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Sommario

I problemi di generazione sono problemi estremamente interessanti nella
teoria dei gruppi finiti. Tali problemi spesso si riducono a problemi sui ge-
neratori di p-gruppi. Questo ha portato ad un sempre maggiore interesse per
i problemi di generazione nei p-gruppi e allo studio di classi di p-gruppi fini-
ti in cui i generatori del gruppo e dei sottogruppi soddisfano alcune precise
condizioni.

Di particolare interesse è la classe dei p-gruppi finiti G tali che il numero
di generatori di ogni sottogruppo H di G è minore o uguale del numero di
generatori di G.
Esempi di p-gruppi appartenenti a questa classe sono i p-gruppi abeliani, i
p-gruppi modulari e i p-gruppi powerful. Soddisfano tale proprietà anche i
p-gruppi monotoni. Per questi ultimi ricordiamo la definizione.

Definizione. Dato G un gruppo, sia d(G) il numero di generatori di G.
Un p-gruppo G si dice monotono se per ogni H e K sottogruppi di G con H

contenuto in K, si ha d(H) ≤ d(K).

I p-gruppi monotoni sono stati introdotti da Mann durante una conferen-
za tenutasi a Saint Andrews nel 1985.
Lo stesso autore, in “The number of generators of finite p-groups”(vedi [10]),
lavoro pubblicato nel 2005, studia i p-gruppi monotoni e li classifica per p dis-
pari. Del caso p = 2, non viene data alcuna classificazione ma vengono date
alcune proprietà interessanti. Ad esempio, Mann dimostra che un 2-gruppo
G è monotono se e solo se i sottogruppi 2-generati di G sono metaciclici.

In questa tesi vengono studiati e classificati completamente i 2-gruppi
monotoni. Per i risultati si rimanda ai Teoremi 1.4, 1.5 e 1.6.





Abstract

The generation problems are very interesting in the theory of finite groups.
These problems can often be reduced to problems on the generators of p-
groups. This has led to an increasing interest on the problems of generation
in p-groups and on the study of classes of p-groups in which generators
satisfy some precise conditions.

In particular, it is very interesting the class of finite p-groups G with the
property that the rank of G is equal to the number of generators of G (i.e.
the number of generators of every subgroup of G is smaller than or equal to
the number of generators of G). For instance, the abelian, the modular and
the powerful p-groups belong to this class. Also the monotone p-groups lie
in this class. We recall here the definition of monotone p-groups.

Definition. Let G be a group. We denote with d(G) the number of gener-
ators of G. A p-group G is monotone if for every H and K subgroups of G
with H contained in K, we have that d(H) ≤ d(K).

The class of monotone p-groups was introduced by A. Mann during the
1985 Saint Andrews Conference. In the paper “The number of generators

of finite p-groups”(see [10]) published in 2005, Mann studies the monotone
p-groups and classifies the monotone p-groups for p odd. When p = 2,
Mann does not classify the monotone 2-groups, but he gives some remarkable
properties. For instance, he proves that a 2-group G is monotone if and only
if the 2-generated subgroups of G are metacyclic.

In this thesis, the monotone 2-groups are studied and completely deter-
mined. For the main results we refer to Theorems 1.4, 1.5 and 1.6.





Contents

1 Introduction iii

2 Preliminaries 1
2.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . 1
2.2 General results . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Monotone 2-groups of exponent 4 11
3.1 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Monotone 2-Groups Of Exponent 4 not Involving K2 . . . . . 20
3.3 Monotone 2-Groups Of Exponent 4 Involving K2 . . . . . . . 25

4 Monotone 2-Groups of exponent greater than 4 in which
|G : H4(G)| = 2 41
4.1 The subgroup H4(G) . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 The Classification of Monotone 2-Groups G with exp(G) ≥ 8

and |G : H4(G)| = 2. . . . . . . . . . . . . . . . . . . . . . . . 57

5 Monotone 2-Groups of exponent greater than 4 in which
G = H4(G) 65
5.1 Monotone 2-Groups with H4(G) = G and G/G4 abelian . . . 73
5.2 Monotone 2-Groups with H4(G) = G and G/G4 non-abelian . 77

– i –





Chapter 1

Introduction

Very many problems in finite group theory are concerned with generators.
Also, very often problems on the generators of a general group can be re-
duced to problems on the generators of p-groups.

For instance, we recall that if every Sylow p-subgroup of a group G is
d-generated, then G is d+1-generated (see [8]). Another result in this direc-
tion states that every permutation group of degree n ≥ 3 is n/2-generated
(a proof reduces to dealing with p-groups).
These and many other applications lead to investigations on generation pro-
blems of p-groups. Since general problems concerning generators of p-groups
are quite hard to deal with, authors try to investigate particular classes of
p-groups, where generating systems satisfy some conditions.

A very interesting class is the class of those finite p-groups G in which
the rank of G is equal to the number of generators of G, i.e. the class of
finite p-groups G such that the number of generators of any subgroup H of
G is smaller than or equal to the number of generators of G.
Abelian, modular and powerful p-groups are examples of p-groups belonging
to this class. Other important p-groups, where the rank equals the num-
ber of generators, are the d-maximal p-groups (a p-group G is said to be
d-maximal if G is d-generated and every proper subgroup of G is generated
by strictly less than d elements). Laffey, in [6], proves that the nilpotency
class of a d-maximal p-group for p ≥ 3 is at most 2. For p = 2 not much
is known, but it seems to be very difficult to investigate the d-maximal 2-
groups. Some results about d-maximal 2-groups are in [5].
Another family of p-groups that belongs to this class is the family of mono-
tone p-groups. We first recall the definition.
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Chapter 1. Introduction

Definition 1.1. Let G be a group. We denote with d(G) the number of
generators of G. A p-group G is monotone if for every H and K subgroups
of G with H contained in K, we have that d(H) ≤ d(K).

The monotone p-groups were introduced by Avinoam Mann during the
1985 Saint Andrews Conference (see [9]).
More precisely, he defined the classes of p-groups Ms, where 1 ≤ s ≤ p.

Definition 1.2. A p-group G is said to be in Ms, where 1 ≤ s ≤ p, if it
satisfies the following condition:
if H ≤ K ≤ G, |K : H| = p and K is not cyclic then d(H)−1 < s(d(K)−1).

The restriction on the range of s is imposed to avoid trivialities. In fact,
for s = 1, the p-groups in M1 are the elementary abelian p-groups, the cyclic
p-groups and the quaternion group of order 8.
For s > p, all p-groups lie in Ms, because of Schreier’s inequality (i.e. in
every group G, if H is a subgroup of finite index, then d(H) − 1 ≤ |G :
H|(d(G)− 1)).

Among the classes Ms, the class M2 is strictly related with the class of
the monotone p-groups.
In fact, every monotone p-group is in M2. Moreover, in the paper “The

number of generators of finite p-groups”(see [10]), Mann studies the classes
Ms, and he shows that, when p = 2 the class M2 coincides with the class of
the monotone 2-groups.
In the same paper, Mann gives a strong characterization for the groups in
M2.

Proposition 1.1. A p-group G is in M2 if and only if every subgroup of a
2-generated subgroup of G is 2-generated.

Using this property, Mann classifies completely, except for some uncer-
tainty for exponent p2, the monotone p-groups and the p-groups in M2, when
p is odd.
In particular, he shows that for p > 3, the monotone p-groups are (apart
from a small number of exceptions) modular, whereas for p = 3, there
are also some monotone 3-groups of maximal class and some other related
groups. See Theorems 8, 9, 10 in [10] for a full account.

For p = 2, things are much harder and in literature there is no complete
classification of monotone 2-groups.
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Nevertheless, in his work, Mann gives some important properties for mono-
tone 2-groups.

In fact for p = 2, Proposition 1.1 can be refined into the following:

Proposition 1.2. A 2-group G is monotone if and only if every 2-generated
subgroup of G is metacyclic.

Another remarkable property of the class M2 is related with the sub-
groups Hq(G) of G. We first recall the definition of Hq(G).

Definition 1.3. Let G be a p-group and let q = pe. Then Hq(G) = 〈x ∈
G : xq 6= 1〉.

Mann shows the following:

Proposition 1.3. Let p be equal to 2 or 3. If G is a p-group in M2, and
exp(G) > q, then |G : Hq(G)| ≤ p.

Moreover, in his work Mann classifies the power-closed 2-groups.
We recall that a p-group G is said to be power-closed if in each section of G
a product of p-th powers is again a p-th power.
It turns out that, for p odd, every monotone p-group is power-closed. For
p = 2 every power-closed 2-group is monotone but the converse is not true
(for example the group 〈a, b : a4 = 1, b4 = 1, ab = a−1〉 is monotone but not
power-closed).

In this thesis, we classify all the finite monotone 2-groups. In Chapter
3 we completely determine the monotone 2-groups of exponent 4. Chapter
4 and Chapter 5 deal with monotone 2-groups of exponent greater than 4.
By Proposition 1.3, we get that, when G is a monotone 2-group of exponent
greater than 4, the subgroup H4(G) is either maximal or the whole group.
In particular, in Chapter 4 the monotone 2-groups of exponent greater than
4 and such that |G : H4(G)| = 2 are determined. The last chapter is
dedicated to the monotone 2-groups of exponent greater than 4 and such
that G = H4(G).

Given a 2-group G, we write G = H ∗ K to mean that G = HK and
[H,K] = 1, i.e. G is a central product of the two subgroups H and K. Each
time we use the symbol G = H ∗K we shall specify the intersection H ∩K
in G.

We now report the main results of each chapter.
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Theorem 1.4. Let G be a monotone 2-group of exponent 4. Then G is
either abelian or isomorphic to one of the groups in the following list:

- E ∗ A, where E is an extraspecial group and A is either an abelian group
of the form C4×C2× · · · ×C2 and E2 = A2 or an elementary abelian
group and E ∩A = 1;

- A〈b〉, where A is an abelian group of exponent 4, |b| ≤ 4, and ab = a−1

for all a ∈ A;

- 〈a, b, c : a4 = 1, b4 = 1, a2b2 = c2, ab = a3, ac = a, bc = b〉 × A, where A is
elementary abelian;

- 〈a, b, c : a4 = 1, b4 = 1, a2b2 = c2, ab = a3, ac = a, bc = b3〉 ×A, where A is
elementary abelian;

- 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab = a3, ac = a, bc = b, ad =
a, bd = b3, cd = cb2〉 ×A, where A is elementary abelian;

- 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab = a3, ac = a, bc = b, ad =
a, bd = bd2, cd = c3〉 ×A, where A is elementary abelian;

- 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab = a3, ac = a, bc = b3, ad =
ad2, bd = b, cd = ca2〉 ×A, where A is elementary abelian.

Theorem 1.5. Let G be a monotone 2-group of exponent greater than 4
and such that |G : H4(G)| = 2. Then G is isomorphic to one of the groups
in the following list:

- A〈u〉, where A is abelian of exponent 2n ≥ 8, u2 ∈ Ω1(A), au = a−1+4h

with |a4h| ≤ 2 for every a ∈ A;

- 〈a, b, u〉×A, where A is elementary abelian, |a| = 2n ≥ 8, |b| = 2, 〈a, b〉 is
abelian, u2 = a2n−1

, bu = ba2n−1
, au = a−1;

- 〈a, b, u〉×A, where A is elementary abelian, |a| = 2n ≥ 8, |b| = 4, 〈a, b〉 is
abelian, u2 = b2 and au = a−1, bu = b−1a2n−1

;

- 〈a, u〉 ∗ E × A, where |a| = 2n ≥ 8, E is extraspecial, A is elementary
abelian, u2 ∈ 〈a2n−1〉, au = a−1+4h with |a4h| ≤ 2 and E2 = 〈a2n−1〉;

- 〈a, u〉 ∗E ∗A, where E is extraspecial, A is abelian of the form C4×C2×
· · · × C2, |a| = 2n ≥ 8, u2 = a2n−1

, au = a−1+4h with |a4h| ≤ 2 and
A2 = E2 = 〈a2n−1〉;
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- 〈a, u, b〉 ∗ E × A, where |a| = 2n ≥ 8, E is extraspecial, A is elementary
abelian, |b| = 2, u2 ∈ 〈a2n−1〉, ab = a1+2n−1

, au = a−1, bu = ba4h with
|a4h| ≤ 2 and E2 = 〈a2n−1〉;

- 〈a, u, b〉 ∗ E ∗ A, where E is extraspecial, A is abelian of the form C4 ×
C2×· · ·×C2, and |a| = 2n ≥ 8, |b| = 2, u2 = a2n−1

, au = a−1, bu = b,
ab = a1+2n−1

, and A2 = E2 = 〈a2n−1〉;

- 〈a, b, u〉×A, where A is elementary abelian, |a| = 2n ≥ 8, |b| = 2, |u| = 4,
u2 = a2n−1

, au = a−1+4h with |a4h| ≤ 2, ab = a1+2n−1
and ub = u−1;

- 〈a, c, b, u〉 × A, where A is elementary abelian, |a| = 2n ≥ 8, |c| = 2,
|b| = 2, |u| = 4, u2 = a2n−1

, au = a−1, ab = a1+2n−1
, ub = u−1,

ca = c, cb = c and cu = ca2n−1
;

- 〈a, b, u〉×A, where A is elementary abelian, |a| = 2n ≥ 8, |b| = 4, |u| = 4,
u2 = b2, au = a−1+4h with |a4h| ≤ 2, bu = b−1a2n−1

, ab = a1+2n−1
.

Theorem 1.6. Let G be a non-trivial monotone 2-group such that G =
H4(G). Then G is either a modular group that does not involve Q8 or is
isomorphic to one of the groups in the following list:

- 〈a, c〉∗E×A, where E is extraspecial, A is elementary abelian, |a| = 2n ≥
8, |c| = 2 and ac = a1+4h with |a4h| ≤ 2, E2 = 〈a2n−1〉;

- 〈a, b, c〉×A, where A is elementary abelian, |c| = 2n ≥ 8, |a| = 4, a2 = b2,
ca = c1+4h1, cb = c−1+4h2 and ab = a−1c4h3, with |c4hi | ≤ 2 for
i = 1, 2, 3;

- 〈a, b, c, d〉 × A, where A is elementary abelian, |c| = 2n ≥ 8, |a| = 4,
a2 = b2, |d| = 2, ca = c, cb = c and ab = a−1c4h with |c4h| ≤ 2, and
cd = c1+2n−1

, ad = a and bd = b;

- 〈a, b, c, d〉 ∗E ×A, where A is elementary abelian, E is extraspecial, |a| =
2n ≥ 8, b4 = a2n−1

, 〈c, d〉 is elementary abelian, ab = a−1+4h, with
|a4h| ≤ 2, ac = a1+4h1, ad = a, bc = b, bd = b1+4h2, where |a4h1 | ≤ 2
and |b4h2 | ≤ 2 and E2 = 〈a2n−1〉;

- A〈b〉, where A is an abelian group, |b| ≥ 8 and ab = a−1+4h, for every
a ∈ A;
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- 〈A, c, b〉, where A is an abelian group of exponent 2n, with n ≥ 3, A2n−1
=

Ω1(〈b〉), |b| ≥ 8, ab = a−1+4h, ac = a1+2n−1
for every a ∈ A, cb =

c−1+4h and exp (〈A, c〉4h) < |b2| < 2n;

- 〈A, c, b〉 where A is an abelian group of exponent 2n, with n ≥ 3, A2n−1
=

Ω1(〈b〉), |b| ≥ 8, ab = a−1+4h+2n−1
, ac = a1+2n−1

for every a ∈ A,
cb = c−1+4h, |c| > 2n, |c4h| = |b2|, |b2| < 2n, and 〈b〉 ∩ 〈c〉 = 1.

We note that all the groups in the above lists are in fact monotone and
so Theorem 1.4, Theorem 1.5 and Theorem 1.6 comprise the classification
of monotone 2-groups.

All the groups considered in this thesis are finite.
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Chapter 2

Preliminaries

2.1 Definitions and Notations

In this first section, we give some definitions and state some well-known
facts that will be often used throughout the thesis.

A very basic fact, that is often used in this thesis is the following:

Remark 2.1. If a group H is generated by X, then the derived subgroup of
H is the normal closure in H of the subgroup 〈[x1, x2] : x1, x2 ∈ X〉.
If H1 and H2 are subgroups of H generated respectively by X1 and by X2,
then [H1, H2] is the normal closure in 〈X1, X2〉 of the subgroup generated by
〈[x1, x2] : x1 ∈ X1, x2 ∈ X2〉.

Let us now recall the definition of powerful p-groups.
As usual, if G is a p-group we denote with Gn = 〈xn : x ∈ G〉.

Definition 2.1. A p-group G is powerful if [G,G] ≤ Gp for p 6= 2, or
[G,G] ≤ G4 for p = 2.
A subgroup N of a p-group G is said to be powerfully embedded in G, if
[N,G] ≤ Np for p 6= 2, or [N,G] ≤ N4 for p = 2.
A subgroup N of a p-group G is said to be almost-powerfully-embedded if
[N,G] ≤ Np. In particular, for p 6= 2, the definition of powerfully embedded
and of almost-powerfully-embedded coincide.

In the following proposition we recall some properties of powerful p-
groups.

Proposition 2.2. Let G be a powerful p-group. Then the followings hold:
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Chapter 2. Preliminaries

- for any i ≥ 1, the subgroup Gp
i

is equal to {xpi
: x ∈ G};

- if X = {x1, . . . , xs} is a set of generators of G, then Gp
i

is generated by
{xp

i

1 , . . . , x
pi

s };

- a 2-generated powerful group is metacyclic.

Standard references for the theory of powerful p-groups are [1] and [7].
We refer the reader to [5] for the theory of almost-powerfully-embedded
groups.

We now recall the definition and some properties of the modular p-
groups. First of all the definition of permutable subgroup:

Definition 2.2. Let G be a group. Let H and K be subgroups of G.
The subgroup H permutes with K if HK = KH.
A subgroup H of G is called permutable if H permutes with K, for all sub-
groups K of G.

By (3.11) and (3.12) on page 24 of [14], we get the following characteri-
zation for permutable subgroups:

Remark 2.3. Let G be a group and let H and K be subgroups of G.
The subgroups H and K permute if and only if |H ∩K||HK| = |H||K|.

We report the definition of modular group:

Definition 2.3. A group G is said to be modular if its lattice of subgroups
is modular, i.e. 〈X,Y ∩ Z〉 = 〈X,Y 〉 ∩ Z for all subgroups X, Y , Z of G
such that X ≤ Z.

A finite p-group G is modular if and only if all subgroups of G are
permutable.

The modular p-groups are well-known and are classified in the following
theorem.

Theorem 2.4. A finite p-group G is modular if and only if

(a) G is a direct product of a quaternion group of order 8 with an elementary
abelian 2-group, or

(b) G contains an abelian normal subgroup A with cyclic factor G/A; further
there exists an element b ∈ G with G = A〈b〉 and a positive integer s
such that ab = a1+ps

, for all a ∈ A, with s ≥ 2 in case p = 2.

We refer the reader to Chapter 2 of [13] for more details on modular
groups.
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2.2 General results

In this section, we state some results about monotone 2-groups that will be
often used in our work.

The class of monotone 2-groups is closed for taking quotients and sub-
groups, but, in general, it is not closed for taking direct products. For
example, the direct product of a dihedral group of order 8 with a cyclic
group of order 4 is not monotone. Nevertheless, in some special cases the
direct product of monotone 2-groups is monotone. In fact, we have the
following lemma.

Lemma 2.5. If G is a monotone 2-group and A is an elementary abelian
2-group, then the direct product G×A is monotone.

Proof. By Proposition 1.2, we have to show that all the 2-generated sub-
groups of G are metacyclic. Pick x1, x2 ∈ G × A. Then for i = 1, 2 there
exist gi ∈ G and ai ∈ A such that xi = giai. The subgroup 〈g1, g2〉 is
a 2-generated subgroup of G and so it is metacyclic. Hence there exists
g3 = gh1

1 gk1
2 and g4 = gh2

1 gk2
2 such that 〈g1, g2〉 = 〈g3, g4〉 and 〈g3〉� 〈g3, g4〉.

We have h1k2 − h2k1 ≡ 1 mod 2. Put x3 = xh1
1 xk1

2 = g3a
h1
1 ak2

2 , and
x4 = xh2

1 xk2
2 = g4a

h2
1 ak2

2 . We get 〈x3, x4〉 ≤ 〈x1, x2〉 and the condition
h1k2 − h2k1 ≡ 1 mod 2 guarantees that 〈x1, x2〉 = 〈x3, x4〉. Moreover
〈[x3, x4]〉 = 〈[g3, g4]〉 ≤ 〈g2

3〉 = 〈x2
3〉. Hence 〈x1, x2〉 is a metacyclic sub-

group. Therefore G×A is a monotone 2-group.

Therefore, given a 2-group G = H × A, where H is a 2-group and A is
elementary abelian, in order to check that G is monotone, it is sufficient to
check that H is monotone.

In the following lemma, we introduce a very important family of mono-
tone 2-groups.

Lemma 2.6. Let G be a group isomorphic to A〈b〉 where A is abelian and
b is such that ab = ar, for all a in A. Then G is monotone.

Proof. We have to prove that each 2-generated subgroup of G is metacyclic
(see Proposition 1.2). Since A is abelian, and so monotone, it is enough
to check that the subgroups of the form 〈a1b

i, a2〉 are metacyclic, where
a1 and a2 are in A. So let H = 〈a1b

i, a2〉, with a1 and a2 in A. Since
aa1bi

2 = ab
i

2 = ar
i

2 , we have that 〈a2〉�H and so H is metacyclic. Therefore,
our lemma is proved.
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The next part is related with the power structure of a monotone 2-group.
In Lemma 2.7 we show that the Frattini subgroup of a monotone 2-group is
powerful. This implies that any element in G4 is a square in G. Moreover,
we show in Lemma 2.9 that the cyclic group generated by a square of an
element of G is permutable in G, and so we get (Corollary 2.10) that G4 is
modular.

Lemma 2.7. Let G be a monotone 2-group. The subgroup G2 is powerful.
Moreover, G2 is almost-powerfully-embedded in G.

Proof. We want to show that [G2, G2] ≤ (G2)4. By Remark 2.1, since G2 is
generated by the set {a2 : a ∈ G}, it is enough to show that for all a and b

in G the commutator [a2, b2] is contained in (G2)4.
Pick a and b in G. Since G is a monotone 2-group, all the 2-generated

subgroups are metacyclic. Hence, there exist x, y ∈ 〈a, b〉 such that 〈x, y〉 =
〈a, b〉, 〈x〉 � 〈x, y〉 and xy = xr, where r ≡ ±1 mod 4. So r = ±1 + 4h.
Since 〈x, y〉 is metacyclic and 〈x〉 � 〈x, y〉, we have that 〈x, y〉2 = 〈x2, y2〉
and [〈x, y〉2, 〈x, y〉2] = 〈[x2, y2]〉. Now, we have that (x)y

2
= x(±1+4h)2

=
x1±8h+16h2

and so (x2)y
2

= x2±16h+32h2
. Hence, we obtain that [x2, y2] =

x±16h+32h2
. In particular, we have [x2, y2] ∈ 〈x8〉 and [〈x, y〉2, 〈x, y〉2] ≤ 〈x8〉.

Now, being 〈x8〉 = 〈x2〉4, we have [〈x, y〉2, 〈x, y〉2] ≤ (G2)4. Since a2, b2 are
in 〈x, y〉2, it follows that [a2, b2] ∈ (G2)4, and the first part of the lemma is
proved.

In order to prove that G2 is almost-powerfully-embedded, we have to
show that [G2, G] ≤ (G2)2. Arguments similar to the previous ones show
that if a and b are in G, then [a2, b] ∈ (G2)2 and the result follows from
Remark 2.1.

Corollary 2.8. Let G be a monotone 2-group. Then Φ(G2) = G4 and
G2i+1

= (G2)2i
, for i ≥ 1.

Proof. If P is a powerful group and X is a generating set for P , then P 2i
is

generated by the set {x2i
: x ∈ X} (see Theorem 2.7 on page 40 of [1]).

Since G2 is powerful with generating set {a2 : a ∈ G}, we get that
(G2)2i

is generated by the set {a2i+1
: a ∈ G}. In particular, we obtain that

(G2)2i
= G2i+1

for i ≥ 1. Moreover, G4 = (G2)2 = Φ(G2).

Lemma 2.9. Let G be a monotone 2-group. If a is an element of G, then
the subgroup 〈a2〉 is permutable in G.
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Proof. We first show that, if H is a metacyclic 2-group, then, for all a ∈ H,
the subgroup 〈a2〉 is permutable in H.
Let H = 〈x, y〉, where 〈x〉 is normal in 〈x, y〉 and xy = xr. If r ≡ 1 mod 4,
then, by Lemma 2.3.4 on page 56 of [13], H is a modular subgroup, and, by
Lemma 2.3.2 on page 55 of [13], each subgroup of H is permutable.

We assume now r ≡ −1 mod 4, i.e. r = −1 + 4h. Let a be an element
of H. Since a2 is in 〈x, y2〉, which is a modular subgroup, it is sufficient
to check that 〈a2〉 permutes with the subgroup 〈yk1xk2〉, where k1 is odd.
Replacing yk1xk2 with a suitable power, we may assume k1 = 1. Moreover,
we have that 〈x, y〉 = 〈x, yxk2〉, and yxk2 acts as y on 〈x〉. Therefore, it is
enough to prove that, for all the elements a in H, the subgroups 〈y〉 and 〈a2〉
permute. Since H = {yixj : i, j ∈ N}, we assume a = yixj . We distinguish
two cases, depending on the parity of i.

- Suppose i odd. Replacing eventually a with a suitable power, we may
assume a = yxj . We get a2 = y2x4hj . The subgroup 〈y2x4hj , y〉 is
equal to 〈x4hj , y〉. Since the subgroups 〈x4hj〉 and 〈y〉 permute, in
order to prove that the subgroups 〈y〉 and 〈a2〉 permute, we have to
show that

|〈y2x4hj , y〉| = |〈x4hj , y〉| = |x4hr||y|
|〈x4hj〉 ∩ 〈y〉|

.

Since 〈x2, y2〉 is a modular subgroup we get that (y2x4hj)l ≡ y2lx4hjl

mod 〈x8hjl〉. In particular (y2x4hj)l ∈ 〈y〉 if and only if (x4hj)l ∈ 〈y〉.
It follows that [〈y2x4hj〉 : 〈y2x4hj〉∩ 〈y〉] = [〈x4hj〉 : 〈x4hj〉∩ 〈y〉]. Then
|x4hr||y|
|〈x4hj〉∩〈y〉| = |y2x4hr||y|

|〈y2x4hj〉∩〈y〉| = |〈y2x4hj , y〉|.

- Suppose now i even. Then, we have i = 2k and a = y2kxj . Now, a2 =
y4kx2j+4s, for some s ∈ N. We get that 〈y4kx2j+4s, y〉 = 〈x2j+4s, y〉.
Since the subgroups 〈x2j+4s〉 and 〈y〉 permute, in order to prove that
the subgroups 〈y〉 and 〈a2〉 permute, we have to show that

|〈y4kx2j+4s, y〉| = |〈x2j+4s, y〉| = |x2j+4s||y|
|〈x2j+4s〉 ∩ 〈y〉|

.

Since 〈x2, y2〉 is a modular subgroup, we get that (y4kx2j+4s)l ∈ 〈y〉 if
and only if (x2j+4s)l ∈ 〈y〉. Hence, we get [〈y4kx2j+4s〉 : 〈y4kx2j+4s〉 ∩
〈y〉] = [〈x2j+4s〉 : 〈x2j+4s〉∩〈y〉] and so |x2j+4s||y|

|〈x2j+4s〉∩〈y〉| = |y4kx2j+4s||y|
|〈y4kx2j+4s〉∩〈y〉| =

|〈y4kx2j+4s, y〉|.
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Therefore, in both cases, we get that 〈a2〉 and 〈y〉 permute and it follows
that the subgroup 〈a2〉 is permutable in H.
This concludes our preliminary claim.

To conclude, let a be an element of G. In order to show that 〈a2〉 is a
permutable subgroup of G, it suffices to prove that it permutes with 〈b〉 for
all b ∈ G. Hence, it is enough to prove that 〈a2〉 is a permutable subgroup
in H = 〈a, b〉. Being a subgroup of a monotone 2-group, H is metacyclic,
and so the result follows from the first part of the proof.

Corollary 2.10. Let G be a monotone 2-group. The subgroups of G4 are
permutable in G. In particular, the subgroup G4 is modular.

Proof. Since G2 is a powerful subgroup, by Proposition 2.6 of page 40 in
[1], the elements of (G2)2 are squares of elements in G2. By Corollary 2.8,
we have that (G2)2 = G4. By Lemma 2.9, the cyclic subgroups of G4 are
permutable in G. Hence all the subgroups of G4 are permutable in G4 and
we get, by Lemma 2.3.2 on page 55 of [13], that G4 is modular.

The following lemma deals with metacyclic 2-groups that have a gener-
ator of order 2.

Lemma 2.11. Let 〈a, b〉 be a metacyclic group with |b| = 2.
Then 〈a, b〉 is either semidihedral or Ω1(〈a, b〉) is contained in the normalizer
of 〈c〉 for all c ∈ 〈a, b〉 of order greater than or equal to 4.

Proof. Suppose that 〈a, b〉 = 〈x, y〉 with 〈x〉� 〈x, y〉.
If xy = x1+4h, then 〈x, y〉 is modular and so Ω1(〈x, y〉) is contained in the
normalizer of 〈c〉 for all c ∈ 〈a, b〉 (see Lemma 2.3.6 on page 57 of [13]).
Hence, we may now assume xy = x−1+4h. The proof is now a case-by-case
analysis depending on the order of x.

- Suppose that |x| = 2. The subgroup 〈x, y〉 is abelian and so the statement
is true.

- Suppose that |x| = 4. Then, xy = x−1.
If |y| = 2, then 〈x, y〉 is isomorphic to D8 and the statement holds.
If |y| ≥ 4, then either there are no elements in 〈x, y〉\〈x, y〉2 of order 2
(and so we contradict our assumptions) or 〈x, y〉 is modular (and the
lemma is true).
In fact, the generators of 〈x, y〉 are of the form yixj with i odd or
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y2ixj with j odd. In the first case, (yixj)2 = y2i, and so, yixj , with
i odd has order 4. In the second case, (y2ixj)2 = y4ix2. Hence,
|y2ixj | = 2 if and only if y4i = x2 for some i. Therefore, |y| = 2r ≥ 8
and 〈y〉 ∩ 〈x〉 = 〈x2〉 = 〈y2r−1〉. Now, we get yx = y1+2r−1

, i.e. the
subgroup 〈x, y〉 is modular. By Lemma 2.3.6 on page 57 of [13], the
statement holds.

- Suppose that |x| = 2n ≥ 8. If |y| = 2, then x = xy
2

= x1−8h+16h2

and so we get xy = x−1+2n−1h where h ∈ {0, 1}. So, either 〈x, y〉 is
semidihedral or xy = x−1.
In the latter case, since an element of order greater than or equal to
4 is contained in 〈x〉, the statement is true. So, we may assume that
|y| ≥ 4.
Now, the generators of 〈x, y〉 are of the form yixj with i odd or y2ixj

with j odd.
We now study under which conditions there exists a generator of 〈x, y〉
of order 2.
Consider now, y2ixj , with j odd. Since 〈y2, x〉 is a modular subgroup
and xy

2
= x1−8h+16h2

, we have that (y2ixj)2 = y4jx2ix8s, for some
s. Therefore, since |x| ≥ 8, and 〈y〉 ∩ 〈x〉 ≤ 〈x2n−1〉, we get that
|y2ixj | ≥ 4.
So, if there exists a generator of 〈x, y〉 of order 2, then it is of the form
yixj with i odd. Now, up to replacing yixj with a suitable power,
we may assume yxj . Now, we get that (yxj)2 = y2x4jh. Hence, if
y2x4jh = 1, then |y| = 4 and y2 ∈ 〈x2n−1〉. The automorphism induced
by y on 〈x〉 has order at most 2 and so, xy = x−1+2n−1h with h ∈ {0, 1}
and y2 = x2n−1

. Now, all the elements of order greater than or equal
to 8 are in 〈x〉, and so the statement is true.

We conclude the section with the Lemma 2.12, Lemma 2.13 and Propo-
sition 2.14, where we give properties of subgroups H of a monotone 2-group
G for which HG4/G4 satisfy some particular condition.

Lemma 2.12. Let G be a monotone 2-group.
Let a and b in G such that 〈a, b〉G4/G4 is isomorphic to C4 × C4.
Then, the group 〈a, b〉 is modular.
Moreover, 〈a, b〉2 = 〈a2, b2〉 and G4 ∩ 〈a, b〉 = 〈a4, b4〉.
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Proof. We consider a non-modular metacyclic group 〈x, y〉 with 〈x〉� 〈x, y〉,
and xy = x−1+4h. If 〈x, y〉/N is an abelian quotient of 〈x, y〉, then the
derived subgroup of 〈x, y〉 is contained in N . This means that x2 ∈ N . In
particular, 〈x, y〉/〈x2〉 is isomorphic to C2 ×C2n . Therefore, a non-modular
metacyclic group has no abelian quotient isomorphic to C4 × C4. This
implies that 〈a, b〉 is a modular metacyclic subgroup that does not involveQ8.
Then, by Proposition 2.5.9 on page 94 of [13], we have that 〈a, b〉 is lattice
isomorphic to an abelian group. Then 〈a2, b2〉 = 〈a, b〉2, 〈a2, b2〉2 = 〈a4, b4〉.
Now, since 〈a4, b4〉 ≤ G4 ∩ 〈a, b〉 and |〈a, b〉 : G4 ∩ 〈a, b〉| = 16, we have the
equality 〈a4, b4〉 = G4 ∩ 〈a, b〉.

Lemma 2.13. Let G be a monotone 2-group.
Let a and b be in G such that |aG4| = 4, |bG4| = 4, 〈aG4〉 ∩ 〈bG4〉 = G4 and
abG4 = a−1G4.
Then the group 〈a, b〉 is a metacyclic non-modular group.
Moreover, Φ(〈a, b〉) = 〈a2, b2〉, G4 ∩ 〈a, b〉 = Φ(Φ(〈a, b〉)).

Proof. The group 〈a, b〉G4/G4 is non-modular and isomorphic to 〈a, b〉/(G4∩
〈a, b〉).
In particular, 〈a, b〉 is non-modular.

The subgroup 〈a2, b2〉(G4 ∩ 〈a, b〉) is normal in 〈a, b〉 with elementary
abelian quotient of order 4. Since 〈a, b〉 is metacyclic, we get 〈a2, b2〉(G4 ∩
〈a, b〉) = Φ(〈a, b〉). Moreover, G4 ∩ 〈a, b〉 is normal in 〈a2, b2〉(G4 ∩ 〈a, b〉)
with elementary abelian quotient of order 4. Being a subgroup of a meta-
cyclic group, the subgroup 〈a2, b2〉(G4 ∩ 〈a, b〉) is metacyclic. Hence, we
get that G4 ∩ 〈a, b〉 is the Frattini subgroup of 〈a2, b2〉(G4 ∩ 〈a, b〉) and
〈a2, b2〉(G4 ∩ 〈a, b〉) = 〈a2, b2〉 = Φ(〈a, b〉). Now, since the Frattini sub-
group of a metacyclic group is powerful we get that Φ(〈a2, b2〉) = 〈a4, b4〉 =
G4 ∩ 〈a, b〉.

Proposition 2.14. Let G be a monotone 2-group.
Let H be a subgroup of G such that HG4/G4 is isomorphic to a direct product
of C4s, |H2G4/G4| ≥ 4, and H ∩G4 ≤ Φ(H).
Then, the subgroup H is modular and it does not involve Q8, the quaternion
group of order 8.

Proof. Suppose that H = 〈a1, · · · , an〉, where H/(G4∩H) = 〈a1(G4∩H)〉×
· · · × 〈an(G4 ∩H)〉, with n ≥ 2.
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We first show that the subgroup H is powerful.
In order to prove that H is powerful, it is sufficient, by Remark 2.1, to show
that [ai, aj ] ≤ H4, for all i and j.
Now, since 〈ai, aj〉/(G4 ∩H) is isomorphic to C4 × C4, by Lemma 2.12, we
get that 〈ai, aj〉 is modular, hence powerful. In particular, [ai, aj ] ∈ 〈ai, aj〉4

and, since 〈ai, aj〉 ≤ H, we get that [ai, aj ] ∈ H4. Hence, the subgroup H is
powerful.

Since H is powerful and generated by {a1, · · · , an}, we have that H2 =
〈a2

1, · · · , a2
n〉. Now, H2(G4 ∩H) contains H2 and [H : H2(G4 ∩H)] = [H :

H2]. Then, we have that H2(G4 ∩H) = H2, i.e. (G4 ∩H) ≤ Φ(H2) ≤ H4.
Since H2/(G4 ∩ H) is elementary abelian, we have that H4 ≤ (G4 ∩ H).
Therefore, we have H4 ≤ (G4 ∩ H) ≤ H4, which implies H4 = (G4 ∩ H).
This proves that if H is a subgroup of G such that HG4/G4 is isomorphic
to a direct product of C4 and (H ∩ G4) ≤ Φ(H), then H is powerful with
H4 = (G4 ∩H) and H/H4 is isomorphic to a direct product of C4.

We now show that, for all a and b in H\H2, the subgroup 〈a, b〉 is
modular.
We may assume that 〈a, b〉 is maximal among the subgroups of this form. We
distinguish three cases depending on the form of the quotient 〈a, b〉H4/H4

- Suppose that 〈a, b〉H4/H4 is isomorphic to C4 × C4. By Lemma 2.12, we
have that 〈a, b〉 is a modular metacyclic subgroup.

- Suppose that 〈a, b〉H4/H4 is isomorphic to C4 × C2. Then, there exists
z ∈ H2\H4 such that b = az. Since H is powerful, there exists a
c ∈ H \H2 such that c2 = z. Now, we have that 〈a, b〉 < 〈a, c〉, so that
〈a, b〉 is not maximal, a contradiction.

- 〈a, b〉H4/H4 is isomorphic to C4. Since 〈a, b〉H4/H4 ' C4, we have that
a = bz, where z ∈ H4. Since H is powerful, there exists c ∈ H

such that c4 = z. The maximality of 〈a, b〉 forces 〈a, b〉 = 〈a, c〉,
but 〈a, b〉 = 〈a, z〉 = 〈a, c4〉. Since c4 ∈ Φ(〈a, c〉), this implies that
〈a, b〉 = 〈a〉 and so the subgroup is modular.

Then, we have that for all a, b ∈ H\H2, the subgroup 〈a, b〉 is modular.
In order to show that H is modular, we have to prove that, for every

x and y in H, the subgroups 〈x〉 and 〈y〉 permute. Then, let x and y be
elements in H. Since H is powerful, there exist a and b in H\H2 such that
a2i

= x and b2
j

= y. So, we have that 〈x, y〉 ≤ 〈a, b〉, where a and b are in
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H\H2. By the previous paragraph, the subgroup 〈a, b〉 is modular. Hence,
the subgroups 〈x〉 and 〈y〉 permute and H is modular.

A modular group that involves Q8 is isomorphic to Q8 × A with A el-
ementary abelian, and so it does not have quotients isomorphic to a direct
product of C4. Therefore, H is a modular group that does not involve a
Q8.
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Chapter 3

Monotone 2-groups of

exponent 4

Throughout all this chapter G will be a monotone 2-group of exponent 4.

Definition 3.1. We introduce the following families of 2-groups:

- A1 is the family of 2-groups of the form K2 × A, where A is elementary
abelian and K2 = 〈a, b : a4 = 1, b4 = 1, ab = a3〉;

- A2 is the family of 2-groups of the form E ∗A, where E is an extraspecial
group and A is either an abelian group of the form C4×C2× · · · ×C2

and E2 = A2 or an elementary abelian group and E ∩A = 1;

- A3 is the family of 2-groups of the form A o 〈b〉, where A is an abelian
group of exponent 4, b has order 2 and ab = a−1 for all a ∈ A;

- A4 is the family of 2-groups of the form A o 〈b〉, where A is an abelian
group of exponent 4 with |A2| ≥ 4, b has order 4 and ab = a−1 for all
a ∈ A;

- A5 is the family of 2-groups of the form A〈b〉, where A is an abelian group
of exponent 4 with |A2| ≥ 8, b has order 4, b2 ∈ A2 and ab = a−1 for
all a ∈ A;

- A6 is the family of 2-groups of the form K6 × A, where K6 = 〈a, b, c :
a4 = 1, b4 = 1, a2b2 = c2, ab = a3, ac = a, bc = b〉 and A is elementary
abelian;
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- A7 is the family of 2-groups of the form K7 × A, where K7 = 〈a, b, c :
a4 = 1, b4 = 1, a2b2 = c2, ab = a3, ac = a, bc = b3〉 and A is elementary
abelian;

- A8 is the family of 2-groups of the form K8 × A, where K8 = 〈a, b, c :
a4 = 1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc = b3a2〉, and A is an
elementary abelian group;

- A9 is the family of 2-groups of the form K9 × A, where A is elementary
abelian and K9 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab =
a3, ac = a, bc = b, ad = a, bd = b3, cd = cb2〉;

- A10 is the family of 2-groups of the form K10×A, where A is elementary
abelian and K10 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab =
a3, ac = a, bc = b, ad = a, bd = bd2, cd = c3〉;

- A11 is the family of 2-groups of the form K11×A, where A is elementary
abelian and K11 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab =
a3, ac = a, bc = b3, ad = ad2, bd = b, cd = ca2〉.

We start by proving that the groups in Ai, for i ∈ {1, . . . , 11}, introduced
in Definition 4.1, are actually monotone.
The main tools are Proposition 1.2 and Lemma 2.5.

Proposition 3.1. The groups in the families Ai, for i ∈ {1, . . . , 11} are
monotone.

Proof. We want to show that if G is a group in Ai, for i ∈ {1, . . . , 11}, then
G is monotone. Now, the proof is a case-by-case analysis depending on the
family in which G lies.

- Let G be a group in A1. Then G = K2 × A, where K2 = 〈a, b : a4 =
1, b4 = 1, ab = a−1〉 and A is elementary abelian. By Lemma 2.5, in
order to check that G is monotone, it is sufficient to prove that K2 is
monotone. Since K2 is metacyclic, K2 is monotone and so is G.

- Let G be a group in A2. Then G = E ∗ A, where E is an extraspecial
group and A is either an abelian group of the form C4×C2×· · ·×C2 or
an elementary abelian group. By Lemma 2.5, in order to check that G
is monotone, it is sufficient to prove that E ∗C4 and E are monotone.
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Since E is a subgroup of E ∗ C4, it is enough to check that E ∗ C4 is
a monotone group.

Each cyclic subgroup of order 4 in E∗C4 contains the derived subgroup
of E ∗ C4. Therefore, for every a and b in E ∗ C4, if either |a| = 4 or
|b| = 4, then the subgroup 〈a, b〉 is metacyclic.

If |a| = 2 and |b| = 2, then 〈a, b〉 is abelian or a dihedral group.

This proves that for every a and b in E ∗ C4, the subgroup 〈a, b〉 is
metacyclic. Hence, E ∗ C4 is monotone, and so is G.

- Let G be a group in A3. Then G = Ao 〈b〉, where A is an abelian group
of exponent 4, b has order 2 and ab = a−1 for all a ∈ A. Lemma 2.6
proves that G is monotone.

- Let G be a group in A4. Then G = Ao 〈b〉, where A is an abelian group
of exponent 4 with |A2| ≥ 4, b has order 4 and ab = a−1 for all A.
Lemma 2.6 proves that G is monotone.

- Let G be a group in A5. Then G = A〈b〉, where A is an abelian group of
exponent 4 with |A2| ≥ 8, b has order 4, b2 ∈ A2 and ab = a−1 for all
a ∈ A. Lemma 2.6 proves that G is monotone.

- Let G be a group in A6. Then G = K6×A, where A is elementary abelian
and K6 = 〈a, b, c : a4 = 1, b4 = 1, a2b2 = c2, ab = a3, ac = a, bc = b〉.
By Lemma 2.5, it is sufficient to check that K6 is monotone.

Since 〈a, c〉 is abelian, it is enough to check that the subgroups of
the form 〈ai1ci2 , baj1cj2〉 are metacyclic. Now, (ai1ci2)2 = a2i1c2i2 ,
(baj1cj2)2 = b2a2j2 , and [ai1ci2 , baj1cj2 ] = a2i1b2i2 .

If i2 ≡ 1 mod 2 and i1 ≡ j2 mod 2, then (baj1cj2)2 = [ai1ci2 , baj1cj2 ],
and so 〈baj1cj2〉� 〈ai1ci2 , baj1cj2〉, i.e. the subgroup 〈ai1ci2 , baj1cj2〉 is
metacyclic.

Suppose that i2 ≡ 0 mod 2. Then (ai1ci2)2 = [ai1ci2 , baj1cj2 ], and so
〈ai1ci2〉 � 〈ai1ci2 , baj1cj2〉, i.e. the subgroup 〈ai1ci2 , baj1cj2〉 is meta-
cyclic.

Suppose now that i2 ≡ 1 mod 2 and i1 ≡ j2 + 1 mod 2. Then,
(ai1ci2)2 = (baj1cj2)2, and so the element ai1ci2baj1cj2 is such that
〈ai1ci2 , baj1cj2〉 is equal to 〈ai1ci2baj1cj2 , baj1cj2〉 and 〈ai1ci2baj1cj2〉 �
〈ai1ci2 , baj1cj2〉. Then, the subgroup 〈ai1ci2 , baj1cj2〉 is metacyclic.
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This shows that each 2-generated subgroup of K6 is metacyclic. Hence,
K6 is monotone, and so is G.

- Let G be a group in A7. Then G = K7×A, where A is elementary abelian
and K7 = 〈a, b, c : a4 = 1, b4 = 1, a2b2 = c2, ab = a3, ac = a, bc = b3〉.
By Lemma 2.5, it is sufficient to check that K7 is monotone.

The subgroup 〈a, c〉 is abelian. Hence, it is enough to check that the
subgroups of the form 〈ai1ci2 , baj1cj2〉 are metacyclic.

Now, we have that (ai1ci2)2 = a2i1c2i2 , (baj1cj2)2 = b2c2j2b2j2 = b2a2j2 ,
[ai1ci2 , baj1cj2 ] = a2i1b2i2 .

If i2 ≡ 0 mod 2, then (ai1ci2)2 = [ai1ci2 , baj1cj2 ], and so the subgroup
〈ai1ci2 , baj1cj2〉 is metacyclic.

Suppose that i2 ≡ 1 mod 2. If i1 ≡ j2 mod 2, then (baj1cj2)2 =
[ai1ci2 , baj1cj2 ], and so the subgroup 〈ai1ci2 , baj1cj2〉 is metacyclic.

Suppose now that i2 ≡ 1 mod 2 and i1 ≡ j2 + 1 mod 2. Then
(ai1ci2)2 = (baj1cj2)2. Therefore, the element ai1ci2baj1cj2 is such that
〈ai1ci2 , baj1cj2〉 is equal to 〈ai1ci2baj1cj2 , baj1cj2〉 and 〈ai1ci2baj1cj2〉 �
〈ai1ci2 , baj1cj2〉. Then, the subgroup is metacyclic.

This shows that each 2- generated subgroup ofK7 is metacyclic. Hence,
K7 is monotone, and so is G.

- Let G be a group in A8. Then G = K8 × A, where K8 = 〈a, b, c : a4 =
1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc = b3a2〉, and A is an elementary
abelian group. By Lemma 2.5, it is sufficient to check that K8 is
monotone. Now, the subgroup 〈a, c〉 is abelian and b acts as inversion
on 〈a, c〉. Therefore, K8 is monotone by Lemma 2.6.

- Let G be a group in A9. Then G = K9×A, where A is elementary abelian
and K9 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab = a3, ac =
a, bc = b, ad = a, bd = b3, cd = cb2〉. By Lemma 2.5, it is sufficient to
check that K9 is monotone.

The subgroup 〈a, b, c〉 is isomorphic to K6. Since K6 is monotone,
every 2-generated subgroup of 〈a, b, c〉 is metacyclic. Therefore, it is
enough to check that the subgroups of the form 〈ai1ci2bi3 , daj1cj2bj3〉
are metacyclic. If i1 and j1 are both even, then 〈ai1ci2bi3 , daj1cj2bj3〉
is contained in 〈b, c, d〉 which is isomorphic to K6 (the isomorphism
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is given by setting a = b, b = d, c = bc). Hence, the subgroup
〈ai1ci2bi3 , daj1cj2bj3〉 is metacyclic.
If i2 and j2 are both even, then 〈ai1ci2bi3 , daj1cj2bj3〉 is contained in
〈a, b, d〉 which is isomorphic to K7 (the isomorphism is given by setting
a = a, b = b, c = d). Hence, the subgroup 〈ai1ci2bi3 , daj1cj2bj3〉 is
metacyclic.
If i3 and j3 are both even, then 〈ai1ci2bi3 , daj1cj2bj3〉 is contained in
〈a, c, d〉 which is isomorphic to K6 (the isomorphism is given by setting
a = ac, b = d, c = c). Hence, the subgroup 〈ai1ci2bi3 , daj1cj2bj3〉 is
metacyclic. So, for every k = 1, 2, 3, we may assume that ik and jk

are not both even.

We now distinguish two cases depending on the parity of i3.

Suppose firstly that i3 is odd and j3 is even. Since b2 ∈ 〈a, c〉,
we may assume i3 = 1 and j3 = 0. The subgroup has the form
〈ai1ci2b, daj1cj2〉. Now, (ai1ci2b)da

j1cj2 = ai1ci2bb2i2b2. Now, if i2 is
odd, then the subgroup is abelian. If i2 is even, then (ai1ci2b)2 = b2,
and so 〈ai1ci2b〉� 〈ai1ci2b, daj1cj2bj3〉 and the subgroup is metacyclic.

Suppose now that i3 is even and j3 is odd. Since b2 = a2c2, we
may assume that i3 = 0 and j3 = 1. Hence, the subgroup has
the form 〈ai1ci2 , dbaj1cj2〉. Now, (ai1ci2)2 = a2i1c2i2 , (dbaj1cj2)2 =
d2a2j1c2j2b2j2a2j1 = d2a2j2 , and [ai1ci2 , dbaj1cj2 ] = b2i2a2i1 . In particu-
lar, we have that |dbaj1cj2 | = 4.

Moreover, if i1 ≡ j2 mod 2 and i2 ≡ 1 mod 2, then (ai1ci2)2 =
(dbaj1cj2)2. It follows that ai1ci2dbaj1cj2 is a non-Frattini element
such that 〈ai1ci2dbaj1cj2〉 � 〈ai1ci2 , dbaj1cj2〉. Hence, the subgroup is
metacyclic.

Suppose that i2 ≡ 0 mod 2. Then we may assume that j2 is odd.
Hence, (ai1ci2)2 = a2i1 , (dbaj1cj2)2 = d2a2, and [ai1ci2 , dbaj1cj2 ] =
a2i1 . Then, we have that [ai1ci2 , dbaj1cj2 ] = (ai1ci2)2, and so 〈ai1ci2〉�
〈ai1ci2 , dbaj1cj2〉. It follows that the subgroup is metacyclic.

Finally it remains to consider the case i2 ≡ 1 mod 2 and i1 ≡ j2 + 1
mod 2. Then, we get that (ai1ci2)2 = a2i1c2, (dbaj1cj2)2 = b2a2i1 ,
and [ai1ci2 , dbaj1cj2 ] = b2a2i1 . Then, we have that [ai1ci2 , dbaj1cj2 ] =
(dbaj1cj2)2 , and so 〈ai1ci2〉 � 〈ai1ci2 , dbaj1cj2〉. It follows that the
subgroup is metacyclic.
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This shows that every 2-generated subgroup of 〈a, b, c, d〉 is metacyclic.
Therefore, the group K9 is monotone, and so is G.

- Let G be a group in A10. Then, G = K10 × A, where A is elementary
abelian and K10 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab =
a3, ac = a, bc = b, ad = a, bd = bd2, cd = c3〉. By Lemma 2.5, it is
sufficient to check that K10 is monotone.

The subgroup 〈a, b, c〉 is isomorphic to K6 (the isomorphism is given by
setting a = c, b = ad, c = a). Since K6 is monotone, every 2-generated
subgroup of 〈a, b, c〉 is metacyclic.

Therefore, in order to show that K10 is monotone, it is enough to check
that the subgroups of the form 〈ai1ci2di3 , baj1cj2dj3〉 are metacyclic.

If i1 and j1 are both even, then 〈ai1ci2di3 , baj1cj2dj3〉 is contained in
〈b, c, d〉 which is isomorphic to K6 (the isomorphism is given by setting
a = d, b = b, c = bc). Hence the subgroup 〈ai1ci2di3 , baj1cj2dj3〉 is
metacyclic.
If i2 and j2 are both even, then 〈ai1ci2di3 , baj1cj2dj3〉 is contained in
〈a, b, d〉 which is isomorphic to K8 (the isomorphism is given by setting
a = a, b = b, c = d). Hence the subgroup 〈ai1ci2di3 , baj1cj2dj3〉 is
metacyclic.
If i3 and j3 are both even, then 〈ai1ci2di3 , baj1cj2dj3〉 is contained in
〈a, c, d〉 which is isomorphic to K6 (the isomorphism is given by setting
a = c, b = ad, c = a). Hence the subgroup 〈ai1ci2di3 , baj1cj2dj3〉 is
metacyclic.
Therefore, we may assume that ik and jk are not both even, for k =
1, 2, 3.

Suppose now that i3 is even and j3 is odd. Since d2 ∈ 〈a, c〉, we may
assume that i3 = 0 and, being j3 odd we may assume that j3 = 1.
So, the subgroup has the form 〈ai1c12 , baj1cj2d〉 and it is metacyclic,
because (ai1ci2)ba

j1cj2d = (ai1ci2)−1.

So we suppose now that i3 is odd and so we may assume i3 = 1 and
that j3 = 0. The subgroup is of the form 〈ai1ci2d, baj1cj2〉.
Now, we have (ai1ci2d)2 = a2i1c2i2d2c2i2 = a2i1d2, and so |ai1ci2d| = 4.
Moreover, (baj1cj2)2 = b2a2j1c2j2a2j1 = b2c2j2 , and so also |baj1cj2 | =
4. The commutator [ai1ci2d, baj1cj2 ] = a2i1d2c2j2 . So, if j2 is even,
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then (ai1ci2d)2 = [ai1ci2d, baj1cj2 ], and so 〈ai1ci2d〉� 〈ai1ci2d, baj1cj2〉,
i.e. the subgroup 〈ai1ci2d, baj1cj2〉 is metacyclic.
If j2 is odd, then [ai1ci2d, baj1cj2 ] = a2i1 , and (baj1cj2)2 = a2. This
means that [ai1ci2d, baj1cj2 ] ≤ 〈(baj1cj2)2〉, and so we get that 〈baj1cj2〉�
〈ai1ci2d, baj1cj2〉, i.e. the subgroup 〈ai1ci2d, baj1cj2〉 is metacyclic.

This shows that every 2-generated subgroup of 〈a, b, c, d〉 is metacyclic.
Hence the subgroup 〈a, d, c, d〉 is monotone and so is G.

- A11 is the family of 2-groups of the form K11 ×A, where A is elementary
abelian and K11 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab =
a3, ac = a, bc = b3, ad = ad2, bd = b, cd = ca2〉.

By Lemma 2.5, it is sufficient to check that K11 is monotone.
The subgroup 〈a, b, c〉 is isomorphic to K7 (the isomorphism is given
by a = a, b = b, c = c). Since K7 is monotone, every 2-generated
subgroup of 〈a, b, c〉 is metacyclic.
Therefore, it is sufficient to check that the subgroups of the form
〈ai1ci2bi3 , daj1cj2bj3〉 are metacyclic.

If i1 and j1 are even, then 〈ai1ci2bi3 , daj1cj2bj3〉 is contained in 〈b, c, d〉
which is monotone, being isomorphic to K7 (the isomorphism is given
by setting a = b, b = c, c = bd). It follows that 〈ai1ci2bi3 , daj1cj2bj3〉 is
metacyclic.
If i2 and j2 are even, then 〈ai1ci2bi3 , daj1cj2bj3〉 is contained in 〈a, b, d〉
which is monotone, being isomorphic to K7 (the isomorphism is given
by setting a = d, b = a, c = b). It follows that 〈ai1ci2bi3 , daj1cj2bj3〉 is
metacyclic.
If i3 and j3 are even, then 〈ai1ci2bi3 , daj1cj2bj3〉 is contained in 〈a, c, d〉
which is monotone, being isomorphic to K7 (the isomorphism is given
by setting a = ac, b = d, c = a). It follows that 〈ai1ci2bi3 , daj1cj2bj3〉
is metacyclic.

Now, suppose that i3 is even. Then, we may assume that j3 is odd.
Since b2 ∈ 〈a, c〉 we may assume that i3 = 0 and j3 = 1. The sub-
group has the form 〈ai1ci2 , daj1cj2b〉. We have that (ai1ci2)2 = a2i1c2i2 ,
(daj1cj2b)2 = d2a2j1c2j2b2a2j1b2j2d2j1a2j2 = d2b2d2j1 = a2d2j1 and
[ai1ci2 , daj1cj2b] = d2i1a2i2a2i1b2i2 = d2i1+2i2a2i1 .

In particular, if i1 is odd and i2 ≡ j1 mod 2, then (ai1ci2)2 = (daj1cj2b)2,
and so the subgroup is metacyclic. Namely, (ai1ci2)(daj1cj2b) is a gen-
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erator and 〈(ai1ci2)(daj1cj2b)〉� 〈ai1ci2 , daj1cj2b〉.
If i1 is even, then we may suppose that j1 is odd and so (ai1ci2)2 = c2i2 ,
(daj1cj2b)2 = a2d2, and [ai1ci2 , daj1cj2b] = d2i2 . Then we have that
[ai1ci2 , daj1cj2b] = (ai1ci2)2, and so 〈ai1ci2〉 � 〈ai1ci2 , daj1cj2b〉, and so
the subgroup 〈ai1ci2 , daj1cj2b〉 is metacyclic.

Suppose now i1 odd and i2 6≡ j1 mod 2. This means that j1 ≡ i2 + 1
mod 2, and so we get (ai1ci2)2 = a2c2i2 , (daj1cj2b)2 = a2d2+2i2 and
[ai1ci2 , daj1cj2b] = d2+2i2a2. Then, we have that [ai1ci2 , daj1cj2b] =
(daj1cj2b)2, and so 〈daj1cj2b〉 � 〈ai1ci2 , daj1cj2b〉, and the subgroup
〈ai1ci2 , daj1cj2b〉 is metacyclic.

So, we now may assume that i3 is odd. In particular, since b2 ∈ 〈a, c〉,
we may assume that i3 = 1 and that j3 = 0. Hence, the subgroup has
the form 〈ai1ci2b, daj1cj2〉.
Now, we have that (ai1ci2b)2 = a2i1c2i2b2a2i1b2i2 = a2i2+2c2, (daj1cj2)2 =
d2a2j1c2j2d2j1a2j2 = d2b2j1+2j2 , and [ai1ci2b, daj1cj2 ] = d2i1a2i2a2j1b2j2 =
a2i1+2i2+2j1b2i1+2j2 .
In particular, we get that |ai1ci2b| = 4, and also |daj1cj2 | = 4.

If i2 ≡ 1 mod 2 and j1 ≡ j2 mod 2, then (ai1ci2b)2 = (daj1cj2)2, and
so we have that ai1ci2bdaj1cj2 is a generator such that 〈ai1ci2bdaj1cj2〉�
〈ai1ci2b, daj1cj2〉, and so the subgroup is metacyclic.

Suppose that i2 ≡ 0 mod 2. Then, we may assume that j2 is odd
and we get (ai1ci2b)2 = b2, (daj1cj2)2 = a2b2j1 , and [ai1ci2b, daj1cj2 ] =
a2i1+2j1b2i1+2 = b2c2i1a2j1 .
If i1 ≡ j1 mod 2, then [ai1ci2b, daj1cj2 ] ∈ 〈(ai1ci2b)2〉, and so we obtain
that 〈ai1ci2b〉� 〈ai1ci2b, daj1cj2〉, and the subgroup 〈ai1ci2b, daj1cj2〉 is
metacyclic.
If i1 ≡ j1 mod 2, then [ai1ci2b, daj1cj2 ] = (daj1cj2)2, and so we get
that 〈daj1cj2〉� 〈ai1ci2b, daj1cj2〉, and the subgroup 〈ai1ci2b, daj1cj2〉 is
metacyclic.

To conclude, suppose that i2 ≡ 1 mod 2 and j1 ≡ j2 + 1 mod 2.
Then, we have (ai1ci2b)2 = c2, (daj1cj2)2 = d2b2, and [ai1ci2b, daj1cj2 ] =
d2i1a2i2a2j1b2j2 = a2i1+2i2+2j1b2i1+2j2 = c2+2i1+2i2 , and so we get that
[ai1ci2b, daj1cj2 ] ∈ 〈(ai1ci2b)2〉. Hence, 〈ai1ci2b〉� 〈ai1ci2b, daj1cj2〉, and
the subgroup 〈ai1ci2b, daj1cj2〉 is metacyclic.

This shows that every 2-generated subgroup of 〈a, b, c, d〉 is metacyclic.
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Therefore, the group K11 is monotone, and so is G.

Remark 3.2. It is worth mentioning that K6, K9 and K10 admit a more
intuitive presentation. Indeed, K6 is isomorphic to Q8×C4, K10 is isomor-
phic to Q8 × Q8 and K9 is isomorphic to Q8 ∗ K2, where, if K2 = 〈a, b :
a4 = 1, b4 = 1, ab = a−1〉, then Q2

8 = 〈a2b2〉.
The presentation given in Definition 3.1 is more convenient for the re-

sults we need to prove.

The aim of this chapter is to prove the following :

Theorem 3.3. Let G be a monotone 2-group of exponent 4. Then G is
either abelian or in Ai, for some i ∈ {1, . . . , 11}.

3.1 General Results

In this section we prove some preliminary results about monotone 2-groups
of exponent 4.
More precisely, in Lemma 3.4, we describe the metacyclic 2-groups of expo-
nent 4, whereas in Lemma 3.5 and Lemma 3.6, we give some properties of
the normalizers of the cyclic subgroups of order 4.

Lemma 3.4. Let G be a metacyclic 2-group of exponent 4.
Then G is either abelian or isomorphic to a group in the following list:

1. D8, the dihedral group of order 8;

2. Q8, the quaternion group of order 8;

3. K2 = 〈a, b : a4 = 1, b4 = 1, ab = a3〉, a metacyclic group of order 16.

Proof. Suppose G = 〈a, b〉 with 〈a〉�G and assume it is non-abelian. Since
exp(G) = 4, the elements a and b have order ≤ 4.
We distinguish the possible cases:

1. if either |a| = 2 and |b| = 2 or |a| = 4 and |b| = 2, then G is the
dihedral group of order 8.

2. if |a| = 4, |b| = 4 and 〈a〉 ∩ 〈b〉 6= 1, then G is the quaternion group of
order 8.

– 19 –



Chapter 3. Monotone 2-groups of exponent 4

3. if |a| = 4, |b| = 4 and 〈a〉 ∩ 〈b〉 = 1, then G is isomorphic to K2.

Lemma 3.5. Let G be a monotone 2-group of exponent 4.
If a and b are elements of order 4 such that 〈a〉 ∩ 〈b〉 = 1, then either
〈a〉� 〈a, b〉 or 〈b〉� 〈a, b〉.

Proof. Since G is monotone, H = 〈a, b〉 is metacyclic and, by Lemma 3.4,
H is either abelian or isomorphic to K2.

If H is abelian, then the statement is true.
If H is isomorphic to K2, then there exist c and d in H such that H is

equal to 〈c, d : c4 = 1, d4 = 1, cd = c3〉. The possible pairs {a, b} such that
〈a, b〉 = H, and 〈a〉 ∩ 〈b〉 = 1 are {ch, cidk},{cidk, chd2}, with h ∈ {1, 3},
k ∈ {1, 3} and i ∈ {0, 1, 2, 3}. Since 〈c〉 and 〈chd2〉 are normal subgroups in
H, the lemma is proved.

Lemma 3.6. Let G be a monotone 2-group of exponent 4. If a is an element
of order 4, then Ω1(G) is contained in the normalizer of 〈a〉.

Proof. Take a, b ∈ G such that |a| = 4 and |b| = 2 . By Lemma 3.4, we have
that 〈a, b〉 is either abelian or dihedral of order 8. In particular, each element
of order 2 normalizes every cyclic subgroup of order 4, and the statement is
proved.

3.2 Monotone 2-Groups Of Exponent 4 not Involv-

ing K2

In this section we study monotone 2-groups of exponent 4 that do not involve
a subgroup isomorphic to K2 (see Definition 3.1). The main results are in
Proposition 3.9 and in Proposition 3.12, where we describe the monotone
2-groups of exponent 4 with the property that K2 is not involved.

When a monotone 2-group of exponent 4 does not involve a subgroup
isomorphic to K2, we can refine Lemma 3.4 into the following lemma.

Lemma 3.7. Let G be a monotone 2-group of exponent 4 that does not
involve a subgroup isomorphic to K2. The followings hold:

1. G2 ≤ Z(G);
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2. if a and b are elements of G of order 4 such that 〈a〉 ∩ 〈b〉 = 1, then
〈a, b〉 is abelian;

3. if X is a cyclic subgroup of G of order 4, then X is normal in G and
[G : CG(X)] ≤ 2.

Proof. The lemma is an easy consequence of Lemma 3.4.

Lemma 3.8 and Proposition 3.9 deal with non-abelian monotone 2-groups
G of exponent 4, that do not involve subgroups isomorphic to K2 and with
|G2| ≥ 4.
We claim that such a non-abelian group G does not contain a subgroup
isomorphic to Q8. Arguing by contradiction, let Q be a subgroup of G
isomorphic to Q8. Since, by Lemma 3.7(1), G2 is abelian and generated by
{x2 : x ∈ G}, we obtain that there exists a cyclic subgroup X of order 4
such that Q ∩X = 1. By Lemma 3.7(2), we get that X centralizes Q, and
so G contains a subgroup isomorphic to Q8 × C4. Since Q8 × C4 involves a
K2, we have a contradiction, and our claim is proved.

This means, by Lemma 3.4, that the group G contains a subgroup D

isomorphic to D8 and a cyclic group X of order 4 such that D ∩X = 1. In
particular, for studying the structure of a monotone 2-group G of exponent
4, that does not involve subgroups isomorphic to K2 and with |G2| ≥ 4, we
may assume that G contains a subgroup D isomorphic to D8 and a cyclic
subgroup X of order 4 such that D ∩X = 1.

Lemma 3.8. Let G be a monotone 2-group of exponent 4 such that

(i) G does not involve a subgroup isomorphic to K2;

(ii) G contains a subgroup D isomorphic to D8 and there exists X a cyclic
subgroup of order 4 of G such that X ∩D = 1.

Then G contains a subgroup isomorphic to K1 = Ao 〈b〉, where A is abelian
of the form C4 × C4, b has order 2 and ab = a−1 for all a ∈ A.
More precisely, if D = 〈a, b : a4 = 1, b2 = 1, ab = a3〉 and X = 〈c〉, then
〈D,X〉 = 〈a, b, c : a4 = 1, c4 = 1, b2 = 1, ab = a3, ac = a, cb = c3〉.

Proof. Let D be generated by a and b, with a of order 4 and let X be 〈c〉.
By Lemma 3.7, 〈a, c〉 is abelian. Since 〈b, c〉 is either abelian or dihedral,

we get the following cases:
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• ac = a, bc = b: since 〈bc, a〉 is isomorphic to K2, we contradict (i).

• ac = a, cb = c3: the group 〈a, c, b〉 is isomorphic to K1.

Proposition 3.9. Let G be a monotone 2-group of exponent 4 such that

(i) G does not involve a subgroup isomorphic to K2;

(ii) G properly contains a subgroup K isomorphic to K1 (see Lemma 3.8).

Then G is isomorphic to a semidirect product Ao 〈b〉, where A is abelian of
exponent 4, |A2| ≥ 4, b has order 2 and ab = a−1 for all a ∈ A.

Proof. Let K = 〈a, b, c : a4 = 1, c4 = 1, b2 = 1, ab = a3, cb = c3, ac = a〉.
Let A be the centralizer of a. We want to prove that A is abelian.
First of all we prove that, if d is an element of order 4 in G, then it

commutes with a and c and is inverted by b.
In fact, if 〈d〉 ∩ 〈a, b〉 6= 1, then, by Lemma 3.7, we have 〈d〉 ∩ 〈a, b〉 = 〈a2〉.
Hence, we get that 〈d〉∩〈c, b〉 = 1 and so, by Lemma 3.8, we have that 〈c, d〉
is abelian and db = d3. Moreover, since 〈cd〉 ∩ 〈a, b〉 = 1, by Lemma 3.8, we
have that 〈a, cd〉 is abelian. Since [a, d] = [a, cd] = 1, our preliminary claim
is proved.

Now, let d and e be elements of order 4 of A. If 〈d〉 ∩ 〈e〉 = 1, then, by
Lemma 3.7(2), the subgroup 〈d, e〉 is abelian.
Suppose 〈d〉 ∩ 〈e〉 6= 1. Then either 〈d〉 ∩ 〈a〉 = 〈e〉 ∩ 〈a〉 = 1 or 〈d〉 ∩ 〈c〉 =
〈e〉 ∩ 〈c〉 = 1. In the first case, since 〈ad〉 ∩ 〈e〉 = 1, using Lemma 3.7(2),
we have that 〈ad, e〉 is abelian. Since e is in A, we have that also 〈d, e〉 is
abelian. In the second case, since 〈cd〉 ∩ 〈e〉 = 1, using Lemma 3.7(2), we
have that 〈cd, e〉 is abelian. By our preliminary claim, the element e is in the
centralizer of 〈c〉, and so the subgroup 〈d, e〉 is abelian. Hence, the elements
of order 4 of A commute.

Let u be an element of A of order 2. By the previous paragraph, being
au an element of order 4 in A, we have that au centralizes all the elements
of order 4 of A. Since A is the centralizer of a, we have that u commutes
with all the elements of order 4 of A.

Let u and v be elements of order 2 in A. By the previous paragraph,
the element u centralizes av, and since u centralizes a, we get that u and v

commute.
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Therefore, the subgroup A is abelian, and so A is generated by its el-
ements of order 4. Since, by our preliminary claim, each element of A of
order 4 is inverted by b, we get that b acts by inversion on A. Since by
Lemma 3.7(3), A is a maximal subgroup of G, the statement is proved.

Complementary to Lemma 3.8 and Proposition 3.9, in Lemma 3.10,
Lemma 3.11 and Proposition 3.12, we deal with monotone 2-groups G of ex-
ponent 4, that do not involve subgroups isomorphic to K2 and with |G2| = 2.
In particular, if G is as above and contains a subgroup D isomorphic to D8,
then every cyclic subgroup of G of order 4 intersects non-trivially D.
Hence, for studying a monotone 2-group G of exponent 4, that does not in-
volve a subgroup isomorphic to K2 and with |G2| = 2, we may assume that
any dihedral subgroup D of G and any cyclic subgroup of order 4 intersect
non-trivially.
In Lemma 3.10, we treat monotone 2-groups G of exponent 4, that do not
involve a subgroup isomorphic to K2 with |G2| = 2 and that contain a sub-
group isomorphic to Q8.
In Lemma 3.11, we determine the non-abelian monotone 2-groups G of ex-
ponent 4, that do not involve a subgroup isomorphic neither to K2 nor to Q8

and with |G2| = 2. Proposition 3.12 concludes the description of monotone
2-groups G of exponent 4 not involving a subgroup isomorphic to K2 and
with |G2| = 2.

Lemma 3.10. Let G be a monotone 2-group of exponent 4 such that

(i) G does not involve a subgroup isomorphic to K2;

(ii) if G contains a subgroup D isomorphic to D8, then there are no cyclic
subgroups X of order 4 such that X ∩D = 1;

(iii) G contains a subgroup Q isomorphic to Q8.

Then G = E ∗C, where E is an extraspecial group of the form Q8 ∗ · · · ∗Q8

and C is a subgroup that does not involve Q8.

Proof. We prove the lemma by induction on the order of G.
Let Q = 〈a, b : a4 = 1, a2 = b2, ab = a−1〉. If X is a cyclic subgroup of
order 4 not contained in Q, then X∩Q = 〈a2〉 (otherwise G would contain a
subgroup isomorphic to K2). Moreover, by Lemma 3.7(3), the group CG(Q)
has index 4 in G and G = Q ∗ CG(Q). Now, CG(Q) is a monotone 2-group
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of exponent 4 that satisfies (i) and (ii). Moreover |CG(Q)| < |G|. Now, if
CG(Q) does not involve a subgroup isomorphic to Q8, then the lemma is
proved. Otherwise we conclude by induction.

Lemma 3.11. Let G be a monotone 2-group of exponent 4 such that

(i) G does not involve a subgroup isomorphic to K2;

(ii) G contains a subgroup D isomorphic to D8 and there are no cyclic
subgroups X of order 4 such that X ∩D = 1;

(iii) G does not involve a subgroup isomorphic to Q8.

Then G = D ×A, where A is an elementary abelian subgroup.

Proof. We prove the lemma by induction on the order of G.
Let D = 〈a, b : a4 = 1, b2 = 1, ab = a−1〉 be a subgroup of G isomorphic
to D8. By Lemma 3.7(3), the subgroup CG(〈a〉) is maximal in G. We now
show that CG(〈a〉) is abelian.

Let c, d ∈ CG(〈a〉). If c has order 4, then c2 = a2 and ac has order 2.
The same holds for d. Then we may assume that c and d have order 2.
Assume 〈c, d〉 is non-abelian. Then 〈c, d〉 is dihedral. In particular (cd)2 =
a2, (cd)c = (ad)−1 and G contains the subgroup 〈ac, cd〉 ' Q8, against (iii).
Therefore CG(〈a〉) is abelian of the form C4 × C2 × · · · × C2.

We now prove that Ω1(CG(〈a〉)) ≤ CG(〈b〉). It is sufficient to prove that
if c is an element of order 2 in CG(〈a〉), then c ∈ CG(〈b〉).
Now 〈b, c〉 is either abelian or isomorphic to D8. Suppose that 〈b, c〉 is
isomorphic to D8. The element cb has order 4 and so (cb)2 = a2 and (bc)b =
(bc)−1. Now 〈bc, a〉 is isomorphic to Q8, against (iii). It follows that the
subgroup 〈b, c〉 is abelian, for all c ∈ CG(〈a〉) of order 2. Therefore CG(D)
is an elementary abelian subgroup of G such that [G : CG(D)] = 4 and so
G = D ∗ CG(D) = D ×A, where A is elementary abelian.

Proposition 3.12. Let G be a monotone 2-group of exponent 4 such that

(i) G does not involve a subgroup isomorphic to K2;

(ii) if G contains a subgroup D isomorphic to D8, then there are no cyclic
subgroups X of order 4 such that X ∩D = 1.

Then G is isomorphic to one of the following groups:
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1. E ×A, where E is extraspecial and A is elementary abelian;

2. E ∗A, where E is extraspecial and A is abelian of the form C4×C2×
· · · × C2 and E2 = A2.

Proof. If G does not involve a subgroup isomorphic to Q8, then by Lemma
3.11 the group G is in 1.

Suppose now that G involves a subgroup isomorphic to Q8. By Lemma
3.10, we have G = E ∗ C, where E is extraspecial of the form Q8 ∗ · · · ∗Q8

and C is a subgroup of G that does not involve Q8. By (i), it is easy to
check that, if C is abelian, then C is either of the form C4 × C2 × . . .× C2

(and so G is in 2 ) or elementary abelian (and so G is in 1 ).
If C is non-abelian, then C satisfies the hypothesis of Lemma 3.11. So
C = D ×A, where D is isomorphic to D8 and A is elementary abelian.
Therefore G = E ×A with A elementary abelian and G is in 1.

Summing up, in this section, we determined the monotone 2-groups of
exponent 4 not containing a subgroup isomorphic to K2. Namely, any such
a group is in the class A2 or in the class A3.

3.3 Monotone 2-Groups Of Exponent 4 Involving

K2

In this section we study monotone 2-groups G of exponent 4 containing a
subgroup K isomorphic to K2.

First of all we state a preliminary result in which we give some properties
of the centralizer of K.

Lemma 3.13. Let G be a monotone 2-group of exponent 4 containing a
subgroup K isomorphic to K2.
Then Ω1(G) ≤ CG(K).

Proof. Let K = 〈a, b : a4 = 1, b4 = 1, ab = a−1〉.
Let c be an element of order 2 in G. If c is in K, then we get c ∈ CG(K)
(because Ω1(K) = Z(K)).

Suppose now that c is not in K.
By Lemma 3.6, the element c normalizes 〈a〉 and 〈b〉. So, we have the
following cases:
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1. ac = a, bc = b: the element c is in CG(K).

2. ac = a−1, bc = b: the element ab has order 4 and (ab)2 = b2. Since
(ab)c = aba2, we have c /∈ NG(〈ab〉) and we contradict Lemma 3.6.

3. ac = a, bc = b−1: the elements ac and b have order 4 and 〈ac〉∩〈b〉 = 1.
Since (ac)b = a3cb2 = aca2b2, neither 〈ac〉 nor 〈b〉 is normal in G, and
we contradict Lemma 3.5.

4. ac = a−1, bc = b−1: the element ab has order 4 and (ab)2 = b2. Since
(ab)c = aba2b2, we have c /∈ NG(〈ab〉) and we contradict Lemma 3.6.

In the first part of this section, we describe the structure of the monotone
2-groups G of exponent 4 containing a subgroup K isomorphic to K2 and
with the property that |G2| ≥ 8. In particular, this implies that there exists
a cyclic subgroup X of order 4 such that X ∩K = 1.
More precisely, in Lemma 3.14, we determine the structure of 〈K,X〉, and in
Proposition 3.15 we conclude the description of the monotone 2-groups G of
exponent 4 containing a subgroup isomorphic to K2 and such that |G2| ≥ 8.

Lemma 3.14. Let G be a monotone 2-group of exponent 4 such that

(i) G contains a subgroup K isomorphic to K2;

(ii) there exists X, a cyclic subgroup of order 4 of G, such that X ∩K = 1.

Then 〈K,X〉 is isomorphic to K3 = Ao〈b〉, where A is a 2-generated abelian
group, |A2| = 4, b has order 4 and ab = a−1 for all a ∈ A.
More precisely, if K = 〈a, b : a4 = 1, b4 = 1, ab = a3〉 and X = 〈c〉, then
〈K,X〉 = 〈a, b, c : a4 = 1, b4 = 1, c4 = 1, ac = a, ab = a3, cb = c3〉.

Proof. Let K = 〈a, b : a4 = 1, b4 = 1, ab = a−1〉 and let X = 〈c〉. Since c
and a have order 4 and 〈a〉 ∩ 〈c〉 = 1, by Lemma 3.5, either 〈a〉 or 〈c〉 is
normal in 〈a, c〉. The same holds for 〈b, c〉. Hence [a, c] ∈ {1, a2, c2}, and
[b, c] ∈ {1, b2, c2}. The possibilities are:

1. ac = ac2: now, either cb = ch, with h ∈ {1, 3}, or cb = cb2. In every
case, the elements a and cb have order 4 and 〈a〉 ∩ 〈cb〉 = 1. As 〈a〉
and 〈cb〉 are not normal in 〈a, bc〉, we contradict Lemma 3.5.
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2. ac = a3: now, either cb = ch, with h ∈ {1, 3}, or cb = cb2. In every
case, the subgroup 〈ac, b〉 is non-metacyclic. In fact, (ac)2 = c2 and
(ac)b = aca2[c, b]. Since [c, b] ∈ {1, b2, c2}, we have that 〈ac, b〉 contains
the 3-generated elementary abelian subgroup 〈c2, b2, a2〉. Therefore
〈ac, b〉 is not monotone and this case does not arise.

3. ac = a: now, either cb = ch, with h ∈ {1, 3}, or cb = cb2.
If h = 1 or cb = cb2, then ac and b are elements of order 4 and
〈ac〉 ∩ 〈b〉 = 1. As 〈ac〉 and 〈b〉 are not normal in 〈ac, b〉, we contradict
Lemma 3.5.
If h = 3, then we get the group 〈a, b, c : a4 = 1, b4 = 1, c4 = 1, ac =
a, ab = a3, cb = c3〉 which is isomorphic to K3.

Proposition 3.15. Let G be a monotone 2-group of exponent 4.
Suppose that G properly contains a subgroup K isomorphic to K3 (see Lemma
3.14).
Then G is isomorphic to A〈b〉, where A is an abelian group of exponent 4,
|A2| ≥ 4, b has order 4, ab = a−1 for all a ∈ A, and either the extension is
splitting or b2 ∈ A2.

Proof. Let K be 〈a, c〉 o 〈b〉 where 〈a, c〉 is a 2-generated abelian group of
order 16, b has order 4 and acts as inversion on 〈a, c〉.

We firstly prove that if 〈d〉 is a cyclic subgroup such that 〈d〉 ∩ 〈b〉 = 1,
then the subgroup 〈a, c, d〉 is abelian and db = d3.
Let d be an element of order 4 such that 〈d〉 ∩ 〈b〉 = 1.
Up to renaming the generators of 〈a, c〉, we may assume that 〈d〉∩〈a, b〉 = 1.
Using Lemma 3.14, we have that 〈a, d〉 is abelian and db = d3. Now, if
〈d〉 ∩ 〈c, b〉 = 1, then, by Lemma 3.14, the subgroup 〈c, d〉 is also abelian. If
〈d〉∩〈c, b〉 6= 1, then d2 ∈ 〈c2, b2〉. Since (ad)2 = a2d2 is not in 〈c, b〉, we have
that 〈ad〉 ∩ 〈c, b〉 = 1 and, by Lemma 3.14, the subgroup 〈c, ad〉 is abelian.
Since a and c commute, we get that 〈c, d〉 is abelian. This concludes the
proof of the claim and, in the sequel, we refer to (∗) to recall this fact.

Let A be the centralizer of a.

We now show that G = 〈A, b〉.
If d is an element of order 2 of G then, by Lemma 3.13, the element d lies
in A.
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If d is an element of order 4 of G such that 〈d〉 ∩ 〈b〉 = 1, then, by (∗), we
have that d is in A.
Suppose now that d is an element of order 4 of G such that 〈d〉 ∩ 〈b〉 6= 1. If
d does not lie in A, then 〈a, d〉 is non-abelian. Since 〈a〉∩〈d〉 = 1, by Lemma
3.5, we get that either 〈a〉 or 〈d〉 is normal in 〈a, d〉. If 〈d〉� 〈a, d〉, then we
have da = d3. The element ad has order 4 and 〈ad〉 ∩ 〈b〉 = 1. Hence, by
(∗), we get that ad lies in A, i.e. d lies in A, a contradiction. Then, we get
〈a〉 � 〈a, d〉 and so ad = a3. Then, the element db lies in A. Therefore, our
claim is proved.

We prove that b acts as inversion on A. This also implies that A is
abelian.
We show that, if d is in A, then db = d3.
If d is an element of A of order 2, then, by Lemma 3.13, we get that
d ∈ CG(〈a, b〉).
If d is an element of A of order 4 and 〈d〉∩ 〈b〉 = 1, then, by (∗), we get that
db = d3.
If d is an element of A of order 4 and 〈d〉 ∩ 〈b〉 6= 1, then ad is an element
of order 4 lying in A and 〈ad〉 ∩ 〈b〉 = 1. Therefore, by (∗), we get that
(ad)b = (ad)3, and since d is in A and ab = a3, we get that db = d3.

Summing up, the group G = 〈A, b〉 is such that A is abelian, |A2| ≥ 4
and db = d3 for all d ∈ A. The proposition is proved.

The previous proposition concludes the first part of this section and
the classification of the monotone 2-groups G that contain a subgroup K

isomorphic to K2 and a cyclic subgroup X of order 4, such that K ∩X = 1
(i.e. |G2| ≥ 8).

In the rest of this section, we study the monotone 2-groups of exponent
4 that contain a subgroup K isomorphic to K2 and such that there exist no
cyclic subgroups X of order 4 such that K ∩X = 1 (i.e. |G2| = 4).
Lemma 3.16 and Lemma 3.17 gives some properties of these groups.

Lemma 3.16. Let G be a monotone 2-group of exponent 4 such that

(i) G contains a subgroup K isomorphic to K2;

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.
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Then G2 = K2.

Proof. The subgroup G2 is generated by {a2 : a ∈ G}. Now, if a is an
element of order 4, then 〈a〉 ∩ K 6= 1 and so a2 ∈ Ω1(K) = K2. Hence
G2 = {x2 : x ∈ G} ≤ Ω1(K) = K2.

Lemma 3.17. Let G be a monotone 2-group of exponent 4 such that

(i) G contains a subgroup K isomorphic to K2;

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.

Then Ω1(G) is an abelian subgroup.

Proof. Let K = 〈a, b : a4 = 1, b4 = 1, ab = a−1〉 and let c, d be elements of
order 2 in G.
If c, d ∈ K, then 〈c, d〉 is abelian because Ω1(K) = Z(K).

If c ∈ K and d /∈ K, then d ∈ CG(K) because of Lemma 3.13. Therefore
the subgroup 〈c, d〉 is abelian.

Suppose now c, d /∈ K. Assume that 〈c, d〉 is not abelian. By Lemma 3.4,
the subgroup 〈c, d〉 is a dihedral group of order 8. Also by Lemma 3.13, we
get Ω1(G) ≤ CG(K) and we have that 〈c, d〉 ≤ CG(K). Moreover cd is
an element of order 4 and (ii) yields (cd)2 ∈ 〈a2, b2〉. Furthermore, either
〈cd〉 ∩ 〈a〉 = 1 or 〈cd〉 ∩ 〈b〉 = 1. If 〈cd〉 ∩ 〈a〉 = 1, then the subgroup 〈c, d, a〉
is isomorphic to D8 × C4. If 〈cd〉 ∩ 〈b〉 = 1, then the subgroup 〈c, d, b〉 is
isomorphic to D8 × C4. In both cases, G contains D8 × C4, that is not a
monotone group, a contradiction. Therefore 〈c, d〉 is abelian.

Let G be a monotone 2-group of exponent 4 containing a subgroup K

isomorphic to K2. We point out that, by Lemma 3.16, G has no cyclic sub-
groups X of order 4 with K ∩X = 1 if and only if |G2| = 4.
Lemma 3.18, Lemma 3.21, Lemma 3.22, Lemma 3.23 and Lemma 3.24 de-
scribe the structure of some subgroups of a monotone 2-group that involves
a subgroup isomorphic to K2 and such that |G2| = 4.

Lemma 3.18. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to K2;

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.
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Then G contains a subgroup isomorphic to a group in the following list:

K2 × C2;

K6 = 〈a, b, c : a4 = 1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc = b〉;

K7 = 〈a, b, c : a4 = 1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc = b3〉;

K8 = 〈a, b, c : a4 = 1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc = b3a2〉.

Proof. Let K be 〈a, b : a4 = b4 = 1, ab = a−1〉 and let c ∈ G\G2 with c /∈ K.

Suppose that c has order 2. Since an element of order 2 centralizes K
(see Lemma 3.13), the subgroup 〈K, c〉 is isomorphic to K × 〈c〉. Also, if
there exists k ∈ K such that kc has order 2, then, replacing c with kc, we
get 〈K, c〉 = K × 〈kc〉 ' K2 × C2.
Therefore, from now on, we may assume that all the elements of Kc have
order 4. In the sequel, we refer to (∗) to recall the previous assumption.
Since G2 = K2 = 〈a2, b2〉 (see Lemma 3.16), we have that [c,K] ≤ K2 and
c2 ∈ K2. The rest of the proof is a case-by-case analysis depending on where
c2 lies in K2.

1. Suppose that c2 = a2b2. Since 〈c〉 ∩ 〈a〉 = 1, by Lemma 3.5 either 〈a〉
or 〈c〉 is normal in 〈a, c〉.
Likewise, being 〈c〉 ∩ 〈b〉 = 1, either 〈b〉 or 〈c〉 is normal in 〈c, b〉.
Therefore [a, c] ∈ {1, a2, c2} and [b, c] ∈ {1, b2, c2}. Now, we analyze
all the possibilities:

- ac = a: now bc = bh, where h ∈ {1, 3} or bc = bc2.
If h = 1, then the group 〈a, b, c〉 is isomorphic to K6.
If h = 3, then the group 〈a, b, c〉 is isomorphic to K7.
If bc = bc2, then the group 〈a, b, c〉 is isomorphic to K8.

- ac = a3: now bc = bh, where h ∈ {1, 3} or bc = bc2.
If h = 1, then the subgroup 〈ab, c〉 is neither abelian nor isomor-
phic to K2, and this case does not arise by Lemma 3.5.
In the other cases, the group 〈a, b, c〉 is isomorphic to K7. More
precisely, if h = 3, then we get an isomorphism by setting a =
a, b = ab, c = bc.
If bc = bc2, then we get an isomorphism by setting a = a, b =
c, c = bc.
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- ac = a3b2: now bc = bh, where h ∈ {1, 3} or bc = bc2.
If h = 3, then the subgroup 〈ab, c〉 is neither abelian nor isomor-
phic to K2, and this case does not arise by Lemma 3.5.
In the other cases, the group 〈a, b, c〉 is isomorphic to K7.
More precisely, if h = 1, then we get the isomorphism by setting
a = c, b = a, c = b.
Also if bc = bc2, then we get the isomorphism by setting a =
c, b = a, c = abc.

2. Suppose now c2 = a2. Since 〈c〉 ∩ 〈b〉 = 1, by Lemma 3.5, either 〈b〉 or
〈c〉 is normal in 〈b, c〉.
Likewise, being 〈c〉 ∩ 〈ab〉 = 1, either 〈ab〉 or 〈c〉 is normal in 〈c, ab〉.
Therefore [b, c] ∈ {1, b2, c2} and [ab, c] ∈ {1, b2, c2}. Now, we analyze
all the possibilities:

- bc = b: replacing c with bc, we are in the case 1;

- bc = b3: now (ab)c = abb2h (i.e. ac = ab2(h+1)), where h ∈ {0, 1}, or
(ab)c = (ab)c2 (i.e. ac = a3b2). If h = 0, then, replacing c with
abc, we are in case 1 ((abc)2 = b2c2 = b2a2). Likewise if ac = a3b2,
then, replacing c with ac, we are in case 1 ((ac)2 = a2b2). To
conclude, if h = 1, then ac has order 2 and we contradict (∗).

- bc = ba2: now (ab)c = abb2h (i.e. ac = aa2b2h), where h ∈ {0, 1},
or (ab)c = (ab)c2 (i.e. ac = a). If h = 0, then, replacing c with
abc, we are in case 1 ((abc)2 = a2b2). Likewise, if h = 1, then
replacing c with ac, we are in case 1 ((ac)2 = a2b2). To conclude,
if ac = a, then ac has order 2 and we contradict (∗).

3. Suppose c2 = b2. Since 〈c〉∩〈a〉 = 1, by Lemma 3.5, we get that either
〈a〉 or 〈c〉 is normal in 〈a, c〉. Moreover [c, b] ∈ 〈a2, b2〉. Therefore, we
analyze all the possibilities:

- ac = a: replacing c with ac, we are in case 1 ((ac)2 = a2b2).

- ac = a3: now bc = ba2hb2k, where h, k ∈ {0, 1}.
Consider the element bc: (bc)2 = a2hb2k. Hence, if h = 0 and
k = 0, then bc has order 2 and we contradict (∗). If h = 1 and
k = 1, then, replacing c with bc, we are in case 1.
Consider the element abc: (abc)2 = a2+2hb2k. Hence, if h = 1 and
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k = 0, then abc has order 2 and we contradict (∗). If h = 0 and
k = 1, then, replacing c with abc, we are in case 1.

- ac = ac2: now bc = ba2hb2k, where h, k ∈ {0, 1}.
Consider the element bc: (bc)2 = a2hb2k. Hence, if h = 0 and
k = 0, then bc has order 2 and we contradict (∗). If h = 1 and
k = 1, then, replacing c with bc, we are in case 1.
Consider the element abc: (abc)2 = a2hc2k+2. Hence, if h = 0 and
k = 1, then abc has order 2 and we contradict (∗). If h = 1 and
k = 0, then, replacing c with abc, we are in case 1.

Hence the statement is proved.

Remark 3.19. Let G and K be as in Lemma 3.16. Let c ∈ G \ G2 but
c /∈ K. From the proof of Lemma 3.18, we have that there exists an element
k ∈ K such that |ck| = 2 or such that (ck)2 = a2b2.

Remark 3.20. Let G and K be as in Lemma 3.16.
If T is a subgroup of G such that T 2 = G2 = K2, then there are no cyclic
subgroups X of order 4 of G such that X ∩ T = 1 (otherwise there exists X
cyclic subgroup of G such that X ∩K = 1, against the assumption).

In the following three lemmas, we study the structure of a monotone
2-group G such that |G2| = 4 and containing K6 or K7 and K8.

Lemma 3.21. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to K6 (see Lemma 3.18);

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.

Then K is contained in a subgroup isomorphic to a group in the following
list:

K6 × C2 ;

K9 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab = a3,

ac = a, bc = b, ad = a, bd = b3, cd = cb2〉;

K10 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, c2 = d2, ab = a3,

ac = a, bc = b, ad = a, bd = bd2, cd = c3〉.
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Moreover, the subgroup Ω1(G) is in the centralizer of K.

Proof. Suppose K = 〈a, b, c : a4 = 1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc =
b〉 and let d be in G\K.

Suppose d has order 2. By Lemma 3.13, we get d ∈ CG(〈a, b〉) and
d ∈ CG(〈ab, bc〉). Hence 〈K, d〉 is isomorphic to K × C2. In particular we
get that Ω1(G) ≤ CG(K). Furthermore, from now on, we may assume that
all the elements in Kc have order 4. In the sequel, we refer to (∗) to recall
the previous assumption.

Suppose d has order 4. By (ii), it is easy to check that [d,K] ≤ K2 and
d2 ∈ K2. We have 〈a, b〉 ' K2 and 〈a, b〉2 = G2 = K2. By Remark 3.19, we
can assume d2 = a2b2. Since 〈d〉 ∩ 〈a〉 = 1, 〈d〉 ∩ 〈b〉 = 1 and 〈d〉 ∩ 〈bc〉 = 1,
we get that 〈a, d〉, 〈d, b〉, 〈d, bc〉 are either abelian or isomorphic to K2.
Hence [a, d] ∈ {1, a2, a2b2}, [b, d] ∈ {1, b2, a2b2}, [bc, d] ∈ {1, a2, a2b2}. Now,
the rest of the proof is a case-by-case analysis depending on the possible
values of [a, d],[b, d] and [bc, d]. By (∗), we may assume that none of the
followings happen:

- [d, c] = 1 (otherwise (cd)2 = 1);

- [a, d][b, d] = a2 (otherwise (abd)2 = 1);

- [a, d][c, d] = a2 (otherwise (acd)2 = 1);

- [b, d][c, d] = b2 (otherwise (bcd)2 = 1);

- [a, d][b, d][c, d] = b2 (otherwise (abcd)2 = 1).

Excluding the cases in which one of the previous is satisfied, it remains to
study the following possibilities:

- ad = a, bd = b, (bc)d = bca2b2. The group 〈a, b, c, d〉 is isomorphic to K9.
An isomorphism is given by setting: a = c, b = abcd, c = ab, d = b.

- ad = a, bd = bb2, (bc)d = bc, i.e. ad = a, bd = bb2, cd = cb2. The group
〈a, b, c, d〉 is isomorphic to K9.

- ad = a, bd = bb2, (bc)d = (bc)a2, i.e. ad = a, bd = bb2, cd = ca2b2: the
group 〈a, b, c, d〉 so obtained is isomorphic to K9. An isomorphism is
given by setting: a = a, b = bcd, c = ad, d = acd.
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- ad = a, bd = ba2b2, (bc)d = bc, i.e. ad = a, bd = ba2b2, cd = ca2b2. The
group 〈a, b, c, d〉 is K10.

- ad = a, bd = ba2b2, (bc)d = (bc)a2, i.e. ad = a, bd = ba2b2, cd = cb2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = bc, b = cd, c = adc, d = c.

- ad = aa2, bd = bb2, (bc)d = bc, i.e. ad = aa2, bd = bb2, cd = cb2. The
group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = a, b = acd, c = bd, d = c.

- ad = aa2, bd = bb2, (bc)d = (bc)a2, i.e. ad = aa2, bd = bb2, cd = ca2b2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = abc, b = acd, c = abd, d = abcd.

- ad = aa2, bd = ba2b2, (bc)d = bc, i.e. ad = aa2, bd = ba2b2, cd = ca2b2.
The group 〈a, gb, c, d〉 is isomorphic to K9. An isomorphism is given
by setting: a = bc, b = abcd, c = bcd, d = bd.

- ad = aa2, bd = ba2b2, (bc)d = (bc)a2, i.e. ad = aa2, bd = ba2b2, cd = cb2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = bc, b = ab, c = c, d = abd.

- ad = aa2b2, bd = b, (bc)d = bca2b2, i.e. ad = aa2b2, bd = b, cd = ca2b2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = a, b = acd, c = bd, d = bcd.

- ad = aa2b2, bd = ba2b2, (bc)d = bc, i.e. ad = aa2b2, bd = ba2b2, cd = ca2b2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = d, b = abcd, c = ab, d = ac.

Lemma 3.22. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to K7 (see Lemma 3.18);

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.

Then K is contained in a subgroup isomorphic to

K7 × C2 ;
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K9 (see Lemma 3.21);

K11 = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab = a3,

ac = a, bc = bb2ad = ad2, bd = b, cd = ca2〉.

Moreover, the subgroup Ω1(G) is in the centralizer of K.

Proof. Suppose K = 〈a, b, c : a4 = 1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc =
b3〉 and let d be in G\K.

Suppose d has order 2: then, by Lemma 3.13, d ∈ CG(〈a, b〉) and d ∈
CG(〈b, c〉) that means that 〈K, d〉 is isomorphic to K × C2.
In particular, the subgroup Ω1(G) is contained in CG(K). Furthermore,
from now on, we may assume that all the elements in Kc have order 4. In
the sequel, we refer to (∗) to recall the previous assumption.

Suppose d has order 4. By (ii), it is easy to check that [d,K] ∈ K2 and
d2 ∈ K2. We have 〈a, b〉 ' K2 and 〈a, b〉2 = G2 = K2. By Remark 3.19, we
can assume d2 = a2b2. Since 〈d〉 ∩ 〈a〉 = 1, 〈d〉 ∩ 〈b〉 = 1 and 〈d〉 ∩ 〈ac〉 = 1,
we get that 〈a, d〉, 〈d, b〉 and 〈d, ac〉 are either abelian or isomorphic to K2.
Hence [a, d] ∈ {1, a2, a2b2}, [b, d] ∈ {1, b2, a2b2}, [ac, d] ∈ {1, b2, a2b2}. Now,
the rest of the proof is a case-by-case analysis depending on the possible
values of [a, d],[b, d] and [ac, d]. By (∗), we may assume that none of the
followings happen:

- [d, c] = 1 (otherwise (cd)2 = 1);

- [a, d][b, d] = a2 (otherwise (abd)2 = 1);

- [a, d][c, d] = a2 (otherwise (acd)2 = 1);

- [b, d][c, d] = 1 (otherwise (bcd)2 = 1);

- [a, d][b, d][c, d] = 1 (otherwise (abcd)2 = 1).

Excluding the cases in which one of the previous is satisfied, it remains to
study the following possibilities:

- ad = a, bd = b, (ac)d = acb2, i.e. ad = a, bd = b, cd = cb2. The group
〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by setting:
a = abd, b = bcd, c = c, d = d.

- ad = a, bd = b, (ac)d = aca2b2, i.e. ad = a, bd = b, cd = ca2b2. The group
〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by setting:
a = abd, b = abcd, c = ac, d = acd.
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- ad = a, bd = bb2, (ac)d = aca2b2, i.e. ad = a, bd = bb2, cd = ca2b2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = a, b = bd, c = ac, d = ad.

- ad = a, bd = ba2b2, (ac)d = acb2, i.e. ad = a, bd = ba2b2, cd = cb2.
The group 〈a, b, c, d〉 is isomorphic to K9.An isomorphism is given by
setting: a = abd, b = bcd, c = c, d = d.

- ad = aa2, bd = bb2, (ac)d = ac, i.e. ad = aa2, bd = bb2, cd = ca2. The
group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = cd, b = bc, c = abd, d = ac.

- ad = aa2, bd = ba2b2, (ac)d = ac, i.e. ad = aa2, bd = ba2b2, cd = ca2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = acd, b = c, c = ac, d = bd.

- ad = aa2b2, bd = b, (ac)d = acb2, i.e. ad = aa2b2, bd = b, cd = ca2. The
group 〈a, b, c, d〉 is isomorphic to K11.

- ad = aa2b2, bd = ba2b2, (ac)d = acb2, i.e. ad = aa2b2, bd = ba2b2, cd = ca2.
The group 〈a, b, c, d〉 is isomorphic to K11. An isomorphism is given
by setting: a = abc, b = cd, c = bcd, d = bd.

Lemma 3.23. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to K8 (see Lemma 3.18);

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.

Then K is contained in a subgroup isomorphic to

K8 × C2;

K9 (see Lemma 3.21);

K10(see Lemma 3.21).

Moreover, the subgroup Ω1(G) is in the centralizer of K.

Proof. Suppose K = 〈a, b, c : a4 = 1, b4 = 1, c2 = a2b2, ab = a3, ac = a, bc =
ba2b2〉 and let d be in G\K.
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Suppose d has order 2: then, by Lemma 3.13, d ∈ CG(〈a, b〉) and d ∈
CG(〈ab, bc〉). Hence 〈K, d〉 is isomorphic to K × C2. In particular, the
subgroup Ω1(G) is contained in CG(K). Furthermore, from now on, we may
assume that all the elements in Kc have order 4. In the sequel, we refer to
(∗) to recall the previous assumption.

Suppose d has order 4. By (ii), it is easy to check that [d,K] ≤ K2 and
d2 ∈ K2. We have 〈a, b〉 ' K2 and 〈a, b〉2 = G2 = K2. By Remark 3.19, we
can assume d2 = a2b2. Since 〈d〉 ∩ 〈a〉 = 1, 〈d〉 ∩ 〈b〉 = 1 and 〈d〉 ∩ 〈ac〉 = 1,
we get that 〈a, d〉, 〈b, d〉 and 〈ac, d〉 are either abelian or isomorphic to K2.
Hence [a, d] ∈ {1, a2, a2b2}, [b, d] ∈ {1, b2, a2b2}, [ac, d] ∈ {1, b2, a2b2}.
Now, the rest of the proof is a case-by-case analysis depending on the possible
values of [a, d],[b, d] and [ac, d].
By (∗), we assume that none of the followings happen:

- [d, c] = 1 (otherwise (cd)2 = 1);

- [a, d][b, d] = a2 (otherwise (abd)2 = 1);

- [a, d][c, d] = a2 (otherwise (acd)2 = 1);

- [b, d][c, d] = a2 (otherwise (bcd)2 = 1);

- [a, d][b, d][c, d] = a2 (otherwise (abcd)2 = 1).

Excluding the cases in which one of the previous is satisfied, it remains to
study the following possibilities:

- ad = a, bd = b, (ac)d = acb2, i.e. ad = a, bd = b, cd = cb2. The group
〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by setting:
a = bd, b = cd, c = acd, d = d.

- ad = a, bd = b, (ac)d = aca2b2, i.e. ad = a, bd = b, cd = ca2b2. The group
〈a, b, c, d〉 is isomorphic to K10. An isomorphism is given by setting:
a = cd, b = ad, c = a, d = abd.

- ad = a, bd = bb2, (ac)d = acb2, i.e. ad = a, bd = bb2, cd = cb2. The group
〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by setting:
a = abcd, b = ab, c = acd, d = d.

- ad = a, bd = ba2b2, (ac)d = aca2b2, i.e. ad = a, bd = ba2b2, cd = ca2b2.
The group 〈a, b, c, d〉 is isomorphic to K10. An isomorphism is given
by setting: a = cd, b = ad, c = a, d = abd.
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- ad = aa2, bd = bb2, (ac)d = ac, i.e. ad = aa2, bd = bb2, cd = ca2. The
group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = acd, b = abd, c = bd, d = abcd.

- ad = aa2, bd = ba2b2, (ac)d = ac, i.e. ad = aa2, bd = ba2b2, cd = ca2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = acd, b = bd, c = abd, d = bcd.

- ad = aa2b2, bd = b, (ac)d = ac, i.e. ad = aa2b2, bd = b, cd = ca2b2. The
group 〈a, b, c, d〉 is isomorphic to K10. An isomorphism is given by
setting: a = a, b = b, c = bcd, d = abcd.

- ad = aa2b2, bd = ba2b2, (ac)d = ac, i.e. ad = aa2b2, bd = ba2b2, cd = ca2b2.
The group 〈a, b, c, d〉 is isomorphic to K9. An isomorphism is given by
setting: a = d, b = abcd, c = abd, d = bcd.

The next lemma shows that the structure of a monotone 2-group G such
that |G2| = 4 and containing K9 or K10 or K11 is very restricted.

Lemma 3.24. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to Ki, i = 9, 10, 11;

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.

Then G is isomorphic to K ×A where A is elementary abelian.

Proof. Let
K = 〈a, b, c, d : a4 = 1, b4 = 1, c2 = a2b2, d2 = c2, ab = a3,

ac = a, bc = b, ad = a, bd = b3, cd = cb2〉
be isomorphic to K9.
Let f ∈ G\K.

Suppose f has order 2. By Lemma 3.13, f centralizes all the subgroups
isomorphic to K2. Since 〈a, b〉, 〈d, b〉 and 〈cd, d〉 are isomorphic to K2, we get
that f ∈ CG(K). Therefore, Ω1(G) is elementary abelian (see Lemma 3.17),
Ω1(G) ≤ CG(K) and so 〈K,Ω1(G)〉 = K×A, where A is elementary abelian.
Then we may assume that all the elements in Kf have order 4. In the sequel
we refer to (∗) to recall this assumption. Moreover, since 〈a, b〉 ' K2 and
f2 ∈ 〈a2, b2〉, by Remark 3.19, we may assume f2 = a2b2. Now, we have
〈f〉 ∩ 〈a〉 = 1, 〈f〉 ∩ 〈b〉 = 1, 〈f〉 ∩ 〈ac〉 = 1 and 〈f〉 ∩ 〈ad〉 = 1. Hence the
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subgroups 〈a, f〉, 〈f, b〉, 〈f, ac〉 and 〈f, ad〉 are abelian or isomorphic to K2.
Hence [a, f ] ∈ {1, a2, a2b2}, [b, f ] ∈ {1, b2, a2b2}, [ac, f ] ∈ {1, b2, a2b2},
[ad, f ] ∈ {1, b2, a2b2}. Because of (∗), we assume that none of the followings
happen:

- [c, f ] = 1 (otherwise (cf)2 = 1);

- [a, f ][b, f ] = a2 (otherwise (abf)2 = 1);

- [a, f ][c, f ] = a2 (otherwise (acf)2 = 1);

- [b, f ][c, f ] = b2 (otherwise (bcf)2 = 1);

- [a, f ][b, f ][c, f ] = b2 (otherwise (abcf)2 = 1);

- [d, f ] = 1 (otherwise (df)2 = 1);

- [a, f ][d, f ] = a2 (otherwise (adf)2 = 1);

- [b, f ][d, f ] = 1 (otherwise (bdf)2 = 1);

- [c, f ][d, f ] = a2 (otherwise (cdf)2 = 1);

- [a, f ][b, f ][d, f ] = 1 (otherwise (abdf)2 = 1);

- [a, f ][c, f ][d, f ] = 1 (otherwise (acdf)2 = 1);

- [b, f ][c, f ][d, f ] = a2 (otherwise (bcdf)2 = 1);

- [a, f ][b, f ][c, f ][d, f ] = a2 (otherwise (abcdf)2 = 1);

It is not difficult to see that for all the possible choices of the commutators
[a, f ], [b, f ], [c, f ], [d, f ] one of the previous conditions is satisfied. Therefore
if i = 9, then the statement is true.

The arguments above hold also for Ki, where i = 10, 11.

The next proposition, that concludes the section, completes the classi-
fication of the monotone 2-groups of exponent 4 involving a subgroup K

isomorphic to K2 and such that there is no cyclic subgroup X of order 4
with X ∩K = 1, i.e. |G2| = 4.

Proposition 3.25. Let G be a monotone 2-group of exponent 4 such that

(i) G properly contains a subgroup K isomorphic to K2;

– 39 –



Chapter 3. Monotone 2-groups of exponent 4

(ii) there are no cyclic subgroups X of order 4 of G such that X ∩K = 1.

Then G is isomorphic to H × A, where A is elementary abelian and H is
isomorphic to Ki, where i ∈ {2, 6, 7, 8, 9, 10, 11} (see Lemma 3.18, Lemma
3.21 and Lemma 3.22).

Proof. Suppose K is a subgroup of G isomorphic to K2.
If for all the elements c of G\K there exists k ∈ K such that kc has order 2,
then G = 〈K,Ω1(G)〉. By Lemma 3.17, Ω1(G) is elementary abelian. Since
by Lemma 3.13, the subgroup Ω1(G) is in CG(K), we get that G ' K ×A,
where A is elementary abelian.
Suppose now that there exists an element c in G\K such that there is no
k ∈ K with kc of order 2. Then, by Lemma 3.18, the subgroup K is
contained in a subgroup isomorphic to K6 or to K7 or to K8.
Then we may assume that G contains a subgroup T isomorphic to Ki, where
i is in {6, 7, 8}.
Suppose that for all the elements c of G\T , there exists an element k ∈ T
such that kc has order 2. Then G = 〈T,Ω1(G)〉. By Lemma 3.17, Ω1(G) is
elementary abelian. Moreover, by Lemma 3.21 if i = 6, by Lemma 3.22 if
i = 7 and by Lemma 3.23 if i = 8, the subgroup Ω1(G) is in CG(T ). So, we
get that G ' T × A, where T ' Ki with i in {6, 7, 8} and A is elementary
abelian.
Suppose now that there exists an element c in G\T such that there is no
k ∈ K with kc of order 2. Then, by Lemma 3.21 if i = 6, by Lemma 3.22 if
i = 7 and by Lemma 3.23 if i = 8, the subgroup T is contained in a subgroup
of G isomorphic to K9 or to K10 or to K11.
So, we may assume that that G contains a subgroup S isomorphic to Ki,
where i is in {9, 10, 11}.
By Lemma 3.24, the group G is isomorphic to S × A, where S ' Ki with
i is in {9, 10, 11} and A is elementary abelian. Hence the statement is
proved.

Summing up, in this section we determined the monotone 2-groups of
exponent 4 containing a subgroup isomorphic to K2. Namely, any such a
group is in the class Ai, with i ∈ {1, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

In particular, combining the previous two sections Theorem 3.3 is proved.
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Chapter 4

Monotone 2-Groups of

exponent greater than 4 in

which |G : H4(G)| = 2

Since the 2-groups of exponent at most 2 are elementary abelian and the
monotone 2-groups of exponent 4 were fully classified in Chapter 3, in the
rest of this thesis we study monotone 2-groups of exponent greater than 4.
Let G be such a group. By Proposition 1.3, we have that |G : H4(G)| ≤ 2.
In this chapter we investigate the monotone 2-groups of exponent greater
than or equal to 8 and such that |G : H4(G)| = 2.

Definition 4.1. We introduce the following families of 2-groups:

- B1 is the family of 2-groups of the form A〈u〉, where A is abelian of
exponent 2n ≥ 8, u2 ∈ Ω1(A), au = a−1+4h with |a4h| ≤ 2 for every
a ∈ A;

- B2 is the family of 2-groups of the form 〈a, b, u〉×A, where A is elementary
abelian, |a| = 2n ≥ 8, |b| = 2, 〈a, b〉 is abelian, u2 = a2n−1

, bu = ba2n−1
,

au = a−1;

- B3 is the family of 2-groups of the form 〈a, b, u〉×A, where A is elementary
abelian, |a| = 2n ≥ 8, |b| = 4, 〈a, b〉 is abelian, u2 = b2 and au = a−1,
bu = b−1a2n−1

;

- B4 is the family of 2-groups of the form 〈a, u〉∗E×A, where |a| = 2n ≥ 8,
E is extraspecial, A is elementary abelian, u2 ∈ 〈a2n−1〉, au = a−1+4h
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with |a4h| ≤ 2 and E2 = 〈a2n−1〉;

- B5 is the family of 2-groups of the form 〈a, u〉 ∗ E ∗ A, where E is ex-
traspecial, A is abelian of the form C4 × C2 × · · · × C2, |a| = 2n ≥ 8,
u2 = a2n−1

, au = a−1+4h with |a4h| ≤ 2 and A2 = E2 = 〈a2n−1〉 ;

- B6 is the family of 2-groups of the form 〈a, u, b〉∗E×A, where |a| = 2n ≥
8, E is extraspecial, A is elementary abelian, |b| = 2, u2 ∈ 〈a2n−1〉,
ab = a1+2n−1

, au = a−1, bu = ba4h with |a4h| ≤ 2 and E2 = 〈a2n−1〉;

- B7 is the family of 2-groups of the form 〈a, u, b〉 ∗ E ∗ A, where E is
extraspecial, A is abelian of the form C4 × C2 × · · · × C2, and |a| =
2n ≥ 8, |b| = 2, u2 = a2n−1

, au = a−1, bu = b, ab = a1+2n−1
, and

A2 = E2 = 〈a2n−1〉;

- B8 is the family of 2-groups of the form 〈a, b, u〉×A, where A is elementary
abelian, |a| = 2n ≥ 8, |b| = 2, |u| = 4, u2 = a2n−1

, au = a−1+4h with
|a4h| ≤ 2, ab = a1+2n−1

and ub = u−1;

- B9 is the family of 2-groups of the form 〈a, c, b, u〉 × A, where A is ele-
mentary abelian, |a| = 2n ≥ 8, |c| = 2, |b| = 2, |u| = 4, u2 = a2n−1

,
au = a−1, ab = a1+2n−1

, ub = u−1, ca = c, cb = c and cu = ca2n−1
;

- B10 is the family of 2-groups of the form 〈a, b, u〉×A, where A is elemen-
tary abelian, |a| = 2n ≥ 8, |b| = 4, |u| = 4, u2 = b2, au = a−1+4h with
|a4h| ≤ 2, bu = b−1a2n−1

, ab = a1+2n−1
.

We start by proving that the groups in Bi, for i ∈ {1, . . . , 10}, defined
in Definition 4.1, are actually monotone.

Proposition 4.1. The groups in the families Bi, for i ∈ {1, . . . , 10} are
monotone.

Proof. We want to show that if G is a group in Bi, for i ∈ {1, . . . , 10}, then
G is monotone. Now, the proof is a case-by-case analysis depending on the
family in which G lies.

- Suppose that G is in B1. Lemma 2.6 proves that G is monotone.

- Suppose that G is in B2. Then, we have G = 〈a, b, u〉 × A, where A is
elementary abelian, |a| = 2n with n ≥ 3, |b| = 2,〈a, b〉 is abelian, u2 =
a2n−1

, bu = ba2n−1
, au = a−1. We have to prove that the 2-generated
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subgroups are metacyclic. By Lemma 2.5, it is sufficient to prove that
the group 〈a, b, u〉 is monotone. Moreover, since 〈a, b〉 is abelian, it is
enough to check that the subgroups of the form 〈ai1bi2u, aj1bj2〉 are
metacyclic.
We distinguish two cases depending on the order of aj1 .

If |aj1 | ≥ 8, then Ω1(〈aj1bj2〉) = 〈a2n−1〉. Since (aj1bj2)a
i1bi2u =

a−j1bj2a2n−1j2 , we have that 〈aj1bj2〉� 〈ai1bi2u, aj1bj2〉 and so the sub-
group 〈ai1bi2u, aj1bj2〉 is metacyclic.

Suppose now that |aj1 | ≤ 4. The subgroup 〈ai1bi2u, aj1bj2〉 is contained
in 〈a2n−2

, b, ai1u〉. Now, the group 〈a2n−2
, b, ai1u〉 = 〈a2n−2

, ai1u〉 ∗
〈a2n−2

b〉 is isomorphic to Q8∗C4, where Q2
8 = C2

4 . Since Q8∗C4, where
Q2

8 = C2
4 , is monotone, the subgroup 〈ai1bi2u, aj1bj2〉 is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in B3. Then, we have G = 〈a, b, u〉 × A, where A is
elementary abelian, |a| = 2n, |b| = 4, 〈a, b〉 is abelian, u2 = b2 and
au = a−1, bu = b−1a2n−1

. By Lemma 2.5, it is sufficient to prove that
the group 〈a, b, u〉 is monotone. Moreover, since 〈a, b〉 is abelian it is
enough to check that the subgroups of the form 〈ai1bi2u, aj1bj2〉 are
metacyclic.
Now, we have that (aj1bj2)a

i1bi2u = (aj1bj2)u = a−j1b−j2a2n−1j2 =
(aj1bj2)−1a2n−1j2 . We distinguish two cases depending on the order of
aj1 .

If |aj1 | ≥ 8, then |aj1bj2 | = |aj1 | and, in particular, Ω1(〈aj1bj2〉) =
〈a2n−1〉. Then, we have 〈aj1bj2〉 � 〈aj1bj2 , ai1bi2u〉, and so the group
〈aj1bj2 , ai1bi2u〉 is metacyclic.

Suppose now that |aj2 | ≤ 4. The subgroup 〈ai1bi2u, aj1bj2〉 is contained
in the subgroup 〈a2n−2

, b, ai1u〉, which is isomorphic to K7 (see Lemma
3.18) by setting a = a2n−2

, b = ai1ub and c = b. Since K7 is monotone,
the subgroup 〈ai1bi2u, aj1bj2〉 is metacyclic.

Therefore, the group 〈a, b, u〉 is monotone and so G is monotone.

- Suppose that G is in B4. Then, we have G = 〈a, u〉 ∗ E × A, where a
has order 2n ≥ 8, E is extraspecial, A is elementary abelian, u is such
that u2 ∈ 〈a2n−1〉, au = a−1+4h with |a4h| ≤ 2, E2 = 〈a2n−1〉. By
Lemma3.6, it is sufficient to show that 〈a, u〉 ∗ E is monotone.
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We first prove that the subgroup 〈a,E〉 is monotone. It is enough
to check that the subgroups 〈ait1, t2〉, where t1 and t2 are in E, are
metacyclic. Now, (ait1)t2 = ait1[t1, t2] = ait1a

2n−1s, for some s ∈ N.
If |ai| ≥ 8, then Ω1(〈ait1〉) = 〈a2n−1〉, and so 〈ait1〉 � 〈ait1, t2〉. If
|ai| ≤ 4, then 〈ait1, t2〉 ≤ 〈a2n−2〉 ∗ E, which is a monotone group (see
Theorem 3.3).
This proves that the subgroup 〈a〉 ∗ E is monotone.

Now, in order to conclude that the group 〈a, u〉 ∗ E is monotone, it is
enough to prove that the subgroups 〈ait1u, ajt2〉 are metacyclic, where
t1, t2 ∈ E. We have that (ajt2)a

it1u = (ajt2)−1a4hjt22[t1, t2]. We now
distinguish two cases depending on the order of aj .

If |aj | ≥ 8, then Ω1(〈ajt2〉) = 〈a2n−1〉 . Since t22[t1, t2] ∈ 〈a2n−1〉, we
have that 〈ajt2〉� 〈ait1u, ajt2〉.

If |aj | ≤ 4, then 〈ait1u, ajt2〉 is contained in 〈a2n−2
, aiu〉 ∗ E which is

extraspecial and so monotone. In particular, the subgroup 〈ajt2, ait1u〉
is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in B5. Then, we have G = 〈a, u〉 ∗ E ∗ A, where
E is extraspecial, A is abelian of the form C4 × C2 × · · · × C2, and
|a| = 2n, with n ≥ 3, u2 = a2n−1

and au = a−1+4h, with |a4h| ≤ 2
and A2 = E2 = 〈a2n−1〉. By Lemma 3.6, it is sufficient to show that
〈a, u〉 ∗ E ∗ C4 is monotone.

We first prove that the subgroup 〈a〉 ∗ E ∗ C4 is monotone. Since
〈a〉 ∗ E ∗ C4 = 〈a〉 ∗ E × C2, by Lemma 3.6, it suffices to check that
the subgroups 〈ait1, t2〉, where t1 and t2 are in E, are metacyclic.
Now, (ait1)t2 = ait1[t1t2] = ait1a

2n−1s, for some s ∈ N. If |ai| ≥ 8,
then Ω1(〈ait1〉) = 〈a2n−1〉, and so 〈ait1〉 � 〈ait1, t2〉. If |ai| ≤ 4, then
〈ait1, t2〉 ≤ 〈a2n−2〉 ∗E, which is a monotone group (see Theorem 3.3).
This proves that the subgroup 〈a〉 ∗ E ∗ C4 is monotone.

In order to conclude that the group 〈a, u〉 ∗ E ∗ C4 is monotone, we
prove that the subgroups 〈ait1u, ajt2〉 are metacyclic, where t1, t2 ∈
E ∗ C4. We have that (ajt2)a

it1u = (ajt2)−1a4hjt22[t1, t2]. If |aj | ≥ 8,
then Ω1(〈ajt2〉) = 〈a2n−1〉 . Since t22[t1, t2] ∈ 〈a2n−1〉, we have that
〈ajt2〉 � 〈ait1u, ajt2〉. If |aj | ≤ 4, then 〈ait1u, ajt2〉 is contained in
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〈an−2, aiu〉 ∗ E ∗ C4 which is monotone. In particular, the subgroup
〈ajt2, ait1u〉 is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in B6. Then, we have G = 〈a, u, b〉 ∗ E × A, where a
has order 2n ≥ 8, E is extraspecial, A is elementary abelian, |b| = 2,
u2 ∈ 〈a2n−1〉, ab = a1+2n−1

, au = a−1, bu = ba4h, where |a4h| ≤ 2 and
E2 = 〈a2n−1〉. By Lemma 2.5, it is enough to check that 〈a, u, b〉 ∗ E
is monotone. Therefore, we have to control that all the 2-generated
subgroups of 〈a, u, b〉 ∗ E are monotone.

We first prove that 〈a, b〉 ∗ E is monotone. We control that the sub-
groups of the form 〈ai1bi2t1, aj1t2〉 are metacyclic.
We have (aj1t2)a

i1bi2 t1 = aj1t2[aj1 , bi2 ][t2, t1]. Therefore, we obtain
[ai1bi2t1, aj1t2] = [aj1 , bi2 ][t2, t1] ≤ 〈a2n−1〉. We distinguish two cases
depending on the orders of aj1 and ai1 .

Suppose that |aj1 | ≥ 8 or |ai1 | ≥ 8. In the first case, we get Ω1(〈aj1t2〉) =
〈a2n−1〉 and so 〈aj1t2〉 � 〈ai1bi2t1, aj1t2〉. In the second case, we have
that Ω1(〈ai1bi2t1〉) = 〈a2n−1〉 and so 〈ai1bi2t1〉� 〈ai1bi2t1, aj1t2〉.
Hence, if |aj1 | ≥ 8 or |ai1 | ≥ 8, then the subgroup 〈ai1bi2t1, aj1t2〉 is
metacyclic.

Suppose now that both |aj1 | ≤ 4 and |ai1 | ≤ 4. Then 〈ai1bi2t1, aj1t2〉
is contained in 〈a2n−2〉 ∗ E × 〈b〉, which is monotone (see Theorem
3.3) . Therefore, if both |aj1 | ≤ 4 and |ai1 | ≤ 4, then the subgroup
〈ai1bi2t1, aj1t2〉 is metacyclic.

This shows that the group 〈a, b〉 ∗ E is monotone and, in order to
conclude that 〈a, u, b〉 ∗ E is monotone, we check that the subgroups
of the form 〈ai1bi2t1, aj1bi3t2u〉 are metacyclic.
We have (ai1bi2t1)a

j1bi3 t2u = (ai1bi2t1)−1a2n−1s, for some s ∈ N.
We distinguish two cases depending on the order of ai1 .

Suppose that |ai1 | ≥ 8. Then, we have Ω1(〈ai1bi2t1〉) = 〈a2n−1〉 It
follows that 〈ai1bi2t1〉 � 〈ai1bi2t1, aj1bi3t2u〉. Hence, if |ai1 | ≥ 8, the
subgroup 〈ai1bi2t1, aj1bi3t2u〉 is metacyclic.

Suppose now |ai1 | ≤ 4. We have that 〈ai1bi2t1, aj1bi3t2u〉 is a subgroup
of 〈a2n−2

, b, u, E〉 = 〈a2n−2
, u〉 ∗ E ∗ 〈a2n−2

b〉, which is isomorphic to a
monotone group of the form F ∗C4, where F is extraspecial. Therefore,
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if |ai1 | ≤ 4, then 〈ai1bi2t1, aj1bi3t2u〉 is metacyclic.

This shows that all the 2-generated subgroups of 〈a, b, u, E〉 are meta-
cyclic. It follows that the group G is monotone.

- Suppose that G is in B7. Then, we have G = 〈a, u, b〉 ∗E ∗A, where E is
extraspecial, A is abelian of the form C4×C2×· · ·×C2, and |a| = 2n,
with n ≥ 3, |b| = 2, ab = a1+2n−1

, u2 = a2n−1
, au = a−1, bu = b and

A2 = E2 = 〈a2n−1〉.

By Lemma 2.5, it is enough to check that 〈a, u, b〉∗E ∗C4 is monotone.
Therefore, we have to control that all the 2-generated subgroups of
〈a, u, b〉 ∗ E ∗ C4 are metacylcic.

We first prove that 〈a, b〉 ∗E ∗C4 is monotone. Since 〈a, b〉 ∗E ∗C4 =
〈a, b〉 ∗ E × C2, by Lemma 2.5, it is sufficient to check that the sub-
groups of the form 〈ai1bi2t1, aj1t2〉, where t1 and t2 are in E, are meta-
cyclic. Now, we have (aj1t2)a

i1bi2 t1 = aj1t2[aj1 , bi2 ][t2, t1]. Therefore
[ai1bi2t1, aj1t2] = [aj1 , bi2 ][t2, t1] ∈ 〈a2n−1〉.

Suppose that |aj1 | ≥ 8 or |ai1 | ≥ 8. In the first case, we have that
Ω1(〈aj1t2〉) = 〈a2n−1〉 and so 〈aj1t2〉 � 〈ai1bi2t1, aj1t2〉. In the second
case, we get Ω1(〈ai1bi2t1〉) = 〈a2n−1〉 and so 〈ai1bi2t1〉�〈ai1bi2t1, aj1t2〉.
Hence, if |aj1 | ≥ 8 or |ai1 | ≥ 8, then the subgroup 〈ai1bi2t1, aj1t2〉 is
metacyclic.

Suppose now that both |aj1 | ≤ 4 and |ai1 | ≤ 4. Then 〈ai1bi2t1, aj1t2〉
is contained in 〈a2n−2〉 ∗ E × 〈b〉, which is monotone (see Theorem
3.3) . Therefore, if both |aj1 | ≤ 4 and |ai1 | ≤ 4, then the subgroup
〈ai1bi2t1, aj1t2〉 is metacyclic, being a subgroup of a monotone group.

In order to conclude that 〈a, u, b〉∗E∗C4 is monotone, we check that the
subgroups of the form 〈ai1bi2t1, aj1bi3t2u〉, where t1 and t2 are in E∗C4,
are metacyclic. We have that (ai1bi2t1)a

j1bi3 t2u = (ai1bi2t1)−1a2n−1s for
some s ∈ N.

Suppose that |ai1 | ≥ 8. Then, we have Ω1(〈ai1bi2t1〉) = 〈a2n−1〉 and
so 〈ai1bi2t1〉 � 〈ai1bi2t1, aj1bi3t2u〉. Hence if |ai1 | ≥ 8, the subgroup
〈ai1bi2t1, aj1bi3t2u〉 is metacyclic.

Suppose now |ai1 | ≤ 4. Then the subgroup 〈ai1bi2t1, aj1bi3t2u〉 is a
subgroup of 〈a2n−2

, b, u, E〉 = 〈a2n−2
, u〉∗E ∗〈a2n−2

b〉, which is isomor-
phic to a monotone group of the form F ∗C4, where F is extraspecial.
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Therefore, if |ai1 | ≤ 4, then 〈ai1bi2t1, aj1bi3t2u〉 is metacyclic (being a
subgroup of a monotone group). This shows that all the 2-generated
subgroups of 〈a, b, u〉 ∗ E ∗ C4 are metacyclic.

It follows that the group G is monotone.

- Suppose that G is in B8. Then, we have G = 〈a, b, u〉 × A, where A

is elementary abelian, |a| = 2n ≥ 8, |b| = 2, |u| = 4, u2 = a2n−1
,

au = a−1+2n−1h, with h in {0, 1}, ab = a1+2n−1
and ub = u−1. By

Lemma 2.5, it is enough to check that 〈a, b, u〉 is a monotone group.
Therefore, we have to check that all the 2-generated subgroups of
〈a, b, u〉 are metacyclic. Since 〈a, b〉 is a modular metacyclic subgroup,
it is monotone and so it is sufficient to check the subgroups of the
form 〈bi1ai2 , uaj2bj1〉. If i1 = 0, then the subgroup 〈ai2 , uaj2bj1〉 is
metacyclic since 〈ai2〉 � 〈ai2 , uaj2bj1〉. If i2 = 1 then, replacing if
necessary uaj2bj1 with uaj2bj1(bai2)j1 , we may assume that the sub-
group is of the form 〈bai2 , uaj2〉. Now (bai2)ua

j2 = ba
j2a(−1+2n−1)i2 =

(bai2)−1a2n−1i2+2n−1j2 . Now, we distinguish two cases depending on
the order of ai2 .

If |ai2 | ≥ 8, then Ω1(〈bai2〉) = 〈a2n−1〉 and so 〈bai2〉� 〈bai2 , uaj2〉.

If |ai2 | ≤ 4, then 〈bai2 , uaj2〉 is contained in the group 〈a2n−2
, b, uaj2〉.

We have that (uaj2)2 = u2a2n−1hj2 = a2n1hj2+1, and so (uaj2)2 ∈
〈a2n−1〉. Therefore, 〈a2n−2

, b, uaj2〉 is equal to 〈a2n−2
, uaj2〉 ∗ 〈a2n−2

b〉.
If |uaj2 | = 2, then 〈a2n−2

, uaj2〉 is isomorphic to D8. Therefore, the
subgroup 〈a2n−2

, b, uaj2〉 = 〈a2n−2
, uaj2〉 ∗ 〈a2n−2

b〉 is isomorphic to the
monotone group D8 ∗ C4, where D2

8 = C2
4 .

If |uaj2 | = 4, then 〈a2n−2
, uaj2〉 is isomorphic to Q8. Therefore, the

subgroup 〈a2n−2
, b, uaj2〉 = 〈a2n−2

, uaj2〉 ∗ 〈a2n−2
b〉 is isomorphic to the

monotone group Q8 ∗ C4, where Q2
8 = C2

4 .
In both cases, the subgroup 〈a2n−2

, b, uaj2〉 is monotone and in parti-
cular, the subgroup 〈bai2 , uaj2〉 is metacyclic.

Therefore, the group G is monotone.

- Suppose that G is in B9. Then, we have G = 〈a, c, b, u〉 × A, where A is
elementary abelian, |a| = 2n ≥ 8, |c| = 2, |b| = 2, |u| = 4, u2 = a2n−1

,
au = a−1, ab = a1+2n−1

, ub = u−1, ca = c, cb = c and cu = ca2n−1
.

By Lemma 2.5, it is enough to check that 〈a, c, b, u〉 is a monotone
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group. Therefore, we have to check that all the 2-generated subgroups
of 〈a, c, b, u〉 are metacyclic. Since the subgroup 〈a, b, c〉 is modular
(and so monotone), it is enough to check the subgroups of the form
〈ai1bi2ci3 , uaj1bj2cj3〉. We distinguish two cases depending on the order
of ai1 .

If |ai1 | ≥ 8, then 〈ai1bi2ci3〉 � 〈ai1bi2ci3 , uaj1bj2cj3〉 . In fact, we have
that
(ai1bi2ci3)ua

j1bj2cj3 = (a−i1bi2ci3a2n−1(i2+i3))b
j2cj3

= a−i1bi2ci3a2n−1(i2+i3+i1j2)

= (ai1bi2ci3)−1a2n−1(i2+i3+i1j2).

Since 〈(ai1bi2ci3)2〉 = 〈a2i1〉, we have that 〈a2n−1(i2+i3+i1j2)〉 ≤ 〈a2n−1〉 ≤
Ω1(〈ai1bi2ci3〉)

Suppose now that |ai1 | ≤ 4, then the subgroup 〈ai1bi2ci3 , uaj1bj2cj3〉
is contained in 〈a2n−2

, b, c, uaj1〉. Therefore, in order to prove that
〈ai1bi2ci3 , uaj1bj2cj3〉 is metacyclic, it is sufficient to prove that the
group 〈a2n−2

, b, c, uaj1〉 is monotone. Now, this group has exponent 4
and 〈a2n−2

, b, c, uaj1〉 = 〈a2n−2
, uaj1〉∗ 〈a2n−2

b〉×〈bc〉. Then, the group
〈a2n−2

, b, c, uaj1〉 is isomorphic to Q8 ∗ C4 × C2, which is monotone.

Therefore, the group G is monotone.

- Suppose that G is in B10. Then, we have G = 〈a, b, u〉 × A, where A is
elementary abelian, |a| = 2n ≥ 8, |b| = 4, |u| = 4, u2 = b2, au = a−1+4h

with |a4h| ≤ 2, bu = b−1a2n−1
, ab = a1+2n−1

.
By Lemma 2.5, it is enough to check that 〈a, b, u〉 is a monotone group.
Therefore, we have to check that all the 2-generated subgroups of
〈a, b, u〉 are metacyclic.
Since 〈a, b〉 is a modular metacyclic subgroup, it is monotone and so
it is sufficient to check the subgroups of the form 〈bi1ai2 , uaj2bj1〉. We
distinguish two cases depending on the order of ai1 .

Suppose that |ai2 | ≥ 8. Then Ω1(〈bi1ai2〉) = 〈a2n−1〉.
Since (bi1ai2)ua

j2bj1 = (b−i1a2n−1
a−i2(1+4h))a

j2bj1 = (bi1ai2)−1a2n−1s,
for some s ∈ N, we have that 〈bi1ai2〉 � 〈bi1ai2 , uaj2bj1〉 and so the
subgroup 〈bi1ai2 , uaj2bj1〉 is metacyclic.

If |ai2 | ≤ 4, then we have that the subgroup 〈bi1ai2 , uaj2bj1〉 is con-
tained in 〈a2n−2

, b, uaj2〉.
If j2 is even, then 〈a2n−2

, uaj2 , ba2n−2〉 is isomorphic to K7 (see Lemma
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3.18).
If j2 is odd, 〈a2n−2

, uaj2 , ba2n−2〉 is isomorphic to K8 (see Lemma 3.18).
Hence, we obtain that the group 〈a2n−2

, b, uaj2〉 is monotone and so
〈bi1ai2 , uaj2bj1〉 is metacyclic.

Therefore, the group G is monotone.

The aim of this chapter is to prove the following :

Theorem 4.2. Let G be a monotone 2-group of exponent greater than or
equal to 8 and such that |G : H4(G)| = 2. Then G is in one of the families
Bi, for some i ∈ {1, . . . , 10}, defined in Definition 4.1.

4.1 The subgroup H4(G)

In this section we study the structure of H4(G), where G is a monotone
2-group of exponent at least 8 and H4(G) is maximal in G.
In the following two lemmas we give some informations on the normalizer
of the cyclic subgroups of order greater than 4 in G and on the metacyclic
subgroups of H4(G) having exponent greater than 4.

Lemma 4.3. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : H4(G)| = 2.
Any cyclic subgroup X of order greater than or equal to 8 is normal in
G. Moreover, if u is an element of G not in H4(G) and X = 〈a〉, then
au = a−1+4h, where |a4h| ≤ 2.

Proof. Let a be an element of H4(G), with |a| ≥ 8, and let u be an element
lying in G\H4(G).

We first prove the following claim: each cyclic subgroup of 〈a, u〉 of order
greater than 4 is normal in 〈a, u〉.
Since u is not in H4(G), the order of u is smaller than or equal to 4. More-
over, the subgroup 〈a, u〉 is not contained in H4(G) and, since |a| ≥ 8,
the exponent of 〈a, u〉 is greater than 4. Now a modular metacyclic group
is generated by its elements of maximal order, and so the group 〈a, u〉
is non-modular metacyclic. Therefore, there exist x, y ∈ 〈a, u〉 such that
〈a, u〉 = 〈x, y〉, 〈x〉� 〈x, y〉 and xy = x−1+4h.
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We want to show that each cyclic subgroup of 〈x, y〉 of order greater than
or equal to 8 is normal in 〈x, y〉.

Assume |x| ≤ 4. In this case we have xy = x−1. If |y| ≤ 4, then we get
exp(〈x, y〉) ≤ 4, a contradiction. Hence, we have |y| ≥ 8. Since |yx| = |y|,
the subgroup 〈x, y〉 = 〈yx, y〉 is contained in H4(G), a contradiction.
Therefore, this case does not arise.

So, we have that the order of x is 2n, where n ≥ 3. If |y| ≥ |8|, then the
subgroup 〈x, y〉 is contained in H4(G), a contradiction.
Therefore, we get that |x| = 2n ≥ 8 and |y| ≤ 4. We now analyze the cases
depending on the order of y and on the action of y on 〈x〉.

If y has order 2, then the automorphism induced by y on 〈x〉 has order
2, i.e. xy = x−1+2n−1i, where i ∈ {0, 1}. Now, an element t of 〈x, y〉 of
order greater than or equal to 8 lies in 〈x〉. In particular, we get 〈t〉� 〈x, y〉.
Therefore, the subgroup 〈x, y〉 is contained in the normalizer of every cyclic
subgroup of 〈x, y〉 of order at least 8. In this case the claim is proved.

Suppose now |y| = 4 and |〈y〉 ∩ 〈x〉| = 2. Then, we have y2 = x2n−1
.

The automorphism induced by y on 〈x〉 has order 2, and so xy = x−1+2n−1i,
where i ∈ {0, 1}. Now, an element t of 〈x, y〉, with |t| ≥ 8, lies in 〈x〉. In
particular, we have 〈t〉 � 〈x, y〉. So, the subgroup 〈x, y〉 is contained in the
normalizer of every cyclic subgroup of 〈x, y〉 of order at least 8 and, also in
this case, the claim is proved.

Suppose now |y| = 4 and |〈y〉 ∩ 〈x〉| = 1. If yx has order greater than
4, then 〈x, y〉 = 〈x, yx〉 and 〈x, yx〉 is contained in H4(G), a contradiction.
Hence, we have that |yx| ≤ 4.
Since xy = x−1+4h, we have that (yx)4 = x8h+64h3−32h2

. Therefore, the
element yx is such that |yx| ≤ 4 if and only if 8h ≡ 0 mod 2n, i.e. xy =
x−1+4h, with |x4h| ≤ 2.
The elements t in 〈x, y〉, with |t| ≥ 8, are of the form xiy2k, where |xi| ≥ 8
and k ∈ {0, 1}. Now, we get that x centralizes xiy2k. Also, since (xiy2k)y =
(xiy2k)−1x4hi and (xiy2k)2 = x2i, we have that y is in the normalizer of
〈xiy2k〉. It follows that 〈x, y〉 is contained in the normalizer of every cyclic
subgroup of 〈x, y〉 of order at least 8. Therefore, in this case, the claim is
proved.

In particular, we have that, if X is a cyclic subgroup of G having order
greater than or equal to 8 and u is an element in G\H4(G), then u is in
NG(X).
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Now, since {u ∈ G : u /∈ H4(G)} is a set of generators of G, we have that
X is a normal subgroup of G, and the first part of the statement is proved.

We now prove the second part of the lemma.
Let X = 〈a〉, where a element of G of order 2n, n ≥ 3. Let u be an element
lying in G\H4(G). By the previous part, we get that 〈a〉�〈a, u〉. Since 〈a, u〉
is not contained H4(G), the subgroup 〈a, u〉 is non-modular metacyclic, i.e.
au = a−1+4h. If the order of ua is greater than 4, then 〈a, u〉 = 〈a, ua〉 and
〈a, ua〉 is contained in H4(G), a contradiction. Hence, we have that |ua| ≤ 4.
Now, we have (ua)2 = u2a4h and so (ua)4 = a8h+64h3−32h2

. Then, we have
(ua)4 = 1 if and only if |a8h| = 1, i.e. |a4h| ≤ 2. Therefore, also the second
part of the statement is proved.

Lemma 4.4. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : H4(G)| = 2.
Let a and b be elements of H4(G) with |a| ≥ 8.
Then, the metacyclic subgroup 〈a, b〉 is modular.
Moreover, the subgroup H4(G) is powerful and is generated by its elements
of maximal order.

Proof. By Lemma 4.3, if c is an element of G and |c| ≥ 8, then 〈c〉�G. Let
a and b be elements of H4(G), with |a| = 2n ≥ 8 and |b| = 2m.
Since 〈a, b〉 is a 2-generated subgroup of a monotone group, the subgroup
〈a, b〉 is metacyclic and ab = ar.

Suppose r ≡ −1 mod 4, i.e. ab = a−1+4r. Let u be in G\H4(G).
By Lemma 4.3, we get au = a−1+2n−1h. Hence aub = (a−1+2n−1h)b =
a(−1+4r)(−1+2n−1h). So, the subgroup 〈a, ub〉 is modular. Since a modular
group is generated by its elements of maximal order and a has order at least
8, we get that 〈a, ub〉 is contained in H4(G). In particular, the element ub
lies in H4(G) and so, since b ∈ H4(G), we have u ∈ H4(G), a contradiction.
Hence, this case does not arise.

It follows that ab = a1+4h and so the subgroup 〈a, b〉 is modular (see
Lemma 2.3.4 on page 56 of [13]).
This proves the first part of the statement.

The subgroup H4(G) is generated by the set T = {c ∈ H4(G) : |c| ≥ 8}.
The first part of the proof shows that if c1 and c2 are in T , then 〈c1, c2〉 is
a modular metacyclic subgroup and so [c1, c2] ∈ 〈c1, c2〉4. Then, if c1 and
c2 are in T , then [c1, c2] ∈ H4(G)4 and, by Remark 2.1, we conclude that
H4(G) is powerful.
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Furthermore, let a be an element of H4(G) of maximal order and let
c ∈ T . Since the subgroup 〈a, c〉 is modular, there exists a c ∈ 〈a, c〉 such
that |c| = |a| and 〈a, c〉 = 〈a, c〉. In particular, c ∈ 〈a, c〉 and so the set
T = {x : x is of maximal order in H4(G)} is a set of generators of maximal
order of H4(G). This concludes the proof of the lemma.

The following lemmas deal with the elements of order 4 in H4(G). In
fact, in Lemma 4.5 and in Lemma 4.6 we give some properties of Ω2(H4(G)).
More precisely, we show in Remark 4.7 that Ω2(H4(G)) is a monotone 2-
group of exponent 4 that does not involve a subgroup isomorphic to K2 (i.e.
a group well studied in Section 3.2).

Lemma 4.5. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : H4(G)| = 2.
If a and b are in H4(G) with |a| ≤ 4 and |b| ≤ 4, then exp(〈a, b〉) ≤ 4.
Moreover, if a and b have order 4 and 〈a〉 ∩ 〈b〉 = 1, then the subgroup 〈a, b〉
is abelian.

Proof. Let a and b be elements of order at most 4 in H4(G).
If exp(〈a, b〉) ≥ 8, then, by Lemma 4.4, the subgroup 〈a, b〉 is modular. In
particular, the subgroups 〈a〉 and 〈b〉 permute, a contradiction, because if H
and K permute, then the exponent of HK equals max{exp(H), exp(K)}.
Therefore, the exponent of 〈a, b〉 is at most 4.

Suppose now that a and b have order 4 and 〈a〉 ∩ 〈b〉 = 1. Since the
subgroup 〈a, b〉 has exponent 4, by Lemma 3.4, the subgroup 〈a, b〉 is either
abelian or isomorphic to K2.

If 〈a, b〉 is abelian, then the lemma holds.
Suppose that 〈a, b〉 is isomorphic to K2. Up to renaming the generator

of 〈a, b〉, we may assume that ab = a−1. Since H4(G) is powerful (see
Lemma 4.4) and a2 ∈ H4(G)′, we have that a2 ∈ H4(G)4 and there exists
a c ∈ H4(G) such that c4 = a2. In particular, the element c has order
8 and, by Lemma 4.3, the subgroup 〈c〉 is normal in G. Moreover, by
Lemma 4.4, the subgroups 〈c, a〉 and 〈c, b〉 are modular. Then, we have that
ca = c1+4h1 and cb = c1+4h2 . Now c2 has order 4 and lies in the centralizer
of 〈a, b〉. In particular, we get c2 /∈ 〈a, b〉. Now, the subgroup 〈c2a, c2b〉 is
non-metacyclic, a contradiction. In fact, we have that [c2a, c2b] = a2 and
(c2ac2b)2 = (ab)2 = b2. Therefore, the subgroup 〈c2a, c2b〉 contains the 3-
generated elementary abelian subgroup 〈c2a, a2, b2〉.
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Therefore, this case does not arise and the second part of the statement is
proved.

Lemma 4.6. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : H4(G)| = 2.
If a is an element of H4(G) of order at most 4 and u is an element in
G\H4(G), then the exponent of 〈a, u〉 is at most 4.

Proof. Let a be in H4(G) of order at most 4 and u be in G\H4(G).
Suppose that the exponent of 〈a, u〉 is 2n, with n ≥ 3, and let c be an element
of maximal order in 〈a, u〉. Then, 〈c〉�G and c ∈ H4(G). Therefore, there
exists d /∈ H4(G) with |d| ≤ 4 such that 〈c, d〉 = 〈a, u〉. By Lemma 4.3,
cd = c−1+4j , with |c4j | ≤ 2. Now, any element x of 〈c, d〉 such that |x| = 4
and 〈x, d〉 = 〈c, d〉 is of the form dci, with i odd. All the elements of this
form are not in H4(G). Since by hypothesis 〈c, d〉 = 〈a, u〉, where u is not
in H4(G) and a is in H4(G) and has order 4, we get a contradiction.

Remark 4.7. By Lemma 4.5 and 4.6, we have that Ω2(H4(G)) is a mono-
tone 2-group of exponent 4.
Moreover, Lemma 4.5 shows that Ω2(H4(G)) is a monotone 2-group of ex-
ponent 4 that does not involve a subgroup isomorphic to K2.

The following lemmas conclude the first part of the investigation of
H4(G) and show that H4(G) is either abelian or there exists an element of
maximal order a in H4(G) such that H4(G) = 〈a,Ω2(H4(G))〉, see Lemma
4.9

Lemma 4.8. Let H be a non-abelian metacyclic modular group of exponent
greater than or equal to 8. Suppose that every cyclic subgroup of order greater
than 4 is normal in H. Then, H is isomorphic to the split extension C2noX,
where 2n = exp(H) and X is a cyclic subgroup of order either 2 or 4.
More precisely, let 〈a〉 be a normal cyclic subgroup of H of maximal order.
Then, there exists d ∈ H such that the order of d is at most 4 and H =
〈a〉o 〈d〉.

Proof. Let a be an element in H of maximum order. Then |a| ≥ 8 and
〈a〉 �H. Since H is not a quaternion group, H is lattice isomorphic to an
abelian group (see Lemma 2.5.9 on page 94 of [13]). In particular, 〈a〉 has a
complement 〈d〉 in H. If the order of d is greater than 4, then 〈d〉 is a normal
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subgroup. Since 〈a〉 is also normal in H, we get that [a, d] ∈ 〈a〉 ∩ 〈b〉 = 1,
i.e. H is abelian, a contradiction. Then, the element d has order at most 4,
and the statement is proved.

Lemma 4.9. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : H4(G)| = 2.
Then, either H4(G) is abelian or there exists an element a in H4(G) of
maximal order such that H4(G) = 〈a,Ω2(H4(G))〉.

Proof. By Lemma 4.4, the subgroup H4(G) is generated by the set T = {a ∈
H4(G) : |a| = 2n}, where 2n = exp(G). If for all a1, a2 ∈ T the subgroup
〈a1, a2〉 is abelian, then, by Remark 2.1, the group H4(G) is abelian.
Suppose there exist a1, a2 ∈ T , such that the subgroup 〈a1, a2〉 is non-
abelian. Then, by Lemma 4.4, the subgroup 〈a1, a2〉 is non-abelian modular
and, by Lemma 4.3, every cyclic subgroup of order greater than 4 is nor-
mal in 〈a1, a2〉. Therefore, by Lemma 4.8, there exists an element d in
Ω2(H4(G)) such that 〈a1, a2〉 = 〈a1〉 o 〈d〉. Hence, a2 ∈ 〈a1,Ω2(H4(G))〉.
Now, let x be in H4(G). We want to show that x ∈ 〈a1,Ω2(H4(G))〉.
Since a2 ∈ 〈a1,Ω2(H4(G))〉, we may replace in case x with a2x and as-
sume that x is an element in H4(G) such that 〈a1, x〉 is non-abelian. By
Lemma 4.4, the subgroup 〈a1, x〉 is modular non-abelian and, by Lemma 4.3,
every cyclic subgroup of order greater than 4 is normal in 〈a1, x〉. There-
fore, by Lemma 4.8, there exists an element d ∈ Ω2(H4(G)) such that
〈a1, x〉 = 〈a1〉 o 〈d〉. Hence, x ∈ 〈a1,Ω2(H4(G))〉. In particular, T is con-
tained in 〈a1,Ω2(H4(G))〉 and the statement is proved.

In the rest of this section, we assume that H4(G) is not abelian. By
Lemma 4.8, there exists an element a in H4(G) of maximal order such that
H4(G) = 〈a,Ω2(H4(G))〉.

If Ω2(H4(G)) is abelian, then, by Lemma 4.4 and by Lemma 4.5, we have
that H4(G) is a modular group that does not involve a quaternion group.
In particular, the structure of H4(G) is fully understood by Theorem 2.4.

If Ω2(H4(G)) is not abelian, then, by Remark 4.7, we get that Ω2(H4(G))
involves a subgroup isomorphic to D8 or to Q8, but not a subgroup isomor-
phic to K2.
We determine in Lemma 4.10, in Lemma 4.12 and in Lemma 4.13 the struc-
ture of H4(G) in this latter case.
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Lemma 4.10. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : H4(G)| = 2.
Suppose that H4(G) contains a subgroup D isomorphic to D8. Then, it
contains a subgroup isomorphic to Q8.

Proof. Let D be 〈a, b〉 with a of order 4. Since H4(G) is powerful and
a2 ∈ H4(G)′, the element a2 is in H4(G)4 and there exists c ∈ H4(G) such
that c4 = a2. In particular, the element c has order 8, and, by Lemma
4.3, 〈c〉 � G. By lemma 4.4, the subgroups 〈c, a〉 and 〈c, b〉 are modular.
Therefore, we have that ca = c1+4h1 and cb = c1+4h2 . Now, the element c2

has order 4 and lies in the centralizer of 〈a, b〉. Now, the subgroup 〈a, c2b〉 is
isomorphic to a quaternion group of order 8 and the lemma is proved.

Remark 4.11. By Lemma 4.5, the subgroup Ω2(H4(G)) has exponent 4
and does not involve a subgroup isomorphic to K2. Moreover, by Lemma
4.10, if Ω2(H4(G)) is non-abelian then it contains a subgroup isomorphic
to Q8. Hence, by Theorem 3.3, we have that Ω2(H4(G)) is either abelian
or isomorphic to E ∗ A, where E is an extraspecial group and A is either
elementary abelian with E ∩A = 1 or abelian of the form C4×C2×· · ·×C2

with E2 = A2.

Lemma 4.12. Let G be a monotone 2-group of exponent greater than 4 and
such that |G : H4(G)| = 2.
Suppose that Ω2(H4(G)) contains a subgroup Q isomorphic to Q8. Then,
there are no cyclic subgroups X of order greater than 4 in H4(G) such that
X ∩ Q = 1. More precisely, if X is not contained in Q, then we have
X ∩Q = Q2.

Proof. Let Q be 〈a, b〉 and let X be 〈c〉. Suppose 〈c〉 ∩ 〈a, b〉 = 1. Then, by
Lemma 4.5, the subgroups 〈a, c〉 and 〈b, c〉 are abelian. The elements ca and
b are such that 〈ca〉 ∩ 〈b〉 = 1 but, since 〈ac, b〉 is non-abelian, we contradict
Lemma 4.5. Hence, 〈c〉 ∩ 〈a, b〉 6= 1. Moreover, by Lemma 4.3, the subgroup
〈c〉 is normal in G and, by Lemma 4.4, the subgroups 〈c, a〉 and 〈c, b〉 are
modular. At least one of 〈c, a〉 and 〈c, b〉 is not cyclic. Up to relabeling the
generators of Q, we may assume that 〈c, a〉 is a non-cyclic modular subgroup.
Since 〈c〉 ∩ 〈a, b〉 6= 1, we have a2 ∈ 〈c〉. So the automorphism induced by a
on 〈c〉 has order at most 2, i.e. ca = c1+4i, where |c4i| ≤ 2. Since a inverts all
the element of order 4 of Q, we get that 〈c〉∩〈a, b〉 ≤ Ω1(〈a, b〉) = 〈a, b〉2.
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Lemma 4.13. Let G be a monotone 2-group of exponent greater than 4
and such that |G : H4(G)| = 2. Suppose that H4(G) contains a subgroup Q

isomorphic to Q8.
Then, H4(G) is isomorphic to 〈a, b〉 ∗ E × A, where |a| = 2n, n ≥ 3, E is
extraspecial, A is elementary abelian, |b| = 2 and ab = a1+4i, where |a4i| ≤ 2
and E2 = 〈a2n−1〉.

Proof. By Lemma 4.9, since H4(G) is non-abelian, we have that there exists
an element a in H4(G) of maximal order 2n (and so n ≥ 3) such that
H4(G) = 〈a,Ω2(H4(G))〉. Let x be an element in H4(G) such that |x| ≤ 4.
Then, the subgroup 〈a, x〉 is modular. Then ax = a1+4h, where |a4h| ≤ 4.
Thence, the subgroup Ω2(〈a〉) is contained in the centralizer of x. Therefore,
since H4(G) = 〈a,Ω2(H4(G))〉, we have that Ω2(〈a〉) = 〈a2n−2〉 is in the
center of H4(G).
By Remark 4.11, we have that Ω2(H4(G)) = E ∗ A, where A is either
elementary abelian with E∩A = 1 or abelian of the form C4×C2×· · ·×C2

with E2 = A2.
Since Ω2(H4(G)) contains the central element a2n−2

of order 4, we have
that Ω2(H4(G)) = E ∗ A, where A is abelian of the form C4 × C2 × · · · ×
C2. In particular, since a2n−2

is central of order 4, we may assume that
Ω2(H4(G)) = 〈a2n−2〉 ∗ E ×A, where E is extraspecial and A is elementary
abelian. Moreover, since C4∗D8 is isomorphic to C4∗Q8, we may assume that
E = 〈x1, y1〉∗· · ·∗〈xm, ym〉, where 〈xi, yi〉 ' Q8. Since a2n−1

= x2
i = y2

i , using
Lemma 4.4, we have that axi = a1+4hi and ayi = a1+4ki , where |a4hi | ≤ 2
and |a4ki | ≤ 2.
Replacing in case a with a

∏n
i=1 x

ki
i y

hi
i , we may assume that [a,E] = 1.

Suppose now that A = 〈a1〉 × · · · × 〈ar〉. If [a,A] = 1, then H4(G) =
(C2n ∗ E × A), where E is extraspecial and A is elementary abelian and so
H4(G) is isomorphic to one of the groups in the statement.

Suppose now that [a,A] 6= 1. Up to renaming the generators, we may
assume that aa1 = a1+2n−1

, and aai = a, for all i ≥ 2.
Let Ā be the subgroup 〈a2, . . . , ar〉.
Then, the group H4(G) is equal to (〈a〉∗E×Ā)o〈a1〉, where xa1 = x1+2n−1

,
for all x ∈ 〈a〉 ∗ E × Ā.
Therefore, the group H4(G) is isomorphic to one of the groups in the state-
ment.
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4.2 The Classification of Monotone 2-Groups G

with exp(G) ≥ 8 and |G : H4(G)| = 2.

Lemma 4.9 shows that if G is a monotone 2-group of exponent at least 8
and with H4(G) maximal, then H4(G) is either abelian or there exists an
element of maximal order a in H4(G) such that H4(G) = 〈a,Ω2(H4(G))〉.
In this second case, if H4(G) contains a subgroup isomorphic to Q8, then
H4(G) is isomorphic to a group of the form 〈a, b〉 ∗ E × A, where |a| = 2n,
n ≥ 3, E is extraspecial, A is elementary abelian, |b| = 2 and ab = a1+4i,
where |a4i| ≤ 2 and E2 = 〈a2n−1〉 (see Lemma 4.13).
If H4(G) does not contain a subgroup isomorphic to Q8, then H4(G) is
modular with no quaternion subgroups (note that these groups are fully
classified by Theorem 2.4).

The following proposition classifies completely the monotone 2-groups of
exponent at least 8 and with H4(G) maximal and abelian.

Proposition 4.14. Let G be a monotone 2-group of exponent greater than
4 and such that |G : H4(G)| = 2.
Suppose that H4(G) is abelian. Then G is in B1 or in B2 or in B3 (see
Definition 4.1).

Proof. Since H4(G) is an abelian group of exponent greater than 4, we have
that H4(G) =

∏m
i=1〈ai〉, where |a1| = 2n ≥ 8 and |ai| ≥ |aj |, for all i ≤ j.

Let u be in G\H4(G). By Lemma 4.3, we have that au1 = a−1+4h1
1 , where

|a4h1
1 | ≤ 2.

Suppose that |a2| ≥ 8. Then, the subgroup H4(G) is generated by
{a1} ∪ T , where the set T is given by {a : |a| ≥ 8, 〈a〉 ∩ 〈a1〉 = 1}.
Let a be an element in T . Then, by Lemma 4.3, we have that au = a−1+4k,
where |a4k| ≤ 2. Then (a1a)u = (a1a)−1+4h1a4h1+4k. Therefore, if a4h1+4k 6=
1, we have that the subgroup 〈a1a〉 has order greater than 4. But 〈a1a〉 is
not normal, contradicting Lemma 4.3. Hence, we get that au = a−1+4h1 .
Since H4(G) is abelian and {a1} ∪ T is a generating set, we get that G is
isomorphic to A〈u〉, where A is abelian of exponent 2n, A4 is not cyclic,
au = a−1+4h, with exp(H4(G)4h) ≤ 2 and u2 ∈ Ω1(H4(G)). This shows that
G is isomorphic to a group in B1.

Suppose now that |ai| ≤ 4, for all i ≥ 2. We have that H4(G) =∏m
i=1〈ai〉 = 〈a1〉

∏m1−1
i=2 〈ai〉

∏m
i=m1
〈ai〉, where |a1| = 2n ≥ 8, |ai| = 4 for

2 ≤ i ≤ m1 − 1, |ai| = 2 for m1 ≤ i ≤ m.
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Let a be an element of H4(G) of order smaller than or equal to 4. The
element a1a has order 2n ≥ 8, and so, by Lemma 4.3, (a1a)u = (a1a)−1+4k,
where |(a1a)4k| ≤ 2. Then au = a−1a

4(h1+k)
1 . In particular, if a has order 4,

then a2 is central in G, i.e. Ω1(H4(G))∩Φ(H4(G)) = 〈a2n−1

1 , a2
2, · · · , a2

m1−1〉
is a central subgroup.

If for all a ∈ H4(G) of order smaller than or equal to 4 we have that
au = a−1, then G is isomorphic to (C2n × A)〈u〉, where A is abelian of
exponent 4, u2 ∈ Ω1(C2n×A) and for every a ∈ C2n×A we have au = a−1+4h

with exp((C2n ×A)4h) ≤ 2. This shows that G is B1.

Now, we may assume that there exists an element a such that |a| ≤ 4
and au = a−1a2n−1

1 .

We first assume that there exists a with |a| = 2 and au = aa2n−1

1 . Since
all the elements of order 2 of the Frattini subgroup of H4(G) are centralized
by u, up to relabeling the generators of 〈am1 , . . . , am〉, we may assume that
aum1

= am1a
2n−1

1 . Up to replacing perhaps for some i, the element ai with
aiam1 , we may assume aui = a−1

i for every i ∈ {m1 + 1, . . . ,m}. In parti-
cular, by Lemma 4.5 and Lemma 4.6, the subgroup 〈am1 , u〉 is metacyclic
non-abelian of exponent 4. Then, 〈am1 , u〉 is isomorphic to a D8. Replacing
in case u with am1u, we may assume u2 = a2n−1

1 . Consider now a2. Repla-
cing perhaps a2 with a2am1 , we may assume that au2 = a−1

2 a2n−1

1 .
The subgroup 〈a2n−2

a2, u〉 is not metacyclic. In fact, we have (a2n−2
a2)2 =

a2n−1
a2

2, and (a2n−2
a2)u = (a−2n−2

a−1
2 )a22n−1

1 = (a2n−2

1 a2)−1a2n−1

1 . In parti-
cular, we have that (ua2n−2

1 a2)2 = u2a−2n−2

1 a−1
2 a2n−1

1 a2n−2

1 a2 = 1. Then, the
group 〈(a2n−2

a2), u〉 contains the 3-generated elementary abelian subgroup
〈a2n−2

a2am1u, a
2
2, a

2n−1〉.
Therefore, we obtain that m1 = 2.
Then, replacing perhaps for some i 6= 2 the generators ai with aiam1 , we get
that G is isomorphic to the group 〈a, am1 , u〉 × A, where A is elementary
abelian, |a| = 2n ≥ 8, aam1 = a and au = a−1, |am1 | = 2, ua = u−1 and
u2 = a2n−1

. This shows that the group G is in B2.

We may now assume that u ∈ C(〈ai〉), for all i ≥ m1, and that there
exists an element a ∈ H4(G) of order 4 such that au = a−1a2n−1

1 . Up to
renaming the generators, we may assume that au2 = a−1

2 a2n−1

1 . Up to repla-
cing a1 with a1a2, we may assume au1 = a−1

1 .
If u has order 2, then the subgroup 〈a2, u〉 is not metacyclic, because it
contains the 3-generated elementary abelian subgroup 〈u, a2

2, a
2n−1

1 〉. Then,
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the element u has order 4. If u2 does not lie in 〈a2
2, a

2n−1

1 〉, then the sub-
group 〈a2, u〉 is not metacyclic, because it contains the 3-generated elemen-
tary abelian subgroup 〈u2, a2

2, a
2n−1

1 〉. Then, we have that u2 ∈ 〈a2n−1

1 , a2
2〉.

Suppose that u2 = a2n−1

1 . The subgroup 〈a2, u〉 is non-metacyclic, be-
cause it contains the 3-generated abelian subgroup 〈a2

2, u
2, a2u〉. Therefore

u2 = a2a2n−1t
1 . Replacing in case u with ua2, we get that we may assume

u2 = a2
2. Suppose m1−1 ≥ 3, and consider a3. Since a3 has order 4, we have

that au3 = a−1
3 a2n−1h3

1 . Replacing in case a3 with a2a3, we may assume that
au3 = a−1

3 a2n−1

1 . The subgroup 〈a3, u〉 is not metacyclic since it contains the
3-generated abelian subgroup 〈a2n−1

1 , a2
3, u

2〉. Therefore, this case does not
arise and m1 = 3. This proves that G is isomorphic to 〈a1, a2, u〉×A, where
A is elementary abelian, |a1| = 2n, |a2| = 4, 〈a1, a2〉 is abelian, u2 = a2

2 and
au1 = a−1

1 , and au2 = a−1
2 a2n−1

1 . Therefore, the group G is in B3.

Now, we study the cases in which H4(G) is a non-abelian modular group
not involving Q8. Indeed, the following proposition classifies the mono-
tone 2-groups of exponent greater than 4 with H4(G) maximal and modular
without subgroups isomorphic to Q8.

Proposition 4.15. Let G be a monotone 2-group of exponent greater than
4 and such that |G : H4(G)| = 2.
Suppose that H4(G) is non-abelian and does not involve a subgroup isomor-
phic to Q8. Then G is in one of the families B8,B9,B10 (see Definition
4.1).

Proof. By Remark 4.11, we have that Ω2(H4(G)) is an abelian group of
exponent 4 and H4(G) = 〈a〉Ω2(H4(G)).

Suppose that the order of a is 8. By Lemma 4.4, if x is an element
of Ω1(H4(G)), then 〈a, x〉 is a modular subgroup and the automorphism
induced on 〈a〉 has order at most 2.
Suppose that a has order greater than 8. By Lemma 4.3 and Lemma 4.4, if
x is an element of A, then 〈a, x〉 is a modular subgroup, and 〈a〉 is a normal
subgroup. Suppose that there exists an x of order 4 such that ax = a1+4h,
with |a4h| = 4. Let u be in G\H4(G). Then, by Lemma 4.3, we have
au = a−1+4k, with |a4k| ≤ 2. We have that axu = a−1−4h+4k. Therefore,
the element axu has order 8. Since a and x are in H4(G), we have that
u ∈ H4(G), a contradiction.
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This proves that if a has order greater than or equal to 8 and x is an
element of Ω2(H4(G)), then 〈a, x〉 is a modular subgroup and the automor-
phism induced by x on 〈a〉 has order at most 2.

Since H4(G) is non-abelian, we have that H4(G) = (〈a〉 × 〈a1〉 × · · · ×
〈am〉 × 〈c1〉 × · · · × 〈cr〉) o 〈b〉, where |a| = 2n, |ai| = 4, |ci| = 2, |b| ≤ 4 and
xb = x1+2n−1

, for all x ∈ 〈a, a1, . . . , am, c1, . . . , cr〉.
Let u be in G\H4(G). Then u2 ∈ Ω1(H4(G)) ∩ Z(H4(G)).

We now distinguish two cases depending on the order of b.

Suppose first |b| = 2. Then, we have H4(G) = (〈a〉 × 〈a1〉 × · · · × 〈am〉 ×
〈c1〉×· · ·×〈cr〉)o〈b〉, where |a| = 2n, |ai| = 4, |ci| = 2, |b| = 2, xb = x1+2n−1

for all x ∈ 〈a, a1, . . . , am, c1, . . . , cr〉.
By Lemma 4.4, we have that au = a−1+4h, with |a4h| ≤ 2. Since ab has

order 2n, by Lemma 4.4, we have that (ab)u = (ab)−1+4k with |(ab)4k| ≤ 2,
i.e. bu = ba4(k+h+1). Replacing perhaps u with au, we may assume that
bu = ba2n−1

. In particular, if u has order 4 and u2 6= a2n−1
, then 〈b, u〉 is not

metacyclic because it contains the 3-generated elementary abelian subgroup
〈b, u2, a2n−1〉. Then, up to replacing if necessary u with ub, we may assume
that u has order 4 and u2 = a2n−1

.
So we now have au = a−1+4h, with |a4h| ≤ 2, u2 = a2n−1

and ub = u−1.

We now show that m = 0.
Suppose that m > 0. Since aa1 has order 2n, by Lemma 4.4, we have
that (aa1)u = (aa1)−1a4h1 with |a4hi | ≤ 2, i.e. au1 = a−1

1 a4(h+h1). If au1 =
a−1

1 a2n−1
, then the subgroup 〈a1, u〉 is not metacyclic because it contains the

3-generated elementary abelian subgroup 〈ua1, a
2
1, u

2〉. If au1 = a−1
1 , then

(a1b)u = (a1b)−1a2n−1
and the group 〈a1b, u〉 is not metacyclic because it

contains the 3-generated elementary abelian subgroup 〈ua1b, u
2, a2

1〉. Then,
we have that m = 0.

Now, we consider the action of u on 〈c1, · · · , cr〉.
Since |aci| = 2n, by Lemma 4.4, we have that (aci)u = (aci)−1a4h1 with
|a4h1 | ≤ 2, i.e. cui = c−1

i a4ki with |a4ki | ≤ 2.
Then, we have two possibilities, depending on the orders of a4ki .

If cui = ci for all i, then G is isomorphic to 〈a, b, u〉 × A, where A is
elementary abelian, |a| = 2n ≥ 8, |b| = 2, |u| = 4, u2 = a2n−1

, au = a−1+4h,
ab = a1+2n−1

and ub = u−1 and so G is in the family B8.

Suppose that there exists an i such that cui = cia
2n−1

. Up to reordering
the generators, we may assume that cu1 = c1a

2n−1
. Moreover, up to replacing
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in case ci with cic1 for i ≥ 2 and a with ac1, we obtain that G is isomorphic
to 〈a, c1, b, u〉 × A, where A is elementary abelian, |a| = 2n ≥ 8, |c1| = 2,
|b| = 2, |u| = 4, u2 = a2n−1

, au = a−1, ab = a1+2n−1
, ub = u−1, ca1 = c1,

cb1 = c1 and cu1 = c1a
2n−1

. So, the group G is in the family B9.

Suppose now that |b| = 4. Then, we have H4(G) = (〈a〉 × 〈a1〉 × · · · ×
〈am〉 × 〈c1〉 × · · · × 〈cr〉) o 〈b〉, where |a| = 2n, |ai| = 4, |ci| = 2, |b| = 4,
xb = x1+2n−1

for all x ∈ 〈a, a1, . . . , am, c1, . . . , cr〉. By Lemma 4.4, we have
that au = a−1+4h with |a4h| ≤ 2.
Since ab has order 2n, by Lemma 4.4, we have that (ab)u = (ab)−1+4k with
|(ab)4k| ≤ 2, i.e. bu = b−1a4(k+h+1). Replacing perhaps u with au, we may
assume that bu = b−1a2n−1

. So we get au = a−1+4h and bu = b−1a2n−1
.

In particular, if |u| = 2, then the subgroup 〈b, u〉 is not metacyclic since it
contains the 3-generated elementary abelian subgroup 〈b2, a2n−1

, u〉. Then,
u has order 4.
Moreover, if u2 /∈ 〈a2n−1

, b2〉, then 〈b, u〉 is not metacyclic since it contains
the 3-generated elementary abelian subgroup 〈b2, a2n−1

, u2〉. Then, the ele-
ment u has order 4 and u2 ∈ 〈a2n−1

, b2〉.
If u2 = a2n−1

, then the subgroup 〈b, u〉 is not metacyclic since it contains
the 3-generated elementary abelian subgroup 〈b2, a2n−1

, ub〉. Then, we have
u2 = b2a2n−1s, and, replacing in case u with ub, we may assume u2 = b2.
Then, we have that au = a−1+4h, bu = b−1a2n−1

and u2 = b2.

We now prove that m = 0.
Suppose m 6= 0. Then, the element aa1 has order 2n, and so, by Lemma
4.4, we have that (aa1)u = (aa1)−1a4(h1+h) with |a4h1 | ≤ 2. So we have two
possibilities: either au1 = a−1

1 or au1 = a−1
1 a2n−1

. In both cases we reach a
contradiction. In fact, if au1 = a−1

1 a2n−1
, then the subgroup 〈a1, u〉 is not

metacyclic because it contains the 3-generated elementary abelian subgroup
〈a2n−1

, a2
1, u

2〉. If au1 = a−1
1 , then (a1b)u = (a1b)−1a2n−1

and the group
〈a1b, u〉 is not metacyclic because it contains the 3-generated elementary
abelian subgroup 〈u2, b2a2

1, a
2n−1〉.

Therefore this case does not arise, and m = 0.

We now consider the action of u on 〈c1, · · · , cr〉.
The element aci has order 2n and by Lemma 4.4, we have that (aci)u =
(aci)−1a4(h1+h) with |a4h1 | ≤ 2, i.e. cui = cia

4ki with |a4ki | ≤ 2 .
If cui = cia

2n−1
, then the subgroup 〈ci, u〉 is not metacyclic because it con-

tains the 3-generated elementary abelian subgroup 〈ci, u2, a2n−1〉.
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Then, we have that cui = ci for all i, and G is isomorphic to 〈a, b, u〉 × A,
where A is elementary abelian, |a| = 2n ≥ 8, |b| = 4, |u| = 4, u2 = b2,
au = a−1+4h, with |a4h| ≤ 2, bu = b−1a2n−1

, ab = a1+2n−1
. So G is in the

family B10. This concludes the proof of the statement.

To conclude the classification of monotone 2-groups of exponent greater
than 4 and where H4(G) is maximal, it remains to consider the case where
H4(G) contains a subgroup isomorphic to Q8. We do that in the next two
propositions.
We first consider the case H4(G) = C2n ∗ E × A, where E is extraspecial
and A is elementary abelian.

Proposition 4.16. Let G be a monotone 2-group of exponent greater than
4 and such that |G : H4(G)| = 2.
Suppose that H4(G) is isomorphic to C2n ∗ E × A, where E is extraspecial
and A is elementary abelian. Then, the group G belongs either to B4 or to
B5 (see Definition 4.1).

Proof. Let C2n = 〈a〉. Since a2n−2
is central of order 4 in H4(G) and D8 ∗

C4 ' Q8 ∗ C4, we may assume that E = 〈x1, y1〉 ∗ · · · ∗ 〈xm, ym〉, where
〈xi, yi〉 ' Q8. Let A = 〈a1〉 × · · · × 〈ar〉.

Let u be in G\H4(G).
We have that u2 ∈ Ω1(H4(G)) = 〈a2n−1〉 × 〈a1〉 × · · · × 〈ar〉.
By Lemma 4.3, we get that au = a−1+4h, where |a4h| ≤ 2.

We now investigate the action of u on E.
Since axi is an element of order 2n, by Lemma 4.3, we have that (axi)u =
(axi)−1+4hi , with |(axi)4hi | ≤ 2, i.e. xui = x−1

i a4(h+hi). Since x2
i = a2n−1

,
we have that xui = xix

2si
i , where si ∈ {0, 1}. Using the same argument

with yi instead of xi, we also get that yui = yiy
2ri
i , where ri ∈ {0, 1}. Now,

replacing perhaps u with u
∏m
i=1 x

ri
i y

s1
i , we may assume that au = a−1+4h,

where |a4h| ≤ 2, and [E, u] = 1.
We now consider the action of u on A.

Since aai is an element of order 2n, by Lemma 4.3, we have that (aai)u =
(aai)−1+4ki , with |(aai)4ki | ≤ 2, i.e. aui = aia

4hi , where |a4hi | ≤ 2. We
distinguish two cases depending on the values of the orders of a4hi .

Suppose first that a4hi = 1 for all i. Then we get that [A, u] = 1.
Therefore, we get au = a−1+4h, [E, u] = 1, [A, u] = 1. The element u2 ∈
Ω1(H4(G)) ∩ Z(H4(G)).
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Suppose that u2 /∈ 〈a2n−1〉. Then, 〈a2n−2
x1, u〉 is not metacyclic, because it

contains the 3-generated elementary abelian subgroup 〈a2n−2
x1, u

2, a2n−1〉.
Hence, this case does not arise and u2 lies in 〈a2n−1〉. Then, we obtain that
G is isomorphic to 〈a, u〉 ∗ E × A, where E is extraspecial, A is elementary
abelian, |a| = 2n ≥ 8, and u is such that u2 ∈ 〈a2n−1〉, au = a−1+4h with
|a4h| ≤ 2 and xu = x for all x ∈ E ×A, i.e. G is in B4.

Suppose now that there exists an i with |a4hi | = 2. Up to renaming the
generators of A, we may suppose that au1 = a1a

2n−1
, and, replacing in case ai

with a1ai, we may assume that aui = ai, for i ≥ 2. Replacing perhaps u with
a1u, we may assume that u has order 4. If u2 6= a2n−1

, then the subgroup
〈a1, u〉 is not metacyclic, since it contains the 3-generated elementary abelian
subgroup 〈a1, a

2n−1
, u2〉. Hence, u2 = a2n−1

.
Replacing perhaps a with aa1, we may assume au = a−1.
Replacing a1 with a1a

2n−2
, we obtain that the group G is isomorphic to

〈a, u〉 ∗ E ∗ A, where E is extraspecial, A is abelian of the form C4 × C2 ×
· · · × C2, and |a| = 2n with n ≥ 3, u2 = a2n−1

and au = a−1, i.e. G is in
B5.

Finally we are ready to study the last case, i.e. H4(G) = 〈a, b〉 ∗E ×A,
where |a| = 2n ≥ 8, E is extraspecial, A is elementary abelian, |b| = 2,
ab = a1+2n−1

and E2 = 〈a2n−1〉.

Proposition 4.17. Let G be a monotone 2-group of exponent greater than
4 and such that |G : H4(G)| = 2.
Suppose that H4(G) is isomorphic to 〈a, b〉 ∗ E × A, where |a| = 2n ≥ 8,
E is extraspecial, A is elementary abelian, |b| = 2, ab = a1+2n−1

and E2 =
〈a2n−1〉. Then G belongs either to B6 or to B7 (see Definition 4.1).

Proof. Since a2n−2
is central of order 4 in H4(G) and D8 ∗ C4 ' Q8 ∗ C4,

we may assume that E = 〈x1, y1〉 ∗ · · · ∗ 〈xm, ym〉, where 〈xi, yi〉 ' Q8. Let
A = 〈a1〉 × · · · × 〈ar〉.
Let u be in G\H4(G).
By Lemma 4.4, we have that au = a−1+2n−1h. In particular, replacing in
case u with ub we may assume that au = a−1. The element u2 lies in
Ω1(H4(G)) ∩ CG(〈a〉). Hence, since Ω1(H4(G)) ∩ CG(〈a〉) = 〈a2n−1

, A〉, we
get that u2 ∈ 〈a2n−1

, A〉.
We consider now the action of u on E. Since axi is an element of order

2n, by Lemma 4.3, we have that (axi)u = (axi)−1+2n−1hi , with hi ∈ {0, 1},
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i.e. xui = x−1
i a2n−1(hi). Since x2

i = a2n−1
, we have that xui = xix

2si
i , where

si ∈ {0, 1}. Replacing xi with yi and using the same argument, we also
get that yui = yiy

2ri
i , where ri ∈ {0, 1}. Now, replacing perhaps u with

u
∏m
i=1 x

ri
i y

s1
i , we may assume that au = a−1, and [E, u] = 1.

Now, we consider the action of u on A. Since aa1 is an element of order
2n, by Lemma 4.3, we have that (axi)u = (axi)−1+2n−1ki , with ki ∈ {0, 1},
i.e. aui = aia

2n−1hi , where hi ∈ {0, 1}. We distinguish two cases depending
on the values of the hi’s.

Suppose first that hi = 0 for all i. Then we get that [A, u] = 1.
If u has order 4 and u2 6= a2n−1

, then the subgroup 〈a2n−2
x1, u〉 is not meta-

cyclic, because 〈a2n−2
x1, u〉 contains the 3-generated elementary abelian sub-

group 〈a2n−2
x1, u

2, a2n−1〉. Hence, we have that u2 lies in 〈a2n−1〉. Therefore,
we get au = a−1, [E, u] = 1, [A, u] = 1 and u2 ∈ 〈a2n−1〉. Consider now ab.
Since |ab| = 2n, we have that (ab)u = (ab)−1+2n−1h, i.e. bu = ba2n−1h, and
G is in B6.

Suppose now that there exists an i with hi 6= 1. Up to renaming the
generators of A, we may suppose that au1 = a1a

2n−1
, and, up to replacing

perhaps ai with a1ai, we may assume aui = ai, for all i ≥ 2.
Replacing perhaps u with a1u, we may assume that u has order 4. More-
over, if u2 6= a2n−1

, then 〈a1, u〉 is non-metacyclic because it contains the
3-generated elementary abelian subgroup 〈a1, a

2n−1
, u2〉. Therefore, we have

that u2 = a2n−1
.

Consider now ab. Since |ab| = 2n, we have that (ab)u = (ab)−1+2n−1h, i.e.
bu = ba2n−1k with k ∈ {0, 1}. Up to replacing b with a1b, we may assume
that bu = b. Moreover, replacing a1 with a1a

2n−2
, we obtain that the group

G is in B7.

Summing up, in this section we determined the monotone 2-groups of
exponent at least 8 such that |G : H4(G)| = 2. Namely, combining the
previous four propositions, we obtain that any such a group is in the class
Bi, with i ∈ {1, . . . , 10} and Theorem 4.2 is proved.
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Chapter 5

Monotone 2-Groups of

exponent greater than 4 in

which G = H4(G)

In Chapter 3, the monotone 2-groups of exponent 4 were fully classified.
In Chapter 4, we classified completely the monotone 2-groups of exponent
greater than or equal to 8 and such that |G : H4(G)| = 2. Therefore, in order
to complete the classification of the monotone 2-groups, by Proposition 1.3,
it remains to study the monotone 2-groups of exponent greater than or equal
to 8 such that G = H4(G). In this chapter, such groups are determined.

Definition 5.1. We introduce the following families of 2-groups:

- C1 is the family of 2-groups of the form 〈a, c〉∗E×A, where E is extraspe-
cial, A is elementary abelian, |a| = 2n ≥ 8, |c| = 2, ac = a1+4h with
|a4h| ≤ 2 and 〈a2n−1〉 = E2;

- C2 is the family of 2-groups of the form 〈a, b, c〉×A, where A is elementary
abelian, |c| = 2n ≥ 8, |a| = 4, a2 = b2, ca = c1+4h1, cb = c−1+4h2 and
ab = a−1c4h3, with |c4hi | ≤ 2 for i = 1, 2, 3;

- C3 is the family of 2-groups of the form 〈a, b, c, d〉×A, where A is elemen-
tary abelian, |c| = 2n ≥ 8, |a| = 4, a2 = b2, |d| = 2, ca = c, cb = c and
ab = a−1c4h with |c4h| ≤ 2, and cd = c1+2n−1

, ad = a and bd = b;

- C4 is the family of 2-groups of the form 〈a, b, c, d〉 ∗ E × A, where A is
elementary abelian, E is extraspecial, |a| = 2n ≥ 8, b4 = a2n−1

, 〈c, d〉 is
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elementary abelian, ab = a−1+4h, with |a4h| ≤ 2, ac = a1+4h1, ad = a,
bc = b, bd = b1+4h2, where |a4h1 | ≤ 2, |b4h2 | ≤ 2 and 〈a2n−1〉 = E2;

- C5 is the family of 2-groups of the form A〈b〉, where A is an abelian group,
|b| ≥ 8 and ab = a−1+4h, for every a ∈ A;

- C6 is the family 〈A, c, b〉, where A is an abelian group of exponent 2n, with
n ≥ 3, A2n−1

= Ω1(〈b〉), |b| ≥ 8, ab = a−1+4h, ac = a1+2n−1
for every

a ∈ A, cb = c−1+4h and exp(〈A, c〉4h) < |b2| < 2n;

- C7 is the family of 2-groups of the form 〈A, c, b〉 where A is an abelian
group of exponent 2n, with n ≥ 3, A2n−1

= Ω1(〈b〉), |b| ≥ 8, ab =
a−1+4h+2n−1

, ac = a1+2n−1
for every a ∈ A, cb = c−1+4h, |c| > 2n,

|c4h| = |b2|, |b2| < 2n, and 〈b〉 ∩ 〈c〉 = 1.

We start by proving that all the groups in the families just defined are
monotone.

Proposition 5.1. The groups in the families Ci, for i ∈ {1, . . . , 7} are
monotone.

Proof. We want to show that if G is a group in Ci, for i ∈ {1, . . . , 7}, then
G is monotone. Now, the proof is a case-by-case analysis depending on the
family in which G lies.

- Suppose that G is in C1. Then, we have G = 〈a, c〉 ∗ E × A, where E is
extraspecial, A is elementary abelian, |a| = 2n ≥ 8, |c| = 2, ac = a1+4h

with |a4h| ≤ 2 and 〈a2n−1〉 = E2. We have to prove that every 2-
generated subgroup is metacyclic. By Lemma 2.5, it is sufficient to
prove that the group 〈a, c〉 ∗E, where 〈a2n−1〉 = E2, is monotone. We
treat separately the cases a4h = 1 and |a4h| = 2.

Suppose at first that a4h = 1, i.e. 〈a, c〉 is abelian. Since c is a central
element of order 2 in 〈a, c〉∗E, where 〈a2n−1〉 = E2, by Lemma 2.12, it
is sufficient to check that 〈a〉∗E, where 〈a2n−1〉 = E2, is monotone. The
extraspecial groups are monotone, and so we check that the subgroups
of the form 〈ait1, t2〉, with t1 and t2 in E, are metacyclic.
If |ai| ≤ 4, then 〈ait1, t2〉 is contained in 〈a2n−2〉 ∗ E, where 〈a2n−1〉 =
E2. The group 〈a2n−2〉 ∗E, where 〈a2n−1〉 = E2, is monotone because
it is isomorphic to a group in A2 (see Definition 3.1 and Proposition
3.1).
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So, we now assume that |ai| > 4. In particular, Ω1(〈ait1〉) = Ω1(〈a〉) =
[〈a〉∗E, 〈a〉∗E], and so, 〈ait1〉 is normal in the group 〈a〉∗E. It follows
that 〈ait1, t2〉 is metacyclic. So, if a4h = 1, the group 〈a〉 ∗ E, where
〈a2n−1〉 = E2, is monotone, and so is G.

Suppose now that |a4h| = 2. The group 〈a2, c, E〉 is isomorphic to
C2n−1 ∗E×〈c〉 where Ω1(C2n−1) = E2, and so, it is either in A2 or iso-
morphic to a group studied in the previous paragraph. In both cases,
〈a2, c, E〉 is monotone. So, it is sufficient to check that the subgroups
of the form 〈ait1, t2〉, with t1 and t2 in E × 〈c〉, are metacyclic. Now,
Ω1(〈at2〉) = Ω1(〈a〉) = [〈a, c, E〉, 〈a, c, E〉], and so, 〈at1〉 � 〈a, c, E〉. It
follows that 〈at1, t2〉 is metacyclic, and so the group 〈a, c, E〉 is mono-
tone. It follows that if |a4h| = 2, then G is monotone.

- Suppose that G is in C2. Then, we have G = 〈a, b, c〉 × A, where A is
elementary abelian, |c| = 2n ≥ 8, |a| = 4, a2 = b2, ca = c1+4h1 ,
cb = c1+4h2 and ab = a−1c4h3 , with |c4hi | ≤ 2 for i = 1, 2, 3.
We have to prove that every 2-generated subgroup is metacyclic. By
Lemma 2.5, it is sufficient to prove that the group 〈a, b, c〉 is monotone.
The subgroup 〈c2n−2

, a, b〉 is isomorphic to K6 and so 〈c2n−2
, a, b〉 is

monotone (see Definition 3.1 and Proposition 3.1). Therefore, it is
sufficient to check that every subgroup of the form 〈ciai1bi2 , aj1bj2〉,
with |ci| ≥ 8 is metacyclic. Now, we have Ω1(〈ciai1bi2〉) = 〈c2n−1〉, and
[ciai1bi2 , aj1bj2 ] = c4h1ij1+4h2j2+4h3(j1i2+j2i1)b2i2j1+2i1j2 . We distinguish
a few cases depending on the parity of j1 and of j2.
If j1 and j2 are even, then the subgroup 〈ciai1bi2 , aj1bj2〉 is abelian,
and so it is metacyclic.

If j1 is odd and j2 is even, then, since a2 = b2, we may assume that
j1 = 1 and j2 = 0. Up to replacing ciai1bi2 with ciai1bi2a−i1 , we may
assume that i1 = 0 and that the subgroup is of the form 〈cibi2 , a〉.
Now, [cibi2 , a] = c4h1ib2i2c4h3i2 .
If i2 is even, we have that [cibi2 , a] ∈ Ω1(〈cibi2〉), i.e. 〈cibi2〉� 〈cibi2 , a〉
and so the subgroup is metacyclic.
If i2 is odd and ch1i+4h3i2 = 1, then, 〈a〉�〈cibi2 , a〉 and so the subgroup
is metacyclic.
Suppose i2 odd, and |ch1i+4h3i2 | = 2. We have Ω2(〈cibj2〉) = 〈c2n−2

b2j3〉,
where if |ci| = 8, then j3 = 1 and if |ci| > 8, then j3 = 0. Therefore,
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ac2n−2
b2j3 is such that 〈ac2n−2

b2j3〉� 〈cibi2 , a〉 and 〈ac2n−2
b2j3 , cibi2〉 =

〈a, cibi2〉, i.e. the subgroup is metacyclic.

If j2 is odd and j1 is even, then, since a2 = b2, we may assume that j2 =
1 and j1 = 0. We may swap a with b and, using the same argument
of the previous paragraph, we get that 〈ciai1 , b〉 is metacyclic.

Suppose now that j1 and j2 are even. Up to replacing in case ciai1bi2

with ciai1bi2aj1bj2 , we may assume that i1 is even and since a2 =
b2, we may assume that i1 = 0. Then, the subgroup is of the form
〈cibi2 , aj1bj2〉. Now, [cibi2 , aj1bj2 ] = c4h1ij1+4h2ij2b2i2c4h3i2 .

If i2 is even, we have that [cibi2 , aj1bj2 ] ∈ Ω1(〈cibi2〉), i.e. 〈cibi2〉 �

〈cibi2 , aj1bj2〉 and so the subgroup is metacyclic.

Suppose that i2 is odd. Then, [cibi2 , aj1bj2 ] = c4h1ij1+4h2ij2b2c4h3i2 .
Suppose that |c4h1ij1+4h2ij2+4h3i2 | = 2. If |c4h3 | = 2, then 〈ab〉 �

〈cibi2 , a〉 and so the subgroup is metacyclic. If c4h3 = 1, then we get
Ω2(〈cibj2〉) = 〈c2n−2

b2i3〉, where if |ci| = 8, then j3 = 1 and if |ci| > 8,
then j3 = 0. Therefore, aj1bj2c2n−2

b2j3 is such that 〈aj1bj2c2n−2
b2j3〉�

〈cibi2 , aj1bj2〉 and 〈aj1bj2c2n−2
b2j3 , cibi2〉 = 〈aj1bj2 , cibi2〉, i.e. the sub-

group is metacyclic.
Suppose i2 odd, and c4h1ij1+4h2ij2+4h3i2 = 1. If |c4h3 | = 2, then
Ω2(〈cibj2〉) = 〈c2n−2

b2i3〉, where if |ci| = 8, then j3 = 1 and if |ci| > 8,
then j3 = 0. Therefore, aj1bj2c2n−2

b2j3 is such that 〈aj1bj2c2n−2
b2j3〉�

〈cibi2 , aj1bj2〉 and 〈aj1bj2c2n−2
b2j3 , cibi2〉 = 〈aj1bj2 , cibi2〉, i.e. the sub-

group is metacyclic.
If c4h3 = 1, then 〈ab〉� 〈cbi2 , ab〉 and so the subgroup is metacyclic.

This concludes the proof that every 2-generated subgroup of 〈a, b, c〉
is metacyclic, and so G is monotone.

- Suppose that G is in C3. Then, we have that G = 〈a, b, c, d〉 × A, where
A is elementary abelian, |c| = 2n ≥ 8, |a| = 4, a2 = b2, |d| = 2, ca = c,
cb = c and ab = a−1c4h with |c4h| ≤ 2, and cd = c1+2n−1

, ad = a and
bd = b.
By Lemma 2.5, it is sufficient to prove that the group 〈a, b, c, d〉 is
monotone. Since 〈a, b, c〉 is a group in C2, it is sufficient to check the
subgroups of the form 〈ai1ci2bi3 , daj1cj2bj3〉.
If j1 is odd, then 〈ai1ci2bi3 , daj1cj2bj3〉 ≤ 〈b, c, ad〉. Since 〈b, c, ad〉 lies
in C2, the group 〈b, c, ad〉 is monotone and so 〈ai1ci2bi3 , daj1cj2bj3〉 is
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metacyclic.
If j3 is odd, then 〈ai1ci2bi3 , daj1cj2bj3〉 ≤ 〈bd, c, a〉. Since 〈bd, c, a〉 lies
in C2, the group 〈bd, c, a〉 is monotone and so 〈ai1ci2bi3 , daj1cj2bj3〉 is
metacyclic.
Suppose that both j1 and j3 are even. Now, [ai1ci2bi3 , daj1cj2bj3 ] =
c2n−1i2 . So, if |ci2 | ≥ 8, then Ω1(〈ai1ci2bi3〉) = 〈c2n−1〉 and so 〈ai1ci2bi3〉�
〈ai1ci2bi3 , daj1cj2bj3〉. This means that 〈ai1ci2bi3 , daj1cj2bj3〉 is meta-
cyclic. If |ci2 | ≤ 4, then i2 is even, and so 〈ai1ci2bi3 , daj1cj2bj3〉 is
abelian.

Hence, every 2-generated subgroup of 〈a, b, d, c〉 is metacyclic and so
〈a, b, c, d〉 is monotone. It follows that G is a monotone group.

- Suppose that G is in C4. Then, we have that G = 〈a, b, c, d〉 ∗ E × A,
where A is elementary abelian, E is extraspecial, |a| = 2n ≥ 8, b4 =
a2n−1

, 〈c, d〉 is elementary abelian, ab = a−1+4h, with |a4h| ≤ 2, and
ac = a1+4h1 , ad = a, bc = b, bd = b1+4h2 , where |a4h1 | ≤ 2, |b4h2 | ≤ 2,
and 〈a2n−1〉 = E2.

The subgroup 〈a, b2, c, d, E,A〉 is in C1, and so it is monotone. So, it
is sufficient to check that the subgroups of the form 〈bai1t1, ai2t2〉 with
t1 and t2 in 〈E, c, d〉 are metacyclic. We have that [b, 〈E, c, d〉] ≤ 〈b4〉,
[a, 〈E, c, d〉] ≤ 〈b4〉, and 〈E, c, d〉2 = 〈b4〉.
We have (bai1t1)2 = b2a−i1+4hi1t1a

i1t1[t1, b] = b2a4hi1t21[t1, b][t1, ai1 ] =
b2b4v, for some v.
Moreover, we have that
(ai2t2)ba

i1 t1 = (ai2(−1+4h)t2[t2, b])a
i1 t1

= ai2(−1+4h)[ai2(−1+4h), t2]t2[t2, ai1 ][t2, t1]
= (ai2t2)−1+4hb4u for some u.

Since (ai2t2(bai1t1)2)ba
i1 t1 = (ai2t2(bai1t1)2)−1+4h, we have that the

subgroup 〈bai1t1, ai2t2〉 is metacyclic. Therefore, the group 〈a, b, c, d〉∗
E, where 〈a2n−1〉 = E2, is monotone, and so is G.

- Suppose that G is in C5. Then, Lemma 2.6 proves that G is a monotone
group.

- Suppose that G is in C6. Then, 〈A, c, b〉, where A is an abelian group of
exponent 2n, with n ≥ 3, A2n−1

= Ω1(〈b〉), |b| ≥ 8 and ab = a−1+4h,
ac = a1+2n−1

for every a ∈ A, cb = c−1+4h and exp(〈A, c〉4h) < |b2| <
2n.
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We first prove that the subgroup 〈A, c, b2〉 is monotone. Since 〈A, c〉
is modular, it is enough to check that the subgroups of the form
〈a1c

i1 , b2sa2c
i2〉 with a1 and a2 in A, are metacyclic. Since ab = a−1+4h

and cb = c−1+4h, we have that ab
2s

= a1+4k and cb
2s

= c1+4k, where
1 + 4k = (−1 + 4h)2s. Now, (a1c

i1)b
2sa2ci2 = (a1c

i1)1+4ka2n−1i1
2 a2n−1i2

1 .
Now, if |a1| < 2n and |a2| < 2n, then (a1c

i1)b
2sa2ci2 = (a1c

i1)1+4k, and
so the subgroup 〈a1c

i1 , b2sa2c
i2〉 is metacyclic.

If i1 and i2 are even, then (a1c
i1)b

2sa2ci2 = (a1c
i1)1+4k, and so the

subgroup 〈a1c
i1 , b2sa2c

i2〉 is metacyclic.

If |a1| = 2n, |a2| = 2n, i2 and i1 are odd, then (a1c
i1)b

2sa2ci2 =
(a1c

i1)1+4k, and so the subgroup 〈a1c
i1 , b2sa2c

i2〉 is metacyclic.

Suppose that |a1| = 2n and i2 is odd. Then, we may assume that
|a2| < 2n or i1 is even.

Suppose first that i1 is odd and |a2| < 2n. We may assume that
i1 = 1. Now, b2sa2c

i2(a1c)−i2 = b2sa2a
1+2n−1

1 . Since 〈A, b2〉 is mod-
ular, |b2s| < |a1| and |a2| < |a1|, we have that |b2sa2a

1+2n−1

1 | = 2n,
and Ω1(〈b2sa2a

1+2n−1

1 〉) = Ω1(〈a1〉). Therefore, we have that a2n−1

1 ∈
〈b2sa2a

1+2n−1

1 〉4. This means that [a1c
i1 , b2sa2c

i2 ] lies in the subgroup
〈(a1c

i1)4, (b2sa2a
1+2n−1

1 )4〉 which is contained in 〈a1c
i1 , b2sa2c

i2〉4. There-
fore, the subgroup 〈a1c

i1 , b2sa2c
i2〉 is powerful and 2-generated. Hence,

it is metacyclic.

Suppose now that i1 is even. We have (b2sa2c)2 = b4sa2+4k+2n−1

2 c2+4k.
Now, the subgroup 〈A, c2, b2〉 is modular, and so we get that (b2sa2c)i1 =
b2si1aj12 c

j2 , for some j1 and j2 with |cj2 | = |ci1 | and j1 is even. More-
over, there exists i3 odd such that (a1c

i1)i3 = ai31 c
−j2 and so we

have that (b2sa2c)i1(a1c
i1)i3 = b2si1aj12 a

i3
1 . Hence, we obtain that

|(b2sa2c)i1(a1c
i1)i3 | = |a1| and Ω1(〈(b2sa2c)i1(a1c

i1)i3〉) = Ω1(〈a1〉).
Therefore, we have that a2n−1

1 ∈ 〈(b2sa2c)i1(a1c
i1)i3〉4. This means that

[a1c
i1 , b2sa2c

i2 ] ∈ 〈(a1c
i1)4, ((b2sa2c)i1(a1c

i1)i3)4〉 ≤ 〈a1c
i1 , b2sa2c

i2〉4.
Therefore, the subgroup 〈a1c

i1 , b2sa2c
i2〉 is powerful and 2-generated.

Hence, it is metacyclic.

Suppose now that |a2| = 2n and i1 is odd. We may assume that i1 = 1
and up to replacing ba2c

i2 with (a1c)−i2 , we may assume that i2 = 0.
Therefore, the subgroup has the form 〈a1c

i1 , b2sa2〉. Now, |b2sa2| =
2n ≥ 8, and moreover, Ω1(〈b2sa2〉) = Ω1(〈a2〉). This means that
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[a1c
i1 , b2sa2c

i2 ] ∈ 〈(a1c
i1)4, ((b2sa2c)i1(a1c

i1)i3)4〉 ≤ 〈a1c
i1 , b2sa2〉4.

Therefore, the subgroup 〈a1c
i1 , b2sa2c

i2〉 is powerful and 2-generated.
Hence, it is metacyclic.

This shows that 〈A, c, b2〉 is monotone. Hence, in order to prove that
〈A, c, b〉 is monotone, we have to check that the subgroups of the form
〈bx1, x2〉, where x1 and x2 are in 〈A, c〉, are metacyclic. Put |b| = 2k.
We have that [〈A, c〉, 〈A, c〉] = 〈b2k−1〉.
We have that xb2 = x−1+4h

2 b2
k−1u, for some u. In fact we have that x2 =

aci with a ∈ A, and (aci)b = a−1+4hci(−1+4h) = (aci)−1+4h[a, ci] =
(aci)−1+4hb2

k−1u. Moreover, [〈A, c〉, 〈A, c〉] = A2n−1
= Ω1(〈b〉).

So we have that xbx1
2 = x−1+4h

2 b2
k−1v, for some v ∈ {0, 1}. Now,

(bx2)2 = b2x4h
2 b2

k−1
and, since |b2| > exp(〈A, c〉)4h, we have that

Ω1(〈bx2〉) = Ω1(〈b〉) and |bx2| = |b|. Therefore, 〈x2(bx1)2k−2v〉 is nor-
mal in 〈x1, bx2〉 and so the subgroup is metacyclic.

- Suppose that G is in C7. Then G = 〈A, c, b〉 where A is an abelian group
of exponent 2n, with n ≥ 3, A2n−1

= Ω1(〈b〉), |b| ≥ 8 and ab =
a−1+4h+2n−1

, ac = a1+2n−1
for every a ∈ A, |c| > 2m, cb = c−1+4h and

|c4h| = |b2|, |b2| < 2m and 〈b〉 ∩ 〈c〉 = 1.

We first prove that the subgroup 〈A, c, b2〉 is monotone. Since 〈A, c〉
is modular, it is enough to check that the subgroups of the form
〈a1c

i1 , b2sa2c
i2〉 with a1 and a2 in A, are metacyclic. Since for ev-

ery a ∈ A we have that ab = a−1+4h+2n−1
and cb = c−1+4h and

2n = exp(A), we have that ab
2s

= a1+4k and cb
2s

= c1+4k . Now,
(a1c

i1)b
2sa2ci2 = (a1c

i1)1+4ka2n−1i1
2 a2n−1i2

1 . Now, if |a1| < 2n and
|a2| < 2n, then (a1c

i1)b
2sa2ci2 = (a1c

i1)1+4k, and so the subgroup
〈a1c

i1 , b2sa2c
i2〉 is metacyclic.

If i1 and i2 is even, then (a1c
i1)b

2sa2ci2 = (a1c
i1)1+4k, and so the sub-

group 〈a1c
i1 , b2sa2c

i2〉 is metacyclic.

If |a1| = 2n, |a2| = 2n, i2 and i1 are odd, then (a1c
i1)b

2sa2ci2 =
(a1c

i1)1+4k, and so the subgroup 〈a1c
i1 , b2sa2c

i2〉 is metacyclic.

Suppose that |a1| = 2n and i2 is odd. Then we may assume that
|a2| < 2n or i1 is even.

Suppose first that i1 is odd and |a2| < 2n. We may assume that
i1 = 1. Now, b2sa2c

i2(a1c)−i2 = b2sa2a
1+2n−1

1 . Since 〈A, b2〉 is mod-
ular, |b2s| < |a1| and |a2| < |a1|, we have that |b2sa2a

1+2n−1

1 | = 2n,
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and Ω1(〈b2sa2a
1+2n−1

1 〉) = Ω1(〈a1〉). Therefore, we have that a2n−1

1 ∈
〈b2sa2a

1+2n−1

1 〉4. This means that [a1c
i1 , b2sa2c

i2 ] lyes in the subgroup
〈(a1c

i1)4, (b2sa2a
1+2n−1

1 )4〉 which is contained in 〈a1c
i1 , b2sa2c

i2〉4.
Therefore, the subgroup 〈a1c

i1 , b2sa2c
i2〉 is powerful and 2-generated.

Hence, it is metacyclic.

Suppose now that i1 is even. We have (b2sa2c)2 = b4sa2+4k+2n−1

2 c2+4k.
Now, 〈b2, A, c2〉 is modular, and so (b2sa2c)i1 = b2si1aj12 c

j2 , for some j1
and j2 where |cj2 | = |ci1 | and j1 is even . Moreover, there exists i3 odd
such that (a1c

i1)i3 = ai31 c
−j2 and so we have that (b2sa2c)i1(a1c

i1)i3 =
b2si1aj12 a

i3
1 . Hence, we obtain that |(b2sa2c)i1(a1c

i1)i3 | = |a1|. More-
over, Ω1(〈(b2sa2c)i1(a1c

i1)i3〉) = Ω1(〈a1〉). Therefore, we have that
a2n−1

1 ∈ 〈(b2sa2c)i1(a1c
i1)i3〉4. This means that [a1c

i1 , b2sa2c
i2 ] lies

in the subgroup 〈(a1c
i1)4, ((b2sa2c)i1(a1c

i1)i3)4〉 which is contained in
〈a1c

i1 , b2sa2c
i2〉4. Therefore, the subgroup 〈a1c

i1 , b2sa2c
i2〉 is powerful

and 2-generated. Hence, it is metacyclic.

Suppose now that |a2| = 2n and i1 is odd. We may assume that i1 = 1
and up to replacing ba2c

i2 with (a1c)−i2 , we may assume that i2 = 0.
Therefore, the subgroup has the form 〈a1c

i1 , b2sa2〉. Now, |b2sa2| =
2n ≥ 8, and moreover, Ω1(〈b2sa2〉) = Ω1(〈a2〉). This means that
[a1c

i1 , b2sa2c
i2 ] ∈ 〈(a1c

i1)4, ((b2sa2c)i1(a1c
i1)i3)4〉 ≤ 〈a1c

i1 , b2sa2〉4.
Therefore, the subgroup 〈a1c

i1 , b2sa2c
i2〉 is powerful and 2-generated.

Hence, it is metacyclic.

This shows that 〈A, c, b2〉 is monotone. Hence, in order to prove that
〈A, c, b〉 is monotone, we have to check that the subgroups of the form
〈bci1a1, c

i2a2〉, where a1 and a2 are in A, are metacyclic. Put |b| = 2k.
We distinguish various cases.
Suppose that i2 is odd. Then, we may assume i2 = 1, and, up to
replacing bci1a1 with (bci1a1)(ca2)−i1 , we may assume that i1 = 0.
Therefore, the subgroup is of the form 〈ba1, ca2〉. We have (ca2)ba1 =
(ca2)−1+4ra2n−1

1 .
So, if |a1| < 2n, then 〈ca2〉� 〈ba1, ca2〉 and we are done.
If |a1| = 2n, then, since Ω1(〈a1〉) = Ω1(〈b〉) and |b2| < |a4h+2n−1

1 |, we
have that Ω2(〈ba1〉) = 〈b2k−2〉 and 〈ca2b

2k−2〉 � 〈ba1, ca2〉. Therefore,
in this case the subgroup is metacyclic.
Suppose that i2 is even. If also i1 is even, then we have that Ω1(〈bci2a2〉) =
Ω1(〈b〉) and (ci2a2)bc

i1a1 = (ci2a2)−1+4ra2n−2

2 .
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If |a2| < 2n, then 〈ci2a2〉� 〈bci1a1, c
i2a2〉 and we are done.

If |a2| = 2n, then 〈ca2(bci1a1)2k−2〉 � 〈ba1, ca2〉 and so the subgroup
〈bci1a1, c

i2a2〉 = 〈bci1a1, ca2(bci1a1)2k−2〉 is metacyclic.
Suppose that i2 is even, and i1 is odd. Then, we may assume that i1 =
1. If |a1| = 2n, we have that (ci2a1)bca2 = (ci2)−1+4ha−1+4h+2n−1

2 a2n−1

2 =
(ci2a2)−1+4h. If |a1| < 2n, then we have that (ci2a1)bca2 = (ci2)−1+4ha−1+4h

1 =
(ci2a2)(−1 + 4h). In both cases, we get that 〈ci2a2〉 � 〈bci1a1, c

i2a2〉.
This shows that G is monotone.

The aim of this chapter is to prove the following theorem.

Theorem 5.2. Let G be a monotone 2-groups of exponent greater than or
equal to 4 such that G = H4(G). Then G is either a modular group that
does not involve Q8 or is in Ci, for some i ∈ {1, . . . , 7}.

First of all, we want to stress the following fact.

Remark 5.3. Let G be a non-trivial monotone 2-group Then, the quotient
G/G4 is a monotone 2-group of exponent 4. Therefore, the group G/G4 is
isomorphic to one of the groups listed in Theorem 3.3.

5.1 Monotone 2-Groups with H4(G) = G and G/G4

abelian

Let G be a non-trivial monotone 2-group, such that H4(G) = G and such
that G/G4 is abelian. In the following proposition, we determine such groups
when |G2/G4| = 2.

Proposition 5.4. Let G be a non-trivial monotone 2-group such that G =
H4(G).
Suppose that the quotient G/G4 is abelian and |G2/G4| = 2. Then G is
either abelian or isomorphic to a group in C1.

Proof. Let G = 〈a, c1, . . . , cs〉, where |aG4| = 4, and |ciG4| = 2 for i ∈
{1, . . . , s} and G/G4 abelian.

First of all we prove that we may assume that ci has order 2, and that
the derived subgroup of G is contained in Ω1(〈a〉).
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The group G is powerful, because G/G4 is abelian. In particular, we have
G2 = Φ(G2). Since G2 = 〈a2〉G4, we have that G2 is cyclic and generated
by 〈a2〉. Since G is powerful and G2 = 〈a2〉, we have G2i

= 〈a2i〉 and so
|a| = 2n, where exp(G) = 2n.

Now, from c2
j ∈ G4 and [a, ci] ∈ G4, it follows that c2

i = a4ri and aci =
a1+4ki . Since c2

i is in the centralizer of a, we get that |a4ki | ≤ 2. In particular,
a2 commutes with ci for every i, and so 〈a2〉 ≤ Z(G). Replacing ci with
cia
−2ri , we may assume that ci has order 2, for every i.
Since [ci, cj ] ∈ 〈a4〉 and a4 ∈ Z(G), we have that ccji = cia

4kij , with
|a4kij | ≤ 2. So, the subgroup 〈ci, cj〉 is either abelian or isomorphic to D8.

Therefore, we may assume |ci| = 2, aci = a1+4ki with |a4ki | ≤ 2, 〈a〉�G

and c
cj
i = cia

4kij with |a4kij | ≤ 2. By Remark 2.1, we get that [G,G] ≤
Ω1(〈a〉).
Moreover, the previous argument also shows that |G : CG(ci)| ≤ 2.

We now prove the proposition by induction on the order of G.
Suppose that 〈c1, . . . , cs〉 is abelian. If [a, ci] = 1 for every i, then the

group G is abelian. Suppose there exists i such that [a, ci] 6= 1. Then, up to
reordering the indices, we may assume that ac1 = a1+2n−1

and, up to perhaps
replacing ci with cic1, we have that G is isomorphic to 〈a, c1〉 × 〈c2, . . . , cs〉
with |a| = 2n, |ci| = 2, ac1 = a1+2n−1

and 〈c1, . . . , cr〉 elementary abelian.
Hence G is a modular 2-group in C1.

Suppose now that 〈c1, . . . , cs〉 is not abelian. Then, up to reordering the
indices, we may assume that 〈c1, c2〉 is non-abelian. Since [c1, c2] ∈ 〈a4〉,
and a4 ∈ CG(〈ci〉) for every i, we get that cc21 = c1a

2n−1
, i.e. 〈c1, c2〉 ' D8.

Since C = CG(〈c1, c2〉) has index 4 in G, we have that G = 〈c1, c2〉C.
Since ac1 = a1+4h1 and ac2 = a1+4h2 with |a4h1 | ≤ 2 and |a4h2 | ≤ 2, we may
assume, up to replacing a with ach2

1 ch1
2 , that a ∈ C. Therefore, C is a proper

subgroup of G, G = 〈c1, c2〉 ∗ C, where C2n−1
= 〈c1, c2〉2, and G4 = C4.

Therefore, C is a proper subgroup of G such that C/C4 is isomorphic to
C4 × C2 × · · · × C2. Hence, we can conclude by induction.

The previous proposition determines the non-trivial monotone 2-groups
G such that H4(G) = G, G/G4 is abelian and |G2/G4| = 2.
In the next proposition, we deal with the complementary case and we classify
the non-trivial monotone 2-groups G such that H4(G) = G, G/G4 is abelian
and |G2/G4| ≥ 4.
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Proposition 5.5. Let G be a non-trivial monotone 2-group such that G =
H4(G). Suppose that the quotient G/G4 is abelian with |G2/G4| ≥ 4.
Then G is a modular 2-group not involving Q8.

Proof. Since, by hypothesis, G/G4 is abelian, the group G is powerful.

Let G be such that G/G4 = 〈a1G
4〉×· · ·×〈arG4〉×〈c1G

4〉×· · ·×〈csG4〉,
where |aiG4| = 4, and |cjG4| = 2. We have that G2 = 〈a2

1, . . . , a
2
r〉G4. Since

G2 is powerful with Φ(G2) = G4 (see Lemma 2.7 and Corollary 2.8), we get
that G2i

= 〈a2i

1 , · · · , a2i

r 〉. Let H be the group 〈a1, · · · , ar〉. By Proposition
2.14, H is modular and does not involve Q8. Moreover, H2i

= G2i
for all

i ≥ 1, and, in particular, we have that exp(H) = exp(G) = 2n ≥ 8.

We now prove that we may assume |ci| = 2 for every i. Since c2
i ∈ H4

and H is powerful with H2 = G2 and H4 = G4, there exists bi ∈ H\H2

with b2
r

i = c2
i with r ≥ 2. If |bi| = 4, then c2

i = 1. Hence, we may assume
that |bi| = 2ni ≥ 8. Now, 〈b2r

i 〉 is a central subgroup of 〈bi, ci〉, and the
quotient 〈bi, ci〉/〈b2

r

i 〉 is a metacyclic group with ci generator of order 2 and
bi generator of order greater than or equal to 4. Moreover, since 〈bi, ci〉
has a quotient isomorphic to C4 × C2, we have that 〈bi, ci〉/〈b2

r

i 〉 is not
semidihedral. By Lemma 2.11, we get that ci〈b2

r

i 〉 is in the normalizer of
〈bi〉/〈b2

r

i 〉. This implies that 〈bi〉 is normalized by ci. If bcii = b−1+4hi
i , then

b2i is in the derived subgroup of G, a contradiction, because bi ∈ H\H2 and
so b2i ∈ H2\H4, but [G,G] ≤ H4. So, we have that bcii = b1+4hi

i , and since
c2
i ∈ 〈bi〉, we get that |b4hi

i | ≤ 2. In particular, since [b2i , ci] = 1 and c2
i = b2

r

i

with r ≥ 2, replacing ci with cib−2r−1

i , we may assume that |ci| = 2, and the
claim is proved.

We now prove that the subgroup 〈ci, cj〉 is abelian.
Suppose that 〈ci, cj〉 is non-abelian. Then, 〈ci, cj〉 is dihedral. Moreover
[ci, cj ]ci = [ci, cj ]cj = [ci, cj ]−1. Since [ci, cj ] ∈ H4, and H is powerful, there
exists a ∈ H\H2, such that a2r

= [ci, cj ], with r ≥ 2. Since |[ci, cj ]| ≥ 2, we
have that |a| = 2n ≥ 8.
Since 〈a, ci〉H4/H4 is isomorphic to C4 × C2, the subgroup 〈a, ci〉 cannot
be semi-dihedral. Hence, by Lemma 2.12, we get that 〈a〉 is normalized by
ci. If aci = a−1+4h, then a2 ∈ [G,G], a contradiction because a2 ∈ H2\H4

and [G,G] ≤ G4 = H4. Then, we get that aci = a1+4h, and since ci2 = 1,
we get that |a4h| ≤ 2. Now, since [ci, cj ] ∈ 〈a〉 and [ci, cj ]ci = [ci, cj ]−1, we
get that 〈ci, cj〉 is isomorphic to a D8 with 〈ci, cj〉 ∩ H ≤ 〈a〉. Now, since
H is modular and does not involve Q8, by Proposition 2.5.9 on page 94 of
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[13], H is lattice isomorphic to an abelian group. In particular, we have
[H2 : H4] = |Ω1(H2)|. Since |Ω1(H2)| ≥ 4, there exists an involution c with
c ∈ H2 and c /∈ 〈ci, cj〉. Since c ∈ H2, there exists d ∈ H\H2, with d2l

= c.
Since 〈d, ci〉H4/H4 is isomorphic to C4×C2, the subgroup 〈d, ci〉 cannot be
semi-dihedral. Hence, by Lemma 2.12, we get that 〈d〉 is normalized by ci.
If dci = d−1+4k, then d2 ∈ [G,G], a contradiction because d2 ∈ H2\H4 and
[G,G] ≤ G4 = H4. Then, we get that dci = d1+4ki , and since ci2 = 1, we get
that |d4ki | ≤ 2. Using the same argument with cj instead of ci, we get that
dcj = d1+4kj with |d4kj | ≤ 2. In particular, ci and cj are in the CG(Ω2(〈d〉)),
and so G contains the subgroup Ω2(〈d〉)× 〈ci, cj〉. Since Ω2(〈d〉)× 〈ci, cj〉 is
isomorphic to C4 ×D8, which is not monotone, we have a contradiction.
Therefore 〈ci, cj〉 is abelian for every i and j and so 〈c1, · · · , cs〉 is abelian.

We now show that ci is in the normalizer of every element of H and in
the centralizer of Ω2(H).
Let b ∈ H. Since H is powerful, there exists a ∈ H\H2 such that a2r

= b

for some r. In order to show that c ∈ NG(〈b〉), it is sufficient to show that
ci normalizes 〈a〉.
Now, 〈a, ci〉 is a metacyclic subgroup with a generator of order 2. Moreover
since 〈a, ci〉G4/G4 ' C4 × C2, we get that 〈a, ci〉 is not semidihedral. By
Lemma 2.12, we have that ci is in the normalizer of every cyclic subgroup
having order at least 4 of 〈a, ci〉. In particular, c ∈ NG(〈a〉).
Moreover, since a2 ∈ H2\H4 and [G,G] ≤ H4, we have that 〈a, ci〉 is modu-
lar metacyclic and aci = a1+4t, with |a4t| ≤ 2. So, we have that [a2, ci] = 1,
for each a ∈ H\H2 and since {a2 : a ∈ H\H2} is a generating set for H2,
we have that ci centralizes H2. In particular, if b ∈ H2 and has order 4,
then it is centralized by ci. Moreover, if b has order 4 and is in H\H2,
then the argument just used shows that bc = b. Hence, the element ci is in
CG(Ω2(H)), for all i.

We now study the action of ci on H.
If [H, ci] = 1 for every i, then G = H ×〈c1〉× · · ·× 〈cs〉. Since H is modular
without subgroups isomorphic to Q8, then G is modular without Q8.
Suppose that there exists a ci such that [ci, H] 6= 1. Since ci is in the
normalizer of every element of H and c2

i = 1, we have that ci acts as a power
automorphism of order 2 onH. The groupH is modular and does not involve
a subgroup isomorphic to Q8. Moreover [ci,Ω2(H)] = 1. Hence, by Theorem
2.3.24 on page 68 of [13], we have that ci acts as an universal automorphism,
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i.e. hci = h1+2n−1
for every h ∈ H with 2n = exp(G) = exp(H). Up

to reordering the indices, we may assume that hc1 = h1+2n−1
and, up to

replacing perhaps ci with cic1 for i ≥ 2, we may assume that [H, ci] = 1 for
i ≥ 2.
If H is abelian, then G = (H × 〈c2〉 × · · · × 〈cs〉) o 〈c1〉, with ac1 = a1+2n−1

for every a ∈ H × 〈c2〉 × · · · 〈cs〉.
If H is modular non-abelian, then H〈c1〉 satisfies the hypothesis of Lemma
1.3 of [12], and so H〈c1〉 is a modular subgroup without Q8. Since 〈H, c1〉 is
centralized by the elementary abelian subgroup 〈c2, . . . , cs〉, we obtain that
G = 〈H, c1〉 × 〈c2, . . . , cs〉 is modular without subgroup isomorphic to Q8.

We have proved that if G is a group such that the quotient G/G4 is
abelian and |G2/G4| ≥ 4, then G is a modular group without subgroups
isomorphic to Q8. Hence the proof is complete.

Summing up, this section shows that a non-trivial monotone 2-group G

with H4(G) = G and G/G4 abelian is either modular without subgroups
isomorphic to Q8 or is in the class C1.

5.2 Monotone 2-Groups with H4(G) = G and G/G4

non-abelian

In the first seven propositions, we show that if G is a monotone non-trivial
2-group such that H4(G) = G, then G/G4 can not be isomorphic to a group
in Ai where i ∈ {2, 3, 5, 7, 8, 9, 10, 11} (see Theorem 3.3).

Proposition 5.6. Let G be a non-trivial monotone 2-group such that G =
H4(G).
The quotient G/G4 cannot be isomorphic to a group in A2.

Proof. Let G be 〈x1, y1, . . . , xn, yn, a1, . . . , am〉, where 〈x1, y1〉G4/G4 ∗ · · · ∗
〈xn, yn〉G4/G4 is extraspecial, 〈xi, yi〉G4/G4 is isomorphic to D8 or to Q8

with |xiG4| = 4 and A = 〈a1〉G4/G4 × · · · × 〈am〉G4/G4 is abelian, with
|a1G

4| ≤ 4 and |aiG4| = 2 for every i ≥ 2.
We have that G2/G4 = 〈x2

1〉G4/G4. By Corollary 2.8, we have that G4 =
Φ(G2) and so we obtain G2 = 〈x2

1〉. Moreover, by Corollary 2.8, we also
have that 〈x2i

1 〉 = G2i
. Hence, since exp(G) ≥ 8, we get that G4 = 〈x4

1〉 6= 1,
i.e. |x1| ≥ 8.
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We first show that G/G4 cannot involve Q8.
Suppose that G/G4 involves a Q8. Then, up to relabeling the generators
of G, we may assume that 〈x1, y1〉G4/G4 is isomorphic to Q8. We have
that x2

1G
4 = y2

1G
4, and xy1

1 = x−1
1 G4. This means that x2+4h

1 = y2 and
xy1

1 = x−1+4k
1 . In particular, the element y1 centralizes 〈x2+4h

1 〉 = 〈x2
1〉.

From xy1
1 = x−1+4k

1 , we have that (x2
1)y1 = x−2+8k

1 and so x−2+8k
1 = x2

1.
This means that x4

1 = 1, and so G4 = 〈x4
1〉 = 1. It follows that H4(G) = 1,

a contradiction. This proves the first claim.
Since D8 ∗D8 ' Q8 ∗Q8, D8 ∗ C4 ' Q8 ∗ C4 and G/G4 can not involve

Q8, we obtain that G/G4 = 〈x, y〉G4/G4 × 〈a1G
4〉 × · · · × 〈amG4〉, where

〈x, y〉G4/G4 ' D8, with 〈x〉G4/G4 � 〈x, y〉G4/G4, and |aiG4| = 2.
By Corollary 2.8, since G2 = 〈x2〉, we have that G2i

= 〈x2i〉 and so |x| = 2n,
where exp(G) = 2n ≥ 8. Moreover, we have G4 = 〈x4〉.

Since y2 ∈ 〈x4〉 and xy = x−1+4h, we get that |x4h| ≤ 2. In particular,
since y2 ∈ 〈x4〉, we have that |y| ≤ 4.

Let now u be an element of G not in 〈x, a1, . . . , am〉. Then, u /∈ G2 =
〈x2〉, uG4 has order 2 and acts as inversion on 〈x, a1, . . . , am〉G4/G4. There-
fore, repeating the argument of the previous paragraph with u instead of y,
we get that |u| ≤ 4. This shows that each element of G\〈x, a1, · · · , am〉 has
order at most 4 and this means that H4(G) is a proper subgroup of G, a
contradiction.
In particular, this shows that G/G4 cannot be in A2.

Proposition 5.7. Let G be a non-trivial monotone 2-group such that G =
H4(G). The quotient G/G4 cannot be isomorphic to a group in A3.

Proof. Let G be 〈a1, . . . , am, c1, . . . , cs, b〉 with (〈a1G
4〉 × · · · × 〈amG4〉 ×

〈c1G
4〉× · · ·× 〈csG4〉)〈bG4〉, where m ≥ 2, |aiG4| = 4, |bG4| = 2, |ciG4| = 2,

(aiG4)bG
4

= a−1
i G4 and (cjG4)bG

4
= cjG

4, for every i ∈ {1, . . . ,m} and
j ∈ {1, . . . , s}.

We get that G2 = 〈a2
1, . . . , a

2
m〉G4. By Lemma 2.7 and Corollary 2.8, we

have that G4 = Φ(G2). So G2 = 〈a2
1, · · · , a2

m〉 and G2i
= 〈a2i

1 , · · · , a2i

m〉. So,
if H = 〈a1, · · · , am, c1, . . . , cs〉, then, we have that H is a monotone 2-group
such that H/H4 is abelian of exponent 4 and |H2/H4| ≥ 4. Therefore, by
Proposition 5.5, the group H is modular and does not involve Q8.

We now show that b is an element of order at most 4.
Since b2 ∈ G4, G4 = 〈a4

1, · · · , a4
m〉 and 〈a1, · · · , am〉 is powerful, there exists
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a ∈ 〈a1, · · · , am〉 \ 〈a2
1, . . . , a

2
m〉 such that a2r

= b2. Since 〈a, b〉G4/G4 is
isomorphic to D8 with 〈a〉G4 of order 4, we have that [a, b]G4 = a2G4.
Since 〈a, b〉 is 2-generated and (〈a2〉G4)∩ 〈a, b〉 is normal of index 4 in 〈a, b〉
with elementary abelian quotient, we get that 〈a2〉G4 ∩ 〈a, b〉 = Φ(〈a, b〉).
Since 〈a, b〉 is metacyclic, there exist c, d ∈ 〈a, b〉 such that 〈c, d〉 = 〈a, b〉
with 〈c〉 � 〈a, b〉. In particular, 〈c〉(G4 ∩ 〈a, b〉) � 〈a, b〉(G4 ∩ 〈a, b〉), and
c /∈ Φ(〈a, b〉) = 〈a2〉(G4∩〈a, b〉). Therefore, 〈c〉(G4∩〈a, b〉) = 〈a〉(G4∩〈a, b〉).
Since 〈c, b〉(G4 ∩ 〈a, b〉) = 〈a, b〉(G4 ∩ 〈a, b〉) and G4 ∩ 〈a, b〉 ≤ Φ(〈a, b〉), we
have that 〈a, b〉 = 〈c, b〉 with 〈c〉� 〈c, b〉.
Since [a, b](G4 ∩ 〈a, b〉) = [a, c](G4 ∩ 〈a, b〉) = a2(G4 ∩ 〈a, b〉), we have that
cb = c−1+4h. Now, a = cibj , for some i and j. If j is odd then we get that
a2 ∈ (G4∩〈a, b〉), a contradiction. Then j is even and so, being b2 ∈ 〈a〉, we
have 〈a〉 = 〈c〉. Then, cb = c−1+4h, with |c4h| ≤ 2. Moreover, b2 ∈ Ω1(〈c〉)
and so |b| ≤ 4.

Let d be an element not in H. Then dG4 has order 2 and acts on H/H4

as inversion. Therefore, using the same argument with d instead of b, we
get that |d| ≤ 4 for all d /∈ H. Therefore, H4(G) is a proper subgroup of G.
This final contradiction proves the statement.

Proposition 5.8. Let G be a non-trivial monotone 2-group such that G =
H4(G). The quotient G/G4 cannot be isomorphic to a group in A5 or in
A8.

Proof. Suppose that G = 〈a1, . . . , am, c1, . . . , cs, b〉, with (〈a1G
4〉 × · · · ×

〈amG4〉 × 〈c1G
4〉 × · · · × 〈csG4〉)〈bG4〉, where m ≥ 2, |aiG4| = 4, |bG4| = 4

and b2G4 ∈ 〈a1, . . . , am, c1, . . . , cs〉2G4/G4, |ciG4| = 2, (aiG4)bG
4

= a−1
i G4

and (cjG4)bG
4

= cjG
4, for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , s}.

Now, G2 = 〈a2
1, . . . , a

2
m〉G4.

By Lemma 2.7 and Corollary 2.8 we have that G4 = Φ(G2) and so G2 =
〈a2

1, . . . , a
2
m〉 and G2i

= 〈a2i

1 , . . . , a
2i

m〉. So, if H = 〈a1, . . . , am, c1, . . . , cs〉,
then, we have that H is a monotone 2-group such that H/H4 is abelian and
|H2/H4| ≥ 4.
Therefore, by Proposition 5.5, the group H is modular and does not involve
Q8. Moreover, the subgroup K = 〈a1, . . . , am〉 is such that K/K4 is iso-
morphic to a direct product of m copies of C4. Hence, K is powerful with
K2i

= H2i
= G2i

.
Since b2 ∈ K2\K4, and K is powerful, there exists a ∈ K \ K2 such that
a2 = b2.
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We now show that |b| ≤ 8.
Since the subgroup K is modular and does not involve Q8, we have that
[K,K2] ≤ K8. Then, for all h ∈ K we have that K8 = [h, a2]K8 = [h, b2]K8.
Hence [h, b]bK8 = [h, b]−1K8, for all h ∈ K. Since K2 is generated by
{[h, b] : h ∈ K} and K2/K8 is abelian, we have that b acts as inversion on
K2/K8. Therefore, since b2 ∈ K2\K4, we have that |bK8| ≤ 4, i.e. b4 ∈ K8.
Since K is powerful, there exists c ∈ K\K2 such that b4 = a4 ∈ 〈c8〉.
Let c be of maximal order with this property. In particular, we have that
a4 = b4 = c2r

, with r ≥ 3, and c4 /∈ K8 (otherwise there exists c such that
c4 ∈ 〈c8〉, and so c contradicts the maximality of c).
Since c and a are inK, the subgroup 〈a, c〉 is modular and it is not isomorphic
to Q8, and so 〈a, c〉2i

= 〈a2i
, c2i〉. In particular, the subgroup 〈a, c〉4 = 〈c4〉.

Moreover, since 〈a, c〉/〈a, c〉4 is abelian (because 〈a, c〉 is modular), we get
that 〈c〉� 〈a, c〉. Since a4 ∈ 〈c〉, we have that ca = c1+4h, with |c4h| ≤ 4.
In particular, this implies that 〈a2, c2〉 is abelian.
We claim that the subgroup 〈a2, c2〉K4/K4 is elementary abelian of order 4.
Suppose that a2K4 = c2K4. Then, there exists q ∈ K4, such that a2 = c2q.
Since [a2, c2] = 1, we get that [c2, q] = 1. In particular, c4q2 = a4 = c2r

,
with r ≥ 3. Since q ∈ K4 and K is powerful, we have that q2 ∈ K8, and
so c4 = c2r

q−2 ∈ K8, which contradicts the choice of c. Therefore, we have
that 〈a2, c2〉K4/K4 is elementary abelian of order 4. In particular, since
〈a2, c2〉 is the Frattini subgroup of 〈a, c〉, we get that 〈a2, c2〉 is 2-generated
and moreover, K4 ∩ 〈a, c〉 = Φ(〈a, c〉) = 〈c4〉.

It follows that 〈b, c〉K4/K4 is as in Lemma 2.13, and 〈b, c〉4 = 〈c4〉. Since
cb = c−1(K4 ∩ 〈b, c〉) and K4 ∩ 〈b, c〉 = 〈c4〉, we have that 〈c〉 � 〈c, b〉 and
cb = c−1+4k, with |c4k| ≤ 4. In particular, being |〈b〉 ∩ 〈c〉| ≤ 2, we obtain
that the order of b is smaller than or equal to 8.

We now prove that if |b| = 8, then we reach a contradiction.
Suppose that |b| = 8. Since a2 = b2, we get that |a| = 8. Now, since the
element ac is such that (ac)2 = a2c2+4h,we have that (ac)2K2 = a2c2K4 and
〈(ac)4〉 = 〈c4〉.
In particular, 〈ac, b〉 satisfies the hypothesis of Lemma 2.13, and 〈ac〉�〈ac, b〉.
Since b4 ∈ 〈ac〉, we have that (ac)b = (ac)−1+4t, with |(ac)4t| ≤ 4 i.e.
ab = a−1c4s, for some s with |c4s| ≤ 4.
Now, since a2 = b2, we have a = ab

2
= (a−1c4s)−1(c4s)b = c−4sac−4s. Since

Ω2(〈c〉) ≤ CG(a), we have that a = ac−8s, and so |c4s| ≤ 2.
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Being Ω1(〈c〉) = 〈a4〉, it follows that 〈a〉 � 〈a, b〉 with ab = a−1+4r. Now,
from a2 = b2, we get that a2 = (a2)b = a−2 and so |a| = 4, a contradiction.
Therefore, this case does not arise and |b| ≤ 4.

If d is an element not in H, then dH = bH. Moreover, we have that
d2G4 = b2G4, and dG4 acts as inversion on H/H4. The argument above
shows that |d| ≤ 4. Hence, we get a contradiction because we obtain that
for any d such that d /∈ H, then |d| ≤ 4 and so d /∈ H4(G), i.e. G 6= H4(G)
a contradiction.

Proposition 5.9. Let G be a non-trivial monotone 2-group such that G =
H4(G). The quotient G/G4 cannot be isomorphic to a subgroup in A7.

Proof. Suppose that G = 〈a, b, c, A〉 with AG4/G4 elementary abelian and
central in G/G4, |aG4| = 4, |cG4| = 4, 〈aG4〉 ∩ 〈cG4〉 = G4, b2G4 = a2c2G4

and abG4 = a−1G4, acG4 = aG4 and bcG4 = b−1G4.

The subgroup 〈a, c, A〉 is monotone, being a subgroup of G which is
monotone. Moreover, 〈a, c, A〉 satisfies the hypothesis of Proposition 5.5.
Then, 〈a, c, A〉 is a powerful modular group not involving Q8. In particu-
lar, 〈a, c〉 is monotone, powerful and 〈a2, c2〉G4 = G2. By Corollary 2.8,
G4 = Φ(G2) and so 〈a2, c2〉 = G2. Since b2G4 = a2c2G4, we have that
b2 = a2+4sc2+4r, for some r and s. Therefore, up to replacing a and c with
suitable powers, we may assume that b2 = a2c2.
Since 〈a, c〉 is modular metacyclic, we have that [〈a, c〉, 〈a2, c2〉] ≤ 〈a, c〉8.
In particular, we have that [〈a, c〉, b2] ≤ 〈a8, b8〉. Hence, [a, b2]G8 = G8

and [c, b2]G8 = G8. It follows that [a, b]bG8 = [a, b]−1G8 and [c, b]bG8 =
[c, b]−1G8. Since 〈[a, b], [c, b]〉G8 = 〈a2, c2〉G8, and 〈a2, c2〉G8/G8 is abelian,
we have that b acts as inversion on 〈a2, c2〉G8/G8. Since b2 ∈ 〈a2, c2〉, we
get that |b2G8| ≤ 2, i.e. b4 ∈ G8. Hence (a2c2)2 ∈ G8. This implies that
a4c4 ∈ G8. Now, the subgroup G8 = Φ(G4) and G4 = 〈a4, c4〉. Hence, the
condition a4c4 ∈ G8 implies that a4G8 = c−4G8 and so G4 = 〈a4〉 = 〈c4〉.
Therefore, since ab ∈ a−1G4, we have that ab = a−1+4h, for some h. Since
bc = b−1G4, we have that bc = b−1a4k, for some k. Now, (a2)b = (a2)−1+4h =
a−2+8h and bc

2
= (b−1a4k)−1a4k = a−4kba4k = ba−4k(−1+4h)a4k = ba−8k+16hk.

Since a2c2 = b2, we have that a2c2 = (a2c2)b = a−2+8hc2a−8k+16hk =
a−2c2a8h−8k+16hk and so a2c2 = a−2c2a8h−8k+16hk. Hence, we obtain that
a4 ∈ 〈a8〉 but, since G4 = 〈a4〉 and G8 = 〈a8〉 = Φ(G4), we obtain that
G4 = 1, and so also H4(G) = 1, a contradiction.
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Proposition 5.10. Let G be a non-trivial monotone 2-group such that G =
H4(G). The quotient G/G4 cannot be isomorphic to a group in A9.

Proof. Suppose that G = 〈a, b, c, d, A〉 with |aG4| = 4, |cG4| = 4, 〈aG4〉 ∩
〈cG4〉 = G4, b2G4 = a2c2G4, d2G4 = c2G4, abG4 = a−1G4, acG4 = aG4,
bcG4 = bG4, adG4 = aG4, bdG4 = b−1G4, cdG4 = cb2G4, AG4/G4 is ele-
mentary abelian and central in G/G4.

We have that 〈a2, d2〉G4 = G2. Since by Corollary 2.8, we have that
G4 = Φ(G2), we get 〈a2, d2〉 = G2. Since b2G4 = a2d2G4, we have b2 =
a2+4sd2+4r, for some r and s. Therefore, up to replacing a and d with suit-
able powers, we may assume that b2 = a2d2.
Since 〈a, d〉 satisfies the hypothesis of Lemma 2.12, the subgroup 〈a, d〉 is
modular metacyclic not isomorphic to Q8, and so [〈a, d〉, 〈a2, d2〉] ≤ 〈a, d〉8.
Since b2 ∈ 〈a2, d2〉, we have that [〈a, d〉, b2] ≤ 〈a8, d8〉. In particular, from
[a, b2]G8 = G8 and [c, b2]G8 = G8, it follows that [a, b]bG8 = [a, b]−1G8 and
[d, b]bG8 = [d, b]−1G8. Since 〈[a, b], [d, b]〉G8 = 〈a2, d2〉G8 and 〈a2, d2〉G8/G8

is abelian, we have that b acts as inversion on 〈a2, d2〉G8/G8. Since b2 ∈
〈a2, d2〉, we get that |b2G8| ≤ 2, i.e. b4 ∈ G8. Hence (a2d2)2 ∈ G8. This
implies that a4d4 ∈ G8. Now, the subgroup G8 = Φ(G4) and G4 =
〈a4, d4〉. Hence, the condition a4d4 ∈ G8 implies that a4G8 = d−4G8

and so G4 = 〈a4〉 = 〈d4〉. Therefore, since ab ∈ a−1G4, we have that
ab = a−1+4h, for some h. Since bd ∈ b−1G4, we have that bd = b−1a4k,
for some k. Now, (a2)b = (a2)−1+4h = a−2+8h and bd

2
= (b−1d4k)−1a4k =

a−4kba4k = ba−4k(−1+4h)a4k = ba−8k+16hk. Since a2d2 = b2, we have that
a2d2 = (a2d2)b = a−2+8hd2a−8k+16hk = a−2d2a8h−8k+16hk and so a2d2 =
a−2d2a8h−8k+16hk. Then, we obtain that a4 ∈ 〈a8〉. Since G4 = 〈a4〉 and
Φ(G4) = G8 = 〈a8〉, we obtain that G4 = 1, and so also H4(G) = 1, a
contradiction.

Proposition 5.11. Let G be a non-trivial monotone 2-group such that G =
H4(G). The quotient G/G4 cannot be isomorphic to a group in A10.

Proof. Suppose that G = 〈a, b, c, d, A〉 with |aG4| = 4, |cG4| = 4, 〈aG4〉 ∩
〈cG4〉 = G4, b2G4 = a2c2G4, d2G4 = c2G4, abG4 = a−1G4, acG4 = aG4,
bcG4 = bG4, adG4 = aG4, dbG4 = d−1G4, cdG4 = c−1G4, AG4/G4 is
elementary abelian and central in G/G4.

We have that 〈a2, d2〉G4 = G2. By Corollary 2.8, we have that G4 =
Φ(G2) and so 〈a2, d2〉 = G2. Since b2G4 = a2d2G4, we have b2 = a2+4sd2+4r,
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for some r and s. Therefore, up to replacing a and d with suitable powers,
we may assume that b2 = a2d2.
Since 〈a, d〉 satisfies the hypothesis of Lemma 2.12, the subgroup 〈a, d〉 is
modular metacyclic not isomorphic to Q8, and so [〈a, d〉, 〈a2, d2〉] ≤ 〈a, d〉8.
This implies that [〈a, d〉, b2] ≤ 〈a8, d8〉. In particular, from [a, b2]G8 =
G8 and [d, b2]G8 = G8, it follows [a, b]bG8 = [a, b]−1G8 and [d, b]bG8 =
[d, b]−1G8. Since 〈[a, b], [d, b]〉G8 = 〈a2, d2〉G8 and 〈a2, d2〉G8/G8 is abelian,
we have that b acts as inversion on 〈a2, d2〉G8/G8. Since b2 ∈ 〈a2, d2〉, we
get that |b2G8| ≤ 2, i.e. b4 ∈ G8. Hence, (a2d2)2 ∈ G8. This implies that
a4d4 ∈ G8. Now, the subgroup G8 = Φ(G4) and G4 = 〈a4, d4〉. Hence, the
condition a4d4 ∈ G8 implies that a4G8 = d−4G8 and so G4 = 〈a4〉 = 〈d4〉.
Now c is an element such that c2G4 = d2G4, and dcG4 = d−1G4. Since
G4 = 〈d4〉, we have that c2 = d2+4h1 and dc = d−1+4h2 . Since 〈d2〉 = 〈c2〉,
we have that d2 = (d2)c = d−2+8h1 , i.e. d4 = 1. Since G4 = 〈d4〉, we get
that G4 = 1, a contradiction because we are assuming that exp(G) ≥ 8.

Proposition 5.12. Let G be a non-trivial monotone 2-group such that G =
H4(G). The quotient G/G4 cannot be isomorphic to a group in A11.

Proof. Suppose that G = 〈a, b, c, d, A〉, where |aG4| = 4, |cG4| = 4, 〈aG4〉 ∩
〈cG4〉 = G4, b2G4 = a2c2G4, d2G4 = c2G4, abG4 = a−1G4, acG4 = aG4,
bcG4 = b−1G4, daG4 = d−1G4, dbG4 = dG4, cdG4 = ca2G4 and AG4/G4 is
elementary abelian and central in G/G4.

We have that 〈a2, c2〉G4 = G2. By Corollary 2.8, we have that G4 =
Φ(G2) and so 〈a2, c2〉 = G2. Since b2G4 = a2c2G4, we have b2 = a2+4sc2+4r,
for some r and s. Therefore, up to replacing a and c with suitable powers,
we may assume that b2 = a2c2.
Since 〈a, c〉 satisfies the hypothesis of Lemma 2.12, the subgroup 〈a, c〉 is
modular metacyclic not isomorphic to Q8, and so [〈a, c〉, 〈a2, c2〉] ≤ 〈a, d〉8.
This implies that [〈a, c〉, b2] ≤ 〈a8, c8〉. In particular, from [a, b2]G8 = G8 and
[c, b2]G8 = G8, it follows [a, b]bG8 = [a, b]−1G8 and [c, b]bG8 = [d, b]−1G8.
Since 〈[a, b], [c, b]〉G8 = 〈a2, c2〉G8, and 〈a2, c2〉G8/G8 is abelian, we have
that b induces the inversion on 〈a2, c2〉G8/G8. Since b2 ∈ 〈a2, c2〉, we get that
|b2G8| ≤ 2, i.e. b4 ∈ G8. Hence, (a2c2)2 ∈ G8. This implies that a4c4 ∈ G8.
Now, the subgroup G8 = Φ(G4) and G4 = 〈a4, c4〉. Hence, the condition
a4c4 ∈ G8 implies that a4G8 = c−4G8 and so G4 = 〈a4〉 = 〈c4〉. Therefore,
since ab ∈ a−1G4, we have that ab = a−1+4h, for some h. Since bc ∈ b−1G4,
we have that bc = b−1a4k, for some k. Now, (a2)b = (a2)−1+4h = a−2+8h
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and bc
2

= (b−1c4k)−1a4k = a−4kba4k = ba−4k(−1+4h)a4k = ba−8k+16hk.
Since a2c2 = b2, we have that a2c2 = (a2c2)b = a−2+8hc2a−8k+16hk =
a−2c2a8h−8k+16hk and so a2c2 = a−2c2a8h−8k+16hk. Then, we obtain that
a4 ∈ 〈a8〉. Since Φ(G4) = G8 = 〈a8〉, we obtain that G4 = 1, a contradiction
because we are assuming exp(G) ≥ 8.

This concludes the first part of this section.
From now on, we deal with non-trivial monotone 2-groups such that G =
H4(G) and G/G4 is isomorphic to a group in A1, in A4 or in A6.

The next proposition determines the non-trivial monotone 2-groups such
that G = H4(G) and G/G4 is isomorphic to a group in A6.

Proposition 5.13. Let G be a non-trivial monotone 2-group such that G =
H4(G). Let G/G4 be isomorphic to a group in A6. Then G is either in C2

or in C3.

Proof. Let G be 〈a, c, b, A〉 where |aG4| = 4, |cG4| = 4, 〈aG4〉 ∩ 〈cG4〉 = G4,
b2G4 = a2G4, acG4 = aG4, abG4 = a−1G4, cbG4 = cG4, and AG4/G4 is
elementary abelian and central in G/G4.

We have that 〈a2, c2〉G4 = G2. By Corollary 2.8, we have that Φ(G2) =
G4. Therefore, 〈a2, c2〉 = G2. Moreover, since by Lemma 2.7, G2 is powerful,
we have that 〈a2i

, c2i〉 = G2i
. From b2G4 = a2G4, we have b2 = a2+4sc4r,

for some r and s. Therefore, up to replacing a with a suitable power, we
may assume that b2 = a2c4r.
By Lemma 2.12, the subgroup 〈a, c〉 is modular and so [〈a, c〉, 〈a2, c2〉] ≤
〈a, c〉8. Since ab = a−1qa and cb = cqc, where qa and qc are in G4, we have
that (a2)b = (a−1qa)2 = a−2q2

a[qa, a
−1]qa and (c2)b = c2q2

c [qc, c]
qc . Then

(a2)bG8 = a−2G8 and (c2)bG8 = c2G8. Since b2 = a2c4r, we have that
(a2c4r)b = a2c4r and so, in particular, a2c4rG8 = (a2c4r)bG8 = a−2c4rG8.
This means that a4G8 ∈ G8. Since G4 = 〈a4, c4〉G8 and G8 = Φ(G4), we
get that G4 = 〈c4〉.

Since [c,G] ≤ G4, we have that 〈c〉 is normal in G. From caG4 = cG4

and cbG4 = cG4, we have that ca = c1+4s1 and cb = c1+4s2 . Now, a4 and b4

lie in 〈c4〉, and so |c4s1 | ≤ 4 and |c4s2 | ≤ 4.
Suppose that |c4s1 | = 4. Then ca

2
= c1+8s1 , with |c8s1 | = 2. Since

b2 = a2c4r, we have that cb
2

= c1+8s1 with |c8s1 | = 2, and so cb = c1+4s2 with
|c4s2 | = 4. Now cab = c1+4s1+4s2 and |c4s1+4s2 | ≤ 2. This is a contradiction,
because (ab)2G4 = a2G4, i.e. (ab)2 = a2c4t, for some t, and so c1+8s1 =
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ca
2

= c(ab)2
= c.

This shows that |c4s1 | ≤ 2 and, since ca
2

= cb
2
, we have that also |c4s2 | ≤ 2.

In particular, the subgroup 〈a, c2〉 is abelian and so, if a4 = c8l, then we
have that ã = ac−2l has order 4. In the same way, since the subgroup 〈b, c2〉 is
abelian and b2 = a2c4r we have that b4 = c8l+4r. So we get that b̃ = bc−2(r+l)

has order 4. Moreover, b̃2 = b2c−4r−4l = a2c4rc−4r−4l = a2c−4l = ã2,
cã = c1+4s1 and cb̃ = c1+4s2 .
Since ãb̃G4 = ã−1G4, we have also that ãb̃ = ã−1c4s3 . Since ã2 = b̃2, we get
ãb̃ = ã−1c4s3 , with |c4s3 | ≤ 2. Therefore, we have 〈a, b, c〉 = 〈ã, b̃, c〉 with
|c| = 2n, |ã| = 4, ã2 = b̃2, cã = c1+4s1 , cb̃ = c1+4s2 and ãb̃ = ã−1c4s3 , with
|c4si | ≤ 2 for i = 1, 2, 3.

Let A be 〈c1, . . . , cm〉 with |ciG4| = 2. Since c2
i ∈ G4 and cciG4 =

cG4, we get c2
i = c4ri and cci = c1+4ki with |c4ki | ≤ 2. In particular,

replacing ci with cic
−ri , we may assume that |ci| = 2. Moreover, since

ãciG4 = ãG4 and b̃ciG4 = b̃G4, we get ãci = ãc4ji and b̃ci = b̃c4li . If
|c4ji | ≥ 2, then the subgroup 〈ã, ci〉 is not metacyclic because it contains the
3-generated elementary abelian subgroup 〈ã2, ci, c

2n−1〉. If |c4li | ≥ 2, then
the subgroup 〈b̃, ci〉 is not metacyclic because it contains the 3-generated
elementary abelian subgroup 〈b̃2, ci, c2n−1〉.
Therefore, we have cci = c1+4ki , ãci = ã, b̃ci = b̃.
In particular, up to reordering the indices and replacing perhaps ci with cic1,
we have that G is 〈ã, b̃, c, c1〉 × A, where A is elementary abelian, |c| = 2n,
|ã| = 4, ã2 = b̃2, cã = c1+4s1 , cb̃ = c1+4s2 and ãb̃ = ã−1c4s3 , |c1| = 2 and
cc1 = c1+4k1 , ac1 = a and bc1 = b, where |c4s1 | ≤ 2, |c4s2 | ≤ 2, |c4s3 | ≤ 2 and
|c4k1 | ≤ 2.
Now if c4k1 = 1, then G is in C2. If |c4k1 | = 2, then, up to replacing perhaps
a with ac1 and b with bc1, we have that G is in C3.

The next lemma states a preliminary result useful in order to classify
the non-trivial monotone 2-groups such that G = H4(G) and G/G4 is in A1

or in A4.

Lemma 5.14. Let G be a non-trivial monotone 2-group such that G =
H4(G).
Suppose that G = 〈a, b, c1, . . . , cr〉, with |aG4| = 4, |bG4| = 4, 〈aG4〉 ∩
〈bG4〉 = G4, abG4 = a−1G4 and 〈c1, . . . , cr〉G4/G4 is elementary abelian
and central in G/G4.
Then, we may assume that |ci| = 2, for every i ∈ {1, . . . , r} .
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Proof. G = 〈a, b, c1, . . . , cr〉, with |aG4| = 4, |bG4| = 4, 〈aG4〉 ∩ 〈bG4〉 = G4,
abG4 = a−1G4 and 〈c1, . . . , cr〉G4/G4 is elementary abelian and central in
G/G4.

Since 〈a, b〉 satisfies the hypothesis of Lemma 2.13, we have that 〈a, b〉
is non-modular metacyclic. Hence, up to renaming the generators, we may
assume that 〈a〉 � 〈a, b〉, and ab = a−1+4h. By Lemma 2.13, we also have
that 〈a2, b2〉 = Φ(〈a, b〉). Since the Frattini subgroup of a metacyclic group
is powerful, we obtain 〈a4, b4〉 = G4 ∩ 〈a, b〉 = Φ(〈a2, b2〉).

In particular, c2
i ∈ 〈a4, b4〉 and so c2

i = a4rb4s.
We now prove that we may assume that ci has of order 2. We distinguish
three cases depending on the values of r and s.

- Suppose first that c2
i = b4s. The subgroup 〈c2

i 〉 is normal in 〈ci, b〉 and the
quotient 〈b, ci〉/〈c2

i 〉 is metacyclic with a generator of order 2. Since
〈ci, b〉G4/G4 is isomorphic to C4×C2, we have that 〈b, ci〉 is not semidi-
hedral. Therefore, by Lemma 2.11, we have that ci is in the normalizer
of b and, since 〈c2

i 〉 ≤ 〈b4〉, we have that bc = b1+4h, with |b4h| ≤ 2. In
particular, the subgroup 〈b2, ci〉 is abelian and so, up to replacing ci

with cib
−2s, we may assume that ci has order 2. Hence, in this case

the claim is true.

- Suppose now c2
i = a4rb4s with |b4s| ≥ 2, |a4r| ≥ 2 and a4r /∈ 〈b4〉.

We first show that 〈ci, b2〉 is modular. Since 〈ci, b〉 is metacyclic, there
exists cj1i b

j2 /∈ Φ(〈ci, b〉) such that 〈cj1i bj2〉� 〈ci, b〉.
We distinguish two cases depending on the parity of j2.

Suppose that j2 is even. Since cj1i b
j2 is a generator we have that j1 is

odd and so we have that 〈cj1i bj2 , b〉 = 〈ci, b〉 with (cj1i b
j2)b = (cj1i b

j2)r,
for some r. It follows that (cj1i b

j2)b
2

= (cj1i b
j2)r

2
, and, being r2 ≡ 1

mod 4, we have that 〈cj1i bj2 , b2〉 = 〈ci, b2〉 is modular metacyclic.

Suppose that j2 is odd. Since 〈bG4, ciG
4〉 is isomorphic to C4×C2, we

have that [ci, b] ∈ G4 ∩ 〈b, ci〉. Since (cj1i b
j2)2G4 = b2G4, we have that

(cj1i b
j2)ci = (cj1i b

j2)1+4r. If follows that 〈cj1i bj2 , ci〉 is modular, and so
〈b2, ci〉 is modular.

Therefore, we get that 〈b2, ci〉 is modular.

We now show that we may assume c2
i ∈ 〈a4〉.

Since 〈b2, ci〉 is modular, we have that 〈b2, ci〉2 = 〈b4, a4r〉 and there
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exists an element clii b
2l2 in 〈b2, ci〉 such that (clii b

2l2)2 = a4r.
If li is even, then clii b

2l2 ∈ 〈c2
i , b

2〉 = 〈a4r, b2〉. Since 〈a, b2〉 is modular
we have that 〈a4r, b2〉2 = 〈a8r, b4〉 and so (clii b

2l2)2 ∈ 〈a8r, b4〉. Now,
(clii b

2l2)2 = a4r, and so we have that a4r ∈ 〈a8r, b4〉. This means that
〈a4r, b2〉 = 〈b2〉, i.e. c2

i ∈ 〈b〉, against our assumption. Therefore, we
have that li is odd and, so up to replacing ci with clii b

2l2 , we may
assume that c2

i ∈ 〈a4r〉. In particular, we reduce the proof of this case
to the following.

- Suppose that c2
i = a4r. Then, 〈c2

i 〉 is a normal subgroup in 〈ci, a〉 and the
quotient 〈a, ci〉/〈c2

i 〉 is a metacyclic group with a generator of order
2. Since 〈ci, a〉G4/G4 is isomorphic to C4 × C2, we have that 〈a, ci〉
is not semidihedral. Therefore, by Lemma 2.11, we have that ci is in
the normalizer of a and, since 〈c2

i 〉 ≤ 〈a4〉, we have that ac = a1+4k

with |a4k| ≤ 2. In particular, the subgroup 〈a2, ci〉 is abelian and, up
to replacing ci with cia

−2r, we may assume that ci has order 2.

In the next proposition, we determine completely the non-trivial mono-
tone 2-groups such that G = H4(G) and G/G4 is isomorphic to a group in
A1.

Proposition 5.15. Let G be a non-trivial monotone 2-group such that G =
H4(G). Suppose that G/G4 is in A1.
Then G is isomorphic to a group in C4, or in C5, or in C6.

Proof. Let G = 〈a, b, c1, . . . , cr〉, with |aG4| = 4, |bG4| = 4, 〈aG4〉 ∩ 〈bG4〉 =
G4, abG4 = a−1G4 and 〈c1, . . . , cr〉G4/G4 is elementary abelian and central
in G/G4.

Since 〈a, b〉 satisfies the hypothesis of Lemma 2.13, we have that 〈a, b〉
is non-modular metacyclic. Hence, up to renaming the generators, we may
assume that 〈a〉 � 〈a, b〉, and ab = a−1+4h. By Lemma 2.13, we also have
that 〈a2, b2〉 = Φ(〈a, b〉) and, since the Frattini subgroup of a metacyclic
group is powerful, we have also 〈a4, b4〉 = G4 ∩ 〈a, b〉 = Φ(〈a2, b2〉).
Moreover, by Lemma 2.7 and Corollary 2.8, since G2/G4 = 〈a2, b2〉G4/G4,
we get that G2 = 〈a2, b2〉 and also G2i

= 〈a2i
, b2

i〉 for every i ≥ 1.
By Lemma 5.14, we may assume that ci has order 2 and so we have that
G = 〈a, b〉〈c1, · · · , cr〉, with ab = a−1+4h and |ci| = 2, for all i.

– 87 –



Chapter 5. Monotone 2-Groups of exponent greater than 4 in which G = H4(G)

Since 〈a, ci〉 and 〈b, ci〉 are metacyclic groups with a generator of order 2, and
they are not semidihedral (because they both have a quotient isomorphic to
C4 × C2), we have that ci lies in the normalizer of 〈a〉 and 〈b〉. Moreover,
since ci has order 2, and both 〈a, ci〉 and 〈b, ci〉 have a quotient isomorphic to
C4×C2, we get aci = a1+4hi with |a4hi | ≤ 2 and bci = b1+4ki with |b4ki | ≤ 2.
In particular, we get that ci in the centralizer of 〈a2, b2〉, for all i.

We distinguish various cases depending on the structure of 〈a, b〉.

- Suppose that |b| = 4. Since 〈a, b〉 is such that G4 = 〈a4, b4〉, and b4 = 1,
we have that G4 = 〈a4〉. In particular, we have that ab = a−1+4h, with
|a4h| ≤ 4, 〈a〉 ∩ 〈b〉 = 1 and |a| = 2n = exp(G).

We now prove that 〈ci, cj〉 is abelian.
Suppose that ci and cj do not commute. Then, [ci, cj ] ∈ G4 and,
being c2

i = 1, we get that [ci, cj ]ci = [ci, cj ]−1. Since G4 = 〈a4〉 and
〈a2〉 is contained in the centralizer of ci, we get that [ci, cj ] = a2n−1

.
Moreover, since b has order 4, we have that b ∈ CG(〈ci, cj〉). This
means that G contains 〈b〉 × 〈ci, cj〉 which is isomorphic to C4 × D8,
a contradiction, because C4 × D8 is not monotone. Then, 〈ci, cj〉 is
abelian.

Now, suppose ab = a−1+4h, with |a4h| ≤ 2. We have that (bai1
∏
ci
ji)2 =

b2a2n−1s, for some s. Therefore, for every g ∈ 〈a, c1, . . . , cr〉, we have
that |bg| ≤ 4. This means that b /∈ H4(G), a contradiction.
This implies that ab = a−1+4h, with |a4h| = 4.

So we have that G = 〈a, b, c1, . . . , cr〉 where |a| = 2n, |b| = 4, |ci| = 2,
ab = a−1+4h with |a4h| = 4, aci = a1+4hi with |a4hi | ≤ 2, bci = b and
c
cj
i = ci. Suppose that there exists ci such that aci = a1+4hi , with
|a4hi | = 2. Up to replacing ci with cib

2, we may assume that ci is in
the centralizer of a.
So we have that G = 〈a, b, c1, . . . , cr〉, with |a| = 2n, |b| = 4, |ci| = 2,
〈c1, . . . , cr〉 is elementary abelian and central in G and ab = a−1+4h

with |a4h| = 4. Up to replacing b with ba, we obtain that G is in C5.

- Suppose that |a| = 4. Since 〈a, b〉 is such that G4 = 〈a4, b4〉, and a4 = 1,
we have that G4 = 〈b4〉. In particular, since exp(G) ≥ 8, we have that
ab = a−1, |b| = 2k ≥ 8 and, since 〈a, b〉G4/G4 is isomorphic to K2 we
have that 〈a〉 ∩ 〈b〉 = 1.
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We now prove that 〈ci, cj〉 is abelian. Suppose that ci and cj do not
commute. Then, [ci, cj ] ∈ G4 = 〈b4〉. Since c2

i = 1, we have that
[ci, cj ]ci = [ci, cj ]−1. Now, 〈b2〉 is contained in the centralizer of ci.
Then, we get that [ci, cj ] = b2

k−1
. Moreover, since a has order 4, we

have that a ∈ CG(〈ci, cj〉). This means that G contains 〈a〉 × 〈ci, cj〉
which is isomorphic to C4 ×D8, a contradiction, because C4 ×D8 is
not monotone. Then, 〈ci, cj〉 is abelian.

So we have that G = 〈a, b, c1, . . . , cr〉 where |a| = 4, |b| = 2k, |ci| = 2,
ab = a−1, aci = a, bci = b1+4ki with |b4ki | ≤ 2 and c

cj
i = ci. If

b4ki = 1 for every i, then G is in C5. Suppose that |b4ki | = 2 for some
i. Up to reordering the indices and up to replacing in case ci with
cic1, we may assume that bci = b for every i ≥ 2 and bc1 = b1+4k1 with
|b4k1 | = 2. Let c = c1b

2k−2
. Then ac = a, cb = c−1, ab = a−1 and so

G = 〈a, b, c〉 × 〈c2, . . . , cr〉 is in C5.

- Suppose that |a| = 2n ≥ 8, |b| = 8 and 〈a〉 ∩ 〈b〉 = 〈a2n−1〉. Since b4 ∈ 〈a〉,
we have that ab = a−1+4h, with |a4h| ≤ 4. If |a4h| = 4, then we have
that |ba| = 4, and so, up to relacing b with ba we are in the first case
studied.
So, we may assume that ab = a−1+4h with |a4h| ≤ 2.

We now prove by induction that G is isomorphic to 〈a, b, c, d〉 ∗E×A,
with A elementary abelian, E extraspecial, |a| = 2n ≥ 8, |b| = 8 and
〈a〉 ∩ 〈b〉 = 〈a2n−1〉 and ab = a−1+4h with |a4h| ≤ 2, ac = a1+4h1 with
|a4h1 | ≤ 2, bc = b and ad = a, bd = b1+4h2 with |b4h2 | ≤ 2.
This means that if E 6= 1, then G is a group in C4. Otherwise G is in
C5 or in C6.

We now show that, for all i and j, the commutator [ci, cj ] is con-
tained in 〈a2n−1〉, and so the subgroup 〈ci, cj〉 is either abelian or di-
hedral. Suppose that 〈ci, cj〉 is not abelian. Since c2

i = 1, we have that
[ci, cj ]ci = [ci, cj ]−1 and since [ci, cj ] ∈ G4 = 〈a4〉 ≤ CG(〈ci, cj〉), we
have that [ci, cj ] = a2n−1

. So our claim is proved.

Suppose firstly that 〈c1, · · · , cr〉 is abelian. Then, since we have that
aci = a1+4hi , with |a4hi | ≤ 2 and bci = b1+4ki with |b4ki | ≤ 2. Up to
reordering the indices and up to replacing in case ci with cic1, we may
assume that ac1 = a1+4h1 with |a4h1 | ≤ 2, and aci = a for every i ≥ 2.
Moreover, up to reordering the indices and up to replacing in case ci
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with cic2 for i ≥ 3, we may assume that bc1 = b1+4k1 with |b4k1 | ≤ 2,
bc2 = b1+4h2 with |b4h2 | ≤ 2 , and bci = b for all i ≥ 3.
Hence, up to replacing in case b with ba, we have that G is equal to
〈a, b, c1, · · · , cr〉, with |a| = 2n ≥ 8, |b| = 8 and 〈a〉 ∩ 〈b〉 = 〈a2n−1〉
and ab = a−1+4h with |a4h| ≤ 2, ac1 = a1+4h1 , bc1 = b, ac2 = a,
bc2 = b1+4h2 , and aci = a, bci = b for all i ≥ 3. Therefore, if a4h1 = 1,
then, up to replacing c2 with c2b

2h2 , we get that G is in C5.
If |a4h1 | = 2, then up to replacing c2 with c2b

2h2 , we get that G is in
C6.

Suppose now that 〈c1, · · · , cr〉 is not abelian. Then, up to reordering
the indices, we may assume that 〈c1, c2〉 is dihedral with [c1, c2] =
a2n−1

. We have that ac1 = a1+4h1 with |a4h1 | ≤ 2, ac2 = a1+4h2 with
|a4h2 | ≤ 2, bc1 = b1+4k1 with |b4k1 | ≤ 2 and bc2 = b1+4k2 with |b4k2 | ≤ 2.
Hence, up to replacing a with ach2

1 ch1
2 and b with bck2

1 c
k1
2 , we may

assume that 〈a, b〉 ≤ CG(〈c1, c2〉), |a| = 2n, b4 = a2n−1
, ab = a−1+4h

with |a4h| ≤ 2. Now, for all i ≥ 3, we have [c1, ci] = a2n−1k1i and
[c2, ci] = a2n−1k2i . The element cick2i

1 ck1i
2 is in the centralizer of 〈ci, cj〉

and, being [〈c1, . . . , cr〉, 〈c1, . . . , cr〉] ≤ 〈a2n−1〉, we have that either
cic

k2i
1 ck1i

2 has order 2, or cick2i
1 ck1i

2 has order 4 with (cick2i
1 ck1i

2 )2 = a2n−1
.

Therefore, up to replacing ci with cick2i
1 ck1i

2 or with cick2i
1 ck1i

2 a2n−2
, we

may assume that ci has order 2 and is in the centralizer of 〈c1, c2〉.
This shows that G = 〈c1, c2〉 ∗ 〈a, b, c3, · · · , cr〉. Since 〈a, b, c3, · · · , cr〉
satisfies the same hypothesis of G and |〈a, b, c3, · · · , cr〉| < |G|, we can
conclude by induction that G is in C4.

- Suppose |a| = 8, |b| = 2k ≥ 16 and 〈a〉 ∩ 〈b〉 = 〈b2k−1〉.
We have that ab = a−1+4h. In particular, we get ab

2
= a, b2

k−3
a has

order 4 and G4 = 〈a4, b4〉 = 〈b4〉.

If there exists i such that aci = a5, then 〈b2k−3
a, ci〉 is not metacyclic,

because it contains the 3-generated abelian subgroup 〈ci, a2b2
k−2

, a4〉.
Therefore, we have that aci = a, for all i.

Suppose there exists 〈ci, cj〉 non abelian. Since c2
i = 1, we have that

[ci, cj ]ci = [ci, cj ]−1. Now, [ci, cj ] ∈ G4 = 〈b4〉 and 〈b4〉 ∈ CG(〈ci〉),
and so [ci, cj ] = b2

k−1
. The subgroup 〈b2k−3

a, ci, cj〉 is isomorphic to
C4 ×D8, which is not monotone, a contradiction.
Then, we get that 〈ci, cj〉 is abelian for all i and j.
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So, we get that ab = a−1+4h, aci = a for all i and 〈c1, . . . , cr〉 is
elementary abelian. Since bci = b1+4ki with |b4ki | ≤ 2, up to reordering
the indices and replacing perhaps ci with cic1, we may assume that
bc1 = b1+4k1 with |b4k1 | ≤ 2 and bci = b for i ≥ 2.
Up to replacing c1 with c1b

2k−2k1 , we get that G is in C5.

- Assume now, |a| ≥ 8, |b| ≥ 8 and G4 = 〈a4, b4〉 is not cyclic. So, we have
ab = a−1+4h and Ω2(〈a, b〉) ≤ Φ(〈a, b〉).

We now prove that 〈ci, cj〉 is abelian.
Suppose that ci and cj do not commute. Then, [ci, cj ] ∈ G4 = 〈a4, b4〉,
and 〈a2, b2〉 is contained in the centralizer of ci and of cj . In particular,
this implies that [ci, cj ] ∈ Ω1(G4).
Since G2 is modular and it is 2-generated, we have that Ω1(〈a, b〉)
has order 4. In particular, there exists z ∈ Ω1(〈a2, b2〉) such that
〈z〉 ∩ 〈ci, cj〉 = 1. Moreover, since G4 is not cyclic, z ∈ 〈a4, b4〉 =
Φ(〈a2, b2〉). Now, G2 is a powerful group and so there exists d ∈ 〈a2, b2〉
such that d2 = z. Since 〈a2, b2〉 ≤ CG(〈ci, cj〉), we have that G contains
the subgroup 〈d, ci, cj〉 isomorphic to C4×D8, a contradiction, because
C4 ×D8 is not monotone.
This shows that the subgroup 〈c1, . . . , cr〉 is elementary abelian.

· Suppose that |b2| = |a8h|.
Since b2

k−1
is not central in 〈a, b〉 and 〈a〉 ∩ 〈b〉 ≤ Z(〈a, b〉),

we get that 〈a〉 ∩ 〈b〉 = 1. Moreover, we have that (ba)2 =
b2a4h and so Ω1(〈ba〉) = Ω1(〈a〉). If |b4ki | = 2, then the sub-
group 〈ab, ci〉 contains the 3-generated elementary abelian sub-
group 〈a2n−1

, b2
k−1

, ci〉. Moreover, up to replacing ci in case with
cib

2k−1
, we may assume that a4hi = 1.

Hence, G is a group in the family C5.

· Suppose now |b2| = |a4h|. Now, we have that (ba)2 = b2a4h. If
〈a〉 ∩ 〈b〉 = 〈a2n−1〉 = 〈b2k−1〉, then |ba| = 2k−1 and |(ba4h)2| =
2k−2 = |a8h|. Hence, we are in the previous case.

So, we may assume that 〈a〉 ∩ 〈b〉 = 1. Now, |ba| = 2k and
(ba)2k−1

= b2
k−1

a2n−1
. Then, we have that a4hi = 1 if and only

if b4ki = 1. In fact, suppose that a4hi = 1 and |b4ki | = 2. Then
〈ba, ci〉 is not metacyclic, because it contains the 3-generated el-
ementary abelian subgroup 〈b2k−1

a2n−1
, b4ki , ci〉, a contradiction.

– 91 –



Chapter 5. Monotone 2-Groups of exponent greater than 4 in which G = H4(G)

If |a4hi | = 2 and b4ki = 1, then 〈ba, ci〉 is not metacyclic, be-
cause it contains the 3-generated elementary abelian subgroup
〈b2k−1

a2n−1
, a4hi , ci〉.

Therefore, if a4hi = 1 for every i, then G is a group in the family
C4.
Suppose that |a4hi | = 2 for some i. Then cib2

k−2
is an element of

order 4, such that 〈cib2
k−2〉 is central 〈a, c1, . . . , cr〉 and cbi = c−1

i .
Therefore, we have that G is in the family C5.

· Suppose now |b2| > |a4h|. We have that ba is an element of order 2k,
with (ba)2k−1

= b2
k−1

.

We distinguish two cases depending on the size of the intersection
〈a〉 ∩ 〈b〉.
Suppose first that 〈a〉 ∩ 〈b〉 = 1. Then, if |a4hi | = 2, then the
subgroup 〈ba, c1〉 is not metacyclic because it contains the 3-
generated elementary abelian subgroup 〈b2k−1

, a2n−1
, c1〉. Then,

we get that a4hi = 1 for every i ∈ {1, . . . , r}.
If b4ki = 1 for every i, then G is in the family C5.
If |b4ki | = 2 for some i, then up to reordering the indices, we may
assume that |b4k1 | = 2 and, up to replacing in case ci with c1ci,
we may assume that ci is central in G for every i ≥ 2. Up to
replacing c1 with c1b

2k−2
, we get that G lies in C5.

Suppose now that 〈a〉 ∩ 〈b〉 = 〈a2n−1〉 = 〈b2k−1〉.
If |b2| ≥ |a|, then we have that a4hi = 1. In fact, if |a4hi | = 2,
then the subgroup 〈b2r

a, ci〉, with |b2r| = |a|, is not metacyclic,
because it contains the 3-generated elementary abelian group
〈b2k−2

a2n−2
, a2n−1

, ci〉. Hence, we have that a4hi = 1 for every
i ∈ {1, . . . , r}. Up to reordering the indices and up to replacing
ci with cic1 for i ≥ 2, we may assume that bc1 = b1+4k1 with
|b4k1 | ≤ 2 and bci = b for every i ≥ 2. Up to replacing c1 with
c1b

2k−2k1 , we get that G lies in C5.

Suppose now that |b2| < |a|.
Up to reordering the indices and up to replacing ci with cic1 for
i ≥ 2, we may assume that ac1 = a1+4h1 with |a4h1 | ≤ 2 and
aci = a for every i ≥ 2. Up to reordering the indices and up to
replacing ci with cic2 for i ≥ 3, we may assume that bc1 = b1+4k1

with |b4k1 | ≤ 2, bc2 = b1+4k2 with |b4k2 | ≤ 2 and bci = b for every
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i ≥ 3.

If a4h1 = 1, then, up to replacing c1 with c1b
2k−2k1 and c2 with

c2b
2k−2k2 , we get that G is a group in C5.

If |a4h1 | = 2, then up to replacing in case b with ba we may assume
that b4k1 = 1. Up to replacing c2 with c2b

2k−2k2 , we get that G
is in C6.

In the last part of this section we deal with non trivial monotone 2-
groups with G = H4(G) and G/G4 in A4. The following lemma determines
the structure of a maximal subgroup of such a group G.

Lemma 5.16. Let G be a non trivial monotone 2-group with G = H4(G),
and G/G4 isomorphic to a group in A4.
Suppose that G = A〈b〉 with AG4/G4 abelian of exponent 4 and |A2G4/G4| ≥
4, |bG4| = 4, b2G4 /∈ A2G4/G4 and abG4 = a−1G4 for every a ∈ A.
The subgroup H = A〈b2〉 is modular and it does not involve Q8.

Proof. Let G = 〈a1, . . . , as, c1, . . . , cr, b〉, where A = 〈a1, . . . , as, c1, . . . , cr〉
and AG4/G4 = 〈a1G

4〉 × · · · × 〈asG4〉 × 〈c1G
4〉 × 〈crG4〉 is abelian s ≥ 2,

|aiG4| = 4, |ciG4| = 2, |bG4| = 4 and abG4 = a−1G4 for every a ∈ A.
Let H be the subgroup 〈A, b2〉 = 〈a1, . . . , as, c1, . . . , cr, b

2〉.
We first show that the subgroup H is powerful.

By Lemma 2.7 and Corollary 2.8, we have that G2 is powerful and G4 =
Φ(G2). Since G2 = 〈a2

1, . . . , a
2
s, b

2〉G4, we have that G2 = 〈a2
1, . . . , a

2
s, b

2〉.
Moreover, G2i

= 〈a2i

1 , . . . , a
2i

s , b
2i〉. In particular, since G2 ≤ H, we have

that G2i ≤ H2i−1
for every i ≥ 1.

The subgroup A satisfies the hypothesis of Proposition 2.14, and so A is
modular and does not involve Q8. In particular, A is powerful and, in order
to conclude that H is powerful, it is sufficient to prove that [ai, b2] ∈ H4,
[cj , b2] ∈ H4 for every i ∈ {1, . . . , s} and j ∈ {1, . . . , r}.

Since, 〈a2
1, . . . , a

2
s, b

4〉G4/G4 = H2G4/G4, we get that 〈a2
1, . . . , a

2
s, b

4〉G4 =
H2G4. From G2i ≤ H2i−1

we have that G4 ≤ H2, and so H2G4 =
H2. Moreover, G4 = 〈a4

1, . . . , a
4
s, b

4〉 ≤ 〈a2
1, . . . , a

2
s, b

4〉, and so we obtain
〈a2

1, . . . , a
2
s, b

4〉G4 = 〈a2
1, . . . , a

2
s, b

4〉. Therefore, we have 〈a2
1, · · · , a2

s, b
4〉 =

H2. In particular, H2 is the Frattini subgroup of a monotone group and so
it is powerful. In particular, H2i

= 〈a2i

1 , . . . a
2i

s , b
2i+1〉.
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Now, let a ∈ A such that a2 /∈ G4. The subgroup 〈a, b〉 is such that
〈a, b〉G4/G4 is isomorphic to K2. Therefore, by Lemma 2.13, we have that
〈a, b〉 is non-modular metacyclic, with 〈a2i

, b2
i〉 = 〈a, b〉2i

. Then, there exist
x, y ∈ 〈a, b〉 such that 〈a, b〉 = 〈x, y〉 and xy = x−1+4h. Since 〈b〉G4 is not
normal in 〈a, b〉G4/G4, we have that b /∈ 〈x, y2〉. Hence, b = yjxi with
j odd, and so 〈a, b〉 = 〈x, b〉, with 〈x〉 � 〈x, b〉 and xb = x−1+4k. Now,
xb

2
= x1−8k+16k2

, and so [x, b2] ∈ 〈x8〉. Now, 〈[x, b2]〉 = 〈[a, b2]〉 and so we
get that [a, b2] ∈ G8 ≤ H4. Since A is generated by {a ∈ H : a2 /∈ G4}, the
previous argument shows that H is powerful.

Now, H/H4 = 〈a1H
4〉 × · · · × 〈asH4〉 × 〈c1H

4〉 × · · · × 〈crH4〉 × 〈bH4〉
is abelian with |H/H4| ≥ 4. In fact, from H4 ≤ G4 ≤ H2, it follows that
|H2/G4| ≤ |H2/H4|. Since A ≤ H, we have that A2G4 ≤ H2, and so, being
|A2G4/G4| ≥ 4, we have that |H2/H4| ≥ |H2/G4| ≥ 4. Hence, H satisfies
the hypothesis of Proposition 2.14 and so H is modular and does not contain
a subgroup isomorphic to Q8.

The next lemma states some properties of non-trivial monotone 2-groups
with G = H4(G) and G/G4 isomorphic to a group in A4.

Lemma 5.17. Let G be a non-trivial monotone 2-group with G = H4(G).
Suppose that G = 〈a1, . . . , as, c1, . . . , cr, b〉, where 〈aiG4〉 × · · · × 〈asG4〉 ×
〈ciG4〉×· · ·×〈crG4〉 is abelian with s ≥ 2, |aiG4| = 4, |ciG4| = 2, |bG4| = 4,
b2G4 /∈ 〈a1G

4〉 × · · · × 〈asG4〉 × 〈ciG4〉 × 〈crG4〉, abG4 = a−1G4, for every
a ∈ 〈a1, . . . , as, c1, . . . , as〉.
Let A be the group 〈a1, . . . as〉, K be the group 〈A, b2〉 and H be the group
〈K, c1, . . . , cr〉.
Then, the followings hold:

1. the group K is modular, it does not involve Q8 and 〈K, b〉2i
= G2i

for
every i ≥ 1;

2. the group A is modular, it does not involve Q8 and A4 = G4 ∩A;

3. we may assume that |ci| = 2;

4. we may assume that G = K〈c1, . . . , cr〉 with 〈c1, . . . , cr〉 elementary
abelian. Moreover, K2 ≤ CG(ci) for every i, ci ∈ NG(〈a〉) for every
a ∈ A and ci ∈ NG(〈b〉).
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Proof. By Lemma 2.7, G2 is powerful and Φ(G2) = G4. Since 〈K, b〉2G4 =
G2, we have 〈K, b〉2 = G2 and so 〈K, b〉2i

= G2i
, for all i ≥ 1. Moreover,

K ≤ H and, by Lemma 5.16, the group H is modular and does not involve
Q8. This proves (1).

By Lemma 5.16, the group H is modular and does not involve Q8. Since
A is a subgroup of H, the subgroup A is modular and does not involve
Q8. In particular A is powerful, and so A2i

= 〈a2i

1 , . . . , a
2i

s 〉. Now, AG4/G4

is isomorphic to a direct product of s copies of C4. Hence, we get that
A2 = A2(G4 ∩ A), i.e. (G4 ∩ A) ≤ A4 = Φ(A2). Since A is modular,
A2/(G4 ∩ A) is an elementary abelian group of order 2s, and A2 is at most
s-generated, we get that A4 = (G4 ∩ A). Then, A/A4 is isomorphic to a
direct product of s copies of C4. This proves (2).

Since c2
i ∈ G4 = 〈A4, b4〉, and since A is powerful, there exists a ∈ A\A2

such that c2
i ∈ 〈a, b〉4. Now, applying Lemma 5.14 to 〈a, b, ci〉, we may

assume ci of order 2 and (3) is proved.

In order to show that ci normalizes every element of A, it is sufficient to
check that ci normalizes every a ∈ A\A2, because for every d ∈ A2, being A
powerful, there exists a ∈ A\A2, such that d ∈ 〈a〉.
So let a ∈ A \A2. In particular, a2 /∈ A4, because all the elements of A not
in A2 have order 4 modulo A4.
Consider now 〈a, ci〉. Since ci has order 2 and 〈a, ci〉 has a quotient isomor-
phic to C4 × C2, we have that 〈a, ci〉 is not semidihedral. Then, by Lemma
2.11, we have that ci normalizes 〈a〉 and aci = a1+4h, with |a4h| ≤ 2. There-
fore, we have that ci ∈ NG(〈a〉) and ci ∈ CG(a2), for every a ∈ A\A2. Since
A2 is generated by {a2 : a ∈ A\A2}, we get that ci ∈ CG(A2).
Consider now 〈b, ci〉. Since ci has order 2 and 〈b, ci〉 has a quotient isomor-
phic to C4 × C2, we have that 〈b, ci〉 is not semidihedral. By Lemma 2.11,
we have that ci normalizes 〈b〉 and bci = b1+4k, with |b4k| ≤ 2. In particular,
we get that ci centralizes 〈b2〉. Since 〈A2, b2〉 is the Frattini subgroup of G,
we have that ci centralizes G2. This proves the second part of (4).

Suppose now that 〈ci, cj〉 is not abelian. Since c2
i = 1, we get that

[ci, cj ]ci = [ci, cj ]−1. Now, [ci, cj ] lies in G4 and G4 ≤ CG(〈ci, cj〉). Then
[ci, cj ] is in G4 and has order 2. Now, A is modular, it does not involve
a Q8 and [A : A4] ≥ 4. Then, there exists an element d of order 4 in A

such that 〈d〉 ∩ 〈ci, cj〉 = 1. Since d is in the centralizer of 〈ci, cj〉, we have
that G contains a subgroup isomorphic to C4 ×D8, which is not monotone.
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Therefore, we have that 〈ci, cj〉 is abelian and also the first part of (4) is
proved.

Using the previous results, in the following remark, we set up some
notations useful to continue our investigation.

Remark 5.18. Let G be a non trivial monotone 2-group with G = H4(G).
Let G = 〈a1, . . . , as, c1, . . . , cu, b〉, where 〈a1G

4〉 × · · · × 〈asG4〉 × 〈c1G
4〉 ×

· · · × 〈cuG4〉 is abelian with s ≥ 2, |aiG4| = 4, |ciG4| = 2, |bG4| = 4,
b2G4 /∈ 〈a1G

4〉 × · · · × 〈asG4〉 × 〈c1G
4〉 × 〈cuG4〉, abG4 = a−1G4, for every

a ∈ 〈a1, . . . , as, c1, . . . , cu〉.
Let K be the group 〈a1, . . . , as, b

2〉, let L be the group 〈K, b〉 and let H be
the group 〈K, c1, . . . , cr〉
Since G = H4(G), we may assume that |b| ≥ 8. Now, by Lemma 5.17, the
subgroup K is modular and does not involve Q8.
Since 〈ai, b〉G4/G4 is isomorphic to K2, by Lemma 2.13, we have that G4 ∩
〈ai, b〉 = 〈a4

i , b
4〉. From abi(G

4 ∩ 〈ai, b〉) = a−1
i (G4 ∩ 〈ai, b〉), it follows that

abi = a−1+4hi
i b4ki.

Since 〈ai, b2
ki 〉 is modular, we get that there exists xi ∈ 〈ai, b2

ki 〉 with 〈x2
i 〉 =

〈a−2+4hi
i b4ki〉.

In particular, 〈xi, b〉 = 〈ai, b〉 and xbi = x−1+4ri
i .

Let X be the subgroup 〈x1, . . . , xs〉. We have that K = 〈X, b2〉, and so
X is a modular group that does not involve Q8.
Moreover, X4 = 〈x4

1, . . . , x
4
s〉 and so X/X4 is isomorphic to a direct product

of s copies of C4. Clearly, we have that b normalizes X and L = 〈X, b〉 is
such that L/L4 = (〈x1L

4〉×· · ·×〈xsL4〉)o〈bL4〉, where |xiL4| = 4, |bL4| = 4
and xbL4 = x−1L4 for every x ∈ X.
Moreover, by Lemma 5.17, we may assume that 〈c1, . . . , cu〉 is elementary
abelian and so G is equal to 〈X, b〉〈c1, . . . , cu〉.

The next lemma shows that, if X and b are as in Remark 5.18, then the
derived subgroup of X is contained in Ω1(X).
By Remark 2.1, in order to show that the derived subgroup of X is contained
in Ω1(X), it is enough to prove that for every i and j in {1, . . . , s}, the
commutator [xi, xj ] ∈ Ω1(X). So, we prove the following lemma.

Lemma 5.19. Let X, b and L as in Remark 5.18. Then |[xi, xj ]| ≤ 2.

Proof. Since the subgroup 〈xi, xj〉 is metacyclic, the subgroup 〈[xi, xj ]〉 is
the derived subgroup of 〈xi, xj〉.
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Suppose that |〈[xi, xj ]〉| ≥ 4. Since 〈xi, xj〉 is normalized by b, and 〈xi, xj〉2
l

=
〈x2l

i , x
2l

j 〉 are characteristic subgroups in 〈xi, xj〉, we can consider the quo-
tient 〈xi, xj , b〉/〈xi, xj〉2

l
with i ≥ 4, such that 〈xi, xj , b〉/〈xi, xj〉2

l
= 〈x̄i, x̄j , b̄〉,

with x̄i
x̄j = x̄i[x̄i, x̄j ] = x̄ix̄i

4hi x̄j
4hj and |x̄i4hi x̄j

4hj | = 4, x̄ib̄ = x̄i
−1+4ri ,

x̄j
b̄ = x̄j

−1+4rj . Being a quotient of a monotone group 〈x̄i, x̄j , b̄〉 is still
monotone.

The subgroup 〈x̄i, x̄j〉 is metacyclic and modular with derived subgroup
of order 4.
Therefore, there exists x̄ and ȳ in 〈x̄i, x̄j〉, such that 〈x̄, ȳ〉 = 〈x̄i, x̄j〉 and
x̄ȳ = x̄1+4t, where |x̄4t| = 4. In particular, we have that 〈x̄4, ȳ4〉 is central in
〈x̄, ȳ〉 and we also have that 〈x̄2, ȳ2〉 is abelian. Since 〈x̄4, ȳ4〉 = 〈x̄i4, x̄j4〉,
we have that x̄i4 and x̄j

4 are central in 〈x̄i, x̄j〉 and 〈x̄i2, x̄j2〉 is abelian.

Since b̄ induces an automorphism on 〈x̄i, x̄j〉, from x̄i
x̄j = x̄i x̄i

4hi x̄j
4hj ,

we have that (x̄ib̄)x̄j
b̄

= x̄i
b̄(x̄i4hi x̄j

4hj )b̄.
We now show that if b̄ inverts the element x̄j4hj x̄i

4hi , then we get a contra-
diction.
In fact,
(x̄ib̄)x̄j

b̄
= (x̄i−1+4ri)x̄j

−1+4rj

= x̄j
1−4rj x̄i

−1+4ri x̄j
−1+4rj

= x̄j x̄i
−1x̄j

−1x̄i
4ri

= (x̄i−1)x̄j
−1
x̄i

4ri .
On the other hand,
x̄i
b̄(x̄i4hi x̄j

4hj )b̄ = x̄i
−1+4ri(x̄i4hi x̄j

4hj )−1

= x̄i
−1x̄i

4ri x̄i
−4hi x̄j

−4hj .

Therefore, we have that (x̄i−1)x̄j
−1
x̄i

4ri = x̄i
−1x̄i

4ri x̄i
−4hi x̄j

−4hj and so
(x̄i−1)x̄j

−1
= x̄i

−1x̄i
−4hi x̄j

−4hj ,
which means
(x̄i−1) = (x̄i−1)x̄j x̄i

−4hi x̄j
−4hj

= (x̄ix̄i4hi x̄j
4hj )−1x̄i

−4hi x̄j
−4hj

= x̄i
−1x̄i

−4hi x̄j
−4hj x̄i

−4hi x̄j
−4hj

= x̄i
−1x̄i

8hi x̄j
8hj

= x̄i
−1(x̄i4hi x̄j

4hj )2

.

So we get that (x̄i−1) = x̄i
−1(x̄i4hi x̄j

4hj )2, a contradiction, because x̄i4hi x̄j
4hj

has order 4, and so (x̄i4hi x̄j
4hj )2 6= 1. This proves that b̄ does not invert

x̄j
4hj x̄i

4hi . In the sequel we refer to (∗) to recall this fact.

Since b̄ acts as inversion on Ω2(〈x̄i〉) and on Ω2(〈x̄j〉), we have that
x̄i

4hi x̄j
4hj is neither in 〈x̄i〉 nor in 〈x̄j〉, otherwise we contradict (∗). We also
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have that 〈x4
i , x

4
j 〉 is not cyclic (otherwise 〈x4

i , x
4
j 〉 = 〈x4

i 〉 or 〈x4
i , x

4
j 〉 = 〈x4

j 〉,
and again we contradict (∗)).

We now show that the elements of order 2 in 〈x̄i, x̄j〉 are contained in
〈x̄i4, x̄j4〉.
In fact, being 〈x̄i, x̄j〉/〈x̄i4, x̄j4〉 isomorphic to C4×C4 we have that there are
no generators of order 2. So suppose that there exists an element z̄ of order
2, such that z̄ ∈ 〈x̄i2, x̄j2〉\〈x̄i4, x̄j4〉. Since the subgroup 〈x̄i, x̄j〉 is modular
metacyclic, we have that 〈x̄i4, x̄j4〉 is the Frattini subgroup of 〈x̄i2, x̄j2〉, and
so z̄ is a generator in 〈x̄i2, x̄j2〉. This implies that 〈x̄i2, x̄j2〉2 = 〈x̄i4, x̄j4〉 is
cyclic, a contradiction.

Therefore, Ω1(〈x̄i, x̄j〉) is contained in 〈x̄i4, x̄j4〉 and so it is central.
This implies that |x̄i4hi | ≥ 4 and |x̄j4hj | ≥ 4. In fact, suppose that

|x̄i4hi | ≤ 2. Since |x̄j4hj x̄i
4hi | = 4 and x̄i4hi is central we have that |x̄j4hj | =

4. It follows that b̄ inverts x̄j4hj x̄i
4hi , a contradiction to (∗). Using the same

argument, if we suppose that |x̄j4hj | ≤ 2, then we reach a contradiction.
Hence, we have that |x̄i4| ≥ 4, |x̄j4| ≥ 4 and 〈x̄i4, x̄j4〉 is not cyclic.

This means that 〈x̄i2, x̄j2〉 is an abelian group, with non-cyclic Frattini
subgroup and such that (x̄i2)b̄ = (x̄i2)−1+4ri and (x̄j2)b̄ = (x̄j2)−1+4rj .
Moreover, the structure of the quotient 〈xi, xj , b〉L4/L4 guarantees that
〈b̄〉 ∩ 〈x̄i2, x̄j2〉 ≤ 〈x̄i4, x̄j4〉 ∩ 〈b4〉.

We may assume, without loss of generality, that |x̄i2| ≥ |x̄j2|.
We distinguish three cases depending on the structure and the intersections
of Ω1(〈b̄, x̄j2〉), Ω1(〈x̄i2, b̄〉) and of Ω1(〈x̄i2, x̄j2〉).

- Suppose that Ω1(〈b̄, x̄j2〉) 6= Ω1(〈x̄i2, b̄〉). If |(x̄j2)4rj−4ri | ≥ 4, then the
subgroup 〈x̄i2x̄j2, b̄〉 contains the 3-generated subgroup Ω1(〈x2

1, x
2
j , b〉),

a contradiction.
Therefore, we have that x̄b̄ = x̄−1+4ri , for every x̄ ∈ 〈x̄i4, x̄j4〉. In par-
ticular, b̄ inverts every element of order 4 in 〈x̄i4, x̄j4〉〉, a contradiction
to (∗).

- Suppose that Ω1(〈b̄, x̄j2〉) = Ω1(〈x̄i2, b̄〉) and Ω1(〈x̄i2, x̄j2〉) 6= Ω1(〈x̄i2, b̄〉).
Then, we have that Ω2(〈x̄j2〉) 6≤ Ω1(〈x̄i2, b̄〉). Therefore, there exists
an element x̄i2i1 x̄j2i2 such that Ω1(〈x̄i2, x̄i2i1 x̄j2i2〉) = Ω1(〈x̄i2, x̄j2〉).
If |(x̄j2)4rj−4ri | ≥ 4, then the subgroup 〈x̄i2i1 x̄j2i2 , b̄〉 contains the 3-
generated subgroup Ω1(〈x2

1, x
2
j , b〉), a contradiction. Therefore, x̄b̄ =

x̄−1+4ri , for every x̄ ∈ 〈x̄i4, x̄j4〉. In particular, b̄ inverts every element
of order 4 in 〈x̄i4, x̄j4〉〉, a contradiction to (∗).
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- To conclude, suppose that Ω1(〈b̄, x̄j2〉) = Ω1(〈x̄i2, b̄〉) = Ω1(〈x̄i2, x̄j2〉).
We have that 〈x̄i2, x̄j2〉 ∩ 〈b̄〉 = 〈b4γ〉. Therefore, there exists a genera-
tor x̄i2i1 x̄j2i2 such that (x̄i2i1 x̄j2i2)2α = b̄4γ . It follows that for some γ1

and α1 such that 〈b̄4γ1〉 = 〈b̄4γ〉 = 〈(x̄i2i1 x̄j2i2)2α1〉 = 〈(x̄i2i1 x̄j2i2)2α〉,
the element (x̄i2i1 x̄j2i2)α1 b̄−2γ1 is an involution which is not in Ω1(〈b̄, x̄j〉)
(otherwise b2γ ∈ 〈xi, xj〉).
Moreover, since x̄i2i1 x̄j2i2 is a generator, at least one of i1 and i2 is
odd.

Suppose that i1 is odd. Now, if |(x̄i2)4ri−4rj | ≥ 4, then 〈x̄i2i1 x̄j2i2 , b̄〉 is
not metacyclic, because it contains Ω1(〈xi, b〉)× 〈(x̄i2i1 x̄j2i2)α1 b̄−2γ1〉.

Suppose that i2 is odd. If |(x̄j2)4rj−4ri | ≥ 4, then 〈x̄i2i1 x̄j2i2 , b̄〉 is
not metacyclic, because it contains Ω1(〈xj , b〉)× 〈(x̄i2i1 x̄j2i2)α1 b̄−2γ1〉.
This implies that, in both cases x̄b̄ = x̄−1+4r, for some r, and for every
x̄ ∈ 〈x̄i4, x̄j4〉. In particular, the element b̄ inverts every element of
order 4 in 〈x̄i4, x̄j4〉, a contradiction to (∗).

This shows that even this case does not arise, and finally proves that |[xi, xj ]| ≤
2.

Now, the previous lemma shows that [X,X] ≤ Ω1(X) and, by construc-
tion, X/X4 is isomorphic to a direct product of s copies of C4. In a modular
metacyclic group where the derived subgroup has order at most 2, the Frat-
tini subgroup is central. Recalling that X is modular and using Lemma
5.19, we get that X2 is central in X. Moreover, being Ω1(X) contained in
X2, we have that Ω1(X) is central in X.

In the next lemma, we study the size of the intersection of X and 〈b〉.

Lemma 5.20. Let G, L, X and b be as in Remark 5.18.
Then X ∩ 〈b〉 ≤ Ω1(〈b〉).

Proof. In order to show that X ∩ 〈b〉 ≤ Ω1(〈b〉), it is sufficient to show that
there are no element of order 4 in X centralized by b.
The proof is done by induction on the exponent of X.
If exp(X) = 4, then X is abelian and its generators are inverted by b.
Therefore the claim holds.
Suppose now that exp(X) = 2n ≥ 8. Let x be an element of order 4 of
X. If x2 /∈ X2n−1

, then x is an element of order 4 in X/X2n−1
, and so, by

the inductive hypothesis, x is not centralized in X/X2n−1
by b. Therefore,
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b does not centralize x in X.
If x2 ∈ X2n−1

, then 〈x〉 = Ω2(〈y〉), where y is an element of maximal order
in X. Since b acts as inversion on X/X4 and X2i

= 〈x2i

1 , . . . , x
2i

s 〉, we have
that b acts as inversion on every abelian section of the form X2i

/X2i+2
. In

particular, b acts as inversion on X2n−2
. Since y is an element of maximal

order, we get that x is an element of order 4 in X2n−2
. Hence, b inverts x.

Therefore, there are no element of order 4 in X centralized by b.
It follows that |X ∩ 〈b〉| ≤ 2, and so X ∩ 〈b〉 ≤ Ω1(〈b〉).

In the following lemmas, we determine the subgroup L = 〈X, b〉.
Since, by Lemma 5.20, the intersection X ∩ 〈b〉 has order at most 2, we
study separately the two cases. Indeed, in Lemma 5.21, we study the group
L when the intersection X ∩ 〈b〉 is trivial. In Lemma 5.23, we study the
group L when the intersection X ∩ 〈b〉 has order 2.

Lemma 5.21. Let G, L, X and b be as in Remark 5.18.
Suppose that X ∩ 〈b〉 = 1.
Then L is in C5.

Proof. Let x be in X. Since X is normalized by b and X ∩ 〈b〉 = 1, we have
that 〈x, b〉 ∩X is normalized by b. This intersection is cyclic and contains
〈x〉. So, we get that 〈x〉 is normalized by 〈b〉.
Since this holds for every x ∈ X, we have that b is a power automorphism
of 〈x1, . . . , xs〉. Moreover, 〈x1, . . . , xs〉 is modular without Q8, and so, up to
renaming the generators, we may assume that either 〈x1, · · · , xs〉 is abelian
or 〈x1, . . . , xs−1〉 is abelian and xxs = x1+4t for every x ∈ 〈x1, . . . , xs−1〉.

If 〈x1, . . . , xs〉 is abelian, then, since b acts as a power automorphism, by
Lemma 1.5.4. on page 32 of [13], we have that b is a universal automorphism
on X. It means that L = 〈X, b〉 is in C5.

Therefore, from now on, we suppose that 〈x1, . . . , xs〉 is non-abelian.
We may assume that 〈x1, . . . , xs−1〉 = 〈x1〉×· · ·×〈xs−1〉 is abelian, |xi| ≤ |xj |
for every 1 ≤ j ≤ i ≤ s− 1 and xxs = x1+4t for every x ∈ 〈x1, . . . , xs−1〉.
Since b is a power automorphism on the abelian group 〈x1, . . . , xs−1〉, we
have that b is a universal automorphism on 〈x1, . . . , xs−1〉, i.e. xb = x−1+4r

for every x ∈ 〈x1, . . . , xs−1〉.
Furthermore, xbs = x−1+4rs

s .
We have that xbxs = xxsb for every x ∈ 〈x1, . . . , xs−1〉, i.e. [b, xs] is in the cen-
tralizer of 〈x1, . . . , xs−1〉. Since 〈[b, xs]〉 = 〈x2

s〉, we get that xs acts as a non-
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trivial automorphism of order 2. In particular, if 2n = exp(〈x1, . . . , xs−1〉) =
|x1|, then xxs = x1+2n−1

for every x in 〈x1, . . . , xs−1〉.
We deal separately with the cases |x1| > |xs|, |x1| = |xs|, and |x1| < |xs|.

Put |x1| = 2n, |xi| = 2ni (for i ∈ {2, . . . , s− 1}), |xs| = 2m and |b| = 2k.

1. Suppose first that |xs| > |x1|.

SinceX∩〈b〉 = 1, we have that the 3-generated subgroup Ω1(〈x1, xs, b〉)
is equal to Ω1(〈x1, xs〉)× Ω1(〈b〉).

We show the following fact:
Claim 1 : for every x ∈ 〈x1, . . . , xs−1〉 such that |x| = 2n, we have that
Ω1(〈x〉) = Ω1(〈xs〉).
Suppose that Ω1(〈x〉) 6= Ω1(〈xs〉).
In particular, Ω1(〈x, xs〉) = 〈x2m−1

s , x2n−1〉 and, since X ∩ 〈b〉 = 1, it
follows that Ω1(〈x, xs, b〉) = 〈x2m−1

s , x2n−1
, b2

k−1〉.
Note that (xx2

s)
b = (xx2

s)
−1+4rsx−4r+4rs . We show that if x−4r+4rs 6=

1, then 〈xx2
s, b〉 is not metacyclic. In fact, since |x| < |xs|, we have

that Ω1(〈xx2
s〉) = 〈x2m−1

s x2n−1j〉, where j ∈ {0, 1}. Therefore, since
x−4r+4rs 6= 1, we have that x2n−1 ∈ 〈xx2

s, b〉. This implies that
Ω1(〈x, xs〉) ≤ 〈xx2

s, b〉. Thus, 〈xx2
s, b〉 contains the 3-generated ele-

mentary abelian subgroup Ω1(〈x, xs, b〉), a contradiction.
In the rest of this chapter, we implicitly use the previous argument,
each time we need to show that a certain 2-generated group contains
a 3-generated subgroup.
Therefore, we have that xb = x−1+4rs .
Now, being |b2| ≥ |x8rs

s | > |x8rs |, we have that 〈xs, bx〉 is not meta-
cyclic. Indeed, Ω1(〈bx〉) = 〈b2k−1

x2n−1j〉 where j ∈ {0, 1}, xbxs =
x−1+4rs
s x2n−1

and so 〈xs, bx〉 contains the 3-generated elementary abelian
group Ω1(〈x, xs, b〉), a contradiction. This concludes the proof of Claim
1.

In particular, Claim 1 implies that 〈x1, . . . , xs−1〉2
n−1

= Ω1(〈x1〉) =
Ω1(〈xs〉).

Since 〈x1, xs〉 is a 2-generated modular group, there exists an even
integer is such that Ω1(〈x1, xs〉) = Ω1(〈x1x

is
s 〉)× Ω1(〈xs〉).

Therefore, if x−4r+4rs
1 6= 1, then the subgroup 〈x1x

is
s , b〉 is not meta-

cyclic, because it contains the 3-generated elementary abelian group
Ω1(〈x1, xs, b〉).
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It follows that xb1 = x−1+4rs
1 .

Since xb
2

s = x
1−8rs+16r2

s
s , we get that |b2| ≥ |x8rs

s |.

We now show that if |b2| ≥ |x4rs
s |, then we reach a contradiction.

In fact, suppose that |b2| ≥ |x4rs
s |. Since Ω1(〈bxs〉) is equal to 〈b2k−1

x2m−1j
s 〉,

where j ∈ {0, 1}, and (x1x
is
s )bxs = (x1x

is
s )−1+4rsx2n−1

1 , we have that
the subgroup 〈x1x

is
s , bxs〉 is not metacyclic because it contains the 3-

generated elementary abelian group Ω1(〈x1, xs, b〉).

Therefore, we have |b2| = |x8rs
s |. Replacing x1 with x1b

2k−1
, we get

that 〈x1b
2k−1

, x2, . . . , xs〉 is abelian, and xb = x−1+4rs for every x in
〈x1b

2k−1
, x2, . . . , xs〉.

This means that L is in C5.

2. Suppose that |x1| = |xs|.

Since X∩〈b〉 = 1, we have that Ω1(〈x1, xs, b〉) = Ω1(〈x1, xs〉)×Ω1(〈b〉).
We distinguish two cases depending on Ω1(〈xs〉).

Suppose first that Ω1(〈x1〉) 6= Ω1(〈xs〉).
Since (x1xs)b = (x1xs)−1+4rsx−4r+4rs+2n−1

1 , if x−4r+4rs+2n−1

1 6= 1, then
the subgroup 〈x1xs, b〉 is not metacyclic because it contains the 3-
generated elementary abelian group Ω1(〈x1, xs, b〉).
Therefore, we have xb1 = x−1+4rs+2n−1

1 . In particular, xb
2

1 = x
1−8rs+16r2

s
1

and so |b2| ≥ |x8rs
1 |.

If |b2| ≥ |x4rs
1 |, then the subgroup 〈xs, bx1〉 is not metacyclic because

it contains the 3-generated group Ω1(〈x1, xs, b〉).
This means that we have |b2| = |x8rs

1 | and so xsb
2k−1

centralizes
〈x1, . . . , xs−1〉. Moreover, since (xsb2

k−1
)b = x−1+4rs+2n−1

s , we have
that L is in C5. This concludes the case Ω1(〈x1〉) 6= Ω1(〈xs〉).

From now on, we assume that Ω1(〈xs〉) = Ω1(〈x1〉).
In particular, this yields 〈x1, . . . , xs〉2

n−1
= Ω1(〈x1〉).

The element x1xs is such that Ω1(〈x1, xs〉) = Ω1(〈x1xs〉) × Ω1(〈xs〉).
We have that (x1xs)b = (x1xs)−1+4rsx−1+4r+2n−1

1 . Now, if x−4r+4rs+2n−1

1 6=
1, then the subgroup 〈x1xs, b〉 is not metacyclic, because it contains
the 3-generated elementary abelian subgroup Ω1(〈x1, xs, b〉).
Therefore, we have that xb1 = x−1+4rs+2n−1

1 and so also xb = x−1+4rs+2n−1

for every x ∈ 〈x1, . . . , xs−1〉. In particular, xb
2

1 = x
1−8rs+16r2

s
1 and so

|b2| ≥ |x8rs
1 |. Now, if |b2| ≥ |x4rs

1 |, then the subgroup 〈xsx1, bxs〉
is not metacyclic. In fact, since (x1xs)bxs = (x1xs)−1+4rsx2n−1

1 and
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Ω1(〈bxs〉) = 〈b2k−1
x2m−1j
s 〉, where j ∈ {0, 1}, we get that 〈xsx1, bxs〉

contains the 3-generated elementary abelian group Ω1(〈x1, xs, b〉).
Therefore, we have that |b2| = |x8rs

s |. Up to replacing xs with xsb2
k−1

,
we get that L is in C5.

3. Suppose, to conclude, that |x1| > |xs|.

Since X∩〈b〉 = 1, we have that Ω1(〈x1, xs, b〉) = Ω1(〈x1, xs〉)×Ω1(〈b〉).

We first prove that we may assume that Ω1(〈x1〉) 6= Ω1(〈xs〉).
Suppose that Ω1(〈x1〉) = Ω1(〈xs〉). Since 〈x1, xs〉 is modular and 2-
generated, there exists x2i1

1 xs such that Ω1(〈x1, xs〉) = Ω1(〈x2i1
1 xs〉)×

Ω1(〈xs〉). Now, we have (x2i1
1 xs)b = (x2i1

1 xs)−1+4rx−4r+4rs
s . Therefore,

if x−4r+4rs
s 6= 1, then the subgroup 〈x2i1

1 xs, b〉 is not metacyclic.
Hence, we have that x2i1

1 xs is such that (x2i1
1 xs)b = (x2i1

1 xs)−1+4r,

Ω1(〈x2i1
1 xs〉) 6= Ω1(〈x1〉), and x

x
2i1
1 xs

1 = x1+2n−1

1 . Therefore, up to
replacing xs with x2i1

1 xs we may assume that Ω1(〈x1〉) 6= Ω1(〈xs〉).

From now on, we assume that Ω1(〈x1〉) 6= Ω1(〈xs〉).
Since (x2

1xs)
b = (x2

1xs)
−1+4rx−4r+4rs

s , if x−4r+4rs
s 6= 1, then the sub-

group 〈x2
1xs, b〉 is not metacyclic (it contains the 3-generated elemen-

tary abelian group Ω1(〈x1, xs, b〉)). This means that xbs = x−1+4r
s .

Since xb
2

1 = x1−8r+16r2

1 , we have that |b2| ≥ |x8r
1 |.

Now, if |b2| ≥ |x4r
1 |, then the subgroup 〈xs, bx1〉 is not metacyclic (it

contains Ω1(〈x1, xs, b〉), which is 3-generated). If |x8rs
1 | = |b2|, then,

up to replacing xs with xsb2
k−1

, we get that 〈x1, . . . , xs〉 is abelian and
xb = x−1+4r for every x ∈ X. Therefore, L is in C5.

Just for the next lemma, we do not strictly use the notation defined in
Remark 5.18. In fact, to improve the presentation of the proof of Lemma
5.23, it is convenient to show a preliminary lemma where X and the auto-
morphism of b on X are as in Remark 5.18, but the order of b is 4.

Lemma 5.22. Let X and the automorphism of b on X be as in Remark
5.18. Suppose that the order of b is 4, and X ∩ 〈b〉 = 1.
Then, there exists X̄ a subgroup of L such that 〈X̄, b2〉 = 〈X, b2〉 and L =
X̄ o 〈b〉, where xb = x−1+4r for every x ∈ X with |X4r| ≤ 4.
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Proof. Let x be in X. Since X is normalized by b and X ∩ 〈b〉 = 1, we have
that 〈x, b〉 ∩X is normalized by b. This intersection is cyclic and contains
〈x〉. So, we get that 〈x〉 is normalized by 〈b〉.
Since this holds for every x ∈ X, we have that b is a power automorphism
of 〈x1, . . . , xs〉. Moreover, 〈x1, . . . , xs〉 is modular without Q8, and so, up to
renaming the generators, we may assume that either 〈x1, · · · , xs〉 is abelian
or 〈x1, . . . , xs−1〉 is abelian and xxs = x1+4t for every x ∈ 〈x1, . . . , xs−1〉.

If 〈x1, . . . , xs〉 is abelian, then, since b acts as a power automorphism, by
Lemma 1.5.4. on page 32 of [13], we have that b is a universal automorphism
and so the lemma holds with X = X̄.

So, suppose now that X is not abelian. Since X modular without Q8 and
b acts as a power automorphism, we may assume thatX = 〈x1, . . . , xs−1〉〈xs〉,
where 〈x1, . . . , xs−1〉 = 〈x1〉 × · · · × 〈xs−1〉 is abelian and xbs = x−1+4rs

s ,
xxs = x1+4s, xb = x−1+4r, for every x ∈ 〈x1, . . . , xs−1〉.
Using Lemma 5.19 and the fact that b has order 4, we obtain that xxs =
x1+2n−1

for every x ∈ 〈x1, . . . , xs−1〉, exp(〈x1, . . . , xs−1〉)4r ≤ 4 and |x4rs
s | ≤

4. We study separately the cases |x1| ≥ |xs| and |x1| < |xs|.

- Suppose first that |x1| ≥ |xs|.
Then, there exists α such that xα1xs satisfies Ω1(〈x1, xs〉) = Ω1(〈xα1xs〉)×
Ω1(〈x1〉) = Ω1(〈xα1xs〉)× Ω1(〈xs〉).
Now, (xα1xs)

b = x
(−1+4r)α
1 x−1+4rs

s = (xα1xs)
−1+4r+2n−1αx−4r+4rs+2n−1α

s

and so we get that xbs = x−1+4r+2n−1α
s .

If |x4r
1 | ≤ 2, then the subgroup 〈xα1xs, bx1〉 is not metacyclic, because

it contains the 3-generated elementary abelian subgroup Ω1(〈xα1xs〉)×
Ω1(〈x1〉)× 〈b2x4r

1 〉.
Therefore, we have that |x4r

1 | = 4.
Now, up to replacing xs with xsb2, we get that 〈x1, . . . , xsb

2〉 is abelian
on which b acts as a universal automorphism, and the lemma holds
with X̄ = 〈x1, x2, . . . , xsb

2〉.

- Suppose now that |xs| > |x1|.
Since 〈x1, xs〉 is modular and 2-generated, there exists an even inte-
ger α such that Ω1(〈x1, xs〉) = Ω1(〈x1x

α
s 〉)×Ω1(〈x1〉) = Ω1(〈x1x

α
s 〉)×

Ω1(〈xs〉).
In particular, (x1x

α
s )b = (x1x

α
s )−1+4rsx−4r+4rs

1 , and so we get that
xb1 = x−1+4rs

1 (otherwise the subgroup 〈x1x
α
s , b〉 is not metacyclic).

Since |x4rs
s | ≤ 4, we get that |x4rs

1 | ≤ 2.
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If Ω1(〈x1〉) 6= Ω1(〈xs〉), then the subgroup 〈xs, bx1〉 is not meta-
cyclic, because it contains the 3-generated elementary abelian sub-
group Ω1(〈xs, x1〉)× 〈b2x4rs

1 〉.
Therefore, we have that Ω1(〈x1〉) = Ω1(〈xs〉), and so, in particular, the
subgroup 〈x1, . . . , xs−1〉 is such that 〈x1, . . . , xs−1〉2

n−1
= Ω1(〈x1〉) =

Ω1(〈xs〉).
If |x4rs

s | ≤ 2, then the subgroup 〈x1x
α
s , bxs〉 contains the 3-generated

elementary abelian group Ω1(〈x1, xs〉) × 〈b2x4rs
s 〉. Therefore, we have

that |x4rs
s | = 4, and so, up to replacing x1 with x1b

2, we get that
〈x1b

2, x2, . . . , xs〉 is abelian, on which b acts as a universal automor-
phism. So the lemma holds with X̄ = 〈x1b

2, x2, . . . , xs〉.

Lemma 5.23. Let G, X, b, and L be as in Remark 5.18.
Suppose that |X ∩ 〈b〉| = 2.
Then L is in C5 or in C6 or in C7.

Proof. Let x ∈ X. Since X is normalized by 〈b〉 and X ∩ 〈b〉 = Ω1(〈b〉), we
have that 〈x, b〉 ∩ X is normalized by b. This intersection is contained in
〈x, b2m−1〉.

Since Ω1(〈b〉) ≤ Ω1(X), we get that Ω1(〈b〉) is central in 〈X, b〉 (see
Lemma 5.19), and we can consider the quotient 〈X, b〉/Ω1(〈b〉).
The first paragraph of this proof shows that b acts as a power automorphism
on 〈X, b〉/Ω1(〈b〉).
Since bΩ1(〈b〉) has order at least 4 and X/Ω1(〈b〉) ∩ 〈bΩ1(〈b〉)〉 = Ω1(〈b〉),
by Lemma 5.21 and Lemma 5.22, we may assume that bΩ1(〈b〉) acts as a
non-modular universal automorphism on the abelian group X/Ω1(〈b〉).

We distinguish two cases, depending on the structure of X.

1. Suppose first that X is abelian. Hence, there exists {x1, . . . , xs} in X
such that X = 〈x1〉× · · ·× 〈xs〉, |xi| ≥ |xj | for every i and j with i ≤ j
and xbi = x−1+4r

i b2
k−1ki , where ki ∈ {0, 1}.

Put |x1| = 2n, |xi| = 2ni (for i ∈ {2, . . . , s}) and |b| = 2k.
We treat separately two cases depending on the size of 〈x1〉 ∩ 〈b〉.

(a) Suppose first that 〈x1〉 ∩ 〈b〉 = 1.
The element b2

k−1
is central inX, and so |b2| > exp(〈x1, . . . , xs〉)8r.
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Since exp(〈x1, . . . , xs〉) = |x1|, we obtain that |x4r
1 | ≤ |b2|.

We deal separately with the cases |b2| > |x4r
1 | and |b2| = |x4r

1 |.
Suppose first that |b2| > |x4r

1 |.
Since b2

k−2
is central in X, up to replacing xi with xib

2k−2ki , we
may assume that b2

k−1ki = 1 for every i ∈ {1, . . . , s}. It follows
that L is in C5.

So, from now on, we assume that |b2| = |x4r
1 |. In order to prove

that this condition implies that L is in C5, we divide the proof
in two parts: in Claim 1 we study the case b2

k−1k1 = 1 and in
Claim 2 we study the case |b2k−1k1 | = 2.

Claim 1 : if b2
k−1k1 = 1, then b2

k−1ki = 1 for every i ∈ 〈2, · · · , s〉.
In particular, this would yield that xb = x−1+4r for every x ∈ X,
and so L is in C5.

Suppose that b2
k−1k1 = 1, and suppose, by contradiction, that

for some i ≥ 2 we get that |b2k−1ki | = 2. This implies that
〈xi〉 ∩ 〈b, x1〉 6= 1. In fact, if 〈xi〉 ∩ 〈b, x1〉 = 1, then the subgroup
〈xi, bx1〉 is not metacyclic (it contains the 3-generated subgroup
〈b2k−1

x2n−1

1 , x2ni−1

i , b2
k−1〉).

Since 〈xi〉 ∩ 〈x1〉 = 1 and Ω1(〈x1, b〉) = Ω1(〈x2n−1

1 , b2
k−1〉), we ob-

tain that either x2ni−1

i = b2
k−1

or x2ni−1

i = x2n−1

1 b2
k−1

.
In the first case, the subgroup 〈xα1xi, bx1〉, where |xα1 | = |xi|, is
not metacyclic, because it contains the 3-generated elementary
abelian group 〈x2ni−2

i b2
k−2

, x2k−1

1 , b2
k−1〉.

On the other hand, if x2ni−1

i = x2n−1

1 b2
k−1

, then 〈xi, bx1〉 is not
metacyclic, because it contains the 3-generated elementary abelian
group 〈x2ni−2

i (bx1)2k−2
, x2k−1

1 , b2
k−1〉.

This contradiction shows that there are no i ≥ 2 such that
|b2k−1ki | = 2, and so Claim 1 is proved.

Claim 2 : if |b2k−1k1 | = 2, then L is in C5.
We divide the proof of the claim in three steps.

The first step consists in proving that for every i such that 〈xi〉∩
〈b, x1〉 = 1 or |xi| < |x1|, then b2

k−1ki = 1.

Suppose that there exists i ∈ {2, . . . , s} such that 〈xi〉∩〈b, x1〉 = 1
and |b2k−1ki | = 2. Then, the subgroup 〈xi, bx1〉 is not meta-
cyclic (it contains the 3-generated elementary abelian subgroup
〈b2k−1

x2n−1

1 , x2ni−1

i , b2
k−1〉).
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Suppose now that there exists i ∈ {2, . . . , s} such that 〈xi〉 ∩
〈b, x1〉 6= 1, with |xi| < |x1| and |b2k−1ki | = 2. Since 〈xi〉 ∩ 〈x1〉 =
1, 〈xi〉 ∩ 〈b, x1〉 6= 1 and Ω1(〈x1, b〉) = 〈x2n−1

1 , b2
k−1〉, we get that

either x2ni−1

i = b2
k−1

or x2ni−1

i = x2n−1

1 b2
k−1

. In the first case,
let α be an even integer such that |xα1 | = |xi|. The subgroup
〈xα1xi, bx1〉 is not metacyclic, because it contains the 3-generated
elementary abelian subgroup 〈x2ni−2

i b2
k−2

, b2
k−1

x2n−1

1 , b2
k−1〉. On

the other hand, if x2ni−1

i = x2n−1

1 b2
k−1

, then the subgroup 〈xi, bx1〉
is not metacyclic, because it contains the 3-generated elementary
abelian subgroup 〈x2ni−2

i b2
k−2

, x2n−1

i , b2
k−1〉. In both cases, we

reach a contradiction and so the proof of the first step of Claim
2 is concluded.

We now show that 〈x1, . . . , xs〉2
n−1

= Ω1(〈x1〉).
Suppose that there exists xi such that |xi| = 2n. By construction,
we have that Ω1(〈xi〉) 6= Ω1(〈x1〉).
If 〈xi〉 ∩ 〈b, x1〉 = 1, then, as seen in the first step of Claim 2, we
have b2

k−1ki = 1. Now, the subgroup 〈x1, bxi〉 is not metacyclic
(it contains the 3-generated subgroup 〈x2n−1

1 , b2
k−1

, x2n−1

i 〉), a con-
tradiction.
Therefore, we obtain Ω1(〈xi〉) ≤ Ω1(〈b, x1〉). Since 〈xi〉∩〈x1〉 = 1
and Ω1(〈x1, b〉) = 〈x2n−1

1 , b2
k−1〉, it follows that either x2n−1

i =
x2n−1

1 b2
k−1

or x2n−1

i = b2
k−1

.

Suppose first that x2n−1

i = x2n−1

1 b2
k−1

. If |b2k−1ki | = 2, then the
subgroup 〈xi, bx1〉 is not metacyclic because it contains the 3-
generated subgroup 〈x2n−2

i b2
k−2

, b2
k−1

x2n−1

1 , b2
k−1〉.

Hence, we get that if x2n−1

i = x2n−1

1 b2
k−1

then b2
k−1ki = 1. Now,

being Ω1(〈bxi〉) = 〈x2n−1

1 〉, the subgroup 〈x1, bxi〉 contains the
3-generated subgroup 〈x2n−1

1 , x2n−2

1 (bxi)2k−2
, b2

k−1〉, a contradic-
tion.

In particular, this shows that x2n−1

i = b2
k−1

. Now, up to repla-
cing xi with xix1, we have a generator of order 2n, such that
Ω1(〈xix1〉) = x2n−1

1 b2
k−1

and, using the argument in the previous
paragraph, we reach a contradiction.
This concludes the proof of the second step of Claim 2.

Summarizing, the first step and the second step show that if
|b2k−1k1 | = 2, then 〈x1, . . . , xs〉 is abelian with 〈x1, . . . , xs〉2

n−1
=
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Ω1(〈x1〉), and b2
k−1k1 = 1 for every i ≥ 2.

Now, since the element b2
k−2

centralizes the subgroup 〈x2, . . . , xs〉
and (x1b

2k−2
)b = (x1b

2k−2
)−1+4r+2n−1

, up to replacing x1 with
x1b

2k−2
, we obtain that the group L is in C5.

(b) Suppose now that 〈x1〉 ∩ 〈b〉 6= 1.
We may assume that 〈x1, . . . , xs〉2

n−1
= Ω1(〈x1〉) = Ω1(〈b〉). In

fact, otherwise, up to reordering the indices, we are in the case
1a. Since, by construction, 〈xi〉 ∩ 〈x1〉 = 1 for every i ≥ 2, we
have that 〈xi〉 ∩ 〈b〉 = 1. Moreover, since b2

k−2
is not in X and

Ω1(〈b, x1〉) = 〈b2k−1
, x2n−2

1 b2
k−2〉, we obtain that 〈xi〉 ∩ 〈b, x1〉 = 1

for every i ≥ 2.
Since b2 acts as a universal automorphism on 〈x1, . . . , xs〉 and
exp(〈x2, . . . , xs〉) < |x1|, it follows that b2

k−2
commutes with

〈x2, . . . , xs〉. Therefore, we may assume, up to replacing in case
x1 with x1b

2k−2
, that b2

k−1k1 = 1. Since xb
2

= x1−8r+16r2
, and

b2
k−1

centralizes X, we get that |b2| > |x8r
1 |, i.e. |b2| ≥ |x4r

1 |.
We treat separately the cases |b2| > |x4r

1 | and |b2| = x4r
1 .

Suppose first that |b2| > |x4r
1 |. Since b2

k−2
is central in X, we

get that, up to replacing xi with xib
2k−2ki , we may assume that

b2
k−1ki = 1 for every i ∈ {1, . . . , s}, and so the group 〈X, b〉 is in

C5.

From now on, we assume that |b2| = |x4r
1 |.

From 〈xi〉 ∩ 〈x1, b〉 = 1, it follows that b2
k−1ki = 1. In fact, if

|b2k−1ki | = 2, then the subgroup 〈xi, bx1〉 is not not metacyclic,
because it contains the subgroup 〈x2ni−1

i , b2
k−2

x2n−2

1 , b2
k−1〉, which

is 3-generated. This shows that the group 〈X, b〉 is in C5.

This concludes the investigation when X is abelian. Summarizing the
result, we have that if X is abelian and |X ∩ 〈b〉| = 2, then L = 〈X, b〉
is a group in C5.

2. Suppose now that X is not abelian.

Since X is modular, and X/Ω1(〈b〉) is abelian, we have that X =
(〈x1〉 × · · · × 〈xs−1〉)〈xs〉 and xxs

i = x1+2n−1

i , where 2n = exp(〈x1〉 ×
· · · × 〈xs−1〉) and 〈x1, . . . , xs〉2

n−1
= Ω1(〈x1〉) = Ω1(〈b〉).

We also have, xbi = x−1+4r
i b2

k−1ki , for every i in {1, . . . , s}.
Since b2

k−2
is not in X and Ω1(〈b, x1〉) = 〈b2k−2

x2n−1

1 , b2
k−1〉, if x ∈ X
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and 〈x〉 ∩ 〈x1〉 = 1, then 〈x〉 ∩ 〈x1, b〉 = 1.
In particular, this means that for every i ∈ {2, . . . , s− 1}, we get that
〈xi〉 ∩ 〈x1, b〉 = 1.

We treat separately the following two cases: Ω1(〈b, xs〉) 6= Ω1(〈b, x1〉)
and Ω1(〈b, xs〉) = Ω1(〈b, x1〉)

(a) Suppose that Ω1(〈b, xs〉) 6= Ω1(〈b, x1〉). We distinguish three
cases depending on |xs| with respect to |x1|.

i. Suppose that |x1| > |xs|.
In order to complete the investigation of this case, we distin-
guish two more cases depending on Ω1(〈xs〉). Namely, in the
first part, we show that if Ω1(〈xs〉) 6= Ω1(〈b〉), then L is in C6.
In the second part, we deal with the case Ω1(〈xs〉) = Ω1(〈b〉).

Suppose first that Ω1(〈xs〉) 6= Ω1(〈b〉). Then 〈xs〉 ∩ 〈x1, b〉 =
1, and Ω1(〈xs, b〉) = 〈b2k−1

, x2n−1

s 〉. Now, since |b2| ≥ |x4r
1 |,

we deal separately with the cases |x4r
1 | = |b2| and |x4r

1 | < |b2|.
If |x4r

1 | = |b2|, then, up to replacing xs with xsb2
k−2

, we have
that 〈x1, . . . , xs〉 is abelian and we are in case (1).
Suppose now that |b2| > |x4r

1 |. The element b2
k−2

com-
mutes with X. In particular, up to replacing xi with xib2

k−2
,

we may assume that b2
k−1ki = 1 for every i ∈ {1, . . . , s}.

Clearly, |b2| < |x1|, otherwise the subgroup 〈b2βx1, xs〉, with
|b2β| = |x1|, is not metacyclic. Therefore, L is in C6, and this
concludes the case Ω1(〈xs〉) 6= Ω1(〈b〉).
Suppose now that Ω1(〈xs〉) = Ω1(〈b〉). Since Ω1(〈b, x1〉) 6=
Ω1(〈b, xs〉), we have that there exists α even, such that |xα1 | =
|xs|, Ω1(〈xsxα1 〉) = 〈x2m−2

s x2n−2

1 〉 and 〈xsxα1 〉 ∩ 〈b, x1〉 = 1.
Moreover, (xsxα1 )b = (xsxα1 )−1+4rb2

k−1s1 , for some si.
Hence, up to replacing xs with xsx

α
1 , we may assume that

〈xs〉 ∩ 〈b〉 = 1, Ω1(〈xs, b〉) 6= Ω1(〈x1, b〉), xbi = x−1+4r
i b2

k−1ki

for every i ∈ {1, . . . , s} and xxs
i = x1+2n−1

i for every i ∈
{1, . . . , s−1}. So, we reduced to the case Ω1(〈xs〉) 6= Ω1(〈b〉)
studied in the first paragraph of 2(a)i.

ii. Suppose that |x1| = |xs|.
We distinguish two more cases depending on Ω1(〈xs〉). Namely,
in the first part, we show that if Ω1(〈xs〉) 6= Ω1(〈b〉), then L

– 109 –



Chapter 5. Monotone 2-Groups of exponent greater than 4 in which G = H4(G)

is in C6. In the second part, we deal with the case Ω1(〈xs〉) =
Ω1(〈b〉).
Suppose first that Ω1(〈xs〉) 6= Ω1(〈b〉). Then 〈xs〉 ∩ 〈x1, b〉 =
1, and Ω1(〈xs, b〉) = 〈b2k−1

, x2n−1

s 〉. Since |b2| ≥ |x4r
1 |, we deal

separately with the cases |x4r
1 | = |b2| and |x4r

1 | < |b2|.
If |b2| = |x4r

1 |, then, up to replacing xs with xsb2
k−2

, we have
that 〈x1, . . . , xs〉 is abelian, and xbi = x−1+4r

i b2
k−1ki . There-

fore, we are in case (1).
If |b2| > |x4r

1 |, then b2
k−2

commutes with X. In particu-
lar, up to replacing xi with xib

2k−2ki , we may assume that
b2

k−1ki = 1 for every i ∈ {1, . . . , s}, i.e. xbi = x−1+4r
i for ev-

ery i ∈ {1, . . . , s}. Moreover, if |b2| ≥ |x1|, then the subgroup
〈b2βx1, xs〉, with |b2β| = |x1|, is not metacyclic. This means
that |b2| < |x1| and so 〈X, b〉 is in C6.
Suppose now that Ω1(〈xs〉) = Ω1(〈b〉).
Since Ω1(〈b, x1〉) 6= Ω1(〈b, xs〉), there exists α odd, such that
|xα1 | = |xs|, Ω1(〈xsxα1 〉) = 〈x2m−2

s x2n−2

1 〉 and 〈xsxα1 〉∩〈b, x1〉 =
1.
Moreover, (xsxα1 )b = (xsxα1 )−1+4rb2

k−1l, for some l.
Therefore, up to replacing xs with xsxα1 , we may assume that
〈xs〉∩〈b〉 = 1, Ω1(〈xs, b〉) 6= Ω1(〈x1, b〉), xbi = x−1+4r+4ti

i b2
k−1ki

for every i ∈ {1, . . . , s}, xxs
i = x1+2n−1

i for every i ∈
{1, . . . , s − 1} and |xs| < |x1|. Therefore, we reduced to
the case studied in the first paragraph of 2(a)i.

iii. Assume, to conclude, that |x1| < |xs|.
We now divide the proof in two part. Namely, in the first
part we deal with the case Ω1(〈xs〉) = Ω1(〈b〉), whereas, in
the second case we study the case Ω1(〈xs〉) 6= Ω1(〈b〉).
Suppose first that Ω1(〈xs〉) = Ω1(〈b〉). The group 〈x2, . . . , xs〉
is abelian and such that 〈x2, . . . , xs〉2

m−1
= Ω1(〈xs〉).

Moreover, xx1 = x1+2m−1
for every x ∈ 〈x2, . . . , xs〉, xbi =

x−1+4r
i b2

k−1ki for every i ∈ {1, . . . , s}, Ω1(〈b, xs〉) 6= Ω1(〈b, x1〉)
and |xs| > |x1|. Therefore, up to interchanging x1 and xs,
we reduced to the case studied in 2(a)i.
So from now on, we assume that Ω1(〈xs〉) 6= Ω1(〈b〉).
Since b2

k−2
/∈ X and 〈xs〉 ∩ 〈b〉 = 1, we have that 〈xs〉 ∩
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〈x1, b〉 = 1. Hence, Ω1(〈xs, b〉) = 〈b2k−1
, x2n−1

s 〉.
Since |x4r

s | ≤ |b2|, we distinguish the cases |x4r
s | = |b2| and

|x4r
s | < |b2|.

Suppose first that |x4r
s | < |b2|.

The element b2
k−2

centralizes X and so, up to replacing xi

with xib
2k−2ki , we may assume that xbi = x−1+4r

i for every
i ∈ {1, . . . , s}. Moreover, if |b2| ≥ |x1|, then the subgroup
〈b2βx1, xs〉, with |b2β| = |x1|, is not metacyclic. Therefore,
we have that |b2| < |x1| and so L = 〈X, b〉 is in C6.
From now on, we assume that |x4r

s | = |b2|.
Since |x1| < |xs|, we have that b2

k−2
commutes with x1 and

so with 〈x1, . . . , xs−1〉. Therefore, up to replacing xs with
xsb

2k−2ks , we may assume that b2
k−1ks = 1.

We now show that L is in C7. In order to do that, we divide
the proof in three parts. Namely, in Claim 1, we prove that
|b2k−1k1 | = 2. In Claim 2, we show that b2

k−1ki = 1 for every
i ∈ {2, . . . , s − 1}. In the third part, we sum up the results
and conclude the investigation of this case.
Claim 1 : we show that |b2k−1k1 | = 2.
This would imply that xb1 = x−1+4r

1 b2
k−1

= x−1+4r+2n−1

1 .
Let α be an even integer such that |xαs | = |x1|. Now, we
have Ω1(〈x1x

α
s 〉) = Ω1(〈bxs〉). Moreover, we obtain that

(x1x
α
s )bxs = (x1x

α
s )−1+4rx2n−1

1 b2
k−1k1 .

If b2
k−1k1 = 1, then the subgroup 〈x1x

α
s , bxs〉 is not meta-

cyclic, because it contains the 3-generated elementary abelian
subgroup 〈b2k−1

x2m−1

s , x2n−1

1 , (x1x
α
s )2n−2

(bxs)2k−2〉.
Hence, |b2k−1k1 | = 2, i.e. xb1 = x−1+4r

1 b2
k−1

= x4r+2n−1

1 . This
concludes the proof of Claim 1.
Claim 2 : we show that b2

k−1ki = 1 for every i ∈ {2, . . . , s−1}.
In particular, this would imply that xbi = x−1+4r

i .
For every i ∈ {2, . . . , s − 1}, we have that |xi| < 2n and
〈xi〉 ∩ 〈x1〉 = 1. Since Ω1(〈x1〉) = Ω1(〈b〉), we obtain that
〈xi〉 ∩ 〈b〉 = 1.
We now show that, if xi is such that 〈xi〉 ∩ 〈xs, b〉 = 1, then
b2

k−1ki = 1.
Suppose that xi is such that 〈xi〉 ∩ 〈xs, b〉 = 1 and suppose,
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by contradiction, that |b2k−1ki | = 2. The subgroup 〈xi, bxs〉 is
not metacyclic, because it contains the 3-generated subgroup
Ω1(〈x1, xs, b〉).
We now prove that, if 〈xi〉 ∩ 〈xs, b〉 6= 1, then b2

k−1ki = 1.
Since 〈xi〉 ∩ 〈b〉 = 1, we have that either x2ni−1

i = x2m−1

s

or x2ni−1
i = x2m−1

s b2
k−1

. Therefore, there exists an even in-
teger β such that |xi| = |xβs | and Ω1(〈xixβs 〉) = Ω1(bxs). If
|b2k−1ki | = 2, then the subgroup 〈bxs, xixβs 〉 is not metacyclic,
because it contains the 3-generated elementary abelian sub-
group 〈b2k−1

x2m−1

s , (bxs)2k−2
(xi)2ni−2

, b2
k−1〉.

Therefore, we get that b2
k−1

= 1 for every i ∈ {2, . . . , s− 1},
and this concludes the proof of Claim 2.
Summarizing, by Claim 1, we get xb1 = x−1+4r+2n−1

1 and, by
Claim 2, we have xbi = x−1+4r

i for every i ∈ {2, · · · , s − 1}.
Since |xi| < |x1| for every i ∈ {2, · · · , s − 1}, we obtain
xbi = x−1+4r+2n−1

i for every i ∈ {1, . . . , s− 1}.
Moreover, if |b2| ≥ |x1|, then the subgroup 〈b2βx1, xs〉, where
|b2β| = |x1|, is not metacyclic.
Therefore, we have |b2| < |x1|, and this shows that L is in
C7.

This concludes the investigation of the case Ω1(〈b, xs〉) 6= Ω1(〈b, x1〉).

(b) Suppose now that Ω1(〈b, xs〉) = Ω1(〈b, x1〉).
We first show that 〈xs〉 ∩ 〈b〉 6= 1.
In fact, suppose, by contradiction, that 〈xs〉 ∩ 〈b〉 = 1. Then,
since b2

k−2
/∈ X and Ω1(〈x1, b〉) = 〈x2n−2

1 b2
k−2

, b2
k−1〉, we get that

〈xs〉∩〈x1, b〉 = 1. It follows that Ω1(〈b, xs〉) 6= Ω1(〈b, x1〉), against
the assumption.
This shows that 〈xs〉 ∩ 〈b〉 6= 1.
In particular, we get that Ω1(〈xs, b〉) = 〈x2m−2

s b2
k−2

, b2
k−1〉, and

so x2m−2

s ∈ 〈x1, b〉. Moreover, since b2
k−2

/∈ X, we have that
b2

k−2
/∈ 〈x1, xs〉. It follows that Ω1(〈x1, xs〉) 6= Ω1(〈b, x1〉).

We deal separately with the cases |x1| > |xs|, |x1| = |xs|, and
|x1| < |xs|.

i. Suppose that |x1| > |xs|. Since 〈x1, xs〉 is modular, there ex-
ists an even integer α such that Ω1(〈xsxα1 , x1〉) = Ω1(〈x1, xs〉)
and 〈xsxα1 〉 ∩ 〈x1〉 = 1. Now, (xsxα1 )b = (xsxα1 )−1+4rb2

k−1w,
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for some w ∈ {0, 1}. This means that, up to replacing xs

with xsx
α
1 , we are in case 2a.

ii. Suppose that |x1| = |xs|. Since 〈x1, xs〉 is modular, there ex-
ists an odd integer α such that Ω1(〈xsxα1 , x1〉) = Ω1(〈x1, xs〉)
and 〈xsxα1 〉 ∩ 〈x1〉 = 1.
Now, (xsxα1 )b = (xsxα1 )−1+4rb2

k−1w, for some w ∈ {0, 1}.
This means that, up to replacing xs with xsx

α
1 , we are in

case 2a.

iii. Suppose that |x1| < |xs|. Up to interchanging x1 and xs, we
are in case 2(b)i.

This concludes the investigation of the case Ω1(〈b, xs〉) = Ω1(〈b, x1〉).
Hence, the lemma is proved.

The following lemmas complete the classification of the non-trivial mono-
tone 2-groups G, with H4(G) = G and G/G4 isomorphic to a group in A4.
More precisely, by the previous part, the group L is in C5 or in C6 or in C7.
In Lemma 5.24, we determine the group G when L is in C5. In Lemma 5.25,
we determine the group G when L is in C6. To conclude, in Lemma 5.26,
we determine the group G when L is in C7.

Lemma 5.24. Let G, L, X and b be as in Remark 5.18. Suppose that L is
in C5. Then G is in C5 or in C6.

Proof. The group L is in C5. Therefore, we may assume that X = 〈x1〉 ×
. . .×〈xs〉 where, if i ≥ j, then |xi| ≥ |xj | and xb = x−1+4r, for every x ∈ X.
Now, the group G is equal to L〈c1, . . . , cu〉, where 〈c1, . . . , cu〉 is elementary
abelian. Moreover, 〈X, b2, c1, . . . , cu〉 is modular (see Lemma 5.16).
Put |b| = 2k and |x1| = 2n.

Consider the element ci of order 2.
For every x ∈ X \X2, we get that 〈x, ci〉 is metacyclic with a generator

of order 2 and has a quotient isomorphic to C4 × C2. Then, 〈x, ci〉 is not
semidihedral and ci normalizes 〈x〉 (see Lemma 2.12). In particular, since
X is abelian, we get that ci induces a power automorphism on X. So, since
X is abelian, by Lemma 1.5.4. on page 32 of [13], we get that ci acts as a
universal automorphism of order at most 2 on X. Let xci = x1+4hi for every
x ∈ X, where |X4hi | ≤ 2.
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The group 〈b, ci〉 is metacyclic with a generator of order 2 and has a quo-
tient isomorphic to C4×C2. Then, 〈b, ci〉 is not semidihedral, ci normalizes
〈b〉 and bci = b1+2k−1ki with ki ∈ {0, 1}.

Therefore, we have that xci = x1+4hi for every x ∈ X, where |X4hi | ≤ 2,
and bci = b1+2k−1ki with ki ∈ {0, 1}.

Since xb = x−1+4r, we get that xb
2

= x1−8r+16r2
for every x ∈ X. In

particular, this implies that |b2| ≥ exp(X8r). Since exp(X) = |x1|, we have
that |b2| ≥ |x8r

1 |. The rest of the proof is a case-by-case analysis depending
on the order of |b2| with respect of the order |x8r

1 | and on the size of the
intersection 〈x1〉 ∩ 〈b〉.

- Suppose that |b2| = |x8r
1 |.

The element b2
k−1

is not central in 〈x1, b〉 and so 〈x1〉∩ 〈b〉 = 1. More-
over, we have that (bx1)2 = b2x4r

1 and so Ω1(〈bx1〉) = Ω1(〈x1〉).
If |b2k−1ki | = 2, then the subgroup 〈x1b, ci〉 contains the 3-generated
elementary abelian subgroup 〈x2n−1

1 , b2
k−1

, ci〉. Moreover, up to repla-
cing ci with cib

2k−1
, we may assume that ci is in the centralizer of X.

Hence, we get that 〈X, c1, . . . , cu〉 is abelian and xb = x−1+4r for every
x ∈ 〈X, c1, . . . , cu〉. This proves that G is in C5.

- Suppose that |b2| = |x4r
1 | and 〈b〉 ∩ 〈x1〉 = 1.

We prove the following fact: if |x4hi
1 | = 2, then |b2k−1ki | = 2, whereas

if x4h1
1 = 1, then b2

k−1ki = 1.
Suppose first that |x4hi

1 | = 2 and suppose, by contradiction, that
b2

k−1ki = 1. Then, the subgroup 〈bx1, ci〉 is not metacyclic because
it contains the 3-generated subgroup 〈x2n−1

1 , ci, b
2k−1〉.

Suppose now that xci1 = x1, and suppose, by contradiction, that
|b2k−1ki | = 2. Then, the subgroup 〈bx1, ci〉 is not metacyclic because
it contains the 3-generated subgroup 〈x2n−1

1 , ci, b
2k−1〉.

Suppose now that ci is such that ci /∈ CG(〈x1, b〉). Then, xci1 = x1+4hi
1

with |x4hi
1 | = 2 and bci = b1+2k−1

. Now, the element cib2
k−2

has order
4, centralizes x1 and is inverted by b.

It follows that, up to replacing ci with cib2
k−2ki for every i ∈ {1, . . . , u},

the group G is in C5.

- Suppose that |b2| = |x4r
1 | and 〈b〉 ∩ 〈x1〉 6= 1.
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We prove the following fact: if |x4hi
1 | = 2, then |b2k−1ki | = 2, whereas

if x4h1
1 = 1, then b2

k−1ki = 1.
Suppose first that |x4hi

1 | = 2 and suppose, by contradiction, that
b2

k−1ki = 1. Then, the subgroup 〈bx1, c〉 is not metacyclic, because
it contains the 3-generated subgroup 〈x2n−2

1 b2
k−2

, ci, b
2k−1〉.

Suppose now that xci1 = x1, and suppose, by contradiction, that
|b2k−1ki | = 2. Then, the subgroup 〈bx1, c〉 is not metacyclic because it
contains the 3-generated subgroup 〈x2n−2

1 b2
k−2

, ci, b
2k−1〉.

Suppose now that ci is such that ci /∈ CG(〈x1, b〉). Then, xci1 = x1+4hi
1

with |x4hi
1 | = 2 and bci = b1+2k−1

. Now, the element cib2
k−2

has order
4, centralizes x1 and is inverted by b.

It follows that, up to replacing ci with cib2
k−2ki for every i ∈ {1, . . . , u},

the group G is in C5.

- Suppose that |b2| > |x4r
1 | and 〈x1〉 ∩ 〈b〉 = 1.

In particular, |b2| > |x4r
1 | implies that Ω1(〈bx1〉) = Ω1(〈b〉). Moreover,

b2
k−2

centralizes X.

We first prove that ci is in the centralizer of X.
In fact, suppose, by contradiction, that there exists an i ∈ {1, . . . , u}
such that xci1 = x1+4hi

1 with |x4hi
1 | = 2. The subgroup 〈bx1, ci〉 is not

metacyclic because it contains the subgroup 〈b2k−1
, x2n−1

1 , ci〉, which is
3-generated.

It follows that, up to replacing ci with cib2
k−2ki , the group G is in C5.

- To conclude, suppose that |b2| > |x4r
1 | and 〈x1〉 ∩ 〈b〉 6= 1.

In particular, we have that 〈x2n−1

1 〉 = 〈b2k−1〉, Ω1(〈bx1〉) = Ω1(〈b〉) and
b2

k−2
centralizes X.

We distinguish two cases depending on the order of b2 with respect to
the order of x1.

Suppose first that |b2| ≥ |x1|.
We first prove that ci is in the centralizer of X. In fact, suppose, by
contradiction, that there exists i ∈ {1, . . . , u} such that xci1 = x1+4hi

i

with |x4h1
1 | = 2. Then, the subgroup 〈b2αx1, ci〉, where |b2α| = |x1|, is

not metacyclic, because it contains the 3-generated elementary abelian
group 〈b2k−2

x2n−2

1 , x2n−1

1 , ci〉.
It follows that, up to replacing ci with cib2

k−2ki , the group G is in C5.
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Suppose now that |b2| < |x1|.
If ci ∈ CG(X) for every i ∈ {1, . . . , u}, then, up to replacing ci with
cib

2k−2ki , we get that G is a group in C5.
Suppose now that there exists an i ∈ {1, . . . , u} such that xci1 = x1+4hi

1

where |x4hi
1 | = 2. Up to reordering the indices, we may assume that c1

acts on X as a non-trivial automorphism of order 2. Up to replacing
in case ci with cic1, we may assume that ci ∈ CG(X) for every i ∈
{2, . . . , u}.
It follows that, up to replacing ci with cib2

k−2ki for every i ∈ {1, . . . , u},
the group G is in C6.

Lemma 5.25. Let G, L, X and b be as in Remark 5.18. Suppose that L is
in C6. Then G is in C6.

Proof. We have thatG is equal to L〈c1, · · · , cu〉, with L in C6 and 〈c1, · · · , cu〉
elementary abelian.
Let L be 〈X, b〉. Since L is in C6, we may assume that 〈X〉 = 〈x1, · · · , xs〉,
where 〈x1, · · · , xs−1〉 is abelian and of exponent 2n, 〈x1, · · · , xs−1〉2

n−1
=

Ω1(〈b〉), |b| ≥ 8, xb = x−1+4r and xxs = x1+2n−1
, for every x ∈ 〈x1, · · · , xs−1〉,

xbs = x−1+4r
s and exp(〈x1, · · · , xs〉4r) < |b2| < 2n.

We also may assume that |x1| = exp(〈x1, . . . , xs−1〉). Let |b| = 2k, |xs| = 2m,
|x1| = 2n.

Consider now the element ci.

For every x ∈ X \ X2, we get that the subgroup 〈x, ci〉 is metacyclic
with a generator of order 2 and has a quotient isomorphic to C4 × C2.
Then, 〈x, ci〉 is not semidihedral and ci normalizes 〈x〉 (see Lemma 2.12).
In particular, since X is modular not involving Q8, we get that ci induces
a power automorphism on X. So, by Lemma 2.3.24 on page 68 of [13], the
element ci induces a universal automorphism of order at most 2 on X.

Since 〈b, ci〉 is metacyclic with a generator of order 2 and has a quotient
isomorphic to C4 × C2, the subgroup 〈b, ci〉 is not semidihedral. So, ci
normalizes 〈b〉 and bci = b1+2k−1ki with ki ∈ {0, 1}.

We distinguish two cases depending on the order of x1 with respect to
the order of xs:

1. Suppose first that |xs| ≤ |x1|.
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If ci ∈ CG(X) for every i ∈ {1, . . . , u}, then, up to replacing ci with
cib

2k−2ki for every i ∈ {1, . . . , u}, we get that G is in C6.

So, from now on, we assume that ci induces a non trivial automorphism
of order 2 on X, for some i.
Up to reordering the indices and up to replacing in case ci with cic1,
we may assume that xc1 = x1+2n−1

, for every x ∈ X, and ci ∈ CG(X),
for every i ∈ {2, . . . , r}.

Suppose first that |x1| = |xs|.
We prove that this implies that Ω1(〈xs〉) = Ω1(〈x1〉).
In fact, suppose, by contradiction, that Ω1(〈x1〉) 6= Ω1(〈xs〉).
Since Ω1(〈b〉) = Ω1(〈x1〉), b2

k−2
/∈ X and Ω1(〈x1〉) 6= Ω1(〈xs〉), we

have that 〈xs〉∩〈x1, b〉 = 1. Now, the subgroup 〈x1c1, bxs〉 is not meta-
cyclic because it contains the 3-generated elementary abelian subgroup
〈b2k−1

, x2n−2

1 b2
k−2

, x2n−1

s 〉. Therefore, Ω1(〈xs〉) = Ω1(〈x1〉) and, up to
replacing xs with x1xs, we may assume that |x1| > |xs|.

Therefore, from now on, we suppose that |x1| > |xs|. Up to replacing
ci with cib

2k−2ki , for every i ≥ 2, and xs with xsc1b
2k−2k1 , we get that

G is in C6. This concludes the investigation of the case |x1| ≥ |xs|.

2. Suppose now that |x1| < |xs|.

If 〈xs〉 ∩ 〈b〉 6= 1, then we may interchange x1 and xs, and we are in
case 1.

So we may assume that 〈xs〉 ∩ 〈b〉 = 1.
In particular, since b2

k−2
/∈ X and Ω1(〈b, x1〉) = 〈x2n−1

1 , x2n−2

1 b2
k−2〉,

we have that 〈xs〉 ∩ 〈x1, b〉 = 1.
Suppose that xcis = x1+4hs

s with |x4hs
s | = 2.

Then, the subgroup 〈x1c1, bxs〉 is not metacyclic. In fact, since |b2| >
|x4r
s |, we have that Ω2(〈bxs〉) = 〈b2k−2

x2n−1j
s 〉 where j ∈ {0, 1}. Hence,

〈x1ci, bxs〉 contains the 3-generated subgroup 〈x2n−2

1 , b2
k−2

, x2n−1

s 〉, a
contradiction.
It follows that ci is in CG(X) for every i ∈ {1, · · · , u}.
Up to replacing ci with cib2

k−2ki for every i ∈ {1, . . . , u}, we have that
G is in C6.
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Lemma 5.26. Let G, L, X and b be as in Remark 5.18. Suppose that L is
in C7. Then G is in C7.

Proof. We have thatG is equal to L〈c1, · · · , cu〉, with L in C7 and 〈c1, · · · , cu〉
elementary abelian.
Let L be 〈X, b〉. Since L is in C7, we may assume that X = 〈x1, . . . , xs〉
where 〈x1, . . . , xs−1〉 is abelian of exponent 2n, 〈x1, . . . , xs−1〉2

n−1
= Ω1(〈b〉),

xxs = x1+2n−1
and xb = x−1+4r+2n−1

for every x ∈ X, xbs = x−1+4r
s and

|xs| > |2n|, 〈xs〉 ∩ 〈b〉 = 1 and |〈x1, . . . , xs−1, xs〉4r| = |b2| < 2n.

Consider the element ci.

For every x ∈ X \X2, we get that 〈x, ci〉 is metacyclic with a generator
of order 2 and has a quotient isomorphic to C4 × C2. Then, 〈x, ci〉 is not
semidihedral, ci normalizes 〈x〉 and xci = x1+4hi , with |x4hi | ≤ 2. In parti-
cular, since X is modular and does not involve subgroups isomorphic to Q8,
we get that ci induces a power automorphism on X. Therefore, ci acts as
a universal automorphism of order at most 2 on X (see Lemma 2.3.24 on
page 68 of [13]).

Since 〈b, ci〉 is metacyclic with a generator of order 2 and has a quotient
isomorphic to C4×C2, 〈b, ci〉 is not semidihedral. The element ci normalizes
〈b〉 and bci = b1+2k−1ki with ki ∈ {0, 1}.

Let |xs| = 2m and |b| = 2k, |x1| = exp(〈x1, . . . , xs−1〉) = 2n. We note
that exp(X) = |xs|. Therefore, if ci induces a non-trivial modular auto-
morphism of order 2, then, in particular, we have that xcis = x1+4hi

s , where
|x4hi
s | = 2.

We now show that if xcis = x1+2m−1

s , then |b2k−1ki | = 2, whereas, if
xcis = xs, then b2

k−1ki = 1.
Suppose that xcis = x1+2m−1

s and suppose, by contradiction, that b2
k−1ki = 1.

Then, the subgroup 〈bxs, ci〉 is not metacyclic, because it contains the 3-
generated elementary abelian subgroup 〈b2k−2

x2m−2

s , x2m−1

s , ci〉.
Suppose now that xcis = xs and suppose, by contradiction, that |b2k−1ki | = 2.
Then, the subgroup 〈bxs, ci〉 is not metacyclic, because it contains the 3-
generated elementary abelian subgroup 〈b2k−2

x2m−2

s , b2
k−1

, ci〉.
This implies that if ci does not centralize 〈X, b〉, then xcis = x1+4hi

s with
|x4hi
s | = 2 and |b2k−1ki | = 2.

It follows that, up to replacing ci with cib
2k−2ki , the group G is in C7.

The following proposition sums up the results of the last part of the
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section, and shows that if G be a non trivial monotone 2-group with G =
H4(G) and G/G4 is in A4, then G is in C5 or in C6 or in C7.

Proposition 5.27. Let G be a non trivial monotone 2-group with G =
H4(G). If G/G4 is isomorphic to a group in A4, then G is in C5 or in C6

or in C7.

Proof. Let G = 〈a1, . . . , as, c1, . . . , cu, b〉, where 〈a1G
4〉 × · · · × 〈asG4〉 ×

〈c1G
4〉 × 〈cuG4〉 is abelian with s ≥ 2, |aiG4| = 4, |ciG4| = 2, |bG4| = 4,

b2G4 /∈ 〈a1G
4〉 × · · · × 〈asG4〉 × 〈c1G

4〉 × 〈cuG4〉, abG4 = a−1G4, for every
a ∈ 〈a1, . . . , as, c1, . . . , cu〉.

By Lemma 5.17, we may assume that G = 〈a1, . . . , as, b〉〈c1, . . . , cu〉,
where 〈c1, . . . , cu〉 is elementary abelian.

Since 〈ai, b〉G4/G4 is isomorphic to K2, by Lemma 2.13, we have that
G4 ∩ 〈ai, b〉 = 〈a4

i , b
4〉. From abi(G

4 ∩ 〈ai, b〉) = a−1
i (G4 ∩ 〈ai, b〉), it follows

that abi = a−1+4hi
i b2

k−1ki .
Since 〈ai, b2

ki 〉 is modular, we get that there exists xi ∈ 〈ai, b2
ki 〉 with 〈x2

i 〉 =
〈a−2+4hi
i b2

k−1ki〉.
In particular, 〈xi, b〉 = 〈ai, b〉 and xbi = x−1+4ri

i .
Let X be the subgroup 〈x1, . . . , xs〉. We have that 〈a1, . . . , as, b

2〉 = 〈X, b2〉,
and so X is a modular group that does not involve Q8.
By Lemma 5.20, we have that |X ∩ 〈b〉| ≤ 2.

If X ∩ 〈b〉 = 1, then, by Lemma 5.21, we have that 〈X, b〉 is in C5, and
so by Lemma 5.24, we have that G = 〈X, b〉〈c1, . . . , cu〉 is in C5 or in C6.

If |X ∩ 〈b〉| = 2, then by Lemma 5.23, we have that 〈X, b〉 is in C5 or in
C6 or in C7. Hence, by Lemma 5.24, by Lemma 5.25 and by Lemma 5.26,
we have that G = 〈X, b〉〈c1, . . . , cr〉 is in C5 or in C6 or in C7.

This shows that the proposition holds.

This concludes the analysis of the monotone 2-groups G of exponent at
least 8 such that G = H4(G) and G/G4 is a group in A4. Namely, such
groups are in C5, or in C6, or in C7.

Also, this concludes the classification of the monotone 2-groups of expo-
nent at least 8 such that G = H4(G), see Theorem 5.2.
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