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Abstract

The aim of this thesis concerns the mathematical and numerical study of
the cardiovascular system. This work covers the three related main branches
of study, dealing with artery modeling, valves modeling and heart modeling.
The work is thus subdivided into three parts, each one dealing with a specific
branch. In each part this work starts by a specific known in literature pro-
blem and suggests original improvements aimed at obtaining a more accurate
solution and/or a cheaper computational cost.

In the first part a new one dimensional model for the compliant vessels is
proposed, capable of reproducing also the effects related to the fluid-structure
interaction which are loosed by the classical models present in literature.
In particular it is show that with a cheaper modification it is possible to
reproduce also in a one dimensional model the so called added mass effect,
an effect related to the multidimensionality of the flow field as concerns the
flows into compliant pipes. In the same parts an analytical solution for the
unsteady motion in an undefined rigid pipe is proposed, taking into account of
the transitory effects. As far as the pulsating flow is concerned, the reference
solution classically adopted in literature is represented by the Womersley one.
Even though accurate, this latter allows the only study of the motion when
the flow is fully developed; conversely it is not capable of reproducing what
happens, for example, immediately after a sudden pressure drop. In this
work a new solution capable of reproducing also the motion when not fully
developed is proposed. As far as applications is concerned, two particular
cases are studied: the starting of an extra-corporeal device (fluid initially at
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Abstract

rest) and a double variation of pressure (non-homogeneous initial conditions),
consisting of a sudden drop followed by a sudden raise (i. e., this is what
happens during a fainting).

In the second part a stability estimate concerning the immersed finite ele-
ments method is reported. Up to now, in literature the structural description
is performed through linear piecewise continuous polynomial; in this work a
new estimation is performed for a structural description performed by piece-
wise continuous polynomial of an arbitrary order, clearly comprehensive of
the linear case. Moreover, for the implicit case only, it is demonstrated that
a stability limit from below exists for the time step size; even though not
determinable. Numerical examples will enforce the results obtained. A com-
parison between the ALE and the IFEM schemes is also performed for the
simulation of an immersed structure. The results show that whenever the
ALE computational cost increases proportionally to the structure displace-
ment (as a consequence of the fluid mesh distortion), the IFEM formulation
does not depend on structure displacement.

The third part deals with the heart electro-mechanical coupling. The
heart electrical activity is typically reproduced through the data obtained by
the electro-cardiogram, a non-invasive medical device furnishing the graphi-
cal representation in time of the extracellular potential differences between
different body locations. Up to now the study of the heart activity was per-
formed by treating independently the electro-physiology and the mechanics,
i.e. without considering a feedback between them. In this work the solution
is determined by considering the electro-mechanical feedback, arising a non-
linear fully coupled problem, being both solutions (electro physiology and
mechanics) depending on each other. As a results a changing in the heart
conductivity is present, affecting the electro-cardiogram graph in some ter-
minations. Moreover different distributions between the problem solved with
feedback and the one solved without for both the trans-membrane and the
extracellular potentials are present.
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Riassunto

Lo scopo di questa tesi riguarda lo studio di matematico e numerico del sis-
tema cardiovascolare. Questo lavoro comprende i tre rami principali correlati
allo studio del sistema cardiovascolare, riguardanti la modellazione delle ar-
terie, la modellazione valvole cardiache e la modellazione dell’elettromeccanica
cardiaca. Il lavoro è suddiviso in tre parti, ognuna delle quali tratta un ramo
specifico. In ogni parte questo lavoro il punto di partenza è rappresentato
da un problema specifico e noto in letteratura; vengono quindi suggerite
soluzioni originali finalizzate ad ottenere una soluzione più accurata e / o
con un costo computazionale più conveniente.

Nella prima parte viene proposto un nuovo modello monodimensionale
per le arterie, in grado di riprodurre anche gli effetti legati all’interazione
fluido-struttura, non presenti nei modelli classici presenti in letteratura. In
particolare, si dimostra che con una modifica molto economica in termini
computazionali è possibile riprodurre anche in un modello unidimensionale il
cosiddetto effetto massa aggiunta, un effetto legato alla multidimensionalità
del campo di moto quando si ha a che fare con condotti deformabili. Viene
inoltre proposta una soluzione analitica per il moto a transitorio del flusso
in un condotto rigido di lunghezza indefinita. Per quanto riguarda i flussi a
regime periodico, la soluzione classica di riferimento adottata in letteratura
è rappresentata dal flusso alla Womersley. Anche se precisa, quest’ultima
consente solamente lo studio del moto quando il flusso è completamente
sviluppato; al contrario, non è in grado di riprodurre ciò che accade, per
esempio, subito dopo una variazione improvvisa di pressione. In questa tesi
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viene proposta una soluzione in grado di riprodurre anche il moto quando
non è pienamente sviluppato. Dal punto di vista applicativo vengono studiati
due casi particolari: l’avvio di un dispositivo di circolazione extra-corporea
(fluido inizialmente a riposo) e una doppia variazione di pressione (condizioni
iniziali non omogenee), costituita da un calo improvviso di pressione seguito
da un ristabilirsi della pressione iniziale, come accade nei casi di svenimento.

Nella seconda parte si determina una stima della stabilità relativamente
al metodo degli elementi finiti immersi. Fino ad oggi, in letteratura la de-
scrizione strutturale viene eseguita tramite polinomi continui lineari a tratti;
in questo lavoro una nuova stima viene effettuata quando la struttura sia
descritta da polinomi continui a tratti di ordine arbitrario, stima che chiara-
mente comprende come caso particolare quello dei polinomi lineari. Inol-
tre per il solo caso implicito, si dimostra che esiste anche un limite infe-
riore, anche se non determinabile esplicitamente, per l’incremento temporale,
per avere stabilità dello schema numerico. Degli esempi numerici mostrano
l’attendibilità dei risultati ottenuti. Si presenta inoltre un confronto fra i
metodi ALE e IFEM per il caso della simulazione di una struttura immersa,
come potrebbe essere una valvola cardiaca. I risultati hanno evidenziato che
lo schema ALE presenta un costo di calcolo (in termini di sotto-iterazioni
necessarie per arrivare a convergenza) proporzionale allo spostamento della
struttura (come conseguenza della distorsione della griglia su cui viene risolto
il moto del fluido), mentre la formulazione IFEM ne rimane indipendente.

La terza parte si occupa dell’accoppiamento elettromeccanico dell’attività
cardiaca. L’attività elettrica cardiaca viene in genere analizzata attraverso
i dati ottenuti dalla elettro-cardiogramma, un dispositivo medico non in-
vasivo capace di rappresentare graficamente l’andamento nel tempo delle
differenze di potenziale extracellulare sussistente tra differenti posizioni del
corpo. Fino ad oggi lo studio della attività cardiaca è stato effettuato trat-
tando in maniera indipendente l’elettro-fisiologia e la meccanica, cioè senza
considerare l’esistenza di un feedback tra di loro. In questo lavoro la soluzione
viene determinata considerando il feedback elettro-meccanico, attraverso la
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soluzione di un problema non lineare completamente accoppiato, essendo
entrambe le soluzioni (elettro fisiologia e meccanica) reciprocamente dipen-
denti. A causa del cambiamento del tensore conduttività, dovuto alla defor-
mazione cardiaca, in alcune terminazioni dell’elettro-cardiogramma si riscon-
trano risultati differenti dal caso in cui si supponga il cuore fisso nello spazio.
Inoltre, si sono riscontrate distribuzioni differenti tra il problema risolto con
feedback e quello risolto senza feedback, sia per quanto concerne il potenziale
trans-membranale, sia per quanto concerne il potenziale extracellulare.
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Introduction

The mathematical study of the cardiovascular system represents a significant
tool to study the heart and circulation pathologies, allowing the knowledge of
phenomena not detectable by the classical clinical devices. As a consequence,
find models recasting as accurate as possible the behavior of this complex
system is a very challenging task. The whole cardiovascular system can be
roughly described as a network of compliant pipes of different dimensions
alimented by a volumetric pump driven by an electrical stimulus. Being this
complex system composed by different spatial scale, its whole detailed de-
scription is not an affordable task; typically, a detailed study is performed on
only a part of interest, while the rest of the system is approximated through
spatial reduced order methods (cf. [50], [28]), representing a boundary con-
dition for the part under study. Moreover, the interactions between different
physical phenomena (as, for example, the heart electrical propagation and
the heart mechanical response or the fluid-structure interactions) add com-
plexity to the problem.

This work is aimed in investigating deeply some aspects regarding the
mathematical and numerical modeling of the cardiovascular system, covering
its free typical branches of study:

• The unsteady flows in pipes

• The fluid-Structure Interaction problems

• The heart Electro-Mechanics

Part I is devoted to the study of the unsteady flows in pipes and aimed in:
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• finding a more accurate description of the fluid-structure interaction
problems in a compliant pipe when using a monodimensional model

• studying the effects related to the transitory effects of an unsteady flow
in a rigid pipe

From a practical point of view, the results of this part could be also used
to determine suitable boundary conditions for problems described in detail,
thus describing also the effects typically neglected by the standard simplified
models.

Chapter 1 deals with the so called added mass effect, an effects depen-
ding on the fluid-structure interaction which acts as a virtual mass on the
structure. For example, considering the trivial case of a spring mass dumper
system which moves into an ideal fluid at rest, the equation of motion takes
the following form:

mẌ + cẊ + kX = F (t)−maẌ

where X is the body displacement, m, c, k are the mass of the body, the
dump coefficient and the elastic constant of the spring, F (t) is the external
force which act on the body and ma the resulting added mass. The new term
maẌ is essentially due to the fact that the body, in it’s motion, “pushes” the
fluid. Synthesizing, the main conditions which determine the presence of the
added mass effect could be summarized as follows:

• fluid-structure interaction

• non-orthogonality of fluid and structure displacement1

• unsteady motion

Although this effect is always present when one deals with a fluid-structure
interaction problem, it is more evident when the structure and the fluid
densities are comparable, as in the arterial tissue. This is an important

1This aspect will be clarified after
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haemodynamic problem: a correct treatment of added mass affects both the
quality of a solution (from a modeling point of view) and the efficiency in
finding it (from a numerical point of view). Owing to the nature of flow in a
compliant pipe, it is important to observe that a characteristic which gives
rise to an added mass effect is the non-uni-dimensionality of the motion:
indeed, if this is not the case, this effect disappears, being the fluid and the
structure motion orthogonal.

In this work a new one dimensional model is proposed, able to reproduce
the added mass effect, even though other effects related to the fluid-structure
interaction could be reproduced by the same procedure. Indeed, up to now
the one dimensional models present in the literature are not able to reproduce
all the effects related to a fluid-structure interaction, because in the procedure
adopted to obtain them the multidimensionality of the motion is completely
loosed. The key idea in reproducing all the fluid-structure interaction effects
consists in recovering the radial pressure variation and the radial velocity,
even though these are smaller with respect to the corresponding radial ones
and treating them as properties related to the structure. This hypothesis
yields the following system of equations:

∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+

1

ρ

(
A
∂P

∂z
+ (P − pw)

∂A

∂z

)
+Kr

Q

A
= 0

pw = β

(√
A−
√
A0√

π

)

where a new term appears, related to the pressure radial distribution; clearly
one needs to introduce a suitable model determining the mean pressure P .
Even though other procedures could be affordable, the one here adopted
is based on the integration of a simplified form of the radial momentum
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equation:

P − pw = − ρ
A

(
1

4π

(
∂A

∂t

)2

− 2π
∂

∂t

∫ R

0

(
r

∫ R

r

vr(r
′)dr′

)
dr

+ ν

(
A
∂vr
∂r

∣∣∣∣
r=R

− 1

2

∂A

∂t

))
= − ρ

A

(
L′(A,Q)

)
the radial velocity profile is determined by experimental theory as a function
of the radius and the wall velocity. Note that the new model represents a
general case the classical one: indeed, if one neglects the radial variations a
posteriori, then P = pw and so the classical system follows. Moreover, by
considering the linearized form of L′(A,Q), it is possible to consider the new
system of equation as the classical one, where the structure is now described
by the relation:

P = β

√
A−
√
A0√

π
+M∂2A

∂t2
− γ ∂A

∂t

resembling to the one introduced in [27] pag. 18, except for the fact that
now the coefficients of the structural model depends on the fluid-structure
interaction. In particular, this latter highlights that the fluid acts as a virtual
inertia on the structure, through the coefficientM. As depicted in figure 1,
the added mass effect acts on the system as an additional inertia on the
arterial wall.

In chapter 2 the effects related to the transitory of an unsteady flow are
analyzed, i.e. the effects related to the initial conditions, for example when
a sudden variation of pressure occurs. Typically, for the pulsating flow in a
rigid pipe the classical analytical solution is represented by the Womersley
one. Even though good for a developed motion, this solution is inadequate
to reproduce the phenomena occurring until the motion is fully developed.

In this chapter a new general solution is proposed, taking into account of
the phenomena depending on the initial condition: with this new approach
it is now possible to study what happens during the assessment to the new
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Figure 1: Comparison between area value vs time with (red line) and without

(blue line) added mass effect, T = 1 s

developed solution; moreover, it is possible to estimate the time needed to
reach the new state of equilibrium. For a flow in an undefined rigid pipe,
driven by a time-dependent pressure gradient, the system of the Navier-
Stokes equations reduces to the only radial momentum:

∂uz
∂t
− ν

(
∂2uz
∂r2

+
1

r

∂uz
∂r

)
= −1

ρ

∂p

∂z

The general solution of which takes the form:

uz =
∞∑
j=0

Eje
−
(
γj
R0

)2
νt
J0 (γjy)

+
AR2

0

2µ

1

i3α2

[(
1−

J0

(
αi3/2y

)
J0 (αi3/2)

)
eiΩt −

(
1−

J0

(
iαi3/2y

)
J0 (iαi3/2)

)
e−iΩt

]

α = R0

√
Ω

ν

y =
r

R0

the series of Bessel function representing the solution of the associated ho-
mogeneous axial momentum equation. Being this latter independent on the
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forcing therm (i.e. the right hand side), it is clear that the characteristic time
scale will be independent on the pressure gradient temporal law; conversely,
the effects related to the particular solution will influence the coefficient Ej of
the series. In this chapter it is also demonstrated that the series totally con-
verges on R, so it is possible integrating the solution in the radial direction,
obtaining also the flux temporal law . In the same chapter two applications
are also reported:

• a flow initially at rest, representing the starting phase for an extra-
corporeal circulation device

• a sudden decrease of pressure, followed by a raise to the previous value
representing the flow during a fainting (cf figure 2).

In the latter case, the pressure gradient is obtained from a Fourier transfor-
mation of a set of experimental data sampled from a canine femoral artery,
as described in [46].

Part II deals with the fluid-structure interaction problems when the struc-
ture is immersed in the fluid, as for the heart valves case. A fluid-structure
interaction problem consists in determining the motion of two different con-
tinua, interacting each other along a portion of the common boundary. Typ-
ically the response of each continuum to external loads is not the same: flu-
ids, for example, are governed by viscous-dissipative effects, while the solid
response is mainly related to elastic-conservative effects; even though visco-
elastic phenomena could be still active. Often the constitutive laws of each
continuum are better described using different natural frames of reference.
For example, the Eulerian framework could be used for the fluid portion while
solid deformations are better described in Lagrangian coordinates. The re-
sulting model yields a coupled system of equation; each must satisfy two
conditions at the fluid-solid interface:

• fluid and solid must have the same velocity at the interface( no-slip
condition, kinematic coupling);
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Figure 2: Pressure gradient (blue line), flux (black line) and flux transitory (red

line) vs time. Pressure gradient is represented in mmHg/cm, while flux in ml/s.

• fluid and solid normal stresses must be mutually balanced at the inter-
face (the action-reaction principle, dynamic coupling);

Clearly, being the displacement of the solid unknown, the fluid-structure
interface is also unknown and is the shape of the fluid domain: this generates
a non-linear problem that generates internal iterations when the problem is
solved numerically. A second major difficulty is related to the remeshing the
entire domain whenever deformations are large and the element aspect ratios
become unacceptable. This can occurs at every internal iteration, leading to
unsurmountable computational costs. In order to minimize these deficiency
two approaches are the more viable and used:

• the Arbitrary Lagrangian Eulerian (ALE) [22, 23, 35]

• and the Immersed Finite Element (IFEM) / Immersed Boundary (IB)
Method [44, 53]
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A comparative description of the two approaches can be roughly summarized
as follows. The former adapts the fluid domain to the solid, by rewriting the
equation of the problem in a reference frame that moves by an arbitrary
displacement. The latter models the solid as a source term for the fluid
equations (c.f. fig. 3). A more detailed description of the ALE method

Figure 3: Comparison between ALE (right) and IFEM (left) methods with large

structural displacement

could be found in chapter 3, while chapter 4 treats the IFEM method. In
chapter 4 a stability estimates of the latter method is also reported. Stability
analyses of the Immersed Boundary method are developed in [8, 9, 10], with
extensions to the Immersed Finite Element Method described in [32]. In
these works finite element spatial discretization is used in conjunction with
first order finite differences in time. Two approaches are presented, both
using the Backward Euler (BE) scheme to implicitly solve the fluid problem.
The embedded body position is advanced in time by a Forward Euler (FE)
scheme (first order extrapolation of previous data), in which case the coupled
method is termed as semi-implicit (BE/FE). Otherwise, the embedded body
evolution is numerically described by an implicit scheme (Backward Euler),
leading to a fully implicit (BE/BE) approach. The key concept in order to
obtain stability of the numerical scheme is to require that the energy of the
discretized system does not increase at each time step. Time discretization
by means of finite differences introduces a spurious energy term related to the
truncation error. If this term is dissipative, the scheme is considered stable.
Conversely if this spurious energy is larger than the energy dissipated by the

8
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fluid viscosity, the scheme becomes unstable. A fully implicit discretization is
always stable, while the more efficient semi-implicit approach suffers a CFL-
like stability restriction on time step size. Second order spatial discretization
is often used for the fluid, in conjunction with first order discretization of
the displacements of the embedded boundaries/bodies obtained by means of
affine spaces. The stability analysis depends on this last assumption.

In this chapter we propose the use of higher order approximations for
both the fluid and the Lagrangian finite element spaces (in particular, a P2

Lagrangian space) and we prove the stability of this higher order approach,
developing a CFL-like stability condition for the semi-implicit approach, of
the form:

∆t ≤ hd−1
x

hm−2
s

2µ

kmaxLnCn
e

where:
Ln = max

Tk∈Sh

{
max

sj ,si∈Tk and adjacent
|Xn

h (sj)−Xn
h (si)|

}
and Cn

e is the maximum number of mapped Lagrangian elements that touch
the same Eulerian element at time n∆t. As it is possible to see by figure 4,
when the CFL condition is not satisfied, the total energy of the system grows
indefinitely in time.

Moreover, we show for the implicit scheme only that the difference be-
tween fluid and structure densities has an impact on the stability. After
introducing some simplifications, we demonstrate only that a limitation on
the minimum of the adopted time step exists, being a quantitative determi-
nation difficult to achieve. The stability estimate is performed by considering
the temporal evolution of the fluid kinetic energy alone; the estimates yields:

∆t ≥ −C∆ρ

µ

hms
hdf

[
NTria× (NBnodeT )2]

∆ρ = ρs − ρf

clearly, when ∆ρ ≥ 0 stability is always assured. Figure 5 summarizes the
results for the case ρs = 0. In chapter 5 a comparison between ALE and

9
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Figure 4: Total Energy temporal evolution, particular

Figure 5: Fluid kinetic energy vs time
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IFEM is performed, when dealing with immersed structure. As depicted in
figure 6, when deformations becomes considerable, the ALE method compu-
tational cost, evaluated as a number of fixed point iterations needed for chive
convergence, increases; conversely, the number of fixed point sub-iterations
needed to achieve convergence for the ALE method is not affected by the
deformation modulus

Figure 6: Number of sub-iteration for reach convergence vs time for ALE (blue

line) and IFEM (magenta line)

Part III deals with heart electro-mechanics. Electro-mechanical problems
have an important role in medicine, being the experimental investigation by
medical devices leaking of informations. Conversely computer investigation
furnishes also the informations which are not detectable by medical devices;
as a consequence, computer investigation represents a significant tool in the
study of heart disease, when addressed to reproduce as accurate as possible
the physiology, i.e. to reproduce the same results coming from the experi-
mental investigation.

As described in chapter 6, by the electrical point of view the heart could be
described as a anisotropic conductor, being the electrical conduction greater
along fiber directions, i.e. the direction of the sarcomeres, responsible of
the heart contraction. Moreover, a capacity effect is also present. By the
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mechanical point of view, it could be described as an hyper-visco-elastic
continuum, endowed of an active stiffness, driven by the electrical stimulus.

The heart electrical activity is typically reproduced through the data ob-
tained by the electro-cardiogram, a non-invasive medical device furnishing
the graphical representation in time of the extracellular potential differences
between different body locations. Up to now the study of the heart activity
has treated the two problems (mechanic and electro-physiology) indepen-
dently, governing the active stiffness by a trans-membrane potential obtained
on a fixed heart. Clearly, an electromechanical feed-back allows to obtain a
solution more similar to the realistic case. The problem which arises is non-
linear fully coupled, being both solutions (electro physiology and mechanics)
depending on each other. By the numerical point of view, this corresponds
to implementing an efficient coupling algorithm, capable of managing in an
efficient manner the interaction between the two sub-problems. The heart
movement has an impact on the electrocardiogram graph, being the fiber
direction changed when the heart deforms. In chapter 8 an analysis on the
influence of the electro-mechanical coupling on the ECG is performed. The
major effect related to the electro-mechanical feed-back deals with the T
wave. As depicted in fig 7 on aVF termination the wave is reversed. More-
over, in II and III the amplitude changes, while in V2 presents a larger
amplitude and returns to the reference value without oscillations. The same
behavior still when changing the heart frequency (as depicted in fig 8). The
QRS wave is significantly modified in III, aVL, aVF and V3 terminations.
In all the other terminations there are no significant modifications.

The changing of the conductivity tensor yields a different distribution for
both the trans-membrane and the extracellular potentials on the heart, as
depicted in 9. By the same figure, one could observe that the peak concerning
the QRS wave is delayed in time when the electromechanical feedback is
considered.
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Figure 7: ECG with (black line) and without (blue line) electromechanical cou-

pling, for a period T = 1s

Figure 8: ECG with (black line) and without (blue line) electromechanical cou-

pling, for a period T = 0.8s
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Figure 9: Extracellular potential for t = 0.04s and t = 0.05s, with (right) and

without (left) electromechanical feedback, Zygote geometry and a heart period of

T = 1.0s. The white dot (where present) indicates the point of maximum trans-

membrane potential, for each time These two time values correspond to the R

peak
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Part I

Unsteady flows in pipes
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Chapter 1

The added mass effect

1.1 Introduction

Added mass is an effect which derives from the fluid-structure interaction
and determines, roughly speaking, a changement of the dynamic behavior of
the structure, due to a virtual increment of its mass. Although this effect
is always present when one deals with a fluid-structure interaction problem,
it is more evident when the structure and the fluid densities are compara-
ble. Synthesizing, the main conditions which determine this effect could be
summarized as follows:

• fluid-structure interaction

• non-orthogonality of fluid and structure displacement1

• unsteady motion

Let us consider the simple case of a body attached to a spring-dumper system
which moves into an ideal fluid at rest and with a density comparable to the
one of the body; the fact that the body displaces a portion of fluid around
it is traduced in an additional force. The equation of motion of the body

1This aspect will be clarified after
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1. The added mass effect

becomes:

mẌ + cẊ + kX = F (t)−maẌ

where X is the body displacement, m, c, k are the mass of the body, the
dump coefficient and the elastic constant of the spring, F (t) is the external
force which act on the body and ma the resulting added mass. The new term
maẌ is essentially due to the fact that the body, in it’s motion, “pushes” the
fluid.

Typical examples of the added mass effect arise, when considering the
problem of the interaction of a sea current with an off-shore structure, or the
interaction of the water and a dam during an earthquake.

In the present thesis, I will to analyze the problem of the motion a par-
ticular fluid (the blood) in a particular compliant pipe (a vessel). This is
an important haemodynamic problem: a correct treatment of added mass
affects both the quality of a solution (from a modeling point of view) and the
efficiency in finding it (from a numerical point of view). Owing to the nature
of flow in a compliant pipe, it is important to observe that a characteristic
which gives rise to an added mass effect is the non-uni-dimensionality of the
motion: indeed, if this is not the case, this effect disappears, being the fluid
and the structure motion orthogonal. As it is depicted in figure 1.1, the high
frequency oscillations on the pressure history, which are present in the 2D
axisymmetric model,disappear in the one dimensional case.

In this chapter a new one dimensional model is proposed, able to repro-
duce the added mass effect, even though other effects related to the fluid-
structure interaction could be reproduced by the same procedure. Indeed,
up to now the one dimensional model present in the literature are not able
to reproduce all the effects related to a fluid-structure interaction, because
in the procedure adopted to obtain them the multidimensionality of the mo-
tion is completely loosed. The key idea in reproducing all the fluid-structure
interaction effects consists in recovering the radial pressure variation and the
radial velocity, even though these are smaller with respect to the correspon-
ding radial ones and treating them as properties related to the structure.

18



1. The added mass effect

Figure 1.1: Comparison between 1D and 2D models. The pressure is plotted vs

time

The procedure here adopted is based on the integration of a simplified form
of the radial momentum equation, even though other procedures could be
affordable.

1.2 Mathematical foundations of added mass

effect in a compliant pipe

In this section, we recall the formulation described in [15], in order to explain
from the mathematical point of view the added mass effect. Introducing a
simplified model for both the fluid and the structure, it can be demonstrated
that added mass is nothing else that a trace operator which derives from the
continuity of the normal speed at the fluid-structure interface. Even though
the model adopted is quite simple, the result is in a good agreement by a
more complex fluid model. Equations similar to those of the simplified could
be obtained by the incompressibility part of the solution which becomes by
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1. The added mass effect

the Navier-Stokes equations after the application of the Ladizeskaya decom-
position theorem. The notation of the following description is depicted if fig.
1.2

Let us consider the domain of Fig. 1.3, where Γ1
f and Γ2

f represent, re-
spectively, the inlet and outlet fluid boundaries, Γ3

f represent the symmetry
axis and Σ = Ωs represent the interface boundary with the structure. This
latter one has dimension d − 1 with d the space dimension of the fluid do-
main. Let us assume a structural linear model for a cylindrical pipe of small
thickness, under the assumption of membrane deformations. The reference
configuration is a cylindrical surface of radius R0 that is supposed to move
only radially; moreover, let us consider the radial displacement with respect
to a reference configuration R0, namely:

η(z, t) = R(z, t)−R0(z)

being z the axial coordinate. Denoting by ρs the structural density, hs the
structural thickness, E the Young modulus, σ the Poisson coefficient, f the
external forcing term and with β the following quantity,

β =
Ehs

(1− σ2)R2
0

for all time t ∈ [0, T ] the momentum equation reads:

ρshs
∂2η

∂t2
+ βη = f in [0, T ]× Ωs (1.1)

(1.2)

Figure 1.2: Notations
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1. The added mass effect

Figure 1.3: The computational domain

and is complemented by initial conditions:

η(z, 0) = η0(z) in Ωs (1.3)
∂η

∂t
(z, 0) = η̇0(z) in Ωs (1.4)

As far as the fluid is concerned, let us consider a simple ideal flow model in
the pressure-velocity unknowns, which neglecting convective inertia yields:

ρf
∂u
∂t

+∇p = 0 in [0, T ]× Ωf

∇ · u = 0 in [0, T ]× Ωf

p = pin(t) on [0, T ]× Γ1
f

p = pout(t) on [0, T ]× Γ2
f

u · n = 0 on [0, T ]× Γ3
f

u · n = w on [0, T ]× Σ

(1.5)

where ρf denotes the fluid density and pin, pout and w are given functions.
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1. The added mass effect

The problem (1.5) could be easily rewritten as follows:2

−∆p = 0 in [0, T ]× Ωf (1.6)

p = pin(t) on [0, T ]× Γ1
f (1.7)

p = pout(t) on [0, T ]× Γ2
f (1.8)

∂p

∂n
= 0 on [0, T ]× Γ3

f (1.9)

∂p

∂n
= −ρf

∂w

∂t
on [0, T ]× Σ (1.10)

The fluid-structure coupling is then obtained by imposing the continuity of
normal stress and normal velocity at the interface Σ:

u · n = w =
∂η

∂t
(1.11)

f = p|Σ (1.12)

Condition (1.10) on Σ then becomes:

∂p

∂n
= −ρf

∂2η

∂t2
(1.13)

We next consider the following functional spaces:

V = L2(Ωs) Q = {q ∈ H1(Ωf )| q|Γ1
f∪Γ2

f
= 0}

where L2 is the space of functions of compact support square integrable andQ
is the space of the functions of compact support square integrable with their
first derivatives and vanishing on the boundaries where a Dirichlet boundary
condition is imposed. We also define the following inner product and bilinear
forms:

(f, g) =

∫
Ω

fgdω

af (p, q) =

∫
Ωf

∇p · ∇qdωf ∀p, q ∈ H1(Ωf )

as(η, ξ) =

∫
Ωs

βηξdωs ∀η, ξ ∈ L2(Ωs)

2the minus which appears in the laplacian is only for esthetic’s reasons
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1. The added mass effect

Moreover, we make the following regularity assumptions for initial and boun-
dary data:

pin,out ∈ C(0,∞, H1/2(Γ1
f ∪ Γ2

f )) η0 ∈ V
∂η0

∂t
∈ V

The variational formulation of the problem thus becomes:

af (p, q) = −ρf
∫

Σ
∂2η
∂t2
q(

ρshs
∂2η
∂t2
, ξ
)

+ aS(η, ξ) = (p|Σ , ξ)
(1.14)

where p|Σ represents the restriction of p on Σ. Being the problem linear,
we can apply the superposition of effects. In particular we decompose the
pressure p in two parts: the first depends on all the boundary conditions
except those on Σ (i.e., it vanishes on Σ); the second depends only on the
boundary condition on Σ (i.e., it vanishes on Γ1

f ∪Γ2
f ). The first contribution

is the solution of the following problem:3

−∆p∗ = ∆Efp in Ωf

p∗ = 0 on Γ1
f ∪ Γ2

f

∂p∗

∂n
= −∂Efp

∂n
on Γ3

f

∂p∗

∂n
= −∂Efp

∂n
on Σ

(1.15)

The second contribution, depending on the boundary condition on Σ is de-
termined by considering the operator R ∈ Q which, applied to the value w
of the boundary condition on Σ, gives the pressure on the whole domain Ωf ;
this latter is defined by solving the following problem:

−∆Rw = 0 in Ωf

Rw = 0 on Γ1
f ∪ Γ2

f

∂Rw
∂n

= 0 on Γ3
f

∂Rw
∂n

= w on Σ

(1.16)

3because Q vanishes at the boundary, the solution p∗ of the variational form should van-
ish too; in order to re-introduce the Dirichlet boundary conditions an arbitrary continuous
extension operator Efp is considered, which assumes the values pin,out on Γ1

f ∪ Γ2
f
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1. The added mass effect

Moreover, let us define the following trace operator:

MA : H−1/2(Σ)→ H1/2(Σ)

MAw = Rw|Σ

which gives the value of the pressure at the boundary Σ obtained by a Neu-
mann boundary condition on Σ.4 Summarizing, the final pressure on the
whole domain is given by:

p = p∗ + EFp− ρfR
∂2η

∂t2

while it’s restriction on Σ:

p|Σ = p∗|Σ + EFp|Σ − ρfMA
∂2η

∂t2
= Pext − ρfMA

∂2η

∂t2

By relation (1.12) it is possible to re-write eq. (1.1) as follows:

(ρshsI + ρfMA)
∂2η

∂t2
+ βη = pext (1.17)

where I is the identity operator.
It is possible to realize, with this simplified description, that the fluid

acceleration influences the structure dynamic virtually increasing its mass
(hence the term “added mass”). The operatorMA is difficult to determine,
except when the domain is simple, as in our case. Recalling the results in [15],
the spectrum of the added mass operator is given by the following expression:

MAg =
∑
k≥1

gk
L

kπ tanh
(
kπR
L

) sin

(
kπx

L

)
g =

∑
k≥1

gk sin

(
kπx

L

)
4This passage is crucial: by solving system (1.16) it is known the pressure on the whole

domain, but the boundary data on Σ consists in the normal derivative of the pressure.
What we need to know in order to apply the force exerted by the fluid on the structure is
the value of the pressure on Σ. The operatorMAw gives this value.

4In this article a more complex structure model was considered, with an additional
homogeneous boundary condition on structure displacement.
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1. The added mass effect

In particular, it is possible to demonstrate that the largest eigenvalue:

µmax =
L

π tanh πR
L

It is strictly related to geometrical properties, such as the ratio R/L charac-
terizing the fluid domain.

1.3 The 1D problem: recovery of the added

mass effect

In this section I introduce the mathematical 1D model for the compliant
pipe in the flux-area (Q,A) unknowns. I follow the same procedure adopted
in [59], except for the fact that I replace some hypotheses with other less
restrictive on the radial velocity and on the pressure radial derivative. The
result will be a system of three equation in four unknowns which is quite
similar to the classical one. Moreover, I will show that this system could
be reduced to the classical one and represents a sort of generalization. As
far as the closure of the problem is concerned, I will introduce some model
based on the experimental evidence which will give a well posed problem.
It is however worthwhile to point out that the procedures here adopted for
closing the problem is not the unique possible. The new term which appears
in the momentum equation reintroduces the added mass effect, because takes
into account of the variation in the radial direction of the pressure, variation
which is related to the radial velocity and so to the multidimensionality of
the problem.

Let us consider an axisymmetric incompressible flow field. The governing
equations, written in cylindric coordinates, read:

∇ · v = 0 (1.18)

∂p

∂z
= −ρ

(
∂vz
∂t

+∇ · (vzv)

)
+ µ∆vz (1.19)

∂p

∂r
= −ρ

(
∂vr
∂t

+∇ · (vrv)

)
+ µ(∆vr −

vr
r2

) (1.20)
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1. The added mass effect

where:

∇ · (αu) =
1

r

∂(rαur)

∂r
+
∂αuz
∂z

∆α = ∇ · (∇α) = ∇ ·
(
∂α

∂r
,
∂α

∂z

)
Let us consider a structure described by Koiter algebraic model [38, 39],
which relates stress and strain through an algebraic law with a coefficient β
and allows only radial displacement. Denoting by η(z, t) = R(z, t) − R0(z)

the radial displacement with respect to the undeformed configuration R0, in
order to have a coupled system, the following conditions should be imposed
at fluid-structure interface:

p = βη

vr = η̇

vz = 0

ensuring the continuity of the normal stress (dynamic coupling) and of the
velocity (kinematic coupling) at the fluid-structure interface. Summarizing,
the hypotheses on which the model is based are:

• The flux is axisymmetric

• Only radial displacement is allowed

• Body forces are absent

• The axial component of the velocity dominates

• Pressure variations along the radial direction are sufficiently small

Remark The last two hypotheses do not imply that radial velocity and
radial pressure variation are negligible, but that they are smaller than axial
ones.

In order to obtain the 1D model by integrating the fluid equation, it is useful
to recall (without proof) the lemma presented in [59]:

26



1. The added mass effect

Figure 1.4: Control volume V

Lemma 1 Let f : Ωt × I → R be an axisymmetric function, i.e. ∂f
∂θ

= 0

Let us indicate by fw the value of f on the wall boundary and by f its mean
value on each axial section, defined by:

f =
1

A

∫
S

fdσ

We have the following relations:

∂Af

∂t
= A

∂f

∂t
+ 2πRη̇fw

∂A

∂t
= 2πRη̇

Moreover, let us introduce the following notations:

n =
1

R0g

(
Rer −

∂R

∂θ
eθ −R

∂R

∂z
ez

)
(1.21)

g =
R

R0

√
1 +

(
1

R

∂R

∂θ

)2

+

(
∂R

∂z

)2

(1.22)

dσ = gR0dθdz = gdσ0 (1.23)

In order to obtain the 1D problem, let us consider the cylindrical control
domain of fig. 1.4 and integrate eqs (1.18), (1.19), using relations (1.21),
(1.22) and (1.23) for integrals on Γw. From the continuity equation one

27



1. The added mass effect

finds:

0 =

∫
V

∇ · vdV =

∫
S+

uzdσ −
∫
S−

uzdσ +

∫
Γw

u · ndσ

=

(
∂Q

∂z
+ 2πR(z∗)η̇(z∗)

)
dz + o(dz)

=

(
∂Q

∂z
+
∂A

∂t

)
dz + o(dz)

where Q is the flux evaluated on a section of area A. The same procedure
can be applied to the axial momentum. In particular the term related to the
pressure, becomes:∫

V

∂p

∂z
dV =

∫
V

(∇p) · ezdV =

∫
V

(∇ · (pI)) · ezdV

=

∫
∂V

pn · ezdσ =

∫
S+

pdσ −
∫
S−

pdσ +

∫
Γw

pn · ez

=
∂AP

∂z
dz + o(dz)− 2π

∫ z∗+ dz
2

z∗− dz
2

pw(z)

1
2
∂R2

∂z︷ ︸︸ ︷
R(z)

∂R

∂z
(z)dz

=

(
A
∂P

∂z
+ (P − pw)

∂A

∂z

)
dz + o(dz)

where P represents the cross-sectionally averaged pressure, while pw is the
pressure value on the boundary pipe. The 1D (not yet closed) system thus
becomes:

∂A

∂t
+
∂Q

∂z
= 0 (1.24)

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+

1

ρ

(
A
∂P

∂z
+ (P − pw)

∂A

∂z

)
+Kr

Q

A
= 0 (1.25)

pw = β

(√
A−
√
A0√

π

)
(1.26)

where Kr is a coefficient which derives from the viscosity term and α is the
Coriolis coefficient, defined as:

α =

∫
S
u2
zdσ

Au2
z

uz =
1

A

∫
S

uzdσ
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Respect to the “classical” 1D system of equations which is used to study
the flux in the compliant pipes, a new term appears in eq. (1.25) (the one
highlighted by the box): this term take into account the effects of flow va-
riations along the radial direction. It is easy to demonstrate that this new
set of equations is a generalization of the classical one. Indeed, if one assume
vr ≈ 0, the radial momentum equation yields:

∂p

∂r
≈ 0

pw = P

P = β

(√
A−
√
A0√

π

)
The problem given by (1.24)-(1.26) is not determined, since it involves three
equation and four unknowns (Q, A, P , pw). In order to close the problem, one
possibility is to suitably integrate the equation of the radial momentum, in
order to find a new independent relation. The problem now translates into the
determination of a radial velocity profile depending on the wall movement.
This can be done by using the experimental evidence. The simplified form
of the radial momentum arises from the fact that only the terms that can be
integrated are retained (i.e. convective terms are neglected, while the viscous
term is assumed to depend only on the radial direction). Even though these
assumptions could be seen as reductive, they are often introduced (see [69]).
For the sake of completeness, another possible choice could be to integrate
directly the pressure given by the relation described in [15], resulting form a
simplified model, and thus close the problem.

1.3.1 The integration of the radial momentum

Let us consider two simplified forms of the radial momentum. The former
(in the following called inertial form) takes into account only local inertia
and reads:

∂p

∂r
= −ρ∂vr

∂t
(1.27)
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while the latter (hereafter called viscous form) takes into account also viscous
terms:

∂p

∂r
= −ρ∂vr

∂t
+ µ

(
∂2vr
∂r2

+
1

r

∂vr
∂r
− vr
r2

)
(1.28)

Integrating (1.28) with respect to r, after some manipulations, one finds:

pw − p(r) = −ρ
(
∂

∂t

∫ R

r

vr(r
′)dr′ − vr|r=R

∂R

∂t
+ vr(r)

∂r

∂t

)
+ µ

∫ R

r

(
∂2vr(r

′)

∂r′2
+

1

r′
∂vr(r

′)

∂r′
− vr(r

′)

r′2

)
dr′

=
ρ

4πA

(
∂A

∂t

)2

− ρ ∂
∂t

∫ R

r

vr(r
′)dr′

+ µ

∫ R

r

(
∂2vr(r

′)

∂r′2
+

1

r′
∂vr(r

′)

∂r′
− vr(r

′)

r′2

)
dr′

Integrating across the section and applying lemma 1 one finds:

P − pw = − ρ
A

(
1

4π

(
∂A

∂t

)2

− 2π
∂

∂t

∫ R

0

(
r

∫ R

r

vr(r
′)dr′

)
dr

+ ν

(
A
∂vr
∂r

∣∣∣∣
r=R

− 1

2

∂A

∂t

))
= − ρ

A

(
L′(A,Q)

)
(1.29)

where L′(A,Q) denotes the operator obtained considering the viscous terms;
in the following, the operator related to the only inertial terms will be indi-
cated with L(A,Q).

Equation (1.25) can then be rewritten as:

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+

1

ρ

(
A
∂pw
∂z
− ρ∂L

′(A,Q)

∂z

)
+Kr

Q

A
= 0

or in conservative form:

∂Q

∂t
+

∂

∂z

(
α
Q2

A
+

β̃

3ρ

A
3
2 − A

3
2
0

A0

− L′(A,Q)

)
+Kr

Q

A
= 0 (1.30)

β̃ =
β√
π
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1. The added mass effect

In both cases the differential equation differs from the classical form, obtained
by neglecting variation in the radial direction, for the presence of the term
constituting L′ (or L).

1.3.2 Determining L’ (and L) by experimental evidence

In order to determine the new operator, some considerations on the velocity
profile should be made. By some deduction and by the experimental evidence,
it is reasonable to approximate the radial velocity as a function of the wall
velocity η̇ in two forms:

• by a similarity profile,5 of the form:

vr =

(
r

R(z, t)

)m
∂η

∂t
, m > 0

• by a Womersley profile law of the form:

vr = <

[
iωD

1− F10(α)

(
r

R
−

2J1

(
αi3/2 r

R

)
αi3/2J0 (αi3/2)

)
exp

(
iω
(
t− z

c

))]
= <

[
v1

( r
R

)
exp

(
iω
(
t− z

c

))]
η = D exp

(
iω
(
t− z

c

))
α = R

√
ω

ν

F10(α) =
2J1

(
αi3/2

)
αi3/2J0 (αi3/2)

where J0, J1 are the Bessel functions of the first kind of first and se-
cond order, i is the complex unit, ν is the kinematic viscosity, c is
a characteristic wave speed depending on the wall physical properties
and α is the so called Womersley number. This approximation involves

5Or a weighted linear composition of similarity profiles:

vr =

n∑
k=1

ak

(
r

R(z, t)

)m
∂η

∂t
, m > 0,

n∑
k=1

ak = 1
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1. The added mass effect

small displacements, such that it is possible to approximate R ≈ R0. A
derivation of the Womersley solution for the radial velocity is described
in appendix A.

Derivating the operator L′ for the first approximation of vr(r) is trivial; one
obtains:

L′(A,Q) =
1

4π

(
1− 2

m+ 3

)(
∂A

∂t

)2

− A

2π

(
1

m+ 3

)
∂2A

∂t2

+ ν

(
m− 1

2

)
∂A

∂t
(1.31)

Remark When the velocity profile is linear (i.e. m = 1) the viscous term
vanishes.

The form of L′ deduced by using the velocity profile proposed by Womersley
one should consider both the complex and the complex conjugate form, in
order to obtain a real solution. After some manipulation one finds:

L′(A,Q) =

(
1

4π

(
1− ν

Aω
I

[
J2

(
αi3/2

)
(1− F10(α)) J0 (αi3/2)

])

+
1

2A

√
π

A
R
[
R3 (iα2 + 8 (1− F10(α)))

8iα2 (1− F10(α))

])(
∂A

∂t

)2

+

(
1

2π

ν

ω
I

[
J2

(
αi3/2

)
(1− F10(α)) J0 (αi3/2)

]

−
√
π

A
R
[
R3 (iα2 + 8 (1− F10(α)))

8iα2 (1− F10(α))

])
∂2A

∂t2

+

(√
π

A
ωI
[
R3 (iα2 + 8 (1− F10(α)))

8iα2 (1− F10(α))

]

+
ν

2

(
R

[
J2

(
αi3/2

)
π (1− F10(α)) J0 (αi3/2)

]
− 1

))
∂A

∂t
(1.32)

Remark Since (1.32). is obtained by assuming R ≈ R0, it is possible to
neglect the nonlinear terms which appears in this relationship.
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1. The added mass effect

Remark The velocity profile given by Womersley is obtained by accounting
for the viscous terms, and hence leads to determining the operator L′.

In both (1.31) and (1.32) the added mass term is this involving the se-
cond order time derivative of the section, which is proportional to an inertial
force. The new terms (1.31) and (1.32) are obtained through integration of
the pressure: remembering figure 1.1 we can expect that, even though the
approximation of the radial velocity is still “coarse”, the oscillations which
characterize the added mass effect are re-obtained.

Remark If one adds the algebraic relation which characterize the structure
to the linearized form of (1.31) or (1.32), the results corresponds to a general
structure model with an inertia given by the terms which multiply the second
time derivative of the section and dissipation term which corresponds to the
term which multiply the first time derivative of the section. Indeed, taking
for example the similarity profiles, by relation

P = pw −
ρ

A
L′(A,Q)

it follows:

P = β

√
A−
√
A0√

π
+M∂2A

∂t2
− γ ∂A

∂t
(1.33)

M =
ρ

2π

(
1

m+ 3

)
(1.34)

γ =
µ

A

(
m− 1

2

)
(1.35)

Equation (1.33) resembles to the one introduced in [27] pag. 18, except for
the fact that now the coefficient of the structural model depends on the fluid-
structure interaction. It is so possible to consider the 1D model augmented
by the added mass effect as a classical one dimensional problem where the
structure has a complex form. Moreover, relation (1.33) shows that the fluid
act as a virtual inertia on the structure, through the coefficientM.
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1. The added mass effect

Vessel radius (R0) 0.5 cm

Vessel length (L) 2.5 cm

Vessel thick (hs) 0.05 cm

Vessel Poisson coef (σ) 0.5

Vessel Young mod. (E) 375000 dyne/cm2

Vessel density (ρs) 0 g/cm3

Fluid density (ρf ) 1 g/cm3

Fluid kin. viscosity (ν) 1 cm2/s

Flux period (T ) 1 s

Flux modulus (Q0) 4 cm3/s

Table 1.1: Physical and geometrical quantities

1.4 Comparison between radial velocity pro-

files

The aim of this section is to evaluate the accuracy of the radial velocity
approximations discussed in subsection 1.3.2 with respect to a 2D numerical
solution obtained with the finite element library Freefem++ [31]. The 2D
problem is solved on a axisymmetrical domain, neglecting convective terms.
The structural dynamic is embedded in the flow solution through a boundary
condition of the Robin type imposed at the fluid-structure interface, [51].
Moreover, defective condition on the flux was chosen for the inlet section
[26], while a non-reflecting condition is assumed at the outlet section [51]. An
Arbitrary Lagrangian Eulerian frame of reference, [22, 23, 35], was adopted
in order to account for the changing in time of the computational domain.

At the inlet the following harmonic flux condition is applied:

Q(t) = Q0 sin

(
2π

T
t

)
Physical and geometrical quantity adopted in the simulations, as well as the
time step and the grid size are summarized in table 1.1 and 1.2 Approxima-
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1. The added mass effect

Time step size (∆t) 0.0005 s

Number of analyzed periods 3

Typical grid dimension h 0.0125 cm

Table 1.2: Numerical value used in 2D numerical simulation

tion through similarity profile is obtained by summing linearly 5 terms, as
follows:

vr(r, z, t) = a1

(
r

R(z, t)

)
∂η

∂t

+
2∑

m=1

(
am+1

(
r

R(z, t)

)m+1

+ a2+(m+1)

(
r

R(z, t)

)1/(m+1)
)
∂η

∂t

The coefficients ai are chosen with a least square criterion with respect to
the numerical solution, with the additional condition:

5∑
i=1

ai = 1

The approximated and numerical radial profile are plotted in Figures 1.5
- 1.9, for 4 sections. It is possible to observe that:

• The analytical profiles and the numerical solution have a significant
difference when the velocity changes sign

• The comparison between the analytical approximation and numerical
profiles improves if the section is located far from the inlet/outlet (i.e.,
where boundary effects become negligible)

• The analytical approximation obtained by composing linearly five si-
milarity profiles and that obtained by Womersley do not differ very
much

The analytical profiles then appear to provide a reasonable approximation,
even though they tend do depart from the numerical more refine solution
when the radial velocity changes sign. We explain in section 1.5 how to take
advantage of these profiles.
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1. The added mass effect

Figure 1.5: Comparison between interpolation vr(z, t) profile vs numerical vr(z, t)

profile, for (from left to right and top to bottom) x = 0.005cm, x = 0.01cm,

x = 0.015cm and x = 0.02cm, at time T = 2.0s. Blue line: numerical solu-

tion; green line: interpolated from Womersley solution; red line: interpolated by 5

autosimilarity profiles.

Figure 1.6: Comparison between interpolation vr(z, t) profile vs numerical vr(z, t)

profile, for (from left to right and top to bottom) x = 0.005cm, x = 0.01cm,

x = 0.015cm and x = 0.02cm, at time T = 2.25s. Blue line: numerical solu-

tion; green line: interpolated from Womersley solution; red line: interpolated by 5

autosimilarity profiles.
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Figure 1.7: Comparison between interpolation vr(z, t) profile vs numerical vr(z, t)

profile, for (from left to right and top to bottom) x = 0.005cm, x = 0.01cm,

x = 0.015cm and x = 0.02cm, at time T = 2.5s. Blue line: numerical solu-

tion; green line: interpolated from Womersley solution; red line: interpolated by 5

autosimilarity profiles.

Figure 1.8: Comparison between interpolation vr(z, t) profile vs numerical vr(z, t)

profile, for (from left to right and top to bottom) x = 0.005cm, x = 0.01cm,

x = 0.015cm and x = 0.02cm, at time T = 2.75s. Blue line: numerical solu-

tion; green line: interpolated from Womersley solution; red line: interpolated by 5

autosimilarity profiles.
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1. The added mass effect

Figure 1.9: Comparison between interpolation vr(z, t) profile vs numerical vr(z, t)

profile, for (from left to right and top to bottom) x = 0.005cm, x = 0.01cm,

x = 0.015cm and x = 0.02cm, at time T = 3.0s. Blue line: numerical solu-

tion; green line: interpolated from Womersley solution; red line: interpolated by 5

autosimilarity profiles.

1.5 How to use analytical approximations of

velocity profiles

First of all it is worthwhile to point out that there is not any general criterion
for selecting a reasonable analytical form of the radial velocity profile. Indeed,
a linear composition of similarity solution has been show to provide good
results. The value of the coefficients, however, is not known a priori. Now the
question is: “how determine the coefficients of the linear composition, if they
depend by the (unknown) solution?” The only way affordable is to create
a sort of database of coefficients, obtained by 2D numerical simulations,
for classical value of the problem as pipe length, pressure frequency and so
on. After, if one desires to study a new problem with a set of parameters
which does not belongs to the database, the new coefficients of the linear
composition will be obtained by interpolation. I would like to point out that
how to make this interpolation could represents a novel study field, being
the linear one not necessary the best. The Womerlsey profile conversely
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1. The added mass effect

works well when the input of the system is of the harmonic type, because it
depends directly by the parameters under study. However, when the input
is decomposed as a sum of harmonics,6 in order to obtain a closed form for
the added mass, some weight coefficients should be determined too.7

1.6 Numerical results

In this section I consider the effects of the added mass operator L and L′

appearing in (1.30). The added mass operator determined by considering the
linear composition of similarity profile discussed in 1.4, reads:

L′(A,Q) = −A0

2π

(
a1

4
+

2∑
m=1

(
am+1

(m+ 1) + 3
+

a2+(m+1)

1
(m+1)

+ 3

))
∂2A

∂t2

+
ν

2

2∑
m=1

(
mam+1 +

(
1

m+ 1
− 1

)
a2+(m+1)

)
∂A

∂t

= −M∂2A

∂t2
+ γ

∂A

∂t

The continuity and momentum equations governing the flow field then reads:

∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+

∂

∂z
F2(A,Q)−M ∂3Q

∂z2∂t
+ γ

∂2Q

∂z2
= 0

F2(A,Q) = α
Q2

A
+

β̃

3ρ

A
3
2 − A

3
2
0

A0

6Theoretically, if it is sufficiently smooth, every input could be decomposed in such a
way

7It is however possible to consider only the first harmonic, if its contribution domi-
nates the response. In this case it is possible to determine the fluid-structure interaction
coefficients a priori by an analysis of the parameter and the coefficients which form the
series.
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1. The added mass effect

where source term related to fluid dissipations is neglected for the sake of
simplicity.8 Momentum equation suggests the following splitting strategy:

An+1 − An

∆t
+
∂Qn

∂z
= 0 (1.36)

Qn+1/2 −Qn

∆t
+

∂

∂z
F2(An, Qn) = 0 (1.37)

Qn+1 −Qn+1/2

∆t
− M

∆t

(
∂2Qn+1

∂z2
− ∂2Qn

∂z2

)
+ γ

∂2Qn+1

∂z2
= 0 (1.38)

where the convective terms (1.36),(1.37) are solved with an explicit scheme,
whereas equation (1.38) is solved implicitly. A Finite Volume scheme was
chosen for the convective terms, while for the added mass a Galerkin Finite
Element scheme was adopted. In both cases a Dirichlet boundary condition
was adopted at the inlet, while in the latter case an homogeneous Neumann
one is assumed at the outlet.

Interpolation from Finite Element and to Finite Volume is performed by
imposing the following relation:

uFVMi =
1

∆x

∫ xi

xi−1

uFEMdx,i = 1, ..., N

The same relation is used for interpolating from Finite Volume to Finite
Element. However, in this latter case one has to determine N +1 value by N
relations: the N+1th relation is obtained by imposing at one of the extremal
node the boundary value (typically the flux at the first (inlet) node which is
known as a boundary condition, while at the last (outlet) node the value of
the section, obtained as solution of the first step of the algorithm).

The numerical results here presented were performed by imposing a flux
rate of the following three different period: T = 2 s, T = 1 s, T = 0.5 s. The
other data are the same summarized table 1.1. As depicted in figs. 1.10,
1.12 and 1.14, the added mass effect increase the range variation of the cross

8The added mass operator if evaluated by considering the radial velocity profile pro-
vided by Womersley, the momentum equation does not change if suitable expressions are
introduced forM and γ
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1. The added mass effect

sectional area and the effect is more pronounced with increasing frequency.
Conversely, the flux modulus is slightly affected.

Moreover, a time lag to return to the reference (undisturbed) conditions
appears, both for the flux and the cross sectional area, as depicted in figs
1.16, 1.17 for a period T = 2 s.

Table 1.3 resumes the principal indicator of the added mass effect. With
τA,Q is denoted the time lag introduced by the added mass effect, while with
RA,Q the ratio between the maximum value of the flux/area evaluated with
the added mass effect and the corresponding one evaluated without the added
mass effect.

In figs. 1.18, 1.20 and 1.22, the numerical results of the cross-sectional
area with the operator L′(A,Q) related to the viscous form are depicted; For
the fluid, a coefficient Kr = πν were considered. In figs. 1.19, 1.21 and 1.23,
the corresponding flux values are depicted. In the numerical simulation here
performed, the viscosity increase the wave amplitude of the cross-sectional
area; this is in agreement by the fact that the drag generated by the visco-
sity accumulate mass, so the cross-sectional area must increase. The effect
diminish advancing in time. This behavior is greater in the model without
the added mass, while when added mass operator of the viscous form is con-
sidered, the term related to γ tends to counteract the effects related to Kr.
This behavior is resumed in table 1.4, where the value of Apeakn/Apeak1 are
reported for both the solution with and without the added mass effect. The
added mass operator here considered is the one yielded by the viscous form.
The values correspond to a forcing term of period T = 1 s.

T = 2 s T = 1 s T = 0.5 s

τA 6.0713× 10−4s 3.4146× 10−4s 1.1384× 10−4s

RA 1 .0694 1.0712 1.0804

τQ 5.5869× 10−4s 5.5564× 10−4s 5.4815× 10−4s

RQ 9.9996× 10−1s 9.9983× 10−1s 9.9934× 10−1s

Table 1.3: Principal indicators of the added mass effect
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1. The added mass effect

Figure 1.10: Comparison between area value vs time with (red line) and without

(blue line) added mass effect, T = 2 s

Figure 1.11: Comparison between flux value vs time with (red dotted line) and

without (blue line) added mass effect, T = 2 s
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Figure 1.12: Comparison between area value vs time with (red line) and without

(blue line) added mass effect, T = 1 s

Figure 1.13: Comparison between flux value vs time with (red dotted line) and

without (blue line) added mass effect, T = 1 s
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Figure 1.14: Comparison between area value vs time with (red line) and without

(blue line) added mass effect, T = 0.5 s

Figure 1.15: Comparison between flux value vs time with (red dotted line) and

without (blue line) added mass effect, T = 0.5 s
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Figure 1.16: Comparison between area value vs time with (red line) and without

(blue line) added mass effect, T = 2 s, detail

Figure 1.17: Comparison between flux value vs time with (red dotted line) and

without (blue line) added mass effect, T = 2 s, detail
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Figure 1.18: Comparison between area value vs time with (red line) and without

(blue line) added mass effect for the operator L′, T = 2 s

Figure 1.19: Comparison between flux value vs time with (red dotted line) and

without (blue line) added mass effect for the operator L′, T = 2 s
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Figure 1.20: Comparison between area value vs time with (red line) and without

(blue line) added mass effect for the operator L′, T = 1 s

Figure 1.21: Comparison between flux value vs time with (red dotted line) and

without (blue line) added mass effect for the operator L′, T = 1 s
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Figure 1.22: Comparison between area value vs time with (red line) and without

(blue line) added mass effect for the operator L′, T = 0.5 s

Figure 1.23: Comparison between flux value vs time with (red dotted line) and

without (blue line) added mass effect for the operator L′, T = 0.5 s
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peaks without added mass with added mass

1 1 1

2 0.9955 0.9968

3 0.9911 0.9936

4 0.9866 0.9904

5 0.9821 0.9872

6 0.9776 0.9840

Table 1.4: Ratio between the value of the cross-sectional area peaks n = 1, .., 6

and the first peaks with (2nd col.) and without (1st col) added mass. The period

corresponds to T = 1 s

1.7 Conclusions

The added mass effect represents an important phenomenon related to the
fluid-structure interaction. The classical 1D approximation for the study of
a flow in a compliant pipe is not capable to reproduce the part of response
related to it. In this chapter a novel approach is proposed, which recast the
same procedure used to obtain a 1D model, but with less restrictive hypothe-
ses. The new set of equations represent a generalization of the classical one,
being possible to re-obtain this latter by imposing a posteriori the conditions
of null radial velocity and null pressure variation with respect to the radial
coordinate.

Considering the pressure variation with respect to the radial coordinate
introduces a new unknown, so a new equation is necessary in order to close
the problem. The choose here adopted consist in integrating a simplified
form of the equation of the radial momentum, adopting an approximation of
the radial velocity based on the experimental evidence. The procedure yields
a new operator L′(A,Q)′ (or, by considering the only inertial term, L(A,Q)),
which takes into account of the fluid-structure interaction effects.

The problem is then solved numerically first by applying a splitting strate-
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gies on the momentum equation, and then solving the convective part with a
Finite Volume scheme and the added mass part by a Galerkin-Finite Element
scheme.

The result have demonstrated that neglecting the added mass effects
yields a sub-estimation of the range of variation of the cross-sectional area,
sub-estimation which becomes significant when the frequency of the forcing
term increase; conversely, flux range is less affected, even though a decreasing
of the maximum-to-minimum range where observed. Moreover, a small lag
on the response for both cross sectional area and flux were highlighted.
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Chapter 2

Analytical solution of a pulsating

flow in a undefined rigid pipe

2.1 Introduction

The study of the flows driven by an unsteady pressure gradient represents
an important branch of research in bio-fluid dynamics, even though some
application exist also in the hydraulic engineering. Clearly, the problem of
determining a velocity field is not a trivial task. Computer fluid dynamic
represents an important tool to this aim, that can provide an accurate solu-
tion. Nevertheless, this procedure requires a relatively large computational
cost that that can be not reasonable when one needs to analyze preliminary
a given problem. Approximated analytical solutions then play an important
role, since they can furnish an enough accurate solution in a reasonable time.

As far as flows driven by an unsteady pressure gradient are concerned,
it is possible to find, under some simplifying hypotheses, an approximated
analytical solution for the profile velocity which well mimic the real solution.
Up to now, the most used solution of the pulsating flow in a rigid pipe is this
derived by Womersley [30, 68], which is based on the following hypotheses:

1. The Reynolds number is small (typically less than 2300), so convective
terms are negligible
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2. Analytical solution of a pulsating flow in a undefined rigid pipe

2. The flow is axisymmetric

3. The axial dimension is much larger than pipe radius so that the pipe
can be considered infinitely long

4. The influence to the solution of the inlet-outlet section is negligible (i.e.,
the section where the solution is determined is sufficiently far from the
initial and final sections of the pipe)

5. The pressure gradient could be decomposed in a Fourier series

6. The solution describes an equilibrium state.

Hypothesis 6 means that the motion is fully developed in time, i.e. the
solution although oscillatory is no more influenced by initial conditions. The
system of equations which govern the flow field is linear: thanks to Hypothesis
5, it is possible to determine the solution for the generic harmonic of the
Fourier series. Moreover, if the pressure mean value in time differs from zero
(i.e. the time history is not symmetric with respect to the time Axis) , it
is possible to “shift” the solution by a term which is formed by a Hagen-
Poiseulle solution (i.e. which does not vary in time and represents the part
of the solution related to the mean value of the pressure).

The pulsating flow field in a rigid pipe is characterized by two dimension-
less parameters, defined as follows:

Re =
2V R0

ν

α = R0

√
Ω

ν

Here R0 is the radius of the pipe, ν is the kinematic viscosity of the fluid,
V is a characteristic velocity and Ω the frequency of the pressure gradient.
The first parameter is clearly the Reynolds number and does not need any
comment. The second one, called “Womersley number”, is a parameter which
relates the frequency of the pulsating flow to the fluid viscosity and the radius
of the pipe. The Womersley number is of particular importance in the study
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of pulsating flows; in particular, it is possible to verify that, in nature, blood
vessel flows are characterized by a given range of this parameter ( typically
between 3 and 25). For example, if one compares blood flow in dog and
human arterials, one find that in the latter case the heart frequency is smaller
than in the former, being the typical values of the lumen radius greater. If
the comparison is performed on α, one finds that each case is characterized
by a specific range of variation of α.

Womersley solution is useful for the study of a developed motion. Clearly,
if one want to study what happen before that the motion is fully developed
(e.g., immediately after a sudden pressure increase), Womersley solution be-
comes inadequate. Nevertheless, this solution can be used as a particular
solution (i.e., the regime solution) when one searches a complete solution. In
this Chapter I determine the solution for an axisymmetric pulsating flow in
a rigid pipe, accounting for also the transitory effects. Two particular cases
will be analyzed: a fluid which at t = 0 is at rest (homogeneous initial condi-
tion) and a regime flow initially, subject to a sudden variation of the pressure
(non homogeneous initial condition). For the sake of simplicity, the analysis
is performed on a single harmonic, being the general case straightforward,
according to the principle of superposition of the effects.

As a future work, this chapter could be represent a starting point for
determine an analytical solution, more accurate than the Womersley one, for
the compliant pipe. Moreover, the solution here evaluated can be integrated
with the numerical analysis if utilized as inlet boundary condition. Indeed,
a boundary condition of the Dirichlet type on the velocity avoid the use of a
defective one, reducing significantly the computational cost.

2.2 Analytical formulation

For an axisymmetric flow in an infinitely long rigid pipe of radius R0 sub-
ject to an unsteady pressure gradient, the system of Navier-Stokes equations
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reduces to the axial momentum balance only:1

∂uz
∂t
− ν

(
∂2uz
∂r2

+
1

r

∂uz
∂r

)
= −1

ρ

∂p

∂z
(2.1)

the pressure gradient at the right hand side being externally imposed. The
solution of this equation could be decomposed as the sum of a particular
solution, which takes into account the developed motion, and the general
solution, which describes the transitory caused by the initial condition and
corresponds to the solution of the homogeneous associated equation:

∂uz
∂t
− ν

(
∂2uz
∂r2

+
1

r

∂uz
∂r

)
= 0 (2.2)

Considering a pressure gradient of magnitude A and angular speed Ω with
the form of a cosine wave,2 written in the corresponding Euler form:

∂p

∂z
= A

(
eiΩt + e−iΩt

2

)
the associated Womersley solution, giving the particular solution of (2.1),
becomes:

uz(r, t) =
AR2

0

2µ

1

i3α2

[(
1−

J0

(
αi3/2y

)
J0 (αi3/2)

)
eiΩt −

(
1−

J0

(
iαi3/2y

)
J0 (iαi3/2)

)
e−iΩt

]

α = R0

√
Ω

ν

y =
r

R0

The solution of the homogeneous equation (2.2) could be found by a separa-
tion of variables, i.e. assuming that solution is of the form:

uz(r, t) = F (r)G(t)

such that:

1

ν

G′

G
=

(
F ′′

F
+

1

r

F ′

F

)
(2.3)

1Indeed for this motion vr = 0, so continuity equation reduces to ∂vr

∂z = 0 and radial
momentum to ∂p

∂r = 0
2The results for a sine wave could be determined by the same procedure
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This equation implies that each member should be constant, being function
of one variable only. Hence:

G′(t) = −νλ2G(t)

F ′′ +
1

r
F ′ + λ2F = 0

In order to ensure that the solution is limited is space, we have:

G(t) = Be−λ
2νt

F (r) = CJ0 (λr)

and, applying the boundary conditions:

λj =
γj
R0

γj : J0(γj) = 0

F (r) =
∞∑
j=0

CjJ0 (γjy) y =
r

R0

we finally obtain:

uzhom =
∞∑
j=0

Eje
−
(
γj
R0

)2
νt
J0 (γjy) (2.4)

The following relations accounting for the orthogonality of Bessel functions
will be used in the following for determining the coefficients Ej:3∫ 1

0

yJp(γipy)Jp(γjpy)dy = δij
1

2

(
J ′p(γip)

)2

f(r) =
∞∑
j=0

fjJ0

(
γj
r

R

)
(2.5)

fj =
2R2

0

(J ′0(γj))2

∫ 1

0

yf(y)J0(γjy)dy (2.6)

for:

• a fluid initially at rest
3Remembering that the Bessel solution for the axisymmetric problem depends on J0

only
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• a sudden variation of the pressure, starting from a developed flow con-
dition

Remark The transitory determined for both the formulations come from the
solution of an homogeneous equation; as a consequence, it does not depend
on the frequency and thus on Womersley number a priori. Conversely, the
time employed to reduce the homogeneous solution is affected by the values
of the viscosity and of the radius pipe. The effects of the Womersley number
on the transitory effects are introduced when one determines the coefficients
Ej, being this coefficient dependent on the initial solution and so on the
particular solution. The stronger effect is related to the phase-lag. Indeed,
considering the case of a flux initially at rest and taking into account the
analysis of the phase lag between the flux and the pressure gradient reported
in [68], when α→∞ the phase lag tends to π/2. As a consequence, the flux
tends to 0 at the initial time and the coefficients Ej tend to vanish.

2.2.1 Flow initially at rest

In this case, imposing an homogeneous initial condition at t = 0 implies that
the following relation must hold:

∞∑
j=1

EjJ0(γjy) =
AR2

0

2µ

1

i3α2

(
J0

(
αi3/2y

)
J0 (αi3/2)

−
J0

(
iαi3/2y

)
J0 (iαi3/2)

)
(2.7)

y =
r

R0

From Eq. (2.7) and relation (2.5)-(2.6) it follows:

Ej =
AR2

0

µ

γj
J1 (γj)

2

γ4
j + α4
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and, therefore, the solution:

uz(r, t) =
∞∑
j=0

AR2
0

µ

2γj

J1 (γj)
(
γ4
j + α4

)e−( γj
R0

)2
νt
J0 (γjy)

+
AR2

0

2µ

1

i3α2

(
1−

J0

(
αi3/2y

)
J0 (αi3/2)

)
eiΩt

− AR2
0

2µ

1

i3α2

(
1−

J0

(
iαi3/2y

)
J0 (iαi3/2)

)
e−iΩt

2.2.2 Sudden variation of pressure

In this case the boundary condition is represented by a fully developed motion
driven by an external pressure gradient which varies in time by a cosine law.4

Let A1 and Ω1 be the magnitude of the pressure gradient and the frequency
of the initial condition and α1 it’s Womersley number. At a time t = t∗

a sudden variation of pressure is imposed (generally both in frequency and
amplitude), such that the initial velocity profile is represented by:

u0 =
A1R

2
0

2µi3α2
1

[(
1−

J0

(
α1i

3/2y
)

J0 (α1i3/2)

)
eiφ −

(
1−

J0

(
iα1i

3/2y
)

J0 (iα1i3/2)

)
e−iφ

]
φ = Ω1t

∗

The problem does not depend on a translation in time, and it is possible to
re-scale the time so that the origin of the new time axis coincides with t∗.
Denoting by A2 and Ω2 the magnitude and the frequency of the new pressure
gradient, by applying relation (2.5)-(2.6) it follows:

Ej =
2γjR

2
0

µJ1 (γj)

[
A2

γ4
j + α4

2

− A1

γ4
j + α4

1

(
α2

1

γ2
j

eiφ − eiφ

2i
+
eiφ + eiφ

2

)]
4As far as a pressure gradient which varies with a sine law is concerned, the mod-

ifications are straightforward. Moreover, it is possible to consider a field which is not
fully developed as initial condition, retaining the exponential term and applying the same
procedure for obtain terms Ej , but for the sake of simplicity, this case is not considered
here
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and finally:

uz(r, t) =
∞∑
j=0

2γjR
2
0

µJ1 (γj)

A2

γ4
j + α4

2

e
−
(
γj
R0

)2
νt
J0 (γjy)

−
∞∑
j=0

2γjR
2
0

µJ1 (γj)

A1

γ4
j + α4

1

(
α2

1

γ2
j

eiφ − eiφ

2i
+
eiφ + eiφ

2

)
e
−
(
γj
R0

)2
νt
J0 (γjy)

+
A2R

2
0

2µ

1

i3α2
2

(
1−

J0

(
α2i

3/2y
)

J0 (α2i3/2)

)
eiΩ2t

− A2R
2
0

2µ

1

i3α2
2

(
1−

J0

(
iα2i

3/2y
)

J0 (iα2i3/2)

)
e−iΩ2t

2.3 Evaluation of the convergence of the series

This section is devoted to demonstrate that the series appearing in the ho-
mogeneous solution obtained in (2.4) totally converges. This property will
be used in section (2.4) to determine the flux, since it will be possible to
exchange the integral with the sum and hence integrate every term.

The following consideration are used to determine the asymptotically be-
havior of each term of the series:

• Every exponential term e
−
(
γj
R0

)2
νt has its maximum for t = 0

• The Bessel function of order zero J0(z) is at least C0(R) and is equal
to 1 at z = 0; moreover, observing that

lim
z→∞

J0(z) =

√
2

πz
cos
(
z − π

4

)
it is possible to infer that

|J0(x)| ≤M1

with M1 a finite quantity.

• By the derivation rule for Bessel functions it follows that

J1(x) = − d

dx
J0(x)
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and, as a consequence, the zeros of J1(x) correspond to the maxi-
mum/minimum of J0(x); moreover for each γj an interval of radius
δ exists where J0(x) changes sign. The zeros of J0(x) then aren’t a
maximum/minimum, and do not correspond to the zeros of J1(γj).
Therefore, it is possible to write:∣∣∣∣ 1

J1(γj)

∣∣∣∣ ≤M2

• by the relations:

lim
n→∞

an+1 − an = π

⇒ an ≈ a0 + nπ, n→∞

it is possible to approximate asymptotically γj with nπ as n tends to
infinity; moreover the zeros of J0(x) are inferior limited by γ1 > 0 and
ordered

• all the others term which appear in the solution giving Ej are do not
depend on j

Therefore, it follows that:

|EjJ0 (γjy)| ≤Mj

lim
n→∞

Mn = 0 O(n3) (2.8)

The series
∑∞

n=1Mn thus converges and, hence, the series
∑∞

j=1EjJ0 (γjy)

totally converges on R+5.

2.4 Evaluation of the flux variation in time

Flux variation with time depends on a term related to the homogeneous
solution and on a term related to the particular one. In this section only

5By symmetry considerations with respect to the axis y = 0 it is possible to infer the
convergence on the whole R
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2. Analytical solution of a pulsating flow in a undefined rigid pipe

the former is determined, while the interested reader can find the details
related to the determination of the latter in [68]. Taking advantage of the
results reported in section 2.3, it is possible to exchange the integral with the
summation in equation 2.4, the integral of J0(γjy), yielding:

2πR2
0

∫ 1

0

yJ0 (γjy) dy =
2πR2

0

γj
J1 (γj)

The total flux then becomes:

Q(t) =2πR2
0

∞∑
j=0

Ej
γj
J1(γj)e

−
(
γj
R0

)2
νt

+
πR4

0A2

2µi3α2
2

(
(1− F10(α2)) eiΩt − (1− F10(iα2)) e−iΩt

)
F10(α) =

2J1

(
αi3/2

)
αi3/2J0(αi3/2)

F10(iα) =
2J1

(
iαi3/2

)
iαi3/2J0(iαi3/2)

2.5 Numerical experiments

In this section the results of the new complete solution are showed for two
case:

1. a flow initially at rest

2. a flow with double variation of pressure

The former resembles the beginning of a motion in a pulsating device aimed at
supporting or replacing human blood circulation. The latter mimics although
quite simply a sudden arterial pressure drop followed by normal pressure
recovery.

The first example is quite simple and shows what happens for a motion
under a pulsating gradient starting from rest; the physical parameters here
considered are reported in table 2.1. For the transitory 30 coefficients were
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Pipe radius (R0) 0.005m

Fluid density (ρ) 1055Kg/m3

Fluid viscosity (µ) 0.0037Pa · s
Pressure gradient (dp/dx) −50000Pa/m (−3.7603mmHg/cm )

Pressure variation period T 1.0 s

Table 2.1: Physical parameters for the case 1

adopted. As it is possible to see in figure 2.1 and in table 2.2, the flux requires
three periods to reach the regime value. Denoting by

C = < [F10 (α)] D = = [F10 (α)]

The flux variation in time related to the particular solution could be rewritten
as:

Qpart(t) =
πR4

0A

µα2
((C − 1) sin(Ωt) +D cos(Ωt)) (2.9)

the time value t corresponding to the positive peaks value of (2.9) are those
which satisfy the following relation:

tan
(
Ωt
)

=
C − 1

D

Ωt = arctan

(
C − 1

D

)
+ k2π = φ+ k2π (2.10)

The ratio between the total solution and the particular solution, evaluated
on the peaks, thus becomes:

Q

Qpart

(
t = t

)
= 1 +

4

Dα2
(

1 +
(
C−1
D

)2
)

cos (φ)

∞∑
j=1

e−(γj/α)2(φ+k2π)

1 +
(γj
α

)4

In table 2.2 the values of the ratio between the total solution and the parti-
cular solution evaluated at some peaks are reported. From the third period
the difference between the regime value and the actual one is less than the
1%. For the same example, in figure 2.2 the axial velocity profile is depicted
for the initial condition (i.e., t = 0) and for t = 1 s, t = 2 s and t = 4 s. In
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peak n 1 2 3 4 6 7 8 9

ratio 0.81971 0.96762 0.99361 0.99874 0.99995 0.99999 1.0 1.0

Table 2.2: Ratio between the total solution and the particular solution evaluated

on peaks for the flux, case 1

the same graphs the Womersley and the homogeneous solution are reported
for the same time values. Except the initial condition, the weight of the
homogeneous solution is greater near the axis of the pipe.

Figure 2.1: Flux and pressure gradient vs time for the first case. The blue line

represents the pressure gradient. The black line represents the global solution,

the green line the solution obtained by Womersley and the red line represents the

homogeneous solution, which is responsible of the transitory.

For the second case the solution is obtained by applying twice the same
procedure adopted for evaluating the coefficients Ej for a sudden variation of
pressure; for the second transitory, terms related to the the transitory of the
first variation appear; taking into account the property of orthogonality of
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2. Analytical solution of a pulsating flow in a undefined rigid pipe

Figure 2.2: Axial velocity profile for case 1 for the initial condition (top left), t =

1 s (top right), t = 2 s (bottom left) and t = 4 s (bottom right). Blue line: global

solution; green line: solution obtained from Womersley; red line: homogeneous

solution.
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the Bessel functions and denoting respectively by E1
j and E2

j the coefficients
of the first and the second transitory, these new terms read:

E2
j = E1

j e
−
(
γg
R0

)2
νt∗

being t∗ the time elapsed between the first and the second variation. In this
experiment, the transitory is evaluated through 50 coefficients. The pressure
gradient is depicted in fig 2.3 (blue line), obtained from a Fourier transfor-
mation of a set of experimental data sampled from a canine femoral arteria,
as described in [46]. Values adopted for the physical parameters are reported

Figure 2.3: Pressure gradient (blue line), flux (black line) and flux transitory (red

line) vs time. Pressure gradient is represented in mmHg/cm, while flux in ml/s.

in table 2.3 In figure 2.3 the flux vs time (black line) and the transitory vs
time (red line) are also reported. Clearly, the sudden variation of the pres-
sure gradient yields a variation on the blood flow with the appearance of a
transitory until the onset of the new regime. In particular, the transitory
yields a gradual settlement of the flow to the new conditions. In the simu-
lated conditions, in particular, one could observe that the peak flow resulting
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Pipe radius (R0) 0.0013m

Fluid density (ρ) 1055Kg/m3

Fluid viscosity (µ) 0.004Pa · s
Pressure variation period T 0.4167 s

Ratio between decreased and initial(final) pressures k 0.65

Global time at which the first variation occurs (t1) : 0.875 s (2.1T )

Global time at which the second variation occurs (t2) : 1.7292 s (4.15T )

Table 2.3: Physical parameter for the case 2

from the decrease in pressure gradient (3rd peak in figure 2.3) is initially, i.e.,
where there occurs the transition, the higher the peak is produced in the new
regime. Of course, the same is lower as compared to the one (2nd peak in
figure 2.3) of the previous period.

Similarly, when the pressure returns to the standard value (i.e., the value
before the first pressure change), the peak flow (5th peak in figure 2.3) is
initially less than that (6th peak in figure 2.3) of the next regime (compared
with the last one of the previous period is higher of course). The figure also
shows that the duration of the transient regime generated by the reduction
in pressure gradient is less than the one generated by the increase of the
pressure gradient; indeed, the time needed to restore the physiological flow
conditions, is longer than the one needed to have the developed condition
related to the smaller pressure gradient. In particular, the first transition
has a duration approximately equal to 0.8T, while the second is about 1T.
This is related to the phase at which the variation occurs, i.e. to the initial
condition. Indeed, the pure exponential does not change, depending only on
the viscosity and the pipe radius.

In table 2.4 the ratio between the first and the i−th flux peak is reported;
the flux needs in this case one period to adapting to the variation of the
pressure gradient, diminishing if this decreases and increasing when it raises.
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peak n 1 2 3 4 5 6 7

ratio 1.0 1.0 0.74 0.65 0.78 1.0 1.0

Table 2.4: Ratio between the first and the i− th peak of the flux for case 2

Remark If the analysis related on the time needed to adapting to the new
condition is performed in terms of the number of period, there is a dependence
of the Womersley number on the exponent part too, as it is possible to find
by a dimensionless form of the momentum equation in which the frequency
is chosen for obtain a dimensionless time. This is not in contrast to Remark
6; in this regards, neglecting the effects of the Womersley number on the
phase lag for the sake of simplicity, let us consider two fluid initially at rest,
the first driven by a frequency f1, while the second driven by a frequency f2

such that f2 = 2f1. the time t1 at which the first peak occurs for the first
fluid corresponds to the time t2 = t1 at which the second peak occurs for
the second fluid. Being the exponential independent on the frequency, the
ratio between a peak of the developed motion and a peak at time t1 does not
change.

2.6 Conclusion

The analysis of this section has demonstrated that the transitory effects can
have an important impact on the global solution if the time interval under
analysis is not sufficiently long. Indeed, if this is not the case, the Womer-
sley solution shows its limitation, being aimed at modeling a fully developed
regime, a regime in which all the transient effects became negligible. Never-
theless, this solution can be used as the particular solution of the problem
and “enriched” by the transitory effects, solution of the associated homo-
geneous equation. The effects related to the solution of the homogeneous
equation have general validity, being independent on the right hand side; the
effects related to the particular solution are re-introduced through the de-
termination of the coefficients Ej. For which concerns a pulsating flow, the
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dependence on the Womersley number is related to the phase-lag between
the pressure and the flux. In particular, if one consider a flow initially at rest
driven by a cosine-law pressure gradient, when α → ∞ the phase-lag tends
to π/2 so the particular solution tends to be at rest for t = 0. It follows that
the coefficients Ej tend to vanishes.

The main parameters which affect the time interval in which the homo-
geneous solution expires are the viscosity (linear dependency) and the radius
of the pipe (inverse quadratic dependency).

Two particular examples were analyzed:

1. The motion of a flow initially at rest, driven by a pulsating pressure
gradient

2. A double pressure variation of a more complex pressure gradient, which
tends to mimic what happens in the fainting

In these example it is showed that it is possible to study what happens before
the flow is fully developed. This yields a new solution which corresponds in
augmenting the previous one with a contribute which decrease exponentially
in time. As far as the second case is concerned, it is possible to find a
dependence of the transitory on the time in which the pressure changes, by
applying the same considerations performed for dependency on the phase-lag.
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Introduction

A fluid-structure interaction problem consists in determining the motion of
two different continua, interacting each other along a portion of the common
boundary. Typically the response of each continuum to external loads is not
the same: fluids, for example, are governed by viscous-dissipative effects,
while the solid response is mainly related to elastic-conservative effects; even
though visco-elastic phenomena could be still active. Often the constitutive
laws of each continuum are better described using different natural frames
of reference. For example, the Eulerian framework could be used for the
fluid portion while solid deformations are better described in Lagrangian
coordinates. The resulting model yields a coupled system of equation: each
must satisfy two conditions at the fluid-solid interface:

• fluid and solid must have the same velocity at the interface( no-slip
condition, kinematic coupling);

• fluid and solid normal stresses must be mutually balanced at the inter-
face (the action-reaction principle, dynamic coupling);

Clearly, being the displacement of the solid unknown, the fluid-structure
interface is also unknown and is the shape of the fluid domain: this generates
a non-linear problem that generates internal iterations when the problem is
solved numerically. A second major difficulty is related to the remeshing the
entire domain whenever deformations are large and the element aspect ratios
become unacceptable. This can occurs at every internal iteration, leading to
unsurmountable computational costs. In order to minimize these deficiency
two approaches are the more viable and used:
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• the Arbitrary Lagrangian Eulerian (ALE) [22, 23, 35]

• and the Immersed Finite Element (IFEM) / Immersed Boundary (IB)
Method [44, 53]

A comparative description of the two approaches can be roughly summarized
as follows. The former adapts the fluid domain to the solid, by rewriting the
equation of the problem in a reference frame that moves by an arbitrary
displacement. The latter models the solid as a source term for the fluid
equations.
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Chapter 3

The Arbitrary Lagrangian

Eulerian Method

The Arbitrary Lagrangian Eulerian method (ALE) combines the Lagrangian
and Eulerian reference frames, exploiting the advantages of each. Typically a
Lagrangian reference frame is useful in solid mechanics, because the resulting
displacement defines the motion of each particle of the solid and so the mass
conservation is satisfied implicitly. From the computational point of view this
allows the use of a fixed computational mesh and defining and solving only
the momentum conservation equation, being the mass conservation satisfied
implicitly.

On the other hand, a Lagrangian frame of reference is “unfair” for fluid
mechanics: fluid particles indeed are not cohesive as in the solid and can
move away significantly from each another generating vortices, with the re-
sult that the position of a sample domain could be excessively deformed
and/or overlap, resulting in a difficult description of the fluid motion, which
is often better described with an Eulerian reference system. In this case, mass
conservation must be explicitly enforced on the domain of interest. From a
computational point of view this allows reuse of a fixed computational mesh
where the mass and momentum conservation equations must be solved simul-
taneously. However, an Eulerian reference frame does not provide the fluid

73



3. The Arbitrary Lagrangian Eulerian Method

particle path, so is suboptimal for problems in which one or more boundaries
move, such as for example a free surface.

An Arbitrary Lagrangian Eulerian formulation adapts the domain to the
moving boundary, rewriting the equation of motion in a moving reference. It
follows that time derivatives are expressed with respect to a fixed reference
configuration and a homeomorphism (called ALE mapping and denoted by
At : Ω0 → Ω(t)) is used to match a point at time t in the current domain
Ω(t) to the corresponding point in the reference configuration Ω0. ALE map-
ping is arbitrary, but has ensure consistency of the domain to the evolution
of the boundary interface. Hence the restriction of the mapping to the fluid
boundary interface has to provide the configuration at time t of the structure
boundary interface. Numerically, the mapping provides also the evolution of
the spatial grid. In this case an ODE system, arising from the spatial di-
scretization provides the evolution of the solution along trajectories, that are
fully contained in the computational domain for each time. Moreover, after
time discretization, the numerical scheme determines the temporal evolution
of the unknowns at the nodes of the grid and consequently the evolution of
the degrees of freedom as typical of classical finite element approach.

3.1 ALE formulation

Let At be a family of mappings, defined by the following homeomorphism:

At : Ω0 ∈ Rd → Ωt ∈ Rd, x(Y , t) = At(Y ) ∀t ∈]t0, T [

where Y denotes the coordinates in the reference fixed frame, while x denotes
the coordinates in the time varying (current) frame. As we assumed that At
is continuous on Ω0 and has continuous inverse, and that the function:

t→ x(Y , t), Y ∈ Ω0

is differentiable almost everywhere in I = [t0, T [. For a generic function
f : Ωt × I → R defined on an Eulerian reference frame, it is then possible to
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define the corresponding function on the ALE reference frame, as follows:

f : Ω0 × I → R, f(Y , t) = f(At(Y ), t)

The time derivative on the ALE reference frame (i.e. on the ALE space
coordinates) is defined as:

∂f

∂t

∣∣∣∣
Y

: Ωt × I → R,
∂f

∂t

∣∣∣∣
Y

(x, t) =
∂f̂

∂t
(Y , t),Y = A−1

t (x)

while velocity is:

w(x, t) =
∂x

∂t

∣∣∣∣
Y

Now it is possible to determine the ALE formulation for a time-dependent
problem of the form:

∂u

∂t

∣∣∣∣
x

+ L(u) = f

Applying the chain rule on time derivative, the following relation holds:

∂u

∂t

∣∣∣∣
Y

=
∂u

∂t

∣∣∣∣
x

+
∂x

∂t

∣∣∣∣
Y

· ∇xu =
∂u

∂t

∣∣∣∣
x

+w · ∇xu

so the problem becomes:

∂u

∂t

∣∣∣∣
x

−w · ∇xu+ L(u) = f

The corresponding conservative form of the original problem reads:

∂u

∂t

∣∣∣∣
x

+∇x · F = f

where F represents the flux of the unknown u. Denoting by JAt the Jacobian
of the mapping, by the Euler expansion:

∂JAt
∂t

∣∣∣∣
Y

= JAt∇x ·w

JAt0 = 1
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Let Vt be an arbitrary sub-domain of Ωt, such that Vt = At(V0), it follows:

d

dt

∫
Vt

udΩ =
d

dt

∫
V0

uJAtdΩ =

∫
V0

∂(uJAt)

∂t

∣∣∣∣
Y

dΩ =

∫
Vt

[
∂u

∂t

∣∣∣∣
Y

+ u∇x ·w
]
dΩ

so in the ALE reference frame:

d

dt

∫
Vt

udΩ +

∫
Vt

∇x · (F −wu) dΩ =

∫
Vt

fdΩ

or, on the reference domain:∫
V0

{
∂(uJAt)

∂t

∣∣∣∣
Y

+ JAt [∇x · (F −wu)− f ]

}
dΩ = 0

Since V0 is arbitrary, it follows that:

∂(uJAt)

∂t

∣∣∣∣
Y

+ JAt∇x · (F −wu) = JAtf

3.2 Construction of the map At
The construction of the ALE map At can be translated to the following:

Problem 1 Given the time evolution of the interface boundary:1

g : ∂Γ0 × I → ∂Γt

find the homeomorphism At such that

At(Y ) = g(Y , t), Y ∈ ∂Γ0

At(Y ) · n = 0, Y ∈ ∂Ω\∂Γ0

where n denotes the outward normal.

Normally one needs to know At only at some time values, generally coming
from the temporal discretization. Thus the typical approach to determine the
required homeomorphism consists in a harmonic extension of the boundary
conditions at a prescribed time t = t; this is translated in the following:

1Or, more generally, the time evolution of the moving boundary
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Problem 2 Let g(Y , t) be the interface boundary position at time t = t, find
x(Y ) such that:

∇Y · (k∇Y x) = 0 Y ∈ Ω0

x(Y ) = g(Y , t) Y ∈ ∂Γ0

x(Y ) · n = 0 Y ∈ ∂Ω0\∂Γ0

with k a positive constant.

3.3 Variational formulation of the Navier-Stokes

Equations in an ALE reference frame

The Navier-Stokes equations can be rewritten as a particular case of the
problem treated in section 3.1, where the flux F is decomposed in a (non-
linear) convective part (i.e. a term which does not contain space derivatives)
and in a part containing first order spatial derivatives in the u unknown.
Navier-Stokes equations in a non-conservative ALE formulation become:(

∂u

∂t

)∣∣∣∣
Y

+ ((u−w) · ∇x)u+∇xp− ν∇2
xu = 0

∇x · u = 0

Note that only temporal derivatives are affected by the changing of reference
frame.

Introducing the following functional spaces:

V (Ωt) = [H1
0 (Ωt)]

d Q(Ωt) = L2(Ωt)

the variational formulation for the Navier-Stokes problem in an ALE frame
becomes:
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Problem 3 Find u ∈ V such that:∫
Ωt

v ·
(
∂u

∂t

∣∣∣∣
Y

+ (u−w) · ∇xu

)
dΩ+

+

∫
Ωt

(ν∇xu · ∇xv − p∇x · v) dΩ = 0 ∀v ∈ V (Ωt) (3.1)∫
Ωt

q · ∇x · u = 0 ∀q ∈ Q(Ωt) (3.2)

u =
∂g

∂t
on ∂Γt (3.3)

where u ∈ H1(Ωt), q ∈ L2(Ωt).

The aforementioned formulation is defined on an Eulerian frame of reference;
moreover, the test functions are assumed to vanish on the boundary. To
enforce this last condition on the moving domain we proceed as follows.First
we rewrite the formulation in the reference domain. To this aim V̂ (Ω0) =

V (Ω0), Q̂(Ω0) = Q(Ω0). Then the ALE mapping defines the following set of
functions in the current configuration:

χ(Ωt) = {vi : Ωt × I → R, vi = v̂i ◦ A−1
t , v̂i ∈ V̂ (Ω0)} (3.4)

χp(Ωt) = {p : Ωt × I → R, p = p̂ ◦ A−1
t , p̂ ∈ Q̂(Ω0)} (3.5)

In order to have admissible spaces, the conditions χ(Ωt) ⊂ V (Ωt) and χp(Ωt) ⊂
Q(Ωt) must hold. This translates into conditions enforced on the ALE map-
ping. A sufficient but too restrictive condition is that the At be a C1(Ω)

dipheomorphism, i.e, ∀t ∈ I:

At ∈ C1(Ω0) A−1
t ∈ C1(Ωt)

JAt ∈ L∞(Ω0) JA−1
t
∈ L∞(Ωt)

This requirement is too restrictive and numerical methods do not satisfy
them (indeed a function which belonging to H1 does not be belongs to C1).
The following less restrictive criteria (and the correlated proof) can be found
in [25]:
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Proposition 1 Let Ω0 a bounded domain with Lipschitz-continuous boun-
dary; moreover, let At be invertible on Ω0 and satisfy the following condi-
tions, ∀t ∈ I:

• Ωt = At(Ω0) be bounded and Lipschitz-continuous;

• At ∈W 1,∞(Ω0), A−1
t ∈W 1,∞(Ωt)

Then, v ∈ H1(Ωt) if and only if v̂ = v ◦ At ∈ H1(Ω0); moreover the norms
‖v‖H1(Ωt) and ‖v̂‖H1(Ω0) are equivalent.

Proposition 2 Let

x(Y , t) ∈ H1(I;W 1,∞(Ω0))

if v̂ ∈ H1(I,H1(Ω0)), then v = v̂ ◦ A−1
t ∈ H1(I,H1(Ωt)); moreover:

∂v

∂t

∣∣∣∣
Y

∈ L2(I,H1(Ωt))

3.4 Discretization of ALE mapping by finite

element method

The discrete spaces chosen for the discretization of the problem affect the
discretization type of the ALE mapping. During the movement of the com-
putational domain the mapping must guarantee that triangulation remains
consistent with the space chosen for the domain discretization. With refer-
encing to a Lagrangian finite element space, we use the following notation to
define the finite element space:

Fn,k(T0,h) =
{
ψ̂h ∈ C0(Ω0), ψ̂h

∣∣∣
K0

◦MK0
k ∈ Pn(KR),

∀K0 ∈ T0,h

}
(3.6)

where ψ̂h a function defined on the reference element K0 andMK0
k ∈ Pk(KR)

is the homeomorphism that relates the coordinate system on the reference
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Figure 3.1: Mapping between unitary tetrahedron and mesh element for a La-

grangian P2 space

element K0 (i.e. the unit simplex in 2D or the unit tetrahedron in 3D) to
the global coordinates of the element of the mesh KR (see figure 3.1 for an
example for a P2 space). this homeomorphism is defined as follows:

MK0
k : KR → K0,Y (η) =MK0

k (η) =

=
∑
i∈Nk

Yiφ̃i(η), η ∈ Kr, φ̃i ∈ Pk(KR) (3.7)

where φ̃ is the i−th shape function related to the i−th node of the reference
element that defines the parametric mapping, while Yi are nodal coordinates
on the transformed mesh element KR and Nk are the total number of nodes
defining the parametric mapping. Typical choice for Fn,k are the affine,
Fn,1 and the isoparametric, Fn,n spaces. For an admissible finite element
formulation, space V (Ω0) is to be approximated by the space Xh(Ω0) =

Fn,k(T0,h), which implies that ∀K0 ∈ T0,h,MK0
k ∈ Pk(KR); moreover, the

following relation must hold:

χh(Ωt) =
{
ψh : Ωt × I → R, ψh ◦ Ah,t = ψ̂h, ψ̂h ∈ χh(Ω0)

}
(3.8)

Considering the (3.8) implies that, for every time t, the following condition
has to be verified:

χh(Ωt) = Fn,k(Tt,h)

80



3. The Arbitrary Lagrangian Eulerian Method

where Tt,h represents the image of T0,h through Ah,t. The proof can be found
in [25]. Hence we can state:

Proposition 3 If at every time t the discretized ALE mapping satisfies:

Ah,t|K0
◦MK0

k =MKt
k , ∀K0 ∈ T0,h, Kt = At(K0) (3.9)

(in particular, Ah,t|K0
=MKt

k ◦ (MK0
k )−1), and for t = t0:

χh(Ω0) = Fn,k(T0,h)

then ∀t ∈ I, χh(Ωt), defined as in (3.8), satisfies:

χh(Ωt) = Fn,k(Tt,h)

As a consequence, a finite element space satisfying the proposition 3 is the
isoparametric finite element space Fk,k(T0,h) (For more details, see [25], pagg.
13-14).

3.5 Discretization of the Navier-Stokes equa-

tion in an ALE reference frame

The discretization of the Navier-Stokes problem is obtained by using the
finite element spaces described above together with a a backward Euler time
stepping scheme.

The finite element space on the domain Ωt given by Fn,k(Tt,h), correspon-
ding (through the ALE mapping) to the space Fn,k(T0,h) of functions defined
on Ω0, as defined in (3.6). Denoting by N the total number of mesh nodes
and by Nint < N the number of nodes that do not belong to the Dirichlet
boundaries, set of basis functions for the problem unknowns is represented
by:

{vi, vi ∈ χh(Ωt), i = 1, ...,N}

{qi, qi ∈ χph(Ωt), i = 1, ...,N}
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while trial function spaces are defined by:2

χ0,h(Ωt) = χh(Ωt) ∩H1
0 (Ωt) = {vi, i = 1, ...,Nint}

χp0,h(Ωt) = χph(Ωt) ∩ L2
0(Ωt) = {qi, i = 1, ...,N}

We denote by unh = uh(n∆t), the approximation at time tn = n∆t, where
∆t the time step size. The discrete formulation is given by:

Problem 4 Find un+1
h , pn+1

h satisfying:∫
Ωt

(
un+1
h − unh

∆t
· vh + (un+1

h −wh) · ∇xu
n+1
h · vh

)
dΩ

+ ν

∫
Ωt

∇xu
n+1
h · ∇xvhdΩ

−
∫

Ωt

pn+1
h ∇x · vh = 0 ∀vh ∈ χ0,h(Ωt) (3.10)∫

Ωt

qh∇x · un+1
h = 0 ∀qh ∈ χp0,h(Ωt) (3.11)

un+1
h = uΓ ∀x ∈ ∂Γt, t ∈ I

un+1
h = uD ∀x ∈ ∂Ωt\∂Γt, t ∈ I

u0
h = u0 ∀x ∈ Ω0, t = t0

where u0
h is the given initial condition, uD and uΓ are the given boundary

values.

3.6 Stability of the ALE formulation

In this section we briefly recall some stability results for the ALE formulation
In practice, we require that the norm of the energy (i.e. total energy )
decreases in time, if no sources are present in the system. The estimates
reported here are taken from [25]. Using the discrete solution of problem 4

2Space L2
0 corresponds to the function belonging to L2 with zero mean value; if however

Neumann boundary conditions are imposed, it is possible to use L2 as is
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as test functions in (3.10) and(3.11), after some manipulations we obtain:

‖un+1
h ‖2

L2(Ωtn+1 ) + ∆t ν‖∇xu
n+1
h ‖2

L2(Ωtn+1 ) ≤ ‖unh‖2
L2(Ωtn )

+

(∫ tn+1

tn

∫
Ωt

∇x ·wh|unh|2dΩdt−∆t

∫
Ωtn+1

∇x ·wh|un+1
h |2dΩ

)
(3.12)

By (3.12) it is possible to infer that stability depends on the mesh velocity
wh through the term:(∫ tn+1

tn

∫
Ωt

∇x ·wh|unh|2dΩdt−∆t

∫
Ωtn+1

∇x ·wh|un+1
h |2dΩ

)

so scheme (3.10),(3.11) is only conditionally stable, as this latter can assume
positive and negative values.
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Chapter 4

The Immersed Finite Element

Method

4.1 Introduction

The Immersed Finite Element Method (IFEM) is both a matematical for-
mulation and a a numerical discretization method developed to provide a
flexible framework for the description of a fluid-structure interaction pro-
blem. This method is quite similar to the Immersed Boundary method [53],
except for the fact that the immersed structure has the same spatial dimen-
sion of the fluid domain. In this formulation each continuum is described with
the most appropriate reference frames [53, 73]. Effects of the fluid-embedded
bodies are summarized into a volumetric source term that describes the fluid-
structure interaction forces. This approach aims at avoiding mesh updates
or remeshing, leading to considerable savings in computational time.

As aforementioned, the original IFEM formulation [73] was born as an
extension of the Immersed Boundary Method [53], which was developed to
treat bodies with geometries having a lower spatial dimension with respect
to the fluid domain. The IFEM approach is capable of handling embed-
ded bodies and fully discretize them independently of the fluid domain. In
both approaches Eulerian (fluid) variables are related to a fixed Cartesian
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mesh, while Lagrangian quantities (structure) are defined on a curvilinear
deformable grid. Hence, interpolation between the two meshes is a key in-
gredient of IFEM. Coupling between Eulerian and Lagrangian quantities is
performed by an interpolation kernel. The earlier versions [53] employ ap-
proximate interpolation Kernel functions. Typically for this task approxima-
tions of the Dirac delta distribution are used, but more sophisticated kernels,
such that the Reproducing Kernel Particle Method (RKPM), [67], have been
developed. In the following description, we employ a different approach, de-
veloped by [6, 7] that recasts the problem in a variational framework, thus
avoiding the explicit construction of the discrete Dirac Delta function.

Stability analyses of the Immersed Boundary method are developed in [8,
9, 10], with extensions to the Immersed Finite Element Method described
in [32]. In these works finite element spatial discretization is used in conjun-
ction with first order finite differences in time. Two approaches are presented,
both using the Backward Euler (BE) scheme to implicitly solve the fluid pro-
blem. The embedded body position is advanced in time by a Forward Euler
(FE) scheme (first order extrapolation of previous data), in which case the
coupled method is termed as semi-implicit (BE/FE). Otherwise, the embed-
ded body evolution is numerically described by an implicit scheme (Backward
Euler), leading to a fully implicit (BE/BE) approach. The key concept in or-
der to obtain stability of the numerical scheme is to require that the energy of
the discretized system does not increase at each time step. Time discretiza-
tion by means of finite differences introduces a spurious energy term related
to the truncation error. If this term is dissipative, the scheme is considered
stable. Conversely if this spurious energy is larger than the energy dissi-
pated by the fluid viscosity, the scheme becomes unstable. A fully implicit
discretization is always stable, while the more efficient semi-implicit approach
suffers a CFL-like stability restriction on time step size. Second order spa-
tial discretization is often used for the fluid, in conjunction with first order
discretization of the displacements of the embedded boundaries/bodies ob-
tained by means of affine spaces. The stability analysis depends on this last
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Figure 4.1: Domain partition, m = d = 2

assumption.
In this chapter we propose the use of higher order approximations for

both the fluid and the Lagrangian finite element spaces (in particular, a
P2 Lagrangian space) and we prove the stability of this higher order ap-
proach, developing a CFL-like stability condition for the semi-implicit ap-
proach. Some numerical example will enforce the obtained results. If the
assumption of visco-elastic behavior of the constitutive law of the immersed
body is adopted, [11] and [32] show that FEM discretization enjoys strong
consistency. We prove that strong consistency is lost when the dissipative
terms of the solid stress tensor do not behave like a fluid and show that
weak consistency has an impact on the stability properties of the scheme.
Moreover, we show for the implicit scheme only that the difference between
fluid and structure densities has an impact on the stability. After introducing
some simplifications, we demonstrate only that a limitation on the minimum
of the adopted time step exists, being a quantitative determination difficult
to achieve. The stability estimate is performed by considering the temporal
evolution of the fluid kinetic energy alone.
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4.2 The Equation of motion

Consider a domain Ω ∈ Rd, d = 2, 3 partitioned in two sub-domains Ωf

and Ωs having the common boundary Γs, with Ω = Ωf ∪ Ωs, Ωf ⊂ Rd,
Ωs ⊂ Rm, m ≤ d, Γs = Ωs ∩ Ωf (Fig. 4.1). The first domain is filled
with fluid, and the second represents the region where a solid continuum is
present. Since the solid is deformable, the geometry of Ωs, and thus of Γs,
changes in time. In the following, Ωs = Ωs(t) denotes the configuration at
time t, while Ω0s = Ωs(0) the initial (reference) configuration. Because of
the no-slip condition, at the interface Γs both continua must have the same
velocity; moreover, the dynamic equilibrium imposes equality of the forces
exerted by the fluid on the structure and the forces exerted by the structure
on the fluid, thus implying continuity of the normal stresses.

It is possible to treat the union of both continua in a unified way as
follows: let u the velocities of both the fluid and the structure, ρα and
σα, α = f, s the densities and the Cauchy stress tensors of the fluid and the
structure respectively and n the outward unit normal n; for a generic volume
V(t) mapped by a reference configuration V (0), which moves with the same
velocity u of the particles in it contained the Virtual Work Principle states
that, for any virtual displacement δu, the following relation holds:∫

V (t)

ρf
du

dt
· δu dx(t) +

∫
V (t)

σf : ∇ (δu) dx(t)

+

∫
V (t)∩Ωs(t)

(ρs − ρf )
du

dt
· δu dX(t)

+

∫
V (t)∩Ωs(t)

(σs − σf ) : ∇ (δu) dX(t)

=

∫
∂V (t)

σfn · δu da(t) +

∫
∂V (t)∩Ωs(t)

(σs − σf )n · δu da(t)

Denoting by X(s, t) the Lagrangian coordinates of the structure, where s
represents the position of the material point at initial time, so du/dt =

∂2X(s, t)/∂t2, integrating by parts and using the following identity:

∂ (Ωs ∩ V ) = (∂Ωs ∩ V ) ∪ (Ωs ∩ ∂V ) (4.1)
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the principle of virtual works yields:∫
V (t)

(
ρf
du

dt
−∇ · σf

)
· δu dx(t)

= −
∫
V (t)∩Ωs(t)

(
(ρs − ρf ) Ẍ −∇ · (σs − σf )

)
· δu dX(t)

−
∫
V (t)∩∂Ωs(t)

(σs − σf )n · δu dA(t) (4.2)

The last term that appears in (4.2) vanishes due to the continuity of the
normal stress. The fluid-structure interaction term can be represented using
the function:

fFSIs = −(ρs − ρf )Ẍ +∇ · (σs − σf ) (4.3)

Proceeding as in [11] it is possible to rewrite relation (4.2) on the domain
V (t), thanks to the following relations:

F (x, t) =

∫
V (t)

fFSIs (X(t), t)δ(x−X(t))dX(t) (4.4)

where δ(·) is the classical Dirac delta distribution.
For the continuity equation, by the conservation of mass inside V (t),

follows:
dm

dt
=

d

dt

∫
V (t)

ρdx(t) =
d

dt

∫
V (t)

ρfdx(t) +
d

dt

∫
V (t)∩Ωs(t)

(ρs(t)− ρf ) dx(t)

=
d

dt

∫
V (0)

Jρfdx(0) +
d

dt

∫
V (0)∩Ωs(0)

Js (ρs(0)− ρf ) dX(0)

=

∫
V (0)

ρf
dJ

dt
dx(0) +

∫
V (0)∩Ωs(0)

(ρs(0)− ρf )
dJs
dt
dX(0)

=

∫
V (t)

ρf∇ · (u) dx(t) +

∫
V (t)∩Ωs(t)

(ρs(t)− ρf )∇ · ẊdX(t)

=

∫
V (t)

(
ρf∇ · (u) + δ (x−X(t)) (ρs(t)− ρf )∇ · Ẋ

)
dx(t) = 0

Continuity equation thus becomes:

ρf∇ · u = G(x, t)
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where:

G(x, t) = −
∫
V (t)

(ρs(t)− ρf )∇ · Ẋ(t)δ(x−X(t))dX(t) (4.5)

Hence, writing the fluid stress tensor as σf = −p + µ (∇u+∇tu), the in-
teraction between fluid and structure can be embedded as a source term in
the classical Navier-Stokes equations, leading to the following problem:

Problem 5 Find u, p and X that satisfy:

ρf

(
∂u

∂t
+ u · ∇u

)
− µ∆u+∇p = F (x, t) in Ω×]0, T [

ρf∇ · (u) = G(x, t) in Ω×]0, T [

F (x, t) =

∫
Ω

fFSIs (X(t), t)δ(x−X(t))dx in Ω×]0, T [

G(x, t) = −
∫

Ω

(ρs(t)− ρf )∇ · Ẋ(t)δ(x−X(t))dx

Ẋ =

∫
Ω

u(x, t)δ(x−X(t))dx in Ω×]0, T [

u(x, t) = 0 on ∂Ω×]0, T [

u(x, 0) = u0(x) on Ω

X(s, 0) = X0(s) on Ωs

and fFSIs , defined as in (4.3).

This problem is now defined in the fixed domain Ω, taking into account the
interaction term between fluid and structure variables within Ωs through the
sources F (x, t) and G(x, t) .

4.2.1 Variational formulation

The variational formulation of problem 5 requires special attention to the
interaction terms. In [6] the authors prove that (4.4) belongs to H−1(Ω)d

even when m ≤ d, so integral (4.6) is well defined even when the space
dimension of the embedded bodies is lower than the space dimension of the
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fluid domain. Multiplying (4.3) by v, a test function belonging to [H1
0 (Ω)]d,

and integrating over the moving domain Ωs(t), one obtains the equation:∫
Ωs(t)

(
(ρs − ρf )Ẍ −∇ · (σs − σf ) + fFSIs

)
· vdΩs = 0 (4.6)

The transformation from the current structure configuration Ωs(t) to the
reference domain is achieved using the first Piola-Kirchoff stress. To this
aim, denoting with F(s, t) = ∂Xi\∂sj the Jacobian matrix, with J(s, t) =

det(F(s, t)), its determinant, with P = Jσ(F−1)T the first Piola-Kirchoff
stress tensor, and with ρ0

s = Jρf the density in the reference configuration,
taking into account the continuity of the normal stress at the interface, and
integrating by parts, eq (4.6) can be rewritten as:∫

Ωs

F · v =−
∫

Ω0s

Js
(
ρ0
s − ρf

)
Ẍ · v(X(s, t))dΩ0s

−
∫

Ω0s

(Ps − Pf ) : ∇v(X(s, t))dΩ0s

In the same way, recalling the Reynolds transport theorem, for the continuity
equations it is possible to write:∫

Ωs

qG = −
∫

Ω0s

(
ρ0
s − ρf

) d
dt

(Js − 1) q(X(s, t))dΩ0s

The problem can now be given in the following variational formulation:

Problem 6 Given u0 ∈ [H1
0 (Ω)]d, X0 ∈ [H1

0 (Ω0s)]
m, Ẋ0 ∈ [H1

0 (Ω0s)]
m, for

all t ∈]0, T [, find (u(t), p(t),X(t)) ∈ [H1
0 (Ω)]d × L2

0(Ω) × [H1
0 (Ω0s)]

m such
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that:

ρf

(
(
∂u

∂t
,v) + (u · ∇u,v)

)
+ µ(∇u,∇v)− (p,∇ · (v)) =

∫
Ωs

F · v ∀v ∈ [H1
0 (Ω)]d (4.7)

ρf (∇ · (u) , q) =

∫
Ωs

qG ∀q ∈ L2
0(Ω) (4.8)∫

Ωs

F · v = −
∫

Ω0s

Js(ρ
0
s − ρf )Ẍ · v(X(s, t))dΩ0s

−
∫

Ω0s

(Ps − Pf ) : ∇v(X(s, t))dΩ0s ∀v ∈ [H1
0 (Ω)]d (4.9)∫

Ωs

qG = −
∫

Ω0s

(
ρ0
s − ρf

) d
dt

(Js − 1) q(X(s, t))dΩ0s ∀q ∈ L2
0(Ω)

(4.10)

Ẋ(s, t) = u(X(s, t), t) on Ω0s

(4.11)

u(x, t) = 0 on ∂Ω

u(x, 0) = u0(x) in Ω

X(s, 0) = X0(s) in Ωs

Ẋ(s, 0) = Ẋ0(s) in Ωs

where (., .) denotes the L2 inner product, defined as:

(u,v) =

∫
Ω

u · v dΩ

4.3 Numerical discretization

Discretization of Problem 6 is naturally obtained by means of Finite Element
(FE) in space and Finite Difference (FD) in time. Even though other discrete
approaches can be used, we follow [64] and use classical FE in space and single
first order FD in time. The fluid pressure and velocities are discretized in
the entire domain Ω, while the structure displacement X is discretized only
in Ω0s
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4.3.1 Space discretization

Let Th be a triangulation of Ω and Sh a triangulation of Ω0s and denote with
hx the diameter of Th and with hs the diameter of Sh. Note that Sh * Th,
even though Ωs ⊂ Ωf . Hence, it is possible to introduce the following finite
dimensional subspaces:

Rr
h ⊆ [H1(Ω0s)]

m Rr
h =

{
φh ∈ [C0(Ω0s)]

m : φh|Tk ∈ [Pr]m ∀Tk ∈ Sh
}

V p
h ⊆ [H1

0 (Ω)]d V p
h =

{
vh ∈ [C0(Ω)]d : vh|Tk ∈ [Pp]d ∀Tk ∈ Th

}
Ql
h ⊆ L2

0(Ω) Ql
h =

{
qh ∈ C0(Ω) : qh|Tk ∈ Pl ∀Tk ∈ Th

}
where Pp is the space of Lagrangian polynomials of degree p defined on the
generic element Tk of Th or Sh respectively. Clearly, spaces Vh and Qh must
be related in order to satisfy the inf-sup condition (see [13, 33]).

Let denote with N α
j and Ndofα, α = s , f , q the generic Lagrangian

basis functions and the number of degrees of freedom associated to the spaces
Rh, Vh and Qh respectively, and with vi the i-th spatial component of the
function v. In order to evaluate integral (4.9), one needs to know the values
of the fluid unknowns on nodes of Ω0s and the values of the fluid test func-
tions on the mapped structural domain, i.e. as a function of the reference
configuration. So, one needs to build an interpolation operator between the
fluid and the structure, defined on the reference domain as follows:

Πh(vi, t) =

Ndofs∑
j=1

vf→si,j (t)N s
j (4.12)

Πh(q, t) =

Ndofs∑
j=1

qf→sj (t)N s
j (4.13)

where:

vf→si,j (t) = vi(X(sj, t)) =

Ndoff∑
l=1

vi,lN f
l (X(sj, t)) (4.14)

qf→sj (t) = q(X(sj, t)) =

Ndofq∑
l=1

qlN q
l (X(sj, t)) (4.15)
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Where sj are the j-th coordinates of the j-th node on the reference configu-
ration. Relation (4.12) and (4.13) can be used to evaluate integrals over Ω0s,
the domain of the structure in its reference (initial) position. The following
semi-discrete Finite Element formulation of Problem 6 can be written:

Problem 7 Given u0h ∈ Vh, X0h ∈ Rh, Ẋ0h ∈ Rh, for all t ∈]0, T [ find
(uh(t), ph(t),Xh(t)) ∈ Vh ×Qh ×Rh such that:

ρf

((
∂uh
∂t

,vh

)
+ (uh · ∇uh,vh)

)
+ µ(∇uh,∇vh)− (ph,∇ · (v)h) =

∫
Ωs

Fh · vh ∀vh ∈ Vh (4.16)

ρf (∇ · (u)h , qh) = −
∫

Ωs

qhGh ∀qh ∈ Qh (4.17)∫
Ωs

Fh · vh = −
∫

Ω0s

Jsh(ρ0
s − ρf )Ẍh · Πh(vh, t)dΩ0s

−
∫

Ω0s

Psh : ∇Πh(vh, t)dΩ0s

+

∫
Ω0s

Pfh : ∇Πh(vh, t)dΩ0s (4.18)∫
Ωs

qhGh = −
∫

Ω0s

(
ρ0
s − ρf

) d
dt

(Jsh − 1)Πh(qh, t)dΩ0s (4.19)

Ẋh = Πh(uh, t) (4.20)

uh = 0 on ∂Ω

uh(0) = u0h in Ω

Xh(0) = X0h in Ω0s

Ẋh(0) = Ẋ0h in Ω0s

Where subscript h denotes the space discrete version of the function, tensor,
etc defined previously at continuum level.

4.3.2 Time discretization by finite difference

Time discretization is obtained using the first order Euler scheme in the
derivatives appearing in (4.16). This is complemented by central and forward
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differencing of Ẍ appearing in (4.18) and Ẋ appearing in (4.20), respectively.
If the Backward Euler is used everywhere, i.e., all time-dependent terms in
equations (4.16), (4.18) and (4.20) are evaluated at the new time, tn+1, the
method is termed BE/BE method and is unconditionally stable, but requires
at each time step the solution of a system of nonlinear equations. A com-
putationally more efficient approach is to use Forward Euler in (4.18) and
(4.20), leading to a semi-implicit approach termed FE/BE. This approach
allows the decoupling of equations (4.18) and (4.20) from (4.16), yielding
a sequential algorithm that in principal requires smaller computational re-
sources. However, it suffers from stability constraints that are explicated as
a CFL-like restriction on the maximum allowable time step [8, 10, 32].

Subdividing the time interval in N steps of size ∆t, such that T ≤ N∆t

and using superscript n, n+1, n+θ, θ ∈ {0, 1}, to indicate quantities defined
at tn+θ = tn + θ∆t, the fully discrete problem can be written as:

Problem 8 Given u0
h ∈ Vh, X0

h ∈ Rh, X−1
h = Xh(−∆t) ∈ Rh, for all
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n ≤ N find (un+1
h , pn+1

h ,Xn+1
h ) ∈ Vh ×Qh ×Rh such that:∫

Ωs

F n+1
h · vh = −

∫
Ω0s

P n+1
sh (∇Xn+θ) : ∇Πh(vh, t

n+θ)dΩ0s

−
∫

Ω0s

Jsh(∇Xn+θ)(ρ0
s − ρf )

Xn+θ
h − 2Xn−1+θ

h +Xn−2+θ
h

∆t2
· Πh(vh, t

n+θ)dΩ0s

+

∫
Ω0s

P n+1
fh (un+θ

h , pn+θ
h ) : ∇Πh(vh, t

n+θ)dΩ0s (4.21)∫
Ωs

Gn+1
h qh =

−
∫

Ω0s

(
ρ0
s − ρf

) (Jh(∇Xn+θ)− 1
)
−
(
Jh(∇Xn−1+θ)− 1

)
∆t

Πh(qh, t
n+θ)

(4.22)

ρf

((
un+1
h − unh

∆t
,vh

)
+ (un+1

h · ∇un+1
h ,vh)

)
+ µ(∇un+1

h ,∇vh)− (pn+1
h ,∇ · (v)h) =

∫
Ωs

F n+1
h · vh ∀vh ∈ Vh

(4.23)

ρf (∇ · (u)n+1
h , qh) =

∫
Ωs

Gn+1
h qh ∀qh ∈ Qh

(4.24)

Xn+1
h −Xn

h

∆t
= Πh(uh(t

n+1), tn+θ) (4.25)

u0
h = u0h in Ω

X0
h = X0h in Ω0s

X−1
h = X0

h −∆tẊ0h in Ω0s

where θ ∈ {0, 1}; θ = 1 yields BE/BE scheme, FE/BE otherwise.

The FE/BE sequential algorithm can be summarized as follows:

1. compute the integrals
∫

Ωs
F n+1
h · vh,

∫
Ωs
Gn+1
h qh in (4.21), (4.22)

2. solve the fluid problem (4.23)-(4.24) with the source terms previously
evaluated by (4.21), (4.22)

3. update the structure position (Xn+1
h ) by extrapolation using (4.25)
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Conversely, BE/BE needs linearization as steps 1 to 3 must be solved fully
coupled.

4.4 Stability analysis

It is well known that in the continuous problem the total energy must equate
the dissipative terms. The numerical problem can not have the same property
because of truncation error, thus we require, as in [8, 10, 11, 32], that the
energy of the system remain non increasing. In the following analysis it is
assumed that the structure is incompressible, so the embedded body shall
satisfy the additional constraint J = 1. This implies the following Lagrangian
mixed formulation for the aforementioned continuum:

ρ0
sẌ −∇ · Ps +∇ps = 0

J − 1 = 0

where ps represent the pressure related to the embedded solid, obtained in the
usual way from the classical Lagrange-multipliers formulation. Regarding the
formulation of the FSI problem, one has to impose a divergence-free velocity
field; moreover the pressure that appears in (4.7) takes into account of ps
so the term related to the fluid stress tensor which appears in (4.3), (4.6)
consist of only the deviatoric part (i.e. −µ∆u). In the sequel the constant
difference between body and fluid densities is denoted by ∆ρ = ρs − ρf .

The specific elastic energy of the system E coincides with that of the
structure and can be defined as:

E = Ps : F (4.26)

so first Piola-Kirchoff tensor can be expressed as:

P kl
s =

∂E
∂Fkl

(4.27)

The total elastic energy of the system is defined by:

E =

∫
Ω0s

E
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Assuming E ∈ C2(Ω0s), the following fourth order tensor is defined:

Hijkl =
∂2E

∂Fij∂Fkl
TensorH is assumed bounded an positive definite, i.e. there exist two positive
constants kmin and kmax such that:

kminF : F ≤ FTHF ≤ kmaxF : F (4.28)

So the elastic energy, defined as E = FTHF is assumed bounded an positive
definite too.

4.4.1 Stability of the continuous and semi-discretized

problems

Following [32] it is possible to prove the following stability estimate for the
continuous Problem 6:

Lemma 2 For t ∈]0, T [, the solution (u(t), p(t),X(t)) ∈ [H1
0 (Ω)]d × L2

0(Ω) × H1
0 (Ω0s)

m,
m ≥ d − 1, of Problem 6 satisfies the following energy equation:
ρf
2

d

dt
‖u‖L2(Ω) + µ‖∇u‖L2(Ωf ) +

∆ρ

2

d

dt
‖Ẋ‖L2(Ω0s) +

d

dt
E(∇X) = 0 (4.29)

Proof Take v = u and q = p in (4.7)-(4.9), use (4.11) and (4.27).

The equation (4.29) states that during time the total energy of the system,
sum of the elastic energy and the kinetic energy, is dissipated by the fluid
viscosity. Ideally one would like to preserve this equilibrium also for the
numerical approximation. Actually, for the semi-discrete Problem 7 a similar
result holds, the only difference consisting on the interpolation term of the
fluid stress to the structure subspace, as shown in the following Lemma.

Lemma 3 For t ∈]0, T [ the solution (uh(t), ph(t),Xh(t)) ∈ Vh × Qh× Rh

of Problem 7 satisfies the following energy equation:
ρf
2

d

dt
‖uh‖L2(Ω) + µ‖∇uh‖L2(Ω) +

∆ρ

2

d

dt
‖Ẋh‖L2(Ω0s)

+
d

dt
E(∇Xh)−

∫
Ω0s

Pfh : ∇Πh(uh, t) = 0 (4.30)
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Proof As in the continuous case, taking vh = uh, qh = ph in (4.23)-(4.18)
and using (4.20) yields the result.

Remark Under the hypothesis of a visco-elastic behavior of the structure
with the same viscosity of the fluid (as done in [11, 32]), the last term that
appears in (4.30) vanishes, showing the strong consistency of the FE semi-
discrete problem. This shows also that no stability restrictions arise for the
space discretization. If the hypothesis is dropped, a stability estimate related
to the interpolation operator should be found; this will be a topic of future
works.

In the sequel, a visco-elastic behavior is assumed, so it is possible to neglect
terms that arise from the interpolator.

4.4.2 Stability of the space and time discretized pro-

blem

The Euler time discretization in problem 8 introduces a residual on the elastic
energy, which can be interpreted as an artificial viscosity, that is not always
positive. The following Lemma 4 shows that the BE/BE approach is uncon-
ditionally stable, while FE/BE is only conditionally stable. Lemma 5 gives a
CFL-like condition for the time step size that ensures the stability FE/BE.

Lemma 4 Let un+1
h , pn+1

h , Xn+1
h be the solution of Problem 8 and assume

that the tensor F and the elastic energy E satisfy (4.28); then scheme BE/BE
is unconditionally stable, while FE/BE does not.

Proof Substituting vh, qh with un+1
h , pn+1

h in (4.23), using (4.24) and the
skew-symmetry of the convective term one obtains:

ρf
2∆t

(
‖un+1

h ‖L2(Ω) − ‖unh‖L2(Ω) + ‖un+1
h − unh‖L2(Ω)

)
+ µ‖∇un+1

h ‖L2(Ω) =
〈
F n+1
h ,un+1

h

〉
(4.31)
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where the right hand side can be evaluated as:〈
F n+1
h ,un+1

h

〉
= −

∫
Ω0s

P n+1
sh : ∇Πh

(
un+1
h , tn+θ

)
−
∫

Ω0s

∆ρ

∆t

(
Xn+θ

h −Xn−1+θ
h

∆t
− X

n−1+θ
h −Xn−2+θ

h

∆t

)
· Πh

(
un+1
h , tn+θ

)
and substituting (4.25):〈

F n+1
h ,un+1

h

〉
= − 1

∆t

∫
Ω0s

P n+1
sh :

(
∇Xn+1

h −∇Xn
h

)
− ∆ρ

2∆t

(
‖Xn+1

h −Xn
h‖L2(Ω0s)

∆t2
−
‖Xn

h −Xn−1
h ‖L2(Ω0s)

∆t2

+ (1− θ)
(
‖Xn

h −Xn−1
h ‖L2(Ω0s)

∆t2
−
‖Xn−1

h −Xn−2
h ‖L2(Ω0s)

∆t2

)
+ θ
‖Xn+1

h − 2Xn
h +Xn−1

h ‖L2(Ω0s)

∆t2

+ (1− θ)
‖Xn+1

h −Xn
h −Xn−1

h +Xn−2
h ‖L2(Ω0s)

∆t2

)
Define the function:

wn(t) [0, 1]→ R+ : wn(t) = E
(
Fn + t(Fn+1 − Fn)

)
(4.32)

Assuming that the elastic energy is sufficiently smooth, i.e. for each time
interval [tn, tn+1], E ∈ C2([tn, tn+1]), (4.32) could be expanded in Taylor
series up to first order, noting that t = 1 yields for BE/BE while t = 0 yields
FE/BE:

wn(1)− wn(0) = E(Fn+1)− E(Fn) = w′n(1)− 1

2
w′′n(ξ)

wn(1)− wn(0) = E(Fn+1)− E(Fn) = w′n(0) +
1

2
w′′n(ξ)

The derivatives of wn(t) can be evaluated as:

w′n(t) =
∂E
∂Fij

(t) ·
(
Fn+1
ij − Fnij

)
= Ps(t) :

(
Fn+1 − Fn

)
w′′n(t) =

∂2E
∂Fij∂Fkl

(t) ·
(
Fn+1
ij − Fnij

)
·
(
Fn+1
kl − Fnkl

)
=
(
Fn+1 − Fn

)T H (Fn+1 − Fn
)
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and hence:

Ps(t) :
(
Fn+1 − Fn

)
= E(Fn+1)− E(Fn)

− 2

(
1

2
− θ
)

1

2

(
Fn+1 − Fn

)T H (Fn+1 − Fn
)

(4.33)

Substituting into (4.31) one obtains:
ρf

2∆t

(
‖un+1

h ‖L2(Ω) − ‖unh‖L2(Ω) + ‖un+1
h − unh‖L2(Ω)

)
+ µ‖∇un+1

h ‖L2(Ω) +
1

∆t

(
En+1(∇Xh)− En(∇Xh)

)
+

∆ρ

2∆t

(
‖Xn+1

h −Xn
h‖L2(Ω0s)

∆t2
−
‖Xn

h −Xn−1
h ‖L2(Ω0s)

∆t2

+
‖Xn+1

h − 2Xn
h +Xn−1

h ‖L2(Ω0s)

∆t2

)
=(

1

2
− θ
)

1

∆t

∫
Ω0s

(
Fn+1 − Fn

)T H (Fn+1 − Fn
)

(4.34)

The fully implicit scheme (BE/BE, θ = 1) thus is unconditionally stable:

− 1

2∆t

∫
Ω0s

(
Fn+1 − Fn

)T H (Fn+1 − Fn
)
≤ −kmin

2∆t
‖Fn+1 − Fn‖L2(Ω0s) ≤ 0

while FE/BE (θ = 0) is stable only if:

0 ≤ 1

2∆t

∫
Ω0s

(
Fn+1 − Fn

)T H (Fn+1 − Fn
)

≤ kmax
2∆t
‖Fn+1 − Fn‖L2(Ω0s) ≤ µ‖∇un+1‖L2(Ω)

Lemma 4 gives only a qualitative stability estimate, while one needs to know
a condition on ∆t for FE/BE in order to achieve stability. Lemma 5 gives
the desired estimate in term of a CFL-like restriction on ∆t.

In order to prove Lemma 5 the following result is introduced, without
proof.

Proposition 4 Given a finite element function fh described by a n-th degree
Lagrange polynomial, it is possible to express its gradient ∇fh element by
element by a polynomial of degree n− 1 involving from first to n− 1 discrete
derivatives, evaluated through nodal values of the function.
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Lemma 5 Let un+1
h , pn+1

h , Xn+1
h be the solution of the FE/BE (θ = 0)

scheme of Problem 8; if the reference Lagrangian mesh is quasi-uniform,
FE/BE is stable under the condition:

∆t ≤ hd−1
x

hm−2
s

2µ

kmaxLnCn
e

(4.35)

where:
Ln = max

Tk∈Sh

{
max

sj ,si∈Tk and adjacent
|Xn

h (sj)−Xn
h (si)|

}
and Cn

e is the maximum number of mapped Lagrangian elements that touch
the same Eulerian element at time n∆t.

Proof Proceeding as in Lemma 4, the goal is to obtain an explicit form for
the right term of (4.34), in order to have:

kmax
2∆t
‖Fn+1 − Fn‖L2(Ω0s) − µ‖∇un+1

h ‖L2(Ω) ≤ 0 (4.36)

which is translated ina an estimation of ‖Fn+1−Fn‖L2(Ω0s) respect to ‖∇un+1
h ‖L2(Ω).

Summing over all triangles of triangulation and using (4.25), (4.12) and (4.14)
the following relation follows:

‖Fn+1 − Fn‖L2(Ω0s) = ∆t2
Nel∑
k=1

|∇Πh(u
n+1
h , tn+θ)|20,Tk (4.37)

denoting from now on the generic component of Πh(u
n+1
h , tn+θ) by fh, and

by ˆ the quantities related to the reference element, being the mesh quasi-
uniform it is possible to write:

|∇fh|20,K ≤ Chm−2
s ‖∇̂f̂h‖2

0,K̂
(4.38)

referring for example to the unitary simplex (for unitary tetrahedron one
proceeds in the same way) with Lagrangian piecewise-continuous elements,
by Proposition 4 it is possible to express the gradient on the k-th element as
a linear combination of discrete derivatives, Gj,i that depend on nodal values,
so relation (4.38) becomes:

|∇fh|20,K ≤ Chm−2
s

m∑
i=1

(
NdofG∑
j=1

Gj,i

)2

≤ Chm−2
s

m∑
i=1

NdofG∑
j=1

G2
j,i (4.39)
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where, for a space of piecewise-continuous Lagrangian polynomials of degree
k in a domain of dimension m,

NdofG =

(
m+ (k − 1)

k − 1

)

It is possible to express Gj,i in (4.39) as a line integral of ∇f ; for example
for piecewise-continuous quadratic elements in a 2D domain one has:

G1,x = −4

(∫ l12
2

0

∇fdl12 −
∫ l12

l12
2

∇fdl12

)

G2,x =
1

4

(∫ l12

l12
2

∇fdl12 −
∫ l13

2

0

∇fdl13 +

∫ l23
2

0

∇fdl23

)

G3,x = −

(
3

∫ l12
2

0

∇fdl12 −
∫ l12

l12
2

∇fdl12

)

G1,y =
1

4

(∫ l13

l13
2

∇fdl13 −
∫ l12

2

0

∇fdl12 −
∫ l23

l23
2

∇fdl23

)

G2,y = −4

(∫ l13
2

0

∇fdl13 −
∫ l13

l13
2

∇fdl13

)

G3,y = −

(
3

∫ l13
2

0

∇fdl13 −
∫ l13

l13
2

∇fdl13

)
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so:

|G1,x| ≤ C1

(∣∣∣∣∣
∫ l12

2

0

∇fdl12

∣∣∣∣∣+

∣∣∣∣∣
∫ l12

l12
2

∇fdl12

∣∣∣∣∣
)

|G2,x| ≤ C2

(∣∣∣∣∣
∫ l12

l12
2

∇fdl12

∣∣∣∣∣+

∣∣∣∣∣
∫ l13

2

0

∇fdl13

∣∣∣∣∣+

∣∣∣∣∣
∫ l23

2

0

∇fdl23

∣∣∣∣∣
)

|G3,x| ≤ C3

(∣∣∣∣∣
∫ l12

2

0

∇fdl12

∣∣∣∣∣+

∣∣∣∣∣
∫ l12

l12
2

∇fdl12

∣∣∣∣∣
)

|G1,y| ≤ C2

(∣∣∣∣∣
∫ l13

l13
2

∇fdl13

∣∣∣∣∣+

∣∣∣∣∣
∫ l12

2

0

∇fdl12

∣∣∣∣∣+

∣∣∣∣∣
∫ l23

l23
2

∇fdl23

∣∣∣∣∣
)

|G2,y| ≤ C1

(∣∣∣∣∣
∫ l13

2

0

∇fdl13

∣∣∣∣∣+

∣∣∣∣∣
∫ l13

l13
2

∇fdl13

∣∣∣∣∣
)

|G3,y| ≤ C3

(∣∣∣∣∣
∫ l13

2

0

∇fdl13

∣∣∣∣∣+

∣∣∣∣∣
∫ l13

l13
2

∇fdl13

∣∣∣∣∣
)

and applying Schwartz inequality:

m∑
i=1

3∑
j=1

G2
j,i ≤ C

(
|X4 −X1|

(∫ l12
2

0

|∇f |2 dl12

)
+ |X2 −X4|

(∫ l12

l12
2

|∇f |2 dl12

)

+ |X6 −X1|

(∫ l13
2

0

|∇f |2 dl13

)
+ |X3 −X6|

(∫ l13

l13
2

|∇f |2 dl13

)

+ |X5 −X2|

(∫ l23
2

0

|∇f |2 dl23

)
+ |X3 −X5|

(∫ l23

l23
2

|∇f |2 dl23

))
≤ max
|Xi−Xj | adjacent

|Xi −Xj |
∑∫

lij

|∇f |2dl

Same results follow for polynomial with a degree higher than the second,
the only difference consists of segment ‖Xi−Xj‖, not necessarily belonging
to one edge of reference triangle/tetrahedron, because from the third order
there exist node inside the triangle.

When d = 2, denoting with T̂k the union of the elements of fluid grid
touched by structural element Tk, one can apply an inverse estimate and a
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trace inequality to obtain:

‖∇fh‖0,lij = |fh|1,lij ≤ C0h
−1/2
x |fh|1/2,lij

≤ C0C1h
−1/2
x |fh|1,T̂k = Ch−1/2

x ‖∇fh‖0,T̂k

When d = 3 previous reasoning is applied as in [32], iterating on a set of
region F̂ij intersection between a plane passing through lij and T̂k:

‖∇fh‖0,lij = |fh|1,lij ≤ C0h
−1/2
x |fh|1/2,lij

≤ C0C1h
−1/2
x |fh|1,F̂ij ≤ C0C1C2h

−1
x |fh|1/2,F̂ij

≤ C0C1C2C3h
−1
x |fh|1,T̂K = Ch−1

x ‖∇fh‖0,T̂k

so:
|∇fh|20,lij ≤

C

hd−1
x

|∇fh|20,T̂k
and:

|∇fh|20,K ≤ C
hm−2
s

hd−1
x

max
|Xi−Xj | adjacent

|Xi −Xj ||∇fh|20,T̂k

Hence:

|∇fh|20,Ω0s
≤ C

hm−2
s

hd−1
x

Nel∑
k=1

max
|Xi−Xj | adjacent

|Xi −Xj ||∇fh|20,T̂k

≤ C
hm−2
s

hd−1
x

max
k

{
max

|Xi−Xj | adjacent
|Xi −Xj|

} Nel∑
k=1

|∇fh|20,T̂k

≤ C
hm−2
s

hd−1
x

LnCn
e |∇fh|20,Ω (4.40)

Thanks to (4.40) it is now possible to write:

kmax
2∆t
‖Fn+1 − Fn‖L2(Ω0s) ≤

kmax∆t

2

hm−2
s

hd−1
x

LnCn
e ‖∇un+1

h ‖L2(Ω) (4.41)

so, from (4.36) and (4.41) (4.35) follows.

Remark While in [32] |Xn
h (sj)−Xn

h (si)| represents effectively the distance
between two vertices in the deformed configuration, here and in the sequel
this quantity represents the distance between two adjacent nodes (i.e. the
straight line that joins no more than two nodes), not necessarily on a side.
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Corollary. Numerical viscosity due to time discretization is given by

−kmax∆t
2

hm−2
s

hd−1
x

LnCn
e (4.42)

for FE/BE scheme and by:

kmin∆t

2

hm−2
s

hd−1
x

Ln+1Cn+1
e (4.43)

for BE/BE scheme.

Proof Relation (4.42) follows by (4.41), while (4.43) is obtained in the same
way, using n+ 1 instead of n.

4.5 Some considerations on the stability crite-

ria related to the inertial term

As far as the stability related on the inertial term is concerned, some conside-
rations for the only implicit scheme are introduced in this section. When one
deals with a problem where the density of the immersed structure is greater
than (or equal to) the fluid one, the unconditional stability is always assured.
Conversely when this is not the case, a limitation on the minimum value of
the time step has to be satisfied to achieve stability.

This section is intended in demonstrating that this limitation exists, be-
ing the determination of its minimum value a difficult task involving the
estimation of the constants introduced in the used inequality.

Nevertheless, numerical results of section 4.6.2 will show the existence of
this limitation, even though not determined.

In order to focus on the only inertial term related to the kinetic energy,
the elastic term is neglected for the sake of simplicity.

The criterion here adopted to check the stability deals with the temporal
variation of the kinetic energy of the fluid alone, evaluated on the whole
domain Ω. The reason of this choice comes from the difficulties to separate
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the fluid domain Ωf from the whole domain Ω in the discretized problem.
Nevertheless, if the fluid kinetic energy defined on the whole domain tends
to increase in time, an instability in the numerical algorithm occurs. Indeed,
being the system isolated, at continuum level the maximum value of the
total energy has to be the one of the initial condition; as a consequence, the
fluid kinetic energy is bounded from above by this value. If the value of
the fluid kinetic energy increases unbounded in time, the numerical scheme
is introducing a spurious energy in the system, thus making the algorithm
unstable.

Denoting by ∆ρ the difference between the structure and fluid densities,
when 0 ≤ ρs < ρf the energy estimation yields:

ρf
2∆t

(
‖un+1

h ‖L2(Ω) − ‖unh‖L2(Ω) + ‖un+1
h − unh‖L2(Ω)

)
= −µ‖∇un+1

h ‖L2(Ω)

+
|∆ρ|
2∆t

(
‖Xn+1

h −Xn
h‖2

L2(Ω0s)

∆t2
−
‖Xn

h −Xn−1
h ‖2

L2(Ω0s)

∆t2

+
‖Xn+1

h − 2Xn
h +Xn−1

h ‖2
L2(Ω0s)

∆t2

)
The only positive term on the right hand side deals with the contribution of
the structure inertial force and could be bounded as follows:

|∆ρ|
2∆t

(
‖Xn+1

h −Xn
h‖2

L2(Ω0s)

∆t2
−
‖Xn

h −Xn−1
h ‖2

L2(Ω0s)

∆t2

+
‖Xn+1

h − 2Xn
h +Xn−1

h ‖2
L2(Ω0s)

∆t2

)

≤ |∆ρ|
2∆t

(
‖Xn+1

h −Xn
h‖2

L2(Ω0s)

∆t2
−
‖Xn

h −Xn−1
h ‖2

L2(Ω0s)

∆t2

+
‖Xn+1

h −Xn
h‖2

L2(Ω0s)

∆t2
+
‖Xn

h −Xn−1
h ‖2

L2(Ω0s)

∆t2

)

=
|∆ρ|
∆t

‖Xn+1
h −Xn

h‖2
L2(Ω0s)

∆t2

denoting with superscripts f, s the test function of fluid and structure respec-
tively and neglecting the temporal index, the interpolation can be rewritten
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as

Xn+1
h −Xn

h

∆t
=
∑
i

ui

(∑
m

N f
i (Xm)N s

m(q)

)
=
∑
i

uiÑi(q)

where Ñi(q) is a test function defined on the structural grid for the i − th
fluid node. It follows:
‖Xn+1

h −Xn
h‖2

L2(Ω0s)

∆t2
=
∑
i,j

uiuj

∫
Ω0s

Ñi(q)Ñj(q)

=
∑
Tk∈Sh

∑
i,j

uiuj

∫
ΩTk

(∑
mk

N f
i (Xmk)N

s
mk

(q)

)(∑
pk

N f
j (Xpk)N

s
pk

(q)

)
Being the maximum absolute value of the Lagrange functions at least one,
considering a quasi-uniform mesh and denoting by NTria the total number
of triangles/tetrahedra on the structure triangulation and by NBnodeT the
total number of node on the reference triangle/tetrahedron of the structural
mesh, it follows:∑

Tk∈Sh

∑
i,j

uiuj

∫
ΩTk

(∑
mk

N f
i (Xmk)N

s
mk

(q)

)(∑
pk

N f
j (Xpk)N

s
pk

(q)

)

≤
∑
Tk∈Sh

∑
i,j

uiuj

(∑
mk

N f
i (Xmk)

)(∑
pk

N f
j (Xpk)

)∫
ΩTk

dTK

≤ Chms
∑
Tk∈Sh

∑
i,j

(
ui
∑
mk

N f
i (Xmk)

)(
uj
∑
pk

N f
j (Xpk)

)
≤ Chms

∑
Tk∈Sh

(NBnodeT )2
∑
i,j

uiuj

= Chms
[
NTria× (NBnodeT )2]∑

i,j

uiuj

≤ Chms
[
NTria× (NBnodeT )2](∑

i

(ui)
2 +

∑
j

(uj)
2

)
= 2Chms

[
NTria× (NBnodeT )2]∑

i

(ui)
2

for a quasi-uniform mesh the following relation holds:

C1h
d
f

∑
i

(ui)
2 ≤ ‖uh‖2

L2(Ω) ≤ C2h
d
f

∑
i

(ui)
2
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by applying the Poincarè inequality:∑
i

(ui)
2 ≤ C3

hdf
‖uh‖2

L2(Ω) ≤
C4

hdf
‖∇uh‖2

L2(Ω)

so:

‖Xn+1
h −Xn

h‖2
L2(Ω0s)

∆t2
≤ C

hms
hdf

[
NTria× (NBnodeT )2] ‖∇uh‖2

L2(Ω)

Generalizing for every value of ∆ρ it follows:

∆t ≥ −C∆ρ

µ

hms
hdf

[
NTria× (NBnodeT )2] (4.44)

clearly, if ∆ρ ≥ 0 stability is assured, being always ∆t > 0.
Being the total number of triangle a great quantity, this estimation shows

only that this limitation exists, but does not furnish any information on
the minimum value of the time step size. In section 4.6.2 some results are
depicted that show the existence of this limitation.

4.6 Numerical results

The stability properties of BE/BE and FE/BE schemes, in conjunction with
a second order spatial interpolation are tested on a simple numerical pro-
blem. To this aim, denoting by S the second Piola-Kirchoff stress tensor,
the temporal evolution of total energy, given by:

ET =

∫
Ω

1

2
‖u‖2 +

∫
Ω0s

SklEkl

Ekl =
1

2

(
∂dk
∂sl

+
∂dl
∂sk

+
∑
m

∂dm
∂sk

∂dm
∂sl

)
d = X(s, t)−X0(s)

is recorded as a function of time. We use an example consisting of an in-
sulated system, for which the total energy monotonically decreases in time
until it reaches a constant value. Thus spurious effects due to time-stepping
can be easily visualized.
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4.6.1 Problem setup

Figure 4.2: Domain

Figure 4.3: Initial condition

The computational domain of Fig. 4.2 consists in a structure constrained
at bottom, embedded in a viscous fluid. For time t < 0 the structure is con-
strained in a pre-loaded configuration and the fluid is at rest, like in Fig. 4.3.
At time t = 0 the structure is released and evolves to an unstrained configura-
tion, driving the fluid in it’s neighborhood. From the physical point of view,
the motion that arises is damped by the fluid viscosity and consequently the
total energy is dissipated.

Fluid is assumed to be Newtonian incompressible, described by Navier-
Stokes equations, while structure is a Hookean isotropic massless one, de-
scribed by it’s first Piola-Kirchoff tensor:

P =
c1

2
tr
(
FTF− I

)
F + c2

(
FTF− I

)
F
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Figure 4.4: Total Energy temporal evolution

Figure 4.5: Total Energy temporal evolution, particular
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Fluid domain Ω (l × h) 4× 1 (cm)

Structure dimension Ωs (ls × hs) 0.5× 0.05 (cm)

Fluid density ρf 1 (g/cm3)

Structure density ρs 1 (g/cm3)

Kinematic viscosity ν 1 (cm2/s)

Young Modulus E 4200 (dyne/cm2)

Poisson Modulus σ 0.45

Pre-load force density f 85 (dyne/cm3)

Table 4.1: Physical and geometrical properties

being c1 and c2 the two Lamé constants, thus defined:

c1 =
Eσ

(1 + σ)(1− 2σ)
c2 =

E

2(1 + σ)

Physical and geometrical properties are shown in table 4.1. The domain is
discretized by 80× 20 nodes, while structure by 4× 40. For the fluid P2−P1

Lagrangian finite elements spaces are adopted, [64], whereas the structure
is approximated by P2 Lagrangian finite elements. Considering the same
simplification for Ln and Cn

e adopted in [32], the constraint on the time step
size for the semi-implicit algorithm becomes:

∆t ≤ hd−1
x

hm−2
s

1

kmaxC

Since the constant C typically is close to one, choosing for kmax the maximum
between c1 and 2c2. With data of Table 4.1 it is possible to show that a time-
step of ∆t = 10−4s ensures stability, while another one of at least one order
of magnitude greater yields an unstable semi-implicit scheme. Figure 4.4
shows the temporal behavior of energy for both implicit and semi-implicit
algorithm when ∆t = 10−4s and ∆t = 10−3s. In the same figure the total
energy decay for ∆t = 10−2s for the implicit scheme is depicted, while in
figure 4.5 depict the energy behavior at the earlier simulation time for the
implicit and semi-implicit schemes, evaluated with time steps of ∆t = 10−4s
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Fluid domain Ω (l × h) 4× 1 (cm)

Structure dimension Ωs (ls × hs) 0.5× 0.05 (cm)

Fluid density ρf 1 (g/cm3)

Kinematic viscosity ν 0.035 (cm2/s)

Young Modulus E 420 (dyne/cm2)

Poisson Modulus σ 0.45

Table 4.2: Physical and geometrical properties common to all the test case

and ∆t = 10−3s. As it is possible to see the results are so in agreement with
the theory introduced in section 4.4; moreover, the behavior of the total
energy, when algorithms are stable, is slightly different: this is caused by the
different numerical viscosity, which depends on the time step size.

4.6.2 Numerical result related to the inertial term

The numerical simulations here performed are intended in demonstrating
the validity of results described in section 4.5. In order to highlight the
energy evolution when ρs < ρf , a small Young modulus is adopted for the
structure thus reducing the numerical viscosity defined in (4.43). The initial
configuration of the structure is the same used for the simulations performed
in subsection 4.6.1. The data common to all the test case are summarized in
table 4.2

The first test case is performed by adopting the same densities for both the
fluid and the solid and considering a time step of ∆t = 10−5s and another of
∆t = 10−2s. As depicted in figure 4.6, the scheme presents a time-decreasing
fluid kinetic energy.

Conversely, when the structure density is smaller than the fluid one, as in
the second and in the third case, the fluid kinetic energy increases in time for
some values of the time step size (respectively, for a time step smaller than
∆t = 2 · 10−5 for ρs = 0 and for a time step smaller than ∆t = 2 · 10−6 for
ρs = ρf/2). In figure 4.7 the fluid kinetic energies for ρs = 0 and ∆t = 10−5,
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Figure 4.6: Fluid kinetic energy vs time for the first test case

∆t = 2 · 10−5, ∆t = 5 · 10−5, ∆t = 10−4 and ∆t = 10−3. are depicted. The
time steps ∆t = 10−5 and ∆t = 2·10−5 yield instability, while the others show
a stable temporal behavior. Moreover, in stable cases, the energies temporal
evolutions are similar each others. By the intermediate value of structural
density ρs = ρf/2 analogous results are found. In particular, the instability
appears for a time step smaller than 2 · 10−6, a value grater than the one of
the previous test case, in agreement with formula (4.44). The results for test
case 3 are depicted in figure 4.8.

4.7 Conclusion

In this chapter we have extend the formulation of [7, 11, 32] to a compressible
structure of generic density. Moreover, we have proposed a discretization of
this latter by finite element in space and finite difference in time and two
algorithmic strategies (one implicit and one semi-implicit) for obtaining a
numerical solution. By considering the particular case of an incompressible
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Figure 4.7: Fluid kinetic energy vs time for the second test case

Figure 4.8: Fluid kinetic energy vs time for the third test case for testing the

instability related to the inertial terms
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structure, with the same density and visco-elastic behavior of the fluid, we
have furnished a stability estimation based on the total energy time evolu-
tion for each strategy. We have shown that the implicit algorithm yields a
decreasing of the total mechanical energy and thus is unconditionally stable,
while the semi-implicit one achieve stability only if a restriction on the max-
imum time step size is satisfied. Differently from [32], we have considered
a generic Lagrangian polynomial description for the structure, and we have
demonstrated that the case of an affine polynomial description, as adopted
in [32], represents a particular case of the estimation here obtained.

Moreover, we have demonstrate for the implicit algorithm that a lower-
limitation exists on the time step size if the structure density is smaller than
the fluid density. The analysis on this latter condition was performed by con-
sidering the only fluid kinetic energy, on the whole domain Ω, being difficult
to separate the fluid domain from the solid one after the geometrical discre-
tization. Nevertheless if the value of this latter energy increases unbounded
in time, the algorithm is without doubts unstable. Indeed, the the kinetic
energy has to be limited from above by the total mechanical energy, which as-
sumes its maximum value at the initial time. The condition here introduced
shows only that a limitation exists, but does not furnish a quantitative value
of the limit.

Numerical results here reported have shown the consistency of the results
in this work explained.
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Chapter 5

Comparison of Arbitrary

Lagrangian Eulerian and

Immersed finite Element methods

for immersed structures

5.1 Introduction

In this chapter we present a comparison between the Arbitrary Lagrangian
Eulerian method and the Immersed finite element method. The aim of this
chapter is to show that when dealing with problems of fluid motion with
immersed continuum a reasonable choice for the numerical approximation
is represented by the IFEM method , thus we compare the total number of
sub-iterations required to reach the convergence at each time step between
the IFEM and the ALE schemes. Note that whenever the ALE method
yields a highly deformed fluid mesh, remeshing must be performed to avoid
the linear system ill-conditioning. In the following comparison we do not
perform remeshing but highlight the ALE “bad” behavior by counting linear
iterations, whose number increases with ill-conditioning. The IFEM does not
suffers for this problem, as shown in figure 5.1. Hence, while IFEM is well
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Figure 5.1: Comparison between ALE (right) and IFEM (left) methods with

large structural displacement

suited for modeling a structure immersed in a fluid, as is the case of valves
dynamic, the study of the arterial wall displacement is better described by an
ALE formulation, which allows direct enforcement of the coupling boundary
condition.

5.2 Problem description

The case under study consists of a bounded fluid domain with an immersed
structure, fixed at bottom (see figure 5.2). The fluid is driven by a constant
pressure gradient between the inlet (Γin) and the outlet (Γout) sections. The

Figure 5.2: Problem geometry and symbol conventions

fluid is initially at rest and the structure is initially unloaded. For the sake of
simplicity, a linear elasticity model is adopted, with its stress tensor defined
as:

σ = (λ∇ · d) I + 2µε

εij =
1

2

(
∂di
∂sj

+
∂dj
∂si

)
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Domain dimension (L× h): 40× 3(m)

Fluid density (ρf ): 999.1(Kg
m3 )

Structure dimension (b× h): 1× 1.5 (m)

Structure density (ρs): 7792.28(Kg
m3 )

Poisson coefficient (σ) 0.33

Young Modulus(E) 210000 ( N
m2 )

Time step size (∆t) 5× 10−3 (s)

Total number of fluid mesh nodes 1687

Total number of structural mesh nodes 28

Table 5.1: Common parameters to case 1 and case 2

parameter case 1 case 2

Kinematic viscosity (ν) 1(m2

s
) 10−6(m2

s
)

Pressure at inlet 5 · 104 Pa 8.9 · 10−7 Pa

Pressure at outlet −5 · 104 Pa bar −8.9 · 10−7 Pa

Table 5.2: Common parameters to case 1 and case 2

Two cases are here analyzed, they have in common the parameters re-
ported in table 5.1, while the parameter that distinguish the two test cases
in table 5.2.

Parameters here adopted have no physical meaning; the chosen values
are finalized to obtain typical numerical results without excessive computing
time and at the same time highlight the relevant numerical results of the
analyzed schemes

5.3 Algorithm description

The numerical discretization of the problem is performed by finite element in
space and finite difference in time, as described in chapter 3 for the ALE for-
mulation and in chapter 4 for the IFEM one. In particular, fluid is described
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through a P2 − P1 finite element space [64], while structural deformations
with P2 elements.

5.3.1 ALE algorithm

ALE mapping is of the type isoparametric with P2 element. The boundary
conditions used to evaluate the ALE mapping are homogeneous Dirichlet on
ΓD, while on Γin, Γout only tangential displacements are allowed. Clearly, at
the fluid-structure interface the mesh displacement has to be the same of the
structure displacement.

Given initial an guess (k = 0) dn+1
0 , wn+1

0 the iterative cycle reads as
follows:

1. solve the Navier-Stokes problem, by imposing the continuity of velocity
at the interface, obtaining (un+1

k+1 , p
n+1
k+1);

2. evaluate the weak form of the fluid force on the structure;

3. solve the structural problem, by imposing the force previously deter-
mined as Neumann boundary condition, obtaining (d̃n+1

k+1);

4. apply relaxation (if required) to the new displacement:

dn+1
k+1 = ω d̃n+1

k+1 + (1 − ω) dn+1
k

;

5. determine the news mesh displacement and velocity (sn+1
k+1 , w

n+1
k+1) vec-

tors by solving the mapping formulation;

6. move the mesh ;

7. if convergence is not reached, set k = k + 1 and go to 1.
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5.3.2 IFEM algorithm

The IFEM algorithm employed in these simulations slightly differs from the
one described in chapter 4 because structure displacement is evaluated by
solving an additional equation on the structural mesh, where a Dirichlet
Boundary condition is imposed on the whole boundary. Moreover, the forcing
term F takes into account the contribution that comes from the fluid stress
tensor, so no visco-elastic terms are considered.

Given initial guess (k = 0) dn+1
0 , wn+1

0 the iterative algorithm reads as
follows:

1. evaluate the weak form of the source forcing
∫

Ωs
F n+1
k+1 · v;

2. solve the Navier-Stokes equation, obtaining (un+1
k+1 , p

n+1
k+1);

3. solve the elasticity equation, with the following Dirichlet boundary con-
dition at interface:

dn+1
k+1

∣∣
∂Ωs

= dn+1
∣∣
∂Ωs

+ un+1
k+1

∣∣
∂Ωs

thus obtaining (dn+1
k+1);

4. go back to 1 if convergence was not reached.

5.4 Numerical results

In fig 5.3 the total number of sub-iterations required to reach convergence
is plotted for case 1, while in figure 5.4 the same is plotted for case 2. For
the immersed finite element method the number of sub-iterations decreases
in time, converging to a number between 25 − 30 for case 1 and around 6

for case 2. Conversely, for the Arbitrary Lagrangian Eulerian method, the
number of sub-iterations increases in time, when the displacement becomes
large and the fluid mesh becomes too deformed. In case 1 where the displace-
ment is larger (see figure 5.5, 5.6) the total number of sub-iteration increases
rapidly; conversely in case 2, where displacements are about 10 order of
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magnitudes smaller (see figure 5.7, 5.8), the total number of sub-iterations
increases slower.

Figure 5.3: Number of sub-iteration for reach convergence vs time of case 1 for

ALE (blue line) and IFEM (magenta line)

The solution obtained by the ALE method and the one obtained by IFEM
method do not differ so much, as it is possible to see by comparing the
structural mesh position, figs 5.9, 5.10
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Figure 5.4: Number of sub-iteration for reach convergence vs time of case 2 for

ALE (blue line) and IFEM (magenta line)

Figure 5.5: Solution at time t = 0.25s, case 1
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Figure 5.6: Solution at time t = 0.5s, case 1

Figure 5.7: Solution at time t = 0.25s, case 2
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Figure 5.8: Solution at time t = 0.5s, case 2

Figure 5.9: Structural mesh for ALE and IFEM methods, time t = 0.25s (left)

and t = 0.5s (right), case 1
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Figure 5.10: Structural mesh for ALE and IFEM methods, time t = 0.25s (left)

and t = 0.5s (right), case 2

126



Part III

Heart Electro-Mechanics
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Chapter 6

The Heart electro-physiology

6.1 Introduction

The heart is a complex organ which could be approximated as a volumetric
pump, constituted by the heart muscle and activated by an electric signal.
The study of this complex organ yields mainly two branch of interest:

• The electro-physiology, aimed at determine how an electrical wave tra-
vels in the heart

• The mechanics, aimed at determine the mechanical response of the
heart, when inserted in a circulatory system

The final task of this part of the thesis is devoted to the study of the coupling
of these two branches, determining the so called “electromechanical activity”
of the heart. In this chapter the heart electro-physiology is explained, while
in chapter 7 the mechanical model is treated. Finally, in chapter 8 the char-
acteristics of a coupled electro-mechanics problem are introduced.

The heart electro-physiology is description of the electrical wave propaga-
tion which is based on two different spatial scales: the cellular (microscopic)
one, modeling the electrical wave propagation inside the heart muscular cell
and the macroscopic one, describing the propagation of the electrical wave
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Figure 6.1: Sketch of the cell membrane

inside the heart (i.e. from a cell to another) and from the heart to the rest
of the body.

At microscopic level, the electrical propagation is related to the ionic
exchange between the intra-cellular and extra-cellular regions; the ionic ex-
change occurs through the cell membrane, a surface perforated by proteins
which assures the flux of the electrical ion from the extern into the cell and
vice-versa and so the cellular polarization and depolarization (fig. 6.1). There
exists three different type of ionic exchange, depending on their characteri-
stic:

• ionic channels

• pumps

• exchangers

Ionic channels are passive elements which allow the flow of a chemical species
in only one side, depending on its electrochemical gradient. Ionic channels
are therefore modeled as a a variable conductivity (in particular, they could
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be closed, i.e. zero conductivity) and their opening/closing is the cause of
cell depolarization (for sodium channels) and re-polarization (for potassium
channels). The current generate by ionic channels is proportional to the
concentration of ions at intra and extra cellular level.

Conversely, pumps are active elements responsible for the flow of chemi-
cal species in the electrochemical gradient opposite direction; the necessary
energy to do so is extracted by the molecule of Adenosine Tri Phosphate
(ATP) by the cell metabolism. Pumps act after ionic channels and restore
the initial ionic concentration.

Exchangers are channels which exchange ionic species using the energy
which becomes by the ionic gradient of another ionic specie. A typical ex-
change is the one of the sodium-calcium species, where the calcium gradient
is the one generated by a sodium-potassium pump.

At macroscopic level, the electrical wave propagation was introduced [60]
treating the heart as continuum medium; in literature there exists many mo-
dels to treat the heart as a continuum, however the most used is the so called
“bidomain model” [65] which describes the evolution of the electrical potential
in two different microscopic domain, the intracellular one and the extracel-
lular one (by this the name bidomain). The solution of this latter furnishes
the intra and extracellular potential, the difference of which, called trans-
membrane potential, constitutes the electrical activation responsible of the
heart contraction. The intra-cellular and the trans-membrane potentials are
not evaluable by clinical equipment; however it is possible to determine the
difference between some body location of the extracellular potential, through
a medical device called electro-cardiogram (ECG). The extra-cellular poten-
tial has so a strong impact for which concerns the clinical point of view.

6.2 The bidomain model

As pointed out in section 6.1, the heart tissue is formed by two different
media (the intra-cellular medium, ΩH,i, representing the set of cells forming
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the heart muscle and the extra-cellular medium, ΩH,e, representing the space
between the cells), separated by the cell membrane, figure 6.2. The total

Figure 6.2: The extra and intra cellular level

heart volume ΩH is formed by the union of both domains domain ΩH,i and
ΩH,e, as follows:

ΩH = ΩH,e ∪ ΩH,i

where by ΩH,e,i and ΩH the closure each domain is denoted.
Each media is assumed to be a passive conductor, with an anisotropic

conductivity σi,e; the current-potential relation corresponds to the Ohm’s
law, as follows:

ji,e = −σi,e∇ui,e

where ui,e denotes the intra or extra cellular potential and ji,e denotes the
intra or extra cellular current density. The intersection of the boundaries of
the two domains corresponds to the cell membrane Γm previously described
in 6.1. Cell membrane is crossed by a surface current density Im, obtained
by the continuity equation:

Im = ji · nH = −je · nH

where nH represents the outward unit normal to ΩH,i. Typically, the mem-
brane electrical behavior is described as a circuit formed by a parallel of a
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resistance and a capacity, yielding to the following relation:

Im = Iion + Cm
∂Vm
∂t

+ iapp

where iapp represents an applied external current, Cm denotes the capacity
for a unitary surface, Vm the trans-membrane potential Vm = ui−ue, and Iion
the ionic current depending on the ionic exchanges at microscopic level, as
described in section 6.1. Even though different models exist in literature for
determining Iion, [58, 63] each one depends on the trans-membrane potential,
Vm and on the ionic activity of the cell membrane. Indeed, in each model
exists a variable, denoted by w which models these aspects and has to obey
to an ODE’s system as follows:

∂w

∂t
+ g (Vm,w) = 0

here g depends on the model chosen for describing the ionic model.
Through an homogenization procedure as described in [40, 54], it is pos-

sible to model the propagation phenomena at continuum level on the domain
ΩH ; this leads to the following set PDEs:

Am

(
Cm

∂Vm
∂t

+ Iion (vm, w)

)
−∇ · (σi∇ui) = Iapp in ΩH (6.1)

Am

(
Cm

∂Vm
∂t

+ Iion (vm, w)

)
+∇ · (σe∇ue) = Iapp in ΩH (6.2)

∂w

∂t
+ g (vm, w) = 0 in ΩH (6.3)

or, in it’s typical differential-algebraic (DAE) formulation:

Am

(
Cm

∂Vm
∂t

+ Iion (vm, w)

)
−∇ · (σi (∇Vm +∇ue)) = Iapp in ΩH (6.4)

∇ · ((σi + σe)∇ue) +∇ · (σi∇Vm) = 0 in ΩH (6.5)
∂w

∂t
+ g (vm, w) = 0 in ΩH (6.6)

System (6.1)-(6.2), is the so called “bidomain model“. System (6.1)-(6.2) (
or the corresponding DAE form, (6.4)-(6.5)) fas to be endowed by suitable
boundary conditions.
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Heart boundary is formed by an internal region (endocardium) corres-
ponding to the surface delimiting the ventricles and by an external surface
(epicardium) surrounded by the human tissue (bones, lungs, etc). Through
some experimental observations [52], was noted that the intracellular current
is not transmitted outside the heart; conversely, the extracellular current
propagates at the exterior only on the epicardium, leading to the continu-
ity of the potential and the extra-cellular current at the epicardium surface.
However, when the study of the electrical activity is limited to the heart
only, a typical practice consists in imposing no flux on the epicardium for
the extracellular current (i.e. the heart is considered as isolated). For system
(6.1)-(6.2) the following boundary conditions [41, 65] thus follow:

σi∇ui · nH = 0

σe∇ue · nH = 0

while for the DAE system:

σi∇Vm · nH = −σi∇ue · nH
σe∇ue · nH = 0

In both cases, dealing with boundary conditions of the Neumann type only,
the following additional condition:∫

Ωh

ue = 0

has to be imposed for the well-posedness of the problem.

6.2.1 The ionic models

The expressions for Iion (vm, w) and w depend on the ionic model chosen;
the most simple is the one called Fizhugh and Nagumo, [24, 37]:

Iion (vm, w) = kvm (vm − a) (vm − 1) + w

g (vm, w) = ε (βvm − γw)
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Other models exist in literature ( Aliev and Panfilov, [2], Mitchell and Schaef-
fer, [47]); in the present work the model of Mitchell and Schaeffer, [47] will
be assumed. This is defined by the following relations:

Iion (vm, w) = − w

τin

(vm − Vmin)2 (Vmax − vm)

Vmax − Vmin
+

1

τout

vm − Vmin
Vmax − Vmin

g (vm, w) =

{
w

τopen
− 1

τopen(Vmax−Vmin)2
vm < Vgate

w
τclose

vm > Vgate

where τin, τout, τopen, τclose, Vgate are given parameters and Vmin, Vmax

scaling constants. This model integrates relevant physiological properties of
the cell membrane (trans-membrane potential, activation dynamics and two
currents). In particular, it is capable of reproducing the cell heterogeneity,
as described in section 6.4.3.

6.3 The thorax model

With the term ”thorax model” here and in the following is intended the elec-
trical model which describes the propagation of the extra-cellular potential
and of the extracellular current in the whole human body. When the tho-
rax potential is known, it is possible to determine the electro-cardiogram by
evaluating the potential differences between some typical point of the body
as, for example, those marked in figure 6.3 .

Figure 6.3: Electrode position for leads I, II, III, aVR, aVL and aVF
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Thorax domain ΩT as depicted in fig. 6.4 includes bones and lungs and
is delimited by the epicardium Σ and by the body skin Γext By the electrical

Figure 6.4: Domain decomposition

point of view is considered as in a quasi-static state as demonstrated in [45]
and behaves like a passive conductor, described by the following Ohm’s law:

jT = σT∇uT

where uT represents the thorax potential, and σT the heterogeneous conduc-
tivity tensor. Being any source of charge absent, by the continuity equation
it follows:

∇ · (σT∇uT ) = 0 in ΩT (6.7)

As far as for the boundary condition is concerned, the surface Γext is electri-
cally isolated, [42, 54, 58, 63]:

σT∇uT · nT = 0 on Γext (6.8)
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where nT denotes the outward unit normal on Γext. On the epicardium Σ

however the continuity of potential and current with the one of the heart has
to be imposed; it follows:

ue = uT on Σ (6.9)

σT∇uT · nT + σe∇ue · nH = 0 on Σ (6.10)

where nH represents the heart outward unit normal.
When the solution is determined numerically, conditions (6.9),(6.10) im-

ply the coupling between the heart and the thorax model, yielding to an
algorithm in which heart-thorax sub-iteration are required. In literature
however, there exist some works ([12, 43, 55, 57]) where the condition (6.10)
is relaxed by imposing an homogeneous boundary condition for each model
(the model is named “heart isolated”), thus avoiding sub-iterations. This lat-
ter hypothesis produces good results in terms of ECG only when one deals
with non-pathological case.

The interested reader can find the proof of the existence and the unique-
ness of the bidomain-thorax coupled system in [72].

6.4 Other modeling aspects

The description of the heart electro-physiology is completed by the following
three aspects:

• The modeling of the heart and thorax conductivity

• The modeling of the electrical external stimulus

• The modeling of the cell heterogeneity

6.4.1 Heart and thorax conductivity

As mentioned in section 6.2, the heart conductivity is anisotropic, being
the heart muscle made of fibers. Thus, the electrical conductivity is higher
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σli (Scm−1) σti (Scm−1) σle (Scm−1) σte (Scm−1)

3.0× 10−3 3.0× 10−4 3.0× 10−3 1.2× 10−3

Table 6.1: Heart conductivity values

along the fiber direction than in the transverse one. Denoting by a(x) the
unit vector parallel to the fiber local direction, with σl the conductivity
along the fiber and with σt the conductivity in the transverse direction, the
conductivity tensors for the intra and extra cellular currents become:

σi,e = σti,eI +
(
σli,e − σti,e

)
a(x)⊗ a(x)

where I denotes the identity matrix and ⊗ the tensorial product.
Different heart conductivity values for σli,e and σti,e are available in liter-

ature ([18, 45, 63]); in the present work the ones originally reported in [56]
and resumed in table 6.1 are assumed. The fiber directions is the one plotted
in figure 6.5, obtained as as described in [61]. Other procedures based on an

Figure 6.5: Fiber visualization with MedINRIA (Equipe Asclepios)

harmonic extension could be found in [48, 72].
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σlT (Scm−1) σbT (Scm−1) σtT (Scm−1)

2.4× 10−4 4.0× 10−5 6.0× 10−4

Table 6.2: Thorax conductivity values

Thorax conductivity is assumed to be heterogeneous isotropic, being its
tensor defined as:

σT = σTI

σT =


σlT lungs
σbT bones
σtT remaining regions

Typical value for the thorax conductivity are the one defined in [14] and
reported in table 6.2. These values will be assumed in the present work.

6.4.2 External stimulus

Physiologically, the activation wave begins at the sinusal node in the right
atria and propagates to the ventricle through the atrioventricular node and
join the His-bundle, a complex structure composed of three main branches
(see fig. 6.6) located in the septum. His-bundle activates the Purkinje fibers
to stimulate all the endocardium (see [45] for a detailed description). Even
though there are in literature interesting attempts at modeling the complex
system of His-bundle and Purkinje fibers (see, for example, [21, 66]), the
coupling of them with a 3D model of the myocardium raises many modeling
and computational difficulties: the fiber network has to be manually defined
whereas it cannot be non-invasive obtained from classical imaging techniques;
the results are strongly dependent on fiber density, a quantity difficult to
determine; the time and space scales are quite different between this fast
conductive network and the rest of the tissue which can be challenging from
the computational standpoint.

To circumvent these issues, in the present work the Purkinje fibers are
roughly modeled by considering the external stimulus as an external volume
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current, during a small period of time tact and acting on a thin subendocardial
layer, both for the left and right ventricles.

Figure 6.6: Sketch of of His bundle and Purkinje fibers locations

In the left ventricle the layer is defined by the set:

S =
{

(x, y, z) ∈ ΩH : c1 ≤ ax2 + by2 + cz2 ≤ c2

}
where a, b, c, c1, c2 are given constants. The source current is thus parametrized
as follows:

Iapp(x, y, z, t) = I0(x, y, z)χS(x, y, z)χ[0,tact](t)ψ(x, z, t)

I0(x, y, z) = iapp

[
c2

c2 − c1

− 1

c2 − c1

(
ax2 + by2 + cz2

)]
where iapp is the amplitude of the external applied stimulus, χS and χ[0,tact]

are the following characteristic functions:

χS =

{
1 (x, y, z) ∈ S
0 (x, y, z) /∈ S

χ[0,tact] =

{
1 t ∈ [0, tact] ∈ S
0 t /∈ [0, tact]
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Figure 6.7: Geometrical description of the external stimulus, cut plane at y = 0

while ψ(x, z, t) is defined as follows:

ψ(x, z, t) =

1 atan
(
x−x0
z−z0

)
≤ α(t)

0 atan
(
x−x0
z−z0

)
> α(t)

The quantity α(t), defined as:

α(t) =
tπ

2tact

is called activated angle and denotes the portion of ventricle reached by the
electrical stimulus, as depicted in figure 6.7; a typical value for tact, here and
in the following used, is 10ms.

6.4.3 Cell heterogeneity

Another significant issue related to the electro-physiology deals with the cell
heterogeneity. Cell heterogeneity has an impact on the so called action po-
tential duration (APD). The action potential represents a short-lasting event
in which the electrical membrane potential of a cell rapidly rises and falls, fol-
lowing a stereotyped trajectory; for which concerns the heart cells, the action
potential is the first step in the chain of events leading to the contraction.
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Am Cm τin τout τopen τRVclose τ endoclose τmcellclose τ epiclose VGate Vmin Vmax

200 10−3 4.5 90 100 120 130 140 90 −67 −80 20

Table 6.3: Cell membrane parameters for the left ventricle

The heterogeneity of the APD can be found in different myocardium
locations ([29, 45]) and is the most important factor in the genesis of the
normal ECG T-wave shape and polarity ([3, 20, 29, 34, 70]; it is assumed a
correlation between the heterogeneity of the APD and the anisotropy of the
heart tissues ([19]).

In this work cell heterogeneity is considered on the left ventricle only,
as trans-mural variation of APD. Thus, it is assumed that epicardial cells
have the shortest APD, while endocardial cells have an intermediate values
between mid-myocardial cells (M-cells) and epicardial cells ([70]). From the
analysis reported in [47], the leading order of the maximum APD provided by
the Mitchell-Schaeffer ionic model is proportional to the parameter τclose, so
cell heterogeneity is modeled as a variation of this parameter across the trans-
mural direction. Typical values of the heart parameters are summarized in
table 6.3. These values will be assumed in the numerical examples.
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Chapter 7

The Heart Mechanics

7.1 introduction

From the mechanical standpoint, the heart is similar to a volumetric pump,
formed by heart muscles and activated by an electric signal. Inside is divided
into two cavities called ventricles, each one connected to a complex arterial
system, in particular:

• the left ventricle is connected to the big circulation, i.e. the arterial
branch which transports the oxygenated blood from the heart to the
peripheral organs (big circulation)

• the ventricle is connected to the pulmonary artery, transporting the
blood rich of CO2 from the heart to the lungs (small circulation).

The filling of the ventricle is performed by the emptying of the atria, two
cavities each one communicating with its ventricle. The flux direction and
the heart phases are governed by the overture/closure of some moving parts
called valves.

The heart is an anisotropic continuum, which contracts along preferred
directions, called heart fiber; many studies were consecrated to the determi-
nation of the fiber orientation as, for example, [49]. The most used theory is
the one presented in [62], in which the fibers are nested in a set of layer, and

143



7. The Heart Mechanics

their orientation changes progressively, passing from the endocardium to the
epicardium. From the structural point of view, it is possible to distinguish
two type of mechanical response:

• A passive response (passive stiffness), which depends only on the load
applied

• An active response (active stiffness) which acts along the heart fibers
and depends on the applied electrical stimulus.

Ventricles has the shape of a thick truncated ellipsoid, the left correspon-
ding to a revolution solid, while the right fitting on the former, as depicted
in figure 7.1. In order to determinate the heart orientation, the so called

Figure 7.1: Typical approximation for the heart geometry

“big axis” is defined, corresponding to the smaller principal axis of inertia on
the left ventricle; heart elevation coordinate coincides with the big axis. The
lower ventricular part is called “apex”, while the upper, where the atria are
attached, is called “base“.

Of significant importance is the determination of the cardiac cycle con-
sisting in the time evolution of the pressure and the volume of each ven-
tricles. The cardiac cycle represents indeed an important indicator by the
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clinical standpoint. We point out that our interest is devoted to the study of
the ventricle dynamic, thus the atria are neglected, being their pressure laws
described through known temporal laws.

The heart cycle could be decomposed in the following four phases:

• The contraction (systole):
this phase employs typically 50ms; the ventricles are contracted by the
depolarization wave. All the valves are closed and the pressure increases
rapidly until overcoming the aorta pressure (left ventricle, 80mmHg)
or the pulmonary artery pressure (right ventricle, 10mmHg). When
these values are reached, the sigmoid valves open. Being all the valves
closed during the contraction, this phase is often called ”isovolumic
contraction“;

• The ejection:
this phase employs typically 210ms; the pressure in the ventricles and
in the aorta (resp. pulmonary artery) increases up to the systolic pres-
sure (at rest 120mmHg). The maximum flow rate is reached at the
beginning of this phase, while just before the end the electric excitation
stops and the ventricular pressure decreases until a value lower than
that in the aorta (resp. in the pulmonary artery). Hence, the valves
close.

• The isovolumic relaxation:
this phase employs typically 60ms; the atria are filled with the blood
coming from the peripheral or from the lungs; the ventricular pressure
suddenly decreases until a value lower than that in the atria. The
mitral and the pulmonary valves open.

• The refilling phase (diastole):
this phase employs typically 500ms; during this phase the blood flows
from the atria to the ventricles; typically the 80% of the refilling em-
ploys one quarter of the total time of the phase (rapid refill); after, the
atria contract and the refill finish.
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In figs. 7.2, 7.3, 7.4 the variation of pressure, volume and ejected flux vs time
are depicted for the left ventricle.

Remark The aforementioned description is intended for a subject at rest; if
the heart frequency increases, the total heart cycle time decrease at expense
of the diastole phase. In this latter case, the role of the atrial pressure
becomes significant for the refilling of the ventricles.

Figure 7.2: Left ventricle, ventricular (blue line), atrial (green line), and aorta

(red line) pressures variation with respect to time for one period T = 0.8s.

The total heart work performed by the ventricle in a single heart cycle corre-
sponds to the area enclosed in the pressure vs volume graph, fig. 7.5. Typical
values of this work are about of 1.07 J for the left ventricle and of 0.16 J for
the right ventricle respectively.

7.2 Heart mechanical model

By the mechanical point of view, the heart behaves as an hyper-elastic in-
compressible continuum, with a viscoelastic contribution; moreover the fibers
contraction produce an active stiffens contribution dependent on the elec-
trical stimulus. Clearly, the best frame of reference describing the heart
mechanics is the Lagrangian one.
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Figure 7.3: Left ventricle, volume variation vs time for one period T = 0.8s

Figure 7.4: Left ventricle flux variation vs time for one period T = 0.8s; negative

values correspond to the refill of the ventricle.
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Figure 7.5: Pressure vs volume graph for the left ventricle for standard (at rest)

conditions

The internal energy related to the passive part could be decomposed into
two contributions, the first one, here and in the following denoted by W e,
takes into account of the hypereleasticity while the other, here and in the
following denoted by W v takes into account of the dissipative effects.

As far as for all hyper-elastic continua, the deformation energy depends
on the only three invariants of the right Cauchy-Green tensor C = F TF (see
[17] for a complete description), being F the Jacobian matrix with respect
to the undeformed configuration. Thus:

W e (I1, I2, I3) = k1 (I1 − 3) + k2 (I2 − 3) + ak1 (I3 − 1)− (k1 + 2k2 + a)ln(I3)

I1 = tr(C)

I2 =
1

2
(tr(C)2 − tr(C2))

I3 = det(C) = J2

where k1, k2, a are parameters depending on the continuum properties. The
second Piola Kirchoff stress tensor S is thus obtained by deriving the internal
energy W e with respect to the Green-Lagrange strain tensor.

Remark Typically the deformation energy is defined through the so called
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reduced invariants, defined as:

J1 = I1I
−1/3
3 J2 = I2I

−2/3
3 J3 = J1/2

yielding the following decomposition of the second Piola-Kirchoff stress ten-
sor:

Sd = 2
∑
j=1,2

∂W e

∂Ji

∂Ji
∂C

p = −∂W
e

∂J

Here Sd denotes the deviatoric part of the Stress tensor, while p the hydro-
static pressure of the system, i.e. the contribution of the stress balancing an
applied isotropic stress state.

For the incompressible materials, as the biological tissue, the elastic energy
is a function of the only two invariants J1, J2 being J = 1; as a consequence,
the principle of virtual work is augmented by a Lagrange multiplier, yielding
the following optimization problem:

Problem 9 Find ( d,p) which satisfy:

min
d

max
p

(∫
Ω0

W e + p(1− J)dΩ−Wext

)
where Wext represents the energy associated to the external forces.

The second Piola-Kirchoff stress tensor thus becomes:

S =
∂W e

∂E
− p ∂J

∂E
=
∂W e

∂E
(J1, J2)− pJC−1

E =
1

2
(C − I)

Remark In the present work, the incompressibility is imposed through a
penalization technique, rewriting the Ciarlet-Geymonat elastic energy as:

W e = k1(J1 − 3) + k2(J2 − 3) + k(J − 1)− k ln(J)

and choosing k sufficiently big. The hydrostatic pressure thus becomes:

p = k
1− J
J
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The dissipative effects are described introducing the convex functionalW v(Ė),
yielding the following expression for the second Piola-Kirchoff stress tensor:

S =
∂W e

∂E
+
∂W v

∂Ė
= Se + Sv

Typically the following simplified form for W v is adopted:

W v =
η

2
tr
(
Ė2
)

where η ≥ 0 represents a viscosity parameter; the viscous contribution to the
stress tensor thus reads:

Sv =
∂W v

∂Ė
= ηĖ

The active stiffness depends on the sarcomeres contraction driven by the
electrical wave, a process described by Huxley, [36], modeling by Bestel, [4]
and Bestel, Clément and Sorine, [5] through the so called ”Bestel-Clément-
Sorine model“ for the muscle contraction. This model consists in the following
system of ODEs:

k̇c = − (α|ėc|+ |u|) kc + k0|u|+
τ̇c = kcėc − (α|ėc|+ |u|) τc + σ0|u|+
τc(0) = 0

kc(0) = 0

σ0 =

(
1

2
+ s0

)
k0

where kc denotes the active stiffness, τc is denotes a quantity similar to the
stress along the sarcomeres, u represents the electrical activation and it is
proportional to the trans-membrane cell potential Vm and s0, k0 are two
constants, the meaning of which is explained in [71], The final expression of
the stress σc related to the active stiffness thus reads:

σc = d(ec)τc + µcėc

where µc denotes a viscosity parameter, while d(ec) constitutes a correction
depending on the Starling effect, i.e. an effect which relates the modulus
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Figure 7.6: d function associated to the Starling effect

of the deformation ec to the modulus of the contraction, described by the
function of figure 7.6.

Remark The correlation between the trans-membrane potential vm and u

is governed by the following affine relation:

u = a+ bvm

usually, the trans-membrane potential vm varies between −80mV and 20mV ;
the parameters a, b are typically chosen so u ∈ [−15, 5].

7.3 Rheological model

The rheological behavior of a sarcomere fiber is simply described through the
parallel/series assembly of a set of springs and dumpers, thus obtaining the
final model in an easier way. In this work the described in [16] and depicted
in figure 7.7 is adopted. This model is composed by:

• An active element describing the active behavior of the sarcomere
(Bestel-Clèment-Sorine model):

σc = d(ec)τc + µcėc
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Figure 7.7: Rheological model of a sarcomere fiber

• A spring connected in series with the active element, which allows a
contraction of the sarcomere without total deformation, described by:

σs = Eses

• A parallel assembly of a spring and a dumper, modeling the passive
element and connected in parallel with the previous.

As described in [48], the stress along the sarcomere reads:

σc = d(ec)τc + µcėc = Es
e1D − ec

(1 + 2ec)3
(1 + 2e1D)

e1D = a ·E · a

where a represents the fiber direction versor. The second Piola-Kirchoff
stress tensor thus becomes:

S = Sp + σ1Da⊗ a

σ1D =
σc

1 + 2es
=

σs
1 + 2ec

where Sp represents the passive response.
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7.4 Blood circulation model

The external applied force which deforms the heart is represented by the
ventricular blood pressure PV acting on the endocardium and depending
on the heart phase. Indeed, when one valve opens, the external pressure
depends on the value of the pressure of the exterior circulation (atrium or
aorta); conversely, when all valves are closed the ventricular pressure has to
balance the isotropic force applied by the heart in its contraction. The ven-
tricular pressure therefore represents an unknown of the problem, requiring
the knowledge of the external circulation pressure. Thus a model for the
valve dynamics and a model for the external circulation are required. In this
regards, the heart model is supplied by the following others:

• The valve model, capable of managing the different heart phases

• The Windkessel model describing in a concentrated manner the the
time evolution of the external arterial circulation

Remark As previously remarked, the atrial pressure is supposed a known
temporal function

7.4.1 The Valve model

The valve model is used to determine the heart phase and the flow coefficient,
depending on the ventricular, atrial and aorta pressures. Clearly, the phase
change occurs when the ventricular pressure curve intersect one of the others
pressure curves: as a consequence a valve opens or closes and the blood flows
from/to the ventricle (diastole, ejection), or stops to flow (systole). The
blood flow depends on the following relation:

Q ≥ 0 P V = P ar

Q = 0 P at < P V < P ar

Q ≤ 0 P V = P at

(7.1)
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Figure 7.8: Regularized flux vs pressure model

where P ar denotes the arterial pressure, P at denotes the atrial pressure and
P V denotes the ventricular pressure. From (7.1) it is possible to determine
the following flow/pressure relation:

Q = −V̇ =


Kar(P

V − P ar) P V ≥ P ar

0 P at < P V < P ar

Kat(P
V − P at) P V ≤ P at

(7.2)

where V̇ represents the ventricle volume variation in time.

Remark For numerical reasons, the isovolumic phase relation appearing in
(7.2) is substituted by the following:

Kar(P
V − P ar) +Kiso(P

ar − P at)

thus generating the regularized function depicted in figure 7.8.

7.4.2 The Windkessel model

The aorta pressure is determined through the Windkessel model, representing
a 0D description of the whole circulation as an equivalent electrical circuit.
In this work of first order Windkessel model is considered; denoting by P d

the distal pressure (i.e., the pressure measured after the aortic arc) and with
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P sv the pressure inside the peripheral vessel net, the Windkessel model reads:

CpṖ
ar +

P ar − P d

Rp

= Q

CpṖ
d +

P d − P ar

Rp

=
P sv − P d

Rd

The notations are reported in figure 7.9; in the same figure equivalent elec-
trical components for the valves are also depicted.

Figure 7.9: Sketch of the complete external circulation; Valves are described as

non-linear diodes, while the distal circulation as a RC circuit

7.5 The boundary conditions

The heart is constrained in its position by the neighbor organs, in particu-
lar the diaphragm, the sternum, the lungs and partially by the aorta; as a
consequence, it is difficult to impose a set of boundary condition capable of
reproducing exactly the whole neighbor organs. A viable alternative consists
in reproducing the the neighbor tissue behavior through a visco-elastic sup-
port, yielding a boundary condition depending on the solution. This model
is called ”elastic support“, and will be used in the numerical simulations. Ap-
plying the principle of virtual works to the boundary constraint, the following
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variational forms holds:

Pext = −
∫
B

(
a(x)d+ b(x)ḋ

)
· vdS

where Pext represents the power of the constraint, a(x), b(x) are two func-
tions, determined by the experimental evidence, representing the elastic mo-
dulus and the dissipation constant of the support. Usually, this boundary
condition is imposed on the region B representing the contact area between
the sternum and the apex.

7.6 The complete heart model

Denoting by V = H1
ΓD

(Ω0) the Hilbert space of the function square inte-
grable with their first derivatives which vanish at the Dirichlet boundary,
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the complete heart model to solve is represented by the following system:∫
Ω0

ρd̈ · vdΩ +

∫
Ω0

S (E, ec) ·E(v)dΩ

+
∑
i=g,d

∫
∂Ci
P V
i nF

−1 · vJdS = 0 ∀v ∈ V

(7.3)

S = −pJC−1 +
∂W e

∂E
+
∂W v

∂Ė
+ σ1D(e1D, ec)n⊗ n (7.4)

σ1D =
σc(1 + 2ec)

(1 + 2e1D)
(7.5)

σc = d(ec)τc + µcėc = Es
e1D − ec

(1 + 2ec)3
(1 + 2e1D) (7.6)

e1D = n ·E · n (7.7)

k̇c = − (α|ėc|+ |u|) kc + k0|u|+ (7.8)

τ̇c = kcėc − (α|ėc|+ |u|) τc + σ0|u|+ (7.9)

Qi = −V̇i = −
∫
∂Ci
JnF−1 · v (7.10)

=


Kar(P

V − P ar) P V ≥ P ar

Kar(P
V − P ar) +Kiso(P

ar − P at) P at < P V < P ar

Kat(P
V − P at) P V ≤ P at

i = g, d

CpṖ
ar +

P ar − P d

Rp

= Q (7.11)

CpṖ
d +

P d − P ar

Rp

=
P sv − P d

Rd

(7.12)
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Chapter 8

The Heart electro-mechanical

coupling

8.1 introduction

Electro-mechanical problems have an important role in medicine, being the
experimental investigation by medical devices leaking of informations. Con-
versely computer investigation furnishes also the informations which are not
detectable by medical devices; as a consequence, computer investigation re-
presents a significant tool in the study of heart disease, when addressed to
reproduce as accurate as possible the physiology, i.e. to reproduce the same
results coming from the experimental investigation.

The heart electrical activity is typically reproduced through the data
obtained by the electro-cardiogram (see figure 8.1), a non-invasive medical
device furnishing the graphical representation in time of the potential diffe-
rence between different body locations. An ECG graph is characterized by
the following fluctuations (see figure 8.1):

• the P-wave (in the graph not depicted), representing the atrial depo-
larization;

• the QRS complex representing the ventricle depolarization
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8. The Heart electro-mechanical coupling

Figure 8.1: ECG of a single heart cycle. The P wave is absent

• the T wave, representing the ventricle repolarization

Remark The analysis of this chapter deals with the ventricles only. As a
consequence, the P wave will not be present. Moreover, the atrial pressure
will be described through an analytical and known temporal law.

This chapter is devoted to the analysis of the influence of the electro-
mechanical coupling on the ECG. Indeed during the heart movement the
fiber direction changes and so the electrical propagation properties; as a con-
sequence, the mechanical response also changes, being the active stiffness
driven by the electrical stimulus. The problem which arises is non-linear
fully coupled, being both solutions (electro physiology and mechanics) de-
pending on each other. By the numerical point of view, this corresponds
to implementing an efficient coupling algorithm, capable of managing in an
efficient manner the interaction between the two sub-problems.

The ECGs here evaluated are based on the hypothesis of isolated heart
(cf. chapter 6) and thus obtained through a transmission matrix furnishing
directly the ECG data.

160



8. The Heart electro-mechanical coupling

8.2 The Electro-Mechanical coupling algorithm

The problem consists in coupling the two different sub-problems, each one
endowed by it’s numerical solver, i.e. in implementing an efficient interface
between them. The heart mechanics is solved by Heartlab, a matlab finite
element library developed by the INRIA MACS team, while the electrical
activity is solved by the C++ finite element library LIFEV [1], developed by
the INRIA REO team.

These two solvers are considered as two “black box” exchanging informa-
tions with the external environment. Indeed, the mechanical solver receives a
trans-membrane potential from the external world and returns the heart di-
splacement and the heart velocity, while the electrical solver receives a heart
displacement and a heart velocity from the external world and returns the
trans-membrane potential.

The coupling algorithm consists in interfacing these two “box“, indepen-
dently on their implementation, in the most efficient way through the ex-
changed data; by the mathematical point of view, this consists in imple-
menting a (at least locally) contractive function, the (unique) fixed point of
which represents the solution of the coupled system.

In this work, two type of function will be constructed: one by “paral-
lelism“, in which a vectorial function of the whole unknowns set is conside-
red, so the two problems are solved at the same time, yielding the so called
Jacobi-like scheme; the other by ”sequentiality“, i.e. by solving in sequence
the two problems thus generating a composite function, yielding the so called
Gauss-Seidel-like scheme.

Let it be:

• [d,w] (x, t) = F (vm (x, t)) the function representing the mechanical
solver

• vm (x, t) = G ([d,w] (x, t) the function representing the electro-physiology
solver
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The Jacobi scheme consists in finding the fixed point of:
d (x, t)

w (x, t)

vm (x, t)

 =


F1 (vm (x, t))

F2 (vm (x, t))

G ([d,w] (x, t))


while the Gauss-Seidel scheme consists in finding the fixed point of:

[d,w] = F (G ([d,w] (x, t))

The details of the implementation of the coupling algorithm are described in
appendix B

8.3 Numerical results

The results here reported refer as two geometry. The first one (in the fol-
lowing called ”ElliBi“. ) consists in describing the heart geometry through
the intersection of two ellipsoids, as depicted in figure 8.2.

The tests performed with this simple geometry analyze the influence of the
electro-mechanical feed-back on the mechanical indicators (i.e. the evolution
of the ventricular pressure, ventricular volume and mechanical energy) by
a comparison of the results obtained with and without feedback and the
difference in the distribution of the trans-membrane and the extracellular
potential by comparing their maximum value (and, in particular, the spatial
location of the maximum value) in time. A model without electro-mechanical
feedback means that the electro physiology is resolved on a fixed heart, while
the mechanics still governed by the obtained trans-membrane potential.

For the electro-mechanical feed-back two cases are reported: one where
sub-iterations are performed until convergence and another where only one
sub-iteration is performed.

The second geometry (in the following called ”Zygote“) was obtained by
the INRIA Cardiosense3D team, starting by Computer Tomography data.
This geometry is represents a real human heart, as depicted in figure 8.3.
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8. The Heart electro-mechanical coupling

The tests performed with this latter geometry are aimed in studying the
impact of the heart movement on the ecg graph.

Figure 8.2: ElliBi heart geometry

8.3.1 ElliBi geometry

This simple geometry represents a heart simplification, defined through the
intersection of ellipsoids. Typically, this geometry is adopted when testing
the algorithm, being the fiber direction and the heart heterogeneity described
analytically. Even though simple, the results concerning the ElliBi geometry
permit observing whats happen when considering or not the electromechan-
ical feedback.

During the heart motion, the fiber direction changes accordingly to the
heart deformations: as a consequence, the preferred electrical wave propaga-
tion direction also changes, and the trans-membrane potential distribution
will be different from the one obtained without moving the heart, as depicted
in figs 8.4, 8.5, 8.6.

The same holds for the extra-cellular potential as depicted in figs. 8.7,
8.8, 8.9 and 8.10. The mechanical indicators also differ; indeed, the
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8. The Heart electro-mechanical coupling

Figure 8.3: Zygote heart geometry

Figure 8.4: Trans-membrane potential for t = 0.02 with (right) and without

(left) electromechanical feedback. ElliBi geometry, heart period T = 0.8s. The

white dots (where present) indicate the maximum trans-membrane potential point

locations
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8. The Heart electro-mechanical coupling

Figure 8.5: Trans-membrane potential for t = 0.2 with (right) and without (left)

electromechanical feedback. ElliBi geometry, heart period T = 0.8s. The white

dots (where present) indicate the maximum trans-membrane potential point loca-

tions

Figure 8.6: Trans-membrane potential for t = 0.3 with (right) and without (left)

electromechanical feedback. ElliBi geometry, heart period T = 0.8s. The white

dots (where present) indicate the maximum trans-membrane potential point loca-

tions
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Figure 8.7: Extracellular potential for t = 0.02 with (right) and without (left)

electromechanical feedback. ElliBi geometry, heart period T = 0.8s. The white

dots (where present) indicate the maximum extracellular potential point locations

Figure 8.8: Extracellular potential for t = 0.04 with (right) and without (left)

electromechanical feedback. ElliBi geometry, heart period T = 0.8s. The white

dots (where present) indicate the maximum extracellular potential point locations
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Figure 8.9: Extracellular potential for t = 0.2 with (right) and without (left)

electromechanical feedback. ElliBi geometry, heart period T = 0.8s. The white

dots (where present) indicate the maximum extracellular potential point locations

Figure 8.10: Extracellular potential for t = 0.25 with (right) and without (left)

electromechanical feedback. ElliBi geometry, heart period T = 0.8s. The white

dots (where present) indicate the maximum extracellular potential point locations
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total mechanical energy related to one cycle is greater when the electro-
mechanical feedback is neglected, as depicted in figure 8.11; conversely, the
energy transferred to the fluid is less, as depicted in 8.12.

Figure 8.11: Mechanical energy vs time with (blue line) and without (red line)

electromechanical feed-back. ElliBi geometry, T = 0.8s

Figure 8.12: Pressure vs volume graph, left ventricle (left) and right ventricle

(right) with (blue line) and without (red line) electromechanical feed-back. ElliBi

geometry, T = 0.8s

In fig. 8.13 the Ventricular pressure vs time is depicted. The three curves
are obtained by considering/neglecting the electromechanical feedback, or by
considering it through one fixed point iteration only. By the figure one can
infer that the convergence velocity is fast (indeed, only two iterations are
typically needed to achieve convergence).
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8. The Heart electro-mechanical coupling

Figure 8.13: Ventricular pressure vs time with (blue line) and without (red line)

electromechanical feedback; the green line refers to a electromechanical feedback

obtained by only one sub-iteration of the Gauss-Seidel fixed point function. ElliBi

geometry, T = 0.8s
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8.3.2 Zygote geometry

The major effect related to the electro-mechanical feed-back deals with the
T wave. As depicted in fig 8.14 on aVF termination the wave is reversed.
Moreover, in II and III the amplitude changes, while in V2 presents a larger
amplitude and returns to the reference value without oscillations. The same
behavior still when changing the heart frequency (as depicted in fig 8.15) The
QRS wave is significantly modified in III, aVL, aVF and V3 terminations.
In all the other terminations there are no significant modifications.

Figure 8.14: ECG with (black line) and without (blue line) electromechanical

coupling, for a period T = 1s

Clearly, when the heart moves, the fibers direction also change, accor-
dingly to the heart deformation. As a consequence, the electrical wave prop-
agates in a direction different to the one concerning the heart at rest. This is
highlighted in figs 8.16, 8.17, 8.18 and 8.19 for the trans-membrane potential
and if figs 8.20,8.21, 8.22 and 8.23 for the extracellular potential. Indeed, the
positions of the points of maximum value for the trans-membrane potential
and for the extracellular potential differ if considering the electromechani-
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Figure 8.15: ECG with (black line) and without (blue line) electromechanical

coupling, for a period T = 0.8s

cal feedback or not. In particular, the maximum value responsible of the
QRS wave differs of 0.1s between the two coupling schemes, as depicted in
fig 8.24 for the time values corresponding to the R peak with and without
electromechanical feedback.

As far as the mechanical indicator is concerned, the total mechanical
energy related to one cycle is greater for the weak coupling, as depicted in
figure 8.25; the same holds true for the energy transferred to the fluid, as
depicted in 8.26. By comparing the ventricular pressure vs time between the
two coupling schemes, it is possible to see a small delay of the weak coupling
with respect to the strong coupling (cf fig. 8.27).
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Figure 8.16: Trans-membrane potential for t = 0.015 with (right) and without

(left) electromechanical feedback. Zygote geometry, heart period T = 1.0s. The

white dots indicate the maximum trans-membrane potential point locations

Figure 8.17: Trans-membrane potential for t = 0.05 with (right) and without

(left) electromechanical feedback. Zygote geometry, heart period T = 1.0s. The

white dots indicate the maximum trans-membrane potential point locations
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Figure 8.18: Trans-membrane potential for t = 0.15 with (right) and without

(left) electromechanical feedback. Zygote geometry, heart period T = 1.0s. The

white dots indicate the maximum trans-membrane potential point locations

Figure 8.19: Trans-membrane potential for t = 0.215 with (right) and without

(left) electromechanical feedback. Zygote geometry, heart period T = 1.0s. The

white dots indicate the maximum trans-membrane potential point locations
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Figure 8.20: Extracellular potential for t = 0.015 with (right) and without (left)

electromechanical feedback. Zygote geometry, heart period T = 1.0s. The white

dots (where present) indicate the maximum extracellular potential point locations

Figure 8.21: Extracellular potential for t = 0.05 with (right) and without (left)

electromechanical feedback. Zygote geometry, heart period T = 1.0s. The white

dots (where present) indicate the maximum extracellular potential point locations
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Figure 8.22: Extracellular potential for t = 0.15 with (right) and without (left)

electromechanical feedback. Zygote geometry, heart period T = 1.0s. The white

dots (where present) indicate the maximum extracellular potential point locations

Figure 8.23: Extracellular potential for t = 0.215 with (right) and without (left)

electromechanical feedback. Zygote geometry, heart period T = 1.0s. The white

dots (where present) indicate the maximum extracellular potential point locations
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Figure 8.24: Extracellular potential for t = 0.04s and t = 0.05s, with (right) and

without (left) electromechanical feedback, Zygote geometry and a heart period of

T = 1.0s. The white dot (where present) indicates the point of maximum trans-

membrane potential, for each time These two time values correspond to the R

peak
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Figure 8.25: Mechanical energy vs time with (blue line) and without (red line)

electromechanical feed-back, Zygote geometry, T = 1s

Figure 8.26: Pressure vs volume graph, left ventricle (left) and right ventricle

(right) with (blue line) and without (red line) electromechanical feed-back, Zygote

geometry, T = 1s
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Figure 8.27: Ventricular pressure vs time with (blue line) and without (red line)

electromechanical feed-back, Zygote geometry, T = 1s
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Conclusions

In this thesis we have deeply investigated some aspects related to the mathe-
matical and numerical modeling of the cardiovascular system.

In the first part we have analyzed the problems concerning the unsteady
flows in pipe. In this regards, we formulate a new monodimensional scheme
capable of reproducing the fluid-structure iteration effects related to the
multi-dimensionality of the motion. The base hypothesis is represented by
considering the radial variation of pressure and the radial velocity small but
not negligible. We have also demonstrate that our model represents a general
case of the classical one, by neglecting a posteriori the radial velocity and
recasting the classical system. Moreover, we have demonstrated a strict anal-
ogy between our model and a classical model where the structure dynamic
takes into account of the contribution depending on the time derivative, but
with coefficients depending on the fluid-structure interaction. In this regards,
we have show the presence of the added mass effect, through a coefficient mul-
tiplying a second time derivative of the structure displacement; by numerical
examples we have also show the effect on the mechanical response by com-
paring a solution obtained with the added mass effect and another obtained
without the added mass effect.

In the same parts we have determined a new analytical solution dealing
with a unsteady flow in a undefined rigid pipe, comprehensive of the tran-
sitory effects. We have also demonstrate that with this new solution it is
possible to study what happens when the flow is not fully developed to the
regime solution and the possibility of estimate the time of assessment. Two
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examples are introduced, referring as two piratical applications: the former
representing the starting of an extracorporeal circulation device, the latter
describing the behavior of the flux determined by a sudden decrease of pres-
sure followed by a sudden raise. We have demonstrate that the flow does
not adapt instantaneously to the new developed conditions, but needs a time
interval depending on the initial conditions.

In the second part we have furnished a stability estimate for the immersed
finite element method when the structure is described with a spatial order
greater than the first. We have also show that the estimate related to the
structural first spatial order is a particular case of our new estimation. More-
over, we have shown for the implicit coupling algorithm that the inertial term
could generate instability when the structure density is less than the fluid
one. We have also enforced the results with numerical example. In the same
section we have also compared the performance between the IFEM method
and the ALE method when dealing with immersed structure subjected to
large displacement, by considering the number of fixed point sub-iteration
needed to achieve convergence at a fixed time step. We have shown that
while the ALE computational cost raises when the structural displacement
increases, the IFEM computational cost does not depend on the structure
displacement.

In the third part we have analyzed the electromechanical feedback when
studying the heart electro-physiology. In particular, we have investigated
the effects of the heart movement on the electro-cardiogram. We show that
the heart deformation has a strong impact on the electrocardiogram graph:
indeed , changing the fiber direction when the heart deforms, the electrical
wave propagates along preferred directions different from the one of an heart
at rest. The major effect related to the electro-mechanical feed-back deals
with the T wave, indeed on aVF termination the wave is reversed. Moreover,
in II and III the amplitude changes, while in V2 presents a larger amplitude
and returns to the reference value without oscillations. Moreover the QRS
wave is significantly modified in III, aVL, aVF and V3 terminations. In all
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the other terminations there are no significant modifications. The changing
of the conductivity tensor yields a different distribution for both the trans-
membrane and the extracellular potentials on the heart; moreover, the trans-
membrane potential peak concerning the QRS wave is delayed in time when
the electromechanical feedback is considered. The same behavior still when
changing the heart frequency.
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Appendix A

The Womersley solution for the

compliant pipe

The structural model adopted for studying the flow field in a compliant pipe
is denoted in literature as “independent ring model”. The wall of the pipe is
modeled as an algebraic membrane without shear stress, similar to the one
considered by Koiter [38, 39], which can move only radially.

Following the same procedure described in [51] and neglecting inertial
terms, one obtains:

βη = fs

β =
hsE

(1− σ2)R2
0

where η is the radial displacement with respect to the reference configuration
R0, E is the Young modulus, σ the Poisson coefficient and hs is the membrane
thickness. The fluid flow field is supposed to be characterized by a general
unknown function f of the type:

f(r, z, t) = f1(r) exp
[
iω
(
t− z

c

)]
where ω is the frequency of pressure changes in time and is c the (unknown)
propagation speed of pressure waves in the coupled fluid-structure system.
Following the same procedure described in [69], the following radial profiles
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for the axial and radial velocities are obtained:

w1 =
A1

ρc
+ C1

J0

(
αi3/2y

)
J0 (αi3/2)

u1 =
iωR0

2c

(
y
A1

ρc
+ C1

2J1

(
αi3/2y

)
αi3/2J0 (αi3/2)

)
y =

r

R

α = R0

√
ω

ν

where A1 is the modulus of the pressure and C1 is a constant to be deter-
mined. In order to couple the fluid-structure system, the following boundary
conditions are imposed:

vz = 0 r = R (A.1)

vr = η̇ r = R (A.2)

p = βη r = R (A.3)

From the condition (A.1) it follows immediately that

C1 = −A1

ρc

while from (A.2),(A.3) the following system of equations is derived:

iωR0

2c
(1− F10 (α))

A1

ρc
− iωD1 = 0 (A.4)

A1 − βD1 = 0 (A.5)

where:

η = D1 exp
[
iω
(
t− z

c

)]
F10 (α) =

2J1

(
αi3/2

)
αi3/2J0 (αi3/2)

In order to have a propagating wave, the system (A.4),(A.5) must be unde-
termined, in order to admit a nontrivial solution. By imposing the vanishing
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of its determinant, one finds the following complex propagation speed:

c =

√
β (1− F10 (α))R0

2ρ

which takes into account for a pure traveling part by the real value and a
dissipative one, by the imaginary value.

The fluid velocity thus becomes:

vz(r, z, t) = <

[
A1

ρc

(
1−

J0

(
αi3/2y

)
J0 (αi3/2)

)
exp

[
iω
(
t− z

c

)]]
(A.6)

vr(r, z, t) = <

[
iωR0

2c

A1

ρc

(
y −

2J1

(
αi3/2y

)
αi3/2J0 (αi3/2)

)
exp

[
iω
(
t− z

c

)]]
(A.7)

y =
r

R

α = R0

√
ω

ν

c =

√
β (1− F10 (α))R0

2ρ

Repeating the same procedure by replacing ω with −ω (i.e., by the complex
conjugate), summing the two solutions and dividing by two it is possible to
find the real solution related to a forcing term of the cosine type.1

A.0.3 Radial velocity as a function of wall displacement

In order to determine the radial velocity as a function of the wall displace-
ment, the continuity of radial velocity at interface r = R must be imposed.
Denoting by

η = D1 exp
[
iω
(
t− z

c

)]
the wall displacement, at r = R reads:

iωD1 =
iωR0

2c

A1

ρc
(1− F10 (α))

1Clearly, with the difference and the division by 2i the solution corresponds to a forcing
term of the sine type.
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so

v′r(r, z, t) =
iωD1

1− F10 (α)

(
y −

2J1

(
αi3/2y

)
αi3/2J0 (αi3/2)

)
exp

[
iω
(
t− z

c

)]
In order to obtain a real number, the complex conjugate solution is evaluated,
taking −ω instead of ω:

v′r(r, z, t) =
−iωD1

1− F10 (iα)

(
y −

2J1

(
iαi3/2y

)
iαi3/2J0 (iαi3/2)

)
exp

[
−iω

(
t− z

c

)]
clearly, the propagation speed here is the complex conjugate of the previous
one. The sum of vr and vr must be a real number; in particular it should be
at t = 0, z = 0, so it is possible to write:

1

1− F10 (α)

(
y −

2J1

(
αi3/2y

)
αi3/2J0 (αi3/2)

)
= A(y) + iB(y)

The radial velocity finally is:

vr(r, z, t) =
1

2

[
(A(y) + iB(y))

(
iωD1 exp

[
iω
(
t− z

c

)])
+ (A(y)− iB(y))
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−iωD1 exp

[
−iω

(
t− z

c

)])]
= A(y)

iωD1
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exp
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(
t− z

c

)]
− exp

[
−iω

(
t− z

c

)])
−B(y)

ωD1

2

(
exp

[
iω
(
t− z

c

)]
+ exp

[
−iω

(
t− z

c

)])
= A(y)η̇ −B(y)ωη
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Appendix B

Implementation of the

Electro-Mechanical coupling

algorithm

A coupled algorithm is generally characterized by the following components:

• Two (or more) codes (in the following called workers) implementing the
solvers of each singular subproblem

• A code (in the following called master) managing all the coupling as-
pects (advancing in time, manipulating the informations arising from
the workers, sending the right informations to the workers, checking
the convergence of the sub-iterations).

• A message passing interface, capable of exchanging the data between
the master and the workers

The interaction between these components is depicted in fig. A-1.
The fixed point functions introduced in section 8.2 correspond to a single

data evaluation, as depicted in Figs. A-2, A-3.
Before computing, all the state variables have to be initialized, putting

each worker is in a consistent initial state. This is performed as in Fig. A-4.
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B. Implementation of the Electro-Mechanical coupling algorithm

Figure A-1: The coupling algorithm

Figure A-2: Gauss-Seidel fixed point function

Figure A-3: Jacobi fixed point function

Figure A-4: Initialization of all the variables of the algorithm
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B. Implementation of the Electro-Mechanical coupling algorithm

At each time step the solution computing is performed as in Fig. A-5
(Gauss-Seidel algorithm); during this, the master has to control the con-
vergence of the global sub-iterations, manipulate the data received by the
workers, send the new manipulated variable values to the workers and tell
them if advancing in time or not; the updating of the internal variable (the
variable of each worker) at a new time step is clearly performed by each
worker.

Figure A-5: Iterations

B.1 Different time scales

Structural mechanics and electro-physiology have different characteristic time
scale: whereas the former has a characteristic time of 10−3 s, the latter has
one of typically 10−4s.

If the problem solution is determined by using a time step of the order of
the smaller scale, the computational cost becomes considerable for the huge
number of time iterations. Moreover, even though one adopts the smaller
time step corresponding to the electro-physiology phenomena, the mechanical

189



B. Implementation of the Electro-Mechanical coupling algorithm

solver could require a smaller one during the phase changing.1

To overcome these difficulties, both problems are solved by using different
time steps, and after re-synchronized at some temporal check-point. This is
achieved by changing the structure of the worker, performing a number of in-
ternal time iterations (in order to reach the checkpoint) before exchanging the
informations with the master. Clearly, at each fixed point sub-iteration the
last time window between two subsequent checkpoints has to be re-evaluated.

1It has be observed that this happens when the aorta valve closes and the heart passes
to the isovolumic relaxation.
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