
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Scuola di Dottorato di Ricerca
in Ingegneria dell’Informazione

Indirizzo: Automatica e Ricerca Operativa – XXI Ciclo

Tesi di dottorato / Ph.D. Thesis

Model Reduction

for Multibody Systems

Ph.D. Advisor: Prof. Alessandro Beghi

Head of the School: Prof. Matteo Bertocco

Ph.D. Candidate: Stefano Gamba

Padova, July 31, 2009





Abstract

In the first part of this thesis we presents a computationally fast mathemati-

cal model of a motorcycle drivetrain, that can be implemented in a multibody

motorcycle model for handling and maneuverability studies and long time-scale

analysis. Given a mathematical model of the primary drive and the transmission,

possessing an arbitrary number of shafts, we define a reduced model composed by

only two counter-rotating shafts of suitable masses and inertias. Also, we show

how forces and torques applied to the original model must be adapted to the

compact one, in order for the two systems to be indistinguishable with respect to

energy transfer and gyroscopic moments. Beyond the simplification of the equa-

tions due to the reduced number of bodies, another advantage of this model is

that, once the equations of motion are derived, any n-shaft transmission can be

simulated just changing the equation parameters, without the need of recompiling

the whole multibody model.

In the second part of the dissertation the modeling of the drive chain is dis-

cussed. A multibody model of the rear half of a motorcycle is described, to repro-

duce the fast dynamics caused by the chain models with high stiffness. Applying

a quasi-steady-state approximation of the extension of the chain, we effectively

eliminates the undesired high frequencies vibrations, and preserving the slow sig-

nals that most influence the trajectory of the vehicle. The only drawback of this

solution is the need of solving a nonlinear equation with two unknowns to eval-

uate the reduced equations of motion. The problem is overcome with another

reduction method, that is enforcing holonomic constraints on the lengths of the

upper and lower chain segments. In order to do that without loosing two degrees

of freedom, the stiff nonlinear model is first described as a switched model where

the chain segments are replaced by linear springs. Then, the submodels are re-

duced separately and merged together to obtain the overall reduced model. An

intelligent formulation of the constraints let us derive the chain tension even if

its extension is constantly zero.





Sommario

Nella prima parte di questa tesi presentiamo un modello matematico computazio-

nalmente veloce della trasmissione di una motocicletta, che possa essere imple-

mentato in un modello multibody per studi di manovrabilità e analisi su scale

di tempo elevate. Dato un modello matematico di una trasmissione con numero

arbitrario di alberi, definiamo un modello ridotto composto solo da due alberi

controrotanti di opportune masse e inerzie. Mostriamo anche come modificare

forze e coppie applicate al modello originale per adattarle a quello compatto, con

lo scopo di renderlo indistinguibile per quanto riguarda gli scambi energetici e i

momenti giroscopici. Oltre ad avere un numero ridotto di corpi, un altro van-

taggio di questo modello è che una volta che le equazioni del moto sono state

calcolate, qualsiasi trasmissione può essere simulata solo cambiando i parametri

delle equazioni, senza la necessità di ricompilarlo.

Nella seconda parte della dissertazione è trattata la modellazione della catena

di trasmissione. Viene descritto un modello multibody della metà posteriore di

una motocicletta per riprodurre la dinamica veloce causata dai modelli di catena

con elevata rigidezza. Applicando un’approssimazione quasi-steady-state dell’ es-

tensione della catena abbiamo eliminato efficacemente le indesiderate vibrazioni

ad alta frequenza, preservando inalterati i segnali lenti che maggiormente in-

fluenzano la traiettoria del veicolo. L’unico inconveniente di questa soluzione è

la necessità di risolvere un’equazione non lineare in due incognite per valutare

le equazioni del moto ridotte. Il problema viene risolto con un altro metodo di

riduzione, cioè l’imposizione di vincoli olonomi sulle estensioni del ramo superiore

ed inferiore della catena. Per fare questo senza perdere due gradi di libertà, in-

nanzitutto il modello rigido non lineare viene descritto come un modello switched

in cui i due rami della catena vengono sostituiti da due molle lineari. Poi, i

sottomodelli vengono ridotti separatamente e infine fusi assieme per ottenere il

modello ridotto complessivo. Una formulazione intelligente dei vincoli permette

di calcolare la tensione della catena anche se la sua estensione è sempre zero.
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Introduction

The automotive industry benefits a lot from using virtual prototypes to acceler-

ate the production of new vehicle models. A virtual prototype has been defined

as a computer-based simulation of a system or subsystem with a degree of func-

tional realism comparable to a physical prototype. Virtual prototyping is the

process of using a virtual prototype, in lieu of a physical prototype, for test and

evaluation of specific characteristics of a candidate design. The performances of

new components and assemblies can be assessed before they are actually imple-

mented, facilitating a high level of product maturity at conceptual stage of the

development process. With the most modern techniques also fatigue durability

and handling tests are carried out without the need of real prototypes, to the

point that the International Standard Organization conceived specific standard

maneuvers to test vehicle dynamics and road-holding ability both in open and

closed-loop simulations.

Although motorcycle industry lags behind the automotive industry with re-

spect to economic importance, it makes wide use of the same kind of tools and

takes advantage of the technological transfer. The transferring is slowed down by

the intrinsic differences between two and four wheel vehicle, for example open-

loop instability of motorcycles makes hard the testing of nontrivial maneuvers

also at moderate velocities. A great deal of solutions is also inherited from the

racing, where specific pioneering technologies for motorcycle are tested in the first

place.

Specific aspects of bikes dynamics represent also intriguing new challenges for

control systems engineers, and new field of applications for existing methodolo-

gies. The scientific community has been recently very interested on new advanced

techniques for motorcycle designing and control. Which is proved also by the

special edition of IEEE Control System Magazine of October 2006, completely

dedicated to the topic. Few years ago a deeper understanding of steering insta-

bilities lead to the design of a steering compensator ([1]). Only recently ([2]) a

satisfactory control strategy has been proposed to drive virtual motorcycles into

aggressive maneuvers.

At the core of any virtual prototyping environment there is a mathematical



model of the vehicle. The complexity of multibody mechanics requires the use

of automatic generators of the equations of motion, called multibody programs.

Generally they process a model definition file, where rigid bodies and their kine-

matic are described, and generate a code containing the equations of motion. In

[3] you can find a rich list of commercial tools for simulating multibody systems

that use either a numerical or a symbolic approach. A review of methods for the

automatic generation of the equations of motion can be found in [4].

Literature on two-wheel vehicle mathematical models is quite rich. A complete

historical review can be found in [5] and [6]. Depending on the purpose they are

made for, they range from a very simple rigid plane model, to assemblies of several

bodies with complex kinematic and road-tire interaction. In the first category we

put the pioneering work [7], and the more modern [8], [9], [10], [11], and [12] that

are suitable for designing control and optimization strategies. The second group

accounts [13], [14], and [3], more suitable for mode analysis and linearization.

An important factor that determines the required modeling accuracy, is the

time-scale of the analysis, that is the duration of the shortest phenomenon or the

period of the fastest oscillation to recreate. Typical long time-scale employments

of virtual bikes are equilibrium manifold analysis, optimal control, minimum time

maneuvering, and maneuver regulation. In all these cases the vehicle is studied

in a global fashion, and attention is given to slowly varying signals. On the

other hand modal analysis, linearization, and specific subsystem testing generally

benefit from or require more details.

In current literature great effort has been put in modeling tire dynamics ([14]),

and suspension and steering geometry ([14] and [15]), but the drivetrain has not

received much attention so far. A motorcycle drivetrain is composed by the pri-

mary drive, the transmission, and the chain drive. It is responsible for the gen-

eration of gyroscopic moments and interacts relevantly with the rear suspension

affecting considerably the overall weight distribution and trimming.

Generally inertias of the internal rotating shafts are lumped into the counter

shaft or, where the chain is absent, into the rear wheel. These simplifications

lack the superposition of opposite gyroscopic moments arising from shafts with

inverted spinning. As the engine speed can reach up to 19,000 rpm on a racing

motorcycle, the error may be relevant. The first Chapter of this dissertation

presents a fast and compact model of the internal drivetrain: two coaxial counter-

rotating shafts reproduce correctly both the gyroscopic moments and the energy

transfer of any type of transmission regardless for its number of shafts. Beyond

the simplification of the equations due to the reduced number of bodies, another

advantage of this model is that, once the equations of motion are derived, any

n-shaft transmission can be simulated just changing the equation parameters,

without the need of recompiling the whole multibody model.



The chain drive is the last part of the drivetrain that transmits the rotational

movement of the counter shaft to the rear wheel. Its interaction with the rear

suspension and its effects on the vertical load make it essential to the vehicle

dynamics. Unfortunately, as remarked in [16], it is difficult to model for the high

number of links and the fact that each link changes its function as it progresses

through its duty cycle. Lumped parameters solutions, like that proposed in [16],

replace the chain links with two nonlinear springs connecting the drive and driven

sprockets on both sides, but introduce heavy nonlinearity, high frequency dynam-

ics, and numerical problems when integrating the equations of motion. Only in

[17] can be found a reduced model capable of reproducing the chain-suspension

interaction without actually implement a chain. Nevertheless it is lacking of the

internal drivetrain shafts, as their inertias vanished in the reduction process.

The second part of the dissertation takes inspiration from the approach used

on the suspensions in [17], to simplify the chain dynamics without giving up the

transmission shafts. A quasi-steady-state approximation proves to be effective

eliminating the undesired high frequencies vibrations, and preserving the slow

signals, that most influence the trajectory of the vehicle. A simple case study

seems to indicate that the QSS model is actually the result of a singular per-

turbation. The only drawback of the solution presented is the need of solving a

nonlinear equation with two unknowns to evaluate the reduced equations of mo-

tion. The problem is overcome with another reduction method, that is enforcing

holonomic constraints on the lengths of the upper and lower chain segments. In

order to do that without loosing two degrees of freedom, the stiff nonlinear model

is first described as a switched model where the chain segments are replaced by

linear springs. Then, the submodels are reduced separately and merged together

to obtain the overall reduced model. An intelligent formulation of the constraints

let us derive the chain tension even if its extension is constantly zero.





Chapter 1

Fast Model of the Internal

Drivetrain

In this chapter we consider the part of the drivetrain that goes from the engine
to the drive sprocket. First we give a description of a complete multibody model
made of one rigid body for the center assembly plus one for each rotating shaft.
This is the most spontaneous modeling choice that let us derive the equations
of motion. Secondly a similar model with only two counter-rotating shafts is
described. Though its dynamic and kinematic parameters are chosen to make it
completely indistinguishable from the complete model, it is called fast model, as
the absence of one of the bodies makes it computationally lighter.

A section on the equivalence of dynamic systems in free evolution clarifies the
concept of indistinguishableness. We point out that if two functions representing
two vector fields in Rn are equal up to a change of coordinates, they are the
same dynamic system. This equivalence is proved for the two mechanical models
we propose, using a Lagrangian approach. The proof shows that their two La-
grangian functions differ only for a change of coordinates, and exploit the intrinsic
invariance of the Euler-Lagrange equations to coordinates transformations.

Imposing the equality of their kinetic and potential energies we find both
the mapping between their generalized coordinates, and the formulae that define
the kinematic and dynamic parameters of the fast model. These formulae are
then generalized to define a fast model from a complete model with an arbitrary
number of rotating shafts.

The presence of external inputs is treated in the last part of the chapter.
Exploiting the cotangent lift of the coordinate transformation previously defined,
we derive the formulae that transform any external torque and force acting on the
complete model, into an equivalent torque and force to apply on the fast model,
for maintaining its equivalence.



1.1 Notation

To ease the consultation we report here the main conventions, definitions and

formulae used through the Chapter. Details and mathematical investigations

on rigid body motion are collected in appendix A. Se also reference [18] for a

complete treatment of the subject.

All vector quantities are written in boldface. When a quantity is expressed

relative to a reference frame or belongs to a rigid body, this is indicated with a

subscript. The letters k and j refer to a generic rotating shaft.

Reference frames are indicated with Σ. they have an origin O and three axes

ex, ey and ez.

Rotation matrices R are elements of SO(3) and are expressed as an ordered

multiplication of basic rotations about the main axes: R = Rz(α)Rx(β)Ry(γ).

Rotation matrices together with translation vectors r ∈ R3 define rigid trans-

formations g = (r,R), that are used to express position and orientation of the

frames with respect to each other and with respect to the inertial frame ΣG.

Rigid transformations have two subscripts, to specify the frames between whom

they apply. In case the first reference frame is the ground, its subscript g will be

omitted. So gr gives the absolute position and orientation of R, while gr,ds gives

the position and orientation of body DS with respect to R.

Given a frame fixed to a rigid body, it is possible to define an inertia tensor

J =

2664Jxx Jyx Jzx

Jxy Jyy Jzy

Jxz Jyz Jzz

3775
and a generalized inertia matrix

I =

24mI3×3 mp̂b

−mp̂b J −m(p̂b)2

35 ,
where pb are the coordinates of the center of mass expressed in the body reference

frame.

1.2 Complete model of the internal drivetrain

In this section we focus on the first part of the motorbike drivetrain, the one that

is located inside the center assembly of the bike. The function of the drivetrain

is two-fold: transmit power from the engine to the rear wheel and provide gear

reduction. As shown in Figure 1.1, it is divided into three distinct assemblies:

primary drive, transmission and secondary drive. The primary drive consists of



an engine output sprocket, attached to the crankshaft, and the clutch assembly.

The purpose of the clutch is to engage the primary drive to the transmission.

The gear ratio between the crankshaft and the clutch is fixed. The transmission

is made of the main shaft and the counter shaft, it reduces the rotational velocity

and increases the torque according to the selected gear. The secondary drive

includes a transmission output sprocket, roller chain, and rear wheel sprocket. It

will not be considered in this Chapter but in the next one.

As we wrote in the introduction we want to develop a multibody model of drive-

train to include in a complete model of motorcycle. Our purpose is reproducing

the influence of gyroscopic moments on the overall dynamics of the vehicle, and

the energy transfer due to the acceleration of the rotating inertias. We believe

this can be achieved reasonably accurately modeling each rotating shaft with a

rigid body: one for the crankshaft CS, one for the main shaft MS, and one for

the counter shaft DS. These three elements rotate inside the center assembly,

which is modeled by another rigid body R free to move in space. In Figure 1.2

it is possible to see a schematic of the model. Each body has an inertia tensor,

a mass, and a center of mass. Both the inertia tensors and the positions of the

centers of mass are expressed with respect to reference frames fixed to each body.

To simplify the calculations, we make a few assumptions on the positions of the

reference frames and on the dynamic properties of the shafts:

Figure 1.1: Schematic of the internal part of a bike drivetrain. It is divided into
three distinct assemblies: primary drive, transmission and secondary drive.



R

MS

xR

CSy
y

x

x
z

h

hcs

CS
x

y

z
z

hms

hds

y
zy

rr
pr
b

G

y
x

xG DS
y

x

zz

Figure 1.2: Complete multibody model of a motorbike internal drivetrain.
Each rotating shaft of a real motorbike has an equivalent rigid body in the
model. All reference frames and relevant quantities are shown.

1. the reference frame of the center assembly has its y-axis parallel to the

spinning axes of the shafts.

2. The reference frames of the shafts have their y-axes coincident with their

spinning axes.

3. All the origins of the frames of the shafts lay on the same plane (exR, e
z
R).

4. The rotating shafts are solid of revolutions, which implies that the axes of

their reference frames are parallel to their main axes of inertia, and their

inertia tensors are diagonal with Jxxk = Jzzk :

Jk =

2664Jxxk 0 0

0 Jyyk 0

0 0 Jxxk

3775 . (1.1)

5. The body coordinates of the centers of mass of all the shafts are zero.

This does not represent a restriction, as any lateral displacement in the y

direction can be compensated modifying the generalized inertia matrix of

R.

As usual in multibody mechanics, to reduce the number of generalized coor-

dinates, the positions of the bodies are not all given with respect to the ground



frame, but with respect to other body frames, creating a tree structure of rigid

transformations. In our case the root of the tree is gr, whose homogeneous co-

ordinates are expressed using six variables: (x, y, z, ϕ, η, ψ). The first three are

the translational displacement of the origin OR with respect to OG, the second

three are the angles (yaw, pitch, roll) that define the rotation matrix Rr. The

translational displacements of the shafts with respect to ΣR are fixed parameters

of the model indicated with the letter h. Their rotational displacements are given

through the angles between their x-axis and exr . Since the gear ratios between

adjacent shafts is fixed (for each selected gear), two angular displacements can be

taken as functions of the third one and can be considered as implicit variables.

We chose the angles θms and θcs as implicit variables and used θds as the last

generalized coordinate of the model. The reason for this is that the angular dis-

placement of the drive sprocket plays a role also in the kinematic of the chain and

will be used in the next chapter. The gear ratio ρjk between two not necessarily

adjacent shafts is defined as

ρjk := θ̇j/θ̇k . (1.2)

The position and orientation of the center assembly are defined by gr = (rr,Rr),

with

rr =

2664xy
z

3775 (1.3)

Rr = Rz(ψ)Rx(ϕ)Ry(η) . (1.4)

The position of its center of mass in spatial coordinates is:

p̄sr =

24psr
1

35 = gr

24pbr
1

35 =

24Rr rr
0 1

35 p̄br. (1.5)

The assumptions we made on the orientation of the reference frames of the shafts

simplify the expressions of their rotation matrices and velocities. Firstly Rrk

becomes a simple rotation about the y-axis Rrk = Ry(θk), secondly the rotational

velocities of the shafts have the form

ωbrk =

2664 0

θ̇k
0

3775 (1.6)

both in R’s and K’s reference frame:

ωsrk = Rrkω
b
rk = Ry(θk)ω

b
rk = ωbrk . (1.7)



Also the inertia tensors of the shafts are invariant to left and right multiplications

by a rotation matrix of the type Ry. In particular

Jk = Rrk(θk)JkRT
rk(θk) . (1.8)

All three shafts have similar expressions for Rk and rk:

rds = rr + Rrhds (1.9)

rms = rr + Rrhms (1.10)

rcs = rr + Rrhcs (1.11)

Rds = Rz(ψ)Rx(ϕ)Ry(η + θds) (1.12)

Rms = Rz(ψ)Rx(ϕ)Ry(η + ρms,dsθds) (1.13)

Rcs = Rz(ψ)Rx(ϕ)Ry(η + ρcs,dsθds). (1.14)

Each body of the model has a mass m, an inertia tensor J, and a generalized

inertia matrix. We list in table 1.1 the parameters of the complete model.

Table 1.1: Parameters of the complete model.

mr,mcs,mms,mds Masses of the four bodies.
Jr, Jds, Jms, Jcs Inertia tensors of the four bodies.
pbr Position of the center of mass of R in body coordi-

nates.
hds,hms,hcs Position of the origins of Ok with respect to Σr.

ρds,ms = θ̇ds/θ̇ms Gear ratio of the transmission (depends on the se-
lected gear).

ρms,cs = θ̇ms/θ̇cs Gear ratio of the primary drive (unique).

For the moment we neglect the presence of external forces and torques. The

model can only evolve freely and fall indefinitely under the effect of a conservative

gravitational force field.

1.3 Fast model of the internal drivetrain

The second model we introduce is very similar to the complete one. It is called

fast because it has only two rotating shafts instead of three, and this gives simpler

and faster equations of motion. Despite one of the shaft being absent is a rele-

vant structural difference, the dynamic and geometric properties of the remaining



bodies are chosen to guarantee a dynamic equivalence of the two models. This

concept will be defined precisely in the next sections both for free and forced

evolution. Here we describe only the structure of the fast model and define its

parameters.

R x~ BR
y
x

h
x z~

B

z y

rr x
pr~
~
b

O
A

x

z

O

y

x

zz

Figure 1.3: Fast multibody model of a motorbike internal drivetrain. The three
shafts of the complete model have been replaced with an equivalent couple of
counter-rotating shafts.

As the two models are strictly related many quantities are counterparts of one

another. When this is the case they preserve the same name, but are differentiated

by the presence of a tilde (˜) sign. In Figure 1.3 it is depicted a schematic of the

fast model with some relevant parameters. Note that the two shafts are called

A and B. Their names do not recall any part of the drivetrain as there is not

a one-to-one correspondence between any of them and a particular shaft. They

should rather be considered as a new couple of coaxial discs. They have a fixed

gear ratio equal to ρa,b = −1 independently of the gear ratios of the complete

model.

All assumptions of the list on page 10 about the parallelism of the y-axes of

the reference frames, and on the form of the inertia tensors of the shafts still hold.

Also the two counter-rotating shafts are solids of revolution with an inertia tensor

of the form (1.1). As before their angular displacements are measured with the

angles between exk and exr , which implies that θ̇b = −θ̇a and θb = −θa up to a

constant. Without loss of generality we pick θa as the generalized coordinate for

the shafts. We list in table 1.2 the parameters of the fast model.



Table 1.2: Parameters of the fast model.

mr,mb,ma Masses of the three bodies.
Jr̃, Ja, Jb Inertia tensors of the three bodies.

pbr̃ Position of the center of mass of R̃ in body coordi-
nates.

h̃ =
�
h̃x 0 h̃z

�T
Position of Ok̃ with respect to Σr̃.

As before we temporary neglect the presence of external inputs and defer it

to the last part of the chapter.

1.4 Equivalence in free evolution

Coordinate transformations are very useful tools to study differential equations.

New coordinates can, for example, reveal unexpected features of the equations or

simplify the calculations. Consider the case of two generic dynamic systems of

the form

ẋ = f(x) (1.15)

and

ẏ = g(y) , (1.16)

where x,y ∈ Rn are the state vectors and f, g : Rn → Rn smooth vector fields. If

f and g are related by a global change of coordinates1 y = Γ(x), that is

f(x) = DΓ−1 ◦ g ◦ Γ(x) ∀x ∈ Rn , (1.17)

then f and g are in fact the same dynamic system. The map Γ creates a corre-

spondence between each point x0 of the first state space and a point y0 = Γ(x0) in

the second state space, and this correspondence is extended also to trajectories.

If x(t) and y(t) are two solutions of f and g passing respectively through x0 and

y0 at a certain time, then y(t) = Γ(x(t)) ∀t where they are defined.

A dramatic example of the possibilities given by a change of coordinates is

given by the ([19]) Flow Box theorem (also called straightening out theorem or

rectification lemma) that states that in a neighborhood of any regular point2 all

autonomous differential equations are the same, up to a change of coordinates.

In particular there always exist a particular mapping such that the trajectories

of any system can even become straight lines.

Though extremely powerful, this simplification is not cost-free, in fact the

change of coordinates can be very complex and is not in general defined in all the

1A change of coordinates is diffeomorphism: smooth invertible mapping with smooth inverse.
2That is a point where the equation is not null.



state space, which may force to switch repeatedly among many maps during a

simulation. Moreover you loose any meaningful structure of the system and any

physical interpretation of the state variables. It could be more useful to renounce

some simplicity in exchange of some structure in the equations.

Our work does not aim to drastically simplify the system, but to make its

equations faster while maintaining its mechanical structure. To do so we prove

that the equations of the complete model differ from the equations of the fast

model, that is indeed simpler and mechanical, only for a change of coordinates.

We will provide a simple mapping Γ between the two sets of generalized coordi-

nates, valid in all the state space. Since Γ is a simple multiplication by a constant,

the inverse mapping to retrieve the original state variables is a very fast opera-

tion. We will also give the formulae to calculate the parameters of the fast model

from those of the complete model. They do not produce any overhead during

simulations as they need to be computed only once during the initialization of

the algorithm.

When considering mechanical systems, coordinate transformations are first

defined between the generalized coordinates q and q̃, and then naturally ex-

tended to their time derivatives q̇ and ˙̃q. Be Φ : Rn → Rn the diffeomorphism

transforming q in q̃. The generalized velocities are related by the derivative

˙̃q = DΦ(q)q̇ ,

and the overall mapping Γ between state spaces is defined as

(q̃, ˙̃q) = Γ(q, q̇) := (Φ(q),DΦ(q)q̇) . (1.18)

With the new state variables the equivalence of systems (1.17) becomes

f(q, q̇) = DΓ−1 ◦ g ◦ Γ(q, q̇) ∀(q, q̇) ∈ R2n . (1.19)

In Lagrangian mechanics a system is defined by a Lagrangian function L : R2n →
R. The Lagrangian is in the form of kinetic minus potential energy and the

dynamics satisfies Hamilton’s principle

δ
Z t1

t0
L(q(t), q̇(t))dt = 0,

with arbitrary variations vanishing at the end points. The equations of motion

are given by the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0.



and depend only on the form of L(q, q̇). Before proceeding to show the equiva-

lence of the fast and complete models we give the

Lemma 1.1 Be µ the vector of parameters defining the complete model and ν

the vector of parameters defining the fast model. For any choice of µ with physical

meaning3, there exist a vector ν(µ) such that the two Lagrangian functions L and

L̃ associated to the models are equal up to a change of coordinates:

L̃(Φ(q),DΦ(q)q̇) = L(q, q̇). (1.20)

We prove constructively this lemma by imposing separately the equality of

kinetic and potential energies of the two systems, and providing ν(µ), Φ, and

DΦ.

The potential energy V of the complete model is only due to gravity and

depends on the height of the centers of mass of each body. Let M be equal to

the total mass of the system M = mr +mds +mms +mcs, then

V = g(mrp
s
re
z
g +mdsp

s
dse

z
g +mmsp

s
mse

z
g +mcsp

s
cse

z
g)

= g[mr(rr + Rrp
b
r) +mds(rr + Rrhds)+

+mms(rr + Rrhms) +mcs(rr + Rrhcs)]e
z
g

= g[Mrr + Rr(mrp
b
r +mdshds +mmshms +mcshcs)]e

z
g. (1.21)

The kinetic energy T of the complete model can be computed as the sum of the

kinetic energies of its bodies:

T =
1

2

X
l

(Vb
l )
T IlVb

l l ∈ {r, cs,ms, ds} . (1.22)

For the center assembly

TR =
1

2
(Vb

r)
T IrVb

r

=
1

2
mr‖vbr‖

2
+

1

2
(ωbr)

TJrωbr +mr(v
b
r)
T ω̂brp

b
r (1.23)

and for the generic rotating shaft K

TK =
1

2
(Vb

k)
T IkVb

k (1.24)

=
1

2
mk‖vbk‖

2
+

1

2
(ωbk)

TJkωbk .

3The parameters cannot be taken randomly, masses must be positive and the inertia tensors
must be positive definite.



The body velocity of each shaft Vb
k is related to the body velocity of the main

body Vb
r through

Vb
k = Adg−1

rk
Vb
r + Vb

rk =

24RT
rk −RT

rkĥk
0 RT

rk

3524vbr
ωbr

35+

24vbrk
ωbrk

35 . (1.25)

Since vbrk =
�
0 0 0

�T
, ωbrk =

�
0 θ̇k 0

�T
, and the rotation matrix RT

rk leaves

the y component unchanged,

Vb
k =

24RT
rkv

b
r −RT

rkĥkω
b
r

RT
rkω

b
r + ωbrk

35 =

24RT
rk 0

0 RT
rk

35 24vbr − ĥkω
b
r

ωbr + ωbrk

35 . (1.26)

Substituting (1.26) in (1.24) and using the invariance (1.8) we obtain

TK =
1

2

24vbr − ĥkω
b
r

ωbr + ωbrk

35T Ik

24vbr − ĥkω
b
r

ωbr + ωbrk

35 .
Since Ik is diagonal, TK can be written as the sum of the translational part

T trK =
1

2
mk(v

b
r − ĥkω

b
r)
T (vbr − ĥkω

b
r) (1.27)

and rotational part

T rotK =
1

2
(ωbr + ωbrk)

TJk(ωbr + ωbrk) . (1.28)

It is possible to define the generalized inertia matrix of a point mass mk placed

at the center of mass of K (that is fixed relatively to R), with respect to Σr as

Ipmk,r := mk

24I3×3 −ĥk

ĥk −ĥ
2

k

35 . (1.29)

The term T trK can be thought of as its kinetic energy:

T trK =
1

2
(Vb

r)
T Ipmk,rV

b
r . (1.30)

On the other hand, the rotational kinetic energy (1.28) does not depend either

on vbr nor on hk, but only on the rotational velocities of R and K. Making use

of the previously defined gear ratios, we write ωbrms and ωbrcs in terms of ωbrds,



obtaining

T rotK =
1

2
(ωbr + ρk,dsω

b
rds)

TJk(ωbr + ρk,dsω
b
rds) (1.31)

=
1

2
(ωbr)

TJkωbr + ρk,ds(ω
b
r)
TJkωbrds +

1

2
ρ2
k,ds(ω

b
rds)

TJkωbrds . (1.32)

Finally, by using (1.30) and (1.32), we rewrite the total kinetic energy (1.22) as

T = TR + T trDS + T trMS + T trCS + T rotDS + T rotMS + T rotCS (1.33)

=
1

2
(Vb

r)
T (Ir + Ipmds,r + Ipmms,r + Ipmcs,r)Vb

r

+
1

2
(ωbr)

T (Jds + Jms + Jcs)ωbr

+ (ωbr)
T (Jds + ρds,msJms + ρds,csJcs)ωbrds

+
1

2
(ωbrds)

T (Jds + ρ2
ds,msJms + ρ2

ds,csJcs)ωbrds. (1.34)

Using analogous arguments we find the potential and kinetic energies for the fast

model:

Ṽ = g(mr̃p
s
r̃e
z
g +map

s
ae

z
g +mbp

s
be
z
g)

= g[mr̃(rr̃ + Rr̃p
b
r̃) + (ma +mb)(rr̃ + Rr̃h̃)]ezg

= g[M̃rr̃ + Rr̃(mr̃p
b
r̃ + (ma +mb)h̃)]ezg . (1.35)

T̃ = TR̃ + T trA + T trB + T rotA + T rotB

=
1

2
(Vb

r̃)
T (Ir̃ + Ipma,r̃ + Ipmb,r̃ )Vb

r̃+

+
1

2
(ωbr̃)

T (Ja + Jb)ωbr̃

+ (ωbr̃)
T (Ja − Jb)ωbr̃a

+
1

2
(ωbr̃a)

T (Ja + Jb)ωbr̃a . (1.36)

We now impose to Φ a linear structure like

q̃ = (x̃, ỹ, z̃, ϕ̃, θ̃, ψ̃, θa)
T = Φ(q) = (x, y, z, ϕ, θ, ψ, ρeθds)

T (1.37)

(which is trivially a diffeomorphism as long as ρe 6= 0) with constant Jacobian

JΦ := DΦ =

24I6×6 0

0 ρe

35 . (1.38)



Note that the first six coordinates, that define position and orientation of the

center assembly R, are left unchanged, and that the mass distributions of the

models do not depend on the values of θds and θa as the shafts are all solids of

revolutions. This means that rr̃(q̃) = rr̃(q) and Rr̃(q̃) = Rr̃(q) ∀q, and that

when evaluating the potential energy of the fast model we can write Ṽ (q) instead

of Ṽ (Φ(q)). This said, by imposing the equality of the potential enegies (1.21)

and (1.35) for any possible q, we derived a first group of formulae that define five

parameters of the fast model:

mr̃ = mr (1.39)

pbr̃ = pbr (1.40)

ma = mb =
1

2
(mds +mms +mcs) (1.41)

h̃ =
mdshds +mmshms +mcshcs

mds +mms +mcs

. (1.42)

These formulae imply that M̃ = M , and can be verified by direct substitution

into (1.35). Equation (1.42) means that the centers of mass of the two counter-

rotating shafts coincides with the center of mass of the set of the three original

shafts. The center assemblies, beyond having the same coordinates, also share

the same mass and the same center of mass.

We now impose the equality of the kinetic energies: T (q, q̇) = T̃ (Γ(q, q̇)).

Note that the first terms of (1.34) and (1.36) (that account for the kinetic energy

of the center assemblies plus the translational part of the kinetic energy of the

shafts) depend only on the body velocities of R and R̃, that are not affected

by the coordinates change. We define the generalized inertia matrix of the new

center assembly in such a way to eliminate the consequences of grouping the three

shafts together on the point h̃:

Ir̃ = Ir − Ipma,r̃ − Ipmb,r̃ + Ipmds,r + Ipmms,r + Ipmcs,r . (1.43)

When replaced in expression (1.36), the parameter Ir̃ cancels the contributions

of the translational kinetic energies of the the counter-rotating shafts and restore

those of the three original shafts. There is no guarantee that Ir̃ preserves the

structure of a generalized inertia matrix. This check has to be done case by

case when using the formula (1.43), nevertheless it seems likely that adding and

subtracting some small terms to Ir does not spoil its nature.

To equate the remaining terms of the kinetic energies, we need to impose that

T rotA (Γ(q, q̇)) + T rotB (Γ(q, q̇)) = T rotDS(q, q̇) + T rotMS(q, q̇) + T rotCS (q, q̇). We remind

the reader that

ωbr̃(Γ(q, q̇)) = ωbr̃(q, q̇) = ωbr(q, q̇) ,



and that, being θa = ρeθds,

ωbr̃a(Γ(q, q̇)) = ωbr̃a(ρeθ̇ds) =

2664 0

ρeθ̇ds
0

3775 = ρeω
b
rds .

We set a system with the last three terms of (1.34) and in (1.36) replacing ωbr̃
with ωbr and ωbr̃a with ρeω

b
rds:

(ωbr)
T (Ja + Jb)ωbr = (ωbr)

T (Jds + Jms + Jcs)ωbr
(ωbr)

T (Ja − Jb)ρeωbrds = (ωbr)
T (Jds + ρms,dsJms + ρcs,dsJcs)ωbrds

(ωbrds)
T (ρ2

e(Ja + Jb))ωbrds = (ωbrds)
T (Jds + ρ2

ms,dsJms + ρ2
cs,dsJcs)ωbrds

The equalities have to hold for all possible ωbr and all possible ωbrds with the form

(1.6). Remembering that all inertia tensors are diagonal with Jxxk = Jzzk , the

system above becomes

Jxxa + Jxxb = Jxxds + Jxxms + Jxxcs =: α (1.44)

Jyya + Jyyb = Jyyds + Jyyms + Jyycs =: β (1.45)

ρe(Jyya − Jyyb ) = Jyyds + ρms,dsJyyms + ρcs,dsJyycs =: γ (1.46)

ρ2
e(Jyya + Jyyb ) = Jyyds + ρ2

ms,dsJyyms + ρ2
cs,dsJyycs =: δ , (1.47)

that is solved by

ρe =

Ì
Jyyds + ρ2

ms,dsJ
yy
ms + ρ2

bdJ
yy
cs

Jyyds + Jyyms + Jyycs
(1.48)

Jxxa = Jzza =
1

2
(1 + λ)(Jxxds + Jxxms + Jxxcs ) (1.49)

Jyya =
1

2
(Jyyds + Jyyms + Jyycs ) +

1

2
(Jyyds + Jyyms + Jyycs )

1
2

(Jyyds + ρms,dsJyyms + ρcs,dsJyycs )

(Jyyds + ρ2
ms,dsJyyms + ρ2

cs,dsJyycs )−
1
2 (1.50)

Jxxb = Jzzb =
1

2
(1− λ)(Jxxds + Jxxms + Jxxcs ) (1.51)

Jyyb =
1

2
(Jyyds + Jyyms + Jyycs )− 1

2
(Jyyds + Jyyms + Jyycs )

1
2

(Jyyds + ρms,dsJyyms + ρms,dsJyycs )

(Jyyds + ρ2
ms,dsJyyms + ρ2

ms,dsJyycs )−
1
2 , (1.52)



where λ can be any real number of the open interval (−1, 1). In order for the

values of Jxx
k̃

, Jyy
k̃

, and Jzz
k̃

to be elements of the diagonal of an inertia tensor, they

have to be positive and satisfy

Jxx
k̃
≤ Jyy

k̃
+ Jzz

k̃
(1.53)

Jyy
k̃
≤ Jxx

k̃
+ Jzz

k̃
= 2Jxx

k̃
. (1.54)

Condition (1.53) is satisfied once positiveness is proved, because Jxx
k̃

= Jzz
k̃

. Defin-

ing the right-hand sides of equations (1.44)-(1.47) as α, β, γ, and δ, we can rewrite

the solutions as

ρe =

s
δ

β
(1.55)

Jxxa =
1

2
(1 + λ)α (1.56)

Jxxb =
1

2
(1− λ)α (1.57)

Jyya =
β

2
+
γ

2

Ê
β

δ
(1.58)

Jyyb =
β

2
− γ

2

Ê
β

δ
. (1.59)

The positiveness of Jyya and Jyyb can be written as a single inequality:

(Jyyds + ρms,dsJyyms + ρcs,dsJyycs )2 < (Jyyds + Jyyms + Jyycs )(Jyyds + ρ2
ms,dsJyyms + ρ2

cs,dsJyycs ) ,

and, exploiting the forms (1.58) and (1.59), it becomes

βδ − γ2 > 0 . (1.60)

If we define

J :=
�
Jyyds Jyyms Jyycs

�T
, (1.61)

ρ :=
�
1 ρds,ms ρds,ms

�T
, (1.62)

S :=
�
1 ρ2

ds,ms ρ2
ds,cs

�T
, (1.63)

1 :=
�
1 1 1

�T
, (1.64)

P := 1ST − ρρT , (1.65)

we can transform the left-hand side of condition (1.60) into a quadratic form:

βδ − γ2 = JT (1ST − ρρT )J = JTPJ = JT (
P + PT

2
)J . (1.66)



One can show that the generic element (i, j) of the matrix P+PT

2
has the form

1
2
(ρi − ρj)2, which is always greater than zero as long as ρi 6= ρj. Hence, if there

are at least two different ρi, since J is made of positive numbers, condition (1.60)

is satisfied. Condition (1.54) has to hold for both Ja and Jb. Using the forms

(1.56) - (1.59) the two constraints

Jyya ≤ 2Jxxa (1.67)

Jyyb ≤ 2Jxxb (1.68)

become

β

2
+
β

2

γ√
βδ
≤ (1 + λ)α (1.69)

β

2
− β

2

γ√
βδ
≤ (1− λ)α , (1.70)

which lead to the solution

β

2α

γ√
βδ
− (1− β

2α
) ≤ λ ≤ β

2α

γ√
βδ

+ (1− β

2α
) . (1.71)

Since the constraints on the elements of the inertia tensors must hold also for

the original rotating bodies, α must be greater than β/2, hence β/2α ∈ (0, 1].

Equation (1.60) implies that γ/
√
βδ ∈ (−1, 1). These two facts means that the

intersection of solution (1.71) with the interval of definition of λ, (−1, 1), is never

empty. In the worst case it contains a unique value:

λ =
β

2α

γ√
βδ

=
1

2

Jyyds + ρms,dsJyyms + ρcs,dsJyycs
Jxxds + Jxxms + Jxxcs

Ì
Jyyds + Jyyms + Jyycs

Jyyds + ρ2
ms,dsJ

yy
ms + ρ2

cs,dsJ
yy
cs
.

(1.72)

Equations (1.39) - (1.43), (1.49) - (1.52), (1.72) determine all parameters of

the fast model as functions of those of the complete model, in such a way that

using a change of coordinate like (1.37) and (1.38) with ρe defined in (1.48), the

equivalence (1.20) holds. This conclude the proof.

Proposition 1 Given any complete model C of an internal transmission defined

by a set of parameters µ, the fast model defined by ν(µ) by mean of formulae

(1.39) - (1.43), (1.49) - (1.52), (1.72), is equivalent to C in free evolution in the

sense specified by (1.19), with Γ given by (1.37) and its derivative (1.38), and ρe
defined in (1.48).

Lemma 1.1 guarantees that the Lagrangians of the two systems are related by the

coordinate change Γ. The thesis derive from the invariance of the Euler-Lagrange

equations to coordinate changes.



1.4.1 Fast model of an n-shaft internal drivetrain

In case the motorbike to model has other rotating elements inside the transmis-

sion, it is possible to define a fast model starting from a drivetrain with more

than three shafts. But it is necessary that any further rigid body respects the

assumptions we made on position, orientation and mass distribution of the other

shafts. They have to be solids of revolutions with axes parallel to all other shafts,

and their angular displacements have to be related by constant gear ratios. The

structure of the fast model is the same as for the three shaft case, but the formu-

lae for its parameters are the generalized versions of those given in the previous

Section. In particular, the result of lemma 1.1 still holds for an arbitrary number

n of rotating shafts, it is sufficient to substitute the formulae (1.41) (1.42) (1.43)

with

ma = mb =
1

2

nX
k

mk

h =

Pn
k mkhkPn
k mk

Ir̃ = Ir − Ipma,r − Ipmb,r +
nX
k

Ipmk,r ,

and the definition of α, β, γ and δ with

α =
nX
k

Jxxk

β =
nX
k

Jyyk

γ = Jyyds +
nX
k

ρk,dsJyyk

δ = Jyyds +
nX
k

ρ2
k,dsJ

yy
k .

The values of ρe, Jxxa , Jyya , Jxxb , Jyyb and λ are still given by (1.55) - (1.59), (1.72).

Also the verifications of positiveness of the elements of the inertia tensors, and of

conditions (1.53) and (1.54) still hold.

1.5 Equivalence in forced evolution

Inputs of multibody models are generally torques τ and forces f. Given a body, for

example R, and a reference frame Σr rigidly attached to it, forces and torques are

represented as column vectors in R3. While torques have no point of applications,

forces are applied on the origin of the frame. A couple force-toque, both expressed



in the same body reference frame, is called wrench F and belongs to R6:

Fr =

24fr
τr

35 =
�
fxr fyr fzr τxr τ yr τ zr

�T
.

The subscript indicates the frame on which F is applied, in case the frame and

the body have different names, for example the body is R and the frame is K, a

second subscript will be used: Fk,r.

The power injected by F is

P =
¬
Fr,V

b
r

¶
,

where the body velocity Vb
r is a linear function of the generalized velocities q̇.

The configuration dependent matrix describing this linear relationship is the body

jacobian, that we indicate with Jbr(q) (we refer to [18] for further details), so the

body velocity of R is

Vb
r = Jbr(q)q̇ . (1.73)

The infinitesimal work allows the computation of the generalized forces Υr rela-

tive to a wrench applied on Σr. Indeed, we have¬
Fr,V

b
r

¶
=
¬
Fr,J

b
r(q)q̇

¶
=
¬
(Jbr)

TFr, q̇
¶

= 〈Υr, q̇〉 , (1.74)

where we defined

Υr := (Jbr)
TFr . (1.75)

In general there are many wrenches that produce the same generalized force,

in fact if Ker(Jbr) is non trivial, only the part of Fr that is orthogonal to it,

contributes to the value of Υr, while the parallel component is uninfluential.

According to Lagrange-D’Alembert principle the presence of external forces

and torques is modeled in Lagrangian mechanics just by mean of generalized

forces:

δ
Z t1

t0
L(q(t), q̇(t))dt+

Z t1

t0
〈Υ(q, q̇, t), δq〉 dt = 0 , (1.76)

where Υ is the sum of the generalized forces relative to all wrenches acting on

the model. Using integration by part shows that this is equivalent to the forced

Euler-Lagrange equations, which have expression

d

dt

∂L

∂q̇
− ∂L

∂q
= Υ(q, q̇, t) .

The computation of the power injected on the system can be done indifferently

using both body velocities and wrenches, and generalized velocities and forces.



The power produced is also invariant to coordinate transformations.

If ˙̃q = DΦ(q)q̇, then defining

Υ̃ := [DΦ∗]−1(q)Υ , (1.77)

results in¬
Υ̃, ˙̃q

¶
=
¬
[DΦ∗]−1(q)Υ,DΦ(q)q̇

¶
=
¬
DΦ∗(q)[DΦ∗]−1(q)Υ, q̇

¶
= 〈Υ, q̇〉

The mapping [DΦ∗]−1(q) : Rn → Rn is the inverse of the adjoint of DΦ(q), and

if Φ is defined like in (1.37) it coincides with the inverse transpose of JΦ:

[DΦ∗]−1(q) :=

24I6×6 0

0 1/ρe

35 = J−1
Φ .

The systems equivalence (1.19) becomes

f(q, q̇,Υ) = DΓ−1g(Φ(q),DΦq̇, [DΦ∗]−1Υ) ∀(q, q̇,Υ) ∈ R3n . (1.78)

Since Proposition 1 states that the equations of complete and fast model can

be regarded as two versions of the same system, also the new generalized forces

obtained by mean of (1.77) have a double nature: they are both an alternative

representation of Υ, and the generalized forces of some set of wrenches F̃ acting

on the fast model.

We furnish expressions to transform wrenches F acting on the complete model,

into equivalent wrenches F̃ of the fast model, such that their associate generalized

forces are related by

Υ̃ = J−1
Φ Υ .

First of all we analyze the case of a generic wrench Fr applied on the center

assembly. The body jacobians of Vb
r and Vb

r̃ are equal, and their last column

is equal to zero. This means that equal wrenches applied on Σr and Σr̃ have

the same generalized forces, whose last component is null. Considering that J−1
Φ

does not modify any of the first six components of Υr, we can conclude that all

wrenches applied on Σr can be applied on Σr̃ without any changes, producing

the same power for any choice of the body velocities.

Fr → Fr̃ := Fr . (1.79)

To treat the case of wrenches applied on the shafts, we will need to distin-

guish between wrenches with only the fifth component different from zero F5 :=�
0 0 0 0 τy 0

�T
, and those with the fifth component equal to zero F∗ :=



�
fx fy fz τz 0 τz

�T
.

Let F∗k be a wrench acting on the shaft K, the power produced is

P =
¬
F∗k,V

b
k

¶
=

D
F∗k, Adg−1

rk
Vb
r + Vb

rk

E
=

D
F∗k,r, Adg−1

rk
Vb
r

E
+
¬
F∗k,V

b
rk

¶
(1.80)

=

AdT

g−1
rk

F∗k,r,V
b
r

·
=

¬
Fr,V

b
r

¶
.

The second term of (1.80) is zero because it is a scalar product of two orthogonal

vectors. The main point is that F∗k can be applied indifferently on the generic

shaft K or on R (becoming formally F∗k,r) as long as its application point is the

origin of Σk. In the latter case it can be rewritten in Σr coordinates and follows

the rule (1.79).

F∗k → Fr̃ := AdT
g−1

rk
F∗k . (1.81)

Consider now a wrench F5
k representing a pure torque acting on the shaft K 6= DS

along its y-axis. The power produced is

P =
¬
F5
k,V

b
k

¶
=
D
F5
k, Adg−1

rk
Vb
r + Vb

rk

E
=

AdT

g−1
rk

F5
k,r,V

b
r

·
+
¬
F5
k,V

b
rk

¶
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¬
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¬
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¶
(1.82)

Equation (1.82) states that a pure torque τy acting on a generic shaft K can be

replaced by a torque on DS, as long as it is scaled of a factor equal to ρk,ds, and

another compensation torque is applied on R. This reduces case three to case

one and case four.

Note that in case V b
r = 0 (center assembly fixed to the ground), from (1.82)

derives the classic expression of power preservation during gear reduction:

τds =
1

ρds,k
τk ,



where τ is a torque acting on the y direction.

The forth and last case treats the application of a wrench F5
ds exerted on DS.

The fifth rows of Jbr, Jbr̃, Jbds and Jba are

[Jbr]
5

=
�
0 0 0 0 1 sinϕ 0

�
(1.83)

[Jbr̃]
5

=
�
0 0 0 0 1 sin ϕ̃ 0

�
(1.84)

[Jbds]
5

=
�
0 0 0 0 1 sinϕ 1

�
(1.85)

[Jba]
5

=
�
0 0 0 0 1 sin ϕ̃ 1

�
(1.86)

The generalized force corresponding to the pure torque F5
ds is

Υds = [Jbds]
TF5

ds =
�
0 0 0 0 τ yds (τ yds sinϕ) τ yds

�T
and using Υa = J−1

Φ Υds we can calculate its equivalent version:

Υa =

2416×6 0

0 1/ρe

35Υds =
�
0 0 0 0 τ yds (τ yds sinϕ) τ yds/ρe

�T
. (1.87)

If we apply on A the torque F5
a := 1

ρe
F5
ds and on R̃ the torque F5

r̃ := (1− 1
ρe

)F5
ds,

their combined generalized force is

Υr̃+a = Υr̃ + Υa =

��
1− 1

ρe

�
[Jbr̃]

T +
1

ρe
[Jba]

T

�
F5
ds

that is equal to (1.87). This means that the couple of torques (F5
a,F

5
r̃) as we

defined it here, is equivalent to F5
ds for the fast model.

F5
ds → (F5

r̃,F
5
a) :=

�
(1− 1

ρe
)F5

ds,
1

ρe
F5
ds

�
. (1.88)

Formulae (1.79), (1.81) and (1.88), together with equivalence (1.82), cover all

possible wrench acting on the complete model and make it utterly equivalent to

the fast model.





Chapter 2

Reduced Models of the Drive

Chain

In this Chapter two non-stiff models of the drive chain are presented. Both
of them are part of a planar multibody system with three degrees of freedom
simulating the rear half of a motorbike. Three moving bodies (the counter shaft,
the swing arm, and the rear wheel) are connected to a center assembly that is
fixed to the ground. External torques reproduce the engine, the rear brake and
the load on the wheel.

One starting model, called full model, is intended to recreate the drawbacks
that affect systems with stiff nonlinear dynamics. The chain is simulated by a
couple of massless elastic thread placed on both the upper and lower sides of the
sprockets. The characteristic function of the threads is such to give very high
tension when they are stretched and no force during compression. This induces
high frequency dynamics and numerical problems.

The first reduced model derives from the application of a quasi-steady-state
approximation of the chain and rear suspension extension. This approach consists
in replacing their fast stable dynamics with quasi-steady-state values, making
the transient to the equilibrium point instantaneous. The reduced equations are
obtained setting to zero both the velocities and accelerations of the chain length
and the swing arm. Numerical simulations show that in the reduced model the
high frequency vibrations are absent, while the slow signals are left unaltered.

In the last Section the inextensible chain model is derived. First the full model
is presented as a switched system made of three submodels, that are selected on
the base of which side of the chain is active, the upper, the lower, or none. Then
the two submodels with active chain segments are reduced separately imposing a
holonomic constraint on the chain extension. The inextensible chain model is the
switched system originate merging the two reduced models, which are selected
on the base of the sign of the holonomic constraint force.



2.1 Half-bike model

The chain is the last part of the drivetrain, that transmits the rotational move-

ment of the counter shaft to the rear wheel. It also provides further gear reduc-

tion, as the wheel sprocket (also called driven sprocket) is bigger than the drive

sprocket. The chain tension has an important effect on the trimming of the bike

and contributes enormously in the weight distribution and the compression of the

suspensions. For this reason the most suitable workbench to test different chain

models would be a complete model of motorbike, where all valuable quantities,

like the normal loads, the steering angle, the roll angle, etc., could be compared.

However, to avoid the designing of a complete motorcycle, only the rear half of

it has been implemented and simulated. In the opinion of the author, compar-

isons made in this framework are meaningful and likely to give similar results if

repeated on complete vehicle models.

The three rigid bodies that play an active role in the kinematics of the chain

are: the counter shaft DS, the rear wheel RW , and the swing arm SA. While the

first two are directly in contact with the chain by mean of the sprockets, the swing

arm affects and is affected by the chain force through the wheel joint constraint

force. A schematic of the half-bike model is depicted in Figure 2.1. The center

ΣΣds ez

ex

ez

Σrw
Σsa

ex

Σsa
ex

ez
ex

Σrez

Figure 2.1: The half-bike model is composed of the center assembly R, fixed
to the ground, the counter shaft, the swing arm and the rear wheel.

assembly R on which are pivoted DS and SA, is considered fixed to the ground,

and its reference frame Σr is inertial. Its z− axis, erz, points downward, and the

plane (erx, e
r
z) coincides with the symmetry plane of the bike. As the bodies are



rigid, this three dimensional model is studied as it were planar.

Drive sprocket. The origin Ods is fixed in position rds = hds =
�
hxds 0 hzds

�T
,

where hxds and hzds are parameters of the model. As in Chapter 1, its ro-

tational displacement is defined by the angle θds between edsx and erx. The

rotation matrix is defined as

Rds = Ry(θds).

The body coordinates of the center of mass are null, and the spatial coor-

dinates coincide with rds.

Without considering the chain tension, on DS are applied two forces: an

external torque τeng(t) that represents the engine action, and a friction force

τ dsfri(θ̇ds) = −γdsθ̇ds with γds > 0. The overall wrench is

Fds(θ̇ds, t) =
�
0 0 0 0 (τeng + τ dsfri) 0

�T
.

Swing arm. The reference frame of the swing arm Σsa is located at the wheel

joint with the x − axis pointing towards Or. The swing arm pivot point

is located at the origin of Σr, with axis ery; its angular displacement is

measured by the angle θsa between erx and esax as indicated in Figure 2.1.

Its rotation matrix and translation vector are

Rsa = Ry(θsa)

rsa = Rsa

2664−lsa0

0

3775 =

2664−lsa cos(θsa)

0

lsa sin(θsa)

3775 .
The coordinates of its center of mass are

p̄ssa =

24pssa
1

35 =

24Rsa rsa
0 1

3524pbsa
1

35 = gsap̄
b
sa.

The forces acting of the swing arm are due to the rear suspension, and

to the interaction with the rear wheel. The rear suspension of a bike is

generally made of a set of levers that relate θsa to the length of a spring and

a damper. We assume that the spring length lsusp is given by an invertible

function lsusp(θsa) of class C2 accounting for the lever ratio. The torque τspr
applied on the joint is given by a characteristic smooth function

τspr := τspr(lsusp(θsa)).



A simple positive damping coefficient has been used to reproduce the dam-

per:

τdam(θ̇sa) := −γsaθ̇sa .

At the end of the swing arm there is the wheel brake that, when operated,

exerts a differential torque on the wheel and the arm itself. The braking

torque is proportional to the speed of the wheel and to a time-varying

positive coefficient:

τbra(θ̇rw, t) := γbra(t)θ̇rw .

We also include a friction torque due to the dissipation of the bearing:

τ rwfri := γrwθ̇rw .

The overall wrench acting on SA is

Fsa(θsa, θ̇sa, θ̇rw, t) =
�
0 0 0 0 (τspr + τdam + τbra + τ rwfri) 0

�T
Rear wheel. Σrw is located at the center of the wheel, that rotates about erwy .

The rotation is measured with the angle θrw between esax and erwx . The

rotation matrix and the translation vector are

Rrw = RsaRy(θrw) = Ry(θsa + θrw) (2.1)

rrw = rsa . (2.2)

The body coordinates of the center of mass are null, and the spatial coor-

dinates coincide with rrw. Beyond the friction torque τ rwfri, also an exter-

nal time-varying load τload(t) is applied. The the expression of the overall

wrench is:

Frw(θ̇rw, t) =
�
0 0 0 0 (τload − τbra − τ rwfri) 0

�T
.

All parameters fo the full model are collected in table 2.1.

Table 2.1: Parameters of the full model.

msa,mrw Masses of SAand RW.
Jyyds , Jyysa , Jyyrw Moments of inertia of the three bodies.
pbsa Position of the center of mass of SA in body coordinates.
lsa Length of the swing arm.
rws Wheel sprocket radius.
rds Drive sprocket radius.

h =
�
hx 0 hz

�T
Position of Ods in spatial coordinates.



The vector of the three angles θ :=
�
θds θsa θrw

�T
is the vector of the gen-

eralized coordinates. The body jacobians of the three moving bodies are

Jbds =

266666666664

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

377777777775
Jbsa =

266666666664

0 0 0

0 0 0

0 lsa 0

0 0 0

0 1 0

0 0 0

377777777775
Jbrw =

266666666664

0 −lsa sin(θrw) 0

0 0 0

0 lsa cos(θrw) 0

0 0 0

0 1 1

0 0 0

377777777775
,

and the equations of motion of the half-bike model have the general form

M(θ)θ̈ + C(θ, θ̈) +G(θ) =

= [Jbds]
TFds(θ̇ds, t) + [Jbsa]

TFsa(θsa, θ̇sa, θ̇rw, t) + [Jbrw]TFrw(θ̇rw, t) =: Υ′(θ, θ̇, t)

2.2 Full model

The chain is modeled as a massless elastic thread wrapped around the wheel and

drive sprocket. Consider the center of the sprockets fixed as if the suspension

were locked. As the sprockets rotate, they put in tension either the upper chain

segment or the lower one. When the upper (lower) segment is straight, it becomes

tangent to both the sprockets, and defines the tangent points A and C (B and

D) like in figure 2.2. We assume that the tangent points separate the stretched

AA

C

D
D

B

Figure 2.2: Tangent points coordinate frames and chain length. When the
upper part of the chain is tight, the chain lays on the segment AC. Similarly,
when the bottom part is tight, the chain is tangent on B and D. We define
four reference frames ΣA, ΣB, ΣC , and ΣD as depicted, where we will apply
the chain tension.

part of the chain (the one under tension) from the parts that are attached to the

gears and move solidly with them (arcs øAB and øCD). Imagine to mark with a



sign the points of the chain pA and pC that occupy the tangent points at a certain

time, when the chain is straight but the tension is zero. We define the length lu of

the upper chain segment as the distance du(pA, pC) along the chain, that, in this

configuration, is equal to the length of the segment AC. Let the sprockets rotate

of angles θds < 0 (clockwise in the Figure 2.2) and θrw > 0 (counterclockwise);

pA and pC rotate about the sprockets along two arcs. The upper segment length

becomes lu = rwsθrw+AC−rdsθds. This formula holds also for arbitrary rotations

even if pA or pC get off the sprockets. The extension of the upper segment eu is

defined as the difference between the upper length and the upper rest length l0u,

that is a parameter of the model:

eu := lu − l0u = rwsθrw + AC − rdsθds − l0u

An analogue reasoning let us define the lower segment extension as

el := ll − l0l = −rwsθrw +BD + rdsθds − l0l

If the sum of the two rest lengths is sufficiently big, the two segments are never

both tense at the same time, but there is a dead zone.

Figure 2.3: Full chain model. When the swing arm is free to move the distance
of the sprockets changes, and the positions of the tangent points become a
function of θsa.

When the swing arm is free to move the distance of the sprockets changes,

and the positions of the tangent points become a function of θsa. We use some



geometrical arguments to express this dependence. The two angles α and β,

reported in Figure 2.3, are implicitly defined as

cos(α) = (rws − rds)/dia (2.3)

tan(β) = dds sin(γ − θsa)/[lsa + dds cos(γ − θsa)] (2.4)

dia = [lsa + ddscos(γ − θsa)]/cos(β) , (2.5)

where dds is the distance between the drive sprocket and the swing arm joint,

while γ is the elevation of the drive sprocket center from the center assembly.

The quantity dia is the distance between the centers of the two sprockets. The

angle α specifies the angular displacement of the tangent points relative to the

axis passing through the center of the two sprockets. The angle β represents the

angle between the swing arm and the axis that goes through the center of the

two sprockets. The distance of the tangent points is

AC = BD =
È
d2
ia − (rws − rds)2 .

The modules of the chain tensions are

Tu :=

8<: keu eu ≥ 0

0 eu < 0

Tl :=

8<: kel el ≥ 0

0 el < 0

. (2.6)

As the tangent points are located on the sprockets, they can be described in body

coordinates relative to Σds and Σrw. Is it worth noting that β + α is the angular

displacement of A with respect to the x axis of the rear assembly Σsa and that

similarly β − α describes the angular displacement of B.

We describe in detail how to model the interaction of the chain with the point

A of the wheel sprocket, being the other cases for B, C, and D similar. See

Figures 2.2 and 2.3 for a description of the angles and reference frames that we

will make use of.

The reference frame Σrw is attached at the center rear wheel and rotates with

it. A reference frame Σa is attached to the point A. Its position and orientation

relative to the rear wheel frame are

rA = rwsRy(α + β − θrw)ex (2.7)

RA = Ry(α + β − θrw − π/2) . (2.8)

Notice that Σa is defined so that its x− axis points along the segment AC.



To compute the infinitesimal work done by the chain tension, we imagine that

the chain applies a force oriented along AC of magnitude Tu. We may represent

this situation using a wrench Fa applied at the origin of Σa. In coordinates

relative to Σa, we have

Fa =
�
Tu 0 0 0 0 0

�T
. (2.9)

Since the wrench is applied on a moving frame, we need to rewrite it with respect

to the rear wheel frame Σrw. As described in the appendix Sections A.3 and A.4,

the equivalent wrench can be computed as

Fa
rw = Ad−Tga

Fa , (2.10)

and the infinitesimal work is then given by¬
Fa
rw,V

b
rw

¶
. (2.11)

The rigid transformations that define the reference frames of the other three

tangent points with respect to Σrw and Σds are:

Rb = Ry(−θrw + β − α + π/2)

rb = Rb

2664 0

0

rws

3775
Rc = Ry(−θds + θsa + β + α− π/2)

rc = Rc

2664 0

0

−rds

3775
Rd = Ry(−θds + θsa + β − α + π/2)

rd = Rd

2664 0

0

rds

3775 ,
the overall generalized force due to the chain tensions is

Υchain(θ) = [Jbrw]T (FA,rw(θ) + FB,rw(θ) + [Jbrw]T (FC,ds(θ) + FD,ds(θ) (2.12)

The equation of motions of the half-bike model endowed with a full chain become

M(θ)θ̈ + C(θ, θ̈) +G(θ) = Υ′(θ, θ̇, t) + Υchain(θ) , (2.13)

and will be called full model equations.



2.3 Quasi-steady-state model

The quasi-steady-state approximation of a dynamic system consists briefly in

replacing the dynamics of a certain subsystem, with its equilibrium configuration,

transforming one or more first order differential equation into algebraic equations.

To give an example of the quasi-steady-state dynamics of a spring, we study

the simple case of a linear mechanical model (see Figure 2.4). Two masses m1 and

F1 F2T T
k

m1 m2

1 2T T

c1 c2
d p0

Figure 2.4: Mass-spring-mass model. Two masses m1 and m2, free to move on
a straight line, are linked by a spring with stiffness k. F1 and F2 are external
forces, T is the spring tension, c1 and c2 are the friction coefficients.

m2 are connected by a spring. The spring tension T is equal to the product of a

high positive stiffness k and the spring extension l := p− d− l0. The symbol l0 is

the rest length of the spring, while d and p indicate the longitudinal displacements

of the masses. Two positive parameters c1 and c2 model a linear friction with the

ground. The equations of motion are

ḋ = dd (2.14)

ḋd = − c1

m1

dd +
k

m1

(p− d− l0) +
F1(t)

m1

(2.15)

ṗ = pd (2.16)

ṗd = − c2

m2

pd −
k

m2

(p− d− l0) +
F2(t)

m2

(2.17)

where the subscript d is used for the velocities. As for the chain, the extension

of the spring depends on the difference of two state variables and can be taken

as a generalized coordinate instead of one of them. Defining as new coordinates

the spring extension l, and ld := pd − dd, we put in evidence the dynamics of the

spring:

ḋ = dd (2.18)

ḋd = − c1

m1

dd +
k

m1

l +
F1(t)

m1

(2.19)

l̇ = ld (2.20)

l̇d = −km1 +m2

m1m2

l − c2

m2

ld +
c1m2 − c2m1

m1m2

dd −
F1(t)m2 − F2(t)m1

m1m2

.(2.21)



The spring shows the behavior of an asymptotically stable oscillator with inputs.

The equilibrium point is found setting l̇ and l̇d to zero and inverting 2.21. The

quasi-steady-state function depends on the reduced state variables and the input:

lqs =
1

k

c1 + c2

m1 +m2

dd −
1

k

F1(t) + F2(t)

m1 +m2

. (2.22)

Substituting 2.22 in 2.15 gives the reduced dynamic equations

ḋ = dd (2.23)

ḋd = − c1 + c2

m1 +m2

dd +
F1(t) + F2(t)

m1 +m2

. (2.24)

The state space of the reduced model has now dimension 2.

For the mass-spring-mass model, the QSSA is equivalent to the application

of a singular perturbation. To apply the singular perturbation theory ([20], [21],

[22], [23], [24]) the system must be written in standard form

ẋ = f(t, x, z, ε)

εż = g(t, x, z, ε) ,

where the state variables are partitioned in slow and fast ones, called respectively

x and z, and ε is a small parameter of the system. If we apply the further change

of variables

x1 := d

x2 := dd (2.25)

z1 := kl (2.26)

z2 := kld ,

to the mass-spring-mass model, and define ε := 1/k, the standard form is

ẋ1 = x2 (2.27)

ẋ2 = − c1

m1

x2 +
z1

m1

+
F1(t)

m1

(2.28)

εż1 = εz2 (2.29)

εż2 =
c1m2 − c2m1

m1m2

x2 −
m1 +m2

m1m2

z1 + ε
c2

m2

z2 −
F1(t)m2 − F2(t)m1

m1m2

.(2.30)

Setting ε = 0 the dimension of the state space decreases as two equations become

algebraic. Inverting 2.30 we find z1 = h(t, x). Unfortunately equation 2.29 col-

lapses when ε = 0, and any choice of z2 is admissible, which means that the roots



of 0 = g(t, x, z, 0) are not isolated. This fact prevent us from applying Tikhonov’s

theorem and proving the convergence of the reduced dynamics to the full one as ε

goes to zero. Nevertheless, picking z2 = 0, we can still write a quasi-steady-state

for the fast variable z

z1 =
c1m2 + c2m1

m1 +m2

x2 −
F1(t)m2 + F2(t)m1

m1 +m2

(2.31)

z2 = 0 ,

and a slow model ẋ = f(t, x,
�
h(t, x) 0

�T
, 0), that is indeed equal to 2.23 - 2.24.

We now pass to describe the application of the QSSA to the full chain model.

In most cases the equations derived from multibody codes are not tractable,

so, though the equations of the full model are not extremely complex, we will

operate as if they were a black-box. To increase the generality of the discourse, let

us consider the more general case of a mechanical system representing a complete

motorbike with also the front steering, the fork, etc. Its equations are

M(q)q̈ + C(q, q̇) +G(q) = Υ(q, q̇, t) .

Assume that the rear half of this model is equal to the full model; the vector q

and its time derivatives can be partitioned in

q =:

24 θ
q∗

35 ,
where q∗ collects all state variables involving the front half of the bike. Inverting

the kinetic matrix M we write the equations of motion in explicit form, like they

are usually returned by multibody codes:24 θ̈
q̈∗

35 = M−1(Υ− C −G) =: f(θ, q∗, θ̇, q̇∗, t) =:

24 fθ(θ, q∗, θ̇, q̇∗, t)
fq∗(θ, q∗, θ̇, q̇∗, t)

35 .
The vector function fθ can be further subdivided in

fθ =
�
fds fsa frw

�T
.

With respect to the time-scale of the simulations we are interested in, also the

dynamics of the suspensions is considered fast. As it has been proved in [25], the

QSSA is effective also on the rear suspension. We impose the first and second

derivatives of the rear suspension spring length lsusp equal to zero and obtain two



conditions

θ̇sa = 0 (2.32)

θ̈sa = 0 . (2.33)

This is due to the fact that the length of the spring suspension is a smooth

invertible function of θsa only.

Exploiting 2.32 and 2.33, the derivatives of the chain length become

l̇u = rrwθ̇rw − rdsθ̇ds (2.34)

l̇l = −rrwθ̇rw + rdsθ̇ds (2.35)

l̈u = rrwθ̈rw − rdsθ̈ds (2.36)

l̈l = −rrwθ̈rw + rdsθ̈ds . (2.37)

and setting them to zero yields

θ̇ds =
rrw
rds

θ̇rw (2.38)

θ̈ds =
rrw
rds

θ̈rw . (2.39)

While conditions 2.32 and 2.38 involve directly state variables of the full

model, imposing 2.33 and 2.39 would require the possibility of manipulating

the function f(q, q̇, t). As we assumed that it is not possible, they must be

imposed numerically. Given the values of the reduced state space variables

(q̄, ˙̄q) := (θrw, q∗, θ̇rw, q̇∗), the quasi-steady-state is calculated solving

rdsfds(θds, θsa, q̄,
rws
rds

θ̇rw, 0, ˙̄q, t)− rwsfrw(θds, θsa, q̄,
rws
rds

θ̇rw, 0, ˙̄q, t) = 0

fsa(θds, θsa, q̄,
rws
rds

θ̇rw, 0, ˙̄q, t) = 0

for (θds, θsa). The solution (θqsds, θ
qs
sa) = h(θrw, q∗, θ̇rw, q̇∗, t) is replaced into the full

equations to derive the reduced dynamics:

¨̄q = f̄(θqsds, θ
qs
sa, q̄,

rws
rds

θ̇rw, 0, ˙̄q, t) , (2.40)

where f̄ are the last n − 2 component of f(q, q̇, t) and n is the dimension of the

state space of the complete motorcycle model.

We made the arbitrary choice of reducing θds, because the angular displace-

ment of the counter shaft is a minor quantity. In principle θrw could be chosen

as well, in which case the reduced state space would contain θds. No assumption

can be made on the structure of the reduced system, which in general does not



present a mechanical structure. The sequence of quasi-steady-state values for θds
and θsa can be numerically derived to obtain an estimate of their velocities. Nu-

merical results presented in Section 2.4 prove the goodness of the approximation

adopted.



2.4 Numerical results

In this section we present a series of simulation results, obtained comparing the

full model and the quasi-steady-state model, that have been implemented in

Matlab as a Symulink level-2 S-Functions. In Figure 2.5 there are 2 views of the

full chain model subject to the engine and braking torque. The values of the

model parameters are listed in table 2.2. The simulation step is 10−3s.
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Figure 2.5: Full chain model. During traction and braking one segment at a
time is tense.

Table 2.2: Parameters of the Half-bike model.

msa = 7 Jyyds = 0.005 hx = 0.08 pxsa = 0.35
mrw = 15 Jyysa = 0.4 hy = 0 pysa = 0
lsa = 0.7 Jyyrw = 0.7 hz = 0.02 pzsa = 0
rds = 0.03 rws = 0.08

2.4.1 QSS approximation

The first set of simulation results is obtained applying an engine torque ramp

during the first five seconds, letting the systems evolve freely for other five seconds

and applying a brake torque step at t = 10. Positive engine torques accelerate

the counter shaft counterclockwise. The velocity of the drive sprocket in the QSS

model is obtained through finite differences.
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Figure 2.6: Chain extension.
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Figure 2.7: Chain tension.
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Figure 2.8: Drive sprocket velocity.
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Figure 2.9: Swing arm displacement.
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Figure 2.10: Rear wheel velocity.



2.4.2 Tendency for high stiffness

We ran three simulations with the same inputs: the engine torque function is

has the triangular form of a saw tooth with a ten second wide base and 50Nm

height; also the load torque function is shaped like a triangle with the same base,

but opposite height, and it is shifted ten seconds forward. The chain stiffnesses

are 104, 105, and 106 for the first, second, and third simulation respectively. As

expected, when the chain stiffness increases the the chain extension reduces.
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Figure 2.11: Chain extension.
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Figure 2.12: Chain tension.
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Figure 2.13: Chain extension.
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Figure 2.14: Chain tension.

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

−3

time [s]

Le
ng

th
 [m

]

Chain Extension

 

 
Full Upper
Full Lower
Reduced Upper
Reduced Lower

Figure 2.15: Chain extension.
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2.5 Inextensible model

The QSS model solved the problems due to high gain and nonlinearities of the

chain, nevertheless for each evaluation of the reduced system, it is necessary to

solve numerically a nonlinear equation in two unknowns, which wastes part of

the advantage of having non-stiff dynamics. In this section we present another

reduced model without this drawback.

To express the concept behind the inextensible chain model, we refer again

to the mass-spring-mass model introduced in Section 2.3. Note that the reduced

dynamics 2.23 - 2.24 does not depend on the stiffness k, whereas the quasi-steady-

state 2.22 does. For k tending to infinity the quasi-steady-state extension of the

spring becomes the constant zero. Simulations suggest that this is also true for

the full model, which let us think that the QSS model can be further simplified.

Ideally each chain segment should be modeled with a unilateral constraint that

allows the chain compression but prevents the stretching. An alternative, would

be the simultaneous enforcement of two bilateral holonomic constraints like

lu − l0u = 0 (2.41)

ll − l0l = 0 , (2.42)

but they would force the total chain length to be constant and would not allow any

segment to compress itself. This, in turn, would fix the distance of the sprockets

and consequently lock the swing arm. Before presenting our solution we need to

do an intermediate step.

Let us consider a variation of the full model called upper spring model, en-

dowed with the upper chain only. Its chain characteristic function is fully linear,

that is when it is compressed it is capable of pushing like a spring. This system

reproduces exactly the original full model only in the region of the state space

where the upper chain is stretched, but it is different elsewhere. The points of

application of the spring forces are A and C, while the lower chain pulls on B

and D. Such a situation is not rare, it always occurs when the an engine brake

torque1 is applied on the counter shaft, which tends to decelerate the rear wheel.

Analogously we define the lower spring model, which correctly reproduces the full

one only when the lower chain tension is positive. Relationships between models

are sketched in Figure 2.17.

We could recreate the full model switching among three systems: the upper

spring model, the lower spring model, and a free-wheel model, where the wheel

and the counter shaft are independent. The values of the upper and lower chain

1The engine brake torque is exerted by the engine when the throttle is closed and tends to
decelerate the vehicle.
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Figure 2.17: The upper and lower spring models reproduce correctly the full
model only when their omonimous chain segment is active.

extension define the regions of validity of each model. The choice is always

unique as in the full model at most one segment at a time is active. Note that

the free-wheel model (equivalent to the dead-zone of the chain) is hardly active

when running, as generally the chain is always tense; it is rather a transient state

between two working conditions.

Both the upper and lower spring models can be effectively reduced with con-

straints 2.41 and 2.42 respectively. This idea comes from the considerations done

for the mass-spring-mass model: as the stiffness goes to infinity, the reduced dy-

namics does not change while the quasi-steady-state function converge to zero.

With the application of a holonomic (hence bilateral) constraint the spring force

become the constraint force. To calculate it we suggest a technique that can be

found in the second Chapter of [26], and exploit an intelligent formulation of the

constraint function.

If we suppose that the constraint is ideal, that is the constraint force does

no work, it can be proved that it is a linear combination of the gradient of the

constraint function: �
∂h(θ)

∂θ

�T
λ =: AT (θ)λ . (2.43)

λ ∈ R is called Lagrange multiplier and represents the relative magnitude of the

constraint force.

Instead of using the explicit form of the constraint to express one generalized

coordinate as a function of the others (in our case it would be θds to be eliminated),

the constraint force is added to the generalized forces of the equations of motion



and 2.13 becomes:

M(θ)θ̈ + C(θ, θ̈) +G(θ) = Υ′(θ, θ̇, t) + AT (θ)λ (2.44)

h(q) = 0 ,

As A is full rank, the Lagrange multiplier can be explicitly computed differenti-

ating twice the constraint (2.41), or (2.42), obtaining

A(θ)θ̈ + Ȧ(θ)θ̇ = 0. (2.45)

Solving for θ̈ from (2.44), one finally gets

λ =
�
A(θ)M−1(θ)AT (θ)

�−1 �−A(θ)M−1(θ)
�
Υ′(θ, θ̇, t)− C(θ, θ̈)−G(θ)

�
− Ȧ(θ̇)θ̇

�
note that

�
A(θ)M−1(θ)AT (θ)

�
6= 0 as M(θ) is positive definite and A(θ) is not

the null vector: this assures that a unique solution (θ, λ) exists for (2.44). Note

also that λ depends smoothly on the inputs.

The differentiated version of 2.41 can be seen as an equation on the velocities

of the material points that occupy the tangent points A and C. Making use of

the frames Σa and Σc it becomes

[Vb
a,rw]x = [Vb

c,ds]
x , (2.46)

where the apex x indicates the first component of the velocity vector, the one

parallel to the segment AC; the subscripts rw and ds reminds that the points

belong to these two bodies. Using arguments treated in the Appendix, it is

possible to show that 2.46 can be written as�
Adg−1

rw,a
Jbrw − Adg−1

ds,c
Jbds

�x
θ̇ = 0

that must be equal to A(θ)θ̇ = 0. From the formulation of the instantaneous

work done by the constraint force we get¬
Υchain, θ̇

¶
=
¬
A(θ)Tλ, θ̇

¶
=
¬
λ,A(θ)θ̇

¶
=
¬
λ, [Vb

a,rw]x
¶
−
¬
λ, [Vb

c,ds]
x
¶

which means that λ is the x component of the wrenches enforcing the constraint,

that is the spring force module. If it is positive the constraint is pulling, otherwise

it is pushing, or at rest. Using the same technique for 2.42 leads to the knowledge

of the lower constraint force.

The two reduced models can be merged to define a switched system that

reduces the full model. The switching function determines the active model de-

pending on which one has a pulling constraint force. If both are zero, the two



reduced models coincide and any can be chosen. Figure 2.18 sketches the rela-

tionships among all models we introduced.
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Figure 2.18: The full model is thought of as a switched model with three
dynamics. The reduction is applied separately on the upper and lower spring
models. The switched model made by the union of these two, reduces the full
model.





Appendix A

Representation of Rigid Motion

A.1 Introduction

In this section, we briefly introduce the representation of points, vector quantities

and rigid transformations that are used throughout this dissertation. For a more

thorough presentation, the reader is referred to [18, Chapter 2 and Appendix A]

and [27, Chapter 9].

A.2 Points, vectors and rigid motion

Rigid transformations have a simple representation in terms of matrices and vec-

tors in R4. Consider a point p given in coordinates by [px, py, pz]
T . Appending 1

to the coordinate vector, we get the homogeneous representation of the point p,

obtaining

p̄ =

2666664
px
py
pz
1

3777775 .
A rigid transformation is represented with the linear mapping

p̄a =

24pa
1

35 =

24Rab rab
0 1

3524pb
1

35 = ḡab p̄b. (A.1)

The 4×4 matrix gab is the homogeneous representation of (rab,Rab) ∈ SE(3). The

matrix Rab and vector rab represent the position and orientation of a coordinate

frame B relative to another coordinate frame A, assumed as reference. In this

context, pb are the coordinates of a point measured with respect to the first

coordinate system B, while pa are the coordinates of the same point with respect

to the second reference frame A.



The reference frame B defined by rab and Rab may be interpreted as the

position and orientation of a rigid body in the Euclidean space R3. In this context,

pb defines the coordinates (relative to B) of a material point attached to the body.

A rigid motion of the body may be expressed as curve in SE(3) given by

gab(t) = (rab(t),Rab(t)). To express the velocity of a rigid body one may attempt

to compute directly ġab. However, this would imply using 3 + 3 × 3 = 12 coor-

dinates to express it. We know from basic physic course that a rigid body has 6

degree of freedom, so we expect to use 6 independent variables to express its ve-

locity. The solution to the problem is given by Lie group theory and is to study

the velocity vector transporting it at the group identity. Since there are right

and left translations, we may define two different kind of velocities. These are

the spatial and body velocities. The body velocity is more natural to understand

in terms of physical intuition. In this Appendix, we will mainly concentrate on

it. We refer to [18, Chapter 2] for a more detailed discussion.

The spatial velocity of a rigid motion is defined as

Vs =

24vs

ωs

35 =

24−ṘabR
T
abrab + ṙab

(ṘabR
T
ab)
∨

35
and the body velocity is

Vb =

24vb

ωb

35 =

24 RT
abṙab

(RT
abṘab)

∨

35 .
In homogeneous representation, the above expressions are given by

V̂
s

= ġabg
−1
ab ,

V̂
b

= g−1
ab ġab.

The linear part of the body velocity, RT
abṙab, is interpreted as the linear velocity

of the origin of B relative to A but written in coordinates of B. The angular

velocity (RT
abṘab)

∨ has a similar interpretation: It represents the rotation velocity

of the coordinate system B with respect to A expressed in coordinates of B.

Spatial and body velocities may defined for a generic Lie Group. Vs and Vb

should be interpreted as vectors laying on the tangent space at the identity of

SE(3). In the context of rigid motion, they are also referred to as twists.

The relationship between the body and spatial velocities is captured by the

adjoint matrix

Adg =

24R r̂R

0 R

35 . (A.2)



It may be shown that

Vs = Adgab
Vb.

The composition of rigid transformations is simply given by a multiplication

between elements of SE(3). Now, suppose to place in the Euclidean space three

coordinates systems and denote them A, B, and C. We call gab the rigid trans-

formation from B to A and gbc that from C to B. A useful formula to compute

the body velocity of frame C relative to frame A is given by

Vb
ac = Adg−1

bc
Vb
ab + Vb

bc. (A.3)

The above formula is simple to obtain by direct calculation and may be found

also in [18, Chapter 2]. The body velocity seen from frame C is a compositions

of two terms. The first involves the velocity of B relative to A and the second

relates the velocity of C with that of B. Note how the adjoint representation

Adg−1
bc

in this case maps body velocities measured with respect to B into body

velocities relative to C.

A.3 Force/moment representation

Forces and moments are expressed relative to a reference frame that is attached

to the rigid body. In this body coordinate system, the force/moment pair is

represented like a vector in R6 as

Fb =

24 f

τ

35 f ∈ R3 linear component

τ ∈ R3 rotational component

A force/moment pair is also called a wrench.

Wrenches combine naturally with twists to define instantaneous work. Let

gab(t) ∈ SE(3) parameterize the motion of a rigid body, where A is an inertial

frame and B is a frame attached to the rigid body. Let Vb
ab represent the instan-

taneous body velocity of the rigid body and let Fb
b represent the body coordinates

of a wrench applied to the origin of B. The pairing (the scalar product in R6)

between this two objects defines the infinitesimal work (or power)¬
Fb,V

b
ab

¶
= f · v + τ · ω . (A.4)

The infinitesimal work may be also expressed in spatial coordinates. The key

for obtaining this equivalent formulation is the coadjoint representation Ad∗. As

a matrix, the coadjoint representation is just given by the transpose of adjoint



matrix Adg, that is

Ad∗g = AdTg =

24 RT 0

−RT r̂ RT

35 .
The relationship between the body and spatial coordinates of a wrench is given

by

Fs = Ad∗g−1
ab

Fb . (A.5)

and the infinitesimal work is spatial coordinates is computed as¬
Fs
b,V

s
ab

¶
= fs · vs + τ s · ωs. (A.6)

To prove the equivalence between (A.4) and (A.6), just notice that¬
Fb,Vb

ab

¶
=
¬
Fb,Adg−1

ab
Vs
ab

¶
=
¬
Ad∗g−1

ab
Fb,Vs

ab

¶
=
¬
Fs,Vs

ab

¶
.

A.4 Applying a wrench on a moving frame

Let A be the inertial frame and B the body frame attached to a rigid body. As

previously explained, the motion of the rigid body can be described by a curve

in SE(3) as

gab(t) =

24Rab(t) rab(t)

0 1

35 . (A.7)

Consider the problem of computing the infinitesimal work due to a wrench applied

to the rigid body on a reference frame C that changes is position relative to the

body frame B. For our purposes, this problem is encounter when modeling the

chain drive and tire-road interaction forces.

The transformation relating the frame C to inertial frame A is expressed by

the product of two elements of SE(3) as

gac(t) = gab(t)gbc(t) =

24Rab(t) rab(t)

0 1

3524Rbc(t) rbc(t)

0 1

35 (A.8)

A graphical representation of the described frames is shown in Figure A.1.

The wrench in body coordinates is Fb
c = (fbc, τ

b
c ) and is applied at to the

origin of C. We want to compute the infinitesimal work done by the wrench.

Unfortunately, the expression ¬
Fc,V

b
ac

¶
(A.9)

fails to be the right expression for the infinitesimal work and the main reason

is that the frame C is not rigidly attached to the body. Otherwise stated, the

material point at which the wrench is applied changes at any instant of time.



Figure A.1: The application of a wrench on a moving frame. The coordinate
frame A is inertial, while the coordinate system B is the body reference frame.
The wrench (f, τ ) is applied to the material point located at the origin of frame
C. The material point to which the wrench is applied changes time by time
since the position and orientation of the frame C is not fixed with respect to
the rigid body.

There are then two equivalent ways to compute properly the infinitesimal

work. The first is to consider an equivalent wrench applied at the origin of a

different coordinate system rigidly attached to the body (cf. [18]). As an example,

we may choose to write the wrench in terms of the body frame B. The expressions

of the two equivalent wrenches are related by the coadjoint representation

Fb = Ad∗g−1
bc

Fc. (A.10)

Explicitly, from (A.5) we get24fb
τb

35 =

24 Rbc 0

r̂bcRbc Rbc

35 24fc
τc

35 .
The inverse of the transformation expressing the wrench Fb as a function of the

wrench Fc is given by

Fc = Ad∗gbc
Fb,

that is 24fc
τc

35 =

24 RT
bc 0

−RT
bcr̂bc RT

bc

3524fb
τb

35 .



There is a well known physical interpretation for the transformation (A.10).

Force and torque vectors that were written relative to C frame are rotated into

vectors expressed in the B frame using the matrix Rbc. Moreover, an additional

torque of the form rbc × fb shows up and that is the equivalent torque due to the

force fb. This contribution is necessary since the force is applied at a distance rbc
from the origin of B.

Once we have expressed the applied wrench relatively to the B frame, the

infinitesimal work may be computed with the expression¬
Fb,V

b
ab

¶
=
¬
Ad∗g−1

bc
Fc,V

b
ab

¶
. (A.11)

This expression also introduces the second way of computing the infinitesimal

work. Indeed, due to the pairing between tangent and cotangent vectors, the

equation (A.11) is equivalent to¬
Fc,Adg−1

bc
Vb
ab

¶
=:

¬
Fc,V

b
ac̄

¶
. (A.12)

The body velocity Vb
ac̄, defined as Adg−1

bc
Vb
ab, will be called material body velocity.

It may be computed from the rigid motion

gac(t) = gab(t) gbc(t)

treating the rigid transformation gbc(t) from C to B as if were constant (i.e., time

independent). Formally, we obtain

V̂
b

ac̄ = g−1
ac ġac̄ = g−1

bc g−1
ab ġab gbc = g−1

bc V̂
b

ab gbc ,

that is

Vb
ac̄ = Ad−1

gbc
Vb
ab . (A.13)

The transformation (A.13) is similar to (A.3) except that we treat gbc as it were

independent of time, i.e., as if V b
bc = 0. From a physical point of view, this

expression underline the fact that power is related to the velocity of the material

points and not to the velocity of the points where the wrench is applied.
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