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Abstract

This thesis deals with different aspects of high temperature superconductivity in hole-

doped cuprates. We assume the t − J model to describe the CuO2 planes of cuprates

and we use a spin-charge gauge approach with spin-charge separation to describe holes in

terms of a spinless fermion carrying the charge (holon) and a neutral boson carrying spin

1/2 (spinon), coupled by a slave-particle gauge field.

In this framework we consider the effects of the presence of a finite density of incoherent

holon pairs in the normal state as a precursor of superconductivity. We show that it is

possible to take such pairs into account through a strongly direction dependent spectral

weight for holons, which suppresses quasi-particles starting from the anti-nodal directions,

and a wave function renormalization for the slave particle gauge field. In this way we

prove that, when temperature is reduced, the formation of holon pairs causes both the

deviation from linearity of the resistivity and the deviation from the constant value of the

Knight shift. Moreover we point out the need for a negative next-nearest-neighbor hopping

term (t − t′ − J model) to get a good continuum limit and to evaluate the Knight shift.

These results are obtained through a Green’s function, which follows naturally from the

formalism and analytically interpolates between a Fermi liquid-like behavior and a d-wave

superconductor when the coherence length of the holon pair order parameter is increased.

The system preserves a finite Fermi surface until the superconducting transition, where

it reduces to four nodes.

Finally when, at lower temperatures, both the holon pairs and the RV B spinon pairs

condense we enter the superconducting phase. In this phase we study the magnetic ex-

citations showing how to extend to spin waves the hourglass-shape dispersion, found for

spinons near the antiferromagnetic vector, if a suitable local mechanism of attraction be-

tween spinon and anti-spinon is assumed. The resulting spin wave Green’s function, whose

imaginary part is directly comparable with experiments, generates the hourglass with a

finite gap between the two branches. Since the U(1) slave-particle gauge field gains mass

in the superconducting phase via Anderson-Higgs mechanism, we propose the necessary

mechanism of attraction comes from the unbroken Z2 subgroup of the U(1) gauge group.



Questa tesi riguarda diversi aspetti della superconduttivit nei cuprati drogati con la-

cune trattati con una variante del formalismo di ”slave-particle”, lo ”spin charge gauge

approach”. Si assume il modello t− J in due dimensioni per descrivere i piani CuO2 e si

utilizza l’approccio di gauge ”slave particle” con separazione di spin e carica, riscrivendo

le lacune in termini di una eccitazione fermionica carica ma priva di spin (l’holone) ed

una neutra con spin 1/2 (lo spinone) accoppiate dal campo di gauge.

In tale ambito si studia l’effetto della formazione di coppie incoerenti di holoni nella

fase normale. Si mostra come si possa tenere conto dell’effetto di quaste coppie tramite

un peso spettrale per gli holoni fortemente dipendente dalla direzione che sopprime i

modi a partire dalle direzioni antinodali. Si mostra poi come alla formazione di queste

coppie sia imputabile, al decrescere della temperatura, sia la deviazione dalla linearita’

della resistivita’ che la deviazione dal valore costante del Knight shift (per il modello con

secondi vicini t − t′ − J). Tali risultati sono ottenuti tramite una funzione di Green che

appare naturalmente nel formalismo ed interpola analiticamente tra un comportamento

di tipo liquido di Fermi ed uno superconduttivo d-wave al decrescere della temperatura.

Infine si studiano le eccitazioni magnetiche nella fase superconduttiva, che compare

quando, diminuendo la temperatura, sia le coppie di holoni che le coppie di singoletto

(RV B) di spinoni condensano. Si mostra come, assumendo un meccanismo di attrazione

locale tra spinoni, sia possibile estendere al magnone la dispersione trovata in precedenza

per gli spinoni che, in prossimita’ del vettore antiferromagnetico, caratterizzata da due

rami, uno crescente ed uno decrescente. La dispersione per i magnoni direttamente com-

parabile con i dati sperimentali sulle eccitazioni magnetiche (il cosidetto ”hourglass”).

Si congettura che il meccanismo di attrazione tra spinoni possa essere originato dal sot-

togruppo Z2 del gruppo U(1) di gauge ”slave-particle” che rimane non rotto nella fase

superconduttiva.
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Introduction

High temperature superconductivity was discovered by Bednorz and Muller in 1986

studying a class of materials called cuprates. Cuprates are complex oxides containing

quasi-two dimensional copper-oxygen (CuO2) planes considered to be the origin of their

anomalous properties. Indeed it is widely believed that the physics of cuprates is that

of these CuO2 planes, which are the principal seat of superconductivity. Layers of other

atoms, surrounding the copper-oxygen sheets, play the role of charge reservoirs.

Doping radically changes the properties of cuprates. Undoped samples are half filled

Mott-Hubbard insulators with long range antiferromagnetic order. When, doping the

samples, charge carriers (holes) are introduced into the copper-oxygen planes, they delo-

calize disturbing locally the spin order. As a result the system consists of moving holes

surrounded by droplets of spin liquid and, depending on temperature, it behaves like a

metal or it becomes a superconductor.

Apart from the high transition temperature, the properties of the superconducting

compounds seem relatively normal, similar to conventional BCS superconductor. There

are two main differences: the superfluid density of the superconductor is small and van-

ishes for low dopings (due to the proximity to the Mott insulator); the superconducting

gap vanishes on four points (nodes) on the Fermi surface (pairing is d-wave) so that there

are gapless quasi-particle excitations affecting the physical properties even at low temper-

atures. However the superconducting mechanism nowadays is not clear. On the contrary

in the normal state (i.e. in absence of superconductivity) the properties of these materials

are very peculiar. They do not match traditional Fermi liquid theory and a variety of

physical observables deviate strongly from standard predictions.

There have been several attempts to derive a unifying and consistent low energy theory

for cuprates but the debate is still open and controversial. However, there are some

generally accepted basis. For example the Hubbard model and the t − J model are

believed to contain the relevant physics for the copper-oxygen planes of cuprates. These

models take Coulomb repulsion into account making electrons strongly correlated.

The main difficulties are the lack of a small parameter in the theory and the fact

that these models are not integrable in two dimensions, therefore some approximation

schemes are needed. Since we are interested in energy scales much smaller than the on
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site Coulomb repulsion, the constraint of no double occupied sites have to be implemented

exactly. The gauge theory approach to the t−J model followed in this thesis is an attempt

to implement the no doubly occupation in a non-perturbative way.

Gauge theories successfully explained the Fractional Quantum Hall Effect in two di-

mensional systems subject to strong magnetic field. The idea is to attach a magnetic flux

quanta to the real electrons and rewrite action and partition function in terms of anyons,

i.e. fields composed of fermion and gauge flux obeying a different statistics because of

Aharonov-Bohm effect.

The idea is to perform spin-charge separation creating a spinless fermion (holon) and

a neutral boson doublet (spinon). In such a way the Pauli principle no longer ”sees” spin

and automatically forbids double occupation.

A useful tool to formally separate the spin and the charge degrees of freedom is Chern-

Simons bosonization. The price to pay is the introduction in the theory of minimally

coupled statistical gauge fields, gauging the global symmetries of the model.

Another important point is that the spin-charge separation introduces a fictitious

U(1) local symmetry so that holons and spinons scatter against a slave-particle (h/s)

U(1) gauge field. This is the main source of dissipation at low temperatures. In two

dimensions, because of the h/s gauge field, the spin-charge separation is not complete.

The Chern-Simons representation of the t − J model is exact but generally is more

complicated than the original one. One hopes nevertheless that the new version is more

suitable for a mean field approximation and contains, in a non perturbative way, some

features that would have been neglected in standard mean field approaches.

In chapter 1, briefly discussing composition and structure of cuprates, we introduce

the temperature-doping phase diagram of the copper-oxygen planes. Then we justify

that the t − J model is the appropriate model for these planes. Finally we analyze

the phenomenology of cuprates which will be useful in the following, showing the most

important anomalous properties.

In chapter 2 we present our spin-charge gauge approach. We introduce the rules of

Chern-Sinons bosonization and apply them to the t − J model to perform spin-charge

separation. Then we derive the optimal spinon configuration (roughly speaking a Neel

state with spin-vortices attached to holons which chirality depends on the sublattice where

the holon is located) and the low energy actions for spinons, holons and gauge field in the

normal state (both strange metal and pseudo-gap). We conclude summarizing the main

predictions of our approach in the normal state.

In chapter 3 we extend the approach to the superconducting region starting from the

pseudo-gap regime. We propose a new non-BCS mechanism for superconductivity via

attraction between spin vortices and strongly based on the composite nature of the elec-

tron. We find two crossover temperatures above the superconducting transition. Below
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the higher one a finite density of incoherent holon pairs appears and below the lower one

incoherent RV B hole pairs forms which become coherent at the superconducting transi-

tion. Finally we analyze the spin-spin correlation in the superconducting region explaining

the hourglass-shape dispersion of the magnon near the antiferromagnetic vector.

In chapter 4 we consider superconductivity arising from the strange metal region and

incorporate in the theory the fluctuations of the phase of the holon pairs order parameter.

We study the Fermi surface of the holons and the phase fluctuations of the holon pairs and

combining them we obtain an explicit expression for the Green’s function of quasi-particles

that interpolates between the normal state and the superconducting state. The inverse

coherence length turns out to be the relevant parameter that determines the behavior of

quasi-particles. The resulting density of state turns out to be in qualitative agreement

with experiments and proves the necessity of the slave particle gauge field.

In chapter 5, using the results of the previous chapter, we show that, by a suitable

renormalization of some parameters (in particular using two wave function renormalization

for holon field and for the h/s gauge field) it is possible to take holon pairs into account.

In this way we evaluate effect of holon pairs on resistivity and Knight shift we find that

both the observables deviate downward, at low temperature, accordingly to experiments.

The evaluation of the Knight shift formula is performed in detail.

The approach to superconductivity performed in chapter 3 has been very recently

proposed. The original contributions, in this thesis, are the final section of Chapter 3,

dealing with spin-spin correlation, and the whole discussion made in Chapters 4 and 5.
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Chapter 1

Basic properties of hole-doped HTS

cuprates

1.1 Phase diagram of CuO2 planes

High temperature superconducting cuprates (HTSC) are a class of materials, synthe-

sized in the laboratory since eighties (Bednorz Muller 1986), with high superconducting

transition temperature Tc (above the liquid-air barrier of 77 K) accompanied by high

critical magnetic fields and high current densities. However the value of Tc is critically

dependent on the chemical stoichiometry.

Following Leggett [1], it is possible to specify the composition of cuprates in the form

(CuO2)nAn−1X (1.1)

where n is a positive integer, A is an alkaline or rare earth (or Y ) and X is an arbi-

trary collection of elements, in general in nonrational stochiometric proportions. Com-

mon examples include La2−δBaδCuO4 (shorthand named LBCO), Bi2Sr2CaCu2O8+δ

(BSCCO) and Y Ba2Cu3O6+δ (Y BCO), where δ is a positive fraction.

The undoped material is called parent compound. In this case δ takes the integral

value at which the valence of the formula equals the number of Cu’s (e.g. La2CuO4,

Bi2Sr2CaCu2O8, Y Ba2Cu3O7). Superconductivity occurs close to these integral values,

that is close to one hole per CuO2 unit.

The crystal structures of cuprates are oxygen-defect modifications of the perovskite

structure, with about one-third of the oxygen positions vacant. Referring to Eq. (1.1),

the unit cell consists of a group of n CuO2 planes spaced by n − 1 layers of the spacer

element A and separated from the next set of planes by the charge reservoir unit X.
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2 Chapter 1. Basic properties of hole-doped HTS cuprates

Typical distance, along the c axis, between planes belonging to the same group is about

3.1 Å while the separation between groups of planes, due to charge reservoirs, depends

on X and can be much greater, about 15 Å for BSCCO.

CuO2 a − b planes are a hallmark feature of all cuprates. It is widely believed that

the physics of HTS cuprates is that of these planes, which are the principal seat of

superconductivity. They are square lattice with Cu atoms at the corners and O atoms at

the midpoints of the sides. Sides are approximately 3.85 Å.

It is possible to change slightly the number of holes per CuO2 unit, from unity to 1+δ,

changing one or more charge reservoir elements, i.e. hole-doping the parent compounds

via chemical substitution.

Doping δ (ranging from 0 to about 0.4) and temperature T (ranging from 0 to few

hundreds K) (also magnetic field is an important control variable) play huge role on the

physical behavior of CuO2 planes. The typical phase diagram of these planes in the

variables doping and temperature (T, δ) is shown in Fig. (1.1).

At low doping and not too high temperature the system is a classic Mott-Hubbard

insulator with long range anti-ferromagnetic order (AF ). In this phase there is one local-

ized hole per Cu atom with staggered spins (the magnetic unit cell is twice the crystal

unit cell). Upon doping beyond a few per cent the anti-ferromagnetic order becomes

zero and a second-order phase transition leads to the pseudo-gap regime (PG). Below

PG regime the system shows an insulating spin-glass (SG) behavior. At slightly higher

doping, δ ≈ 0.05, up to about δ ≈ 0.27 and temperature below the curve Tc(δ), the

compounds become superconducting (SC). Optimal doping is the δ-value at which Tc(δ)

reaches its maximum (δ ≈ 0.16). Underdoped and overdoped are called compounds with

lower or higher doping than the optimal one. The curve Tc(δ) is depressed by magnetic

field and impurities in the CuO2 planes. Above the superconducting phase transition, a

line T ∗(δ) marks a crossover from PG regime to strange-metal regime (SM). Both PG

and SM regimes are not described by standard Fermi liquid theory (FL) and anomalous

physical properties arise. While SM display an anomalous metallic behavior, in PG the

resistivity has a minimum and increases dramatically lowering temperature and doping

showing an insulating behavior. A striking metal-insulator crossover (MIC) is a hallmark

of the PG region. Finally, further increasing doping, the system has a crossover from SM

and a phase transition from SC phase towards a normal metal behavior and FL theory

provides the correct description.

We notice that the above general description omits particular features that may play

some rule in the physical system behavior but depend on the specific material and are not



1.2 t-J model 32

simple band model. The spin-charge gauge approach ap-
pears to partially substantiate such claims. The negative
intercept of the entropy suggests a negative contribution
to entropy of a “constraint-field” , which acts reducing
the low-energy degrees of freedom or more precisely re-
moving them from the temperature/energy region con-
sidered. This was proposed in the analysis of the ther-
modynamics of the t − J model performed in [14] within
the slave-boson approach. In fact, a negative contribu-
tion to entropy naturally arises in a gauge approach from
the scalar component of the gauge field (in the Coulomb
gauge) enforcing “Gauss law”. Let us now sketch the ba-
sis of the spin-charge gauge approach and its application
to the computation of entropy and specific heat.

This approach assumes as a (simplified) model for CuO
layers in high Tc cuprates the 2D t-J model with t/J ∼ 3.
Neglecting t′, t′′, details of Fermi surface (FS) are lost but
the analysis is simplified, hopefully retaining the basic
relevant features. The model is treated in an “improved
Mean Field Approximation”(MFA) via a gauge theory
of spin-charge decomposition, obtained by gauging the
global spin and charge symmetries of the model [15]. This
gauging is obtained introducing spin and charge Chern-
Simons gauge fields. The nice feature of introducing these
gauge fields is the possibility of a more flexible treat-
ment of charge and spin responses within a a spin-charge
decomposition scheme. In the end they will disappear
from the game in MFA, but leaving behind sign of their
presence crucial for the low-energy physics, as discussed
below.

The basic fields adopted in this approach for the spin-
charge decomposition of the t − J model are a charged
spinless fermion, the holon [16], a neutral spin 1/2 bo-
son of a non-linear σ (CP 1) model, the spinon, and a
slave-particle gauge field (not to be confused with spin
and charge Chern-Simons gauge fields). The spin-gauge
field in MFA attaches spin vortices to the empty-site po-
sitions. The spinons moving across this gas of vortices
acquire a mass gap, with a theoretically derived doping
dependence, ms ∼

√
|δ ln δ| consistent with AF correla-

tion length at small δ derived from neutron experiments
[17]. In MFA at low temperature and small doping con-
centration, in the parameter region to be compared with
the “pseudogap phase” (PG) of the cuprates, the holons
move in a statistical magnetic field with flux π per pla-
quette generated by the charge-gauge field. This “phase”
shares some similarity with the π-flux phase appearing in
the slave boson formalism [18].

Around the pseudogap temperature T ∗ the π-flux lat-
tice “melts” and we enter in the “strange metal phase”
(SM), at higher δ or T , see Fig. 2. Notice that, since
only holons are involved and not full electrons, this is not
a true phase transition as the one appearing in the DDW
formalism [19].

In PG, as a consequence of the π-flux, the holons are
converted via Hofstadter mechanism into two species of

FIG. 2: Qualitative phase diagram with in grey the “phases”
considered in the paper

Dirac fermions with small Fermi surface (εF ∼ tδ) cen-

tered at the four nodes
(
±π

2 , ±π
2

)
, whereas in SM they

exhibit a large Fermi surface (εF ∼ t(1− δ)), as expected
from band structure calculations. A direct evidence of
the small FS in PG might come from recent experiments
on Shubnikov-de Haas oscillations [20].

Holons and spinons are gauge-invariantly coupled by
a U(1) slave-particle field, A, whose low energy effective
action is obtained upon integration of the matter fields.
As a consequence of the finite FS of holons the transverse
gauge propagator exhibits a Reizer singularity [21] which
dominates at large scales: for small q, ω, ω/|&q|

〈A⊥A⊥〉(ω, &q) ∼ (−χ|&q|2 + iκω/|&q|)−1, (1)

where A⊥ is the transverse component of A, χ is the
diamagnetic susceptibility and κ the Landau damping.
Both χ−1, κ and the holon mass mh are ∼ δ in PG and
∼ 1−δ in SM. The scalar component A0 has a low energy
propagator given by

〈A0A0〉(ω, q) ∼ (κ(1 + i
ω

|&q| )H(|&q| − |ω|) + m2
0)

−1 (2)

where m0 is a thermal mass generated by the spinons
and H the Heaviside step function. In view of the con-
stant term in (2) the interaction mediated by A0 is short
ranged, hence subleading at large distance w.r.t. the in-
teraction mediated by A⊥. However, taking into account
the renormalization of the transverse contribution dis-
cussed below, it gives the dominant contribution to γ in
PG for T of the order of the holon Fermi temperature,
which in this “phase” is rather small, of the order of a
hundred K at low dopings. In the gauge correlator the
momenta extend up to an UV cutoff Λ ∼ J .

Doping

T

Figure 1.1: Generic (T, δ) phase diagram of hole-doped cuprates; the shaded region shows

the normal state (Strange Metal and Pseudo-gap separated by T ∗ line); from Ref. [13].

shared by all HTC cuprates. Some examples are chains (conventionally along the b axis),

anisotropy of the CuO2 planes, buckling of the Cu − O bonds, chemical and structural

environment of planes.

1.2 t-J model

Now we introduce the model we assume to describe the low energy physics of the

CuO2 planes. Consider the cluster formed by one Cu and the square of four oxygens

around it. In undoped materials one hole occupies the highest energy orbital 3dx2−y2 of

the copper (Cu2+ copper ion) while oxygens 2p shells are completely filled (O2− ions).

Upon doping, additional holes are introduced in the layers. Each of these doping-induced

holes resides primarily on a combination of the four oxygen p orbitals with the same

symmetry of the central 3dx2−y2 Cu ion orbital. This hybridization binds a doping-induced

hole to the central Cu ion and their spins form a spin singlet, the so called Zhang-Rice

singlet [2]. Moreover strong Coulomb interaction prevents two holes residing on the same

oxygens square. Since neighboring clusters have one oxygen is common the charged singlet

can move in the anti-ferromagnetic background of copper ions. Zhang and Rice showed

that the single band two dimensional t − J model Hamiltonian with explicit no double

occupancy constraint, describes the motion of the singlet and accordingly describes the

low energy physics of the CuO2 planes. The t− J model Hamiltonian reads
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Ht−J = PG


−t

∑

〈i,j〉,σ

c†i,σcj,σ + µ
∑

j

nj + J
∑

〈i,j〉

~Si · ~Sj


PG (1.2)

where i correspond to Cu sites, the particle number and spin operators are defined as

ni =
∑

σ

c†iσciσ,
~Si =

∑

αβ

c†iα
~σαβ
2
ciβ . (1.3)

In the above equations ~σαβ are the Pauli matrices, µ the chemical potential and PG =
∏

i(1−ni↑ni↓) is the Gutzwiller projection eliminating double occupation and introducing

Coulomb interaction in the model. Numerical simulations yield t ' 0.4eV , J ' 0.13eV ,

and, using the relation J = 4t2/U (derived by the Hubbard model from which t−J model

follows in the strong coupling limit U →∞ [32]), we get a reasonable Coulomb repulsion

U ' 8eV justifying no double occupation constraint.

Our starting point is the euclidean action of the t− J model in the path integral rep-

resentation in terms of spin 1
2

fermionic fields Ψα,Ψ
∗
α and complex Hubbard-Stratonovich

gauge field X<ij> [3]:

St−J(Ψ,Ψ∗, X,X∗) =

∫ β

0

dx0

{∑

<ij>

(
2

J
X∗<ij>X<ij> + [(−t+X<ij>)Ψ∗iαΨjα + h.c.]

)

+
∑

i

Ψ∗iα(∂0 + µ)Ψiα +
∑

i,j

ui,jΨ
∗
iαΨ∗jβΨjβΨiα

}
, (1.4)

where the two-body potential ui,j, taking into account Gutzwiller projection, is given

by

ui,j =

{
+∞, if i = j

−J
4
, if i, j n.n.

(1.5)

Summation over repeated indices is understood and dependence on euclidean time x0

is not explicitly exhibited. T = 1/β, choosing the Boltzmann constant equal to one. Eq.

(1.4) is obtained by normal ordering the t−J Hamiltonian in Eq. (1.2), replacing the op-

erators with fermionic fields, adding the imaginary-time temporal addend and performing

Hubbard-Stratonovich transformation [4].

1.3 Phenomenology of cuprates

In this section we analyze the anomalous T -dependence of some experimental observ-

ables of HTS cuprates useful for subsequent discussions on normal (i.e. PG and SM)



1.3 Phenomenology of cuprates 5

and superconducting state. Anomalous means different w.r.t. the predictions of standard

FL theory. This is mainly due to the strong correlation between electrons. In FL theory

resistivity is the sum of a constant term due to impurity (always present in metals) and

a term proportional to T 2 due to electron-electron scattering, ρ = a+ bT 2. Spin suscepti-

bility χ is constant (Pauli) as well as Knignt shift Ks (being proportional to the real part

of χ). Spin lattice relaxation rate follows the Korringa low 1
T1

= cT with c ∝ K2
s .

Notice that some observables like resistivity and spin susceptibilities are quite universal

for many hole-doped cuprates.

1.3.1 In-plane resistivity

We begin considering the anomalous T -dependence of the in-plane resistivity ρab. De-

noting by ~J the electromagnetic current, Kubo formula leads to

1

ρab
= σab = − lim

ω→0

1

ω
=〈 ~J · ~J〉R(~q = 0, ω) (1.6)

where the superscript R means retarded correlation and σab is the conductivity.

As shown in Fig. (1.2), resistivity in cuprates is linear over a wide range of temper-

atures, from few tens or few hundred K (depending on the material and doping) to a

thousand K. It decreases with increasing doping and for optimally doped samples, the

range of linearity is the widest.

At low temperatures, to a greater extent in underdoped and overdoped samples, ρab

is far from linear. A remarkable and universal feature appearing in strongly underdoped

samples is the MIC, that is the resistivity shows a minimum at TMIC ≈ 50 − 100K.

At lower temperatures the conductivity behavior is insulating dρab
dT

< 0 while at higher

temperature is metallic dρab
dT

> 0. In these samples kF l < 0.1 at TMIC (l is the mean free

path), i.e. the resistivity is well above the Mott-Regel limit (kF l ∼ 1). For this reason we

believe that MIC is not due to disorder localization. Increasing doping TMIC lowers and

eventually MIC disappears.

Another quite universal characteristic feature of underdoped samples is a maximum of
dρab
dT

at T ∗, about 100-200K. At temperatures higher than T ∗, the resistivity approaches

from below the linear behavior. T ∗ disappears for higher doping. Notice that this is a

criterion to draw the line T ∗(δ) (separating PG from SM) from resistivity measures.

In overdoped samples the resistivity is always metallic, ρab ∼ Tα with α > 1 and the

high T linear behavior is reached from above.
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the low-temperature orthorhombic phase, which causes a
weak kink in the !ab!T" data; the diagonal red band that
ends at x # 0:18 signifies this transition, whose position is
consistent with the data in the literature [22]. Apart from
this structural transition, one can see that the phase dia-
gram of LSCO depicted by RCM is very similar to that of
BSLCO in several respects: First, the T-linear resistivity
(vertical white band) is observed only near optimum dop-
ing (x ’ 0:16–0:18). Second, the vertical red region for
p * 0:19 demonstrates that the !ab!T" behavior becomes
positively curved in the overdoped regime. Third, Tpg

(marked by a dashed line) changes approximately linearly
with x for x $ 0:06 and is terminated near optimum dop-
ing; incidentally, it is intriguing to see that Tpg saturates in
the nonsuperconducting regime (x < 0:06) and that the
saturated value of Tpg is close to the Néel temperature
for x # 0 (%300 K) [22].

Figures 3(a) and 3(b) show the !a!T" data for YBCO,
and the RCM plot is shown in Fig. 3(c). One can easily see

that the phase diagram of YBCO depicted in Fig. 3(c) is
quite similar to those of BSLCO and LSCO in that (1) the
T-linear resistivity is observed only near optimum doping
(i.e., y ’ 6:95), and (2) Tpg changes approximately linearly
with y in the superconducting regime and tends to saturate
in the antiferromagnetic regime. In addition, one can see
that !a!T" becomes slightly positively curved in the over-
doped regime, which is recognized by the faint red color at
y # 7:00 for T > 150 K. However, Fig. 3(c) also shows a
departure from the universal phase diagram suggested by
BSLCO and LSCO in two aspects: (1) Tpg is terminated at
y ’ 6:8, which is near optimum doping but is in the under-
doped regime, and (2) the high-temperature behavior at
6:80 & y & 6:90 is complicated. [The red blob at the top of
the diagram for 6:85 & y & 6:90 is due to a slight curving
of the !a!T" data near 300 K at these dopings, which we
confirm to be very reproducible; this is due to the oxygen
motion in the Cu-O chains [23].] Phenomenologically, it
appears that these peculiarities are related to the fact that
the Tc vs y diagram of YBCO [see the green symbols in
Fig. 3(c)] shows two plateaus at %60 and %90 K, the
former called the 60 K phase, and its origin is still under
debate [9]; clearly, the phase diagram is more ordinary in
the 60 K phase and below (y & 6:80), but becomes peculiar
near the 90 K phase. One interesting possibility is that the

FIG. 3 (color). (a),(b) !a!T" data of YBCO for y # 6:30–7:00
at 0.05 intervals. (c) Electronic phase diagram depicted by RCM
for YBCO, where the solid green circles show Tc’s for the
measured compositions.

FIG. 2 (color). (a),(b) !ab!T" data of LSCO for x # 0:01–0:22
at 0.01 intervals. (c) Electronic phase diagram depicted by RCM
for LSCO; here !n

ab # !ab=!ab!400 K". The dashed line is a
guide to the eyes to emphasize Tpg, and the solid green circles
show Tc’s for the measured compositions.

PRL 93, 267001 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2004

267001-3

Figure 1.2: (a), (b) in-plane resistivity data of Y BCO for different doping y values (the

relation δ = 0.2(y− 6) approximately holds); underdoped (overdoped) samples are shown

in blue (red) while the optimum doping is shown in green; (c) in-plane resistivity curvature

mapping (second derivative of resistivity w.r.t. temperature) in the (T, y) plane; green

circles show Tc; from Ref. [30].
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1.3.2 Knight shift

The Knight shift of the resonant frequency of a nuclear spin in a static magnetic field is

due to hyperfine interaction between the magnetic moments of the nucleus and conduction

electrons. It is determined by the real part of the static magnetic susceptibility at a given

nucleus

Ks = A<χ(ω = 0, ~q = 0) (1.7)

where A is the hyperfine constant.

We notice in Fig. (1.3) that Ks(T ) is depressed at low T and the deviation from the

constant value at high T begins at temperatures higher that the opening of the spin gap

at T < T ∗ [51].

1.3.3 Spin lattice relaxation rate

The spin lattice relaxation rate 1
T1

measures the average spin fluctuation response at

a given nucleus to a quasi-static magnetic field. It is related to the imaginary part of the

magnetic susceptibility

1

T1T
= A lim

ω→0

1

ω

∫
d2qF (~q)=χ(ω, ~q) (1.8)

where F (~q) is the structure factor depending on the lattice. At the Cu sites it is

peaked around the anti-ferromagnetic vector QAF .

Fig. (1.3) show that for optimally or slightly overdoped samples 1
T1T
∝ 1

T
. The same

temperature dependence holds for underdoped samples at relatively high temperature.

Decreasing T , 1
T1T

reach a broad maximum and then it decreases.

Notice that experimentally 1
T1T

share the same temperature dependence as the in-plane

conductivity σab in both PG and SM regions.

1.3.4 Fermi surface

Angle resolved photoemission spectra (ARPES) show that optimal and overdoped

cuprates have a large Fermi surface FS consistent with Luttinger theorem. As shown

in Fig. (1.4), this is essentially the SM regime where the resistivity is T -linear. Under-

doped samples, in the PG region, develop a small FS with four half-pockets centered at(
±π

2
,±π

2

)
in the Brillouin zone. Decreasing the temperature below T ∗ the FS disappears
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starting from the antinodal direction, eventually leaving four short and disconnected half-

pockets. Finally in the SC phase these arcs shrink to four nodal points of a gap function

with d-wave symmetry [50].

1.3.5 Density of states near the Fermi surface

Tunnelling and ARPES experiments show that there is a suppression of the low

energy single particle spectral weight in favor of two separate peaks even at temperature

above Tc, as shown in Fig. (1.4). The scale of energies and the momentum dependence

of this suppression are reminiscent of a d-wave superconducting gap observed in the same

material well below Tc. This is suggestive of an influence on the normal state properties

of some form of local superconducting pairing. We will show that indeed this is the case

in our approach.

Note that there is no tendency for the gap to close as Tc is approached from below, the

gap persists also in the normal state and the gap frequency seems to be quite temperature

independent. On the other hand the sharp peaks of the spectrum in the SC phase reduce

near Tc and become smaller in the normal state, until they vanish.

The gap, measured by the separation between the peaks, increases as the doping level

is reduced.

1.3.6 Spin waves in the superconducting phase

Inelastic neutron scattering experiments [37], which measures the momentum and

energy dependence of the dynamic spin susceptibility, in the superconducting state, show

a resonant mode below the superconducting gap (or particle-hole continuum).

The spectrum for the magnetic excitations resembles an hourglass in energy-momentum

space near the anti-ferromagnetic vector, as shown in Fig. (1.5). The dispersion com-

prises an upward and a downward branches merging at the wave-vector QAF = (π, π) at

an energy Eres = 37, 5meV for Y Ba2Cu3O6.6. Probably there is a small gap between the

high branch and the low branch.

While the high energy excitations hardly changes between SC and PG, the low energy

magnetic spectral weight starts to increase in PG and below Tc the spectral rearrangement

leads to the formation of the lower branch of the hourglass. Just above Tc, in the PG

region, Eres is no more discernible and the hourglass-shape is replaced by an unusual

”vertical” dispersion (dispersion means the position of the peaks of the magnetic intensity

in the energy-momentum space).
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24 E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad

Fig. 4. Temperature dependence of the planar 63Cu relaxation rate 1/T1T and
Knight shift K in optimally doped YBa2Cu3O6.95 (squares) and underdoped
YBa2Cu3O6.64 (circles). From Ref. 81.

lower temperatures can be interpreted as a doping dependent loss of entropy,
∆S(x) ≡ S(x, T )−S(xoptimal, T ), with a magnitude which is independent of
temperature for any T > T ∗. This is the origin of the famous (and still not
understood) observation of Loram and collaborators [140] that there is a large
entropy, kB/2, which is somehow associated with each doped hole. A word
of warning: except at the lowest temperatures, the electronic specific heat is
always a small fraction of the total specific heat, and complicated empirical
subtraction procedures, for which the theoretical justification is not always
clear to us, are necessary to extract the electronic contribution.

5) Infrared conductivity: There is an anomalous motion of infrared
spectral weight to low energies [141,142]. The pseudogap is most clearly iden-
tified by plotting [142] the frequency dependent scattering rate, defined either
as 1/τ∗(ω) ≡ ωσ′

ab(ω)/σ′′
ab(ω), or as 1/τ(ω) = [ω2

P /4π]Re[1/σ(ω)] where ωP

is the plasma frequency; the pseudogap is rather harder to pick out from the
in-plane conductivity, σ′

ab, itself. At large ω, one generally sees 1/τ(ω) ≈ Aω,

Figure 1.3: Temperature dependence of the planar 63Cu relaxation rate 1
T1T

and Knight

shift K in optimally doped Y Ba2Cu3O6.95 (squares) and underdoped Y Ba2Cu3O6.64 (cir-

cles); from Ref. [34].
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low temperatures, which indeed is much weaker than in
the case of Bi2212 and Bi2223 (Lanzara, 2002).

VII. PSEUDOGAP

One of the most important contributions of ARPES
to the investigation of the high-Tc superconductors, is
the identification of the normal-state excitation gap or
pseudogap by Marshall et al. (1996) and Loeser et al.
(1996), and then by Ding, Yokoya, et al. (1996). Similar
to what we discussed in Sec. V for the superconducting
gap, the pseudogap can be simply described as the open-
ing of an energy gap along the underlying Fermi surface,
but detected in this case in the normal state. In fact, for
the underdoped cuprates it was found that the Fermi
level crossings were absent over a large portion of the
Fermi surface due to the opening of an excitation gap at
temperatures considerably higher than Tc itself. This
phenomenon was first recognized in the photoemission
spectra by King et al. (1995) in attempting to connect the
Bi2212 data to those from undoped SCOC (Wells et al.,
1995). The pseudogap has been observed in many of the
cuprate superconductors, but has been most extensively
studied in Bi2212. As we shall discuss in detail later, the
main characteristics of the normal-state pseudogap can
be summarized as follows (Randeria and Campuzano,
1997; Shen et al., 1997): (i) the effect is strong in under-
doped samples, persists to optimal doping, and disap-
pears in overdoped samples (Levi, 1996). (ii) The gap
has two energy scales, with the low-energy one given by
the location of the leading-edge midpoint (which shows
a clear gap), and the higher-energy one by the position
of a broad peak near the (!,0) point (the expected sharp
quasiparticle peak at EF is converted into a broad fea-
ture over "100 meV and the low-energy spectral weight
is suppressed). The lower-energy scale has a d-wave-like
momentum dependence similar to that of the supercon-
ducting gap, with a gapless arc near the nodal region. As
a function of doping, the two energy scales track each
other (Harris et al., 1996; Marshall et al., 1996; White
et al., 1996; Norman, Ding, et al., 1998; Campuzano
et al., 1999). (iii) As the hole concentration is reduced,
the size of the leading-edge pseudogap increases, in con-
trast to the decreasing of Tc . This is believed to be an
important piece of evidence for the non-BCS behavior
of the superconducting transition in the underdoped re-
gime of the high-Tc superconductors.

A. Bi2Sr2CaCu2O8+!

The first specific study of the pseudogap effect in
Bi2212 was performed by Marshall et al. (1996). Figure
58 reproduces the key data that illustrate the basic phe-
nomenology. For optimally doped or overdoped
samples, Fermi crossings around the entire Fermi sur-
face were observed [solid squares in Fig. 58(a)]. For un-
derdoped samples, well-defined Fermi-surface crossings
were detected only within an arc segment centered on
the (0,0)-(!,!) line [open circles in Fig. 58(a)], while
they were completely missing near (!,0). When the re-

sults from underdoped and optimally doped Dy-Bi2212
are compared [Fig. 58(b)], it is clear that the spectra
from the underdoped samples pull towards higher bind-
ing energy in the entire (!,0) region. As the Fermi sur-
face should be a continuous surface in momentum space,
this behavior was interpreted as the opening of an an-
isotropic gap. It has to be emphasized that the
pseudogap phenomenon is relatively insensitive to the
details of the Fermi-surface topology in this region (Sec.
IV.C). The magnitude of the gap is rather large, and the
spectra from underdoped samples are pulled back over
an extended momentum-space region (!,0), which is
characterized by a weak band dispersion [see Figs. 58(c),
(d), where the dispersion is summarized for several dop-
ing levels]. Hence the normal-state gap and its doping
dependence are robust features in the ARPES spectra.

Marshall et al. (1996) suggested two different ways of
characterizing the normal-state pseudogap: by the posi-
tion of the leading edge (20–30 meV) or by the position
of the broad maximum of the spectra (100–200 meV),
which identify, respectively, low-energy and high-energy
pseudogaps. While the former is well defined at interme-
diate low-doping levels but not in the deeply under-
doped regime, the latter is particularly useful in the very
underdoped cases. As we shall discuss below, it is gener-

FIG. 58. The pseudogap phenomenology in Bi2212: (a) Fermi-
surface crossings for Bi2212; (b) leading-edge midpoint shifts
for Dy-Bi2212; (c),(d) dispersions determined from the peak
centroids for Dy-Bi2212 and Bi2212, respectively, for different
doping levels. After Marshall et al., 1996.

518 Damascelli, Hussain, and Shen: Photoemission studies of the cuprate superconductors

Rev. Mod. Phys., Vol. 75, No. 2, April 2003

Figure 1.4: (a) Fermi surface for Bi2212; both the large FS typical of SM and the small

half-pocket FS typical of PG are shown in the second quadrant of the Brillouin zone;

from Ref. [36]. (b) Tunnelling density of states at various temperatures in a sample of

underdoped Bi2Sr2CaCu2O8+δ with Tc = 83K; approaching the SC state peaks develop

at ±45meV ; from Ref. [35].
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FIG. 1: Energy evolution of the in-plane magnetic excitations
around QAF for different temperatures. In a,b, the energy
transfer was fixed to 60 meV, in c,d to 47 meV, in e,f to
37.5 meV and in g,h to 33.5 meV. Panels a,c,e,g show scans
along the a-axis and panels b,d,f,h scans along the b-axis.
The lines are the results of fits to Gaussian profiles. We show
the raw triple-axis data; the only data processing applied is
a subtraction of a constant at 250 K and 290 K in order
to account for the increased background from multi-phonon
scattering. Corrections for the Bose factor are small and were
not applied to the data. The final wave vector was fixed to

2.66 Å
−1

below 38 meV and to 4.5 Å
−1

above. Error-bars
indicate the statistical error.

The spin excitations in both states also differ markedly
with respect to their a-b-anisotropy. In the SC state,
constant-energy cuts of the magnetic spectral weight at
energies below Eres form ellipses with aspect ratios of
about 0.8 (Figs. 1g,h and 3a). In the PG state, the Q-
extent of the signal decreases significantly along b∗ such
that incommensurate peaks can hardly be resolved, Fig.
1h. In contrast, the flat-top profiles along a∗ are well
described by two broad peaks displaced from QAF , Fig.
1g, and we can set an upper bound of 0.6 on the ratio of
δ along b∗ and a∗. The intensity distribution of the high-
energy excitations, on the other hand, hardly changes
between the SC and PG states (Figs. 1a,b and 3b). It
is also much more isotropic than the low-energy profiles.
Specifically, the ratio of δ along a∗ and b∗ is 0.95±0.07 as
obtained from an analysis of the time-of-flight and triple
axis data. Moreover, there is no amplitude suppression
along b∗ and the anisotropy in the peak widths is also
less pronounced than at low energies (0.16 ± 0.02 and

0.13 ± 0.02 r.l.u. along a∗ and b∗, respectively).

Upon cooling below Tc, the spectral rearrangement as-
sociated with the formation of the downward-dispersing
branch of the “hour-glass” results in a sharp upturn of
the intensity at points along this branch (Fig. 4a,b),
while at QAF and 30 meV there is only a broad max-
imum at Tc (Fig. 4c). This is a further manifestation
of the qualitative difference between the SC and PG
state spectra. In the PG state, the spectral weight at
energies at and below Eres declines uniformly with in-
creasing temperature at all Q-values and vanishes around
T ∗ ≈ 200 K. T ∗ is comparable to the temperature be-
low which the PG manifests itself in other experimental
probes [1, 9, 10]. Corresponding constant-energy cuts
show that for T > T ∗, the low-energy spectral weight is
severely depleted over the entire Brillouin zone below an
energy E∗ ∼ 40 meV, Fig. 1e-h (see also Supplemen-

FIG. 2: Colour representation of the magnetic intensity, ob-
tained from triple-axis scans. Panels a,b show the SC regime
and c,d the regime just above Tc. The upper and lower rows
show scans along the a-axis (H , -1.5, -1.7) and b-axis (1.5,
K, 1.7), respectively. In order to obtain a meaningful colour
representation, the intensity at 250 K was subtracted for E <
38 meV and the data was corrected for a Q-linear background
at all energies. At each individual energy, the colour scale
was normalized to the peak intensity of the scan, allowing
a better comparison of the Q-extent at different energies.

The final wave-vector was fixed to 2.66 Å
−1

below 38 meV
and to 4.5 Å

−1
above. Scans taken at the overlapping en-

ergy 38 meV were used to bring both energy ranges to the
same scale. Crossings of black lines represent measured data
points. White lines connect the fitted peak positions of the
constant-energy cuts. Dotted lines represent upper bounds
on the incommensurability.
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constant-energy cuts of the magnetic spectral weight at
energies below Eres form ellipses with aspect ratios of
about 0.8 (Figs. 1g,h and 3a). In the PG state, the Q-
extent of the signal decreases significantly along b∗ such
that incommensurate peaks can hardly be resolved, Fig.
1h. In contrast, the flat-top profiles along a∗ are well
described by two broad peaks displaced from QAF , Fig.
1g, and we can set an upper bound of 0.6 on the ratio of
δ along b∗ and a∗. The intensity distribution of the high-
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between the SC and PG states (Figs. 1a,b and 3b). It
is also much more isotropic than the low-energy profiles.
Specifically, the ratio of δ along a∗ and b∗ is 0.95±0.07 as
obtained from an analysis of the time-of-flight and triple
axis data. Moreover, there is no amplitude suppression
along b∗ and the anisotropy in the peak widths is also
less pronounced than at low energies (0.16 ± 0.02 and
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branch of the “hour-glass” results in a sharp upturn of
the intensity at points along this branch (Fig. 4a,b),
while at QAF and 30 meV there is only a broad max-
imum at Tc (Fig. 4c). This is a further manifestation
of the qualitative difference between the SC and PG
state spectra. In the PG state, the spectral weight at
energies at and below Eres declines uniformly with in-
creasing temperature at all Q-values and vanishes around
T ∗ ≈ 200 K. T ∗ is comparable to the temperature be-
low which the PG manifests itself in other experimental
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K, 1.7), respectively. In order to obtain a meaningful colour
representation, the intensity at 250 K was subtracted for E <
38 meV and the data was corrected for a Q-linear background
at all energies. At each individual energy, the colour scale
was normalized to the peak intensity of the scan, allowing
a better comparison of the Q-extent at different energies.

The final wave-vector was fixed to 2.66 Å
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a 

Figure 1.5: Representation of the magnetic intensity in the SC regime (Tc = 61K) along

the a-axis. The crossing black lines represent measured data points and the white lines

connect the fitted peak positions giving rise to the hourglass; from Ref. [37].
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Chapter 2

Spin-Charge gauge approach to the

t-J model

2.1 SU(2) × U(1) Chern–Simons bosonization of the

t-J model

Explicit prohibition of double occupancy, ensured by the potential in Eq. (1.5), allows

(in two dimensions) to formally perform spin-charge decomposition of the fermionic field

in Eq. (1.4) by means of Chern-Simons (CS) bosonization. Although every bosonization

scheme is an exact identity, mean field approximations (MFA), in different bosonization

schemes, yield different results because they may incorporate some different non pertur-

bative features.

Accepting the suggestion from the one-dimensional model, in which the semion statis-

tics of spin and charge degrees of freedom lead to the correct correlation function in the

scaling limit [8], we look for a semionic representation of the electron field also in the

two-dimensional case.

An improved mean field treatment is obtained by looking for optimal statistical CS

fluxes in mean field and considering fluctuation of spin and charge degrees of freedom

(d.o.f.). The resulting action describes the low energy physics of the t − J model we

assumed for cuprates.

To apply this procedure we recall the main results of the U(1)×SU(2) CS bosonization

for spin 1
2

fermionic fields with hard-core term [14]. The classical euclidean action of

a system of spin 1
2

non-relativistic hard-core fermion fields, Ψα,Ψ
∗
α, interacting via an

instantaneous, spin independent two-body potential and in the presence of an external

abelian gauge field A, is denoted by S(Ψ,Ψ∗|A). The t − J model action in Eq. (1.4),

13
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fulfills these conditions if the gauge field A stands for the complex Hubbard-Stratonovich

gauge field X<ij>. Let Φα,Φ
∗
α be spin 1

2
non-relativistic bosonic or fermionic fields. We

introduce the U(1) CS gauge field B and the SU(2) CS gauge field V (more precisely

Vµ = V a
µ σa/2, a = 1, 2, 3, µ = 0, 1, 2), minimally coupled to the matter fields and gauging

the U(1) charge symmetry and the SU(2) spin symmetry of the action respectively. Free

CS actions for these fields read

Sc.s.(B) =
1

4πi

∫
d3xεµνρB

µ∂νBρ (2.1)

Sc.s.(V ) =
1

4πi

∫
d3xTrεµνρ

(
V µ∂νV ρ +

2

3
V µV νV ρ

)
(2.2)

The two following ”bosonization formulas” can be derived.

• The grand-canonical partition function of the fermion system is given by

∫
DΨDΨ∗e−S(Ψ,Ψ∗|A) =

∫
DBDV

∫
DΦDΦ∗e−[S(Φ,Φ∗|A+B+V )±2Sc.s.(B)+Sc.s.(V )]

∫
DBDV e−[2Sc.s.(B)+Sc.s.(V )]

(2.3)

where the gauge fixings for the gauge symmetries of the actions are understood and

the Φα,Φ
∗
α fields are bosonic or fermionic depending on whether the sign in front of

the B field action is positive or negative respectively.

• Let γx(x = (x0, ~x)) denote a string connecting x to infinity in the x0–euclidean

time plane; then the correlation functions of Ψα,Ψ
∗
α in the fermionic theory and the

correlation functions of the non-local fields

Φα(γx|B, V ) = ei
∫
γx
B(Pei

∫
γx
V )αβΦβ(x), (2.4)

Φ∗α(γx|B, V ) = Φ∗β(x)e−i
∫
γx
B(Pe−i

∫
γx
V )βα (2.5)

in the ”bosonized” theory are identical. P (·) in Eqn. (2.4) denotes path-ordering.

To get an idea of the above statements we notice that integrating the time component

of each Chern–Simons gauge field, appearing linearly in the action of Eqn. (2.3), two

constraints of the form
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j0(x) =
1

2π
ε0νρW

νρ(x), (2.6)

are obtained, where W µν is the field strength of the appropriate CS field. In particular,

W 12 is a magnetic-like field, and jµ is the current of the matter field. In this way a vortex

for each CS field is attached to every matter particle assigning to it a magnetic-like charge.

These matter particles also carry an electric-like charge because minimally coupled to each

CS gauge field. The presence of both electric-like and magnetic-like charges implies an

Aharonov-Bohm effect when the matter particles are exchanged, thus introducing a phase

factor for every exchange. The number of exchanges is well defined thanks to hard-core

condition.

In Eqn. (2.4) two CS fields contribute to the phase factor under exchange. Integration

over CS fields turns the statistics of a bosonic field into fermionic if the total phase

change for every exchange is π. In this case a factor factor (−1)σ is associated with each

permutation of the matter particles where σ = 0 if the permutation is even and σ = 1

if the permutation is odd. But if the phase change is trivial (a factor 1 is associated to

every permutation whether it is even or odd), then the statistics is unchanged after CS

fields integration.

To analyze the t − J model we choose the latter option so that, integrating both CS

gauge fields, the phase factors cancel with each other exactly. As we shall see performing

spin-charge separation, this choice allows semionic statistics of spin and charge excitations

giving rise to a semionic representation of the electron field.

We apply this CS prescription to the t − J model action in Eqn. (1.4) making the

substitutions

Ψ∗jα
∂

∂τ
Ψjα −→ Φ∗jα

[( ∂
∂τ

+ iB0(j)
)
1 + iV0(j)

]
αβ

Φjβ, (2.7)

Ψ∗iαΨjα −→ Φ∗iαe
i
∫
<ij>B(Pei

∫
<ij> V )αβΦjβ (2.8)

and adding CS actions (2.1) as shown in Eqn. (2.3). CS bosonization formulas lead to

the conclusion that the resulting action is equivalent to the starting one but more suitable

for a formal spin-charge separation and for the following MFA.
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2.2 Spin-Charge separation and U(1) slave particle

gauge field

To find the pair of semions making up the electron field, we formally separate the

spin and charge degrees of freedom of the fermionic field Φjα, introduced in the previous

section, by a polar decomposition [14]

Φxα = ExΣxα (2.9)

where Σα is a 2-component complex field, called spinon field, and E is a 1-component

fermionic field. The Pauli principle for the E field takes naturally into account the no-

double occupancy constraint and the condition

Σ∗xαΣxα = 1 (2.10)

at any site x ensures that
∑

α Φ∗xαΦxα = E∗xEx. The presence of a spinless fermion

replaces Gutzwiller projection PG or, equivalently, the infinite on site repulsion in Eqn.

(1.5) can be omitted.

The E field is coupled to the U(1) gauge field B and describes the charge degrees of

freedom and the spinon field Σα is coupled to the SU(2) gauge field V and describes the

spin degrees of freedom of the original fermion field. It follows from CS bosonization that

in terms of these new variables the correlation functions of the electron field Ψα are given

by the correlation functions of the non local field

Ψα ∼ Φα(γx|B, V ) = ei
∫
γx
BEx(Pe

i
∫
γx
V )αβΣxβ. (2.11)

In this description the coefficient of the B field action in Eqn. (2.3) has been chosen

negative. It follows that the gauge invariant euclidean fields Exe
i
∫
γx
B and P (ei

∫
γx
V )αβΣxβ

give rise to charged field operators and spin 1
2

field operators which obey semionic statistics

[15]. The product of these gauge invariant semionic field operators represents the physical

electron field operator.

The theory in terms of spinons Σα and E field is not equivalent to that in terms of the

electron field Ψα or in terms of the field Φα because there is a gauge ambiguity involved in

the decomposition in Eq. (2.9). We can in fact perform a local U(1) gauge transformation

leaving Φ invariant

Ej → Eje
iΛj , Σjα → Σjαe

−iΛj , Λj ∈ [0, 2π[. (2.12)
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We need a gauge-fixing term not breaking the U(1) × SU(2) gauge invariance of the

Φ-theory to get equivalent theories. It is useful to make manifest this local U(1) gauge

symmetry by introducing an emergent U(1) gauge field, called slave particle (or h/s)

gauge field, coupling spinon field and E field. Physical quantities, like correlations, are

h/s gauge invariant quantities because built up with the gauge invariant Φ field.

Since we are interested in t − J model near half filling (low doping), the last step is

to describe charge degrees of freedom in terms of a hole-like Grassmann field H, called

holon field, introduced making the substitution E → H∗, E∗ → H.

To summarize, we begin from Eqn. (1.4) and introduce CS gauge fields via CS

bosonization, Eqns. (2.3) and (2.7). Then making spin-charge decomposition, our dy-

namical variables became spinons and holons. Finally performing the integration over the

auxiliary gauge fields X, the grand-canonical partition function Ξ(β, µ) can be written as

Ξ(β, µ) =

∫
DHDH∗DΣαDΣ∗αDBDV e−S(H,H∗,Σ,Σ∗,B,V )δ(Σ∗Σ− 1), (2.13)

where the euclidean action in terms of {H,H∗,Σ,Σ∗, B, V } is given by

S(H,H∗,Σ,Σ∗, B, V ) =

∫ β

0

dx0
{∑

j

[
H∗j

(
∂0 − iB0(j)− (µ+

J

2
)
)
Hj + iB0(j)

+(1−H∗jHj)Σ
∗
jα

(
∂0 + iV0(j)

)
αβ

Σjβ

]

+
∑

<ij>

[
(−tH∗j ei

∫
<ij>BHiΣ

∗
iα(Pei

∫
<ij> V )αβΣjβ + h.c.)

+
J

2
(1−H∗jHj)(1−H∗iHi)

(
|Σ∗iα(Pei

∫
<ij> V )αβΣjβ|2 −

1

2

)]}

−2Sc.s.(B) + Sc.s.(V ) (2.14)

and δ = µ+ J/2 is the shifted chemical potential, proportional to the doping concen-

tration. Notice that U(1) h/s and SU(2)×U(1) gauge symmetries have to be gauge-fixed.

This t-J model action in terms of holons, spinons and gauge fields (CS and h/s gauge

fields) is the starting point for our improved MFA [5].

2.3 Gauge–fixing of the SU(2)× U(1) symmetry

The h/s symmetry, unlike SU(2)× U(1) symmetry, is kept exact in our treatment to

ensure the validity of the Ioffe-Larkin rule [18] and we postpone its gauge-fixing according

to convenience. In the spin-charge gauge approach the hole is a bound states of a spinon
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and a holon while the h/s (or slave-particle) gauge field provides the necessary attractive

interaction. The Ioffe-Larkin rule follows naturally from this picture stating that the

resistivity of the hole ρ is the sum of the resistivity of the spinon ρs and the resistivity of

the holon ρh, ρ = ρs + ρh. This non-standard feature can be intuitively understood as a

consequence of the h/s gauge string binding spinon and holon, therefore the velocity of

the hole is determined by the slowest (not the fastest!) among spinon and holon.

To proceed, as usual in gauge theories, we need a gauge-fixing of the SU(2) × U(1)

symmetry.

We first gauge–fix the U(1) symmetry imposing a Coulomb condition on B (µ = 1, 2)

∂µBµ = 0. (2.15)

To retain the bipartite lattice structure induced by the anti-ferromagnetic (AF) inter-

actions, we gauge–fix the SU(2) symmetry by a “Néel gauge” condition (|j| = j1 + j2)

Σj = σ|j|x

(
1

0

)
, Σ∗j = (1, 0)σ|j|x , (2.16)

Then we split the integration over V into an integration over a field V (c), satisfying

the Coulomb condition:

∂µV (c)
µ = 0, (2.17)

and its gauge transformations expressed in terms of an SU(2)-valued scalar field g,

i.e. Va = g†V
(c)
a g + g†∂ag, (a = 0, 1, 2).

Integrating over B0 we obtain Eqn. (2.6) which, written in inverse form, becomes

Bµ = B̄µ + δBµ, δBµ(x) =
1

2

∑

j

H∗jHj∂µarg (x− j), (2.18)

where B̄µ gives rise to a π-flux phase, i.e. ei
∫
∂p B̄ = −1, for every plaquette p. Similarly

integrating over V0, we find

V (c)
µ =

∑

j

(1−H∗jHj)(σ
|j|
x g
†
j

σa
2
gjσ

|j|
x )11∂µarg (x− j)σa. (2.19)

After the U(1) × SU(2) field being gauge-fixed, the action in Eq. (2.14) becomes

S = S1 + S2,
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S1(H,H∗, A, U) =

∫ β

0

dx0
{∑

j

[
H∗j

(
∂0 − δ

)
Hj + i(1−H∗jHj)Aj

]

+
∑

<ij>

(−tH∗i U<ij>Hj + h.c.)
}
, (2.20)

S2(H,H∗, U) =

∫ β

0

dx0
∑

<ij>

J

2
(1−H∗iHi)(1−H∗jHj)

(
|U<ij>|2 −

1

2

)
. (2.21)

where the lattice gauge fields Aj (real) and U<ij> (complex with |U<ij>| ≤ 1) depend

on spin and charge variables as

iAj = (σ|j|x g
†
j∂0gjσ

|j|
x )11, (2.22)

U<ij> = e−i
∫
<ij>(B̄+δB)(σ|i|x g

†
i (Pe

i
∫
<ij> V

(c)

)gjσ
|j|
x )11. (2.23)

S1 is the action of spinless fermions gas with hopping parameter t|U<ij>|, coupled to

a gauge field with temporal component Aj and link component eiarg(U<ij>). Action S2

describes a Heisenberg anti-ferromagnet with spins situated at the non-empty sites and

with a link dependent coupling constant [17].

Notice that CS actions do not introduce spurious degrees of freedom. The dynamical

variables are the fermionic field H (2 d.o.f.) and the SU(2) field g (3 d.o.f.) describing

charge and spin degrees of freedom respectively. Remembering the constraint coming from

the h/s gauge fixing (-1 d.o.f.), we reproduce the correct counting of degrees of freedom

of the original fermionic field Ψα (2+2 d.o.f.).

2.4 Optimizations of the spinon configuration

To find out a low temperature effective action, we look for a holon dependent spinon

configuration gm(H,H∗) minimizing the action. Then we consider spin fluctuations

around this minimum configuration as a MFA.

The optimization procedure, presented in detail in Ref. [5], is a kind of Born-Oppenheimer

approximation for the spinons in the presence of the holons, justified in the limit t >> J .

Soft spinon fluctuations, surrounding the moving and massive hole, adjust themselves

in a much shorter time scale. The relevant quantity for the optimization procedure is

the statistical magnetic flux
∏

<ij>∈∂p U<ij> per plaquette p. Once we found its optimal
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value, we look for the spinon configuration gm fulfilling this condition. We note from its

definition in Eqn. (2.23) that choosing a constant spinon configuration when no particle

hops we get Aj = 0. As a consequence gm appears in actions of Eqn. (2.21) only through

the complex gauge field U<ij>. Moreover, for a fixed link < ij >, in every holon config-

uration the term (σ
|i|
x g
†
iPe

i
∫
<ij> V

(c)

gjσ
|j|
x )11 appears either in the hopping term of holons

or in the Heisenberg term of spinons, but never simultaneously. This is a consequence of

the single-occupancy constraint and permits a separate optimization of S1 and S2. For

holon-empty sites U<ij> = 0 in S2 is the optimal choice. This can be achieved choosing

gm without off-diagonal elements for holon-empty sites. For the optimal configuration Eq.

(2.19) becomes

V (c)(x) =
∑

j

(1−H∗jHj)
(−1)

2

|j|

∂µarg (x− j)σz, (2.24)

since V (c) depends only on sites where there are no holes. In this way g†iPe
i
∫
<ij> V

(c)

gj

has only diagonal components which means that the RV B order parameter of the Heisen-

berg term is very small [22].

Regarding the action S1, aside from the phase factor due to the B gauge field, U<ij>

plays the role of the AM order parameter [3], and defines statistical fluxes. We list some

results to justify our following optimal choices concerning statistical fluxes:

• Lieb proves [19] that at half-filling (δ = 0) the optimal configuration for a magnetic

field on a square lattice in 2D has a flux π per plaquette at arbitrary temperature.

• At low densities and high temperatures the optimal configuration has 0 flux per

plaquette.

• At T = 0 it has been proven that the ground state energy has a minimum corre-

sponding to one flux quantum per spinless fermion [20].

• Numerical simulations [21] suggest that increasing T gives rise to a competition

between these minima and at sufficiently high T only 0 and π flux survive.

We expect that the perturbation introduced by the J term in the t−J model changes

the boundary, but not the essence of the phenomenon of the π −→ 0 crossover, π-flux

corresponds to PG and 0-flux to SM .

From the above results, the optimization conditions we impose for the PG region

correspond to
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|Û<ij>| = 1, arg (Û∂p) = π(1− δ). (2.25)

On the other hand, for SM region we choose

|Û<ij>| = 1, arg (Û∂p) = 0. (2.26)

We note that both in PG and SM Ioffe-Larkin rule holds because AM order param-

eter, unlike RV B, leaves unbroken the global slave particle symmetry h/s.

Translating these conditions on the spinon configuration g, in a path-integral first-

quantized formalism, we obtain

gj = ḡjRj g̃j = e−
i
2

∑
` 6=j(−1)`σzarg(`−j)Rj g̃j (2.27)

with the fluctuations Rj being represented in CP 1 form as

Rj =

(
bj1 −b∗j2
bj2 b∗j1

)
, (2.28)

b∗jαbjα = 1. (2.29)

where bjα is a two-component complex field. The optimal configuration gm is given by

R = 1. The role of ḡ is to kill the fast fluctuating term in Eq. (2.24), in fact the relation

ḡ†i e
i
∫
<ij> V

(c)

ḡj = ei
∫
<ij> V̄ holds and

V̄ = −
∑

j

H∗jHj
(−1)

2

|j|

∂µarg (x− j)σz (2.30)

is the remaining term. The statistical field V̄ is the new feature of our treatment of

the t−J model. It comes from the SU(2) sector and depend only on holons distribution.

Its effect is to attach to the holons a vortex of SU(2)-vorticity ±σz π2 and the sign depends

on the Néel sublattice where the holon is located [52].

The difference between PG and SM lies in g̃j. In PG it provides an additional spin

flip for the holon-occupied sites

g̃j = ei
π
2

(−1)|j|σyH∗jHj (2.31)

while in SM it is responsible for cancellation of the statistical flux carried by the

charge gauge field B by means of the flux carried by the spin gauge field V and it has the

form
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φj =

{
g̃j = ei(~σ·~nj), nj = (cosφj, sinφj, 0), π

4
(−1)|j|, if H∗jHj = 1

g̃j = 1, if H∗jHj = 0.
(2.32)

Plugging Eq. (2.27) in Eqs. (2.20) and (2.21) we obtain two different, but exactly

equivalent, actions describing t−J model. The action obtained using Eq. (2.31), suitable

for a MFA of the PG region, is S = Sh + Ss

Sh =

∫ β

0

dx0

{∑

j

H∗j

[
∂0 − (σ|j|x R

†
j∂0Rjσ

|j|
x )11 − δ

]
Hj

+
∑

<ij>

[
−tH∗j e−i

∫
<ij>(B̄+δB)Hi

(
σ|i|x R

†
iPe

i
∫
<ij>(V̄+δV )Rjσ

|i|
x

)
11

+ h.c.
]}

,

(2.33)

Ss =

∫ β

0

dx0

{∑

j

(σ|j|x R
†
j∂0Rjσ

|j|
x )11

+
∑

<ij>

J

2
(1−H∗iHi)(1−H∗jHj)

[
|(σ|i|x R†iPei

∫
<ij>(V̄+δV )Rjσ

|j|
x )11|2 −

1

2

]}
,

(2.34)

where δV = V (c) − V̄ and the relation g̃jσ
|j|
x = σ

|j|+1
x , holding in the scalar products,

was used.

The action obtained via Eq. (2.32) is S = Sh + Ss

Sh =

∫ β

0

dx0

{∑

j

H∗j

[
∂0 − (σ|j|x g̃

†
jR
†
j∂0Rj g̃jσ

|j|
x )11 − δ

]
Hj

+
∑

<ij>

[
−tH∗j e−i

∫
<ij> δBHi(σ

|i|
x g̃
†
iR
†
iPe

i
∫
<ij>(V̄+δV )Rj g̃jσ

|i|
x )11 + h.c.

]}
,

(2.35)

Ss =

∫ β

0

dx0

{∑

j

(σ|j|x g̃
†
jR
†
j∂0Rj g̃jσ

|j|
x )11

+
∑

<ij>

J

2
(1−H∗iHi)(1−H∗jHj)

[
|(σ|i|x g̃†iR†iPei

∫
<ij>(V̄+δV )Rj g̃jσ

|j|
x )11|2 −

1

2

]}
,

(2.36)
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and is appropriate for describing small fluctuations in SM region. We note that in

this case the statistical field B̄ carrying π-flux has disappeared.

2.5 Approximations, spinons and holons effective ac-

tions

To proceed further we need our main approximation. We neglect δBµ and δVµ, i.e.

the feed–back of charge fluctuations on B and of spin fluctuations on V c. Presumably

the main neglected effect is a statistic transmutation giving rise to semionic statistics for

holons and spinons. We argue that the this statistics is not strongly relevant because we

expect the formation of bound states, via slave particle gauge field, representing physical

quantities, such as electron (spinon plus anti-holon) or magnon (spinon plus anti-spinon).

In this approximation the low-energy continuum effective action for spinons is the

same in both PG and SM (except for a correction in the mass term at relatively high

temperature). We assume

b∗jα~σαρbjβ ∼ ~Ωj + (−1)|j|ε~Lj, (2.37)

with ~Ω2
j = f ∼ 1, ~Ω · ~L = 0, where ~Ω and ~L are defined on a sublattice to maintain

the correct number of degrees of freedom. To make manifest the h/s gauge field A, we

integrate ferromagnetic degrees of freedom ~L and rewrite anti-ferromagnetic ones ~Ω in the

CP 1 form

~Ω = z∗α~σαβzβ, z∗αzα = f, (2.38)

with zα a spin 1
2

complex hard-core boson field. Sum over repeated (non-spatial)

indices is understood. This procedure leads to the non-linear σ-model action with a mass

term

Ss =

∫

[0,β]×R2

d3x
1

g

[
|(∂0 − A0)zα|2 + v2

s |(∂µ − Aµ)zα|2 +m2
sz
∗
αzα
]
. (2.39)

with g = 8/J and vs =
√

2Ja (a lattice constant). The mass term stems from the

average over holon configurations with a mean density δ of the term ~Ω2V̄ 2
z arising from the

lowest order interaction between ~Ω and V̄ in the Heisenberg term in the case of unbroken

rotational symmetry. An estimation of this average for small δ gives [16],

〈V̄ 2
z 〉 = m2

s ∼ −δ ln δ. (2.40)
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Hence spinons, scattering against spin vortex attached to holons, gain a mass term

increasing with δ. This disordered regime with unbroken symmetry and correlation length

ξAF ∼ 1/ms is fully consistent with neutron scattering data [23]. We see that within this

approach spin gap in cuprates is mainly due to short range AF order.

In Eqn. (2.39) the self generated U(1) h/s gauge field

Aa = z∗β∂azβ (2.41)

has been introduced. This is an internal variable over which we integrate after the

U(1) symmetry is gauge fixed.

We now turn to the holon sector which is different in PG, Eq. (2.33), and SM , Eq.

(2.35), because of the presence in PG of a π flux per plaquette due to the B̄ gauge field.

The AM order parameter in the hopping term is nearly one in both cases and together

with the temporal term will provide the interaction between holons and spinons through

a minimal coupling to the h/s gauge field defined in Eq. (2.41).

To define a continuum holons effective action for PG, we fix the gauge of B̄ field

choosing a phase of ±π/4 on every link and, according to the d staggered symmetry

typical of cuprates, see Fig. (2.1), we define 4 sublattices ((1) for j1, j2 even, (2) for j1

odd, j2 even, (3) for j1 even j2 odd, (4) for j1, j2 odd). They can be grouped into two

“Néel” sublattices A = {(1), (4)}, B = {(2), (3)}. Setting γ0 = σz, γµ = (σy, σx) and

Ψ1 =
(

Ψ
(A)
1 ,Ψ

(B)
1

)t
=
(
e−i

π
4H(1) + ei

π
4H(4), e−i

π
4H(3) + ei

π
4H(2)

)t
(2.42)

Ψ2 =
(

Ψ
(B)
2 ,Ψ

(A)
2

)t
=
(
e−i

π
4H(2) + ei

π
4H(3), e−i

π
4H(4) + ei

π
4H(1)

)t
(2.43)

and assigning charge eA = +1, eB = −1 to the fields corresponding to A and B

sublattices, respectively, the continuum effective action for holons can be rewritten as

Sh =

∫

[0,β]×R2

d3x
2∑

r=1

Ψ̄r

[
γ0(∂0 − δ − erA0) + vFγµ(∂µ − erAµ)

]
Ψr (2.44)

This action describes Dirac-like fermions (except for the presence of a chemical po-

tential breaking relativistic invariance) as excitation of the staggered flux phase, with

vertices of the double-cone dispersion relations in the reduced Brillouin zone (BZ) cen-

tered at
(
±π

2
,±π

2

)
and chemical potential δ. The upper components of Ψ describe gapless

excitations with small FS (εF ' O(δt)), whereas the lower components describe massive

excitations whose mixing is expected to reduce the spectral weight in the outer part of

the reduced BZ.
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Figure 2.1: Staggered π-flux phase in the PG region respecting the d-wave symmetry of

underdoped cuprates; we fix the gauge in such a way that the phase is +π/4 on every

link according to the arrows. Notice the invariance under a translation by a diagonal of

the plaquette.

As regards SM , the π −→ 0 crossover in the MF treatment of the holon hopping term

converts, via Hofstadter phenomenon, the PG spectrum in a more conventional tight

binding spectrum defined in the entire BZ. The continuum low energy action is given by

Sh =

∫

[0,β]×R2

d3xH∗(x0, ~x)

[
i∂0 − εF − A0 −

1

2m∗
(~∇− i ~A)2

]
H(x0, ~x) (2.45)

with effective chemical potential εF ∼ 4t(1 − δ), vF ∼ 2t is doping independent,

kF ∝ (1 − δ) and m∗ = kF/vF = (1 − δ)/2t, where for convenience we rename H∗ → H

since the closed FS is for H∗. As above fermionic excitations are gapless but now there

is a large Fermi surface (circular as a first approximation) whose bottom is located at the

center of the BZ.

2.6 Slave particle gauge field effective action

In the previous section we obtained the effective actions for PG region and for SM

region by summing Eqs. (2.39) with Eq. (2.44) or Eq. (2.45) respectively.

Holon and spinon sectors are strongly correlated via the emergent slave particle U(1)

gauge field A. It has no proper dynamics but, owing to quantum effects, it gain an

effective action via integration of spinon and holon degrees of freedom. Since zα is gapful,
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the spinon contribution is Maxwellian with a thermal mass m0 for A0. On the contrary,

holons have a finite FS (in both PG and SM) and their contribution to the transverse

component exhibits the so-called Reizer singularity [24]. The leading behavior of the

transverse A propagator is (i, j = 1, 2) [9], [44]

〈ATi ATj 〉(ω, q) ∼
(
δij −

qiqj
~q2

)(
iκ
ω

|~q| − χ~q
2

)−1

, (2.46)

where κ ∼ kF is the Landau damping and χ = χs + χh with χs ∼ J
6πms

, χh = t
6πkF

,

is the total diamagnetic susceptibility, dominated, at least for small δ, by the holon

contribution. There is a characteristic scale of gauge fluctuations emerging from the

Reizer singularity at finite T . It is a kind of anomalous skin depth, derived by assuming

as typical energy ω ∼ T , with the consequence that the transverse gauge interaction is

peaked at q = QT =
(
κT
χ

) 1
3
. The Reizer singularity is due to the simultaneous appearance

of a finite FS and a mass gap for the bosonic excitations zα. If bosons were massless they

would condense gapping the gauge field via Anderson-Higgs mechanism and destroying

Reizer singularity.

In our approach, the competition between the spinon mass and the dissipation due

to the h/s gauge field coupling to holons will be responsible for the anomalous behavior

of many transport phenomena, in particular for the metal insulator crossover (MIC) in

underdoped cuprates.

The scalar component A0 has a low energy propagator given by

〈A0A0〉(ω, q) ∼
[
κ

(
1 + i

ω

|~q|

)
θ (|~q| − |ω|) +m2

0

]−1

(2.47)

where m0 is a thermal mass due to spinons and θ the step function. In view of the

constant term in Eq. (2.47), the interaction mediated by A0 is short ranged and hence

subleading at large distance w.r.t. the interaction mediated by AT , triggered by the Reizer

singularity. Nevertheless, since we are in 2D, the attractive force mediated by the gauge

field is expected to produce bound states with the quantum numbers of the spin wave of

the electron.

We note the gauge field propagator has the same form in PG and SM , but the

modification in the structure of the FS affects the value of the involved parameters. The

main change is the value of kF : it is small and proportional to δ in PG while in SM it is

larger by a factor of order 5-10, being proportional to 1− δ. As a consequence the spinon

gap effects are less effective in SM .
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2.7 Main predictions in the normal state

In this section we outline some prediction in terms of phenomena and experimental

physical quantities, useful in the following, in the framework of this approach to the t−J
model [9], [11].

A difficulty in considering the gauge fluctuations is the lack of a small parameters for

expansions. On the basis of gauge invariance we expect some kind of binding to get bound

states (or resonances) with the quantum numbers of the electron (spinon and holon) and

of the magnon (spinon and anti-spinon).

Roughly speaking, spinons and holons behave like separate particles and their scat-

tering against gauge fluctuations renormalizes their properties and, at small energy scale,

binds spinon and anti-spinon into the magnon resonance and spinon and holon into the

electron resonance with non-Fermi-liquid properties. These low-energy excitations are no

longer well-defined quasi-particles but rather loosely bound composite particles.

Because a perturbative treatment would be insufficient to implement binding, we ob-

tain the correlation functions of physical (hence gauge invariant) fields applying a kind

of eikonal resummation of (transverse) gauge fluctuations [11]. This resummation is ob-

tained by treating first Aµ as an external field and expanding the correlation function in

terms of first-quantization Feynman paths. Integrating out Aµ we obtain an interaction

between paths which is treated in the eikonal approximation. Finally a Fourier transform

is performed to get the retarded correlation function. However further approximations

are needed, especially in the treatment of short scales, to get the following results about

magnon and electron [12], [43].

2.7.1 Metal-insulator crossover

As a consequence of the slave particle gauge field binding spinon to holon, the velocity

of the electron is determined by the slowest among spinon and holon. In this sense Ioffe-

Larkin rule (stating that the inverse conductivity of the electron is the sum of the inverse

conductivities of the spinon and the holon) make it possible to reconcile the insulating

behavior at low temperatures with the presence of a finite FS. Moreover the universality

of MIC can be qualitatively explained noting that the leading behavior comes from the

spinon (bosonic) sector, without a detailed reference to the FS of the holon (fermionic)

sector.

MIC (clearly shown in the two higher curves of the panel (a) in Fig. (1.2)) is an

outcome of competition between the AF short range order (SRO) and the dissipative
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motion of the charge carriers. We start from the Mott insulating state showing AF long

range order (LRO). Upon doping beyond certain threshold, since holes distort the AF

background, the AF LRO is destroyed, being replaced by SRO, characterized by the

AF correlation length ξ = 1
ms

, providing the first length scale. As we shall see in the

next subsection, a competing factor is the diffusive motion of the charge carriers with

characteristic energy Tmh, where mh ∼ δ
t

is the effective mass of holons in the PG phase.

The corresponding length scale is the thermal de Broglie wave length λT ∼
√

t
T δ

. At low

temperatures ξ ≤ λT , the AF SRO dominates and the charge carriers become weakly

localized (not exponentially) showing insulating behavior (this localization is mainly due

to interaction rather than disorder). On the contrary, at high temperatures ξ ≥ λT , the

diffusive motion of charge carriers prevails, exhibiting metallic conductivity. Therefore the

competition of the real part of the spinon self-energy, the mass gap, and the imaginary

part, the dissipation, gives rise to MIC.

It turns out that a number of experimental observations in the PG phase can also be

explained by the competition of these two factors and the composite nature of low-energy

excitations.

2.7.2 T ∗(δ) and magnon correlation

For δ, T small, a parameter region identified with PG, it turns out numerically that

the spatial Fourier transform in the eikonal approximation is dominated by a nontrivial

complex |~x|-saddle point, |x|s.p. = Q−1
T ei

π
4 due to the effect of gauge fluctuations. The self-

consistency requirement for this eikonal approximation yields a region of validity given

approximately by msQT ≤ T
χ
≤ m2

s. The upper bound temperature roughly coincides,

both as order of magnitude and as δ−T dependence (for low doping), with the pseudogap

temperature T ∗ (entering the SM region) slowly decreasing with doping δ

T ∗(δ) ∼ χm2
s ∼

t

6πδ
|δ ln δ| ∼ t

6π
| ln δ|. (2.48)

The main effect of the complex saddle point within the above range is to induce a shift

in the mass of spinons

ms →M =

√
m2
s − ic

T

χ
(2.49)

where c ∼ 3 is a constant, thus introducing a dissipation proportional to T . Physi-

cally, due to the Ioffe-Larkin rule electron conductivity is dominated by spinons, and the
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competition between the mass gap and the dissipation appearing in M is responsible for

the MIC, as explained above.

The retarded magnon propagator derived in PG is given by

〈~Ω · ~Ω〉PG(ω, ~q) ∼ ZPG
Ω

ω − 2M
J0

( |~q||x|s.p.
2

)
(2.50)

where J0 is the Bessel function and ZPG
Ω = 1

QT

√
kFM .

For sufficiently high δ or T , i.e. in the SM region, the saddle point contribution

is negligible w.r.t. the contribution of fluctuations around 0 in the range |~x| ≤ Q−1
T .

The result of gauge fluctuations can also be summarized in terms of the appearance of a

dissipative term

ms → ms − iΓSMΩ (2.51)

with ΓSMΩ = c′ T
χm2

s
QT and c′ ∼ 0.1. In SM , however, the change of kF from δ to 1− δ

yields a decrease of diamagnetic susceptibility χ, implying that the thermal de Broglie

wave length is shorter than in PG. Therefore the spin-gap effects (ξAF < λT ) are less

effective, being confined to very low temperatures.

The retarded magnon propagator in SM reads

〈~Ω · ~Ω〉SM(ω, ~q) ∼ ZSM
Ω

ω − 2ms + iΓSMΩ

e−
|~q|2
a

a
(2.52)

where a = T
χms

QT ∝ T
4
3 and ZSM

Ω = Q2
T ∝ T

2
3 .

From Eqs.(2.50) and (2.52) we see that the transverse gauge fluctuations couple spinon

and anti-spinon into a magnon resonance with mass gap 2ms and inverse life time

ΓPGΩ = =M ∝
{
T if m2

s >>
cT
χ

T
1
2 if m2

s ∼ cT
χ

(2.53)

in PG and

ΓSMΩ ∝ T
4
3 (2.54)

in SM .

Moreover Γ−1
Ω turns out to be proportional to to the electron life-time, which thus

always increases as T decreases. The point is that above MIC the increase of the electron

life-time yields an increase of conductivity, but below MIC the mobility decreases as T

lowers because the spinon can move only through thermal diffusion, induced by gauge
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fluctuations due to gapless holons, and, because of binding, the electron can move only if

the spinon does. The electron retarded propagator at the FS reads

GR(ω,~kF ) ∼ Z

ω + iΓ
(2.55)

where Z ≈ √QTms and Γ = ΓΩ

2
. Therefore the gauge fluctuations are able to bind

spinon and holon into a resonance for low energies but with a strongly temperature de-

pendent wave function renormalization. The electron resonance is responsible for the

inter-plane transport properties, indeed, because of gauge invariance, spinon and holon

must bind before hopping between adjacent CuO2 planes.

2.7.3 In-plane resistivity

The in-plane resistivity ρab is calculated via the Ioffe-Larkin rule, ρab = ρs + ρh, where

ρs is the resistivity of the spinon-gauge subsystem and ρh of the holon-gauge subsystem.

The last one is subdominant and of standard form (both in PG and SM) for a FL

interacting with a gauge field, thus exhibiting Reizer singularity,

ρh ∼
1

τimp
+ εF

(
T

εF

) 4
3

(2.56)

where we added the contribution of impurity scattering 1
τimp

via Matthissen rule.

As for spinons in PG, we put ~J = ~js (where ~js ∼ ∂~Ω ∼ QT
~Ω is the spinon current) in

the Kubo formula of Eq. (1.6) and using Eq. (2.50) we obtain

ρ ∼ ρs ∼
|M |1/2

sin(argM
2

)
∼
{
T−1 m2

s >>
cT
χ

T
1
4 m2

s ∼ cT
χ
.

(2.57)

From the above equation MIC is recovered and, due to the square root in M , there is

an inflection point T ∗ ∼ χm2
s at higher temperature, found also experimentally [33]; see

Fig. (2.2). In our approach theMIC is due to correlation effects, not to a disorder-induced

localization, in fact the insulating behavior is power-law like, not exponential. Moreover

a universal behavior of the normalized resistivity ρn = [ρ − ρ(TMIC)]/[ρ(T ∗) − ρ(TMIC)]

results as a function only of the ratio y = cT/T ∗.

On the other hand, in SM one obtains

ρs ' 2
λ

QT

(
ΓSMΩ +

m2
s

ΓSMΩ

)
=

c′T

χm2
s

λ2 +
4m4

sχ

c′TQ2
T

, (2.58)

where λ ≈ 0.7. In the high temperature limit QT >> ms, the damping rate in Eq.

(2.58) dominates over the spin gap 2ms and the spinon contribution to resistivity is linear
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in T , with a slope α ' 1−δ
m2
s

, see Fig. (2.3). Lowering the temperature, the second term

in gives rise first to a superlinear behavior and then, at the margin of validity of our

approach, an unphysical upturn.

The deviation from linearity here is due to the spin gap effects and is cut off in the

underdoped samples by the crossover to the PG phase. We will show that actually,

because of the formation of incoherent holon pairs in SM region (as a precursor regime

of superconductivity), the deviation from linearity begins at higher temperature (as is

experimentally observed) and at lower temperatures both contributions sum up.

The celebrated (approximate) T -linearity can also be understood qualitatively as a

consequence of Γ and the effectiveness of the gauge fluctuations to form electron resonance

predominantly contributing to conductivity in a slab of momenta QT around the Fermi

surface. In fact the conductivity derived from the Boltzmann transport theory would be

σ0 ∼ Γ−1, but due to effectiveness the physical conductivity is σ ∼ σ0QT ∼ T−4/3T 1/3 ∼
T−1 . Similar considerations apply also to the spin relaxation time 63(TT1) and the Knight

shift Ks.

2.7.4 Spin lattice relaxation rate

Assuming QT as cutoff for the |~q| integration and using the smoothness of the hyperfine

field at this scale we derive in PG

63(
1

T1T
) ∼ (1− δ)2|M |− 1

2 (a cos(
argM

2
) + b sin(

argM

2
))

∼
{
a+ bT m2

s >>
cT
χ

T−
1
4 m2

s ∼ cT
χ

, (2.59)

with a/b ∼ 0.1, and the two terms are due to the real and the imaginary parts of J0

in Eq. (2.50); se Fig. (2.4). Thus we obtain a broad peak, observed in some cuprates,

and, up to a multiplicative constant, a universality curve as a function of y = cT/T ∗.

In SM one finds

63(
1

T1T
) ∼ (1− δ)2

ρs
. (2.60)

Therefore in the high temperature limit we recover the linear in T behavior for 63(T1T )

and at high doping or low temperatures the superlinear deviation, also found experimen-

tally in overdoped samples of LSCO, see Fig. (2.5).
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4

FIG. 1: Angle-dependent spectral weight of the electron prop-
agator. The thick lines close to (±π/2, ±π/2) represent the
region of FS with spectral weight larger than 1/2 for δ ∼ 0.05
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FIG. 2: The calculated temperature dependence of in-plane
resistivity for various dopings δ in comparison with the cor-
responding experimental data (inset) on La2−δ Srδ Cu O4 in
units of mΩcm, taken from Ref. 6.
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Figure 2.2: The calculated temperature dependence of the in-plane resistivity for var-

ious dopings δ in comparison with the corresponding experimental data (inset) on

La2−δSrδCuO4 in units of mΩcm, taken from Ref. [33].
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FIG. 6: Theoretically calculated frequency dependence of the
AC conductivity for different dopings: δ = 0.03 (full line),
δ = 0.04 (dashed) and δ = 0.05 (dotted).

Figure 2.3: The calculated temperature dependence of the in-plane resistivity for various

dopings δ. Below the PG temperature T ∗ the curve is shown in dashed line. Inset:

in-plane resistivity versus T measured in LSCO crystals with different Sr content x [53].
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6

FIG. 7: Calculated frequency dependence of the AC conduc-
tivity for δ = 0.03. Also shown is the corresponding DC
conductivity as a function of temperature (in cm−1).
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Figure 2.4: The calculated temperature dependence of the spin lattice relaxation rate
63( 1

T1T
) for various dopings δ. Inset data of Y Ba2Cu3O6.52 single crystal in units of

s−1K−1, taken from Ref. [54].
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Chapter 3

Non-BCS superconductivity from

attraction between spin-vortices

3.1 Order parameters

Up to now our theory dealt with the normal (i.e. PG and SM) state of cuprates.

In this chapter we discuss superconductivity arising from the PG region. We extend

the spin-charge gauge approach to the superconducting dome (SC) following a non-BCS

mechanism recently proposed in [10] and we analyze the consequences of this phase tran-

sition on the normal state.

This mechanism is based on the composite structure of the hole understood as a bound

state of spinon and holon. There are three steps to get superconductivity:

• At a higher crossover temperature Tph a finite density of incoherent holon pairs

appears. The necessary holon attractive interaction comes from the attraction be-

tween spin-vortices of opposite chirality centered on holon positions in opposite Neel

sublattice, Eq. (2.30).

• At a lower crossover temperature Tps a finite density of incoherent RV B (spin sin-

glet) spinon pairs appears, giving rise, together with preformed holon pairs, to

incoherent hole pairs and to a gas of magnetic vortices in the plasma phase. It

is the gauge attraction between holon and spinon that, using the holon pairs as a

source of attraction, induces the formation of short range RV B spinon pairs with a

reduction of the spinon gap.

• At an even lower temperature Tc both holon pairs and RV B spinon pairs, i.e. hole

pairs, simultaneously became coherent, condense and magnetic vortices becomes

35
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dilute. This is the SC transition. Superconductivity occurs at a finite doping value

even at T = 0.

This mechanism is not BCS-like since the formation of holon pairs is BCS like (in

the sense that the gain is in potential energy) but the formation of spinon RV B pairs is

non BCS since it involves a gain in kinetic energy coming from the gauge interactions.

To begin a deeper discussion of the above points we need to define the SC order

parameter assumed to be RV B-like

∆c
ij = 〈εαβciαcjβ〉. (3.1)

Neglecting gauge fluctuations we get

∆c
ij = 〈εαβziαzjβ〉〈H∗iH∗j 〉. (3.2)

Both factors should be non-vanishing to get superconductivity. It can be shown by

explicit calculation that in our model a gapless gauge field is inconsistent with coherent

holon pairs, i.e. coherent holon pairs (that yield a still gapless gauge fluctuations) cannot

coexist with incoherent spinon pairs and in this situation the condensation of both appear

simultaneously. It follows that Tc < Tps.

The definition of ∆c
ij needs some comments. In our PG optimization procedure used to

obtain the spinon optimal configuration in a holon background, Eq. (2.31), we considered

jumps between nearest neighbor sites and the holon were assumed in the final site of the

jump. When strings are inserted to evaluate correlation functions like the order parameter

∆c
ij (as explained in the bosonization formula in Eq. (2.4)), we can consider strings as

extended jumps from the insertion point to infinity. We have to define what happen to the

spinon optimal configuration in these extended jumps. The result of the calculation can

be summarized by the rule that if the jump is between different sublattices we have the

additional spin flip on holon final position except for strings going to infinity where holon

should be considered at the beginning of the jump. This rule agrees with the identity

|AMij|2 + |RV Bij|2 = 1 if we neglect V in the string γ, see Eq. (2.11). Moreover in MF

we can assume that the two strings in the SC order parameter relative to 〈ij〉 have a

common support leaving only a phase factor along the link 〈ij〉.
Now we analyze in detail the pairing interactions generating nonzero order parameters

for holons and spinons. The four fermion interaction in the Heisenberg term, Eq. (2.34),

provides a holon-holon repulsive interaction (it has positive coefficient) and can not cause

a growth of holon pair density 〈|HiHj|2〉 ' 〈|HiHj|〉2. The four fermion interaction we
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need can be found in the term coupling holons, spinons and spin-vortices, Eqs. (2.30)

and (2.40). When averaged over holons it provides the spinon mass term but when we

consider the MF average over spinons we obtain the contribution

SV A = J̃〈z∗αzα〉
∫ β

0

dx0

∫
d2~xV̄ z2

µ (~x, x0) (3.3)

∫
d2~xV̄ z2

µ (~x, x0) =
∑

i,j

(−1)|i|+|j|4−1(~i−~j)H†iHiH
†
jHj(x0). (3.4)

where J̃ ≡ J(1 − 2δ) and 4 is a 2-D lattice Laplacian. In the static approximation

(so that the integrand in Eq. (3.3) is independent of x0) this contribution becomes the

action of a 2D Coulomb gas with charge depending on the sublattice. Incoherent pairing,

〈|HiHj|〉 6= 0, appears as a Kosterlitz-Thouless (KT ) transition at Tph ∼ J̃〈z†z〉, which

turns out to be inside the SM region. Hence the whole PG region lies below Tph.

Because only a small fraction of holons forms pairs, a finite but slightly lower spinon

mass ms (with the same doping dependence as PG) remains. As a consequence we

evaluate the (doping decreasing) expectation value

〈z∗z〉 ≈
∫
d2~q(~q2 +m2

s)
−1/2 =

√
Λ2 +m2

s −ms ∼ 1−ms, (3.5)

where the UV cutoff Λ ∼ 1. For the same reason a finite screening effect persists

al large scales for the spin-vortices interaction potential. Denoting by ξ the correlation

length, in the long wavelength limit the interaction induced by the 2-D Laplacian in Eq.

(3.4) is replaced, in Fourier transform, by the effective potential

Veff (~q) =
1

~q2 + ξ−2
, (3.6)

where from KT theory ξ ∼ 1√
JkF

.

We propose to identify the temperature Tph with the observed upper PG temperature,

where the in-plane resistivity deviates from the linear behavior. As we shall see, a finite

density of incoherent holon pairs induces an angle dependent reduction of holes spectral

weight, starting from the antinodal regions and causing the forementioned deviation. The

reduction of the spectral weight confirms that holon pairs formation is BCS-like.

To conclude the discussion about holons we note that the origin of holons attraction,

Eq.(3.3), comes from the J-term in the t− J model and has therefore a magnetic origin,

its scale is related to J but it is not due to exchange of AF spin waves.
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Once we have 〈|HiHj|〉 6= 0 via spin-vortices attraction, we can consider spinon RV B

pairing. When the density of holon pairs is large enough, the gauge attraction between

holons and spinons overcomes the original AF repulsion of spinons (remember that the

Heisenberg term is positive in our approach) and at an intermediate crossover temperature

Tps (lower than Tph and higher than Tc) a finite density of incoherent RV B spinon pairs

emerges, 〈|εαβziαzjβ|2〉 6= 0. The gauge attraction in fact favors RV B pairing lowering

the spinon kinetic energy from ms to
√
m2
s − |∆s|2 until Heisenberg repulsion is exceeded.

The RV B term, previously discarded, in the leading approximation to continuum provides

the contribution

SRV B =
J

2

∫ β

0

dx0
∑

〈ij〉

|H∗iH∗j |2|εαβziαzjβ|2 (3.7)

It is repulsive and essentially irrelevant in absence of holon pairs but it becomes rele-

vant if pairing occurs. Introducing a complex Hubbard-Stratonovich gauge field ∆s
ij and

treating the holon pairs in MF , Eq. (3.7) becomes

SRV B =

∫ β

0

dx0
∑

〈ij〉

{
− 2|∆s

ij|2
J |〈HiHj〉|2

+ ∆s∗
ij ε

αβziαzjβ + h.c.

}
(3.8)

where the order parameter for spinons is space-independent but direction-dependent

and in MF

∆s
ij =

J

2
|〈HiHj〉|2〈εαβziαzjβ〉. (3.9)

Wee see from Eq. (3.7) that the energy scale related to RV B spinon pairs is again J .

As soon as we have a finite density of spinon pairs together with the preformed

holon pairs we can evaluate the modulus of the d-wave pairing amplitude for holes

∆c
ij = ∆s

ij/〈HiHj〉. ∆c
ij non-vanishing corresponds to incoherent hole pairs. The gra-

dient of the phase of ∆c
ij describes mobile magnetic vortices in the plasma phase, in fact

incoherence of hole pairs leads to a vanishing expectation value of the exponential of the

phase of ∆c
ij.

This region, precursor of superconductivity, shows at a finite doping value even at

T = 0 and we propose to identify Tps with the experimental crossover corresponding to

the diamagnetic Nernst phase.

Finally at temperature Tc we enter in the SC region where hole pairs become coherent.

A d-wave condensate ∆c
ij = 〈εαβziαzjβ〉/〈HiHj〉 6= 0 appears, magnetic vortices became
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dilute and the gauge field A becomes massive making life time of physical resonances

temperature independent (Reizer singularity disappears). This transition is similar to

an XY -Stueckelberg transition (as we shall see there is a factor 2 in front of the tem-

poral term) and is driven by kinetic energy but is related again to the energy scale J

because dynamic of vortices is triggered by spinon mass and gauge field mass and both

are originated by Heisenberg term.

We note that the order parameter ∆c
ij is well defined both in modulus and in phase

because the sequence of the pairings is fixed by the explained mechanism (first holons and

than spinons) and condensation is simultaneous.

We conclude noting that holon pairing, required in advance to have RV B pairs, enters

the game in two ways with opposite effect: the density of holon pairs itself and the strength

of the attraction J(1 −ms), in Eq. (3.3). They act in opposite way as doping increases

thus yielding a finite range for a non-vanishing value of |∆s|, and hence ∆c
ij, starting

from a non-zero doping value. Finally this approach preserve finite FS in the region

where vortices are not dilute (Nernst region) and nodes on FS appear only below the SC

transition when the spectral weight of holes reduces the FS to four points (nodes).

3.2 Holon pairing

In this section we treat in detail holon pairing in the PG phase in MFA. The starting

point is the PG π-flux holon action in Eq. (2.33). It is useful to exploit Hamiltonian

formalism on two sublattice A (even sites) and B (odd sites). We make the same approx-

imation as above except the continuum limit and neglect the h/s gauge field which can

be reinserted later via minimal substitution. Holon π-flux Hamiltonian reads

Hh
0 = −t

∑

i∈A,r=1,4

[
ei
π
4

(−1)r+1

A†iBi+r + h.c.
]
− µ

∑

i∈A

A†iAi − µ
∑

i∈B

B†iBi (3.10)

where r = (1, 2, 3, 4) = (êx, êy,−êx,−êy) indicates crystal axis, Ai = Hi and Bi =

Hi+êx if i ∈ A.

Performing Fourier transform, A~k and B~k operators are defined in the magnetic Bril-

louin zone (MBZ) because of the two sublattice separation. We exploit the related addi-

tional symmetry making a ~Q+ ( ~Q−) translation of 3rd (4th) quadrant modes, as shown

in Fig. (3.1), ( ~Q± = (±π, π) are reciprocal primitive vectors) followed by a minus sign

factor in front of B~k operators,
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a~k =





A~k− ~Q+
, if kx − π < 0, ky − π < 0

A~k− ~Q− , if kx + π > 0, ky − π < 0

A~k, if ky ≥ 0

(3.11)

b~k =





−B~k− ~Q+
, if kx − π < 0, ky − π < 0

−B~k− ~Q− , if kx + π > 0, ky − π < 0

B~k, if ky ≥ 0.

(3.12)

The anti-commutation relations remains unchanged and we get a rectangular zone

(kx ∈ [−π, π], ky ∈ [0, π]) equivalent to MBZ where the holon dispersions are two Dirac

cones centered around ~QR ≡ 1
2
~Q+ and ~QL ≡ 1

2
~Q−. Notice that when the arguments of

a and b fields belong to the rectangular zone, the arguments of A and B fields belong to

the MBZ. We add a flavor index α = R,L = 1, 2 to holons with positive and negative

kx, measuring momentum ~k from ~QR and ~QL respectively, a ~Qα+~k = aα,~k and b ~Qα+~k = bα,~k.

In the low energy limit we can consider flavors as separate because of PG small Fermi

momentum and considering quasi-particles near the FS it is possible to perform a gauge

transformation

aα,~k → aα,~ke
iθ
α,~k

/2, bα,~k → bα,~ke
−iθ

α,~k
/2 (3.13)

where θα,~k = (−1)α
[
π
4
− arctan

(
ky
kx

)]
is chosen to cancel the phase of the hopping

factor. The final hamiltonian reads

Hh
0 =

∑

α,~k∈D

[
vF |~k|(a†α,~kbα,~k + h.c.)− µ(a†

α,~k
aα,~k + b†

α,~k
bα,~k)

]
(3.14)

with vF = 2t and D = {~k : −π
2
≤ kx, ky ≤ π

2
}.

Now let’s consider holon-holon interaction in the long wavelength limit. Performing

Fourier transform of Eq. (3.4) we note that it is invariant under the gauge transformation

in Eq. (3.13). The coupling between L and R flavors is neglected since Veff ( ~QR− ~QL) <<

Veff (~0). Defining

∆h
α,~k

= J̃〈z†z〉
∑

~q

Veff (~k − ~q)〈bα,−~qaα,~q〉 (3.15)



3.2 Holon pairing 41

 

 

 

4

Note that although this order is only defined between
nearest neighbors, the pairing between holons are not
restricted to nearest neighbor as shown in next section.
The holon pairing, in turn, induces a condensation of
RVB spinon pairs, and finally leads to a d-wave pairing
of electrons.

II. HOLON PAIRING

A. Holon Hamiltonian with Attractive Interaction

The free holon is described by Hamiltonian Eq. (24).
To deal with the π flux, it is convenient to divide the
square lattice into two sublattices, A(even sites) and
B(odd sites). On each sublattice, the holon annihilation

operators are denoted by â and b̂, respectively. The near-
est neighbor hopping always takes place between A and
B sublattices. The π-flux per plaquette can be achieved
by assigning each bond a phase factor in the following
way

â†
i b̂i±!ex

→ â†
i b̂i±!ex

eiπ/4

â†
i b̂i±!ey

→ â†
i b̂i±!ey

e−iπ/4

To get the low energy physics of holon, it is also neces-
sary to neglect the gauge field θij generated by spinons
temporarily, which can be reinserted by Peierls substitu-
tion. Under these considerations, the Hamiltonian of free
holon can be written in the quadratic form

Ĥh
0 ∼

∑

!k

(t!kâ†
!k
b̂!k + h.c.) − µ

∑

!k

(â†
!k
â!k + b̂†

!k
b̂!k). (32)

where t!k = 2t(coskxeiπ/4 + cos kye−iπ/4). It is then

straightforward to get the spectrum ε($k) = ±|t!k|,
of which the FS consists of four half circles around
(±π/2, ±π/2) as shown in Fig. 1a, where the red lines
are the boundary of magnetic Brillouin zone(MBZ).The
Fermi energy is about tδ.[Modified according to your
comment.]. There are two reciprocal primitive vectors,
$π± ≡ (±π, π) by which we can translate the MBZ in the
3rd and 4th quadrants to get another equivalent rect-
angular one as shown in Fig. 1b, where there are two

Dirac cones centered around $QL = (−π/2, π/2) (left) and
$QR = (π/2, π/2) (right), respectively. In this transfor-

mation, one may note that â!k+!π±
= â!k and b̂!k+!π±

= −b̂!k,

where a minus sign appears for b̂ defined on odd sublat-
tice. Since there is also an additional minus sign for t!k
after translation, the Hamiltonian is still invariant.

Accordingly, all the holon operators can be labeled
with an additional index L or R as

ĥL,!k = ĥ!k+Q̂L
, ĥR,!k = ĥ!k+Q̂R

with ĥ being â or b̂, so is the Hamiltonian of free holon,

III IV

III

(- ,0)! ( ,! "#

( , )! !(- , )! !

Left FS Right FS

( )a

( )b

III

IIIIV

FIG. 1: The Brillouin zone and FS of free holon with π flux.
The folded MBZ with red lines as boundary in (a) is equivalent
to the rectangular in (b).

which consists of two decoupled parts Ĥh
0,α,

Ĥh
0,α =

∑

!k

(tα,!kâ†
!k
b̂!k + h.c.) − µ(â†

α,!k
âα,!k + b̂†

α,!k
b̂α,!k).(33)

where tα,!k = t!k+!Qα

tR,!k = 2t(− sinkx + i sinky) ≈ 2t(−kx + iky)

tL,!k = 2t(sinkx + i sinky) ≈ 2t(kx + iky), (34)

In Eq. (33), the momentum $k only takes values in the
range [−π/2, π/2]⊗[−π/2, π/2], which is only one quarter
of the original BZ.

Now let’s consider the holon-holon interactions. In
Eq. (23), there is a repulsive one proportional to J(1 −
|χs

ij |2) which is usually very small in the antiferromag-

netic groundstate in low doping limit where |χs
ij | ! 1.

The strength of this repulsive force may increase as
the doping δ is increasing. In our spin-charge gauge
approach, there are the spin vortices attached on the
holons, which induces another effective holon-holon inter-
action. Such an interaction is given in Eq. (27) and (28),
where we replace z∗(x)z(x) with its expectation value

〈z∗(x)z(x)〉 ≈
∫

d2$q($q2 + m2
s)

−1/2 =
√

Λ2 + m2
s − ms,

which reads off the free spinon action.[ Modified ac-
cording to your comments.] Obviously, the interac-
tion between the same sublattice can be neglected, which
is repulsive and only renormalizes the chemical potential

of holons â and b̂. The attractive interaction appears
between different sublattice with opposite vortex charge,
which has the following form

Hh
I ∼ −

∑

i,j

Veff($i −$j)â†
i b̂

†
j b̂j âi

Figure 3.1: (a) the BZ, the MBZ and the FS (defined inside the MBZ) of free holons in

the ”π-flux phase”. The MBZ is equivalent to the rectangular zone shown in (b) obtained

translating the 3rd and 4th zones. Holon dispersion consists of two Dirac cones giving

rise to two circular Fermi surfaces defined in the rectangular zone.
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we perform standard BCS approximation and introduce Nambu fields

Ψα,~k = (aα,~k, bα,~k, a
†
α,−~k

, b†
α,−~k

)t. (3.16)

The holon Hamiltonian becomes Hh,α =
∑

~k Ψ†
α,~k
Hα,~kΨα,~k, where the 4 × 4 matrix

reads

H~k =




−µ vFk 0 ∆h
~k

vFk −µ −∆h
−~k 0

0 −∆h∗
−~k µ −vFk

∆h∗
~k

0 −vFk µ



. (3.17)

It can be block-diagonalized and for odd parity ∆h
−~k = −∆h

~k
(notice that because of

Eqs. (3.11) and (3.12) the order parameter ∆h
α,~k

in quadrant 3rd and 4th changes its sign

because of translation in the rectangular zone) we obtain four branches for the dispersion

relation

Eα,~k = ±
√

(vFk ± µ)2 + |∆α,~k|2. (3.18)

The high and the low band are completely decoupled and we can neglect the contribu-

tion of high band without FS. The low energy relevant field operators are the combination

ψ~k = 1√
2
(a~k + b~k) and its Hermitian conjugate ψ†~k. In terms of these fields the low energy

effective Hamiltonian reads

Hh
eff =

∑

α,~k

(vFk − µ)ψ†
α,~k
ψα,~k −

1

2

(
∆h
α,~k
ψ†
α,~k
ψ†
α,−~k

+ h.c.
)
. (3.19)

The gap equation at T = 0, obtained by minimum condition self-consistently with the

definition in Eq. (4.6), is

∆h
α,~k

= J̃〈z†z〉
∫

d2q

(2π)2
Veff (~q − ~k)

∆h
α,~q

2Eα,~q
. (3.20)

A consistent solution of this integral equation near the FS having d-wave symmetry

in the full MBZ is obtained gluing two p-wave solutions (odd parity in agreement with

the foregoing) in the L and R regions [25],

∆h
R[L](| ~pF |, θp) = ∆h(| ~pF |)[+[−] cos(θp)− sin(θp)] (3.21)
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where solving numerically the gap equation on the FS we obtain

∆h = ∆h(| ~pF |) = J̃〈z†z〉ξe−
c

J̃〈z†z〉ξ2kF (3.22)

with a constant c. As common for non-weakly coupled attractive Fermi systems the

MF temperature at which ∆h becomes non-vanishing is Tph. The result of Eq. (3.21)

can be extended in momentum space in a range O(kF ) as

∆h(~p) = ∆h±px − py
kF

. (3.23)

In this way the dispersion relation of the excitations exhibits one node in each of the

holon FS arch along the diagonal directions. Nodes indicate gapless excitations.

To proceed we assume ∆h 6= 0 and perform nodal approximation expanding momenta

around the nodes. We can restore the slave particle gauge symmetry introducing the

holon pair field phase factor φh as ∆h → ∆heiφ
h

and making the off-diagonal derivatives

covariant w.r.t. φh

2
, i.e. i∂µ − ∂µ

φh

2
(under a gauge transformation with parameter λ

we have φh → φh + 2λ). Inserting the slave particle gauge field A in diagonal terms

via minimal substitution, performing Anderson trick (to multiply the first nodon field by

e−i
φh

2 and the second one by the complex conjugate factor) and defining aµ = Aµ − ∂µ φ
h

2

we obtain the nodal hamiltonian in R region inside the MBZ

Hh
1st =

(
2t(i∂+ + a+) + a0 ei

π
4 v∆∂−

e−i
π
4 v∆∂− −2t(i∂+ − a+) + a0

)
(3.24)

where v∆ = ∆h

kF
and ∂± = 1√

2
(∂x ± ∂x) [46], [47]. Successive rotations of π/2 provide

Hamiltonians of the other quadrants.

By suitable redefinition of space and time units it is possible to rewrite the Hamiltonian

in Eq. (3.24) as Dirac Hamiltonian of QED3 with the gauge field ã1st
µ = {−ia+, ia0, 0}.

Similarly for the other nodes. We conclude that the low energy effective action for a is a

slight variant of QED3 (see e.g. [26]) but not gauge invariant

S1st
eff [ã

1st
µ ] = − ln det[γµ(∂µ − iã1st

µ )] (3.25)

and it can be shown that the gauge field a does not acquire gap even if the global h/s

gauge symmetry in the gauge-holon system is broken from U(1) to Z2, that is 〈eiφh〉 6= 0

(due to the charge two of the condensate). We note that if the action of the gauge field a

were exactly QED3, then superconductivity would be possible without spinon sector but

the above action is not gauge invariant and this fact prevents superconductivity.
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3.3 Spinon pairing and superconductivity

We begin from Eq. (3.8) and consider the continuum limit. We assume ∆s
ij ∼ ∆s

µe
iφs(~x)

where ~x = i, i.e. it is the product of a direction dependent (but position independent)

factor times a space dependent phase φs(~x). µ indicates the direction from i to j and

for a gauge transformation of parameter λ we have φs → φs + 2λ. Note that no pairing

occurs in temporal direction.

To obtain the spinon Lagrangian we add Eq. (2.39) to the continuum limit of Eq.

(3.8) obtained using the continuum limit relation εαβziαzjβ ∼ εαβzα∂µzβ. We note that in

this way the slave particle gauge field has been introduced and consistently, because gauge

invariance is needed, we make the off diagonal derivatives covariant w.r.t. φs, i.e. ∂µ −
i∂µ

φs

2
. Finally we use Anderson trick defining the Nambu doublet Z = [ei

φs

2 z1, e
−iφ

s

2 z∗2 ]t.

The final result is

Ls = Z†[(∂µ1 + iY a
µ σ

a)2 + (m2
s − |∆s|2)]Z (3.26)

where

Y a
µ =




0 0 a0 + ∂0
Φ
2

Im(∆s
1) Re(∆s

1) a1 + ∂1
Φ
2

Im(∆s
2) Re(∆s

2) a2 + ∂2
Φ
2


 (3.27)

is a fictitious SU(2) gauge field and Φ = φh − φs is a slave particle gauge invariant

phase field (it is a physical quantity). Φ is by definition the phase of the hole pairs field

∆c
ij and turns out to describe standard magnetic vortices.

Neglecting h/s gauge field and phase fluctuations and assuming rotational invariance

in the continuum limit, ∆s
µ∆s∗

ν + ∆s
ν∆

s∗
ν = 2δµν |∆s|2, we may solve the spinon spectrum

ω(~k) = ±2t

√
m2
s − |∆s|2 + (|~k| ± |∆s|)2 (3.28)

.

There are two positive branches with the same spin and momentum but different

energies for a finite density of spinon pairs. If |∆s| 6= 0 the spinon system contains a gas

of RV B spinon pairs which become coherent and condense if 〈∆s〉 6= 0. The minimum

at |~k| = |∆s| in the lower branch has energy lower than ms and behaves like a roton

minimum. A backflow of the gas of spinon pairs dresses bare spinons lowering the spinon
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kinetic energy. We will show that if a suitable attraction mechanism between spinon and

anti-spinon works, a similar hourglass dispersion holds also for the magnon resonance

(spin waves).

As a consequence of rotational invariance arg∆s
1 − arg∆s

2 = ±π
2

holds, that is the

spinon RV B order parameter has a d-like staggered phase which can be chosen to cancel

the phase contribution to the SC order parameter ∆c
ij in MF coming from the B field.

When RV B pairs condense, 〈eiφs〉 6= 0, the global slave particle symmetry is broken

from U(1) to Z2 also in the gauge-spinon system. The breaking in both sectors (holon and

spinon) of the symmetry imply a breaking of the global electromagnetic U(1) symmetry

(electromagnetic gauge field is minimally coupled in the same way as h/s gauge field),

characterizing the SC phase. Being the RV B order parameter uniform, Anderson-Higgs

mechanism implies a gap of order |∆s| (increasing with density of RV B pairs) for the

gauge field A. Owing to this gap, Reizer singularity disappears (Reizer singularity was

responsible of an anomalous skin effect and of overdamped resonances with anomalous T -

dependent life-time in the normal state) making magnon and electron resonances sharper

in the SC state.

We can integrate Z field in Eq. (3.26) to get explicitly the spinon contribution to the

effective action of the gauge invariant fields a and Φ in the SC phase. Since the Z field is

massive, the effective actions is Maxwell-Yang-Mills like up to a UV scale Λ ∼ ms. Then

another contribution non-gauge invariant but rotationally invariant Y 1
µ Y

1
µ +Y 2

µ Y
2
µ ∼ |∆s|2

should be added because Y a, a = 1, 2, is actually a constant field. The result up to quartic

terms for the lagrangian density is

Leff (a, ∂Φ) =
1

2
√
m2
s − |∆s|2

{
F 2
µν + |∆s|2[2(2a0 − ∂0Φ)2 + (2~a− ~∇Φ)2]

}

+c1|∆s|2 + c2|∆s|4 (3.29)

where the field strength Fµν = ∂µaν − ∂νaµ.

The mass term for a in the above equation (strictly speaking this is not properly a

mass term because of the factor 2 in front of the zero component) is a XY -Stueckelberg

action which means that if the coefficient |∆s|2 is sufficiently small the phase Φ fluctuates

strongly and does not produce a mass term for a since 〈eiΦ〉 = 0. On the other hand, for

a sufficiently large coefficient we are in the SC phase, 〈eiΦ〉 6= 0, the symmetry is broken

and the Φ fluctuation are exponentially suppressed. We conjecture that the situation

|∆s| 6= 0 but 〈eiΦ〉 = 0 correspond to the Nernst region (where free physical magnetic

vortices proliferate) above the SC dome in the phase diagram. As soon as eiΦ condenses,



46
Chapter 3. Non-BCS superconductivity from attraction between

spin-vortices

Figure 3.2: The (T, δ) phase diagram of the mean field gap equation of spinons for different

values of the spinon pairing |∆s| (gray lines) which could be compared with different levels

of Nernst signal; |∆s| = 0 is Tps (the curves at high dopings are not quantitatively reliable

as they do not take into account the crossover to SM). The dashed line is Tph, the ”upper

PG crossover temperature”. The dotted line is T ∗, the crossover temperature between

the PG and the SM regions. The temperature and |∆s| are in units of J .
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the same occurs to 〈HiHj〉 so that SC emerges and Tc < Tps.

Neglecting the phase Φ (which represents fluctuations and can be added later) and the

QED3 contribution to the a field action (coming from holons and subleading than spinon

contribution owing to the mass term in Eq. (3.29)) we can derive the gap equation at

T = 0 for |∆s| computing the free energy in MFA and minimizing with respect to |∆s|2

Λ3

m2
s

− 4Λ2

J |〈HiHj〉|2
= −1

4

∫
dωd2k

(
1

ω2 + ~k2 + |∆s|2
2

+
1

ω2 +
~k2+|∆s|2

2

)

+

∫
dωd2k

4~k2

(ω2 + ~k2 +m2
s)

2 − 4|∆s|2~k2
(3.30)

The l.h.s. terms come from the lowering of the spinon mass ms →
√
m2
s − |∆s|2

and the repulsive Heisenberg term in Eq. (3.8) respectively while the first r.h.s. term

comes from gauge fluctuation in Eq. (3.29) (it can be neglected as subdominant at low

temperatures) and the second one comes from spinon action in Eq. (3.26). A non-

vanishing solution is possible only for a sufficiently large MF holon pair density to make

positive the l.h.s.. It follows that spinon RV B pairs, and hence the SC state, appears at

a finite value of doping δ even at T = 0 and that Tps < Tph. From the r.h.s. of Eq. (3.30)

we see how gauge field favors RV B spinon pairing and that the temperature Tps at which

|∆s| becomes non-vanishing turns out to be above the SC transition Tc and below Tph,

as shown in Fig.(3.2).

Notice that the crossover T ∗ is distinct from Tph that fully lies within SM region.

The two crossovers Tph and Tps have mainly a magnetic origin being described by the

statistical spin flux related to the SU(2) CS field V , see Eq.(2.30), while T ∗ has a charge

origin due to the charge flux related to the U(1) CS field B.

3.4 Spin-spin correlation

In this section we will show that if a suitable attractive interaction for spinon and

anti-spinon works in the SC phase, then the magnon resonance (a bound state of spinon

and anti-spinon) has an hourglass-shape dispersion near the anti-ferromagnetic vector

~QAF = (π, π) similar to that previously found for spinons in Eq. (3.28) [6]. This dispersion

is directly comparable with experimental data in Fig. (1.5) (white lines).

There is an ongoing debate about the origin of this resonant peak near QAF below the

particle-hole continuum. RPA calculations yield only the lower branch while acoustical

and optical spin waves lead to the growing branches [39]. A recent approach [31] shows
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that both RPA and spin wave fluctuations are important to produce the two branches of

the hourglass.

We will follow another path. Within the spinon sector, we consider the effect of the

RV B spinon pairs on the massive spin waves. Defining vµ = aµ + ∂µΦ, the action for

spinons in Eq. (3.26) reads Ss = S1
s + S2

s where

S1
s =

∫

[0,β]×R2

d3x
(
|DµZ1|2 + |D∗µZ2|2 +m2

sZ
∗
i Zi
)
, (3.31)

S2
s = 2

∫

[0,β]×R2

d3x
(
∆s∗
µ Z1∂µZ

∗
2 + c.c.

)
, (3.32)

Dµ = ∂µ − ivµ and ∆s
µ = |∆s|√

2

{
0, e−i

π
4 , ei

π
4

}
.

To evaluate the anti-ferromagnetic spin-spin correlation (or the magnon propagator)

[40]

〈Ω+(x)Ω−(x)〉 = 〈Z∗1(x)Z∗2(x)Z2(y)Z1(y)〉 (3.33)

we begin considering the action S1
s . It is the action of the non-linear σ-model with a

mass term written in the CP 1 form, where ~Ω = z† ~σ
2
z. This action is equivalent to

S1
s =

∫

[0,β]×R2

d3x
[
(∂µ~Ω)2 +m2

s
~Ω2 + iλ(~Ω2 − f)

]
(3.34)

where λ is a x-dependent Lagrange multiplier enforcing the constraint ~Ω2 = f . In this

representation the gauge invariant bound state of spinon and anti-spinon is the field ~Ω.

In the unbroken phase Eq. (3.34) leads to the anti-ferromagnetic spin-spin correlation

Gb(k) =

∫
d3xeikx〈Ω+(x)Ω−(0)〉 ∼ 1

k2 +M2
b

(3.35)

where the mass Mb = Mb(ms, 〈λ〉) = 2ms − Eb is the sum of the free-particle masses

(spinon and anti-spinon have the same mass ms) reduced by the binding energy Eb.

In the CP 1 form Gb(x−y) (the Fourier transform of Gb(k)) is the four field expectation

value 〈Z∗1(x)Z∗2(x)Z2(y)Z1(y)〉 and represents the propagator of the bound state of spinon

and anti-spinon where the gauge field vµ provides the necessary attractive interaction.

When the RV B condensate is introduced through the perturbation S2
s some changes

have to be made. Z1 and Z2 have opposite charge but when the perturbation acts on one of

them, it changes the relative sign because the RV B condensate has charge two. Thus the

attraction between the two propagating particles becomes repulsion and vice versa when-

ever the perturbation acts. Moreover the gauge field is gapped in the superconducting
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phase by Anderson-Higgs mechanism leading to a short-range interaction. We conclude

that there have to be another charge-independent attractive interaction binding spinon

and anti-spinon into the gauge invariant magnon resonance (spinon and anti-spinon are

not gauge invariant fields).

In the superconducting phase the U(1) gauge symmetry is spontaneously broken but,

because of the charge two of the condensate, the subgroup Z2 is unbroken. We propose

that the residual Z2 symmetry, which sees charge modulo 2, provides the needed charge-

independent interaction exceeding the charge dependent gauge interaction.

With these clarifications, we can justify the following assumptions which allows us

to consider together, in a reasonable manner, a bound state of two particle with an

interaction acting only on one of them.

• Because of gauge invariance we expect an overall bound state and we use the bound

state propagator of Eq. (3.35) for each pair of propagating particles but with dif-

ferent bound state masses depending on the relative charge. We use the mass MB

when the two propagating particles have opposite charge and the mass MA > MB

when they have the same charge. In fact in the former case both the Z2 and gauge

interactions are attractive while in the latter case Z2 is attractive but gauge inter-

action is repulsive. In both cases we get a bound state but the mass is different

because the former attraction is stronger.

• We use the constraint Z∗i Zi = f to modify the RV B interaction S2
s into an effective

action with a four particle local vertex S2
s → (S∆ + c.c.), where

S∆ =
2

f

∫

[0,β]×R2

d3x(Z1Z
∗
1 + Z2Z

∗
2)∆s

µZ
∗
1∂µZ2. (3.36)

This means that we consider only scattering off the RV B condensate if the two

propagating particles are close enough and this is the case when they form a bound

state. The two close propagating particles realize that one of them is scattered

(changing its charge) through the subleading short range gauge field vµ. In a path

integral formalism this means that we neglect paths in which the two particles are

too far. Indeed, in the unbroken phase, the local constraint Z∗i Zi = f is relaxed, it

reasonably holds only for close particles.

Now we are able to evaluate the magnon propagator with the perturbation in Eq.

(3.36) due to the RV B condensate. It reads
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〈Ω+(x)Ω−(y)〉 = 〈e−(S∆+c.c.)Ω+(x)Ω−(y)〉S1
s

=
∞∑

n=0

〈(S∆)n

n!

(S∗∆)n

n!
Ω+(x)Ω−(y)〉S1

s
(3.37)

where we took into account that the perturbation must act an even number of times

and there must be the same number of ∆s
µ and ∆s∗

µ in an alternate way on each particle

path to get non-vanishing expectation values.

In what follows we will evaluate the n = 1 term of the above series using Wick theorem

and complete the series as if it were a geometric Dyson series. The n = 1 term reads

〈S∆S
∗
∆Ω+(x)Ω−(y)〉S1

s
=

4

f 2
|∆s|2

∫
d3p

(2π)3
eip(x−y)~p2GA(p)GB(p)2, (3.38)

where, when necessary in the computation, we integrate by parts the integrand of the

perturbation in Eq. (3.36), in such a way to exploit our first assumption, i.e. to take the

exact four field average of Eq. (3.35) (it represents the bound state propagator in absence

of the perturbation).

Performing Fourier transform and summing the geometric series we obtain our esti-

mation for the spin-spin correlation in the superconducting phase

〈Ω+(k)Ω−(k)〉 ≈
[
GB(k)−1 − 4

f 2
|∆s|2~k2GA(k)

]−1

=
1

k2 +M2
B − 4|∆s|2

f2

~k2

k2+M2
A

. (3.39)

or in real time

〈Ω+(ω,~k)Ω−(ω,~k))〉 ≈ − ω2 − ~k2 −M2
A

(ω2 − ~k2 −M2
B)(ω2 − ~k2 −M2

A)− 4
f2 |∆s|2~k2

. (3.40)

The two poles of this expression with positive energy give the two branches of the

hourglass-shape dispersion of spin waves near the anti-ferromagnetic vector

ω±(~k) =

√
~k2 + S ±

√
D2 + d~k2 (3.41)

where we defined S =
M2
A+M2

B

2
, D =

M2
A−M

2
B

2
and d = 4

f2 |∆s|2. For |~k| near zero, up to

the second order, we get
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ω+(~k) ≈MA +
~k2

2MA

(
1 +

d

2D

)
, (3.42)

ω−(~k) ≈MB +
~k2

2MB

(
1− d

2D

)
. (3.43)

We see that there is a gapMA−MB between the two branches at |~k| = 0 with horizontal

tangent. The upper branch starts from MA at |~k| = 0 and increases monotonically when

|~k| grows. The lower branch starts from MB at |~k| = 0 and, if 4
f2 |∆s|2 > M2

A − M2
B,

decreases (starting with a smaller absolute value of the curvature than the upper one) to

a minimum ωm =
√
S − d

4
− D2

d
located at |~km| =

√
d
4
− D2

d
and then grows.

We remark that this sharp magnetic resonance located around QAF lies below a thresh-

old energy ωth(~q) defined by edge of the two particle continuum ωth(~q) ≈ min~k{E~k+E~k+~q},
above which continuum two particle excitations start. In this case E~k is the quasi-particle

dispersion in the SC state.

Notice that if |∆s| vanishes and MA = MB then the two branches coincide and we

recover the free bound state dispersion ω(~k) =
√
~k2 +M2 of Eq. (3.35).

The imaginary part of the retarded magnon propagator (proportional to the spectral

weight) at positive frequencies reads

=〈Ω+(ω,~k)Ω−(ω,~k))〉Rω>0 = −π
4

{[
1− 2D

ω2
+(~k)− ω2

−(~k)

]
δ[ω − ω+(~k)]

ω+(~k)

+

[
1 +

2D

ω2
+(~k)− ω2

−(~k)

]
δ[ω − ω−(~k)]

ω−(~k)

}
. (3.44)

The spectral weight is therefore higher on the lower branch than on the higher one.

When |~k| increases the spectral weight first grows on the higher branch and decreases on

the lower one, then both decrease slowly.

Introducing in Eq. (3.40) a phenomenological scattering rate γ, ω → ω+iγ, we plot in

Fig. (3.3) the resulting spectral weight. It can be directly compared with the experimental

magnetic intensity in Fig. (1.5) that is proportional to the spectral weight. The two plots

are in good agreement. Taking the two particle continuum edge into account, we expect

an even better agreement because the intensity at high frequencies is reduced.

We note that the holon sector does not appear in the computation and the hourglass-

shape dispersion for spin waves in our formalism naturally comes from spinon sector and

slave particle gauge field.
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Wavevector 

Frequency 

Figure 3.3: Plot (in arbitrary units) of the imaginary part of the magnon retarded propa-

gator along ~k-direction. Wavevectors are measured starting from QAF . A small scattering

rate γ has been added. In the plot we chose MB

MA
= 0.9, |∆

s|
fMA

= 0.8 and γ
MA

= 0.1.



Chapter 4

Holon pairing and coherence

4.1 Introduction

In this chapter we consider superconductivity arising from the SM region in a frame-

work similar to that of the previous chapter about holon pairing, but now the holon sector

is adapted to SM region [7]. Moreover we incorporate in this framework the fluctuations

of the phase of the holon pairs order parameter [42].

We add next nearest neighbor hopping for holons to get a FS more appropriate to

that of the cuprates and we show that, when incoherent holon pairs are present, an energy

scale separating low energy modes with a FL behavior from high energy modes with a

d-wave superconducting behavior results naturally and self consistently. This energy scale

mφ will be identified with the the inverse correlation length (”mass”) of the quanta of

the phase of the holon order parameter, i.e. mφ = 1/ξφ. Its value, which decreases as

temperature is reduced, drives the system towards the superconducting phase occurring

at mφ = 0. In this phase, all modes are clearly above mφ and the holon system is a real

d-wave superconductor, in particular the holon spectral weight at the FS is reduced to

zero except in four nodes. What happens is that decreasing mφ, the well defined FL

quasi-particles gradually lose their coherence in favor of SC-like excitations. The latter

gain spectral weight and become increasingly well defined excitations.

As a byproduct we obtain some insight on the shape of the FS, which will turn out

to be crucial to get a good continuum limit for quasi-particles, to evaluate the Knight

shift in the next chapter and to obtain the holon direction dependent spectral weight.

Indeed, the formation of holon pairs induces a reduction of the spectral weight of the

holon starting from antinodal region. We expect that these results also apply to holes in

which case they are directly measurable in ARPES experiments.

53
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Finally we notice that the effects of holon pairing existing in the normal state are

much more effective in SM region than in PG region because of the smaller FS, Fermi

velocity vF and Fermi momentum kF of the latter region than the former.

4.2 Low energy Hamiltonian for holons

In this section we adapt to the SM region the non-BCS mechanism for superconduc-

tivity discussed in previous sections in PG. To obtain a FS more similar to that relevant

for cuprates, we add to the Hamiltonian of Eq. (2.35) a negative next-nearest-neighbor

hopping term t′

Hh
0 = −t

∑

〈ij〉

(H†iHj + h.c.)− t′
∑

〈〈ij〉〉

(H†iHj + h.c.)− µ
∑

i

H†iHi. (4.1)

We approach the problem in the two sublattice (even A and odd B) scheme defining

Hi = Ai and Hi+ê1 = Bi for i ∈ A. The two fields, defined within the MBZ, which

diagonalize Hh
0 are

Ψ±(~k) = A~k ± eik1B~k (4.2)

where ~k ∈ MBZ and the Fourier transforms A~k and B~k are periodic outside the

MBZ. The eigenvalues are ε±(~k) = −µ + t′~k ± t~k, where t~k = −2t[cos(k1) + cos(k2)] and

t′~k = −4t′ cos(k1) cos(k2).

Both fields have a FS within the MBZ. Ψ+ has four hole-like (FS increase as doping

increases) large arcs centered at ~K1 = 1
2
(π, π), ~K2 = 1

2
(−π, π), ~K3 = 1

2
(−π,−π) and

~K4 = 1
2
(π,−π) while Ψ− has small electron-like (FS reduces as doping increases) Fermi

surfaces near ~Q1 = (π, 0), ~Q2 = (0, π), ~Q3 = (−π, 0) and ~Q4 = (0,−π). Notice that the

standard FS of the t− t′ model, defined in the whole BZ, can be obtained reflecting, in

each quadrant, the FS of Ψ− outside the MBZ and gluing it with the FS of Ψ+ inside

the MBZ.

The holon field, defined in the whole BZ, turns out to be

H~k =

{
Ψ+(~k), if ~k ∈MBZ,

Ψ−(~k − 2 ~Kv), if ~k 6∈MBZ,~k ∈ BZ.
(4.3)

with ~Kv (v = 1, 2, 3, 4) chosen to keep the argument of Ψ− inside the MBZ (where it is

defined). The FS of H~k is that of the standard t− t′ model. The exceeding FS in the two
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sublattice scheme disappears, because of the spectral weight, when H~k is reconstructed

using Eq. (4.3).

Now we define the fields

Ψ+,v(~k) = Ψ+(~k + ~Kv)

Ψ−,v(~k) = Ψ−(~k + ~Qv) (4.4)

where ~k + ~Kv and ~k + ~Qv belong to the MBZ. We expect these fields have a good

continuum limit because they give rise to closed Fermi surfaces [45]. To see this we exploit

the two reciprocal primitive vectors ~Q± = (±π, π) to translate the 3rd and 4th quadrants

respectively in order to obtain a upper rectangular zone D = {kx ∈ [−π, π], ky ∈ [0, π]}
equivalent to the MBZ, as done in PG. Both the MBZs of Ψ+ and Ψ− fields, in the

lower rectangle, are translated. Notice that each translation changes the ± index of the

field because of the minus sign due to the exponential factor in Eq. (4.2) (this is the same

minus sign appearing in the field transformation of Eq. (3.12) in the PG case) while A~k

and B~k do not change when ~k → ~k + ~Q±, indeed Ψ∓(~k) = Ψ±(~k − ~Q±) where ~k now

belongs to D. Moreover the translation exchanges the eigenvalues ε∓(~k) = ε±(~k − ~Q±)

because t~k+ ~Q±
= −t~k therefore D is equivalent to the MBZ and the closed Fermi surfaces

are shown in Fig. (4.1).

After these clarifications, in what follows we will introduce spin-vortex attraction

and we will consider the translation of Ψ+,3 and Ψ+,4 applying the transformations of

Eqs. (3.11) and (3.12) to Ψ+,v (notice that b~k = eik1B~k). We expect that these fields

are more relevant than Ψ−,v because holon pairs suppress quasi-particles starting from

antinodal directions. Ψ+,3 and Ψ+,4, after translation, generate, together with Ψ+,1 and

Ψ+,3 respectively, the large closed hole-like Fermi surfaces centered at ~K1 and ~K1 in the

first and second quadrants. Similar considerations also hold for the small closed electron-

like Fermi surfaces generated by the fields Ψ−,v around the points ~Qv.

The attractive interaction between different sublattice with opposite vortex charge of

Eq. (3.3) is treated in analogy with PG, giving

Hh
I = −

∑

i,j

V (~i−~j)A†iB†jBjAi

≈ −J̃〈z†z〉
∑

~p,~q

Veff(~p− ~q)A†~pB†−~pB−~qA~q (4.5)

We perform the translation, add right R and left L labels (α = R,L = 1, 2) and
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Figure 4.1: Each panel represents the first quadrant of the t− t′ model with next nearest

neighbor hopping. (a) FS of holons without sublattice separation and defined in the

whole BZ; (b) FS of Ψ+ quasi-particles with sublattice separation and defined in the

MBZ, holons fill the closed region near the MBZ boundary; (c) FS of Ψ− quasi-particles

with sublattice separation and defined in the MBZ, holons fill most of the MBZ; the

translation of the 3rd quadrant in (d) originates of the two rectangular regions, equivalent

to the MBZ, for Ψ+ in (e) (holons fill the closed region) and for Ψ− in (f) (holons fill the

whole zone except the two small regions near the corners).
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measure momenta from ~QR and ~QL respectively. We neglect the interaction between R

and L sectors and perform BCS approximation defining the order parameter

∆h
α,~k

= J̃〈z†z〉
∑

~q

Veff (~k − ~q)〈bα,−~qaα,~q〉. (4.6)

This order parameter has p-wave symmetry as in Eq. (3.23) in such a way to obtain

a d-wave symmetry gluing R and L sectors when the RBZ is restored (as we see from

its definition, the order parameter changes its sign when the 3rd and 4th quadrants are

translated) [41]. Notice that a p-wave symmetry in D, generating a d-wave symmetry in

the whole BZ, generates also an s-wave pairing for the small electron-like Fermi surfaces.

Next introducing Nambu fields Ψα,~k = (aα,~k, bα,~k, a
†
α,−~k

, b†
α,−~k

)t, we obtain the Hamilto-

nian Hh,α =
∑

~k Ψ†
α,~k
Hα,~kΨα,~k, which can be block-diagonalized using the unitary matrix

A =
1√
2




1 1 0 0

−1 1 0 0

0 0 1 1

0 0 1 −1




(4.7)

with the result A†Hα,~kA =




−µ− t′
α,~k
− tα,~k 0 0 −∆h

α,~k

0 −µ− t′
α,~k

+ tα,~k ∆h
α,~k

0

0 ∆h∗
α,~k

µ+ t′
α,~k
− tα,~k 0

−∆h∗
α,~k

0 0 µ+ t′
α,~k

+ tα,~k




(4.8)

provided that the holon pairing order parameter ∆h
α,~k

has p-wave symmetry, i.e.

∆h
α,−~k = −∆h

α,~k
. In the above matrix we defined

tα,~k = t~k+ ~Qα
= −2t[sin kx − (−1)α sin ky] (4.9)

t′
α,~k

= t′~k+ ~Qα
= −4t′(−1)α sin kx sin ky. (4.10)

The energy spectrum of the quasi-particles has the BCS form Eα,~k = ±εα,±,~k where

εα,±,~k =
√

(±tα,~k − t′α,~k − µ)2 + |∆α,~k|2. (4.11)
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The attractive interaction in Eq. (4.5) is able to distinguish between the two sublat-

tice and so does the resulting BCS interaction. Therefore, when incoherent holon pairs

appear, the two descriptions with or without sublattice separation are no more equiva-

lent. The first one turns out to be able to justify the closed Fermi surfaces, the small

electron-like one and the two large hole-like ones, observed in experiments.

In the low energy limit only quasi-particle near the closed FS are relevant and, in each

sector, we linearize the quasi-particle dispersion about the FS. In this way the continuum

low energy effective Hamiltonian for ψα,+(~k) = ψα,~k can be written as

Hh
eff =

∑

α,~k

{
~vF (α, θk) · k̂

[
|~k| − kF (α, θk)

]}
ψ†
α,~k
ψα,~k

+
∑

α,~k

1

2

(
∆h
α,~k
ψ†
α,~k
ψ†
α,−~k

+ h.c.
)

(4.12)

where the sum over spatial momenta ~k is made on a strip of thickness 2Λ about the FS.

We notice that when ~k lies close to an arc of the FS, then −~k lies close to the other arc.

The above hamiltonian emphasizes that, in the holon sector, the main differences between

SM and PG are the shape of the FS and the higher value of the Fermi momentum of

the former kF ∼ 1− δ w.r.t. the latter kF ∼ δ.

4.3 Integration of high energy modes

In this section we derive the low energy effective action which describe the pairing

process in the normal state down to superconductivity.

Starting from the spinon sector, the relevant action is the non-linear σ-model action

with a mass term in Eq. (2.39). The mass term allows us to safely integrate out spinon de-

grees of freedom obtaining an effective action for the slave particle gauge field A. Because

of gauge invariance, the second order result is a Maxwell-like action:

SAeff(Aµ) =
1

3πms

∫

[0,β]×R2

d3xF 2
µν . (4.13)

For the holon sector, we need to consider phase fluctuations of the order parameter.

Therefore we generalize the BCS interaction in Eq. (4.12) between holon pairs and FL

quasi-particles and for sake of simplicity we neglect the direction dependence of kF and

vF . The holon hamiltonian reads



4.3 Integration of high energy modes 59

Hh
eff =

∑

α,~k

[E(~k)− µ]ψ†
α,~k
ψα,~k

−
∑

α,~k,~q

1

2

{
∆h
α(~k + ~p)[γα(~k)− γα(~p)]ψ†

α,~k
ψ†α,~p + h.c.

}
(4.14)

where γα(~k) = sin(kx) + (−1)α sin(ky) takes the p-wave symmetry of the order param-

eter consistently with Eq. (3.23) and E(~k) − µ ≈ vF (|~k| − kF ) near the FS. We notice

that in the case of constant order parameter ∆h
α(~k) → ∆h

0δ
2(~k), Eq. (4.14) reproduces

the standard BCS coupling of Eq. (4.12).

The next step is to obtain the dynamics of the order parameter, in particular we are

interested in its phase since as usually is argued to be the origin of the leading fluctuations.

We write down the holon action, derived from the Hamiltonian in Eq. (4.14), in terms of

Matsubara frequencies k0

Sh,∆eff (ψα,∆
h
α) =

∑

α,~k,k0

[ik0 − E(~k) + µ]ψ†α,kψα,k

−
∑

α,~k,~p,k0,p0

1

2

{
∆h
α(k + p)[γα(~k)− γα(~p)]ψ†α,kψ

†
α,p + c.c.

}
(4.15)

where we put k = (k0, ~k). Then, considering the order parameter ∆h
α as constant in

modulus and fluctuating in phase

∆h
α(~x, x0) = ∆h

α,0e
iφh(~x,x0), (4.16)

we integrate out holons modes with frequency higher than an IR cut-off Λh, retaining

gapless quasi-particle in the low energy effective theory. In this way no singular terms due

to integration of gapless excitations arise and both dynamics and interactions of the order

parameter will be local in space. We assume that these high frequency integrated modes

are d-wave superconducting modes. This assumption will be proved to be self consistent

later with a proper choice of Λh. We can guess the result of this integration by symmetry

considerations [28], [29]. The gap equation, Eq. (4.6), has a degenerate manifold of

solutions for arbitrary phase φh therefore the energy should depend only on gradients of

φh. Assuming time reversal invariance and making a gradient expansion up to the second

order we obtain the action of the phase field in the continuum limit (we take vF = 1)

S∆
eff(φh, A) =

c

2
∆h2
α,0

∫
d2~xdt

(
∂µφ

h − 2Aµ + 2πnµ
)2

(~x, t) (4.17)
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where we introduced the slave particle gauge field Aµ by minimal substitution and

the vector of integer currents nµ(~x, t) allows φh to be a multi-valued function and takes

into account the presence of vortices. Summation on nµ is understood. This can be made

precise with a lattice regularization which is used in the following.

We notice that if we had integrated out gapless quasi-particle in the presence of the

slave particle gauge field, in addition to singular long range interactions for the order

parameter, we get (for mφ 6= 0) a Reizer singularity for the transverse component of the

gauge field owing to the finite FS. The Reizer singularity, at low energy (or temperature)

would be dominant over the Maxwell-like action of Eq. (4.13) generated by massive

spinons.

In conclusion, the continuum low energy effective action we are interested in consists

of three contributions Seff = SAeff + S∆
eff + Sh,∆eff and the last term has UV cut-off Λh. The

relevant fields are the UV cutoff holon field ψα, the phase φh of the order parameter and

the slave particle gauge field Aµ. For the moment we do not consider the interaction

between holons and the slave particle gauge field which can be restored at any time in

Eq. (4.15) via minimal substitution.

4.4 Order parameter propagator

In this section we will show that the Euclidean correlation function of the holon pairs

order parameter ∆h(~x, x0), because of its fluctuating phase, is given by

〈∆h
α(~x, x0)∆h∗

α (~0, 0)〉 = ∆h2
0 G∆(~x, x0), (4.18)

G∆(~x, x0) = 〈ei[φh(~x,x0)−φh(~0,0)]〉 ' e−mφ
√
v2
F x

2
0+~x2

. (4.19)

This relation defines the holon pairs phase coherence length ξφ = 1/mφ. mφ can be

thought as the mass of the phase φh of the holon pairs field and ξφ as the mean distance

between phase vortices. The important point of Eq. (4.19) is that it decays exponentially

for large |x| but it does not show any singularity for small |x| (in particular it is a constant

at x = 0). A similar correlation, taken as an assumption, can be found in [27].

To prove Eq. (4.19) we evaluate the correlation G∆(x) weighted by the action SAeff+S∆
eff

in the Coulomb gauge ∆iAi = 0 (i = 1, 2 indicates spatial components and x = (~x, x0)).

Using Dirac’s trick, we introduce the gauge invariant field

eiΦ(x) = ei[φ
h(x)+2

∑
y E

x
µ(y)Aµ(y)] (4.20)



4.4 Order parameter propagator 61

where Ex
µ(y) = δx0,y0(E~x

1 (~y), E~x
2 (~y), 0) and ∆iE

~x
i (~y) = δ2

~x,~y. Because it reduces to eiφ
h(x)

in the Coulomb gauge, we can evaluate the correlation G∆(x) estimating the expectation

value 〈ei[Φ(x)−Φ(0)]〉 without gauge fixing. Notice that the ”electric” field Ex
µ(y) has no

temporal component and it is different from zero only in the temporal plane x0 = y0.

Taking into account the periodicity of the phase (i.e. the presence of vortices) we

apply Poisson formula rewriting the action S∆
eff in the following form

S∆
eff(φh, A, J) = −1

2

∑

x

[
JµJµ
∆h2

0

+ iJµ(∂µφ
h − 2Aµ)

]
(4.21)

where Jµ(x) are integer currents over which we sum when functional integrals are

evaluated.

Then defining γµx,y(z) a current of charge two supported on a path from x to y (i.e.

∆µγ
µ
x,y(z) = δ3

z,x − δ3
z,y), we can write

φh(x)− φh(0) =
∑

z

γµx,0(z)∆µφ
h(z) (4.22)

and performing the functional integration in φh, which appears linearly in the action,

we obtain the constraint ∆µJµ(z) = δ3
z,x−δ3

z,0, or equivalently ∆µ(Jµ−γµx,0) = 0. The final

step is to integrate out the slave particle gauge field Aµ. The result at zero temperature

is G∆(x) =

∑
{Jµ:∂µJµ=δ3

x−δ3
0}
e
− 1

2

∑
z
JµJµ

∆h2
0 e−

ms
4

∑
z

∑
w[Jµ(z)+Exµ(z)−E0

µ(z)]∆−1
3 (z−w)[Jµ(w)+Exµ(w)−E0

µ(w)]

∑
{Jµ:∂µJµ=0} e

− 1
2

∑
z
JµJµ

∆h2
0

(4.23)

where ∆−1
3 (z) is the 3-dimensional inverse lattice Laplacian. The sum in the numerator

is on currents Jµ starting from the point z = 0 up to the point z = x and on closed currents

while only closed current are considered in the denominator.

In the limit of small ∆h
0 , closed currents are suppressed and only the currents close

to the straight line connecting the endpoints 0 and x give a significant contribution pro-

portional to the distance |x|, for large |x|. Indeed the gauge interactions force the fluc-

tuations of the current to be non-gaussian, lying within a thin tube surrounding the

shortest straight path. Therefore we expect that the leading contribution to G∆(x) is an

exponential of a linearly decreasing function of the distance |x|.
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Taking this into account we estimate Eq. (4.23) in the particular case x = (~0, x0),

retaining only the straight current, in the continuum limit. The important current has

therefore only the temporal component, Jµ(z) = δµ0δ
2(~z)θ(x0 − z0), and, because Eµ

has no temporal component, we can decouple Jµ from Eµ in the term with the inverse

Laplacian in Eq. (4.23) and factorize two contributions in G∆(x). The first one is due to

the straight current Jµ(z) and the second one is due to the ”electric” field Ez
µ,

G∆(x0,~0) ≈ e
−
[

1

∆h2
0

x0+ms
4

∫ x0
0 dt

∫ x0
0 dt′∆−1

3 (t−t′,~0)

]
e−

ms
4
D(x0) (4.24)

where

D(x0) =

∫
d3z

∫
d3w[Ex

µ(z)− E0
µ(z)]∆−1

3 (z − w)[Ex
µ(w)− E0

µ(w)]

= 2

∫
d2x

∫
d2y

1

|~x|
1

|~y|

[
1√

(~x− ~y)2 + ε2
− 1√

|~x− ~y|2 + x2
0 + ε2

]

∼ cx0[1 + c′ ln(x0)]. (4.25)

Eq. (4.25) follows from the continuum limit definitions of Ex
µ(z) = δ(z0−x0) 1

|~z−~x|(z1−
x1, z2 − x2, 0) and of the inverse 3-D Laplacian ∆−1

3 (z) = 1√
z2
1+z2

2+z2
0

with ε an UV cutoff.

The last step holds in the limit x0 >> 1 >> ε and c and c′ are constants.

The important point is that the logarithmic contribution in Eq. (4.25) is exactly

eliminated from the integral in the first exponential of Eq. (4.24) due to the straight

current,

∫ x0

0

dt

∫ x0

0

dt′∆−1
3 (t− t′,~0) =

∫ x0

0

dt

∫ x0

0

dt′
1√

(t− t′)2 + ε2

∼ cx0[1− c′ ln(x0)] (4.26)

In conclusion G∆(x) turns out to be an exponential of a decreasing linear function

of the distance |x| and does not develop singularities in the limit of small |x|. From the

above discussion, our estimate of the inverse coherence length is

mφ ≈
1

∆h2
0

+ms − P (∆h
0) (4.27)

where P (∆h
0) is a polynomial to take into account the fluctuation of the current Jµ(x)

which ensures the right behavior when the SC phase is approached. Indeed the first two

addends, which follow from the above calculations, are relevant in the limit of small ∆h
0
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(in this limit the approximations we made hold) while the polynomial P (∆h
0) becomes

relevant when ∆h
0 is no more a small parameter and mφ is approaching zero.

In such a way the form of the phase correlation taken at the beginning in Eq. (4.19)

is justified.

4.5 Holon self energy due to order parameter

In this section we extend the discussion of the previous chapter about holon pairing.

We exploit the action in Eq. (4.15) and the result of Eq. (4.18) to evaluate, in the

continuum limit, the zero temperature quasi-particle self energy Σ(ω,~k) arising from

scattering of the phase fluctuations of the order parameter.

What follows holds both in PG region and in SM region, the FS shape is irrelevant.

The difference between the two regions lies in the value of the involved parameters, vF and

kF , that makes the SM results much more effective. The only condition we need is parity

invariance which implies the quasi-particle excitation energy verifies E(~k) = E(−~k).

We consider the right sector, the left sector is similar with γR(~k) → γL(~k). In the

limit |∆h
0 | << εF the self energy reads

Σ(ω,~k) =
|∆h

0 |2
4

γR(~k)2

∫
d3q

(2π)3

G∆(q0, ~q)

i(q0 − ω)− E(~k − ~q)
(4.28)

where the ~q dependence of γR has been neglected for |~q| << |~k| ∼ kF >> mφ and

G∆(q0, ~q) =
8πmφ

(p2 +m2
φ)2

(4.29)

is the Fourier transform of G∆(x) obtained by taking the derivative w.r.t. mφ of the

relation
∫
d3p eipx

p2+m2 = 2π2

x
e−mx. This fact allows us to rewrite Eq. (4.28) as

Σ(ω,~k) =
|∆h

0 |2
4

γR(~k)22πmφ
d

dm2
φ

I(k), (4.30)

I(k) =

∫
d3q

(2π)3

1

q2 +m2
φ

1

i(q0 − k0)− E(~q − ~k)
. (4.31)

Considering quasi-particles on a shell of thickness 2Λ << kF about the FS we can

linearize the quasi-particle dispersion E(~q − ~k) = vF (|~q − ~k| − kF ) ≈ −~q · k̂ + δk, where

vF = 1 and δk ≡ |~k| − kF .

To evaluate I(k) we use cylindrical coordinates r =
√
q2

1 + q2
0 and θ = arctan

(
q0
q1

)

with cylinder axis directed along ŷ axis. Moreover we choose the x̂-axis directed along the
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unit vector k̂ in such a way that the ŷ-axis is a tangent vector to the FS. Then, in the

plane orthogonal to the cylinder axis, we define the vector ~r0 = (δk, k0) = r0(cosϕ, sinϕ)

where r0 =
√
δk2 + k2

0 and ϕ = arctan
(
k0

δk

)
. With these definitions we can write

I(k) =

∫
drdθdq2

(2π)3

r

q2
2 + r2 +m2

φ

1

r0eiϕ − reiθ
(4.32)

which can be exactly evaluated with the result (see appendix)

I(k) =
1

4π

√
r2

0 +m2
φ −mφ

r0eiϕ

=
1

4π

√
k2

0 + δk2 +m2
φ −mφ

ik0 + δk
(4.33)

where in the last equality the relation 2i arctan(z) = ln(1 + iz)− ln(1− iz) has been

used.

Inserting Eq. (4.33) into Eq. (4.30) and posing E(~k) = δk we obtain an exact result

for the self energy

Σ(ω,~k) =
|∆h

0 |2
4

γR(~k)2 1

iω + E(~k)


1− mφ√

ω2 + E(~k)2 +m2
φ


 (4.34)

where γR(~k)2 = 2k2
F sin2 θ~k and θ~k is the angle between the vector ~k and the nodal

direction ~Q+ in the right sector.

The quasi-particle Green’s function is given by

G(ω,~k) = [iω − E(~k)− Σ(ω,~k)]−1

=
1{

1 +
|∆h

0 |2
4
γR(~k)2 1

ω2+E(~k)2

[
1− mφ√

ω2+E(~k)2+m2
φ

]}
[iω − E(~k)]

. (4.35)

We notice that at zero frequency, ω = 0, the only pole of the Green’s function G(ω,~k)

is located at E(~k) = 0, that is at the FS. This means that there is always a FS except

exactly at mφ = 0 which we associate with the transition to the superconducting phase.

To understand the meaning of G(ω,~k) we analyze the two limits of low and high

frequency ω w.r.t. mφ.
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• In the first case ω << mφ, we expand the self energy in powers of ω
mφ

up to the

second order and the Green’s function becomes

G(ω,~k) ' Z∆(~k)

iω − E(~k)
, (4.36)

Z∆(~k) =
1

1 +
|∆h

0 |2
8m2

φ
γR(~k)2

. (4.37)

Thus for low frequencies the effect of holon pairing appears through wave function

renormalization factor (or weight) Z∆(~k). The system behaves like a FL with

unchanged FS and Fermi velocity vF but with a strongly direction dependent weight

Z∆(~k) that heavily suppress (if |∆h
0 | >> mφ) quasi-particles in antinodal directions

reducing the effective FS. The spectral weight is one in the nodal direction and

only nearby modes are important.

• In the second case ω >> mφ, we expand the self energy in powers
mφ
ω

and we get

the Green’s function

G(ω,~k) ' − iω + E(~k)

ω2 + E(~k)2 +
|∆h

0 |2
4
γR(~k)2

(4.38)

which is the quasi-particle Green’s function of a p-wave superconductor. Thus for

high frequencies the system behaves like a d-wave superconductor obtained gluing

γR and γL having p-wave symmetry in each sector.

We notice that if mφ = 0 the condition ω >> mφ is always fulfilled and the system is

in the superconducting phase as expected. As soon as mφ > 0 the FS and the FL quasi-

particle peak of weight Z∆(~k) appear for low frequencies and the system behave like a

metal because of them. When |ω| ≥ mφ, quasi-particles begin to scatter significantly with

the quanta of the phase of the order parameter changing significantly both quasi-particle

dispersion and coherence. FL quasi-particles modes are suppressed in favor of d-wave SC

modes that become much more coherent and relevant. This means that the value of mφ,

decreasing, drives the system behavior from metallic towards superconducting.

This behavior strongly dependent on mφ value, can be made smoother introducing an

additional scattering rate η modeling quasi-particle coherence. It originates mainly from

the scattering against gauge fluctuations and broadens peaks in spectral weight functions.
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Performing the analytic continuation iω → ω + iη in Eq. (4.35) we obtain the retarded

Green’s function

GR(ω,~k) =
ω + iη + E(~k)

(ω + iη)2 − E(~k)2 − |∆h
0 |2
4
γR(~k)2

[
1− mφ√

E(~k)2+m2
φ−(ω+iη)2

] (4.39)

and its imaginary part is proportional to the spectral weight A(ω,~k) = − 1
π
=GR(ω,~k).

The spectral weight at the FS, i.e. A(ω, |~k| = 0), shows clearly the separation of the

regimes of system varying the parameters, in particular mφ, |∆h
0 | and η. It is symmetric

in frequencies, and exhibits three maxima, the FL-like peak at ω = 0 and two symmetric

SC-like peaks roughly at ωscp ∼ ±
√
|∆h

0 |2
4
γR(~k)2 +m2

φ. Approximately (al least for small

η) as long as η
mφ

<
mφ

|∆h0 |
2
γR(~k)

, the FL peak is higher than the SC peaks which became

negligible for ωscp >>
|∆h

0 |
2
γR(~k), while approximately for η

mφ
>

mφ
|∆h0 |

2
γR(~k)

, the SC peaks

are higher than the FL one. The size of the area under the peaks determines the main

behavior of the system and the more strongly the above inequalities are verified, the

greater is the difference of peak heights.

Again we notice that, even if small, the FL peak is always present unless mφ strictly

vanishes and in this case the spectral weight at the FS does not vanish because of η.

A key point is the direction dependence of the condition on the maxima, due to γR(~k),

which determines the effectiveness of the FS

η
|∆h

0 |
2
γR(~k) < [>]m2

φ, if FL [SC]. (4.40)

Indeed near the nodal region the behavior is always FL-like with an effective FS

while near the antinodal directions most of the spectral weight is concentrated on SC-like

modes and even if there is a FS, it has negligible effects.

4.6 Density of states and self consistency

The density of states of holons ρh(ω) can be obtained by numerical integration of the

spectral weight A(ω,~k) in momentum space. Fig. (4.2) shows the result of this calculation

for different values of mφ, using the imaginary part of the retarded Green’s function in Eq.

(4.39). In the plot, instead of γR with p-wave symmetry, we used cos(2θ~k) with d-wave

symmetry to recover the main features of the holon sector in the whole BZ. Moreover

we claim that this result roughly holds also for holes because we expect that the main
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relevant effect of the spinon sector, near the FS, is a renormalization of the scattering

rate η.

We see how decreasing the value of mφ the flat FL density of states in the panel (a)

gradually reduces for small frequencies and develops a peak at ω ≈ ωscp. It is a precursor

of the SC peak. Higher frequencies are not affected and preserve a flat d.o.s.. As expected,

for small mφ, panels (e) and (f), the d.o.s. resembles that of a d-wave superconductor

with a well defined and high peak. Notice in panels (d) and (e) the additional small peak

at ω = 0 due to the FL quasi-particles which preserve a FS, even if not very effective,

unless mφ vanishes.

In Fig. (4.2) we keep fixed

√
η
|∆h

0 |
2
≈ 0.007. This value can be compared to the value

of mφ to obtain a condition similar to that shown in Eq. (4.40), but ”averaged” over the

angular dependence due to γR.

Taking into account the temperature dependence of mφ via ∆h
0 (Eq. (4.27) holds

at least for small ∆h
0 and the temperature dependence of ∆h

0 will be given in the next

chapter in Eq. (5.5)), we see that mφ decreases as temperature is reduced, until vanishing

at T = Tc. Therefore Fig. (4.2) is in qualitative agreement with experimental data of

Fig. (1.4,(b)).

The plots of the density of states and the discussion of the previous section show

that, above the superconducting transition, there is an energy scale mφ below which the

fermionic excitations behaves like well defined FL quasi-particles with a reduced effective

FS. The FS has not disappeared but a part of it has a strongly reduced weight. Above

this energy scale the fermionic excitations are essentially d-wave gapped. In other words

the energy scale mφ separates FL modes from SC modes, therefore we can consistently

match mφ with the cutoff Λh. Fermionic modes higher than Λh were previously assumed

to be SC-like and had been integrated out to give dynamics to the order parameter, see

Eq. (4.17). In this way our earlier assumption on high energy modes is justified because

the obtained self energy is consistent with it.

This calculation reflects a new interpretation of mφ. When the order parameter does

not fluctuate (standard BCS approximation) the scattering process occurs between par-

ticles on opposite sides of the FS with exactly opposite momentum which bind to form

the Cooper pair. As we can see from the Feynman diagram for the self energy, when

fluctuations of the order parameter are considered a particle with momentum ~k can in-

teract, not only with the opposite one, but with all particles in a region centered at −~k
and allowed by momentum conservation. The range of the fluctuations, that is mφ, deter-

mines the size of this region or in other words determines how much of the FS contributes
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Figure 4.2: Density of states (d.o.s.) obtained from Eq. (4.39) and evaluated for different

values of mφ; we posed vF = 1 and we took kF = 1 (accordingly to SM regime) so that

E(~k) = 1
2
(~k2 − 1) and the energy, in the horizontal axis, is measured in units of 2εF .

Finally we fixed
|∆h

0 |
2

= 0.05 and η = 0.001. The vertical axis is in arbitrary units.
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to the scattering process. Clearly when mφ → 0 the contributing region reduces to the

opposite point recovering the BCS approximation. This interpretation allows us to give

meaningful upper limit to mφ of order kF which means that most of the FS contributes

to the scattering process. This will help us in the next chapter when the temperature

dependence of parameters will be treated.

Finally, a treatment similar to that just made for the holon pairs can not be done for

spinon pairs because spinons are massive particles.
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Chapter 5

Holon pairing effects in the normal

state

5.1 Introduction

Besides the ”mass” mφ, which vanishes at T = Tc, there is another energy scale

associated to holon pairs, represented by the order parameter |∆h
0 | that, as explained in

previous chapters, appears at Tph when a finite density of incoherent holon pairs forms.

In this chapter we analyze the effects of the presence of incoherent holon pairs in the

normal phase of underdoped cuprates. We concentrate on SM region, where these effects

are much more effective, and analyze how they modify the low energy actions and the

observables [7].

We will show that it is possible to ascribe to holon pairs formation the unusual tem-

perature dependence of some experimental data usually associated to PG regime (i.e. to

a spin gap) but actually occurring, at least for some doping values, at higher temperature

typical of SM . Indeed the appearance of holon pairs generates a holon reduced spectral

weight Z̄∆ and a wave factor ZA which reduces the effectiveness of the Reizer-like action

of the gauge field until it vanishes at the superconducting transition.

The observable effects we will consider as signatures of the high pseudo-gap crossover

are the downturn of resistivity from linear behavior and the downturn of Knight shift

(static spin susceptibility) from constant Pauli-like value at low temperatures. Other

quantities, like specific heat and entropy, get some modifications but we will not deal

with them in this thesis. However Knight shift and resistivity are enough to justify the

identification of Tph with the observed upper PG temperature.

When at T ≤ Tph the holon reduced spectral weight Z̄∆ and the wave factor ZA begin

71
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to be significantly less than one and all quantities in which they appear feel the effect of

their reduction. In this way we are able to explain the proportionality of the temperature

derivative of resistivity and the Knight shift and why their deviation from a constant

value is simultaneous in terms of temperature dependence.

We finally notice that while the temperature T ∗ depends mainly on the spinon sector

and is therefore nearly material independent, the temperature Tph depends mainly on

holon sector and it is strongly material-dependent since pairing phenomenon is strongly

connected to the FS features.

5.2 Effective actions of gapless excitations

In this section we will put the action of the system in the standard form, i.e. a sum

of three contribution: the spinon term, the holon term and the slave particle gauge field

term. In the holon contribution, the holon pairs are considered and the slave particle

gauge field is minimally coupled to spinons and holons and receives dynamics from them.

This is the starting form for all calculations and predictions performed with our model in

the low temperature regime.

In the last chapter we showed that the formation of holon pairs changes holon Green’s

function via the self energy in Eq. (4.34). We can use the self energy Σ(ω,~k) to take

holon pairs into account making the substitution E(~k)→ E(~k)− Σ(ω,~k) into the action

of holons in Eq. (4.15), and neglecting the interaction with the order parameter. In

this way the action of the system in the normal state consist of two contributions, the

unchanged spinon contribution of Eq. (2.39) and the modified holon contribution of the

previous chapter. Holon Green’s function changes by an angle dependent wave function

renormalization Z∆(~k) if ω < mφ and looks like a d-wave SC one if ω > mφ.

As a first approximation, to simply analyze the modified holon term in the low energy

(or temperature) limit, we neglect the angular dependence of Z∆(~k) replacing γR(~k)2 by

its average on the FS. So Z∆(~k) is replaced by

Z̄∆ =
1

1 +
|∆h

0 |2π
4m2

φ
k2
Fa

2
. (5.1)

Its value is essentially one in the PG region because kF ∼ δ << 1 and the FS is

located near the nodal directions, but in SM region, with a large FS, its value can be

much less than one, leading to relevant effects. For ω < mφ the holon action of Eq. (2.45),

in coordinates representation, becomes
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Sh =
1

Z̄∆

∫

[0,β]×R2

d3xH∗(x0, ~x)

[
i∂0 − µ− A0 −

(~∇− i ~A)2

2m∗

]
H(x0, ~x), (5.2)

where the slave particle gauge field has been introduced by minimal substitution taking

gauge invariance into account. High energy modes ω > mφ are gapped and we do not

consider them because they can be safely integrated out giving rise to a Maxwell-like

action for the slave particle gauge field, as shown in the previous chapter. A similar

argument holds for massive spinons.

In the low energy limit, the relevant dynamics of the slave particle gauge field stems

from integrating out low energy modes of holons with a FS. This leads to the Reizer

singularity for the transverse component of gauge field as in Eq. (2.46) and to a plasma

frequency gap for the scalar component as in Eq. (2.47). At low temperature Maxwell-

like action is clearly sub-leading w.r.t Reizer singularity and can be safely neglected for

mφ 6= 0.

In this case, starting from Eq. (5.2), we notice that, because of a Ward identity, the

wave function renormalization of holons Z̄∆ has no effect on the propagator of the gauge

field. Indeed vertex correction exactly cancels the wave function renormalization in the

vacuum polarization Feynman diagram. The fact of the matter is that the action for

holons in Eq. (5.2) holds only for low frequencies ω < mφ. This means that frequencies

lower than mφ contribute to Reizer singularity while higher frequencies (being d-wave SC

like modes) contribute to the irrelevant Maxwell-like action. In this sense holon pairing,

through the energy scale mφ, affects the slave particle gauge field. We model this effect

introducing a weight factor ZA in front of the slave particle gauge field action with the

Reizer singularity, having the following properties,

• ZA vanishes at T = Tc because mφ(Tc) = 0. Indeed at T < Tc the system is a

d-wave superconductor and the generated dynamics is no more Reizer-like;

• ZA approaches one at T = Tph. This is because in this case (and at higher temper-

ature T > Tph) the system has a metallic behavior, in fact essentially all the FS

contribute to the Reizer singularity and there are not holon pairs.

Hereafter we show explicitly the temperature dependence of parameters when neces-

sary. One can show that for mφ >> kF , ZA ∼ 1 and for mφ << kF , ZA ∼ mφ
kF

; our choice

for ZA is of the simple interpolating form

ZA =
1

1 + kF
mφ(T )

, (5.3)
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thus the Reyzer-like action of the gapless transverse component reads

SAT =
ZA
2β

∑

ωn

∫
d2k

(2π)2

(
iκ
ωn

|~k|
− χ~k2

)
|AT |2. (5.4)

We conclude from Eqs. (5.2) and (5.4) that, above the superconducting transition, it

is possible to take the presence of incoherent holon pairs into account by means of the two

weights Z̄∆ and ZA. From the above actions we see that they renormalize the following

quantities:

• the density of states at the FS of holons Nh(εF )→ Z̄∆Nh(εF );

• the Landau dumping κ→ ZAκ;

• the diamagnetic susceptibility, χ→ ZAχ;

• the plasma frequency ωp → ZAωp.

The last point stems from the scalar component of the gauge field, applying similar

considerations to that just made for the transverse component. Thus updating these

parameters in formulas we can include the effects of holon pairing. Later in this chapter

we will give two examples dealing with resistivity and Knight shift.

Finally we consider the explicit temperature dependence of the two new parameters

|∆h
0 | and mφ. By a numerical fitting of the solutions of the gap equation for holons in Eq.

(3.21) we get

|∆h
0 |(T ) ∝ 1− e3

(
1−

Tph
T

)
(5.5)

for T < Tph and |∆h
0 |(T ) = 0 for T > Tph.

As for mφ, we know that it must vanish at the superconducting transition temperature

Tc (and at lower temperature T < Tc) because at the phase transition holon pairs become

coherent. Moreover it must be of the form given by Eq. (4.27) for temperatures slightly

below Tph when incoherent holon pairs begin to appear, so that the condition of small ∆h
0

is fulfilled.

Finally we point out the relevance in our discussion of the negative next-nearest-

neighbor hopping term t′ which bends the FS of holons and allows BCS pairing of fields

having a good continuum limit in SM region. In the simple t− J model (where t′ = 0),

the FS in SM does not cross the boundaries of the MBZ and our approach to the phase

fluctuations of the holon pair order parameter presumably is possible only in the PG
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region where closed FS centered at 1
2
(±π,±π) may arise (see Fig. (3.1)) (but in PG the

effects of phase fluctuations are not very effective). For this reason in the simple t − J
model T ∗ and Tph may coincide.

5.3 Resistivity in the strange metal region

With the above prescriptions, below Eq. (5.4), we can easily modify the resistivity

formula in the SM region, i.e. the sum of Eqs. (2.58) and (2.56). While the spinon

contribution, responsible for the T -linearity, does not change significantly, the impurity

scattering in holon sector, added by Matthiesen rule and affecting resistivity by an upward

shift, is multiplied by Z̄∆(T ) because the real time scattering rate is proportional to the

density of states at the FS [38]. This introduces an additional temperature dependence

that causes an increasingly downward deviation of resistivity when temperature is reduced.

The deviation becomes relevant below Tph.

The blue line plotted in Fig. (5.1) shows the resistivity predicted by our model when

holon pairs formation is neglected. The red line instead shows the effect of holon pairs on

the resistivity. It has a negative second derivative below Tph and smoothly joins to the

blue line nearly at Tph, when holon pairs disappear. Both curves show a linear growth

at temperature higher than Tph and are not reliable below Tc when they should abruptly

drop, because of the superconducting transition.

The red line is in agreement with experimental data [30]; the downward deviation

below Tph is evident in panel (b) of Fig. (1.2), while the sign of second derivative can be

read moving along a vertical line in panel (c).

We conclude that formation of holon pairs and the increasing coherence length of their

phase can explain both the temperature scale of this deviation, set by Tph (not by T ∗),

and its temperature dependence, at least up to temperatures not too low.

5.4 Knight shift in the strange metal region

In this section we evaluate spin-spin correlation 〈~S(x) · ~S(y)〉 in the SM regime and

determine the Knight shift Ks using the real part of the retarded correlation

Ks ∝
∫

d2p

(2π)2
F (~p) lim

ω→0
<〈~S(p) · ~S(−p)〉R

∼ lim
ω→0
<〈~S(~0, ω) · ~S(~0,−ω)〉R, (5.6)
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Temperature (K) 

a-b resistivity (mΩ cm) 

Figure 5.1: Predicted resistivity in SM region (doping δ ≈ 0.18) as a function of temper-

ature. The red line shows the downward deviation from linearity below Tph ≈ 250K. The

blue line is the resistivity when holon pairs are neglected. They coincide above Tph and

are not reliable below Tc.
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where in the last step we assumed the nuclear structure factor F (~p) peaked around

~p = 0 [48], [49].

In the framework of this spin-charge separation approach, the spin field at the point

x = (~x, x0) reads

Si(x) ∼ [1−H∗(x)H(x)]ei
~QAF ·~xΩi (5.7)

where ~Ω is defined in Eq. (2.37) and represents slowly varying anti-ferromagnetic

modes. It follows that the spin-spin correlation reads

〈~S(x) · ~S(y)〉 ∼ [(1− δ)2 + 〈n(x)n(y)〉c]ei ~QAF ·(~x−~y)〈~Ω(x) · ~Ω(y)〉 (5.8)

where n(n) = H∗(x)H(x) and the subscript c means connected correlation beyond the

mean value (1−δ)2. This mean value gives a contribution to the spin-spin correlation near

the anti-ferromagnetic vector because of the exponential factor (remember 〈~Ω(x) · ~Ω(y)〉
is slowly varying) and determines the spin-lattice relaxation rate 1

T1
.

In what follows we will consider the first and the third quadrants of the BZ but

a similar discussion, with the same results, holds also for the second and the fourth

quadrants performing the substitution ~QAF → (−π, π).

To obtain the contribution D(p) to the spin-spin correlation near spatial momentum

~p = 0, as required by Eq. (5.6), we need the Fourier transform of the connected corre-

lation 〈n(x)n(y)〉c to be non-vanishing near the anti-ferromagnetic vector ~QAF . Indeed

performing Fourier transform of the connected contribution in Eq. (5.8) we obtain

D(p) =

∫
d3q

(2π)3
〈~Ω(p+ q) · ~Ω(−p− q)〉〈n(~q + ~QAF , q0)n(−~q − ~QAF ,−q0)〉c (5.9)

where ~Ω(p) and n(p) are the Fourier transform of ~Ω(x) and n(x) respectively.

Then applying Wick theorem at zero temperature we get

〈n(~q + ~QAF , q0)n(−~q − ~QAF ,−q0)〉c ≈ −
∫

d3p

(2π)3
G(~p, p0)G(~p− ~q − ~QAF , p0 − q0)

(5.10)

where

G(p) = 〈H(p)H∗(p)〉

=
Z̄∆

ip0 − E(~p)
(5.11)
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is the low energy Green’s function of holons in the presence of incoherent holon pairs,

see Eq. (5.2).

In the low energy limit the relevant momenta are inside a strip of thickness 2Λ << kF

about the FS. To get a contribution near the anti-ferromagnetic vector ~QAF it is necessary

that the FS crosses the boundary of the RBZ in such a way that the modes near the

crosses on opposite sides of the FS give a contribution to the integral in Eq. (5.10) as

follows by momentum conservation.

Linearizing the dispersion of holons and considering the four crossing regions (two lie

in the 1st quadrant and two in the 3rd quadrant), where only particle-hole excitations

contribute, we obtain the anti-ferromagnetic density-density correlation (see appendix)

〈n(~q + ~QAF , q0)n(−~q − ~QAF ,−q0)〉c ≈ Z̄2
∆

2Λ

π2

[
1− q0

Λ
arctan

(
Λ

q0

)]
+O(~q2) (5.12)

which is nearly ~q-independent as can be seen noticing that slightly changing ~q the

crossing regions slightly changes their position but the size of the overlapping regions

does not change.

In this sense the shape of the FS is important evaluating the Knight shift and other

quantities in which is necessary a contribution near the anti-ferromagnetic vector ~QAF

in the holon sector and only excitations near the FS are considered. In particular, in

this case, the negative next nearest neighbor hopping t′ is crucial because it modifies the

FS of the simple tight binding model (with only nearest neighbor hopping t) causing the

required crosses as shown in the previous chapter.

We can now complete the computation of Eq. (5.9) using Eq. (5.10) and the relation

〈~Ω(~q, q0) · ~Ω(−~q,−q0)〉 = − 1

π

∫
dy
=〈~Ω(~q, y) · ~Ω(−~q,−y)〉R

iq0 − y
(5.13)

to obtain the dynamic propagator once is known the retarded one (see Eq. (2.52)).

The connected contribution to the spin-spin correlation reads

D(p) = Z̄2
∆

ZSM
Ω

√
a

2π4

∫ ∞

0

dy
Γ

(y − 2ms)2 + Γ2

[
1− p0 + iy√

a
arctan

( √
a

p0 + iy

)]
(5.14)

where we put Λ =
√
a to consistently neglect the ~q-dependence in the density-density

anti-ferromagnetic correlation of Eq. (5.10).

Performing the analytic continuation ip0 → p0 + iε in Eq.(5.14) and using the relation

arctan(iz) = i tanh−1(z) we obtain the retarded function
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DR(p) = Z̄2
∆

ZSM
Ω

√
a

2π4

∫ ∞

0

dy
1

1 +
(
y − 2ms

Γ

)2

[
1− Γ√

a

(
y − p0 + iε

Γ

)
tanh−1

(√
a

Γ

1

y − p0+iε
Γ

)]
. (5.15)

This integral can be evaluated exactly for p0 = 0 in the limit ms << Γ which holds in

the SM region at high temperature. The result is (see appendix)

DR
ms=0(~p, p0 = 0) = Z̄2

∆

ZSM
Ω Γ

4π3

[√
a

Γ
+ i tanh−1

(
i

√
a

Γ

)
− i

2
ln
(

1 +
a

Γ2

)]

≈ Z̄2
∆

ZSM
Ω

12π3

(
a

3
2

Γ2
− i3

2

a

Γ

)
(5.16)

where in the last step we take the limit
√
a << Γ that again holds for sufficiently high

temperature.

To proceed we assume that the relevant temperature dependence comes from the

parameters, in such a way to extend the above zero temperature calculation to finite

temperature. Parameters with the highest power temperature dependence are the most

important (remember we are in SM regime). Using Eqs. (5.6) and (5.16), Knight shift,

in the high temperature (or large Γ) limit, turns out to be

Ks ≈ lim
p0→0
<DR(~p = 0, p0)

≈ Z̄2
∆

ZSM
Ω

12π3

a
3
2

Γ2
. (5.17)

We notice that the temperature dependence of the second and third factors cancels

and the remaining temperature dependence comes from Z̄2
∆. We conclude that when a

finite density of incoherent holon pairs appears at the temperature scale Tph, the weight

Z̄2
∆ causes a downward deviation of the Knight shift w.r.t. its constant value at high

temperature. The second panel in Fig. (1.3) shows that, decreasing temperature, the

downward deviation of Ks occurs at a temperature of order Tph, higher than T ∗ and

consistent with the above calculation.

Finally the doping dependence arises mainly from the second and third factors and,

accordingly to experimental data, Knight shift grows with doping

Ks = Z̄2
∆

√
κ

12π3c′2
|δ ln δ| 54 ∝ δ

5
4 , (5.18)
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where in the last step we assumed small δ w.r.t. one. Using Eq. (5.18) we plot in Fig.

(5.2) the Knight shift as a function of temperature for two different over-doping values.

These curves can be compared with the experimental data for optimally doped Y BCO,

represented by the squares in the second panel of Fig. (1.3).

Figure 5.2: Temperature dependence of the Knight shift Ks calculated at two different

doping values δ = 0.2 (red curve) and δ = 0.16 (blue curve). In both cases we chose

Tph ≈ 130K.



Chapter 6

Conclusions

We briefly review the main new results achieved in this thesis. We studied the normal

to superconducting phase transition in cuprates compounds within the spin charge sepa-

ration scenario. Our approach exhibits 3 distinct crossover lines: Tph where holons begin

to pair reducing the spectral weight of the hole, starting from antinodal directions; Tps

where incoherent RV B hole pairs are formed, mainly affecting the magnetic properties

since a finite FS still persists; and T ∗, intersecting Tps, where one crosses from a large to

a small holon FS, half-pocket shaped and located near the nodal direction.

Although many details of our approach are admittedly conjectural, the mechanism

of SC proposed is rather complete and has the following appealing features: it is not of

simple BCS structure; SC appears only at finite doping above the long range AF order;

it allows vortices in the normal state, as in the preformed pair scenario, supporting Nernst

signal; the appearance of two positive branches in the spinon dispersion relation that for a

suitable spinon-antispinon attraction induce a similar structure for the magnon dispersion

around the AF vector, reminiscent of the hourglass found in neutron experiments; in the

SC state the gauge gap destroys the Reizer singularity (responsible for the anomalous T -

dependence of life-time of magnon and electron resonances in the normal state), therefore

the magnon and the electron resonances become sharper.

For the holon pairing in the normal state as a precursor of superconductivity, we

generalized the BCS interaction introducing the fluctuations of the phase of the order

parameter in a self consistent way. Then we considered the scattering of quasi-particle

against the incoherent condensate finding an explicit expression for the Green’s function

of quasi-particles that exactly interpolates between a FL-like behavior, with a reduced

and direction dependent spectral weight, when pairs are incoherent, and a d-wave SC-

like behavior, when pairs become coherent at the SC transition. The relevant parameter
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that smoothly drives this process is the coherence length. For larger length scales the

system behaves like a FL, for shorter scales the system behaves like a superconductor.

We obtained also a condition determining which of the two behavior dominates. Notice

that the FS becomes less effective but does not disappear until the SC transition and

the related density of states is directly comparable with experimental data.

The shape of the FS turned out to be crucial to get a good continuum limit for

quasi-particles and to properly evaluate the Knight shift. In particular the next-nearest-

neighbor hopping term, bending the FS up to cross the boundaries of the MBZ, both

allows a suitable FS for the BCS pairing of holons and provides a constant contribution

to the real part of the static spin susceptibility (i.e. to the Knight shift) near ~q = 0.

Moreover the interaction through vortices with chirality depending on the sublattice,

being able to distinguish the sublattice where they sit, can explain the presence, observed

in experiments, of large hole-like Fermi surfaces and small electron-like ones.

The temperature Tph, unlike the temperature T ∗, mainly depends on the holon sector

and is therefore strongly material dependent. In the SM regime of the simple t−J model,

these FS-related effects are absent and the temperatures Tph and T ∗ probably coincide.

Then we studied how the low energy actions of spinons, holons and slave particle

gauge field modifies in the presence of holon pairs. We showed that it is possible to

take holon pairs into account introducing a direction and temperature dependent reduced

spectral weight for holons and a temperature dependent wave function renormalization for

the slave particle gauge field. These factors renormalized the parameters of the actions

and using them we sow how holon pairing affects physical observables. We considered

in particular resistivity and Knight shift. According to experiments, these quantities

showed a simultaneous downward deviation, when temperature is reduced below Tph.

These deviations are a confirmation of the existence of a high pseudo-gap temperature

Tph, above T ∗. Indeed they are due to holon pairing and not to pseudo-gap effects which

show up at temperatures lower than T ∗.

Let us finally spend few words for future directions of work. There are several aspects

to be studied in detail. In the SC phase the slave particle gauge field is gapped and there

have to be another attractive interaction to get gauge invariant, i.e. physical, fields. We

proposed the residual Z2 subgroup as a source of attraction, which range needs a deeper

understanding.

In the normal state the Nernst effect, the phase vortices and the presence of a magnetic

field have to be considered. Also the quantum critical point problem, which we believe

to be QED3, and the controversial issue if the density of states of holes is preserving or
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not-preserving when the SC transition is approached have to be studied.

Finally we note that our theory of superconductivity seems to be consistent with a

double nature of the SC transition experimentally observed. It is of the XY type for

underdoped samples, i.e. the mass of the phase Φ smoothly vanishes at the transition

point, and of the BCS type, i.e. the phase mass has a jump at the transition, for

overdoped samples.
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Appendix A

Calculation of the integral I(k)

(chapter 4)

We evaluate the integral I(k) of Eq. (4.31) to obtain the expression in Eq. (4.33). We

get

I(k) =

∫
d3q

(2π)3

1

q2 +m2
φ

1

i(q0 − k0)− E(~q − ~k)

=

∫
d3q

(2π)3

1

q2 +m2
φ

1

i(q0 − k0) + ~q · k̂ − δk

=

∫
d3q

(2π)3

1

q2 +m2
φ

1

i(q0 − k0) + q1 − δk

=

∫
drdθdq2

(2π)3

r

q2
2 + r2 +m2

φ

1

r0eiϕ − reiθ
. (0.1)

It is the expression shown in Eq. (4.32) and in the in the last step we used the

cylindrical coordinates defined in chapter 4 above Eq. (4.32). We proceed integrating in

succession q2, θ and r. We obtain

I(k) = −π
∫

drdθ

(2π)3

1√
r2 +m2

φ

1

eiθ − r0
r
eiϕ

=
π

r0eiϕ

∫
dr

(2π)2
θ(r0 − r)

r√
r2 +m2

φ

=
π

r0eiϕ

√
r2

0 +m2
φ −mφ

(2π)2
. (0.2)

The last expression is the desired result, i.e. Eq. (4.33). The θ-integration has been

performed applying the residue theorem to the complex contour integral around the unit

circle of the complex variable eiθ.
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Appendix B

Calculation of the density-density

correlation near the

anti-ferromagnetic vector (chapter 5)

We evaluate the anti-ferromagnetic density-density correlation in Eq. (5.10) consider-

ing the 1st and 3rd quadrants,

〈nn〉c(~q + ~QAF , q0) ≡ 〈n(~q + ~QAF , q0)n(−~q − ~QAF ,−q0)〉c
≈ −

∫
d3p

(2π)3

Z̄∆

ip0 − E(~p)

Z̄∆

i(p0 − q0)− E(~p− ~q − ~QAF )

= iZ̄2
∆

∫
d2p

(2π)2

θ[E(~p)]− θ[E(~p− ~q − ~QAF )]

q0 − i[E(~p− ~q − ~QAF )− E(~p)]
(0.3)

where the p0-integration has been performed using residue theorem and θ is the step

function.

We proceed reducing the momentum integration within a strip of thickness 2Λ << kF

about the FS, linearizing the dispersion E(~k) and taking vF = 1. We call Λ1 (Λ3) the

set of modes around the FS of the 1st (3rd) quadrant. Then translating Λ1 by the vector

−~q− ~QAF we get two overlapping regions with Λ3 in the 3rd quadrant. The particle-hole

excitations (as shown by the difference of the step functions in the numerator) within

these overlapping regions contribute to the integral in Eq.(5.10) at the value ~q of the

momentum. Moreover for small ~q the overlapping regions are nearly squares of side 2Λ

and two FS inside them are nearly orthogonal, therefore, considering the contribution of

one of these regions to the above integral, we get
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1

4
〈nn〉c(~q + ~QAF , q0) ≈ i

Z̄2
∆

(2π)2

∫ Λ

−Λ

dp1

∫ Λ

−Λ

dp2
θ(−p1)− θ(−p2)

q0 − i(p1 + p2)

=
Z̄2

∆

(2π)2

∫ Λ

0

dp1

∫ Λ

0

dp2

[
i

q0 + i(p1 + p2)
− i

q0 − i(p1 + p2)

]

=
Z̄2

∆

2π2

∫ Λ

0

dp1

∫ Λ

0

dp2
p1 + p2

q2
0 + (p1 + p2)2

≈ Z̄2
∆√

2π2

∫ Λ

0

dp+
p+

q2
0 + 2p2

+

∫ p+

−p+

dp−

=
Z̄2

∆

2π2
|q0|
∫ √

2Λ
|q0|

0

dy
y2

1 + y2

= Z̄2
∆

Λ√
2π2

[
1 +

q0√
2Λ

arctan

(√
2Λ

q0

)]
(0.4)

which is the result in Eq. (5.12) after a trivial redefinition of the cutoff
√

2Λ → Λ.

The factor 4 is due to summing the contribution of the four overlapping regions. Notice

that for ~q = 0 the contributing regions lie near the intersection points of the FS and the

boundary of the MBZ.
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Calculation of the static spin-spin

correlation near the

anti-ferromagnetic vector (chapter 5)

We evaluate the integral in Eq. (5.15) at p0 = 0 in the limit ms
Γ
→ 0. It reads

DR
ms=0(~p, p0 = 0) = Z̄2

∆

ZSM
Ω Γ

2π4

∫

A

dzf(z) (0.5)

f(z) =
1

Γ2

a
+ z2

[
1− z tanh−1

(
1

z

)]
(0.6)

where z is a complex variable and A is a ray on the complex z-plane starting at

z = −i ε√
a

and reaching z = +∞− i ε√
a

remaining parallel to the positive real axis.

The function f(z) shows a branch cut between z = −1 and z = 1 (because of the

factor tanh−1
(

1
z

)
) and two poles at z = ±i Γ√

a
due to the first factor. Moreover it is an

even function, f(z) = f(−z).

The closed integration path we choose consists of four pieces: 1) the ray A; 2) the

ray B starting at z = −∞ + i ε√
a

up to z = +i ε√
a

remaining parallel to the negative real

axis (it is the reflection of A w.r.t. the origin and, because the integrand is even, it gives

the same contribution as A); 3) a path C turning around the positive part of the branch

cut (from 0 to 1) and joining the end of B with the beginning of A; 4) the semicircle at

infinity in the upper plane that closes the path (it gives a vanishing contribution because

of Jordan’s lemma).

This path encloses the upper pole z = i Γ√
a

and does not cross the cut, therefore

summing the contributions of the four paths we get 2πi times the residue of the pole,
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2
2π4

Z̄2
∆Z

SM
Ω Γ

DR
ms=0(~p, p0 = 0) +

∫

C

dzf(z) = π

√
a

Γ
+ iπ tanh−1

(
i

√
a

Γ

)
. (0.7)

The integral around the positive part of the cut reads

∫

C

dzf(z) =

∫ 1

0

dz [f(z + iε)− f(z − iε)]

= −
∫ 1

0

dz
z

Γ2

a
+ z2

[
tanh−1

(
1

z + iε

)
− tanh−1

(
1

z − iε

)]

= −
∫ 1

0

dz
z

Γ2

a
+ z2

1

2

[
ln

(
1

z − iε

)
− ln

(
1

z + iε

)]

= iπ

∫ 1

0

dz
z

Γ2

a
+ z2

= i
π

2
ln
(

1 +
a

Γ2

)
, (0.8)

notice that ε and ε√
a

are equivalent when the limit ε→ 0 is performed.

We conclude from Eq. (0.7) that

DR
ms=0(~p, p0 = 0) = Z̄2

∆

ZSM
Ω Γ

4π3

[√
a

Γ
+ i tanh−1

(
i

√
a

Γ

)
− i

2
ln
(

1 +
a

Γ2

)]
(0.9)

which is the result in Eq. (5.16).
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