothesis of Theorem 7.1.1,

lim
N→∞

sup
t∈[0,+∞)

∣∣Et [
h(Y N )

]−Et [
h(X N )

]∣∣= 0. (7.14)

The second step follows showing that the L1 distance between X N and Y N is

uniformly small in time.

It is clear that (7.13) plus (7.14) implies (7.9).

7.2 Proof of Theorem 7.1.1: step1

7.2.1 Ornstein-Ulembeck equation for the empirical fluctuations

We derive an Ornstein-Ulembeck type equation for the empirical fluctuations of the

Curie-Weiss model: i.e. X N (t ) = 1p
N

∑N
i=1ηi . The resulting diffusion equation will be

our limit process.

Proposition 7.2.1 The process x(t ) is the weak limit of X N (t ), and it obeys to the dif-

fusion equation:

d x(t ) =−2(1−β)x(t )d t +dW (t ). (7.15)
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7.2. Proof of Theorem 7.1.1: step1

Proof: Consider the infinitesimal generator of the process X N :

LN f (x) = N

2

(
1− xp

N

)
e
β xp

N ∇+ f (x) + N

2

(
1+ xp

N

)
e
−β xp

N ∇− f (x) (7.16)

Here we make a Taylor expansion of the generator to find its limit as N grows

to infinity. The limit is the generator of a diffusion. The process described by the

diffusion equations is the weak limit of X N . Actually, we are using Theorem 5.5 [32].

For the Taylor expansion we have, for f ∈C = C 2-functions with compact support:

LN f (x) = N

(
1− xp

N
(1−β)

)(
1p
N

∂ f

∂x
(x)+ 1

N

∂2 f

∂x2
(x)

)
+N

(
1+ xp

N
(1−β)

)(
− 1p

N

∂ f

∂x
(x)+ 1

N

∂2 f

∂x2
(x)

)
+o(1)

=−2(1−β)x
∂ f

∂x
(x)+2

∂2 f

∂x2
(x)+o(1), (7.17)

where the terms “o(1)” converge to zero uniformly in x. We obtain the following

limit:

L f (x) := lim
N→∞

LN f (x) =−2(1−β)x
∂ f

∂x
(x)+2

∂2 f

∂x2
(x). (7.18)

Because of Theorem 5.5, this is sufficient to prove that the weak limit of X N is the

process x(t ) obeying the following linear diffusion equation:

d x =−2(1−β)x(t )d t +2dW (t ), (7.19)

where W (t ), is a standard Brownian motion. The fact that X N (0) converges in dis-

tribution to a N (0,1) comes from our assumptions on the initial condition and the

standard Cenrtal Limit Theorem. 2

In the sequel we need the ordinary differential equation for the characteristic

function ϕ(u, t ) = E(
e i uxt

)
for xt .

Corollary 7.2.2 Set ϕ(u, t ) = Et
(
e i uxt

)
then

d

d t
ϕ(u, t ) =−2(1−β)

∂

∂u
ϕ(u, t )−u2ϕ(u, t ) = Aϕ(u, t ). (7.20)
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Proof: Now, d
d tϕ(u, t ) = d

d t E(e i uxt ) = E( d
d t e i uxt ). Using the Ito’s formula one gets:

d(e i uxt ) = i ue i uxt (−2(1−β))xt d t −u2e i uxt d t +dM , (7.21)

with M martingale. We take the mean, and divide formally for d t . Moreover, notice

that E(i ue i uxt xt ) is equal to ∂
∂uϕ(u, t ). Thus:

d

d t
ϕ(u, t ) =−2(1−β)

∂

∂u
ϕ(u, t )−u2ϕ(u, t ) = Aϕ(u, t ). (7.22)

2

7.2.2 Uniform distance for distribution functions

In this section we do the first step toward the completion of the proof of the uni-

form fluctuation theorem. Before we continue, we need the definition of distribution

function.

Definition 7.2.3 Consider the process Y N
t defined in (7.10). The function

FY N
t

(x) =Pt (
Y N

t ≤ x
)

(7.23)

is called the distribution function for the process Y N
t . In the same way, Fxt (x) is the

distribution function for the diffusion x(t ).

The aim of this section is to prove that:

Theorem 7.2.4 The following uniform bound holds:

sup
t∈[0,+∞)

sup
x

∣∣∣FY N
t

(x)−Fxt (x)
∣∣∣≤O

(
1

N 1/12

)
. (7.24)

Setϕ(u, t ) = Et
(
e i uxt

)
andϕN (u, t ) = Et

(
e i uY N

t

)
, then the key point is to prove the

following

Proposition 7.2.5 Define:

DN (t ) :=
∫ +∞

−∞

(
ϕ(u, t )−ϕN (u, t )

u

)2

du. (7.25)

Then

sup
t∈[0,+∞)

DN (t ) ≤O

(
1

N 1/4

)
. (7.26)
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Once we get this result, we use the Essen’s Inequality [31], that we recall here.

Theorem 7.2.6 Let F (x) e G(x) be distribution functions with characteristic functions

f (u) and g (u). Moreover, let G(x) have a finite derivative G ′(x) for every x. Then for

every R > 0

sup
x∈R

|F (x)−G(x)| ≤ 2

π

∫ R

0

∣∣∣∣ f (u)− g (u)

u

∣∣∣∣du + 24

πR
sup

x

∣∣G ′(x)
∣∣ . (7.27)

This, together with Proposition 7.2.5 allows us to conclude. Indeed, in our case,

(7.27) gives:

sup
x∈R

∣∣∣FY N
t
−Fxt (x)

∣∣∣≤ 2

π

∫ R

0

∣∣∣∣ϕ(u, t )−ϕN (u, t )

u

∣∣∣∣du + 24

πR
sup

x

∣∣F ′
xt

(x)
∣∣

≤︸︷︷︸
Holder’s Inequality

p
R

2π
(DN (t ))

1
2+ 24

πR
sup

x

∣∣F ′
xt

(x)
∣∣ ≤︸︷︷︸
Proposition 7.2.5

p
R

2π
O

(
1

N
γ
2

)
+ 24

πR
sup

x

∣∣F ′
xt

(x)
∣∣ .

(7.28)

Moreover, our assumption on the initial condition (i.e. ηi (0), i = 1, . . . , N i.i.d. with

E(η1(0)) = 0) implies

F ′
xt

(x) = 1√
2πEt (x2(t ))

e
− x

2Et (x2(t )) . (7.29)

From (7.15), using Ito’s formula one can derive the following ordinary differential

equation
d

d t
Et (x2(t )) =−4(1−β)Et (x2(t ))+4, (7.30)

with initial condition

E0(x2(0)) = 1. (7.31)

The differential equation (7.30) has the solution:

Et (x2(t )) = 1+ (1−β)

1−β e−4(1−β)t − 1

1−β . (7.32)

This finally prove that

sup
t∈[0,+∞)

sup
x

∣∣F ′
xt

(x)
∣∣<+∞. (7.33)
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Now, choosing R = N 1/12, with α < γ, we prove Theorem 7.2.4, since the r.h.s. of

equation (7.28) does not depend on t .

To prove Proposition 7.2.5 we need to show the probability for Y N
t to stay at the

boundary is exponentially small in N uniformly in time when N grows. More pre-

cisely we prove:

Proposition 7.2.7 If ηi (0), i = 1, . . . , N are i.i.d. random variables with E0
(
η1(0)

)
,

then

sup
t∈(0,+∞]

Pt
(∣∣Y N

t

∣∣=p
N

)
≤ aN (7.34)

with a < 1.

Proof: We need some lemmas. Set SN
t =p

N Y N
t . We consider SN

t to make simpler

the computations involved in the proof of the lemmas, but it should be clear that the

conclusion holds for Y N
t , too.

We have SN ∈ {−N , . . . , N } and the possible jumps are

SN → SN +2 at rate N
2 (1− ρSN

N )χ{SN 6=N }

SN → SN −2 at rate N
2 (1+ ρSN

N )χ{SN 6=−N }

with ρ = 1−β ∈ (0,1). We call Lρ the infinitesimal generator of this process.

The lemmas we need are the following.

Lemma 7.2.8 The reversible measure µρN , for the process SN , is

µ
ρ

N (m) = 1

ZN

1

Γ
(

N
2ρ − m

2 +1
)
Γ

(
N
2ρ + m

2 +1
) , (7.35)

where Γ is the Euler’s function and ZN is a normalization factor.

Proof: The measure µρN (m) satisfies the detailed balance condition:(
1−ρm

N

) 1

Γ
(

N
2ρ − m

2 +1
)
Γ

(
N
2ρ + m

2 +1
)

=
(
1+ρm +2

N

)
1

Γ
(

N
2ρ − m+2

2 +1
)
Γ

(
N
2ρ + m+2

2 +1
) . (7.36)
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To see this, it suffices to use the identity Γ(z +1) = zΓ(z). 2

Lemma 7.2.9 By Stirling’s formula, when N is large:

µ
ρ

N (N ) ≤C aN (7.37)

with

a =
[(

ρ2

1−ρ2

)1/ρ (
1−ρ
1+ρ

)] 1
2

. (7.38)

Proof: For N large, use the Stirling’s approximation for the Gamma function

Γ(z) ' (
p

2zπ zz

ez ), with ℜ(z) > 0:

1

Γ
(

N
2ρ − 1

2N +1
) 1

Γ
(

N
2ρ + 1

2N +1
)

' 1

2π

1√
N
2

1−ρ
ρ

1√
N
2

1+ρ
ρ

exp
(

N
2

1−ρ
ρ

)
(

N
2

1−ρ
ρ

) N
2

1−ρ
ρ

exp
(

N
2

1+ρ
ρ

)
(

N
2

1+ρ
ρ

) N
2

1+ρ
ρ

= 1

π

1

N

√
ρ2

1−ρ2

exp
(

N
ρ

)
(N

2

) N
ρ

(
ρ2

1−ρ2

) N
2ρ

(
ρ

1−ρ
)−N

2
(

ρ

1+ρ
) N

2

︸ ︷︷ ︸
=

(
1−ρ
1+ρ

) N
2

= 1

π

exp
(

N
ρ

)
(N

2

) N
ρ +1

(
ρ2

1−ρ2

) N
2ρ+ 1

2
(

1−ρ
1+ρ

) N
2

. (7.39)

Since, limN→∞
exp

(
N
ρ

)
( N

2

) 2N
ρ +1

= 0, for N large,

1

Γ
(

N
2ρ − N

2 +1
) 1

Γ
(

N
2ρ + N

2 +1
) ≤C

(
ρ2

1−ρ2

) 1
ρ
(

1−ρ
1+ρ

) N
2

︸ ︷︷ ︸
=a(ρ)N

, (7.40)

106



Chapter 7. Uniform fluctuation theorem for the Curie-Weiss Model

where

a(ρ) =
(

ρ2

1−ρ2

) 1
ρ
(

1−ρ
1+ρ

)1/2

.

It remains to show that a(ρ) < 1 for ρ ∈ (0,1). By direct computations we get

ρ log a(ρ) = logρ− 1

2
[(1−ρ) log(1−ρ)+ (1+ρ) log(1+ρ)].

By strict convexity of the function x 7→ x log x, we have

1

2
[(1−ρ) log(1−ρ)+ (1+ρ) log(1+ρ)] > 0;

thus ρ log a(ρ) < 1 which implies a(ρ) < 1. 2

Lemma 7.2.10 (Stochastic Domination) Let SN
i i = 1,2 be the processes with infinites-

imal generators:

Lρi f (s) = N

2
(1− ρi s

N
)χ{s 6=N }∇+ f (s)

+ N

2
(1+ ρi s

N
)χ{s 6=−N }∇− f (s), (7.41)

with ∇± f (s) = f (s ±2)− f (s). Assume that ρ1 ≤ ρ2 then, there exists a coupling such

that ,if |SN
2 (0)| ≤ |SN

1 (0)|, then |SN
2 (t )| ≤ |SN

1 (t )|.

Proof: We show that it is possible to construct a coupling in such a way that

the inequality |SN
2 (0)| ≤ |SN

1 (0)| is preserved by the dynamics (i.e. |SN
2 (t )| ≤ |SN

1 (t )|,
∀t > 0).

We do the following coupling:

Ω f (s1, s2) = (Ω1 f (s1, s2))χ{s1s2>0∨s1=s2=0}+(Ω2 f (s1, s2))χ{s1s2<0}+(Ω3 f (s1, s2))χ{s2=0,s1 6=0}.

(7.42)

Let us explain the terms appearing in (7.42). We have:

Ω3 f = Lρ1 f +Lρ2 f , (7.43)

where Lρi is meant to act only on the variable si .
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Ω1 f (s1, s2) = c1(s1,+)∇s1,+ f (s1, s2)+ c2(s2,+)∇s2,+ f (s1, s2)

+min(c1(s1,+),c2(s2,+))
(∇s1,s2,+,+ f (s1, s2)−∇s1,+ f (s1, s2)−∇s2,+ f (s1, s2)

)
+ c1(s1,+)∇s1,+ f (s1, s2)+ c2(s2,+)∇s2,+ f (s1, s2)

+min(c1(s1,−),c2(s2,−))
(∇s1,s2,−,− f (s1, s2)−∇s1,− f (s1, s2)−∇s2,− f (s1, s2)

)
, (7.44)

Ω2 f (s1, s2) = c1(s1,+)∇s1,+ f (s1, s2)+ c2(s2,−)∇s2,− f (s1, s2)

+min(c1(s1,+),c2(s2,−))
(∇s1,s2,+,− f (s1, s2)−∇s1,+ f (s1, s2)−∇s2,− f (s1, s2)

)
+ c1(s1,−)∇s1,− f (s1, s2)+ c2(s2,+)∇s2,+ f (s1, s2)

+min(c1(s1,−),c2(s2,+))
(∇s1,s2,−,+ f (s1, s2)−∇s1,− f (s1, s2)−∇s2,+ f (s1, s2)

)
, (7.45)

where

ci (s,±) = N

2
(1∓ρi s)χ{s 6=±N }

and

∇s1,s2,±,± f (s1, s2) = f (s1 ±2, s2 ±2)− f (s1, s2).

The important thing to notice is that when |SN
1 | = |SN

2 | a jump of the process SN
2

toward a greater modulo, obligates SN
1 to do the same. Thus,

∣∣SN
1 (t )

∣∣ ≥ ∣∣SN
2 (t )

∣∣ for

every t > 0, provided that we start from
∣∣SN

1 (0)
∣∣≥ ∣∣SN

2 (0)
∣∣. 2

This implies that µρ2
N .µ

ρ1
N , where the pseudo-order . means:∫
f (|s|)µρ2

N (d s) ≤
∫

f (|s|)µρ1
N (d s)

for any f increasing. Note that the initial condition corresponding to the symmetric

spins is µ1
N . Thus, for every t ≥ 0, we have µ1

N e tLρ .µ
ρ

N . This implies that

P
(
|Y N

t | =
p

N
)
=

∫
χ{|s|≥N }µ

1
N e tLρ (d s) ≤

∫
χ{|s|≥N }µ

ρ

N (d s) =µρN ({|s| = N }),

and so it decays exponentially in N , uniformly in t . 2

Remark: Our hypothesis on the initial condition for ηi (0) i = 1, . . . , N is funda-

mental for the proof of Proposition 7.2.7, but this is the only point in our line of

reasoning. We believe that this assumption can be relaxed to a non-symmetric one:

ηi (0) i = 1, . . . , N i.i.d. with E0
(
η1(0)

) 6= 0.
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7.2.3 Proof of Proposition 7.2.5

First, we have to know the differential equation for ϕN (u, t ) = E
(
e i uY N

t

)
. Remember

that d
d tϕN (u, t ) = E

(
Lρe i uY N

t

)
. We compute:

Lρe i tY N
t = N

2

(
1−ρ Y N

tp
N

)
χ(Y N

t <pN )e
i uY N

t

(
e

2i up
N −1

)

+ N

2

(
1+ρ Y N

tp
N

)
χ(Y N

t >−pN )e
i uY N

t

(
e

−2i up
N −1

)

= N

2
e i uY N

t

(
e

2i up
N +e

−2i up
N −2

)
+ρe i uY N

t

(
e

2i up
N −e

−2i up
N

)
− N

2

(
1−ρ Y N

tp
N

)
e i uY N

t

(
e

2i up
N −1

)
χ{Y N

t =pN }

− N

2

(
1+ρ Y N

tp
N

)
e i uY N

t

(
e
− 2i up

N −1

)
χ{Y N

t =−pN }. (7.46)

Set:

R(u) =−N

2

(
1−ρ Y N

tp
N

)
e i uY N

t

(
e

2i up
N −1

)
χ{Y N

t =pN }

− N

2

(
1+ρ Y N

tp
N

)
e i uY N

t

(
e
− 2i up

N −1

)
χ{Y N

t =−pN }. (7.47)

Thus we have:

∂

∂t
ϕN (u, t ) = N

2

(
e

i 2up
N +e

−i 2up
N −2

)
ϕN (u, t )

−ρ
p

N

2i

(
e

i 2up
N +e

−i 2up
N

) ∂

∂u
ϕN (u, t )+ R̄(u)

= N

(
cos

(
2up

N

)
−1

)
ϕN (u, t )

−ρ
p

N sin

(
2up

N

)
∂

∂u
ϕN (u, t )+ R̄(u) =: ANϕN (u, t )+ R̄(u), (7.48)
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where R̄(u) = E[R(u)].

We try to bound the following distance between ϕ(u, t ) and ϕN (u, t ). Define

DN (t ) :=
∫ +∞

−∞

(
ϕ(u, t )−ϕN (u, t )

u

)2

du (7.49)

We divide this in two pieces:

DN (t ) =
∫ N 1/4

−N 1/4

(
ϕ(u, t )−ϕN (u, t )

u

)2

du +
∫

{|u|>N 1/4}

(
ϕ(u, t )−ϕN (u, t )

u

)2

du (7.50)

Since |ϕ(u, t )| < 1 the second term in (7.50) is easy to control and it is O

(
1

N
1
4

)
. For

the first one, we use again the Gronwall’s Lemma. We set

D̄N (t ) :=
∫ N 1/4

−N 1/4

(
ϕ(u, t )−ϕN (u, t )

u

)2

du. (7.51)

We have

d

d t
D̄N (t ) =

∫ N 1/4

−N 1/4

(
A(ϕ(u, t )−ϕN (u, t ))

+(AN − A)ϕ(u, t )+ R̄(u)
) (
ϕ(u, t )−ϕN (u, t )

)
u2

2du = (7.52)

∫ N 1/4

−N 1/4

[
−u2((ϕ(u, t )−ϕN (u, t ))−2ρ

∂

∂u
(ϕ(u, t )−ϕN (u, t ))

] (
ϕ(u, t )−ϕN (u, t )

)
u2

2du

+
∫ N 1/4

−N 1/4

[
(N (cos(2u/

p
N )−1)+u2)ϕ(u, t )

−(ρ
p

N sin(2u/
p

N )−2ρu)
∂

∂u
ϕ(u, t )

] (
ϕ(u, t )−ϕN (u, t )

)
u2

2du

+
∫ N 1/4

−N 1/4
R̄(u)

(
ϕ(u, t )−ϕN (u, t )

)
u2

2du. (7.53)
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We integrate the first term by parts. We obtain:

d

d t
D̄N (t ) =−2

∫ N 1/4

−N 1/4

(
ϕ(u, t )−ϕN (u, t )

)2 du +
[(
ϕ(u, t )−ϕN (u, t )

)2 −2ρ

u

]N 1/4

−N 1/4

−2ρ
∫ N 1/4

−N 1/4

(
ϕ(u, t )−ϕN (u, t )

u

)2

du +
∫ N 1/4

−N 1/4

[
(N (cos(2u/

p
N )−1)+u2)ϕ(u, t )

−(ρ
p

N sin(2u/
p

N )−2ρu)
∂

∂u
ϕ(u, t )

] (
ϕ(u, t )−ϕN (u, t )

)
u2

2du

+
∫ N 1/4

−N 1/4
R̄(u)

(
ϕ(u, t )−ϕN (u, t )

)
u2

2du. (7.54)

The first two terms coming from integration by parts are negative, while the third

one is −2ρD̄N (t ), so

d

d t
D̄N (t ) ≤−2ρD̄N (t )

+
∫ N 1/4

−N 1/4

∣∣∣(N (cos(2u/
p

N )−1)+u2)ϕ(u, t )

−(ρ
p

N sin(2u/
p

N )−2ρu)
∂

∂u
ϕ(u, t )

∣∣∣∣
∣∣ϕ(u, t )−ϕN (u, t )

∣∣
u2

2du

+
∫ N 1/4

−N 1/4
|R̄(u)|

∣∣ϕ(u, t )−ϕN (u, t )
∣∣

u2
2du. (7.55)

Now in oder to apply the Gronwall’s Lemma we have to show that:

∫ N 1/4

−N 1/4

∣∣∣(N (cos(2u/
p

N )−1)+u2)ϕ(u, t )

−(ρ
p

N sin(2u/
p

N )−2ρu)
∂

∂u
ϕ(u, t )

∣∣∣∣
∣∣ϕ(u, t )−ϕN (u, t )

∣∣
u2

2du ≤O

(
1

N 1/4

)
, (7.56)

and ∫ N 1/4

−N 1/4
|R̄(u)|

∣∣ϕ(u, t )−ϕN (u, t )
∣∣

u2
2du ≤O

(
1

N 1/4

)
. (7.57)

To control these terms, note that, for some B , C > 0,

cos(2u/
p

N )−1+
(

up
N

)2

≤ B

(
up
N

)4

(7.58)

sin(2u/
p

N )− up
N

≤C

( |u|p
N

)3

(7.59)
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Hence, (7.56) is less than:

K
∫ N 1/4

−N 1/4

1

u2

[
2N B

u4

N 2
+2ρ

p
N

|u|3p
N N

E

(∣∣∣∣ ∂∂u
ϕ(u, t )

∣∣∣∣)]du. (7.60)

It is easy to see that the last expression is O

(
1

N
1
4

)
. One has only to notice that E

(∣∣∣ ∂
∂uϕ(u, t )

∣∣∣)≤√
E
[(

x2
t

)2
]
< M when β< 1 (see (5.12)).

The next problem is to control (7.57). Since we have observed thatP(Y N
t =±pN )

is exponentially small in N uniformly in t , it follows from the definition of R(u) that
R̄(u)
|u| is exponentially small in N , uniformly in u and t . Moreover∣∣ϕ(u, t )−ϕN (u, t )

∣∣
|u| ≤ E(|xt −Y N

t |) ≤C
p

N .

Putting all together we have that (7.57) is exponentially small in N uniformly in t .

This completes the proof of Theorem 7.2.5.

7.2.4 Proof of Proposition 7.1.2

The proof of the Proposition 7.1.2 follows from the next Proposition:

Proposition 7.2.11 If, for some γ> 0,

sup
t

∣∣∣FY N
t

(x)−Fxt (x)
∣∣∣≤O

(
1

Nγ

)
(7.61)

then

lim
N→∞

sup
t
Et (∣∣h(Y N

t (x))−h(xt (x))
∣∣)= 0 (7.62)

Proof: Let be r and s such that P(X t ∉ (r, s]) = 1−Fxt (s)+Fxt (r ) ≤ ε. We can as-

sume that r and s do not depend on t because X t is an Ornstein-Ulembeck process.

Notice that:

P(Y N
t ∉ (r, s]) = 1−FY N

t
(s)+FY N

t
(r )

= 1− (FY N
t

(s)−Fxt (s))+ (FY N
t

(r )−Fxt (r ))−Fxt (s)+Fxt (r ) ≤O

(
1

Nγ

)
+ε. (7.63)
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The r.h.s. does not depend on t , thus

sup
t
P(xt ∉ (r, s]) ≤O

(
1

Nγ

)
+ε. (7.64)

Now, since [r, s] is compact h is uniformly continuous on [r, s] and there exists a

partition r = r1, . . . ,rk = s, such that |h(x)−h(r j )| ≤ ε when x ∈ [r j−i ,ri ]. We let k

grow as Nα, with α< γ, to make ε small.

Moreover, define

g (x) =
k∑

i=1
h(ri )χ(ri−1,ri ], (7.65)

and write:∣∣Et (
h(Y N

t )−h(xt )
)∣∣≤ ∣∣Et (

h(Y N
t )− g (Y N

t )
)∣∣+∣∣Et (

g (Y N
t )− g (xt )

)∣∣+ ∣∣Et (
g (xt )−h(xt )

)∣∣ . (7.66)

For the first term:∣∣Et (
h(Y N

t )− g (Y N
t )

)∣∣= ∣∣∣Et (
h(Y N

t )− g (Y N
t )

)
χY N

t ∈(r,s]

∣∣∣+∣∣∣Et (
h(Y N

t )− g (Y N
t )

)
χY N

t ∉(r,s]

∣∣∣
≤ ε+2‖h‖∞Pt (

Y N
t ∉ (r, s]

)≤ ε (1+2‖h‖∞)+O

(
1

Nγ

)
(7.67)

Since the r.h.s. does not depend on t we conclude:

sup
t

∣∣Et (
h(Y N

t )− g (Y N
t )

)∣∣≤ ε (1+2‖h‖∞)+O

(
1

Nγ

)
. (7.68)

The same line of reasoning for the third term produce:

sup
t

∣∣Et (
g (xt )−h(xt )

)∣∣≤ ε (1+2‖h‖∞) . (7.69)

For the second term of (7.66) we compute:

sup
t

∣∣Et (
g (Y N

t )− g (xt )
)∣∣

= sup
t

k∑
i=1

h(ri )[(FY N
t

(ri )−Fxt (ri )︸ ︷︷ ︸
≤O

(
1

Nγ

)
)− (FY N

t
(ri−1)−Fxt (ri−1)︸ ︷︷ ︸

≤O
(

1
Nγ

)
)] ≤ 2Nα‖h‖∞O

(
1

Nγ

)
.

(7.70)
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So, for N sufficiently large we have:

sup
t
Et (∣∣h(Y N

t (x))−h(xt (x))
∣∣)≤ ‖h‖∞O

(
1

Nγ−α

)
+ε(1+‖h‖∞), (7.71)

and, since ε is arbitrary, this completes the proof. 2

7.3 Proof of Theorem 7.1.1: step 2

7.3.1 The linearization of the Curie-Weiss model

The next step is to show that the Curie-Weiss system remains uniformly close in time

to its linearization. More precisely, we compare the former one with the spin-flip

system where we linearize the transition rates. For our aims the quantity of interest

is the empirical fluctuations so we investigate the time evolution of X N = 1p
N

∑
i=1ηi

under the Curie-Weiss dynamics and its “linearization” Y N . We recall that X N and

Y N are markovian, with generators respectively L and L̄ defined in (7.3) and (7.10).

We prove the following

Proposition 7.3.1 When β < 1 there is a probability space where both the processes

X N and Y N can be realized and

sup
t∈[0,+∞)

Et (|X N −Y N |)<O

(
1p
N

)
. (7.72)

Proof: The technique is always the same: first, we use coupling to realize the two

processes in the same probability space and next, the Gronwall’s Lemma helps us to

bound Et
(|X N −Y N |).

The infinitesimal generator of the coupling is

Ω f (x, y) =Ω+ f (x, y)+Ω− f (x, y) (7.73)

with

Ω+ f (x, y) = c(x,+)∇x,+ f (x, y)+d(y,+)∇y,+ f (x, y)

+min{c(x,+),d(y,+)}
(∇x,y,+,+ f (x, y)−∇x,+ f (x, y)−∇y,+ f (x, y)

)
(7.74)
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Ω− f (x, y) = c(x,−)∇x,− f (x, y)+d(y,−)∇y,− f (x, y)

+min{c(x,−),d(y,−)}
(∇x,y,−,− f (x, y)−∇x,− f (x, y)−∇y,− f (x, y)

)
. (7.75)

with

∇x,y,±,± f (x, y) = f

(
x ± 2p

N
, x y ± 2p

N

)
− f (x, y).

Remember that d
d t E

t (|X N −Y N |) = Et (Ω|X N −Y N |). Take f (x, y) = |x−y | then, we

observe that:

1. ∇x,+ f (x, y) =∇y,− f (x, y) = 2p
N

sign(x − y)χ{x 6=y} + 2p
N
χ{x=y},

2. ∇x,− f (x, y) =∇y,+ f (x, y) =− 2p
N

sign(x − y)χ{x 6=y} + 2p
N
χ{x=y};

and, so one obtains:

(
Ω|X N −Y N |)χ{X N 6=Y N } =

{
2p
N

sign(X N −Y N )[c(X N ,+)−d(Y N ,+)]

− 2p
N

sign(X N −Y N )[c(X N ,−)−d(Y N ,−)]

}
χ{X N 6=Y N } (7.76)

The transition rate d(Y N , ·) is the linearization of c(X N , ·). This implies:

c
(
X N ,+)−d

(
Y N ,+)= d

(
X N ,+)+O

[(
X N )2

]
−d

(
Y N ,+)

=
p

N

2
(1−β)

(−X N +Y N )+O
[(

X N )2
]

, (7.77)

and that, in the same way,

c
(
X N ,−)−d

(
Y N ,−)= p

N

2
(1−β)

(
X N −Y N )+O

[(
X N )2

]
. (7.78)

For
(
Ω f (X N ,Y N )

)
χ{X N 6=Y N } the previous computations gives:

(
Ω f (X N ,Y N )

)
χ{X N 6=Y N } =

−2(1−β)|X N −Y N |+
O

[(
X N

)2
]

p
N

χ{X N 6=Y N }. (7.79)
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A similar computation for
(
Ω f (X N ,Y N )

)
χ{X N=Y N } gives:

(
Ω f (X N ,Y N )

)
χ{X N=Y N } =

O
[(

X N
)2

]
p

N
χ{X N=Y N }. (7.80)

For β< 1 we know that Et
[(

X N
)2

]
is O (1), so we conclude that

d

d t
Et (|X N −Y N |)≤−2(1−β)Et (|X N −Y N |)+O

(
1p
N

)
. (7.81)

We are in the good situation to apply the Gronwall’s Lemma. This completes the

proof of the theorem. 2

7.3.2 Proof of Proposition 7.1.3

Proposition 7.1.3 directly follows from the proposition below.

Proposition 7.3.2 If, for some γ> 0,

sup
t
E
(∣∣Y N

t −X N
t

∣∣)≤O

(
1

Nγ

)
, (7.82)

then

lim
N→∞

sup
t
E
(∣∣h(Y N

t )−h(X N
t )

∣∣)= 0. (7.83)

Proof: From (7.63) of Proposition 7.2.11 we know that there exist r and s such

that, supt P
t (YN ∉ (r, s]) ≤ ε for N sufficiently large. Choose δ such that |h(x)−h(y)| ≤

ε when |x − y | ≤ δ, ∀x, y ∈ (r, s], then

Et (∣∣h(Y N
t )−h(X N

t )
∣∣)= Et (∣∣h(Y N

t )−h(X N
t )

∣∣ :
∣∣Y N

t −X t
∣∣≤ δ, Y N

t ∉ [r, s]
)

+Et (∣∣h(Y N
t )−h(X N

t )
∣∣ :

∣∣Y N
t −X t

∣∣≤ δ, Y N
t ∈ [r, s]

)
+Et (∣∣h(Y N

t )−h(X N
t )

∣∣ :
∣∣Y N

t −X t
∣∣> δ)

≤ ε+2ε‖h‖∞+2‖h‖∞
E
(∣∣Y N

t −X N
t

∣∣)
δ

≤ ε+2ε‖h‖∞+2‖h‖∞
supt E

(∣∣Y N
t −X N

t

∣∣)
δ

. (7.84)

This completes the proof of the Proposition 7.1.3 and of the Theorem 7.1.1. 2
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