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Abstract

We run an experiment on procurement auctions in a setting where both quality and
price matter. We compare two unidimensional treatments in which the buyer fixes one
dimension (quality or price) and sellers compete on the other, with three bidimensional
treatments (with different strategy spaces) in which sellers submit a price-quality bid and
the winner is determined by a score that linearly combines the two offers. We find that,
with respect to the theoretical predictions, the bidimensional treatments significantly un-
derperform, both in terms of efficiency and buyer’s utility. We attribute this result to
the higher strategic complexity of these treatments and test this intuition by fitting a
structural Quantal Response Equilibrium model with risk aversion to our experimental
data. We find very similar estimates for the risk aversion parameter across all treatments;
instead, the error parameter, which captures deviations between the observed bids and
the payoff-maximizing ones, is larger in the bidimensional treatments than in the unidi-
mensional ones. Our evidence suggests that increasing the dimensionality and the size
of the suppliers’ strategy space increases their tendency to make suboptimal offers, thus
undermining the theoretical superiority of more complex mechanisms.
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1 Introduction

In procurement markets, suppliers compete for the right to sell goods or to provide services
to a buyer. Usually, the object of the transaction is an item that is yet to be produced or
a service that will be delivered in the future; sometimes, it has to be totally or partially
designed ad hoc and then realized from scratch. In many of these cases, a number of valuable
attributes of the procurement contract – technical characteristics, delivery lead time, payment
conditions – can be negotiated ex-ante. Hence, the procurement problem for the buyer is not
only to select a supplier but also to choose what to procure with the goal of obtaining the
best compromise between the object’s value and the financial disbursement.

The design of the tender procedure is central to achieving this goal. Two auction mecha-
nisms are usually adopted in practice. In the simplest mechanism, the buyer defines the min-
imal technical requirements in the call for tender and then lets suppliers bid on price only,
awarding the contract to the lowest-price seller: this corresponds to a standard first-price
auction, where bidders commit to procure a good with certain pre-specified characteristics.
Alternatively, the buyer may adopt a scoring (or multi-attribute) auction in which partici-
pants submit a multidimensional bid comprising a price and a number of non-price attributes;
these elements are then mapped, usually in a linear combination fashion, into a score, and
the supplier that earns the highest score is awarded the contract.

Scoring auctions are increasingly used in Europe and the United States. In Europe,
scoring auctions are commonly referred to as the “most economically advantageous tender”
(“MEAT”). The European Union Directive 2014/24/EU supports moving away from con-
tracts awarded through first price auctions to tenders based on MEAT. According to the
Tender European Daily (TED) data, in 2016, 72% of all auctions above the value of 150,000
euros used MEAT as the awarding criterion. In the United States, scoring auctions have been
adopted to award highway maintenance and transportation construction. Known as “cost-
plus-time” or “A+B” bidding, the mechanism works as a bidimensional scoring auction with
time to completion as the non-price dimension (e.g., Lewis and Bajary, 2011; Gupta et al.,
2015).

This gradual shift from first-price to scoring auctions seems to have been informed by
the economic theory: Asker and Cantillon (2008) show that, when a buyer is concerned with
both price and non-price elements of the offer, a scoring auction is superior to a first-price
auction with fixed attribute levels. The intuition is straightforward: When suppliers are
heterogeneous, a scoring auction promotes competition, in that it allows suppliers to submit
offers that best match their productive skills, favoring the attributes on which they have a
competitive advantage. Given the relevance of the procurement market, it is then important
to test whether and to what extent this theoretical prediction survives experimentally. Our
conjecture is that a scoring auction is arguably a more complex strategic environments than
a first-price auction in that bidders have to reason multidimensionally, and this greater com-
plexity may prompt behavioral responses that are worth investigating. In addition, given the
increasing demand of innovative solutions by procurers, it is also worth exploring alternative
mechanisms beyond the widely used first-price and scoring auctions. A thorough understand-
ing of the determinants of the behavior by bidders in these contexts may help the market
designer find the awarding procedure that better matches the procurer’s needs.

To address these questions, we design an experiment in which a buyer wants to procure an
object for which both the price and a non-price dimension, to which we refer as quality, matter.
Potential sellers have private information on a cost parameter that shifts their (convex) cost
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functions for quality provision. We implement five treatments in the lab: Two treatments
resemble those mainly used in procurement markets. In the scoring rule auction (SRA), or
simply scoring auction, sellers submit a bidimensional offer comprising a price and a quality
bid, which are then linearly combined according to a publicly announced scoring rule, and
the seller whose score is the highest is awarded the contract. In the first-price auction (FPA),
the level of quality is imposed by the buyer, sellers compete on price only, and the seller who
submits the lowest price wins the auction.

To complete the picture, we also consider another unidimensional treatment, the first-
quality auction (FQA), in which the buyer announces the price she will pay for the contract,
sellers compete on quality only, and the seller who submits the highest quality bid wins the
auction. Notice that this awarding mechanism, though apparently uncommon, is not a mere
theoretical construct: the European Union Directive on public procurement envisages that
”The cost element may also take the form of a fixed price or cost on the basis of which eco-
nomic operators will compete on quality criteria only” (Directive 2014/24/EU, art. 67, second
paragraph).1 Moreover, public calls for research grants often takes the form of a competition
on quality only: for example, the European Research Council states that ”Proposals are eval-
uated by selected international peer reviewers who assess them on the basis of excellence as
the sole criterion”.

Finally, we also implement two treatments that lie halfway between the SRA on one
hand and the FPA and FQA on the other: In these treatments, called SRA2p and SRA2q,
sellers bid on both price and quality, but one of the two (price in SRA2p, quality in SRA2q)
is constrained to a binary choice. To allow for a sensible comparison of the results across
treatments, we chose the exogenous parameters to maximize the buyer’s expected utility,
assuming risk neutrality and equilibrium behavior by sellers.

Our experimental results show a trade-off between optimality and complexity: While the
SRA is theoretically superior to all other treatments in terms of buyer’s surplus and efficiency,
this is no longer true in the lab. In particular, the FQA performs as well as the SRA (which
does not perform better than the two bidimensional treatments with binary choice on one
dimension), whereas the FPA has the worst performance, as predicted by the theory.

To shed light on these findings, we then turn to the analysis of bids. In all treatments
(except in FPA, where quality is fixed), we detect a clear tendency by sellers to submit
a higher level of quality than the one theoretically predicted, a tendency that goes in the
direction of improving efficiency and the buyer’s surplus. This overbidding on the quality
dimension accounts for the overperformance of FQA and suggests a potential risk aversion
justification. However, in the bidimensional treatments, such overbidding is accompanied by
two countervailing effects: first, a significant frequency of contracts are inefficiently allocated
to the highest-cost supplier; second, a higher-than-predicted level of submitted quality tends
to be accompanied by an even stronger upward adjustment of prices, which eventually reduces
the buyer’s surplus. Our conjecture is that these two effects, both of which negatively affect
the performance of the bidimensional treatments, may be related to the suppliers’ response
to more complex environments.

To corroborate this intuition, we fit to our data a structural Quantal Response Equilib-
rium (QRE) model with two parameters: an error parameter that measures the degree at

1We are aware of a few examples in Italy in which this awarding rule has been used in the procurement of
care services such as accommodation for asylum seekers and psycho-pedagogical activities for kids in primary
schools.
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which suppliers play suboptimal strategies and a risk aversion parameter (assuming Constant
Relative Risk Aversion utilities for sellers). Across treatments, we obtain remarkably similar
estimates for the risk aversion parameter. Estimates for the error parameter are consistent
with our intuition: As we move from unidimensional to bidimensional treatments, we ob-
serve increasing deviations of actual bids from the payoff-maximizing ones. Moreover, in the
bidimensional treatments, errors are less significant in SRA2p and SRA2q, where one of the
two dimensions is simplified to a binary choice. However, while the QRE model fits the data
quite well in four of the five treatments, the fit in SRA is less satisfactory. In addition, our
two-parameter QRE model cannot account for the overbidding in quality that we observe in
this treatment. We then re-estimate an augmented QRE model in which sellers may have a
distorted perception of the cost-benefit trade-off that is associated with a marginal change in
their quality bid. We show that allowing for this mis-perception significantly improves the
model’s fit for SRA, while the other treatments are unaffected.

The rest of the paper is organized as follows: Section 2 discusses the literature to which we
contribute, while Section 3 describes our experimental design. Theory and testable predictions
are presented in Section 4, and the experimental results are shown in Section 5. Section 6
introduces and estimates a structural Quantal Response Equilibrium model to organize our
data. Section 7 concludes, elaborating on the consistency of our results with the empirical
evidence on real-world scoring auctions, and drawing some policy implications.

2 Related literature

The theoretical properties of scoring auctions were first derived by Che (1993) in a framework
in which only one non-price attribute (quality) is relevant, while the price enters linearly in
the scoring function. Under these conditions, the optimal scoring rule will under-reward
quality relative to the buyer’s true preferences. Asker and Cantillon (2008, 2010) generalize
the analysis to a situation in which sellers’ types are multidimensional, and several non-price
attributes matter to the buyer. They also compare the scoring auction with other common
procedures used to award multi-attribute contracts. In particular, they show that, in terms of
the buyer’s surplus, the scoring auction strictly dominates a price-only auction with minimum
quality standards.

Unfortunately, testing these theoretical predictions in the field is difficult given the hetero-
geneity of contracts in a typical dataset. Still, few empirical studies compare the performance
of scoring auctions with respect to alternative awarding procedures. Cameron (2000) com-
pares the scoring mechanism with a more flexible approach in which the public buyer reveals
the bid-evaluation criteria in general terms, and the bidding process is used to shortlist a set
of suppliers to bargain with. Using a dataset of ninety-three long-term electricity purchase
contracts awarded in five US states, Cameron finds that the scoring auction obtains an 18%
price reduction with respect to the flexible mechanism, but a 50% increase in the probabil-
ity of breaking the contract. Hyytinen et al. (2018) investigate the change in the awarding
of cleaning services in Sweden, which went from a discretionary beauty contest to explicit
award rules, notably first-price and scoring auctions. They show that this change of regime
did not produce the expected reductions in procurement costs and propose two concurring
explanations: that the new rules increased entry costs, and that, in the discretionary regime,
an implicit favoritism for in-house units led the other suppliers to strategically bid more ag-
gressively. Interestingly, their data record no significant difference between first-price and
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scoring auctions in the price paid by the public buyer: In fact, they observe that the cleaning
service is an almost homogeneous product for which there is little scope for moving away from
a policy of granting the contract to the lowest-cost supplier.

Lewis and Bajary (2011) compare the scoring and first-price auctions used by the Califor-
nia Department of Transportation to award more than 1,300 highway construction projects
between 2003 and 2008. The quality component that enters into the scoring rule is the
number of days to complete the project. In a framework that is significantly similar to our
experimental design, they find that projects awarded using the scoring auction are a little
more expensive than those awarded with a price-only auction and are completed much sooner.
Using a dollar-value estimate of the negative externality to commuters caused by each day
of work, they conclude that the users’ welfare gain from using a scoring auction instead of
a first-price largely outweighs the increase in the procurement cost. To fully assess the con-
sequences in terms of social welfare, they then structurally estimate the contractors’ cost,
assuming optimal behavior at the bidding stage, and conclude that scoring auctions generate
a significantly larger social welfare than first-price auctions, so they should always be adopted.
Moreover, even a policy of small incentives (i.e., a small weight to the quality component in
the scoring function) meant to reduce the procurement extra-cost would be welfare improving.

The empirical studies reviewed above are rich in insightful results. However, by clear-
ing the analysis of confounding aspects (e.g., contract heterogeneity) and by controlling for
suppliers’ costs, an experimental approach like the one we suggest would improve our under-
standing of the effectiveness of scoring auctions as compared to other awarding procedures.
However, the experimental literature on scoring rule and multi-attribute auctions is scant.
Moreover, most papers focus almost exclusively on the performance of the various awarding
mechanisms, and, unlike our paper, do not deeply analyze the suppliers’ side.

Chen-Ritzo et al. (2005) run an experiment involving an English reverse auction in which
sellers submit three-dimensional bids (price, quality and lead time), and the buyer does not
fully disclose how bids are mapped into the score but only provides feedback to suppliers in
terms of a marginal score (i.e., how a one-unit change in quality/lead time from the current
bid would change the score). They find that the three-attribute auction is effective in in-
creasing both the buyer’s and the sellers’ surplus, although differences are less pronounced
than predicted (in fact, in three cases out of eight, they do not detect significant differences).
Strecker (2010) studies the effect of revealing information in an English auction with three at-
tributes and finds that efficiency is greater when the scoring rule is fully disclosed than when
only limited information is provided to sellers; however, the buyer’s surplus is not signifi-
cantly affected by the information-revelation policy. Bichler (2000) employs an experimental
setting that mimics the financial market to assess the performance of three multi-attribute
mechanisms – a first-score sealed bid like our SRA, a second-score sealed bid, and a first-
score open-cry auction – with respect to a single-attribute mechanism. In his setting, the
buyer solicits an offer for a call option on a certain index or share traded in the Vienna
Stock Exchange, and the quality element is represented by the volatility of the underlying
index or share. Bichler finds that the buyer achieves higher utility in the multi-attribute
mechanism than in the single-attribute mechanisms, whereas the level of efficiency is similar.
In the multi-attribute auctions, the first-score sealed bid auction performs better than the
second-score and the open-cry auctions. Albano et al. (2018) study how changing the weights
attached to the price and quality component in the scoring rule affects suppliers’ behavior.
Unlike our experiment, in their setting, the quality is exogenously and randomly assigned to
each supplier prior to competing, so their mechanism reduces to a unidimensional auction
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with a non-neutral awarding rule. They find that the scoring rule that gives a larger weight
to quality is far more efficient.

Our paper also contributes to the literature on how individuals act in complex strategic
environments. One context in which the issue of complexity has been repeatedly raised and
analyzed is that of multi-unit combinatorial auctions (see, e.g., the survey by (Kwasnica and
Sherstyuk, 2013)). In that context, complexity takes two forms: complexity in the winner’s
determination problem (i.e., the computational burden of finding the revenue-maximizing al-
location for given bids), and complexity in the supplier’s choice (i.e., the cognitive difficulty of
selecting a good offer). With reference to the latter problem, Kagel et al. (2010) show that, in
combinatorial clock auctions, suppliers tend to myopically bid on a small number of packages,
which may negatively affect efficiency.2 Scheffel et al. (2012) reach similar conclusions, finding
that suppliers use simple heuristics to select packages and arguing that this approach has to
do with cognitive limits in terms of the number of items on which people can simultaneously
concentrate. Our paper shows that, even in the apparently simpler context of a single-unit
auction, a high degree of complexity in the form of a multiple number of dimensions on which
suppliers are called to think and bid, may affect the social welfare.

3 Experimental design

3.1 Baseline game and treatments

The baseline game considered in our experiment consists of a procurement scoring auction
with incomplete information (henceforth, denoted by SRA). Two sellers participate in an
auction to sell an object to a buyer. The sellers simultaneously place their bids, consisting
of two integer numbers: the quality of the object, denoted by q, and the price at which the
seller is willing to sell it, denoted by p. The submitted quality is constrained to be a number
between 0 and 70; the set of admissible prices varies with the submitted quality: In particular,
the buyer is willing to pay no more than pmax(q) = q + 50 for an object of quality q.

Each seller’s bid (q, p) is then mapped into a score s that linearly combines quality and
price according to the following scoring rule:

s(q, p) = 50 + 2q − p. (1)

Observe that the scoring rule (1) rewards quality and penalizes price. The coefficients attached
to q and p in (1) are set optimally (in a sense that will be explained in the next section). The
constant term is added to avoid negative scores.3

The seller whose score is the highest wins the auction, and ties are broken randomly.
The winning seller is paid the submitted price p but has to bear the cost of providing the
submitted quality. Specifically, the winner’s monetary payoff is:

m(q, p) = p− C(q), (2)

where

C(q; θ) =
q2

4θ
. (3)

2Similarly, Kwasnica et al. (2005) refer to the “computational complexity of the bidders’ problem” as a
potential cause of reduction in an auction’s efficiency.

3In fact, since only q ≥ 0 and p ≤ pmax(q) = q+ 50 are admissible, it is s(q, p) ≥ 50 + 2q− pmax(q) = q ≥ 0.
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On the other hand, the loser of the auction earns nothing.
Notice that C(q; θ), the cost of providing an object of quality q, is increasing and convex

in q and depends on a parameter, θ, that is idiosyncratic to each seller and that identifies
the seller’s “type”. Notice also that the cost is strictly decreasing in the type θ, which can
then be interpreted as an indicator of the seller’s productive efficiency. At the beginning of
the auction, the types are independently drawn from a discrete uniform distribution whose
support is given by all the integers from 1 to 10. Each seller observes the realization of her
own type but not that of her opponent. Everything else is common knowledge.

Along with the baseline game SRA just described, we implement four additional treat-
ments in which the size and the dimensionality of sellers’ strategy sets are gradually reduced.

In two treatments, FPA (which stands for first-price auction) and FQA (which stands for
first-quality auction), sellers bid on one dimension only – price in FPA and quality in FQA
– while the other dimension is set exogenously by the experimenter. Specifically, in FPA,
sellers are constrained to deliver quality q̄ = 16 (and to bear the associated cost defined by
(3) if they win) and simply submit a price bid. The awarding rule is the same as in SRA,
but since quality is fixed, the lowest-price seller wins. In FQA, the buyer commits to pay the
price p̄ = 32 to the winner, and sellers compete on quality only. Since the price is fixed, the
seller who offers the highest quality wins the auction (and bears the cost associated with the
submitted quality, as defined by (3)).

In the remaining two treatments, named SRA2q (which stands for scoring rule auction
with two qualities) and SRA2p (which stands for scoring rule auction with two prices), sellers’
bids are two-dimensional, like in SRA, but one dimension – quality in the former treatment
and price in the latter – is constrained to a dichotomous choice. Specifically, in SRA2q sellers
can submit one of two possible quality levels, either qL = 9 or qH = 40, whereas the price
bid can be any (integer) value between 0 and pmax(q). In SRA2p, the only admissible prices
are pL = 12 and pH = 65, whereas any (integer) quality no greater than 70, for pL = 12, and
included between 15 and 70, for pH = 65, can be submitted.4 As in SRA, the winner of the
auction is the seller whose score, as defined by (1), is the highest.

The parameters q̄ = 16 for FPA, p̄ = 32 for FQA, qL = 9 and qH = 40 for SRA2q, and
pL = 12 and pH = 65 for SRA2p, have been chosen optimally in a sense that is explained in
the next section.

In the rest of the paper, we will often use the phrase “two-dimensional auctions” (or simply
“scoring auctions”) to encompass SRA, SRA2q and SRA2p, and “one-dimensional auctions”
for FPA and FQA.

3.2 Procedures

Upon their arrival, subjects were randomly assigned to a computer terminal. Instructions5

were distributed at the beginning of the experiment and read aloud. Before the experiment
started, subjects answered a number of control questions to ensure they understood the in-
structions and the consequences of their choices. When necessary, answers to these questions
were checked and explained. In each session, subjects participated in fifteen consecutive repe-
titions (or periods) of the game. At the beginning of the experiment, the computer randomly
formed four rematching groups of six subjects each. The composition of the rematching
groups was kept constant throughout the session. In every period, subjects were randomly

4q = 15 is the minimum level of quality which satisfies pmax(q) = q + 50 for pH = 65.
5Instructions were originally written in Italian. The English translation is reported in the Appendix.
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and anonymously divided into pairs. Pairs were randomly formed in every period within
rematching groups. Subjects were told that pairs were randomly formed in such a way that
they would never interact with the same opponent in two consecutive periods.6

To facilitate decision-making, before submitting their final choice(s), subjects could use
a ”user-friendly” interface, to simulate as many times as they wished the consequences of
their provisional choices on the experimental dimensions (the score associated with that qual-
ity/price bid, the cost they would have borne in case of winning, and their earnings). At
the end of every period, the outcome was summarized on the screen, along with information
about subjects’ overall earnings in the period.

We ran three sessions for each of the five treatments, each involving twenty-four subjects,
thus generating twelve independent observations at the rematching group level. The exper-
iment took place at the Bocconi Experimental Laboratory for Social Sciences (BELSS) of
Bocconi University, Milan, between December 2017 and January 2018. Most participants
were undergraduate students who were recruited by means of the SONA recruitment system
(http://www.sona-systems.com/default.aspx) from a pool of around 3000 registered users.
The experiment was computerized using the z-Tree software (Fischbacher, 2007). Prices,
costs and earnings during the experiment were expressed in tokens. At the end of the ex-
periment, the number of tokens a subject had obtained during the experiment was converted
at an exchange rate of 1 euro per seven tokens, and monetary earnings were paid in cash
privately. Subjects started the experiment with a balance of twenty tokens to cover the pos-
sibility of losses. On average, subjects earned 14.47 euro for sessions that lasted seventy
minutes, including the time for instructions and payments. Before leaving the laboratory,
subjects completed a short questionnaire containing questions on their socio-demographics
and their perceptions of the experimental task.

4 Theory and predictions

Our experimental results will be compared to the predictions derived from a benchmark model
of risk neutral suppliers and equilibrium behavior.7 Specifically, we consider a model in which:

• each seller’s utility function coincides with her monetary payoff, which is equal to (2)
in case of winning, to zero otherwise;

• sellers play the (symmetric) Bayes-Nash equilibrium of the auction.

Since we are also interested in the performance of the various treatments in terms of welfare,
we set the following utility function for the buyer:

uB(q, p) =
20

7
q − p. (4)

6Our rematching protocol implies that, given the size of the sub-groups (six subjects), subjects interacted
with the same opponent an average of once every five periods. Although this approach is not perfect stranger
protocol, it leaves little room for developing punishment-reward strategies over multiple periods. The rematch-
ing protocol was intended to increase the number of independent observations, and non-parametric tests were
performed to check the robustness of the main parametric results.

7All the results related to this section are derived in the Appendix. To obtain these results, we assumed
that types and bids (price and/or quantity) are continuous variables (whereas in the experiment only integers
were allowed): Hence, we assumed that θ is drawn from a continuous uniform distribution with support [1, 10],
and that p and q can be any positive number (up to the maximum admissible). This approach allowed us to
use calculus and to avoid the complications associated with ties.
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The exogenous parameters of the five treatments outlined in the previous section are de-
rived from this benchmark model by applying an optimality criterion. Specifically, the weights
attached to quality and price in (1) are those that maximize the ex-ante expected utility of a
buyer with objective function (4), conditional on the sellers’ playing their equilibrium bidding
strategies in a scoring auction with linear scoring rule.8 It is important to stress that the
buyer’s utility (4) differs from the optimal scoring rule (1): In particular, relative to the utility
of the buyer, the optimal scoring rule under-rewards quality, a result that is consistent with
what already shown by Che (1993). Likewise, the two admissible values for quality in SRA2q
(price in SRA2p) are those that maximize the buyer’s ex-ante expected utility, conditional
on sellers’ bidding their equilibrium strategies in an auction game like SRA2q (SRA2p) that
uses (1) as an awarding rule. Finally, the exogenous value of quality in FPA (price in FQA)
is set to maximize the buyer’s ex-ante expected utility, assuming that sellers’ bid according
to equilibrium in an auction game like FPA (FQA).

Figure (1a) displays the equilibrium scores as a function of θ in the five treatments.
Observe that, in all treatments, the equilibrium score is strictly increasing in the seller’s type:

(a) Score (b) Quality

Figure 1 – Equilibrium score and quality as a function of θ

hence, theoretically, the auction should always be won by the seller with the highest type.
Notice also that the equilibrium score is uniformly (i.e., for all types) highest in SRA and
lowest in FPA. The remaining three treatments–FQA, SRA2q, and SRA2p–lie in between,

8We confined ourselves to linear scoring rules for the sake of simplicity and to mimic what usually happens
in real-world multidimensional auctions.
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but the ranking among them is ambiguous: For relatively low types, the equilibrium score of
FQA is well below that of SRA2q and SRA2p, but the first is steeper and eventually overtakes
the latter two, almost reaching SRA. Overall, the equilibrium scores in the five treatments
become more concentrated as θ increases.

Figure (1b) looks at the equilibrium quality bid (remind that quality is fixed in FPA). In
those treatments where it can be set freely – FQA, SRA2p and SRA – the submitted quality
is strictly increasing in type, but it increases more quickly in SRA than in FQA. In SRA2p,
the submitted quality is rather flat for θ ≤ 6 and θ ≥ 7, but it jumps between θ = 6 and
θ = 7. This pattern closely tracks what happens in SRA2q (where only qL = 9 and qH = 40
are admissible).

Moving to the analysis of welfare, we assume that utility is transferable, and thus we
measure social welfare simply as the sum of the buyer’s utility (4) and the winning seller’s
monetary payoff (2). Therefore, social welfare is given by:

W (qw, θw) =
20

7
qw − C(qw; θw), (5)

where qw is the quality submitted by the winner of the auction and θw is her type. As equation
(5) suggests, there are two dimensions that jointly affect efficiency:

1. Cost Efficiency: whatever level of quality is delivered, the object should be produced
at the lowest possible cost;

2. Quality Efficiency: whatever seller produces it, the quality of the object should be
such that the marginal benefit of quality (to the buyer) is equal to the seller’s marginal
cost of providing that level of quality. In particular, since the marginal benefit of
quality is constant and equal to 20/7, and the marginal cost is q/(2θ), the efficient level
of quality when the object is delivered by a type-θ seller is qEFF(θ) = (40/7)θ.9

It is immediate to see that, in equilibrium, all treatments are cost-efficient: In fact, since
scores are strictly increasing in all treatments, the object is always assigned to the low-cost
seller. On the other hand, as Figure (1b) shows, in equilibrium no treatment is efficient in
terms of quality: therefore, any efficiency loss is attributable to sellers’ offering an inefficient
level of quality. In particular, with some exceptions for θ < 3, the submitted quality falls
short of its efficient level. To establish the ranking across treatments in terms of welfare, we
computed the expected social welfare generated in equilibrium in each treatment. The most
efficient treatment is SRA, closely followed by SRA2p, and SRA2q. FQA is ranked fourth,
whereas FPA is by far the least efficient treatment.

To assess how welfare is distributed between buyer and sellers, we also computed their
expected payoffs in equilibrium. The ranking in terms of buyer’s utility essentially reproduces
that in terms of social welfare: SRA and SRA2p generate the highest buyer’s utility – actually,
the buyer’s utility is slightly larger in SRA2p, but the difference is negligible – followed by
SRA2q, FQA, and FPA. On the other hand, the ranking largely reverses when looking at
sellers, as the expected sellers’ payoff is higher in the treatments with one-dimensional bids
than it is in those with two-dimensional bids.

The welfare rankings across treatments can be understood in light of the differences in
the strategy spaces. Intuitively, in SRA and, to a lesser extent, in SRA2q and SRA2p, sellers

9The efficient level for quality is denoted FB – which stands for first best – in Figure (1b).
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have more flexible strategies at their disposal, as they can leverage on both quality and price
to compete in the auction. In particular, a seller whose cost for quality is high can still be
competitive by pairing a low-quality bid with a low-price. Clearly, this choice is not possible
in treatments with one-dimensional bids, where sellers can rely on price or quality only as a
competitive instrument. As a result, competitive pressure is stronger in the treatments with
bi-dimensional bids (and, within these, it is stronger in SRA than in SRA2q and SRA2p):
this increases efficiency and favors the buyer to the detriment of sellers. Notice, finally,
that the shape of the cost function (3) is at the origin of the poor performance of FPA in
terms of welfare: In fact, with quality fixed at some exogenous level, the convexity of costs
generate cost differences that get larger and larger as the type increases. As a consequence,
the competitive pressure from low to high types is extremely weak, negatively affecting both
the social and the buyer’s welfare.

We summarize the main predictions associated with our benchmark model in the following
statements.

Theoretical Predictions. In equilibrium:

(a) In terms of expected social welfare, the ranking across treatments is as follows:

SRA � SRA2p � SRA2q � FQA � FPA.

(b) In terms of expected buyer’s utility, the ranking across treatments is as follows:

SRA2p � SRA � SRA2q � FQA � FPA.

(c) In terms of expected sellers’ payoff, the ranking across treatments is as follows:

FQA � SRA2q � FPA � SRA � SRA2p.

(d) In all treatments, the score functions are strictly increasing in types.

(e) For all types, the score is maximal in SRA and minimal in FPA. FQA, SRA2q and
SRA2p lie in between.

(f) The score function in FQA is steeper than the score function in SRA.

(g) The score in FQA is lower (higher) than the score in SRA2q for types θ ≤ 6 (θ > 6).

(h) The score in FQA is lower (higher) than the score in SRA2p for types θ ≤ 8 (θ > 8).

(i) With some exceptions for low types, in all treatments the submitted quality is below the
efficient level.

5 Experimental results

The experimental results are presented in two steps. First, we focus on the level of social
welfare generated in our treatments and how it is distributed between buyer and sellers. Next,
we analyze the bidding behavior. To have a comparable measure across all treatments, we
look at the observed score as defined by (1). For the scoring auctions, we also look into the
two components of the score, that is, the price and quality bids.
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The non-parametric tests presented here are based on twelve independent observations (at
the rematching group level) per treatment. Similarly, in the parametric analysis, we properly
account for dependency of observations over repetitions by either clustering standard errors,
or introducing random effects at the rematching group level. All regressions pool data from
the five treatments and use FQA as a baseline.

5.1 Welfare

We consider three measures of welfare: the overall social welfare (SW ), the buyer’s utility
(BU ) and the supplier’s payoff (SP). These measures are constructed as follows: For each
pair and in each period, we divide the realized social welfare (as defined by (5)), the buyer’s
utility (as defined by (4)) and the monetary payoff of the winning sellers (as defined by (2)) by
the level of welfare associated with the efficient allocation, that is, the level of overall surplus
that would have been generated if the good had been awarded to the low-cost seller and this
seller had provided the most efficient quality level. Then, to control for potential (statistical)
dependency, we average these measures by period and rematching group.

Table 1 shows the descriptive statistics for these welfare measures in the five treatments.
The table also reports the corresponding theoretical predictions and the results from a (two-
sided) Mann-Whitney rank-sum test for the null hypothesis of equality between observed
and predicted levels. The rank-sum test is computed for rematching groups only, averaging
observations over all periods.

Table 1 – Welfare: descriptive statistics

SW BU SP
Avg. Pred. p(Avg. = Pred.) Avg. Pred. p(Avg. = Pred.) Avg. Pred. p(Avg. = Pred.)

FPA 0.609 0.613 1.000 0.430 0.402 0.182 0.179 0.212 0.034
(0.195) (0.200) (0.092)

FQA 0.834 0.788 0.002 0.665 0.557 0.002 0.169 0.231 0.002
(0.066) (0.086) (0.052)

SRA2q 0.801 0.855 0.006 0.597 0.643 0.136 0.204 0.212 0.530
(0.133) (0.181) (0.148)

SRA2p 0.805 0.889 0.003 0.620 0.704 0.008 0.185 0.186 0.814
(0.143) (0.177) (0.153)

SRA 0.823 0.910 0.002 0.625 0.702 0.015 0.198 0.208 0.182
(0.452) (0.225) (0.613)

Obs. 900 900 900

Note. For each of the three relative efficiency measures, SW, BU, and SP, this table reports (i) mean and standard deviation

(in parentheses), (ii) predicted values and (iii) p-value of a (two-sided) Mann–Whitney rank-sum test for the null hypothesis

of equality between mean and predicted values. Significance levels are denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗

p < 0.01.

According to theory, SRA should be the most efficient mechanism since it can extract
91% of the potential surplus, followed by SRA2p (88.9%) and SRA2q (85.5%). Social welfare
should be lower in the two treatments that have one-dimensional choice sets, with FQA and
FPA generating 78.8% and 61.3% of the potential surplus, respectively.

Results differ in the lab, where FQA, which ranked fourth theoretically, is the most efficient
mechanism (83.4% of the potential surplus), followed by SRA (82.3%), SRA2p (80.5%), and
SRA2q (80.1%). This result derives from FQA’s significantly outperforming its theoretical
prediction and the scoring auctions’ significantly underperforming. Overall, across these four
treatments, the observed differences are small, but FPA is by far the least efficient treatment
also in the lab (with no significant difference between predicted and observed level).
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Essentially all the welfare loss recorded in the scoring auctions is borne by the buyer: The
difference between the predicted and the observed buyer’s utility is negative and significant in
SRA and SRA2p and is negative but not significant in SRA2q, while no significant difference
is recorded with respect to sellers’ payoffs.

On the other hand, the observed overperformance of FQA greatly benefits the buyer
(10.8% with respect to theory), whereas the sellers’ payoff is slightly, though significantly,
lower than predicted (−3.3%).

To assess the statistical validity of these preliminary observations, Table 2 reports para-
metric results of the determinants of these welfare measures.

In terms of social welfare (columns (1) and (2)), FPA is the least efficient treatment, as
all the pairwise differences between FPA and the other treatments are negative and highly
significant (in all cases, p < 0.001). Moving to the comparisons of FQA with the scoring
mechanisms, we detect no significant difference with respect to SRA (p = 0.737), positive and
marginal significance with respect to SRA2p (p = 0.081), positive and significant difference
with respect to SRA2q (p = 0.039), and no significant differences across the three scoring
mechanisms (p = 0.547 between SRA and SRA2q ; p = 0.621 between SRA and SRA2p;
p = 0.863 between SRA2q and SRA2p). These results do not change qualitatively when a
linear time trend is added, as in column (2). The coefficient of the linear trend is positive and
significant in SRA2p (p < 0.001), SRA2q (p = 0.028), and FQA (p = 0.025), and the trend
is largely absent in the remaining two treatments, being only marginally significant in SRA
(p = 0.097), and not significant in FPA (p = 0.520).

Table 2 also allows us to compare the observed social welfare with its theoretical prediction:
Observed social welfare in FQA is higher than what is theoretically predicted (0.046, p <
0.001). On the other hand, all of the scoring mechanisms generate a significantly lower-than-
predicted level of SW : −0.087 in SRA (p = 0.007), −0.085 in SRA2p (p < 0.001), −0.054
in SRA2q (p < 0.001). Finally, we detect no significant difference between the observed and
the predicted level of SW in FPA (p = 0.796).10 We summarize the main results concerning
social welfare below.

Result 1.1. Social welfare: ranking. No significant differences in the observed social
welfare are detected among FQA, SRA2q, SRA2p, and SRA; social welfare is significantly
lower in FPA.

Result 1.2. Social welfare: observed vs. predicted. Observed social welfare is above
its predicted level in FQA and below its predicted level in the scoring auctions, while no
significant difference is recorded for FPA.

The results regarding the buyer’s utility closely resemble those concerning social welfare.
(See Table 2, columns (3) and (4).) FPA yields the lowest utility to the buyer: Indeed, the
pairwise differences between FPA and all other treatments are negative and highly significant

10The main results concerning social welfare do not change if we restrict the analysis to the last five periods
of the experiment to account for the effects of subjects’ experience (Table A1 in the Appendix). Specifically,
we still do not detect any difference among FQA, SRA, SRA2p, and SRA2q, whereas SW is significantly lower
in FPA. In all treatments except FPA, social welfare is higher in the last five periods than overall: As a result,
the difference with respect to the theoretical level is larger in FQA (0.058, p < 0.001) and smaller, but still
significant, in the scoring mechanisms (in SRA: −0.040, p = 0.011; in SRA2p: −0.067, p < 0.001; in SRA2q :
−0.041, p = 0.025). In the last five periods, the time trend is no longer significant in any of the treatments
except FQA, where it is positive (p = 0.035).
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Table 2 – Welfare: parametric analysis

SW BU SP
(1) (2) (3) (4) (5) (6)

FPA -0.224∗∗∗ -0.189∗∗∗ -0.235∗∗∗ -0.216∗∗∗ 0.010 0.027
(0.016) (0.031) (0.023) (0.040) (0.015) (0.019)

SRA2q -0.033∗∗ -0.051∗ -0.067∗∗∗ -0.144∗∗∗ 0.035∗ 0.093∗∗

(0.016) (0.029) (0.025) (0.044) (0.020) (0.042)

SRA2p -0.029∗ -0.065∗∗∗ -0.045∗ -0.096∗∗ 0.017 0.031
(0.017) (0.024) (0.024) (0.048) (0.018) (0.046)

SRA -0.011 -0.063 -0.040 -0.098 0.029 0.035
(0.033) (0.076) (0.026) (0.061) (0.046) (0.122)

Trend 0.003∗∗ 0.002∗ 0.001
(0.001) (0.001) (0.001)

FPA × Trend -0.005 -0.003 -0.002
(0.003) (0.004) (0.002)

SRA2q × Trend 0.003 0.011∗∗∗ -0.008∗∗

(0.003) (0.004) (0.004)

SRA2p × Trend 0.005∗∗∗ 0.007∗ -0.002
(0.002) (0.004) (0.004)

SRA × Trend 0.007 0.008 -0.001
(0.006) (0.006) (0.011)

Constant 0.834∗∗∗ 0.813∗∗∗ 0.665∗∗∗ 0.647∗∗∗ 0.169∗∗∗ 0.165∗∗∗

(0.006) (0.012) (0.010) (0.016) (0.006) (0.009)

Obs. 900 900 900 900 900 900
Wald −χ2 188.67 284.86 100.87 147.76 4.06 16.54
p > −χ2 0.000 0.000 0.000 0.000 0.398 0.056

Note. Table 2 report estimates (robust standard errors in parentheses) from GLS random

effects models accounting for dependency within rematching group. In all regressions,

the dependent variable is defined at the rematching group level. Columns (1) and (2)

focus on SW, Columns (3) and (4) focus on BU, Columns (5) and (6) focus on SP. Trend

is a linear time trend that starts from 0 in the first period of the experiment. Significance

levels are denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.
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(in all cases, p < 0.001). The realized buyer’s utility is similar in FQA and in the scoring
auctions: We do not document significant differences between FQA and SRA, between SRA
and SRA2q (p = 0.407), between SRA and SRA2p (p = 0.864), or between SRA2q and
SRA2p (p = 0.487); we detect a positive and significant difference only between FQA and
SRA2q (p = 0.008) and, marginally, between FQA and SRA2p (p = 0.060). Again, adding
a linear time trend does not alter these results; the trend is positive and significant in SRA
(p = 0.046), SRA2q (p < 0.001), SRA2p (p = 0.01), and, marginally, FQA (p = 0.096), while
it is not significant in FPA (p = 0.960).

As is the case for social welfare, the observed level of buyer’s utility is higher than theo-
retically predicted in FQA – the difference is 0.108, p < 0.001 – whereas the opposite occurs
for the scoring auctions. (In SRA, the difference is −0.077, p = 0.001; in SRA2p, the differ-
ence is −0.084, p < 0.001; in SRA2q, the difference is −0.046, p = 0.048); and no significant
difference is detected for FPA (p = 0.178).11

Columns (5) and (6) of Table 2 focus on sellers’ payoff. We detect few differences across
treatments: The only marginally significant (positive) difference is that between SRA2q and
FQA (p = 0.077), while all the other pairwise comparisons are not statistically significant.
With respect to the theoretical prediction, we do not observe significant differences in the
scoring auctions (in SRA: p = 0.821; in SRA: p = 0.971; in SRA2q : p = 0.661), whereas
both FQA and FPA underperform (in FQA: −0.062, p < 0.001; in FPA: −0.032, p = 0.016).
Finally, we detect a negative trend in SRA2q and FPA —- significant in the former (p = 0.025)
and marginally significant in the latter (p = 0.090) —- whereas it is not significant in SRA
(p = 0.970), SRA2p (p = 0.712), or FQA (p = 0.651).12

We summarize the main results concerning buyer’s utility and sellers’ payoff below.

Result 2.1. Buyer’s utility: ranking. Buyer’s utility is higher in FQA than in SRA2p
or SRA2q. No remarkable differences are detected among SRA, SRA2p, and SRA2q. Finally,
FPA generates the lowest level of buyer’s utility.

Result 2.2. Buyer’s utility: observed vs. predicted. The observed buyer’s utility is
above its predicted level in FQA and below its predicted level in the scoring auctions, while
no significant difference is recorded for FPA.

Result 2.3. Sellers’ payoff: ranking. No remarkable differences are detected across
treatments in terms of sellers’ payoff.

Result 2.4. Sellers’ payoff: observed vs. predicted. The observed sellers’ payoff is
aligned with its predicted level in the scoring auctions and below its predicted level in FQA
and FPA.

11In the last five periods only (Table A1 in the Appendix), we find no differences between SRA2q and FQA
(p = 0.122), between SRA2p and FQA (p = 0.220), between SRA and FQA (p = 0.174), or between SRA2p
and SRA2q (p = 0.717). Buyer’s utility in SRA is higher than it is in either SRA2p (p = 0.039) or SRA2q
(p = 0.022). FPA is the treatment with the lowest BU (in all the pairwise differences with the other treatments,
p < 0.001). In all treatments, the time trend is no longer significant. Finally, buyer’s utility is higher than
predicted in FQA – the difference is 0.114, p < 0.001 – while the difference is negative and significant in SRA2p
(−0.058, p = 0.003), negative and marginally significant in SRA (−0.032, p = 0.074), and not significant in
either SRA2q (p = 0.998) or FPA (p = 0.711).

12Results on pairwise differences are confirmed when the analysis is replicated on the last five periods (Table
A1 in the Appendix). The only two positive differences in SP that reach marginal significance are those
between SRA and FQA (p = 0.078) and between SRA and SRA2q (p = 0.070). Moreover, we find a negative
and significant linear time trend only in SRA2q (p = 0.036).
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Our prediction of the results concerning welfare shows that the two dimensions that jointly
determine the efficiency of the final allocation generated in the auction are cost efficiency
and quality efficiency (Section 4). Recalling that, theoretically, all treatments should be cost-
efficient – that is, the high-type (low-cost) seller should always win – the (theoretical) ranking
in terms of social welfare is fully determined by differences in terms of quality efficiency. We
take the observed fraction of auctions that the seller with the highest θ wins (denoted by CE )
to measure the observed degree of cost efficiency. On the other hand, we measure quality
efficiency with the percentage distance between the quality bid submitted by the winner of
the auction and the theoretically efficient quality level (denoted by QE ). We average these
measures by period and by rematching group.

Table 3 shows the descriptive statistics for CE and QE in the five treatments.

Table 3 – Cost and quality efficiency: descriptive statistics

FPA FQA SRA2q SRA2p SRA

CE 0.837 0.919 0.843 0.809 0.843
(0.224) (0.160) (0.221) (0.223) (0.198)

QE 0.542 0.362 0.317 0.287 0.249
(0.130) (0.084) (0.144) (0.135) (0.140)

Obs. 180 180 180 180 180

Note. This table reports mean and standard deviation (in
parentheses) for cost efficiency (CE ) and quality efficiency
(QE ), overall periods and by treatment.

In terms of cost efficiency, the best treatment is FQA, which selects the most efficient
seller 91.9% of the time, followed by SRA and SRA2q, which select the most efficient seller
84.3% of the time. In terms of quality efficiency, instead, the observed ranking fully obeys
the theoretical one: SRA is the treatment in which, on average, the quality level provided by
the winner is closer to the efficient level – the average distance is 24.9% – followed by SRA2p
(28.7%), SRA2q (31.7%), FQA (36.2%), and FPA (54.2%, recall that, in this last treatment,
quality was fixed).

Table 4 reports parametric results on the determinants of CE and QE. Neither trend,
nor any trend-treatment interaction are significant. (See columns (2) and (4).) Therefore, we
focus on the two baseline models with treatment-dummies only.

Results on cost efficiency confirm that FQA is the treatment in which the low-cost seller
wins more often: In fact, all the pairwise comparisons between FQA and the other treatments
are positive and highly significant (in all cases, p < 0.001). We find no significant difference
across the scoring mechanisms (p = 0.118 between SRA and SRA2p; p = 1.000 between SRA
and SRA2q ; p = 0.189 between SRA2q and SRA2p) or between any of the bidimensional
mechanisms and FPA (p = 0.806 between FPA and SRA; p = 0.281 between FPA and
SR2pA; p = 0.834 between FPA and SRA2q).

The differences inQE across treatments resemble our theoretical predictions. In all scoring
mechanisms, the quality submitted by the winning seller is significantly closer to the efficient
level than it is in FQA (p < 0.001 between SRA and FQA, and between SRA2p and FQA;
p = 0.012 between SRA2q and FQA). Among the scoring auctions, SRA is more efficient
in terms of submitted quality than SRA2q (p = 0.001) and marginally more effficient than
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Table 4 – Cost and quality efficiency: parametric analysis

CE CE QE QE

FPA -0.082∗∗∗ -0.088∗∗ 0.180∗∗∗ 0.152∗∗∗

(0.021) (0.036) (0.013) (0.023)

SRA2q -0.076∗∗∗ -0.125∗∗∗ -0.045∗∗ -0.045
(0.021) (0.036) (0.018) (0.032)

SRA2p -0.109∗∗∗ -0.136∗∗∗ -0.074∗∗∗ -0.064∗∗

(0.020) (0.030) (0.020) (0.031)

SRA -0.076∗∗∗ -0.111∗∗∗ -0.112∗∗∗ -0.132∗∗∗

(0.015) (0.040) (0.014) (0.025)

Trend 0.004 -0.003
(0.003) (0.002)

FPA × Trend 0.001 0.004
(0.005) (0.003)

SRA2q × Trend 0.007∗ −1 · 10−4

(0.004) (0.003)

SRA2p × Trend 0.004 -0.001
(0.004) (0.003)

SRA × Trend 0.005 0.003
(0.005) (0.003)

Constant 0.919∗∗∗ 0.889∗∗∗ 0.362∗∗∗ 0.382∗∗∗

(0.009) (0.022) (0.007) (0.016)

Obs. 900 900 900 900
Wald −χ2 51.88 103.90 353.15 382.50
p > −χ2 0.000 0.000 0.000 0.000

Note. This table reports estimates (robust standard errors in paren-
theses) from one-way linear random effects model accounting for de-
pendency withing rematching group. Unit of observation is at the
rematching level. Columns (1) and (2) focus on Quality Efficiency
(CE ), Columns (3) and (4) focus on Cost Efficiency (QE ). Trend is
a linear time trend that starts from 0 in the first period of the ex-
periment. Significance levels are denoted as follows: ∗ p < 0.1, ∗∗

p < 0.05, and ∗∗∗ p < 0.01.
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SRA2p (p = 0.090). We do not detect any significant difference between SRA2p and SRA2q
(p = 0.246). FPA is the least efficient treatment in terms of quality, as all the pairwise
differences between FPA and the other treatments are positive and highly significant (in all
cases, p < 0.001).

We summarize the main results concerning cost and quality efficiency below.

Result 3. Cost and quality efficiency. With respect to cost efficiency, FQA is the best
treatment, while no significant differences are observed among the remaining treatments.
With respect to quality efficiency, the ranking across treatments is the same as the theoretical
ranking in terms of social welfare.

Result 3 is of particular interest, as it sheds more light on the reasons behind the dis-
crepancy between observed and predicted ranking in terms of social welfare (results 1.1 and
1.2). In particular, given that the ranking in terms of quality efficiency is aligned with the
theoretical ranking in terms of social welfare, the finding that FQA generates (at least) as
much welfare as the scoring auctions must be entirely ascribed to the other determinant of
efficiency, cost efficiency. In fact, FQA is superior to all other treatments in selecting the
low-cost seller as the winner.

5.2 Bidding behavior

To get a deeper understanding of the determinants of the results for social welfare, we analyze
the bids. To allow for an easy comparison across treatments, we first focus on the score
associated with the bid(s) submitted by sellers. Then, in the second part of this subsection
we look separately at the price and quality bids for the bidimensional treatments. To facilitate
comparison with the theoretical predictions, we also look at the percentage distance between
observed and theoretically predicted bids: The corresponding variables are denoted score dist
for the score, quality dist for the quality bid, and price dist for the price bid.13 We define
overbidding whenever the observed bids are more aggressive than the theoretical ones (i.e.,
when the observed score/quality is higher than predicted, or when the observed price is lower
than predicted). We define underbidding if the opposite occurs.

5.2.1 Score

Table 5 reports descriptive statistics for scores, price, and quality bids in the five treatments.14

13Specifically, score dist = (observed scores−predicted scores)/predicted scores. quality dist and price dist
are similarly defined.

14Figures A1, A2, and A3 in the Appendix provide a graphic representation of the descriptive statistics by
treatment and seller’s cost parameter.
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Table 5 – Bids: descriptive statistics

FPA FQA SRA2q SRA2p SRA

Score 51.977 60.500 56.479 56.428 53.874
(16.499) (12.147) (11.870) (13.244) (11.990)

Price 30.023 32.000 37.240 41.051 48.941
(16.499) (0.000) (24.882) (26.389) (27.548)

Quality 16.000 21.250 21.859 23.740 26.407
(0.000) (6.074) (15.280) (14.947) (15.401)

score dist 0.008 0.044 -0.059 -0.095 -0.144
(0.164) (0.077) (0.156) (0.183) (0.160)

price dist -0.002 0.000 0.595 0.819 1.203
(0.361) (0.000) (1.789) (1.765) (2.177)

quality dist 0.000 0.061 0.111 0.202 0.308
(0.000) (0.114) (0.664) (0.718) (0.568)

Obs. 1080 1080 1080 1080 1080
p(score dist = 0) 0.530 0.002 0.004 0.002 0.002
p(price dist = 0) 1.000 - 0.002 0.002 0.002
p(quality dist = 0) - 0.002 0.002 0.005 0.002

Note. This table reports, for each treatment, mean and standard deviation (in
parentheses) of scores, prices, and qualities associated with suppliers’ choices.
Statistics are built for both observed measures and as percent distance from pre-
dicted (Nash) levels. The table also reports p-values of a (two-sided) rank-sum
test for the null hypothesis that the observed percent distance from predicted
(Nash) levels is equal to zero.

Descriptive statistics highlight three main facts concerning the scores. First, unlike what
is theoretically predicted, the average submitted score is highest in FQA, followed by SRA2p
and SRA2q. SRA is ranked fourth, closely followed by FPA. Second, we observe overbidding
in the unidimensional treatments, with the average score in FQA 4.4% higher than the pre-
dicted level. Third, all the scoring auctions are characterized by underbidding, with scores in
SRA well below their predicted level (−14.4%). A (two-sided) rank-sum test confirms that
score dist is significantly different from zero for all treatments except FPA.
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Table 6 investigates parametrically the differences across the treatments and determinants
of both score and score dist.

The baseline model (column (1)) confirms that FQA is associated with the highest score
(for all the coefficients of the treatment dummies: p < 0.001). We find a nonsignificant
difference between SRA2p and SRA2q (p = 0.965), while both these treatments are associated
with a higher score than in SRA (between SRA2p and SRA: p = 0.027; between SRA2q and
SRA: p = 0.024). Finally, we do not detect any significant difference between SRA and FPA
(p = 0.101).

Table 6 also include the seller’s type θ as a determinant of the score. In line with the
theoretical predictions, the seller’s type significantly increases the score in all treatments (in all
cases, p < 0.001). In column (2), SRA, SRA2p, and SRA2q have positive coefficients, whereas
their interactions with θ is negative. Therefore, we can use the estimates to determine for
which seller’ type the score difference between FQA and any of the scoring auctions becomes
significant. We find that the submitted score in FQA is: (i) above the score in SRA for
θ ∈ [3, 10]; (ii) above the score in SRA2p for θ ∈ [4, 10]; and (iii) above the score in SRA2q
for θ ∈ [5, 10].

Finally, we add – in column (3), Table 6 – treatment-specific linear time trends as de-
terminants of the score. We detect a positive and significant time pattern in the scoring
auctions (in all cases: p < 0.001) and in FPA (p = 0.002). Even after controlling for the type
parameter and the linear trend, the score in FQA remains higher than it is in SRA and FPA
(in both cases, p < 0.001). We find a nonsignificant difference between SRA2p and SRA2q
(p = 0.906), while both of these treatments are associated with a higher score than in SRA
(p = 0.018 between SRA2p and SRA; p = 0.013 between SRA2q and SRA). Finally, we find
a significantly lower score in FPA than in SRA (p < 0.01).15

We now turn our attention to score dist, the deviation of the observed score, in percentage,
from its predicted level. Results are also reported in Table 6. In the baseline model – in
column (4) – we find a positive deviation (overbidding) of 4.41% in FQA (p < 0.001) and
significant underbidding in all the scoring auctions of −5.95% in SRA2q, −9.48% in SRA2p,
and −14.43% in SRA (in all cases, p < 0.001). No significant difference is observed in FPA.

These results remain significant even after controlling – in column (5) – for sellers’ type:
In SRA and SRA2p, observed scores are significantly below their predicted levels for all type
parameters (while, in SRA2q, this occurs for θ ∈ [1, 7]). Instead, in FQA, the overbidding
is significant for θ ∈ [4, 10], and the degree of overbidding increases with θ. For example, a
supplier of type θ = 5 is associated with a positive deviation of 3.96% in FQA (p = 0.001)
and negative deviations of 14.85% in SRA (p < 0.001), 10.18% in SRA2p (p < 0.001), and
6.53% in SRA2q (p < 0.001), respectively.

Controlling for the linear trend – in column (6) – does not affect the results in FPA or FQA

15This significant time pattern suggests the possibility of some learning effects in the bidding strategies. As
a robustness check, we replicate all of the regressions by focusing on the last five periods of the experiment
(Table A2 in the Appendix): The trend coefficients – in column (3) – are no longer significant. While results
on the baseline model – column (1) – might suggest that most of the differences between FQA and the other
treatments have disappeared, those differences persist and are strongly significant, but they depend on the
type parameter θ. According to our theoretical predictions, as θ increases, the equilibrium score in FQA
approaches the equilibrium score in SRA. In the lab and in the last five periods, as θ increases, the score in
FQA approaches and then exceeds the SRA’s score. In particular, we detect – in column (2) – that the score
in FQA is (i) below the score in SRA for θ ∈ [1, 3], (ii) not significantly different for θ ∈ [4, 5], and (iii) above
the score in SRA for θ ∈ [6, 10]. Similar results are obtained in the comparison of the score in FQA and the
scores in SRA2p and in SRA2q.
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Table 6 – Score: parametric analysis

Score score dist
(1) (2) (3) (4) (5) (6)

FPA -8.523∗∗∗ -8.650∗∗∗ -9.636∗∗∗ -0.036∗∗ 0.046∗∗ 0.034
(1.157) (1.249) (1.361) (0.017) (0.020) (0.021)

SRA2q -4.021∗∗∗ 2.988∗∗ -1.976 -0.104∗∗∗ -0.123∗∗∗ -0.206∗∗∗

(1.157) (1.252) (1.363) (0.017) (0.020) (0.022)

SRA2p -4.072∗∗∗ 2.741∗∗ -2.137 -0.139∗∗∗ -0.166∗∗∗ -0.247∗∗∗

(1.157) (1.255) (1.360) (0.017) (0.020) (0.021)

SRA -6.626∗∗∗ 1.482 -5.328∗∗∗ -0.188∗∗∗ -0.205∗∗∗ -0.318∗∗∗

(1.157) (1.246) (1.355) (0.017) (0.020) (0.022)

θ 3.870∗∗∗ 3.871∗∗∗ 0.009∗∗∗ 0.009∗∗∗

(0.093) (0.088) (0.001) (0.001)

FPA ×θ 0.166 0.174 -0.015∗∗∗ -0.015∗∗∗

(0.132) (0.124) (0.002) (0.002)

SRA2q ×θ -1.251∗∗∗ -1.215∗∗∗ 0.004∗ 0.004∗∗

(0.131) (0.124) (0.002) (0.002)

SRA2p ×θ -1.235∗∗∗ -1.238∗∗∗ 0.005∗∗ 0.005∗∗

(0.131) (0.124) (0.002) (0.002)

SRA ×θ -1.397∗∗∗ -1.372∗∗∗ 0.003∗ 0.004∗∗

(0.130) (0.123) (0.002) (0.002)

Trend 0.039 0.001
(0.057) (0.001)

FPA × Trend 0.134∗ 0.002
(0.081) (0.001)

SRA2q × Trend 0.681∗∗∗ 0.011∗∗∗

(0.081) (0.001)

SRA2p × Trend 0.699∗∗∗ 0.012∗∗∗

(0.081) (0.001)

SRA × Trend 0.954∗∗∗ 0.016∗∗∗

(0.081) (0.001)

Constant 60.500∗∗∗ 39.188∗∗∗ 38.903∗∗∗ 0.044∗∗∗ -0.005 -0.010
(0.818) (0.889) (0.966) (0.012) (0.014) (0.015)

Obs. 5400 5400 5400 5400 5400 5400
Wald −χ2 61.61 6031.89 7405.95 158.64 470.14 1237.72
p > −χ2 0.000 0.000 0.000 0.000 0.000 0.000

Note. This table reports estimates (clustered standard errors in parentheses) from two-way linear
random effects models accounting for both potential individual dependency over repetitions and
dependency within rematching group. The first three columns are based on regressions using the
observed score as dependent variable, while the last three are based on score dist. θ is the cost
parameter randomly assigned to the supplier. Trend is a linear time trend that starts from 0 in
the first period. Significance levels are denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.
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but reduces the magnitude of the underbidding that characterizes the scoring auctions.16

We summarize the main results concerning the observed score below.

Result 4.1. Score: relationship with the seller’s type. In all treatments, the observed
score increases with the type parameter θ. The score increases with θ more quickly in FQA
than in any of the scoring auctions.

Result 4.2. Score: ranking. The average score is highest in FQA, followed by SRA2p and
SRA2q.

Result 4.3. Score: observed vs. predicted. We observe overbidding in FQA and under-
bidding in the scoring auctions.

Result 4.1 sheds light on the reasons behind the observed ranking in terms of social welfare.
Unlike what was predicted theoretically, the social welfare generated in FQA is as high as it
was in the scoring auctions (result 1.1). Result 3 suggests that this is due to differences in cost
efficiency across treatments: The high type (i.e., low-cost) seller wins more frequently in FQA
than it does in the scoring auctions. Result 4.1 tells us that, on average, in all treatments,
higher type (lower-cost) sellers submit higher scores (and, in doing so, win), so it must be the
case that deviations from average bidding behavior are larger and/or more frequent in the
scoring auctions than they are in FQA. This conclusion will guide us in the structural part
of the analysis.

Result 4.3 highlights that, as we move from treatments with one-dimensional bids to treat-
ments with two-dimensional bids, bidding behavior (in terms of score) changes qualitatively
from overbidding (in FQA) or bidding that is aligned with the theoretical bids (in FPA) to
underbidding. We come back to this point in the structural analysis.

Finally, in FQA, overbidding in the score is equivalent to an overbidding in quality, recall-
ing that sellers do not bid on price here. That the predicted quality bid in FQA is below the
efficient level explains why we observe overperformance in terms of social welfare and buyer’s
utility in this treatment. On the other hand, to understand the underbidding in the score
that is observed in the scoring auction, we take a deeper look at both price and quality bids.

5.2.2 Price and quality bids in the scoring auctions

Descriptive statistics of price and quality bids are reported, by treatment, in Table 5. A clear
result stands out: In all scoring auctions, we observe overbidding in quality and underbidding
in price,17 as sellers tend to offer a higher-than-predicted level of quality, accompanied by a
higher-than-predicted price bid.18 A rank-sum test confirms that quality dist and price dist
are significantly different from zero.

Tables 7 reports parametric results on the determinants of quality dist and price dist in
SRA (columns 1 and 2), SRA2p (columns 3 and 4), and SRA2q (columns 5 and 6).

16In the last five periods (Table A2 in the Appendix), neither trend nor any specific trend-treatment inter-
actions are significant. In the baseline model – in column 4 – we still find a significant underbidding in SRA
(−7.54%; χ2(1) = 52.02, p < 0.001) and in SRA2p (−5.09%, test results: χ2(1) = 23.74, p < 0.001) and a
significant overbidding in FQA (+4.22%; χ2(1) = 16.33, p < 0.001). Adding the type parameter θ does not
qualitatively alter these results.

17When we say “underbidding in price,” we refer to a price above its predicted level.
18The results in Table 5 concerning FPA and FQA confirm what we already knew from the analysis on score:

There is overbidding (in quality) in FQA and neither over- nor under-bidding (in price) in FPA.
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Table 7 – Price and quality bids in the scoring auctions: parametric analysis

SRA2q SRA2p SRA
(1) (2) (3) (4) (5) (6)

price dist

θ -0.043∗∗ -0.121∗∗∗ -0.321∗∗∗

(0.018) (0.018) (0.019)
Constant 0.595∗∗∗ 0.833∗∗∗ 0.819∗∗∗ 1.486∗∗∗ 1.203∗∗∗ 2.918∗∗∗

(0.084) (0.131) (0.122) (0.154) (0.122) (0.148)

quality dist

θ -0.001 -0.025∗∗∗ -0.042∗∗∗

(0.007) (0.007) (0.005)
Constant 0.111∗∗∗ 0.117∗∗∗ 0.202∗∗∗ 0.339∗∗∗ 0.308∗∗∗ 0.531∗∗∗

(0.021) (0.043) (0.044) (0.059) (0.032) (0.042)

Obs. 1080 1080 1080 1080 1080 1080
cov(e.price dist, e.quality dist) 1.065∗∗∗ 1.065∗∗∗ 1.124∗∗∗ 1.101∗∗∗ 0.836∗∗∗ 0.724∗∗∗

(0.048) (0.048) (0.051) (0.049) (0.043) (0.038)

Note. This table reports estimates (clustered standard errors in parentheses) from Seemingly Unrelated
Regression (SUR) models allowing the standard errors of the linear models to be correlated. Each
regression is based on a two-way linear random effects model accounting for both potential individual
dependency over repetitions and dependency within rematching group. The dependent variables are
quality dist and price dist, respectively. Regressions are run separately by treatment: SRA2q in columns
(1) and (2), SRA2p in columns (3) and (4) and SRA in columns (5) and (6). θ is the cost parameter
randomly assigned to the supplier. Significance levels are denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and
∗∗∗ p < 0.01.

In all treatments, we find a significant overbidding in quality and a significant underbidding
in price. As expected, the covariance of the two linear models’ residuals is always significant.
The seller’s type negatively affects both the price and the quality distance in all treatments.

We summarize below the main results concerning price and quality bids in the scoring
auctions.

Result 5. Quality and price bids in the scoring auctions. In all the scoring auctions,
we observe overbidding in quality and underbidding in price.

In all treatments in which quality can be chosen (FQA, SRA2q, SRA2p and SRA), sellers
have a clear tendency to offer a comparatively high level of quality, one that is significantly
above that predicted by our theoretical model. However, in the scoring auctions, where sellers
can also choose the price, this overbidding in quality is more than offset by even stronger
underbidding in the price, leading to underbidding in the score (result 4.3) and explaining
why the buyer’s utility is lower than predicted in these treatments (result 2.2).

6 Structural analysis

The previous analysis highlights contrasting results on to the relationship between theoretical
and observed bidding behavior.

First, relative to what predicted by our benchmark model of risk neutral sellers and
equilibrium play, we observe that sellers clearly overbid in FQA, but this overbidding behavior
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turns to underbidding in treatments with a two-dimensional choice: here the submitted score
is below the equilibrium one. The results are less clear-cut for FPA, where observed bids are,
on average, in line with the theoretical predictions. The experimental literature on ordinary
auctions points out that, when the winner of the auction is called to pay what she bids,
bidders typically tend to overbid relative to the risk neutral equilibrium, as if they attached
a higher value to winning the auction than what a risk neutral bidder would do. Several
explanations to this phenomenon have been put forward, though the most common and most
natural is certainly risk aversion.19 Our mixed evidence, however, can hardly be explained
in terms of a departure from risk neutrality alone: if bidders attached extra-value to winning
the auction, they should overbid in all of our treatments, whereas we observe overbidding in
FQA but underbidding in SRA, SRA2q and SRA2p.

The second remarkable result of our experiment is that FQA performs (at least) as well
as the scoring auctions in terms of social welfare, whereas theory predicts a clear superiority
of the latter. The evidence on cost efficiency made it clear that this result is due to the fact
that, in the scoring treatments, the auction is more frequently won by the high-cost seller.
Finally, the analysis of the relation between submitted score and type parameter led us to
conclude that this happens because bids are more noisy in the scoring auctions than in FQA

The observation that the transition from overbidding to underbidding occurs as we move
from one-dimensional to two-dimensional treatments, and the evidence that, in the latter
treatments, bids tend to be more noisy, lead us to suspect that subjects’ behavior could
be somewhat related to the degree of complexity of the auction. Intuition suggests that
choosing price and quality simultaneously is a more complex task than choosing only one
or the other. Besides, when a two-dimensional bid is to be made, the choice is arguably
easier when, on one dimension, only two markedly different alternatives are available, as is
the case in treatments SRA2q and SRA2p. According to this intuition, the five treatments
considered in our experiment are characterized by three levels of complexity: Treatments with
unidimensional choice (FQA and FPA) are the least complex, SRA is the most complex, and
SRA2q and SRA2p – treatments with two-dimensional choice, one of which is binary – lie in
between.

Table 8 – Response time: descriptive statistics

FPA FQA SRA2q SRA2p SRA

Response time 26.847 34.684 60.118 70.620 96.780
(20.759) (23.884) (30.427) (32.132) (39.893)

Obs. 1080 1080 1080 1080 1080

Note. This table reports, for each treatment, the mean and the standard
deviation (in parentheses) of response time in seconds.

This intuition is corroborated by the observation of the subjects’ response times in the
experiment. Table 8 shows, for every treatment, the average time elapsed before a subject
submitted her bid in a generic period of the experiment. The difference in the response time
between one-dimensional and two-dimensional treatments is remarkable. Moreover, among
the scoring auctions, SRA required more time to answer than SRA2p or SRA2q. A battery of

19For a survey on this literature, see Kagel (1995) and Kagel and Levin (2011).
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pairwise comparison tests shows that response time differs significantly across treatments.20

6.1 The Quantal Response Equilibrium approach

Once one accepts that our auction games differ in the degree of complexity in the sellers’
decisions, then the question that naturally follows is how the complexity of the task affects
behavior. We consider the simplest answer to this question: individuals, when faced with
more complex tasks, are simply more likely to make errors, i.e., to make suboptimal choices.
Following this idea, we adopt a model that explicitly allows the possibility that individuals
involved in strategic interaction can make errors: the Quantal Response Equilibrium (QRE)
introduced by McKelvey and Palfrey (1995). The QRE has been repeatedly applied to model
non-equilibrium behavior observed in experimental auctions (often combined with other bi-
ases). In particular, Goeree et al. (2002) show how this model, even in the presence of risk
averse bidders, may generate both over- and underbidding in private value auctions, depend-
ing on the structure of bidders’ payoffs. In this sense, it is a promising model for use in
explaining our contrasting evidence.

In a QRE model, the assumption that a player always chooses the strategy that maximizes
her payoff (i.e., her best response) is replaced by a probabilistic choice function tuned by an
error parameter: The probability of playing a suboptimal strategy is strictly positive, but it
depends on the (relative) payoff associated with it. In other words, an individual is more likely
to make an error that determines a small loss (relative to the payoff-maximizing strategy)
than an error that causes a big loss. The error parameter measures the sensitivity of choices
to payoffs. Therefore, in a QRE model, the assumption of full rationality is relaxed but
the equilibrium requirement is preserved: players have correct expectations for the other
players’ behavior; in particular, they take into consideration the noisiness embedded in their
opponents’ decisions.21

6.2 Baseline QRE model with risk aversion

We consider the following QRE model with logistic errors: a type-θ seller bids b with proba-
bility

Pr(b; θ) =
exp[US(b; θ)/µ]∑
b∈B exp[US(b; θ)/µ]

.

In this expression:

• B is the set of (admissible) individually rational bids, i.e., bids that give a non-negative
payoff to the seller in case of winning;

• US(b; θ) is the expected payoff of a type-θ seller when she bids b and the other seller
bids according to her own QRE strategy;

20Parametric analysis produces the same conclusion. When trend and trend-treatment interactions are
included, response time declines over periods for all treatments, but the overall ranking does not change. The
trend disappears in the last five periods. Results are available upon request.

21We do not investigate what cognitive process(es) may lead individuals to make suboptimal choices. Perhaps
such choices are the result of the trade-off between cognitive effort and the quality of the decision: The
individual optimally decides the amount of cognitive effort to devote to a task by weighting the extra-cost of
additional effort with its extra-benefit in terms of (expected) improvement of the solution to the task. As a
result, when a task is highly demanding in terms of cognitive costs, the decision maker may (optimally) decide
to stop thinking about it when a satisfactory, but not necessarily the best, solution has been identified.
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• µ ≥ 0 is the error parameter: the higher µ, the higher the probability that the seller
makes a bid that yields a relatively low payoff. In the limiting case µ→∞, the corre-
lation between a seller’s payoff and her bid disappears, and choices become essentially
random; in contrast, when µ = 0, the best response is played with certainty, and the
model boils down to the standard Bayes-Nash equilibrium.

We also allow for possible departures from risk neutrality by considering a Constant Relative
Risk Aversion (CRRA) utility function for sellers. In particular, the utility of a seller who
wins the auction, is paid a price p, and delivers a quality q is equal to

uS(p, q; θ) =
1

1− r
[p− C(q; θ)]1−r ,

where r ≥ 0 is the Arrow-Pratt coefficient of relative risk aversion, and C(q; θ) is given by
(3).

Table 9 presents, for each treatment, the estimates of the two free parameters of this
model: The error parameter µ and the coefficient of relative risk aversion r. For computational
reasons, estimations were performed after grouping bids into bins: In particular, the space
of admissible bids were divided into four-unit intervals, and, to each observation belonging
to a certain interval, the central value of the interval was assigned.22 All estimations were
performed via maximum likelihood.

The results contained in Table 9 show that the estimates for the risk-aversion parameter r
are similar across treatments but that there are significant differences in the error parameter µ.
These differences are consistent with our intuition based on the complexity of the treatment:
The simplest, unidimensional treatments – FPA and FQA – have smaller values of µ with
respect to the two-dimensional treatments. Hence, submitted bids are closer to the best
responses in the former than in the latter treatments. Moreover, among the scoring auctions,
those in which one choice is simplified to a binary choice – SRA2q and SRA2p – have a lower
value of µ than SRA, the most complex treatment.

Table 9 – Estimates from the baseline QRE model with risk aversion, full sample

FPA FQA SRA2q SRA2p SRA

r 0.68 0.68 0.68 0.66 0.62
µ 0.78 0.42 0.91 1.04 1.16

η 0.389 0.422 0.995 1.277 1.535
(0.029) (0.138) (0.104) (0.197) (0.061)

LL −355.82 −261.97 −438.21 −311.57 −1376.21
φM 0.73 0.83 0.74 0.76 0.40

Note. This table reports, for each treatment, maximum likelihood estimates
of the two parameters of the baseline QRE model with risk aversion: r (the
Arrow-Pratt coefficient of relative risk aversion), and µ (the error parameter).
η is the relative utility loss predicted by the estimated model (standard error in
parenthesis), LL is the value of the log-likelihood function, φM is a comparable
measure of the goodness of fit.

22The binning methodology adopted is described precisely in the Appendix. For FPA and FQA, we were
able to estimate the model also without bins, obtaining very similar results.
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One may object that a direct comparison of the estimates of the error parameter µ may
be disputable, as these estimates come from different auction games with different strategy
spaces. To facilitate comparability, we then construct a measure of departure from rationality,
denoted by η, that is less sensitive to the details of the underlying game, being directly built
on relative payoffs. Specifically, η is computed as the average quadratic deviation between
the utility associated with the QRE strategy and the maximum utility achievable (the one
obtainable by playing the best response strategy with probability one), normalized by the
latter. In symbols,

η =
10∑
θ=1

∑
b∈B

[
P̂rθ (b) ·

(
US (b; θ)− US (b∗(θ); θ)

US (b∗(θ); θ)

)2
]
,

where P̂rθ (b) is the probability that a type-θ seller bids b, as predicted by the estimated QRE
model, and b∗(θ) is her utility-maximizing bid (i.e., her best response).

Loosely speaking, η is a sort of “money-left-on-the-table” measure, as it captures how
much utility the subject gives up, on average, by using a suboptimal strategy. Now, the
ranking across treatments in terms of η supports our starting intuition even more cleanly
than when we look at µ: the value of η in FPA and FQA is much lower than it is in the
bidimensional treatments; moreover, it is significantly higher in SRA than it is in SRA2q and
SRA2p (Table 9).

One may also wonder whether these differences in rationality disappear once subjects
learn “how to play”. To address potential learning dynamics, we re-estimated the above
QRE model, restricting our attention to the last 5 periods, where no trend was parametrically
observed. Results are reported in Table 10.

Table 10 – Estimates from the baseline QRE model with risk aversion, last 5 periods

FPA FQA SRA2q SRA2p SRA

r 0.68 0.67 0.68 0.65 0.63
µ 0.71 0.40 0.59 0.72 0.76

η 0.353 0.399 0.738 0.997 1.239
(0.027) (0.135) (0.092) (0.175) (0.056)

LL −191.05 −110.32 −213.23 −144.84 −616.40
φM 0.64 0.81 0.71 0.77 0.44

Note. This table reports, for each treatment, maximum likelihood estimates
of the two parameters of the baseline QRE model with risk aversion: r (the
Arrow-Pratt coefficient of relative risk aversion), and µ (the error parameter).
η is the relative utility loss predicted by the estimated model (standard error in
parenthesis), LL is the value of the log-likelihood function, φM is a comparable
measure of the goodness of fit.

With respect to the estimates obtained from all observations, we do not find any relevant
variation in the risk-aversion parameter r. In contrast, the parameter µ decreases in all
treatments: by gaining experience, subjects tend to play better strategies (i.e., closer to the
Bayes-Nash equilibrium of the game). Interestingly, though not surprisingly, µ decreases only
slightly in the simplest one-dimensional treatments (−8.6% for FPA and −5.6% for FQA),
but much more sharply in the two-dimensional treatments (−34.9% for SRA2q, −30.9% for
SRA2p, and −34.4% for SRA). Similar results can be obtained if one looks at η.
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The change in the estimates of µ that are due to learning partially modifies the ranking
across treatments: While the value of µ remains lowest in FQA and highest in SRA, FPA
now has a higher estimate of µ than SRA2q, and essentially the same as SRA2p. However,
the more comparable measure, η, confirms the same ranking as in the full sample: η decreases
with the complexity of the treatment, being highest in FPA and FQA, lowest in SRA, and
intermediate in SRA2q and SRA2p.

The results presented so far suggest that the QRE model is able to produce estimates that
are consistent with the idea that the complexity of the auction mechanism is a crucial driver of
bidding behavior. Still, however, we need to check how well this model fits our experimental
data. Looking at the value of the log-likelihood function in the various tratments may be
problematic, as different tratments involve different games with different strategy spaces. To
overcome this problem, we follow Camerer et al. (2016) and adopt a normalized measure of
relative fit that is invariant to the dimension of the strategy set. This measure, which is
analogous to a Pseudo-R2, compares the value of the log-likelihood in the estimated model
with two extreme models: the first is an ideal “clairvoyant” model in which each (type-
dependent) bid is played with a probability exactly equal to the observed relative frequency;
the second is a purely random model in which, for every type θ, each (individually rational)
strategy is played with equal probability. The measure of fit is then computed as:

φM = 1− lnM − lnM∗

lnRandom− lnM∗

where lnM is the log-likelihood of the estimated model, lnM∗ is the log-likelihood of the
“clairvoyant” model, and lnRandom is the log-likelihood of the random model. Table 9
reports, for each treatment, the estimated values of φM obtained from the full sample of
observations.23 Notice that φM is comparatively high in the first four treatments, FPA,
FQA, SRA2p and SRA2q : With respect to a purely random choice, our model explains
between 73% (in treatment FPA) and 83% (in treatment FQA) of the observed behavior.
The value of φM reduces to 40% for the more complex SRA treatment. Although this latter
value is broadly in line with the results obtained by Camerer et al. (2016) in a (richer than
ours) QRE model applied to maximum value experimental auctions, we find this result worth
further investigation.

Figure (2) displays, with reference to treatment SRA and for each type θ, the median score
(2a) and the median quality (2b) predicted by our estimated baseline QRE with risk aversion
and compares them with the observed bids. For ease of reference, the Bayes-Nash equilibrium
(BNE) under risk neutrality and under risk aversion (with the coefficient of risk aversion set
at the estimated value r = 0.62), and the median bid predicted by a purely random model
are also reported.

Notice that the scores predicted by our baseline QRE model are always between the BNE
under risk aversion and the random model. Moreover, they capture the observed behavior in
a satisfactory way: In particular, the QRE model correctly predicts underbidding in the score,
as observed in the experiment. Figure (2a) makes clear how the two elements of the model,
risk aversion (synthesized by the parameter r) and bounded rationality (synthesized by the
error parameter µ), affect bidding behavior in terms of the submitted score. As it is intuitive,
relative to the BNE under risk neutrality, risk aversion leads sellers to bid more aggressively,
submitting bids that produce higher scores (overbidding). On the other hand, their tendency

23The estimates of φM obtained for the last five periods produce similar values (see Table 10).
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to make errors operates in the opposite direction, reducing the submitted scores. In fact,
one can show that upward deviations from the equilibrium score generate higher payoff losses
than downward deviations do: thus, if sellers make errors in a QRE fashion, scores below
the equilibrium are more likely to be submitted than are scores above it. Since errors are
relatively frequent – the estimated value of µ is comparatively high – the second effect prevails
and the resulting behavior is underbidding.

(a) Score (b) Quality

Note. The gray boxes include bids within the second and the third quartile of the observed distribution; the dark-gray
segment within each box is the median observation; the two vertical gray lines extend up to 1.5 times the interquartile
range.

Figure 2 – Scores and quality bids in SRA: observed vs. predicted

The fit of our QRE model is less satisfactory when looking at the quality bid only: Figure
(2b) shows that, while our data display a clear tendency by sellers to overbid in the quality
component, the estimated QRE does not capture this tendency, predicting underbidding for
the highest types and neither under- nor overbidding for the remaining types.24

6.3 QRE model augmented for a misperception of the quality trade-off

The previous subsection shows that a QRE model with risk aversion fits our experimental
evidence well in four treatments over five. The fit is less satisfactory in SRA, where, in
particular, the model does not predict the overbidding in the quality component that we
observe in this treatment. A natural question is then what determines this overbidding and
whether it is possible to improve our baseline QRE model in order to capture this behavior.

To investigate this question, it is useful to stress one remarkable theoretical result that
holds for SRA: if a seller’s ex-post utility depends only on her monetary earnings, then her
utility-maximizing quality bid is the same regardless of the precise shape of the utility function
and regardless of her belief on the opponent’s play. To see this, let v(p−C(q; θ)) be the utility
of a seller in case of winning (notice that v(·) depends only on the monetary earnings), with
v strictly increasing, and let s(q, p) = g(q)− p be the (quasi-linear) scoring rule. The seller’s

24In the Appendix, we report the analogues to Figure (2a) and (2b) for the remaining treatments. Differently
from SRA, in these treatments we do not detect any systemic behavior in the data that is not predicted by
the baseline QRE model.
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expected utility (disregarding possible ties) is then

v (p− C(q; θ))× Pr [g(q)− p > σ(·)] ,

where Pr [g(q)− p > σ(·)] is the probability that this seller wins the auction with a bid (p, q)
when the other seller’s score function is σ(·). Using s = g(q)− p, the above expected utility
can be written in terms of the choice of q and s as

v (g(q)− s− C(q; θ))× Pr [s > σ(·)] ,

with first-order conditions{
v′ (g(q)− s− C(q; θ))× (g′(q)− C ′(q; θ))× Pr [s > σ(·)] = 0

−v′ (g(q)− s− C(q; θ))× Pr [s > σ(·)] + v (g(q)− s− C(q; θ))× dPr[s>σ(·)]
ds = 0.

Since v′ is strictly positive, and focusing on s such that Pr [s > σ(·)] > 0, the first first-order
condition reduces

g′(q) = C ′(q; θ).

This condition simply states that the optimal quality bid is such that the marginal benefit
to the score (which affects the probability of winning the auction) of a small increase in the
quality bid is equal to its marginal monetary cost. This condition is unaffected by σ(·) and v(·):
this means that, if one retains rationality (in the sense of utility-maximizing behavior), any
departure from the optimal quality can be ascribed neither to the seller’s possible incorrect
beliefs about the opponent’s play nor to a peculiar (but still dependent only on monetary
earnings) type of utility function. Rather, it has to be the case that sellers have (or behave as
if they had) an objective function that is not a (strictly increasing) function of their monetary
earnings, but one that leads them to have a somewhat distorted perception of the trade-off
between marginal benefit and marginal (monetary) cost of quality. In particular, for this
distortion to lead to overbidding in quality, it has to be the case that, at the theoretically
optimal quality bid, sellers must perceive that the marginal benefit (to the score) of a small
increase in the quality bid exceeds its marginal cost.

In light of these considerations and in an attempt to improve our QRE model’s fit to the
observed behavior in SRA, characterized by overbidding in the quality bid (but underbidding
in the score), we then amend the baseline QRE model to allow for the possibility that sellers
have a distorted perception of the trade-off between marginal benefit and marginal cost of
quality. In particular, we hypothesize that the perceived weight attached to quality in the
scoring rule is 2 × ws, and that the perceived cost of quality q for a type-θ seller is wc ×
C(q; θ). The full rationality hypothesis corresponds to ws = wc = 1. We introduce two
more parameters, not just one, because, in equilibrium, one parameter only can generate
overbidding in the quality bid but not, simultaneously, underbidding in the score, or vice
versa.25

The estimates for the QRE model augmented with these two parameters are displayed in
Table 11. Observe that the parameter ws, which captures the perceived marginal contribution
of the submitted quality to the score, is active only in those treatments in which there is
indeed a score, namely SRA, SRA2p, and SRA2q. On the other hand, wc, the parameter that
measures the perceived cost of quality, is absent in FPA, where quality cannot be chosen, and
in SRA2q, where no marginal change from the admissible qualities is possible.

25This simple result is shown in the Appendix.
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Table 11 – Estimates from the augmented QRE model, full sample

FPA FQA SRA2q SRA2p SRA

r 0.68 0.68 0.68 0.66 0.57
µ 0.78 0.42 0.91 1.05 0.94
ws - - 1.00 0.98 0.77
wc - 1.00 - 0.96 0.67

η 0.389 0.422 0.995 1.249 1.266
(0.029) (0.138) (0.104) (0.194) (0.053)

LL −355.82 −261.97 −438.21 −309.10 −1284.66
φM 0.73 0.83 0.74 0.76 0.46

Note. This table reports, for each treatment, maximum likelihood estimates
of the four parameters of the augmented QRE model: r (the Arrow-Pratt
coefficient of relative risk aversion), µ (the error parameter), ws (the perceived
weight of quality in the score), and wc (the perceived cost of quality). η is
the relative utility loss predicted by the estimated model (standard error in
parenthesis), LL is the value of the log-likelihood function, φM is a comparable
measure of the goodness of fit.

Notice, first, that the four treatments for which the baseline QRE model was already
satisfactory are almost unaffected by the introduction of these two additional parameters:
The estimates of r, µ, and η are essentially unchanged, and the estimates of the additional
parameters ws and wc are close (if not equal) to 1. Therefore, in these treatments, sellers
seem to have full cognitive control over the effects of their quality choices on the score and
on their costs.

Things are different for SRA, the most complex treatment and the one for which the
baseline QRE model fitted the worst. For SRA, we obtain estimates for the two additional
parameters that are significantly lower than one: Sellers seem to underestimate the impact of
quality on both the submitted score and on their monetary costs. In particular, as expected,
we find that the estimated value of ws is greater than the estimated value of wc: In the
trade-off between marginal benefit and marginal cost of quality, the former is overestimated
relative to the second, leading to the observed overbidding in the quality component. In fact,
as Figure (2b) shows, the augmented model is now able to predict the observed overbidding
in the quality bid while still producing underbidding in the score. That the introduction of
the parameters ws and wc is essentially immaterial for FPA, FQA, SRA2p and SRA2q, but
significantly improves the fit of the model for SRA is also confirmed by looking at the value
of the log-likelihood (which increases by +91.55 for SRA) and the value of the statistic φM
(which increases from 0.40 to 0.46 for SRA).26

Interestingly, as we pass from the baseline to the augmented model, for treatment SRA
we obtain a significant reduction both in the estimated error parameter µ (from 1.16 to 0.94)
and in the (more comparable) measure of departure from rationality η (from 1.535 to 1.266).
This means that, conditional on their misperception, subjects make less errors than in the
baseline model: part of what the baseline QRE model explained simply as an error turns out
to be better described as an incorrect perception by subjects of the marginal effects of their

26To compare the relative fit of the baseline and augmented models, we also performed a Bayesian Information
Criterion test (BIC, Schwarz (1978)) and a Vuong’s closeness test (Vuong, 1989). Both tests confirm that the
augmented QRE significantly improves fit in SRA but not in FPA, FQA, SRA2p or SRA2q.
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quality choices on their payoffs.27 Finally, the inclusion of ws and wc in the model does not
alter the ranking of η across treatments:28 the highest value is still that recorded by SRA,
although the difference from that of SRA2p is small. Hence, our hypothesis of a positive
relationship between the complexity of the auction mechanism and the subjects’ likelihood of
making suboptimal bids is still supported by data. However, the results from the augmented
QRE model suggest that, when complexity is maximal (i.e., in SRA), a specific form of non-
rationality is triggered: sellers seem to have a distorted perception of the trade-off between
the marginal benefit and the marginal cost associated with their quality choice.

7 Concluding remarks

In this paper, we studied the problem of a buyer who wants to procure a good or service for
which both the price and a non-price dimension (that we refer to as quality) matter. We im-
plemented in the lab five auction mechanisms to award the contract. These mechanisms differ
in their intrinsic trade-off between theoretical performance and bidding complexity. Specif-
ically, in the simplest mechanisms, FPA and FQA, sellers bid on one dimension only (price
or quality, respectively), while the other dimension was set (optimally) by the experimenter;
in the most complex mechanism, SRA, sellers had to submit a price-quality offer and their
bidimensional bids were (linearly) combined into scores that determined the winner; finally,
we implemented two treatments of intermediate complexity, where sellers competed in a scor-
ing auction like SRA, but where the choice set on one dimension (price in SRA2p, quality in
SRA2q) was only binary. Theoretically, in equilibrium, SRA (the most complex mechanism)
should yield the highest level of social welfare and buyer’s surplus, while the unidimensional
treatments should perform the worst, with FPA significantly worse than FQA.

Our experimental results showed that the theoretical ranking across treatments is partially
upset in the lab: While FPA performs worst, as predicted, FQA overperforms and the three
scoring auctions underperform. As a result, we found no significant differences among FQA,
SRA2p, SRA2q and SRA, both in terms of social welfare and buyer’s surplus (if anything,
FQA performs better than the scoring auctions in terms of buyer’s surplus).

The analysis of bidding behavior shed light on these findings: in all treatments (except
FPA where quality was fixed), the submitted quality is higher than predicted and closer
to the efficient level. This result – which, by itself, increases social and buyer’s surplus –
explains the overperformance of FQA. However, in the scoring auctions this positive effect is
accompanied by two countervailing effects: on the one hand, a significant fraction of contracts
is inefficiently allocated to the high cost bidder; on the other hand, a higher-than-predicted
level of submitted quality tends to be accompanied by an even stronger upward adjustment

27Indeed, if we entirely shut down the stochastic choice component of the augmented model (setting µ = 0),
the overbidding in quality that the model predicts would be similar to the average choice observed in the
experiment: With ws = 0.77 and wc = 0.67, the equilibrium quality offer is equal to q (θ) = 4.597 ·θ; regressing
q on θ using the experimental data, we obtain q̂ = 2.825 + 4.417 · θ. Both parameters of this regression are
highly significant (p-value < 0.001).

28In the computation of η for the augmented model, we used the perceived expected utility of the subjects,
that is,

1

1− r [p− wcC(q; θ)]1−r × Pr [2wsq − p > σ(·)] ,

with ws and wc set at their estimated values. Hence, η has to be interpreted here as a measure of the departure
from rationality, net of the distortion that is due to the subjects’ misperception of the marginal effect of quality
on their expected payoffs.
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in prices, which eventually penalizes the buyer. We guessed that these negative effects may
be somewhat related to the higher degree of complexity of the scoring auctions. In fact, by
estimating a structural QRE model of bidding behavior, we found strong evidence in favor of
a positive relationship between complexity of the mechanism and bidders’ proneness to make
suboptimal bids. This tendency of bidding away from the best response generates more noisy
behavior which undermines the efficiency of the allocation and produces, on average, more
conservative bidding (a lower than optimal quality-price ratio). Moreover, in SRA, where
complexity is maximal, we also detected a distorted perception by bidders of the trade-off
between marginal benefit and marginal cost of quality.

With the usual caveats regarding the applicability of experimental findings to real-world
settings, we believe that our results may complement ,with clean and controlled evidence,
what the empirical literature already showed regarding scoring auctions. In this respect,
it is comforting that our results are consistent with Lewis and Bajary (2011)’s empirical
findings. Their framework and our experimental setting have many similarities: only one
quality attribute, a linear scoring rule in the scoring auction, a considerable weight attached
to the quality component both in the scoring rule and in the buyer’s objective function, convex
cost functions for quality provision that do not cross for different bidders’ types.29 Our results
regarding the comparison between FPA and SRA – the auction formats that are more popular
in real world procurement – perfectly match theirs: Although the buyer pays a (slightly)
lower price in FPA, the increase in quality obtained in SRA is such that the net effect on the
buyer’s surplus is positive and substantial. Moreover, the particularly noisy bidding behavior
that we detect in SRA – which is at the heart of the underperformance of this format with
respect to theory and that we attribute to the complexity of the bidding task – is in line with
their findings: in fact, when we regress the quality bids in SRA on the cost parameter and on
bidder fixed effects, we find that around 28% of the overall variance remains unexplained. This
number is remarkably close to what we obtained by replicating, this time on Lewis and Bajari’s
dataset, a similar regression of the quality bid, including contract and bidder fixed effects
to account for other time-invariant unobserved characteristics: with their data, 30% of the
overall variance of quality choices remains unexplained.30 The authors themselves recognize
that “bidder heterogeneity accounts for more of the variance than contract heterogeneity”
(Lewis and Bajary (2011), p. 1201), suggesting that some relevant behavioral effects may be
at work.

Hence, our paper suggests that the market designer should carefully weigh the benefits
that competition in multiple bidding dimensions is expected to yield, with the potential
distortions triggered by the complexity of the mechanism adopted. This trade-off is clearly
exemplified by our results regarding SRA: on the one hand, this mechanism is theoretically
preferable as the scoring rule represents a detailed translation of the buyer’s true preferences
into an awarding rule; on the other hand, it places suppliers into a more complex strategic
environment, and this leads them to make more frequent errors as if the strategic complexity
generated some lost in translation of the buyer’s preferences for quality and price into the
suppliers’ bids.

Clearly, the optimal solution to this trade-off should be evaluated case by case. In our
experimental setting, the non-price attribute of the object was particularly important, both

29The buyer’s objective function and the cost functions resulted from estimations in Lewis and Bajary (2011),
were set exogenously in our experiment.

30The results of these regressions are reported and discussed in the Appendix. We are indebted to Gregory
Lewis and Patrick Bajari for sharing their data and codes.
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on the demand side (quality had a relevant weight in the buyer’s objective function) and on
the supply side (costs were very sensitive to the quality provided). In such circumstances,
our paper suggests that letting bidders compete also on these non-price attributes is certainly
preferable to using a price-only auctions, even though the latter is certainly a more straight-
forward mechanism. Nevertheless, our paper also suggests that the market designer should
explore other less common awarding procedures to find the best solution to the trade-off
between performance and complexity at the bidding stage. In this respect, our experiment
shows that a simple mechanism like the quality-only auction (with an optimally predeter-
mined price), despite its predicted inferiority in terms of social welfare and buyer’s utility,
actually performs at least as well as a genuine scoring auction. Further research is required
to assess how the solution to this trade-off changes as the relative importance of the price
and the non-price elements change.

Finally, note that in our experimental setting there are no reputational concerns. An
interesting research question to be further investigated in the lab is how the mechanisms we
have studied can perform differently when bidders have an incentive to supply high quality
in order get future contracts.
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A Experimental Instructions

Instructions were originally written in Italian. The following instructions refer to the SRA
treatment. The only difference between these instructions and those used in FQA and FPA
is that, the offer in the latter was made by choosing one dimension only, respectively quality
and price, and therefore no reference to the scoring rule was required. The only difference
between these instructions and those used in SRA2q and SRA2p is that, the domain of one
dimension of the offer in the latter contained only two possible levels, 9 and 40 in in SRA2q,
12 and 65 for the price in SRA2p, respectively. Instructions used in FQA, FPA, SRA2q, and
SRA2p are available upon request from the authors.

Instructions
Welcome! Thanks for participating in this experiment. By following these rules carefully,

you can earn an amount of money that will be paid in cash at the end of the experiment.
There are 24 subjects participating in this experiment. Both the identities and the final

payments of the subjects will remain anonymous throughout the experiment. During the
experiment you are not allowed to communicate with the other participants. If you have
questions, raise your hand and one of the assistants will come to your seat and assist you.
The following instructions are the same for all the participants.

General rules
The experiment will consist of 15 periods and, in every period, you will face the same

economic situation that is described in what follows.
At the beginning of each period, you will be randomly and anonymously assigned to a

new group of two subjects. This means that the composition of the group will change in every
period and you will never interact with the same participant in two consecutive periods.

During the experiment, your earnings will be expressed in tokens. At the beginning of the
experiment you will receive an initial endowment of 20 tokens. The total number of tokens
earned will be the sum of the total tokens earned in the 15 periods of the experiment, plus
the initial endowment. At the end of the experiment, the total number of tokens will be
exchanged in euro at the following exchange rate: 7 tokens = 1 euro.

Your experimental task
In each of the 15 periods of the experiment, you and the other subject in your group will

play the role of two sellers who compete with each other in an auction for the sale of an object
to a hypothetical buyer.

During each auction, you and the other seller in your group will anonymously and simul-
taneously choose your offers to submit to the buyer. This means that, when making your
choice you will not receive any information about the offer submitted by the other seller in
your group.

Your offer
Your offer consists of two choices: (1) the level of quality of the object and (2) the price of

the object. As for the level of quality, you will choose an integer number included between 0
(the lowest quality level) and 70 (the highest quality level). As for the price, you will choose
an integer number included between 0 and the buyer’s maximum willingness to pay for the
object.

The buyer’s maximum willingness to pay for the object increases in the quality level of
the object, according to the following expression:

maximum willingness to pay = level of quality + 50
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Given your choices of price and quality, the computer will assign a score to your offer by using
the following expression:

score = 50 + 2 ∗ level of quality − price

The score assigned to your offer (a) increases in your quality choice, and (b) decreases in your
price choice. Note that the score assigned to your offer takes a minimum value of 0 when you
choose a quality level of 0 and a price of 50 (i.e. equal to the buyer’s maximum willingness
to pay for the object as determined by the quality level).

Auction result and earnings
Given your quality and price choices and those made by the other seller in your group, the

computer will compare the scores assigned to the two offers. The seller whose offer has been
assigned the highest score wins the auction. Ties will be randomly broken by the computer.

The loser of the auction does not obtain any earning in the period. Conversely, the
earnings of the winner of the auction are given by the difference between his/her price and
the cost of the object, that is:

Winner′s earning = price− cost of the object

For the winner of the auction, the cost of the object depends on two elements: (a) the
quality choice and (b) a random parameter. In particular, the computer will use the following
expression to determine the costs incurred by the winner of the auction:

cost of the object =
1

4 ∗ random parameter
∗ (levelofquality)2

where the random parameter is an integer number included between 1 and 10.
Note that: (a) the higher is the value of the random parameter, the lower is the cost

incurred by the winner, for each level of quality; (b) the cost of the object increases more
than proportionately with respect to the level of quality.

The value of your random parameter is selected by the computer in each period. In par-
ticular, the computer will randomly select an integer between 1 and 10 with equal probability.
You will be informed about your random parameter before choosing your offer. The infor-
mation about the random parameter is private, meaning that each seller will only observe
her/his own parameter, while she/he will not receive any information about the parameter of
the other seller in the group. This means that only you will know your random parameter,
and that you will not receive any information about the random parameter extracted from
the computer for the other seller. Finally, the random parameter assigned to you by the
computer in one period does not depend on that of the other seller in your group, nor on
those assigned in previous periods.

At the end of each auction, the computer will inform you and the other seller in your
group about the outcome of the auction, the price and the quality level chosen by the winner,
his/her score and your earnings, expressed in tokens.

For your convenience, the following table shows (a) the buyer’s maximum willingness to
pay, depending on the quality choice; (b) the costs incurred by the winner of the auction,
depending on her/his random parameter and the quality choice. We have highlighted in grey
the quality levels for which the costs for the sellers are higher than the buyer’s maximum
willingness to pay.
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Summarizing...
The rules used in each period to determine your earnings are summarized below.

1. At the beginning of each period, you will be randomly and anonymously assigned to a
new group of two subjects.

2. You and the other subject in your group will play the role of two sellers who compete
with each other in an auction for the sale of an object to a hypothetical buyer.

3. You and the other seller in your group will anonymously and simultaneously choose
your offers to submit to the buyer. In particular, you will have to make two choices:
(1) the level of quality of the object and (2) the price of the object.

4. The maximum willingness to pay of the buyer for the object increases as the quality
level of the object increases, according to the following expression:

maximum willingness to pay = level of quality + 50

5. According to the price and quality choice you make, the computer will assign a score to
your sale proposal using the following expression:

score = 50 + 2 ∗ level of quality − price

6. The winner of the auction is the seller whose sale proposal has obtained the highest
score. In the event of a draw, the computer randomly, and with equal probability,
selects the winner.

7. The seller who did not win the auction does not obtain any token in the period. Con-
versely, the winner of the auction makes an earning, in tokens, according to the following
expression:

Winner′s earning = price− cost of the object

8. The cost of the object, for the winner of the auction, depends on two elements: (a) the
level of quality and, (b), a random parameter. In particular, the computer will use the
following expression to determine the costs incurred by the winner of the auction:

cost of the object =
1

4 ∗ random parameter
∗ (levelofquality)2

where the random parameter is an integer number included between 1 and 10, randomly
chosen by the computer at the beginning of each period and notified to the seller before
he makes his sale offer. Note that: (a) the higher is the value of the random parameter,
the lower is the cost incurred by the winner, for each level of quality; (b) the cost of the
object increases more than proportionately with respect to the level of quality.

9. At the end of each auction, the computer will show the sellers the outcome of the
auction, the price and the level of quality chosen by the winner, his score and the
earnings, expressed in tokens.
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B Theory and predictions: derivation of the results

The (symmetric) equilibrium bidding functions in the five treatments31 are the following:

• FPA:

α1(θ) =

{
64 if θ = 1
64(θ − 1)−1 ln θ if θ ∈ (1, 10]

; (6)

• FQA:
β2(θ) = 8

√
θ + 1; (7)

• SRA:
[α3(θ);β3(θ)] = [2(3θ − 1); 4θ] ; (8)

• SRA2p:

[α4(θ);β4(θ)] =


[
12; 2

√
6(θ + 1)

]
if θ ∈ [1, θ̂)[

65;

√
130(θ2−θ̂2)+(θ̂−1)b̂2

θ−1

]
if θ ∈ [θ̂, 10]

, (9)

where θ̂ =
(
65 + 30

√
2
)
/16 and b̂ =

(
59 + 15

√
2
)
/4;

• SRA2q :

[α5(θ);β5(θ)] =


[81/4; 9] if θ = 1[
81[4(θ − 1)]−1 ln θ; 9

]
if θ ∈ (1, θ̂)[

400(ln θ−ln θ̂)+(θ̂−1)b̂
θ−1 ; 40

]
if θ ∈ [θ̂, 10]

, (10)

where θ̂ = 49/8 and b̂ = 62 + (162/41)× ln(49/8).

The corresponding proofs, treatment by treatment, are reported below. For each treat-
ment, we also compute the expected buyer’s utility and the expected total welfare.

B.1 FPA

Equilibrium. Let q̄ denote the quality imposed by the buyer. With quality set exogenously,
this is a standard (reverse) first-price auction with independent private values (costs). We
then obtain the standard symmetric equilibrium bidding function32

α1(θ) =
1

F (θ)

∫ θ

θ
C(q̄; θ)f(θ)dθ,

where F (·) is the distribution of types and f = F ′. With C(q; θ) = q2/(4θ), and under our
assumptions on the type distribution F (·), it obtains:

α1(θ) =


q̄2

4 if θ = 1

q̄2

4
ln θ
θ−1 if θ ∈ (1, 10]

.

31We use αi(θ) to denote a bidding strategy in the price dimension, βi(θ) for the quality dimension; moreover,
we use the index 1 for FPA, 2 for FQA, 3 for SRA, 4 for SRA2p, 5 for SRA2q. Clearly, σi(θ) = 50+2βi(θ)−αi(θ)
will be the corresponding score. Remind that the quality (price) is fixed in FPA (FQA).

32See, e.g., Krishna (2009).
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Replacing q̄ with 16 (the parameter used in the experiment), we get (6).

Buyer’s utility. The expected utility of the buyer in equilibrium (for generic q̄) is

UB =
20

7
q̄ − E[pw]

where E[pw] – the expected winning price – is

E[pw] =

∫ θ

θ
α1(θ)2F (θ)f(θ)dθ,

where 2F (θ)f(θ) is the density of the first-order statistic. It follows:

UB =
20

7
q̄ − 10 ln 10− 9

162
q̄2,

which is maximized for q̄ = 1620/[7(10 ln 10−9)] ≈ 16.5. For q̄ = 16 – the (integer) parameter
that we used in the experiment – it is UB(q̄ = 16) ≈ 23.5.

Total welfare. The expected total welfare in equilibrium is

W =
20

7
q̄ − E[Cw]

where E[Cw] – the expected cost of the winner – is

E[Cw] =

∫ θ

θ

q̄2

4θ
2F (θ)f(θ)dθ.

It follows

W =
20

7
q̄ − q̄2

162
(9− ln 10).

For q̄ = 16 – the parameter that we used in the experiment – it is W (q̄ = 16) ≈ 35.1.

B.2 FQA

Equilibrium. Let p̄ denote the price imposed by the buyer. The symmetric equilibrium
bidding function is

β2(θ) =
√

2p̄(θ + 1),

which, for p̄ = 32 (the parameter used in the experiment) yields (7). To see that this is indeed
an equilibrium, suppose that seller j bids according to β2(·) and consider seller i, type θ. If
this seller bids β2(θ) (her equilibrium bid), her expected utility is

Ui(β2(θ); θ) =

[
p̄− β2(θ)2

4θ

]
× F (θ) =

[
p̄− 2p̄(θ + 1)

4θ

]
× θ − 1

9
=
p̄(θ − 1)2

18θ
.

If, on the other hand, this seller makes a different bid β2(z), z 6= θ, her expected utility is

Ui(β2(z); θ) =

[
p̄− β2(z)2

4θ

]
× F (z) =

[
p̄− 2p̄(z + 1)

4θ

]
× z − 1

9
=
p̄(z − 1)(2θ − z − 1)

18θ
.
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We have

Ui(β2(θ); θ)− πi(β2(z); θ) =
p̄

18θ

[
(θ − 1)2 − (z − 1)(2θ − z − 1)

]
=

p̄

18θ
[θ − z]2 > 0.

This shows that, for a type-θ seller, it is optimal to bid β2(θ) when the other seller bids
according to β2(·), i.e. β2(θ) is indeed a symmetric equilibrium bidding function.

Buyer’s utility. The expected utility of the buyer in equilibrium (for generic p̄) is

UB =
20

7
E[qw]− p̄

where E[qw] – the expected winning quality – is

E[qw] =

∫ θ

θ
β2(θ)2F (θ)f(θ)dθ.

It follows:
UB = K

√
2p̄− p̄,

where K = 80 (253
√

11+8
√

2)
8505 . The above expression is maximized for p̄ = K2/2 ≈ 32.0. For

p̄ = 32 – the (integer) parameter that we used in the experiment – it is UB(p̄ = 32) ≈ 32.0.

Total welfare. The expected total welfare in equilibrium is

W =
20

7
E[qw]− E[Cw]

where E[Cw] – the expected cost of the winner – is

E[Cw] =

∫ θ

θ

β2(θ)2

4θ
2F (θ)f(θ)dθ.

It follows:

W = K
√

2p̄− (99− 2 ln 10)

162
p̄.

For p̄ = 32 – the parameter that we used in the experiment – it is W (p̄ = 32) ≈ 45.3.

B.3 SRA

Equilibrium. In SRA, sellers choose p and q that jointly determine the score according to
s = aq − p (we keep the quality weight a general for the moment and disregard any additive
constant, which is immaterial). Notice that, for given q, there is a one-to-one relation between
s and p. Therefore, we can equivalently think of a situation in which sellers submit s and
q, the seller with the highest score wins and is paid p = aq − s. It is extremely useful to
reformulate the problem in this way. In fact, in terms of the choice of s and q, the expected
utility of a generic seller i, type θ, becomes

Ui(s, q; θ) = [aq − s− C(q; θ)]× PW(s),

where PW(s) is the probability of winning the auction with a score equal to s. The crucial
point is that this probability depends only on s, not on q: this implies that the optimal

42



choice of q is totally independent from the choice of s, as well as from the bidding strategy
of the other seller.33 In fact, it is immediate to verify that, regardless of the choice of s (as
long as PW(s) 6= 0), the optimal value of q is the one for which a − C ′(q; θ) = 0 (where
C ′(q; θ) = ∂C(q; θ)/∂q). Let this optimal value, which in general depends on θ, be denoted
by q∗(θ). It is easy to verify that, with C(q; θ) = q2/(4θ), it is q∗(θ) = 2aθ, which is then the
quality component in the equilibrium bidding function.

Now, given the optimal choice of q just determined , our problem reduces to a one-variable
optimization problem:

max
s
Ui(s; θ) = [aq∗(θ)− s− C(q∗(θ); θ)]× PW(s),

or, by setting k(θ) = aq∗(θ)− s− C(q∗(θ),

max
s
Ui(s; θ) = [k(θ)− s)]× PW(s).

Notice that the above maximand is equivalent to the expected utility of a supplier who
participates in a standard first-price auction having a valuation k(θ) for the object on sale.
Hence, as long as k(θ) is strictly increasing (which is the case under our assumptions), we
can apply the standard theory to obtain the symmetric equilibrium bidding function in the
score dimension, which is

σ(θ) =
1

F (θ)

∫ θ

θ
k(θ)f(θ)dθ.

After noticing that, under our assumptions, k(θ) = a2θ, we get

σ(θ) =
a2(θ + 1)

2
,

which immediately allows us to obtain the price component of the equilibrium bidding func-
tion, namely

α3(θ) =
a2(3θ − 1)

2
.

We conclude that the symmetric equilibrium is

[α3(θ);β3(θ)] =

[
a2(3θ − 1)

2
; 2aθ

]
,

which, for a = 2 (the parameter used in the experiment) yields (8).

Buyer’s utility. The expected utility of the buyer in equilibrium (for generic quality weight
a) is

UB =
20

7
E[qw]− E[pw]

where E[qw] – the expected quality of the winner – is

E[qw] =

∫ θ

θ
β3(θ)2F (θ)f(θ)dθ = 14a,

33To be precise, this statement is true as long as s gives a strictly positive probability of winning to the
seller.
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and E[pw] – the expected price of the winner – is

E[pw] =

∫ θ

θ
α3(θ)2F (θ)f(θ)dθ = 10a2.

It follows

UB =
20

7
× 14a− 10a2 = 40a− 10a2,

which is maximized for a = 2 (exactly the parameter we used in the experiment). We thus
have UB(a = 2) = 40.

Total welfare. The expected total welfare in equilibrium is

W =
20

7
E[qw]− E[Cw]

where E[qw] = 14a and E[Cw] – the expected cost of the winner – is

E[Cw] =

∫ θ

θ

β3(θ)2

4θ
2F (θ)f(θ)dθ = 7a2.

It follows:
W = 40a− 7a2.

For a = 2 – the parameter that we used in the experiment – it is W (a = 2) = 52.

B.4 SRA2p

Equilibrium. SRA2p works like SRA (each seller submits a price p and a quality q, the
winner is the seller whose score s = 2q − p is the highest), with the difference that, while the
choice of q is unconstrained (apart from being below the maximum admissible value), p must
be chosen in a set of two values only, {pL, pH}, with pL < pH .

To derive the symmetric equilibrium bidding function, we guess that it will have the
following shape

[α4(θ);β4(θ)] =

{
[pL, βL(θ)] if θ ∈ [θ, θ̂)

[pH , βH(θ)] if θ ∈ [θ̂, θ]
,

with score

σ(θ) =

{
2βL(θ)− pL if θ ∈ [θ, θ̂)

2βH(θ)− pH if θ ∈ [θ̂, θ]
,

and that σ(θ) is strictly increasing, i.e. that: (i) βL(θ) and βH(θ) are strictly increasing, and
(ii) 2βL(θ̂)− pL ≤ 2βH(θ̂)− pH .

Now, suppose seller j bids according to [α4(·);β4(·)] as described above, and consider seller
i, type θ. If this seller chooses price pL and a quantity q ∈ (βL(θ), βL(θ̂)), her expected utility
will be

Ui(pL, βL(θ) < q < βL(θ̂); θ) = [pL − C(q; θ)]× F (β−1
L (q)).

The first-order condition for a maximum is:

−C ′(q; θ)× F (β−1
L (q)) + [pL − C(q; θ)]×

f(β−1
L (q))

β′L(β−1
L (q))

= 0.
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In a symmetric equilibrium, for types θ < θ̂, it must be q = βL(θ) (hence q is indeed lower
than βL(θ̂)). Using this symmetry condition, we get:

−C ′(βL(θ); θ)× F (θ)× β′L(θ) + [pL − C(βL(θ); θ)]× f(θ) = 0,

or
pLf(θ) = C ′(βL(θ); θ)× F (θ)× β′L(θ) + C(βL(θ); θ)f(θ).

Under our assumptions, the equation above becomes

1

9
pL =

βL(θ)

2θ

θ − 1

9
β′L(θ) +

1

9

βL(θ)2

4θ
,

or
4pLθ = 2βL(θ)β′L(θ)(θ − 1) + βL(θ)2.

The above condition must hold for all θ < θ < θ̂. After noticing that the RHS above is the
derivative of (θ − 1)βL(θ)2, we get∫ θ

θ
4 pL x dx = (θ − 1)βL(θ)2,

or
βL(θ) =

√
2pL(θ + 1).

Suppose now that seller i, type θ, chooses price pH and a quantity q ∈
(
βH(θ̄), βH(θ)

)
.

Her expected utility will be

Ui(pH , βH(θ̄) < q < βH(θ); θ) = [pH − C(q; θ)]× F (β−1
H (q)).

Proceeding exactly as before, we obtain that, for all θ̄ < θ < θ, it is necessarily

4pHθ = 2βH(θ)β′H(θ)(θ − 1) + βH(θ)2.

Solving it, we get ∫ θ

θ̂
4 pH x dx = (θ − 1)βH(θ)2 − (θ̂ − 1)βH(θ̂)2,

or

βH(θ) =

√
2pH(θ2 − θ̂2) + (θ̂ − 1)βH(θ̂)2

θ − 1
.

To pin down the value of θ̂ and βH(θ̂), we use the following two conditions (that are necessary
for an equilibrium):

1. type θ̂ must be indifferent between bidding [pL;βL(θ̂)] and bidding [pH ;βH(θ̂)]: if not,
then a type θ̂ − ε would rather deviate and bid [pH ;βH(t̂)]. This condition is

pL − C(βL(θ̂); θ̂) = pH − C(βH(θ̂); θ̂),

which implies
βH(θ̂)2 − βL(θ̂)2 = 4θ̂(pH − pL);
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2. the score if one bids [pL;βL(θ̂)] must be equal to the score if one bids [pH ;βH(θ̂)]: if not,
then type θ̂ would rather deviate and decrease quality below βH(θ̂) but still keeping her
score above the one associated with [pL;βL(θ̂)]. This condition is

2βL(θ̂)− pL = 2βH(θ̂)− pH ,

which implies

2
[
βH(θ̂)− βL(θ̂)

]
= pH − pL.

Solving the system of the two conditions above, we obtain34

θ̂ =
pH +

√
2pHpL + 32pL − p2

L

16
, βH(θ̂) =

pH − pL
4

+ 4θ̂.

For pL = 12 and pH = 65 (the parameters used in the experiment) we obtain (9).35

Buyer’s utility. The expected utility of the buyer in equilibrium (for generic prices pL and
pH) is

UB =
20

7
E[qw]− E[pw]

where E[qw] – the expected quality of the winner – is

E[qw] =

∫ θ̂

θ
βL(θ)2F (θ)f(θ)dθ +

∫ θ

θ̂
βH(θ)2F (θ)f(θ)dθ,

and E[pw] – the expected price of the winner – is

E[pw] = pLF (θ̂)2 + pH(1− F (θ̂)2) = pH −
(pH − pL)(θ̂ − 1)2

81
.

(In the above, F (·)2 is the cumulative distribution of the first order statistic.) To determine
the values of pL and pH that maximize UB, we resorted to numerical techniques, obtaining
pL = 12 and pH = 65, the parameters used in the experiment. We then have UB(pL =
12, pH = 65) ≈ 40.2.

Total welfare. The expected total welfare in equilibrium is

W =
20

7
E[qw]− E[Cw]

where E[qw] is as above and E[Cw] – the expected cost of the winner – is

E[Cw] =

∫ θ̂

θ

βL(θ)2

4θ
2F (θ)f(θ)dθ +

∫ θ

θ̂

βH(θ)2

4θ
2F (θ)f(θ)dθ.

For pL = 12 and pH = 65, we obtain W (pL = 12, pH = 65) ≈ 50.6.

34Notice that, if, for some (pL, pH) one gets θ̂ < θ, this would mean that all types prefer bidding pH , and we
would be back in a FQA with fixed price pH ; similarly, if, for some (pL, pH) one gets θ̂ > θ, this would mean
that all types prefer bidding pL, and we would be back in a FQA with fixed price pL.

35Clearly, the one just presented is not a proof as it is based only on (local) necessary first-order conditions.
Nevertheless, it can easily be shown that the bidding function obtained is indeed an equilibrium.
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B.5 SRA2q

Equilibrium. SRA2q works like SRA (each seller submits a price p and a quality q, the
winner is the seller whose score s = 2q − p is the highest), with the difference that, while the
choice of p is unconstrained (apart from being below the maximum admissible value), q must
be chosen in a set of two values only, {qL, qH}, with qL < qH .

Following the same steps as those used for the SRA2p case, one obtains

[α5(θ);β5(θ)] =


[
q2
L/4; 9

]
if θ = 1[

q2
L[4(θ − 1)]−1 ln θ; 9

]
if θ ∈ (1, θ̂)[

(q2H/4)(ln θ−ln θ̂)+(θ̂−1)b̂
θ−1 ; 40

]
if θ ∈ [θ̂, 10]

,

where

θ̂ =
qL + qH

8
, b̂ = 2(qH − qL) +

q2
L

4

ln θ̂

θ̂ − 1
.

For qL = 9 and qH = 40 (the parameters used in the experiment) we obtain (10).

Buyer’s utility. The expected utility of the buyer in equilibrium (for generic qualities qL
and qH) is

UB =
20

7
E[qw]− E[pw]

where E[qw] – the expected quality of the winner – is

E[qw] = qLF (θ̂)2 + qH(1− F (θ̂)2) = qH −
(qH − qL)(θ̂ − 1)2

81
.

and E[pw] – the expected price of the winner – is

E[pw] =

∫ θ̂

θ

q2
L

4(θ − 1)
ln θ · 2F (θ)f(θ)dθ +

∫ θ

θ̂

(q2
H/4)(ln θ − ln θ̂) + (θ̂ − 1)b̂

θ − 1
2F (θ)f(θ)dθ.

To determine the values of qL and qH that maximize UB, we resorted to numerical techniques,
obtaining qL = 9.35 and qH = 40.68. For qL = 9 and qH = 40 – the parameters that we used
in the experiment – it is UB(qL = 9, qH = 40) ≈ 38.5.

Total welfare. The expected total welfare in equilibrium is

W =
20

7
E[qw]− E[Cw]

where E[qw] is as above and E[Cw] – the expected cost of the winner – is

E[Cw] =

∫ θ̂

θ

q2
L

4θ
2F (θ)f(θ)dθ+

∫ θ

θ̂

q2
H

4θ
2F (θ)f(θ)dθ = q2

L[θ̂−ln θ̂−θ+ln θ]+q2
H [θ−ln θ−θ̂+ln θ̂].

For qL = 9 and qH = 40, we obtain W (qL = 9, qH = 40) ≈ 50.5.
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C Experimental results: figures

Figure (A1) displays the distribution of observed quality bids in FQA and price bids in FPA
(gray box plot),36 the mean observed bids (black connected line) and the risk-neutral Bayes-
Nash equilibrium prediction (red dashed line).

Figure A1 – Bids in FQA and FPA.

Figure (A2a) displays the distribution of scores (gray box plot) in SRA, SRA2p and
SRA2q, the mean observed scores (gray connected line) and the risk-neutral Bayes-Nash
equilibrium prediction (red dashed line). Figure (A2b) displays the distribution of the ob-
served quality component of the bid (gray box plot) in SRA, SRA2p and SRA2q, the mean
observed quality (gray connected line) and the risk-neutral Bayes-Nash prediction (red dashed
line).

(a) Score (b) Quality

Figure A2 – Bids in SRA, SRA2p and SRA2q

36In Figure (A1) and in Figure (A2a) and (A2b), the gray boxes include bids within the second and the
third quartile of the observed distribution; the dark-gray segment within each box is the median observation;
the two vertical gray lines extend up to 1.5 times the interquartile range
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D Experimental results: parametric analysis, last 5 periods

Table A1 – Outcome of the auction, last 5 periods

SW BU SP
(1) (2) (3) (4) (5) (6)

FPA -0.261∗∗∗ -0.272∗∗∗ -0.258∗∗∗ -0.289∗∗∗ -0.003 0.016
(0.027) (0.042) (0.033) (0.063) (0.019) (0.035)

SRA2q -0.031 -0.020 -0.028 -0.047∗ -0.003 0.026
(0.020) (0.020) (0.025) (0.027) (0.015) (0.017)

SRA2p -0.023 -0.037 -0.025 -0.050 0.003 0.013
(0.018) (0.036) (0.022) (0.032) (0.014) (0.016)

SRA -0.024 0.042 -0.001 0.008 0.026∗ 0.034
(0.018) (0.032) (0.020) (0.025) (0.015) (0.023)

Trend 0.007∗∗ 0.001 0.006∗

(0.003) (0.003) (0.003)

FPA∗Trend 0.006 0.015 0.010
(0.018) (0.022) (0.010)

SRA2q∗Trend -0.006 0.009 -0.015∗∗∗

(0.009) (0.010) (0.005)

SRA2p∗Trend 0.007 0.012 0.005
(0.012) (0.009) (0.005)

SRA∗Trend -0.009 -0.005 -0.004
(0.011) (0.008) (0.007)

Constant 0.845∗∗∗ 0.831∗∗∗ 0.671∗∗∗ 0.669∗∗∗ 0.174∗∗∗ 0.162∗∗∗

(0.009) (0.012) (0.010) (0.012) (0.009) (0.008)

Obs. 300 300 300 300 300 300
Wald −χ2 98.85 109.67 62.88 69.31 4.44 18.44
p > −χ2 0.000 0.000 0.000 0.000 0.350 0.030

Note. Table A1 report estimates (robust standard errors in parentheses) from GLS random effects

models accounting for dependency within rematching group. In all regressions, the dependent

variable is defined at the rematching group level. Only the last 5 periods are considered. Columns

(1) and (2) focus on SW , Columns (3) and (4) focus on BU , Columns (5) and (6) focus on SP .

Trend is a linear time trend that starts from 0 in the 11th period of the experiment. Significance

levels are denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.
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Table A2 – Score, parametric analysis, last 5 periods

Score Score dist
(1) (2) (3) (4) (5) (6)

FPA -8.136∗∗∗ -9.987∗∗∗ -11.148∗∗∗ -0.029∗ 0.030 0.019
(1.123) (1.288) (1.467) (0.015) (0.020) (0.023)

SRA2q -1.000 6.950∗∗∗ 6.541∗∗∗ -0.057∗∗∗ -0.050∗∗ -0.060∗∗∗

(1.123) (1.301) (1.470) (0.0148) (0.020) (0.023)

SRA2p -0.908 5.984∗∗∗ 5.457∗∗∗ -0.093∗∗∗ -0.101∗∗∗ -0.111∗∗∗

(1.123) (1.299) (1.471) (0.015) (0.020) (0.023)

SRA -2.025∗ 7.386∗∗∗ 6.741∗∗∗ -0.118∗∗∗ -0.096∗∗∗ -0.107∗∗∗

(1.123) (1.294) (1.475) (0.015) (0.020) (0.023)

θ 3.873∗∗∗ 3.874∗∗∗ 0.009∗∗∗ 0.009∗∗∗

(0.124) (0.124) (0.002) (0.002)

FPA∗θ 0.493∗∗∗ 0.505∗∗∗ -0.011∗∗∗ -0.011∗∗∗

(0.177) (0.176) (0.003) (0.003)

SRA2q∗θ -1.463∗∗∗ -1.462∗∗∗ -0.001 -0.001
(0.178) (0.177) (0.003) (0.003)

SRA2p∗θ -1.333∗∗∗ -1.331∗∗∗ 0.001 0.001
(0.175) (0.174) (0.003) (0.003)

SRA∗θ -1.705∗∗∗ -1.697∗∗∗ -0.004 -0.004
(0.177) (0.177) (0.003) (0.003)

Trend 0.046 −9 · 10−4

(0.238) (0.004)

FPA∗Trend 0.548 0.005
(0.337) (0.005)

SRA2q∗Trend 0.203 0.005
(0.337) (0.005)

SRA2p∗Trend 0.257 0.005
(0.337) (0.005)

SRA∗Trend 0.299 0.005
(0.337) (0.005)

Constant 59.956∗∗∗ 39.116∗∗∗ 38.565∗∗∗ 0.042∗∗∗ -0.008 -0.008
(0.794) (0.915) (3.019) (0.010) (0.014) (0.016)

Obs. 1800 1800 1800 1800 1800 1800
Wald −χ2 68.20 3360.71 3394.81 82.55 172.44 181.06
p > −χ2 0.000 0.000 0.000 0.000 0.000 0.000

Note. This table reports estimates (clustered standard errors in parentheses) from two-way linear
random effects models accounting for both potential individual dependency over repetitions and
dependency within rematching group. Only the last 5 periods are considered. The first three
columns are based on regressions using the observed score as dependent variable, while the last
three are based on score dist. θ is the cost parameter randomly assigned to the supplier. Trend is
a linear time trend that starts from 0 in the 11th period of the experiment. Significance levels are
denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.
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E Structural analysis: binning procedure

In this section we present the binning methodology used to estimate the QRE model. Binning
was unavoidable: SRA, the treatment with the largest strategy set, had 19,146 different
combinations of score, quality and cost parameter and, to the best of our knowledge, a QRE
model with such a huge number of strategies cannot be estimated on reasonable time. After
binning, we ended up with 1,298 different combinations.

For illustration, the red points in Figure (A3a) represent all the available strategies in
SRA for a seller of type θ = 10. After binning, the relevant strategies for this seller were
reduced to those depicted in Figure (A3b).

(a) All strategies (b) Binned strategies

Figure A3 – Available and binned strategies in SRA for a seller of type θ = 10

To construct the binned strategies for SRA, we divided the space of score-quality pairs37

into squares of side equal to 3. Then, all the observed score-quality pairs falling into a certain
square were treated as identical, and assigned a value equal to the coordinates of the center
of the square. In practice, the first square has vertices (0, 0), (3, 0), (0, 3), and (3, 3); then,
moving horizontally, we have the square with vertices (4, 0), (7, 0), (4, 3), and (7, 3), while
moving vertically, we have the square with vertices (0, 4), (3, 4), (0, 7), and (3, 7). And so on.
As an example, the strategy pair (1, 3) belongs to the first square: as such, a bid (1, 3) has
been re-assigned the value corresponding to the central point of that square, namely (1.5, 1.5).
For squares crossing the boundaries of the set of admissible strategies and whose center was
outside this set, we picked a boundary point.

A similar binning procedure was applied to the other treatments as well. Clearly, for the
unidimensional treatments, bins were intervals (of length 3), not squares. For SRA2q and
SRA2p, the binning procedure was applied along the non-binary dimension only.

Our computer required around 4 hours to solve for the QRE model for SRA, for each set
of parameters r and µ.

37We worked on score-quality pairs rather than on price-quality pairs because writing the codes in the former
case was easier.
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F Baseline QRE: results for FPA, FQA, SRA2p and SRA2q

In all the figures below, we report:

• the median bids of the fitted distribution of the QRE (qualities in FQA, prices in FPA and, in
separate graphs, scores and qualities in SRA2p and SRA2q), using a blue line

• the distribution of the observed bids, using a gray box-plot38

• the Bayes-Nash risk-neutral equilibrium, using a red short-dashed line

• the Bayes-Nash risk-averse equilibrium,39 using a red dashed line

• the median bids of the random model, using a yellow dotted line.

(a) With binning (b) Without binning

Figure A4 – Bids in FQA and FPA: observed vs. predicted

(a) Score (b) Quality

Figure A5 – Scores and quality bids in SRA2p and SRA2q : observed vs. predicted

38The gray boxes include bids within the second and the third quartile of the observed distribution; the
dark-gray segment within each box is the median observation; the two vertical gray lines extend up to 1.5
times the interquartile range

39Using a CRRA utility function with the same risk-aversion parameter r and the same bin (4 units in each
dimension with a continouos choice set) as in the QRE.
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G SRA with misperception

Recall the equilibrium quality and score for SRA (with generic quality weight a and disregarding the
additive constant):

β3(θ) = 2aθ

σ3(θ) =
a2(θ + 1)

2
.

Now, suppose that the (perceived) scoring rule is s̃(q, p) = a ·ws · q − p, and that the (perceived) cost
function is C̃(q; θ) = wc · q2/(4θ) (with ws, wc > 0). The perceived expected utility of a generic seller
i, type θ, is then:

Ũi =

[
a · ws · q − s̃− wc

q2

4θ

]
× PW(s̃),

Using the same logic as in the derivation of the equilibrium in the standard SRA, it is straightforward
to verify that the equilibrium quality and score are equal to:

β̃3(θ) = 2aθ × ws

wc

σ̃3(θ) =
a2(θ + 1)

2
× w2

s

wc
.

To have overbidding in the quality, i.e. β̃3(θ) > β3(θ), it must be ws > wc. To have underbidding in
the score, i.e. σ̃3(θ) < σ3(θ), it must be w2

s < wc. Both conditions are simultaneously satisfied only if
wc < ws < 1.

H Quality bids in SRA: comparison with Lewis and Bajari

In this section, we refer to the data analyzed by Lewis and Bajary (2011) concerning scoring auctions
adopted by the Californian Department of Transportation to award highway repair contracts. Our
goal is to compare their real world data with our laboratory results. In particular, we focus on the
quality bids only – not on price or on the overall score – for two reasons. First, the equilibrium quality
is unaffected by the precise shape of the seller’s utility function (as long as it only depends on the
monetary earnings) and by the beliefs regarding the other seller’s bidding strategy: this allows us to
rule out several competing explanations to the observed variability in bidding behavior. Second, and
differently from price, the quality bid in Lewis and Bajary (2011) is structurally modelled.

The main estimating equation for quality bids in Lewis and Bajary (2011) is as follows:40

ln d̃ij =
1

α

(
ln cUj − xijβ − ζj − θAij

)
, (11)

where the index i refer to sellers and index j to contracts/auctions, α captures the curvature (convexity

for α > 1) of the cost function, cU is the relative weight attached to quality in the scoring rule, d̃ is
the observed quality bid, x is a vector of observed seller- and contract-specific characteristics, ζj is
an unobserved contract-specific dummy, and θAij is the type of seller i for contract j (essentially, the
unobserved component affecting seller i’s cost for project j).

40See Equation (5) on page 1196 in Lewis and Bajari (2011). For simplicity, in this section we keep their
notation.
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Table A3 – Quality decision: Log Days Accelerated, SRA auctions

LB FE RE FE+RE
(1) (2) (3) (4)

Log Usercost 0.275∗∗ 0.342∗ 0.325∗

(0.136) (0.175) (0.178)

Log Engineer’s Days 1.312∗∗∗ 1.417∗∗∗ 1.427∗∗∗

(0.228) (0.227) (0.232)

Log Engineer’s Estimate -0.314∗∗ -0.452∗∗∗ -0.500∗∗∗

(0.136) (0.164) (0.166)

Log Daily Traffic 0.002 0.055 0.067
(0.067) (0.084) (0.085)

Plant Establishment -0.292 -0.346∗ -0.383∗∗

(0.205) (0.193) (0.194)

Lane Closure Fraction 0.836 0.956 1.115
(0.686) (0.722) (0.742)

Reopening Penalty -0.235 -0.355 -0.402∗

(0.216) (0.233) (0.233)

Firm Capacity > $50M 0.250 0.344
(0.202) (0.250)

Instate Contractor -0.566∗∗∗ -0.795
(0.200) (0.515)

Log Distance (miles) -0.028 -0.105 -0.048 -0.068
(0.084) (0.076) (0.071) (0.071)

Participation Residual -0.286 -0.103 -0.134 -0.176
(0.725) (0.608) (0.652) (0.606)

Constant 0.343 4.771∗∗∗ 0.629 1.069
(1.522) (0.542) (1.739) (1.742)

District/Work/Year FE YES NO YES YES
Contracts FE NO YES NO NO
suppliers FE NO YES NO YES

Std. Errors
Contracts RE 0.338 0.382
suppliers RE 0.794
Residuals 0.952 0.530 0.731 0.600

Mean Log. Days Accell. 4.250 4.250 4.250 4.250

Obs. 424 424 424 424
R2 0.408 0.817 0.408 0.694
adj− R2 0.369 0.693 0.369 0.577

Note. Column (1) reports the estimate of the linear regression model as in Table 4, Column (4) in Lewis and Bajari (2011)

(clustered standard errors at the contract level in parentheses). Column 2 reports the estimate of a linear regression model

with contract and supplier FEs (robust standard errors in parentheses). Column (3) reports a two-way crossed-effects model,

accounting for both contract and supplier REs. Column 4 considers contracts REs and suppliers FEs. All REs standard

errors have been reported, as well as the standard error of the residuals. Contract specific variables are: Log Usercost

(log weight of quality into the scoring function), Log Engineering Days (the log engineering estimate on the number of

days required to complete the project, i.e. the minimum admitted quality), Log Engineering Estimate (the log engineering

estimate of the project’s cost, i.e. the reserve price), Plant Establishment (1 if a plant has been established, 0 o/w), Log

Daily Traffic (the log traffic volumes), Lane Closure Fraction (the fraction of lanes closed during the work) and Reopening

Penalty (1 if the contract specifies a monetary penalty for late reopening, 0 o/w). Supplier specific variables are: Firm

Capacity larger than $50M (1 if the firm has a capacity larger that $50M, 0 o/w) and Instate Contractor (1 if the bidder

comes from the same State where the contract is supposed to be executed, 0 o/w). Supplier-contract variables are the

Log Distance (the log distance between the firm’s headquarter and where the work has to be executed) and Participation

Residuals (used to correct for endogenous participation as described in Lewis and Bajary (2011)). Significance levels are

denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.
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We replicate the estimation exercise of Lewis and Bajary (2011) by using a more parsimonious
specification, where we include contract FEs (to control for unobserved contract characteristics) and
supplier FEs (to control for unobserved and persistent sellers’ characteristics, like productive efficiency,
ability and psychological attitudes). We estimate this model in Column (2), Table A3. For comparison,
we also report, in Column (1), the original results of Lewis and Bajary (2011). Our objctive is, first,
to absorb all the fixed effects and, second, to estimate how much variance is left. Our regression
model with 77 contract FEs, 94 supplier FEs and 2 supplier-contract interactions (in a dataset of 424
observations), leaves unexplained about 30% of the variability in the quality bids. This variability
has a relevant magnitude, as one standard error of the residuals is equivalent to 12.5% of the mean
dependent variable.

In order to check for robustness of the results, in Column (3) we keep all the independent variables
as in Lewis and Bajari’s model of Column (1), but we add both supplier and contract random effects.
In Column (4), instead, we consider supplier fixed effects and contracts random effects. In both cases,
moving from fixed to random effect models does not reduce the variance in the residuals.

We then repeat the same exercise on our experimental data. In the lab, we do observe the seller’s
costs and contracts are homogeneous. The predicted quality bid in SRA is a linear function of the
seller’s type (specifically, q∗ = 4θ). In the first column of Table A4, we estimate a panel regression
model with individual FEs. Our specification controls are able to account for around 72% of the
variability in the quality bid, thus leaving unexplained about 28% of the overall variance. Additionally,
one standard error of the residuals is equivalent to 26.5% of the mean dependent variable. Results do
not differ using a random effect model (see the second column).

Table A4 – Quality decision in the lab, SRA auctions

FE RE
(1) (2)

θ 4.479∗∗∗ 4.467∗∗∗

(0.140) (0.077)

Constant 2.496∗∗∗ 2.558∗∗∗

(0.746) (0.798)

Individuals FE YES NO

Std. Errors
Individual RE 1.815
Subgroup RE 3.215
Residuals 7.016 7.259

Mean Quality 26.407 26.407

Obs. 1080 1080
R2 0.720 0.720

Note. Column (1) reports estimates (robust standard errors clustered at
the rematching group in parentheses) on a fixed-effect panel regression.
FEs are at the individual level. Column (2) reports estimates (clustered
standard errors in parentheses) from two-way linear random effects mod-
els accounting for both potential individual dependency over repetitions
and dependency within rematching group. All REs standard errors have
been reported, as well as the standard error of the residuals. In both
regressions, the dependent variable is the quality chosen by suppliers in
the SRA treatment. The mean dependent variable has been reported.
Significance levels are denoted as follows: ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗

p < 0.01.
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